xref: /titanic_50/usr/src/uts/common/inet/tcp/tcp.c (revision 7014882c6a3672fd0e5d60200af8643ae53c5928)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, Joyent Inc. All rights reserved.
25  * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
26  */
27 /* Copyright (c) 1990 Mentat Inc. */
28 
29 #include <sys/types.h>
30 #include <sys/stream.h>
31 #include <sys/strsun.h>
32 #include <sys/strsubr.h>
33 #include <sys/stropts.h>
34 #include <sys/strlog.h>
35 #define	_SUN_TPI_VERSION 2
36 #include <sys/tihdr.h>
37 #include <sys/timod.h>
38 #include <sys/ddi.h>
39 #include <sys/sunddi.h>
40 #include <sys/suntpi.h>
41 #include <sys/xti_inet.h>
42 #include <sys/cmn_err.h>
43 #include <sys/debug.h>
44 #include <sys/sdt.h>
45 #include <sys/vtrace.h>
46 #include <sys/kmem.h>
47 #include <sys/ethernet.h>
48 #include <sys/cpuvar.h>
49 #include <sys/dlpi.h>
50 #include <sys/pattr.h>
51 #include <sys/policy.h>
52 #include <sys/priv.h>
53 #include <sys/zone.h>
54 #include <sys/sunldi.h>
55 
56 #include <sys/errno.h>
57 #include <sys/signal.h>
58 #include <sys/socket.h>
59 #include <sys/socketvar.h>
60 #include <sys/sockio.h>
61 #include <sys/isa_defs.h>
62 #include <sys/md5.h>
63 #include <sys/random.h>
64 #include <sys/uio.h>
65 #include <sys/systm.h>
66 #include <netinet/in.h>
67 #include <netinet/tcp.h>
68 #include <netinet/ip6.h>
69 #include <netinet/icmp6.h>
70 #include <net/if.h>
71 #include <net/route.h>
72 #include <inet/ipsec_impl.h>
73 
74 #include <inet/common.h>
75 #include <inet/ip.h>
76 #include <inet/ip_impl.h>
77 #include <inet/ip6.h>
78 #include <inet/ip_ndp.h>
79 #include <inet/proto_set.h>
80 #include <inet/mib2.h>
81 #include <inet/optcom.h>
82 #include <inet/snmpcom.h>
83 #include <inet/kstatcom.h>
84 #include <inet/tcp.h>
85 #include <inet/tcp_impl.h>
86 #include <inet/tcp_cluster.h>
87 #include <inet/udp_impl.h>
88 #include <net/pfkeyv2.h>
89 #include <inet/ipdrop.h>
90 
91 #include <inet/ipclassifier.h>
92 #include <inet/ip_ire.h>
93 #include <inet/ip_ftable.h>
94 #include <inet/ip_if.h>
95 #include <inet/ipp_common.h>
96 #include <inet/ip_rts.h>
97 #include <inet/ip_netinfo.h>
98 #include <sys/squeue_impl.h>
99 #include <sys/squeue.h>
100 #include <sys/tsol/label.h>
101 #include <sys/tsol/tnet.h>
102 #include <rpc/pmap_prot.h>
103 #include <sys/callo.h>
104 
105 /*
106  * TCP Notes: aka FireEngine Phase I (PSARC 2002/433)
107  *
108  * (Read the detailed design doc in PSARC case directory)
109  *
110  * The entire tcp state is contained in tcp_t and conn_t structure
111  * which are allocated in tandem using ipcl_conn_create() and passing
112  * IPCL_TCPCONN as a flag. We use 'conn_ref' and 'conn_lock' to protect
113  * the references on the tcp_t. The tcp_t structure is never compressed
114  * and packets always land on the correct TCP perimeter from the time
115  * eager is created till the time tcp_t dies (as such the old mentat
116  * TCP global queue is not used for detached state and no IPSEC checking
117  * is required). The global queue is still allocated to send out resets
118  * for connection which have no listeners and IP directly calls
119  * tcp_xmit_listeners_reset() which does any policy check.
120  *
121  * Protection and Synchronisation mechanism:
122  *
123  * The tcp data structure does not use any kind of lock for protecting
124  * its state but instead uses 'squeues' for mutual exclusion from various
125  * read and write side threads. To access a tcp member, the thread should
126  * always be behind squeue (via squeue_enter with flags as SQ_FILL, SQ_PROCESS,
127  * or SQ_NODRAIN). Since the squeues allow a direct function call, caller
128  * can pass any tcp function having prototype of edesc_t as argument
129  * (different from traditional STREAMs model where packets come in only
130  * designated entry points). The list of functions that can be directly
131  * called via squeue are listed before the usual function prototype.
132  *
133  * Referencing:
134  *
135  * TCP is MT-Hot and we use a reference based scheme to make sure that the
136  * tcp structure doesn't disappear when its needed. When the application
137  * creates an outgoing connection or accepts an incoming connection, we
138  * start out with 2 references on 'conn_ref'. One for TCP and one for IP.
139  * The IP reference is just a symbolic reference since ip_tcpclose()
140  * looks at tcp structure after tcp_close_output() returns which could
141  * have dropped the last TCP reference. So as long as the connection is
142  * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the
143  * conn_t. The classifier puts its own reference when the connection is
144  * inserted in listen or connected hash. Anytime a thread needs to enter
145  * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr
146  * on write side or by doing a classify on read side and then puts a
147  * reference on the conn before doing squeue_enter/tryenter/fill. For
148  * read side, the classifier itself puts the reference under fanout lock
149  * to make sure that tcp can't disappear before it gets processed. The
150  * squeue will drop this reference automatically so the called function
151  * doesn't have to do a DEC_REF.
152  *
153  * Opening a new connection:
154  *
155  * The outgoing connection open is pretty simple. tcp_open() does the
156  * work in creating the conn/tcp structure and initializing it. The
157  * squeue assignment is done based on the CPU the application
158  * is running on. So for outbound connections, processing is always done
159  * on application CPU which might be different from the incoming CPU
160  * being interrupted by the NIC. An optimal way would be to figure out
161  * the NIC <-> CPU binding at listen time, and assign the outgoing
162  * connection to the squeue attached to the CPU that will be interrupted
163  * for incoming packets (we know the NIC based on the bind IP address).
164  * This might seem like a problem if more data is going out but the
165  * fact is that in most cases the transmit is ACK driven transmit where
166  * the outgoing data normally sits on TCP's xmit queue waiting to be
167  * transmitted.
168  *
169  * Accepting a connection:
170  *
171  * This is a more interesting case because of various races involved in
172  * establishing a eager in its own perimeter. Read the meta comment on
173  * top of tcp_input_listener(). But briefly, the squeue is picked by
174  * ip_fanout based on the ring or the sender (if loopback).
175  *
176  * Closing a connection:
177  *
178  * The close is fairly straight forward. tcp_close() calls tcp_close_output()
179  * via squeue to do the close and mark the tcp as detached if the connection
180  * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its
181  * reference but tcp_close() drop IP's reference always. So if tcp was
182  * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP
183  * and 1 because it is in classifier's connected hash. This is the condition
184  * we use to determine that its OK to clean up the tcp outside of squeue
185  * when time wait expires (check the ref under fanout and conn_lock and
186  * if it is 2, remove it from fanout hash and kill it).
187  *
188  * Although close just drops the necessary references and marks the
189  * tcp_detached state, tcp_close needs to know the tcp_detached has been
190  * set (under squeue) before letting the STREAM go away (because a
191  * inbound packet might attempt to go up the STREAM while the close
192  * has happened and tcp_detached is not set). So a special lock and
193  * flag is used along with a condition variable (tcp_closelock, tcp_closed,
194  * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked
195  * tcp_detached.
196  *
197  * Special provisions and fast paths:
198  *
199  * We make special provisions for sockfs by marking tcp_issocket
200  * whenever we have only sockfs on top of TCP. This allows us to skip
201  * putting the tcp in acceptor hash since a sockfs listener can never
202  * become acceptor and also avoid allocating a tcp_t for acceptor STREAM
203  * since eager has already been allocated and the accept now happens
204  * on acceptor STREAM. There is a big blob of comment on top of
205  * tcp_input_listener explaining the new accept. When socket is POP'd,
206  * sockfs sends us an ioctl to mark the fact and we go back to old
207  * behaviour. Once tcp_issocket is unset, its never set for the
208  * life of that connection.
209  *
210  * IPsec notes :
211  *
212  * Since a packet is always executed on the correct TCP perimeter
213  * all IPsec processing is defered to IP including checking new
214  * connections and setting IPSEC policies for new connection. The
215  * only exception is tcp_xmit_listeners_reset() which is called
216  * directly from IP and needs to policy check to see if TH_RST
217  * can be sent out.
218  */
219 
220 /*
221  * Values for squeue switch:
222  * 1: SQ_NODRAIN
223  * 2: SQ_PROCESS
224  * 3: SQ_FILL
225  */
226 int tcp_squeue_wput = 2;	/* /etc/systems */
227 int tcp_squeue_flag;
228 
229 /*
230  * To prevent memory hog, limit the number of entries in tcp_free_list
231  * to 1% of available memory / number of cpus
232  */
233 uint_t tcp_free_list_max_cnt = 0;
234 
235 #define	TCP_XMIT_LOWATER	4096
236 #define	TCP_XMIT_HIWATER	49152
237 #define	TCP_RECV_LOWATER	2048
238 #define	TCP_RECV_HIWATER	128000
239 
240 #define	TIDUSZ	4096	/* transport interface data unit size */
241 
242 /*
243  * Size of acceptor hash list.  It has to be a power of 2 for hashing.
244  */
245 #define	TCP_ACCEPTOR_FANOUT_SIZE		512
246 
247 #ifdef	_ILP32
248 #define	TCP_ACCEPTOR_HASH(accid)					\
249 		(((uint_t)(accid) >> 8) & (TCP_ACCEPTOR_FANOUT_SIZE - 1))
250 #else
251 #define	TCP_ACCEPTOR_HASH(accid)					\
252 		((uint_t)(accid) & (TCP_ACCEPTOR_FANOUT_SIZE - 1))
253 #endif	/* _ILP32 */
254 
255 /*
256  * Minimum number of connections which can be created per listener.  Used
257  * when the listener connection count is in effect.
258  */
259 static uint32_t tcp_min_conn_listener = 2;
260 
261 uint32_t tcp_early_abort = 30;
262 
263 /* TCP Timer control structure */
264 typedef struct tcpt_s {
265 	pfv_t	tcpt_pfv;	/* The routine we are to call */
266 	tcp_t	*tcpt_tcp;	/* The parameter we are to pass in */
267 } tcpt_t;
268 
269 /*
270  * Functions called directly via squeue having a prototype of edesc_t.
271  */
272 void		tcp_input_listener(void *arg, mblk_t *mp, void *arg2,
273     ip_recv_attr_t *ira);
274 void		tcp_input_data(void *arg, mblk_t *mp, void *arg2,
275     ip_recv_attr_t *ira);
276 static void	tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2,
277     ip_recv_attr_t *dummy);
278 
279 
280 /* Prototype for TCP functions */
281 static void	tcp_random_init(void);
282 int		tcp_random(void);
283 static int	tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp,
284 		    in_port_t dstport, uint_t srcid);
285 static int	tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp,
286 		    in_port_t dstport, uint32_t flowinfo,
287 		    uint_t srcid, uint32_t scope_id);
288 static void	tcp_iss_init(tcp_t *tcp);
289 static void	tcp_reinit(tcp_t *tcp);
290 static void	tcp_reinit_values(tcp_t *tcp);
291 
292 static void	tcp_wsrv(queue_t *q);
293 static void	tcp_update_lso(tcp_t *tcp, ip_xmit_attr_t *ixa);
294 static void	tcp_update_zcopy(tcp_t *tcp);
295 static void	tcp_notify(void *, ip_xmit_attr_t *, ixa_notify_type_t,
296     ixa_notify_arg_t);
297 static void	*tcp_stack_init(netstackid_t stackid, netstack_t *ns);
298 static void	tcp_stack_fini(netstackid_t stackid, void *arg);
299 
300 static int	tcp_squeue_switch(int);
301 
302 static int	tcp_open(queue_t *, dev_t *, int, int, cred_t *, boolean_t);
303 static int	tcp_openv4(queue_t *, dev_t *, int, int, cred_t *);
304 static int	tcp_openv6(queue_t *, dev_t *, int, int, cred_t *);
305 
306 static void	tcp_squeue_add(squeue_t *);
307 
308 struct module_info tcp_rinfo =  {
309 	TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER
310 };
311 
312 static struct module_info tcp_winfo =  {
313 	TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16
314 };
315 
316 /*
317  * Entry points for TCP as a device. The normal case which supports
318  * the TCP functionality.
319  * We have separate open functions for the /dev/tcp and /dev/tcp6 devices.
320  */
321 struct qinit tcp_rinitv4 = {
322 	NULL, (pfi_t)tcp_rsrv, tcp_openv4, tcp_tpi_close, NULL, &tcp_rinfo
323 };
324 
325 struct qinit tcp_rinitv6 = {
326 	NULL, (pfi_t)tcp_rsrv, tcp_openv6, tcp_tpi_close, NULL, &tcp_rinfo
327 };
328 
329 struct qinit tcp_winit = {
330 	(pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
331 };
332 
333 /* Initial entry point for TCP in socket mode. */
334 struct qinit tcp_sock_winit = {
335 	(pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
336 };
337 
338 /* TCP entry point during fallback */
339 struct qinit tcp_fallback_sock_winit = {
340 	(pfi_t)tcp_wput_fallback, NULL, NULL, NULL, NULL, &tcp_winfo
341 };
342 
343 /*
344  * Entry points for TCP as a acceptor STREAM opened by sockfs when doing
345  * an accept. Avoid allocating data structures since eager has already
346  * been created.
347  */
348 struct qinit tcp_acceptor_rinit = {
349 	NULL, (pfi_t)tcp_rsrv, NULL, tcp_tpi_close_accept, NULL, &tcp_winfo
350 };
351 
352 struct qinit tcp_acceptor_winit = {
353 	(pfi_t)tcp_tpi_accept, NULL, NULL, NULL, NULL, &tcp_winfo
354 };
355 
356 /* For AF_INET aka /dev/tcp */
357 struct streamtab tcpinfov4 = {
358 	&tcp_rinitv4, &tcp_winit
359 };
360 
361 /* For AF_INET6 aka /dev/tcp6 */
362 struct streamtab tcpinfov6 = {
363 	&tcp_rinitv6, &tcp_winit
364 };
365 
366 /*
367  * Following assumes TPI alignment requirements stay along 32 bit
368  * boundaries
369  */
370 #define	ROUNDUP32(x) \
371 	(((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1))
372 
373 /* Template for response to info request. */
374 struct T_info_ack tcp_g_t_info_ack = {
375 	T_INFO_ACK,		/* PRIM_type */
376 	0,			/* TSDU_size */
377 	T_INFINITE,		/* ETSDU_size */
378 	T_INVALID,		/* CDATA_size */
379 	T_INVALID,		/* DDATA_size */
380 	sizeof (sin_t),		/* ADDR_size */
381 	0,			/* OPT_size - not initialized here */
382 	TIDUSZ,			/* TIDU_size */
383 	T_COTS_ORD,		/* SERV_type */
384 	TCPS_IDLE,		/* CURRENT_state */
385 	(XPG4_1|EXPINLINE)	/* PROVIDER_flag */
386 };
387 
388 struct T_info_ack tcp_g_t_info_ack_v6 = {
389 	T_INFO_ACK,		/* PRIM_type */
390 	0,			/* TSDU_size */
391 	T_INFINITE,		/* ETSDU_size */
392 	T_INVALID,		/* CDATA_size */
393 	T_INVALID,		/* DDATA_size */
394 	sizeof (sin6_t),	/* ADDR_size */
395 	0,			/* OPT_size - not initialized here */
396 	TIDUSZ,		/* TIDU_size */
397 	T_COTS_ORD,		/* SERV_type */
398 	TCPS_IDLE,		/* CURRENT_state */
399 	(XPG4_1|EXPINLINE)	/* PROVIDER_flag */
400 };
401 
402 /*
403  * TCP tunables related declarations. Definitions are in tcp_tunables.c
404  */
405 extern mod_prop_info_t tcp_propinfo_tbl[];
406 extern int tcp_propinfo_count;
407 
408 #define	IS_VMLOANED_MBLK(mp) \
409 	(((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0)
410 
411 uint32_t do_tcpzcopy = 1;		/* 0: disable, 1: enable, 2: force */
412 
413 /*
414  * Forces all connections to obey the value of the tcps_maxpsz_multiplier
415  * tunable settable via NDD.  Otherwise, the per-connection behavior is
416  * determined dynamically during tcp_set_destination(), which is the default.
417  */
418 boolean_t tcp_static_maxpsz = B_FALSE;
419 
420 /*
421  * If the receive buffer size is changed, this function is called to update
422  * the upper socket layer on the new delayed receive wake up threshold.
423  */
424 static void
425 tcp_set_recv_threshold(tcp_t *tcp, uint32_t new_rcvthresh)
426 {
427 	uint32_t default_threshold = SOCKET_RECVHIWATER >> 3;
428 
429 	if (IPCL_IS_NONSTR(tcp->tcp_connp)) {
430 		conn_t *connp = tcp->tcp_connp;
431 		struct sock_proto_props sopp;
432 
433 		/*
434 		 * only increase rcvthresh upto default_threshold
435 		 */
436 		if (new_rcvthresh > default_threshold)
437 			new_rcvthresh = default_threshold;
438 
439 		sopp.sopp_flags = SOCKOPT_RCVTHRESH;
440 		sopp.sopp_rcvthresh = new_rcvthresh;
441 
442 		(*connp->conn_upcalls->su_set_proto_props)
443 		    (connp->conn_upper_handle, &sopp);
444 	}
445 }
446 
447 /*
448  * Figure out the value of window scale opton.  Note that the rwnd is
449  * ASSUMED to be rounded up to the nearest MSS before the calculation.
450  * We cannot find the scale value and then do a round up of tcp_rwnd
451  * because the scale value may not be correct after that.
452  *
453  * Set the compiler flag to make this function inline.
454  */
455 void
456 tcp_set_ws_value(tcp_t *tcp)
457 {
458 	int i;
459 	uint32_t rwnd = tcp->tcp_rwnd;
460 
461 	for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT;
462 	    i++, rwnd >>= 1)
463 		;
464 	tcp->tcp_rcv_ws = i;
465 }
466 
467 /*
468  * Remove cached/latched IPsec references.
469  */
470 void
471 tcp_ipsec_cleanup(tcp_t *tcp)
472 {
473 	conn_t		*connp = tcp->tcp_connp;
474 
475 	ASSERT(connp->conn_flags & IPCL_TCPCONN);
476 
477 	if (connp->conn_latch != NULL) {
478 		IPLATCH_REFRELE(connp->conn_latch);
479 		connp->conn_latch = NULL;
480 	}
481 	if (connp->conn_latch_in_policy != NULL) {
482 		IPPOL_REFRELE(connp->conn_latch_in_policy);
483 		connp->conn_latch_in_policy = NULL;
484 	}
485 	if (connp->conn_latch_in_action != NULL) {
486 		IPACT_REFRELE(connp->conn_latch_in_action);
487 		connp->conn_latch_in_action = NULL;
488 	}
489 	if (connp->conn_policy != NULL) {
490 		IPPH_REFRELE(connp->conn_policy, connp->conn_netstack);
491 		connp->conn_policy = NULL;
492 	}
493 }
494 
495 /*
496  * Cleaup before placing on free list.
497  * Disassociate from the netstack/tcp_stack_t since the freelist
498  * is per squeue and not per netstack.
499  */
500 void
501 tcp_cleanup(tcp_t *tcp)
502 {
503 	mblk_t		*mp;
504 	conn_t		*connp = tcp->tcp_connp;
505 	tcp_stack_t	*tcps = tcp->tcp_tcps;
506 	netstack_t	*ns = tcps->tcps_netstack;
507 	mblk_t		*tcp_rsrv_mp;
508 
509 	tcp_bind_hash_remove(tcp);
510 
511 	/* Cleanup that which needs the netstack first */
512 	tcp_ipsec_cleanup(tcp);
513 	ixa_cleanup(connp->conn_ixa);
514 
515 	if (connp->conn_ht_iphc != NULL) {
516 		kmem_free(connp->conn_ht_iphc, connp->conn_ht_iphc_allocated);
517 		connp->conn_ht_iphc = NULL;
518 		connp->conn_ht_iphc_allocated = 0;
519 		connp->conn_ht_iphc_len = 0;
520 		connp->conn_ht_ulp = NULL;
521 		connp->conn_ht_ulp_len = 0;
522 		tcp->tcp_ipha = NULL;
523 		tcp->tcp_ip6h = NULL;
524 		tcp->tcp_tcpha = NULL;
525 	}
526 
527 	/* We clear any IP_OPTIONS and extension headers */
528 	ip_pkt_free(&connp->conn_xmit_ipp);
529 
530 	tcp_free(tcp);
531 
532 	/*
533 	 * Since we will bzero the entire structure, we need to
534 	 * remove it and reinsert it in global hash list. We
535 	 * know the walkers can't get to this conn because we
536 	 * had set CONDEMNED flag earlier and checked reference
537 	 * under conn_lock so walker won't pick it and when we
538 	 * go the ipcl_globalhash_remove() below, no walker
539 	 * can get to it.
540 	 */
541 	ipcl_globalhash_remove(connp);
542 
543 	/* Save some state */
544 	mp = tcp->tcp_timercache;
545 
546 	tcp_rsrv_mp = tcp->tcp_rsrv_mp;
547 
548 	if (connp->conn_cred != NULL) {
549 		crfree(connp->conn_cred);
550 		connp->conn_cred = NULL;
551 	}
552 	ipcl_conn_cleanup(connp);
553 	connp->conn_flags = IPCL_TCPCONN;
554 
555 	/*
556 	 * Now it is safe to decrement the reference counts.
557 	 * This might be the last reference on the netstack
558 	 * in which case it will cause the freeing of the IP Instance.
559 	 */
560 	connp->conn_netstack = NULL;
561 	connp->conn_ixa->ixa_ipst = NULL;
562 	netstack_rele(ns);
563 	ASSERT(tcps != NULL);
564 	tcp->tcp_tcps = NULL;
565 
566 	bzero(tcp, sizeof (tcp_t));
567 
568 	/* restore the state */
569 	tcp->tcp_timercache = mp;
570 
571 	tcp->tcp_rsrv_mp = tcp_rsrv_mp;
572 
573 	tcp->tcp_connp = connp;
574 
575 	ASSERT(connp->conn_tcp == tcp);
576 	ASSERT(connp->conn_flags & IPCL_TCPCONN);
577 	connp->conn_state_flags = CONN_INCIPIENT;
578 	ASSERT(connp->conn_proto == IPPROTO_TCP);
579 	ASSERT(connp->conn_ref == 1);
580 }
581 
582 /*
583  * Adapt to the information, such as rtt and rtt_sd, provided from the
584  * DCE and IRE maintained by IP.
585  *
586  * Checks for multicast and broadcast destination address.
587  * Returns zero if ok; an errno on failure.
588  *
589  * Note that the MSS calculation here is based on the info given in
590  * the DCE and IRE.  We do not do any calculation based on TCP options.  They
591  * will be handled in tcp_input_data() when TCP knows which options to use.
592  *
593  * Note on how TCP gets its parameters for a connection.
594  *
595  * When a tcp_t structure is allocated, it gets all the default parameters.
