xref: /titanic_50/usr/src/uts/common/inet/tcp/tcp.c (revision 830f48a7bfcdf70f694abbdd46d94b09f1e4227f)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 /* Copyright (c) 1990 Mentat Inc. */
27 
28 #pragma ident	"%Z%%M%	%I%	%E% SMI"
29 const char tcp_version[] = "%Z%%M%	%I%	%E% SMI";
30 
31 
32 #include <sys/types.h>
33 #include <sys/stream.h>
34 #include <sys/strsun.h>
35 #include <sys/strsubr.h>
36 #include <sys/stropts.h>
37 #include <sys/strlog.h>
38 #include <sys/strsun.h>
39 #define	_SUN_TPI_VERSION 2
40 #include <sys/tihdr.h>
41 #include <sys/timod.h>
42 #include <sys/ddi.h>
43 #include <sys/sunddi.h>
44 #include <sys/suntpi.h>
45 #include <sys/xti_inet.h>
46 #include <sys/cmn_err.h>
47 #include <sys/debug.h>
48 #include <sys/sdt.h>
49 #include <sys/vtrace.h>
50 #include <sys/kmem.h>
51 #include <sys/ethernet.h>
52 #include <sys/cpuvar.h>
53 #include <sys/dlpi.h>
54 #include <sys/multidata.h>
55 #include <sys/multidata_impl.h>
56 #include <sys/pattr.h>
57 #include <sys/policy.h>
58 #include <sys/priv.h>
59 #include <sys/zone.h>
60 
61 #include <sys/errno.h>
62 #include <sys/signal.h>
63 #include <sys/socket.h>
64 #include <sys/sockio.h>
65 #include <sys/isa_defs.h>
66 #include <sys/md5.h>
67 #include <sys/random.h>
68 #include <netinet/in.h>
69 #include <netinet/tcp.h>
70 #include <netinet/ip6.h>
71 #include <netinet/icmp6.h>
72 #include <net/if.h>
73 #include <net/route.h>
74 #include <inet/ipsec_impl.h>
75 
76 #include <inet/common.h>
77 #include <inet/ip.h>
78 #include <inet/ip_impl.h>
79 #include <inet/ip6.h>
80 #include <inet/ip_ndp.h>
81 #include <inet/mi.h>
82 #include <inet/mib2.h>
83 #include <inet/nd.h>
84 #include <inet/optcom.h>
85 #include <inet/snmpcom.h>
86 #include <inet/kstatcom.h>
87 #include <inet/tcp.h>
88 #include <inet/tcp_impl.h>
89 #include <net/pfkeyv2.h>
90 #include <inet/ipsec_info.h>
91 #include <inet/ipdrop.h>
92 #include <inet/tcp_trace.h>
93 
94 #include <inet/ipclassifier.h>
95 #include <inet/ip_ire.h>
96 #include <inet/ip_ftable.h>
97 #include <inet/ip_if.h>
98 #include <inet/ipp_common.h>
99 #include <inet/ip_netinfo.h>
100 #include <sys/squeue.h>
101 #include <inet/kssl/ksslapi.h>
102 #include <sys/tsol/label.h>
103 #include <sys/tsol/tnet.h>
104 #include <sys/sdt.h>
105 #include <rpc/pmap_prot.h>
106 
107 /*
108  * TCP Notes: aka FireEngine Phase I (PSARC 2002/433)
109  *
110  * (Read the detailed design doc in PSARC case directory)
111  *
112  * The entire tcp state is contained in tcp_t and conn_t structure
113  * which are allocated in tandem using ipcl_conn_create() and passing
114  * IPCL_CONNTCP as a flag. We use 'conn_ref' and 'conn_lock' to protect
115  * the references on the tcp_t. The tcp_t structure is never compressed
116  * and packets always land on the correct TCP perimeter from the time
117  * eager is created till the time tcp_t dies (as such the old mentat
118  * TCP global queue is not used for detached state and no IPSEC checking
119  * is required). The global queue is still allocated to send out resets
120  * for connection which have no listeners and IP directly calls
121  * tcp_xmit_listeners_reset() which does any policy check.
122  *
123  * Protection and Synchronisation mechanism:
124  *
125  * The tcp data structure does not use any kind of lock for protecting
126  * its state but instead uses 'squeues' for mutual exclusion from various
127  * read and write side threads. To access a tcp member, the thread should
128  * always be behind squeue (via squeue_enter, squeue_enter_nodrain, or
129  * squeue_fill). Since the squeues allow a direct function call, caller
130  * can pass any tcp function having prototype of edesc_t as argument
131  * (different from traditional STREAMs model where packets come in only
132  * designated entry points). The list of functions that can be directly
133  * called via squeue are listed before the usual function prototype.
134  *
135  * Referencing:
136  *
137  * TCP is MT-Hot and we use a reference based scheme to make sure that the
138  * tcp structure doesn't disappear when its needed. When the application
139  * creates an outgoing connection or accepts an incoming connection, we
140  * start out with 2 references on 'conn_ref'. One for TCP and one for IP.
141  * The IP reference is just a symbolic reference since ip_tcpclose()
142  * looks at tcp structure after tcp_close_output() returns which could
143  * have dropped the last TCP reference. So as long as the connection is
144  * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the
145  * conn_t. The classifier puts its own reference when the connection is
146  * inserted in listen or connected hash. Anytime a thread needs to enter
147  * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr
148  * on write side or by doing a classify on read side and then puts a
149  * reference on the conn before doing squeue_enter/tryenter/fill. For
150  * read side, the classifier itself puts the reference under fanout lock
151  * to make sure that tcp can't disappear before it gets processed. The
152  * squeue will drop this reference automatically so the called function
153  * doesn't have to do a DEC_REF.
154  *
155  * Opening a new connection:
156  *
157  * The outgoing connection open is pretty simple. ip_tcpopen() does the
158  * work in creating the conn/tcp structure and initializing it. The
159  * squeue assignment is done based on the CPU the application
160  * is running on. So for outbound connections, processing is always done
161  * on application CPU which might be different from the incoming CPU
162  * being interrupted by the NIC. An optimal way would be to figure out
163  * the NIC <-> CPU binding at listen time, and assign the outgoing
164  * connection to the squeue attached to the CPU that will be interrupted
165  * for incoming packets (we know the NIC based on the bind IP address).
166  * This might seem like a problem if more data is going out but the
167  * fact is that in most cases the transmit is ACK driven transmit where
168  * the outgoing data normally sits on TCP's xmit queue waiting to be
169  * transmitted.
170  *
171  * Accepting a connection:
172  *
173  * This is a more interesting case because of various races involved in
174  * establishing a eager in its own perimeter. Read the meta comment on
175  * top of tcp_conn_request(). But briefly, the squeue is picked by
176  * ip_tcp_input()/ip_fanout_tcp_v6() based on the interrupted CPU.
177  *
178  * Closing a connection:
179  *
180  * The close is fairly straight forward. tcp_close() calls tcp_close_output()
181  * via squeue to do the close and mark the tcp as detached if the connection
182  * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its
183  * reference but tcp_close() drop IP's reference always. So if tcp was
184  * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP
185  * and 1 because it is in classifier's connected hash. This is the condition
186  * we use to determine that its OK to clean up the tcp outside of squeue
187  * when time wait expires (check the ref under fanout and conn_lock and
188  * if it is 2, remove it from fanout hash and kill it).
189  *
190  * Although close just drops the necessary references and marks the
191  * tcp_detached state, tcp_close needs to know the tcp_detached has been
192  * set (under squeue) before letting the STREAM go away (because a
193  * inbound packet might attempt to go up the STREAM while the close
194  * has happened and tcp_detached is not set). So a special lock and
195  * flag is used along with a condition variable (tcp_closelock, tcp_closed,
196  * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked
197  * tcp_detached.
198  *
199  * Special provisions and fast paths:
200  *
201  * We make special provision for (AF_INET, SOCK_STREAM) sockets which
202  * can't have 'ipv6_recvpktinfo' set and for these type of sockets, IP
203  * will never send a M_CTL to TCP. As such, ip_tcp_input() which handles
204  * all TCP packets from the wire makes a IPCL_IS_TCP4_CONNECTED_NO_POLICY
205  * check to send packets directly to tcp_rput_data via squeue. Everyone
206  * else comes through tcp_input() on the read side.
207  *
208  * We also make special provisions for sockfs by marking tcp_issocket
209  * whenever we have only sockfs on top of TCP. This allows us to skip
210  * putting the tcp in acceptor hash since a sockfs listener can never
211  * become acceptor and also avoid allocating a tcp_t for acceptor STREAM
212  * since eager has already been allocated and the accept now happens
213  * on acceptor STREAM. There is a big blob of comment on top of
214  * tcp_conn_request explaining the new accept. When socket is POP'd,
215  * sockfs sends us an ioctl to mark the fact and we go back to old
216  * behaviour. Once tcp_issocket is unset, its never set for the
217  * life of that connection.
218  *
219  * IPsec notes :
220  *
221  * Since a packet is always executed on the correct TCP perimeter
222  * all IPsec processing is defered to IP including checking new
223  * connections and setting IPSEC policies for new connection. The
224  * only exception is tcp_xmit_listeners_reset() which is called
225  * directly from IP and needs to policy check to see if TH_RST
226  * can be sent out.
227  *
228  * PFHooks notes :
229  *
230  * For mdt case, one meta buffer contains multiple packets. Mblks for every
231  * packet are assembled and passed to the hooks. When packets are blocked,
232  * or boundary of any packet is changed, the mdt processing is stopped, and
233  * packets of the meta buffer are send to the IP path one by one.
234  */
235 
236 extern major_t TCP6_MAJ;
237 
238 /*
239  * Values for squeue switch:
240  * 1: squeue_enter_nodrain
241  * 2: squeue_enter
242  * 3: squeue_fill
243  */
244 int tcp_squeue_close = 2;
245 int tcp_squeue_wput = 2;
246 
247 squeue_func_t tcp_squeue_close_proc;
248 squeue_func_t tcp_squeue_wput_proc;
249 
250 /*
251  * This controls how tiny a write must be before we try to copy it
252  * into the the mblk on the tail of the transmit queue.  Not much
253  * speedup is observed for values larger than sixteen.  Zero will
254  * disable the optimisation.
255  */
256 int tcp_tx_pull_len = 16;
257 
258 /*
259  * TCP Statistics.
260  *
261  * How TCP statistics work.
262  *
263  * There are two types of statistics invoked by two macros.
264  *
265  * TCP_STAT(name) does non-atomic increment of a named stat counter. It is
266  * supposed to be used in non MT-hot paths of the code.
267  *
268  * TCP_DBGSTAT(name) does atomic increment of a named stat counter. It is
269  * supposed to be used for DEBUG purposes and may be used on a hot path.
270  *
271  * Both TCP_STAT and TCP_DBGSTAT counters are available using kstat
272  * (use "kstat tcp" to get them).
273  *
274  * There is also additional debugging facility that marks tcp_clean_death()
275  * instances and saves them in tcp_t structure. It is triggered by
276  * TCP_TAG_CLEAN_DEATH define. Also, there is a global array of counters for
277  * tcp_clean_death() calls that counts the number of times each tag was hit. It
278  * is triggered by TCP_CLD_COUNTERS define.
279  *
280  * How to add new counters.
281  *
282  * 1) Add a field in the tcp_stat structure describing your counter.
283  * 2) Add a line in tcp_statistics with the name of the counter.
284  *
285  *    IMPORTANT!! - make sure that both are in sync !!
286  * 3) Use either TCP_STAT or TCP_DBGSTAT with the name.
287  *
288  * Please avoid using private counters which are not kstat-exported.
289  *
290  * TCP_TAG_CLEAN_DEATH set to 1 enables tagging of tcp_clean_death() instances
291  * in tcp_t structure.
292  *
293  * TCP_MAX_CLEAN_DEATH_TAG is the maximum number of possible clean death tags.
294  */
295 
296 #ifndef TCP_DEBUG_COUNTER
297 #ifdef DEBUG
298 #define	TCP_DEBUG_COUNTER 1
299 #else
300 #define	TCP_DEBUG_COUNTER 0
301 #endif
302 #endif
303 
304 #define	TCP_CLD_COUNTERS 0
305 
306 #define	TCP_TAG_CLEAN_DEATH 1
307 #define	TCP_MAX_CLEAN_DEATH_TAG 32
308 
309 #ifdef lint
310 static int _lint_dummy_;
311 #endif
312 
313 #if TCP_CLD_COUNTERS
314 static uint_t tcp_clean_death_stat[TCP_MAX_CLEAN_DEATH_TAG];
315 #define	TCP_CLD_STAT(x) tcp_clean_death_stat[x]++
316 #elif defined(lint)
317 #define	TCP_CLD_STAT(x) ASSERT(_lint_dummy_ == 0);
318 #else
319 #define	TCP_CLD_STAT(x)
320 #endif
321 
322 #if TCP_DEBUG_COUNTER
323 #define	TCP_DBGSTAT(x) atomic_add_64(&(tcp_statistics.x.value.ui64), 1)
324 #elif defined(lint)
325 #define	TCP_DBGSTAT(x) ASSERT(_lint_dummy_ == 0);
326 #else
327 #define	TCP_DBGSTAT(x)
328 #endif
329 
330 tcp_stat_t tcp_statistics = {
331 	{ "tcp_time_wait",		KSTAT_DATA_UINT64 },
332 	{ "tcp_time_wait_syn",		KSTAT_DATA_UINT64 },
333 	{ "tcp_time_wait_success",	KSTAT_DATA_UINT64 },
334 	{ "tcp_time_wait_fail",		KSTAT_DATA_UINT64 },
335 	{ "tcp_reinput_syn",		KSTAT_DATA_UINT64 },
336 	{ "tcp_ip_output",		KSTAT_DATA_UINT64 },
337 	{ "tcp_detach_non_time_wait",	KSTAT_DATA_UINT64 },
338 	{ "tcp_detach_time_wait",	KSTAT_DATA_UINT64 },
339 	{ "tcp_time_wait_reap",		KSTAT_DATA_UINT64 },
340 	{ "tcp_clean_death_nondetached",	KSTAT_DATA_UINT64 },
341 	{ "tcp_reinit_calls",		KSTAT_DATA_UINT64 },
342 	{ "tcp_eager_err1",		KSTAT_DATA_UINT64 },
343 	{ "tcp_eager_err2",		KSTAT_DATA_UINT64 },
344 	{ "tcp_eager_blowoff_calls",	KSTAT_DATA_UINT64 },
345 	{ "tcp_eager_blowoff_q",	KSTAT_DATA_UINT64 },
346 	{ "tcp_eager_blowoff_q0",	KSTAT_DATA_UINT64 },
347 	{ "tcp_not_hard_bound",		KSTAT_DATA_UINT64 },
348 	{ "tcp_no_listener",		KSTAT_DATA_UINT64 },
349 	{ "tcp_found_eager",		KSTAT_DATA_UINT64 },
350 	{ "tcp_wrong_queue",		KSTAT_DATA_UINT64 },
351 	{ "tcp_found_eager_binding1",	KSTAT_DATA_UINT64 },
352 	{ "tcp_found_eager_bound1",	KSTAT_DATA_UINT64 },
353 	{ "tcp_eager_has_listener1",	KSTAT_DATA_UINT64 },
354 	{ "tcp_open_alloc",		KSTAT_DATA_UINT64 },
355 	{ "tcp_open_detached_alloc",	KSTAT_DATA_UINT64 },
356 	{ "tcp_rput_time_wait",		KSTAT_DATA_UINT64 },
357 	{ "tcp_listendrop",		KSTAT_DATA_UINT64 },
358 	{ "tcp_listendropq0",		KSTAT_DATA_UINT64 },
359 	{ "tcp_wrong_rq",		KSTAT_DATA_UINT64 },
360 	{ "tcp_rsrv_calls",		KSTAT_DATA_UINT64 },
361 	{ "tcp_eagerfree2",		KSTAT_DATA_UINT64 },
362 	{ "tcp_eagerfree3",		KSTAT_DATA_UINT64 },
363 	{ "tcp_eagerfree4",		KSTAT_DATA_UINT64 },
364 	{ "tcp_eagerfree5",		KSTAT_DATA_UINT64 },
365 	{ "tcp_timewait_syn_fail",	KSTAT_DATA_UINT64 },
366 	{ "tcp_listen_badflags",	KSTAT_DATA_UINT64 },
367 	{ "tcp_timeout_calls",		KSTAT_DATA_UINT64 },
368 	{ "tcp_timeout_cached_alloc",	KSTAT_DATA_UINT64 },
369 	{ "tcp_timeout_cancel_reqs",	KSTAT_DATA_UINT64 },
370 	{ "tcp_timeout_canceled",	KSTAT_DATA_UINT64 },
371 	{ "tcp_timermp_alloced",	KSTAT_DATA_UINT64 },
372 	{ "tcp_timermp_freed",		KSTAT_DATA_UINT64 },
373 	{ "tcp_timermp_allocfail",	KSTAT_DATA_UINT64 },
374 	{ "tcp_timermp_allocdblfail",	KSTAT_DATA_UINT64 },
375 	{ "tcp_push_timer_cnt",		KSTAT_DATA_UINT64 },
376 	{ "tcp_ack_timer_cnt",		KSTAT_DATA_UINT64 },
377 	{ "tcp_ire_null1",		KSTAT_DATA_UINT64 },
378 	{ "tcp_ire_null",		KSTAT_DATA_UINT64 },
379 	{ "tcp_ip_send",		KSTAT_DATA_UINT64 },
380 	{ "tcp_ip_ire_send",		KSTAT_DATA_UINT64 },
381 	{ "tcp_wsrv_called",		KSTAT_DATA_UINT64 },
382 	{ "tcp_flwctl_on",		KSTAT_DATA_UINT64 },
383 	{ "tcp_timer_fire_early",	KSTAT_DATA_UINT64 },
384 	{ "tcp_timer_fire_miss",	KSTAT_DATA_UINT64 },
385 	{ "tcp_freelist_cleanup",	KSTAT_DATA_UINT64 },
386 	{ "tcp_rput_v6_error",		KSTAT_DATA_UINT64 },
387 	{ "tcp_out_sw_cksum",		KSTAT_DATA_UINT64 },
388 	{ "tcp_out_sw_cksum_bytes",	KSTAT_DATA_UINT64 },
389 	{ "tcp_zcopy_on",		KSTAT_DATA_UINT64 },
390 	{ "tcp_zcopy_off",		KSTAT_DATA_UINT64 },
391 	{ "tcp_zcopy_backoff",		KSTAT_DATA_UINT64 },
392 	{ "tcp_zcopy_disable",		KSTAT_DATA_UINT64 },
393 	{ "tcp_mdt_pkt_out",		KSTAT_DATA_UINT64 },
394 	{ "tcp_mdt_pkt_out_v4",		KSTAT_DATA_UINT64 },
395 	{ "tcp_mdt_pkt_out_v6",		KSTAT_DATA_UINT64 },
396 	{ "tcp_mdt_discarded",		KSTAT_DATA_UINT64 },
397 	{ "tcp_mdt_conn_halted1",	KSTAT_DATA_UINT64 },
398 	{ "tcp_mdt_conn_halted2",	KSTAT_DATA_UINT64 },
399 	{ "tcp_mdt_conn_halted3",	KSTAT_DATA_UINT64 },
400 	{ "tcp_mdt_conn_resumed1",	KSTAT_DATA_UINT64 },
401 	{ "tcp_mdt_conn_resumed2",	KSTAT_DATA_UINT64 },
402 	{ "tcp_mdt_legacy_small",	KSTAT_DATA_UINT64 },
403 	{ "tcp_mdt_legacy_all",		KSTAT_DATA_UINT64 },
404 	{ "tcp_mdt_legacy_ret",		KSTAT_DATA_UINT64 },
405 	{ "tcp_mdt_allocfail",		KSTAT_DATA_UINT64 },
406 	{ "tcp_mdt_addpdescfail",	KSTAT_DATA_UINT64 },
407 	{ "tcp_mdt_allocd",		KSTAT_DATA_UINT64 },
408 	{ "tcp_mdt_linked",		KSTAT_DATA_UINT64 },
409 	{ "tcp_fusion_flowctl",		KSTAT_DATA_UINT64 },
410 	{ "tcp_fusion_backenabled",	KSTAT_DATA_UINT64 },
411 	{ "tcp_fusion_urg",		KSTAT_DATA_UINT64 },
412 	{ "tcp_fusion_putnext",		KSTAT_DATA_UINT64 },
413 	{ "tcp_fusion_unfusable",	KSTAT_DATA_UINT64 },
414 	{ "tcp_fusion_aborted",		KSTAT_DATA_UINT64 },
415 	{ "tcp_fusion_unqualified",	KSTAT_DATA_UINT64 },
416 	{ "tcp_fusion_rrw_busy",	KSTAT_DATA_UINT64 },
417 	{ "tcp_fusion_rrw_msgcnt",	KSTAT_DATA_UINT64 },
418 	{ "tcp_fusion_rrw_plugged",	KSTAT_DATA_UINT64 },
419 	{ "tcp_in_ack_unsent_drop",	KSTAT_DATA_UINT64 },
420 	{ "tcp_sock_fallback",		KSTAT_DATA_UINT64 },
421 	{ "tcp_lso_enabled",		KSTAT_DATA_UINT64 },
422 	{ "tcp_lso_disabled",		KSTAT_DATA_UINT64 },
423 	{ "tcp_lso_times",		KSTAT_DATA_UINT64 },
424 	{ "tcp_lso_pkt_out",		KSTAT_DATA_UINT64 },
425 };
426 
427 static kstat_t *tcp_kstat;
428 
429 /*
430  * Call either ip_output or ip_output_v6. This replaces putnext() calls on the
431  * tcp write side.
432  */
433 #define	CALL_IP_WPUT(connp, q, mp) {					\
434 	ASSERT(((q)->q_flag & QREADR) == 0);				\
435 	TCP_DBGSTAT(tcp_ip_output);					\
436 	connp->conn_send(connp, (mp), (q), IP_WPUT);			\
437 }
438 
439 /* Macros for timestamp comparisons */
440 #define	TSTMP_GEQ(a, b)	((int32_t)((a)-(b)) >= 0)
441 #define	TSTMP_LT(a, b)	((int32_t)((a)-(b)) < 0)
442 
443 /*
444  * Parameters for TCP Initial Send Sequence number (ISS) generation.  When
445  * tcp_strong_iss is set to 1, which is the default, the ISS is calculated
446  * by adding three components: a time component which grows by 1 every 4096
447  * nanoseconds (versus every 4 microseconds suggested by RFC 793, page 27);
448  * a per-connection component which grows by 125000 for every new connection;
449  * and an "extra" component that grows by a random amount centered
450  * approximately on 64000.  This causes the the ISS generator to cycle every
451  * 4.89 hours if no TCP connections are made, and faster if connections are
452  * made.
453  *
454  * When tcp_strong_iss is set to 0, ISS is calculated by adding two
455  * components: a time component which grows by 250000 every second; and
456  * a per-connection component which grows by 125000 for every new connections.
457  *
458  * A third method, when tcp_strong_iss is set to 2, for generating ISS is
459  * prescribed by Steve Bellovin.  This involves adding time, the 125000 per
460  * connection, and a one-way hash (MD5) of the connection ID <sport, dport,
461  * src, dst>, a "truly" random (per RFC 1750) number, and a console-entered
462  * password.
463  */
464 #define	ISS_INCR	250000
465 #define	ISS_NSEC_SHT	12
466 
467 static uint32_t tcp_iss_incr_extra;	/* Incremented for each connection */
468 static kmutex_t tcp_iss_key_lock;
469 static MD5_CTX tcp_iss_key;
470 static sin_t	sin_null;	/* Zero address for quick clears */
471 static sin6_t	sin6_null;	/* Zero address for quick clears */
472 
473 /* Packet dropper for TCP IPsec policy drops. */
474 static ipdropper_t tcp_dropper;
475 
476 /*
477  * This implementation follows the 4.3BSD interpretation of the urgent
478  * pointer and not RFC 1122. Switching to RFC 1122 behavior would cause
479  * incompatible changes in protocols like telnet and rlogin.
480  */
481 #define	TCP_OLD_URP_INTERPRETATION	1
482 
483 #define	TCP_IS_DETACHED_NONEAGER(tcp)	\
484 	(TCP_IS_DETACHED(tcp) && \
485 	    (!(tcp)->tcp_hard_binding))
486 
487 /*
488  * TCP reassembly macros.  We hide starting and ending sequence numbers in
489  * b_next and b_prev of messages on the reassembly queue.  The messages are
490  * chained using b_cont.  These macros are used in tcp_reass() so we don't
491  * have to see the ugly casts and assignments.
492  */
493 #define	TCP_REASS_SEQ(mp)		((uint32_t)(uintptr_t)((mp)->b_next))
494 #define	TCP_REASS_SET_SEQ(mp, u)	((mp)->b_next = \
495 					(mblk_t *)(uintptr_t)(u))
496 #define	TCP_REASS_END(mp)		((uint32_t)(uintptr_t)((mp)->b_prev))
497 #define	TCP_REASS_SET_END(mp, u)	((mp)->b_prev = \
498 					(mblk_t *)(uintptr_t)(u))
499 
500 /*
501  * Implementation of TCP Timers.
502  * =============================
503  *
504  * INTERFACE:
505  *
506  * There are two basic functions dealing with tcp timers:
507  *
508  *	timeout_id_t	tcp_timeout(connp, func, time)
509  * 	clock_t		tcp_timeout_cancel(connp, timeout_id)
510  *	TCP_TIMER_RESTART(tcp, intvl)
511  *
512  * tcp_timeout() starts a timer for the 'tcp' instance arranging to call 'func'
513  * after 'time' ticks passed. The function called by timeout() must adhere to
514  * the same restrictions as a driver soft interrupt handler - it must not sleep
515  * or call other functions that might sleep. The value returned is the opaque
516  * non-zero timeout identifier that can be passed to tcp_timeout_cancel() to
517  * cancel the request. The call to tcp_timeout() may fail in which case it
518  * returns zero. This is different from the timeout(9F) function which never
519  * fails.
520  *
521  * The call-back function 'func' always receives 'connp' as its single
522  * argument. It is always executed in the squeue corresponding to the tcp
523  * structure. The tcp structure is guaranteed to be present at the time the
524  * call-back is called.
525  *
526  * NOTE: The call-back function 'func' is never called if tcp is in
527  * 	the TCPS_CLOSED state.
528  *
529  * tcp_timeout_cancel() attempts to cancel a pending tcp_timeout()
530  * request. locks acquired by the call-back routine should not be held across
531  * the call to tcp_timeout_cancel() or a deadlock may result.
532  *
533  * tcp_timeout_cancel() returns -1 if it can not cancel the timeout request.
534  * Otherwise, it returns an integer value greater than or equal to 0. In
535  * particular, if the call-back function is already placed on the squeue, it can
536  * not be canceled.
537  *
538  * NOTE: both tcp_timeout() and tcp_timeout_cancel() should always be called
539  * 	within squeue context corresponding to the tcp instance. Since the
540  *	call-back is also called via the same squeue, there are no race
541  *	conditions described in untimeout(9F) manual page since all calls are
542  *	strictly serialized.
543  *
544  *      TCP_TIMER_RESTART() is a macro that attempts to cancel a pending timeout
545  *	stored in tcp_timer_tid and starts a new one using
546  *	MSEC_TO_TICK(intvl). It always uses tcp_timer() function as a call-back
547  *	and stores the return value of tcp_timeout() in the tcp->tcp_timer_tid
548  *	field.
549  *
550  * NOTE: since the timeout cancellation is not guaranteed, the cancelled
551  *	call-back may still be called, so it is possible tcp_timer() will be
552  *	called several times. This should not be a problem since tcp_timer()
553  *	should always check the tcp instance state.
554  *
555  *
556  * IMPLEMENTATION:
557  *
558  * TCP timers are implemented using three-stage process. The call to
559  * tcp_timeout() uses timeout(9F) function to call tcp_timer_callback() function
560  * when the timer expires. The tcp_timer_callback() arranges the call of the
561  * tcp_timer_handler() function via squeue corresponding to the tcp
562  * instance. The tcp_timer_handler() calls actual requested timeout call-back
563  * and passes tcp instance as an argument to it. Information is passed between
564  * stages using the tcp_timer_t structure which contains the connp pointer, the
565  * tcp call-back to call and the timeout id returned by the timeout(9F).
566  *
567  * The tcp_timer_t structure is not used directly, it is embedded in an mblk_t -
568  * like structure that is used to enter an squeue. The mp->b_rptr of this pseudo
569  * mblk points to the beginning of tcp_timer_t structure. The tcp_timeout()
570  * returns the pointer to this mblk.
571  *
572  * The pseudo mblk is allocated from a special tcp_timer_cache kmem cache. It
573  * looks like a normal mblk without actual dblk attached to it.
574  *
575  * To optimize performance each tcp instance holds a small cache of timer
576  * mblocks. In the current implementation it caches up to two timer mblocks per
577  * tcp instance. The cache is preserved over tcp frees and is only freed when
578  * the whole tcp structure is destroyed by its kmem destructor. Since all tcp
579  * timer processing happens on a corresponding squeue, the cache manipulation
580  * does not require any locks. Experiments show that majority of timer mblocks
581  * allocations are satisfied from the tcp cache and do not involve kmem calls.
582  *
583  * The tcp_timeout() places a refhold on the connp instance which guarantees
584  * that it will be present at the time the call-back function fires. The
585  * tcp_timer_handler() drops the reference after calling the call-back, so the
586  * call-back function does not need to manipulate the references explicitly.
587  */
588 
589 typedef struct tcp_timer_s {
590 	conn_t	*connp;
591 	void 	(*tcpt_proc)(void *);
592 	timeout_id_t   tcpt_tid;
593 } tcp_timer_t;
594 
595 static kmem_cache_t *tcp_timercache;
596 kmem_cache_t	*tcp_sack_info_cache;
597 kmem_cache_t	*tcp_iphc_cache;
598 
599 /*
600  * For scalability, we must not run a timer for every TCP connection
601  * in TIME_WAIT state.  To see why, consider (for time wait interval of
602  * 4 minutes):
603  *	1000 connections/sec * 240 seconds/time wait = 240,000 active conn's
604  *
605  * This list is ordered by time, so you need only delete from the head
606  * until you get to entries which aren't old enough to delete yet.
607  * The list consists of only the detached TIME_WAIT connections.
608  *
609  * Note that the timer (tcp_time_wait_expire) is started when the tcp_t
610  * becomes detached TIME_WAIT (either by changing the state and already
611  * being detached or the other way around). This means that the TIME_WAIT
612  * state can be extended (up to doubled) if the connection doesn't become
613  * detached for a long time.
614  *
615  * The list manipulations (including tcp_time_wait_next/prev)
616  * are protected by the tcp_time_wait_lock. The content of the
617  * detached TIME_WAIT connections is protected by the normal perimeters.
618  */
619 
620 typedef struct tcp_squeue_priv_s {
621 	kmutex_t	tcp_time_wait_lock;
622 				/* Protects the next 3 globals */
623 	timeout_id_t	tcp_time_wait_tid;
624 	tcp_t		*tcp_time_wait_head;
625 	tcp_t		*tcp_time_wait_tail;
626 	tcp_t		*tcp_free_list;
627 	uint_t		tcp_free_list_cnt;
628 } tcp_squeue_priv_t;
629 
630 /*
631  * TCP_TIME_WAIT_DELAY governs how often the time_wait_collector runs.
632  * Running it every 5 seconds seems to give the best results.
633  */
634 #define	TCP_TIME_WAIT_DELAY drv_usectohz(5000000)
635 
636 /*
637  * To prevent memory hog, limit the number of entries in tcp_free_list
638  * to 1% of available memory / number of cpus
639  */
640 uint_t tcp_free_list_max_cnt = 0;
641 
642 #define	TCP_XMIT_LOWATER	4096
643 #define	TCP_XMIT_HIWATER	49152
644 #define	TCP_RECV_LOWATER	2048
645 #define	TCP_RECV_HIWATER	49152
646 
647 /*
648  *  PAWS needs a timer for 24 days.  This is the number of ticks in 24 days
649  */
650 #define	PAWS_TIMEOUT	((clock_t)(24*24*60*60*hz))
651 
652 #define	TIDUSZ	4096	/* transport interface data unit size */
653 
654 /*
655  * Bind hash list size and has function.  It has to be a power of 2 for
656  * hashing.
657  */
658 #define	TCP_BIND_FANOUT_SIZE	512
659 #define	TCP_BIND_HASH(lport) (ntohs(lport) & (TCP_BIND_FANOUT_SIZE - 1))
660 /*
661  * Size of listen and acceptor hash list.  It has to be a power of 2 for
662  * hashing.
663  */
664 #define	TCP_FANOUT_SIZE		256
665 
666 #ifdef	_ILP32
667 #define	TCP_ACCEPTOR_HASH(accid)					\
668 		(((uint_t)(accid) >> 8) & (TCP_FANOUT_SIZE - 1))
669 #else
670 #define	TCP_ACCEPTOR_HASH(accid)					\
671 		((uint_t)(accid) & (TCP_FANOUT_SIZE - 1))
672 #endif	/* _ILP32 */
673 
674 #define	IP_ADDR_CACHE_SIZE	2048
675 #define	IP_ADDR_CACHE_HASH(faddr)					\
676 	(ntohl(faddr) & (IP_ADDR_CACHE_SIZE -1))
677 
678 /* Hash for HSPs uses all 32 bits, since both networks and hosts are in table */
679 #define	TCP_HSP_HASH_SIZE 256
680 
681 #define	TCP_HSP_HASH(addr)					\
682 	(((addr>>24) ^ (addr >>16) ^			\
683 	    (addr>>8) ^ (addr)) % TCP_HSP_HASH_SIZE)
684 
685 /*
686  * TCP options struct returned from tcp_parse_options.
687  */
688 typedef struct tcp_opt_s {
689 	uint32_t	tcp_opt_mss;
690 	uint32_t	tcp_opt_wscale;
691 	uint32_t	tcp_opt_ts_val;
692 	uint32_t	tcp_opt_ts_ecr;
693 	tcp_t		*tcp;
694 } tcp_opt_t;
695 
696 /*
697  * RFC1323-recommended phrasing of TSTAMP option, for easier parsing
698  */
699 
700 #ifdef _BIG_ENDIAN
701 #define	TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \
702 	(TCPOPT_TSTAMP << 8) | 10)
703 #else
704 #define	TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \
705 	(TCPOPT_NOP << 8) | TCPOPT_NOP)
706 #endif
707 
708 /*
709  * Flags returned from tcp_parse_options.
710  */
711 #define	TCP_OPT_MSS_PRESENT	1
712 #define	TCP_OPT_WSCALE_PRESENT	2
713 #define	TCP_OPT_TSTAMP_PRESENT	4
714 #define	TCP_OPT_SACK_OK_PRESENT	8
715 #define	TCP_OPT_SACK_PRESENT	16
716 
717 /* TCP option length */
718 #define	TCPOPT_NOP_LEN		1
719 #define	TCPOPT_MAXSEG_LEN	4
720 #define	TCPOPT_WS_LEN		3
721 #define	TCPOPT_REAL_WS_LEN	(TCPOPT_WS_LEN+1)
722 #define	TCPOPT_TSTAMP_LEN	10
723 #define	TCPOPT_REAL_TS_LEN	(TCPOPT_TSTAMP_LEN+2)
724 #define	TCPOPT_SACK_OK_LEN	2
725 #define	TCPOPT_REAL_SACK_OK_LEN	(TCPOPT_SACK_OK_LEN+2)
726 #define	TCPOPT_REAL_SACK_LEN	4
727 #define	TCPOPT_MAX_SACK_LEN	36
728 #define	TCPOPT_HEADER_LEN	2
729 
730 /* TCP cwnd burst factor. */
731 #define	TCP_CWND_INFINITE	65535
732 #define	TCP_CWND_SS		3
733 #define	TCP_CWND_NORMAL		5
734 
735 /* Maximum TCP initial cwin (start/restart). */
736 #define	TCP_MAX_INIT_CWND	8
737 
738 /*
739  * Initialize cwnd according to RFC 3390.  def_max_init_cwnd is
740  * either tcp_slow_start_initial or tcp_slow_start_after idle
741  * depending on the caller.  If the upper layer has not used the
742  * TCP_INIT_CWND option to change the initial cwnd, tcp_init_cwnd
743  * should be 0 and we use the formula in RFC 3390 to set tcp_cwnd.
744  * If the upper layer has changed set the tcp_init_cwnd, just use
745  * it to calculate the tcp_cwnd.
746  */
747 #define	SET_TCP_INIT_CWND(tcp, mss, def_max_init_cwnd)			\
748 {									\
749 	if ((tcp)->tcp_init_cwnd == 0) {				\
750 		(tcp)->tcp_cwnd = MIN(def_max_init_cwnd * (mss),	\
751 		    MIN(4 * (mss), MAX(2 * (mss), 4380 / (mss) * (mss)))); \
752 	} else {							\
753 		(tcp)->tcp_cwnd = (tcp)->tcp_init_cwnd * (mss);		\
754 	}								\
755 	tcp->tcp_cwnd_cnt = 0;						\
756 }
757 
758 /* TCP Timer control structure */
759 typedef struct tcpt_s {
760 	pfv_t	tcpt_pfv;	/* The routine we are to call */
761 	tcp_t	*tcpt_tcp;	/* The parameter we are to pass in */
762 } tcpt_t;
763 
764 /* Host Specific Parameter structure */
765 typedef struct tcp_hsp {
766 	struct tcp_hsp	*tcp_hsp_next;
767 	in6_addr_t	tcp_hsp_addr_v6;
768 	in6_addr_t	tcp_hsp_subnet_v6;
769 	uint_t		tcp_hsp_vers;	/* IPV4_VERSION | IPV6_VERSION */
770 	int32_t		tcp_hsp_sendspace;
771 	int32_t		tcp_hsp_recvspace;
772 	int32_t		tcp_hsp_tstamp;
773 } tcp_hsp_t;
774 #define	tcp_hsp_addr	V4_PART_OF_V6(tcp_hsp_addr_v6)
775 #define	tcp_hsp_subnet	V4_PART_OF_V6(tcp_hsp_subnet_v6)
776 
777 /*
778  * Functions called directly via squeue having a prototype of edesc_t.
779  */
780 void		tcp_conn_request(void *arg, mblk_t *mp, void *arg2);
781 static void	tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2);
782 void		tcp_accept_finish(void *arg, mblk_t *mp, void *arg2);
783 static void	tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2);
784 static void	tcp_wput_proto(void *arg, mblk_t *mp, void *arg2);
785 void 		tcp_input(void *arg, mblk_t *mp, void *arg2);
786 void		tcp_rput_data(void *arg, mblk_t *mp, void *arg2);
787 static void	tcp_close_output(void *arg, mblk_t *mp, void *arg2);
788 void		tcp_output(void *arg, mblk_t *mp, void *arg2);
789 static void	tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2);
790 static void	tcp_timer_handler(void *arg, mblk_t *mp, void *arg2);
791 static void	tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2);
792 
793 
794 /* Prototype for TCP functions */
795 static void	tcp_random_init(void);
796 int		tcp_random(void);
797 static void	tcp_accept(tcp_t *tcp, mblk_t *mp);
798 static void	tcp_accept_swap(tcp_t *listener, tcp_t *acceptor,
799 		    tcp_t *eager);
800 static int	tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp);
801 static in_port_t tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr,
802     int reuseaddr, boolean_t quick_connect, boolean_t bind_to_req_port_only,
803     boolean_t user_specified);
804 static void	tcp_closei_local(tcp_t *tcp);
805 static void	tcp_close_detached(tcp_t *tcp);
806 static boolean_t tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph,
807 			mblk_t *idmp, mblk_t **defermp);
808 static void	tcp_connect(tcp_t *tcp, mblk_t *mp);
809 static void	tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp,
810 		    in_port_t dstport, uint_t srcid);
811 static void	tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp,
812 		    in_port_t dstport, uint32_t flowinfo, uint_t srcid,
813 		    uint32_t scope_id);
814 static int	tcp_clean_death(tcp_t *tcp, int err, uint8_t tag);
815 static void	tcp_def_q_set(tcp_t *tcp, mblk_t *mp);
816 static void	tcp_disconnect(tcp_t *tcp, mblk_t *mp);
817 static char	*tcp_display(tcp_t *tcp, char *, char);
818 static boolean_t tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum);
819 static void	tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only);
820 static void	tcp_eager_unlink(tcp_t *tcp);
821 static void	tcp_err_ack(tcp_t *tcp, mblk_t *mp, int tlierr,
822 		    int unixerr);
823 static void	tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive,
824 		    int tlierr, int unixerr);
825 static int	tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp,
826 		    cred_t *cr);
827 static int	tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp,
828 		    char *value, caddr_t cp, cred_t *cr);
829 static int	tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp,
830 		    char *value, caddr_t cp, cred_t *cr);
831 static int	tcp_tpistate(tcp_t *tcp);
832 static void	tcp_bind_hash_insert(tf_t *tf, tcp_t *tcp,
833     int caller_holds_lock);
834 static void	tcp_bind_hash_remove(tcp_t *tcp);
835 static tcp_t	*tcp_acceptor_hash_lookup(t_uscalar_t id);
836 void		tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp);
837 static void	tcp_acceptor_hash_remove(tcp_t *tcp);
838 static void	tcp_capability_req(tcp_t *tcp, mblk_t *mp);
839 static void	tcp_info_req(tcp_t *tcp, mblk_t *mp);
840 static void	tcp_addr_req(tcp_t *tcp, mblk_t *mp);
841 static void	tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *mp);
842 static int	tcp_header_init_ipv4(tcp_t *tcp);
843 static int	tcp_header_init_ipv6(tcp_t *tcp);
844 int		tcp_init(tcp_t *tcp, queue_t *q);
845 static int	tcp_init_values(tcp_t *tcp);
846 static mblk_t	*tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic);
847 static mblk_t	*tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim,
848 		    t_scalar_t addr_length);
849 static void	tcp_ip_ire_mark_advice(tcp_t *tcp);
850 static void	tcp_ip_notify(tcp_t *tcp);
851 static mblk_t	*tcp_ire_mp(mblk_t *mp);
852 static void	tcp_iss_init(tcp_t *tcp);
853 static void	tcp_keepalive_killer(void *arg);
854 static int	tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt);
855 static void	tcp_mss_set(tcp_t *tcp, uint32_t size);
856 static int	tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp,
857 		    int *do_disconnectp, int *t_errorp, int *sys_errorp);
858 static boolean_t tcp_allow_connopt_set(int level, int name);
859 int		tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr);
860 int		tcp_opt_get(queue_t *q, int level, int name, uchar_t *ptr);
861 int		tcp_opt_set(queue_t *q, uint_t optset_context, int level,
862 		    int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp,
863 		    uchar_t *outvalp, void *thisdg_attrs, cred_t *cr,
864 		    mblk_t *mblk);
865 static void	tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha);
866 static int	tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly,
867 		    uchar_t *ptr, uint_t len);
868 static int	tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr);
869 static boolean_t tcp_param_register(tcpparam_t *tcppa, int cnt);
870 static int	tcp_param_set(queue_t *q, mblk_t *mp, char *value,
871 		    caddr_t cp, cred_t *cr);
872 static int	tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value,
873 		    caddr_t cp, cred_t *cr);
874 static void	tcp_iss_key_init(uint8_t *phrase, int len);
875 static int	tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value,
876 		    caddr_t cp, cred_t *cr);
877 static void	tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_cnt);
878 static mblk_t	*tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start);
879 static void	tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp);
880 static void	tcp_reinit(tcp_t *tcp);
881 static void	tcp_reinit_values(tcp_t *tcp);
882 static void	tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval,
883 		    tcp_t *thisstream, cred_t *cr);
884 
885 static uint_t	tcp_rcv_drain(queue_t *q, tcp_t *tcp);
886 static void	tcp_sack_rxmit(tcp_t *tcp, uint_t *flags);
887 static boolean_t tcp_send_rst_chk(void);
888 static void	tcp_ss_rexmit(tcp_t *tcp);
889 static mblk_t	*tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp);
890 static void	tcp_process_options(tcp_t *, tcph_t *);
891 static void	tcp_rput_common(tcp_t *tcp, mblk_t *mp);
892 static void	tcp_rsrv(queue_t *q);
893 static int	tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd);
894 static int	tcp_snmp_state(tcp_t *tcp);
895 static int	tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp,
896 		    cred_t *cr);
897 static int	tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
898 		    cred_t *cr);
899 static int	tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
900 		    cred_t *cr);
901 static int	tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
902 		    cred_t *cr);
903 static int	tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
904 		    cred_t *cr);
905 static int	tcp_host_param_set(queue_t *q, mblk_t *mp, char *value,
906 		    caddr_t cp, cred_t *cr);
907 static int	tcp_host_param_set_ipv6(queue_t *q, mblk_t *mp, char *value,
908 		    caddr_t cp, cred_t *cr);
909 static int	tcp_host_param_report(queue_t *q, mblk_t *mp, caddr_t cp,
910 		    cred_t *cr);
911 static void	tcp_timer(void *arg);
912 static void	tcp_timer_callback(void *);
913 static in_port_t tcp_update_next_port(in_port_t port, const tcp_t *tcp,
914     boolean_t random);
915 static in_port_t tcp_get_next_priv_port(const tcp_t *);
916 static void	tcp_wput_sock(queue_t *q, mblk_t *mp);
917 void		tcp_wput_accept(queue_t *q, mblk_t *mp);
918 static void	tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent);
919 static void	tcp_wput_flush(tcp_t *tcp, mblk_t *mp);
920 static void	tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp);
921 static int	tcp_send(queue_t *q, tcp_t *tcp, const int mss,
922 		    const int tcp_hdr_len, const int tcp_tcp_hdr_len,
923 		    const int num_sack_blk, int *usable, uint_t *snxt,
924 		    int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
925 		    const int mdt_thres);
926 static int	tcp_multisend(queue_t *q, tcp_t *tcp, const int mss,
927 		    const int tcp_hdr_len, const int tcp_tcp_hdr_len,
928 		    const int num_sack_blk, int *usable, uint_t *snxt,
929 		    int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
930 		    const int mdt_thres);
931 static void	tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now,
932 		    int num_sack_blk);
933 static void	tcp_wsrv(queue_t *q);
934 static int	tcp_xmit_end(tcp_t *tcp);
935 static void	tcp_ack_timer(void *arg);
936 static mblk_t	*tcp_ack_mp(tcp_t *tcp);
937 static void	tcp_xmit_early_reset(char *str, mblk_t *mp,
938 		    uint32_t seq, uint32_t ack, int ctl, uint_t ip_hdr_len,
939 		    zoneid_t zoneid);
940 static void	tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq,
941 		    uint32_t ack, int ctl);
942 static tcp_hsp_t *tcp_hsp_lookup(ipaddr_t addr);
943 static tcp_hsp_t *tcp_hsp_lookup_ipv6(in6_addr_t *addr);
944 static int	setmaxps(queue_t *q, int maxpsz);
945 static void	tcp_set_rto(tcp_t *, time_t);
946 static boolean_t tcp_check_policy(tcp_t *, mblk_t *, ipha_t *, ip6_t *,
947 		    boolean_t, boolean_t);
948 static void	tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp,
949 		    boolean_t ipsec_mctl);
950 static mblk_t	*tcp_setsockopt_mp(int level, int cmd,
951 		    char *opt, int optlen);
952 static int	tcp_build_hdrs(queue_t *, tcp_t *);
953 static void	tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp,
954 		    uint32_t seg_seq, uint32_t seg_ack, int seg_len,
955 		    tcph_t *tcph);
956 boolean_t	tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp);
957 boolean_t	tcp_reserved_port_add(int, in_port_t *, in_port_t *);
958 boolean_t	tcp_reserved_port_del(in_port_t, in_port_t);
959 boolean_t	tcp_reserved_port_check(in_port_t);
960 static tcp_t	*tcp_alloc_temp_tcp(in_port_t);
961 static int	tcp_reserved_port_list(queue_t *, mblk_t *, caddr_t, cred_t *);
962 static mblk_t	*tcp_mdt_info_mp(mblk_t *);
963 static void	tcp_mdt_update(tcp_t *, ill_mdt_capab_t *, boolean_t);
964 static int	tcp_mdt_add_attrs(multidata_t *, const mblk_t *,
965 		    const boolean_t, const uint32_t, const uint32_t,
966 		    const uint32_t, const uint32_t);
967 static void	tcp_multisend_data(tcp_t *, ire_t *, const ill_t *, mblk_t *,
968 		    const uint_t, const uint_t, boolean_t *);
969 static mblk_t	*tcp_lso_info_mp(mblk_t *);
970 static void	tcp_lso_update(tcp_t *, ill_lso_capab_t *);
971 static void	tcp_send_data(tcp_t *, queue_t *, mblk_t *);
972 extern mblk_t	*tcp_timermp_alloc(int);
973 extern void	tcp_timermp_free(tcp_t *);
974 static void	tcp_timer_free(tcp_t *tcp, mblk_t *mp);
975 static void	tcp_stop_lingering(tcp_t *tcp);
976 static void	tcp_close_linger_timeout(void *arg);
977 void		tcp_ddi_init(void);
978 void		tcp_ddi_destroy(void);
979 static void	tcp_kstat_init(void);
980 static void	tcp_kstat_fini(void);
981 static int	tcp_kstat_update(kstat_t *kp, int rw);
982 void		tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp);
983 static int	tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp,
984 			tcph_t *tcph, uint_t ipvers, mblk_t *idmp);
985 static int	tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha,
986 			tcph_t *tcph, mblk_t *idmp);
987 static squeue_func_t tcp_squeue_switch(int);
988 
989 static int	tcp_open(queue_t *, dev_t *, int, int, cred_t *);
990 static int	tcp_close(queue_t *, int);
991 static int	tcpclose_accept(queue_t *);
992 static int	tcp_modclose(queue_t *);
993 static void	tcp_wput_mod(queue_t *, mblk_t *);
994 
995 static void	tcp_squeue_add(squeue_t *);
996 static boolean_t tcp_zcopy_check(tcp_t *);
997 static void	tcp_zcopy_notify(tcp_t *);
998 static mblk_t	*tcp_zcopy_disable(tcp_t *, mblk_t *);
999 static mblk_t	*tcp_zcopy_backoff(tcp_t *, mblk_t *, int);
1000 static void	tcp_ire_ill_check(tcp_t *, ire_t *, ill_t *, boolean_t);
1001 
1002 extern void	tcp_kssl_input(tcp_t *, mblk_t *);
1003 
1004 void tcp_eager_kill(void *arg, mblk_t *mp, void *arg2);
1005 void tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2);
1006 
1007 /*
1008  * Routines related to the TCP_IOC_ABORT_CONN ioctl command.
1009  *
1010  * TCP_IOC_ABORT_CONN is a non-transparent ioctl command used for aborting
1011  * TCP connections. To invoke this ioctl, a tcp_ioc_abort_conn_t structure
1012  * (defined in tcp.h) needs to be filled in and passed into the kernel
1013  * via an I_STR ioctl command (see streamio(7I)). The tcp_ioc_abort_conn_t
1014  * structure contains the four-tuple of a TCP connection and a range of TCP
1015  * states (specified by ac_start and ac_end). The use of wildcard addresses
1016  * and ports is allowed. Connections with a matching four tuple and a state
1017  * within the specified range will be aborted. The valid states for the
1018  * ac_start and ac_end fields are in the range TCPS_SYN_SENT to TCPS_TIME_WAIT,
1019  * inclusive.
1020  *
1021  * An application which has its connection aborted by this ioctl will receive
1022  * an error that is dependent on the connection state at the time of the abort.
1023  * If the connection state is < TCPS_TIME_WAIT, an application should behave as
1024  * though a RST packet has been received.  If the connection state is equal to
1025  * TCPS_TIME_WAIT, the 2MSL timeout will immediately be canceled by the kernel
1026  * and all resources associated with the connection will be freed.
1027  */
1028 static mblk_t	*tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *, tcp_t *);
1029 static void	tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *);
1030 static void	tcp_ioctl_abort_handler(tcp_t *, mblk_t *);
1031 static int	tcp_ioctl_abort(tcp_ioc_abort_conn_t *);
1032 static void	tcp_ioctl_abort_conn(queue_t *, mblk_t *);
1033 static int	tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *, int, int *,
1034     boolean_t);
1035 
1036 static struct module_info tcp_rinfo =  {
1037 	TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER
1038 };
1039 
1040 static struct module_info tcp_winfo =  {
1041 	TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16
1042 };
1043 
1044 /*
1045  * Entry points for TCP as a module. It only allows SNMP requests
1046  * to pass through.
1047  */
1048 struct qinit tcp_mod_rinit = {
1049 	(pfi_t)putnext, NULL, tcp_open, ip_snmpmod_close, NULL, &tcp_rinfo,
1050 };
1051 
1052 struct qinit tcp_mod_winit = {
1053 	(pfi_t)ip_snmpmod_wput, NULL, tcp_open, ip_snmpmod_close, NULL,
1054 	&tcp_rinfo
1055 };
1056 
1057 /*
1058  * Entry points for TCP as a device. The normal case which supports
1059  * the TCP functionality.
1060  */
1061 struct qinit tcp_rinit = {
1062 	NULL, (pfi_t)tcp_rsrv, tcp_open, tcp_close, NULL, &tcp_rinfo
1063 };
1064 
1065 struct qinit tcp_winit = {
1066 	(pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
1067 };
1068 
1069 /* Initial entry point for TCP in socket mode. */
1070 struct qinit tcp_sock_winit = {
1071 	(pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
1072 };
1073 
1074 /*
1075  * Entry points for TCP as a acceptor STREAM opened by sockfs when doing
1076  * an accept. Avoid allocating data structures since eager has already
1077  * been created.
1078  */
1079 struct qinit tcp_acceptor_rinit = {
1080 	NULL, (pfi_t)tcp_rsrv, NULL, tcpclose_accept, NULL, &tcp_winfo
1081 };
1082 
1083 struct qinit tcp_acceptor_winit = {
1084 	(pfi_t)tcp_wput_accept, NULL, NULL, NULL, NULL, &tcp_winfo
1085 };
1086 
1087 /*
1088  * Entry points for TCP loopback (read side only)
1089  */
1090 struct qinit tcp_loopback_rinit = {
1091 	(pfi_t)0, (pfi_t)tcp_rsrv, tcp_open, tcp_close, (pfi_t)0,
1092 	&tcp_rinfo, NULL, tcp_fuse_rrw, tcp_fuse_rinfop, STRUIOT_STANDARD
1093 };
1094 
1095 struct streamtab tcpinfo = {
1096 	&tcp_rinit, &tcp_winit
1097 };
1098 
1099 extern squeue_func_t tcp_squeue_wput_proc;
1100 extern squeue_func_t tcp_squeue_timer_proc;
1101 
1102 /* Protected by tcp_g_q_lock */
1103 static queue_t	*tcp_g_q;	/* Default queue used during detached closes */
1104 kmutex_t tcp_g_q_lock;
1105 
1106 /* Protected by tcp_hsp_lock */
1107 /*
1108  * XXX The host param mechanism should go away and instead we should use
1109  * the metrics associated with the routes to determine the default sndspace
1110  * and rcvspace.
1111  */
1112 static tcp_hsp_t	**tcp_hsp_hash;	/* Hash table for HSPs */
1113 krwlock_t tcp_hsp_lock;
1114 
1115 /*
1116  * Extra privileged ports. In host byte order.
1117  * Protected by tcp_epriv_port_lock.
1118  */
1119 #define	TCP_NUM_EPRIV_PORTS	64
1120 static int	tcp_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS;
1121 static uint16_t	tcp_g_epriv_ports[TCP_NUM_EPRIV_PORTS] = { 2049, 4045 };
1122 kmutex_t tcp_epriv_port_lock;
1123 
1124 /*
1125  * The smallest anonymous port in the privileged port range which TCP
1126  * looks for free port.  Use in the option TCP_ANONPRIVBIND.
1127  */
1128 static in_port_t tcp_min_anonpriv_port = 512;
1129 
1130 /* Only modified during _init and _fini thus no locking is needed. */
1131 static caddr_t	tcp_g_nd;	/* Head of 'named dispatch' variable list */
1132 
1133 /* Hint not protected by any lock */
1134 static uint_t	tcp_next_port_to_try;
1135 
1136 
1137 /* TCP bind hash list - all tcp_t with state >= BOUND. */
1138 tf_t	tcp_bind_fanout[TCP_BIND_FANOUT_SIZE];
1139 
1140 /* TCP queue hash list - all tcp_t in case they will be an acceptor. */
1141 static tf_t	tcp_acceptor_fanout[TCP_FANOUT_SIZE];
1142 
1143 /*
1144  * TCP has a private interface for other kernel modules to reserve a
1145  * port range for them to use.  Once reserved, TCP will not use any ports
1146  * in the range.  This interface relies on the TCP_EXCLBIND feature.  If
1147  * the semantics of TCP_EXCLBIND is changed, implementation of this interface
1148  * has to be verified.
1149  *
1150  * There can be TCP_RESERVED_PORTS_ARRAY_MAX_SIZE port ranges.  Each port
1151  * range can cover at most TCP_RESERVED_PORTS_RANGE_MAX ports.  A port
1152  * range is [port a, port b] inclusive.  And each port range is between
1153  * TCP_LOWESET_RESERVED_PORT and TCP_LARGEST_RESERVED_PORT inclusive.
1154  *
1155  * Note that the default anonymous port range starts from 32768.  There is
1156  * no port "collision" between that and the reserved port range.  If there
1157  * is port collision (because the default smallest anonymous port is lowered
1158  * or some apps specifically bind to ports in the reserved port range), the
1159  * system may not be able to reserve a port range even there are enough
1160  * unbound ports as a reserved port range contains consecutive ports .
1161  */
1162 #define	TCP_RESERVED_PORTS_ARRAY_MAX_SIZE	5
1163 #define	TCP_RESERVED_PORTS_RANGE_MAX		1000
1164 #define	TCP_SMALLEST_RESERVED_PORT		10240
1165 #define	TCP_LARGEST_RESERVED_PORT		20480
1166 
1167 /* Structure to represent those reserved port ranges. */
1168 typedef struct tcp_rport_s {
1169 	in_port_t	lo_port;
1170 	in_port_t	hi_port;
1171 	tcp_t		**temp_tcp_array;
1172 } tcp_rport_t;
1173 
1174 /* The reserved port array. */
1175 static tcp_rport_t tcp_reserved_port[TCP_RESERVED_PORTS_ARRAY_MAX_SIZE];
1176 
1177 /* Locks to protect the tcp_reserved_ports array. */
1178 static krwlock_t tcp_reserved_port_lock;
1179 
1180 /* The number of ranges in the array. */
1181 uint32_t tcp_reserved_port_array_size = 0;
1182 
1183 /*
1184  * MIB-2 stuff for SNMP
1185  * Note: tcpInErrs {tcp 15} is accumulated in ip.c
1186  */
1187 mib2_tcp_t	tcp_mib;	/* SNMP fixed size info */
1188 kstat_t		*tcp_mibkp;	/* kstat exporting tcp_mib data */
1189 
1190 boolean_t tcp_icmp_source_quench = B_FALSE;
1191 /*
1192  * Following assumes TPI alignment requirements stay along 32 bit
1193  * boundaries
1194  */
1195 #define	ROUNDUP32(x) \
1196 	(((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1))
1197 
1198 /* Template for response to info request. */
1199 static struct T_info_ack tcp_g_t_info_ack = {
1200 	T_INFO_ACK,		/* PRIM_type */
1201 	0,			/* TSDU_size */
1202 	T_INFINITE,		/* ETSDU_size */
1203 	T_INVALID,		/* CDATA_size */
1204 	T_INVALID,		/* DDATA_size */
1205 	sizeof (sin_t),		/* ADDR_size */
1206 	0,			/* OPT_size - not initialized here */
1207 	TIDUSZ,			/* TIDU_size */
1208 	T_COTS_ORD,		/* SERV_type */
1209 	TCPS_IDLE,		/* CURRENT_state */
1210 	(XPG4_1|EXPINLINE)	/* PROVIDER_flag */
1211 };
1212 
1213 static struct T_info_ack tcp_g_t_info_ack_v6 = {
1214 	T_INFO_ACK,		/* PRIM_type */
1215 	0,			/* TSDU_size */
1216 	T_INFINITE,		/* ETSDU_size */
1217 	T_INVALID,		/* CDATA_size */
1218 	T_INVALID,		/* DDATA_size */
1219 	sizeof (sin6_t),	/* ADDR_size */
1220 	0,			/* OPT_size - not initialized here */
1221 	TIDUSZ,		/* TIDU_size */
1222 	T_COTS_ORD,		/* SERV_type */
1223 	TCPS_IDLE,		/* CURRENT_state */
1224 	(XPG4_1|EXPINLINE)	/* PROVIDER_flag */
1225 };
1226 
1227 #define	MS	1L
1228 #define	SECONDS	(1000 * MS)
1229 #define	MINUTES	(60 * SECONDS)
1230 #define	HOURS	(60 * MINUTES)
1231 #define	DAYS	(24 * HOURS)
1232 
1233 #define	PARAM_MAX (~(uint32_t)0)
1234 
1235 /* Max size IP datagram is 64k - 1 */
1236 #define	TCP_MSS_MAX_IPV4 (IP_MAXPACKET - (sizeof (ipha_t) + sizeof (tcph_t)))
1237 #define	TCP_MSS_MAX_IPV6 (IP_MAXPACKET - (sizeof (ip6_t) + sizeof (tcph_t)))
1238 /* Max of the above */
1239 #define	TCP_MSS_MAX	TCP_MSS_MAX_IPV4
1240 
1241 /* Largest TCP port number */
1242 #define	TCP_MAX_PORT	(64 * 1024 - 1)
1243 
1244 /*
1245  * tcp_wroff_xtra is the extra space in front of TCP/IP header for link
1246  * layer header.  It has to be a multiple of 4.
1247  */
1248 static tcpparam_t tcp_wroff_xtra_param = { 0, 256, 32, "tcp_wroff_xtra" };
1249 #define	tcp_wroff_xtra	tcp_wroff_xtra_param.tcp_param_val
1250 
1251 /*
1252  * All of these are alterable, within the min/max values given, at run time.
1253  * Note that the default value of "tcp_time_wait_interval" is four minutes,
1254  * per the TCP spec.
1255  */
1256 /* BEGIN CSTYLED */
1257 tcpparam_t	tcp_param_arr[] = {
1258  /*min		max		value		name */
1259  { 1*SECONDS,	10*MINUTES,	1*MINUTES,	"tcp_time_wait_interval"},
1260  { 1,		PARAM_MAX,	128,		"tcp_conn_req_max_q" },
1261  { 0,		PARAM_MAX,	1024,		"tcp_conn_req_max_q0" },
1262  { 1,		1024,		1,		"tcp_conn_req_min" },
1263  { 0*MS,	20*SECONDS,	0*MS,		"tcp_conn_grace_period" },
1264  { 128,		(1<<30),	1024*1024,	"tcp_cwnd_max" },
1265  { 0,		10,		0,		"tcp_debug" },
1266  { 1024,	(32*1024),	1024,		"tcp_smallest_nonpriv_port"},
1267  { 1*SECONDS,	PARAM_MAX,	3*MINUTES,	"tcp_ip_abort_cinterval"},
1268  { 1*SECONDS,	PARAM_MAX,	3*MINUTES,	"tcp_ip_abort_linterval"},
1269  { 500*MS,	PARAM_MAX,	8*MINUTES,	"tcp_ip_abort_interval"},
1270  { 1*SECONDS,	PARAM_MAX,	10*SECONDS,	"tcp_ip_notify_cinterval"},
1271  { 500*MS,	PARAM_MAX,	10*SECONDS,	"tcp_ip_notify_interval"},
1272  { 1,		255,		64,		"tcp_ipv4_ttl"},
1273  { 10*SECONDS,	10*DAYS,	2*HOURS,	"tcp_keepalive_interval"},
1274  { 0,		100,		10,		"tcp_maxpsz_multiplier" },
1275  { 1,		TCP_MSS_MAX_IPV4, 536,		"tcp_mss_def_ipv4"},
1276  { 1,		TCP_MSS_MAX_IPV4, TCP_MSS_MAX_IPV4, "tcp_mss_max_ipv4"},
1277  { 1,		TCP_MSS_MAX,	108,		"tcp_mss_min"},
1278  { 1,		(64*1024)-1,	(4*1024)-1,	"tcp_naglim_def"},
1279  { 1*MS,	20*SECONDS,	3*SECONDS,	"tcp_rexmit_interval_initial"},
1280  { 1*MS,	2*HOURS,	60*SECONDS,	"tcp_rexmit_interval_max"},
1281  { 1*MS,	2*HOURS,	400*MS,		"tcp_rexmit_interval_min"},
1282  { 1*MS,	1*MINUTES,	100*MS,		"tcp_deferred_ack_interval" },
1283  { 0,		16,		0,		"tcp_snd_lowat_fraction" },
1284  { 0,		128000,		0,		"tcp_sth_rcv_hiwat" },
1285  { 0,		128000,		0,		"tcp_sth_rcv_lowat" },
1286  { 1,		10000,		3,		"tcp_dupack_fast_retransmit" },
1287  { 0,		1,		0,		"tcp_ignore_path_mtu" },
1288  { 1024,	TCP_MAX_PORT,	32*1024,	"tcp_smallest_anon_port"},
1289  { 1024,	TCP_MAX_PORT,	TCP_MAX_PORT,	"tcp_largest_anon_port"},
1290  { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_HIWATER,"tcp_xmit_hiwat"},
1291  { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_LOWATER,"tcp_xmit_lowat"},
1292  { TCP_RECV_LOWATER, (1<<30), TCP_RECV_HIWATER,"tcp_recv_hiwat"},
1293  { 1,		65536,		4,		"tcp_recv_hiwat_minmss"},
1294  { 1*SECONDS,	PARAM_MAX,	675*SECONDS,	"tcp_fin_wait_2_flush_interval"},
1295  { 0,		TCP_MSS_MAX,	64,		"tcp_co_min"},
1296  { 8192,	(1<<30),	1024*1024,	"tcp_max_buf"},
1297 /*
1298  * Question:  What default value should I set for tcp_strong_iss?
1299  */
1300  { 0,		2,		1,		"tcp_strong_iss"},
1301  { 0,		65536,		20,		"tcp_rtt_updates"},
1302  { 0,		1,		1,		"tcp_wscale_always"},
1303  { 0,		1,		0,		"tcp_tstamp_always"},
1304  { 0,		1,		1,		"tcp_tstamp_if_wscale"},
1305  { 0*MS,	2*HOURS,	0*MS,		"tcp_rexmit_interval_extra"},
1306  { 0,		16,		2,		"tcp_deferred_acks_max"},
1307  { 1,		16384,		4,		"tcp_slow_start_after_idle"},
1308  { 1,		4,		4,		"tcp_slow_start_initial"},
1309  { 10*MS,	50*MS,		20*MS,		"tcp_co_timer_interval"},
1310  { 0,		2,		2,		"tcp_sack_permitted"},
1311  { 0,		1,		0,		"tcp_trace"},
1312  { 0,		1,		1,		"tcp_compression_enabled"},
1313  { 0,		IPV6_MAX_HOPS,	IPV6_DEFAULT_HOPS,	"tcp_ipv6_hoplimit"},
1314  { 1,		TCP_MSS_MAX_IPV6, 1220,		"tcp_mss_def_ipv6"},
1315  { 1,		TCP_MSS_MAX_IPV6, TCP_MSS_MAX_IPV6, "tcp_mss_max_ipv6"},
1316  { 0,		1,		0,		"tcp_rev_src_routes"},
1317  { 10*MS,	500*MS,		50*MS,		"tcp_local_dack_interval"},
1318  { 100*MS,	60*SECONDS,	1*SECONDS,	"tcp_ndd_get_info_interval"},
1319  { 0,		16,		8,		"tcp_local_dacks_max"},
1320  { 0,		2,		1,		"tcp_ecn_permitted"},
1321  { 0,		1,		1,		"tcp_rst_sent_rate_enabled"},
1322  { 0,		PARAM_MAX,	40,		"tcp_rst_sent_rate"},
1323  { 0,		100*MS,		50*MS,		"tcp_push_timer_interval"},
1324  { 0,		1,		0,		"tcp_use_smss_as_mss_opt"},
1325  { 0,		PARAM_MAX,	8*MINUTES,	"tcp_keepalive_abort_interval"},
1326 };
1327 /* END CSTYLED */
1328 
1329 /*
1330  * tcp_mdt_hdr_{head,tail}_min are the leading and trailing spaces of
1331  * each header fragment in the header buffer.  Each parameter value has
1332  * to be a multiple of 4 (32-bit aligned).
1333  */
1334 static tcpparam_t tcp_mdt_head_param = { 32, 256, 32, "tcp_mdt_hdr_head_min" };
1335 static tcpparam_t tcp_mdt_tail_param = { 0,  256, 32, "tcp_mdt_hdr_tail_min" };
1336 #define	tcp_mdt_hdr_head_min	tcp_mdt_head_param.tcp_param_val
1337 #define	tcp_mdt_hdr_tail_min	tcp_mdt_tail_param.tcp_param_val
1338 
1339 /*
1340  * tcp_mdt_max_pbufs is the upper limit value that tcp uses to figure out
1341  * the maximum number of payload buffers associated per Multidata.
1342  */
1343 static tcpparam_t tcp_mdt_max_pbufs_param =
1344 	{ 1, MULTIDATA_MAX_PBUFS, MULTIDATA_MAX_PBUFS, "tcp_mdt_max_pbufs" };
1345 #define	tcp_mdt_max_pbufs	tcp_mdt_max_pbufs_param.tcp_param_val
1346 
1347 /* Round up the value to the nearest mss. */
1348 #define	MSS_ROUNDUP(value, mss)		((((value) - 1) / (mss) + 1) * (mss))
1349 
1350 /*
1351  * Set ECN capable transport (ECT) code point in IP header.
1352  *
1353  * Note that there are 2 ECT code points '01' and '10', which are called
1354  * ECT(1) and ECT(0) respectively.  Here we follow the original ECT code
1355  * point ECT(0) for TCP as described in RFC 2481.
1356  */
1357 #define	SET_ECT(tcp, iph) \
1358 	if ((tcp)->tcp_ipversion == IPV4_VERSION) { \
1359 		/* We need to clear the code point first. */ \
1360 		((ipha_t *)(iph))->ipha_type_of_service &= 0xFC; \
1361 		((ipha_t *)(iph))->ipha_type_of_service |= IPH_ECN_ECT0; \
1362 	} else { \
1363 		((ip6_t *)(iph))->ip6_vcf &= htonl(0xFFCFFFFF); \
1364 		((ip6_t *)(iph))->ip6_vcf |= htonl(IPH_ECN_ECT0 << 20); \
1365 	}
1366 
1367 /*
1368  * The format argument to pass to tcp_display().
1369  * DISP_PORT_ONLY means that the returned string has only port info.
1370  * DISP_ADDR_AND_PORT means that the returned string also contains the
1371  * remote and local IP address.
1372  */
1373 #define	DISP_PORT_ONLY		1
1374 #define	DISP_ADDR_AND_PORT	2
1375 
1376 /*
1377  * This controls the rate some ndd info report functions can be used
1378  * by non-privileged users.  It stores the last time such info is
1379  * requested.  When those report functions are called again, this
1380  * is checked with the current time and compare with the ndd param
1381  * tcp_ndd_get_info_interval.
1382  */
1383 static clock_t tcp_last_ndd_get_info_time = 0;
1384 #define	NDD_TOO_QUICK_MSG \
1385 	"ndd get info rate too high for non-privileged users, try again " \
1386 	"later.\n"
1387 #define	NDD_OUT_OF_BUF_MSG	"<< Out of buffer >>\n"
1388 
1389 #define	IS_VMLOANED_MBLK(mp) \
1390 	(((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0)
1391 
1392 /*
1393  * These two variables control the rate for TCP to generate RSTs in
1394  * response to segments not belonging to any connections.  We limit
1395  * TCP to sent out tcp_rst_sent_rate (ndd param) number of RSTs in
1396  * each 1 second interval.  This is to protect TCP against DoS attack.
1397  */
1398 static clock_t tcp_last_rst_intrvl;
1399 static uint32_t tcp_rst_cnt;
1400 
1401 /* The number of RST not sent because of the rate limit. */
1402 static uint32_t tcp_rst_unsent;
1403 
1404 /* Enable or disable b_cont M_MULTIDATA chaining for MDT. */
1405 boolean_t tcp_mdt_chain = B_TRUE;
1406 
1407 /*
1408  * MDT threshold in the form of effective send MSS multiplier; we take
1409  * the MDT path if the amount of unsent data exceeds the threshold value
1410  * (default threshold is 1*SMSS).
1411  */
1412 uint_t tcp_mdt_smss_threshold = 1;
1413 
1414 uint32_t do_tcpzcopy = 1;		/* 0: disable, 1: enable, 2: force */
1415 
1416 /*
1417  * Forces all connections to obey the value of the tcp_maxpsz_multiplier
1418  * tunable settable via NDD.  Otherwise, the per-connection behavior is
1419  * determined dynamically during tcp_adapt_ire(), which is the default.
1420  */
1421 boolean_t tcp_static_maxpsz = B_FALSE;
1422 
1423 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */
1424 uint32_t tcp_random_anon_port = 1;
1425 
1426 /*
1427  * To reach to an eager in Q0 which can be dropped due to an incoming
1428  * new SYN request when Q0 is full, a new doubly linked list is
1429  * introduced. This list allows to select an eager from Q0 in O(1) time.
1430  * This is needed to avoid spending too much time walking through the
1431  * long list of eagers in Q0 when tcp_drop_q0() is called. Each member of
1432  * this new list has to be a member of Q0.
1433  * This list is headed by listener's tcp_t. When the list is empty,
1434  * both the pointers - tcp_eager_next_drop_q0 and tcp_eager_prev_drop_q0,
1435  * of listener's tcp_t point to listener's tcp_t itself.
1436  *
1437  * Given an eager in Q0 and a listener, MAKE_DROPPABLE() puts the eager
1438  * in the list. MAKE_UNDROPPABLE() takes the eager out of the list.
1439  * These macros do not affect the eager's membership to Q0.
1440  */
1441 
1442 
1443 #define	MAKE_DROPPABLE(listener, eager)					\
1444 	if ((eager)->tcp_eager_next_drop_q0 == NULL) {			\
1445 		(listener)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0\
1446 		    = (eager);						\
1447 		(eager)->tcp_eager_prev_drop_q0 = (listener);		\
1448 		(eager)->tcp_eager_next_drop_q0 =			\
1449 		    (listener)->tcp_eager_next_drop_q0;			\
1450 		(listener)->tcp_eager_next_drop_q0 = (eager);		\
1451 	}
1452 
1453 #define	MAKE_UNDROPPABLE(eager)						\
1454 	if ((eager)->tcp_eager_next_drop_q0 != NULL) {			\
1455 		(eager)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0	\
1456 		    = (eager)->tcp_eager_prev_drop_q0;			\
1457 		(eager)->tcp_eager_prev_drop_q0->tcp_eager_next_drop_q0	\
1458 		    = (eager)->tcp_eager_next_drop_q0;			\
1459 		(eager)->tcp_eager_prev_drop_q0 = NULL;			\
1460 		(eager)->tcp_eager_next_drop_q0 = NULL;			\
1461 	}
1462 
1463 /*
1464  * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more
1465  * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent
1466  * data, TCP will not respond with an ACK.  RFC 793 requires that
1467  * TCP responds with an ACK for such a bogus ACK.  By not following
1468  * the RFC, we prevent TCP from getting into an ACK storm if somehow
1469  * an attacker successfully spoofs an acceptable segment to our
1470  * peer; or when our peer is "confused."
1471  */
1472 uint32_t tcp_drop_ack_unsent_cnt = 10;
1473 
1474 /*
1475  * Hook functions to enable cluster networking
1476  * On non-clustered systems these vectors must always be NULL.
1477  */
1478 
1479 void (*cl_inet_listen)(uint8_t protocol, sa_family_t addr_family,
1480 			    uint8_t *laddrp, in_port_t lport) = NULL;
1481 void (*cl_inet_unlisten)(uint8_t protocol, sa_family_t addr_family,
1482 			    uint8_t *laddrp, in_port_t lport) = NULL;
1483 void (*cl_inet_connect)(uint8_t protocol, sa_family_t addr_family,
1484 			    uint8_t *laddrp, in_port_t lport,
1485 			    uint8_t *faddrp, in_port_t fport) = NULL;
1486 void (*cl_inet_disconnect)(uint8_t protocol, sa_family_t addr_family,
1487 			    uint8_t *laddrp, in_port_t lport,
1488 			    uint8_t *faddrp, in_port_t fport) = NULL;
1489 
1490 /*
1491  * The following are defined in ip.c
1492  */
1493 extern int (*cl_inet_isclusterwide)(uint8_t protocol, sa_family_t addr_family,
1494 				uint8_t *laddrp);
1495 extern uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family,
1496 				uint8_t *laddrp, uint8_t *faddrp);
1497 
1498 #define	CL_INET_CONNECT(tcp)		{			\
1499 	if (cl_inet_connect != NULL) {				\
1500 		/*						\
1501 		 * Running in cluster mode - register active connection	\
1502 		 * information						\
1503 		 */							\
1504 		if ((tcp)->tcp_ipversion == IPV4_VERSION) {		\
1505 			if ((tcp)->tcp_ipha->ipha_src != 0) {		\
1506 				(*cl_inet_connect)(IPPROTO_TCP, AF_INET,\
1507 				    (uint8_t *)(&((tcp)->tcp_ipha->ipha_src)),\
1508 				    (in_port_t)(tcp)->tcp_lport,	\
1509 				    (uint8_t *)(&((tcp)->tcp_ipha->ipha_dst)),\
1510 				    (in_port_t)(tcp)->tcp_fport);	\
1511 			}						\
1512 		} else {						\
1513 			if (!IN6_IS_ADDR_UNSPECIFIED(			\
1514 			    &(tcp)->tcp_ip6h->ip6_src)) {\
1515 				(*cl_inet_connect)(IPPROTO_TCP, AF_INET6,\
1516 				    (uint8_t *)(&((tcp)->tcp_ip6h->ip6_src)),\
1517 				    (in_port_t)(tcp)->tcp_lport,	\
1518 				    (uint8_t *)(&((tcp)->tcp_ip6h->ip6_dst)),\
1519 				    (in_port_t)(tcp)->tcp_fport);	\
1520 			}						\
1521 		}							\
1522 	}								\
1523 }
1524 
1525 #define	CL_INET_DISCONNECT(tcp)	{				\
1526 	if (cl_inet_disconnect != NULL) {				\
1527 		/*							\
1528 		 * Running in cluster mode - deregister active		\
1529 		 * connection information				\
1530 		 */							\
1531 		if ((tcp)->tcp_ipversion == IPV4_VERSION) {		\
1532 			if ((tcp)->tcp_ip_src != 0) {			\
1533 				(*cl_inet_disconnect)(IPPROTO_TCP,	\
1534 				    AF_INET,				\
1535 				    (uint8_t *)(&((tcp)->tcp_ip_src)),\
1536 				    (in_port_t)(tcp)->tcp_lport,	\
1537 				    (uint8_t *)				\
1538 				    (&((tcp)->tcp_ipha->ipha_dst)),\
1539 				    (in_port_t)(tcp)->tcp_fport);	\
1540 			}						\
1541 		} else {						\
1542 			if (!IN6_IS_ADDR_UNSPECIFIED(			\
1543 			    &(tcp)->tcp_ip_src_v6)) {			\
1544 				(*cl_inet_disconnect)(IPPROTO_TCP, AF_INET6,\
1545 				    (uint8_t *)(&((tcp)->tcp_ip_src_v6)),\
1546 				    (in_port_t)(tcp)->tcp_lport,	\
1547 				    (uint8_t *)				\
1548 				    (&((tcp)->tcp_ip6h->ip6_dst)),\
1549 				    (in_port_t)(tcp)->tcp_fport);	\
1550 			}						\
1551 		}							\
1552 	}								\
1553 }
1554 
1555 /*
1556  * Cluster networking hook for traversing current connection list.
1557  * This routine is used to extract the current list of live connections
1558  * which must continue to to be dispatched to this node.
1559  */
1560 int cl_tcp_walk_list(int (*callback)(cl_tcp_info_t *, void *), void *arg);
1561 
1562 /*
1563  * Figure out the value of window scale opton.  Note that the rwnd is
1564  * ASSUMED to be rounded up to the nearest MSS before the calculation.
1565  * We cannot find the scale value and then do a round up of tcp_rwnd
1566  * because the scale value may not be correct after that.
1567  *
1568  * Set the compiler flag to make this function inline.
1569  */
1570 static void
1571 tcp_set_ws_value(tcp_t *tcp)
1572 {
1573 	int i;
1574 	uint32_t rwnd = tcp->tcp_rwnd;
1575 
1576 	for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT;
1577 	    i++, rwnd >>= 1)
1578 		;
1579 	tcp->tcp_rcv_ws = i;
1580 }
1581 
1582 /*
1583  * Remove a connection from the list of detached TIME_WAIT connections.
1584  * It returns B_FALSE if it can't remove the connection from the list
1585  * as the connection has already been removed from the list due to an
1586  * earlier call to tcp_time_wait_remove(); otherwise it returns B_TRUE.
1587  */
1588 static boolean_t
1589 tcp_time_wait_remove(tcp_t *tcp, tcp_squeue_priv_t *tcp_time_wait)
1590 {
1591 	boolean_t	locked = B_FALSE;
1592 
1593 	if (tcp_time_wait == NULL) {
1594 		tcp_time_wait = *((tcp_squeue_priv_t **)
1595 		    squeue_getprivate(tcp->tcp_connp->conn_sqp, SQPRIVATE_TCP));
1596 		mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1597 		locked = B_TRUE;
1598 	}
1599 
1600 	if (tcp->tcp_time_wait_expire == 0) {
1601 		ASSERT(tcp->tcp_time_wait_next == NULL);
1602 		ASSERT(tcp->tcp_time_wait_prev == NULL);
1603 		if (locked)
1604 			mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1605 		return (B_FALSE);
1606 	}
1607 	ASSERT(TCP_IS_DETACHED(tcp));
1608 	ASSERT(tcp->tcp_state == TCPS_TIME_WAIT);
1609 
1610 	if (tcp == tcp_time_wait->tcp_time_wait_head) {
1611 		ASSERT(tcp->tcp_time_wait_prev == NULL);
1612 		tcp_time_wait->tcp_time_wait_head = tcp->tcp_time_wait_next;
1613 		if (tcp_time_wait->tcp_time_wait_head != NULL) {
1614 			tcp_time_wait->tcp_time_wait_head->tcp_time_wait_prev =
1615 			    NULL;
1616 		} else {
1617 			tcp_time_wait->tcp_time_wait_tail = NULL;
1618 		}
1619 	} else if (tcp == tcp_time_wait->tcp_time_wait_tail) {
1620 		ASSERT(tcp != tcp_time_wait->tcp_time_wait_head);
1621 		ASSERT(tcp->tcp_time_wait_next == NULL);
1622 		tcp_time_wait->tcp_time_wait_tail = tcp->tcp_time_wait_prev;
1623 		ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL);
1624 		tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = NULL;
1625 	} else {
1626 		ASSERT(tcp->tcp_time_wait_prev->tcp_time_wait_next == tcp);
1627 		ASSERT(tcp->tcp_time_wait_next->tcp_time_wait_prev == tcp);
1628 		tcp->tcp_time_wait_prev->tcp_time_wait_next =
1629 		    tcp->tcp_time_wait_next;
1630 		tcp->tcp_time_wait_next->tcp_time_wait_prev =
1631 		    tcp->tcp_time_wait_prev;
1632 	}
1633 	tcp->tcp_time_wait_next = NULL;
1634 	tcp->tcp_time_wait_prev = NULL;
1635 	tcp->tcp_time_wait_expire = 0;
1636 
1637 	if (locked)
1638 		mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1639 	return (B_TRUE);
1640 }
1641 
1642 /*
1643  * Add a connection to the list of detached TIME_WAIT connections
1644  * and set its time to expire.
1645  */
1646 static void
1647 tcp_time_wait_append(tcp_t *tcp)
1648 {
1649 	tcp_squeue_priv_t *tcp_time_wait =
1650 	    *((tcp_squeue_priv_t **)squeue_getprivate(tcp->tcp_connp->conn_sqp,
1651 		SQPRIVATE_TCP));
1652 
1653 	tcp_timers_stop(tcp);
1654 
1655 	/* Freed above */
1656 	ASSERT(tcp->tcp_timer_tid == 0);
1657 	ASSERT(tcp->tcp_ack_tid == 0);
1658 
1659 	/* must have happened at the time of detaching the tcp */
1660 	ASSERT(tcp->tcp_ptpahn == NULL);
1661 	ASSERT(tcp->tcp_flow_stopped == 0);
1662 	ASSERT(tcp->tcp_time_wait_next == NULL);
1663 	ASSERT(tcp->tcp_time_wait_prev == NULL);
1664 	ASSERT(tcp->tcp_time_wait_expire == NULL);
1665 	ASSERT(tcp->tcp_listener == NULL);
1666 
1667 	tcp->tcp_time_wait_expire = ddi_get_lbolt();
1668 	/*
1669 	 * The value computed below in tcp->tcp_time_wait_expire may
1670 	 * appear negative or wrap around. That is ok since our
1671 	 * interest is only in the difference between the current lbolt
1672 	 * value and tcp->tcp_time_wait_expire. But the value should not
1673 	 * be zero, since it means the tcp is not in the TIME_WAIT list.
1674 	 * The corresponding comparison in tcp_time_wait_collector() uses
1675 	 * modular arithmetic.
1676 	 */
1677 	tcp->tcp_time_wait_expire +=
1678 	    drv_usectohz(tcp_time_wait_interval * 1000);
1679 	if (tcp->tcp_time_wait_expire == 0)
1680 		tcp->tcp_time_wait_expire = 1;
1681 
1682 	ASSERT(TCP_IS_DETACHED(tcp));
1683 	ASSERT(tcp->tcp_state == TCPS_TIME_WAIT);
1684 	ASSERT(tcp->tcp_time_wait_next == NULL);
1685 	ASSERT(tcp->tcp_time_wait_prev == NULL);
1686 	TCP_DBGSTAT(tcp_time_wait);
1687 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1688 	if (tcp_time_wait->tcp_time_wait_head == NULL) {
1689 		ASSERT(tcp_time_wait->tcp_time_wait_tail == NULL);
1690 		tcp_time_wait->tcp_time_wait_head = tcp;
1691 	} else {
1692 		ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL);
1693 		ASSERT(tcp_time_wait->tcp_time_wait_tail->tcp_state ==
1694 		    TCPS_TIME_WAIT);
1695 		tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = tcp;
1696 		tcp->tcp_time_wait_prev = tcp_time_wait->tcp_time_wait_tail;
1697 	}
1698 	tcp_time_wait->tcp_time_wait_tail = tcp;
1699 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1700 }
1701 
1702 /* ARGSUSED */
1703 void
1704 tcp_timewait_output(void *arg, mblk_t *mp, void *arg2)
1705 {
1706 	conn_t	*connp = (conn_t *)arg;
1707 	tcp_t	*tcp = connp->conn_tcp;
1708 
1709 	ASSERT(tcp != NULL);
1710 	if (tcp->tcp_state == TCPS_CLOSED) {
1711 		return;
1712 	}
1713 
1714 	ASSERT((tcp->tcp_family == AF_INET &&
1715 	    tcp->tcp_ipversion == IPV4_VERSION) ||
1716 	    (tcp->tcp_family == AF_INET6 &&
1717 	    (tcp->tcp_ipversion == IPV4_VERSION ||
1718 	    tcp->tcp_ipversion == IPV6_VERSION)));
1719 	ASSERT(!tcp->tcp_listener);
1720 
1721 	TCP_STAT(tcp_time_wait_reap);
1722 	ASSERT(TCP_IS_DETACHED(tcp));
1723 
1724 	/*
1725 	 * Because they have no upstream client to rebind or tcp_close()
1726 	 * them later, we axe the connection here and now.
1727 	 */
1728 	tcp_close_detached(tcp);
1729 }
1730 
1731 void
1732 tcp_cleanup(tcp_t *tcp)
1733 {
1734 	mblk_t		*mp;
1735 	char		*tcp_iphc;
1736 	int		tcp_iphc_len;
1737 	int		tcp_hdr_grown;
1738 	tcp_sack_info_t	*tcp_sack_info;
1739 	conn_t		*connp = tcp->tcp_connp;
1740 
1741 	tcp_bind_hash_remove(tcp);
1742 	tcp_free(tcp);
1743 
1744 	/* Release any SSL context */
1745 	if (tcp->tcp_kssl_ent != NULL) {
1746 		kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY);
1747 		tcp->tcp_kssl_ent = NULL;
1748 	}
1749 
1750 	if (tcp->tcp_kssl_ctx != NULL) {
1751 		kssl_release_ctx(tcp->tcp_kssl_ctx);
1752 		tcp->tcp_kssl_ctx = NULL;
1753 	}
1754 	tcp->tcp_kssl_pending = B_FALSE;
1755 
1756 	conn_delete_ire(connp, NULL);
1757 	if (connp->conn_flags & IPCL_TCPCONN) {
1758 		if (connp->conn_latch != NULL)
1759 			IPLATCH_REFRELE(connp->conn_latch);
1760 		if (connp->conn_policy != NULL)
1761 			IPPH_REFRELE(connp->conn_policy);
1762 	}
1763 
1764 	/*
1765 	 * Since we will bzero the entire structure, we need to
1766 	 * remove it and reinsert it in global hash list. We
1767 	 * know the walkers can't get to this conn because we
1768 	 * had set CONDEMNED flag earlier and checked reference
1769 	 * under conn_lock so walker won't pick it and when we
1770 	 * go the ipcl_globalhash_remove() below, no walker
1771 	 * can get to it.
1772 	 */
1773 	ipcl_globalhash_remove(connp);
1774 
1775 	/* Save some state */
1776 	mp = tcp->tcp_timercache;
1777 
1778 	tcp_sack_info = tcp->tcp_sack_info;
1779 	tcp_iphc = tcp->tcp_iphc;
1780 	tcp_iphc_len = tcp->tcp_iphc_len;
1781 	tcp_hdr_grown = tcp->tcp_hdr_grown;
1782 
1783 	if (connp->conn_cred != NULL)
1784 		crfree(connp->conn_cred);
1785 	if (connp->conn_peercred != NULL)
1786 		crfree(connp->conn_peercred);
1787 	bzero(connp, sizeof (conn_t));
1788 	bzero(tcp, sizeof (tcp_t));
1789 
1790 	/* restore the state */
1791 	tcp->tcp_timercache = mp;
1792 
1793 	tcp->tcp_sack_info = tcp_sack_info;
1794 	tcp->tcp_iphc = tcp_iphc;
1795 	tcp->tcp_iphc_len = tcp_iphc_len;
1796 	tcp->tcp_hdr_grown = tcp_hdr_grown;
1797 
1798 
1799 	tcp->tcp_connp = connp;
1800 
1801 	connp->conn_tcp = tcp;
1802 	connp->conn_flags = IPCL_TCPCONN;
1803 	connp->conn_state_flags = CONN_INCIPIENT;
1804 	connp->conn_ulp = IPPROTO_TCP;
1805 	connp->conn_ref = 1;
1806 
1807 	ipcl_globalhash_insert(connp);
1808 }
1809 
1810 /*
1811  * Blows away all tcps whose TIME_WAIT has expired. List traversal
1812  * is done forwards from the head.
1813  */
1814 /* ARGSUSED */
1815 void
1816 tcp_time_wait_collector(void *arg)
1817 {
1818 	tcp_t *tcp;
1819 	clock_t now;
1820 	mblk_t *mp;
1821 	conn_t *connp;
1822 	kmutex_t *lock;
1823 	boolean_t removed;
1824 
1825 	squeue_t *sqp = (squeue_t *)arg;
1826 	tcp_squeue_priv_t *tcp_time_wait =
1827 	    *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP));
1828 
1829 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1830 	tcp_time_wait->tcp_time_wait_tid = 0;
1831 
1832 	if (tcp_time_wait->tcp_free_list != NULL &&
1833 	    tcp_time_wait->tcp_free_list->tcp_in_free_list == B_TRUE) {
1834 		TCP_STAT(tcp_freelist_cleanup);
1835 		while ((tcp = tcp_time_wait->tcp_free_list) != NULL) {
1836 			tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next;
1837 			CONN_DEC_REF(tcp->tcp_connp);
1838 		}
1839 		tcp_time_wait->tcp_free_list_cnt = 0;
1840 	}
1841 
1842 	/*
1843 	 * In order to reap time waits reliably, we should use a
1844 	 * source of time that is not adjustable by the user -- hence
1845 	 * the call to ddi_get_lbolt().
1846 	 */
1847 	now = ddi_get_lbolt();
1848 	while ((tcp = tcp_time_wait->tcp_time_wait_head) != NULL) {
1849 		/*
1850 		 * Compare times using modular arithmetic, since
1851 		 * lbolt can wrapover.
1852 		 */
1853 		if ((now - tcp->tcp_time_wait_expire) < 0) {
1854 			break;
1855 		}
1856 
1857 		removed = tcp_time_wait_remove(tcp, tcp_time_wait);
1858 		ASSERT(removed);
1859 
1860 		connp = tcp->tcp_connp;
1861 		ASSERT(connp->conn_fanout != NULL);
1862 		lock = &connp->conn_fanout->connf_lock;
1863 		/*
1864 		 * This is essentially a TW reclaim fast path optimization for
1865 		 * performance where the timewait collector checks under the
1866 		 * fanout lock (so that no one else can get access to the
1867 		 * conn_t) that the refcnt is 2 i.e. one for TCP and one for
1868 		 * the classifier hash list. If ref count is indeed 2, we can
1869 		 * just remove the conn under the fanout lock and avoid
1870 		 * cleaning up the conn under the squeue, provided that
1871 		 * clustering callbacks are not enabled. If clustering is
1872 		 * enabled, we need to make the clustering callback before
1873 		 * setting the CONDEMNED flag and after dropping all locks and
1874 		 * so we forego this optimization and fall back to the slow
1875 		 * path. Also please see the comments in tcp_closei_local
1876 		 * regarding the refcnt logic.
1877 		 *
1878 		 * Since we are holding the tcp_time_wait_lock, its better
1879 		 * not to block on the fanout_lock because other connections
1880 		 * can't add themselves to time_wait list. So we do a
1881 		 * tryenter instead of mutex_enter.
1882 		 */
1883 		if (mutex_tryenter(lock)) {
1884 			mutex_enter(&connp->conn_lock);
1885 			if ((connp->conn_ref == 2) &&
1886 			    (cl_inet_disconnect == NULL)) {
1887 				ipcl_hash_remove_locked(connp,
1888 				    connp->conn_fanout);
1889 				/*
1890 				 * Set the CONDEMNED flag now itself so that
1891 				 * the refcnt cannot increase due to any
1892 				 * walker. But we have still not cleaned up
1893 				 * conn_ire_cache. This is still ok since
1894 				 * we are going to clean it up in tcp_cleanup
1895 				 * immediately and any interface unplumb
1896 				 * thread will wait till the ire is blown away
1897 				 */
1898 				connp->conn_state_flags |= CONN_CONDEMNED;
1899 				mutex_exit(lock);
1900 				mutex_exit(&connp->conn_lock);
1901 				if (tcp_time_wait->tcp_free_list_cnt <
1902 				    tcp_free_list_max_cnt) {
1903 					/* Add to head of tcp_free_list */
1904 					mutex_exit(
1905 					    &tcp_time_wait->tcp_time_wait_lock);
1906 					tcp_cleanup(tcp);
1907 					mutex_enter(
1908 					    &tcp_time_wait->tcp_time_wait_lock);
1909 					tcp->tcp_time_wait_next =
1910 					    tcp_time_wait->tcp_free_list;
1911 					tcp_time_wait->tcp_free_list = tcp;
1912 					tcp_time_wait->tcp_free_list_cnt++;
1913 					continue;
1914 				} else {
1915 					/* Do not add to tcp_free_list */
1916 					mutex_exit(
1917 					    &tcp_time_wait->tcp_time_wait_lock);
1918 					tcp_bind_hash_remove(tcp);
1919 					conn_delete_ire(tcp->tcp_connp, NULL);
1920 					CONN_DEC_REF(tcp->tcp_connp);
1921 				}
1922 			} else {
1923 				CONN_INC_REF_LOCKED(connp);
1924 				mutex_exit(lock);
1925 				mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1926 				mutex_exit(&connp->conn_lock);
1927 				/*
1928 				 * We can reuse the closemp here since conn has
1929 				 * detached (otherwise we wouldn't even be in
1930 				 * time_wait list). tcp_closemp_used can safely
1931 				 * be changed without taking a lock as no other
1932 				 * thread can concurrently access it at this
1933 				 * point in the connection lifecycle. We
1934 				 * increment tcp_closemp_used to record any
1935 				 * attempt to reuse tcp_closemp while it is
1936 				 * still in use.
1937 				 */
1938 
1939 				if (tcp->tcp_closemp.b_prev == NULL)
1940 					tcp->tcp_closemp_used = 1;
1941 				else
1942 					tcp->tcp_closemp_used++;
1943 
1944 				TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
1945 				mp = &tcp->tcp_closemp;
1946 				squeue_fill(connp->conn_sqp, mp,
1947 				    tcp_timewait_output, connp,
1948 				    SQTAG_TCP_TIMEWAIT);
1949 			}
1950 		} else {
1951 			mutex_enter(&connp->conn_lock);
1952 			CONN_INC_REF_LOCKED(connp);
1953 			mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1954 			mutex_exit(&connp->conn_lock);
1955 			/*
1956 			 * We can reuse the closemp here since conn has
1957 			 * detached (otherwise we wouldn't even be in
1958 			 * time_wait list). tcp_closemp_used can safely
1959 			 * be changed without taking a lock as no other
1960 			 * thread can concurrently access it at this
1961 			 * point in the connection lifecycle. We
1962 			 * increment tcp_closemp_used to record any
1963 			 * attempt to reuse tcp_closemp while it is
1964 			 * still in use.
1965 			 */
1966 
1967 			if (tcp->tcp_closemp.b_prev == NULL)
1968 				tcp->tcp_closemp_used = 1;
1969 			else
1970 				tcp->tcp_closemp_used++;
1971 
1972 			TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
1973 			mp = &tcp->tcp_closemp;
1974 			squeue_fill(connp->conn_sqp, mp,
1975 			    tcp_timewait_output, connp, 0);
1976 		}
1977 		mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1978 	}
1979 
1980 	if (tcp_time_wait->tcp_free_list != NULL)
1981 		tcp_time_wait->tcp_free_list->tcp_in_free_list = B_TRUE;
1982 
1983 	tcp_time_wait->tcp_time_wait_tid =
1984 	    timeout(tcp_time_wait_collector, sqp, TCP_TIME_WAIT_DELAY);
1985 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1986 }
1987 
1988 /*
1989  * Reply to a clients T_CONN_RES TPI message. This function
1990  * is used only for TLI/XTI listener. Sockfs sends T_CONN_RES
1991  * on the acceptor STREAM and processed in tcp_wput_accept().
1992  * Read the block comment on top of tcp_conn_request().
1993  */
1994 static void
1995 tcp_accept(tcp_t *listener, mblk_t *mp)
1996 {
1997 	tcp_t	*acceptor;
1998 	tcp_t	*eager;
1999 	tcp_t   *tcp;
2000 	struct T_conn_res	*tcr;
2001 	t_uscalar_t	acceptor_id;
2002 	t_scalar_t	seqnum;
2003 	mblk_t	*opt_mp = NULL;	/* T_OPTMGMT_REQ messages */
2004 	mblk_t	*ok_mp;
2005 	mblk_t	*mp1;
2006 
2007 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) {
2008 		tcp_err_ack(listener, mp, TPROTO, 0);
2009 		return;
2010 	}
2011 	tcr = (struct T_conn_res *)mp->b_rptr;
2012 
2013 	/*
2014 	 * Under ILP32 the stream head points tcr->ACCEPTOR_id at the
2015 	 * read side queue of the streams device underneath us i.e. the
2016 	 * read side queue of 'ip'. Since we can't deference QUEUE_ptr we
2017 	 * look it up in the queue_hash.  Under LP64 it sends down the
2018 	 * minor_t of the accepting endpoint.
2019 	 *
2020 	 * Once the acceptor/eager are modified (in tcp_accept_swap) the
2021 	 * fanout hash lock is held.
2022 	 * This prevents any thread from entering the acceptor queue from
2023 	 * below (since it has not been hard bound yet i.e. any inbound
2024 	 * packets will arrive on the listener or default tcp queue and
2025 	 * go through tcp_lookup).
2026 	 * The CONN_INC_REF will prevent the acceptor from closing.
2027 	 *
2028 	 * XXX It is still possible for a tli application to send down data
2029 	 * on the accepting stream while another thread calls t_accept.
2030 	 * This should not be a problem for well-behaved applications since
2031 	 * the T_OK_ACK is sent after the queue swapping is completed.
2032 	 *
2033 	 * If the accepting fd is the same as the listening fd, avoid
2034 	 * queue hash lookup since that will return an eager listener in a
2035 	 * already established state.
2036 	 */
2037 	acceptor_id = tcr->ACCEPTOR_id;
2038 	mutex_enter(&listener->tcp_eager_lock);
2039 	if (listener->tcp_acceptor_id == acceptor_id) {
2040 		eager = listener->tcp_eager_next_q;
2041 		/* only count how many T_CONN_INDs so don't count q0 */
2042 		if ((listener->tcp_conn_req_cnt_q != 1) ||
2043 		    (eager->tcp_conn_req_seqnum != tcr->SEQ_number)) {
2044 			mutex_exit(&listener->tcp_eager_lock);
2045 			tcp_err_ack(listener, mp, TBADF, 0);
2046 			return;
2047 		}
2048 		if (listener->tcp_conn_req_cnt_q0 != 0) {
2049 			/* Throw away all the eagers on q0. */
2050 			tcp_eager_cleanup(listener, 1);
2051 		}
2052 		if (listener->tcp_syn_defense) {
2053 			listener->tcp_syn_defense = B_FALSE;
2054 			if (listener->tcp_ip_addr_cache != NULL) {
2055 				kmem_free(listener->tcp_ip_addr_cache,
2056 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
2057 				listener->tcp_ip_addr_cache = NULL;
2058 			}
2059 		}
2060 		/*
2061 		 * Transfer tcp_conn_req_max to the eager so that when
2062 		 * a disconnect occurs we can revert the endpoint to the
2063 		 * listen state.
2064 		 */
2065 		eager->tcp_conn_req_max = listener->tcp_conn_req_max;
2066 		ASSERT(listener->tcp_conn_req_cnt_q0 == 0);
2067 		/*
2068 		 * Get a reference on the acceptor just like the
2069 		 * tcp_acceptor_hash_lookup below.
2070 		 */
2071 		acceptor = listener;
2072 		CONN_INC_REF(acceptor->tcp_connp);
2073 	} else {
2074 		acceptor = tcp_acceptor_hash_lookup(acceptor_id);
2075 		if (acceptor == NULL) {
2076 			if (listener->tcp_debug) {
2077 				(void) strlog(TCP_MOD_ID, 0, 1,
2078 				    SL_ERROR|SL_TRACE,
2079 				    "tcp_accept: did not find acceptor 0x%x\n",
2080 				    acceptor_id);
2081 			}
2082 			mutex_exit(&listener->tcp_eager_lock);
2083 			tcp_err_ack(listener, mp, TPROVMISMATCH, 0);
2084 			return;
2085 		}
2086 		/*
2087 		 * Verify acceptor state. The acceptable states for an acceptor
2088 		 * include TCPS_IDLE and TCPS_BOUND.
2089 		 */
2090 		switch (acceptor->tcp_state) {
2091 		case TCPS_IDLE:
2092 			/* FALLTHRU */
2093 		case TCPS_BOUND:
2094 			break;
2095 		default:
2096 			CONN_DEC_REF(acceptor->tcp_connp);
2097 			mutex_exit(&listener->tcp_eager_lock);
2098 			tcp_err_ack(listener, mp, TOUTSTATE, 0);
2099 			return;
2100 		}
2101 	}
2102 
2103 	/* The listener must be in TCPS_LISTEN */
2104 	if (listener->tcp_state != TCPS_LISTEN) {
2105 		CONN_DEC_REF(acceptor->tcp_connp);
2106 		mutex_exit(&listener->tcp_eager_lock);
2107 		tcp_err_ack(listener, mp, TOUTSTATE, 0);
2108 		return;
2109 	}
2110 
2111 	/*
2112 	 * Rendezvous with an eager connection request packet hanging off
2113 	 * 'tcp' that has the 'seqnum' tag.  We tagged the detached open
2114 	 * tcp structure when the connection packet arrived in
2115 	 * tcp_conn_request().
2116 	 */
2117 	seqnum = tcr->SEQ_number;
2118 	eager = listener;
2119 	do {
2120 		eager = eager->tcp_eager_next_q;
2121 		if (eager == NULL) {
2122 			CONN_DEC_REF(acceptor->tcp_connp);
2123 			mutex_exit(&listener->tcp_eager_lock);
2124 			tcp_err_ack(listener, mp, TBADSEQ, 0);
2125 			return;
2126 		}
2127 	} while (eager->tcp_conn_req_seqnum != seqnum);
2128 	mutex_exit(&listener->tcp_eager_lock);
2129 
2130 	/*
2131 	 * At this point, both acceptor and listener have 2 ref
2132 	 * that they begin with. Acceptor has one additional ref
2133 	 * we placed in lookup while listener has 3 additional
2134 	 * ref for being behind the squeue (tcp_accept() is
2135 	 * done on listener's squeue); being in classifier hash;
2136 	 * and eager's ref on listener.
2137 	 */
2138 	ASSERT(listener->tcp_connp->conn_ref >= 5);
2139 	ASSERT(acceptor->tcp_connp->conn_ref >= 3);
2140 
2141 	/*
2142 	 * The eager at this point is set in its own squeue and
2143 	 * could easily have been killed (tcp_accept_finish will
2144 	 * deal with that) because of a TH_RST so we can only
2145 	 * ASSERT for a single ref.
2146 	 */
2147 	ASSERT(eager->tcp_connp->conn_ref >= 1);
2148 
2149 	/* Pre allocate the stroptions mblk also */
2150 	opt_mp = allocb(sizeof (struct stroptions), BPRI_HI);
2151 	if (opt_mp == NULL) {
2152 		CONN_DEC_REF(acceptor->tcp_connp);
2153 		CONN_DEC_REF(eager->tcp_connp);
2154 		tcp_err_ack(listener, mp, TSYSERR, ENOMEM);
2155 		return;
2156 	}
2157 	DB_TYPE(opt_mp) = M_SETOPTS;
2158 	opt_mp->b_wptr += sizeof (struct stroptions);
2159 
2160 	/*
2161 	 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO
2162 	 * from listener to acceptor. The message is chained on opt_mp
2163 	 * which will be sent onto eager's squeue.
2164 	 */
2165 	if (listener->tcp_bound_if != 0) {
2166 		/* allocate optmgmt req */
2167 		mp1 = tcp_setsockopt_mp(IPPROTO_IPV6,
2168 		    IPV6_BOUND_IF, (char *)&listener->tcp_bound_if,
2169 		    sizeof (int));
2170 		if (mp1 != NULL)
2171 			linkb(opt_mp, mp1);
2172 	}
2173 	if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) {
2174 		uint_t on = 1;
2175 
2176 		/* allocate optmgmt req */
2177 		mp1 = tcp_setsockopt_mp(IPPROTO_IPV6,
2178 		    IPV6_RECVPKTINFO, (char *)&on, sizeof (on));
2179 		if (mp1 != NULL)
2180 			linkb(opt_mp, mp1);
2181 	}
2182 
2183 	/* Re-use mp1 to hold a copy of mp, in case reallocb fails */
2184 	if ((mp1 = copymsg(mp)) == NULL) {
2185 		CONN_DEC_REF(acceptor->tcp_connp);
2186 		CONN_DEC_REF(eager->tcp_connp);
2187 		freemsg(opt_mp);
2188 		tcp_err_ack(listener, mp, TSYSERR, ENOMEM);
2189 		return;
2190 	}
2191 
2192 	tcr = (struct T_conn_res *)mp1->b_rptr;
2193 
2194 	/*
2195 	 * This is an expanded version of mi_tpi_ok_ack_alloc()
2196 	 * which allocates a larger mblk and appends the new
2197 	 * local address to the ok_ack.  The address is copied by
2198 	 * soaccept() for getsockname().
2199 	 */
2200 	{
2201 		int extra;
2202 
2203 		extra = (eager->tcp_family == AF_INET) ?
2204 		    sizeof (sin_t) : sizeof (sin6_t);
2205 
2206 		/*
2207 		 * Try to re-use mp, if possible.  Otherwise, allocate
2208 		 * an mblk and return it as ok_mp.  In any case, mp
2209 		 * is no longer usable upon return.
2210 		 */
2211 		if ((ok_mp = mi_tpi_ok_ack_alloc_extra(mp, extra)) == NULL) {
2212 			CONN_DEC_REF(acceptor->tcp_connp);
2213 			CONN_DEC_REF(eager->tcp_connp);
2214 			freemsg(opt_mp);
2215 			/* Original mp has been freed by now, so use mp1 */
2216 			tcp_err_ack(listener, mp1, TSYSERR, ENOMEM);
2217 			return;
2218 		}
2219 
2220 		mp = NULL;	/* We should never use mp after this point */
2221 
2222 		switch (extra) {
2223 		case sizeof (sin_t): {
2224 				sin_t *sin = (sin_t *)ok_mp->b_wptr;
2225 
2226 				ok_mp->b_wptr += extra;
2227 				sin->sin_family = AF_INET;
2228 				sin->sin_port = eager->tcp_lport;
2229 				sin->sin_addr.s_addr =
2230 				    eager->tcp_ipha->ipha_src;
2231 				break;
2232 			}
2233 		case sizeof (sin6_t): {
2234 				sin6_t *sin6 = (sin6_t *)ok_mp->b_wptr;
2235 
2236 				ok_mp->b_wptr += extra;
2237 				sin6->sin6_family = AF_INET6;
2238 				sin6->sin6_port = eager->tcp_lport;
2239 				if (eager->tcp_ipversion == IPV4_VERSION) {
2240 					sin6->sin6_flowinfo = 0;
2241 					IN6_IPADDR_TO_V4MAPPED(
2242 					    eager->tcp_ipha->ipha_src,
2243 					    &sin6->sin6_addr);
2244 				} else {
2245 					ASSERT(eager->tcp_ip6h != NULL);
2246 					sin6->sin6_flowinfo =
2247 					    eager->tcp_ip6h->ip6_vcf &
2248 					    ~IPV6_VERS_AND_FLOW_MASK;
2249 					sin6->sin6_addr =
2250 					    eager->tcp_ip6h->ip6_src;
2251 				}
2252 				break;
2253 			}
2254 		default:
2255 			break;
2256 		}
2257 		ASSERT(ok_mp->b_wptr <= ok_mp->b_datap->db_lim);
2258 	}
2259 
2260 	/*
2261 	 * If there are no options we know that the T_CONN_RES will
2262 	 * succeed. However, we can't send the T_OK_ACK upstream until
2263 	 * the tcp_accept_swap is done since it would be dangerous to
2264 	 * let the application start using the new fd prior to the swap.
2265 	 */
2266 	tcp_accept_swap(listener, acceptor, eager);
2267 
2268 	/*
2269 	 * tcp_accept_swap unlinks eager from listener but does not drop
2270 	 * the eager's reference on the listener.
2271 	 */
2272 	ASSERT(eager->tcp_listener == NULL);
2273 	ASSERT(listener->tcp_connp->conn_ref >= 5);
2274 
2275 	/*
2276 	 * The eager is now associated with its own queue. Insert in
2277 	 * the hash so that the connection can be reused for a future
2278 	 * T_CONN_RES.
2279 	 */
2280 	tcp_acceptor_hash_insert(acceptor_id, eager);
2281 
2282 	/*
2283 	 * We now do the processing of options with T_CONN_RES.
2284 	 * We delay till now since we wanted to have queue to pass to
2285 	 * option processing routines that points back to the right
2286 	 * instance structure which does not happen until after
2287 	 * tcp_accept_swap().
2288 	 *
2289 	 * Note:
2290 	 * The sanity of the logic here assumes that whatever options
2291 	 * are appropriate to inherit from listner=>eager are done
2292 	 * before this point, and whatever were to be overridden (or not)
2293 	 * in transfer logic from eager=>acceptor in tcp_accept_swap().
2294 	 * [ Warning: acceptor endpoint can have T_OPTMGMT_REQ done to it
2295 	 *   before its ACCEPTOR_id comes down in T_CONN_RES ]
2296 	 * This may not be true at this point in time but can be fixed
2297 	 * independently. This option processing code starts with
2298 	 * the instantiated acceptor instance and the final queue at
2299 	 * this point.
2300 	 */
2301 
2302 	if (tcr->OPT_length != 0) {
2303 		/* Options to process */
2304 		int t_error = 0;
2305 		int sys_error = 0;
2306 		int do_disconnect = 0;
2307 
2308 		if (tcp_conprim_opt_process(eager, mp1,
2309 		    &do_disconnect, &t_error, &sys_error) < 0) {
2310 			eager->tcp_accept_error = 1;
2311 			if (do_disconnect) {
2312 				/*
2313 				 * An option failed which does not allow
2314 				 * connection to be accepted.
2315 				 *
2316 				 * We allow T_CONN_RES to succeed and
2317 				 * put a T_DISCON_IND on the eager queue.
2318 				 */
2319 				ASSERT(t_error == 0 && sys_error == 0);
2320 				eager->tcp_send_discon_ind = 1;
2321 			} else {
2322 				ASSERT(t_error != 0);
2323 				freemsg(ok_mp);
2324 				/*
2325 				 * Original mp was either freed or set
2326 				 * to ok_mp above, so use mp1 instead.
2327 				 */
2328 				tcp_err_ack(listener, mp1, t_error, sys_error);
2329 				goto finish;
2330 			}
2331 		}
2332 		/*
2333 		 * Most likely success in setting options (except if
2334 		 * eager->tcp_send_discon_ind set).
2335 		 * mp1 option buffer represented by OPT_length/offset
2336 		 * potentially modified and contains results of setting
2337 		 * options at this point
2338 		 */
2339 	}
2340 
2341 	/* We no longer need mp1, since all options processing has passed */
2342 	freemsg(mp1);
2343 
2344 	putnext(listener->tcp_rq, ok_mp);
2345 
2346 	mutex_enter(&listener->tcp_eager_lock);
2347 	if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) {
2348 		tcp_t	*tail;
2349 		mblk_t	*conn_ind;
2350 
2351 		/*
2352 		 * This path should not be executed if listener and
2353 		 * acceptor streams are the same.
2354 		 */
2355 		ASSERT(listener != acceptor);
2356 
2357 		tcp = listener->tcp_eager_prev_q0;
2358 		/*
2359 		 * listener->tcp_eager_prev_q0 points to the TAIL of the
2360 		 * deferred T_conn_ind queue. We need to get to the head of
2361 		 * the queue in order to send up T_conn_ind the same order as
2362 		 * how the 3WHS is completed.
2363 		 */
2364 		while (tcp != listener) {
2365 			if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0)
2366 				break;
2367 			else
2368 				tcp = tcp->tcp_eager_prev_q0;
2369 		}
2370 		ASSERT(tcp != listener);
2371 		conn_ind = tcp->tcp_conn.tcp_eager_conn_ind;
2372 		ASSERT(conn_ind != NULL);
2373 		tcp->tcp_conn.tcp_eager_conn_ind = NULL;
2374 
2375 		/* Move from q0 to q */
2376 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
2377 		listener->tcp_conn_req_cnt_q0--;
2378 		listener->tcp_conn_req_cnt_q++;
2379 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
2380 		    tcp->tcp_eager_prev_q0;
2381 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
2382 		    tcp->tcp_eager_next_q0;
2383 		tcp->tcp_eager_prev_q0 = NULL;
2384 		tcp->tcp_eager_next_q0 = NULL;
2385 		tcp->tcp_conn_def_q0 = B_FALSE;
2386 
2387 		/* Make sure the tcp isn't in the list of droppables */
2388 		ASSERT(tcp->tcp_eager_next_drop_q0 == NULL &&
2389 		    tcp->tcp_eager_prev_drop_q0 == NULL);
2390 
2391 		/*
2392 		 * Insert at end of the queue because sockfs sends
2393 		 * down T_CONN_RES in chronological order. Leaving
2394 		 * the older conn indications at front of the queue
2395 		 * helps reducing search time.
2396 		 */
2397 		tail = listener->tcp_eager_last_q;
2398 		if (tail != NULL)
2399 			tail->tcp_eager_next_q = tcp;
2400 		else
2401 			listener->tcp_eager_next_q = tcp;
2402 		listener->tcp_eager_last_q = tcp;
2403 		tcp->tcp_eager_next_q = NULL;
2404 		mutex_exit(&listener->tcp_eager_lock);
2405 		putnext(tcp->tcp_rq, conn_ind);
2406 	} else {
2407 		mutex_exit(&listener->tcp_eager_lock);
2408 	}
2409 
2410 	/*
2411 	 * Done with the acceptor - free it
2412 	 *
2413 	 * Note: from this point on, no access to listener should be made
2414 	 * as listener can be equal to acceptor.
2415 	 */
2416 finish:
2417 	ASSERT(acceptor->tcp_detached);
2418 	acceptor->tcp_rq = tcp_g_q;
2419 	acceptor->tcp_wq = WR(tcp_g_q);
2420 	(void) tcp_clean_death(acceptor, 0, 2);
2421 	CONN_DEC_REF(acceptor->tcp_connp);
2422 
2423 	/*
2424 	 * In case we already received a FIN we have to make tcp_rput send
2425 	 * the ordrel_ind. This will also send up a window update if the window
2426 	 * has opened up.
2427 	 *
2428 	 * In the normal case of a successful connection acceptance
2429 	 * we give the O_T_BIND_REQ to the read side put procedure as an
2430 	 * indication that this was just accepted. This tells tcp_rput to
2431 	 * pass up any data queued in tcp_rcv_list.
2432 	 *
2433 	 * In the fringe case where options sent with T_CONN_RES failed and
2434 	 * we required, we would be indicating a T_DISCON_IND to blow
2435 	 * away this connection.
2436 	 */
2437 
2438 	/*
2439 	 * XXX: we currently have a problem if XTI application closes the
2440 	 * acceptor stream in between. This problem exists in on10-gate also
2441 	 * and is well know but nothing can be done short of major rewrite
2442 	 * to fix it. Now it is possible to take care of it by assigning TLI/XTI
2443 	 * eager same squeue as listener (we can distinguish non socket
2444 	 * listeners at the time of handling a SYN in tcp_conn_request)
2445 	 * and do most of the work that tcp_accept_finish does here itself
2446 	 * and then get behind the acceptor squeue to access the acceptor
2447 	 * queue.
2448 	 */
2449 	/*
2450 	 * We already have a ref on tcp so no need to do one before squeue_fill
2451 	 */
2452 	squeue_fill(eager->tcp_connp->conn_sqp, opt_mp,
2453 	    tcp_accept_finish, eager->tcp_connp, SQTAG_TCP_ACCEPT_FINISH);
2454 }
2455 
2456 /*
2457  * Swap information between the eager and acceptor for a TLI/XTI client.
2458  * The sockfs accept is done on the acceptor stream and control goes
2459  * through tcp_wput_accept() and tcp_accept()/tcp_accept_swap() is not
2460  * called. In either case, both the eager and listener are in their own
2461  * perimeter (squeue) and the code has to deal with potential race.
2462  *
2463  * See the block comment on top of tcp_accept() and tcp_wput_accept().
2464  */
2465 static void
2466 tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, tcp_t *eager)
2467 {
2468 	conn_t	*econnp, *aconnp;
2469 
2470 	ASSERT(eager->tcp_rq == listener->tcp_rq);
2471 	ASSERT(eager->tcp_detached && !acceptor->tcp_detached);
2472 	ASSERT(!eager->tcp_hard_bound);
2473 	ASSERT(!TCP_IS_SOCKET(acceptor));
2474 	ASSERT(!TCP_IS_SOCKET(eager));
2475 	ASSERT(!TCP_IS_SOCKET(listener));
2476 
2477 	acceptor->tcp_detached = B_TRUE;
2478 	/*
2479 	 * To permit stream re-use by TLI/XTI, the eager needs a copy of
2480 	 * the acceptor id.
2481 	 */
2482 	eager->tcp_acceptor_id = acceptor->tcp_acceptor_id;
2483 
2484 	/* remove eager from listen list... */
2485 	mutex_enter(&listener->tcp_eager_lock);
2486 	tcp_eager_unlink(eager);
2487 	ASSERT(eager->tcp_eager_next_q == NULL &&
2488 	    eager->tcp_eager_last_q == NULL);
2489 	ASSERT(eager->tcp_eager_next_q0 == NULL &&
2490 	    eager->tcp_eager_prev_q0 == NULL);
2491 	mutex_exit(&listener->tcp_eager_lock);
2492 	eager->tcp_rq = acceptor->tcp_rq;
2493 	eager->tcp_wq = acceptor->tcp_wq;
2494 
2495 	econnp = eager->tcp_connp;
2496 	aconnp = acceptor->tcp_connp;
2497 
2498 	eager->tcp_rq->q_ptr = econnp;
2499 	eager->tcp_wq->q_ptr = econnp;
2500 
2501 	/*
2502 	 * In the TLI/XTI loopback case, we are inside the listener's squeue,
2503 	 * which might be a different squeue from our peer TCP instance.
2504 	 * For TCP Fusion, the peer expects that whenever tcp_detached is
2505 	 * clear, our TCP queues point to the acceptor's queues.  Thus, use
2506 	 * membar_producer() to ensure that the assignments of tcp_rq/tcp_wq
2507 	 * above reach global visibility prior to the clearing of tcp_detached.
2508 	 */
2509 	membar_producer();
2510 	eager->tcp_detached = B_FALSE;
2511 
2512 	ASSERT(eager->tcp_ack_tid == 0);
2513 
2514 	econnp->conn_dev = aconnp->conn_dev;
2515 	if (eager->tcp_cred != NULL)
2516 		crfree(eager->tcp_cred);
2517 	eager->tcp_cred = econnp->conn_cred = aconnp->conn_cred;
2518 	aconnp->conn_cred = NULL;
2519 
2520 	econnp->conn_zoneid = aconnp->conn_zoneid;
2521 	econnp->conn_allzones = aconnp->conn_allzones;
2522 
2523 	econnp->conn_mac_exempt = aconnp->conn_mac_exempt;
2524 	aconnp->conn_mac_exempt = B_FALSE;
2525 
2526 	ASSERT(aconnp->conn_peercred == NULL);
2527 
2528 	/* Do the IPC initialization */
2529 	CONN_INC_REF(econnp);
2530 
2531 	econnp->conn_multicast_loop = aconnp->conn_multicast_loop;
2532 	econnp->conn_af_isv6 = aconnp->conn_af_isv6;
2533 	econnp->conn_pkt_isv6 = aconnp->conn_pkt_isv6;
2534 	econnp->conn_ulp = aconnp->conn_ulp;
2535 
2536 	/* Done with old IPC. Drop its ref on its connp */
2537 	CONN_DEC_REF(aconnp);
2538 }
2539 
2540 
2541 /*
2542  * Adapt to the information, such as rtt and rtt_sd, provided from the
2543  * ire cached in conn_cache_ire. If no ire cached, do a ire lookup.
2544  *
2545  * Checks for multicast and broadcast destination address.
2546  * Returns zero on failure; non-zero if ok.
2547  *
2548  * Note that the MSS calculation here is based on the info given in
2549  * the IRE.  We do not do any calculation based on TCP options.  They
2550  * will be handled in tcp_rput_other() and tcp_rput_data() when TCP
2551  * knows which options to use.
2552  *
2553  * Note on how TCP gets its parameters for a connection.
2554  *
2555  * When a tcp_t structure is allocated, it gets all the default parameters.
2556  * In tcp_adapt_ire(), it gets those metric parameters, like rtt, rtt_sd,
2557  * spipe, rpipe, ... from the route metrics.  Route metric overrides the
2558  * default.  But if there is an associated tcp_host_param, it will override
2559  * the metrics.
2560  *
2561  * An incoming SYN with a multicast or broadcast destination address, is dropped
2562  * in 1 of 2 places.
2563  *
2564  * 1. If the packet was received over the wire it is dropped in
2565  * ip_rput_process_broadcast()
2566  *
2567  * 2. If the packet was received through internal IP loopback, i.e. the packet
2568  * was generated and received on the same machine, it is dropped in
2569  * ip_wput_local()
2570  *
2571  * An incoming SYN with a multicast or broadcast source address is always
2572  * dropped in tcp_adapt_ire. The same logic in tcp_adapt_ire also serves to
2573  * reject an attempt to connect to a broadcast or multicast (destination)
2574  * address.
2575  */
2576 static int
2577 tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp)
2578 {
2579 	tcp_hsp_t	*hsp;
2580 	ire_t		*ire;
2581 	ire_t		*sire = NULL;
2582 	iulp_t		*ire_uinfo = NULL;
2583 	uint32_t	mss_max;
2584 	uint32_t	mss;
2585 	boolean_t	tcp_detached = TCP_IS_DETACHED(tcp);
2586 	conn_t		*connp = tcp->tcp_connp;
2587 	boolean_t	ire_cacheable = B_FALSE;
2588 	zoneid_t	zoneid = connp->conn_zoneid;
2589 	int		match_flags = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT |
2590 			    MATCH_IRE_SECATTR;
2591 	ts_label_t	*tsl = crgetlabel(CONN_CRED(connp));
2592 	ill_t		*ill = NULL;
2593 	boolean_t	incoming = (ire_mp == NULL);
2594 
2595 	ASSERT(connp->conn_ire_cache == NULL);
2596 
2597 	if (tcp->tcp_ipversion == IPV4_VERSION) {
2598 
2599 		if (CLASSD(tcp->tcp_connp->conn_rem)) {
2600 			BUMP_MIB(&ip_mib, ipInDiscards);
2601 			return (0);
2602 		}
2603 		/*
2604 		 * If IP_NEXTHOP is set, then look for an IRE_CACHE
2605 		 * for the destination with the nexthop as gateway.
2606 		 * ire_ctable_lookup() is used because this particular
2607 		 * ire, if it exists, will be marked private.
2608 		 * If that is not available, use the interface ire
2609 		 * for the nexthop.
2610 		 *
2611 		 * TSol: tcp_update_label will detect label mismatches based
2612 		 * only on the destination's label, but that would not
2613 		 * detect label mismatches based on the security attributes
2614 		 * of routes or next hop gateway. Hence we need to pass the
2615 		 * label to ire_ftable_lookup below in order to locate the
2616 		 * right prefix (and/or) ire cache. Similarly we also need
2617 		 * pass the label to the ire_cache_lookup below to locate
2618 		 * the right ire that also matches on the label.
2619 		 */
2620 		if (tcp->tcp_connp->conn_nexthop_set) {
2621 			ire = ire_ctable_lookup(tcp->tcp_connp->conn_rem,
2622 			    tcp->tcp_connp->conn_nexthop_v4, 0, NULL, zoneid,
2623 			    tsl, MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW);
2624 			if (ire == NULL) {
2625 				ire = ire_ftable_lookup(
2626 				    tcp->tcp_connp->conn_nexthop_v4,
2627 				    0, 0, IRE_INTERFACE, NULL, NULL, zoneid, 0,
2628 				    tsl, match_flags);
2629 				if (ire == NULL)
2630 					return (0);
2631 			} else {
2632 				ire_uinfo = &ire->ire_uinfo;
2633 			}
2634 		} else {
2635 			ire = ire_cache_lookup(tcp->tcp_connp->conn_rem,
2636 			    zoneid, tsl);
2637 			if (ire != NULL) {
2638 				ire_cacheable = B_TRUE;
2639 				ire_uinfo = (ire_mp != NULL) ?
2640 				    &((ire_t *)ire_mp->b_rptr)->ire_uinfo:
2641 				    &ire->ire_uinfo;
2642 
2643 			} else {
2644 				if (ire_mp == NULL) {
2645 					ire = ire_ftable_lookup(
2646 					    tcp->tcp_connp->conn_rem,
2647 					    0, 0, 0, NULL, &sire, zoneid, 0,
2648 					    tsl, (MATCH_IRE_RECURSIVE |
2649 					    MATCH_IRE_DEFAULT));
2650 					if (ire == NULL)
2651 						return (0);
2652 					ire_uinfo = (sire != NULL) ?
2653 					    &sire->ire_uinfo :
2654 					    &ire->ire_uinfo;
2655 				} else {
2656 					ire = (ire_t *)ire_mp->b_rptr;
2657 					ire_uinfo =
2658 					    &((ire_t *)
2659 					    ire_mp->b_rptr)->ire_uinfo;
2660 				}
2661 			}
2662 		}
2663 		ASSERT(ire != NULL);
2664 
2665 		if ((ire->ire_src_addr == INADDR_ANY) ||
2666 		    (ire->ire_type & IRE_BROADCAST)) {
2667 			/*
2668 			 * ire->ire_mp is non null when ire_mp passed in is used
2669 			 * ire->ire_mp is set in ip_bind_insert_ire[_v6]().
2670 			 */
2671 			if (ire->ire_mp == NULL)
2672 				ire_refrele(ire);
2673 			if (sire != NULL)
2674 				ire_refrele(sire);
2675 			return (0);
2676 		}
2677 
2678 		if (tcp->tcp_ipha->ipha_src == INADDR_ANY) {
2679 			ipaddr_t src_addr;
2680 
2681 			/*
2682 			 * ip_bind_connected() has stored the correct source
2683 			 * address in conn_src.
2684 			 */
2685 			src_addr = tcp->tcp_connp->conn_src;
2686 			tcp->tcp_ipha->ipha_src = src_addr;
2687 			/*
2688 			 * Copy of the src addr. in tcp_t is needed
2689 			 * for the lookup funcs.
2690 			 */
2691 			IN6_IPADDR_TO_V4MAPPED(src_addr, &tcp->tcp_ip_src_v6);
2692 		}
2693 		/*
2694 		 * Set the fragment bit so that IP will tell us if the MTU
2695 		 * should change. IP tells us the latest setting of
2696 		 * ip_path_mtu_discovery through ire_frag_flag.
2697 		 */
2698 		if (ip_path_mtu_discovery) {
2699 			tcp->tcp_ipha->ipha_fragment_offset_and_flags =
2700 			    htons(IPH_DF);
2701 		}
2702 		/*
2703 		 * If ire_uinfo is NULL, this is the IRE_INTERFACE case
2704 		 * for IP_NEXTHOP. No cache ire has been found for the
2705 		 * destination and we are working with the nexthop's
2706 		 * interface ire. Since we need to forward all packets
2707 		 * to the nexthop first, we "blindly" set tcp_localnet
2708 		 * to false, eventhough the destination may also be
2709 		 * onlink.
2710 		 */
2711 		if (ire_uinfo == NULL)
2712 			tcp->tcp_localnet = 0;
2713 		else
2714 			tcp->tcp_localnet = (ire->ire_gateway_addr == 0);
2715 	} else {
2716 		/*
2717 		 * For incoming connection ire_mp = NULL
2718 		 * For outgoing connection ire_mp != NULL
2719 		 * Technically we should check conn_incoming_ill
2720 		 * when ire_mp is NULL and conn_outgoing_ill when
2721 		 * ire_mp is non-NULL. But this is performance
2722 		 * critical path and for IPV*_BOUND_IF, outgoing
2723 		 * and incoming ill are always set to the same value.
2724 		 */
2725 		ill_t	*dst_ill = NULL;
2726 		ipif_t  *dst_ipif = NULL;
2727 
2728 		ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill);
2729 
2730 		if (connp->conn_outgoing_ill != NULL) {
2731 			/* Outgoing or incoming path */
2732 			int   err;
2733 
2734 			dst_ill = conn_get_held_ill(connp,
2735 			    &connp->conn_outgoing_ill, &err);
2736 			if (err == ILL_LOOKUP_FAILED || dst_ill == NULL) {
2737 				ip1dbg(("tcp_adapt_ire: ill_lookup failed\n"));
2738 				return (0);
2739 			}
2740 			match_flags |= MATCH_IRE_ILL;
2741 			dst_ipif = dst_ill->ill_ipif;
2742 		}
2743 		ire = ire_ctable_lookup_v6(&tcp->tcp_connp->conn_remv6,
2744 		    0, 0, dst_ipif, zoneid, tsl, match_flags);
2745 
2746 		if (ire != NULL) {
2747 			ire_cacheable = B_TRUE;
2748 			ire_uinfo = (ire_mp != NULL) ?
2749 			    &((ire_t *)ire_mp->b_rptr)->ire_uinfo:
2750 			    &ire->ire_uinfo;
2751 		} else {
2752 			if (ire_mp == NULL) {
2753 				ire = ire_ftable_lookup_v6(
2754 				    &tcp->tcp_connp->conn_remv6,
2755 				    0, 0, 0, dst_ipif, &sire, zoneid,
2756 				    0, tsl, match_flags);
2757 				if (ire == NULL) {
2758 					if (dst_ill != NULL)
2759 						ill_refrele(dst_ill);
2760 					return (0);
2761 				}
2762 				ire_uinfo = (sire != NULL) ? &sire->ire_uinfo :
2763 				    &ire->ire_uinfo;
2764 			} else {
2765 				ire = (ire_t *)ire_mp->b_rptr;
2766 				ire_uinfo =
2767 				    &((ire_t *)ire_mp->b_rptr)->ire_uinfo;
2768 			}
2769 		}
2770 		if (dst_ill != NULL)
2771 			ill_refrele(dst_ill);
2772 
2773 		ASSERT(ire != NULL);
2774 		ASSERT(ire_uinfo != NULL);
2775 
2776 		if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6) ||
2777 		    IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) {
2778 			/*
2779 			 * ire->ire_mp is non null when ire_mp passed in is used
2780 			 * ire->ire_mp is set in ip_bind_insert_ire[_v6]().
2781 			 */
2782 			if (ire->ire_mp == NULL)
2783 				ire_refrele(ire);
2784 			if (sire != NULL)
2785 				ire_refrele(sire);
2786 			return (0);
2787 		}
2788 
2789 		if (IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) {
2790 			in6_addr_t	src_addr;
2791 
2792 			/*
2793 			 * ip_bind_connected_v6() has stored the correct source
2794 			 * address per IPv6 addr. selection policy in
2795 			 * conn_src_v6.
2796 			 */
2797 			src_addr = tcp->tcp_connp->conn_srcv6;
2798 
2799 			tcp->tcp_ip6h->ip6_src = src_addr;
2800 			/*
2801 			 * Copy of the src addr. in tcp_t is needed
2802 			 * for the lookup funcs.
2803 			 */
2804 			tcp->tcp_ip_src_v6 = src_addr;
2805 			ASSERT(IN6_ARE_ADDR_EQUAL(&tcp->tcp_ip6h->ip6_src,
2806 			    &connp->conn_srcv6));
2807 		}
2808 		tcp->tcp_localnet =
2809 		    IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6);
2810 	}
2811 
2812 	/*
2813 	 * This allows applications to fail quickly when connections are made
2814 	 * to dead hosts. Hosts can be labeled dead by adding a reject route
2815 	 * with both the RTF_REJECT and RTF_PRIVATE flags set.
2816 	 */
2817 	if ((ire->ire_flags & RTF_REJECT) &&
2818 	    (ire->ire_flags & RTF_PRIVATE))
2819 		goto error;
2820 
2821 	/*
2822 	 * Make use of the cached rtt and rtt_sd values to calculate the
2823 	 * initial RTO.  Note that they are already initialized in
2824 	 * tcp_init_values().
2825 	 * If ire_uinfo is NULL, i.e., we do not have a cache ire for
2826 	 * IP_NEXTHOP, but instead are using the interface ire for the
2827 	 * nexthop, then we do not use the ire_uinfo from that ire to
2828 	 * do any initializations.
2829 	 */
2830 	if (ire_uinfo != NULL) {
2831 		if (ire_uinfo->iulp_rtt != 0) {
2832 			clock_t	rto;
2833 
2834 			tcp->tcp_rtt_sa = ire_uinfo->iulp_rtt;
2835 			tcp->tcp_rtt_sd = ire_uinfo->iulp_rtt_sd;
2836 			rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
2837 			    tcp_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5);
2838 
2839 			if (rto > tcp_rexmit_interval_max) {
2840 				tcp->tcp_rto = tcp_rexmit_interval_max;
2841 			} else if (rto < tcp_rexmit_interval_min) {
2842 				tcp->tcp_rto = tcp_rexmit_interval_min;
2843 			} else {
2844 				tcp->tcp_rto = rto;
2845 			}
2846 		}
2847 		if (ire_uinfo->iulp_ssthresh != 0)
2848 			tcp->tcp_cwnd_ssthresh = ire_uinfo->iulp_ssthresh;
2849 		else
2850 			tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
2851 		if (ire_uinfo->iulp_spipe > 0) {
2852 			tcp->tcp_xmit_hiwater = MIN(ire_uinfo->iulp_spipe,
2853 			    tcp_max_buf);
2854 			if (tcp_snd_lowat_fraction != 0)
2855 				tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater /
2856 				    tcp_snd_lowat_fraction;
2857 			(void) tcp_maxpsz_set(tcp, B_TRUE);
2858 		}
2859 		/*
2860 		 * Note that up till now, acceptor always inherits receive
2861 		 * window from the listener.  But if there is a metrics
2862 		 * associated with a host, we should use that instead of
2863 		 * inheriting it from listener. Thus we need to pass this
2864 		 * info back to the caller.
