xref: /titanic_50/usr/src/uts/common/inet/tcp/tcp.c (revision 69bb4bb45c98da60d21839c4dc3c01ea1be60585)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 /* Copyright (c) 1990 Mentat Inc. */
27 
28 #pragma ident	"%Z%%M%	%I%	%E% SMI"
29 const char tcp_version[] = "%Z%%M%	%I%	%E% SMI";
30 
31 
32 #include <sys/types.h>
33 #include <sys/stream.h>
34 #include <sys/strsun.h>
35 #include <sys/strsubr.h>
36 #include <sys/stropts.h>
37 #include <sys/strlog.h>
38 #include <sys/strsun.h>
39 #define	_SUN_TPI_VERSION 2
40 #include <sys/tihdr.h>
41 #include <sys/timod.h>
42 #include <sys/ddi.h>
43 #include <sys/sunddi.h>
44 #include <sys/suntpi.h>
45 #include <sys/xti_inet.h>
46 #include <sys/cmn_err.h>
47 #include <sys/debug.h>
48 #include <sys/vtrace.h>
49 #include <sys/kmem.h>
50 #include <sys/ethernet.h>
51 #include <sys/cpuvar.h>
52 #include <sys/dlpi.h>
53 #include <sys/multidata.h>
54 #include <sys/multidata_impl.h>
55 #include <sys/pattr.h>
56 #include <sys/policy.h>
57 #include <sys/priv.h>
58 #include <sys/zone.h>
59 
60 #include <sys/errno.h>
61 #include <sys/signal.h>
62 #include <sys/socket.h>
63 #include <sys/sockio.h>
64 #include <sys/isa_defs.h>
65 #include <sys/md5.h>
66 #include <sys/random.h>
67 #include <netinet/in.h>
68 #include <netinet/tcp.h>
69 #include <netinet/ip6.h>
70 #include <netinet/icmp6.h>
71 #include <net/if.h>
72 #include <net/route.h>
73 #include <inet/ipsec_impl.h>
74 
75 #include <inet/common.h>
76 #include <inet/ip.h>
77 #include <inet/ip_impl.h>
78 #include <inet/ip6.h>
79 #include <inet/ip_ndp.h>
80 #include <inet/mi.h>
81 #include <inet/mib2.h>
82 #include <inet/nd.h>
83 #include <inet/optcom.h>
84 #include <inet/snmpcom.h>
85 #include <inet/kstatcom.h>
86 #include <inet/tcp.h>
87 #include <inet/tcp_impl.h>
88 #include <net/pfkeyv2.h>
89 #include <inet/ipsec_info.h>
90 #include <inet/ipdrop.h>
91 #include <inet/tcp_trace.h>
92 
93 #include <inet/ipclassifier.h>
94 #include <inet/ip_ire.h>
95 #include <inet/ip_ftable.h>
96 #include <inet/ip_if.h>
97 #include <inet/ipp_common.h>
98 #include <sys/squeue.h>
99 #include <inet/kssl/ksslapi.h>
100 #include <sys/tsol/label.h>
101 #include <sys/tsol/tnet.h>
102 #include <sys/sdt.h>
103 #include <rpc/pmap_prot.h>
104 
105 /*
106  * TCP Notes: aka FireEngine Phase I (PSARC 2002/433)
107  *
108  * (Read the detailed design doc in PSARC case directory)
109  *
110  * The entire tcp state is contained in tcp_t and conn_t structure
111  * which are allocated in tandem using ipcl_conn_create() and passing
112  * IPCL_CONNTCP as a flag. We use 'conn_ref' and 'conn_lock' to protect
113  * the references on the tcp_t. The tcp_t structure is never compressed
114  * and packets always land on the correct TCP perimeter from the time
115  * eager is created till the time tcp_t dies (as such the old mentat
116  * TCP global queue is not used for detached state and no IPSEC checking
117  * is required). The global queue is still allocated to send out resets
118  * for connection which have no listeners and IP directly calls
119  * tcp_xmit_listeners_reset() which does any policy check.
120  *
121  * Protection and Synchronisation mechanism:
122  *
123  * The tcp data structure does not use any kind of lock for protecting
124  * its state but instead uses 'squeues' for mutual exclusion from various
125  * read and write side threads. To access a tcp member, the thread should
126  * always be behind squeue (via squeue_enter, squeue_enter_nodrain, or
127  * squeue_fill). Since the squeues allow a direct function call, caller
128  * can pass any tcp function having prototype of edesc_t as argument
129  * (different from traditional STREAMs model where packets come in only
130  * designated entry points). The list of functions that can be directly
131  * called via squeue are listed before the usual function prototype.
132  *
133  * Referencing:
134  *
135  * TCP is MT-Hot and we use a reference based scheme to make sure that the
136  * tcp structure doesn't disappear when its needed. When the application
137  * creates an outgoing connection or accepts an incoming connection, we
138  * start out with 2 references on 'conn_ref'. One for TCP and one for IP.
139  * The IP reference is just a symbolic reference since ip_tcpclose()
140  * looks at tcp structure after tcp_close_output() returns which could
141  * have dropped the last TCP reference. So as long as the connection is
142  * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the
143  * conn_t. The classifier puts its own reference when the connection is
144  * inserted in listen or connected hash. Anytime a thread needs to enter
145  * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr
146  * on write side or by doing a classify on read side and then puts a
147  * reference on the conn before doing squeue_enter/tryenter/fill. For
148  * read side, the classifier itself puts the reference under fanout lock
149  * to make sure that tcp can't disappear before it gets processed. The
150  * squeue will drop this reference automatically so the called function
151  * doesn't have to do a DEC_REF.
152  *
153  * Opening a new connection:
154  *
155  * The outgoing connection open is pretty simple. ip_tcpopen() does the
156  * work in creating the conn/tcp structure and initializing it. The
157  * squeue assignment is done based on the CPU the application
158  * is running on. So for outbound connections, processing is always done
159  * on application CPU which might be different from the incoming CPU
160  * being interrupted by the NIC. An optimal way would be to figure out
161  * the NIC <-> CPU binding at listen time, and assign the outgoing
162  * connection to the squeue attached to the CPU that will be interrupted
163  * for incoming packets (we know the NIC based on the bind IP address).
164  * This might seem like a problem if more data is going out but the
165  * fact is that in most cases the transmit is ACK driven transmit where
166  * the outgoing data normally sits on TCP's xmit queue waiting to be
167  * transmitted.
168  *
169  * Accepting a connection:
170  *
171  * This is a more interesting case because of various races involved in
172  * establishing a eager in its own perimeter. Read the meta comment on
173  * top of tcp_conn_request(). But briefly, the squeue is picked by
174  * ip_tcp_input()/ip_fanout_tcp_v6() based on the interrupted CPU.
175  *
176  * Closing a connection:
177  *
178  * The close is fairly straight forward. tcp_close() calls tcp_close_output()
179  * via squeue to do the close and mark the tcp as detached if the connection
180  * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its
181  * reference but tcp_close() drop IP's reference always. So if tcp was
182  * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP
183  * and 1 because it is in classifier's connected hash. This is the condition
184  * we use to determine that its OK to clean up the tcp outside of squeue
185  * when time wait expires (check the ref under fanout and conn_lock and
186  * if it is 2, remove it from fanout hash and kill it).
187  *
188  * Although close just drops the necessary references and marks the
189  * tcp_detached state, tcp_close needs to know the tcp_detached has been
190  * set (under squeue) before letting the STREAM go away (because a
191  * inbound packet might attempt to go up the STREAM while the close
192  * has happened and tcp_detached is not set). So a special lock and
193  * flag is used along with a condition variable (tcp_closelock, tcp_closed,
194  * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked
195  * tcp_detached.
196  *
197  * Special provisions and fast paths:
198  *
199  * We make special provision for (AF_INET, SOCK_STREAM) sockets which
200  * can't have 'ipv6_recvpktinfo' set and for these type of sockets, IP
201  * will never send a M_CTL to TCP. As such, ip_tcp_input() which handles
202  * all TCP packets from the wire makes a IPCL_IS_TCP4_CONNECTED_NO_POLICY
203  * check to send packets directly to tcp_rput_data via squeue. Everyone
204  * else comes through tcp_input() on the read side.
205  *
206  * We also make special provisions for sockfs by marking tcp_issocket
207  * whenever we have only sockfs on top of TCP. This allows us to skip
208  * putting the tcp in acceptor hash since a sockfs listener can never
209  * become acceptor and also avoid allocating a tcp_t for acceptor STREAM
210  * since eager has already been allocated and the accept now happens
211  * on acceptor STREAM. There is a big blob of comment on top of
212  * tcp_conn_request explaining the new accept. When socket is POP'd,
213  * sockfs sends us an ioctl to mark the fact and we go back to old
214  * behaviour. Once tcp_issocket is unset, its never set for the
215  * life of that connection.
216  *
217  * IPsec notes :
218  *
219  * Since a packet is always executed on the correct TCP perimeter
220  * all IPsec processing is defered to IP including checking new
221  * connections and setting IPSEC policies for new connection. The
222  * only exception is tcp_xmit_listeners_reset() which is called
223  * directly from IP and needs to policy check to see if TH_RST
224  * can be sent out.
225  */
226 
227 extern major_t TCP6_MAJ;
228 
229 /*
230  * Values for squeue switch:
231  * 1: squeue_enter_nodrain
232  * 2: squeue_enter
233  * 3: squeue_fill
234  */
235 int tcp_squeue_close = 2;
236 int tcp_squeue_wput = 2;
237 
238 squeue_func_t tcp_squeue_close_proc;
239 squeue_func_t tcp_squeue_wput_proc;
240 
241 /*
242  * This controls how tiny a write must be before we try to copy it
243  * into the the mblk on the tail of the transmit queue.  Not much
244  * speedup is observed for values larger than sixteen.  Zero will
245  * disable the optimisation.
246  */
247 int tcp_tx_pull_len = 16;
248 
249 /*
250  * TCP Statistics.
251  *
252  * How TCP statistics work.
253  *
254  * There are two types of statistics invoked by two macros.
255  *
256  * TCP_STAT(name) does non-atomic increment of a named stat counter. It is
257  * supposed to be used in non MT-hot paths of the code.
258  *
259  * TCP_DBGSTAT(name) does atomic increment of a named stat counter. It is
260  * supposed to be used for DEBUG purposes and may be used on a hot path.
261  *
262  * Both TCP_STAT and TCP_DBGSTAT counters are available using kstat
263  * (use "kstat tcp" to get them).
264  *
265  * There is also additional debugging facility that marks tcp_clean_death()
266  * instances and saves them in tcp_t structure. It is triggered by
267  * TCP_TAG_CLEAN_DEATH define. Also, there is a global array of counters for
268  * tcp_clean_death() calls that counts the number of times each tag was hit. It
269  * is triggered by TCP_CLD_COUNTERS define.
270  *
271  * How to add new counters.
272  *
273  * 1) Add a field in the tcp_stat structure describing your counter.
274  * 2) Add a line in tcp_statistics with the name of the counter.
275  *
276  *    IMPORTANT!! - make sure that both are in sync !!
277  * 3) Use either TCP_STAT or TCP_DBGSTAT with the name.
278  *
279  * Please avoid using private counters which are not kstat-exported.
280  *
281  * TCP_TAG_CLEAN_DEATH set to 1 enables tagging of tcp_clean_death() instances
282  * in tcp_t structure.
283  *
284  * TCP_MAX_CLEAN_DEATH_TAG is the maximum number of possible clean death tags.
285  */
286 
287 #ifndef TCP_DEBUG_COUNTER
288 #ifdef DEBUG
289 #define	TCP_DEBUG_COUNTER 1
290 #else
291 #define	TCP_DEBUG_COUNTER 0
292 #endif
293 #endif
294 
295 #define	TCP_CLD_COUNTERS 0
296 
297 #define	TCP_TAG_CLEAN_DEATH 1
298 #define	TCP_MAX_CLEAN_DEATH_TAG 32
299 
300 #ifdef lint
301 static int _lint_dummy_;
302 #endif
303 
304 #if TCP_CLD_COUNTERS
305 static uint_t tcp_clean_death_stat[TCP_MAX_CLEAN_DEATH_TAG];
306 #define	TCP_CLD_STAT(x) tcp_clean_death_stat[x]++
307 #elif defined(lint)
308 #define	TCP_CLD_STAT(x) ASSERT(_lint_dummy_ == 0);
309 #else
310 #define	TCP_CLD_STAT(x)
311 #endif
312 
313 #if TCP_DEBUG_COUNTER
314 #define	TCP_DBGSTAT(x) atomic_add_64(&(tcp_statistics.x.value.ui64), 1)
315 #elif defined(lint)
316 #define	TCP_DBGSTAT(x) ASSERT(_lint_dummy_ == 0);
317 #else
318 #define	TCP_DBGSTAT(x)
319 #endif
320 
321 tcp_stat_t tcp_statistics = {
322 	{ "tcp_time_wait",		KSTAT_DATA_UINT64 },
323 	{ "tcp_time_wait_syn",		KSTAT_DATA_UINT64 },
324 	{ "tcp_time_wait_success",	KSTAT_DATA_UINT64 },
325 	{ "tcp_time_wait_fail",		KSTAT_DATA_UINT64 },
326 	{ "tcp_reinput_syn",		KSTAT_DATA_UINT64 },
327 	{ "tcp_ip_output",		KSTAT_DATA_UINT64 },
328 	{ "tcp_detach_non_time_wait",	KSTAT_DATA_UINT64 },
329 	{ "tcp_detach_time_wait",	KSTAT_DATA_UINT64 },
330 	{ "tcp_time_wait_reap",		KSTAT_DATA_UINT64 },
331 	{ "tcp_clean_death_nondetached",	KSTAT_DATA_UINT64 },
332 	{ "tcp_reinit_calls",		KSTAT_DATA_UINT64 },
333 	{ "tcp_eager_err1",		KSTAT_DATA_UINT64 },
334 	{ "tcp_eager_err2",		KSTAT_DATA_UINT64 },
335 	{ "tcp_eager_blowoff_calls",	KSTAT_DATA_UINT64 },
336 	{ "tcp_eager_blowoff_q",	KSTAT_DATA_UINT64 },
337 	{ "tcp_eager_blowoff_q0",	KSTAT_DATA_UINT64 },
338 	{ "tcp_not_hard_bound",		KSTAT_DATA_UINT64 },
339 	{ "tcp_no_listener",		KSTAT_DATA_UINT64 },
340 	{ "tcp_found_eager",		KSTAT_DATA_UINT64 },
341 	{ "tcp_wrong_queue",		KSTAT_DATA_UINT64 },
342 	{ "tcp_found_eager_binding1",	KSTAT_DATA_UINT64 },
343 	{ "tcp_found_eager_bound1",	KSTAT_DATA_UINT64 },
344 	{ "tcp_eager_has_listener1",	KSTAT_DATA_UINT64 },
345 	{ "tcp_open_alloc",		KSTAT_DATA_UINT64 },
346 	{ "tcp_open_detached_alloc",	KSTAT_DATA_UINT64 },
347 	{ "tcp_rput_time_wait",		KSTAT_DATA_UINT64 },
348 	{ "tcp_listendrop",		KSTAT_DATA_UINT64 },
349 	{ "tcp_listendropq0",		KSTAT_DATA_UINT64 },
350 	{ "tcp_wrong_rq",		KSTAT_DATA_UINT64 },
351 	{ "tcp_rsrv_calls",		KSTAT_DATA_UINT64 },
352 	{ "tcp_eagerfree2",		KSTAT_DATA_UINT64 },
353 	{ "tcp_eagerfree3",		KSTAT_DATA_UINT64 },
354 	{ "tcp_eagerfree4",		KSTAT_DATA_UINT64 },
355 	{ "tcp_eagerfree5",		KSTAT_DATA_UINT64 },
356 	{ "tcp_timewait_syn_fail",	KSTAT_DATA_UINT64 },
357 	{ "tcp_listen_badflags",	KSTAT_DATA_UINT64 },
358 	{ "tcp_timeout_calls",		KSTAT_DATA_UINT64 },
359 	{ "tcp_timeout_cached_alloc",	KSTAT_DATA_UINT64 },
360 	{ "tcp_timeout_cancel_reqs",	KSTAT_DATA_UINT64 },
361 	{ "tcp_timeout_canceled",	KSTAT_DATA_UINT64 },
362 	{ "tcp_timermp_alloced",	KSTAT_DATA_UINT64 },
363 	{ "tcp_timermp_freed",		KSTAT_DATA_UINT64 },
364 	{ "tcp_timermp_allocfail",	KSTAT_DATA_UINT64 },
365 	{ "tcp_timermp_allocdblfail",	KSTAT_DATA_UINT64 },
366 	{ "tcp_push_timer_cnt",		KSTAT_DATA_UINT64 },
367 	{ "tcp_ack_timer_cnt",		KSTAT_DATA_UINT64 },
368 	{ "tcp_ire_null1",		KSTAT_DATA_UINT64 },
369 	{ "tcp_ire_null",		KSTAT_DATA_UINT64 },
370 	{ "tcp_ip_send",		KSTAT_DATA_UINT64 },
371 	{ "tcp_ip_ire_send",		KSTAT_DATA_UINT64 },
372 	{ "tcp_wsrv_called",		KSTAT_DATA_UINT64 },
373 	{ "tcp_flwctl_on",		KSTAT_DATA_UINT64 },
374 	{ "tcp_timer_fire_early",	KSTAT_DATA_UINT64 },
375 	{ "tcp_timer_fire_miss",	KSTAT_DATA_UINT64 },
376 	{ "tcp_freelist_cleanup",	KSTAT_DATA_UINT64 },
377 	{ "tcp_rput_v6_error",		KSTAT_DATA_UINT64 },
378 	{ "tcp_out_sw_cksum",		KSTAT_DATA_UINT64 },
379 	{ "tcp_out_sw_cksum_bytes",	KSTAT_DATA_UINT64 },
380 	{ "tcp_zcopy_on",		KSTAT_DATA_UINT64 },
381 	{ "tcp_zcopy_off",		KSTAT_DATA_UINT64 },
382 	{ "tcp_zcopy_backoff",		KSTAT_DATA_UINT64 },
383 	{ "tcp_zcopy_disable",		KSTAT_DATA_UINT64 },
384 	{ "tcp_mdt_pkt_out",		KSTAT_DATA_UINT64 },
385 	{ "tcp_mdt_pkt_out_v4",		KSTAT_DATA_UINT64 },
386 	{ "tcp_mdt_pkt_out_v6",		KSTAT_DATA_UINT64 },
387 	{ "tcp_mdt_discarded",		KSTAT_DATA_UINT64 },
388 	{ "tcp_mdt_conn_halted1",	KSTAT_DATA_UINT64 },
389 	{ "tcp_mdt_conn_halted2",	KSTAT_DATA_UINT64 },
390 	{ "tcp_mdt_conn_halted3",	KSTAT_DATA_UINT64 },
391 	{ "tcp_mdt_conn_resumed1",	KSTAT_DATA_UINT64 },
392 	{ "tcp_mdt_conn_resumed2",	KSTAT_DATA_UINT64 },
393 	{ "tcp_mdt_legacy_small",	KSTAT_DATA_UINT64 },
394 	{ "tcp_mdt_legacy_all",		KSTAT_DATA_UINT64 },
395 	{ "tcp_mdt_legacy_ret",		KSTAT_DATA_UINT64 },
396 	{ "tcp_mdt_allocfail",		KSTAT_DATA_UINT64 },
397 	{ "tcp_mdt_addpdescfail",	KSTAT_DATA_UINT64 },
398 	{ "tcp_mdt_allocd",		KSTAT_DATA_UINT64 },
399 	{ "tcp_mdt_linked",		KSTAT_DATA_UINT64 },
400 	{ "tcp_fusion_flowctl",		KSTAT_DATA_UINT64 },
401 	{ "tcp_fusion_backenabled",	KSTAT_DATA_UINT64 },
402 	{ "tcp_fusion_urg",		KSTAT_DATA_UINT64 },
403 	{ "tcp_fusion_putnext",		KSTAT_DATA_UINT64 },
404 	{ "tcp_fusion_unfusable",	KSTAT_DATA_UINT64 },
405 	{ "tcp_fusion_aborted",		KSTAT_DATA_UINT64 },
406 	{ "tcp_fusion_unqualified",	KSTAT_DATA_UINT64 },
407 	{ "tcp_fusion_rrw_busy",	KSTAT_DATA_UINT64 },
408 	{ "tcp_fusion_rrw_msgcnt",	KSTAT_DATA_UINT64 },
409 	{ "tcp_in_ack_unsent_drop",	KSTAT_DATA_UINT64 },
410 	{ "tcp_sock_fallback",		KSTAT_DATA_UINT64 },
411 };
412 
413 static kstat_t *tcp_kstat;
414 
415 /*
416  * Call either ip_output or ip_output_v6. This replaces putnext() calls on the
417  * tcp write side.
418  */
419 #define	CALL_IP_WPUT(connp, q, mp) {					\
420 	ASSERT(((q)->q_flag & QREADR) == 0);				\
421 	TCP_DBGSTAT(tcp_ip_output);					\
422 	connp->conn_send(connp, (mp), (q), IP_WPUT);			\
423 }
424 
425 /* Macros for timestamp comparisons */
426 #define	TSTMP_GEQ(a, b)	((int32_t)((a)-(b)) >= 0)
427 #define	TSTMP_LT(a, b)	((int32_t)((a)-(b)) < 0)
428 
429 /*
430  * Parameters for TCP Initial Send Sequence number (ISS) generation.  When
431  * tcp_strong_iss is set to 1, which is the default, the ISS is calculated
432  * by adding three components: a time component which grows by 1 every 4096
433  * nanoseconds (versus every 4 microseconds suggested by RFC 793, page 27);
434  * a per-connection component which grows by 125000 for every new connection;
435  * and an "extra" component that grows by a random amount centered
436  * approximately on 64000.  This causes the the ISS generator to cycle every
437  * 4.89 hours if no TCP connections are made, and faster if connections are
438  * made.
439  *
440  * When tcp_strong_iss is set to 0, ISS is calculated by adding two
441  * components: a time component which grows by 250000 every second; and
442  * a per-connection component which grows by 125000 for every new connections.
443  *
444  * A third method, when tcp_strong_iss is set to 2, for generating ISS is
445  * prescribed by Steve Bellovin.  This involves adding time, the 125000 per
446  * connection, and a one-way hash (MD5) of the connection ID <sport, dport,
447  * src, dst>, a "truly" random (per RFC 1750) number, and a console-entered
448  * password.
449  */
450 #define	ISS_INCR	250000
451 #define	ISS_NSEC_SHT	12
452 
453 static uint32_t tcp_iss_incr_extra;	/* Incremented for each connection */
454 static kmutex_t tcp_iss_key_lock;
455 static MD5_CTX tcp_iss_key;
456 static sin_t	sin_null;	/* Zero address for quick clears */
457 static sin6_t	sin6_null;	/* Zero address for quick clears */
458 
459 /* Packet dropper for TCP IPsec policy drops. */
460 static ipdropper_t tcp_dropper;
461 
462 /*
463  * This implementation follows the 4.3BSD interpretation of the urgent
464  * pointer and not RFC 1122. Switching to RFC 1122 behavior would cause
465  * incompatible changes in protocols like telnet and rlogin.
466  */
467 #define	TCP_OLD_URP_INTERPRETATION	1
468 
469 #define	TCP_IS_DETACHED_NONEAGER(tcp)	\
470 	(TCP_IS_DETACHED(tcp) && \
471 	    (!(tcp)->tcp_hard_binding))
472 
473 /*
474  * TCP reassembly macros.  We hide starting and ending sequence numbers in
475  * b_next and b_prev of messages on the reassembly queue.  The messages are
476  * chained using b_cont.  These macros are used in tcp_reass() so we don't
477  * have to see the ugly casts and assignments.
478  */
479 #define	TCP_REASS_SEQ(mp)		((uint32_t)(uintptr_t)((mp)->b_next))
480 #define	TCP_REASS_SET_SEQ(mp, u)	((mp)->b_next = \
481 					(mblk_t *)(uintptr_t)(u))
482 #define	TCP_REASS_END(mp)		((uint32_t)(uintptr_t)((mp)->b_prev))
483 #define	TCP_REASS_SET_END(mp, u)	((mp)->b_prev = \
484 					(mblk_t *)(uintptr_t)(u))
485 
486 /*
487  * Implementation of TCP Timers.
488  * =============================
489  *
490  * INTERFACE:
491  *
492  * There are two basic functions dealing with tcp timers:
493  *
494  *	timeout_id_t	tcp_timeout(connp, func, time)
495  * 	clock_t		tcp_timeout_cancel(connp, timeout_id)
496  *	TCP_TIMER_RESTART(tcp, intvl)
497  *
498  * tcp_timeout() starts a timer for the 'tcp' instance arranging to call 'func'
499  * after 'time' ticks passed. The function called by timeout() must adhere to
500  * the same restrictions as a driver soft interrupt handler - it must not sleep
501  * or call other functions that might sleep. The value returned is the opaque
502  * non-zero timeout identifier that can be passed to tcp_timeout_cancel() to
503  * cancel the request. The call to tcp_timeout() may fail in which case it
504  * returns zero. This is different from the timeout(9F) function which never
505  * fails.
506  *
507  * The call-back function 'func' always receives 'connp' as its single
508  * argument. It is always executed in the squeue corresponding to the tcp
509  * structure. The tcp structure is guaranteed to be present at the time the
510  * call-back is called.
511  *
512  * NOTE: The call-back function 'func' is never called if tcp is in
513  * 	the TCPS_CLOSED state.
514  *
515  * tcp_timeout_cancel() attempts to cancel a pending tcp_timeout()
516  * request. locks acquired by the call-back routine should not be held across
517  * the call to tcp_timeout_cancel() or a deadlock may result.
518  *
519  * tcp_timeout_cancel() returns -1 if it can not cancel the timeout request.
520  * Otherwise, it returns an integer value greater than or equal to 0. In
521  * particular, if the call-back function is already placed on the squeue, it can
522  * not be canceled.
523  *
524  * NOTE: both tcp_timeout() and tcp_timeout_cancel() should always be called
525  * 	within squeue context corresponding to the tcp instance. Since the
526  *	call-back is also called via the same squeue, there are no race
527  *	conditions described in untimeout(9F) manual page since all calls are
528  *	strictly serialized.
529  *
530  *      TCP_TIMER_RESTART() is a macro that attempts to cancel a pending timeout
531  *	stored in tcp_timer_tid and starts a new one using
532  *	MSEC_TO_TICK(intvl). It always uses tcp_timer() function as a call-back
533  *	and stores the return value of tcp_timeout() in the tcp->tcp_timer_tid
534  *	field.
535  *
536  * NOTE: since the timeout cancellation is not guaranteed, the cancelled
537  *	call-back may still be called, so it is possible tcp_timer() will be
538  *	called several times. This should not be a problem since tcp_timer()
539  *	should always check the tcp instance state.
540  *
541  *
542  * IMPLEMENTATION:
543  *
544  * TCP timers are implemented using three-stage process. The call to
545  * tcp_timeout() uses timeout(9F) function to call tcp_timer_callback() function
546  * when the timer expires. The tcp_timer_callback() arranges the call of the
547  * tcp_timer_handler() function via squeue corresponding to the tcp
548  * instance. The tcp_timer_handler() calls actual requested timeout call-back
549  * and passes tcp instance as an argument to it. Information is passed between
550  * stages using the tcp_timer_t structure which contains the connp pointer, the
551  * tcp call-back to call and the timeout id returned by the timeout(9F).
552  *
553  * The tcp_timer_t structure is not used directly, it is embedded in an mblk_t -
554  * like structure that is used to enter an squeue. The mp->b_rptr of this pseudo
555  * mblk points to the beginning of tcp_timer_t structure. The tcp_timeout()
556  * returns the pointer to this mblk.
557  *
558  * The pseudo mblk is allocated from a special tcp_timer_cache kmem cache. It
559  * looks like a normal mblk without actual dblk attached to it.
560  *
561  * To optimize performance each tcp instance holds a small cache of timer
562  * mblocks. In the current implementation it caches up to two timer mblocks per
563  * tcp instance. The cache is preserved over tcp frees and is only freed when
564  * the whole tcp structure is destroyed by its kmem destructor. Since all tcp
565  * timer processing happens on a corresponding squeue, the cache manipulation
566  * does not require any locks. Experiments show that majority of timer mblocks
567  * allocations are satisfied from the tcp cache and do not involve kmem calls.
568  *
569  * The tcp_timeout() places a refhold on the connp instance which guarantees
570  * that it will be present at the time the call-back function fires. The
571  * tcp_timer_handler() drops the reference after calling the call-back, so the
572  * call-back function does not need to manipulate the references explicitly.
573  */
574 
575 typedef struct tcp_timer_s {
576 	conn_t	*connp;
577 	void 	(*tcpt_proc)(void *);
578 	timeout_id_t   tcpt_tid;
579 } tcp_timer_t;
580 
581 static kmem_cache_t *tcp_timercache;
582 kmem_cache_t	*tcp_sack_info_cache;
583 kmem_cache_t	*tcp_iphc_cache;
584 
585 /*
586  * For scalability, we must not run a timer for every TCP connection
587  * in TIME_WAIT state.  To see why, consider (for time wait interval of
588  * 4 minutes):
589  *	1000 connections/sec * 240 seconds/time wait = 240,000 active conn's
590  *
591  * This list is ordered by time, so you need only delete from the head
592  * until you get to entries which aren't old enough to delete yet.
593  * The list consists of only the detached TIME_WAIT connections.
594  *
595  * Note that the timer (tcp_time_wait_expire) is started when the tcp_t
596  * becomes detached TIME_WAIT (either by changing the state and already
597  * being detached or the other way around). This means that the TIME_WAIT
598  * state can be extended (up to doubled) if the connection doesn't become
599  * detached for a long time.
600  *
601  * The list manipulations (including tcp_time_wait_next/prev)
602  * are protected by the tcp_time_wait_lock. The content of the
603  * detached TIME_WAIT connections is protected by the normal perimeters.
604  */
605 
606 typedef struct tcp_squeue_priv_s {
607 	kmutex_t	tcp_time_wait_lock;
608 				/* Protects the next 3 globals */
609 	timeout_id_t	tcp_time_wait_tid;
610 	tcp_t		*tcp_time_wait_head;
611 	tcp_t		*tcp_time_wait_tail;
612 	tcp_t		*tcp_free_list;
613 	uint_t		tcp_free_list_cnt;
614 } tcp_squeue_priv_t;
615 
616 /*
617  * TCP_TIME_WAIT_DELAY governs how often the time_wait_collector runs.
618  * Running it every 5 seconds seems to give the best results.
619  */
620 #define	TCP_TIME_WAIT_DELAY drv_usectohz(5000000)
621 
622 /*
623  * To prevent memory hog, limit the number of entries in tcp_free_list
624  * to 1% of available memory / number of cpus
625  */
626 uint_t tcp_free_list_max_cnt = 0;
627 
628 #define	TCP_XMIT_LOWATER	4096
629 #define	TCP_XMIT_HIWATER	49152
630 #define	TCP_RECV_LOWATER	2048
631 #define	TCP_RECV_HIWATER	49152
632 
633 /*
634  *  PAWS needs a timer for 24 days.  This is the number of ticks in 24 days
635  */
636 #define	PAWS_TIMEOUT	((clock_t)(24*24*60*60*hz))
637 
638 #define	TIDUSZ	4096	/* transport interface data unit size */
639 
640 /*
641  * Bind hash list size and has function.  It has to be a power of 2 for
642  * hashing.
643  */
644 #define	TCP_BIND_FANOUT_SIZE	512
645 #define	TCP_BIND_HASH(lport) (ntohs(lport) & (TCP_BIND_FANOUT_SIZE - 1))
646 /*
647  * Size of listen and acceptor hash list.  It has to be a power of 2 for
648  * hashing.
649  */
650 #define	TCP_FANOUT_SIZE		256
651 
652 #ifdef	_ILP32
653 #define	TCP_ACCEPTOR_HASH(accid)					\
654 		(((uint_t)(accid) >> 8) & (TCP_FANOUT_SIZE - 1))
655 #else
656 #define	TCP_ACCEPTOR_HASH(accid)					\
657 		((uint_t)(accid) & (TCP_FANOUT_SIZE - 1))
658 #endif	/* _ILP32 */
659 
660 #define	IP_ADDR_CACHE_SIZE	2048
661 #define	IP_ADDR_CACHE_HASH(faddr)					\
662 	(ntohl(faddr) & (IP_ADDR_CACHE_SIZE -1))
663 
664 /* Hash for HSPs uses all 32 bits, since both networks and hosts are in table */
665 #define	TCP_HSP_HASH_SIZE 256
666 
667 #define	TCP_HSP_HASH(addr)					\
668 	(((addr>>24) ^ (addr >>16) ^			\
669 	    (addr>>8) ^ (addr)) % TCP_HSP_HASH_SIZE)
670 
671 /*
672  * TCP options struct returned from tcp_parse_options.
673  */
674 typedef struct tcp_opt_s {
675 	uint32_t	tcp_opt_mss;
676 	uint32_t	tcp_opt_wscale;
677 	uint32_t	tcp_opt_ts_val;
678 	uint32_t	tcp_opt_ts_ecr;
679 	tcp_t		*tcp;
680 } tcp_opt_t;
681 
682 /*
683  * RFC1323-recommended phrasing of TSTAMP option, for easier parsing
684  */
685 
686 #ifdef _BIG_ENDIAN
687 #define	TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \
688 	(TCPOPT_TSTAMP << 8) | 10)
689 #else
690 #define	TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \
691 	(TCPOPT_NOP << 8) | TCPOPT_NOP)
692 #endif
693 
694 /*
695  * Flags returned from tcp_parse_options.
696  */
697 #define	TCP_OPT_MSS_PRESENT	1
698 #define	TCP_OPT_WSCALE_PRESENT	2
699 #define	TCP_OPT_TSTAMP_PRESENT	4
700 #define	TCP_OPT_SACK_OK_PRESENT	8
701 #define	TCP_OPT_SACK_PRESENT	16
702 
703 /* TCP option length */
704 #define	TCPOPT_NOP_LEN		1
705 #define	TCPOPT_MAXSEG_LEN	4
706 #define	TCPOPT_WS_LEN		3
707 #define	TCPOPT_REAL_WS_LEN	(TCPOPT_WS_LEN+1)
708 #define	TCPOPT_TSTAMP_LEN	10
709 #define	TCPOPT_REAL_TS_LEN	(TCPOPT_TSTAMP_LEN+2)
710 #define	TCPOPT_SACK_OK_LEN	2
711 #define	TCPOPT_REAL_SACK_OK_LEN	(TCPOPT_SACK_OK_LEN+2)
712 #define	TCPOPT_REAL_SACK_LEN	4
713 #define	TCPOPT_MAX_SACK_LEN	36
714 #define	TCPOPT_HEADER_LEN	2
715 
716 /* TCP cwnd burst factor. */
717 #define	TCP_CWND_INFINITE	65535
718 #define	TCP_CWND_SS		3
719 #define	TCP_CWND_NORMAL		5
720 
721 /* Maximum TCP initial cwin (start/restart). */
722 #define	TCP_MAX_INIT_CWND	8
723 
724 /*
725  * Initialize cwnd according to RFC 3390.  def_max_init_cwnd is
726  * either tcp_slow_start_initial or tcp_slow_start_after idle
727  * depending on the caller.  If the upper layer has not used the
728  * TCP_INIT_CWND option to change the initial cwnd, tcp_init_cwnd
729  * should be 0 and we use the formula in RFC 3390 to set tcp_cwnd.
730  * If the upper layer has changed set the tcp_init_cwnd, just use
731  * it to calculate the tcp_cwnd.
732  */
733 #define	SET_TCP_INIT_CWND(tcp, mss, def_max_init_cwnd)			\
734 {									\
735 	if ((tcp)->tcp_init_cwnd == 0) {				\
736 		(tcp)->tcp_cwnd = MIN(def_max_init_cwnd * (mss),	\
737 		    MIN(4 * (mss), MAX(2 * (mss), 4380 / (mss) * (mss)))); \
738 	} else {							\
739 		(tcp)->tcp_cwnd = (tcp)->tcp_init_cwnd * (mss);		\
740 	}								\
741 	tcp->tcp_cwnd_cnt = 0;						\
742 }
743 
744 /* TCP Timer control structure */
745 typedef struct tcpt_s {
746 	pfv_t	tcpt_pfv;	/* The routine we are to call */
747 	tcp_t	*tcpt_tcp;	/* The parameter we are to pass in */
748 } tcpt_t;
749 
750 /* Host Specific Parameter structure */
751 typedef struct tcp_hsp {
752 	struct tcp_hsp	*tcp_hsp_next;
753 	in6_addr_t	tcp_hsp_addr_v6;
754 	in6_addr_t	tcp_hsp_subnet_v6;
755 	uint_t		tcp_hsp_vers;	/* IPV4_VERSION | IPV6_VERSION */
756 	int32_t		tcp_hsp_sendspace;
757 	int32_t		tcp_hsp_recvspace;
758 	int32_t		tcp_hsp_tstamp;
759 } tcp_hsp_t;
760 #define	tcp_hsp_addr	V4_PART_OF_V6(tcp_hsp_addr_v6)
761 #define	tcp_hsp_subnet	V4_PART_OF_V6(tcp_hsp_subnet_v6)
762 
763 /*
764  * Functions called directly via squeue having a prototype of edesc_t.
765  */
766 void		tcp_conn_request(void *arg, mblk_t *mp, void *arg2);
767 static void	tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2);
768 void		tcp_accept_finish(void *arg, mblk_t *mp, void *arg2);
769 static void	tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2);
770 static void	tcp_wput_proto(void *arg, mblk_t *mp, void *arg2);
771 void 		tcp_input(void *arg, mblk_t *mp, void *arg2);
772 void		tcp_rput_data(void *arg, mblk_t *mp, void *arg2);
773 static void	tcp_close_output(void *arg, mblk_t *mp, void *arg2);
774 void		tcp_output(void *arg, mblk_t *mp, void *arg2);
775 static void	tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2);
776 static void	tcp_timer_handler(void *arg, mblk_t *mp, void *arg2);
777 
778 
779 /* Prototype for TCP functions */
780 static void	tcp_random_init(void);
781 int		tcp_random(void);
782 static void	tcp_accept(tcp_t *tcp, mblk_t *mp);
783 static void	tcp_accept_swap(tcp_t *listener, tcp_t *acceptor,
784 		    tcp_t *eager);
785 static int	tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp);
786 static in_port_t tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr,
787     int reuseaddr, boolean_t quick_connect, boolean_t bind_to_req_port_only,
788     boolean_t user_specified);
789 static void	tcp_closei_local(tcp_t *tcp);
790 static void	tcp_close_detached(tcp_t *tcp);
791 static boolean_t tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph,
792 			mblk_t *idmp, mblk_t **defermp);
793 static void	tcp_connect(tcp_t *tcp, mblk_t *mp);
794 static void	tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp,
795 		    in_port_t dstport, uint_t srcid);
796 static void	tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp,
797 		    in_port_t dstport, uint32_t flowinfo, uint_t srcid,
798 		    uint32_t scope_id);
799 static int	tcp_clean_death(tcp_t *tcp, int err, uint8_t tag);
800 static void	tcp_def_q_set(tcp_t *tcp, mblk_t *mp);
801 static void	tcp_disconnect(tcp_t *tcp, mblk_t *mp);
802 static char	*tcp_display(tcp_t *tcp, char *, char);
803 static boolean_t tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum);
804 static void	tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only);
805 static void	tcp_eager_unlink(tcp_t *tcp);
806 static void	tcp_err_ack(tcp_t *tcp, mblk_t *mp, int tlierr,
807 		    int unixerr);
808 static void	tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive,
809 		    int tlierr, int unixerr);
810 static int	tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp,
811 		    cred_t *cr);
812 static int	tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp,
813 		    char *value, caddr_t cp, cred_t *cr);
814 static int	tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp,
815 		    char *value, caddr_t cp, cred_t *cr);
816 static int	tcp_tpistate(tcp_t *tcp);
817 static void	tcp_bind_hash_insert(tf_t *tf, tcp_t *tcp,
818     int caller_holds_lock);
819 static void	tcp_bind_hash_remove(tcp_t *tcp);
820 static tcp_t	*tcp_acceptor_hash_lookup(t_uscalar_t id);
821 void		tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp);
822 static void	tcp_acceptor_hash_remove(tcp_t *tcp);
823 static void	tcp_capability_req(tcp_t *tcp, mblk_t *mp);
824 static void	tcp_info_req(tcp_t *tcp, mblk_t *mp);
825 static void	tcp_addr_req(tcp_t *tcp, mblk_t *mp);
826 static void	tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *mp);
827 static int	tcp_header_init_ipv4(tcp_t *tcp);
828 static int	tcp_header_init_ipv6(tcp_t *tcp);
829 int		tcp_init(tcp_t *tcp, queue_t *q);
830 static int	tcp_init_values(tcp_t *tcp);
831 static mblk_t	*tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic);
832 static mblk_t	*tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim,
833 		    t_scalar_t addr_length);
834 static void	tcp_ip_ire_mark_advice(tcp_t *tcp);
835 static void	tcp_ip_notify(tcp_t *tcp);
836 static mblk_t	*tcp_ire_mp(mblk_t *mp);
837 static void	tcp_iss_init(tcp_t *tcp);
838 static void	tcp_keepalive_killer(void *arg);
839 static int	tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt);
840 static void	tcp_mss_set(tcp_t *tcp, uint32_t size);
841 static int	tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp,
842 		    int *do_disconnectp, int *t_errorp, int *sys_errorp);
843 static boolean_t tcp_allow_connopt_set(int level, int name);
844 int		tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr);
845 int		tcp_opt_get(queue_t *q, int level, int name, uchar_t *ptr);
846 int		tcp_opt_set(queue_t *q, uint_t optset_context, int level,
847 		    int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp,
848 		    uchar_t *outvalp, void *thisdg_attrs, cred_t *cr,
849 		    mblk_t *mblk);
850 static void	tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha);
851 static int	tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly,
852 		    uchar_t *ptr, uint_t len);
853 static int	tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr);
854 static boolean_t tcp_param_register(tcpparam_t *tcppa, int cnt);
855 static int	tcp_param_set(queue_t *q, mblk_t *mp, char *value,
856 		    caddr_t cp, cred_t *cr);
857 static int	tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value,
858 		    caddr_t cp, cred_t *cr);
859 static void	tcp_iss_key_init(uint8_t *phrase, int len);
860 static int	tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value,
861 		    caddr_t cp, cred_t *cr);
862 static void	tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_cnt);
863 static mblk_t	*tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start);
864 static void	tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp);
865 static void	tcp_reinit(tcp_t *tcp);
866 static void	tcp_reinit_values(tcp_t *tcp);
867 static void	tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval,
868 		    tcp_t *thisstream, cred_t *cr);
869 
870 static uint_t	tcp_rcv_drain(queue_t *q, tcp_t *tcp);
871 static void	tcp_sack_rxmit(tcp_t *tcp, uint_t *flags);
872 static boolean_t tcp_send_rst_chk(void);
873 static void	tcp_ss_rexmit(tcp_t *tcp);
874 static mblk_t	*tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp);
875 static void	tcp_process_options(tcp_t *, tcph_t *);
876 static void	tcp_rput_common(tcp_t *tcp, mblk_t *mp);
877 static void	tcp_rsrv(queue_t *q);
878 static int	tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd);
879 static int	tcp_snmp_state(tcp_t *tcp);
880 static int	tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp,
881 		    cred_t *cr);
882 static int	tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
883 		    cred_t *cr);
884 static int	tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
885 		    cred_t *cr);
886 static int	tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
887 		    cred_t *cr);
888 static int	tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
889 		    cred_t *cr);
890 static int	tcp_host_param_set(queue_t *q, mblk_t *mp, char *value,
891 		    caddr_t cp, cred_t *cr);
892 static int	tcp_host_param_set_ipv6(queue_t *q, mblk_t *mp, char *value,
893 		    caddr_t cp, cred_t *cr);
894 static int	tcp_host_param_report(queue_t *q, mblk_t *mp, caddr_t cp,
895 		    cred_t *cr);
896 static void	tcp_timer(void *arg);
897 static void	tcp_timer_callback(void *);
898 static in_port_t tcp_update_next_port(in_port_t port, const tcp_t *tcp,
899     boolean_t random);
900 static in_port_t tcp_get_next_priv_port(const tcp_t *);
901 static void	tcp_wput_sock(queue_t *q, mblk_t *mp);
902 void		tcp_wput_accept(queue_t *q, mblk_t *mp);
903 static void	tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent);
904 static void	tcp_wput_flush(tcp_t *tcp, mblk_t *mp);
905 static void	tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp);
906 static int	tcp_send(queue_t *q, tcp_t *tcp, const int mss,
907 		    const int tcp_hdr_len, const int tcp_tcp_hdr_len,
908 		    const int num_sack_blk, int *usable, uint_t *snxt,
909 		    int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
910 		    const int mdt_thres);
911 static int	tcp_multisend(queue_t *q, tcp_t *tcp, const int mss,
912 		    const int tcp_hdr_len, const int tcp_tcp_hdr_len,
913 		    const int num_sack_blk, int *usable, uint_t *snxt,
914 		    int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
915 		    const int mdt_thres);
916 static void	tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now,
917 		    int num_sack_blk);
918 static void	tcp_wsrv(queue_t *q);
919 static int	tcp_xmit_end(tcp_t *tcp);
920 static mblk_t	*tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send,
921 		    int32_t *offset, mblk_t **end_mp, uint32_t seq,
922 		    boolean_t sendall, uint32_t *seg_len, boolean_t rexmit);
923 static void	tcp_ack_timer(void *arg);
924 static mblk_t	*tcp_ack_mp(tcp_t *tcp);
925 static void	tcp_xmit_early_reset(char *str, mblk_t *mp,
926 		    uint32_t seq, uint32_t ack, int ctl, uint_t ip_hdr_len);
927 static void	tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq,
928 		    uint32_t ack, int ctl);
929 static tcp_hsp_t *tcp_hsp_lookup(ipaddr_t addr);
930 static tcp_hsp_t *tcp_hsp_lookup_ipv6(in6_addr_t *addr);
931 static int	setmaxps(queue_t *q, int maxpsz);
932 static void	tcp_set_rto(tcp_t *, time_t);
933 static boolean_t tcp_check_policy(tcp_t *, mblk_t *, ipha_t *, ip6_t *,
934 		    boolean_t, boolean_t);
935 static void	tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp,
936 		    boolean_t ipsec_mctl);
937 static mblk_t	*tcp_setsockopt_mp(int level, int cmd,
938 		    char *opt, int optlen);
939 static int	tcp_build_hdrs(queue_t *, tcp_t *);
940 static void	tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp,
941 		    uint32_t seg_seq, uint32_t seg_ack, int seg_len,
942 		    tcph_t *tcph);
943 boolean_t	tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp);
944 boolean_t	tcp_reserved_port_add(int, in_port_t *, in_port_t *);
945 boolean_t	tcp_reserved_port_del(in_port_t, in_port_t);
946 boolean_t	tcp_reserved_port_check(in_port_t);
947 static tcp_t	*tcp_alloc_temp_tcp(in_port_t);
948 static int	tcp_reserved_port_list(queue_t *, mblk_t *, caddr_t, cred_t *);
949 static mblk_t	*tcp_mdt_info_mp(mblk_t *);
950 static void	tcp_mdt_update(tcp_t *, ill_mdt_capab_t *, boolean_t);
951 static int	tcp_mdt_add_attrs(multidata_t *, const mblk_t *,
952 		    const boolean_t, const uint32_t, const uint32_t,
953 		    const uint32_t, const uint32_t);
954 static void	tcp_multisend_data(tcp_t *, ire_t *, const ill_t *, mblk_t *,
955 		    const uint_t, const uint_t, boolean_t *);
956 static void	tcp_send_data(tcp_t *, queue_t *, mblk_t *);
957 extern mblk_t	*tcp_timermp_alloc(int);
958 extern void	tcp_timermp_free(tcp_t *);
959 static void	tcp_timer_free(tcp_t *tcp, mblk_t *mp);
960 static void	tcp_stop_lingering(tcp_t *tcp);
961 static void	tcp_close_linger_timeout(void *arg);
962 void		tcp_ddi_init(void);
963 void		tcp_ddi_destroy(void);
964 static void	tcp_kstat_init(void);
965 static void	tcp_kstat_fini(void);
966 static int	tcp_kstat_update(kstat_t *kp, int rw);
967 void		tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp);
968 static int	tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp,
969 			tcph_t *tcph, uint_t ipvers, mblk_t *idmp);
970 static int	tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha,
971 			tcph_t *tcph, mblk_t *idmp);
972 static squeue_func_t tcp_squeue_switch(int);
973 
974 static int	tcp_open(queue_t *, dev_t *, int, int, cred_t *);
975 static int	tcp_close(queue_t *, int);
976 static int	tcpclose_accept(queue_t *);
977 static int	tcp_modclose(queue_t *);
978 static void	tcp_wput_mod(queue_t *, mblk_t *);
979 
980 static void	tcp_squeue_add(squeue_t *);
981 static boolean_t tcp_zcopy_check(tcp_t *);
982 static void	tcp_zcopy_notify(tcp_t *);
983 static mblk_t	*tcp_zcopy_disable(tcp_t *, mblk_t *);
984 static mblk_t	*tcp_zcopy_backoff(tcp_t *, mblk_t *, int);
985 static void	tcp_ire_ill_check(tcp_t *, ire_t *, ill_t *, boolean_t);
986 
987 extern void	tcp_kssl_input(tcp_t *, mblk_t *);
988 
989 /*
990  * Routines related to the TCP_IOC_ABORT_CONN ioctl command.
991  *
992  * TCP_IOC_ABORT_CONN is a non-transparent ioctl command used for aborting
993  * TCP connections. To invoke this ioctl, a tcp_ioc_abort_conn_t structure
994  * (defined in tcp.h) needs to be filled in and passed into the kernel
995  * via an I_STR ioctl command (see streamio(7I)). The tcp_ioc_abort_conn_t
996  * structure contains the four-tuple of a TCP connection and a range of TCP
997  * states (specified by ac_start and ac_end). The use of wildcard addresses
998  * and ports is allowed. Connections with a matching four tuple and a state
999  * within the specified range will be aborted. The valid states for the
1000  * ac_start and ac_end fields are in the range TCPS_SYN_SENT to TCPS_TIME_WAIT,
1001  * inclusive.
1002  *
1003  * An application which has its connection aborted by this ioctl will receive
1004  * an error that is dependent on the connection state at the time of the abort.
1005  * If the connection state is < TCPS_TIME_WAIT, an application should behave as
1006  * though a RST packet has been received.  If the connection state is equal to
1007  * TCPS_TIME_WAIT, the 2MSL timeout will immediately be canceled by the kernel
1008  * and all resources associated with the connection will be freed.
1009  */
1010 static mblk_t	*tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *, tcp_t *);
1011 static void	tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *);
1012 static void	tcp_ioctl_abort_handler(tcp_t *, mblk_t *);
1013 static int	tcp_ioctl_abort(tcp_ioc_abort_conn_t *);
1014 static void	tcp_ioctl_abort_conn(queue_t *, mblk_t *);
1015 static int	tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *, int, int *,
1016     boolean_t);
1017 
1018 static struct module_info tcp_rinfo =  {
1019 	TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER
1020 };
1021 
1022 static struct module_info tcp_winfo =  {
1023 	TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16
1024 };
1025 
1026 /*
1027  * Entry points for TCP as a module. It only allows SNMP requests
1028  * to pass through.
1029  */
1030 struct qinit tcp_mod_rinit = {
1031 	(pfi_t)putnext, NULL, tcp_open, ip_snmpmod_close, NULL, &tcp_rinfo,
1032 };
1033 
1034 struct qinit tcp_mod_winit = {
1035 	(pfi_t)ip_snmpmod_wput, NULL, tcp_open, ip_snmpmod_close, NULL,
1036 	&tcp_rinfo
1037 };
1038 
1039 /*
1040  * Entry points for TCP as a device. The normal case which supports
1041  * the TCP functionality.
1042  */
1043 struct qinit tcp_rinit = {
1044 	NULL, (pfi_t)tcp_rsrv, tcp_open, tcp_close, NULL, &tcp_rinfo
1045 };
1046 
1047 struct qinit tcp_winit = {
1048 	(pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
1049 };
1050 
1051 /* Initial entry point for TCP in socket mode. */
1052 struct qinit tcp_sock_winit = {
1053 	(pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
1054 };
1055 
1056 /*
1057  * Entry points for TCP as a acceptor STREAM opened by sockfs when doing
1058  * an accept. Avoid allocating data structures since eager has already
1059  * been created.
1060  */
1061 struct qinit tcp_acceptor_rinit = {
1062 	NULL, (pfi_t)tcp_rsrv, NULL, tcpclose_accept, NULL, &tcp_winfo
1063 };
1064 
1065 struct qinit tcp_acceptor_winit = {
1066 	(pfi_t)tcp_wput_accept, NULL, NULL, NULL, NULL, &tcp_winfo
1067 };
1068 
1069 /*
1070  * Entry points for TCP loopback (read side only)
1071  */
1072 struct qinit tcp_loopback_rinit = {
1073 	(pfi_t)0, (pfi_t)tcp_rsrv, tcp_open, tcp_close, (pfi_t)0,
1074 	&tcp_rinfo, NULL, tcp_fuse_rrw, tcp_fuse_rinfop, STRUIOT_STANDARD
1075 };
1076 
1077 struct streamtab tcpinfo = {
1078 	&tcp_rinit, &tcp_winit
1079 };
1080 
1081 extern squeue_func_t tcp_squeue_wput_proc;
1082 extern squeue_func_t tcp_squeue_timer_proc;
1083 
1084 /* Protected by tcp_g_q_lock */
1085 static queue_t	*tcp_g_q;	/* Default queue used during detached closes */
1086 kmutex_t tcp_g_q_lock;
1087 
1088 /* Protected by tcp_hsp_lock */
1089 /*
1090  * XXX The host param mechanism should go away and instead we should use
1091  * the metrics associated with the routes to determine the default sndspace
1092  * and rcvspace.
1093  */
1094 static tcp_hsp_t	**tcp_hsp_hash;	/* Hash table for HSPs */
1095 krwlock_t tcp_hsp_lock;
1096 
1097 /*
1098  * Extra privileged ports. In host byte order.
1099  * Protected by tcp_epriv_port_lock.
1100  */
1101 #define	TCP_NUM_EPRIV_PORTS	64
1102 static int	tcp_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS;
1103 static uint16_t	tcp_g_epriv_ports[TCP_NUM_EPRIV_PORTS] = { 2049, 4045 };
1104 kmutex_t tcp_epriv_port_lock;
1105 
1106 /*
1107  * The smallest anonymous port in the privileged port range which TCP
1108  * looks for free port.  Use in the option TCP_ANONPRIVBIND.
1109  */
1110 static in_port_t tcp_min_anonpriv_port = 512;
1111 
1112 /* Only modified during _init and _fini thus no locking is needed. */
1113 static caddr_t	tcp_g_nd;	/* Head of 'named dispatch' variable list */
1114 
1115 /* Hint not protected by any lock */
1116 static uint_t	tcp_next_port_to_try;
1117 
1118 
1119 /* TCP bind hash list - all tcp_t with state >= BOUND. */
1120 tf_t	tcp_bind_fanout[TCP_BIND_FANOUT_SIZE];
1121 
1122 /* TCP queue hash list - all tcp_t in case they will be an acceptor. */
1123 static tf_t	tcp_acceptor_fanout[TCP_FANOUT_SIZE];
1124 
1125 /*
1126  * TCP has a private interface for other kernel modules to reserve a
1127  * port range for them to use.  Once reserved, TCP will not use any ports
1128  * in the range.  This interface relies on the TCP_EXCLBIND feature.  If
1129  * the semantics of TCP_EXCLBIND is changed, implementation of this interface
1130  * has to be verified.
1131  *
1132  * There can be TCP_RESERVED_PORTS_ARRAY_MAX_SIZE port ranges.  Each port
1133  * range can cover at most TCP_RESERVED_PORTS_RANGE_MAX ports.  A port
1134  * range is [port a, port b] inclusive.  And each port range is between
1135  * TCP_LOWESET_RESERVED_PORT and TCP_LARGEST_RESERVED_PORT inclusive.
1136  *
1137  * Note that the default anonymous port range starts from 32768.  There is
1138  * no port "collision" between that and the reserved port range.  If there
1139  * is port collision (because the default smallest anonymous port is lowered
1140  * or some apps specifically bind to ports in the reserved port range), the
1141  * system may not be able to reserve a port range even there are enough
1142  * unbound ports as a reserved port range contains consecutive ports .
1143  */
1144 #define	TCP_RESERVED_PORTS_ARRAY_MAX_SIZE	5
1145 #define	TCP_RESERVED_PORTS_RANGE_MAX		1000
1146 #define	TCP_SMALLEST_RESERVED_PORT		10240
1147 #define	TCP_LARGEST_RESERVED_PORT		20480
1148 
1149 /* Structure to represent those reserved port ranges. */
1150 typedef struct tcp_rport_s {
1151 	in_port_t	lo_port;
1152 	in_port_t	hi_port;
1153 	tcp_t		**temp_tcp_array;
1154 } tcp_rport_t;
1155 
1156 /* The reserved port array. */
1157 static tcp_rport_t tcp_reserved_port[TCP_RESERVED_PORTS_ARRAY_MAX_SIZE];
1158 
1159 /* Locks to protect the tcp_reserved_ports array. */
1160 static krwlock_t tcp_reserved_port_lock;
1161 
1162 /* The number of ranges in the array. */
1163 uint32_t tcp_reserved_port_array_size = 0;
1164 
1165 /*
1166  * MIB-2 stuff for SNMP
1167  * Note: tcpInErrs {tcp 15} is accumulated in ip.c
1168  */
1169 mib2_tcp_t	tcp_mib;	/* SNMP fixed size info */
1170 kstat_t		*tcp_mibkp;	/* kstat exporting tcp_mib data */
1171 
1172 boolean_t tcp_icmp_source_quench = B_FALSE;
1173 /*
1174  * Following assumes TPI alignment requirements stay along 32 bit
1175  * boundaries
1176  */
1177 #define	ROUNDUP32(x) \
1178 	(((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1))
1179 
1180 /* Template for response to info request. */
1181 static struct T_info_ack tcp_g_t_info_ack = {
1182 	T_INFO_ACK,		/* PRIM_type */
1183 	0,			/* TSDU_size */
1184 	T_INFINITE,		/* ETSDU_size */
1185 	T_INVALID,		/* CDATA_size */
1186 	T_INVALID,		/* DDATA_size */
1187 	sizeof (sin_t),		/* ADDR_size */
1188 	0,			/* OPT_size - not initialized here */
1189 	TIDUSZ,			/* TIDU_size */
1190 	T_COTS_ORD,		/* SERV_type */
1191 	TCPS_IDLE,		/* CURRENT_state */
1192 	(XPG4_1|EXPINLINE)	/* PROVIDER_flag */
1193 };
1194 
1195 static struct T_info_ack tcp_g_t_info_ack_v6 = {
1196 	T_INFO_ACK,		/* PRIM_type */
1197 	0,			/* TSDU_size */
1198 	T_INFINITE,		/* ETSDU_size */
1199 	T_INVALID,		/* CDATA_size */
1200 	T_INVALID,		/* DDATA_size */
1201 	sizeof (sin6_t),	/* ADDR_size */
1202 	0,			/* OPT_size - not initialized here */
1203 	TIDUSZ,		/* TIDU_size */
1204 	T_COTS_ORD,		/* SERV_type */
1205 	TCPS_IDLE,		/* CURRENT_state */
1206 	(XPG4_1|EXPINLINE)	/* PROVIDER_flag */
1207 };
1208 
1209 #define	MS	1L
1210 #define	SECONDS	(1000 * MS)
1211 #define	MINUTES	(60 * SECONDS)
1212 #define	HOURS	(60 * MINUTES)
1213 #define	DAYS	(24 * HOURS)
1214 
1215 #define	PARAM_MAX (~(uint32_t)0)
1216 
1217 /* Max size IP datagram is 64k - 1 */
1218 #define	TCP_MSS_MAX_IPV4 (IP_MAXPACKET - (sizeof (ipha_t) + sizeof (tcph_t)))
1219 #define	TCP_MSS_MAX_IPV6 (IP_MAXPACKET - (sizeof (ip6_t) + sizeof (tcph_t)))
1220 /* Max of the above */
1221 #define	TCP_MSS_MAX	TCP_MSS_MAX_IPV4
1222 
1223 /* Largest TCP port number */
1224 #define	TCP_MAX_PORT	(64 * 1024 - 1)
1225 
1226 /*
1227  * tcp_wroff_xtra is the extra space in front of TCP/IP header for link
1228  * layer header.  It has to be a multiple of 4.
1229  */
1230 static tcpparam_t tcp_wroff_xtra_param = { 0, 256, 32, "tcp_wroff_xtra" };
1231 #define	tcp_wroff_xtra	tcp_wroff_xtra_param.tcp_param_val
1232 
1233 /*
1234  * All of these are alterable, within the min/max values given, at run time.
1235  * Note that the default value of "tcp_time_wait_interval" is four minutes,
1236  * per the TCP spec.
1237  */
1238 /* BEGIN CSTYLED */
1239 tcpparam_t	tcp_param_arr[] = {
1240  /*min		max		value		name */
1241  { 1*SECONDS,	10*MINUTES,	1*MINUTES,	"tcp_time_wait_interval"},
1242  { 1,		PARAM_MAX,	128,		"tcp_conn_req_max_q" },
1243  { 0,		PARAM_MAX,	1024,		"tcp_conn_req_max_q0" },
1244  { 1,		1024,		1,		"tcp_conn_req_min" },
1245  { 0*MS,	20*SECONDS,	0*MS,		"tcp_conn_grace_period" },
1246  { 128,		(1<<30),	1024*1024,	"tcp_cwnd_max" },
1247  { 0,		10,		0,		"tcp_debug" },
1248  { 1024,	(32*1024),	1024,		"tcp_smallest_nonpriv_port"},
1249  { 1*SECONDS,	PARAM_MAX,	3*MINUTES,	"tcp_ip_abort_cinterval"},
1250  { 1*SECONDS,	PARAM_MAX,	3*MINUTES,	"tcp_ip_abort_linterval"},
1251  { 500*MS,	PARAM_MAX,	8*MINUTES,	"tcp_ip_abort_interval"},
1252  { 1*SECONDS,	PARAM_MAX,	10*SECONDS,	"tcp_ip_notify_cinterval"},
1253  { 500*MS,	PARAM_MAX,	10*SECONDS,	"tcp_ip_notify_interval"},
1254  { 1,		255,		64,		"tcp_ipv4_ttl"},
1255  { 10*SECONDS,	10*DAYS,	2*HOURS,	"tcp_keepalive_interval"},
1256  { 0,		100,		10,		"tcp_maxpsz_multiplier" },
1257  { 1,		TCP_MSS_MAX_IPV4, 536,		"tcp_mss_def_ipv4"},
1258  { 1,		TCP_MSS_MAX_IPV4, TCP_MSS_MAX_IPV4, "tcp_mss_max_ipv4"},
1259  { 1,		TCP_MSS_MAX,	108,		"tcp_mss_min"},
1260  { 1,		(64*1024)-1,	(4*1024)-1,	"tcp_naglim_def"},
1261  { 1*MS,	20*SECONDS,	3*SECONDS,	"tcp_rexmit_interval_initial"},
1262  { 1*MS,	2*HOURS,	60*SECONDS,	"tcp_rexmit_interval_max"},
1263  { 1*MS,	2*HOURS,	400*MS,		"tcp_rexmit_interval_min"},
1264  { 1*MS,	1*MINUTES,	100*MS,		"tcp_deferred_ack_interval" },
1265  { 0,		16,		0,		"tcp_snd_lowat_fraction" },
1266  { 0,		128000,		0,		"tcp_sth_rcv_hiwat" },
1267  { 0,		128000,		0,		"tcp_sth_rcv_lowat" },
1268  { 1,		10000,		3,		"tcp_dupack_fast_retransmit" },
1269  { 0,		1,		0,		"tcp_ignore_path_mtu" },
1270  { 1024,	TCP_MAX_PORT,	32*1024,	"tcp_smallest_anon_port"},
1271  { 1024,	TCP_MAX_PORT,	TCP_MAX_PORT,	"tcp_largest_anon_port"},
1272  { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_HIWATER,"tcp_xmit_hiwat"},
1273  { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_LOWATER,"tcp_xmit_lowat"},
1274  { TCP_RECV_LOWATER, (1<<30), TCP_RECV_HIWATER,"tcp_recv_hiwat"},
1275  { 1,		65536,		4,		"tcp_recv_hiwat_minmss"},
1276  { 1*SECONDS,	PARAM_MAX,	675*SECONDS,	"tcp_fin_wait_2_flush_interval"},
1277  { 0,		TCP_MSS_MAX,	64,		"tcp_co_min"},
1278  { 8192,	(1<<30),	1024*1024,	"tcp_max_buf"},
1279 /*
1280  * Question:  What default value should I set for tcp_strong_iss?
1281  */
1282  { 0,		2,		1,		"tcp_strong_iss"},
1283  { 0,		65536,		20,		"tcp_rtt_updates"},
1284  { 0,		1,		1,		"tcp_wscale_always"},
1285  { 0,		1,		0,		"tcp_tstamp_always"},
1286  { 0,		1,		1,		"tcp_tstamp_if_wscale"},
1287  { 0*MS,	2*HOURS,	0*MS,		"tcp_rexmit_interval_extra"},
1288  { 0,		16,		2,		"tcp_deferred_acks_max"},
1289  { 1,		16384,		4,		"tcp_slow_start_after_idle"},
1290  { 1,		4,		4,		"tcp_slow_start_initial"},
1291  { 10*MS,	50*MS,		20*MS,		"tcp_co_timer_interval"},
1292  { 0,		2,		2,		"tcp_sack_permitted"},
1293  { 0,		1,		0,		"tcp_trace"},
1294  { 0,		1,		1,		"tcp_compression_enabled"},
1295  { 0,		IPV6_MAX_HOPS,	IPV6_DEFAULT_HOPS,	"tcp_ipv6_hoplimit"},
1296  { 1,		TCP_MSS_MAX_IPV6, 1220,		"tcp_mss_def_ipv6"},
1297  { 1,		TCP_MSS_MAX_IPV6, TCP_MSS_MAX_IPV6, "tcp_mss_max_ipv6"},
1298  { 0,		1,		0,		"tcp_rev_src_routes"},
1299  { 10*MS,	500*MS,		50*MS,		"tcp_local_dack_interval"},
1300  { 100*MS,	60*SECONDS,	1*SECONDS,	"tcp_ndd_get_info_interval"},
1301  { 0,		16,		8,		"tcp_local_dacks_max"},
1302  { 0,		2,		1,		"tcp_ecn_permitted"},
1303  { 0,		1,		1,		"tcp_rst_sent_rate_enabled"},
1304  { 0,		PARAM_MAX,	40,		"tcp_rst_sent_rate"},
1305  { 0,		100*MS,		50*MS,		"tcp_push_timer_interval"},
1306  { 0,		1,		0,		"tcp_use_smss_as_mss_opt"},
1307  { 0,		PARAM_MAX,	8*MINUTES,	"tcp_keepalive_abort_interval"},
1308 };
1309 /* END CSTYLED */
1310 
1311 /*
1312  * tcp_mdt_hdr_{head,tail}_min are the leading and trailing spaces of
1313  * each header fragment in the header buffer.  Each parameter value has
1314  * to be a multiple of 4 (32-bit aligned).
1315  */
1316 static tcpparam_t tcp_mdt_head_param = { 32, 256, 32, "tcp_mdt_hdr_head_min" };
1317 static tcpparam_t tcp_mdt_tail_param = { 0,  256, 32, "tcp_mdt_hdr_tail_min" };
1318 #define	tcp_mdt_hdr_head_min	tcp_mdt_head_param.tcp_param_val
1319 #define	tcp_mdt_hdr_tail_min	tcp_mdt_tail_param.tcp_param_val
1320 
1321 /*
1322  * tcp_mdt_max_pbufs is the upper limit value that tcp uses to figure out
1323  * the maximum number of payload buffers associated per Multidata.
1324  */
1325 static tcpparam_t tcp_mdt_max_pbufs_param =
1326 	{ 1, MULTIDATA_MAX_PBUFS, MULTIDATA_MAX_PBUFS, "tcp_mdt_max_pbufs" };
1327 #define	tcp_mdt_max_pbufs	tcp_mdt_max_pbufs_param.tcp_param_val
1328 
1329 /* Round up the value to the nearest mss. */
1330 #define	MSS_ROUNDUP(value, mss)		((((value) - 1) / (mss) + 1) * (mss))
1331 
1332 /*
1333  * Set ECN capable transport (ECT) code point in IP header.
1334  *
1335  * Note that there are 2 ECT code points '01' and '10', which are called
1336  * ECT(1) and ECT(0) respectively.  Here we follow the original ECT code
1337  * point ECT(0) for TCP as described in RFC 2481.
1338  */
1339 #define	SET_ECT(tcp, iph) \
1340 	if ((tcp)->tcp_ipversion == IPV4_VERSION) { \
1341 		/* We need to clear the code point first. */ \
1342 		((ipha_t *)(iph))->ipha_type_of_service &= 0xFC; \
1343 		((ipha_t *)(iph))->ipha_type_of_service |= IPH_ECN_ECT0; \
1344 	} else { \
1345 		((ip6_t *)(iph))->ip6_vcf &= htonl(0xFFCFFFFF); \
1346 		((ip6_t *)(iph))->ip6_vcf |= htonl(IPH_ECN_ECT0 << 20); \
1347 	}
1348 
1349 /*
1350  * The format argument to pass to tcp_display().
1351  * DISP_PORT_ONLY means that the returned string has only port info.
1352  * DISP_ADDR_AND_PORT means that the returned string also contains the
1353  * remote and local IP address.
1354  */
1355 #define	DISP_PORT_ONLY		1
1356 #define	DISP_ADDR_AND_PORT	2
1357 
1358 /*
1359  * This controls the rate some ndd info report functions can be used
1360  * by non-privileged users.  It stores the last time such info is
1361  * requested.  When those report functions are called again, this
1362  * is checked with the current time and compare with the ndd param
1363  * tcp_ndd_get_info_interval.
1364  */
1365 static clock_t tcp_last_ndd_get_info_time = 0;
1366 #define	NDD_TOO_QUICK_MSG \
1367 	"ndd get info rate too high for non-privileged users, try again " \
1368 	"later.\n"
1369 #define	NDD_OUT_OF_BUF_MSG	"<< Out of buffer >>\n"
1370 
1371 #define	IS_VMLOANED_MBLK(mp) \
1372 	(((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0)
1373 
1374 /*
1375  * These two variables control the rate for TCP to generate RSTs in
1376  * response to segments not belonging to any connections.  We limit
1377  * TCP to sent out tcp_rst_sent_rate (ndd param) number of RSTs in
1378  * each 1 second interval.  This is to protect TCP against DoS attack.
1379  */
1380 static clock_t tcp_last_rst_intrvl;
1381 static uint32_t tcp_rst_cnt;
1382 
1383 /* The number of RST not sent because of the rate limit. */
1384 static uint32_t tcp_rst_unsent;
1385 
1386 /* Enable or disable b_cont M_MULTIDATA chaining for MDT. */
1387 boolean_t tcp_mdt_chain = B_TRUE;
1388 
1389 /*
1390  * MDT threshold in the form of effective send MSS multiplier; we take
1391  * the MDT path if the amount of unsent data exceeds the threshold value
1392  * (default threshold is 1*SMSS).
1393  */
1394 uint_t tcp_mdt_smss_threshold = 1;
1395 
1396 uint32_t do_tcpzcopy = 1;		/* 0: disable, 1: enable, 2: force */
1397 
1398 /*
1399  * Forces all connections to obey the value of the tcp_maxpsz_multiplier
1400  * tunable settable via NDD.  Otherwise, the per-connection behavior is
1401  * determined dynamically during tcp_adapt_ire(), which is the default.
1402  */
1403 boolean_t tcp_static_maxpsz = B_FALSE;
1404 
1405 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */
1406 uint32_t tcp_random_anon_port = 1;
1407 
1408 /*
1409  * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more
1410  * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent
1411  * data, TCP will not respond with an ACK.  RFC 793 requires that
1412  * TCP responds with an ACK for such a bogus ACK.  By not following
1413  * the RFC, we prevent TCP from getting into an ACK storm if somehow
1414  * an attacker successfully spoofs an acceptable segment to our
1415  * peer; or when our peer is "confused."
1416  */
1417 uint32_t tcp_drop_ack_unsent_cnt = 10;
1418 
1419 /*
1420  * Hook functions to enable cluster networking
1421  * On non-clustered systems these vectors must always be NULL.
1422  */
1423 
1424 void (*cl_inet_listen)(uint8_t protocol, sa_family_t addr_family,
1425 			    uint8_t *laddrp, in_port_t lport) = NULL;
1426 void (*cl_inet_unlisten)(uint8_t protocol, sa_family_t addr_family,
1427 			    uint8_t *laddrp, in_port_t lport) = NULL;
1428 void (*cl_inet_connect)(uint8_t protocol, sa_family_t addr_family,
1429 			    uint8_t *laddrp, in_port_t lport,
1430 			    uint8_t *faddrp, in_port_t fport) = NULL;
1431 void (*cl_inet_disconnect)(uint8_t protocol, sa_family_t addr_family,
1432 			    uint8_t *laddrp, in_port_t lport,
1433 			    uint8_t *faddrp, in_port_t fport) = NULL;
1434 
1435 /*
1436  * The following are defined in ip.c
1437  */
1438 extern int (*cl_inet_isclusterwide)(uint8_t protocol, sa_family_t addr_family,
1439 				uint8_t *laddrp);
1440 extern uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family,
1441 				uint8_t *laddrp, uint8_t *faddrp);
1442 
1443 #define	CL_INET_CONNECT(tcp)		{			\
1444 	if (cl_inet_connect != NULL) {				\
1445 		/*						\
1446 		 * Running in cluster mode - register active connection	\
1447 		 * information						\
1448 		 */							\
1449 		if ((tcp)->tcp_ipversion == IPV4_VERSION) {		\
1450 			if ((tcp)->tcp_ipha->ipha_src != 0) {		\
1451 				(*cl_inet_connect)(IPPROTO_TCP, AF_INET,\
1452 				    (uint8_t *)(&((tcp)->tcp_ipha->ipha_src)),\
1453 				    (in_port_t)(tcp)->tcp_lport,	\
1454 				    (uint8_t *)(&((tcp)->tcp_ipha->ipha_dst)),\
1455 				    (in_port_t)(tcp)->tcp_fport);	\
1456 			}						\
1457 		} else {						\
1458 			if (!IN6_IS_ADDR_UNSPECIFIED(			\
1459 			    &(tcp)->tcp_ip6h->ip6_src)) {\
1460 				(*cl_inet_connect)(IPPROTO_TCP, AF_INET6,\
1461 				    (uint8_t *)(&((tcp)->tcp_ip6h->ip6_src)),\
1462 				    (in_port_t)(tcp)->tcp_lport,	\
1463 				    (uint8_t *)(&((tcp)->tcp_ip6h->ip6_dst)),\
1464 				    (in_port_t)(tcp)->tcp_fport);	\
1465 			}						\
1466 		}							\
1467 	}								\
1468 }
1469 
1470 #define	CL_INET_DISCONNECT(tcp)	{				\
1471 	if (cl_inet_disconnect != NULL) {				\
1472 		/*							\
1473 		 * Running in cluster mode - deregister active		\
1474 		 * connection information				\
1475 		 */							\
1476 		if ((tcp)->tcp_ipversion == IPV4_VERSION) {		\
1477 			if ((tcp)->tcp_ip_src != 0) {			\
1478 				(*cl_inet_disconnect)(IPPROTO_TCP,	\
1479 				    AF_INET,				\
1480 				    (uint8_t *)(&((tcp)->tcp_ip_src)),\
1481 				    (in_port_t)(tcp)->tcp_lport,	\
1482 				    (uint8_t *)				\
1483 				    (&((tcp)->tcp_ipha->ipha_dst)),\
1484 				    (in_port_t)(tcp)->tcp_fport);	\
1485 			}						\
1486 		} else {						\
1487 			if (!IN6_IS_ADDR_UNSPECIFIED(			\
1488 			    &(tcp)->tcp_ip_src_v6)) {			\
1489 				(*cl_inet_disconnect)(IPPROTO_TCP, AF_INET6,\
1490 				    (uint8_t *)(&((tcp)->tcp_ip_src_v6)),\
1491 				    (in_port_t)(tcp)->tcp_lport,	\
1492 				    (uint8_t *)				\
1493 				    (&((tcp)->tcp_ip6h->ip6_dst)),\
1494 				    (in_port_t)(tcp)->tcp_fport);	\
1495 			}						\
1496 		}							\
1497 	}								\
1498 }
1499 
1500 /*
1501  * Cluster networking hook for traversing current connection list.
1502  * This routine is used to extract the current list of live connections
1503  * which must continue to to be dispatched to this node.
1504  */
1505 int cl_tcp_walk_list(int (*callback)(cl_tcp_info_t *, void *), void *arg);
1506 
1507 /*
1508  * Figure out the value of window scale opton.  Note that the rwnd is
1509  * ASSUMED to be rounded up to the nearest MSS before the calculation.
1510  * We cannot find the scale value and then do a round up of tcp_rwnd
1511  * because the scale value may not be correct after that.
1512  *
1513  * Set the compiler flag to make this function inline.
1514  */
1515 static void
1516 tcp_set_ws_value(tcp_t *tcp)
1517 {
1518 	int i;
1519 	uint32_t rwnd = tcp->tcp_rwnd;
1520 
1521 	for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT;
1522 	    i++, rwnd >>= 1)
1523 		;
1524 	tcp->tcp_rcv_ws = i;
1525 }
1526 
1527 /*
1528  * Remove a connection from the list of detached TIME_WAIT connections.
1529  */
1530 static void
1531 tcp_time_wait_remove(tcp_t *tcp, tcp_squeue_priv_t *tcp_time_wait)
1532 {
1533 	boolean_t	locked = B_FALSE;
1534 
1535 	if (tcp_time_wait == NULL) {
1536 		tcp_time_wait = *((tcp_squeue_priv_t **)
1537 		    squeue_getprivate(tcp->tcp_connp->conn_sqp, SQPRIVATE_TCP));
1538 		mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1539 		locked = B_TRUE;
1540 	}
1541 
1542 	if (tcp->tcp_time_wait_expire == 0) {
1543 		ASSERT(tcp->tcp_time_wait_next == NULL);
1544 		ASSERT(tcp->tcp_time_wait_prev == NULL);
1545 		if (locked)
1546 			mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1547 		return;
1548 	}
1549 	ASSERT(TCP_IS_DETACHED(tcp));
1550 	ASSERT(tcp->tcp_state == TCPS_TIME_WAIT);
1551 
1552 	if (tcp == tcp_time_wait->tcp_time_wait_head) {
1553 		ASSERT(tcp->tcp_time_wait_prev == NULL);
1554 		tcp_time_wait->tcp_time_wait_head = tcp->tcp_time_wait_next;
1555 		if (tcp_time_wait->tcp_time_wait_head != NULL) {
1556 			tcp_time_wait->tcp_time_wait_head->tcp_time_wait_prev =
1557 			    NULL;
1558 		} else {
1559 			tcp_time_wait->tcp_time_wait_tail = NULL;
1560 		}
1561 	} else if (tcp == tcp_time_wait->tcp_time_wait_tail) {
1562 		ASSERT(tcp != tcp_time_wait->tcp_time_wait_head);
1563 		ASSERT(tcp->tcp_time_wait_next == NULL);
1564 		tcp_time_wait->tcp_time_wait_tail = tcp->tcp_time_wait_prev;
1565 		ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL);
1566 		tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = NULL;
1567 	} else {
1568 		ASSERT(tcp->tcp_time_wait_prev->tcp_time_wait_next == tcp);
1569 		ASSERT(tcp->tcp_time_wait_next->tcp_time_wait_prev == tcp);
1570 		tcp->tcp_time_wait_prev->tcp_time_wait_next =
1571 		    tcp->tcp_time_wait_next;
1572 		tcp->tcp_time_wait_next->tcp_time_wait_prev =
1573 		    tcp->tcp_time_wait_prev;
1574 	}
1575 	tcp->tcp_time_wait_next = NULL;
1576 	tcp->tcp_time_wait_prev = NULL;
1577 	tcp->tcp_time_wait_expire = 0;
1578 
1579 	if (locked)
1580 		mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1581 }
1582 
1583 /*
1584  * Add a connection to the list of detached TIME_WAIT connections
1585  * and set its time to expire.
1586  */
1587 static void
1588 tcp_time_wait_append(tcp_t *tcp)
1589 {
1590 	tcp_squeue_priv_t *tcp_time_wait =
1591 	    *((tcp_squeue_priv_t **)squeue_getprivate(tcp->tcp_connp->conn_sqp,
1592 		SQPRIVATE_TCP));
1593 
1594 	tcp_timers_stop(tcp);
1595 
1596 	/* Freed above */
1597 	ASSERT(tcp->tcp_timer_tid == 0);
1598 	ASSERT(tcp->tcp_ack_tid == 0);
1599 
1600 	/* must have happened at the time of detaching the tcp */
1601 	ASSERT(tcp->tcp_ptpahn == NULL);
1602 	ASSERT(tcp->tcp_flow_stopped == 0);
1603 	ASSERT(tcp->tcp_time_wait_next == NULL);
1604 	ASSERT(tcp->tcp_time_wait_prev == NULL);
1605 	ASSERT(tcp->tcp_time_wait_expire == NULL);
1606 	ASSERT(tcp->tcp_listener == NULL);
1607 
1608 	tcp->tcp_time_wait_expire = ddi_get_lbolt();
1609 	/*
1610 	 * The value computed below in tcp->tcp_time_wait_expire may
1611 	 * appear negative or wrap around. That is ok since our
1612 	 * interest is only in the difference between the current lbolt
1613 	 * value and tcp->tcp_time_wait_expire. But the value should not
1614 	 * be zero, since it means the tcp is not in the TIME_WAIT list.
1615 	 * The corresponding comparison in tcp_time_wait_collector() uses
1616 	 * modular arithmetic.
1617 	 */
1618 	tcp->tcp_time_wait_expire +=
1619 	    drv_usectohz(tcp_time_wait_interval * 1000);
1620 	if (tcp->tcp_time_wait_expire == 0)
1621 		tcp->tcp_time_wait_expire = 1;
1622 
1623 	ASSERT(TCP_IS_DETACHED(tcp));
1624 	ASSERT(tcp->tcp_state == TCPS_TIME_WAIT);
1625 	ASSERT(tcp->tcp_time_wait_next == NULL);
1626 	ASSERT(tcp->tcp_time_wait_prev == NULL);
1627 	TCP_DBGSTAT(tcp_time_wait);
1628 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1629 	if (tcp_time_wait->tcp_time_wait_head == NULL) {
1630 		ASSERT(tcp_time_wait->tcp_time_wait_tail == NULL);
1631 		tcp_time_wait->tcp_time_wait_head = tcp;
1632 	} else {
1633 		ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL);
1634 		ASSERT(tcp_time_wait->tcp_time_wait_tail->tcp_state ==
1635 		    TCPS_TIME_WAIT);
1636 		tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = tcp;
1637 		tcp->tcp_time_wait_prev = tcp_time_wait->tcp_time_wait_tail;
1638 	}
1639 	tcp_time_wait->tcp_time_wait_tail = tcp;
1640 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1641 }
1642 
1643 /* ARGSUSED */
1644 void
1645 tcp_timewait_output(void *arg, mblk_t *mp, void *arg2)
1646 {
1647 	conn_t	*connp = (conn_t *)arg;
1648 	tcp_t	*tcp = connp->conn_tcp;
1649 
1650 	ASSERT(tcp != NULL);
1651 	if (tcp->tcp_state == TCPS_CLOSED) {
1652 		return;
1653 	}
1654 
1655 	ASSERT((tcp->tcp_family == AF_INET &&
1656 	    tcp->tcp_ipversion == IPV4_VERSION) ||
1657 	    (tcp->tcp_family == AF_INET6 &&
1658 	    (tcp->tcp_ipversion == IPV4_VERSION ||
1659 	    tcp->tcp_ipversion == IPV6_VERSION)));
1660 	ASSERT(!tcp->tcp_listener);
1661 
1662 	TCP_STAT(tcp_time_wait_reap);
1663 	ASSERT(TCP_IS_DETACHED(tcp));
1664 
1665 	/*
1666 	 * Because they have no upstream client to rebind or tcp_close()
1667 	 * them later, we axe the connection here and now.