596  * In tcp_set_destination(), it gets those metric parameters, like rtt, rtt_sd,
597  * spipe, rpipe, ... from the route metrics.  Route metric overrides the
598  * default.
599  *
600  * An incoming SYN with a multicast or broadcast destination address is dropped
601  * in ip_fanout_v4/v6.
602  *
603  * An incoming SYN with a multicast or broadcast source address is always
604  * dropped in tcp_set_destination, since IPDF_ALLOW_MCBC is not set in
605  * conn_connect.
606  * The same logic in tcp_set_destination also serves to
607  * reject an attempt to connect to a broadcast or multicast (destination)
608  * address.
609  */
610 int
611 tcp_set_destination(tcp_t *tcp)
612 {
613 	uint32_t	mss_max;
614 	uint32_t	mss;
615 	boolean_t	tcp_detached = TCP_IS_DETACHED(tcp);
616 	conn_t		*connp = tcp->tcp_connp;
617 	tcp_stack_t	*tcps = tcp->tcp_tcps;
618 	iulp_t		uinfo;
619 	int		error;
620 	uint32_t	flags;
621 
622 	flags = IPDF_LSO | IPDF_ZCOPY;
623 	/*
624 	 * Make sure we have a dce for the destination to avoid dce_ident
625 	 * contention for connected sockets.
626 	 */
627 	flags |= IPDF_UNIQUE_DCE;
628 
629 	if (!tcps->tcps_ignore_path_mtu)
630 		connp->conn_ixa->ixa_flags |= IXAF_PMTU_DISCOVERY;
631 
632 	/* Use conn_lock to satify ASSERT; tcp is already serialized */
633 	mutex_enter(&connp->conn_lock);
634 	error = conn_connect(connp, &uinfo, flags);
635 	mutex_exit(&connp->conn_lock);
636 	if (error != 0)
637 		return (error);
638 
639 	error = tcp_build_hdrs(tcp);
640 	if (error != 0)
641 		return (error);
642 
643 	tcp->tcp_localnet = uinfo.iulp_localnet;
644 
645 	if (uinfo.iulp_rtt != 0) {
646 		clock_t	rto;
647 
648 		tcp->tcp_rtt_sa = uinfo.iulp_rtt;
649 		tcp->tcp_rtt_sd = uinfo.iulp_rtt_sd;
650 		rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
651 		    tcps->tcps_rexmit_interval_extra +
652 		    (tcp->tcp_rtt_sa >> 5);
653 
654 		TCP_SET_RTO(tcp, rto);
655 	}
656 	if (uinfo.iulp_ssthresh != 0)
657 		tcp->tcp_cwnd_ssthresh = uinfo.iulp_ssthresh;
658 	else
659 		tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
660 	if (uinfo.iulp_spipe > 0) {
661 		connp->conn_sndbuf = MIN(uinfo.iulp_spipe,
662 		    tcps->tcps_max_buf);
663 		if (tcps->tcps_snd_lowat_fraction != 0) {
664 			connp->conn_sndlowat = connp->conn_sndbuf /
665 			    tcps->tcps_snd_lowat_fraction;
666 		}
667 		(void) tcp_maxpsz_set(tcp, B_TRUE);
668 	}
669 	/*
670 	 * Note that up till now, acceptor always inherits receive
671 	 * window from the listener.  But if there is a metrics
672 	 * associated with a host, we should use that instead of
673 	 * inheriting it from listener. Thus we need to pass this
674 	 * info back to the caller.
675 	 */
676 	if (uinfo.iulp_rpipe > 0) {
677 		tcp->tcp_rwnd = MIN(uinfo.iulp_rpipe,
678 		    tcps->tcps_max_buf);
679 	}
680 
681 	if (uinfo.iulp_rtomax > 0) {
682 		tcp->tcp_second_timer_threshold =
683 		    uinfo.iulp_rtomax;
684 	}
685 
686 	/*
687 	 * Use the metric option settings, iulp_tstamp_ok and
688 	 * iulp_wscale_ok, only for active open. What this means
689 	 * is that if the other side uses timestamp or window
690 	 * scale option, TCP will also use those options. That
691 	 * is for passive open.  If the application sets a
692 	 * large window, window scale is enabled regardless of
693 	 * the value in iulp_wscale_ok.  This is the behavior
694 	 * since 2.6.  So we keep it.
695 	 * The only case left in passive open processing is the
696 	 * check for SACK.
697 	 * For ECN, it should probably be like SACK.  But the
698 	 * current value is binary, so we treat it like the other
699 	 * cases.  The metric only controls active open.For passive
700 	 * open, the ndd param, tcp_ecn_permitted, controls the
701 	 * behavior.
702 	 */
703 	if (!tcp_detached) {
704 		/*
705 		 * The if check means that the following can only
706 		 * be turned on by the metrics only IRE, but not off.
707 		 */
708 		if (uinfo.iulp_tstamp_ok)
709 			tcp->tcp_snd_ts_ok = B_TRUE;
710 		if (uinfo.iulp_wscale_ok)
711 			tcp->tcp_snd_ws_ok = B_TRUE;
712 		if (uinfo.iulp_sack == 2)
713 			tcp->tcp_snd_sack_ok = B_TRUE;
714 		if (uinfo.iulp_ecn_ok)
715 			tcp->tcp_ecn_ok = B_TRUE;
716 	} else {
717 		/*
718 		 * Passive open.
719 		 *
720 		 * As above, the if check means that SACK can only be
721 		 * turned on by the metric only IRE.
722 		 */
723 		if (uinfo.iulp_sack > 0) {
724 			tcp->tcp_snd_sack_ok = B_TRUE;
725 		}
726 	}
727 
728 	/*
729 	 * XXX Note that currently, iulp_mtu can be as small as 68
730 	 * because of PMTUd.  So tcp_mss may go to negative if combined
731 	 * length of all those options exceeds 28 bytes.  But because
732 	 * of the tcp_mss_min check below, we may not have a problem if
733 	 * tcp_mss_min is of a reasonable value.  The default is 1 so
734 	 * the negative problem still exists.  And the check defeats PMTUd.
735 	 * In fact, if PMTUd finds that the MSS should be smaller than
736 	 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min
737 	 * value.
738 	 *
739 	 * We do not deal with that now.  All those problems related to
740 	 * PMTUd will be fixed later.
741 	 */
742 	ASSERT(uinfo.iulp_mtu != 0);
743 	mss = tcp->tcp_initial_pmtu = uinfo.iulp_mtu;
744 
745 	/* Sanity check for MSS value. */
746 	if (connp->conn_ipversion == IPV4_VERSION)
747 		mss_max = tcps->tcps_mss_max_ipv4;
748 	else
749 		mss_max = tcps->tcps_mss_max_ipv6;
750 
751 	if (tcp->tcp_ipsec_overhead == 0)
752 		tcp->tcp_ipsec_overhead = conn_ipsec_length(connp);
753 
754 	mss -= tcp->tcp_ipsec_overhead;
755 
756 	if (mss < tcps->tcps_mss_min)
757 		mss = tcps->tcps_mss_min;
758 	if (mss > mss_max)
759 		mss = mss_max;
760 
761 	/* Note that this is the maximum MSS, excluding all options. */
762 	tcp->tcp_mss = mss;
763 
764 	/*
765 	 * Update the tcp connection with LSO capability.
766 	 */
767 	tcp_update_lso(tcp, connp->conn_ixa);
768 
769 	/*
770 	 * Initialize the ISS here now that we have the full connection ID.
771 	 * The RFC 1948 method of initial sequence number generation requires
772 	 * knowledge of the full connection ID before setting the ISS.
773 	 */
774 	tcp_iss_init(tcp);
775 
776 	tcp->tcp_loopback = (uinfo.iulp_loopback | uinfo.iulp_local);
777 
778 	/*
779 	 * Make sure that conn is not marked incipient
780 	 * for incoming connections. A blind
781 	 * removal of incipient flag is cheaper than
782 	 * check and removal.
783 	 */
784 	mutex_enter(&connp->conn_lock);
785 	connp->conn_state_flags &= ~CONN_INCIPIENT;
786 	mutex_exit(&connp->conn_lock);
787 	return (0);
788 }
789 
790 /*
791  * tcp_clean_death / tcp_close_detached must not be called more than once
792  * on a tcp. Thus every function that potentially calls tcp_clean_death
793  * must check for the tcp state before calling tcp_clean_death.
794  * Eg. tcp_input_data, tcp_eager_kill, tcp_clean_death_wrapper,
795  * tcp_timer_handler, all check for the tcp state.
796  */
797 /* ARGSUSED */
798 void
799 tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2,
800     ip_recv_attr_t *dummy)
801 {
802 	tcp_t	*tcp = ((conn_t *)arg)->conn_tcp;
803 
804 	freemsg(mp);
805 	if (tcp->tcp_state > TCPS_BOUND)
806 		(void) tcp_clean_death(((conn_t *)arg)->conn_tcp, ETIMEDOUT);
807 }
808 
809 /*
810  * We are dying for some reason.  Try to do it gracefully.  (May be called
811  * as writer.)
812  *
813  * Return -1 if the structure was not cleaned up (if the cleanup had to be
814  * done by a service procedure).
815  * TBD - Should the return value distinguish between the tcp_t being
816  * freed and it being reinitialized?
817  */
818 int
819 tcp_clean_death(tcp_t *tcp, int err)
820 {
821 	mblk_t	*mp;
822 	queue_t	*q;
823 	conn_t	*connp = tcp->tcp_connp;
824 	tcp_stack_t	*tcps = tcp->tcp_tcps;
825 
826 	if (tcp->tcp_fused)
827 		tcp_unfuse(tcp);
828 
829 	if (tcp->tcp_linger_tid != 0 &&
830 	    TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) {
831 		tcp_stop_lingering(tcp);
832 	}
833 
834 	ASSERT(tcp != NULL);
835 	ASSERT((connp->conn_family == AF_INET &&
836 	    connp->conn_ipversion == IPV4_VERSION) ||
837 	    (connp->conn_family == AF_INET6 &&
838 	    (connp->conn_ipversion == IPV4_VERSION ||
839 	    connp->conn_ipversion == IPV6_VERSION)));
840 
841 	if (TCP_IS_DETACHED(tcp)) {
842 		if (tcp->tcp_hard_binding) {
843 			/*
844 			 * Its an eager that we are dealing with. We close the
845 			 * eager but in case a conn_ind has already gone to the
846 			 * listener, let tcp_accept_finish() send a discon_ind
847 			 * to the listener and drop the last reference. If the
848 			 * listener doesn't even know about the eager i.e. the
849 			 * conn_ind hasn't gone up, blow away the eager and drop
850 			 * the last reference as well. If the conn_ind has gone
851 			 * up, state should be BOUND. tcp_accept_finish
852 			 * will figure out that the connection has received a
853 			 * RST and will send a DISCON_IND to the application.
854 			 */
855 			tcp_closei_local(tcp);
856 			if (!tcp->tcp_tconnind_started) {
857 				CONN_DEC_REF(connp);
858 			} else {
859 				tcp->tcp_state = TCPS_BOUND;
860 				DTRACE_TCP6(state__change, void, NULL,
861 				    ip_xmit_attr_t *, connp->conn_ixa,
862 				    void, NULL, tcp_t *, tcp, void, NULL,
863 				    int32_t, TCPS_CLOSED);
864 			}
865 		} else {
866 			tcp_close_detached(tcp);
867 		}
868 		return (0);
869 	}
870 
871 	TCP_STAT(tcps, tcp_clean_death_nondetached);
872 
873 	/*
874 	 * The connection is dead.  Decrement listener connection counter if
875 	 * necessary.
876 	 */
877 	if (tcp->tcp_listen_cnt != NULL)
878 		TCP_DECR_LISTEN_CNT(tcp);
879 
880 	/*
881 	 * When a connection is moved to TIME_WAIT state, the connection
882 	 * counter is already decremented.  So no need to decrement here
883 	 * again.  See SET_TIME_WAIT() macro.
884 	 */
885 	if (tcp->tcp_state >= TCPS_ESTABLISHED &&
886 	    tcp->tcp_state < TCPS_TIME_WAIT) {
887 		TCPS_CONN_DEC(tcps);
888 	}
889 
890 	q = connp->conn_rq;
891 
892 	/* Trash all inbound data */
893 	if (!IPCL_IS_NONSTR(connp)) {
894 		ASSERT(q != NULL);
895 		flushq(q, FLUSHALL);
896 	}
897 
898 	/*
899 	 * If we are at least part way open and there is error
900 	 * (err==0 implies no error)
901 	 * notify our client by a T_DISCON_IND.
902 	 */
903 	if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) {
904 		if (tcp->tcp_state >= TCPS_ESTABLISHED &&
905 		    !TCP_IS_SOCKET(tcp)) {
906 			/*
907 			 * Send M_FLUSH according to TPI. Because sockets will
908 			 * (and must) ignore FLUSHR we do that only for TPI
909 			 * endpoints and sockets in STREAMS mode.
910 			 */
911 			(void) putnextctl1(q, M_FLUSH, FLUSHR);
912 		}
913 		if (connp->conn_debug) {
914 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
915 			    "tcp_clean_death: discon err %d", err);
916 		}
917 		if (IPCL_IS_NONSTR(connp)) {
918 			/* Direct socket, use upcall */
919 			(*connp->conn_upcalls->su_disconnected)(
920 			    connp->conn_upper_handle, tcp->tcp_connid, err);
921 		} else {
922 			mp = mi_tpi_discon_ind(NULL, err, 0);
923 			if (mp != NULL) {
924 				putnext(q, mp);
925 			} else {
926 				if (connp->conn_debug) {
927 					(void) strlog(TCP_MOD_ID, 0, 1,
928 					    SL_ERROR|SL_TRACE,
929 					    "tcp_clean_death, sending M_ERROR");
930 				}
931 				(void) putnextctl1(q, M_ERROR, EPROTO);
932 			}
933 		}
934 		if (tcp->tcp_state <= TCPS_SYN_RCVD) {
935 			/* SYN_SENT or SYN_RCVD */
936 			TCPS_BUMP_MIB(tcps, tcpAttemptFails);
937 		} else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) {
938 			/* ESTABLISHED or CLOSE_WAIT */
939 			TCPS_BUMP_MIB(tcps, tcpEstabResets);
940 		}
941 	}
942 
943 	/*
944 	 * ESTABLISHED non-STREAMS eagers are not 'detached' because
945 	 * an upper handle is obtained when the SYN-ACK comes in. So it
946 	 * should receive the 'disconnected' upcall, but tcp_reinit should
947 	 * not be called since this is an eager.
948 	 */
949 	if (tcp->tcp_listener != NULL && IPCL_IS_NONSTR(connp)) {
950 		tcp_closei_local(tcp);
951 		tcp->tcp_state = TCPS_BOUND;
952 		DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
953 		    connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL,
954 		    int32_t, TCPS_CLOSED);
955 		return (0);
956 	}
957 
958 	tcp_reinit(tcp);
959 	if (IPCL_IS_NONSTR(connp))
960 		(void) tcp_do_unbind(connp);
961 
962 	return (-1);
963 }
964 
965 /*
966  * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout
967  * to expire, stop the wait and finish the close.
968  */
969 void
970 tcp_stop_lingering(tcp_t *tcp)
971 {
972 	clock_t	delta = 0;
973 	tcp_stack_t	*tcps = tcp->tcp_tcps;
974 	conn_t		*connp = tcp->tcp_connp;
975 
976 	tcp->tcp_linger_tid = 0;
977 	if (tcp->tcp_state > TCPS_LISTEN) {
978 		tcp_acceptor_hash_remove(tcp);
979 		mutex_enter(&tcp->tcp_non_sq_lock);
980 		if (tcp->tcp_flow_stopped) {
981 			tcp_clrqfull(tcp);
982 		}
983 		mutex_exit(&tcp->tcp_non_sq_lock);
984 
985 		if (tcp->tcp_timer_tid != 0) {
986 			delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
987 			tcp->tcp_timer_tid = 0;
988 		}
989 		/*
990 		 * Need to cancel those timers which will not be used when
991 		 * TCP is detached.  This has to be done before the conn_wq
992 		 * is cleared.
993 		 */
994 		tcp_timers_stop(tcp);
995 
996 		tcp->tcp_detached = B_TRUE;
997 		connp->conn_rq = NULL;
998 		connp->conn_wq = NULL;
999 
1000 		if (tcp->tcp_state == TCPS_TIME_WAIT) {
1001 			tcp_time_wait_append(tcp);
1002 			TCP_DBGSTAT(tcps, tcp_detach_time_wait);
1003 			goto finish;
1004 		}
1005 
1006 		/*
1007 		 * If delta is zero the timer event wasn't executed and was
1008 		 * successfully canceled. In this case we need to restart it
1009 		 * with the minimal delta possible.
1010 		 */
1011 		if (delta >= 0) {
1012 			tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer,
1013 			    delta ? delta : 1);
1014 		}
1015 	} else {
1016 		tcp_closei_local(tcp);
1017 		CONN_DEC_REF(connp);
1018 	}
1019 finish:
1020 	tcp->tcp_detached = B_TRUE;
1021 	connp->conn_rq = NULL;
1022 	connp->conn_wq = NULL;
1023 
1024 	/* Signal closing thread that it can complete close */
1025 	mutex_enter(&tcp->tcp_closelock);
1026 	tcp->tcp_closed = 1;
1027 	cv_signal(&tcp->tcp_closecv);
1028 	mutex_exit(&tcp->tcp_closelock);
1029 
1030 	/* If we have an upper handle (socket), release it */
1031 	if (IPCL_IS_NONSTR(connp)) {
1032 		ASSERT(connp->conn_upper_handle != NULL);
1033 		(*connp->conn_upcalls->su_closed)(connp->conn_upper_handle);
1034 		connp->conn_upper_handle = NULL;
1035 		connp->conn_upcalls = NULL;
1036 	}
1037 }
1038 
1039 void
1040 tcp_close_common(conn_t *connp, int flags)
1041 {
1042 	tcp_t		*tcp = connp->conn_tcp;
1043 	mblk_t 		*mp = &tcp->tcp_closemp;
1044 	boolean_t	conn_ioctl_cleanup_reqd = B_FALSE;
1045 	mblk_t		*bp;
1046 
1047 	ASSERT(connp->conn_ref >= 2);
1048 
1049 	/*
1050 	 * Mark the conn as closing. ipsq_pending_mp_add will not
1051 	 * add any mp to the pending mp list, after this conn has
1052 	 * started closing.
1053 	 */
1054 	mutex_enter(&connp->conn_lock);
1055 	connp->conn_state_flags |= CONN_CLOSING;
1056 	if (connp->conn_oper_pending_ill != NULL)
1057 		conn_ioctl_cleanup_reqd = B_TRUE;
1058 	CONN_INC_REF_LOCKED(connp);
1059 	mutex_exit(&connp->conn_lock);
1060 	tcp->tcp_closeflags = (uint8_t)flags;
1061 	ASSERT(connp->conn_ref >= 3);
1062 
1063 	/*
1064 	 * tcp_closemp_used is used below without any protection of a lock
1065 	 * as we don't expect any one else to use it concurrently at this
1066 	 * point otherwise it would be a major defect.
1067 	 */
1068 
1069 	if (mp->b_prev == NULL)
1070 		tcp->tcp_closemp_used = B_TRUE;
1071 	else
1072 		cmn_err(CE_PANIC, "tcp_close: concurrent use of tcp_closemp: "
1073 		    "connp %p tcp %p\n", (void *)connp, (void *)tcp);
1074 
1075 	TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
1076 
1077 	/*
1078 	 * Cleanup any queued ioctls here. This must be done before the wq/rq
1079 	 * are re-written by tcp_close_output().
1080 	 */
1081 	if (conn_ioctl_cleanup_reqd)
1082 		conn_ioctl_cleanup(connp);
1083 
1084 	/*
1085 	 * As CONN_CLOSING is set, no further ioctls should be passed down to
1086 	 * IP for this conn (see the guards in tcp_ioctl, tcp_wput_ioctl and
1087 	 * tcp_wput_iocdata). If the ioctl was queued on an ipsq,
1088 	 * conn_ioctl_cleanup should have found it and removed it. If the ioctl
1089 	 * was still in flight at the time, we wait for it here. See comments
1090 	 * for CONN_INC_IOCTLREF in ip.h for details.
1091 	 */
1092 	mutex_enter(&connp->conn_lock);
1093 	while (connp->conn_ioctlref > 0)
1094 		cv_wait(&connp->conn_cv, &connp->conn_lock);
1095 	ASSERT(connp->conn_ioctlref == 0);
1096 	ASSERT(connp->conn_oper_pending_ill == NULL);
1097 	mutex_exit(&connp->conn_lock);
1098 
1099 	SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_close_output, connp,
1100 	    NULL, tcp_squeue_flag, SQTAG_IP_TCP_CLOSE);
1101 
1102 	/*
1103 	 * For non-STREAMS sockets, the normal case is that the conn makes
1104 	 * an upcall when it's finally closed, so there is no need to wait
1105 	 * in the protocol. But in case of SO_LINGER the thread sleeps here
1106 	 * so it can properly deal with the thread being interrupted.
1107 	 */
1108 	if (IPCL_IS_NONSTR(connp) && connp->conn_linger == 0)
1109 		goto nowait;
1110 
1111 	mutex_enter(&tcp->tcp_closelock);
1112 	while (!tcp->tcp_closed) {
1113 		if (!cv_wait_sig(&tcp->tcp_closecv, &tcp->tcp_closelock)) {
1114 			/*
1115 			 * The cv_wait_sig() was interrupted. We now do the
1116 			 * following:
1117 			 *
1118 			 * 1) If the endpoint was lingering, we allow this
1119 			 * to be interrupted by cancelling the linger timeout
1120 			 * and closing normally.
1121 			 *
1122 			 * 2) Revert to calling cv_wait()
1123 			 *
1124 			 * We revert to using cv_wait() to avoid an
1125 			 * infinite loop which can occur if the calling
1126 			 * thread is higher priority than the squeue worker
1127 			 * thread and is bound to the same cpu.
1128 			 */
1129 			if (connp->conn_linger && connp->conn_lingertime > 0) {
1130 				mutex_exit(&tcp->tcp_closelock);
1131 				/* Entering squeue, bump ref count. */
1132 				CONN_INC_REF(connp);
1133 				bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL);
1134 				SQUEUE_ENTER_ONE(connp->conn_sqp, bp,
1135 				    tcp_linger_interrupted, connp, NULL,
1136 				    tcp_squeue_flag, SQTAG_IP_TCP_CLOSE);
1137 				mutex_enter(&tcp->tcp_closelock);
1138 			}
1139 			break;
1140 		}
1141 	}
1142 	while (!tcp->tcp_closed)
1143 		cv_wait(&tcp->tcp_closecv, &tcp->tcp_closelock);
1144 	mutex_exit(&tcp->tcp_closelock);
1145 
1146 	/*
1147 	 * In the case of listener streams that have eagers in the q or q0
1148 	 * we wait for the eagers to drop their reference to us. conn_rq and
1149 	 * conn_wq of the eagers point to our queues. By waiting for the
1150 	 * refcnt to drop to 1, we are sure that the eagers have cleaned
1151 	 * up their queue pointers and also dropped their references to us.
1152 	 *
1153 	 * For non-STREAMS sockets we do not have to wait here; the
1154 	 * listener will instead make a su_closed upcall when the last
1155 	 * reference is dropped.