2865 		 */
2866 		if (ire_uinfo->iulp_rpipe > 0) {
2867 			tcp->tcp_rwnd = MIN(ire_uinfo->iulp_rpipe, tcp_max_buf);
2868 		}
2869 
2870 		if (ire_uinfo->iulp_rtomax > 0) {
2871 			tcp->tcp_second_timer_threshold =
2872 			    ire_uinfo->iulp_rtomax;
2873 		}
2874 
2875 		/*
2876 		 * Use the metric option settings, iulp_tstamp_ok and
2877 		 * iulp_wscale_ok, only for active open. What this means
2878 		 * is that if the other side uses timestamp or window
2879 		 * scale option, TCP will also use those options. That
2880 		 * is for passive open.  If the application sets a
2881 		 * large window, window scale is enabled regardless of
2882 		 * the value in iulp_wscale_ok.  This is the behavior
2883 		 * since 2.6.  So we keep it.
2884 		 * The only case left in passive open processing is the
2885 		 * check for SACK.
2886 		 * For ECN, it should probably be like SACK.  But the
2887 		 * current value is binary, so we treat it like the other
2888 		 * cases.  The metric only controls active open.For passive
2889 		 * open, the ndd param, tcp_ecn_permitted, controls the
2890 		 * behavior.
2891 		 */
2892 		if (!tcp_detached) {
2893 			/*
2894 			 * The if check means that the following can only
2895 			 * be turned on by the metrics only IRE, but not off.
2896 			 */
2897 			if (ire_uinfo->iulp_tstamp_ok)
2898 				tcp->tcp_snd_ts_ok = B_TRUE;
2899 			if (ire_uinfo->iulp_wscale_ok)
2900 				tcp->tcp_snd_ws_ok = B_TRUE;
2901 			if (ire_uinfo->iulp_sack == 2)
2902 				tcp->tcp_snd_sack_ok = B_TRUE;
2903 			if (ire_uinfo->iulp_ecn_ok)
2904 				tcp->tcp_ecn_ok = B_TRUE;
2905 		} else {
2906 			/*
2907 			 * Passive open.
2908 			 *
2909 			 * As above, the if check means that SACK can only be
2910 			 * turned on by the metric only IRE.
2911 			 */
2912 			if (ire_uinfo->iulp_sack > 0) {
2913 				tcp->tcp_snd_sack_ok = B_TRUE;
2914 			}
2915 		}
2916 	}
2917 
2918 
2919 	/*
2920 	 * XXX: Note that currently, ire_max_frag can be as small as 68
2921 	 * because of PMTUd.  So tcp_mss may go to negative if combined
2922 	 * length of all those options exceeds 28 bytes.  But because
2923 	 * of the tcp_mss_min check below, we may not have a problem if
2924 	 * tcp_mss_min is of a reasonable value.  The default is 1 so
2925 	 * the negative problem still exists.  And the check defeats PMTUd.
2926 	 * In fact, if PMTUd finds that the MSS should be smaller than
2927 	 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min
2928 	 * value.
2929 	 *
2930 	 * We do not deal with that now.  All those problems related to
2931 	 * PMTUd will be fixed later.
2932 	 */
2933 	ASSERT(ire->ire_max_frag != 0);
2934 	mss = tcp->tcp_if_mtu = ire->ire_max_frag;
2935 	if (tcp->tcp_ipp_fields & IPPF_USE_MIN_MTU) {
2936 		if (tcp->tcp_ipp_use_min_mtu == IPV6_USE_MIN_MTU_NEVER) {
2937 			mss = MIN(mss, IPV6_MIN_MTU);
2938 		}
2939 	}
2940 
2941 	/* Sanity check for MSS value. */
2942 	if (tcp->tcp_ipversion == IPV4_VERSION)
2943 		mss_max = tcp_mss_max_ipv4;
2944 	else
2945 		mss_max = tcp_mss_max_ipv6;
2946 
2947 	if (tcp->tcp_ipversion == IPV6_VERSION &&
2948 	    (ire->ire_frag_flag & IPH_FRAG_HDR)) {
2949 		/*
2950 		 * After receiving an ICMPv6 "packet too big" message with a
2951 		 * MTU < 1280, and for multirouted IPv6 packets, the IP layer
2952 		 * will insert a 8-byte fragment header in every packet; we
2953 		 * reduce the MSS by that amount here.
2954 		 */
2955 		mss -= sizeof (ip6_frag_t);
2956 	}
2957 
2958 	if (tcp->tcp_ipsec_overhead == 0)
2959 		tcp->tcp_ipsec_overhead = conn_ipsec_length(connp);
2960 
2961 	mss -= tcp->tcp_ipsec_overhead;
2962 
2963 	if (mss < tcp_mss_min)
2964 		mss = tcp_mss_min;
2965 	if (mss > mss_max)
2966 		mss = mss_max;
2967 
2968 	/* Note that this is the maximum MSS, excluding all options. */
2969 	tcp->tcp_mss = mss;
2970 
2971 	/*
2972 	 * Initialize the ISS here now that we have the full connection ID.
2973 	 * The RFC 1948 method of initial sequence number generation requires
2974 	 * knowledge of the full connection ID before setting the ISS.
2975 	 */
2976 
2977 	tcp_iss_init(tcp);
2978 
2979 	if (ire->ire_type & (IRE_LOOPBACK | IRE_LOCAL))
2980 		tcp->tcp_loopback = B_TRUE;
2981 
2982 	if (tcp->tcp_ipversion == IPV4_VERSION) {
2983 		hsp = tcp_hsp_lookup(tcp->tcp_remote);
2984 	} else {
2985 		hsp = tcp_hsp_lookup_ipv6(&tcp->tcp_remote_v6);
2986 	}
2987 
2988 	if (hsp != NULL) {
2989 		/* Only modify if we're going to make them bigger */
2990 		if (hsp->tcp_hsp_sendspace > tcp->tcp_xmit_hiwater) {
2991 			tcp->tcp_xmit_hiwater = hsp->tcp_hsp_sendspace;
2992 			if (tcp_snd_lowat_fraction != 0)
2993 				tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater /
2994 					tcp_snd_lowat_fraction;
2995 		}
2996 
2997 		if (hsp->tcp_hsp_recvspace > tcp->tcp_rwnd) {
2998 			tcp->tcp_rwnd = hsp->tcp_hsp_recvspace;
2999 		}
3000 
3001 		/* Copy timestamp flag only for active open */
3002 		if (!tcp_detached)
3003 			tcp->tcp_snd_ts_ok = hsp->tcp_hsp_tstamp;
3004 	}
3005 
3006 	if (sire != NULL)
3007 		IRE_REFRELE(sire);
3008 
3009 	/*
3010 	 * If we got an IRE_CACHE and an ILL, go through their properties;
3011 	 * otherwise, this is deferred until later when we have an IRE_CACHE.
3012 	 */
3013 	if (tcp->tcp_loopback ||
3014 	    (ire_cacheable && (ill = ire_to_ill(ire)) != NULL)) {
3015 		/*
3016 		 * For incoming, see if this tcp may be MDT-capable.  For
3017 		 * outgoing, this process has been taken care of through
3018 		 * tcp_rput_other.
3019 		 */
3020 		tcp_ire_ill_check(tcp, ire, ill, incoming);
3021 		tcp->tcp_ire_ill_check_done = B_TRUE;
3022 	}
3023 
3024 	mutex_enter(&connp->conn_lock);
3025 	/*
3026 	 * Make sure that conn is not marked incipient
3027 	 * for incoming connections. A blind
3028 	 * removal of incipient flag is cheaper than
3029 	 * check and removal.
3030 	 */
3031 	connp->conn_state_flags &= ~CONN_INCIPIENT;
3032 
3033 	/* Must not cache forwarding table routes. */
3034 	if (ire_cacheable) {
3035 		rw_enter(&ire->ire_bucket->irb_lock, RW_READER);
3036 		if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) {
3037 			connp->conn_ire_cache = ire;
3038 			IRE_UNTRACE_REF(ire);
3039 			rw_exit(&ire->ire_bucket->irb_lock);
3040 			mutex_exit(&connp->conn_lock);
3041 			return (1);
3042 		}
3043 		rw_exit(&ire->ire_bucket->irb_lock);
3044 	}
3045 	mutex_exit(&connp->conn_lock);
3046 
3047 	if (ire->ire_mp == NULL)
3048 		ire_refrele(ire);
3049 	return (1);
3050 
3051 error:
3052 	if (ire->ire_mp == NULL)
3053 		ire_refrele(ire);
3054 	if (sire != NULL)
3055 		ire_refrele(sire);
3056 	return (0);
3057 }
3058 
3059 /*
3060  * tcp_bind is called (holding the writer lock) by tcp_wput_proto to process a
3061  * O_T_BIND_REQ/T_BIND_REQ message.
3062  */
3063 static void
3064 tcp_bind(tcp_t *tcp, mblk_t *mp)
3065 {
3066 	sin_t	*sin;
3067 	sin6_t	*sin6;
3068 	mblk_t	*mp1;
3069 	in_port_t requested_port;
3070 	in_port_t allocated_port;
3071 	struct T_bind_req *tbr;
3072 	boolean_t	bind_to_req_port_only;
3073 	boolean_t	backlog_update = B_FALSE;
3074 	boolean_t	user_specified;
3075 	in6_addr_t	v6addr;
3076 	ipaddr_t	v4addr;
3077 	uint_t	origipversion;
3078 	int	err;
3079 	queue_t *q = tcp->tcp_wq;
3080 	conn_t	*connp;
3081 	mlp_type_t addrtype, mlptype;
3082 	zone_t	*zone;
3083 	cred_t	*cr;
3084 	in_port_t mlp_port;
3085 
3086 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
3087 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) {
3088 		if (tcp->tcp_debug) {
3089 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
3090 			    "tcp_bind: bad req, len %u",
3091 			    (uint_t)(mp->b_wptr - mp->b_rptr));
3092 		}
3093 		tcp_err_ack(tcp, mp, TPROTO, 0);
3094 		return;
3095 	}
3096 	/* Make sure the largest address fits */
3097 	mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t) + 1, 1);
3098 	if (mp1 == NULL) {
3099 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
3100 		return;
3101 	}
3102 	mp = mp1;
3103 	tbr = (struct T_bind_req *)mp->b_rptr;
3104 	if (tcp->tcp_state >= TCPS_BOUND) {
3105 		if ((tcp->tcp_state == TCPS_BOUND ||
3106 		    tcp->tcp_state == TCPS_LISTEN) &&
3107 		    tcp->tcp_conn_req_max != tbr->CONIND_number &&
3108 		    tbr->CONIND_number > 0) {
3109 			/*
3110 			 * Handle listen() increasing CONIND_number.
3111 			 * This is more "liberal" then what the TPI spec
3112 			 * requires but is needed to avoid a t_unbind
3113 			 * when handling listen() since the port number
3114 			 * might be "stolen" between the unbind and bind.
3115 			 */
3116 			backlog_update = B_TRUE;
3117 			goto do_bind;
3118 		}
3119 		if (tcp->tcp_debug) {
3120 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
3121 			    "tcp_bind: bad state, %d", tcp->tcp_state);
3122 		}
3123 		tcp_err_ack(tcp, mp, TOUTSTATE, 0);
3124 		return;
3125 	}
3126 	origipversion = tcp->tcp_ipversion;
3127 
3128 	switch (tbr->ADDR_length) {
3129 	case 0:			/* request for a generic port */
3130 		tbr->ADDR_offset = sizeof (struct T_bind_req);
3131 		if (tcp->tcp_family == AF_INET) {
3132 			tbr->ADDR_length = sizeof (sin_t);
3133 			sin = (sin_t *)&tbr[1];
3134 			*sin = sin_null;
3135 			sin->sin_family = AF_INET;
3136 			mp->b_wptr = (uchar_t *)&sin[1];
3137 			tcp->tcp_ipversion = IPV4_VERSION;
3138 			IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &v6addr);
3139 		} else {
3140 			ASSERT(tcp->tcp_family == AF_INET6);
3141 			tbr->ADDR_length = sizeof (sin6_t);
3142 			sin6 = (sin6_t *)&tbr[1];
3143 			*sin6 = sin6_null;
3144 			sin6->sin6_family = AF_INET6;
3145 			mp->b_wptr = (uchar_t *)&sin6[1];
3146 			tcp->tcp_ipversion = IPV6_VERSION;
3147 			V6_SET_ZERO(v6addr);
3148 		}
3149 		requested_port = 0;
3150 		break;
3151 
3152 	case sizeof (sin_t):	/* Complete IPv4 address */
3153 		sin = (sin_t *)mi_offset_param(mp, tbr->ADDR_offset,
3154 		    sizeof (sin_t));
3155 		if (sin == NULL || !OK_32PTR((char *)sin)) {
3156 			if (tcp->tcp_debug) {
3157 				(void) strlog(TCP_MOD_ID, 0, 1,
3158 				    SL_ERROR|SL_TRACE,
3159 				    "tcp_bind: bad address parameter, "
3160 				    "offset %d, len %d",
3161 				    tbr->ADDR_offset, tbr->ADDR_length);
3162 			}
3163 			tcp_err_ack(tcp, mp, TPROTO, 0);
3164 			return;
3165 		}
3166 		/*
3167 		 * With sockets sockfs will accept bogus sin_family in
3168 		 * bind() and replace it with the family used in the socket
3169 		 * call.
3170 		 */
3171 		if (sin->sin_family != AF_INET ||
3172 		    tcp->tcp_family != AF_INET) {
3173 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
3174 			return;
3175 		}
3176 		requested_port = ntohs(sin->sin_port);
3177 		tcp->tcp_ipversion = IPV4_VERSION;
3178 		v4addr = sin->sin_addr.s_addr;
3179 		IN6_IPADDR_TO_V4MAPPED(v4addr, &v6addr);
3180 		break;
3181 
3182 	case sizeof (sin6_t): /* Complete IPv6 address */
3183 		sin6 = (sin6_t *)mi_offset_param(mp,
3184 		    tbr->ADDR_offset, sizeof (sin6_t));
3185 		if (sin6 == NULL || !OK_32PTR((char *)sin6)) {
3186 			if (tcp->tcp_debug) {
3187 				(void) strlog(TCP_MOD_ID, 0, 1,
3188 				    SL_ERROR|SL_TRACE,
3189 				    "tcp_bind: bad IPv6 address parameter, "
3190 				    "offset %d, len %d", tbr->ADDR_offset,
3191 				    tbr->ADDR_length);
3192 			}
3193 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
3194 			return;
3195 		}
3196 		if (sin6->sin6_family != AF_INET6 ||
3197 		    tcp->tcp_family != AF_INET6) {
3198 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
3199 			return;
3200 		}
3201 		requested_port = ntohs(sin6->sin6_port);
3202 		tcp->tcp_ipversion = IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr) ?
3203 		    IPV4_VERSION : IPV6_VERSION;
3204 		v6addr = sin6->sin6_addr;
3205 		break;
3206 
3207 	default:
3208 		if (tcp->tcp_debug) {
3209 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
3210 			    "tcp_bind: bad address length, %d",
3211 			    tbr->ADDR_length);
3212 		}
3213 		tcp_err_ack(tcp, mp, TBADADDR, 0);
3214 		return;
3215 	}
3216 	tcp->tcp_bound_source_v6 = v6addr;
3217 
3218 	/* Check for change in ipversion */
3219 	if (origipversion != tcp->tcp_ipversion) {
3220 		ASSERT(tcp->tcp_family == AF_INET6);
3221 		err = tcp->tcp_ipversion == IPV6_VERSION ?
3222 		    tcp_header_init_ipv6(tcp) : tcp_header_init_ipv4(tcp);
3223 		if (err) {
3224 			tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
3225 			return;
3226 		}
3227 	}
3228 
3229 	/*
3230 	 * Initialize family specific fields. Copy of the src addr.
3231 	 * in tcp_t is needed for the lookup funcs.
3232 	 */
3233 	if (tcp->tcp_ipversion == IPV6_VERSION) {
3234 		tcp->tcp_ip6h->ip6_src = v6addr;
3235 	} else {
3236 		IN6_V4MAPPED_TO_IPADDR(&v6addr, tcp->tcp_ipha->ipha_src);
3237 	}
3238 	tcp->tcp_ip_src_v6 = v6addr;
3239 
3240 	/*
3241 	 * For O_T_BIND_REQ:
3242 	 * Verify that the target port/addr is available, or choose
3243 	 * another.
3244 	 * For  T_BIND_REQ:
3245 	 * Verify that the target port/addr is available or fail.
3246 	 * In both cases when it succeeds the tcp is inserted in the
3247 	 * bind hash table. This ensures that the operation is atomic
3248 	 * under the lock on the hash bucket.
3249 	 */
3250 	bind_to_req_port_only = requested_port != 0 &&
3251 	    tbr->PRIM_type != O_T_BIND_REQ;
3252 	/*
3253 	 * Get a valid port (within the anonymous range and should not
3254 	 * be a privileged one) to use if the user has not given a port.
3255 	 * If multiple threads are here, they may all start with
3256 	 * with the same initial port. But, it should be fine as long as
3257 	 * tcp_bindi will ensure that no two threads will be assigned
3258 	 * the same port.
3259 	 *
3260 	 * NOTE: XXX If a privileged process asks for an anonymous port, we
3261 	 * still check for ports only in the range > tcp_smallest_non_priv_port,
3262 	 * unless TCP_ANONPRIVBIND option is set.
3263 	 */
3264 	mlptype = mlptSingle;
3265 	mlp_port = requested_port;
3266 	if (requested_port == 0) {
3267 		requested_port = tcp->tcp_anon_priv_bind ?
3268 		    tcp_get_next_priv_port(tcp) :
3269 		    tcp_update_next_port(tcp_next_port_to_try, tcp, B_TRUE);
3270 		if (requested_port == 0) {
3271 			tcp_err_ack(tcp, mp, TNOADDR, 0);
3272 			return;
3273 		}
3274 		user_specified = B_FALSE;
3275 
3276 		/*
3277 		 * If the user went through one of the RPC interfaces to create
3278 		 * this socket and RPC is MLP in this zone, then give him an
3279 		 * anonymous MLP.
3280 		 */
3281 		cr = DB_CREDDEF(mp, tcp->tcp_cred);
3282 		connp = tcp->tcp_connp;
3283 		if (connp->conn_anon_mlp && is_system_labeled()) {
3284 			zone = crgetzone(cr);
3285 			addrtype = tsol_mlp_addr_type(zone->zone_id,
3286 			    IPV6_VERSION, &v6addr);
3287 			if (addrtype == mlptSingle) {
3288 				tcp_err_ack(tcp, mp, TNOADDR, 0);
3289 				return;
3290 			}
3291 			mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP,
3292 			    PMAPPORT, addrtype);
3293 			mlp_port = PMAPPORT;
3294 		}
3295 	} else {
3296 		int i;
3297 		boolean_t priv = B_FALSE;
3298 
3299 		/*
3300 		 * If the requested_port is in the well-known privileged range,
3301 		 * verify that the stream was opened by a privileged user.
3302 		 * Note: No locks are held when inspecting tcp_g_*epriv_ports
3303 		 * but instead the code relies on:
3304 		 * - the fact that the address of the array and its size never
3305 		 *   changes
3306 		 * - the atomic assignment of the elements of the array
3307 		 */
3308 		cr = DB_CREDDEF(mp, tcp->tcp_cred);
3309 		if (requested_port < tcp_smallest_nonpriv_port) {
3310 			priv = B_TRUE;
3311 		} else {
3312 			for (i = 0; i < tcp_g_num_epriv_ports; i++) {
3313 				if (requested_port ==
3314 				    tcp_g_epriv_ports[i]) {
3315 					priv = B_TRUE;
3316 					break;
3317 				}
3318 			}
3319 		}
3320 		if (priv) {
3321 			if (secpolicy_net_privaddr(cr, requested_port) != 0) {
3322 				if (tcp->tcp_debug) {
3323 					(void) strlog(TCP_MOD_ID, 0, 1,
3324 					    SL_ERROR|SL_TRACE,
3325 					    "tcp_bind: no priv for port %d",
3326 					    requested_port);
3327 				}
3328 				tcp_err_ack(tcp, mp, TACCES, 0);
3329 				return;
3330 			}
3331 		}
3332 		user_specified = B_TRUE;
3333 
3334 		connp = tcp->tcp_connp;
3335 		if (is_system_labeled()) {
3336 			zone = crgetzone(cr);
3337 			addrtype = tsol_mlp_addr_type(zone->zone_id,
3338 			    IPV6_VERSION, &v6addr);
3339 			if (addrtype == mlptSingle) {
3340 				tcp_err_ack(tcp, mp, TNOADDR, 0);
3341 				return;
3342 			}
3343 			mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP,
3344 			    requested_port, addrtype);
3345 		}
3346 	}
3347 
3348 	if (mlptype != mlptSingle) {
3349 		if (secpolicy_net_bindmlp(cr) != 0) {
3350 			if (tcp->tcp_debug) {
3351 				(void) strlog(TCP_MOD_ID, 0, 1,
3352 				    SL_ERROR|SL_TRACE,
3353 				    "tcp_bind: no priv for multilevel port %d",
3354 				    requested_port);
3355 			}
3356 			tcp_err_ack(tcp, mp, TACCES, 0);
3357 			return;
3358 		}
3359 
3360 		/*
3361 		 * If we're specifically binding a shared IP address and the
3362 		 * port is MLP on shared addresses, then check to see if this
3363 		 * zone actually owns the MLP.  Reject if not.
3364 		 */
3365 		if (mlptype == mlptShared && addrtype == mlptShared) {
3366 			zoneid_t mlpzone;
3367 
3368 			mlpzone = tsol_mlp_findzone(IPPROTO_TCP,
3369 			    htons(mlp_port));
3370 			if (connp->conn_zoneid != mlpzone) {
3371 				if (tcp->tcp_debug) {
3372 					(void) strlog(TCP_MOD_ID, 0, 1,
3373 					    SL_ERROR|SL_TRACE,
3374 					    "tcp_bind: attempt to bind port "
3375 					    "%d on shared addr in zone %d "
3376 					    "(should be %d)",
3377 					    mlp_port, connp->conn_zoneid,
3378 					    mlpzone);
3379 				}
3380 				tcp_err_ack(tcp, mp, TACCES, 0);
3381 				return;
3382 			}
3383 		}
3384 
3385 		if (!user_specified) {
3386 			err = tsol_mlp_anon(zone, mlptype, connp->conn_ulp,
3387 			    requested_port, B_TRUE);
3388 			if (err != 0) {
3389 				if (tcp->tcp_debug) {
3390 					(void) strlog(TCP_MOD_ID, 0, 1,
3391 					    SL_ERROR|SL_TRACE,
3392 					    "tcp_bind: cannot establish anon "
3393 					    "MLP for port %d",
3394 					    requested_port);
3395 				}
3396 				tcp_err_ack(tcp, mp, TSYSERR, err);
3397 				return;
3398 			}
3399 			connp->conn_anon_port = B_TRUE;
3400 		}
3401 		connp->conn_mlp_type = mlptype;
3402 	}
3403 
3404 	allocated_port = tcp_bindi(tcp, requested_port, &v6addr,
3405 	    tcp->tcp_reuseaddr, B_FALSE, bind_to_req_port_only, user_specified);
3406 
3407 	if (allocated_port == 0) {
3408 		connp->conn_mlp_type = mlptSingle;
3409 		if (connp->conn_anon_port) {
3410 			connp->conn_anon_port = B_FALSE;
3411 			(void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp,
3412 			    requested_port, B_FALSE);
3413 		}
3414 		if (bind_to_req_port_only) {
3415 			if (tcp->tcp_debug) {
3416 				(void) strlog(TCP_MOD_ID, 0, 1,
3417 				    SL_ERROR|SL_TRACE,
3418 				    "tcp_bind: requested addr busy");
3419 			}
3420 			tcp_err_ack(tcp, mp, TADDRBUSY, 0);
3421 		} else {
3422 			/* If we are out of ports, fail the bind. */
3423 			if (tcp->tcp_debug) {
3424 				(void) strlog(TCP_MOD_ID, 0, 1,
3425 				    SL_ERROR|SL_TRACE,
3426 				    "tcp_bind: out of ports?");
3427 			}
3428 			tcp_err_ack(tcp, mp, TNOADDR, 0);
3429 		}
3430 		return;
3431 	}
3432 	ASSERT(tcp->tcp_state == TCPS_BOUND);
3433 do_bind:
3434 	if (!backlog_update) {
3435 		if (tcp->tcp_family == AF_INET)
3436 			sin->sin_port = htons(allocated_port);
3437 		else
3438 			sin6->sin6_port = htons(allocated_port);
3439 	}
3440 	if (tcp->tcp_family == AF_INET) {
3441 		if (tbr->CONIND_number != 0) {
3442 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type,
3443 			    sizeof (sin_t));
3444 		} else {
3445 			/* Just verify the local IP address */
3446 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, IP_ADDR_LEN);
3447 		}
3448 	} else {
3449 		if (tbr->CONIND_number != 0) {
3450 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type,
3451 			    sizeof (sin6_t));
3452 		} else {
3453 			/* Just verify the local IP address */
3454 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type,
3455 			    IPV6_ADDR_LEN);
3456 		}
3457 	}
3458 	if (mp1 == NULL) {
3459 		if (connp->conn_anon_port) {
3460 			connp->conn_anon_port = B_FALSE;
3461 			(void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp,
3462 			    requested_port, B_FALSE);
3463 		}
3464 		connp->conn_mlp_type = mlptSingle;
3465 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
3466 		return;
3467 	}
3468 
3469 	tbr->PRIM_type = T_BIND_ACK;
3470 	mp->b_datap->db_type = M_PCPROTO;
3471 
3472 	/* Chain in the reply mp for tcp_rput() */
3473 	mp1->b_cont = mp;
3474 	mp = mp1;
3475 
3476 	tcp->tcp_conn_req_max = tbr->CONIND_number;
3477 	if (tcp->tcp_conn_req_max) {
3478 		if (tcp->tcp_conn_req_max < tcp_conn_req_min)
3479 			tcp->tcp_conn_req_max = tcp_conn_req_min;
3480 		if (tcp->tcp_conn_req_max > tcp_conn_req_max_q)
3481 			tcp->tcp_conn_req_max = tcp_conn_req_max_q;
3482 		/*
3483 		 * If this is a listener, do not reset the eager list
3484 		 * and other stuffs.  Note that we don't check if the
3485 		 * existing eager list meets the new tcp_conn_req_max
3486 		 * requirement.
3487 		 */
3488 		if (tcp->tcp_state != TCPS_LISTEN) {
3489 			tcp->tcp_state = TCPS_LISTEN;
3490 			/* Initialize the chain. Don't need the eager_lock */
3491 			tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
3492 			tcp->tcp_eager_next_drop_q0 = tcp;
3493 			tcp->tcp_eager_prev_drop_q0 = tcp;
3494 			tcp->tcp_second_ctimer_threshold =
3495 			    tcp_ip_abort_linterval;
3496 		}
3497 	}
3498 
3499 	/*
3500 	 * We can call ip_bind directly which returns a T_BIND_ACK mp. The
3501 	 * processing continues in tcp_rput_other().
3502 	 */
3503 	if (tcp->tcp_family == AF_INET6) {
3504 		ASSERT(tcp->tcp_connp->conn_af_isv6);
3505 		mp = ip_bind_v6(q, mp, tcp->tcp_connp, &tcp->tcp_sticky_ipp);
3506 	} else {
3507 		ASSERT(!tcp->tcp_connp->conn_af_isv6);
3508 		mp = ip_bind_v4(q, mp, tcp->tcp_connp);
3509 	}
3510 	/*
3511 	 * If the bind cannot complete immediately
3512 	 * IP will arrange to call tcp_rput_other
3513 	 * when the bind completes.
3514 	 */
3515 	if (mp != NULL) {
3516 		tcp_rput_other(tcp, mp);
3517 	} else {
3518 		/*
3519 		 * Bind will be resumed later. Need to ensure
3520 		 * that conn doesn't disappear when that happens.
3521 		 * This will be decremented in ip_resume_tcp_bind().
3522 		 */
3523 		CONN_INC_REF(tcp->tcp_connp);
3524 	}
3525 }
3526 
3527 
3528 /*
3529  * If the "bind_to_req_port_only" parameter is set, if the requested port
3530  * number is available, return it, If not return 0
3531  *
3532  * If "bind_to_req_port_only" parameter is not set and
3533  * If the requested port number is available, return it.  If not, return
3534  * the first anonymous port we happen across.  If no anonymous ports are
3535  * available, return 0. addr is the requested local address, if any.
3536  *
3537  * In either case, when succeeding update the tcp_t to record the port number
3538  * and insert it in the bind hash table.
3539  *
3540  * Note that TCP over IPv4 and IPv6 sockets can use the same port number
3541  * without setting SO_REUSEADDR. This is needed so that they
3542  * can be viewed as two independent transport protocols.
3543  */
3544 static in_port_t
3545 tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr,
3546     int reuseaddr, boolean_t quick_connect,
3547     boolean_t bind_to_req_port_only, boolean_t user_specified)
3548 {
3549 	/* number of times we have run around the loop */
3550 	int count = 0;
3551 	/* maximum number of times to run around the loop */
3552 	int loopmax;
3553 	conn_t *connp = tcp->tcp_connp;
3554 	zoneid_t zoneid = connp->conn_zoneid;
3555 
3556 	/*
3557 	 * Lookup for free addresses is done in a loop and "loopmax"
3558 	 * influences how long we spin in the loop
3559 	 */
3560 	if (bind_to_req_port_only) {
3561 		/*
3562 		 * If the requested port is busy, don't bother to look
3563 		 * for a new one. Setting loop maximum count to 1 has
3564 		 * that effect.
3565 		 */
3566 		loopmax = 1;
3567 	} else {
3568 		/*
3569 		 * If the requested port is busy, look for a free one
3570 		 * in the anonymous port range.
3571 		 * Set loopmax appropriately so that one does not look
3572 		 * forever in the case all of the anonymous ports are in use.
3573 		 */
3574 		if (tcp->tcp_anon_priv_bind) {
3575 			/*
3576 			 * loopmax =
3577 			 * 	(IPPORT_RESERVED-1) - tcp_min_anonpriv_port + 1
3578 			 */
3579 			loopmax = IPPORT_RESERVED - tcp_min_anonpriv_port;
3580 		} else {
3581 			loopmax = (tcp_largest_anon_port -
3582 			    tcp_smallest_anon_port + 1);
3583 		}
3584 	}
3585 	do {
3586 		uint16_t	lport;
3587 		tf_t		*tbf;
3588 		tcp_t		*ltcp;
3589 		conn_t		*lconnp;
3590 
3591 		lport = htons(port);
3592 
3593 		/*
3594 		 * Ensure that the tcp_t is not currently in the bind hash.
3595 		 * Hold the lock on the hash bucket to ensure that
3596 		 * the duplicate check plus the insertion is an atomic
3597 		 * operation.
3598 		 *
3599 		 * This function does an inline lookup on the bind hash list
3600 		 * Make sure that we access only members of tcp_t
3601 		 * and that we don't look at tcp_tcp, since we are not
3602 		 * doing a CONN_INC_REF.
3603 		 */
3604 		tcp_bind_hash_remove(tcp);
3605 		tbf = &tcp_bind_fanout[TCP_BIND_HASH(lport)];
3606 		mutex_enter(&tbf->tf_lock);
3607 		for (ltcp = tbf->tf_tcp; ltcp != NULL;
3608 		    ltcp = ltcp->tcp_bind_hash) {
3609 			boolean_t not_socket;
3610 			boolean_t exclbind;
3611 
3612 			if (lport != ltcp->tcp_lport)
3613 				continue;
3614 
3615 			lconnp = ltcp->tcp_connp;
3616 
3617 			/*
3618 			 * On a labeled system, we must treat bindings to ports
3619 			 * on shared IP addresses by sockets with MAC exemption
3620 			 * privilege as being in all zones, as there's
3621 			 * otherwise no way to identify the right receiver.
3622 			 */
3623 			if (!IPCL_ZONE_MATCH(ltcp->tcp_connp, zoneid) &&
3624 			    !lconnp->conn_mac_exempt &&
3625 			    !connp->conn_mac_exempt)
3626 				continue;
3627 
3628 			/*
3629 			 * If TCP_EXCLBIND is set for either the bound or
3630 			 * binding endpoint, the semantics of bind
3631 			 * is changed according to the following.
3632 			 *
3633 			 * spec = specified address (v4 or v6)
3634 			 * unspec = unspecified address (v4 or v6)
3635 			 * A = specified addresses are different for endpoints
3636 			 *
3637 			 * bound	bind to		allowed
3638 			 * -------------------------------------
3639 			 * unspec	unspec		no
3640 			 * unspec	spec		no
3641 			 * spec		unspec		no
3642 			 * spec		spec		yes if A
3643 			 *
3644 			 * For labeled systems, SO_MAC_EXEMPT behaves the same
3645 			 * as TCP_EXCLBIND, except that zoneid is ignored.
3646 			 *
3647 			 * Note:
3648 			 *
3649 			 * 1. Because of TLI semantics, an endpoint can go
3650 			 * back from, say TCP_ESTABLISHED to TCPS_LISTEN or
3651 			 * TCPS_BOUND, depending on whether it is originally
3652 			 * a listener or not.  That is why we need to check
3653 			 * for states greater than or equal to TCPS_BOUND
3654 			 * here.
3655 			 *
3656 			 * 2. Ideally, we should only check for state equals
3657 			 * to TCPS_LISTEN. And the following check should be
3658 			 * added.
3659 			 *
3660 			 * if (ltcp->tcp_state == TCPS_LISTEN ||
3661 			 *	!reuseaddr || !ltcp->tcp_reuseaddr) {
3662 			 *		...
3663 			 * }
3664 			 *
3665 			 * The semantics will be changed to this.  If the
3666 			 * endpoint on the list is in state not equal to
3667 			 * TCPS_LISTEN and both endpoints have SO_REUSEADDR
3668 			 * set, let the bind succeed.
3669 			 *
3670 			 * Because of (1), we cannot do that for TLI
3671 			 * endpoints.  But we can do that for socket endpoints.
3672 			 * If in future, we can change this going back
3673 			 * semantics, we can use the above check for TLI also.
3674 			 */
3675 			not_socket = !(TCP_IS_SOCKET(ltcp) &&
3676 			    TCP_IS_SOCKET(tcp));
3677 			exclbind = ltcp->tcp_exclbind || tcp->tcp_exclbind;
3678 
3679 			if (lconnp->conn_mac_exempt || connp->conn_mac_exempt ||
3680 			    (exclbind && (not_socket ||
3681 			    ltcp->tcp_state <= TCPS_ESTABLISHED))) {
3682 				if (V6_OR_V4_INADDR_ANY(
3683 				    ltcp->tcp_bound_source_v6) ||
3684 				    V6_OR_V4_INADDR_ANY(*laddr) ||
3685 				    IN6_ARE_ADDR_EQUAL(laddr,
3686 				    &ltcp->tcp_bound_source_v6)) {
3687 					break;
3688 				}
3689 				continue;
3690 			}
3691 
3692 			/*
3693 			 * Check ipversion to allow IPv4 and IPv6 sockets to
3694 			 * have disjoint port number spaces, if *_EXCLBIND
3695 			 * is not set and only if the application binds to a
3696 			 * specific port. We use the same autoassigned port
3697 			 * number space for IPv4 and IPv6 sockets.
3698 			 */
3699 			if (tcp->tcp_ipversion != ltcp->tcp_ipversion &&
3700 			    bind_to_req_port_only)
3701 				continue;
3702 
3703 			/*
3704 			 * Ideally, we should make sure that the source
3705 			 * address, remote address, and remote port in the
3706 			 * four tuple for this tcp-connection is unique.
3707 			 * However, trying to find out the local source
3708 			 * address would require too much code duplication
3709 			 * with IP, since IP needs needs to have that code
3710 			 * to support userland TCP implementations.
3711 			 */
3712 			if (quick_connect &&
3713 			    (ltcp->tcp_state > TCPS_LISTEN) &&
3714 			    ((tcp->tcp_fport != ltcp->tcp_fport) ||
3715 				!IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6,
3716 				    &ltcp->tcp_remote_v6)))
3717 				continue;
3718 
3719 			if (!reuseaddr) {
3720 				/*
3721 				 * No socket option SO_REUSEADDR.
3722 				 * If existing port is bound to
3723 				 * a non-wildcard IP address
3724 				 * and the requesting stream is
3725 				 * bound to a distinct
3726 				 * different IP addresses
3727 				 * (non-wildcard, also), keep
3728 				 * going.
3729 				 */
3730 				if (!V6_OR_V4_INADDR_ANY(*laddr) &&
3731 				    !V6_OR_V4_INADDR_ANY(
3732 				    ltcp->tcp_bound_source_v6) &&
3733 				    !IN6_ARE_ADDR_EQUAL(laddr,
3734 					&ltcp->tcp_bound_source_v6))
3735 					continue;
3736 				if (ltcp->tcp_state >= TCPS_BOUND) {
3737 					/*
3738 					 * This port is being used and
3739 					 * its state is >= TCPS_BOUND,
3740 					 * so we can't bind to it.
3741 					 */
3742 					break;
3743 				}
3744 			} else {
3745 				/*
3746 				 * socket option SO_REUSEADDR is set on the
3747 				 * binding tcp_t.
3748 				 *
3749 				 * If two streams are bound to
3750 				 * same IP address or both addr
3751 				 * and bound source are wildcards
3752 				 * (INADDR_ANY), we want to stop
3753 				 * searching.
3754 				 * We have found a match of IP source
3755 				 * address and source port, which is
3756 				 * refused regardless of the
3757 				 * SO_REUSEADDR setting, so we break.
3758 				 */
3759 				if (IN6_ARE_ADDR_EQUAL(laddr,
3760 				    &ltcp->tcp_bound_source_v6) &&
3761 				    (ltcp->tcp_state == TCPS_LISTEN ||
3762 					ltcp->tcp_state == TCPS_BOUND))
3763 					break;
3764 			}
3765 		}
3766 		if (ltcp != NULL) {
3767 			/* The port number is busy */
3768 			mutex_exit(&tbf->tf_lock);
3769 		} else {
3770 			/*
3771 			 * This port is ours. Insert in fanout and mark as
3772 			 * bound to prevent others from getting the port
3773 			 * number.
3774 			 */
3775 			tcp->tcp_state = TCPS_BOUND;
3776 			tcp->tcp_lport = htons(port);
3777 			*(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport;
3778 
3779 			ASSERT(&tcp_bind_fanout[TCP_BIND_HASH(
3780 			    tcp->tcp_lport)] == tbf);
3781 			tcp_bind_hash_insert(tbf, tcp, 1);
3782 
3783 			mutex_exit(&tbf->tf_lock);
3784 
3785 			/*
3786 			 * We don't want tcp_next_port_to_try to "inherit"
3787 			 * a port number supplied by the user in a bind.
3788 			 */
3789 			if (user_specified)
3790 				return (port);
3791 
3792 			/*
3793 			 * This is the only place where tcp_next_port_to_try
3794 			 * is updated. After the update, it may or may not
3795 			 * be in the valid range.
3796 			 */
3797 			if (!tcp->tcp_anon_priv_bind)
3798 				tcp_next_port_to_try = port + 1;
3799 			return (port);
3800 		}
3801 
3802 		if (tcp->tcp_anon_priv_bind) {
3803 			port = tcp_get_next_priv_port(tcp);
3804 		} else {
3805 			if (count == 0 && user_specified) {
3806 				/*
3807 				 * We may have to return an anonymous port. So
3808 				 * get one to start with.
3809 				 */
3810 				port =
3811 				    tcp_update_next_port(tcp_next_port_to_try,
3812 					tcp, B_TRUE);
3813 				user_specified = B_FALSE;
3814 			} else {
3815 				port = tcp_update_next_port(port + 1, tcp,
3816 				    B_FALSE);
3817 			}
3818 		}
3819 		if (port == 0)
3820 			break;
3821 
3822 		/*
3823 		 * Don't let this loop run forever in the case where
3824 		 * all of the anonymous ports are in use.
3825 		 */
3826 	} while (++count < loopmax);
3827 	return (0);
3828 }
3829 
3830 /*
3831  * tcp_clean_death / tcp_close_detached must not be called more than once
3832  * on a tcp. Thus every function that potentially calls tcp_clean_death
3833  * must check for the tcp state before calling tcp_clean_death.
3834  * Eg. tcp_input, tcp_rput_data, tcp_eager_kill, tcp_clean_death_wrapper,
3835  * tcp_timer_handler, all check for the tcp state.
3836  */
3837 /* ARGSUSED */
3838 void
3839 tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2)
3840 {
3841 	tcp_t	*tcp = ((conn_t *)arg)->conn_tcp;
3842 
3843 	freemsg(mp);
3844 	if (tcp->tcp_state > TCPS_BOUND)
3845 	    (void) tcp_clean_death(((conn_t *)arg)->conn_tcp, ETIMEDOUT, 5);
3846 }
3847 
3848 /*
3849  * We are dying for some reason.  Try to do it gracefully.  (May be called
3850  * as writer.)
3851  *
3852  * Return -1 if the structure was not cleaned up (if the cleanup had to be
3853  * done by a service procedure).
3854  * TBD - Should the return value distinguish between the tcp_t being
3855  * freed and it being reinitialized?
3856  */
3857 static int
3858 tcp_clean_death(tcp_t *tcp, int err, uint8_t tag)
3859 {
3860 	mblk_t	*mp;
3861 	queue_t	*q;
3862 
3863 	TCP_CLD_STAT(tag);
3864 
3865 #if TCP_TAG_CLEAN_DEATH
3866 	tcp->tcp_cleandeathtag = tag;
3867 #endif
3868 
3869 	if (tcp->tcp_fused)
3870 		tcp_unfuse(tcp);
3871 
3872 	if (tcp->tcp_linger_tid != 0 &&
3873 	    TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) {
3874 		tcp_stop_lingering(tcp);
3875 	}
3876 
3877 	ASSERT(tcp != NULL);
3878 	ASSERT((tcp->tcp_family == AF_INET &&
3879 	    tcp->tcp_ipversion == IPV4_VERSION) ||
3880 	    (tcp->tcp_family == AF_INET6 &&
3881 	    (tcp->tcp_ipversion == IPV4_VERSION ||
3882 	    tcp->tcp_ipversion == IPV6_VERSION)));
3883 
3884 	if (TCP_IS_DETACHED(tcp)) {
3885 		if (tcp->tcp_hard_binding) {
3886 			/*
3887 			 * Its an eager that we are dealing with. We close the
3888 			 * eager but in case a conn_ind has already gone to the
3889 			 * listener, let tcp_accept_finish() send a discon_ind
3890 			 * to the listener and drop the last reference. If the
3891 			 * listener doesn't even know about the eager i.e. the
3892 			 * conn_ind hasn't gone up, blow away the eager and drop
3893 			 * the last reference as well. If the conn_ind has gone
3894 			 * up, state should be BOUND. tcp_accept_finish
3895 			 * will figure out that the connection has received a
3896 			 * RST and will send a DISCON_IND to the application.
3897 			 */
3898 			tcp_closei_local(tcp);
3899 			if (!tcp->tcp_tconnind_started) {
3900 				CONN_DEC_REF(tcp->tcp_connp);
3901 			} else {
3902 				tcp->tcp_state = TCPS_BOUND;
3903 			}
3904 		} else {
3905 			tcp_close_detached(tcp);
3906 		}
3907 		return (0);
3908 	}
3909 
3910 	TCP_STAT(tcp_clean_death_nondetached);
3911 
3912 	/*
3913 	 * If T_ORDREL_IND has not been sent yet (done when service routine
3914 	 * is run) postpone cleaning up the endpoint until service routine
3915 	 * has sent up the T_ORDREL_IND. Avoid clearing out an existing
3916 	 * client_errno since tcp_close uses the client_errno field.
3917 	 */
3918 	if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
3919 		if (err != 0)
3920 			tcp->tcp_client_errno = err;
3921 
3922 		tcp->tcp_deferred_clean_death = B_TRUE;
3923 		return (-1);
3924 	}
3925 
3926 	q = tcp->tcp_rq;
3927 
3928 	/* Trash all inbound data */
3929 	flushq(q, FLUSHALL);
3930 
3931 	/*
3932 	 * If we are at least part way open and there is error
3933 	 * (err==0 implies no error)
3934 	 * notify our client by a T_DISCON_IND.
3935 	 */
3936 	if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) {
3937 		if (tcp->tcp_state >= TCPS_ESTABLISHED &&
3938 		    !TCP_IS_SOCKET(tcp)) {
3939 			/*
3940 			 * Send M_FLUSH according to TPI. Because sockets will
3941 			 * (and must) ignore FLUSHR we do that only for TPI
3942 			 * endpoints and sockets in STREAMS mode.
3943 			 */
3944 			(void) putnextctl1(q, M_FLUSH, FLUSHR);
3945 		}
3946 		if (tcp->tcp_debug) {
3947 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
3948 			    "tcp_clean_death: discon err %d", err);
3949 		}
3950 		mp = mi_tpi_discon_ind(NULL, err, 0);
3951 		if (mp != NULL) {
3952 			putnext(q, mp);
3953 		} else {
3954 			if (tcp->tcp_debug) {
3955 				(void) strlog(TCP_MOD_ID, 0, 1,
3956 				    SL_ERROR|SL_TRACE,
3957 				    "tcp_clean_death, sending M_ERROR");
3958 			}
3959 			(void) putnextctl1(q, M_ERROR, EPROTO);
3960 		}
3961 		if (tcp->tcp_state <= TCPS_SYN_RCVD) {
3962 			/* SYN_SENT or SYN_RCVD */
3963 			BUMP_MIB(&tcp_mib, tcpAttemptFails);
3964 		} else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) {
3965 			/* ESTABLISHED or CLOSE_WAIT */
3966 			BUMP_MIB(&tcp_mib, tcpEstabResets);
3967 		}
3968 	}
3969 
3970 	tcp_reinit(tcp);
3971 	return (-1);
3972 }
3973 
3974 /*
3975  * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout
3976  * to expire, stop the wait and finish the close.
3977  */
3978 static void
3979 tcp_stop_lingering(tcp_t *tcp)
3980 {
3981 	clock_t	delta = 0;
3982 
3983 	tcp->tcp_linger_tid = 0;
3984 	if (tcp->tcp_state > TCPS_LISTEN) {
3985 		tcp_acceptor_hash_remove(tcp);
3986 		if (tcp->tcp_flow_stopped) {
3987 			tcp_clrqfull(tcp);
3988 		}
3989 
3990 		if (tcp->tcp_timer_tid != 0) {
3991 			delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
3992 			tcp->tcp_timer_tid = 0;
3993 		}
3994 		/*
3995 		 * Need to cancel those timers which will not be used when
3996 		 * TCP is detached.  This has to be done before the tcp_wq
3997 		 * is set to the global queue.
3998 		 */
3999 		tcp_timers_stop(tcp);
4000 
4001 
4002 		tcp->tcp_detached = B_TRUE;
4003 		tcp->tcp_rq = tcp_g_q;
4004 		tcp->tcp_wq = WR(tcp_g_q);
4005 
4006 		if (tcp->tcp_state == TCPS_TIME_WAIT) {
4007 			tcp_time_wait_append(tcp);
4008 			TCP_DBGSTAT(tcp_detach_time_wait);
4009 			goto finish;
4010 		}
4011 
4012 		/*
4013 		 * If delta is zero the timer event wasn't executed and was
4014 		 * successfully canceled. In this case we need to restart it
4015 		 * with the minimal delta possible.
4016 		 */
4017 		if (delta >= 0) {
4018 			tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer,
4019 			    delta ? delta : 1);
4020 		}
4021 	} else {
4022 		tcp_closei_local(tcp);
4023 		CONN_DEC_REF(tcp->tcp_connp);
4024 	}
4025 finish:
4026 	/* Signal closing thread that it can complete close */
4027 	mutex_enter(&tcp->tcp_closelock);
4028 	tcp->tcp_detached = B_TRUE;
4029 	tcp->tcp_rq = tcp_g_q;
4030 	tcp->tcp_wq = WR(tcp_g_q);
4031 	tcp->tcp_closed = 1;
4032 	cv_signal(&tcp->tcp_closecv);
4033 	mutex_exit(&tcp->tcp_closelock);
4034 }
4035 
4036 /*
4037  * Handle lingering timeouts. This function is called when the SO_LINGER timeout
4038  * expires.
4039  */
4040 static void
4041 tcp_close_linger_timeout(void *arg)
4042 {
4043 	conn_t	*connp = (conn_t *)arg;
4044 	tcp_t 	*tcp = connp->conn_tcp;
4045 
4046 	tcp->tcp_client_errno = ETIMEDOUT;
4047 	tcp_stop_lingering(tcp);
4048 }
4049 
4050 static int
4051 tcp_close(queue_t *q, int flags)
4052 {
4053 	conn_t		*connp = Q_TO_CONN(q);
4054 	tcp_t		*tcp = connp->conn_tcp;
4055 	mblk_t 		*mp = &tcp->tcp_closemp;
4056 	boolean_t	conn_ioctl_cleanup_reqd = B_FALSE;
4057 	boolean_t	linger_interrupted = B_FALSE;
4058 	mblk_t		*bp;
4059 
4060 	ASSERT(WR(q)->q_next == NULL);
4061 	ASSERT(connp->conn_ref >= 2);
4062 	ASSERT((connp->conn_flags & IPCL_TCPMOD) == 0);
4063 
4064 	/*
4065 	 * We are being closed as /dev/tcp or /dev/tcp6.
4066 	 *
4067 	 * Mark the conn as closing. ill_pending_mp_add will not
4068 	 * add any mp to the pending mp list, after this conn has
4069 	 * started closing. Same for sq_pending_mp_add
4070 	 */
4071 	mutex_enter(&connp->conn_lock);
4072 	connp->conn_state_flags |= CONN_CLOSING;
4073 	if (connp->conn_oper_pending_ill != NULL)
4074 		conn_ioctl_cleanup_reqd = B_TRUE;
4075 	CONN_INC_REF_LOCKED(connp);
4076 	mutex_exit(&connp->conn_lock);
4077 	tcp->tcp_closeflags = (uint8_t)flags;
4078 	ASSERT(connp->conn_ref >= 3);
4079 
4080 	/*
4081 	 * tcp_closemp_used is used below without any protection of a lock
4082 	 * as we don't expect any one else to use it concurrently at this
4083 	 * point otherwise it would be a major defect, though we do
4084 	 * increment tcp_closemp_used to record any attempt to reuse
4085 	 * tcp_closemp while it is still in use. This would help debugging.
4086 	 */
4087 
4088 	if (mp->b_prev == NULL) {
4089 		tcp->tcp_closemp_used = 1;
4090 	} else {
4091 		tcp->tcp_closemp_used++;
4092 		ASSERT(mp->b_prev == NULL);
4093 	}
4094 
4095 	TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
4096 
4097 	(*tcp_squeue_close_proc)(connp->conn_sqp, mp,
4098 	    tcp_close_output, connp, SQTAG_IP_TCP_CLOSE);
4099 
4100 	mutex_enter(&tcp->tcp_closelock);
4101 	while (!tcp->tcp_closed) {
4102 		if (!cv_wait_sig(&tcp->tcp_closecv, &tcp->tcp_closelock)) {
4103 			/*
4104 			 * We got interrupted. Check if we are lingering,
4105 			 * if yes, post a message to stop and wait until
4106 			 * tcp_closed is set. If we aren't lingering,
4107 			 * just go back around.
4108 			 */
4109 			if (tcp->tcp_linger &&
4110 			    tcp->tcp_lingertime > 0 &&
4111 			    !linger_interrupted) {
4112 				mutex_exit(&tcp->tcp_closelock);
4113 				/* Entering squeue, bump ref count. */
4114 				CONN_INC_REF(connp);
4115 				bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL);
4116 				squeue_enter(connp->conn_sqp, bp,
4117 				    tcp_linger_interrupted, connp,
4118 				    SQTAG_IP_TCP_CLOSE);
4119 				linger_interrupted = B_TRUE;
4120 				mutex_enter(&tcp->tcp_closelock);
4121 			}
4122 		}
4123 	}
4124 	mutex_exit(&tcp->tcp_closelock);
4125 
4126 	/*
4127 	 * In the case of listener streams that have eagers in the q or q0
4128 	 * we wait for the eagers to drop their reference to us. tcp_rq and
4129 	 * tcp_wq of the eagers point to our queues. By waiting for the
4130 	 * refcnt to drop to 1, we are sure that the eagers have cleaned
4131 	 * up their queue pointers and also dropped their references to us.
4132 	 */
4133 	if (tcp->tcp_wait_for_eagers) {
4134 		mutex_enter(&connp->conn_lock);
4135 		while (connp->conn_ref != 1) {
4136 			cv_wait(&connp->conn_cv, &connp->conn_lock);
4137 		}
4138 		mutex_exit(&connp->conn_lock);
4139 	}
4140 	/*
4141 	 * ioctl cleanup. The mp is queued in the
4142 	 * ill_pending_mp or in the sq_pending_mp.
4143 	 */
4144 	if (conn_ioctl_cleanup_reqd)
4145 		conn_ioctl_cleanup(connp);
4146 
4147 	qprocsoff(q);
4148 	inet_minor_free(ip_minor_arena, connp->conn_dev);
4149 
4150 	tcp->tcp_cpid = -1;
4151 
4152 	/*
4153 	 * Drop IP's reference on the conn. This is the last reference
4154 	 * on the connp if the state was less than established. If the
4155 	 * connection has gone into timewait state, then we will have
4156 	 * one ref for the TCP and one more ref (total of two) for the
4157 	 * classifier connected hash list (a timewait connections stays
4158 	 * in connected hash till closed).
4159 	 *
4160 	 * We can't assert the references because there might be other
4161 	 * transient reference places because of some walkers or queued
4162 	 * packets in squeue for the timewait state.
4163 	 */
4164 	CONN_DEC_REF(connp);
4165 	q->q_ptr = WR(q)->q_ptr = NULL;
4166 	return (0);
4167 }
4168 
4169 static int
4170 tcpclose_accept(queue_t *q)
4171 {
4172 	ASSERT(WR(q)->q_qinfo == &tcp_acceptor_winit);
4173 
4174 	/*
4175 	 * We had opened an acceptor STREAM for sockfs which is
4176 	 * now being closed due to some error.
4177 	 */
4178 	qprocsoff(q);
4179 	inet_minor_free(ip_minor_arena, (dev_t)q->q_ptr);
4180 	q->q_ptr = WR(q)->q_ptr = NULL;
4181 	return (0);
4182 }
4183 
4184 /*
4185  * Called by tcp_close() routine via squeue when lingering is
4186  * interrupted by a signal.
4187  */
4188 
4189 /* ARGSUSED */
4190 static void
4191 tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2)
4192 {
4193 	conn_t	*connp = (conn_t *)arg;
4194 	tcp_t	*tcp = connp->conn_tcp;
4195 
4196 	freeb(mp);
4197 	if (tcp->tcp_linger_tid != 0 &&
4198 	    TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) {
4199 		tcp_stop_lingering(tcp);
4200 		tcp->tcp_client_errno = EINTR;
4201 	}
4202 }
4203 
4204 /*
4205  * Called by streams close routine via squeues when our client blows off her
4206  * descriptor, we take this to mean: "close the stream state NOW, close the tcp
4207  * connection politely" When SO_LINGER is set (with a non-zero linger time and
4208  * it is not a nonblocking socket) then this routine sleeps until the FIN is
4209  * acked.
4210  *
4211  * NOTE: tcp_close potentially returns error when lingering.
4212  * However, the stream head currently does not pass these errors
4213  * to the application. 4.4BSD only returns EINTR and EWOULDBLOCK
4214  * errors to the application (from tsleep()) and not errors
4215  * like ECONNRESET caused by receiving a reset packet.
4216  */
4217 
4218 /* ARGSUSED */
4219 static void
4220 tcp_close_output(void *arg, mblk_t *mp, void *arg2)
4221 {
4222 	char	*msg;
4223 	conn_t	*connp = (conn_t *)arg;
4224 	tcp_t	*tcp = connp->conn_tcp;
4225 	clock_t	delta = 0;
4226 
4227 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
4228 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
4229 
4230 	/* Cancel any pending timeout */
4231 	if (tcp->tcp_ordrelid != 0) {
4232 		if (tcp->tcp_timeout) {
4233 			(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ordrelid);
4234 		}
4235 		tcp->tcp_ordrelid = 0;
4236 		tcp->tcp_timeout = B_FALSE;
4237 	}
4238 
4239 	mutex_enter(&tcp->tcp_eager_lock);
4240 	if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) {
4241 		/* Cleanup for listener */
4242 		tcp_eager_cleanup(tcp, 0);
4243 		tcp->tcp_wait_for_eagers = 1;
4244 	}
4245 	mutex_exit(&tcp->tcp_eager_lock);
4246 
4247 	connp->conn_mdt_ok = B_FALSE;
4248 	tcp->tcp_mdt = B_FALSE;
4249 
4250 	connp->conn_lso_ok = B_FALSE;
4251 	tcp->tcp_lso = B_FALSE;
4252 
4253 	msg = NULL;
4254 	switch (tcp->tcp_state) {
4255 	case TCPS_CLOSED:
4256 	case TCPS_IDLE:
4257 	case TCPS_BOUND:
4258 	case TCPS_LISTEN:
4259 		break;
4260 	case TCPS_SYN_SENT:
4261 		msg = "tcp_close, during connect";
4262 		break;
4263 	case TCPS_SYN_RCVD:
4264 		/*
4265 		 * Close during the connect 3-way handshake
4266 		 * but here there may or may not be pending data
4267 		 * already on queue. Process almost same as in
4268 		 * the ESTABLISHED state.
4269 		 */
4270 		/* FALLTHRU */
4271 	default:
4272 		if (tcp->tcp_fused)
4273 			tcp_unfuse(tcp);
4274 
4275 		/*
4276 		 * If SO_LINGER has set a zero linger time, abort the
4277 		 * connection with a reset.
4278 		 */
4279 		if (tcp->tcp_linger && tcp->tcp_lingertime == 0) {
4280 			msg = "tcp_close, zero lingertime";
4281 			break;
4282 		}
4283 
4284 		ASSERT(tcp->tcp_hard_bound || tcp->tcp_hard_binding);
4285 		/*
4286 		 * Abort connection if there is unread data queued.
4287 		 */
4288 		if (tcp->tcp_rcv_list || tcp->tcp_reass_head) {
4289 			msg = "tcp_close, unread data";
4290 			break;
4291 		}
4292 		/*
4293 		 * tcp_hard_bound is now cleared thus all packets go through
4294 		 * tcp_lookup. This fact is used by tcp_detach below.
4295 		 *
4296 		 * We have done a qwait() above which could have possibly
4297 		 * drained more messages in turn causing transition to a
4298 		 * different state. Check whether we have to do the rest
4299 		 * of the processing or not.
4300 		 */
4301 		if (tcp->tcp_state <= TCPS_LISTEN)
4302 			break;
4303 
4304 		/*
4305 		 * Transmit the FIN before detaching the tcp_t.
4306 		 * After tcp_detach returns this queue/perimeter
4307 		 * no longer owns the tcp_t thus others can modify it.
4308 		 */
4309 		(void) tcp_xmit_end(tcp);
4310 
4311 		/*
4312 		 * If lingering on close then wait until the fin is acked,
4313 		 * the SO_LINGER time passes, or a reset is sent/received.
4314 		 */
4315 		if (tcp->tcp_linger && tcp->tcp_lingertime > 0 &&
4316 		    !(tcp->tcp_fin_acked) &&
4317 		    tcp->tcp_state >= TCPS_ESTABLISHED) {
4318 			if (tcp->tcp_closeflags & (FNDELAY|FNONBLOCK)) {
4319 				tcp->tcp_client_errno = EWOULDBLOCK;
4320 			} else if (tcp->tcp_client_errno == 0) {
4321 
4322 				ASSERT(tcp->tcp_linger_tid == 0);
4323 
4324 				tcp->tcp_linger_tid = TCP_TIMER(tcp,
4325 				    tcp_close_linger_timeout,
4326 				    tcp->tcp_lingertime * hz);
4327 
4328 				/* tcp_close_linger_timeout will finish close */
4329 				if (tcp->tcp_linger_tid == 0)
4330 					tcp->tcp_client_errno = ENOSR;
4331 				else
4332 					return;
4333 			}
4334 
4335 			/*
4336 			 * Check if we need to detach or just close
4337 			 * the instance.
4338 			 */
4339 			if (tcp->tcp_state <= TCPS_LISTEN)
4340 				break;
4341 		}
4342 
4343 		/*
4344 		 * Make sure that no other thread will access the tcp_rq of
4345 		 * this instance (through lookups etc.) as tcp_rq will go
4346 		 * away shortly.
4347 		 */
4348 		tcp_acceptor_hash_remove(tcp);
4349 
4350 		if (tcp->tcp_flow_stopped) {
4351 			tcp_clrqfull(tcp);
4352 		}
4353 
4354 		if (tcp->tcp_timer_tid != 0) {
4355 			delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
4356 			tcp->tcp_timer_tid = 0;
4357 		}
4358 		/*
4359 		 * Need to cancel those timers which will not be used when
4360 		 * TCP is detached.  This has to be done before the tcp_wq
4361 		 * is set to the global queue.
4362 		 */
4363 		tcp_timers_stop(tcp);
4364 
4365 		tcp->tcp_detached = B_TRUE;
4366 		if (tcp->tcp_state == TCPS_TIME_WAIT) {
4367 			tcp_time_wait_append(tcp);
4368 			TCP_DBGSTAT(tcp_detach_time_wait);
4369 			ASSERT(connp->conn_ref >= 3);
4370 			goto finish;
4371 		}
4372 
4373 		/*
4374 		 * If delta is zero the timer event wasn't executed and was
4375 		 * successfully canceled. In this case we need to restart it
4376 		 * with the minimal delta possible.
4377 		 */
4378 		if (delta >= 0)
4379 			tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer,
4380 			    delta ? delta : 1);
4381 
4382 		ASSERT(connp->conn_ref >= 3);
4383 		goto finish;
4384 	}
4385 
4386 	/* Detach did not complete. Still need to remove q from stream. */
4387 	if (msg) {
4388 		if (tcp->tcp_state == TCPS_ESTABLISHED ||
4389 		    tcp->tcp_state == TCPS_CLOSE_WAIT)
4390 			BUMP_MIB(&tcp_mib, tcpEstabResets);
4391 		if (tcp->tcp_state == TCPS_SYN_SENT ||
4392 		    tcp->tcp_state == TCPS_SYN_RCVD)
4393 			BUMP_MIB(&tcp_mib, tcpAttemptFails);
4394 		tcp_xmit_ctl(msg, tcp,  tcp->tcp_snxt, 0, TH_RST);
4395 	}
4396 
4397 	tcp_closei_local(tcp);
4398 	CONN_DEC_REF(connp);
4399 	ASSERT(connp->conn_ref >= 2);
4400 
4401 finish:
4402 	/*
4403 	 * Although packets are always processed on the correct
4404 	 * tcp's perimeter and access is serialized via squeue's,
4405 	 * IP still needs a queue when sending packets in time_wait
4406 	 * state so use WR(tcp_g_q) till ip_output() can be
4407 	 * changed to deal with just connp. For read side, we
4408 	 * could have set tcp_rq to NULL but there are some cases
4409 	 * in tcp_rput_data() from early days of this code which
4410 	 * do a putnext without checking if tcp is closed. Those
4411 	 * need to be identified before both tcp_rq and tcp_wq
4412 	 * can be set to NULL and tcp_q_q can disappear forever.
4413 	 */
4414 	mutex_enter(&tcp->tcp_closelock);
4415 	/*
4416 	 * Don't change the queues in the case of a listener that has
4417 	 * eagers in its q or q0. It could surprise the eagers.
4418 	 * Instead wait for the eagers outside the squeue.
4419 	 */
4420 	if (!tcp->tcp_wait_for_eagers) {
4421 		tcp->tcp_detached = B_TRUE;
4422 		tcp->tcp_rq = tcp_g_q;
4423 		tcp->tcp_wq = WR(tcp_g_q);
4424 	}
4425 
4426 	/* Signal tcp_close() to finish closing. */
4427 	tcp->tcp_closed = 1;
4428 	cv_signal(&tcp->tcp_closecv);
4429 	mutex_exit(&tcp->tcp_closelock);
4430 }
4431 
4432 
4433 /*
4434  * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp.
4435  * Some stream heads get upset if they see these later on as anything but NULL.
4436  */
4437 static void
4438 tcp_close_mpp(mblk_t **mpp)
4439 {
4440 	mblk_t	*mp;
4441 
4442 	if ((mp = *mpp) != NULL) {
4443 		do {
4444 			mp->b_next = NULL;
4445 			mp->b_prev = NULL;
4446 		} while ((mp = mp->b_cont) != NULL);
4447 
4448 		mp = *mpp;
4449 		*mpp = NULL;
4450 		freemsg(mp);
4451 	}
4452 }
4453 
4454 /* Do detached close. */
4455 static void
4456 tcp_close_detached(tcp_t *tcp)
4457 {
4458 	if (tcp->tcp_fused)
4459 		tcp_unfuse(tcp);
4460 
4461 	/*
4462 	 * Clustering code serializes TCP disconnect callbacks and
4463 	 * cluster tcp list walks by blocking a TCP disconnect callback
4464 	 * if a cluster tcp list walk is in progress. This ensures
4465 	 * accurate accounting of TCPs in the cluster code even though
4466 	 * the TCP list walk itself is not atomic.
4467 	 */
4468 	tcp_closei_local(tcp);
4469 	CONN_DEC_REF(tcp->tcp_connp);
4470 }
4471 
4472 /*
4473  * Stop all TCP timers, and free the timer mblks if requested.
4474  */
4475 void
4476 tcp_timers_stop(tcp_t *tcp)
4477 {
4478 	if (tcp->tcp_timer_tid != 0) {
4479 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
4480 		tcp->tcp_timer_tid = 0;
4481 	}
4482 	if (tcp->tcp_ka_tid != 0) {
4483 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ka_tid);
4484 		tcp->tcp_ka_tid = 0;
4485 	}
4486 	if (tcp->tcp_ack_tid != 0) {
4487 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid);
4488 		tcp->tcp_ack_tid = 0;
4489 	}
4490 	if (tcp->tcp_push_tid != 0) {
4491 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
4492 		tcp->tcp_push_tid = 0;
4493 	}
4494 }
4495 
4496 /*
4497  * The tcp_t is going away. Remove it from all lists and set it
4498  * to TCPS_CLOSED. The freeing up of memory is deferred until
4499  * tcp_inactive. This is needed since a thread in tcp_rput might have
4500  * done a CONN_INC_REF on this structure before it was removed from the
4501  * hashes.
4502  */
4503 static void
4504 tcp_closei_local(tcp_t *tcp)
4505 {
4506 	ire_t 	*ire;
4507 	conn_t	*connp = tcp->tcp_connp;
4508 
4509 	if (!TCP_IS_SOCKET(tcp))
4510 		tcp_acceptor_hash_remove(tcp);
4511 
4512 	UPDATE_MIB(&tcp_mib, tcpInSegs, tcp->tcp_ibsegs);
4513 	tcp->tcp_ibsegs = 0;
4514 	UPDATE_MIB(&tcp_mib, tcpOutSegs, tcp->tcp_obsegs);
4515 	tcp->tcp_obsegs = 0;
4516 
4517 	/*
4518 	 * If we are an eager connection hanging off a listener that
4519 	 * hasn't formally accepted the connection yet, get off his
4520 	 * list and blow off any data that we have accumulated.
4521 	 */
4522 	if (tcp->tcp_listener != NULL) {
4523 		tcp_t	*listener = tcp->tcp_listener;
4524 		mutex_enter(&listener->tcp_eager_lock);
4525 		/*
4526 		 * tcp_tconnind_started == B_TRUE means that the
4527 		 * conn_ind has already gone to listener. At
4528 		 * this point, eager will be closed but we
4529 		 * leave it in listeners eager list so that
4530 		 * if listener decides to close without doing
4531 		 * accept, we can clean this up. In tcp_wput_accept
4532 		 * we take care of the case of accept on closed
4533 		 * eager.
4534 		 */
4535 		if (!tcp->tcp_tconnind_started) {
4536 			tcp_eager_unlink(tcp);
4537 			mutex_exit(&listener->tcp_eager_lock);
4538 			/*
4539 			 * We don't want to have any pointers to the
4540 			 * listener queue, after we have released our
4541 			 * reference on the listener
4542 			 */
4543 			tcp->tcp_rq = tcp_g_q;
4544 			tcp->tcp_wq = WR(tcp_g_q);
4545 			CONN_DEC_REF(listener->tcp_connp);
4546 		} else {
4547 			mutex_exit(&listener->tcp_eager_lock);
4548 		}
4549 	}
4550 
4551 	/* Stop all the timers */
4552 	tcp_timers_stop(tcp);
4553 
4554 	if (tcp->tcp_state == TCPS_LISTEN) {
4555 		if (tcp->tcp_ip_addr_cache) {
4556 			kmem_free((void *)tcp->tcp_ip_addr_cache,
4557 			    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
4558 			tcp->tcp_ip_addr_cache = NULL;
4559 		}
4560 	}
4561 	if (tcp->tcp_flow_stopped)
4562 		tcp_clrqfull(tcp);
4563 
4564 	tcp_bind_hash_remove(tcp);
4565 	/*
4566 	 * If the tcp_time_wait_collector (which runs outside the squeue)
4567 	 * is trying to remove this tcp from the time wait list, we will
4568 	 * block in tcp_time_wait_remove while trying to acquire the
4569 	 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also
4570 	 * requires the ipcl_hash_remove to be ordered after the
4571 	 * tcp_time_wait_remove for the refcnt checks to work correctly.
4572 	 */
4573 	if (tcp->tcp_state == TCPS_TIME_WAIT)
4574 		(void) tcp_time_wait_remove(tcp, NULL);
4575 	CL_INET_DISCONNECT(tcp);
4576 	ipcl_hash_remove(connp);
4577 
4578 	/*
4579 	 * Delete the cached ire in conn_ire_cache and also mark
4580 	 * the conn as CONDEMNED
4581 	 */
4582 	mutex_enter(&connp->conn_lock);
4583 	connp->conn_state_flags |= CONN_CONDEMNED;
4584 	ire = connp->conn_ire_cache;
4585 	connp->conn_ire_cache = NULL;
4586 	mutex_exit(&connp->conn_lock);
4587 	if (ire != NULL)
4588 		IRE_REFRELE_NOTR(ire);
4589 
4590 	/* Need to cleanup any pending ioctls */
4591 	ASSERT(tcp->tcp_time_wait_next == NULL);
4592 	ASSERT(tcp->tcp_time_wait_prev == NULL);
4593 	ASSERT(tcp->tcp_time_wait_expire == 0);
4594 	tcp->tcp_state = TCPS_CLOSED;
4595 
4596 	/* Release any SSL context */
4597 	if (tcp->tcp_kssl_ent != NULL) {
4598 		kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY);
4599 		tcp->tcp_kssl_ent = NULL;
4600 	}
4601 	if (tcp->tcp_kssl_ctx != NULL) {
4602 		kssl_release_ctx(tcp->tcp_kssl_ctx);
4603 		tcp->tcp_kssl_ctx = NULL;
4604 	}
4605 	tcp->tcp_kssl_pending = B_FALSE;
4606 }
4607 
4608 /*
4609  * tcp is dying (called from ipcl_conn_destroy and error cases).
4610  * Free the tcp_t in either case.
4611  */
4612 void
4613 tcp_free(tcp_t *tcp)
4614 {
4615 	mblk_t	*mp;
4616 	ip6_pkt_t	*ipp;
4617 
4618 	ASSERT(tcp != NULL);
4619 	ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL);
4620 
4621 	tcp->tcp_rq = NULL;
4622 	tcp->tcp_wq = NULL;
4623 
4624 	tcp_close_mpp(&tcp->tcp_xmit_head);
4625 	tcp_close_mpp(&tcp->tcp_reass_head);
4626 	if (tcp->tcp_rcv_list != NULL) {
4627 		/* Free b_next chain */
4628 		tcp_close_mpp(&tcp->tcp_rcv_list);
4629 	}
4630 	if ((mp = tcp->tcp_urp_mp) != NULL) {
4631 		freemsg(mp);
4632 	}
4633 	if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
4634 		freemsg(mp);
4635 	}
4636 
4637 	if (tcp->tcp_fused_sigurg_mp != NULL) {
4638 		freeb(tcp->tcp_fused_sigurg_mp);
4639 		tcp->tcp_fused_sigurg_mp = NULL;
4640 	}
4641 
4642 	if (tcp->tcp_sack_info != NULL) {
4643 		if (tcp->tcp_notsack_list != NULL) {
4644 			TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
4645 		}
4646 		bzero(tcp->tcp_sack_info, sizeof (tcp_sack_info_t));
4647 	}
4648 
4649 	if (tcp->tcp_hopopts != NULL) {
4650 		mi_free(tcp->tcp_hopopts);
4651 		tcp->tcp_hopopts = NULL;
4652 		tcp->tcp_hopoptslen = 0;
4653 	}
4654 	ASSERT(tcp->tcp_hopoptslen == 0);
4655 	if (tcp->tcp_dstopts != NULL) {
4656 		mi_free(tcp->tcp_dstopts);
4657 		tcp->tcp_dstopts = NULL;
4658 		tcp->tcp_dstoptslen = 0;
4659 	}
4660 	ASSERT(tcp->tcp_dstoptslen == 0);
4661 	if (tcp->tcp_rtdstopts != NULL) {
4662 		mi_free(tcp->tcp_rtdstopts);
4663 		tcp->tcp_rtdstopts = NULL;
4664 		tcp->tcp_rtdstoptslen = 0;
4665 	}
4666 	ASSERT(tcp->tcp_rtdstoptslen == 0);
4667 	if (tcp->tcp_rthdr != NULL) {
4668 		mi_free(tcp->tcp_rthdr);
4669 		tcp->tcp_rthdr = NULL;
4670 		tcp->tcp_rthdrlen = 0;
4671 	}
4672 	ASSERT(tcp->tcp_rthdrlen == 0);
4673 
4674 	ipp = &tcp->tcp_sticky_ipp;
4675 	if (ipp->ipp_fields & (IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS |
4676 	    IPPF_RTHDR))
4677 		ip6_pkt_free(ipp);
4678 
4679 	/*
4680 	 * Free memory associated with the tcp/ip header template.
4681 	 */
4682 
4683 	if (tcp->tcp_iphc != NULL)
4684 		bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
4685 
4686 	/*
4687 	 * Following is really a blowing away a union.
4688 	 * It happens to have exactly two members of identical size
4689 	 * the following code is enough.
4690 	 */
4691 	tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
4692 
4693 	if (tcp->tcp_tracebuf != NULL) {
4694 		kmem_free(tcp->tcp_tracebuf, sizeof (tcptrch_t));
4695 		tcp->tcp_tracebuf = NULL;
4696 	}
4697 }
4698 
4699 
4700 /*
4701  * Put a connection confirmation message upstream built from the
4702  * address information within 'iph' and 'tcph'.  Report our success or failure.
4703  */
4704 static boolean_t
4705 tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, mblk_t *idmp,
4706     mblk_t **defermp)
4707 {
4708 	sin_t	sin;
4709 	sin6_t	sin6;
4710 	mblk_t	*mp;
4711 	char	*optp = NULL;
4712 	int	optlen = 0;
4713 	cred_t	*cr;
4714 
4715 	if (defermp != NULL)
4716 		*defermp = NULL;
4717 
4718 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL) {
4719 		/*
4720 		 * Return in T_CONN_CON results of option negotiation through
4721 		 * the T_CONN_REQ. Note: If there is an real end-to-end option
4722 		 * negotiation, then what is received from remote end needs
4723 		 * to be taken into account but there is no such thing (yet?)
4724 		 * in our TCP/IP.
4725 		 * Note: We do not use mi_offset_param() here as
4726 		 * tcp_opts_conn_req contents do not directly come from
4727 		 * an application and are either generated in kernel or
4728 		 * from user input that was already verified.
4729 		 */
4730 		mp = tcp->tcp_conn.tcp_opts_conn_req;
4731 		optp = (char *)(mp->b_rptr +
4732 		    ((struct T_conn_req *)mp->b_rptr)->OPT_offset);
4733 		optlen = (int)
4734 		    ((struct T_conn_req *)mp->b_rptr)->OPT_length;
4735 	}
4736 
4737 	if (IPH_HDR_VERSION(iphdr) == IPV4_VERSION) {
4738 		ipha_t *ipha = (ipha_t *)iphdr;
4739 
4740 		/* packet is IPv4 */
4741 		if (tcp->tcp_family == AF_INET) {
4742 			sin = sin_null;
4743 			sin.sin_addr.s_addr = ipha->ipha_src;
4744 			sin.sin_port = *(uint16_t *)tcph->th_lport;
4745 			sin.sin_family = AF_INET;
4746 			mp = mi_tpi_conn_con(NULL, (char *)&sin,
4747 			    (int)sizeof (sin_t), optp, optlen);
4748 		} else {
4749 			sin6 = sin6_null;
4750 			IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr);
4751 			sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4752 			sin6.sin6_family = AF_INET6;
4753 			mp = mi_tpi_conn_con(NULL, (char *)&sin6,
4754 			    (int)sizeof (sin6_t), optp, optlen);
4755 
4756 		}
4757 	} else {
4758 		ip6_t	*ip6h = (ip6_t *)iphdr;
4759 
4760 		ASSERT(IPH_HDR_VERSION(iphdr) == IPV6_VERSION);
4761 		ASSERT(tcp->tcp_family == AF_INET6);
4762 		sin6 = sin6_null;
4763 		sin6.sin6_addr = ip6h->ip6_src;
4764 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4765 		sin6.sin6_family = AF_INET6;
4766 		sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK;
4767 		mp = mi_tpi_conn_con(NULL, (char *)&sin6,
4768 		    (int)sizeof (sin6_t), optp, optlen);
4769 	}
4770 
4771 	if (!mp)
4772 		return (B_FALSE);
4773 
4774 	if ((cr = DB_CRED(idmp)) != NULL) {
4775 		mblk_setcred(mp, cr);
4776 		DB_CPID(mp) = DB_CPID(idmp);
4777 	}
4778 
4779 	if (defermp == NULL)
4780 		putnext(tcp->tcp_rq, mp);
4781 	else
4782 		*defermp = mp;
4783 
4784 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
4785 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
4786 	return (B_TRUE);
4787 }
4788 
4789 /*
4790  * Defense for the SYN attack -
4791  * 1. When q0 is full, drop from the tail (tcp_eager_prev_drop_q0) the oldest
4792  *    one from the list of droppable eagers. This list is a subset of q0.
4793  *    see comments before the definition of MAKE_DROPPABLE().
4794  * 2. Don't drop a SYN request before its first timeout. This gives every
4795  *    request at least til the first timeout to complete its 3-way handshake.
4796  * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many
4797  *    requests currently on the queue that has timed out. This will be used
4798  *    as an indicator of whether an attack is under way, so that appropriate
4799  *    actions can be taken. (It's incremented in tcp_timer() and decremented
4800  *    either when eager goes into ESTABLISHED, or gets freed up.)
4801  * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on
4802  *    # of timeout drops back to <= q0len/32 => SYN alert off
4803  */
4804 static boolean_t
4805 tcp_drop_q0(tcp_t *tcp)
4806 {
4807 	tcp_t	*eager;
4808 	mblk_t	*mp;
4809 
4810 	ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock));
4811 	ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0);
4812 
4813 	/* Pick oldest eager from the list of droppable eagers */
4814 	eager = tcp->tcp_eager_prev_drop_q0;
4815 
4816 	/* If list is empty. return B_FALSE */
4817 	if (eager == tcp) {
4818 		return (B_FALSE);
4819 	}
4820 
4821 	/* If allocated, the mp will be freed in tcp_clean_death_wrapper() */
4822 	if ((mp = allocb(0, BPRI_HI)) == NULL)
4823 		return (B_FALSE);
4824 
4825 	/*
4826 	 * Take this eager out from the list of droppable eagers since we are
4827 	 * going to drop it.
4828 	 */
4829 	MAKE_UNDROPPABLE(eager);
4830 
4831 	if (tcp->tcp_debug) {
4832 		(void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE,
4833 		    "tcp_drop_q0: listen half-open queue (max=%d) overflow"
4834 		    " (%d pending) on %s, drop one", tcp_conn_req_max_q0,
4835 		    tcp->tcp_conn_req_cnt_q0,
4836 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
4837 	}
4838 
4839 	BUMP_MIB(&tcp_mib, tcpHalfOpenDrop);
4840 
4841 	/* Put a reference on the conn as we are enqueueing it in the sqeue */
4842 	CONN_INC_REF(eager->tcp_connp);
4843 
4844 	/* Mark the IRE created for this SYN request temporary */
4845 	tcp_ip_ire_mark_advice(eager);
4846 	squeue_fill(eager->tcp_connp->conn_sqp, mp,
4847 	    tcp_clean_death_wrapper, eager->tcp_connp, SQTAG_TCP_DROP_Q0);
4848 
4849 	return (B_TRUE);
4850 }
4851 
4852 int
4853 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp,
4854     tcph_t *tcph, uint_t ipvers, mblk_t *idmp)
4855 {
4856 	tcp_t 		*ltcp = lconnp->conn_tcp;
4857 	tcp_t		*tcp = connp->conn_tcp;
4858 	mblk_t		*tpi_mp;
4859 	ipha_t		*ipha;
4860 	ip6_t		*ip6h;
4861 	sin6_t 		sin6;
4862 	in6_addr_t 	v6dst;
4863 	int		err;
4864 	int		ifindex = 0;
4865 	cred_t		*cr;
4866 
4867 	if (ipvers == IPV4_VERSION) {
4868 		ipha = (ipha_t *)mp->b_rptr;
4869 
4870 		connp->conn_send = ip_output;
4871 		connp->conn_recv = tcp_input;
4872 
4873 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6);
4874 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6);
4875 
4876 		sin6 = sin6_null;
4877 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr);
4878 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &v6dst);
4879 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4880 		sin6.sin6_family = AF_INET6;
4881 		sin6.__sin6_src_id = ip_srcid_find_addr(&v6dst,
4882 		    lconnp->conn_zoneid);
4883 		if (tcp->tcp_recvdstaddr) {
4884 			sin6_t	sin6d;
4885 
4886 			sin6d = sin6_null;
4887 			IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst,
4888 			    &sin6d.sin6_addr);
4889 			sin6d.sin6_port = *(uint16_t *)tcph->th_fport;
4890 			sin6d.sin6_family = AF_INET;
4891 			tpi_mp = mi_tpi_extconn_ind(NULL,
4892 			    (char *)&sin6d, sizeof (sin6_t),
4893 			    (char *)&tcp,
4894 			    (t_scalar_t)sizeof (intptr_t),
4895 			    (char *)&sin6d, sizeof (sin6_t),
4896 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4897 		} else {
4898 			tpi_mp = mi_tpi_conn_ind(NULL,
4899 			    (char *)&sin6, sizeof (sin6_t),
4900 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4901 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4902 		}
4903 	} else {
4904 		ip6h = (ip6_t *)mp->b_rptr;
4905 
4906 		connp->conn_send = ip_output_v6;
4907 		connp->conn_recv = tcp_input;
4908 
4909 		connp->conn_srcv6 = ip6h->ip6_dst;
4910 		connp->conn_remv6 = ip6h->ip6_src;
4911 
4912 		/* db_cksumstuff is set at ip_fanout_tcp_v6 */
4913 		ifindex = (int)DB_CKSUMSTUFF(mp);
4914 		DB_CKSUMSTUFF(mp) = 0;
4915 
4916 		sin6 = sin6_null;
4917 		sin6.sin6_addr = ip6h->ip6_src;
4918 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4919 		sin6.sin6_family = AF_INET6;
4920 		sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK;
4921 		sin6.__sin6_src_id = ip_srcid_find_addr(&ip6h->ip6_dst,
4922 		    lconnp->conn_zoneid);
4923 
4924 		if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) {
4925 			/* Pass up the scope_id of remote addr */
4926 			sin6.sin6_scope_id = ifindex;
4927 		} else {
4928 			sin6.sin6_scope_id = 0;
4929 		}
4930 		if (tcp->tcp_recvdstaddr) {
4931 			sin6_t	sin6d;
4932 
4933 			sin6d = sin6_null;
4934 			sin6.sin6_addr = ip6h->ip6_dst;
4935 			sin6d.sin6_port = *(uint16_t *)tcph->th_fport;
4936 			sin6d.sin6_family = AF_INET;
4937 			tpi_mp = mi_tpi_extconn_ind(NULL,
4938 			    (char *)&sin6d, sizeof (sin6_t),
4939 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4940 			    (char *)&sin6d, sizeof (sin6_t),
4941 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4942 		} else {
4943 			tpi_mp = mi_tpi_conn_ind(NULL,
4944 			    (char *)&sin6, sizeof (sin6_t),
4945 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4946 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4947 		}
4948 	}
4949 
4950 	if (tpi_mp == NULL)
4951 		return (ENOMEM);
4952 
4953 	connp->conn_fport = *(uint16_t *)tcph->th_lport;
4954 	connp->conn_lport = *(uint16_t *)tcph->th_fport;
4955 	connp->conn_flags |= (IPCL_TCP6|IPCL_EAGER);
4956 	connp->conn_fully_bound = B_FALSE;
4957 
4958 	if (tcp_trace)
4959 		tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_NOSLEEP);
4960 
4961 	/* Inherit information from the "parent" */
4962 	tcp->tcp_ipversion = ltcp->tcp_ipversion;
4963 	tcp->tcp_family = ltcp->tcp_family;
4964 	tcp->tcp_wq = ltcp->tcp_wq;
4965 	tcp->tcp_rq = ltcp->tcp_rq;
4966 	tcp->tcp_mss = tcp_mss_def_ipv6;
4967 	tcp->tcp_detached = B_TRUE;
4968 	if ((err = tcp_init_values(tcp)) != 0) {
4969 		freemsg(tpi_mp);
4970 		return (err);
4971 	}
4972 
4973 	if (ipvers == IPV4_VERSION) {
4974 		if ((err = tcp_header_init_ipv4(tcp)) != 0) {
4975 			freemsg(tpi_mp);
4976 			return (err);
4977 		}
4978 		ASSERT(tcp->tcp_ipha != NULL);
4979 	} else {
4980 		/* ifindex must be already set */
4981 		ASSERT(ifindex != 0);
4982 
4983 		if (ltcp->tcp_bound_if != 0) {
4984 			/*
4985 			 * Set newtcp's bound_if equal to
4986 			 * listener's value. If ifindex is
4987 			 * not the same as ltcp->tcp_bound_if,
4988 			 * it must be a packet for the ipmp group
4989 			 * of interfaces
4990 			 */
4991 			tcp->tcp_bound_if = ltcp->tcp_bound_if;
4992 		} else if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) {
4993 			tcp->tcp_bound_if = ifindex;
4994 		}
4995 
4996 		tcp->tcp_ipv6_recvancillary = ltcp->tcp_ipv6_recvancillary;
4997 		tcp->tcp_recvifindex = 0;
4998 		tcp->tcp_recvhops = 0xffffffffU;
4999 		ASSERT(tcp->tcp_ip6h != NULL);
5000 	}
5001 
5002 	tcp->tcp_lport = ltcp->tcp_lport;
5003 
5004 	if (ltcp->tcp_ipversion == tcp->tcp_ipversion) {
5005 		if (tcp->tcp_iphc_len != ltcp->tcp_iphc_len) {
5006 			/*
5007 			 * Listener had options of some sort; eager inherits.
5008 			 * Free up the eager template and allocate one
5009 			 * of the right size.
5010 			 */
5011 			if (tcp->tcp_hdr_grown) {
5012 				kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len);
5013 			} else {
5014 				bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
5015 				kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc);
5016 			}
5017 			tcp->tcp_iphc = kmem_zalloc(ltcp->tcp_iphc_len,
5018 			    KM_NOSLEEP);
5019 			if (tcp->tcp_iphc == NULL) {
5020 				tcp->tcp_iphc_len = 0;
5021 				freemsg(tpi_mp);
5022 				return (ENOMEM);
5023 			}
5024 			tcp->tcp_iphc_len = ltcp->tcp_iphc_len;
5025 			tcp->tcp_hdr_grown = B_TRUE;
5026 		}
5027 		tcp->tcp_hdr_len = ltcp->tcp_hdr_len;
5028 		tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len;
5029 		tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
5030 		tcp->tcp_ip6_hops = ltcp->tcp_ip6_hops;
5031 		tcp->tcp_ip6_vcf = ltcp->tcp_ip6_vcf;
5032 
5033 		/*
5034 		 * Copy the IP+TCP header template from listener to eager
5035 		 */
5036 		bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len);
5037 		if (tcp->tcp_ipversion == IPV6_VERSION) {
5038 			if (((ip6i_t *)(tcp->tcp_iphc))->ip6i_nxt ==
5039 			    IPPROTO_RAW) {
5040 				tcp->tcp_ip6h =
5041 				    (ip6_t *)(tcp->tcp_iphc +
5042 					sizeof (ip6i_t));
5043 			} else {
5044 				tcp->tcp_ip6h =
5045 				    (ip6_t *)(tcp->tcp_iphc);
5046 			}
5047 			tcp->tcp_ipha = NULL;
5048 		} else {
5049 			tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
5050 			tcp->tcp_ip6h = NULL;
5051 		}
5052 		tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc +
5053 		    tcp->tcp_ip_hdr_len);
5054 	} else {
5055 		/*
5056 		 * only valid case when ipversion of listener and
5057 		 * eager differ is when listener is IPv6 and
5058 		 * eager is IPv4.
5059 		 * Eager header template has been initialized to the
5060 		 * maximum v4 header sizes, which includes space for
5061 		 * TCP and IP options.
5062 		 */
5063 		ASSERT((ltcp->tcp_ipversion == IPV6_VERSION) &&
5064 		    (tcp->tcp_ipversion == IPV4_VERSION));
5065 		ASSERT(tcp->tcp_iphc_len >=
5066 		    TCP_MAX_COMBINED_HEADER_LENGTH);
5067 		tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
5068 		/* copy IP header fields individually */
5069 		tcp->tcp_ipha->ipha_ttl =
5070 		    ltcp->tcp_ip6h->ip6_hops;
5071 		bcopy(ltcp->tcp_tcph->th_lport,
5072 		    tcp->tcp_tcph->th_lport, sizeof (ushort_t));
5073 	}
5074 
5075 	bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t));
5076 	bcopy(tcp->tcp_tcph->th_fport, &tcp->tcp_fport,
5077 	    sizeof (in_port_t));
5078 
5079 	if (ltcp->tcp_lport == 0) {
5080 		tcp->tcp_lport = *(in_port_t *)tcph->th_fport;
5081 		bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport,
5082 		    sizeof (in_port_t));
5083 	}
5084 
5085 	if (tcp->tcp_ipversion == IPV4_VERSION) {
5086 		ASSERT(ipha != NULL);
5087 		tcp->tcp_ipha->ipha_dst = ipha->ipha_src;
5088 		tcp->tcp_ipha->ipha_src = ipha->ipha_dst;
5089 
5090 		/* Source routing option copyover (reverse it) */
5091 		if (tcp_rev_src_routes)
5092 			tcp_opt_reverse(tcp, ipha);
5093 	} else {
5094 		ASSERT(ip6h != NULL);
5095 		tcp->tcp_ip6h->ip6_dst = ip6h->ip6_src;
5096 		tcp->tcp_ip6h->ip6_src = ip6h->ip6_dst;
5097 	}
5098 
5099 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
5100 	ASSERT(!tcp->tcp_tconnind_started);
5101 	/*
5102 	 * If the SYN contains a credential, it's a loopback packet; attach
5103 	 * the credential to the TPI message.
5104 	 */
5105 	if ((cr = DB_CRED(idmp)) != NULL) {
5106 		mblk_setcred(tpi_mp, cr);
5107 		DB_CPID(tpi_mp) = DB_CPID(idmp);
5108 	}
5109 	tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp;
5110 
5111 	/* Inherit the listener's SSL protection state */
5112 
5113 	if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) {
5114 		kssl_hold_ent(tcp->tcp_kssl_ent);
5115 		tcp->tcp_kssl_pending = B_TRUE;
5116 	}
5117 
5118 	return (0);
5119 }
5120 
5121 
5122 int
5123 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha,
5124     tcph_t *tcph, mblk_t *idmp)
5125 {
5126 	tcp_t 		*ltcp = lconnp->conn_tcp;
5127 	tcp_t		*tcp = connp->conn_tcp;
5128 	sin_t		sin;
5129 	mblk_t		*tpi_mp = NULL;
5130 	int		err;
5131 	cred_t		*cr;
5132 
5133 	sin = sin_null;
5134 	sin.sin_addr.s_addr = ipha->ipha_src;
5135 	sin.sin_port = *(uint16_t *)tcph->th_lport;
5136 	sin.sin_family = AF_INET;
5137 	if (ltcp->tcp_recvdstaddr) {
5138 		sin_t	sind;
5139 
5140 		sind = sin_null;
5141 		sind.sin_addr.s_addr = ipha->ipha_dst;
5142 		sind.sin_port = *(uint16_t *)tcph->th_fport;
5143 		sind.sin_family = AF_INET;
5144 		tpi_mp = mi_tpi_extconn_ind(NULL,
5145 		    (char *)&sind, sizeof (sin_t), (char *)&tcp,
5146 		    (t_scalar_t)sizeof (intptr_t), (char *)&sind,
5147 		    sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum);
5148 	} else {
5149 		tpi_mp = mi_tpi_conn_ind(NULL,
5150 		    (char *)&sin, sizeof (sin_t),
5151 		    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
5152 		    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
5153 	}
5154 
5155 	if (tpi_mp == NULL) {
5156 		return (ENOMEM);
5157 	}
5158 
5159 	connp->conn_flags |= (IPCL_TCP4|IPCL_EAGER);
5160 	connp->conn_send = ip_output;
5161 	connp->conn_recv = tcp_input;
5162 	connp->conn_fully_bound = B_FALSE;
5163 
5164 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6);
5165 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6);
5166 	connp->conn_fport = *(uint16_t *)tcph->th_lport;
5167 	connp->conn_lport = *(uint16_t *)tcph->th_fport;
5168 
5169 	if (tcp_trace) {
5170 		tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_NOSLEEP);
5171 	}
5172 
5173 	/* Inherit information from the "parent" */
5174 	tcp->tcp_ipversion = ltcp->tcp_ipversion;
5175 	tcp->tcp_family = ltcp->tcp_family;
5176 	tcp->tcp_wq = ltcp->tcp_wq;
5177 	tcp->tcp_rq = ltcp->tcp_rq;
5178 	tcp->tcp_mss = tcp_mss_def_ipv4;
5179 	tcp->tcp_detached = B_TRUE;
5180 	if ((err = tcp_init_values(tcp)) != 0) {
5181 		freemsg(tpi_mp);
5182 		return (err);
5183 	}
5184 
5185 	/*
5186 	 * Let's make sure that eager tcp template has enough space to
5187 	 * copy IPv4 listener's tcp template. Since the conn_t structure is
5188 	 * preserved and tcp_iphc_len is also preserved, an eager conn_t may
5189 	 * have a tcp_template of total len TCP_MAX_COMBINED_HEADER_LENGTH or
5190 	 * more (in case of re-allocation of conn_t with tcp-IPv6 template with
5191 	 * extension headers or with ip6i_t struct). Note that bcopy() below
5192 	 * copies listener tcp's hdr_len which cannot be greater than TCP_MAX_
5193 	 * COMBINED_HEADER_LENGTH as this listener must be a IPv4 listener.
5194 	 */
5195 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
5196 	ASSERT(ltcp->tcp_hdr_len <= TCP_MAX_COMBINED_HEADER_LENGTH);
5197 
5198 	tcp->tcp_hdr_len = ltcp->tcp_hdr_len;
5199 	tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len;
5200 	tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
5201 	tcp->tcp_ttl = ltcp->tcp_ttl;
5202 	tcp->tcp_tos = ltcp->tcp_tos;
5203 
5204 	/* Copy the IP+TCP header template from listener to eager */
5205 	bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len);
5206 	tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
5207 	tcp->tcp_ip6h = NULL;
5208 	tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc +
5209 	    tcp->tcp_ip_hdr_len);
5210 
5211 	/* Initialize the IP addresses and Ports */
5212 	tcp->tcp_ipha->ipha_dst = ipha->ipha_src;
5213 	tcp->tcp_ipha->ipha_src = ipha->ipha_dst;
5214 	bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t));
5215 	bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, sizeof (in_port_t));
5216 
5217 	/* Source routing option copyover (reverse it) */
5218 	if (tcp_rev_src_routes)
5219 		tcp_opt_reverse(tcp, ipha);
5220 
5221 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
5222 	ASSERT(!tcp->tcp_tconnind_started);
5223 
5224 	/*
5225 	 * If the SYN contains a credential, it's a loopback packet; attach
5226 	 * the credential to the TPI message.
5227 	 */
5228 	if ((cr = DB_CRED(idmp)) != NULL) {
5229 		mblk_setcred(tpi_mp, cr);
5230 		DB_CPID(tpi_mp) = DB_CPID(idmp);
5231 	}
5232 	tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp;
5233 
5234 	/* Inherit the listener's SSL protection state */
5235 	if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) {
5236 		kssl_hold_ent(tcp->tcp_kssl_ent);
5237 		tcp->tcp_kssl_pending = B_TRUE;
5238 	}
5239 
5240 	return (0);
5241 }
5242 
5243 /*
5244  * sets up conn for ipsec.
5245  * if the first mblk is M_CTL it is consumed and mpp is updated.
5246  * in case of error mpp is freed.
5247  */
5248 conn_t *
5249 tcp_get_ipsec_conn(tcp_t *tcp, squeue_t *sqp, mblk_t **mpp)
5250 {
5251 	conn_t 		*connp = tcp->tcp_connp;
5252 	conn_t 		*econnp;
5253 	squeue_t 	*new_sqp;
5254 	mblk_t 		*first_mp = *mpp;
5255 	mblk_t		*mp = *mpp;
5256 	boolean_t	mctl_present = B_FALSE;
5257 	uint_t		ipvers;
5258 
5259 	econnp = tcp_get_conn(sqp);
5260 	if (econnp == NULL) {
5261 		freemsg(first_mp);
5262 		return (NULL);
5263 	}
5264 	if (DB_TYPE(mp) == M_CTL) {
5265 		if (mp->b_cont == NULL ||
5266 		    mp->b_cont->b_datap->db_type != M_DATA) {
5267 			freemsg(first_mp);
5268 			return (NULL);
5269 		}
5270 		mp = mp->b_cont;
5271 		if ((mp->b_datap->db_struioflag & STRUIO_EAGER) == 0) {
5272 			freemsg(first_mp);
5273 			return (NULL);
5274 		}
5275 
5276 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
5277 		first_mp->b_datap->db_struioflag &= ~STRUIO_POLICY;
5278 		mctl_present = B_TRUE;
5279 	} else {
5280 		ASSERT(mp->b_datap->db_struioflag & STRUIO_POLICY);
5281 		mp->b_datap->db_struioflag &= ~STRUIO_POLICY;
5282 	}
5283 
5284 	new_sqp = (squeue_t *)DB_CKSUMSTART(mp);
5285 	DB_CKSUMSTART(mp) = 0;
5286 
5287 	ASSERT(OK_32PTR(mp->b_rptr));
5288 	ipvers = IPH_HDR_VERSION(mp->b_rptr);
5289 	if (ipvers == IPV4_VERSION) {
5290 		uint16_t  	*up;
5291 		uint32_t	ports;
5292 		ipha_t		*ipha;
5293 
5294 		ipha = (ipha_t *)mp->b_rptr;
5295 		up = (uint16_t *)((uchar_t *)ipha +
5296 		    IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET);
5297 		ports = *(uint32_t *)up;
5298 		IPCL_TCP_EAGER_INIT(econnp, IPPROTO_TCP,
5299 		    ipha->ipha_dst, ipha->ipha_src, ports);
5300 	} else {
5301 		uint16_t  	*up;
5302 		uint32_t	ports;
5303 		uint16_t	ip_hdr_len;
5304 		uint8_t		*nexthdrp;
5305 		ip6_t 		*ip6h;
5306 		tcph_t		*tcph;
5307 
5308 		ip6h = (ip6_t *)mp->b_rptr;
5309 		if (ip6h->ip6_nxt == IPPROTO_TCP) {
5310 			ip_hdr_len = IPV6_HDR_LEN;
5311 		} else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ip_hdr_len,
5312 		    &nexthdrp) || *nexthdrp != IPPROTO_TCP) {
5313 			CONN_DEC_REF(econnp);
5314 			freemsg(first_mp);
5315 			return (NULL);
5316 		}
5317 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
5318 		up = (uint16_t *)tcph->th_lport;
5319 		ports = *(uint32_t *)up;
5320 		IPCL_TCP_EAGER_INIT_V6(econnp, IPPROTO_TCP,
5321 		    ip6h->ip6_dst, ip6h->ip6_src, ports);
5322 	}
5323 
5324 	/*
5325 	 * The caller already ensured that there is a sqp present.
5326 	 */
5327 	econnp->conn_sqp = new_sqp;
5328 
5329 	if (connp->conn_policy != NULL) {
5330 		ipsec_in_t *ii;
5331 		ii = (ipsec_in_t *)(first_mp->b_rptr);
5332 		ASSERT(ii->ipsec_in_policy == NULL);
5333 		IPPH_REFHOLD(connp->conn_policy);
5334 		ii->ipsec_in_policy = connp->conn_policy;
5335 
5336 		first_mp->b_datap->db_type = IPSEC_POLICY_SET;
5337 		if (!ip_bind_ipsec_policy_set(econnp, first_mp)) {
5338 			CONN_DEC_REF(econnp);
5339 			freemsg(first_mp);
5340 			return (NULL);
5341 		}
5342 	}
5343 
5344 	if (ipsec_conn_cache_policy(econnp, ipvers == IPV4_VERSION) != 0) {
5345 		CONN_DEC_REF(econnp);
5346 		freemsg(first_mp);
5347 		return (NULL);
5348 	}
5349 
5350 	/*
5351 	 * If we know we have some policy, pass the "IPSEC"
5352 	 * options size TCP uses this adjust the MSS.
5353 	 */
5354 	econnp->conn_tcp->tcp_ipsec_overhead = conn_ipsec_length(econnp);
5355 	if (mctl_present) {
5356 		freeb(first_mp);
5357 		*mpp = mp;
5358 	}
5359 
5360 	return (econnp);
5361 }
5362 
5363 /*
5364  * tcp_get_conn/tcp_free_conn
5365  *
5366  * tcp_get_conn is used to get a clean tcp connection structure.
5367  * It tries to reuse the connections put on the freelist by the
5368  * time_wait_collector failing which it goes to kmem_cache. This
5369  * way has two benefits compared to just allocating from and
5370  * freeing to kmem_cache.
5371  * 1) The time_wait_collector can free (which includes the cleanup)
5372  * outside the squeue. So when the interrupt comes, we have a clean
5373  * connection sitting in the freelist. Obviously, this buys us
5374  * performance.
5375  *
5376  * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_conn_request
5377  * has multiple disadvantages - tying up the squeue during alloc, and the
5378  * fact that IPSec policy initialization has to happen here which
5379  * requires us sending a M_CTL and checking for it i.e. real ugliness.
5380  * But allocating the conn/tcp in IP land is also not the best since
5381  * we can't check the 'q' and 'q0' which are protected by squeue and
5382  * blindly allocate memory which might have to be freed here if we are
5383  * not allowed to accept the connection. By using the freelist and
5384  * putting the conn/tcp back in freelist, we don't pay a penalty for
5385  * allocating memory without checking 'q/q0' and freeing it if we can't
5386  * accept the connection.
5387  *
5388  * Care should be taken to put the conn back in the same squeue's freelist
5389  * from which it was allocated. Best results are obtained if conn is
5390  * allocated from listener's squeue and freed to the same. Time wait
5391  * collector will free up the freelist is the connection ends up sitting
5392  * there for too long.
5393  */
5394 void *
5395 tcp_get_conn(void *arg)
5396 {
5397 	tcp_t			*tcp = NULL;
5398 	conn_t			*connp = NULL;
5399 	squeue_t		*sqp = (squeue_t *)arg;
5400 	tcp_squeue_priv_t 	*tcp_time_wait;
5401 
5402 	tcp_time_wait =
5403 	    *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP));
5404 
5405 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
5406 	tcp = tcp_time_wait->tcp_free_list;
5407 	ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0));
5408 	if (tcp != NULL) {
5409 		tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next;
5410 		tcp_time_wait->tcp_free_list_cnt--;
5411 		mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
5412 		tcp->tcp_time_wait_next = NULL;
5413 		connp = tcp->tcp_connp;
5414 		connp->conn_flags |= IPCL_REUSED;
5415 		return ((void *)connp);
5416 	}
5417 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
5418 	if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP)) == NULL)
5419 		return (NULL);
5420 	return ((void *)connp);
5421 }
5422 
5423 /*
5424  * Update the cached label for the given tcp_t.  This should be called once per
5425  * connection, and before any packets are sent or tcp_process_options is
5426  * invoked.  Returns B_FALSE if the correct label could not be constructed.
5427  */
5428 static boolean_t
5429 tcp_update_label(tcp_t *tcp, const cred_t *cr)
5430 {
5431 	conn_t *connp = tcp->tcp_connp;
5432 
5433 	if (tcp->tcp_ipversion == IPV4_VERSION) {
5434 		uchar_t optbuf[IP_MAX_OPT_LENGTH];
5435 		int added;
5436 
5437 		if (tsol_compute_label(cr, tcp->tcp_remote, optbuf,
5438 		    connp->conn_mac_exempt) != 0)
5439 			return (B_FALSE);
5440 
5441 		added = tsol_remove_secopt(tcp->tcp_ipha, tcp->tcp_hdr_len);
5442 		if (added == -1)
5443 			return (B_FALSE);
5444 		tcp->tcp_hdr_len += added;
5445 		tcp->tcp_tcph = (tcph_t *)((uchar_t *)tcp->tcp_tcph + added);
5446 		tcp->tcp_ip_hdr_len += added;
5447 		if ((tcp->tcp_label_len = optbuf[IPOPT_OLEN]) != 0) {
5448 			tcp->tcp_label_len = (tcp->tcp_label_len + 3) & ~3;
5449 			added = tsol_prepend_option(optbuf, tcp->tcp_ipha,
5450 			    tcp->tcp_hdr_len);
5451 			if (added == -1)
5452 				return (B_FALSE);
5453 			tcp->tcp_hdr_len += added;
5454 			tcp->tcp_tcph = (tcph_t *)
5455 			    ((uchar_t *)tcp->tcp_tcph + added);
5456 			tcp->tcp_ip_hdr_len += added;
5457 		}
5458 	} else {
5459 		uchar_t optbuf[TSOL_MAX_IPV6_OPTION];
5460 
5461 		if (tsol_compute_label_v6(cr, &tcp->tcp_remote_v6, optbuf,
5462 		    connp->conn_mac_exempt) != 0)
5463 			return (B_FALSE);
5464 		if (tsol_update_sticky(&tcp->tcp_sticky_ipp,
5465 		    &tcp->tcp_label_len, optbuf) != 0)
5466 			return (B_FALSE);
5467 		if (tcp_build_hdrs(tcp->tcp_rq, tcp) != 0)
5468 			return (B_FALSE);
5469 	}
5470 
5471 	connp->conn_ulp_labeled = 1;
5472 
5473 	return (B_TRUE);
5474 }
5475 
5476 /* BEGIN CSTYLED */
5477 /*
5478  *
5479  * The sockfs ACCEPT path:
5480  * =======================
5481  *
5482  * The eager is now established in its own perimeter as soon as SYN is
5483  * received in tcp_conn_request(). When sockfs receives conn_ind, it
5484  * completes the accept processing on the acceptor STREAM. The sending
5485  * of conn_ind part is common for both sockfs listener and a TLI/XTI
5486  * listener but a TLI/XTI listener completes the accept processing
5487  * on the listener perimeter.
5488  *
5489  * Common control flow for 3 way handshake:
5490  * ----------------------------------------
5491  *
5492  * incoming SYN (listener perimeter) 	-> tcp_rput_data()
5493  *					-> tcp_conn_request()
5494  *
5495  * incoming SYN-ACK-ACK (eager perim) 	-> tcp_rput_data()
5496  * send T_CONN_IND (listener perim)	-> tcp_send_conn_ind()
5497  *
5498  * Sockfs ACCEPT Path:
5499  * -------------------
5500  *
5501  * open acceptor stream (ip_tcpopen allocates tcp_wput_accept()
5502  * as STREAM entry point)
5503  *
5504  * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_wput_accept()
5505  *
5506  * tcp_wput_accept() extracts the eager and makes the q->q_ptr <-> eager
5507  * association (we are not behind eager's squeue but sockfs is protecting us
5508  * and no one knows about this stream yet. The STREAMS entry point q->q_info
5509  * is changed to point at tcp_wput().
5510  *
5511  * tcp_wput_accept() sends any deferred eagers via tcp_send_pending() to
5512  * listener (done on listener's perimeter).
5513  *
5514  * tcp_wput_accept() calls tcp_accept_finish() on eagers perimeter to finish
5515  * accept.
5516  *
5517  * TLI/XTI client ACCEPT path:
5518  * ---------------------------
5519  *
5520  * soaccept() sends T_CONN_RES on the listener STREAM.
5521  *
5522  * tcp_accept() -> tcp_accept_swap() complete the processing and send
5523  * the bind_mp to eager perimeter to finish accept (tcp_rput_other()).
5524  *
5525  * Locks:
5526  * ======
5527  *
5528  * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and
5529  * and listeners->tcp_eager_next_q.
5530  *
5531  * Referencing:
5532  * ============
5533  *
5534  * 1) We start out in tcp_conn_request by eager placing a ref on
5535  * listener and listener adding eager to listeners->tcp_eager_next_q0.
5536  *
5537  * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before
5538  * doing so we place a ref on the eager. This ref is finally dropped at the
5539  * end of tcp_accept_finish() while unwinding from the squeue, i.e. the
5540  * reference is dropped by the squeue framework.
5541  *
5542  * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish
5543  *
5544  * The reference must be released by the same entity that added the reference
5545  * In the above scheme, the eager is the entity that adds and releases the
5546  * references. Note that tcp_accept_finish executes in the squeue of the eager
5547  * (albeit after it is attached to the acceptor stream). Though 1. executes
5548  * in the listener's squeue, the eager is nascent at this point and the
5549  * reference can be considered to have been added on behalf of the eager.
5550  *
5551  * Eager getting a Reset or listener closing:
5552  * ==========================================
5553  *
5554  * Once the listener and eager are linked, the listener never does the unlink.
5555  * If the listener needs to close, tcp_eager_cleanup() is called which queues
5556  * a message on all eager perimeter. The eager then does the unlink, clears
5557  * any pointers to the listener's queue and drops the reference to the
5558  * listener. The listener waits in tcp_close outside the squeue until its
5559  * refcount has dropped to 1. This ensures that the listener has waited for
5560  * all eagers to clear their association with the listener.
5561  *
5562  * Similarly, if eager decides to go away, it can unlink itself and close.
5563  * When the T_CONN_RES comes down, we check if eager has closed. Note that
5564  * the reference to eager is still valid because of the extra ref we put
5565  * in tcp_send_conn_ind.
5566  *
5567  * Listener can always locate the eager under the protection
5568  * of the listener->tcp_eager_lock, and then do a refhold
5569  * on the eager during the accept processing.
5570  *
5571  * The acceptor stream accesses the eager in the accept processing
5572  * based on the ref placed on eager before sending T_conn_ind.
5573  * The only entity that can negate this refhold is a listener close
5574  * which is mutually exclusive with an active acceptor stream.
5575  *
5576  * Eager's reference on the listener
5577  * ===================================
5578  *
5579  * If the accept happens (even on a closed eager) the eager drops its
5580  * reference on the listener at the start of tcp_accept_finish. If the
5581  * eager is killed due to an incoming RST before the T_conn_ind is sent up,
5582  * the reference is dropped in tcp_closei_local. If the listener closes,
5583  * the reference is dropped in tcp_eager_kill. In all cases the reference
5584  * is dropped while executing in the eager's context (squeue).
5585  */
5586 /* END CSTYLED */
5587 
5588 /* Process the SYN packet, mp, directed at the listener 'tcp' */
5589 
5590 /*
5591  * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN.
5592  * tcp_rput_data will not see any SYN packets.
5593  */
5594 /* ARGSUSED */
5595 void
5596 tcp_conn_request(void *arg, mblk_t *mp, void *arg2)
5597 {
5598 	tcph_t		*tcph;
5599 	uint32_t	seg_seq;
5600 	tcp_t		*eager;
5601 	uint_t		ipvers;
5602 	ipha_t		*ipha;
5603 	ip6_t		*ip6h;
5604 	int		err;
5605 	conn_t		*econnp = NULL;
5606 	squeue_t	*new_sqp;
5607 	mblk_t		*mp1;
5608 	uint_t 		ip_hdr_len;
5609 	conn_t		*connp = (conn_t *)arg;
5610 	tcp_t		*tcp = connp->conn_tcp;
5611 	ire_t		*ire;
5612 	cred_t		*credp;
5613 
5614 	if (tcp->tcp_state != TCPS_LISTEN)
5615 		goto error2;
5616 
5617 	ASSERT((tcp->tcp_connp->conn_flags & IPCL_BOUND) != 0);
5618 
5619 	mutex_enter(&tcp->tcp_eager_lock);
5620 	if (tcp->tcp_conn_req_cnt_q >= tcp->tcp_conn_req_max) {
5621 		mutex_exit(&tcp->tcp_eager_lock);
5622 		TCP_STAT(tcp_listendrop);
5623 		BUMP_MIB(&tcp_mib, tcpListenDrop);
5624 		if (tcp->tcp_debug) {
5625 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
5626 			    "tcp_conn_request: listen backlog (max=%d) "
5627 			    "overflow (%d pending) on %s",
5628 			    tcp->tcp_conn_req_max, tcp->tcp_conn_req_cnt_q,
5629 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
5630 		}
5631 		goto error2;
5632 	}
5633 
5634 	if (tcp->tcp_conn_req_cnt_q0 >=
5635 	    tcp->tcp_conn_req_max + tcp_conn_req_max_q0) {
5636 		/*
5637 		 * Q0 is full. Drop a pending half-open req from the queue
5638 		 * to make room for the new SYN req. Also mark the time we
5639 		 * drop a SYN.
5640 		 *
5641 		 * A more aggressive defense against SYN attack will
5642 		 * be to set the "tcp_syn_defense" flag now.
5643 		 */
5644 		TCP_STAT(tcp_listendropq0);
5645 		tcp->tcp_last_rcv_lbolt = lbolt64;
5646 		if (!tcp_drop_q0(tcp)) {
5647 			mutex_exit(&tcp->tcp_eager_lock);
5648 			BUMP_MIB(&tcp_mib, tcpListenDropQ0);
5649 			if (tcp->tcp_debug) {
5650 				(void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE,
5651 				    "tcp_conn_request: listen half-open queue "
5652 				    "(max=%d) full (%d pending) on %s",
5653 				    tcp_conn_req_max_q0,
5654 				    tcp->tcp_conn_req_cnt_q0,
5655 				    tcp_display(tcp, NULL,
5656 				    DISP_PORT_ONLY));
5657 			}
5658 			goto error2;
5659 		}
5660 	}
5661 	mutex_exit(&tcp->tcp_eager_lock);
5662 
5663 	/*
5664 	 * IP adds STRUIO_EAGER and ensures that the received packet is
5665 	 * M_DATA even if conn_ipv6_recvpktinfo is enabled or for ip6
5666 	 * link local address.  If IPSec is enabled, db_struioflag has
5667 	 * STRUIO_POLICY set (mutually exclusive from STRUIO_EAGER);
5668 	 * otherwise an error case if neither of them is set.
5669 	 */
5670 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
5671 		new_sqp = (squeue_t *)DB_CKSUMSTART(mp);
5672 		DB_CKSUMSTART(mp) = 0;
5673 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
5674 		econnp = (conn_t *)tcp_get_conn(arg2);
5675 		if (econnp == NULL)
5676 			goto error2;
5677 		econnp->conn_sqp = new_sqp;
5678 	} else if ((mp->b_datap->db_struioflag & STRUIO_POLICY) != 0) {
5679 		/*
5680 		 * mp is updated in tcp_get_ipsec_conn().
5681 		 */
5682 		econnp = tcp_get_ipsec_conn(tcp, arg2, &mp);
5683 		if (econnp == NULL) {
5684 			/*
5685 			 * mp freed by tcp_get_ipsec_conn.
5686 			 */
5687 			return;
5688 		}
5689 	} else {
5690 		goto error2;
5691 	}
5692 
5693 	ASSERT(DB_TYPE(mp) == M_DATA);
5694 
5695 	ipvers = IPH_HDR_VERSION(mp->b_rptr);
5696 	ASSERT(ipvers == IPV6_VERSION || ipvers == IPV4_VERSION);
5697 	ASSERT(OK_32PTR(mp->b_rptr));
5698 	if (ipvers == IPV4_VERSION) {
5699 		ipha = (ipha_t *)mp->b_rptr;
5700 		ip_hdr_len = IPH_HDR_LENGTH(ipha);
5701 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
5702 	} else {
5703 		ip6h = (ip6_t *)mp->b_rptr;
5704 		ip_hdr_len = ip_hdr_length_v6(mp, ip6h);
5705 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
5706 	}
5707 
5708 	if (tcp->tcp_family == AF_INET) {
5709 		ASSERT(ipvers == IPV4_VERSION);
5710 		err = tcp_conn_create_v4(connp, econnp, ipha, tcph, mp);
5711 	} else {
5712 		err = tcp_conn_create_v6(connp, econnp, mp, tcph, ipvers, mp);
5713 	}
5714 
5715 	if (err)
5716 		goto error3;
5717 
5718 	eager = econnp->conn_tcp;
5719 
5720 	/* Inherit various TCP parameters from the listener */
5721 	eager->tcp_naglim = tcp->tcp_naglim;
5722 	eager->tcp_first_timer_threshold =
5723 	    tcp->tcp_first_timer_threshold;
5724 	eager->tcp_second_timer_threshold =
5725 	    tcp->tcp_second_timer_threshold;
5726 
5727 	eager->tcp_first_ctimer_threshold =
5728 	    tcp->tcp_first_ctimer_threshold;
5729 	eager->tcp_second_ctimer_threshold =
5730 	    tcp->tcp_second_ctimer_threshold;
5731 
5732 	/*
5733 	 * tcp_adapt_ire() may change tcp_rwnd according to the ire metrics.
5734 	 * If it does not, the eager's receive window will be set to the
5735 	 * listener's receive window later in this function.
5736 	 */
5737 	eager->tcp_rwnd = 0;
5738 
5739 	/*
5740 	 * Inherit listener's tcp_init_cwnd.  Need to do this before
5741 	 * calling tcp_process_options() where tcp_mss_set() is called
5742 	 * to set the initial cwnd.
5743 	 */
5744 	eager->tcp_init_cwnd = tcp->tcp_init_cwnd;
5745 
5746 	/*
5747 	 * Zones: tcp_adapt_ire() and tcp_send_data() both need the
5748 	 * zone id before the accept is completed in tcp_wput_accept().
5749 	 */
5750 	econnp->conn_zoneid = connp->conn_zoneid;
5751 	econnp->conn_allzones = connp->conn_allzones;
5752 
5753 	/* Copy nexthop information from listener to eager */
5754 	if (connp->conn_nexthop_set) {
5755 		econnp->conn_nexthop_set = connp->conn_nexthop_set;
5756 		econnp->conn_nexthop_v4 = connp->conn_nexthop_v4;
5757 	}
5758 
5759 	/*
5760 	 * TSOL: tsol_input_proc() needs the eager's cred before the
5761 	 * eager is accepted
5762 	 */
5763 	econnp->conn_cred = eager->tcp_cred = credp = connp->conn_cred;
5764 	crhold(credp);
5765 
5766 	/*
5767 	 * If the caller has the process-wide flag set, then default to MAC
5768 	 * exempt mode.  This allows read-down to unlabeled hosts.
5769 	 */
5770 	if (getpflags(NET_MAC_AWARE, credp) != 0)
5771 		econnp->conn_mac_exempt = B_TRUE;
5772 
5773 	if (is_system_labeled()) {
5774 		cred_t *cr;
5775 
5776 		if (connp->conn_mlp_type != mlptSingle) {
5777 			cr = econnp->conn_peercred = DB_CRED(mp);
5778 			if (cr != NULL)
5779 				crhold(cr);
5780 			else
5781 				cr = econnp->conn_cred;
5782 			DTRACE_PROBE2(mlp_syn_accept, conn_t *,
5783 			    econnp, cred_t *, cr)
5784 		} else {
5785 			cr = econnp->conn_cred;
5786 			DTRACE_PROBE2(syn_accept, conn_t *,
5787 			    econnp, cred_t *, cr)
5788 		}
5789 
5790 		if (!tcp_update_label(eager, cr)) {
5791 			DTRACE_PROBE3(
5792 			    tx__ip__log__error__connrequest__tcp,
5793 			    char *, "eager connp(1) label on SYN mp(2) failed",
5794 			    conn_t *, econnp, mblk_t *, mp);
5795 			goto error3;
5796 		}
5797 	}
5798 
5799 	eager->tcp_hard_binding = B_TRUE;
5800 
5801 	tcp_bind_hash_insert(&tcp_bind_fanout[
5802 	    TCP_BIND_HASH(eager->tcp_lport)], eager, 0);
5803 
5804 	CL_INET_CONNECT(eager);
5805 
5806 	/*
5807 	 * No need to check for multicast destination since ip will only pass
5808 	 * up multicasts to those that have expressed interest
5809 	 * TODO: what about rejecting broadcasts?
5810 	 * Also check that source is not a multicast or broadcast address.
5811 	 */
5812 	eager->tcp_state = TCPS_SYN_RCVD;
5813 
5814 
5815 	/*
5816 	 * There should be no ire in the mp as we are being called after
5817 	 * receiving the SYN.
5818 	 */
5819 	ASSERT(tcp_ire_mp(mp) == NULL);
5820 
5821 	/*
5822 	 * Adapt our mss, ttl, ... according to information provided in IRE.
5823 	 */
5824 
5825 	if (tcp_adapt_ire(eager, NULL) == 0) {
5826 		/* Undo the bind_hash_insert */
5827 		tcp_bind_hash_remove(eager);
5828 		goto error3;
5829 	}
5830 
5831 	/* Process all TCP options. */
5832 	tcp_process_options(eager, tcph);
5833 
5834 	/* Is the other end ECN capable? */
5835 	if (tcp_ecn_permitted >= 1 &&
5836 	    (tcph->th_flags[0] & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) {
5837 		eager->tcp_ecn_ok = B_TRUE;
5838 	}
5839 
5840 	/*
5841 	 * listener->tcp_rq->q_hiwat should be the default window size or a
5842 	 * window size changed via SO_RCVBUF option.  First round up the
5843 	 * eager's tcp_rwnd to the nearest MSS.  Then find out the window
5844 	 * scale option value if needed.  Call tcp_rwnd_set() to finish the
5845 	 * setting.
5846 	 *
5847 	 * Note if there is a rpipe metric associated with the remote host,
5848 	 * we should not inherit receive window size from listener.
5849 	 */
5850 	eager->tcp_rwnd = MSS_ROUNDUP(
5851 	    (eager->tcp_rwnd == 0 ? tcp->tcp_rq->q_hiwat :
5852 	    eager->tcp_rwnd), eager->tcp_mss);
5853 	if (eager->tcp_snd_ws_ok)
5854 		tcp_set_ws_value(eager);
5855 	/*
5856 	 * Note that this is the only place tcp_rwnd_set() is called for
5857 	 * accepting a connection.  We need to call it here instead of
5858 	 * after the 3-way handshake because we need to tell the other
5859 	 * side our rwnd in the SYN-ACK segment.
5860 	 */
5861 	(void) tcp_rwnd_set(eager, eager->tcp_rwnd);
5862 
5863 	/*
5864 	 * We eliminate the need for sockfs to send down a T_SVR4_OPTMGMT_REQ
5865 	 * via soaccept()->soinheritoptions() which essentially applies
5866 	 * all the listener options to the new STREAM. The options that we
5867 	 * need to take care of are:
5868 	 * SO_DEBUG, SO_REUSEADDR, SO_KEEPALIVE, SO_DONTROUTE, SO_BROADCAST,
5869 	 * SO_USELOOPBACK, SO_OOBINLINE, SO_DGRAM_ERRIND, SO_LINGER,
5870 	 * SO_SNDBUF, SO_RCVBUF.
5871 	 *
5872 	 * SO_RCVBUF:	tcp_rwnd_set() above takes care of it.
5873 	 * SO_SNDBUF:	Set the tcp_xmit_hiwater for the eager. When
5874 	 *		tcp_maxpsz_set() gets called later from
5875 	 *		tcp_accept_finish(), the option takes effect.
5876 	 *
5877 	 */
5878 	/* Set the TCP options */
5879 	eager->tcp_xmit_hiwater = tcp->tcp_xmit_hiwater;
5880 	eager->tcp_dgram_errind = tcp->tcp_dgram_errind;
5881 	eager->tcp_oobinline = tcp->tcp_oobinline;
5882 	eager->tcp_reuseaddr = tcp->tcp_reuseaddr;
5883 	eager->tcp_broadcast = tcp->tcp_broadcast;
5884 	eager->tcp_useloopback = tcp->tcp_useloopback;
5885 	eager->tcp_dontroute = tcp->tcp_dontroute;
5886 	eager->tcp_linger = tcp->tcp_linger;
5887 	eager->tcp_lingertime = tcp->tcp_lingertime;
5888 	if (tcp->tcp_ka_enabled)
5889 		eager->tcp_ka_enabled = 1;
5890 
5891 	/* Set the IP options */
5892 	econnp->conn_broadcast = connp->conn_broadcast;
5893 	econnp->conn_loopback = connp->conn_loopback;
5894 	econnp->conn_dontroute = connp->conn_dontroute;
5895 	econnp->conn_reuseaddr = connp->conn_reuseaddr;
5896 
5897 	/* Put a ref on the listener for the eager. */
5898 	CONN_INC_REF(connp);
5899 	mutex_enter(&tcp->tcp_eager_lock);
5900 	tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = eager;
5901 	eager->tcp_eager_next_q0 = tcp->tcp_eager_next_q0;
5902 	tcp->tcp_eager_next_q0 = eager;
5903 	eager->tcp_eager_prev_q0 = tcp;
5904 
5905 	/* Set tcp_listener before adding it to tcp_conn_fanout */
5906 	eager->tcp_listener = tcp;
5907 	eager->tcp_saved_listener = tcp;
5908 
5909 	/*
5910 	 * Tag this detached tcp vector for later retrieval
5911 	 * by our listener client in tcp_accept().
5912 	 */
5913 	eager->tcp_conn_req_seqnum = tcp->tcp_conn_req_seqnum;
5914 	tcp->tcp_conn_req_cnt_q0++;
5915 	if (++tcp->tcp_conn_req_seqnum == -1) {
5916 		/*
5917 		 * -1 is "special" and defined in TPI as something
5918 		 * that should never be used in T_CONN_IND
5919 		 */
5920 		++tcp->tcp_conn_req_seqnum;
5921 	}
5922 	mutex_exit(&tcp->tcp_eager_lock);
5923 
5924 	if (tcp->tcp_syn_defense) {
5925 		/* Don't drop the SYN that comes from a good IP source */
5926 		ipaddr_t *addr_cache = (ipaddr_t *)(tcp->tcp_ip_addr_cache);
5927 		if (addr_cache != NULL && eager->tcp_remote ==
5928 		    addr_cache[IP_ADDR_CACHE_HASH(eager->tcp_remote)]) {
5929 			eager->tcp_dontdrop = B_TRUE;
5930 		}
5931 	}
5932 
5933 	/*
5934 	 * We need to insert the eager in its own perimeter but as soon
5935 	 * as we do that, we expose the eager to the classifier and
5936 	 * should not touch any field outside the eager's perimeter.
5937 	 * So do all the work necessary before inserting the eager
5938 	 * in its own perimeter. Be optimistic that ipcl_conn_insert()
5939 	 * will succeed but undo everything if it fails.
5940 	 */
5941 	seg_seq = ABE32_TO_U32(tcph->th_seq);
5942 	eager->tcp_irs = seg_seq;
5943 	eager->tcp_rack = seg_seq;
5944 	eager->tcp_rnxt = seg_seq + 1;
5945 	U32_TO_ABE32(eager->tcp_rnxt, eager->tcp_tcph->th_ack);
5946 	BUMP_MIB(&tcp_mib, tcpPassiveOpens);
5947 	eager->tcp_state = TCPS_SYN_RCVD;
5948 	mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss,
5949 	    NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE);
5950 	if (mp1 == NULL)
5951 		goto error1;
5952 	DB_CPID(mp1) = tcp->tcp_cpid;
5953 
5954 	/*
5955 	 * We need to start the rto timer. In normal case, we start
5956 	 * the timer after sending the packet on the wire (or at
5957 	 * least believing that packet was sent by waiting for
5958 	 * CALL_IP_WPUT() to return). Since this is the first packet
5959 	 * being sent on the wire for the eager, our initial tcp_rto
5960 	 * is at least tcp_rexmit_interval_min which is a fairly
5961 	 * large value to allow the algorithm to adjust slowly to large
5962 	 * fluctuations of RTT during first few transmissions.
5963 	 *
5964 	 * Starting the timer first and then sending the packet in this
5965 	 * case shouldn't make much difference since tcp_rexmit_interval_min
5966 	 * is of the order of several 100ms and starting the timer
5967 	 * first and then sending the packet will result in difference
5968 	 * of few micro seconds.
5969 	 *
5970 	 * Without this optimization, we are forced to hold the fanout
5971 	 * lock across the ipcl_bind_insert() and sending the packet
5972 	 * so that we don't race against an incoming packet (maybe RST)
5973 	 * for this eager.
5974 	 */
5975 
5976 	TCP_RECORD_TRACE(eager, mp1, TCP_TRACE_SEND_PKT);
5977 	TCP_TIMER_RESTART(eager, eager->tcp_rto);
5978 
5979 
5980 	/*
5981 	 * Insert the eager in its own perimeter now. We are ready to deal
5982 	 * with any packets on eager.
5983 	 */
5984 	if (eager->tcp_ipversion == IPV4_VERSION) {
5985 		if (ipcl_conn_insert(econnp, IPPROTO_TCP, 0, 0, 0) != 0) {
5986 			goto error;
5987 		}
5988 	} else {
5989 		if (ipcl_conn_insert_v6(econnp, IPPROTO_TCP, 0, 0, 0, 0) != 0) {
5990 			goto error;
5991 		}
5992 	}
5993 
5994 	/* mark conn as fully-bound */
5995 	econnp->conn_fully_bound = B_TRUE;
5996 
5997 	/* Send the SYN-ACK */
5998 	tcp_send_data(eager, eager->tcp_wq, mp1);
5999 	freemsg(mp);
6000 
6001 	return;
6002 error:
6003 	(void) TCP_TIMER_CANCEL(eager, eager->tcp_timer_tid);
6004 	freemsg(mp1);
6005 error1:
6006 	/* Undo what we did above */
6007 	mutex_enter(&tcp->tcp_eager_lock);
6008 	tcp_eager_unlink(eager);
6009 	mutex_exit(&tcp->tcp_eager_lock);
6010 	/* Drop eager's reference on the listener */
6011 	CONN_DEC_REF(connp);
6012 
6013 	/*
6014 	 * Delete the cached ire in conn_ire_cache and also mark
6015 	 * the conn as CONDEMNED
6016 	 */
6017 	mutex_enter(&econnp->conn_lock);
6018 	econnp->conn_state_flags |= CONN_CONDEMNED;
6019 	ire = econnp->conn_ire_cache;
6020 	econnp->conn_ire_cache = NULL;
6021 	mutex_exit(&econnp->conn_lock);
6022 	if (ire != NULL)
6023 		IRE_REFRELE_NOTR(ire);
6024 
6025 	/*
6026 	 * tcp_accept_comm inserts the eager to the bind_hash
6027 	 * we need to remove it from the hash if ipcl_conn_insert
6028 	 * fails.
6029 	 */
6030 	tcp_bind_hash_remove(eager);
6031 	/* Drop the eager ref placed in tcp_open_detached */
6032 	CONN_DEC_REF(econnp);
6033 
6034 	/*
6035 	 * If a connection already exists, send the mp to that connections so
6036 	 * that it can be appropriately dealt with.
6037 	 */
6038 	if ((econnp = ipcl_classify(mp, connp->conn_zoneid)) != NULL) {
6039 		if (!IPCL_IS_CONNECTED(econnp)) {
6040 			/*
6041 			 * Something bad happened. ipcl_conn_insert()
6042 			 * failed because a connection already existed
6043 			 * in connected hash but we can't find it
6044 			 * anymore (someone blew it away). Just
6045 			 * free this message and hopefully remote
6046 			 * will retransmit at which time the SYN can be
6047 			 * treated as a new connection or dealth with
6048 			 * a TH_RST if a connection already exists.
6049 			 */
6050 			CONN_DEC_REF(econnp);
6051 			freemsg(mp);
6052 		} else {
6053 			squeue_fill(econnp->conn_sqp, mp, tcp_input,
6054 			    econnp, SQTAG_TCP_CONN_REQ);
6055 		}
6056 	} else {
6057 		/* Nobody wants this packet */
6058 		freemsg(mp);
6059 	}
6060 	return;
6061 error2:
6062 	freemsg(mp);
6063 	return;
6064 error3:
6065 	CONN_DEC_REF(econnp);
6066 	freemsg(mp);
6067 }
6068 
6069 /*
6070  * In an ideal case of vertical partition in NUMA architecture, its
6071  * beneficial to have the listener and all the incoming connections
6072  * tied to the same squeue. The other constraint is that incoming
6073  * connections should be tied to the squeue attached to interrupted
6074  * CPU for obvious locality reason so this leaves the listener to
6075  * be tied to the same squeue. Our only problem is that when listener
6076  * is binding, the CPU that will get interrupted by the NIC whose
6077  * IP address the listener is binding to is not even known. So
6078  * the code below allows us to change that binding at the time the
6079  * CPU is interrupted by virtue of incoming connection's squeue.
6080  *
6081  * This is usefull only in case of a listener bound to a specific IP
6082  * address. For other kind of listeners, they get bound the
6083  * very first time and there is no attempt to rebind them.
6084  */
6085 void
6086 tcp_conn_request_unbound(void *arg, mblk_t *mp, void *arg2)
6087 {
6088 	conn_t		*connp = (conn_t *)arg;
6089 	squeue_t	*sqp = (squeue_t *)arg2;
6090 	squeue_t	*new_sqp;
6091 	uint32_t	conn_flags;
6092 
6093 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
6094 		new_sqp = (squeue_t *)DB_CKSUMSTART(mp);
6095 	} else {
6096 		goto done;
6097 	}
6098 
6099 	if (connp->conn_fanout == NULL)
6100 		goto done;
6101 
6102 	if (!(connp->conn_flags & IPCL_FULLY_BOUND)) {
6103 		mutex_enter(&connp->conn_fanout->connf_lock);
6104 		mutex_enter(&connp->conn_lock);
6105 		/*
6106 		 * No one from read or write side can access us now
6107 		 * except for already queued packets on this squeue.
6108 		 * But since we haven't changed the squeue yet, they
6109 		 * can't execute. If they are processed after we have
6110 		 * changed the squeue, they are sent back to the
6111 		 * correct squeue down below.
6112 		 * But a listner close can race with processing of
6113 		 * incoming SYN. If incoming SYN processing changes
6114 		 * the squeue then the listener close which is waiting
6115 		 * to enter the squeue would operate on the wrong
6116 		 * squeue. Hence we don't change the squeue here unless
6117 		 * the refcount is exactly the minimum refcount. The
6118 		 * minimum refcount of 4 is counted as - 1 each for
6119 		 * TCP and IP, 1 for being in the classifier hash, and
6120 		 * 1 for the mblk being processed.