1668 	 */
1669 	tcp_close_detached(tcp);
1670 }
1671 
1672 void
1673 tcp_cleanup(tcp_t *tcp)
1674 {
1675 	mblk_t		*mp;
1676 	char		*tcp_iphc;
1677 	int		tcp_iphc_len;
1678 	int		tcp_hdr_grown;
1679 	tcp_sack_info_t	*tcp_sack_info;
1680 	conn_t		*connp = tcp->tcp_connp;
1681 
1682 	tcp_bind_hash_remove(tcp);
1683 	tcp_free(tcp);
1684 
1685 	/* Release any SSL context */
1686 	if (tcp->tcp_kssl_ent != NULL) {
1687 		kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY);
1688 		tcp->tcp_kssl_ent = NULL;
1689 	}
1690 
1691 	if (tcp->tcp_kssl_ctx != NULL) {
1692 		kssl_release_ctx(tcp->tcp_kssl_ctx);
1693 		tcp->tcp_kssl_ctx = NULL;
1694 	}
1695 	tcp->tcp_kssl_pending = B_FALSE;
1696 
1697 	conn_delete_ire(connp, NULL);
1698 	if (connp->conn_flags & IPCL_TCPCONN) {
1699 		if (connp->conn_latch != NULL)
1700 			IPLATCH_REFRELE(connp->conn_latch);
1701 		if (connp->conn_policy != NULL)
1702 			IPPH_REFRELE(connp->conn_policy);
1703 	}
1704 
1705 	/*
1706 	 * Since we will bzero the entire structure, we need to
1707 	 * remove it and reinsert it in global hash list. We
1708 	 * know the walkers can't get to this conn because we
1709 	 * had set CONDEMNED flag earlier and checked reference
1710 	 * under conn_lock so walker won't pick it and when we
1711 	 * go the ipcl_globalhash_remove() below, no walker
1712 	 * can get to it.
1713 	 */
1714 	ipcl_globalhash_remove(connp);
1715 
1716 	/* Save some state */
1717 	mp = tcp->tcp_timercache;
1718 
1719 	tcp_sack_info = tcp->tcp_sack_info;
1720 	tcp_iphc = tcp->tcp_iphc;
1721 	tcp_iphc_len = tcp->tcp_iphc_len;
1722 	tcp_hdr_grown = tcp->tcp_hdr_grown;
1723 
1724 	if (connp->conn_cred != NULL)
1725 		crfree(connp->conn_cred);
1726 	if (connp->conn_peercred != NULL)
1727 		crfree(connp->conn_peercred);
1728 	bzero(connp, sizeof (conn_t));
1729 	bzero(tcp, sizeof (tcp_t));
1730 
1731 	/* restore the state */
1732 	tcp->tcp_timercache = mp;
1733 
1734 	tcp->tcp_sack_info = tcp_sack_info;
1735 	tcp->tcp_iphc = tcp_iphc;
1736 	tcp->tcp_iphc_len = tcp_iphc_len;
1737 	tcp->tcp_hdr_grown = tcp_hdr_grown;
1738 
1739 
1740 	tcp->tcp_connp = connp;
1741 
1742 	connp->conn_tcp = tcp;
1743 	connp->conn_flags = IPCL_TCPCONN;
1744 	connp->conn_state_flags = CONN_INCIPIENT;
1745 	connp->conn_ulp = IPPROTO_TCP;
1746 	connp->conn_ref = 1;
1747 
1748 	ipcl_globalhash_insert(connp);
1749 }
1750 
1751 /*
1752  * Blows away all tcps whose TIME_WAIT has expired. List traversal
1753  * is done forwards from the head.
1754  */
1755 /* ARGSUSED */
1756 void
1757 tcp_time_wait_collector(void *arg)
1758 {
1759 	tcp_t *tcp;
1760 	clock_t now;
1761 	mblk_t *mp;
1762 	conn_t *connp;
1763 	kmutex_t *lock;
1764 
1765 	squeue_t *sqp = (squeue_t *)arg;
1766 	tcp_squeue_priv_t *tcp_time_wait =
1767 	    *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP));
1768 
1769 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1770 	tcp_time_wait->tcp_time_wait_tid = 0;
1771 
1772 	if (tcp_time_wait->tcp_free_list != NULL &&
1773 	    tcp_time_wait->tcp_free_list->tcp_in_free_list == B_TRUE) {
1774 		TCP_STAT(tcp_freelist_cleanup);
1775 		while ((tcp = tcp_time_wait->tcp_free_list) != NULL) {
1776 			tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next;
1777 			CONN_DEC_REF(tcp->tcp_connp);
1778 		}
1779 		tcp_time_wait->tcp_free_list_cnt = 0;
1780 	}
1781 
1782 	/*
1783 	 * In order to reap time waits reliably, we should use a
1784 	 * source of time that is not adjustable by the user -- hence
1785 	 * the call to ddi_get_lbolt().
1786 	 */
1787 	now = ddi_get_lbolt();
1788 	while ((tcp = tcp_time_wait->tcp_time_wait_head) != NULL) {
1789 		/*
1790 		 * Compare times using modular arithmetic, since
1791 		 * lbolt can wrapover.
1792 		 */
1793 		if ((now - tcp->tcp_time_wait_expire) < 0) {
1794 			break;
1795 		}
1796 
1797 		tcp_time_wait_remove(tcp, tcp_time_wait);
1798 
1799 		connp = tcp->tcp_connp;
1800 		ASSERT(connp->conn_fanout != NULL);
1801 		lock = &connp->conn_fanout->connf_lock;
1802 		/*
1803 		 * This is essentially a TW reclaim fast path optimization for
1804 		 * performance where the timewait collector checks under the
1805 		 * fanout lock (so that no one else can get access to the
1806 		 * conn_t) that the refcnt is 2 i.e. one for TCP and one for
1807 		 * the classifier hash list. If ref count is indeed 2, we can
1808 		 * just remove the conn under the fanout lock and avoid
1809 		 * cleaning up the conn under the squeue, provided that
1810 		 * clustering callbacks are not enabled. If clustering is
1811 		 * enabled, we need to make the clustering callback before
1812 		 * setting the CONDEMNED flag and after dropping all locks and
1813 		 * so we forego this optimization and fall back to the slow
1814 		 * path. Also please see the comments in tcp_closei_local
1815 		 * regarding the refcnt logic.
1816 		 *
1817 		 * Since we are holding the tcp_time_wait_lock, its better
1818 		 * not to block on the fanout_lock because other connections
1819 		 * can't add themselves to time_wait list. So we do a
1820 		 * tryenter instead of mutex_enter.
1821 		 */
1822 		if (mutex_tryenter(lock)) {
1823 			mutex_enter(&connp->conn_lock);
1824 			if ((connp->conn_ref == 2) &&
1825 			    (cl_inet_disconnect == NULL)) {
1826 				ipcl_hash_remove_locked(connp,
1827 				    connp->conn_fanout);
1828 				/*
1829 				 * Set the CONDEMNED flag now itself so that
1830 				 * the refcnt cannot increase due to any
1831 				 * walker. But we have still not cleaned up
1832 				 * conn_ire_cache. This is still ok since
1833 				 * we are going to clean it up in tcp_cleanup
1834 				 * immediately and any interface unplumb
1835 				 * thread will wait till the ire is blown away
1836 				 */
1837 				connp->conn_state_flags |= CONN_CONDEMNED;
1838 				mutex_exit(lock);
1839 				mutex_exit(&connp->conn_lock);
1840 				if (tcp_time_wait->tcp_free_list_cnt <
1841 				    tcp_free_list_max_cnt) {
1842 					/* Add to head of tcp_free_list */
1843 					mutex_exit(
1844 					    &tcp_time_wait->tcp_time_wait_lock);
1845 					tcp_cleanup(tcp);
1846 					mutex_enter(
1847 					    &tcp_time_wait->tcp_time_wait_lock);
1848 					tcp->tcp_time_wait_next =
1849 					    tcp_time_wait->tcp_free_list;
1850 					tcp_time_wait->tcp_free_list = tcp;
1851 					tcp_time_wait->tcp_free_list_cnt++;
1852 					continue;
1853 				} else {
1854 					/* Do not add to tcp_free_list */
1855 					mutex_exit(
1856 					    &tcp_time_wait->tcp_time_wait_lock);
1857 					tcp_bind_hash_remove(tcp);
1858 					conn_delete_ire(tcp->tcp_connp, NULL);
1859 					CONN_DEC_REF(tcp->tcp_connp);
1860 				}
1861 			} else {
1862 				CONN_INC_REF_LOCKED(connp);
1863 				mutex_exit(lock);
1864 				mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1865 				mutex_exit(&connp->conn_lock);
1866 				/*
1867 				 * We can reuse the closemp here since conn has
1868 				 * detached (otherwise we wouldn't even be in
1869 				 * time_wait list).
1870 				 */
1871 				mp = &tcp->tcp_closemp;
1872 				squeue_fill(connp->conn_sqp, mp,
1873 				    tcp_timewait_output, connp,
1874 				    SQTAG_TCP_TIMEWAIT);
1875 			}
1876 		} else {
1877 			mutex_enter(&connp->conn_lock);
1878 			CONN_INC_REF_LOCKED(connp);
1879 			mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1880 			mutex_exit(&connp->conn_lock);
1881 			/*
1882 			 * We can reuse the closemp here since conn has
1883 			 * detached (otherwise we wouldn't even be in
1884 			 * time_wait list).
1885 			 */
1886 			mp = &tcp->tcp_closemp;
1887 			squeue_fill(connp->conn_sqp, mp,
1888 			    tcp_timewait_output, connp, 0);
1889 		}
1890 		mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1891 	}
1892 
1893 	if (tcp_time_wait->tcp_free_list != NULL)
1894 		tcp_time_wait->tcp_free_list->tcp_in_free_list = B_TRUE;
1895 
1896 	tcp_time_wait->tcp_time_wait_tid =
1897 	    timeout(tcp_time_wait_collector, sqp, TCP_TIME_WAIT_DELAY);
1898 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1899 }
1900 
1901 /*
1902  * Reply to a clients T_CONN_RES TPI message. This function
1903  * is used only for TLI/XTI listener. Sockfs sends T_CONN_RES
1904  * on the acceptor STREAM and processed in tcp_wput_accept().
1905  * Read the block comment on top of tcp_conn_request().
1906  */
1907 static void
1908 tcp_accept(tcp_t *listener, mblk_t *mp)
1909 {
1910 	tcp_t	*acceptor;
1911 	tcp_t	*eager;
1912 	tcp_t   *tcp;
1913 	struct T_conn_res	*tcr;
1914 	t_uscalar_t	acceptor_id;
1915 	t_scalar_t	seqnum;
1916 	mblk_t	*opt_mp = NULL;	/* T_OPTMGMT_REQ messages */
1917 	mblk_t	*ok_mp;
1918 	mblk_t	*mp1;
1919 
1920 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) {
1921 		tcp_err_ack(listener, mp, TPROTO, 0);
1922 		return;
1923 	}
1924 	tcr = (struct T_conn_res *)mp->b_rptr;
1925 
1926 	/*
1927 	 * Under ILP32 the stream head points tcr->ACCEPTOR_id at the
1928 	 * read side queue of the streams device underneath us i.e. the
1929 	 * read side queue of 'ip'. Since we can't deference QUEUE_ptr we
1930 	 * look it up in the queue_hash.  Under LP64 it sends down the
1931 	 * minor_t of the accepting endpoint.
1932 	 *
1933 	 * Once the acceptor/eager are modified (in tcp_accept_swap) the
1934 	 * fanout hash lock is held.
1935 	 * This prevents any thread from entering the acceptor queue from
1936 	 * below (since it has not been hard bound yet i.e. any inbound
1937 	 * packets will arrive on the listener or default tcp queue and
1938 	 * go through tcp_lookup).
1939 	 * The CONN_INC_REF will prevent the acceptor from closing.
1940 	 *
1941 	 * XXX It is still possible for a tli application to send down data
1942 	 * on the accepting stream while another thread calls t_accept.
1943 	 * This should not be a problem for well-behaved applications since
1944 	 * the T_OK_ACK is sent after the queue swapping is completed.
1945 	 *
1946 	 * If the accepting fd is the same as the listening fd, avoid
1947 	 * queue hash lookup since that will return an eager listener in a
1948 	 * already established state.
1949 	 */
1950 	acceptor_id = tcr->ACCEPTOR_id;
1951 	mutex_enter(&listener->tcp_eager_lock);
1952 	if (listener->tcp_acceptor_id == acceptor_id) {
1953 		eager = listener->tcp_eager_next_q;
1954 		/* only count how many T_CONN_INDs so don't count q0 */
1955 		if ((listener->tcp_conn_req_cnt_q != 1) ||
1956 		    (eager->tcp_conn_req_seqnum != tcr->SEQ_number)) {
1957 			mutex_exit(&listener->tcp_eager_lock);
1958 			tcp_err_ack(listener, mp, TBADF, 0);
1959 			return;
1960 		}
1961 		if (listener->tcp_conn_req_cnt_q0 != 0) {
1962 			/* Throw away all the eagers on q0. */
1963 			tcp_eager_cleanup(listener, 1);
1964 		}
1965 		if (listener->tcp_syn_defense) {
1966 			listener->tcp_syn_defense = B_FALSE;
1967 			if (listener->tcp_ip_addr_cache != NULL) {
1968 				kmem_free(listener->tcp_ip_addr_cache,
1969 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
1970 				listener->tcp_ip_addr_cache = NULL;
1971 			}
1972 		}
1973 		/*
1974 		 * Transfer tcp_conn_req_max to the eager so that when
1975 		 * a disconnect occurs we can revert the endpoint to the
1976 		 * listen state.
1977 		 */
1978 		eager->tcp_conn_req_max = listener->tcp_conn_req_max;
1979 		ASSERT(listener->tcp_conn_req_cnt_q0 == 0);
1980 		/*
1981 		 * Get a reference on the acceptor just like the
1982 		 * tcp_acceptor_hash_lookup below.
1983 		 */
1984 		acceptor = listener;
1985 		CONN_INC_REF(acceptor->tcp_connp);
1986 	} else {
1987 		acceptor = tcp_acceptor_hash_lookup(acceptor_id);
1988 		if (acceptor == NULL) {
1989 			if (listener->tcp_debug) {
1990 				(void) strlog(TCP_MOD_ID, 0, 1,
1991 				    SL_ERROR|SL_TRACE,
1992 				    "tcp_accept: did not find acceptor 0x%x\n",
1993 				    acceptor_id);
1994 			}
1995 			mutex_exit(&listener->tcp_eager_lock);
1996 			tcp_err_ack(listener, mp, TPROVMISMATCH, 0);
1997 			return;
1998 		}
1999 		/*
2000 		 * Verify acceptor state. The acceptable states for an acceptor
2001 		 * include TCPS_IDLE and TCPS_BOUND.
2002 		 */
2003 		switch (acceptor->tcp_state) {
2004 		case TCPS_IDLE:
2005 			/* FALLTHRU */
2006 		case TCPS_BOUND:
2007 			break;
2008 		default:
2009 			CONN_DEC_REF(acceptor->tcp_connp);
2010 			mutex_exit(&listener->tcp_eager_lock);
2011 			tcp_err_ack(listener, mp, TOUTSTATE, 0);
2012 			return;
2013 		}
2014 	}
2015 
2016 	/* The listener must be in TCPS_LISTEN */
2017 	if (listener->tcp_state != TCPS_LISTEN) {
2018 		CONN_DEC_REF(acceptor->tcp_connp);
2019 		mutex_exit(&listener->tcp_eager_lock);
2020 		tcp_err_ack(listener, mp, TOUTSTATE, 0);
2021 		return;
2022 	}
2023 
2024 	/*
2025 	 * Rendezvous with an eager connection request packet hanging off
2026 	 * 'tcp' that has the 'seqnum' tag.  We tagged the detached open
2027 	 * tcp structure when the connection packet arrived in
2028 	 * tcp_conn_request().
2029 	 */
2030 	seqnum = tcr->SEQ_number;
2031 	eager = listener;
2032 	do {
2033 		eager = eager->tcp_eager_next_q;
2034 		if (eager == NULL) {
2035 			CONN_DEC_REF(acceptor->tcp_connp);
2036 			mutex_exit(&listener->tcp_eager_lock);
2037 			tcp_err_ack(listener, mp, TBADSEQ, 0);
2038 			return;
2039 		}
2040 	} while (eager->tcp_conn_req_seqnum != seqnum);
2041 	mutex_exit(&listener->tcp_eager_lock);
2042 
2043 	/*
2044 	 * At this point, both acceptor and listener have 2 ref
2045 	 * that they begin with. Acceptor has one additional ref
2046 	 * we placed in lookup while listener has 3 additional
2047 	 * ref for being behind the squeue (tcp_accept() is
2048 	 * done on listener's squeue); being in classifier hash;
2049 	 * and eager's ref on listener.
2050 	 */
2051 	ASSERT(listener->tcp_connp->conn_ref >= 5);
2052 	ASSERT(acceptor->tcp_connp->conn_ref >= 3);
2053 
2054 	/*
2055 	 * The eager at this point is set in its own squeue and
2056 	 * could easily have been killed (tcp_accept_finish will
2057 	 * deal with that) because of a TH_RST so we can only
2058 	 * ASSERT for a single ref.
2059 	 */
2060 	ASSERT(eager->tcp_connp->conn_ref >= 1);
2061 
2062 	/* Pre allocate the stroptions mblk also */
2063 	opt_mp = allocb(sizeof (struct stroptions), BPRI_HI);
2064 	if (opt_mp == NULL) {
2065 		CONN_DEC_REF(acceptor->tcp_connp);
2066 		CONN_DEC_REF(eager->tcp_connp);
2067 		tcp_err_ack(listener, mp, TSYSERR, ENOMEM);
2068 		return;
2069 	}
2070 	DB_TYPE(opt_mp) = M_SETOPTS;
2071 	opt_mp->b_wptr += sizeof (struct stroptions);
2072 
2073 	/*
2074 	 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO
2075 	 * from listener to acceptor. The message is chained on opt_mp
2076 	 * which will be sent onto eager's squeue.
2077 	 */
2078 	if (listener->tcp_bound_if != 0) {
2079 		/* allocate optmgmt req */
2080 		mp1 = tcp_setsockopt_mp(IPPROTO_IPV6,
2081 		    IPV6_BOUND_IF, (char *)&listener->tcp_bound_if,
2082 		    sizeof (int));
2083 		if (mp1 != NULL)
2084 			linkb(opt_mp, mp1);
2085 	}
2086 	if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) {
2087 		uint_t on = 1;
2088 
2089 		/* allocate optmgmt req */
2090 		mp1 = tcp_setsockopt_mp(IPPROTO_IPV6,
2091 		    IPV6_RECVPKTINFO, (char *)&on, sizeof (on));
2092 		if (mp1 != NULL)
2093 			linkb(opt_mp, mp1);
2094 	}
2095 
2096 	/* Re-use mp1 to hold a copy of mp, in case reallocb fails */
2097 	if ((mp1 = copymsg(mp)) == NULL) {
2098 		CONN_DEC_REF(acceptor->tcp_connp);
2099 		CONN_DEC_REF(eager->tcp_connp);
2100 		freemsg(opt_mp);
2101 		tcp_err_ack(listener, mp, TSYSERR, ENOMEM);
2102 		return;
2103 	}
2104 
2105 	tcr = (struct T_conn_res *)mp1->b_rptr;
2106 
2107 	/*
2108 	 * This is an expanded version of mi_tpi_ok_ack_alloc()
2109 	 * which allocates a larger mblk and appends the new
2110 	 * local address to the ok_ack.  The address is copied by
2111 	 * soaccept() for getsockname().
2112 	 */
2113 	{
2114 		int extra;
2115 
2116 		extra = (eager->tcp_family == AF_INET) ?
2117 		    sizeof (sin_t) : sizeof (sin6_t);
2118 
2119 		/*
2120 		 * Try to re-use mp, if possible.  Otherwise, allocate
2121 		 * an mblk and return it as ok_mp.  In any case, mp
2122 		 * is no longer usable upon return.
2123 		 */
2124 		if ((ok_mp = mi_tpi_ok_ack_alloc_extra(mp, extra)) == NULL) {
2125 			CONN_DEC_REF(acceptor->tcp_connp);
2126 			CONN_DEC_REF(eager->tcp_connp);
2127 			freemsg(opt_mp);
2128 			/* Original mp has been freed by now, so use mp1 */
2129 			tcp_err_ack(listener, mp1, TSYSERR, ENOMEM);
2130 			return;
2131 		}
2132 
2133 		mp = NULL;	/* We should never use mp after this point */
2134 
2135 		switch (extra) {
2136 		case sizeof (sin_t): {
2137 				sin_t *sin = (sin_t *)ok_mp->b_wptr;
2138 
2139 				ok_mp->b_wptr += extra;
2140 				sin->sin_family = AF_INET;
2141 				sin->sin_port = eager->tcp_lport;
2142 				sin->sin_addr.s_addr =
2143 				    eager->tcp_ipha->ipha_src;
2144 				break;
2145 			}
2146 		case sizeof (sin6_t): {
2147 				sin6_t *sin6 = (sin6_t *)ok_mp->b_wptr;
2148 
2149 				ok_mp->b_wptr += extra;
2150 				sin6->sin6_family = AF_INET6;
2151 				sin6->sin6_port = eager->tcp_lport;
2152 				if (eager->tcp_ipversion == IPV4_VERSION) {
2153 					sin6->sin6_flowinfo = 0;
2154 					IN6_IPADDR_TO_V4MAPPED(
2155 					    eager->tcp_ipha->ipha_src,
2156 					    &sin6->sin6_addr);
2157 				} else {
2158 					ASSERT(eager->tcp_ip6h != NULL);
2159 					sin6->sin6_flowinfo =
2160 					    eager->tcp_ip6h->ip6_vcf &
2161 					    ~IPV6_VERS_AND_FLOW_MASK;
2162 					sin6->sin6_addr =
2163 					    eager->tcp_ip6h->ip6_src;
2164 				}
2165 				break;
2166 			}
2167 		default:
2168 			break;
2169 		}
2170 		ASSERT(ok_mp->b_wptr <= ok_mp->b_datap->db_lim);
2171 	}
2172 
2173 	/*
2174 	 * If there are no options we know that the T_CONN_RES will
2175 	 * succeed. However, we can't send the T_OK_ACK upstream until
2176 	 * the tcp_accept_swap is done since it would be dangerous to
2177 	 * let the application start using the new fd prior to the swap.
2178 	 */
2179 	tcp_accept_swap(listener, acceptor, eager);
2180 
2181 	/*
2182 	 * tcp_accept_swap unlinks eager from listener but does not drop
2183 	 * the eager's reference on the listener.
2184 	 */
2185 	ASSERT(eager->tcp_listener == NULL);
2186 	ASSERT(listener->tcp_connp->conn_ref >= 5);
2187 
2188 	/*
2189 	 * The eager is now associated with its own queue. Insert in
2190 	 * the hash so that the connection can be reused for a future
2191 	 * T_CONN_RES.
2192 	 */
2193 	tcp_acceptor_hash_insert(acceptor_id, eager);
2194 
2195 	/*
2196 	 * We now do the processing of options with T_CONN_RES.
2197 	 * We delay till now since we wanted to have queue to pass to
2198 	 * option processing routines that points back to the right
2199 	 * instance structure which does not happen until after
2200 	 * tcp_accept_swap().
2201 	 *
2202 	 * Note:
2203 	 * The sanity of the logic here assumes that whatever options
2204 	 * are appropriate to inherit from listner=>eager are done
2205 	 * before this point, and whatever were to be overridden (or not)
2206 	 * in transfer logic from eager=>acceptor in tcp_accept_swap().
2207 	 * [ Warning: acceptor endpoint can have T_OPTMGMT_REQ done to it
2208 	 *   before its ACCEPTOR_id comes down in T_CONN_RES ]
2209 	 * This may not be true at this point in time but can be fixed
2210 	 * independently. This option processing code starts with
2211 	 * the instantiated acceptor instance and the final queue at
2212 	 * this point.
2213 	 */
2214 
2215 	if (tcr->OPT_length != 0) {
2216 		/* Options to process */
2217 		int t_error = 0;
2218 		int sys_error = 0;
2219 		int do_disconnect = 0;
2220 
2221 		if (tcp_conprim_opt_process(eager, mp1,
2222 		    &do_disconnect, &t_error, &sys_error) < 0) {
2223 			eager->tcp_accept_error = 1;
2224 			if (do_disconnect) {
2225 				/*
2226 				 * An option failed which does not allow
2227 				 * connection to be accepted.
2228 				 *
2229 				 * We allow T_CONN_RES to succeed and
2230 				 * put a T_DISCON_IND on the eager queue.
2231 				 */
2232 				ASSERT(t_error == 0 && sys_error == 0);
2233 				eager->tcp_send_discon_ind = 1;
2234 			} else {
2235 				ASSERT(t_error != 0);
2236 				freemsg(ok_mp);
2237 				/*
2238 				 * Original mp was either freed or set
2239 				 * to ok_mp above, so use mp1 instead.
2240 				 */
2241 				tcp_err_ack(listener, mp1, t_error, sys_error);
2242 				goto finish;
2243 			}
2244 		}
2245 		/*
2246 		 * Most likely success in setting options (except if
2247 		 * eager->tcp_send_discon_ind set).
2248 		 * mp1 option buffer represented by OPT_length/offset
2249 		 * potentially modified and contains results of setting
2250 		 * options at this point
2251 		 */
2252 	}
2253 
2254 	/* We no longer need mp1, since all options processing has passed */
2255 	freemsg(mp1);
2256 
2257 	putnext(listener->tcp_rq, ok_mp);
2258 
2259 	mutex_enter(&listener->tcp_eager_lock);
2260 	if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) {
2261 		tcp_t	*tail;
2262 		mblk_t	*conn_ind;
2263 
2264 		/*
2265 		 * This path should not be executed if listener and
2266 		 * acceptor streams are the same.
2267 		 */
2268 		ASSERT(listener != acceptor);
2269 
2270 		tcp = listener->tcp_eager_prev_q0;
2271 		/*
2272 		 * listener->tcp_eager_prev_q0 points to the TAIL of the
2273 		 * deferred T_conn_ind queue. We need to get to the head of
2274 		 * the queue in order to send up T_conn_ind the same order as
2275 		 * how the 3WHS is completed.
2276 		 */
2277 		while (tcp != listener) {
2278 			if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0)
2279 				break;
2280 			else
2281 				tcp = tcp->tcp_eager_prev_q0;
2282 		}
2283 		ASSERT(tcp != listener);
2284 		conn_ind = tcp->tcp_conn.tcp_eager_conn_ind;
2285 		ASSERT(conn_ind != NULL);
2286 		tcp->tcp_conn.tcp_eager_conn_ind = NULL;
2287 
2288 		/* Move from q0 to q */
2289 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
2290 		listener->tcp_conn_req_cnt_q0--;
2291 		listener->tcp_conn_req_cnt_q++;
2292 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
2293 		    tcp->tcp_eager_prev_q0;
2294 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
2295 		    tcp->tcp_eager_next_q0;
2296 		tcp->tcp_eager_prev_q0 = NULL;
2297 		tcp->tcp_eager_next_q0 = NULL;
2298 		tcp->tcp_conn_def_q0 = B_FALSE;
2299 
2300 		/*
2301 		 * Insert at end of the queue because sockfs sends
2302 		 * down T_CONN_RES in chronological order. Leaving
2303 		 * the older conn indications at front of the queue
2304 		 * helps reducing search time.
2305 		 */
2306 		tail = listener->tcp_eager_last_q;
2307 		if (tail != NULL)
2308 			tail->tcp_eager_next_q = tcp;
2309 		else
2310 			listener->tcp_eager_next_q = tcp;
2311 		listener->tcp_eager_last_q = tcp;
2312 		tcp->tcp_eager_next_q = NULL;
2313 		mutex_exit(&listener->tcp_eager_lock);
2314 		putnext(tcp->tcp_rq, conn_ind);
2315 	} else {
2316 		mutex_exit(&listener->tcp_eager_lock);
2317 	}
2318 
2319 	/*
2320 	 * Done with the acceptor - free it
2321 	 *
2322 	 * Note: from this point on, no access to listener should be made
2323 	 * as listener can be equal to acceptor.
2324 	 */
2325 finish:
2326 	ASSERT(acceptor->tcp_detached);
2327 	acceptor->tcp_rq = tcp_g_q;
2328 	acceptor->tcp_wq = WR(tcp_g_q);
2329 	(void) tcp_clean_death(acceptor, 0, 2);
2330 	CONN_DEC_REF(acceptor->tcp_connp);
2331 
2332 	/*
2333 	 * In case we already received a FIN we have to make tcp_rput send
2334 	 * the ordrel_ind. This will also send up a window update if the window
2335 	 * has opened up.
2336 	 *
2337 	 * In the normal case of a successful connection acceptance
2338 	 * we give the O_T_BIND_REQ to the read side put procedure as an
2339 	 * indication that this was just accepted. This tells tcp_rput to
2340 	 * pass up any data queued in tcp_rcv_list.
2341 	 *
2342 	 * In the fringe case where options sent with T_CONN_RES failed and
2343 	 * we required, we would be indicating a T_DISCON_IND to blow
2344 	 * away this connection.
2345 	 */
2346 
2347 	/*
2348 	 * XXX: we currently have a problem if XTI application closes the
2349 	 * acceptor stream in between. This problem exists in on10-gate also
2350 	 * and is well know but nothing can be done short of major rewrite
2351 	 * to fix it. Now it is possible to take care of it by assigning TLI/XTI
2352 	 * eager same squeue as listener (we can distinguish non socket
2353 	 * listeners at the time of handling a SYN in tcp_conn_request)
2354 	 * and do most of the work that tcp_accept_finish does here itself
2355 	 * and then get behind the acceptor squeue to access the acceptor
2356 	 * queue.
2357 	 */
2358 	/*
2359 	 * We already have a ref on tcp so no need to do one before squeue_fill
2360 	 */
2361 	squeue_fill(eager->tcp_connp->conn_sqp, opt_mp,
2362 	    tcp_accept_finish, eager->tcp_connp, SQTAG_TCP_ACCEPT_FINISH);
2363 }
2364 
2365 /*
2366  * Swap information between the eager and acceptor for a TLI/XTI client.
2367  * The sockfs accept is done on the acceptor stream and control goes
2368  * through tcp_wput_accept() and tcp_accept()/tcp_accept_swap() is not
2369  * called. In either case, both the eager and listener are in their own
2370  * perimeter (squeue) and the code has to deal with potential race.
2371  *
2372  * See the block comment on top of tcp_accept() and tcp_wput_accept().
2373  */
2374 static void
2375 tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, tcp_t *eager)
2376 {
2377 	conn_t	*econnp, *aconnp;
2378 
2379 	ASSERT(eager->tcp_rq == listener->tcp_rq);
2380 	ASSERT(eager->tcp_detached && !acceptor->tcp_detached);
2381 	ASSERT(!eager->tcp_hard_bound);
2382 	ASSERT(!TCP_IS_SOCKET(acceptor));
2383 	ASSERT(!TCP_IS_SOCKET(eager));
2384 	ASSERT(!TCP_IS_SOCKET(listener));
2385 
2386 	acceptor->tcp_detached = B_TRUE;
2387 	/*
2388 	 * To permit stream re-use by TLI/XTI, the eager needs a copy of
2389 	 * the acceptor id.
2390 	 */
2391 	eager->tcp_acceptor_id = acceptor->tcp_acceptor_id;
2392 
2393 	/* remove eager from listen list... */
2394 	mutex_enter(&listener->tcp_eager_lock);
2395 	tcp_eager_unlink(eager);
2396 	ASSERT(eager->tcp_eager_next_q == NULL &&
2397 	    eager->tcp_eager_last_q == NULL);
2398 	ASSERT(eager->tcp_eager_next_q0 == NULL &&
2399 	    eager->tcp_eager_prev_q0 == NULL);
2400 	mutex_exit(&listener->tcp_eager_lock);
2401 	eager->tcp_rq = acceptor->tcp_rq;
2402 	eager->tcp_wq = acceptor->tcp_wq;
2403 
2404 	econnp = eager->tcp_connp;
2405 	aconnp = acceptor->tcp_connp;
2406 
2407 	eager->tcp_rq->q_ptr = econnp;
2408 	eager->tcp_wq->q_ptr = econnp;
2409 
2410 	/*
2411 	 * In the TLI/XTI loopback case, we are inside the listener's squeue,
2412 	 * which might be a different squeue from our peer TCP instance.
2413 	 * For TCP Fusion, the peer expects that whenever tcp_detached is
2414 	 * clear, our TCP queues point to the acceptor's queues.  Thus, use
2415 	 * membar_producer() to ensure that the assignments of tcp_rq/tcp_wq
2416 	 * above reach global visibility prior to the clearing of tcp_detached.
2417 	 */
2418 	membar_producer();
2419 	eager->tcp_detached = B_FALSE;
2420 
2421 	ASSERT(eager->tcp_ack_tid == 0);
2422 
2423 	econnp->conn_dev = aconnp->conn_dev;
2424 	if (eager->tcp_cred != NULL)
2425 		crfree(eager->tcp_cred);
2426 	eager->tcp_cred = econnp->conn_cred = aconnp->conn_cred;
2427 	econnp->conn_zoneid = aconnp->conn_zoneid;
2428 	aconnp->conn_cred = NULL;
2429 
2430 	econnp->conn_mac_exempt = aconnp->conn_mac_exempt;
2431 	aconnp->conn_mac_exempt = B_FALSE;
2432 
2433 	ASSERT(aconnp->conn_peercred == NULL);
2434 
2435 	/* Do the IPC initialization */
2436 	CONN_INC_REF(econnp);
2437 
2438 	econnp->conn_multicast_loop = aconnp->conn_multicast_loop;
2439 	econnp->conn_af_isv6 = aconnp->conn_af_isv6;
2440 	econnp->conn_pkt_isv6 = aconnp->conn_pkt_isv6;
2441 	econnp->conn_ulp = aconnp->conn_ulp;
2442 
2443 	/* Done with old IPC. Drop its ref on its connp */
2444 	CONN_DEC_REF(aconnp);
2445 }
2446 
2447 
2448 /*
2449  * Adapt to the information, such as rtt and rtt_sd, provided from the
2450  * ire cached in conn_cache_ire. If no ire cached, do a ire lookup.
2451  *
2452  * Checks for multicast and broadcast destination address.
2453  * Returns zero on failure; non-zero if ok.
2454  *
2455  * Note that the MSS calculation here is based on the info given in
2456  * the IRE.  We do not do any calculation based on TCP options.  They
2457  * will be handled in tcp_rput_other() and tcp_rput_data() when TCP
2458  * knows which options to use.
2459  *
2460  * Note on how TCP gets its parameters for a connection.
2461  *
2462  * When a tcp_t structure is allocated, it gets all the default parameters.
2463  * In tcp_adapt_ire(), it gets those metric parameters, like rtt, rtt_sd,
2464  * spipe, rpipe, ... from the route metrics.  Route metric overrides the
2465  * default.  But if there is an associated tcp_host_param, it will override
2466  * the metrics.
2467  *
2468  * An incoming SYN with a multicast or broadcast destination address, is dropped
2469  * in 1 of 2 places.
2470  *
2471  * 1. If the packet was received over the wire it is dropped in
2472  * ip_rput_process_broadcast()
2473  *
2474  * 2. If the packet was received through internal IP loopback, i.e. the packet
2475  * was generated and received on the same machine, it is dropped in
2476  * ip_wput_local()
2477  *
2478  * An incoming SYN with a multicast or broadcast source address is always
2479  * dropped in tcp_adapt_ire. The same logic in tcp_adapt_ire also serves to
2480  * reject an attempt to connect to a broadcast or multicast (destination)
2481  * address.
2482  */
2483 static int
2484 tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp)
2485 {
2486 	tcp_hsp_t	*hsp;
2487 	ire_t		*ire;
2488 	ire_t		*sire = NULL;
2489 	iulp_t		*ire_uinfo = NULL;
2490 	uint32_t	mss_max;
2491 	uint32_t	mss;
2492 	boolean_t	tcp_detached = TCP_IS_DETACHED(tcp);
2493 	conn_t		*connp = tcp->tcp_connp;
2494 	boolean_t	ire_cacheable = B_FALSE;
2495 	zoneid_t	zoneid = connp->conn_zoneid;
2496 	int		match_flags = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT |
2497 			    MATCH_IRE_SECATTR;
2498 	ts_label_t	*tsl = crgetlabel(CONN_CRED(connp));
2499 	ill_t		*ill = NULL;
2500 	boolean_t	incoming = (ire_mp == NULL);
2501 
2502 	ASSERT(connp->conn_ire_cache == NULL);
2503 
2504 	if (tcp->tcp_ipversion == IPV4_VERSION) {
2505 
2506 		if (CLASSD(tcp->tcp_connp->conn_rem)) {
2507 			BUMP_MIB(&ip_mib, ipInDiscards);
2508 			return (0);
2509 		}
2510 		/*
2511 		 * If IP_NEXTHOP is set, then look for an IRE_CACHE
2512 		 * for the destination with the nexthop as gateway.
2513 		 * ire_ctable_lookup() is used because this particular
2514 		 * ire, if it exists, will be marked private.
2515 		 * If that is not available, use the interface ire
2516 		 * for the nexthop.
2517 		 *
2518 		 * TSol: tcp_update_label will detect label mismatches based
2519 		 * only on the destination's label, but that would not
2520 		 * detect label mismatches based on the security attributes
2521 		 * of routes or next hop gateway. Hence we need to pass the
2522 		 * label to ire_ftable_lookup below in order to locate the
2523 		 * right prefix (and/or) ire cache. Similarly we also need
2524 		 * pass the label to the ire_cache_lookup below to locate
2525 		 * the right ire that also matches on the label.
2526 		 */
2527 		if (tcp->tcp_connp->conn_nexthop_set) {
2528 			ire = ire_ctable_lookup(tcp->tcp_connp->conn_rem,
2529 			    tcp->tcp_connp->conn_nexthop_v4, 0, NULL, zoneid,
2530 			    tsl, MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW);
2531 			if (ire == NULL) {
2532 				ire = ire_ftable_lookup(
2533 				    tcp->tcp_connp->conn_nexthop_v4,
2534 				    0, 0, IRE_INTERFACE, NULL, NULL, zoneid, 0,
2535 				    tsl, match_flags);
2536 				if (ire == NULL)
2537 					return (0);
2538 			} else {
2539 				ire_uinfo = &ire->ire_uinfo;
2540 			}
2541 		} else {
2542 			ire = ire_cache_lookup(tcp->tcp_connp->conn_rem,
2543 			    zoneid, tsl);
2544 			if (ire != NULL) {
2545 				ire_cacheable = B_TRUE;
2546 				ire_uinfo = (ire_mp != NULL) ?
2547 				    &((ire_t *)ire_mp->b_rptr)->ire_uinfo:
2548 				    &ire->ire_uinfo;
2549 
2550 			} else {
2551 				if (ire_mp == NULL) {
2552 					ire = ire_ftable_lookup(
2553 					    tcp->tcp_connp->conn_rem,
2554 					    0, 0, 0, NULL, &sire, zoneid, 0,
2555 					    tsl, (MATCH_IRE_RECURSIVE |
2556 					    MATCH_IRE_DEFAULT));
2557 					if (ire == NULL)
2558 						return (0);
2559 					ire_uinfo = (sire != NULL) ?
2560 					    &sire->ire_uinfo :
2561 					    &ire->ire_uinfo;
2562 				} else {
2563 					ire = (ire_t *)ire_mp->b_rptr;
2564 					ire_uinfo =
2565 					    &((ire_t *)
2566 					    ire_mp->b_rptr)->ire_uinfo;
2567 				}
2568 			}
2569 		}
2570 		ASSERT(ire != NULL);
2571 
2572 		if ((ire->ire_src_addr == INADDR_ANY) ||
2573 		    (ire->ire_type & IRE_BROADCAST)) {
2574 			/*
2575 			 * ire->ire_mp is non null when ire_mp passed in is used
2576 			 * ire->ire_mp is set in ip_bind_insert_ire[_v6]().
2577 			 */
2578 			if (ire->ire_mp == NULL)
2579 				ire_refrele(ire);
2580 			if (sire != NULL)
2581 				ire_refrele(sire);
2582 			return (0);
2583 		}
2584 
2585 		if (tcp->tcp_ipha->ipha_src == INADDR_ANY) {
2586 			ipaddr_t src_addr;
2587 
2588 			/*
2589 			 * ip_bind_connected() has stored the correct source
2590 			 * address in conn_src.
2591 			 */
2592 			src_addr = tcp->tcp_connp->conn_src;
2593 			tcp->tcp_ipha->ipha_src = src_addr;
2594 			/*
2595 			 * Copy of the src addr. in tcp_t is needed
2596 			 * for the lookup funcs.
2597 			 */
2598 			IN6_IPADDR_TO_V4MAPPED(src_addr, &tcp->tcp_ip_src_v6);
2599 		}
2600 		/*
2601 		 * Set the fragment bit so that IP will tell us if the MTU
2602 		 * should change. IP tells us the latest setting of
2603 		 * ip_path_mtu_discovery through ire_frag_flag.
2604 		 */
2605 		if (ip_path_mtu_discovery) {
2606 			tcp->tcp_ipha->ipha_fragment_offset_and_flags =
2607 			    htons(IPH_DF);
2608 		}
2609 		/*
2610 		 * If ire_uinfo is NULL, this is the IRE_INTERFACE case
2611 		 * for IP_NEXTHOP. No cache ire has been found for the
2612 		 * destination and we are working with the nexthop's
2613 		 * interface ire. Since we need to forward all packets
2614 		 * to the nexthop first, we "blindly" set tcp_localnet
2615 		 * to false, eventhough the destination may also be
2616 		 * onlink.
2617 		 */
2618 		if (ire_uinfo == NULL)
2619 			tcp->tcp_localnet = 0;
2620 		else
2621 			tcp->tcp_localnet = (ire->ire_gateway_addr == 0);
2622 	} else {
2623 		/*
2624 		 * For incoming connection ire_mp = NULL
2625 		 * For outgoing connection ire_mp != NULL
2626 		 * Technically we should check conn_incoming_ill
2627 		 * when ire_mp is NULL and conn_outgoing_ill when
2628 		 * ire_mp is non-NULL. But this is performance
2629 		 * critical path and for IPV*_BOUND_IF, outgoing
2630 		 * and incoming ill are always set to the same value.
2631 		 */
2632 		ill_t	*dst_ill = NULL;
2633 		ipif_t  *dst_ipif = NULL;
2634 
2635 		ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill);
2636 
2637 		if (connp->conn_outgoing_ill != NULL) {
2638 			/* Outgoing or incoming path */
2639 			int   err;
2640 
2641 			dst_ill = conn_get_held_ill(connp,
2642 			    &connp->conn_outgoing_ill, &err);
2643 			if (err == ILL_LOOKUP_FAILED || dst_ill == NULL) {
2644 				ip1dbg(("tcp_adapt_ire: ill_lookup failed\n"));
2645 				return (0);
2646 			}
2647 			match_flags |= MATCH_IRE_ILL;
2648 			dst_ipif = dst_ill->ill_ipif;
2649 		}
2650 		ire = ire_ctable_lookup_v6(&tcp->tcp_connp->conn_remv6,
2651 		    0, 0, dst_ipif, zoneid, tsl, match_flags);
2652 
2653 		if (ire != NULL) {
2654 			ire_cacheable = B_TRUE;
2655 			ire_uinfo = (ire_mp != NULL) ?
2656 			    &((ire_t *)ire_mp->b_rptr)->ire_uinfo:
2657 			    &ire->ire_uinfo;
2658 		} else {
2659 			if (ire_mp == NULL) {
2660 				ire = ire_ftable_lookup_v6(
2661 				    &tcp->tcp_connp->conn_remv6,
2662 				    0, 0, 0, dst_ipif, &sire, zoneid,
2663 				    0, tsl, match_flags);
2664 				if (ire == NULL) {
2665 					if (dst_ill != NULL)
2666 						ill_refrele(dst_ill);
2667 					return (0);
2668 				}
2669 				ire_uinfo = (sire != NULL) ? &sire->ire_uinfo :
2670 				    &ire->ire_uinfo;
2671 			} else {
2672 				ire = (ire_t *)ire_mp->b_rptr;
2673 				ire_uinfo =
2674 				    &((ire_t *)ire_mp->b_rptr)->ire_uinfo;
2675 			}
2676 		}
2677 		if (dst_ill != NULL)
2678 			ill_refrele(dst_ill);
2679 
2680 		ASSERT(ire != NULL);
2681 		ASSERT(ire_uinfo != NULL);
2682 
2683 		if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6) ||
2684 		    IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) {
2685 			/*
2686 			 * ire->ire_mp is non null when ire_mp passed in is used
2687 			 * ire->ire_mp is set in ip_bind_insert_ire[_v6]().
2688 			 */
2689 			if (ire->ire_mp == NULL)
2690 				ire_refrele(ire);
2691 			if (sire != NULL)
2692 				ire_refrele(sire);
2693 			return (0);
2694 		}
2695 
2696 		if (IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) {
2697 			in6_addr_t	src_addr;
2698 
2699 			/*
2700 			 * ip_bind_connected_v6() has stored the correct source
2701 			 * address per IPv6 addr. selection policy in
2702 			 * conn_src_v6.
2703 			 */
2704 			src_addr = tcp->tcp_connp->conn_srcv6;
2705 
2706 			tcp->tcp_ip6h->ip6_src = src_addr;
2707 			/*
2708 			 * Copy of the src addr. in tcp_t is needed
2709 			 * for the lookup funcs.
2710 			 */
2711 			tcp->tcp_ip_src_v6 = src_addr;
2712 			ASSERT(IN6_ARE_ADDR_EQUAL(&tcp->tcp_ip6h->ip6_src,
2713 			    &connp->conn_srcv6));
2714 		}
2715 		tcp->tcp_localnet =
2716 		    IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6);
2717 	}
2718 
2719 	/*
2720 	 * This allows applications to fail quickly when connections are made
2721 	 * to dead hosts. Hosts can be labeled dead by adding a reject route
2722 	 * with both the RTF_REJECT and RTF_PRIVATE flags set.
2723 	 */
2724 	if ((ire->ire_flags & RTF_REJECT) &&
2725 	    (ire->ire_flags & RTF_PRIVATE))
2726 		goto error;
2727 
2728 	/*
2729 	 * Make use of the cached rtt and rtt_sd values to calculate the
2730 	 * initial RTO.  Note that they are already initialized in
2731 	 * tcp_init_values().
2732 	 * If ire_uinfo is NULL, i.e., we do not have a cache ire for
2733 	 * IP_NEXTHOP, but instead are using the interface ire for the
2734 	 * nexthop, then we do not use the ire_uinfo from that ire to
2735 	 * do any initializations.
2736 	 */
2737 	if (ire_uinfo != NULL) {
2738 		if (ire_uinfo->iulp_rtt != 0) {
2739 			clock_t	rto;
2740 
2741 			tcp->tcp_rtt_sa = ire_uinfo->iulp_rtt;
2742 			tcp->tcp_rtt_sd = ire_uinfo->iulp_rtt_sd;
2743 			rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
2744 			    tcp_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5);
2745 
2746 			if (rto > tcp_rexmit_interval_max) {
2747 				tcp->tcp_rto = tcp_rexmit_interval_max;
2748 			} else if (rto < tcp_rexmit_interval_min) {
2749 				tcp->tcp_rto = tcp_rexmit_interval_min;
2750 			} else {
2751 				tcp->tcp_rto = rto;
2752 			}
2753 		}
2754 		if (ire_uinfo->iulp_ssthresh != 0)
2755 			tcp->tcp_cwnd_ssthresh = ire_uinfo->iulp_ssthresh;
2756 		else
2757 			tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
2758 		if (ire_uinfo->iulp_spipe > 0) {
2759 			tcp->tcp_xmit_hiwater = MIN(ire_uinfo->iulp_spipe,
2760 			    tcp_max_buf);
2761 			if (tcp_snd_lowat_fraction != 0)
2762 				tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater /
2763 				    tcp_snd_lowat_fraction;
2764 			(void) tcp_maxpsz_set(tcp, B_TRUE);
2765 		}
2766 		/*
2767 		 * Note that up till now, acceptor always inherits receive
2768 		 * window from the listener.  But if there is a metrics
2769 		 * associated with a host, we should use that instead of
2770 		 * inheriting it from listener. Thus we need to pass this
2771 		 * info back to the caller.
2772 		 */
2773 		if (ire_uinfo->iulp_rpipe > 0) {
2774 			tcp->tcp_rwnd = MIN(ire_uinfo->iulp_rpipe, tcp_max_buf);
2775 		}
2776 
2777 		if (ire_uinfo->iulp_rtomax > 0) {
2778 			tcp->tcp_second_timer_threshold =
2779 			    ire_uinfo->iulp_rtomax;
2780 		}
2781 
2782 		/*
2783 		 * Use the metric option settings, iulp_tstamp_ok and
2784 		 * iulp_wscale_ok, only for active open. What this means
2785 		 * is that if the other side uses timestamp or window
2786 		 * scale option, TCP will also use those options. That
2787 		 * is for passive open.  If the application sets a
2788 		 * large window, window scale is enabled regardless of
2789 		 * the value in iulp_wscale_ok.  This is the behavior
2790 		 * since 2.6.  So we keep it.
2791 		 * The only case left in passive open processing is the
2792 		 * check for SACK.
2793 		 * For ECN, it should probably be like SACK.  But the
2794 		 * current value is binary, so we treat it like the other
2795 		 * cases.  The metric only controls active open.For passive
2796 		 * open, the ndd param, tcp_ecn_permitted, controls the
2797 		 * behavior.
2798 		 */
2799 		if (!tcp_detached) {
2800 			/*
2801 			 * The if check means that the following can only
2802 			 * be turned on by the metrics only IRE, but not off.
2803 			 */
2804 			if (ire_uinfo->iulp_tstamp_ok)
2805 				tcp->tcp_snd_ts_ok = B_TRUE;
2806 			if (ire_uinfo->iulp_wscale_ok)
2807 				tcp->tcp_snd_ws_ok = B_TRUE;
2808 			if (ire_uinfo->iulp_sack == 2)
2809 				tcp->tcp_snd_sack_ok = B_TRUE;
2810 			if (ire_uinfo->iulp_ecn_ok)
2811 				tcp->tcp_ecn_ok = B_TRUE;
2812 		} else {
2813 			/*
2814 			 * Passive open.
2815 			 *
2816 			 * As above, the if check means that SACK can only be
2817 			 * turned on by the metric only IRE.
2818 			 */
2819 			if (ire_uinfo->iulp_sack > 0) {
2820 				tcp->tcp_snd_sack_ok = B_TRUE;
2821 			}
2822 		}
2823 	}
2824 
2825 
2826 	/*
2827 	 * XXX: Note that currently, ire_max_frag can be as small as 68
2828 	 * because of PMTUd.  So tcp_mss may go to negative if combined
2829 	 * length of all those options exceeds 28 bytes.  But because
2830 	 * of the tcp_mss_min check below, we may not have a problem if
2831 	 * tcp_mss_min is of a reasonable value.  The default is 1 so
2832 	 * the negative problem still exists.  And the check defeats PMTUd.
2833 	 * In fact, if PMTUd finds that the MSS should be smaller than
2834 	 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min
2835 	 * value.
2836 	 *
2837 	 * We do not deal with that now.  All those problems related to
2838 	 * PMTUd will be fixed later.
2839 	 */
2840 	ASSERT(ire->ire_max_frag != 0);
2841 	mss = tcp->tcp_if_mtu = ire->ire_max_frag;
2842 	if (tcp->tcp_ipp_fields & IPPF_USE_MIN_MTU) {
2843 		if (tcp->tcp_ipp_use_min_mtu == IPV6_USE_MIN_MTU_NEVER) {
2844 			mss = MIN(mss, IPV6_MIN_MTU);
2845 		}
2846 	}
2847 
2848 	/* Sanity check for MSS value. */
2849 	if (tcp->tcp_ipversion == IPV4_VERSION)
2850 		mss_max = tcp_mss_max_ipv4;
2851 	else
2852 		mss_max = tcp_mss_max_ipv6;
2853 
2854 	if (tcp->tcp_ipversion == IPV6_VERSION &&
2855 	    (ire->ire_frag_flag & IPH_FRAG_HDR)) {
2856 		/*
2857 		 * After receiving an ICMPv6 "packet too big" message with a
2858 		 * MTU < 1280, and for multirouted IPv6 packets, the IP layer
2859 		 * will insert a 8-byte fragment header in every packet; we
2860 		 * reduce the MSS by that amount here.
2861 		 */
2862 		mss -= sizeof (ip6_frag_t);
2863 	}
2864 
2865 	if (tcp->tcp_ipsec_overhead == 0)
2866 		tcp->tcp_ipsec_overhead = conn_ipsec_length(connp);
2867 
2868 	mss -= tcp->tcp_ipsec_overhead;
2869 
2870 	if (mss < tcp_mss_min)
2871 		mss = tcp_mss_min;
2872 	if (mss > mss_max)
2873 		mss = mss_max;
2874 
2875 	/* Note that this is the maximum MSS, excluding all options. */
2876 	tcp->tcp_mss = mss;
2877 
2878 	/*
2879 	 * Initialize the ISS here now that we have the full connection ID.
2880 	 * The RFC 1948 method of initial sequence number generation requires
2881 	 * knowledge of the full connection ID before setting the ISS.
2882 	 */
2883 
2884 	tcp_iss_init(tcp);
2885 
2886 	if (ire->ire_type & (IRE_LOOPBACK | IRE_LOCAL))
2887 		tcp->tcp_loopback = B_TRUE;
2888 
2889 	if (tcp->tcp_ipversion == IPV4_VERSION) {
2890 		hsp = tcp_hsp_lookup(tcp->tcp_remote);
2891 	} else {
2892 		hsp = tcp_hsp_lookup_ipv6(&tcp->tcp_remote_v6);
2893 	}
2894 
2895 	if (hsp != NULL) {
2896 		/* Only modify if we're going to make them bigger */
2897 		if (hsp->tcp_hsp_sendspace > tcp->tcp_xmit_hiwater) {
2898 			tcp->tcp_xmit_hiwater = hsp->tcp_hsp_sendspace;
2899 			if (tcp_snd_lowat_fraction != 0)
2900 				tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater /
2901 					tcp_snd_lowat_fraction;
2902 		}
2903 
2904 		if (hsp->tcp_hsp_recvspace > tcp->tcp_rwnd) {
2905 			tcp->tcp_rwnd = hsp->tcp_hsp_recvspace;
2906 		}
2907 
2908 		/* Copy timestamp flag only for active open */
2909 		if (!tcp_detached)
2910 			tcp->tcp_snd_ts_ok = hsp->tcp_hsp_tstamp;
2911 	}
2912 
2913 	if (sire != NULL)
2914 		IRE_REFRELE(sire);
2915 
2916 	/*
2917 	 * If we got an IRE_CACHE and an ILL, go through their properties;
2918 	 * otherwise, this is deferred until later when we have an IRE_CACHE.
2919 	 */
2920 	if (tcp->tcp_loopback ||
2921 	    (ire_cacheable && (ill = ire_to_ill(ire)) != NULL)) {
2922 		/*
2923 		 * For incoming, see if this tcp may be MDT-capable.  For
2924 		 * outgoing, this process has been taken care of through
2925 		 * tcp_rput_other.
2926 		 */
2927 		tcp_ire_ill_check(tcp, ire, ill, incoming);
2928 		tcp->tcp_ire_ill_check_done = B_TRUE;
2929 	}
2930 
2931 	mutex_enter(&connp->conn_lock);
2932 	/*
2933 	 * Make sure that conn is not marked incipient
2934 	 * for incoming connections. A blind
2935 	 * removal of incipient flag is cheaper than
2936 	 * check and removal.
2937 	 */
2938 	connp->conn_state_flags &= ~CONN_INCIPIENT;
2939 
2940 	/* Must not cache forwarding table routes. */
2941 	if (ire_cacheable) {
2942 		rw_enter(&ire->ire_bucket->irb_lock, RW_READER);
2943 		if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) {
2944 			connp->conn_ire_cache = ire;
2945 			IRE_UNTRACE_REF(ire);
2946 			rw_exit(&ire->ire_bucket->irb_lock);
2947 			mutex_exit(&connp->conn_lock);
2948 			return (1);
2949 		}
2950 		rw_exit(&ire->ire_bucket->irb_lock);
2951 	}
2952 	mutex_exit(&connp->conn_lock);
2953 
2954 	if (ire->ire_mp == NULL)
2955 		ire_refrele(ire);
2956 	return (1);
2957 
2958 error:
2959 	if (ire->ire_mp == NULL)
2960 		ire_refrele(ire);
2961 	if (sire != NULL)
2962 		ire_refrele(sire);
2963 	return (0);
2964 }
2965 
2966 /*
2967  * tcp_bind is called (holding the writer lock) by tcp_wput_proto to process a
2968  * O_T_BIND_REQ/T_BIND_REQ message.
2969  */
2970 static void
2971 tcp_bind(tcp_t *tcp, mblk_t *mp)
2972 {
2973 	sin_t	*sin;
2974 	sin6_t	*sin6;
2975 	mblk_t	*mp1;
2976 	in_port_t requested_port;
2977 	in_port_t allocated_port;
2978 	struct T_bind_req *tbr;
2979 	boolean_t	bind_to_req_port_only;
2980 	boolean_t	backlog_update = B_FALSE;
2981 	boolean_t	user_specified;
2982 	in6_addr_t	v6addr;
2983 	ipaddr_t	v4addr;
2984 	uint_t	origipversion;
2985 	int	err;
2986 	queue_t *q = tcp->tcp_wq;
2987 	conn_t	*connp;
2988 	mlp_type_t addrtype, mlptype;
2989 	zone_t	*zone;
2990 	cred_t	*cr;
2991 	in_port_t mlp_port;
2992 
2993 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
2994 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) {
2995 		if (tcp->tcp_debug) {
2996 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
2997 			    "tcp_bind: bad req, len %u",
2998 			    (uint_t)(mp->b_wptr - mp->b_rptr));
2999 		}
3000 		tcp_err_ack(tcp, mp, TPROTO, 0);
3001 		return;
3002 	}
3003 	/* Make sure the largest address fits */
3004 	mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t) + 1, 1);
3005 	if (mp1 == NULL) {
3006 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
3007 		return;
3008 	}
3009 	mp = mp1;
3010 	tbr = (struct T_bind_req *)mp->b_rptr;
3011 	if (tcp->tcp_state >= TCPS_BOUND) {
3012 		if ((tcp->tcp_state == TCPS_BOUND ||
3013 		    tcp->tcp_state == TCPS_LISTEN) &&
3014 		    tcp->tcp_conn_req_max != tbr->CONIND_number &&
3015 		    tbr->CONIND_number > 0) {
3016 			/*
3017 			 * Handle listen() increasing CONIND_number.
3018 			 * This is more "liberal" then what the TPI spec
3019 			 * requires but is needed to avoid a t_unbind
3020 			 * when handling listen() since the port number
3021 			 * might be "stolen" between the unbind and bind.
3022 			 */
3023 			backlog_update = B_TRUE;
3024 			goto do_bind;
3025 		}
3026 		if (tcp->tcp_debug) {
3027 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
3028 			    "tcp_bind: bad state, %d", tcp->tcp_state);
3029 		}
3030 		tcp_err_ack(tcp, mp, TOUTSTATE, 0);
3031 		return;
3032 	}
3033 	origipversion = tcp->tcp_ipversion;
3034 
3035 	switch (tbr->ADDR_length) {
3036 	case 0:			/* request for a generic port */
3037 		tbr->ADDR_offset = sizeof (struct T_bind_req);
3038 		if (tcp->tcp_family == AF_INET) {
3039 			tbr->ADDR_length = sizeof (sin_t);
3040 			sin = (sin_t *)&tbr[1];
3041 			*sin = sin_null;
3042 			sin->sin_family = AF_INET;
3043 			mp->b_wptr = (uchar_t *)&sin[1];
3044 			tcp->tcp_ipversion = IPV4_VERSION;
3045 			IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &v6addr);
3046 		} else {
3047 			ASSERT(tcp->tcp_family == AF_INET6);
3048 			tbr->ADDR_length = sizeof (sin6_t);
3049 			sin6 = (sin6_t *)&tbr[1];
3050 			*sin6 = sin6_null;
3051 			sin6->sin6_family = AF_INET6;
3052 			mp->b_wptr = (uchar_t *)&sin6[1];
3053 			tcp->tcp_ipversion = IPV6_VERSION;
3054 			V6_SET_ZERO(v6addr);
3055 		}
3056 		requested_port = 0;
3057 		break;
3058 
3059 	case sizeof (sin_t):	/* Complete IPv4 address */
3060 		sin = (sin_t *)mi_offset_param(mp, tbr->ADDR_offset,
3061 		    sizeof (sin_t));
3062 		if (sin == NULL || !OK_32PTR((char *)sin)) {
3063 			if (tcp->tcp_debug) {
3064 				(void) strlog(TCP_MOD_ID, 0, 1,
3065 				    SL_ERROR|SL_TRACE,
3066 				    "tcp_bind: bad address parameter, "
3067 				    "offset %d, len %d",
3068 				    tbr->ADDR_offset, tbr->ADDR_length);
3069 			}
3070 			tcp_err_ack(tcp, mp, TPROTO, 0);
3071 			return;
3072 		}
3073 		/*
3074 		 * With sockets sockfs will accept bogus sin_family in
3075 		 * bind() and replace it with the family used in the socket
3076 		 * call.
3077 		 */
3078 		if (sin->sin_family != AF_INET ||
3079 		    tcp->tcp_family != AF_INET) {
3080 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
3081 			return;
3082 		}
3083 		requested_port = ntohs(sin->sin_port);
3084 		tcp->tcp_ipversion = IPV4_VERSION;
3085 		v4addr = sin->sin_addr.s_addr;
3086 		IN6_IPADDR_TO_V4MAPPED(v4addr, &v6addr);
3087 		break;
3088 
3089 	case sizeof (sin6_t): /* Complete IPv6 address */
3090 		sin6 = (sin6_t *)mi_offset_param(mp,
3091 		    tbr->ADDR_offset, sizeof (sin6_t));
3092 		if (sin6 == NULL || !OK_32PTR((char *)sin6)) {
3093 			if (tcp->tcp_debug) {
3094 				(void) strlog(TCP_MOD_ID, 0, 1,
3095 				    SL_ERROR|SL_TRACE,
3096 				    "tcp_bind: bad IPv6 address parameter, "
3097 				    "offset %d, len %d", tbr->ADDR_offset,
3098 				    tbr->ADDR_length);
3099 			}
3100 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
3101 			return;
3102 		}
3103 		if (sin6->sin6_family != AF_INET6 ||
3104 		    tcp->tcp_family != AF_INET6) {
3105 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
3106 			return;
3107 		}
3108 		requested_port = ntohs(sin6->sin6_port);
3109 		tcp->tcp_ipversion = IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr) ?
3110 		    IPV4_VERSION : IPV6_VERSION;
3111 		v6addr = sin6->sin6_addr;
3112 		break;
3113 
3114 	default:
3115 		if (tcp->tcp_debug) {
3116 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
3117 			    "tcp_bind: bad address length, %d",
3118 			    tbr->ADDR_length);
3119 		}
3120 		tcp_err_ack(tcp, mp, TBADADDR, 0);
3121 		return;
3122 	}
3123 	tcp->tcp_bound_source_v6 = v6addr;
3124 
3125 	/* Check for change in ipversion */
3126 	if (origipversion != tcp->tcp_ipversion) {
3127 		ASSERT(tcp->tcp_family == AF_INET6);
3128 		err = tcp->tcp_ipversion == IPV6_VERSION ?
3129 		    tcp_header_init_ipv6(tcp) : tcp_header_init_ipv4(tcp);
3130 		if (err) {
3131 			tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
3132 			return;
3133 		}
3134 	}
3135 
3136 	/*
3137 	 * Initialize family specific fields. Copy of the src addr.
3138 	 * in tcp_t is needed for the lookup funcs.
3139 	 */
3140 	if (tcp->tcp_ipversion == IPV6_VERSION) {
3141 		tcp->tcp_ip6h->ip6_src = v6addr;
3142 	} else {
3143 		IN6_V4MAPPED_TO_IPADDR(&v6addr, tcp->tcp_ipha->ipha_src);
3144 	}
3145 	tcp->tcp_ip_src_v6 = v6addr;
3146 
3147 	/*
3148 	 * For O_T_BIND_REQ:
3149 	 * Verify that the target port/addr is available, or choose
3150 	 * another.
3151 	 * For  T_BIND_REQ:
3152 	 * Verify that the target port/addr is available or fail.
3153 	 * In both cases when it succeeds the tcp is inserted in the
3154 	 * bind hash table. This ensures that the operation is atomic
3155 	 * under the lock on the hash bucket.
3156 	 */
3157 	bind_to_req_port_only = requested_port != 0 &&
3158 	    tbr->PRIM_type != O_T_BIND_REQ;
3159 	/*
3160 	 * Get a valid port (within the anonymous range and should not
3161 	 * be a privileged one) to use if the user has not given a port.
3162 	 * If multiple threads are here, they may all start with
3163 	 * with the same initial port. But, it should be fine as long as
3164 	 * tcp_bindi will ensure that no two threads will be assigned
3165 	 * the same port.
3166 	 *
3167 	 * NOTE: XXX If a privileged process asks for an anonymous port, we
3168 	 * still check for ports only in the range > tcp_smallest_non_priv_port,
3169 	 * unless TCP_ANONPRIVBIND option is set.
3170 	 */
3171 	mlptype = mlptSingle;
3172 	mlp_port = requested_port;
3173 	if (requested_port == 0) {
3174 		requested_port = tcp->tcp_anon_priv_bind ?
3175 		    tcp_get_next_priv_port(tcp) :
3176 		    tcp_update_next_port(tcp_next_port_to_try, tcp, B_TRUE);
3177 		if (requested_port == 0) {
3178 			tcp_err_ack(tcp, mp, TNOADDR, 0);
3179 			return;
3180 		}
3181 		user_specified = B_FALSE;
3182 
3183 		/*
3184 		 * If the user went through one of the RPC interfaces to create
3185 		 * this socket and RPC is MLP in this zone, then give him an
3186 		 * anonymous MLP.
3187 		 */
3188 		cr = DB_CREDDEF(mp, tcp->tcp_cred);
3189 		connp = tcp->tcp_connp;
3190 		if (connp->conn_anon_mlp && is_system_labeled()) {
3191 			zone = crgetzone(cr);
3192 			addrtype = tsol_mlp_addr_type(zone->zone_id,
3193 			    IPV6_VERSION, &v6addr);
3194 			if (addrtype == mlptSingle) {
3195 				tcp_err_ack(tcp, mp, TNOADDR, 0);
3196 				return;
3197 			}
3198 			mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP,
3199 			    PMAPPORT, addrtype);
3200 			mlp_port = PMAPPORT;
3201 		}
3202 	} else {
3203 		int i;
3204 		boolean_t priv = B_FALSE;
3205 
3206 		/*
3207 		 * If the requested_port is in the well-known privileged range,
3208 		 * verify that the stream was opened by a privileged user.
3209 		 * Note: No locks are held when inspecting tcp_g_*epriv_ports
3210 		 * but instead the code relies on:
3211 		 * - the fact that the address of the array and its size never
3212 		 *   changes
3213 		 * - the atomic assignment of the elements of the array
3214 		 */
3215 		cr = DB_CREDDEF(mp, tcp->tcp_cred);
3216 		if (requested_port < tcp_smallest_nonpriv_port) {
3217 			priv = B_TRUE;
3218 		} else {
3219 			for (i = 0; i < tcp_g_num_epriv_ports; i++) {
3220 				if (requested_port ==
3221 				    tcp_g_epriv_ports[i]) {
3222 					priv = B_TRUE;
3223 					break;
3224 				}
3225 			}
3226 		}
3227 		if (priv) {
3228 			if (secpolicy_net_privaddr(cr, requested_port) != 0) {
3229 				if (tcp->tcp_debug) {
3230 					(void) strlog(TCP_MOD_ID, 0, 1,
3231 					    SL_ERROR|SL_TRACE,
3232 					    "tcp_bind: no priv for port %d",
3233 					    requested_port);
3234 				}
3235 				tcp_err_ack(tcp, mp, TACCES, 0);
3236 				return;
3237 			}
3238 		}
3239 		user_specified = B_TRUE;
3240 
3241 		connp = tcp->tcp_connp;
3242 		if (is_system_labeled()) {
3243 			zone = crgetzone(cr);
3244 			addrtype = tsol_mlp_addr_type(zone->zone_id,
3245 			    IPV6_VERSION, &v6addr);
3246 			if (addrtype == mlptSingle) {
3247 				tcp_err_ack(tcp, mp, TNOADDR, 0);
3248 				return;
3249 			}
3250 			mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP,
3251 			    requested_port, addrtype);
3252 		}
3253 	}
3254 
3255 	if (mlptype != mlptSingle) {
3256 		if (secpolicy_net_bindmlp(cr) != 0) {
3257 			if (tcp->tcp_debug) {
3258 				(void) strlog(TCP_MOD_ID, 0, 1,
3259 				    SL_ERROR|SL_TRACE,
3260 				    "tcp_bind: no priv for multilevel port %d",
3261 				    requested_port);
3262 			}
3263 			tcp_err_ack(tcp, mp, TACCES, 0);
3264 			return;
3265 		}
3266 
3267 		/*
3268 		 * If we're specifically binding a shared IP address and the
3269 		 * port is MLP on shared addresses, then check to see if this
3270 		 * zone actually owns the MLP.  Reject if not.
3271 		 */
3272 		if (mlptype == mlptShared && addrtype == mlptShared) {
3273 			zoneid_t mlpzone;
3274 
3275 			mlpzone = tsol_mlp_findzone(IPPROTO_TCP,
3276 			    htons(mlp_port));
3277 			if (connp->conn_zoneid != mlpzone) {
3278 				if (tcp->tcp_debug) {
3279 					(void) strlog(TCP_MOD_ID, 0, 1,
3280 					    SL_ERROR|SL_TRACE,
3281 					    "tcp_bind: attempt to bind port "
3282 					    "%d on shared addr in zone %d "
3283 					    "(should be %d)",
3284 					    mlp_port, connp->conn_zoneid,
3285 					    mlpzone);
3286 				}
3287 				tcp_err_ack(tcp, mp, TACCES, 0);
3288 				return;
3289 			}
3290 		}
3291 
3292 		if (!user_specified) {
3293 			err = tsol_mlp_anon(zone, mlptype, connp->conn_ulp,
3294 			    requested_port, B_TRUE);
3295 			if (err != 0) {
3296 				if (tcp->tcp_debug) {
3297 					(void) strlog(TCP_MOD_ID, 0, 1,
3298 					    SL_ERROR|SL_TRACE,
3299 					    "tcp_bind: cannot establish anon "
3300 					    "MLP for port %d",
3301 					    requested_port);
3302 				}
3303 				tcp_err_ack(tcp, mp, TSYSERR, err);
3304 				return;
3305 			}
3306 			connp->conn_anon_port = B_TRUE;
3307 		}
3308 		connp->conn_mlp_type = mlptype;
3309 	}
3310 
3311 	allocated_port = tcp_bindi(tcp, requested_port, &v6addr,
3312 	    tcp->tcp_reuseaddr, B_FALSE, bind_to_req_port_only, user_specified);
3313 
3314 	if (allocated_port == 0) {
3315 		connp->conn_mlp_type = mlptSingle;
3316 		if (connp->conn_anon_port) {
3317 			connp->conn_anon_port = B_FALSE;
3318 			(void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp,
3319 			    requested_port, B_FALSE);
3320 		}
3321 		if (bind_to_req_port_only) {
3322 			if (tcp->tcp_debug) {
3323 				(void) strlog(TCP_MOD_ID, 0, 1,
3324 				    SL_ERROR|SL_TRACE,
3325 				    "tcp_bind: requested addr busy");
3326 			}
3327 			tcp_err_ack(tcp, mp, TADDRBUSY, 0);
3328 		} else {
3329 			/* If we are out of ports, fail the bind. */
3330 			if (tcp->tcp_debug) {
3331 				(void) strlog(TCP_MOD_ID, 0, 1,
3332 				    SL_ERROR|SL_TRACE,
3333 				    "tcp_bind: out of ports?");
3334 			}
3335 			tcp_err_ack(tcp, mp, TNOADDR, 0);
3336 		}
3337 		return;
3338 	}
3339 	ASSERT(tcp->tcp_state == TCPS_BOUND);
3340 do_bind:
3341 	if (!backlog_update) {
3342 		if (tcp->tcp_family == AF_INET)
3343 			sin->sin_port = htons(allocated_port);
3344 		else
3345 			sin6->sin6_port = htons(allocated_port);
3346 	}
3347 	if (tcp->tcp_family == AF_INET) {
3348 		if (tbr->CONIND_number != 0) {
3349 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type,
3350 			    sizeof (sin_t));
3351 		} else {
3352 			/* Just verify the local IP address */
3353 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, IP_ADDR_LEN);
3354 		}
3355 	} else {
3356 		if (tbr->CONIND_number != 0) {
3357 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type,
3358 			    sizeof (sin6_t));
3359 		} else {
3360 			/* Just verify the local IP address */
3361 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type,
3362 			    IPV6_ADDR_LEN);
3363 		}
3364 	}
3365 	if (mp1 == NULL) {
3366 		if (connp->conn_anon_port) {
3367 			connp->conn_anon_port = B_FALSE;
3368 			(void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp,
3369 			    requested_port, B_FALSE);
3370 		}
3371 		connp->conn_mlp_type = mlptSingle;
3372 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
3373 		return;
3374 	}
3375 
3376 	tbr->PRIM_type = T_BIND_ACK;
3377 	mp->b_datap->db_type = M_PCPROTO;
3378 
3379 	/* Chain in the reply mp for tcp_rput() */
3380 	mp1->b_cont = mp;
3381 	mp = mp1;
3382 
3383 	tcp->tcp_conn_req_max = tbr->CONIND_number;
3384 	if (tcp->tcp_conn_req_max) {
3385 		if (tcp->tcp_conn_req_max < tcp_conn_req_min)
3386 			tcp->tcp_conn_req_max = tcp_conn_req_min;
3387 		if (tcp->tcp_conn_req_max > tcp_conn_req_max_q)
3388 			tcp->tcp_conn_req_max = tcp_conn_req_max_q;
3389 		/*
3390 		 * If this is a listener, do not reset the eager list
3391 		 * and other stuffs.  Note that we don't check if the
3392 		 * existing eager list meets the new tcp_conn_req_max
3393 		 * requirement.
3394 		 */
3395 		if (tcp->tcp_state != TCPS_LISTEN) {
3396 			tcp->tcp_state = TCPS_LISTEN;
3397 			/* Initialize the chain. Don't need the eager_lock */
3398 			tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
3399 			tcp->tcp_second_ctimer_threshold =
3400 			    tcp_ip_abort_linterval;
3401 		}
3402 	}
3403 
3404 	/*
3405 	 * We can call ip_bind directly which returns a T_BIND_ACK mp. The
3406 	 * processing continues in tcp_rput_other().
3407 	 */
3408 	if (tcp->tcp_family == AF_INET6) {
3409 		ASSERT(tcp->tcp_connp->conn_af_isv6);
3410 		mp = ip_bind_v6(q, mp, tcp->tcp_connp, &tcp->tcp_sticky_ipp);
3411 	} else {
3412 		ASSERT(!tcp->tcp_connp->conn_af_isv6);
3413 		mp = ip_bind_v4(q, mp, tcp->tcp_connp);
3414 	}
3415 	/*
3416 	 * If the bind cannot complete immediately
3417 	 * IP will arrange to call tcp_rput_other
3418 	 * when the bind completes.
3419 	 */
3420 	if (mp != NULL) {
3421 		tcp_rput_other(tcp, mp);
3422 	} else {
3423 		/*
3424 		 * Bind will be resumed later. Need to ensure
3425 		 * that conn doesn't disappear when that happens.
3426 		 * This will be decremented in ip_resume_tcp_bind().
3427 		 */
3428 		CONN_INC_REF(tcp->tcp_connp);
3429 	}
3430 }
3431 
3432 
3433 /*
3434  * If the "bind_to_req_port_only" parameter is set, if the requested port
3435  * number is available, return it, If not return 0
3436  *
3437  * If "bind_to_req_port_only" parameter is not set and
3438  * If the requested port number is available, return it.  If not, return
3439  * the first anonymous port we happen across.  If no anonymous ports are
3440  * available, return 0. addr is the requested local address, if any.
3441  *
3442  * In either case, when succeeding update the tcp_t to record the port number
3443  * and insert it in the bind hash table.
3444  *
3445  * Note that TCP over IPv4 and IPv6 sockets can use the same port number
3446  * without setting SO_REUSEADDR. This is needed so that they
3447  * can be viewed as two independent transport protocols.
3448  */
3449 static in_port_t
3450 tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr,
3451     int reuseaddr, boolean_t quick_connect,
3452     boolean_t bind_to_req_port_only, boolean_t user_specified)
3453 {
3454 	/* number of times we have run around the loop */
3455 	int count = 0;
3456 	/* maximum number of times to run around the loop */
3457 	int loopmax;
3458 	conn_t *connp = tcp->tcp_connp;
3459 	zoneid_t zoneid = connp->conn_zoneid;
3460 
3461 	/*
3462 	 * Lookup for free addresses is done in a loop and "loopmax"
3463 	 * influences how long we spin in the loop
3464 	 */
3465 	if (bind_to_req_port_only) {
3466 		/*
3467 		 * If the requested port is busy, don't bother to look
3468 		 * for a new one. Setting loop maximum count to 1 has
3469 		 * that effect.
3470 		 */
3471 		loopmax = 1;
3472 	} else {
3473 		/*
3474 		 * If the requested port is busy, look for a free one
3475 		 * in the anonymous port range.
3476 		 * Set loopmax appropriately so that one does not look
3477 		 * forever in the case all of the anonymous ports are in use.
3478 		 */
3479 		if (tcp->tcp_anon_priv_bind) {
3480 			/*
3481 			 * loopmax =
3482 			 * 	(IPPORT_RESERVED-1) - tcp_min_anonpriv_port + 1
3483 			 */
3484 			loopmax = IPPORT_RESERVED - tcp_min_anonpriv_port;
3485 		} else {
3486 			loopmax = (tcp_largest_anon_port -
3487 			    tcp_smallest_anon_port + 1);
3488 		}
3489 	}
3490 	do {
3491 		uint16_t	lport;
3492 		tf_t		*tbf;
3493 		tcp_t		*ltcp;
3494 		conn_t		*lconnp;
3495 
3496 		lport = htons(port);
3497 
3498 		/*
3499 		 * Ensure that the tcp_t is not currently in the bind hash.
3500 		 * Hold the lock on the hash bucket to ensure that
3501 		 * the duplicate check plus the insertion is an atomic
3502 		 * operation.
3503 		 *
3504 		 * This function does an inline lookup on the bind hash list
3505 		 * Make sure that we access only members of tcp_t
3506 		 * and that we don't look at tcp_tcp, since we are not
3507 		 * doing a CONN_INC_REF.
3508 		 */
3509 		tcp_bind_hash_remove(tcp);
3510 		tbf = &tcp_bind_fanout[TCP_BIND_HASH(lport)];
3511 		mutex_enter(&tbf->tf_lock);
3512 		for (ltcp = tbf->tf_tcp; ltcp != NULL;
3513 		    ltcp = ltcp->tcp_bind_hash) {
3514 			boolean_t not_socket;
3515 			boolean_t exclbind;
3516 
3517 			if (lport != ltcp->tcp_lport)
3518 				continue;
3519 
3520 			lconnp = ltcp->tcp_connp;
3521 
3522 			/*
3523 			 * On a labeled system, we must treat bindings to ports
3524 			 * on shared IP addresses by sockets with MAC exemption
3525 			 * privilege as being in all zones, as there's
3526 			 * otherwise no way to identify the right receiver.
3527 			 */
3528 			if (!IPCL_ZONE_MATCH(ltcp->tcp_connp, zoneid) &&
3529 			    !lconnp->conn_mac_exempt &&
3530 			    !connp->conn_mac_exempt)
3531 				continue;
3532 
3533 			/*
3534 			 * If TCP_EXCLBIND is set for either the bound or
3535 			 * binding endpoint, the semantics of bind
3536 			 * is changed according to the following.
3537 			 *
3538 			 * spec = specified address (v4 or v6)
3539 			 * unspec = unspecified address (v4 or v6)
3540 			 * A = specified addresses are different for endpoints
3541 			 *
3542 			 * bound	bind to		allowed
3543 			 * -------------------------------------
3544 			 * unspec	unspec		no
3545 			 * unspec	spec		no
3546 			 * spec		unspec		no
3547 			 * spec		spec		yes if A
3548 			 *
3549 			 * For labeled systems, SO_MAC_EXEMPT behaves the same
3550 			 * as TCP_EXCLBIND, except that zoneid is ignored.
3551 			 *
3552 			 * Note:
3553 			 *
3554 			 * 1. Because of TLI semantics, an endpoint can go
3555 			 * back from, say TCP_ESTABLISHED to TCPS_LISTEN or
3556 			 * TCPS_BOUND, depending on whether it is originally
3557 			 * a listener or not.  That is why we need to check
3558 			 * for states greater than or equal to TCPS_BOUND
3559 			 * here.
3560 			 *
3561 			 * 2. Ideally, we should only check for state equals
3562 			 * to TCPS_LISTEN. And the following check should be
3563 			 * added.
3564 			 *
3565 			 * if (ltcp->tcp_state == TCPS_LISTEN ||
3566 			 *	!reuseaddr || !ltcp->tcp_reuseaddr) {
3567 			 *		...
3568 			 * }
3569 			 *
3570 			 * The semantics will be changed to this.  If the
3571 			 * endpoint on the list is in state not equal to
3572 			 * TCPS_LISTEN and both endpoints have SO_REUSEADDR
3573 			 * set, let the bind succeed.
3574 			 *
3575 			 * Because of (1), we cannot do that for TLI
3576 			 * endpoints.  But we can do that for socket endpoints.
3577 			 * If in future, we can change this going back
3578 			 * semantics, we can use the above check for TLI also.
3579 			 */
3580 			not_socket = !(TCP_IS_SOCKET(ltcp) &&
3581 			    TCP_IS_SOCKET(tcp));
3582 			exclbind = ltcp->tcp_exclbind || tcp->tcp_exclbind;
3583 
3584 			if (lconnp->conn_mac_exempt || connp->conn_mac_exempt ||
3585 			    (exclbind && (not_socket ||
3586 			    ltcp->tcp_state <= TCPS_ESTABLISHED))) {
3587 				if (V6_OR_V4_INADDR_ANY(
3588 				    ltcp->tcp_bound_source_v6) ||
3589 				    V6_OR_V4_INADDR_ANY(*laddr) ||
3590 				    IN6_ARE_ADDR_EQUAL(laddr,
3591 				    &ltcp->tcp_bound_source_v6)) {
3592 					break;
3593 				}
3594 				continue;
3595 			}
3596 
3597 			/*
3598 			 * Check ipversion to allow IPv4 and IPv6 sockets to
3599 			 * have disjoint port number spaces, if *_EXCLBIND
3600 			 * is not set and only if the application binds to a
3601 			 * specific port. We use the same autoassigned port
3602 			 * number space for IPv4 and IPv6 sockets.
3603 			 */
3604 			if (tcp->tcp_ipversion != ltcp->tcp_ipversion &&
3605 			    bind_to_req_port_only)
3606 				continue;
3607 
3608 			/*
3609 			 * Ideally, we should make sure that the source
3610 			 * address, remote address, and remote port in the
3611 			 * four tuple for this tcp-connection is unique.
3612 			 * However, trying to find out the local source
3613 			 * address would require too much code duplication
3614 			 * with IP, since IP needs needs to have that code
3615 			 * to support userland TCP implementations.
3616 			 */
3617 			if (quick_connect &&
3618 			    (ltcp->tcp_state > TCPS_LISTEN) &&
3619 			    ((tcp->tcp_fport != ltcp->tcp_fport) ||
3620 				!IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6,
3621 				    &ltcp->tcp_remote_v6)))
3622 				continue;
3623 
3624 			if (!reuseaddr) {
3625 				/*
3626 				 * No socket option SO_REUSEADDR.
3627 				 * If existing port is bound to
3628 				 * a non-wildcard IP address
3629 				 * and the requesting stream is
3630 				 * bound to a distinct
3631 				 * different IP addresses
3632 				 * (non-wildcard, also), keep
3633 				 * going.