1156 	 */
1157 	if (tcp->tcp_wait_for_eagers && !IPCL_IS_NONSTR(connp)) {
1158 		mutex_enter(&connp->conn_lock);
1159 		while (connp->conn_ref != 1) {
1160 			cv_wait(&connp->conn_cv, &connp->conn_lock);
1161 		}
1162 		mutex_exit(&connp->conn_lock);
1163 	}
1164 
1165 nowait:
1166 	connp->conn_cpid = NOPID;
1167 }
1168 
1169 /*
1170  * Called by tcp_close() routine via squeue when lingering is
1171  * interrupted by a signal.
1172  */
1173 
1174 /* ARGSUSED */
1175 static void
1176 tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy)
1177 {
1178 	conn_t	*connp = (conn_t *)arg;
1179 	tcp_t	*tcp = connp->conn_tcp;
1180 
1181 	freeb(mp);
1182 	if (tcp->tcp_linger_tid != 0 &&
1183 	    TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) {
1184 		tcp_stop_lingering(tcp);
1185 		tcp->tcp_client_errno = EINTR;
1186 	}
1187 }
1188 
1189 /*
1190  * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp.
1191  * Some stream heads get upset if they see these later on as anything but NULL.
1192  */
1193 void
1194 tcp_close_mpp(mblk_t **mpp)
1195 {
1196 	mblk_t	*mp;
1197 
1198 	if ((mp = *mpp) != NULL) {
1199 		do {
1200 			mp->b_next = NULL;
1201 			mp->b_prev = NULL;
1202 		} while ((mp = mp->b_cont) != NULL);
1203 
1204 		mp = *mpp;
1205 		*mpp = NULL;
1206 		freemsg(mp);
1207 	}
1208 }
1209 
1210 /* Do detached close. */
1211 void
1212 tcp_close_detached(tcp_t *tcp)
1213 {
1214 	if (tcp->tcp_fused)
1215 		tcp_unfuse(tcp);
1216 
1217 	/*
1218 	 * Clustering code serializes TCP disconnect callbacks and
1219 	 * cluster tcp list walks by blocking a TCP disconnect callback
1220 	 * if a cluster tcp list walk is in progress. This ensures
1221 	 * accurate accounting of TCPs in the cluster code even though
1222 	 * the TCP list walk itself is not atomic.
1223 	 */
1224 	tcp_closei_local(tcp);
1225 	CONN_DEC_REF(tcp->tcp_connp);
1226 }
1227 
1228 /*
1229  * The tcp_t is going away. Remove it from all lists and set it
1230  * to TCPS_CLOSED. The freeing up of memory is deferred until
1231  * tcp_inactive. This is needed since a thread in tcp_rput might have
1232  * done a CONN_INC_REF on this structure before it was removed from the
1233  * hashes.
1234  */
1235 void
1236 tcp_closei_local(tcp_t *tcp)
1237 {
1238 	conn_t		*connp = tcp->tcp_connp;
1239 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1240 	int32_t		oldstate;
1241 
1242 	if (!TCP_IS_SOCKET(tcp))
1243 		tcp_acceptor_hash_remove(tcp);
1244 
1245 	TCPS_UPDATE_MIB(tcps, tcpHCInSegs, tcp->tcp_ibsegs);
1246 	tcp->tcp_ibsegs = 0;
1247 	TCPS_UPDATE_MIB(tcps, tcpHCOutSegs, tcp->tcp_obsegs);
1248 	tcp->tcp_obsegs = 0;
1249 
1250 	/*
1251 	 * This can be called via tcp_time_wait_processing() if TCP gets a
1252 	 * SYN with sequence number outside the TIME-WAIT connection's
1253 	 * window.  So we need to check for TIME-WAIT state here as the
1254 	 * connection counter is already decremented.  See SET_TIME_WAIT()
1255 	 * macro
1256 	 */
1257 	if (tcp->tcp_state >= TCPS_ESTABLISHED &&
1258 	    tcp->tcp_state < TCPS_TIME_WAIT) {
1259 		TCPS_CONN_DEC(tcps);
1260 	}
1261 
1262 	/*
1263 	 * If we are an eager connection hanging off a listener that
1264 	 * hasn't formally accepted the connection yet, get off his
1265 	 * list and blow off any data that we have accumulated.
1266 	 */
1267 	if (tcp->tcp_listener != NULL) {
1268 		tcp_t	*listener = tcp->tcp_listener;
1269 		mutex_enter(&listener->tcp_eager_lock);
1270 		/*
1271 		 * tcp_tconnind_started == B_TRUE means that the
1272 		 * conn_ind has already gone to listener. At
1273 		 * this point, eager will be closed but we
1274 		 * leave it in listeners eager list so that
1275 		 * if listener decides to close without doing
1276 		 * accept, we can clean this up. In tcp_tli_accept
1277 		 * we take care of the case of accept on closed
1278 		 * eager.
1279 		 */
1280 		if (!tcp->tcp_tconnind_started) {
1281 			tcp_eager_unlink(tcp);
1282 			mutex_exit(&listener->tcp_eager_lock);
1283 			/*
1284 			 * We don't want to have any pointers to the
1285 			 * listener queue, after we have released our
1286 			 * reference on the listener
1287 			 */
1288 			ASSERT(tcp->tcp_detached);
1289 			connp->conn_rq = NULL;
1290 			connp->conn_wq = NULL;
1291 			CONN_DEC_REF(listener->tcp_connp);
1292 		} else {
1293 			mutex_exit(&listener->tcp_eager_lock);
1294 		}
1295 	}
1296 
1297 	/* Stop all the timers */
1298 	tcp_timers_stop(tcp);
1299 
1300 	if (tcp->tcp_state == TCPS_LISTEN) {
1301 		if (tcp->tcp_ip_addr_cache) {
1302 			kmem_free((void *)tcp->tcp_ip_addr_cache,
1303 			    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
1304 			tcp->tcp_ip_addr_cache = NULL;
1305 		}
1306 	}
1307 
1308 	/* Decrement listerner connection counter if necessary. */
1309 	if (tcp->tcp_listen_cnt != NULL)
1310 		TCP_DECR_LISTEN_CNT(tcp);
1311 
1312 	mutex_enter(&tcp->tcp_non_sq_lock);
1313 	if (tcp->tcp_flow_stopped)
1314 		tcp_clrqfull(tcp);
1315 	mutex_exit(&tcp->tcp_non_sq_lock);
1316 
1317 	tcp_bind_hash_remove(tcp);
1318 	/*
1319 	 * If the tcp_time_wait_collector (which runs outside the squeue)
1320 	 * is trying to remove this tcp from the time wait list, we will
1321 	 * block in tcp_time_wait_remove while trying to acquire the
1322 	 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also
1323 	 * requires the ipcl_hash_remove to be ordered after the
1324 	 * tcp_time_wait_remove for the refcnt checks to work correctly.
1325 	 */
1326 	if (tcp->tcp_state == TCPS_TIME_WAIT)
1327 		(void) tcp_time_wait_remove(tcp, NULL);
1328 	CL_INET_DISCONNECT(connp);
1329 	ipcl_hash_remove(connp);
1330 	oldstate = tcp->tcp_state;
1331 	tcp->tcp_state = TCPS_CLOSED;
1332 	/* Need to probe before ixa_cleanup() is called */
1333 	DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
1334 	    connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL,
1335 	    int32_t, oldstate);
1336 	ixa_cleanup(connp->conn_ixa);
1337 
1338 	/*
1339 	 * Mark the conn as CONDEMNED
1340 	 */
1341 	mutex_enter(&connp->conn_lock);
1342 	connp->conn_state_flags |= CONN_CONDEMNED;
1343 	mutex_exit(&connp->conn_lock);
1344 
1345 	ASSERT(tcp->tcp_time_wait_next == NULL);
1346 	ASSERT(tcp->tcp_time_wait_prev == NULL);
1347 	ASSERT(tcp->tcp_time_wait_expire == 0);
1348 
1349 	tcp_ipsec_cleanup(tcp);
1350 }
1351 
1352 /*
1353  * tcp is dying (called from ipcl_conn_destroy and error cases).
1354  * Free the tcp_t in either case.
1355  */
1356 void
1357 tcp_free(tcp_t *tcp)
1358 {
1359 	mblk_t		*mp;
1360 	conn_t		*connp = tcp->tcp_connp;
1361 
1362 	ASSERT(tcp != NULL);
1363 	ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL);
1364 
1365 	connp->conn_rq = NULL;
1366 	connp->conn_wq = NULL;
1367 
1368 	tcp_close_mpp(&tcp->tcp_xmit_head);
1369 	tcp_close_mpp(&tcp->tcp_reass_head);
1370 	if (tcp->tcp_rcv_list != NULL) {
1371 		/* Free b_next chain */
1372 		tcp_close_mpp(&tcp->tcp_rcv_list);
1373 	}
1374 	if ((mp = tcp->tcp_urp_mp) != NULL) {
1375 		freemsg(mp);
1376 	}
1377 	if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
1378 		freemsg(mp);
1379 	}
1380 
1381 	if (tcp->tcp_fused_sigurg_mp != NULL) {
1382 		ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
1383 		freeb(tcp->tcp_fused_sigurg_mp);
1384 		tcp->tcp_fused_sigurg_mp = NULL;
1385 	}
1386 
1387 	if (tcp->tcp_ordrel_mp != NULL) {
1388 		ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
1389 		freeb(tcp->tcp_ordrel_mp);
1390 		tcp->tcp_ordrel_mp = NULL;
1391 	}
1392 
1393 	TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp);
1394 	bzero(&tcp->tcp_sack_info, sizeof (tcp_sack_info_t));
1395 
1396 	if (tcp->tcp_hopopts != NULL) {
1397 		mi_free(tcp->tcp_hopopts);
1398 		tcp->tcp_hopopts = NULL;
1399 		tcp->tcp_hopoptslen = 0;
1400 	}
1401 	ASSERT(tcp->tcp_hopoptslen == 0);
1402 	if (tcp->tcp_dstopts != NULL) {
1403 		mi_free(tcp->tcp_dstopts);
1404 		tcp->tcp_dstopts = NULL;
1405 		tcp->tcp_dstoptslen = 0;
1406 	}
1407 	ASSERT(tcp->tcp_dstoptslen == 0);
1408 	if (tcp->tcp_rthdrdstopts != NULL) {
1409 		mi_free(tcp->tcp_rthdrdstopts);
1410 		tcp->tcp_rthdrdstopts = NULL;
1411 		tcp->tcp_rthdrdstoptslen = 0;
1412 	}
1413 	ASSERT(tcp->tcp_rthdrdstoptslen == 0);
1414 	if (tcp->tcp_rthdr != NULL) {
1415 		mi_free(tcp->tcp_rthdr);
1416 		tcp->tcp_rthdr = NULL;
1417 		tcp->tcp_rthdrlen = 0;
1418 	}
1419 	ASSERT(tcp->tcp_rthdrlen == 0);
1420 
1421 	/*
1422 	 * Following is really a blowing away a union.
1423 	 * It happens to have exactly two members of identical size
1424 	 * the following code is enough.
1425 	 */
1426 	tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
1427 
1428 	/*
1429 	 * If this is a non-STREAM socket still holding on to an upper
1430 	 * handle, release it. As a result of fallback we might also see
1431 	 * STREAMS based conns with upper handles, in which case there is
1432 	 * nothing to do other than clearing the field.
1433 	 */
1434 	if (connp->conn_upper_handle != NULL) {
1435 		if (IPCL_IS_NONSTR(connp)) {
1436 			(*connp->conn_upcalls->su_closed)(
1437 			    connp->conn_upper_handle);
1438 			tcp->tcp_detached = B_TRUE;
1439 		}
1440 		connp->conn_upper_handle = NULL;
1441 		connp->conn_upcalls = NULL;
1442 	}
1443 }
1444 
1445 /*
1446  * tcp_get_conn/tcp_free_conn
1447  *
1448  * tcp_get_conn is used to get a clean tcp connection structure.
1449  * It tries to reuse the connections put on the freelist by the
1450  * time_wait_collector failing which it goes to kmem_cache. This
1451  * way has two benefits compared to just allocating from and
1452  * freeing to kmem_cache.
1453  * 1) The time_wait_collector can free (which includes the cleanup)
1454  * outside the squeue. So when the interrupt comes, we have a clean
1455  * connection sitting in the freelist. Obviously, this buys us
1456  * performance.
1457  *
1458  * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_input_listener
1459  * has multiple disadvantages - tying up the squeue during alloc.
1460  * But allocating the conn/tcp in IP land is also not the best since
1461  * we can't check the 'q' and 'q0' which are protected by squeue and
1462  * blindly allocate memory which might have to be freed here if we are
1463  * not allowed to accept the connection. By using the freelist and
1464  * putting the conn/tcp back in freelist, we don't pay a penalty for
1465  * allocating memory without checking 'q/q0' and freeing it if we can't
1466  * accept the connection.
1467  *
1468  * Care should be taken to put the conn back in the same squeue's freelist
1469  * from which it was allocated. Best results are obtained if conn is
1470  * allocated from listener's squeue and freed to the same. Time wait
1471  * collector will free up the freelist is the connection ends up sitting
1472  * there for too long.
1473  */
1474 void *
1475 tcp_get_conn(void *arg, tcp_stack_t *tcps)
1476 {
1477 	tcp_t			*tcp = NULL;
1478 	conn_t			*connp = NULL;
1479 	squeue_t		*sqp = (squeue_t *)arg;
1480 	tcp_squeue_priv_t 	*tcp_time_wait;
1481 	netstack_t		*ns;
1482 	mblk_t			*tcp_rsrv_mp = NULL;
1483 
1484 	tcp_time_wait =
1485 	    *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP));
1486 
1487 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1488 	tcp = tcp_time_wait->tcp_free_list;
1489 	ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0));
1490 	if (tcp != NULL) {
1491 		tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next;
1492 		tcp_time_wait->tcp_free_list_cnt--;
1493 		mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1494 		tcp->tcp_time_wait_next = NULL;
1495 		connp = tcp->tcp_connp;
1496 		connp->conn_flags |= IPCL_REUSED;
1497 
1498 		ASSERT(tcp->tcp_tcps == NULL);
1499 		ASSERT(connp->conn_netstack == NULL);
1500 		ASSERT(tcp->tcp_rsrv_mp != NULL);
1501 		ns = tcps->tcps_netstack;
1502 		netstack_hold(ns);
1503 		connp->conn_netstack = ns;
1504 		connp->conn_ixa->ixa_ipst = ns->netstack_ip;
1505 		tcp->tcp_tcps = tcps;
1506 		ipcl_globalhash_insert(connp);
1507 
1508 		connp->conn_ixa->ixa_notify_cookie = tcp;
1509 		ASSERT(connp->conn_ixa->ixa_notify == tcp_notify);
1510 		connp->conn_recv = tcp_input_data;
1511 		ASSERT(connp->conn_recvicmp == tcp_icmp_input);
1512 		ASSERT(connp->conn_verifyicmp == tcp_verifyicmp);
1513 		return ((void *)connp);
1514 	}
1515 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1516 	/*
1517 	 * Pre-allocate the tcp_rsrv_mp. This mblk will not be freed until
1518 	 * this conn_t/tcp_t is freed at ipcl_conn_destroy().
1519 	 */
1520 	tcp_rsrv_mp = allocb(0, BPRI_HI);
1521 	if (tcp_rsrv_mp == NULL)
1522 		return (NULL);
1523 
1524 	if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP,
1525 	    tcps->tcps_netstack)) == NULL) {
1526 		freeb(tcp_rsrv_mp);
1527 		return (NULL);
1528 	}
1529 
1530 	tcp = connp->conn_tcp;
1531 	tcp->tcp_rsrv_mp = tcp_rsrv_mp;
1532 	mutex_init(&tcp->tcp_rsrv_mp_lock, NULL, MUTEX_DEFAULT, NULL);
1533 
1534 	tcp->tcp_tcps = tcps;
1535 
1536 	connp->conn_recv = tcp_input_data;
1537 	connp->conn_recvicmp = tcp_icmp_input;
1538 	connp->conn_verifyicmp = tcp_verifyicmp;
1539 
1540 	/*
1541 	 * Register tcp_notify to listen to capability changes detected by IP.
1542 	 * This upcall is made in the context of the call to conn_ip_output
1543 	 * thus it is inside the squeue.
1544 	 */
1545 	connp->conn_ixa->ixa_notify = tcp_notify;
1546 	connp->conn_ixa->ixa_notify_cookie = tcp;
1547 
1548 	return ((void *)connp);
1549 }
1550 
1551 /*
1552  * Handle connect to IPv4 destinations, including connections for AF_INET6
1553  * sockets connecting to IPv4 mapped IPv6 destinations.
1554  * Returns zero if OK, a positive errno, or a negative TLI error.
1555  */
1556 static int
1557 tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, in_port_t dstport,
1558     uint_t srcid)
1559 {
1560 	ipaddr_t 	dstaddr = *dstaddrp;
1561 	uint16_t 	lport;
1562 	conn_t		*connp = tcp->tcp_connp;
1563 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1564 	int		error;
1565 
1566 	ASSERT(connp->conn_ipversion == IPV4_VERSION);
1567 
1568 	/* Check for attempt to connect to INADDR_ANY */
1569 	if (dstaddr == INADDR_ANY)  {
1570 		/*
1571 		 * SunOS 4.x and 4.3 BSD allow an application
1572 		 * to connect a TCP socket to INADDR_ANY.
1573 		 * When they do this, the kernel picks the
1574 		 * address of one interface and uses it
1575 		 * instead.  The kernel usually ends up
1576 		 * picking the address of the loopback
1577 		 * interface.  This is an undocumented feature.
1578 		 * However, we provide the same thing here
1579 		 * in order to have source and binary
1580 		 * compatibility with SunOS 4.x.
1581 		 * Update the T_CONN_REQ (sin/sin6) since it is used to
1582 		 * generate the T_CONN_CON.
1583 		 */
1584 		dstaddr = htonl(INADDR_LOOPBACK);
1585 		*dstaddrp = dstaddr;
1586 	}
1587 
1588 	/* Handle __sin6_src_id if socket not bound to an IP address */
1589 	if (srcid != 0 && connp->conn_laddr_v4 == INADDR_ANY) {
1590 		ip_srcid_find_id(srcid, &connp->conn_laddr_v6,
1591 		    IPCL_ZONEID(connp), tcps->tcps_netstack);
1592 		connp->conn_saddr_v6 = connp->conn_laddr_v6;
1593 	}
1594 
1595 	IN6_IPADDR_TO_V4MAPPED(dstaddr, &connp->conn_faddr_v6);
1596 	connp->conn_fport = dstport;
1597 
1598 	/*
1599 	 * At this point the remote destination address and remote port fields
1600 	 * in the tcp-four-tuple have been filled in the tcp structure. Now we
1601 	 * have to see which state tcp was in so we can take appropriate action.
1602 	 */
1603 	if (tcp->tcp_state == TCPS_IDLE) {
1604 		/*
1605 		 * We support a quick connect capability here, allowing
1606 		 * clients to transition directly from IDLE to SYN_SENT
1607 		 * tcp_bindi will pick an unused port, insert the connection
1608 		 * in the bind hash and transition to BOUND state.
1609 		 */
1610 		lport = tcp_update_next_port(tcps->tcps_next_port_to_try,
1611 		    tcp, B_TRUE);
1612 		lport = tcp_bindi(tcp, lport, &connp->conn_laddr_v6, 0, B_TRUE,
1613 		    B_FALSE, B_FALSE);
1614 		if (lport == 0)
1615 			return (-TNOADDR);
1616 	}
1617 
1618 	/*
1619 	 * Lookup the route to determine a source address and the uinfo.
1620 	 * Setup TCP parameters based on the metrics/DCE.
1621 	 */
1622 	error = tcp_set_destination(tcp);
1623 	if (error != 0)
1624 		return (error);
1625 
1626 	/*
1627 	 * Don't let an endpoint connect to itself.
1628 	 */
1629 	if (connp->conn_faddr_v4 == connp->conn_laddr_v4 &&
1630 	    connp->conn_fport == connp->conn_lport)
1631 		return (-TBADADDR);
1632 
1633 	tcp->tcp_state = TCPS_SYN_SENT;
1634 
1635 	return (ipcl_conn_insert_v4(connp));
1636 }
1637 
1638 /*
1639  * Handle connect to IPv6 destinations.
1640  * Returns zero if OK, a positive errno, or a negative TLI error.
1641  */
1642 static int
1643 tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, in_port_t dstport,
1644     uint32_t flowinfo, uint_t srcid, uint32_t scope_id)
1645 {
1646 	uint16_t 	lport;
1647 	conn_t		*connp = tcp->tcp_connp;
1648 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1649 	int		error;
1650 
1651 	ASSERT(connp->conn_family == AF_INET6);
1652 
1653 	/*
1654 	 * If we're here, it means that the destination address is a native
1655 	 * IPv6 address.  Return an error if conn_ipversion is not IPv6.  A
1656 	 * reason why it might not be IPv6 is if the socket was bound to an
1657 	 * IPv4-mapped IPv6 address.
1658 	 */
1659 	if (connp->conn_ipversion != IPV6_VERSION)
1660 		return (-TBADADDR);
1661 
1662 	/*
1663 	 * Interpret a zero destination to mean loopback.
1664 	 * Update the T_CONN_REQ (sin/sin6) since it is used to
1665 	 * generate the T_CONN_CON.
1666 	 */
1667 	if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp))
1668 		*dstaddrp = ipv6_loopback;
1669 
1670 	/* Handle __sin6_src_id if socket not bound to an IP address */
1671 	if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&connp->conn_laddr_v6)) {
1672 		ip_srcid_find_id(srcid, &connp->conn_laddr_v6,
1673 		    IPCL_ZONEID(connp), tcps->tcps_netstack);
1674 		connp->conn_saddr_v6 = connp->conn_laddr_v6;
1675 	}
1676 
1677 	/*
1678 	 * Take care of the scope_id now.
1679 	 */
1680 	if (scope_id != 0 && IN6_IS_ADDR_LINKSCOPE(dstaddrp)) {
1681 		connp->conn_ixa->ixa_flags |= IXAF_SCOPEID_SET;
1682 		connp->conn_ixa->ixa_scopeid = scope_id;
1683 	} else {
1684 		connp->conn_ixa->ixa_flags &= ~IXAF_SCOPEID_SET;
1685 	}
1686 
1687 	connp->conn_flowinfo = flowinfo;
1688 	connp->conn_faddr_v6 = *dstaddrp;
1689 	connp->conn_fport = dstport;
1690 
1691 	/*
1692 	 * At this point the remote destination address and remote port fields
1693 	 * in the tcp-four-tuple have been filled in the tcp structure. Now we
1694 	 * have to see which state tcp was in so we can take appropriate action.
1695 	 */
1696 	if (tcp->tcp_state == TCPS_IDLE) {
1697 		/*
1698 		 * We support a quick connect capability here, allowing
1699 		 * clients to transition directly from IDLE to SYN_SENT
1700 		 * tcp_bindi will pick an unused port, insert the connection
1701 		 * in the bind hash and transition to BOUND state.
1702 		 */
1703 		lport = tcp_update_next_port(tcps->tcps_next_port_to_try,
1704 		    tcp, B_TRUE);
1705 		lport = tcp_bindi(tcp, lport, &connp->conn_laddr_v6, 0, B_TRUE,
1706 		    B_FALSE, B_FALSE);
1707 		if (lport == 0)
1708 			return (-TNOADDR);
1709 	}
1710 
1711 	/*
1712 	 * Lookup the route to determine a source address and the uinfo.
1713 	 * Setup TCP parameters based on the metrics/DCE.