6121 		 */
6122 
6123 		if (connp->conn_ref != 4 ||
6124 		    connp->conn_tcp->tcp_state != TCPS_LISTEN) {
6125 			mutex_exit(&connp->conn_lock);
6126 			mutex_exit(&connp->conn_fanout->connf_lock);
6127 			goto done;
6128 		}
6129 		if (connp->conn_sqp != new_sqp) {
6130 			while (connp->conn_sqp != new_sqp)
6131 				(void) casptr(&connp->conn_sqp, sqp, new_sqp);
6132 		}
6133 
6134 		do {
6135 			conn_flags = connp->conn_flags;
6136 			conn_flags |= IPCL_FULLY_BOUND;
6137 			(void) cas32(&connp->conn_flags, connp->conn_flags,
6138 			    conn_flags);
6139 		} while (!(connp->conn_flags & IPCL_FULLY_BOUND));
6140 
6141 		mutex_exit(&connp->conn_fanout->connf_lock);
6142 		mutex_exit(&connp->conn_lock);
6143 	}
6144 
6145 done:
6146 	if (connp->conn_sqp != sqp) {
6147 		CONN_INC_REF(connp);
6148 		squeue_fill(connp->conn_sqp, mp,
6149 		    connp->conn_recv, connp, SQTAG_TCP_CONN_REQ_UNBOUND);
6150 	} else {
6151 		tcp_conn_request(connp, mp, sqp);
6152 	}
6153 }
6154 
6155 /*
6156  * Successful connect request processing begins when our client passes
6157  * a T_CONN_REQ message into tcp_wput() and ends when tcp_rput() passes
6158  * our T_OK_ACK reply message upstream.  The control flow looks like this:
6159  *   upstream -> tcp_wput() -> tcp_wput_proto() -> tcp_connect() -> IP
6160  *   upstream <- tcp_rput()                <- IP
6161  * After various error checks are completed, tcp_connect() lays
6162  * the target address and port into the composite header template,
6163  * preallocates the T_OK_ACK reply message, construct a full 12 byte bind
6164  * request followed by an IRE request, and passes the three mblk message
6165  * down to IP looking like this:
6166  *   O_T_BIND_REQ for IP  --> IRE req --> T_OK_ACK for our client
6167  * Processing continues in tcp_rput() when we receive the following message:
6168  *   T_BIND_ACK from IP --> IRE ack --> T_OK_ACK for our client
6169  * After consuming the first two mblks, tcp_rput() calls tcp_timer(),
6170  * to fire off the connection request, and then passes the T_OK_ACK mblk
6171  * upstream that we filled in below.  There are, of course, numerous
6172  * error conditions along the way which truncate the processing described
6173  * above.
6174  */
6175 static void
6176 tcp_connect(tcp_t *tcp, mblk_t *mp)
6177 {
6178 	sin_t		*sin;
6179 	sin6_t		*sin6;
6180 	queue_t		*q = tcp->tcp_wq;
6181 	struct T_conn_req	*tcr;
6182 	ipaddr_t	*dstaddrp;
6183 	in_port_t	dstport;
6184 	uint_t		srcid;
6185 
6186 	tcr = (struct T_conn_req *)mp->b_rptr;
6187 
6188 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
6189 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) {
6190 		tcp_err_ack(tcp, mp, TPROTO, 0);
6191 		return;
6192 	}
6193 
6194 	/*
6195 	 * Determine packet type based on type of address passed in
6196 	 * the request should contain an IPv4 or IPv6 address.
6197 	 * Make sure that address family matches the type of
6198 	 * family of the the address passed down
6199 	 */
6200 	switch (tcr->DEST_length) {
6201 	default:
6202 		tcp_err_ack(tcp, mp, TBADADDR, 0);
6203 		return;
6204 
6205 	case (sizeof (sin_t) - sizeof (sin->sin_zero)): {
6206 		/*
6207 		 * XXX: The check for valid DEST_length was not there
6208 		 * in earlier releases and some buggy
6209 		 * TLI apps (e.g Sybase) got away with not feeding
6210 		 * in sin_zero part of address.
6211 		 * We allow that bug to keep those buggy apps humming.
6212 		 * Test suites require the check on DEST_length.
6213 		 * We construct a new mblk with valid DEST_length
6214 		 * free the original so the rest of the code does
6215 		 * not have to keep track of this special shorter
6216 		 * length address case.
6217 		 */
6218 		mblk_t *nmp;
6219 		struct T_conn_req *ntcr;
6220 		sin_t *nsin;
6221 
6222 		nmp = allocb(sizeof (struct T_conn_req) + sizeof (sin_t) +
6223 		    tcr->OPT_length, BPRI_HI);
6224 		if (nmp == NULL) {
6225 			tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
6226 			return;
6227 		}
6228 		ntcr = (struct T_conn_req *)nmp->b_rptr;
6229 		bzero(ntcr, sizeof (struct T_conn_req)); /* zero fill */
6230 		ntcr->PRIM_type = T_CONN_REQ;
6231 		ntcr->DEST_length = sizeof (sin_t);
6232 		ntcr->DEST_offset = sizeof (struct T_conn_req);
6233 
6234 		nsin = (sin_t *)((uchar_t *)ntcr + ntcr->DEST_offset);
6235 		*nsin = sin_null;
6236 		/* Get pointer to shorter address to copy from original mp */
6237 		sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset,
6238 		    tcr->DEST_length); /* extract DEST_length worth of sin_t */
6239 		if (sin == NULL || !OK_32PTR((char *)sin)) {
6240 			freemsg(nmp);
6241 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
6242 			return;
6243 		}
6244 		nsin->sin_family = sin->sin_family;
6245 		nsin->sin_port = sin->sin_port;
6246 		nsin->sin_addr = sin->sin_addr;
6247 		/* Note:nsin->sin_zero zero-fill with sin_null assign above */
6248 		nmp->b_wptr = (uchar_t *)&nsin[1];
6249 		if (tcr->OPT_length != 0) {
6250 			ntcr->OPT_length = tcr->OPT_length;
6251 			ntcr->OPT_offset = nmp->b_wptr - nmp->b_rptr;
6252 			bcopy((uchar_t *)tcr + tcr->OPT_offset,
6253 			    (uchar_t *)ntcr + ntcr->OPT_offset,
6254 			    tcr->OPT_length);
6255 			nmp->b_wptr += tcr->OPT_length;
6256 		}
6257 		freemsg(mp);	/* original mp freed */
6258 		mp = nmp;	/* re-initialize original variables */
6259 		tcr = ntcr;
6260 	}
6261 	/* FALLTHRU */
6262 
6263 	case sizeof (sin_t):
6264 		sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset,
6265 		    sizeof (sin_t));
6266 		if (sin == NULL || !OK_32PTR((char *)sin)) {
6267 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
6268 			return;
6269 		}
6270 		if (tcp->tcp_family != AF_INET ||
6271 		    sin->sin_family != AF_INET) {
6272 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
6273 			return;
6274 		}
6275 		if (sin->sin_port == 0) {
6276 			tcp_err_ack(tcp, mp, TBADADDR, 0);
6277 			return;
6278 		}
6279 		if (tcp->tcp_connp && tcp->tcp_connp->conn_ipv6_v6only) {
6280 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
6281 			return;
6282 		}
6283 
6284 		break;
6285 
6286 	case sizeof (sin6_t):
6287 		sin6 = (sin6_t *)mi_offset_param(mp, tcr->DEST_offset,
6288 		    sizeof (sin6_t));
6289 		if (sin6 == NULL || !OK_32PTR((char *)sin6)) {
6290 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
6291 			return;
6292 		}
6293 		if (tcp->tcp_family != AF_INET6 ||
6294 		    sin6->sin6_family != AF_INET6) {
6295 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
6296 			return;
6297 		}
6298 		if (sin6->sin6_port == 0) {
6299 			tcp_err_ack(tcp, mp, TBADADDR, 0);
6300 			return;
6301 		}
6302 		break;
6303 	}
6304 	/*
6305 	 * TODO: If someone in TCPS_TIME_WAIT has this dst/port we
6306 	 * should key on their sequence number and cut them loose.
6307 	 */
6308 
6309 	/*
6310 	 * If options passed in, feed it for verification and handling
6311 	 */
6312 	if (tcr->OPT_length != 0) {
6313 		mblk_t	*ok_mp;
6314 		mblk_t	*discon_mp;
6315 		mblk_t  *conn_opts_mp;
6316 		int t_error, sys_error, do_disconnect;
6317 
6318 		conn_opts_mp = NULL;
6319 
6320 		if (tcp_conprim_opt_process(tcp, mp,
6321 			&do_disconnect, &t_error, &sys_error) < 0) {
6322 			if (do_disconnect) {
6323 				ASSERT(t_error == 0 && sys_error == 0);
6324 				discon_mp = mi_tpi_discon_ind(NULL,
6325 				    ECONNREFUSED, 0);
6326 				if (!discon_mp) {
6327 					tcp_err_ack_prim(tcp, mp, T_CONN_REQ,
6328 					    TSYSERR, ENOMEM);
6329 					return;
6330 				}
6331 				ok_mp = mi_tpi_ok_ack_alloc(mp);
6332 				if (!ok_mp) {
6333 					tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6334 					    TSYSERR, ENOMEM);
6335 					return;
6336 				}
6337 				qreply(q, ok_mp);
6338 				qreply(q, discon_mp); /* no flush! */
6339 			} else {
6340 				ASSERT(t_error != 0);
6341 				tcp_err_ack_prim(tcp, mp, T_CONN_REQ, t_error,
6342 				    sys_error);
6343 			}
6344 			return;
6345 		}
6346 		/*
6347 		 * Success in setting options, the mp option buffer represented
6348 		 * by OPT_length/offset has been potentially modified and
6349 		 * contains results of option processing. We copy it in
6350 		 * another mp to save it for potentially influencing returning
6351 		 * it in T_CONN_CONN.
6352 		 */
6353 		if (tcr->OPT_length != 0) { /* there are resulting options */
6354 			conn_opts_mp = copyb(mp);
6355 			if (!conn_opts_mp) {
6356 				tcp_err_ack_prim(tcp, mp, T_CONN_REQ,
6357 				    TSYSERR, ENOMEM);
6358 				return;
6359 			}
6360 			ASSERT(tcp->tcp_conn.tcp_opts_conn_req == NULL);
6361 			tcp->tcp_conn.tcp_opts_conn_req = conn_opts_mp;
6362 			/*
6363 			 * Note:
6364 			 * These resulting option negotiation can include any
6365 			 * end-to-end negotiation options but there no such
6366 			 * thing (yet?) in our TCP/IP.
6367 			 */
6368 		}
6369 	}
6370 
6371 	/*
6372 	 * If we're connecting to an IPv4-mapped IPv6 address, we need to
6373 	 * make sure that the template IP header in the tcp structure is an
6374 	 * IPv4 header, and that the tcp_ipversion is IPV4_VERSION.  We
6375 	 * need to this before we call tcp_bindi() so that the port lookup
6376 	 * code will look for ports in the correct port space (IPv4 and
6377 	 * IPv6 have separate port spaces).
6378 	 */
6379 	if (tcp->tcp_family == AF_INET6 && tcp->tcp_ipversion == IPV6_VERSION &&
6380 	    IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
6381 		int err = 0;
6382 
6383 		err = tcp_header_init_ipv4(tcp);
6384 		if (err != 0) {
6385 			mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM);
6386 			goto connect_failed;
6387 		}
6388 		if (tcp->tcp_lport != 0)
6389 			*(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport;
6390 	}
6391 
6392 	switch (tcp->tcp_state) {
6393 	case TCPS_IDLE:
6394 		/*
6395 		 * We support quick connect, refer to comments in
6396 		 * tcp_connect_*()
6397 		 */
6398 		/* FALLTHRU */
6399 	case TCPS_BOUND:
6400 	case TCPS_LISTEN:
6401 		if (tcp->tcp_family == AF_INET6) {
6402 			if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
6403 				tcp_connect_ipv6(tcp, mp,
6404 				    &sin6->sin6_addr,
6405 				    sin6->sin6_port, sin6->sin6_flowinfo,
6406 				    sin6->__sin6_src_id, sin6->sin6_scope_id);
6407 				return;
6408 			}
6409 			/*
6410 			 * Destination adress is mapped IPv6 address.
6411 			 * Source bound address should be unspecified or
6412 			 * IPv6 mapped address as well.
6413 			 */
6414 			if (!IN6_IS_ADDR_UNSPECIFIED(
6415 			    &tcp->tcp_bound_source_v6) &&
6416 			    !IN6_IS_ADDR_V4MAPPED(&tcp->tcp_bound_source_v6)) {
6417 				mp = mi_tpi_err_ack_alloc(mp, TSYSERR,
6418 				    EADDRNOTAVAIL);
6419 				break;
6420 			}
6421 			dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr));
6422 			dstport = sin6->sin6_port;
6423 			srcid = sin6->__sin6_src_id;
6424 		} else {
6425 			dstaddrp = &sin->sin_addr.s_addr;
6426 			dstport = sin->sin_port;
6427 			srcid = 0;
6428 		}
6429 
6430 		tcp_connect_ipv4(tcp, mp, dstaddrp, dstport, srcid);
6431 		return;
6432 	default:
6433 		mp = mi_tpi_err_ack_alloc(mp, TOUTSTATE, 0);
6434 		break;
6435 	}
6436 	/*
6437 	 * Note: Code below is the "failure" case
6438 	 */
6439 	/* return error ack and blow away saved option results if any */
6440 connect_failed:
6441 	if (mp != NULL)
6442 		putnext(tcp->tcp_rq, mp);
6443 	else {
6444 		tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6445 		    TSYSERR, ENOMEM);
6446 	}
6447 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
6448 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
6449 }
6450 
6451 /*
6452  * Handle connect to IPv4 destinations, including connections for AF_INET6
6453  * sockets connecting to IPv4 mapped IPv6 destinations.
6454  */
6455 static void
6456 tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp, in_port_t dstport,
6457     uint_t srcid)
6458 {
6459 	tcph_t	*tcph;
6460 	mblk_t	*mp1;
6461 	ipaddr_t dstaddr = *dstaddrp;
6462 	int32_t	oldstate;
6463 	uint16_t lport;
6464 
6465 	ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
6466 
6467 	/* Check for attempt to connect to INADDR_ANY */
6468 	if (dstaddr == INADDR_ANY)  {
6469 		/*
6470 		 * SunOS 4.x and 4.3 BSD allow an application
6471 		 * to connect a TCP socket to INADDR_ANY.
6472 		 * When they do this, the kernel picks the
6473 		 * address of one interface and uses it
6474 		 * instead.  The kernel usually ends up
6475 		 * picking the address of the loopback
6476 		 * interface.  This is an undocumented feature.
6477 		 * However, we provide the same thing here
6478 		 * in order to have source and binary
6479 		 * compatibility with SunOS 4.x.
6480 		 * Update the T_CONN_REQ (sin/sin6) since it is used to
6481 		 * generate the T_CONN_CON.
6482 		 */
6483 		dstaddr = htonl(INADDR_LOOPBACK);
6484 		*dstaddrp = dstaddr;
6485 	}
6486 
6487 	/* Handle __sin6_src_id if socket not bound to an IP address */
6488 	if (srcid != 0 && tcp->tcp_ipha->ipha_src == INADDR_ANY) {
6489 		ip_srcid_find_id(srcid, &tcp->tcp_ip_src_v6,
6490 		    tcp->tcp_connp->conn_zoneid);
6491 		IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_ip_src_v6,
6492 		    tcp->tcp_ipha->ipha_src);
6493 	}
6494 
6495 	/*
6496 	 * Don't let an endpoint connect to itself.  Note that
6497 	 * the test here does not catch the case where the
6498 	 * source IP addr was left unspecified by the user. In
6499 	 * this case, the source addr is set in tcp_adapt_ire()
6500 	 * using the reply to the T_BIND message that we send
6501 	 * down to IP here and the check is repeated in tcp_rput_other.
6502 	 */
6503 	if (dstaddr == tcp->tcp_ipha->ipha_src &&
6504 	    dstport == tcp->tcp_lport) {
6505 		mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0);
6506 		goto failed;
6507 	}
6508 
6509 	tcp->tcp_ipha->ipha_dst = dstaddr;
6510 	IN6_IPADDR_TO_V4MAPPED(dstaddr, &tcp->tcp_remote_v6);
6511 
6512 	/*
6513 	 * Massage a source route if any putting the first hop
6514 	 * in iph_dst. Compute a starting value for the checksum which
6515 	 * takes into account that the original iph_dst should be
6516 	 * included in the checksum but that ip will include the
6517 	 * first hop in the source route in the tcp checksum.
6518 	 */
6519 	tcp->tcp_sum = ip_massage_options(tcp->tcp_ipha);
6520 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
6521 	tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) +
6522 	    (tcp->tcp_ipha->ipha_dst & 0xffff));
6523 	if ((int)tcp->tcp_sum < 0)
6524 		tcp->tcp_sum--;
6525 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
6526 	tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
6527 	    (tcp->tcp_sum >> 16));
6528 	tcph = tcp->tcp_tcph;
6529 	*(uint16_t *)tcph->th_fport = dstport;
6530 	tcp->tcp_fport = dstport;
6531 
6532 	oldstate = tcp->tcp_state;
6533 	/*
6534 	 * At this point the remote destination address and remote port fields
6535 	 * in the tcp-four-tuple have been filled in the tcp structure. Now we
6536 	 * have to see which state tcp was in so we can take apropriate action.
6537 	 */
6538 	if (oldstate == TCPS_IDLE) {
6539 		/*
6540 		 * We support a quick connect capability here, allowing
6541 		 * clients to transition directly from IDLE to SYN_SENT
6542 		 * tcp_bindi will pick an unused port, insert the connection
6543 		 * in the bind hash and transition to BOUND state.
6544 		 */
6545 		lport = tcp_update_next_port(tcp_next_port_to_try, tcp, B_TRUE);
6546 		lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE,
6547 		    B_FALSE, B_FALSE);
6548 		if (lport == 0) {
6549 			mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0);
6550 			goto failed;
6551 		}
6552 	}
6553 	tcp->tcp_state = TCPS_SYN_SENT;
6554 
6555 	/*
6556 	 * TODO: allow data with connect requests
6557 	 * by unlinking M_DATA trailers here and
6558 	 * linking them in behind the T_OK_ACK mblk.
6559 	 * The tcp_rput() bind ack handler would then
6560 	 * feed them to tcp_wput_data() rather than call
6561 	 * tcp_timer().
6562 	 */
6563 	mp = mi_tpi_ok_ack_alloc(mp);
6564 	if (!mp) {
6565 		tcp->tcp_state = oldstate;
6566 		goto failed;
6567 	}
6568 	if (tcp->tcp_family == AF_INET) {
6569 		mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ,
6570 		    sizeof (ipa_conn_t));
6571 	} else {
6572 		mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ,
6573 		    sizeof (ipa6_conn_t));
6574 	}
6575 	if (mp1) {
6576 		/* Hang onto the T_OK_ACK for later. */
6577 		linkb(mp1, mp);
6578 		mblk_setcred(mp1, tcp->tcp_cred);
6579 		if (tcp->tcp_family == AF_INET)
6580 			mp1 = ip_bind_v4(tcp->tcp_wq, mp1, tcp->tcp_connp);
6581 		else {
6582 			mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp,
6583 			    &tcp->tcp_sticky_ipp);
6584 		}
6585 		BUMP_MIB(&tcp_mib, tcpActiveOpens);
6586 		tcp->tcp_active_open = 1;
6587 		/*
6588 		 * If the bind cannot complete immediately
6589 		 * IP will arrange to call tcp_rput_other
6590 		 * when the bind completes.
6591 		 */
6592 		if (mp1 != NULL)
6593 			tcp_rput_other(tcp, mp1);
6594 		return;
6595 	}
6596 	/* Error case */
6597 	tcp->tcp_state = oldstate;
6598 	mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM);
6599 
6600 failed:
6601 	/* return error ack and blow away saved option results if any */
6602 	if (mp != NULL)
6603 		putnext(tcp->tcp_rq, mp);
6604 	else {
6605 		tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6606 		    TSYSERR, ENOMEM);
6607 	}
6608 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
6609 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
6610 
6611 }
6612 
6613 /*
6614  * Handle connect to IPv6 destinations.
6615  */
6616 static void
6617 tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp,
6618     in_port_t dstport, uint32_t flowinfo, uint_t srcid, uint32_t scope_id)
6619 {
6620 	tcph_t	*tcph;
6621 	mblk_t	*mp1;
6622 	ip6_rthdr_t *rth;
6623 	int32_t  oldstate;
6624 	uint16_t lport;
6625 
6626 	ASSERT(tcp->tcp_family == AF_INET6);
6627 
6628 	/*
6629 	 * If we're here, it means that the destination address is a native
6630 	 * IPv6 address.  Return an error if tcp_ipversion is not IPv6.  A
6631 	 * reason why it might not be IPv6 is if the socket was bound to an
6632 	 * IPv4-mapped IPv6 address.
6633 	 */
6634 	if (tcp->tcp_ipversion != IPV6_VERSION) {
6635 		mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0);
6636 		goto failed;
6637 	}
6638 
6639 	/*
6640 	 * Interpret a zero destination to mean loopback.
6641 	 * Update the T_CONN_REQ (sin/sin6) since it is used to
6642 	 * generate the T_CONN_CON.
6643 	 */
6644 	if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp)) {
6645 		*dstaddrp = ipv6_loopback;
6646 	}
6647 
6648 	/* Handle __sin6_src_id if socket not bound to an IP address */
6649 	if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) {
6650 		ip_srcid_find_id(srcid, &tcp->tcp_ip6h->ip6_src,
6651 		    tcp->tcp_connp->conn_zoneid);
6652 		tcp->tcp_ip_src_v6 = tcp->tcp_ip6h->ip6_src;
6653 	}
6654 
6655 	/*
6656 	 * Take care of the scope_id now and add ip6i_t
6657 	 * if ip6i_t is not already allocated through TCP
6658 	 * sticky options. At this point tcp_ip6h does not
6659 	 * have dst info, thus use dstaddrp.
6660 	 */
6661 	if (scope_id != 0 &&
6662 	    IN6_IS_ADDR_LINKSCOPE(dstaddrp)) {
6663 		ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp;
6664 		ip6i_t  *ip6i;
6665 
6666 		ipp->ipp_ifindex = scope_id;
6667 		ip6i = (ip6i_t *)tcp->tcp_iphc;
6668 
6669 		if ((ipp->ipp_fields & IPPF_HAS_IP6I) &&
6670 		    ip6i != NULL && (ip6i->ip6i_nxt == IPPROTO_RAW)) {
6671 			/* Already allocated */
6672 			ip6i->ip6i_flags |= IP6I_IFINDEX;
6673 			ip6i->ip6i_ifindex = ipp->ipp_ifindex;
6674 			ipp->ipp_fields |= IPPF_SCOPE_ID;
6675 		} else {
6676 			int reterr;
6677 
6678 			ipp->ipp_fields |= IPPF_SCOPE_ID;
6679 			if (ipp->ipp_fields & IPPF_HAS_IP6I)
6680 				ip2dbg(("tcp_connect_v6: SCOPE_ID set\n"));
6681 			reterr = tcp_build_hdrs(tcp->tcp_rq, tcp);
6682 			if (reterr != 0)
6683 				goto failed;
6684 			ip1dbg(("tcp_connect_ipv6: tcp_bld_hdrs returned\n"));
6685 		}
6686 	}
6687 
6688 	/*
6689 	 * Don't let an endpoint connect to itself.  Note that
6690 	 * the test here does not catch the case where the
6691 	 * source IP addr was left unspecified by the user. In
6692 	 * this case, the source addr is set in tcp_adapt_ire()
6693 	 * using the reply to the T_BIND message that we send
6694 	 * down to IP here and the check is repeated in tcp_rput_other.
6695 	 */
6696 	if (IN6_ARE_ADDR_EQUAL(dstaddrp, &tcp->tcp_ip6h->ip6_src) &&
6697 	    (dstport == tcp->tcp_lport)) {
6698 		mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0);
6699 		goto failed;
6700 	}
6701 
6702 	tcp->tcp_ip6h->ip6_dst = *dstaddrp;
6703 	tcp->tcp_remote_v6 = *dstaddrp;
6704 	tcp->tcp_ip6h->ip6_vcf =
6705 	    (IPV6_DEFAULT_VERS_AND_FLOW & IPV6_VERS_AND_FLOW_MASK) |
6706 	    (flowinfo & ~IPV6_VERS_AND_FLOW_MASK);
6707 
6708 
6709 	/*
6710 	 * Massage a routing header (if present) putting the first hop
6711 	 * in ip6_dst. Compute a starting value for the checksum which
6712 	 * takes into account that the original ip6_dst should be
6713 	 * included in the checksum but that ip will include the
6714 	 * first hop in the source route in the tcp checksum.
6715 	 */
6716 	rth = ip_find_rthdr_v6(tcp->tcp_ip6h, (uint8_t *)tcp->tcp_tcph);
6717 	if (rth != NULL) {
6718 
6719 		tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, rth);
6720 		tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
6721 		    (tcp->tcp_sum >> 16));
6722 	} else {
6723 		tcp->tcp_sum = 0;
6724 	}
6725 
6726 	tcph = tcp->tcp_tcph;
6727 	*(uint16_t *)tcph->th_fport = dstport;
6728 	tcp->tcp_fport = dstport;
6729 
6730 	oldstate = tcp->tcp_state;
6731 	/*
6732 	 * At this point the remote destination address and remote port fields
6733 	 * in the tcp-four-tuple have been filled in the tcp structure. Now we
6734 	 * have to see which state tcp was in so we can take apropriate action.
6735 	 */
6736 	if (oldstate == TCPS_IDLE) {
6737 		/*
6738 		 * We support a quick connect capability here, allowing
6739 		 * clients to transition directly from IDLE to SYN_SENT
6740 		 * tcp_bindi will pick an unused port, insert the connection
6741 		 * in the bind hash and transition to BOUND state.
6742 		 */
6743 		lport = tcp_update_next_port(tcp_next_port_to_try, tcp, B_TRUE);
6744 		lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE,
6745 		    B_FALSE, B_FALSE);
6746 		if (lport == 0) {
6747 			mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0);
6748 			goto failed;
6749 		}
6750 	}
6751 	tcp->tcp_state = TCPS_SYN_SENT;
6752 	/*
6753 	 * TODO: allow data with connect requests
6754 	 * by unlinking M_DATA trailers here and
6755 	 * linking them in behind the T_OK_ACK mblk.
6756 	 * The tcp_rput() bind ack handler would then
6757 	 * feed them to tcp_wput_data() rather than call
6758 	 * tcp_timer().
6759 	 */
6760 	mp = mi_tpi_ok_ack_alloc(mp);
6761 	if (!mp) {
6762 		tcp->tcp_state = oldstate;
6763 		goto failed;
6764 	}
6765 	mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, sizeof (ipa6_conn_t));
6766 	if (mp1) {
6767 		/* Hang onto the T_OK_ACK for later. */
6768 		linkb(mp1, mp);
6769 		mblk_setcred(mp1, tcp->tcp_cred);
6770 		mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp,
6771 		    &tcp->tcp_sticky_ipp);
6772 		BUMP_MIB(&tcp_mib, tcpActiveOpens);
6773 		tcp->tcp_active_open = 1;
6774 		/* ip_bind_v6() may return ACK or ERROR */
6775 		if (mp1 != NULL)
6776 			tcp_rput_other(tcp, mp1);
6777 		return;
6778 	}
6779 	/* Error case */
6780 	tcp->tcp_state = oldstate;
6781 	mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM);
6782 
6783 failed:
6784 	/* return error ack and blow away saved option results if any */
6785 	if (mp != NULL)
6786 		putnext(tcp->tcp_rq, mp);
6787 	else {
6788 		tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6789 		    TSYSERR, ENOMEM);
6790 	}
6791 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
6792 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
6793 }
6794 
6795 /*
6796  * We need a stream q for detached closing tcp connections
6797  * to use.  Our client hereby indicates that this q is the
6798  * one to use.
6799  */
6800 static void
6801 tcp_def_q_set(tcp_t *tcp, mblk_t *mp)
6802 {
6803 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
6804 	queue_t	*q = tcp->tcp_wq;
6805 
6806 	mp->b_datap->db_type = M_IOCACK;
6807 	iocp->ioc_count = 0;
6808 	mutex_enter(&tcp_g_q_lock);
6809 	if (tcp_g_q != NULL) {
6810 		mutex_exit(&tcp_g_q_lock);
6811 		iocp->ioc_error = EALREADY;
6812 	} else {
6813 		mblk_t *mp1;
6814 
6815 		mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 0);
6816 		if (mp1 == NULL) {
6817 			mutex_exit(&tcp_g_q_lock);
6818 			iocp->ioc_error = ENOMEM;
6819 		} else {
6820 			tcp_g_q = tcp->tcp_rq;
6821 			mutex_exit(&tcp_g_q_lock);
6822 			iocp->ioc_error = 0;
6823 			iocp->ioc_rval = 0;
6824 			/*
6825 			 * We are passing tcp_sticky_ipp as NULL
6826 			 * as it is not useful for tcp_default queue
6827 			 */
6828 			mp1 = ip_bind_v6(q, mp1, tcp->tcp_connp, NULL);
6829 			if (mp1 != NULL)
6830 				tcp_rput_other(tcp, mp1);
6831 		}
6832 	}
6833 	qreply(q, mp);
6834 }
6835 
6836 /*
6837  * Our client hereby directs us to reject the connection request
6838  * that tcp_conn_request() marked with 'seqnum'.  Rejection consists
6839  * of sending the appropriate RST, not an ICMP error.
6840  */
6841 static void
6842 tcp_disconnect(tcp_t *tcp, mblk_t *mp)
6843 {
6844 	tcp_t	*ltcp = NULL;
6845 	t_scalar_t seqnum;
6846 	conn_t	*connp;
6847 
6848 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
6849 	if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) {
6850 		tcp_err_ack(tcp, mp, TPROTO, 0);
6851 		return;
6852 	}
6853 
6854 	/*
6855 	 * Right now, upper modules pass down a T_DISCON_REQ to TCP,
6856 	 * when the stream is in BOUND state. Do not send a reset,
6857 	 * since the destination IP address is not valid, and it can
6858 	 * be the initialized value of all zeros (broadcast address).
6859 	 *
6860 	 * If TCP has sent down a bind request to IP and has not
6861 	 * received the reply, reject the request.  Otherwise, TCP
6862 	 * will be confused.
6863 	 */
6864 	if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_hard_binding) {
6865 		if (tcp->tcp_debug) {
6866 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
6867 			    "tcp_disconnect: bad state, %d", tcp->tcp_state);
6868 		}
6869 		tcp_err_ack(tcp, mp, TOUTSTATE, 0);
6870 		return;
6871 	}
6872 
6873 	seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number;
6874 
6875 	if (seqnum == -1 || tcp->tcp_conn_req_max == 0) {
6876 
6877 		/*
6878 		 * According to TPI, for non-listeners, ignore seqnum
6879 		 * and disconnect.
6880 		 * Following interpretation of -1 seqnum is historical
6881 		 * and implied TPI ? (TPI only states that for T_CONN_IND,
6882 		 * a valid seqnum should not be -1).
6883 		 *
6884 		 *	-1 means disconnect everything
6885 		 *	regardless even on a listener.
6886 		 */
6887 
6888 		int old_state = tcp->tcp_state;
6889 
6890 		/*
6891 		 * The connection can't be on the tcp_time_wait_head list
6892 		 * since it is not detached.
6893 		 */
6894 		ASSERT(tcp->tcp_time_wait_next == NULL);
6895 		ASSERT(tcp->tcp_time_wait_prev == NULL);
6896 		ASSERT(tcp->tcp_time_wait_expire == 0);
6897 		ltcp = NULL;
6898 		/*
6899 		 * If it used to be a listener, check to make sure no one else
6900 		 * has taken the port before switching back to LISTEN state.
6901 		 */
6902 		if (tcp->tcp_ipversion == IPV4_VERSION) {
6903 			connp = ipcl_lookup_listener_v4(tcp->tcp_lport,
6904 			    tcp->tcp_ipha->ipha_src,
6905 			    tcp->tcp_connp->conn_zoneid);
6906 			if (connp != NULL)
6907 				ltcp = connp->conn_tcp;
6908 		} else {
6909 			/* Allow tcp_bound_if listeners? */
6910 			connp = ipcl_lookup_listener_v6(tcp->tcp_lport,
6911 			    &tcp->tcp_ip6h->ip6_src, 0,
6912 			    tcp->tcp_connp->conn_zoneid);
6913 			if (connp != NULL)
6914 				ltcp = connp->conn_tcp;
6915 		}
6916 		if (tcp->tcp_conn_req_max && ltcp == NULL) {
6917 			tcp->tcp_state = TCPS_LISTEN;
6918 		} else if (old_state > TCPS_BOUND) {
6919 			tcp->tcp_conn_req_max = 0;
6920 			tcp->tcp_state = TCPS_BOUND;
6921 		}
6922 		if (ltcp != NULL)
6923 			CONN_DEC_REF(ltcp->tcp_connp);
6924 		if (old_state == TCPS_SYN_SENT || old_state == TCPS_SYN_RCVD) {
6925 			BUMP_MIB(&tcp_mib, tcpAttemptFails);
6926 		} else if (old_state == TCPS_ESTABLISHED ||
6927 		    old_state == TCPS_CLOSE_WAIT) {
6928 			BUMP_MIB(&tcp_mib, tcpEstabResets);
6929 		}
6930 
6931 		if (tcp->tcp_fused)
6932 			tcp_unfuse(tcp);
6933 
6934 		mutex_enter(&tcp->tcp_eager_lock);
6935 		if ((tcp->tcp_conn_req_cnt_q0 != 0) ||
6936 		    (tcp->tcp_conn_req_cnt_q != 0)) {
6937 			tcp_eager_cleanup(tcp, 0);
6938 		}
6939 		mutex_exit(&tcp->tcp_eager_lock);
6940 
6941 		tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt,
6942 		    tcp->tcp_rnxt, TH_RST | TH_ACK);
6943 
6944 		tcp_reinit(tcp);
6945 
6946 		if (old_state >= TCPS_ESTABLISHED) {
6947 			/* Send M_FLUSH according to TPI */
6948 			(void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW);
6949 		}
6950 		mp = mi_tpi_ok_ack_alloc(mp);
6951 		if (mp)
6952 			putnext(tcp->tcp_rq, mp);
6953 		return;
6954 	} else if (!tcp_eager_blowoff(tcp, seqnum)) {
6955 		tcp_err_ack(tcp, mp, TBADSEQ, 0);
6956 		return;
6957 	}
6958 	if (tcp->tcp_state >= TCPS_ESTABLISHED) {
6959 		/* Send M_FLUSH according to TPI */
6960 		(void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW);
6961 	}
6962 	mp = mi_tpi_ok_ack_alloc(mp);
6963 	if (mp)
6964 		putnext(tcp->tcp_rq, mp);
6965 }
6966 
6967 /*
6968  * Diagnostic routine used to return a string associated with the tcp state.
6969  * Note that if the caller does not supply a buffer, it will use an internal
6970  * static string.  This means that if multiple threads call this function at
6971  * the same time, output can be corrupted...  Note also that this function
6972  * does not check the size of the supplied buffer.  The caller has to make
6973  * sure that it is big enough.
6974  */
6975 static char *
6976 tcp_display(tcp_t *tcp, char *sup_buf, char format)
6977 {
6978 	char		buf1[30];
6979 	static char	priv_buf[INET6_ADDRSTRLEN * 2 + 80];
6980 	char		*buf;
6981 	char		*cp;
6982 	in6_addr_t	local, remote;
6983 	char		local_addrbuf[INET6_ADDRSTRLEN];
6984 	char		remote_addrbuf[INET6_ADDRSTRLEN];
6985 
6986 	if (sup_buf != NULL)
6987 		buf = sup_buf;
6988 	else
6989 		buf = priv_buf;
6990 
6991 	if (tcp == NULL)
6992 		return ("NULL_TCP");
6993 	switch (tcp->tcp_state) {
6994 	case TCPS_CLOSED:
6995 		cp = "TCP_CLOSED";
6996 		break;
6997 	case TCPS_IDLE:
6998 		cp = "TCP_IDLE";
6999 		break;
7000 	case TCPS_BOUND:
7001 		cp = "TCP_BOUND";
7002 		break;
7003 	case TCPS_LISTEN:
7004 		cp = "TCP_LISTEN";
7005 		break;
7006 	case TCPS_SYN_SENT:
7007 		cp = "TCP_SYN_SENT";
7008 		break;
7009 	case TCPS_SYN_RCVD:
7010 		cp = "TCP_SYN_RCVD";
7011 		break;
7012 	case TCPS_ESTABLISHED:
7013 		cp = "TCP_ESTABLISHED";
7014 		break;
7015 	case TCPS_CLOSE_WAIT:
7016 		cp = "TCP_CLOSE_WAIT";
7017 		break;
7018 	case TCPS_FIN_WAIT_1:
7019 		cp = "TCP_FIN_WAIT_1";
7020 		break;
7021 	case TCPS_CLOSING:
7022 		cp = "TCP_CLOSING";
7023 		break;
7024 	case TCPS_LAST_ACK:
7025 		cp = "TCP_LAST_ACK";
7026 		break;
7027 	case TCPS_FIN_WAIT_2:
7028 		cp = "TCP_FIN_WAIT_2";
7029 		break;
7030 	case TCPS_TIME_WAIT:
7031 		cp = "TCP_TIME_WAIT";
7032 		break;
7033 	default:
7034 		(void) mi_sprintf(buf1, "TCPUnkState(%d)", tcp->tcp_state);
7035 		cp = buf1;
7036 		break;
7037 	}
7038 	switch (format) {
7039 	case DISP_ADDR_AND_PORT:
7040 		if (tcp->tcp_ipversion == IPV4_VERSION) {
7041 			/*
7042 			 * Note that we use the remote address in the tcp_b
7043 			 * structure.  This means that it will print out
7044 			 * the real destination address, not the next hop's
7045 			 * address if source routing is used.
7046 			 */
7047 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ip_src, &local);
7048 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &remote);
7049 
7050 		} else {
7051 			local = tcp->tcp_ip_src_v6;
7052 			remote = tcp->tcp_remote_v6;
7053 		}
7054 		(void) inet_ntop(AF_INET6, &local, local_addrbuf,
7055 		    sizeof (local_addrbuf));
7056 		(void) inet_ntop(AF_INET6, &remote, remote_addrbuf,
7057 		    sizeof (remote_addrbuf));
7058 		(void) mi_sprintf(buf, "[%s.%u, %s.%u] %s",
7059 		    local_addrbuf, ntohs(tcp->tcp_lport), remote_addrbuf,
7060 		    ntohs(tcp->tcp_fport), cp);
7061 		break;
7062 	case DISP_PORT_ONLY:
7063 	default:
7064 		(void) mi_sprintf(buf, "[%u, %u] %s",
7065 		    ntohs(tcp->tcp_lport), ntohs(tcp->tcp_fport), cp);
7066 		break;
7067 	}
7068 
7069 	return (buf);
7070 }
7071 
7072 /*
7073  * Called via squeue to get on to eager's perimeter to send a
7074  * TH_RST. The listener wants the eager to disappear either
7075  * by means of tcp_eager_blowoff() or tcp_eager_cleanup()
7076  * being called.
7077  */
7078 /* ARGSUSED */
7079 void
7080 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2)
7081 {
7082 	conn_t	*econnp = (conn_t *)arg;
7083 	tcp_t	*eager = econnp->conn_tcp;
7084 	tcp_t	*listener = eager->tcp_listener;
7085 
7086 	/*
7087 	 * We could be called because listener is closing. Since
7088 	 * the eager is using listener's queue's, its not safe.
7089 	 * Better use the default queue just to send the TH_RST
7090 	 * out.
7091 	 */
7092 	eager->tcp_rq = tcp_g_q;
7093 	eager->tcp_wq = WR(tcp_g_q);
7094 
7095 	if (eager->tcp_state > TCPS_LISTEN) {
7096 		tcp_xmit_ctl("tcp_eager_kill, can't wait",
7097 		    eager, eager->tcp_snxt, 0, TH_RST);
7098 	}
7099 
7100 	/* We are here because listener wants this eager gone */
7101 	if (listener != NULL) {
7102 		mutex_enter(&listener->tcp_eager_lock);
7103 		tcp_eager_unlink(eager);
7104 		if (eager->tcp_tconnind_started) {
7105 			/*
7106 			 * The eager has sent a conn_ind up to the
7107 			 * listener but listener decides to close
7108 			 * instead. We need to drop the extra ref
7109 			 * placed on eager in tcp_rput_data() before
7110 			 * sending the conn_ind to listener.
7111 			 */
7112 			CONN_DEC_REF(econnp);
7113 		}
7114 		mutex_exit(&listener->tcp_eager_lock);
7115 		CONN_DEC_REF(listener->tcp_connp);
7116 	}
7117 
7118 	if (eager->tcp_state > TCPS_BOUND)
7119 		tcp_close_detached(eager);
7120 }
7121 
7122 /*
7123  * Reset any eager connection hanging off this listener marked
7124  * with 'seqnum' and then reclaim it's resources.
7125  */
7126 static boolean_t
7127 tcp_eager_blowoff(tcp_t	*listener, t_scalar_t seqnum)
7128 {
7129 	tcp_t	*eager;
7130 	mblk_t 	*mp;
7131 
7132 	TCP_STAT(tcp_eager_blowoff_calls);
7133 	eager = listener;
7134 	mutex_enter(&listener->tcp_eager_lock);
7135 	do {
7136 		eager = eager->tcp_eager_next_q;
7137 		if (eager == NULL) {
7138 			mutex_exit(&listener->tcp_eager_lock);
7139 			return (B_FALSE);
7140 		}
7141 	} while (eager->tcp_conn_req_seqnum != seqnum);
7142 
7143 	if (eager->tcp_closemp_used > 0) {
7144 		mutex_exit(&listener->tcp_eager_lock);
7145 		return (B_TRUE);
7146 	}
7147 	eager->tcp_closemp_used = 1;
7148 	TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
7149 	CONN_INC_REF(eager->tcp_connp);
7150 	mutex_exit(&listener->tcp_eager_lock);
7151 	mp = &eager->tcp_closemp;
7152 	squeue_fill(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill,
7153 	    eager->tcp_connp, SQTAG_TCP_EAGER_BLOWOFF);
7154 	return (B_TRUE);
7155 }
7156 
7157 /*
7158  * Reset any eager connection hanging off this listener
7159  * and then reclaim it's resources.
7160  */
7161 static void
7162 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only)
7163 {
7164 	tcp_t	*eager;
7165 	mblk_t	*mp;
7166 
7167 	ASSERT(MUTEX_HELD(&listener->tcp_eager_lock));
7168 
7169 	if (!q0_only) {
7170 		/* First cleanup q */
7171 		TCP_STAT(tcp_eager_blowoff_q);
7172 		eager = listener->tcp_eager_next_q;
7173 		while (eager != NULL) {
7174 			if (eager->tcp_closemp_used == 0) {
7175 				eager->tcp_closemp_used = 1;
7176 				TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
7177 				CONN_INC_REF(eager->tcp_connp);
7178 				mp = &eager->tcp_closemp;
7179 				squeue_fill(eager->tcp_connp->conn_sqp, mp,
7180 				    tcp_eager_kill, eager->tcp_connp,
7181 				    SQTAG_TCP_EAGER_CLEANUP);
7182 			}
7183 			eager = eager->tcp_eager_next_q;
7184 		}
7185 	}
7186 	/* Then cleanup q0 */
7187 	TCP_STAT(tcp_eager_blowoff_q0);
7188 	eager = listener->tcp_eager_next_q0;
7189 	while (eager != listener) {
7190 		if (eager->tcp_closemp_used == 0) {
7191 			eager->tcp_closemp_used = 1;
7192 			TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
7193 			CONN_INC_REF(eager->tcp_connp);
7194 			mp = &eager->tcp_closemp;
7195 			squeue_fill(eager->tcp_connp->conn_sqp, mp,
7196 			    tcp_eager_kill, eager->tcp_connp,
7197 			    SQTAG_TCP_EAGER_CLEANUP_Q0);
7198 		}
7199 		eager = eager->tcp_eager_next_q0;
7200 	}
7201 }
7202 
7203 /*
7204  * If we are an eager connection hanging off a listener that hasn't
7205  * formally accepted the connection yet, get off his list and blow off
7206  * any data that we have accumulated.
7207  */
7208 static void
7209 tcp_eager_unlink(tcp_t *tcp)
7210 {
7211 	tcp_t	*listener = tcp->tcp_listener;
7212 
7213 	ASSERT(MUTEX_HELD(&listener->tcp_eager_lock));
7214 	ASSERT(listener != NULL);
7215 	if (tcp->tcp_eager_next_q0 != NULL) {
7216 		ASSERT(tcp->tcp_eager_prev_q0 != NULL);
7217 
7218 		/* Remove the eager tcp from q0 */
7219 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
7220 		    tcp->tcp_eager_prev_q0;
7221 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
7222 		    tcp->tcp_eager_next_q0;
7223 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
7224 		listener->tcp_conn_req_cnt_q0--;
7225 
7226 		tcp->tcp_eager_next_q0 = NULL;
7227 		tcp->tcp_eager_prev_q0 = NULL;
7228 
7229 		/*
7230 		 * Take the eager out, if it is in the list of droppable
7231 		 * eagers.
7232 		 */
7233 		MAKE_UNDROPPABLE(tcp);
7234 
7235 		if (tcp->tcp_syn_rcvd_timeout != 0) {
7236 			/* we have timed out before */
7237 			ASSERT(listener->tcp_syn_rcvd_timeout > 0);
7238 			listener->tcp_syn_rcvd_timeout--;
7239 		}
7240 	} else {
7241 		tcp_t   **tcpp = &listener->tcp_eager_next_q;
7242 		tcp_t	*prev = NULL;
7243 
7244 		for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) {
7245 			if (tcpp[0] == tcp) {
7246 				if (listener->tcp_eager_last_q == tcp) {
7247 					/*
7248 					 * If we are unlinking the last
7249 					 * element on the list, adjust
7250 					 * tail pointer. Set tail pointer
7251 					 * to nil when list is empty.
7252 					 */
7253 					ASSERT(tcp->tcp_eager_next_q == NULL);
7254 					if (listener->tcp_eager_last_q ==
7255 					    listener->tcp_eager_next_q) {
7256 						listener->tcp_eager_last_q =
7257 						NULL;
7258 					} else {
7259 						/*
7260 						 * We won't get here if there
7261 						 * is only one eager in the
7262 						 * list.
7263 						 */
7264 						ASSERT(prev != NULL);
7265 						listener->tcp_eager_last_q =
7266 						    prev;
7267 					}
7268 				}
7269 				tcpp[0] = tcp->tcp_eager_next_q;
7270 				tcp->tcp_eager_next_q = NULL;
7271 				tcp->tcp_eager_last_q = NULL;
7272 				ASSERT(listener->tcp_conn_req_cnt_q > 0);
7273 				listener->tcp_conn_req_cnt_q--;
7274 				break;
7275 			}
7276 			prev = tcpp[0];
7277 		}
7278 	}
7279 	tcp->tcp_listener = NULL;
7280 }
7281 
7282 /* Shorthand to generate and send TPI error acks to our client */
7283 static void
7284 tcp_err_ack(tcp_t *tcp, mblk_t *mp, int t_error, int sys_error)
7285 {
7286 	if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL)
7287 		putnext(tcp->tcp_rq, mp);
7288 }
7289 
7290 /* Shorthand to generate and send TPI error acks to our client */
7291 static void
7292 tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive,
7293     int t_error, int sys_error)
7294 {
7295 	struct T_error_ack	*teackp;
7296 
7297 	if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack),
7298 	    M_PCPROTO, T_ERROR_ACK)) != NULL) {
7299 		teackp = (struct T_error_ack *)mp->b_rptr;
7300 		teackp->ERROR_prim = primitive;
7301 		teackp->TLI_error = t_error;
7302 		teackp->UNIX_error = sys_error;
7303 		putnext(tcp->tcp_rq, mp);
7304 	}
7305 }
7306 
7307 /*
7308  * Note: No locks are held when inspecting tcp_g_*epriv_ports
7309  * but instead the code relies on:
7310  * - the fact that the address of the array and its size never changes
7311  * - the atomic assignment of the elements of the array
7312  */
7313 /* ARGSUSED */
7314 static int
7315 tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
7316 {
7317 	int i;
7318 
7319 	for (i = 0; i < tcp_g_num_epriv_ports; i++) {
7320 		if (tcp_g_epriv_ports[i] != 0)
7321 			(void) mi_mpprintf(mp, "%d ", tcp_g_epriv_ports[i]);
7322 	}
7323 	return (0);
7324 }
7325 
7326 /*
7327  * Hold a lock while changing tcp_g_epriv_ports to prevent multiple
7328  * threads from changing it at the same time.
7329  */
7330 /* ARGSUSED */
7331 static int
7332 tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
7333     cred_t *cr)
7334 {
7335 	long	new_value;
7336 	int	i;
7337 
7338 	/*
7339 	 * Fail the request if the new value does not lie within the
7340 	 * port number limits.
7341 	 */
7342 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
7343 	    new_value <= 0 || new_value >= 65536) {
7344 		return (EINVAL);
7345 	}
7346 
7347 	mutex_enter(&tcp_epriv_port_lock);
7348 	/* Check if the value is already in the list */
7349 	for (i = 0; i < tcp_g_num_epriv_ports; i++) {
7350 		if (new_value == tcp_g_epriv_ports[i]) {
7351 			mutex_exit(&tcp_epriv_port_lock);
7352 			return (EEXIST);
7353 		}
7354 	}
7355 	/* Find an empty slot */
7356 	for (i = 0; i < tcp_g_num_epriv_ports; i++) {
7357 		if (tcp_g_epriv_ports[i] == 0)
7358 			break;
7359 	}
7360 	if (i == tcp_g_num_epriv_ports) {
7361 		mutex_exit(&tcp_epriv_port_lock);
7362 		return (EOVERFLOW);
7363 	}
7364 	/* Set the new value */
7365 	tcp_g_epriv_ports[i] = (uint16_t)new_value;
7366 	mutex_exit(&tcp_epriv_port_lock);
7367 	return (0);
7368 }
7369 
7370 /*
7371  * Hold a lock while changing tcp_g_epriv_ports to prevent multiple
7372  * threads from changing it at the same time.
7373  */
7374 /* ARGSUSED */
7375 static int
7376 tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
7377     cred_t *cr)
7378 {
7379 	long	new_value;
7380 	int	i;
7381 
7382 	/*
7383 	 * Fail the request if the new value does not lie within the
7384 	 * port number limits.
7385 	 */
7386 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value <= 0 ||
7387 	    new_value >= 65536) {
7388 		return (EINVAL);
7389 	}
7390 
7391 	mutex_enter(&tcp_epriv_port_lock);
7392 	/* Check that the value is already in the list */
7393 	for (i = 0; i < tcp_g_num_epriv_ports; i++) {
7394 		if (tcp_g_epriv_ports[i] == new_value)
7395 			break;
7396 	}
7397 	if (i == tcp_g_num_epriv_ports) {
7398 		mutex_exit(&tcp_epriv_port_lock);
7399 		return (ESRCH);
7400 	}
7401 	/* Clear the value */
7402 	tcp_g_epriv_ports[i] = 0;
7403 	mutex_exit(&tcp_epriv_port_lock);
7404 	return (0);
7405 }
7406 
7407 /* Return the TPI/TLI equivalent of our current tcp_state */
7408 static int
7409 tcp_tpistate(tcp_t *tcp)
7410 {
7411 	switch (tcp->tcp_state) {
7412 	case TCPS_IDLE:
7413 		return (TS_UNBND);
7414 	case TCPS_LISTEN:
7415 		/*
7416 		 * Return whether there are outstanding T_CONN_IND waiting
7417 		 * for the matching T_CONN_RES. Therefore don't count q0.
7418 		 */
7419 		if (tcp->tcp_conn_req_cnt_q > 0)
7420 			return (TS_WRES_CIND);
7421 		else
7422 			return (TS_IDLE);
7423 	case TCPS_BOUND:
7424 		return (TS_IDLE);
7425 	case TCPS_SYN_SENT:
7426 		return (TS_WCON_CREQ);
7427 	case TCPS_SYN_RCVD:
7428 		/*
7429 		 * Note: assumption: this has to the active open SYN_RCVD.
7430 		 * The passive instance is detached in SYN_RCVD stage of
7431 		 * incoming connection processing so we cannot get request
7432 		 * for T_info_ack on it.
7433 		 */
7434 		return (TS_WACK_CRES);
7435 	case TCPS_ESTABLISHED:
7436 		return (TS_DATA_XFER);
7437 	case TCPS_CLOSE_WAIT:
7438 		return (TS_WREQ_ORDREL);
7439 	case TCPS_FIN_WAIT_1:
7440 		return (TS_WIND_ORDREL);
7441 	case TCPS_FIN_WAIT_2:
7442 		return (TS_WIND_ORDREL);
7443 
7444 	case TCPS_CLOSING:
7445 	case TCPS_LAST_ACK:
7446 	case TCPS_TIME_WAIT:
7447 	case TCPS_CLOSED:
7448 		/*
7449 		 * Following TS_WACK_DREQ7 is a rendition of "not
7450 		 * yet TS_IDLE" TPI state. There is no best match to any
7451 		 * TPI state for TCPS_{CLOSING, LAST_ACK, TIME_WAIT} but we
7452 		 * choose a value chosen that will map to TLI/XTI level
7453 		 * state of TSTATECHNG (state is process of changing) which
7454 		 * captures what this dummy state represents.
7455 		 */
7456 		return (TS_WACK_DREQ7);
7457 	default:
7458 		cmn_err(CE_WARN, "tcp_tpistate: strange state (%d) %s",
7459 		    tcp->tcp_state, tcp_display(tcp, NULL,
7460 		    DISP_PORT_ONLY));
7461 		return (TS_UNBND);
7462 	}
7463 }
7464 
7465 static void
7466 tcp_copy_info(struct T_info_ack *tia, tcp_t *tcp)
7467 {
7468 	if (tcp->tcp_family == AF_INET6)
7469 		*tia = tcp_g_t_info_ack_v6;
7470 	else
7471 		*tia = tcp_g_t_info_ack;
7472 	tia->CURRENT_state = tcp_tpistate(tcp);
7473 	tia->OPT_size = tcp_max_optsize;
7474 	if (tcp->tcp_mss == 0) {
7475 		/* Not yet set - tcp_open does not set mss */
7476 		if (tcp->tcp_ipversion == IPV4_VERSION)
7477 			tia->TIDU_size = tcp_mss_def_ipv4;
7478 		else
7479 			tia->TIDU_size = tcp_mss_def_ipv6;
7480 	} else {
7481 		tia->TIDU_size = tcp->tcp_mss;
7482 	}
7483 	/* TODO: Default ETSDU is 1.  Is that correct for tcp? */
7484 }
7485 
7486 /*
7487  * This routine responds to T_CAPABILITY_REQ messages.  It is called by
7488  * tcp_wput.  Much of the T_CAPABILITY_ACK information is copied from
7489  * tcp_g_t_info_ack.  The current state of the stream is copied from
7490  * tcp_state.
7491  */
7492 static void
7493 tcp_capability_req(tcp_t *tcp, mblk_t *mp)
7494 {
7495 	t_uscalar_t		cap_bits1;
7496 	struct T_capability_ack	*tcap;
7497 
7498 	if (MBLKL(mp) < sizeof (struct T_capability_req)) {
7499 		freemsg(mp);
7500 		return;
7501 	}
7502 
7503 	cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1;
7504 
7505 	mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack),
7506 	    mp->b_datap->db_type, T_CAPABILITY_ACK);
7507 	if (mp == NULL)
7508 		return;
7509 
7510 	tcap = (struct T_capability_ack *)mp->b_rptr;
7511 	tcap->CAP_bits1 = 0;
7512 
7513 	if (cap_bits1 & TC1_INFO) {
7514 		tcp_copy_info(&tcap->INFO_ack, tcp);
7515 		tcap->CAP_bits1 |= TC1_INFO;
7516 	}
7517 
7518 	if (cap_bits1 & TC1_ACCEPTOR_ID) {
7519 		tcap->ACCEPTOR_id = tcp->tcp_acceptor_id;
7520 		tcap->CAP_bits1 |= TC1_ACCEPTOR_ID;
7521 	}
7522 
7523 	putnext(tcp->tcp_rq, mp);
7524 }
7525 
7526 /*
7527  * This routine responds to T_INFO_REQ messages.  It is called by tcp_wput.
7528  * Most of the T_INFO_ACK information is copied from tcp_g_t_info_ack.
7529  * The current state of the stream is copied from tcp_state.
7530  */
7531 static void
7532 tcp_info_req(tcp_t *tcp, mblk_t *mp)
7533 {
7534 	mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO,
7535 	    T_INFO_ACK);
7536 	if (!mp) {
7537 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
7538 		return;
7539 	}
7540 	tcp_copy_info((struct T_info_ack *)mp->b_rptr, tcp);
7541 	putnext(tcp->tcp_rq, mp);
7542 }
7543 
7544 /* Respond to the TPI addr request */
7545 static void
7546 tcp_addr_req(tcp_t *tcp, mblk_t *mp)
7547 {
7548 	sin_t	*sin;
7549 	mblk_t	*ackmp;
7550 	struct T_addr_ack *taa;
7551 
7552 	/* Make it large enough for worst case */
7553 	ackmp = reallocb(mp, sizeof (struct T_addr_ack) +
7554 	    2 * sizeof (sin6_t), 1);
7555 	if (ackmp == NULL) {
7556 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
7557 		return;
7558 	}
7559 
7560 	if (tcp->tcp_ipversion == IPV6_VERSION) {
7561 		tcp_addr_req_ipv6(tcp, ackmp);
7562 		return;
7563 	}
7564 	taa = (struct T_addr_ack *)ackmp->b_rptr;
7565 
7566 	bzero(taa, sizeof (struct T_addr_ack));
7567 	ackmp->b_wptr = (uchar_t *)&taa[1];
7568 
7569 	taa->PRIM_type = T_ADDR_ACK;
7570 	ackmp->b_datap->db_type = M_PCPROTO;
7571 
7572 	/*
7573 	 * Note: Following code assumes 32 bit alignment of basic
7574 	 * data structures like sin_t and struct T_addr_ack.
7575 	 */
7576 	if (tcp->tcp_state >= TCPS_BOUND) {
7577 		/*
7578 		 * Fill in local address
7579 		 */
7580 		taa->LOCADDR_length = sizeof (sin_t);
7581 		taa->LOCADDR_offset = sizeof (*taa);
7582 
7583 		sin = (sin_t *)&taa[1];
7584 
7585 		/* Fill zeroes and then intialize non-zero fields */
7586 		*sin = sin_null;
7587 
7588 		sin->sin_family = AF_INET;
7589 
7590 		sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src;
7591 		sin->sin_port = *(uint16_t *)tcp->tcp_tcph->th_lport;
7592 
7593 		ackmp->b_wptr = (uchar_t *)&sin[1];
7594 
7595 		if (tcp->tcp_state >= TCPS_SYN_RCVD) {
7596 			/*
7597 			 * Fill in Remote address
7598 			 */
7599 			taa->REMADDR_length = sizeof (sin_t);
7600 			taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset +
7601 						taa->LOCADDR_length);
7602 
7603 			sin = (sin_t *)(ackmp->b_rptr + taa->REMADDR_offset);
7604 			*sin = sin_null;
7605 			sin->sin_family = AF_INET;
7606 			sin->sin_addr.s_addr = tcp->tcp_remote;
7607 			sin->sin_port = tcp->tcp_fport;
7608 
7609 			ackmp->b_wptr = (uchar_t *)&sin[1];
7610 		}
7611 	}
7612 	putnext(tcp->tcp_rq, ackmp);
7613 }
7614 
7615 /* Assumes that tcp_addr_req gets enough space and alignment */
7616 static void
7617 tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *ackmp)
7618 {
7619 	sin6_t	*sin6;
7620 	struct T_addr_ack *taa;
7621 
7622 	ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
7623 	ASSERT(OK_32PTR(ackmp->b_rptr));
7624 	ASSERT(ackmp->b_wptr - ackmp->b_rptr >= sizeof (struct T_addr_ack) +
7625 	    2 * sizeof (sin6_t));
7626 
7627 	taa = (struct T_addr_ack *)ackmp->b_rptr;
7628 
7629 	bzero(taa, sizeof (struct T_addr_ack));
7630 	ackmp->b_wptr = (uchar_t *)&taa[1];
7631 
7632 	taa->PRIM_type = T_ADDR_ACK;
7633 	ackmp->b_datap->db_type = M_PCPROTO;
7634 
7635 	/*
7636 	 * Note: Following code assumes 32 bit alignment of basic
7637 	 * data structures like sin6_t and struct T_addr_ack.
7638 	 */
7639 	if (tcp->tcp_state >= TCPS_BOUND) {
7640 		/*
7641 		 * Fill in local address
7642 		 */
7643 		taa->LOCADDR_length = sizeof (sin6_t);
7644 		taa->LOCADDR_offset = sizeof (*taa);
7645 
7646 		sin6 = (sin6_t *)&taa[1];
7647 		*sin6 = sin6_null;
7648 
7649 		sin6->sin6_family = AF_INET6;
7650 		sin6->sin6_addr = tcp->tcp_ip6h->ip6_src;
7651 		sin6->sin6_port = tcp->tcp_lport;
7652 
7653 		ackmp->b_wptr = (uchar_t *)&sin6[1];
7654 
7655 		if (tcp->tcp_state >= TCPS_SYN_RCVD) {
7656 			/*
7657 			 * Fill in Remote address
7658 			 */
7659 			taa->REMADDR_length = sizeof (sin6_t);
7660 			taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset +
7661 						taa->LOCADDR_length);
7662 
7663 			sin6 = (sin6_t *)(ackmp->b_rptr + taa->REMADDR_offset);
7664 			*sin6 = sin6_null;
7665 			sin6->sin6_family = AF_INET6;
7666 			sin6->sin6_flowinfo =
7667 			    tcp->tcp_ip6h->ip6_vcf &
7668 			    ~IPV6_VERS_AND_FLOW_MASK;
7669 			sin6->sin6_addr = tcp->tcp_remote_v6;
7670 			sin6->sin6_port = tcp->tcp_fport;
7671 
7672 			ackmp->b_wptr = (uchar_t *)&sin6[1];
7673 		}
7674 	}
7675 	putnext(tcp->tcp_rq, ackmp);
7676 }
7677 
7678 /*
7679  * Handle reinitialization of a tcp structure.
7680  * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE.
7681  */
7682 static void
7683 tcp_reinit(tcp_t *tcp)
7684 {
7685 	mblk_t	*mp;
7686 	int 	err;
7687 
7688 	TCP_STAT(tcp_reinit_calls);
7689 
7690 	/* tcp_reinit should never be called for detached tcp_t's */
7691 	ASSERT(tcp->tcp_listener == NULL);
7692 	ASSERT((tcp->tcp_family == AF_INET &&
7693 	    tcp->tcp_ipversion == IPV4_VERSION) ||
7694 	    (tcp->tcp_family == AF_INET6 &&
7695 	    (tcp->tcp_ipversion == IPV4_VERSION ||
7696 	    tcp->tcp_ipversion == IPV6_VERSION)));
7697 
7698 	/* Cancel outstanding timers */
7699 	tcp_timers_stop(tcp);
7700 
7701 	/*
7702 	 * Reset everything in the state vector, after updating global
7703 	 * MIB data from instance counters.
7704 	 */
7705 	UPDATE_MIB(&tcp_mib, tcpInSegs, tcp->tcp_ibsegs);
7706 	tcp->tcp_ibsegs = 0;
7707 	UPDATE_MIB(&tcp_mib, tcpOutSegs, tcp->tcp_obsegs);
7708 	tcp->tcp_obsegs = 0;
7709 
7710 	tcp_close_mpp(&tcp->tcp_xmit_head);
7711 	if (tcp->tcp_snd_zcopy_aware)
7712 		tcp_zcopy_notify(tcp);
7713 	tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL;
7714 	tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0;
7715 	if (tcp->tcp_flow_stopped &&
7716 	    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
7717 		tcp_clrqfull(tcp);
7718 	}
7719 	tcp_close_mpp(&tcp->tcp_reass_head);
7720 	tcp->tcp_reass_tail = NULL;
7721 	if (tcp->tcp_rcv_list != NULL) {
7722 		/* Free b_next chain */
7723 		tcp_close_mpp(&tcp->tcp_rcv_list);
7724 		tcp->tcp_rcv_last_head = NULL;
7725 		tcp->tcp_rcv_last_tail = NULL;
7726 		tcp->tcp_rcv_cnt = 0;
7727 	}
7728 	tcp->tcp_rcv_last_tail = NULL;
7729 
7730 	if ((mp = tcp->tcp_urp_mp) != NULL) {
7731 		freemsg(mp);
7732 		tcp->tcp_urp_mp = NULL;
7733 	}
7734 	if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
7735 		freemsg(mp);
7736 		tcp->tcp_urp_mark_mp = NULL;
7737 	}
7738 	if (tcp->tcp_fused_sigurg_mp != NULL) {
7739 		freeb(tcp->tcp_fused_sigurg_mp);
7740 		tcp->tcp_fused_sigurg_mp = NULL;
7741 	}
7742 
7743 	/*
7744 	 * Following is a union with two members which are
7745 	 * identical types and size so the following cleanup
7746 	 * is enough.
7747 	 */
7748 	tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
7749 
7750 	CL_INET_DISCONNECT(tcp);
7751 
7752 	/*
7753 	 * The connection can't be on the tcp_time_wait_head list
7754 	 * since it is not detached.
7755 	 */
7756 	ASSERT(tcp->tcp_time_wait_next == NULL);
7757 	ASSERT(tcp->tcp_time_wait_prev == NULL);
7758 	ASSERT(tcp->tcp_time_wait_expire == 0);
7759 
7760 	if (tcp->tcp_kssl_pending) {
7761 		tcp->tcp_kssl_pending = B_FALSE;
7762 
7763 		/* Don't reset if the initialized by bind. */
7764 		if (tcp->tcp_kssl_ent != NULL) {
7765 			kssl_release_ent(tcp->tcp_kssl_ent, NULL,
7766 			    KSSL_NO_PROXY);
7767 		}
7768 	}
7769 	if (tcp->tcp_kssl_ctx != NULL) {
7770 		kssl_release_ctx(tcp->tcp_kssl_ctx);
7771 		tcp->tcp_kssl_ctx = NULL;
7772 	}
7773 
7774 	/*
7775 	 * Reset/preserve other values
7776 	 */
7777 	tcp_reinit_values(tcp);
7778 	ipcl_hash_remove(tcp->tcp_connp);
7779 	conn_delete_ire(tcp->tcp_connp, NULL);
7780 
7781 	if (tcp->tcp_conn_req_max != 0) {
7782 		/*
7783 		 * This is the case when a TLI program uses the same
7784 		 * transport end point to accept a connection.  This
7785 		 * makes the TCP both a listener and acceptor.  When
7786 		 * this connection is closed, we need to set the state
7787 		 * back to TCPS_LISTEN.  Make sure that the eager list
7788 		 * is reinitialized.
7789 		 *
7790 		 * Note that this stream is still bound to the four
7791 		 * tuples of the previous connection in IP.  If a new
7792 		 * SYN with different foreign address comes in, IP will
7793 		 * not find it and will send it to the global queue.  In
7794 		 * the global queue, TCP will do a tcp_lookup_listener()
7795 		 * to find this stream.  This works because this stream
7796 		 * is only removed from connected hash.
7797 		 *
7798 		 */
7799 		tcp->tcp_state = TCPS_LISTEN;
7800 		tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
7801 		tcp->tcp_eager_next_drop_q0 = tcp;
7802 		tcp->tcp_eager_prev_drop_q0 = tcp;
7803 		tcp->tcp_connp->conn_recv = tcp_conn_request;
7804 		if (tcp->tcp_family == AF_INET6) {
7805 			ASSERT(tcp->tcp_connp->conn_af_isv6);
7806 			(void) ipcl_bind_insert_v6(tcp->tcp_connp, IPPROTO_TCP,
7807 			    &tcp->tcp_ip6h->ip6_src, tcp->tcp_lport);
7808 		} else {
7809 			ASSERT(!tcp->tcp_connp->conn_af_isv6);
7810 			(void) ipcl_bind_insert(tcp->tcp_connp, IPPROTO_TCP,
7811 			    tcp->tcp_ipha->ipha_src, tcp->tcp_lport);
7812 		}
7813 	} else {
7814 		tcp->tcp_state = TCPS_BOUND;
7815 	}
7816 
7817 	/*
7818 	 * Initialize to default values
7819 	 * Can't fail since enough header template space already allocated
7820 	 * at open().
7821 	 */
7822 	err = tcp_init_values(tcp);
7823 	ASSERT(err == 0);
7824 	/* Restore state in tcp_tcph */
7825 	bcopy(&tcp->tcp_lport, tcp->tcp_tcph->th_lport, TCP_PORT_LEN);
7826 	if (tcp->tcp_ipversion == IPV4_VERSION)
7827 		tcp->tcp_ipha->ipha_src = tcp->tcp_bound_source;
7828 	else
7829 		tcp->tcp_ip6h->ip6_src = tcp->tcp_bound_source_v6;
7830 	/*
7831 	 * Copy of the src addr. in tcp_t is needed in tcp_t
7832 	 * since the lookup funcs can only lookup on tcp_t
7833 	 */
7834 	tcp->tcp_ip_src_v6 = tcp->tcp_bound_source_v6;
7835 
7836 	ASSERT(tcp->tcp_ptpbhn != NULL);
7837 	tcp->tcp_rq->q_hiwat = tcp_recv_hiwat;
7838 	tcp->tcp_rwnd = tcp_recv_hiwat;
7839 	tcp->tcp_mss = tcp->tcp_ipversion != IPV4_VERSION ?
7840 	    tcp_mss_def_ipv6 : tcp_mss_def_ipv4;
7841 }
7842 
7843 /*
7844  * Force values to zero that need be zero.
7845  * Do not touch values asociated with the BOUND or LISTEN state
7846  * since the connection will end up in that state after the reinit.
7847  * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t
7848  * structure!
7849  */
7850 static void
7851 tcp_reinit_values(tcp)
7852 	tcp_t *tcp;
7853 {
7854 #ifndef	lint
7855 #define	DONTCARE(x)
7856 #define	PRESERVE(x)
7857 #else
7858 #define	DONTCARE(x)	((x) = (x))
7859 #define	PRESERVE(x)	((x) = (x))
7860 #endif	/* lint */
7861 
7862 	PRESERVE(tcp->tcp_bind_hash);
7863 	PRESERVE(tcp->tcp_ptpbhn);
7864 	PRESERVE(tcp->tcp_acceptor_hash);
7865 	PRESERVE(tcp->tcp_ptpahn);
7866 
7867 	/* Should be ASSERT NULL on these with new code! */
7868 	ASSERT(tcp->tcp_time_wait_next == NULL);
7869 	ASSERT(tcp->tcp_time_wait_prev == NULL);
7870 	ASSERT(tcp->tcp_time_wait_expire == 0);
7871 	PRESERVE(tcp->tcp_state);
7872 	PRESERVE(tcp->tcp_rq);
7873 	PRESERVE(tcp->tcp_wq);
7874 
7875 	ASSERT(tcp->tcp_xmit_head == NULL);
7876 	ASSERT(tcp->tcp_xmit_last == NULL);
7877 	ASSERT(tcp->tcp_unsent == 0);
7878 	ASSERT(tcp->tcp_xmit_tail == NULL);
7879 	ASSERT(tcp->tcp_xmit_tail_unsent == 0);
7880 
7881 	tcp->tcp_snxt = 0;			/* Displayed in mib */
7882 	tcp->tcp_suna = 0;			/* Displayed in mib */
7883 	tcp->tcp_swnd = 0;
7884 	DONTCARE(tcp->tcp_cwnd);		/* Init in tcp_mss_set */
7885 
7886 	ASSERT(tcp->tcp_ibsegs == 0);
7887 	ASSERT(tcp->tcp_obsegs == 0);
7888 
7889 	if (tcp->tcp_iphc != NULL) {
7890 		ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
7891 		bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
7892 	}
7893 
7894 	DONTCARE(tcp->tcp_naglim);		/* Init in tcp_init_values */
7895 	DONTCARE(tcp->tcp_hdr_len);		/* Init in tcp_init_values */
7896 	DONTCARE(tcp->tcp_ipha);
7897 	DONTCARE(tcp->tcp_ip6h);
7898 	DONTCARE(tcp->tcp_ip_hdr_len);
7899 	DONTCARE(tcp->tcp_tcph);
7900 	DONTCARE(tcp->tcp_tcp_hdr_len);		/* Init in tcp_init_values */
7901 	tcp->tcp_valid_bits = 0;
7902 
7903 	DONTCARE(tcp->tcp_xmit_hiwater);	/* Init in tcp_init_values */
7904 	DONTCARE(tcp->tcp_timer_backoff);	/* Init in tcp_init_values */
7905 	DONTCARE(tcp->tcp_last_recv_time);	/* Init in tcp_init_values */
7906 	tcp->tcp_last_rcv_lbolt = 0;
7907 
7908 	tcp->tcp_init_cwnd = 0;
7909 
7910 	tcp->tcp_urp_last_valid = 0;
7911 	tcp->tcp_hard_binding = 0;
7912 	tcp->tcp_hard_bound = 0;
7913 	PRESERVE(tcp->tcp_cred);
7914 	PRESERVE(tcp->tcp_cpid);
7915 	PRESERVE(tcp->tcp_exclbind);
7916 
7917 	tcp->tcp_fin_acked = 0;
7918 	tcp->tcp_fin_rcvd = 0;
7919 	tcp->tcp_fin_sent = 0;
7920 	tcp->tcp_ordrel_done = 0;
7921 
7922 	tcp->tcp_debug = 0;
7923 	tcp->tcp_dontroute = 0;
7924 	tcp->tcp_broadcast = 0;
7925 
7926 	tcp->tcp_useloopback = 0;
7927 	tcp->tcp_reuseaddr = 0;
7928 	tcp->tcp_oobinline = 0;
7929 	tcp->tcp_dgram_errind = 0;
7930 
7931 	tcp->tcp_detached = 0;
7932 	tcp->tcp_bind_pending = 0;
7933 	tcp->tcp_unbind_pending = 0;
7934 	tcp->tcp_deferred_clean_death = 0;
7935 
7936 	tcp->tcp_snd_ws_ok = B_FALSE;
7937 	tcp->tcp_snd_ts_ok = B_FALSE;
7938 	tcp->tcp_linger = 0;
7939 	tcp->tcp_ka_enabled = 0;
7940 	tcp->tcp_zero_win_probe = 0;
7941 
7942 	tcp->tcp_loopback = 0;
7943 	tcp->tcp_localnet = 0;
7944 	tcp->tcp_syn_defense = 0;
7945 	tcp->tcp_set_timer = 0;
7946 
7947 	tcp->tcp_active_open = 0;
7948 	ASSERT(tcp->tcp_timeout == B_FALSE);
7949 	tcp->tcp_rexmit = B_FALSE;
7950 	tcp->tcp_xmit_zc_clean = B_FALSE;
7951 
7952 	tcp->tcp_snd_sack_ok = B_FALSE;
7953 	PRESERVE(tcp->tcp_recvdstaddr);
7954 	tcp->tcp_hwcksum = B_FALSE;
7955 
7956 	tcp->tcp_ire_ill_check_done = B_FALSE;
7957 	DONTCARE(tcp->tcp_maxpsz);		/* Init in tcp_init_values */
7958 
7959 	tcp->tcp_mdt = B_FALSE;
7960 	tcp->tcp_mdt_hdr_head = 0;
7961 	tcp->tcp_mdt_hdr_tail = 0;
7962 
7963 	tcp->tcp_conn_def_q0 = 0;
7964 	tcp->tcp_ip_forward_progress = B_FALSE;
7965 	tcp->tcp_anon_priv_bind = 0;
7966 	tcp->tcp_ecn_ok = B_FALSE;
7967 
7968 	tcp->tcp_cwr = B_FALSE;
7969 	tcp->tcp_ecn_echo_on = B_FALSE;
7970 
7971 	if (tcp->tcp_sack_info != NULL) {
7972 		if (tcp->tcp_notsack_list != NULL) {
7973 			TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
7974 		}
7975 		kmem_cache_free(tcp_sack_info_cache, tcp->tcp_sack_info);
7976 		tcp->tcp_sack_info = NULL;
7977 	}
7978 
7979 	tcp->tcp_rcv_ws = 0;
7980 	tcp->tcp_snd_ws = 0;
7981 	tcp->tcp_ts_recent = 0;
7982 	tcp->tcp_rnxt = 0;			/* Displayed in mib */
7983 	DONTCARE(tcp->tcp_rwnd);		/* Set in tcp_reinit() */
7984 	tcp->tcp_if_mtu = 0;
7985 
7986 	ASSERT(tcp->tcp_reass_head == NULL);
7987 	ASSERT(tcp->tcp_reass_tail == NULL);
7988 
7989 	tcp->tcp_cwnd_cnt = 0;
7990 
7991 	ASSERT(tcp->tcp_rcv_list == NULL);
7992 	ASSERT(tcp->tcp_rcv_last_head == NULL);
7993 	ASSERT(tcp->tcp_rcv_last_tail == NULL);
7994 	ASSERT(tcp->tcp_rcv_cnt == 0);
7995 
7996 	DONTCARE(tcp->tcp_cwnd_ssthresh);	/* Init in tcp_adapt_ire */
7997 	DONTCARE(tcp->tcp_cwnd_max);		/* Init in tcp_init_values */
7998 	tcp->tcp_csuna = 0;
7999 
8000 	tcp->tcp_rto = 0;			/* Displayed in MIB */
8001 	DONTCARE(tcp->tcp_rtt_sa);		/* Init in tcp_init_values */
8002 	DONTCARE(tcp->tcp_rtt_sd);		/* Init in tcp_init_values */
8003 	tcp->tcp_rtt_update = 0;
8004 
8005 	DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
8006 	DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
8007 
8008 	tcp->tcp_rack = 0;			/* Displayed in mib */
8009 	tcp->tcp_rack_cnt = 0;
8010 	tcp->tcp_rack_cur_max = 0;
8011 	tcp->tcp_rack_abs_max = 0;
8012 
8013 	tcp->tcp_max_swnd = 0;
8014 
8015 	ASSERT(tcp->tcp_listener == NULL);
8016 
8017 	DONTCARE(tcp->tcp_xmit_lowater);	/* Init in tcp_init_values */
8018 
8019 	DONTCARE(tcp->tcp_irs);			/* tcp_valid_bits cleared */
8020 	DONTCARE(tcp->tcp_iss);			/* tcp_valid_bits cleared */
8021 	DONTCARE(tcp->tcp_fss);			/* tcp_valid_bits cleared */
8022 	DONTCARE(tcp->tcp_urg);			/* tcp_valid_bits cleared */
8023 
8024 	ASSERT(tcp->tcp_conn_req_cnt_q == 0);
8025 	ASSERT(tcp->tcp_conn_req_cnt_q0 == 0);
8026 	PRESERVE(tcp->tcp_conn_req_max);
8027 	PRESERVE(tcp->tcp_conn_req_seqnum);
8028 
8029 	DONTCARE(tcp->tcp_ip_hdr_len);		/* Init in tcp_init_values */
8030 	DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */
8031 	DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */
8032 	DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */
8033 	DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */
8034 
8035 	tcp->tcp_lingertime = 0;
8036 
8037 	DONTCARE(tcp->tcp_urp_last);	/* tcp_urp_last_valid is cleared */
8038 	ASSERT(tcp->tcp_urp_mp == NULL);
8039 	ASSERT(tcp->tcp_urp_mark_mp == NULL);
8040 	ASSERT(tcp->tcp_fused_sigurg_mp == NULL);
8041 
8042 	ASSERT(tcp->tcp_eager_next_q == NULL);
8043 	ASSERT(tcp->tcp_eager_last_q == NULL);
8044 	ASSERT((tcp->tcp_eager_next_q0 == NULL &&
8045 	    tcp->tcp_eager_prev_q0 == NULL) ||
8046 	    tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0);
8047 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
8048 
8049 	ASSERT((tcp->tcp_eager_next_drop_q0 == NULL &&
8050 	    tcp->tcp_eager_prev_drop_q0 == NULL) ||
8051 	    tcp->tcp_eager_next_drop_q0 == tcp->tcp_eager_prev_drop_q0);
8052 
8053 	tcp->tcp_client_errno = 0;
8054 
8055 	DONTCARE(tcp->tcp_sum);			/* Init in tcp_init_values */
8056 
8057 	tcp->tcp_remote_v6 = ipv6_all_zeros;	/* Displayed in MIB */
8058 
8059 	PRESERVE(tcp->tcp_bound_source_v6);
8060 	tcp->tcp_last_sent_len = 0;
8061 	tcp->tcp_dupack_cnt = 0;
8062 
8063 	tcp->tcp_fport = 0;			/* Displayed in MIB */
8064 	PRESERVE(tcp->tcp_lport);
8065 
8066 	PRESERVE(tcp->tcp_acceptor_lockp);
8067 
8068 	ASSERT(tcp->tcp_ordrelid == 0);
8069 	PRESERVE(tcp->tcp_acceptor_id);
8070 	DONTCARE(tcp->tcp_ipsec_overhead);
8071 
8072 	/*
8073 	 * If tcp_tracing flag is ON (i.e. We have a trace buffer
8074 	 * in tcp structure and now tracing), Re-initialize all
8075 	 * members of tcp_traceinfo.
8076 	 */
8077 	if (tcp->tcp_tracebuf != NULL) {
8078 		bzero(tcp->tcp_tracebuf, sizeof (tcptrch_t));
8079 	}
8080 
8081 	PRESERVE(tcp->tcp_family);
8082 	if (tcp->tcp_family == AF_INET6) {
8083 		tcp->tcp_ipversion = IPV6_VERSION;
8084 		tcp->tcp_mss = tcp_mss_def_ipv6;
8085 	} else {
8086 		tcp->tcp_ipversion = IPV4_VERSION;
8087 		tcp->tcp_mss = tcp_mss_def_ipv4;
8088 	}
8089 
8090 	tcp->tcp_bound_if = 0;
8091 	tcp->tcp_ipv6_recvancillary = 0;
8092 	tcp->tcp_recvifindex = 0;
8093 	tcp->tcp_recvhops = 0;
8094 	tcp->tcp_closed = 0;
8095 	tcp->tcp_cleandeathtag = 0;
8096 	if (tcp->tcp_hopopts != NULL) {
8097 		mi_free(tcp->tcp_hopopts);
8098 		tcp->tcp_hopopts = NULL;
8099 		tcp->tcp_hopoptslen = 0;
8100 	}
8101 	ASSERT(tcp->tcp_hopoptslen == 0);
8102 	if (tcp->tcp_dstopts != NULL) {
8103 		mi_free(tcp->tcp_dstopts);
8104 		tcp->tcp_dstopts = NULL;
8105 		tcp->tcp_dstoptslen = 0;
8106 	}
8107 	ASSERT(tcp->tcp_dstoptslen == 0);
8108 	if (tcp->tcp_rtdstopts != NULL) {
8109 		mi_free(tcp->tcp_rtdstopts);
8110 		tcp->tcp_rtdstopts = NULL;
8111 		tcp->tcp_rtdstoptslen = 0;
8112 	}
8113 	ASSERT(tcp->tcp_rtdstoptslen == 0);
8114 	if (tcp->tcp_rthdr != NULL) {
8115 		mi_free(tcp->tcp_rthdr);
8116 		tcp->tcp_rthdr = NULL;
8117 		tcp->tcp_rthdrlen = 0;
8118 	}
8119 	ASSERT(tcp->tcp_rthdrlen == 0);
8120 	PRESERVE(tcp->tcp_drop_opt_ack_cnt);
8121 
8122 	/* Reset fusion-related fields */
8123 	tcp->tcp_fused = B_FALSE;
8124 	tcp->tcp_unfusable = B_FALSE;
8125 	tcp->tcp_fused_sigurg = B_FALSE;
8126 	tcp->tcp_direct_sockfs = B_FALSE;
8127 	tcp->tcp_fuse_syncstr_stopped = B_FALSE;
8128 	tcp->tcp_fuse_syncstr_plugged = B_FALSE;
8129 	tcp->tcp_loopback_peer = NULL;
8130 	tcp->tcp_fuse_rcv_hiwater = 0;
8131 	tcp->tcp_fuse_rcv_unread_hiwater = 0;
8132 	tcp->tcp_fuse_rcv_unread_cnt = 0;
8133 
8134 	tcp->tcp_lso = B_FALSE;
8135 
8136 	tcp->tcp_in_ack_unsent = 0;
8137 	tcp->tcp_cork = B_FALSE;
8138 	tcp->tcp_tconnind_started = B_FALSE;
8139 
8140 	PRESERVE(tcp->tcp_squeue_bytes);
8141 
8142 	ASSERT(tcp->tcp_kssl_ctx == NULL);
8143 	ASSERT(!tcp->tcp_kssl_pending);
8144 	PRESERVE(tcp->tcp_kssl_ent);
8145 
8146 	tcp->tcp_closemp_used = 0;
8147 
8148 #ifdef DEBUG
8149 	DONTCARE(tcp->tcmp_stk[0]);
8150 #endif
8151 
8152 
8153 #undef	DONTCARE
8154 #undef	PRESERVE
8155 }
8156 
8157 /*
8158  * Allocate necessary resources and initialize state vector.
8159  * Guaranteed not to fail so that when an error is returned,
8160  * the caller doesn't need to do any additional cleanup.
8161  */
8162 int
8163 tcp_init(tcp_t *tcp, queue_t *q)
8164 {
8165 	int	err;
8166 
8167 	tcp->tcp_rq = q;
8168 	tcp->tcp_wq = WR(q);
8169 	tcp->tcp_state = TCPS_IDLE;
8170 	if ((err = tcp_init_values(tcp)) != 0)
8171 		tcp_timers_stop(tcp);
8172 	return (err);
8173 }
8174 
8175 static int
8176 tcp_init_values(tcp_t *tcp)
8177 {
8178 	int	err;
8179 
8180 	ASSERT((tcp->tcp_family == AF_INET &&
8181 	    tcp->tcp_ipversion == IPV4_VERSION) ||
8182 	    (tcp->tcp_family == AF_INET6 &&
8183 	    (tcp->tcp_ipversion == IPV4_VERSION ||
8184 	    tcp->tcp_ipversion == IPV6_VERSION)));
8185 
8186 	/*
8187 	 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO
8188 	 * will be close to tcp_rexmit_interval_initial.  By doing this, we
8189 	 * allow the algorithm to adjust slowly to large fluctuations of RTT
8190 	 * during first few transmissions of a connection as seen in slow
8191 	 * links.
8192 	 */
8193 	tcp->tcp_rtt_sa = tcp_rexmit_interval_initial << 2;
8194 	tcp->tcp_rtt_sd = tcp_rexmit_interval_initial >> 1;
8195 	tcp->tcp_rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
8196 	    tcp_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) +
8197 	    tcp_conn_grace_period;
8198 	if (tcp->tcp_rto < tcp_rexmit_interval_min)
8199 		tcp->tcp_rto = tcp_rexmit_interval_min;
8200 	tcp->tcp_timer_backoff = 0;
8201 	tcp->tcp_ms_we_have_waited = 0;
8202 	tcp->tcp_last_recv_time = lbolt;
8203 	tcp->tcp_cwnd_max = tcp_cwnd_max_;
8204 	tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
8205 	tcp->tcp_snd_burst = TCP_CWND_INFINITE;
8206 
8207 	tcp->tcp_maxpsz = tcp_maxpsz_multiplier;
8208 
8209 	tcp->tcp_first_timer_threshold = tcp_ip_notify_interval;
8210 	tcp->tcp_first_ctimer_threshold = tcp_ip_notify_cinterval;
8211 	tcp->tcp_second_timer_threshold = tcp_ip_abort_interval;
8212 	/*
8213 	 * Fix it to tcp_ip_abort_linterval later if it turns out to be a
8214 	 * passive open.
8215 	 */
8216 	tcp->tcp_second_ctimer_threshold = tcp_ip_abort_cinterval;
8217 
8218 	tcp->tcp_naglim = tcp_naglim_def;
8219 
8220 	/* NOTE:  ISS is now set in tcp_adapt_ire(). */
8221 
8222 	tcp->tcp_mdt_hdr_head = 0;
8223 	tcp->tcp_mdt_hdr_tail = 0;
8224 
8225 	/* Reset fusion-related fields */
8226 	tcp->tcp_fused = B_FALSE;
8227 	tcp->tcp_unfusable = B_FALSE;
8228 	tcp->tcp_fused_sigurg = B_FALSE;
8229 	tcp->tcp_direct_sockfs = B_FALSE;
8230 	tcp->tcp_fuse_syncstr_stopped = B_FALSE;
8231 	tcp->tcp_fuse_syncstr_plugged = B_FALSE;
8232 	tcp->tcp_loopback_peer = NULL;
8233 	tcp->tcp_fuse_rcv_hiwater = 0;
8234 	tcp->tcp_fuse_rcv_unread_hiwater = 0;
8235 	tcp->tcp_fuse_rcv_unread_cnt = 0;
8236 
8237 	/* Initialize the header template */
8238 	if (tcp->tcp_ipversion == IPV4_VERSION) {
8239 		err = tcp_header_init_ipv4(tcp);
8240 	} else {
8241 		err = tcp_header_init_ipv6(tcp);
8242 	}
8243 	if (err)
8244 		return (err);
8245 
8246 	/*
8247 	 * Init the window scale to the max so tcp_rwnd_set() won't pare
8248 	 * down tcp_rwnd. tcp_adapt_ire() will set the right value later.
8249 	 */
8250 	tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT;
8251 	tcp->tcp_xmit_lowater = tcp_xmit_lowat;
8252 	tcp->tcp_xmit_hiwater = tcp_xmit_hiwat;
8253 
8254 	tcp->tcp_cork = B_FALSE;
8255 	/*
8256 	 * Init the tcp_debug option.  This value determines whether TCP
8257 	 * calls strlog() to print out debug messages.  Doing this
8258 	 * initialization here means that this value is not inherited thru
8259 	 * tcp_reinit().
8260 	 */
8261 	tcp->tcp_debug = tcp_dbg;
8262 
8263 	tcp->tcp_ka_interval = tcp_keepalive_interval;
8264 	tcp->tcp_ka_abort_thres = tcp_keepalive_abort_interval;
8265 
8266 	return (0);
8267 }
8268 
8269 /*
8270  * Initialize the IPv4 header. Loses any record of any IP options.
8271  */
8272 static int
8273 tcp_header_init_ipv4(tcp_t *tcp)
8274 {
8275 	tcph_t		*tcph;
8276 	uint32_t	sum;
8277 	conn_t		*connp;
8278 
8279 	/*
8280 	 * This is a simple initialization. If there's
8281 	 * already a template, it should never be too small,
8282 	 * so reuse it.  Otherwise, allocate space for the new one.
8283 	 */
8284 	if (tcp->tcp_iphc == NULL) {
8285 		ASSERT(tcp->tcp_iphc_len == 0);
8286 		tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH;
8287 		tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP);
8288 		if (tcp->tcp_iphc == NULL) {
8289 			tcp->tcp_iphc_len = 0;
8290 			return (ENOMEM);
8291 		}
8292 	}
8293 
8294 	/* options are gone; may need a new label */
8295 	connp = tcp->tcp_connp;
8296 	connp->conn_mlp_type = mlptSingle;
8297 	connp->conn_ulp_labeled = !is_system_labeled();
8298 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
8299 	tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
8300 	tcp->tcp_ip6h = NULL;
8301 	tcp->tcp_ipversion = IPV4_VERSION;
8302 	tcp->tcp_hdr_len = sizeof (ipha_t) + sizeof (tcph_t);
8303 	tcp->tcp_tcp_hdr_len = sizeof (tcph_t);
8304 	tcp->tcp_ip_hdr_len = sizeof (ipha_t);
8305 	tcp->tcp_ipha->ipha_length = htons(sizeof (ipha_t) + sizeof (tcph_t));
8306 	tcp->tcp_ipha->ipha_version_and_hdr_length
8307 		= (IP_VERSION << 4) | IP_SIMPLE_HDR_LENGTH_IN_WORDS;
8308 	tcp->tcp_ipha->ipha_ident = 0;
8309 
8310 	tcp->tcp_ttl = (uchar_t)tcp_ipv4_ttl;
8311 	tcp->tcp_tos = 0;
8312 	tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0;
8313 	tcp->tcp_ipha->ipha_ttl = (uchar_t)tcp_ipv4_ttl;
8314 	tcp->tcp_ipha->ipha_protocol = IPPROTO_TCP;
8315 
8316 	tcph = (tcph_t *)(tcp->tcp_iphc + sizeof (ipha_t));
8317 	tcp->tcp_tcph = tcph;
8318 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
8319 	/*
8320 	 * IP wants our header length in the checksum field to
8321 	 * allow it to perform a single pseudo-header+checksum
8322 	 * calculation on behalf of TCP.
8323 	 * Include the adjustment for a source route once IP_OPTIONS is set.
8324 	 */
8325 	sum = sizeof (tcph_t) + tcp->tcp_sum;
8326 	sum = (sum >> 16) + (sum & 0xFFFF);
8327 	U16_TO_ABE16(sum, tcph->th_sum);
8328 	return (0);
8329 }
8330 
8331 /*
8332  * Initialize the IPv6 header. Loses any record of any IPv6 extension headers.
8333  */
8334 static int
8335 tcp_header_init_ipv6(tcp_t *tcp)
8336 {
8337 	tcph_t	*tcph;
8338 	uint32_t	sum;
8339 	conn_t	*connp;
8340 
8341 	/*
8342 	 * This is a simple initialization. If there's
8343 	 * already a template, it should never be too small,
8344 	 * so reuse it. Otherwise, allocate space for the new one.
8345 	 * Ensure that there is enough space to "downgrade" the tcp_t
8346 	 * to an IPv4 tcp_t. This requires having space for a full load
8347 	 * of IPv4 options, as well as a full load of TCP options
8348 	 * (TCP_MAX_COMBINED_HEADER_LENGTH, 120 bytes); this is more space
8349 	 * than a v6 header and a TCP header with a full load of TCP options
8350 	 * (IPV6_HDR_LEN is 40 bytes; TCP_MAX_HDR_LENGTH is 60 bytes).
8351 	 * We want to avoid reallocation in the "downgraded" case when
8352 	 * processing outbound IPv4 options.
8353 	 */
8354 	if (tcp->tcp_iphc == NULL) {
8355 		ASSERT(tcp->tcp_iphc_len == 0);
8356 		tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH;
8357 		tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP);
8358 		if (tcp->tcp_iphc == NULL) {
8359 			tcp->tcp_iphc_len = 0;
8360 			return (ENOMEM);
8361 		}
8362 	}
8363 
8364 	/* options are gone; may need a new label */
8365 	connp = tcp->tcp_connp;
8366 	connp->conn_mlp_type = mlptSingle;
8367 	connp->conn_ulp_labeled = !is_system_labeled();
8368 
8369 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
8370 	tcp->tcp_ipversion = IPV6_VERSION;
8371 	tcp->tcp_hdr_len = IPV6_HDR_LEN + sizeof (tcph_t);
8372 	tcp->tcp_tcp_hdr_len = sizeof (tcph_t);
8373 	tcp->tcp_ip_hdr_len = IPV6_HDR_LEN;
8374 	tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc;
8375 	tcp->tcp_ipha = NULL;
8376 
8377 	/* Initialize the header template */
8378 
8379 	tcp->tcp_ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW;
8380 	tcp->tcp_ip6h->ip6_plen = ntohs(sizeof (tcph_t));
8381 	tcp->tcp_ip6h->ip6_nxt = IPPROTO_TCP;
8382 	tcp->tcp_ip6h->ip6_hops = (uint8_t)tcp_ipv6_hoplimit;
8383 
8384 	tcph = (tcph_t *)(tcp->tcp_iphc + IPV6_HDR_LEN);
8385 	tcp->tcp_tcph = tcph;
8386 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
8387 	/*
8388 	 * IP wants our header length in the checksum field to
8389 	 * allow it to perform a single psuedo-header+checksum
8390 	 * calculation on behalf of TCP.
8391 	 * Include the adjustment for a source route when IPV6_RTHDR is set.
8392 	 */
8393 	sum = sizeof (tcph_t) + tcp->tcp_sum;
8394 	sum = (sum >> 16) + (sum & 0xFFFF);
8395 	U16_TO_ABE16(sum, tcph->th_sum);
8396 	return (0);
8397 }
8398 
8399 /* At minimum we need 4 bytes in the TCP header for the lookup */
8400 #define	ICMP_MIN_TCP_HDR	12
8401 
8402 /*
8403  * tcp_icmp_error is called by tcp_rput_other to process ICMP error messages
8404  * passed up by IP. The message is always received on the correct tcp_t.
8405  * Assumes that IP has pulled up everything up to and including the ICMP header.
8406  */
8407 void
8408 tcp_icmp_error(tcp_t *tcp, mblk_t *mp)
8409 {
8410 	icmph_t *icmph;
8411 	ipha_t	*ipha;
8412 	int	iph_hdr_length;
8413 	tcph_t	*tcph;
8414 	boolean_t ipsec_mctl = B_FALSE;
8415 	boolean_t secure;
8416 	mblk_t *first_mp = mp;
8417 	uint32_t new_mss;
8418 	uint32_t ratio;
8419 	size_t mp_size = MBLKL(mp);
8420 	uint32_t seg_ack;
8421 	uint32_t seg_seq;
8422 
8423 	/* Assume IP provides aligned packets - otherwise toss */
8424 	if (!OK_32PTR(mp->b_rptr)) {
8425 		freemsg(mp);
8426 		return;
8427 	}
8428 
8429 	/*
8430 	 * Since ICMP errors are normal data marked with M_CTL when sent
8431 	 * to TCP or UDP, we have to look for a IPSEC_IN value to identify
8432 	 * packets starting with an ipsec_info_t, see ipsec_info.h.
8433 	 */
8434 	if ((mp_size == sizeof (ipsec_info_t)) &&
8435 	    (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == IPSEC_IN)) {
8436 		ASSERT(mp->b_cont != NULL);
8437 		mp = mp->b_cont;
8438 		/* IP should have done this */
8439 		ASSERT(OK_32PTR(mp->b_rptr));
8440 		mp_size = MBLKL(mp);
8441 		ipsec_mctl = B_TRUE;
8442 	}
8443 
8444 	/*
8445 	 * Verify that we have a complete outer IP header. If not, drop it.
8446 	 */
8447 	if (mp_size < sizeof (ipha_t)) {
8448 noticmpv4:
8449 		freemsg(first_mp);
8450 		return;
8451 	}
8452 
8453 	ipha = (ipha_t *)mp->b_rptr;
8454 	/*
8455 	 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent
8456 	 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6.
8457 	 */
8458 	switch (IPH_HDR_VERSION(ipha)) {
8459 	case IPV6_VERSION:
8460 		tcp_icmp_error_ipv6(tcp, first_mp, ipsec_mctl);
8461 		return;
8462 	case IPV4_VERSION:
8463 		break;
8464 	default:
8465 		goto noticmpv4;
8466 	}
8467 
8468 	/* Skip past the outer IP and ICMP headers */
8469 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
8470 	icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
8471 	/*
8472 	 * If we don't have the correct outer IP header length or if the ULP
8473 	 * is not IPPROTO_ICMP or if we don't have a complete inner IP header
8474 	 * send it upstream.
8475 	 */
8476 	if (iph_hdr_length < sizeof (ipha_t) ||
8477 	    ipha->ipha_protocol != IPPROTO_ICMP ||
8478 	    (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) {
8479 		goto noticmpv4;
8480 	}
8481 	ipha = (ipha_t *)&icmph[1];
8482 
8483 	/* Skip past the inner IP and find the ULP header */
8484 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
8485 	tcph = (tcph_t *)((char *)ipha + iph_hdr_length);
8486 	/*
8487 	 * If we don't have the correct inner IP header length or if the ULP
8488 	 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR
8489 	 * bytes of TCP header, drop it.
8490 	 */
8491 	if (iph_hdr_length < sizeof (ipha_t) ||
8492 	    ipha->ipha_protocol != IPPROTO_TCP ||
8493 	    (uchar_t *)tcph + ICMP_MIN_TCP_HDR > mp->b_wptr) {
8494 		goto noticmpv4;
8495 	}
8496 
8497 	if (TCP_IS_DETACHED_NONEAGER(tcp)) {
8498 		if (ipsec_mctl) {
8499 			secure = ipsec_in_is_secure(first_mp);
8500 		} else {
8501 			secure = B_FALSE;
8502 		}
8503 		if (secure) {
8504 			/*
8505 			 * If we are willing to accept this in clear
8506 			 * we don't have to verify policy.
8507 			 */
8508 			if (!ipsec_inbound_accept_clear(mp, ipha, NULL)) {
8509 				if (!tcp_check_policy(tcp, first_mp,
8510 				    ipha, NULL, secure, ipsec_mctl)) {
8511 					/*
8512 					 * tcp_check_policy called
8513 					 * ip_drop_packet() on failure.
8514 					 */
8515 					return;
8516 				}
8517 			}
8518 		}
8519 	} else if (ipsec_mctl) {
8520 		/*
8521 		 * This is a hard_bound connection. IP has already
8522 		 * verified policy. We don't have to do it again.
8523 		 */
8524 		freeb(first_mp);
8525 		first_mp = mp;
8526 		ipsec_mctl = B_FALSE;
8527 	}
8528 
8529 	seg_ack = ABE32_TO_U32(tcph->th_ack);
8530 	seg_seq = ABE32_TO_U32(tcph->th_seq);
8531 	/*
8532 	 * TCP SHOULD check that the TCP sequence number contained in
8533 	 * payload of the ICMP error message is within the range
8534 	 * SND.UNA <= SEG.SEQ < SND.NXT. and also SEG.ACK <= RECV.NXT
8535 	 */
8536 	if (SEQ_LT(seg_seq, tcp->tcp_suna) ||
8537 		SEQ_GEQ(seg_seq, tcp->tcp_snxt) ||
8538 		SEQ_GT(seg_ack, tcp->tcp_rnxt)) {
8539 		/*
8540 		 * If the ICMP message is bogus, should we kill the
8541 		 * connection, or should we just drop the bogus ICMP
8542 		 * message? It would probably make more sense to just
8543 		 * drop the message so that if this one managed to get
8544 		 * in, the real connection should not suffer.
8545 		 */
8546 		goto noticmpv4;
8547 	}
8548 
8549 	switch (icmph->icmph_type) {
8550 	case ICMP_DEST_UNREACHABLE:
8551 		switch (icmph->icmph_code) {
8552 		case ICMP_FRAGMENTATION_NEEDED:
8553 			/*
8554 			 * Reduce the MSS based on the new MTU.  This will
8555 			 * eliminate any fragmentation locally.
8556 			 * N.B.  There may well be some funny side-effects on
8557 			 * the local send policy and the remote receive policy.
8558 			 * Pending further research, we provide
8559 			 * tcp_ignore_path_mtu just in case this proves
8560 			 * disastrous somewhere.
8561 			 *
8562 			 * After updating the MSS, retransmit part of the
8563 			 * dropped segment using the new mss by calling
8564 			 * tcp_wput_data().  Need to adjust all those
8565 			 * params to make sure tcp_wput_data() work properly.
8566 			 */
8567 			if (tcp_ignore_path_mtu)
8568 				break;
8569 
8570 			/*
8571 			 * Decrease the MSS by time stamp options
8572 			 * IP options and IPSEC options. tcp_hdr_len
8573 			 * includes time stamp option and IP option
8574 			 * length.
8575 			 */
8576 
8577 			new_mss = ntohs(icmph->icmph_du_mtu) -
8578 			    tcp->tcp_hdr_len - tcp->tcp_ipsec_overhead;
8579 
8580 			/*
8581 			 * Only update the MSS if the new one is
8582 			 * smaller than the previous one.  This is
8583 			 * to avoid problems when getting multiple
8584 			 * ICMP errors for the same MTU.
8585 			 */
8586 			if (new_mss >= tcp->tcp_mss)
8587 				break;
8588 
8589 			/*
8590 			 * Stop doing PMTU if new_mss is less than 68
8591 			 * or less than tcp_mss_min.
8592 			 * The value 68 comes from rfc 1191.
8593 			 */
8594 			if (new_mss < MAX(68, tcp_mss_min))
8595 				tcp->tcp_ipha->ipha_fragment_offset_and_flags =
8596 				    0;
8597 
8598 			ratio = tcp->tcp_cwnd / tcp->tcp_mss;
8599 			ASSERT(ratio >= 1);
8600 			tcp_mss_set(tcp, new_mss);
8601 
8602 			/*
8603 			 * Make sure we have something to
8604 			 * send.
8605 			 */
8606 			if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) &&
8607 			    (tcp->tcp_xmit_head != NULL)) {
8608 				/*
8609 				 * Shrink tcp_cwnd in
8610 				 * proportion to the old MSS/new MSS.
8611 				 */
8612 				tcp->tcp_cwnd = ratio * tcp->tcp_mss;
8613 				if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
8614 				    (tcp->tcp_unsent == 0)) {
8615 					tcp->tcp_rexmit_max = tcp->tcp_fss;
8616 				} else {
8617 					tcp->tcp_rexmit_max = tcp->tcp_snxt;
8618 				}
8619 				tcp->tcp_rexmit_nxt = tcp->tcp_suna;
8620 				tcp->tcp_rexmit = B_TRUE;
8621 				tcp->tcp_dupack_cnt = 0;
8622 				tcp->tcp_snd_burst = TCP_CWND_SS;
8623 				tcp_ss_rexmit(tcp);
8624 			}
8625 			break;
8626 		case ICMP_PORT_UNREACHABLE:
8627 		case ICMP_PROTOCOL_UNREACHABLE:
8628 			switch (tcp->tcp_state) {
8629 			case TCPS_SYN_SENT:
8630 			case TCPS_SYN_RCVD:
8631 				/*
8632 				 * ICMP can snipe away incipient
8633 				 * TCP connections as long as
8634 				 * seq number is same as initial
8635 				 * send seq number.
8636 				 */
8637 				if (seg_seq == tcp->tcp_iss) {
8638 					(void) tcp_clean_death(tcp,
8639 					    ECONNREFUSED, 6);
8640 				}
8641 				break;
8642 			}
8643 			break;
8644 		case ICMP_HOST_UNREACHABLE:
8645 		case ICMP_NET_UNREACHABLE:
8646 			/* Record the error in case we finally time out. */
8647 			if (icmph->icmph_code == ICMP_HOST_UNREACHABLE)
8648 				tcp->tcp_client_errno = EHOSTUNREACH;
8649 			else
8650 				tcp->tcp_client_errno = ENETUNREACH;
8651 			if (tcp->tcp_state == TCPS_SYN_RCVD) {
8652 				if (tcp->tcp_listener != NULL &&
8653 				    tcp->tcp_listener->tcp_syn_defense) {
8654 					/*
8655 					 * Ditch the half-open connection if we
8656 					 * suspect a SYN attack is under way.
8657 					 */
8658 					tcp_ip_ire_mark_advice(tcp);
8659 					(void) tcp_clean_death(tcp,
8660 					    tcp->tcp_client_errno, 7);
8661 				}
8662 			}
8663 			break;
8664 		default:
8665 			break;
8666 		}
8667 		break;
8668 	case ICMP_SOURCE_QUENCH: {
8669 		/*
8670 		 * use a global boolean to control
8671 		 * whether TCP should respond to ICMP_SOURCE_QUENCH.
8672 		 * The default is false.
8673 		 */
8674 		if (tcp_icmp_source_quench) {
8675 			/*
8676 			 * Reduce the sending rate as if we got a
8677 			 * retransmit timeout
8678 			 */
8679 			uint32_t npkt;
8680 
8681 			npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) /
8682 			    tcp->tcp_mss;
8683 			tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss;
8684 			tcp->tcp_cwnd = tcp->tcp_mss;
8685 			tcp->tcp_cwnd_cnt = 0;
8686 		}
8687 		break;
8688 	}
8689 	}
8690 	freemsg(first_mp);
8691 }
8692 
8693 /*
8694  * tcp_icmp_error_ipv6 is called by tcp_rput_other to process ICMPv6
8695  * error messages passed up by IP.
8696  * Assumes that IP has pulled up all the extension headers as well
8697  * as the ICMPv6 header.
8698  */
8699 static void
8700 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, boolean_t ipsec_mctl)
8701 {
8702 	icmp6_t *icmp6;
8703 	ip6_t	*ip6h;
8704 	uint16_t	iph_hdr_length;
8705 	tcpha_t	*tcpha;
8706 	uint8_t	*nexthdrp;
8707 	uint32_t new_mss;
8708 	uint32_t ratio;
8709 	boolean_t secure;
8710 	mblk_t *first_mp = mp;
8711 	size_t mp_size;
8712 	uint32_t seg_ack;
8713 	uint32_t seg_seq;
8714 
8715 	/*
8716 	 * The caller has determined if this is an IPSEC_IN packet and
8717 	 * set ipsec_mctl appropriately (see tcp_icmp_error).
8718 	 */
8719 	if (ipsec_mctl)
8720 		mp = mp->b_cont;
8721 
8722 	mp_size = MBLKL(mp);
8723 
8724 	/*
8725 	 * Verify that we have a complete IP header. If not, send it upstream.
8726 	 */
8727 	if (mp_size < sizeof (ip6_t)) {
8728 noticmpv6:
8729 		freemsg(first_mp);
8730 		return;
8731 	}
8732 
8733 	/*
8734 	 * Verify this is an ICMPV6 packet, else send it upstream.
8735 	 */
8736 	ip6h = (ip6_t *)mp->b_rptr;
8737 	if (ip6h->ip6_nxt == IPPROTO_ICMPV6) {
8738 		iph_hdr_length = IPV6_HDR_LEN;
8739 	} else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length,
8740 	    &nexthdrp) ||
8741 	    *nexthdrp != IPPROTO_ICMPV6) {
8742 		goto noticmpv6;
8743 	}
8744 	icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length];
8745 	ip6h = (ip6_t *)&icmp6[1];
8746 	/*
8747 	 * Verify if we have a complete ICMP and inner IP header.
8748 	 */
8749 	if ((uchar_t *)&ip6h[1] > mp->b_wptr)
8750 		goto noticmpv6;
8751 
8752 	if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp))
8753 		goto noticmpv6;
8754 	tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length);
8755 	/*
8756 	 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't
8757 	 * have at least ICMP_MIN_TCP_HDR bytes of  TCP header drop the
8758 	 * packet.
8759 	 */
8760 	if ((*nexthdrp != IPPROTO_TCP) ||
8761 	    ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) {
8762 		goto noticmpv6;
8763 	}
8764 
8765 	/*
8766 	 * ICMP errors come on the right queue or come on
8767 	 * listener/global queue for detached connections and
8768 	 * get switched to the right queue. If it comes on the
8769 	 * right queue, policy check has already been done by IP
8770 	 * and thus free the first_mp without verifying the policy.
8771 	 * If it has come for a non-hard bound connection, we need
8772 	 * to verify policy as IP may not have done it.
8773 	 */
8774 	if (!tcp->tcp_hard_bound) {
8775 		if (ipsec_mctl) {
8776 			secure = ipsec_in_is_secure(first_mp);
8777 		} else {
8778 			secure = B_FALSE;
8779 		}
8780 		if (secure) {
8781 			/*
8782 			 * If we are willing to accept this in clear
8783 			 * we don't have to verify policy.
8784 			 */
8785 			if (!ipsec_inbound_accept_clear(mp, NULL, ip6h)) {
8786 				if (!tcp_check_policy(tcp, first_mp,
8787 				    NULL, ip6h, secure, ipsec_mctl)) {
8788 					/*
8789 					 * tcp_check_policy called
8790 					 * ip_drop_packet() on failure.
8791 					 */
8792 					return;
8793 				}
8794 			}
8795 		}
8796 	} else if (ipsec_mctl) {
8797 		/*
8798 		 * This is a hard_bound connection. IP has already
8799 		 * verified policy. We don't have to do it again.
8800 		 */
8801 		freeb(first_mp);
8802 		first_mp = mp;
8803 		ipsec_mctl = B_FALSE;
8804 	}
8805 
8806 	seg_ack = ntohl(tcpha->tha_ack);
8807 	seg_seq = ntohl(tcpha->tha_seq);
8808 	/*
8809 	 * TCP SHOULD check that the TCP sequence number contained in
8810 	 * payload of the ICMP error message is within the range
8811 	 * SND.UNA <= SEG.SEQ < SND.NXT. and also SEG.ACK <= RECV.NXT
8812 	 */
8813 	if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt) ||
8814 	    SEQ_GT(seg_ack, tcp->tcp_rnxt)) {
8815 		/*
8816 		 * If the ICMP message is bogus, should we kill the
8817 		 * connection, or should we just drop the bogus ICMP
8818 		 * message? It would probably make more sense to just
8819 		 * drop the message so that if this one managed to get
8820 		 * in, the real connection should not suffer.
8821 		 */
8822 		goto noticmpv6;
8823 	}
8824 
8825 	switch (icmp6->icmp6_type) {
8826 	case ICMP6_PACKET_TOO_BIG:
8827 		/*
8828 		 * Reduce the MSS based on the new MTU.  This will
8829 		 * eliminate any fragmentation locally.
8830 		 * N.B.  There may well be some funny side-effects on
8831 		 * the local send policy and the remote receive policy.
8832 		 * Pending further research, we provide
8833 		 * tcp_ignore_path_mtu just in case this proves
8834 		 * disastrous somewhere.
8835 		 *
8836 		 * After updating the MSS, retransmit part of the
8837 		 * dropped segment using the new mss by calling
8838 		 * tcp_wput_data().  Need to adjust all those
8839 		 * params to make sure tcp_wput_data() work properly.
8840 		 */
8841 		if (tcp_ignore_path_mtu)
8842 			break;
8843 
8844 		/*
8845 		 * Decrease the MSS by time stamp options
8846 		 * IP options and IPSEC options. tcp_hdr_len
8847 		 * includes time stamp option and IP option
8848 		 * length.
8849 		 */
8850 		new_mss = ntohs(icmp6->icmp6_mtu) - tcp->tcp_hdr_len -
8851 			    tcp->tcp_ipsec_overhead;
8852 
8853 		/*
8854 		 * Only update the MSS if the new one is
8855 		 * smaller than the previous one.  This is
8856 		 * to avoid problems when getting multiple
8857 		 * ICMP errors for the same MTU.
8858 		 */
8859 		if (new_mss >= tcp->tcp_mss)
8860 			break;
8861 
8862 		ratio = tcp->tcp_cwnd / tcp->tcp_mss;
8863 		ASSERT(ratio >= 1);
8864 		tcp_mss_set(tcp, new_mss);
8865 
8866 		/*
8867 		 * Make sure we have something to
8868 		 * send.
8869 		 */
8870 		if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) &&
8871 		    (tcp->tcp_xmit_head != NULL)) {
8872 			/*
8873 			 * Shrink tcp_cwnd in
8874 			 * proportion to the old MSS/new MSS.
8875 			 */
8876 			tcp->tcp_cwnd = ratio * tcp->tcp_mss;
8877 			if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
8878 			    (tcp->tcp_unsent == 0)) {
8879 				tcp->tcp_rexmit_max = tcp->tcp_fss;
8880 			} else {
8881 				tcp->tcp_rexmit_max = tcp->tcp_snxt;
8882 			}
8883 			tcp->tcp_rexmit_nxt = tcp->tcp_suna;
8884 			tcp->tcp_rexmit = B_TRUE;
8885 			tcp->tcp_dupack_cnt = 0;
8886 			tcp->tcp_snd_burst = TCP_CWND_SS;
8887 			tcp_ss_rexmit(tcp);
8888 		}
8889 		break;
8890 
8891 	case ICMP6_DST_UNREACH:
8892 		switch (icmp6->icmp6_code) {
8893 		case ICMP6_DST_UNREACH_NOPORT:
8894 			if (((tcp->tcp_state == TCPS_SYN_SENT) ||
8895 			    (tcp->tcp_state == TCPS_SYN_RCVD)) &&
8896 			    (seg_seq == tcp->tcp_iss)) {
8897 				(void) tcp_clean_death(tcp,
8898 				    ECONNREFUSED, 8);
8899 			}
8900 			break;
8901 
8902 		case ICMP6_DST_UNREACH_ADMIN:
8903 		case ICMP6_DST_UNREACH_NOROUTE:
8904 		case ICMP6_DST_UNREACH_BEYONDSCOPE:
8905 		case ICMP6_DST_UNREACH_ADDR:
8906 			/* Record the error in case we finally time out. */
8907 			tcp->tcp_client_errno = EHOSTUNREACH;
8908 			if (((tcp->tcp_state == TCPS_SYN_SENT) ||
8909 			    (tcp->tcp_state == TCPS_SYN_RCVD)) &&
8910 			    (seg_seq == tcp->tcp_iss)) {
8911 				if (tcp->tcp_listener != NULL &&
8912 				    tcp->tcp_listener->tcp_syn_defense) {
8913 					/*
8914 					 * Ditch the half-open connection if we
8915 					 * suspect a SYN attack is under way.
8916 					 */
8917 					tcp_ip_ire_mark_advice(tcp);
8918 					(void) tcp_clean_death(tcp,
8919 					    tcp->tcp_client_errno, 9);
8920 				}
8921 			}
8922 
8923 
8924 			break;
8925 		default:
8926 			break;
8927 		}
8928 		break;
8929 
8930 	case ICMP6_PARAM_PROB:
8931 		/* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */
8932 		if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER &&
8933 		    (uchar_t *)ip6h + icmp6->icmp6_pptr ==
8934 		    (uchar_t *)nexthdrp) {
8935 			if (tcp->tcp_state == TCPS_SYN_SENT ||
8936 			    tcp->tcp_state == TCPS_SYN_RCVD) {
8937 				(void) tcp_clean_death(tcp,
8938 				    ECONNREFUSED, 10);
8939 			}
8940 			break;
8941 		}
8942 		break;
8943 
8944 	case ICMP6_TIME_EXCEEDED:
8945 	default:
8946 		break;
8947 	}
8948 	freemsg(first_mp);
8949 }
8950 
8951 /*
8952  * IP recognizes seven kinds of bind requests:
8953  *
8954  * - A zero-length address binds only to the protocol number.
8955  *
8956  * - A 4-byte address is treated as a request to
8957  * validate that the address is a valid local IPv4
8958  * address, appropriate for an application to bind to.
8959  * IP does the verification, but does not make any note
8960  * of the address at this time.
8961  *
8962  * - A 16-byte address contains is treated as a request
8963  * to validate a local IPv6 address, as the 4-byte
8964  * address case above.
8965  *
8966  * - A 16-byte sockaddr_in to validate the local IPv4 address and also
8967  * use it for the inbound fanout of packets.
8968  *
8969  * - A 24-byte sockaddr_in6 to validate the local IPv6 address and also
8970  * use it for the inbound fanout of packets.
8971  *
8972  * - A 12-byte address (ipa_conn_t) containing complete IPv4 fanout
8973  * information consisting of local and remote addresses
8974  * and ports.  In this case, the addresses are both
8975  * validated as appropriate for this operation, and, if
8976  * so, the information is retained for use in the
8977  * inbound fanout.
8978  *
8979  * - A 36-byte address address (ipa6_conn_t) containing complete IPv6
8980  * fanout information, like the 12-byte case above.
8981  *
8982  * IP will also fill in the IRE request mblk with information
8983  * regarding our peer.  In all cases, we notify IP of our protocol
8984  * type by appending a single protocol byte to the bind request.
8985  */
8986 static mblk_t *
8987 tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim, t_scalar_t addr_length)
8988 {
8989 	char	*cp;
8990 	mblk_t	*mp;
8991 	struct T_bind_req *tbr;
8992 	ipa_conn_t	*ac;
8993 	ipa6_conn_t	*ac6;
8994 	sin_t		*sin;
8995 	sin6_t		*sin6;
8996 
8997 	ASSERT(bind_prim == O_T_BIND_REQ || bind_prim == T_BIND_REQ);
8998 	ASSERT((tcp->tcp_family == AF_INET &&
8999 	    tcp->tcp_ipversion == IPV4_VERSION) ||
9000 	    (tcp->tcp_family == AF_INET6 &&
9001 	    (tcp->tcp_ipversion == IPV4_VERSION ||
9002 	    tcp->tcp_ipversion == IPV6_VERSION)));
9003 
9004 	mp = allocb(sizeof (*tbr) + addr_length + 1, BPRI_HI);
9005 	if (!mp)
9006 		return (mp);
9007 	mp->b_datap->db_type = M_PROTO;
9008 	tbr = (struct T_bind_req *)mp->b_rptr;
9009 	tbr->PRIM_type = bind_prim;
9010 	tbr->ADDR_offset = sizeof (*tbr);
9011 	tbr->CONIND_number = 0;
9012 	tbr->ADDR_length = addr_length;
9013 	cp = (char *)&tbr[1];
9014 	switch (addr_length) {
9015 	case sizeof (ipa_conn_t):
9016 		ASSERT(tcp->tcp_family == AF_INET);
9017 		ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
9018 
9019 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
9020 		if (mp->b_cont == NULL) {
9021 			freemsg(mp);
9022 			return (NULL);
9023 		}
9024 		mp->b_cont->b_wptr += sizeof (ire_t);
9025 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
9026 
9027 		/* cp known to be 32 bit aligned */
9028 		ac = (ipa_conn_t *)cp;
9029 		ac->ac_laddr = tcp->tcp_ipha->ipha_src;
9030 		ac->ac_faddr = tcp->tcp_remote;
9031 		ac->ac_fport = tcp->tcp_fport;
9032 		ac->ac_lport = tcp->tcp_lport;
9033 		tcp->tcp_hard_binding = 1;
9034 		break;
9035 
9036 	case sizeof (ipa6_conn_t):
9037 		ASSERT(tcp->tcp_family == AF_INET6);
9038 
9039 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
9040 		if (mp->b_cont == NULL) {
9041 			freemsg(mp);
9042 			return (NULL);
9043 		}
9044 		mp->b_cont->b_wptr += sizeof (ire_t);
9045 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
9046 
9047 		/* cp known to be 32 bit aligned */
9048 		ac6 = (ipa6_conn_t *)cp;
9049 		if (tcp->tcp_ipversion == IPV4_VERSION) {
9050 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
9051 			    &ac6->ac6_laddr);
9052 		} else {
9053 			ac6->ac6_laddr = tcp->tcp_ip6h->ip6_src;
9054 		}
9055 		ac6->ac6_faddr = tcp->tcp_remote_v6;
9056 		ac6->ac6_fport = tcp->tcp_fport;
9057 		ac6->ac6_lport = tcp->tcp_lport;
9058 		tcp->tcp_hard_binding = 1;
9059 		break;
9060 
9061 	case sizeof (sin_t):
9062 		/*
9063 		 * NOTE: IPV6_ADDR_LEN also has same size.
9064 		 * Use family to discriminate.
9065 		 */
9066 		if (tcp->tcp_family == AF_INET) {
9067 			sin = (sin_t *)cp;
9068 
9069 			*sin = sin_null;
9070 			sin->sin_family = AF_INET;
9071 			sin->sin_addr.s_addr = tcp->tcp_bound_source;
9072 			sin->sin_port = tcp->tcp_lport;
9073 			break;
9074 		} else {
9075 			*(in6_addr_t *)cp = tcp->tcp_bound_source_v6;
9076 		}
9077 		break;
9078 
9079 	case sizeof (sin6_t):
9080 		ASSERT(tcp->tcp_family == AF_INET6);
9081 		sin6 = (sin6_t *)cp;
9082 
9083 		*sin6 = sin6_null;
9084 		sin6->sin6_family = AF_INET6;
9085 		sin6->sin6_addr = tcp->tcp_bound_source_v6;
9086 		sin6->sin6_port = tcp->tcp_lport;
9087 		break;
9088 
9089 	case IP_ADDR_LEN:
9090 		ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
9091 		*(uint32_t *)cp = tcp->tcp_ipha->ipha_src;
9092 		break;
9093 
9094 	}
9095 	/* Add protocol number to end */
9096 	cp[addr_length] = (char)IPPROTO_TCP;
9097 	mp->b_wptr = (uchar_t *)&cp[addr_length + 1];
9098 	return (mp);
9099 }
9100 
9101 /*
9102  * Notify IP that we are having trouble with this connection.  IP should
9103  * blow the IRE away and start over.
9104  */
9105 static void
9106 tcp_ip_notify(tcp_t *tcp)
9107 {
9108 	struct iocblk	*iocp;
9109 	ipid_t	*ipid;
9110 	mblk_t	*mp;
9111 
9112 	/* IPv6 has NUD thus notification to delete the IRE is not needed */
9113 	if (tcp->tcp_ipversion == IPV6_VERSION)
9114 		return;
9115 
9116 	mp = mkiocb(IP_IOCTL);
9117 	if (mp == NULL)
9118 		return;
9119 
9120 	iocp = (struct iocblk *)mp->b_rptr;
9121 	iocp->ioc_count = sizeof (ipid_t) + sizeof (tcp->tcp_ipha->ipha_dst);
9122 
9123 	mp->b_cont = allocb(iocp->ioc_count, BPRI_HI);
9124 	if (!mp->b_cont) {
9125 		freeb(mp);
9126 		return;
9127 	}
9128 
9129 	ipid = (ipid_t *)mp->b_cont->b_rptr;
9130 	mp->b_cont->b_wptr += iocp->ioc_count;
9131 	bzero(ipid, sizeof (*ipid));
9132 	ipid->ipid_cmd = IP_IOC_IRE_DELETE_NO_REPLY;
9133 	ipid->ipid_ire_type = IRE_CACHE;
9134 	ipid->ipid_addr_offset = sizeof (ipid_t);
9135 	ipid->ipid_addr_length = sizeof (tcp->tcp_ipha->ipha_dst);
9136 	/*
9137 	 * Note: in the case of source routing we want to blow away the
9138 	 * route to the first source route hop.
9139 	 */
9140 	bcopy(&tcp->tcp_ipha->ipha_dst, &ipid[1],
9141 	    sizeof (tcp->tcp_ipha->ipha_dst));
9142 
9143 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
9144 }
9145 
9146 /* Unlink and return any mblk that looks like it contains an ire */
9147 static mblk_t *
9148 tcp_ire_mp(mblk_t *mp)
9149 {
9150 	mblk_t	*prev_mp;
9151 
9152 	for (;;) {
9153 		prev_mp = mp;
9154 		mp = mp->b_cont;
9155 		if (mp == NULL)
9156 			break;
9157 		switch (DB_TYPE(mp)) {
9158 		case IRE_DB_TYPE:
9159 		case IRE_DB_REQ_TYPE:
9160 			if (prev_mp != NULL)
9161 				prev_mp->b_cont = mp->b_cont;
9162 			mp->b_cont = NULL;
9163 			return (mp);
9164 		default:
9165 			break;
9166 		}
9167 	}
9168 	return (mp);
9169 }
9170 
9171 /*
9172  * Timer callback routine for keepalive probe.  We do a fake resend of
9173  * last ACKed byte.  Then set a timer using RTO.  When the timer expires,
9174  * check to see if we have heard anything from the other end for the last
9175  * RTO period.  If we have, set the timer to expire for another
9176  * tcp_keepalive_intrvl and check again.  If we have not, set a timer using
9177  * RTO << 1 and check again when it expires.  Keep exponentially increasing
9178  * the timeout if we have not heard from the other side.  If for more than
9179  * (tcp_ka_interval + tcp_ka_abort_thres) we have not heard anything,
9180  * kill the connection unless the keepalive abort threshold is 0.  In
9181  * that case, we will probe "forever."
9182  */
9183 static void
9184 tcp_keepalive_killer(void *arg)
9185 {
9186 	mblk_t	*mp;
9187 	conn_t	*connp = (conn_t *)arg;
9188 	tcp_t  	*tcp = connp->conn_tcp;
9189 	int32_t	firetime;
9190 	int32_t	idletime;
9191 	int32_t	ka_intrvl;
9192 
9193 	tcp->tcp_ka_tid = 0;
9194 
9195 	if (tcp->tcp_fused)
9196 		return;
9197 
9198 	BUMP_MIB(&tcp_mib, tcpTimKeepalive);
9199 	ka_intrvl = tcp->tcp_ka_interval;
9200 
9201 	/*
9202 	 * Keepalive probe should only be sent if the application has not
9203 	 * done a close on the connection.
9204 	 */
9205 	if (tcp->tcp_state > TCPS_CLOSE_WAIT) {
9206 		return;
9207 	}
9208 	/* Timer fired too early, restart it. */
9209 	if (tcp->tcp_state < TCPS_ESTABLISHED) {
9210 		tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
9211 		    MSEC_TO_TICK(ka_intrvl));
9212 		return;
9213 	}
9214 
9215 	idletime = TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time);
9216 	/*
9217 	 * If we have not heard from the other side for a long
9218 	 * time, kill the connection unless the keepalive abort
9219 	 * threshold is 0.  In that case, we will probe "forever."
9220 	 */
9221 	if (tcp->tcp_ka_abort_thres != 0 &&
9222 	    idletime > (ka_intrvl + tcp->tcp_ka_abort_thres)) {
9223 		BUMP_MIB(&tcp_mib, tcpTimKeepaliveDrop);
9224 		(void) tcp_clean_death(tcp, tcp->tcp_client_errno ?
9225 		    tcp->tcp_client_errno : ETIMEDOUT, 11);
9226 		return;
9227 	}
9228 
9229 	if (tcp->tcp_snxt == tcp->tcp_suna &&
9230 	    idletime >= ka_intrvl) {
9231 		/* Fake resend of last ACKed byte. */
9232 		mblk_t	*mp1 = allocb(1, BPRI_LO);
9233 
9234 		if (mp1 != NULL) {
9235 			*mp1->b_wptr++ = '\0';
9236 			mp = tcp_xmit_mp(tcp, mp1, 1, NULL, NULL,
9237 			    tcp->tcp_suna - 1, B_FALSE, NULL, B_TRUE);
9238 			freeb(mp1);
9239 			/*
9240 			 * if allocation failed, fall through to start the
9241 			 * timer back.
9242 			 */
9243 			if (mp != NULL) {
9244 				TCP_RECORD_TRACE(tcp, mp,
9245 				    TCP_TRACE_SEND_PKT);
9246 				tcp_send_data(tcp, tcp->tcp_wq, mp);
9247 				BUMP_MIB(&tcp_mib, tcpTimKeepaliveProbe);
9248 				if (tcp->tcp_ka_last_intrvl != 0) {
9249 					/*
9250 					 * We should probe again at least
9251 					 * in ka_intrvl, but not more than
9252 					 * tcp_rexmit_interval_max.
9253 					 */
9254 					firetime = MIN(ka_intrvl - 1,
9255 					    tcp->tcp_ka_last_intrvl << 1);
9256 					if (firetime > tcp_rexmit_interval_max)
9257 						firetime =
9258 						    tcp_rexmit_interval_max;
9259 				} else {
9260 					firetime = tcp->tcp_rto;
9261 				}
9262 				tcp->tcp_ka_tid = TCP_TIMER(tcp,
9263 				    tcp_keepalive_killer,
9264 				    MSEC_TO_TICK(firetime));
9265 				tcp->tcp_ka_last_intrvl = firetime;
9266 				return;
9267 			}
9268 		}
9269 	} else {
9270 		tcp->tcp_ka_last_intrvl = 0;
9271 	}
9272 
9273 	/* firetime can be negative if (mp1 == NULL || mp == NULL) */
9274 	if ((firetime = ka_intrvl - idletime) < 0) {
9275 		firetime = ka_intrvl;
9276 	}
9277 	tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
9278 	    MSEC_TO_TICK(firetime));
9279 }
9280 
9281 int
9282 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk)
9283 {
9284 	queue_t	*q = tcp->tcp_rq;
9285 	int32_t	mss = tcp->tcp_mss;
9286 	int	maxpsz;
9287 
9288 	if (TCP_IS_DETACHED(tcp))
9289 		return (mss);
9290 
9291 	if (tcp->tcp_fused) {
9292 		maxpsz = tcp_fuse_maxpsz_set(tcp);
9293 		mss = INFPSZ;
9294 	} else if (tcp->tcp_mdt || tcp->tcp_lso || tcp->tcp_maxpsz == 0) {
9295 		/*
9296 		 * Set the sd_qn_maxpsz according to the socket send buffer
9297 		 * size, and sd_maxblk to INFPSZ (-1).  This will essentially
9298 		 * instruct the stream head to copyin user data into contiguous
9299 		 * kernel-allocated buffers without breaking it up into smaller
9300 		 * chunks.  We round up the buffer size to the nearest SMSS.
9301 		 */
9302 		maxpsz = MSS_ROUNDUP(tcp->tcp_xmit_hiwater, mss);
9303 		if (tcp->tcp_kssl_ctx == NULL)
9304 			mss = INFPSZ;
9305 		else
9306 			mss = SSL3_MAX_RECORD_LEN;
9307 	} else {
9308 		/*
9309 		 * Set sd_qn_maxpsz to approx half the (receivers) buffer
9310 		 * (and a multiple of the mss).  This instructs the stream
9311 		 * head to break down larger than SMSS writes into SMSS-
9312 		 * size mblks, up to tcp_maxpsz_multiplier mblks at a time.
9313 		 */
9314 		maxpsz = tcp->tcp_maxpsz * mss;
9315 		if (maxpsz > tcp->tcp_xmit_hiwater/2) {
9316 			maxpsz = tcp->tcp_xmit_hiwater/2;
9317 			/* Round up to nearest mss */
9318 			maxpsz = MSS_ROUNDUP(maxpsz, mss);
9319 		}
9320 	}
9321 	(void) setmaxps(q, maxpsz);
9322 	tcp->tcp_wq->q_maxpsz = maxpsz;
9323 
9324 	if (set_maxblk)
9325 		(void) mi_set_sth_maxblk(q, mss);
9326 
9327 	return (mss);
9328 }
9329 
9330 /*
9331  * Extract option values from a tcp header.  We put any found values into the
9332  * tcpopt struct and return a bitmask saying which options were found.
9333  */
9334 static int
9335 tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt)
9336 {
9337 	uchar_t		*endp;
9338 	int		len;
9339 	uint32_t	mss;
9340 	uchar_t		*up = (uchar_t *)tcph;
9341 	int		found = 0;
9342 	int32_t		sack_len;
9343 	tcp_seq		sack_begin, sack_end;
9344 	tcp_t		*tcp;
9345 
9346 	endp = up + TCP_HDR_LENGTH(tcph);
9347 	up += TCP_MIN_HEADER_LENGTH;
9348 	while (up < endp) {
9349 		len = endp - up;
9350 		switch (*up) {
9351 		case TCPOPT_EOL:
9352 			break;
9353 
9354 		case TCPOPT_NOP:
9355 			up++;
9356 			continue;
9357 
9358 		case TCPOPT_MAXSEG:
9359 			if (len < TCPOPT_MAXSEG_LEN ||
9360 			    up[1] != TCPOPT_MAXSEG_LEN)
9361 				break;
9362 
9363 			mss = BE16_TO_U16(up+2);
9364 			/* Caller must handle tcp_mss_min and tcp_mss_max_* */
9365 			tcpopt->tcp_opt_mss = mss;
9366 			found |= TCP_OPT_MSS_PRESENT;
9367 
9368 			up += TCPOPT_MAXSEG_LEN;
9369 			continue;
9370 
9371 		case TCPOPT_WSCALE:
9372 			if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN)
9373 				break;
9374 
9375 			if (up[2] > TCP_MAX_WINSHIFT)
9376 				tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT;
9377 			else
9378 				tcpopt->tcp_opt_wscale = up[2];
9379 			found |= TCP_OPT_WSCALE_PRESENT;
9380 
9381 			up += TCPOPT_WS_LEN;
9382 			continue;
9383 
9384 		case TCPOPT_SACK_PERMITTED:
9385 			if (len < TCPOPT_SACK_OK_LEN ||
9386 			    up[1] != TCPOPT_SACK_OK_LEN)
9387 				break;
9388 			found |= TCP_OPT_SACK_OK_PRESENT;
9389 			up += TCPOPT_SACK_OK_LEN;
9390 			continue;
9391 
9392 		case TCPOPT_SACK:
9393 			if (len <= 2 || up[1] <= 2 || len < up[1])
9394 				break;
9395 
9396 			/* If TCP is not interested in SACK blks... */
9397 			if ((tcp = tcpopt->tcp) == NULL) {
9398 				up += up[1];
9399 				continue;
9400 			}
9401 			sack_len = up[1] - TCPOPT_HEADER_LEN;
9402 			up += TCPOPT_HEADER_LEN;
9403 
9404 			/*
9405 			 * If the list is empty, allocate one and assume
9406 			 * nothing is sack'ed.
9407 			 */
9408 			ASSERT(tcp->tcp_sack_info != NULL);
9409 			if (tcp->tcp_notsack_list == NULL) {
9410 				tcp_notsack_update(&(tcp->tcp_notsack_list),
9411 				    tcp->tcp_suna, tcp->tcp_snxt,
9412 				    &(tcp->tcp_num_notsack_blk),
9413 				    &(tcp->tcp_cnt_notsack_list));
9414 
9415 				/*
9416 				 * Make sure tcp_notsack_list is not NULL.
9417 				 * This happens when kmem_alloc(KM_NOSLEEP)
9418 				 * returns NULL.
9419 				 */
9420 				if (tcp->tcp_notsack_list == NULL) {
9421 					up += sack_len;
9422 					continue;
9423 				}
9424 				tcp->tcp_fack = tcp->tcp_suna;
9425 			}
9426 
9427 			while (sack_len > 0) {
9428 				if (up + 8 > endp) {
9429 					up = endp;
9430 					break;
9431 				}
9432 				sack_begin = BE32_TO_U32(up);
9433 				up += 4;
9434 				sack_end = BE32_TO_U32(up);
9435 				up += 4;
9436 				sack_len -= 8;
9437 				/*
9438 				 * Bounds checking.  Make sure the SACK
9439 				 * info is within tcp_suna and tcp_snxt.
9440 				 * If this SACK blk is out of bound, ignore
9441 				 * it but continue to parse the following
9442 				 * blks.