3634 				 */
3635 				if (!V6_OR_V4_INADDR_ANY(*laddr) &&
3636 				    !V6_OR_V4_INADDR_ANY(
3637 				    ltcp->tcp_bound_source_v6) &&
3638 				    !IN6_ARE_ADDR_EQUAL(laddr,
3639 					&ltcp->tcp_bound_source_v6))
3640 					continue;
3641 				if (ltcp->tcp_state >= TCPS_BOUND) {
3642 					/*
3643 					 * This port is being used and
3644 					 * its state is >= TCPS_BOUND,
3645 					 * so we can't bind to it.
3646 					 */
3647 					break;
3648 				}
3649 			} else {
3650 				/*
3651 				 * socket option SO_REUSEADDR is set on the
3652 				 * binding tcp_t.
3653 				 *
3654 				 * If two streams are bound to
3655 				 * same IP address or both addr
3656 				 * and bound source are wildcards
3657 				 * (INADDR_ANY), we want to stop
3658 				 * searching.
3659 				 * We have found a match of IP source
3660 				 * address and source port, which is
3661 				 * refused regardless of the
3662 				 * SO_REUSEADDR setting, so we break.
3663 				 */
3664 				if (IN6_ARE_ADDR_EQUAL(laddr,
3665 				    &ltcp->tcp_bound_source_v6) &&
3666 				    (ltcp->tcp_state == TCPS_LISTEN ||
3667 					ltcp->tcp_state == TCPS_BOUND))
3668 					break;
3669 			}
3670 		}
3671 		if (ltcp != NULL) {
3672 			/* The port number is busy */
3673 			mutex_exit(&tbf->tf_lock);
3674 		} else {
3675 			/*
3676 			 * This port is ours. Insert in fanout and mark as
3677 			 * bound to prevent others from getting the port
3678 			 * number.
3679 			 */
3680 			tcp->tcp_state = TCPS_BOUND;
3681 			tcp->tcp_lport = htons(port);
3682 			*(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport;
3683 
3684 			ASSERT(&tcp_bind_fanout[TCP_BIND_HASH(
3685 			    tcp->tcp_lport)] == tbf);
3686 			tcp_bind_hash_insert(tbf, tcp, 1);
3687 
3688 			mutex_exit(&tbf->tf_lock);
3689 
3690 			/*
3691 			 * We don't want tcp_next_port_to_try to "inherit"
3692 			 * a port number supplied by the user in a bind.
3693 			 */
3694 			if (user_specified)
3695 				return (port);
3696 
3697 			/*
3698 			 * This is the only place where tcp_next_port_to_try
3699 			 * is updated. After the update, it may or may not
3700 			 * be in the valid range.
3701 			 */
3702 			if (!tcp->tcp_anon_priv_bind)
3703 				tcp_next_port_to_try = port + 1;
3704 			return (port);
3705 		}
3706 
3707 		if (tcp->tcp_anon_priv_bind) {
3708 			port = tcp_get_next_priv_port(tcp);
3709 		} else {
3710 			if (count == 0 && user_specified) {
3711 				/*
3712 				 * We may have to return an anonymous port. So
3713 				 * get one to start with.
3714 				 */
3715 				port =
3716 				    tcp_update_next_port(tcp_next_port_to_try,
3717 					tcp, B_TRUE);
3718 				user_specified = B_FALSE;
3719 			} else {
3720 				port = tcp_update_next_port(port + 1, tcp,
3721 				    B_FALSE);
3722 			}
3723 		}
3724 		if (port == 0)
3725 			break;
3726 
3727 		/*
3728 		 * Don't let this loop run forever in the case where
3729 		 * all of the anonymous ports are in use.
3730 		 */
3731 	} while (++count < loopmax);
3732 	return (0);
3733 }
3734 
3735 /*
3736  * We are dying for some reason.  Try to do it gracefully.  (May be called
3737  * as writer.)
3738  *
3739  * Return -1 if the structure was not cleaned up (if the cleanup had to be
3740  * done by a service procedure).
3741  * TBD - Should the return value distinguish between the tcp_t being
3742  * freed and it being reinitialized?
3743  */
3744 static int
3745 tcp_clean_death(tcp_t *tcp, int err, uint8_t tag)
3746 {
3747 	mblk_t	*mp;
3748 	queue_t	*q;
3749 
3750 	TCP_CLD_STAT(tag);
3751 
3752 #if TCP_TAG_CLEAN_DEATH
3753 	tcp->tcp_cleandeathtag = tag;
3754 #endif
3755 
3756 	if (tcp->tcp_fused)
3757 		tcp_unfuse(tcp);
3758 
3759 	if (tcp->tcp_linger_tid != 0 &&
3760 	    TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) {
3761 		tcp_stop_lingering(tcp);
3762 	}
3763 
3764 	ASSERT(tcp != NULL);
3765 	ASSERT((tcp->tcp_family == AF_INET &&
3766 	    tcp->tcp_ipversion == IPV4_VERSION) ||
3767 	    (tcp->tcp_family == AF_INET6 &&
3768 	    (tcp->tcp_ipversion == IPV4_VERSION ||
3769 	    tcp->tcp_ipversion == IPV6_VERSION)));
3770 
3771 	if (TCP_IS_DETACHED(tcp)) {
3772 		if (tcp->tcp_hard_binding) {
3773 			/*
3774 			 * Its an eager that we are dealing with. We close the
3775 			 * eager but in case a conn_ind has already gone to the
3776 			 * listener, let tcp_accept_finish() send a discon_ind
3777 			 * to the listener and drop the last reference. If the
3778 			 * listener doesn't even know about the eager i.e. the
3779 			 * conn_ind hasn't gone up, blow away the eager and drop
3780 			 * the last reference as well. If the conn_ind has gone
3781 			 * up, state should be BOUND. tcp_accept_finish
3782 			 * will figure out that the connection has received a
3783 			 * RST and will send a DISCON_IND to the application.
3784 			 */
3785 			tcp_closei_local(tcp);
3786 			if (tcp->tcp_conn.tcp_eager_conn_ind != NULL) {
3787 				CONN_DEC_REF(tcp->tcp_connp);
3788 			} else {
3789 				tcp->tcp_state = TCPS_BOUND;
3790 			}
3791 		} else {
3792 			tcp_close_detached(tcp);
3793 		}
3794 		return (0);
3795 	}
3796 
3797 	TCP_STAT(tcp_clean_death_nondetached);
3798 
3799 	/*
3800 	 * If T_ORDREL_IND has not been sent yet (done when service routine
3801 	 * is run) postpone cleaning up the endpoint until service routine
3802 	 * has sent up the T_ORDREL_IND. Avoid clearing out an existing
3803 	 * client_errno since tcp_close uses the client_errno field.
3804 	 */
3805 	if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
3806 		if (err != 0)
3807 			tcp->tcp_client_errno = err;
3808 
3809 		tcp->tcp_deferred_clean_death = B_TRUE;
3810 		return (-1);
3811 	}
3812 
3813 	q = tcp->tcp_rq;
3814 
3815 	/* Trash all inbound data */
3816 	flushq(q, FLUSHALL);
3817 
3818 	/*
3819 	 * If we are at least part way open and there is error
3820 	 * (err==0 implies no error)
3821 	 * notify our client by a T_DISCON_IND.
3822 	 */
3823 	if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) {
3824 		if (tcp->tcp_state >= TCPS_ESTABLISHED &&
3825 		    !TCP_IS_SOCKET(tcp)) {
3826 			/*
3827 			 * Send M_FLUSH according to TPI. Because sockets will
3828 			 * (and must) ignore FLUSHR we do that only for TPI
3829 			 * endpoints and sockets in STREAMS mode.
3830 			 */
3831 			(void) putnextctl1(q, M_FLUSH, FLUSHR);
3832 		}
3833 		if (tcp->tcp_debug) {
3834 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
3835 			    "tcp_clean_death: discon err %d", err);
3836 		}
3837 		mp = mi_tpi_discon_ind(NULL, err, 0);
3838 		if (mp != NULL) {
3839 			putnext(q, mp);
3840 		} else {
3841 			if (tcp->tcp_debug) {
3842 				(void) strlog(TCP_MOD_ID, 0, 1,
3843 				    SL_ERROR|SL_TRACE,
3844 				    "tcp_clean_death, sending M_ERROR");
3845 			}
3846 			(void) putnextctl1(q, M_ERROR, EPROTO);
3847 		}
3848 		if (tcp->tcp_state <= TCPS_SYN_RCVD) {
3849 			/* SYN_SENT or SYN_RCVD */
3850 			BUMP_MIB(&tcp_mib, tcpAttemptFails);
3851 		} else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) {
3852 			/* ESTABLISHED or CLOSE_WAIT */
3853 			BUMP_MIB(&tcp_mib, tcpEstabResets);
3854 		}
3855 	}
3856 
3857 	tcp_reinit(tcp);
3858 	return (-1);
3859 }
3860 
3861 /*
3862  * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout
3863  * to expire, stop the wait and finish the close.
3864  */
3865 static void
3866 tcp_stop_lingering(tcp_t *tcp)
3867 {
3868 	clock_t	delta = 0;
3869 
3870 	tcp->tcp_linger_tid = 0;
3871 	if (tcp->tcp_state > TCPS_LISTEN) {
3872 		tcp_acceptor_hash_remove(tcp);
3873 		if (tcp->tcp_flow_stopped) {
3874 			tcp_clrqfull(tcp);
3875 		}
3876 
3877 		if (tcp->tcp_timer_tid != 0) {
3878 			delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
3879 			tcp->tcp_timer_tid = 0;
3880 		}
3881 		/*
3882 		 * Need to cancel those timers which will not be used when
3883 		 * TCP is detached.  This has to be done before the tcp_wq
3884 		 * is set to the global queue.
3885 		 */
3886 		tcp_timers_stop(tcp);
3887 
3888 
3889 		tcp->tcp_detached = B_TRUE;
3890 		tcp->tcp_rq = tcp_g_q;
3891 		tcp->tcp_wq = WR(tcp_g_q);
3892 
3893 		if (tcp->tcp_state == TCPS_TIME_WAIT) {
3894 			tcp_time_wait_append(tcp);
3895 			TCP_DBGSTAT(tcp_detach_time_wait);
3896 			goto finish;
3897 		}
3898 
3899 		/*
3900 		 * If delta is zero the timer event wasn't executed and was
3901 		 * successfully canceled. In this case we need to restart it
3902 		 * with the minimal delta possible.
3903 		 */
3904 		if (delta >= 0) {
3905 			tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer,
3906 			    delta ? delta : 1);
3907 		}
3908 	} else {
3909 		tcp_closei_local(tcp);
3910 		CONN_DEC_REF(tcp->tcp_connp);
3911 	}
3912 finish:
3913 	/* Signal closing thread that it can complete close */
3914 	mutex_enter(&tcp->tcp_closelock);
3915 	tcp->tcp_detached = B_TRUE;
3916 	tcp->tcp_rq = tcp_g_q;
3917 	tcp->tcp_wq = WR(tcp_g_q);
3918 	tcp->tcp_closed = 1;
3919 	cv_signal(&tcp->tcp_closecv);
3920 	mutex_exit(&tcp->tcp_closelock);
3921 }
3922 
3923 /*
3924  * Handle lingering timeouts. This function is called when the SO_LINGER timeout
3925  * expires.
3926  */
3927 static void
3928 tcp_close_linger_timeout(void *arg)
3929 {
3930 	conn_t	*connp = (conn_t *)arg;
3931 	tcp_t 	*tcp = connp->conn_tcp;
3932 
3933 	tcp->tcp_client_errno = ETIMEDOUT;
3934 	tcp_stop_lingering(tcp);
3935 }
3936 
3937 static int
3938 tcp_close(queue_t *q, int flags)
3939 {
3940 	conn_t		*connp = Q_TO_CONN(q);
3941 	tcp_t		*tcp = connp->conn_tcp;
3942 	mblk_t 		*mp = &tcp->tcp_closemp;
3943 	boolean_t	conn_ioctl_cleanup_reqd = B_FALSE;
3944 
3945 	ASSERT(WR(q)->q_next == NULL);
3946 	ASSERT(connp->conn_ref >= 2);
3947 	ASSERT((connp->conn_flags & IPCL_TCPMOD) == 0);
3948 
3949 	/*
3950 	 * We are being closed as /dev/tcp or /dev/tcp6.
3951 	 *
3952 	 * Mark the conn as closing. ill_pending_mp_add will not
3953 	 * add any mp to the pending mp list, after this conn has
3954 	 * started closing. Same for sq_pending_mp_add
3955 	 */
3956 	mutex_enter(&connp->conn_lock);
3957 	connp->conn_state_flags |= CONN_CLOSING;
3958 	if (connp->conn_oper_pending_ill != NULL)
3959 		conn_ioctl_cleanup_reqd = B_TRUE;
3960 	CONN_INC_REF_LOCKED(connp);
3961 	mutex_exit(&connp->conn_lock);
3962 	tcp->tcp_closeflags = (uint8_t)flags;
3963 	ASSERT(connp->conn_ref >= 3);
3964 
3965 	(*tcp_squeue_close_proc)(connp->conn_sqp, mp,
3966 	    tcp_close_output, connp, SQTAG_IP_TCP_CLOSE);
3967 
3968 	mutex_enter(&tcp->tcp_closelock);
3969 
3970 	while (!tcp->tcp_closed)
3971 		cv_wait(&tcp->tcp_closecv, &tcp->tcp_closelock);
3972 	mutex_exit(&tcp->tcp_closelock);
3973 	/*
3974 	 * In the case of listener streams that have eagers in the q or q0
3975 	 * we wait for the eagers to drop their reference to us. tcp_rq and
3976 	 * tcp_wq of the eagers point to our queues. By waiting for the
3977 	 * refcnt to drop to 1, we are sure that the eagers have cleaned
3978 	 * up their queue pointers and also dropped their references to us.
3979 	 */
3980 	if (tcp->tcp_wait_for_eagers) {
3981 		mutex_enter(&connp->conn_lock);
3982 		while (connp->conn_ref != 1) {
3983 			cv_wait(&connp->conn_cv, &connp->conn_lock);
3984 		}
3985 		mutex_exit(&connp->conn_lock);
3986 	}
3987 	/*
3988 	 * ioctl cleanup. The mp is queued in the
3989 	 * ill_pending_mp or in the sq_pending_mp.
3990 	 */
3991 	if (conn_ioctl_cleanup_reqd)
3992 		conn_ioctl_cleanup(connp);
3993 
3994 	qprocsoff(q);
3995 	inet_minor_free(ip_minor_arena, connp->conn_dev);
3996 
3997 	tcp->tcp_cpid = -1;
3998 
3999 	/*
4000 	 * Drop IP's reference on the conn. This is the last reference
4001 	 * on the connp if the state was less than established. If the
4002 	 * connection has gone into timewait state, then we will have
4003 	 * one ref for the TCP and one more ref (total of two) for the
4004 	 * classifier connected hash list (a timewait connections stays
4005 	 * in connected hash till closed).
4006 	 *
4007 	 * We can't assert the references because there might be other
4008 	 * transient reference places because of some walkers or queued
4009 	 * packets in squeue for the timewait state.
4010 	 */
4011 	CONN_DEC_REF(connp);
4012 	q->q_ptr = WR(q)->q_ptr = NULL;
4013 	return (0);
4014 }
4015 
4016 static int
4017 tcpclose_accept(queue_t *q)
4018 {
4019 	ASSERT(WR(q)->q_qinfo == &tcp_acceptor_winit);
4020 
4021 	/*
4022 	 * We had opened an acceptor STREAM for sockfs which is
4023 	 * now being closed due to some error.
4024 	 */
4025 	qprocsoff(q);
4026 	inet_minor_free(ip_minor_arena, (dev_t)q->q_ptr);
4027 	q->q_ptr = WR(q)->q_ptr = NULL;
4028 	return (0);
4029 }
4030 
4031 
4032 /*
4033  * Called by streams close routine via squeues when our client blows off her
4034  * descriptor, we take this to mean: "close the stream state NOW, close the tcp
4035  * connection politely" When SO_LINGER is set (with a non-zero linger time and
4036  * it is not a nonblocking socket) then this routine sleeps until the FIN is
4037  * acked.
4038  *
4039  * NOTE: tcp_close potentially returns error when lingering.
4040  * However, the stream head currently does not pass these errors
4041  * to the application. 4.4BSD only returns EINTR and EWOULDBLOCK
4042  * errors to the application (from tsleep()) and not errors
4043  * like ECONNRESET caused by receiving a reset packet.
4044  */
4045 
4046 /* ARGSUSED */
4047 static void
4048 tcp_close_output(void *arg, mblk_t *mp, void *arg2)
4049 {
4050 	char	*msg;
4051 	conn_t	*connp = (conn_t *)arg;
4052 	tcp_t	*tcp = connp->conn_tcp;
4053 	clock_t	delta = 0;
4054 
4055 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
4056 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
4057 
4058 	/* Cancel any pending timeout */
4059 	if (tcp->tcp_ordrelid != 0) {
4060 		if (tcp->tcp_timeout) {
4061 			(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ordrelid);
4062 		}
4063 		tcp->tcp_ordrelid = 0;
4064 		tcp->tcp_timeout = B_FALSE;
4065 	}
4066 
4067 	mutex_enter(&tcp->tcp_eager_lock);
4068 	if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) {
4069 		/* Cleanup for listener */
4070 		tcp_eager_cleanup(tcp, 0);
4071 		tcp->tcp_wait_for_eagers = 1;
4072 	}
4073 	mutex_exit(&tcp->tcp_eager_lock);
4074 
4075 	connp->conn_mdt_ok = B_FALSE;
4076 	tcp->tcp_mdt = B_FALSE;
4077 
4078 	msg = NULL;
4079 	switch (tcp->tcp_state) {
4080 	case TCPS_CLOSED:
4081 	case TCPS_IDLE:
4082 	case TCPS_BOUND:
4083 	case TCPS_LISTEN:
4084 		break;
4085 	case TCPS_SYN_SENT:
4086 		msg = "tcp_close, during connect";
4087 		break;
4088 	case TCPS_SYN_RCVD:
4089 		/*
4090 		 * Close during the connect 3-way handshake
4091 		 * but here there may or may not be pending data
4092 		 * already on queue. Process almost same as in
4093 		 * the ESTABLISHED state.
4094 		 */
4095 		/* FALLTHRU */
4096 	default:
4097 		if (tcp->tcp_fused)
4098 			tcp_unfuse(tcp);
4099 
4100 		/*
4101 		 * If SO_LINGER has set a zero linger time, abort the
4102 		 * connection with a reset.
4103 		 */
4104 		if (tcp->tcp_linger && tcp->tcp_lingertime == 0) {
4105 			msg = "tcp_close, zero lingertime";
4106 			break;
4107 		}
4108 
4109 		ASSERT(tcp->tcp_hard_bound || tcp->tcp_hard_binding);
4110 		/*
4111 		 * Abort connection if there is unread data queued.
4112 		 */
4113 		if (tcp->tcp_rcv_list || tcp->tcp_reass_head) {
4114 			msg = "tcp_close, unread data";
4115 			break;
4116 		}
4117 		/*
4118 		 * tcp_hard_bound is now cleared thus all packets go through
4119 		 * tcp_lookup. This fact is used by tcp_detach below.
4120 		 *
4121 		 * We have done a qwait() above which could have possibly
4122 		 * drained more messages in turn causing transition to a
4123 		 * different state. Check whether we have to do the rest
4124 		 * of the processing or not.
4125 		 */
4126 		if (tcp->tcp_state <= TCPS_LISTEN)
4127 			break;
4128 
4129 		/*
4130 		 * Transmit the FIN before detaching the tcp_t.
4131 		 * After tcp_detach returns this queue/perimeter
4132 		 * no longer owns the tcp_t thus others can modify it.
4133 		 */
4134 		(void) tcp_xmit_end(tcp);
4135 
4136 		/*
4137 		 * If lingering on close then wait until the fin is acked,
4138 		 * the SO_LINGER time passes, or a reset is sent/received.
4139 		 */
4140 		if (tcp->tcp_linger && tcp->tcp_lingertime > 0 &&
4141 		    !(tcp->tcp_fin_acked) &&
4142 		    tcp->tcp_state >= TCPS_ESTABLISHED) {
4143 			if (tcp->tcp_closeflags & (FNDELAY|FNONBLOCK)) {
4144 				tcp->tcp_client_errno = EWOULDBLOCK;
4145 			} else if (tcp->tcp_client_errno == 0) {
4146 
4147 				ASSERT(tcp->tcp_linger_tid == 0);
4148 
4149 				tcp->tcp_linger_tid = TCP_TIMER(tcp,
4150 				    tcp_close_linger_timeout,
4151 				    tcp->tcp_lingertime * hz);
4152 
4153 				/* tcp_close_linger_timeout will finish close */
4154 				if (tcp->tcp_linger_tid == 0)
4155 					tcp->tcp_client_errno = ENOSR;
4156 				else
4157 					return;
4158 			}
4159 
4160 			/*
4161 			 * Check if we need to detach or just close
4162 			 * the instance.
4163 			 */
4164 			if (tcp->tcp_state <= TCPS_LISTEN)
4165 				break;
4166 		}
4167 
4168 		/*
4169 		 * Make sure that no other thread will access the tcp_rq of
4170 		 * this instance (through lookups etc.) as tcp_rq will go
4171 		 * away shortly.
4172 		 */
4173 		tcp_acceptor_hash_remove(tcp);
4174 
4175 		if (tcp->tcp_flow_stopped) {
4176 			tcp_clrqfull(tcp);
4177 		}
4178 
4179 		if (tcp->tcp_timer_tid != 0) {
4180 			delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
4181 			tcp->tcp_timer_tid = 0;
4182 		}
4183 		/*
4184 		 * Need to cancel those timers which will not be used when
4185 		 * TCP is detached.  This has to be done before the tcp_wq
4186 		 * is set to the global queue.
4187 		 */
4188 		tcp_timers_stop(tcp);
4189 
4190 		tcp->tcp_detached = B_TRUE;
4191 		if (tcp->tcp_state == TCPS_TIME_WAIT) {
4192 			tcp_time_wait_append(tcp);
4193 			TCP_DBGSTAT(tcp_detach_time_wait);
4194 			ASSERT(connp->conn_ref >= 3);
4195 			goto finish;
4196 		}
4197 
4198 		/*
4199 		 * If delta is zero the timer event wasn't executed and was
4200 		 * successfully canceled. In this case we need to restart it
4201 		 * with the minimal delta possible.
4202 		 */
4203 		if (delta >= 0)
4204 			tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer,
4205 			    delta ? delta : 1);
4206 
4207 		ASSERT(connp->conn_ref >= 3);
4208 		goto finish;
4209 	}
4210 
4211 	/* Detach did not complete. Still need to remove q from stream. */
4212 	if (msg) {
4213 		if (tcp->tcp_state == TCPS_ESTABLISHED ||
4214 		    tcp->tcp_state == TCPS_CLOSE_WAIT)
4215 			BUMP_MIB(&tcp_mib, tcpEstabResets);
4216 		if (tcp->tcp_state == TCPS_SYN_SENT ||
4217 		    tcp->tcp_state == TCPS_SYN_RCVD)
4218 			BUMP_MIB(&tcp_mib, tcpAttemptFails);
4219 		tcp_xmit_ctl(msg, tcp,  tcp->tcp_snxt, 0, TH_RST);
4220 	}
4221 
4222 	tcp_closei_local(tcp);
4223 	CONN_DEC_REF(connp);
4224 	ASSERT(connp->conn_ref >= 2);
4225 
4226 finish:
4227 	/*
4228 	 * Although packets are always processed on the correct
4229 	 * tcp's perimeter and access is serialized via squeue's,
4230 	 * IP still needs a queue when sending packets in time_wait
4231 	 * state so use WR(tcp_g_q) till ip_output() can be
4232 	 * changed to deal with just connp. For read side, we
4233 	 * could have set tcp_rq to NULL but there are some cases
4234 	 * in tcp_rput_data() from early days of this code which
4235 	 * do a putnext without checking if tcp is closed. Those
4236 	 * need to be identified before both tcp_rq and tcp_wq
4237 	 * can be set to NULL and tcp_q_q can disappear forever.
4238 	 */
4239 	mutex_enter(&tcp->tcp_closelock);
4240 	/*
4241 	 * Don't change the queues in the case of a listener that has
4242 	 * eagers in its q or q0. It could surprise the eagers.
4243 	 * Instead wait for the eagers outside the squeue.
4244 	 */
4245 	if (!tcp->tcp_wait_for_eagers) {
4246 		tcp->tcp_detached = B_TRUE;
4247 		tcp->tcp_rq = tcp_g_q;
4248 		tcp->tcp_wq = WR(tcp_g_q);
4249 	}
4250 
4251 	/* Signal tcp_close() to finish closing. */
4252 	tcp->tcp_closed = 1;
4253 	cv_signal(&tcp->tcp_closecv);
4254 	mutex_exit(&tcp->tcp_closelock);
4255 }
4256 
4257 
4258 /*
4259  * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp.
4260  * Some stream heads get upset if they see these later on as anything but NULL.
4261  */
4262 static void
4263 tcp_close_mpp(mblk_t **mpp)
4264 {
4265 	mblk_t	*mp;
4266 
4267 	if ((mp = *mpp) != NULL) {
4268 		do {
4269 			mp->b_next = NULL;
4270 			mp->b_prev = NULL;
4271 		} while ((mp = mp->b_cont) != NULL);
4272 
4273 		mp = *mpp;
4274 		*mpp = NULL;
4275 		freemsg(mp);
4276 	}
4277 }
4278 
4279 /* Do detached close. */
4280 static void
4281 tcp_close_detached(tcp_t *tcp)
4282 {
4283 	if (tcp->tcp_fused)
4284 		tcp_unfuse(tcp);
4285 
4286 	/*
4287 	 * Clustering code serializes TCP disconnect callbacks and
4288 	 * cluster tcp list walks by blocking a TCP disconnect callback
4289 	 * if a cluster tcp list walk is in progress. This ensures
4290 	 * accurate accounting of TCPs in the cluster code even though
4291 	 * the TCP list walk itself is not atomic.
4292 	 */
4293 	tcp_closei_local(tcp);
4294 	CONN_DEC_REF(tcp->tcp_connp);
4295 }
4296 
4297 /*
4298  * Stop all TCP timers, and free the timer mblks if requested.
4299  */
4300 void
4301 tcp_timers_stop(tcp_t *tcp)
4302 {
4303 	if (tcp->tcp_timer_tid != 0) {
4304 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
4305 		tcp->tcp_timer_tid = 0;
4306 	}
4307 	if (tcp->tcp_ka_tid != 0) {
4308 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ka_tid);
4309 		tcp->tcp_ka_tid = 0;
4310 	}
4311 	if (tcp->tcp_ack_tid != 0) {
4312 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid);
4313 		tcp->tcp_ack_tid = 0;
4314 	}
4315 	if (tcp->tcp_push_tid != 0) {
4316 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
4317 		tcp->tcp_push_tid = 0;
4318 	}
4319 }
4320 
4321 /*
4322  * The tcp_t is going away. Remove it from all lists and set it
4323  * to TCPS_CLOSED. The freeing up of memory is deferred until
4324  * tcp_inactive. This is needed since a thread in tcp_rput might have
4325  * done a CONN_INC_REF on this structure before it was removed from the
4326  * hashes.
4327  */
4328 static void
4329 tcp_closei_local(tcp_t *tcp)
4330 {
4331 	ire_t 	*ire;
4332 	conn_t	*connp = tcp->tcp_connp;
4333 
4334 	if (!TCP_IS_SOCKET(tcp))
4335 		tcp_acceptor_hash_remove(tcp);
4336 
4337 	UPDATE_MIB(&tcp_mib, tcpInSegs, tcp->tcp_ibsegs);
4338 	tcp->tcp_ibsegs = 0;
4339 	UPDATE_MIB(&tcp_mib, tcpOutSegs, tcp->tcp_obsegs);
4340 	tcp->tcp_obsegs = 0;
4341 
4342 	/*
4343 	 * If we are an eager connection hanging off a listener that
4344 	 * hasn't formally accepted the connection yet, get off his
4345 	 * list and blow off any data that we have accumulated.
4346 	 */
4347 	if (tcp->tcp_listener != NULL) {
4348 		tcp_t	*listener = tcp->tcp_listener;
4349 		mutex_enter(&listener->tcp_eager_lock);
4350 		/*
4351 		 * tcp_eager_conn_ind == NULL means that the
4352 		 * conn_ind has already gone to listener. At
4353 		 * this point, eager will be closed but we
4354 		 * leave it in listeners eager list so that
4355 		 * if listener decides to close without doing
4356 		 * accept, we can clean this up. In tcp_wput_accept
4357 		 * we take case of the case of accept on closed
4358 		 * eager.
4359 		 */
4360 		if (tcp->tcp_conn.tcp_eager_conn_ind != NULL) {
4361 			tcp_eager_unlink(tcp);
4362 			mutex_exit(&listener->tcp_eager_lock);
4363 			/*
4364 			 * We don't want to have any pointers to the
4365 			 * listener queue, after we have released our
4366 			 * reference on the listener
4367 			 */
4368 			tcp->tcp_rq = tcp_g_q;
4369 			tcp->tcp_wq = WR(tcp_g_q);
4370 			CONN_DEC_REF(listener->tcp_connp);
4371 		} else {
4372 			mutex_exit(&listener->tcp_eager_lock);
4373 		}
4374 	}
4375 
4376 	/* Stop all the timers */
4377 	tcp_timers_stop(tcp);
4378 
4379 	if (tcp->tcp_state == TCPS_LISTEN) {
4380 		if (tcp->tcp_ip_addr_cache) {
4381 			kmem_free((void *)tcp->tcp_ip_addr_cache,
4382 			    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
4383 			tcp->tcp_ip_addr_cache = NULL;
4384 		}
4385 	}
4386 	if (tcp->tcp_flow_stopped)
4387 		tcp_clrqfull(tcp);
4388 
4389 	tcp_bind_hash_remove(tcp);
4390 	/*
4391 	 * If the tcp_time_wait_collector (which runs outside the squeue)
4392 	 * is trying to remove this tcp from the time wait list, we will
4393 	 * block in tcp_time_wait_remove while trying to acquire the
4394 	 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also
4395 	 * requires the ipcl_hash_remove to be ordered after the
4396 	 * tcp_time_wait_remove for the refcnt checks to work correctly.
4397 	 */
4398 	if (tcp->tcp_state == TCPS_TIME_WAIT)
4399 		tcp_time_wait_remove(tcp, NULL);
4400 	CL_INET_DISCONNECT(tcp);
4401 	ipcl_hash_remove(connp);
4402 
4403 	/*
4404 	 * Delete the cached ire in conn_ire_cache and also mark
4405 	 * the conn as CONDEMNED
4406 	 */
4407 	mutex_enter(&connp->conn_lock);
4408 	connp->conn_state_flags |= CONN_CONDEMNED;
4409 	ire = connp->conn_ire_cache;
4410 	connp->conn_ire_cache = NULL;
4411 	mutex_exit(&connp->conn_lock);
4412 	if (ire != NULL)
4413 		IRE_REFRELE_NOTR(ire);
4414 
4415 	/* Need to cleanup any pending ioctls */
4416 	ASSERT(tcp->tcp_time_wait_next == NULL);
4417 	ASSERT(tcp->tcp_time_wait_prev == NULL);
4418 	ASSERT(tcp->tcp_time_wait_expire == 0);
4419 	tcp->tcp_state = TCPS_CLOSED;
4420 
4421 	/* Release any SSL context */
4422 	if (tcp->tcp_kssl_ent != NULL) {
4423 		kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY);
4424 		tcp->tcp_kssl_ent = NULL;
4425 	}
4426 	if (tcp->tcp_kssl_ctx != NULL) {
4427 		kssl_release_ctx(tcp->tcp_kssl_ctx);
4428 		tcp->tcp_kssl_ctx = NULL;
4429 	}
4430 	tcp->tcp_kssl_pending = B_FALSE;
4431 }
4432 
4433 /*
4434  * tcp is dying (called from ipcl_conn_destroy and error cases).
4435  * Free the tcp_t in either case.
4436  */
4437 void
4438 tcp_free(tcp_t *tcp)
4439 {
4440 	mblk_t	*mp;
4441 	ip6_pkt_t	*ipp;
4442 
4443 	ASSERT(tcp != NULL);
4444 	ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL);
4445 
4446 	tcp->tcp_rq = NULL;
4447 	tcp->tcp_wq = NULL;
4448 
4449 	tcp_close_mpp(&tcp->tcp_xmit_head);
4450 	tcp_close_mpp(&tcp->tcp_reass_head);
4451 	if (tcp->tcp_rcv_list != NULL) {
4452 		/* Free b_next chain */
4453 		tcp_close_mpp(&tcp->tcp_rcv_list);
4454 	}
4455 	if ((mp = tcp->tcp_urp_mp) != NULL) {
4456 		freemsg(mp);
4457 	}
4458 	if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
4459 		freemsg(mp);
4460 	}
4461 
4462 	if (tcp->tcp_fused_sigurg_mp != NULL) {
4463 		freeb(tcp->tcp_fused_sigurg_mp);
4464 		tcp->tcp_fused_sigurg_mp = NULL;
4465 	}
4466 
4467 	if (tcp->tcp_sack_info != NULL) {
4468 		if (tcp->tcp_notsack_list != NULL) {
4469 			TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
4470 		}
4471 		bzero(tcp->tcp_sack_info, sizeof (tcp_sack_info_t));
4472 	}
4473 
4474 	if (tcp->tcp_hopopts != NULL) {
4475 		mi_free(tcp->tcp_hopopts);
4476 		tcp->tcp_hopopts = NULL;
4477 		tcp->tcp_hopoptslen = 0;
4478 	}
4479 	ASSERT(tcp->tcp_hopoptslen == 0);
4480 	if (tcp->tcp_dstopts != NULL) {
4481 		mi_free(tcp->tcp_dstopts);
4482 		tcp->tcp_dstopts = NULL;
4483 		tcp->tcp_dstoptslen = 0;
4484 	}
4485 	ASSERT(tcp->tcp_dstoptslen == 0);
4486 	if (tcp->tcp_rtdstopts != NULL) {
4487 		mi_free(tcp->tcp_rtdstopts);
4488 		tcp->tcp_rtdstopts = NULL;
4489 		tcp->tcp_rtdstoptslen = 0;
4490 	}
4491 	ASSERT(tcp->tcp_rtdstoptslen == 0);
4492 	if (tcp->tcp_rthdr != NULL) {
4493 		mi_free(tcp->tcp_rthdr);
4494 		tcp->tcp_rthdr = NULL;
4495 		tcp->tcp_rthdrlen = 0;
4496 	}
4497 	ASSERT(tcp->tcp_rthdrlen == 0);
4498 
4499 	ipp = &tcp->tcp_sticky_ipp;
4500 	if (ipp->ipp_fields & (IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS |
4501 	    IPPF_RTHDR))
4502 		ip6_pkt_free(ipp);
4503 
4504 	/*
4505 	 * Free memory associated with the tcp/ip header template.
4506 	 */
4507 
4508 	if (tcp->tcp_iphc != NULL)
4509 		bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
4510 
4511 	/*
4512 	 * Following is really a blowing away a union.
4513 	 * It happens to have exactly two members of identical size
4514 	 * the following code is enough.
4515 	 */
4516 	tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
4517 
4518 	if (tcp->tcp_tracebuf != NULL) {
4519 		kmem_free(tcp->tcp_tracebuf, sizeof (tcptrch_t));
4520 		tcp->tcp_tracebuf = NULL;
4521 	}
4522 }
4523 
4524 
4525 /*
4526  * Put a connection confirmation message upstream built from the
4527  * address information within 'iph' and 'tcph'.  Report our success or failure.
4528  */
4529 static boolean_t
4530 tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, mblk_t *idmp,
4531     mblk_t **defermp)
4532 {
4533 	sin_t	sin;
4534 	sin6_t	sin6;
4535 	mblk_t	*mp;
4536 	char	*optp = NULL;
4537 	int	optlen = 0;
4538 	cred_t	*cr;
4539 
4540 	if (defermp != NULL)
4541 		*defermp = NULL;
4542 
4543 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL) {
4544 		/*
4545 		 * Return in T_CONN_CON results of option negotiation through
4546 		 * the T_CONN_REQ. Note: If there is an real end-to-end option
4547 		 * negotiation, then what is received from remote end needs
4548 		 * to be taken into account but there is no such thing (yet?)
4549 		 * in our TCP/IP.
4550 		 * Note: We do not use mi_offset_param() here as
4551 		 * tcp_opts_conn_req contents do not directly come from
4552 		 * an application and are either generated in kernel or
4553 		 * from user input that was already verified.
4554 		 */
4555 		mp = tcp->tcp_conn.tcp_opts_conn_req;
4556 		optp = (char *)(mp->b_rptr +
4557 		    ((struct T_conn_req *)mp->b_rptr)->OPT_offset);
4558 		optlen = (int)
4559 		    ((struct T_conn_req *)mp->b_rptr)->OPT_length;
4560 	}
4561 
4562 	if (IPH_HDR_VERSION(iphdr) == IPV4_VERSION) {
4563 		ipha_t *ipha = (ipha_t *)iphdr;
4564 
4565 		/* packet is IPv4 */
4566 		if (tcp->tcp_family == AF_INET) {
4567 			sin = sin_null;
4568 			sin.sin_addr.s_addr = ipha->ipha_src;
4569 			sin.sin_port = *(uint16_t *)tcph->th_lport;
4570 			sin.sin_family = AF_INET;
4571 			mp = mi_tpi_conn_con(NULL, (char *)&sin,
4572 			    (int)sizeof (sin_t), optp, optlen);
4573 		} else {
4574 			sin6 = sin6_null;
4575 			IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr);
4576 			sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4577 			sin6.sin6_family = AF_INET6;
4578 			mp = mi_tpi_conn_con(NULL, (char *)&sin6,
4579 			    (int)sizeof (sin6_t), optp, optlen);
4580 
4581 		}
4582 	} else {
4583 		ip6_t	*ip6h = (ip6_t *)iphdr;
4584 
4585 		ASSERT(IPH_HDR_VERSION(iphdr) == IPV6_VERSION);
4586 		ASSERT(tcp->tcp_family == AF_INET6);
4587 		sin6 = sin6_null;
4588 		sin6.sin6_addr = ip6h->ip6_src;
4589 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4590 		sin6.sin6_family = AF_INET6;
4591 		sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK;
4592 		mp = mi_tpi_conn_con(NULL, (char *)&sin6,
4593 		    (int)sizeof (sin6_t), optp, optlen);
4594 	}
4595 
4596 	if (!mp)
4597 		return (B_FALSE);
4598 
4599 	if ((cr = DB_CRED(idmp)) != NULL) {
4600 		mblk_setcred(mp, cr);
4601 		DB_CPID(mp) = DB_CPID(idmp);
4602 	}
4603 
4604 	if (defermp == NULL)
4605 		putnext(tcp->tcp_rq, mp);
4606 	else
4607 		*defermp = mp;
4608 
4609 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
4610 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
4611 	return (B_TRUE);
4612 }
4613 
4614 /*
4615  * Defense for the SYN attack -
4616  * 1. When q0 is full, drop from the tail (tcp_eager_prev_q0) the oldest
4617  *    one that doesn't have the dontdrop bit set.
4618  * 2. Don't drop a SYN request before its first timeout. This gives every
4619  *    request at least til the first timeout to complete its 3-way handshake.
4620  * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many
4621  *    requests currently on the queue that has timed out. This will be used
4622  *    as an indicator of whether an attack is under way, so that appropriate
4623  *    actions can be taken. (It's incremented in tcp_timer() and decremented
4624  *    either when eager goes into ESTABLISHED, or gets freed up.)
4625  * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on
4626  *    # of timeout drops back to <= q0len/32 => SYN alert off
4627  */
4628 static boolean_t
4629 tcp_drop_q0(tcp_t *tcp)
4630 {
4631 	tcp_t	*eager;
4632 
4633 	ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock));
4634 	ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0);
4635 	/*
4636 	 * New one is added after next_q0 so prev_q0 points to the oldest
4637 	 * Also do not drop any established connections that are deferred on
4638 	 * q0 due to q being full
4639 	 */
4640 
4641 	eager = tcp->tcp_eager_prev_q0;
4642 	while (eager->tcp_dontdrop || eager->tcp_conn_def_q0) {
4643 		eager = eager->tcp_eager_prev_q0;
4644 		if (eager == tcp) {
4645 			eager = tcp->tcp_eager_prev_q0;
4646 			break;
4647 		}
4648 	}
4649 	if (eager->tcp_syn_rcvd_timeout == 0)
4650 		return (B_FALSE);
4651 
4652 	if (tcp->tcp_debug) {
4653 		(void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE,
4654 		    "tcp_drop_q0: listen half-open queue (max=%d) overflow"
4655 		    " (%d pending) on %s, drop one", tcp_conn_req_max_q0,
4656 		    tcp->tcp_conn_req_cnt_q0,
4657 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
4658 	}
4659 
4660 	BUMP_MIB(&tcp_mib, tcpHalfOpenDrop);
4661 
4662 	/*
4663 	 * need to do refhold here because the selected eager could
4664 	 * be removed by someone else if we release the eager lock.
4665 	 */
4666 	CONN_INC_REF(eager->tcp_connp);
4667 	mutex_exit(&tcp->tcp_eager_lock);
4668 
4669 	/* Mark the IRE created for this SYN request temporary */
4670 	tcp_ip_ire_mark_advice(eager);
4671 	(void) tcp_clean_death(eager, ETIMEDOUT, 5);
4672 	CONN_DEC_REF(eager->tcp_connp);
4673 
4674 	mutex_enter(&tcp->tcp_eager_lock);
4675 	return (B_TRUE);
4676 }
4677 
4678 int
4679 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp,
4680     tcph_t *tcph, uint_t ipvers, mblk_t *idmp)
4681 {
4682 	tcp_t 		*ltcp = lconnp->conn_tcp;
4683 	tcp_t		*tcp = connp->conn_tcp;
4684 	mblk_t		*tpi_mp;
4685 	ipha_t		*ipha;
4686 	ip6_t		*ip6h;
4687 	sin6_t 		sin6;
4688 	in6_addr_t 	v6dst;
4689 	int		err;
4690 	int		ifindex = 0;
4691 	cred_t		*cr;
4692 
4693 	if (ipvers == IPV4_VERSION) {
4694 		ipha = (ipha_t *)mp->b_rptr;
4695 
4696 		connp->conn_send = ip_output;
4697 		connp->conn_recv = tcp_input;
4698 
4699 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6);
4700 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6);
4701 
4702 		sin6 = sin6_null;
4703 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr);
4704 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &v6dst);
4705 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4706 		sin6.sin6_family = AF_INET6;
4707 		sin6.__sin6_src_id = ip_srcid_find_addr(&v6dst,
4708 		    lconnp->conn_zoneid);
4709 		if (tcp->tcp_recvdstaddr) {
4710 			sin6_t	sin6d;
4711 
4712 			sin6d = sin6_null;
4713 			IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst,
4714 			    &sin6d.sin6_addr);
4715 			sin6d.sin6_port = *(uint16_t *)tcph->th_fport;
4716 			sin6d.sin6_family = AF_INET;
4717 			tpi_mp = mi_tpi_extconn_ind(NULL,
4718 			    (char *)&sin6d, sizeof (sin6_t),
4719 			    (char *)&tcp,
4720 			    (t_scalar_t)sizeof (intptr_t),
4721 			    (char *)&sin6d, sizeof (sin6_t),
4722 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4723 		} else {
4724 			tpi_mp = mi_tpi_conn_ind(NULL,
4725 			    (char *)&sin6, sizeof (sin6_t),
4726 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4727 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4728 		}
4729 	} else {
4730 		ip6h = (ip6_t *)mp->b_rptr;
4731 
4732 		connp->conn_send = ip_output_v6;
4733 		connp->conn_recv = tcp_input;
4734 
4735 		connp->conn_srcv6 = ip6h->ip6_dst;
4736 		connp->conn_remv6 = ip6h->ip6_src;
4737 
4738 		/* db_cksumstuff is set at ip_fanout_tcp_v6 */
4739 		ifindex = (int)DB_CKSUMSTUFF(mp);
4740 		DB_CKSUMSTUFF(mp) = 0;
4741 
4742 		sin6 = sin6_null;
4743 		sin6.sin6_addr = ip6h->ip6_src;
4744 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4745 		sin6.sin6_family = AF_INET6;
4746 		sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK;
4747 		sin6.__sin6_src_id = ip_srcid_find_addr(&ip6h->ip6_dst,
4748 		    lconnp->conn_zoneid);
4749 
4750 		if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) {
4751 			/* Pass up the scope_id of remote addr */
4752 			sin6.sin6_scope_id = ifindex;
4753 		} else {
4754 			sin6.sin6_scope_id = 0;
4755 		}
4756 		if (tcp->tcp_recvdstaddr) {
4757 			sin6_t	sin6d;
4758 
4759 			sin6d = sin6_null;
4760 			sin6.sin6_addr = ip6h->ip6_dst;
4761 			sin6d.sin6_port = *(uint16_t *)tcph->th_fport;
4762 			sin6d.sin6_family = AF_INET;
4763 			tpi_mp = mi_tpi_extconn_ind(NULL,
4764 			    (char *)&sin6d, sizeof (sin6_t),
4765 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4766 			    (char *)&sin6d, sizeof (sin6_t),
4767 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4768 		} else {
4769 			tpi_mp = mi_tpi_conn_ind(NULL,
4770 			    (char *)&sin6, sizeof (sin6_t),
4771 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4772 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4773 		}
4774 	}
4775 
4776 	if (tpi_mp == NULL)
4777 		return (ENOMEM);
4778 
4779 	connp->conn_fport = *(uint16_t *)tcph->th_lport;
4780 	connp->conn_lport = *(uint16_t *)tcph->th_fport;
4781 	connp->conn_flags |= (IPCL_TCP6|IPCL_EAGER);
4782 	connp->conn_fully_bound = B_FALSE;
4783 
4784 	if (tcp_trace)
4785 		tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_NOSLEEP);
4786 
4787 	/* Inherit information from the "parent" */
4788 	tcp->tcp_ipversion = ltcp->tcp_ipversion;
4789 	tcp->tcp_family = ltcp->tcp_family;
4790 	tcp->tcp_wq = ltcp->tcp_wq;
4791 	tcp->tcp_rq = ltcp->tcp_rq;
4792 	tcp->tcp_mss = tcp_mss_def_ipv6;
4793 	tcp->tcp_detached = B_TRUE;
4794 	if ((err = tcp_init_values(tcp)) != 0) {
4795 		freemsg(tpi_mp);
4796 		return (err);
4797 	}
4798 
4799 	if (ipvers == IPV4_VERSION) {
4800 		if ((err = tcp_header_init_ipv4(tcp)) != 0) {
4801 			freemsg(tpi_mp);
4802 			return (err);
4803 		}
4804 		ASSERT(tcp->tcp_ipha != NULL);
4805 	} else {
4806 		/* ifindex must be already set */
4807 		ASSERT(ifindex != 0);
4808 
4809 		if (ltcp->tcp_bound_if != 0) {
4810 			/*
4811 			 * Set newtcp's bound_if equal to
4812 			 * listener's value. If ifindex is
4813 			 * not the same as ltcp->tcp_bound_if,
4814 			 * it must be a packet for the ipmp group
4815 			 * of interfaces
4816 			 */
4817 			tcp->tcp_bound_if = ltcp->tcp_bound_if;
4818 		} else if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) {
4819 			tcp->tcp_bound_if = ifindex;
4820 		}
4821 
4822 		tcp->tcp_ipv6_recvancillary = ltcp->tcp_ipv6_recvancillary;
4823 		tcp->tcp_recvifindex = 0;
4824 		tcp->tcp_recvhops = 0xffffffffU;
4825 		ASSERT(tcp->tcp_ip6h != NULL);
4826 	}
4827 
4828 	tcp->tcp_lport = ltcp->tcp_lport;
4829 
4830 	if (ltcp->tcp_ipversion == tcp->tcp_ipversion) {
4831 		if (tcp->tcp_iphc_len != ltcp->tcp_iphc_len) {
4832 			/*
4833 			 * Listener had options of some sort; eager inherits.
4834 			 * Free up the eager template and allocate one
4835 			 * of the right size.
4836 			 */
4837 			if (tcp->tcp_hdr_grown) {
4838 				kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len);
4839 			} else {
4840 				bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
4841 				kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc);
4842 			}
4843 			tcp->tcp_iphc = kmem_zalloc(ltcp->tcp_iphc_len,
4844 			    KM_NOSLEEP);
4845 			if (tcp->tcp_iphc == NULL) {
4846 				tcp->tcp_iphc_len = 0;
4847 				freemsg(tpi_mp);
4848 				return (ENOMEM);
4849 			}
4850 			tcp->tcp_iphc_len = ltcp->tcp_iphc_len;
4851 			tcp->tcp_hdr_grown = B_TRUE;
4852 		}
4853 		tcp->tcp_hdr_len = ltcp->tcp_hdr_len;
4854 		tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len;
4855 		tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
4856 		tcp->tcp_ip6_hops = ltcp->tcp_ip6_hops;
4857 		tcp->tcp_ip6_vcf = ltcp->tcp_ip6_vcf;
4858 
4859 		/*
4860 		 * Copy the IP+TCP header template from listener to eager
4861 		 */
4862 		bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len);
4863 		if (tcp->tcp_ipversion == IPV6_VERSION) {
4864 			if (((ip6i_t *)(tcp->tcp_iphc))->ip6i_nxt ==
4865 			    IPPROTO_RAW) {
4866 				tcp->tcp_ip6h =
4867 				    (ip6_t *)(tcp->tcp_iphc +
4868 					sizeof (ip6i_t));
4869 			} else {
4870 				tcp->tcp_ip6h =
4871 				    (ip6_t *)(tcp->tcp_iphc);
4872 			}
4873 			tcp->tcp_ipha = NULL;
4874 		} else {
4875 			tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
4876 			tcp->tcp_ip6h = NULL;
4877 		}
4878 		tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc +
4879 		    tcp->tcp_ip_hdr_len);
4880 	} else {
4881 		/*
4882 		 * only valid case when ipversion of listener and
4883 		 * eager differ is when listener is IPv6 and
4884 		 * eager is IPv4.
4885 		 * Eager header template has been initialized to the
4886 		 * maximum v4 header sizes, which includes space for
4887 		 * TCP and IP options.
4888 		 */
4889 		ASSERT((ltcp->tcp_ipversion == IPV6_VERSION) &&
4890 		    (tcp->tcp_ipversion == IPV4_VERSION));
4891 		ASSERT(tcp->tcp_iphc_len >=
4892 		    TCP_MAX_COMBINED_HEADER_LENGTH);
4893 		tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
4894 		/* copy IP header fields individually */
4895 		tcp->tcp_ipha->ipha_ttl =
4896 		    ltcp->tcp_ip6h->ip6_hops;
4897 		bcopy(ltcp->tcp_tcph->th_lport,
4898 		    tcp->tcp_tcph->th_lport, sizeof (ushort_t));
4899 	}
4900 
4901 	bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t));
4902 	bcopy(tcp->tcp_tcph->th_fport, &tcp->tcp_fport,
4903 	    sizeof (in_port_t));
4904 
4905 	if (ltcp->tcp_lport == 0) {
4906 		tcp->tcp_lport = *(in_port_t *)tcph->th_fport;
4907 		bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport,
4908 		    sizeof (in_port_t));
4909 	}
4910 
4911 	if (tcp->tcp_ipversion == IPV4_VERSION) {
4912 		ASSERT(ipha != NULL);
4913 		tcp->tcp_ipha->ipha_dst = ipha->ipha_src;
4914 		tcp->tcp_ipha->ipha_src = ipha->ipha_dst;
4915 
4916 		/* Source routing option copyover (reverse it) */
4917 		if (tcp_rev_src_routes)
4918 			tcp_opt_reverse(tcp, ipha);
4919 	} else {
4920 		ASSERT(ip6h != NULL);
4921 		tcp->tcp_ip6h->ip6_dst = ip6h->ip6_src;
4922 		tcp->tcp_ip6h->ip6_src = ip6h->ip6_dst;
4923 	}
4924 
4925 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
4926 	/*
4927 	 * If the SYN contains a credential, it's a loopback packet; attach
4928 	 * the credential to the TPI message.
4929 	 */
4930 	if ((cr = DB_CRED(idmp)) != NULL) {
4931 		mblk_setcred(tpi_mp, cr);
4932 		DB_CPID(tpi_mp) = DB_CPID(idmp);
4933 	}
4934 	tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp;
4935 
4936 	/* Inherit the listener's SSL protection state */
4937 
4938 	if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) {
4939 		kssl_hold_ent(tcp->tcp_kssl_ent);
4940 		tcp->tcp_kssl_pending = B_TRUE;
4941 	}
4942 
4943 	return (0);
4944 }
4945 
4946 
4947 int
4948 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha,
4949     tcph_t *tcph, mblk_t *idmp)
4950 {
4951 	tcp_t 		*ltcp = lconnp->conn_tcp;
4952 	tcp_t		*tcp = connp->conn_tcp;
4953 	sin_t		sin;
4954 	mblk_t		*tpi_mp = NULL;
4955 	int		err;
4956 	cred_t		*cr;
4957 
4958 	sin = sin_null;
4959 	sin.sin_addr.s_addr = ipha->ipha_src;
4960 	sin.sin_port = *(uint16_t *)tcph->th_lport;
4961 	sin.sin_family = AF_INET;
4962 	if (ltcp->tcp_recvdstaddr) {
4963 		sin_t	sind;
4964 
4965 		sind = sin_null;
4966 		sind.sin_addr.s_addr = ipha->ipha_dst;
4967 		sind.sin_port = *(uint16_t *)tcph->th_fport;
4968 		sind.sin_family = AF_INET;
4969 		tpi_mp = mi_tpi_extconn_ind(NULL,
4970 		    (char *)&sind, sizeof (sin_t), (char *)&tcp,
4971 		    (t_scalar_t)sizeof (intptr_t), (char *)&sind,
4972 		    sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4973 	} else {
4974 		tpi_mp = mi_tpi_conn_ind(NULL,
4975 		    (char *)&sin, sizeof (sin_t),
4976 		    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4977 		    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4978 	}
4979 
4980 	if (tpi_mp == NULL) {
4981 		return (ENOMEM);
4982 	}
4983 
4984 	connp->conn_flags |= (IPCL_TCP4|IPCL_EAGER);
4985 	connp->conn_send = ip_output;
4986 	connp->conn_recv = tcp_input;
4987 	connp->conn_fully_bound = B_FALSE;
4988 
4989 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6);
4990 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6);
4991 	connp->conn_fport = *(uint16_t *)tcph->th_lport;
4992 	connp->conn_lport = *(uint16_t *)tcph->th_fport;
4993 
4994 	if (tcp_trace) {
4995 		tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_NOSLEEP);
4996 	}
4997 
4998 	/* Inherit information from the "parent" */
4999 	tcp->tcp_ipversion = ltcp->tcp_ipversion;
5000 	tcp->tcp_family = ltcp->tcp_family;
5001 	tcp->tcp_wq = ltcp->tcp_wq;
5002 	tcp->tcp_rq = ltcp->tcp_rq;
5003 	tcp->tcp_mss = tcp_mss_def_ipv4;
5004 	tcp->tcp_detached = B_TRUE;
5005 	if ((err = tcp_init_values(tcp)) != 0) {
5006 		freemsg(tpi_mp);
5007 		return (err);
5008 	}
5009 
5010 	/*
5011 	 * Let's make sure that eager tcp template has enough space to
5012 	 * copy IPv4 listener's tcp template. Since the conn_t structure is
5013 	 * preserved and tcp_iphc_len is also preserved, an eager conn_t may
5014 	 * have a tcp_template of total len TCP_MAX_COMBINED_HEADER_LENGTH or
5015 	 * more (in case of re-allocation of conn_t with tcp-IPv6 template with
5016 	 * extension headers or with ip6i_t struct). Note that bcopy() below
5017 	 * copies listener tcp's hdr_len which cannot be greater than TCP_MAX_
5018 	 * COMBINED_HEADER_LENGTH as this listener must be a IPv4 listener.
5019 	 */
5020 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
5021 	ASSERT(ltcp->tcp_hdr_len <= TCP_MAX_COMBINED_HEADER_LENGTH);
5022 
5023 	tcp->tcp_hdr_len = ltcp->tcp_hdr_len;
5024 	tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len;
5025 	tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
5026 	tcp->tcp_ttl = ltcp->tcp_ttl;
5027 	tcp->tcp_tos = ltcp->tcp_tos;
5028 
5029 	/* Copy the IP+TCP header template from listener to eager */
5030 	bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len);
5031 	tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
5032 	tcp->tcp_ip6h = NULL;
5033 	tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc +
5034 	    tcp->tcp_ip_hdr_len);
5035 
5036 	/* Initialize the IP addresses and Ports */
5037 	tcp->tcp_ipha->ipha_dst = ipha->ipha_src;
5038 	tcp->tcp_ipha->ipha_src = ipha->ipha_dst;
5039 	bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t));
5040 	bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, sizeof (in_port_t));
5041 
5042 	/* Source routing option copyover (reverse it) */
5043 	if (tcp_rev_src_routes)
5044 		tcp_opt_reverse(tcp, ipha);
5045 
5046 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
5047 
5048 	/*
5049 	 * If the SYN contains a credential, it's a loopback packet; attach
5050 	 * the credential to the TPI message.
5051 	 */
5052 	if ((cr = DB_CRED(idmp)) != NULL) {
5053 		mblk_setcred(tpi_mp, cr);
5054 		DB_CPID(tpi_mp) = DB_CPID(idmp);
5055 	}
5056 	tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp;
5057 
5058 	/* Inherit the listener's SSL protection state */
5059 	if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) {
5060 		kssl_hold_ent(tcp->tcp_kssl_ent);
5061 		tcp->tcp_kssl_pending = B_TRUE;
5062 	}
5063 
5064 	return (0);
5065 }
5066 
5067 /*
5068  * sets up conn for ipsec.
5069  * if the first mblk is M_CTL it is consumed and mpp is updated.
5070  * in case of error mpp is freed.
5071  */
5072 conn_t *
5073 tcp_get_ipsec_conn(tcp_t *tcp, squeue_t *sqp, mblk_t **mpp)
5074 {
5075 	conn_t 		*connp = tcp->tcp_connp;
5076 	conn_t 		*econnp;
5077 	squeue_t 	*new_sqp;
5078 	mblk_t 		*first_mp = *mpp;
5079 	mblk_t		*mp = *mpp;
5080 	boolean_t	mctl_present = B_FALSE;
5081 	uint_t		ipvers;
5082 
5083 	econnp = tcp_get_conn(sqp);
5084 	if (econnp == NULL) {
5085 		freemsg(first_mp);
5086 		return (NULL);
5087 	}
5088 	if (DB_TYPE(mp) == M_CTL) {
5089 		if (mp->b_cont == NULL ||
5090 		    mp->b_cont->b_datap->db_type != M_DATA) {
5091 			freemsg(first_mp);
5092 			return (NULL);
5093 		}
5094 		mp = mp->b_cont;
5095 		if ((mp->b_datap->db_struioflag & STRUIO_EAGER) == 0) {
5096 			freemsg(first_mp);
5097 			return (NULL);
5098 		}
5099 
5100 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
5101 		first_mp->b_datap->db_struioflag &= ~STRUIO_POLICY;
5102 		mctl_present = B_TRUE;
5103 	} else {
5104 		ASSERT(mp->b_datap->db_struioflag & STRUIO_POLICY);
5105 		mp->b_datap->db_struioflag &= ~STRUIO_POLICY;
5106 	}
5107 
5108 	new_sqp = (squeue_t *)DB_CKSUMSTART(mp);
5109 	DB_CKSUMSTART(mp) = 0;
5110 
5111 	ASSERT(OK_32PTR(mp->b_rptr));
5112 	ipvers = IPH_HDR_VERSION(mp->b_rptr);
5113 	if (ipvers == IPV4_VERSION) {
5114 		uint16_t  	*up;
5115 		uint32_t	ports;
5116 		ipha_t		*ipha;
5117 
5118 		ipha = (ipha_t *)mp->b_rptr;
5119 		up = (uint16_t *)((uchar_t *)ipha +
5120 		    IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET);
5121 		ports = *(uint32_t *)up;
5122 		IPCL_TCP_EAGER_INIT(econnp, IPPROTO_TCP,
5123 		    ipha->ipha_dst, ipha->ipha_src, ports);
5124 	} else {
5125 		uint16_t  	*up;
5126 		uint32_t	ports;
5127 		uint16_t	ip_hdr_len;
5128 		uint8_t		*nexthdrp;
5129 		ip6_t 		*ip6h;
5130 		tcph_t		*tcph;
5131 
5132 		ip6h = (ip6_t *)mp->b_rptr;
5133 		if (ip6h->ip6_nxt == IPPROTO_TCP) {
5134 			ip_hdr_len = IPV6_HDR_LEN;
5135 		} else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ip_hdr_len,
5136 		    &nexthdrp) || *nexthdrp != IPPROTO_TCP) {
5137 			CONN_DEC_REF(econnp);
5138 			freemsg(first_mp);
5139 			return (NULL);
5140 		}
5141 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
5142 		up = (uint16_t *)tcph->th_lport;
5143 		ports = *(uint32_t *)up;
5144 		IPCL_TCP_EAGER_INIT_V6(econnp, IPPROTO_TCP,
5145 		    ip6h->ip6_dst, ip6h->ip6_src, ports);
5146 	}
5147 
5148 	/*
5149 	 * The caller already ensured that there is a sqp present.
5150 	 */
5151 	econnp->conn_sqp = new_sqp;
5152 
5153 	if (connp->conn_policy != NULL) {
5154 		ipsec_in_t *ii;
5155 		ii = (ipsec_in_t *)(first_mp->b_rptr);
5156 		ASSERT(ii->ipsec_in_policy == NULL);
5157 		IPPH_REFHOLD(connp->conn_policy);
5158 		ii->ipsec_in_policy = connp->conn_policy;
5159 
5160 		first_mp->b_datap->db_type = IPSEC_POLICY_SET;
5161 		if (!ip_bind_ipsec_policy_set(econnp, first_mp)) {
5162 			CONN_DEC_REF(econnp);
5163 			freemsg(first_mp);
5164 			return (NULL);
5165 		}
5166 	}
5167 
5168 	if (ipsec_conn_cache_policy(econnp, ipvers == IPV4_VERSION) != 0) {
5169 		CONN_DEC_REF(econnp);
5170 		freemsg(first_mp);
5171 		return (NULL);
5172 	}
5173 
5174 	/*
5175 	 * If we know we have some policy, pass the "IPSEC"
5176 	 * options size TCP uses this adjust the MSS.
5177 	 */
5178 	econnp->conn_tcp->tcp_ipsec_overhead = conn_ipsec_length(econnp);
5179 	if (mctl_present) {
5180 		freeb(first_mp);
5181 		*mpp = mp;
5182 	}
5183 
5184 	return (econnp);
5185 }
5186 
5187 /*
5188  * tcp_get_conn/tcp_free_conn
5189  *
5190  * tcp_get_conn is used to get a clean tcp connection structure.
5191  * It tries to reuse the connections put on the freelist by the
5192  * time_wait_collector failing which it goes to kmem_cache. This
5193  * way has two benefits compared to just allocating from and
5194  * freeing to kmem_cache.
5195  * 1) The time_wait_collector can free (which includes the cleanup)
5196  * outside the squeue. So when the interrupt comes, we have a clean
5197  * connection sitting in the freelist. Obviously, this buys us
5198  * performance.
5199  *
5200  * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_conn_request
5201  * has multiple disadvantages - tying up the squeue during alloc, and the
5202  * fact that IPSec policy initialization has to happen here which
5203  * requires us sending a M_CTL and checking for it i.e. real ugliness.
5204  * But allocating the conn/tcp in IP land is also not the best since
5205  * we can't check the 'q' and 'q0' which are protected by squeue and
5206  * blindly allocate memory which might have to be freed here if we are
5207  * not allowed to accept the connection. By using the freelist and
5208  * putting the conn/tcp back in freelist, we don't pay a penalty for
5209  * allocating memory without checking 'q/q0' and freeing it if we can't
5210  * accept the connection.
5211  *
5212  * Care should be taken to put the conn back in the same squeue's freelist
5213  * from which it was allocated. Best results are obtained if conn is
5214  * allocated from listener's squeue and freed to the same. Time wait
5215  * collector will free up the freelist is the connection ends up sitting
5216  * there for too long.
5217  */
5218 void *
5219 tcp_get_conn(void *arg)
5220 {
5221 	tcp_t			*tcp = NULL;
5222 	conn_t			*connp = NULL;
5223 	squeue_t		*sqp = (squeue_t *)arg;
5224 	tcp_squeue_priv_t 	*tcp_time_wait;
5225 
5226 	tcp_time_wait =
5227 	    *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP));
5228 
5229 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
5230 	tcp = tcp_time_wait->tcp_free_list;
5231 	ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0));
5232 	if (tcp != NULL) {
5233 		tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next;
5234 		tcp_time_wait->tcp_free_list_cnt--;
5235 		mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
5236 		tcp->tcp_time_wait_next = NULL;
5237 		connp = tcp->tcp_connp;
5238 		connp->conn_flags |= IPCL_REUSED;
5239 		return ((void *)connp);
5240 	}
5241 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
5242 	if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP)) == NULL)
5243 		return (NULL);
5244 	return ((void *)connp);
5245 }
5246 
5247 /*
5248  * Update the cached label for the given tcp_t.  This should be called once per
5249  * connection, and before any packets are sent or tcp_process_options is
5250  * invoked.  Returns B_FALSE if the correct label could not be constructed.
5251  */
5252 static boolean_t
5253 tcp_update_label(tcp_t *tcp, const cred_t *cr)
5254 {
5255 	conn_t *connp = tcp->tcp_connp;
5256 
5257 	if (tcp->tcp_ipversion == IPV4_VERSION) {
5258 		uchar_t optbuf[IP_MAX_OPT_LENGTH];
5259 		int added;
5260 
5261 		if (tsol_compute_label(cr, tcp->tcp_remote, optbuf,
5262 		    connp->conn_mac_exempt) != 0)
5263 			return (B_FALSE);
5264 
5265 		added = tsol_remove_secopt(tcp->tcp_ipha, tcp->tcp_hdr_len);
5266 		if (added == -1)
5267 			return (B_FALSE);
5268 		tcp->tcp_hdr_len += added;
5269 		tcp->tcp_tcph = (tcph_t *)((uchar_t *)tcp->tcp_tcph + added);
5270 		tcp->tcp_ip_hdr_len += added;
5271 		if ((tcp->tcp_label_len = optbuf[IPOPT_OLEN]) != 0) {
5272 			tcp->tcp_label_len = (tcp->tcp_label_len + 3) & ~3;
5273 			added = tsol_prepend_option(optbuf, tcp->tcp_ipha,
5274 			    tcp->tcp_hdr_len);
5275 			if (added == -1)
5276 				return (B_FALSE);
5277 			tcp->tcp_hdr_len += added;
5278 			tcp->tcp_tcph = (tcph_t *)
5279 			    ((uchar_t *)tcp->tcp_tcph + added);
5280 			tcp->tcp_ip_hdr_len += added;
5281 		}
5282 	} else {
5283 		uchar_t optbuf[TSOL_MAX_IPV6_OPTION];
5284 
5285 		if (tsol_compute_label_v6(cr, &tcp->tcp_remote_v6, optbuf,
5286 		    connp->conn_mac_exempt) != 0)
5287 			return (B_FALSE);
5288 		if (tsol_update_sticky(&tcp->tcp_sticky_ipp,
5289 		    &tcp->tcp_label_len, optbuf) != 0)
5290 			return (B_FALSE);
5291 		if (tcp_build_hdrs(tcp->tcp_rq, tcp) != 0)
5292 			return (B_FALSE);
5293 	}
5294 
5295 	connp->conn_ulp_labeled = 1;
5296 
5297 	return (B_TRUE);
5298 }
5299 
5300 /* BEGIN CSTYLED */
5301 /*
5302  *
5303  * The sockfs ACCEPT path:
5304  * =======================
5305  *
5306  * The eager is now established in its own perimeter as soon as SYN is
5307  * received in tcp_conn_request(). When sockfs receives conn_ind, it
5308  * completes the accept processing on the acceptor STREAM. The sending
5309  * of conn_ind part is common for both sockfs listener and a TLI/XTI
5310  * listener but a TLI/XTI listener completes the accept processing
5311  * on the listener perimeter.
5312  *
5313  * Common control flow for 3 way handshake:
5314  * ----------------------------------------
5315  *
5316  * incoming SYN (listener perimeter) 	-> tcp_rput_data()
5317  *					-> tcp_conn_request()
5318  *
5319  * incoming SYN-ACK-ACK (eager perim) 	-> tcp_rput_data()
5320  * send T_CONN_IND (listener perim)	-> tcp_send_conn_ind()
5321  *
5322  * Sockfs ACCEPT Path:
5323  * -------------------
5324  *
5325  * open acceptor stream (ip_tcpopen allocates tcp_wput_accept()
5326  * as STREAM entry point)
5327  *
5328  * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_wput_accept()
5329  *
5330  * tcp_wput_accept() extracts the eager and makes the q->q_ptr <-> eager
5331  * association (we are not behind eager's squeue but sockfs is protecting us
5332  * and no one knows about this stream yet. The STREAMS entry point q->q_info
5333  * is changed to point at tcp_wput().
5334  *
5335  * tcp_wput_accept() sends any deferred eagers via tcp_send_pending() to
5336  * listener (done on listener's perimeter).
5337  *
5338  * tcp_wput_accept() calls tcp_accept_finish() on eagers perimeter to finish
5339  * accept.
5340  *
5341  * TLI/XTI client ACCEPT path:
5342  * ---------------------------
5343  *
5344  * soaccept() sends T_CONN_RES on the listener STREAM.
5345  *
5346  * tcp_accept() -> tcp_accept_swap() complete the processing and send
5347  * the bind_mp to eager perimeter to finish accept (tcp_rput_other()).
5348  *
5349  * Locks:
5350  * ======
5351  *
5352  * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and
5353  * and listeners->tcp_eager_next_q.
5354  *
5355  * Referencing:
5356  * ============
5357  *
5358  * 1) We start out in tcp_conn_request by eager placing a ref on
5359  * listener and listener adding eager to listeners->tcp_eager_next_q0.
5360  *
5361  * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before
5362  * doing so we place a ref on the eager. This ref is finally dropped at the
5363  * end of tcp_accept_finish() while unwinding from the squeue, i.e. the
5364  * reference is dropped by the squeue framework.
5365  *
5366  * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish
5367  *
5368  * The reference must be released by the same entity that added the reference
5369  * In the above scheme, the eager is the entity that adds and releases the
5370  * references. Note that tcp_accept_finish executes in the squeue of the eager
5371  * (albeit after it is attached to the acceptor stream). Though 1. executes
5372  * in the listener's squeue, the eager is nascent at this point and the
5373  * reference can be considered to have been added on behalf of the eager.
5374  *
5375  * Eager getting a Reset or listener closing:
5376  * ==========================================
5377  *
5378  * Once the listener and eager are linked, the listener never does the unlink.
5379  * If the listener needs to close, tcp_eager_cleanup() is called which queues
5380  * a message on all eager perimeter. The eager then does the unlink, clears
5381  * any pointers to the listener's queue and drops the reference to the
5382  * listener. The listener waits in tcp_close outside the squeue until its
5383  * refcount has dropped to 1. This ensures that the listener has waited for
5384  * all eagers to clear their association with the listener.
5385  *
5386  * Similarly, if eager decides to go away, it can unlink itself and close.
5387  * When the T_CONN_RES comes down, we check if eager has closed. Note that
5388  * the reference to eager is still valid because of the extra ref we put
5389  * in tcp_send_conn_ind.
5390  *
5391  * Listener can always locate the eager under the protection
5392  * of the listener->tcp_eager_lock, and then do a refhold
5393  * on the eager during the accept processing.
5394  *
5395  * The acceptor stream accesses the eager in the accept processing
5396  * based on the ref placed on eager before sending T_conn_ind.
5397  * The only entity that can negate this refhold is a listener close
5398  * which is mutually exclusive with an active acceptor stream.
5399  *
5400  * Eager's reference on the listener
5401  * ===================================
5402  *
5403  * If the accept happens (even on a closed eager) the eager drops its
5404  * reference on the listener at the start of tcp_accept_finish. If the
5405  * eager is killed due to an incoming RST before the T_conn_ind is sent up,
5406  * the reference is dropped in tcp_closei_local. If the listener closes,
5407  * the reference is dropped in tcp_eager_kill. In all cases the reference
5408  * is dropped while executing in the eager's context (squeue).
5409  */
5410 /* END CSTYLED */
5411 
5412 /* Process the SYN packet, mp, directed at the listener 'tcp' */
5413 
5414 /*
5415  * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN.
5416  * tcp_rput_data will not see any SYN packets.
5417  */
5418 /* ARGSUSED */
5419 void
5420 tcp_conn_request(void *arg, mblk_t *mp, void *arg2)
5421 {
5422 	tcph_t		*tcph;
5423 	uint32_t	seg_seq;
5424 	tcp_t		*eager;
5425 	uint_t		ipvers;
5426 	ipha_t		*ipha;
5427 	ip6_t		*ip6h;
5428 	int		err;
5429 	conn_t		*econnp = NULL;
5430 	squeue_t	*new_sqp;
5431 	mblk_t		*mp1;
5432 	uint_t 		ip_hdr_len;
5433 	conn_t		*connp = (conn_t *)arg;
5434 	tcp_t		*tcp = connp->conn_tcp;
5435 	ire_t		*ire;
5436 	cred_t		*credp;
5437 
5438 	if (tcp->tcp_state != TCPS_LISTEN)
5439 		goto error2;
5440 
5441 	ASSERT((tcp->tcp_connp->conn_flags & IPCL_BOUND) != 0);
5442 
5443 	mutex_enter(&tcp->tcp_eager_lock);
5444 	if (tcp->tcp_conn_req_cnt_q >= tcp->tcp_conn_req_max) {
5445 		mutex_exit(&tcp->tcp_eager_lock);
5446 		TCP_STAT(tcp_listendrop);
5447 		BUMP_MIB(&tcp_mib, tcpListenDrop);
5448 		if (tcp->tcp_debug) {
5449 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
5450 			    "tcp_conn_request: listen backlog (max=%d) "
5451 			    "overflow (%d pending) on %s",
5452 			    tcp->tcp_conn_req_max, tcp->tcp_conn_req_cnt_q,
5453 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
5454 		}
5455 		goto error2;
5456 	}
5457 
5458 	if (tcp->tcp_conn_req_cnt_q0 >=
5459 	    tcp->tcp_conn_req_max + tcp_conn_req_max_q0) {
5460 		/*
5461 		 * Q0 is full. Drop a pending half-open req from the queue
5462 		 * to make room for the new SYN req. Also mark the time we
5463 		 * drop a SYN.
5464 		 *
5465 		 * A more aggressive defense against SYN attack will
5466 		 * be to set the "tcp_syn_defense" flag now.
5467 		 */
5468 		TCP_STAT(tcp_listendropq0);
5469 		tcp->tcp_last_rcv_lbolt = lbolt64;
5470 		if (!tcp_drop_q0(tcp)) {
5471 			mutex_exit(&tcp->tcp_eager_lock);
5472 			BUMP_MIB(&tcp_mib, tcpListenDropQ0);
5473 			if (tcp->tcp_debug) {
5474 				(void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE,
5475 				    "tcp_conn_request: listen half-open queue "
5476 				    "(max=%d) full (%d pending) on %s",
5477 				    tcp_conn_req_max_q0,
5478 				    tcp->tcp_conn_req_cnt_q0,
5479 				    tcp_display(tcp, NULL,
5480 				    DISP_PORT_ONLY));
5481 			}
5482 			goto error2;
5483 		}
5484 	}
5485 	mutex_exit(&tcp->tcp_eager_lock);
5486 
5487 	/*
5488 	 * IP adds STRUIO_EAGER and ensures that the received packet is
5489 	 * M_DATA even if conn_ipv6_recvpktinfo is enabled or for ip6
5490 	 * link local address.  If IPSec is enabled, db_struioflag has
5491 	 * STRUIO_POLICY set (mutually exclusive from STRUIO_EAGER);
5492 	 * otherwise an error case if neither of them is set.
5493 	 */
5494 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
5495 		new_sqp = (squeue_t *)DB_CKSUMSTART(mp);
5496 		DB_CKSUMSTART(mp) = 0;
5497 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
5498 		econnp = (conn_t *)tcp_get_conn(arg2);
5499 		if (econnp == NULL)
5500 			goto error2;
5501 		econnp->conn_sqp = new_sqp;
5502 	} else if ((mp->b_datap->db_struioflag & STRUIO_POLICY) != 0) {
5503 		/*
5504 		 * mp is updated in tcp_get_ipsec_conn().
5505 		 */
5506 		econnp = tcp_get_ipsec_conn(tcp, arg2, &mp);
5507 		if (econnp == NULL) {
5508 			/*
5509 			 * mp freed by tcp_get_ipsec_conn.
5510 			 */
5511 			return;
5512 		}
5513 	} else {
5514 		goto error2;
5515 	}
5516 
5517 	ASSERT(DB_TYPE(mp) == M_DATA);
5518 
5519 	ipvers = IPH_HDR_VERSION(mp->b_rptr);
5520 	ASSERT(ipvers == IPV6_VERSION || ipvers == IPV4_VERSION);
5521 	ASSERT(OK_32PTR(mp->b_rptr));
5522 	if (ipvers == IPV4_VERSION) {
5523 		ipha = (ipha_t *)mp->b_rptr;
5524 		ip_hdr_len = IPH_HDR_LENGTH(ipha);
5525 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
5526 	} else {
5527 		ip6h = (ip6_t *)mp->b_rptr;
5528 		ip_hdr_len = ip_hdr_length_v6(mp, ip6h);
5529 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
5530 	}
5531 
5532 	if (tcp->tcp_family == AF_INET) {
5533 		ASSERT(ipvers == IPV4_VERSION);
5534 		err = tcp_conn_create_v4(connp, econnp, ipha, tcph, mp);
5535 	} else {
5536 		err = tcp_conn_create_v6(connp, econnp, mp, tcph, ipvers, mp);
5537 	}
5538 
5539 	if (err)
5540 		goto error3;
5541 
5542 	eager = econnp->conn_tcp;
5543 
5544 	/* Inherit various TCP parameters from the listener */
5545 	eager->tcp_naglim = tcp->tcp_naglim;
5546 	eager->tcp_first_timer_threshold =
5547 	    tcp->tcp_first_timer_threshold;
5548 	eager->tcp_second_timer_threshold =
5549 	    tcp->tcp_second_timer_threshold;
5550 
5551 	eager->tcp_first_ctimer_threshold =
5552 	    tcp->tcp_first_ctimer_threshold;
5553 	eager->tcp_second_ctimer_threshold =
5554 	    tcp->tcp_second_ctimer_threshold;
5555 
5556 	/*
5557 	 * tcp_adapt_ire() may change tcp_rwnd according to the ire metrics.
5558 	 * If it does not, the eager's receive window will be set to the
5559 	 * listener's receive window later in this function.
5560 	 */
5561 	eager->tcp_rwnd = 0;
5562 
5563 	/*
5564 	 * Inherit listener's tcp_init_cwnd.  Need to do this before
5565 	 * calling tcp_process_options() where tcp_mss_set() is called
5566 	 * to set the initial cwnd.
5567 	 */
5568 	eager->tcp_init_cwnd = tcp->tcp_init_cwnd;
5569 
5570 	/*
5571 	 * Zones: tcp_adapt_ire() and tcp_send_data() both need the
5572 	 * zone id before the accept is completed in tcp_wput_accept().
5573 	 */
5574 	econnp->conn_zoneid = connp->conn_zoneid;
5575 
5576 	/* Copy nexthop information from listener to eager */
5577 	if (connp->conn_nexthop_set) {
5578 		econnp->conn_nexthop_set = connp->conn_nexthop_set;
5579 		econnp->conn_nexthop_v4 = connp->conn_nexthop_v4;
5580 	}
5581 
5582 	/*
5583 	 * TSOL: tsol_input_proc() needs the eager's cred before the
5584 	 * eager is accepted
5585 	 */
5586 	econnp->conn_cred = eager->tcp_cred = credp = connp->conn_cred;
5587 	crhold(credp);
5588 
5589 	/*
5590 	 * If the caller has the process-wide flag set, then default to MAC
5591 	 * exempt mode.  This allows read-down to unlabeled hosts.
5592 	 */
5593 	if (getpflags(NET_MAC_AWARE, credp) != 0)
5594 		econnp->conn_mac_exempt = B_TRUE;
5595 
5596 	if (is_system_labeled()) {
5597 		cred_t *cr;
5598 
5599 		if (connp->conn_mlp_type != mlptSingle) {
5600 			cr = econnp->conn_peercred = DB_CRED(mp);
5601 			if (cr != NULL)
5602 				crhold(cr);
5603 			else
5604 				cr = econnp->conn_cred;
5605 			DTRACE_PROBE2(mlp_syn_accept, conn_t *,
5606 			    econnp, cred_t *, cr)
5607 		} else {
5608 			cr = econnp->conn_cred;
5609 			DTRACE_PROBE2(syn_accept, conn_t *,
5610 			    econnp, cred_t *, cr)
5611 		}
5612 
5613 		if (!tcp_update_label(eager, cr)) {
5614 			DTRACE_PROBE3(
5615 			    tx__ip__log__error__connrequest__tcp,
5616 			    char *, "eager connp(1) label on SYN mp(2) failed",
5617 			    conn_t *, econnp, mblk_t *, mp);
5618 			goto error3;
5619 		}
5620 	}
5621 
5622 	eager->tcp_hard_binding = B_TRUE;
5623 
5624 	tcp_bind_hash_insert(&tcp_bind_fanout[
5625 	    TCP_BIND_HASH(eager->tcp_lport)], eager, 0);
5626 
5627 	CL_INET_CONNECT(eager);
5628 
5629 	/*
5630 	 * No need to check for multicast destination since ip will only pass
5631 	 * up multicasts to those that have expressed interest
5632 	 * TODO: what about rejecting broadcasts?
5633 	 * Also check that source is not a multicast or broadcast address.
5634 	 */
5635 	eager->tcp_state = TCPS_SYN_RCVD;
5636 
5637 
5638 	/*
5639 	 * There should be no ire in the mp as we are being called after
5640 	 * receiving the SYN.
5641 	 */
5642 	ASSERT(tcp_ire_mp(mp) == NULL);
5643 
5644 	/*
5645 	 * Adapt our mss, ttl, ... according to information provided in IRE.
5646 	 */
5647 
5648 	if (tcp_adapt_ire(eager, NULL) == 0) {
5649 		/* Undo the bind_hash_insert */
5650 		tcp_bind_hash_remove(eager);
5651 		goto error3;
5652 	}
5653 
5654 	/* Process all TCP options. */
5655 	tcp_process_options(eager, tcph);
5656 
5657 	/* Is the other end ECN capable? */
5658 	if (tcp_ecn_permitted >= 1 &&
5659 	    (tcph->th_flags[0] & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) {
5660 		eager->tcp_ecn_ok = B_TRUE;
5661 	}
5662 
5663 	/*
5664 	 * listener->tcp_rq->q_hiwat should be the default window size or a
5665 	 * window size changed via SO_RCVBUF option.  First round up the
5666 	 * eager's tcp_rwnd to the nearest MSS.  Then find out the window
5667 	 * scale option value if needed.  Call tcp_rwnd_set() to finish the
5668 	 * setting.
5669 	 *
5670 	 * Note if there is a rpipe metric associated with the remote host,
5671 	 * we should not inherit receive window size from listener.
5672 	 */
5673 	eager->tcp_rwnd = MSS_ROUNDUP(
5674 	    (eager->tcp_rwnd == 0 ? tcp->tcp_rq->q_hiwat :
5675 	    eager->tcp_rwnd), eager->tcp_mss);
5676 	if (eager->tcp_snd_ws_ok)
5677 		tcp_set_ws_value(eager);
5678 	/*
5679 	 * Note that this is the only place tcp_rwnd_set() is called for
5680 	 * accepting a connection.  We need to call it here instead of
5681 	 * after the 3-way handshake because we need to tell the other
5682 	 * side our rwnd in the SYN-ACK segment.
5683 	 */
5684 	(void) tcp_rwnd_set(eager, eager->tcp_rwnd);
5685 
5686 	/*
5687 	 * We eliminate the need for sockfs to send down a T_SVR4_OPTMGMT_REQ
5688 	 * via soaccept()->soinheritoptions() which essentially applies
5689 	 * all the listener options to the new STREAM. The options that we
5690 	 * need to take care of are:
5691 	 * SO_DEBUG, SO_REUSEADDR, SO_KEEPALIVE, SO_DONTROUTE, SO_BROADCAST,
5692 	 * SO_USELOOPBACK, SO_OOBINLINE, SO_DGRAM_ERRIND, SO_LINGER,
5693 	 * SO_SNDBUF, SO_RCVBUF.