1714 	 */
1715 	error = tcp_set_destination(tcp);
1716 	if (error != 0)
1717 		return (error);
1718 
1719 	/*
1720 	 * Don't let an endpoint connect to itself.
1721 	 */
1722 	if (IN6_ARE_ADDR_EQUAL(&connp->conn_faddr_v6, &connp->conn_laddr_v6) &&
1723 	    connp->conn_fport == connp->conn_lport)
1724 		return (-TBADADDR);
1725 
1726 	tcp->tcp_state = TCPS_SYN_SENT;
1727 
1728 	return (ipcl_conn_insert_v6(connp));
1729 }
1730 
1731 /*
1732  * Disconnect
1733  * Note that unlike other functions this returns a positive tli error
1734  * when it fails; it never returns an errno.
1735  */
1736 static int
1737 tcp_disconnect_common(tcp_t *tcp, t_scalar_t seqnum)
1738 {
1739 	conn_t		*lconnp;
1740 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1741 	conn_t		*connp = tcp->tcp_connp;
1742 
1743 	/*
1744 	 * Right now, upper modules pass down a T_DISCON_REQ to TCP,
1745 	 * when the stream is in BOUND state. Do not send a reset,
1746 	 * since the destination IP address is not valid, and it can
1747 	 * be the initialized value of all zeros (broadcast address).
1748 	 */
1749 	if (tcp->tcp_state <= TCPS_BOUND) {
1750 		if (connp->conn_debug) {
1751 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
1752 			    "tcp_disconnect: bad state, %d", tcp->tcp_state);
1753 		}
1754 		return (TOUTSTATE);
1755 	} else if (tcp->tcp_state >= TCPS_ESTABLISHED) {
1756 		TCPS_CONN_DEC(tcps);
1757 	}
1758 
1759 	if (seqnum == -1 || tcp->tcp_conn_req_max == 0) {
1760 
1761 		/*
1762 		 * According to TPI, for non-listeners, ignore seqnum
1763 		 * and disconnect.
1764 		 * Following interpretation of -1 seqnum is historical
1765 		 * and implied TPI ? (TPI only states that for T_CONN_IND,
1766 		 * a valid seqnum should not be -1).
1767 		 *
1768 		 *	-1 means disconnect everything
1769 		 *	regardless even on a listener.
1770 		 */
1771 
1772 		int old_state = tcp->tcp_state;
1773 		ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
1774 
1775 		/*
1776 		 * The connection can't be on the tcp_time_wait_head list
1777 		 * since it is not detached.
1778 		 */
1779 		ASSERT(tcp->tcp_time_wait_next == NULL);
1780 		ASSERT(tcp->tcp_time_wait_prev == NULL);
1781 		ASSERT(tcp->tcp_time_wait_expire == 0);
1782 		/*
1783 		 * If it used to be a listener, check to make sure no one else
1784 		 * has taken the port before switching back to LISTEN state.
1785 		 */
1786 		if (connp->conn_ipversion == IPV4_VERSION) {
1787 			lconnp = ipcl_lookup_listener_v4(connp->conn_lport,
1788 			    connp->conn_laddr_v4, IPCL_ZONEID(connp), ipst);
1789 		} else {
1790 			uint_t ifindex = 0;
1791 
1792 			if (connp->conn_ixa->ixa_flags & IXAF_SCOPEID_SET)
1793 				ifindex = connp->conn_ixa->ixa_scopeid;
1794 
1795 			/* Allow conn_bound_if listeners? */
1796 			lconnp = ipcl_lookup_listener_v6(connp->conn_lport,
1797 			    &connp->conn_laddr_v6, ifindex, IPCL_ZONEID(connp),
1798 			    ipst);
1799 		}
1800 		if (tcp->tcp_conn_req_max && lconnp == NULL) {
1801 			tcp->tcp_state = TCPS_LISTEN;
1802 			DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
1803 			    connp->conn_ixa, void, NULL, tcp_t *, tcp, void,
1804 			    NULL, int32_t, old_state);
1805 		} else if (old_state > TCPS_BOUND) {
1806 			tcp->tcp_conn_req_max = 0;
1807 			tcp->tcp_state = TCPS_BOUND;
1808 			DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
1809 			    connp->conn_ixa, void, NULL, tcp_t *, tcp, void,
1810 			    NULL, int32_t, old_state);
1811 
1812 			/*
1813 			 * If this end point is not going to become a listener,
1814 			 * decrement the listener connection count if
1815 			 * necessary.  Note that we do not do this if it is
1816 			 * going to be a listner (the above if case) since
1817 			 * then it may remove the counter struct.
1818 			 */
1819 			if (tcp->tcp_listen_cnt != NULL)
1820 				TCP_DECR_LISTEN_CNT(tcp);
1821 		}
1822 		if (lconnp != NULL)
1823 			CONN_DEC_REF(lconnp);
1824 		switch (old_state) {
1825 		case TCPS_SYN_SENT:
1826 		case TCPS_SYN_RCVD:
1827 			TCPS_BUMP_MIB(tcps, tcpAttemptFails);
1828 			break;
1829 		case TCPS_ESTABLISHED:
1830 		case TCPS_CLOSE_WAIT:
1831 			TCPS_BUMP_MIB(tcps, tcpEstabResets);
1832 			break;
1833 		}
1834 
1835 		if (tcp->tcp_fused)
1836 			tcp_unfuse(tcp);
1837 
1838 		mutex_enter(&tcp->tcp_eager_lock);
1839 		if ((tcp->tcp_conn_req_cnt_q0 != 0) ||
1840 		    (tcp->tcp_conn_req_cnt_q != 0)) {
1841 			tcp_eager_cleanup(tcp, 0);
1842 		}
1843 		mutex_exit(&tcp->tcp_eager_lock);
1844 
1845 		tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt,
1846 		    tcp->tcp_rnxt, TH_RST | TH_ACK);
1847 
1848 		tcp_reinit(tcp);
1849 
1850 		return (0);
1851 	} else if (!tcp_eager_blowoff(tcp, seqnum)) {
1852 		return (TBADSEQ);
1853 	}
1854 	return (0);
1855 }
1856 
1857 /*
1858  * Our client hereby directs us to reject the connection request
1859  * that tcp_input_listener() marked with 'seqnum'.  Rejection consists
1860  * of sending the appropriate RST, not an ICMP error.
1861  */
1862 void
1863 tcp_disconnect(tcp_t *tcp, mblk_t *mp)
1864 {
1865 	t_scalar_t seqnum;
1866 	int	error;
1867 	conn_t	*connp = tcp->tcp_connp;
1868 
1869 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
1870 	if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) {
1871 		tcp_err_ack(tcp, mp, TPROTO, 0);
1872 		return;
1873 	}
1874 	seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number;
1875 	error = tcp_disconnect_common(tcp, seqnum);
1876 	if (error != 0)
1877 		tcp_err_ack(tcp, mp, error, 0);
1878 	else {
1879 		if (tcp->tcp_state >= TCPS_ESTABLISHED) {
1880 			/* Send M_FLUSH according to TPI */
1881 			(void) putnextctl1(connp->conn_rq, M_FLUSH, FLUSHRW);
1882 		}
1883 		mp = mi_tpi_ok_ack_alloc(mp);
1884 		if (mp != NULL)
1885 			putnext(connp->conn_rq, mp);
1886 	}
1887 }
1888 
1889 /*
1890  * Handle reinitialization of a tcp structure.
1891  * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE.
1892  */
1893 static void
1894 tcp_reinit(tcp_t *tcp)
1895 {
1896 	mblk_t		*mp;
1897 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1898 	conn_t		*connp  = tcp->tcp_connp;
1899 	int32_t		oldstate;
1900 
1901 	/* tcp_reinit should never be called for detached tcp_t's */
1902 	ASSERT(tcp->tcp_listener == NULL);
1903 	ASSERT((connp->conn_family == AF_INET &&
1904 	    connp->conn_ipversion == IPV4_VERSION) ||
1905 	    (connp->conn_family == AF_INET6 &&
1906 	    (connp->conn_ipversion == IPV4_VERSION ||
1907 	    connp->conn_ipversion == IPV6_VERSION)));
1908 
1909 	/* Cancel outstanding timers */
1910 	tcp_timers_stop(tcp);
1911 
1912 	/*
1913 	 * Reset everything in the state vector, after updating global
1914 	 * MIB data from instance counters.
1915 	 */
1916 	TCPS_UPDATE_MIB(tcps, tcpHCInSegs, tcp->tcp_ibsegs);
1917 	tcp->tcp_ibsegs = 0;
1918 	TCPS_UPDATE_MIB(tcps, tcpHCOutSegs, tcp->tcp_obsegs);
1919 	tcp->tcp_obsegs = 0;
1920 
1921 	tcp_close_mpp(&tcp->tcp_xmit_head);
1922 	if (tcp->tcp_snd_zcopy_aware)
1923 		tcp_zcopy_notify(tcp);
1924 	tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL;
1925 	tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0;
1926 	mutex_enter(&tcp->tcp_non_sq_lock);
1927 	if (tcp->tcp_flow_stopped &&
1928 	    TCP_UNSENT_BYTES(tcp) <= connp->conn_sndlowat) {
1929 		tcp_clrqfull(tcp);
1930 	}
1931 	mutex_exit(&tcp->tcp_non_sq_lock);
1932 	tcp_close_mpp(&tcp->tcp_reass_head);
1933 	tcp->tcp_reass_tail = NULL;
1934 	if (tcp->tcp_rcv_list != NULL) {
1935 		/* Free b_next chain */
1936 		tcp_close_mpp(&tcp->tcp_rcv_list);
1937 		tcp->tcp_rcv_last_head = NULL;
1938 		tcp->tcp_rcv_last_tail = NULL;
1939 		tcp->tcp_rcv_cnt = 0;
1940 	}
1941 	tcp->tcp_rcv_last_tail = NULL;
1942 
1943 	if ((mp = tcp->tcp_urp_mp) != NULL) {
1944 		freemsg(mp);
1945 		tcp->tcp_urp_mp = NULL;
1946 	}
1947 	if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
1948 		freemsg(mp);
1949 		tcp->tcp_urp_mark_mp = NULL;
1950 	}
1951 	if (tcp->tcp_fused_sigurg_mp != NULL) {
1952 		ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
1953 		freeb(tcp->tcp_fused_sigurg_mp);
1954 		tcp->tcp_fused_sigurg_mp = NULL;
1955 	}
1956 	if (tcp->tcp_ordrel_mp != NULL) {
1957 		ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
1958 		freeb(tcp->tcp_ordrel_mp);
1959 		tcp->tcp_ordrel_mp = NULL;
1960 	}
1961 
1962 	/*
1963 	 * Following is a union with two members which are
1964 	 * identical types and size so the following cleanup
1965 	 * is enough.
1966 	 */
1967 	tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
1968 
1969 	CL_INET_DISCONNECT(connp);
1970 
1971 	/*
1972 	 * The connection can't be on the tcp_time_wait_head list
1973 	 * since it is not detached.
1974 	 */
1975 	ASSERT(tcp->tcp_time_wait_next == NULL);
1976 	ASSERT(tcp->tcp_time_wait_prev == NULL);
1977 	ASSERT(tcp->tcp_time_wait_expire == 0);
1978 
1979 	/*
1980 	 * Reset/preserve other values
1981 	 */
1982 	tcp_reinit_values(tcp);
1983 	ipcl_hash_remove(connp);
1984 	/* Note that ixa_cred gets cleared in ixa_cleanup */
1985 	ixa_cleanup(connp->conn_ixa);
1986 	tcp_ipsec_cleanup(tcp);
1987 
1988 	connp->conn_laddr_v6 = connp->conn_bound_addr_v6;
1989 	connp->conn_saddr_v6 = connp->conn_bound_addr_v6;
1990 	oldstate = tcp->tcp_state;
1991 
1992 	if (tcp->tcp_conn_req_max != 0) {
1993 		/*
1994 		 * This is the case when a TLI program uses the same
1995 		 * transport end point to accept a connection.  This
1996 		 * makes the TCP both a listener and acceptor.  When
1997 		 * this connection is closed, we need to set the state
1998 		 * back to TCPS_LISTEN.  Make sure that the eager list
1999 		 * is reinitialized.
2000 		 *
2001 		 * Note that this stream is still bound to the four
2002 		 * tuples of the previous connection in IP.  If a new
2003 		 * SYN with different foreign address comes in, IP will
2004 		 * not find it and will send it to the global queue.  In
2005 		 * the global queue, TCP will do a tcp_lookup_listener()
2006 		 * to find this stream.  This works because this stream
2007 		 * is only removed from connected hash.
2008 		 *
2009 		 */
2010 		tcp->tcp_state = TCPS_LISTEN;
2011 		tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
2012 		tcp->tcp_eager_next_drop_q0 = tcp;
2013 		tcp->tcp_eager_prev_drop_q0 = tcp;
2014 		/*
2015 		 * Initially set conn_recv to tcp_input_listener_unbound to try
2016 		 * to pick a good squeue for the listener when the first SYN
2017 		 * arrives. tcp_input_listener_unbound sets it to
2018 		 * tcp_input_listener on that first SYN.
2019 		 */
2020 		connp->conn_recv = tcp_input_listener_unbound;
2021 
2022 		connp->conn_proto = IPPROTO_TCP;
2023 		connp->conn_faddr_v6 = ipv6_all_zeros;
2024 		connp->conn_fport = 0;
2025 
2026 		(void) ipcl_bind_insert(connp);
2027 	} else {
2028 		tcp->tcp_state = TCPS_BOUND;
2029 	}
2030 
2031 	/*
2032 	 * Initialize to default values
2033 	 */
2034 	tcp_init_values(tcp, NULL);
2035 
2036 	DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
2037 	    connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL,
2038 	    int32_t, oldstate);
2039 
2040 	ASSERT(tcp->tcp_ptpbhn != NULL);
2041 	tcp->tcp_rwnd = connp->conn_rcvbuf;
2042 	tcp->tcp_mss = connp->conn_ipversion != IPV4_VERSION ?
2043 	    tcps->tcps_mss_def_ipv6 : tcps->tcps_mss_def_ipv4;
2044 }
2045 
2046 /*
2047  * Force values to zero that need be zero.
2048  * Do not touch values asociated with the BOUND or LISTEN state
2049  * since the connection will end up in that state after the reinit.
2050  * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t
2051  * structure!
2052  */
2053 static void
2054 tcp_reinit_values(tcp)
2055 	tcp_t *tcp;
2056 {
2057 	tcp_stack_t	*tcps = tcp->tcp_tcps;
2058 	conn_t		*connp = tcp->tcp_connp;
2059 
2060 #ifndef	lint
2061 #define	DONTCARE(x)
2062 #define	PRESERVE(x)
2063 #else
2064 #define	DONTCARE(x)	((x) = (x))
2065 #define	PRESERVE(x)	((x) = (x))
2066 #endif	/* lint */
2067 
2068 	PRESERVE(tcp->tcp_bind_hash_port);
2069 	PRESERVE(tcp->tcp_bind_hash);
2070 	PRESERVE(tcp->tcp_ptpbhn);
2071 	PRESERVE(tcp->tcp_acceptor_hash);
2072 	PRESERVE(tcp->tcp_ptpahn);
2073 
2074 	/* Should be ASSERT NULL on these with new code! */
2075 	ASSERT(tcp->tcp_time_wait_next == NULL);
2076 	ASSERT(tcp->tcp_time_wait_prev == NULL);
2077 	ASSERT(tcp->tcp_time_wait_expire == 0);
2078 	PRESERVE(tcp->tcp_state);
2079 	PRESERVE(connp->conn_rq);
2080 	PRESERVE(connp->conn_wq);
2081 
2082 	ASSERT(tcp->tcp_xmit_head == NULL);
2083 	ASSERT(tcp->tcp_xmit_last == NULL);
2084 	ASSERT(tcp->tcp_unsent == 0);
2085 	ASSERT(tcp->tcp_xmit_tail == NULL);
2086 	ASSERT(tcp->tcp_xmit_tail_unsent == 0);
2087 
2088 	tcp->tcp_snxt = 0;			/* Displayed in mib */
2089 	tcp->tcp_suna = 0;			/* Displayed in mib */
2090 	tcp->tcp_swnd = 0;
2091 	DONTCARE(tcp->tcp_cwnd);	/* Init in tcp_process_options */
2092 
2093 	ASSERT(tcp->tcp_ibsegs == 0);
2094 	ASSERT(tcp->tcp_obsegs == 0);
2095 
2096 	if (connp->conn_ht_iphc != NULL) {
2097 		kmem_free(connp->conn_ht_iphc, connp->conn_ht_iphc_allocated);
2098 		connp->conn_ht_iphc = NULL;
2099 		connp->conn_ht_iphc_allocated = 0;
2100 		connp->conn_ht_iphc_len = 0;
2101 		connp->conn_ht_ulp = NULL;
2102 		connp->conn_ht_ulp_len = 0;
2103 		tcp->tcp_ipha = NULL;
2104 		tcp->tcp_ip6h = NULL;
2105 		tcp->tcp_tcpha = NULL;
2106 	}
2107 
2108 	/* We clear any IP_OPTIONS and extension headers */
2109 	ip_pkt_free(&connp->conn_xmit_ipp);
2110 
2111 	DONTCARE(tcp->tcp_naglim);		/* Init in tcp_init_values */
2112 	DONTCARE(tcp->tcp_ipha);
2113 	DONTCARE(tcp->tcp_ip6h);
2114 	DONTCARE(tcp->tcp_tcpha);
2115 	tcp->tcp_valid_bits = 0;
2116 
2117 	DONTCARE(tcp->tcp_timer_backoff);	/* Init in tcp_init_values */
2118 	DONTCARE(tcp->tcp_last_recv_time);	/* Init in tcp_init_values */
2119 	tcp->tcp_last_rcv_lbolt = 0;
2120 
2121 	tcp->tcp_init_cwnd = 0;
2122 
2123 	tcp->tcp_urp_last_valid = 0;
2124 	tcp->tcp_hard_binding = 0;
2125 
2126 	tcp->tcp_fin_acked = 0;
2127 	tcp->tcp_fin_rcvd = 0;
2128 	tcp->tcp_fin_sent = 0;
2129 	tcp->tcp_ordrel_done = 0;
2130 
2131 	tcp->tcp_detached = 0;
2132 
2133 	tcp->tcp_snd_ws_ok = B_FALSE;
2134 	tcp->tcp_snd_ts_ok = B_FALSE;
2135 	tcp->tcp_zero_win_probe = 0;
2136 
2137 	tcp->tcp_loopback = 0;
2138 	tcp->tcp_localnet = 0;
2139 	tcp->tcp_syn_defense = 0;
2140 	tcp->tcp_set_timer = 0;
2141 
2142 	tcp->tcp_active_open = 0;
2143 	tcp->tcp_rexmit = B_FALSE;
2144 	tcp->tcp_xmit_zc_clean = B_FALSE;
2145 
2146 	tcp->tcp_snd_sack_ok = B_FALSE;
2147 	tcp->tcp_hwcksum = B_FALSE;
2148 
2149 	DONTCARE(tcp->tcp_maxpsz_multiplier);	/* Init in tcp_init_values */
2150 
2151 	tcp->tcp_conn_def_q0 = 0;
2152 	tcp->tcp_ip_forward_progress = B_FALSE;
2153 	tcp->tcp_ecn_ok = B_FALSE;
2154 
2155 	tcp->tcp_cwr = B_FALSE;
2156 	tcp->tcp_ecn_echo_on = B_FALSE;
2157 	tcp->tcp_is_wnd_shrnk = B_FALSE;
2158 
2159 	TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp);
2160 	bzero(&tcp->tcp_sack_info, sizeof (tcp_sack_info_t));
2161 
2162 	tcp->tcp_rcv_ws = 0;
2163 	tcp->tcp_snd_ws = 0;
2164 	tcp->tcp_ts_recent = 0;
2165 	tcp->tcp_rnxt = 0;			/* Displayed in mib */
2166 	DONTCARE(tcp->tcp_rwnd);		/* Set in tcp_reinit() */
2167 	tcp->tcp_initial_pmtu = 0;
2168 
2169 	ASSERT(tcp->tcp_reass_head == NULL);
2170 	ASSERT(tcp->tcp_reass_tail == NULL);
2171 
2172 	tcp->tcp_cwnd_cnt = 0;
2173 
2174 	ASSERT(tcp->tcp_rcv_list == NULL);
2175 	ASSERT(tcp->tcp_rcv_last_head == NULL);
2176 	ASSERT(tcp->tcp_rcv_last_tail == NULL);
2177 	ASSERT(tcp->tcp_rcv_cnt == 0);
2178 
2179 	DONTCARE(tcp->tcp_cwnd_ssthresh); /* Init in tcp_set_destination */
2180 	DONTCARE(tcp->tcp_cwnd_max);		/* Init in tcp_init_values */
2181 	tcp->tcp_csuna = 0;
2182 
2183 	tcp->tcp_rto = 0;			/* Displayed in MIB */
2184 	DONTCARE(tcp->tcp_rtt_sa);		/* Init in tcp_init_values */
2185 	DONTCARE(tcp->tcp_rtt_sd);		/* Init in tcp_init_values */
2186 	tcp->tcp_rtt_update = 0;
2187 
2188 	DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
2189 	DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
2190 
2191 	tcp->tcp_rack = 0;			/* Displayed in mib */
2192 	tcp->tcp_rack_cnt = 0;
2193 	tcp->tcp_rack_cur_max = 0;
2194 	tcp->tcp_rack_abs_max = 0;
2195 
2196 	tcp->tcp_max_swnd = 0;
2197 
2198 	ASSERT(tcp->tcp_listener == NULL);
2199 
2200 	DONTCARE(tcp->tcp_irs);			/* tcp_valid_bits cleared */
2201 	DONTCARE(tcp->tcp_iss);			/* tcp_valid_bits cleared */
2202 	DONTCARE(tcp->tcp_fss);			/* tcp_valid_bits cleared */
2203 	DONTCARE(tcp->tcp_urg);			/* tcp_valid_bits cleared */
2204 
2205 	ASSERT(tcp->tcp_conn_req_cnt_q == 0);
2206 	ASSERT(tcp->tcp_conn_req_cnt_q0 == 0);
2207 	PRESERVE(tcp->tcp_conn_req_max);
2208 	PRESERVE(tcp->tcp_conn_req_seqnum);
2209 
2210 	DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */
2211 	DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */
2212 	DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */
2213 	DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */
2214 
2215 	DONTCARE(tcp->tcp_urp_last);	/* tcp_urp_last_valid is cleared */
2216 	ASSERT(tcp->tcp_urp_mp == NULL);
2217 	ASSERT(tcp->tcp_urp_mark_mp == NULL);
2218 	ASSERT(tcp->tcp_fused_sigurg_mp == NULL);
2219 
2220 	ASSERT(tcp->tcp_eager_next_q == NULL);
2221 	ASSERT(tcp->tcp_eager_last_q == NULL);
2222 	ASSERT((tcp->tcp_eager_next_q0 == NULL &&
2223 	    tcp->tcp_eager_prev_q0 == NULL) ||
2224 	    tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0);
2225 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
2226 
2227 	ASSERT((tcp->tcp_eager_next_drop_q0 == NULL &&
2228 	    tcp->tcp_eager_prev_drop_q0 == NULL) ||
2229 	    tcp->tcp_eager_next_drop_q0 == tcp->tcp_eager_prev_drop_q0);
2230 
2231 	DONTCARE(tcp->tcp_ka_rinterval);	/* Init in tcp_init_values */
2232 	DONTCARE(tcp->tcp_ka_abort_thres);	/* Init in tcp_init_values */
2233 	DONTCARE(tcp->tcp_ka_cnt);		/* Init in tcp_init_values */
2234 
2235 	tcp->tcp_client_errno = 0;
2236 
2237 	DONTCARE(connp->conn_sum);		/* Init in tcp_init_values */
2238 
2239 	connp->conn_faddr_v6 = ipv6_all_zeros;	/* Displayed in MIB */
2240 
2241 	PRESERVE(connp->conn_bound_addr_v6);
2242 	tcp->tcp_last_sent_len = 0;
2243 	tcp->tcp_dupack_cnt = 0;
2244 
2245 	connp->conn_fport = 0;			/* Displayed in MIB */
2246 	PRESERVE(connp->conn_lport);
2247 
2248 	PRESERVE(tcp->tcp_acceptor_lockp);
2249 
2250 	ASSERT(tcp->tcp_ordrel_mp == NULL);
2251 	PRESERVE(tcp->tcp_acceptor_id);
2252 	DONTCARE(tcp->tcp_ipsec_overhead);
2253 
2254 	PRESERVE(connp->conn_family);
2255 	/* Remove any remnants of mapped address binding */
2256 	if (connp->conn_family == AF_INET6) {
2257 		connp->conn_ipversion = IPV6_VERSION;
2258 		tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
2259 	} else {
2260 		connp->conn_ipversion = IPV4_VERSION;
2261 		tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
2262 	}
2263 
2264 	connp->conn_bound_if = 0;
2265 	connp->conn_recv_ancillary.crb_all = 0;
2266 	tcp->tcp_recvifindex = 0;
2267 	tcp->tcp_recvhops = 0;
2268 	tcp->tcp_closed = 0;
2269 	if (tcp->tcp_hopopts != NULL) {
2270 		mi_free(tcp->tcp_hopopts);
2271 		tcp->tcp_hopopts = NULL;
2272 		tcp->tcp_hopoptslen = 0;
2273 	}
2274 	ASSERT(tcp->tcp_hopoptslen == 0);
2275 	if (tcp->tcp_dstopts != NULL) {
2276 		mi_free(tcp->tcp_dstopts);
2277 		tcp->tcp_dstopts = NULL;
2278 		tcp->tcp_dstoptslen = 0;
2279 	}
2280 	ASSERT(tcp->tcp_dstoptslen == 0);
2281 	if (tcp->tcp_rthdrdstopts != NULL) {
2282 		mi_free(tcp->tcp_rthdrdstopts);
2283 		tcp->tcp_rthdrdstopts = NULL;
2284 		tcp->tcp_rthdrdstoptslen = 0;
2285 	}
2286 	ASSERT(tcp->tcp_rthdrdstoptslen == 0);
2287 	if (tcp->tcp_rthdr != NULL) {
2288 		mi_free(tcp->tcp_rthdr);
2289 		tcp->tcp_rthdr = NULL;
2290 		tcp->tcp_rthdrlen = 0;
2291 	}
2292 	ASSERT(tcp->tcp_rthdrlen == 0);
2293 
2294 	/* Reset fusion-related fields */
2295 	tcp->tcp_fused = B_FALSE;
2296 	tcp->tcp_unfusable = B_FALSE;
2297 	tcp->tcp_fused_sigurg = B_FALSE;
2298 	tcp->tcp_loopback_peer = NULL;
2299 
2300 	tcp->tcp_lso = B_FALSE;
2301 
2302 	tcp->tcp_in_ack_unsent = 0;
2303 	tcp->tcp_cork = B_FALSE;
2304 	tcp->tcp_tconnind_started = B_FALSE;
2305 
2306 	PRESERVE(tcp->tcp_squeue_bytes);
2307 
2308 	tcp->tcp_closemp_used = B_FALSE;
2309 
2310 	PRESERVE(tcp->tcp_rsrv_mp);
2311 	PRESERVE(tcp->tcp_rsrv_mp_lock);
2312 
2313 #ifdef DEBUG
2314 	DONTCARE(tcp->tcmp_stk[0]);
2315 #endif
2316 
2317 	PRESERVE(tcp->tcp_connid);
2318 
2319 	ASSERT(tcp->tcp_listen_cnt == NULL);
2320 	ASSERT(tcp->tcp_reass_tid == 0);
2321 
2322 #undef	DONTCARE
2323 #undef	PRESERVE
2324 }
2325 
2326 /*
2327  * Initialize the various fields in tcp_t.  If parent (the listener) is non
2328  * NULL, certain values will be inheritted from it.