9443 				 */
9444 				if (SEQ_LEQ(sack_end, sack_begin) ||
9445 				    SEQ_LT(sack_begin, tcp->tcp_suna) ||
9446 				    SEQ_GT(sack_end, tcp->tcp_snxt)) {
9447 					continue;
9448 				}
9449 				tcp_notsack_insert(&(tcp->tcp_notsack_list),
9450 				    sack_begin, sack_end,
9451 				    &(tcp->tcp_num_notsack_blk),
9452 				    &(tcp->tcp_cnt_notsack_list));
9453 				if (SEQ_GT(sack_end, tcp->tcp_fack)) {
9454 					tcp->tcp_fack = sack_end;
9455 				}
9456 			}
9457 			found |= TCP_OPT_SACK_PRESENT;
9458 			continue;
9459 
9460 		case TCPOPT_TSTAMP:
9461 			if (len < TCPOPT_TSTAMP_LEN ||
9462 			    up[1] != TCPOPT_TSTAMP_LEN)
9463 				break;
9464 
9465 			tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2);
9466 			tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6);
9467 
9468 			found |= TCP_OPT_TSTAMP_PRESENT;
9469 
9470 			up += TCPOPT_TSTAMP_LEN;
9471 			continue;
9472 
9473 		default:
9474 			if (len <= 1 || len < (int)up[1] || up[1] == 0)
9475 				break;
9476 			up += up[1];
9477 			continue;
9478 		}
9479 		break;
9480 	}
9481 	return (found);
9482 }
9483 
9484 /*
9485  * Set the mss associated with a particular tcp based on its current value,
9486  * and a new one passed in. Observe minimums and maximums, and reset
9487  * other state variables that we want to view as multiples of mss.
9488  *
9489  * This function is called in various places mainly because
9490  * 1) Various stuffs, tcp_mss, tcp_cwnd, ... need to be adjusted when the
9491  *    other side's SYN/SYN-ACK packet arrives.
9492  * 2) PMTUd may get us a new MSS.
9493  * 3) If the other side stops sending us timestamp option, we need to
9494  *    increase the MSS size to use the extra bytes available.
9495  */
9496 static void
9497 tcp_mss_set(tcp_t *tcp, uint32_t mss)
9498 {
9499 	uint32_t	mss_max;
9500 
9501 	if (tcp->tcp_ipversion == IPV4_VERSION)
9502 		mss_max = tcp_mss_max_ipv4;
9503 	else
9504 		mss_max = tcp_mss_max_ipv6;
9505 
9506 	if (mss < tcp_mss_min)
9507 		mss = tcp_mss_min;
9508 	if (mss > mss_max)
9509 		mss = mss_max;
9510 	/*
9511 	 * Unless naglim has been set by our client to
9512 	 * a non-mss value, force naglim to track mss.
9513 	 * This can help to aggregate small writes.
9514 	 */
9515 	if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim)
9516 		tcp->tcp_naglim = mss;
9517 	/*
9518 	 * TCP should be able to buffer at least 4 MSS data for obvious
9519 	 * performance reason.
9520 	 */
9521 	if ((mss << 2) > tcp->tcp_xmit_hiwater)
9522 		tcp->tcp_xmit_hiwater = mss << 2;
9523 
9524 	/*
9525 	 * Check if we need to apply the tcp_init_cwnd here.  If
9526 	 * it is set and the MSS gets bigger (should not happen
9527 	 * normally), we need to adjust the resulting tcp_cwnd properly.
9528 	 * The new tcp_cwnd should not get bigger.
9529 	 */
9530 	if (tcp->tcp_init_cwnd == 0) {
9531 		tcp->tcp_cwnd = MIN(tcp_slow_start_initial * mss,
9532 		    MIN(4 * mss, MAX(2 * mss, 4380 / mss * mss)));
9533 	} else {
9534 		if (tcp->tcp_mss < mss) {
9535 			tcp->tcp_cwnd = MAX(1,
9536 			    (tcp->tcp_init_cwnd * tcp->tcp_mss / mss)) * mss;
9537 		} else {
9538 			tcp->tcp_cwnd = tcp->tcp_init_cwnd * mss;
9539 		}
9540 	}
9541 	tcp->tcp_mss = mss;
9542 	tcp->tcp_cwnd_cnt = 0;
9543 	(void) tcp_maxpsz_set(tcp, B_TRUE);
9544 }
9545 
9546 static int
9547 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
9548 {
9549 	tcp_t		*tcp = NULL;
9550 	conn_t		*connp;
9551 	int		err;
9552 	dev_t		conn_dev;
9553 	zoneid_t	zoneid = getzoneid();
9554 
9555 	/*
9556 	 * Special case for install: miniroot needs to be able to access files
9557 	 * via NFS as though it were always in the global zone.
9558 	 */
9559 	if (credp == kcred && nfs_global_client_only != 0)
9560 		zoneid = GLOBAL_ZONEID;
9561 
9562 	if (q->q_ptr != NULL)
9563 		return (0);
9564 
9565 	if (sflag == MODOPEN) {
9566 		/*
9567 		 * This is a special case. The purpose of a modopen
9568 		 * is to allow just the T_SVR4_OPTMGMT_REQ to pass
9569 		 * through for MIB browsers. Everything else is failed.
9570 		 */
9571 		connp = (conn_t *)tcp_get_conn(IP_SQUEUE_GET(lbolt));
9572 
9573 		if (connp == NULL)
9574 			return (ENOMEM);
9575 
9576 		connp->conn_flags |= IPCL_TCPMOD;
9577 		connp->conn_cred = credp;
9578 		connp->conn_zoneid = zoneid;
9579 		q->q_ptr = WR(q)->q_ptr = connp;
9580 		crhold(credp);
9581 		q->q_qinfo = &tcp_mod_rinit;
9582 		WR(q)->q_qinfo = &tcp_mod_winit;
9583 		qprocson(q);
9584 		return (0);
9585 	}
9586 
9587 	if ((conn_dev = inet_minor_alloc(ip_minor_arena)) == 0)
9588 		return (EBUSY);
9589 
9590 	*devp = makedevice(getemajor(*devp), (minor_t)conn_dev);
9591 
9592 	if (flag & SO_ACCEPTOR) {
9593 		q->q_qinfo = &tcp_acceptor_rinit;
9594 		q->q_ptr = (void *)conn_dev;
9595 		WR(q)->q_qinfo = &tcp_acceptor_winit;
9596 		WR(q)->q_ptr = (void *)conn_dev;
9597 		qprocson(q);
9598 		return (0);
9599 	}
9600 
9601 	connp = (conn_t *)tcp_get_conn(IP_SQUEUE_GET(lbolt));
9602 	if (connp == NULL) {
9603 		inet_minor_free(ip_minor_arena, conn_dev);
9604 		q->q_ptr = NULL;
9605 		return (ENOSR);
9606 	}
9607 	connp->conn_sqp = IP_SQUEUE_GET(lbolt);
9608 	tcp = connp->conn_tcp;
9609 
9610 	q->q_ptr = WR(q)->q_ptr = connp;
9611 	if (getmajor(*devp) == TCP6_MAJ) {
9612 		connp->conn_flags |= (IPCL_TCP6|IPCL_ISV6);
9613 		connp->conn_send = ip_output_v6;
9614 		connp->conn_af_isv6 = B_TRUE;
9615 		connp->conn_pkt_isv6 = B_TRUE;
9616 		connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT;
9617 		tcp->tcp_ipversion = IPV6_VERSION;
9618 		tcp->tcp_family = AF_INET6;
9619 		tcp->tcp_mss = tcp_mss_def_ipv6;
9620 	} else {
9621 		connp->conn_flags |= IPCL_TCP4;
9622 		connp->conn_send = ip_output;
9623 		connp->conn_af_isv6 = B_FALSE;
9624 		connp->conn_pkt_isv6 = B_FALSE;
9625 		tcp->tcp_ipversion = IPV4_VERSION;
9626 		tcp->tcp_family = AF_INET;
9627 		tcp->tcp_mss = tcp_mss_def_ipv4;
9628 	}
9629 
9630 	/*
9631 	 * TCP keeps a copy of cred for cache locality reasons but
9632 	 * we put a reference only once. If connp->conn_cred
9633 	 * becomes invalid, tcp_cred should also be set to NULL.
9634 	 */
9635 	tcp->tcp_cred = connp->conn_cred = credp;
9636 	crhold(connp->conn_cred);
9637 	tcp->tcp_cpid = curproc->p_pid;
9638 	connp->conn_zoneid = zoneid;
9639 	connp->conn_mlp_type = mlptSingle;
9640 	connp->conn_ulp_labeled = !is_system_labeled();
9641 
9642 	/*
9643 	 * If the caller has the process-wide flag set, then default to MAC
9644 	 * exempt mode.  This allows read-down to unlabeled hosts.
9645 	 */
9646 	if (getpflags(NET_MAC_AWARE, credp) != 0)
9647 		connp->conn_mac_exempt = B_TRUE;
9648 
9649 	connp->conn_dev = conn_dev;
9650 
9651 	ASSERT(q->q_qinfo == &tcp_rinit);
9652 	ASSERT(WR(q)->q_qinfo == &tcp_winit);
9653 
9654 	if (flag & SO_SOCKSTR) {
9655 		/*
9656 		 * No need to insert a socket in tcp acceptor hash.
9657 		 * If it was a socket acceptor stream, we dealt with
9658 		 * it above. A socket listener can never accept a
9659 		 * connection and doesn't need acceptor_id.
9660 		 */
9661 		connp->conn_flags |= IPCL_SOCKET;
9662 		tcp->tcp_issocket = 1;
9663 		WR(q)->q_qinfo = &tcp_sock_winit;
9664 	} else {
9665 #ifdef	_ILP32
9666 		tcp->tcp_acceptor_id = (t_uscalar_t)RD(q);
9667 #else
9668 		tcp->tcp_acceptor_id = conn_dev;
9669 #endif	/* _ILP32 */
9670 		tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp);
9671 	}
9672 
9673 	if (tcp_trace)
9674 		tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_SLEEP);
9675 
9676 	err = tcp_init(tcp, q);
9677 	if (err != 0) {
9678 		inet_minor_free(ip_minor_arena, connp->conn_dev);
9679 		tcp_acceptor_hash_remove(tcp);
9680 		CONN_DEC_REF(connp);
9681 		q->q_ptr = WR(q)->q_ptr = NULL;
9682 		return (err);
9683 	}
9684 
9685 	RD(q)->q_hiwat = tcp_recv_hiwat;
9686 	tcp->tcp_rwnd = tcp_recv_hiwat;
9687 
9688 	/* Non-zero default values */
9689 	connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
9690 	/*
9691 	 * Put the ref for TCP. Ref for IP was already put
9692 	 * by ipcl_conn_create. Also Make the conn_t globally
9693 	 * visible to walkers
9694 	 */
9695 	mutex_enter(&connp->conn_lock);
9696 	CONN_INC_REF_LOCKED(connp);
9697 	ASSERT(connp->conn_ref == 2);
9698 	connp->conn_state_flags &= ~CONN_INCIPIENT;
9699 	mutex_exit(&connp->conn_lock);
9700 
9701 	qprocson(q);
9702 	return (0);
9703 }
9704 
9705 /*
9706  * Some TCP options can be "set" by requesting them in the option
9707  * buffer. This is needed for XTI feature test though we do not
9708  * allow it in general. We interpret that this mechanism is more
9709  * applicable to OSI protocols and need not be allowed in general.
9710  * This routine filters out options for which it is not allowed (most)
9711  * and lets through those (few) for which it is. [ The XTI interface
9712  * test suite specifics will imply that any XTI_GENERIC level XTI_* if
9713  * ever implemented will have to be allowed here ].
9714  */
9715 static boolean_t
9716 tcp_allow_connopt_set(int level, int name)
9717 {
9718 
9719 	switch (level) {
9720 	case IPPROTO_TCP:
9721 		switch (name) {
9722 		case TCP_NODELAY:
9723 			return (B_TRUE);
9724 		default:
9725 			return (B_FALSE);
9726 		}
9727 		/*NOTREACHED*/
9728 	default:
9729 		return (B_FALSE);
9730 	}
9731 	/*NOTREACHED*/
9732 }
9733 
9734 /*
9735  * This routine gets default values of certain options whose default
9736  * values are maintained by protocol specific code
9737  */
9738 /* ARGSUSED */
9739 int
9740 tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr)
9741 {
9742 	int32_t	*i1 = (int32_t *)ptr;
9743 
9744 	switch (level) {
9745 	case IPPROTO_TCP:
9746 		switch (name) {
9747 		case TCP_NOTIFY_THRESHOLD:
9748 			*i1 = tcp_ip_notify_interval;
9749 			break;
9750 		case TCP_ABORT_THRESHOLD:
9751 			*i1 = tcp_ip_abort_interval;
9752 			break;
9753 		case TCP_CONN_NOTIFY_THRESHOLD:
9754 			*i1 = tcp_ip_notify_cinterval;
9755 			break;
9756 		case TCP_CONN_ABORT_THRESHOLD:
9757 			*i1 = tcp_ip_abort_cinterval;
9758 			break;
9759 		default:
9760 			return (-1);
9761 		}
9762 		break;
9763 	case IPPROTO_IP:
9764 		switch (name) {
9765 		case IP_TTL:
9766 			*i1 = tcp_ipv4_ttl;
9767 			break;
9768 		default:
9769 			return (-1);
9770 		}
9771 		break;
9772 	case IPPROTO_IPV6:
9773 		switch (name) {
9774 		case IPV6_UNICAST_HOPS:
9775 			*i1 = tcp_ipv6_hoplimit;
9776 			break;
9777 		default:
9778 			return (-1);
9779 		}
9780 		break;
9781 	default:
9782 		return (-1);
9783 	}
9784 	return (sizeof (int));
9785 }
9786 
9787 
9788 /*
9789  * TCP routine to get the values of options.
9790  */
9791 int
9792 tcp_opt_get(queue_t *q, int level, int	name, uchar_t *ptr)
9793 {
9794 	int		*i1 = (int *)ptr;
9795 	conn_t		*connp = Q_TO_CONN(q);
9796 	tcp_t		*tcp = connp->conn_tcp;
9797 	ip6_pkt_t	*ipp = &tcp->tcp_sticky_ipp;
9798 
9799 	switch (level) {
9800 	case SOL_SOCKET:
9801 		switch (name) {
9802 		case SO_LINGER:	{
9803 			struct linger *lgr = (struct linger *)ptr;
9804 
9805 			lgr->l_onoff = tcp->tcp_linger ? SO_LINGER : 0;
9806 			lgr->l_linger = tcp->tcp_lingertime;
9807 			}
9808 			return (sizeof (struct linger));
9809 		case SO_DEBUG:
9810 			*i1 = tcp->tcp_debug ? SO_DEBUG : 0;
9811 			break;
9812 		case SO_KEEPALIVE:
9813 			*i1 = tcp->tcp_ka_enabled ? SO_KEEPALIVE : 0;
9814 			break;
9815 		case SO_DONTROUTE:
9816 			*i1 = tcp->tcp_dontroute ? SO_DONTROUTE : 0;
9817 			break;
9818 		case SO_USELOOPBACK:
9819 			*i1 = tcp->tcp_useloopback ? SO_USELOOPBACK : 0;
9820 			break;
9821 		case SO_BROADCAST:
9822 			*i1 = tcp->tcp_broadcast ? SO_BROADCAST : 0;
9823 			break;
9824 		case SO_REUSEADDR:
9825 			*i1 = tcp->tcp_reuseaddr ? SO_REUSEADDR : 0;
9826 			break;
9827 		case SO_OOBINLINE:
9828 			*i1 = tcp->tcp_oobinline ? SO_OOBINLINE : 0;
9829 			break;
9830 		case SO_DGRAM_ERRIND:
9831 			*i1 = tcp->tcp_dgram_errind ? SO_DGRAM_ERRIND : 0;
9832 			break;
9833 		case SO_TYPE:
9834 			*i1 = SOCK_STREAM;
9835 			break;
9836 		case SO_SNDBUF:
9837 			*i1 = tcp->tcp_xmit_hiwater;
9838 			break;
9839 		case SO_RCVBUF:
9840 			*i1 = RD(q)->q_hiwat;
9841 			break;
9842 		case SO_SND_COPYAVOID:
9843 			*i1 = tcp->tcp_snd_zcopy_on ?
9844 			    SO_SND_COPYAVOID : 0;
9845 			break;
9846 		case SO_ALLZONES:
9847 			*i1 = connp->conn_allzones ? 1 : 0;
9848 			break;
9849 		case SO_ANON_MLP:
9850 			*i1 = connp->conn_anon_mlp;
9851 			break;
9852 		case SO_MAC_EXEMPT:
9853 			*i1 = connp->conn_mac_exempt;
9854 			break;
9855 		case SO_EXCLBIND:
9856 			*i1 = tcp->tcp_exclbind ? SO_EXCLBIND : 0;
9857 			break;
9858 		default:
9859 			return (-1);
9860 		}
9861 		break;
9862 	case IPPROTO_TCP:
9863 		switch (name) {
9864 		case TCP_NODELAY:
9865 			*i1 = (tcp->tcp_naglim == 1) ? TCP_NODELAY : 0;
9866 			break;
9867 		case TCP_MAXSEG:
9868 			*i1 = tcp->tcp_mss;
9869 			break;
9870 		case TCP_NOTIFY_THRESHOLD:
9871 			*i1 = (int)tcp->tcp_first_timer_threshold;
9872 			break;
9873 		case TCP_ABORT_THRESHOLD:
9874 			*i1 = tcp->tcp_second_timer_threshold;
9875 			break;
9876 		case TCP_CONN_NOTIFY_THRESHOLD:
9877 			*i1 = tcp->tcp_first_ctimer_threshold;
9878 			break;
9879 		case TCP_CONN_ABORT_THRESHOLD:
9880 			*i1 = tcp->tcp_second_ctimer_threshold;
9881 			break;
9882 		case TCP_RECVDSTADDR:
9883 			*i1 = tcp->tcp_recvdstaddr;
9884 			break;
9885 		case TCP_ANONPRIVBIND:
9886 			*i1 = tcp->tcp_anon_priv_bind;
9887 			break;
9888 		case TCP_EXCLBIND:
9889 			*i1 = tcp->tcp_exclbind ? TCP_EXCLBIND : 0;
9890 			break;
9891 		case TCP_INIT_CWND:
9892 			*i1 = tcp->tcp_init_cwnd;
9893 			break;
9894 		case TCP_KEEPALIVE_THRESHOLD:
9895 			*i1 = tcp->tcp_ka_interval;
9896 			break;
9897 		case TCP_KEEPALIVE_ABORT_THRESHOLD:
9898 			*i1 = tcp->tcp_ka_abort_thres;
9899 			break;
9900 		case TCP_CORK:
9901 			*i1 = tcp->tcp_cork;
9902 			break;
9903 		default:
9904 			return (-1);
9905 		}
9906 		break;
9907 	case IPPROTO_IP:
9908 		if (tcp->tcp_family != AF_INET)
9909 			return (-1);
9910 		switch (name) {
9911 		case IP_OPTIONS:
9912 		case T_IP_OPTIONS: {
9913 			/*
9914 			 * This is compatible with BSD in that in only return
9915 			 * the reverse source route with the final destination
9916 			 * as the last entry. The first 4 bytes of the option
9917 			 * will contain the final destination.
9918 			 */
9919 			int	opt_len;
9920 
9921 			opt_len = (char *)tcp->tcp_tcph - (char *)tcp->tcp_ipha;
9922 			opt_len -= tcp->tcp_label_len + IP_SIMPLE_HDR_LENGTH;
9923 			ASSERT(opt_len >= 0);
9924 			/* Caller ensures enough space */
9925 			if (opt_len > 0) {
9926 				/*
9927 				 * TODO: Do we have to handle getsockopt on an
9928 				 * initiator as well?
9929 				 */
9930 				return (ip_opt_get_user(tcp->tcp_ipha, ptr));
9931 			}
9932 			return (0);
9933 			}
9934 		case IP_TOS:
9935 		case T_IP_TOS:
9936 			*i1 = (int)tcp->tcp_ipha->ipha_type_of_service;
9937 			break;
9938 		case IP_TTL:
9939 			*i1 = (int)tcp->tcp_ipha->ipha_ttl;
9940 			break;
9941 		case IP_NEXTHOP:
9942 			/* Handled at IP level */
9943 			return (-EINVAL);
9944 		default:
9945 			return (-1);
9946 		}
9947 		break;
9948 	case IPPROTO_IPV6:
9949 		/*
9950 		 * IPPROTO_IPV6 options are only supported for sockets
9951 		 * that are using IPv6 on the wire.
9952 		 */
9953 		if (tcp->tcp_ipversion != IPV6_VERSION) {
9954 			return (-1);
9955 		}
9956 		switch (name) {
9957 		case IPV6_UNICAST_HOPS:
9958 			*i1 = (unsigned int) tcp->tcp_ip6h->ip6_hops;
9959 			break;	/* goto sizeof (int) option return */
9960 		case IPV6_BOUND_IF:
9961 			/* Zero if not set */
9962 			*i1 = tcp->tcp_bound_if;
9963 			break;	/* goto sizeof (int) option return */
9964 		case IPV6_RECVPKTINFO:
9965 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)
9966 				*i1 = 1;
9967 			else
9968 				*i1 = 0;
9969 			break;	/* goto sizeof (int) option return */
9970 		case IPV6_RECVTCLASS:
9971 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)
9972 				*i1 = 1;
9973 			else
9974 				*i1 = 0;
9975 			break;	/* goto sizeof (int) option return */
9976 		case IPV6_RECVHOPLIMIT:
9977 			if (tcp->tcp_ipv6_recvancillary &
9978 			    TCP_IPV6_RECVHOPLIMIT)
9979 				*i1 = 1;
9980 			else
9981 				*i1 = 0;
9982 			break;	/* goto sizeof (int) option return */
9983 		case IPV6_RECVHOPOPTS:
9984 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS)
9985 				*i1 = 1;
9986 			else
9987 				*i1 = 0;
9988 			break;	/* goto sizeof (int) option return */
9989 		case IPV6_RECVDSTOPTS:
9990 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVDSTOPTS)
9991 				*i1 = 1;
9992 			else
9993 				*i1 = 0;
9994 			break;	/* goto sizeof (int) option return */
9995 		case _OLD_IPV6_RECVDSTOPTS:
9996 			if (tcp->tcp_ipv6_recvancillary &
9997 			    TCP_OLD_IPV6_RECVDSTOPTS)
9998 				*i1 = 1;
9999 			else
10000 				*i1 = 0;
10001 			break;	/* goto sizeof (int) option return */
10002 		case IPV6_RECVRTHDR:
10003 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR)
10004 				*i1 = 1;
10005 			else
10006 				*i1 = 0;
10007 			break;	/* goto sizeof (int) option return */
10008 		case IPV6_RECVRTHDRDSTOPTS:
10009 			if (tcp->tcp_ipv6_recvancillary &
10010 			    TCP_IPV6_RECVRTDSTOPTS)
10011 				*i1 = 1;
10012 			else
10013 				*i1 = 0;
10014 			break;	/* goto sizeof (int) option return */
10015 		case IPV6_PKTINFO: {
10016 			/* XXX assumes that caller has room for max size! */
10017 			struct in6_pktinfo *pkti;
10018 
10019 			pkti = (struct in6_pktinfo *)ptr;
10020 			if (ipp->ipp_fields & IPPF_IFINDEX)
10021 				pkti->ipi6_ifindex = ipp->ipp_ifindex;
10022 			else
10023 				pkti->ipi6_ifindex = 0;
10024 			if (ipp->ipp_fields & IPPF_ADDR)
10025 				pkti->ipi6_addr = ipp->ipp_addr;
10026 			else
10027 				pkti->ipi6_addr = ipv6_all_zeros;
10028 			return (sizeof (struct in6_pktinfo));
10029 		}
10030 		case IPV6_TCLASS:
10031 			if (ipp->ipp_fields & IPPF_TCLASS)
10032 				*i1 = ipp->ipp_tclass;
10033 			else
10034 				*i1 = IPV6_FLOW_TCLASS(
10035 				    IPV6_DEFAULT_VERS_AND_FLOW);
10036 			break;	/* goto sizeof (int) option return */
10037 		case IPV6_NEXTHOP: {
10038 			sin6_t *sin6 = (sin6_t *)ptr;
10039 
10040 			if (!(ipp->ipp_fields & IPPF_NEXTHOP))
10041 				return (0);
10042 			*sin6 = sin6_null;
10043 			sin6->sin6_family = AF_INET6;
10044 			sin6->sin6_addr = ipp->ipp_nexthop;
10045 			return (sizeof (sin6_t));
10046 		}
10047 		case IPV6_HOPOPTS:
10048 			if (!(ipp->ipp_fields & IPPF_HOPOPTS))
10049 				return (0);
10050 			if (ipp->ipp_hopoptslen <= tcp->tcp_label_len)
10051 				return (0);
10052 			bcopy((char *)ipp->ipp_hopopts + tcp->tcp_label_len,
10053 			    ptr, ipp->ipp_hopoptslen - tcp->tcp_label_len);
10054 			if (tcp->tcp_label_len > 0) {
10055 				ptr[0] = ((char *)ipp->ipp_hopopts)[0];
10056 				ptr[1] = (ipp->ipp_hopoptslen -
10057 				    tcp->tcp_label_len + 7) / 8 - 1;
10058 			}
10059 			return (ipp->ipp_hopoptslen - tcp->tcp_label_len);
10060 		case IPV6_RTHDRDSTOPTS:
10061 			if (!(ipp->ipp_fields & IPPF_RTDSTOPTS))
10062 				return (0);
10063 			bcopy(ipp->ipp_rtdstopts, ptr, ipp->ipp_rtdstoptslen);
10064 			return (ipp->ipp_rtdstoptslen);
10065 		case IPV6_RTHDR:
10066 			if (!(ipp->ipp_fields & IPPF_RTHDR))
10067 				return (0);
10068 			bcopy(ipp->ipp_rthdr, ptr, ipp->ipp_rthdrlen);
10069 			return (ipp->ipp_rthdrlen);
10070 		case IPV6_DSTOPTS:
10071 			if (!(ipp->ipp_fields & IPPF_DSTOPTS))
10072 				return (0);
10073 			bcopy(ipp->ipp_dstopts, ptr, ipp->ipp_dstoptslen);
10074 			return (ipp->ipp_dstoptslen);
10075 		case IPV6_SRC_PREFERENCES:
10076 			return (ip6_get_src_preferences(connp,
10077 			    (uint32_t *)ptr));
10078 		case IPV6_PATHMTU: {
10079 			struct ip6_mtuinfo *mtuinfo = (struct ip6_mtuinfo *)ptr;
10080 
10081 			if (tcp->tcp_state < TCPS_ESTABLISHED)
10082 				return (-1);
10083 
10084 			return (ip_fill_mtuinfo(&connp->conn_remv6,
10085 				connp->conn_fport, mtuinfo));
10086 		}
10087 		default:
10088 			return (-1);
10089 		}
10090 		break;
10091 	default:
10092 		return (-1);
10093 	}
10094 	return (sizeof (int));
10095 }
10096 
10097 /*
10098  * We declare as 'int' rather than 'void' to satisfy pfi_t arg requirements.
10099  * Parameters are assumed to be verified by the caller.
10100  */
10101 /* ARGSUSED */
10102 int
10103 tcp_opt_set(queue_t *q, uint_t optset_context, int level, int name,
10104     uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp,
10105     void *thisdg_attrs, cred_t *cr, mblk_t *mblk)
10106 {
10107 	conn_t	*connp = Q_TO_CONN(q);
10108 	tcp_t	*tcp = connp->conn_tcp;
10109 	int	*i1 = (int *)invalp;
10110 	boolean_t onoff = (*i1 == 0) ? 0 : 1;
10111 	boolean_t checkonly;
10112 	int	reterr;
10113 
10114 	switch (optset_context) {
10115 	case SETFN_OPTCOM_CHECKONLY:
10116 		checkonly = B_TRUE;
10117 		/*
10118 		 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ
10119 		 * inlen != 0 implies value supplied and
10120 		 * 	we have to "pretend" to set it.
10121 		 * inlen == 0 implies that there is no
10122 		 * 	value part in T_CHECK request and just validation
10123 		 * done elsewhere should be enough, we just return here.
10124 		 */
10125 		if (inlen == 0) {
10126 			*outlenp = 0;
10127 			return (0);
10128 		}
10129 		break;
10130 	case SETFN_OPTCOM_NEGOTIATE:
10131 		checkonly = B_FALSE;
10132 		break;
10133 	case SETFN_UD_NEGOTIATE: /* error on conn-oriented transports ? */
10134 	case SETFN_CONN_NEGOTIATE:
10135 		checkonly = B_FALSE;
10136 		/*
10137 		 * Negotiating local and "association-related" options
10138 		 * from other (T_CONN_REQ, T_CONN_RES,T_UNITDATA_REQ)
10139 		 * primitives is allowed by XTI, but we choose
10140 		 * to not implement this style negotiation for Internet
10141 		 * protocols (We interpret it is a must for OSI world but
10142 		 * optional for Internet protocols) for all options.
10143 		 * [ Will do only for the few options that enable test
10144 		 * suites that our XTI implementation of this feature
10145 		 * works for transports that do allow it ]
10146 		 */
10147 		if (!tcp_allow_connopt_set(level, name)) {
10148 			*outlenp = 0;
10149 			return (EINVAL);
10150 		}
10151 		break;
10152 	default:
10153 		/*
10154 		 * We should never get here
10155 		 */
10156 		*outlenp = 0;
10157 		return (EINVAL);
10158 	}
10159 
10160 	ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) ||
10161 	    (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0));
10162 
10163 	/*
10164 	 * For TCP, we should have no ancillary data sent down
10165 	 * (sendmsg isn't supported for SOCK_STREAM), so thisdg_attrs
10166 	 * has to be zero.
10167 	 */
10168 	ASSERT(thisdg_attrs == NULL);
10169 
10170 	/*
10171 	 * For fixed length options, no sanity check
10172 	 * of passed in length is done. It is assumed *_optcom_req()
10173 	 * routines do the right thing.
10174 	 */
10175 
10176 	switch (level) {
10177 	case SOL_SOCKET:
10178 		switch (name) {
10179 		case SO_LINGER: {
10180 			struct linger *lgr = (struct linger *)invalp;
10181 
10182 			if (!checkonly) {
10183 				if (lgr->l_onoff) {
10184 					tcp->tcp_linger = 1;
10185 					tcp->tcp_lingertime = lgr->l_linger;
10186 				} else {
10187 					tcp->tcp_linger = 0;
10188 					tcp->tcp_lingertime = 0;
10189 				}
10190 				/* struct copy */
10191 				*(struct linger *)outvalp = *lgr;
10192 			} else {
10193 				if (!lgr->l_onoff) {
10194 				    ((struct linger *)outvalp)->l_onoff = 0;
10195 				    ((struct linger *)outvalp)->l_linger = 0;
10196 				} else {
10197 				    /* struct copy */
10198 				    *(struct linger *)outvalp = *lgr;
10199 				}
10200 			}
10201 			*outlenp = sizeof (struct linger);
10202 			return (0);
10203 		}
10204 		case SO_DEBUG:
10205 			if (!checkonly)
10206 				tcp->tcp_debug = onoff;
10207 			break;
10208 		case SO_KEEPALIVE:
10209 			if (checkonly) {
10210 				/* T_CHECK case */
10211 				break;
10212 			}
10213 
10214 			if (!onoff) {
10215 				if (tcp->tcp_ka_enabled) {
10216 					if (tcp->tcp_ka_tid != 0) {
10217 						(void) TCP_TIMER_CANCEL(tcp,
10218 						    tcp->tcp_ka_tid);
10219 						tcp->tcp_ka_tid = 0;
10220 					}
10221 					tcp->tcp_ka_enabled = 0;
10222 				}
10223 				break;
10224 			}
10225 			if (!tcp->tcp_ka_enabled) {
10226 				/* Crank up the keepalive timer */
10227 				tcp->tcp_ka_last_intrvl = 0;
10228 				tcp->tcp_ka_tid = TCP_TIMER(tcp,
10229 				    tcp_keepalive_killer,
10230 				    MSEC_TO_TICK(tcp->tcp_ka_interval));
10231 				tcp->tcp_ka_enabled = 1;
10232 			}
10233 			break;
10234 		case SO_DONTROUTE:
10235 			/*
10236 			 * SO_DONTROUTE, SO_USELOOPBACK, and SO_BROADCAST are
10237 			 * only of interest to IP.  We track them here only so
10238 			 * that we can report their current value.
10239 			 */
10240 			if (!checkonly) {
10241 				tcp->tcp_dontroute = onoff;
10242 				tcp->tcp_connp->conn_dontroute = onoff;
10243 			}
10244 			break;
10245 		case SO_USELOOPBACK:
10246 			if (!checkonly) {
10247 				tcp->tcp_useloopback = onoff;
10248 				tcp->tcp_connp->conn_loopback = onoff;
10249 			}
10250 			break;
10251 		case SO_BROADCAST:
10252 			if (!checkonly) {
10253 				tcp->tcp_broadcast = onoff;
10254 				tcp->tcp_connp->conn_broadcast = onoff;
10255 			}
10256 			break;
10257 		case SO_REUSEADDR:
10258 			if (!checkonly) {
10259 				tcp->tcp_reuseaddr = onoff;
10260 				tcp->tcp_connp->conn_reuseaddr = onoff;
10261 			}
10262 			break;
10263 		case SO_OOBINLINE:
10264 			if (!checkonly)
10265 				tcp->tcp_oobinline = onoff;
10266 			break;
10267 		case SO_DGRAM_ERRIND:
10268 			if (!checkonly)
10269 				tcp->tcp_dgram_errind = onoff;
10270 			break;
10271 		case SO_SNDBUF: {
10272 			tcp_t *peer_tcp;
10273 
10274 			if (*i1 > tcp_max_buf) {
10275 				*outlenp = 0;
10276 				return (ENOBUFS);
10277 			}
10278 			if (checkonly)
10279 				break;
10280 
10281 			tcp->tcp_xmit_hiwater = *i1;
10282 			if (tcp_snd_lowat_fraction != 0)
10283 				tcp->tcp_xmit_lowater =
10284 				    tcp->tcp_xmit_hiwater /
10285 				    tcp_snd_lowat_fraction;
10286 			(void) tcp_maxpsz_set(tcp, B_TRUE);
10287 			/*
10288 			 * If we are flow-controlled, recheck the condition.
10289 			 * There are apps that increase SO_SNDBUF size when
10290 			 * flow-controlled (EWOULDBLOCK), and expect the flow
10291 			 * control condition to be lifted right away.
10292 			 *
10293 			 * For the fused tcp loopback case, in order to avoid
10294 			 * a race with the peer's tcp_fuse_rrw() we need to
10295 			 * hold its fuse_lock while accessing tcp_flow_stopped.
10296 			 */
10297 			peer_tcp = tcp->tcp_loopback_peer;
10298 			ASSERT(!tcp->tcp_fused || peer_tcp != NULL);
10299 			if (tcp->tcp_fused)
10300 				mutex_enter(&peer_tcp->tcp_fuse_lock);
10301 
10302 			if (tcp->tcp_flow_stopped &&
10303 			    TCP_UNSENT_BYTES(tcp) < tcp->tcp_xmit_hiwater) {
10304 				tcp_clrqfull(tcp);
10305 			}
10306 			if (tcp->tcp_fused)
10307 				mutex_exit(&peer_tcp->tcp_fuse_lock);
10308 			break;
10309 		}
10310 		case SO_RCVBUF:
10311 			if (*i1 > tcp_max_buf) {
10312 				*outlenp = 0;
10313 				return (ENOBUFS);
10314 			}
10315 			/* Silently ignore zero */
10316 			if (!checkonly && *i1 != 0) {
10317 				*i1 = MSS_ROUNDUP(*i1, tcp->tcp_mss);
10318 				(void) tcp_rwnd_set(tcp, *i1);
10319 			}
10320 			/*
10321 			 * XXX should we return the rwnd here
10322 			 * and tcp_opt_get ?
10323 			 */
10324 			break;
10325 		case SO_SND_COPYAVOID:
10326 			if (!checkonly) {
10327 				/* we only allow enable at most once for now */
10328 				if (tcp->tcp_loopback ||
10329 				    (!tcp->tcp_snd_zcopy_aware &&
10330 				    (onoff != 1 || !tcp_zcopy_check(tcp)))) {
10331 					*outlenp = 0;
10332 					return (EOPNOTSUPP);
10333 				}
10334 				tcp->tcp_snd_zcopy_aware = 1;
10335 			}
10336 			break;
10337 		case SO_ALLZONES:
10338 			/* Handled at the IP level */
10339 			return (-EINVAL);
10340 		case SO_ANON_MLP:
10341 			if (!checkonly) {
10342 				mutex_enter(&connp->conn_lock);
10343 				connp->conn_anon_mlp = onoff;
10344 				mutex_exit(&connp->conn_lock);
10345 			}
10346 			break;
10347 		case SO_MAC_EXEMPT:
10348 			if (secpolicy_net_mac_aware(cr) != 0 ||
10349 			    IPCL_IS_BOUND(connp))
10350 				return (EACCES);
10351 			if (!checkonly) {
10352 				mutex_enter(&connp->conn_lock);
10353 				connp->conn_mac_exempt = onoff;
10354 				mutex_exit(&connp->conn_lock);
10355 			}
10356 			break;
10357 		case SO_EXCLBIND:
10358 			if (!checkonly)
10359 				tcp->tcp_exclbind = onoff;
10360 			break;
10361 		default:
10362 			*outlenp = 0;
10363 			return (EINVAL);
10364 		}
10365 		break;
10366 	case IPPROTO_TCP:
10367 		switch (name) {
10368 		case TCP_NODELAY:
10369 			if (!checkonly)
10370 				tcp->tcp_naglim = *i1 ? 1 : tcp->tcp_mss;
10371 			break;
10372 		case TCP_NOTIFY_THRESHOLD:
10373 			if (!checkonly)
10374 				tcp->tcp_first_timer_threshold = *i1;
10375 			break;
10376 		case TCP_ABORT_THRESHOLD:
10377 			if (!checkonly)
10378 				tcp->tcp_second_timer_threshold = *i1;
10379 			break;
10380 		case TCP_CONN_NOTIFY_THRESHOLD:
10381 			if (!checkonly)
10382 				tcp->tcp_first_ctimer_threshold = *i1;
10383 			break;
10384 		case TCP_CONN_ABORT_THRESHOLD:
10385 			if (!checkonly)
10386 				tcp->tcp_second_ctimer_threshold = *i1;
10387 			break;
10388 		case TCP_RECVDSTADDR:
10389 			if (tcp->tcp_state > TCPS_LISTEN)
10390 				return (EOPNOTSUPP);
10391 			if (!checkonly)
10392 				tcp->tcp_recvdstaddr = onoff;
10393 			break;
10394 		case TCP_ANONPRIVBIND:
10395 			if ((reterr = secpolicy_net_privaddr(cr, 0)) != 0) {
10396 				*outlenp = 0;
10397 				return (reterr);
10398 			}
10399 			if (!checkonly) {
10400 				tcp->tcp_anon_priv_bind = onoff;
10401 			}
10402 			break;
10403 		case TCP_EXCLBIND:
10404 			if (!checkonly)
10405 				tcp->tcp_exclbind = onoff;
10406 			break;	/* goto sizeof (int) option return */
10407 		case TCP_INIT_CWND: {
10408 			uint32_t init_cwnd = *((uint32_t *)invalp);
10409 
10410 			if (checkonly)
10411 				break;
10412 
10413 			/*
10414 			 * Only allow socket with network configuration
10415 			 * privilege to set the initial cwnd to be larger
10416 			 * than allowed by RFC 3390.
10417 			 */
10418 			if (init_cwnd <= MIN(4, MAX(2, 4380 / tcp->tcp_mss))) {
10419 				tcp->tcp_init_cwnd = init_cwnd;
10420 				break;
10421 			}
10422 			if ((reterr = secpolicy_net_config(cr, B_TRUE)) != 0) {
10423 				*outlenp = 0;
10424 				return (reterr);
10425 			}
10426 			if (init_cwnd > TCP_MAX_INIT_CWND) {
10427 				*outlenp = 0;
10428 				return (EINVAL);
10429 			}
10430 			tcp->tcp_init_cwnd = init_cwnd;
10431 			break;
10432 		}
10433 		case TCP_KEEPALIVE_THRESHOLD:
10434 			if (checkonly)
10435 				break;
10436 
10437 			if (*i1 < tcp_keepalive_interval_low ||
10438 			    *i1 > tcp_keepalive_interval_high) {
10439 				*outlenp = 0;
10440 				return (EINVAL);
10441 			}
10442 			if (*i1 != tcp->tcp_ka_interval) {
10443 				tcp->tcp_ka_interval = *i1;
10444 				/*
10445 				 * Check if we need to restart the
10446 				 * keepalive timer.
10447 				 */
10448 				if (tcp->tcp_ka_tid != 0) {
10449 					ASSERT(tcp->tcp_ka_enabled);
10450 					(void) TCP_TIMER_CANCEL(tcp,
10451 					    tcp->tcp_ka_tid);
10452 					tcp->tcp_ka_last_intrvl = 0;
10453 					tcp->tcp_ka_tid = TCP_TIMER(tcp,
10454 					    tcp_keepalive_killer,
10455 					    MSEC_TO_TICK(tcp->tcp_ka_interval));
10456 				}
10457 			}
10458 			break;
10459 		case TCP_KEEPALIVE_ABORT_THRESHOLD:
10460 			if (!checkonly) {
10461 				if (*i1 < tcp_keepalive_abort_interval_low ||
10462 				    *i1 > tcp_keepalive_abort_interval_high) {
10463 					*outlenp = 0;
10464 					return (EINVAL);
10465 				}
10466 				tcp->tcp_ka_abort_thres = *i1;
10467 			}
10468 			break;
10469 		case TCP_CORK:
10470 			if (!checkonly) {
10471 				/*
10472 				 * if tcp->tcp_cork was set and is now
10473 				 * being unset, we have to make sure that
10474 				 * the remaining data gets sent out. Also
10475 				 * unset tcp->tcp_cork so that tcp_wput_data()
10476 				 * can send data even if it is less than mss
10477 				 */
10478 				if (tcp->tcp_cork && onoff == 0 &&
10479 				    tcp->tcp_unsent > 0) {
10480 					tcp->tcp_cork = B_FALSE;
10481 					tcp_wput_data(tcp, NULL, B_FALSE);
10482 				}
10483 				tcp->tcp_cork = onoff;
10484 			}
10485 			break;
10486 		default:
10487 			*outlenp = 0;
10488 			return (EINVAL);
10489 		}
10490 		break;
10491 	case IPPROTO_IP:
10492 		if (tcp->tcp_family != AF_INET) {
10493 			*outlenp = 0;
10494 			return (ENOPROTOOPT);
10495 		}
10496 		switch (name) {
10497 		case IP_OPTIONS:
10498 		case T_IP_OPTIONS:
10499 			reterr = tcp_opt_set_header(tcp, checkonly,
10500 			    invalp, inlen);
10501 			if (reterr) {
10502 				*outlenp = 0;
10503 				return (reterr);
10504 			}
10505 			/* OK return - copy input buffer into output buffer */
10506 			if (invalp != outvalp) {
10507 				/* don't trust bcopy for identical src/dst */
10508 				bcopy(invalp, outvalp, inlen);
10509 			}
10510 			*outlenp = inlen;
10511 			return (0);
10512 		case IP_TOS:
10513 		case T_IP_TOS:
10514 			if (!checkonly) {
10515 				tcp->tcp_ipha->ipha_type_of_service =
10516 				    (uchar_t)*i1;
10517 				tcp->tcp_tos = (uchar_t)*i1;
10518 			}
10519 			break;
10520 		case IP_TTL:
10521 			if (!checkonly) {
10522 				tcp->tcp_ipha->ipha_ttl = (uchar_t)*i1;
10523 				tcp->tcp_ttl = (uchar_t)*i1;
10524 			}
10525 			break;
10526 		case IP_BOUND_IF:
10527 		case IP_NEXTHOP:
10528 			/* Handled at the IP level */
10529 			return (-EINVAL);
10530 		case IP_SEC_OPT:
10531 			/*
10532 			 * We should not allow policy setting after
10533 			 * we start listening for connections.
10534 			 */
10535 			if (tcp->tcp_state == TCPS_LISTEN) {
10536 				return (EINVAL);
10537 			} else {
10538 				/* Handled at the IP level */
10539 				return (-EINVAL);
10540 			}
10541 		default:
10542 			*outlenp = 0;
10543 			return (EINVAL);
10544 		}
10545 		break;
10546 	case IPPROTO_IPV6: {
10547 		ip6_pkt_t		*ipp;
10548 
10549 		/*
10550 		 * IPPROTO_IPV6 options are only supported for sockets
10551 		 * that are using IPv6 on the wire.
10552 		 */
10553 		if (tcp->tcp_ipversion != IPV6_VERSION) {
10554 			*outlenp = 0;
10555 			return (ENOPROTOOPT);
10556 		}
10557 		/*
10558 		 * Only sticky options; no ancillary data
10559 		 */
10560 		ASSERT(thisdg_attrs == NULL);
10561 		ipp = &tcp->tcp_sticky_ipp;
10562 
10563 		switch (name) {
10564 		case IPV6_UNICAST_HOPS:
10565 			/* -1 means use default */
10566 			if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) {
10567 				*outlenp = 0;
10568 				return (EINVAL);
10569 			}
10570 			if (!checkonly) {
10571 				if (*i1 == -1) {
10572 					tcp->tcp_ip6h->ip6_hops =
10573 					    ipp->ipp_unicast_hops =
10574 					    (uint8_t)tcp_ipv6_hoplimit;
10575 					ipp->ipp_fields &= ~IPPF_UNICAST_HOPS;
10576 					/* Pass modified value to IP. */
10577 					*i1 = tcp->tcp_ip6h->ip6_hops;
10578 				} else {
10579 					tcp->tcp_ip6h->ip6_hops =
10580 					    ipp->ipp_unicast_hops =
10581 					    (uint8_t)*i1;
10582 					ipp->ipp_fields |= IPPF_UNICAST_HOPS;
10583 				}
10584 				reterr = tcp_build_hdrs(q, tcp);
10585 				if (reterr != 0)
10586 					return (reterr);
10587 			}
10588 			break;
10589 		case IPV6_BOUND_IF:
10590 			if (!checkonly) {
10591 				int error = 0;
10592 
10593 				tcp->tcp_bound_if = *i1;
10594 				error = ip_opt_set_ill(tcp->tcp_connp, *i1,
10595 				    B_TRUE, checkonly, level, name, mblk);
10596 				if (error != 0) {
10597 					*outlenp = 0;
10598 					return (error);
10599 				}
10600 			}
10601 			break;
10602 		/*
10603 		 * Set boolean switches for ancillary data delivery
10604 		 */
10605 		case IPV6_RECVPKTINFO:
10606 			if (!checkonly) {
10607 				if (onoff)
10608 					tcp->tcp_ipv6_recvancillary |=
10609 					    TCP_IPV6_RECVPKTINFO;
10610 				else
10611 					tcp->tcp_ipv6_recvancillary &=
10612 					    ~TCP_IPV6_RECVPKTINFO;
10613 				/* Force it to be sent up with the next msg */
10614 				tcp->tcp_recvifindex = 0;
10615 			}
10616 			break;
10617 		case IPV6_RECVTCLASS:
10618 			if (!checkonly) {
10619 				if (onoff)
10620 					tcp->tcp_ipv6_recvancillary |=
10621 					    TCP_IPV6_RECVTCLASS;
10622 				else
10623 					tcp->tcp_ipv6_recvancillary &=
10624 					    ~TCP_IPV6_RECVTCLASS;
10625 			}
10626 			break;
10627 		case IPV6_RECVHOPLIMIT:
10628 			if (!checkonly) {
10629 				if (onoff)
10630 					tcp->tcp_ipv6_recvancillary |=
10631 					    TCP_IPV6_RECVHOPLIMIT;
10632 				else
10633 					tcp->tcp_ipv6_recvancillary &=
10634 					    ~TCP_IPV6_RECVHOPLIMIT;
10635 				/* Force it to be sent up with the next msg */
10636 				tcp->tcp_recvhops = 0xffffffffU;
10637 			}
10638 			break;
10639 		case IPV6_RECVHOPOPTS:
10640 			if (!checkonly) {
10641 				if (onoff)
10642 					tcp->tcp_ipv6_recvancillary |=
10643 					    TCP_IPV6_RECVHOPOPTS;
10644 				else
10645 					tcp->tcp_ipv6_recvancillary &=
10646 					    ~TCP_IPV6_RECVHOPOPTS;
10647 			}
10648 			break;
10649 		case IPV6_RECVDSTOPTS:
10650 			if (!checkonly) {
10651 				if (onoff)
10652 					tcp->tcp_ipv6_recvancillary |=
10653 					    TCP_IPV6_RECVDSTOPTS;
10654 				else
10655 					tcp->tcp_ipv6_recvancillary &=
10656 					    ~TCP_IPV6_RECVDSTOPTS;
10657 			}
10658 			break;
10659 		case _OLD_IPV6_RECVDSTOPTS:
10660 			if (!checkonly) {
10661 				if (onoff)
10662 					tcp->tcp_ipv6_recvancillary |=
10663 					    TCP_OLD_IPV6_RECVDSTOPTS;
10664 				else
10665 					tcp->tcp_ipv6_recvancillary &=
10666 					    ~TCP_OLD_IPV6_RECVDSTOPTS;
10667 			}
10668 			break;
10669 		case IPV6_RECVRTHDR:
10670 			if (!checkonly) {
10671 				if (onoff)
10672 					tcp->tcp_ipv6_recvancillary |=
10673 					    TCP_IPV6_RECVRTHDR;
10674 				else
10675 					tcp->tcp_ipv6_recvancillary &=
10676 					    ~TCP_IPV6_RECVRTHDR;
10677 			}
10678 			break;
10679 		case IPV6_RECVRTHDRDSTOPTS:
10680 			if (!checkonly) {
10681 				if (onoff)
10682 					tcp->tcp_ipv6_recvancillary |=
10683 					    TCP_IPV6_RECVRTDSTOPTS;
10684 				else
10685 					tcp->tcp_ipv6_recvancillary &=
10686 					    ~TCP_IPV6_RECVRTDSTOPTS;
10687 			}
10688 			break;
10689 		case IPV6_PKTINFO:
10690 			if (inlen != 0 && inlen != sizeof (struct in6_pktinfo))
10691 				return (EINVAL);
10692 			if (checkonly)
10693 				break;
10694 
10695 			if (inlen == 0) {
10696 				ipp->ipp_fields &= ~(IPPF_IFINDEX|IPPF_ADDR);
10697 			} else {
10698 				struct in6_pktinfo *pkti;
10699 
10700 				pkti = (struct in6_pktinfo *)invalp;
10701 				/*
10702 				 * RFC 3542 states that ipi6_addr must be
10703 				 * the unspecified address when setting the
10704 				 * IPV6_PKTINFO sticky socket option on a
10705 				 * TCP socket.
10706 				 */
10707 				if (!IN6_IS_ADDR_UNSPECIFIED(&pkti->ipi6_addr))
10708 					return (EINVAL);
10709 				/*
10710 				 * ip6_set_pktinfo() validates the source
10711 				 * address and interface index.
10712 				 */
10713 				reterr = ip6_set_pktinfo(cr, tcp->tcp_connp,
10714 				    pkti, mblk);
10715 				if (reterr != 0)
10716 					return (reterr);
10717 				ipp->ipp_ifindex = pkti->ipi6_ifindex;
10718 				ipp->ipp_addr = pkti->ipi6_addr;
10719 				if (ipp->ipp_ifindex != 0)
10720 					ipp->ipp_fields |= IPPF_IFINDEX;
10721 				else
10722 					ipp->ipp_fields &= ~IPPF_IFINDEX;
10723 				if (!IN6_IS_ADDR_UNSPECIFIED(&ipp->ipp_addr))
10724 					ipp->ipp_fields |= IPPF_ADDR;
10725 				else
10726 					ipp->ipp_fields &= ~IPPF_ADDR;
10727 			}
10728 			reterr = tcp_build_hdrs(q, tcp);
10729 			if (reterr != 0)
10730 				return (reterr);
10731 			break;
10732 		case IPV6_TCLASS:
10733 			if (inlen != 0 && inlen != sizeof (int))
10734 				return (EINVAL);
10735 			if (checkonly)
10736 				break;
10737 
10738 			if (inlen == 0) {
10739 				ipp->ipp_fields &= ~IPPF_TCLASS;
10740 			} else {
10741 				if (*i1 > 255 || *i1 < -1)
10742 					return (EINVAL);
10743 				if (*i1 == -1) {
10744 					ipp->ipp_tclass = 0;
10745 					*i1 = 0;
10746 				} else {
10747 					ipp->ipp_tclass = *i1;
10748 				}
10749 				ipp->ipp_fields |= IPPF_TCLASS;
10750 			}
10751 			reterr = tcp_build_hdrs(q, tcp);
10752 			if (reterr != 0)
10753 				return (reterr);
10754 			break;
10755 		case IPV6_NEXTHOP:
10756 			/*
10757 			 * IP will verify that the nexthop is reachable
10758 			 * and fail for sticky options.
10759 			 */
10760 			if (inlen != 0 && inlen != sizeof (sin6_t))
10761 				return (EINVAL);
10762 			if (checkonly)
10763 				break;
10764 
10765 			if (inlen == 0) {
10766 				ipp->ipp_fields &= ~IPPF_NEXTHOP;
10767 			} else {
10768 				sin6_t *sin6 = (sin6_t *)invalp;
10769 
10770 				if (sin6->sin6_family != AF_INET6)
10771 					return (EAFNOSUPPORT);
10772 				if (IN6_IS_ADDR_V4MAPPED(
10773 				    &sin6->sin6_addr))
10774 					return (EADDRNOTAVAIL);
10775 				ipp->ipp_nexthop = sin6->sin6_addr;
10776 				if (!IN6_IS_ADDR_UNSPECIFIED(
10777 				    &ipp->ipp_nexthop))
10778 					ipp->ipp_fields |= IPPF_NEXTHOP;
10779 				else
10780 					ipp->ipp_fields &= ~IPPF_NEXTHOP;
10781 			}
10782 			reterr = tcp_build_hdrs(q, tcp);
10783 			if (reterr != 0)
10784 				return (reterr);
10785 			break;
10786 		case IPV6_HOPOPTS: {
10787 			ip6_hbh_t *hopts = (ip6_hbh_t *)invalp;
10788 
10789 			/*
10790 			 * Sanity checks - minimum size, size a multiple of
10791 			 * eight bytes, and matching size passed in.
10792 			 */
10793 			if (inlen != 0 &&
10794 			    inlen != (8 * (hopts->ip6h_len + 1)))
10795 				return (EINVAL);
10796 
10797 			if (checkonly)
10798 				break;
10799 
10800 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10801 			    (uchar_t **)&ipp->ipp_hopopts,
10802 			    &ipp->ipp_hopoptslen, tcp->tcp_label_len);
10803 			if (reterr != 0)
10804 				return (reterr);
10805 			if (ipp->ipp_hopoptslen == 0)
10806 				ipp->ipp_fields &= ~IPPF_HOPOPTS;
10807 			else
10808 				ipp->ipp_fields |= IPPF_HOPOPTS;
10809 			reterr = tcp_build_hdrs(q, tcp);
10810 			if (reterr != 0)
10811 				return (reterr);
10812 			break;
10813 		}
10814 		case IPV6_RTHDRDSTOPTS: {
10815 			ip6_dest_t *dopts = (ip6_dest_t *)invalp;
10816 
10817 			/*
10818 			 * Sanity checks - minimum size, size a multiple of
10819 			 * eight bytes, and matching size passed in.
10820 			 */
10821 			if (inlen != 0 &&
10822 			    inlen != (8 * (dopts->ip6d_len + 1)))
10823 				return (EINVAL);
10824 
10825 			if (checkonly)
10826 				break;
10827 
10828 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10829 			    (uchar_t **)&ipp->ipp_rtdstopts,
10830 			    &ipp->ipp_rtdstoptslen, 0);
10831 			if (reterr != 0)
10832 				return (reterr);
10833 			if (ipp->ipp_rtdstoptslen == 0)
10834 				ipp->ipp_fields &= ~IPPF_RTDSTOPTS;
10835 			else
10836 				ipp->ipp_fields |= IPPF_RTDSTOPTS;
10837 			reterr = tcp_build_hdrs(q, tcp);
10838 			if (reterr != 0)
10839 				return (reterr);
10840 			break;
10841 		}
10842 		case IPV6_DSTOPTS: {
10843 			ip6_dest_t *dopts = (ip6_dest_t *)invalp;
10844 
10845 			/*
10846 			 * Sanity checks - minimum size, size a multiple of
10847 			 * eight bytes, and matching size passed in.
10848 			 */
10849 			if (inlen != 0 &&
10850 			    inlen != (8 * (dopts->ip6d_len + 1)))
10851 				return (EINVAL);
10852 
10853 			if (checkonly)
10854 				break;
10855 
10856 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10857 			    (uchar_t **)&ipp->ipp_dstopts,
10858 			    &ipp->ipp_dstoptslen, 0);
10859 			if (reterr != 0)
10860 				return (reterr);
10861 			if (ipp->ipp_dstoptslen == 0)
10862 				ipp->ipp_fields &= ~IPPF_DSTOPTS;
10863 			else
10864 				ipp->ipp_fields |= IPPF_DSTOPTS;
10865 			reterr = tcp_build_hdrs(q, tcp);
10866 			if (reterr != 0)
10867 				return (reterr);
10868 			break;
10869 		}
10870 		case IPV6_RTHDR: {
10871 			ip6_rthdr_t *rt = (ip6_rthdr_t *)invalp;
10872 
10873 			/*
10874 			 * Sanity checks - minimum size, size a multiple of
10875 			 * eight bytes, and matching size passed in.
10876 			 */
10877 			if (inlen != 0 &&
10878 			    inlen != (8 * (rt->ip6r_len + 1)))
10879 				return (EINVAL);
10880 
10881 			if (checkonly)
10882 				break;
10883 
10884 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10885 			    (uchar_t **)&ipp->ipp_rthdr,
10886 			    &ipp->ipp_rthdrlen, 0);
10887 			if (reterr != 0)
10888 				return (reterr);
10889 			if (ipp->ipp_rthdrlen == 0)
10890 				ipp->ipp_fields &= ~IPPF_RTHDR;
10891 			else
10892 				ipp->ipp_fields |= IPPF_RTHDR;
10893 			reterr = tcp_build_hdrs(q, tcp);
10894 			if (reterr != 0)
10895 				return (reterr);
10896 			break;
10897 		}
10898 		case IPV6_V6ONLY:
10899 			if (!checkonly)
10900 				tcp->tcp_connp->conn_ipv6_v6only = onoff;
10901 			break;
10902 		case IPV6_USE_MIN_MTU:
10903 			if (inlen != sizeof (int))
10904 				return (EINVAL);
10905 
10906 			if (*i1 < -1 || *i1 > 1)
10907 				return (EINVAL);
10908 
10909 			if (checkonly)
10910 				break;
10911 
10912 			ipp->ipp_fields |= IPPF_USE_MIN_MTU;
10913 			ipp->ipp_use_min_mtu = *i1;
10914 			break;
10915 		case IPV6_BOUND_PIF:
10916 			/* Handled at the IP level */
10917 			return (-EINVAL);
10918 		case IPV6_SEC_OPT:
10919 			/*
10920 			 * We should not allow policy setting after
10921 			 * we start listening for connections.
10922 			 */
10923 			if (tcp->tcp_state == TCPS_LISTEN) {
10924 				return (EINVAL);
10925 			} else {
10926 				/* Handled at the IP level */
10927 				return (-EINVAL);
10928 			}
10929 		case IPV6_SRC_PREFERENCES:
10930 			if (inlen != sizeof (uint32_t))
10931 				return (EINVAL);
10932 			reterr = ip6_set_src_preferences(tcp->tcp_connp,
10933 			    *(uint32_t *)invalp);
10934 			if (reterr != 0) {
10935 				*outlenp = 0;
10936 				return (reterr);
10937 			}
10938 			break;
10939 		default:
10940 			*outlenp = 0;
10941 			return (EINVAL);
10942 		}
10943 		break;
10944 	}		/* end IPPROTO_IPV6 */
10945 	default:
10946 		*outlenp = 0;
10947 		return (EINVAL);
10948 	}
10949 	/*
10950 	 * Common case of OK return with outval same as inval
10951 	 */
10952 	if (invalp != outvalp) {
10953 		/* don't trust bcopy for identical src/dst */
10954 		(void) bcopy(invalp, outvalp, inlen);
10955 	}
10956 	*outlenp = inlen;
10957 	return (0);
10958 }
10959 
10960 /*
10961  * Update tcp_sticky_hdrs based on tcp_sticky_ipp.
10962  * The headers include ip6i_t (if needed), ip6_t, any sticky extension
10963  * headers, and the maximum size tcp header (to avoid reallocation
10964  * on the fly for additional tcp options).
10965  * Returns failure if can't allocate memory.
10966  */
10967 static int
10968 tcp_build_hdrs(queue_t *q, tcp_t *tcp)
10969 {
10970 	char	*hdrs;
10971 	uint_t	hdrs_len;
10972 	ip6i_t	*ip6i;
10973 	char	buf[TCP_MAX_HDR_LENGTH];
10974 	ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp;
10975 	in6_addr_t src, dst;
10976 
10977 	/*
10978 	 * save the existing tcp header and source/dest IP addresses
10979 	 */
10980 	bcopy(tcp->tcp_tcph, buf, tcp->tcp_tcp_hdr_len);
10981 	src = tcp->tcp_ip6h->ip6_src;
10982 	dst = tcp->tcp_ip6h->ip6_dst;
10983 	hdrs_len = ip_total_hdrs_len_v6(ipp) + TCP_MAX_HDR_LENGTH;
10984 	ASSERT(hdrs_len != 0);
10985 	if (hdrs_len > tcp->tcp_iphc_len) {
10986 		/* Need to reallocate */
10987 		hdrs = kmem_zalloc(hdrs_len, KM_NOSLEEP);
10988 		if (hdrs == NULL)
10989 			return (ENOMEM);
10990 		if (tcp->tcp_iphc != NULL) {
10991 			if (tcp->tcp_hdr_grown) {
10992 				kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len);
10993 			} else {
10994 				bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
10995 				kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc);
10996 			}
10997 			tcp->tcp_iphc_len = 0;
10998 		}
10999 		ASSERT(tcp->tcp_iphc_len == 0);
11000 		tcp->tcp_iphc = hdrs;
11001 		tcp->tcp_iphc_len = hdrs_len;
11002 		tcp->tcp_hdr_grown = B_TRUE;
11003 	}
11004 	ip_build_hdrs_v6((uchar_t *)tcp->tcp_iphc,
11005 	    hdrs_len - TCP_MAX_HDR_LENGTH, ipp, IPPROTO_TCP);
11006 
11007 	/* Set header fields not in ipp */
11008 	if (ipp->ipp_fields & IPPF_HAS_IP6I) {
11009 		ip6i = (ip6i_t *)tcp->tcp_iphc;
11010 		tcp->tcp_ip6h = (ip6_t *)&ip6i[1];
11011 	} else {
11012 		tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc;
11013 	}
11014 	/*
11015 	 * tcp->tcp_ip_hdr_len will include ip6i_t if there is one.
11016 	 *
11017 	 * tcp->tcp_tcp_hdr_len doesn't change here.
11018 	 */
11019 	tcp->tcp_ip_hdr_len = hdrs_len - TCP_MAX_HDR_LENGTH;
11020 	tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + tcp->tcp_ip_hdr_len);
11021 	tcp->tcp_hdr_len = tcp->tcp_ip_hdr_len + tcp->tcp_tcp_hdr_len;
11022 
11023 	bcopy(buf, tcp->tcp_tcph, tcp->tcp_tcp_hdr_len);
11024 
11025 	tcp->tcp_ip6h->ip6_src = src;
11026 	tcp->tcp_ip6h->ip6_dst = dst;
11027 
11028 	/*
11029 	 * If the hop limit was not set by ip_build_hdrs_v6(), set it to
11030 	 * the default value for TCP.
11031 	 */
11032 	if (!(ipp->ipp_fields & IPPF_UNICAST_HOPS))
11033 		tcp->tcp_ip6h->ip6_hops = tcp_ipv6_hoplimit;
11034 
11035 	/*
11036 	 * If we're setting extension headers after a connection
11037 	 * has been established, and if we have a routing header
11038 	 * among the extension headers, call ip_massage_options_v6 to
11039 	 * manipulate the routing header/ip6_dst set the checksum
11040 	 * difference in the tcp header template.
11041 	 * (This happens in tcp_connect_ipv6 if the routing header
11042 	 * is set prior to the connect.)
11043 	 * Set the tcp_sum to zero first in case we've cleared a
11044 	 * routing header or don't have one at all.
11045 	 */
11046 	tcp->tcp_sum = 0;
11047 	if ((tcp->tcp_state >= TCPS_SYN_SENT) &&
11048 	    (tcp->tcp_ipp_fields & IPPF_RTHDR)) {
11049 		ip6_rthdr_t *rth = ip_find_rthdr_v6(tcp->tcp_ip6h,
11050 		    (uint8_t *)tcp->tcp_tcph);
11051 		if (rth != NULL) {
11052 			tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h,
11053 			    rth);
11054 			tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
11055 			    (tcp->tcp_sum >> 16));
11056 		}
11057 	}
11058 
11059 	/* Try to get everything in a single mblk */
11060 	(void) mi_set_sth_wroff(RD(q), hdrs_len + tcp_wroff_xtra);
11061 	return (0);
11062 }
11063 
11064 /*
11065  * Transfer any source route option from ipha to buf/dst in reversed form.
11066  */
11067 static int
11068 tcp_opt_rev_src_route(ipha_t *ipha, char *buf, uchar_t *dst)
11069 {
11070 	ipoptp_t	opts;
11071 	uchar_t		*opt;
11072 	uint8_t		optval;
11073 	uint8_t		optlen;
11074 	uint32_t	len = 0;
11075 
11076 	for (optval = ipoptp_first(&opts, ipha);
11077 	    optval != IPOPT_EOL;
11078 	    optval = ipoptp_next(&opts)) {
11079 		opt = opts.ipoptp_cur;
11080 		optlen = opts.ipoptp_len;
11081 		switch (optval) {
11082 			int	off1, off2;
11083 		case IPOPT_SSRR:
11084 		case IPOPT_LSRR:
11085 
11086 			/* Reverse source route */
11087 			/*
11088 			 * First entry should be the next to last one in the
11089 			 * current source route (the last entry is our
11090 			 * address.)
11091 			 * The last entry should be the final destination.
11092 			 */
11093 			buf[IPOPT_OPTVAL] = (uint8_t)optval;
11094 			buf[IPOPT_OLEN] = (uint8_t)optlen;
11095 			off1 = IPOPT_MINOFF_SR - 1;
11096 			off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1;
11097 			if (off2 < 0) {
11098 				/* No entries in source route */
11099 				break;
11100 			}
11101 			bcopy(opt + off2, dst, IP_ADDR_LEN);
11102 			/*
11103 			 * Note: use src since ipha has not had its src
11104 			 * and dst reversed (it is in the state it was
11105 			 * received.
11106 			 */
11107 			bcopy(&ipha->ipha_src, buf + off2,
11108 			    IP_ADDR_LEN);
11109 			off2 -= IP_ADDR_LEN;
11110 
11111 			while (off2 > 0) {
11112 				bcopy(opt + off2, buf + off1,
11113 				    IP_ADDR_LEN);
11114 				off1 += IP_ADDR_LEN;
11115 				off2 -= IP_ADDR_LEN;
11116 			}
11117 			buf[IPOPT_OFFSET] = IPOPT_MINOFF_SR;
11118 			buf += optlen;
11119 			len += optlen;
11120 			break;
11121 		}
11122 	}
11123 done:
11124 	/* Pad the resulting options */
11125 	while (len & 0x3) {
11126 		*buf++ = IPOPT_EOL;
11127 		len++;
11128 	}
11129 	return (len);
11130 }
11131 
11132 
11133 /*
11134  * Extract and revert a source route from ipha (if any)
11135  * and then update the relevant fields in both tcp_t and the standard header.
11136  */
11137 static void
11138 tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha)
11139 {
11140 	char	buf[TCP_MAX_HDR_LENGTH];
11141 	uint_t	tcph_len;
11142 	int	len;
11143 
11144 	ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION);
11145 	len = IPH_HDR_LENGTH(ipha);
11146 	if (len == IP_SIMPLE_HDR_LENGTH)
11147 		/* Nothing to do */
11148 		return;
11149 	if (len > IP_SIMPLE_HDR_LENGTH + TCP_MAX_IP_OPTIONS_LENGTH ||
11150 	    (len & 0x3))
11151 		return;
11152 
11153 	tcph_len = tcp->tcp_tcp_hdr_len;
11154 	bcopy(tcp->tcp_tcph, buf, tcph_len);
11155 	tcp->tcp_sum = (tcp->tcp_ipha->ipha_dst >> 16) +
11156 		(tcp->tcp_ipha->ipha_dst & 0xffff);
11157 	len = tcp_opt_rev_src_route(ipha, (char *)tcp->tcp_ipha +
11158 	    IP_SIMPLE_HDR_LENGTH, (uchar_t *)&tcp->tcp_ipha->ipha_dst);
11159 	len += IP_SIMPLE_HDR_LENGTH;
11160 	tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) +
11161 	    (tcp->tcp_ipha->ipha_dst & 0xffff));
11162 	if ((int)tcp->tcp_sum < 0)
11163 		tcp->tcp_sum--;
11164 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
11165 	tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16));
11166 	tcp->tcp_tcph = (tcph_t *)((char *)tcp->tcp_ipha + len);
11167 	bcopy(buf, tcp->tcp_tcph, tcph_len);
11168 	tcp->tcp_ip_hdr_len = len;
11169 	tcp->tcp_ipha->ipha_version_and_hdr_length =
11170 	    (IP_VERSION << 4) | (len >> 2);
11171 	len += tcph_len;
11172 	tcp->tcp_hdr_len = len;
11173 }
11174 
11175 /*
11176  * Copy the standard header into its new location,
11177  * lay in the new options and then update the relevant
11178  * fields in both tcp_t and the standard header.
11179  */
11180 static int
11181 tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, uchar_t *ptr, uint_t len)
11182 {
11183 	uint_t	tcph_len;
11184 	uint8_t	*ip_optp;
11185 	tcph_t	*new_tcph;
11186 
11187 	if ((len > TCP_MAX_IP_OPTIONS_LENGTH) || (len & 0x3))
11188 		return (EINVAL);
11189 
11190 	if (len > IP_MAX_OPT_LENGTH - tcp->tcp_label_len)
11191 		return (EINVAL);
11192 
11193 	if (checkonly) {
11194 		/*
11195 		 * do not really set, just pretend to - T_CHECK
11196 		 */
11197 		return (0);
11198 	}
11199 
11200 	ip_optp = (uint8_t *)tcp->tcp_ipha + IP_SIMPLE_HDR_LENGTH;
11201 	if (tcp->tcp_label_len > 0) {
11202 		int padlen;
11203 		uint8_t opt;
11204 
11205 		/* convert list termination to no-ops */
11206 		padlen = tcp->tcp_label_len - ip_optp[IPOPT_OLEN];
11207 		ip_optp += ip_optp[IPOPT_OLEN];
11208 		opt = len > 0 ? IPOPT_NOP : IPOPT_EOL;
11209 		while (--padlen >= 0)
11210 			*ip_optp++ = opt;
11211 	}
11212 	tcph_len = tcp->tcp_tcp_hdr_len;
11213 	new_tcph = (tcph_t *)(ip_optp + len);
11214 	ovbcopy(tcp->tcp_tcph, new_tcph, tcph_len);
11215 	tcp->tcp_tcph = new_tcph;
11216 	bcopy(ptr, ip_optp, len);
11217 
11218 	len += IP_SIMPLE_HDR_LENGTH + tcp->tcp_label_len;
11219 
11220 	tcp->tcp_ip_hdr_len = len;
11221 	tcp->tcp_ipha->ipha_version_and_hdr_length =
11222 	    (IP_VERSION << 4) | (len >> 2);
11223 	tcp->tcp_hdr_len = len + tcph_len;
11224 	if (!TCP_IS_DETACHED(tcp)) {
11225 		/* Always allocate room for all options. */
11226 		(void) mi_set_sth_wroff(tcp->tcp_rq,
11227 		    TCP_MAX_COMBINED_HEADER_LENGTH + tcp_wroff_xtra);
11228 	}
11229 	return (0);
11230 }
11231 
11232 /* Get callback routine passed to nd_load by tcp_param_register */
11233 /* ARGSUSED */
11234 static int
11235 tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
11236 {
11237 	tcpparam_t	*tcppa = (tcpparam_t *)cp;
11238 
11239 	(void) mi_mpprintf(mp, "%u", tcppa->tcp_param_val);
11240 	return (0);
11241 }
11242 
11243 /*
11244  * Walk through the param array specified registering each element with the
11245  * named dispatch handler.
11246  */
11247 static boolean_t
11248 tcp_param_register(tcpparam_t *tcppa, int cnt)
11249 {
11250 	for (; cnt-- > 0; tcppa++) {
11251 		if (tcppa->tcp_param_name && tcppa->tcp_param_name[0]) {
11252 			if (!nd_load(&tcp_g_nd, tcppa->tcp_param_name,
11253 			    tcp_param_get, tcp_param_set,
11254 			    (caddr_t)tcppa)) {
11255 				nd_free(&tcp_g_nd);
11256 				return (B_FALSE);
11257 			}
11258 		}
11259 	}
11260 	if (!nd_load(&tcp_g_nd, tcp_wroff_xtra_param.tcp_param_name,
11261 	    tcp_param_get, tcp_param_set_aligned,
11262 	    (caddr_t)&tcp_wroff_xtra_param)) {
11263 		nd_free(&tcp_g_nd);
11264 		return (B_FALSE);
11265 	}
11266 	if (!nd_load(&tcp_g_nd, tcp_mdt_head_param.tcp_param_name,
11267 	    tcp_param_get, tcp_param_set_aligned,
11268 	    (caddr_t)&tcp_mdt_head_param)) {
11269 		nd_free(&tcp_g_nd);
11270 		return (B_FALSE);
11271 	}
11272 	if (!nd_load(&tcp_g_nd, tcp_mdt_tail_param.tcp_param_name,
11273 	    tcp_param_get, tcp_param_set_aligned,
11274 	    (caddr_t)&tcp_mdt_tail_param)) {
11275 		nd_free(&tcp_g_nd);
11276 		return (B_FALSE);
11277 	}
11278 	if (!nd_load(&tcp_g_nd, tcp_mdt_max_pbufs_param.tcp_param_name,
11279 	    tcp_param_get, tcp_param_set,
11280 	    (caddr_t)&tcp_mdt_max_pbufs_param)) {
11281 		nd_free(&tcp_g_nd);
11282 		return (B_FALSE);
11283 	}
11284 	if (!nd_load(&tcp_g_nd, "tcp_extra_priv_ports",
11285 	    tcp_extra_priv_ports_get, NULL, NULL)) {
11286 		nd_free(&tcp_g_nd);
11287 		return (B_FALSE);
11288 	}
11289 	if (!nd_load(&tcp_g_nd, "tcp_extra_priv_ports_add",
11290 	    NULL, tcp_extra_priv_ports_add, NULL)) {
11291 		nd_free(&tcp_g_nd);
11292 		return (B_FALSE);
11293 	}
11294 	if (!nd_load(&tcp_g_nd, "tcp_extra_priv_ports_del",
11295 	    NULL, tcp_extra_priv_ports_del, NULL)) {
11296 		nd_free(&tcp_g_nd);
11297 		return (B_FALSE);
11298 	}
11299 	if (!nd_load(&tcp_g_nd, "tcp_status", tcp_status_report, NULL,
11300 	    NULL)) {
11301 		nd_free(&tcp_g_nd);
11302 		return (B_FALSE);
11303 	}
11304 	if (!nd_load(&tcp_g_nd, "tcp_bind_hash", tcp_bind_hash_report,
11305 	    NULL, NULL)) {
11306 		nd_free(&tcp_g_nd);
11307 		return (B_FALSE);
11308 	}
11309 	if (!nd_load(&tcp_g_nd, "tcp_listen_hash", tcp_listen_hash_report,
11310 	    NULL, NULL)) {
11311 		nd_free(&tcp_g_nd);
11312 		return (B_FALSE);
11313 	}
11314 	if (!nd_load(&tcp_g_nd, "tcp_conn_hash", tcp_conn_hash_report,
11315 	    NULL, NULL)) {
11316 		nd_free(&tcp_g_nd);
11317 		return (B_FALSE);
11318 	}
11319 	if (!nd_load(&tcp_g_nd, "tcp_acceptor_hash", tcp_acceptor_hash_report,
11320 	    NULL, NULL)) {
11321 		nd_free(&tcp_g_nd);
11322 		return (B_FALSE);
11323 	}
11324 	if (!nd_load(&tcp_g_nd, "tcp_host_param", tcp_host_param_report,
11325 	    tcp_host_param_set, NULL)) {
11326 		nd_free(&tcp_g_nd);
11327 		return (B_FALSE);
11328 	}
11329 	if (!nd_load(&tcp_g_nd, "tcp_host_param_ipv6", tcp_host_param_report,
11330 	    tcp_host_param_set_ipv6, NULL)) {
11331 		nd_free(&tcp_g_nd);
11332 		return (B_FALSE);
11333 	}
11334 	if (!nd_load(&tcp_g_nd, "tcp_1948_phrase", NULL, tcp_1948_phrase_set,
11335 	    NULL)) {
11336 		nd_free(&tcp_g_nd);
11337 		return (B_FALSE);
11338 	}
11339 	if (!nd_load(&tcp_g_nd, "tcp_reserved_port_list",
11340 	    tcp_reserved_port_list, NULL, NULL)) {
11341 		nd_free(&tcp_g_nd);
11342 		return (B_FALSE);
11343 	}
11344 	/*
11345 	 * Dummy ndd variables - only to convey obsolescence information
11346 	 * through printing of their name (no get or set routines)
11347 	 * XXX Remove in future releases ?
11348 	 */
11349 	if (!nd_load(&tcp_g_nd,
11350 	    "tcp_close_wait_interval(obsoleted - "
11351 	    "use tcp_time_wait_interval)", NULL, NULL, NULL)) {
11352 		nd_free(&tcp_g_nd);
11353 		return (B_FALSE);
11354 	}
11355 	return (B_TRUE);
11356 }
11357 
11358 /* ndd set routine for tcp_wroff_xtra, tcp_mdt_hdr_{head,tail}_min. */
11359 /* ARGSUSED */
11360 static int
11361 tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
11362     cred_t *cr)
11363 {
11364 	long new_value;
11365 	tcpparam_t *tcppa = (tcpparam_t *)cp;
11366 
11367 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
11368 	    new_value < tcppa->tcp_param_min ||
11369 	    new_value > tcppa->tcp_param_max) {
11370 		return (EINVAL);
11371 	}
11372 	/*
11373 	 * Need to make sure new_value is a multiple of 4.  If it is not,
11374 	 * round it up.  For future 64 bit requirement, we actually make it
11375 	 * a multiple of 8.
11376 	 */
11377 	if (new_value & 0x7) {
11378 		new_value = (new_value & ~0x7) + 0x8;
11379 	}
11380 	tcppa->tcp_param_val = new_value;
11381 	return (0);
11382 }
11383 
11384 /* Set callback routine passed to nd_load by tcp_param_register */
11385 /* ARGSUSED */
11386 static int
11387 tcp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr)
11388 {
11389 	long	new_value;
11390 	tcpparam_t	*tcppa = (tcpparam_t *)cp;
11391 
11392 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
11393 	    new_value < tcppa->tcp_param_min ||
11394 	    new_value > tcppa->tcp_param_max) {
11395 		return (EINVAL);
11396 	}
11397 	tcppa->tcp_param_val = new_value;
11398 	return (0);
11399 }
11400 
11401 /*
11402  * Add a new piece to the tcp reassembly queue.  If the gap at the beginning
11403  * is filled, return as much as we can.  The message passed in may be
11404  * multi-part, chained using b_cont.  "start" is the starting sequence
11405  * number for this piece.
11406  */
11407 static mblk_t *
11408 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start)
11409 {
11410 	uint32_t	end;
11411 	mblk_t		*mp1;
11412 	mblk_t		*mp2;
11413 	mblk_t		*next_mp;
11414 	uint32_t	u1;
11415 
11416 	/* Walk through all the new pieces. */
11417 	do {
11418 		ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
11419 		    (uintptr_t)INT_MAX);
11420 		end = start + (int)(mp->b_wptr - mp->b_rptr);
11421 		next_mp = mp->b_cont;
11422 		if (start == end) {
11423 			/* Empty.  Blast it. */
11424 			freeb(mp);
11425 			continue;
11426 		}
11427 		mp->b_cont = NULL;
11428 		TCP_REASS_SET_SEQ(mp, start);
11429 		TCP_REASS_SET_END(mp, end);
11430 		mp1 = tcp->tcp_reass_tail;
11431 		if (!mp1) {
11432 			tcp->tcp_reass_tail = mp;
11433 			tcp->tcp_reass_head = mp;
11434 			BUMP_MIB(&tcp_mib, tcpInDataUnorderSegs);
11435 			UPDATE_MIB(&tcp_mib,
11436 			    tcpInDataUnorderBytes, end - start);
11437 			continue;
11438 		}
11439 		/* New stuff completely beyond tail? */
11440 		if (SEQ_GEQ(start, TCP_REASS_END(mp1))) {
11441 			/* Link it on end. */
11442 			mp1->b_cont = mp;
11443 			tcp->tcp_reass_tail = mp;
11444 			BUMP_MIB(&tcp_mib, tcpInDataUnorderSegs);
11445 			UPDATE_MIB(&tcp_mib,
11446 			    tcpInDataUnorderBytes, end - start);
11447 			continue;
11448 		}
11449 		mp1 = tcp->tcp_reass_head;
11450 		u1 = TCP_REASS_SEQ(mp1);
11451 		/* New stuff at the front? */
11452 		if (SEQ_LT(start, u1)) {
11453 			/* Yes... Check for overlap. */
11454 			mp->b_cont = mp1;
11455 			tcp->tcp_reass_head = mp;
11456 			tcp_reass_elim_overlap(tcp, mp);
11457 			continue;
11458 		}
11459 		/*
11460 		 * The new piece fits somewhere between the head and tail.
11461 		 * We find our slot, where mp1 precedes us and mp2 trails.
11462 		 */
11463 		for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) {
11464 			u1 = TCP_REASS_SEQ(mp2);
11465 			if (SEQ_LEQ(start, u1))
11466 				break;
11467 		}
11468 		/* Link ourselves in */
11469 		mp->b_cont = mp2;
11470 		mp1->b_cont = mp;
11471 
11472 		/* Trim overlap with following mblk(s) first */
11473 		tcp_reass_elim_overlap(tcp, mp);
11474 
11475 		/* Trim overlap with preceding mblk */
11476 		tcp_reass_elim_overlap(tcp, mp1);
11477 
11478 	} while (start = end, mp = next_mp);
11479 	mp1 = tcp->tcp_reass_head;
11480 	/* Anything ready to go? */
11481 	if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt)
11482 		return (NULL);
11483 	/* Eat what we can off the queue */
11484 	for (;;) {
11485 		mp = mp1->b_cont;
11486 		end = TCP_REASS_END(mp1);
11487 		TCP_REASS_SET_SEQ(mp1, 0);
11488 		TCP_REASS_SET_END(mp1, 0);
11489 		if (!mp) {
11490 			tcp->tcp_reass_tail = NULL;
11491 			break;
11492 		}
11493 		if (end != TCP_REASS_SEQ(mp)) {
11494 			mp1->b_cont = NULL;
11495 			break;
11496 		}
11497 		mp1 = mp;
11498 	}
11499 	mp1 = tcp->tcp_reass_head;
11500 	tcp->tcp_reass_head = mp;
11501 	return (mp1);
11502 }
11503 
11504 /* Eliminate any overlap that mp may have over later mblks */
11505 static void
11506 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp)
11507 {
11508 	uint32_t	end;
11509 	mblk_t		*mp1;
11510 	uint32_t	u1;
11511 
11512 	end = TCP_REASS_END(mp);
11513 	while ((mp1 = mp->b_cont) != NULL) {
11514 		u1 = TCP_REASS_SEQ(mp1);
11515 		if (!SEQ_GT(end, u1))
11516 			break;
11517 		if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) {
11518 			mp->b_wptr -= end - u1;
11519 			TCP_REASS_SET_END(mp, u1);
11520 			BUMP_MIB(&tcp_mib, tcpInDataPartDupSegs);
11521 			UPDATE_MIB(&tcp_mib, tcpInDataPartDupBytes, end - u1);
11522 			break;
11523 		}
11524 		mp->b_cont = mp1->b_cont;
11525 		TCP_REASS_SET_SEQ(mp1, 0);
11526 		TCP_REASS_SET_END(mp1, 0);
11527 		freeb(mp1);
11528 		BUMP_MIB(&tcp_mib, tcpInDataDupSegs);
11529 		UPDATE_MIB(&tcp_mib, tcpInDataDupBytes, end - u1);
11530 	}
11531 	if (!mp1)
11532 		tcp->tcp_reass_tail = mp;
11533 }
11534 
11535 /*
11536  * Send up all messages queued on tcp_rcv_list.
11537  */
11538 static uint_t
11539 tcp_rcv_drain(queue_t *q, tcp_t *tcp)
11540 {
11541 	mblk_t *mp;
11542 	uint_t ret = 0;
11543 	uint_t thwin;
11544 #ifdef DEBUG
11545 	uint_t cnt = 0;
11546 #endif
11547 	/* Can't drain on an eager connection */
11548 	if (tcp->tcp_listener != NULL)
11549 		return (ret);
11550 
11551 	/*
11552 	 * Handle two cases here: we are currently fused or we were
11553 	 * previously fused and have some urgent data to be delivered
11554 	 * upstream.  The latter happens because we either ran out of
11555 	 * memory or were detached and therefore sending the SIGURG was
11556 	 * deferred until this point.  In either case we pass control
11557 	 * over to tcp_fuse_rcv_drain() since it may need to complete
11558 	 * some work.
11559 	 */
11560 	if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) {
11561 		ASSERT(tcp->tcp_fused_sigurg_mp != NULL);
11562 		if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL :
11563 		    &tcp->tcp_fused_sigurg_mp))
11564 			return (ret);
11565 	}
11566 
11567 	while ((mp = tcp->tcp_rcv_list) != NULL) {
11568 		tcp->tcp_rcv_list = mp->b_next;
11569 		mp->b_next = NULL;
11570 #ifdef DEBUG
11571 		cnt += msgdsize(mp);
11572 #endif
11573 		/* Does this need SSL processing first? */
11574 		if ((tcp->tcp_kssl_ctx  != NULL) && (DB_TYPE(mp) == M_DATA)) {
11575 			tcp_kssl_input(tcp, mp);
11576 			continue;
11577 		}
11578 		putnext(q, mp);
11579 	}
11580 	ASSERT(cnt == tcp->tcp_rcv_cnt);
11581 	tcp->tcp_rcv_last_head = NULL;
11582 	tcp->tcp_rcv_last_tail = NULL;
11583 	tcp->tcp_rcv_cnt = 0;
11584 
11585 	/* Learn the latest rwnd information that we sent to the other side. */
11586 	thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
11587 	    << tcp->tcp_rcv_ws;
11588 	/* This is peer's calculated send window (our receive window). */
11589 	thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
11590 	/*
11591 	 * Increase the receive window to max.  But we need to do receiver
11592 	 * SWS avoidance.  This means that we need to check the increase of
11593 	 * of receive window is at least 1 MSS.
11594 	 */
11595 	if (canputnext(q) && (q->q_hiwat - thwin >= tcp->tcp_mss)) {
11596 		/*
11597 		 * If the window that the other side knows is less than max
11598 		 * deferred acks segments, send an update immediately.
11599 		 */
11600 		if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) {
11601 			BUMP_MIB(&tcp_mib, tcpOutWinUpdate);
11602 			ret = TH_ACK_NEEDED;
11603 		}
11604 		tcp->tcp_rwnd = q->q_hiwat;
11605 	}
11606 	/* No need for the push timer now. */
11607 	if (tcp->tcp_push_tid != 0) {
11608 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
11609 		tcp->tcp_push_tid = 0;
11610 	}
11611 	return (ret);
11612 }
11613 
11614 /*
11615  * Queue data on tcp_rcv_list which is a b_next chain.
11616  * tcp_rcv_last_head/tail is the last element of this chain.
11617  * Each element of the chain is a b_cont chain.
11618  *
11619  * M_DATA messages are added to the current element.
11620  * Other messages are added as new (b_next) elements.
11621  */
11622 void
11623 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len)
11624 {
11625 	ASSERT(seg_len == msgdsize(mp));
11626 	ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL);
11627 
11628 	if (tcp->tcp_rcv_list == NULL) {
11629 		ASSERT(tcp->tcp_rcv_last_head == NULL);
11630 		tcp->tcp_rcv_list = mp;
11631 		tcp->tcp_rcv_last_head = mp;
11632 	} else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) {
11633 		tcp->tcp_rcv_last_tail->b_cont = mp;
11634 	} else {
11635 		tcp->tcp_rcv_last_head->b_next = mp;
11636 		tcp->tcp_rcv_last_head = mp;
11637 	}
11638 
11639 	while (mp->b_cont)
11640 		mp = mp->b_cont;
11641 
11642 	tcp->tcp_rcv_last_tail = mp;
11643 	tcp->tcp_rcv_cnt += seg_len;
11644 	tcp->tcp_rwnd -= seg_len;
11645 }
11646 
11647 /*
11648  * DEFAULT TCP ENTRY POINT via squeue on READ side.
11649  *
11650  * This is the default entry function into TCP on the read side. TCP is
11651  * always entered via squeue i.e. using squeue's for mutual exclusion.
11652  * When classifier does a lookup to find the tcp, it also puts a reference
11653  * on the conn structure associated so the tcp is guaranteed to exist
11654  * when we come here. We still need to check the state because it might
11655  * as well has been closed. The squeue processing function i.e. squeue_enter,
11656  * squeue_enter_nodrain, or squeue_drain is responsible for doing the
11657  * CONN_DEC_REF.
11658  *
11659  * Apart from the default entry point, IP also sends packets directly to
11660  * tcp_rput_data for AF_INET fast path and tcp_conn_request for incoming
11661  * connections.
11662  */
11663 void
11664 tcp_input(void *arg, mblk_t *mp, void *arg2)
11665 {
11666 	conn_t	*connp = (conn_t *)arg;
11667 	tcp_t	*tcp = (tcp_t *)connp->conn_tcp;
11668 
11669 	/* arg2 is the sqp */
11670 	ASSERT(arg2 != NULL);
11671 	ASSERT(mp != NULL);
11672 
11673 	/*
11674 	 * Don't accept any input on a closed tcp as this TCP logically does
11675 	 * not exist on the system. Don't proceed further with this TCP.
11676 	 * For eg. this packet could trigger another close of this tcp
11677 	 * which would be disastrous for tcp_refcnt. tcp_close_detached /
11678 	 * tcp_clean_death / tcp_closei_local must be called at most once
11679 	 * on a TCP. In this case we need to refeed the packet into the
11680 	 * classifier and figure out where the packet should go. Need to
11681 	 * preserve the recv_ill somehow. Until we figure that out, for
11682 	 * now just drop the packet if we can't classify the packet.
11683 	 */
11684 	if (tcp->tcp_state == TCPS_CLOSED ||
11685 	    tcp->tcp_state == TCPS_BOUND) {
11686 		conn_t	*new_connp;
11687 
11688 		new_connp = ipcl_classify(mp, connp->conn_zoneid);
11689 		if (new_connp != NULL) {
11690 			tcp_reinput(new_connp, mp, arg2);
11691 			return;
11692 		}
11693 		/* We failed to classify. For now just drop the packet */
11694 		freemsg(mp);
11695 		return;
11696 	}
11697 
11698 	if (DB_TYPE(mp) == M_DATA)
11699 		tcp_rput_data(connp, mp, arg2);
11700 	else
11701 		tcp_rput_common(tcp, mp);
11702 }
11703 
11704 /*
11705  * The read side put procedure.
11706  * The packets passed up by ip are assume to be aligned according to
11707  * OK_32PTR and the IP+TCP headers fitting in the first mblk.
11708  */
11709 static void
11710 tcp_rput_common(tcp_t *tcp, mblk_t *mp)
11711 {
11712 	/*
11713 	 * tcp_rput_data() does not expect M_CTL except for the case
11714 	 * where tcp_ipv6_recvancillary is set and we get a IN_PKTINFO
11715 	 * type. Need to make sure that any other M_CTLs don't make
11716 	 * it to tcp_rput_data since it is not expecting any and doesn't
11717 	 * check for it.
11718 	 */
11719 	if (DB_TYPE(mp) == M_CTL) {
11720 		switch (*(uint32_t *)(mp->b_rptr)) {
11721 		case TCP_IOC_ABORT_CONN:
11722 			/*
11723 			 * Handle connection abort request.
11724 			 */
11725 			tcp_ioctl_abort_handler(tcp, mp);
11726 			return;
11727 		case IPSEC_IN:
11728 			/*
11729 			 * Only secure icmp arrive in TCP and they
11730 			 * don't go through data path.
11731 			 */
11732 			tcp_icmp_error(tcp, mp);
11733 			return;
11734 		case IN_PKTINFO:
11735 			/*
11736 			 * Handle IPV6_RECVPKTINFO socket option on AF_INET6
11737 			 * sockets that are receiving IPv4 traffic. tcp
11738 			 */
11739 			ASSERT(tcp->tcp_family == AF_INET6);
11740 			ASSERT(tcp->tcp_ipv6_recvancillary &
11741 			    TCP_IPV6_RECVPKTINFO);
11742 			tcp_rput_data(tcp->tcp_connp, mp,
11743 			    tcp->tcp_connp->conn_sqp);
11744 			return;
11745 		case MDT_IOC_INFO_UPDATE:
11746 			/*
11747 			 * Handle Multidata information update; the
11748 			 * following routine will free the message.
11749 			 */
11750 			if (tcp->tcp_connp->conn_mdt_ok) {
11751 				tcp_mdt_update(tcp,
11752 				    &((ip_mdt_info_t *)mp->b_rptr)->mdt_capab,
11753 				    B_FALSE);
11754 			}
11755 			freemsg(mp);
11756 			return;
11757 		case LSO_IOC_INFO_UPDATE:
11758 			/*
11759 			 * Handle LSO information update; the following
11760 			 * routine will free the message.
11761 			 */
11762 			if (tcp->tcp_connp->conn_lso_ok) {
11763 				tcp_lso_update(tcp,
11764 				    &((ip_lso_info_t *)mp->b_rptr)->lso_capab);
11765 			}
11766 			freemsg(mp);
11767 			return;
11768 		default:
11769 			break;
11770 		}
11771 	}
11772 
11773 	/* No point processing the message if tcp is already closed */
11774 	if (TCP_IS_DETACHED_NONEAGER(tcp)) {
11775 		freemsg(mp);
11776 		return;
11777 	}
11778 
11779 	tcp_rput_other(tcp, mp);
11780 }
11781 
11782 
11783 /* The minimum of smoothed mean deviation in RTO calculation. */
11784 #define	TCP_SD_MIN	400
11785 
11786 /*
11787  * Set RTO for this connection.  The formula is from Jacobson and Karels'
11788  * "Congestion Avoidance and Control" in SIGCOMM '88.  The variable names
11789  * are the same as those in Appendix A.2 of that paper.
11790  *
11791  * m = new measurement
11792  * sa = smoothed RTT average (8 * average estimates).
11793  * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates).
11794  */
11795 static void
11796 tcp_set_rto(tcp_t *tcp, clock_t rtt)
11797 {
11798 	long m = TICK_TO_MSEC(rtt);
11799 	clock_t sa = tcp->tcp_rtt_sa;
11800 	clock_t sv = tcp->tcp_rtt_sd;
11801 	clock_t rto;
11802 
11803 	BUMP_MIB(&tcp_mib, tcpRttUpdate);
11804 	tcp->tcp_rtt_update++;
11805 
11806 	/* tcp_rtt_sa is not 0 means this is a new sample. */
11807 	if (sa != 0) {
11808 		/*
11809 		 * Update average estimator:
11810 		 *	new rtt = 7/8 old rtt + 1/8 Error
11811 		 */
11812 
11813 		/* m is now Error in estimate. */
11814 		m -= sa >> 3;
11815 		if ((sa += m) <= 0) {
11816 			/*
11817 			 * Don't allow the smoothed average to be negative.
11818 			 * We use 0 to denote reinitialization of the
11819 			 * variables.
11820 			 */
11821 			sa = 1;
11822 		}
11823 
11824 		/*
11825 		 * Update deviation estimator:
11826 		 *	new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev)
11827 		 */
11828 		if (m < 0)
11829 			m = -m;
11830 		m -= sv >> 2;
11831 		sv += m;
11832 	} else {
11833 		/*
11834 		 * This follows BSD's implementation.  So the reinitialized
11835 		 * RTO is 3 * m.  We cannot go less than 2 because if the
11836 		 * link is bandwidth dominated, doubling the window size
11837 		 * during slow start means doubling the RTT.  We want to be
11838 		 * more conservative when we reinitialize our estimates.  3
11839 		 * is just a convenient number.
11840 		 */
11841 		sa = m << 3;
11842 		sv = m << 1;
11843 	}
11844 	if (sv < TCP_SD_MIN) {
11845 		/*
11846 		 * We do not know that if sa captures the delay ACK
11847 		 * effect as in a long train of segments, a receiver
11848 		 * does not delay its ACKs.  So set the minimum of sv
11849 		 * to be TCP_SD_MIN, which is default to 400 ms, twice
11850 		 * of BSD DATO.  That means the minimum of mean
11851 		 * deviation is 100 ms.
11852 		 *
11853 		 */
11854 		sv = TCP_SD_MIN;
11855 	}
11856 	tcp->tcp_rtt_sa = sa;
11857 	tcp->tcp_rtt_sd = sv;
11858 	/*
11859 	 * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv)
11860 	 *
11861 	 * Add tcp_rexmit_interval extra in case of extreme environment
11862 	 * where the algorithm fails to work.  The default value of
11863 	 * tcp_rexmit_interval_extra should be 0.
11864 	 *
11865 	 * As we use a finer grained clock than BSD and update
11866 	 * RTO for every ACKs, add in another .25 of RTT to the
11867 	 * deviation of RTO to accomodate burstiness of 1/4 of
11868 	 * window size.
11869 	 */
11870 	rto = (sa >> 3) + sv + tcp_rexmit_interval_extra + (sa >> 5);
11871 
11872 	if (rto > tcp_rexmit_interval_max) {
11873 		tcp->tcp_rto = tcp_rexmit_interval_max;
11874 	} else if (rto < tcp_rexmit_interval_min) {
11875 		tcp->tcp_rto = tcp_rexmit_interval_min;
11876 	} else {
11877 		tcp->tcp_rto = rto;
11878 	}
11879 
11880 	/* Now, we can reset tcp_timer_backoff to use the new RTO... */
11881 	tcp->tcp_timer_backoff = 0;
11882 }
11883 
11884 /*
11885  * tcp_get_seg_mp() is called to get the pointer to a segment in the
11886  * send queue which starts at the given seq. no.
11887  *
11888  * Parameters:
11889  *	tcp_t *tcp: the tcp instance pointer.
11890  *	uint32_t seq: the starting seq. no of the requested segment.
11891  *	int32_t *off: after the execution, *off will be the offset to
11892  *		the returned mblk which points to the requested seq no.
11893  *		It is the caller's responsibility to send in a non-null off.
11894  *
11895  * Return:
11896  *	A mblk_t pointer pointing to the requested segment in send queue.
11897  */
11898 static mblk_t *
11899 tcp_get_seg_mp(tcp_t *tcp, uint32_t seq, int32_t *off)
11900 {
11901 	int32_t	cnt;
11902 	mblk_t	*mp;
11903 
11904 	/* Defensive coding.  Make sure we don't send incorrect data. */
11905 	if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt))
11906 		return (NULL);
11907 
11908 	cnt = seq - tcp->tcp_suna;
11909 	mp = tcp->tcp_xmit_head;
11910 	while (cnt > 0 && mp != NULL) {
11911 		cnt -= mp->b_wptr - mp->b_rptr;
11912 		if (cnt < 0) {
11913 			cnt += mp->b_wptr - mp->b_rptr;
11914 			break;
11915 		}
11916 		mp = mp->b_cont;
11917 	}
11918 	ASSERT(mp != NULL);
11919 	*off = cnt;
11920 	return (mp);
11921 }
11922 
11923 /*
11924  * This function handles all retransmissions if SACK is enabled for this
11925  * connection.  First it calculates how many segments can be retransmitted
11926  * based on tcp_pipe.  Then it goes thru the notsack list to find eligible
11927  * segments.  A segment is eligible if sack_cnt for that segment is greater
11928  * than or equal tcp_dupack_fast_retransmit.  After it has retransmitted
11929  * all eligible segments, it checks to see if TCP can send some new segments
11930  * (fast recovery).  If it can, set the appropriate flag for tcp_rput_data().
11931  *
11932  * Parameters:
11933  *	tcp_t *tcp: the tcp structure of the connection.
11934  *	uint_t *flags: in return, appropriate value will be set for
11935  *	tcp_rput_data().
11936  */
11937 static void
11938 tcp_sack_rxmit(tcp_t *tcp, uint_t *flags)
11939 {
11940 	notsack_blk_t	*notsack_blk;
11941 	int32_t		usable_swnd;
11942 	int32_t		mss;
11943 	uint32_t	seg_len;
11944 	mblk_t		*xmit_mp;
11945 
11946 	ASSERT(tcp->tcp_sack_info != NULL);
11947 	ASSERT(tcp->tcp_notsack_list != NULL);
11948 	ASSERT(tcp->tcp_rexmit == B_FALSE);
11949 
11950 	/* Defensive coding in case there is a bug... */
11951 	if (tcp->tcp_notsack_list == NULL) {
11952 		return;
11953 	}
11954 	notsack_blk = tcp->tcp_notsack_list;
11955 	mss = tcp->tcp_mss;
11956 
11957 	/*
11958 	 * Limit the num of outstanding data in the network to be
11959 	 * tcp_cwnd_ssthresh, which is half of the original congestion wnd.
11960 	 */
11961 	usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe;
11962 
11963 	/* At least retransmit 1 MSS of data. */
11964 	if (usable_swnd <= 0) {
11965 		usable_swnd = mss;
11966 	}
11967 
11968 	/* Make sure no new RTT samples will be taken. */
11969 	tcp->tcp_csuna = tcp->tcp_snxt;
11970 
11971 	notsack_blk = tcp->tcp_notsack_list;
11972 	while (usable_swnd > 0) {
11973 		mblk_t		*snxt_mp, *tmp_mp;
11974 		tcp_seq		begin = tcp->tcp_sack_snxt;
11975 		tcp_seq		end;
11976 		int32_t		off;
11977 
11978 		for (; notsack_blk != NULL; notsack_blk = notsack_blk->next) {
11979 			if (SEQ_GT(notsack_blk->end, begin) &&
11980 			    (notsack_blk->sack_cnt >=
11981 			    tcp_dupack_fast_retransmit)) {
11982 				end = notsack_blk->end;
11983 				if (SEQ_LT(begin, notsack_blk->begin)) {
11984 					begin = notsack_blk->begin;
11985 				}
11986 				break;
11987 			}
11988 		}
11989 		/*
11990 		 * All holes are filled.  Manipulate tcp_cwnd to send more
11991 		 * if we can.  Note that after the SACK recovery, tcp_cwnd is
11992 		 * set to tcp_cwnd_ssthresh.
11993 		 */
11994 		if (notsack_blk == NULL) {
11995 			usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe;
11996 			if (usable_swnd <= 0 || tcp->tcp_unsent == 0) {
11997 				tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna;
11998 				ASSERT(tcp->tcp_cwnd > 0);
11999 				return;
12000 			} else {
12001 				usable_swnd = usable_swnd / mss;
12002 				tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna +
12003 				    MAX(usable_swnd * mss, mss);
12004 				*flags |= TH_XMIT_NEEDED;
12005 				return;
12006 			}
12007 		}
12008 
12009 		/*
12010 		 * Note that we may send more than usable_swnd allows here
12011 		 * because of round off, but no more than 1 MSS of data.
12012 		 */
12013 		seg_len = end - begin;
12014 		if (seg_len > mss)
12015 			seg_len = mss;
12016 		snxt_mp = tcp_get_seg_mp(tcp, begin, &off);
12017 		ASSERT(snxt_mp != NULL);
12018 		/* This should not happen.  Defensive coding again... */
12019 		if (snxt_mp == NULL) {
12020 			return;
12021 		}
12022 
12023 		xmit_mp = tcp_xmit_mp(tcp, snxt_mp, seg_len, &off,
12024 		    &tmp_mp, begin, B_TRUE, &seg_len, B_TRUE);
12025 		if (xmit_mp == NULL)
12026 			return;
12027 
12028 		usable_swnd -= seg_len;
12029 		tcp->tcp_pipe += seg_len;
12030 		tcp->tcp_sack_snxt = begin + seg_len;
12031 		TCP_RECORD_TRACE(tcp, xmit_mp, TCP_TRACE_SEND_PKT);
12032 		tcp_send_data(tcp, tcp->tcp_wq, xmit_mp);
12033 
12034 		/*
12035 		 * Update the send timestamp to avoid false retransmission.
12036 		 */
12037 		snxt_mp->b_prev = (mblk_t *)lbolt;
12038 
12039 		BUMP_MIB(&tcp_mib, tcpRetransSegs);
12040 		UPDATE_MIB(&tcp_mib, tcpRetransBytes, seg_len);
12041 		BUMP_MIB(&tcp_mib, tcpOutSackRetransSegs);
12042 		/*
12043 		 * Update tcp_rexmit_max to extend this SACK recovery phase.
12044 		 * This happens when new data sent during fast recovery is
12045 		 * also lost.  If TCP retransmits those new data, it needs
12046 		 * to extend SACK recover phase to avoid starting another
12047 		 * fast retransmit/recovery unnecessarily.
12048 		 */
12049 		if (SEQ_GT(tcp->tcp_sack_snxt, tcp->tcp_rexmit_max)) {
12050 			tcp->tcp_rexmit_max = tcp->tcp_sack_snxt;
12051 		}
12052 	}
12053 }
12054 
12055 /*
12056  * This function handles policy checking at TCP level for non-hard_bound/
12057  * detached connections.
12058  */
12059 static boolean_t
12060 tcp_check_policy(tcp_t *tcp, mblk_t *first_mp, ipha_t *ipha, ip6_t *ip6h,
12061     boolean_t secure, boolean_t mctl_present)
12062 {
12063 	ipsec_latch_t *ipl = NULL;
12064 	ipsec_action_t *act = NULL;
12065 	mblk_t *data_mp;
12066 	ipsec_in_t *ii;
12067 	const char *reason;
12068 	kstat_named_t *counter;
12069 
12070 	ASSERT(mctl_present || !secure);
12071 
12072 	ASSERT((ipha == NULL && ip6h != NULL) ||
12073 	    (ip6h == NULL && ipha != NULL));
12074 
12075 	/*
12076 	 * We don't necessarily have an ipsec_in_act action to verify
12077 	 * policy because of assymetrical policy where we have only
12078 	 * outbound policy and no inbound policy (possible with global
12079 	 * policy).
12080 	 */
12081 	if (!secure) {
12082 		if (act == NULL || act->ipa_act.ipa_type == IPSEC_ACT_BYPASS ||
12083 		    act->ipa_act.ipa_type == IPSEC_ACT_CLEAR)
12084 			return (B_TRUE);
12085 		ipsec_log_policy_failure(tcp->tcp_wq, IPSEC_POLICY_MISMATCH,
12086 		    "tcp_check_policy", ipha, ip6h, secure);
12087 		ip_drop_packet(first_mp, B_TRUE, NULL, NULL,
12088 		    &ipdrops_tcp_clear, &tcp_dropper);
12089 		return (B_FALSE);
12090 	}
12091 
12092 	/*
12093 	 * We have a secure packet.
12094 	 */
12095 	if (act == NULL) {
12096 		ipsec_log_policy_failure(tcp->tcp_wq,
12097 		    IPSEC_POLICY_NOT_NEEDED, "tcp_check_policy", ipha, ip6h,
12098 		    secure);
12099 		ip_drop_packet(first_mp, B_TRUE, NULL, NULL,
12100 		    &ipdrops_tcp_secure, &tcp_dropper);
12101 		return (B_FALSE);
12102 	}
12103 
12104 	/*
12105 	 * XXX This whole routine is currently incorrect.  ipl should
12106 	 * be set to the latch pointer, but is currently not set, so
12107 	 * we initialize it to NULL to avoid picking up random garbage.
12108 	 */
12109 	if (ipl == NULL)
12110 		return (B_TRUE);
12111 
12112 	data_mp = first_mp->b_cont;
12113 
12114 	ii = (ipsec_in_t *)first_mp->b_rptr;
12115 
12116 	if (ipsec_check_ipsecin_latch(ii, data_mp, ipl, ipha, ip6h, &reason,
12117 	    &counter, tcp->tcp_connp)) {
12118 		BUMP_MIB(&ip_mib, ipsecInSucceeded);
12119 		return (B_TRUE);
12120 	}
12121 	(void) strlog(TCP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE,
12122 	    "tcp inbound policy mismatch: %s, packet dropped\n",
12123 	    reason);
12124 	BUMP_MIB(&ip_mib, ipsecInFailed);
12125 
12126 	ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter, &tcp_dropper);
12127 	return (B_FALSE);
12128 }
12129 
12130 /*
12131  * tcp_ss_rexmit() is called in tcp_rput_data() to do slow start
12132  * retransmission after a timeout.
12133  *
12134  * To limit the number of duplicate segments, we limit the number of segment
12135  * to be sent in one time to tcp_snd_burst, the burst variable.
12136  */
12137 static void
12138 tcp_ss_rexmit(tcp_t *tcp)
12139 {
12140 	uint32_t	snxt;
12141 	uint32_t	smax;
12142 	int32_t		win;
12143 	int32_t		mss;
12144 	int32_t		off;
12145 	int32_t		burst = tcp->tcp_snd_burst;
12146 	mblk_t		*snxt_mp;
12147 
12148 	/*
12149 	 * Note that tcp_rexmit can be set even though TCP has retransmitted
12150 	 * all unack'ed segments.
12151 	 */
12152 	if (SEQ_LT(tcp->tcp_rexmit_nxt, tcp->tcp_rexmit_max)) {
12153 		smax = tcp->tcp_rexmit_max;
12154 		snxt = tcp->tcp_rexmit_nxt;
12155 		if (SEQ_LT(snxt, tcp->tcp_suna)) {
12156 			snxt = tcp->tcp_suna;
12157 		}
12158 		win = MIN(tcp->tcp_cwnd, tcp->tcp_swnd);
12159 		win -= snxt - tcp->tcp_suna;
12160 		mss = tcp->tcp_mss;
12161 		snxt_mp = tcp_get_seg_mp(tcp, snxt, &off);
12162 
12163 		while (SEQ_LT(snxt, smax) && (win > 0) &&
12164 		    (burst > 0) && (snxt_mp != NULL)) {
12165 			mblk_t	*xmit_mp;
12166 			mblk_t	*old_snxt_mp = snxt_mp;
12167 			uint32_t cnt = mss;
12168 
12169 			if (win < cnt) {
12170 				cnt = win;
12171 			}
12172 			if (SEQ_GT(snxt + cnt, smax)) {
12173 				cnt = smax - snxt;
12174 			}
12175 			xmit_mp = tcp_xmit_mp(tcp, snxt_mp, cnt, &off,
12176 			    &snxt_mp, snxt, B_TRUE, &cnt, B_TRUE);
12177 			if (xmit_mp == NULL)
12178 				return;
12179 
12180 			tcp_send_data(tcp, tcp->tcp_wq, xmit_mp);
12181 
12182 			snxt += cnt;
12183 			win -= cnt;
12184 			/*
12185 			 * Update the send timestamp to avoid false
12186 			 * retransmission.
12187 			 */
12188 			old_snxt_mp->b_prev = (mblk_t *)lbolt;
12189 			BUMP_MIB(&tcp_mib, tcpRetransSegs);
12190 			UPDATE_MIB(&tcp_mib, tcpRetransBytes, cnt);
12191 
12192 			tcp->tcp_rexmit_nxt = snxt;
12193 			burst--;
12194 		}
12195 		/*
12196 		 * If we have transmitted all we have at the time
12197 		 * we started the retranmission, we can leave
12198 		 * the rest of the job to tcp_wput_data().  But we
12199 		 * need to check the send window first.  If the
12200 		 * win is not 0, go on with tcp_wput_data().
12201 		 */
12202 		if (SEQ_LT(snxt, smax) || win == 0) {
12203 			return;
12204 		}
12205 	}
12206 	/* Only call tcp_wput_data() if there is data to be sent. */
12207 	if (tcp->tcp_unsent) {
12208 		tcp_wput_data(tcp, NULL, B_FALSE);
12209 	}
12210 }
12211 
12212 /*
12213  * Process all TCP option in SYN segment.  Note that this function should
12214  * be called after tcp_adapt_ire() is called so that the necessary info
12215  * from IRE is already set in the tcp structure.
12216  *
12217  * This function sets up the correct tcp_mss value according to the
12218  * MSS option value and our header size.  It also sets up the window scale
12219  * and timestamp values, and initialize SACK info blocks.  But it does not
12220  * change receive window size after setting the tcp_mss value.  The caller
12221  * should do the appropriate change.
12222  */
12223 void
12224 tcp_process_options(tcp_t *tcp, tcph_t *tcph)
12225 {
12226 	int options;
12227 	tcp_opt_t tcpopt;
12228 	uint32_t mss_max;
12229 	char *tmp_tcph;
12230 
12231 	tcpopt.tcp = NULL;
12232 	options = tcp_parse_options(tcph, &tcpopt);
12233 
12234 	/*
12235 	 * Process MSS option.  Note that MSS option value does not account
12236 	 * for IP or TCP options.  This means that it is equal to MTU - minimum
12237 	 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for
12238 	 * IPv6.
12239 	 */
12240 	if (!(options & TCP_OPT_MSS_PRESENT)) {
12241 		if (tcp->tcp_ipversion == IPV4_VERSION)
12242 			tcpopt.tcp_opt_mss = tcp_mss_def_ipv4;
12243 		else
12244 			tcpopt.tcp_opt_mss = tcp_mss_def_ipv6;
12245 	} else {
12246 		if (tcp->tcp_ipversion == IPV4_VERSION)
12247 			mss_max = tcp_mss_max_ipv4;
12248 		else
12249 			mss_max = tcp_mss_max_ipv6;
12250 		if (tcpopt.tcp_opt_mss < tcp_mss_min)
12251 			tcpopt.tcp_opt_mss = tcp_mss_min;
12252 		else if (tcpopt.tcp_opt_mss > mss_max)
12253 			tcpopt.tcp_opt_mss = mss_max;
12254 	}
12255 
12256 	/* Process Window Scale option. */
12257 	if (options & TCP_OPT_WSCALE_PRESENT) {
12258 		tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale;
12259 		tcp->tcp_snd_ws_ok = B_TRUE;
12260 	} else {
12261 		tcp->tcp_snd_ws = B_FALSE;
12262 		tcp->tcp_snd_ws_ok = B_FALSE;
12263 		tcp->tcp_rcv_ws = B_FALSE;
12264 	}
12265 
12266 	/* Process Timestamp option. */
12267 	if ((options & TCP_OPT_TSTAMP_PRESENT) &&
12268 	    (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) {
12269 		tmp_tcph = (char *)tcp->tcp_tcph;
12270 
12271 		tcp->tcp_snd_ts_ok = B_TRUE;
12272 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
12273 		tcp->tcp_last_rcv_lbolt = lbolt64;
12274 		ASSERT(OK_32PTR(tmp_tcph));
12275 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
12276 
12277 		/* Fill in our template header with basic timestamp option. */
12278 		tmp_tcph += tcp->tcp_tcp_hdr_len;
12279 		tmp_tcph[0] = TCPOPT_NOP;
12280 		tmp_tcph[1] = TCPOPT_NOP;
12281 		tmp_tcph[2] = TCPOPT_TSTAMP;
12282 		tmp_tcph[3] = TCPOPT_TSTAMP_LEN;
12283 		tcp->tcp_hdr_len += TCPOPT_REAL_TS_LEN;
12284 		tcp->tcp_tcp_hdr_len += TCPOPT_REAL_TS_LEN;
12285 		tcp->tcp_tcph->th_offset_and_rsrvd[0] += (3 << 4);
12286 	} else {
12287 		tcp->tcp_snd_ts_ok = B_FALSE;
12288 	}
12289 
12290 	/*
12291 	 * Process SACK options.  If SACK is enabled for this connection,
12292 	 * then allocate the SACK info structure.  Note the following ways
12293 	 * when tcp_snd_sack_ok is set to true.
12294 	 *
12295 	 * For active connection: in tcp_adapt_ire() called in
12296 	 * tcp_rput_other(), or in tcp_rput_other() when tcp_sack_permitted
12297 	 * is checked.
12298 	 *
12299 	 * For passive connection: in tcp_adapt_ire() called in
12300 	 * tcp_accept_comm().
12301 	 *
12302 	 * That's the reason why the extra TCP_IS_DETACHED() check is there.
12303 	 * That check makes sure that if we did not send a SACK OK option,
12304 	 * we will not enable SACK for this connection even though the other
12305 	 * side sends us SACK OK option.  For active connection, the SACK
12306 	 * info structure has already been allocated.  So we need to free
12307 	 * it if SACK is disabled.
12308 	 */
12309 	if ((options & TCP_OPT_SACK_OK_PRESENT) &&
12310 	    (tcp->tcp_snd_sack_ok ||
12311 	    (tcp_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) {
12312 		/* This should be true only in the passive case. */
12313 		if (tcp->tcp_sack_info == NULL) {
12314 			ASSERT(TCP_IS_DETACHED(tcp));
12315 			tcp->tcp_sack_info =
12316 			    kmem_cache_alloc(tcp_sack_info_cache, KM_NOSLEEP);
12317 		}
12318 		if (tcp->tcp_sack_info == NULL) {
12319 			tcp->tcp_snd_sack_ok = B_FALSE;
12320 		} else {
12321 			tcp->tcp_snd_sack_ok = B_TRUE;
12322 			if (tcp->tcp_snd_ts_ok) {
12323 				tcp->tcp_max_sack_blk = 3;
12324 			} else {
12325 				tcp->tcp_max_sack_blk = 4;
12326 			}
12327 		}
12328 	} else {
12329 		/*
12330 		 * Resetting tcp_snd_sack_ok to B_FALSE so that
12331 		 * no SACK info will be used for this
12332 		 * connection.  This assumes that SACK usage
12333 		 * permission is negotiated.  This may need
12334 		 * to be changed once this is clarified.
12335 		 */
12336 		if (tcp->tcp_sack_info != NULL) {
12337 			ASSERT(tcp->tcp_notsack_list == NULL);
12338 			kmem_cache_free(tcp_sack_info_cache,
12339 			    tcp->tcp_sack_info);
12340 			tcp->tcp_sack_info = NULL;
12341 		}
12342 		tcp->tcp_snd_sack_ok = B_FALSE;
12343 	}
12344 
12345 	/*
12346 	 * Now we know the exact TCP/IP header length, subtract
12347 	 * that from tcp_mss to get our side's MSS.
12348 	 */
12349 	tcp->tcp_mss -= tcp->tcp_hdr_len;
12350 	/*
12351 	 * Here we assume that the other side's header size will be equal to
12352 	 * our header size.  We calculate the real MSS accordingly.  Need to
12353 	 * take into additional stuffs IPsec puts in.
12354 	 *
12355 	 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header)
12356 	 */
12357 	tcpopt.tcp_opt_mss -= tcp->tcp_hdr_len + tcp->tcp_ipsec_overhead -
12358 	    ((tcp->tcp_ipversion == IPV4_VERSION ?
12359 	    IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH);
12360 
12361 	/*
12362 	 * Set MSS to the smaller one of both ends of the connection.
12363 	 * We should not have called tcp_mss_set() before, but our
12364 	 * side of the MSS should have been set to a proper value
12365 	 * by tcp_adapt_ire().  tcp_mss_set() will also set up the
12366 	 * STREAM head parameters properly.
12367 	 *
12368 	 * If we have a larger-than-16-bit window but the other side
12369 	 * didn't want to do window scale, tcp_rwnd_set() will take
12370 	 * care of that.
12371 	 */
12372 	tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss));
12373 }
12374 
12375 /*
12376  * Sends the T_CONN_IND to the listener. The caller calls this
12377  * functions via squeue to get inside the listener's perimeter
12378  * once the 3 way hand shake is done a T_CONN_IND needs to be
12379  * sent. As an optimization, the caller can call this directly
12380  * if listener's perimeter is same as eager's.
12381  */
12382 /* ARGSUSED */
12383 void
12384 tcp_send_conn_ind(void *arg, mblk_t *mp, void *arg2)
12385 {
12386 	conn_t			*lconnp = (conn_t *)arg;
12387 	tcp_t			*listener = lconnp->conn_tcp;
12388 	tcp_t			*tcp;
12389 	struct T_conn_ind	*conn_ind;
12390 	ipaddr_t 		*addr_cache;
12391 	boolean_t		need_send_conn_ind = B_FALSE;
12392 
12393 	/* retrieve the eager */
12394 	conn_ind = (struct T_conn_ind *)mp->b_rptr;
12395 	ASSERT(conn_ind->OPT_offset != 0 &&
12396 	    conn_ind->OPT_length == sizeof (intptr_t));
12397 	bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp,
12398 		conn_ind->OPT_length);
12399 
12400 	/*
12401 	 * TLI/XTI applications will get confused by
12402 	 * sending eager as an option since it violates
12403 	 * the option semantics. So remove the eager as
12404 	 * option since TLI/XTI app doesn't need it anyway.
12405 	 */
12406 	if (!TCP_IS_SOCKET(listener)) {
12407 		conn_ind->OPT_length = 0;
12408 		conn_ind->OPT_offset = 0;
12409 	}
12410 	if (listener->tcp_state == TCPS_CLOSED ||
12411 	    TCP_IS_DETACHED(listener)) {
12412 		/*
12413 		 * If listener has closed, it would have caused a
12414 		 * a cleanup/blowoff to happen for the eager. We
12415 		 * just need to return.
12416 		 */
12417 		freemsg(mp);
12418 		return;
12419 	}
12420 
12421 
12422 	/*
12423 	 * if the conn_req_q is full defer passing up the
12424 	 * T_CONN_IND until space is availabe after t_accept()
12425 	 * processing
12426 	 */
12427 	mutex_enter(&listener->tcp_eager_lock);
12428 
12429 	/*
12430 	 * Take the eager out, if it is in the list of droppable eagers
12431 	 * as we are here because the 3W handshake is over.
12432 	 */
12433 	MAKE_UNDROPPABLE(tcp);
12434 
12435 	if (listener->tcp_conn_req_cnt_q < listener->tcp_conn_req_max) {
12436 		tcp_t *tail;
12437 
12438 		/*
12439 		 * The eager already has an extra ref put in tcp_rput_data
12440 		 * so that it stays till accept comes back even though it
12441 		 * might get into TCPS_CLOSED as a result of a TH_RST etc.
12442 		 */
12443 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
12444 		listener->tcp_conn_req_cnt_q0--;
12445 		listener->tcp_conn_req_cnt_q++;
12446 
12447 		/* Move from SYN_RCVD to ESTABLISHED list  */
12448 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
12449 		    tcp->tcp_eager_prev_q0;
12450 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
12451 		    tcp->tcp_eager_next_q0;
12452 		tcp->tcp_eager_prev_q0 = NULL;
12453 		tcp->tcp_eager_next_q0 = NULL;
12454 
12455 		/*
12456 		 * Insert at end of the queue because sockfs
12457 		 * sends down T_CONN_RES in chronological
12458 		 * order. Leaving the older conn indications
12459 		 * at front of the queue helps reducing search
12460 		 * time.
12461 		 */
12462 		tail = listener->tcp_eager_last_q;
12463 		if (tail != NULL)
12464 			tail->tcp_eager_next_q = tcp;
12465 		else
12466 			listener->tcp_eager_next_q = tcp;
12467 		listener->tcp_eager_last_q = tcp;
12468 		tcp->tcp_eager_next_q = NULL;
12469 		/*
12470 		 * Delay sending up the T_conn_ind until we are
12471 		 * done with the eager. Once we have have sent up
12472 		 * the T_conn_ind, the accept can potentially complete
12473 		 * any time and release the refhold we have on the eager.
12474 		 */
12475 		need_send_conn_ind = B_TRUE;
12476 	} else {
12477 		/*
12478 		 * Defer connection on q0 and set deferred
12479 		 * connection bit true
12480 		 */
12481 		tcp->tcp_conn_def_q0 = B_TRUE;
12482 
12483 		/* take tcp out of q0 ... */
12484 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
12485 		    tcp->tcp_eager_next_q0;
12486 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
12487 		    tcp->tcp_eager_prev_q0;
12488 
12489 		/* ... and place it at the end of q0 */
12490 		tcp->tcp_eager_prev_q0 = listener->tcp_eager_prev_q0;
12491 		tcp->tcp_eager_next_q0 = listener;
12492 		listener->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp;
12493 		listener->tcp_eager_prev_q0 = tcp;
12494 		tcp->tcp_conn.tcp_eager_conn_ind = mp;
12495 	}
12496 
12497 	/* we have timed out before */
12498 	if (tcp->tcp_syn_rcvd_timeout != 0) {
12499 		tcp->tcp_syn_rcvd_timeout = 0;
12500 		listener->tcp_syn_rcvd_timeout--;
12501 		if (listener->tcp_syn_defense &&
12502 		    listener->tcp_syn_rcvd_timeout <=
12503 		    (tcp_conn_req_max_q0 >> 5) &&
12504 		    10*MINUTES < TICK_TO_MSEC(lbolt64 -
12505 			listener->tcp_last_rcv_lbolt)) {
12506 			/*
12507 			 * Turn off the defense mode if we
12508 			 * believe the SYN attack is over.
12509 			 */
12510 			listener->tcp_syn_defense = B_FALSE;
12511 			if (listener->tcp_ip_addr_cache) {
12512 				kmem_free((void *)listener->tcp_ip_addr_cache,
12513 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
12514 				listener->tcp_ip_addr_cache = NULL;
12515 			}
12516 		}
12517 	}
12518 	addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache);
12519 	if (addr_cache != NULL) {
12520 		/*
12521 		 * We have finished a 3-way handshake with this
12522 		 * remote host. This proves the IP addr is good.
12523 		 * Cache it!
12524 		 */
12525 		addr_cache[IP_ADDR_CACHE_HASH(
12526 			tcp->tcp_remote)] = tcp->tcp_remote;
12527 	}
12528 	mutex_exit(&listener->tcp_eager_lock);
12529 	if (need_send_conn_ind)
12530 		putnext(listener->tcp_rq, mp);
12531 }
12532 
12533 mblk_t *
12534 tcp_find_pktinfo(tcp_t *tcp, mblk_t *mp, uint_t *ipversp, uint_t *ip_hdr_lenp,
12535     uint_t *ifindexp, ip6_pkt_t *ippp)
12536 {
12537 	in_pktinfo_t	*pinfo;
12538 	ip6_t		*ip6h;
12539 	uchar_t		*rptr;
12540 	mblk_t		*first_mp = mp;
12541 	boolean_t	mctl_present = B_FALSE;
12542 	uint_t 		ifindex = 0;
12543 	ip6_pkt_t	ipp;
12544 	uint_t		ipvers;
12545 	uint_t		ip_hdr_len;
12546 
12547 	rptr = mp->b_rptr;
12548 	ASSERT(OK_32PTR(rptr));
12549 	ASSERT(tcp != NULL);
12550 	ipp.ipp_fields = 0;
12551 
12552 	switch DB_TYPE(mp) {
12553 	case M_CTL:
12554 		mp = mp->b_cont;
12555 		if (mp == NULL) {
12556 			freemsg(first_mp);
12557 			return (NULL);
12558 		}
12559 		if (DB_TYPE(mp) != M_DATA) {
12560 			freemsg(first_mp);
12561 			return (NULL);
12562 		}
12563 		mctl_present = B_TRUE;
12564 		break;
12565 	case M_DATA:
12566 		break;
12567 	default:
12568 		cmn_err(CE_NOTE, "tcp_find_pktinfo: unknown db_type");
12569 		freemsg(mp);
12570 		return (NULL);
12571 	}
12572 	ipvers = IPH_HDR_VERSION(rptr);
12573 	if (ipvers == IPV4_VERSION) {
12574 		if (tcp == NULL) {
12575 			ip_hdr_len = IPH_HDR_LENGTH(rptr);
12576 			goto done;
12577 		}
12578 
12579 		ipp.ipp_fields |= IPPF_HOPLIMIT;
12580 		ipp.ipp_hoplimit = ((ipha_t *)rptr)->ipha_ttl;
12581 
12582 		/*
12583 		 * If we have IN_PKTINFO in an M_CTL and tcp_ipv6_recvancillary
12584 		 * has TCP_IPV6_RECVPKTINFO set, pass I/F index along in ipp.
12585 		 */
12586 		if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) &&
12587 		    mctl_present) {
12588 			pinfo = (in_pktinfo_t *)first_mp->b_rptr;
12589 			if ((MBLKL(first_mp) == sizeof (in_pktinfo_t)) &&
12590 			    (pinfo->in_pkt_ulp_type == IN_PKTINFO) &&
12591 			    (pinfo->in_pkt_flags & IPF_RECVIF)) {
12592 				ipp.ipp_fields |= IPPF_IFINDEX;
12593 				ipp.ipp_ifindex = pinfo->in_pkt_ifindex;
12594 				ifindex = pinfo->in_pkt_ifindex;
12595 			}
12596 			freeb(first_mp);
12597 			mctl_present = B_FALSE;
12598 		}
12599 		ip_hdr_len = IPH_HDR_LENGTH(rptr);
12600 	} else {
12601 		ip6h = (ip6_t *)rptr;
12602 
12603 		ASSERT(ipvers == IPV6_VERSION);
12604 		ipp.ipp_fields = IPPF_HOPLIMIT | IPPF_TCLASS;
12605 		ipp.ipp_tclass = (ip6h->ip6_flow & 0x0FF00000) >> 20;
12606 		ipp.ipp_hoplimit = ip6h->ip6_hops;
12607 
12608 		if (ip6h->ip6_nxt != IPPROTO_TCP) {
12609 			uint8_t	nexthdrp;
12610 
12611 			/* Look for ifindex information */
12612 			if (ip6h->ip6_nxt == IPPROTO_RAW) {
12613 				ip6i_t *ip6i = (ip6i_t *)ip6h;
12614 				if ((uchar_t *)&ip6i[1] > mp->b_wptr) {
12615 					BUMP_MIB(&ip_mib, tcpInErrs);
12616 					freemsg(first_mp);
12617 					return (NULL);
12618 				}
12619 
12620 				if (ip6i->ip6i_flags & IP6I_IFINDEX) {
12621 					ASSERT(ip6i->ip6i_ifindex != 0);
12622 					ipp.ipp_fields |= IPPF_IFINDEX;
12623 					ipp.ipp_ifindex = ip6i->ip6i_ifindex;
12624 					ifindex = ip6i->ip6i_ifindex;
12625 				}
12626 				rptr = (uchar_t *)&ip6i[1];
12627 				mp->b_rptr = rptr;
12628 				if (rptr == mp->b_wptr) {
12629 					mblk_t *mp1;
12630 					mp1 = mp->b_cont;
12631 					freeb(mp);
12632 					mp = mp1;
12633 					rptr = mp->b_rptr;
12634 				}
12635 				if (MBLKL(mp) < IPV6_HDR_LEN +
12636 				    sizeof (tcph_t)) {
12637 					BUMP_MIB(&ip_mib, tcpInErrs);
12638 					freemsg(first_mp);
12639 					return (NULL);
12640 				}
12641 				ip6h = (ip6_t *)rptr;
12642 			}
12643 
12644 			/*
12645 			 * Find any potentially interesting extension headers
12646 			 * as well as the length of the IPv6 + extension
12647 			 * headers.
12648 			 */
12649 			ip_hdr_len = ip_find_hdr_v6(mp, ip6h, &ipp, &nexthdrp);
12650 			/* Verify if this is a TCP packet */
12651 			if (nexthdrp != IPPROTO_TCP) {
12652 				BUMP_MIB(&ip_mib, tcpInErrs);
12653 				freemsg(first_mp);
12654 				return (NULL);
12655 			}
12656 		} else {
12657 			ip_hdr_len = IPV6_HDR_LEN;
12658 		}
12659 	}
12660 
12661 done:
12662 	if (ipversp != NULL)
12663 		*ipversp = ipvers;
12664 	if (ip_hdr_lenp != NULL)
12665 		*ip_hdr_lenp = ip_hdr_len;
12666 	if (ippp != NULL)
12667 		*ippp = ipp;
12668 	if (ifindexp != NULL)
12669 		*ifindexp = ifindex;
12670 	if (mctl_present) {
12671 		freeb(first_mp);
12672 	}
12673 	return (mp);
12674 }
12675 
12676 /*
12677  * Handle M_DATA messages from IP. Its called directly from IP via
12678  * squeue for AF_INET type sockets fast path. No M_CTL are expected
12679  * in this path.
12680  *
12681  * For everything else (including AF_INET6 sockets with 'tcp_ipversion'
12682  * v4 and v6), we are called through tcp_input() and a M_CTL can
12683  * be present for options but tcp_find_pktinfo() deals with it. We
12684  * only expect M_DATA packets after tcp_find_pktinfo() is done.
12685  *
12686  * The first argument is always the connp/tcp to which the mp belongs.
12687  * There are no exceptions to this rule. The caller has already put
12688  * a reference on this connp/tcp and once tcp_rput_data() returns,
12689  * the squeue will do the refrele.
12690  *
12691  * The TH_SYN for the listener directly go to tcp_conn_request via
12692  * squeue.
12693  *
12694  * sqp: NULL = recursive, sqp != NULL means called from squeue
12695  */
12696 void
12697 tcp_rput_data(void *arg, mblk_t *mp, void *arg2)
12698 {
12699 	int32_t		bytes_acked;
12700 	int32_t		gap;
12701 	mblk_t		*mp1;
12702 	uint_t		flags;
12703 	uint32_t	new_swnd = 0;
12704 	uchar_t		*iphdr;
12705 	uchar_t		*rptr;
12706 	int32_t		rgap;
12707 	uint32_t	seg_ack;
12708 	int		seg_len;
12709 	uint_t		ip_hdr_len;
12710 	uint32_t	seg_seq;
12711 	tcph_t		*tcph;
12712 	int		urp;
12713 	tcp_opt_t	tcpopt;
12714 	uint_t		ipvers;
12715 	ip6_pkt_t	ipp;
12716 	boolean_t	ofo_seg = B_FALSE; /* Out of order segment */
12717 	uint32_t	cwnd;
12718 	uint32_t	add;
12719 	int		npkt;
12720 	int		mss;
12721 	conn_t		*connp = (conn_t *)arg;
12722 	squeue_t	*sqp = (squeue_t *)arg2;
12723 	tcp_t		*tcp = connp->conn_tcp;
12724 
12725 	/*
12726 	 * RST from fused tcp loopback peer should trigger an unfuse.
12727 	 */
12728 	if (tcp->tcp_fused) {
12729 		TCP_STAT(tcp_fusion_aborted);
12730 		tcp_unfuse(tcp);
12731 	}
12732 
12733 	iphdr = mp->b_rptr;
12734 	rptr = mp->b_rptr;
12735 	ASSERT(OK_32PTR(rptr));
12736 
12737 	/*
12738 	 * An AF_INET socket is not capable of receiving any pktinfo. Do inline
12739 	 * processing here. For rest call tcp_find_pktinfo to fill up the
12740 	 * necessary information.
12741 	 */
12742 	if (IPCL_IS_TCP4(connp)) {
12743 		ipvers = IPV4_VERSION;
12744 		ip_hdr_len = IPH_HDR_LENGTH(rptr);
12745 	} else {
12746 		mp = tcp_find_pktinfo(tcp, mp, &ipvers, &ip_hdr_len,
12747 		    NULL, &ipp);
12748 		if (mp == NULL) {
12749 			TCP_STAT(tcp_rput_v6_error);
12750 			return;
12751 		}
12752 		iphdr = mp->b_rptr;
12753 		rptr = mp->b_rptr;
12754 	}
12755 	ASSERT(DB_TYPE(mp) == M_DATA);
12756 
12757 	tcph = (tcph_t *)&rptr[ip_hdr_len];
12758 	seg_seq = ABE32_TO_U32(tcph->th_seq);
12759 	seg_ack = ABE32_TO_U32(tcph->th_ack);
12760 	ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
12761 	seg_len = (int)(mp->b_wptr - rptr) -
12762 	    (ip_hdr_len + TCP_HDR_LENGTH(tcph));
12763 	if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) {
12764 		do {
12765 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
12766 			    (uintptr_t)INT_MAX);
12767 			seg_len += (int)(mp1->b_wptr - mp1->b_rptr);
12768 		} while ((mp1 = mp1->b_cont) != NULL &&
12769 		    mp1->b_datap->db_type == M_DATA);
12770 	}
12771 
12772 	if (tcp->tcp_state == TCPS_TIME_WAIT) {
12773 		tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack,
12774 		    seg_len, tcph);
12775 		return;
12776 	}
12777 
12778 	if (sqp != NULL) {
12779 		/*
12780 		 * This is the correct place to update tcp_last_recv_time. Note
12781 		 * that it is also updated for tcp structure that belongs to
12782 		 * global and listener queues which do not really need updating.