5694 	 *
5695 	 * SO_RCVBUF:	tcp_rwnd_set() above takes care of it.
5696 	 * SO_SNDBUF:	Set the tcp_xmit_hiwater for the eager. When
5697 	 *		tcp_maxpsz_set() gets called later from
5698 	 *		tcp_accept_finish(), the option takes effect.
5699 	 *
5700 	 */
5701 	/* Set the TCP options */
5702 	eager->tcp_xmit_hiwater = tcp->tcp_xmit_hiwater;
5703 	eager->tcp_dgram_errind = tcp->tcp_dgram_errind;
5704 	eager->tcp_oobinline = tcp->tcp_oobinline;
5705 	eager->tcp_reuseaddr = tcp->tcp_reuseaddr;
5706 	eager->tcp_broadcast = tcp->tcp_broadcast;
5707 	eager->tcp_useloopback = tcp->tcp_useloopback;
5708 	eager->tcp_dontroute = tcp->tcp_dontroute;
5709 	eager->tcp_linger = tcp->tcp_linger;
5710 	eager->tcp_lingertime = tcp->tcp_lingertime;
5711 	if (tcp->tcp_ka_enabled)
5712 		eager->tcp_ka_enabled = 1;
5713 
5714 	/* Set the IP options */
5715 	econnp->conn_broadcast = connp->conn_broadcast;
5716 	econnp->conn_loopback = connp->conn_loopback;
5717 	econnp->conn_dontroute = connp->conn_dontroute;
5718 	econnp->conn_reuseaddr = connp->conn_reuseaddr;
5719 
5720 	/* Put a ref on the listener for the eager. */
5721 	CONN_INC_REF(connp);
5722 	mutex_enter(&tcp->tcp_eager_lock);
5723 	tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = eager;
5724 	eager->tcp_eager_next_q0 = tcp->tcp_eager_next_q0;
5725 	tcp->tcp_eager_next_q0 = eager;
5726 	eager->tcp_eager_prev_q0 = tcp;
5727 
5728 	/* Set tcp_listener before adding it to tcp_conn_fanout */
5729 	eager->tcp_listener = tcp;
5730 	eager->tcp_saved_listener = tcp;
5731 
5732 	/*
5733 	 * Tag this detached tcp vector for later retrieval
5734 	 * by our listener client in tcp_accept().
5735 	 */
5736 	eager->tcp_conn_req_seqnum = tcp->tcp_conn_req_seqnum;
5737 	tcp->tcp_conn_req_cnt_q0++;
5738 	if (++tcp->tcp_conn_req_seqnum == -1) {
5739 		/*
5740 		 * -1 is "special" and defined in TPI as something
5741 		 * that should never be used in T_CONN_IND
5742 		 */
5743 		++tcp->tcp_conn_req_seqnum;
5744 	}
5745 	mutex_exit(&tcp->tcp_eager_lock);
5746 
5747 	if (tcp->tcp_syn_defense) {
5748 		/* Don't drop the SYN that comes from a good IP source */
5749 		ipaddr_t *addr_cache = (ipaddr_t *)(tcp->tcp_ip_addr_cache);
5750 		if (addr_cache != NULL && eager->tcp_remote ==
5751 		    addr_cache[IP_ADDR_CACHE_HASH(eager->tcp_remote)]) {
5752 			eager->tcp_dontdrop = B_TRUE;
5753 		}
5754 	}
5755 
5756 	/*
5757 	 * We need to insert the eager in its own perimeter but as soon
5758 	 * as we do that, we expose the eager to the classifier and
5759 	 * should not touch any field outside the eager's perimeter.
5760 	 * So do all the work necessary before inserting the eager
5761 	 * in its own perimeter. Be optimistic that ipcl_conn_insert()
5762 	 * will succeed but undo everything if it fails.
5763 	 */
5764 	seg_seq = ABE32_TO_U32(tcph->th_seq);
5765 	eager->tcp_irs = seg_seq;
5766 	eager->tcp_rack = seg_seq;
5767 	eager->tcp_rnxt = seg_seq + 1;
5768 	U32_TO_ABE32(eager->tcp_rnxt, eager->tcp_tcph->th_ack);
5769 	BUMP_MIB(&tcp_mib, tcpPassiveOpens);
5770 	eager->tcp_state = TCPS_SYN_RCVD;
5771 	mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss,
5772 	    NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE);
5773 	if (mp1 == NULL)
5774 		goto error1;
5775 	DB_CPID(mp1) = tcp->tcp_cpid;
5776 
5777 	/*
5778 	 * We need to start the rto timer. In normal case, we start
5779 	 * the timer after sending the packet on the wire (or at
5780 	 * least believing that packet was sent by waiting for
5781 	 * CALL_IP_WPUT() to return). Since this is the first packet
5782 	 * being sent on the wire for the eager, our initial tcp_rto
5783 	 * is at least tcp_rexmit_interval_min which is a fairly
5784 	 * large value to allow the algorithm to adjust slowly to large
5785 	 * fluctuations of RTT during first few transmissions.
5786 	 *
5787 	 * Starting the timer first and then sending the packet in this
5788 	 * case shouldn't make much difference since tcp_rexmit_interval_min
5789 	 * is of the order of several 100ms and starting the timer
5790 	 * first and then sending the packet will result in difference
5791 	 * of few micro seconds.
5792 	 *
5793 	 * Without this optimization, we are forced to hold the fanout
5794 	 * lock across the ipcl_bind_insert() and sending the packet
5795 	 * so that we don't race against an incoming packet (maybe RST)
5796 	 * for this eager.
5797 	 */
5798 
5799 	TCP_RECORD_TRACE(eager, mp1, TCP_TRACE_SEND_PKT);
5800 	TCP_TIMER_RESTART(eager, eager->tcp_rto);
5801 
5802 
5803 	/*
5804 	 * Insert the eager in its own perimeter now. We are ready to deal
5805 	 * with any packets on eager.
5806 	 */
5807 	if (eager->tcp_ipversion == IPV4_VERSION) {
5808 		if (ipcl_conn_insert(econnp, IPPROTO_TCP, 0, 0, 0) != 0) {
5809 			goto error;
5810 		}
5811 	} else {
5812 		if (ipcl_conn_insert_v6(econnp, IPPROTO_TCP, 0, 0, 0, 0) != 0) {
5813 			goto error;
5814 		}
5815 	}
5816 
5817 	/* mark conn as fully-bound */
5818 	econnp->conn_fully_bound = B_TRUE;
5819 
5820 	/* Send the SYN-ACK */
5821 	tcp_send_data(eager, eager->tcp_wq, mp1);
5822 	freemsg(mp);
5823 
5824 	return;
5825 error:
5826 	(void) TCP_TIMER_CANCEL(eager, eager->tcp_timer_tid);
5827 	freemsg(mp1);
5828 error1:
5829 	/* Undo what we did above */
5830 	mutex_enter(&tcp->tcp_eager_lock);
5831 	tcp_eager_unlink(eager);
5832 	mutex_exit(&tcp->tcp_eager_lock);
5833 	/* Drop eager's reference on the listener */
5834 	CONN_DEC_REF(connp);
5835 
5836 	/*
5837 	 * Delete the cached ire in conn_ire_cache and also mark
5838 	 * the conn as CONDEMNED
5839 	 */
5840 	mutex_enter(&econnp->conn_lock);
5841 	econnp->conn_state_flags |= CONN_CONDEMNED;
5842 	ire = econnp->conn_ire_cache;
5843 	econnp->conn_ire_cache = NULL;
5844 	mutex_exit(&econnp->conn_lock);
5845 	if (ire != NULL)
5846 		IRE_REFRELE_NOTR(ire);
5847 
5848 	/*
5849 	 * tcp_accept_comm inserts the eager to the bind_hash
5850 	 * we need to remove it from the hash if ipcl_conn_insert
5851 	 * fails.
5852 	 */
5853 	tcp_bind_hash_remove(eager);
5854 	/* Drop the eager ref placed in tcp_open_detached */
5855 	CONN_DEC_REF(econnp);
5856 
5857 	/*
5858 	 * If a connection already exists, send the mp to that connections so
5859 	 * that it can be appropriately dealt with.
5860 	 */
5861 	if ((econnp = ipcl_classify(mp, connp->conn_zoneid)) != NULL) {
5862 		if (!IPCL_IS_CONNECTED(econnp)) {
5863 			/*
5864 			 * Something bad happened. ipcl_conn_insert()
5865 			 * failed because a connection already existed
5866 			 * in connected hash but we can't find it
5867 			 * anymore (someone blew it away). Just
5868 			 * free this message and hopefully remote
5869 			 * will retransmit at which time the SYN can be
5870 			 * treated as a new connection or dealth with
5871 			 * a TH_RST if a connection already exists.
5872 			 */
5873 			freemsg(mp);
5874 		} else {
5875 			squeue_fill(econnp->conn_sqp, mp, tcp_input,
5876 			    econnp, SQTAG_TCP_CONN_REQ);
5877 		}
5878 	} else {
5879 		/* Nobody wants this packet */
5880 		freemsg(mp);
5881 	}
5882 	return;
5883 error2:
5884 	freemsg(mp);
5885 	return;
5886 error3:
5887 	CONN_DEC_REF(econnp);
5888 	freemsg(mp);
5889 }
5890 
5891 /*
5892  * In an ideal case of vertical partition in NUMA architecture, its
5893  * beneficial to have the listener and all the incoming connections
5894  * tied to the same squeue. The other constraint is that incoming
5895  * connections should be tied to the squeue attached to interrupted
5896  * CPU for obvious locality reason so this leaves the listener to
5897  * be tied to the same squeue. Our only problem is that when listener
5898  * is binding, the CPU that will get interrupted by the NIC whose
5899  * IP address the listener is binding to is not even known. So
5900  * the code below allows us to change that binding at the time the
5901  * CPU is interrupted by virtue of incoming connection's squeue.
5902  *
5903  * This is usefull only in case of a listener bound to a specific IP
5904  * address. For other kind of listeners, they get bound the
5905  * very first time and there is no attempt to rebind them.
5906  */
5907 void
5908 tcp_conn_request_unbound(void *arg, mblk_t *mp, void *arg2)
5909 {
5910 	conn_t		*connp = (conn_t *)arg;
5911 	squeue_t	*sqp = (squeue_t *)arg2;
5912 	squeue_t	*new_sqp;
5913 	uint32_t	conn_flags;
5914 
5915 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
5916 		new_sqp = (squeue_t *)DB_CKSUMSTART(mp);
5917 	} else {
5918 		goto done;
5919 	}
5920 
5921 	if (connp->conn_fanout == NULL)
5922 		goto done;
5923 
5924 	if (!(connp->conn_flags & IPCL_FULLY_BOUND)) {
5925 		mutex_enter(&connp->conn_fanout->connf_lock);
5926 		mutex_enter(&connp->conn_lock);
5927 		/*
5928 		 * No one from read or write side can access us now
5929 		 * except for already queued packets on this squeue.
5930 		 * But since we haven't changed the squeue yet, they
5931 		 * can't execute. If they are processed after we have
5932 		 * changed the squeue, they are sent back to the
5933 		 * correct squeue down below.
5934 		 */
5935 		if (connp->conn_sqp != new_sqp) {
5936 			while (connp->conn_sqp != new_sqp)
5937 				(void) casptr(&connp->conn_sqp, sqp, new_sqp);
5938 		}
5939 
5940 		do {
5941 			conn_flags = connp->conn_flags;
5942 			conn_flags |= IPCL_FULLY_BOUND;
5943 			(void) cas32(&connp->conn_flags, connp->conn_flags,
5944 			    conn_flags);
5945 		} while (!(connp->conn_flags & IPCL_FULLY_BOUND));
5946 
5947 		mutex_exit(&connp->conn_fanout->connf_lock);
5948 		mutex_exit(&connp->conn_lock);
5949 	}
5950 
5951 done:
5952 	if (connp->conn_sqp != sqp) {
5953 		CONN_INC_REF(connp);
5954 		squeue_fill(connp->conn_sqp, mp,
5955 		    connp->conn_recv, connp, SQTAG_TCP_CONN_REQ_UNBOUND);
5956 	} else {
5957 		tcp_conn_request(connp, mp, sqp);
5958 	}
5959 }
5960 
5961 /*
5962  * Successful connect request processing begins when our client passes
5963  * a T_CONN_REQ message into tcp_wput() and ends when tcp_rput() passes
5964  * our T_OK_ACK reply message upstream.  The control flow looks like this:
5965  *   upstream -> tcp_wput() -> tcp_wput_proto() -> tcp_connect() -> IP
5966  *   upstream <- tcp_rput()                <- IP
5967  * After various error checks are completed, tcp_connect() lays
5968  * the target address and port into the composite header template,
5969  * preallocates the T_OK_ACK reply message, construct a full 12 byte bind
5970  * request followed by an IRE request, and passes the three mblk message
5971  * down to IP looking like this:
5972  *   O_T_BIND_REQ for IP  --> IRE req --> T_OK_ACK for our client
5973  * Processing continues in tcp_rput() when we receive the following message:
5974  *   T_BIND_ACK from IP --> IRE ack --> T_OK_ACK for our client
5975  * After consuming the first two mblks, tcp_rput() calls tcp_timer(),
5976  * to fire off the connection request, and then passes the T_OK_ACK mblk
5977  * upstream that we filled in below.  There are, of course, numerous
5978  * error conditions along the way which truncate the processing described
5979  * above.
5980  */
5981 static void
5982 tcp_connect(tcp_t *tcp, mblk_t *mp)
5983 {
5984 	sin_t		*sin;
5985 	sin6_t		*sin6;
5986 	queue_t		*q = tcp->tcp_wq;
5987 	struct T_conn_req	*tcr;
5988 	ipaddr_t	*dstaddrp;
5989 	in_port_t	dstport;
5990 	uint_t		srcid;
5991 
5992 	tcr = (struct T_conn_req *)mp->b_rptr;
5993 
5994 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
5995 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) {
5996 		tcp_err_ack(tcp, mp, TPROTO, 0);
5997 		return;
5998 	}
5999 
6000 	/*
6001 	 * Determine packet type based on type of address passed in
6002 	 * the request should contain an IPv4 or IPv6 address.
6003 	 * Make sure that address family matches the type of
6004 	 * family of the the address passed down
6005 	 */
6006 	switch (tcr->DEST_length) {
6007 	default:
6008 		tcp_err_ack(tcp, mp, TBADADDR, 0);
6009 		return;
6010 
6011 	case (sizeof (sin_t) - sizeof (sin->sin_zero)): {
6012 		/*
6013 		 * XXX: The check for valid DEST_length was not there
6014 		 * in earlier releases and some buggy
6015 		 * TLI apps (e.g Sybase) got away with not feeding
6016 		 * in sin_zero part of address.
6017 		 * We allow that bug to keep those buggy apps humming.
6018 		 * Test suites require the check on DEST_length.
6019 		 * We construct a new mblk with valid DEST_length
6020 		 * free the original so the rest of the code does
6021 		 * not have to keep track of this special shorter
6022 		 * length address case.
6023 		 */
6024 		mblk_t *nmp;
6025 		struct T_conn_req *ntcr;
6026 		sin_t *nsin;
6027 
6028 		nmp = allocb(sizeof (struct T_conn_req) + sizeof (sin_t) +
6029 		    tcr->OPT_length, BPRI_HI);
6030 		if (nmp == NULL) {
6031 			tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
6032 			return;
6033 		}
6034 		ntcr = (struct T_conn_req *)nmp->b_rptr;
6035 		bzero(ntcr, sizeof (struct T_conn_req)); /* zero fill */
6036 		ntcr->PRIM_type = T_CONN_REQ;
6037 		ntcr->DEST_length = sizeof (sin_t);
6038 		ntcr->DEST_offset = sizeof (struct T_conn_req);
6039 
6040 		nsin = (sin_t *)((uchar_t *)ntcr + ntcr->DEST_offset);
6041 		*nsin = sin_null;
6042 		/* Get pointer to shorter address to copy from original mp */
6043 		sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset,
6044 		    tcr->DEST_length); /* extract DEST_length worth of sin_t */
6045 		if (sin == NULL || !OK_32PTR((char *)sin)) {
6046 			freemsg(nmp);
6047 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
6048 			return;
6049 		}
6050 		nsin->sin_family = sin->sin_family;
6051 		nsin->sin_port = sin->sin_port;
6052 		nsin->sin_addr = sin->sin_addr;
6053 		/* Note:nsin->sin_zero zero-fill with sin_null assign above */
6054 		nmp->b_wptr = (uchar_t *)&nsin[1];
6055 		if (tcr->OPT_length != 0) {
6056 			ntcr->OPT_length = tcr->OPT_length;
6057 			ntcr->OPT_offset = nmp->b_wptr - nmp->b_rptr;
6058 			bcopy((uchar_t *)tcr + tcr->OPT_offset,
6059 			    (uchar_t *)ntcr + ntcr->OPT_offset,
6060 			    tcr->OPT_length);
6061 			nmp->b_wptr += tcr->OPT_length;
6062 		}
6063 		freemsg(mp);	/* original mp freed */
6064 		mp = nmp;	/* re-initialize original variables */
6065 		tcr = ntcr;
6066 	}
6067 	/* FALLTHRU */
6068 
6069 	case sizeof (sin_t):
6070 		sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset,
6071 		    sizeof (sin_t));
6072 		if (sin == NULL || !OK_32PTR((char *)sin)) {
6073 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
6074 			return;
6075 		}
6076 		if (tcp->tcp_family != AF_INET ||
6077 		    sin->sin_family != AF_INET) {
6078 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
6079 			return;
6080 		}
6081 		if (sin->sin_port == 0) {
6082 			tcp_err_ack(tcp, mp, TBADADDR, 0);
6083 			return;
6084 		}
6085 		if (tcp->tcp_connp && tcp->tcp_connp->conn_ipv6_v6only) {
6086 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
6087 			return;
6088 		}
6089 
6090 		break;
6091 
6092 	case sizeof (sin6_t):
6093 		sin6 = (sin6_t *)mi_offset_param(mp, tcr->DEST_offset,
6094 		    sizeof (sin6_t));
6095 		if (sin6 == NULL || !OK_32PTR((char *)sin6)) {
6096 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
6097 			return;
6098 		}
6099 		if (tcp->tcp_family != AF_INET6 ||
6100 		    sin6->sin6_family != AF_INET6) {
6101 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
6102 			return;
6103 		}
6104 		if (sin6->sin6_port == 0) {
6105 			tcp_err_ack(tcp, mp, TBADADDR, 0);
6106 			return;
6107 		}
6108 		break;
6109 	}
6110 	/*
6111 	 * TODO: If someone in TCPS_TIME_WAIT has this dst/port we
6112 	 * should key on their sequence number and cut them loose.
6113 	 */
6114 
6115 	/*
6116 	 * If options passed in, feed it for verification and handling
6117 	 */
6118 	if (tcr->OPT_length != 0) {
6119 		mblk_t	*ok_mp;
6120 		mblk_t	*discon_mp;
6121 		mblk_t  *conn_opts_mp;
6122 		int t_error, sys_error, do_disconnect;
6123 
6124 		conn_opts_mp = NULL;
6125 
6126 		if (tcp_conprim_opt_process(tcp, mp,
6127 			&do_disconnect, &t_error, &sys_error) < 0) {
6128 			if (do_disconnect) {
6129 				ASSERT(t_error == 0 && sys_error == 0);
6130 				discon_mp = mi_tpi_discon_ind(NULL,
6131 				    ECONNREFUSED, 0);
6132 				if (!discon_mp) {
6133 					tcp_err_ack_prim(tcp, mp, T_CONN_REQ,
6134 					    TSYSERR, ENOMEM);
6135 					return;
6136 				}
6137 				ok_mp = mi_tpi_ok_ack_alloc(mp);
6138 				if (!ok_mp) {
6139 					tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6140 					    TSYSERR, ENOMEM);
6141 					return;
6142 				}
6143 				qreply(q, ok_mp);
6144 				qreply(q, discon_mp); /* no flush! */
6145 			} else {
6146 				ASSERT(t_error != 0);
6147 				tcp_err_ack_prim(tcp, mp, T_CONN_REQ, t_error,
6148 				    sys_error);
6149 			}
6150 			return;
6151 		}
6152 		/*
6153 		 * Success in setting options, the mp option buffer represented
6154 		 * by OPT_length/offset has been potentially modified and
6155 		 * contains results of option processing. We copy it in
6156 		 * another mp to save it for potentially influencing returning
6157 		 * it in T_CONN_CONN.
6158 		 */
6159 		if (tcr->OPT_length != 0) { /* there are resulting options */
6160 			conn_opts_mp = copyb(mp);
6161 			if (!conn_opts_mp) {
6162 				tcp_err_ack_prim(tcp, mp, T_CONN_REQ,
6163 				    TSYSERR, ENOMEM);
6164 				return;
6165 			}
6166 			ASSERT(tcp->tcp_conn.tcp_opts_conn_req == NULL);
6167 			tcp->tcp_conn.tcp_opts_conn_req = conn_opts_mp;
6168 			/*
6169 			 * Note:
6170 			 * These resulting option negotiation can include any
6171 			 * end-to-end negotiation options but there no such
6172 			 * thing (yet?) in our TCP/IP.
6173 			 */
6174 		}
6175 	}
6176 
6177 	/*
6178 	 * If we're connecting to an IPv4-mapped IPv6 address, we need to
6179 	 * make sure that the template IP header in the tcp structure is an
6180 	 * IPv4 header, and that the tcp_ipversion is IPV4_VERSION.  We
6181 	 * need to this before we call tcp_bindi() so that the port lookup
6182 	 * code will look for ports in the correct port space (IPv4 and
6183 	 * IPv6 have separate port spaces).
6184 	 */
6185 	if (tcp->tcp_family == AF_INET6 && tcp->tcp_ipversion == IPV6_VERSION &&
6186 	    IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
6187 		int err = 0;
6188 
6189 		err = tcp_header_init_ipv4(tcp);
6190 		if (err != 0) {
6191 			mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM);
6192 			goto connect_failed;
6193 		}
6194 		if (tcp->tcp_lport != 0)
6195 			*(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport;
6196 	}
6197 
6198 	switch (tcp->tcp_state) {
6199 	case TCPS_IDLE:
6200 		/*
6201 		 * We support quick connect, refer to comments in
6202 		 * tcp_connect_*()
6203 		 */
6204 		/* FALLTHRU */
6205 	case TCPS_BOUND:
6206 	case TCPS_LISTEN:
6207 		if (tcp->tcp_family == AF_INET6) {
6208 			if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
6209 				tcp_connect_ipv6(tcp, mp,
6210 				    &sin6->sin6_addr,
6211 				    sin6->sin6_port, sin6->sin6_flowinfo,
6212 				    sin6->__sin6_src_id, sin6->sin6_scope_id);
6213 				return;
6214 			}
6215 			/*
6216 			 * Destination adress is mapped IPv6 address.
6217 			 * Source bound address should be unspecified or
6218 			 * IPv6 mapped address as well.
6219 			 */
6220 			if (!IN6_IS_ADDR_UNSPECIFIED(
6221 			    &tcp->tcp_bound_source_v6) &&
6222 			    !IN6_IS_ADDR_V4MAPPED(&tcp->tcp_bound_source_v6)) {
6223 				mp = mi_tpi_err_ack_alloc(mp, TSYSERR,
6224 				    EADDRNOTAVAIL);
6225 				break;
6226 			}
6227 			dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr));
6228 			dstport = sin6->sin6_port;
6229 			srcid = sin6->__sin6_src_id;
6230 		} else {
6231 			dstaddrp = &sin->sin_addr.s_addr;
6232 			dstport = sin->sin_port;
6233 			srcid = 0;
6234 		}
6235 
6236 		tcp_connect_ipv4(tcp, mp, dstaddrp, dstport, srcid);
6237 		return;
6238 	default:
6239 		mp = mi_tpi_err_ack_alloc(mp, TOUTSTATE, 0);
6240 		break;
6241 	}
6242 	/*
6243 	 * Note: Code below is the "failure" case
6244 	 */
6245 	/* return error ack and blow away saved option results if any */
6246 connect_failed:
6247 	if (mp != NULL)
6248 		putnext(tcp->tcp_rq, mp);
6249 	else {
6250 		tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6251 		    TSYSERR, ENOMEM);
6252 	}
6253 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
6254 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
6255 }
6256 
6257 /*
6258  * Handle connect to IPv4 destinations, including connections for AF_INET6
6259  * sockets connecting to IPv4 mapped IPv6 destinations.
6260  */
6261 static void
6262 tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp, in_port_t dstport,
6263     uint_t srcid)
6264 {
6265 	tcph_t	*tcph;
6266 	mblk_t	*mp1;
6267 	ipaddr_t dstaddr = *dstaddrp;
6268 	int32_t	oldstate;
6269 	uint16_t lport;
6270 
6271 	ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
6272 
6273 	/* Check for attempt to connect to INADDR_ANY */
6274 	if (dstaddr == INADDR_ANY)  {
6275 		/*
6276 		 * SunOS 4.x and 4.3 BSD allow an application
6277 		 * to connect a TCP socket to INADDR_ANY.
6278 		 * When they do this, the kernel picks the
6279 		 * address of one interface and uses it
6280 		 * instead.  The kernel usually ends up
6281 		 * picking the address of the loopback
6282 		 * interface.  This is an undocumented feature.
6283 		 * However, we provide the same thing here
6284 		 * in order to have source and binary
6285 		 * compatibility with SunOS 4.x.
6286 		 * Update the T_CONN_REQ (sin/sin6) since it is used to
6287 		 * generate the T_CONN_CON.
6288 		 */
6289 		dstaddr = htonl(INADDR_LOOPBACK);
6290 		*dstaddrp = dstaddr;
6291 	}
6292 
6293 	/* Handle __sin6_src_id if socket not bound to an IP address */
6294 	if (srcid != 0 && tcp->tcp_ipha->ipha_src == INADDR_ANY) {
6295 		ip_srcid_find_id(srcid, &tcp->tcp_ip_src_v6,
6296 		    tcp->tcp_connp->conn_zoneid);
6297 		IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_ip_src_v6,
6298 		    tcp->tcp_ipha->ipha_src);
6299 	}
6300 
6301 	/*
6302 	 * Don't let an endpoint connect to itself.  Note that
6303 	 * the test here does not catch the case where the
6304 	 * source IP addr was left unspecified by the user. In
6305 	 * this case, the source addr is set in tcp_adapt_ire()
6306 	 * using the reply to the T_BIND message that we send
6307 	 * down to IP here and the check is repeated in tcp_rput_other.
6308 	 */
6309 	if (dstaddr == tcp->tcp_ipha->ipha_src &&
6310 	    dstport == tcp->tcp_lport) {
6311 		mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0);
6312 		goto failed;
6313 	}
6314 
6315 	tcp->tcp_ipha->ipha_dst = dstaddr;
6316 	IN6_IPADDR_TO_V4MAPPED(dstaddr, &tcp->tcp_remote_v6);
6317 
6318 	/*
6319 	 * Massage a source route if any putting the first hop
6320 	 * in iph_dst. Compute a starting value for the checksum which
6321 	 * takes into account that the original iph_dst should be
6322 	 * included in the checksum but that ip will include the
6323 	 * first hop in the source route in the tcp checksum.
6324 	 */
6325 	tcp->tcp_sum = ip_massage_options(tcp->tcp_ipha);
6326 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
6327 	tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) +
6328 	    (tcp->tcp_ipha->ipha_dst & 0xffff));
6329 	if ((int)tcp->tcp_sum < 0)
6330 		tcp->tcp_sum--;
6331 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
6332 	tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
6333 	    (tcp->tcp_sum >> 16));
6334 	tcph = tcp->tcp_tcph;
6335 	*(uint16_t *)tcph->th_fport = dstport;
6336 	tcp->tcp_fport = dstport;
6337 
6338 	oldstate = tcp->tcp_state;
6339 	/*
6340 	 * At this point the remote destination address and remote port fields
6341 	 * in the tcp-four-tuple have been filled in the tcp structure. Now we
6342 	 * have to see which state tcp was in so we can take apropriate action.
6343 	 */
6344 	if (oldstate == TCPS_IDLE) {
6345 		/*
6346 		 * We support a quick connect capability here, allowing
6347 		 * clients to transition directly from IDLE to SYN_SENT
6348 		 * tcp_bindi will pick an unused port, insert the connection
6349 		 * in the bind hash and transition to BOUND state.
6350 		 */
6351 		lport = tcp_update_next_port(tcp_next_port_to_try, tcp, B_TRUE);
6352 		lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE,
6353 		    B_FALSE, B_FALSE);
6354 		if (lport == 0) {
6355 			mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0);
6356 			goto failed;
6357 		}
6358 	}
6359 	tcp->tcp_state = TCPS_SYN_SENT;
6360 
6361 	/*
6362 	 * TODO: allow data with connect requests
6363 	 * by unlinking M_DATA trailers here and
6364 	 * linking them in behind the T_OK_ACK mblk.
6365 	 * The tcp_rput() bind ack handler would then
6366 	 * feed them to tcp_wput_data() rather than call
6367 	 * tcp_timer().
6368 	 */
6369 	mp = mi_tpi_ok_ack_alloc(mp);
6370 	if (!mp) {
6371 		tcp->tcp_state = oldstate;
6372 		goto failed;
6373 	}
6374 	if (tcp->tcp_family == AF_INET) {
6375 		mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ,
6376 		    sizeof (ipa_conn_t));
6377 	} else {
6378 		mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ,
6379 		    sizeof (ipa6_conn_t));
6380 	}
6381 	if (mp1) {
6382 		/* Hang onto the T_OK_ACK for later. */
6383 		linkb(mp1, mp);
6384 		mblk_setcred(mp1, tcp->tcp_cred);
6385 		if (tcp->tcp_family == AF_INET)
6386 			mp1 = ip_bind_v4(tcp->tcp_wq, mp1, tcp->tcp_connp);
6387 		else {
6388 			mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp,
6389 			    &tcp->tcp_sticky_ipp);
6390 		}
6391 		BUMP_MIB(&tcp_mib, tcpActiveOpens);
6392 		tcp->tcp_active_open = 1;
6393 		/*
6394 		 * If the bind cannot complete immediately
6395 		 * IP will arrange to call tcp_rput_other
6396 		 * when the bind completes.
6397 		 */
6398 		if (mp1 != NULL)
6399 			tcp_rput_other(tcp, mp1);
6400 		return;
6401 	}
6402 	/* Error case */
6403 	tcp->tcp_state = oldstate;
6404 	mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM);
6405 
6406 failed:
6407 	/* return error ack and blow away saved option results if any */
6408 	if (mp != NULL)
6409 		putnext(tcp->tcp_rq, mp);
6410 	else {
6411 		tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6412 		    TSYSERR, ENOMEM);
6413 	}
6414 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
6415 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
6416 
6417 }
6418 
6419 /*
6420  * Handle connect to IPv6 destinations.
6421  */
6422 static void
6423 tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp,
6424     in_port_t dstport, uint32_t flowinfo, uint_t srcid, uint32_t scope_id)
6425 {
6426 	tcph_t	*tcph;
6427 	mblk_t	*mp1;
6428 	ip6_rthdr_t *rth;
6429 	int32_t  oldstate;
6430 	uint16_t lport;
6431 
6432 	ASSERT(tcp->tcp_family == AF_INET6);
6433 
6434 	/*
6435 	 * If we're here, it means that the destination address is a native
6436 	 * IPv6 address.  Return an error if tcp_ipversion is not IPv6.  A
6437 	 * reason why it might not be IPv6 is if the socket was bound to an
6438 	 * IPv4-mapped IPv6 address.
6439 	 */
6440 	if (tcp->tcp_ipversion != IPV6_VERSION) {
6441 		mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0);
6442 		goto failed;
6443 	}
6444 
6445 	/*
6446 	 * Interpret a zero destination to mean loopback.
6447 	 * Update the T_CONN_REQ (sin/sin6) since it is used to
6448 	 * generate the T_CONN_CON.
6449 	 */
6450 	if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp)) {
6451 		*dstaddrp = ipv6_loopback;
6452 	}
6453 
6454 	/* Handle __sin6_src_id if socket not bound to an IP address */
6455 	if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) {
6456 		ip_srcid_find_id(srcid, &tcp->tcp_ip6h->ip6_src,
6457 		    tcp->tcp_connp->conn_zoneid);
6458 		tcp->tcp_ip_src_v6 = tcp->tcp_ip6h->ip6_src;
6459 	}
6460 
6461 	/*
6462 	 * Take care of the scope_id now and add ip6i_t
6463 	 * if ip6i_t is not already allocated through TCP
6464 	 * sticky options. At this point tcp_ip6h does not
6465 	 * have dst info, thus use dstaddrp.
6466 	 */
6467 	if (scope_id != 0 &&
6468 	    IN6_IS_ADDR_LINKSCOPE(dstaddrp)) {
6469 		ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp;
6470 		ip6i_t  *ip6i;
6471 
6472 		ipp->ipp_ifindex = scope_id;
6473 		ip6i = (ip6i_t *)tcp->tcp_iphc;
6474 
6475 		if ((ipp->ipp_fields & IPPF_HAS_IP6I) &&
6476 		    ip6i != NULL && (ip6i->ip6i_nxt == IPPROTO_RAW)) {
6477 			/* Already allocated */
6478 			ip6i->ip6i_flags |= IP6I_IFINDEX;
6479 			ip6i->ip6i_ifindex = ipp->ipp_ifindex;
6480 			ipp->ipp_fields |= IPPF_SCOPE_ID;
6481 		} else {
6482 			int reterr;
6483 
6484 			ipp->ipp_fields |= IPPF_SCOPE_ID;
6485 			if (ipp->ipp_fields & IPPF_HAS_IP6I)
6486 				ip2dbg(("tcp_connect_v6: SCOPE_ID set\n"));
6487 			reterr = tcp_build_hdrs(tcp->tcp_rq, tcp);
6488 			if (reterr != 0)
6489 				goto failed;
6490 			ip1dbg(("tcp_connect_ipv6: tcp_bld_hdrs returned\n"));
6491 		}
6492 	}
6493 
6494 	/*
6495 	 * Don't let an endpoint connect to itself.  Note that
6496 	 * the test here does not catch the case where the
6497 	 * source IP addr was left unspecified by the user. In
6498 	 * this case, the source addr is set in tcp_adapt_ire()
6499 	 * using the reply to the T_BIND message that we send
6500 	 * down to IP here and the check is repeated in tcp_rput_other.
6501 	 */
6502 	if (IN6_ARE_ADDR_EQUAL(dstaddrp, &tcp->tcp_ip6h->ip6_src) &&
6503 	    (dstport == tcp->tcp_lport)) {
6504 		mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0);
6505 		goto failed;
6506 	}
6507 
6508 	tcp->tcp_ip6h->ip6_dst = *dstaddrp;
6509 	tcp->tcp_remote_v6 = *dstaddrp;
6510 	tcp->tcp_ip6h->ip6_vcf =
6511 	    (IPV6_DEFAULT_VERS_AND_FLOW & IPV6_VERS_AND_FLOW_MASK) |
6512 	    (flowinfo & ~IPV6_VERS_AND_FLOW_MASK);
6513 
6514 
6515 	/*
6516 	 * Massage a routing header (if present) putting the first hop
6517 	 * in ip6_dst. Compute a starting value for the checksum which
6518 	 * takes into account that the original ip6_dst should be
6519 	 * included in the checksum but that ip will include the
6520 	 * first hop in the source route in the tcp checksum.
6521 	 */
6522 	rth = ip_find_rthdr_v6(tcp->tcp_ip6h, (uint8_t *)tcp->tcp_tcph);
6523 	if (rth != NULL) {
6524 
6525 		tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, rth);
6526 		tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
6527 		    (tcp->tcp_sum >> 16));
6528 	} else {
6529 		tcp->tcp_sum = 0;
6530 	}
6531 
6532 	tcph = tcp->tcp_tcph;
6533 	*(uint16_t *)tcph->th_fport = dstport;
6534 	tcp->tcp_fport = dstport;
6535 
6536 	oldstate = tcp->tcp_state;
6537 	/*
6538 	 * At this point the remote destination address and remote port fields
6539 	 * in the tcp-four-tuple have been filled in the tcp structure. Now we
6540 	 * have to see which state tcp was in so we can take apropriate action.
6541 	 */
6542 	if (oldstate == TCPS_IDLE) {
6543 		/*
6544 		 * We support a quick connect capability here, allowing
6545 		 * clients to transition directly from IDLE to SYN_SENT
6546 		 * tcp_bindi will pick an unused port, insert the connection
6547 		 * in the bind hash and transition to BOUND state.
6548 		 */
6549 		lport = tcp_update_next_port(tcp_next_port_to_try, tcp, B_TRUE);
6550 		lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE,
6551 		    B_FALSE, B_FALSE);
6552 		if (lport == 0) {
6553 			mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0);
6554 			goto failed;
6555 		}
6556 	}
6557 	tcp->tcp_state = TCPS_SYN_SENT;
6558 	/*
6559 	 * TODO: allow data with connect requests
6560 	 * by unlinking M_DATA trailers here and
6561 	 * linking them in behind the T_OK_ACK mblk.
6562 	 * The tcp_rput() bind ack handler would then
6563 	 * feed them to tcp_wput_data() rather than call
6564 	 * tcp_timer().
6565 	 */
6566 	mp = mi_tpi_ok_ack_alloc(mp);
6567 	if (!mp) {
6568 		tcp->tcp_state = oldstate;
6569 		goto failed;
6570 	}
6571 	mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, sizeof (ipa6_conn_t));
6572 	if (mp1) {
6573 		/* Hang onto the T_OK_ACK for later. */
6574 		linkb(mp1, mp);
6575 		mblk_setcred(mp1, tcp->tcp_cred);
6576 		mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp,
6577 		    &tcp->tcp_sticky_ipp);
6578 		BUMP_MIB(&tcp_mib, tcpActiveOpens);
6579 		tcp->tcp_active_open = 1;
6580 		/* ip_bind_v6() may return ACK or ERROR */
6581 		if (mp1 != NULL)
6582 			tcp_rput_other(tcp, mp1);
6583 		return;
6584 	}
6585 	/* Error case */
6586 	tcp->tcp_state = oldstate;
6587 	mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM);
6588 
6589 failed:
6590 	/* return error ack and blow away saved option results if any */
6591 	if (mp != NULL)
6592 		putnext(tcp->tcp_rq, mp);
6593 	else {
6594 		tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6595 		    TSYSERR, ENOMEM);
6596 	}
6597 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
6598 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
6599 }
6600 
6601 /*
6602  * We need a stream q for detached closing tcp connections
6603  * to use.  Our client hereby indicates that this q is the
6604  * one to use.
6605  */
6606 static void
6607 tcp_def_q_set(tcp_t *tcp, mblk_t *mp)
6608 {
6609 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
6610 	queue_t	*q = tcp->tcp_wq;
6611 
6612 	mp->b_datap->db_type = M_IOCACK;
6613 	iocp->ioc_count = 0;
6614 	mutex_enter(&tcp_g_q_lock);
6615 	if (tcp_g_q != NULL) {
6616 		mutex_exit(&tcp_g_q_lock);
6617 		iocp->ioc_error = EALREADY;
6618 	} else {
6619 		mblk_t *mp1;
6620 
6621 		mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 0);
6622 		if (mp1 == NULL) {
6623 			mutex_exit(&tcp_g_q_lock);
6624 			iocp->ioc_error = ENOMEM;
6625 		} else {
6626 			tcp_g_q = tcp->tcp_rq;
6627 			mutex_exit(&tcp_g_q_lock);
6628 			iocp->ioc_error = 0;
6629 			iocp->ioc_rval = 0;
6630 			/*
6631 			 * We are passing tcp_sticky_ipp as NULL
6632 			 * as it is not useful for tcp_default queue
6633 			 */
6634 			mp1 = ip_bind_v6(q, mp1, tcp->tcp_connp, NULL);
6635 			if (mp1 != NULL)
6636 				tcp_rput_other(tcp, mp1);
6637 		}
6638 	}
6639 	qreply(q, mp);
6640 }
6641 
6642 /*
6643  * Our client hereby directs us to reject the connection request
6644  * that tcp_conn_request() marked with 'seqnum'.  Rejection consists
6645  * of sending the appropriate RST, not an ICMP error.
6646  */
6647 static void
6648 tcp_disconnect(tcp_t *tcp, mblk_t *mp)
6649 {
6650 	tcp_t	*ltcp = NULL;
6651 	t_scalar_t seqnum;
6652 	conn_t	*connp;
6653 
6654 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
6655 	if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) {
6656 		tcp_err_ack(tcp, mp, TPROTO, 0);
6657 		return;
6658 	}
6659 
6660 	/*
6661 	 * Right now, upper modules pass down a T_DISCON_REQ to TCP,
6662 	 * when the stream is in BOUND state. Do not send a reset,
6663 	 * since the destination IP address is not valid, and it can
6664 	 * be the initialized value of all zeros (broadcast address).
6665 	 *
6666 	 * If TCP has sent down a bind request to IP and has not
6667 	 * received the reply, reject the request.  Otherwise, TCP
6668 	 * will be confused.
6669 	 */
6670 	if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_hard_binding) {
6671 		if (tcp->tcp_debug) {
6672 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
6673 			    "tcp_disconnect: bad state, %d", tcp->tcp_state);
6674 		}
6675 		tcp_err_ack(tcp, mp, TOUTSTATE, 0);
6676 		return;
6677 	}
6678 
6679 	seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number;
6680 
6681 	if (seqnum == -1 || tcp->tcp_conn_req_max == 0) {
6682 
6683 		/*
6684 		 * According to TPI, for non-listeners, ignore seqnum
6685 		 * and disconnect.
6686 		 * Following interpretation of -1 seqnum is historical
6687 		 * and implied TPI ? (TPI only states that for T_CONN_IND,
6688 		 * a valid seqnum should not be -1).
6689 		 *
6690 		 *	-1 means disconnect everything
6691 		 *	regardless even on a listener.
6692 		 */
6693 
6694 		int old_state = tcp->tcp_state;
6695 
6696 		/*
6697 		 * The connection can't be on the tcp_time_wait_head list
6698 		 * since it is not detached.
6699 		 */
6700 		ASSERT(tcp->tcp_time_wait_next == NULL);
6701 		ASSERT(tcp->tcp_time_wait_prev == NULL);
6702 		ASSERT(tcp->tcp_time_wait_expire == 0);
6703 		ltcp = NULL;
6704 		/*
6705 		 * If it used to be a listener, check to make sure no one else
6706 		 * has taken the port before switching back to LISTEN state.
6707 		 */
6708 		if (tcp->tcp_ipversion == IPV4_VERSION) {
6709 			connp = ipcl_lookup_listener_v4(tcp->tcp_lport,
6710 			    tcp->tcp_ipha->ipha_src,
6711 			    tcp->tcp_connp->conn_zoneid);
6712 			if (connp != NULL)
6713 				ltcp = connp->conn_tcp;
6714 		} else {
6715 			/* Allow tcp_bound_if listeners? */
6716 			connp = ipcl_lookup_listener_v6(tcp->tcp_lport,
6717 			    &tcp->tcp_ip6h->ip6_src, 0,
6718 			    tcp->tcp_connp->conn_zoneid);
6719 			if (connp != NULL)
6720 				ltcp = connp->conn_tcp;
6721 		}
6722 		if (tcp->tcp_conn_req_max && ltcp == NULL) {
6723 			tcp->tcp_state = TCPS_LISTEN;
6724 		} else if (old_state > TCPS_BOUND) {
6725 			tcp->tcp_conn_req_max = 0;
6726 			tcp->tcp_state = TCPS_BOUND;
6727 		}
6728 		if (ltcp != NULL)
6729 			CONN_DEC_REF(ltcp->tcp_connp);
6730 		if (old_state == TCPS_SYN_SENT || old_state == TCPS_SYN_RCVD) {
6731 			BUMP_MIB(&tcp_mib, tcpAttemptFails);
6732 		} else if (old_state == TCPS_ESTABLISHED ||
6733 		    old_state == TCPS_CLOSE_WAIT) {
6734 			BUMP_MIB(&tcp_mib, tcpEstabResets);
6735 		}
6736 
6737 		if (tcp->tcp_fused)
6738 			tcp_unfuse(tcp);
6739 
6740 		mutex_enter(&tcp->tcp_eager_lock);
6741 		if ((tcp->tcp_conn_req_cnt_q0 != 0) ||
6742 		    (tcp->tcp_conn_req_cnt_q != 0)) {
6743 			tcp_eager_cleanup(tcp, 0);
6744 		}
6745 		mutex_exit(&tcp->tcp_eager_lock);
6746 
6747 		tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt,
6748 		    tcp->tcp_rnxt, TH_RST | TH_ACK);
6749 
6750 		tcp_reinit(tcp);
6751 
6752 		if (old_state >= TCPS_ESTABLISHED) {
6753 			/* Send M_FLUSH according to TPI */
6754 			(void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW);
6755 		}
6756 		mp = mi_tpi_ok_ack_alloc(mp);
6757 		if (mp)
6758 			putnext(tcp->tcp_rq, mp);
6759 		return;
6760 	} else if (!tcp_eager_blowoff(tcp, seqnum)) {
6761 		tcp_err_ack(tcp, mp, TBADSEQ, 0);
6762 		return;
6763 	}
6764 	if (tcp->tcp_state >= TCPS_ESTABLISHED) {
6765 		/* Send M_FLUSH according to TPI */
6766 		(void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW);
6767 	}
6768 	mp = mi_tpi_ok_ack_alloc(mp);
6769 	if (mp)
6770 		putnext(tcp->tcp_rq, mp);
6771 }
6772 
6773 /*
6774  * Diagnostic routine used to return a string associated with the tcp state.
6775  * Note that if the caller does not supply a buffer, it will use an internal
6776  * static string.  This means that if multiple threads call this function at
6777  * the same time, output can be corrupted...  Note also that this function
6778  * does not check the size of the supplied buffer.  The caller has to make
6779  * sure that it is big enough.
6780  */
6781 static char *
6782 tcp_display(tcp_t *tcp, char *sup_buf, char format)
6783 {
6784 	char		buf1[30];
6785 	static char	priv_buf[INET6_ADDRSTRLEN * 2 + 80];
6786 	char		*buf;
6787 	char		*cp;
6788 	in6_addr_t	local, remote;
6789 	char		local_addrbuf[INET6_ADDRSTRLEN];
6790 	char		remote_addrbuf[INET6_ADDRSTRLEN];
6791 
6792 	if (sup_buf != NULL)
6793 		buf = sup_buf;
6794 	else
6795 		buf = priv_buf;
6796 
6797 	if (tcp == NULL)
6798 		return ("NULL_TCP");
6799 	switch (tcp->tcp_state) {
6800 	case TCPS_CLOSED:
6801 		cp = "TCP_CLOSED";
6802 		break;
6803 	case TCPS_IDLE:
6804 		cp = "TCP_IDLE";
6805 		break;
6806 	case TCPS_BOUND:
6807 		cp = "TCP_BOUND";
6808 		break;
6809 	case TCPS_LISTEN:
6810 		cp = "TCP_LISTEN";
6811 		break;
6812 	case TCPS_SYN_SENT:
6813 		cp = "TCP_SYN_SENT";
6814 		break;
6815 	case TCPS_SYN_RCVD:
6816 		cp = "TCP_SYN_RCVD";
6817 		break;
6818 	case TCPS_ESTABLISHED:
6819 		cp = "TCP_ESTABLISHED";
6820 		break;
6821 	case TCPS_CLOSE_WAIT:
6822 		cp = "TCP_CLOSE_WAIT";
6823 		break;
6824 	case TCPS_FIN_WAIT_1:
6825 		cp = "TCP_FIN_WAIT_1";
6826 		break;
6827 	case TCPS_CLOSING:
6828 		cp = "TCP_CLOSING";
6829 		break;
6830 	case TCPS_LAST_ACK:
6831 		cp = "TCP_LAST_ACK";
6832 		break;
6833 	case TCPS_FIN_WAIT_2:
6834 		cp = "TCP_FIN_WAIT_2";
6835 		break;
6836 	case TCPS_TIME_WAIT:
6837 		cp = "TCP_TIME_WAIT";
6838 		break;
6839 	default:
6840 		(void) mi_sprintf(buf1, "TCPUnkState(%d)", tcp->tcp_state);
6841 		cp = buf1;
6842 		break;
6843 	}
6844 	switch (format) {
6845 	case DISP_ADDR_AND_PORT:
6846 		if (tcp->tcp_ipversion == IPV4_VERSION) {
6847 			/*
6848 			 * Note that we use the remote address in the tcp_b
6849 			 * structure.  This means that it will print out
6850 			 * the real destination address, not the next hop's
6851 			 * address if source routing is used.
6852 			 */
6853 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ip_src, &local);
6854 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &remote);
6855 
6856 		} else {
6857 			local = tcp->tcp_ip_src_v6;
6858 			remote = tcp->tcp_remote_v6;
6859 		}
6860 		(void) inet_ntop(AF_INET6, &local, local_addrbuf,
6861 		    sizeof (local_addrbuf));
6862 		(void) inet_ntop(AF_INET6, &remote, remote_addrbuf,
6863 		    sizeof (remote_addrbuf));
6864 		(void) mi_sprintf(buf, "[%s.%u, %s.%u] %s",
6865 		    local_addrbuf, ntohs(tcp->tcp_lport), remote_addrbuf,
6866 		    ntohs(tcp->tcp_fport), cp);
6867 		break;
6868 	case DISP_PORT_ONLY:
6869 	default:
6870 		(void) mi_sprintf(buf, "[%u, %u] %s",
6871 		    ntohs(tcp->tcp_lport), ntohs(tcp->tcp_fport), cp);
6872 		break;
6873 	}
6874 
6875 	return (buf);
6876 }
6877 
6878 /*
6879  * Called via squeue to get on to eager's perimeter to send a
6880  * TH_RST. The listener wants the eager to disappear either
6881  * by means of tcp_eager_blowoff() or tcp_eager_cleanup()
6882  * being called.
6883  */
6884 /* ARGSUSED */
6885 void
6886 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2)
6887 {
6888 	conn_t	*econnp = (conn_t *)arg;
6889 	tcp_t	*eager = econnp->conn_tcp;
6890 	tcp_t	*listener = eager->tcp_listener;
6891 
6892 	/*
6893 	 * We could be called because listener is closing. Since
6894 	 * the eager is using listener's queue's, its not safe.
6895 	 * Better use the default queue just to send the TH_RST
6896 	 * out.
6897 	 */
6898 	eager->tcp_rq = tcp_g_q;
6899 	eager->tcp_wq = WR(tcp_g_q);
6900 
6901 	if (eager->tcp_state > TCPS_LISTEN) {
6902 		tcp_xmit_ctl("tcp_eager_kill, can't wait",
6903 		    eager, eager->tcp_snxt, 0, TH_RST);
6904 	}
6905 
6906 	/* We are here because listener wants this eager gone */
6907 	if (listener != NULL) {
6908 		mutex_enter(&listener->tcp_eager_lock);
6909 		tcp_eager_unlink(eager);
6910 		if (eager->tcp_conn.tcp_eager_conn_ind == NULL) {
6911 			/*
6912 			 * The eager has sent a conn_ind up to the
6913 			 * listener but listener decides to close
6914 			 * instead. We need to drop the extra ref
6915 			 * placed on eager in tcp_rput_data() before
6916 			 * sending the conn_ind to listener.
6917 			 */
6918 			CONN_DEC_REF(econnp);
6919 		}
6920 		mutex_exit(&listener->tcp_eager_lock);
6921 		CONN_DEC_REF(listener->tcp_connp);
6922 	}
6923 
6924 	if (eager->tcp_state > TCPS_BOUND)
6925 		tcp_close_detached(eager);
6926 }
6927 
6928 /*
6929  * Reset any eager connection hanging off this listener marked
6930  * with 'seqnum' and then reclaim it's resources.
6931  */
6932 static boolean_t
6933 tcp_eager_blowoff(tcp_t	*listener, t_scalar_t seqnum)
6934 {
6935 	tcp_t	*eager;
6936 	mblk_t 	*mp;
6937 
6938 	TCP_STAT(tcp_eager_blowoff_calls);
6939 	eager = listener;
6940 	mutex_enter(&listener->tcp_eager_lock);
6941 	do {
6942 		eager = eager->tcp_eager_next_q;
6943 		if (eager == NULL) {
6944 			mutex_exit(&listener->tcp_eager_lock);
6945 			return (B_FALSE);
6946 		}
6947 	} while (eager->tcp_conn_req_seqnum != seqnum);
6948 	CONN_INC_REF(eager->tcp_connp);
6949 	mutex_exit(&listener->tcp_eager_lock);
6950 	mp = &eager->tcp_closemp;
6951 	squeue_fill(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill,
6952 	    eager->tcp_connp, SQTAG_TCP_EAGER_BLOWOFF);
6953 	return (B_TRUE);
6954 }
6955 
6956 /*
6957  * Reset any eager connection hanging off this listener
6958  * and then reclaim it's resources.
6959  */
6960 static void
6961 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only)
6962 {
6963 	tcp_t	*eager;
6964 	mblk_t	*mp;
6965 
6966 	ASSERT(MUTEX_HELD(&listener->tcp_eager_lock));
6967 
6968 	if (!q0_only) {
6969 		/* First cleanup q */
6970 		TCP_STAT(tcp_eager_blowoff_q);
6971 		eager = listener->tcp_eager_next_q;
6972 		while (eager != NULL) {
6973 			CONN_INC_REF(eager->tcp_connp);
6974 			mp = &eager->tcp_closemp;
6975 			squeue_fill(eager->tcp_connp->conn_sqp, mp,
6976 			    tcp_eager_kill, eager->tcp_connp,
6977 			    SQTAG_TCP_EAGER_CLEANUP);
6978 			eager = eager->tcp_eager_next_q;
6979 		}
6980 	}
6981 	/* Then cleanup q0 */
6982 	TCP_STAT(tcp_eager_blowoff_q0);
6983 	eager = listener->tcp_eager_next_q0;
6984 	while (eager != listener) {
6985 		CONN_INC_REF(eager->tcp_connp);
6986 		mp = &eager->tcp_closemp;
6987 		squeue_fill(eager->tcp_connp->conn_sqp, mp,
6988 		    tcp_eager_kill, eager->tcp_connp,
6989 		    SQTAG_TCP_EAGER_CLEANUP_Q0);
6990 		eager = eager->tcp_eager_next_q0;
6991 	}
6992 }
6993 
6994 /*
6995  * If we are an eager connection hanging off a listener that hasn't
6996  * formally accepted the connection yet, get off his list and blow off
6997  * any data that we have accumulated.
6998  */
6999 static void
7000 tcp_eager_unlink(tcp_t *tcp)
7001 {
7002 	tcp_t	*listener = tcp->tcp_listener;
7003 
7004 	ASSERT(MUTEX_HELD(&listener->tcp_eager_lock));
7005 	ASSERT(listener != NULL);
7006 	if (tcp->tcp_eager_next_q0 != NULL) {
7007 		ASSERT(tcp->tcp_eager_prev_q0 != NULL);
7008 
7009 		/* Remove the eager tcp from q0 */
7010 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
7011 		    tcp->tcp_eager_prev_q0;
7012 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
7013 		    tcp->tcp_eager_next_q0;
7014 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
7015 		listener->tcp_conn_req_cnt_q0--;
7016 
7017 		tcp->tcp_eager_next_q0 = NULL;
7018 		tcp->tcp_eager_prev_q0 = NULL;
7019 
7020 		if (tcp->tcp_syn_rcvd_timeout != 0) {
7021 			/* we have timed out before */
7022 			ASSERT(listener->tcp_syn_rcvd_timeout > 0);
7023 			listener->tcp_syn_rcvd_timeout--;
7024 		}
7025 	} else {
7026 		tcp_t   **tcpp = &listener->tcp_eager_next_q;
7027 		tcp_t	*prev = NULL;
7028 
7029 		for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) {
7030 			if (tcpp[0] == tcp) {
7031 				if (listener->tcp_eager_last_q == tcp) {
7032 					/*
7033 					 * If we are unlinking the last
7034 					 * element on the list, adjust
7035 					 * tail pointer. Set tail pointer
7036 					 * to nil when list is empty.
7037 					 */
7038 					ASSERT(tcp->tcp_eager_next_q == NULL);
7039 					if (listener->tcp_eager_last_q ==
7040 					    listener->tcp_eager_next_q) {
7041 						listener->tcp_eager_last_q =
7042 						NULL;
7043 					} else {
7044 						/*
7045 						 * We won't get here if there
7046 						 * is only one eager in the
7047 						 * list.
7048 						 */
7049 						ASSERT(prev != NULL);
7050 						listener->tcp_eager_last_q =
7051 						    prev;
7052 					}
7053 				}
7054 				tcpp[0] = tcp->tcp_eager_next_q;
7055 				tcp->tcp_eager_next_q = NULL;
7056 				tcp->tcp_eager_last_q = NULL;
7057 				ASSERT(listener->tcp_conn_req_cnt_q > 0);
7058 				listener->tcp_conn_req_cnt_q--;
7059 				break;
7060 			}
7061 			prev = tcpp[0];
7062 		}
7063 	}
7064 	tcp->tcp_listener = NULL;
7065 }
7066 
7067 /* Shorthand to generate and send TPI error acks to our client */
7068 static void
7069 tcp_err_ack(tcp_t *tcp, mblk_t *mp, int t_error, int sys_error)
7070 {
7071 	if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL)
7072 		putnext(tcp->tcp_rq, mp);
7073 }
7074 
7075 /* Shorthand to generate and send TPI error acks to our client */
7076 static void
7077 tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive,
7078     int t_error, int sys_error)
7079 {
7080 	struct T_error_ack	*teackp;
7081 
7082 	if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack),
7083 	    M_PCPROTO, T_ERROR_ACK)) != NULL) {
7084 		teackp = (struct T_error_ack *)mp->b_rptr;
7085 		teackp->ERROR_prim = primitive;
7086 		teackp->TLI_error = t_error;
7087 		teackp->UNIX_error = sys_error;
7088 		putnext(tcp->tcp_rq, mp);
7089 	}
7090 }
7091 
7092 /*
7093  * Note: No locks are held when inspecting tcp_g_*epriv_ports
7094  * but instead the code relies on:
7095  * - the fact that the address of the array and its size never changes
7096  * - the atomic assignment of the elements of the array
7097  */
7098 /* ARGSUSED */
7099 static int
7100 tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
7101 {
7102 	int i;
7103 
7104 	for (i = 0; i < tcp_g_num_epriv_ports; i++) {
7105 		if (tcp_g_epriv_ports[i] != 0)
7106 			(void) mi_mpprintf(mp, "%d ", tcp_g_epriv_ports[i]);
7107 	}
7108 	return (0);
7109 }
7110 
7111 /*
7112  * Hold a lock while changing tcp_g_epriv_ports to prevent multiple
7113  * threads from changing it at the same time.
7114  */
7115 /* ARGSUSED */
7116 static int
7117 tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
7118     cred_t *cr)
7119 {
7120 	long	new_value;
7121 	int	i;
7122 
7123 	/*
7124 	 * Fail the request if the new value does not lie within the
7125 	 * port number limits.
7126 	 */
7127 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
7128 	    new_value <= 0 || new_value >= 65536) {
7129 		return (EINVAL);
7130 	}
7131 
7132 	mutex_enter(&tcp_epriv_port_lock);
7133 	/* Check if the value is already in the list */
7134 	for (i = 0; i < tcp_g_num_epriv_ports; i++) {
7135 		if (new_value == tcp_g_epriv_ports[i]) {
7136 			mutex_exit(&tcp_epriv_port_lock);
7137 			return (EEXIST);
7138 		}
7139 	}
7140 	/* Find an empty slot */
7141 	for (i = 0; i < tcp_g_num_epriv_ports; i++) {
7142 		if (tcp_g_epriv_ports[i] == 0)
7143 			break;
7144 	}
7145 	if (i == tcp_g_num_epriv_ports) {
7146 		mutex_exit(&tcp_epriv_port_lock);
7147 		return (EOVERFLOW);
7148 	}
7149 	/* Set the new value */
7150 	tcp_g_epriv_ports[i] = (uint16_t)new_value;
7151 	mutex_exit(&tcp_epriv_port_lock);
7152 	return (0);
7153 }
7154 
7155 /*
7156  * Hold a lock while changing tcp_g_epriv_ports to prevent multiple
7157  * threads from changing it at the same time.
7158  */
7159 /* ARGSUSED */
7160 static int
7161 tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
7162     cred_t *cr)
7163 {
7164 	long	new_value;
7165 	int	i;
7166 
7167 	/*
7168 	 * Fail the request if the new value does not lie within the
7169 	 * port number limits.
7170 	 */
7171 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value <= 0 ||
7172 	    new_value >= 65536) {
7173 		return (EINVAL);
7174 	}
7175 
7176 	mutex_enter(&tcp_epriv_port_lock);
7177 	/* Check that the value is already in the list */
7178 	for (i = 0; i < tcp_g_num_epriv_ports; i++) {
7179 		if (tcp_g_epriv_ports[i] == new_value)
7180 			break;
7181 	}
7182 	if (i == tcp_g_num_epriv_ports) {
7183 		mutex_exit(&tcp_epriv_port_lock);
7184 		return (ESRCH);
7185 	}
7186 	/* Clear the value */
7187 	tcp_g_epriv_ports[i] = 0;
7188 	mutex_exit(&tcp_epriv_port_lock);
7189 	return (0);
7190 }
7191 
7192 /* Return the TPI/TLI equivalent of our current tcp_state */
7193 static int
7194 tcp_tpistate(tcp_t *tcp)
7195 {
7196 	switch (tcp->tcp_state) {
7197 	case TCPS_IDLE:
7198 		return (TS_UNBND);
7199 	case TCPS_LISTEN:
7200 		/*
7201 		 * Return whether there are outstanding T_CONN_IND waiting
7202 		 * for the matching T_CONN_RES. Therefore don't count q0.
7203 		 */
7204 		if (tcp->tcp_conn_req_cnt_q > 0)
7205 			return (TS_WRES_CIND);
7206 		else
7207 			return (TS_IDLE);
7208 	case TCPS_BOUND:
7209 		return (TS_IDLE);
7210 	case TCPS_SYN_SENT:
7211 		return (TS_WCON_CREQ);
7212 	case TCPS_SYN_RCVD:
7213 		/*
7214 		 * Note: assumption: this has to the active open SYN_RCVD.
7215 		 * The passive instance is detached in SYN_RCVD stage of
7216 		 * incoming connection processing so we cannot get request
7217 		 * for T_info_ack on it.
7218 		 */
7219 		return (TS_WACK_CRES);
7220 	case TCPS_ESTABLISHED:
7221 		return (TS_DATA_XFER);
7222 	case TCPS_CLOSE_WAIT:
7223 		return (TS_WREQ_ORDREL);
7224 	case TCPS_FIN_WAIT_1:
7225 		return (TS_WIND_ORDREL);
7226 	case TCPS_FIN_WAIT_2:
7227 		return (TS_WIND_ORDREL);
7228 
7229 	case TCPS_CLOSING:
7230 	case TCPS_LAST_ACK:
7231 	case TCPS_TIME_WAIT:
7232 	case TCPS_CLOSED:
7233 		/*
7234 		 * Following TS_WACK_DREQ7 is a rendition of "not
7235 		 * yet TS_IDLE" TPI state. There is no best match to any
7236 		 * TPI state for TCPS_{CLOSING, LAST_ACK, TIME_WAIT} but we
7237 		 * choose a value chosen that will map to TLI/XTI level
7238 		 * state of TSTATECHNG (state is process of changing) which
7239 		 * captures what this dummy state represents.
7240 		 */
7241 		return (TS_WACK_DREQ7);
7242 	default:
7243 		cmn_err(CE_WARN, "tcp_tpistate: strange state (%d) %s",
7244 		    tcp->tcp_state, tcp_display(tcp, NULL,
7245 		    DISP_PORT_ONLY));
7246 		return (TS_UNBND);
7247 	}
7248 }
7249 
7250 static void
7251 tcp_copy_info(struct T_info_ack *tia, tcp_t *tcp)
7252 {
7253 	if (tcp->tcp_family == AF_INET6)
7254 		*tia = tcp_g_t_info_ack_v6;
7255 	else
7256 		*tia = tcp_g_t_info_ack;
7257 	tia->CURRENT_state = tcp_tpistate(tcp);
7258 	tia->OPT_size = tcp_max_optsize;
7259 	if (tcp->tcp_mss == 0) {
7260 		/* Not yet set - tcp_open does not set mss */
7261 		if (tcp->tcp_ipversion == IPV4_VERSION)
7262 			tia->TIDU_size = tcp_mss_def_ipv4;
7263 		else
7264 			tia->TIDU_size = tcp_mss_def_ipv6;
7265 	} else {
7266 		tia->TIDU_size = tcp->tcp_mss;
7267 	}
7268 	/* TODO: Default ETSDU is 1.  Is that correct for tcp? */
7269 }
7270 
7271 /*
7272  * This routine responds to T_CAPABILITY_REQ messages.  It is called by
7273  * tcp_wput.  Much of the T_CAPABILITY_ACK information is copied from
7274  * tcp_g_t_info_ack.  The current state of the stream is copied from
7275  * tcp_state.
7276  */
7277 static void
7278 tcp_capability_req(tcp_t *tcp, mblk_t *mp)
7279 {
7280 	t_uscalar_t		cap_bits1;
7281 	struct T_capability_ack	*tcap;
7282 
7283 	if (MBLKL(mp) < sizeof (struct T_capability_req)) {
7284 		freemsg(mp);
7285 		return;
7286 	}
7287 
7288 	cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1;
7289 
7290 	mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack),
7291 	    mp->b_datap->db_type, T_CAPABILITY_ACK);
7292 	if (mp == NULL)
7293 		return;
7294 
7295 	tcap = (struct T_capability_ack *)mp->b_rptr;
7296 	tcap->CAP_bits1 = 0;
7297 
7298 	if (cap_bits1 & TC1_INFO) {
7299 		tcp_copy_info(&tcap->INFO_ack, tcp);
7300 		tcap->CAP_bits1 |= TC1_INFO;
7301 	}
7302 
7303 	if (cap_bits1 & TC1_ACCEPTOR_ID) {
7304 		tcap->ACCEPTOR_id = tcp->tcp_acceptor_id;
7305 		tcap->CAP_bits1 |= TC1_ACCEPTOR_ID;
7306 	}
7307 
7308 	putnext(tcp->tcp_rq, mp);
7309 }
7310 
7311 /*
7312  * This routine responds to T_INFO_REQ messages.  It is called by tcp_wput.
7313  * Most of the T_INFO_ACK information is copied from tcp_g_t_info_ack.
7314  * The current state of the stream is copied from tcp_state.
7315  */
7316 static void
7317 tcp_info_req(tcp_t *tcp, mblk_t *mp)
7318 {
7319 	mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO,
7320 	    T_INFO_ACK);
7321 	if (!mp) {
7322 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
7323 		return;
7324 	}
7325 	tcp_copy_info((struct T_info_ack *)mp->b_rptr, tcp);
7326 	putnext(tcp->tcp_rq, mp);
7327 }
7328 
7329 /* Respond to the TPI addr request */
7330 static void
7331 tcp_addr_req(tcp_t *tcp, mblk_t *mp)
7332 {
7333 	sin_t	*sin;
7334 	mblk_t	*ackmp;
7335 	struct T_addr_ack *taa;
7336 
7337 	/* Make it large enough for worst case */
7338 	ackmp = reallocb(mp, sizeof (struct T_addr_ack) +
7339 	    2 * sizeof (sin6_t), 1);
7340 	if (ackmp == NULL) {
7341 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
7342 		return;
7343 	}
7344 
7345 	if (tcp->tcp_ipversion == IPV6_VERSION) {
7346 		tcp_addr_req_ipv6(tcp, ackmp);
7347 		return;
7348 	}
7349 	taa = (struct T_addr_ack *)ackmp->b_rptr;
7350 
7351 	bzero(taa, sizeof (struct T_addr_ack));
7352 	ackmp->b_wptr = (uchar_t *)&taa[1];
7353 
7354 	taa->PRIM_type = T_ADDR_ACK;
7355 	ackmp->b_datap->db_type = M_PCPROTO;
7356 
7357 	/*
7358 	 * Note: Following code assumes 32 bit alignment of basic
7359 	 * data structures like sin_t and struct T_addr_ack.
7360 	 */
7361 	if (tcp->tcp_state >= TCPS_BOUND) {
7362 		/*
7363 		 * Fill in local address
7364 		 */
7365 		taa->LOCADDR_length = sizeof (sin_t);
7366 		taa->LOCADDR_offset = sizeof (*taa);
7367 
7368 		sin = (sin_t *)&taa[1];
7369 
7370 		/* Fill zeroes and then intialize non-zero fields */
7371 		*sin = sin_null;
7372 
7373 		sin->sin_family = AF_INET;
7374 
7375 		sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src;
7376 		sin->sin_port = *(uint16_t *)tcp->tcp_tcph->th_lport;
7377 
7378 		ackmp->b_wptr = (uchar_t *)&sin[1];
7379 
7380 		if (tcp->tcp_state >= TCPS_SYN_RCVD) {
7381 			/*
7382 			 * Fill in Remote address
7383 			 */
7384 			taa->REMADDR_length = sizeof (sin_t);
7385 			taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset +
7386 						taa->LOCADDR_length);
7387 
7388 			sin = (sin_t *)(ackmp->b_rptr + taa->REMADDR_offset);
7389 			*sin = sin_null;
7390 			sin->sin_family = AF_INET;
7391 			sin->sin_addr.s_addr = tcp->tcp_remote;
7392 			sin->sin_port = tcp->tcp_fport;
7393 
7394 			ackmp->b_wptr = (uchar_t *)&sin[1];
7395 		}
7396 	}
7397 	putnext(tcp->tcp_rq, ackmp);
7398 }
7399 
7400 /* Assumes that tcp_addr_req gets enough space and alignment */
7401 static void
7402 tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *ackmp)
7403 {
7404 	sin6_t	*sin6;
7405 	struct T_addr_ack *taa;
7406 
7407 	ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
7408 	ASSERT(OK_32PTR(ackmp->b_rptr));
7409 	ASSERT(ackmp->b_wptr - ackmp->b_rptr >= sizeof (struct T_addr_ack) +
7410 	    2 * sizeof (sin6_t));
7411 
7412 	taa = (struct T_addr_ack *)ackmp->b_rptr;
7413 
7414 	bzero(taa, sizeof (struct T_addr_ack));
7415 	ackmp->b_wptr = (uchar_t *)&taa[1];
7416 
7417 	taa->PRIM_type = T_ADDR_ACK;
7418 	ackmp->b_datap->db_type = M_PCPROTO;
7419 
7420 	/*
7421 	 * Note: Following code assumes 32 bit alignment of basic
7422 	 * data structures like sin6_t and struct T_addr_ack.
7423 	 */
7424 	if (tcp->tcp_state >= TCPS_BOUND) {
7425 		/*
7426 		 * Fill in local address
7427 		 */
7428 		taa->LOCADDR_length = sizeof (sin6_t);
7429 		taa->LOCADDR_offset = sizeof (*taa);
7430 
7431 		sin6 = (sin6_t *)&taa[1];
7432 		*sin6 = sin6_null;
7433 
7434 		sin6->sin6_family = AF_INET6;
7435 		sin6->sin6_addr = tcp->tcp_ip6h->ip6_src;
7436 		sin6->sin6_port = tcp->tcp_lport;
7437 
7438 		ackmp->b_wptr = (uchar_t *)&sin6[1];
7439 
7440 		if (tcp->tcp_state >= TCPS_SYN_RCVD) {
7441 			/*
7442 			 * Fill in Remote address
7443 			 */
7444 			taa->REMADDR_length = sizeof (sin6_t);
7445 			taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset +
7446 						taa->LOCADDR_length);
7447 
7448 			sin6 = (sin6_t *)(ackmp->b_rptr + taa->REMADDR_offset);
7449 			*sin6 = sin6_null;
7450 			sin6->sin6_family = AF_INET6;
7451 			sin6->sin6_flowinfo =
7452 			    tcp->tcp_ip6h->ip6_vcf &
7453 			    ~IPV6_VERS_AND_FLOW_MASK;
7454 			sin6->sin6_addr = tcp->tcp_remote_v6;
7455 			sin6->sin6_port = tcp->tcp_fport;
7456 
7457 			ackmp->b_wptr = (uchar_t *)&sin6[1];
7458 		}
7459 	}
7460 	putnext(tcp->tcp_rq, ackmp);
7461 }
7462 
7463 /*
7464  * Handle reinitialization of a tcp structure.
7465  * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE.
7466  */
7467 static void
7468 tcp_reinit(tcp_t *tcp)
7469 {
7470 	mblk_t	*mp;
7471 	int 	err;
7472 
7473 	TCP_STAT(tcp_reinit_calls);
7474 
7475 	/* tcp_reinit should never be called for detached tcp_t's */
7476 	ASSERT(tcp->tcp_listener == NULL);
7477 	ASSERT((tcp->tcp_family == AF_INET &&
7478 	    tcp->tcp_ipversion == IPV4_VERSION) ||
7479 	    (tcp->tcp_family == AF_INET6 &&
7480 	    (tcp->tcp_ipversion == IPV4_VERSION ||
7481 	    tcp->tcp_ipversion == IPV6_VERSION)));
7482 
7483 	/* Cancel outstanding timers */
7484 	tcp_timers_stop(tcp);
7485 
7486 	/*
7487 	 * Reset everything in the state vector, after updating global
7488 	 * MIB data from instance counters.
7489 	 */
7490 	UPDATE_MIB(&tcp_mib, tcpInSegs, tcp->tcp_ibsegs);
7491 	tcp->tcp_ibsegs = 0;
7492 	UPDATE_MIB(&tcp_mib, tcpOutSegs, tcp->tcp_obsegs);
7493 	tcp->tcp_obsegs = 0;
7494 
7495 	tcp_close_mpp(&tcp->tcp_xmit_head);
7496 	if (tcp->tcp_snd_zcopy_aware)
7497 		tcp_zcopy_notify(tcp);
7498 	tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL;
7499 	tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0;
7500 	if (tcp->tcp_flow_stopped &&
7501 	    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
7502 		tcp_clrqfull(tcp);
7503 	}
7504 	tcp_close_mpp(&tcp->tcp_reass_head);
7505 	tcp->tcp_reass_tail = NULL;
7506 	if (tcp->tcp_rcv_list != NULL) {
7507 		/* Free b_next chain */
7508 		tcp_close_mpp(&tcp->tcp_rcv_list);
7509 		tcp->tcp_rcv_last_head = NULL;
7510 		tcp->tcp_rcv_last_tail = NULL;
7511 		tcp->tcp_rcv_cnt = 0;
7512 	}
7513 	tcp->tcp_rcv_last_tail = NULL;
7514 
7515 	if ((mp = tcp->tcp_urp_mp) != NULL) {
7516 		freemsg(mp);
7517 		tcp->tcp_urp_mp = NULL;
7518 	}
7519 	if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
7520 		freemsg(mp);
7521 		tcp->tcp_urp_mark_mp = NULL;
7522 	}
7523 	if (tcp->tcp_fused_sigurg_mp != NULL) {
7524 		freeb(tcp->tcp_fused_sigurg_mp);
7525 		tcp->tcp_fused_sigurg_mp = NULL;
7526 	}
7527 
7528 	/*
7529 	 * Following is a union with two members which are
7530 	 * identical types and size so the following cleanup
7531 	 * is enough.
7532 	 */
7533 	tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
7534 
7535 	CL_INET_DISCONNECT(tcp);
7536 
7537 	/*
7538 	 * The connection can't be on the tcp_time_wait_head list
7539 	 * since it is not detached.
7540 	 */
7541 	ASSERT(tcp->tcp_time_wait_next == NULL);
7542 	ASSERT(tcp->tcp_time_wait_prev == NULL);
7543 	ASSERT(tcp->tcp_time_wait_expire == 0);
7544 
7545 	if (tcp->tcp_kssl_pending) {
7546 		tcp->tcp_kssl_pending = B_FALSE;
7547 
7548 		/* Don't reset if the initialized by bind. */
7549 		if (tcp->tcp_kssl_ent != NULL) {
7550 			kssl_release_ent(tcp->tcp_kssl_ent, NULL,
7551 			    KSSL_NO_PROXY);
7552 		}
7553 	}
7554 	if (tcp->tcp_kssl_ctx != NULL) {
7555 		kssl_release_ctx(tcp->tcp_kssl_ctx);
7556 		tcp->tcp_kssl_ctx = NULL;
7557 	}
7558 
7559 	/*
7560 	 * Reset/preserve other values
7561 	 */
7562 	tcp_reinit_values(tcp);
7563 	ipcl_hash_remove(tcp->tcp_connp);
7564 	conn_delete_ire(tcp->tcp_connp, NULL);
7565 
7566 	if (tcp->tcp_conn_req_max != 0) {
7567 		/*
7568 		 * This is the case when a TLI program uses the same
7569 		 * transport end point to accept a connection.  This
7570 		 * makes the TCP both a listener and acceptor.  When
7571 		 * this connection is closed, we need to set the state
7572 		 * back to TCPS_LISTEN.  Make sure that the eager list
7573 		 * is reinitialized.
7574 		 *
7575 		 * Note that this stream is still bound to the four
7576 		 * tuples of the previous connection in IP.  If a new
7577 		 * SYN with different foreign address comes in, IP will
7578 		 * not find it and will send it to the global queue.  In
7579 		 * the global queue, TCP will do a tcp_lookup_listener()
7580 		 * to find this stream.  This works because this stream
7581 		 * is only removed from connected hash.
7582 		 *
7583 		 */
7584 		tcp->tcp_state = TCPS_LISTEN;
7585 		tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
7586 		tcp->tcp_connp->conn_recv = tcp_conn_request;
7587 		if (tcp->tcp_family == AF_INET6) {
7588 			ASSERT(tcp->tcp_connp->conn_af_isv6);
7589 			(void) ipcl_bind_insert_v6(tcp->tcp_connp, IPPROTO_TCP,
7590 			    &tcp->tcp_ip6h->ip6_src, tcp->tcp_lport);
7591 		} else {
7592 			ASSERT(!tcp->tcp_connp->conn_af_isv6);
7593 			(void) ipcl_bind_insert(tcp->tcp_connp, IPPROTO_TCP,
7594 			    tcp->tcp_ipha->ipha_src, tcp->tcp_lport);
7595 		}
7596 	} else {
7597 		tcp->tcp_state = TCPS_BOUND;
7598 	}
7599 
7600 	/*
7601 	 * Initialize to default values
7602 	 * Can't fail since enough header template space already allocated
7603 	 * at open().
7604 	 */
7605 	err = tcp_init_values(tcp);
7606 	ASSERT(err == 0);
7607 	/* Restore state in tcp_tcph */
7608 	bcopy(&tcp->tcp_lport, tcp->tcp_tcph->th_lport, TCP_PORT_LEN);
7609 	if (tcp->tcp_ipversion == IPV4_VERSION)
7610 		tcp->tcp_ipha->ipha_src = tcp->tcp_bound_source;
7611 	else
7612 		tcp->tcp_ip6h->ip6_src = tcp->tcp_bound_source_v6;
7613 	/*
7614 	 * Copy of the src addr. in tcp_t is needed in tcp_t
7615 	 * since the lookup funcs can only lookup on tcp_t
7616 	 */
7617 	tcp->tcp_ip_src_v6 = tcp->tcp_bound_source_v6;
7618 
7619 	ASSERT(tcp->tcp_ptpbhn != NULL);
7620 	tcp->tcp_rq->q_hiwat = tcp_recv_hiwat;
7621 	tcp->tcp_rwnd = tcp_recv_hiwat;
7622 	tcp->tcp_mss = tcp->tcp_ipversion != IPV4_VERSION ?
7623 	    tcp_mss_def_ipv6 : tcp_mss_def_ipv4;
7624 }
7625 
7626 /*
7627  * Force values to zero that need be zero.
7628  * Do not touch values asociated with the BOUND or LISTEN state
7629  * since the connection will end up in that state after the reinit.
7630  * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t
7631  * structure!