2329  */
2330 void
2331 tcp_init_values(tcp_t *tcp, tcp_t *parent)
2332 {
2333 	tcp_stack_t	*tcps = tcp->tcp_tcps;
2334 	conn_t		*connp = tcp->tcp_connp;
2335 	clock_t		rto;
2336 
2337 	ASSERT((connp->conn_family == AF_INET &&
2338 	    connp->conn_ipversion == IPV4_VERSION) ||
2339 	    (connp->conn_family == AF_INET6 &&
2340 	    (connp->conn_ipversion == IPV4_VERSION ||
2341 	    connp->conn_ipversion == IPV6_VERSION)));
2342 
2343 	if (parent == NULL) {
2344 		tcp->tcp_naglim = tcps->tcps_naglim_def;
2345 
2346 		tcp->tcp_rto_initial = tcps->tcps_rexmit_interval_initial;
2347 		tcp->tcp_rto_min = tcps->tcps_rexmit_interval_min;
2348 		tcp->tcp_rto_max = tcps->tcps_rexmit_interval_max;
2349 
2350 		tcp->tcp_first_ctimer_threshold =
2351 		    tcps->tcps_ip_notify_cinterval;
2352 		tcp->tcp_second_ctimer_threshold =
2353 		    tcps->tcps_ip_abort_cinterval;
2354 		tcp->tcp_first_timer_threshold = tcps->tcps_ip_notify_interval;
2355 		tcp->tcp_second_timer_threshold = tcps->tcps_ip_abort_interval;
2356 
2357 		tcp->tcp_fin_wait_2_flush_interval =
2358 		    tcps->tcps_fin_wait_2_flush_interval;
2359 
2360 		tcp->tcp_ka_interval = tcps->tcps_keepalive_interval;
2361 		tcp->tcp_ka_abort_thres = tcps->tcps_keepalive_abort_interval;
2362 		tcp->tcp_ka_cnt = 0;
2363 		tcp->tcp_ka_rinterval = 0;
2364 
2365 		/*
2366 		 * Default value of tcp_init_cwnd is 0, so no need to set here
2367 		 * if parent is NULL.  But we need to inherit it from parent.
2368 		 */
2369 	} else {
2370 		/* Inherit various TCP parameters from the parent. */
2371 		tcp->tcp_naglim = parent->tcp_naglim;
2372 
2373 		tcp->tcp_rto_initial = parent->tcp_rto_initial;
2374 		tcp->tcp_rto_min = parent->tcp_rto_min;
2375 		tcp->tcp_rto_max = parent->tcp_rto_max;
2376 
2377 		tcp->tcp_first_ctimer_threshold =
2378 		    parent->tcp_first_ctimer_threshold;
2379 		tcp->tcp_second_ctimer_threshold =
2380 		    parent->tcp_second_ctimer_threshold;
2381 		tcp->tcp_first_timer_threshold =
2382 		    parent->tcp_first_timer_threshold;
2383 		tcp->tcp_second_timer_threshold =
2384 		    parent->tcp_second_timer_threshold;
2385 
2386 		tcp->tcp_fin_wait_2_flush_interval =
2387 		    parent->tcp_fin_wait_2_flush_interval;
2388 
2389 		tcp->tcp_ka_interval = parent->tcp_ka_interval;
2390 		tcp->tcp_ka_abort_thres = parent->tcp_ka_abort_thres;
2391 		tcp->tcp_ka_cnt = parent->tcp_ka_cnt;
2392 		tcp->tcp_ka_rinterval = parent->tcp_ka_rinterval;
2393 
2394 		tcp->tcp_init_cwnd = parent->tcp_init_cwnd;
2395 	}
2396 
2397 	/*
2398 	 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO
2399 	 * will be close to tcp_rexmit_interval_initial.  By doing this, we
2400 	 * allow the algorithm to adjust slowly to large fluctuations of RTT
2401 	 * during first few transmissions of a connection as seen in slow
2402 	 * links.
2403 	 */
2404 	tcp->tcp_rtt_sa = tcp->tcp_rto_initial << 2;
2405 	tcp->tcp_rtt_sd = tcp->tcp_rto_initial >> 1;
2406 	rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
2407 	    tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) +
2408 	    tcps->tcps_conn_grace_period;
2409 	TCP_SET_RTO(tcp, rto);
2410 
2411 	tcp->tcp_timer_backoff = 0;
2412 	tcp->tcp_ms_we_have_waited = 0;
2413 	tcp->tcp_last_recv_time = ddi_get_lbolt();
2414 	tcp->tcp_cwnd_max = tcps->tcps_cwnd_max_;
2415 	tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
2416 	tcp->tcp_snd_burst = TCP_CWND_INFINITE;
2417 
2418 	tcp->tcp_maxpsz_multiplier = tcps->tcps_maxpsz_multiplier;
2419 
2420 	/* NOTE:  ISS is now set in tcp_set_destination(). */
2421 
2422 	/* Reset fusion-related fields */
2423 	tcp->tcp_fused = B_FALSE;
2424 	tcp->tcp_unfusable = B_FALSE;
2425 	tcp->tcp_fused_sigurg = B_FALSE;
2426 	tcp->tcp_loopback_peer = NULL;
2427 
2428 	/* We rebuild the header template on the next connect/conn_request */
2429 
2430 	connp->conn_mlp_type = mlptSingle;
2431 
2432 	/*
2433 	 * Init the window scale to the max so tcp_rwnd_set() won't pare
2434 	 * down tcp_rwnd. tcp_set_destination() will set the right value later.
2435 	 */
2436 	tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT;
2437 	tcp->tcp_rwnd = connp->conn_rcvbuf;
2438 
2439 	tcp->tcp_cork = B_FALSE;
2440 	/*
2441 	 * Init the tcp_debug option if it wasn't already set.  This value
2442 	 * determines whether TCP
2443 	 * calls strlog() to print out debug messages.  Doing this
2444 	 * initialization here means that this value is not inherited thru
2445 	 * tcp_reinit().
2446 	 */
2447 	if (!connp->conn_debug)
2448 		connp->conn_debug = tcps->tcps_dbg;
2449 }
2450 
2451 /*
2452  * Update the TCP connection according to change of PMTU.
2453  *
2454  * Path MTU might have changed by either increase or decrease, so need to
2455  * adjust the MSS based on the value of ixa_pmtu. No need to handle tiny
2456  * or negative MSS, since tcp_mss_set() will do it.
2457  */
2458 void
2459 tcp_update_pmtu(tcp_t *tcp, boolean_t decrease_only)
2460 {
2461 	uint32_t	pmtu;
2462 	int32_t		mss;
2463 	conn_t		*connp = tcp->tcp_connp;
2464 	ip_xmit_attr_t	*ixa = connp->conn_ixa;
2465 	iaflags_t	ixaflags;
2466 
2467 	if (tcp->tcp_tcps->tcps_ignore_path_mtu)
2468 		return;
2469 
2470 	if (tcp->tcp_state < TCPS_ESTABLISHED)
2471 		return;
2472 
2473 	/*
2474 	 * Always call ip_get_pmtu() to make sure that IP has updated
2475 	 * ixa_flags properly.
2476 	 */
2477 	pmtu = ip_get_pmtu(ixa);
2478 	ixaflags = ixa->ixa_flags;
2479 
2480 	/*
2481 	 * Calculate the MSS by decreasing the PMTU by conn_ht_iphc_len and
2482 	 * IPsec overhead if applied. Make sure to use the most recent
2483 	 * IPsec information.
2484 	 */
2485 	mss = pmtu - connp->conn_ht_iphc_len - conn_ipsec_length(connp);
2486 
2487 	/*
2488 	 * Nothing to change, so just return.
2489 	 */
2490 	if (mss == tcp->tcp_mss)
2491 		return;
2492 
2493 	/*
2494 	 * Currently, for ICMP errors, only PMTU decrease is handled.
2495 	 */
2496 	if (mss > tcp->tcp_mss && decrease_only)
2497 		return;
2498 
2499 	DTRACE_PROBE2(tcp_update_pmtu, int32_t, tcp->tcp_mss, uint32_t, mss);
2500 
2501 	/*
2502 	 * Update ixa_fragsize and ixa_pmtu.
2503 	 */
2504 	ixa->ixa_fragsize = ixa->ixa_pmtu = pmtu;
2505 
2506 	/*
2507 	 * Adjust MSS and all relevant variables.
2508 	 */
2509 	tcp_mss_set(tcp, mss);
2510 
2511 	/*
2512 	 * If the PMTU is below the min size maintained by IP, then ip_get_pmtu
2513 	 * has set IXAF_PMTU_TOO_SMALL and cleared IXAF_PMTU_IPV4_DF. Since TCP
2514 	 * has a (potentially different) min size we do the same. Make sure to
2515 	 * clear IXAF_DONTFRAG, which is used by IP to decide whether to
2516 	 * fragment the packet.
2517 	 *
2518 	 * LSO over IPv6 can not be fragmented. So need to disable LSO
2519 	 * when IPv6 fragmentation is needed.
2520 	 */
2521 	if (mss < tcp->tcp_tcps->tcps_mss_min)
2522 		ixaflags |= IXAF_PMTU_TOO_SMALL;
2523 
2524 	if (ixaflags & IXAF_PMTU_TOO_SMALL)
2525 		ixaflags &= ~(IXAF_DONTFRAG | IXAF_PMTU_IPV4_DF);
2526 
2527 	if ((connp->conn_ipversion == IPV4_VERSION) &&
2528 	    !(ixaflags & IXAF_PMTU_IPV4_DF)) {
2529 		tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0;
2530 	}
2531 	ixa->ixa_flags = ixaflags;
2532 }
2533 
2534 int
2535 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk)
2536 {
2537 	conn_t	*connp = tcp->tcp_connp;
2538 	queue_t	*q = connp->conn_rq;
2539 	int32_t	mss = tcp->tcp_mss;
2540 	int	maxpsz;
2541 
2542 	if (TCP_IS_DETACHED(tcp))
2543 		return (mss);
2544 	if (tcp->tcp_fused) {
2545 		maxpsz = tcp_fuse_maxpsz(tcp);
2546 		mss = INFPSZ;
2547 	} else if (tcp->tcp_maxpsz_multiplier == 0) {
2548 		/*
2549 		 * Set the sd_qn_maxpsz according to the socket send buffer
2550 		 * size, and sd_maxblk to INFPSZ (-1).  This will essentially
2551 		 * instruct the stream head to copyin user data into contiguous
2552 		 * kernel-allocated buffers without breaking it up into smaller
2553 		 * chunks.  We round up the buffer size to the nearest SMSS.
2554 		 */
2555 		maxpsz = MSS_ROUNDUP(connp->conn_sndbuf, mss);
2556 		mss = INFPSZ;
2557 	} else {
2558 		/*
2559 		 * Set sd_qn_maxpsz to approx half the (receivers) buffer
2560 		 * (and a multiple of the mss).  This instructs the stream
2561 		 * head to break down larger than SMSS writes into SMSS-
2562 		 * size mblks, up to tcp_maxpsz_multiplier mblks at a time.
2563 		 */
2564 		maxpsz = tcp->tcp_maxpsz_multiplier * mss;
2565 		if (maxpsz > connp->conn_sndbuf / 2) {
2566 			maxpsz = connp->conn_sndbuf / 2;
2567 			/* Round up to nearest mss */
2568 			maxpsz = MSS_ROUNDUP(maxpsz, mss);
2569 		}
2570 	}
2571 
2572 	(void) proto_set_maxpsz(q, connp, maxpsz);
2573 	if (!(IPCL_IS_NONSTR(connp)))
2574 		connp->conn_wq->q_maxpsz = maxpsz;
2575 	if (set_maxblk)
2576 		(void) proto_set_tx_maxblk(q, connp, mss);
2577 	return (mss);
2578 }
2579 
2580 /* For /dev/tcp aka AF_INET open */
2581 static int
2582 tcp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
2583 {
2584 	return (tcp_open(q, devp, flag, sflag, credp, B_FALSE));
2585 }
2586 
2587 /* For /dev/tcp6 aka AF_INET6 open */
2588 static int
2589 tcp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
2590 {
2591 	return (tcp_open(q, devp, flag, sflag, credp, B_TRUE));
2592 }
2593 
2594 conn_t *
2595 tcp_create_common(cred_t *credp, boolean_t isv6, boolean_t issocket,
2596     int *errorp)
2597 {
2598 	tcp_t		*tcp = NULL;
2599 	conn_t		*connp;
2600 	zoneid_t	zoneid;
2601 	tcp_stack_t	*tcps;
2602 	squeue_t	*sqp;
2603 
2604 	ASSERT(errorp != NULL);
2605 	/*
2606 	 * Find the proper zoneid and netstack.
2607 	 */
2608 	/*
2609 	 * Special case for install: miniroot needs to be able to
2610 	 * access files via NFS as though it were always in the
2611 	 * global zone.
2612 	 */
2613 	if (credp == kcred && nfs_global_client_only != 0) {
2614 		zoneid = GLOBAL_ZONEID;
2615 		tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)->
2616 		    netstack_tcp;
2617 		ASSERT(tcps != NULL);
2618 	} else {
2619 		netstack_t *ns;
2620 		int err;
2621 
2622 		if ((err = secpolicy_basic_net_access(credp)) != 0) {
2623 			*errorp = err;
2624 			return (NULL);
2625 		}
2626 
2627 		ns = netstack_find_by_cred(credp);
2628 		ASSERT(ns != NULL);
2629 		tcps = ns->netstack_tcp;
2630 		ASSERT(tcps != NULL);
2631 
2632 		/*
2633 		 * For exclusive stacks we set the zoneid to zero
2634 		 * to make TCP operate as if in the global zone.
2635 		 */
2636 		if (tcps->tcps_netstack->netstack_stackid !=
2637 		    GLOBAL_NETSTACKID)
2638 			zoneid = GLOBAL_ZONEID;
2639 		else
2640 			zoneid = crgetzoneid(credp);
2641 	}
2642 
2643 	sqp = IP_SQUEUE_GET((uint_t)gethrtime());
2644 	connp = (conn_t *)tcp_get_conn(sqp, tcps);
2645 	/*
2646 	 * Both tcp_get_conn and netstack_find_by_cred incremented refcnt,
2647 	 * so we drop it by one.
2648 	 */
2649 	netstack_rele(tcps->tcps_netstack);
2650 	if (connp == NULL) {
2651 		*errorp = ENOSR;
2652 		return (NULL);
2653 	}
2654 	ASSERT(connp->conn_ixa->ixa_protocol == connp->conn_proto);
2655 
2656 	connp->conn_sqp = sqp;
2657 	connp->conn_initial_sqp = connp->conn_sqp;
2658 	connp->conn_ixa->ixa_sqp = connp->conn_sqp;
2659 	tcp = connp->conn_tcp;
2660 
2661 	/*
2662 	 * Besides asking IP to set the checksum for us, have conn_ip_output
2663 	 * to do the following checks when necessary:
2664 	 *
2665 	 * IXAF_VERIFY_SOURCE: drop packets when our outer source goes invalid
2666 	 * IXAF_VERIFY_PMTU: verify PMTU changes
2667 	 * IXAF_VERIFY_LSO: verify LSO capability changes
2668 	 */
2669 	connp->conn_ixa->ixa_flags |= IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE |
2670 	    IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO;
2671 
2672 	if (!tcps->tcps_dev_flow_ctl)
2673 		connp->conn_ixa->ixa_flags |= IXAF_NO_DEV_FLOW_CTL;
2674 
2675 	if (isv6) {
2676 		connp->conn_ixa->ixa_src_preferences = IPV6_PREFER_SRC_DEFAULT;
2677 		connp->conn_ipversion = IPV6_VERSION;
2678 		connp->conn_family = AF_INET6;
2679 		tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
2680 		connp->conn_default_ttl = tcps->tcps_ipv6_hoplimit;
2681 	} else {
2682 		connp->conn_ipversion = IPV4_VERSION;
2683 		connp->conn_family = AF_INET;
2684 		tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
2685 		connp->conn_default_ttl = tcps->tcps_ipv4_ttl;
2686 	}
2687 	connp->conn_xmit_ipp.ipp_unicast_hops = connp->conn_default_ttl;
2688 
2689 	crhold(credp);
2690 	connp->conn_cred = credp;
2691 	connp->conn_cpid = curproc->p_pid;
2692 	connp->conn_open_time = ddi_get_lbolt64();
2693 
2694 	/* Cache things in the ixa without any refhold */
2695 	ASSERT(!(connp->conn_ixa->ixa_free_flags & IXA_FREE_CRED));
2696 	connp->conn_ixa->ixa_cred = credp;
2697 	connp->conn_ixa->ixa_cpid = connp->conn_cpid;
2698 
2699 	connp->conn_zoneid = zoneid;
2700 	/* conn_allzones can not be set this early, hence no IPCL_ZONEID */
2701 	connp->conn_ixa->ixa_zoneid = zoneid;
2702 	connp->conn_mlp_type = mlptSingle;
2703 	ASSERT(connp->conn_netstack == tcps->tcps_netstack);
2704 	ASSERT(tcp->tcp_tcps == tcps);
2705 
2706 	/*
2707 	 * If the caller has the process-wide flag set, then default to MAC
2708 	 * exempt mode.  This allows read-down to unlabeled hosts.
2709 	 */
2710 	if (getpflags(NET_MAC_AWARE, credp) != 0)
2711 		connp->conn_mac_mode = CONN_MAC_AWARE;
2712 
2713 	connp->conn_zone_is_global = (crgetzoneid(credp) == GLOBAL_ZONEID);
2714 
2715 	if (issocket) {
2716 		tcp->tcp_issocket = 1;
2717 	}
2718 
2719 	connp->conn_rcvbuf = tcps->tcps_recv_hiwat;
2720 	connp->conn_sndbuf = tcps->tcps_xmit_hiwat;
2721 	connp->conn_sndlowat = tcps->tcps_xmit_lowat;
2722 	connp->conn_so_type = SOCK_STREAM;
2723 	connp->conn_wroff = connp->conn_ht_iphc_allocated +
2724 	    tcps->tcps_wroff_xtra;
2725 
2726 	SOCK_CONNID_INIT(tcp->tcp_connid);
2727 	/* DTrace ignores this - it isn't a tcp:::state-change */
2728 	tcp->tcp_state = TCPS_IDLE;
2729 	tcp_init_values(tcp, NULL);
2730 	return (connp);
2731 }
2732 
2733 static int
2734 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp,
2735     boolean_t isv6)
2736 {
2737 	tcp_t		*tcp = NULL;
2738 	conn_t		*connp = NULL;
2739 	int		err;
2740 	vmem_t		*minor_arena = NULL;
2741 	dev_t		conn_dev;
2742 	boolean_t	issocket;
2743 
2744 	if (q->q_ptr != NULL)
2745 		return (0);
2746 
2747 	if (sflag == MODOPEN)
2748 		return (EINVAL);
2749 
2750 	if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) &&
2751 	    ((conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) {
2752 		minor_arena = ip_minor_arena_la;
2753 	} else {
2754 		/*
2755 		 * Either minor numbers in the large arena were exhausted
2756 		 * or a non socket application is doing the open.