12783 		 * But that should not cause any harm.  And it is updated for
12784 		 * all kinds of incoming segments, not only for data segments.
12785 		 */
12786 		tcp->tcp_last_recv_time = lbolt;
12787 	}
12788 
12789 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
12790 
12791 	BUMP_LOCAL(tcp->tcp_ibsegs);
12792 	TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_RECV_PKT);
12793 
12794 	if ((flags & TH_URG) && sqp != NULL) {
12795 		/*
12796 		 * TCP can't handle urgent pointers that arrive before
12797 		 * the connection has been accept()ed since it can't
12798 		 * buffer OOB data.  Discard segment if this happens.
12799 		 *
12800 		 * Nor can it reassemble urgent pointers, so discard
12801 		 * if it's not the next segment expected.
12802 		 *
12803 		 * Otherwise, collapse chain into one mblk (discard if
12804 		 * that fails).  This makes sure the headers, retransmitted
12805 		 * data, and new data all are in the same mblk.
12806 		 */
12807 		ASSERT(mp != NULL);
12808 		if (tcp->tcp_listener || !pullupmsg(mp, -1)) {
12809 			freemsg(mp);
12810 			return;
12811 		}
12812 		/* Update pointers into message */
12813 		iphdr = rptr = mp->b_rptr;
12814 		tcph = (tcph_t *)&rptr[ip_hdr_len];
12815 		if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) {
12816 			/*
12817 			 * Since we can't handle any data with this urgent
12818 			 * pointer that is out of sequence, we expunge
12819 			 * the data.  This allows us to still register
12820 			 * the urgent mark and generate the M_PCSIG,
12821 			 * which we can do.
12822 			 */
12823 			mp->b_wptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph);
12824 			seg_len = 0;
12825 		}
12826 	}
12827 
12828 	switch (tcp->tcp_state) {
12829 	case TCPS_SYN_SENT:
12830 		if (flags & TH_ACK) {
12831 			/*
12832 			 * Note that our stack cannot send data before a
12833 			 * connection is established, therefore the
12834 			 * following check is valid.  Otherwise, it has
12835 			 * to be changed.
12836 			 */
12837 			if (SEQ_LEQ(seg_ack, tcp->tcp_iss) ||
12838 			    SEQ_GT(seg_ack, tcp->tcp_snxt)) {
12839 				freemsg(mp);
12840 				if (flags & TH_RST)
12841 					return;
12842 				tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq",
12843 				    tcp, seg_ack, 0, TH_RST);
12844 				return;
12845 			}
12846 			ASSERT(tcp->tcp_suna + 1 == seg_ack);
12847 		}
12848 		if (flags & TH_RST) {
12849 			freemsg(mp);
12850 			if (flags & TH_ACK)
12851 				(void) tcp_clean_death(tcp,
12852 				    ECONNREFUSED, 13);
12853 			return;
12854 		}
12855 		if (!(flags & TH_SYN)) {
12856 			freemsg(mp);
12857 			return;
12858 		}
12859 
12860 		/* Process all TCP options. */
12861 		tcp_process_options(tcp, tcph);
12862 		/*
12863 		 * The following changes our rwnd to be a multiple of the
12864 		 * MIN(peer MSS, our MSS) for performance reason.
12865 		 */
12866 		(void) tcp_rwnd_set(tcp, MSS_ROUNDUP(tcp->tcp_rq->q_hiwat,
12867 		    tcp->tcp_mss));
12868 
12869 		/* Is the other end ECN capable? */
12870 		if (tcp->tcp_ecn_ok) {
12871 			if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) {
12872 				tcp->tcp_ecn_ok = B_FALSE;
12873 			}
12874 		}
12875 		/*
12876 		 * Clear ECN flags because it may interfere with later
12877 		 * processing.
12878 		 */
12879 		flags &= ~(TH_ECE|TH_CWR);
12880 
12881 		tcp->tcp_irs = seg_seq;
12882 		tcp->tcp_rack = seg_seq;
12883 		tcp->tcp_rnxt = seg_seq + 1;
12884 		U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack);
12885 		if (!TCP_IS_DETACHED(tcp)) {
12886 			/* Allocate room for SACK options if needed. */
12887 			if (tcp->tcp_snd_sack_ok) {
12888 				(void) mi_set_sth_wroff(tcp->tcp_rq,
12889 				    tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN +
12890 				    (tcp->tcp_loopback ? 0 : tcp_wroff_xtra));
12891 			} else {
12892 				(void) mi_set_sth_wroff(tcp->tcp_rq,
12893 				    tcp->tcp_hdr_len +
12894 				    (tcp->tcp_loopback ? 0 : tcp_wroff_xtra));
12895 			}
12896 		}
12897 		if (flags & TH_ACK) {
12898 			/*
12899 			 * If we can't get the confirmation upstream, pretend
12900 			 * we didn't even see this one.
12901 			 *
12902 			 * XXX: how can we pretend we didn't see it if we
12903 			 * have updated rnxt et. al.
12904 			 *
12905 			 * For loopback we defer sending up the T_CONN_CON
12906 			 * until after some checks below.
12907 			 */
12908 			mp1 = NULL;
12909 			if (!tcp_conn_con(tcp, iphdr, tcph, mp,
12910 			    tcp->tcp_loopback ? &mp1 : NULL)) {
12911 				freemsg(mp);
12912 				return;
12913 			}
12914 			/* SYN was acked - making progress */
12915 			if (tcp->tcp_ipversion == IPV6_VERSION)
12916 				tcp->tcp_ip_forward_progress = B_TRUE;
12917 
12918 			/* One for the SYN */
12919 			tcp->tcp_suna = tcp->tcp_iss + 1;
12920 			tcp->tcp_valid_bits &= ~TCP_ISS_VALID;
12921 			tcp->tcp_state = TCPS_ESTABLISHED;
12922 
12923 			/*
12924 			 * If SYN was retransmitted, need to reset all
12925 			 * retransmission info.  This is because this
12926 			 * segment will be treated as a dup ACK.
12927 			 */
12928 			if (tcp->tcp_rexmit) {
12929 				tcp->tcp_rexmit = B_FALSE;
12930 				tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
12931 				tcp->tcp_rexmit_max = tcp->tcp_snxt;
12932 				tcp->tcp_snd_burst = tcp->tcp_localnet ?
12933 				    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
12934 				tcp->tcp_ms_we_have_waited = 0;
12935 
12936 				/*
12937 				 * Set tcp_cwnd back to 1 MSS, per
12938 				 * recommendation from
12939 				 * draft-floyd-incr-init-win-01.txt,
12940 				 * Increasing TCP's Initial Window.
12941 				 */
12942 				tcp->tcp_cwnd = tcp->tcp_mss;
12943 			}
12944 
12945 			tcp->tcp_swl1 = seg_seq;
12946 			tcp->tcp_swl2 = seg_ack;
12947 
12948 			new_swnd = BE16_TO_U16(tcph->th_win);
12949 			tcp->tcp_swnd = new_swnd;
12950 			if (new_swnd > tcp->tcp_max_swnd)
12951 				tcp->tcp_max_swnd = new_swnd;
12952 
12953 			/*
12954 			 * Always send the three-way handshake ack immediately
12955 			 * in order to make the connection complete as soon as
12956 			 * possible on the accepting host.
12957 			 */
12958 			flags |= TH_ACK_NEEDED;
12959 
12960 			/*
12961 			 * Special case for loopback.  At this point we have
12962 			 * received SYN-ACK from the remote endpoint.  In
12963 			 * order to ensure that both endpoints reach the
12964 			 * fused state prior to any data exchange, the final
12965 			 * ACK needs to be sent before we indicate T_CONN_CON
12966 			 * to the module upstream.
12967 			 */
12968 			if (tcp->tcp_loopback) {
12969 				mblk_t *ack_mp;
12970 
12971 				ASSERT(!tcp->tcp_unfusable);
12972 				ASSERT(mp1 != NULL);
12973 				/*
12974 				 * For loopback, we always get a pure SYN-ACK
12975 				 * and only need to send back the final ACK
12976 				 * with no data (this is because the other
12977 				 * tcp is ours and we don't do T/TCP).  This
12978 				 * final ACK triggers the passive side to
12979 				 * perform fusion in ESTABLISHED state.
12980 				 */
12981 				if ((ack_mp = tcp_ack_mp(tcp)) != NULL) {
12982 					if (tcp->tcp_ack_tid != 0) {
12983 						(void) TCP_TIMER_CANCEL(tcp,
12984 						    tcp->tcp_ack_tid);
12985 						tcp->tcp_ack_tid = 0;
12986 					}
12987 					TCP_RECORD_TRACE(tcp, ack_mp,
12988 					    TCP_TRACE_SEND_PKT);
12989 					tcp_send_data(tcp, tcp->tcp_wq, ack_mp);
12990 					BUMP_LOCAL(tcp->tcp_obsegs);
12991 					BUMP_MIB(&tcp_mib, tcpOutAck);
12992 
12993 					/* Send up T_CONN_CON */
12994 					putnext(tcp->tcp_rq, mp1);
12995 
12996 					freemsg(mp);
12997 					return;
12998 				}
12999 				/*
13000 				 * Forget fusion; we need to handle more
13001 				 * complex cases below.  Send the deferred
13002 				 * T_CONN_CON message upstream and proceed
13003 				 * as usual.  Mark this tcp as not capable
13004 				 * of fusion.
13005 				 */
13006 				TCP_STAT(tcp_fusion_unfusable);
13007 				tcp->tcp_unfusable = B_TRUE;
13008 				putnext(tcp->tcp_rq, mp1);
13009 			}
13010 
13011 			/*
13012 			 * Check to see if there is data to be sent.  If
13013 			 * yes, set the transmit flag.  Then check to see
13014 			 * if received data processing needs to be done.
13015 			 * If not, go straight to xmit_check.  This short
13016 			 * cut is OK as we don't support T/TCP.
13017 			 */
13018 			if (tcp->tcp_unsent)
13019 				flags |= TH_XMIT_NEEDED;
13020 
13021 			if (seg_len == 0 && !(flags & TH_URG)) {
13022 				freemsg(mp);
13023 				goto xmit_check;
13024 			}
13025 
13026 			flags &= ~TH_SYN;
13027 			seg_seq++;
13028 			break;
13029 		}
13030 		tcp->tcp_state = TCPS_SYN_RCVD;
13031 		mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss,
13032 		    NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
13033 		if (mp1) {
13034 			DB_CPID(mp1) = tcp->tcp_cpid;
13035 			TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT);
13036 			tcp_send_data(tcp, tcp->tcp_wq, mp1);
13037 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
13038 		}
13039 		freemsg(mp);
13040 		return;
13041 	case TCPS_SYN_RCVD:
13042 		if (flags & TH_ACK) {
13043 			/*
13044 			 * In this state, a SYN|ACK packet is either bogus
13045 			 * because the other side must be ACKing our SYN which
13046 			 * indicates it has seen the ACK for their SYN and
13047 			 * shouldn't retransmit it or we're crossing SYNs
13048 			 * on active open.
13049 			 */
13050 			if ((flags & TH_SYN) && !tcp->tcp_active_open) {
13051 				freemsg(mp);
13052 				tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn",
13053 				    tcp, seg_ack, 0, TH_RST);
13054 				return;
13055 			}
13056 			/*
13057 			 * NOTE: RFC 793 pg. 72 says this should be
13058 			 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt
13059 			 * but that would mean we have an ack that ignored
13060 			 * our SYN.
13061 			 */
13062 			if (SEQ_LEQ(seg_ack, tcp->tcp_suna) ||
13063 			    SEQ_GT(seg_ack, tcp->tcp_snxt)) {
13064 				freemsg(mp);
13065 				tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack",
13066 				    tcp, seg_ack, 0, TH_RST);
13067 				return;
13068 			}
13069 		}
13070 		break;
13071 	case TCPS_LISTEN:
13072 		/*
13073 		 * Only a TLI listener can come through this path when a
13074 		 * acceptor is going back to be a listener and a packet
13075 		 * for the acceptor hits the classifier. For a socket
13076 		 * listener, this can never happen because a listener
13077 		 * can never accept connection on itself and hence a
13078 		 * socket acceptor can not go back to being a listener.
13079 		 */
13080 		ASSERT(!TCP_IS_SOCKET(tcp));
13081 		/*FALLTHRU*/
13082 	case TCPS_CLOSED:
13083 	case TCPS_BOUND: {
13084 		conn_t	*new_connp;
13085 
13086 		new_connp = ipcl_classify(mp, connp->conn_zoneid);
13087 		if (new_connp != NULL) {
13088 			tcp_reinput(new_connp, mp, connp->conn_sqp);
13089 			return;
13090 		}
13091 		/* We failed to classify. For now just drop the packet */
13092 		freemsg(mp);
13093 		return;
13094 	}
13095 	case TCPS_IDLE:
13096 		/*
13097 		 * Handle the case where the tcp_clean_death() has happened
13098 		 * on a connection (application hasn't closed yet) but a packet
13099 		 * was already queued on squeue before tcp_clean_death()
13100 		 * was processed. Calling tcp_clean_death() twice on same
13101 		 * connection can result in weird behaviour.
13102 		 */
13103 		freemsg(mp);
13104 		return;
13105 	default:
13106 		break;
13107 	}
13108 
13109 	/*
13110 	 * Already on the correct queue/perimeter.
13111 	 * If this is a detached connection and not an eager
13112 	 * connection hanging off a listener then new data
13113 	 * (past the FIN) will cause a reset.
13114 	 * We do a special check here where it
13115 	 * is out of the main line, rather than check
13116 	 * if we are detached every time we see new
13117 	 * data down below.
13118 	 */
13119 	if (TCP_IS_DETACHED_NONEAGER(tcp) &&
13120 	    (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) {
13121 		BUMP_MIB(&tcp_mib, tcpInClosed);
13122 		TCP_RECORD_TRACE(tcp,
13123 		    mp, TCP_TRACE_RECV_PKT);
13124 
13125 		freemsg(mp);
13126 		/*
13127 		 * This could be an SSL closure alert. We're detached so just
13128 		 * acknowledge it this last time.
13129 		 */
13130 		if (tcp->tcp_kssl_ctx != NULL) {
13131 			kssl_release_ctx(tcp->tcp_kssl_ctx);
13132 			tcp->tcp_kssl_ctx = NULL;
13133 
13134 			tcp->tcp_rnxt += seg_len;
13135 			U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack);
13136 			flags |= TH_ACK_NEEDED;
13137 			goto ack_check;
13138 		}
13139 
13140 		tcp_xmit_ctl("new data when detached", tcp,
13141 		    tcp->tcp_snxt, 0, TH_RST);
13142 		(void) tcp_clean_death(tcp, EPROTO, 12);
13143 		return;
13144 	}
13145 
13146 	mp->b_rptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph);
13147 	urp = BE16_TO_U16(tcph->th_urp) - TCP_OLD_URP_INTERPRETATION;
13148 	new_swnd = BE16_TO_U16(tcph->th_win) <<
13149 	    ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws);
13150 	mss = tcp->tcp_mss;
13151 
13152 	if (tcp->tcp_snd_ts_ok) {
13153 		if (!tcp_paws_check(tcp, tcph, &tcpopt)) {
13154 			/*
13155 			 * This segment is not acceptable.
13156 			 * Drop it and send back an ACK.
13157 			 */
13158 			freemsg(mp);
13159 			flags |= TH_ACK_NEEDED;
13160 			goto ack_check;
13161 		}
13162 	} else if (tcp->tcp_snd_sack_ok) {
13163 		ASSERT(tcp->tcp_sack_info != NULL);
13164 		tcpopt.tcp = tcp;
13165 		/*
13166 		 * SACK info in already updated in tcp_parse_options.  Ignore
13167 		 * all other TCP options...
13168 		 */
13169 		(void) tcp_parse_options(tcph, &tcpopt);
13170 	}
13171 try_again:;
13172 	gap = seg_seq - tcp->tcp_rnxt;
13173 	rgap = tcp->tcp_rwnd - (gap + seg_len);
13174 	/*
13175 	 * gap is the amount of sequence space between what we expect to see
13176 	 * and what we got for seg_seq.  A positive value for gap means
13177 	 * something got lost.  A negative value means we got some old stuff.
13178 	 */
13179 	if (gap < 0) {
13180 		/* Old stuff present.  Is the SYN in there? */
13181 		if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) &&
13182 		    (seg_len != 0)) {
13183 			flags &= ~TH_SYN;
13184 			seg_seq++;
13185 			urp--;
13186 			/* Recompute the gaps after noting the SYN. */
13187 			goto try_again;
13188 		}
13189 		BUMP_MIB(&tcp_mib, tcpInDataDupSegs);
13190 		UPDATE_MIB(&tcp_mib, tcpInDataDupBytes,
13191 		    (seg_len > -gap ? -gap : seg_len));
13192 		/* Remove the old stuff from seg_len. */
13193 		seg_len += gap;
13194 		/*
13195 		 * Anything left?
13196 		 * Make sure to check for unack'd FIN when rest of data
13197 		 * has been previously ack'd.
13198 		 */
13199 		if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) {
13200 			/*
13201 			 * Resets are only valid if they lie within our offered
13202 			 * window.  If the RST bit is set, we just ignore this
13203 			 * segment.
13204 			 */
13205 			if (flags & TH_RST) {
13206 				freemsg(mp);
13207 				return;
13208 			}
13209 
13210 			/*
13211 			 * The arriving of dup data packets indicate that we
13212 			 * may have postponed an ack for too long, or the other
13213 			 * side's RTT estimate is out of shape. Start acking
13214 			 * more often.
13215 			 */
13216 			if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) &&
13217 			    tcp->tcp_rack_cnt >= 1 &&
13218 			    tcp->tcp_rack_abs_max > 2) {
13219 				tcp->tcp_rack_abs_max--;
13220 			}
13221 			tcp->tcp_rack_cur_max = 1;
13222 
13223 			/*
13224 			 * This segment is "unacceptable".  None of its
13225 			 * sequence space lies within our advertized window.
13226 			 *
13227 			 * Adjust seg_len to the original value for tracing.
13228 			 */
13229 			seg_len -= gap;
13230 			if (tcp->tcp_debug) {
13231 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13232 				    "tcp_rput: unacceptable, gap %d, rgap %d, "
13233 				    "flags 0x%x, seg_seq %u, seg_ack %u, "
13234 				    "seg_len %d, rnxt %u, snxt %u, %s",
13235 				    gap, rgap, flags, seg_seq, seg_ack,
13236 				    seg_len, tcp->tcp_rnxt, tcp->tcp_snxt,
13237 				    tcp_display(tcp, NULL,
13238 				    DISP_ADDR_AND_PORT));
13239 			}
13240 
13241 			/*
13242 			 * Arrange to send an ACK in response to the
13243 			 * unacceptable segment per RFC 793 page 69. There
13244 			 * is only one small difference between ours and the
13245 			 * acceptability test in the RFC - we accept ACK-only
13246 			 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK
13247 			 * will be generated.
13248 			 *
13249 			 * Note that we have to ACK an ACK-only packet at least
13250 			 * for stacks that send 0-length keep-alives with
13251 			 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122,
13252 			 * section 4.2.3.6. As long as we don't ever generate
13253 			 * an unacceptable packet in response to an incoming
13254 			 * packet that is unacceptable, it should not cause
13255 			 * "ACK wars".
13256 			 */
13257 			flags |=  TH_ACK_NEEDED;
13258 
13259 			/*
13260 			 * Continue processing this segment in order to use the
13261 			 * ACK information it contains, but skip all other
13262 			 * sequence-number processing.	Processing the ACK
13263 			 * information is necessary in order to
13264 			 * re-synchronize connections that may have lost
13265 			 * synchronization.
13266 			 *
13267 			 * We clear seg_len and flag fields related to
13268 			 * sequence number processing as they are not
13269 			 * to be trusted for an unacceptable segment.
13270 			 */
13271 			seg_len = 0;
13272 			flags &= ~(TH_SYN | TH_FIN | TH_URG);
13273 			goto process_ack;
13274 		}
13275 
13276 		/* Fix seg_seq, and chew the gap off the front. */
13277 		seg_seq = tcp->tcp_rnxt;
13278 		urp += gap;
13279 		do {
13280 			mblk_t	*mp2;
13281 			ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
13282 			    (uintptr_t)UINT_MAX);
13283 			gap += (uint_t)(mp->b_wptr - mp->b_rptr);
13284 			if (gap > 0) {
13285 				mp->b_rptr = mp->b_wptr - gap;
13286 				break;
13287 			}
13288 			mp2 = mp;
13289 			mp = mp->b_cont;
13290 			freeb(mp2);
13291 		} while (gap < 0);
13292 		/*
13293 		 * If the urgent data has already been acknowledged, we
13294 		 * should ignore TH_URG below
13295 		 */
13296 		if (urp < 0)
13297 			flags &= ~TH_URG;
13298 	}
13299 	/*
13300 	 * rgap is the amount of stuff received out of window.  A negative
13301 	 * value is the amount out of window.
13302 	 */
13303 	if (rgap < 0) {
13304 		mblk_t	*mp2;
13305 
13306 		if (tcp->tcp_rwnd == 0) {
13307 			BUMP_MIB(&tcp_mib, tcpInWinProbe);
13308 		} else {
13309 			BUMP_MIB(&tcp_mib, tcpInDataPastWinSegs);
13310 			UPDATE_MIB(&tcp_mib, tcpInDataPastWinBytes, -rgap);
13311 		}
13312 
13313 		/*
13314 		 * seg_len does not include the FIN, so if more than
13315 		 * just the FIN is out of window, we act like we don't
13316 		 * see it.  (If just the FIN is out of window, rgap
13317 		 * will be zero and we will go ahead and acknowledge
13318 		 * the FIN.)
13319 		 */
13320 		flags &= ~TH_FIN;
13321 
13322 		/* Fix seg_len and make sure there is something left. */
13323 		seg_len += rgap;
13324 		if (seg_len <= 0) {
13325 			/*
13326 			 * Resets are only valid if they lie within our offered
13327 			 * window.  If the RST bit is set, we just ignore this
13328 			 * segment.
13329 			 */
13330 			if (flags & TH_RST) {
13331 				freemsg(mp);
13332 				return;
13333 			}
13334 
13335 			/* Per RFC 793, we need to send back an ACK. */
13336 			flags |= TH_ACK_NEEDED;
13337 
13338 			/*
13339 			 * Send SIGURG as soon as possible i.e. even
13340 			 * if the TH_URG was delivered in a window probe
13341 			 * packet (which will be unacceptable).
13342 			 *
13343 			 * We generate a signal if none has been generated
13344 			 * for this connection or if this is a new urgent
13345 			 * byte. Also send a zero-length "unmarked" message
13346 			 * to inform SIOCATMARK that this is not the mark.
13347 			 *
13348 			 * tcp_urp_last_valid is cleared when the T_exdata_ind
13349 			 * is sent up. This plus the check for old data
13350 			 * (gap >= 0) handles the wraparound of the sequence
13351 			 * number space without having to always track the
13352 			 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks
13353 			 * this max in its rcv_up variable).
13354 			 *
13355 			 * This prevents duplicate SIGURGS due to a "late"
13356 			 * zero-window probe when the T_EXDATA_IND has already
13357 			 * been sent up.
13358 			 */
13359 			if ((flags & TH_URG) &&
13360 			    (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq,
13361 			    tcp->tcp_urp_last))) {
13362 				mp1 = allocb(0, BPRI_MED);
13363 				if (mp1 == NULL) {
13364 					freemsg(mp);
13365 					return;
13366 				}
13367 				if (!TCP_IS_DETACHED(tcp) &&
13368 				    !putnextctl1(tcp->tcp_rq, M_PCSIG,
13369 				    SIGURG)) {
13370 					/* Try again on the rexmit. */
13371 					freemsg(mp1);
13372 					freemsg(mp);
13373 					return;
13374 				}
13375 				/*
13376 				 * If the next byte would be the mark
13377 				 * then mark with MARKNEXT else mark
13378 				 * with NOTMARKNEXT.
13379 				 */
13380 				if (gap == 0 && urp == 0)
13381 					mp1->b_flag |= MSGMARKNEXT;
13382 				else
13383 					mp1->b_flag |= MSGNOTMARKNEXT;
13384 				freemsg(tcp->tcp_urp_mark_mp);
13385 				tcp->tcp_urp_mark_mp = mp1;
13386 				flags |= TH_SEND_URP_MARK;
13387 				tcp->tcp_urp_last_valid = B_TRUE;
13388 				tcp->tcp_urp_last = urp + seg_seq;
13389 			}
13390 			/*
13391 			 * If this is a zero window probe, continue to
13392 			 * process the ACK part.  But we need to set seg_len
13393 			 * to 0 to avoid data processing.  Otherwise just
13394 			 * drop the segment and send back an ACK.
13395 			 */
13396 			if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) {
13397 				flags &= ~(TH_SYN | TH_URG);
13398 				seg_len = 0;
13399 				goto process_ack;
13400 			} else {
13401 				freemsg(mp);
13402 				goto ack_check;
13403 			}
13404 		}
13405 		/* Pitch out of window stuff off the end. */
13406 		rgap = seg_len;
13407 		mp2 = mp;
13408 		do {
13409 			ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <=
13410 			    (uintptr_t)INT_MAX);
13411 			rgap -= (int)(mp2->b_wptr - mp2->b_rptr);
13412 			if (rgap < 0) {
13413 				mp2->b_wptr += rgap;
13414 				if ((mp1 = mp2->b_cont) != NULL) {
13415 					mp2->b_cont = NULL;
13416 					freemsg(mp1);
13417 				}
13418 				break;
13419 			}
13420 		} while ((mp2 = mp2->b_cont) != NULL);
13421 	}
13422 ok:;
13423 	/*
13424 	 * TCP should check ECN info for segments inside the window only.
13425 	 * Therefore the check should be done here.
13426 	 */
13427 	if (tcp->tcp_ecn_ok) {
13428 		if (flags & TH_CWR) {
13429 			tcp->tcp_ecn_echo_on = B_FALSE;
13430 		}
13431 		/*
13432 		 * Note that both ECN_CE and CWR can be set in the
13433 		 * same segment.  In this case, we once again turn
13434 		 * on ECN_ECHO.
13435 		 */
13436 		if (tcp->tcp_ipversion == IPV4_VERSION) {
13437 			uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service;
13438 
13439 			if ((tos & IPH_ECN_CE) == IPH_ECN_CE) {
13440 				tcp->tcp_ecn_echo_on = B_TRUE;
13441 			}
13442 		} else {
13443 			uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf;
13444 
13445 			if ((vcf & htonl(IPH_ECN_CE << 20)) ==
13446 			    htonl(IPH_ECN_CE << 20)) {
13447 				tcp->tcp_ecn_echo_on = B_TRUE;
13448 			}
13449 		}
13450 	}
13451 
13452 	/*
13453 	 * Check whether we can update tcp_ts_recent.  This test is
13454 	 * NOT the one in RFC 1323 3.4.  It is from Braden, 1993, "TCP
13455 	 * Extensions for High Performance: An Update", Internet Draft.
13456 	 */
13457 	if (tcp->tcp_snd_ts_ok &&
13458 	    TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) &&
13459 	    SEQ_LEQ(seg_seq, tcp->tcp_rack)) {
13460 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
13461 		tcp->tcp_last_rcv_lbolt = lbolt64;
13462 	}
13463 
13464 	if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) {
13465 		/*
13466 		 * FIN in an out of order segment.  We record this in
13467 		 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq.
13468 		 * Clear the FIN so that any check on FIN flag will fail.
13469 		 * Remember that FIN also counts in the sequence number
13470 		 * space.  So we need to ack out of order FIN only segments.
13471 		 */
13472 		if (flags & TH_FIN) {
13473 			tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID;
13474 			tcp->tcp_ofo_fin_seq = seg_seq + seg_len;
13475 			flags &= ~TH_FIN;
13476 			flags |= TH_ACK_NEEDED;
13477 		}
13478 		if (seg_len > 0) {
13479 			/* Fill in the SACK blk list. */
13480 			if (tcp->tcp_snd_sack_ok) {
13481 				ASSERT(tcp->tcp_sack_info != NULL);
13482 				tcp_sack_insert(tcp->tcp_sack_list,
13483 				    seg_seq, seg_seq + seg_len,
13484 				    &(tcp->tcp_num_sack_blk));
13485 			}
13486 
13487 			/*
13488 			 * Attempt reassembly and see if we have something
13489 			 * ready to go.
13490 			 */
13491 			mp = tcp_reass(tcp, mp, seg_seq);
13492 			/* Always ack out of order packets */
13493 			flags |= TH_ACK_NEEDED | TH_PUSH;
13494 			if (mp) {
13495 				ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
13496 				    (uintptr_t)INT_MAX);
13497 				seg_len = mp->b_cont ? msgdsize(mp) :
13498 					(int)(mp->b_wptr - mp->b_rptr);
13499 				seg_seq = tcp->tcp_rnxt;
13500 				/*
13501 				 * A gap is filled and the seq num and len
13502 				 * of the gap match that of a previously
13503 				 * received FIN, put the FIN flag back in.
13504 				 */
13505 				if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) &&
13506 				    seg_seq + seg_len == tcp->tcp_ofo_fin_seq) {
13507 					flags |= TH_FIN;
13508 					tcp->tcp_valid_bits &=
13509 					    ~TCP_OFO_FIN_VALID;
13510 				}
13511 			} else {
13512 				/*
13513 				 * Keep going even with NULL mp.
13514 				 * There may be a useful ACK or something else
13515 				 * we don't want to miss.
13516 				 *
13517 				 * But TCP should not perform fast retransmit
13518 				 * because of the ack number.  TCP uses
13519 				 * seg_len == 0 to determine if it is a pure
13520 				 * ACK.  And this is not a pure ACK.
13521 				 */
13522 				seg_len = 0;
13523 				ofo_seg = B_TRUE;
13524 			}
13525 		}
13526 	} else if (seg_len > 0) {
13527 		BUMP_MIB(&tcp_mib, tcpInDataInorderSegs);
13528 		UPDATE_MIB(&tcp_mib, tcpInDataInorderBytes, seg_len);
13529 		/*
13530 		 * If an out of order FIN was received before, and the seq
13531 		 * num and len of the new segment match that of the FIN,
13532 		 * put the FIN flag back in.
13533 		 */
13534 		if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) &&
13535 		    seg_seq + seg_len == tcp->tcp_ofo_fin_seq) {
13536 			flags |= TH_FIN;
13537 			tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID;
13538 		}
13539 	}
13540 	if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) {
13541 	if (flags & TH_RST) {
13542 		freemsg(mp);
13543 		switch (tcp->tcp_state) {
13544 		case TCPS_SYN_RCVD:
13545 			(void) tcp_clean_death(tcp, ECONNREFUSED, 14);
13546 			break;
13547 		case TCPS_ESTABLISHED:
13548 		case TCPS_FIN_WAIT_1:
13549 		case TCPS_FIN_WAIT_2:
13550 		case TCPS_CLOSE_WAIT:
13551 			(void) tcp_clean_death(tcp, ECONNRESET, 15);
13552 			break;
13553 		case TCPS_CLOSING:
13554 		case TCPS_LAST_ACK:
13555 			(void) tcp_clean_death(tcp, 0, 16);
13556 			break;
13557 		default:
13558 			ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
13559 			(void) tcp_clean_death(tcp, ENXIO, 17);
13560 			break;
13561 		}
13562 		return;
13563 	}
13564 	if (flags & TH_SYN) {
13565 		/*
13566 		 * See RFC 793, Page 71
13567 		 *
13568 		 * The seq number must be in the window as it should
13569 		 * be "fixed" above.  If it is outside window, it should
13570 		 * be already rejected.  Note that we allow seg_seq to be
13571 		 * rnxt + rwnd because we want to accept 0 window probe.
13572 		 */
13573 		ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) &&
13574 		    SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd));
13575 		freemsg(mp);
13576 		/*
13577 		 * If the ACK flag is not set, just use our snxt as the
13578 		 * seq number of the RST segment.
13579 		 */
13580 		if (!(flags & TH_ACK)) {
13581 			seg_ack = tcp->tcp_snxt;
13582 		}
13583 		tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1,
13584 		    TH_RST|TH_ACK);
13585 		ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
13586 		(void) tcp_clean_death(tcp, ECONNRESET, 18);
13587 		return;
13588 	}
13589 	/*
13590 	 * urp could be -1 when the urp field in the packet is 0
13591 	 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent
13592 	 * byte was at seg_seq - 1, in which case we ignore the urgent flag.
13593 	 */
13594 	if (flags & TH_URG && urp >= 0) {
13595 		if (!tcp->tcp_urp_last_valid ||
13596 		    SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) {
13597 			/*
13598 			 * If we haven't generated the signal yet for this
13599 			 * urgent pointer value, do it now.  Also, send up a
13600 			 * zero-length M_DATA indicating whether or not this is
13601 			 * the mark. The latter is not needed when a
13602 			 * T_EXDATA_IND is sent up. However, if there are
13603 			 * allocation failures this code relies on the sender
13604 			 * retransmitting and the socket code for determining
13605 			 * the mark should not block waiting for the peer to
13606 			 * transmit. Thus, for simplicity we always send up the
13607 			 * mark indication.
13608 			 */
13609 			mp1 = allocb(0, BPRI_MED);
13610 			if (mp1 == NULL) {
13611 				freemsg(mp);
13612 				return;
13613 			}
13614 			if (!TCP_IS_DETACHED(tcp) &&
13615 			    !putnextctl1(tcp->tcp_rq, M_PCSIG, SIGURG)) {
13616 				/* Try again on the rexmit. */
13617 				freemsg(mp1);
13618 				freemsg(mp);
13619 				return;
13620 			}
13621 			/*
13622 			 * Mark with NOTMARKNEXT for now.
13623 			 * The code below will change this to MARKNEXT
13624 			 * if we are at the mark.
13625 			 *
13626 			 * If there are allocation failures (e.g. in dupmsg
13627 			 * below) the next time tcp_rput_data sees the urgent
13628 			 * segment it will send up the MSG*MARKNEXT message.
13629 			 */
13630 			mp1->b_flag |= MSGNOTMARKNEXT;
13631 			freemsg(tcp->tcp_urp_mark_mp);
13632 			tcp->tcp_urp_mark_mp = mp1;
13633 			flags |= TH_SEND_URP_MARK;
13634 #ifdef DEBUG
13635 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13636 			    "tcp_rput: sent M_PCSIG 2 seq %x urp %x "
13637 			    "last %x, %s",
13638 			    seg_seq, urp, tcp->tcp_urp_last,
13639 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
13640 #endif /* DEBUG */
13641 			tcp->tcp_urp_last_valid = B_TRUE;
13642 			tcp->tcp_urp_last = urp + seg_seq;
13643 		} else if (tcp->tcp_urp_mark_mp != NULL) {
13644 			/*
13645 			 * An allocation failure prevented the previous
13646 			 * tcp_rput_data from sending up the allocated
13647 			 * MSG*MARKNEXT message - send it up this time
13648 			 * around.
13649 			 */
13650 			flags |= TH_SEND_URP_MARK;
13651 		}
13652 
13653 		/*
13654 		 * If the urgent byte is in this segment, make sure that it is
13655 		 * all by itself.  This makes it much easier to deal with the
13656 		 * possibility of an allocation failure on the T_exdata_ind.
13657 		 * Note that seg_len is the number of bytes in the segment, and
13658 		 * urp is the offset into the segment of the urgent byte.
13659 		 * urp < seg_len means that the urgent byte is in this segment.
13660 		 */
13661 		if (urp < seg_len) {
13662 			if (seg_len != 1) {
13663 				uint32_t  tmp_rnxt;
13664 				/*
13665 				 * Break it up and feed it back in.
13666 				 * Re-attach the IP header.
13667 				 */
13668 				mp->b_rptr = iphdr;
13669 				if (urp > 0) {
13670 					/*
13671 					 * There is stuff before the urgent
13672 					 * byte.
13673 					 */
13674 					mp1 = dupmsg(mp);
13675 					if (!mp1) {
13676 						/*
13677 						 * Trim from urgent byte on.
13678 						 * The rest will come back.
13679 						 */
13680 						(void) adjmsg(mp,
13681 						    urp - seg_len);
13682 						tcp_rput_data(connp,
13683 						    mp, NULL);
13684 						return;
13685 					}
13686 					(void) adjmsg(mp1, urp - seg_len);
13687 					/* Feed this piece back in. */
13688 					tmp_rnxt = tcp->tcp_rnxt;
13689 					tcp_rput_data(connp, mp1, NULL);
13690 					/*
13691 					 * If the data passed back in was not
13692 					 * processed (ie: bad ACK) sending
13693 					 * the remainder back in will cause a
13694 					 * loop. In this case, drop the
13695 					 * packet and let the sender try
13696 					 * sending a good packet.
13697 					 */
13698 					if (tmp_rnxt == tcp->tcp_rnxt) {
13699 						freemsg(mp);
13700 						return;
13701 					}
13702 				}
13703 				if (urp != seg_len - 1) {
13704 					uint32_t  tmp_rnxt;
13705 					/*
13706 					 * There is stuff after the urgent
13707 					 * byte.
13708 					 */
13709 					mp1 = dupmsg(mp);
13710 					if (!mp1) {
13711 						/*
13712 						 * Trim everything beyond the
13713 						 * urgent byte.  The rest will
13714 						 * come back.
13715 						 */
13716 						(void) adjmsg(mp,
13717 						    urp + 1 - seg_len);
13718 						tcp_rput_data(connp,
13719 						    mp, NULL);
13720 						return;
13721 					}
13722 					(void) adjmsg(mp1, urp + 1 - seg_len);
13723 					tmp_rnxt = tcp->tcp_rnxt;
13724 					tcp_rput_data(connp, mp1, NULL);
13725 					/*
13726 					 * If the data passed back in was not
13727 					 * processed (ie: bad ACK) sending
13728 					 * the remainder back in will cause a
13729 					 * loop. In this case, drop the
13730 					 * packet and let the sender try
13731 					 * sending a good packet.
13732 					 */
13733 					if (tmp_rnxt == tcp->tcp_rnxt) {
13734 						freemsg(mp);
13735 						return;
13736 					}
13737 				}
13738 				tcp_rput_data(connp, mp, NULL);
13739 				return;
13740 			}
13741 			/*
13742 			 * This segment contains only the urgent byte.  We
13743 			 * have to allocate the T_exdata_ind, if we can.
13744 			 */
13745 			if (!tcp->tcp_urp_mp) {
13746 				struct T_exdata_ind *tei;
13747 				mp1 = allocb(sizeof (struct T_exdata_ind),
13748 				    BPRI_MED);
13749 				if (!mp1) {
13750 					/*
13751 					 * Sigh... It'll be back.
13752 					 * Generate any MSG*MARK message now.
13753 					 */
13754 					freemsg(mp);
13755 					seg_len = 0;
13756 					if (flags & TH_SEND_URP_MARK) {
13757 
13758 
13759 						ASSERT(tcp->tcp_urp_mark_mp);
13760 						tcp->tcp_urp_mark_mp->b_flag &=
13761 							~MSGNOTMARKNEXT;
13762 						tcp->tcp_urp_mark_mp->b_flag |=
13763 							MSGMARKNEXT;
13764 					}
13765 					goto ack_check;
13766 				}
13767 				mp1->b_datap->db_type = M_PROTO;
13768 				tei = (struct T_exdata_ind *)mp1->b_rptr;
13769 				tei->PRIM_type = T_EXDATA_IND;
13770 				tei->MORE_flag = 0;
13771 				mp1->b_wptr = (uchar_t *)&tei[1];
13772 				tcp->tcp_urp_mp = mp1;
13773 #ifdef DEBUG
13774 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13775 				    "tcp_rput: allocated exdata_ind %s",
13776 				    tcp_display(tcp, NULL,
13777 				    DISP_PORT_ONLY));
13778 #endif /* DEBUG */
13779 				/*
13780 				 * There is no need to send a separate MSG*MARK
13781 				 * message since the T_EXDATA_IND will be sent
13782 				 * now.
13783 				 */
13784 				flags &= ~TH_SEND_URP_MARK;
13785 				freemsg(tcp->tcp_urp_mark_mp);
13786 				tcp->tcp_urp_mark_mp = NULL;
13787 			}
13788 			/*
13789 			 * Now we are all set.  On the next putnext upstream,
13790 			 * tcp_urp_mp will be non-NULL and will get prepended
13791 			 * to what has to be this piece containing the urgent
13792 			 * byte.  If for any reason we abort this segment below,
13793 			 * if it comes back, we will have this ready, or it
13794 			 * will get blown off in close.
13795 			 */
13796 		} else if (urp == seg_len) {
13797 			/*
13798 			 * The urgent byte is the next byte after this sequence
13799 			 * number. If there is data it is marked with
13800 			 * MSGMARKNEXT and any tcp_urp_mark_mp is discarded
13801 			 * since it is not needed. Otherwise, if the code
13802 			 * above just allocated a zero-length tcp_urp_mark_mp
13803 			 * message, that message is tagged with MSGMARKNEXT.
13804 			 * Sending up these MSGMARKNEXT messages makes
13805 			 * SIOCATMARK work correctly even though
13806 			 * the T_EXDATA_IND will not be sent up until the
13807 			 * urgent byte arrives.
13808 			 */
13809 			if (seg_len != 0) {
13810 				flags |= TH_MARKNEXT_NEEDED;
13811 				freemsg(tcp->tcp_urp_mark_mp);
13812 				tcp->tcp_urp_mark_mp = NULL;
13813 				flags &= ~TH_SEND_URP_MARK;
13814 			} else if (tcp->tcp_urp_mark_mp != NULL) {
13815 				flags |= TH_SEND_URP_MARK;
13816 				tcp->tcp_urp_mark_mp->b_flag &=
13817 					~MSGNOTMARKNEXT;
13818 				tcp->tcp_urp_mark_mp->b_flag |= MSGMARKNEXT;
13819 			}
13820 #ifdef DEBUG
13821 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13822 			    "tcp_rput: AT MARK, len %d, flags 0x%x, %s",
13823 			    seg_len, flags,
13824 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
13825 #endif /* DEBUG */
13826 		} else {
13827 			/* Data left until we hit mark */
13828 #ifdef DEBUG
13829 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13830 			    "tcp_rput: URP %d bytes left, %s",
13831 			    urp - seg_len, tcp_display(tcp, NULL,
13832 			    DISP_PORT_ONLY));
13833 #endif /* DEBUG */
13834 		}
13835 	}
13836 
13837 process_ack:
13838 	if (!(flags & TH_ACK)) {
13839 		freemsg(mp);
13840 		goto xmit_check;
13841 	}
13842 	}
13843 	bytes_acked = (int)(seg_ack - tcp->tcp_suna);
13844 
13845 	if (tcp->tcp_ipversion == IPV6_VERSION && bytes_acked > 0)
13846 		tcp->tcp_ip_forward_progress = B_TRUE;
13847 	if (tcp->tcp_state == TCPS_SYN_RCVD) {
13848 		if ((tcp->tcp_conn.tcp_eager_conn_ind != NULL) &&
13849 		    ((tcp->tcp_kssl_ent == NULL) || !tcp->tcp_kssl_pending)) {
13850 			/* 3-way handshake complete - pass up the T_CONN_IND */
13851 			tcp_t	*listener = tcp->tcp_listener;
13852 			mblk_t	*mp = tcp->tcp_conn.tcp_eager_conn_ind;
13853 
13854 			tcp->tcp_tconnind_started = B_TRUE;
13855 			tcp->tcp_conn.tcp_eager_conn_ind = NULL;
13856 			/*
13857 			 * We are here means eager is fine but it can
13858 			 * get a TH_RST at any point between now and till
13859 			 * accept completes and disappear. We need to
13860 			 * ensure that reference to eager is valid after
13861 			 * we get out of eager's perimeter. So we do
13862 			 * an extra refhold.
13863 			 */
13864 			CONN_INC_REF(connp);
13865 
13866 			/*
13867 			 * The listener also exists because of the refhold
13868 			 * done in tcp_conn_request. Its possible that it
13869 			 * might have closed. We will check that once we
13870 			 * get inside listeners context.
13871 			 */
13872 			CONN_INC_REF(listener->tcp_connp);
13873 			if (listener->tcp_connp->conn_sqp ==
13874 			    connp->conn_sqp) {
13875 				tcp_send_conn_ind(listener->tcp_connp, mp,
13876 				    listener->tcp_connp->conn_sqp);
13877 				CONN_DEC_REF(listener->tcp_connp);
13878 			} else if (!tcp->tcp_loopback) {
13879 				squeue_fill(listener->tcp_connp->conn_sqp, mp,
13880 				    tcp_send_conn_ind,
13881 				    listener->tcp_connp, SQTAG_TCP_CONN_IND);
13882 			} else {
13883 				squeue_enter(listener->tcp_connp->conn_sqp, mp,
13884 				    tcp_send_conn_ind, listener->tcp_connp,
13885 				    SQTAG_TCP_CONN_IND);
13886 			}
13887 		}
13888 
13889 		if (tcp->tcp_active_open) {
13890 			/*
13891 			 * We are seeing the final ack in the three way
13892 			 * hand shake of a active open'ed connection
13893 			 * so we must send up a T_CONN_CON
13894 			 */
13895 			if (!tcp_conn_con(tcp, iphdr, tcph, mp, NULL)) {
13896 				freemsg(mp);
13897 				return;
13898 			}
13899 			/*
13900 			 * Don't fuse the loopback endpoints for
13901 			 * simultaneous active opens.
13902 			 */
13903 			if (tcp->tcp_loopback) {
13904 				TCP_STAT(tcp_fusion_unfusable);
13905 				tcp->tcp_unfusable = B_TRUE;
13906 			}
13907 		}
13908 
13909 		tcp->tcp_suna = tcp->tcp_iss + 1;	/* One for the SYN */
13910 		bytes_acked--;
13911 		/* SYN was acked - making progress */
13912 		if (tcp->tcp_ipversion == IPV6_VERSION)
13913 			tcp->tcp_ip_forward_progress = B_TRUE;
13914 
13915 		/*
13916 		 * If SYN was retransmitted, need to reset all
13917 		 * retransmission info as this segment will be
13918 		 * treated as a dup ACK.
13919 		 */
13920 		if (tcp->tcp_rexmit) {
13921 			tcp->tcp_rexmit = B_FALSE;
13922 			tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
13923 			tcp->tcp_rexmit_max = tcp->tcp_snxt;
13924 			tcp->tcp_snd_burst = tcp->tcp_localnet ?
13925 			    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
13926 			tcp->tcp_ms_we_have_waited = 0;
13927 			tcp->tcp_cwnd = mss;
13928 		}
13929 
13930 		/*
13931 		 * We set the send window to zero here.
13932 		 * This is needed if there is data to be
13933 		 * processed already on the queue.
13934 		 * Later (at swnd_update label), the
13935 		 * "new_swnd > tcp_swnd" condition is satisfied
13936 		 * the XMIT_NEEDED flag is set in the current
13937 		 * (SYN_RCVD) state. This ensures tcp_wput_data() is
13938 		 * called if there is already data on queue in
13939 		 * this state.
13940 		 */
13941 		tcp->tcp_swnd = 0;
13942 
13943 		if (new_swnd > tcp->tcp_max_swnd)
13944 			tcp->tcp_max_swnd = new_swnd;
13945 		tcp->tcp_swl1 = seg_seq;
13946 		tcp->tcp_swl2 = seg_ack;
13947 		tcp->tcp_state = TCPS_ESTABLISHED;
13948 		tcp->tcp_valid_bits &= ~TCP_ISS_VALID;
13949 
13950 		/* Fuse when both sides are in ESTABLISHED state */
13951 		if (tcp->tcp_loopback && do_tcp_fusion)
13952 			tcp_fuse(tcp, iphdr, tcph);
13953 
13954 	}
13955 	/* This code follows 4.4BSD-Lite2 mostly. */
13956 	if (bytes_acked < 0)
13957 		goto est;
13958 
13959 	/*
13960 	 * If TCP is ECN capable and the congestion experience bit is
13961 	 * set, reduce tcp_cwnd and tcp_ssthresh.  But this should only be
13962 	 * done once per window (or more loosely, per RTT).
13963 	 */
13964 	if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max))
13965 		tcp->tcp_cwr = B_FALSE;
13966 	if (tcp->tcp_ecn_ok && (flags & TH_ECE)) {
13967 		if (!tcp->tcp_cwr) {
13968 			npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss;
13969 			tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss;
13970 			tcp->tcp_cwnd = npkt * mss;
13971 			/*
13972 			 * If the cwnd is 0, use the timer to clock out
13973 			 * new segments.  This is required by the ECN spec.
13974 			 */
13975 			if (npkt == 0) {
13976 				TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
13977 				/*
13978 				 * This makes sure that when the ACK comes
13979 				 * back, we will increase tcp_cwnd by 1 MSS.
13980 				 */
13981 				tcp->tcp_cwnd_cnt = 0;
13982 			}
13983 			tcp->tcp_cwr = B_TRUE;
13984 			/*
13985 			 * This marks the end of the current window of in
13986 			 * flight data.  That is why we don't use
13987 			 * tcp_suna + tcp_swnd.  Only data in flight can
13988 			 * provide ECN info.
13989 			 */
13990 			tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
13991 			tcp->tcp_ecn_cwr_sent = B_FALSE;
13992 		}
13993 	}
13994 
13995 	mp1 = tcp->tcp_xmit_head;
13996 	if (bytes_acked == 0) {
13997 		if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) {
13998 			int dupack_cnt;
13999 
14000 			BUMP_MIB(&tcp_mib, tcpInDupAck);
14001 			/*
14002 			 * Fast retransmit.  When we have seen exactly three
14003 			 * identical ACKs while we have unacked data
14004 			 * outstanding we take it as a hint that our peer
14005 			 * dropped something.
14006 			 *
14007 			 * If TCP is retransmitting, don't do fast retransmit.
14008 			 */
14009 			if (mp1 && tcp->tcp_suna != tcp->tcp_snxt &&
14010 			    ! tcp->tcp_rexmit) {
14011 				/* Do Limited Transmit */
14012 				if ((dupack_cnt = ++tcp->tcp_dupack_cnt) <
14013 				    tcp_dupack_fast_retransmit) {
14014 					/*
14015 					 * RFC 3042
14016 					 *
14017 					 * What we need to do is temporarily
14018 					 * increase tcp_cwnd so that new
14019 					 * data can be sent if it is allowed
14020 					 * by the receive window (tcp_rwnd).
14021 					 * tcp_wput_data() will take care of
14022 					 * the rest.
14023 					 *
14024 					 * If the connection is SACK capable,
14025 					 * only do limited xmit when there
14026 					 * is SACK info.
14027 					 *
14028 					 * Note how tcp_cwnd is incremented.
14029 					 * The first dup ACK will increase
14030 					 * it by 1 MSS.  The second dup ACK
14031 					 * will increase it by 2 MSS.  This
14032 					 * means that only 1 new segment will
14033 					 * be sent for each dup ACK.
14034 					 */
14035 					if (tcp->tcp_unsent > 0 &&
14036 					    (!tcp->tcp_snd_sack_ok ||
14037 					    (tcp->tcp_snd_sack_ok &&
14038 					    tcp->tcp_notsack_list != NULL))) {
14039 						tcp->tcp_cwnd += mss <<
14040 						    (tcp->tcp_dupack_cnt - 1);
14041 						flags |= TH_LIMIT_XMIT;
14042 					}
14043 				} else if (dupack_cnt ==
14044 				    tcp_dupack_fast_retransmit) {
14045 
14046 				/*
14047 				 * If we have reduced tcp_ssthresh
14048 				 * because of ECN, do not reduce it again
14049 				 * unless it is already one window of data
14050 				 * away.  After one window of data, tcp_cwr
14051 				 * should then be cleared.  Note that
14052 				 * for non ECN capable connection, tcp_cwr
14053 				 * should always be false.
14054 				 *
14055 				 * Adjust cwnd since the duplicate
14056 				 * ack indicates that a packet was
14057 				 * dropped (due to congestion.)
14058 				 */
14059 				if (!tcp->tcp_cwr) {
14060 					npkt = ((tcp->tcp_snxt -
14061 					    tcp->tcp_suna) >> 1) / mss;
14062 					tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) *
14063 					    mss;
14064 					tcp->tcp_cwnd = (npkt +
14065 					    tcp->tcp_dupack_cnt) * mss;
14066 				}
14067 				if (tcp->tcp_ecn_ok) {
14068 					tcp->tcp_cwr = B_TRUE;
14069 					tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
14070 					tcp->tcp_ecn_cwr_sent = B_FALSE;
14071 				}
14072 
14073 				/*
14074 				 * We do Hoe's algorithm.  Refer to her
14075 				 * paper "Improving the Start-up Behavior
14076 				 * of a Congestion Control Scheme for TCP,"
14077 				 * appeared in SIGCOMM'96.
14078 				 *
14079 				 * Save highest seq no we have sent so far.
14080 				 * Be careful about the invisible FIN byte.
14081 				 */
14082 				if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
14083 				    (tcp->tcp_unsent == 0)) {
14084 					tcp->tcp_rexmit_max = tcp->tcp_fss;
14085 				} else {
14086 					tcp->tcp_rexmit_max = tcp->tcp_snxt;
14087 				}
14088 
14089 				/*
14090 				 * Do not allow bursty traffic during.
14091 				 * fast recovery.  Refer to Fall and Floyd's
14092 				 * paper "Simulation-based Comparisons of
14093 				 * Tahoe, Reno and SACK TCP" (in CCR?)
14094 				 * This is a best current practise.
14095 				 */
14096 				tcp->tcp_snd_burst = TCP_CWND_SS;
14097 
14098 				/*
14099 				 * For SACK:
14100 				 * Calculate tcp_pipe, which is the
14101 				 * estimated number of bytes in
14102 				 * network.
14103 				 *
14104 				 * tcp_fack is the highest sack'ed seq num
14105 				 * TCP has received.
14106 				 *
14107 				 * tcp_pipe is explained in the above quoted
14108 				 * Fall and Floyd's paper.  tcp_fack is
14109 				 * explained in Mathis and Mahdavi's
14110 				 * "Forward Acknowledgment: Refining TCP
14111 				 * Congestion Control" in SIGCOMM '96.
14112 				 */
14113 				if (tcp->tcp_snd_sack_ok) {
14114 					ASSERT(tcp->tcp_sack_info != NULL);
14115 					if (tcp->tcp_notsack_list != NULL) {
14116 						tcp->tcp_pipe = tcp->tcp_snxt -
14117 						    tcp->tcp_fack;
14118 						tcp->tcp_sack_snxt = seg_ack;
14119 						flags |= TH_NEED_SACK_REXMIT;
14120 					} else {
14121 						/*
14122 						 * Always initialize tcp_pipe
14123 						 * even though we don't have
14124 						 * any SACK info.  If later
14125 						 * we get SACK info and
14126 						 * tcp_pipe is not initialized,
14127 						 * funny things will happen.
14128 						 */
14129 						tcp->tcp_pipe =
14130 						    tcp->tcp_cwnd_ssthresh;
14131 					}
14132 				} else {
14133 					flags |= TH_REXMIT_NEEDED;
14134 				} /* tcp_snd_sack_ok */
14135 
14136 				} else {
14137 					/*
14138 					 * Here we perform congestion
14139 					 * avoidance, but NOT slow start.
14140 					 * This is known as the Fast
14141 					 * Recovery Algorithm.
14142 					 */
14143 					if (tcp->tcp_snd_sack_ok &&
14144 					    tcp->tcp_notsack_list != NULL) {
14145 						flags |= TH_NEED_SACK_REXMIT;
14146 						tcp->tcp_pipe -= mss;
14147 						if (tcp->tcp_pipe < 0)
14148 							tcp->tcp_pipe = 0;
14149 					} else {
14150 					/*
14151 					 * We know that one more packet has
14152 					 * left the pipe thus we can update
14153 					 * cwnd.
14154 					 */
14155 					cwnd = tcp->tcp_cwnd + mss;
14156 					if (cwnd > tcp->tcp_cwnd_max)
14157 						cwnd = tcp->tcp_cwnd_max;
14158 					tcp->tcp_cwnd = cwnd;
14159 					if (tcp->tcp_unsent > 0)
14160 						flags |= TH_XMIT_NEEDED;
14161 					}
14162 				}
14163 			}
14164 		} else if (tcp->tcp_zero_win_probe) {
14165 			/*
14166 			 * If the window has opened, need to arrange
14167 			 * to send additional data.
14168 			 */
14169 			if (new_swnd != 0) {
14170 				/* tcp_suna != tcp_snxt */
14171 				/* Packet contains a window update */
14172 				BUMP_MIB(&tcp_mib, tcpInWinUpdate);
14173 				tcp->tcp_zero_win_probe = 0;
14174 				tcp->tcp_timer_backoff = 0;
14175 				tcp->tcp_ms_we_have_waited = 0;
14176 
14177 				/*
14178 				 * Transmit starting with tcp_suna since
14179 				 * the one byte probe is not ack'ed.
14180 				 * If TCP has sent more than one identical
14181 				 * probe, tcp_rexmit will be set.  That means
14182 				 * tcp_ss_rexmit() will send out the one
14183 				 * byte along with new data.  Otherwise,
14184 				 * fake the retransmission.
14185 				 */
14186 				flags |= TH_XMIT_NEEDED;
14187 				if (!tcp->tcp_rexmit) {
14188 					tcp->tcp_rexmit = B_TRUE;
14189 					tcp->tcp_dupack_cnt = 0;
14190 					tcp->tcp_rexmit_nxt = tcp->tcp_suna;
14191 					tcp->tcp_rexmit_max = tcp->tcp_suna + 1;
14192 				}
14193 			}
14194 		}
14195 		goto swnd_update;
14196 	}
14197 
14198 	/*
14199 	 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73.
14200 	 * If the ACK value acks something that we have not yet sent, it might
14201 	 * be an old duplicate segment.  Send an ACK to re-synchronize the
14202 	 * other side.
14203 	 * Note: reset in response to unacceptable ACK in SYN_RECEIVE
14204 	 * state is handled above, so we can always just drop the segment and
14205 	 * send an ACK here.
14206 	 *
14207 	 * Should we send ACKs in response to ACK only segments?
14208 	 */
14209 	if (SEQ_GT(seg_ack, tcp->tcp_snxt)) {
14210 		BUMP_MIB(&tcp_mib, tcpInAckUnsent);
14211 		/* drop the received segment */
14212 		freemsg(mp);
14213 
14214 		/*
14215 		 * Send back an ACK.  If tcp_drop_ack_unsent_cnt is
14216 		 * greater than 0, check if the number of such
14217 		 * bogus ACks is greater than that count.  If yes,
14218 		 * don't send back any ACK.  This prevents TCP from
14219 		 * getting into an ACK storm if somehow an attacker
14220 		 * successfully spoofs an acceptable segment to our
14221 		 * peer.
14222 		 */
14223 		if (tcp_drop_ack_unsent_cnt > 0 &&
14224 		    ++tcp->tcp_in_ack_unsent > tcp_drop_ack_unsent_cnt) {
14225 			TCP_STAT(tcp_in_ack_unsent_drop);
14226 			return;
14227 		}
14228 		mp = tcp_ack_mp(tcp);
14229 		if (mp != NULL) {
14230 			TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
14231 			BUMP_LOCAL(tcp->tcp_obsegs);
14232 			BUMP_MIB(&tcp_mib, tcpOutAck);
14233 			tcp_send_data(tcp, tcp->tcp_wq, mp);
14234 		}
14235 		return;
14236 	}
14237 
14238 	/*
14239 	 * TCP gets a new ACK, update the notsack'ed list to delete those
14240 	 * blocks that are covered by this ACK.
14241 	 */
14242 	if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
14243 		tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack,
14244 		    &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list));
14245 	}
14246 
14247 	/*
14248 	 * If we got an ACK after fast retransmit, check to see
14249 	 * if it is a partial ACK.  If it is not and the congestion
14250 	 * window was inflated to account for the other side's
14251 	 * cached packets, retract it.  If it is, do Hoe's algorithm.
14252 	 */
14253 	if (tcp->tcp_dupack_cnt >= tcp_dupack_fast_retransmit) {
14254 		ASSERT(tcp->tcp_rexmit == B_FALSE);
14255 		if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) {
14256 			tcp->tcp_dupack_cnt = 0;
14257 			/*
14258 			 * Restore the orig tcp_cwnd_ssthresh after
14259 			 * fast retransmit phase.
14260 			 */
14261 			if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) {
14262 				tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh;
14263 			}
14264 			tcp->tcp_rexmit_max = seg_ack;
14265 			tcp->tcp_cwnd_cnt = 0;
14266 			tcp->tcp_snd_burst = tcp->tcp_localnet ?
14267 			    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
14268 
14269 			/*
14270 			 * Remove all notsack info to avoid confusion with
14271 			 * the next fast retrasnmit/recovery phase.
14272 			 */
14273 			if (tcp->tcp_snd_sack_ok &&
14274 			    tcp->tcp_notsack_list != NULL) {
14275 				TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
14276 			}
14277 		} else {
14278 			if (tcp->tcp_snd_sack_ok &&
14279 			    tcp->tcp_notsack_list != NULL) {
14280 				flags |= TH_NEED_SACK_REXMIT;
14281 				tcp->tcp_pipe -= mss;
14282 				if (tcp->tcp_pipe < 0)
14283 					tcp->tcp_pipe = 0;
14284 			} else {
14285 				/*
14286 				 * Hoe's algorithm:
14287 				 *
14288 				 * Retransmit the unack'ed segment and
14289 				 * restart fast recovery.  Note that we
14290 				 * need to scale back tcp_cwnd to the
14291 				 * original value when we started fast
14292 				 * recovery.  This is to prevent overly
14293 				 * aggressive behaviour in sending new
14294 				 * segments.
14295 				 */
14296 				tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh +
14297 					tcp_dupack_fast_retransmit * mss;
14298 				tcp->tcp_cwnd_cnt = tcp->tcp_cwnd;
14299 				flags |= TH_REXMIT_NEEDED;
14300 			}
14301 		}
14302 	} else {
14303 		tcp->tcp_dupack_cnt = 0;
14304 		if (tcp->tcp_rexmit) {
14305 			/*
14306 			 * TCP is retranmitting.  If the ACK ack's all
14307 			 * outstanding data, update tcp_rexmit_max and
14308 			 * tcp_rexmit_nxt.  Otherwise, update tcp_rexmit_nxt
14309 			 * to the correct value.
14310 			 *
14311 			 * Note that SEQ_LEQ() is used.  This is to avoid
14312 			 * unnecessary fast retransmit caused by dup ACKs
14313 			 * received when TCP does slow start retransmission
14314 			 * after a time out.  During this phase, TCP may
14315 			 * send out segments which are already received.
14316 			 * This causes dup ACKs to be sent back.
14317 			 */
14318 			if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) {
14319 				if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) {
14320 					tcp->tcp_rexmit_nxt = seg_ack;
14321 				}
14322 				if (seg_ack != tcp->tcp_rexmit_max) {
14323 					flags |= TH_XMIT_NEEDED;
14324 				}
14325 			} else {
14326 				tcp->tcp_rexmit = B_FALSE;
14327 				tcp->tcp_xmit_zc_clean = B_FALSE;
14328 				tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
14329 				tcp->tcp_snd_burst = tcp->tcp_localnet ?
14330 				    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
14331 			}
14332 			tcp->tcp_ms_we_have_waited = 0;
14333 		}
14334 	}
14335 
14336 	BUMP_MIB(&tcp_mib, tcpInAckSegs);
14337 	UPDATE_MIB(&tcp_mib, tcpInAckBytes, bytes_acked);
14338 	tcp->tcp_suna = seg_ack;
14339 	if (tcp->tcp_zero_win_probe != 0) {
14340 		tcp->tcp_zero_win_probe = 0;
14341 		tcp->tcp_timer_backoff = 0;
14342 	}
14343 
14344 	/*
14345 	 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed.
14346 	 * Note that it cannot be the SYN being ack'ed.  The code flow
14347 	 * will not reach here.
14348 	 */
14349 	if (mp1 == NULL) {
14350 		goto fin_acked;
14351 	}
14352 
14353 	/*
14354 	 * Update the congestion window.
14355 	 *
14356 	 * If TCP is not ECN capable or TCP is ECN capable but the
14357 	 * congestion experience bit is not set, increase the tcp_cwnd as
14358 	 * usual.
14359 	 */
14360 	if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) {
14361 		cwnd = tcp->tcp_cwnd;
14362 		add = mss;
14363 
14364 		if (cwnd >= tcp->tcp_cwnd_ssthresh) {
14365 			/*
14366 			 * This is to prevent an increase of less than 1 MSS of
14367 			 * tcp_cwnd.  With partial increase, tcp_wput_data()
14368 			 * may send out tinygrams in order to preserve mblk
14369 			 * boundaries.
14370 			 *
14371 			 * By initializing tcp_cwnd_cnt to new tcp_cwnd and
14372 			 * decrementing it by 1 MSS for every ACKs, tcp_cwnd is
14373 			 * increased by 1 MSS for every RTTs.
14374 			 */
14375 			if (tcp->tcp_cwnd_cnt <= 0) {
14376 				tcp->tcp_cwnd_cnt = cwnd + add;
14377 			} else {
14378 				tcp->tcp_cwnd_cnt -= add;
14379 				add = 0;
14380 			}
14381 		}
14382 		tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max);
14383 	}
14384 
14385 	/* See if the latest urgent data has been acknowledged */
14386 	if ((tcp->tcp_valid_bits & TCP_URG_VALID) &&
14387 	    SEQ_GT(seg_ack, tcp->tcp_urg))
14388 		tcp->tcp_valid_bits &= ~TCP_URG_VALID;
14389 
14390 	/* Can we update the RTT estimates? */
14391 	if (tcp->tcp_snd_ts_ok) {
14392 		/* Ignore zero timestamp echo-reply. */
14393 		if (tcpopt.tcp_opt_ts_ecr != 0) {
14394 			tcp_set_rto(tcp, (int32_t)lbolt -
14395 			    (int32_t)tcpopt.tcp_opt_ts_ecr);
14396 		}
14397 
14398 		/* If needed, restart the timer. */
14399 		if (tcp->tcp_set_timer == 1) {
14400 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
14401 			tcp->tcp_set_timer = 0;
14402 		}
14403 		/*
14404 		 * Update tcp_csuna in case the other side stops sending
14405 		 * us timestamps.
14406 		 */
14407 		tcp->tcp_csuna = tcp->tcp_snxt;
14408 	} else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) {
14409 		/*
14410 		 * An ACK sequence we haven't seen before, so get the RTT
14411 		 * and update the RTO. But first check if the timestamp is
14412 		 * valid to use.
14413 		 */
14414 		if ((mp1->b_next != NULL) &&
14415 		    SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next)))
14416 			tcp_set_rto(tcp, (int32_t)lbolt -
14417 			    (int32_t)(intptr_t)mp1->b_prev);
14418 		else
14419 			BUMP_MIB(&tcp_mib, tcpRttNoUpdate);
14420 
14421 		/* Remeber the last sequence to be ACKed */
14422 		tcp->tcp_csuna = seg_ack;
14423 		if (tcp->tcp_set_timer == 1) {
14424 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
14425 			tcp->tcp_set_timer = 0;
14426 		}
14427 	} else {
14428 		BUMP_MIB(&tcp_mib, tcpRttNoUpdate);
14429 	}
14430 
14431 	/* Eat acknowledged bytes off the xmit queue. */
14432 	for (;;) {
14433 		mblk_t	*mp2;
14434 		uchar_t	*wptr;
14435 
14436 		wptr = mp1->b_wptr;
14437 		ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX);
14438 		bytes_acked -= (int)(wptr - mp1->b_rptr);
14439 		if (bytes_acked < 0) {
14440 			mp1->b_rptr = wptr + bytes_acked;
14441 			/*
14442 			 * Set a new timestamp if all the bytes timed by the
14443 			 * old timestamp have been ack'ed.
14444 			 */
14445 			if (SEQ_GT(seg_ack,
14446 			    (uint32_t)(uintptr_t)(mp1->b_next))) {
14447 				mp1->b_prev = (mblk_t *)(uintptr_t)lbolt;
14448 				mp1->b_next = NULL;
14449 			}
14450 			break;
14451 		}
14452 		mp1->b_next = NULL;
14453 		mp1->b_prev = NULL;
14454 		mp2 = mp1;
14455 		mp1 = mp1->b_cont;
14456 
14457 		/*
14458 		 * This notification is required for some zero-copy
14459 		 * clients to maintain a copy semantic. After the data
14460 		 * is ack'ed, client is safe to modify or reuse the buffer.
14461 		 */
14462 		if (tcp->tcp_snd_zcopy_aware &&
14463 		    (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY))
14464 			tcp_zcopy_notify(tcp);
14465 		freeb(mp2);
14466 		if (bytes_acked == 0) {
14467 			if (mp1 == NULL) {
14468 				/* Everything is ack'ed, clear the tail. */
14469 				tcp->tcp_xmit_tail = NULL;
14470 				/*
14471 				 * Cancel the timer unless we are still
14472 				 * waiting for an ACK for the FIN packet.
14473 				 */
14474 				if (tcp->tcp_timer_tid != 0 &&
14475 				    tcp->tcp_snxt == tcp->tcp_suna) {
14476 					(void) TCP_TIMER_CANCEL(tcp,
14477 					    tcp->tcp_timer_tid);
14478 					tcp->tcp_timer_tid = 0;
14479 				}
14480 				goto pre_swnd_update;
14481 			}
14482 			if (mp2 != tcp->tcp_xmit_tail)
14483 				break;
14484 			tcp->tcp_xmit_tail = mp1;
14485 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
14486 			    (uintptr_t)INT_MAX);
14487 			tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr -
14488 			    mp1->b_rptr);
14489 			break;
14490 		}
14491 		if (mp1 == NULL) {
14492 			/*
14493 			 * More was acked but there is nothing more
14494 			 * outstanding.  This means that the FIN was
14495 			 * just acked or that we're talking to a clown.
14496 			 */
14497 fin_acked:
14498 			ASSERT(tcp->tcp_fin_sent);
14499 			tcp->tcp_xmit_tail = NULL;
14500 			if (tcp->tcp_fin_sent) {
14501 				/* FIN was acked - making progress */
14502 				if (tcp->tcp_ipversion == IPV6_VERSION &&
14503 				    !tcp->tcp_fin_acked)
14504 					tcp->tcp_ip_forward_progress = B_TRUE;
14505 				tcp->tcp_fin_acked = B_TRUE;
14506 				if (tcp->tcp_linger_tid != 0 &&
14507 				    TCP_TIMER_CANCEL(tcp,
14508 					tcp->tcp_linger_tid) >= 0) {
14509 					tcp_stop_lingering(tcp);
14510 				}
14511 			} else {
14512 				/*
14513 				 * We should never get here because
14514 				 * we have already checked that the
14515 				 * number of bytes ack'ed should be
14516 				 * smaller than or equal to what we
14517 				 * have sent so far (it is the
14518 				 * acceptability check of the ACK).
14519 				 * We can only get here if the send
14520 				 * queue is corrupted.
14521 				 *
14522 				 * Terminate the connection and
14523 				 * panic the system.  It is better
14524 				 * for us to panic instead of
14525 				 * continuing to avoid other disaster.
14526 				 */
14527 				tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
14528 				    tcp->tcp_rnxt, TH_RST|TH_ACK);
14529 				panic("Memory corruption "
14530 				    "detected for connection %s.",
14531 				    tcp_display(tcp, NULL,
14532 					DISP_ADDR_AND_PORT));
14533 				/*NOTREACHED*/
14534 			}
14535 			goto pre_swnd_update;
14536 		}
14537 		ASSERT(mp2 != tcp->tcp_xmit_tail);
14538 	}
14539 	if (tcp->tcp_unsent) {
14540 		flags |= TH_XMIT_NEEDED;
14541 	}
14542 pre_swnd_update:
14543 	tcp->tcp_xmit_head = mp1;
14544 swnd_update:
14545 	/*
14546 	 * The following check is different from most other implementations.
14547 	 * For bi-directional transfer, when segments are dropped, the
14548 	 * "normal" check will not accept a window update in those
14549 	 * retransmitted segemnts.  Failing to do that, TCP may send out
14550 	 * segments which are outside receiver's window.  As TCP accepts
14551 	 * the ack in those retransmitted segments, if the window update in
14552 	 * the same segment is not accepted, TCP will incorrectly calculates
14553 	 * that it can send more segments.  This can create a deadlock
14554 	 * with the receiver if its window becomes zero.
14555 	 */
14556 	if (SEQ_LT(tcp->tcp_swl2, seg_ack) ||
14557 	    SEQ_LT(tcp->tcp_swl1, seg_seq) ||
14558 	    (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) {
14559 		/*
14560 		 * The criteria for update is:
14561 		 *
14562 		 * 1. the segment acknowledges some data.  Or
14563 		 * 2. the segment is new, i.e. it has a higher seq num. Or
14564 		 * 3. the segment is not old and the advertised window is
14565 		 * larger than the previous advertised window.
14566 		 */
14567 		if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd)
14568 			flags |= TH_XMIT_NEEDED;
14569 		tcp->tcp_swnd = new_swnd;
14570 		if (new_swnd > tcp->tcp_max_swnd)
14571 			tcp->tcp_max_swnd = new_swnd;
14572 		tcp->tcp_swl1 = seg_seq;
14573 		tcp->tcp_swl2 = seg_ack;
14574 	}
14575 est:
14576 	if (tcp->tcp_state > TCPS_ESTABLISHED) {
14577 
14578 		switch (tcp->tcp_state) {
14579 		case TCPS_FIN_WAIT_1:
14580 			if (tcp->tcp_fin_acked) {
14581 				tcp->tcp_state = TCPS_FIN_WAIT_2;
14582 				/*
14583 				 * We implement the non-standard BSD/SunOS
14584 				 * FIN_WAIT_2 flushing algorithm.
14585 				 * If there is no user attached to this
14586 				 * TCP endpoint, then this TCP struct
14587 				 * could hang around forever in FIN_WAIT_2
14588 				 * state if the peer forgets to send us
14589 				 * a FIN.  To prevent this, we wait only
14590 				 * 2*MSL (a convenient time value) for
14591 				 * the FIN to arrive.  If it doesn't show up,
14592 				 * we flush the TCP endpoint.  This algorithm,
14593 				 * though a violation of RFC-793, has worked
14594 				 * for over 10 years in BSD systems.
14595 				 * Note: SunOS 4.x waits 675 seconds before
14596 				 * flushing the FIN_WAIT_2 connection.
14597 				 */
14598 				TCP_TIMER_RESTART(tcp,
14599 				    tcp_fin_wait_2_flush_interval);
14600 			}
14601 			break;
14602 		case TCPS_FIN_WAIT_2:
14603 			break;	/* Shutdown hook? */
14604 		case TCPS_LAST_ACK:
14605 			freemsg(mp);
14606 			if (tcp->tcp_fin_acked) {
14607 				(void) tcp_clean_death(tcp, 0, 19);
14608 				return;
14609 			}
14610 			goto xmit_check;
14611 		case TCPS_CLOSING:
14612 			if (tcp->tcp_fin_acked) {
14613 				tcp->tcp_state = TCPS_TIME_WAIT;
14614 				/*
14615 				 * Unconditionally clear the exclusive binding
14616 				 * bit so this TIME-WAIT connection won't
14617 				 * interfere with new ones.
14618 				 */
14619 				tcp->tcp_exclbind = 0;
14620 				if (!TCP_IS_DETACHED(tcp)) {
14621 					TCP_TIMER_RESTART(tcp,
14622 					    tcp_time_wait_interval);
14623 				} else {
14624 					tcp_time_wait_append(tcp);
14625 					TCP_DBGSTAT(tcp_rput_time_wait);
14626 				}
14627 			}
14628 			/*FALLTHRU*/
14629 		case TCPS_CLOSE_WAIT:
14630 			freemsg(mp);
14631 			goto xmit_check;
14632 		default:
14633 			ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
14634 			break;
14635 		}
14636 	}
14637 	if (flags & TH_FIN) {
14638 		/* Make sure we ack the fin */
14639 		flags |= TH_ACK_NEEDED;
14640 		if (!tcp->tcp_fin_rcvd) {
14641 			tcp->tcp_fin_rcvd = B_TRUE;
14642 			tcp->tcp_rnxt++;
14643 			tcph = tcp->tcp_tcph;
14644 			U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack);
14645 
14646 			/*
14647 			 * Generate the ordrel_ind at the end unless we
14648 			 * are an eager guy.
14649 			 * In the eager case tcp_rsrv will do this when run
14650 			 * after tcp_accept is done.
14651 			 */
14652 			if (tcp->tcp_listener == NULL &&
14653 			    !TCP_IS_DETACHED(tcp) && (!tcp->tcp_hard_binding))
14654 				flags |= TH_ORDREL_NEEDED;
14655 			switch (tcp->tcp_state) {
14656 			case TCPS_SYN_RCVD:
14657 			case TCPS_ESTABLISHED:
14658 				tcp->tcp_state = TCPS_CLOSE_WAIT;
14659 				/* Keepalive? */
14660 				break;
14661 			case TCPS_FIN_WAIT_1:
14662 				if (!tcp->tcp_fin_acked) {
14663 					tcp->tcp_state = TCPS_CLOSING;
14664 					break;
14665 				}
14666 				/* FALLTHRU */
14667 			case TCPS_FIN_WAIT_2:
14668 				tcp->tcp_state = TCPS_TIME_WAIT;
14669 				/*
14670 				 * Unconditionally clear the exclusive binding
14671 				 * bit so this TIME-WAIT connection won't
14672 				 * interfere with new ones.
14673 				 */
14674 				tcp->tcp_exclbind = 0;
14675 				if (!TCP_IS_DETACHED(tcp)) {
14676 					TCP_TIMER_RESTART(tcp,
14677 					    tcp_time_wait_interval);
14678 				} else {
14679 					tcp_time_wait_append(tcp);
14680 					TCP_DBGSTAT(tcp_rput_time_wait);
14681 				}
14682 				if (seg_len) {
14683 					/*
14684 					 * implies data piggybacked on FIN.
14685 					 * break to handle data.
14686 					 */
14687 					break;
14688 				}
14689 				freemsg(mp);
14690 				goto ack_check;
14691 			}
14692 		}
14693 	}
14694 	if (mp == NULL)
14695 		goto xmit_check;
14696 	if (seg_len == 0) {
14697 		freemsg(mp);
14698 		goto xmit_check;
14699 	}
14700 	if (mp->b_rptr == mp->b_wptr) {
14701 		/*
14702 		 * The header has been consumed, so we remove the
14703 		 * zero-length mblk here.
14704 		 */
14705 		mp1 = mp;
14706 		mp = mp->b_cont;
14707 		freeb(mp1);
14708 	}
14709 	tcph = tcp->tcp_tcph;
14710 	tcp->tcp_rack_cnt++;
14711 	{
14712 		uint32_t cur_max;
14713 
14714 		cur_max = tcp->tcp_rack_cur_max;
14715 		if (tcp->tcp_rack_cnt >= cur_max) {
14716 			/*
14717 			 * We have more unacked data than we should - send
14718 			 * an ACK now.
14719 			 */
14720 			flags |= TH_ACK_NEEDED;
14721 			cur_max++;
14722 			if (cur_max > tcp->tcp_rack_abs_max)
14723 				tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max;
14724 			else
14725 				tcp->tcp_rack_cur_max = cur_max;
14726 		} else if (TCP_IS_DETACHED(tcp)) {
14727 			/* We don't have an ACK timer for detached TCP. */
14728 			flags |= TH_ACK_NEEDED;
14729 		} else if (seg_len < mss) {
14730 			/*
14731 			 * If we get a segment that is less than an mss, and we
14732 			 * already have unacknowledged data, and the amount
14733 			 * unacknowledged is not a multiple of mss, then we
14734 			 * better generate an ACK now.  Otherwise, this may be
14735 			 * the tail piece of a transaction, and we would rather
14736 			 * wait for the response.
14737 			 */
14738 			uint32_t udif;
14739 			ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <=
14740 			    (uintptr_t)INT_MAX);
14741 			udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack);
14742 			if (udif && (udif % mss))
14743 				flags |= TH_ACK_NEEDED;
14744 			else
14745 				flags |= TH_ACK_TIMER_NEEDED;
14746 		} else {
14747 			/* Start delayed ack timer */
14748 			flags |= TH_ACK_TIMER_NEEDED;
14749 		}
14750 	}
14751 	tcp->tcp_rnxt += seg_len;
14752 	U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack);
14753 
14754 	/* Update SACK list */
14755 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
14756 		tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt,
14757 		    &(tcp->tcp_num_sack_blk));
14758 	}
14759 
14760 	if (tcp->tcp_urp_mp) {
14761 		tcp->tcp_urp_mp->b_cont = mp;
14762 		mp = tcp->tcp_urp_mp;
14763 		tcp->tcp_urp_mp = NULL;
14764 		/* Ready for a new signal. */
14765 		tcp->tcp_urp_last_valid = B_FALSE;
14766 #ifdef DEBUG
14767 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
14768 		    "tcp_rput: sending exdata_ind %s",
14769 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
14770 #endif /* DEBUG */
14771 	}
14772 
14773 	/*
14774 	 * Check for ancillary data changes compared to last segment.
14775 	 */
14776 	if (tcp->tcp_ipv6_recvancillary != 0) {
14777 		mp = tcp_rput_add_ancillary(tcp, mp, &ipp);
14778 		if (mp == NULL)
14779 			return;
14780 	}
14781 
14782 	if (tcp->tcp_listener || tcp->tcp_hard_binding) {
14783 		/*
14784 		 * Side queue inbound data until the accept happens.
14785 		 * tcp_accept/tcp_rput drains this when the accept happens.
14786 		 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or
14787 		 * T_EXDATA_IND) it is queued on b_next.
14788 		 * XXX Make urgent data use this. Requires:
14789 		 *	Removing tcp_listener check for TH_URG
14790 		 *	Making M_PCPROTO and MARK messages skip the eager case
14791 		 */
14792 
14793 		if (tcp->tcp_kssl_pending) {
14794 			tcp_kssl_input(tcp, mp);
14795 		} else {
14796 			tcp_rcv_enqueue(tcp, mp, seg_len);
14797 		}
14798 	} else {
14799 		if (mp->b_datap->db_type != M_DATA ||
14800 		    (flags & TH_MARKNEXT_NEEDED)) {
14801 			if (tcp->tcp_rcv_list != NULL) {
14802 				flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
14803 			}
14804 			ASSERT(tcp->tcp_rcv_list == NULL ||
14805 			    tcp->tcp_fused_sigurg);
14806 			if (flags & TH_MARKNEXT_NEEDED) {
14807 #ifdef DEBUG
14808 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
14809 				    "tcp_rput: sending MSGMARKNEXT %s",
14810 				    tcp_display(tcp, NULL,
14811 				    DISP_PORT_ONLY));
14812 #endif /* DEBUG */
14813 				mp->b_flag |= MSGMARKNEXT;
14814 				flags &= ~TH_MARKNEXT_NEEDED;
14815 			}
14816 
14817 			/* Does this need SSL processing first? */
14818 			if ((tcp->tcp_kssl_ctx  != NULL) &&
14819 			    (DB_TYPE(mp) == M_DATA)) {
14820 				tcp_kssl_input(tcp, mp);
14821 			} else {
14822 				putnext(tcp->tcp_rq, mp);
14823 				if (!canputnext(tcp->tcp_rq))
14824 					tcp->tcp_rwnd -= seg_len;
14825 			}
14826 		} else if ((flags & (TH_PUSH|TH_FIN)) ||
14827 		    tcp->tcp_rcv_cnt + seg_len >= tcp->tcp_rq->q_hiwat >> 3) {
14828 			if (tcp->tcp_rcv_list != NULL) {
14829 				/*
14830 				 * Enqueue the new segment first and then
14831 				 * call tcp_rcv_drain() to send all data
14832 				 * up.  The other way to do this is to
14833 				 * send all queued data up and then call
14834 				 * putnext() to send the new segment up.
14835 				 * This way can remove the else part later
14836 				 * on.
14837 				 *
14838 				 * We don't this to avoid one more call to
14839 				 * canputnext() as tcp_rcv_drain() needs to
14840 				 * call canputnext().
14841 				 */
14842 				tcp_rcv_enqueue(tcp, mp, seg_len);
14843 				flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
14844 			} else {
14845 				/* Does this need SSL processing first? */
14846 				if ((tcp->tcp_kssl_ctx  != NULL) &&
14847 				    (DB_TYPE(mp) == M_DATA)) {
14848 					tcp_kssl_input(tcp, mp);
14849 				} else {
14850 					putnext(tcp->tcp_rq, mp);
14851 					if (!canputnext(tcp->tcp_rq))
14852 						tcp->tcp_rwnd -= seg_len;
14853 				}
14854 			}
14855 		} else {
14856 			/*
14857 			 * Enqueue all packets when processing an mblk
14858 			 * from the co queue and also enqueue normal packets.
14859 			 */
14860 			tcp_rcv_enqueue(tcp, mp, seg_len);
14861 		}
14862 		/*
14863 		 * Make sure the timer is running if we have data waiting
14864 		 * for a push bit. This provides resiliency against
14865 		 * implementations that do not correctly generate push bits.
14866 		 */
14867 		if (tcp->tcp_rcv_list != NULL && tcp->tcp_push_tid == 0) {
14868 			/*
14869 			 * The connection may be closed at this point, so don't
14870 			 * do anything for a detached tcp.
14871 			 */
14872 			if (!TCP_IS_DETACHED(tcp))
14873 				tcp->tcp_push_tid = TCP_TIMER(tcp,
14874 				    tcp_push_timer,
14875 				    MSEC_TO_TICK(tcp_push_timer_interval));
14876 		}
14877 	}
14878 xmit_check:
14879 	/* Is there anything left to do? */
14880 	ASSERT(!(flags & TH_MARKNEXT_NEEDED));
14881 	if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED|
14882 	    TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED|
14883 	    TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0)
14884 		goto done;
14885 
14886 	/* Any transmit work to do and a non-zero window? */
14887 	if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT|
14888 	    TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) {
14889 		if (flags & TH_REXMIT_NEEDED) {
14890 			uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna;
14891 
14892 			BUMP_MIB(&tcp_mib, tcpOutFastRetrans);
14893 			if (snd_size > mss)
14894 				snd_size = mss;
14895 			if (snd_size > tcp->tcp_swnd)
14896 				snd_size = tcp->tcp_swnd;
14897 			mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size,
14898 			    NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size,
14899 			    B_TRUE);
14900 
14901 			if (mp1 != NULL) {
14902 				tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt;
14903 				tcp->tcp_csuna = tcp->tcp_snxt;
14904 				BUMP_MIB(&tcp_mib, tcpRetransSegs);
14905 				UPDATE_MIB(&tcp_mib, tcpRetransBytes, snd_size);
14906 				TCP_RECORD_TRACE(tcp, mp1,
14907 				    TCP_TRACE_SEND_PKT);
14908 				tcp_send_data(tcp, tcp->tcp_wq, mp1);
14909 			}
14910 		}
14911 		if (flags & TH_NEED_SACK_REXMIT) {
14912 			tcp_sack_rxmit(tcp, &flags);
14913 		}
14914 		/*
14915 		 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send
14916 		 * out new segment.  Note that tcp_rexmit should not be
14917 		 * set, otherwise TH_LIMIT_XMIT should not be set.
14918 		 */
14919 		if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) {
14920 			if (!tcp->tcp_rexmit) {
14921 				tcp_wput_data(tcp, NULL, B_FALSE);
14922 			} else {
14923 				tcp_ss_rexmit(tcp);
14924 			}
14925 		}
14926 		/*
14927 		 * Adjust tcp_cwnd back to normal value after sending
14928 		 * new data segments.
14929 		 */
14930 		if (flags & TH_LIMIT_XMIT) {
14931 			tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1);
14932 			/*
14933 			 * This will restart the timer.  Restarting the
14934 			 * timer is used to avoid a timeout before the
14935 			 * limited transmitted segment's ACK gets back.
14936 			 */
14937 			if (tcp->tcp_xmit_head != NULL)
14938 				tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt;
14939 		}
14940 
14941 		/* Anything more to do? */
14942 		if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED|
14943 		    TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0)
14944 			goto done;
14945 	}
14946 ack_check:
14947 	if (flags & TH_SEND_URP_MARK) {
14948 		ASSERT(tcp->tcp_urp_mark_mp);
14949 		/*
14950 		 * Send up any queued data and then send the mark message
14951 		 */
14952 		if (tcp->tcp_rcv_list != NULL) {
14953 			flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
14954 		}
14955 		ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
14956 
14957 		mp1 = tcp->tcp_urp_mark_mp;
14958 		tcp->tcp_urp_mark_mp = NULL;
14959 #ifdef DEBUG
14960 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
14961 		    "tcp_rput: sending zero-length %s %s",
14962 		    ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" :
14963 		    "MSGNOTMARKNEXT"),
14964 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
14965 #endif /* DEBUG */
14966 		putnext(tcp->tcp_rq, mp1);
14967 		flags &= ~TH_SEND_URP_MARK;
14968 	}
14969 	if (flags & TH_ACK_NEEDED) {
14970 		/*
14971 		 * Time to send an ack for some reason.
14972 		 */
14973 		mp1 = tcp_ack_mp(tcp);
14974 
14975 		if (mp1 != NULL) {
14976 			TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT);
14977 			tcp_send_data(tcp, tcp->tcp_wq, mp1);
14978 			BUMP_LOCAL(tcp->tcp_obsegs);
14979 			BUMP_MIB(&tcp_mib, tcpOutAck);
14980 		}
14981 		if (tcp->tcp_ack_tid != 0) {
14982 			(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid);
14983 			tcp->tcp_ack_tid = 0;
14984 		}
14985 	}
14986 	if (flags & TH_ACK_TIMER_NEEDED) {
14987 		/*
14988 		 * Arrange for deferred ACK or push wait timeout.
14989 		 * Start timer if it is not already running.
14990 		 */
14991 		if (tcp->tcp_ack_tid == 0) {
14992 			tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer,
14993 			    MSEC_TO_TICK(tcp->tcp_localnet ?
14994 			    (clock_t)tcp_local_dack_interval :
14995 			    (clock_t)tcp_deferred_ack_interval));
14996 		}
14997 	}
14998 	if (flags & TH_ORDREL_NEEDED) {
14999 		/*
15000 		 * Send up the ordrel_ind unless we are an eager guy.
15001 		 * In the eager case tcp_rsrv will do this when run
15002 		 * after tcp_accept is done.
15003 		 */
15004 		ASSERT(tcp->tcp_listener == NULL);
15005 		if (tcp->tcp_rcv_list != NULL) {
15006 			/*
15007 			 * Push any mblk(s) enqueued from co processing.
15008 			 */
15009 			flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
15010 		}
15011 		ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
15012 		if ((mp1 = mi_tpi_ordrel_ind()) != NULL) {
15013 			tcp->tcp_ordrel_done = B_TRUE;
15014 			putnext(tcp->tcp_rq, mp1);
15015 			if (tcp->tcp_deferred_clean_death) {
15016 				/*
15017 				 * tcp_clean_death was deferred
15018 				 * for T_ORDREL_IND - do it now
15019 				 */
15020 				(void) tcp_clean_death(tcp,
15021 				    tcp->tcp_client_errno, 20);
15022 				tcp->tcp_deferred_clean_death =	B_FALSE;
15023 			}
15024 		} else {
15025 			/*
15026 			 * Run the orderly release in the
15027 			 * service routine.
15028 			 */
15029 			qenable(tcp->tcp_rq);
15030 			/*
15031 			 * Caveat(XXX): The machine may be so
15032 			 * overloaded that tcp_rsrv() is not scheduled
15033 			 * until after the endpoint has transitioned
15034 			 * to TCPS_TIME_WAIT
15035 			 * and tcp_time_wait_interval expires. Then
15036 			 * tcp_timer() will blow away state in tcp_t
15037 			 * and T_ORDREL_IND will never be delivered
15038 			 * upstream. Unlikely but potentially
15039 			 * a problem.
15040 			 */
15041 		}
15042 	}
15043 done:
15044 	ASSERT(!(flags & TH_MARKNEXT_NEEDED));
15045 }
15046 
15047 /*
15048  * This function does PAWS protection check. Returns B_TRUE if the
15049  * segment passes the PAWS test, else returns B_FALSE.
15050  */
15051 boolean_t
15052 tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp)
15053 {
15054 	uint8_t	flags;
15055 	int	options;
15056 	uint8_t *up;
15057 
15058 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
15059 	/*
15060 	 * If timestamp option is aligned nicely, get values inline,
15061 	 * otherwise call general routine to parse.  Only do that
15062 	 * if timestamp is the only option.
15063 	 */
15064 	if (TCP_HDR_LENGTH(tcph) == (uint32_t)TCP_MIN_HEADER_LENGTH +
15065 	    TCPOPT_REAL_TS_LEN &&
15066 	    OK_32PTR((up = ((uint8_t *)tcph) +
15067 	    TCP_MIN_HEADER_LENGTH)) &&
15068 	    *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) {
15069 		tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4));
15070 		tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8));
15071 
15072 		options = TCP_OPT_TSTAMP_PRESENT;
15073 	} else {
15074 		if (tcp->tcp_snd_sack_ok) {
15075 			tcpoptp->tcp = tcp;
15076 		} else {
15077 			tcpoptp->tcp = NULL;
15078 		}
15079 		options = tcp_parse_options(tcph, tcpoptp);
15080 	}
15081 
15082 	if (options & TCP_OPT_TSTAMP_PRESENT) {
15083 		/*
15084 		 * Do PAWS per RFC 1323 section 4.2.  Accept RST
15085 		 * regardless of the timestamp, page 18 RFC 1323.bis.
15086 		 */
15087 		if ((flags & TH_RST) == 0 &&
15088 		    TSTMP_LT(tcpoptp->tcp_opt_ts_val,
15089 		    tcp->tcp_ts_recent)) {
15090 			if (TSTMP_LT(lbolt64, tcp->tcp_last_rcv_lbolt +
15091 			    PAWS_TIMEOUT)) {
15092 				/* This segment is not acceptable. */
15093 				return (B_FALSE);
15094 			} else {
15095 				/*
15096 				 * Connection has been idle for
15097 				 * too long.  Reset the timestamp
15098 				 * and assume the segment is valid.
15099 				 */
15100 				tcp->tcp_ts_recent =
15101 				    tcpoptp->tcp_opt_ts_val;
15102 			}
15103 		}
15104 	} else {
15105 		/*
15106 		 * If we don't get a timestamp on every packet, we
15107 		 * figure we can't really trust 'em, so we stop sending
15108 		 * and parsing them.
15109 		 */
15110 		tcp->tcp_snd_ts_ok = B_FALSE;
15111 
15112 		tcp->tcp_hdr_len -= TCPOPT_REAL_TS_LEN;
15113 		tcp->tcp_tcp_hdr_len -= TCPOPT_REAL_TS_LEN;
15114 		tcp->tcp_tcph->th_offset_and_rsrvd[0] -= (3 << 4);
15115 		tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN);
15116 		if (tcp->tcp_snd_sack_ok) {
15117 			ASSERT(tcp->tcp_sack_info != NULL);
15118 			tcp->tcp_max_sack_blk = 4;
15119 		}
15120 	}
15121 	return (B_TRUE);
15122 }
15123 
15124 /*
15125  * Attach ancillary data to a received TCP segments for the
15126  * ancillary pieces requested by the application that are
15127  * different than they were in the previous data segment.
15128  *
15129  * Save the "current" values once memory allocation is ok so that
15130  * when memory allocation fails we can just wait for the next data segment.
15131  */
15132 static mblk_t *
15133 tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp)
15134 {
15135 	struct T_optdata_ind *todi;
15136 	int optlen;
15137 	uchar_t *optptr;
15138 	struct T_opthdr *toh;
15139 	uint_t addflag;	/* Which pieces to add */
15140 	mblk_t *mp1;
15141 
15142 	optlen = 0;
15143 	addflag = 0;
15144 	/* If app asked for pktinfo and the index has changed ... */
15145 	if ((ipp->ipp_fields & IPPF_IFINDEX) &&
15146 	    ipp->ipp_ifindex != tcp->tcp_recvifindex &&
15147 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)) {
15148 		optlen += sizeof (struct T_opthdr) +
15149 		    sizeof (struct in6_pktinfo);
15150 		addflag |= TCP_IPV6_RECVPKTINFO;
15151 	}
15152 	/* If app asked for hoplimit and it has changed ... */
15153 	if ((ipp->ipp_fields & IPPF_HOPLIMIT) &&
15154 	    ipp->ipp_hoplimit != tcp->tcp_recvhops &&
15155 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPLIMIT)) {
15156 		optlen += sizeof (struct T_opthdr) + sizeof (uint_t);
15157 		addflag |= TCP_IPV6_RECVHOPLIMIT;
15158 	}
15159 	/* If app asked for tclass and it has changed ... */
15160 	if ((ipp->ipp_fields & IPPF_TCLASS) &&
15161 	    ipp->ipp_tclass != tcp->tcp_recvtclass &&
15162 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)) {
15163 		optlen += sizeof (struct T_opthdr) + sizeof (uint_t);
15164 		addflag |= TCP_IPV6_RECVTCLASS;
15165 	}
15166 	/*
15167 	 * If app asked for hopbyhop headers and it has changed ...
15168 	 * For security labels, note that (1) security labels can't change on
15169 	 * a connected socket at all, (2) we're connected to at most one peer,
15170 	 * (3) if anything changes, then it must be some other extra option.
15171 	 */
15172 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) &&
15173 	    ip_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen,
15174 	    (ipp->ipp_fields & IPPF_HOPOPTS),
15175 	    ipp->ipp_hopopts, ipp->ipp_hopoptslen)) {
15176 		optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen -
15177 		    tcp->tcp_label_len;
15178 		addflag |= TCP_IPV6_RECVHOPOPTS;
15179 		if (!ip_allocbuf((void **)&tcp->tcp_hopopts,
15180 		    &tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS),
15181 		    ipp->ipp_hopopts, ipp->ipp_hopoptslen))
15182 			return (mp);
15183 	}
15184 	/* If app asked for dst headers before routing headers ... */
15185 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTDSTOPTS) &&
15186 	    ip_cmpbuf(tcp->tcp_rtdstopts, tcp->tcp_rtdstoptslen,
15187 		(ipp->ipp_fields & IPPF_RTDSTOPTS),
15188 		ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) {
15189 		optlen += sizeof (struct T_opthdr) +
15190 		    ipp->ipp_rtdstoptslen;
15191 		addflag |= TCP_IPV6_RECVRTDSTOPTS;
15192 		if (!ip_allocbuf((void **)&tcp->tcp_rtdstopts,
15193 		    &tcp->tcp_rtdstoptslen, (ipp->ipp_fields & IPPF_RTDSTOPTS),
15194 		    ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen))
15195 			return (mp);
15196 	}
15197 	/* If app asked for routing headers and it has changed ... */
15198 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) &&
15199 	    ip_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen,
15200 	    (ipp->ipp_fields & IPPF_RTHDR),
15201 	    ipp->ipp_rthdr, ipp->ipp_rthdrlen)) {
15202 		optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen;
15203 		addflag |= TCP_IPV6_RECVRTHDR;
15204 		if (!ip_allocbuf((void **)&tcp->tcp_rthdr,
15205 		    &tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR),
15206 		    ipp->ipp_rthdr, ipp->ipp_rthdrlen))
15207 			return (mp);
15208 	}
15209 	/* If app asked for dest headers and it has changed ... */
15210 	if ((tcp->tcp_ipv6_recvancillary &
15211 	    (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) &&
15212 	    ip_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen,
15213 	    (ipp->ipp_fields & IPPF_DSTOPTS),
15214 	    ipp->ipp_dstopts, ipp->ipp_dstoptslen)) {
15215 		optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen;
15216 		addflag |= TCP_IPV6_RECVDSTOPTS;
15217 		if (!ip_allocbuf((void **)&tcp->tcp_dstopts,
15218 		    &tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS),
15219 		    ipp->ipp_dstopts, ipp->ipp_dstoptslen))
15220 			return (mp);
15221 	}
15222 
15223 	if (optlen == 0) {
15224 		/* Nothing to add */
15225 		return (mp);
15226 	}
15227 	mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED);
15228 	if (mp1 == NULL) {
15229 		/*
15230 		 * Defer sending ancillary data until the next TCP segment
15231 		 * arrives.
15232 		 */
15233 		return (mp);
15234 	}
15235 	mp1->b_cont = mp;
15236 	mp = mp1;
15237 	mp->b_wptr += sizeof (*todi) + optlen;
15238 	mp->b_datap->db_type = M_PROTO;
15239 	todi = (struct T_optdata_ind *)mp->b_rptr;
15240 	todi->PRIM_type = T_OPTDATA_IND;
15241 	todi->DATA_flag = 1;	/* MORE data */
15242 	todi->OPT_length = optlen;
15243 	todi->OPT_offset = sizeof (*todi);
15244 	optptr = (uchar_t *)&todi[1];
15245 	/*
15246 	 * If app asked for pktinfo and the index has changed ...
15247 	 * Note that the local address never changes for the connection.
15248 	 */
15249 	if (addflag & TCP_IPV6_RECVPKTINFO) {
15250 		struct in6_pktinfo *pkti;
15251 
15252 		toh = (struct T_opthdr *)optptr;
15253 		toh->level = IPPROTO_IPV6;
15254 		toh->name = IPV6_PKTINFO;
15255 		toh->len = sizeof (*toh) + sizeof (*pkti);
15256 		toh->status = 0;
15257 		optptr += sizeof (*toh);
15258 		pkti = (struct in6_pktinfo *)optptr;
15259 		if (tcp->tcp_ipversion == IPV6_VERSION)
15260 			pkti->ipi6_addr = tcp->tcp_ip6h->ip6_src;
15261 		else
15262 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
15263 			    &pkti->ipi6_addr);
15264 		pkti->ipi6_ifindex = ipp->ipp_ifindex;
15265 		optptr += sizeof (*pkti);
15266 		ASSERT(OK_32PTR(optptr));
15267 		/* Save as "last" value */
15268 		tcp->tcp_recvifindex = ipp->ipp_ifindex;
15269 	}
15270 	/* If app asked for hoplimit and it has changed ... */
15271 	if (addflag & TCP_IPV6_RECVHOPLIMIT) {
15272 		toh = (struct T_opthdr *)optptr;
15273 		toh->level = IPPROTO_IPV6;
15274 		toh->name = IPV6_HOPLIMIT;
15275 		toh->len = sizeof (*toh) + sizeof (uint_t);
15276 		toh->status = 0;
15277 		optptr += sizeof (*toh);
15278 		*(uint_t *)optptr = ipp->ipp_hoplimit;
15279 		optptr += sizeof (uint_t);
15280 		ASSERT(OK_32PTR(optptr));
15281 		/* Save as "last" value */
15282 		tcp->tcp_recvhops = ipp->ipp_hoplimit;
15283 	}
15284 	/* If app asked for tclass and it has changed ... */
15285 	if (addflag & TCP_IPV6_RECVTCLASS) {
15286 		toh = (struct T_opthdr *)optptr;
15287 		toh->level = IPPROTO_IPV6;
15288 		toh->name = IPV6_TCLASS;
15289 		toh->len = sizeof (*toh) + sizeof (uint_t);
15290 		toh->status = 0;
15291 		optptr += sizeof (*toh);
15292 		*(uint_t *)optptr = ipp->ipp_tclass;
15293 		optptr += sizeof (uint_t);
15294 		ASSERT(OK_32PTR(optptr));
15295 		/* Save as "last" value */
15296 		tcp->tcp_recvtclass = ipp->ipp_tclass;
15297 	}
15298 	if (addflag & TCP_IPV6_RECVHOPOPTS) {
15299 		toh = (struct T_opthdr *)optptr;
15300 		toh->level = IPPROTO_IPV6;
15301 		toh->name = IPV6_HOPOPTS;
15302 		toh->len = sizeof (*toh) + ipp->ipp_hopoptslen -
15303 		    tcp->tcp_label_len;
15304 		toh->status = 0;
15305 		optptr += sizeof (*toh);
15306 		bcopy((uchar_t *)ipp->ipp_hopopts + tcp->tcp_label_len, optptr,
15307 		    ipp->ipp_hopoptslen - tcp->tcp_label_len);
15308 		optptr += ipp->ipp_hopoptslen - tcp->tcp_label_len;
15309 		ASSERT(OK_32PTR(optptr));
15310 		/* Save as last value */
15311 		ip_savebuf((void **)&tcp->tcp_hopopts, &tcp->tcp_hopoptslen,
15312 		    (ipp->ipp_fields & IPPF_HOPOPTS),
15313 		    ipp->ipp_hopopts, ipp->ipp_hopoptslen);
15314 	}
15315 	if (addflag & TCP_IPV6_RECVRTDSTOPTS) {
15316 		toh = (struct T_opthdr *)optptr;
15317 		toh->level = IPPROTO_IPV6;
15318 		toh->name = IPV6_RTHDRDSTOPTS;
15319 		toh->len = sizeof (*toh) + ipp->ipp_rtdstoptslen;
15320 		toh->status = 0;
15321 		optptr += sizeof (*toh);
15322 		bcopy(ipp->ipp_rtdstopts, optptr, ipp->ipp_rtdstoptslen);
15323 		optptr += ipp->ipp_rtdstoptslen;
15324 		ASSERT(OK_32PTR(optptr));
15325 		/* Save as last value */
15326 		ip_savebuf((void **)&tcp->tcp_rtdstopts,
15327 		    &tcp->tcp_rtdstoptslen,
15328 		    (ipp->ipp_fields & IPPF_RTDSTOPTS),
15329 		    ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen);
15330 	}
15331 	if (addflag & TCP_IPV6_RECVRTHDR) {
15332 		toh = (struct T_opthdr *)optptr;
15333 		toh->level = IPPROTO_IPV6;
15334 		toh->name = IPV6_RTHDR;
15335 		toh->len = sizeof (*toh) + ipp->ipp_rthdrlen;
15336 		toh->status = 0;
15337 		optptr += sizeof (*toh);
15338 		bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen);
15339 		optptr += ipp->ipp_rthdrlen;
15340 		ASSERT(OK_32PTR(optptr));
15341 		/* Save as last value */
15342 		ip_savebuf((void **)&tcp->tcp_rthdr, &tcp->tcp_rthdrlen,
15343 		    (ipp->ipp_fields & IPPF_RTHDR),
15344 		    ipp->ipp_rthdr, ipp->ipp_rthdrlen);
15345 	}
15346 	if (addflag & (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) {
15347 		toh = (struct T_opthdr *)optptr;
15348 		toh->level = IPPROTO_IPV6;
15349 		toh->name = IPV6_DSTOPTS;
15350 		toh->len = sizeof (*toh) + ipp->ipp_dstoptslen;
15351 		toh->status = 0;
15352 		optptr += sizeof (*toh);
15353 		bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen);
15354 		optptr += ipp->ipp_dstoptslen;
15355 		ASSERT(OK_32PTR(optptr));
15356 		/* Save as last value */
15357 		ip_savebuf((void **)&tcp->tcp_dstopts, &tcp->tcp_dstoptslen,
15358 		    (ipp->ipp_fields & IPPF_DSTOPTS),
15359 		    ipp->ipp_dstopts, ipp->ipp_dstoptslen);
15360 	}
15361 	ASSERT(optptr == mp->b_wptr);
15362 	return (mp);
15363 }
15364 
15365 
15366 /*
15367  * Handle a *T_BIND_REQ that has failed either due to a T_ERROR_ACK
15368  * or a "bad" IRE detected by tcp_adapt_ire.
15369  * We can't tell if the failure was due to the laddr or the faddr
15370  * thus we clear out all addresses and ports.
15371  */
15372 static void
15373 tcp_bind_failed(tcp_t *tcp, mblk_t *mp, int error)
15374 {
15375 	queue_t	*q = tcp->tcp_rq;
15376 	tcph_t	*tcph;
15377 	struct T_error_ack *tea;
15378 	conn_t	*connp = tcp->tcp_connp;
15379 
15380 
15381 	ASSERT(mp->b_datap->db_type == M_PCPROTO);
15382 
15383 	if (mp->b_cont) {
15384 		freemsg(mp->b_cont);
15385 		mp->b_cont = NULL;
15386 	}
15387 	tea = (struct T_error_ack *)mp->b_rptr;
15388 	switch (tea->PRIM_type) {
15389 	case T_BIND_ACK:
15390 		/*
15391 		 * Need to unbind with classifier since we were just told that
15392 		 * our bind succeeded.
15393 		 */
15394 		tcp->tcp_hard_bound = B_FALSE;
15395 		tcp->tcp_hard_binding = B_FALSE;
15396 
15397 		ipcl_hash_remove(connp);
15398 		/* Reuse the mblk if possible */
15399 		ASSERT(mp->b_datap->db_lim - mp->b_datap->db_base >=
15400 			sizeof (*tea));
15401 		mp->b_rptr = mp->b_datap->db_base;
15402 		mp->b_wptr = mp->b_rptr + sizeof (*tea);
15403 		tea = (struct T_error_ack *)mp->b_rptr;
15404 		tea->PRIM_type = T_ERROR_ACK;
15405 		tea->TLI_error = TSYSERR;
15406 		tea->UNIX_error = error;
15407 		if (tcp->tcp_state >= TCPS_SYN_SENT) {
15408 			tea->ERROR_prim = T_CONN_REQ;
15409 		} else {
15410 			tea->ERROR_prim = O_T_BIND_REQ;
15411 		}
15412 		break;
15413 
15414 	case T_ERROR_ACK:
15415 		if (tcp->tcp_state >= TCPS_SYN_SENT)
15416 			tea->ERROR_prim = T_CONN_REQ;
15417 		break;
15418 	default:
15419 		panic("tcp_bind_failed: unexpected TPI type");
15420 		/*NOTREACHED*/
15421 	}
15422 
15423 	tcp->tcp_state = TCPS_IDLE;
15424 	if (tcp->tcp_ipversion == IPV4_VERSION)
15425 		tcp->tcp_ipha->ipha_src = 0;
15426 	else
15427 		V6_SET_ZERO(tcp->tcp_ip6h->ip6_src);
15428 	/*
15429 	 * Copy of the src addr. in tcp_t is needed since
15430 	 * the lookup funcs. can only look at tcp_t
15431 	 */
15432 	V6_SET_ZERO(tcp->tcp_ip_src_v6);
15433 
15434 	tcph = tcp->tcp_tcph;
15435 	tcph->th_lport[0] = 0;
15436 	tcph->th_lport[1] = 0;
15437 	tcp_bind_hash_remove(tcp);
15438 	bzero(&connp->u_port, sizeof (connp->u_port));
15439 	/* blow away saved option results if any */
15440 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
15441 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
15442 
15443 	conn_delete_ire(tcp->tcp_connp, NULL);
15444 	putnext(q, mp);
15445 }
15446 
15447 /*
15448  * tcp_rput_other is called by tcp_rput to handle everything other than M_DATA
15449  * messages.
15450  */
15451 void
15452 tcp_rput_other(tcp_t *tcp, mblk_t *mp)
15453 {
15454 	mblk_t	*mp1;
15455 	uchar_t	*rptr = mp->b_rptr;
15456 	queue_t	*q = tcp->tcp_rq;
15457 	struct T_error_ack *tea;
15458 	uint32_t mss;
15459 	mblk_t *syn_mp;
15460 	mblk_t *mdti;
15461 	mblk_t *lsoi;
15462 	int	retval;
15463 	mblk_t *ire_mp;
15464 
15465 	switch (mp->b_datap->db_type) {
15466 	case M_PROTO:
15467 	case M_PCPROTO:
15468 		ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
15469 		if ((mp->b_wptr - rptr) < sizeof (t_scalar_t))
15470 			break;
15471 		tea = (struct T_error_ack *)rptr;
15472 		switch (tea->PRIM_type) {
15473 		case T_BIND_ACK:
15474 			/*
15475 			 * Adapt Multidata information, if any.  The
15476 			 * following tcp_mdt_update routine will free
15477 			 * the message.
15478 			 */
15479 			if ((mdti = tcp_mdt_info_mp(mp)) != NULL) {
15480 				tcp_mdt_update(tcp, &((ip_mdt_info_t *)mdti->
15481 				    b_rptr)->mdt_capab, B_TRUE);
15482 				freemsg(mdti);
15483 			}
15484 
15485 			/*
15486 			 * Check to update LSO information with tcp, and
15487 			 * tcp_lso_update routine will free the message.
15488 			 */
15489 			if ((lsoi = tcp_lso_info_mp(mp)) != NULL) {
15490 				tcp_lso_update(tcp, &((ip_lso_info_t *)lsoi->
15491 				    b_rptr)->lso_capab);
15492 				freemsg(lsoi);
15493 			}
15494 
15495 			/* Get the IRE, if we had requested for it */
15496 			ire_mp = tcp_ire_mp(mp);
15497 
15498 			if (tcp->tcp_hard_binding) {
15499 				tcp->tcp_hard_binding = B_FALSE;
15500 				tcp->tcp_hard_bound = B_TRUE;
15501 				CL_INET_CONNECT(tcp);
15502 			} else {
15503 				if (ire_mp != NULL)
15504 					freeb(ire_mp);
15505 				goto after_syn_sent;
15506 			}
15507 
15508 			retval = tcp_adapt_ire(tcp, ire_mp);
15509 			if (ire_mp != NULL)
15510 				freeb(ire_mp);
15511 			if (retval == 0) {
15512 				tcp_bind_failed(tcp, mp,
15513 				    (int)((tcp->tcp_state >= TCPS_SYN_SENT) ?
15514 				    ENETUNREACH : EADDRNOTAVAIL));
15515 				return;
15516 			}
15517 			/*
15518 			 * Don't let an endpoint connect to itself.
15519 			 * Also checked in tcp_connect() but that
15520 			 * check can't handle the case when the
15521 			 * local IP address is INADDR_ANY.
15522 			 */
15523 			if (tcp->tcp_ipversion == IPV4_VERSION) {
15524 				if ((tcp->tcp_ipha->ipha_dst ==
15525 				    tcp->tcp_ipha->ipha_src) &&
15526 				    (BE16_EQL(tcp->tcp_tcph->th_lport,
15527 				    tcp->tcp_tcph->th_fport))) {
15528 					tcp_bind_failed(tcp, mp, EADDRNOTAVAIL);
15529 					return;
15530 				}
15531 			} else {
15532 				if (IN6_ARE_ADDR_EQUAL(
15533 				    &tcp->tcp_ip6h->ip6_dst,
15534 				    &tcp->tcp_ip6h->ip6_src) &&
15535 				    (BE16_EQL(tcp->tcp_tcph->th_lport,
15536 				    tcp->tcp_tcph->th_fport))) {
15537 					tcp_bind_failed(tcp, mp, EADDRNOTAVAIL);
15538 					return;
15539 				}
15540 			}
15541 			ASSERT(tcp->tcp_state == TCPS_SYN_SENT);
15542 			/*
15543 			 * This should not be possible!  Just for
15544 			 * defensive coding...
15545 			 */
15546 			if (tcp->tcp_state != TCPS_SYN_SENT)
15547 				goto after_syn_sent;
15548 
15549 			if (is_system_labeled() &&
15550 			    !tcp_update_label(tcp, CONN_CRED(tcp->tcp_connp))) {
15551 				tcp_bind_failed(tcp, mp, EHOSTUNREACH);
15552 				return;
15553 			}
15554 
15555 			ASSERT(q == tcp->tcp_rq);
15556 			/*
15557 			 * tcp_adapt_ire() does not adjust
15558 			 * for TCP/IP header length.
15559 			 */
15560 			mss = tcp->tcp_mss - tcp->tcp_hdr_len;
15561 
15562 			/*
15563 			 * Just make sure our rwnd is at
15564 			 * least tcp_recv_hiwat_mss * MSS
15565 			 * large, and round up to the nearest
15566 			 * MSS.
15567 			 *
15568 			 * We do the round up here because
15569 			 * we need to get the interface
15570 			 * MTU first before we can do the
15571 			 * round up.
15572 			 */
15573 			tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss),
15574 			    tcp_recv_hiwat_minmss * mss);
15575 			q->q_hiwat = tcp->tcp_rwnd;
15576 			tcp_set_ws_value(tcp);
15577 			U32_TO_ABE16((tcp->tcp_rwnd >> tcp->tcp_rcv_ws),
15578 			    tcp->tcp_tcph->th_win);
15579 			if (tcp->tcp_rcv_ws > 0 || tcp_wscale_always)
15580 				tcp->tcp_snd_ws_ok = B_TRUE;
15581 
15582 			/*
15583 			 * Set tcp_snd_ts_ok to true
15584 			 * so that tcp_xmit_mp will
15585 			 * include the timestamp
15586 			 * option in the SYN segment.
15587 			 */
15588 			if (tcp_tstamp_always ||
15589 			    (tcp->tcp_rcv_ws && tcp_tstamp_if_wscale)) {
15590 				tcp->tcp_snd_ts_ok = B_TRUE;
15591 			}
15592 
15593 			/*
15594 			 * tcp_snd_sack_ok can be set in
15595 			 * tcp_adapt_ire() if the sack metric
15596 			 * is set.  So check it here also.
15597 			 */
15598 			if (tcp_sack_permitted == 2 ||
15599 			    tcp->tcp_snd_sack_ok) {
15600 				if (tcp->tcp_sack_info == NULL) {
15601 					tcp->tcp_sack_info =
15602 					kmem_cache_alloc(tcp_sack_info_cache,
15603 					    KM_SLEEP);
15604 				}
15605 				tcp->tcp_snd_sack_ok = B_TRUE;
15606 			}
15607 
15608 			/*
15609 			 * Should we use ECN?  Note that the current
15610 			 * default value (SunOS 5.9) of tcp_ecn_permitted
15611 			 * is 1.  The reason for doing this is that there
15612 			 * are equipments out there that will drop ECN
15613 			 * enabled IP packets.  Setting it to 1 avoids
15614 			 * compatibility problems.
15615 			 */
15616 			if (tcp_ecn_permitted == 2)
15617 				tcp->tcp_ecn_ok = B_TRUE;
15618 
15619 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
15620 			syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL,
15621 			    tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
15622 			if (syn_mp) {
15623 				cred_t *cr;
15624 				pid_t pid;
15625 
15626 				/*
15627 				 * Obtain the credential from the
15628 				 * thread calling connect(); the credential
15629 				 * lives on in the second mblk which
15630 				 * originated from T_CONN_REQ and is echoed
15631 				 * with the T_BIND_ACK from ip.  If none
15632 				 * can be found, default to the creator
15633 				 * of the socket.
15634 				 */
15635 				if (mp->b_cont == NULL ||
15636 				    (cr = DB_CRED(mp->b_cont)) == NULL) {
15637 					cr = tcp->tcp_cred;
15638 					pid = tcp->tcp_cpid;
15639 				} else {
15640 					pid = DB_CPID(mp->b_cont);
15641 				}
15642 
15643 				TCP_RECORD_TRACE(tcp, syn_mp,
15644 				    TCP_TRACE_SEND_PKT);
15645 				mblk_setcred(syn_mp, cr);
15646 				DB_CPID(syn_mp) = pid;
15647 				tcp_send_data(tcp, tcp->tcp_wq, syn_mp);
15648 			}
15649 		after_syn_sent:
15650 			/*
15651 			 * A trailer mblk indicates a waiting client upstream.
15652 			 * We complete here the processing begun in
15653 			 * either tcp_bind() or tcp_connect() by passing
15654 			 * upstream the reply message they supplied.
15655 			 */
15656 			mp1 = mp;
15657 			mp = mp->b_cont;
15658 			freeb(mp1);
15659 			if (mp)
15660 				break;
15661 			return;
15662 		case T_ERROR_ACK:
15663 			if (tcp->tcp_debug) {
15664 				(void) strlog(TCP_MOD_ID, 0, 1,
15665 				    SL_TRACE|SL_ERROR,
15666 				    "tcp_rput_other: case T_ERROR_ACK, "
15667 				    "ERROR_prim == %d",
15668 				    tea->ERROR_prim);
15669 			}
15670 			switch (tea->ERROR_prim) {
15671 			case O_T_BIND_REQ:
15672 			case T_BIND_REQ:
15673 				tcp_bind_failed(tcp, mp,
15674 				    (int)((tcp->tcp_state >= TCPS_SYN_SENT) ?
15675 				    ENETUNREACH : EADDRNOTAVAIL));
15676 				return;
15677 			case T_UNBIND_REQ:
15678 				tcp->tcp_hard_binding = B_FALSE;
15679 				tcp->tcp_hard_bound = B_FALSE;
15680 				if (mp->b_cont) {
15681 					freemsg(mp->b_cont);
15682 					mp->b_cont = NULL;
15683 				}
15684 				if (tcp->tcp_unbind_pending)
15685 					tcp->tcp_unbind_pending = 0;
15686 				else {
15687 					/* From tcp_ip_unbind() - free */
15688 					freemsg(mp);
15689 					return;
15690 				}
15691 				break;
15692 			case T_SVR4_OPTMGMT_REQ:
15693 				if (tcp->tcp_drop_opt_ack_cnt > 0) {
15694 					/* T_OPTMGMT_REQ generated by TCP */
15695 					printf("T_SVR4_OPTMGMT_REQ failed "
15696 					    "%d/%d - dropped (cnt %d)\n",
15697 					    tea->TLI_error, tea->UNIX_error,
15698 					    tcp->tcp_drop_opt_ack_cnt);
15699 					freemsg(mp);
15700 					tcp->tcp_drop_opt_ack_cnt--;
15701 					return;
15702 				}
15703 				break;
15704 			}
15705 			if (tea->ERROR_prim == T_SVR4_OPTMGMT_REQ &&
15706 			    tcp->tcp_drop_opt_ack_cnt > 0) {
15707 				printf("T_SVR4_OPTMGMT_REQ failed %d/%d "
15708 				    "- dropped (cnt %d)\n",
15709 				    tea->TLI_error, tea->UNIX_error,
15710 				    tcp->tcp_drop_opt_ack_cnt);
15711 				freemsg(mp);
15712 				tcp->tcp_drop_opt_ack_cnt--;
15713 				return;
15714 			}
15715 			break;
15716 		case T_OPTMGMT_ACK:
15717 			if (tcp->tcp_drop_opt_ack_cnt > 0) {
15718 				/* T_OPTMGMT_REQ generated by TCP */
15719 				freemsg(mp);
15720 				tcp->tcp_drop_opt_ack_cnt--;
15721 				return;
15722 			}
15723 			break;
15724 		default:
15725 			break;
15726 		}
15727 		break;
15728 	case M_CTL:
15729 		/*
15730 		 * ICMP messages.
15731 		 */
15732 		tcp_icmp_error(tcp, mp);
15733 		return;
15734 	case M_FLUSH:
15735 		if (*rptr & FLUSHR)
15736 			flushq(q, FLUSHDATA);
15737 		break;
15738 	default:
15739 		break;
15740 	}
15741 	/*
15742 	 * Make sure we set this bit before sending the ACK for
15743 	 * bind. Otherwise accept could possibly run and free
15744 	 * this tcp struct.
15745 	 */
15746 	putnext(q, mp);
15747 }
15748 
15749 /*
15750  * Called as the result of a qbufcall or a qtimeout to remedy a failure
15751  * to allocate a T_ordrel_ind in tcp_rsrv().  qenable(q) will make
15752  * tcp_rsrv() try again.
15753  */
15754 static void
15755 tcp_ordrel_kick(void *arg)
15756 {
15757 	conn_t 	*connp = (conn_t *)arg;
15758 	tcp_t	*tcp = connp->conn_tcp;
15759 
15760 	tcp->tcp_ordrelid = 0;
15761 	tcp->tcp_timeout = B_FALSE;
15762 	if (!TCP_IS_DETACHED(tcp) && tcp->tcp_rq != NULL &&
15763 	    tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
15764 		qenable(tcp->tcp_rq);
15765 	}
15766 }
15767 
15768 /* ARGSUSED */
15769 static void
15770 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2)
15771 {
15772 	conn_t	*connp = (conn_t *)arg;
15773 	tcp_t	*tcp = connp->conn_tcp;
15774 	queue_t	*q = tcp->tcp_rq;
15775 	uint_t	thwin;
15776 
15777 	freeb(mp);
15778 
15779 	TCP_STAT(tcp_rsrv_calls);
15780 
15781 	if (TCP_IS_DETACHED(tcp) || q == NULL) {
15782 		return;
15783 	}
15784 
15785 	if (tcp->tcp_fused) {
15786 		tcp_t *peer_tcp = tcp->tcp_loopback_peer;
15787 
15788 		ASSERT(tcp->tcp_fused);
15789 		ASSERT(peer_tcp != NULL && peer_tcp->tcp_fused);
15790 		ASSERT(peer_tcp->tcp_loopback_peer == tcp);
15791 		ASSERT(!TCP_IS_DETACHED(tcp));
15792 		ASSERT(tcp->tcp_connp->conn_sqp ==
15793 		    peer_tcp->tcp_connp->conn_sqp);
15794 
15795 		/*
15796 		 * Normally we would not get backenabled in synchronous
15797 		 * streams mode, but in case this happens, we need to plug
15798 		 * synchronous streams during our drain to prevent a race
15799 		 * with tcp_fuse_rrw() or tcp_fuse_rinfop().
15800 		 */
15801 		TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp);
15802 		if (tcp->tcp_rcv_list != NULL)
15803 			(void) tcp_rcv_drain(tcp->tcp_rq, tcp);
15804 
15805 		tcp_clrqfull(peer_tcp);
15806 		TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp);
15807 		TCP_STAT(tcp_fusion_backenabled);
15808 		return;
15809 	}
15810 
15811 	if (canputnext(q)) {
15812 		tcp->tcp_rwnd = q->q_hiwat;
15813 		thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
15814 		    << tcp->tcp_rcv_ws;
15815 		thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
15816 		/*
15817 		 * Send back a window update immediately if TCP is above
15818 		 * ESTABLISHED state and the increase of the rcv window
15819 		 * that the other side knows is at least 1 MSS after flow
15820 		 * control is lifted.
15821 		 */
15822 		if (tcp->tcp_state >= TCPS_ESTABLISHED &&
15823 		    (q->q_hiwat - thwin >= tcp->tcp_mss)) {
15824 			tcp_xmit_ctl(NULL, tcp,
15825 			    (tcp->tcp_swnd == 0) ? tcp->tcp_suna :
15826 			    tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK);
15827 			BUMP_MIB(&tcp_mib, tcpOutWinUpdate);
15828 		}
15829 	}
15830 	/* Handle a failure to allocate a T_ORDREL_IND here */
15831 	if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
15832 		ASSERT(tcp->tcp_listener == NULL);
15833 		if (tcp->tcp_rcv_list != NULL) {
15834 			(void) tcp_rcv_drain(q, tcp);
15835 		}
15836 		ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
15837 		mp = mi_tpi_ordrel_ind();
15838 		if (mp) {
15839 			tcp->tcp_ordrel_done = B_TRUE;
15840 			putnext(q, mp);
15841 			if (tcp->tcp_deferred_clean_death) {
15842 				/*
15843 				 * tcp_clean_death was deferred for
15844 				 * T_ORDREL_IND - do it now
15845 				 */
15846 				tcp->tcp_deferred_clean_death = B_FALSE;
15847 				(void) tcp_clean_death(tcp,
15848 				    tcp->tcp_client_errno, 22);
15849 			}
15850 		} else if (!tcp->tcp_timeout && tcp->tcp_ordrelid == 0) {
15851 			/*
15852 			 * If there isn't already a timer running
15853 			 * start one.  Use a 4 second
15854 			 * timer as a fallback since it can't fail.
15855 			 */
15856 			tcp->tcp_timeout = B_TRUE;
15857 			tcp->tcp_ordrelid = TCP_TIMER(tcp, tcp_ordrel_kick,
15858 			    MSEC_TO_TICK(4000));
15859 		}
15860 	}
15861 }
15862 
15863 /*
15864  * The read side service routine is called mostly when we get back-enabled as a
15865  * result of flow control relief.  Since we don't actually queue anything in
15866  * TCP, we have no data to send out of here.  What we do is clear the receive
15867  * window, and send out a window update.
15868  * This routine is also called to drive an orderly release message upstream
15869  * if the attempt in tcp_rput failed.
15870  */
15871 static void
15872 tcp_rsrv(queue_t *q)
15873 {
15874 	conn_t *connp = Q_TO_CONN(q);
15875 	tcp_t	*tcp = connp->conn_tcp;
15876 	mblk_t	*mp;
15877 
15878 	/* No code does a putq on the read side */
15879 	ASSERT(q->q_first == NULL);
15880 
15881 	/* Nothing to do for the default queue */
15882 	if (q == tcp_g_q) {
15883 		return;
15884 	}
15885 
15886 	mp = allocb(0, BPRI_HI);
15887 	if (mp == NULL) {
15888 		/*
15889 		 * We are under memory pressure. Return for now and we
15890 		 * we will be called again later.
15891 		 */
15892 		if (!tcp->tcp_timeout && tcp->tcp_ordrelid == 0) {
15893 			/*
15894 			 * If there isn't already a timer running
15895 			 * start one.  Use a 4 second
15896 			 * timer as a fallback since it can't fail.
15897 			 */
15898 			tcp->tcp_timeout = B_TRUE;
15899 			tcp->tcp_ordrelid = TCP_TIMER(tcp, tcp_ordrel_kick,
15900 			    MSEC_TO_TICK(4000));
15901 		}
15902 		return;
15903 	}
15904 	CONN_INC_REF(connp);
15905 	squeue_enter(connp->conn_sqp, mp, tcp_rsrv_input, connp,
15906 	    SQTAG_TCP_RSRV);
15907 }
15908 
15909 /*
15910  * tcp_rwnd_set() is called to adjust the receive window to a desired value.
15911  * We do not allow the receive window to shrink.  After setting rwnd,
15912  * set the flow control hiwat of the stream.
15913  *
15914  * This function is called in 2 cases:
15915  *
15916  * 1) Before data transfer begins, in tcp_accept_comm() for accepting a
15917  *    connection (passive open) and in tcp_rput_data() for active connect.
15918  *    This is called after tcp_mss_set() when the desired MSS value is known.
15919  *    This makes sure that our window size is a mutiple of the other side's
15920  *    MSS.
15921  * 2) Handling SO_RCVBUF option.
15922  *
15923  * It is ASSUMED that the requested size is a multiple of the current MSS.
15924  *
15925  * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the
15926  * user requests so.
15927  */
15928 static int
15929 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd)
15930 {
15931 	uint32_t	mss = tcp->tcp_mss;
15932 	uint32_t	old_max_rwnd;
15933 	uint32_t	max_transmittable_rwnd;
15934 	boolean_t	tcp_detached = TCP_IS_DETACHED(tcp);
15935 
15936 	if (tcp->tcp_fused) {
15937 		size_t sth_hiwat;
15938 		tcp_t *peer_tcp = tcp->tcp_loopback_peer;
15939 
15940 		ASSERT(peer_tcp != NULL);
15941 		/*
15942 		 * Record the stream head's high water mark for
15943 		 * this endpoint; this is used for flow-control
15944 		 * purposes in tcp_fuse_output().
15945 		 */
15946 		sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd);
15947 		if (!tcp_detached)
15948 			(void) mi_set_sth_hiwat(tcp->tcp_rq, sth_hiwat);
15949 
15950 		/*
15951 		 * In the fusion case, the maxpsz stream head value of
15952 		 * our peer is set according to its send buffer size
15953 		 * and our receive buffer size; since the latter may
15954 		 * have changed we need to update the peer's maxpsz.
15955 		 */
15956 		(void) tcp_maxpsz_set(peer_tcp, B_TRUE);
15957 		return (rwnd);
15958 	}
15959 
15960 	if (tcp_detached)
15961 		old_max_rwnd = tcp->tcp_rwnd;
15962 	else
15963 		old_max_rwnd = tcp->tcp_rq->q_hiwat;
15964 
15965 	/*
15966 	 * Insist on a receive window that is at least
15967 	 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid
15968 	 * funny TCP interactions of Nagle algorithm, SWS avoidance
15969 	 * and delayed acknowledgement.
15970 	 */
15971 	rwnd = MAX(rwnd, tcp_recv_hiwat_minmss * mss);
15972 
15973 	/*
15974 	 * If window size info has already been exchanged, TCP should not
15975 	 * shrink the window.  Shrinking window is doable if done carefully.
15976 	 * We may add that support later.  But so far there is not a real
15977 	 * need to do that.
15978 	 */
15979 	if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) {
15980 		/* MSS may have changed, do a round up again. */
15981 		rwnd = MSS_ROUNDUP(old_max_rwnd, mss);
15982 	}
15983 
15984 	/*
15985 	 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check
15986 	 * can be applied even before the window scale option is decided.
15987 	 */
15988 	max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws;
15989 	if (rwnd > max_transmittable_rwnd) {
15990 		rwnd = max_transmittable_rwnd -
15991 		    (max_transmittable_rwnd % mss);
15992 		if (rwnd < mss)
15993 			rwnd = max_transmittable_rwnd;
15994 		/*
15995 		 * If we're over the limit we may have to back down tcp_rwnd.
15996 		 * The increment below won't work for us. So we set all three
15997 		 * here and the increment below will have no effect.
15998 		 */
15999 		tcp->tcp_rwnd = old_max_rwnd = rwnd;
16000 	}
16001 	if (tcp->tcp_localnet) {
16002 		tcp->tcp_rack_abs_max =
16003 		    MIN(tcp_local_dacks_max, rwnd / mss / 2);
16004 	} else {
16005 		/*
16006 		 * For a remote host on a different subnet (through a router),
16007 		 * we ack every other packet to be conforming to RFC1122.
16008 		 * tcp_deferred_acks_max is default to 2.
16009 		 */
16010 		tcp->tcp_rack_abs_max =
16011 		    MIN(tcp_deferred_acks_max, rwnd / mss / 2);
16012 	}
16013 	if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max)
16014 		tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max;
16015 	else
16016 		tcp->tcp_rack_cur_max = 0;
16017 	/*
16018 	 * Increment the current rwnd by the amount the maximum grew (we
16019 	 * can not overwrite it since we might be in the middle of a
16020 	 * connection.)
16021 	 */
16022 	tcp->tcp_rwnd += rwnd - old_max_rwnd;
16023 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, tcp->tcp_tcph->th_win);
16024 	if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max)
16025 		tcp->tcp_cwnd_max = rwnd;
16026 
16027 	if (tcp_detached)
16028 		return (rwnd);
16029 	/*
16030 	 * We set the maximum receive window into rq->q_hiwat.
16031 	 * This is not actually used for flow control.
16032 	 */
16033 	tcp->tcp_rq->q_hiwat = rwnd;
16034 	/*
16035 	 * Set the Stream head high water mark. This doesn't have to be
16036 	 * here, since we are simply using default values, but we would
16037 	 * prefer to choose these values algorithmically, with a likely
16038 	 * relationship to rwnd.
16039 	 */
16040 	(void) mi_set_sth_hiwat(tcp->tcp_rq, MAX(rwnd, tcp_sth_rcv_hiwat));
16041 	return (rwnd);
16042 }
16043 
16044 /*
16045  * Return SNMP stuff in buffer in mpdata.