7632  */
7633 static void
7634 tcp_reinit_values(tcp)
7635 	tcp_t *tcp;
7636 {
7637 #ifndef	lint
7638 #define	DONTCARE(x)
7639 #define	PRESERVE(x)
7640 #else
7641 #define	DONTCARE(x)	((x) = (x))
7642 #define	PRESERVE(x)	((x) = (x))
7643 #endif	/* lint */
7644 
7645 	PRESERVE(tcp->tcp_bind_hash);
7646 	PRESERVE(tcp->tcp_ptpbhn);
7647 	PRESERVE(tcp->tcp_acceptor_hash);
7648 	PRESERVE(tcp->tcp_ptpahn);
7649 
7650 	/* Should be ASSERT NULL on these with new code! */
7651 	ASSERT(tcp->tcp_time_wait_next == NULL);
7652 	ASSERT(tcp->tcp_time_wait_prev == NULL);
7653 	ASSERT(tcp->tcp_time_wait_expire == 0);
7654 	PRESERVE(tcp->tcp_state);
7655 	PRESERVE(tcp->tcp_rq);
7656 	PRESERVE(tcp->tcp_wq);
7657 
7658 	ASSERT(tcp->tcp_xmit_head == NULL);
7659 	ASSERT(tcp->tcp_xmit_last == NULL);
7660 	ASSERT(tcp->tcp_unsent == 0);
7661 	ASSERT(tcp->tcp_xmit_tail == NULL);
7662 	ASSERT(tcp->tcp_xmit_tail_unsent == 0);
7663 
7664 	tcp->tcp_snxt = 0;			/* Displayed in mib */
7665 	tcp->tcp_suna = 0;			/* Displayed in mib */
7666 	tcp->tcp_swnd = 0;
7667 	DONTCARE(tcp->tcp_cwnd);		/* Init in tcp_mss_set */
7668 
7669 	ASSERT(tcp->tcp_ibsegs == 0);
7670 	ASSERT(tcp->tcp_obsegs == 0);
7671 
7672 	if (tcp->tcp_iphc != NULL) {
7673 		ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
7674 		bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
7675 	}
7676 
7677 	DONTCARE(tcp->tcp_naglim);		/* Init in tcp_init_values */
7678 	DONTCARE(tcp->tcp_hdr_len);		/* Init in tcp_init_values */
7679 	DONTCARE(tcp->tcp_ipha);
7680 	DONTCARE(tcp->tcp_ip6h);
7681 	DONTCARE(tcp->tcp_ip_hdr_len);
7682 	DONTCARE(tcp->tcp_tcph);
7683 	DONTCARE(tcp->tcp_tcp_hdr_len);		/* Init in tcp_init_values */
7684 	tcp->tcp_valid_bits = 0;
7685 
7686 	DONTCARE(tcp->tcp_xmit_hiwater);	/* Init in tcp_init_values */
7687 	DONTCARE(tcp->tcp_timer_backoff);	/* Init in tcp_init_values */
7688 	DONTCARE(tcp->tcp_last_recv_time);	/* Init in tcp_init_values */
7689 	tcp->tcp_last_rcv_lbolt = 0;
7690 
7691 	tcp->tcp_init_cwnd = 0;
7692 
7693 	tcp->tcp_urp_last_valid = 0;
7694 	tcp->tcp_hard_binding = 0;
7695 	tcp->tcp_hard_bound = 0;
7696 	PRESERVE(tcp->tcp_cred);
7697 	PRESERVE(tcp->tcp_cpid);
7698 	PRESERVE(tcp->tcp_exclbind);
7699 
7700 	tcp->tcp_fin_acked = 0;
7701 	tcp->tcp_fin_rcvd = 0;
7702 	tcp->tcp_fin_sent = 0;
7703 	tcp->tcp_ordrel_done = 0;
7704 
7705 	tcp->tcp_debug = 0;
7706 	tcp->tcp_dontroute = 0;
7707 	tcp->tcp_broadcast = 0;
7708 
7709 	tcp->tcp_useloopback = 0;
7710 	tcp->tcp_reuseaddr = 0;
7711 	tcp->tcp_oobinline = 0;
7712 	tcp->tcp_dgram_errind = 0;
7713 
7714 	tcp->tcp_detached = 0;
7715 	tcp->tcp_bind_pending = 0;
7716 	tcp->tcp_unbind_pending = 0;
7717 	tcp->tcp_deferred_clean_death = 0;
7718 
7719 	tcp->tcp_snd_ws_ok = B_FALSE;
7720 	tcp->tcp_snd_ts_ok = B_FALSE;
7721 	tcp->tcp_linger = 0;
7722 	tcp->tcp_ka_enabled = 0;
7723 	tcp->tcp_zero_win_probe = 0;
7724 
7725 	tcp->tcp_loopback = 0;
7726 	tcp->tcp_localnet = 0;
7727 	tcp->tcp_syn_defense = 0;
7728 	tcp->tcp_set_timer = 0;
7729 
7730 	tcp->tcp_active_open = 0;
7731 	ASSERT(tcp->tcp_timeout == B_FALSE);
7732 	tcp->tcp_rexmit = B_FALSE;
7733 	tcp->tcp_xmit_zc_clean = B_FALSE;
7734 
7735 	tcp->tcp_snd_sack_ok = B_FALSE;
7736 	PRESERVE(tcp->tcp_recvdstaddr);
7737 	tcp->tcp_hwcksum = B_FALSE;
7738 
7739 	tcp->tcp_ire_ill_check_done = B_FALSE;
7740 	DONTCARE(tcp->tcp_maxpsz);		/* Init in tcp_init_values */
7741 
7742 	tcp->tcp_mdt = B_FALSE;
7743 	tcp->tcp_mdt_hdr_head = 0;
7744 	tcp->tcp_mdt_hdr_tail = 0;
7745 
7746 	tcp->tcp_conn_def_q0 = 0;
7747 	tcp->tcp_ip_forward_progress = B_FALSE;
7748 	tcp->tcp_anon_priv_bind = 0;
7749 	tcp->tcp_ecn_ok = B_FALSE;
7750 
7751 	tcp->tcp_cwr = B_FALSE;
7752 	tcp->tcp_ecn_echo_on = B_FALSE;
7753 
7754 	if (tcp->tcp_sack_info != NULL) {
7755 		if (tcp->tcp_notsack_list != NULL) {
7756 			TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
7757 		}
7758 		kmem_cache_free(tcp_sack_info_cache, tcp->tcp_sack_info);
7759 		tcp->tcp_sack_info = NULL;
7760 	}
7761 
7762 	tcp->tcp_rcv_ws = 0;
7763 	tcp->tcp_snd_ws = 0;
7764 	tcp->tcp_ts_recent = 0;
7765 	tcp->tcp_rnxt = 0;			/* Displayed in mib */
7766 	DONTCARE(tcp->tcp_rwnd);		/* Set in tcp_reinit() */
7767 	tcp->tcp_if_mtu = 0;
7768 
7769 	ASSERT(tcp->tcp_reass_head == NULL);
7770 	ASSERT(tcp->tcp_reass_tail == NULL);
7771 
7772 	tcp->tcp_cwnd_cnt = 0;
7773 
7774 	ASSERT(tcp->tcp_rcv_list == NULL);
7775 	ASSERT(tcp->tcp_rcv_last_head == NULL);
7776 	ASSERT(tcp->tcp_rcv_last_tail == NULL);
7777 	ASSERT(tcp->tcp_rcv_cnt == 0);
7778 
7779 	DONTCARE(tcp->tcp_cwnd_ssthresh);	/* Init in tcp_adapt_ire */
7780 	DONTCARE(tcp->tcp_cwnd_max);		/* Init in tcp_init_values */
7781 	tcp->tcp_csuna = 0;
7782 
7783 	tcp->tcp_rto = 0;			/* Displayed in MIB */
7784 	DONTCARE(tcp->tcp_rtt_sa);		/* Init in tcp_init_values */
7785 	DONTCARE(tcp->tcp_rtt_sd);		/* Init in tcp_init_values */
7786 	tcp->tcp_rtt_update = 0;
7787 
7788 	DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
7789 	DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
7790 
7791 	tcp->tcp_rack = 0;			/* Displayed in mib */
7792 	tcp->tcp_rack_cnt = 0;
7793 	tcp->tcp_rack_cur_max = 0;
7794 	tcp->tcp_rack_abs_max = 0;
7795 
7796 	tcp->tcp_max_swnd = 0;
7797 
7798 	ASSERT(tcp->tcp_listener == NULL);
7799 
7800 	DONTCARE(tcp->tcp_xmit_lowater);	/* Init in tcp_init_values */
7801 
7802 	DONTCARE(tcp->tcp_irs);			/* tcp_valid_bits cleared */
7803 	DONTCARE(tcp->tcp_iss);			/* tcp_valid_bits cleared */
7804 	DONTCARE(tcp->tcp_fss);			/* tcp_valid_bits cleared */
7805 	DONTCARE(tcp->tcp_urg);			/* tcp_valid_bits cleared */
7806 
7807 	ASSERT(tcp->tcp_conn_req_cnt_q == 0);
7808 	ASSERT(tcp->tcp_conn_req_cnt_q0 == 0);
7809 	PRESERVE(tcp->tcp_conn_req_max);
7810 	PRESERVE(tcp->tcp_conn_req_seqnum);
7811 
7812 	DONTCARE(tcp->tcp_ip_hdr_len);		/* Init in tcp_init_values */
7813 	DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */
7814 	DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */
7815 	DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */
7816 	DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */
7817 
7818 	tcp->tcp_lingertime = 0;
7819 
7820 	DONTCARE(tcp->tcp_urp_last);	/* tcp_urp_last_valid is cleared */
7821 	ASSERT(tcp->tcp_urp_mp == NULL);
7822 	ASSERT(tcp->tcp_urp_mark_mp == NULL);
7823 	ASSERT(tcp->tcp_fused_sigurg_mp == NULL);
7824 
7825 	ASSERT(tcp->tcp_eager_next_q == NULL);
7826 	ASSERT(tcp->tcp_eager_last_q == NULL);
7827 	ASSERT((tcp->tcp_eager_next_q0 == NULL &&
7828 	    tcp->tcp_eager_prev_q0 == NULL) ||
7829 	    tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0);
7830 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
7831 
7832 	tcp->tcp_client_errno = 0;
7833 
7834 	DONTCARE(tcp->tcp_sum);			/* Init in tcp_init_values */
7835 
7836 	tcp->tcp_remote_v6 = ipv6_all_zeros;	/* Displayed in MIB */
7837 
7838 	PRESERVE(tcp->tcp_bound_source_v6);
7839 	tcp->tcp_last_sent_len = 0;
7840 	tcp->tcp_dupack_cnt = 0;
7841 
7842 	tcp->tcp_fport = 0;			/* Displayed in MIB */
7843 	PRESERVE(tcp->tcp_lport);
7844 
7845 	PRESERVE(tcp->tcp_acceptor_lockp);
7846 
7847 	ASSERT(tcp->tcp_ordrelid == 0);
7848 	PRESERVE(tcp->tcp_acceptor_id);
7849 	DONTCARE(tcp->tcp_ipsec_overhead);
7850 
7851 	/*
7852 	 * If tcp_tracing flag is ON (i.e. We have a trace buffer
7853 	 * in tcp structure and now tracing), Re-initialize all
7854 	 * members of tcp_traceinfo.
7855 	 */
7856 	if (tcp->tcp_tracebuf != NULL) {
7857 		bzero(tcp->tcp_tracebuf, sizeof (tcptrch_t));
7858 	}
7859 
7860 	PRESERVE(tcp->tcp_family);
7861 	if (tcp->tcp_family == AF_INET6) {
7862 		tcp->tcp_ipversion = IPV6_VERSION;
7863 		tcp->tcp_mss = tcp_mss_def_ipv6;
7864 	} else {
7865 		tcp->tcp_ipversion = IPV4_VERSION;
7866 		tcp->tcp_mss = tcp_mss_def_ipv4;
7867 	}
7868 
7869 	tcp->tcp_bound_if = 0;
7870 	tcp->tcp_ipv6_recvancillary = 0;
7871 	tcp->tcp_recvifindex = 0;
7872 	tcp->tcp_recvhops = 0;
7873 	tcp->tcp_closed = 0;
7874 	tcp->tcp_cleandeathtag = 0;
7875 	if (tcp->tcp_hopopts != NULL) {
7876 		mi_free(tcp->tcp_hopopts);
7877 		tcp->tcp_hopopts = NULL;
7878 		tcp->tcp_hopoptslen = 0;
7879 	}
7880 	ASSERT(tcp->tcp_hopoptslen == 0);
7881 	if (tcp->tcp_dstopts != NULL) {
7882 		mi_free(tcp->tcp_dstopts);
7883 		tcp->tcp_dstopts = NULL;
7884 		tcp->tcp_dstoptslen = 0;
7885 	}
7886 	ASSERT(tcp->tcp_dstoptslen == 0);
7887 	if (tcp->tcp_rtdstopts != NULL) {
7888 		mi_free(tcp->tcp_rtdstopts);
7889 		tcp->tcp_rtdstopts = NULL;
7890 		tcp->tcp_rtdstoptslen = 0;
7891 	}
7892 	ASSERT(tcp->tcp_rtdstoptslen == 0);
7893 	if (tcp->tcp_rthdr != NULL) {
7894 		mi_free(tcp->tcp_rthdr);
7895 		tcp->tcp_rthdr = NULL;
7896 		tcp->tcp_rthdrlen = 0;
7897 	}
7898 	ASSERT(tcp->tcp_rthdrlen == 0);
7899 	PRESERVE(tcp->tcp_drop_opt_ack_cnt);
7900 
7901 	/* Reset fusion-related fields */
7902 	tcp->tcp_fused = B_FALSE;
7903 	tcp->tcp_unfusable = B_FALSE;
7904 	tcp->tcp_fused_sigurg = B_FALSE;
7905 	tcp->tcp_direct_sockfs = B_FALSE;
7906 	tcp->tcp_fuse_syncstr_stopped = B_FALSE;
7907 	tcp->tcp_loopback_peer = NULL;
7908 	tcp->tcp_fuse_rcv_hiwater = 0;
7909 	tcp->tcp_fuse_rcv_unread_hiwater = 0;
7910 	tcp->tcp_fuse_rcv_unread_cnt = 0;
7911 
7912 	tcp->tcp_in_ack_unsent = 0;
7913 	tcp->tcp_cork = B_FALSE;
7914 
7915 	PRESERVE(tcp->tcp_squeue_bytes);
7916 
7917 	ASSERT(tcp->tcp_kssl_ctx == NULL);
7918 	ASSERT(!tcp->tcp_kssl_pending);
7919 	PRESERVE(tcp->tcp_kssl_ent);
7920 
7921 #undef	DONTCARE
7922 #undef	PRESERVE
7923 }
7924 
7925 /*
7926  * Allocate necessary resources and initialize state vector.
7927  * Guaranteed not to fail so that when an error is returned,
7928  * the caller doesn't need to do any additional cleanup.
7929  */
7930 int
7931 tcp_init(tcp_t *tcp, queue_t *q)
7932 {
7933 	int	err;
7934 
7935 	tcp->tcp_rq = q;
7936 	tcp->tcp_wq = WR(q);
7937 	tcp->tcp_state = TCPS_IDLE;
7938 	if ((err = tcp_init_values(tcp)) != 0)
7939 		tcp_timers_stop(tcp);
7940 	return (err);
7941 }
7942 
7943 static int
7944 tcp_init_values(tcp_t *tcp)
7945 {
7946 	int	err;
7947 
7948 	ASSERT((tcp->tcp_family == AF_INET &&
7949 	    tcp->tcp_ipversion == IPV4_VERSION) ||
7950 	    (tcp->tcp_family == AF_INET6 &&
7951 	    (tcp->tcp_ipversion == IPV4_VERSION ||
7952 	    tcp->tcp_ipversion == IPV6_VERSION)));
7953 
7954 	/*
7955 	 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO
7956 	 * will be close to tcp_rexmit_interval_initial.  By doing this, we
7957 	 * allow the algorithm to adjust slowly to large fluctuations of RTT
7958 	 * during first few transmissions of a connection as seen in slow
7959 	 * links.
7960 	 */
7961 	tcp->tcp_rtt_sa = tcp_rexmit_interval_initial << 2;
7962 	tcp->tcp_rtt_sd = tcp_rexmit_interval_initial >> 1;
7963 	tcp->tcp_rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
7964 	    tcp_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) +
7965 	    tcp_conn_grace_period;
7966 	if (tcp->tcp_rto < tcp_rexmit_interval_min)
7967 		tcp->tcp_rto = tcp_rexmit_interval_min;
7968 	tcp->tcp_timer_backoff = 0;
7969 	tcp->tcp_ms_we_have_waited = 0;
7970 	tcp->tcp_last_recv_time = lbolt;
7971 	tcp->tcp_cwnd_max = tcp_cwnd_max_;
7972 	tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
7973 	tcp->tcp_snd_burst = TCP_CWND_INFINITE;
7974 
7975 	tcp->tcp_maxpsz = tcp_maxpsz_multiplier;
7976 
7977 	tcp->tcp_first_timer_threshold = tcp_ip_notify_interval;
7978 	tcp->tcp_first_ctimer_threshold = tcp_ip_notify_cinterval;
7979 	tcp->tcp_second_timer_threshold = tcp_ip_abort_interval;
7980 	/*
7981 	 * Fix it to tcp_ip_abort_linterval later if it turns out to be a
7982 	 * passive open.
7983 	 */
7984 	tcp->tcp_second_ctimer_threshold = tcp_ip_abort_cinterval;
7985 
7986 	tcp->tcp_naglim = tcp_naglim_def;
7987 
7988 	/* NOTE:  ISS is now set in tcp_adapt_ire(). */
7989 
7990 	tcp->tcp_mdt_hdr_head = 0;
7991 	tcp->tcp_mdt_hdr_tail = 0;
7992 
7993 	/* Reset fusion-related fields */
7994 	tcp->tcp_fused = B_FALSE;
7995 	tcp->tcp_unfusable = B_FALSE;
7996 	tcp->tcp_fused_sigurg = B_FALSE;
7997 	tcp->tcp_direct_sockfs = B_FALSE;
7998 	tcp->tcp_fuse_syncstr_stopped = B_FALSE;
7999 	tcp->tcp_loopback_peer = NULL;
8000 	tcp->tcp_fuse_rcv_hiwater = 0;
8001 	tcp->tcp_fuse_rcv_unread_hiwater = 0;
8002 	tcp->tcp_fuse_rcv_unread_cnt = 0;
8003 
8004 	/* Initialize the header template */
8005 	if (tcp->tcp_ipversion == IPV4_VERSION) {
8006 		err = tcp_header_init_ipv4(tcp);
8007 	} else {
8008 		err = tcp_header_init_ipv6(tcp);
8009 	}
8010 	if (err)
8011 		return (err);
8012 
8013 	/*
8014 	 * Init the window scale to the max so tcp_rwnd_set() won't pare
8015 	 * down tcp_rwnd. tcp_adapt_ire() will set the right value later.
8016 	 */
8017 	tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT;
8018 	tcp->tcp_xmit_lowater = tcp_xmit_lowat;
8019 	tcp->tcp_xmit_hiwater = tcp_xmit_hiwat;
8020 
8021 	tcp->tcp_cork = B_FALSE;
8022 	/*
8023 	 * Init the tcp_debug option.  This value determines whether TCP
8024 	 * calls strlog() to print out debug messages.  Doing this
8025 	 * initialization here means that this value is not inherited thru
8026 	 * tcp_reinit().
8027 	 */
8028 	tcp->tcp_debug = tcp_dbg;
8029 
8030 	tcp->tcp_ka_interval = tcp_keepalive_interval;
8031 	tcp->tcp_ka_abort_thres = tcp_keepalive_abort_interval;
8032 
8033 	return (0);
8034 }
8035 
8036 /*
8037  * Initialize the IPv4 header. Loses any record of any IP options.
8038  */
8039 static int
8040 tcp_header_init_ipv4(tcp_t *tcp)
8041 {
8042 	tcph_t		*tcph;
8043 	uint32_t	sum;
8044 	conn_t		*connp;
8045 
8046 	/*
8047 	 * This is a simple initialization. If there's
8048 	 * already a template, it should never be too small,
8049 	 * so reuse it.  Otherwise, allocate space for the new one.
8050 	 */
8051 	if (tcp->tcp_iphc == NULL) {
8052 		ASSERT(tcp->tcp_iphc_len == 0);
8053 		tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH;
8054 		tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP);
8055 		if (tcp->tcp_iphc == NULL) {
8056 			tcp->tcp_iphc_len = 0;
8057 			return (ENOMEM);
8058 		}
8059 	}
8060 
8061 	/* options are gone; may need a new label */
8062 	connp = tcp->tcp_connp;
8063 	connp->conn_mlp_type = mlptSingle;
8064 	connp->conn_ulp_labeled = !is_system_labeled();
8065 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
8066 	tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
8067 	tcp->tcp_ip6h = NULL;
8068 	tcp->tcp_ipversion = IPV4_VERSION;
8069 	tcp->tcp_hdr_len = sizeof (ipha_t) + sizeof (tcph_t);
8070 	tcp->tcp_tcp_hdr_len = sizeof (tcph_t);
8071 	tcp->tcp_ip_hdr_len = sizeof (ipha_t);
8072 	tcp->tcp_ipha->ipha_length = htons(sizeof (ipha_t) + sizeof (tcph_t));
8073 	tcp->tcp_ipha->ipha_version_and_hdr_length
8074 		= (IP_VERSION << 4) | IP_SIMPLE_HDR_LENGTH_IN_WORDS;
8075 	tcp->tcp_ipha->ipha_ident = 0;
8076 
8077 	tcp->tcp_ttl = (uchar_t)tcp_ipv4_ttl;
8078 	tcp->tcp_tos = 0;
8079 	tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0;
8080 	tcp->tcp_ipha->ipha_ttl = (uchar_t)tcp_ipv4_ttl;
8081 	tcp->tcp_ipha->ipha_protocol = IPPROTO_TCP;
8082 
8083 	tcph = (tcph_t *)(tcp->tcp_iphc + sizeof (ipha_t));
8084 	tcp->tcp_tcph = tcph;
8085 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
8086 	/*
8087 	 * IP wants our header length in the checksum field to
8088 	 * allow it to perform a single pseudo-header+checksum
8089 	 * calculation on behalf of TCP.
8090 	 * Include the adjustment for a source route once IP_OPTIONS is set.
8091 	 */
8092 	sum = sizeof (tcph_t) + tcp->tcp_sum;
8093 	sum = (sum >> 16) + (sum & 0xFFFF);
8094 	U16_TO_ABE16(sum, tcph->th_sum);
8095 	return (0);
8096 }
8097 
8098 /*
8099  * Initialize the IPv6 header. Loses any record of any IPv6 extension headers.
8100  */
8101 static int
8102 tcp_header_init_ipv6(tcp_t *tcp)
8103 {
8104 	tcph_t	*tcph;
8105 	uint32_t	sum;
8106 	conn_t	*connp;
8107 
8108 	/*
8109 	 * This is a simple initialization. If there's
8110 	 * already a template, it should never be too small,
8111 	 * so reuse it. Otherwise, allocate space for the new one.
8112 	 * Ensure that there is enough space to "downgrade" the tcp_t
8113 	 * to an IPv4 tcp_t. This requires having space for a full load
8114 	 * of IPv4 options, as well as a full load of TCP options
8115 	 * (TCP_MAX_COMBINED_HEADER_LENGTH, 120 bytes); this is more space
8116 	 * than a v6 header and a TCP header with a full load of TCP options
8117 	 * (IPV6_HDR_LEN is 40 bytes; TCP_MAX_HDR_LENGTH is 60 bytes).
8118 	 * We want to avoid reallocation in the "downgraded" case when
8119 	 * processing outbound IPv4 options.
8120 	 */
8121 	if (tcp->tcp_iphc == NULL) {
8122 		ASSERT(tcp->tcp_iphc_len == 0);
8123 		tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH;
8124 		tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP);
8125 		if (tcp->tcp_iphc == NULL) {
8126 			tcp->tcp_iphc_len = 0;
8127 			return (ENOMEM);
8128 		}
8129 	}
8130 
8131 	/* options are gone; may need a new label */
8132 	connp = tcp->tcp_connp;
8133 	connp->conn_mlp_type = mlptSingle;
8134 	connp->conn_ulp_labeled = !is_system_labeled();
8135 
8136 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
8137 	tcp->tcp_ipversion = IPV6_VERSION;
8138 	tcp->tcp_hdr_len = IPV6_HDR_LEN + sizeof (tcph_t);
8139 	tcp->tcp_tcp_hdr_len = sizeof (tcph_t);
8140 	tcp->tcp_ip_hdr_len = IPV6_HDR_LEN;
8141 	tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc;
8142 	tcp->tcp_ipha = NULL;
8143 
8144 	/* Initialize the header template */
8145 
8146 	tcp->tcp_ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW;
8147 	tcp->tcp_ip6h->ip6_plen = ntohs(sizeof (tcph_t));
8148 	tcp->tcp_ip6h->ip6_nxt = IPPROTO_TCP;
8149 	tcp->tcp_ip6h->ip6_hops = (uint8_t)tcp_ipv6_hoplimit;
8150 
8151 	tcph = (tcph_t *)(tcp->tcp_iphc + IPV6_HDR_LEN);
8152 	tcp->tcp_tcph = tcph;
8153 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
8154 	/*
8155 	 * IP wants our header length in the checksum field to
8156 	 * allow it to perform a single psuedo-header+checksum
8157 	 * calculation on behalf of TCP.
8158 	 * Include the adjustment for a source route when IPV6_RTHDR is set.
8159 	 */
8160 	sum = sizeof (tcph_t) + tcp->tcp_sum;
8161 	sum = (sum >> 16) + (sum & 0xFFFF);
8162 	U16_TO_ABE16(sum, tcph->th_sum);
8163 	return (0);
8164 }
8165 
8166 /* At minimum we need 4 bytes in the TCP header for the lookup */
8167 #define	ICMP_MIN_TCP_HDR	12
8168 
8169 /*
8170  * tcp_icmp_error is called by tcp_rput_other to process ICMP error messages
8171  * passed up by IP. The message is always received on the correct tcp_t.
8172  * Assumes that IP has pulled up everything up to and including the ICMP header.
8173  */
8174 void
8175 tcp_icmp_error(tcp_t *tcp, mblk_t *mp)
8176 {
8177 	icmph_t *icmph;
8178 	ipha_t	*ipha;
8179 	int	iph_hdr_length;
8180 	tcph_t	*tcph;
8181 	boolean_t ipsec_mctl = B_FALSE;
8182 	boolean_t secure;
8183 	mblk_t *first_mp = mp;
8184 	uint32_t new_mss;
8185 	uint32_t ratio;
8186 	size_t mp_size = MBLKL(mp);
8187 	uint32_t seg_ack;
8188 	uint32_t seg_seq;
8189 
8190 	/* Assume IP provides aligned packets - otherwise toss */
8191 	if (!OK_32PTR(mp->b_rptr)) {
8192 		freemsg(mp);
8193 		return;
8194 	}
8195 
8196 	/*
8197 	 * Since ICMP errors are normal data marked with M_CTL when sent
8198 	 * to TCP or UDP, we have to look for a IPSEC_IN value to identify
8199 	 * packets starting with an ipsec_info_t, see ipsec_info.h.
8200 	 */
8201 	if ((mp_size == sizeof (ipsec_info_t)) &&
8202 	    (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == IPSEC_IN)) {
8203 		ASSERT(mp->b_cont != NULL);
8204 		mp = mp->b_cont;
8205 		/* IP should have done this */
8206 		ASSERT(OK_32PTR(mp->b_rptr));
8207 		mp_size = MBLKL(mp);
8208 		ipsec_mctl = B_TRUE;
8209 	}
8210 
8211 	/*
8212 	 * Verify that we have a complete outer IP header. If not, drop it.
8213 	 */
8214 	if (mp_size < sizeof (ipha_t)) {
8215 noticmpv4:
8216 		freemsg(first_mp);
8217 		return;
8218 	}
8219 
8220 	ipha = (ipha_t *)mp->b_rptr;
8221 	/*
8222 	 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent
8223 	 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6.
8224 	 */
8225 	switch (IPH_HDR_VERSION(ipha)) {
8226 	case IPV6_VERSION:
8227 		tcp_icmp_error_ipv6(tcp, first_mp, ipsec_mctl);
8228 		return;
8229 	case IPV4_VERSION:
8230 		break;
8231 	default:
8232 		goto noticmpv4;
8233 	}
8234 
8235 	/* Skip past the outer IP and ICMP headers */
8236 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
8237 	icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
8238 	/*
8239 	 * If we don't have the correct outer IP header length or if the ULP
8240 	 * is not IPPROTO_ICMP or if we don't have a complete inner IP header
8241 	 * send it upstream.
8242 	 */
8243 	if (iph_hdr_length < sizeof (ipha_t) ||
8244 	    ipha->ipha_protocol != IPPROTO_ICMP ||
8245 	    (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) {
8246 		goto noticmpv4;
8247 	}
8248 	ipha = (ipha_t *)&icmph[1];
8249 
8250 	/* Skip past the inner IP and find the ULP header */
8251 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
8252 	tcph = (tcph_t *)((char *)ipha + iph_hdr_length);
8253 	/*
8254 	 * If we don't have the correct inner IP header length or if the ULP
8255 	 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR
8256 	 * bytes of TCP header, drop it.
8257 	 */
8258 	if (iph_hdr_length < sizeof (ipha_t) ||
8259 	    ipha->ipha_protocol != IPPROTO_TCP ||
8260 	    (uchar_t *)tcph + ICMP_MIN_TCP_HDR > mp->b_wptr) {
8261 		goto noticmpv4;
8262 	}
8263 
8264 	if (TCP_IS_DETACHED_NONEAGER(tcp)) {
8265 		if (ipsec_mctl) {
8266 			secure = ipsec_in_is_secure(first_mp);
8267 		} else {
8268 			secure = B_FALSE;
8269 		}
8270 		if (secure) {
8271 			/*
8272 			 * If we are willing to accept this in clear
8273 			 * we don't have to verify policy.
8274 			 */
8275 			if (!ipsec_inbound_accept_clear(mp, ipha, NULL)) {
8276 				if (!tcp_check_policy(tcp, first_mp,
8277 				    ipha, NULL, secure, ipsec_mctl)) {
8278 					/*
8279 					 * tcp_check_policy called
8280 					 * ip_drop_packet() on failure.
8281 					 */
8282 					return;
8283 				}
8284 			}
8285 		}
8286 	} else if (ipsec_mctl) {
8287 		/*
8288 		 * This is a hard_bound connection. IP has already
8289 		 * verified policy. We don't have to do it again.
8290 		 */
8291 		freeb(first_mp);
8292 		first_mp = mp;
8293 		ipsec_mctl = B_FALSE;
8294 	}
8295 
8296 	seg_ack = ABE32_TO_U32(tcph->th_ack);
8297 	seg_seq = ABE32_TO_U32(tcph->th_seq);
8298 	/*
8299 	 * TCP SHOULD check that the TCP sequence number contained in
8300 	 * payload of the ICMP error message is within the range
8301 	 * SND.UNA <= SEG.SEQ < SND.NXT. and also SEG.ACK <= RECV.NXT
8302 	 */
8303 	if (SEQ_LT(seg_seq, tcp->tcp_suna) ||
8304 		SEQ_GEQ(seg_seq, tcp->tcp_snxt) ||
8305 		SEQ_GT(seg_ack, tcp->tcp_rnxt)) {
8306 		/*
8307 		 * If the ICMP message is bogus, should we kill the
8308 		 * connection, or should we just drop the bogus ICMP
8309 		 * message? It would probably make more sense to just
8310 		 * drop the message so that if this one managed to get
8311 		 * in, the real connection should not suffer.
8312 		 */
8313 		goto noticmpv4;
8314 	}
8315 
8316 	switch (icmph->icmph_type) {
8317 	case ICMP_DEST_UNREACHABLE:
8318 		switch (icmph->icmph_code) {
8319 		case ICMP_FRAGMENTATION_NEEDED:
8320 			/*
8321 			 * Reduce the MSS based on the new MTU.  This will
8322 			 * eliminate any fragmentation locally.
8323 			 * N.B.  There may well be some funny side-effects on
8324 			 * the local send policy and the remote receive policy.
8325 			 * Pending further research, we provide
8326 			 * tcp_ignore_path_mtu just in case this proves
8327 			 * disastrous somewhere.
8328 			 *
8329 			 * After updating the MSS, retransmit part of the
8330 			 * dropped segment using the new mss by calling
8331 			 * tcp_wput_data().  Need to adjust all those
8332 			 * params to make sure tcp_wput_data() work properly.
8333 			 */
8334 			if (tcp_ignore_path_mtu)
8335 				break;
8336 
8337 			/*
8338 			 * Decrease the MSS by time stamp options
8339 			 * IP options and IPSEC options. tcp_hdr_len
8340 			 * includes time stamp option and IP option
8341 			 * length.
8342 			 */
8343 
8344 			new_mss = ntohs(icmph->icmph_du_mtu) -
8345 			    tcp->tcp_hdr_len - tcp->tcp_ipsec_overhead;
8346 
8347 			/*
8348 			 * Only update the MSS if the new one is
8349 			 * smaller than the previous one.  This is
8350 			 * to avoid problems when getting multiple
8351 			 * ICMP errors for the same MTU.
8352 			 */
8353 			if (new_mss >= tcp->tcp_mss)
8354 				break;
8355 
8356 			/*
8357 			 * Stop doing PMTU if new_mss is less than 68
8358 			 * or less than tcp_mss_min.
8359 			 * The value 68 comes from rfc 1191.
8360 			 */
8361 			if (new_mss < MAX(68, tcp_mss_min))
8362 				tcp->tcp_ipha->ipha_fragment_offset_and_flags =
8363 				    0;
8364 
8365 			ratio = tcp->tcp_cwnd / tcp->tcp_mss;
8366 			ASSERT(ratio >= 1);
8367 			tcp_mss_set(tcp, new_mss);
8368 
8369 			/*
8370 			 * Make sure we have something to
8371 			 * send.
8372 			 */
8373 			if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) &&
8374 			    (tcp->tcp_xmit_head != NULL)) {
8375 				/*
8376 				 * Shrink tcp_cwnd in
8377 				 * proportion to the old MSS/new MSS.
8378 				 */
8379 				tcp->tcp_cwnd = ratio * tcp->tcp_mss;
8380 				if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
8381 				    (tcp->tcp_unsent == 0)) {
8382 					tcp->tcp_rexmit_max = tcp->tcp_fss;
8383 				} else {
8384 					tcp->tcp_rexmit_max = tcp->tcp_snxt;
8385 				}
8386 				tcp->tcp_rexmit_nxt = tcp->tcp_suna;
8387 				tcp->tcp_rexmit = B_TRUE;
8388 				tcp->tcp_dupack_cnt = 0;
8389 				tcp->tcp_snd_burst = TCP_CWND_SS;
8390 				tcp_ss_rexmit(tcp);
8391 			}
8392 			break;
8393 		case ICMP_PORT_UNREACHABLE:
8394 		case ICMP_PROTOCOL_UNREACHABLE:
8395 			switch (tcp->tcp_state) {
8396 			case TCPS_SYN_SENT:
8397 			case TCPS_SYN_RCVD:
8398 				/*
8399 				 * ICMP can snipe away incipient
8400 				 * TCP connections as long as
8401 				 * seq number is same as initial
8402 				 * send seq number.
8403 				 */
8404 				if (seg_seq == tcp->tcp_iss) {
8405 					(void) tcp_clean_death(tcp,
8406 					    ECONNREFUSED, 6);
8407 				}
8408 				break;
8409 			}
8410 			break;
8411 		case ICMP_HOST_UNREACHABLE:
8412 		case ICMP_NET_UNREACHABLE:
8413 			/* Record the error in case we finally time out. */
8414 			if (icmph->icmph_code == ICMP_HOST_UNREACHABLE)
8415 				tcp->tcp_client_errno = EHOSTUNREACH;
8416 			else
8417 				tcp->tcp_client_errno = ENETUNREACH;
8418 			if (tcp->tcp_state == TCPS_SYN_RCVD) {
8419 				if (tcp->tcp_listener != NULL &&
8420 				    tcp->tcp_listener->tcp_syn_defense) {
8421 					/*
8422 					 * Ditch the half-open connection if we
8423 					 * suspect a SYN attack is under way.
8424 					 */
8425 					tcp_ip_ire_mark_advice(tcp);
8426 					(void) tcp_clean_death(tcp,
8427 					    tcp->tcp_client_errno, 7);
8428 				}
8429 			}
8430 			break;
8431 		default:
8432 			break;
8433 		}
8434 		break;
8435 	case ICMP_SOURCE_QUENCH: {
8436 		/*
8437 		 * use a global boolean to control
8438 		 * whether TCP should respond to ICMP_SOURCE_QUENCH.
8439 		 * The default is false.
8440 		 */
8441 		if (tcp_icmp_source_quench) {
8442 			/*
8443 			 * Reduce the sending rate as if we got a
8444 			 * retransmit timeout
8445 			 */
8446 			uint32_t npkt;
8447 
8448 			npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) /
8449 			    tcp->tcp_mss;
8450 			tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss;
8451 			tcp->tcp_cwnd = tcp->tcp_mss;
8452 			tcp->tcp_cwnd_cnt = 0;
8453 		}
8454 		break;
8455 	}
8456 	}
8457 	freemsg(first_mp);
8458 }
8459 
8460 /*
8461  * tcp_icmp_error_ipv6 is called by tcp_rput_other to process ICMPv6
8462  * error messages passed up by IP.
8463  * Assumes that IP has pulled up all the extension headers as well
8464  * as the ICMPv6 header.
8465  */
8466 static void
8467 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, boolean_t ipsec_mctl)
8468 {
8469 	icmp6_t *icmp6;
8470 	ip6_t	*ip6h;
8471 	uint16_t	iph_hdr_length;
8472 	tcpha_t	*tcpha;
8473 	uint8_t	*nexthdrp;
8474 	uint32_t new_mss;
8475 	uint32_t ratio;
8476 	boolean_t secure;
8477 	mblk_t *first_mp = mp;
8478 	size_t mp_size;
8479 	uint32_t seg_ack;
8480 	uint32_t seg_seq;
8481 
8482 	/*
8483 	 * The caller has determined if this is an IPSEC_IN packet and
8484 	 * set ipsec_mctl appropriately (see tcp_icmp_error).
8485 	 */
8486 	if (ipsec_mctl)
8487 		mp = mp->b_cont;
8488 
8489 	mp_size = MBLKL(mp);
8490 
8491 	/*
8492 	 * Verify that we have a complete IP header. If not, send it upstream.
8493 	 */
8494 	if (mp_size < sizeof (ip6_t)) {
8495 noticmpv6:
8496 		freemsg(first_mp);
8497 		return;
8498 	}
8499 
8500 	/*
8501 	 * Verify this is an ICMPV6 packet, else send it upstream.
8502 	 */
8503 	ip6h = (ip6_t *)mp->b_rptr;
8504 	if (ip6h->ip6_nxt == IPPROTO_ICMPV6) {
8505 		iph_hdr_length = IPV6_HDR_LEN;
8506 	} else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length,
8507 	    &nexthdrp) ||
8508 	    *nexthdrp != IPPROTO_ICMPV6) {
8509 		goto noticmpv6;
8510 	}
8511 	icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length];
8512 	ip6h = (ip6_t *)&icmp6[1];
8513 	/*
8514 	 * Verify if we have a complete ICMP and inner IP header.
8515 	 */
8516 	if ((uchar_t *)&ip6h[1] > mp->b_wptr)
8517 		goto noticmpv6;
8518 
8519 	if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp))
8520 		goto noticmpv6;
8521 	tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length);
8522 	/*
8523 	 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't
8524 	 * have at least ICMP_MIN_TCP_HDR bytes of  TCP header drop the
8525 	 * packet.
8526 	 */
8527 	if ((*nexthdrp != IPPROTO_TCP) ||
8528 	    ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) {
8529 		goto noticmpv6;
8530 	}
8531 
8532 	/*
8533 	 * ICMP errors come on the right queue or come on
8534 	 * listener/global queue for detached connections and
8535 	 * get switched to the right queue. If it comes on the
8536 	 * right queue, policy check has already been done by IP
8537 	 * and thus free the first_mp without verifying the policy.
8538 	 * If it has come for a non-hard bound connection, we need
8539 	 * to verify policy as IP may not have done it.
8540 	 */
8541 	if (!tcp->tcp_hard_bound) {
8542 		if (ipsec_mctl) {
8543 			secure = ipsec_in_is_secure(first_mp);
8544 		} else {
8545 			secure = B_FALSE;
8546 		}
8547 		if (secure) {
8548 			/*
8549 			 * If we are willing to accept this in clear
8550 			 * we don't have to verify policy.
8551 			 */
8552 			if (!ipsec_inbound_accept_clear(mp, NULL, ip6h)) {
8553 				if (!tcp_check_policy(tcp, first_mp,
8554 				    NULL, ip6h, secure, ipsec_mctl)) {
8555 					/*
8556 					 * tcp_check_policy called
8557 					 * ip_drop_packet() on failure.
8558 					 */
8559 					return;
8560 				}
8561 			}
8562 		}
8563 	} else if (ipsec_mctl) {
8564 		/*
8565 		 * This is a hard_bound connection. IP has already
8566 		 * verified policy. We don't have to do it again.
8567 		 */
8568 		freeb(first_mp);
8569 		first_mp = mp;
8570 		ipsec_mctl = B_FALSE;
8571 	}
8572 
8573 	seg_ack = ntohl(tcpha->tha_ack);
8574 	seg_seq = ntohl(tcpha->tha_seq);
8575 	/*
8576 	 * TCP SHOULD check that the TCP sequence number contained in
8577 	 * payload of the ICMP error message is within the range
8578 	 * SND.UNA <= SEG.SEQ < SND.NXT. and also SEG.ACK <= RECV.NXT
8579 	 */
8580 	if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt) ||
8581 	    SEQ_GT(seg_ack, tcp->tcp_rnxt)) {
8582 		/*
8583 		 * If the ICMP message is bogus, should we kill the
8584 		 * connection, or should we just drop the bogus ICMP
8585 		 * message? It would probably make more sense to just
8586 		 * drop the message so that if this one managed to get
8587 		 * in, the real connection should not suffer.
8588 		 */
8589 		goto noticmpv6;
8590 	}
8591 
8592 	switch (icmp6->icmp6_type) {
8593 	case ICMP6_PACKET_TOO_BIG:
8594 		/*
8595 		 * Reduce the MSS based on the new MTU.  This will
8596 		 * eliminate any fragmentation locally.
8597 		 * N.B.  There may well be some funny side-effects on
8598 		 * the local send policy and the remote receive policy.
8599 		 * Pending further research, we provide
8600 		 * tcp_ignore_path_mtu just in case this proves
8601 		 * disastrous somewhere.
8602 		 *
8603 		 * After updating the MSS, retransmit part of the
8604 		 * dropped segment using the new mss by calling
8605 		 * tcp_wput_data().  Need to adjust all those
8606 		 * params to make sure tcp_wput_data() work properly.
8607 		 */
8608 		if (tcp_ignore_path_mtu)
8609 			break;
8610 
8611 		/*
8612 		 * Decrease the MSS by time stamp options
8613 		 * IP options and IPSEC options. tcp_hdr_len
8614 		 * includes time stamp option and IP option
8615 		 * length.
8616 		 */
8617 		new_mss = ntohs(icmp6->icmp6_mtu) - tcp->tcp_hdr_len -
8618 			    tcp->tcp_ipsec_overhead;
8619 
8620 		/*
8621 		 * Only update the MSS if the new one is
8622 		 * smaller than the previous one.  This is
8623 		 * to avoid problems when getting multiple
8624 		 * ICMP errors for the same MTU.
8625 		 */
8626 		if (new_mss >= tcp->tcp_mss)
8627 			break;
8628 
8629 		ratio = tcp->tcp_cwnd / tcp->tcp_mss;
8630 		ASSERT(ratio >= 1);
8631 		tcp_mss_set(tcp, new_mss);
8632 
8633 		/*
8634 		 * Make sure we have something to
8635 		 * send.
8636 		 */
8637 		if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) &&
8638 		    (tcp->tcp_xmit_head != NULL)) {
8639 			/*
8640 			 * Shrink tcp_cwnd in
8641 			 * proportion to the old MSS/new MSS.
8642 			 */
8643 			tcp->tcp_cwnd = ratio * tcp->tcp_mss;
8644 			if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
8645 			    (tcp->tcp_unsent == 0)) {
8646 				tcp->tcp_rexmit_max = tcp->tcp_fss;
8647 			} else {
8648 				tcp->tcp_rexmit_max = tcp->tcp_snxt;
8649 			}
8650 			tcp->tcp_rexmit_nxt = tcp->tcp_suna;
8651 			tcp->tcp_rexmit = B_TRUE;
8652 			tcp->tcp_dupack_cnt = 0;
8653 			tcp->tcp_snd_burst = TCP_CWND_SS;
8654 			tcp_ss_rexmit(tcp);
8655 		}
8656 		break;
8657 
8658 	case ICMP6_DST_UNREACH:
8659 		switch (icmp6->icmp6_code) {
8660 		case ICMP6_DST_UNREACH_NOPORT:
8661 			if (((tcp->tcp_state == TCPS_SYN_SENT) ||
8662 			    (tcp->tcp_state == TCPS_SYN_RCVD)) &&
8663 			    (seg_seq == tcp->tcp_iss)) {
8664 				(void) tcp_clean_death(tcp,
8665 				    ECONNREFUSED, 8);
8666 			}
8667 			break;
8668 
8669 		case ICMP6_DST_UNREACH_ADMIN:
8670 		case ICMP6_DST_UNREACH_NOROUTE:
8671 		case ICMP6_DST_UNREACH_BEYONDSCOPE:
8672 		case ICMP6_DST_UNREACH_ADDR:
8673 			/* Record the error in case we finally time out. */
8674 			tcp->tcp_client_errno = EHOSTUNREACH;
8675 			if (((tcp->tcp_state == TCPS_SYN_SENT) ||
8676 			    (tcp->tcp_state == TCPS_SYN_RCVD)) &&
8677 			    (seg_seq == tcp->tcp_iss)) {
8678 				if (tcp->tcp_listener != NULL &&
8679 				    tcp->tcp_listener->tcp_syn_defense) {
8680 					/*
8681 					 * Ditch the half-open connection if we
8682 					 * suspect a SYN attack is under way.
8683 					 */
8684 					tcp_ip_ire_mark_advice(tcp);
8685 					(void) tcp_clean_death(tcp,
8686 					    tcp->tcp_client_errno, 9);
8687 				}
8688 			}
8689 
8690 
8691 			break;
8692 		default:
8693 			break;
8694 		}
8695 		break;
8696 
8697 	case ICMP6_PARAM_PROB:
8698 		/* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */
8699 		if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER &&
8700 		    (uchar_t *)ip6h + icmp6->icmp6_pptr ==
8701 		    (uchar_t *)nexthdrp) {
8702 			if (tcp->tcp_state == TCPS_SYN_SENT ||
8703 			    tcp->tcp_state == TCPS_SYN_RCVD) {
8704 				(void) tcp_clean_death(tcp,
8705 				    ECONNREFUSED, 10);
8706 			}
8707 			break;
8708 		}
8709 		break;
8710 
8711 	case ICMP6_TIME_EXCEEDED:
8712 	default:
8713 		break;
8714 	}
8715 	freemsg(first_mp);
8716 }
8717 
8718 /*
8719  * IP recognizes seven kinds of bind requests:
8720  *
8721  * - A zero-length address binds only to the protocol number.
8722  *
8723  * - A 4-byte address is treated as a request to
8724  * validate that the address is a valid local IPv4
8725  * address, appropriate for an application to bind to.
8726  * IP does the verification, but does not make any note
8727  * of the address at this time.
8728  *
8729  * - A 16-byte address contains is treated as a request
8730  * to validate a local IPv6 address, as the 4-byte
8731  * address case above.
8732  *
8733  * - A 16-byte sockaddr_in to validate the local IPv4 address and also
8734  * use it for the inbound fanout of packets.
8735  *
8736  * - A 24-byte sockaddr_in6 to validate the local IPv6 address and also
8737  * use it for the inbound fanout of packets.
8738  *
8739  * - A 12-byte address (ipa_conn_t) containing complete IPv4 fanout
8740  * information consisting of local and remote addresses
8741  * and ports.  In this case, the addresses are both
8742  * validated as appropriate for this operation, and, if
8743  * so, the information is retained for use in the
8744  * inbound fanout.
8745  *
8746  * - A 36-byte address address (ipa6_conn_t) containing complete IPv6
8747  * fanout information, like the 12-byte case above.
8748  *
8749  * IP will also fill in the IRE request mblk with information
8750  * regarding our peer.  In all cases, we notify IP of our protocol
8751  * type by appending a single protocol byte to the bind request.
8752  */
8753 static mblk_t *
8754 tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim, t_scalar_t addr_length)
8755 {
8756 	char	*cp;
8757 	mblk_t	*mp;
8758 	struct T_bind_req *tbr;
8759 	ipa_conn_t	*ac;
8760 	ipa6_conn_t	*ac6;
8761 	sin_t		*sin;
8762 	sin6_t		*sin6;
8763 
8764 	ASSERT(bind_prim == O_T_BIND_REQ || bind_prim == T_BIND_REQ);
8765 	ASSERT((tcp->tcp_family == AF_INET &&
8766 	    tcp->tcp_ipversion == IPV4_VERSION) ||
8767 	    (tcp->tcp_family == AF_INET6 &&
8768 	    (tcp->tcp_ipversion == IPV4_VERSION ||
8769 	    tcp->tcp_ipversion == IPV6_VERSION)));
8770 
8771 	mp = allocb(sizeof (*tbr) + addr_length + 1, BPRI_HI);
8772 	if (!mp)
8773 		return (mp);
8774 	mp->b_datap->db_type = M_PROTO;
8775 	tbr = (struct T_bind_req *)mp->b_rptr;
8776 	tbr->PRIM_type = bind_prim;
8777 	tbr->ADDR_offset = sizeof (*tbr);
8778 	tbr->CONIND_number = 0;
8779 	tbr->ADDR_length = addr_length;
8780 	cp = (char *)&tbr[1];
8781 	switch (addr_length) {
8782 	case sizeof (ipa_conn_t):
8783 		ASSERT(tcp->tcp_family == AF_INET);
8784 		ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
8785 
8786 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
8787 		if (mp->b_cont == NULL) {
8788 			freemsg(mp);
8789 			return (NULL);
8790 		}
8791 		mp->b_cont->b_wptr += sizeof (ire_t);
8792 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
8793 
8794 		/* cp known to be 32 bit aligned */
8795 		ac = (ipa_conn_t *)cp;
8796 		ac->ac_laddr = tcp->tcp_ipha->ipha_src;
8797 		ac->ac_faddr = tcp->tcp_remote;
8798 		ac->ac_fport = tcp->tcp_fport;
8799 		ac->ac_lport = tcp->tcp_lport;
8800 		tcp->tcp_hard_binding = 1;
8801 		break;
8802 
8803 	case sizeof (ipa6_conn_t):
8804 		ASSERT(tcp->tcp_family == AF_INET6);
8805 
8806 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
8807 		if (mp->b_cont == NULL) {
8808 			freemsg(mp);
8809 			return (NULL);
8810 		}
8811 		mp->b_cont->b_wptr += sizeof (ire_t);
8812 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
8813 
8814 		/* cp known to be 32 bit aligned */
8815 		ac6 = (ipa6_conn_t *)cp;
8816 		if (tcp->tcp_ipversion == IPV4_VERSION) {
8817 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
8818 			    &ac6->ac6_laddr);
8819 		} else {
8820 			ac6->ac6_laddr = tcp->tcp_ip6h->ip6_src;
8821 		}
8822 		ac6->ac6_faddr = tcp->tcp_remote_v6;
8823 		ac6->ac6_fport = tcp->tcp_fport;
8824 		ac6->ac6_lport = tcp->tcp_lport;
8825 		tcp->tcp_hard_binding = 1;
8826 		break;
8827 
8828 	case sizeof (sin_t):
8829 		/*
8830 		 * NOTE: IPV6_ADDR_LEN also has same size.
8831 		 * Use family to discriminate.
8832 		 */
8833 		if (tcp->tcp_family == AF_INET) {
8834 			sin = (sin_t *)cp;
8835 
8836 			*sin = sin_null;
8837 			sin->sin_family = AF_INET;
8838 			sin->sin_addr.s_addr = tcp->tcp_bound_source;
8839 			sin->sin_port = tcp->tcp_lport;
8840 			break;
8841 		} else {
8842 			*(in6_addr_t *)cp = tcp->tcp_bound_source_v6;
8843 		}
8844 		break;
8845 
8846 	case sizeof (sin6_t):
8847 		ASSERT(tcp->tcp_family == AF_INET6);
8848 		sin6 = (sin6_t *)cp;
8849 
8850 		*sin6 = sin6_null;
8851 		sin6->sin6_family = AF_INET6;
8852 		sin6->sin6_addr = tcp->tcp_bound_source_v6;
8853 		sin6->sin6_port = tcp->tcp_lport;
8854 		break;
8855 
8856 	case IP_ADDR_LEN:
8857 		ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
8858 		*(uint32_t *)cp = tcp->tcp_ipha->ipha_src;
8859 		break;
8860 
8861 	}
8862 	/* Add protocol number to end */
8863 	cp[addr_length] = (char)IPPROTO_TCP;
8864 	mp->b_wptr = (uchar_t *)&cp[addr_length + 1];
8865 	return (mp);
8866 }
8867 
8868 /*
8869  * Notify IP that we are having trouble with this connection.  IP should
8870  * blow the IRE away and start over.
8871  */
8872 static void
8873 tcp_ip_notify(tcp_t *tcp)
8874 {
8875 	struct iocblk	*iocp;
8876 	ipid_t	*ipid;
8877 	mblk_t	*mp;
8878 
8879 	/* IPv6 has NUD thus notification to delete the IRE is not needed */
8880 	if (tcp->tcp_ipversion == IPV6_VERSION)
8881 		return;
8882 
8883 	mp = mkiocb(IP_IOCTL);
8884 	if (mp == NULL)
8885 		return;
8886 
8887 	iocp = (struct iocblk *)mp->b_rptr;
8888 	iocp->ioc_count = sizeof (ipid_t) + sizeof (tcp->tcp_ipha->ipha_dst);
8889 
8890 	mp->b_cont = allocb(iocp->ioc_count, BPRI_HI);
8891 	if (!mp->b_cont) {
8892 		freeb(mp);
8893 		return;
8894 	}
8895 
8896 	ipid = (ipid_t *)mp->b_cont->b_rptr;
8897 	mp->b_cont->b_wptr += iocp->ioc_count;
8898 	bzero(ipid, sizeof (*ipid));
8899 	ipid->ipid_cmd = IP_IOC_IRE_DELETE_NO_REPLY;
8900 	ipid->ipid_ire_type = IRE_CACHE;
8901 	ipid->ipid_addr_offset = sizeof (ipid_t);
8902 	ipid->ipid_addr_length = sizeof (tcp->tcp_ipha->ipha_dst);
8903 	/*
8904 	 * Note: in the case of source routing we want to blow away the
8905 	 * route to the first source route hop.
8906 	 */
8907 	bcopy(&tcp->tcp_ipha->ipha_dst, &ipid[1],
8908 	    sizeof (tcp->tcp_ipha->ipha_dst));
8909 
8910 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
8911 }
8912 
8913 /* Unlink and return any mblk that looks like it contains an ire */
8914 static mblk_t *
8915 tcp_ire_mp(mblk_t *mp)
8916 {
8917 	mblk_t	*prev_mp;
8918 
8919 	for (;;) {
8920 		prev_mp = mp;
8921 		mp = mp->b_cont;
8922 		if (mp == NULL)
8923 			break;
8924 		switch (DB_TYPE(mp)) {
8925 		case IRE_DB_TYPE:
8926 		case IRE_DB_REQ_TYPE:
8927 			if (prev_mp != NULL)
8928 				prev_mp->b_cont = mp->b_cont;
8929 			mp->b_cont = NULL;
8930 			return (mp);
8931 		default:
8932 			break;
8933 		}
8934 	}
8935 	return (mp);
8936 }
8937 
8938 /*
8939  * Timer callback routine for keepalive probe.  We do a fake resend of
8940  * last ACKed byte.  Then set a timer using RTO.  When the timer expires,
8941  * check to see if we have heard anything from the other end for the last
8942  * RTO period.  If we have, set the timer to expire for another
8943  * tcp_keepalive_intrvl and check again.  If we have not, set a timer using
8944  * RTO << 1 and check again when it expires.  Keep exponentially increasing
8945  * the timeout if we have not heard from the other side.  If for more than
8946  * (tcp_ka_interval + tcp_ka_abort_thres) we have not heard anything,
8947  * kill the connection unless the keepalive abort threshold is 0.  In
8948  * that case, we will probe "forever."
8949  */
8950 static void
8951 tcp_keepalive_killer(void *arg)
8952 {
8953 	mblk_t	*mp;
8954 	conn_t	*connp = (conn_t *)arg;
8955 	tcp_t  	*tcp = connp->conn_tcp;
8956 	int32_t	firetime;
8957 	int32_t	idletime;
8958 	int32_t	ka_intrvl;
8959 
8960 	tcp->tcp_ka_tid = 0;
8961 
8962 	if (tcp->tcp_fused)
8963 		return;
8964 
8965 	BUMP_MIB(&tcp_mib, tcpTimKeepalive);
8966 	ka_intrvl = tcp->tcp_ka_interval;
8967 
8968 	/*
8969 	 * Keepalive probe should only be sent if the application has not
8970 	 * done a close on the connection.
8971 	 */
8972 	if (tcp->tcp_state > TCPS_CLOSE_WAIT) {
8973 		return;
8974 	}
8975 	/* Timer fired too early, restart it. */
8976 	if (tcp->tcp_state < TCPS_ESTABLISHED) {
8977 		tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
8978 		    MSEC_TO_TICK(ka_intrvl));
8979 		return;
8980 	}
8981 
8982 	idletime = TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time);
8983 	/*
8984 	 * If we have not heard from the other side for a long
8985 	 * time, kill the connection unless the keepalive abort
8986 	 * threshold is 0.  In that case, we will probe "forever."
8987 	 */
8988 	if (tcp->tcp_ka_abort_thres != 0 &&
8989 	    idletime > (ka_intrvl + tcp->tcp_ka_abort_thres)) {
8990 		BUMP_MIB(&tcp_mib, tcpTimKeepaliveDrop);
8991 		(void) tcp_clean_death(tcp, tcp->tcp_client_errno ?
8992 		    tcp->tcp_client_errno : ETIMEDOUT, 11);
8993 		return;
8994 	}
8995 
8996 	if (tcp->tcp_snxt == tcp->tcp_suna &&
8997 	    idletime >= ka_intrvl) {
8998 		/* Fake resend of last ACKed byte. */
8999 		mblk_t	*mp1 = allocb(1, BPRI_LO);
9000 
9001 		if (mp1 != NULL) {
9002 			*mp1->b_wptr++ = '\0';
9003 			mp = tcp_xmit_mp(tcp, mp1, 1, NULL, NULL,
9004 			    tcp->tcp_suna - 1, B_FALSE, NULL, B_TRUE);
9005 			freeb(mp1);
9006 			/*
9007 			 * if allocation failed, fall through to start the
9008 			 * timer back.
9009 			 */
9010 			if (mp != NULL) {
9011 				TCP_RECORD_TRACE(tcp, mp,
9012 				    TCP_TRACE_SEND_PKT);
9013 				tcp_send_data(tcp, tcp->tcp_wq, mp);
9014 				BUMP_MIB(&tcp_mib, tcpTimKeepaliveProbe);
9015 				if (tcp->tcp_ka_last_intrvl != 0) {
9016 					/*
9017 					 * We should probe again at least
9018 					 * in ka_intrvl, but not more than
9019 					 * tcp_rexmit_interval_max.
9020 					 */
9021 					firetime = MIN(ka_intrvl - 1,
9022 					    tcp->tcp_ka_last_intrvl << 1);
9023 					if (firetime > tcp_rexmit_interval_max)
9024 						firetime =
9025 						    tcp_rexmit_interval_max;
9026 				} else {
9027 					firetime = tcp->tcp_rto;
9028 				}
9029 				tcp->tcp_ka_tid = TCP_TIMER(tcp,
9030 				    tcp_keepalive_killer,
9031 				    MSEC_TO_TICK(firetime));
9032 				tcp->tcp_ka_last_intrvl = firetime;
9033 				return;
9034 			}
9035 		}
9036 	} else {
9037 		tcp->tcp_ka_last_intrvl = 0;
9038 	}
9039 
9040 	/* firetime can be negative if (mp1 == NULL || mp == NULL) */
9041 	if ((firetime = ka_intrvl - idletime) < 0) {
9042 		firetime = ka_intrvl;
9043 	}
9044 	tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
9045 	    MSEC_TO_TICK(firetime));
9046 }
9047 
9048 int
9049 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk)
9050 {
9051 	queue_t	*q = tcp->tcp_rq;
9052 	int32_t	mss = tcp->tcp_mss;
9053 	int	maxpsz;
9054 
9055 	if (TCP_IS_DETACHED(tcp))
9056 		return (mss);
9057 
9058 	if (tcp->tcp_fused) {
9059 		maxpsz = tcp_fuse_maxpsz_set(tcp);
9060 		mss = INFPSZ;
9061 	} else if (tcp->tcp_mdt || tcp->tcp_maxpsz == 0) {
9062 		/*
9063 		 * Set the sd_qn_maxpsz according to the socket send buffer
9064 		 * size, and sd_maxblk to INFPSZ (-1).  This will essentially
9065 		 * instruct the stream head to copyin user data into contiguous
9066 		 * kernel-allocated buffers without breaking it up into smaller
9067 		 * chunks.  We round up the buffer size to the nearest SMSS.
9068 		 */
9069 		maxpsz = MSS_ROUNDUP(tcp->tcp_xmit_hiwater, mss);
9070 		if (tcp->tcp_kssl_ctx == NULL)
9071 			mss = INFPSZ;
9072 		else
9073 			mss = SSL3_MAX_RECORD_LEN;
9074 	} else {
9075 		/*
9076 		 * Set sd_qn_maxpsz to approx half the (receivers) buffer
9077 		 * (and a multiple of the mss).  This instructs the stream
9078 		 * head to break down larger than SMSS writes into SMSS-
9079 		 * size mblks, up to tcp_maxpsz_multiplier mblks at a time.
9080 		 */
9081 		maxpsz = tcp->tcp_maxpsz * mss;
9082 		if (maxpsz > tcp->tcp_xmit_hiwater/2) {
9083 			maxpsz = tcp->tcp_xmit_hiwater/2;
9084 			/* Round up to nearest mss */
9085 			maxpsz = MSS_ROUNDUP(maxpsz, mss);
9086 		}
9087 	}
9088 	(void) setmaxps(q, maxpsz);
9089 	tcp->tcp_wq->q_maxpsz = maxpsz;
9090 
9091 	if (set_maxblk)
9092 		(void) mi_set_sth_maxblk(q, mss);
9093 
9094 	return (mss);
9095 }
9096 
9097 /*
9098  * Extract option values from a tcp header.  We put any found values into the
9099  * tcpopt struct and return a bitmask saying which options were found.
9100  */
9101 static int
9102 tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt)
9103 {
9104 	uchar_t		*endp;
9105 	int		len;
9106 	uint32_t	mss;
9107 	uchar_t		*up = (uchar_t *)tcph;
9108 	int		found = 0;
9109 	int32_t		sack_len;
9110 	tcp_seq		sack_begin, sack_end;
9111 	tcp_t		*tcp;
9112 
9113 	endp = up + TCP_HDR_LENGTH(tcph);
9114 	up += TCP_MIN_HEADER_LENGTH;
9115 	while (up < endp) {
9116 		len = endp - up;
9117 		switch (*up) {
9118 		case TCPOPT_EOL:
9119 			break;
9120 
9121 		case TCPOPT_NOP:
9122 			up++;
9123 			continue;
9124 
9125 		case TCPOPT_MAXSEG:
9126 			if (len < TCPOPT_MAXSEG_LEN ||
9127 			    up[1] != TCPOPT_MAXSEG_LEN)
9128 				break;
9129 
9130 			mss = BE16_TO_U16(up+2);
9131 			/* Caller must handle tcp_mss_min and tcp_mss_max_* */
9132 			tcpopt->tcp_opt_mss = mss;
9133 			found |= TCP_OPT_MSS_PRESENT;
9134 
9135 			up += TCPOPT_MAXSEG_LEN;
9136 			continue;
9137 
9138 		case TCPOPT_WSCALE:
9139 			if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN)
9140 				break;
9141 
9142 			if (up[2] > TCP_MAX_WINSHIFT)
9143 				tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT;
9144 			else
9145 				tcpopt->tcp_opt_wscale = up[2];
9146 			found |= TCP_OPT_WSCALE_PRESENT;
9147 
9148 			up += TCPOPT_WS_LEN;
9149 			continue;
9150 
9151 		case TCPOPT_SACK_PERMITTED:
9152 			if (len < TCPOPT_SACK_OK_LEN ||
9153 			    up[1] != TCPOPT_SACK_OK_LEN)
9154 				break;
9155 			found |= TCP_OPT_SACK_OK_PRESENT;
9156 			up += TCPOPT_SACK_OK_LEN;
9157 			continue;
9158 
9159 		case TCPOPT_SACK:
9160 			if (len <= 2 || up[1] <= 2 || len < up[1])
9161 				break;
9162 
9163 			/* If TCP is not interested in SACK blks... */
9164 			if ((tcp = tcpopt->tcp) == NULL) {
9165 				up += up[1];
9166 				continue;
9167 			}
9168 			sack_len = up[1] - TCPOPT_HEADER_LEN;
9169 			up += TCPOPT_HEADER_LEN;
9170 
9171 			/*
9172 			 * If the list is empty, allocate one and assume
9173 			 * nothing is sack'ed.
9174 			 */
9175 			ASSERT(tcp->tcp_sack_info != NULL);
9176 			if (tcp->tcp_notsack_list == NULL) {
9177 				tcp_notsack_update(&(tcp->tcp_notsack_list),
9178 				    tcp->tcp_suna, tcp->tcp_snxt,
9179 				    &(tcp->tcp_num_notsack_blk),
9180 				    &(tcp->tcp_cnt_notsack_list));
9181 
9182 				/*
9183 				 * Make sure tcp_notsack_list is not NULL.
9184 				 * This happens when kmem_alloc(KM_NOSLEEP)
9185 				 * returns NULL.
9186 				 */
9187 				if (tcp->tcp_notsack_list == NULL) {
9188 					up += sack_len;
9189 					continue;
9190 				}
9191 				tcp->tcp_fack = tcp->tcp_suna;
9192 			}
9193 
9194 			while (sack_len > 0) {
9195 				if (up + 8 > endp) {
9196 					up = endp;
9197 					break;
9198 				}
9199 				sack_begin = BE32_TO_U32(up);
9200 				up += 4;
9201 				sack_end = BE32_TO_U32(up);
9202 				up += 4;
9203 				sack_len -= 8;
9204 				/*
9205 				 * Bounds checking.  Make sure the SACK
9206 				 * info is within tcp_suna and tcp_snxt.
9207 				 * If this SACK blk is out of bound, ignore
9208 				 * it but continue to parse the following
9209 				 * blks.
9210 				 */
9211 				if (SEQ_LEQ(sack_end, sack_begin) ||
9212 				    SEQ_LT(sack_begin, tcp->tcp_suna) ||
9213 				    SEQ_GT(sack_end, tcp->tcp_snxt)) {
9214 					continue;
9215 				}
9216 				tcp_notsack_insert(&(tcp->tcp_notsack_list),
9217 				    sack_begin, sack_end,
9218 				    &(tcp->tcp_num_notsack_blk),
9219 				    &(tcp->tcp_cnt_notsack_list));
9220 				if (SEQ_GT(sack_end, tcp->tcp_fack)) {
9221 					tcp->tcp_fack = sack_end;
9222 				}
9223 			}
9224 			found |= TCP_OPT_SACK_PRESENT;
9225 			continue;
9226 
9227 		case TCPOPT_TSTAMP:
9228 			if (len < TCPOPT_TSTAMP_LEN ||
9229 			    up[1] != TCPOPT_TSTAMP_LEN)
9230 				break;
9231 
9232 			tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2);
9233 			tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6);
9234 
9235 			found |= TCP_OPT_TSTAMP_PRESENT;
9236 
9237 			up += TCPOPT_TSTAMP_LEN;
9238 			continue;
9239 
9240 		default:
9241 			if (len <= 1 || len < (int)up[1] || up[1] == 0)
9242 				break;
9243 			up += up[1];
9244 			continue;
9245 		}
9246 		break;
9247 	}
9248 	return (found);
9249 }
9250 
9251 /*
9252  * Set the mss associated with a particular tcp based on its current value,
9253  * and a new one passed in. Observe minimums and maximums, and reset
9254  * other state variables that we want to view as multiples of mss.
9255  *
9256  * This function is called in various places mainly because
9257  * 1) Various stuffs, tcp_mss, tcp_cwnd, ... need to be adjusted when the
9258  *    other side's SYN/SYN-ACK packet arrives.
9259  * 2) PMTUd may get us a new MSS.
9260  * 3) If the other side stops sending us timestamp option, we need to
9261  *    increase the MSS size to use the extra bytes available.
9262  */
9263 static void
9264 tcp_mss_set(tcp_t *tcp, uint32_t mss)
9265 {
9266 	uint32_t	mss_max;
9267 
9268 	if (tcp->tcp_ipversion == IPV4_VERSION)
9269 		mss_max = tcp_mss_max_ipv4;
9270 	else
9271 		mss_max = tcp_mss_max_ipv6;
9272 
9273 	if (mss < tcp_mss_min)
9274 		mss = tcp_mss_min;
9275 	if (mss > mss_max)
9276 		mss = mss_max;
9277 	/*
9278 	 * Unless naglim has been set by our client to
9279 	 * a non-mss value, force naglim to track mss.
9280 	 * This can help to aggregate small writes.
9281 	 */
9282 	if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim)
9283 		tcp->tcp_naglim = mss;
9284 	/*
9285 	 * TCP should be able to buffer at least 4 MSS data for obvious
9286 	 * performance reason.
9287 	 */
9288 	if ((mss << 2) > tcp->tcp_xmit_hiwater)
9289 		tcp->tcp_xmit_hiwater = mss << 2;
9290 
9291 	/*
9292 	 * Check if we need to apply the tcp_init_cwnd here.  If
9293 	 * it is set and the MSS gets bigger (should not happen
9294 	 * normally), we need to adjust the resulting tcp_cwnd properly.
9295 	 * The new tcp_cwnd should not get bigger.
9296 	 */
9297 	if (tcp->tcp_init_cwnd == 0) {
9298 		tcp->tcp_cwnd = MIN(tcp_slow_start_initial * mss,
9299 		    MIN(4 * mss, MAX(2 * mss, 4380 / mss * mss)));
9300 	} else {
9301 		if (tcp->tcp_mss < mss) {
9302 			tcp->tcp_cwnd = MAX(1,
9303 			    (tcp->tcp_init_cwnd * tcp->tcp_mss / mss)) * mss;
9304 		} else {
9305 			tcp->tcp_cwnd = tcp->tcp_init_cwnd * mss;
9306 		}
9307 	}
9308 	tcp->tcp_mss = mss;
9309 	tcp->tcp_cwnd_cnt = 0;
9310 	(void) tcp_maxpsz_set(tcp, B_TRUE);
9311 }
9312 
9313 static int
9314 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
9315 {
9316 	tcp_t		*tcp = NULL;
9317 	conn_t		*connp;
9318 	int		err;
9319 	dev_t		conn_dev;
9320 	zoneid_t	zoneid = getzoneid();
9321 
9322 	/*
9323 	 * Special case for install: miniroot needs to be able to access files
9324 	 * via NFS as though it were always in the global zone.
9325 	 */
9326 	if (credp == kcred && nfs_global_client_only != 0)
9327 		zoneid = GLOBAL_ZONEID;
9328 
9329 	if (q->q_ptr != NULL)
9330 		return (0);
9331 
9332 	if (sflag == MODOPEN) {
9333 		/*
9334 		 * This is a special case. The purpose of a modopen
9335 		 * is to allow just the T_SVR4_OPTMGMT_REQ to pass
9336 		 * through for MIB browsers. Everything else is failed.
9337 		 */
9338 		connp = (conn_t *)tcp_get_conn(IP_SQUEUE_GET(lbolt));
9339 
9340 		if (connp == NULL)
9341 			return (ENOMEM);
9342 
9343 		connp->conn_flags |= IPCL_TCPMOD;
9344 		connp->conn_cred = credp;
9345 		connp->conn_zoneid = zoneid;
9346 		q->q_ptr = WR(q)->q_ptr = connp;
9347 		crhold(credp);
9348 		q->q_qinfo = &tcp_mod_rinit;
9349 		WR(q)->q_qinfo = &tcp_mod_winit;
9350 		qprocson(q);
9351 		return (0);
9352 	}
9353 
9354 	if ((conn_dev = inet_minor_alloc(ip_minor_arena)) == 0)
9355 		return (EBUSY);
9356 
9357 	*devp = makedevice(getemajor(*devp), (minor_t)conn_dev);
9358 
9359 	if (flag & SO_ACCEPTOR) {
9360 		q->q_qinfo = &tcp_acceptor_rinit;
9361 		q->q_ptr = (void *)conn_dev;
9362 		WR(q)->q_qinfo = &tcp_acceptor_winit;
9363 		WR(q)->q_ptr = (void *)conn_dev;
9364 		qprocson(q);
9365 		return (0);
9366 	}
9367 
9368 	connp = (conn_t *)tcp_get_conn(IP_SQUEUE_GET(lbolt));
9369 	if (connp == NULL) {
9370 		inet_minor_free(ip_minor_arena, conn_dev);
9371 		q->q_ptr = NULL;
9372 		return (ENOSR);
9373 	}
9374 	connp->conn_sqp = IP_SQUEUE_GET(lbolt);
9375 	tcp = connp->conn_tcp;
9376 
9377 	q->q_ptr = WR(q)->q_ptr = connp;
9378 	if (getmajor(*devp) == TCP6_MAJ) {
9379 		connp->conn_flags |= (IPCL_TCP6|IPCL_ISV6);
9380 		connp->conn_send = ip_output_v6;
9381 		connp->conn_af_isv6 = B_TRUE;
9382 		connp->conn_pkt_isv6 = B_TRUE;
9383 		connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT;
9384 		tcp->tcp_ipversion = IPV6_VERSION;
9385 		tcp->tcp_family = AF_INET6;
9386 		tcp->tcp_mss = tcp_mss_def_ipv6;
9387 	} else {
9388 		connp->conn_flags |= IPCL_TCP4;
9389 		connp->conn_send = ip_output;
9390 		connp->conn_af_isv6 = B_FALSE;
9391 		connp->conn_pkt_isv6 = B_FALSE;
9392 		tcp->tcp_ipversion = IPV4_VERSION;
9393 		tcp->tcp_family = AF_INET;
9394 		tcp->tcp_mss = tcp_mss_def_ipv4;
9395 	}
9396 
9397 	/*
9398 	 * TCP keeps a copy of cred for cache locality reasons but
9399 	 * we put a reference only once. If connp->conn_cred
9400 	 * becomes invalid, tcp_cred should also be set to NULL.
9401 	 */
9402 	tcp->tcp_cred = connp->conn_cred = credp;
9403 	crhold(connp->conn_cred);
9404 	tcp->tcp_cpid = curproc->p_pid;
9405 	connp->conn_zoneid = zoneid;
9406 	connp->conn_mlp_type = mlptSingle;
9407 	connp->conn_ulp_labeled = !is_system_labeled();
9408 
9409 	/*
9410 	 * If the caller has the process-wide flag set, then default to MAC
9411 	 * exempt mode.  This allows read-down to unlabeled hosts.
9412 	 */
9413 	if (getpflags(NET_MAC_AWARE, credp) != 0)
9414 		connp->conn_mac_exempt = B_TRUE;
9415 
9416 	connp->conn_dev = conn_dev;
9417 
9418 	ASSERT(q->q_qinfo == &tcp_rinit);
9419 	ASSERT(WR(q)->q_qinfo == &tcp_winit);
9420 
9421 	if (flag & SO_SOCKSTR) {
9422 		/*
9423 		 * No need to insert a socket in tcp acceptor hash.
9424 		 * If it was a socket acceptor stream, we dealt with
9425 		 * it above. A socket listener can never accept a
9426 		 * connection and doesn't need acceptor_id.
9427 		 */
9428 		connp->conn_flags |= IPCL_SOCKET;
9429 		tcp->tcp_issocket = 1;
9430 		WR(q)->q_qinfo = &tcp_sock_winit;
9431 	} else {
9432 #ifdef	_ILP32
9433 		tcp->tcp_acceptor_id = (t_uscalar_t)RD(q);
9434 #else
9435 		tcp->tcp_acceptor_id = conn_dev;
9436 #endif	/* _ILP32 */
9437 		tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp);
9438 	}
9439 
9440 	if (tcp_trace)
9441 		tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_SLEEP);
9442 
9443 	err = tcp_init(tcp, q);
9444 	if (err != 0) {
9445 		inet_minor_free(ip_minor_arena, connp->conn_dev);
9446 		tcp_acceptor_hash_remove(tcp);
9447 		CONN_DEC_REF(connp);
9448 		q->q_ptr = WR(q)->q_ptr = NULL;
9449 		return (err);
9450 	}
9451 
9452 	RD(q)->q_hiwat = tcp_recv_hiwat;
9453 	tcp->tcp_rwnd = tcp_recv_hiwat;
9454 
9455 	/* Non-zero default values */
9456 	connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
9457 	/*
9458 	 * Put the ref for TCP. Ref for IP was already put
9459 	 * by ipcl_conn_create. Also Make the conn_t globally
9460 	 * visible to walkers
9461 	 */
9462 	mutex_enter(&connp->conn_lock);
9463 	CONN_INC_REF_LOCKED(connp);
9464 	ASSERT(connp->conn_ref == 2);
9465 	connp->conn_state_flags &= ~CONN_INCIPIENT;
9466 	mutex_exit(&connp->conn_lock);
9467 
9468 	qprocson(q);
9469 	return (0);
9470 }
9471 
9472 /*
9473  * Some TCP options can be "set" by requesting them in the option
9474  * buffer. This is needed for XTI feature test though we do not
9475  * allow it in general. We interpret that this mechanism is more
9476  * applicable to OSI protocols and need not be allowed in general.
9477  * This routine filters out options for which it is not allowed (most)
9478  * and lets through those (few) for which it is. [ The XTI interface
9479  * test suite specifics will imply that any XTI_GENERIC level XTI_* if
9480  * ever implemented will have to be allowed here ].
9481  */
9482 static boolean_t
9483 tcp_allow_connopt_set(int level, int name)
9484 {
9485 
9486 	switch (level) {
9487 	case IPPROTO_TCP:
9488 		switch (name) {
9489 		case TCP_NODELAY:
9490 			return (B_TRUE);
9491 		default:
9492 			return (B_FALSE);
9493 		}
9494 		/*NOTREACHED*/
9495 	default:
9496 		return (B_FALSE);
9497 	}
9498 	/*NOTREACHED*/
9499 }
9500 
9501 /*
9502  * This routine gets default values of certain options whose default
9503  * values are maintained by protocol specific code
9504  */
9505 /* ARGSUSED */
9506 int
9507 tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr)
9508 {
9509 	int32_t	*i1 = (int32_t *)ptr;
9510 
9511 	switch (level) {
9512 	case IPPROTO_TCP:
9513 		switch (name) {
9514 		case TCP_NOTIFY_THRESHOLD:
9515 			*i1 = tcp_ip_notify_interval;
9516 			break;
9517 		case TCP_ABORT_THRESHOLD:
9518 			*i1 = tcp_ip_abort_interval;
9519 			break;
9520 		case TCP_CONN_NOTIFY_THRESHOLD:
9521 			*i1 = tcp_ip_notify_cinterval;
9522 			break;
9523 		case TCP_CONN_ABORT_THRESHOLD:
9524 			*i1 = tcp_ip_abort_cinterval;
9525 			break;
9526 		default:
9527 			return (-1);
9528 		}
9529 		break;
9530 	case IPPROTO_IP:
9531 		switch (name) {
9532 		case IP_TTL:
9533 			*i1 = tcp_ipv4_ttl;
9534 			break;
9535 		default:
9536 			return (-1);
9537 		}
9538 		break;
9539 	case IPPROTO_IPV6:
9540 		switch (name) {
9541 		case IPV6_UNICAST_HOPS:
9542 			*i1 = tcp_ipv6_hoplimit;
9543 			break;
9544 		default:
9545 			return (-1);
9546 		}
9547 		break;
9548 	default:
9549 		return (-1);
9550 	}
9551 	return (sizeof (int));
9552 }
9553 
9554 
9555 /*
9556  * TCP routine to get the values of options.
9557  */
9558 int
9559 tcp_opt_get(queue_t *q, int level, int	name, uchar_t *ptr)
9560 {
9561 	int		*i1 = (int *)ptr;
9562 	conn_t		*connp = Q_TO_CONN(q);
9563 	tcp_t		*tcp = connp->conn_tcp;
9564 	ip6_pkt_t	*ipp = &tcp->tcp_sticky_ipp;
9565 
9566 	switch (level) {
9567 	case SOL_SOCKET:
9568 		switch (name) {
9569 		case SO_LINGER:	{
9570 			struct linger *lgr = (struct linger *)ptr;
9571 
9572 			lgr->l_onoff = tcp->tcp_linger ? SO_LINGER : 0;
9573 			lgr->l_linger = tcp->tcp_lingertime;
9574 			}
9575 			return (sizeof (struct linger));
9576 		case SO_DEBUG:
9577 			*i1 = tcp->tcp_debug ? SO_DEBUG : 0;
9578 			break;
9579 		case SO_KEEPALIVE:
9580 			*i1 = tcp->tcp_ka_enabled ? SO_KEEPALIVE : 0;
9581 			break;
9582 		case SO_DONTROUTE:
9583 			*i1 = tcp->tcp_dontroute ? SO_DONTROUTE : 0;
9584 			break;
9585 		case SO_USELOOPBACK:
9586 			*i1 = tcp->tcp_useloopback ? SO_USELOOPBACK : 0;
9587 			break;
9588 		case SO_BROADCAST:
9589 			*i1 = tcp->tcp_broadcast ? SO_BROADCAST : 0;
9590 			break;
9591 		case SO_REUSEADDR:
9592 			*i1 = tcp->tcp_reuseaddr ? SO_REUSEADDR : 0;
9593 			break;
9594 		case SO_OOBINLINE:
9595 			*i1 = tcp->tcp_oobinline ? SO_OOBINLINE : 0;
9596 			break;
9597 		case SO_DGRAM_ERRIND:
9598 			*i1 = tcp->tcp_dgram_errind ? SO_DGRAM_ERRIND : 0;
9599 			break;
9600 		case SO_TYPE:
9601 			*i1 = SOCK_STREAM;
9602 			break;
9603 		case SO_SNDBUF:
9604 			*i1 = tcp->tcp_xmit_hiwater;
9605 			break;
9606 		case SO_RCVBUF:
9607 			*i1 = RD(q)->q_hiwat;
9608 			break;
9609 		case SO_SND_COPYAVOID:
9610 			*i1 = tcp->tcp_snd_zcopy_on ?
9611 			    SO_SND_COPYAVOID : 0;
9612 			break;
9613 		case SO_ALLZONES:
9614 			*i1 = connp->conn_allzones ? 1 : 0;
9615 			break;
9616 		case SO_ANON_MLP:
9617 			*i1 = connp->conn_anon_mlp;
9618 			break;
9619 		case SO_MAC_EXEMPT:
9620 			*i1 = connp->conn_mac_exempt;
9621 			break;
9622 		case SO_EXCLBIND:
9623 			*i1 = tcp->tcp_exclbind ? SO_EXCLBIND : 0;
9624 			break;
9625 		default:
9626 			return (-1);
9627 		}
9628 		break;
9629 	case IPPROTO_TCP:
9630 		switch (name) {
9631 		case TCP_NODELAY:
9632 			*i1 = (tcp->tcp_naglim == 1) ? TCP_NODELAY : 0;
9633 			break;
9634 		case TCP_MAXSEG:
9635 			*i1 = tcp->tcp_mss;
9636 			break;
9637 		case TCP_NOTIFY_THRESHOLD:
9638 			*i1 = (int)tcp->tcp_first_timer_threshold;
9639 			break;
9640 		case TCP_ABORT_THRESHOLD:
9641 			*i1 = tcp->tcp_second_timer_threshold;
9642 			break;
9643 		case TCP_CONN_NOTIFY_THRESHOLD:
9644 			*i1 = tcp->tcp_first_ctimer_threshold;
9645 			break;
9646 		case TCP_CONN_ABORT_THRESHOLD:
9647 			*i1 = tcp->tcp_second_ctimer_threshold;
9648 			break;
9649 		case TCP_RECVDSTADDR:
9650 			*i1 = tcp->tcp_recvdstaddr;
9651 			break;
9652 		case TCP_ANONPRIVBIND:
9653 			*i1 = tcp->tcp_anon_priv_bind;
9654 			break;
9655 		case TCP_EXCLBIND:
9656 			*i1 = tcp->tcp_exclbind ? TCP_EXCLBIND : 0;
9657 			break;
9658 		case TCP_INIT_CWND:
9659 			*i1 = tcp->tcp_init_cwnd;
9660 			break;
9661 		case TCP_KEEPALIVE_THRESHOLD:
9662 			*i1 = tcp->tcp_ka_interval;
9663 			break;
9664 		case TCP_KEEPALIVE_ABORT_THRESHOLD:
9665 			*i1 = tcp->tcp_ka_abort_thres;
9666 			break;
9667 		case TCP_CORK:
9668 			*i1 = tcp->tcp_cork;
9669 			break;
9670 		default:
9671 			return (-1);
9672 		}
9673 		break;
9674 	case IPPROTO_IP:
9675 		if (tcp->tcp_family != AF_INET)
9676 			return (-1);
9677 		switch (name) {
9678 		case IP_OPTIONS:
9679 		case T_IP_OPTIONS: {
9680 			/*
9681 			 * This is compatible with BSD in that in only return
9682 			 * the reverse source route with the final destination
9683 			 * as the last entry. The first 4 bytes of the option
9684 			 * will contain the final destination.
9685 			 */
9686 			int	opt_len;
9687 
9688 			opt_len = (char *)tcp->tcp_tcph - (char *)tcp->tcp_ipha;
9689 			opt_len -= tcp->tcp_label_len + IP_SIMPLE_HDR_LENGTH;
9690 			ASSERT(opt_len >= 0);
9691 			/* Caller ensures enough space */
9692 			if (opt_len > 0) {
9693 				/*
9694 				 * TODO: Do we have to handle getsockopt on an
9695 				 * initiator as well?
9696 				 */
9697 				return (ip_opt_get_user(tcp->tcp_ipha, ptr));
9698 			}
9699 			return (0);
9700 			}
9701 		case IP_TOS:
9702 		case T_IP_TOS:
9703 			*i1 = (int)tcp->tcp_ipha->ipha_type_of_service;
9704 			break;
9705 		case IP_TTL:
9706 			*i1 = (int)tcp->tcp_ipha->ipha_ttl;
9707 			break;
9708 		case IP_NEXTHOP:
9709 			/* Handled at IP level */
9710 			return (-EINVAL);
9711 		default:
9712 			return (-1);
9713 		}
9714 		break;
9715 	case IPPROTO_IPV6:
9716 		/*
9717 		 * IPPROTO_IPV6 options are only supported for sockets
9718 		 * that are using IPv6 on the wire.