2757 		 * Try to allocate from the small arena.
2758 		 */
2759 		if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0) {
2760 			return (EBUSY);
2761 		}
2762 		minor_arena = ip_minor_arena_sa;
2763 	}
2764 
2765 	ASSERT(minor_arena != NULL);
2766 
2767 	*devp = makedevice(getmajor(*devp), (minor_t)conn_dev);
2768 
2769 	if (flag & SO_FALLBACK) {
2770 		/*
2771 		 * Non streams socket needs a stream to fallback to
2772 		 */
2773 		RD(q)->q_ptr = (void *)conn_dev;
2774 		WR(q)->q_qinfo = &tcp_fallback_sock_winit;
2775 		WR(q)->q_ptr = (void *)minor_arena;
2776 		qprocson(q);
2777 		return (0);
2778 	} else if (flag & SO_ACCEPTOR) {
2779 		q->q_qinfo = &tcp_acceptor_rinit;
2780 		/*
2781 		 * the conn_dev and minor_arena will be subsequently used by
2782 		 * tcp_tli_accept() and tcp_tpi_close_accept() to figure out
2783 		 * the minor device number for this connection from the q_ptr.
2784 		 */
2785 		RD(q)->q_ptr = (void *)conn_dev;
2786 		WR(q)->q_qinfo = &tcp_acceptor_winit;
2787 		WR(q)->q_ptr = (void *)minor_arena;
2788 		qprocson(q);
2789 		return (0);
2790 	}
2791 
2792 	issocket = flag & SO_SOCKSTR;
2793 	connp = tcp_create_common(credp, isv6, issocket, &err);
2794 
2795 	if (connp == NULL) {
2796 		inet_minor_free(minor_arena, conn_dev);
2797 		q->q_ptr = WR(q)->q_ptr = NULL;
2798 		return (err);
2799 	}
2800 
2801 	connp->conn_rq = q;
2802 	connp->conn_wq = WR(q);
2803 	q->q_ptr = WR(q)->q_ptr = connp;
2804 
2805 	connp->conn_dev = conn_dev;
2806 	connp->conn_minor_arena = minor_arena;
2807 
2808 	ASSERT(q->q_qinfo == &tcp_rinitv4 || q->q_qinfo == &tcp_rinitv6);
2809 	ASSERT(WR(q)->q_qinfo == &tcp_winit);
2810 
2811 	tcp = connp->conn_tcp;
2812 
2813 	if (issocket) {
2814 		WR(q)->q_qinfo = &tcp_sock_winit;
2815 	} else {
2816 #ifdef  _ILP32
2817 		tcp->tcp_acceptor_id = (t_uscalar_t)RD(q);
2818 #else
2819 		tcp->tcp_acceptor_id = conn_dev;
2820 #endif  /* _ILP32 */
2821 		tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp);
2822 	}
2823 
2824 	/*
2825 	 * Put the ref for TCP. Ref for IP was already put
2826 	 * by ipcl_conn_create. Also Make the conn_t globally
2827 	 * visible to walkers
2828 	 */
2829 	mutex_enter(&connp->conn_lock);
2830 	CONN_INC_REF_LOCKED(connp);
2831 	ASSERT(connp->conn_ref == 2);
2832 	connp->conn_state_flags &= ~CONN_INCIPIENT;
2833 	mutex_exit(&connp->conn_lock);
2834 
2835 	qprocson(q);
2836 	return (0);
2837 }
2838 
2839 /*
2840  * Build/update the tcp header template (in conn_ht_iphc) based on
2841  * conn_xmit_ipp. The headers include ip6_t, any extension
2842  * headers, and the maximum size tcp header (to avoid reallocation
2843  * on the fly for additional tcp options).
2844  *
2845  * Assumes the caller has already set conn_{faddr,laddr,fport,lport,flowinfo}.
2846  * Returns failure if can't allocate memory.
2847  */
2848 int
2849 tcp_build_hdrs(tcp_t *tcp)
2850 {
2851 	tcp_stack_t	*tcps = tcp->tcp_tcps;
2852 	conn_t		*connp = tcp->tcp_connp;
2853 	char		buf[TCP_MAX_HDR_LENGTH];
2854 	uint_t		buflen;
2855 	uint_t		ulplen = TCP_MIN_HEADER_LENGTH;
2856 	uint_t		extralen = TCP_MAX_TCP_OPTIONS_LENGTH;
2857 	tcpha_t		*tcpha;
2858 	uint32_t	cksum;
2859 	int		error;
2860 
2861 	/*
2862 	 * We might be called after the connection is set up, and we might
2863 	 * have TS options already in the TCP header. Thus we  save any
2864 	 * existing tcp header.
2865 	 */
2866 	buflen = connp->conn_ht_ulp_len;
2867 	if (buflen != 0) {
2868 		bcopy(connp->conn_ht_ulp, buf, buflen);
2869 		extralen -= buflen - ulplen;
2870 		ulplen = buflen;
2871 	}
2872 
2873 	/* Grab lock to satisfy ASSERT; TCP is serialized using squeue */
2874 	mutex_enter(&connp->conn_lock);
2875 	error = conn_build_hdr_template(connp, ulplen, extralen,
2876 	    &connp->conn_laddr_v6, &connp->conn_faddr_v6, connp->conn_flowinfo);
2877 	mutex_exit(&connp->conn_lock);
2878 	if (error != 0)
2879 		return (error);
2880 
2881 	/*
2882 	 * Any routing header/option has been massaged. The checksum difference
2883 	 * is stored in conn_sum for later use.
2884 	 */
2885 	tcpha = (tcpha_t *)connp->conn_ht_ulp;
2886 	tcp->tcp_tcpha = tcpha;
2887 
2888 	/* restore any old tcp header */
2889 	if (buflen != 0) {
2890 		bcopy(buf, connp->conn_ht_ulp, buflen);
2891 	} else {
2892 		tcpha->tha_sum = 0;
2893 		tcpha->tha_urp = 0;
2894 		tcpha->tha_ack = 0;
2895 		tcpha->tha_offset_and_reserved = (5 << 4);
2896 		tcpha->tha_lport = connp->conn_lport;
2897 		tcpha->tha_fport = connp->conn_fport;
2898 	}
2899 
2900 	/*
2901 	 * IP wants our header length in the checksum field to
2902 	 * allow it to perform a single pseudo-header+checksum
2903 	 * calculation on behalf of TCP.
2904 	 * Include the adjustment for a source route once IP_OPTIONS is set.
2905 	 */
2906 	cksum = sizeof (tcpha_t) + connp->conn_sum;
2907 	cksum = (cksum >> 16) + (cksum & 0xFFFF);
2908 	ASSERT(cksum < 0x10000);
2909 	tcpha->tha_sum = htons(cksum);
2910 
2911 	if (connp->conn_ipversion == IPV4_VERSION)
2912 		tcp->tcp_ipha = (ipha_t *)connp->conn_ht_iphc;
2913 	else
2914 		tcp->tcp_ip6h = (ip6_t *)connp->conn_ht_iphc;
2915 
2916 	if (connp->conn_ht_iphc_allocated + tcps->tcps_wroff_xtra >
2917 	    connp->conn_wroff) {
2918 		connp->conn_wroff = connp->conn_ht_iphc_allocated +
2919 		    tcps->tcps_wroff_xtra;
2920 		(void) proto_set_tx_wroff(connp->conn_rq, connp,
2921 		    connp->conn_wroff);
2922 	}
2923 	return (0);
2924 }
2925 
2926 /*
2927  * tcp_rwnd_set() is called to adjust the receive window to a desired value.
2928  * We do not allow the receive window to shrink.  After setting rwnd,
2929  * set the flow control hiwat of the stream.
2930  *
2931  * This function is called in 2 cases:
2932  *
2933  * 1) Before data transfer begins, in tcp_input_listener() for accepting a
2934  *    connection (passive open) and in tcp_input_data() for active connect.
2935  *    This is called after tcp_mss_set() when the desired MSS value is known.
2936  *    This makes sure that our window size is a mutiple of the other side's
2937  *    MSS.
2938  * 2) Handling SO_RCVBUF option.
2939  *
2940  * It is ASSUMED that the requested size is a multiple of the current MSS.
2941  *
2942  * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the
2943  * user requests so.
2944  */
2945 int
2946 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd)
2947 {
2948 	uint32_t	mss = tcp->tcp_mss;
2949 	uint32_t	old_max_rwnd;
2950 	uint32_t	max_transmittable_rwnd;
2951 	boolean_t	tcp_detached = TCP_IS_DETACHED(tcp);
2952 	tcp_stack_t	*tcps = tcp->tcp_tcps;
2953 	conn_t		*connp = tcp->tcp_connp;
2954 
2955 	/*
2956 	 * Insist on a receive window that is at least
2957 	 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid
2958 	 * funny TCP interactions of Nagle algorithm, SWS avoidance
2959 	 * and delayed acknowledgement.
2960 	 */
2961 	rwnd = MAX(rwnd, tcps->tcps_recv_hiwat_minmss * mss);
2962 
2963 	if (tcp->tcp_fused) {
2964 		size_t sth_hiwat;
2965 		tcp_t *peer_tcp = tcp->tcp_loopback_peer;
2966 
2967 		ASSERT(peer_tcp != NULL);
2968 		sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd);
2969 		if (!tcp_detached) {
2970 			(void) proto_set_rx_hiwat(connp->conn_rq, connp,
2971 			    sth_hiwat);
2972 			tcp_set_recv_threshold(tcp, sth_hiwat >> 3);
2973 		}
2974 
2975 		/* Caller could have changed tcp_rwnd; update tha_win */
2976 		if (tcp->tcp_tcpha != NULL) {
2977 			tcp->tcp_tcpha->tha_win =
2978 			    htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws);
2979 		}
2980 		if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max)
2981 			tcp->tcp_cwnd_max = rwnd;
2982 
2983 		/*
2984 		 * In the fusion case, the maxpsz stream head value of
2985 		 * our peer is set according to its send buffer size
2986 		 * and our receive buffer size; since the latter may
2987 		 * have changed we need to update the peer's maxpsz.
2988 		 */
2989 		(void) tcp_maxpsz_set(peer_tcp, B_TRUE);
2990 		return (sth_hiwat);
2991 	}
2992 
2993 	if (tcp_detached)
2994 		old_max_rwnd = tcp->tcp_rwnd;
2995 	else
2996 		old_max_rwnd = connp->conn_rcvbuf;
2997 
2998 
2999 	/*
3000 	 * If window size info has already been exchanged, TCP should not
3001 	 * shrink the window.  Shrinking window is doable if done carefully.
3002 	 * We may add that support later.  But so far there is not a real
3003 	 * need to do that.
3004 	 */
3005 	if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) {
3006 		/* MSS may have changed, do a round up again. */
3007 		rwnd = MSS_ROUNDUP(old_max_rwnd, mss);
3008 	}
3009 
3010 	/*
3011 	 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check
3012 	 * can be applied even before the window scale option is decided.
3013 	 */
3014 	max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws;
3015 	if (rwnd > max_transmittable_rwnd) {
3016 		rwnd = max_transmittable_rwnd -
3017 		    (max_transmittable_rwnd % mss);
3018 		if (rwnd < mss)
3019 			rwnd = max_transmittable_rwnd;
3020 		/*
3021 		 * If we're over the limit we may have to back down tcp_rwnd.
3022 		 * The increment below won't work for us. So we set all three
3023 		 * here and the increment below will have no effect.
3024 		 */
3025 		tcp->tcp_rwnd = old_max_rwnd = rwnd;
3026 	}
3027 	if (tcp->tcp_localnet) {
3028 		tcp->tcp_rack_abs_max =
3029 		    MIN(tcps->tcps_local_dacks_max, rwnd / mss / 2);
3030 	} else {
3031 		/*
3032 		 * For a remote host on a different subnet (through a router),
3033 		 * we ack every other packet to be conforming to RFC1122.
3034 		 * tcp_deferred_acks_max is default to 2.
3035 		 */
3036 		tcp->tcp_rack_abs_max =
3037 		    MIN(tcps->tcps_deferred_acks_max, rwnd / mss / 2);
3038 	}
3039 	if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max)
3040 		tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max;
3041 	else
3042 		tcp->tcp_rack_cur_max = 0;
3043 	/*
3044 	 * Increment the current rwnd by the amount the maximum grew (we
3045 	 * can not overwrite it since we might be in the middle of a
3046 	 * connection.)
3047 	 */
3048 	tcp->tcp_rwnd += rwnd - old_max_rwnd;
3049 	connp->conn_rcvbuf = rwnd;
3050 
3051 	/* Are we already connected? */
3052 	if (tcp->tcp_tcpha != NULL) {
3053 		tcp->tcp_tcpha->tha_win =
3054 		    htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws);
3055 	}
3056 
3057 	if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max)
3058 		tcp->tcp_cwnd_max = rwnd;
3059 
3060 	if (tcp_detached)
3061 		return (rwnd);
3062 
3063 	tcp_set_recv_threshold(tcp, rwnd >> 3);
3064 
3065 	(void) proto_set_rx_hiwat(connp->conn_rq, connp, rwnd);
3066 	return (rwnd);
3067 }
3068 
3069 int
3070 tcp_do_unbind(conn_t *connp)
3071 {
3072 	tcp_t *tcp = connp->conn_tcp;
3073 	int32_t oldstate;
3074 
3075 	switch (tcp->tcp_state) {
3076 	case TCPS_BOUND:
3077 	case TCPS_LISTEN:
3078 		break;
3079 	default:
3080 		return (-TOUTSTATE);
3081 	}
3082 
3083 	/*
3084 	 * Need to clean up all the eagers since after the unbind, segments
3085 	 * will no longer be delivered to this listener stream.
3086 	 */
3087 	mutex_enter(&tcp->tcp_eager_lock);
3088 	if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) {
3089 		tcp_eager_cleanup(tcp, 0);
3090 	}
3091 	mutex_exit(&tcp->tcp_eager_lock);
3092 
3093 	/* Clean up the listener connection counter if necessary. */
3094 	if (tcp->tcp_listen_cnt != NULL)
3095 		TCP_DECR_LISTEN_CNT(tcp);
3096 	connp->conn_laddr_v6 = ipv6_all_zeros;
3097 	connp->conn_saddr_v6 = ipv6_all_zeros;
3098 	tcp_bind_hash_remove(tcp);
3099 	oldstate = tcp->tcp_state;
3100 	tcp->tcp_state = TCPS_IDLE;
3101 	DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
3102 	    connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL,
3103 	    int32_t, oldstate);
3104 
3105 	ip_unbind(connp);
3106 	bzero(&connp->conn_ports, sizeof (connp->conn_ports));
3107 
3108 	return (0);
3109 }
3110 
3111 /*
3112  * Collect protocol properties to send to the upper handle.
3113  */
3114 void
3115 tcp_get_proto_props(tcp_t *tcp, struct sock_proto_props *sopp)
3116 {
3117 	conn_t *connp = tcp->tcp_connp;
3118 
3119 	sopp->sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_MAXBLK | SOCKOPT_WROFF;
3120 	sopp->sopp_maxblk = tcp_maxpsz_set(tcp, B_FALSE);
3121 
3122 	sopp->sopp_rxhiwat = tcp->tcp_fused ?
3123 	    tcp_fuse_set_rcv_hiwat(tcp, connp->conn_rcvbuf) :
3124 	    connp->conn_rcvbuf;
3125 	/*
3126 	 * Determine what write offset value to use depending on SACK and
3127 	 * whether the endpoint is fused or not.
3128 	 */
3129 	if (tcp->tcp_fused) {
3130 		ASSERT(tcp->tcp_loopback);
3131 		ASSERT(tcp->tcp_loopback_peer != NULL);
3132 		/*
3133 		 * For fused tcp loopback, set the stream head's write
3134 		 * offset value to zero since we won't be needing any room
3135 		 * for TCP/IP headers.  This would also improve performance
3136 		 * since it would reduce the amount of work done by kmem.
3137 		 * Non-fused tcp loopback case is handled separately below.
3138 		 */
3139 		sopp->sopp_wroff = 0;
3140 		/*
3141 		 * Update the peer's transmit parameters according to
3142 		 * our recently calculated high water mark value.
3143 		 */
3144 		(void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE);
3145 	} else if (tcp->tcp_snd_sack_ok) {
3146 		sopp->sopp_wroff = connp->conn_ht_iphc_allocated +
3147 		    (tcp->tcp_loopback ? 0 : tcp->tcp_tcps->tcps_wroff_xtra);
3148 	} else {
3149 		sopp->sopp_wroff = connp->conn_ht_iphc_len +
3150 		    (tcp->tcp_loopback ? 0 : tcp->tcp_tcps->tcps_wroff_xtra);
3151 	}
3152 
3153 	if (tcp->tcp_loopback) {
3154 		sopp->sopp_flags |= SOCKOPT_LOOPBACK;
3155 		sopp->sopp_loopback = B_TRUE;
3156 	}
3157 }
3158 
3159 /*
3160  * Check the usability of ZEROCOPY. It's instead checking the flag set by IP.
3161  */
3162 boolean_t
3163 tcp_zcopy_check(tcp_t *tcp)
3164 {
3165 	conn_t		*connp = tcp->tcp_connp;
3166 	ip_xmit_attr_t	*ixa = connp->conn_ixa;
3167 	boolean_t	zc_enabled = B_FALSE;
3168 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3169 
3170 	if (do_tcpzcopy == 2)
3171 		zc_enabled = B_TRUE;
3172 	else if ((do_tcpzcopy == 1) && (ixa->ixa_flags & IXAF_ZCOPY_CAPAB))
3173 		zc_enabled = B_TRUE;
3174 
3175 	tcp->tcp_snd_zcopy_on = zc_enabled;
3176 	if (!TCP_IS_DETACHED(tcp)) {
3177 		if (zc_enabled) {
3178 			ixa->ixa_flags |= IXAF_VERIFY_ZCOPY;
3179 			(void) proto_set_tx_copyopt(connp->conn_rq, connp,
3180 			    ZCVMSAFE);
3181 			TCP_STAT(tcps, tcp_zcopy_on);
3182 		} else {
3183 			ixa->ixa_flags &= ~IXAF_VERIFY_ZCOPY;
3184 			(void) proto_set_tx_copyopt(connp->conn_rq, connp,
3185 			    ZCVMUNSAFE);
3186 			TCP_STAT(tcps, tcp_zcopy_off);
3187 		}
3188 	}
3189 	return (zc_enabled);
3190 }
3191 
3192 /*
3193  * Backoff from a zero-copy message by copying data to a new allocated
3194  * message and freeing the original desballoca'ed segmapped message.
3195  *
3196  * This function is called by following two callers:
3197  * 1. tcp_timer: fix_xmitlist is set to B_TRUE, because it's safe to free
3198  *    the origial desballoca'ed message and notify sockfs. This is in re-
3199  *    transmit state.
3200  * 2. tcp_output: fix_xmitlist is set to B_FALSE. Flag STRUIO_ZCNOTIFY need
3201  *    to be copied to new message.
3202  */
3203 mblk_t *
3204 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, boolean_t fix_xmitlist)
3205 {
3206 	mblk_t		*nbp;
3207 	mblk_t		*head = NULL;
3208 	mblk_t		*tail = NULL;
3209 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3210 
3211 	ASSERT(bp != NULL);
3212 	while (bp != NULL) {
3213 		if (IS_VMLOANED_MBLK(bp)) {
3214 			TCP_STAT(tcps, tcp_zcopy_backoff);
3215 			if ((nbp = copyb(bp)) == NULL) {
3216 				tcp->tcp_xmit_zc_clean = B_FALSE;
3217 				if (tail != NULL)
3218 					tail->b_cont = bp;
3219 				return ((head == NULL) ? bp : head);
3220 			}
3221 
3222 			if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) {
3223 				if (fix_xmitlist)
3224 					tcp_zcopy_notify(tcp);
3225 				else
3226 					nbp->b_datap->db_struioflag |=
3227 					    STRUIO_ZCNOTIFY;
3228 			}
3229 			nbp->b_cont = bp->b_cont;
3230 
3231 			/*
3232 			 * Copy saved information and adjust tcp_xmit_tail
3233 			 * if needed.
3234 			 */
3235 			if (fix_xmitlist) {
3236 				nbp->b_prev = bp->b_prev;
3237 				nbp->b_next = bp->b_next;
3238 
3239 				if (tcp->tcp_xmit_tail == bp)
3240 					tcp->tcp_xmit_tail = nbp;
3241 			}
3242 
3243 			/* Free the original message. */
3244 			bp->b_prev = NULL;
3245 			bp->b_next = NULL;
3246 			freeb(bp);
3247 
3248 			bp = nbp;
3249 		}
3250 
3251 		if (head == NULL) {
3252 			head = bp;
3253 		}
3254 		if (tail == NULL) {
3255 			tail = bp;
3256 		} else {
3257 			tail->b_cont = bp;
3258 			tail = bp;
3259 		}
3260 
3261 		/* Move forward. */
3262 		bp = bp->b_cont;
3263 	}
3264 
3265 	if (fix_xmitlist) {
3266 		tcp->tcp_xmit_last = tail;
3267 		tcp->tcp_xmit_zc_clean = B_TRUE;
3268 	}
3269 
3270 	return (head);
3271 }
3272 
3273 void
3274 tcp_zcopy_notify(tcp_t *tcp)
3275 {
3276 	struct stdata	*stp;
3277 	conn_t		*connp;
3278 
3279 	if (tcp->tcp_detached)
3280 		return;
3281 	connp = tcp->tcp_connp;
3282 	if (IPCL_IS_NONSTR(connp)) {
3283 		(*connp->conn_upcalls->su_zcopy_notify)
3284 		    (connp->conn_upper_handle);
3285 		return;
3286 	}
3287 	stp = STREAM(connp->conn_rq);
3288 	mutex_enter(&stp->sd_lock);
3289 	stp->sd_flag |= STZCNOTIFY;
3290 	cv_broadcast(&stp->sd_zcopy_wait);
3291 	mutex_exit(&stp->sd_lock);
3292 }
3293 
3294 /*
3295  * Update the TCP connection according to change of LSO capability.
3296  */
3297 static void
3298 tcp_update_lso(tcp_t *tcp, ip_xmit_attr_t *ixa)
3299 {
3300 	/*
3301 	 * We check against IPv4 header length to preserve the old behavior
3302 	 * of only enabling LSO when there are no IP options.
3303 	 * But this restriction might not be necessary at all. Before removing
3304 	 * it, need to verify how LSO is handled for source routing case, with
3305 	 * which IP does software checksum.
3306 	 *
3307 	 * For IPv6, whenever any extension header is needed, LSO is supressed.
3308 	 */
3309 	if (ixa->ixa_ip_hdr_length != ((ixa->ixa_flags & IXAF_IS_IPV4) ?
3310 	    IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN))
3311 		return;
3312 
3313 	/*
3314 	 * Either the LSO capability newly became usable, or it has changed.
3315 	 */
3316 	if (ixa->ixa_flags & IXAF_LSO_CAPAB) {
3317 		ill_lso_capab_t	*lsoc = &ixa->ixa_lso_capab;
3318 
3319 		ASSERT(lsoc->ill_lso_max > 0);
3320 		tcp->tcp_lso_max = MIN(TCP_MAX_LSO_LENGTH, lsoc->ill_lso_max);
3321 
3322 		DTRACE_PROBE3(tcp_update_lso, boolean_t, tcp->tcp_lso,
3323 		    boolean_t, B_TRUE, uint32_t, tcp->tcp_lso_max);
3324 
3325 		/*
3326 		 * If LSO to be enabled, notify the STREAM header with larger
3327 		 * data block.