16046  */
16047 int
16048 tcp_snmp_get(queue_t *q, mblk_t *mpctl)
16049 {
16050 	mblk_t			*mpdata;
16051 	mblk_t			*mp_conn_ctl = NULL;
16052 	mblk_t			*mp_conn_tail;
16053 	mblk_t			*mp_attr_ctl = NULL;
16054 	mblk_t			*mp_attr_tail;
16055 	mblk_t			*mp6_conn_ctl = NULL;
16056 	mblk_t			*mp6_conn_tail;
16057 	mblk_t			*mp6_attr_ctl = NULL;
16058 	mblk_t			*mp6_attr_tail;
16059 	struct opthdr		*optp;
16060 	mib2_tcpConnEntry_t	tce;
16061 	mib2_tcp6ConnEntry_t	tce6;
16062 	mib2_transportMLPEntry_t mlp;
16063 	connf_t			*connfp;
16064 	conn_t			*connp;
16065 	int			i;
16066 	boolean_t 		ispriv;
16067 	zoneid_t 		zoneid;
16068 	int			v4_conn_idx;
16069 	int			v6_conn_idx;
16070 
16071 	if (mpctl == NULL ||
16072 	    (mpdata = mpctl->b_cont) == NULL ||
16073 	    (mp_conn_ctl = copymsg(mpctl)) == NULL ||
16074 	    (mp_attr_ctl = copymsg(mpctl)) == NULL ||
16075 	    (mp6_conn_ctl = copymsg(mpctl)) == NULL ||
16076 	    (mp6_attr_ctl = copymsg(mpctl)) == NULL) {
16077 		freemsg(mp_conn_ctl);
16078 		freemsg(mp_attr_ctl);
16079 		freemsg(mp6_conn_ctl);
16080 		freemsg(mp6_attr_ctl);
16081 		return (0);
16082 	}
16083 
16084 	/* build table of connections -- need count in fixed part */
16085 	SET_MIB(tcp_mib.tcpRtoAlgorithm, 4);   /* vanj */
16086 	SET_MIB(tcp_mib.tcpRtoMin, tcp_rexmit_interval_min);
16087 	SET_MIB(tcp_mib.tcpRtoMax, tcp_rexmit_interval_max);
16088 	SET_MIB(tcp_mib.tcpMaxConn, -1);
16089 	SET_MIB(tcp_mib.tcpCurrEstab, 0);
16090 
16091 	ispriv =
16092 	    secpolicy_net_config((Q_TO_CONN(q))->conn_cred, B_TRUE) == 0;
16093 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16094 
16095 	v4_conn_idx = v6_conn_idx = 0;
16096 	mp_conn_tail = mp_attr_tail = mp6_conn_tail = mp6_attr_tail = NULL;
16097 
16098 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
16099 
16100 		connfp = &ipcl_globalhash_fanout[i];
16101 
16102 		connp = NULL;
16103 
16104 		while ((connp =
16105 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
16106 			tcp_t *tcp;
16107 			boolean_t needattr;
16108 
16109 			if (connp->conn_zoneid != zoneid)
16110 				continue;	/* not in this zone */
16111 
16112 			tcp = connp->conn_tcp;
16113 			UPDATE_MIB(&tcp_mib, tcpInSegs, tcp->tcp_ibsegs);
16114 			tcp->tcp_ibsegs = 0;
16115 			UPDATE_MIB(&tcp_mib, tcpOutSegs, tcp->tcp_obsegs);
16116 			tcp->tcp_obsegs = 0;
16117 
16118 			tce6.tcp6ConnState = tce.tcpConnState =
16119 			    tcp_snmp_state(tcp);
16120 			if (tce.tcpConnState == MIB2_TCP_established ||
16121 			    tce.tcpConnState == MIB2_TCP_closeWait)
16122 				BUMP_MIB(&tcp_mib, tcpCurrEstab);
16123 
16124 			needattr = B_FALSE;
16125 			bzero(&mlp, sizeof (mlp));
16126 			if (connp->conn_mlp_type != mlptSingle) {
16127 				if (connp->conn_mlp_type == mlptShared ||
16128 				    connp->conn_mlp_type == mlptBoth)
16129 					mlp.tme_flags |= MIB2_TMEF_SHARED;
16130 				if (connp->conn_mlp_type == mlptPrivate ||
16131 				    connp->conn_mlp_type == mlptBoth)
16132 					mlp.tme_flags |= MIB2_TMEF_PRIVATE;
16133 				needattr = B_TRUE;
16134 			}
16135 			if (connp->conn_peercred != NULL) {
16136 				ts_label_t *tsl;
16137 
16138 				tsl = crgetlabel(connp->conn_peercred);
16139 				mlp.tme_doi = label2doi(tsl);
16140 				mlp.tme_label = *label2bslabel(tsl);
16141 				needattr = B_TRUE;
16142 			}
16143 
16144 			/* Create a message to report on IPv6 entries */
16145 			if (tcp->tcp_ipversion == IPV6_VERSION) {
16146 			tce6.tcp6ConnLocalAddress = tcp->tcp_ip_src_v6;
16147 			tce6.tcp6ConnRemAddress = tcp->tcp_remote_v6;
16148 			tce6.tcp6ConnLocalPort = ntohs(tcp->tcp_lport);
16149 			tce6.tcp6ConnRemPort = ntohs(tcp->tcp_fport);
16150 			tce6.tcp6ConnIfIndex = tcp->tcp_bound_if;
16151 			/* Don't want just anybody seeing these... */
16152 			if (ispriv) {
16153 				tce6.tcp6ConnEntryInfo.ce_snxt =
16154 				    tcp->tcp_snxt;
16155 				tce6.tcp6ConnEntryInfo.ce_suna =
16156 				    tcp->tcp_suna;
16157 				tce6.tcp6ConnEntryInfo.ce_rnxt =
16158 				    tcp->tcp_rnxt;
16159 				tce6.tcp6ConnEntryInfo.ce_rack =
16160 				    tcp->tcp_rack;
16161 			} else {
16162 				/*
16163 				 * Netstat, unfortunately, uses this to
16164 				 * get send/receive queue sizes.  How to fix?
16165 				 * Why not compute the difference only?
16166 				 */
16167 				tce6.tcp6ConnEntryInfo.ce_snxt =
16168 				    tcp->tcp_snxt - tcp->tcp_suna;
16169 				tce6.tcp6ConnEntryInfo.ce_suna = 0;
16170 				tce6.tcp6ConnEntryInfo.ce_rnxt =
16171 				    tcp->tcp_rnxt - tcp->tcp_rack;
16172 				tce6.tcp6ConnEntryInfo.ce_rack = 0;
16173 			}
16174 
16175 			tce6.tcp6ConnEntryInfo.ce_swnd = tcp->tcp_swnd;
16176 			tce6.tcp6ConnEntryInfo.ce_rwnd = tcp->tcp_rwnd;
16177 			tce6.tcp6ConnEntryInfo.ce_rto =  tcp->tcp_rto;
16178 			tce6.tcp6ConnEntryInfo.ce_mss =  tcp->tcp_mss;
16179 			tce6.tcp6ConnEntryInfo.ce_state = tcp->tcp_state;
16180 
16181 			(void) snmp_append_data2(mp6_conn_ctl->b_cont,
16182 			    &mp6_conn_tail, (char *)&tce6, sizeof (tce6));
16183 
16184 			mlp.tme_connidx = v6_conn_idx++;
16185 			if (needattr)
16186 				(void) snmp_append_data2(mp6_attr_ctl->b_cont,
16187 				    &mp6_attr_tail, (char *)&mlp, sizeof (mlp));
16188 			}
16189 			/*
16190 			 * Create an IPv4 table entry for IPv4 entries and also
16191 			 * for IPv6 entries which are bound to in6addr_any
16192 			 * but don't have IPV6_V6ONLY set.
16193 			 * (i.e. anything an IPv4 peer could connect to)
16194 			 */
16195 			if (tcp->tcp_ipversion == IPV4_VERSION ||
16196 			    (tcp->tcp_state <= TCPS_LISTEN &&
16197 			    !tcp->tcp_connp->conn_ipv6_v6only &&
16198 			    IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip_src_v6))) {
16199 				if (tcp->tcp_ipversion == IPV6_VERSION) {
16200 					tce.tcpConnRemAddress = INADDR_ANY;
16201 					tce.tcpConnLocalAddress = INADDR_ANY;
16202 				} else {
16203 					tce.tcpConnRemAddress =
16204 					    tcp->tcp_remote;
16205 					tce.tcpConnLocalAddress =
16206 					    tcp->tcp_ip_src;
16207 				}
16208 				tce.tcpConnLocalPort = ntohs(tcp->tcp_lport);
16209 				tce.tcpConnRemPort = ntohs(tcp->tcp_fport);
16210 				/* Don't want just anybody seeing these... */
16211 				if (ispriv) {
16212 					tce.tcpConnEntryInfo.ce_snxt =
16213 					    tcp->tcp_snxt;
16214 					tce.tcpConnEntryInfo.ce_suna =
16215 					    tcp->tcp_suna;
16216 					tce.tcpConnEntryInfo.ce_rnxt =
16217 					    tcp->tcp_rnxt;
16218 					tce.tcpConnEntryInfo.ce_rack =
16219 					    tcp->tcp_rack;
16220 				} else {
16221 					/*
16222 					 * Netstat, unfortunately, uses this to
16223 					 * get send/receive queue sizes.  How
16224 					 * to fix?
16225 					 * Why not compute the difference only?
16226 					 */
16227 					tce.tcpConnEntryInfo.ce_snxt =
16228 					    tcp->tcp_snxt - tcp->tcp_suna;
16229 					tce.tcpConnEntryInfo.ce_suna = 0;
16230 					tce.tcpConnEntryInfo.ce_rnxt =
16231 					    tcp->tcp_rnxt - tcp->tcp_rack;
16232 					tce.tcpConnEntryInfo.ce_rack = 0;
16233 				}
16234 
16235 				tce.tcpConnEntryInfo.ce_swnd = tcp->tcp_swnd;
16236 				tce.tcpConnEntryInfo.ce_rwnd = tcp->tcp_rwnd;
16237 				tce.tcpConnEntryInfo.ce_rto =  tcp->tcp_rto;
16238 				tce.tcpConnEntryInfo.ce_mss =  tcp->tcp_mss;
16239 				tce.tcpConnEntryInfo.ce_state =
16240 				    tcp->tcp_state;
16241 
16242 				(void) snmp_append_data2(mp_conn_ctl->b_cont,
16243 				    &mp_conn_tail, (char *)&tce, sizeof (tce));
16244 
16245 				mlp.tme_connidx = v4_conn_idx++;
16246 				if (needattr)
16247 					(void) snmp_append_data2(
16248 					    mp_attr_ctl->b_cont,
16249 					    &mp_attr_tail, (char *)&mlp,
16250 					    sizeof (mlp));
16251 			}
16252 		}
16253 	}
16254 
16255 	/* fixed length structure for IPv4 and IPv6 counters */
16256 	SET_MIB(tcp_mib.tcpConnTableSize, sizeof (mib2_tcpConnEntry_t));
16257 	SET_MIB(tcp_mib.tcp6ConnTableSize, sizeof (mib2_tcp6ConnEntry_t));
16258 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
16259 	optp->level = MIB2_TCP;
16260 	optp->name = 0;
16261 	(void) snmp_append_data(mpdata, (char *)&tcp_mib, sizeof (tcp_mib));
16262 	optp->len = msgdsize(mpdata);
16263 	qreply(q, mpctl);
16264 
16265 	/* table of connections... */
16266 	optp = (struct opthdr *)&mp_conn_ctl->b_rptr[
16267 	    sizeof (struct T_optmgmt_ack)];
16268 	optp->level = MIB2_TCP;
16269 	optp->name = MIB2_TCP_CONN;
16270 	optp->len = msgdsize(mp_conn_ctl->b_cont);
16271 	qreply(q, mp_conn_ctl);
16272 
16273 	/* table of MLP attributes... */
16274 	optp = (struct opthdr *)&mp_attr_ctl->b_rptr[
16275 	    sizeof (struct T_optmgmt_ack)];
16276 	optp->level = MIB2_TCP;
16277 	optp->name = EXPER_XPORT_MLP;
16278 	optp->len = msgdsize(mp_attr_ctl->b_cont);
16279 	if (optp->len == 0)
16280 		freemsg(mp_attr_ctl);
16281 	else
16282 		qreply(q, mp_attr_ctl);
16283 
16284 	/* table of IPv6 connections... */
16285 	optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[
16286 	    sizeof (struct T_optmgmt_ack)];
16287 	optp->level = MIB2_TCP6;
16288 	optp->name = MIB2_TCP6_CONN;
16289 	optp->len = msgdsize(mp6_conn_ctl->b_cont);
16290 	qreply(q, mp6_conn_ctl);
16291 
16292 	/* table of IPv6 MLP attributes... */
16293 	optp = (struct opthdr *)&mp6_attr_ctl->b_rptr[
16294 	    sizeof (struct T_optmgmt_ack)];
16295 	optp->level = MIB2_TCP6;
16296 	optp->name = EXPER_XPORT_MLP;
16297 	optp->len = msgdsize(mp6_attr_ctl->b_cont);
16298 	if (optp->len == 0)
16299 		freemsg(mp6_attr_ctl);
16300 	else
16301 		qreply(q, mp6_attr_ctl);
16302 	return (1);
16303 }
16304 
16305 /* Return 0 if invalid set request, 1 otherwise, including non-tcp requests  */
16306 /* ARGSUSED */
16307 int
16308 tcp_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len)
16309 {
16310 	mib2_tcpConnEntry_t	*tce = (mib2_tcpConnEntry_t *)ptr;
16311 
16312 	switch (level) {
16313 	case MIB2_TCP:
16314 		switch (name) {
16315 		case 13:
16316 			if (tce->tcpConnState != MIB2_TCP_deleteTCB)
16317 				return (0);
16318 			/* TODO: delete entry defined by tce */
16319 			return (1);
16320 		default:
16321 			return (0);
16322 		}
16323 	default:
16324 		return (1);
16325 	}
16326 }
16327 
16328 /* Translate TCP state to MIB2 TCP state. */
16329 static int
16330 tcp_snmp_state(tcp_t *tcp)
16331 {
16332 	if (tcp == NULL)
16333 		return (0);
16334 
16335 	switch (tcp->tcp_state) {
16336 	case TCPS_CLOSED:
16337 	case TCPS_IDLE:	/* RFC1213 doesn't have analogue for IDLE & BOUND */
16338 	case TCPS_BOUND:
16339 		return (MIB2_TCP_closed);
16340 	case TCPS_LISTEN:
16341 		return (MIB2_TCP_listen);
16342 	case TCPS_SYN_SENT:
16343 		return (MIB2_TCP_synSent);
16344 	case TCPS_SYN_RCVD:
16345 		return (MIB2_TCP_synReceived);
16346 	case TCPS_ESTABLISHED:
16347 		return (MIB2_TCP_established);
16348 	case TCPS_CLOSE_WAIT:
16349 		return (MIB2_TCP_closeWait);
16350 	case TCPS_FIN_WAIT_1:
16351 		return (MIB2_TCP_finWait1);
16352 	case TCPS_CLOSING:
16353 		return (MIB2_TCP_closing);
16354 	case TCPS_LAST_ACK:
16355 		return (MIB2_TCP_lastAck);
16356 	case TCPS_FIN_WAIT_2:
16357 		return (MIB2_TCP_finWait2);
16358 	case TCPS_TIME_WAIT:
16359 		return (MIB2_TCP_timeWait);
16360 	default:
16361 		return (0);
16362 	}
16363 }
16364 
16365 static char tcp_report_header[] =
16366 	"TCP     " MI_COL_HDRPAD_STR
16367 	"zone dest            snxt     suna     "
16368 	"swnd       rnxt     rack     rwnd       rto   mss   w sw rw t "
16369 	"recent   [lport,fport] state";
16370 
16371 /*
16372  * TCP status report triggered via the Named Dispatch mechanism.
16373  */
16374 /* ARGSUSED */
16375 static void
16376 tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval, tcp_t *thisstream,
16377     cred_t *cr)
16378 {
16379 	char hash[10], addrbuf[INET6_ADDRSTRLEN];
16380 	boolean_t ispriv = secpolicy_net_config(cr, B_TRUE) == 0;
16381 	char cflag;
16382 	in6_addr_t	v6dst;
16383 	char buf[80];
16384 	uint_t print_len, buf_len;
16385 
16386 	buf_len = mp->b_datap->db_lim - mp->b_wptr;
16387 	if (buf_len <= 0)
16388 		return;
16389 
16390 	if (hashval >= 0)
16391 		(void) sprintf(hash, "%03d ", hashval);
16392 	else
16393 		hash[0] = '\0';
16394 
16395 	/*
16396 	 * Note that we use the remote address in the tcp_b  structure.
16397 	 * This means that it will print out the real destination address,
16398 	 * not the next hop's address if source routing is used.  This
16399 	 * avoid the confusion on the output because user may not
16400 	 * know that source routing is used for a connection.
16401 	 */
16402 	if (tcp->tcp_ipversion == IPV4_VERSION) {
16403 		IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &v6dst);
16404 	} else {
16405 		v6dst = tcp->tcp_remote_v6;
16406 	}
16407 	(void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf));
16408 	/*
16409 	 * the ispriv checks are so that normal users cannot determine
16410 	 * sequence number information using NDD.
16411 	 */
16412 
16413 	if (TCP_IS_DETACHED(tcp))
16414 		cflag = '*';
16415 	else
16416 		cflag = ' ';
16417 	print_len = snprintf((char *)mp->b_wptr, buf_len,
16418 	    "%s " MI_COL_PTRFMT_STR "%d %s %08x %08x %010d %08x %08x "
16419 	    "%010d %05ld %05d %1d %02d %02d %1d %08x %s%c\n",
16420 	    hash,
16421 	    (void *)tcp,
16422 	    tcp->tcp_connp->conn_zoneid,
16423 	    addrbuf,
16424 	    (ispriv) ? tcp->tcp_snxt : 0,
16425 	    (ispriv) ? tcp->tcp_suna : 0,
16426 	    tcp->tcp_swnd,
16427 	    (ispriv) ? tcp->tcp_rnxt : 0,
16428 	    (ispriv) ? tcp->tcp_rack : 0,
16429 	    tcp->tcp_rwnd,
16430 	    tcp->tcp_rto,
16431 	    tcp->tcp_mss,
16432 	    tcp->tcp_snd_ws_ok,
16433 	    tcp->tcp_snd_ws,
16434 	    tcp->tcp_rcv_ws,
16435 	    tcp->tcp_snd_ts_ok,
16436 	    tcp->tcp_ts_recent,
16437 	    tcp_display(tcp, buf, DISP_PORT_ONLY), cflag);
16438 	if (print_len < buf_len) {
16439 		((mblk_t *)mp)->b_wptr += print_len;
16440 	} else {
16441 		((mblk_t *)mp)->b_wptr += buf_len;
16442 	}
16443 }
16444 
16445 /*
16446  * TCP status report (for listeners only) triggered via the Named Dispatch
16447  * mechanism.
16448  */
16449 /* ARGSUSED */
16450 static void
16451 tcp_report_listener(mblk_t *mp, tcp_t *tcp, int hashval)
16452 {
16453 	char addrbuf[INET6_ADDRSTRLEN];
16454 	in6_addr_t	v6dst;
16455 	uint_t print_len, buf_len;
16456 
16457 	buf_len = mp->b_datap->db_lim - mp->b_wptr;
16458 	if (buf_len <= 0)
16459 		return;
16460 
16461 	if (tcp->tcp_ipversion == IPV4_VERSION) {
16462 		IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6dst);
16463 		(void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf));
16464 	} else {
16465 		(void) inet_ntop(AF_INET6, &tcp->tcp_ip6h->ip6_src,
16466 		    addrbuf, sizeof (addrbuf));
16467 	}
16468 	print_len = snprintf((char *)mp->b_wptr, buf_len,
16469 	    "%03d "
16470 	    MI_COL_PTRFMT_STR
16471 	    "%d %s %05u %08u %d/%d/%d%c\n",
16472 	    hashval, (void *)tcp,
16473 	    tcp->tcp_connp->conn_zoneid,
16474 	    addrbuf,
16475 	    (uint_t)BE16_TO_U16(tcp->tcp_tcph->th_lport),
16476 	    tcp->tcp_conn_req_seqnum,
16477 	    tcp->tcp_conn_req_cnt_q0, tcp->tcp_conn_req_cnt_q,
16478 	    tcp->tcp_conn_req_max,
16479 	    tcp->tcp_syn_defense ? '*' : ' ');
16480 	if (print_len < buf_len) {
16481 		((mblk_t *)mp)->b_wptr += print_len;
16482 	} else {
16483 		((mblk_t *)mp)->b_wptr += buf_len;
16484 	}
16485 }
16486 
16487 /* TCP status report triggered via the Named Dispatch mechanism. */
16488 /* ARGSUSED */
16489 static int
16490 tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16491 {
16492 	tcp_t	*tcp;
16493 	int	i;
16494 	conn_t	*connp;
16495 	connf_t	*connfp;
16496 	zoneid_t zoneid;
16497 
16498 	/*
16499 	 * Because of the ndd constraint, at most we can have 64K buffer
16500 	 * to put in all TCP info.  So to be more efficient, just
16501 	 * allocate a 64K buffer here, assuming we need that large buffer.
16502 	 * This may be a problem as any user can read tcp_status.  Therefore
16503 	 * we limit the rate of doing this using tcp_ndd_get_info_interval.
16504 	 * This should be OK as normal users should not do this too often.
16505 	 */
16506 	if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) {
16507 		if (ddi_get_lbolt() - tcp_last_ndd_get_info_time <
16508 		    drv_usectohz(tcp_ndd_get_info_interval * 1000)) {
16509 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16510 			return (0);
16511 		}
16512 	}
16513 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16514 		/* The following may work even if we cannot get a large buf. */
16515 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16516 		return (0);
16517 	}
16518 
16519 	(void) mi_mpprintf(mp, "%s", tcp_report_header);
16520 
16521 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16522 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
16523 
16524 		connfp = &ipcl_globalhash_fanout[i];
16525 
16526 		connp = NULL;
16527 
16528 		while ((connp =
16529 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
16530 			tcp = connp->conn_tcp;
16531 			if (zoneid != GLOBAL_ZONEID &&
16532 			    zoneid != connp->conn_zoneid)
16533 				continue;
16534 			tcp_report_item(mp->b_cont, tcp, -1, tcp,
16535 			    cr);
16536 		}
16537 
16538 	}
16539 
16540 	tcp_last_ndd_get_info_time = ddi_get_lbolt();
16541 	return (0);
16542 }
16543 
16544 /* TCP status report triggered via the Named Dispatch mechanism. */
16545 /* ARGSUSED */
16546 static int
16547 tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16548 {
16549 	tf_t	*tbf;
16550 	tcp_t	*tcp;
16551 	int	i;
16552 	zoneid_t zoneid;
16553 
16554 	/* Refer to comments in tcp_status_report(). */
16555 	if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) {
16556 		if (ddi_get_lbolt() - tcp_last_ndd_get_info_time <
16557 		    drv_usectohz(tcp_ndd_get_info_interval * 1000)) {
16558 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16559 			return (0);
16560 		}
16561 	}
16562 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16563 		/* The following may work even if we cannot get a large buf. */
16564 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16565 		return (0);
16566 	}
16567 
16568 	(void) mi_mpprintf(mp, "    %s", tcp_report_header);
16569 
16570 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16571 
16572 	for (i = 0; i < A_CNT(tcp_bind_fanout); i++) {
16573 		tbf = &tcp_bind_fanout[i];
16574 		mutex_enter(&tbf->tf_lock);
16575 		for (tcp = tbf->tf_tcp; tcp != NULL;
16576 		    tcp = tcp->tcp_bind_hash) {
16577 			if (zoneid != GLOBAL_ZONEID &&
16578 			    zoneid != tcp->tcp_connp->conn_zoneid)
16579 				continue;
16580 			CONN_INC_REF(tcp->tcp_connp);
16581 			tcp_report_item(mp->b_cont, tcp, i,
16582 			    Q_TO_TCP(q), cr);
16583 			CONN_DEC_REF(tcp->tcp_connp);
16584 		}
16585 		mutex_exit(&tbf->tf_lock);
16586 	}
16587 	tcp_last_ndd_get_info_time = ddi_get_lbolt();
16588 	return (0);
16589 }
16590 
16591 /* TCP status report triggered via the Named Dispatch mechanism. */
16592 /* ARGSUSED */
16593 static int
16594 tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16595 {
16596 	connf_t	*connfp;
16597 	conn_t	*connp;
16598 	tcp_t	*tcp;
16599 	int	i;
16600 	zoneid_t zoneid;
16601 
16602 	/* Refer to comments in tcp_status_report(). */
16603 	if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) {
16604 		if (ddi_get_lbolt() - tcp_last_ndd_get_info_time <
16605 		    drv_usectohz(tcp_ndd_get_info_interval * 1000)) {
16606 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16607 			return (0);
16608 		}
16609 	}
16610 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16611 		/* The following may work even if we cannot get a large buf. */
16612 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16613 		return (0);
16614 	}
16615 
16616 	(void) mi_mpprintf(mp,
16617 	    "    TCP    " MI_COL_HDRPAD_STR
16618 	    "zone IP addr         port  seqnum   backlog (q0/q/max)");
16619 
16620 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16621 
16622 	for (i = 0; i < ipcl_bind_fanout_size; i++) {
16623 		connfp =  &ipcl_bind_fanout[i];
16624 		connp = NULL;
16625 		while ((connp =
16626 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
16627 			tcp = connp->conn_tcp;
16628 			if (zoneid != GLOBAL_ZONEID &&
16629 			    zoneid != connp->conn_zoneid)
16630 				continue;
16631 			tcp_report_listener(mp->b_cont, tcp, i);
16632 		}
16633 	}
16634 
16635 	tcp_last_ndd_get_info_time = ddi_get_lbolt();
16636 	return (0);
16637 }
16638 
16639 /* TCP status report triggered via the Named Dispatch mechanism. */
16640 /* ARGSUSED */
16641 static int
16642 tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16643 {
16644 	connf_t	*connfp;
16645 	conn_t	*connp;
16646 	tcp_t	*tcp;
16647 	int	i;
16648 	zoneid_t zoneid;
16649 
16650 	/* Refer to comments in tcp_status_report(). */
16651 	if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) {
16652 		if (ddi_get_lbolt() - tcp_last_ndd_get_info_time <
16653 		    drv_usectohz(tcp_ndd_get_info_interval * 1000)) {
16654 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16655 			return (0);
16656 		}
16657 	}
16658 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16659 		/* The following may work even if we cannot get a large buf. */
16660 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16661 		return (0);
16662 	}
16663 
16664 	(void) mi_mpprintf(mp, "tcp_conn_hash_size = %d",
16665 	    ipcl_conn_fanout_size);
16666 	(void) mi_mpprintf(mp, "    %s", tcp_report_header);
16667 
16668 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16669 
16670 	for (i = 0; i < ipcl_conn_fanout_size; i++) {
16671 		connfp =  &ipcl_conn_fanout[i];
16672 		connp = NULL;
16673 		while ((connp =
16674 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
16675 			tcp = connp->conn_tcp;
16676 			if (zoneid != GLOBAL_ZONEID &&
16677 			    zoneid != connp->conn_zoneid)
16678 				continue;
16679 			tcp_report_item(mp->b_cont, tcp, i,
16680 			    Q_TO_TCP(q), cr);
16681 		}
16682 	}
16683 
16684 	tcp_last_ndd_get_info_time = ddi_get_lbolt();
16685 	return (0);
16686 }
16687 
16688 /* TCP status report triggered via the Named Dispatch mechanism. */
16689 /* ARGSUSED */
16690 static int
16691 tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16692 {
16693 	tf_t	*tf;
16694 	tcp_t	*tcp;
16695 	int	i;
16696 	zoneid_t zoneid;
16697 
16698 	/* Refer to comments in tcp_status_report(). */
16699 	if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) {
16700 		if (ddi_get_lbolt() - tcp_last_ndd_get_info_time <
16701 		    drv_usectohz(tcp_ndd_get_info_interval * 1000)) {
16702 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16703 			return (0);
16704 		}
16705 	}
16706 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16707 		/* The following may work even if we cannot get a large buf. */
16708 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16709 		return (0);
16710 	}
16711 
16712 	(void) mi_mpprintf(mp, "    %s", tcp_report_header);
16713 
16714 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16715 
16716 	for (i = 0; i < A_CNT(tcp_acceptor_fanout); i++) {
16717 		tf = &tcp_acceptor_fanout[i];
16718 		mutex_enter(&tf->tf_lock);
16719 		for (tcp = tf->tf_tcp; tcp != NULL;
16720 		    tcp = tcp->tcp_acceptor_hash) {
16721 			if (zoneid != GLOBAL_ZONEID &&
16722 			    zoneid != tcp->tcp_connp->conn_zoneid)
16723 				continue;
16724 			tcp_report_item(mp->b_cont, tcp, i,
16725 			    Q_TO_TCP(q), cr);
16726 		}
16727 		mutex_exit(&tf->tf_lock);
16728 	}
16729 	tcp_last_ndd_get_info_time = ddi_get_lbolt();
16730 	return (0);
16731 }
16732 
16733 /*
16734  * tcp_timer is the timer service routine.  It handles the retransmission,
16735  * FIN_WAIT_2 flush, and zero window probe timeout events.  It figures out
16736  * from the state of the tcp instance what kind of action needs to be done
16737  * at the time it is called.
16738  */
16739 static void
16740 tcp_timer(void *arg)
16741 {
16742 	mblk_t		*mp;
16743 	clock_t		first_threshold;
16744 	clock_t		second_threshold;
16745 	clock_t		ms;
16746 	uint32_t	mss;
16747 	conn_t		*connp = (conn_t *)arg;
16748 	tcp_t		*tcp = connp->conn_tcp;
16749 
16750 	tcp->tcp_timer_tid = 0;
16751 
16752 	if (tcp->tcp_fused)
16753 		return;
16754 
16755 	first_threshold =  tcp->tcp_first_timer_threshold;
16756 	second_threshold = tcp->tcp_second_timer_threshold;
16757 	switch (tcp->tcp_state) {
16758 	case TCPS_IDLE:
16759 	case TCPS_BOUND:
16760 	case TCPS_LISTEN:
16761 		return;
16762 	case TCPS_SYN_RCVD: {
16763 		tcp_t	*listener = tcp->tcp_listener;
16764 
16765 		if (tcp->tcp_syn_rcvd_timeout == 0 && (listener != NULL)) {
16766 			ASSERT(tcp->tcp_rq == listener->tcp_rq);
16767 			/* it's our first timeout */
16768 			tcp->tcp_syn_rcvd_timeout = 1;
16769 			mutex_enter(&listener->tcp_eager_lock);
16770 			listener->tcp_syn_rcvd_timeout++;
16771 			if (!tcp->tcp_dontdrop && tcp->tcp_closemp_used == 0) {
16772 				/*
16773 				 * Make this eager available for drop if we
16774 				 * need to drop one to accomodate a new
16775 				 * incoming SYN request.
16776 				 */
16777 				MAKE_DROPPABLE(listener, tcp);
16778 			}
16779 			if (!listener->tcp_syn_defense &&
16780 			    (listener->tcp_syn_rcvd_timeout >
16781 			    (tcp_conn_req_max_q0 >> 2)) &&
16782 			    (tcp_conn_req_max_q0 > 200)) {
16783 				/* We may be under attack. Put on a defense. */
16784 				listener->tcp_syn_defense = B_TRUE;
16785 				cmn_err(CE_WARN, "High TCP connect timeout "
16786 				    "rate! System (port %d) may be under a "
16787 				    "SYN flood attack!",
16788 				    BE16_TO_U16(listener->tcp_tcph->th_lport));
16789 
16790 				listener->tcp_ip_addr_cache = kmem_zalloc(
16791 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t),
16792 				    KM_NOSLEEP);
16793 			}
16794 			mutex_exit(&listener->tcp_eager_lock);
16795 		} else if (listener != NULL) {
16796 			mutex_enter(&listener->tcp_eager_lock);
16797 			tcp->tcp_syn_rcvd_timeout++;
16798 			if (tcp->tcp_syn_rcvd_timeout > 1 &&
16799 			    tcp->tcp_closemp_used == 0) {
16800 				/*
16801 				 * This is our second timeout. Put the tcp in
16802 				 * the list of droppable eagers to allow it to
16803 				 * be dropped, if needed. We don't check
16804 				 * whether tcp_dontdrop is set or not to
16805 				 * protect ourselve from a SYN attack where a
16806 				 * remote host can spoof itself as one of the
16807 				 * good IP source and continue to hold
16808 				 * resources too long.
16809 				 */
16810 				MAKE_DROPPABLE(listener, tcp);
16811 			}
16812 			mutex_exit(&listener->tcp_eager_lock);
16813 		}
16814 	}
16815 		/* FALLTHRU */
16816 	case TCPS_SYN_SENT:
16817 		first_threshold =  tcp->tcp_first_ctimer_threshold;
16818 		second_threshold = tcp->tcp_second_ctimer_threshold;
16819 		break;
16820 	case TCPS_ESTABLISHED:
16821 	case TCPS_FIN_WAIT_1:
16822 	case TCPS_CLOSING:
16823 	case TCPS_CLOSE_WAIT:
16824 	case TCPS_LAST_ACK:
16825 		/* If we have data to rexmit */
16826 		if (tcp->tcp_suna != tcp->tcp_snxt) {
16827 			clock_t	time_to_wait;
16828 
16829 			BUMP_MIB(&tcp_mib, tcpTimRetrans);
16830 			if (!tcp->tcp_xmit_head)
16831 				break;
16832 			time_to_wait = lbolt -
16833 			    (clock_t)tcp->tcp_xmit_head->b_prev;
16834 			time_to_wait = tcp->tcp_rto -
16835 			    TICK_TO_MSEC(time_to_wait);
16836 			/*
16837 			 * If the timer fires too early, 1 clock tick earlier,
16838 			 * restart the timer.
16839 			 */
16840 			if (time_to_wait > msec_per_tick) {
16841 				TCP_STAT(tcp_timer_fire_early);
16842 				TCP_TIMER_RESTART(tcp, time_to_wait);
16843 				return;
16844 			}
16845 			/*
16846 			 * When we probe zero windows, we force the swnd open.
16847 			 * If our peer acks with a closed window swnd will be
16848 			 * set to zero by tcp_rput(). As long as we are
16849 			 * receiving acks tcp_rput will
16850 			 * reset 'tcp_ms_we_have_waited' so as not to trip the
16851 			 * first and second interval actions.  NOTE: the timer
16852 			 * interval is allowed to continue its exponential
16853 			 * backoff.
16854 			 */
16855 			if (tcp->tcp_swnd == 0 || tcp->tcp_zero_win_probe) {
16856 				if (tcp->tcp_debug) {
16857 					(void) strlog(TCP_MOD_ID, 0, 1,
16858 					    SL_TRACE, "tcp_timer: zero win");
16859 				}
16860 			} else {
16861 				/*
16862 				 * After retransmission, we need to do
16863 				 * slow start.  Set the ssthresh to one
16864 				 * half of current effective window and
16865 				 * cwnd to one MSS.  Also reset
16866 				 * tcp_cwnd_cnt.
16867 				 *
16868 				 * Note that if tcp_ssthresh is reduced because
16869 				 * of ECN, do not reduce it again unless it is
16870 				 * already one window of data away (tcp_cwr
16871 				 * should then be cleared) or this is a
16872 				 * timeout for a retransmitted segment.
16873 				 */
16874 				uint32_t npkt;
16875 
16876 				if (!tcp->tcp_cwr || tcp->tcp_rexmit) {
16877 					npkt = ((tcp->tcp_timer_backoff ?
16878 					    tcp->tcp_cwnd_ssthresh :
16879 					    tcp->tcp_snxt -
16880 					    tcp->tcp_suna) >> 1) / tcp->tcp_mss;
16881 					tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) *
16882 					    tcp->tcp_mss;
16883 				}
16884 				tcp->tcp_cwnd = tcp->tcp_mss;
16885 				tcp->tcp_cwnd_cnt = 0;
16886 				if (tcp->tcp_ecn_ok) {
16887 					tcp->tcp_cwr = B_TRUE;
16888 					tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
16889 					tcp->tcp_ecn_cwr_sent = B_FALSE;
16890 				}
16891 			}
16892 			break;
16893 		}
16894 		/*
16895 		 * We have something to send yet we cannot send.  The
16896 		 * reason can be:
16897 		 *
16898 		 * 1. Zero send window: we need to do zero window probe.
16899 		 * 2. Zero cwnd: because of ECN, we need to "clock out
16900 		 * segments.
16901 		 * 3. SWS avoidance: receiver may have shrunk window,
16902 		 * reset our knowledge.
16903 		 *
16904 		 * Note that condition 2 can happen with either 1 or
16905 		 * 3.  But 1 and 3 are exclusive.
16906 		 */
16907 		if (tcp->tcp_unsent != 0) {
16908 			if (tcp->tcp_cwnd == 0) {
16909 				/*
16910 				 * Set tcp_cwnd to 1 MSS so that a
16911 				 * new segment can be sent out.  We
16912 				 * are "clocking out" new data when
16913 				 * the network is really congested.
16914 				 */
16915 				ASSERT(tcp->tcp_ecn_ok);
16916 				tcp->tcp_cwnd = tcp->tcp_mss;
16917 			}
16918 			if (tcp->tcp_swnd == 0) {
16919 				/* Extend window for zero window probe */
16920 				tcp->tcp_swnd++;
16921 				tcp->tcp_zero_win_probe = B_TRUE;
16922 				BUMP_MIB(&tcp_mib, tcpOutWinProbe);
16923 			} else {
16924 				/*
16925 				 * Handle timeout from sender SWS avoidance.
16926 				 * Reset our knowledge of the max send window
16927 				 * since the receiver might have reduced its
16928 				 * receive buffer.  Avoid setting tcp_max_swnd
16929 				 * to one since that will essentially disable
16930 				 * the SWS checks.
16931 				 *
16932 				 * Note that since we don't have a SWS
16933 				 * state variable, if the timeout is set
16934 				 * for ECN but not for SWS, this
16935 				 * code will also be executed.  This is
16936 				 * fine as tcp_max_swnd is updated
16937 				 * constantly and it will not affect
16938 				 * anything.
16939 				 */
16940 				tcp->tcp_max_swnd = MAX(tcp->tcp_swnd, 2);
16941 			}
16942 			tcp_wput_data(tcp, NULL, B_FALSE);
16943 			return;
16944 		}
16945 		/* Is there a FIN that needs to be to re retransmitted? */
16946 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
16947 		    !tcp->tcp_fin_acked)
16948 			break;
16949 		/* Nothing to do, return without restarting timer. */
16950 		TCP_STAT(tcp_timer_fire_miss);
16951 		return;
16952 	case TCPS_FIN_WAIT_2:
16953 		/*
16954 		 * User closed the TCP endpoint and peer ACK'ed our FIN.
16955 		 * We waited some time for for peer's FIN, but it hasn't
16956 		 * arrived.  We flush the connection now to avoid
16957 		 * case where the peer has rebooted.
16958 		 */
16959 		if (TCP_IS_DETACHED(tcp)) {
16960 			(void) tcp_clean_death(tcp, 0, 23);
16961 		} else {
16962 			TCP_TIMER_RESTART(tcp, tcp_fin_wait_2_flush_interval);
16963 		}
16964 		return;
16965 	case TCPS_TIME_WAIT:
16966 		(void) tcp_clean_death(tcp, 0, 24);
16967 		return;
16968 	default:
16969 		if (tcp->tcp_debug) {
16970 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
16971 			    "tcp_timer: strange state (%d) %s",
16972 			    tcp->tcp_state, tcp_display(tcp, NULL,
16973 			    DISP_PORT_ONLY));
16974 		}
16975 		return;
16976 	}
16977 	if ((ms = tcp->tcp_ms_we_have_waited) > second_threshold) {
16978 		/*
16979 		 * For zero window probe, we need to send indefinitely,
16980 		 * unless we have not heard from the other side for some
16981 		 * time...
16982 		 */
16983 		if ((tcp->tcp_zero_win_probe == 0) ||
16984 		    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >
16985 		    second_threshold)) {
16986 			BUMP_MIB(&tcp_mib, tcpTimRetransDrop);
16987 			/*
16988 			 * If TCP is in SYN_RCVD state, send back a
16989 			 * RST|ACK as BSD does.  Note that tcp_zero_win_probe
16990 			 * should be zero in TCPS_SYN_RCVD state.
16991 			 */
16992 			if (tcp->tcp_state == TCPS_SYN_RCVD) {
16993 				tcp_xmit_ctl("tcp_timer: RST sent on timeout "
16994 				    "in SYN_RCVD",
16995 				    tcp, tcp->tcp_snxt,
16996 				    tcp->tcp_rnxt, TH_RST | TH_ACK);
16997 			}
16998 			(void) tcp_clean_death(tcp,
16999 			    tcp->tcp_client_errno ?
17000 			    tcp->tcp_client_errno : ETIMEDOUT, 25);
17001 			return;
17002 		} else {
17003 			/*
17004 			 * Set tcp_ms_we_have_waited to second_threshold
17005 			 * so that in next timeout, we will do the above
17006 			 * check (lbolt - tcp_last_recv_time).  This is
17007 			 * also to avoid overflow.
17008 			 *
17009 			 * We don't need to decrement tcp_timer_backoff
17010 			 * to avoid overflow because it will be decremented
17011 			 * later if new timeout value is greater than
17012 			 * tcp_rexmit_interval_max.  In the case when
17013 			 * tcp_rexmit_interval_max is greater than
17014 			 * second_threshold, it means that we will wait
17015 			 * longer than second_threshold to send the next
17016 			 * window probe.
17017 			 */
17018 			tcp->tcp_ms_we_have_waited = second_threshold;
17019 		}
17020 	} else if (ms > first_threshold) {
17021 		if (tcp->tcp_snd_zcopy_aware && (!tcp->tcp_xmit_zc_clean) &&
17022 		    tcp->tcp_xmit_head != NULL) {
17023 			tcp->tcp_xmit_head =
17024 			    tcp_zcopy_backoff(tcp, tcp->tcp_xmit_head, 1);
17025 		}
17026 		/*
17027 		 * We have been retransmitting for too long...  The RTT
17028 		 * we calculated is probably incorrect.  Reinitialize it.
17029 		 * Need to compensate for 0 tcp_rtt_sa.  Reset
17030 		 * tcp_rtt_update so that we won't accidentally cache a
17031 		 * bad value.  But only do this if this is not a zero
17032 		 * window probe.
17033 		 */
17034 		if (tcp->tcp_rtt_sa != 0 && tcp->tcp_zero_win_probe == 0) {
17035 			tcp->tcp_rtt_sd += (tcp->tcp_rtt_sa >> 3) +
17036 			    (tcp->tcp_rtt_sa >> 5);
17037 			tcp->tcp_rtt_sa = 0;
17038 			tcp_ip_notify(tcp);
17039 			tcp->tcp_rtt_update = 0;
17040 		}
17041 	}
17042 	tcp->tcp_timer_backoff++;
17043 	if ((ms = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
17044 	    tcp_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5)) <
17045 	    tcp_rexmit_interval_min) {
17046 		/*
17047 		 * This means the original RTO is tcp_rexmit_interval_min.
17048 		 * So we will use tcp_rexmit_interval_min as the RTO value
17049 		 * and do the backoff.
17050 		 */
17051 		ms = tcp_rexmit_interval_min << tcp->tcp_timer_backoff;
17052 	} else {
17053 		ms <<= tcp->tcp_timer_backoff;
17054 	}
17055 	if (ms > tcp_rexmit_interval_max) {
17056 		ms = tcp_rexmit_interval_max;
17057 		/*
17058 		 * ms is at max, decrement tcp_timer_backoff to avoid
17059 		 * overflow.
17060 		 */
17061 		tcp->tcp_timer_backoff--;
17062 	}
17063 	tcp->tcp_ms_we_have_waited += ms;
17064 	if (tcp->tcp_zero_win_probe == 0) {
17065 		tcp->tcp_rto = ms;
17066 	}
17067 	TCP_TIMER_RESTART(tcp, ms);
17068 	/*
17069 	 * This is after a timeout and tcp_rto is backed off.  Set
17070 	 * tcp_set_timer to 1 so that next time RTO is updated, we will
17071 	 * restart the timer with a correct value.
17072 	 */
17073 	tcp->tcp_set_timer = 1;
17074 	mss = tcp->tcp_snxt - tcp->tcp_suna;
17075 	if (mss > tcp->tcp_mss)
17076 		mss = tcp->tcp_mss;
17077 	if (mss > tcp->tcp_swnd && tcp->tcp_swnd != 0)
17078 		mss = tcp->tcp_swnd;
17079 
17080 	if ((mp = tcp->tcp_xmit_head) != NULL)
17081 		mp->b_prev = (mblk_t *)lbolt;
17082 	mp = tcp_xmit_mp(tcp, mp, mss, NULL, NULL, tcp->tcp_suna, B_TRUE, &mss,
17083 	    B_TRUE);
17084 
17085 	/*
17086 	 * When slow start after retransmission begins, start with
17087 	 * this seq no.  tcp_rexmit_max marks the end of special slow
17088 	 * start phase.  tcp_snd_burst controls how many segments
17089 	 * can be sent because of an ack.
17090 	 */
17091 	tcp->tcp_rexmit_nxt = tcp->tcp_suna;
17092 	tcp->tcp_snd_burst = TCP_CWND_SS;
17093 	if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
17094 	    (tcp->tcp_unsent == 0)) {
17095 		tcp->tcp_rexmit_max = tcp->tcp_fss;
17096 	} else {
17097 		tcp->tcp_rexmit_max = tcp->tcp_snxt;
17098 	}
17099 	tcp->tcp_rexmit = B_TRUE;
17100 	tcp->tcp_dupack_cnt = 0;
17101 
17102 	/*
17103 	 * Remove all rexmit SACK blk to start from fresh.
17104 	 */
17105 	if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
17106 		TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
17107 		tcp->tcp_num_notsack_blk = 0;
17108 		tcp->tcp_cnt_notsack_list = 0;
17109 	}
17110 	if (mp == NULL) {
17111 		return;
17112 	}
17113 	/* Attach credentials to retransmitted initial SYNs. */
17114 	if (tcp->tcp_state == TCPS_SYN_SENT) {
17115 		mblk_setcred(mp, tcp->tcp_cred);
17116 		DB_CPID(mp) = tcp->tcp_cpid;
17117 	}
17118 
17119 	tcp->tcp_csuna = tcp->tcp_snxt;
17120 	BUMP_MIB(&tcp_mib, tcpRetransSegs);
17121 	UPDATE_MIB(&tcp_mib, tcpRetransBytes, mss);
17122 	TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
17123 	tcp_send_data(tcp, tcp->tcp_wq, mp);
17124 
17125 }
17126 
17127 /* tcp_unbind is called by tcp_wput_proto to handle T_UNBIND_REQ messages. */
17128 static void
17129 tcp_unbind(tcp_t *tcp, mblk_t *mp)
17130 {
17131 	conn_t	*connp;
17132 
17133 	switch (tcp->tcp_state) {
17134 	case TCPS_BOUND:
17135 	case TCPS_LISTEN:
17136 		break;
17137 	default:
17138 		tcp_err_ack(tcp, mp, TOUTSTATE, 0);
17139 		return;
17140 	}
17141 
17142 	/*
17143 	 * Need to clean up all the eagers since after the unbind, segments
17144 	 * will no longer be delivered to this listener stream.
17145 	 */
17146 	mutex_enter(&tcp->tcp_eager_lock);
17147 	if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) {
17148 		tcp_eager_cleanup(tcp, 0);
17149 	}
17150 	mutex_exit(&tcp->tcp_eager_lock);
17151 
17152 	if (tcp->tcp_ipversion == IPV4_VERSION) {
17153 		tcp->tcp_ipha->ipha_src = 0;
17154 	} else {
17155 		V6_SET_ZERO(tcp->tcp_ip6h->ip6_src);
17156 	}
17157 	V6_SET_ZERO(tcp->tcp_ip_src_v6);
17158 	bzero(tcp->tcp_tcph->th_lport, sizeof (tcp->tcp_tcph->th_lport));
17159 	tcp_bind_hash_remove(tcp);
17160 	tcp->tcp_state = TCPS_IDLE;
17161 	tcp->tcp_mdt = B_FALSE;
17162 	/* Send M_FLUSH according to TPI */
17163 	(void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW);
17164 	connp = tcp->tcp_connp;
17165 	connp->conn_mdt_ok = B_FALSE;
17166 	ipcl_hash_remove(connp);
17167 	bzero(&connp->conn_ports, sizeof (connp->conn_ports));
17168 	mp = mi_tpi_ok_ack_alloc(mp);
17169 	putnext(tcp->tcp_rq, mp);
17170 }
17171 
17172 /*
17173  * Don't let port fall into the privileged range.
17174  * Since the extra privileged ports can be arbitrary we also
17175  * ensure that we exclude those from consideration.
17176  * tcp_g_epriv_ports is not sorted thus we loop over it until
17177  * there are no changes.
17178  *
17179  * Note: No locks are held when inspecting tcp_g_*epriv_ports
17180  * but instead the code relies on:
17181  * - the fact that the address of the array and its size never changes
17182  * - the atomic assignment of the elements of the array
17183  *
17184  * Returns 0 if there are no more ports available.
17185  *
17186  * TS note: skip multilevel ports.
17187  */
17188 static in_port_t
17189 tcp_update_next_port(in_port_t port, const tcp_t *tcp, boolean_t random)
17190 {
17191 	int i;
17192 	boolean_t restart = B_FALSE;
17193 
17194 	if (random && tcp_random_anon_port != 0) {
17195 		(void) random_get_pseudo_bytes((uint8_t *)&port,
17196 		    sizeof (in_port_t));
17197 		/*
17198 		 * Unless changed by a sys admin, the smallest anon port
17199 		 * is 32768 and the largest anon port is 65535.  It is
17200 		 * very likely (50%) for the random port to be smaller
17201 		 * than the smallest anon port.  When that happens,
17202 		 * add port % (anon port range) to the smallest anon
17203 		 * port to get the random port.  It should fall into the
17204 		 * valid anon port range.
17205 		 */
17206 		if (port < tcp_smallest_anon_port) {
17207 			port = tcp_smallest_anon_port +
17208 			    port % (tcp_largest_anon_port -
17209 				tcp_smallest_anon_port);
17210 		}
17211 	}
17212 
17213 retry:
17214 	if (port < tcp_smallest_anon_port)
17215 		port = (in_port_t)tcp_smallest_anon_port;
17216 
17217 	if (port > tcp_largest_anon_port) {
17218 		if (restart)
17219 			return (0);
17220 		restart = B_TRUE;
17221 		port = (in_port_t)tcp_smallest_anon_port;
17222 	}
17223 
17224 	if (port < tcp_smallest_nonpriv_port)
17225 		port = (in_port_t)tcp_smallest_nonpriv_port;
17226 
17227 	for (i = 0; i < tcp_g_num_epriv_ports; i++) {
17228 		if (port == tcp_g_epriv_ports[i]) {
17229 			port++;
17230 			/*
17231 			 * Make sure whether the port is in the
17232 			 * valid range.
17233 			 */
17234 			goto retry;
17235 		}
17236 	}
17237 	if (is_system_labeled() &&
17238 	    (i = tsol_next_port(crgetzone(tcp->tcp_cred), port,
17239 	    IPPROTO_TCP, B_TRUE)) != 0) {
17240 		port = i;
17241 		goto retry;
17242 	}
17243 	return (port);
17244 }
17245 
17246 /*
17247  * Return the next anonymous port in the privileged port range for
17248  * bind checking.  It starts at IPPORT_RESERVED - 1 and goes
17249  * downwards.  This is the same behavior as documented in the userland
17250  * library call rresvport(3N).
17251  *
17252  * TS note: skip multilevel ports.
17253  */
17254 static in_port_t
17255 tcp_get_next_priv_port(const tcp_t *tcp)
17256 {
17257 	static in_port_t next_priv_port = IPPORT_RESERVED - 1;
17258 	in_port_t nextport;
17259 	boolean_t restart = B_FALSE;
17260 
17261 retry:
17262 	if (next_priv_port < tcp_min_anonpriv_port ||
17263 	    next_priv_port >= IPPORT_RESERVED) {
17264 		next_priv_port = IPPORT_RESERVED - 1;
17265 		if (restart)
17266 			return (0);
17267 		restart = B_TRUE;
17268 	}
17269 	if (is_system_labeled() &&
17270 	    (nextport = tsol_next_port(crgetzone(tcp->tcp_cred),
17271 	    next_priv_port, IPPROTO_TCP, B_FALSE)) != 0) {
17272 		next_priv_port = nextport;
17273 		goto retry;
17274 	}
17275 	return (next_priv_port--);
17276 }
17277 
17278 /* The write side r/w procedure. */
17279 
17280 #if CCS_STATS
17281 struct {
17282 	struct {
17283 		int64_t count, bytes;
17284 	} tot, hit;
17285 } wrw_stats;
17286 #endif
17287 
17288 /*
17289  * Call by tcp_wput() to handle all non data, except M_PROTO and M_PCPROTO,
17290  * messages.
17291  */
17292 /* ARGSUSED */
17293 static void
17294 tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2)
17295 {
17296 	conn_t	*connp = (conn_t *)arg;
17297 	tcp_t	*tcp = connp->conn_tcp;
17298 	queue_t	*q = tcp->tcp_wq;
17299 
17300 	ASSERT(DB_TYPE(mp) != M_IOCTL);
17301 	/*
17302 	 * TCP is D_MP and qprocsoff() is done towards the end of the tcp_close.
17303 	 * Once the close starts, streamhead and sockfs will not let any data
17304 	 * packets come down (close ensures that there are no threads using the
17305 	 * queue and no new threads will come down) but since qprocsoff()
17306 	 * hasn't happened yet, a M_FLUSH or some non data message might
17307 	 * get reflected back (in response to our own FLUSHRW) and get
17308 	 * processed after tcp_close() is done. The conn would still be valid
17309 	 * because a ref would have added but we need to check the state
17310 	 * before actually processing the packet.
17311 	 */
17312 	if (TCP_IS_DETACHED(tcp) || (tcp->tcp_state == TCPS_CLOSED)) {
17313 		freemsg(mp);
17314 		return;
17315 	}
17316 
17317 	switch (DB_TYPE(mp)) {
17318 	case M_IOCDATA:
17319 		tcp_wput_iocdata(tcp, mp);
17320 		break;
17321 	case M_FLUSH:
17322 		tcp_wput_flush(tcp, mp);
17323 		break;
17324 	default:
17325 		CALL_IP_WPUT(connp, q, mp);
17326 		break;
17327 	}
17328 }
17329 
17330 /*
17331  * The TCP fast path write put procedure.
17332  * NOTE: the logic of the fast path is duplicated from tcp_wput_data()
17333  */
17334 /* ARGSUSED */
17335 void
17336 tcp_output(void *arg, mblk_t *mp, void *arg2)
17337 {
17338 	int		len;
17339 	int		hdrlen;
17340 	int		plen;
17341 	mblk_t		*mp1;
17342 	uchar_t		*rptr;
17343 	uint32_t	snxt;
17344 	tcph_t		*tcph;
17345 	struct datab	*db;
17346 	uint32_t	suna;
17347 	uint32_t	mss;
17348 	ipaddr_t	*dst;
17349 	ipaddr_t	*src;
17350 	uint32_t	sum;
17351 	int		usable;
17352 	conn_t		*connp = (conn_t *)arg;
17353 	tcp_t		*tcp = connp->conn_tcp;
17354 	uint32_t	msize;
17355 
17356 	/*
17357 	 * Try and ASSERT the minimum possible references on the
17358 	 * conn early enough. Since we are executing on write side,
17359 	 * the connection is obviously not detached and that means
17360 	 * there is a ref each for TCP and IP. Since we are behind
17361 	 * the squeue, the minimum references needed are 3. If the
17362 	 * conn is in classifier hash list, there should be an
17363 	 * extra ref for that (we check both the possibilities).
17364 	 */
17365 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
17366 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
17367 
17368 	ASSERT(DB_TYPE(mp) == M_DATA);
17369 	msize = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp);
17370 
17371 	mutex_enter(&connp->conn_lock);
17372 	tcp->tcp_squeue_bytes -= msize;
17373 	mutex_exit(&connp->conn_lock);
17374 
17375 	/* Bypass tcp protocol for fused tcp loopback */
17376 	if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize))
17377 		return;
17378 
17379 	mss = tcp->tcp_mss;
17380 	if (tcp->tcp_xmit_zc_clean)
17381 		mp = tcp_zcopy_backoff(tcp, mp, 0);
17382 
17383 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
17384 	len = (int)(mp->b_wptr - mp->b_rptr);
17385 
17386 	/*
17387 	 * Criteria for fast path:
17388 	 *
17389 	 *   1. no unsent data
17390 	 *   2. single mblk in request
17391 	 *   3. connection established
17392 	 *   4. data in mblk
17393 	 *   5. len <= mss
17394 	 *   6. no tcp_valid bits
17395 	 */
17396 	if ((tcp->tcp_unsent != 0) ||
17397 	    (tcp->tcp_cork) ||
17398 	    (mp->b_cont != NULL) ||
17399 	    (tcp->tcp_state != TCPS_ESTABLISHED) ||
17400 	    (len == 0) ||
17401 	    (len > mss) ||
17402 	    (tcp->tcp_valid_bits != 0)) {
17403 		tcp_wput_data(tcp, mp, B_FALSE);
17404 		return;
17405 	}
17406 
17407 	ASSERT(tcp->tcp_xmit_tail_unsent == 0);
17408 	ASSERT(tcp->tcp_fin_sent == 0);
17409 
17410 	/* queue new packet onto retransmission queue */
17411 	if (tcp->tcp_xmit_head == NULL) {
17412 		tcp->tcp_xmit_head = mp;
17413 	} else {
17414 		tcp->tcp_xmit_last->b_cont = mp;
17415 	}
17416 	tcp->tcp_xmit_last = mp;
17417 	tcp->tcp_xmit_tail = mp;
17418 
17419 	/* find out how much we can send */
17420 	/* BEGIN CSTYLED */
17421 	/*
17422 	 *    un-acked           usable
17423 	 *  |--------------|-----------------|
17424 	 *  tcp_suna       tcp_snxt          tcp_suna+tcp_swnd
17425 	 */
17426 	/* END CSTYLED */
17427 
17428 	/* start sending from tcp_snxt */
17429 	snxt = tcp->tcp_snxt;
17430 
17431 	/*
17432 	 * Check to see if this connection has been idled for some
17433 	 * time and no ACK is expected.  If it is, we need to slow
17434 	 * start again to get back the connection's "self-clock" as
17435 	 * described in VJ's paper.
17436 	 *
17437 	 * Refer to the comment in tcp_mss_set() for the calculation
17438 	 * of tcp_cwnd after idle.
17439 	 */
17440 	if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet &&
17441 	    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) {
17442 		SET_TCP_INIT_CWND(tcp, mss, tcp_slow_start_after_idle);
17443 	}
17444 
17445 	usable = tcp->tcp_swnd;		/* tcp window size */
17446 	if (usable > tcp->tcp_cwnd)
17447 		usable = tcp->tcp_cwnd;	/* congestion window smaller */
17448 	usable -= snxt;		/* subtract stuff already sent */
17449 	suna = tcp->tcp_suna;
17450 	usable += suna;
17451 	/* usable can be < 0 if the congestion window is smaller */
17452 	if (len > usable) {
17453 		/* Can't send complete M_DATA in one shot */
17454 		goto slow;
17455 	}
17456 
17457 	if (tcp->tcp_flow_stopped &&
17458 	    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
17459 		tcp_clrqfull(tcp);
17460 	}
17461 
17462 	/*
17463 	 * determine if anything to send (Nagle).
17464 	 *
17465 	 *   1. len < tcp_mss (i.e. small)
17466 	 *   2. unacknowledged data present
17467 	 *   3. len < nagle limit
17468 	 *   4. last packet sent < nagle limit (previous packet sent)
17469 	 */
17470 	if ((len < mss) && (snxt != suna) &&
17471 	    (len < (int)tcp->tcp_naglim) &&
17472 	    (tcp->tcp_last_sent_len < tcp->tcp_naglim)) {
17473 		/*
17474 		 * This was the first unsent packet and normally
17475 		 * mss < xmit_hiwater so there is no need to worry
17476 		 * about flow control. The next packet will go
17477 		 * through the flow control check in tcp_wput_data().
17478 		 */
17479 		/* leftover work from above */
17480 		tcp->tcp_unsent = len;
17481 		tcp->tcp_xmit_tail_unsent = len;
17482 
17483 		return;
17484 	}
17485 
17486 	/* len <= tcp->tcp_mss && len == unsent so no silly window */
17487 
17488 	if (snxt == suna) {
17489 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
17490 	}
17491 
17492 	/* we have always sent something */
17493 	tcp->tcp_rack_cnt = 0;
17494 
17495 	tcp->tcp_snxt = snxt + len;
17496 	tcp->tcp_rack = tcp->tcp_rnxt;
17497 
17498 	if ((mp1 = dupb(mp)) == 0)
17499 		goto no_memory;
17500 	mp->b_prev = (mblk_t *)(uintptr_t)lbolt;
17501 	mp->b_next = (mblk_t *)(uintptr_t)snxt;
17502 
17503 	/* adjust tcp header information */
17504 	tcph = tcp->tcp_tcph;
17505 	tcph->th_flags[0] = (TH_ACK|TH_PUSH);
17506 
17507 	sum = len + tcp->tcp_tcp_hdr_len + tcp->tcp_sum;
17508 	sum = (sum >> 16) + (sum & 0xFFFF);
17509 	U16_TO_ABE16(sum, tcph->th_sum);
17510 
17511 	U32_TO_ABE32(snxt, tcph->th_seq);
17512 
17513 	BUMP_MIB(&tcp_mib, tcpOutDataSegs);
17514 	UPDATE_MIB(&tcp_mib, tcpOutDataBytes, len);
17515 	BUMP_LOCAL(tcp->tcp_obsegs);
17516 
17517 	/* Update the latest receive window size in TCP header. */
17518 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
17519 	    tcph->th_win);
17520 
17521 	tcp->tcp_last_sent_len = (ushort_t)len;
17522 
17523 	plen = len + tcp->tcp_hdr_len;
17524 
17525 	if (tcp->tcp_ipversion == IPV4_VERSION) {
17526 		tcp->tcp_ipha->ipha_length = htons(plen);
17527 	} else {
17528 		tcp->tcp_ip6h->ip6_plen = htons(plen -
17529 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
17530 	}
17531 
17532 	/* see if we need to allocate a mblk for the headers */
17533 	hdrlen = tcp->tcp_hdr_len;
17534 	rptr = mp1->b_rptr - hdrlen;
17535 	db = mp1->b_datap;
17536 	if ((db->db_ref != 2) || rptr < db->db_base ||
17537 	    (!OK_32PTR(rptr))) {
17538 		/* NOTE: we assume allocb returns an OK_32PTR */
17539 		mp = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH +
17540 		    tcp_wroff_xtra, BPRI_MED);
17541 		if (!mp) {
17542 			freemsg(mp1);
17543 			goto no_memory;
17544 		}
17545 		mp->b_cont = mp1;
17546 		mp1 = mp;
17547 		/* Leave room for Link Level header */
17548 		/* hdrlen = tcp->tcp_hdr_len; */
17549 		rptr = &mp1->b_rptr[tcp_wroff_xtra];
17550 		mp1->b_wptr = &rptr[hdrlen];
17551 	}
17552 	mp1->b_rptr = rptr;
17553 
17554 	/* Fill in the timestamp option. */
17555 	if (tcp->tcp_snd_ts_ok) {
17556 		U32_TO_BE32((uint32_t)lbolt,
17557 		    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
17558 		U32_TO_BE32(tcp->tcp_ts_recent,
17559 		    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
17560 	} else {
17561 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
17562 	}
17563 
17564 	/* copy header into outgoing packet */
17565 	dst = (ipaddr_t *)rptr;
17566 	src = (ipaddr_t *)tcp->tcp_iphc;
17567 	dst[0] = src[0];
17568 	dst[1] = src[1];
17569 	dst[2] = src[2];
17570 	dst[3] = src[3];
17571 	dst[4] = src[4];
17572 	dst[5] = src[5];
17573 	dst[6] = src[6];
17574 	dst[7] = src[7];
17575 	dst[8] = src[8];
17576 	dst[9] = src[9];
17577 	if (hdrlen -= 40) {
17578 		hdrlen >>= 2;
17579 		dst += 10;
17580 		src += 10;
17581 		do {
17582 			*dst++ = *src++;
17583 		} while (--hdrlen);
17584 	}
17585 
17586 	/*
17587 	 * Set the ECN info in the TCP header.  Note that this
17588 	 * is not the template header.
17589 	 */
17590 	if (tcp->tcp_ecn_ok) {
17591 		SET_ECT(tcp, rptr);
17592 
17593 		tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
17594 		if (tcp->tcp_ecn_echo_on)
17595 			tcph->th_flags[0] |= TH_ECE;
17596 		if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
17597 			tcph->th_flags[0] |= TH_CWR;
17598 			tcp->tcp_ecn_cwr_sent = B_TRUE;
17599 		}
17600 	}
17601 
17602 	if (tcp->tcp_ip_forward_progress) {
17603 		ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
17604 		*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
17605 		tcp->tcp_ip_forward_progress = B_FALSE;
17606 	}
17607 	TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT);
17608 	tcp_send_data(tcp, tcp->tcp_wq, mp1);
17609 	return;
17610 
17611 	/*
17612 	 * If we ran out of memory, we pretend to have sent the packet
17613 	 * and that it was lost on the wire.
17614 	 */
17615 no_memory:
17616 	return;
17617 
17618 slow:
17619 	/* leftover work from above */
17620 	tcp->tcp_unsent = len;
17621 	tcp->tcp_xmit_tail_unsent = len;
17622 	tcp_wput_data(tcp, NULL, B_FALSE);
17623 }
17624 
17625 /*
17626  * The function called through squeue to get behind eager's perimeter to
17627  * finish the accept processing.
17628  */
17629 /* ARGSUSED */
17630 void
17631 tcp_accept_finish(void *arg, mblk_t *mp, void *arg2)
17632 {
17633 	conn_t			*connp = (conn_t *)arg;
17634 	tcp_t			*tcp = connp->conn_tcp;
17635 	queue_t			*q = tcp->tcp_rq;
17636 	mblk_t			*mp1;
17637 	mblk_t			*stropt_mp = mp;
17638 	struct  stroptions	*stropt;
17639 	uint_t			thwin;
17640 
17641 	/*
17642 	 * Drop the eager's ref on the listener, that was placed when
17643 	 * this eager began life in tcp_conn_request.
17644 	 */
17645 	CONN_DEC_REF(tcp->tcp_saved_listener->tcp_connp);
17646 
17647 	if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_accept_error) {
17648 		/*
17649 		 * Someone blewoff the eager before we could finish
17650 		 * the accept.
17651 		 *
17652 		 * The only reason eager exists it because we put in
17653 		 * a ref on it when conn ind went up. We need to send
17654 		 * a disconnect indication up while the last reference
17655 		 * on the eager will be dropped by the squeue when we
17656 		 * return.
17657 		 */
17658 		ASSERT(tcp->tcp_listener == NULL);
17659 		if (tcp->tcp_issocket || tcp->tcp_send_discon_ind) {
17660 			struct	T_discon_ind	*tdi;
17661 
17662 			(void) putnextctl1(q, M_FLUSH, FLUSHRW);
17663 			/*
17664 			 * Let us reuse the incoming mblk to avoid memory
17665 			 * allocation failure problems. We know that the
17666 			 * size of the incoming mblk i.e. stroptions is greater
17667 			 * than sizeof T_discon_ind. So the reallocb below
17668 			 * can't fail.
17669 			 */
17670 			freemsg(mp->b_cont);
17671 			mp->b_cont = NULL;
17672 			ASSERT(DB_REF(mp) == 1);
17673 			mp = reallocb(mp, sizeof (struct T_discon_ind),
17674 			    B_FALSE);
17675 			ASSERT(mp != NULL);
17676 			DB_TYPE(mp) = M_PROTO;
17677 			((union T_primitives *)mp->b_rptr)->type = T_DISCON_IND;
17678 			tdi = (struct T_discon_ind *)mp->b_rptr;
17679 			if (tcp->tcp_issocket) {
17680 				tdi->DISCON_reason = ECONNREFUSED;
17681 				tdi->SEQ_number = 0;
17682 			} else {
17683 				tdi->DISCON_reason = ENOPROTOOPT;
17684 				tdi->SEQ_number =
17685 				    tcp->tcp_conn_req_seqnum;
17686 			}
17687 			mp->b_wptr = mp->b_rptr + sizeof (struct T_discon_ind);
17688 			putnext(q, mp);
17689 		} else {
17690 			freemsg(mp);
17691 		}
17692 		if (tcp->tcp_hard_binding) {
17693 			tcp->tcp_hard_binding = B_FALSE;
17694 			tcp->tcp_hard_bound = B_TRUE;
17695 		}
17696 		tcp->tcp_detached = B_FALSE;
17697 		return;
17698 	}
17699 
17700 	mp1 = stropt_mp->b_cont;
17701 	stropt_mp->b_cont = NULL;
17702 	ASSERT(DB_TYPE(stropt_mp) == M_SETOPTS);
17703 	stropt = (struct stroptions *)stropt_mp->b_rptr;
17704 
17705 	while (mp1 != NULL) {
17706 		mp = mp1;
17707 		mp1 = mp1->b_cont;
17708 		mp->b_cont = NULL;
17709 		tcp->tcp_drop_opt_ack_cnt++;
17710 		CALL_IP_WPUT(connp, tcp->tcp_wq, mp);
17711 	}
17712 	mp = NULL;
17713 
17714 	/*
17715 	 * For a loopback connection with tcp_direct_sockfs on, note that
17716 	 * we don't have to protect tcp_rcv_list yet because synchronous
17717 	 * streams has not yet been enabled and tcp_fuse_rrw() cannot
17718 	 * possibly race with us.
17719 	 */
17720 
17721 	/*
17722 	 * Set the max window size (tcp_rq->q_hiwat) of the acceptor
17723 	 * properly.  This is the first time we know of the acceptor'
17724 	 * queue.  So we do it here.
17725 	 */
17726 	if (tcp->tcp_rcv_list == NULL) {
17727 		/*
17728 		 * Recv queue is empty, tcp_rwnd should not have changed.
17729 		 * That means it should be equal to the listener's tcp_rwnd.
17730 		 */
17731 		tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd;
17732 	} else {
17733 #ifdef DEBUG
17734 		uint_t cnt = 0;
17735 
17736 		mp1 = tcp->tcp_rcv_list;
17737 		while ((mp = mp1) != NULL) {
17738 			mp1 = mp->b_next;
17739 			cnt += msgdsize(mp);
17740 		}
17741 		ASSERT(cnt != 0 && tcp->tcp_rcv_cnt == cnt);
17742 #endif
17743 		/* There is some data, add them back to get the max. */
17744 		tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd + tcp->tcp_rcv_cnt;
17745 	}
17746 
17747 	stropt->so_flags = SO_HIWAT;
17748 	stropt->so_hiwat = MAX(q->q_hiwat, tcp_sth_rcv_hiwat);
17749 
17750 	stropt->so_flags |= SO_MAXBLK;
17751 	stropt->so_maxblk = tcp_maxpsz_set(tcp, B_FALSE);
17752 
17753 	/*
17754 	 * This is the first time we run on the correct
17755 	 * queue after tcp_accept. So fix all the q parameters
17756 	 * here.
17757 	 */
17758 	/* Allocate room for SACK options if needed. */
17759 	stropt->so_flags |= SO_WROFF;
17760 	if (tcp->tcp_fused) {
17761 		ASSERT(tcp->tcp_loopback);
17762 		ASSERT(tcp->tcp_loopback_peer != NULL);
17763 		/*
17764 		 * For fused tcp loopback, set the stream head's write
17765 		 * offset value to zero since we won't be needing any room
17766 		 * for TCP/IP headers.  This would also improve performance
17767 		 * since it would reduce the amount of work done by kmem.
17768 		 * Non-fused tcp loopback case is handled separately below.
17769 		 */
17770 		stropt->so_wroff = 0;
17771 		/*
17772 		 * Record the stream head's high water mark for this endpoint;
17773 		 * this is used for flow-control purposes in tcp_fuse_output().
17774 		 */
17775 		stropt->so_hiwat = tcp_fuse_set_rcv_hiwat(tcp, q->q_hiwat);
17776 		/*
17777 		 * Update the peer's transmit parameters according to
17778 		 * our recently calculated high water mark value.
17779 		 */
17780 		(void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE);
17781 	} else if (tcp->tcp_snd_sack_ok) {
17782 		stropt->so_wroff = tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN +
17783 		    (tcp->tcp_loopback ? 0 : tcp_wroff_xtra);
17784 	} else {
17785 		stropt->so_wroff = tcp->tcp_hdr_len + (tcp->tcp_loopback ? 0 :
17786 		    tcp_wroff_xtra);
17787 	}
17788 
17789 	/*
17790 	 * If this is endpoint is handling SSL, then reserve extra
17791 	 * offset and space at the end.
17792 	 * Also have the stream head allocate SSL3_MAX_RECORD_LEN packets,
17793 	 * overriding the previous setting. The extra cost of signing and
17794 	 * encrypting multiple MSS-size records (12 of them with Ethernet),
17795 	 * instead of a single contiguous one by the stream head
17796 	 * largely outweighs the statistical reduction of ACKs, when
17797 	 * applicable. The peer will also save on decyption and verification
17798 	 * costs.
17799 	 */
17800 	if (tcp->tcp_kssl_ctx != NULL) {
17801 		stropt->so_wroff += SSL3_WROFFSET;
17802 
17803 		stropt->so_flags |= SO_TAIL;
17804 		stropt->so_tail = SSL3_MAX_TAIL_LEN;
17805 
17806 		stropt->so_maxblk = SSL3_MAX_RECORD_LEN;
17807 	}
17808 
17809 	/* Send the options up */
17810 	putnext(q, stropt_mp);
17811 
17812 	/*
17813 	 * Pass up any data and/or a fin that has been received.
17814 	 *
17815 	 * Adjust receive window in case it had decreased
17816 	 * (because there is data <=> tcp_rcv_list != NULL)
17817 	 * while the connection was detached. Note that
17818 	 * in case the eager was flow-controlled, w/o this
17819 	 * code, the rwnd may never open up again!
17820 	 */
17821 	if (tcp->tcp_rcv_list != NULL) {
17822 		/* We drain directly in case of fused tcp loopback */
17823 		if (!tcp->tcp_fused && canputnext(q)) {
17824 			tcp->tcp_rwnd = q->q_hiwat;
17825 			thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
17826 			    << tcp->tcp_rcv_ws;
17827 			thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
17828 			if (tcp->tcp_state >= TCPS_ESTABLISHED &&
17829 			    (q->q_hiwat - thwin >= tcp->tcp_mss)) {
17830 				tcp_xmit_ctl(NULL,
17831 				    tcp, (tcp->tcp_swnd == 0) ?
17832 				    tcp->tcp_suna : tcp->tcp_snxt,
17833 				    tcp->tcp_rnxt, TH_ACK);
17834 				BUMP_MIB(&tcp_mib, tcpOutWinUpdate);
17835 			}
17836 
17837 		}
17838 		(void) tcp_rcv_drain(q, tcp);
17839 
17840 		/*
17841 		 * For fused tcp loopback, back-enable peer endpoint
17842 		 * if it's currently flow-controlled.
17843 		 */
17844 		if (tcp->tcp_fused &&
17845 		    tcp->tcp_loopback_peer->tcp_flow_stopped) {
17846 			tcp_t *peer_tcp = tcp->tcp_loopback_peer;
17847 
17848 			ASSERT(peer_tcp != NULL);
17849 			ASSERT(peer_tcp->tcp_fused);
17850 
17851 			tcp_clrqfull(peer_tcp);
17852 			TCP_STAT(tcp_fusion_backenabled);
17853 		}
17854 	}
17855 	ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
17856 	if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
17857 		mp = mi_tpi_ordrel_ind();
17858 		if (mp) {
17859 			tcp->tcp_ordrel_done = B_TRUE;
17860 			putnext(q, mp);
17861 			if (tcp->tcp_deferred_clean_death) {
17862 				/*
17863 				 * tcp_clean_death was deferred
17864 				 * for T_ORDREL_IND - do it now
17865 				 */
17866 				(void) tcp_clean_death(tcp,
17867 				    tcp->tcp_client_errno, 21);
17868 				tcp->tcp_deferred_clean_death = B_FALSE;
17869 			}
17870 		} else {
17871 			/*
17872 			 * Run the orderly release in the
17873 			 * service routine.
17874 			 */
17875 			qenable(q);
17876 		}
17877 	}
17878 	if (tcp->tcp_hard_binding) {
17879 		tcp->tcp_hard_binding = B_FALSE;
17880 		tcp->tcp_hard_bound = B_TRUE;
17881 	}
17882 
17883 	tcp->tcp_detached = B_FALSE;
17884 
17885 	/* We can enable synchronous streams now */
17886 	if (tcp->tcp_fused) {
17887 		tcp_fuse_syncstr_enable_pair(tcp);
17888 	}
17889 
17890 	if (tcp->tcp_ka_enabled) {
17891 		tcp->tcp_ka_last_intrvl = 0;
17892 		tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
17893 		    MSEC_TO_TICK(tcp->tcp_ka_interval));
17894 	}
17895 
17896 	/*
17897 	 * At this point, eager is fully established and will
17898 	 * have the following references -
17899 	 *
17900 	 * 2 references for connection to exist (1 for TCP and 1 for IP).
17901 	 * 1 reference for the squeue which will be dropped by the squeue as
17902 	 *	soon as this function returns.
17903 	 * There will be 1 additonal reference for being in classifier
17904 	 *	hash list provided something bad hasn't happened.
17905 	 */
17906 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
17907 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
17908 }
17909 
17910 /*
17911  * The function called through squeue to get behind listener's perimeter to
17912  * send a deffered conn_ind.
17913  */
17914 /* ARGSUSED */
17915 void
17916 tcp_send_pending(void *arg, mblk_t *mp, void *arg2)
17917 {
17918 	conn_t	*connp = (conn_t *)arg;
17919 	tcp_t *listener = connp->conn_tcp;
17920 
17921 	if (listener->tcp_state == TCPS_CLOSED ||
17922 	    TCP_IS_DETACHED(listener)) {
17923 		/*
17924 		 * If listener has closed, it would have caused a
17925 		 * a cleanup/blowoff to happen for the eager.
17926 		 */
17927 		tcp_t *tcp;
17928 		struct T_conn_ind	*conn_ind;
17929 
17930 		conn_ind = (struct T_conn_ind *)mp->b_rptr;
17931 		bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp,
17932 		    conn_ind->OPT_length);
17933 		/*
17934 		 * We need to drop the ref on eager that was put
17935 		 * tcp_rput_data() before trying to send the conn_ind
17936 		 * to listener. The conn_ind was deferred in tcp_send_conn_ind
17937 		 * and tcp_wput_accept() is sending this deferred conn_ind but
17938 		 * listener is closed so we drop the ref.
17939 		 */
17940 		CONN_DEC_REF(tcp->tcp_connp);
17941 		freemsg(mp);
17942 		return;
17943 	}
17944 	putnext(listener->tcp_rq, mp);
17945 }
17946 
17947 
17948 /*
17949  * This is the STREAMS entry point for T_CONN_RES coming down on
17950  * Acceptor STREAM when  sockfs listener does accept processing.
17951  * Read the block comment on top pf tcp_conn_request().
17952  */
17953 void
17954 tcp_wput_accept(queue_t *q, mblk_t *mp)
17955 {
17956 	queue_t *rq = RD(q);
17957 	struct T_conn_res *conn_res;
17958 	tcp_t *eager;
17959 	tcp_t *listener;
17960 	struct T_ok_ack *ok;
17961 	t_scalar_t PRIM_type;
17962 	mblk_t *opt_mp;
17963 	conn_t *econnp;
17964 
17965 	ASSERT(DB_TYPE(mp) == M_PROTO);
17966 
17967 	conn_res = (struct T_conn_res *)mp->b_rptr;
17968 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
17969 	if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_res)) {
17970 		mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0);
17971 		if (mp != NULL)
17972 			putnext(rq, mp);
17973 		return;
17974 	}
17975 	switch (conn_res->PRIM_type) {
17976 	case O_T_CONN_RES:
17977 	case T_CONN_RES:
17978 		/*
17979 		 * We pass up an err ack if allocb fails. This will
17980 		 * cause sockfs to issue a T_DISCON_REQ which will cause
17981 		 * tcp_eager_blowoff to be called. sockfs will then call
17982 		 * rq->q_qinfo->qi_qclose to cleanup the acceptor stream.
17983 		 * we need to do the allocb up here because we have to
17984 		 * make sure rq->q_qinfo->qi_qclose still points to the
17985 		 * correct function (tcpclose_accept) in case allocb
17986 		 * fails.
17987 		 */
17988 		opt_mp = allocb(sizeof (struct stroptions), BPRI_HI);
17989 		if (opt_mp == NULL) {
17990 			mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0);
17991 			if (mp != NULL)
17992 				putnext(rq, mp);
17993 			return;
17994 		}
17995 
17996 		bcopy(mp->b_rptr + conn_res->OPT_offset,
17997 		    &eager, conn_res->OPT_length);
17998 		PRIM_type = conn_res->PRIM_type;
17999 		mp->b_datap->db_type = M_PCPROTO;
18000 		mp->b_wptr = mp->b_rptr + sizeof (struct T_ok_ack);
18001 		ok = (struct T_ok_ack *)mp->b_rptr;
18002 		ok->PRIM_type = T_OK_ACK;
18003 		ok->CORRECT_prim = PRIM_type;
18004 		econnp = eager->tcp_connp;
18005 		econnp->conn_dev = (dev_t)q->q_ptr;
18006 		eager->tcp_rq = rq;
18007 		eager->tcp_wq = q;
18008 		rq->q_ptr = econnp;
18009 		rq->q_qinfo = &tcp_rinit;
18010 		q->q_ptr = econnp;
18011 		q->q_qinfo = &tcp_winit;
18012 		listener = eager->tcp_listener;
18013 		eager->tcp_issocket = B_TRUE;
18014 
18015 		econnp->conn_zoneid = listener->tcp_connp->conn_zoneid;
18016 		econnp->conn_allzones = listener->tcp_connp->conn_allzones;
18017 
18018 		/* Put the ref for IP */
18019 		CONN_INC_REF(econnp);
18020 
18021 		/*
18022 		 * We should have minimum of 3 references on the conn
18023 		 * at this point. One each for TCP and IP and one for
18024 		 * the T_conn_ind that was sent up when the 3-way handshake
18025 		 * completed. In the normal case we would also have another
18026 		 * reference (making a total of 4) for the conn being in the
18027 		 * classifier hash list. However the eager could have received
18028 		 * an RST subsequently and tcp_closei_local could have removed
18029 		 * the eager from the classifier hash list, hence we can't
18030 		 * assert that reference.
18031 		 */
18032 		ASSERT(econnp->conn_ref >= 3);
18033 
18034 		/*
18035 		 * Send the new local address also up to sockfs. There
18036 		 * should already be enough space in the mp that came
18037 		 * down from soaccept().
18038 		 */
18039 		if (eager->tcp_family == AF_INET) {
18040 			sin_t *sin;
18041 
18042 			ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >=
18043 			    (sizeof (struct T_ok_ack) + sizeof (sin_t)));
18044 			sin = (sin_t *)mp->b_wptr;
18045 			mp->b_wptr += sizeof (sin_t);
18046 			sin->sin_family = AF_INET;
18047 			sin->sin_port = eager->tcp_lport;
18048 			sin->sin_addr.s_addr = eager->tcp_ipha->ipha_src;
18049 		} else {
18050 			sin6_t *sin6;
18051 
18052 			ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >=
18053 			    sizeof (struct T_ok_ack) + sizeof (sin6_t));
18054 			sin6 = (sin6_t *)mp->b_wptr;
18055 			mp->b_wptr += sizeof (sin6_t);
18056 			sin6->sin6_family = AF_INET6;
18057 			sin6->sin6_port = eager->tcp_lport;
18058 			if (eager->tcp_ipversion == IPV4_VERSION) {
18059 				sin6->sin6_flowinfo = 0;
18060 				IN6_IPADDR_TO_V4MAPPED(
18061 					eager->tcp_ipha->ipha_src,
18062 					    &sin6->sin6_addr);
18063 			} else {
18064 				ASSERT(eager->tcp_ip6h != NULL);
18065 				sin6->sin6_flowinfo =
18066 				    eager->tcp_ip6h->ip6_vcf &
18067 				    ~IPV6_VERS_AND_FLOW_MASK;
18068 				sin6->sin6_addr = eager->tcp_ip6h->ip6_src;
18069 			}
18070 			sin6->sin6_scope_id = 0;
18071 			sin6->__sin6_src_id = 0;
18072 		}
18073 
18074 		putnext(rq, mp);
18075 
18076 		opt_mp->b_datap->db_type = M_SETOPTS;
18077 		opt_mp->b_wptr += sizeof (struct stroptions);
18078 
18079 		/*
18080 		 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO
18081 		 * from listener to acceptor. The message is chained on the
18082 		 * bind_mp which tcp_rput_other will send down to IP.
18083 		 */
18084 		if (listener->tcp_bound_if != 0) {
18085 			/* allocate optmgmt req */
18086 			mp = tcp_setsockopt_mp(IPPROTO_IPV6,
18087 			    IPV6_BOUND_IF, (char *)&listener->tcp_bound_if,
18088 			    sizeof (int));
18089 			if (mp != NULL)
18090 				linkb(opt_mp, mp);
18091 		}
18092 		if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) {
18093 			uint_t on = 1;
18094 
18095 			/* allocate optmgmt req */
18096 			mp = tcp_setsockopt_mp(IPPROTO_IPV6,
18097 			    IPV6_RECVPKTINFO, (char *)&on, sizeof (on));
18098 			if (mp != NULL)
18099 				linkb(opt_mp, mp);
18100 		}
18101 
18102 
18103 		mutex_enter(&listener->tcp_eager_lock);
18104 
18105 		if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) {
18106 
18107 			tcp_t *tail;
18108 			tcp_t *tcp;
18109 			mblk_t *mp1;
18110 
18111 			tcp = listener->tcp_eager_prev_q0;
18112 			/*
18113 			 * listener->tcp_eager_prev_q0 points to the TAIL of the
18114 			 * deferred T_conn_ind queue. We need to get to the head
18115 			 * of the queue in order to send up T_conn_ind the same
18116 			 * order as how the 3WHS is completed.
18117 			 */
18118 			while (tcp != listener) {
18119 				if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0 &&
18120 				    !tcp->tcp_kssl_pending)
18121 					break;
18122 				else
18123 					tcp = tcp->tcp_eager_prev_q0;
18124 			}
18125 			/* None of the pending eagers can be sent up now */
18126 			if (tcp == listener)
18127 				goto no_more_eagers;
18128 
18129 			mp1 = tcp->tcp_conn.tcp_eager_conn_ind;
18130 			tcp->tcp_conn.tcp_eager_conn_ind = NULL;
18131 			/* Move from q0 to q */
18132 			ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
18133 			listener->tcp_conn_req_cnt_q0--;
18134 			listener->tcp_conn_req_cnt_q++;
18135 			tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
18136 			    tcp->tcp_eager_prev_q0;
18137 			tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
18138 			    tcp->tcp_eager_next_q0;
18139 			tcp->tcp_eager_prev_q0 = NULL;
18140 			tcp->tcp_eager_next_q0 = NULL;
18141 			tcp->tcp_conn_def_q0 = B_FALSE;
18142 
18143 			/* Make sure the tcp isn't in the list of droppables */
18144 			ASSERT(tcp->tcp_eager_next_drop_q0 == NULL &&
18145 			    tcp->tcp_eager_prev_drop_q0 == NULL);
18146 
18147 			/*
18148 			 * Insert at end of the queue because sockfs sends
18149 			 * down T_CONN_RES in chronological order. Leaving
18150 			 * the older conn indications at front of the queue
18151 			 * helps reducing search time.
18152 			 */
18153 			tail = listener->tcp_eager_last_q;
18154 			if (tail != NULL) {
18155 				tail->tcp_eager_next_q = tcp;
18156 			} else {
18157 				listener->tcp_eager_next_q = tcp;
18158 			}
18159 			listener->tcp_eager_last_q = tcp;
18160 			tcp->tcp_eager_next_q = NULL;
18161 
18162 			/* Need to get inside the listener perimeter */
18163 			CONN_INC_REF(listener->tcp_connp);
18164 			squeue_fill(listener->tcp_connp->conn_sqp, mp1,
18165 			    tcp_send_pending, listener->tcp_connp,
18166 			    SQTAG_TCP_SEND_PENDING);
18167 		}
18168 no_more_eagers:
18169 		tcp_eager_unlink(eager);
18170 		mutex_exit(&listener->tcp_eager_lock);
18171 
18172 		/*
18173 		 * At this point, the eager is detached from the listener
18174 		 * but we still have an extra refs on eager (apart from the
18175 		 * usual tcp references). The ref was placed in tcp_rput_data
18176 		 * before sending the conn_ind in tcp_send_conn_ind.
18177 		 * The ref will be dropped in tcp_accept_finish().
18178 		 */
18179 		squeue_enter_nodrain(econnp->conn_sqp, opt_mp,
18180 		    tcp_accept_finish, econnp, SQTAG_TCP_ACCEPT_FINISH_Q0);
18181 		return;
18182 	default:
18183 		mp = mi_tpi_err_ack_alloc(mp, TNOTSUPPORT, 0);
18184 		if (mp != NULL)
18185 			putnext(rq, mp);
18186 		return;
18187 	}
18188 }
18189 
18190 void
18191 tcp_wput(queue_t *q, mblk_t *mp)
18192 {
18193 	conn_t	*connp = Q_TO_CONN(q);
18194 	tcp_t	*tcp;
18195 	void (*output_proc)();
18196 	t_scalar_t type;
18197 	uchar_t *rptr;
18198 	struct iocblk	*iocp;
18199 	uint32_t	msize;
18200 
18201 	ASSERT(connp->conn_ref >= 2);
18202 
18203 	switch (DB_TYPE(mp)) {
18204 	case M_DATA:
18205 		tcp = connp->conn_tcp;
18206 		ASSERT(tcp != NULL);
18207 
18208 		msize = msgdsize(mp);
18209 
18210 		mutex_enter(&connp->conn_lock);
18211 		CONN_INC_REF_LOCKED(connp);
18212 
18213 		tcp->tcp_squeue_bytes += msize;
18214 		if (TCP_UNSENT_BYTES(tcp) > tcp->tcp_xmit_hiwater) {
18215 			mutex_exit(&connp->conn_lock);
18216 			tcp_setqfull(tcp);
18217 		} else
18218 			mutex_exit(&connp->conn_lock);
18219 
18220 		(*tcp_squeue_wput_proc)(connp->conn_sqp, mp,
18221 		    tcp_output, connp, SQTAG_TCP_OUTPUT);
18222 		return;
18223 	case M_PROTO:
18224 	case M_PCPROTO:
18225 		/*
18226 		 * if it is a snmp message, don't get behind the squeue
18227 		 */
18228 		tcp = connp->conn_tcp;
18229 		rptr = mp->b_rptr;
18230 		if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) {
18231 			type = ((union T_primitives *)rptr)->type;
18232 		} else {
18233 			if (tcp->tcp_debug) {
18234 				(void) strlog(TCP_MOD_ID, 0, 1,
18235 				    SL_ERROR|SL_TRACE,
18236 				    "tcp_wput_proto, dropping one...");
18237 			}
18238 			freemsg(mp);
18239 			return;
18240 		}
18241 		if (type == T_SVR4_OPTMGMT_REQ) {
18242 			cred_t	*cr = DB_CREDDEF(mp, tcp->tcp_cred);
18243 			if (snmpcom_req(q, mp, tcp_snmp_set, tcp_snmp_get,
18244 			    cr)) {
18245 				/*
18246 				 * This was a SNMP request
18247 				 */
18248 				return;
18249 			} else {
18250 				output_proc = tcp_wput_proto;
18251 			}
18252 		} else {
18253 			output_proc = tcp_wput_proto;
18254 		}
18255 		break;
18256 	case M_IOCTL:
18257 		/*
18258 		 * Most ioctls can be processed right away without going via
18259 		 * squeues - process them right here. Those that do require
18260 		 * squeue (currently TCP_IOC_DEFAULT_Q and _SIOCSOCKFALLBACK)
18261 		 * are processed by tcp_wput_ioctl().
18262 		 */
18263 		iocp = (struct iocblk *)mp->b_rptr;
18264 		tcp = connp->conn_tcp;
18265 
18266 		switch (iocp->ioc_cmd) {
18267 		case TCP_IOC_ABORT_CONN:
18268 			tcp_ioctl_abort_conn(q, mp);
18269 			return;
18270 		case TI_GETPEERNAME:
18271 			if (tcp->tcp_state < TCPS_SYN_RCVD) {
18272 				iocp->ioc_error = ENOTCONN;
18273 				iocp->ioc_count = 0;
18274 				mp->b_datap->db_type = M_IOCACK;
18275 				qreply(q, mp);
18276 				return;
18277 			}
18278 			/* FALLTHRU */
18279 		case TI_GETMYNAME:
18280 			mi_copyin(q, mp, NULL,
18281 			    SIZEOF_STRUCT(strbuf, iocp->ioc_flag));
18282 			return;
18283 		case ND_SET:
18284 			/* nd_getset does the necessary checks */
18285 		case ND_GET:
18286 			if (!nd_getset(q, tcp_g_nd, mp)) {
18287 				CALL_IP_WPUT(connp, q, mp);
18288 				return;
18289 			}
18290 			qreply(q, mp);
18291 			return;
18292 		case TCP_IOC_DEFAULT_Q:
18293 			/*
18294 			 * Wants to be the default wq. Check the credentials
18295 			 * first, the rest is executed via squeue.
18296 			 */
18297 			if (secpolicy_net_config(iocp->ioc_cr, B_FALSE) != 0) {
18298 				iocp->ioc_error = EPERM;
18299 				iocp->ioc_count = 0;
18300 				mp->b_datap->db_type = M_IOCACK;
18301 				qreply(q, mp);
18302 				return;
18303 			}
18304 			output_proc = tcp_wput_ioctl;
18305 			break;
18306 		default:
18307 			output_proc = tcp_wput_ioctl;
18308 			break;
18309 		}
18310 		break;
18311 	default:
18312 		output_proc = tcp_wput_nondata;
18313 		break;
18314 	}
18315 
18316 	CONN_INC_REF(connp);
18317 	(*tcp_squeue_wput_proc)(connp->conn_sqp, mp,
18318 	    output_proc, connp, SQTAG_TCP_WPUT_OTHER);
18319 }
18320 
18321 /*
18322  * Initial STREAMS write side put() procedure for sockets. It tries to
18323  * handle the T_CAPABILITY_REQ which sockfs sends down while setting
18324  * up the socket without using the squeue. Non T_CAPABILITY_REQ messages
18325  * are handled by tcp_wput() as usual.
18326  *
18327  * All further messages will also be handled by tcp_wput() because we cannot
18328  * be sure that the above short cut is safe later.
18329  */
18330 static void
18331 tcp_wput_sock(queue_t *wq, mblk_t *mp)
18332 {
18333 	conn_t			*connp = Q_TO_CONN(wq);
18334 	tcp_t			*tcp = connp->conn_tcp;
18335 	struct T_capability_req	*car = (struct T_capability_req *)mp->b_rptr;
18336 
18337 	ASSERT(wq->q_qinfo == &tcp_sock_winit);
18338 	wq->q_qinfo = &tcp_winit;
18339 
18340 	ASSERT(IPCL_IS_TCP(connp));
18341 	ASSERT(TCP_IS_SOCKET(tcp));
18342 
18343 	if (DB_TYPE(mp) == M_PCPROTO &&
18344 	    MBLKL(mp) == sizeof (struct T_capability_req) &&
18345 	    car->PRIM_type == T_CAPABILITY_REQ) {
18346 		tcp_capability_req(tcp, mp);
18347 		return;
18348 	}
18349 
18350 	tcp_wput(wq, mp);
18351 }
18352 
18353 static boolean_t
18354 tcp_zcopy_check(tcp_t *tcp)
18355 {
18356 	conn_t	*connp = tcp->tcp_connp;
18357 	ire_t	*ire;
18358 	boolean_t	zc_enabled = B_FALSE;
18359 
18360 	if (do_tcpzcopy == 2)
18361 		zc_enabled = B_TRUE;
18362 	else if (tcp->tcp_ipversion == IPV4_VERSION &&
18363 	    IPCL_IS_CONNECTED(connp) &&
18364 	    (connp->conn_flags & IPCL_CHECK_POLICY) == 0 &&
18365 	    connp->conn_dontroute == 0 &&
18366 	    !connp->conn_nexthop_set &&
18367 	    connp->conn_xmit_if_ill == NULL &&
18368 	    connp->conn_nofailover_ill == NULL &&
18369 	    do_tcpzcopy == 1) {
18370 		/*
18371 		 * the checks above  closely resemble the fast path checks
18372 		 * in tcp_send_data().
18373 		 */
18374 		mutex_enter(&connp->conn_lock);
18375 		ire = connp->conn_ire_cache;
18376 		ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT));
18377 		if (ire != NULL && !(ire->ire_marks & IRE_MARK_CONDEMNED)) {
18378 			IRE_REFHOLD(ire);
18379 			if (ire->ire_stq != NULL) {
18380 				ill_t	*ill = (ill_t *)ire->ire_stq->q_ptr;
18381 
18382 				zc_enabled = ill && (ill->ill_capabilities &
18383 				    ILL_CAPAB_ZEROCOPY) &&
18384 				    (ill->ill_zerocopy_capab->
18385 				    ill_zerocopy_flags != 0);
18386 			}
18387 			IRE_REFRELE(ire);
18388 		}
18389 		mutex_exit(&connp->conn_lock);
18390 	}
18391 	tcp->tcp_snd_zcopy_on = zc_enabled;
18392 	if (!TCP_IS_DETACHED(tcp)) {
18393 		if (zc_enabled) {
18394 			(void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMSAFE);
18395 			TCP_STAT(tcp_zcopy_on);
18396 		} else {
18397 			(void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE);
18398 			TCP_STAT(tcp_zcopy_off);
18399 		}
18400 	}
18401 	return (zc_enabled);
18402 }
18403 
18404 static mblk_t *
18405 tcp_zcopy_disable(tcp_t *tcp, mblk_t *bp)
18406 {
18407 	if (do_tcpzcopy == 2)
18408 		return (bp);
18409 	else if (tcp->tcp_snd_zcopy_on) {
18410 		tcp->tcp_snd_zcopy_on = B_FALSE;
18411 		if (!TCP_IS_DETACHED(tcp)) {
18412 			(void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE);
18413 			TCP_STAT(tcp_zcopy_disable);
18414 		}
18415 	}
18416 	return (tcp_zcopy_backoff(tcp, bp, 0));
18417 }
18418 
18419 /*
18420  * Backoff from a zero-copy mblk by copying data to a new mblk and freeing
18421  * the original desballoca'ed segmapped mblk.
18422  */
18423 static mblk_t *
18424 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, int fix_xmitlist)
18425 {
18426 	mblk_t *head, *tail, *nbp;
18427 	if (IS_VMLOANED_MBLK(bp)) {
18428 		TCP_STAT(tcp_zcopy_backoff);
18429 		if ((head = copyb(bp)) == NULL) {
18430 			/* fail to backoff; leave it for the next backoff */
18431 			tcp->tcp_xmit_zc_clean = B_FALSE;
18432 			return (bp);
18433 		}
18434 		if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) {
18435 			if (fix_xmitlist)
18436 				tcp_zcopy_notify(tcp);
18437 			else
18438 				head->b_datap->db_struioflag |= STRUIO_ZCNOTIFY;
18439 		}
18440 		nbp = bp->b_cont;
18441 		if (fix_xmitlist) {
18442 			head->b_prev = bp->b_prev;
18443 			head->b_next = bp->b_next;
18444 			if (tcp->tcp_xmit_tail == bp)
18445 				tcp->tcp_xmit_tail = head;
18446 		}
18447 		bp->b_next = NULL;
18448 		bp->b_prev = NULL;
18449 		freeb(bp);
18450 	} else {
18451 		head = bp;
18452 		nbp = bp->b_cont;
18453 	}
18454 	tail = head;
18455 	while (nbp) {
18456 		if (IS_VMLOANED_MBLK(nbp)) {
18457 			TCP_STAT(tcp_zcopy_backoff);
18458 			if ((tail->b_cont = copyb(nbp)) == NULL) {
18459 				tcp->tcp_xmit_zc_clean = B_FALSE;
18460 				tail->b_cont = nbp;
18461 				return (head);
18462 			}
18463 			tail = tail->b_cont;
18464 			if (nbp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) {
18465 				if (fix_xmitlist)
18466 					tcp_zcopy_notify(tcp);
18467 				else
18468 					tail->b_datap->db_struioflag |=
18469 					    STRUIO_ZCNOTIFY;
18470 			}
18471 			bp = nbp;
18472 			nbp = nbp->b_cont;
18473 			if (fix_xmitlist) {
18474 				tail->b_prev = bp->b_prev;
18475 				tail->b_next = bp->b_next;
18476 				if (tcp->tcp_xmit_tail == bp)
18477 					tcp->tcp_xmit_tail = tail;
18478 			}
18479 			bp->b_next = NULL;
18480 			bp->b_prev = NULL;
18481 			freeb(bp);
18482 		} else {
18483 			tail->b_cont = nbp;
18484 			tail = nbp;
18485 			nbp = nbp->b_cont;
18486 		}
18487 	}
18488 	if (fix_xmitlist) {
18489 		tcp->tcp_xmit_last = tail;
18490 		tcp->tcp_xmit_zc_clean = B_TRUE;
18491 	}
18492 	return (head);
18493 }
18494 
18495 static void
18496 tcp_zcopy_notify(tcp_t *tcp)
18497 {
18498 	struct stdata	*stp;
18499 
18500 	if (tcp->tcp_detached)
18501 		return;
18502 	stp = STREAM(tcp->tcp_rq);
18503 	mutex_enter(&stp->sd_lock);
18504 	stp->sd_flag |= STZCNOTIFY;
18505 	cv_broadcast(&stp->sd_zcopy_wait);
18506 	mutex_exit(&stp->sd_lock);
18507 }
18508 
18509 static boolean_t
18510 tcp_send_find_ire(tcp_t *tcp, ipaddr_t *dst, ire_t **irep)
18511 {
18512 	ire_t *ire;
18513 	conn_t *connp = tcp->tcp_connp;
18514 
18515 
18516 	mutex_enter(&connp->conn_lock);
18517 	ire = connp->conn_ire_cache;
18518 	ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT));
18519 
18520 	if ((ire != NULL) &&
18521 	    (((dst != NULL) && (ire->ire_addr == *dst)) || ((dst == NULL) &&
18522 	    IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, &tcp->tcp_ip6h->ip6_dst))) &&
18523 	    !(ire->ire_marks & IRE_MARK_CONDEMNED)) {
18524 		IRE_REFHOLD(ire);
18525 		mutex_exit(&connp->conn_lock);
18526 	} else {
18527 		boolean_t cached = B_FALSE;
18528 		ts_label_t *tsl;
18529 
18530 		/* force a recheck later on */
18531 		tcp->tcp_ire_ill_check_done = B_FALSE;
18532 
18533 		TCP_DBGSTAT(tcp_ire_null1);
18534 		connp->conn_ire_cache = NULL;
18535 		mutex_exit(&connp->conn_lock);
18536 
18537 		if (ire != NULL)
18538 			IRE_REFRELE_NOTR(ire);
18539 
18540 		tsl = crgetlabel(CONN_CRED(connp));
18541 		ire = (dst ? ire_cache_lookup(*dst, connp->conn_zoneid, tsl) :
18542 		    ire_cache_lookup_v6(&tcp->tcp_ip6h->ip6_dst,
18543 		    connp->conn_zoneid, tsl));
18544 
18545 		if (ire == NULL) {
18546 			TCP_STAT(tcp_ire_null);
18547 			return (B_FALSE);
18548 		}
18549 
18550 		IRE_REFHOLD_NOTR(ire);
18551 		/*
18552 		 * Since we are inside the squeue, there cannot be another
18553 		 * thread in TCP trying to set the conn_ire_cache now.  The
18554 		 * check for IRE_MARK_CONDEMNED ensures that an interface
18555 		 * unplumb thread has not yet started cleaning up the conns.
18556 		 * Hence we don't need to grab the conn lock.
18557 		 */
18558 		if (!(connp->conn_state_flags & CONN_CLOSING)) {
18559 			rw_enter(&ire->ire_bucket->irb_lock, RW_READER);
18560 			if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) {
18561 				connp->conn_ire_cache = ire;
18562 				cached = B_TRUE;
18563 			}
18564 			rw_exit(&ire->ire_bucket->irb_lock);
18565 		}
18566 
18567 		/*
18568 		 * We can continue to use the ire but since it was
18569 		 * not cached, we should drop the extra reference.
18570 		 */
18571 		if (!cached)
18572 			IRE_REFRELE_NOTR(ire);
18573 
18574 		/*
18575 		 * Rampart note: no need to select a new label here, since
18576 		 * labels are not allowed to change during the life of a TCP
18577 		 * connection.
18578 		 */
18579 	}
18580 
18581 	*irep = ire;
18582 
18583 	return (B_TRUE);
18584 }
18585 
18586 /*
18587  * Called from tcp_send() or tcp_send_data() to find workable IRE.
18588  *
18589  * 0 = success;
18590  * 1 = failed to find ire and ill.
18591  */
18592 static boolean_t
18593 tcp_send_find_ire_ill(tcp_t *tcp, mblk_t *mp, ire_t **irep, ill_t **illp)
18594 {
18595 	ipha_t		*ipha;
18596 	ipaddr_t	dst;
18597 	ire_t		*ire;
18598 	ill_t		*ill;
18599 	conn_t		*connp = tcp->tcp_connp;
18600 	mblk_t		*ire_fp_mp;
18601 
18602 	if (mp != NULL)
18603 		ipha = (ipha_t *)mp->b_rptr;
18604 	else
18605 		ipha = tcp->tcp_ipha;
18606 	dst = ipha->ipha_dst;
18607 
18608 	if (!tcp_send_find_ire(tcp, &dst, &ire))
18609 		return (B_FALSE);
18610 
18611 	if ((ire->ire_flags & RTF_MULTIRT) ||
18612 	    (ire->ire_stq == NULL) ||
18613 	    (ire->ire_nce == NULL) ||
18614 	    ((ire_fp_mp = ire->ire_nce->nce_fp_mp) == NULL) ||
18615 	    ((mp != NULL) && (ire->ire_max_frag < ntohs(ipha->ipha_length) ||
18616 		MBLKL(ire_fp_mp) > MBLKHEAD(mp)))) {
18617 		TCP_STAT(tcp_ip_ire_send);
18618 		IRE_REFRELE(ire);
18619 		return (B_FALSE);
18620 	}
18621 
18622 	ill = ire_to_ill(ire);
18623 	if (connp->conn_outgoing_ill != NULL) {
18624 		ill_t *conn_outgoing_ill = NULL;
18625 		/*
18626 		 * Choose a good ill in the group to send the packets on.
18627 		 */
18628 		ire = conn_set_outgoing_ill(connp, ire, &conn_outgoing_ill);
18629 		ill = ire_to_ill(ire);
18630 	}
18631 	ASSERT(ill != NULL);
18632 
18633 	if (!tcp->tcp_ire_ill_check_done) {
18634 		tcp_ire_ill_check(tcp, ire, ill, B_TRUE);
18635 		tcp->tcp_ire_ill_check_done = B_TRUE;
18636 	}
18637 
18638 	*irep = ire;
18639 	*illp = ill;
18640 
18641 	return (B_TRUE);
18642 }
18643 
18644 static void
18645 tcp_send_data(tcp_t *tcp, queue_t *q, mblk_t *mp)
18646 {
18647 	ipha_t		*ipha;
18648 	ipaddr_t	src;
18649 	ipaddr_t	dst;
18650 	uint32_t	cksum;
18651 	ire_t		*ire;
18652 	uint16_t	*up;
18653 	ill_t		*ill;
18654 	conn_t		*connp = tcp->tcp_connp;
18655 	uint32_t	hcksum_txflags = 0;
18656 	mblk_t		*ire_fp_mp;
18657 	uint_t		ire_fp_mp_len;
18658 
18659 	ASSERT(DB_TYPE(mp) == M_DATA);
18660 
18661 	if (DB_CRED(mp) == NULL)
18662 		mblk_setcred(mp, CONN_CRED(connp));
18663 
18664 	ipha = (ipha_t *)mp->b_rptr;
18665 	src = ipha->ipha_src;
18666 	dst = ipha->ipha_dst;
18667 
18668 	/*
18669 	 * Drop off fast path for IPv6 and also if options are present or
18670 	 * we need to resolve a TS label.
18671 	 */
18672 	if (tcp->tcp_ipversion != IPV4_VERSION ||
18673 	    !IPCL_IS_CONNECTED(connp) ||
18674 	    !CONN_IS_LSO_MD_FASTPATH(connp) ||
18675 	    (connp->conn_flags & IPCL_CHECK_POLICY) != 0 ||
18676 	    !connp->conn_ulp_labeled ||
18677 	    ipha->ipha_ident == IP_HDR_INCLUDED ||
18678 	    ipha->ipha_version_and_hdr_length != IP_SIMPLE_HDR_VERSION ||
18679 	    IPP_ENABLED(IPP_LOCAL_OUT)) {
18680 		if (tcp->tcp_snd_zcopy_aware)
18681 			mp = tcp_zcopy_disable(tcp, mp);
18682 		TCP_STAT(tcp_ip_send);
18683 		CALL_IP_WPUT(connp, q, mp);
18684 		return;
18685 	}
18686 
18687 	if (!tcp_send_find_ire_ill(tcp, mp, &ire, &ill)) {
18688 		if (tcp->tcp_snd_zcopy_aware)
18689 			mp = tcp_zcopy_backoff(tcp, mp, 0);
18690 		CALL_IP_WPUT(connp, q, mp);
18691 		return;
18692 	}
18693 	ire_fp_mp = ire->ire_nce->nce_fp_mp;
18694 	ire_fp_mp_len = MBLKL(ire_fp_mp);
18695 
18696 	ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED);
18697 	ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1);
18698 #ifndef _BIG_ENDIAN
18699 	ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8);
18700 #endif
18701 
18702 	/*
18703 	 * Check to see if we need to re-enable LSO/MDT for this connection
18704 	 * because it was previously disabled due to changes in the ill;
18705 	 * note that by doing it here, this re-enabling only applies when
18706 	 * the packet is not dispatched through CALL_IP_WPUT().
18707 	 *
18708 	 * That means for IPv4, it is worth re-enabling LSO/MDT for the fastpath
18709 	 * case, since that's how we ended up here.  For IPv6, we do the
18710 	 * re-enabling work in ip_xmit_v6(), albeit indirectly via squeue.
18711 	 */
18712 	if (connp->conn_lso_ok && !tcp->tcp_lso && ILL_LSO_TCP_USABLE(ill)) {
18713 		/*
18714 		 * Restore LSO for this connection, so that next time around
18715 		 * it is eligible to go through tcp_lsosend() path again.
18716 		 */
18717 		TCP_STAT(tcp_lso_enabled);
18718 		tcp->tcp_lso = B_TRUE;
18719 		ip1dbg(("tcp_send_data: reenabling LSO for connp %p on "
18720 		    "interface %s\n", (void *)connp, ill->ill_name));
18721 	} else if (connp->conn_mdt_ok && !tcp->tcp_mdt && ILL_MDT_USABLE(ill)) {
18722 		/*
18723 		 * Restore MDT for this connection, so that next time around
18724 		 * it is eligible to go through tcp_multisend() path again.
18725 		 */
18726 		TCP_STAT(tcp_mdt_conn_resumed1);
18727 		tcp->tcp_mdt = B_TRUE;
18728 		ip1dbg(("tcp_send_data: reenabling MDT for connp %p on "
18729 		    "interface %s\n", (void *)connp, ill->ill_name));
18730 	}
18731 
18732 	if (tcp->tcp_snd_zcopy_aware) {
18733 		if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 ||
18734 		    (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0))
18735 			mp = tcp_zcopy_disable(tcp, mp);
18736 		/*
18737 		 * we shouldn't need to reset ipha as the mp containing
18738 		 * ipha should never be a zero-copy mp.
18739 		 */
18740 	}
18741 
18742 	if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) {
18743 		ASSERT(ill->ill_hcksum_capab != NULL);
18744 		hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags;
18745 	}
18746 
18747 	/* pseudo-header checksum (do it in parts for IP header checksum) */
18748 	cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF);
18749 
18750 	ASSERT(ipha->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION);
18751 	up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH);
18752 
18753 	IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up,
18754 	    IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum);
18755 
18756 	/* Software checksum? */
18757 	if (DB_CKSUMFLAGS(mp) == 0) {
18758 		TCP_STAT(tcp_out_sw_cksum);
18759 		TCP_STAT_UPDATE(tcp_out_sw_cksum_bytes,
18760 		    ntohs(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH);
18761 	}
18762 
18763 	ipha->ipha_fragment_offset_and_flags |=
18764 	    (uint32_t)htons(ire->ire_frag_flag);
18765 
18766 	/* Calculate IP header checksum if hardware isn't capable */
18767 	if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) {
18768 		IP_HDR_CKSUM(ipha, cksum, ((uint32_t *)ipha)[0],
18769 		    ((uint16_t *)ipha)[4]);
18770 	}
18771 
18772 	ASSERT(DB_TYPE(ire_fp_mp) == M_DATA);
18773 	mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len;
18774 	bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len);
18775 
18776 	UPDATE_OB_PKT_COUNT(ire);
18777 	ire->ire_last_used_time = lbolt;
18778 	BUMP_MIB(&ip_mib, ipOutRequests);
18779 
18780 	if (ILL_DLS_CAPABLE(ill)) {
18781 		/*
18782 		 * Send the packet directly to DLD, where it may be queued
18783 		 * depending on the availability of transmit resources at
18784 		 * the media layer.
18785 		 */
18786 		IP_DLS_ILL_TX(ill, ipha, mp);
18787 	} else {
18788 		ill_t *out_ill = (ill_t *)ire->ire_stq->q_ptr;
18789 		DTRACE_PROBE4(ip4__physical__out__start,
18790 		    ill_t *, NULL, ill_t *, out_ill,
18791 		    ipha_t *, ipha, mblk_t *, mp);
18792 		FW_HOOKS(ip4_physical_out_event, ipv4firewall_physical_out,
18793 		    NULL, out_ill, ipha, mp, mp);
18794 		DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp);
18795 		if (mp != NULL)
18796 			putnext(ire->ire_stq, mp);
18797 	}
18798 	IRE_REFRELE(ire);
18799 }
18800 
18801 /*
18802  * This handles the case when the receiver has shrunk its win. Per RFC 1122
18803  * if the receiver shrinks the window, i.e. moves the right window to the
18804  * left, the we should not send new data, but should retransmit normally the
18805  * old unacked data between suna and suna + swnd. We might has sent data
18806  * that is now outside the new window, pretend that we didn't send  it.
18807  */
18808 static void
18809 tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_count)
18810 {
18811 	uint32_t	snxt = tcp->tcp_snxt;
18812 	mblk_t		*xmit_tail;
18813 	int32_t		offset;
18814 
18815 	ASSERT(shrunk_count > 0);
18816 
18817 	/* Pretend we didn't send the data outside the window */
18818 	snxt -= shrunk_count;
18819 
18820 	/* Get the mblk and the offset in it per the shrunk window */
18821 	xmit_tail = tcp_get_seg_mp(tcp, snxt, &offset);
18822 
18823 	ASSERT(xmit_tail != NULL);
18824 
18825 	/* Reset all the values per the now shrunk window */
18826 	tcp->tcp_snxt = snxt;
18827 	tcp->tcp_xmit_tail = xmit_tail;
18828 	tcp->tcp_xmit_tail_unsent = xmit_tail->b_wptr - xmit_tail->b_rptr -
18829 	    offset;
18830 	tcp->tcp_unsent += shrunk_count;
18831 
18832 	if (tcp->tcp_suna == tcp->tcp_snxt && tcp->tcp_swnd == 0)
18833 		/*
18834 		 * Make sure the timer is running so that we will probe a zero
18835 		 * window.
18836 		 */
18837 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
18838 }
18839 
18840 
18841 /*
18842  * The TCP normal data output path.
18843  * NOTE: the logic of the fast path is duplicated from this function.
18844  */
18845 static void
18846 tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent)
18847 {
18848 	int		len;
18849 	mblk_t		*local_time;
18850 	mblk_t		*mp1;
18851 	uint32_t	snxt;
18852 	int		tail_unsent;
18853 	int		tcpstate;
18854 	int		usable = 0;
18855 	mblk_t		*xmit_tail;
18856 	queue_t		*q = tcp->tcp_wq;
18857 	int32_t		mss;
18858 	int32_t		num_sack_blk = 0;
18859 	int32_t		tcp_hdr_len;
18860 	int32_t		tcp_tcp_hdr_len;
18861 	int		mdt_thres;
18862 	int		rc;
18863 
18864 	tcpstate = tcp->tcp_state;
18865 	if (mp == NULL) {
18866 		/*
18867 		 * tcp_wput_data() with NULL mp should only be called when
18868 		 * there is unsent data.
18869 		 */
18870 		ASSERT(tcp->tcp_unsent > 0);
18871 		/* Really tacky... but we need this for detached closes. */
18872 		len = tcp->tcp_unsent;
18873 		goto data_null;
18874 	}
18875 
18876 #if CCS_STATS
18877 	wrw_stats.tot.count++;
18878 	wrw_stats.tot.bytes += msgdsize(mp);
18879 #endif
18880 	ASSERT(mp->b_datap->db_type == M_DATA);
18881 	/*
18882 	 * Don't allow data after T_ORDREL_REQ or T_DISCON_REQ,
18883 	 * or before a connection attempt has begun.
18884 	 */
18885 	if (tcpstate < TCPS_SYN_SENT || tcpstate > TCPS_CLOSE_WAIT ||
18886 	    (tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) {
18887 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) {
18888 #ifdef DEBUG
18889 			cmn_err(CE_WARN,
18890 			    "tcp_wput_data: data after ordrel, %s",
18891 			    tcp_display(tcp, NULL,
18892 			    DISP_ADDR_AND_PORT));
18893 #else
18894 			if (tcp->tcp_debug) {
18895 				(void) strlog(TCP_MOD_ID, 0, 1,
18896 				    SL_TRACE|SL_ERROR,
18897 				    "tcp_wput_data: data after ordrel, %s\n",
18898 				    tcp_display(tcp, NULL,
18899 				    DISP_ADDR_AND_PORT));
18900 			}
18901 #endif /* DEBUG */
18902 		}
18903 		if (tcp->tcp_snd_zcopy_aware &&
18904 		    (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) != 0)
18905 			tcp_zcopy_notify(tcp);
18906 		freemsg(mp);
18907 		if (tcp->tcp_flow_stopped &&
18908 		    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
18909 			tcp_clrqfull(tcp);
18910 		}
18911 		return;
18912 	}
18913 
18914 	/* Strip empties */
18915 	for (;;) {
18916 		ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
18917 		    (uintptr_t)INT_MAX);
18918 		len = (int)(mp->b_wptr - mp->b_rptr);
18919 		if (len > 0)
18920 			break;
18921 		mp1 = mp;
18922 		mp = mp->b_cont;
18923 		freeb(mp1);
18924 		if (!mp) {
18925 			return;
18926 		}
18927 	}
18928 
18929 	/* If we are the first on the list ... */
18930 	if (tcp->tcp_xmit_head == NULL) {
18931 		tcp->tcp_xmit_head = mp;
18932 		tcp->tcp_xmit_tail = mp;
18933 		tcp->tcp_xmit_tail_unsent = len;
18934 	} else {
18935 		/* If tiny tx and room in txq tail, pullup to save mblks. */
18936 		struct datab *dp;
18937 
18938 		mp1 = tcp->tcp_xmit_last;
18939 		if (len < tcp_tx_pull_len &&
18940 		    (dp = mp1->b_datap)->db_ref == 1 &&
18941 		    dp->db_lim - mp1->b_wptr >= len) {
18942 			ASSERT(len > 0);
18943 			ASSERT(!mp1->b_cont);
18944 			if (len == 1) {
18945 				*mp1->b_wptr++ = *mp->b_rptr;
18946 			} else {
18947 				bcopy(mp->b_rptr, mp1->b_wptr, len);
18948 				mp1->b_wptr += len;
18949 			}
18950 			if (mp1 == tcp->tcp_xmit_tail)
18951 				tcp->tcp_xmit_tail_unsent += len;
18952 			mp1->b_cont = mp->b_cont;
18953 			if (tcp->tcp_snd_zcopy_aware &&
18954 			    (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY))
18955 				mp1->b_datap->db_struioflag |= STRUIO_ZCNOTIFY;
18956 			freeb(mp);
18957 			mp = mp1;
18958 		} else {
18959 			tcp->tcp_xmit_last->b_cont = mp;
18960 		}
18961 		len += tcp->tcp_unsent;
18962 	}
18963 
18964 	/* Tack on however many more positive length mblks we have */
18965 	if ((mp1 = mp->b_cont) != NULL) {
18966 		do {
18967 			int tlen;
18968 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
18969 			    (uintptr_t)INT_MAX);
18970 			tlen = (int)(mp1->b_wptr - mp1->b_rptr);
18971 			if (tlen <= 0) {
18972 				mp->b_cont = mp1->b_cont;
18973 				freeb(mp1);
18974 			} else {
18975 				len += tlen;
18976 				mp = mp1;
18977 			}
18978 		} while ((mp1 = mp->b_cont) != NULL);
18979 	}
18980 	tcp->tcp_xmit_last = mp;
18981 	tcp->tcp_unsent = len;
18982 
18983 	if (urgent)
18984 		usable = 1;
18985 
18986 data_null:
18987 	snxt = tcp->tcp_snxt;
18988 	xmit_tail = tcp->tcp_xmit_tail;
18989 	tail_unsent = tcp->tcp_xmit_tail_unsent;
18990 
18991 	/*
18992 	 * Note that tcp_mss has been adjusted to take into account the
18993 	 * timestamp option if applicable.  Because SACK options do not
18994 	 * appear in every TCP segments and they are of variable lengths,
18995 	 * they cannot be included in tcp_mss.  Thus we need to calculate
18996 	 * the actual segment length when we need to send a segment which
18997 	 * includes SACK options.
18998 	 */
18999 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
19000 		int32_t	opt_len;
19001 
19002 		num_sack_blk = MIN(tcp->tcp_max_sack_blk,
19003 		    tcp->tcp_num_sack_blk);
19004 		opt_len = num_sack_blk * sizeof (sack_blk_t) + TCPOPT_NOP_LEN *
19005 		    2 + TCPOPT_HEADER_LEN;
19006 		mss = tcp->tcp_mss - opt_len;
19007 		tcp_hdr_len = tcp->tcp_hdr_len + opt_len;
19008 		tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + opt_len;
19009 	} else {
19010 		mss = tcp->tcp_mss;
19011 		tcp_hdr_len = tcp->tcp_hdr_len;
19012 		tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len;
19013 	}
19014 
19015 	if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet &&
19016 	    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) {
19017 		SET_TCP_INIT_CWND(tcp, mss, tcp_slow_start_after_idle);
19018 	}
19019 	if (tcpstate == TCPS_SYN_RCVD) {
19020 		/*
19021 		 * The three-way connection establishment handshake is not
19022 		 * complete yet. We want to queue the data for transmission
19023 		 * after entering ESTABLISHED state (RFC793). A jump to
19024 		 * "done" label effectively leaves data on the queue.
19025 		 */
19026 		goto done;
19027 	} else {
19028 		int usable_r;
19029 
19030 		/*
19031 		 * In the special case when cwnd is zero, which can only
19032 		 * happen if the connection is ECN capable, return now.
19033 		 * New segments is sent using tcp_timer().  The timer
19034 		 * is set in tcp_rput_data().
19035 		 */
19036 		if (tcp->tcp_cwnd == 0) {
19037 			/*
19038 			 * Note that tcp_cwnd is 0 before 3-way handshake is
19039 			 * finished.
19040 			 */
19041 			ASSERT(tcp->tcp_ecn_ok ||
19042 			    tcp->tcp_state < TCPS_ESTABLISHED);
19043 			return;
19044 		}
19045 
19046 		/* NOTE: trouble if xmitting while SYN not acked? */
19047 		usable_r = snxt - tcp->tcp_suna;
19048 		usable_r = tcp->tcp_swnd - usable_r;
19049 
19050 		/*
19051 		 * Check if the receiver has shrunk the window.  If
19052 		 * tcp_wput_data() with NULL mp is called, tcp_fin_sent
19053 		 * cannot be set as there is unsent data, so FIN cannot
19054 		 * be sent out.  Otherwise, we need to take into account
19055 		 * of FIN as it consumes an "invisible" sequence number.
19056 		 */
19057 		ASSERT(tcp->tcp_fin_sent == 0);
19058 		if (usable_r < 0) {
19059 			/*
19060 			 * The receiver has shrunk the window and we have sent
19061 			 * -usable_r date beyond the window, re-adjust.
19062 			 *
19063 			 * If TCP window scaling is enabled, there can be
19064 			 * round down error as the advertised receive window
19065 			 * is actually right shifted n bits.  This means that
19066 			 * the lower n bits info is wiped out.  It will look
19067 			 * like the window is shrunk.  Do a check here to
19068 			 * see if the shrunk amount is actually within the
19069 			 * error in window calculation.  If it is, just
19070 			 * return.  Note that this check is inside the
19071 			 * shrunk window check.  This makes sure that even
19072 			 * though tcp_process_shrunk_swnd() is not called,
19073 			 * we will stop further processing.
19074 			 */
19075 			if ((-usable_r >> tcp->tcp_snd_ws) > 0) {
19076 				tcp_process_shrunk_swnd(tcp, -usable_r);
19077 			}
19078 			return;
19079 		}
19080 
19081 		/* usable = MIN(swnd, cwnd) - unacked_bytes */
19082 		if (tcp->tcp_swnd > tcp->tcp_cwnd)
19083 			usable_r -= tcp->tcp_swnd - tcp->tcp_cwnd;
19084 
19085 		/* usable = MIN(usable, unsent) */
19086 		if (usable_r > len)
19087 			usable_r = len;
19088 
19089 		/* usable = MAX(usable, {1 for urgent, 0 for data}) */
19090 		if (usable_r > 0) {
19091 			usable = usable_r;
19092 		} else {
19093 			/* Bypass all other unnecessary processing. */
19094 			goto done;
19095 		}
19096 	}
19097 
19098 	local_time = (mblk_t *)lbolt;
19099 
19100 	/*
19101 	 * "Our" Nagle Algorithm.  This is not the same as in the old
19102 	 * BSD.  This is more in line with the true intent of Nagle.
19103 	 *
19104 	 * The conditions are:
19105 	 * 1. The amount of unsent data (or amount of data which can be
19106 	 *    sent, whichever is smaller) is less than Nagle limit.
19107 	 * 2. The last sent size is also less than Nagle limit.
19108 	 * 3. There is unack'ed data.
19109 	 * 4. Urgent pointer is not set.  Send urgent data ignoring the
19110 	 *    Nagle algorithm.  This reduces the probability that urgent
19111 	 *    bytes get "merged" together.
19112 	 * 5. The app has not closed the connection.  This eliminates the
19113 	 *    wait time of the receiving side waiting for the last piece of
19114 	 *    (small) data.
19115 	 *
19116 	 * If all are satisified, exit without sending anything.  Note
19117 	 * that Nagle limit can be smaller than 1 MSS.  Nagle limit is
19118 	 * the smaller of 1 MSS and global tcp_naglim_def (default to be
19119 	 * 4095).
19120 	 */
19121 	if (usable < (int)tcp->tcp_naglim &&
19122 	    tcp->tcp_naglim > tcp->tcp_last_sent_len &&
19123 	    snxt != tcp->tcp_suna &&
19124 	    !(tcp->tcp_valid_bits & TCP_URG_VALID) &&
19125 	    !(tcp->tcp_valid_bits & TCP_FSS_VALID)) {
19126 		goto done;
19127 	}
19128 
19129 	if (tcp->tcp_cork) {
19130 		/*
19131 		 * if the tcp->tcp_cork option is set, then we have to force
19132 		 * TCP not to send partial segment (smaller than MSS bytes).
19133 		 * We are calculating the usable now based on full mss and
19134 		 * will save the rest of remaining data for later.
19135 		 */
19136 		if (usable < mss)
19137 			goto done;
19138 		usable = (usable / mss) * mss;
19139 	}
19140 
19141 	/* Update the latest receive window size in TCP header. */
19142 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
19143 	    tcp->tcp_tcph->th_win);
19144 
19145 	/*
19146 	 * Determine if it's worthwhile to attempt LSO or MDT, based on:
19147 	 *
19148 	 * 1. Simple TCP/IP{v4,v6} (no options).
19149 	 * 2. IPSEC/IPQoS processing is not needed for the TCP connection.
19150 	 * 3. If the TCP connection is in ESTABLISHED state.
19151 	 * 4. The TCP is not detached.
19152 	 *
19153 	 * If any of the above conditions have changed during the
19154 	 * connection, stop using LSO/MDT and restore the stream head
19155 	 * parameters accordingly.
19156 	 */
19157 	if ((tcp->tcp_lso || tcp->tcp_mdt) &&
19158 	    ((tcp->tcp_ipversion == IPV4_VERSION &&
19159 	    tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) ||
19160 	    (tcp->tcp_ipversion == IPV6_VERSION &&
19161 	    tcp->tcp_ip_hdr_len != IPV6_HDR_LEN) ||
19162 	    tcp->tcp_state != TCPS_ESTABLISHED ||
19163 	    TCP_IS_DETACHED(tcp) || !CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp) ||
19164 	    CONN_IPSEC_OUT_ENCAPSULATED(tcp->tcp_connp) ||
19165 	    IPP_ENABLED(IPP_LOCAL_OUT))) {
19166 		if (tcp->tcp_lso) {
19167 			tcp->tcp_connp->conn_lso_ok = B_FALSE;
19168 			tcp->tcp_lso = B_FALSE;
19169 		} else {
19170 			tcp->tcp_connp->conn_mdt_ok = B_FALSE;
19171 			tcp->tcp_mdt = B_FALSE;
19172 		}
19173 
19174 		/* Anything other than detached is considered pathological */
19175 		if (!TCP_IS_DETACHED(tcp)) {
19176 			if (tcp->tcp_lso)
19177 				TCP_STAT(tcp_lso_disabled);
19178 			else
19179 				TCP_STAT(tcp_mdt_conn_halted1);
19180 			(void) tcp_maxpsz_set(tcp, B_TRUE);
19181 		}
19182 	}
19183 
19184 	/* Use MDT if sendable amount is greater than the threshold */
19185 	if (tcp->tcp_mdt &&
19186 	    (mdt_thres = mss << tcp_mdt_smss_threshold, usable > mdt_thres) &&
19187 	    (tail_unsent > mdt_thres || (xmit_tail->b_cont != NULL &&
19188 	    MBLKL(xmit_tail->b_cont) > mdt_thres)) &&
19189 	    (tcp->tcp_valid_bits == 0 ||
19190 	    tcp->tcp_valid_bits == TCP_FSS_VALID)) {
19191 		ASSERT(tcp->tcp_connp->conn_mdt_ok);
19192 		rc = tcp_multisend(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len,
19193 		    num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail,
19194 		    local_time, mdt_thres);
19195 	} else {
19196 		rc = tcp_send(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len,
19197 		    num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail,
19198 		    local_time, INT_MAX);
19199 	}
19200 
19201 	/* Pretend that all we were trying to send really got sent */
19202 	if (rc < 0 && tail_unsent < 0) {
19203 		do {
19204 			xmit_tail = xmit_tail->b_cont;
19205 			xmit_tail->b_prev = local_time;
19206 			ASSERT((uintptr_t)(xmit_tail->b_wptr -
19207 			    xmit_tail->b_rptr) <= (uintptr_t)INT_MAX);
19208 			tail_unsent += (int)(xmit_tail->b_wptr -
19209 			    xmit_tail->b_rptr);
19210 		} while (tail_unsent < 0);
19211 	}
19212 done:;
19213 	tcp->tcp_xmit_tail = xmit_tail;
19214 	tcp->tcp_xmit_tail_unsent = tail_unsent;
19215 	len = tcp->tcp_snxt - snxt;
19216 	if (len) {
19217 		/*
19218 		 * If new data was sent, need to update the notsack
19219 		 * list, which is, afterall, data blocks that have
19220 		 * not been sack'ed by the receiver.  New data is
19221 		 * not sack'ed.
19222 		 */
19223 		if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
19224 			/* len is a negative value. */
19225 			tcp->tcp_pipe -= len;
19226 			tcp_notsack_update(&(tcp->tcp_notsack_list),
19227 			    tcp->tcp_snxt, snxt,
19228 			    &(tcp->tcp_num_notsack_blk),
19229 			    &(tcp->tcp_cnt_notsack_list));
19230 		}
19231 		tcp->tcp_snxt = snxt + tcp->tcp_fin_sent;
19232 		tcp->tcp_rack = tcp->tcp_rnxt;
19233 		tcp->tcp_rack_cnt = 0;
19234 		if ((snxt + len) == tcp->tcp_suna) {
19235 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
19236 		}
19237 	} else if (snxt == tcp->tcp_suna && tcp->tcp_swnd == 0) {
19238 		/*
19239 		 * Didn't send anything. Make sure the timer is running
19240 		 * so that we will probe a zero window.
19241 		 */
19242 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
19243 	}
19244 	/* Note that len is the amount we just sent but with a negative sign */
19245 	tcp->tcp_unsent += len;
19246 	if (tcp->tcp_flow_stopped) {
19247 		if (TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
19248 			tcp_clrqfull(tcp);
19249 		}
19250 	} else if (TCP_UNSENT_BYTES(tcp) >= tcp->tcp_xmit_hiwater) {
19251 		tcp_setqfull(tcp);
19252 	}
19253 }
19254 
19255 /*
19256  * tcp_fill_header is called by tcp_send() and tcp_multisend() to fill the
19257  * outgoing TCP header with the template header, as well as other
19258  * options such as time-stamp, ECN and/or SACK.
19259  */
19260 static void
19261 tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, int num_sack_blk)
19262 {
19263 	tcph_t *tcp_tmpl, *tcp_h;
19264 	uint32_t *dst, *src;
19265 	int hdrlen;
19266 
19267 	ASSERT(OK_32PTR(rptr));
19268 
19269 	/* Template header */
19270 	tcp_tmpl = tcp->tcp_tcph;
19271 
19272 	/* Header of outgoing packet */
19273 	tcp_h = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
19274 
19275 	/* dst and src are opaque 32-bit fields, used for copying */
19276 	dst = (uint32_t *)rptr;
19277 	src = (uint32_t *)tcp->tcp_iphc;
19278 	hdrlen = tcp->tcp_hdr_len;
19279 
19280 	/* Fill time-stamp option if needed */
19281 	if (tcp->tcp_snd_ts_ok) {
19282 		U32_TO_BE32((uint32_t)now,
19283 		    (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 4);
19284 		U32_TO_BE32(tcp->tcp_ts_recent,
19285 		    (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 8);
19286 	} else {
19287 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
19288 	}
19289 
19290 	/*
19291 	 * Copy the template header; is this really more efficient than
19292 	 * calling bcopy()?  For simple IPv4/TCP, it may be the case,
19293 	 * but perhaps not for other scenarios.
19294 	 */
19295 	dst[0] = src[0];
19296 	dst[1] = src[1];
19297 	dst[2] = src[2];
19298 	dst[3] = src[3];
19299 	dst[4] = src[4];
19300 	dst[5] = src[5];
19301 	dst[6] = src[6];
19302 	dst[7] = src[7];
19303 	dst[8] = src[8];
19304 	dst[9] = src[9];
19305 	if (hdrlen -= 40) {
19306 		hdrlen >>= 2;
19307 		dst += 10;
19308 		src += 10;
19309 		do {
19310 			*dst++ = *src++;
19311 		} while (--hdrlen);
19312 	}
19313 
19314 	/*
19315 	 * Set the ECN info in the TCP header if it is not a zero
19316 	 * window probe.  Zero window probe is only sent in
19317 	 * tcp_wput_data() and tcp_timer().
19318 	 */
19319 	if (tcp->tcp_ecn_ok && !tcp->tcp_zero_win_probe) {
19320 		SET_ECT(tcp, rptr);
19321 
19322 		if (tcp->tcp_ecn_echo_on)
19323 			tcp_h->th_flags[0] |= TH_ECE;
19324 		if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
19325 			tcp_h->th_flags[0] |= TH_CWR;
19326 			tcp->tcp_ecn_cwr_sent = B_TRUE;
19327 		}
19328 	}
19329 
19330 	/* Fill in SACK options */
19331 	if (num_sack_blk > 0) {
19332 		uchar_t *wptr = rptr + tcp->tcp_hdr_len;
19333 		sack_blk_t *tmp;
19334 		int32_t	i;
19335 
19336 		wptr[0] = TCPOPT_NOP;
19337 		wptr[1] = TCPOPT_NOP;
19338 		wptr[2] = TCPOPT_SACK;
19339 		wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
19340 		    sizeof (sack_blk_t);
19341 		wptr += TCPOPT_REAL_SACK_LEN;
19342 
19343 		tmp = tcp->tcp_sack_list;
19344 		for (i = 0; i < num_sack_blk; i++) {
19345 			U32_TO_BE32(tmp[i].begin, wptr);
19346 			wptr += sizeof (tcp_seq);
19347 			U32_TO_BE32(tmp[i].end, wptr);
19348 			wptr += sizeof (tcp_seq);
19349 		}
19350 		tcp_h->th_offset_and_rsrvd[0] +=
19351 		    ((num_sack_blk * 2 + 1) << 4);
19352 	}
19353 }
19354 
19355 /*
19356  * tcp_mdt_add_attrs() is called by tcp_multisend() in order to attach
19357  * the destination address and SAP attribute, and if necessary, the
19358  * hardware checksum offload attribute to a Multidata message.