9719 		 */
9720 		if (tcp->tcp_ipversion != IPV6_VERSION) {
9721 			return (-1);
9722 		}
9723 		switch (name) {
9724 		case IPV6_UNICAST_HOPS:
9725 			*i1 = (unsigned int) tcp->tcp_ip6h->ip6_hops;
9726 			break;	/* goto sizeof (int) option return */
9727 		case IPV6_BOUND_IF:
9728 			/* Zero if not set */
9729 			*i1 = tcp->tcp_bound_if;
9730 			break;	/* goto sizeof (int) option return */
9731 		case IPV6_RECVPKTINFO:
9732 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)
9733 				*i1 = 1;
9734 			else
9735 				*i1 = 0;
9736 			break;	/* goto sizeof (int) option return */
9737 		case IPV6_RECVTCLASS:
9738 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)
9739 				*i1 = 1;
9740 			else
9741 				*i1 = 0;
9742 			break;	/* goto sizeof (int) option return */
9743 		case IPV6_RECVHOPLIMIT:
9744 			if (tcp->tcp_ipv6_recvancillary &
9745 			    TCP_IPV6_RECVHOPLIMIT)
9746 				*i1 = 1;
9747 			else
9748 				*i1 = 0;
9749 			break;	/* goto sizeof (int) option return */
9750 		case IPV6_RECVHOPOPTS:
9751 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS)
9752 				*i1 = 1;
9753 			else
9754 				*i1 = 0;
9755 			break;	/* goto sizeof (int) option return */
9756 		case IPV6_RECVDSTOPTS:
9757 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVDSTOPTS)
9758 				*i1 = 1;
9759 			else
9760 				*i1 = 0;
9761 			break;	/* goto sizeof (int) option return */
9762 		case _OLD_IPV6_RECVDSTOPTS:
9763 			if (tcp->tcp_ipv6_recvancillary &
9764 			    TCP_OLD_IPV6_RECVDSTOPTS)
9765 				*i1 = 1;
9766 			else
9767 				*i1 = 0;
9768 			break;	/* goto sizeof (int) option return */
9769 		case IPV6_RECVRTHDR:
9770 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR)
9771 				*i1 = 1;
9772 			else
9773 				*i1 = 0;
9774 			break;	/* goto sizeof (int) option return */
9775 		case IPV6_RECVRTHDRDSTOPTS:
9776 			if (tcp->tcp_ipv6_recvancillary &
9777 			    TCP_IPV6_RECVRTDSTOPTS)
9778 				*i1 = 1;
9779 			else
9780 				*i1 = 0;
9781 			break;	/* goto sizeof (int) option return */
9782 		case IPV6_PKTINFO: {
9783 			/* XXX assumes that caller has room for max size! */
9784 			struct in6_pktinfo *pkti;
9785 
9786 			pkti = (struct in6_pktinfo *)ptr;
9787 			if (ipp->ipp_fields & IPPF_IFINDEX)
9788 				pkti->ipi6_ifindex = ipp->ipp_ifindex;
9789 			else
9790 				pkti->ipi6_ifindex = 0;
9791 			if (ipp->ipp_fields & IPPF_ADDR)
9792 				pkti->ipi6_addr = ipp->ipp_addr;
9793 			else
9794 				pkti->ipi6_addr = ipv6_all_zeros;
9795 			return (sizeof (struct in6_pktinfo));
9796 		}
9797 		case IPV6_TCLASS:
9798 			if (ipp->ipp_fields & IPPF_TCLASS)
9799 				*i1 = ipp->ipp_tclass;
9800 			else
9801 				*i1 = IPV6_FLOW_TCLASS(
9802 				    IPV6_DEFAULT_VERS_AND_FLOW);
9803 			break;	/* goto sizeof (int) option return */
9804 		case IPV6_NEXTHOP: {
9805 			sin6_t *sin6 = (sin6_t *)ptr;
9806 
9807 			if (!(ipp->ipp_fields & IPPF_NEXTHOP))
9808 				return (0);
9809 			*sin6 = sin6_null;
9810 			sin6->sin6_family = AF_INET6;
9811 			sin6->sin6_addr = ipp->ipp_nexthop;
9812 			return (sizeof (sin6_t));
9813 		}
9814 		case IPV6_HOPOPTS:
9815 			if (!(ipp->ipp_fields & IPPF_HOPOPTS))
9816 				return (0);
9817 			if (ipp->ipp_hopoptslen <= tcp->tcp_label_len)
9818 				return (0);
9819 			bcopy((char *)ipp->ipp_hopopts + tcp->tcp_label_len,
9820 			    ptr, ipp->ipp_hopoptslen - tcp->tcp_label_len);
9821 			if (tcp->tcp_label_len > 0) {
9822 				ptr[0] = ((char *)ipp->ipp_hopopts)[0];
9823 				ptr[1] = (ipp->ipp_hopoptslen -
9824 				    tcp->tcp_label_len + 7) / 8 - 1;
9825 			}
9826 			return (ipp->ipp_hopoptslen - tcp->tcp_label_len);
9827 		case IPV6_RTHDRDSTOPTS:
9828 			if (!(ipp->ipp_fields & IPPF_RTDSTOPTS))
9829 				return (0);
9830 			bcopy(ipp->ipp_rtdstopts, ptr, ipp->ipp_rtdstoptslen);
9831 			return (ipp->ipp_rtdstoptslen);
9832 		case IPV6_RTHDR:
9833 			if (!(ipp->ipp_fields & IPPF_RTHDR))
9834 				return (0);
9835 			bcopy(ipp->ipp_rthdr, ptr, ipp->ipp_rthdrlen);
9836 			return (ipp->ipp_rthdrlen);
9837 		case IPV6_DSTOPTS:
9838 			if (!(ipp->ipp_fields & IPPF_DSTOPTS))
9839 				return (0);
9840 			bcopy(ipp->ipp_dstopts, ptr, ipp->ipp_dstoptslen);
9841 			return (ipp->ipp_dstoptslen);
9842 		case IPV6_SRC_PREFERENCES:
9843 			return (ip6_get_src_preferences(connp,
9844 			    (uint32_t *)ptr));
9845 		case IPV6_PATHMTU: {
9846 			struct ip6_mtuinfo *mtuinfo = (struct ip6_mtuinfo *)ptr;
9847 
9848 			if (tcp->tcp_state < TCPS_ESTABLISHED)
9849 				return (-1);
9850 
9851 			return (ip_fill_mtuinfo(&connp->conn_remv6,
9852 				connp->conn_fport, mtuinfo));
9853 		}
9854 		default:
9855 			return (-1);
9856 		}
9857 		break;
9858 	default:
9859 		return (-1);
9860 	}
9861 	return (sizeof (int));
9862 }
9863 
9864 /*
9865  * We declare as 'int' rather than 'void' to satisfy pfi_t arg requirements.
9866  * Parameters are assumed to be verified by the caller.
9867  */
9868 /* ARGSUSED */
9869 int
9870 tcp_opt_set(queue_t *q, uint_t optset_context, int level, int name,
9871     uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp,
9872     void *thisdg_attrs, cred_t *cr, mblk_t *mblk)
9873 {
9874 	conn_t	*connp = Q_TO_CONN(q);
9875 	tcp_t	*tcp = connp->conn_tcp;
9876 	int	*i1 = (int *)invalp;
9877 	boolean_t onoff = (*i1 == 0) ? 0 : 1;
9878 	boolean_t checkonly;
9879 	int	reterr;
9880 
9881 	switch (optset_context) {
9882 	case SETFN_OPTCOM_CHECKONLY:
9883 		checkonly = B_TRUE;
9884 		/*
9885 		 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ
9886 		 * inlen != 0 implies value supplied and
9887 		 * 	we have to "pretend" to set it.
9888 		 * inlen == 0 implies that there is no
9889 		 * 	value part in T_CHECK request and just validation
9890 		 * done elsewhere should be enough, we just return here.
9891 		 */
9892 		if (inlen == 0) {
9893 			*outlenp = 0;
9894 			return (0);
9895 		}
9896 		break;
9897 	case SETFN_OPTCOM_NEGOTIATE:
9898 		checkonly = B_FALSE;
9899 		break;
9900 	case SETFN_UD_NEGOTIATE: /* error on conn-oriented transports ? */
9901 	case SETFN_CONN_NEGOTIATE:
9902 		checkonly = B_FALSE;
9903 		/*
9904 		 * Negotiating local and "association-related" options
9905 		 * from other (T_CONN_REQ, T_CONN_RES,T_UNITDATA_REQ)
9906 		 * primitives is allowed by XTI, but we choose
9907 		 * to not implement this style negotiation for Internet
9908 		 * protocols (We interpret it is a must for OSI world but
9909 		 * optional for Internet protocols) for all options.
9910 		 * [ Will do only for the few options that enable test
9911 		 * suites that our XTI implementation of this feature
9912 		 * works for transports that do allow it ]
9913 		 */
9914 		if (!tcp_allow_connopt_set(level, name)) {
9915 			*outlenp = 0;
9916 			return (EINVAL);
9917 		}
9918 		break;
9919 	default:
9920 		/*
9921 		 * We should never get here
9922 		 */
9923 		*outlenp = 0;
9924 		return (EINVAL);
9925 	}
9926 
9927 	ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) ||
9928 	    (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0));
9929 
9930 	/*
9931 	 * For TCP, we should have no ancillary data sent down
9932 	 * (sendmsg isn't supported for SOCK_STREAM), so thisdg_attrs
9933 	 * has to be zero.
9934 	 */
9935 	ASSERT(thisdg_attrs == NULL);
9936 
9937 	/*
9938 	 * For fixed length options, no sanity check
9939 	 * of passed in length is done. It is assumed *_optcom_req()
9940 	 * routines do the right thing.
9941 	 */
9942 
9943 	switch (level) {
9944 	case SOL_SOCKET:
9945 		switch (name) {
9946 		case SO_LINGER: {
9947 			struct linger *lgr = (struct linger *)invalp;
9948 
9949 			if (!checkonly) {
9950 				if (lgr->l_onoff) {
9951 					tcp->tcp_linger = 1;
9952 					tcp->tcp_lingertime = lgr->l_linger;
9953 				} else {
9954 					tcp->tcp_linger = 0;
9955 					tcp->tcp_lingertime = 0;
9956 				}
9957 				/* struct copy */
9958 				*(struct linger *)outvalp = *lgr;
9959 			} else {
9960 				if (!lgr->l_onoff) {
9961 				    ((struct linger *)outvalp)->l_onoff = 0;
9962 				    ((struct linger *)outvalp)->l_linger = 0;
9963 				} else {
9964 				    /* struct copy */
9965 				    *(struct linger *)outvalp = *lgr;
9966 				}
9967 			}
9968 			*outlenp = sizeof (struct linger);
9969 			return (0);
9970 		}
9971 		case SO_DEBUG:
9972 			if (!checkonly)
9973 				tcp->tcp_debug = onoff;
9974 			break;
9975 		case SO_KEEPALIVE:
9976 			if (checkonly) {
9977 				/* T_CHECK case */
9978 				break;
9979 			}
9980 
9981 			if (!onoff) {
9982 				if (tcp->tcp_ka_enabled) {
9983 					if (tcp->tcp_ka_tid != 0) {
9984 						(void) TCP_TIMER_CANCEL(tcp,
9985 						    tcp->tcp_ka_tid);
9986 						tcp->tcp_ka_tid = 0;
9987 					}
9988 					tcp->tcp_ka_enabled = 0;
9989 				}
9990 				break;
9991 			}
9992 			if (!tcp->tcp_ka_enabled) {
9993 				/* Crank up the keepalive timer */
9994 				tcp->tcp_ka_last_intrvl = 0;
9995 				tcp->tcp_ka_tid = TCP_TIMER(tcp,
9996 				    tcp_keepalive_killer,
9997 				    MSEC_TO_TICK(tcp->tcp_ka_interval));
9998 				tcp->tcp_ka_enabled = 1;
9999 			}
10000 			break;
10001 		case SO_DONTROUTE:
10002 			/*
10003 			 * SO_DONTROUTE, SO_USELOOPBACK, and SO_BROADCAST are
10004 			 * only of interest to IP.  We track them here only so
10005 			 * that we can report their current value.
10006 			 */
10007 			if (!checkonly) {
10008 				tcp->tcp_dontroute = onoff;
10009 				tcp->tcp_connp->conn_dontroute = onoff;
10010 			}
10011 			break;
10012 		case SO_USELOOPBACK:
10013 			if (!checkonly) {
10014 				tcp->tcp_useloopback = onoff;
10015 				tcp->tcp_connp->conn_loopback = onoff;
10016 			}
10017 			break;
10018 		case SO_BROADCAST:
10019 			if (!checkonly) {
10020 				tcp->tcp_broadcast = onoff;
10021 				tcp->tcp_connp->conn_broadcast = onoff;
10022 			}
10023 			break;
10024 		case SO_REUSEADDR:
10025 			if (!checkonly) {
10026 				tcp->tcp_reuseaddr = onoff;
10027 				tcp->tcp_connp->conn_reuseaddr = onoff;
10028 			}
10029 			break;
10030 		case SO_OOBINLINE:
10031 			if (!checkonly)
10032 				tcp->tcp_oobinline = onoff;
10033 			break;
10034 		case SO_DGRAM_ERRIND:
10035 			if (!checkonly)
10036 				tcp->tcp_dgram_errind = onoff;
10037 			break;
10038 		case SO_SNDBUF: {
10039 			tcp_t *peer_tcp;
10040 
10041 			if (*i1 > tcp_max_buf) {
10042 				*outlenp = 0;
10043 				return (ENOBUFS);
10044 			}
10045 			if (checkonly)
10046 				break;
10047 
10048 			tcp->tcp_xmit_hiwater = *i1;
10049 			if (tcp_snd_lowat_fraction != 0)
10050 				tcp->tcp_xmit_lowater =
10051 				    tcp->tcp_xmit_hiwater /
10052 				    tcp_snd_lowat_fraction;
10053 			(void) tcp_maxpsz_set(tcp, B_TRUE);
10054 			/*
10055 			 * If we are flow-controlled, recheck the condition.
10056 			 * There are apps that increase SO_SNDBUF size when
10057 			 * flow-controlled (EWOULDBLOCK), and expect the flow
10058 			 * control condition to be lifted right away.
10059 			 *
10060 			 * For the fused tcp loopback case, in order to avoid
10061 			 * a race with the peer's tcp_fuse_rrw() we need to
10062 			 * hold its fuse_lock while accessing tcp_flow_stopped.
10063 			 */
10064 			peer_tcp = tcp->tcp_loopback_peer;
10065 			ASSERT(!tcp->tcp_fused || peer_tcp != NULL);
10066 			if (tcp->tcp_fused)
10067 				mutex_enter(&peer_tcp->tcp_fuse_lock);
10068 
10069 			if (tcp->tcp_flow_stopped &&
10070 			    TCP_UNSENT_BYTES(tcp) < tcp->tcp_xmit_hiwater) {
10071 				tcp_clrqfull(tcp);
10072 			}
10073 			if (tcp->tcp_fused)
10074 				mutex_exit(&peer_tcp->tcp_fuse_lock);
10075 			break;
10076 		}
10077 		case SO_RCVBUF:
10078 			if (*i1 > tcp_max_buf) {
10079 				*outlenp = 0;
10080 				return (ENOBUFS);
10081 			}
10082 			/* Silently ignore zero */
10083 			if (!checkonly && *i1 != 0) {
10084 				*i1 = MSS_ROUNDUP(*i1, tcp->tcp_mss);
10085 				(void) tcp_rwnd_set(tcp, *i1);
10086 			}
10087 			/*
10088 			 * XXX should we return the rwnd here
10089 			 * and tcp_opt_get ?
10090 			 */
10091 			break;
10092 		case SO_SND_COPYAVOID:
10093 			if (!checkonly) {
10094 				/* we only allow enable at most once for now */
10095 				if (tcp->tcp_loopback ||
10096 				    (!tcp->tcp_snd_zcopy_aware &&
10097 				    (onoff != 1 || !tcp_zcopy_check(tcp)))) {
10098 					*outlenp = 0;
10099 					return (EOPNOTSUPP);
10100 				}
10101 				tcp->tcp_snd_zcopy_aware = 1;
10102 			}
10103 			break;
10104 		case SO_ALLZONES:
10105 			/* Handled at the IP level */
10106 			return (-EINVAL);
10107 		case SO_ANON_MLP:
10108 			if (!checkonly) {
10109 				mutex_enter(&connp->conn_lock);
10110 				connp->conn_anon_mlp = onoff;
10111 				mutex_exit(&connp->conn_lock);
10112 			}
10113 			break;
10114 		case SO_MAC_EXEMPT:
10115 			if (secpolicy_net_mac_aware(cr) != 0 ||
10116 			    IPCL_IS_BOUND(connp))
10117 				return (EACCES);
10118 			if (!checkonly) {
10119 				mutex_enter(&connp->conn_lock);
10120 				connp->conn_mac_exempt = onoff;
10121 				mutex_exit(&connp->conn_lock);
10122 			}
10123 			break;
10124 		case SO_EXCLBIND:
10125 			if (!checkonly)
10126 				tcp->tcp_exclbind = onoff;
10127 			break;
10128 		default:
10129 			*outlenp = 0;
10130 			return (EINVAL);
10131 		}
10132 		break;
10133 	case IPPROTO_TCP:
10134 		switch (name) {
10135 		case TCP_NODELAY:
10136 			if (!checkonly)
10137 				tcp->tcp_naglim = *i1 ? 1 : tcp->tcp_mss;
10138 			break;
10139 		case TCP_NOTIFY_THRESHOLD:
10140 			if (!checkonly)
10141 				tcp->tcp_first_timer_threshold = *i1;
10142 			break;
10143 		case TCP_ABORT_THRESHOLD:
10144 			if (!checkonly)
10145 				tcp->tcp_second_timer_threshold = *i1;
10146 			break;
10147 		case TCP_CONN_NOTIFY_THRESHOLD:
10148 			if (!checkonly)
10149 				tcp->tcp_first_ctimer_threshold = *i1;
10150 			break;
10151 		case TCP_CONN_ABORT_THRESHOLD:
10152 			if (!checkonly)
10153 				tcp->tcp_second_ctimer_threshold = *i1;
10154 			break;
10155 		case TCP_RECVDSTADDR:
10156 			if (tcp->tcp_state > TCPS_LISTEN)
10157 				return (EOPNOTSUPP);
10158 			if (!checkonly)
10159 				tcp->tcp_recvdstaddr = onoff;
10160 			break;
10161 		case TCP_ANONPRIVBIND:
10162 			if ((reterr = secpolicy_net_privaddr(cr, 0)) != 0) {
10163 				*outlenp = 0;
10164 				return (reterr);
10165 			}
10166 			if (!checkonly) {
10167 				tcp->tcp_anon_priv_bind = onoff;
10168 			}
10169 			break;
10170 		case TCP_EXCLBIND:
10171 			if (!checkonly)
10172 				tcp->tcp_exclbind = onoff;
10173 			break;	/* goto sizeof (int) option return */
10174 		case TCP_INIT_CWND: {
10175 			uint32_t init_cwnd = *((uint32_t *)invalp);
10176 
10177 			if (checkonly)
10178 				break;
10179 
10180 			/*
10181 			 * Only allow socket with network configuration
10182 			 * privilege to set the initial cwnd to be larger
10183 			 * than allowed by RFC 3390.
10184 			 */
10185 			if (init_cwnd <= MIN(4, MAX(2, 4380 / tcp->tcp_mss))) {
10186 				tcp->tcp_init_cwnd = init_cwnd;
10187 				break;
10188 			}
10189 			if ((reterr = secpolicy_net_config(cr, B_TRUE)) != 0) {
10190 				*outlenp = 0;
10191 				return (reterr);
10192 			}
10193 			if (init_cwnd > TCP_MAX_INIT_CWND) {
10194 				*outlenp = 0;
10195 				return (EINVAL);
10196 			}
10197 			tcp->tcp_init_cwnd = init_cwnd;
10198 			break;
10199 		}
10200 		case TCP_KEEPALIVE_THRESHOLD:
10201 			if (checkonly)
10202 				break;
10203 
10204 			if (*i1 < tcp_keepalive_interval_low ||
10205 			    *i1 > tcp_keepalive_interval_high) {
10206 				*outlenp = 0;
10207 				return (EINVAL);
10208 			}
10209 			if (*i1 != tcp->tcp_ka_interval) {
10210 				tcp->tcp_ka_interval = *i1;
10211 				/*
10212 				 * Check if we need to restart the
10213 				 * keepalive timer.
10214 				 */
10215 				if (tcp->tcp_ka_tid != 0) {
10216 					ASSERT(tcp->tcp_ka_enabled);
10217 					(void) TCP_TIMER_CANCEL(tcp,
10218 					    tcp->tcp_ka_tid);
10219 					tcp->tcp_ka_last_intrvl = 0;
10220 					tcp->tcp_ka_tid = TCP_TIMER(tcp,
10221 					    tcp_keepalive_killer,
10222 					    MSEC_TO_TICK(tcp->tcp_ka_interval));
10223 				}
10224 			}
10225 			break;
10226 		case TCP_KEEPALIVE_ABORT_THRESHOLD:
10227 			if (!checkonly) {
10228 				if (*i1 < tcp_keepalive_abort_interval_low ||
10229 				    *i1 > tcp_keepalive_abort_interval_high) {
10230 					*outlenp = 0;
10231 					return (EINVAL);
10232 				}
10233 				tcp->tcp_ka_abort_thres = *i1;
10234 			}
10235 			break;
10236 		case TCP_CORK:
10237 			if (!checkonly) {
10238 				/*
10239 				 * if tcp->tcp_cork was set and is now
10240 				 * being unset, we have to make sure that
10241 				 * the remaining data gets sent out. Also
10242 				 * unset tcp->tcp_cork so that tcp_wput_data()
10243 				 * can send data even if it is less than mss
10244 				 */
10245 				if (tcp->tcp_cork && onoff == 0 &&
10246 				    tcp->tcp_unsent > 0) {
10247 					tcp->tcp_cork = B_FALSE;
10248 					tcp_wput_data(tcp, NULL, B_FALSE);
10249 				}
10250 				tcp->tcp_cork = onoff;
10251 			}
10252 			break;
10253 		default:
10254 			*outlenp = 0;
10255 			return (EINVAL);
10256 		}
10257 		break;
10258 	case IPPROTO_IP:
10259 		if (tcp->tcp_family != AF_INET) {
10260 			*outlenp = 0;
10261 			return (ENOPROTOOPT);
10262 		}
10263 		switch (name) {
10264 		case IP_OPTIONS:
10265 		case T_IP_OPTIONS:
10266 			reterr = tcp_opt_set_header(tcp, checkonly,
10267 			    invalp, inlen);
10268 			if (reterr) {
10269 				*outlenp = 0;
10270 				return (reterr);
10271 			}
10272 			/* OK return - copy input buffer into output buffer */
10273 			if (invalp != outvalp) {
10274 				/* don't trust bcopy for identical src/dst */
10275 				bcopy(invalp, outvalp, inlen);
10276 			}
10277 			*outlenp = inlen;
10278 			return (0);
10279 		case IP_TOS:
10280 		case T_IP_TOS:
10281 			if (!checkonly) {
10282 				tcp->tcp_ipha->ipha_type_of_service =
10283 				    (uchar_t)*i1;
10284 				tcp->tcp_tos = (uchar_t)*i1;
10285 			}
10286 			break;
10287 		case IP_TTL:
10288 			if (!checkonly) {
10289 				tcp->tcp_ipha->ipha_ttl = (uchar_t)*i1;
10290 				tcp->tcp_ttl = (uchar_t)*i1;
10291 			}
10292 			break;
10293 		case IP_BOUND_IF:
10294 		case IP_NEXTHOP:
10295 			/* Handled at the IP level */
10296 			return (-EINVAL);
10297 		case IP_SEC_OPT:
10298 			/*
10299 			 * We should not allow policy setting after
10300 			 * we start listening for connections.
10301 			 */
10302 			if (tcp->tcp_state == TCPS_LISTEN) {
10303 				return (EINVAL);
10304 			} else {
10305 				/* Handled at the IP level */
10306 				return (-EINVAL);
10307 			}
10308 		default:
10309 			*outlenp = 0;
10310 			return (EINVAL);
10311 		}
10312 		break;
10313 	case IPPROTO_IPV6: {
10314 		ip6_pkt_t		*ipp;
10315 
10316 		/*
10317 		 * IPPROTO_IPV6 options are only supported for sockets
10318 		 * that are using IPv6 on the wire.
10319 		 */
10320 		if (tcp->tcp_ipversion != IPV6_VERSION) {
10321 			*outlenp = 0;
10322 			return (ENOPROTOOPT);
10323 		}
10324 		/*
10325 		 * Only sticky options; no ancillary data
10326 		 */
10327 		ASSERT(thisdg_attrs == NULL);
10328 		ipp = &tcp->tcp_sticky_ipp;
10329 
10330 		switch (name) {
10331 		case IPV6_UNICAST_HOPS:
10332 			/* -1 means use default */
10333 			if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) {
10334 				*outlenp = 0;
10335 				return (EINVAL);
10336 			}
10337 			if (!checkonly) {
10338 				if (*i1 == -1) {
10339 					tcp->tcp_ip6h->ip6_hops =
10340 					    ipp->ipp_unicast_hops =
10341 					    (uint8_t)tcp_ipv6_hoplimit;
10342 					ipp->ipp_fields &= ~IPPF_UNICAST_HOPS;
10343 					/* Pass modified value to IP. */
10344 					*i1 = tcp->tcp_ip6h->ip6_hops;
10345 				} else {
10346 					tcp->tcp_ip6h->ip6_hops =
10347 					    ipp->ipp_unicast_hops =
10348 					    (uint8_t)*i1;
10349 					ipp->ipp_fields |= IPPF_UNICAST_HOPS;
10350 				}
10351 				reterr = tcp_build_hdrs(q, tcp);
10352 				if (reterr != 0)
10353 					return (reterr);
10354 			}
10355 			break;
10356 		case IPV6_BOUND_IF:
10357 			if (!checkonly) {
10358 				int error = 0;
10359 
10360 				tcp->tcp_bound_if = *i1;
10361 				error = ip_opt_set_ill(tcp->tcp_connp, *i1,
10362 				    B_TRUE, checkonly, level, name, mblk);
10363 				if (error != 0) {
10364 					*outlenp = 0;
10365 					return (error);
10366 				}
10367 			}
10368 			break;
10369 		/*
10370 		 * Set boolean switches for ancillary data delivery
10371 		 */
10372 		case IPV6_RECVPKTINFO:
10373 			if (!checkonly) {
10374 				if (onoff)
10375 					tcp->tcp_ipv6_recvancillary |=
10376 					    TCP_IPV6_RECVPKTINFO;
10377 				else
10378 					tcp->tcp_ipv6_recvancillary &=
10379 					    ~TCP_IPV6_RECVPKTINFO;
10380 				/* Force it to be sent up with the next msg */
10381 				tcp->tcp_recvifindex = 0;
10382 			}
10383 			break;
10384 		case IPV6_RECVTCLASS:
10385 			if (!checkonly) {
10386 				if (onoff)
10387 					tcp->tcp_ipv6_recvancillary |=
10388 					    TCP_IPV6_RECVTCLASS;
10389 				else
10390 					tcp->tcp_ipv6_recvancillary &=
10391 					    ~TCP_IPV6_RECVTCLASS;
10392 			}
10393 			break;
10394 		case IPV6_RECVHOPLIMIT:
10395 			if (!checkonly) {
10396 				if (onoff)
10397 					tcp->tcp_ipv6_recvancillary |=
10398 					    TCP_IPV6_RECVHOPLIMIT;
10399 				else
10400 					tcp->tcp_ipv6_recvancillary &=
10401 					    ~TCP_IPV6_RECVHOPLIMIT;
10402 				/* Force it to be sent up with the next msg */
10403 				tcp->tcp_recvhops = 0xffffffffU;
10404 			}
10405 			break;
10406 		case IPV6_RECVHOPOPTS:
10407 			if (!checkonly) {
10408 				if (onoff)
10409 					tcp->tcp_ipv6_recvancillary |=
10410 					    TCP_IPV6_RECVHOPOPTS;
10411 				else
10412 					tcp->tcp_ipv6_recvancillary &=
10413 					    ~TCP_IPV6_RECVHOPOPTS;
10414 			}
10415 			break;
10416 		case IPV6_RECVDSTOPTS:
10417 			if (!checkonly) {
10418 				if (onoff)
10419 					tcp->tcp_ipv6_recvancillary |=
10420 					    TCP_IPV6_RECVDSTOPTS;
10421 				else
10422 					tcp->tcp_ipv6_recvancillary &=
10423 					    ~TCP_IPV6_RECVDSTOPTS;
10424 			}
10425 			break;
10426 		case _OLD_IPV6_RECVDSTOPTS:
10427 			if (!checkonly) {
10428 				if (onoff)
10429 					tcp->tcp_ipv6_recvancillary |=
10430 					    TCP_OLD_IPV6_RECVDSTOPTS;
10431 				else
10432 					tcp->tcp_ipv6_recvancillary &=
10433 					    ~TCP_OLD_IPV6_RECVDSTOPTS;
10434 			}
10435 			break;
10436 		case IPV6_RECVRTHDR:
10437 			if (!checkonly) {
10438 				if (onoff)
10439 					tcp->tcp_ipv6_recvancillary |=
10440 					    TCP_IPV6_RECVRTHDR;
10441 				else
10442 					tcp->tcp_ipv6_recvancillary &=
10443 					    ~TCP_IPV6_RECVRTHDR;
10444 			}
10445 			break;
10446 		case IPV6_RECVRTHDRDSTOPTS:
10447 			if (!checkonly) {
10448 				if (onoff)
10449 					tcp->tcp_ipv6_recvancillary |=
10450 					    TCP_IPV6_RECVRTDSTOPTS;
10451 				else
10452 					tcp->tcp_ipv6_recvancillary &=
10453 					    ~TCP_IPV6_RECVRTDSTOPTS;
10454 			}
10455 			break;
10456 		case IPV6_PKTINFO:
10457 			if (inlen != 0 && inlen != sizeof (struct in6_pktinfo))
10458 				return (EINVAL);
10459 			if (checkonly)
10460 				break;
10461 
10462 			if (inlen == 0) {
10463 				ipp->ipp_fields &= ~(IPPF_IFINDEX|IPPF_ADDR);
10464 			} else {
10465 				struct in6_pktinfo *pkti;
10466 
10467 				pkti = (struct in6_pktinfo *)invalp;
10468 				/*
10469 				 * RFC 3542 states that ipi6_addr must be
10470 				 * the unspecified address when setting the
10471 				 * IPV6_PKTINFO sticky socket option on a
10472 				 * TCP socket.
10473 				 */
10474 				if (!IN6_IS_ADDR_UNSPECIFIED(&pkti->ipi6_addr))
10475 					return (EINVAL);
10476 				/*
10477 				 * ip6_set_pktinfo() validates the source
10478 				 * address and interface index.
10479 				 */
10480 				reterr = ip6_set_pktinfo(cr, tcp->tcp_connp,
10481 				    pkti, mblk);
10482 				if (reterr != 0)
10483 					return (reterr);
10484 				ipp->ipp_ifindex = pkti->ipi6_ifindex;
10485 				ipp->ipp_addr = pkti->ipi6_addr;
10486 				if (ipp->ipp_ifindex != 0)
10487 					ipp->ipp_fields |= IPPF_IFINDEX;
10488 				else
10489 					ipp->ipp_fields &= ~IPPF_IFINDEX;
10490 				if (!IN6_IS_ADDR_UNSPECIFIED(&ipp->ipp_addr))
10491 					ipp->ipp_fields |= IPPF_ADDR;
10492 				else
10493 					ipp->ipp_fields &= ~IPPF_ADDR;
10494 			}
10495 			reterr = tcp_build_hdrs(q, tcp);
10496 			if (reterr != 0)
10497 				return (reterr);
10498 			break;
10499 		case IPV6_TCLASS:
10500 			if (inlen != 0 && inlen != sizeof (int))
10501 				return (EINVAL);
10502 			if (checkonly)
10503 				break;
10504 
10505 			if (inlen == 0) {
10506 				ipp->ipp_fields &= ~IPPF_TCLASS;
10507 			} else {
10508 				if (*i1 > 255 || *i1 < -1)
10509 					return (EINVAL);
10510 				if (*i1 == -1) {
10511 					ipp->ipp_tclass = 0;
10512 					*i1 = 0;
10513 				} else {
10514 					ipp->ipp_tclass = *i1;
10515 				}
10516 				ipp->ipp_fields |= IPPF_TCLASS;
10517 			}
10518 			reterr = tcp_build_hdrs(q, tcp);
10519 			if (reterr != 0)
10520 				return (reterr);
10521 			break;
10522 		case IPV6_NEXTHOP:
10523 			/*
10524 			 * IP will verify that the nexthop is reachable
10525 			 * and fail for sticky options.
10526 			 */
10527 			if (inlen != 0 && inlen != sizeof (sin6_t))
10528 				return (EINVAL);
10529 			if (checkonly)
10530 				break;
10531 
10532 			if (inlen == 0) {
10533 				ipp->ipp_fields &= ~IPPF_NEXTHOP;
10534 			} else {
10535 				sin6_t *sin6 = (sin6_t *)invalp;
10536 
10537 				if (sin6->sin6_family != AF_INET6)
10538 					return (EAFNOSUPPORT);
10539 				if (IN6_IS_ADDR_V4MAPPED(
10540 				    &sin6->sin6_addr))
10541 					return (EADDRNOTAVAIL);
10542 				ipp->ipp_nexthop = sin6->sin6_addr;
10543 				if (!IN6_IS_ADDR_UNSPECIFIED(
10544 				    &ipp->ipp_nexthop))
10545 					ipp->ipp_fields |= IPPF_NEXTHOP;
10546 				else
10547 					ipp->ipp_fields &= ~IPPF_NEXTHOP;
10548 			}
10549 			reterr = tcp_build_hdrs(q, tcp);
10550 			if (reterr != 0)
10551 				return (reterr);
10552 			break;
10553 		case IPV6_HOPOPTS: {
10554 			ip6_hbh_t *hopts = (ip6_hbh_t *)invalp;
10555 
10556 			/*
10557 			 * Sanity checks - minimum size, size a multiple of
10558 			 * eight bytes, and matching size passed in.
10559 			 */
10560 			if (inlen != 0 &&
10561 			    inlen != (8 * (hopts->ip6h_len + 1)))
10562 				return (EINVAL);
10563 
10564 			if (checkonly)
10565 				break;
10566 
10567 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10568 			    (uchar_t **)&ipp->ipp_hopopts,
10569 			    &ipp->ipp_hopoptslen, tcp->tcp_label_len);
10570 			if (reterr != 0)
10571 				return (reterr);
10572 			if (ipp->ipp_hopoptslen == 0)
10573 				ipp->ipp_fields &= ~IPPF_HOPOPTS;
10574 			else
10575 				ipp->ipp_fields |= IPPF_HOPOPTS;
10576 			reterr = tcp_build_hdrs(q, tcp);
10577 			if (reterr != 0)
10578 				return (reterr);
10579 			break;
10580 		}
10581 		case IPV6_RTHDRDSTOPTS: {
10582 			ip6_dest_t *dopts = (ip6_dest_t *)invalp;
10583 
10584 			/*
10585 			 * Sanity checks - minimum size, size a multiple of
10586 			 * eight bytes, and matching size passed in.
10587 			 */
10588 			if (inlen != 0 &&
10589 			    inlen != (8 * (dopts->ip6d_len + 1)))
10590 				return (EINVAL);
10591 
10592 			if (checkonly)
10593 				break;
10594 
10595 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10596 			    (uchar_t **)&ipp->ipp_rtdstopts,
10597 			    &ipp->ipp_rtdstoptslen, 0);
10598 			if (reterr != 0)
10599 				return (reterr);
10600 			if (ipp->ipp_rtdstoptslen == 0)
10601 				ipp->ipp_fields &= ~IPPF_RTDSTOPTS;
10602 			else
10603 				ipp->ipp_fields |= IPPF_RTDSTOPTS;
10604 			reterr = tcp_build_hdrs(q, tcp);
10605 			if (reterr != 0)
10606 				return (reterr);
10607 			break;
10608 		}
10609 		case IPV6_DSTOPTS: {
10610 			ip6_dest_t *dopts = (ip6_dest_t *)invalp;
10611 
10612 			/*
10613 			 * Sanity checks - minimum size, size a multiple of
10614 			 * eight bytes, and matching size passed in.
10615 			 */
10616 			if (inlen != 0 &&
10617 			    inlen != (8 * (dopts->ip6d_len + 1)))
10618 				return (EINVAL);
10619 
10620 			if (checkonly)
10621 				break;
10622 
10623 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10624 			    (uchar_t **)&ipp->ipp_dstopts,
10625 			    &ipp->ipp_dstoptslen, 0);
10626 			if (reterr != 0)
10627 				return (reterr);
10628 			if (ipp->ipp_dstoptslen == 0)
10629 				ipp->ipp_fields &= ~IPPF_DSTOPTS;
10630 			else
10631 				ipp->ipp_fields |= IPPF_DSTOPTS;
10632 			reterr = tcp_build_hdrs(q, tcp);
10633 			if (reterr != 0)
10634 				return (reterr);
10635 			break;
10636 		}
10637 		case IPV6_RTHDR: {
10638 			ip6_rthdr_t *rt = (ip6_rthdr_t *)invalp;
10639 
10640 			/*
10641 			 * Sanity checks - minimum size, size a multiple of
10642 			 * eight bytes, and matching size passed in.
10643 			 */
10644 			if (inlen != 0 &&
10645 			    inlen != (8 * (rt->ip6r_len + 1)))
10646 				return (EINVAL);
10647 
10648 			if (checkonly)
10649 				break;
10650 
10651 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10652 			    (uchar_t **)&ipp->ipp_rthdr,
10653 			    &ipp->ipp_rthdrlen, 0);
10654 			if (reterr != 0)
10655 				return (reterr);
10656 			if (ipp->ipp_rthdrlen == 0)
10657 				ipp->ipp_fields &= ~IPPF_RTHDR;
10658 			else
10659 				ipp->ipp_fields |= IPPF_RTHDR;
10660 			reterr = tcp_build_hdrs(q, tcp);
10661 			if (reterr != 0)
10662 				return (reterr);
10663 			break;
10664 		}
10665 		case IPV6_V6ONLY:
10666 			if (!checkonly)
10667 				tcp->tcp_connp->conn_ipv6_v6only = onoff;
10668 			break;
10669 		case IPV6_USE_MIN_MTU:
10670 			if (inlen != sizeof (int))
10671 				return (EINVAL);
10672 
10673 			if (*i1 < -1 || *i1 > 1)
10674 				return (EINVAL);
10675 
10676 			if (checkonly)
10677 				break;
10678 
10679 			ipp->ipp_fields |= IPPF_USE_MIN_MTU;
10680 			ipp->ipp_use_min_mtu = *i1;
10681 			break;
10682 		case IPV6_BOUND_PIF:
10683 			/* Handled at the IP level */
10684 			return (-EINVAL);
10685 		case IPV6_SEC_OPT:
10686 			/*
10687 			 * We should not allow policy setting after
10688 			 * we start listening for connections.
10689 			 */
10690 			if (tcp->tcp_state == TCPS_LISTEN) {
10691 				return (EINVAL);
10692 			} else {
10693 				/* Handled at the IP level */
10694 				return (-EINVAL);
10695 			}
10696 		case IPV6_SRC_PREFERENCES:
10697 			if (inlen != sizeof (uint32_t))
10698 				return (EINVAL);
10699 			reterr = ip6_set_src_preferences(tcp->tcp_connp,
10700 			    *(uint32_t *)invalp);
10701 			if (reterr != 0) {
10702 				*outlenp = 0;
10703 				return (reterr);
10704 			}
10705 			break;
10706 		default:
10707 			*outlenp = 0;
10708 			return (EINVAL);
10709 		}
10710 		break;
10711 	}		/* end IPPROTO_IPV6 */
10712 	default:
10713 		*outlenp = 0;
10714 		return (EINVAL);
10715 	}
10716 	/*
10717 	 * Common case of OK return with outval same as inval
10718 	 */
10719 	if (invalp != outvalp) {
10720 		/* don't trust bcopy for identical src/dst */
10721 		(void) bcopy(invalp, outvalp, inlen);
10722 	}
10723 	*outlenp = inlen;
10724 	return (0);
10725 }
10726 
10727 /*
10728  * Update tcp_sticky_hdrs based on tcp_sticky_ipp.
10729  * The headers include ip6i_t (if needed), ip6_t, any sticky extension
10730  * headers, and the maximum size tcp header (to avoid reallocation
10731  * on the fly for additional tcp options).
10732  * Returns failure if can't allocate memory.
10733  */
10734 static int
10735 tcp_build_hdrs(queue_t *q, tcp_t *tcp)
10736 {
10737 	char	*hdrs;
10738 	uint_t	hdrs_len;
10739 	ip6i_t	*ip6i;
10740 	char	buf[TCP_MAX_HDR_LENGTH];
10741 	ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp;
10742 	in6_addr_t src, dst;
10743 
10744 	/*
10745 	 * save the existing tcp header and source/dest IP addresses
10746 	 */
10747 	bcopy(tcp->tcp_tcph, buf, tcp->tcp_tcp_hdr_len);
10748 	src = tcp->tcp_ip6h->ip6_src;
10749 	dst = tcp->tcp_ip6h->ip6_dst;
10750 	hdrs_len = ip_total_hdrs_len_v6(ipp) + TCP_MAX_HDR_LENGTH;
10751 	ASSERT(hdrs_len != 0);
10752 	if (hdrs_len > tcp->tcp_iphc_len) {
10753 		/* Need to reallocate */
10754 		hdrs = kmem_zalloc(hdrs_len, KM_NOSLEEP);
10755 		if (hdrs == NULL)
10756 			return (ENOMEM);
10757 		if (tcp->tcp_iphc != NULL) {
10758 			if (tcp->tcp_hdr_grown) {
10759 				kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len);
10760 			} else {
10761 				bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
10762 				kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc);
10763 			}
10764 			tcp->tcp_iphc_len = 0;
10765 		}
10766 		ASSERT(tcp->tcp_iphc_len == 0);
10767 		tcp->tcp_iphc = hdrs;
10768 		tcp->tcp_iphc_len = hdrs_len;
10769 		tcp->tcp_hdr_grown = B_TRUE;
10770 	}
10771 	ip_build_hdrs_v6((uchar_t *)tcp->tcp_iphc,
10772 	    hdrs_len - TCP_MAX_HDR_LENGTH, ipp, IPPROTO_TCP);
10773 
10774 	/* Set header fields not in ipp */
10775 	if (ipp->ipp_fields & IPPF_HAS_IP6I) {
10776 		ip6i = (ip6i_t *)tcp->tcp_iphc;
10777 		tcp->tcp_ip6h = (ip6_t *)&ip6i[1];
10778 	} else {
10779 		tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc;
10780 	}
10781 	/*
10782 	 * tcp->tcp_ip_hdr_len will include ip6i_t if there is one.
10783 	 *
10784 	 * tcp->tcp_tcp_hdr_len doesn't change here.
10785 	 */
10786 	tcp->tcp_ip_hdr_len = hdrs_len - TCP_MAX_HDR_LENGTH;
10787 	tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + tcp->tcp_ip_hdr_len);
10788 	tcp->tcp_hdr_len = tcp->tcp_ip_hdr_len + tcp->tcp_tcp_hdr_len;
10789 
10790 	bcopy(buf, tcp->tcp_tcph, tcp->tcp_tcp_hdr_len);
10791 
10792 	tcp->tcp_ip6h->ip6_src = src;
10793 	tcp->tcp_ip6h->ip6_dst = dst;
10794 
10795 	/*
10796 	 * If the hop limit was not set by ip_build_hdrs_v6(), set it to
10797 	 * the default value for TCP.
10798 	 */
10799 	if (!(ipp->ipp_fields & IPPF_UNICAST_HOPS))
10800 		tcp->tcp_ip6h->ip6_hops = tcp_ipv6_hoplimit;
10801 
10802 	/*
10803 	 * If we're setting extension headers after a connection
10804 	 * has been established, and if we have a routing header
10805 	 * among the extension headers, call ip_massage_options_v6 to
10806 	 * manipulate the routing header/ip6_dst set the checksum
10807 	 * difference in the tcp header template.
10808 	 * (This happens in tcp_connect_ipv6 if the routing header
10809 	 * is set prior to the connect.)
10810 	 * Set the tcp_sum to zero first in case we've cleared a
10811 	 * routing header or don't have one at all.
10812 	 */
10813 	tcp->tcp_sum = 0;
10814 	if ((tcp->tcp_state >= TCPS_SYN_SENT) &&
10815 	    (tcp->tcp_ipp_fields & IPPF_RTHDR)) {
10816 		ip6_rthdr_t *rth = ip_find_rthdr_v6(tcp->tcp_ip6h,
10817 		    (uint8_t *)tcp->tcp_tcph);
10818 		if (rth != NULL) {
10819 			tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h,
10820 			    rth);
10821 			tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
10822 			    (tcp->tcp_sum >> 16));
10823 		}
10824 	}
10825 
10826 	/* Try to get everything in a single mblk */
10827 	(void) mi_set_sth_wroff(RD(q), hdrs_len + tcp_wroff_xtra);
10828 	return (0);
10829 }
10830 
10831 /*
10832  * Transfer any source route option from ipha to buf/dst in reversed form.
10833  */
10834 static int
10835 tcp_opt_rev_src_route(ipha_t *ipha, char *buf, uchar_t *dst)
10836 {
10837 	ipoptp_t	opts;
10838 	uchar_t		*opt;
10839 	uint8_t		optval;
10840 	uint8_t		optlen;
10841 	uint32_t	len = 0;
10842 
10843 	for (optval = ipoptp_first(&opts, ipha);
10844 	    optval != IPOPT_EOL;
10845 	    optval = ipoptp_next(&opts)) {
10846 		opt = opts.ipoptp_cur;
10847 		optlen = opts.ipoptp_len;
10848 		switch (optval) {
10849 			int	off1, off2;
10850 		case IPOPT_SSRR:
10851 		case IPOPT_LSRR:
10852 
10853 			/* Reverse source route */
10854 			/*
10855 			 * First entry should be the next to last one in the
10856 			 * current source route (the last entry is our
10857 			 * address.)
10858 			 * The last entry should be the final destination.
10859 			 */
10860 			buf[IPOPT_OPTVAL] = (uint8_t)optval;
10861 			buf[IPOPT_OLEN] = (uint8_t)optlen;
10862 			off1 = IPOPT_MINOFF_SR - 1;
10863 			off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1;
10864 			if (off2 < 0) {
10865 				/* No entries in source route */
10866 				break;
10867 			}
10868 			bcopy(opt + off2, dst, IP_ADDR_LEN);
10869 			/*
10870 			 * Note: use src since ipha has not had its src
10871 			 * and dst reversed (it is in the state it was
10872 			 * received.
10873 			 */
10874 			bcopy(&ipha->ipha_src, buf + off2,
10875 			    IP_ADDR_LEN);
10876 			off2 -= IP_ADDR_LEN;
10877 
10878 			while (off2 > 0) {
10879 				bcopy(opt + off2, buf + off1,
10880 				    IP_ADDR_LEN);
10881 				off1 += IP_ADDR_LEN;
10882 				off2 -= IP_ADDR_LEN;
10883 			}
10884 			buf[IPOPT_OFFSET] = IPOPT_MINOFF_SR;
10885 			buf += optlen;
10886 			len += optlen;
10887 			break;
10888 		}
10889 	}
10890 done:
10891 	/* Pad the resulting options */
10892 	while (len & 0x3) {
10893 		*buf++ = IPOPT_EOL;
10894 		len++;
10895 	}
10896 	return (len);
10897 }
10898 
10899 
10900 /*
10901  * Extract and revert a source route from ipha (if any)
10902  * and then update the relevant fields in both tcp_t and the standard header.
10903  */
10904 static void
10905 tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha)
10906 {
10907 	char	buf[TCP_MAX_HDR_LENGTH];
10908 	uint_t	tcph_len;
10909 	int	len;
10910 
10911 	ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION);
10912 	len = IPH_HDR_LENGTH(ipha);
10913 	if (len == IP_SIMPLE_HDR_LENGTH)
10914 		/* Nothing to do */
10915 		return;
10916 	if (len > IP_SIMPLE_HDR_LENGTH + TCP_MAX_IP_OPTIONS_LENGTH ||
10917 	    (len & 0x3))
10918 		return;
10919 
10920 	tcph_len = tcp->tcp_tcp_hdr_len;
10921 	bcopy(tcp->tcp_tcph, buf, tcph_len);
10922 	tcp->tcp_sum = (tcp->tcp_ipha->ipha_dst >> 16) +
10923 		(tcp->tcp_ipha->ipha_dst & 0xffff);
10924 	len = tcp_opt_rev_src_route(ipha, (char *)tcp->tcp_ipha +
10925 	    IP_SIMPLE_HDR_LENGTH, (uchar_t *)&tcp->tcp_ipha->ipha_dst);
10926 	len += IP_SIMPLE_HDR_LENGTH;
10927 	tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) +
10928 	    (tcp->tcp_ipha->ipha_dst & 0xffff));
10929 	if ((int)tcp->tcp_sum < 0)
10930 		tcp->tcp_sum--;
10931 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
10932 	tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16));
10933 	tcp->tcp_tcph = (tcph_t *)((char *)tcp->tcp_ipha + len);
10934 	bcopy(buf, tcp->tcp_tcph, tcph_len);
10935 	tcp->tcp_ip_hdr_len = len;
10936 	tcp->tcp_ipha->ipha_version_and_hdr_length =
10937 	    (IP_VERSION << 4) | (len >> 2);
10938 	len += tcph_len;
10939 	tcp->tcp_hdr_len = len;
10940 }
10941 
10942 /*
10943  * Copy the standard header into its new location,
10944  * lay in the new options and then update the relevant
10945  * fields in both tcp_t and the standard header.
10946  */
10947 static int
10948 tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, uchar_t *ptr, uint_t len)
10949 {
10950 	uint_t	tcph_len;
10951 	uint8_t	*ip_optp;
10952 	tcph_t	*new_tcph;
10953 
10954 	if ((len > TCP_MAX_IP_OPTIONS_LENGTH) || (len & 0x3))
10955 		return (EINVAL);
10956 
10957 	if (len > IP_MAX_OPT_LENGTH - tcp->tcp_label_len)
10958 		return (EINVAL);
10959 
10960 	if (checkonly) {
10961 		/*
10962 		 * do not really set, just pretend to - T_CHECK
10963 		 */
10964 		return (0);
10965 	}
10966 
10967 	ip_optp = (uint8_t *)tcp->tcp_ipha + IP_SIMPLE_HDR_LENGTH;
10968 	if (tcp->tcp_label_len > 0) {
10969 		int padlen;
10970 		uint8_t opt;
10971 
10972 		/* convert list termination to no-ops */
10973 		padlen = tcp->tcp_label_len - ip_optp[IPOPT_OLEN];
10974 		ip_optp += ip_optp[IPOPT_OLEN];
10975 		opt = len > 0 ? IPOPT_NOP : IPOPT_EOL;
10976 		while (--padlen >= 0)
10977 			*ip_optp++ = opt;
10978 	}
10979 	tcph_len = tcp->tcp_tcp_hdr_len;
10980 	new_tcph = (tcph_t *)(ip_optp + len);
10981 	ovbcopy(tcp->tcp_tcph, new_tcph, tcph_len);
10982 	tcp->tcp_tcph = new_tcph;
10983 	bcopy(ptr, ip_optp, len);
10984 
10985 	len += IP_SIMPLE_HDR_LENGTH + tcp->tcp_label_len;
10986 
10987 	tcp->tcp_ip_hdr_len = len;
10988 	tcp->tcp_ipha->ipha_version_and_hdr_length =
10989 	    (IP_VERSION << 4) | (len >> 2);
10990 	tcp->tcp_hdr_len = len + tcph_len;
10991 	if (!TCP_IS_DETACHED(tcp)) {
10992 		/* Always allocate room for all options. */
10993 		(void) mi_set_sth_wroff(tcp->tcp_rq,
10994 		    TCP_MAX_COMBINED_HEADER_LENGTH + tcp_wroff_xtra);
10995 	}
10996 	return (0);
10997 }
10998 
10999 /* Get callback routine passed to nd_load by tcp_param_register */
11000 /* ARGSUSED */
11001 static int
11002 tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
11003 {
11004 	tcpparam_t	*tcppa = (tcpparam_t *)cp;
11005 
11006 	(void) mi_mpprintf(mp, "%u", tcppa->tcp_param_val);
11007 	return (0);
11008 }
11009 
11010 /*
11011  * Walk through the param array specified registering each element with the
11012  * named dispatch handler.
11013  */
11014 static boolean_t
11015 tcp_param_register(tcpparam_t *tcppa, int cnt)
11016 {
11017 	for (; cnt-- > 0; tcppa++) {
11018 		if (tcppa->tcp_param_name && tcppa->tcp_param_name[0]) {
11019 			if (!nd_load(&tcp_g_nd, tcppa->tcp_param_name,
11020 			    tcp_param_get, tcp_param_set,
11021 			    (caddr_t)tcppa)) {
11022 				nd_free(&tcp_g_nd);
11023 				return (B_FALSE);
11024 			}
11025 		}
11026 	}
11027 	if (!nd_load(&tcp_g_nd, tcp_wroff_xtra_param.tcp_param_name,
11028 	    tcp_param_get, tcp_param_set_aligned,
11029 	    (caddr_t)&tcp_wroff_xtra_param)) {
11030 		nd_free(&tcp_g_nd);
11031 		return (B_FALSE);
11032 	}
11033 	if (!nd_load(&tcp_g_nd, tcp_mdt_head_param.tcp_param_name,
11034 	    tcp_param_get, tcp_param_set_aligned,
11035 	    (caddr_t)&tcp_mdt_head_param)) {
11036 		nd_free(&tcp_g_nd);
11037 		return (B_FALSE);
11038 	}
11039 	if (!nd_load(&tcp_g_nd, tcp_mdt_tail_param.tcp_param_name,
11040 	    tcp_param_get, tcp_param_set_aligned,
11041 	    (caddr_t)&tcp_mdt_tail_param)) {
11042 		nd_free(&tcp_g_nd);
11043 		return (B_FALSE);
11044 	}
11045 	if (!nd_load(&tcp_g_nd, tcp_mdt_max_pbufs_param.tcp_param_name,
11046 	    tcp_param_get, tcp_param_set,
11047 	    (caddr_t)&tcp_mdt_max_pbufs_param)) {
11048 		nd_free(&tcp_g_nd);
11049 		return (B_FALSE);
11050 	}
11051 	if (!nd_load(&tcp_g_nd, "tcp_extra_priv_ports",
11052 	    tcp_extra_priv_ports_get, NULL, NULL)) {
11053 		nd_free(&tcp_g_nd);
11054 		return (B_FALSE);
11055 	}
11056 	if (!nd_load(&tcp_g_nd, "tcp_extra_priv_ports_add",
11057 	    NULL, tcp_extra_priv_ports_add, NULL)) {
11058 		nd_free(&tcp_g_nd);
11059 		return (B_FALSE);
11060 	}
11061 	if (!nd_load(&tcp_g_nd, "tcp_extra_priv_ports_del",
11062 	    NULL, tcp_extra_priv_ports_del, NULL)) {
11063 		nd_free(&tcp_g_nd);
11064 		return (B_FALSE);
11065 	}
11066 	if (!nd_load(&tcp_g_nd, "tcp_status", tcp_status_report, NULL,
11067 	    NULL)) {
11068 		nd_free(&tcp_g_nd);
11069 		return (B_FALSE);
11070 	}
11071 	if (!nd_load(&tcp_g_nd, "tcp_bind_hash", tcp_bind_hash_report,
11072 	    NULL, NULL)) {
11073 		nd_free(&tcp_g_nd);
11074 		return (B_FALSE);
11075 	}
11076 	if (!nd_load(&tcp_g_nd, "tcp_listen_hash", tcp_listen_hash_report,
11077 	    NULL, NULL)) {
11078 		nd_free(&tcp_g_nd);
11079 		return (B_FALSE);
11080 	}
11081 	if (!nd_load(&tcp_g_nd, "tcp_conn_hash", tcp_conn_hash_report,
11082 	    NULL, NULL)) {
11083 		nd_free(&tcp_g_nd);
11084 		return (B_FALSE);
11085 	}
11086 	if (!nd_load(&tcp_g_nd, "tcp_acceptor_hash", tcp_acceptor_hash_report,
11087 	    NULL, NULL)) {
11088 		nd_free(&tcp_g_nd);
11089 		return (B_FALSE);
11090 	}
11091 	if (!nd_load(&tcp_g_nd, "tcp_host_param", tcp_host_param_report,
11092 	    tcp_host_param_set, NULL)) {
11093 		nd_free(&tcp_g_nd);
11094 		return (B_FALSE);
11095 	}
11096 	if (!nd_load(&tcp_g_nd, "tcp_host_param_ipv6", tcp_host_param_report,
11097 	    tcp_host_param_set_ipv6, NULL)) {
11098 		nd_free(&tcp_g_nd);
11099 		return (B_FALSE);
11100 	}
11101 	if (!nd_load(&tcp_g_nd, "tcp_1948_phrase", NULL, tcp_1948_phrase_set,
11102 	    NULL)) {
11103 		nd_free(&tcp_g_nd);
11104 		return (B_FALSE);
11105 	}
11106 	if (!nd_load(&tcp_g_nd, "tcp_reserved_port_list",
11107 	    tcp_reserved_port_list, NULL, NULL)) {
11108 		nd_free(&tcp_g_nd);
11109 		return (B_FALSE);
11110 	}
11111 	/*
11112 	 * Dummy ndd variables - only to convey obsolescence information
11113 	 * through printing of their name (no get or set routines)
11114 	 * XXX Remove in future releases ?
11115 	 */
11116 	if (!nd_load(&tcp_g_nd,
11117 	    "tcp_close_wait_interval(obsoleted - "
11118 	    "use tcp_time_wait_interval)", NULL, NULL, NULL)) {
11119 		nd_free(&tcp_g_nd);
11120 		return (B_FALSE);
11121 	}
11122 	return (B_TRUE);
11123 }
11124 
11125 /* ndd set routine for tcp_wroff_xtra, tcp_mdt_hdr_{head,tail}_min. */
11126 /* ARGSUSED */
11127 static int
11128 tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
11129     cred_t *cr)
11130 {
11131 	long new_value;
11132 	tcpparam_t *tcppa = (tcpparam_t *)cp;
11133 
11134 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
11135 	    new_value < tcppa->tcp_param_min ||
11136 	    new_value > tcppa->tcp_param_max) {
11137 		return (EINVAL);
11138 	}
11139 	/*
11140 	 * Need to make sure new_value is a multiple of 4.  If it is not,
11141 	 * round it up.  For future 64 bit requirement, we actually make it
11142 	 * a multiple of 8.
11143 	 */
11144 	if (new_value & 0x7) {
11145 		new_value = (new_value & ~0x7) + 0x8;
11146 	}
11147 	tcppa->tcp_param_val = new_value;
11148 	return (0);
11149 }
11150 
11151 /* Set callback routine passed to nd_load by tcp_param_register */
11152 /* ARGSUSED */
11153 static int
11154 tcp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr)
11155 {
11156 	long	new_value;
11157 	tcpparam_t	*tcppa = (tcpparam_t *)cp;
11158 
11159 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
11160 	    new_value < tcppa->tcp_param_min ||
11161 	    new_value > tcppa->tcp_param_max) {
11162 		return (EINVAL);
11163 	}
11164 	tcppa->tcp_param_val = new_value;
11165 	return (0);
11166 }
11167 
11168 /*
11169  * Add a new piece to the tcp reassembly queue.  If the gap at the beginning
11170  * is filled, return as much as we can.  The message passed in may be
11171  * multi-part, chained using b_cont.  "start" is the starting sequence
11172  * number for this piece.
11173  */
11174 static mblk_t *
11175 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start)
11176 {
11177 	uint32_t	end;
11178 	mblk_t		*mp1;
11179 	mblk_t		*mp2;
11180 	mblk_t		*next_mp;
11181 	uint32_t	u1;
11182 
11183 	/* Walk through all the new pieces. */
11184 	do {
11185 		ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
11186 		    (uintptr_t)INT_MAX);
11187 		end = start + (int)(mp->b_wptr - mp->b_rptr);
11188 		next_mp = mp->b_cont;
11189 		if (start == end) {
11190 			/* Empty.  Blast it. */
11191 			freeb(mp);
11192 			continue;
11193 		}
11194 		mp->b_cont = NULL;
11195 		TCP_REASS_SET_SEQ(mp, start);
11196 		TCP_REASS_SET_END(mp, end);
11197 		mp1 = tcp->tcp_reass_tail;
11198 		if (!mp1) {
11199 			tcp->tcp_reass_tail = mp;
11200 			tcp->tcp_reass_head = mp;
11201 			BUMP_MIB(&tcp_mib, tcpInDataUnorderSegs);
11202 			UPDATE_MIB(&tcp_mib,
11203 			    tcpInDataUnorderBytes, end - start);
11204 			continue;
11205 		}
11206 		/* New stuff completely beyond tail? */
11207 		if (SEQ_GEQ(start, TCP_REASS_END(mp1))) {
11208 			/* Link it on end. */
11209 			mp1->b_cont = mp;
11210 			tcp->tcp_reass_tail = mp;
11211 			BUMP_MIB(&tcp_mib, tcpInDataUnorderSegs);
11212 			UPDATE_MIB(&tcp_mib,
11213 			    tcpInDataUnorderBytes, end - start);
11214 			continue;
11215 		}
11216 		mp1 = tcp->tcp_reass_head;
11217 		u1 = TCP_REASS_SEQ(mp1);
11218 		/* New stuff at the front? */
11219 		if (SEQ_LT(start, u1)) {
11220 			/* Yes... Check for overlap. */
11221 			mp->b_cont = mp1;
11222 			tcp->tcp_reass_head = mp;
11223 			tcp_reass_elim_overlap(tcp, mp);
11224 			continue;
11225 		}
11226 		/*
11227 		 * The new piece fits somewhere between the head and tail.
11228 		 * We find our slot, where mp1 precedes us and mp2 trails.
11229 		 */
11230 		for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) {
11231 			u1 = TCP_REASS_SEQ(mp2);
11232 			if (SEQ_LEQ(start, u1))
11233 				break;
11234 		}
11235 		/* Link ourselves in */
11236 		mp->b_cont = mp2;
11237 		mp1->b_cont = mp;
11238 
11239 		/* Trim overlap with following mblk(s) first */
11240 		tcp_reass_elim_overlap(tcp, mp);
11241 
11242 		/* Trim overlap with preceding mblk */
11243 		tcp_reass_elim_overlap(tcp, mp1);
11244 
11245 	} while (start = end, mp = next_mp);
11246 	mp1 = tcp->tcp_reass_head;
11247 	/* Anything ready to go? */
11248 	if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt)
11249 		return (NULL);
11250 	/* Eat what we can off the queue */
11251 	for (;;) {
11252 		mp = mp1->b_cont;
11253 		end = TCP_REASS_END(mp1);
11254 		TCP_REASS_SET_SEQ(mp1, 0);
11255 		TCP_REASS_SET_END(mp1, 0);
11256 		if (!mp) {
11257 			tcp->tcp_reass_tail = NULL;
11258 			break;
11259 		}
11260 		if (end != TCP_REASS_SEQ(mp)) {
11261 			mp1->b_cont = NULL;
11262 			break;
11263 		}
11264 		mp1 = mp;
11265 	}
11266 	mp1 = tcp->tcp_reass_head;
11267 	tcp->tcp_reass_head = mp;
11268 	return (mp1);
11269 }
11270 
11271 /* Eliminate any overlap that mp may have over later mblks */
11272 static void
11273 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp)
11274 {
11275 	uint32_t	end;
11276 	mblk_t		*mp1;
11277 	uint32_t	u1;
11278 
11279 	end = TCP_REASS_END(mp);
11280 	while ((mp1 = mp->b_cont) != NULL) {
11281 		u1 = TCP_REASS_SEQ(mp1);
11282 		if (!SEQ_GT(end, u1))
11283 			break;
11284 		if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) {
11285 			mp->b_wptr -= end - u1;
11286 			TCP_REASS_SET_END(mp, u1);
11287 			BUMP_MIB(&tcp_mib, tcpInDataPartDupSegs);
11288 			UPDATE_MIB(&tcp_mib, tcpInDataPartDupBytes, end - u1);
11289 			break;
11290 		}
11291 		mp->b_cont = mp1->b_cont;
11292 		TCP_REASS_SET_SEQ(mp1, 0);
11293 		TCP_REASS_SET_END(mp1, 0);
11294 		freeb(mp1);
11295 		BUMP_MIB(&tcp_mib, tcpInDataDupSegs);
11296 		UPDATE_MIB(&tcp_mib, tcpInDataDupBytes, end - u1);
11297 	}
11298 	if (!mp1)
11299 		tcp->tcp_reass_tail = mp;
11300 }
11301 
11302 /*
11303  * Send up all messages queued on tcp_rcv_list.
11304  */
11305 static uint_t
11306 tcp_rcv_drain(queue_t *q, tcp_t *tcp)
11307 {
11308 	mblk_t *mp;
11309 	uint_t ret = 0;
11310 	uint_t thwin;
11311 #ifdef DEBUG
11312 	uint_t cnt = 0;
11313 #endif
11314 	/* Can't drain on an eager connection */
11315 	if (tcp->tcp_listener != NULL)
11316 		return (ret);
11317 
11318 	/*
11319 	 * Handle two cases here: we are currently fused or we were
11320 	 * previously fused and have some urgent data to be delivered
11321 	 * upstream.  The latter happens because we either ran out of
11322 	 * memory or were detached and therefore sending the SIGURG was
11323 	 * deferred until this point.  In either case we pass control
11324 	 * over to tcp_fuse_rcv_drain() since it may need to complete
11325 	 * some work.
11326 	 */
11327 	if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) {
11328 		ASSERT(tcp->tcp_fused_sigurg_mp != NULL);
11329 		if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL :
11330 		    &tcp->tcp_fused_sigurg_mp))
11331 			return (ret);
11332 	}
11333 
11334 	while ((mp = tcp->tcp_rcv_list) != NULL) {
11335 		tcp->tcp_rcv_list = mp->b_next;
11336 		mp->b_next = NULL;
11337 #ifdef DEBUG
11338 		cnt += msgdsize(mp);
11339 #endif
11340 		/* Does this need SSL processing first? */
11341 		if ((tcp->tcp_kssl_ctx  != NULL) && (DB_TYPE(mp) == M_DATA)) {
11342 			tcp_kssl_input(tcp, mp);
11343 			continue;
11344 		}
11345 		putnext(q, mp);
11346 	}
11347 	ASSERT(cnt == tcp->tcp_rcv_cnt);
11348 	tcp->tcp_rcv_last_head = NULL;
11349 	tcp->tcp_rcv_last_tail = NULL;
11350 	tcp->tcp_rcv_cnt = 0;
11351 
11352 	/* Learn the latest rwnd information that we sent to the other side. */
11353 	thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
11354 	    << tcp->tcp_rcv_ws;
11355 	/* This is peer's calculated send window (our receive window). */
11356 	thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
11357 	/*
11358 	 * Increase the receive window to max.  But we need to do receiver
11359 	 * SWS avoidance.  This means that we need to check the increase of
11360 	 * of receive window is at least 1 MSS.
11361 	 */
11362 	if (canputnext(q) && (q->q_hiwat - thwin >= tcp->tcp_mss)) {
11363 		/*
11364 		 * If the window that the other side knows is less than max
11365 		 * deferred acks segments, send an update immediately.
11366 		 */
11367 		if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) {
11368 			BUMP_MIB(&tcp_mib, tcpOutWinUpdate);
11369 			ret = TH_ACK_NEEDED;
11370 		}
11371 		tcp->tcp_rwnd = q->q_hiwat;
11372 	}
11373 	/* No need for the push timer now. */
11374 	if (tcp->tcp_push_tid != 0) {
11375 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
11376 		tcp->tcp_push_tid = 0;
11377 	}
11378 	return (ret);
11379 }
11380 
11381 /*
11382  * Queue data on tcp_rcv_list which is a b_next chain.
11383  * tcp_rcv_last_head/tail is the last element of this chain.
11384  * Each element of the chain is a b_cont chain.
11385  *
11386  * M_DATA messages are added to the current element.
11387  * Other messages are added as new (b_next) elements.
11388  */
11389 void
11390 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len)
11391 {
11392 	ASSERT(seg_len == msgdsize(mp));
11393 	ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL);
11394 
11395 	if (tcp->tcp_rcv_list == NULL) {
11396 		ASSERT(tcp->tcp_rcv_last_head == NULL);
11397 		tcp->tcp_rcv_list = mp;
11398 		tcp->tcp_rcv_last_head = mp;
11399 	} else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) {
11400 		tcp->tcp_rcv_last_tail->b_cont = mp;
11401 	} else {
11402 		tcp->tcp_rcv_last_head->b_next = mp;
11403 		tcp->tcp_rcv_last_head = mp;
11404 	}
11405 
11406 	while (mp->b_cont)
11407 		mp = mp->b_cont;
11408 
11409 	tcp->tcp_rcv_last_tail = mp;
11410 	tcp->tcp_rcv_cnt += seg_len;
11411 	tcp->tcp_rwnd -= seg_len;
11412 }
11413 
11414 /*
11415  * DEFAULT TCP ENTRY POINT via squeue on READ side.
11416  *
11417  * This is the default entry function into TCP on the read side. TCP is
11418  * always entered via squeue i.e. using squeue's for mutual exclusion.
11419  * When classifier does a lookup to find the tcp, it also puts a reference
11420  * on the conn structure associated so the tcp is guaranteed to exist
11421  * when we come here. We still need to check the state because it might
11422  * as well has been closed. The squeue processing function i.e. squeue_enter,
11423  * squeue_enter_nodrain, or squeue_drain is responsible for doing the
11424  * CONN_DEC_REF.
11425  *
11426  * Apart from the default entry point, IP also sends packets directly to
11427  * tcp_rput_data for AF_INET fast path and tcp_conn_request for incoming
11428  * connections.
11429  */
11430 void
11431 tcp_input(void *arg, mblk_t *mp, void *arg2)
11432 {
11433 	conn_t	*connp = (conn_t *)arg;
11434 	tcp_t	*tcp = (tcp_t *)connp->conn_tcp;
11435 
11436 	/* arg2 is the sqp */
11437 	ASSERT(arg2 != NULL);
11438 	ASSERT(mp != NULL);
11439 
11440 	/*
11441 	 * Don't accept any input on a closed tcp as this TCP logically does
11442 	 * not exist on the system. Don't proceed further with this TCP.
11443 	 * For eg. this packet could trigger another close of this tcp
11444 	 * which would be disastrous for tcp_refcnt. tcp_close_detached /
11445 	 * tcp_clean_death / tcp_closei_local must be called at most once
11446 	 * on a TCP. In this case we need to refeed the packet into the
11447 	 * classifier and figure out where the packet should go. Need to
11448 	 * preserve the recv_ill somehow. Until we figure that out, for
11449 	 * now just drop the packet if we can't classify the packet.
11450 	 */
11451 	if (tcp->tcp_state == TCPS_CLOSED ||
11452 	    tcp->tcp_state == TCPS_BOUND) {
11453 		conn_t	*new_connp;
11454 
11455 		new_connp = ipcl_classify(mp, connp->conn_zoneid);
11456 		if (new_connp != NULL) {
11457 			tcp_reinput(new_connp, mp, arg2);
11458 			return;
11459 		}
11460 		/* We failed to classify. For now just drop the packet */
11461 		freemsg(mp);
11462 		return;
11463 	}
11464 
11465 	if (DB_TYPE(mp) == M_DATA)
11466 		tcp_rput_data(connp, mp, arg2);
11467 	else
11468 		tcp_rput_common(tcp, mp);
11469 }
11470 
11471 /*
11472  * The read side put procedure.
11473  * The packets passed up by ip are assume to be aligned according to
11474  * OK_32PTR and the IP+TCP headers fitting in the first mblk.
11475  */
11476 static void
11477 tcp_rput_common(tcp_t *tcp, mblk_t *mp)
11478 {
11479 	/*
11480 	 * tcp_rput_data() does not expect M_CTL except for the case
11481 	 * where tcp_ipv6_recvancillary is set and we get a IN_PKTINFO
11482 	 * type. Need to make sure that any other M_CTLs don't make
11483 	 * it to tcp_rput_data since it is not expecting any and doesn't
11484 	 * check for it.
11485 	 */
11486 	if (DB_TYPE(mp) == M_CTL) {
11487 		switch (*(uint32_t *)(mp->b_rptr)) {
11488 		case TCP_IOC_ABORT_CONN:
11489 			/*
11490 			 * Handle connection abort request.
11491 			 */
11492 			tcp_ioctl_abort_handler(tcp, mp);
11493 			return;
11494 		case IPSEC_IN:
11495 			/*
11496 			 * Only secure icmp arrive in TCP and they
11497 			 * don't go through data path.
11498 			 */
11499 			tcp_icmp_error(tcp, mp);
11500 			return;
11501 		case IN_PKTINFO:
11502 			/*
11503 			 * Handle IPV6_RECVPKTINFO socket option on AF_INET6
11504 			 * sockets that are receiving IPv4 traffic. tcp
11505 			 */
11506 			ASSERT(tcp->tcp_family == AF_INET6);
11507 			ASSERT(tcp->tcp_ipv6_recvancillary &
11508 			    TCP_IPV6_RECVPKTINFO);
11509 			tcp_rput_data(tcp->tcp_connp, mp,
11510 			    tcp->tcp_connp->conn_sqp);
11511 			return;
11512 		case MDT_IOC_INFO_UPDATE:
11513 			/*
11514 			 * Handle Multidata information update; the
11515 			 * following routine will free the message.
11516 			 */
11517 			if (tcp->tcp_connp->conn_mdt_ok) {
11518 				tcp_mdt_update(tcp,
11519 				    &((ip_mdt_info_t *)mp->b_rptr)->mdt_capab,
11520 				    B_FALSE);
11521 			}
11522 			freemsg(mp);
11523 			return;
11524 		default:
11525 			break;
11526 		}
11527 	}
11528 
11529 	/* No point processing the message if tcp is already closed */
11530 	if (TCP_IS_DETACHED_NONEAGER(tcp)) {
11531 		freemsg(mp);
11532 		return;
11533 	}
11534 
11535 	tcp_rput_other(tcp, mp);
11536 }
11537 
11538 
11539 /* The minimum of smoothed mean deviation in RTO calculation. */
11540 #define	TCP_SD_MIN	400
11541 
11542 /*
11543  * Set RTO for this connection.  The formula is from Jacobson and Karels'
11544  * "Congestion Avoidance and Control" in SIGCOMM '88.  The variable names
11545  * are the same as those in Appendix A.2 of that paper.
11546  *
11547  * m = new measurement
11548  * sa = smoothed RTT average (8 * average estimates).
11549  * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates).
11550  */
11551 static void
11552 tcp_set_rto(tcp_t *tcp, clock_t rtt)
11553 {
11554 	long m = TICK_TO_MSEC(rtt);
11555 	clock_t sa = tcp->tcp_rtt_sa;
11556 	clock_t sv = tcp->tcp_rtt_sd;
11557 	clock_t rto;
11558 
11559 	BUMP_MIB(&tcp_mib, tcpRttUpdate);
11560 	tcp->tcp_rtt_update++;
11561 
11562 	/* tcp_rtt_sa is not 0 means this is a new sample. */
11563 	if (sa != 0) {
11564 		/*
11565 		 * Update average estimator:
11566 		 *	new rtt = 7/8 old rtt + 1/8 Error
11567 		 */
11568 
11569 		/* m is now Error in estimate. */
11570 		m -= sa >> 3;
11571 		if ((sa += m) <= 0) {
11572 			/*
11573 			 * Don't allow the smoothed average to be negative.
11574 			 * We use 0 to denote reinitialization of the
11575 			 * variables.
11576 			 */
11577 			sa = 1;
11578 		}
11579 
11580 		/*
11581 		 * Update deviation estimator:
11582 		 *	new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev)
11583 		 */
11584 		if (m < 0)
11585 			m = -m;
11586 		m -= sv >> 2;
11587 		sv += m;
11588 	} else {
11589 		/*
11590 		 * This follows BSD's implementation.  So the reinitialized
11591 		 * RTO is 3 * m.  We cannot go less than 2 because if the
11592 		 * link is bandwidth dominated, doubling the window size
11593 		 * during slow start means doubling the RTT.  We want to be
11594 		 * more conservative when we reinitialize our estimates.  3
11595 		 * is just a convenient number.
11596 		 */
11597 		sa = m << 3;
11598 		sv = m << 1;
11599 	}
11600 	if (sv < TCP_SD_MIN) {
11601 		/*
11602 		 * We do not know that if sa captures the delay ACK
11603 		 * effect as in a long train of segments, a receiver
11604 		 * does not delay its ACKs.  So set the minimum of sv
11605 		 * to be TCP_SD_MIN, which is default to 400 ms, twice
11606 		 * of BSD DATO.  That means the minimum of mean
11607 		 * deviation is 100 ms.
11608 		 *
11609 		 */
11610 		sv = TCP_SD_MIN;
11611 	}
11612 	tcp->tcp_rtt_sa = sa;
11613 	tcp->tcp_rtt_sd = sv;
11614 	/*
11615 	 * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv)
11616 	 *
11617 	 * Add tcp_rexmit_interval extra in case of extreme environment
11618 	 * where the algorithm fails to work.  The default value of
11619 	 * tcp_rexmit_interval_extra should be 0.
11620 	 *
11621 	 * As we use a finer grained clock than BSD and update
11622 	 * RTO for every ACKs, add in another .25 of RTT to the
11623 	 * deviation of RTO to accomodate burstiness of 1/4 of
11624 	 * window size.
11625 	 */
11626 	rto = (sa >> 3) + sv + tcp_rexmit_interval_extra + (sa >> 5);
11627 
11628 	if (rto > tcp_rexmit_interval_max) {
11629 		tcp->tcp_rto = tcp_rexmit_interval_max;
11630 	} else if (rto < tcp_rexmit_interval_min) {
11631 		tcp->tcp_rto = tcp_rexmit_interval_min;
11632 	} else {
11633 		tcp->tcp_rto = rto;
11634 	}
11635 
11636 	/* Now, we can reset tcp_timer_backoff to use the new RTO... */
11637 	tcp->tcp_timer_backoff = 0;
11638 }
11639 
11640 /*
11641  * tcp_get_seg_mp() is called to get the pointer to a segment in the
11642  * send queue which starts at the given seq. no.
11643  *
11644  * Parameters:
11645  *	tcp_t *tcp: the tcp instance pointer.
11646  *	uint32_t seq: the starting seq. no of the requested segment.
11647  *	int32_t *off: after the execution, *off will be the offset to
11648  *		the returned mblk which points to the requested seq no.
11649  *		It is the caller's responsibility to send in a non-null off.
11650  *
11651  * Return:
11652  *	A mblk_t pointer pointing to the requested segment in send queue.
11653  */
11654 static mblk_t *
11655 tcp_get_seg_mp(tcp_t *tcp, uint32_t seq, int32_t *off)
11656 {
11657 	int32_t	cnt;
11658 	mblk_t	*mp;
11659 
11660 	/* Defensive coding.  Make sure we don't send incorrect data. */
11661 	if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt))
11662 		return (NULL);
11663 
11664 	cnt = seq - tcp->tcp_suna;
11665 	mp = tcp->tcp_xmit_head;
11666 	while (cnt > 0 && mp != NULL) {
11667 		cnt -= mp->b_wptr - mp->b_rptr;
11668 		if (cnt < 0) {
11669 			cnt += mp->b_wptr - mp->b_rptr;
11670 			break;
11671 		}
11672 		mp = mp->b_cont;
11673 	}
11674 	ASSERT(mp != NULL);
11675 	*off = cnt;
11676 	return (mp);
11677 }
11678 
11679 /*
11680  * This function handles all retransmissions if SACK is enabled for this
11681  * connection.  First it calculates how many segments can be retransmitted
11682  * based on tcp_pipe.  Then it goes thru the notsack list to find eligible
11683  * segments.  A segment is eligible if sack_cnt for that segment is greater
11684  * than or equal tcp_dupack_fast_retransmit.  After it has retransmitted
11685  * all eligible segments, it checks to see if TCP can send some new segments
11686  * (fast recovery).  If it can, set the appropriate flag for tcp_rput_data().
11687  *
11688  * Parameters:
11689  *	tcp_t *tcp: the tcp structure of the connection.
11690  *	uint_t *flags: in return, appropriate value will be set for
11691  *	tcp_rput_data().
11692  */
11693 static void
11694 tcp_sack_rxmit(tcp_t *tcp, uint_t *flags)
11695 {
11696 	notsack_blk_t	*notsack_blk;
11697 	int32_t		usable_swnd;
11698 	int32_t		mss;
11699 	uint32_t	seg_len;
11700 	mblk_t		*xmit_mp;
11701 
11702 	ASSERT(tcp->tcp_sack_info != NULL);
11703 	ASSERT(tcp->tcp_notsack_list != NULL);
11704 	ASSERT(tcp->tcp_rexmit == B_FALSE);
11705 
11706 	/* Defensive coding in case there is a bug... */
11707 	if (tcp->tcp_notsack_list == NULL) {
11708 		return;
11709 	}
11710 	notsack_blk = tcp->tcp_notsack_list;
11711 	mss = tcp->tcp_mss;
11712 
11713 	/*
11714 	 * Limit the num of outstanding data in the network to be
11715 	 * tcp_cwnd_ssthresh, which is half of the original congestion wnd.
11716 	 */
11717 	usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe;
11718 
11719 	/* At least retransmit 1 MSS of data. */
11720 	if (usable_swnd <= 0) {
11721 		usable_swnd = mss;
11722 	}
11723 
11724 	/* Make sure no new RTT samples will be taken. */
11725 	tcp->tcp_csuna = tcp->tcp_snxt;
11726 
11727 	notsack_blk = tcp->tcp_notsack_list;
11728 	while (usable_swnd > 0) {
11729 		mblk_t		*snxt_mp, *tmp_mp;
11730 		tcp_seq		begin = tcp->tcp_sack_snxt;
11731 		tcp_seq		end;
11732 		int32_t		off;
11733 
11734 		for (; notsack_blk != NULL; notsack_blk = notsack_blk->next) {
11735 			if (SEQ_GT(notsack_blk->end, begin) &&
11736 			    (notsack_blk->sack_cnt >=
11737 			    tcp_dupack_fast_retransmit)) {
11738 				end = notsack_blk->end;
11739 				if (SEQ_LT(begin, notsack_blk->begin)) {
11740 					begin = notsack_blk->begin;
11741 				}
11742 				break;
11743 			}
11744 		}
11745 		/*
11746 		 * All holes are filled.  Manipulate tcp_cwnd to send more
11747 		 * if we can.  Note that after the SACK recovery, tcp_cwnd is
11748 		 * set to tcp_cwnd_ssthresh.
11749 		 */
11750 		if (notsack_blk == NULL) {
11751 			usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe;
11752 			if (usable_swnd <= 0 || tcp->tcp_unsent == 0) {
11753 				tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna;
11754 				ASSERT(tcp->tcp_cwnd > 0);
11755 				return;
11756 			} else {
11757 				usable_swnd = usable_swnd / mss;
11758 				tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna +
11759 				    MAX(usable_swnd * mss, mss);
11760 				*flags |= TH_XMIT_NEEDED;
11761 				return;
11762 			}
11763 		}
11764 
11765 		/*
11766 		 * Note that we may send more than usable_swnd allows here
11767 		 * because of round off, but no more than 1 MSS of data.
11768 		 */
11769 		seg_len = end - begin;
11770 		if (seg_len > mss)
11771 			seg_len = mss;
11772 		snxt_mp = tcp_get_seg_mp(tcp, begin, &off);
11773 		ASSERT(snxt_mp != NULL);
11774 		/* This should not happen.  Defensive coding again... */
11775 		if (snxt_mp == NULL) {
11776 			return;
11777 		}
11778 
11779 		xmit_mp = tcp_xmit_mp(tcp, snxt_mp, seg_len, &off,
11780 		    &tmp_mp, begin, B_TRUE, &seg_len, B_TRUE);
11781 		if (xmit_mp == NULL)
11782 			return;
11783 
11784 		usable_swnd -= seg_len;
11785 		tcp->tcp_pipe += seg_len;
11786 		tcp->tcp_sack_snxt = begin + seg_len;
11787 		TCP_RECORD_TRACE(tcp, xmit_mp, TCP_TRACE_SEND_PKT);
11788 		tcp_send_data(tcp, tcp->tcp_wq, xmit_mp);
11789 
11790 		/*
11791 		 * Update the send timestamp to avoid false retransmission.
11792 		 */
11793 		snxt_mp->b_prev = (mblk_t *)lbolt;
11794 
11795 		BUMP_MIB(&tcp_mib, tcpRetransSegs);
11796 		UPDATE_MIB(&tcp_mib, tcpRetransBytes, seg_len);
11797 		BUMP_MIB(&tcp_mib, tcpOutSackRetransSegs);
11798 		/*
11799 		 * Update tcp_rexmit_max to extend this SACK recovery phase.
11800 		 * This happens when new data sent during fast recovery is
11801 		 * also lost.  If TCP retransmits those new data, it needs
11802 		 * to extend SACK recover phase to avoid starting another
11803 		 * fast retransmit/recovery unnecessarily.
11804 		 */
11805 		if (SEQ_GT(tcp->tcp_sack_snxt, tcp->tcp_rexmit_max)) {
11806 			tcp->tcp_rexmit_max = tcp->tcp_sack_snxt;
11807 		}
11808 	}
11809 }
11810 
11811 /*
11812  * This function handles policy checking at TCP level for non-hard_bound/
11813  * detached connections.
11814  */
11815 static boolean_t
11816 tcp_check_policy(tcp_t *tcp, mblk_t *first_mp, ipha_t *ipha, ip6_t *ip6h,
11817     boolean_t secure, boolean_t mctl_present)
11818 {
11819 	ipsec_latch_t *ipl = NULL;
11820 	ipsec_action_t *act = NULL;
11821 	mblk_t *data_mp;
11822 	ipsec_in_t *ii;
11823 	const char *reason;
11824 	kstat_named_t *counter;
11825 
11826 	ASSERT(mctl_present || !secure);
11827 
11828 	ASSERT((ipha == NULL && ip6h != NULL) ||
11829 	    (ip6h == NULL && ipha != NULL));
11830 
11831 	/*
11832 	 * We don't necessarily have an ipsec_in_act action to verify
11833 	 * policy because of assymetrical policy where we have only
11834 	 * outbound policy and no inbound policy (possible with global
11835 	 * policy).