3328 		 */
3329 		if (!tcp->tcp_lso)
3330 			tcp->tcp_maxpsz_multiplier = 0;
3331 
3332 		tcp->tcp_lso = B_TRUE;
3333 		TCP_STAT(tcp->tcp_tcps, tcp_lso_enabled);
3334 	} else { /* LSO capability is not usable any more. */
3335 		DTRACE_PROBE3(tcp_update_lso, boolean_t, tcp->tcp_lso,
3336 		    boolean_t, B_FALSE, uint32_t, tcp->tcp_lso_max);
3337 
3338 		/*
3339 		 * If LSO to be disabled, notify the STREAM header with smaller
3340 		 * data block. And need to restore fragsize to PMTU.
3341 		 */
3342 		if (tcp->tcp_lso) {
3343 			tcp->tcp_maxpsz_multiplier =
3344 			    tcp->tcp_tcps->tcps_maxpsz_multiplier;
3345 			ixa->ixa_fragsize = ixa->ixa_pmtu;
3346 			tcp->tcp_lso = B_FALSE;
3347 			TCP_STAT(tcp->tcp_tcps, tcp_lso_disabled);
3348 		}
3349 	}
3350 
3351 	(void) tcp_maxpsz_set(tcp, B_TRUE);
3352 }
3353 
3354 /*
3355  * Update the TCP connection according to change of ZEROCOPY capability.
3356  */
3357 static void
3358 tcp_update_zcopy(tcp_t *tcp)
3359 {
3360 	conn_t		*connp = tcp->tcp_connp;
3361 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3362 
3363 	if (tcp->tcp_snd_zcopy_on) {
3364 		tcp->tcp_snd_zcopy_on = B_FALSE;
3365 		if (!TCP_IS_DETACHED(tcp)) {
3366 			(void) proto_set_tx_copyopt(connp->conn_rq, connp,
3367 			    ZCVMUNSAFE);
3368 			TCP_STAT(tcps, tcp_zcopy_off);
3369 		}
3370 	} else {
3371 		tcp->tcp_snd_zcopy_on = B_TRUE;
3372 		if (!TCP_IS_DETACHED(tcp)) {
3373 			(void) proto_set_tx_copyopt(connp->conn_rq, connp,
3374 			    ZCVMSAFE);
3375 			TCP_STAT(tcps, tcp_zcopy_on);
3376 		}
3377 	}
3378 }
3379 
3380 /*
3381  * Notify function registered with ip_xmit_attr_t. It's called in the squeue
3382  * so it's safe to update the TCP connection.
3383  */
3384 /* ARGSUSED1 */
3385 static void
3386 tcp_notify(void *arg, ip_xmit_attr_t *ixa, ixa_notify_type_t ntype,
3387     ixa_notify_arg_t narg)
3388 {
3389 	tcp_t		*tcp = (tcp_t *)arg;
3390 	conn_t		*connp = tcp->tcp_connp;
3391 
3392 	switch (ntype) {
3393 	case IXAN_LSO:
3394 		tcp_update_lso(tcp, connp->conn_ixa);
3395 		break;
3396 	case IXAN_PMTU:
3397 		tcp_update_pmtu(tcp, B_FALSE);
3398 		break;
3399 	case IXAN_ZCOPY:
3400 		tcp_update_zcopy(tcp);
3401 		break;
3402 	default:
3403 		break;
3404 	}
3405 }
3406 
3407 /*
3408  * The TCP write service routine should never be called...
3409  */
3410 /* ARGSUSED */
3411 static void
3412 tcp_wsrv(queue_t *q)
3413 {
3414 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
3415 
3416 	TCP_STAT(tcps, tcp_wsrv_called);
3417 }
3418 
3419 /*
3420  * Hash list lookup routine for tcp_t structures.
3421  * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF.
3422  */
3423 tcp_t *
3424 tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *tcps)
3425 {
3426 	tf_t	*tf;
3427 	tcp_t	*tcp;
3428 
3429 	tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
3430 	mutex_enter(&tf->tf_lock);
3431 	for (tcp = tf->tf_tcp; tcp != NULL;
3432 	    tcp = tcp->tcp_acceptor_hash) {
3433 		if (tcp->tcp_acceptor_id == id) {
3434 			CONN_INC_REF(tcp->tcp_connp);
3435 			mutex_exit(&tf->tf_lock);
3436 			return (tcp);
3437 		}
3438 	}
3439 	mutex_exit(&tf->tf_lock);
3440 	return (NULL);
3441 }
3442 
3443 /*
3444  * Hash list insertion routine for tcp_t structures.
3445  */
3446 void
3447 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp)
3448 {
3449 	tf_t	*tf;
3450 	tcp_t	**tcpp;
3451 	tcp_t	*tcpnext;
3452 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3453 
3454 	tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
3455 
3456 	if (tcp->tcp_ptpahn != NULL)
3457 		tcp_acceptor_hash_remove(tcp);
3458 	tcpp = &tf->tf_tcp;
3459 	mutex_enter(&tf->tf_lock);
3460 	tcpnext = tcpp[0];
3461 	if (tcpnext)
3462 		tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash;
3463 	tcp->tcp_acceptor_hash = tcpnext;
3464 	tcp->tcp_ptpahn = tcpp;
3465 	tcpp[0] = tcp;
3466 	tcp->tcp_acceptor_lockp = &tf->tf_lock;	/* For tcp_*_hash_remove */
3467 	mutex_exit(&tf->tf_lock);
3468 }
3469 
3470 /*
3471  * Hash list removal routine for tcp_t structures.
3472  */
3473 void
3474 tcp_acceptor_hash_remove(tcp_t *tcp)
3475 {
3476 	tcp_t	*tcpnext;
3477 	kmutex_t *lockp;
3478 
3479 	/*
3480 	 * Extract the lock pointer in case there are concurrent
3481 	 * hash_remove's for this instance.
3482 	 */
3483 	lockp = tcp->tcp_acceptor_lockp;
3484 
3485 	if (tcp->tcp_ptpahn == NULL)
3486 		return;
3487 
3488 	ASSERT(lockp != NULL);
3489 	mutex_enter(lockp);
3490 	if (tcp->tcp_ptpahn) {
3491 		tcpnext = tcp->tcp_acceptor_hash;
3492 		if (tcpnext) {
3493 			tcpnext->tcp_ptpahn = tcp->tcp_ptpahn;
3494 			tcp->tcp_acceptor_hash = NULL;
3495 		}
3496 		*tcp->tcp_ptpahn = tcpnext;
3497 		tcp->tcp_ptpahn = NULL;
3498 	}
3499 	mutex_exit(lockp);
3500 	tcp->tcp_acceptor_lockp = NULL;
3501 }
3502 
3503 /*
3504  * Type three generator adapted from the random() function in 4.4 BSD:
3505  */
3506 
3507 /*
3508  * Copyright (c) 1983, 1993
3509  *	The Regents of the University of California.  All rights reserved.
3510  *
3511  * Redistribution and use in source and binary forms, with or without
3512  * modification, are permitted provided that the following conditions
3513  * are met:
3514  * 1. Redistributions of source code must retain the above copyright
3515  *    notice, this list of conditions and the following disclaimer.
3516  * 2. Redistributions in binary form must reproduce the above copyright
3517  *    notice, this list of conditions and the following disclaimer in the
3518  *    documentation and/or other materials provided with the distribution.
3519  * 3. All advertising materials mentioning features or use of this software
3520  *    must display the following acknowledgement:
3521  *	This product includes software developed by the University of
3522  *	California, Berkeley and its contributors.
3523  * 4. Neither the name of the University nor the names of its contributors
3524  *    may be used to endorse or promote products derived from this software
3525  *    without specific prior written permission.
3526  *
3527  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
3528  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
3529  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
3530  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
3531  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
3532  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
3533  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
3534  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
3535  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
3536  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
3537  * SUCH DAMAGE.
3538  */
3539 
3540 /* Type 3 -- x**31 + x**3 + 1 */
3541 #define	DEG_3		31
3542 #define	SEP_3		3
3543 
3544 
3545 /* Protected by tcp_random_lock */
3546 static int tcp_randtbl[DEG_3 + 1];
3547 
3548 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1];
3549 static int *tcp_random_rptr = &tcp_randtbl[1];
3550 
3551 static int *tcp_random_state = &tcp_randtbl[1];
3552 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1];
3553 
3554 kmutex_t tcp_random_lock;
3555 
3556 void
3557 tcp_random_init(void)
3558 {
3559 	int i;
3560 	hrtime_t hrt;
3561 	time_t wallclock;
3562 	uint64_t result;
3563 
3564 	/*
3565 	 * Use high-res timer and current time for seed.  Gethrtime() returns
3566 	 * a longlong, which may contain resolution down to nanoseconds.
3567 	 * The current time will either be a 32-bit or a 64-bit quantity.
3568 	 * XOR the two together in a 64-bit result variable.
3569 	 * Convert the result to a 32-bit value by multiplying the high-order
3570 	 * 32-bits by the low-order 32-bits.
3571 	 */
3572 
3573 	hrt = gethrtime();
3574 	(void) drv_getparm(TIME, &wallclock);
3575 	result = (uint64_t)wallclock ^ (uint64_t)hrt;
3576 	mutex_enter(&tcp_random_lock);
3577 	tcp_random_state[0] = ((result >> 32) & 0xffffffff) *
3578 	    (result & 0xffffffff);
3579 
3580 	for (i = 1; i < DEG_3; i++)
3581 		tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1]
3582 		    + 12345;
3583 	tcp_random_fptr = &tcp_random_state[SEP_3];
3584 	tcp_random_rptr = &tcp_random_state[0];
3585 	mutex_exit(&tcp_random_lock);
3586 	for (i = 0; i < 10 * DEG_3; i++)
3587 		(void) tcp_random();
3588 }
3589 
3590 /*
3591  * tcp_random: Return a random number in the range [1 - (128K + 1)].
3592  * This range is selected to be approximately centered on TCP_ISS / 2,
3593  * and easy to compute. We get this value by generating a 32-bit random
3594  * number, selecting out the high-order 17 bits, and then adding one so
3595  * that we never return zero.
3596  */
3597 int
3598 tcp_random(void)
3599 {
3600 	int i;
3601 
3602 	mutex_enter(&tcp_random_lock);
3603 	*tcp_random_fptr += *tcp_random_rptr;
3604 
3605 	/*
3606 	 * The high-order bits are more random than the low-order bits,
3607 	 * so we select out the high-order 17 bits and add one so that
3608 	 * we never return zero.
3609 	 */
3610 	i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1;
3611 	if (++tcp_random_fptr >= tcp_random_end_ptr) {
3612 		tcp_random_fptr = tcp_random_state;
3613 		++tcp_random_rptr;
3614 	} else if (++tcp_random_rptr >= tcp_random_end_ptr)
3615 		tcp_random_rptr = tcp_random_state;
3616 
3617 	mutex_exit(&tcp_random_lock);
3618 	return (i);
3619 }
3620 
3621 /*
3622  * Split this function out so that if the secret changes, I'm okay.
3623  *
3624  * Initialize the tcp_iss_cookie and tcp_iss_key.
3625  */
3626 
3627 #define	PASSWD_SIZE 16  /* MUST be multiple of 4 */
3628 
3629 void
3630 tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *tcps)
3631 {
3632 	struct {
3633 		int32_t current_time;
3634 		uint32_t randnum;
3635 		uint16_t pad;
3636 		uint8_t ether[6];
3637 		uint8_t passwd[PASSWD_SIZE];
3638 	} tcp_iss_cookie;
3639 	time_t t;
3640 
3641 	/*
3642 	 * Start with the current absolute time.
3643 	 */
3644 	(void) drv_getparm(TIME, &t);
3645 	tcp_iss_cookie.current_time = t;
3646 
3647 	/*
3648 	 * XXX - Need a more random number per RFC 1750, not this crap.
3649 	 * OTOH, if what follows is pretty random, then I'm in better shape.
3650 	 */
3651 	tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random());
3652 	tcp_iss_cookie.pad = 0x365c;  /* Picked from HMAC pad values. */
3653 
3654 	/*
3655 	 * The cpu_type_info is pretty non-random.  Ugggh.  It does serve
3656 	 * as a good template.
3657 	 */
3658 	bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd,
3659 	    min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info)));
3660 
3661 	/*
3662 	 * The pass-phrase.  Normally this is supplied by user-called NDD.
3663 	 */
3664 	bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len));
3665 
3666 	/*
3667 	 * See 4010593 if this section becomes a problem again,
3668 	 * but the local ethernet address is useful here.
3669 	 */
3670 	(void) localetheraddr(NULL,
3671 	    (struct ether_addr *)&tcp_iss_cookie.ether);
3672 
3673 	/*
3674 	 * Hash 'em all together.  The MD5Final is called per-connection.
3675 	 */
3676 	mutex_enter(&tcps->tcps_iss_key_lock);
3677 	MD5Init(&tcps->tcps_iss_key);
3678 	MD5Update(&tcps->tcps_iss_key, (uchar_t *)&tcp_iss_cookie,
3679 	    sizeof (tcp_iss_cookie));
3680 	mutex_exit(&tcps->tcps_iss_key_lock);
3681 }
3682 
3683 /*
3684  * Called by IP when IP is loaded into the kernel
3685  */
3686 void
3687 tcp_ddi_g_init(void)
3688 {
3689 	tcp_timercache = kmem_cache_create("tcp_timercache",
3690 	    sizeof (tcp_timer_t) + sizeof (mblk_t), 0,
3691 	    NULL, NULL, NULL, NULL, NULL, 0);
3692 
3693 	tcp_notsack_blk_cache = kmem_cache_create("tcp_notsack_blk_cache",
3694 	    sizeof (notsack_blk_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
3695 
3696 	mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL);
3697 
3698 	/* Initialize the random number generator */
3699 	tcp_random_init();
3700 
3701 	/* A single callback independently of how many netstacks we have */
3702 	ip_squeue_init(tcp_squeue_add);
3703 
3704 	tcp_g_kstat = tcp_g_kstat_init(&tcp_g_statistics);
3705 
3706 	tcp_squeue_flag = tcp_squeue_switch(tcp_squeue_wput);
3707 
3708 	/*
3709 	 * We want to be informed each time a stack is created or
3710 	 * destroyed in the kernel, so we can maintain the
3711 	 * set of tcp_stack_t's.
3712 	 */
3713 	netstack_register(NS_TCP, tcp_stack_init, NULL, tcp_stack_fini);
3714 }
3715 
3716 
3717 #define	INET_NAME	"ip"
3718 
3719 /*
3720  * Initialize the TCP stack instance.
3721  */
3722 static void *
3723 tcp_stack_init(netstackid_t stackid, netstack_t *ns)
3724 {
3725 	tcp_stack_t	*tcps;
3726 	int		i;
3727 	int		error = 0;
3728 	major_t		major;
3729 	size_t		arrsz;
3730 
3731 	tcps = (tcp_stack_t *)kmem_zalloc(sizeof (*tcps), KM_SLEEP);
3732 	tcps->tcps_netstack = ns;
3733 
3734 	/* Initialize locks */
3735 	mutex_init(&tcps->tcps_iss_key_lock, NULL, MUTEX_DEFAULT, NULL);
3736 	mutex_init(&tcps->tcps_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL);
3737 
3738 	tcps->tcps_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS;
3739 	tcps->tcps_g_epriv_ports[0] = ULP_DEF_EPRIV_PORT1;
3740 	tcps->tcps_g_epriv_ports[1] = ULP_DEF_EPRIV_PORT2;
3741 	tcps->tcps_min_anonpriv_port = 512;
3742 
3743 	tcps->tcps_bind_fanout = kmem_zalloc(sizeof (tf_t) *
3744 	    TCP_BIND_FANOUT_SIZE, KM_SLEEP);
3745 	tcps->tcps_acceptor_fanout = kmem_zalloc(sizeof (tf_t) *
3746 	    TCP_ACCEPTOR_FANOUT_SIZE, KM_SLEEP);
3747 
3748 	for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) {
3749 		mutex_init(&tcps->tcps_bind_fanout[i].tf_lock, NULL,
3750 		    MUTEX_DEFAULT, NULL);
3751 	}
3752 
3753 	for (i = 0; i < TCP_ACCEPTOR_FANOUT_SIZE; i++) {
3754 		mutex_init(&tcps->tcps_acceptor_fanout[i].tf_lock, NULL,
3755 		    MUTEX_DEFAULT, NULL);
3756 	}
3757 
3758 	/* TCP's IPsec code calls the packet dropper. */
3759 	ip_drop_register(&tcps->tcps_dropper, "TCP IPsec policy enforcement");
3760 
3761 	arrsz = tcp_propinfo_count * sizeof (mod_prop_info_t);
3762 	tcps->tcps_propinfo_tbl = (mod_prop_info_t *)kmem_alloc(arrsz,
3763 	    KM_SLEEP);
3764 	bcopy(tcp_propinfo_tbl, tcps->tcps_propinfo_tbl, arrsz);
3765 
3766 	/*
3767 	 * Note: To really walk the device tree you need the devinfo
3768 	 * pointer to your device which is only available after probe/attach.
3769 	 * The following is safe only because it uses ddi_root_node()
3770 	 */
3771 	tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr,
3772 	    tcp_opt_obj.odb_opt_arr_cnt);
3773 
3774 	/*
3775 	 * Initialize RFC 1948 secret values.  This will probably be reset once
3776 	 * by the boot scripts.
3777 	 *
3778 	 * Use NULL name, as the name is caught by the new lockstats.
3779 	 *
3780 	 * Initialize with some random, non-guessable string, like the global
3781 	 * T_INFO_ACK.
3782 	 */
3783 
3784 	tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack,
3785 	    sizeof (tcp_g_t_info_ack), tcps);
3786 
3787 	tcps->tcps_kstat = tcp_kstat2_init(stackid);
3788 	tcps->tcps_mibkp = tcp_kstat_init(stackid);
3789 
3790 	major = mod_name_to_major(INET_NAME);
3791 	error = ldi_ident_from_major(major, &tcps->tcps_ldi_ident);
3792 	ASSERT(error == 0);
3793 	tcps->tcps_ixa_cleanup_mp = allocb_wait(0, BPRI_MED, STR_NOSIG, NULL);
3794 	ASSERT(tcps->tcps_ixa_cleanup_mp != NULL);
3795 	cv_init(&tcps->tcps_ixa_cleanup_cv, NULL, CV_DEFAULT, NULL);
3796 	mutex_init(&tcps->tcps_ixa_cleanup_lock, NULL, MUTEX_DEFAULT, NULL);
3797 
3798 	mutex_init(&tcps->tcps_reclaim_lock, NULL, MUTEX_DEFAULT, NULL);
3799 	tcps->tcps_reclaim = B_FALSE;
3800 	tcps->tcps_reclaim_tid = 0;
3801 	tcps->tcps_reclaim_period = tcps->tcps_rexmit_interval_max;
3802 
3803 	/*
3804 	 * ncpus is the current number of CPUs, which can be bigger than
3805 	 * boot_ncpus.  But we don't want to use ncpus to allocate all the
3806 	 * tcp_stats_cpu_t at system boot up time since it will be 1.  While
3807 	 * we handle adding CPU in tcp_cpu_update(), it will be slow if
3808 	 * there are many CPUs as we will be adding them 1 by 1.
3809 	 *
3810 	 * Note that tcps_sc_cnt never decreases and the tcps_sc[x] pointers
3811 	 * are not freed until the stack is going away.  So there is no need
3812 	 * to grab a lock to access the per CPU tcps_sc[x] pointer.
3813 	 */
3814 	mutex_enter(&cpu_lock);
3815 	tcps->tcps_sc_cnt = MAX(ncpus, boot_ncpus);
3816 	mutex_exit(&cpu_lock);
3817 	tcps->tcps_sc = kmem_zalloc(max_ncpus  * sizeof (tcp_stats_cpu_t *),
3818 	    KM_SLEEP);
3819 	for (i = 0; i < tcps->tcps_sc_cnt; i++) {
3820 		tcps->tcps_sc[i] = kmem_zalloc(sizeof (tcp_stats_cpu_t),
3821 		    KM_SLEEP);
3822 	}
3823 
3824 	mutex_init(&tcps->tcps_listener_conf_lock, NULL, MUTEX_DEFAULT, NULL);
3825 	list_create(&tcps->tcps_listener_conf, sizeof (tcp_listener_t),
3826 	    offsetof(tcp_listener_t, tl_link));
3827 
3828 	return (tcps);
3829 }
3830 
3831 /*
3832  * Called when the IP module is about to be unloaded.
3833  */
3834 void
3835 tcp_ddi_g_destroy(void)
3836 {
3837 	tcp_g_kstat_fini(tcp_g_kstat);
3838 	tcp_g_kstat = NULL;
3839 	bzero(&tcp_g_statistics, sizeof (tcp_g_statistics));
3840 
3841 	mutex_destroy(&tcp_random_lock);
3842 
3843 	kmem_cache_destroy(tcp_timercache);
3844 	kmem_cache_destroy(tcp_notsack_blk_cache);
3845 
3846 	netstack_unregister(NS_TCP);
3847 }
3848 
3849 /*
3850  * Free the TCP stack instance.
3851  */
3852 static void
3853 tcp_stack_fini(netstackid_t stackid, void *arg)
3854 {
3855 	tcp_stack_t *tcps = (tcp_stack_t *)arg;
3856 	int i;
3857 
3858 	freeb(tcps->tcps_ixa_cleanup_mp);
3859 	tcps->tcps_ixa_cleanup_mp = NULL;
3860 	cv_destroy(&tcps->tcps_ixa_cleanup_cv);
3861 	mutex_destroy(&tcps->tcps_ixa_cleanup_lock);
3862 
3863 	/*
3864 	 * Set tcps_reclaim to false tells tcp_reclaim_timer() not to restart
3865 	 * the timer.
3866 	 */
3867 	mutex_enter(&tcps->tcps_reclaim_lock);
3868 	tcps->tcps_reclaim = B_FALSE;
3869 	mutex_exit(&tcps->tcps_reclaim_lock);
3870 	if (tcps->tcps_reclaim_tid != 0)
3871 		(void) untimeout(tcps->tcps_reclaim_tid);
3872 	mutex_destroy(&tcps->tcps_reclaim_lock);
3873 
3874 	tcp_listener_conf_cleanup(tcps);
3875 
3876 	for (i = 0; i < tcps->tcps_sc_cnt; i++)
3877 		kmem_free(tcps->tcps_sc[i], sizeof (tcp_stats_cpu_t));
3878 	kmem_free(tcps->tcps_sc, max_ncpus * sizeof (tcp_stats_cpu_t *));
3879 
3880 	kmem_free(tcps->tcps_propinfo_tbl,
3881 	    tcp_propinfo_count * sizeof (mod_prop_info_t));
3882 	tcps->tcps_propinfo_tbl = NULL;
3883 
3884 	for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) {
3885 		ASSERT(tcps->tcps_bind_fanout[i].tf_tcp == NULL);
3886 		mutex_destroy(&tcps->tcps_bind_fanout[i].tf_lock);
3887 	}
3888 
3889 	for (i = 0; i < TCP_ACCEPTOR_FANOUT_SIZE; i++) {
3890 		ASSERT(tcps->tcps_acceptor_fanout[i].tf_tcp == NULL);
3891 		mutex_destroy(&tcps->tcps_acceptor_fanout[i].tf_lock);
3892 	}
3893 
3894 	kmem_free(tcps->tcps_bind_fanout, sizeof (tf_t) * TCP_BIND_FANOUT_SIZE);
3895 	tcps->tcps_bind_fanout = NULL;
3896 
3897 	kmem_free(tcps->tcps_acceptor_fanout, sizeof (tf_t) *
3898 	    TCP_ACCEPTOR_FANOUT_SIZE);
3899 	tcps->tcps_acceptor_fanout = NULL;
3900 
3901 	mutex_destroy(&tcps->tcps_iss_key_lock);
3902 	mutex_destroy(&tcps->tcps_epriv_port_lock);
3903 
3904 	ip_drop_unregister(&tcps->tcps_dropper);
3905 
3906 	tcp_kstat2_fini(stackid, tcps->tcps_kstat);
3907 	tcps->tcps_kstat = NULL;
3908 
3909 	tcp_kstat_fini(stackid, tcps->tcps_mibkp);
3910 	tcps->tcps_mibkp = NULL;
3911 
3912 	ldi_ident_release(tcps->tcps_ldi_ident);
3913 	kmem_free(tcps, sizeof (*tcps));
3914 }
3915 
3916 /*
3917  * Generate ISS, taking into account NDD changes may happen halfway through.