19359  */
19360 static int
19361 tcp_mdt_add_attrs(multidata_t *mmd, const mblk_t *dlmp, const boolean_t hwcksum,
19362     const uint32_t start, const uint32_t stuff, const uint32_t end,
19363     const uint32_t flags)
19364 {
19365 	/* Add global destination address & SAP attribute */
19366 	if (dlmp == NULL || !ip_md_addr_attr(mmd, NULL, dlmp)) {
19367 		ip1dbg(("tcp_mdt_add_attrs: can't add global physical "
19368 		    "destination address+SAP\n"));
19369 
19370 		if (dlmp != NULL)
19371 			TCP_STAT(tcp_mdt_allocfail);
19372 		return (-1);
19373 	}
19374 
19375 	/* Add global hwcksum attribute */
19376 	if (hwcksum &&
19377 	    !ip_md_hcksum_attr(mmd, NULL, start, stuff, end, flags)) {
19378 		ip1dbg(("tcp_mdt_add_attrs: can't add global hardware "
19379 		    "checksum attribute\n"));
19380 
19381 		TCP_STAT(tcp_mdt_allocfail);
19382 		return (-1);
19383 	}
19384 
19385 	return (0);
19386 }
19387 
19388 /*
19389  * Smaller and private version of pdescinfo_t used specifically for TCP,
19390  * which allows for only two payload spans per packet.
19391  */
19392 typedef struct tcp_pdescinfo_s PDESCINFO_STRUCT(2) tcp_pdescinfo_t;
19393 
19394 /*
19395  * tcp_multisend() is called by tcp_wput_data() for Multidata Transmit
19396  * scheme, and returns one the following:
19397  *
19398  * -1 = failed allocation.
19399  *  0 = success; burst count reached, or usable send window is too small,
19400  *      and that we'd rather wait until later before sending again.
19401  */
19402 static int
19403 tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len,
19404     const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable,
19405     uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
19406     const int mdt_thres)
19407 {
19408 	mblk_t		*md_mp_head, *md_mp, *md_pbuf, *md_pbuf_nxt, *md_hbuf;
19409 	multidata_t	*mmd;
19410 	uint_t		obsegs, obbytes, hdr_frag_sz;
19411 	uint_t		cur_hdr_off, cur_pld_off, base_pld_off, first_snxt;
19412 	int		num_burst_seg, max_pld;
19413 	pdesc_t		*pkt;
19414 	tcp_pdescinfo_t	tcp_pkt_info;
19415 	pdescinfo_t	*pkt_info;
19416 	int		pbuf_idx, pbuf_idx_nxt;
19417 	int		seg_len, len, spill, af;
19418 	boolean_t	add_buffer, zcopy, clusterwide;
19419 	boolean_t	buf_trunked = B_FALSE;
19420 	boolean_t	rconfirm = B_FALSE;
19421 	boolean_t	done = B_FALSE;
19422 	uint32_t	cksum;
19423 	uint32_t	hwcksum_flags;
19424 	ire_t		*ire = NULL;
19425 	ill_t		*ill;
19426 	ipha_t		*ipha;
19427 	ip6_t		*ip6h;
19428 	ipaddr_t	src, dst;
19429 	ill_zerocopy_capab_t *zc_cap = NULL;
19430 	uint16_t	*up;
19431 	int		err;
19432 	conn_t		*connp;
19433 	mblk_t		*mp, *mp1, *fw_mp_head = NULL;
19434 	uchar_t		*pld_start;
19435 
19436 #ifdef	_BIG_ENDIAN
19437 #define	IPVER(ip6h)	((((uint32_t *)ip6h)[0] >> 28) & 0x7)
19438 #else
19439 #define	IPVER(ip6h)	((((uint32_t *)ip6h)[0] >> 4) & 0x7)
19440 #endif
19441 
19442 #define	PREP_NEW_MULTIDATA() {			\
19443 	mmd = NULL;				\
19444 	md_mp = md_hbuf = NULL;			\
19445 	cur_hdr_off = 0;			\
19446 	max_pld = tcp->tcp_mdt_max_pld;		\
19447 	pbuf_idx = pbuf_idx_nxt = -1;		\
19448 	add_buffer = B_TRUE;			\
19449 	zcopy = B_FALSE;			\
19450 }
19451 
19452 #define	PREP_NEW_PBUF() {			\
19453 	md_pbuf = md_pbuf_nxt = NULL;		\
19454 	pbuf_idx = pbuf_idx_nxt = -1;		\
19455 	cur_pld_off = 0;			\
19456 	first_snxt = *snxt;			\
19457 	ASSERT(*tail_unsent > 0);		\
19458 	base_pld_off = MBLKL(*xmit_tail) - *tail_unsent; \
19459 }
19460 
19461 	ASSERT(mdt_thres >= mss);
19462 	ASSERT(*usable > 0 && *usable > mdt_thres);
19463 	ASSERT(tcp->tcp_state == TCPS_ESTABLISHED);
19464 	ASSERT(!TCP_IS_DETACHED(tcp));
19465 	ASSERT(tcp->tcp_valid_bits == 0 ||
19466 	    tcp->tcp_valid_bits == TCP_FSS_VALID);
19467 	ASSERT((tcp->tcp_ipversion == IPV4_VERSION &&
19468 	    tcp->tcp_ip_hdr_len == IP_SIMPLE_HDR_LENGTH) ||
19469 	    (tcp->tcp_ipversion == IPV6_VERSION &&
19470 	    tcp->tcp_ip_hdr_len == IPV6_HDR_LEN));
19471 
19472 	connp = tcp->tcp_connp;
19473 	ASSERT(connp != NULL);
19474 	ASSERT(CONN_IS_LSO_MD_FASTPATH(connp));
19475 	ASSERT(!CONN_IPSEC_OUT_ENCAPSULATED(connp));
19476 
19477 	/*
19478 	 * Note that tcp will only declare at most 2 payload spans per
19479 	 * packet, which is much lower than the maximum allowable number
19480 	 * of packet spans per Multidata.  For this reason, we use the
19481 	 * privately declared and smaller descriptor info structure, in
19482 	 * order to save some stack space.
19483 	 */
19484 	pkt_info = (pdescinfo_t *)&tcp_pkt_info;
19485 
19486 	af = (tcp->tcp_ipversion == IPV4_VERSION) ? AF_INET : AF_INET6;
19487 	if (af == AF_INET) {
19488 		dst = tcp->tcp_ipha->ipha_dst;
19489 		src = tcp->tcp_ipha->ipha_src;
19490 		ASSERT(!CLASSD(dst));
19491 	}
19492 	ASSERT(af == AF_INET ||
19493 	    !IN6_IS_ADDR_MULTICAST(&tcp->tcp_ip6h->ip6_dst));
19494 
19495 	obsegs = obbytes = 0;
19496 	num_burst_seg = tcp->tcp_snd_burst;
19497 	md_mp_head = NULL;
19498 	PREP_NEW_MULTIDATA();
19499 
19500 	/*
19501 	 * Before we go on further, make sure there is an IRE that we can
19502 	 * use, and that the ILL supports MDT.  Otherwise, there's no point
19503 	 * in proceeding any further, and we should just hand everything
19504 	 * off to the legacy path.
19505 	 */
19506 	if (!tcp_send_find_ire(tcp, (af == AF_INET) ? &dst : NULL, &ire))
19507 		goto legacy_send_no_md;
19508 
19509 	ASSERT(ire != NULL);
19510 	ASSERT(af != AF_INET || ire->ire_ipversion == IPV4_VERSION);
19511 	ASSERT(af == AF_INET || !IN6_IS_ADDR_V4MAPPED(&(ire->ire_addr_v6)));
19512 	ASSERT(af == AF_INET || ire->ire_nce != NULL);
19513 	ASSERT(!(ire->ire_type & IRE_BROADCAST));
19514 	/*
19515 	 * If we do support loopback for MDT (which requires modifications
19516 	 * to the receiving paths), the following assertions should go away,
19517 	 * and we would be sending the Multidata to loopback conn later on.
19518 	 */
19519 	ASSERT(!IRE_IS_LOCAL(ire));
19520 	ASSERT(ire->ire_stq != NULL);
19521 
19522 	ill = ire_to_ill(ire);
19523 	ASSERT(ill != NULL);
19524 	ASSERT(!ILL_MDT_CAPABLE(ill) || ill->ill_mdt_capab != NULL);
19525 
19526 	if (!tcp->tcp_ire_ill_check_done) {
19527 		tcp_ire_ill_check(tcp, ire, ill, B_TRUE);
19528 		tcp->tcp_ire_ill_check_done = B_TRUE;
19529 	}
19530 
19531 	/*
19532 	 * If the underlying interface conditions have changed, or if the
19533 	 * new interface does not support MDT, go back to legacy path.
19534 	 */
19535 	if (!ILL_MDT_USABLE(ill) || (ire->ire_flags & RTF_MULTIRT) != 0) {
19536 		/* don't go through this path anymore for this connection */
19537 		TCP_STAT(tcp_mdt_conn_halted2);
19538 		tcp->tcp_mdt = B_FALSE;
19539 		ip1dbg(("tcp_multisend: disabling MDT for connp %p on "
19540 		    "interface %s\n", (void *)connp, ill->ill_name));
19541 		/* IRE will be released prior to returning */
19542 		goto legacy_send_no_md;
19543 	}
19544 
19545 	if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)
19546 		zc_cap = ill->ill_zerocopy_capab;
19547 
19548 	/*
19549 	 * Check if we can take tcp fast-path. Note that "incomplete"
19550 	 * ire's (where the link-layer for next hop is not resolved
19551 	 * or where the fast-path header in nce_fp_mp is not available
19552 	 * yet) are sent down the legacy (slow) path.
19553 	 * NOTE: We should fix ip_xmit_v4 to handle M_MULTIDATA
19554 	 */
19555 	if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) {
19556 		/* IRE will be released prior to returning */
19557 		goto legacy_send_no_md;
19558 	}
19559 
19560 	/* go to legacy path if interface doesn't support zerocopy */
19561 	if (tcp->tcp_snd_zcopy_aware && do_tcpzcopy != 2 &&
19562 	    (zc_cap == NULL || zc_cap->ill_zerocopy_flags == 0)) {
19563 		/* IRE will be released prior to returning */
19564 		goto legacy_send_no_md;
19565 	}
19566 
19567 	/* does the interface support hardware checksum offload? */
19568 	hwcksum_flags = 0;
19569 	if (ILL_HCKSUM_CAPABLE(ill) &&
19570 	    (ill->ill_hcksum_capab->ill_hcksum_txflags &
19571 	    (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6 | HCKSUM_INET_PARTIAL |
19572 	    HCKSUM_IPHDRCKSUM)) && dohwcksum) {
19573 		if (ill->ill_hcksum_capab->ill_hcksum_txflags &
19574 		    HCKSUM_IPHDRCKSUM)
19575 			hwcksum_flags = HCK_IPV4_HDRCKSUM;
19576 
19577 		if (ill->ill_hcksum_capab->ill_hcksum_txflags &
19578 		    (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6))
19579 			hwcksum_flags |= HCK_FULLCKSUM;
19580 		else if (ill->ill_hcksum_capab->ill_hcksum_txflags &
19581 		    HCKSUM_INET_PARTIAL)
19582 			hwcksum_flags |= HCK_PARTIALCKSUM;
19583 	}
19584 
19585 	/*
19586 	 * Each header fragment consists of the leading extra space,
19587 	 * followed by the TCP/IP header, and the trailing extra space.
19588 	 * We make sure that each header fragment begins on a 32-bit
19589 	 * aligned memory address (tcp_mdt_hdr_head is already 32-bit
19590 	 * aligned in tcp_mdt_update).
19591 	 */
19592 	hdr_frag_sz = roundup((tcp->tcp_mdt_hdr_head + tcp_hdr_len +
19593 	    tcp->tcp_mdt_hdr_tail), 4);
19594 
19595 	/* are we starting from the beginning of data block? */
19596 	if (*tail_unsent == 0) {
19597 		*xmit_tail = (*xmit_tail)->b_cont;
19598 		ASSERT((uintptr_t)MBLKL(*xmit_tail) <= (uintptr_t)INT_MAX);
19599 		*tail_unsent = (int)MBLKL(*xmit_tail);
19600 	}
19601 
19602 	/*
19603 	 * Here we create one or more Multidata messages, each made up of
19604 	 * one header buffer and up to N payload buffers.  This entire
19605 	 * operation is done within two loops:
19606 	 *
19607 	 * The outer loop mostly deals with creating the Multidata message,
19608 	 * as well as the header buffer that gets added to it.  It also
19609 	 * links the Multidata messages together such that all of them can
19610 	 * be sent down to the lower layer in a single putnext call; this
19611 	 * linking behavior depends on the tcp_mdt_chain tunable.
19612 	 *
19613 	 * The inner loop takes an existing Multidata message, and adds
19614 	 * one or more (up to tcp_mdt_max_pld) payload buffers to it.  It
19615 	 * packetizes those buffers by filling up the corresponding header
19616 	 * buffer fragments with the proper IP and TCP headers, and by
19617 	 * describing the layout of each packet in the packet descriptors
19618 	 * that get added to the Multidata.
19619 	 */
19620 	do {
19621 		/*
19622 		 * If usable send window is too small, or data blocks in
19623 		 * transmit list are smaller than our threshold (i.e. app
19624 		 * performs large writes followed by small ones), we hand
19625 		 * off the control over to the legacy path.  Note that we'll
19626 		 * get back the control once it encounters a large block.
19627 		 */
19628 		if (*usable < mss || (*tail_unsent <= mdt_thres &&
19629 		    (*xmit_tail)->b_cont != NULL &&
19630 		    MBLKL((*xmit_tail)->b_cont) <= mdt_thres)) {
19631 			/* send down what we've got so far */
19632 			if (md_mp_head != NULL) {
19633 				tcp_multisend_data(tcp, ire, ill, md_mp_head,
19634 				    obsegs, obbytes, &rconfirm);
19635 			}
19636 			/*
19637 			 * Pass control over to tcp_send(), but tell it to
19638 			 * return to us once a large-size transmission is
19639 			 * possible.
19640 			 */
19641 			TCP_STAT(tcp_mdt_legacy_small);
19642 			if ((err = tcp_send(q, tcp, mss, tcp_hdr_len,
19643 			    tcp_tcp_hdr_len, num_sack_blk, usable, snxt,
19644 			    tail_unsent, xmit_tail, local_time,
19645 			    mdt_thres)) <= 0) {
19646 				/* burst count reached, or alloc failed */
19647 				IRE_REFRELE(ire);
19648 				return (err);
19649 			}
19650 
19651 			/* tcp_send() may have sent everything, so check */
19652 			if (*usable <= 0) {
19653 				IRE_REFRELE(ire);
19654 				return (0);
19655 			}
19656 
19657 			TCP_STAT(tcp_mdt_legacy_ret);
19658 			/*
19659 			 * We may have delivered the Multidata, so make sure
19660 			 * to re-initialize before the next round.
19661 			 */
19662 			md_mp_head = NULL;
19663 			obsegs = obbytes = 0;
19664 			num_burst_seg = tcp->tcp_snd_burst;
19665 			PREP_NEW_MULTIDATA();
19666 
19667 			/* are we starting from the beginning of data block? */
19668 			if (*tail_unsent == 0) {
19669 				*xmit_tail = (*xmit_tail)->b_cont;
19670 				ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
19671 				    (uintptr_t)INT_MAX);
19672 				*tail_unsent = (int)MBLKL(*xmit_tail);
19673 			}
19674 		}
19675 
19676 		/*
19677 		 * max_pld limits the number of mblks in tcp's transmit
19678 		 * queue that can be added to a Multidata message.  Once
19679 		 * this counter reaches zero, no more additional mblks
19680 		 * can be added to it.  What happens afterwards depends
19681 		 * on whether or not we are set to chain the Multidata
19682 		 * messages.  If we are to link them together, reset
19683 		 * max_pld to its original value (tcp_mdt_max_pld) and
19684 		 * prepare to create a new Multidata message which will
19685 		 * get linked to md_mp_head.  Else, leave it alone and
19686 		 * let the inner loop break on its own.
19687 		 */
19688 		if (tcp_mdt_chain && max_pld == 0)
19689 			PREP_NEW_MULTIDATA();
19690 
19691 		/* adding a payload buffer; re-initialize values */
19692 		if (add_buffer)
19693 			PREP_NEW_PBUF();
19694 
19695 		/*
19696 		 * If we don't have a Multidata, either because we just
19697 		 * (re)entered this outer loop, or after we branched off
19698 		 * to tcp_send above, setup the Multidata and header
19699 		 * buffer to be used.
19700 		 */
19701 		if (md_mp == NULL) {
19702 			int md_hbuflen;
19703 			uint32_t start, stuff;
19704 
19705 			/*
19706 			 * Calculate Multidata header buffer size large enough
19707 			 * to hold all of the headers that can possibly be
19708 			 * sent at this moment.  We'd rather over-estimate
19709 			 * the size than running out of space; this is okay
19710 			 * since this buffer is small anyway.
19711 			 */
19712 			md_hbuflen = (howmany(*usable, mss) + 1) * hdr_frag_sz;
19713 
19714 			/*
19715 			 * Start and stuff offset for partial hardware
19716 			 * checksum offload; these are currently for IPv4.
19717 			 * For full checksum offload, they are set to zero.
19718 			 */
19719 			if ((hwcksum_flags & HCK_PARTIALCKSUM)) {
19720 				if (af == AF_INET) {
19721 					start = IP_SIMPLE_HDR_LENGTH;
19722 					stuff = IP_SIMPLE_HDR_LENGTH +
19723 					    TCP_CHECKSUM_OFFSET;
19724 				} else {
19725 					start = IPV6_HDR_LEN;
19726 					stuff = IPV6_HDR_LEN +
19727 					    TCP_CHECKSUM_OFFSET;
19728 				}
19729 			} else {
19730 				start = stuff = 0;
19731 			}
19732 
19733 			/*
19734 			 * Create the header buffer, Multidata, as well as
19735 			 * any necessary attributes (destination address,
19736 			 * SAP and hardware checksum offload) that should
19737 			 * be associated with the Multidata message.
19738 			 */
19739 			ASSERT(cur_hdr_off == 0);
19740 			if ((md_hbuf = allocb(md_hbuflen, BPRI_HI)) == NULL ||
19741 			    ((md_hbuf->b_wptr += md_hbuflen),
19742 			    (mmd = mmd_alloc(md_hbuf, &md_mp,
19743 			    KM_NOSLEEP)) == NULL) || (tcp_mdt_add_attrs(mmd,
19744 			    /* fastpath mblk */
19745 			    ire->ire_nce->nce_res_mp,
19746 			    /* hardware checksum enabled */
19747 			    (hwcksum_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)),
19748 			    /* hardware checksum offsets */
19749 			    start, stuff, 0,
19750 			    /* hardware checksum flag */
19751 			    hwcksum_flags) != 0)) {
19752 legacy_send:
19753 				if (md_mp != NULL) {
19754 					/* Unlink message from the chain */
19755 					if (md_mp_head != NULL) {
19756 						err = (intptr_t)rmvb(md_mp_head,
19757 						    md_mp);
19758 						/*
19759 						 * We can't assert that rmvb
19760 						 * did not return -1, since we
19761 						 * may get here before linkb
19762 						 * happens.  We do, however,
19763 						 * check if we just removed the
19764 						 * only element in the list.
19765 						 */
19766 						if (err == 0)
19767 							md_mp_head = NULL;
19768 					}
19769 					/* md_hbuf gets freed automatically */
19770 					TCP_STAT(tcp_mdt_discarded);
19771 					freeb(md_mp);
19772 				} else {
19773 					/* Either allocb or mmd_alloc failed */
19774 					TCP_STAT(tcp_mdt_allocfail);
19775 					if (md_hbuf != NULL)
19776 						freeb(md_hbuf);
19777 				}
19778 
19779 				/* send down what we've got so far */
19780 				if (md_mp_head != NULL) {
19781 					tcp_multisend_data(tcp, ire, ill,
19782 					    md_mp_head, obsegs, obbytes,
19783 					    &rconfirm);
19784 				}
19785 legacy_send_no_md:
19786 				if (ire != NULL)
19787 					IRE_REFRELE(ire);
19788 				/*
19789 				 * Too bad; let the legacy path handle this.
19790 				 * We specify INT_MAX for the threshold, since
19791 				 * we gave up with the Multidata processings
19792 				 * and let the old path have it all.
19793 				 */
19794 				TCP_STAT(tcp_mdt_legacy_all);
19795 				return (tcp_send(q, tcp, mss, tcp_hdr_len,
19796 				    tcp_tcp_hdr_len, num_sack_blk, usable,
19797 				    snxt, tail_unsent, xmit_tail, local_time,
19798 				    INT_MAX));
19799 			}
19800 
19801 			/* link to any existing ones, if applicable */
19802 			TCP_STAT(tcp_mdt_allocd);
19803 			if (md_mp_head == NULL) {
19804 				md_mp_head = md_mp;
19805 			} else if (tcp_mdt_chain) {
19806 				TCP_STAT(tcp_mdt_linked);
19807 				linkb(md_mp_head, md_mp);
19808 			}
19809 		}
19810 
19811 		ASSERT(md_mp_head != NULL);
19812 		ASSERT(tcp_mdt_chain || md_mp_head->b_cont == NULL);
19813 		ASSERT(md_mp != NULL && mmd != NULL);
19814 		ASSERT(md_hbuf != NULL);
19815 
19816 		/*
19817 		 * Packetize the transmittable portion of the data block;
19818 		 * each data block is essentially added to the Multidata
19819 		 * as a payload buffer.  We also deal with adding more
19820 		 * than one payload buffers, which happens when the remaining
19821 		 * packetized portion of the current payload buffer is less
19822 		 * than MSS, while the next data block in transmit queue
19823 		 * has enough data to make up for one.  This "spillover"
19824 		 * case essentially creates a split-packet, where portions
19825 		 * of the packet's payload fragments may span across two
19826 		 * virtually discontiguous address blocks.
19827 		 */
19828 		seg_len = mss;
19829 		do {
19830 			len = seg_len;
19831 
19832 			ASSERT(len > 0);
19833 			ASSERT(max_pld >= 0);
19834 			ASSERT(!add_buffer || cur_pld_off == 0);
19835 
19836 			/*
19837 			 * First time around for this payload buffer; note
19838 			 * in the case of a spillover, the following has
19839 			 * been done prior to adding the split-packet
19840 			 * descriptor to Multidata, and we don't want to
19841 			 * repeat the process.
19842 			 */
19843 			if (add_buffer) {
19844 				ASSERT(mmd != NULL);
19845 				ASSERT(md_pbuf == NULL);
19846 				ASSERT(md_pbuf_nxt == NULL);
19847 				ASSERT(pbuf_idx == -1 && pbuf_idx_nxt == -1);
19848 
19849 				/*
19850 				 * Have we reached the limit?  We'd get to
19851 				 * this case when we're not chaining the
19852 				 * Multidata messages together, and since
19853 				 * we're done, terminate this loop.
19854 				 */
19855 				if (max_pld == 0)
19856 					break; /* done */
19857 
19858 				if ((md_pbuf = dupb(*xmit_tail)) == NULL) {
19859 					TCP_STAT(tcp_mdt_allocfail);
19860 					goto legacy_send; /* out_of_mem */
19861 				}
19862 
19863 				if (IS_VMLOANED_MBLK(md_pbuf) && !zcopy &&
19864 				    zc_cap != NULL) {
19865 					if (!ip_md_zcopy_attr(mmd, NULL,
19866 					    zc_cap->ill_zerocopy_flags)) {
19867 						freeb(md_pbuf);
19868 						TCP_STAT(tcp_mdt_allocfail);
19869 						/* out_of_mem */
19870 						goto legacy_send;
19871 					}
19872 					zcopy = B_TRUE;
19873 				}
19874 
19875 				md_pbuf->b_rptr += base_pld_off;
19876 
19877 				/*
19878 				 * Add a payload buffer to the Multidata; this
19879 				 * operation must not fail, or otherwise our
19880 				 * logic in this routine is broken.  There
19881 				 * is no memory allocation done by the
19882 				 * routine, so any returned failure simply
19883 				 * tells us that we've done something wrong.
19884 				 *
19885 				 * A failure tells us that either we're adding
19886 				 * the same payload buffer more than once, or
19887 				 * we're trying to add more buffers than
19888 				 * allowed (max_pld calculation is wrong).
19889 				 * None of the above cases should happen, and
19890 				 * we panic because either there's horrible
19891 				 * heap corruption, and/or programming mistake.
19892 				 */
19893 				pbuf_idx = mmd_addpldbuf(mmd, md_pbuf);
19894 				if (pbuf_idx < 0) {
19895 					cmn_err(CE_PANIC, "tcp_multisend: "
19896 					    "payload buffer logic error "
19897 					    "detected for tcp %p mmd %p "
19898 					    "pbuf %p (%d)\n",
19899 					    (void *)tcp, (void *)mmd,
19900 					    (void *)md_pbuf, pbuf_idx);
19901 				}
19902 
19903 				ASSERT(max_pld > 0);
19904 				--max_pld;
19905 				add_buffer = B_FALSE;
19906 			}
19907 
19908 			ASSERT(md_mp_head != NULL);
19909 			ASSERT(md_pbuf != NULL);
19910 			ASSERT(md_pbuf_nxt == NULL);
19911 			ASSERT(pbuf_idx != -1);
19912 			ASSERT(pbuf_idx_nxt == -1);
19913 			ASSERT(*usable > 0);
19914 
19915 			/*
19916 			 * We spillover to the next payload buffer only
19917 			 * if all of the following is true:
19918 			 *
19919 			 *   1. There is not enough data on the current
19920 			 *	payload buffer to make up `len',
19921 			 *   2. We are allowed to send `len',
19922 			 *   3. The next payload buffer length is large
19923 			 *	enough to accomodate `spill'.
19924 			 */
19925 			if ((spill = len - *tail_unsent) > 0 &&
19926 			    *usable >= len &&
19927 			    MBLKL((*xmit_tail)->b_cont) >= spill &&
19928 			    max_pld > 0) {
19929 				md_pbuf_nxt = dupb((*xmit_tail)->b_cont);
19930 				if (md_pbuf_nxt == NULL) {
19931 					TCP_STAT(tcp_mdt_allocfail);
19932 					goto legacy_send; /* out_of_mem */
19933 				}
19934 
19935 				if (IS_VMLOANED_MBLK(md_pbuf_nxt) && !zcopy &&
19936 				    zc_cap != NULL) {
19937 					if (!ip_md_zcopy_attr(mmd, NULL,
19938 					    zc_cap->ill_zerocopy_flags)) {
19939 						freeb(md_pbuf_nxt);
19940 						TCP_STAT(tcp_mdt_allocfail);
19941 						/* out_of_mem */
19942 						goto legacy_send;
19943 					}
19944 					zcopy = B_TRUE;
19945 				}
19946 
19947 				/*
19948 				 * See comments above on the first call to
19949 				 * mmd_addpldbuf for explanation on the panic.
19950 				 */
19951 				pbuf_idx_nxt = mmd_addpldbuf(mmd, md_pbuf_nxt);
19952 				if (pbuf_idx_nxt < 0) {
19953 					panic("tcp_multisend: "
19954 					    "next payload buffer logic error "
19955 					    "detected for tcp %p mmd %p "
19956 					    "pbuf %p (%d)\n",
19957 					    (void *)tcp, (void *)mmd,
19958 					    (void *)md_pbuf_nxt, pbuf_idx_nxt);
19959 				}
19960 
19961 				ASSERT(max_pld > 0);
19962 				--max_pld;
19963 			} else if (spill > 0) {
19964 				/*
19965 				 * If there's a spillover, but the following
19966 				 * xmit_tail couldn't give us enough octets
19967 				 * to reach "len", then stop the current
19968 				 * Multidata creation and let the legacy
19969 				 * tcp_send() path take over.  We don't want
19970 				 * to send the tiny segment as part of this
19971 				 * Multidata for performance reasons; instead,
19972 				 * we let the legacy path deal with grouping
19973 				 * it with the subsequent small mblks.
19974 				 */
19975 				if (*usable >= len &&
19976 				    MBLKL((*xmit_tail)->b_cont) < spill) {
19977 					max_pld = 0;
19978 					break;	/* done */
19979 				}
19980 
19981 				/*
19982 				 * We can't spillover, and we are near
19983 				 * the end of the current payload buffer,
19984 				 * so send what's left.
19985 				 */
19986 				ASSERT(*tail_unsent > 0);
19987 				len = *tail_unsent;
19988 			}
19989 
19990 			/* tail_unsent is negated if there is a spillover */
19991 			*tail_unsent -= len;
19992 			*usable -= len;
19993 			ASSERT(*usable >= 0);
19994 
19995 			if (*usable < mss)
19996 				seg_len = *usable;
19997 			/*
19998 			 * Sender SWS avoidance; see comments in tcp_send();
19999 			 * everything else is the same, except that we only
20000 			 * do this here if there is no more data to be sent
20001 			 * following the current xmit_tail.  We don't check
20002 			 * for 1-byte urgent data because we shouldn't get
20003 			 * here if TCP_URG_VALID is set.
20004 			 */
20005 			if (*usable > 0 && *usable < mss &&
20006 			    ((md_pbuf_nxt == NULL &&
20007 			    (*xmit_tail)->b_cont == NULL) ||
20008 			    (md_pbuf_nxt != NULL &&
20009 			    (*xmit_tail)->b_cont->b_cont == NULL)) &&
20010 			    seg_len < (tcp->tcp_max_swnd >> 1) &&
20011 			    (tcp->tcp_unsent -
20012 			    ((*snxt + len) - tcp->tcp_snxt)) > seg_len &&
20013 			    !tcp->tcp_zero_win_probe) {
20014 				if ((*snxt + len) == tcp->tcp_snxt &&
20015 				    (*snxt + len) == tcp->tcp_suna) {
20016 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
20017 				}
20018 				done = B_TRUE;
20019 			}
20020 
20021 			/*
20022 			 * Prime pump for IP's checksumming on our behalf;
20023 			 * include the adjustment for a source route if any.
20024 			 * Do this only for software/partial hardware checksum
20025 			 * offload, as this field gets zeroed out later for
20026 			 * the full hardware checksum offload case.
20027 			 */
20028 			if (!(hwcksum_flags & HCK_FULLCKSUM)) {
20029 				cksum = len + tcp_tcp_hdr_len + tcp->tcp_sum;
20030 				cksum = (cksum >> 16) + (cksum & 0xFFFF);
20031 				U16_TO_ABE16(cksum, tcp->tcp_tcph->th_sum);
20032 			}
20033 
20034 			U32_TO_ABE32(*snxt, tcp->tcp_tcph->th_seq);
20035 			*snxt += len;
20036 
20037 			tcp->tcp_tcph->th_flags[0] = TH_ACK;
20038 			/*
20039 			 * We set the PUSH bit only if TCP has no more buffered
20040 			 * data to be transmitted (or if sender SWS avoidance
20041 			 * takes place), as opposed to setting it for every
20042 			 * last packet in the burst.
20043 			 */
20044 			if (done ||
20045 			    (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) == 0)
20046 				tcp->tcp_tcph->th_flags[0] |= TH_PUSH;
20047 
20048 			/*
20049 			 * Set FIN bit if this is our last segment; snxt
20050 			 * already includes its length, and it will not
20051 			 * be adjusted after this point.
20052 			 */
20053 			if (tcp->tcp_valid_bits == TCP_FSS_VALID &&
20054 			    *snxt == tcp->tcp_fss) {
20055 				if (!tcp->tcp_fin_acked) {
20056 					tcp->tcp_tcph->th_flags[0] |= TH_FIN;
20057 					BUMP_MIB(&tcp_mib, tcpOutControl);
20058 				}
20059 				if (!tcp->tcp_fin_sent) {
20060 					tcp->tcp_fin_sent = B_TRUE;
20061 					/*
20062 					 * tcp state must be ESTABLISHED
20063 					 * in order for us to get here in
20064 					 * the first place.
20065 					 */
20066 					tcp->tcp_state = TCPS_FIN_WAIT_1;
20067 
20068 					/*
20069 					 * Upon returning from this routine,
20070 					 * tcp_wput_data() will set tcp_snxt
20071 					 * to be equal to snxt + tcp_fin_sent.
20072 					 * This is essentially the same as
20073 					 * setting it to tcp_fss + 1.
20074 					 */
20075 				}
20076 			}
20077 
20078 			tcp->tcp_last_sent_len = (ushort_t)len;
20079 
20080 			len += tcp_hdr_len;
20081 			if (tcp->tcp_ipversion == IPV4_VERSION)
20082 				tcp->tcp_ipha->ipha_length = htons(len);
20083 			else
20084 				tcp->tcp_ip6h->ip6_plen = htons(len -
20085 				    ((char *)&tcp->tcp_ip6h[1] -
20086 				    tcp->tcp_iphc));
20087 
20088 			pkt_info->flags = (PDESC_HBUF_REF | PDESC_PBUF_REF);
20089 
20090 			/* setup header fragment */
20091 			PDESC_HDR_ADD(pkt_info,
20092 			    md_hbuf->b_rptr + cur_hdr_off,	/* base */
20093 			    tcp->tcp_mdt_hdr_head,		/* head room */
20094 			    tcp_hdr_len,			/* len */
20095 			    tcp->tcp_mdt_hdr_tail);		/* tail room */
20096 
20097 			ASSERT(pkt_info->hdr_lim - pkt_info->hdr_base ==
20098 			    hdr_frag_sz);
20099 			ASSERT(MBLKIN(md_hbuf,
20100 			    (pkt_info->hdr_base - md_hbuf->b_rptr),
20101 			    PDESC_HDRSIZE(pkt_info)));
20102 
20103 			/* setup first payload fragment */
20104 			PDESC_PLD_INIT(pkt_info);
20105 			PDESC_PLD_SPAN_ADD(pkt_info,
20106 			    pbuf_idx,				/* index */
20107 			    md_pbuf->b_rptr + cur_pld_off,	/* start */
20108 			    tcp->tcp_last_sent_len);		/* len */
20109 
20110 			/* create a split-packet in case of a spillover */
20111 			if (md_pbuf_nxt != NULL) {
20112 				ASSERT(spill > 0);
20113 				ASSERT(pbuf_idx_nxt > pbuf_idx);
20114 				ASSERT(!add_buffer);
20115 
20116 				md_pbuf = md_pbuf_nxt;
20117 				md_pbuf_nxt = NULL;
20118 				pbuf_idx = pbuf_idx_nxt;
20119 				pbuf_idx_nxt = -1;
20120 				cur_pld_off = spill;
20121 
20122 				/* trim out first payload fragment */
20123 				PDESC_PLD_SPAN_TRIM(pkt_info, 0, spill);
20124 
20125 				/* setup second payload fragment */
20126 				PDESC_PLD_SPAN_ADD(pkt_info,
20127 				    pbuf_idx,			/* index */
20128 				    md_pbuf->b_rptr,		/* start */
20129 				    spill);			/* len */
20130 
20131 				if ((*xmit_tail)->b_next == NULL) {
20132 					/*
20133 					 * Store the lbolt used for RTT
20134 					 * estimation. We can only record one
20135 					 * timestamp per mblk so we do it when
20136 					 * we reach the end of the payload
20137 					 * buffer.  Also we only take a new
20138 					 * timestamp sample when the previous
20139 					 * timed data from the same mblk has
20140 					 * been ack'ed.
20141 					 */
20142 					(*xmit_tail)->b_prev = local_time;
20143 					(*xmit_tail)->b_next =
20144 					    (mblk_t *)(uintptr_t)first_snxt;
20145 				}
20146 
20147 				first_snxt = *snxt - spill;
20148 
20149 				/*
20150 				 * Advance xmit_tail; usable could be 0 by
20151 				 * the time we got here, but we made sure
20152 				 * above that we would only spillover to
20153 				 * the next data block if usable includes
20154 				 * the spilled-over amount prior to the
20155 				 * subtraction.  Therefore, we are sure
20156 				 * that xmit_tail->b_cont can't be NULL.
20157 				 */
20158 				ASSERT((*xmit_tail)->b_cont != NULL);
20159 				*xmit_tail = (*xmit_tail)->b_cont;
20160 				ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
20161 				    (uintptr_t)INT_MAX);
20162 				*tail_unsent = (int)MBLKL(*xmit_tail) - spill;
20163 			} else {
20164 				cur_pld_off += tcp->tcp_last_sent_len;
20165 			}
20166 
20167 			/*
20168 			 * Fill in the header using the template header, and
20169 			 * add options such as time-stamp, ECN and/or SACK,
20170 			 * as needed.
20171 			 */
20172 			tcp_fill_header(tcp, pkt_info->hdr_rptr,
20173 			    (clock_t)local_time, num_sack_blk);
20174 
20175 			/* take care of some IP header businesses */
20176 			if (af == AF_INET) {
20177 				ipha = (ipha_t *)pkt_info->hdr_rptr;
20178 
20179 				ASSERT(OK_32PTR((uchar_t *)ipha));
20180 				ASSERT(PDESC_HDRL(pkt_info) >=
20181 				    IP_SIMPLE_HDR_LENGTH);
20182 				ASSERT(ipha->ipha_version_and_hdr_length ==
20183 				    IP_SIMPLE_HDR_VERSION);
20184 
20185 				/*
20186 				 * Assign ident value for current packet; see
20187 				 * related comments in ip_wput_ire() about the
20188 				 * contract private interface with clustering
20189 				 * group.
20190 				 */
20191 				clusterwide = B_FALSE;
20192 				if (cl_inet_ipident != NULL) {
20193 					ASSERT(cl_inet_isclusterwide != NULL);
20194 					if ((*cl_inet_isclusterwide)(IPPROTO_IP,
20195 					    AF_INET,
20196 					    (uint8_t *)(uintptr_t)src)) {
20197 						ipha->ipha_ident =
20198 						    (*cl_inet_ipident)
20199 						    (IPPROTO_IP, AF_INET,
20200 						    (uint8_t *)(uintptr_t)src,
20201 						    (uint8_t *)(uintptr_t)dst);
20202 						clusterwide = B_TRUE;
20203 					}
20204 				}
20205 
20206 				if (!clusterwide) {
20207 					ipha->ipha_ident = (uint16_t)
20208 					    atomic_add_32_nv(
20209 						&ire->ire_ident, 1);
20210 				}
20211 #ifndef _BIG_ENDIAN
20212 				ipha->ipha_ident = (ipha->ipha_ident << 8) |
20213 				    (ipha->ipha_ident >> 8);
20214 #endif
20215 			} else {
20216 				ip6h = (ip6_t *)pkt_info->hdr_rptr;
20217 
20218 				ASSERT(OK_32PTR((uchar_t *)ip6h));
20219 				ASSERT(IPVER(ip6h) == IPV6_VERSION);
20220 				ASSERT(ip6h->ip6_nxt == IPPROTO_TCP);
20221 				ASSERT(PDESC_HDRL(pkt_info) >=
20222 				    (IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET +
20223 				    TCP_CHECKSUM_SIZE));
20224 				ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
20225 
20226 				if (tcp->tcp_ip_forward_progress) {
20227 					rconfirm = B_TRUE;
20228 					tcp->tcp_ip_forward_progress = B_FALSE;
20229 				}
20230 			}
20231 
20232 			/* at least one payload span, and at most two */
20233 			ASSERT(pkt_info->pld_cnt > 0 && pkt_info->pld_cnt < 3);
20234 
20235 			/* add the packet descriptor to Multidata */
20236 			if ((pkt = mmd_addpdesc(mmd, pkt_info, &err,
20237 			    KM_NOSLEEP)) == NULL) {
20238 				/*
20239 				 * Any failure other than ENOMEM indicates
20240 				 * that we have passed in invalid pkt_info
20241 				 * or parameters to mmd_addpdesc, which must
20242 				 * not happen.
20243 				 *
20244 				 * EINVAL is a result of failure on boundary
20245 				 * checks against the pkt_info contents.  It
20246 				 * should not happen, and we panic because
20247 				 * either there's horrible heap corruption,
20248 				 * and/or programming mistake.
20249 				 */
20250 				if (err != ENOMEM) {
20251 					cmn_err(CE_PANIC, "tcp_multisend: "
20252 					    "pdesc logic error detected for "
20253 					    "tcp %p mmd %p pinfo %p (%d)\n",
20254 					    (void *)tcp, (void *)mmd,
20255 					    (void *)pkt_info, err);
20256 				}
20257 				TCP_STAT(tcp_mdt_addpdescfail);
20258 				goto legacy_send; /* out_of_mem */
20259 			}
20260 			ASSERT(pkt != NULL);
20261 
20262 			/* calculate IP header and TCP checksums */
20263 			if (af == AF_INET) {
20264 				/* calculate pseudo-header checksum */
20265 				cksum = (dst >> 16) + (dst & 0xFFFF) +
20266 				    (src >> 16) + (src & 0xFFFF);
20267 
20268 				/* offset for TCP header checksum */
20269 				up = IPH_TCPH_CHECKSUMP(ipha,
20270 				    IP_SIMPLE_HDR_LENGTH);
20271 			} else {
20272 				up = (uint16_t *)&ip6h->ip6_src;
20273 
20274 				/* calculate pseudo-header checksum */
20275 				cksum = up[0] + up[1] + up[2] + up[3] +
20276 				    up[4] + up[5] + up[6] + up[7] +
20277 				    up[8] + up[9] + up[10] + up[11] +
20278 				    up[12] + up[13] + up[14] + up[15];
20279 
20280 				/* Fold the initial sum */
20281 				cksum = (cksum & 0xffff) + (cksum >> 16);
20282 
20283 				up = (uint16_t *)(((uchar_t *)ip6h) +
20284 				    IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET);
20285 			}
20286 
20287 			if (hwcksum_flags & HCK_FULLCKSUM) {
20288 				/* clear checksum field for hardware */
20289 				*up = 0;
20290 			} else if (hwcksum_flags & HCK_PARTIALCKSUM) {
20291 				uint32_t sum;
20292 
20293 				/* pseudo-header checksumming */
20294 				sum = *up + cksum + IP_TCP_CSUM_COMP;
20295 				sum = (sum & 0xFFFF) + (sum >> 16);
20296 				*up = (sum & 0xFFFF) + (sum >> 16);
20297 			} else {
20298 				/* software checksumming */
20299 				TCP_STAT(tcp_out_sw_cksum);
20300 				TCP_STAT_UPDATE(tcp_out_sw_cksum_bytes,
20301 				    tcp->tcp_hdr_len + tcp->tcp_last_sent_len);
20302 				*up = IP_MD_CSUM(pkt, tcp->tcp_ip_hdr_len,
20303 				    cksum + IP_TCP_CSUM_COMP);
20304 				if (*up == 0)
20305 					*up = 0xFFFF;
20306 			}
20307 
20308 			/* IPv4 header checksum */
20309 			if (af == AF_INET) {
20310 				ipha->ipha_fragment_offset_and_flags |=
20311 				    (uint32_t)htons(ire->ire_frag_flag);
20312 
20313 				if (hwcksum_flags & HCK_IPV4_HDRCKSUM) {
20314 					ipha->ipha_hdr_checksum = 0;
20315 				} else {
20316 					IP_HDR_CKSUM(ipha, cksum,
20317 					    ((uint32_t *)ipha)[0],
20318 					    ((uint16_t *)ipha)[4]);
20319 				}
20320 			}
20321 
20322 			if (af == AF_INET && HOOKS4_INTERESTED_PHYSICAL_OUT||
20323 			    af == AF_INET6 && HOOKS6_INTERESTED_PHYSICAL_OUT) {
20324 				/* build header(IP/TCP) mblk for this segment */
20325 				if ((mp = dupb(md_hbuf)) == NULL)
20326 					goto legacy_send;
20327 
20328 				mp->b_rptr = pkt_info->hdr_rptr;
20329 				mp->b_wptr = pkt_info->hdr_wptr;
20330 
20331 				/* build payload mblk for this segment */
20332 				if ((mp1 = dupb(*xmit_tail)) == NULL) {
20333 					freemsg(mp);
20334 					goto legacy_send;
20335 				}
20336 				mp1->b_wptr = md_pbuf->b_rptr + cur_pld_off;
20337 				mp1->b_rptr = mp1->b_wptr -
20338 				    tcp->tcp_last_sent_len;
20339 				linkb(mp, mp1);
20340 
20341 				pld_start = mp1->b_rptr;
20342 
20343 				if (af == AF_INET) {
20344 					DTRACE_PROBE4(
20345 					    ip4__physical__out__start,
20346 					    ill_t *, NULL,
20347 					    ill_t *, ill,
20348 					    ipha_t *, ipha,
20349 					    mblk_t *, mp);
20350 					FW_HOOKS(ip4_physical_out_event,
20351 					    ipv4firewall_physical_out,
20352 					    NULL, ill, ipha, mp, mp);
20353 					DTRACE_PROBE1(
20354 					    ip4__physical__out__end,
20355 					    mblk_t *, mp);
20356 				} else {
20357 					DTRACE_PROBE4(
20358 					    ip6__physical__out_start,
20359 					    ill_t *, NULL,
20360 					    ill_t *, ill,
20361 					    ip6_t *, ip6h,
20362 					    mblk_t *, mp);
20363 					FW_HOOKS6(ip6_physical_out_event,
20364 					    ipv6firewall_physical_out,
20365 					    NULL, ill, ip6h, mp, mp);
20366 					DTRACE_PROBE1(
20367 					    ip6__physical__out__end,
20368 					    mblk_t *, mp);
20369 				}
20370 
20371 				if (buf_trunked && mp != NULL) {
20372 					/*
20373 					 * Need to pass it to normal path.
20374 					 */
20375 					CALL_IP_WPUT(tcp->tcp_connp, q, mp);
20376 				} else if (mp == NULL ||
20377 				    mp->b_rptr != pkt_info->hdr_rptr ||
20378 				    mp->b_wptr != pkt_info->hdr_wptr ||
20379 				    (mp1 = mp->b_cont) == NULL ||
20380 				    mp1->b_rptr != pld_start ||
20381 				    mp1->b_wptr != pld_start +
20382 				    tcp->tcp_last_sent_len ||
20383 				    mp1->b_cont != NULL) {
20384 					/*
20385 					 * Need to pass all packets of this
20386 					 * buffer to normal path, either when
20387 					 * packet is blocked, or when boundary
20388 					 * of header buffer or payload buffer
20389 					 * has been changed by FW_HOOKS[6].
20390 					 */
20391 					buf_trunked = B_TRUE;
20392 					if (md_mp_head != NULL) {
20393 						err = (intptr_t)rmvb(md_mp_head,
20394 						    md_mp);
20395 						if (err == 0)
20396 							md_mp_head = NULL;
20397 					}
20398 
20399 					/* send down what we've got so far */
20400 					if (md_mp_head != NULL) {
20401 						tcp_multisend_data(tcp, ire,
20402 						    ill, md_mp_head, obsegs,
20403 						    obbytes, &rconfirm);
20404 					}
20405 					md_mp_head = NULL;
20406 
20407 					if (mp != NULL)
20408 						CALL_IP_WPUT(tcp->tcp_connp,
20409 						    q, mp);
20410 
20411 					mp1 = fw_mp_head;
20412 					do {
20413 						mp = mp1;
20414 						mp1 = mp1->b_next;
20415 						mp->b_next = NULL;
20416 						mp->b_prev = NULL;
20417 						CALL_IP_WPUT(tcp->tcp_connp,
20418 						    q, mp);
20419 					} while (mp1 != NULL);
20420 
20421 					fw_mp_head = NULL;
20422 				} else {
20423 					if (fw_mp_head == NULL)
20424 						fw_mp_head = mp;
20425 					else
20426 						fw_mp_head->b_prev->b_next = mp;
20427 					fw_mp_head->b_prev = mp;
20428 				}
20429 			}
20430 
20431 			/* advance header offset */
20432 			cur_hdr_off += hdr_frag_sz;
20433 
20434 			obbytes += tcp->tcp_last_sent_len;
20435 			++obsegs;
20436 		} while (!done && *usable > 0 && --num_burst_seg > 0 &&
20437 		    *tail_unsent > 0);
20438 
20439 		if ((*xmit_tail)->b_next == NULL) {
20440 			/*
20441 			 * Store the lbolt used for RTT estimation. We can only
20442 			 * record one timestamp per mblk so we do it when we
20443 			 * reach the end of the payload buffer. Also we only
20444 			 * take a new timestamp sample when the previous timed
20445 			 * data from the same mblk has been ack'ed.
20446 			 */
20447 			(*xmit_tail)->b_prev = local_time;
20448 			(*xmit_tail)->b_next = (mblk_t *)(uintptr_t)first_snxt;
20449 		}
20450 
20451 		ASSERT(*tail_unsent >= 0);
20452 		if (*tail_unsent > 0) {
20453 			/*
20454 			 * We got here because we broke out of the above
20455 			 * loop due to of one of the following cases:
20456 			 *
20457 			 *   1. len < adjusted MSS (i.e. small),
20458 			 *   2. Sender SWS avoidance,
20459 			 *   3. max_pld is zero.
20460 			 *
20461 			 * We are done for this Multidata, so trim our
20462 			 * last payload buffer (if any) accordingly.
20463 			 */
20464 			if (md_pbuf != NULL)
20465 				md_pbuf->b_wptr -= *tail_unsent;
20466 		} else if (*usable > 0) {
20467 			*xmit_tail = (*xmit_tail)->b_cont;
20468 			ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
20469 			    (uintptr_t)INT_MAX);
20470 			*tail_unsent = (int)MBLKL(*xmit_tail);
20471 			add_buffer = B_TRUE;
20472 		}
20473 
20474 		while (fw_mp_head) {
20475 			mp = fw_mp_head;
20476 			fw_mp_head = fw_mp_head->b_next;
20477 			mp->b_prev = mp->b_next = NULL;
20478 			freemsg(mp);
20479 		}
20480 		if (buf_trunked) {
20481 			TCP_STAT(tcp_mdt_discarded);
20482 			freeb(md_mp);
20483 			buf_trunked = B_FALSE;
20484 		}
20485 	} while (!done && *usable > 0 && num_burst_seg > 0 &&
20486 	    (tcp_mdt_chain || max_pld > 0));
20487 
20488 	if (md_mp_head != NULL) {
20489 		/* send everything down */
20490 		tcp_multisend_data(tcp, ire, ill, md_mp_head, obsegs, obbytes,
20491 		    &rconfirm);
20492 	}
20493 
20494 #undef PREP_NEW_MULTIDATA
20495 #undef PREP_NEW_PBUF
20496 #undef IPVER
20497 
20498 	IRE_REFRELE(ire);
20499 	return (0);
20500 }
20501 
20502 /*
20503  * A wrapper function for sending one or more Multidata messages down to
20504  * the module below ip; this routine does not release the reference of the
20505  * IRE (caller does that).  This routine is analogous to tcp_send_data().
20506  */
20507 static void
20508 tcp_multisend_data(tcp_t *tcp, ire_t *ire, const ill_t *ill, mblk_t *md_mp_head,
20509     const uint_t obsegs, const uint_t obbytes, boolean_t *rconfirm)
20510 {
20511 	uint64_t delta;
20512 	nce_t *nce;
20513 
20514 	ASSERT(ire != NULL && ill != NULL);
20515 	ASSERT(ire->ire_stq != NULL);
20516 	ASSERT(md_mp_head != NULL);
20517 	ASSERT(rconfirm != NULL);
20518 
20519 	/* adjust MIBs and IRE timestamp */
20520 	TCP_RECORD_TRACE(tcp, md_mp_head, TCP_TRACE_SEND_PKT);
20521 	tcp->tcp_obsegs += obsegs;
20522 	UPDATE_MIB(&tcp_mib, tcpOutDataSegs, obsegs);
20523 	UPDATE_MIB(&tcp_mib, tcpOutDataBytes, obbytes);
20524 	TCP_STAT_UPDATE(tcp_mdt_pkt_out, obsegs);
20525 
20526 	if (tcp->tcp_ipversion == IPV4_VERSION) {
20527 		TCP_STAT_UPDATE(tcp_mdt_pkt_out_v4, obsegs);
20528 		UPDATE_MIB(&ip_mib, ipOutRequests, obsegs);
20529 	} else {
20530 		TCP_STAT_UPDATE(tcp_mdt_pkt_out_v6, obsegs);
20531 		UPDATE_MIB(&ip6_mib, ipv6OutRequests, obsegs);
20532 	}
20533 
20534 	ire->ire_ob_pkt_count += obsegs;
20535 	if (ire->ire_ipif != NULL)
20536 		atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, obsegs);
20537 	ire->ire_last_used_time = lbolt;
20538 
20539 	/* send it down */
20540 	putnext(ire->ire_stq, md_mp_head);
20541 
20542 	/* we're done for TCP/IPv4 */
20543 	if (tcp->tcp_ipversion == IPV4_VERSION)
20544 		return;
20545 
20546 	nce = ire->ire_nce;
20547 
20548 	ASSERT(nce != NULL);
20549 	ASSERT(!(nce->nce_flags & (NCE_F_NONUD|NCE_F_PERMANENT)));
20550 	ASSERT(nce->nce_state != ND_INCOMPLETE);
20551 
20552 	/* reachability confirmation? */
20553 	if (*rconfirm) {
20554 		nce->nce_last = TICK_TO_MSEC(lbolt64);
20555 		if (nce->nce_state != ND_REACHABLE) {
20556 			mutex_enter(&nce->nce_lock);
20557 			nce->nce_state = ND_REACHABLE;
20558 			nce->nce_pcnt = ND_MAX_UNICAST_SOLICIT;
20559 			mutex_exit(&nce->nce_lock);
20560 			(void) untimeout(nce->nce_timeout_id);
20561 			if (ip_debug > 2) {
20562 				/* ip1dbg */
20563 				pr_addr_dbg("tcp_multisend_data: state "
20564 				    "for %s changed to REACHABLE\n",
20565 				    AF_INET6, &ire->ire_addr_v6);
20566 			}
20567 		}
20568 		/* reset transport reachability confirmation */
20569 		*rconfirm = B_FALSE;
20570 	}
20571 
20572 	delta =  TICK_TO_MSEC(lbolt64) - nce->nce_last;
20573 	ip1dbg(("tcp_multisend_data: delta = %" PRId64
20574 	    " ill_reachable_time = %d \n", delta, ill->ill_reachable_time));
20575 
20576 	if (delta > (uint64_t)ill->ill_reachable_time) {
20577 		mutex_enter(&nce->nce_lock);
20578 		switch (nce->nce_state) {
20579 		case ND_REACHABLE:
20580 		case ND_STALE:
20581 			/*
20582 			 * ND_REACHABLE is identical to ND_STALE in this
20583 			 * specific case. If reachable time has expired for
20584 			 * this neighbor (delta is greater than reachable
20585 			 * time), conceptually, the neighbor cache is no
20586 			 * longer in REACHABLE state, but already in STALE
20587 			 * state.  So the correct transition here is to
20588 			 * ND_DELAY.
20589 			 */
20590 			nce->nce_state = ND_DELAY;
20591 			mutex_exit(&nce->nce_lock);
20592 			NDP_RESTART_TIMER(nce, delay_first_probe_time);
20593 			if (ip_debug > 3) {
20594 				/* ip2dbg */
20595 				pr_addr_dbg("tcp_multisend_data: state "
20596 				    "for %s changed to DELAY\n",
20597 				    AF_INET6, &ire->ire_addr_v6);
20598 			}
20599 			break;
20600 		case ND_DELAY:
20601 		case ND_PROBE:
20602 			mutex_exit(&nce->nce_lock);
20603 			/* Timers have already started */
20604 			break;
20605 		case ND_UNREACHABLE:
20606 			/*
20607 			 * ndp timer has detected that this nce is
20608 			 * unreachable and initiated deleting this nce
20609 			 * and all its associated IREs. This is a race
20610 			 * where we found the ire before it was deleted
20611 			 * and have just sent out a packet using this
20612 			 * unreachable nce.
20613 			 */
20614 			mutex_exit(&nce->nce_lock);
20615 			break;
20616 		default:
20617 			ASSERT(0);
20618 		}
20619 	}
20620 }
20621 
20622 /*
20623  * Derived from tcp_send_data().
20624  */
20625 static void
20626 tcp_lsosend_data(tcp_t *tcp, mblk_t *mp, ire_t *ire, ill_t *ill, const int mss,
20627     int num_lso_seg)
20628 {
20629 	ipha_t		*ipha;
20630 	mblk_t		*ire_fp_mp;
20631 	uint_t		ire_fp_mp_len;
20632 	uint32_t	hcksum_txflags = 0;
20633 	ipaddr_t	src;
20634 	ipaddr_t	dst;
20635 	uint32_t	cksum;
20636 	uint16_t	*up;
20637 
20638 	ASSERT(DB_TYPE(mp) == M_DATA);
20639 	ASSERT(tcp->tcp_state == TCPS_ESTABLISHED);
20640 	ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
20641 	ASSERT(tcp->tcp_connp != NULL);
20642 	ASSERT(CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp));
20643 
20644 	ipha = (ipha_t *)mp->b_rptr;
20645 	src = ipha->ipha_src;
20646 	dst = ipha->ipha_dst;
20647 
20648 	ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED);
20649 	ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident,
20650 	    num_lso_seg);
20651 #ifndef _BIG_ENDIAN
20652 	ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8);
20653 #endif
20654 	if (tcp->tcp_snd_zcopy_aware) {
20655 		if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 ||
20656 		    (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0))
20657 			mp = tcp_zcopy_disable(tcp, mp);
20658 	}
20659 
20660 	if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) {
20661 		ASSERT(ill->ill_hcksum_capab != NULL);
20662 		hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags;
20663 	}
20664 
20665 	/*
20666 	 * Since the TCP checksum should be recalculated by h/w, we can just
20667 	 * zero the checksum field for HCK_FULLCKSUM, or calculate partial
20668 	 * pseudo-header checksum for HCK_PARTIALCKSUM.
20669 	 * The partial pseudo-header excludes TCP length, that was calculated
20670 	 * in tcp_send(), so to zero *up before further processing.
20671 	 */
20672 	cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF);
20673 
20674 	up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH);
20675 	*up = 0;
20676 
20677 	IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up,
20678 	    IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum);
20679 
20680 	/*
20681 	 * Append LSO flag to DB_LSOFLAGS(mp) and set the mss to DB_LSOMSS(mp).
20682 	 */
20683 	DB_LSOFLAGS(mp) |= HW_LSO;
20684 	DB_LSOMSS(mp) = mss;
20685 
20686 	ipha->ipha_fragment_offset_and_flags |=
20687 	    (uint32_t)htons(ire->ire_frag_flag);
20688 
20689 	ire_fp_mp = ire->ire_nce->nce_fp_mp;
20690 	ire_fp_mp_len = MBLKL(ire_fp_mp);
20691 	ASSERT(DB_TYPE(ire_fp_mp) == M_DATA);
20692 	mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len;
20693 	bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len);
20694 
20695 	UPDATE_OB_PKT_COUNT(ire);
20696 	ire->ire_last_used_time = lbolt;
20697 	BUMP_MIB(&ip_mib, ipOutRequests);
20698 
20699 	if (ILL_DLS_CAPABLE(ill)) {
20700 		/*
20701 		 * Send the packet directly to DLD, where it may be queued
20702 		 * depending on the availability of transmit resources at
20703 		 * the media layer.
20704 		 */
20705 		IP_DLS_ILL_TX(ill, ipha, mp);
20706 	} else {
20707 		ill_t *out_ill = (ill_t *)ire->ire_stq->q_ptr;
20708 		DTRACE_PROBE4(ip4__physical__out__start,
20709 		    ill_t *, NULL, ill_t *, out_ill,
20710 		    ipha_t *, ipha, mblk_t *, mp);
20711 		FW_HOOKS(ip4_physical_out_event, ipv4firewall_physical_out,
20712 		    NULL, out_ill, ipha, mp, mp);
20713 		DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp);
20714 		if (mp != NULL)
20715 			putnext(ire->ire_stq, mp);
20716 	}
20717 }
20718 
20719 /*
20720  * tcp_send() is called by tcp_wput_data() for non-Multidata transmission
20721  * scheme, and returns one of the following:
20722  *
20723  * -1 = failed allocation.
20724  *  0 = success; burst count reached, or usable send window is too small,
20725  *      and that we'd rather wait until later before sending again.
20726  *  1 = success; we are called from tcp_multisend(), and both usable send
20727  *      window and tail_unsent are greater than the MDT threshold, and thus
20728  *      Multidata Transmit should be used instead.
20729  */
20730 static int
20731 tcp_send(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len,
20732     const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable,
20733     uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
20734     const int mdt_thres)
20735 {
20736 	int num_burst_seg = tcp->tcp_snd_burst;
20737 	ire_t		*ire = NULL;
20738 	ill_t		*ill = NULL;
20739 	mblk_t		*ire_fp_mp = NULL;
20740 	uint_t		ire_fp_mp_len = 0;
20741 	int		num_lso_seg = 1;
20742 	uint_t		lso_usable;
20743 	boolean_t	do_lso_send = B_FALSE;
20744 
20745 	/*
20746 	 * Check LSO capability before any further work. And the similar check
20747 	 * need to be done in for(;;) loop.
20748 	 * LSO will be deployed when therer is more than one mss of available
20749 	 * data and a burst transmission is allowed.
20750 	 */
20751 	if (tcp->tcp_lso &&
20752 	    (tcp->tcp_valid_bits == 0 ||
20753 	    tcp->tcp_valid_bits == TCP_FSS_VALID) &&
20754 	    num_burst_seg >= 2 && (*usable - 1) / mss >= 1) {
20755 		/*
20756 		 * Try to find usable IRE/ILL and do basic check to the ILL.
20757 		 */
20758 		if (tcp_send_find_ire_ill(tcp, NULL, &ire, &ill)) {
20759 			/*
20760 			 * Enable LSO with this transmission.
20761 			 * Since IRE has been hold in
20762 			 * tcp_send_find_ire_ill(), IRE_REFRELE(ire)
20763 			 * should be called before return.
20764 			 */
20765 			do_lso_send = B_TRUE;
20766 			ire_fp_mp = ire->ire_nce->nce_fp_mp;
20767 			ire_fp_mp_len = MBLKL(ire_fp_mp);
20768 			/* Round up to multiple of 4 */
20769 			ire_fp_mp_len = ((ire_fp_mp_len + 3) / 4) * 4;
20770 		} else {
20771 			do_lso_send = B_FALSE;
20772 			ill = NULL;
20773 		}
20774 	}
20775 
20776 	for (;;) {
20777 		struct datab	*db;
20778 		tcph_t		*tcph;
20779 		uint32_t	sum;
20780 		mblk_t		*mp, *mp1;
20781 		uchar_t		*rptr;
20782 		int		len;
20783 
20784 		/*
20785 		 * If we're called by tcp_multisend(), and the amount of
20786 		 * sendable data as well as the size of current xmit_tail
20787 		 * is beyond the MDT threshold, return to the caller and
20788 		 * let the large data transmit be done using MDT.
20789 		 */
20790 		if (*usable > 0 && *usable > mdt_thres &&
20791 		    (*tail_unsent > mdt_thres || (*tail_unsent == 0 &&
20792 		    MBLKL((*xmit_tail)->b_cont) > mdt_thres))) {
20793 			ASSERT(tcp->tcp_mdt);
20794 			return (1);	/* success; do large send */
20795 		}
20796 
20797 		if (num_burst_seg == 0)
20798 			break;		/* success; burst count reached */
20799 
20800 		/*
20801 		 * Calculate the maximum payload length we can send in *one*
20802 		 * time.
20803 		 */
20804 		if (do_lso_send) {
20805 			/*
20806 			 * Check whether need to do LSO any more.
20807 			 */
20808 			if (num_burst_seg >= 2 && (*usable - 1) / mss >= 1) {
20809 				lso_usable = MIN(tcp->tcp_lso_max, *usable);
20810 				lso_usable = MIN(lso_usable,
20811 				    num_burst_seg * mss);
20812 
20813 				num_lso_seg = lso_usable / mss;
20814 				if (lso_usable % mss) {
20815 					num_lso_seg++;
20816 					tcp->tcp_last_sent_len = (ushort_t)
20817 					    (lso_usable % mss);
20818 				} else {
20819 					tcp->tcp_last_sent_len = (ushort_t)mss;
20820 				}
20821 			} else {
20822 				do_lso_send = B_FALSE;
20823 				num_lso_seg = 1;
20824 				lso_usable = mss;
20825 			}
20826 		}
20827 
20828 		ASSERT(num_lso_seg <= IP_MAXPACKET / mss + 1);
20829 
20830 		/*
20831 		 * Adjust num_burst_seg here.
20832 		 */
20833 		num_burst_seg -= num_lso_seg;
20834 
20835 		len = mss;
20836 		if (len > *usable) {
20837 			ASSERT(do_lso_send == B_FALSE);
20838 
20839 			len = *usable;
20840 			if (len <= 0) {
20841 				/* Terminate the loop */
20842 				break;	/* success; too small */
20843 			}
20844 			/*
20845 			 * Sender silly-window avoidance.
20846 			 * Ignore this if we are going to send a
20847 			 * zero window probe out.
20848 			 *
20849 			 * TODO: force data into microscopic window?
20850 			 *	==> (!pushed || (unsent > usable))
20851 			 */
20852 			if (len < (tcp->tcp_max_swnd >> 1) &&
20853 			    (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) > len &&
20854 			    !((tcp->tcp_valid_bits & TCP_URG_VALID) &&
20855 			    len == 1) && (! tcp->tcp_zero_win_probe)) {
20856 				/*
20857 				 * If the retransmit timer is not running
20858 				 * we start it so that we will retransmit
20859 				 * in the case when the the receiver has
20860 				 * decremented the window.
20861 				 */
20862 				if (*snxt == tcp->tcp_snxt &&
20863 				    *snxt == tcp->tcp_suna) {
20864 					/*
20865 					 * We are not supposed to send
20866 					 * anything.  So let's wait a little
20867 					 * bit longer before breaking SWS
20868 					 * avoidance.
20869 					 *
20870 					 * What should the value be?
20871 					 * Suggestion: MAX(init rexmit time,
20872 					 * tcp->tcp_rto)
20873 					 */
20874 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
20875 				}
20876 				break;	/* success; too small */
20877 			}
20878 		}
20879 
20880 		tcph = tcp->tcp_tcph;
20881 
20882 		/*
20883 		 * The reason to adjust len here is that we need to set flags
20884 		 * and calculate checksum.
20885 		 */
20886 		if (do_lso_send)
20887 			len = lso_usable;
20888 
20889 		*usable -= len; /* Approximate - can be adjusted later */
20890 		if (*usable > 0)
20891 			tcph->th_flags[0] = TH_ACK;
20892 		else
20893 			tcph->th_flags[0] = (TH_ACK | TH_PUSH);
20894 
20895 		/*
20896 		 * Prime pump for IP's checksumming on our behalf
20897 		 * Include the adjustment for a source route if any.
20898 		 */
20899 		sum = len + tcp_tcp_hdr_len + tcp->tcp_sum;
20900 		sum = (sum >> 16) + (sum & 0xFFFF);
20901 		U16_TO_ABE16(sum, tcph->th_sum);
20902 
20903 		U32_TO_ABE32(*snxt, tcph->th_seq);
20904 
20905 		/*
20906 		 * Branch off to tcp_xmit_mp() if any of the VALID bits is
20907 		 * set.  For the case when TCP_FSS_VALID is the only valid
20908 		 * bit (normal active close), branch off only when we think
20909 		 * that the FIN flag needs to be set.  Note for this case,
20910 		 * that (snxt + len) may not reflect the actual seg_len,
20911 		 * as len may be further reduced in tcp_xmit_mp().  If len
20912 		 * gets modified, we will end up here again.
20913 		 */
20914 		if (tcp->tcp_valid_bits != 0 &&
20915 		    (tcp->tcp_valid_bits != TCP_FSS_VALID ||
20916 		    ((*snxt + len) == tcp->tcp_fss))) {
20917 			uchar_t		*prev_rptr;
20918 			uint32_t	prev_snxt = tcp->tcp_snxt;
20919 
20920 			if (*tail_unsent == 0) {
20921 				ASSERT((*xmit_tail)->b_cont != NULL);
20922 				*xmit_tail = (*xmit_tail)->b_cont;
20923 				prev_rptr = (*xmit_tail)->b_rptr;
20924 				*tail_unsent = (int)((*xmit_tail)->b_wptr -
20925 				    (*xmit_tail)->b_rptr);
20926 			} else {
20927 				prev_rptr = (*xmit_tail)->b_rptr;
20928 				(*xmit_tail)->b_rptr = (*xmit_tail)->b_wptr -
20929 				    *tail_unsent;
20930 			}
20931 			mp = tcp_xmit_mp(tcp, *xmit_tail, len, NULL, NULL,
20932 			    *snxt, B_FALSE, (uint32_t *)&len, B_FALSE);
20933 			/* Restore tcp_snxt so we get amount sent right. */
20934 			tcp->tcp_snxt = prev_snxt;
20935 			if (prev_rptr == (*xmit_tail)->b_rptr) {
20936 				/*
20937 				 * If the previous timestamp is still in use,
20938 				 * don't stomp on it.
20939 				 */
20940 				if ((*xmit_tail)->b_next == NULL) {
20941 					(*xmit_tail)->b_prev = local_time;
20942 					(*xmit_tail)->b_next =
20943 					    (mblk_t *)(uintptr_t)(*snxt);
20944 				}
20945 			} else
20946 				(*xmit_tail)->b_rptr = prev_rptr;
20947 
20948 			if (mp == NULL) {
20949 				if (ire != NULL)
20950 					IRE_REFRELE(ire);
20951 				return (-1);
20952 			}
20953 			mp1 = mp->b_cont;
20954 
20955 			if (len <= mss) /* LSO is unusable (!do_lso_send) */
20956 				tcp->tcp_last_sent_len = (ushort_t)len;
20957 			while (mp1->b_cont) {
20958 				*xmit_tail = (*xmit_tail)->b_cont;
20959 				(*xmit_tail)->b_prev = local_time;
20960 				(*xmit_tail)->b_next =
20961 				    (mblk_t *)(uintptr_t)(*snxt);
20962 				mp1 = mp1->b_cont;
20963 			}
20964 			*snxt += len;
20965 			*tail_unsent = (*xmit_tail)->b_wptr - mp1->b_wptr;
20966 			BUMP_LOCAL(tcp->tcp_obsegs);
20967 			BUMP_MIB(&tcp_mib, tcpOutDataSegs);
20968 			UPDATE_MIB(&tcp_mib, tcpOutDataBytes, len);
20969 			TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
20970 			tcp_send_data(tcp, q, mp);
20971 			continue;
20972 		}
20973 
20974 		*snxt += len;	/* Adjust later if we don't send all of len */
20975 		BUMP_MIB(&tcp_mib, tcpOutDataSegs);
20976 		UPDATE_MIB(&tcp_mib, tcpOutDataBytes, len);
20977 
20978 		if (*tail_unsent) {
20979 			/* Are the bytes above us in flight? */
20980 			rptr = (*xmit_tail)->b_wptr - *tail_unsent;
20981 			if (rptr != (*xmit_tail)->b_rptr) {
20982 				*tail_unsent -= len;
20983 				if (len <= mss) /* LSO is unusable */
20984 					tcp->tcp_last_sent_len = (ushort_t)len;
20985 				len += tcp_hdr_len;
20986 				if (tcp->tcp_ipversion == IPV4_VERSION)
20987 					tcp->tcp_ipha->ipha_length = htons(len);
20988 				else
20989 					tcp->tcp_ip6h->ip6_plen =
20990 					    htons(len -
20991 					    ((char *)&tcp->tcp_ip6h[1] -
20992 					    tcp->tcp_iphc));
20993 				mp = dupb(*xmit_tail);
20994 				if (mp == NULL) {
20995 					if (ire != NULL)
20996 						IRE_REFRELE(ire);
20997 					return (-1);	/* out_of_mem */
20998 				}
20999 				mp->b_rptr = rptr;
21000 				/*
21001 				 * If the old timestamp is no longer in use,
21002 				 * sample a new timestamp now.
21003 				 */
21004 				if ((*xmit_tail)->b_next == NULL) {
21005 					(*xmit_tail)->b_prev = local_time;
21006 					(*xmit_tail)->b_next =
21007 					    (mblk_t *)(uintptr_t)(*snxt-len);
21008 				}
21009 				goto must_alloc;
21010 			}
21011 		} else {
21012 			*xmit_tail = (*xmit_tail)->b_cont;
21013 			ASSERT((uintptr_t)((*xmit_tail)->b_wptr -
21014 			    (*xmit_tail)->b_rptr) <= (uintptr_t)INT_MAX);
21015 			*tail_unsent = (int)((*xmit_tail)->b_wptr -
21016 			    (*xmit_tail)->b_rptr);
21017 		}
21018 
21019 		(*xmit_tail)->b_prev = local_time;
21020 		(*xmit_tail)->b_next = (mblk_t *)(uintptr_t)(*snxt - len);
21021 
21022 		*tail_unsent -= len;
21023 		if (len <= mss) /* LSO is unusable (!do_lso_send) */
21024 			tcp->tcp_last_sent_len = (ushort_t)len;
21025 
21026 		len += tcp_hdr_len;
21027 		if (tcp->tcp_ipversion == IPV4_VERSION)
21028 			tcp->tcp_ipha->ipha_length = htons(len);
21029 		else
21030 			tcp->tcp_ip6h->ip6_plen = htons(len -
21031 			    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
21032 
21033 		mp = dupb(*xmit_tail);
21034 		if (mp == NULL) {
21035 			if (ire != NULL)
21036 				IRE_REFRELE(ire);
21037 			return (-1);	/* out_of_mem */
21038 		}
21039 
21040 		len = tcp_hdr_len;
21041 		/*
21042 		 * There are four reasons to allocate a new hdr mblk:
21043 		 *  1) The bytes above us are in use by another packet
21044 		 *  2) We don't have good alignment
21045 		 *  3) The mblk is being shared
21046 		 *  4) We don't have enough room for a header
21047 		 */
21048 		rptr = mp->b_rptr - len;
21049 		if (!OK_32PTR(rptr) ||
21050 		    ((db = mp->b_datap), db->db_ref != 2) ||
21051 		    rptr < db->db_base + ire_fp_mp_len) {
21052 			/* NOTE: we assume allocb returns an OK_32PTR */
21053 
21054 		must_alloc:;
21055 			mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH +
21056 			    tcp_wroff_xtra + ire_fp_mp_len, BPRI_MED);
21057 			if (mp1 == NULL) {
21058 				freemsg(mp);
21059 				if (ire != NULL)
21060 					IRE_REFRELE(ire);
21061 				return (-1);	/* out_of_mem */
21062 			}
21063 			mp1->b_cont = mp;
21064 			mp = mp1;
21065 			/* Leave room for Link Level header */
21066 			len = tcp_hdr_len;
21067 			rptr = &mp->b_rptr[tcp_wroff_xtra + ire_fp_mp_len];
21068 			mp->b_wptr = &rptr[len];
21069 		}
21070 
21071 		/*
21072 		 * Fill in the header using the template header, and add
21073 		 * options such as time-stamp, ECN and/or SACK, as needed.
21074 		 */
21075 		tcp_fill_header(tcp, rptr, (clock_t)local_time, num_sack_blk);
21076 
21077 		mp->b_rptr = rptr;
21078 
21079 		if (*tail_unsent) {
21080 			int spill = *tail_unsent;
21081 
21082 			mp1 = mp->b_cont;
21083 			if (mp1 == NULL)
21084 				mp1 = mp;
21085 
21086 			/*
21087 			 * If we're a little short, tack on more mblks until
21088 			 * there is no more spillover.
21089 			 */
21090 			while (spill < 0) {
21091 				mblk_t *nmp;
21092 				int nmpsz;
21093 
21094 				nmp = (*xmit_tail)->b_cont;
21095 				nmpsz = MBLKL(nmp);
21096 
21097 				/*
21098 				 * Excess data in mblk; can we split it?
21099 				 * If MDT is enabled for the connection,
21100 				 * keep on splitting as this is a transient
21101 				 * send path.
21102 				 */
21103 				if (!do_lso_send && !tcp->tcp_mdt &&
21104 				    (spill + nmpsz > 0)) {
21105 					/*
21106 					 * Don't split if stream head was
21107 					 * told to break up larger writes
21108 					 * into smaller ones.
21109 					 */
21110 					if (tcp->tcp_maxpsz > 0)
21111 						break;
21112 
21113 					/*
21114 					 * Next mblk is less than SMSS/2
21115 					 * rounded up to nearest 64-byte;
21116 					 * let it get sent as part of the
21117 					 * next segment.
21118 					 */
21119 					if (tcp->tcp_localnet &&
21120 					    !tcp->tcp_cork &&
21121 					    (nmpsz < roundup((mss >> 1), 64)))
21122 						break;
21123 				}
21124 
21125 				*xmit_tail = nmp;
21126 				ASSERT((uintptr_t)nmpsz <= (uintptr_t)INT_MAX);
21127 				/* Stash for rtt use later */
21128 				(*xmit_tail)->b_prev = local_time;
21129 				(*xmit_tail)->b_next =
21130 				    (mblk_t *)(uintptr_t)(*snxt - len);
21131 				mp1->b_cont = dupb(*xmit_tail);
21132 				mp1 = mp1->b_cont;
21133 
21134 				spill += nmpsz;
21135 				if (mp1 == NULL) {
21136 					*tail_unsent = spill;
21137 					freemsg(mp);
21138 					if (ire != NULL)
21139 						IRE_REFRELE(ire);
21140 					return (-1);	/* out_of_mem */
21141 				}
21142 			}
21143 
21144 			/* Trim back any surplus on the last mblk */
21145 			if (spill >= 0) {
21146 				mp1->b_wptr -= spill;
21147 				*tail_unsent = spill;
21148 			} else {
21149 				/*
21150 				 * We did not send everything we could in
21151 				 * order to remain within the b_cont limit.
21152 				 */
21153 				*usable -= spill;
21154 				*snxt += spill;
21155 				tcp->tcp_last_sent_len += spill;
21156 				UPDATE_MIB(&tcp_mib, tcpOutDataBytes, spill);
21157 				/*
21158 				 * Adjust the checksum
21159 				 */
21160 				tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
21161 				sum += spill;
21162 				sum = (sum >> 16) + (sum & 0xFFFF);
21163 				U16_TO_ABE16(sum, tcph->th_sum);
21164 				if (tcp->tcp_ipversion == IPV4_VERSION) {
21165 					sum = ntohs(
21166 					    ((ipha_t *)rptr)->ipha_length) +
21167 					    spill;
21168 					((ipha_t *)rptr)->ipha_length =
21169 					    htons(sum);
21170 				} else {
21171 					sum = ntohs(
21172 					    ((ip6_t *)rptr)->ip6_plen) +
21173 					    spill;
21174 					((ip6_t *)rptr)->ip6_plen =
21175 					    htons(sum);
21176 				}
21177 				*tail_unsent = 0;
21178 			}
21179 		}
21180 		if (tcp->tcp_ip_forward_progress) {
21181 			ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
21182 			*(uint32_t *)mp->b_rptr  |= IP_FORWARD_PROG;
21183 			tcp->tcp_ip_forward_progress = B_FALSE;
21184 		}
21185 
21186 		TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
21187 		if (do_lso_send) {
21188 			tcp_lsosend_data(tcp, mp, ire, ill, mss,
21189 			    num_lso_seg);
21190 			tcp->tcp_obsegs += num_lso_seg;
21191 
21192 			TCP_STAT(tcp_lso_times);
21193 			TCP_STAT_UPDATE(tcp_lso_pkt_out, num_lso_seg);
21194 		} else {
21195 			tcp_send_data(tcp, q, mp);
21196 			BUMP_LOCAL(tcp->tcp_obsegs);
21197 		}
21198 	}
21199 
21200 	if (ire != NULL)
21201 		IRE_REFRELE(ire);
21202 	return (0);
21203 }
21204 
21205 /* Unlink and return any mblk that looks like it contains a MDT info */
21206 static mblk_t *
21207 tcp_mdt_info_mp(mblk_t *mp)
21208 {
21209 	mblk_t	*prev_mp;
21210 
21211 	for (;;) {
21212 		prev_mp = mp;
21213 		/* no more to process? */
21214 		if ((mp = mp->b_cont) == NULL)
21215 			break;
21216 
21217 		switch (DB_TYPE(mp)) {
21218 		case M_CTL:
21219 			if (*(uint32_t *)mp->b_rptr != MDT_IOC_INFO_UPDATE)
21220 				continue;
21221 			ASSERT(prev_mp != NULL);
21222 			prev_mp->b_cont = mp->b_cont;
21223 			mp->b_cont = NULL;
21224 			return (mp);
21225 		default:
21226 			break;
21227 		}
21228 	}
21229 	return (mp);
21230 }
21231 
21232 /* MDT info update routine, called when IP notifies us about MDT */
21233 static void
21234 tcp_mdt_update(tcp_t *tcp, ill_mdt_capab_t *mdt_capab, boolean_t first)
21235 {
21236 	boolean_t prev_state;
21237 
21238 	/*
21239 	 * IP is telling us to abort MDT on this connection?  We know
21240 	 * this because the capability is only turned off when IP
21241 	 * encounters some pathological cases, e.g. link-layer change
21242 	 * where the new driver doesn't support MDT, or in situation
21243 	 * where MDT usage on the link-layer has been switched off.
21244 	 * IP would not have sent us the initial MDT_IOC_INFO_UPDATE
21245 	 * if the link-layer doesn't support MDT, and if it does, it
21246 	 * will indicate that the feature is to be turned on.
21247 	 */
21248 	prev_state = tcp->tcp_mdt;
21249 	tcp->tcp_mdt = (mdt_capab->ill_mdt_on != 0);
21250 	if (!tcp->tcp_mdt && !first) {
21251 		TCP_STAT(tcp_mdt_conn_halted3);
21252 		ip1dbg(("tcp_mdt_update: disabling MDT for connp %p\n",
21253 		    (void *)tcp->tcp_connp));
21254 	}
21255 
21256 	/*
21257 	 * We currently only support MDT on simple TCP/{IPv4,IPv6},
21258 	 * so disable MDT otherwise.  The checks are done here
21259 	 * and in tcp_wput_data().
21260 	 */
21261 	if (tcp->tcp_mdt &&
21262 	    (tcp->tcp_ipversion == IPV4_VERSION &&
21263 	    tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) ||
21264 	    (tcp->tcp_ipversion == IPV6_VERSION &&
21265 	    tcp->tcp_ip_hdr_len != IPV6_HDR_LEN))
21266 		tcp->tcp_mdt = B_FALSE;
21267 
21268 	if (tcp->tcp_mdt) {
21269 		if (mdt_capab->ill_mdt_version != MDT_VERSION_2) {
21270 			cmn_err(CE_NOTE, "tcp_mdt_update: unknown MDT "
21271 			    "version (%d), expected version is %d",
21272 			    mdt_capab->ill_mdt_version, MDT_VERSION_2);
21273 			tcp->tcp_mdt = B_FALSE;
21274 			return;
21275 		}
21276 
21277 		/*
21278 		 * We need the driver to be able to handle at least three
21279 		 * spans per packet in order for tcp MDT to be utilized.
21280 		 * The first is for the header portion, while the rest are
21281 		 * needed to handle a packet that straddles across two
21282 		 * virtually non-contiguous buffers; a typical tcp packet
21283 		 * therefore consists of only two spans.  Note that we take
21284 		 * a zero as "don't care".
21285 		 */
21286 		if (mdt_capab->ill_mdt_span_limit > 0 &&
21287 		    mdt_capab->ill_mdt_span_limit < 3) {
21288 			tcp->tcp_mdt = B_FALSE;
21289 			return;
21290 		}
21291 
21292 		/* a zero means driver wants default value */
21293 		tcp->tcp_mdt_max_pld = MIN(mdt_capab->ill_mdt_max_pld,
21294 		    tcp_mdt_max_pbufs);
21295 		if (tcp->tcp_mdt_max_pld == 0)
21296 			tcp->tcp_mdt_max_pld = tcp_mdt_max_pbufs;
21297 
21298 		/* ensure 32-bit alignment */
21299 		tcp->tcp_mdt_hdr_head = roundup(MAX(tcp_mdt_hdr_head_min,
21300 		    mdt_capab->ill_mdt_hdr_head), 4);
21301 		tcp->tcp_mdt_hdr_tail = roundup(MAX(tcp_mdt_hdr_tail_min,
21302 		    mdt_capab->ill_mdt_hdr_tail), 4);
21303 
21304 		if (!first && !prev_state) {
21305 			TCP_STAT(tcp_mdt_conn_resumed2);
21306 			ip1dbg(("tcp_mdt_update: reenabling MDT for connp %p\n",
21307 			    (void *)tcp->tcp_connp));
21308 		}
21309 	}
21310 }
21311 
21312 /* Unlink and return any mblk that looks like it contains a LSO info */
21313 static mblk_t *
21314 tcp_lso_info_mp(mblk_t *mp)
21315 {
21316 	mblk_t	*prev_mp;
21317 
21318 	for (;;) {
21319 		prev_mp = mp;
21320 		/* no more to process? */
21321 		if ((mp = mp->b_cont) == NULL)
21322 			break;
21323 
21324 		switch (DB_TYPE(mp)) {
21325 		case M_CTL:
21326 			if (*(uint32_t *)mp->b_rptr != LSO_IOC_INFO_UPDATE)
21327 				continue;
21328 			ASSERT(prev_mp != NULL);
21329 			prev_mp->b_cont = mp->b_cont;
21330 			mp->b_cont = NULL;
21331 			return (mp);
21332 		default:
21333 			break;
21334 		}
21335 	}
21336 
21337 	return (mp);
21338 }
21339 
21340 /* LSO info update routine, called when IP notifies us about LSO */
21341 static void
21342 tcp_lso_update(tcp_t *tcp, ill_lso_capab_t *lso_capab)
21343 {
21344 	/*
21345 	 * IP is telling us to abort LSO on this connection?  We know
21346 	 * this because the capability is only turned off when IP
21347 	 * encounters some pathological cases, e.g. link-layer change
21348 	 * where the new NIC/driver doesn't support LSO, or in situation
21349 	 * where LSO usage on the link-layer has been switched off.
21350 	 * IP would not have sent us the initial LSO_IOC_INFO_UPDATE
21351 	 * if the link-layer doesn't support LSO, and if it does, it
21352 	 * will indicate that the feature is to be turned on.
21353 	 */
21354 	tcp->tcp_lso = (lso_capab->ill_lso_on != 0);
21355 	TCP_STAT(tcp_lso_enabled);
21356 
21357 	/*
21358 	 * We currently only support LSO on simple TCP/IPv4,
21359 	 * so disable LSO otherwise.  The checks are done here
21360 	 * and in tcp_wput_data().
21361 	 */
21362 	if (tcp->tcp_lso &&
21363 	    (tcp->tcp_ipversion == IPV4_VERSION &&
21364 	    tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) ||
21365 	    (tcp->tcp_ipversion == IPV6_VERSION)) {
21366 		tcp->tcp_lso = B_FALSE;
21367 		TCP_STAT(tcp_lso_disabled);
21368 	} else {
21369 		tcp->tcp_lso_max = MIN(TCP_MAX_LSO_LENGTH,
21370 		    lso_capab->ill_lso_max);
21371 	}
21372 }
21373 
21374 static void
21375 tcp_ire_ill_check(tcp_t *tcp, ire_t *ire, ill_t *ill, boolean_t check_lso_mdt)
21376 {
21377 	conn_t *connp = tcp->tcp_connp;
21378 
21379 	ASSERT(ire != NULL);
21380 
21381 	/*
21382 	 * We may be in the fastpath here, and although we essentially do
21383 	 * similar checks as in ip_bind_connected{_v6}/ip_xxinfo_return,
21384 	 * we try to keep things as brief as possible.  After all, these
21385 	 * are only best-effort checks, and we do more thorough ones prior
21386 	 * to calling tcp_send()/tcp_multisend().
21387 	 */
21388 	if ((ip_lso_outbound || ip_multidata_outbound) && check_lso_mdt &&
21389 	    !(ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK)) &&
21390 	    ill != NULL && !CONN_IPSEC_OUT_ENCAPSULATED(connp) &&
21391 	    !(ire->ire_flags & RTF_MULTIRT) &&
21392 	    !IPP_ENABLED(IPP_LOCAL_OUT) &&
21393 	    CONN_IS_LSO_MD_FASTPATH(connp)) {
21394 		if (ip_lso_outbound && ILL_LSO_CAPABLE(ill)) {
21395 			/* Cache the result */
21396 			connp->conn_lso_ok = B_TRUE;
21397 
21398 			ASSERT(ill->ill_lso_capab != NULL);
21399 			if (!ill->ill_lso_capab->ill_lso_on) {
21400 				ill->ill_lso_capab->ill_lso_on = 1;
21401 				ip1dbg(("tcp_ire_ill_check: connp %p enables "
21402 				    "LSO for interface %s\n", (void *)connp,
21403 				    ill->ill_name));
21404 			}
21405 			tcp_lso_update(tcp, ill->ill_lso_capab);
21406 		} else if (ip_multidata_outbound && ILL_MDT_CAPABLE(ill)) {
21407 			/* Cache the result */
21408 			connp->conn_mdt_ok = B_TRUE;
21409 
21410 			ASSERT(ill->ill_mdt_capab != NULL);
21411 			if (!ill->ill_mdt_capab->ill_mdt_on) {
21412 				ill->ill_mdt_capab->ill_mdt_on = 1;
21413 				ip1dbg(("tcp_ire_ill_check: connp %p enables "
21414 				    "MDT for interface %s\n", (void *)connp,
21415 				    ill->ill_name));
21416 			}
21417 			tcp_mdt_update(tcp, ill->ill_mdt_capab, B_TRUE);
21418 		}
21419 	}
21420 
21421 	/*
21422 	 * The goal is to reduce the number of generated tcp segments by
21423 	 * setting the maxpsz multiplier to 0; this will have an affect on
21424 	 * tcp_maxpsz_set().  With this behavior, tcp will pack more data
21425 	 * into each packet, up to SMSS bytes.  Doing this reduces the number
21426 	 * of outbound segments and incoming ACKs, thus allowing for better
21427 	 * network and system performance.  In contrast the legacy behavior
21428 	 * may result in sending less than SMSS size, because the last mblk
21429 	 * for some packets may have more data than needed to make up SMSS,
21430 	 * and the legacy code refused to "split" it.
21431 	 *
21432 	 * We apply the new behavior on following situations:
21433 	 *
21434 	 *   1) Loopback connections,
21435 	 *   2) Connections in which the remote peer is not on local subnet,
21436 	 *   3) Local subnet connections over the bge interface (see below).
21437 	 *
21438 	 * Ideally, we would like this behavior to apply for interfaces other
21439 	 * than bge.  However, doing so would negatively impact drivers which
21440 	 * perform dynamic mapping and unmapping of DMA resources, which are
21441 	 * increased by setting the maxpsz multiplier to 0 (more mblks per
21442 	 * packet will be generated by tcp).  The bge driver does not suffer
21443 	 * from this, as it copies the mblks into pre-mapped buffers, and
21444 	 * therefore does not require more I/O resources than before.
21445 	 *
21446 	 * Otherwise, this behavior is present on all network interfaces when
21447 	 * the destination endpoint is non-local, since reducing the number
21448 	 * of packets in general is good for the network.
21449 	 *
21450 	 * TODO We need to remove this hard-coded conditional for bge once
21451 	 *	a better "self-tuning" mechanism, or a way to comprehend
21452 	 *	the driver transmit strategy is devised.  Until the solution
21453 	 *	is found and well understood, we live with this hack.
21454 	 */
21455 	if (!tcp_static_maxpsz &&
21456 	    (tcp->tcp_loopback || !tcp->tcp_localnet ||
21457 	    (ill->ill_name_length > 3 && bcmp(ill->ill_name, "bge", 3) == 0))) {
21458 		/* override the default value */
21459 		tcp->tcp_maxpsz = 0;
21460 
21461 		ip3dbg(("tcp_ire_ill_check: connp %p tcp_maxpsz %d on "
21462 		    "interface %s\n", (void *)connp, tcp->tcp_maxpsz,
21463 		    ill != NULL ? ill->ill_name : ipif_loopback_name));
21464 	}
21465 
21466 	/* set the stream head parameters accordingly */
21467 	(void) tcp_maxpsz_set(tcp, B_TRUE);
21468 }
21469 
21470 /* tcp_wput_flush is called by tcp_wput_nondata to handle M_FLUSH messages. */
21471 static void
21472 tcp_wput_flush(tcp_t *tcp, mblk_t *mp)
21473 {
21474 	uchar_t	fval = *mp->b_rptr;
21475 	mblk_t	*tail;
21476 	queue_t	*q = tcp->tcp_wq;
21477 
21478 	/* TODO: How should flush interact with urgent data? */
21479 	if ((fval & FLUSHW) && tcp->tcp_xmit_head &&
21480 	    !(tcp->tcp_valid_bits & TCP_URG_VALID)) {
21481 		/*
21482 		 * Flush only data that has not yet been put on the wire.  If
21483 		 * we flush data that we have already transmitted, life, as we
21484 		 * know it, may come to an end.
21485 		 */
21486 		tail = tcp->tcp_xmit_tail;
21487 		tail->b_wptr -= tcp->tcp_xmit_tail_unsent;
21488 		tcp->tcp_xmit_tail_unsent = 0;
21489 		tcp->tcp_unsent = 0;
21490 		if (tail->b_wptr != tail->b_rptr)
21491 			tail = tail->b_cont;
21492 		if (tail) {
21493 			mblk_t **excess = &tcp->tcp_xmit_head;
21494 			for (;;) {
21495 				mblk_t *mp1 = *excess;
21496 				if (mp1 == tail)
21497 					break;
21498 				tcp->tcp_xmit_tail = mp1;
21499 				tcp->tcp_xmit_last = mp1;
21500 				excess = &mp1->b_cont;
21501 			}
21502 			*excess = NULL;
21503 			tcp_close_mpp(&tail);
21504 			if (tcp->tcp_snd_zcopy_aware)
21505 				tcp_zcopy_notify(tcp);
21506 		}
21507 		/*
21508 		 * We have no unsent data, so unsent must be less than
21509 		 * tcp_xmit_lowater, so re-enable flow.
21510 		 */
21511 		if (tcp->tcp_flow_stopped) {
21512 			tcp_clrqfull(tcp);
21513 		}
21514 	}
21515 	/*
21516 	 * TODO: you can't just flush these, you have to increase rwnd for one
21517 	 * thing.  For another, how should urgent data interact?
21518 	 */
21519 	if (fval & FLUSHR) {
21520 		*mp->b_rptr = fval & ~FLUSHW;
21521 		/* XXX */
21522 		qreply(q, mp);
21523 		return;
21524 	}
21525 	freemsg(mp);
21526 }
21527 
21528 /*
21529  * tcp_wput_iocdata is called by tcp_wput_nondata to handle all M_IOCDATA
21530  * messages.
21531  */
21532 static void
21533 tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp)
21534 {
21535 	mblk_t	*mp1;
21536 	STRUCT_HANDLE(strbuf, sb);
21537 	uint16_t port;
21538 	queue_t 	*q = tcp->tcp_wq;
21539 	in6_addr_t	v6addr;
21540 	ipaddr_t	v4addr;
21541 	uint32_t	flowinfo = 0;
21542 	int		addrlen;
21543 
21544 	/* Make sure it is one of ours. */
21545 	switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) {
21546 	case TI_GETMYNAME:
21547 	case TI_GETPEERNAME:
21548 		break;
21549 	default:
21550 		CALL_IP_WPUT(tcp->tcp_connp, q, mp);
21551 		return;
21552 	}
21553 	switch (mi_copy_state(q, mp, &mp1)) {
21554 	case -1:
21555 		return;
21556 	case MI_COPY_CASE(MI_COPY_IN, 1):
21557 		break;
21558 	case MI_COPY_CASE(MI_COPY_OUT, 1):
21559 		/* Copy out the strbuf. */
21560 		mi_copyout(q, mp);
21561 		return;
21562 	case MI_COPY_CASE(MI_COPY_OUT, 2):
21563 		/* All done. */
21564 		mi_copy_done(q, mp, 0);
21565 		return;
21566 	default:
21567 		mi_copy_done(q, mp, EPROTO);
21568 		return;
21569 	}
21570 	/* Check alignment of the strbuf */
21571 	if (!OK_32PTR(mp1->b_rptr)) {
21572 		mi_copy_done(q, mp, EINVAL);
21573 		return;
21574 	}
21575 
21576 	STRUCT_SET_HANDLE(sb, ((struct iocblk *)mp->b_rptr)->ioc_flag,
21577 	    (void *)mp1->b_rptr);
21578 	addrlen = tcp->tcp_family == AF_INET ? sizeof (sin_t) : sizeof (sin6_t);
21579 
21580 	if (STRUCT_FGET(sb, maxlen) < addrlen) {
21581 		mi_copy_done(q, mp, EINVAL);
21582 		return;
21583 	}
21584 	switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) {
21585 	case TI_GETMYNAME:
21586 		if (tcp->tcp_family == AF_INET) {
21587 			if (tcp->tcp_ipversion == IPV4_VERSION) {
21588 				v4addr = tcp->tcp_ipha->ipha_src;
21589 			} else {
21590 				/* can't return an address in this case */
21591 				v4addr = 0;
21592 			}
21593 		} else {
21594 			/* tcp->tcp_family == AF_INET6 */
21595 			if (tcp->tcp_ipversion == IPV4_VERSION) {
21596 				IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
21597 				    &v6addr);
21598 			} else {
21599 				v6addr = tcp->tcp_ip6h->ip6_src;
21600 			}
21601 		}
21602 		port = tcp->tcp_lport;
21603 		break;
21604 	case TI_GETPEERNAME:
21605 		if (tcp->tcp_family == AF_INET) {
21606 			if (tcp->tcp_ipversion == IPV4_VERSION) {
21607 				IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_remote_v6,
21608 				    v4addr);
21609 			} else {
21610 				/* can't return an address in this case */
21611 				v4addr = 0;
21612 			}
21613 		} else {
21614 			/* tcp->tcp_family == AF_INET6) */
21615 			v6addr = tcp->tcp_remote_v6;
21616 			if (tcp->tcp_ipversion == IPV6_VERSION) {
21617 				/*
21618 				 * No flowinfo if tcp->tcp_ipversion is v4.
21619 				 *
21620 				 * flowinfo was already initialized to zero
21621 				 * where it was declared above, so only
21622 				 * set it if ipversion is v6.
21623 				 */
21624 				flowinfo = tcp->tcp_ip6h->ip6_vcf &
21625 				    ~IPV6_VERS_AND_FLOW_MASK;
21626 			}
21627 		}
21628 		port = tcp->tcp_fport;
21629 		break;
21630 	default:
21631 		mi_copy_done(q, mp, EPROTO);
21632 		return;
21633 	}
21634 	mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE);
21635 	if (!mp1)
21636 		return;
21637 
21638 	if (tcp->tcp_family == AF_INET) {
21639 		sin_t *sin;
21640 
21641 		STRUCT_FSET(sb, len, (int)sizeof (sin_t));
21642 		sin = (sin_t *)mp1->b_rptr;
21643 		mp1->b_wptr = (uchar_t *)&sin[1];
21644 		*sin = sin_null;
21645 		sin->sin_family = AF_INET;
21646 		sin->sin_addr.s_addr = v4addr;
21647 		sin->sin_port = port;
21648 	} else {
21649 		/* tcp->tcp_family == AF_INET6 */
21650 		sin6_t *sin6;
21651 
21652 		STRUCT_FSET(sb, len, (int)sizeof (sin6_t));
21653 		sin6 = (sin6_t *)mp1->b_rptr;
21654 		mp1->b_wptr = (uchar_t *)&sin6[1];
21655 		*sin6 = sin6_null;
21656 		sin6->sin6_family = AF_INET6;
21657 		sin6->sin6_flowinfo = flowinfo;
21658 		sin6->sin6_addr = v6addr;
21659 		sin6->sin6_port = port;
21660 	}
21661 	/* Copy out the address */
21662 	mi_copyout(q, mp);
21663 }
21664 
21665 /*
21666  * tcp_wput_ioctl is called by tcp_wput_nondata() to handle all M_IOCTL
21667  * messages.
21668  */
21669 /* ARGSUSED */
21670 static void
21671 tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2)
21672 {
21673 	conn_t 	*connp = (conn_t *)arg;
21674 	tcp_t	*tcp = connp->conn_tcp;
21675 	queue_t	*q = tcp->tcp_wq;
21676 	struct iocblk	*iocp;
21677 
21678 	ASSERT(DB_TYPE(mp) == M_IOCTL);
21679 	/*
21680 	 * Try and ASSERT the minimum possible references on the
21681 	 * conn early enough. Since we are executing on write side,
21682 	 * the connection is obviously not detached and that means
21683 	 * there is a ref each for TCP and IP. Since we are behind
21684 	 * the squeue, the minimum references needed are 3. If the
21685 	 * conn is in classifier hash list, there should be an
21686 	 * extra ref for that (we check both the possibilities).
21687 	 */
21688 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
21689 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
21690 
21691 	iocp = (struct iocblk *)mp->b_rptr;
21692 	switch (iocp->ioc_cmd) {
21693 	case TCP_IOC_DEFAULT_Q:
21694 		/* Wants to be the default wq. */
21695 		if (secpolicy_net_config(iocp->ioc_cr, B_FALSE) != 0) {
21696 			iocp->ioc_error = EPERM;
21697 			iocp->ioc_count = 0;
21698 			mp->b_datap->db_type = M_IOCACK;
21699 			qreply(q, mp);
21700 			return;
21701 		}
21702 		tcp_def_q_set(tcp, mp);
21703 		return;
21704 	case _SIOCSOCKFALLBACK:
21705 		/*
21706 		 * Either sockmod is about to be popped and the socket
21707 		 * would now be treated as a plain stream, or a module
21708 		 * is about to be pushed so we could no longer use read-
21709 		 * side synchronous streams for fused loopback tcp.
21710 		 * Drain any queued data and disable direct sockfs
21711 		 * interface from now on.
21712 		 */
21713 		if (!tcp->tcp_issocket) {
21714 			DB_TYPE(mp) = M_IOCNAK;
21715 			iocp->ioc_error = EINVAL;
21716 		} else {
21717 #ifdef	_ILP32
21718 			tcp->tcp_acceptor_id = (t_uscalar_t)RD(q);
21719 #else
21720 			tcp->tcp_acceptor_id = tcp->tcp_connp->conn_dev;
21721 #endif
21722 			/*
21723 			 * Insert this socket into the acceptor hash.
21724 			 * We might need it for T_CONN_RES message
21725 			 */
21726 			tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp);
21727 
21728 			if (tcp->tcp_fused) {
21729 				/*
21730 				 * This is a fused loopback tcp; disable
21731 				 * read-side synchronous streams interface
21732 				 * and drain any queued data.  It is okay
21733 				 * to do this for non-synchronous streams
21734 				 * fused tcp as well.
21735 				 */
21736 				tcp_fuse_disable_pair(tcp, B_FALSE);
21737 			}
21738 			tcp->tcp_issocket = B_FALSE;
21739 			TCP_STAT(tcp_sock_fallback);
21740 
21741 			DB_TYPE(mp) = M_IOCACK;
21742 			iocp->ioc_error = 0;
21743 		}
21744 		iocp->ioc_count = 0;
21745 		iocp->ioc_rval = 0;
21746 		qreply(q, mp);
21747 		return;
21748 	}
21749 	CALL_IP_WPUT(connp, q, mp);
21750 }
21751 
21752 /*
21753  * This routine is called by tcp_wput() to handle all TPI requests.
21754  */
21755 /* ARGSUSED */
21756 static void
21757 tcp_wput_proto(void *arg, mblk_t *mp, void *arg2)
21758 {
21759 	conn_t 	*connp = (conn_t *)arg;
21760 	tcp_t	*tcp = connp->conn_tcp;
21761 	union T_primitives *tprim = (union T_primitives *)mp->b_rptr;
21762 	uchar_t *rptr;
21763 	t_scalar_t type;
21764 	int len;
21765 	cred_t *cr = DB_CREDDEF(mp, tcp->tcp_cred);
21766 
21767 	/*
21768 	 * Try and ASSERT the minimum possible references on the
21769 	 * conn early enough. Since we are executing on write side,
21770 	 * the connection is obviously not detached and that means
21771 	 * there is a ref each for TCP and IP. Since we are behind
21772 	 * the squeue, the minimum references needed are 3. If the
21773 	 * conn is in classifier hash list, there should be an
21774 	 * extra ref for that (we check both the possibilities).
21775 	 */
21776 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
21777 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
21778 
21779 	rptr = mp->b_rptr;
21780 	ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
21781 	if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) {
21782 		type = ((union T_primitives *)rptr)->type;
21783 		if (type == T_EXDATA_REQ) {
21784 			uint32_t msize = msgdsize(mp->b_cont);
21785 
21786 			len = msize - 1;
21787 			if (len < 0) {
21788 				freemsg(mp);
21789 				return;
21790 			}
21791 			/*
21792 			 * Try to force urgent data out on the wire.
21793 			 * Even if we have unsent data this will
21794 			 * at least send the urgent flag.
21795 			 * XXX does not handle more flag correctly.
21796 			 */
21797 			len += tcp->tcp_unsent;
21798 			len += tcp->tcp_snxt;
21799 			tcp->tcp_urg = len;
21800 			tcp->tcp_valid_bits |= TCP_URG_VALID;
21801 
21802 			/* Bypass tcp protocol for fused tcp loopback */
21803 			if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize))
21804 				return;
21805 		} else if (type != T_DATA_REQ) {
21806 			goto non_urgent_data;
21807 		}
21808 		/* TODO: options, flags, ... from user */
21809 		/* Set length to zero for reclamation below */
21810 		tcp_wput_data(tcp, mp->b_cont, B_TRUE);
21811 		freeb(mp);
21812 		return;
21813 	} else {
21814 		if (tcp->tcp_debug) {
21815 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
21816 			    "tcp_wput_proto, dropping one...");
21817 		}
21818 		freemsg(mp);
21819 		return;
21820 	}
21821 
21822 non_urgent_data:
21823 
21824 	switch ((int)tprim->type) {
21825 	case T_SSL_PROXY_BIND_REQ:	/* an SSL proxy endpoint bind request */
21826 		/*
21827 		 * save the kssl_ent_t from the next block, and convert this
21828 		 * back to a normal bind_req.
21829 		 */
21830 		if (mp->b_cont != NULL) {
21831 		    ASSERT(MBLKL(mp->b_cont) >= sizeof (kssl_ent_t));
21832 
21833 			if (tcp->tcp_kssl_ent != NULL) {
21834 				kssl_release_ent(tcp->tcp_kssl_ent, NULL,
21835 				    KSSL_NO_PROXY);
21836 				tcp->tcp_kssl_ent = NULL;
21837 			}
21838 			bcopy(mp->b_cont->b_rptr, &tcp->tcp_kssl_ent,
21839 			    sizeof (kssl_ent_t));
21840 			kssl_hold_ent(tcp->tcp_kssl_ent);
21841 			freemsg(mp->b_cont);
21842 			mp->b_cont = NULL;
21843 		}
21844 		tprim->type = T_BIND_REQ;
21845 
21846 	/* FALLTHROUGH */
21847 	case O_T_BIND_REQ:	/* bind request */
21848 	case T_BIND_REQ:	/* new semantics bind request */
21849 		tcp_bind(tcp, mp);
21850 		break;
21851 	case T_UNBIND_REQ:	/* unbind request */
21852 		tcp_unbind(tcp, mp);
21853 		break;
21854 	case O_T_CONN_RES:	/* old connection response XXX */
21855 	case T_CONN_RES:	/* connection response */
21856 		tcp_accept(tcp, mp);
21857 		break;
21858 	case T_CONN_REQ:	/* connection request */
21859 		tcp_connect(tcp, mp);
21860 		break;
21861 	case T_DISCON_REQ:	/* disconnect request */
21862 		tcp_disconnect(tcp, mp);
21863 		break;
21864 	case T_CAPABILITY_REQ:
21865 		tcp_capability_req(tcp, mp);	/* capability request */
21866 		break;
21867 	case T_INFO_REQ:	/* information request */
21868 		tcp_info_req(tcp, mp);
21869 		break;
21870 	case T_SVR4_OPTMGMT_REQ:	/* manage options req */
21871 		/* Only IP is allowed to return meaningful value */
21872 		(void) svr4_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj);
21873 		break;
21874 	case T_OPTMGMT_REQ:
21875 		/*
21876 		 * Note:  no support for snmpcom_req() through new
21877 		 * T_OPTMGMT_REQ. See comments in ip.c
21878 		 */
21879 		/* Only IP is allowed to return meaningful value */
21880 		(void) tpi_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj);
21881 		break;
21882 
21883 	case T_UNITDATA_REQ:	/* unitdata request */
21884 		tcp_err_ack(tcp, mp, TNOTSUPPORT, 0);
21885 		break;
21886 	case T_ORDREL_REQ:	/* orderly release req */
21887 		freemsg(mp);
21888 
21889 		if (tcp->tcp_fused)
21890 			tcp_unfuse(tcp);
21891 
21892 		if (tcp_xmit_end(tcp) != 0) {
21893 			/*
21894 			 * We were crossing FINs and got a reset from
21895 			 * the other side. Just ignore it.
21896 			 */
21897 			if (tcp->tcp_debug) {
21898 				(void) strlog(TCP_MOD_ID, 0, 1,
21899 				    SL_ERROR|SL_TRACE,
21900 				    "tcp_wput_proto, T_ORDREL_REQ out of "
21901 				    "state %s",
21902 				    tcp_display(tcp, NULL,
21903 				    DISP_ADDR_AND_PORT));
21904 			}
21905 		}
21906 		break;
21907 	case T_ADDR_REQ:
21908 		tcp_addr_req(tcp, mp);
21909 		break;
21910 	default:
21911 		if (tcp->tcp_debug) {
21912 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
21913 			    "tcp_wput_proto, bogus TPI msg, type %d",
21914 			    tprim->type);
21915 		}
21916 		/*
21917 		 * We used to M_ERROR.  Sending TNOTSUPPORT gives the user
21918 		 * to recover.
21919 		 */
21920 		tcp_err_ack(tcp, mp, TNOTSUPPORT, 0);
21921 		break;
21922 	}
21923 }
21924 
21925 /*
21926  * The TCP write service routine should never be called...
21927  */
21928 /* ARGSUSED */
21929 static void
21930 tcp_wsrv(queue_t *q)
21931 {
21932 	TCP_STAT(tcp_wsrv_called);
21933 }
21934 
21935 /* Non overlapping byte exchanger */
21936 static void
21937 tcp_xchg(uchar_t *a, uchar_t *b, int len)
21938 {
21939 	uchar_t	uch;
21940 
21941 	while (len-- > 0) {
21942 		uch = a[len];
21943 		a[len] = b[len];
21944 		b[len] = uch;
21945 	}
21946 }
21947 
21948 /*
21949  * Send out a control packet on the tcp connection specified.  This routine
21950  * is typically called where we need a simple ACK or RST generated.
21951  */
21952 static void
21953 tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, uint32_t ack, int ctl)
21954 {
21955 	uchar_t		*rptr;
21956 	tcph_t		*tcph;
21957 	ipha_t		*ipha = NULL;
21958 	ip6_t		*ip6h = NULL;
21959 	uint32_t	sum;
21960 	int		tcp_hdr_len;
21961 	int		tcp_ip_hdr_len;
21962 	mblk_t		*mp;
21963 
21964 	/*
21965 	 * Save sum for use in source route later.
21966 	 */
21967 	ASSERT(tcp != NULL);
21968 	sum = tcp->tcp_tcp_hdr_len + tcp->tcp_sum;
21969 	tcp_hdr_len = tcp->tcp_hdr_len;
21970 	tcp_ip_hdr_len = tcp->tcp_ip_hdr_len;
21971 
21972 	/* If a text string is passed in with the request, pass it to strlog. */
21973 	if (str != NULL && tcp->tcp_debug) {
21974 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
21975 		    "tcp_xmit_ctl: '%s', seq 0x%x, ack 0x%x, ctl 0x%x",
21976 		    str, seq, ack, ctl);
21977 	}
21978 	mp = allocb(tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcp_wroff_xtra,
21979 	    BPRI_MED);
21980 	if (mp == NULL) {
21981 		return;
21982 	}
21983 	rptr = &mp->b_rptr[tcp_wroff_xtra];
21984 	mp->b_rptr = rptr;
21985 	mp->b_wptr = &rptr[tcp_hdr_len];
21986 	bcopy(tcp->tcp_iphc, rptr, tcp_hdr_len);
21987 
21988 	if (tcp->tcp_ipversion == IPV4_VERSION) {
21989 		ipha = (ipha_t *)rptr;
21990 		ipha->ipha_length = htons(tcp_hdr_len);
21991 	} else {
21992 		ip6h = (ip6_t *)rptr;
21993 		ASSERT(tcp != NULL);
21994 		ip6h->ip6_plen = htons(tcp->tcp_hdr_len -
21995 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
21996 	}
21997 	tcph = (tcph_t *)&rptr[tcp_ip_hdr_len];
21998 	tcph->th_flags[0] = (uint8_t)ctl;
21999 	if (ctl & TH_RST) {
22000 		BUMP_MIB(&tcp_mib, tcpOutRsts);
22001 		BUMP_MIB(&tcp_mib, tcpOutControl);
22002 		/*
22003 		 * Don't send TSopt w/ TH_RST packets per RFC 1323.
22004 		 */
22005 		if (tcp->tcp_snd_ts_ok &&
22006 		    tcp->tcp_state > TCPS_SYN_SENT) {
22007 			mp->b_wptr = &rptr[tcp_hdr_len - TCPOPT_REAL_TS_LEN];
22008 			*(mp->b_wptr) = TCPOPT_EOL;
22009 			if (tcp->tcp_ipversion == IPV4_VERSION) {
22010 				ipha->ipha_length = htons(tcp_hdr_len -
22011 				    TCPOPT_REAL_TS_LEN);
22012 			} else {
22013 				ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) -
22014 				    TCPOPT_REAL_TS_LEN);
22015 			}
22016 			tcph->th_offset_and_rsrvd[0] -= (3 << 4);
22017 			sum -= TCPOPT_REAL_TS_LEN;
22018 		}
22019 	}
22020 	if (ctl & TH_ACK) {
22021 		if (tcp->tcp_snd_ts_ok) {
22022 			U32_TO_BE32(lbolt,
22023 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
22024 			U32_TO_BE32(tcp->tcp_ts_recent,
22025 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
22026 		}
22027 
22028 		/* Update the latest receive window size in TCP header. */
22029 		U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
22030 		    tcph->th_win);
22031 		tcp->tcp_rack = ack;
22032 		tcp->tcp_rack_cnt = 0;
22033 		BUMP_MIB(&tcp_mib, tcpOutAck);
22034 	}
22035 	BUMP_LOCAL(tcp->tcp_obsegs);
22036 	U32_TO_BE32(seq, tcph->th_seq);
22037 	U32_TO_BE32(ack, tcph->th_ack);
22038 	/*
22039 	 * Include the adjustment for a source route if any.
22040 	 */
22041 	sum = (sum >> 16) + (sum & 0xFFFF);
22042 	U16_TO_BE16(sum, tcph->th_sum);
22043 	TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
22044 	tcp_send_data(tcp, tcp->tcp_wq, mp);
22045 }
22046 
22047 /*
22048  * If this routine returns B_TRUE, TCP can generate a RST in response
22049  * to a segment.  If it returns B_FALSE, TCP should not respond.
22050  */
22051 static boolean_t
22052 tcp_send_rst_chk(void)
22053 {
22054 	clock_t	now;
22055 
22056 	/*
22057 	 * TCP needs to protect itself from generating too many RSTs.
22058 	 * This can be a DoS attack by sending us random segments
22059 	 * soliciting RSTs.
22060 	 *
22061 	 * What we do here is to have a limit of tcp_rst_sent_rate RSTs
22062 	 * in each 1 second interval.  In this way, TCP still generate
22063 	 * RSTs in normal cases but when under attack, the impact is
22064 	 * limited.
22065 	 */
22066 	if (tcp_rst_sent_rate_enabled != 0) {
22067 		now = lbolt;
22068 		/* lbolt can wrap around. */
22069 		if ((tcp_last_rst_intrvl > now) ||
22070 		    (TICK_TO_MSEC(now - tcp_last_rst_intrvl) > 1*SECONDS)) {
22071 			tcp_last_rst_intrvl = now;
22072 			tcp_rst_cnt = 1;
22073 		} else if (++tcp_rst_cnt > tcp_rst_sent_rate) {
22074 			return (B_FALSE);
22075 		}
22076 	}
22077 	return (B_TRUE);
22078 }
22079 
22080 /*
22081  * Send down the advice IP ioctl to tell IP to mark an IRE temporary.
22082  */
22083 static void
22084 tcp_ip_ire_mark_advice(tcp_t *tcp)
22085 {
22086 	mblk_t *mp;
22087 	ipic_t *ipic;
22088 
22089 	if (tcp->tcp_ipversion == IPV4_VERSION) {
22090 		mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN,
22091 		    &ipic);
22092 	} else {
22093 		mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN,
22094 		    &ipic);
22095 	}
22096 	if (mp == NULL)
22097 		return;
22098 	ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY;
22099 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
22100 }
22101 
22102 /*
22103  * Return an IP advice ioctl mblk and set ipic to be the pointer
22104  * to the advice structure.
22105  */
22106 static mblk_t *
22107 tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic)
22108 {
22109 	struct iocblk *ioc;
22110 	mblk_t *mp, *mp1;
22111 
22112 	mp = allocb(sizeof (ipic_t) + addr_len, BPRI_HI);
22113 	if (mp == NULL)
22114 		return (NULL);
22115 	bzero(mp->b_rptr, sizeof (ipic_t) + addr_len);
22116 	*ipic = (ipic_t *)mp->b_rptr;
22117 	(*ipic)->ipic_cmd = IP_IOC_IRE_ADVISE_NO_REPLY;
22118 	(*ipic)->ipic_addr_offset = sizeof (ipic_t);
22119 
22120 	bcopy(addr, *ipic + 1, addr_len);
22121 
22122 	(*ipic)->ipic_addr_length = addr_len;
22123 	mp->b_wptr = &mp->b_rptr[sizeof (ipic_t) + addr_len];
22124 
22125 	mp1 = mkiocb(IP_IOCTL);
22126 	if (mp1 == NULL) {
22127 		freemsg(mp);
22128 		return (NULL);
22129 	}
22130 	mp1->b_cont = mp;
22131 	ioc = (struct iocblk *)mp1->b_rptr;
22132 	ioc->ioc_count = sizeof (ipic_t) + addr_len;
22133 
22134 	return (mp1);
22135 }
22136 
22137 /*
22138  * Generate a reset based on an inbound packet for which there is no active
22139  * tcp state that we can find.
22140  *
22141  * IPSEC NOTE : Try to send the reply with the same protection as it came
22142  * in.  We still have the ipsec_mp that the packet was attached to. Thus
22143  * the packet will go out at the same level of protection as it came in by
22144  * converting the IPSEC_IN to IPSEC_OUT.
22145  */
22146 static void
22147 tcp_xmit_early_reset(char *str, mblk_t *mp, uint32_t seq,
22148     uint32_t ack, int ctl, uint_t ip_hdr_len, zoneid_t zoneid)
22149 {
22150 	ipha_t		*ipha = NULL;
22151 	ip6_t		*ip6h = NULL;
22152 	ushort_t	len;
22153 	tcph_t		*tcph;
22154 	int		i;
22155 	mblk_t		*ipsec_mp;
22156 	boolean_t	mctl_present;
22157 	ipic_t		*ipic;
22158 	ipaddr_t	v4addr;
22159 	in6_addr_t	v6addr;
22160 	int		addr_len;
22161 	void		*addr;
22162 	queue_t		*q = tcp_g_q;
22163 	tcp_t		*tcp = Q_TO_TCP(q);
22164 	cred_t		*cr;
22165 	mblk_t		*nmp;
22166 
22167 	if (!tcp_send_rst_chk()) {
22168 		tcp_rst_unsent++;
22169 		freemsg(mp);
22170 		return;
22171 	}
22172 
22173 	if (mp->b_datap->db_type == M_CTL) {
22174 		ipsec_mp = mp;
22175 		mp = mp->b_cont;
22176 		mctl_present = B_TRUE;
22177 	} else {
22178 		ipsec_mp = mp;
22179 		mctl_present = B_FALSE;
22180 	}
22181 
22182 	if (str && q && tcp_dbg) {
22183 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
22184 		    "tcp_xmit_early_reset: '%s', seq 0x%x, ack 0x%x, "
22185 		    "flags 0x%x",
22186 		    str, seq, ack, ctl);
22187 	}
22188 	if (mp->b_datap->db_ref != 1) {
22189 		mblk_t *mp1 = copyb(mp);
22190 		freemsg(mp);
22191 		mp = mp1;
22192 		if (!mp) {
22193 			if (mctl_present)
22194 				freeb(ipsec_mp);
22195 			return;
22196 		} else {
22197 			if (mctl_present) {
22198 				ipsec_mp->b_cont = mp;
22199 			} else {
22200 				ipsec_mp = mp;
22201 			}
22202 		}
22203 	} else if (mp->b_cont) {
22204 		freemsg(mp->b_cont);
22205 		mp->b_cont = NULL;
22206 	}
22207 	/*
22208 	 * We skip reversing source route here.
22209 	 * (for now we replace all IP options with EOL)
22210 	 */
22211 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
22212 		ipha = (ipha_t *)mp->b_rptr;
22213 		for (i = IP_SIMPLE_HDR_LENGTH; i < (int)ip_hdr_len; i++)
22214 			mp->b_rptr[i] = IPOPT_EOL;
22215 		/*
22216 		 * Make sure that src address isn't flagrantly invalid.
22217 		 * Not all broadcast address checking for the src address
22218 		 * is possible, since we don't know the netmask of the src
22219 		 * addr.  No check for destination address is done, since
22220 		 * IP will not pass up a packet with a broadcast dest
22221 		 * address to TCP.  Similar checks are done below for IPv6.
22222 		 */
22223 		if (ipha->ipha_src == 0 || ipha->ipha_src == INADDR_BROADCAST ||
22224 		    CLASSD(ipha->ipha_src)) {
22225 			freemsg(ipsec_mp);
22226 			BUMP_MIB(&ip_mib, ipInDiscards);
22227 			return;
22228 		}
22229 	} else {
22230 		ip6h = (ip6_t *)mp->b_rptr;
22231 
22232 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src) ||
22233 		    IN6_IS_ADDR_MULTICAST(&ip6h->ip6_src)) {
22234 			freemsg(ipsec_mp);
22235 			BUMP_MIB(&ip6_mib, ipv6InDiscards);
22236 			return;
22237 		}
22238 
22239 		/* Remove any extension headers assuming partial overlay */
22240 		if (ip_hdr_len > IPV6_HDR_LEN) {
22241 			uint8_t *to;
22242 
22243 			to = mp->b_rptr + ip_hdr_len - IPV6_HDR_LEN;
22244 			ovbcopy(ip6h, to, IPV6_HDR_LEN);
22245 			mp->b_rptr += ip_hdr_len - IPV6_HDR_LEN;
22246 			ip_hdr_len = IPV6_HDR_LEN;
22247 			ip6h = (ip6_t *)mp->b_rptr;
22248 			ip6h->ip6_nxt = IPPROTO_TCP;
22249 		}
22250 	}
22251 	tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
22252 	if (tcph->th_flags[0] & TH_RST) {
22253 		freemsg(ipsec_mp);
22254 		return;
22255 	}
22256 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
22257 	len = ip_hdr_len + sizeof (tcph_t);
22258 	mp->b_wptr = &mp->b_rptr[len];
22259 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
22260 		ipha->ipha_length = htons(len);
22261 		/* Swap addresses */
22262 		v4addr = ipha->ipha_src;
22263 		ipha->ipha_src = ipha->ipha_dst;
22264 		ipha->ipha_dst = v4addr;
22265 		ipha->ipha_ident = 0;
22266 		ipha->ipha_ttl = (uchar_t)tcp_ipv4_ttl;
22267 		addr_len = IP_ADDR_LEN;
22268 		addr = &v4addr;
22269 	} else {
22270 		/* No ip6i_t in this case */
22271 		ip6h->ip6_plen = htons(len - IPV6_HDR_LEN);
22272 		/* Swap addresses */
22273 		v6addr = ip6h->ip6_src;
22274 		ip6h->ip6_src = ip6h->ip6_dst;
22275 		ip6h->ip6_dst = v6addr;
22276 		ip6h->ip6_hops = (uchar_t)tcp_ipv6_hoplimit;
22277 		addr_len = IPV6_ADDR_LEN;
22278 		addr = &v6addr;
22279 	}
22280 	tcp_xchg(tcph->th_fport, tcph->th_lport, 2);
22281 	U32_TO_BE32(ack, tcph->th_ack);
22282 	U32_TO_BE32(seq, tcph->th_seq);
22283 	U16_TO_BE16(0, tcph->th_win);
22284 	U16_TO_BE16(sizeof (tcph_t), tcph->th_sum);
22285 	tcph->th_flags[0] = (uint8_t)ctl;
22286 	if (ctl & TH_RST) {
22287 		BUMP_MIB(&tcp_mib, tcpOutRsts);
22288 		BUMP_MIB(&tcp_mib, tcpOutControl);
22289 	}
22290 
22291 	/* IP trusts us to set up labels when required. */
22292 	if (is_system_labeled() && (cr = DB_CRED(mp)) != NULL &&
22293 	    crgetlabel(cr) != NULL) {
22294 		int err, adjust;
22295 
22296 		if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION)
22297 			err = tsol_check_label(cr, &mp, &adjust,
22298 			    tcp->tcp_connp->conn_mac_exempt);
22299 		else
22300 			err = tsol_check_label_v6(cr, &mp, &adjust,
22301 			    tcp->tcp_connp->conn_mac_exempt);
22302 		if (mctl_present)
22303 			ipsec_mp->b_cont = mp;
22304 		else
22305 			ipsec_mp = mp;
22306 		if (err != 0) {
22307 			freemsg(ipsec_mp);
22308 			return;
22309 		}
22310 		if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
22311 			ipha = (ipha_t *)mp->b_rptr;
22312 			adjust += ntohs(ipha->ipha_length);
22313 			ipha->ipha_length = htons(adjust);
22314 		} else {
22315 			ip6h = (ip6_t *)mp->b_rptr;
22316 		}
22317 	}
22318 
22319 	if (mctl_present) {
22320 		ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr;
22321 
22322 		ASSERT(ii->ipsec_in_type == IPSEC_IN);
22323 		if (!ipsec_in_to_out(ipsec_mp, ipha, ip6h)) {
22324 			return;
22325 		}
22326 	}
22327 	if (zoneid == ALL_ZONES)
22328 		zoneid = GLOBAL_ZONEID;
22329 
22330 	/* Add the zoneid so ip_output routes it properly */
22331 	if ((nmp = ip_prepend_zoneid(ipsec_mp, zoneid)) == NULL) {
22332 		freemsg(ipsec_mp);
22333 		return;
22334 	}
22335 	ipsec_mp = nmp;
22336 
22337 	/*
22338 	 * NOTE:  one might consider tracing a TCP packet here, but
22339 	 * this function has no active TCP state and no tcp structure
22340 	 * that has a trace buffer.  If we traced here, we would have
22341 	 * to keep a local trace buffer in tcp_record_trace().
22342 	 *
22343 	 * TSol note: The mblk that contains the incoming packet was
22344 	 * reused by tcp_xmit_listener_reset, so it already contains
22345 	 * the right credentials and we don't need to call mblk_setcred.
22346 	 * Also the conn's cred is not right since it is associated
22347 	 * with tcp_g_q.
22348 	 */
22349 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, ipsec_mp);
22350 
22351 	/*
22352 	 * Tell IP to mark the IRE used for this destination temporary.
22353 	 * This way, we can limit our exposure to DoS attack because IP
22354 	 * creates an IRE for each destination.  If there are too many,
22355 	 * the time to do any routing lookup will be extremely long.  And
22356 	 * the lookup can be in interrupt context.
22357 	 *
22358 	 * Note that in normal circumstances, this marking should not
22359 	 * affect anything.  It would be nice if only 1 message is
22360 	 * needed to inform IP that the IRE created for this RST should
22361 	 * not be added to the cache table.  But there is currently
22362 	 * not such communication mechanism between TCP and IP.  So
22363 	 * the best we can do now is to send the advice ioctl to IP
22364 	 * to mark the IRE temporary.
22365 	 */
22366 	if ((mp = tcp_ip_advise_mblk(addr, addr_len, &ipic)) != NULL) {
22367 		ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY;
22368 		CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
22369 	}
22370 }
22371 
22372 /*
22373  * Initiate closedown sequence on an active connection.  (May be called as
22374  * writer.)  Return value zero for OK return, non-zero for error return.
22375  */
22376 static int
22377 tcp_xmit_end(tcp_t *tcp)
22378 {
22379 	ipic_t	*ipic;
22380 	mblk_t	*mp;
22381 
22382 	if (tcp->tcp_state < TCPS_SYN_RCVD ||
22383 	    tcp->tcp_state > TCPS_CLOSE_WAIT) {
22384 		/*
22385 		 * Invalid state, only states TCPS_SYN_RCVD,
22386 		 * TCPS_ESTABLISHED and TCPS_CLOSE_WAIT are valid
22387 		 */
22388 		return (-1);
22389 	}
22390 
22391 	tcp->tcp_fss = tcp->tcp_snxt + tcp->tcp_unsent;
22392 	tcp->tcp_valid_bits |= TCP_FSS_VALID;
22393 	/*
22394 	 * If there is nothing more unsent, send the FIN now.
22395 	 * Otherwise, it will go out with the last segment.
22396 	 */
22397 	if (tcp->tcp_unsent == 0) {
22398 		mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL,
22399 		    tcp->tcp_fss, B_FALSE, NULL, B_FALSE);
22400 
22401 		if (mp) {
22402 			TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
22403 			tcp_send_data(tcp, tcp->tcp_wq, mp);
22404 		} else {
22405 			/*
22406 			 * Couldn't allocate msg.  Pretend we got it out.
22407 			 * Wait for rexmit timeout.
22408 			 */
22409 			tcp->tcp_snxt = tcp->tcp_fss + 1;
22410 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
22411 		}
22412 
22413 		/*
22414 		 * If needed, update tcp_rexmit_snxt as tcp_snxt is
22415 		 * changed.
22416 		 */
22417 		if (tcp->tcp_rexmit && tcp->tcp_rexmit_nxt == tcp->tcp_fss) {
22418 			tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
22419 		}
22420 	} else {
22421 		/*
22422 		 * If tcp->tcp_cork is set, then the data will not get sent,
22423 		 * so we have to check that and unset it first.
22424 		 */
22425 		if (tcp->tcp_cork)
22426 			tcp->tcp_cork = B_FALSE;
22427 		tcp_wput_data(tcp, NULL, B_FALSE);
22428 	}
22429 
22430 	/*
22431 	 * If TCP does not get enough samples of RTT or tcp_rtt_updates
22432 	 * is 0, don't update the cache.
22433 	 */
22434 	if (tcp_rtt_updates == 0 || tcp->tcp_rtt_update < tcp_rtt_updates)
22435 		return (0);
22436 
22437 	/*
22438 	 * NOTE: should not update if source routes i.e. if tcp_remote if
22439 	 * different from the destination.
22440 	 */
22441 	if (tcp->tcp_ipversion == IPV4_VERSION) {
22442 		if (tcp->tcp_remote !=  tcp->tcp_ipha->ipha_dst) {
22443 			return (0);
22444 		}
22445 		mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN,
22446 		    &ipic);
22447 	} else {
22448 		if (!(IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6,
22449 		    &tcp->tcp_ip6h->ip6_dst))) {
22450 			return (0);
22451 		}
22452 		mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN,
22453 		    &ipic);
22454 	}
22455 
22456 	/* Record route attributes in the IRE for use by future connections. */
22457 	if (mp == NULL)
22458 		return (0);
22459 
22460 	/*
22461 	 * We do not have a good algorithm to update ssthresh at this time.
22462 	 * So don't do any update.
22463 	 */
22464 	ipic->ipic_rtt = tcp->tcp_rtt_sa;
22465 	ipic->ipic_rtt_sd = tcp->tcp_rtt_sd;
22466 
22467 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
22468 	return (0);
22469 }
22470 
22471 /*
22472  * Generate a "no listener here" RST in response to an "unknown" segment.
22473  * Note that we are reusing the incoming mp to construct the outgoing
22474  * RST.
22475  */
22476 void
22477 tcp_xmit_listeners_reset(mblk_t *mp, uint_t ip_hdr_len, zoneid_t zoneid)
22478 {
22479 	uchar_t		*rptr;
22480 	uint32_t	seg_len;
22481 	tcph_t		*tcph;
22482 	uint32_t	seg_seq;
22483 	uint32_t	seg_ack;
22484 	uint_t		flags;
22485 	mblk_t		*ipsec_mp;
22486 	ipha_t 		*ipha;
22487 	ip6_t 		*ip6h;
22488 	boolean_t	mctl_present = B_FALSE;
22489 	boolean_t	check = B_TRUE;
22490 	boolean_t	policy_present;
22491 
22492 	TCP_STAT(tcp_no_listener);
22493 
22494 	ipsec_mp = mp;
22495 
22496 	if (mp->b_datap->db_type == M_CTL) {
22497 		ipsec_in_t *ii;
22498 
22499 		mctl_present = B_TRUE;
22500 		mp = mp->b_cont;
22501 
22502 		ii = (ipsec_in_t *)ipsec_mp->b_rptr;
22503 		ASSERT(ii->ipsec_in_type == IPSEC_IN);
22504 		if (ii->ipsec_in_dont_check) {
22505 			check = B_FALSE;
22506 			if (!ii->ipsec_in_secure) {
22507 				freeb(ipsec_mp);
22508 				mctl_present = B_FALSE;
22509 				ipsec_mp = mp;
22510 			}
22511 		}
22512 	}
22513 
22514 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
22515 		policy_present = ipsec_inbound_v4_policy_present;
22516 		ipha = (ipha_t *)mp->b_rptr;
22517 		ip6h = NULL;
22518 	} else {
22519 		policy_present = ipsec_inbound_v6_policy_present;
22520 		ipha = NULL;
22521 		ip6h = (ip6_t *)mp->b_rptr;
22522 	}
22523 
22524 	if (check && policy_present) {
22525 		/*
22526 		 * The conn_t parameter is NULL because we already know
22527 		 * nobody's home.
22528 		 */
22529 		ipsec_mp = ipsec_check_global_policy(
22530 			ipsec_mp, (conn_t *)NULL, ipha, ip6h, mctl_present);
22531 		if (ipsec_mp == NULL)
22532 			return;
22533 	}
22534 	if (is_system_labeled() && !tsol_can_reply_error(mp)) {
22535 		DTRACE_PROBE2(
22536 		    tx__ip__log__error__nolistener__tcp,
22537 		    char *, "Could not reply with RST to mp(1)",
22538 		    mblk_t *, mp);
22539 		ip2dbg(("tcp_xmit_listeners_reset: not permitted to reply\n"));
22540 		freemsg(ipsec_mp);
22541 		return;
22542 	}
22543 
22544 	rptr = mp->b_rptr;
22545 
22546 	tcph = (tcph_t *)&rptr[ip_hdr_len];
22547 	seg_seq = BE32_TO_U32(tcph->th_seq);
22548 	seg_ack = BE32_TO_U32(tcph->th_ack);
22549 	flags = tcph->th_flags[0];
22550 
22551 	seg_len = msgdsize(mp) - (TCP_HDR_LENGTH(tcph) + ip_hdr_len);
22552 	if (flags & TH_RST) {
22553 		freemsg(ipsec_mp);
22554 	} else if (flags & TH_ACK) {
22555 		tcp_xmit_early_reset("no tcp, reset",
22556 		    ipsec_mp, seg_ack, 0, TH_RST, ip_hdr_len, zoneid);
22557 	} else {
22558 		if (flags & TH_SYN) {
22559 			seg_len++;
22560 		} else {
22561 			/*
22562 			 * Here we violate the RFC.  Note that a normal
22563 			 * TCP will never send a segment without the ACK
22564 			 * flag, except for RST or SYN segment.  This
22565 			 * segment is neither.  Just drop it on the
22566 			 * floor.
22567 			 */
22568 			freemsg(ipsec_mp);
22569 			tcp_rst_unsent++;
22570 			return;
22571 		}
22572 
22573 		tcp_xmit_early_reset("no tcp, reset/ack",
22574 		    ipsec_mp, 0, seg_seq + seg_len,
22575 		    TH_RST | TH_ACK, ip_hdr_len, zoneid);
22576 	}
22577 }
22578 
22579 /*
22580  * tcp_xmit_mp is called to return a pointer to an mblk chain complete with
22581  * ip and tcp header ready to pass down to IP.  If the mp passed in is
22582  * non-NULL, then up to max_to_send bytes of data will be dup'ed off that
22583  * mblk. (If sendall is not set the dup'ing will stop at an mblk boundary
22584  * otherwise it will dup partial mblks.)
22585  * Otherwise, an appropriate ACK packet will be generated.  This
22586  * routine is not usually called to send new data for the first time.  It
22587  * is mostly called out of the timer for retransmits, and to generate ACKs.
22588  *
22589  * If offset is not NULL, the returned mblk chain's first mblk's b_rptr will
22590  * be adjusted by *offset.  And after dupb(), the offset and the ending mblk
22591  * of the original mblk chain will be returned in *offset and *end_mp.