11836 	 */
11837 	if (!secure) {
11838 		if (act == NULL || act->ipa_act.ipa_type == IPSEC_ACT_BYPASS ||
11839 		    act->ipa_act.ipa_type == IPSEC_ACT_CLEAR)
11840 			return (B_TRUE);
11841 		ipsec_log_policy_failure(tcp->tcp_wq, IPSEC_POLICY_MISMATCH,
11842 		    "tcp_check_policy", ipha, ip6h, secure);
11843 		ip_drop_packet(first_mp, B_TRUE, NULL, NULL,
11844 		    &ipdrops_tcp_clear, &tcp_dropper);
11845 		return (B_FALSE);
11846 	}
11847 
11848 	/*
11849 	 * We have a secure packet.
11850 	 */
11851 	if (act == NULL) {
11852 		ipsec_log_policy_failure(tcp->tcp_wq,
11853 		    IPSEC_POLICY_NOT_NEEDED, "tcp_check_policy", ipha, ip6h,
11854 		    secure);
11855 		ip_drop_packet(first_mp, B_TRUE, NULL, NULL,
11856 		    &ipdrops_tcp_secure, &tcp_dropper);
11857 		return (B_FALSE);
11858 	}
11859 
11860 	/*
11861 	 * XXX This whole routine is currently incorrect.  ipl should
11862 	 * be set to the latch pointer, but is currently not set, so
11863 	 * we initialize it to NULL to avoid picking up random garbage.
11864 	 */
11865 	if (ipl == NULL)
11866 		return (B_TRUE);
11867 
11868 	data_mp = first_mp->b_cont;
11869 
11870 	ii = (ipsec_in_t *)first_mp->b_rptr;
11871 
11872 	if (ipsec_check_ipsecin_latch(ii, data_mp, ipl, ipha, ip6h, &reason,
11873 	    &counter)) {
11874 		BUMP_MIB(&ip_mib, ipsecInSucceeded);
11875 		return (B_TRUE);
11876 	}
11877 	(void) strlog(TCP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE,
11878 	    "tcp inbound policy mismatch: %s, packet dropped\n",
11879 	    reason);
11880 	BUMP_MIB(&ip_mib, ipsecInFailed);
11881 
11882 	ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter, &tcp_dropper);
11883 	return (B_FALSE);
11884 }
11885 
11886 /*
11887  * tcp_ss_rexmit() is called in tcp_rput_data() to do slow start
11888  * retransmission after a timeout.
11889  *
11890  * To limit the number of duplicate segments, we limit the number of segment
11891  * to be sent in one time to tcp_snd_burst, the burst variable.
11892  */
11893 static void
11894 tcp_ss_rexmit(tcp_t *tcp)
11895 {
11896 	uint32_t	snxt;
11897 	uint32_t	smax;
11898 	int32_t		win;
11899 	int32_t		mss;
11900 	int32_t		off;
11901 	int32_t		burst = tcp->tcp_snd_burst;
11902 	mblk_t		*snxt_mp;
11903 
11904 	/*
11905 	 * Note that tcp_rexmit can be set even though TCP has retransmitted
11906 	 * all unack'ed segments.
11907 	 */
11908 	if (SEQ_LT(tcp->tcp_rexmit_nxt, tcp->tcp_rexmit_max)) {
11909 		smax = tcp->tcp_rexmit_max;
11910 		snxt = tcp->tcp_rexmit_nxt;
11911 		if (SEQ_LT(snxt, tcp->tcp_suna)) {
11912 			snxt = tcp->tcp_suna;
11913 		}
11914 		win = MIN(tcp->tcp_cwnd, tcp->tcp_swnd);
11915 		win -= snxt - tcp->tcp_suna;
11916 		mss = tcp->tcp_mss;
11917 		snxt_mp = tcp_get_seg_mp(tcp, snxt, &off);
11918 
11919 		while (SEQ_LT(snxt, smax) && (win > 0) &&
11920 		    (burst > 0) && (snxt_mp != NULL)) {
11921 			mblk_t	*xmit_mp;
11922 			mblk_t	*old_snxt_mp = snxt_mp;
11923 			uint32_t cnt = mss;
11924 
11925 			if (win < cnt) {
11926 				cnt = win;
11927 			}
11928 			if (SEQ_GT(snxt + cnt, smax)) {
11929 				cnt = smax - snxt;
11930 			}
11931 			xmit_mp = tcp_xmit_mp(tcp, snxt_mp, cnt, &off,
11932 			    &snxt_mp, snxt, B_TRUE, &cnt, B_TRUE);
11933 			if (xmit_mp == NULL)
11934 				return;
11935 
11936 			tcp_send_data(tcp, tcp->tcp_wq, xmit_mp);
11937 
11938 			snxt += cnt;
11939 			win -= cnt;
11940 			/*
11941 			 * Update the send timestamp to avoid false
11942 			 * retransmission.
11943 			 */
11944 			old_snxt_mp->b_prev = (mblk_t *)lbolt;
11945 			BUMP_MIB(&tcp_mib, tcpRetransSegs);
11946 			UPDATE_MIB(&tcp_mib, tcpRetransBytes, cnt);
11947 
11948 			tcp->tcp_rexmit_nxt = snxt;
11949 			burst--;
11950 		}
11951 		/*
11952 		 * If we have transmitted all we have at the time
11953 		 * we started the retranmission, we can leave
11954 		 * the rest of the job to tcp_wput_data().  But we
11955 		 * need to check the send window first.  If the
11956 		 * win is not 0, go on with tcp_wput_data().
11957 		 */
11958 		if (SEQ_LT(snxt, smax) || win == 0) {
11959 			return;
11960 		}
11961 	}
11962 	/* Only call tcp_wput_data() if there is data to be sent. */
11963 	if (tcp->tcp_unsent) {
11964 		tcp_wput_data(tcp, NULL, B_FALSE);
11965 	}
11966 }
11967 
11968 /*
11969  * Process all TCP option in SYN segment.  Note that this function should
11970  * be called after tcp_adapt_ire() is called so that the necessary info
11971  * from IRE is already set in the tcp structure.
11972  *
11973  * This function sets up the correct tcp_mss value according to the
11974  * MSS option value and our header size.  It also sets up the window scale
11975  * and timestamp values, and initialize SACK info blocks.  But it does not
11976  * change receive window size after setting the tcp_mss value.  The caller
11977  * should do the appropriate change.
11978  */
11979 void
11980 tcp_process_options(tcp_t *tcp, tcph_t *tcph)
11981 {
11982 	int options;
11983 	tcp_opt_t tcpopt;
11984 	uint32_t mss_max;
11985 	char *tmp_tcph;
11986 
11987 	tcpopt.tcp = NULL;
11988 	options = tcp_parse_options(tcph, &tcpopt);
11989 
11990 	/*
11991 	 * Process MSS option.  Note that MSS option value does not account
11992 	 * for IP or TCP options.  This means that it is equal to MTU - minimum
11993 	 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for
11994 	 * IPv6.
11995 	 */
11996 	if (!(options & TCP_OPT_MSS_PRESENT)) {
11997 		if (tcp->tcp_ipversion == IPV4_VERSION)
11998 			tcpopt.tcp_opt_mss = tcp_mss_def_ipv4;
11999 		else
12000 			tcpopt.tcp_opt_mss = tcp_mss_def_ipv6;
12001 	} else {
12002 		if (tcp->tcp_ipversion == IPV4_VERSION)
12003 			mss_max = tcp_mss_max_ipv4;
12004 		else
12005 			mss_max = tcp_mss_max_ipv6;
12006 		if (tcpopt.tcp_opt_mss < tcp_mss_min)
12007 			tcpopt.tcp_opt_mss = tcp_mss_min;
12008 		else if (tcpopt.tcp_opt_mss > mss_max)
12009 			tcpopt.tcp_opt_mss = mss_max;
12010 	}
12011 
12012 	/* Process Window Scale option. */
12013 	if (options & TCP_OPT_WSCALE_PRESENT) {
12014 		tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale;
12015 		tcp->tcp_snd_ws_ok = B_TRUE;
12016 	} else {
12017 		tcp->tcp_snd_ws = B_FALSE;
12018 		tcp->tcp_snd_ws_ok = B_FALSE;
12019 		tcp->tcp_rcv_ws = B_FALSE;
12020 	}
12021 
12022 	/* Process Timestamp option. */
12023 	if ((options & TCP_OPT_TSTAMP_PRESENT) &&
12024 	    (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) {
12025 		tmp_tcph = (char *)tcp->tcp_tcph;
12026 
12027 		tcp->tcp_snd_ts_ok = B_TRUE;
12028 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
12029 		tcp->tcp_last_rcv_lbolt = lbolt64;
12030 		ASSERT(OK_32PTR(tmp_tcph));
12031 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
12032 
12033 		/* Fill in our template header with basic timestamp option. */
12034 		tmp_tcph += tcp->tcp_tcp_hdr_len;
12035 		tmp_tcph[0] = TCPOPT_NOP;
12036 		tmp_tcph[1] = TCPOPT_NOP;
12037 		tmp_tcph[2] = TCPOPT_TSTAMP;
12038 		tmp_tcph[3] = TCPOPT_TSTAMP_LEN;
12039 		tcp->tcp_hdr_len += TCPOPT_REAL_TS_LEN;
12040 		tcp->tcp_tcp_hdr_len += TCPOPT_REAL_TS_LEN;
12041 		tcp->tcp_tcph->th_offset_and_rsrvd[0] += (3 << 4);
12042 	} else {
12043 		tcp->tcp_snd_ts_ok = B_FALSE;
12044 	}
12045 
12046 	/*
12047 	 * Process SACK options.  If SACK is enabled for this connection,
12048 	 * then allocate the SACK info structure.  Note the following ways
12049 	 * when tcp_snd_sack_ok is set to true.
12050 	 *
12051 	 * For active connection: in tcp_adapt_ire() called in
12052 	 * tcp_rput_other(), or in tcp_rput_other() when tcp_sack_permitted
12053 	 * is checked.
12054 	 *
12055 	 * For passive connection: in tcp_adapt_ire() called in
12056 	 * tcp_accept_comm().
12057 	 *
12058 	 * That's the reason why the extra TCP_IS_DETACHED() check is there.
12059 	 * That check makes sure that if we did not send a SACK OK option,
12060 	 * we will not enable SACK for this connection even though the other
12061 	 * side sends us SACK OK option.  For active connection, the SACK
12062 	 * info structure has already been allocated.  So we need to free
12063 	 * it if SACK is disabled.
12064 	 */
12065 	if ((options & TCP_OPT_SACK_OK_PRESENT) &&
12066 	    (tcp->tcp_snd_sack_ok ||
12067 	    (tcp_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) {
12068 		/* This should be true only in the passive case. */
12069 		if (tcp->tcp_sack_info == NULL) {
12070 			ASSERT(TCP_IS_DETACHED(tcp));
12071 			tcp->tcp_sack_info =
12072 			    kmem_cache_alloc(tcp_sack_info_cache, KM_NOSLEEP);
12073 		}
12074 		if (tcp->tcp_sack_info == NULL) {
12075 			tcp->tcp_snd_sack_ok = B_FALSE;
12076 		} else {
12077 			tcp->tcp_snd_sack_ok = B_TRUE;
12078 			if (tcp->tcp_snd_ts_ok) {
12079 				tcp->tcp_max_sack_blk = 3;
12080 			} else {
12081 				tcp->tcp_max_sack_blk = 4;
12082 			}
12083 		}
12084 	} else {
12085 		/*
12086 		 * Resetting tcp_snd_sack_ok to B_FALSE so that
12087 		 * no SACK info will be used for this
12088 		 * connection.  This assumes that SACK usage
12089 		 * permission is negotiated.  This may need
12090 		 * to be changed once this is clarified.
12091 		 */
12092 		if (tcp->tcp_sack_info != NULL) {
12093 			ASSERT(tcp->tcp_notsack_list == NULL);
12094 			kmem_cache_free(tcp_sack_info_cache,
12095 			    tcp->tcp_sack_info);
12096 			tcp->tcp_sack_info = NULL;
12097 		}
12098 		tcp->tcp_snd_sack_ok = B_FALSE;
12099 	}
12100 
12101 	/*
12102 	 * Now we know the exact TCP/IP header length, subtract
12103 	 * that from tcp_mss to get our side's MSS.
12104 	 */
12105 	tcp->tcp_mss -= tcp->tcp_hdr_len;
12106 	/*
12107 	 * Here we assume that the other side's header size will be equal to
12108 	 * our header size.  We calculate the real MSS accordingly.  Need to
12109 	 * take into additional stuffs IPsec puts in.
12110 	 *
12111 	 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header)
12112 	 */
12113 	tcpopt.tcp_opt_mss -= tcp->tcp_hdr_len + tcp->tcp_ipsec_overhead -
12114 	    ((tcp->tcp_ipversion == IPV4_VERSION ?
12115 	    IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH);
12116 
12117 	/*
12118 	 * Set MSS to the smaller one of both ends of the connection.
12119 	 * We should not have called tcp_mss_set() before, but our
12120 	 * side of the MSS should have been set to a proper value
12121 	 * by tcp_adapt_ire().  tcp_mss_set() will also set up the
12122 	 * STREAM head parameters properly.
12123 	 *
12124 	 * If we have a larger-than-16-bit window but the other side
12125 	 * didn't want to do window scale, tcp_rwnd_set() will take
12126 	 * care of that.
12127 	 */
12128 	tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss));
12129 }
12130 
12131 /*
12132  * Sends the T_CONN_IND to the listener. The caller calls this
12133  * functions via squeue to get inside the listener's perimeter
12134  * once the 3 way hand shake is done a T_CONN_IND needs to be
12135  * sent. As an optimization, the caller can call this directly
12136  * if listener's perimeter is same as eager's.
12137  */
12138 /* ARGSUSED */
12139 void
12140 tcp_send_conn_ind(void *arg, mblk_t *mp, void *arg2)
12141 {
12142 	conn_t			*lconnp = (conn_t *)arg;
12143 	tcp_t			*listener = lconnp->conn_tcp;
12144 	tcp_t			*tcp;
12145 	struct T_conn_ind	*conn_ind;
12146 	ipaddr_t 		*addr_cache;
12147 	boolean_t		need_send_conn_ind = B_FALSE;
12148 
12149 	/* retrieve the eager */
12150 	conn_ind = (struct T_conn_ind *)mp->b_rptr;
12151 	ASSERT(conn_ind->OPT_offset != 0 &&
12152 	    conn_ind->OPT_length == sizeof (intptr_t));
12153 	bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp,
12154 		conn_ind->OPT_length);
12155 
12156 	/*
12157 	 * TLI/XTI applications will get confused by
12158 	 * sending eager as an option since it violates
12159 	 * the option semantics. So remove the eager as
12160 	 * option since TLI/XTI app doesn't need it anyway.
12161 	 */
12162 	if (!TCP_IS_SOCKET(listener)) {
12163 		conn_ind->OPT_length = 0;
12164 		conn_ind->OPT_offset = 0;
12165 	}
12166 	if (listener->tcp_state == TCPS_CLOSED ||
12167 	    TCP_IS_DETACHED(listener)) {
12168 		/*
12169 		 * If listener has closed, it would have caused a
12170 		 * a cleanup/blowoff to happen for the eager. We
12171 		 * just need to return.
12172 		 */
12173 		freemsg(mp);
12174 		return;
12175 	}
12176 
12177 
12178 	/*
12179 	 * if the conn_req_q is full defer passing up the
12180 	 * T_CONN_IND until space is availabe after t_accept()
12181 	 * processing
12182 	 */
12183 	mutex_enter(&listener->tcp_eager_lock);
12184 	if (listener->tcp_conn_req_cnt_q < listener->tcp_conn_req_max) {
12185 		tcp_t *tail;
12186 
12187 		/*
12188 		 * The eager already has an extra ref put in tcp_rput_data
12189 		 * so that it stays till accept comes back even though it
12190 		 * might get into TCPS_CLOSED as a result of a TH_RST etc.
12191 		 */
12192 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
12193 		listener->tcp_conn_req_cnt_q0--;
12194 		listener->tcp_conn_req_cnt_q++;
12195 
12196 		/* Move from SYN_RCVD to ESTABLISHED list  */
12197 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
12198 		    tcp->tcp_eager_prev_q0;
12199 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
12200 		    tcp->tcp_eager_next_q0;
12201 		tcp->tcp_eager_prev_q0 = NULL;
12202 		tcp->tcp_eager_next_q0 = NULL;
12203 
12204 		/*
12205 		 * Insert at end of the queue because sockfs
12206 		 * sends down T_CONN_RES in chronological
12207 		 * order. Leaving the older conn indications
12208 		 * at front of the queue helps reducing search
12209 		 * time.
12210 		 */
12211 		tail = listener->tcp_eager_last_q;
12212 		if (tail != NULL)
12213 			tail->tcp_eager_next_q = tcp;
12214 		else
12215 			listener->tcp_eager_next_q = tcp;
12216 		listener->tcp_eager_last_q = tcp;
12217 		tcp->tcp_eager_next_q = NULL;
12218 		/*
12219 		 * Delay sending up the T_conn_ind until we are
12220 		 * done with the eager. Once we have have sent up
12221 		 * the T_conn_ind, the accept can potentially complete
12222 		 * any time and release the refhold we have on the eager.
12223 		 */
12224 		need_send_conn_ind = B_TRUE;
12225 	} else {
12226 		/*
12227 		 * Defer connection on q0 and set deferred
12228 		 * connection bit true
12229 		 */
12230 		tcp->tcp_conn_def_q0 = B_TRUE;
12231 
12232 		/* take tcp out of q0 ... */
12233 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
12234 		    tcp->tcp_eager_next_q0;
12235 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
12236 		    tcp->tcp_eager_prev_q0;
12237 
12238 		/* ... and place it at the end of q0 */
12239 		tcp->tcp_eager_prev_q0 = listener->tcp_eager_prev_q0;
12240 		tcp->tcp_eager_next_q0 = listener;
12241 		listener->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp;
12242 		listener->tcp_eager_prev_q0 = tcp;
12243 		tcp->tcp_conn.tcp_eager_conn_ind = mp;
12244 	}
12245 
12246 	/* we have timed out before */
12247 	if (tcp->tcp_syn_rcvd_timeout != 0) {
12248 		tcp->tcp_syn_rcvd_timeout = 0;
12249 		listener->tcp_syn_rcvd_timeout--;
12250 		if (listener->tcp_syn_defense &&
12251 		    listener->tcp_syn_rcvd_timeout <=
12252 		    (tcp_conn_req_max_q0 >> 5) &&
12253 		    10*MINUTES < TICK_TO_MSEC(lbolt64 -
12254 			listener->tcp_last_rcv_lbolt)) {
12255 			/*
12256 			 * Turn off the defense mode if we
12257 			 * believe the SYN attack is over.
12258 			 */
12259 			listener->tcp_syn_defense = B_FALSE;
12260 			if (listener->tcp_ip_addr_cache) {
12261 				kmem_free((void *)listener->tcp_ip_addr_cache,
12262 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
12263 				listener->tcp_ip_addr_cache = NULL;
12264 			}
12265 		}
12266 	}
12267 	addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache);
12268 	if (addr_cache != NULL) {
12269 		/*
12270 		 * We have finished a 3-way handshake with this
12271 		 * remote host. This proves the IP addr is good.
12272 		 * Cache it!
12273 		 */
12274 		addr_cache[IP_ADDR_CACHE_HASH(
12275 			tcp->tcp_remote)] = tcp->tcp_remote;
12276 	}
12277 	mutex_exit(&listener->tcp_eager_lock);
12278 	if (need_send_conn_ind)
12279 		putnext(listener->tcp_rq, mp);
12280 }
12281 
12282 mblk_t *
12283 tcp_find_pktinfo(tcp_t *tcp, mblk_t *mp, uint_t *ipversp, uint_t *ip_hdr_lenp,
12284     uint_t *ifindexp, ip6_pkt_t *ippp)
12285 {
12286 	in_pktinfo_t	*pinfo;
12287 	ip6_t		*ip6h;
12288 	uchar_t		*rptr;
12289 	mblk_t		*first_mp = mp;
12290 	boolean_t	mctl_present = B_FALSE;
12291 	uint_t 		ifindex = 0;
12292 	ip6_pkt_t	ipp;
12293 	uint_t		ipvers;
12294 	uint_t		ip_hdr_len;
12295 
12296 	rptr = mp->b_rptr;
12297 	ASSERT(OK_32PTR(rptr));
12298 	ASSERT(tcp != NULL);
12299 	ipp.ipp_fields = 0;
12300 
12301 	switch DB_TYPE(mp) {
12302 	case M_CTL:
12303 		mp = mp->b_cont;
12304 		if (mp == NULL) {
12305 			freemsg(first_mp);
12306 			return (NULL);
12307 		}
12308 		if (DB_TYPE(mp) != M_DATA) {
12309 			freemsg(first_mp);
12310 			return (NULL);
12311 		}
12312 		mctl_present = B_TRUE;
12313 		break;
12314 	case M_DATA:
12315 		break;
12316 	default:
12317 		cmn_err(CE_NOTE, "tcp_find_pktinfo: unknown db_type");
12318 		freemsg(mp);
12319 		return (NULL);
12320 	}
12321 	ipvers = IPH_HDR_VERSION(rptr);
12322 	if (ipvers == IPV4_VERSION) {
12323 		if (tcp == NULL) {
12324 			ip_hdr_len = IPH_HDR_LENGTH(rptr);
12325 			goto done;
12326 		}
12327 
12328 		ipp.ipp_fields |= IPPF_HOPLIMIT;
12329 		ipp.ipp_hoplimit = ((ipha_t *)rptr)->ipha_ttl;
12330 
12331 		/*
12332 		 * If we have IN_PKTINFO in an M_CTL and tcp_ipv6_recvancillary
12333 		 * has TCP_IPV6_RECVPKTINFO set, pass I/F index along in ipp.
12334 		 */
12335 		if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) &&
12336 		    mctl_present) {
12337 			pinfo = (in_pktinfo_t *)first_mp->b_rptr;
12338 			if ((MBLKL(first_mp) == sizeof (in_pktinfo_t)) &&
12339 			    (pinfo->in_pkt_ulp_type == IN_PKTINFO) &&
12340 			    (pinfo->in_pkt_flags & IPF_RECVIF)) {
12341 				ipp.ipp_fields |= IPPF_IFINDEX;
12342 				ipp.ipp_ifindex = pinfo->in_pkt_ifindex;
12343 				ifindex = pinfo->in_pkt_ifindex;
12344 			}
12345 			freeb(first_mp);
12346 			mctl_present = B_FALSE;
12347 		}
12348 		ip_hdr_len = IPH_HDR_LENGTH(rptr);
12349 	} else {
12350 		ip6h = (ip6_t *)rptr;
12351 
12352 		ASSERT(ipvers == IPV6_VERSION);
12353 		ipp.ipp_fields = IPPF_HOPLIMIT | IPPF_TCLASS;
12354 		ipp.ipp_tclass = (ip6h->ip6_flow & 0x0FF00000) >> 20;
12355 		ipp.ipp_hoplimit = ip6h->ip6_hops;
12356 
12357 		if (ip6h->ip6_nxt != IPPROTO_TCP) {
12358 			uint8_t	nexthdrp;
12359 
12360 			/* Look for ifindex information */
12361 			if (ip6h->ip6_nxt == IPPROTO_RAW) {
12362 				ip6i_t *ip6i = (ip6i_t *)ip6h;
12363 				if ((uchar_t *)&ip6i[1] > mp->b_wptr) {
12364 					BUMP_MIB(&ip_mib, tcpInErrs);
12365 					freemsg(first_mp);
12366 					return (NULL);
12367 				}
12368 
12369 				if (ip6i->ip6i_flags & IP6I_IFINDEX) {
12370 					ASSERT(ip6i->ip6i_ifindex != 0);
12371 					ipp.ipp_fields |= IPPF_IFINDEX;
12372 					ipp.ipp_ifindex = ip6i->ip6i_ifindex;
12373 					ifindex = ip6i->ip6i_ifindex;
12374 				}
12375 				rptr = (uchar_t *)&ip6i[1];
12376 				mp->b_rptr = rptr;
12377 				if (rptr == mp->b_wptr) {
12378 					mblk_t *mp1;
12379 					mp1 = mp->b_cont;
12380 					freeb(mp);
12381 					mp = mp1;
12382 					rptr = mp->b_rptr;
12383 				}
12384 				if (MBLKL(mp) < IPV6_HDR_LEN +
12385 				    sizeof (tcph_t)) {
12386 					BUMP_MIB(&ip_mib, tcpInErrs);
12387 					freemsg(first_mp);
12388 					return (NULL);
12389 				}
12390 				ip6h = (ip6_t *)rptr;
12391 			}
12392 
12393 			/*
12394 			 * Find any potentially interesting extension headers
12395 			 * as well as the length of the IPv6 + extension
12396 			 * headers.
12397 			 */
12398 			ip_hdr_len = ip_find_hdr_v6(mp, ip6h, &ipp, &nexthdrp);
12399 			/* Verify if this is a TCP packet */
12400 			if (nexthdrp != IPPROTO_TCP) {
12401 				BUMP_MIB(&ip_mib, tcpInErrs);
12402 				freemsg(first_mp);
12403 				return (NULL);
12404 			}
12405 		} else {
12406 			ip_hdr_len = IPV6_HDR_LEN;
12407 		}
12408 	}
12409 
12410 done:
12411 	if (ipversp != NULL)
12412 		*ipversp = ipvers;
12413 	if (ip_hdr_lenp != NULL)
12414 		*ip_hdr_lenp = ip_hdr_len;
12415 	if (ippp != NULL)
12416 		*ippp = ipp;
12417 	if (ifindexp != NULL)
12418 		*ifindexp = ifindex;
12419 	if (mctl_present) {
12420 		freeb(first_mp);
12421 	}
12422 	return (mp);
12423 }
12424 
12425 /*
12426  * Handle M_DATA messages from IP. Its called directly from IP via
12427  * squeue for AF_INET type sockets fast path. No M_CTL are expected
12428  * in this path.
12429  *
12430  * For everything else (including AF_INET6 sockets with 'tcp_ipversion'
12431  * v4 and v6), we are called through tcp_input() and a M_CTL can
12432  * be present for options but tcp_find_pktinfo() deals with it. We
12433  * only expect M_DATA packets after tcp_find_pktinfo() is done.
12434  *
12435  * The first argument is always the connp/tcp to which the mp belongs.
12436  * There are no exceptions to this rule. The caller has already put
12437  * a reference on this connp/tcp and once tcp_rput_data() returns,
12438  * the squeue will do the refrele.
12439  *
12440  * The TH_SYN for the listener directly go to tcp_conn_request via
12441  * squeue.
12442  *
12443  * sqp: NULL = recursive, sqp != NULL means called from squeue
12444  */
12445 void
12446 tcp_rput_data(void *arg, mblk_t *mp, void *arg2)
12447 {
12448 	int32_t		bytes_acked;
12449 	int32_t		gap;
12450 	mblk_t		*mp1;
12451 	uint_t		flags;
12452 	uint32_t	new_swnd = 0;
12453 	uchar_t		*iphdr;
12454 	uchar_t		*rptr;
12455 	int32_t		rgap;
12456 	uint32_t	seg_ack;
12457 	int		seg_len;
12458 	uint_t		ip_hdr_len;
12459 	uint32_t	seg_seq;
12460 	tcph_t		*tcph;
12461 	int		urp;
12462 	tcp_opt_t	tcpopt;
12463 	uint_t		ipvers;
12464 	ip6_pkt_t	ipp;
12465 	boolean_t	ofo_seg = B_FALSE; /* Out of order segment */
12466 	uint32_t	cwnd;
12467 	uint32_t	add;
12468 	int		npkt;
12469 	int		mss;
12470 	conn_t		*connp = (conn_t *)arg;
12471 	squeue_t	*sqp = (squeue_t *)arg2;
12472 	tcp_t		*tcp = connp->conn_tcp;
12473 
12474 	/*
12475 	 * RST from fused tcp loopback peer should trigger an unfuse.
12476 	 */
12477 	if (tcp->tcp_fused) {
12478 		TCP_STAT(tcp_fusion_aborted);
12479 		tcp_unfuse(tcp);
12480 	}
12481 
12482 	iphdr = mp->b_rptr;
12483 	rptr = mp->b_rptr;
12484 	ASSERT(OK_32PTR(rptr));
12485 
12486 	/*
12487 	 * An AF_INET socket is not capable of receiving any pktinfo. Do inline
12488 	 * processing here. For rest call tcp_find_pktinfo to fill up the
12489 	 * necessary information.
12490 	 */
12491 	if (IPCL_IS_TCP4(connp)) {
12492 		ipvers = IPV4_VERSION;
12493 		ip_hdr_len = IPH_HDR_LENGTH(rptr);
12494 	} else {
12495 		mp = tcp_find_pktinfo(tcp, mp, &ipvers, &ip_hdr_len,
12496 		    NULL, &ipp);
12497 		if (mp == NULL) {
12498 			TCP_STAT(tcp_rput_v6_error);
12499 			return;
12500 		}
12501 		iphdr = mp->b_rptr;
12502 		rptr = mp->b_rptr;
12503 	}
12504 	ASSERT(DB_TYPE(mp) == M_DATA);
12505 
12506 	tcph = (tcph_t *)&rptr[ip_hdr_len];
12507 	seg_seq = ABE32_TO_U32(tcph->th_seq);
12508 	seg_ack = ABE32_TO_U32(tcph->th_ack);
12509 	ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
12510 	seg_len = (int)(mp->b_wptr - rptr) -
12511 	    (ip_hdr_len + TCP_HDR_LENGTH(tcph));
12512 	if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) {
12513 		do {
12514 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
12515 			    (uintptr_t)INT_MAX);
12516 			seg_len += (int)(mp1->b_wptr - mp1->b_rptr);
12517 		} while ((mp1 = mp1->b_cont) != NULL &&
12518 		    mp1->b_datap->db_type == M_DATA);
12519 	}
12520 
12521 	if (tcp->tcp_state == TCPS_TIME_WAIT) {
12522 		tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack,
12523 		    seg_len, tcph);
12524 		return;
12525 	}
12526 
12527 	if (sqp != NULL) {
12528 		/*
12529 		 * This is the correct place to update tcp_last_recv_time. Note
12530 		 * that it is also updated for tcp structure that belongs to
12531 		 * global and listener queues which do not really need updating.
12532 		 * But that should not cause any harm.  And it is updated for
12533 		 * all kinds of incoming segments, not only for data segments.
12534 		 */
12535 		tcp->tcp_last_recv_time = lbolt;
12536 	}
12537 
12538 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
12539 
12540 	BUMP_LOCAL(tcp->tcp_ibsegs);
12541 	TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_RECV_PKT);
12542 
12543 	if ((flags & TH_URG) && sqp != NULL) {
12544 		/*
12545 		 * TCP can't handle urgent pointers that arrive before
12546 		 * the connection has been accept()ed since it can't
12547 		 * buffer OOB data.  Discard segment if this happens.
12548 		 *
12549 		 * Nor can it reassemble urgent pointers, so discard
12550 		 * if it's not the next segment expected.
12551 		 *
12552 		 * Otherwise, collapse chain into one mblk (discard if
12553 		 * that fails).  This makes sure the headers, retransmitted
12554 		 * data, and new data all are in the same mblk.
12555 		 */
12556 		ASSERT(mp != NULL);
12557 		if (tcp->tcp_listener || !pullupmsg(mp, -1)) {
12558 			freemsg(mp);
12559 			return;
12560 		}
12561 		/* Update pointers into message */
12562 		iphdr = rptr = mp->b_rptr;
12563 		tcph = (tcph_t *)&rptr[ip_hdr_len];
12564 		if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) {
12565 			/*
12566 			 * Since we can't handle any data with this urgent
12567 			 * pointer that is out of sequence, we expunge
12568 			 * the data.  This allows us to still register
12569 			 * the urgent mark and generate the M_PCSIG,
12570 			 * which we can do.
12571 			 */
12572 			mp->b_wptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph);
12573 			seg_len = 0;
12574 		}
12575 	}
12576 
12577 	switch (tcp->tcp_state) {
12578 	case TCPS_SYN_SENT:
12579 		if (flags & TH_ACK) {
12580 			/*
12581 			 * Note that our stack cannot send data before a
12582 			 * connection is established, therefore the
12583 			 * following check is valid.  Otherwise, it has
12584 			 * to be changed.
12585 			 */
12586 			if (SEQ_LEQ(seg_ack, tcp->tcp_iss) ||
12587 			    SEQ_GT(seg_ack, tcp->tcp_snxt)) {
12588 				freemsg(mp);
12589 				if (flags & TH_RST)
12590 					return;
12591 				tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq",
12592 				    tcp, seg_ack, 0, TH_RST);
12593 				return;
12594 			}
12595 			ASSERT(tcp->tcp_suna + 1 == seg_ack);
12596 		}
12597 		if (flags & TH_RST) {
12598 			freemsg(mp);
12599 			if (flags & TH_ACK)
12600 				(void) tcp_clean_death(tcp,
12601 				    ECONNREFUSED, 13);
12602 			return;
12603 		}
12604 		if (!(flags & TH_SYN)) {
12605 			freemsg(mp);
12606 			return;
12607 		}
12608 
12609 		/* Process all TCP options. */
12610 		tcp_process_options(tcp, tcph);
12611 		/*
12612 		 * The following changes our rwnd to be a multiple of the
12613 		 * MIN(peer MSS, our MSS) for performance reason.
12614 		 */
12615 		(void) tcp_rwnd_set(tcp, MSS_ROUNDUP(tcp->tcp_rq->q_hiwat,
12616 		    tcp->tcp_mss));
12617 
12618 		/* Is the other end ECN capable? */
12619 		if (tcp->tcp_ecn_ok) {
12620 			if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) {
12621 				tcp->tcp_ecn_ok = B_FALSE;
12622 			}
12623 		}
12624 		/*
12625 		 * Clear ECN flags because it may interfere with later
12626 		 * processing.
12627 		 */
12628 		flags &= ~(TH_ECE|TH_CWR);
12629 
12630 		tcp->tcp_irs = seg_seq;
12631 		tcp->tcp_rack = seg_seq;
12632 		tcp->tcp_rnxt = seg_seq + 1;
12633 		U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack);
12634 		if (!TCP_IS_DETACHED(tcp)) {
12635 			/* Allocate room for SACK options if needed. */
12636 			if (tcp->tcp_snd_sack_ok) {
12637 				(void) mi_set_sth_wroff(tcp->tcp_rq,
12638 				    tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN +
12639 				    (tcp->tcp_loopback ? 0 : tcp_wroff_xtra));
12640 			} else {
12641 				(void) mi_set_sth_wroff(tcp->tcp_rq,
12642 				    tcp->tcp_hdr_len +
12643 				    (tcp->tcp_loopback ? 0 : tcp_wroff_xtra));
12644 			}
12645 		}
12646 		if (flags & TH_ACK) {
12647 			/*
12648 			 * If we can't get the confirmation upstream, pretend
12649 			 * we didn't even see this one.
12650 			 *
12651 			 * XXX: how can we pretend we didn't see it if we
12652 			 * have updated rnxt et. al.
12653 			 *
12654 			 * For loopback we defer sending up the T_CONN_CON
12655 			 * until after some checks below.
12656 			 */
12657 			mp1 = NULL;
12658 			if (!tcp_conn_con(tcp, iphdr, tcph, mp,
12659 			    tcp->tcp_loopback ? &mp1 : NULL)) {
12660 				freemsg(mp);
12661 				return;
12662 			}
12663 			/* SYN was acked - making progress */
12664 			if (tcp->tcp_ipversion == IPV6_VERSION)
12665 				tcp->tcp_ip_forward_progress = B_TRUE;
12666 
12667 			/* One for the SYN */
12668 			tcp->tcp_suna = tcp->tcp_iss + 1;
12669 			tcp->tcp_valid_bits &= ~TCP_ISS_VALID;
12670 			tcp->tcp_state = TCPS_ESTABLISHED;
12671 
12672 			/*
12673 			 * If SYN was retransmitted, need to reset all
12674 			 * retransmission info.  This is because this
12675 			 * segment will be treated as a dup ACK.
12676 			 */
12677 			if (tcp->tcp_rexmit) {
12678 				tcp->tcp_rexmit = B_FALSE;
12679 				tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
12680 				tcp->tcp_rexmit_max = tcp->tcp_snxt;
12681 				tcp->tcp_snd_burst = tcp->tcp_localnet ?
12682 				    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
12683 				tcp->tcp_ms_we_have_waited = 0;
12684 
12685 				/*
12686 				 * Set tcp_cwnd back to 1 MSS, per
12687 				 * recommendation from
12688 				 * draft-floyd-incr-init-win-01.txt,
12689 				 * Increasing TCP's Initial Window.
12690 				 */
12691 				tcp->tcp_cwnd = tcp->tcp_mss;
12692 			}
12693 
12694 			tcp->tcp_swl1 = seg_seq;
12695 			tcp->tcp_swl2 = seg_ack;
12696 
12697 			new_swnd = BE16_TO_U16(tcph->th_win);
12698 			tcp->tcp_swnd = new_swnd;
12699 			if (new_swnd > tcp->tcp_max_swnd)
12700 				tcp->tcp_max_swnd = new_swnd;
12701 
12702 			/*
12703 			 * Always send the three-way handshake ack immediately
12704 			 * in order to make the connection complete as soon as
12705 			 * possible on the accepting host.
12706 			 */
12707 			flags |= TH_ACK_NEEDED;
12708 
12709 			/*
12710 			 * Special case for loopback.  At this point we have
12711 			 * received SYN-ACK from the remote endpoint.  In
12712 			 * order to ensure that both endpoints reach the
12713 			 * fused state prior to any data exchange, the final
12714 			 * ACK needs to be sent before we indicate T_CONN_CON
12715 			 * to the module upstream.
12716 			 */
12717 			if (tcp->tcp_loopback) {
12718 				mblk_t *ack_mp;
12719 
12720 				ASSERT(!tcp->tcp_unfusable);
12721 				ASSERT(mp1 != NULL);
12722 				/*
12723 				 * For loopback, we always get a pure SYN-ACK
12724 				 * and only need to send back the final ACK
12725 				 * with no data (this is because the other
12726 				 * tcp is ours and we don't do T/TCP).  This
12727 				 * final ACK triggers the passive side to
12728 				 * perform fusion in ESTABLISHED state.
12729 				 */
12730 				if ((ack_mp = tcp_ack_mp(tcp)) != NULL) {
12731 					if (tcp->tcp_ack_tid != 0) {
12732 						(void) TCP_TIMER_CANCEL(tcp,
12733 						    tcp->tcp_ack_tid);
12734 						tcp->tcp_ack_tid = 0;
12735 					}
12736 					TCP_RECORD_TRACE(tcp, ack_mp,
12737 					    TCP_TRACE_SEND_PKT);
12738 					tcp_send_data(tcp, tcp->tcp_wq, ack_mp);
12739 					BUMP_LOCAL(tcp->tcp_obsegs);
12740 					BUMP_MIB(&tcp_mib, tcpOutAck);
12741 
12742 					/* Send up T_CONN_CON */
12743 					putnext(tcp->tcp_rq, mp1);
12744 
12745 					freemsg(mp);
12746 					return;
12747 				}
12748 				/*
12749 				 * Forget fusion; we need to handle more
12750 				 * complex cases below.  Send the deferred
12751 				 * T_CONN_CON message upstream and proceed
12752 				 * as usual.  Mark this tcp as not capable
12753 				 * of fusion.
12754 				 */
12755 				TCP_STAT(tcp_fusion_unfusable);
12756 				tcp->tcp_unfusable = B_TRUE;
12757 				putnext(tcp->tcp_rq, mp1);
12758 			}
12759 
12760 			/*
12761 			 * Check to see if there is data to be sent.  If
12762 			 * yes, set the transmit flag.  Then check to see
12763 			 * if received data processing needs to be done.
12764 			 * If not, go straight to xmit_check.  This short
12765 			 * cut is OK as we don't support T/TCP.
12766 			 */
12767 			if (tcp->tcp_unsent)
12768 				flags |= TH_XMIT_NEEDED;
12769 
12770 			if (seg_len == 0 && !(flags & TH_URG)) {
12771 				freemsg(mp);
12772 				goto xmit_check;
12773 			}
12774 
12775 			flags &= ~TH_SYN;
12776 			seg_seq++;
12777 			break;
12778 		}
12779 		tcp->tcp_state = TCPS_SYN_RCVD;
12780 		mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss,
12781 		    NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
12782 		if (mp1) {
12783 			DB_CPID(mp1) = tcp->tcp_cpid;
12784 			TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT);
12785 			tcp_send_data(tcp, tcp->tcp_wq, mp1);
12786 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
12787 		}
12788 		freemsg(mp);
12789 		return;
12790 	case TCPS_SYN_RCVD:
12791 		if (flags & TH_ACK) {
12792 			/*
12793 			 * In this state, a SYN|ACK packet is either bogus
12794 			 * because the other side must be ACKing our SYN which
12795 			 * indicates it has seen the ACK for their SYN and
12796 			 * shouldn't retransmit it or we're crossing SYNs
12797 			 * on active open.
12798 			 */
12799 			if ((flags & TH_SYN) && !tcp->tcp_active_open) {
12800 				freemsg(mp);
12801 				tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn",
12802 				    tcp, seg_ack, 0, TH_RST);
12803 				return;
12804 			}
12805 			/*
12806 			 * NOTE: RFC 793 pg. 72 says this should be
12807 			 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt
12808 			 * but that would mean we have an ack that ignored
12809 			 * our SYN.
12810 			 */
12811 			if (SEQ_LEQ(seg_ack, tcp->tcp_suna) ||
12812 			    SEQ_GT(seg_ack, tcp->tcp_snxt)) {
12813 				freemsg(mp);
12814 				tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack",
12815 				    tcp, seg_ack, 0, TH_RST);
12816 				return;
12817 			}
12818 		}
12819 		break;
12820 	case TCPS_LISTEN:
12821 		/*
12822 		 * Only a TLI listener can come through this path when a
12823 		 * acceptor is going back to be a listener and a packet
12824 		 * for the acceptor hits the classifier. For a socket
12825 		 * listener, this can never happen because a listener
12826 		 * can never accept connection on itself and hence a
12827 		 * socket acceptor can not go back to being a listener.
12828 		 */
12829 		ASSERT(!TCP_IS_SOCKET(tcp));
12830 		/*FALLTHRU*/
12831 	case TCPS_CLOSED:
12832 	case TCPS_BOUND: {
12833 		conn_t	*new_connp;
12834 
12835 		new_connp = ipcl_classify(mp, connp->conn_zoneid);
12836 		if (new_connp != NULL) {
12837 			tcp_reinput(new_connp, mp, connp->conn_sqp);
12838 			return;
12839 		}
12840 		/* We failed to classify. For now just drop the packet */
12841 		freemsg(mp);
12842 		return;
12843 	}
12844 	case TCPS_IDLE:
12845 		/*
12846 		 * Handle the case where the tcp_clean_death() has happened
12847 		 * on a connection (application hasn't closed yet) but a packet
12848 		 * was already queued on squeue before tcp_clean_death()
12849 		 * was processed. Calling tcp_clean_death() twice on same
12850 		 * connection can result in weird behaviour.
12851 		 */
12852 		freemsg(mp);
12853 		return;
12854 	default:
12855 		break;
12856 	}
12857 
12858 	/*
12859 	 * Already on the correct queue/perimeter.
12860 	 * If this is a detached connection and not an eager
12861 	 * connection hanging off a listener then new data
12862 	 * (past the FIN) will cause a reset.
12863 	 * We do a special check here where it
12864 	 * is out of the main line, rather than check
12865 	 * if we are detached every time we see new
12866 	 * data down below.
12867 	 */
12868 	if (TCP_IS_DETACHED_NONEAGER(tcp) &&
12869 	    (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) {
12870 		BUMP_MIB(&tcp_mib, tcpInClosed);
12871 		TCP_RECORD_TRACE(tcp,
12872 		    mp, TCP_TRACE_RECV_PKT);
12873 
12874 		freemsg(mp);
12875 		/*
12876 		 * This could be an SSL closure alert. We're detached so just
12877 		 * acknowledge it this last time.
12878 		 */
12879 		if (tcp->tcp_kssl_ctx != NULL) {
12880 			kssl_release_ctx(tcp->tcp_kssl_ctx);
12881 			tcp->tcp_kssl_ctx = NULL;
12882 
12883 			tcp->tcp_rnxt += seg_len;
12884 			U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack);
12885 			flags |= TH_ACK_NEEDED;
12886 			goto ack_check;
12887 		}
12888 
12889 		tcp_xmit_ctl("new data when detached", tcp,
12890 		    tcp->tcp_snxt, 0, TH_RST);
12891 		(void) tcp_clean_death(tcp, EPROTO, 12);
12892 		return;
12893 	}
12894 
12895 	mp->b_rptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph);
12896 	urp = BE16_TO_U16(tcph->th_urp) - TCP_OLD_URP_INTERPRETATION;
12897 	new_swnd = BE16_TO_U16(tcph->th_win) <<
12898 	    ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws);
12899 	mss = tcp->tcp_mss;
12900 
12901 	if (tcp->tcp_snd_ts_ok) {
12902 		if (!tcp_paws_check(tcp, tcph, &tcpopt)) {
12903 			/*
12904 			 * This segment is not acceptable.
12905 			 * Drop it and send back an ACK.
12906 			 */
12907 			freemsg(mp);
12908 			flags |= TH_ACK_NEEDED;
12909 			goto ack_check;
12910 		}
12911 	} else if (tcp->tcp_snd_sack_ok) {
12912 		ASSERT(tcp->tcp_sack_info != NULL);
12913 		tcpopt.tcp = tcp;
12914 		/*
12915 		 * SACK info in already updated in tcp_parse_options.  Ignore
12916 		 * all other TCP options...
12917 		 */
12918 		(void) tcp_parse_options(tcph, &tcpopt);
12919 	}
12920 try_again:;
12921 	gap = seg_seq - tcp->tcp_rnxt;
12922 	rgap = tcp->tcp_rwnd - (gap + seg_len);
12923 	/*
12924 	 * gap is the amount of sequence space between what we expect to see
12925 	 * and what we got for seg_seq.  A positive value for gap means
12926 	 * something got lost.  A negative value means we got some old stuff.
12927 	 */
12928 	if (gap < 0) {
12929 		/* Old stuff present.  Is the SYN in there? */
12930 		if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) &&
12931 		    (seg_len != 0)) {
12932 			flags &= ~TH_SYN;
12933 			seg_seq++;
12934 			urp--;
12935 			/* Recompute the gaps after noting the SYN. */
12936 			goto try_again;
12937 		}
12938 		BUMP_MIB(&tcp_mib, tcpInDataDupSegs);
12939 		UPDATE_MIB(&tcp_mib, tcpInDataDupBytes,
12940 		    (seg_len > -gap ? -gap : seg_len));
12941 		/* Remove the old stuff from seg_len. */
12942 		seg_len += gap;
12943 		/*
12944 		 * Anything left?
12945 		 * Make sure to check for unack'd FIN when rest of data
12946 		 * has been previously ack'd.
12947 		 */
12948 		if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) {
12949 			/*
12950 			 * Resets are only valid if they lie within our offered
12951 			 * window.  If the RST bit is set, we just ignore this
12952 			 * segment.
12953 			 */
12954 			if (flags & TH_RST) {
12955 				freemsg(mp);
12956 				return;
12957 			}
12958 
12959 			/*
12960 			 * The arriving of dup data packets indicate that we
12961 			 * may have postponed an ack for too long, or the other
12962 			 * side's RTT estimate is out of shape. Start acking
12963 			 * more often.
12964 			 */
12965 			if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) &&
12966 			    tcp->tcp_rack_cnt >= 1 &&
12967 			    tcp->tcp_rack_abs_max > 2) {
12968 				tcp->tcp_rack_abs_max--;
12969 			}
12970 			tcp->tcp_rack_cur_max = 1;
12971 
12972 			/*
12973 			 * This segment is "unacceptable".  None of its
12974 			 * sequence space lies within our advertized window.
12975 			 *
12976 			 * Adjust seg_len to the original value for tracing.
12977 			 */
12978 			seg_len -= gap;
12979 			if (tcp->tcp_debug) {
12980 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
12981 				    "tcp_rput: unacceptable, gap %d, rgap %d, "
12982 				    "flags 0x%x, seg_seq %u, seg_ack %u, "
12983 				    "seg_len %d, rnxt %u, snxt %u, %s",
12984 				    gap, rgap, flags, seg_seq, seg_ack,
12985 				    seg_len, tcp->tcp_rnxt, tcp->tcp_snxt,
12986 				    tcp_display(tcp, NULL,
12987 				    DISP_ADDR_AND_PORT));
12988 			}
12989 
12990 			/*
12991 			 * Arrange to send an ACK in response to the
12992 			 * unacceptable segment per RFC 793 page 69. There
12993 			 * is only one small difference between ours and the
12994 			 * acceptability test in the RFC - we accept ACK-only
12995 			 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK
12996 			 * will be generated.
12997 			 *
12998 			 * Note that we have to ACK an ACK-only packet at least
12999 			 * for stacks that send 0-length keep-alives with
13000 			 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122,
13001 			 * section 4.2.3.6. As long as we don't ever generate
13002 			 * an unacceptable packet in response to an incoming
13003 			 * packet that is unacceptable, it should not cause
13004 			 * "ACK wars".
13005 			 */
13006 			flags |=  TH_ACK_NEEDED;
13007 
13008 			/*
13009 			 * Continue processing this segment in order to use the
13010 			 * ACK information it contains, but skip all other
13011 			 * sequence-number processing.	Processing the ACK
13012 			 * information is necessary in order to
13013 			 * re-synchronize connections that may have lost
13014 			 * synchronization.
13015 			 *
13016 			 * We clear seg_len and flag fields related to
13017 			 * sequence number processing as they are not
13018 			 * to be trusted for an unacceptable segment.
13019 			 */
13020 			seg_len = 0;
13021 			flags &= ~(TH_SYN | TH_FIN | TH_URG);
13022 			goto process_ack;
13023 		}
13024 
13025 		/* Fix seg_seq, and chew the gap off the front. */
13026 		seg_seq = tcp->tcp_rnxt;
13027 		urp += gap;
13028 		do {
13029 			mblk_t	*mp2;
13030 			ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
13031 			    (uintptr_t)UINT_MAX);
13032 			gap += (uint_t)(mp->b_wptr - mp->b_rptr);
13033 			if (gap > 0) {
13034 				mp->b_rptr = mp->b_wptr - gap;
13035 				break;
13036 			}
13037 			mp2 = mp;
13038 			mp = mp->b_cont;
13039 			freeb(mp2);
13040 		} while (gap < 0);
13041 		/*
13042 		 * If the urgent data has already been acknowledged, we
13043 		 * should ignore TH_URG below
13044 		 */
13045 		if (urp < 0)
13046 			flags &= ~TH_URG;
13047 	}
13048 	/*
13049 	 * rgap is the amount of stuff received out of window.  A negative
13050 	 * value is the amount out of window.
13051 	 */
13052 	if (rgap < 0) {
13053 		mblk_t	*mp2;
13054 
13055 		if (tcp->tcp_rwnd == 0) {
13056 			BUMP_MIB(&tcp_mib, tcpInWinProbe);
13057 		} else {
13058 			BUMP_MIB(&tcp_mib, tcpInDataPastWinSegs);
13059 			UPDATE_MIB(&tcp_mib, tcpInDataPastWinBytes, -rgap);
13060 		}
13061 
13062 		/*
13063 		 * seg_len does not include the FIN, so if more than
13064 		 * just the FIN is out of window, we act like we don't
13065 		 * see it.  (If just the FIN is out of window, rgap
13066 		 * will be zero and we will go ahead and acknowledge
13067 		 * the FIN.)
13068 		 */
13069 		flags &= ~TH_FIN;
13070 
13071 		/* Fix seg_len and make sure there is something left. */
13072 		seg_len += rgap;
13073 		if (seg_len <= 0) {
13074 			/*
13075 			 * Resets are only valid if they lie within our offered
13076 			 * window.  If the RST bit is set, we just ignore this
13077 			 * segment.
13078 			 */
13079 			if (flags & TH_RST) {
13080 				freemsg(mp);
13081 				return;
13082 			}
13083 
13084 			/* Per RFC 793, we need to send back an ACK. */
13085 			flags |= TH_ACK_NEEDED;
13086 
13087 			/*
13088 			 * Send SIGURG as soon as possible i.e. even
13089 			 * if the TH_URG was delivered in a window probe
13090 			 * packet (which will be unacceptable).
13091 			 *
13092 			 * We generate a signal if none has been generated
13093 			 * for this connection or if this is a new urgent
13094 			 * byte. Also send a zero-length "unmarked" message
13095 			 * to inform SIOCATMARK that this is not the mark.
13096 			 *
13097 			 * tcp_urp_last_valid is cleared when the T_exdata_ind
13098 			 * is sent up. This plus the check for old data
13099 			 * (gap >= 0) handles the wraparound of the sequence
13100 			 * number space without having to always track the
13101 			 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks
13102 			 * this max in its rcv_up variable).
13103 			 *
13104 			 * This prevents duplicate SIGURGS due to a "late"
13105 			 * zero-window probe when the T_EXDATA_IND has already
13106 			 * been sent up.
13107 			 */
13108 			if ((flags & TH_URG) &&
13109 			    (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq,
13110 			    tcp->tcp_urp_last))) {
13111 				mp1 = allocb(0, BPRI_MED);
13112 				if (mp1 == NULL) {
13113 					freemsg(mp);
13114 					return;
13115 				}
13116 				if (!TCP_IS_DETACHED(tcp) &&
13117 				    !putnextctl1(tcp->tcp_rq, M_PCSIG,
13118 				    SIGURG)) {
13119 					/* Try again on the rexmit. */
13120 					freemsg(mp1);
13121 					freemsg(mp);
13122 					return;
13123 				}
13124 				/*
13125 				 * If the next byte would be the mark
13126 				 * then mark with MARKNEXT else mark
13127 				 * with NOTMARKNEXT.
13128 				 */
13129 				if (gap == 0 && urp == 0)
13130 					mp1->b_flag |= MSGMARKNEXT;
13131 				else
13132 					mp1->b_flag |= MSGNOTMARKNEXT;
13133 				freemsg(tcp->tcp_urp_mark_mp);
13134 				tcp->tcp_urp_mark_mp = mp1;
13135 				flags |= TH_SEND_URP_MARK;
13136 				tcp->tcp_urp_last_valid = B_TRUE;
13137 				tcp->tcp_urp_last = urp + seg_seq;
13138 			}
13139 			/*
13140 			 * If this is a zero window probe, continue to
13141 			 * process the ACK part.  But we need to set seg_len
13142 			 * to 0 to avoid data processing.  Otherwise just
13143 			 * drop the segment and send back an ACK.
13144 			 */
13145 			if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) {
13146 				flags &= ~(TH_SYN | TH_URG);
13147 				seg_len = 0;
13148 				goto process_ack;
13149 			} else {
13150 				freemsg(mp);
13151 				goto ack_check;
13152 			}
13153 		}
13154 		/* Pitch out of window stuff off the end. */
13155 		rgap = seg_len;
13156 		mp2 = mp;
13157 		do {
13158 			ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <=
13159 			    (uintptr_t)INT_MAX);
13160 			rgap -= (int)(mp2->b_wptr - mp2->b_rptr);
13161 			if (rgap < 0) {
13162 				mp2->b_wptr += rgap;
13163 				if ((mp1 = mp2->b_cont) != NULL) {
13164 					mp2->b_cont = NULL;
13165 					freemsg(mp1);
13166 				}
13167 				break;
13168 			}
13169 		} while ((mp2 = mp2->b_cont) != NULL);
13170 	}
13171 ok:;
13172 	/*
13173 	 * TCP should check ECN info for segments inside the window only.
13174 	 * Therefore the check should be done here.
13175 	 */
13176 	if (tcp->tcp_ecn_ok) {
13177 		if (flags & TH_CWR) {
13178 			tcp->tcp_ecn_echo_on = B_FALSE;
13179 		}
13180 		/*
13181 		 * Note that both ECN_CE and CWR can be set in the
13182 		 * same segment.  In this case, we once again turn
13183 		 * on ECN_ECHO.
13184 		 */
13185 		if (tcp->tcp_ipversion == IPV4_VERSION) {
13186 			uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service;
13187 
13188 			if ((tos & IPH_ECN_CE) == IPH_ECN_CE) {
13189 				tcp->tcp_ecn_echo_on = B_TRUE;
13190 			}
13191 		} else {
13192 			uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf;
13193 
13194 			if ((vcf & htonl(IPH_ECN_CE << 20)) ==
13195 			    htonl(IPH_ECN_CE << 20)) {
13196 				tcp->tcp_ecn_echo_on = B_TRUE;
13197 			}
13198 		}
13199 	}
13200 
13201 	/*
13202 	 * Check whether we can update tcp_ts_recent.  This test is
13203 	 * NOT the one in RFC 1323 3.4.  It is from Braden, 1993, "TCP
13204 	 * Extensions for High Performance: An Update", Internet Draft.
13205 	 */
13206 	if (tcp->tcp_snd_ts_ok &&
13207 	    TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) &&
13208 	    SEQ_LEQ(seg_seq, tcp->tcp_rack)) {
13209 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
13210 		tcp->tcp_last_rcv_lbolt = lbolt64;
13211 	}
13212 
13213 	if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) {
13214 		/*
13215 		 * FIN in an out of order segment.  We record this in
13216 		 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq.
13217 		 * Clear the FIN so that any check on FIN flag will fail.
13218 		 * Remember that FIN also counts in the sequence number
13219 		 * space.  So we need to ack out of order FIN only segments.
13220 		 */
13221 		if (flags & TH_FIN) {
13222 			tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID;
13223 			tcp->tcp_ofo_fin_seq = seg_seq + seg_len;
13224 			flags &= ~TH_FIN;
13225 			flags |= TH_ACK_NEEDED;
13226 		}
13227 		if (seg_len > 0) {
13228 			/* Fill in the SACK blk list. */
13229 			if (tcp->tcp_snd_sack_ok) {
13230 				ASSERT(tcp->tcp_sack_info != NULL);
13231 				tcp_sack_insert(tcp->tcp_sack_list,
13232 				    seg_seq, seg_seq + seg_len,
13233 				    &(tcp->tcp_num_sack_blk));
13234 			}
13235 
13236 			/*
13237 			 * Attempt reassembly and see if we have something
13238 			 * ready to go.
13239 			 */
13240 			mp = tcp_reass(tcp, mp, seg_seq);
13241 			/* Always ack out of order packets */
13242 			flags |= TH_ACK_NEEDED | TH_PUSH;
13243 			if (mp) {
13244 				ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
13245 				    (uintptr_t)INT_MAX);
13246 				seg_len = mp->b_cont ? msgdsize(mp) :
13247 					(int)(mp->b_wptr - mp->b_rptr);
13248 				seg_seq = tcp->tcp_rnxt;
13249 				/*
13250 				 * A gap is filled and the seq num and len
13251 				 * of the gap match that of a previously
13252 				 * received FIN, put the FIN flag back in.
13253 				 */
13254 				if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) &&
13255 				    seg_seq + seg_len == tcp->tcp_ofo_fin_seq) {
13256 					flags |= TH_FIN;
13257 					tcp->tcp_valid_bits &=
13258 					    ~TCP_OFO_FIN_VALID;
13259 				}
13260 			} else {
13261 				/*
13262 				 * Keep going even with NULL mp.
13263 				 * There may be a useful ACK or something else
13264 				 * we don't want to miss.
13265 				 *
13266 				 * But TCP should not perform fast retransmit
13267 				 * because of the ack number.  TCP uses
13268 				 * seg_len == 0 to determine if it is a pure
13269 				 * ACK.  And this is not a pure ACK.
13270 				 */
13271 				seg_len = 0;
13272 				ofo_seg = B_TRUE;
13273 			}
13274 		}
13275 	} else if (seg_len > 0) {
13276 		BUMP_MIB(&tcp_mib, tcpInDataInorderSegs);
13277 		UPDATE_MIB(&tcp_mib, tcpInDataInorderBytes, seg_len);
13278 		/*
13279 		 * If an out of order FIN was received before, and the seq
13280 		 * num and len of the new segment match that of the FIN,
13281 		 * put the FIN flag back in.
13282 		 */
13283 		if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) &&
13284 		    seg_seq + seg_len == tcp->tcp_ofo_fin_seq) {
13285 			flags |= TH_FIN;
13286 			tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID;
13287 		}
13288 	}
13289 	if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) {
13290 	if (flags & TH_RST) {
13291 		freemsg(mp);
13292 		switch (tcp->tcp_state) {
13293 		case TCPS_SYN_RCVD:
13294 			(void) tcp_clean_death(tcp, ECONNREFUSED, 14);
13295 			break;
13296 		case TCPS_ESTABLISHED:
13297 		case TCPS_FIN_WAIT_1:
13298 		case TCPS_FIN_WAIT_2:
13299 		case TCPS_CLOSE_WAIT:
13300 			(void) tcp_clean_death(tcp, ECONNRESET, 15);
13301 			break;
13302 		case TCPS_CLOSING:
13303 		case TCPS_LAST_ACK:
13304 			(void) tcp_clean_death(tcp, 0, 16);
13305 			break;
13306 		default:
13307 			ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
13308 			(void) tcp_clean_death(tcp, ENXIO, 17);
13309 			break;
13310 		}
13311 		return;
13312 	}
13313 	if (flags & TH_SYN) {
13314 		/*
13315 		 * See RFC 793, Page 71
13316 		 *
13317 		 * The seq number must be in the window as it should
13318 		 * be "fixed" above.  If it is outside window, it should
13319 		 * be already rejected.  Note that we allow seg_seq to be
13320 		 * rnxt + rwnd because we want to accept 0 window probe.
13321 		 */
13322 		ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) &&
13323 		    SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd));
13324 		freemsg(mp);
13325 		/*
13326 		 * If the ACK flag is not set, just use our snxt as the
13327 		 * seq number of the RST segment.
13328 		 */
13329 		if (!(flags & TH_ACK)) {
13330 			seg_ack = tcp->tcp_snxt;
13331 		}
13332 		tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1,
13333 		    TH_RST|TH_ACK);
13334 		ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
13335 		(void) tcp_clean_death(tcp, ECONNRESET, 18);
13336 		return;
13337 	}
13338 	/*
13339 	 * urp could be -1 when the urp field in the packet is 0
13340 	 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent
13341 	 * byte was at seg_seq - 1, in which case we ignore the urgent flag.
13342 	 */
13343 	if (flags & TH_URG && urp >= 0) {
13344 		if (!tcp->tcp_urp_last_valid ||
13345 		    SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) {
13346 			/*
13347 			 * If we haven't generated the signal yet for this
13348 			 * urgent pointer value, do it now.  Also, send up a
13349 			 * zero-length M_DATA indicating whether or not this is
13350 			 * the mark. The latter is not needed when a
13351 			 * T_EXDATA_IND is sent up. However, if there are
13352 			 * allocation failures this code relies on the sender
13353 			 * retransmitting and the socket code for determining
13354 			 * the mark should not block waiting for the peer to
13355 			 * transmit. Thus, for simplicity we always send up the
13356 			 * mark indication.
13357 			 */
13358 			mp1 = allocb(0, BPRI_MED);
13359 			if (mp1 == NULL) {
13360 				freemsg(mp);
13361 				return;
13362 			}
13363 			if (!TCP_IS_DETACHED(tcp) &&
13364 			    !putnextctl1(tcp->tcp_rq, M_PCSIG, SIGURG)) {
13365 				/* Try again on the rexmit. */
13366 				freemsg(mp1);
13367 				freemsg(mp);
13368 				return;
13369 			}
13370 			/*
13371 			 * Mark with NOTMARKNEXT for now.
13372 			 * The code below will change this to MARKNEXT
13373 			 * if we are at the mark.
13374 			 *
13375 			 * If there are allocation failures (e.g. in dupmsg
13376 			 * below) the next time tcp_rput_data sees the urgent
13377 			 * segment it will send up the MSG*MARKNEXT message.
13378 			 */
13379 			mp1->b_flag |= MSGNOTMARKNEXT;
13380 			freemsg(tcp->tcp_urp_mark_mp);
13381 			tcp->tcp_urp_mark_mp = mp1;
13382 			flags |= TH_SEND_URP_MARK;
13383 #ifdef DEBUG
13384 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13385 			    "tcp_rput: sent M_PCSIG 2 seq %x urp %x "
13386 			    "last %x, %s",
13387 			    seg_seq, urp, tcp->tcp_urp_last,
13388 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
13389 #endif /* DEBUG */
13390 			tcp->tcp_urp_last_valid = B_TRUE;
13391 			tcp->tcp_urp_last = urp + seg_seq;
13392 		} else if (tcp->tcp_urp_mark_mp != NULL) {
13393 			/*
13394 			 * An allocation failure prevented the previous
13395 			 * tcp_rput_data from sending up the allocated
13396 			 * MSG*MARKNEXT message - send it up this time
13397 			 * around.
13398 			 */
13399 			flags |= TH_SEND_URP_MARK;
13400 		}
13401 
13402 		/*
13403 		 * If the urgent byte is in this segment, make sure that it is
13404 		 * all by itself.  This makes it much easier to deal with the
13405 		 * possibility of an allocation failure on the T_exdata_ind.
13406 		 * Note that seg_len is the number of bytes in the segment, and
13407 		 * urp is the offset into the segment of the urgent byte.
13408 		 * urp < seg_len means that the urgent byte is in this segment.
13409 		 */
13410 		if (urp < seg_len) {
13411 			if (seg_len != 1) {
13412 				uint32_t  tmp_rnxt;
13413 				/*
13414 				 * Break it up and feed it back in.
13415 				 * Re-attach the IP header.
13416 				 */
13417 				mp->b_rptr = iphdr;
13418 				if (urp > 0) {
13419 					/*
13420 					 * There is stuff before the urgent
13421 					 * byte.
13422 					 */
13423 					mp1 = dupmsg(mp);
13424 					if (!mp1) {
13425 						/*
13426 						 * Trim from urgent byte on.
13427 						 * The rest will come back.
13428 						 */
13429 						(void) adjmsg(mp,
13430 						    urp - seg_len);
13431 						tcp_rput_data(connp,
13432 						    mp, NULL);
13433 						return;
13434 					}
13435 					(void) adjmsg(mp1, urp - seg_len);
13436 					/* Feed this piece back in. */
13437 					tmp_rnxt = tcp->tcp_rnxt;
13438 					tcp_rput_data(connp, mp1, NULL);
13439 					/*
13440 					 * If the data passed back in was not
13441 					 * processed (ie: bad ACK) sending
13442 					 * the remainder back in will cause a
13443 					 * loop. In this case, drop the
13444 					 * packet and let the sender try
13445 					 * sending a good packet.
13446 					 */
13447 					if (tmp_rnxt == tcp->tcp_rnxt) {
13448 						freemsg(mp);
13449 						return;
13450 					}
13451 				}
13452 				if (urp != seg_len - 1) {
13453 					uint32_t  tmp_rnxt;
13454 					/*
13455 					 * There is stuff after the urgent
13456 					 * byte.
13457 					 */
13458 					mp1 = dupmsg(mp);
13459 					if (!mp1) {
13460 						/*
13461 						 * Trim everything beyond the
13462 						 * urgent byte.  The rest will
13463 						 * come back.
13464 						 */
13465 						(void) adjmsg(mp,
13466 						    urp + 1 - seg_len);
13467 						tcp_rput_data(connp,
13468 						    mp, NULL);
13469 						return;
13470 					}
13471 					(void) adjmsg(mp1, urp + 1 - seg_len);
13472 					tmp_rnxt = tcp->tcp_rnxt;
13473 					tcp_rput_data(connp, mp1, NULL);
13474 					/*
13475 					 * If the data passed back in was not
13476 					 * processed (ie: bad ACK) sending
13477 					 * the remainder back in will cause a
13478 					 * loop. In this case, drop the
13479 					 * packet and let the sender try
13480 					 * sending a good packet.
13481 					 */
13482 					if (tmp_rnxt == tcp->tcp_rnxt) {
13483 						freemsg(mp);
13484 						return;
13485 					}
13486 				}
13487 				tcp_rput_data(connp, mp, NULL);
13488 				return;
13489 			}
13490 			/*
13491 			 * This segment contains only the urgent byte.  We
13492 			 * have to allocate the T_exdata_ind, if we can.
13493 			 */
13494 			if (!tcp->tcp_urp_mp) {
13495 				struct T_exdata_ind *tei;
13496 				mp1 = allocb(sizeof (struct T_exdata_ind),
13497 				    BPRI_MED);
13498 				if (!mp1) {
13499 					/*
13500 					 * Sigh... It'll be back.
13501 					 * Generate any MSG*MARK message now.
13502 					 */
13503 					freemsg(mp);
13504 					seg_len = 0;
13505 					if (flags & TH_SEND_URP_MARK) {
13506 
13507 
13508 						ASSERT(tcp->tcp_urp_mark_mp);
13509 						tcp->tcp_urp_mark_mp->b_flag &=
13510 							~MSGNOTMARKNEXT;
13511 						tcp->tcp_urp_mark_mp->b_flag |=
13512 							MSGMARKNEXT;
13513 					}
13514 					goto ack_check;
13515 				}
13516 				mp1->b_datap->db_type = M_PROTO;
13517 				tei = (struct T_exdata_ind *)mp1->b_rptr;
13518 				tei->PRIM_type = T_EXDATA_IND;
13519 				tei->MORE_flag = 0;
13520 				mp1->b_wptr = (uchar_t *)&tei[1];
13521 				tcp->tcp_urp_mp = mp1;
13522 #ifdef DEBUG
13523 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13524 				    "tcp_rput: allocated exdata_ind %s",
13525 				    tcp_display(tcp, NULL,
13526 				    DISP_PORT_ONLY));
13527 #endif /* DEBUG */
13528 				/*
13529 				 * There is no need to send a separate MSG*MARK
13530 				 * message since the T_EXDATA_IND will be sent
13531 				 * now.
13532 				 */
13533 				flags &= ~TH_SEND_URP_MARK;
13534 				freemsg(tcp->tcp_urp_mark_mp);
13535 				tcp->tcp_urp_mark_mp = NULL;
13536 			}
13537 			/*
13538 			 * Now we are all set.  On the next putnext upstream,
13539 			 * tcp_urp_mp will be non-NULL and will get prepended
13540 			 * to what has to be this piece containing the urgent
13541 			 * byte.  If for any reason we abort this segment below,
13542 			 * if it comes back, we will have this ready, or it
13543 			 * will get blown off in close.
13544 			 */
13545 		} else if (urp == seg_len) {
13546 			/*
13547 			 * The urgent byte is the next byte after this sequence
13548 			 * number. If there is data it is marked with
13549 			 * MSGMARKNEXT and any tcp_urp_mark_mp is discarded
13550 			 * since it is not needed. Otherwise, if the code
13551 			 * above just allocated a zero-length tcp_urp_mark_mp
13552 			 * message, that message is tagged with MSGMARKNEXT.
13553 			 * Sending up these MSGMARKNEXT messages makes
13554 			 * SIOCATMARK work correctly even though
13555 			 * the T_EXDATA_IND will not be sent up until the
13556 			 * urgent byte arrives.
13557 			 */
13558 			if (seg_len != 0) {
13559 				flags |= TH_MARKNEXT_NEEDED;
13560 				freemsg(tcp->tcp_urp_mark_mp);
13561 				tcp->tcp_urp_mark_mp = NULL;
13562 				flags &= ~TH_SEND_URP_MARK;
13563 			} else if (tcp->tcp_urp_mark_mp != NULL) {
13564 				flags |= TH_SEND_URP_MARK;
13565 				tcp->tcp_urp_mark_mp->b_flag &=
13566 					~MSGNOTMARKNEXT;
13567 				tcp->tcp_urp_mark_mp->b_flag |= MSGMARKNEXT;
13568 			}
13569 #ifdef DEBUG
13570 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13571 			    "tcp_rput: AT MARK, len %d, flags 0x%x, %s",
13572 			    seg_len, flags,
13573 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
13574 #endif /* DEBUG */
13575 		} else {
13576 			/* Data left until we hit mark */
13577 #ifdef DEBUG
13578 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13579 			    "tcp_rput: URP %d bytes left, %s",
13580 			    urp - seg_len, tcp_display(tcp, NULL,
13581 			    DISP_PORT_ONLY));
13582 #endif /* DEBUG */
13583 		}
13584 	}
13585 
13586 process_ack:
13587 	if (!(flags & TH_ACK)) {
13588 		freemsg(mp);
13589 		goto xmit_check;
13590 	}
13591 	}
13592 	bytes_acked = (int)(seg_ack - tcp->tcp_suna);
13593 
13594 	if (tcp->tcp_ipversion == IPV6_VERSION && bytes_acked > 0)
13595 		tcp->tcp_ip_forward_progress = B_TRUE;
13596 	if (tcp->tcp_state == TCPS_SYN_RCVD) {
13597 		if ((tcp->tcp_conn.tcp_eager_conn_ind != NULL) &&
13598 		    ((tcp->tcp_kssl_ent == NULL) || !tcp->tcp_kssl_pending)) {
13599 			/* 3-way handshake complete - pass up the T_CONN_IND */
13600 			tcp_t	*listener = tcp->tcp_listener;
13601 			mblk_t	*mp = tcp->tcp_conn.tcp_eager_conn_ind;
13602 
13603 			tcp->tcp_conn.tcp_eager_conn_ind = NULL;
13604 			/*
13605 			 * We are here means eager is fine but it can
13606 			 * get a TH_RST at any point between now and till
13607 			 * accept completes and disappear. We need to
13608 			 * ensure that reference to eager is valid after
13609 			 * we get out of eager's perimeter. So we do
13610 			 * an extra refhold.
13611 			 */
13612 			CONN_INC_REF(connp);
13613 
13614 			/*
13615 			 * The listener also exists because of the refhold
13616 			 * done in tcp_conn_request. Its possible that it
13617 			 * might have closed. We will check that once we
13618 			 * get inside listeners context.
13619 			 */
13620 			CONN_INC_REF(listener->tcp_connp);
13621 			if (listener->tcp_connp->conn_sqp ==
13622 			    connp->conn_sqp) {
13623 				tcp_send_conn_ind(listener->tcp_connp, mp,
13624 				    listener->tcp_connp->conn_sqp);
13625 				CONN_DEC_REF(listener->tcp_connp);
13626 			} else if (!tcp->tcp_loopback) {
13627 				squeue_fill(listener->tcp_connp->conn_sqp, mp,
13628 				    tcp_send_conn_ind,
13629 				    listener->tcp_connp, SQTAG_TCP_CONN_IND);
13630 			} else {
13631 				squeue_enter(listener->tcp_connp->conn_sqp, mp,
13632 				    tcp_send_conn_ind, listener->tcp_connp,
13633 				    SQTAG_TCP_CONN_IND);
13634 			}
13635 		}
13636 
13637 		if (tcp->tcp_active_open) {
13638 			/*
13639 			 * We are seeing the final ack in the three way
13640 			 * hand shake of a active open'ed connection
13641 			 * so we must send up a T_CONN_CON
13642 			 */
13643 			if (!tcp_conn_con(tcp, iphdr, tcph, mp, NULL)) {
13644 				freemsg(mp);
13645 				return;
13646 			}
13647 			/*
13648 			 * Don't fuse the loopback endpoints for
13649 			 * simultaneous active opens.
13650 			 */
13651 			if (tcp->tcp_loopback) {
13652 				TCP_STAT(tcp_fusion_unfusable);
13653 				tcp->tcp_unfusable = B_TRUE;
13654 			}
13655 		}
13656 
13657 		tcp->tcp_suna = tcp->tcp_iss + 1;	/* One for the SYN */
13658 		bytes_acked--;
13659 		/* SYN was acked - making progress */
13660 		if (tcp->tcp_ipversion == IPV6_VERSION)
13661 			tcp->tcp_ip_forward_progress = B_TRUE;
13662 
13663 		/*
13664 		 * If SYN was retransmitted, need to reset all
13665 		 * retransmission info as this segment will be
13666 		 * treated as a dup ACK.
13667 		 */
13668 		if (tcp->tcp_rexmit) {
13669 			tcp->tcp_rexmit = B_FALSE;
13670 			tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
13671 			tcp->tcp_rexmit_max = tcp->tcp_snxt;
13672 			tcp->tcp_snd_burst = tcp->tcp_localnet ?
13673 			    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
13674 			tcp->tcp_ms_we_have_waited = 0;
13675 			tcp->tcp_cwnd = mss;
13676 		}
13677 
13678 		/*
13679 		 * We set the send window to zero here.
13680 		 * This is needed if there is data to be
13681 		 * processed already on the queue.
13682 		 * Later (at swnd_update label), the
13683 		 * "new_swnd > tcp_swnd" condition is satisfied
13684 		 * the XMIT_NEEDED flag is set in the current
13685 		 * (SYN_RCVD) state. This ensures tcp_wput_data() is
13686 		 * called if there is already data on queue in
13687 		 * this state.
13688 		 */
13689 		tcp->tcp_swnd = 0;
13690 
13691 		if (new_swnd > tcp->tcp_max_swnd)
13692 			tcp->tcp_max_swnd = new_swnd;
13693 		tcp->tcp_swl1 = seg_seq;
13694 		tcp->tcp_swl2 = seg_ack;
13695 		tcp->tcp_state = TCPS_ESTABLISHED;
13696 		tcp->tcp_valid_bits &= ~TCP_ISS_VALID;
13697 
13698 		/* Fuse when both sides are in ESTABLISHED state */
13699 		if (tcp->tcp_loopback && do_tcp_fusion)
13700 			tcp_fuse(tcp, iphdr, tcph);
13701 
13702 	}
13703 	/* This code follows 4.4BSD-Lite2 mostly. */
13704 	if (bytes_acked < 0)
13705 		goto est;
13706 
13707 	/*
13708 	 * If TCP is ECN capable and the congestion experience bit is
13709 	 * set, reduce tcp_cwnd and tcp_ssthresh.  But this should only be
13710 	 * done once per window (or more loosely, per RTT).
13711 	 */
13712 	if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max))
13713 		tcp->tcp_cwr = B_FALSE;
13714 	if (tcp->tcp_ecn_ok && (flags & TH_ECE)) {
13715 		if (!tcp->tcp_cwr) {
13716 			npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss;
13717 			tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss;
13718 			tcp->tcp_cwnd = npkt * mss;
13719 			/*
13720 			 * If the cwnd is 0, use the timer to clock out
13721 			 * new segments.  This is required by the ECN spec.
13722 			 */
13723 			if (npkt == 0) {
13724 				TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
13725 				/*
13726 				 * This makes sure that when the ACK comes
13727 				 * back, we will increase tcp_cwnd by 1 MSS.
13728 				 */
13729 				tcp->tcp_cwnd_cnt = 0;
13730 			}
13731 			tcp->tcp_cwr = B_TRUE;
13732 			/*
13733 			 * This marks the end of the current window of in
13734 			 * flight data.  That is why we don't use
13735 			 * tcp_suna + tcp_swnd.  Only data in flight can
13736 			 * provide ECN info.
13737 			 */
13738 			tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
13739 			tcp->tcp_ecn_cwr_sent = B_FALSE;
13740 		}
13741 	}
13742 
13743 	mp1 = tcp->tcp_xmit_head;
13744 	if (bytes_acked == 0) {
13745 		if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) {
13746 			int dupack_cnt;
13747 
13748 			BUMP_MIB(&tcp_mib, tcpInDupAck);
13749 			/*
13750 			 * Fast retransmit.  When we have seen exactly three
13751 			 * identical ACKs while we have unacked data
13752 			 * outstanding we take it as a hint that our peer
13753 			 * dropped something.
13754 			 *
13755 			 * If TCP is retransmitting, don't do fast retransmit.
13756 			 */
13757 			if (mp1 && tcp->tcp_suna != tcp->tcp_snxt &&
13758 			    ! tcp->tcp_rexmit) {
13759 				/* Do Limited Transmit */
13760 				if ((dupack_cnt = ++tcp->tcp_dupack_cnt) <
13761 				    tcp_dupack_fast_retransmit) {
13762 					/*
13763 					 * RFC 3042
13764 					 *
13765 					 * What we need to do is temporarily
13766 					 * increase tcp_cwnd so that new
13767 					 * data can be sent if it is allowed
13768 					 * by the receive window (tcp_rwnd).
13769 					 * tcp_wput_data() will take care of
13770 					 * the rest.
13771 					 *
13772 					 * If the connection is SACK capable,
13773 					 * only do limited xmit when there
13774 					 * is SACK info.
13775 					 *
13776 					 * Note how tcp_cwnd is incremented.
13777 					 * The first dup ACK will increase
13778 					 * it by 1 MSS.  The second dup ACK
13779 					 * will increase it by 2 MSS.  This
13780 					 * means that only 1 new segment will
13781 					 * be sent for each dup ACK.
13782 					 */
13783 					if (tcp->tcp_unsent > 0 &&
13784 					    (!tcp->tcp_snd_sack_ok ||
13785 					    (tcp->tcp_snd_sack_ok &&
13786 					    tcp->tcp_notsack_list != NULL))) {
13787 						tcp->tcp_cwnd += mss <<
13788 						    (tcp->tcp_dupack_cnt - 1);
13789 						flags |= TH_LIMIT_XMIT;
13790 					}
13791 				} else if (dupack_cnt ==
13792 				    tcp_dupack_fast_retransmit) {
13793 
13794 				/*
13795 				 * If we have reduced tcp_ssthresh
13796 				 * because of ECN, do not reduce it again
13797 				 * unless it is already one window of data
13798 				 * away.  After one window of data, tcp_cwr
13799 				 * should then be cleared.  Note that
13800 				 * for non ECN capable connection, tcp_cwr
13801 				 * should always be false.
13802 				 *
13803 				 * Adjust cwnd since the duplicate
13804 				 * ack indicates that a packet was
13805 				 * dropped (due to congestion.)
13806 				 */
13807 				if (!tcp->tcp_cwr) {
13808 					npkt = ((tcp->tcp_snxt -
13809 					    tcp->tcp_suna) >> 1) / mss;
13810 					tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) *
13811 					    mss;
13812 					tcp->tcp_cwnd = (npkt +
13813 					    tcp->tcp_dupack_cnt) * mss;
13814 				}
13815 				if (tcp->tcp_ecn_ok) {
13816 					tcp->tcp_cwr = B_TRUE;
13817 					tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
13818 					tcp->tcp_ecn_cwr_sent = B_FALSE;
13819 				}
13820 
13821 				/*
13822 				 * We do Hoe's algorithm.  Refer to her
13823 				 * paper "Improving the Start-up Behavior
13824 				 * of a Congestion Control Scheme for TCP,"
13825 				 * appeared in SIGCOMM'96.
13826 				 *
13827 				 * Save highest seq no we have sent so far.
13828 				 * Be careful about the invisible FIN byte.
13829 				 */
13830 				if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
13831 				    (tcp->tcp_unsent == 0)) {
13832 					tcp->tcp_rexmit_max = tcp->tcp_fss;
13833 				} else {
13834 					tcp->tcp_rexmit_max = tcp->tcp_snxt;
13835 				}
13836 
13837 				/*
13838 				 * Do not allow bursty traffic during.
13839 				 * fast recovery.  Refer to Fall and Floyd's
13840 				 * paper "Simulation-based Comparisons of
13841 				 * Tahoe, Reno and SACK TCP" (in CCR?)
13842 				 * This is a best current practise.
13843 				 */
13844 				tcp->tcp_snd_burst = TCP_CWND_SS;
13845 
13846 				/*
13847 				 * For SACK:
13848 				 * Calculate tcp_pipe, which is the
13849 				 * estimated number of bytes in
13850 				 * network.
13851 				 *
13852 				 * tcp_fack is the highest sack'ed seq num
13853 				 * TCP has received.
13854 				 *
13855 				 * tcp_pipe is explained in the above quoted
13856 				 * Fall and Floyd's paper.  tcp_fack is
13857 				 * explained in Mathis and Mahdavi's
13858 				 * "Forward Acknowledgment: Refining TCP
13859 				 * Congestion Control" in SIGCOMM '96.
13860 				 */
13861 				if (tcp->tcp_snd_sack_ok) {
13862 					ASSERT(tcp->tcp_sack_info != NULL);
13863 					if (tcp->tcp_notsack_list != NULL) {
13864 						tcp->tcp_pipe = tcp->tcp_snxt -
13865 						    tcp->tcp_fack;
13866 						tcp->tcp_sack_snxt = seg_ack;
13867 						flags |= TH_NEED_SACK_REXMIT;
13868 					} else {
13869 						/*
13870 						 * Always initialize tcp_pipe
13871 						 * even though we don't have
13872 						 * any SACK info.  If later
13873 						 * we get SACK info and
13874 						 * tcp_pipe is not initialized,
13875 						 * funny things will happen.