3918  * (If the iss is not zero, set it.)
3919  */
3920 
3921 static void
3922 tcp_iss_init(tcp_t *tcp)
3923 {
3924 	MD5_CTX context;
3925 	struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg;
3926 	uint32_t answer[4];
3927 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3928 	conn_t		*connp = tcp->tcp_connp;
3929 
3930 	tcps->tcps_iss_incr_extra += (tcps->tcps_iss_incr >> 1);
3931 	tcp->tcp_iss = tcps->tcps_iss_incr_extra;
3932 	switch (tcps->tcps_strong_iss) {
3933 	case 2:
3934 		mutex_enter(&tcps->tcps_iss_key_lock);
3935 		context = tcps->tcps_iss_key;
3936 		mutex_exit(&tcps->tcps_iss_key_lock);
3937 		arg.ports = connp->conn_ports;
3938 		arg.src = connp->conn_laddr_v6;
3939 		arg.dst = connp->conn_faddr_v6;
3940 		MD5Update(&context, (uchar_t *)&arg, sizeof (arg));
3941 		MD5Final((uchar_t *)answer, &context);
3942 		tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3];
3943 		/*
3944 		 * Now that we've hashed into a unique per-connection sequence
3945 		 * space, add a random increment per strong_iss == 1.  So I
3946 		 * guess we'll have to...
3947 		 */
3948 		/* FALLTHRU */
3949 	case 1:
3950 		tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random();
3951 		break;
3952 	default:
3953 		tcp->tcp_iss += (uint32_t)gethrestime_sec() *
3954 		    tcps->tcps_iss_incr;
3955 		break;
3956 	}
3957 	tcp->tcp_valid_bits = TCP_ISS_VALID;
3958 	tcp->tcp_fss = tcp->tcp_iss - 1;
3959 	tcp->tcp_suna = tcp->tcp_iss;
3960 	tcp->tcp_snxt = tcp->tcp_iss + 1;
3961 	tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
3962 	tcp->tcp_csuna = tcp->tcp_snxt;
3963 }
3964 
3965 /*
3966  * tcp_{set,clr}qfull() functions are used to either set or clear QFULL
3967  * on the specified backing STREAMS q. Note, the caller may make the
3968  * decision to call based on the tcp_t.tcp_flow_stopped value which
3969  * when check outside the q's lock is only an advisory check ...
3970  */
3971 void
3972 tcp_setqfull(tcp_t *tcp)
3973 {
3974 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3975 	conn_t	*connp = tcp->tcp_connp;
3976 
3977 	if (tcp->tcp_closed)
3978 		return;
3979 
3980 	conn_setqfull(connp, &tcp->tcp_flow_stopped);
3981 	if (tcp->tcp_flow_stopped)
3982 		TCP_STAT(tcps, tcp_flwctl_on);
3983 }
3984 
3985 void
3986 tcp_clrqfull(tcp_t *tcp)
3987 {
3988 	conn_t  *connp = tcp->tcp_connp;
3989 
3990 	if (tcp->tcp_closed)
3991 		return;
3992 	conn_clrqfull(connp, &tcp->tcp_flow_stopped);
3993 }
3994 
3995 static int
3996 tcp_squeue_switch(int val)
3997 {
3998 	int rval = SQ_FILL;
3999 
4000 	switch (val) {
4001 	case 1:
4002 		rval = SQ_NODRAIN;
4003 		break;
4004 	case 2:
4005 		rval = SQ_PROCESS;
4006 		break;
4007 	default:
4008 		break;
4009 	}
4010 	return (rval);
4011 }
4012 
4013 /*
4014  * This is called once for each squeue - globally for all stack
4015  * instances.
4016  */
4017 static void
4018 tcp_squeue_add(squeue_t *sqp)
4019 {
4020 	tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc(
4021 	    sizeof (tcp_squeue_priv_t), KM_SLEEP);
4022 
4023 	*squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait;
4024 	if (tcp_free_list_max_cnt == 0) {
4025 		int tcp_ncpus = ((boot_max_ncpus == -1) ?
4026 		    max_ncpus : boot_max_ncpus);
4027 
4028 		/*
4029 		 * Limit number of entries to 1% of availble memory / tcp_ncpus
4030 		 */
4031 		tcp_free_list_max_cnt = (freemem * PAGESIZE) /
4032 		    (tcp_ncpus * sizeof (tcp_t) * 100);
4033 	}
4034 	tcp_time_wait->tcp_free_list_cnt = 0;
4035 }
4036 /*
4037  * Return unix error is tli error is TSYSERR, otherwise return a negative
4038  * tli error.
4039  */
4040 int
4041 tcp_do_bind(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr,
4042     boolean_t bind_to_req_port_only)
4043 {
4044 	int error;
4045 	tcp_t *tcp = connp->conn_tcp;
4046 
4047 	if (tcp->tcp_state >= TCPS_BOUND) {
4048 		if (connp->conn_debug) {
4049 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
4050 			    "tcp_bind: bad state, %d", tcp->tcp_state);
4051 		}
4052 		return (-TOUTSTATE);
4053 	}
4054 
4055 	error = tcp_bind_check(connp, sa, len, cr, bind_to_req_port_only);
4056 	if (error != 0)
4057 		return (error);
4058 
4059 	ASSERT(tcp->tcp_state == TCPS_BOUND);
4060 	tcp->tcp_conn_req_max = 0;
4061 	return (0);
4062 }
4063 
4064 /*
4065  * If the return value from this function is positive, it's a UNIX error.
4066  * Otherwise, if it's negative, then the absolute value is a TLI error.
4067  * the TPI routine tcp_tpi_connect() is a wrapper function for this.
4068  */
4069 int
4070 tcp_do_connect(conn_t *connp, const struct sockaddr *sa, socklen_t len,
4071     cred_t *cr, pid_t pid)
4072 {
4073 	tcp_t		*tcp = connp->conn_tcp;
4074 	sin_t		*sin = (sin_t *)sa;
4075 	sin6_t		*sin6 = (sin6_t *)sa;
4076 	ipaddr_t	*dstaddrp;
4077 	in_port_t	dstport;
4078 	uint_t		srcid;
4079 	int		error;
4080 	uint32_t	mss;
4081 	mblk_t		*syn_mp;
4082 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4083 	int32_t		oldstate;
4084 	ip_xmit_attr_t	*ixa = connp->conn_ixa;
4085 
4086 	oldstate = tcp->tcp_state;
4087 
4088 	switch (len) {
4089 	default:
4090 		/*
4091 		 * Should never happen
4092 		 */
4093 		return (EINVAL);
4094 
4095 	case sizeof (sin_t):
4096 		sin = (sin_t *)sa;
4097 		if (sin->sin_port == 0) {
4098 			return (-TBADADDR);
4099 		}
4100 		if (connp->conn_ipv6_v6only) {
4101 			return (EAFNOSUPPORT);
4102 		}
4103 		break;
4104 
4105 	case sizeof (sin6_t):
4106 		sin6 = (sin6_t *)sa;
4107 		if (sin6->sin6_port == 0) {
4108 			return (-TBADADDR);
4109 		}
4110 		break;
4111 	}
4112 	/*
4113 	 * If we're connecting to an IPv4-mapped IPv6 address, we need to
4114 	 * make sure that the conn_ipversion is IPV4_VERSION.  We
4115 	 * need to this before we call tcp_bindi() so that the port lookup
4116 	 * code will look for ports in the correct port space (IPv4 and
4117 	 * IPv6 have separate port spaces).
4118 	 */
4119 	if (connp->conn_family == AF_INET6 &&
4120 	    connp->conn_ipversion == IPV6_VERSION &&
4121 	    IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
4122 		if (connp->conn_ipv6_v6only)
4123 			return (EADDRNOTAVAIL);
4124 
4125 		connp->conn_ipversion = IPV4_VERSION;
4126 	}
4127 
4128 	switch (tcp->tcp_state) {
4129 	case TCPS_LISTEN:
4130 		/*
4131 		 * Listening sockets are not allowed to issue connect().
4132 		 */
4133 		if (IPCL_IS_NONSTR(connp))
4134 			return (EOPNOTSUPP);
4135 		/* FALLTHRU */
4136 	case TCPS_IDLE:
4137 		/*
4138 		 * We support quick connect, refer to comments in
4139 		 * tcp_connect_*()
4140 		 */
4141 		/* FALLTHRU */
4142 	case TCPS_BOUND:
4143 		break;
4144 	default:
4145 		return (-TOUTSTATE);
4146 	}
4147 
4148 	/*
4149 	 * We update our cred/cpid based on the caller of connect
4150 	 */
4151 	if (connp->conn_cred != cr) {
4152 		crhold(cr);
4153 		crfree(connp->conn_cred);
4154 		connp->conn_cred = cr;
4155 	}
4156 	connp->conn_cpid = pid;
4157 
4158 	/* Cache things in the ixa without any refhold */
4159 	ASSERT(!(ixa->ixa_free_flags & IXA_FREE_CRED));
4160 	ixa->ixa_cred = cr;
4161 	ixa->ixa_cpid = pid;
4162 	if (is_system_labeled()) {
4163 		/* We need to restart with a label based on the cred */
4164 		ip_xmit_attr_restore_tsl(ixa, ixa->ixa_cred);
4165 	}
4166 
4167 	if (connp->conn_family == AF_INET6) {
4168 		if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
4169 			error = tcp_connect_ipv6(tcp, &sin6->sin6_addr,
4170 			    sin6->sin6_port, sin6->sin6_flowinfo,
4171 			    sin6->__sin6_src_id, sin6->sin6_scope_id);
4172 		} else {
4173 			/*
4174 			 * Destination adress is mapped IPv6 address.
4175 			 * Source bound address should be unspecified or
4176 			 * IPv6 mapped address as well.
4177 			 */
4178 			if (!IN6_IS_ADDR_UNSPECIFIED(
4179 			    &connp->conn_bound_addr_v6) &&
4180 			    !IN6_IS_ADDR_V4MAPPED(&connp->conn_bound_addr_v6)) {
4181 				return (EADDRNOTAVAIL);
4182 			}
4183 			dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr));
4184 			dstport = sin6->sin6_port;
4185 			srcid = sin6->__sin6_src_id;
4186 			error = tcp_connect_ipv4(tcp, dstaddrp, dstport,
4187 			    srcid);
4188 		}
4189 	} else {
4190 		dstaddrp = &sin->sin_addr.s_addr;
4191 		dstport = sin->sin_port;
4192 		srcid = 0;
4193 		error = tcp_connect_ipv4(tcp, dstaddrp, dstport, srcid);
4194 	}
4195 
4196 	if (error != 0)
4197 		goto connect_failed;
4198 
4199 	CL_INET_CONNECT(connp, B_TRUE, error);
4200 	if (error != 0)
4201 		goto connect_failed;
4202 
4203 	/* connect succeeded */
4204 	TCPS_BUMP_MIB(tcps, tcpActiveOpens);
4205 	tcp->tcp_active_open = 1;
4206 
4207 	/*
4208 	 * tcp_set_destination() does not adjust for TCP/IP header length.
4209 	 */
4210 	mss = tcp->tcp_mss - connp->conn_ht_iphc_len;
4211 
4212 	/*
4213 	 * Just make sure our rwnd is at least rcvbuf * MSS large, and round up
4214 	 * to the nearest MSS.
4215 	 *
4216 	 * We do the round up here because we need to get the interface MTU
4217 	 * first before we can do the round up.
4218 	 */
4219 	tcp->tcp_rwnd = connp->conn_rcvbuf;
4220 	tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss),
4221 	    tcps->tcps_recv_hiwat_minmss * mss);
4222 	connp->conn_rcvbuf = tcp->tcp_rwnd;
4223 	tcp_set_ws_value(tcp);
4224 	tcp->tcp_tcpha->tha_win = htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws);
4225 	if (tcp->tcp_rcv_ws > 0 || tcps->tcps_wscale_always)
4226 		tcp->tcp_snd_ws_ok = B_TRUE;
4227 
4228 	/*
4229 	 * Set tcp_snd_ts_ok to true
4230 	 * so that tcp_xmit_mp will
4231 	 * include the timestamp
4232 	 * option in the SYN segment.
4233 	 */
4234 	if (tcps->tcps_tstamp_always ||
4235 	    (tcp->tcp_rcv_ws && tcps->tcps_tstamp_if_wscale)) {
4236 		tcp->tcp_snd_ts_ok = B_TRUE;
4237 	}
4238 
4239 	/*
4240 	 * Note that tcp_snd_sack_ok can be set in tcp_set_destination() if
4241 	 * the SACK metric is set.  So here we just check the per stack SACK
4242 	 * permitted param.
4243 	 */
4244 	if (tcps->tcps_sack_permitted == 2) {
4245 		ASSERT(tcp->tcp_num_sack_blk == 0);
4246 		ASSERT(tcp->tcp_notsack_list == NULL);
4247 		tcp->tcp_snd_sack_ok = B_TRUE;
4248 	}
4249 
4250 	/*
4251 	 * Should we use ECN?  Note that the current
4252 	 * default value (SunOS 5.9) of tcp_ecn_permitted
4253 	 * is 1.  The reason for doing this is that there
4254 	 * are equipments out there that will drop ECN
4255 	 * enabled IP packets.  Setting it to 1 avoids
4256 	 * compatibility problems.
4257 	 */
4258 	if (tcps->tcps_ecn_permitted == 2)
4259 		tcp->tcp_ecn_ok = B_TRUE;
4260 
4261 	/* Trace change from BOUND -> SYN_SENT here */
4262 	DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
4263 	    connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL,
4264 	    int32_t, TCPS_BOUND);
4265 
4266 	TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
4267 	syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL,
4268 	    tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
4269 	if (syn_mp != NULL) {
4270 		/*
4271 		 * We must bump the generation before sending the syn
4272 		 * to ensure that we use the right generation in case
4273 		 * this thread issues a "connected" up call.
4274 		 */
4275 		SOCK_CONNID_BUMP(tcp->tcp_connid);
4276 		/*
4277 		 * DTrace sending the first SYN as a
4278 		 * tcp:::connect-request event.
4279 		 */
4280 		DTRACE_TCP5(connect__request, mblk_t *, NULL,
4281 		    ip_xmit_attr_t *, connp->conn_ixa,
4282 		    void_ip_t *, syn_mp->b_rptr, tcp_t *, tcp,
4283 		    tcph_t *,
4284 		    &syn_mp->b_rptr[connp->conn_ixa->ixa_ip_hdr_length]);
4285 		tcp_send_data(tcp, syn_mp);
4286 	}
4287 
4288 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
4289 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
4290 	return (0);
4291 
4292 connect_failed:
4293 	connp->conn_faddr_v6 = ipv6_all_zeros;
4294 	connp->conn_fport = 0;
4295 	tcp->tcp_state = oldstate;
4296 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
4297 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
4298 	return (error);
4299 }
4300 
4301 int
4302 tcp_do_listen(conn_t *connp, struct sockaddr *sa, socklen_t len,
4303     int backlog, cred_t *cr, boolean_t bind_to_req_port_only)
4304 {
4305 	tcp_t		*tcp = connp->conn_tcp;
4306 	int		error = 0;
4307 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4308 	int32_t		oldstate;
4309 
4310 	/* All Solaris components should pass a cred for this operation. */
4311 	ASSERT(cr != NULL);
4312 
4313 	if (tcp->tcp_state >= TCPS_BOUND) {
4314 		if ((tcp->tcp_state == TCPS_BOUND ||
4315 		    tcp->tcp_state == TCPS_LISTEN) && backlog > 0) {
4316 			/*
4317 			 * Handle listen() increasing backlog.
4318 			 * This is more "liberal" then what the TPI spec
4319 			 * requires but is needed to avoid a t_unbind
4320 			 * when handling listen() since the port number
4321 			 * might be "stolen" between the unbind and bind.
4322 			 */
4323 			goto do_listen;
4324 		}
4325 		if (connp->conn_debug) {
4326 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
4327 			    "tcp_listen: bad state, %d", tcp->tcp_state);
4328 		}
4329 		return (-TOUTSTATE);
4330 	} else {
4331 		if (sa == NULL) {
4332 			sin6_t	addr;
4333 			sin_t *sin;
4334 			sin6_t *sin6;
4335 
4336 			ASSERT(IPCL_IS_NONSTR(connp));
4337 			/* Do an implicit bind: Request for a generic port. */
4338 			if (connp->conn_family == AF_INET) {
4339 				len = sizeof (sin_t);
4340 				sin = (sin_t *)&addr;
4341 				*sin = sin_null;
4342 				sin->sin_family = AF_INET;
4343 			} else {
4344 				ASSERT(connp->conn_family == AF_INET6);
4345 				len = sizeof (sin6_t);
4346 				sin6 = (sin6_t *)&addr;
4347 				*sin6 = sin6_null;
4348 				sin6->sin6_family = AF_INET6;
4349 			}
4350 			sa = (struct sockaddr *)&addr;
4351 		}
4352 
4353 		error = tcp_bind_check(connp, sa, len, cr,
4354 		    bind_to_req_port_only);
4355 		if (error)
4356 			return (error);
4357 		/* Fall through and do the fanout insertion */
4358 	}
4359 
4360 do_listen:
4361 	ASSERT(tcp->tcp_state == TCPS_BOUND || tcp->tcp_state == TCPS_LISTEN);
4362 	tcp->tcp_conn_req_max = backlog;
4363 	if (tcp->tcp_conn_req_max) {
4364 		if (tcp->tcp_conn_req_max < tcps->tcps_conn_req_min)
4365 			tcp->tcp_conn_req_max = tcps->tcps_conn_req_min;
4366 		if (tcp->tcp_conn_req_max > tcps->tcps_conn_req_max_q)
4367 			tcp->tcp_conn_req_max = tcps->tcps_conn_req_max_q;
4368 		/*
4369 		 * If this is a listener, do not reset the eager list
4370 		 * and other stuffs.  Note that we don't check if the
4371 		 * existing eager list meets the new tcp_conn_req_max
4372 		 * requirement.
4373 		 */
4374 		if (tcp->tcp_state != TCPS_LISTEN) {
4375 			tcp->tcp_state = TCPS_LISTEN;
4376 			DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
4377 			    connp->conn_ixa, void, NULL, tcp_t *, tcp,
4378 			    void, NULL, int32_t, TCPS_BOUND);
4379 			/* Initialize the chain. Don't need the eager_lock */
4380 			tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
4381 			tcp->tcp_eager_next_drop_q0 = tcp;
4382 			tcp->tcp_eager_prev_drop_q0 = tcp;
4383 			tcp->tcp_second_ctimer_threshold =
4384 			    tcps->tcps_ip_abort_linterval;
4385 		}
4386 	}
4387 
4388 	/*
4389 	 * We need to make sure that the conn_recv is set to a non-null
4390 	 * value before we insert the conn into the classifier table.
4391 	 * This is to avoid a race with an incoming packet which does an
4392 	 * ipcl_classify().
4393 	 * We initially set it to tcp_input_listener_unbound to try to
4394 	 * pick a good squeue for the listener when the first SYN arrives.
4395 	 * tcp_input_listener_unbound sets it to tcp_input_listener on that
4396 	 * first SYN.
4397 	 */
4398 	connp->conn_recv = tcp_input_listener_unbound;
4399 
4400 	/* Insert the listener in the classifier table */
4401 	error = ip_laddr_fanout_insert(connp);
4402 	if (error != 0) {
4403 		/* Undo the bind - release the port number */
4404 		oldstate = tcp->tcp_state;
4405 		tcp->tcp_state = TCPS_IDLE;
4406 		DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
4407 		    connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL,
4408 		    int32_t, oldstate);
4409 		connp->conn_bound_addr_v6 = ipv6_all_zeros;
4410 
4411 		connp->conn_laddr_v6 = ipv6_all_zeros;
4412 		connp->conn_saddr_v6 = ipv6_all_zeros;
4413 		connp->conn_ports = 0;
4414 
4415 		if (connp->conn_anon_port) {
4416 			zone_t		*zone;
4417 
4418 			zone = crgetzone(cr);
4419 			connp->conn_anon_port = B_FALSE;
4420 			(void) tsol_mlp_anon(zone, connp->conn_mlp_type,
4421 			    connp->conn_proto, connp->conn_lport, B_FALSE);
4422 		}
4423 		connp->conn_mlp_type = mlptSingle;
4424 
4425 		tcp_bind_hash_remove(tcp);
4426 		return (error);
4427 	} else {
4428 		/*
4429 		 * If there is a connection limit, allocate and initialize
4430 		 * the counter struct.  Note that since listen can be called
4431 		 * multiple times, the struct may have been allready allocated.
4432 		 */
4433 		if (!list_is_empty(&tcps->tcps_listener_conf) &&
4434 		    tcp->tcp_listen_cnt == NULL) {
4435 			tcp_listen_cnt_t *tlc;
4436 			uint32_t ratio;
4437 
4438 			ratio = tcp_find_listener_conf(tcps,
4439 			    ntohs(connp->conn_lport));
4440 			if (ratio != 0) {
4441 				uint32_t mem_ratio, tot_buf;
4442 
4443 				tlc = kmem_alloc(sizeof (tcp_listen_cnt_t),
4444 				    KM_SLEEP);
4445 				/*
4446 				 * Calculate the connection limit based on
4447 				 * the configured ratio and maxusers.  Maxusers
4448 				 * are calculated based on memory size,
4449 				 * ~ 1 user per MB.  Note that the conn_rcvbuf
4450 				 * and conn_sndbuf may change after a
4451 				 * connection is accepted.  So what we have
4452 				 * is only an approximation.
4453 				 */
4454 				if ((tot_buf = connp->conn_rcvbuf +
4455 				    connp->conn_sndbuf) < MB) {
4456 					mem_ratio = MB / tot_buf;
4457 					tlc->tlc_max = maxusers / ratio *
4458 					    mem_ratio;
4459 				} else {
4460 					mem_ratio = tot_buf / MB;
4461 					tlc->tlc_max = maxusers / ratio /
4462 					    mem_ratio;
4463 				}
4464 				/* At least we should allow two connections! */
4465 				if (tlc->tlc_max <= tcp_min_conn_listener)
4466 					tlc->tlc_max = tcp_min_conn_listener;
4467 				tlc->tlc_cnt = 1;
4468 				tlc->tlc_drop = 0;
4469 				tcp->tcp_listen_cnt = tlc;
4470 			}
4471 		}
4472 	}
4473 	return (error);
4474 }
4475