22592  */
22593 mblk_t *
22594 tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, int32_t *offset,
22595     mblk_t **end_mp, uint32_t seq, boolean_t sendall, uint32_t *seg_len,
22596     boolean_t rexmit)
22597 {
22598 	int	data_length;
22599 	int32_t	off = 0;
22600 	uint_t	flags;
22601 	mblk_t	*mp1;
22602 	mblk_t	*mp2;
22603 	uchar_t	*rptr;
22604 	tcph_t	*tcph;
22605 	int32_t	num_sack_blk = 0;
22606 	int32_t	sack_opt_len = 0;
22607 
22608 	/* Allocate for our maximum TCP header + link-level */
22609 	mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcp_wroff_xtra,
22610 	    BPRI_MED);
22611 	if (!mp1)
22612 		return (NULL);
22613 	data_length = 0;
22614 
22615 	/*
22616 	 * Note that tcp_mss has been adjusted to take into account the
22617 	 * timestamp option if applicable.  Because SACK options do not
22618 	 * appear in every TCP segments and they are of variable lengths,
22619 	 * they cannot be included in tcp_mss.  Thus we need to calculate
22620 	 * the actual segment length when we need to send a segment which
22621 	 * includes SACK options.
22622 	 */
22623 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
22624 		num_sack_blk = MIN(tcp->tcp_max_sack_blk,
22625 		    tcp->tcp_num_sack_blk);
22626 		sack_opt_len = num_sack_blk * sizeof (sack_blk_t) +
22627 		    TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN;
22628 		if (max_to_send + sack_opt_len > tcp->tcp_mss)
22629 			max_to_send -= sack_opt_len;
22630 	}
22631 
22632 	if (offset != NULL) {
22633 		off = *offset;
22634 		/* We use offset as an indicator that end_mp is not NULL. */
22635 		*end_mp = NULL;
22636 	}
22637 	for (mp2 = mp1; mp && data_length != max_to_send; mp = mp->b_cont) {
22638 		/* This could be faster with cooperation from downstream */
22639 		if (mp2 != mp1 && !sendall &&
22640 		    data_length + (int)(mp->b_wptr - mp->b_rptr) >
22641 		    max_to_send)
22642 			/*
22643 			 * Don't send the next mblk since the whole mblk
22644 			 * does not fit.
22645 			 */
22646 			break;
22647 		mp2->b_cont = dupb(mp);
22648 		mp2 = mp2->b_cont;
22649 		if (!mp2) {
22650 			freemsg(mp1);
22651 			return (NULL);
22652 		}
22653 		mp2->b_rptr += off;
22654 		ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <=
22655 		    (uintptr_t)INT_MAX);
22656 
22657 		data_length += (int)(mp2->b_wptr - mp2->b_rptr);
22658 		if (data_length > max_to_send) {
22659 			mp2->b_wptr -= data_length - max_to_send;
22660 			data_length = max_to_send;
22661 			off = mp2->b_wptr - mp->b_rptr;
22662 			break;
22663 		} else {
22664 			off = 0;
22665 		}
22666 	}
22667 	if (offset != NULL) {
22668 		*offset = off;
22669 		*end_mp = mp;
22670 	}
22671 	if (seg_len != NULL) {
22672 		*seg_len = data_length;
22673 	}
22674 
22675 	/* Update the latest receive window size in TCP header. */
22676 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
22677 	    tcp->tcp_tcph->th_win);
22678 
22679 	rptr = mp1->b_rptr + tcp_wroff_xtra;
22680 	mp1->b_rptr = rptr;
22681 	mp1->b_wptr = rptr + tcp->tcp_hdr_len + sack_opt_len;
22682 	bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len);
22683 	tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len];
22684 	U32_TO_ABE32(seq, tcph->th_seq);
22685 
22686 	/*
22687 	 * Use tcp_unsent to determine if the PUSH bit should be used assumes
22688 	 * that this function was called from tcp_wput_data. Thus, when called
22689 	 * to retransmit data the setting of the PUSH bit may appear some
22690 	 * what random in that it might get set when it should not. This
22691 	 * should not pose any performance issues.
22692 	 */
22693 	if (data_length != 0 && (tcp->tcp_unsent == 0 ||
22694 	    tcp->tcp_unsent == data_length)) {
22695 		flags = TH_ACK | TH_PUSH;
22696 	} else {
22697 		flags = TH_ACK;
22698 	}
22699 
22700 	if (tcp->tcp_ecn_ok) {
22701 		if (tcp->tcp_ecn_echo_on)
22702 			flags |= TH_ECE;
22703 
22704 		/*
22705 		 * Only set ECT bit and ECN_CWR if a segment contains new data.
22706 		 * There is no TCP flow control for non-data segments, and
22707 		 * only data segment is transmitted reliably.
22708 		 */
22709 		if (data_length > 0 && !rexmit) {
22710 			SET_ECT(tcp, rptr);
22711 			if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
22712 				flags |= TH_CWR;
22713 				tcp->tcp_ecn_cwr_sent = B_TRUE;
22714 			}
22715 		}
22716 	}
22717 
22718 	if (tcp->tcp_valid_bits) {
22719 		uint32_t u1;
22720 
22721 		if ((tcp->tcp_valid_bits & TCP_ISS_VALID) &&
22722 		    seq == tcp->tcp_iss) {
22723 			uchar_t	*wptr;
22724 
22725 			/*
22726 			 * If TCP_ISS_VALID and the seq number is tcp_iss,
22727 			 * TCP can only be in SYN-SENT, SYN-RCVD or
22728 			 * FIN-WAIT-1 state.  It can be FIN-WAIT-1 if
22729 			 * our SYN is not ack'ed but the app closes this
22730 			 * TCP connection.
22731 			 */
22732 			ASSERT(tcp->tcp_state == TCPS_SYN_SENT ||
22733 			    tcp->tcp_state == TCPS_SYN_RCVD ||
22734 			    tcp->tcp_state == TCPS_FIN_WAIT_1);
22735 
22736 			/*
22737 			 * Tack on the MSS option.  It is always needed
22738 			 * for both active and passive open.
22739 			 *
22740 			 * MSS option value should be interface MTU - MIN
22741 			 * TCP/IP header according to RFC 793 as it means
22742 			 * the maximum segment size TCP can receive.  But
22743 			 * to get around some broken middle boxes/end hosts
22744 			 * out there, we allow the option value to be the
22745 			 * same as the MSS option size on the peer side.
22746 			 * In this way, the other side will not send
22747 			 * anything larger than they can receive.
22748 			 *
22749 			 * Note that for SYN_SENT state, the ndd param
22750 			 * tcp_use_smss_as_mss_opt has no effect as we
22751 			 * don't know the peer's MSS option value. So
22752 			 * the only case we need to take care of is in
22753 			 * SYN_RCVD state, which is done later.
22754 			 */
22755 			wptr = mp1->b_wptr;
22756 			wptr[0] = TCPOPT_MAXSEG;
22757 			wptr[1] = TCPOPT_MAXSEG_LEN;
22758 			wptr += 2;
22759 			u1 = tcp->tcp_if_mtu -
22760 			    (tcp->tcp_ipversion == IPV4_VERSION ?
22761 			    IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) -
22762 			    TCP_MIN_HEADER_LENGTH;
22763 			U16_TO_BE16(u1, wptr);
22764 			mp1->b_wptr = wptr + 2;
22765 			/* Update the offset to cover the additional word */
22766 			tcph->th_offset_and_rsrvd[0] += (1 << 4);
22767 
22768 			/*
22769 			 * Note that the following way of filling in
22770 			 * TCP options are not optimal.  Some NOPs can
22771 			 * be saved.  But there is no need at this time
22772 			 * to optimize it.  When it is needed, we will
22773 			 * do it.
22774 			 */
22775 			switch (tcp->tcp_state) {
22776 			case TCPS_SYN_SENT:
22777 				flags = TH_SYN;
22778 
22779 				if (tcp->tcp_snd_ts_ok) {
22780 					uint32_t llbolt = (uint32_t)lbolt;
22781 
22782 					wptr = mp1->b_wptr;
22783 					wptr[0] = TCPOPT_NOP;
22784 					wptr[1] = TCPOPT_NOP;
22785 					wptr[2] = TCPOPT_TSTAMP;
22786 					wptr[3] = TCPOPT_TSTAMP_LEN;
22787 					wptr += 4;
22788 					U32_TO_BE32(llbolt, wptr);
22789 					wptr += 4;
22790 					ASSERT(tcp->tcp_ts_recent == 0);
22791 					U32_TO_BE32(0L, wptr);
22792 					mp1->b_wptr += TCPOPT_REAL_TS_LEN;
22793 					tcph->th_offset_and_rsrvd[0] +=
22794 					    (3 << 4);
22795 				}
22796 
22797 				/*
22798 				 * Set up all the bits to tell other side
22799 				 * we are ECN capable.
22800 				 */
22801 				if (tcp->tcp_ecn_ok) {
22802 					flags |= (TH_ECE | TH_CWR);
22803 				}
22804 				break;
22805 			case TCPS_SYN_RCVD:
22806 				flags |= TH_SYN;
22807 
22808 				/*
22809 				 * Reset the MSS option value to be SMSS
22810 				 * We should probably add back the bytes
22811 				 * for timestamp option and IPsec.  We
22812 				 * don't do that as this is a workaround
22813 				 * for broken middle boxes/end hosts, it
22814 				 * is better for us to be more cautious.
22815 				 * They may not take these things into
22816 				 * account in their SMSS calculation.  Thus
22817 				 * the peer's calculated SMSS may be smaller
22818 				 * than what it can be.  This should be OK.
22819 				 */
22820 				if (tcp_use_smss_as_mss_opt) {
22821 					u1 = tcp->tcp_mss;
22822 					U16_TO_BE16(u1, wptr);
22823 				}
22824 
22825 				/*
22826 				 * If the other side is ECN capable, reply
22827 				 * that we are also ECN capable.
22828 				 */
22829 				if (tcp->tcp_ecn_ok)
22830 					flags |= TH_ECE;
22831 				break;
22832 			default:
22833 				/*
22834 				 * The above ASSERT() makes sure that this
22835 				 * must be FIN-WAIT-1 state.  Our SYN has
22836 				 * not been ack'ed so retransmit it.
22837 				 */
22838 				flags |= TH_SYN;
22839 				break;
22840 			}
22841 
22842 			if (tcp->tcp_snd_ws_ok) {
22843 				wptr = mp1->b_wptr;
22844 				wptr[0] =  TCPOPT_NOP;
22845 				wptr[1] =  TCPOPT_WSCALE;
22846 				wptr[2] =  TCPOPT_WS_LEN;
22847 				wptr[3] = (uchar_t)tcp->tcp_rcv_ws;
22848 				mp1->b_wptr += TCPOPT_REAL_WS_LEN;
22849 				tcph->th_offset_and_rsrvd[0] += (1 << 4);
22850 			}
22851 
22852 			if (tcp->tcp_snd_sack_ok) {
22853 				wptr = mp1->b_wptr;
22854 				wptr[0] = TCPOPT_NOP;
22855 				wptr[1] = TCPOPT_NOP;
22856 				wptr[2] = TCPOPT_SACK_PERMITTED;
22857 				wptr[3] = TCPOPT_SACK_OK_LEN;
22858 				mp1->b_wptr += TCPOPT_REAL_SACK_OK_LEN;
22859 				tcph->th_offset_and_rsrvd[0] += (1 << 4);
22860 			}
22861 
22862 			/* allocb() of adequate mblk assures space */
22863 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
22864 			    (uintptr_t)INT_MAX);
22865 			u1 = (int)(mp1->b_wptr - mp1->b_rptr);
22866 			/*
22867 			 * Get IP set to checksum on our behalf
22868 			 * Include the adjustment for a source route if any.
22869 			 */
22870 			u1 += tcp->tcp_sum;
22871 			u1 = (u1 >> 16) + (u1 & 0xFFFF);
22872 			U16_TO_BE16(u1, tcph->th_sum);
22873 			BUMP_MIB(&tcp_mib, tcpOutControl);
22874 		}
22875 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
22876 		    (seq + data_length) == tcp->tcp_fss) {
22877 			if (!tcp->tcp_fin_acked) {
22878 				flags |= TH_FIN;
22879 				BUMP_MIB(&tcp_mib, tcpOutControl);
22880 			}
22881 			if (!tcp->tcp_fin_sent) {
22882 				tcp->tcp_fin_sent = B_TRUE;
22883 				switch (tcp->tcp_state) {
22884 				case TCPS_SYN_RCVD:
22885 				case TCPS_ESTABLISHED:
22886 					tcp->tcp_state = TCPS_FIN_WAIT_1;
22887 					break;
22888 				case TCPS_CLOSE_WAIT:
22889 					tcp->tcp_state = TCPS_LAST_ACK;
22890 					break;
22891 				}
22892 				if (tcp->tcp_suna == tcp->tcp_snxt)
22893 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
22894 				tcp->tcp_snxt = tcp->tcp_fss + 1;
22895 			}
22896 		}
22897 		/*
22898 		 * Note the trick here.  u1 is unsigned.  When tcp_urg
22899 		 * is smaller than seq, u1 will become a very huge value.
22900 		 * So the comparison will fail.  Also note that tcp_urp
22901 		 * should be positive, see RFC 793 page 17.
22902 		 */
22903 		u1 = tcp->tcp_urg - seq + TCP_OLD_URP_INTERPRETATION;
22904 		if ((tcp->tcp_valid_bits & TCP_URG_VALID) && u1 != 0 &&
22905 		    u1 < (uint32_t)(64 * 1024)) {
22906 			flags |= TH_URG;
22907 			BUMP_MIB(&tcp_mib, tcpOutUrg);
22908 			U32_TO_ABE16(u1, tcph->th_urp);
22909 		}
22910 	}
22911 	tcph->th_flags[0] = (uchar_t)flags;
22912 	tcp->tcp_rack = tcp->tcp_rnxt;
22913 	tcp->tcp_rack_cnt = 0;
22914 
22915 	if (tcp->tcp_snd_ts_ok) {
22916 		if (tcp->tcp_state != TCPS_SYN_SENT) {
22917 			uint32_t llbolt = (uint32_t)lbolt;
22918 
22919 			U32_TO_BE32(llbolt,
22920 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
22921 			U32_TO_BE32(tcp->tcp_ts_recent,
22922 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
22923 		}
22924 	}
22925 
22926 	if (num_sack_blk > 0) {
22927 		uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len;
22928 		sack_blk_t *tmp;
22929 		int32_t	i;
22930 
22931 		wptr[0] = TCPOPT_NOP;
22932 		wptr[1] = TCPOPT_NOP;
22933 		wptr[2] = TCPOPT_SACK;
22934 		wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
22935 		    sizeof (sack_blk_t);
22936 		wptr += TCPOPT_REAL_SACK_LEN;
22937 
22938 		tmp = tcp->tcp_sack_list;
22939 		for (i = 0; i < num_sack_blk; i++) {
22940 			U32_TO_BE32(tmp[i].begin, wptr);
22941 			wptr += sizeof (tcp_seq);
22942 			U32_TO_BE32(tmp[i].end, wptr);
22943 			wptr += sizeof (tcp_seq);
22944 		}
22945 		tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) << 4);
22946 	}
22947 	ASSERT((uintptr_t)(mp1->b_wptr - rptr) <= (uintptr_t)INT_MAX);
22948 	data_length += (int)(mp1->b_wptr - rptr);
22949 	if (tcp->tcp_ipversion == IPV4_VERSION) {
22950 		((ipha_t *)rptr)->ipha_length = htons(data_length);
22951 	} else {
22952 		ip6_t *ip6 = (ip6_t *)(rptr +
22953 		    (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ?
22954 		    sizeof (ip6i_t) : 0));
22955 
22956 		ip6->ip6_plen = htons(data_length -
22957 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
22958 	}
22959 
22960 	/*
22961 	 * Prime pump for IP
22962 	 * Include the adjustment for a source route if any.
22963 	 */
22964 	data_length -= tcp->tcp_ip_hdr_len;
22965 	data_length += tcp->tcp_sum;
22966 	data_length = (data_length >> 16) + (data_length & 0xFFFF);
22967 	U16_TO_ABE16(data_length, tcph->th_sum);
22968 	if (tcp->tcp_ip_forward_progress) {
22969 		ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
22970 		*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
22971 		tcp->tcp_ip_forward_progress = B_FALSE;
22972 	}
22973 	return (mp1);
22974 }
22975 
22976 /* This function handles the push timeout. */
22977 void
22978 tcp_push_timer(void *arg)
22979 {
22980 	conn_t	*connp = (conn_t *)arg;
22981 	tcp_t *tcp = connp->conn_tcp;
22982 
22983 	TCP_DBGSTAT(tcp_push_timer_cnt);
22984 
22985 	ASSERT(tcp->tcp_listener == NULL);
22986 
22987 	/*
22988 	 * We need to plug synchronous streams during our drain to prevent
22989 	 * a race with tcp_fuse_rrw() or tcp_fusion_rinfop().
22990 	 */
22991 	TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp);
22992 	tcp->tcp_push_tid = 0;
22993 	if ((tcp->tcp_rcv_list != NULL) &&
22994 	    (tcp_rcv_drain(tcp->tcp_rq, tcp) == TH_ACK_NEEDED))
22995 		tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK);
22996 	TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp);
22997 }
22998 
22999 /*
23000  * This function handles delayed ACK timeout.
23001  */
23002 static void
23003 tcp_ack_timer(void *arg)
23004 {
23005 	conn_t	*connp = (conn_t *)arg;
23006 	tcp_t *tcp = connp->conn_tcp;
23007 	mblk_t *mp;
23008 
23009 	TCP_DBGSTAT(tcp_ack_timer_cnt);
23010 
23011 	tcp->tcp_ack_tid = 0;
23012 
23013 	if (tcp->tcp_fused)
23014 		return;
23015 
23016 	/*
23017 	 * Do not send ACK if there is no outstanding unack'ed data.
23018 	 */
23019 	if (tcp->tcp_rnxt == tcp->tcp_rack) {
23020 		return;
23021 	}
23022 
23023 	if ((tcp->tcp_rnxt - tcp->tcp_rack) > tcp->tcp_mss) {
23024 		/*
23025 		 * Make sure we don't allow deferred ACKs to result in
23026 		 * timer-based ACKing.  If we have held off an ACK
23027 		 * when there was more than an mss here, and the timer
23028 		 * goes off, we have to worry about the possibility
23029 		 * that the sender isn't doing slow-start, or is out
23030 		 * of step with us for some other reason.  We fall
23031 		 * permanently back in the direction of
23032 		 * ACK-every-other-packet as suggested in RFC 1122.
23033 		 */
23034 		if (tcp->tcp_rack_abs_max > 2)
23035 			tcp->tcp_rack_abs_max--;
23036 		tcp->tcp_rack_cur_max = 2;
23037 	}
23038 	mp = tcp_ack_mp(tcp);
23039 
23040 	if (mp != NULL) {
23041 		TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
23042 		BUMP_LOCAL(tcp->tcp_obsegs);
23043 		BUMP_MIB(&tcp_mib, tcpOutAck);
23044 		BUMP_MIB(&tcp_mib, tcpOutAckDelayed);
23045 		tcp_send_data(tcp, tcp->tcp_wq, mp);
23046 	}
23047 }
23048 
23049 
23050 /* Generate an ACK-only (no data) segment for a TCP endpoint */
23051 static mblk_t *
23052 tcp_ack_mp(tcp_t *tcp)
23053 {
23054 	uint32_t	seq_no;
23055 
23056 	/*
23057 	 * There are a few cases to be considered while setting the sequence no.
23058 	 * Essentially, we can come here while processing an unacceptable pkt
23059 	 * in the TCPS_SYN_RCVD state, in which case we set the sequence number
23060 	 * to snxt (per RFC 793), note the swnd wouldn't have been set yet.
23061 	 * If we are here for a zero window probe, stick with suna. In all
23062 	 * other cases, we check if suna + swnd encompasses snxt and set
23063 	 * the sequence number to snxt, if so. If snxt falls outside the
23064 	 * window (the receiver probably shrunk its window), we will go with
23065 	 * suna + swnd, otherwise the sequence no will be unacceptable to the
23066 	 * receiver.
23067 	 */
23068 	if (tcp->tcp_zero_win_probe) {
23069 		seq_no = tcp->tcp_suna;
23070 	} else if (tcp->tcp_state == TCPS_SYN_RCVD) {
23071 		ASSERT(tcp->tcp_swnd == 0);
23072 		seq_no = tcp->tcp_snxt;
23073 	} else {
23074 		seq_no = SEQ_GT(tcp->tcp_snxt,
23075 		    (tcp->tcp_suna + tcp->tcp_swnd)) ?
23076 		    (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt;
23077 	}
23078 
23079 	if (tcp->tcp_valid_bits) {
23080 		/*
23081 		 * For the complex case where we have to send some
23082 		 * controls (FIN or SYN), let tcp_xmit_mp do it.
23083 		 */
23084 		return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE,
23085 		    NULL, B_FALSE));
23086 	} else {
23087 		/* Generate a simple ACK */
23088 		int	data_length;
23089 		uchar_t	*rptr;
23090 		tcph_t	*tcph;
23091 		mblk_t	*mp1;
23092 		int32_t	tcp_hdr_len;
23093 		int32_t	tcp_tcp_hdr_len;
23094 		int32_t	num_sack_blk = 0;
23095 		int32_t sack_opt_len;
23096 
23097 		/*
23098 		 * Allocate space for TCP + IP headers
23099 		 * and link-level header
23100 		 */
23101 		if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
23102 			num_sack_blk = MIN(tcp->tcp_max_sack_blk,
23103 			    tcp->tcp_num_sack_blk);
23104 			sack_opt_len = num_sack_blk * sizeof (sack_blk_t) +
23105 			    TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN;
23106 			tcp_hdr_len = tcp->tcp_hdr_len + sack_opt_len;
23107 			tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + sack_opt_len;
23108 		} else {
23109 			tcp_hdr_len = tcp->tcp_hdr_len;
23110 			tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len;
23111 		}
23112 		mp1 = allocb(tcp_hdr_len + tcp_wroff_xtra, BPRI_MED);
23113 		if (!mp1)
23114 			return (NULL);
23115 
23116 		/* Update the latest receive window size in TCP header. */
23117 		U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
23118 		    tcp->tcp_tcph->th_win);
23119 		/* copy in prototype TCP + IP header */
23120 		rptr = mp1->b_rptr + tcp_wroff_xtra;
23121 		mp1->b_rptr = rptr;
23122 		mp1->b_wptr = rptr + tcp_hdr_len;
23123 		bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len);
23124 
23125 		tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len];
23126 
23127 		/* Set the TCP sequence number. */
23128 		U32_TO_ABE32(seq_no, tcph->th_seq);
23129 
23130 		/* Set up the TCP flag field. */
23131 		tcph->th_flags[0] = (uchar_t)TH_ACK;
23132 		if (tcp->tcp_ecn_echo_on)
23133 			tcph->th_flags[0] |= TH_ECE;
23134 
23135 		tcp->tcp_rack = tcp->tcp_rnxt;
23136 		tcp->tcp_rack_cnt = 0;
23137 
23138 		/* fill in timestamp option if in use */
23139 		if (tcp->tcp_snd_ts_ok) {
23140 			uint32_t llbolt = (uint32_t)lbolt;
23141 
23142 			U32_TO_BE32(llbolt,
23143 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
23144 			U32_TO_BE32(tcp->tcp_ts_recent,
23145 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
23146 		}
23147 
23148 		/* Fill in SACK options */
23149 		if (num_sack_blk > 0) {
23150 			uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len;
23151 			sack_blk_t *tmp;
23152 			int32_t	i;
23153 
23154 			wptr[0] = TCPOPT_NOP;
23155 			wptr[1] = TCPOPT_NOP;
23156 			wptr[2] = TCPOPT_SACK;
23157 			wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
23158 			    sizeof (sack_blk_t);
23159 			wptr += TCPOPT_REAL_SACK_LEN;
23160 
23161 			tmp = tcp->tcp_sack_list;
23162 			for (i = 0; i < num_sack_blk; i++) {
23163 				U32_TO_BE32(tmp[i].begin, wptr);
23164 				wptr += sizeof (tcp_seq);
23165 				U32_TO_BE32(tmp[i].end, wptr);
23166 				wptr += sizeof (tcp_seq);
23167 			}
23168 			tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1)
23169 			    << 4);
23170 		}
23171 
23172 		if (tcp->tcp_ipversion == IPV4_VERSION) {
23173 			((ipha_t *)rptr)->ipha_length = htons(tcp_hdr_len);
23174 		} else {
23175 			/* Check for ip6i_t header in sticky hdrs */
23176 			ip6_t *ip6 = (ip6_t *)(rptr +
23177 			    (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ?
23178 			    sizeof (ip6i_t) : 0));
23179 
23180 			ip6->ip6_plen = htons(tcp_hdr_len -
23181 			    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
23182 		}
23183 
23184 		/*
23185 		 * Prime pump for checksum calculation in IP.  Include the
23186 		 * adjustment for a source route if any.
23187 		 */
23188 		data_length = tcp_tcp_hdr_len + tcp->tcp_sum;
23189 		data_length = (data_length >> 16) + (data_length & 0xFFFF);
23190 		U16_TO_ABE16(data_length, tcph->th_sum);
23191 
23192 		if (tcp->tcp_ip_forward_progress) {
23193 			ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
23194 			*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
23195 			tcp->tcp_ip_forward_progress = B_FALSE;
23196 		}
23197 		return (mp1);
23198 	}
23199 }
23200 
23201 /*
23202  * To create a temporary tcp structure for inserting into bind hash list.
23203  * The parameter is assumed to be in network byte order, ready for use.
23204  */
23205 /* ARGSUSED */
23206 static tcp_t *
23207 tcp_alloc_temp_tcp(in_port_t port)
23208 {
23209 	conn_t	*connp;
23210 	tcp_t	*tcp;
23211 
23212 	connp = ipcl_conn_create(IPCL_TCPCONN, KM_SLEEP);
23213 	if (connp == NULL)
23214 		return (NULL);
23215 
23216 	tcp = connp->conn_tcp;
23217 
23218 	/*
23219 	 * Only initialize the necessary info in those structures.  Note
23220 	 * that since INADDR_ANY is all 0, we do not need to set
23221 	 * tcp_bound_source to INADDR_ANY here.
23222 	 */
23223 	tcp->tcp_state = TCPS_BOUND;
23224 	tcp->tcp_lport = port;
23225 	tcp->tcp_exclbind = 1;
23226 	tcp->tcp_reserved_port = 1;
23227 
23228 	/* Just for place holding... */
23229 	tcp->tcp_ipversion = IPV4_VERSION;
23230 
23231 	return (tcp);
23232 }
23233 
23234 /*
23235  * To remove a port range specified by lo_port and hi_port from the
23236  * reserved port ranges.  This is one of the three public functions of
23237  * the reserved port interface.  Note that a port range has to be removed
23238  * as a whole.  Ports in a range cannot be removed individually.
23239  *
23240  * Params:
23241  *	in_port_t lo_port: the beginning port of the reserved port range to
23242  *		be deleted.
23243  *	in_port_t hi_port: the ending port of the reserved port range to
23244  *		be deleted.
23245  *
23246  * Return:
23247  *	B_TRUE if the deletion is successful, B_FALSE otherwise.
23248  */
23249 boolean_t
23250 tcp_reserved_port_del(in_port_t lo_port, in_port_t hi_port)
23251 {
23252 	int	i, j;
23253 	int	size;
23254 	tcp_t	**temp_tcp_array;
23255 	tcp_t	*tcp;
23256 
23257 	rw_enter(&tcp_reserved_port_lock, RW_WRITER);
23258 
23259 	/* First make sure that the port ranage is indeed reserved. */
23260 	for (i = 0; i < tcp_reserved_port_array_size; i++) {
23261 		if (tcp_reserved_port[i].lo_port == lo_port) {
23262 			hi_port = tcp_reserved_port[i].hi_port;
23263 			temp_tcp_array = tcp_reserved_port[i].temp_tcp_array;
23264 			break;
23265 		}
23266 	}
23267 	if (i == tcp_reserved_port_array_size) {
23268 		rw_exit(&tcp_reserved_port_lock);
23269 		return (B_FALSE);
23270 	}
23271 
23272 	/*
23273 	 * Remove the range from the array.  This simple loop is possible
23274 	 * because port ranges are inserted in ascending order.
23275 	 */
23276 	for (j = i; j < tcp_reserved_port_array_size - 1; j++) {
23277 		tcp_reserved_port[j].lo_port = tcp_reserved_port[j+1].lo_port;
23278 		tcp_reserved_port[j].hi_port = tcp_reserved_port[j+1].hi_port;
23279 		tcp_reserved_port[j].temp_tcp_array =
23280 		    tcp_reserved_port[j+1].temp_tcp_array;
23281 	}
23282 
23283 	/* Remove all the temporary tcp structures. */
23284 	size = hi_port - lo_port + 1;
23285 	while (size > 0) {
23286 		tcp = temp_tcp_array[size - 1];
23287 		ASSERT(tcp != NULL);
23288 		tcp_bind_hash_remove(tcp);
23289 		CONN_DEC_REF(tcp->tcp_connp);
23290 		size--;
23291 	}
23292 	kmem_free(temp_tcp_array, (hi_port - lo_port + 1) * sizeof (tcp_t *));
23293 	tcp_reserved_port_array_size--;
23294 	rw_exit(&tcp_reserved_port_lock);
23295 	return (B_TRUE);
23296 }
23297 
23298 /*
23299  * Macro to remove temporary tcp structure from the bind hash list.  The
23300  * first parameter is the list of tcp to be removed.  The second parameter
23301  * is the number of tcps in the array.
23302  */
23303 #define	TCP_TMP_TCP_REMOVE(tcp_array, num) \
23304 { \
23305 	while ((num) > 0) { \
23306 		tcp_t *tcp = (tcp_array)[(num) - 1]; \
23307 		tf_t *tbf; \
23308 		tcp_t *tcpnext; \
23309 		tbf = &tcp_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)]; \
23310 		mutex_enter(&tbf->tf_lock); \
23311 		tcpnext = tcp->tcp_bind_hash; \
23312 		if (tcpnext) { \
23313 			tcpnext->tcp_ptpbhn = \
23314 				tcp->tcp_ptpbhn; \
23315 		} \
23316 		*tcp->tcp_ptpbhn = tcpnext; \
23317 		mutex_exit(&tbf->tf_lock); \
23318 		kmem_free(tcp, sizeof (tcp_t)); \
23319 		(tcp_array)[(num) - 1] = NULL; \
23320 		(num)--; \
23321 	} \
23322 }
23323 
23324 /*
23325  * The public interface for other modules to call to reserve a port range
23326  * in TCP.  The caller passes in how large a port range it wants.  TCP
23327  * will try to find a range and return it via lo_port and hi_port.  This is
23328  * used by NCA's nca_conn_init.
23329  * NCA can only be used in the global zone so this only affects the global
23330  * zone's ports.
23331  *
23332  * Params:
23333  *	int size: the size of the port range to be reserved.
23334  *	in_port_t *lo_port (referenced): returns the beginning port of the
23335  *		reserved port range added.
23336  *	in_port_t *hi_port (referenced): returns the ending port of the
23337  *		reserved port range added.
23338  *
23339  * Return:
23340  *	B_TRUE if the port reservation is successful, B_FALSE otherwise.
23341  */
23342 boolean_t
23343 tcp_reserved_port_add(int size, in_port_t *lo_port, in_port_t *hi_port)
23344 {
23345 	tcp_t		*tcp;
23346 	tcp_t		*tmp_tcp;
23347 	tcp_t		**temp_tcp_array;
23348 	tf_t		*tbf;
23349 	in_port_t	net_port;
23350 	in_port_t	port;
23351 	int32_t		cur_size;
23352 	int		i, j;
23353 	boolean_t	used;
23354 	tcp_rport_t 	tmp_ports[TCP_RESERVED_PORTS_ARRAY_MAX_SIZE];
23355 	zoneid_t	zoneid = GLOBAL_ZONEID;
23356 
23357 	/* Sanity check. */
23358 	if (size <= 0 || size > TCP_RESERVED_PORTS_RANGE_MAX) {
23359 		return (B_FALSE);
23360 	}
23361 
23362 	rw_enter(&tcp_reserved_port_lock, RW_WRITER);
23363 	if (tcp_reserved_port_array_size == TCP_RESERVED_PORTS_ARRAY_MAX_SIZE) {
23364 		rw_exit(&tcp_reserved_port_lock);
23365 		return (B_FALSE);
23366 	}
23367 
23368 	/*
23369 	 * Find the starting port to try.  Since the port ranges are ordered
23370 	 * in the reserved port array, we can do a simple search here.
23371 	 */
23372 	*lo_port = TCP_SMALLEST_RESERVED_PORT;
23373 	*hi_port = TCP_LARGEST_RESERVED_PORT;
23374 	for (i = 0; i < tcp_reserved_port_array_size;
23375 	    *lo_port = tcp_reserved_port[i].hi_port + 1, i++) {
23376 		if (tcp_reserved_port[i].lo_port - *lo_port >= size) {
23377 			*hi_port = tcp_reserved_port[i].lo_port - 1;
23378 			break;
23379 		}
23380 	}
23381 	/* No available port range. */
23382 	if (i == tcp_reserved_port_array_size && *hi_port - *lo_port < size) {
23383 		rw_exit(&tcp_reserved_port_lock);
23384 		return (B_FALSE);
23385 	}
23386 
23387 	temp_tcp_array = kmem_zalloc(size * sizeof (tcp_t *), KM_NOSLEEP);
23388 	if (temp_tcp_array == NULL) {
23389 		rw_exit(&tcp_reserved_port_lock);
23390 		return (B_FALSE);
23391 	}
23392 
23393 	/* Go thru the port range to see if some ports are already bound. */
23394 	for (port = *lo_port, cur_size = 0;
23395 	    cur_size < size && port <= *hi_port;
23396 	    cur_size++, port++) {
23397 		used = B_FALSE;
23398 		net_port = htons(port);
23399 		tbf = &tcp_bind_fanout[TCP_BIND_HASH(net_port)];
23400 		mutex_enter(&tbf->tf_lock);
23401 		for (tcp = tbf->tf_tcp; tcp != NULL;
23402 		    tcp = tcp->tcp_bind_hash) {
23403 			if (IPCL_ZONE_MATCH(tcp->tcp_connp, zoneid) &&
23404 			    net_port == tcp->tcp_lport) {
23405 				/*
23406 				 * A port is already bound.  Search again
23407 				 * starting from port + 1.  Release all
23408 				 * temporary tcps.
23409 				 */
23410 				mutex_exit(&tbf->tf_lock);
23411 				TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size);
23412 				*lo_port = port + 1;
23413 				cur_size = -1;
23414 				used = B_TRUE;
23415 				break;
23416 			}
23417 		}
23418 		if (!used) {
23419 			if ((tmp_tcp = tcp_alloc_temp_tcp(net_port)) == NULL) {
23420 				/*
23421 				 * Allocation failure.  Just fail the request.
23422 				 * Need to remove all those temporary tcp
23423 				 * structures.
23424 				 */
23425 				mutex_exit(&tbf->tf_lock);
23426 				TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size);
23427 				rw_exit(&tcp_reserved_port_lock);
23428 				kmem_free(temp_tcp_array,
23429 				    (hi_port - lo_port + 1) *
23430 				    sizeof (tcp_t *));
23431 				return (B_FALSE);
23432 			}
23433 			temp_tcp_array[cur_size] = tmp_tcp;
23434 			tcp_bind_hash_insert(tbf, tmp_tcp, B_TRUE);
23435 			mutex_exit(&tbf->tf_lock);
23436 		}
23437 	}
23438 
23439 	/*
23440 	 * The current range is not large enough.  We can actually do another
23441 	 * search if this search is done between 2 reserved port ranges.  But
23442 	 * for first release, we just stop here and return saying that no port
23443 	 * range is available.
23444 	 */
23445 	if (cur_size < size) {
23446 		TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size);
23447 		rw_exit(&tcp_reserved_port_lock);
23448 		kmem_free(temp_tcp_array, size * sizeof (tcp_t *));
23449 		return (B_FALSE);
23450 	}
23451 	*hi_port = port - 1;
23452 
23453 	/*
23454 	 * Insert range into array in ascending order.  Since this function
23455 	 * must not be called often, we choose to use the simplest method.
23456 	 * The above array should not consume excessive stack space as
23457 	 * the size must be very small.  If in future releases, we find
23458 	 * that we should provide more reserved port ranges, this function
23459 	 * has to be modified to be more efficient.
23460 	 */
23461 	if (tcp_reserved_port_array_size == 0) {
23462 		tcp_reserved_port[0].lo_port = *lo_port;
23463 		tcp_reserved_port[0].hi_port = *hi_port;
23464 		tcp_reserved_port[0].temp_tcp_array = temp_tcp_array;
23465 	} else {
23466 		for (i = 0, j = 0; i < tcp_reserved_port_array_size; i++, j++) {
23467 			if (*lo_port < tcp_reserved_port[i].lo_port && i == j) {
23468 				tmp_ports[j].lo_port = *lo_port;
23469 				tmp_ports[j].hi_port = *hi_port;
23470 				tmp_ports[j].temp_tcp_array = temp_tcp_array;
23471 				j++;
23472 			}
23473 			tmp_ports[j].lo_port = tcp_reserved_port[i].lo_port;
23474 			tmp_ports[j].hi_port = tcp_reserved_port[i].hi_port;
23475 			tmp_ports[j].temp_tcp_array =
23476 			    tcp_reserved_port[i].temp_tcp_array;
23477 		}
23478 		if (j == i) {
23479 			tmp_ports[j].lo_port = *lo_port;
23480 			tmp_ports[j].hi_port = *hi_port;
23481 			tmp_ports[j].temp_tcp_array = temp_tcp_array;
23482 		}
23483 		bcopy(tmp_ports, tcp_reserved_port, sizeof (tmp_ports));
23484 	}
23485 	tcp_reserved_port_array_size++;
23486 	rw_exit(&tcp_reserved_port_lock);
23487 	return (B_TRUE);
23488 }
23489 
23490 /*
23491  * Check to see if a port is in any reserved port range.
23492  *
23493  * Params:
23494  *	in_port_t port: the port to be verified.
23495  *
23496  * Return:
23497  *	B_TRUE is the port is inside a reserved port range, B_FALSE otherwise.
23498  */
23499 boolean_t
23500 tcp_reserved_port_check(in_port_t port)
23501 {
23502 	int i;
23503 
23504 	rw_enter(&tcp_reserved_port_lock, RW_READER);
23505 	for (i = 0; i < tcp_reserved_port_array_size; i++) {
23506 		if (port >= tcp_reserved_port[i].lo_port ||
23507 		    port <= tcp_reserved_port[i].hi_port) {
23508 			rw_exit(&tcp_reserved_port_lock);
23509 			return (B_TRUE);
23510 		}
23511 	}
23512 	rw_exit(&tcp_reserved_port_lock);
23513 	return (B_FALSE);
23514 }
23515 
23516 /*
23517  * To list all reserved port ranges.  This is the function to handle
23518  * ndd tcp_reserved_port_list.
23519  */
23520 /* ARGSUSED */
23521 static int
23522 tcp_reserved_port_list(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
23523 {
23524 	int i;
23525 
23526 	rw_enter(&tcp_reserved_port_lock, RW_READER);
23527 	if (tcp_reserved_port_array_size > 0)
23528 		(void) mi_mpprintf(mp, "The following ports are reserved:");
23529 	else
23530 		(void) mi_mpprintf(mp, "No port is reserved.");
23531 	for (i = 0; i < tcp_reserved_port_array_size; i++) {
23532 		(void) mi_mpprintf(mp, "%d-%d",
23533 		    tcp_reserved_port[i].lo_port, tcp_reserved_port[i].hi_port);
23534 	}
23535 	rw_exit(&tcp_reserved_port_lock);
23536 	return (0);
23537 }
23538 
23539 /*
23540  * Hash list insertion routine for tcp_t structures.
23541  * Inserts entries with the ones bound to a specific IP address first
23542  * followed by those bound to INADDR_ANY.
23543  */
23544 static void
23545 tcp_bind_hash_insert(tf_t *tbf, tcp_t *tcp, int caller_holds_lock)
23546 {
23547 	tcp_t	**tcpp;
23548 	tcp_t	*tcpnext;
23549 
23550 	if (tcp->tcp_ptpbhn != NULL) {
23551 		ASSERT(!caller_holds_lock);
23552 		tcp_bind_hash_remove(tcp);
23553 	}
23554 	tcpp = &tbf->tf_tcp;
23555 	if (!caller_holds_lock) {
23556 		mutex_enter(&tbf->tf_lock);
23557 	} else {
23558 		ASSERT(MUTEX_HELD(&tbf->tf_lock));
23559 	}
23560 	tcpnext = tcpp[0];
23561 	if (tcpnext) {
23562 		/*
23563 		 * If the new tcp bound to the INADDR_ANY address
23564 		 * and the first one in the list is not bound to
23565 		 * INADDR_ANY we skip all entries until we find the
23566 		 * first one bound to INADDR_ANY.
23567 		 * This makes sure that applications binding to a
23568 		 * specific address get preference over those binding to
23569 		 * INADDR_ANY.
23570 		 */
23571 		if (V6_OR_V4_INADDR_ANY(tcp->tcp_bound_source_v6) &&
23572 		    !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) {
23573 			while ((tcpnext = tcpp[0]) != NULL &&
23574 			    !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6))
23575 				tcpp = &(tcpnext->tcp_bind_hash);
23576 			if (tcpnext)
23577 				tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash;
23578 		} else
23579 			tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash;
23580 	}
23581 	tcp->tcp_bind_hash = tcpnext;
23582 	tcp->tcp_ptpbhn = tcpp;
23583 	tcpp[0] = tcp;
23584 	if (!caller_holds_lock)
23585 		mutex_exit(&tbf->tf_lock);
23586 }
23587 
23588 /*
23589  * Hash list removal routine for tcp_t structures.
23590  */
23591 static void
23592 tcp_bind_hash_remove(tcp_t *tcp)
23593 {
23594 	tcp_t	*tcpnext;
23595 	kmutex_t *lockp;
23596 
23597 	if (tcp->tcp_ptpbhn == NULL)
23598 		return;
23599 
23600 	/*
23601 	 * Extract the lock pointer in case there are concurrent
23602 	 * hash_remove's for this instance.
23603 	 */
23604 	ASSERT(tcp->tcp_lport != 0);
23605 	lockp = &tcp_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)].tf_lock;
23606 
23607 	ASSERT(lockp != NULL);
23608 	mutex_enter(lockp);
23609 	if (tcp->tcp_ptpbhn) {
23610 		tcpnext = tcp->tcp_bind_hash;
23611 		if (tcpnext) {
23612 			tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn;
23613 			tcp->tcp_bind_hash = NULL;
23614 		}
23615 		*tcp->tcp_ptpbhn = tcpnext;
23616 		tcp->tcp_ptpbhn = NULL;
23617 	}
23618 	mutex_exit(lockp);
23619 }
23620 
23621 
23622 /*
23623  * Hash list lookup routine for tcp_t structures.
23624  * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF.
23625  */
23626 static tcp_t *
23627 tcp_acceptor_hash_lookup(t_uscalar_t id)
23628 {
23629 	tf_t	*tf;
23630 	tcp_t	*tcp;
23631 
23632 	tf = &tcp_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
23633 	mutex_enter(&tf->tf_lock);
23634 	for (tcp = tf->tf_tcp; tcp != NULL;
23635 	    tcp = tcp->tcp_acceptor_hash) {
23636 		if (tcp->tcp_acceptor_id == id) {
23637 			CONN_INC_REF(tcp->tcp_connp);
23638 			mutex_exit(&tf->tf_lock);
23639 			return (tcp);
23640 		}
23641 	}
23642 	mutex_exit(&tf->tf_lock);
23643 	return (NULL);
23644 }
23645 
23646 
23647 /*
23648  * Hash list insertion routine for tcp_t structures.
23649  */
23650 void
23651 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp)
23652 {
23653 	tf_t	*tf;
23654 	tcp_t	**tcpp;
23655 	tcp_t	*tcpnext;
23656 
23657 	tf = &tcp_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
23658 
23659 	if (tcp->tcp_ptpahn != NULL)
23660 		tcp_acceptor_hash_remove(tcp);
23661 	tcpp = &tf->tf_tcp;
23662 	mutex_enter(&tf->tf_lock);
23663 	tcpnext = tcpp[0];
23664 	if (tcpnext)
23665 		tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash;
23666 	tcp->tcp_acceptor_hash = tcpnext;
23667 	tcp->tcp_ptpahn = tcpp;
23668 	tcpp[0] = tcp;
23669 	tcp->tcp_acceptor_lockp = &tf->tf_lock;	/* For tcp_*_hash_remove */
23670 	mutex_exit(&tf->tf_lock);
23671 }
23672 
23673 /*
23674  * Hash list removal routine for tcp_t structures.
23675  */
23676 static void
23677 tcp_acceptor_hash_remove(tcp_t *tcp)
23678 {
23679 	tcp_t	*tcpnext;
23680 	kmutex_t *lockp;
23681 
23682 	/*
23683 	 * Extract the lock pointer in case there are concurrent
23684 	 * hash_remove's for this instance.
23685 	 */
23686 	lockp = tcp->tcp_acceptor_lockp;
23687 
23688 	if (tcp->tcp_ptpahn == NULL)
23689 		return;
23690 
23691 	ASSERT(lockp != NULL);
23692 	mutex_enter(lockp);
23693 	if (tcp->tcp_ptpahn) {
23694 		tcpnext = tcp->tcp_acceptor_hash;
23695 		if (tcpnext) {
23696 			tcpnext->tcp_ptpahn = tcp->tcp_ptpahn;
23697 			tcp->tcp_acceptor_hash = NULL;
23698 		}
23699 		*tcp->tcp_ptpahn = tcpnext;
23700 		tcp->tcp_ptpahn = NULL;
23701 	}
23702 	mutex_exit(lockp);
23703 	tcp->tcp_acceptor_lockp = NULL;
23704 }
23705 
23706 /* ARGSUSED */
23707 static int
23708 tcp_host_param_setvalue(queue_t *q, mblk_t *mp, char *value, caddr_t cp, int af)
23709 {
23710 	int error = 0;
23711 	int retval;
23712 	char *end;
23713 
23714 	tcp_hsp_t *hsp;
23715 	tcp_hsp_t *hspprev;
23716 
23717 	ipaddr_t addr = 0;		/* Address we're looking for */
23718 	in6_addr_t v6addr;		/* Address we're looking for */
23719 	uint32_t hash;			/* Hash of that address */
23720 
23721 	/*
23722 	 * If the following variables are still zero after parsing the input
23723 	 * string, the user didn't specify them and we don't change them in
23724 	 * the HSP.
23725 	 */
23726 
23727 	ipaddr_t mask = 0;		/* Subnet mask */
23728 	in6_addr_t v6mask;
23729 	long sendspace = 0;		/* Send buffer size */
23730 	long recvspace = 0;		/* Receive buffer size */
23731 	long timestamp = 0;	/* Originate TCP TSTAMP option, 1 = yes */
23732 	boolean_t delete = B_FALSE;	/* User asked to delete this HSP */
23733 
23734 	rw_enter(&tcp_hsp_lock, RW_WRITER);
23735 
23736 	/* Parse and validate address */
23737 	if (af == AF_INET) {
23738 		retval = inet_pton(af, value, &addr);
23739 		if (retval == 1)
23740 			IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
23741 	} else if (af == AF_INET6) {
23742 		retval = inet_pton(af, value, &v6addr);
23743 	} else {
23744 		error = EINVAL;
23745 		goto done;
23746 	}
23747 	if (retval == 0) {
23748 		error = EINVAL;
23749 		goto done;
23750 	}
23751 
23752 	while ((*value) && *value != ' ')
23753 		value++;
23754 
23755 	/* Parse individual keywords, set variables if found */
23756 	while (*value) {
23757 		/* Skip leading blanks */
23758 
23759 		while (*value == ' ' || *value == '\t')
23760 			value++;
23761 
23762 		/* If at end of string, we're done */
23763 
23764 		if (!*value)
23765 			break;
23766 
23767 		/* We have a word, figure out what it is */
23768 
23769 		if (strncmp("mask", value, 4) == 0) {
23770 			value += 4;
23771 			while (*value == ' ' || *value == '\t')
23772 				value++;
23773 			/* Parse subnet mask */
23774 			if (af == AF_INET) {
23775 				retval = inet_pton(af, value, &mask);
23776 				if (retval == 1) {
23777 					V4MASK_TO_V6(mask, v6mask);
23778 				}
23779 			} else if (af == AF_INET6) {
23780 				retval = inet_pton(af, value, &v6mask);
23781 			}
23782 			if (retval != 1) {
23783 				error = EINVAL;
23784 				goto done;
23785 			}
23786 			while ((*value) && *value != ' ')
23787 				value++;
23788 		} else if (strncmp("sendspace", value, 9) == 0) {
23789 			value += 9;
23790 
23791 			if (ddi_strtol(value, &end, 0, &sendspace) != 0 ||
23792 			    sendspace < TCP_XMIT_HIWATER ||
23793 			    sendspace >= (1L<<30)) {
23794 				error = EINVAL;
23795 				goto done;
23796 			}
23797 			value = end;
23798 		} else if (strncmp("recvspace", value, 9) == 0) {
23799 			value += 9;
23800 
23801 			if (ddi_strtol(value, &end, 0, &recvspace) != 0 ||
23802 			    recvspace < TCP_RECV_HIWATER ||
23803 			    recvspace >= (1L<<30)) {
23804 				error = EINVAL;
23805 				goto done;
23806 			}
23807 			value = end;
23808 		} else if (strncmp("timestamp", value, 9) == 0) {
23809 			value += 9;
23810 
23811 			if (ddi_strtol(value, &end, 0, &timestamp) != 0 ||
23812 			    timestamp < 0 || timestamp > 1) {
23813 				error = EINVAL;
23814 				goto done;
23815 			}
23816 
23817 			/*
23818 			 * We increment timestamp so we know it's been set;
23819 			 * this is undone when we put it in the HSP
23820 			 */
23821 			timestamp++;
23822 			value = end;
23823 		} else if (strncmp("delete", value, 6) == 0) {
23824 			value += 6;
23825 			delete = B_TRUE;
23826 		} else {
23827 			error = EINVAL;
23828 			goto done;
23829 		}
23830 	}
23831 
23832 	/* Hash address for lookup */
23833 
23834 	hash = TCP_HSP_HASH(addr);
23835 
23836 	if (delete) {
23837 		/*
23838 		 * Note that deletes don't return an error if the thing
23839 		 * we're trying to delete isn't there.
23840 		 */
23841 		if (tcp_hsp_hash == NULL)
23842 			goto done;
23843 		hsp = tcp_hsp_hash[hash];
23844 
23845 		if (hsp) {
23846 			if (IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6,
23847 			    &v6addr)) {
23848 				tcp_hsp_hash[hash] = hsp->tcp_hsp_next;
23849 				mi_free((char *)hsp);
23850 			} else {
23851 				hspprev = hsp;
23852 				while ((hsp = hsp->tcp_hsp_next) != NULL) {
23853 					if (IN6_ARE_ADDR_EQUAL(
23854 					    &hsp->tcp_hsp_addr_v6, &v6addr)) {
23855 						hspprev->tcp_hsp_next =
23856 						    hsp->tcp_hsp_next;
23857 						mi_free((char *)hsp);
23858 						break;
23859 					}
23860 					hspprev = hsp;
23861 				}
23862 			}
23863 		}
23864 	} else {
23865 		/*
23866 		 * We're adding/modifying an HSP.  If we haven't already done
23867 		 * so, allocate the hash table.
23868 		 */
23869 
23870 		if (!tcp_hsp_hash) {
23871 			tcp_hsp_hash = (tcp_hsp_t **)
23872 			    mi_zalloc(sizeof (tcp_hsp_t *) * TCP_HSP_HASH_SIZE);
23873 			if (!tcp_hsp_hash) {
23874 				error = EINVAL;
23875 				goto done;
23876 			}
23877 		}
23878 
23879 		/* Get head of hash chain */
23880 
23881 		hsp = tcp_hsp_hash[hash];
23882 
23883 		/* Try to find pre-existing hsp on hash chain */
23884 		/* Doesn't handle CIDR prefixes. */
23885 		while (hsp) {
23886 			if (IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, &v6addr))
23887 				break;
23888 			hsp = hsp->tcp_hsp_next;
23889 		}
23890 
23891 		/*
23892 		 * If we didn't, create one with default values and put it
23893 		 * at head of hash chain
23894 		 */
23895 
23896 		if (!hsp) {
23897 			hsp = (tcp_hsp_t *)mi_zalloc(sizeof (tcp_hsp_t));
23898 			if (!hsp) {
23899 				error = EINVAL;
23900 				goto done;
23901 			}
23902 			hsp->tcp_hsp_next = tcp_hsp_hash[hash];
23903 			tcp_hsp_hash[hash] = hsp;
23904 		}
23905 
23906 		/* Set values that the user asked us to change */
23907 
23908 		hsp->tcp_hsp_addr_v6 = v6addr;
23909 		if (IN6_IS_ADDR_V4MAPPED(&v6addr))
23910 			hsp->tcp_hsp_vers = IPV4_VERSION;
23911 		else
23912 			hsp->tcp_hsp_vers = IPV6_VERSION;
23913 		hsp->tcp_hsp_subnet_v6 = v6mask;
23914 		if (sendspace > 0)
23915 			hsp->tcp_hsp_sendspace = sendspace;
23916 		if (recvspace > 0)
23917 			hsp->tcp_hsp_recvspace = recvspace;
23918 		if (timestamp > 0)
23919 			hsp->tcp_hsp_tstamp = timestamp - 1;
23920 	}
23921 
23922 done:
23923 	rw_exit(&tcp_hsp_lock);
23924 	return (error);
23925 }
23926 
23927 /* Set callback routine passed to nd_load by tcp_param_register. */
23928 /* ARGSUSED */
23929 static int
23930 tcp_host_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr)
23931 {
23932 	return (tcp_host_param_setvalue(q, mp, value, cp, AF_INET));
23933 }
23934 /* ARGSUSED */
23935 static int
23936 tcp_host_param_set_ipv6(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
23937     cred_t *cr)
23938 {
23939 	return (tcp_host_param_setvalue(q, mp, value, cp, AF_INET6));
23940 }
23941 
23942 /* TCP host parameters report triggered via the Named Dispatch mechanism. */
23943 /* ARGSUSED */
23944 static int
23945 tcp_host_param_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
23946 {
23947 	tcp_hsp_t *hsp;
23948 	int i;
23949 	char addrbuf[INET6_ADDRSTRLEN], subnetbuf[INET6_ADDRSTRLEN];
23950 
23951 	rw_enter(&tcp_hsp_lock, RW_READER);
23952 	(void) mi_mpprintf(mp,
23953 	    "Hash HSP     " MI_COL_HDRPAD_STR
23954 	    "Address         Subnet Mask     Send       Receive    TStamp");
23955 	if (tcp_hsp_hash) {
23956 		for (i = 0; i < TCP_HSP_HASH_SIZE; i++) {
23957 			hsp = tcp_hsp_hash[i];
23958 			while (hsp) {
23959 				if (hsp->tcp_hsp_vers == IPV4_VERSION) {
23960 					(void) inet_ntop(AF_INET,
23961 					    &hsp->tcp_hsp_addr,
23962 					    addrbuf, sizeof (addrbuf));
23963 					(void) inet_ntop(AF_INET,
23964 					    &hsp->tcp_hsp_subnet,
23965 					    subnetbuf, sizeof (subnetbuf));
23966 				} else {
23967 					(void) inet_ntop(AF_INET6,
23968 					    &hsp->tcp_hsp_addr_v6,
23969 					    addrbuf, sizeof (addrbuf));
23970 					(void) inet_ntop(AF_INET6,
23971 					    &hsp->tcp_hsp_subnet_v6,
23972 					    subnetbuf, sizeof (subnetbuf));
23973 				}
23974 				(void) mi_mpprintf(mp,
23975 				    " %03d " MI_COL_PTRFMT_STR
23976 				    "%s %s %010d %010d      %d",
23977 				    i,
23978 				    (void *)hsp,
23979 				    addrbuf,
23980 				    subnetbuf,
23981 				    hsp->tcp_hsp_sendspace,
23982 				    hsp->tcp_hsp_recvspace,
23983 				    hsp->tcp_hsp_tstamp);
23984 
23985 				hsp = hsp->tcp_hsp_next;
23986 			}
23987 		}
23988 	}
23989 	rw_exit(&tcp_hsp_lock);
23990 	return (0);
23991 }
23992 
23993 
23994 /* Data for fast netmask macro used by tcp_hsp_lookup */
23995 
23996 static ipaddr_t netmasks[] = {
23997 	IN_CLASSA_NET, IN_CLASSA_NET, IN_CLASSB_NET,
23998 	IN_CLASSC_NET | IN_CLASSD_NET  /* Class C,D,E */
23999 };
24000 
24001 #define	netmask(addr) (netmasks[(ipaddr_t)(addr) >> 30])
24002 
24003 /*
24004  * XXX This routine should go away and instead we should use the metrics
24005  * associated with the routes to determine the default sndspace and rcvspace.
24006  */
24007 static tcp_hsp_t *
24008 tcp_hsp_lookup(ipaddr_t addr)
24009 {
24010 	tcp_hsp_t *hsp = NULL;
24011 
24012 	/* Quick check without acquiring the lock. */
24013 	if (tcp_hsp_hash == NULL)
24014 		return (NULL);
24015 
24016 	rw_enter(&tcp_hsp_lock, RW_READER);
24017 
24018 	/* This routine finds the best-matching HSP for address addr. */
24019 
24020 	if (tcp_hsp_hash) {
24021 		int i;
24022 		ipaddr_t srchaddr;
24023 		tcp_hsp_t *hsp_net;
24024 
24025 		/* We do three passes: host, network, and subnet. */
24026 
24027 		srchaddr = addr;
24028 
24029 		for (i = 1; i <= 3; i++) {
24030 			/* Look for exact match on srchaddr */
24031 
24032 			hsp = tcp_hsp_hash[TCP_HSP_HASH(srchaddr)];
24033 			while (hsp) {
24034 				if (hsp->tcp_hsp_vers == IPV4_VERSION &&
24035 				    hsp->tcp_hsp_addr == srchaddr)
24036 					break;
24037 				hsp = hsp->tcp_hsp_next;
24038 			}
24039 			ASSERT(hsp == NULL ||
24040 			    hsp->tcp_hsp_vers == IPV4_VERSION);
24041 
24042 			/*
24043 			 * If this is the first pass:
24044 			 *   If we found a match, great, return it.
24045 			 *   If not, search for the network on the second pass.
24046 			 */
24047 
24048 			if (i == 1)
24049 				if (hsp)
24050 					break;
24051 				else
24052 				{
24053 					srchaddr = addr & netmask(addr);
24054 					continue;
24055 				}
24056 
24057 			/*
24058 			 * If this is the second pass:
24059 			 *   If we found a match, but there's a subnet mask,
24060 			 *    save the match but try again using the subnet
24061 			 *    mask on the third pass.
24062 			 *   Otherwise, return whatever we found.
24063 			 */
24064 
24065 			if (i == 2) {
24066 				if (hsp && hsp->tcp_hsp_subnet) {
24067 					hsp_net = hsp;
24068 					srchaddr = addr & hsp->tcp_hsp_subnet;
24069 					continue;
24070 				} else {
24071 					break;
24072 				}
24073 			}
24074 
24075 			/*
24076 			 * This must be the third pass.  If we didn't find
24077 			 * anything, return the saved network HSP instead.
24078 			 */
24079 
24080 			if (!hsp)
24081 				hsp = hsp_net;
24082 		}
24083 	}
24084 
24085 	rw_exit(&tcp_hsp_lock);
24086 	return (hsp);
24087 }
24088 
24089 /*
24090  * XXX Equally broken as the IPv4 routine. Doesn't handle longest
24091  * match lookup.
24092  */
24093 static tcp_hsp_t *
24094 tcp_hsp_lookup_ipv6(in6_addr_t *v6addr)
24095 {
24096 	tcp_hsp_t *hsp = NULL;
24097 
24098 	/* Quick check without acquiring the lock. */
24099 	if (tcp_hsp_hash == NULL)
24100 		return (NULL);
24101 
24102 	rw_enter(&tcp_hsp_lock, RW_READER);
24103 
24104 	/* This routine finds the best-matching HSP for address addr. */
24105 
24106 	if (tcp_hsp_hash) {
24107 		int i;
24108 		in6_addr_t v6srchaddr;
24109 		tcp_hsp_t *hsp_net;
24110 
24111 		/* We do three passes: host, network, and subnet. */
24112 
24113 		v6srchaddr = *v6addr;
24114 
24115 		for (i = 1; i <= 3; i++) {
24116 			/* Look for exact match on srchaddr */
24117 
24118 			hsp = tcp_hsp_hash[TCP_HSP_HASH(
24119 			    V4_PART_OF_V6(v6srchaddr))];
24120 			while (hsp) {
24121 				if (hsp->tcp_hsp_vers == IPV6_VERSION &&
24122 				    IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6,
24123 				    &v6srchaddr))
24124 					break;
24125 				hsp = hsp->tcp_hsp_next;
24126 			}
24127 
24128 			/*
24129 			 * If this is the first pass:
24130 			 *   If we found a match, great, return it.
24131 			 *   If not, search for the network on the second pass.
24132 			 */
24133 
24134 			if (i == 1)
24135 				if (hsp)
24136 					break;
24137 				else {
24138 					/* Assume a 64 bit mask */
24139 					v6srchaddr.s6_addr32[0] =
24140 					    v6addr->s6_addr32[0];
24141 					v6srchaddr.s6_addr32[1] =
24142 					    v6addr->s6_addr32[1];
24143 					v6srchaddr.s6_addr32[2] = 0;
24144 					v6srchaddr.s6_addr32[3] = 0;
24145 					continue;
24146 				}
24147 
24148 			/*
24149 			 * If this is the second pass:
24150 			 *   If we found a match, but there's a subnet mask,
24151 			 *    save the match but try again using the subnet
24152 			 *    mask on the third pass.
24153 			 *   Otherwise, return whatever we found.
24154 			 */
24155 
24156 			if (i == 2) {
24157 				ASSERT(hsp == NULL ||
24158 				    hsp->tcp_hsp_vers == IPV6_VERSION);
24159 				if (hsp &&
24160 				    !IN6_IS_ADDR_UNSPECIFIED(
24161 				    &hsp->tcp_hsp_subnet_v6)) {
24162 					hsp_net = hsp;
24163 					V6_MASK_COPY(*v6addr,
24164 					    hsp->tcp_hsp_subnet_v6, v6srchaddr);
24165 					continue;
24166 				} else {
24167 					break;
24168 				}
24169 			}
24170 
24171 			/*
24172 			 * This must be the third pass.  If we didn't find
24173 			 * anything, return the saved network HSP instead.
24174 			 */
24175 
24176 			if (!hsp)
24177 				hsp = hsp_net;
24178 		}
24179 	}
24180 
24181 	rw_exit(&tcp_hsp_lock);
24182 	return (hsp);
24183 }
24184 
24185 /*
24186  * Type three generator adapted from the random() function in 4.4 BSD:
24187  */
24188 
24189 /*
24190  * Copyright (c) 1983, 1993
24191  *	The Regents of the University of California.  All rights reserved.
24192  *
24193  * Redistribution and use in source and binary forms, with or without
24194  * modification, are permitted provided that the following conditions
24195  * are met:
24196  * 1. Redistributions of source code must retain the above copyright
24197  *    notice, this list of conditions and the following disclaimer.
24198  * 2. Redistributions in binary form must reproduce the above copyright
24199  *    notice, this list of conditions and the following disclaimer in the
24200  *    documentation and/or other materials provided with the distribution.
24201  * 3. All advertising materials mentioning features or use of this software
24202  *    must display the following acknowledgement:
24203  *	This product includes software developed by the University of
24204  *	California, Berkeley and its contributors.
24205  * 4. Neither the name of the University nor the names of its contributors
24206  *    may be used to endorse or promote products derived from this software
24207  *    without specific prior written permission.
24208  *
24209  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24210  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24211  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24212  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24213  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24214  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24215  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24216  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24217  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24218  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24219  * SUCH DAMAGE.
24220  */
24221 
24222 /* Type 3 -- x**31 + x**3 + 1 */
24223 #define	DEG_3		31
24224 #define	SEP_3		3
24225 
24226 
24227 /* Protected by tcp_random_lock */
24228 static int tcp_randtbl[DEG_3 + 1];
24229 
24230 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1];
24231 static int *tcp_random_rptr = &tcp_randtbl[1];
24232 
24233 static int *tcp_random_state = &tcp_randtbl[1];
24234 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1];
24235 
24236 kmutex_t tcp_random_lock;
24237 
24238 void
24239 tcp_random_init(void)
24240 {
24241 	int i;
24242 	hrtime_t hrt;
24243 	time_t wallclock;
24244 	uint64_t result;
24245 
24246 	/*
24247 	 * Use high-res timer and current time for seed.  Gethrtime() returns
24248 	 * a longlong, which may contain resolution down to nanoseconds.
24249 	 * The current time will either be a 32-bit or a 64-bit quantity.
24250 	 * XOR the two together in a 64-bit result variable.
24251 	 * Convert the result to a 32-bit value by multiplying the high-order
24252 	 * 32-bits by the low-order 32-bits.
24253 	 */
24254 
24255 	hrt = gethrtime();
24256 	(void) drv_getparm(TIME, &wallclock);
24257 	result = (uint64_t)wallclock ^ (uint64_t)hrt;
24258 	mutex_enter(&tcp_random_lock);
24259 	tcp_random_state[0] = ((result >> 32) & 0xffffffff) *
24260 	    (result & 0xffffffff);
24261 
24262 	for (i = 1; i < DEG_3; i++)
24263 		tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1]
24264 			+ 12345;
24265 	tcp_random_fptr = &tcp_random_state[SEP_3];
24266 	tcp_random_rptr = &tcp_random_state[0];
24267 	mutex_exit(&tcp_random_lock);
24268 	for (i = 0; i < 10 * DEG_3; i++)
24269 		(void) tcp_random();
24270 }
24271 
24272 /*
24273  * tcp_random: Return a random number in the range [1 - (128K + 1)].
24274  * This range is selected to be approximately centered on TCP_ISS / 2,
24275  * and easy to compute. We get this value by generating a 32-bit random
24276  * number, selecting out the high-order 17 bits, and then adding one so
24277  * that we never return zero.
24278  */
24279 int
24280 tcp_random(void)
24281 {
24282 	int i;
24283 
24284 	mutex_enter(&tcp_random_lock);
24285 	*tcp_random_fptr += *tcp_random_rptr;
24286 
24287 	/*
24288 	 * The high-order bits are more random than the low-order bits,
24289 	 * so we select out the high-order 17 bits and add one so that
24290 	 * we never return zero.
24291 	 */
24292 	i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1;
24293 	if (++tcp_random_fptr >= tcp_random_end_ptr) {
24294 		tcp_random_fptr = tcp_random_state;
24295 		++tcp_random_rptr;
24296 	} else if (++tcp_random_rptr >= tcp_random_end_ptr)
24297 		tcp_random_rptr = tcp_random_state;
24298 
24299 	mutex_exit(&tcp_random_lock);
24300 	return (i);
24301 }
24302 
24303 /*
24304  * XXX This will go away when TPI is extended to send
24305  * info reqs to sockfs/timod .....
24306  * Given a queue, set the max packet size for the write
24307  * side of the queue below stream head.  This value is
24308  * cached on the stream head.
24309  * Returns 1 on success, 0 otherwise.
24310  */
24311 static int
24312 setmaxps(queue_t *q, int maxpsz)
24313 {
24314 	struct stdata	*stp;
24315 	queue_t		*wq;
24316 	stp = STREAM(q);
24317 
24318 	/*
24319 	 * At this point change of a queue parameter is not allowed
24320 	 * when a multiplexor is sitting on top.
24321 	 */
24322 	if (stp->sd_flag & STPLEX)
24323 		return (0);
24324 
24325 	claimstr(stp->sd_wrq);
24326 	wq = stp->sd_wrq->q_next;
24327 	ASSERT(wq != NULL);
24328 	(void) strqset(wq, QMAXPSZ, 0, maxpsz);
24329 	releasestr(stp->sd_wrq);
24330 	return (1);
24331 }
24332 
24333 static int
24334 tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, int *do_disconnectp,
24335     int *t_errorp, int *sys_errorp)
24336 {
24337 	int error;
24338 	int is_absreq_failure;
24339 	t_scalar_t *opt_lenp;
24340 	t_scalar_t opt_offset;
24341 	int prim_type;
24342 	struct T_conn_req *tcreqp;
24343 	struct T_conn_res *tcresp;
24344 	cred_t *cr;
24345 
24346 	cr = DB_CREDDEF(mp, tcp->tcp_cred);
24347 
24348 	prim_type = ((union T_primitives *)mp->b_rptr)->type;
24349 	ASSERT(prim_type == T_CONN_REQ || prim_type == O_T_CONN_RES ||
24350 	    prim_type == T_CONN_RES);
24351 
24352 	switch (prim_type) {
24353 	case T_CONN_REQ:
24354 		tcreqp = (struct T_conn_req *)mp->b_rptr;
24355 		opt_offset = tcreqp->OPT_offset;
24356 		opt_lenp = (t_scalar_t *)&tcreqp->OPT_length;
24357 		break;
24358 	case O_T_CONN_RES:
24359 	case T_CONN_RES:
24360 		tcresp = (struct T_conn_res *)mp->b_rptr;
24361 		opt_offset = tcresp->OPT_offset;
24362 		opt_lenp = (t_scalar_t *)&tcresp->OPT_length;
24363 		break;
24364 	}
24365 
24366 	*t_errorp = 0;
24367 	*sys_errorp = 0;
24368 	*do_disconnectp = 0;
24369 
24370 	error = tpi_optcom_buf(tcp->tcp_wq, mp, opt_lenp,
24371 	    opt_offset, cr, &tcp_opt_obj,
24372 	    NULL, &is_absreq_failure);
24373 
24374 	switch (error) {
24375 	case  0:		/* no error */
24376 		ASSERT(is_absreq_failure == 0);
24377 		return (0);
24378 	case ENOPROTOOPT:
24379 		*t_errorp = TBADOPT;
24380 		break;
24381 	case EACCES:
24382 		*t_errorp = TACCES;
24383 		break;
24384 	default:
24385 		*t_errorp = TSYSERR; *sys_errorp = error;
24386 		break;
24387 	}
24388 	if (is_absreq_failure != 0) {
24389 		/*
24390 		 * The connection request should get the local ack
24391 		 * T_OK_ACK and then a T_DISCON_IND.
24392 		 */
24393 		*do_disconnectp = 1;
24394 	}
24395 	return (-1);
24396 }
24397 
24398 /*
24399  * Split this function out so that if the secret changes, I'm okay.
24400  *
24401  * Initialize the tcp_iss_cookie and tcp_iss_key.
24402  */
24403 
24404 #define	PASSWD_SIZE 16  /* MUST be multiple of 4 */
24405 
24406 static void
24407 tcp_iss_key_init(uint8_t *phrase, int len)
24408 {
24409 	struct {
24410 		int32_t current_time;
24411 		uint32_t randnum;
24412 		uint16_t pad;
24413 		uint8_t ether[6];
24414 		uint8_t passwd[PASSWD_SIZE];
24415 	} tcp_iss_cookie;
24416 	time_t t;
24417 
24418 	/*
24419 	 * Start with the current absolute time.
24420 	 */
24421 	(void) drv_getparm(TIME, &t);
24422 	tcp_iss_cookie.current_time = t;
24423 
24424 	/*
24425 	 * XXX - Need a more random number per RFC 1750, not this crap.
24426 	 * OTOH, if what follows is pretty random, then I'm in better shape.
24427 	 */
24428 	tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random());
24429 	tcp_iss_cookie.pad = 0x365c;  /* Picked from HMAC pad values. */
24430 
24431 	/*
24432 	 * The cpu_type_info is pretty non-random.  Ugggh.  It does serve
24433 	 * as a good template.
24434 	 */
24435 	bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd,
24436 	    min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info)));
24437 
24438 	/*
24439 	 * The pass-phrase.  Normally this is supplied by user-called NDD.
24440 	 */
24441 	bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len));
24442 
24443 	/*
24444 	 * See 4010593 if this section becomes a problem again,
24445 	 * but the local ethernet address is useful here.
24446 	 */
24447 	(void) localetheraddr(NULL,
24448 	    (struct ether_addr *)&tcp_iss_cookie.ether);
24449 
24450 	/*
24451 	 * Hash 'em all together.  The MD5Final is called per-connection.
24452 	 */
24453 	mutex_enter(&tcp_iss_key_lock);
24454 	MD5Init(&tcp_iss_key);
24455 	MD5Update(&tcp_iss_key, (uchar_t *)&tcp_iss_cookie,
24456 	    sizeof (tcp_iss_cookie));
24457 	mutex_exit(&tcp_iss_key_lock);
24458 }
24459 
24460 /*
24461  * Set the RFC 1948 pass phrase
24462  */
24463 /* ARGSUSED */
24464 static int
24465 tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
24466     cred_t *cr)
24467 {
24468 	/*
24469 	 * Basically, value contains a new pass phrase.  Pass it along!
24470 	 */
24471 	tcp_iss_key_init((uint8_t *)value, strlen(value));
24472 	return (0);
24473 }
24474 
24475 /* ARGSUSED */
24476 static int
24477 tcp_sack_info_constructor(void *buf, void *cdrarg, int kmflags)
24478 {
24479 	bzero(buf, sizeof (tcp_sack_info_t));
24480 	return (0);
24481 }
24482 
24483 /* ARGSUSED */
24484 static int
24485 tcp_iphc_constructor(void *buf, void *cdrarg, int kmflags)
24486 {
24487 	bzero(buf, TCP_MAX_COMBINED_HEADER_LENGTH);
24488 	return (0);
24489 }
24490 
24491 void
24492 tcp_ddi_init(void)
24493 {
24494 	int i;
24495 
24496 	/* Initialize locks */
24497 	rw_init(&tcp_hsp_lock, NULL, RW_DEFAULT, NULL);
24498 	mutex_init(&tcp_g_q_lock, NULL, MUTEX_DEFAULT, NULL);
24499 	mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL);
24500 	mutex_init(&tcp_iss_key_lock, NULL, MUTEX_DEFAULT, NULL);
24501 	mutex_init(&tcp_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL);
24502 	rw_init(&tcp_reserved_port_lock, NULL, RW_DEFAULT, NULL);
24503 
24504 	for (i = 0; i < A_CNT(tcp_bind_fanout); i++) {
24505 		mutex_init(&tcp_bind_fanout[i].tf_lock, NULL,
24506 		    MUTEX_DEFAULT, NULL);
24507 	}
24508 
24509 	for (i = 0; i < A_CNT(tcp_acceptor_fanout); i++) {
24510 		mutex_init(&tcp_acceptor_fanout[i].tf_lock, NULL,
24511 		    MUTEX_DEFAULT, NULL);
24512 	}
24513 
24514 	/* TCP's IPsec code calls the packet dropper. */
24515 	ip_drop_register(&tcp_dropper, "TCP IPsec policy enforcement");
24516 
24517 	if (!tcp_g_nd) {
24518 		if (!tcp_param_register(tcp_param_arr, A_CNT(tcp_param_arr))) {
24519 			nd_free(&tcp_g_nd);
24520 		}
24521 	}
24522 
24523 	/*
24524 	 * Note: To really walk the device tree you need the devinfo
24525 	 * pointer to your device which is only available after probe/attach.
24526 	 * The following is safe only because it uses ddi_root_node()
24527 	 */
24528 	tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr,
24529 	    tcp_opt_obj.odb_opt_arr_cnt);
24530 
24531 	tcp_timercache = kmem_cache_create("tcp_timercache",
24532 	    sizeof (tcp_timer_t) + sizeof (mblk_t), 0,
24533 	    NULL, NULL, NULL, NULL, NULL, 0);
24534 
24535 	tcp_sack_info_cache = kmem_cache_create("tcp_sack_info_cache",
24536 	    sizeof (tcp_sack_info_t), 0,
24537 	    tcp_sack_info_constructor, NULL, NULL, NULL, NULL, 0);
24538 
24539 	tcp_iphc_cache = kmem_cache_create("tcp_iphc_cache",
24540 	    TCP_MAX_COMBINED_HEADER_LENGTH, 0,
24541 	    tcp_iphc_constructor, NULL, NULL, NULL, NULL, 0);
24542 
24543 	tcp_squeue_wput_proc = tcp_squeue_switch(tcp_squeue_wput);
24544 	tcp_squeue_close_proc = tcp_squeue_switch(tcp_squeue_close);
24545 
24546 	ip_squeue_init(tcp_squeue_add);
24547 
24548 	/* Initialize the random number generator */
24549 	tcp_random_init();
24550 
24551 	/*
24552 	 * Initialize RFC 1948 secret values.  This will probably be reset once
24553 	 * by the boot scripts.
24554 	 *
24555 	 * Use NULL name, as the name is caught by the new lockstats.
24556 	 *
24557 	 * Initialize with some random, non-guessable string, like the global
24558 	 * T_INFO_ACK.
24559 	 */
24560 
24561 	tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack,
24562 	    sizeof (tcp_g_t_info_ack));
24563 
24564 	if ((tcp_kstat = kstat_create(TCP_MOD_NAME, 0, "tcpstat",
24565 		"net", KSTAT_TYPE_NAMED,
24566 		sizeof (tcp_statistics) / sizeof (kstat_named_t),
24567 		KSTAT_FLAG_VIRTUAL)) != NULL) {
24568 		tcp_kstat->ks_data = &tcp_statistics;
24569 		kstat_install(tcp_kstat);
24570 	}
24571 
24572 	tcp_kstat_init();
24573 }
24574 
24575 void
24576 tcp_ddi_destroy(void)
24577 {
24578 	int i;
24579 
24580 	nd_free(&tcp_g_nd);
24581 
24582 	for (i = 0; i < A_CNT(tcp_bind_fanout); i++) {
24583 		mutex_destroy(&tcp_bind_fanout[i].tf_lock);
24584 	}
24585 
24586 	for (i = 0; i < A_CNT(tcp_acceptor_fanout); i++) {
24587 		mutex_destroy(&tcp_acceptor_fanout[i].tf_lock);
24588 	}
24589 
24590 	mutex_destroy(&tcp_iss_key_lock);
24591 	rw_destroy(&tcp_hsp_lock);
24592 	mutex_destroy(&tcp_g_q_lock);
24593 	mutex_destroy(&tcp_random_lock);
24594 	mutex_destroy(&tcp_epriv_port_lock);
24595 	rw_destroy(&tcp_reserved_port_lock);
24596 
24597 	ip_drop_unregister(&tcp_dropper);
24598 
24599 	kmem_cache_destroy(tcp_timercache);
24600 	kmem_cache_destroy(tcp_sack_info_cache);
24601 	kmem_cache_destroy(tcp_iphc_cache);
24602 
24603 	tcp_kstat_fini();
24604 }
24605 
24606 /*
24607  * Generate ISS, taking into account NDD changes may happen halfway through.
24608  * (If the iss is not zero, set it.)
24609  */
24610 
24611 static void
24612 tcp_iss_init(tcp_t *tcp)
24613 {
24614 	MD5_CTX context;
24615 	struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg;
24616 	uint32_t answer[4];
24617 
24618 	tcp_iss_incr_extra += (ISS_INCR >> 1);
24619 	tcp->tcp_iss = tcp_iss_incr_extra;
24620 	switch (tcp_strong_iss) {
24621 	case 2:
24622 		mutex_enter(&tcp_iss_key_lock);
24623 		context = tcp_iss_key;
24624 		mutex_exit(&tcp_iss_key_lock);
24625 		arg.ports = tcp->tcp_ports;
24626 		if (tcp->tcp_ipversion == IPV4_VERSION) {
24627 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
24628 			    &arg.src);
24629 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_dst,
24630 			    &arg.dst);
24631 		} else {
24632 			arg.src = tcp->tcp_ip6h->ip6_src;
24633 			arg.dst = tcp->tcp_ip6h->ip6_dst;
24634 		}
24635 		MD5Update(&context, (uchar_t *)&arg, sizeof (arg));
24636 		MD5Final((uchar_t *)answer, &context);
24637 		tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3];
24638 		/*
24639 		 * Now that we've hashed into a unique per-connection sequence
24640 		 * space, add a random increment per strong_iss == 1.  So I
24641 		 * guess we'll have to...
24642 		 */
24643 		/* FALLTHRU */
24644 	case 1:
24645 		tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random();
24646 		break;
24647 	default:
24648 		tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR;
24649 		break;
24650 	}
24651 	tcp->tcp_valid_bits = TCP_ISS_VALID;
24652 	tcp->tcp_fss = tcp->tcp_iss - 1;
24653 	tcp->tcp_suna = tcp->tcp_iss;
24654 	tcp->tcp_snxt = tcp->tcp_iss + 1;
24655 	tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
24656 	tcp->tcp_csuna = tcp->tcp_snxt;
24657 }
24658 
24659 /*
24660  * Exported routine for extracting active tcp connection status.
24661  *
24662  * This is used by the Solaris Cluster Networking software to
24663  * gather a list of connections that need to be forwarded to
24664  * specific nodes in the cluster when configuration changes occur.
24665  *
24666  * The callback is invoked for each tcp_t structure. Returning
24667  * non-zero from the callback routine terminates the search.
24668  */
24669 int
24670 cl_tcp_walk_list(int (*callback)(cl_tcp_info_t *, void *), void *arg)
24671 {
24672 	tcp_t *tcp;
24673 	cl_tcp_info_t	cl_tcpi;
24674 	connf_t	*connfp;
24675 	conn_t	*connp;
24676 	int	i;
24677 
24678 	ASSERT(callback != NULL);
24679 
24680 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
24681 
24682 		connfp = &ipcl_globalhash_fanout[i];
24683 		connp = NULL;
24684 
24685 		while ((connp =
24686 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
24687 
24688 			tcp = connp->conn_tcp;
24689 			cl_tcpi.cl_tcpi_version = CL_TCPI_V1;
24690 			cl_tcpi.cl_tcpi_ipversion = tcp->tcp_ipversion;
24691 			cl_tcpi.cl_tcpi_state = tcp->tcp_state;
24692 			cl_tcpi.cl_tcpi_lport = tcp->tcp_lport;
24693 			cl_tcpi.cl_tcpi_fport = tcp->tcp_fport;
24694 			/*
24695 			 * The macros tcp_laddr and tcp_faddr give the IPv4
24696 			 * addresses. They are copied implicitly below as
24697 			 * mapped addresses.
24698 			 */
24699 			cl_tcpi.cl_tcpi_laddr_v6 = tcp->tcp_ip_src_v6;
24700 			if (tcp->tcp_ipversion == IPV4_VERSION) {
24701 				cl_tcpi.cl_tcpi_faddr =
24702 				    tcp->tcp_ipha->ipha_dst;
24703 			} else {
24704 				cl_tcpi.cl_tcpi_faddr_v6 =
24705 				    tcp->tcp_ip6h->ip6_dst;
24706 			}
24707 
24708 			/*
24709 			 * If the callback returns non-zero
24710 			 * we terminate the traversal.
24711 			 */
24712 			if ((*callback)(&cl_tcpi, arg) != 0) {
24713 				CONN_DEC_REF(tcp->tcp_connp);
24714 				return (1);
24715 			}
24716 		}
24717 	}
24718 
24719 	return (0);
24720 }
24721 
24722 /*
24723  * Macros used for accessing the different types of sockaddr
24724  * structures inside a tcp_ioc_abort_conn_t.
24725  */
24726 #define	TCP_AC_V4LADDR(acp) ((sin_t *)&(acp)->ac_local)
24727 #define	TCP_AC_V4RADDR(acp) ((sin_t *)&(acp)->ac_remote)
24728 #define	TCP_AC_V4LOCAL(acp) (TCP_AC_V4LADDR(acp)->sin_addr.s_addr)
24729 #define	TCP_AC_V4REMOTE(acp) (TCP_AC_V4RADDR(acp)->sin_addr.s_addr)
24730 #define	TCP_AC_V4LPORT(acp) (TCP_AC_V4LADDR(acp)->sin_port)
24731 #define	TCP_AC_V4RPORT(acp) (TCP_AC_V4RADDR(acp)->sin_port)
24732 #define	TCP_AC_V6LADDR(acp) ((sin6_t *)&(acp)->ac_local)
24733 #define	TCP_AC_V6RADDR(acp) ((sin6_t *)&(acp)->ac_remote)
24734 #define	TCP_AC_V6LOCAL(acp) (TCP_AC_V6LADDR(acp)->sin6_addr)
24735 #define	TCP_AC_V6REMOTE(acp) (TCP_AC_V6RADDR(acp)->sin6_addr)
24736 #define	TCP_AC_V6LPORT(acp) (TCP_AC_V6LADDR(acp)->sin6_port)
24737 #define	TCP_AC_V6RPORT(acp) (TCP_AC_V6RADDR(acp)->sin6_port)
24738 
24739 /*
24740  * Return the correct error code to mimic the behavior
24741  * of a connection reset.
24742  */
24743 #define	TCP_AC_GET_ERRCODE(state, err) {	\
24744 		switch ((state)) {		\
24745 		case TCPS_SYN_SENT:		\
24746 		case TCPS_SYN_RCVD:		\
24747 			(err) = ECONNREFUSED;	\
24748 			break;			\
24749 		case TCPS_ESTABLISHED:		\
24750 		case TCPS_FIN_WAIT_1:		\
24751 		case TCPS_FIN_WAIT_2:		\
24752 		case TCPS_CLOSE_WAIT:		\
24753 			(err) = ECONNRESET;	\
24754 			break;			\
24755 		case TCPS_CLOSING:		\
24756 		case TCPS_LAST_ACK:		\
24757 		case TCPS_TIME_WAIT:		\
24758 			(err) = 0;		\
24759 			break;			\
24760 		default:			\
24761 			(err) = ENXIO;		\
24762 		}				\
24763 	}
24764 
24765 /*
24766  * Check if a tcp structure matches the info in acp.
24767  */
24768 #define	TCP_AC_ADDR_MATCH(acp, tcp)					\
24769 	(((acp)->ac_local.ss_family == AF_INET) ?		\
24770 	((TCP_AC_V4LOCAL((acp)) == INADDR_ANY ||		\
24771 	TCP_AC_V4LOCAL((acp)) == (tcp)->tcp_ip_src) &&	\
24772 	(TCP_AC_V4REMOTE((acp)) == INADDR_ANY ||		\
24773 	TCP_AC_V4REMOTE((acp)) == (tcp)->tcp_remote) &&	\
24774 	(TCP_AC_V4LPORT((acp)) == 0 ||				\
24775 	TCP_AC_V4LPORT((acp)) == (tcp)->tcp_lport) &&		\
24776 	(TCP_AC_V4RPORT((acp)) == 0 ||				\
24777 	TCP_AC_V4RPORT((acp)) == (tcp)->tcp_fport) &&		\
24778 	(acp)->ac_start <= (tcp)->tcp_state &&	\
24779 	(acp)->ac_end >= (tcp)->tcp_state) :		\
24780 	((IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL((acp))) ||	\
24781 	IN6_ARE_ADDR_EQUAL(&TCP_AC_V6LOCAL((acp)),		\
24782 	&(tcp)->tcp_ip_src_v6)) &&				\
24783 	(IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE((acp))) ||	\
24784 	IN6_ARE_ADDR_EQUAL(&TCP_AC_V6REMOTE((acp)),		\
24785 	&(tcp)->tcp_remote_v6)) &&				\
24786 	(TCP_AC_V6LPORT((acp)) == 0 ||				\
24787 	TCP_AC_V6LPORT((acp)) == (tcp)->tcp_lport) &&		\
24788 	(TCP_AC_V6RPORT((acp)) == 0 ||				\
24789 	TCP_AC_V6RPORT((acp)) == (tcp)->tcp_fport) &&		\
24790 	(acp)->ac_start <= (tcp)->tcp_state &&	\
24791 	(acp)->ac_end >= (tcp)->tcp_state))
24792 
24793 #define	TCP_AC_MATCH(acp, tcp)					\
24794 	(((acp)->ac_zoneid == ALL_ZONES ||			\
24795 	(acp)->ac_zoneid == tcp->tcp_connp->conn_zoneid) ?	\
24796 	TCP_AC_ADDR_MATCH(acp, tcp) : 0)
24797 
24798 /*
24799  * Build a message containing a tcp_ioc_abort_conn_t structure
24800  * which is filled in with information from acp and tp.
24801  */
24802 static mblk_t *
24803 tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *acp, tcp_t *tp)
24804 {
24805 	mblk_t *mp;
24806 	tcp_ioc_abort_conn_t *tacp;
24807 
24808 	mp = allocb(sizeof (uint32_t) + sizeof (*acp), BPRI_LO);
24809 	if (mp == NULL)
24810 		return (NULL);
24811 
24812 	mp->b_datap->db_type = M_CTL;
24813 
24814 	*((uint32_t *)mp->b_rptr) = TCP_IOC_ABORT_CONN;
24815 	tacp = (tcp_ioc_abort_conn_t *)((uchar_t *)mp->b_rptr +
24816 		sizeof (uint32_t));
24817 
24818 	tacp->ac_start = acp->ac_start;
24819 	tacp->ac_end = acp->ac_end;
24820 	tacp->ac_zoneid = acp->ac_zoneid;
24821 
24822 	if (acp->ac_local.ss_family == AF_INET) {
24823 		tacp->ac_local.ss_family = AF_INET;
24824 		tacp->ac_remote.ss_family = AF_INET;
24825 		TCP_AC_V4LOCAL(tacp) = tp->tcp_ip_src;
24826 		TCP_AC_V4REMOTE(tacp) = tp->tcp_remote;
24827 		TCP_AC_V4LPORT(tacp) = tp->tcp_lport;
24828 		TCP_AC_V4RPORT(tacp) = tp->tcp_fport;
24829 	} else {
24830 		tacp->ac_local.ss_family = AF_INET6;
24831 		tacp->ac_remote.ss_family = AF_INET6;
24832 		TCP_AC_V6LOCAL(tacp) = tp->tcp_ip_src_v6;
24833 		TCP_AC_V6REMOTE(tacp) = tp->tcp_remote_v6;
24834 		TCP_AC_V6LPORT(tacp) = tp->tcp_lport;
24835 		TCP_AC_V6RPORT(tacp) = tp->tcp_fport;
24836 	}
24837 	mp->b_wptr = (uchar_t *)mp->b_rptr + sizeof (uint32_t) + sizeof (*acp);
24838 	return (mp);
24839 }
24840 
24841 /*
24842  * Print a tcp_ioc_abort_conn_t structure.
24843  */
24844 static void
24845 tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *acp)
24846 {
24847 	char lbuf[128];
24848 	char rbuf[128];
24849 	sa_family_t af;
24850 	in_port_t lport, rport;
24851 	ushort_t logflags;
24852 
24853 	af = acp->ac_local.ss_family;
24854 
24855 	if (af == AF_INET) {
24856 		(void) inet_ntop(af, (const void *)&TCP_AC_V4LOCAL(acp),
24857 				lbuf, 128);
24858 		(void) inet_ntop(af, (const void *)&TCP_AC_V4REMOTE(acp),
24859 				rbuf, 128);
24860 		lport = ntohs(TCP_AC_V4LPORT(acp));
24861 		rport = ntohs(TCP_AC_V4RPORT(acp));
24862 	} else {
24863 		(void) inet_ntop(af, (const void *)&TCP_AC_V6LOCAL(acp),
24864 				lbuf, 128);
24865 		(void) inet_ntop(af, (const void *)&TCP_AC_V6REMOTE(acp),
24866 				rbuf, 128);
24867 		lport = ntohs(TCP_AC_V6LPORT(acp));
24868 		rport = ntohs(TCP_AC_V6RPORT(acp));
24869 	}
24870 
24871 	logflags = SL_TRACE | SL_NOTE;
24872 	/*
24873 	 * Don't print this message to the console if the operation was done
24874 	 * to a non-global zone.
24875 	 */
24876 	if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES)
24877 		logflags |= SL_CONSOLE;
24878 	(void) strlog(TCP_MOD_ID, 0, 1, logflags,
24879 		"TCP_IOC_ABORT_CONN: local = %s:%d, remote = %s:%d, "
24880 		"start = %d, end = %d\n", lbuf, lport, rbuf, rport,
24881 		acp->ac_start, acp->ac_end);
24882 }
24883 
24884 /*
24885  * Called inside tcp_rput when a message built using
24886  * tcp_ioctl_abort_build_msg is put into a queue.
24887  * Note that when we get here there is no wildcard in acp any more.
24888  */
24889 static void
24890 tcp_ioctl_abort_handler(tcp_t *tcp, mblk_t *mp)
24891 {
24892 	tcp_ioc_abort_conn_t *acp;
24893 
24894 	acp = (tcp_ioc_abort_conn_t *)(mp->b_rptr + sizeof (uint32_t));
24895 	if (tcp->tcp_state <= acp->ac_end) {
24896 		/*
24897 		 * If we get here, we are already on the correct
24898 		 * squeue. This ioctl follows the following path
24899 		 * tcp_wput -> tcp_wput_ioctl -> tcp_ioctl_abort_conn
24900 		 * ->tcp_ioctl_abort->squeue_fill (if on a
24901 		 * different squeue)
24902 		 */
24903 		int errcode;
24904 
24905 		TCP_AC_GET_ERRCODE(tcp->tcp_state, errcode);
24906 		(void) tcp_clean_death(tcp, errcode, 26);
24907 	}
24908 	freemsg(mp);
24909 }
24910 
24911 /*
24912  * Abort all matching connections on a hash chain.
24913  */
24914 static int
24915 tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *acp, int index, int *count,
24916     boolean_t exact)
24917 {
24918 	int nmatch, err = 0;
24919 	tcp_t *tcp;
24920 	MBLKP mp, last, listhead = NULL;
24921 	conn_t	*tconnp;
24922 	connf_t	*connfp = &ipcl_conn_fanout[index];
24923 
24924 startover:
24925 	nmatch = 0;
24926 
24927 	mutex_enter(&connfp->connf_lock);
24928 	for (tconnp = connfp->connf_head; tconnp != NULL;
24929 	    tconnp = tconnp->conn_next) {
24930 		tcp = tconnp->conn_tcp;
24931 		if (TCP_AC_MATCH(acp, tcp)) {
24932 			CONN_INC_REF(tcp->tcp_connp);
24933 			mp = tcp_ioctl_abort_build_msg(acp, tcp);
24934 			if (mp == NULL) {
24935 				err = ENOMEM;
24936 				CONN_DEC_REF(tcp->tcp_connp);
24937 				break;
24938 			}
24939 			mp->b_prev = (mblk_t *)tcp;
24940 
24941 			if (listhead == NULL) {
24942 				listhead = mp;
24943 				last = mp;
24944 			} else {
24945 				last->b_next = mp;
24946 				last = mp;
24947 			}
24948 			nmatch++;
24949 			if (exact)
24950 				break;
24951 		}
24952 
24953 		/* Avoid holding lock for too long. */
24954 		if (nmatch >= 500)
24955 			break;
24956 	}
24957 	mutex_exit(&connfp->connf_lock);
24958 
24959 	/* Pass mp into the correct tcp */
24960 	while ((mp = listhead) != NULL) {
24961 		listhead = listhead->b_next;
24962 		tcp = (tcp_t *)mp->b_prev;
24963 		mp->b_next = mp->b_prev = NULL;
24964 		squeue_fill(tcp->tcp_connp->conn_sqp, mp,
24965 		    tcp_input, tcp->tcp_connp, SQTAG_TCP_ABORT_BUCKET);
24966 	}
24967 
24968 	*count += nmatch;
24969 	if (nmatch >= 500 && err == 0)
24970 		goto startover;
24971 	return (err);
24972 }
24973 
24974 /*
24975  * Abort all connections that matches the attributes specified in acp.
24976  */
24977 static int
24978 tcp_ioctl_abort(tcp_ioc_abort_conn_t *acp)
24979 {
24980 	sa_family_t af;
24981 	uint32_t  ports;
24982 	uint16_t *pports;
24983 	int err = 0, count = 0;
24984 	boolean_t exact = B_FALSE; /* set when there is no wildcard */
24985 	int index = -1;
24986 	ushort_t logflags;
24987 
24988 	af = acp->ac_local.ss_family;
24989 
24990 	if (af == AF_INET) {
24991 		if (TCP_AC_V4REMOTE(acp) != INADDR_ANY &&
24992 		    TCP_AC_V4LPORT(acp) != 0 && TCP_AC_V4RPORT(acp) != 0) {
24993 			pports = (uint16_t *)&ports;
24994 			pports[1] = TCP_AC_V4LPORT(acp);
24995 			pports[0] = TCP_AC_V4RPORT(acp);
24996 			exact = (TCP_AC_V4LOCAL(acp) != INADDR_ANY);
24997 		}
24998 	} else {
24999 		if (!IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE(acp)) &&
25000 		    TCP_AC_V6LPORT(acp) != 0 && TCP_AC_V6RPORT(acp) != 0) {
25001 			pports = (uint16_t *)&ports;
25002 			pports[1] = TCP_AC_V6LPORT(acp);
25003 			pports[0] = TCP_AC_V6RPORT(acp);
25004 			exact = !IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL(acp));
25005 		}
25006 	}
25007 
25008 	/*
25009 	 * For cases where remote addr, local port, and remote port are non-
25010 	 * wildcards, tcp_ioctl_abort_bucket will only be called once.
25011 	 */
25012 	if (index != -1) {
25013 		err = tcp_ioctl_abort_bucket(acp, index,
25014 			    &count, exact);
25015 	} else {
25016 		/*
25017 		 * loop through all entries for wildcard case
25018 		 */
25019 		for (index = 0; index < ipcl_conn_fanout_size; index++) {
25020 			err = tcp_ioctl_abort_bucket(acp, index,
25021 			    &count, exact);
25022 			if (err != 0)
25023 				break;
25024 		}
25025 	}
25026 
25027 	logflags = SL_TRACE | SL_NOTE;
25028 	/*
25029 	 * Don't print this message to the console if the operation was done
25030 	 * to a non-global zone.
25031 	 */
25032 	if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES)
25033 		logflags |= SL_CONSOLE;
25034 	(void) strlog(TCP_MOD_ID, 0, 1, logflags, "TCP_IOC_ABORT_CONN: "
25035 	    "aborted %d connection%c\n", count, ((count > 1) ? 's' : ' '));
25036 	if (err == 0 && count == 0)
25037 		err = ENOENT;
25038 	return (err);
25039 }
25040 
25041 /*
25042  * Process the TCP_IOC_ABORT_CONN ioctl request.
25043  */
25044 static void
25045 tcp_ioctl_abort_conn(queue_t *q, mblk_t *mp)
25046 {
25047 	int	err;
25048 	IOCP    iocp;
25049 	MBLKP   mp1;
25050 	sa_family_t laf, raf;
25051 	tcp_ioc_abort_conn_t *acp;
25052 	zone_t *zptr;
25053 	zoneid_t zoneid = Q_TO_CONN(q)->conn_zoneid;
25054 
25055 	iocp = (IOCP)mp->b_rptr;
25056 
25057 	if ((mp1 = mp->b_cont) == NULL ||
25058 	    iocp->ioc_count != sizeof (tcp_ioc_abort_conn_t)) {
25059 		err = EINVAL;
25060 		goto out;
25061 	}
25062 
25063 	/* check permissions */
25064 	if (secpolicy_net_config(iocp->ioc_cr, B_FALSE) != 0) {
25065 		err = EPERM;
25066 		goto out;
25067 	}
25068 
25069 	if (mp1->b_cont != NULL) {
25070 		freemsg(mp1->b_cont);
25071 		mp1->b_cont = NULL;
25072 	}
25073 
25074 	acp = (tcp_ioc_abort_conn_t *)mp1->b_rptr;
25075 	laf = acp->ac_local.ss_family;
25076 	raf = acp->ac_remote.ss_family;
25077 
25078 	/* check that a zone with the supplied zoneid exists */
25079 	if (acp->ac_zoneid != GLOBAL_ZONEID && acp->ac_zoneid != ALL_ZONES) {
25080 		zptr = zone_find_by_id(zoneid);
25081 		if (zptr != NULL) {
25082 			zone_rele(zptr);
25083 		} else {
25084 			err = EINVAL;
25085 			goto out;
25086 		}
25087 	}
25088 
25089 	if (acp->ac_start < TCPS_SYN_SENT || acp->ac_end > TCPS_TIME_WAIT ||
25090 	    acp->ac_start > acp->ac_end || laf != raf ||
25091 	    (laf != AF_INET && laf != AF_INET6)) {
25092 		err = EINVAL;
25093 		goto out;
25094 	}
25095 
25096 	tcp_ioctl_abort_dump(acp);
25097 	err = tcp_ioctl_abort(acp);
25098 
25099 out:
25100 	if (mp1 != NULL) {
25101 		freemsg(mp1);
25102 		mp->b_cont = NULL;
25103 	}
25104 
25105 	if (err != 0)
25106 		miocnak(q, mp, 0, err);
25107 	else
25108 		miocack(q, mp, 0, 0);
25109 }
25110 
25111 /*
25112  * tcp_time_wait_processing() handles processing of incoming packets when
25113  * the tcp is in the TIME_WAIT state.
25114  * A TIME_WAIT tcp that has an associated open TCP stream is never put
25115  * on the time wait list.
25116  */
25117 void
25118 tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, uint32_t seg_seq,
25119     uint32_t seg_ack, int seg_len, tcph_t *tcph)
25120 {
25121 	int32_t		bytes_acked;
25122 	int32_t		gap;
25123 	int32_t		rgap;
25124 	tcp_opt_t	tcpopt;
25125 	uint_t		flags;
25126 	uint32_t	new_swnd = 0;
25127 	conn_t		*connp;
25128 
25129 	BUMP_LOCAL(tcp->tcp_ibsegs);
25130 	TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_RECV_PKT);
25131 
25132 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
25133 	new_swnd = BE16_TO_U16(tcph->th_win) <<
25134 	    ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws);
25135 	if (tcp->tcp_snd_ts_ok) {
25136 		if (!tcp_paws_check(tcp, tcph, &tcpopt)) {
25137 			tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
25138 			    tcp->tcp_rnxt, TH_ACK);
25139 			goto done;
25140 		}
25141 	}
25142 	gap = seg_seq - tcp->tcp_rnxt;
25143 	rgap = tcp->tcp_rwnd - (gap + seg_len);
25144 	if (gap < 0) {
25145 		BUMP_MIB(&tcp_mib, tcpInDataDupSegs);
25146 		UPDATE_MIB(&tcp_mib, tcpInDataDupBytes,
25147 		    (seg_len > -gap ? -gap : seg_len));
25148 		seg_len += gap;
25149 		if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) {
25150 			if (flags & TH_RST) {
25151 				goto done;
25152 			}
25153 			if ((flags & TH_FIN) && seg_len == -1) {
25154 				/*
25155 				 * When TCP receives a duplicate FIN in
25156 				 * TIME_WAIT state, restart the 2 MSL timer.
25157 				 * See page 73 in RFC 793. Make sure this TCP
25158 				 * is already on the TIME_WAIT list. If not,
25159 				 * just restart the timer.
25160 				 */
25161 				if (TCP_IS_DETACHED(tcp)) {
25162 					if (tcp_time_wait_remove(tcp, NULL) ==
25163 					    B_TRUE) {
25164 						tcp_time_wait_append(tcp);
25165 						TCP_DBGSTAT(tcp_rput_time_wait);
25166 					}
25167 				} else {
25168 					ASSERT(tcp != NULL);
25169 					TCP_TIMER_RESTART(tcp,
25170 					    tcp_time_wait_interval);
25171 				}
25172 				tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
25173 				    tcp->tcp_rnxt, TH_ACK);
25174 				goto done;
25175 			}
25176 			flags |=  TH_ACK_NEEDED;
25177 			seg_len = 0;
25178 			goto process_ack;
25179 		}
25180 
25181 		/* Fix seg_seq, and chew the gap off the front. */
25182 		seg_seq = tcp->tcp_rnxt;
25183 	}
25184 
25185 	if ((flags & TH_SYN) && gap > 0 && rgap < 0) {
25186 		/*
25187 		 * Make sure that when we accept the connection, pick
25188 		 * an ISS greater than (tcp_snxt + ISS_INCR/2) for the
25189 		 * old connection.
25190 		 *
25191 		 * The next ISS generated is equal to tcp_iss_incr_extra
25192 		 * + ISS_INCR/2 + other components depending on the
25193 		 * value of tcp_strong_iss.  We pre-calculate the new
25194 		 * ISS here and compare with tcp_snxt to determine if
25195 		 * we need to make adjustment to tcp_iss_incr_extra.
25196 		 *
25197 		 * The above calculation is ugly and is a
25198 		 * waste of CPU cycles...
25199 		 */
25200 		uint32_t new_iss = tcp_iss_incr_extra;
25201 		int32_t adj;
25202 
25203 		switch (tcp_strong_iss) {
25204 		case 2: {
25205 			/* Add time and MD5 components. */
25206 			uint32_t answer[4];
25207 			struct {
25208 				uint32_t ports;
25209 				in6_addr_t src;
25210 				in6_addr_t dst;
25211 			} arg;
25212 			MD5_CTX context;
25213 
25214 			mutex_enter(&tcp_iss_key_lock);
25215 			context = tcp_iss_key;
25216 			mutex_exit(&tcp_iss_key_lock);
25217 			arg.ports = tcp->tcp_ports;
25218 			/* We use MAPPED addresses in tcp_iss_init */
25219 			arg.src = tcp->tcp_ip_src_v6;
25220 			if (tcp->tcp_ipversion == IPV4_VERSION) {
25221 				IN6_IPADDR_TO_V4MAPPED(
25222 					tcp->tcp_ipha->ipha_dst,
25223 					    &arg.dst);
25224 			} else {
25225 				arg.dst =
25226 				    tcp->tcp_ip6h->ip6_dst;
25227 			}
25228 			MD5Update(&context, (uchar_t *)&arg,
25229 			    sizeof (arg));
25230 			MD5Final((uchar_t *)answer, &context);
25231 			answer[0] ^= answer[1] ^ answer[2] ^ answer[3];
25232 			new_iss += (gethrtime() >> ISS_NSEC_SHT) + answer[0];
25233 			break;
25234 		}
25235 		case 1:
25236 			/* Add time component and min random (i.e. 1). */
25237 			new_iss += (gethrtime() >> ISS_NSEC_SHT) + 1;
25238 			break;
25239 		default:
25240 			/* Add only time component. */
25241 			new_iss += (uint32_t)gethrestime_sec() * ISS_INCR;
25242 			break;
25243 		}
25244 		if ((adj = (int32_t)(tcp->tcp_snxt - new_iss)) > 0) {
25245 			/*
25246 			 * New ISS not guaranteed to be ISS_INCR/2
25247 			 * ahead of the current tcp_snxt, so add the
25248 			 * difference to tcp_iss_incr_extra.
25249 			 */
25250 			tcp_iss_incr_extra += adj;
25251 		}
25252 		/*
25253 		 * If tcp_clean_death() can not perform the task now,
25254 		 * drop the SYN packet and let the other side re-xmit.
25255 		 * Otherwise pass the SYN packet back in, since the
25256 		 * old tcp state has been cleaned up or freed.
25257 		 */
25258 		if (tcp_clean_death(tcp, 0, 27) == -1)
25259 			goto done;
25260 		/*
25261 		 * We will come back to tcp_rput_data
25262 		 * on the global queue. Packets destined
25263 		 * for the global queue will be checked
25264 		 * with global policy. But the policy for
25265 		 * this packet has already been checked as
25266 		 * this was destined for the detached
25267 		 * connection. We need to bypass policy
25268 		 * check this time by attaching a dummy
25269 		 * ipsec_in with ipsec_in_dont_check set.
25270 		 */
25271 		if ((connp = ipcl_classify(mp, tcp->tcp_connp->conn_zoneid)) !=
25272 		    NULL) {
25273 			TCP_STAT(tcp_time_wait_syn_success);
25274 			tcp_reinput(connp, mp, tcp->tcp_connp->conn_sqp);
25275 			return;
25276 		}
25277 		goto done;
25278 	}
25279 
25280 	/*
25281 	 * rgap is the amount of stuff received out of window.  A negative
25282 	 * value is the amount out of window.
25283 	 */
25284 	if (rgap < 0) {
25285 		BUMP_MIB(&tcp_mib, tcpInDataPastWinSegs);
25286 		UPDATE_MIB(&tcp_mib, tcpInDataPastWinBytes, -rgap);
25287 		/* Fix seg_len and make sure there is something left. */
25288 		seg_len += rgap;
25289 		if (seg_len <= 0) {
25290 			if (flags & TH_RST) {
25291 				goto done;
25292 			}
25293 			flags |=  TH_ACK_NEEDED;
25294 			seg_len = 0;
25295 			goto process_ack;
25296 		}
25297 	}
25298 	/*
25299 	 * Check whether we can update tcp_ts_recent.  This test is
25300 	 * NOT the one in RFC 1323 3.4.  It is from Braden, 1993, "TCP
25301 	 * Extensions for High Performance: An Update", Internet Draft.
25302 	 */
25303 	if (tcp->tcp_snd_ts_ok &&
25304 	    TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) &&
25305 	    SEQ_LEQ(seg_seq, tcp->tcp_rack)) {
25306 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
25307 		tcp->tcp_last_rcv_lbolt = lbolt64;
25308 	}
25309 
25310 	if (seg_seq != tcp->tcp_rnxt && seg_len > 0) {
25311 		/* Always ack out of order packets */
25312 		flags |= TH_ACK_NEEDED;
25313 		seg_len = 0;
25314 	} else if (seg_len > 0) {
25315 		BUMP_MIB(&tcp_mib, tcpInClosed);
25316 		BUMP_MIB(&tcp_mib, tcpInDataInorderSegs);
25317 		UPDATE_MIB(&tcp_mib, tcpInDataInorderBytes, seg_len);
25318 	}
25319 	if (flags & TH_RST) {
25320 		(void) tcp_clean_death(tcp, 0, 28);
25321 		goto done;
25322 	}
25323 	if (flags & TH_SYN) {
25324 		tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1,
25325 		    TH_RST|TH_ACK);
25326 		/*
25327 		 * Do not delete the TCP structure if it is in
25328 		 * TIME_WAIT state.  Refer to RFC 1122, 4.2.2.13.
25329 		 */
25330 		goto done;
25331 	}
25332 process_ack:
25333 	if (flags & TH_ACK) {
25334 		bytes_acked = (int)(seg_ack - tcp->tcp_suna);
25335 		if (bytes_acked <= 0) {
25336 			if (bytes_acked == 0 && seg_len == 0 &&
25337 			    new_swnd == tcp->tcp_swnd)
25338 				BUMP_MIB(&tcp_mib, tcpInDupAck);
25339 		} else {
25340 			/* Acks something not sent */
25341 			flags |= TH_ACK_NEEDED;
25342 		}
25343 	}
25344 	if (flags & TH_ACK_NEEDED) {
25345 		/*
25346 		 * Time to send an ack for some reason.
25347 		 */
25348 		tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
25349 		    tcp->tcp_rnxt, TH_ACK);
25350 	}
25351 done:
25352 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
25353 		DB_CKSUMSTART(mp) = 0;
25354 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
25355 		TCP_STAT(tcp_time_wait_syn_fail);
25356 	}
25357 	freemsg(mp);
25358 }
25359 
25360 /*
25361  * Allocate a T_SVR4_OPTMGMT_REQ.
25362  * The caller needs to increment tcp_drop_opt_ack_cnt when sending these so
25363  * that tcp_rput_other can drop the acks.
25364  */
25365 static mblk_t *
25366 tcp_setsockopt_mp(int level, int cmd, char *opt, int optlen)
25367 {
25368 	mblk_t *mp;
25369 	struct T_optmgmt_req *tor;
25370 	struct opthdr *oh;
25371 	uint_t size;
25372 	char *optptr;
25373 
25374 	size = sizeof (*tor) + sizeof (*oh) + optlen;
25375 	mp = allocb(size, BPRI_MED);
25376 	if (mp == NULL)
25377 		return (NULL);
25378 
25379 	mp->b_wptr += size;
25380 	mp->b_datap->db_type = M_PROTO;
25381 	tor = (struct T_optmgmt_req *)mp->b_rptr;
25382 	tor->PRIM_type = T_SVR4_OPTMGMT_REQ;
25383 	tor->MGMT_flags = T_NEGOTIATE;
25384 	tor->OPT_length = sizeof (*oh) + optlen;
25385 	tor->OPT_offset = (t_scalar_t)sizeof (*tor);
25386 
25387 	oh = (struct opthdr *)&tor[1];
25388 	oh->level = level;
25389 	oh->name = cmd;
25390 	oh->len = optlen;
25391 	if (optlen != 0) {
25392 		optptr = (char *)&oh[1];
25393 		bcopy(opt, optptr, optlen);
25394 	}
25395 	return (mp);
25396 }
25397 
25398 /*
25399  * TCP Timers Implementation.
25400  */
25401 timeout_id_t
25402 tcp_timeout(conn_t *connp, void (*f)(void *), clock_t tim)
25403 {
25404 	mblk_t *mp;
25405 	tcp_timer_t *tcpt;
25406 	tcp_t *tcp = connp->conn_tcp;
25407 
25408 	ASSERT(connp->conn_sqp != NULL);
25409 
25410 	TCP_DBGSTAT(tcp_timeout_calls);
25411 
25412 	if (tcp->tcp_timercache == NULL) {
25413 		mp = tcp_timermp_alloc(KM_NOSLEEP | KM_PANIC);
25414 	} else {
25415 		TCP_DBGSTAT(tcp_timeout_cached_alloc);
25416 		mp = tcp->tcp_timercache;
25417 		tcp->tcp_timercache = mp->b_next;
25418 		mp->b_next = NULL;
25419 		ASSERT(mp->b_wptr == NULL);
25420 	}
25421 
25422 	CONN_INC_REF(connp);
25423 	tcpt = (tcp_timer_t *)mp->b_rptr;
25424 	tcpt->connp = connp;
25425 	tcpt->tcpt_proc = f;
25426 	tcpt->tcpt_tid = timeout(tcp_timer_callback, mp, tim);
25427 	return ((timeout_id_t)mp);
25428 }
25429 
25430 static void
25431 tcp_timer_callback(void *arg)
25432 {
25433 	mblk_t *mp = (mblk_t *)arg;
25434 	tcp_timer_t *tcpt;
25435 	conn_t	*connp;
25436 
25437 	tcpt = (tcp_timer_t *)mp->b_rptr;
25438 	connp = tcpt->connp;
25439 	squeue_fill(connp->conn_sqp, mp,
25440 	    tcp_timer_handler, connp, SQTAG_TCP_TIMER);
25441 }
25442 
25443 static void
25444 tcp_timer_handler(void *arg, mblk_t *mp, void *arg2)
25445 {
25446 	tcp_timer_t *tcpt;
25447 	conn_t *connp = (conn_t *)arg;
25448 	tcp_t *tcp = connp->conn_tcp;
25449 
25450 	tcpt = (tcp_timer_t *)mp->b_rptr;
25451 	ASSERT(connp == tcpt->connp);
25452 	ASSERT((squeue_t *)arg2 == connp->conn_sqp);
25453 
25454 	/*
25455 	 * If the TCP has reached the closed state, don't proceed any
25456 	 * further. This TCP logically does not exist on the system.
25457 	 * tcpt_proc could for example access queues, that have already
25458 	 * been qprocoff'ed off. Also see comments at the start of tcp_input
25459 	 */
25460 	if (tcp->tcp_state != TCPS_CLOSED) {
25461 		(*tcpt->tcpt_proc)(connp);
25462 	} else {
25463 		tcp->tcp_timer_tid = 0;
25464 	}
25465 	tcp_timer_free(connp->conn_tcp, mp);
25466 }
25467 
25468 /*
25469  * There is potential race with untimeout and the handler firing at the same
25470  * time. The mblock may be freed by the handler while we are trying to use
25471  * it. But since both should execute on the same squeue, this race should not
25472  * occur.
25473  */
25474 clock_t
25475 tcp_timeout_cancel(conn_t *connp, timeout_id_t id)
25476 {
25477 	mblk_t	*mp = (mblk_t *)id;
25478 	tcp_timer_t *tcpt;
25479 	clock_t delta;
25480 
25481 	TCP_DBGSTAT(tcp_timeout_cancel_reqs);
25482 
25483 	if (mp == NULL)
25484 		return (-1);
25485 
25486 	tcpt = (tcp_timer_t *)mp->b_rptr;
25487 	ASSERT(tcpt->connp == connp);
25488 
25489 	delta = untimeout(tcpt->tcpt_tid);
25490 
25491 	if (delta >= 0) {
25492 		TCP_DBGSTAT(tcp_timeout_canceled);
25493 		tcp_timer_free(connp->conn_tcp, mp);
25494 		CONN_DEC_REF(connp);
25495 	}
25496 
25497 	return (delta);
25498 }
25499 
25500 /*
25501  * Allocate space for the timer event. The allocation looks like mblk, but it is
25502  * not a proper mblk. To avoid confusion we set b_wptr to NULL.
25503  *
25504  * Dealing with failures: If we can't allocate from the timer cache we try
25505  * allocating from dblock caches using allocb_tryhard(). In this case b_wptr
25506  * points to b_rptr.
25507  * If we can't allocate anything using allocb_tryhard(), we perform a last
25508  * attempt and use kmem_alloc_tryhard(). In this case we set b_wptr to -1 and
25509  * save the actual allocation size in b_datap.
25510  */
25511 mblk_t *
25512 tcp_timermp_alloc(int kmflags)
25513 {
25514 	mblk_t *mp = (mblk_t *)kmem_cache_alloc(tcp_timercache,
25515 	    kmflags & ~KM_PANIC);
25516 
25517 	if (mp != NULL) {
25518 		mp->b_next = mp->b_prev = NULL;
25519 		mp->b_rptr = (uchar_t *)(&mp[1]);
25520 		mp->b_wptr = NULL;
25521 		mp->b_datap = NULL;
25522 		mp->b_queue = NULL;
25523 	} else if (kmflags & KM_PANIC) {
25524 		/*
25525 		 * Failed to allocate memory for the timer. Try allocating from
25526 		 * dblock caches.
25527 		 */
25528 		TCP_STAT(tcp_timermp_allocfail);
25529 		mp = allocb_tryhard(sizeof (tcp_timer_t));
25530 		if (mp == NULL) {
25531 			size_t size = 0;
25532 			/*
25533 			 * Memory is really low. Try tryhard allocation.
25534 			 */
25535 			TCP_STAT(tcp_timermp_allocdblfail);
25536 			mp = kmem_alloc_tryhard(sizeof (mblk_t) +
25537 			    sizeof (tcp_timer_t), &size, kmflags);
25538 			mp->b_rptr = (uchar_t *)(&mp[1]);
25539 			mp->b_next = mp->b_prev = NULL;
25540 			mp->b_wptr = (uchar_t *)-1;
25541 			mp->b_datap = (dblk_t *)size;
25542 			mp->b_queue = NULL;
25543 		}
25544 		ASSERT(mp->b_wptr != NULL);
25545 	}
25546 	TCP_DBGSTAT(tcp_timermp_alloced);
25547 
25548 	return (mp);
25549 }
25550 
25551 /*
25552  * Free per-tcp timer cache.
25553  * It can only contain entries from tcp_timercache.
25554  */
25555 void
25556 tcp_timermp_free(tcp_t *tcp)
25557 {
25558 	mblk_t *mp;
25559 
25560 	while ((mp = tcp->tcp_timercache) != NULL) {
25561 		ASSERT(mp->b_wptr == NULL);
25562 		tcp->tcp_timercache = tcp->tcp_timercache->b_next;
25563 		kmem_cache_free(tcp_timercache, mp);
25564 	}
25565 }
25566 
25567 /*
25568  * Free timer event. Put it on the per-tcp timer cache if there is not too many
25569  * events there already (currently at most two events are cached).
25570  * If the event is not allocated from the timer cache, free it right away.
25571  */
25572 static void
25573 tcp_timer_free(tcp_t *tcp, mblk_t *mp)
25574 {
25575 	mblk_t *mp1 = tcp->tcp_timercache;
25576 
25577 	if (mp->b_wptr != NULL) {
25578 		/*
25579 		 * This allocation is not from a timer cache, free it right
25580 		 * away.
25581 		 */
25582 		if (mp->b_wptr != (uchar_t *)-1)
25583 			freeb(mp);
25584 		else
25585 			kmem_free(mp, (size_t)mp->b_datap);
25586 	} else if (mp1 == NULL || mp1->b_next == NULL) {
25587 		/* Cache this timer block for future allocations */
25588 		mp->b_rptr = (uchar_t *)(&mp[1]);
25589 		mp->b_next = mp1;
25590 		tcp->tcp_timercache = mp;
25591 	} else {
25592 		kmem_cache_free(tcp_timercache, mp);
25593 		TCP_DBGSTAT(tcp_timermp_freed);
25594 	}
25595 }
25596 
25597 /*
25598  * End of TCP Timers implementation.
25599  */
25600 
25601 /*
25602  * tcp_{set,clr}qfull() functions are used to either set or clear QFULL
25603  * on the specified backing STREAMS q. Note, the caller may make the
25604  * decision to call based on the tcp_t.tcp_flow_stopped value which
25605  * when check outside the q's lock is only an advisory check ...
25606  */
25607 
25608 void
25609 tcp_setqfull(tcp_t *tcp)
25610 {
25611 	queue_t *q = tcp->tcp_wq;
25612 
25613 	if (!(q->q_flag & QFULL)) {
25614 		mutex_enter(QLOCK(q));
25615 		if (!(q->q_flag & QFULL)) {
25616 			/* still need to set QFULL */
25617 			q->q_flag |= QFULL;
25618 			tcp->tcp_flow_stopped = B_TRUE;
25619 			mutex_exit(QLOCK(q));
25620 			TCP_STAT(tcp_flwctl_on);
25621 		} else {
25622 			mutex_exit(QLOCK(q));
25623 		}
25624 	}
25625 }
25626 
25627 void
25628 tcp_clrqfull(tcp_t *tcp)
25629 {
25630 	queue_t *q = tcp->tcp_wq;
25631 
25632 	if (q->q_flag & QFULL) {
25633 		mutex_enter(QLOCK(q));
25634 		if (q->q_flag & QFULL) {
25635 			q->q_flag &= ~QFULL;
25636 			tcp->tcp_flow_stopped = B_FALSE;
25637 			mutex_exit(QLOCK(q));
25638 			if (q->q_flag & QWANTW)
25639 				qbackenable(q, 0);
25640 		} else {
25641 			mutex_exit(QLOCK(q));
25642 		}
25643 	}
25644 }
25645 
25646 /*
25647  * TCP Kstats implementation
25648  */
25649 static void
25650 tcp_kstat_init(void)
25651 {
25652 	tcp_named_kstat_t template = {
25653 		{ "rtoAlgorithm",	KSTAT_DATA_INT32, 0 },
25654 		{ "rtoMin",		KSTAT_DATA_INT32, 0 },
25655 		{ "rtoMax",		KSTAT_DATA_INT32, 0 },
25656 		{ "maxConn",		KSTAT_DATA_INT32, 0 },
25657 		{ "activeOpens",	KSTAT_DATA_UINT32, 0 },
25658 		{ "passiveOpens",	KSTAT_DATA_UINT32, 0 },
25659 		{ "attemptFails",	KSTAT_DATA_UINT32, 0 },
25660 		{ "estabResets",	KSTAT_DATA_UINT32, 0 },
25661 		{ "currEstab",		KSTAT_DATA_UINT32, 0 },
25662 		{ "inSegs",		KSTAT_DATA_UINT32, 0 },
25663 		{ "outSegs",		KSTAT_DATA_UINT32, 0 },
25664 		{ "retransSegs",	KSTAT_DATA_UINT32, 0 },
25665 		{ "connTableSize",	KSTAT_DATA_INT32, 0 },
25666 		{ "outRsts",		KSTAT_DATA_UINT32, 0 },
25667 		{ "outDataSegs",	KSTAT_DATA_UINT32, 0 },
25668 		{ "outDataBytes",	KSTAT_DATA_UINT32, 0 },
25669 		{ "retransBytes",	KSTAT_DATA_UINT32, 0 },
25670 		{ "outAck",		KSTAT_DATA_UINT32, 0 },
25671 		{ "outAckDelayed",	KSTAT_DATA_UINT32, 0 },
25672 		{ "outUrg",		KSTAT_DATA_UINT32, 0 },
25673 		{ "outWinUpdate",	KSTAT_DATA_UINT32, 0 },
25674 		{ "outWinProbe",	KSTAT_DATA_UINT32, 0 },
25675 		{ "outControl",		KSTAT_DATA_UINT32, 0 },
25676 		{ "outFastRetrans",	KSTAT_DATA_UINT32, 0 },
25677 		{ "inAckSegs",		KSTAT_DATA_UINT32, 0 },
25678 		{ "inAckBytes",		KSTAT_DATA_UINT32, 0 },
25679 		{ "inDupAck",		KSTAT_DATA_UINT32, 0 },
25680 		{ "inAckUnsent",	KSTAT_DATA_UINT32, 0 },
25681 		{ "inDataInorderSegs",	KSTAT_DATA_UINT32, 0 },
25682 		{ "inDataInorderBytes",	KSTAT_DATA_UINT32, 0 },
25683 		{ "inDataUnorderSegs",	KSTAT_DATA_UINT32, 0 },
25684 		{ "inDataUnorderBytes",	KSTAT_DATA_UINT32, 0 },
25685 		{ "inDataDupSegs",	KSTAT_DATA_UINT32, 0 },
25686 		{ "inDataDupBytes",	KSTAT_DATA_UINT32, 0 },
25687 		{ "inDataPartDupSegs",	KSTAT_DATA_UINT32, 0 },
25688 		{ "inDataPartDupBytes",	KSTAT_DATA_UINT32, 0 },
25689 		{ "inDataPastWinSegs",	KSTAT_DATA_UINT32, 0 },
25690 		{ "inDataPastWinBytes",	KSTAT_DATA_UINT32, 0 },
25691 		{ "inWinProbe",		KSTAT_DATA_UINT32, 0 },
25692 		{ "inWinUpdate",	KSTAT_DATA_UINT32, 0 },
25693 		{ "inClosed",		KSTAT_DATA_UINT32, 0 },
25694 		{ "rttUpdate",		KSTAT_DATA_UINT32, 0 },
25695 		{ "rttNoUpdate",	KSTAT_DATA_UINT32, 0 },
25696 		{ "timRetrans",		KSTAT_DATA_UINT32, 0 },
25697 		{ "timRetransDrop",	KSTAT_DATA_UINT32, 0 },
25698 		{ "timKeepalive",	KSTAT_DATA_UINT32, 0 },
25699 		{ "timKeepaliveProbe",	KSTAT_DATA_UINT32, 0 },
25700 		{ "timKeepaliveDrop",	KSTAT_DATA_UINT32, 0 },
25701 		{ "listenDrop",		KSTAT_DATA_UINT32, 0 },
25702 		{ "listenDropQ0",	KSTAT_DATA_UINT32, 0 },
25703 		{ "halfOpenDrop",	KSTAT_DATA_UINT32, 0 },
25704 		{ "outSackRetransSegs",	KSTAT_DATA_UINT32, 0 },
25705 		{ "connTableSize6",	KSTAT_DATA_INT32, 0 }
25706 	};
25707 
25708 	tcp_mibkp = kstat_create(TCP_MOD_NAME, 0, TCP_MOD_NAME,
25709 	    "mib2", KSTAT_TYPE_NAMED, NUM_OF_FIELDS(tcp_named_kstat_t), 0);
25710 
25711 	if (tcp_mibkp == NULL)
25712 		return;
25713 
25714 	template.rtoAlgorithm.value.ui32 = 4;
25715 	template.rtoMin.value.ui32 = tcp_rexmit_interval_min;
25716 	template.rtoMax.value.ui32 = tcp_rexmit_interval_max;
25717 	template.maxConn.value.i32 = -1;
25718 
25719 	bcopy(&template, tcp_mibkp->ks_data, sizeof (template));
25720 
25721 	tcp_mibkp->ks_update = tcp_kstat_update;
25722 
25723 	kstat_install(tcp_mibkp);
25724 }
25725 
25726 static void
25727 tcp_kstat_fini(void)
25728 {
25729 
25730 	if (tcp_mibkp != NULL) {
25731 		kstat_delete(tcp_mibkp);
25732 		tcp_mibkp = NULL;
25733 	}
25734 }
25735 
25736 static int
25737 tcp_kstat_update(kstat_t *kp, int rw)
25738 {
25739 	tcp_named_kstat_t	*tcpkp;
25740 	tcp_t			*tcp;
25741 	connf_t			*connfp;
25742 	conn_t			*connp;
25743 	int 			i;
25744 
25745 	if (!kp || !kp->ks_data)
25746 		return (EIO);
25747 
25748 	if (rw == KSTAT_WRITE)
25749 		return (EACCES);
25750 
25751 	tcpkp = (tcp_named_kstat_t *)kp->ks_data;
25752 
25753 	tcpkp->currEstab.value.ui32 = 0;
25754 
25755 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
25756 		connfp = &ipcl_globalhash_fanout[i];
25757 		connp = NULL;
25758 		while ((connp =
25759 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
25760 			tcp = connp->conn_tcp;
25761 			switch (tcp_snmp_state(tcp)) {
25762 			case MIB2_TCP_established:
25763 			case MIB2_TCP_closeWait:
25764 				tcpkp->currEstab.value.ui32++;
25765 				break;
25766 			}
25767 		}
25768 	}
25769 
25770 	tcpkp->activeOpens.value.ui32 = tcp_mib.tcpActiveOpens;
25771 	tcpkp->passiveOpens.value.ui32 = tcp_mib.tcpPassiveOpens;
25772 	tcpkp->attemptFails.value.ui32 = tcp_mib.tcpAttemptFails;
25773 	tcpkp->estabResets.value.ui32 = tcp_mib.tcpEstabResets;
25774 	tcpkp->inSegs.value.ui32 = tcp_mib.tcpInSegs;
25775 	tcpkp->outSegs.value.ui32 = tcp_mib.tcpOutSegs;
25776 	tcpkp->retransSegs.value.ui32 =	tcp_mib.tcpRetransSegs;
25777 	tcpkp->connTableSize.value.i32 = tcp_mib.tcpConnTableSize;
25778 	tcpkp->outRsts.value.ui32 = tcp_mib.tcpOutRsts;
25779 	tcpkp->outDataSegs.value.ui32 = tcp_mib.tcpOutDataSegs;
25780 	tcpkp->outDataBytes.value.ui32 = tcp_mib.tcpOutDataBytes;
25781 	tcpkp->retransBytes.value.ui32 = tcp_mib.tcpRetransBytes;
25782 	tcpkp->outAck.value.ui32 = tcp_mib.tcpOutAck;
25783 	tcpkp->outAckDelayed.value.ui32 = tcp_mib.tcpOutAckDelayed;
25784 	tcpkp->outUrg.value.ui32 = tcp_mib.tcpOutUrg;
25785 	tcpkp->outWinUpdate.value.ui32 = tcp_mib.tcpOutWinUpdate;
25786 	tcpkp->outWinProbe.value.ui32 = tcp_mib.tcpOutWinProbe;
25787 	tcpkp->outControl.value.ui32 = tcp_mib.tcpOutControl;
25788 	tcpkp->outFastRetrans.value.ui32 = tcp_mib.tcpOutFastRetrans;
25789 	tcpkp->inAckSegs.value.ui32 = tcp_mib.tcpInAckSegs;
25790 	tcpkp->inAckBytes.value.ui32 = tcp_mib.tcpInAckBytes;
25791 	tcpkp->inDupAck.value.ui32 = tcp_mib.tcpInDupAck;
25792 	tcpkp->inAckUnsent.value.ui32 = tcp_mib.tcpInAckUnsent;
25793 	tcpkp->inDataInorderSegs.value.ui32 = tcp_mib.tcpInDataInorderSegs;
25794 	tcpkp->inDataInorderBytes.value.ui32 = tcp_mib.tcpInDataInorderBytes;
25795 	tcpkp->inDataUnorderSegs.value.ui32 = tcp_mib.tcpInDataUnorderSegs;
25796 	tcpkp->inDataUnorderBytes.value.ui32 = tcp_mib.tcpInDataUnorderBytes;
25797 	tcpkp->inDataDupSegs.value.ui32 = tcp_mib.tcpInDataDupSegs;
25798 	tcpkp->inDataDupBytes.value.ui32 = tcp_mib.tcpInDataDupBytes;
25799 	tcpkp->inDataPartDupSegs.value.ui32 = tcp_mib.tcpInDataPartDupSegs;
25800 	tcpkp->inDataPartDupBytes.value.ui32 = tcp_mib.tcpInDataPartDupBytes;
25801 	tcpkp->inDataPastWinSegs.value.ui32 = tcp_mib.tcpInDataPastWinSegs;
25802 	tcpkp->inDataPastWinBytes.value.ui32 = tcp_mib.tcpInDataPastWinBytes;
25803 	tcpkp->inWinProbe.value.ui32 = tcp_mib.tcpInWinProbe;
25804 	tcpkp->inWinUpdate.value.ui32 = tcp_mib.tcpInWinUpdate;
25805 	tcpkp->inClosed.value.ui32 = tcp_mib.tcpInClosed;
25806 	tcpkp->rttNoUpdate.value.ui32 = tcp_mib.tcpRttNoUpdate;
25807 	tcpkp->rttUpdate.value.ui32 = tcp_mib.tcpRttUpdate;
25808 	tcpkp->timRetrans.value.ui32 = tcp_mib.tcpTimRetrans;
25809 	tcpkp->timRetransDrop.value.ui32 = tcp_mib.tcpTimRetransDrop;
25810 	tcpkp->timKeepalive.value.ui32 = tcp_mib.tcpTimKeepalive;
25811 	tcpkp->timKeepaliveProbe.value.ui32 = tcp_mib.tcpTimKeepaliveProbe;
25812 	tcpkp->timKeepaliveDrop.value.ui32 = tcp_mib.tcpTimKeepaliveDrop;
25813 	tcpkp->listenDrop.value.ui32 = tcp_mib.tcpListenDrop;
25814 	tcpkp->listenDropQ0.value.ui32 = tcp_mib.tcpListenDropQ0;
25815 	tcpkp->halfOpenDrop.value.ui32 = tcp_mib.tcpHalfOpenDrop;
25816 	tcpkp->outSackRetransSegs.value.ui32 = tcp_mib.tcpOutSackRetransSegs;
25817 	tcpkp->connTableSize6.value.i32 = tcp_mib.tcp6ConnTableSize;
25818 
25819 	return (0);
25820 }
25821 
25822 void
25823 tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp)
25824 {
25825 	uint16_t	hdr_len;
25826 	ipha_t		*ipha;
25827 	uint8_t		*nexthdrp;
25828 	tcph_t		*tcph;
25829 
25830 	/* Already has an eager */
25831 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
25832 		TCP_STAT(tcp_reinput_syn);
25833 		squeue_enter(connp->conn_sqp, mp, connp->conn_recv,
25834 		    connp, SQTAG_TCP_REINPUT_EAGER);
25835 		return;
25836 	}
25837 
25838 	switch (IPH_HDR_VERSION(mp->b_rptr)) {
25839 	case IPV4_VERSION:
25840 		ipha = (ipha_t *)mp->b_rptr;
25841 		hdr_len = IPH_HDR_LENGTH(ipha);
25842 		break;
25843 	case IPV6_VERSION:
25844 		if (!ip_hdr_length_nexthdr_v6(mp, (ip6_t *)mp->b_rptr,
25845 		    &hdr_len, &nexthdrp)) {
25846 			CONN_DEC_REF(connp);
25847 			freemsg(mp);
25848 			return;
25849 		}
25850 		break;
25851 	}
25852 
25853 	tcph = (tcph_t *)&mp->b_rptr[hdr_len];
25854 	if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) {
25855 		mp->b_datap->db_struioflag |= STRUIO_EAGER;
25856 		DB_CKSUMSTART(mp) = (intptr_t)sqp;
25857 	}
25858 
25859 	squeue_fill(connp->conn_sqp, mp, connp->conn_recv, connp,
25860 	    SQTAG_TCP_REINPUT);
25861 }
25862 
25863 static squeue_func_t
25864 tcp_squeue_switch(int val)
25865 {
25866 	squeue_func_t rval = squeue_fill;
25867 
25868 	switch (val) {
25869 	case 1:
25870 		rval = squeue_enter_nodrain;
25871 		break;
25872 	case 2:
25873 		rval = squeue_enter;
25874 		break;
25875 	default:
25876 		break;
25877 	}
25878 	return (rval);
25879 }
25880 
25881 static void
25882 tcp_squeue_add(squeue_t *sqp)
25883 {
25884 	tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc(
25885 		sizeof (tcp_squeue_priv_t), KM_SLEEP);
25886 
25887 	*squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait;
25888 	tcp_time_wait->tcp_time_wait_tid = timeout(tcp_time_wait_collector,
25889 	    sqp, TCP_TIME_WAIT_DELAY);
25890 	if (tcp_free_list_max_cnt == 0) {
25891 		int tcp_ncpus = ((boot_max_ncpus == -1) ?
25892 			max_ncpus : boot_max_ncpus);
25893 
25894 		/*
25895 		 * Limit number of entries to 1% of availble memory / tcp_ncpus
25896 		 */
25897 		tcp_free_list_max_cnt = (freemem * PAGESIZE) /
25898 			(tcp_ncpus * sizeof (tcp_t) * 100);
25899 	}
25900 	tcp_time_wait->tcp_free_list_cnt = 0;
25901 }
25902