13876 						 */
13877 						tcp->tcp_pipe =
13878 						    tcp->tcp_cwnd_ssthresh;
13879 					}
13880 				} else {
13881 					flags |= TH_REXMIT_NEEDED;
13882 				} /* tcp_snd_sack_ok */
13883 
13884 				} else {
13885 					/*
13886 					 * Here we perform congestion
13887 					 * avoidance, but NOT slow start.
13888 					 * This is known as the Fast
13889 					 * Recovery Algorithm.
13890 					 */
13891 					if (tcp->tcp_snd_sack_ok &&
13892 					    tcp->tcp_notsack_list != NULL) {
13893 						flags |= TH_NEED_SACK_REXMIT;
13894 						tcp->tcp_pipe -= mss;
13895 						if (tcp->tcp_pipe < 0)
13896 							tcp->tcp_pipe = 0;
13897 					} else {
13898 					/*
13899 					 * We know that one more packet has
13900 					 * left the pipe thus we can update
13901 					 * cwnd.
13902 					 */
13903 					cwnd = tcp->tcp_cwnd + mss;
13904 					if (cwnd > tcp->tcp_cwnd_max)
13905 						cwnd = tcp->tcp_cwnd_max;
13906 					tcp->tcp_cwnd = cwnd;
13907 					if (tcp->tcp_unsent > 0)
13908 						flags |= TH_XMIT_NEEDED;
13909 					}
13910 				}
13911 			}
13912 		} else if (tcp->tcp_zero_win_probe) {
13913 			/*
13914 			 * If the window has opened, need to arrange
13915 			 * to send additional data.
13916 			 */
13917 			if (new_swnd != 0) {
13918 				/* tcp_suna != tcp_snxt */
13919 				/* Packet contains a window update */
13920 				BUMP_MIB(&tcp_mib, tcpInWinUpdate);
13921 				tcp->tcp_zero_win_probe = 0;
13922 				tcp->tcp_timer_backoff = 0;
13923 				tcp->tcp_ms_we_have_waited = 0;
13924 
13925 				/*
13926 				 * Transmit starting with tcp_suna since
13927 				 * the one byte probe is not ack'ed.
13928 				 * If TCP has sent more than one identical
13929 				 * probe, tcp_rexmit will be set.  That means
13930 				 * tcp_ss_rexmit() will send out the one
13931 				 * byte along with new data.  Otherwise,
13932 				 * fake the retransmission.
13933 				 */
13934 				flags |= TH_XMIT_NEEDED;
13935 				if (!tcp->tcp_rexmit) {
13936 					tcp->tcp_rexmit = B_TRUE;
13937 					tcp->tcp_dupack_cnt = 0;
13938 					tcp->tcp_rexmit_nxt = tcp->tcp_suna;
13939 					tcp->tcp_rexmit_max = tcp->tcp_suna + 1;
13940 				}
13941 			}
13942 		}
13943 		goto swnd_update;
13944 	}
13945 
13946 	/*
13947 	 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73.
13948 	 * If the ACK value acks something that we have not yet sent, it might
13949 	 * be an old duplicate segment.  Send an ACK to re-synchronize the
13950 	 * other side.
13951 	 * Note: reset in response to unacceptable ACK in SYN_RECEIVE
13952 	 * state is handled above, so we can always just drop the segment and
13953 	 * send an ACK here.
13954 	 *
13955 	 * Should we send ACKs in response to ACK only segments?
13956 	 */
13957 	if (SEQ_GT(seg_ack, tcp->tcp_snxt)) {
13958 		BUMP_MIB(&tcp_mib, tcpInAckUnsent);
13959 		/* drop the received segment */
13960 		freemsg(mp);
13961 
13962 		/*
13963 		 * Send back an ACK.  If tcp_drop_ack_unsent_cnt is
13964 		 * greater than 0, check if the number of such
13965 		 * bogus ACks is greater than that count.  If yes,
13966 		 * don't send back any ACK.  This prevents TCP from
13967 		 * getting into an ACK storm if somehow an attacker
13968 		 * successfully spoofs an acceptable segment to our
13969 		 * peer.
13970 		 */
13971 		if (tcp_drop_ack_unsent_cnt > 0 &&
13972 		    ++tcp->tcp_in_ack_unsent > tcp_drop_ack_unsent_cnt) {
13973 			TCP_STAT(tcp_in_ack_unsent_drop);
13974 			return;
13975 		}
13976 		mp = tcp_ack_mp(tcp);
13977 		if (mp != NULL) {
13978 			TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
13979 			BUMP_LOCAL(tcp->tcp_obsegs);
13980 			BUMP_MIB(&tcp_mib, tcpOutAck);
13981 			tcp_send_data(tcp, tcp->tcp_wq, mp);
13982 		}
13983 		return;
13984 	}
13985 
13986 	/*
13987 	 * TCP gets a new ACK, update the notsack'ed list to delete those
13988 	 * blocks that are covered by this ACK.
13989 	 */
13990 	if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
13991 		tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack,
13992 		    &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list));
13993 	}
13994 
13995 	/*
13996 	 * If we got an ACK after fast retransmit, check to see
13997 	 * if it is a partial ACK.  If it is not and the congestion
13998 	 * window was inflated to account for the other side's
13999 	 * cached packets, retract it.  If it is, do Hoe's algorithm.
14000 	 */
14001 	if (tcp->tcp_dupack_cnt >= tcp_dupack_fast_retransmit) {
14002 		ASSERT(tcp->tcp_rexmit == B_FALSE);
14003 		if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) {
14004 			tcp->tcp_dupack_cnt = 0;
14005 			/*
14006 			 * Restore the orig tcp_cwnd_ssthresh after
14007 			 * fast retransmit phase.
14008 			 */
14009 			if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) {
14010 				tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh;
14011 			}
14012 			tcp->tcp_rexmit_max = seg_ack;
14013 			tcp->tcp_cwnd_cnt = 0;
14014 			tcp->tcp_snd_burst = tcp->tcp_localnet ?
14015 			    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
14016 
14017 			/*
14018 			 * Remove all notsack info to avoid confusion with
14019 			 * the next fast retrasnmit/recovery phase.
14020 			 */
14021 			if (tcp->tcp_snd_sack_ok &&
14022 			    tcp->tcp_notsack_list != NULL) {
14023 				TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
14024 			}
14025 		} else {
14026 			if (tcp->tcp_snd_sack_ok &&
14027 			    tcp->tcp_notsack_list != NULL) {
14028 				flags |= TH_NEED_SACK_REXMIT;
14029 				tcp->tcp_pipe -= mss;
14030 				if (tcp->tcp_pipe < 0)
14031 					tcp->tcp_pipe = 0;
14032 			} else {
14033 				/*
14034 				 * Hoe's algorithm:
14035 				 *
14036 				 * Retransmit the unack'ed segment and
14037 				 * restart fast recovery.  Note that we
14038 				 * need to scale back tcp_cwnd to the
14039 				 * original value when we started fast
14040 				 * recovery.  This is to prevent overly
14041 				 * aggressive behaviour in sending new
14042 				 * segments.
14043 				 */
14044 				tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh +
14045 					tcp_dupack_fast_retransmit * mss;
14046 				tcp->tcp_cwnd_cnt = tcp->tcp_cwnd;
14047 				flags |= TH_REXMIT_NEEDED;
14048 			}
14049 		}
14050 	} else {
14051 		tcp->tcp_dupack_cnt = 0;
14052 		if (tcp->tcp_rexmit) {
14053 			/*
14054 			 * TCP is retranmitting.  If the ACK ack's all
14055 			 * outstanding data, update tcp_rexmit_max and
14056 			 * tcp_rexmit_nxt.  Otherwise, update tcp_rexmit_nxt
14057 			 * to the correct value.
14058 			 *
14059 			 * Note that SEQ_LEQ() is used.  This is to avoid
14060 			 * unnecessary fast retransmit caused by dup ACKs
14061 			 * received when TCP does slow start retransmission
14062 			 * after a time out.  During this phase, TCP may
14063 			 * send out segments which are already received.
14064 			 * This causes dup ACKs to be sent back.
14065 			 */
14066 			if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) {
14067 				if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) {
14068 					tcp->tcp_rexmit_nxt = seg_ack;
14069 				}
14070 				if (seg_ack != tcp->tcp_rexmit_max) {
14071 					flags |= TH_XMIT_NEEDED;
14072 				}
14073 			} else {
14074 				tcp->tcp_rexmit = B_FALSE;
14075 				tcp->tcp_xmit_zc_clean = B_FALSE;
14076 				tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
14077 				tcp->tcp_snd_burst = tcp->tcp_localnet ?
14078 				    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
14079 			}
14080 			tcp->tcp_ms_we_have_waited = 0;
14081 		}
14082 	}
14083 
14084 	BUMP_MIB(&tcp_mib, tcpInAckSegs);
14085 	UPDATE_MIB(&tcp_mib, tcpInAckBytes, bytes_acked);
14086 	tcp->tcp_suna = seg_ack;
14087 	if (tcp->tcp_zero_win_probe != 0) {
14088 		tcp->tcp_zero_win_probe = 0;
14089 		tcp->tcp_timer_backoff = 0;
14090 	}
14091 
14092 	/*
14093 	 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed.
14094 	 * Note that it cannot be the SYN being ack'ed.  The code flow
14095 	 * will not reach here.
14096 	 */
14097 	if (mp1 == NULL) {
14098 		goto fin_acked;
14099 	}
14100 
14101 	/*
14102 	 * Update the congestion window.
14103 	 *
14104 	 * If TCP is not ECN capable or TCP is ECN capable but the
14105 	 * congestion experience bit is not set, increase the tcp_cwnd as
14106 	 * usual.
14107 	 */
14108 	if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) {
14109 		cwnd = tcp->tcp_cwnd;
14110 		add = mss;
14111 
14112 		if (cwnd >= tcp->tcp_cwnd_ssthresh) {
14113 			/*
14114 			 * This is to prevent an increase of less than 1 MSS of
14115 			 * tcp_cwnd.  With partial increase, tcp_wput_data()
14116 			 * may send out tinygrams in order to preserve mblk
14117 			 * boundaries.
14118 			 *
14119 			 * By initializing tcp_cwnd_cnt to new tcp_cwnd and
14120 			 * decrementing it by 1 MSS for every ACKs, tcp_cwnd is
14121 			 * increased by 1 MSS for every RTTs.
14122 			 */
14123 			if (tcp->tcp_cwnd_cnt <= 0) {
14124 				tcp->tcp_cwnd_cnt = cwnd + add;
14125 			} else {
14126 				tcp->tcp_cwnd_cnt -= add;
14127 				add = 0;
14128 			}
14129 		}
14130 		tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max);
14131 	}
14132 
14133 	/* See if the latest urgent data has been acknowledged */
14134 	if ((tcp->tcp_valid_bits & TCP_URG_VALID) &&
14135 	    SEQ_GT(seg_ack, tcp->tcp_urg))
14136 		tcp->tcp_valid_bits &= ~TCP_URG_VALID;
14137 
14138 	/* Can we update the RTT estimates? */
14139 	if (tcp->tcp_snd_ts_ok) {
14140 		/* Ignore zero timestamp echo-reply. */
14141 		if (tcpopt.tcp_opt_ts_ecr != 0) {
14142 			tcp_set_rto(tcp, (int32_t)lbolt -
14143 			    (int32_t)tcpopt.tcp_opt_ts_ecr);
14144 		}
14145 
14146 		/* If needed, restart the timer. */
14147 		if (tcp->tcp_set_timer == 1) {
14148 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
14149 			tcp->tcp_set_timer = 0;
14150 		}
14151 		/*
14152 		 * Update tcp_csuna in case the other side stops sending
14153 		 * us timestamps.
14154 		 */
14155 		tcp->tcp_csuna = tcp->tcp_snxt;
14156 	} else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) {
14157 		/*
14158 		 * An ACK sequence we haven't seen before, so get the RTT
14159 		 * and update the RTO. But first check if the timestamp is
14160 		 * valid to use.
14161 		 */
14162 		if ((mp1->b_next != NULL) &&
14163 		    SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next)))
14164 			tcp_set_rto(tcp, (int32_t)lbolt -
14165 			    (int32_t)(intptr_t)mp1->b_prev);
14166 		else
14167 			BUMP_MIB(&tcp_mib, tcpRttNoUpdate);
14168 
14169 		/* Remeber the last sequence to be ACKed */
14170 		tcp->tcp_csuna = seg_ack;
14171 		if (tcp->tcp_set_timer == 1) {
14172 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
14173 			tcp->tcp_set_timer = 0;
14174 		}
14175 	} else {
14176 		BUMP_MIB(&tcp_mib, tcpRttNoUpdate);
14177 	}
14178 
14179 	/* Eat acknowledged bytes off the xmit queue. */
14180 	for (;;) {
14181 		mblk_t	*mp2;
14182 		uchar_t	*wptr;
14183 
14184 		wptr = mp1->b_wptr;
14185 		ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX);
14186 		bytes_acked -= (int)(wptr - mp1->b_rptr);
14187 		if (bytes_acked < 0) {
14188 			mp1->b_rptr = wptr + bytes_acked;
14189 			/*
14190 			 * Set a new timestamp if all the bytes timed by the
14191 			 * old timestamp have been ack'ed.
14192 			 */
14193 			if (SEQ_GT(seg_ack,
14194 			    (uint32_t)(uintptr_t)(mp1->b_next))) {
14195 				mp1->b_prev = (mblk_t *)(uintptr_t)lbolt;
14196 				mp1->b_next = NULL;
14197 			}
14198 			break;
14199 		}
14200 		mp1->b_next = NULL;
14201 		mp1->b_prev = NULL;
14202 		mp2 = mp1;
14203 		mp1 = mp1->b_cont;
14204 
14205 		/*
14206 		 * This notification is required for some zero-copy
14207 		 * clients to maintain a copy semantic. After the data
14208 		 * is ack'ed, client is safe to modify or reuse the buffer.
14209 		 */
14210 		if (tcp->tcp_snd_zcopy_aware &&
14211 		    (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY))
14212 			tcp_zcopy_notify(tcp);
14213 		freeb(mp2);
14214 		if (bytes_acked == 0) {
14215 			if (mp1 == NULL) {
14216 				/* Everything is ack'ed, clear the tail. */
14217 				tcp->tcp_xmit_tail = NULL;
14218 				/*
14219 				 * Cancel the timer unless we are still
14220 				 * waiting for an ACK for the FIN packet.
14221 				 */
14222 				if (tcp->tcp_timer_tid != 0 &&
14223 				    tcp->tcp_snxt == tcp->tcp_suna) {
14224 					(void) TCP_TIMER_CANCEL(tcp,
14225 					    tcp->tcp_timer_tid);
14226 					tcp->tcp_timer_tid = 0;
14227 				}
14228 				goto pre_swnd_update;
14229 			}
14230 			if (mp2 != tcp->tcp_xmit_tail)
14231 				break;
14232 			tcp->tcp_xmit_tail = mp1;
14233 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
14234 			    (uintptr_t)INT_MAX);
14235 			tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr -
14236 			    mp1->b_rptr);
14237 			break;
14238 		}
14239 		if (mp1 == NULL) {
14240 			/*
14241 			 * More was acked but there is nothing more
14242 			 * outstanding.  This means that the FIN was
14243 			 * just acked or that we're talking to a clown.
14244 			 */
14245 fin_acked:
14246 			ASSERT(tcp->tcp_fin_sent);
14247 			tcp->tcp_xmit_tail = NULL;
14248 			if (tcp->tcp_fin_sent) {
14249 				/* FIN was acked - making progress */
14250 				if (tcp->tcp_ipversion == IPV6_VERSION &&
14251 				    !tcp->tcp_fin_acked)
14252 					tcp->tcp_ip_forward_progress = B_TRUE;
14253 				tcp->tcp_fin_acked = B_TRUE;
14254 				if (tcp->tcp_linger_tid != 0 &&
14255 				    TCP_TIMER_CANCEL(tcp,
14256 					tcp->tcp_linger_tid) >= 0) {
14257 					tcp_stop_lingering(tcp);
14258 				}
14259 			} else {
14260 				/*
14261 				 * We should never get here because
14262 				 * we have already checked that the
14263 				 * number of bytes ack'ed should be
14264 				 * smaller than or equal to what we
14265 				 * have sent so far (it is the
14266 				 * acceptability check of the ACK).
14267 				 * We can only get here if the send
14268 				 * queue is corrupted.
14269 				 *
14270 				 * Terminate the connection and
14271 				 * panic the system.  It is better
14272 				 * for us to panic instead of
14273 				 * continuing to avoid other disaster.
14274 				 */
14275 				tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
14276 				    tcp->tcp_rnxt, TH_RST|TH_ACK);
14277 				panic("Memory corruption "
14278 				    "detected for connection %s.",
14279 				    tcp_display(tcp, NULL,
14280 					DISP_ADDR_AND_PORT));
14281 				/*NOTREACHED*/
14282 			}
14283 			goto pre_swnd_update;
14284 		}
14285 		ASSERT(mp2 != tcp->tcp_xmit_tail);
14286 	}
14287 	if (tcp->tcp_unsent) {
14288 		flags |= TH_XMIT_NEEDED;
14289 	}
14290 pre_swnd_update:
14291 	tcp->tcp_xmit_head = mp1;
14292 swnd_update:
14293 	/*
14294 	 * The following check is different from most other implementations.
14295 	 * For bi-directional transfer, when segments are dropped, the
14296 	 * "normal" check will not accept a window update in those
14297 	 * retransmitted segemnts.  Failing to do that, TCP may send out
14298 	 * segments which are outside receiver's window.  As TCP accepts
14299 	 * the ack in those retransmitted segments, if the window update in
14300 	 * the same segment is not accepted, TCP will incorrectly calculates
14301 	 * that it can send more segments.  This can create a deadlock
14302 	 * with the receiver if its window becomes zero.
14303 	 */
14304 	if (SEQ_LT(tcp->tcp_swl2, seg_ack) ||
14305 	    SEQ_LT(tcp->tcp_swl1, seg_seq) ||
14306 	    (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) {
14307 		/*
14308 		 * The criteria for update is:
14309 		 *
14310 		 * 1. the segment acknowledges some data.  Or
14311 		 * 2. the segment is new, i.e. it has a higher seq num. Or
14312 		 * 3. the segment is not old and the advertised window is
14313 		 * larger than the previous advertised window.
14314 		 */
14315 		if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd)
14316 			flags |= TH_XMIT_NEEDED;
14317 		tcp->tcp_swnd = new_swnd;
14318 		if (new_swnd > tcp->tcp_max_swnd)
14319 			tcp->tcp_max_swnd = new_swnd;
14320 		tcp->tcp_swl1 = seg_seq;
14321 		tcp->tcp_swl2 = seg_ack;
14322 	}
14323 est:
14324 	if (tcp->tcp_state > TCPS_ESTABLISHED) {
14325 
14326 		switch (tcp->tcp_state) {
14327 		case TCPS_FIN_WAIT_1:
14328 			if (tcp->tcp_fin_acked) {
14329 				tcp->tcp_state = TCPS_FIN_WAIT_2;
14330 				/*
14331 				 * We implement the non-standard BSD/SunOS
14332 				 * FIN_WAIT_2 flushing algorithm.
14333 				 * If there is no user attached to this
14334 				 * TCP endpoint, then this TCP struct
14335 				 * could hang around forever in FIN_WAIT_2
14336 				 * state if the peer forgets to send us
14337 				 * a FIN.  To prevent this, we wait only
14338 				 * 2*MSL (a convenient time value) for
14339 				 * the FIN to arrive.  If it doesn't show up,
14340 				 * we flush the TCP endpoint.  This algorithm,
14341 				 * though a violation of RFC-793, has worked
14342 				 * for over 10 years in BSD systems.
14343 				 * Note: SunOS 4.x waits 675 seconds before
14344 				 * flushing the FIN_WAIT_2 connection.
14345 				 */
14346 				TCP_TIMER_RESTART(tcp,
14347 				    tcp_fin_wait_2_flush_interval);
14348 			}
14349 			break;
14350 		case TCPS_FIN_WAIT_2:
14351 			break;	/* Shutdown hook? */
14352 		case TCPS_LAST_ACK:
14353 			freemsg(mp);
14354 			if (tcp->tcp_fin_acked) {
14355 				(void) tcp_clean_death(tcp, 0, 19);
14356 				return;
14357 			}
14358 			goto xmit_check;
14359 		case TCPS_CLOSING:
14360 			if (tcp->tcp_fin_acked) {
14361 				tcp->tcp_state = TCPS_TIME_WAIT;
14362 				/*
14363 				 * Unconditionally clear the exclusive binding
14364 				 * bit so this TIME-WAIT connection won't
14365 				 * interfere with new ones.
14366 				 */
14367 				tcp->tcp_exclbind = 0;
14368 				if (!TCP_IS_DETACHED(tcp)) {
14369 					TCP_TIMER_RESTART(tcp,
14370 					    tcp_time_wait_interval);
14371 				} else {
14372 					tcp_time_wait_append(tcp);
14373 					TCP_DBGSTAT(tcp_rput_time_wait);
14374 				}
14375 			}
14376 			/*FALLTHRU*/
14377 		case TCPS_CLOSE_WAIT:
14378 			freemsg(mp);
14379 			goto xmit_check;
14380 		default:
14381 			ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
14382 			break;
14383 		}
14384 	}
14385 	if (flags & TH_FIN) {
14386 		/* Make sure we ack the fin */
14387 		flags |= TH_ACK_NEEDED;
14388 		if (!tcp->tcp_fin_rcvd) {
14389 			tcp->tcp_fin_rcvd = B_TRUE;
14390 			tcp->tcp_rnxt++;
14391 			tcph = tcp->tcp_tcph;
14392 			U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack);
14393 
14394 			/*
14395 			 * Generate the ordrel_ind at the end unless we
14396 			 * are an eager guy.
14397 			 * In the eager case tcp_rsrv will do this when run
14398 			 * after tcp_accept is done.
14399 			 */
14400 			if (tcp->tcp_listener == NULL &&
14401 			    !TCP_IS_DETACHED(tcp) && (!tcp->tcp_hard_binding))
14402 				flags |= TH_ORDREL_NEEDED;
14403 			switch (tcp->tcp_state) {
14404 			case TCPS_SYN_RCVD:
14405 			case TCPS_ESTABLISHED:
14406 				tcp->tcp_state = TCPS_CLOSE_WAIT;
14407 				/* Keepalive? */
14408 				break;
14409 			case TCPS_FIN_WAIT_1:
14410 				if (!tcp->tcp_fin_acked) {
14411 					tcp->tcp_state = TCPS_CLOSING;
14412 					break;
14413 				}
14414 				/* FALLTHRU */
14415 			case TCPS_FIN_WAIT_2:
14416 				tcp->tcp_state = TCPS_TIME_WAIT;
14417 				/*
14418 				 * Unconditionally clear the exclusive binding
14419 				 * bit so this TIME-WAIT connection won't
14420 				 * interfere with new ones.
14421 				 */
14422 				tcp->tcp_exclbind = 0;
14423 				if (!TCP_IS_DETACHED(tcp)) {
14424 					TCP_TIMER_RESTART(tcp,
14425 					    tcp_time_wait_interval);
14426 				} else {
14427 					tcp_time_wait_append(tcp);
14428 					TCP_DBGSTAT(tcp_rput_time_wait);
14429 				}
14430 				if (seg_len) {
14431 					/*
14432 					 * implies data piggybacked on FIN.
14433 					 * break to handle data.
14434 					 */
14435 					break;
14436 				}
14437 				freemsg(mp);
14438 				goto ack_check;
14439 			}
14440 		}
14441 	}
14442 	if (mp == NULL)
14443 		goto xmit_check;
14444 	if (seg_len == 0) {
14445 		freemsg(mp);
14446 		goto xmit_check;
14447 	}
14448 	if (mp->b_rptr == mp->b_wptr) {
14449 		/*
14450 		 * The header has been consumed, so we remove the
14451 		 * zero-length mblk here.
14452 		 */
14453 		mp1 = mp;
14454 		mp = mp->b_cont;
14455 		freeb(mp1);
14456 	}
14457 	tcph = tcp->tcp_tcph;
14458 	tcp->tcp_rack_cnt++;
14459 	{
14460 		uint32_t cur_max;
14461 
14462 		cur_max = tcp->tcp_rack_cur_max;
14463 		if (tcp->tcp_rack_cnt >= cur_max) {
14464 			/*
14465 			 * We have more unacked data than we should - send
14466 			 * an ACK now.
14467 			 */
14468 			flags |= TH_ACK_NEEDED;
14469 			cur_max++;
14470 			if (cur_max > tcp->tcp_rack_abs_max)
14471 				tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max;
14472 			else
14473 				tcp->tcp_rack_cur_max = cur_max;
14474 		} else if (TCP_IS_DETACHED(tcp)) {
14475 			/* We don't have an ACK timer for detached TCP. */
14476 			flags |= TH_ACK_NEEDED;
14477 		} else if (seg_len < mss) {
14478 			/*
14479 			 * If we get a segment that is less than an mss, and we
14480 			 * already have unacknowledged data, and the amount
14481 			 * unacknowledged is not a multiple of mss, then we
14482 			 * better generate an ACK now.  Otherwise, this may be
14483 			 * the tail piece of a transaction, and we would rather
14484 			 * wait for the response.
14485 			 */
14486 			uint32_t udif;
14487 			ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <=
14488 			    (uintptr_t)INT_MAX);
14489 			udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack);
14490 			if (udif && (udif % mss))
14491 				flags |= TH_ACK_NEEDED;
14492 			else
14493 				flags |= TH_ACK_TIMER_NEEDED;
14494 		} else {
14495 			/* Start delayed ack timer */
14496 			flags |= TH_ACK_TIMER_NEEDED;
14497 		}
14498 	}
14499 	tcp->tcp_rnxt += seg_len;
14500 	U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack);
14501 
14502 	/* Update SACK list */
14503 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
14504 		tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt,
14505 		    &(tcp->tcp_num_sack_blk));
14506 	}
14507 
14508 	if (tcp->tcp_urp_mp) {
14509 		tcp->tcp_urp_mp->b_cont = mp;
14510 		mp = tcp->tcp_urp_mp;
14511 		tcp->tcp_urp_mp = NULL;
14512 		/* Ready for a new signal. */
14513 		tcp->tcp_urp_last_valid = B_FALSE;
14514 #ifdef DEBUG
14515 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
14516 		    "tcp_rput: sending exdata_ind %s",
14517 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
14518 #endif /* DEBUG */
14519 	}
14520 
14521 	/*
14522 	 * Check for ancillary data changes compared to last segment.
14523 	 */
14524 	if (tcp->tcp_ipv6_recvancillary != 0) {
14525 		mp = tcp_rput_add_ancillary(tcp, mp, &ipp);
14526 		if (mp == NULL)
14527 			return;
14528 	}
14529 
14530 	if (tcp->tcp_listener || tcp->tcp_hard_binding) {
14531 		/*
14532 		 * Side queue inbound data until the accept happens.
14533 		 * tcp_accept/tcp_rput drains this when the accept happens.
14534 		 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or
14535 		 * T_EXDATA_IND) it is queued on b_next.
14536 		 * XXX Make urgent data use this. Requires:
14537 		 *	Removing tcp_listener check for TH_URG
14538 		 *	Making M_PCPROTO and MARK messages skip the eager case
14539 		 */
14540 
14541 		if (tcp->tcp_kssl_pending) {
14542 			tcp_kssl_input(tcp, mp);
14543 		} else {
14544 			tcp_rcv_enqueue(tcp, mp, seg_len);
14545 		}
14546 	} else {
14547 		if (mp->b_datap->db_type != M_DATA ||
14548 		    (flags & TH_MARKNEXT_NEEDED)) {
14549 			if (tcp->tcp_rcv_list != NULL) {
14550 				flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
14551 			}
14552 			ASSERT(tcp->tcp_rcv_list == NULL ||
14553 			    tcp->tcp_fused_sigurg);
14554 			if (flags & TH_MARKNEXT_NEEDED) {
14555 #ifdef DEBUG
14556 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
14557 				    "tcp_rput: sending MSGMARKNEXT %s",
14558 				    tcp_display(tcp, NULL,
14559 				    DISP_PORT_ONLY));
14560 #endif /* DEBUG */
14561 				mp->b_flag |= MSGMARKNEXT;
14562 				flags &= ~TH_MARKNEXT_NEEDED;
14563 			}
14564 
14565 			/* Does this need SSL processing first? */
14566 			if ((tcp->tcp_kssl_ctx  != NULL) &&
14567 			    (DB_TYPE(mp) == M_DATA)) {
14568 				tcp_kssl_input(tcp, mp);
14569 			} else {
14570 				putnext(tcp->tcp_rq, mp);
14571 				if (!canputnext(tcp->tcp_rq))
14572 					tcp->tcp_rwnd -= seg_len;
14573 			}
14574 		} else if ((flags & (TH_PUSH|TH_FIN)) ||
14575 		    tcp->tcp_rcv_cnt + seg_len >= tcp->tcp_rq->q_hiwat >> 3) {
14576 			if (tcp->tcp_rcv_list != NULL) {
14577 				/*
14578 				 * Enqueue the new segment first and then
14579 				 * call tcp_rcv_drain() to send all data
14580 				 * up.  The other way to do this is to
14581 				 * send all queued data up and then call
14582 				 * putnext() to send the new segment up.
14583 				 * This way can remove the else part later
14584 				 * on.
14585 				 *
14586 				 * We don't this to avoid one more call to
14587 				 * canputnext() as tcp_rcv_drain() needs to
14588 				 * call canputnext().
14589 				 */
14590 				tcp_rcv_enqueue(tcp, mp, seg_len);
14591 				flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
14592 			} else {
14593 				/* Does this need SSL processing first? */
14594 				if ((tcp->tcp_kssl_ctx  != NULL) &&
14595 				    (DB_TYPE(mp) == M_DATA)) {
14596 					tcp_kssl_input(tcp, mp);
14597 				} else {
14598 					putnext(tcp->tcp_rq, mp);
14599 					if (!canputnext(tcp->tcp_rq))
14600 						tcp->tcp_rwnd -= seg_len;
14601 				}
14602 			}
14603 		} else {
14604 			/*
14605 			 * Enqueue all packets when processing an mblk
14606 			 * from the co queue and also enqueue normal packets.
14607 			 */
14608 			tcp_rcv_enqueue(tcp, mp, seg_len);
14609 		}
14610 		/*
14611 		 * Make sure the timer is running if we have data waiting
14612 		 * for a push bit. This provides resiliency against
14613 		 * implementations that do not correctly generate push bits.
14614 		 */
14615 		if (tcp->tcp_rcv_list != NULL && tcp->tcp_push_tid == 0) {
14616 			/*
14617 			 * The connection may be closed at this point, so don't
14618 			 * do anything for a detached tcp.
14619 			 */
14620 			if (!TCP_IS_DETACHED(tcp))
14621 				tcp->tcp_push_tid = TCP_TIMER(tcp,
14622 				    tcp_push_timer,
14623 				    MSEC_TO_TICK(tcp_push_timer_interval));
14624 		}
14625 	}
14626 xmit_check:
14627 	/* Is there anything left to do? */
14628 	ASSERT(!(flags & TH_MARKNEXT_NEEDED));
14629 	if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED|
14630 	    TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED|
14631 	    TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0)
14632 		goto done;
14633 
14634 	/* Any transmit work to do and a non-zero window? */
14635 	if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT|
14636 	    TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) {
14637 		if (flags & TH_REXMIT_NEEDED) {
14638 			uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna;
14639 
14640 			BUMP_MIB(&tcp_mib, tcpOutFastRetrans);
14641 			if (snd_size > mss)
14642 				snd_size = mss;
14643 			if (snd_size > tcp->tcp_swnd)
14644 				snd_size = tcp->tcp_swnd;
14645 			mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size,
14646 			    NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size,
14647 			    B_TRUE);
14648 
14649 			if (mp1 != NULL) {
14650 				tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt;
14651 				tcp->tcp_csuna = tcp->tcp_snxt;
14652 				BUMP_MIB(&tcp_mib, tcpRetransSegs);
14653 				UPDATE_MIB(&tcp_mib, tcpRetransBytes, snd_size);
14654 				TCP_RECORD_TRACE(tcp, mp1,
14655 				    TCP_TRACE_SEND_PKT);
14656 				tcp_send_data(tcp, tcp->tcp_wq, mp1);
14657 			}
14658 		}
14659 		if (flags & TH_NEED_SACK_REXMIT) {
14660 			tcp_sack_rxmit(tcp, &flags);
14661 		}
14662 		/*
14663 		 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send
14664 		 * out new segment.  Note that tcp_rexmit should not be
14665 		 * set, otherwise TH_LIMIT_XMIT should not be set.
14666 		 */
14667 		if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) {
14668 			if (!tcp->tcp_rexmit) {
14669 				tcp_wput_data(tcp, NULL, B_FALSE);
14670 			} else {
14671 				tcp_ss_rexmit(tcp);
14672 			}
14673 		}
14674 		/*
14675 		 * Adjust tcp_cwnd back to normal value after sending
14676 		 * new data segments.
14677 		 */
14678 		if (flags & TH_LIMIT_XMIT) {
14679 			tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1);
14680 			/*
14681 			 * This will restart the timer.  Restarting the
14682 			 * timer is used to avoid a timeout before the
14683 			 * limited transmitted segment's ACK gets back.
14684 			 */
14685 			if (tcp->tcp_xmit_head != NULL)
14686 				tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt;
14687 		}
14688 
14689 		/* Anything more to do? */
14690 		if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED|
14691 		    TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0)
14692 			goto done;
14693 	}
14694 ack_check:
14695 	if (flags & TH_SEND_URP_MARK) {
14696 		ASSERT(tcp->tcp_urp_mark_mp);
14697 		/*
14698 		 * Send up any queued data and then send the mark message
14699 		 */
14700 		if (tcp->tcp_rcv_list != NULL) {
14701 			flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
14702 		}
14703 		ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
14704 
14705 		mp1 = tcp->tcp_urp_mark_mp;
14706 		tcp->tcp_urp_mark_mp = NULL;
14707 #ifdef DEBUG
14708 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
14709 		    "tcp_rput: sending zero-length %s %s",
14710 		    ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" :
14711 		    "MSGNOTMARKNEXT"),
14712 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
14713 #endif /* DEBUG */
14714 		putnext(tcp->tcp_rq, mp1);
14715 		flags &= ~TH_SEND_URP_MARK;
14716 	}
14717 	if (flags & TH_ACK_NEEDED) {
14718 		/*
14719 		 * Time to send an ack for some reason.
14720 		 */
14721 		mp1 = tcp_ack_mp(tcp);
14722 
14723 		if (mp1 != NULL) {
14724 			TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT);
14725 			tcp_send_data(tcp, tcp->tcp_wq, mp1);
14726 			BUMP_LOCAL(tcp->tcp_obsegs);
14727 			BUMP_MIB(&tcp_mib, tcpOutAck);
14728 		}
14729 		if (tcp->tcp_ack_tid != 0) {
14730 			(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid);
14731 			tcp->tcp_ack_tid = 0;
14732 		}
14733 	}
14734 	if (flags & TH_ACK_TIMER_NEEDED) {
14735 		/*
14736 		 * Arrange for deferred ACK or push wait timeout.
14737 		 * Start timer if it is not already running.
14738 		 */
14739 		if (tcp->tcp_ack_tid == 0) {
14740 			tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer,
14741 			    MSEC_TO_TICK(tcp->tcp_localnet ?
14742 			    (clock_t)tcp_local_dack_interval :
14743 			    (clock_t)tcp_deferred_ack_interval));
14744 		}
14745 	}
14746 	if (flags & TH_ORDREL_NEEDED) {
14747 		/*
14748 		 * Send up the ordrel_ind unless we are an eager guy.
14749 		 * In the eager case tcp_rsrv will do this when run
14750 		 * after tcp_accept is done.
14751 		 */
14752 		ASSERT(tcp->tcp_listener == NULL);
14753 		if (tcp->tcp_rcv_list != NULL) {
14754 			/*
14755 			 * Push any mblk(s) enqueued from co processing.
14756 			 */
14757 			flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
14758 		}
14759 		ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
14760 		if ((mp1 = mi_tpi_ordrel_ind()) != NULL) {
14761 			tcp->tcp_ordrel_done = B_TRUE;
14762 			putnext(tcp->tcp_rq, mp1);
14763 			if (tcp->tcp_deferred_clean_death) {
14764 				/*
14765 				 * tcp_clean_death was deferred
14766 				 * for T_ORDREL_IND - do it now
14767 				 */
14768 				(void) tcp_clean_death(tcp,
14769 				    tcp->tcp_client_errno, 20);
14770 				tcp->tcp_deferred_clean_death =	B_FALSE;
14771 			}
14772 		} else {
14773 			/*
14774 			 * Run the orderly release in the
14775 			 * service routine.
14776 			 */
14777 			qenable(tcp->tcp_rq);
14778 			/*
14779 			 * Caveat(XXX): The machine may be so
14780 			 * overloaded that tcp_rsrv() is not scheduled
14781 			 * until after the endpoint has transitioned
14782 			 * to TCPS_TIME_WAIT
14783 			 * and tcp_time_wait_interval expires. Then
14784 			 * tcp_timer() will blow away state in tcp_t
14785 			 * and T_ORDREL_IND will never be delivered
14786 			 * upstream. Unlikely but potentially
14787 			 * a problem.
14788 			 */
14789 		}
14790 	}
14791 done:
14792 	ASSERT(!(flags & TH_MARKNEXT_NEEDED));
14793 }
14794 
14795 /*
14796  * This function does PAWS protection check. Returns B_TRUE if the
14797  * segment passes the PAWS test, else returns B_FALSE.
14798  */
14799 boolean_t
14800 tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp)
14801 {
14802 	uint8_t	flags;
14803 	int	options;
14804 	uint8_t *up;
14805 
14806 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
14807 	/*
14808 	 * If timestamp option is aligned nicely, get values inline,
14809 	 * otherwise call general routine to parse.  Only do that
14810 	 * if timestamp is the only option.
14811 	 */
14812 	if (TCP_HDR_LENGTH(tcph) == (uint32_t)TCP_MIN_HEADER_LENGTH +
14813 	    TCPOPT_REAL_TS_LEN &&
14814 	    OK_32PTR((up = ((uint8_t *)tcph) +
14815 	    TCP_MIN_HEADER_LENGTH)) &&
14816 	    *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) {
14817 		tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4));
14818 		tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8));
14819 
14820 		options = TCP_OPT_TSTAMP_PRESENT;
14821 	} else {
14822 		if (tcp->tcp_snd_sack_ok) {
14823 			tcpoptp->tcp = tcp;
14824 		} else {
14825 			tcpoptp->tcp = NULL;
14826 		}
14827 		options = tcp_parse_options(tcph, tcpoptp);
14828 	}
14829 
14830 	if (options & TCP_OPT_TSTAMP_PRESENT) {
14831 		/*
14832 		 * Do PAWS per RFC 1323 section 4.2.  Accept RST
14833 		 * regardless of the timestamp, page 18 RFC 1323.bis.
14834 		 */
14835 		if ((flags & TH_RST) == 0 &&
14836 		    TSTMP_LT(tcpoptp->tcp_opt_ts_val,
14837 		    tcp->tcp_ts_recent)) {
14838 			if (TSTMP_LT(lbolt64, tcp->tcp_last_rcv_lbolt +
14839 			    PAWS_TIMEOUT)) {
14840 				/* This segment is not acceptable. */
14841 				return (B_FALSE);
14842 			} else {
14843 				/*
14844 				 * Connection has been idle for
14845 				 * too long.  Reset the timestamp
14846 				 * and assume the segment is valid.
14847 				 */
14848 				tcp->tcp_ts_recent =
14849 				    tcpoptp->tcp_opt_ts_val;
14850 			}
14851 		}
14852 	} else {
14853 		/*
14854 		 * If we don't get a timestamp on every packet, we
14855 		 * figure we can't really trust 'em, so we stop sending
14856 		 * and parsing them.
14857 		 */
14858 		tcp->tcp_snd_ts_ok = B_FALSE;
14859 
14860 		tcp->tcp_hdr_len -= TCPOPT_REAL_TS_LEN;
14861 		tcp->tcp_tcp_hdr_len -= TCPOPT_REAL_TS_LEN;
14862 		tcp->tcp_tcph->th_offset_and_rsrvd[0] -= (3 << 4);
14863 		tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN);
14864 		if (tcp->tcp_snd_sack_ok) {
14865 			ASSERT(tcp->tcp_sack_info != NULL);
14866 			tcp->tcp_max_sack_blk = 4;
14867 		}
14868 	}
14869 	return (B_TRUE);
14870 }
14871 
14872 /*
14873  * Attach ancillary data to a received TCP segments for the
14874  * ancillary pieces requested by the application that are
14875  * different than they were in the previous data segment.
14876  *
14877  * Save the "current" values once memory allocation is ok so that
14878  * when memory allocation fails we can just wait for the next data segment.
14879  */
14880 static mblk_t *
14881 tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp)
14882 {
14883 	struct T_optdata_ind *todi;
14884 	int optlen;
14885 	uchar_t *optptr;
14886 	struct T_opthdr *toh;
14887 	uint_t addflag;	/* Which pieces to add */
14888 	mblk_t *mp1;
14889 
14890 	optlen = 0;
14891 	addflag = 0;
14892 	/* If app asked for pktinfo and the index has changed ... */
14893 	if ((ipp->ipp_fields & IPPF_IFINDEX) &&
14894 	    ipp->ipp_ifindex != tcp->tcp_recvifindex &&
14895 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)) {
14896 		optlen += sizeof (struct T_opthdr) +
14897 		    sizeof (struct in6_pktinfo);
14898 		addflag |= TCP_IPV6_RECVPKTINFO;
14899 	}
14900 	/* If app asked for hoplimit and it has changed ... */
14901 	if ((ipp->ipp_fields & IPPF_HOPLIMIT) &&
14902 	    ipp->ipp_hoplimit != tcp->tcp_recvhops &&
14903 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPLIMIT)) {
14904 		optlen += sizeof (struct T_opthdr) + sizeof (uint_t);
14905 		addflag |= TCP_IPV6_RECVHOPLIMIT;
14906 	}
14907 	/* If app asked for tclass and it has changed ... */
14908 	if ((ipp->ipp_fields & IPPF_TCLASS) &&
14909 	    ipp->ipp_tclass != tcp->tcp_recvtclass &&
14910 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)) {
14911 		optlen += sizeof (struct T_opthdr) + sizeof (uint_t);
14912 		addflag |= TCP_IPV6_RECVTCLASS;
14913 	}
14914 	/*
14915 	 * If app asked for hopbyhop headers and it has changed ...
14916 	 * For security labels, note that (1) security labels can't change on
14917 	 * a connected socket at all, (2) we're connected to at most one peer,
14918 	 * (3) if anything changes, then it must be some other extra option.
14919 	 */
14920 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) &&
14921 	    ip_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen,
14922 	    (ipp->ipp_fields & IPPF_HOPOPTS),
14923 	    ipp->ipp_hopopts, ipp->ipp_hopoptslen)) {
14924 		optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen -
14925 		    tcp->tcp_label_len;
14926 		addflag |= TCP_IPV6_RECVHOPOPTS;
14927 		if (!ip_allocbuf((void **)&tcp->tcp_hopopts,
14928 		    &tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS),
14929 		    ipp->ipp_hopopts, ipp->ipp_hopoptslen))
14930 			return (mp);
14931 	}
14932 	/* If app asked for dst headers before routing headers ... */
14933 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTDSTOPTS) &&
14934 	    ip_cmpbuf(tcp->tcp_rtdstopts, tcp->tcp_rtdstoptslen,
14935 		(ipp->ipp_fields & IPPF_RTDSTOPTS),
14936 		ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) {
14937 		optlen += sizeof (struct T_opthdr) +
14938 		    ipp->ipp_rtdstoptslen;
14939 		addflag |= TCP_IPV6_RECVRTDSTOPTS;
14940 		if (!ip_allocbuf((void **)&tcp->tcp_rtdstopts,
14941 		    &tcp->tcp_rtdstoptslen, (ipp->ipp_fields & IPPF_RTDSTOPTS),
14942 		    ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen))
14943 			return (mp);
14944 	}
14945 	/* If app asked for routing headers and it has changed ... */
14946 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) &&
14947 	    ip_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen,
14948 	    (ipp->ipp_fields & IPPF_RTHDR),
14949 	    ipp->ipp_rthdr, ipp->ipp_rthdrlen)) {
14950 		optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen;
14951 		addflag |= TCP_IPV6_RECVRTHDR;
14952 		if (!ip_allocbuf((void **)&tcp->tcp_rthdr,
14953 		    &tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR),
14954 		    ipp->ipp_rthdr, ipp->ipp_rthdrlen))
14955 			return (mp);
14956 	}
14957 	/* If app asked for dest headers and it has changed ... */
14958 	if ((tcp->tcp_ipv6_recvancillary &
14959 	    (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) &&
14960 	    ip_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen,
14961 	    (ipp->ipp_fields & IPPF_DSTOPTS),
14962 	    ipp->ipp_dstopts, ipp->ipp_dstoptslen)) {
14963 		optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen;
14964 		addflag |= TCP_IPV6_RECVDSTOPTS;
14965 		if (!ip_allocbuf((void **)&tcp->tcp_dstopts,
14966 		    &tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS),
14967 		    ipp->ipp_dstopts, ipp->ipp_dstoptslen))
14968 			return (mp);
14969 	}
14970 
14971 	if (optlen == 0) {
14972 		/* Nothing to add */
14973 		return (mp);
14974 	}
14975 	mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED);
14976 	if (mp1 == NULL) {
14977 		/*
14978 		 * Defer sending ancillary data until the next TCP segment
14979 		 * arrives.
14980 		 */
14981 		return (mp);
14982 	}
14983 	mp1->b_cont = mp;
14984 	mp = mp1;
14985 	mp->b_wptr += sizeof (*todi) + optlen;
14986 	mp->b_datap->db_type = M_PROTO;
14987 	todi = (struct T_optdata_ind *)mp->b_rptr;
14988 	todi->PRIM_type = T_OPTDATA_IND;
14989 	todi->DATA_flag = 1;	/* MORE data */
14990 	todi->OPT_length = optlen;
14991 	todi->OPT_offset = sizeof (*todi);
14992 	optptr = (uchar_t *)&todi[1];
14993 	/*
14994 	 * If app asked for pktinfo and the index has changed ...
14995 	 * Note that the local address never changes for the connection.
14996 	 */
14997 	if (addflag & TCP_IPV6_RECVPKTINFO) {
14998 		struct in6_pktinfo *pkti;
14999 
15000 		toh = (struct T_opthdr *)optptr;
15001 		toh->level = IPPROTO_IPV6;
15002 		toh->name = IPV6_PKTINFO;
15003 		toh->len = sizeof (*toh) + sizeof (*pkti);
15004 		toh->status = 0;
15005 		optptr += sizeof (*toh);
15006 		pkti = (struct in6_pktinfo *)optptr;
15007 		if (tcp->tcp_ipversion == IPV6_VERSION)
15008 			pkti->ipi6_addr = tcp->tcp_ip6h->ip6_src;
15009 		else
15010 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
15011 			    &pkti->ipi6_addr);
15012 		pkti->ipi6_ifindex = ipp->ipp_ifindex;
15013 		optptr += sizeof (*pkti);
15014 		ASSERT(OK_32PTR(optptr));
15015 		/* Save as "last" value */
15016 		tcp->tcp_recvifindex = ipp->ipp_ifindex;
15017 	}
15018 	/* If app asked for hoplimit and it has changed ... */
15019 	if (addflag & TCP_IPV6_RECVHOPLIMIT) {
15020 		toh = (struct T_opthdr *)optptr;
15021 		toh->level = IPPROTO_IPV6;
15022 		toh->name = IPV6_HOPLIMIT;
15023 		toh->len = sizeof (*toh) + sizeof (uint_t);
15024 		toh->status = 0;
15025 		optptr += sizeof (*toh);
15026 		*(uint_t *)optptr = ipp->ipp_hoplimit;
15027 		optptr += sizeof (uint_t);
15028 		ASSERT(OK_32PTR(optptr));
15029 		/* Save as "last" value */
15030 		tcp->tcp_recvhops = ipp->ipp_hoplimit;
15031 	}
15032 	/* If app asked for tclass and it has changed ... */
15033 	if (addflag & TCP_IPV6_RECVTCLASS) {
15034 		toh = (struct T_opthdr *)optptr;
15035 		toh->level = IPPROTO_IPV6;
15036 		toh->name = IPV6_TCLASS;
15037 		toh->len = sizeof (*toh) + sizeof (uint_t);
15038 		toh->status = 0;
15039 		optptr += sizeof (*toh);
15040 		*(uint_t *)optptr = ipp->ipp_tclass;
15041 		optptr += sizeof (uint_t);
15042 		ASSERT(OK_32PTR(optptr));
15043 		/* Save as "last" value */
15044 		tcp->tcp_recvtclass = ipp->ipp_tclass;
15045 	}
15046 	if (addflag & TCP_IPV6_RECVHOPOPTS) {
15047 		toh = (struct T_opthdr *)optptr;
15048 		toh->level = IPPROTO_IPV6;
15049 		toh->name = IPV6_HOPOPTS;
15050 		toh->len = sizeof (*toh) + ipp->ipp_hopoptslen -
15051 		    tcp->tcp_label_len;
15052 		toh->status = 0;
15053 		optptr += sizeof (*toh);
15054 		bcopy((uchar_t *)ipp->ipp_hopopts + tcp->tcp_label_len, optptr,
15055 		    ipp->ipp_hopoptslen - tcp->tcp_label_len);
15056 		optptr += ipp->ipp_hopoptslen - tcp->tcp_label_len;
15057 		ASSERT(OK_32PTR(optptr));
15058 		/* Save as last value */
15059 		ip_savebuf((void **)&tcp->tcp_hopopts, &tcp->tcp_hopoptslen,
15060 		    (ipp->ipp_fields & IPPF_HOPOPTS),
15061 		    ipp->ipp_hopopts, ipp->ipp_hopoptslen);
15062 	}
15063 	if (addflag & TCP_IPV6_RECVRTDSTOPTS) {
15064 		toh = (struct T_opthdr *)optptr;
15065 		toh->level = IPPROTO_IPV6;
15066 		toh->name = IPV6_RTHDRDSTOPTS;
15067 		toh->len = sizeof (*toh) + ipp->ipp_rtdstoptslen;
15068 		toh->status = 0;
15069 		optptr += sizeof (*toh);
15070 		bcopy(ipp->ipp_rtdstopts, optptr, ipp->ipp_rtdstoptslen);
15071 		optptr += ipp->ipp_rtdstoptslen;
15072 		ASSERT(OK_32PTR(optptr));
15073 		/* Save as last value */
15074 		ip_savebuf((void **)&tcp->tcp_rtdstopts,
15075 		    &tcp->tcp_rtdstoptslen,
15076 		    (ipp->ipp_fields & IPPF_RTDSTOPTS),
15077 		    ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen);
15078 	}
15079 	if (addflag & TCP_IPV6_RECVRTHDR) {
15080 		toh = (struct T_opthdr *)optptr;
15081 		toh->level = IPPROTO_IPV6;
15082 		toh->name = IPV6_RTHDR;
15083 		toh->len = sizeof (*toh) + ipp->ipp_rthdrlen;
15084 		toh->status = 0;
15085 		optptr += sizeof (*toh);
15086 		bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen);
15087 		optptr += ipp->ipp_rthdrlen;
15088 		ASSERT(OK_32PTR(optptr));
15089 		/* Save as last value */
15090 		ip_savebuf((void **)&tcp->tcp_rthdr, &tcp->tcp_rthdrlen,
15091 		    (ipp->ipp_fields & IPPF_RTHDR),
15092 		    ipp->ipp_rthdr, ipp->ipp_rthdrlen);
15093 	}
15094 	if (addflag & (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) {
15095 		toh = (struct T_opthdr *)optptr;
15096 		toh->level = IPPROTO_IPV6;
15097 		toh->name = IPV6_DSTOPTS;
15098 		toh->len = sizeof (*toh) + ipp->ipp_dstoptslen;
15099 		toh->status = 0;
15100 		optptr += sizeof (*toh);
15101 		bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen);
15102 		optptr += ipp->ipp_dstoptslen;
15103 		ASSERT(OK_32PTR(optptr));
15104 		/* Save as last value */
15105 		ip_savebuf((void **)&tcp->tcp_dstopts, &tcp->tcp_dstoptslen,
15106 		    (ipp->ipp_fields & IPPF_DSTOPTS),
15107 		    ipp->ipp_dstopts, ipp->ipp_dstoptslen);
15108 	}
15109 	ASSERT(optptr == mp->b_wptr);
15110 	return (mp);
15111 }
15112 
15113 
15114 /*
15115  * Handle a *T_BIND_REQ that has failed either due to a T_ERROR_ACK
15116  * or a "bad" IRE detected by tcp_adapt_ire.
15117  * We can't tell if the failure was due to the laddr or the faddr
15118  * thus we clear out all addresses and ports.
15119  */
15120 static void
15121 tcp_bind_failed(tcp_t *tcp, mblk_t *mp, int error)
15122 {
15123 	queue_t	*q = tcp->tcp_rq;
15124 	tcph_t	*tcph;
15125 	struct T_error_ack *tea;
15126 	conn_t	*connp = tcp->tcp_connp;
15127 
15128 
15129 	ASSERT(mp->b_datap->db_type == M_PCPROTO);
15130 
15131 	if (mp->b_cont) {
15132 		freemsg(mp->b_cont);
15133 		mp->b_cont = NULL;
15134 	}
15135 	tea = (struct T_error_ack *)mp->b_rptr;
15136 	switch (tea->PRIM_type) {
15137 	case T_BIND_ACK:
15138 		/*
15139 		 * Need to unbind with classifier since we were just told that
15140 		 * our bind succeeded.
15141 		 */
15142 		tcp->tcp_hard_bound = B_FALSE;
15143 		tcp->tcp_hard_binding = B_FALSE;
15144 
15145 		ipcl_hash_remove(connp);
15146 		/* Reuse the mblk if possible */
15147 		ASSERT(mp->b_datap->db_lim - mp->b_datap->db_base >=
15148 			sizeof (*tea));
15149 		mp->b_rptr = mp->b_datap->db_base;
15150 		mp->b_wptr = mp->b_rptr + sizeof (*tea);
15151 		tea = (struct T_error_ack *)mp->b_rptr;
15152 		tea->PRIM_type = T_ERROR_ACK;
15153 		tea->TLI_error = TSYSERR;
15154 		tea->UNIX_error = error;
15155 		if (tcp->tcp_state >= TCPS_SYN_SENT) {
15156 			tea->ERROR_prim = T_CONN_REQ;
15157 		} else {
15158 			tea->ERROR_prim = O_T_BIND_REQ;
15159 		}
15160 		break;
15161 
15162 	case T_ERROR_ACK:
15163 		if (tcp->tcp_state >= TCPS_SYN_SENT)
15164 			tea->ERROR_prim = T_CONN_REQ;
15165 		break;
15166 	default:
15167 		panic("tcp_bind_failed: unexpected TPI type");
15168 		/*NOTREACHED*/
15169 	}
15170 
15171 	tcp->tcp_state = TCPS_IDLE;
15172 	if (tcp->tcp_ipversion == IPV4_VERSION)
15173 		tcp->tcp_ipha->ipha_src = 0;
15174 	else
15175 		V6_SET_ZERO(tcp->tcp_ip6h->ip6_src);
15176 	/*
15177 	 * Copy of the src addr. in tcp_t is needed since
15178 	 * the lookup funcs. can only look at tcp_t
15179 	 */
15180 	V6_SET_ZERO(tcp->tcp_ip_src_v6);
15181 
15182 	tcph = tcp->tcp_tcph;
15183 	tcph->th_lport[0] = 0;
15184 	tcph->th_lport[1] = 0;
15185 	tcp_bind_hash_remove(tcp);
15186 	bzero(&connp->u_port, sizeof (connp->u_port));
15187 	/* blow away saved option results if any */
15188 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
15189 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
15190 
15191 	conn_delete_ire(tcp->tcp_connp, NULL);
15192 	putnext(q, mp);
15193 }
15194 
15195 /*
15196  * tcp_rput_other is called by tcp_rput to handle everything other than M_DATA
15197  * messages.
15198  */
15199 void
15200 tcp_rput_other(tcp_t *tcp, mblk_t *mp)
15201 {
15202 	mblk_t	*mp1;
15203 	uchar_t	*rptr = mp->b_rptr;
15204 	queue_t	*q = tcp->tcp_rq;
15205 	struct T_error_ack *tea;
15206 	uint32_t mss;
15207 	mblk_t *syn_mp;
15208 	mblk_t *mdti;
15209 	int	retval;
15210 	mblk_t *ire_mp;
15211 
15212 	switch (mp->b_datap->db_type) {
15213 	case M_PROTO:
15214 	case M_PCPROTO:
15215 		ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
15216 		if ((mp->b_wptr - rptr) < sizeof (t_scalar_t))
15217 			break;
15218 		tea = (struct T_error_ack *)rptr;
15219 		switch (tea->PRIM_type) {
15220 		case T_BIND_ACK:
15221 			/*
15222 			 * Adapt Multidata information, if any.  The
15223 			 * following tcp_mdt_update routine will free
15224 			 * the message.
15225 			 */
15226 			if ((mdti = tcp_mdt_info_mp(mp)) != NULL) {
15227 				tcp_mdt_update(tcp, &((ip_mdt_info_t *)mdti->
15228 				    b_rptr)->mdt_capab, B_TRUE);
15229 				freemsg(mdti);
15230 			}
15231 
15232 			/* Get the IRE, if we had requested for it */
15233 			ire_mp = tcp_ire_mp(mp);
15234 
15235 			if (tcp->tcp_hard_binding) {
15236 				tcp->tcp_hard_binding = B_FALSE;
15237 				tcp->tcp_hard_bound = B_TRUE;
15238 				CL_INET_CONNECT(tcp);
15239 			} else {
15240 				if (ire_mp != NULL)
15241 					freeb(ire_mp);
15242 				goto after_syn_sent;
15243 			}
15244 
15245 			retval = tcp_adapt_ire(tcp, ire_mp);
15246 			if (ire_mp != NULL)
15247 				freeb(ire_mp);
15248 			if (retval == 0) {
15249 				tcp_bind_failed(tcp, mp,
15250 				    (int)((tcp->tcp_state >= TCPS_SYN_SENT) ?
15251 				    ENETUNREACH : EADDRNOTAVAIL));
15252 				return;
15253 			}
15254 			/*
15255 			 * Don't let an endpoint connect to itself.
15256 			 * Also checked in tcp_connect() but that
15257 			 * check can't handle the case when the
15258 			 * local IP address is INADDR_ANY.
15259 			 */
15260 			if (tcp->tcp_ipversion == IPV4_VERSION) {
15261 				if ((tcp->tcp_ipha->ipha_dst ==
15262 				    tcp->tcp_ipha->ipha_src) &&
15263 				    (BE16_EQL(tcp->tcp_tcph->th_lport,
15264 				    tcp->tcp_tcph->th_fport))) {
15265 					tcp_bind_failed(tcp, mp, EADDRNOTAVAIL);
15266 					return;
15267 				}
15268 			} else {
15269 				if (IN6_ARE_ADDR_EQUAL(
15270 				    &tcp->tcp_ip6h->ip6_dst,
15271 				    &tcp->tcp_ip6h->ip6_src) &&
15272 				    (BE16_EQL(tcp->tcp_tcph->th_lport,
15273 				    tcp->tcp_tcph->th_fport))) {
15274 					tcp_bind_failed(tcp, mp, EADDRNOTAVAIL);
15275 					return;
15276 				}
15277 			}
15278 			ASSERT(tcp->tcp_state == TCPS_SYN_SENT);
15279 			/*
15280 			 * This should not be possible!  Just for
15281 			 * defensive coding...
15282 			 */
15283 			if (tcp->tcp_state != TCPS_SYN_SENT)
15284 				goto after_syn_sent;
15285 
15286 			if (is_system_labeled() &&
15287 			    !tcp_update_label(tcp, CONN_CRED(tcp->tcp_connp))) {
15288 				tcp_bind_failed(tcp, mp, EHOSTUNREACH);
15289 				return;
15290 			}
15291 
15292 			ASSERT(q == tcp->tcp_rq);
15293 			/*
15294 			 * tcp_adapt_ire() does not adjust
15295 			 * for TCP/IP header length.
15296 			 */
15297 			mss = tcp->tcp_mss - tcp->tcp_hdr_len;
15298 
15299 			/*
15300 			 * Just make sure our rwnd is at
15301 			 * least tcp_recv_hiwat_mss * MSS
15302 			 * large, and round up to the nearest
15303 			 * MSS.
15304 			 *
15305 			 * We do the round up here because
15306 			 * we need to get the interface
15307 			 * MTU first before we can do the
15308 			 * round up.
15309 			 */
15310 			tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss),
15311 			    tcp_recv_hiwat_minmss * mss);
15312 			q->q_hiwat = tcp->tcp_rwnd;
15313 			tcp_set_ws_value(tcp);
15314 			U32_TO_ABE16((tcp->tcp_rwnd >> tcp->tcp_rcv_ws),
15315 			    tcp->tcp_tcph->th_win);
15316 			if (tcp->tcp_rcv_ws > 0 || tcp_wscale_always)
15317 				tcp->tcp_snd_ws_ok = B_TRUE;
15318 
15319 			/*
15320 			 * Set tcp_snd_ts_ok to true
15321 			 * so that tcp_xmit_mp will
15322 			 * include the timestamp
15323 			 * option in the SYN segment.
15324 			 */
15325 			if (tcp_tstamp_always ||
15326 			    (tcp->tcp_rcv_ws && tcp_tstamp_if_wscale)) {
15327 				tcp->tcp_snd_ts_ok = B_TRUE;
15328 			}
15329 
15330 			/*
15331 			 * tcp_snd_sack_ok can be set in
15332 			 * tcp_adapt_ire() if the sack metric
15333 			 * is set.  So check it here also.
15334 			 */
15335 			if (tcp_sack_permitted == 2 ||
15336 			    tcp->tcp_snd_sack_ok) {
15337 				if (tcp->tcp_sack_info == NULL) {
15338 					tcp->tcp_sack_info =
15339 					kmem_cache_alloc(tcp_sack_info_cache,
15340 					    KM_SLEEP);
15341 				}
15342 				tcp->tcp_snd_sack_ok = B_TRUE;
15343 			}
15344 
15345 			/*
15346 			 * Should we use ECN?  Note that the current
15347 			 * default value (SunOS 5.9) of tcp_ecn_permitted
15348 			 * is 1.  The reason for doing this is that there
15349 			 * are equipments out there that will drop ECN
15350 			 * enabled IP packets.  Setting it to 1 avoids
15351 			 * compatibility problems.
15352 			 */
15353 			if (tcp_ecn_permitted == 2)
15354 				tcp->tcp_ecn_ok = B_TRUE;
15355 
15356 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
15357 			syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL,
15358 			    tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
15359 			if (syn_mp) {
15360 				cred_t *cr;
15361 				pid_t pid;
15362 
15363 				/*
15364 				 * Obtain the credential from the
15365 				 * thread calling connect(); the credential
15366 				 * lives on in the second mblk which
15367 				 * originated from T_CONN_REQ and is echoed
15368 				 * with the T_BIND_ACK from ip.  If none
15369 				 * can be found, default to the creator
15370 				 * of the socket.
15371 				 */
15372 				if (mp->b_cont == NULL ||
15373 				    (cr = DB_CRED(mp->b_cont)) == NULL) {
15374 					cr = tcp->tcp_cred;
15375 					pid = tcp->tcp_cpid;
15376 				} else {
15377 					pid = DB_CPID(mp->b_cont);
15378 				}
15379 
15380 				TCP_RECORD_TRACE(tcp, syn_mp,
15381 				    TCP_TRACE_SEND_PKT);
15382 				mblk_setcred(syn_mp, cr);
15383 				DB_CPID(syn_mp) = pid;
15384 				tcp_send_data(tcp, tcp->tcp_wq, syn_mp);
15385 			}
15386 		after_syn_sent:
15387 			/*
15388 			 * A trailer mblk indicates a waiting client upstream.
15389 			 * We complete here the processing begun in
15390 			 * either tcp_bind() or tcp_connect() by passing
15391 			 * upstream the reply message they supplied.
15392 			 */
15393 			mp1 = mp;
15394 			mp = mp->b_cont;
15395 			freeb(mp1);
15396 			if (mp)
15397 				break;
15398 			return;
15399 		case T_ERROR_ACK:
15400 			if (tcp->tcp_debug) {
15401 				(void) strlog(TCP_MOD_ID, 0, 1,
15402 				    SL_TRACE|SL_ERROR,
15403 				    "tcp_rput_other: case T_ERROR_ACK, "
15404 				    "ERROR_prim == %d",
15405 				    tea->ERROR_prim);
15406 			}
15407 			switch (tea->ERROR_prim) {
15408 			case O_T_BIND_REQ:
15409 			case T_BIND_REQ:
15410 				tcp_bind_failed(tcp, mp,
15411 				    (int)((tcp->tcp_state >= TCPS_SYN_SENT) ?
15412 				    ENETUNREACH : EADDRNOTAVAIL));
15413 				return;
15414 			case T_UNBIND_REQ:
15415 				tcp->tcp_hard_binding = B_FALSE;
15416 				tcp->tcp_hard_bound = B_FALSE;
15417 				if (mp->b_cont) {
15418 					freemsg(mp->b_cont);
15419 					mp->b_cont = NULL;
15420 				}
15421 				if (tcp->tcp_unbind_pending)
15422 					tcp->tcp_unbind_pending = 0;
15423 				else {
15424 					/* From tcp_ip_unbind() - free */
15425 					freemsg(mp);
15426 					return;
15427 				}
15428 				break;
15429 			case T_SVR4_OPTMGMT_REQ:
15430 				if (tcp->tcp_drop_opt_ack_cnt > 0) {
15431 					/* T_OPTMGMT_REQ generated by TCP */
15432 					printf("T_SVR4_OPTMGMT_REQ failed "
15433 					    "%d/%d - dropped (cnt %d)\n",
15434 					    tea->TLI_error, tea->UNIX_error,
15435 					    tcp->tcp_drop_opt_ack_cnt);
15436 					freemsg(mp);
15437 					tcp->tcp_drop_opt_ack_cnt--;
15438 					return;
15439 				}
15440 				break;
15441 			}
15442 			if (tea->ERROR_prim == T_SVR4_OPTMGMT_REQ &&
15443 			    tcp->tcp_drop_opt_ack_cnt > 0) {
15444 				printf("T_SVR4_OPTMGMT_REQ failed %d/%d "
15445 				    "- dropped (cnt %d)\n",
15446 				    tea->TLI_error, tea->UNIX_error,
15447 				    tcp->tcp_drop_opt_ack_cnt);
15448 				freemsg(mp);
15449 				tcp->tcp_drop_opt_ack_cnt--;
15450 				return;
15451 			}
15452 			break;
15453 		case T_OPTMGMT_ACK:
15454 			if (tcp->tcp_drop_opt_ack_cnt > 0) {
15455 				/* T_OPTMGMT_REQ generated by TCP */
15456 				freemsg(mp);
15457 				tcp->tcp_drop_opt_ack_cnt--;
15458 				return;
15459 			}
15460 			break;
15461 		default:
15462 			break;
15463 		}
15464 		break;
15465 	case M_CTL:
15466 		/*
15467 		 * ICMP messages.
15468 		 */
15469 		tcp_icmp_error(tcp, mp);
15470 		return;
15471 	case M_FLUSH:
15472 		if (*rptr & FLUSHR)
15473 			flushq(q, FLUSHDATA);
15474 		break;
15475 	default:
15476 		break;
15477 	}
15478 	/*
15479 	 * Make sure we set this bit before sending the ACK for
15480 	 * bind. Otherwise accept could possibly run and free
15481 	 * this tcp struct.
15482 	 */
15483 	putnext(q, mp);
15484 }
15485 
15486 /*
15487  * Called as the result of a qbufcall or a qtimeout to remedy a failure
15488  * to allocate a T_ordrel_ind in tcp_rsrv().  qenable(q) will make
15489  * tcp_rsrv() try again.
15490  */
15491 static void
15492 tcp_ordrel_kick(void *arg)
15493 {
15494 	conn_t 	*connp = (conn_t *)arg;
15495 	tcp_t	*tcp = connp->conn_tcp;
15496 
15497 	tcp->tcp_ordrelid = 0;
15498 	tcp->tcp_timeout = B_FALSE;
15499 	if (!TCP_IS_DETACHED(tcp) && tcp->tcp_rq != NULL &&
15500 	    tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
15501 		qenable(tcp->tcp_rq);
15502 	}
15503 }
15504 
15505 /* ARGSUSED */
15506 static void
15507 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2)
15508 {
15509 	conn_t	*connp = (conn_t *)arg;
15510 	tcp_t	*tcp = connp->conn_tcp;
15511 	queue_t	*q = tcp->tcp_rq;
15512 	uint_t	thwin;
15513 
15514 	freeb(mp);
15515 
15516 	TCP_STAT(tcp_rsrv_calls);
15517 
15518 	if (TCP_IS_DETACHED(tcp) || q == NULL) {
15519 		return;
15520 	}
15521 
15522 	if (tcp->tcp_fused) {
15523 		tcp_t *peer_tcp = tcp->tcp_loopback_peer;
15524 
15525 		ASSERT(tcp->tcp_fused);
15526 		ASSERT(peer_tcp != NULL && peer_tcp->tcp_fused);
15527 		ASSERT(peer_tcp->tcp_loopback_peer == tcp);
15528 		ASSERT(!TCP_IS_DETACHED(tcp));
15529 		ASSERT(tcp->tcp_connp->conn_sqp ==
15530 		    peer_tcp->tcp_connp->conn_sqp);
15531 
15532 		/*
15533 		 * Normally we would not get backenabled in synchronous
15534 		 * streams mode, but in case this happens, we need to stop
15535 		 * synchronous streams temporarily to prevent a race with
15536 		 * tcp_fuse_rrw() or tcp_fuse_rinfop().  It is safe to access
15537 		 * tcp_rcv_list here because those entry points will return
15538 		 * right away when synchronous streams is stopped.
15539 		 */
15540 		TCP_FUSE_SYNCSTR_STOP(tcp);
15541 		if (tcp->tcp_rcv_list != NULL)
15542 			(void) tcp_rcv_drain(tcp->tcp_rq, tcp);
15543 
15544 		tcp_clrqfull(peer_tcp);
15545 		TCP_FUSE_SYNCSTR_RESUME(tcp);
15546 		TCP_STAT(tcp_fusion_backenabled);
15547 		return;
15548 	}
15549 
15550 	if (canputnext(q)) {
15551 		tcp->tcp_rwnd = q->q_hiwat;
15552 		thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
15553 		    << tcp->tcp_rcv_ws;
15554 		thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
15555 		/*
15556 		 * Send back a window update immediately if TCP is above
15557 		 * ESTABLISHED state and the increase of the rcv window
15558 		 * that the other side knows is at least 1 MSS after flow
15559 		 * control is lifted.
15560 		 */
15561 		if (tcp->tcp_state >= TCPS_ESTABLISHED &&
15562 		    (q->q_hiwat - thwin >= tcp->tcp_mss)) {
15563 			tcp_xmit_ctl(NULL, tcp,
15564 			    (tcp->tcp_swnd == 0) ? tcp->tcp_suna :
15565 			    tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK);
15566 			BUMP_MIB(&tcp_mib, tcpOutWinUpdate);
15567 		}
15568 	}
15569 	/* Handle a failure to allocate a T_ORDREL_IND here */
15570 	if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
15571 		ASSERT(tcp->tcp_listener == NULL);
15572 		if (tcp->tcp_rcv_list != NULL) {
15573 			(void) tcp_rcv_drain(q, tcp);
15574 		}
15575 		ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
15576 		mp = mi_tpi_ordrel_ind();
15577 		if (mp) {
15578 			tcp->tcp_ordrel_done = B_TRUE;
15579 			putnext(q, mp);
15580 			if (tcp->tcp_deferred_clean_death) {
15581 				/*
15582 				 * tcp_clean_death was deferred for
15583 				 * T_ORDREL_IND - do it now
15584 				 */
15585 				tcp->tcp_deferred_clean_death = B_FALSE;
15586 				(void) tcp_clean_death(tcp,
15587 				    tcp->tcp_client_errno, 22);
15588 			}
15589 		} else if (!tcp->tcp_timeout && tcp->tcp_ordrelid == 0) {
15590 			/*
15591 			 * If there isn't already a timer running
15592 			 * start one.  Use a 4 second
15593 			 * timer as a fallback since it can't fail.
15594 			 */
15595 			tcp->tcp_timeout = B_TRUE;
15596 			tcp->tcp_ordrelid = TCP_TIMER(tcp, tcp_ordrel_kick,
15597 			    MSEC_TO_TICK(4000));
15598 		}
15599 	}
15600 }
15601 
15602 /*
15603  * The read side service routine is called mostly when we get back-enabled as a
15604  * result of flow control relief.  Since we don't actually queue anything in
15605  * TCP, we have no data to send out of here.  What we do is clear the receive
15606  * window, and send out a window update.
15607  * This routine is also called to drive an orderly release message upstream
15608  * if the attempt in tcp_rput failed.
15609  */
15610 static void
15611 tcp_rsrv(queue_t *q)
15612 {
15613 	conn_t *connp = Q_TO_CONN(q);
15614 	tcp_t	*tcp = connp->conn_tcp;
15615 	mblk_t	*mp;
15616 
15617 	/* No code does a putq on the read side */
15618 	ASSERT(q->q_first == NULL);
15619 
15620 	/* Nothing to do for the default queue */
15621 	if (q == tcp_g_q) {
15622 		return;
15623 	}
15624 
15625 	mp = allocb(0, BPRI_HI);
15626 	if (mp == NULL) {
15627 		/*
15628 		 * We are under memory pressure. Return for now and we
15629 		 * we will be called again later.
15630 		 */
15631 		if (!tcp->tcp_timeout && tcp->tcp_ordrelid == 0) {
15632 			/*
15633 			 * If there isn't already a timer running
15634 			 * start one.  Use a 4 second
15635 			 * timer as a fallback since it can't fail.
15636 			 */
15637 			tcp->tcp_timeout = B_TRUE;
15638 			tcp->tcp_ordrelid = TCP_TIMER(tcp, tcp_ordrel_kick,
15639 			    MSEC_TO_TICK(4000));
15640 		}
15641 		return;
15642 	}
15643 	CONN_INC_REF(connp);
15644 	squeue_enter(connp->conn_sqp, mp, tcp_rsrv_input, connp,
15645 	    SQTAG_TCP_RSRV);
15646 }
15647 
15648 /*
15649  * tcp_rwnd_set() is called to adjust the receive window to a desired value.
15650  * We do not allow the receive window to shrink.  After setting rwnd,
15651  * set the flow control hiwat of the stream.
15652  *
15653  * This function is called in 2 cases:
15654  *
15655  * 1) Before data transfer begins, in tcp_accept_comm() for accepting a
15656  *    connection (passive open) and in tcp_rput_data() for active connect.
15657  *    This is called after tcp_mss_set() when the desired MSS value is known.
15658  *    This makes sure that our window size is a mutiple of the other side's
15659  *    MSS.
15660  * 2) Handling SO_RCVBUF option.
15661  *
15662  * It is ASSUMED that the requested size is a multiple of the current MSS.
15663  *
15664  * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the
15665  * user requests so.
15666  */
15667 static int
15668 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd)
15669 {
15670 	uint32_t	mss = tcp->tcp_mss;
15671 	uint32_t	old_max_rwnd;
15672 	uint32_t	max_transmittable_rwnd;
15673 	boolean_t	tcp_detached = TCP_IS_DETACHED(tcp);
15674 
15675 	if (tcp->tcp_fused) {
15676 		size_t sth_hiwat;
15677 		tcp_t *peer_tcp = tcp->tcp_loopback_peer;
15678 
15679 		ASSERT(peer_tcp != NULL);
15680 		/*
15681 		 * Record the stream head's high water mark for
15682 		 * this endpoint; this is used for flow-control
15683 		 * purposes in tcp_fuse_output().
15684 		 */
15685 		sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd);
15686 		if (!tcp_detached)
15687 			(void) mi_set_sth_hiwat(tcp->tcp_rq, sth_hiwat);
15688 
15689 		/*
15690 		 * In the fusion case, the maxpsz stream head value of
15691 		 * our peer is set according to its send buffer size
15692 		 * and our receive buffer size; since the latter may
15693 		 * have changed we need to update the peer's maxpsz.
15694 		 */
15695 		(void) tcp_maxpsz_set(peer_tcp, B_TRUE);
15696 		return (rwnd);
15697 	}
15698 
15699 	if (tcp_detached)
15700 		old_max_rwnd = tcp->tcp_rwnd;
15701 	else
15702 		old_max_rwnd = tcp->tcp_rq->q_hiwat;
15703 
15704 	/*
15705 	 * Insist on a receive window that is at least
15706 	 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid
15707 	 * funny TCP interactions of Nagle algorithm, SWS avoidance
15708 	 * and delayed acknowledgement.
15709 	 */
15710 	rwnd = MAX(rwnd, tcp_recv_hiwat_minmss * mss);
15711 
15712 	/*
15713 	 * If window size info has already been exchanged, TCP should not
15714 	 * shrink the window.  Shrinking window is doable if done carefully.
15715 	 * We may add that support later.  But so far there is not a real
15716 	 * need to do that.
15717 	 */
15718 	if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) {
15719 		/* MSS may have changed, do a round up again. */
15720 		rwnd = MSS_ROUNDUP(old_max_rwnd, mss);
15721 	}
15722 
15723 	/*
15724 	 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check
15725 	 * can be applied even before the window scale option is decided.
15726 	 */
15727 	max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws;
15728 	if (rwnd > max_transmittable_rwnd) {
15729 		rwnd = max_transmittable_rwnd -
15730 		    (max_transmittable_rwnd % mss);
15731 		if (rwnd < mss)
15732 			rwnd = max_transmittable_rwnd;
15733 		/*
15734 		 * If we're over the limit we may have to back down tcp_rwnd.
15735 		 * The increment below won't work for us. So we set all three
15736 		 * here and the increment below will have no effect.
15737 		 */
15738 		tcp->tcp_rwnd = old_max_rwnd = rwnd;
15739 	}
15740 	if (tcp->tcp_localnet) {
15741 		tcp->tcp_rack_abs_max =
15742 		    MIN(tcp_local_dacks_max, rwnd / mss / 2);
15743 	} else {
15744 		/*
15745 		 * For a remote host on a different subnet (through a router),
15746 		 * we ack every other packet to be conforming to RFC1122.
15747 		 * tcp_deferred_acks_max is default to 2.
15748 		 */
15749 		tcp->tcp_rack_abs_max =
15750 		    MIN(tcp_deferred_acks_max, rwnd / mss / 2);
15751 	}
15752 	if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max)
15753 		tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max;
15754 	else
15755 		tcp->tcp_rack_cur_max = 0;
15756 	/*
15757 	 * Increment the current rwnd by the amount the maximum grew (we
15758 	 * can not overwrite it since we might be in the middle of a
15759 	 * connection.)
15760 	 */
15761 	tcp->tcp_rwnd += rwnd - old_max_rwnd;
15762 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, tcp->tcp_tcph->th_win);
15763 	if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max)
15764 		tcp->tcp_cwnd_max = rwnd;
15765 
15766 	if (tcp_detached)
15767 		return (rwnd);
15768 	/*
15769 	 * We set the maximum receive window into rq->q_hiwat.
15770 	 * This is not actually used for flow control.
15771 	 */
15772 	tcp->tcp_rq->q_hiwat = rwnd;
15773 	/*
15774 	 * Set the Stream head high water mark. This doesn't have to be
15775 	 * here, since we are simply using default values, but we would
15776 	 * prefer to choose these values algorithmically, with a likely
15777 	 * relationship to rwnd.
15778 	 */
15779 	(void) mi_set_sth_hiwat(tcp->tcp_rq, MAX(rwnd, tcp_sth_rcv_hiwat));
15780 	return (rwnd);
15781 }
15782 
15783 /*
15784  * Return SNMP stuff in buffer in mpdata.
15785  */
15786 int
15787 tcp_snmp_get(queue_t *q, mblk_t *mpctl)
15788 {
15789 	mblk_t			*mpdata;
15790 	mblk_t			*mp_conn_ctl = NULL;
15791 	mblk_t			*mp_conn_tail;
15792 	mblk_t			*mp_attr_ctl = NULL;
15793 	mblk_t			*mp_attr_tail;
15794 	mblk_t			*mp6_conn_ctl = NULL;
15795 	mblk_t			*mp6_conn_tail;
15796 	mblk_t			*mp6_attr_ctl = NULL;
15797 	mblk_t			*mp6_attr_tail;
15798 	struct opthdr		*optp;
15799 	mib2_tcpConnEntry_t	tce;
15800 	mib2_tcp6ConnEntry_t	tce6;
15801 	mib2_transportMLPEntry_t mlp;
15802 	connf_t			*connfp;
15803 	conn_t			*connp;
15804 	int			i;
15805 	boolean_t 		ispriv;
15806 	zoneid_t 		zoneid;
15807 	int			v4_conn_idx;
15808 	int			v6_conn_idx;
15809 
15810 	if (mpctl == NULL ||
15811 	    (mpdata = mpctl->b_cont) == NULL ||
15812 	    (mp_conn_ctl = copymsg(mpctl)) == NULL ||
15813 	    (mp_attr_ctl = copymsg(mpctl)) == NULL ||
15814 	    (mp6_conn_ctl = copymsg(mpctl)) == NULL ||
15815 	    (mp6_attr_ctl = copymsg(mpctl)) == NULL) {
15816 		freemsg(mp_conn_ctl);
15817 		freemsg(mp_attr_ctl);
15818 		freemsg(mp6_conn_ctl);
15819 		freemsg(mp6_attr_ctl);
15820 		return (0);
15821 	}
15822 
15823 	/* build table of connections -- need count in fixed part */
15824 	SET_MIB(tcp_mib.tcpRtoAlgorithm, 4);   /* vanj */
15825 	SET_MIB(tcp_mib.tcpRtoMin, tcp_rexmit_interval_min);
15826 	SET_MIB(tcp_mib.tcpRtoMax, tcp_rexmit_interval_max);
15827 	SET_MIB(tcp_mib.tcpMaxConn, -1);
15828 	SET_MIB(tcp_mib.tcpCurrEstab, 0);
15829 
15830 	ispriv =
15831 	    secpolicy_net_config((Q_TO_CONN(q))->conn_cred, B_TRUE) == 0;
15832 	zoneid = Q_TO_CONN(q)->conn_zoneid;
15833 
15834 	v4_conn_idx = v6_conn_idx = 0;
15835 	mp_conn_tail = mp_attr_tail = mp6_conn_tail = mp6_attr_tail = NULL;
15836 
15837 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
15838 
15839 		connfp = &ipcl_globalhash_fanout[i];
15840 
15841 		connp = NULL;
15842 
15843 		while ((connp =
15844 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
15845 			tcp_t *tcp;
15846 			boolean_t needattr;
15847 
15848 			if (connp->conn_zoneid != zoneid)
15849 				continue;	/* not in this zone */
15850 
15851 			tcp = connp->conn_tcp;
15852 			UPDATE_MIB(&tcp_mib, tcpInSegs, tcp->tcp_ibsegs);
15853 			tcp->tcp_ibsegs = 0;
15854 			UPDATE_MIB(&tcp_mib, tcpOutSegs, tcp->tcp_obsegs);
15855 			tcp->tcp_obsegs = 0;
15856 
15857 			tce6.tcp6ConnState = tce.tcpConnState =
15858 			    tcp_snmp_state(tcp);
15859 			if (tce.tcpConnState == MIB2_TCP_established ||
15860 			    tce.tcpConnState == MIB2_TCP_closeWait)
15861 				BUMP_MIB(&tcp_mib, tcpCurrEstab);
15862 
15863 			needattr = B_FALSE;
15864 			bzero(&mlp, sizeof (mlp));
15865 			if (connp->conn_mlp_type != mlptSingle) {
15866 				if (connp->conn_mlp_type == mlptShared ||
15867 				    connp->conn_mlp_type == mlptBoth)
15868 					mlp.tme_flags |= MIB2_TMEF_SHARED;
15869 				if (connp->conn_mlp_type == mlptPrivate ||
15870 				    connp->conn_mlp_type == mlptBoth)
15871 					mlp.tme_flags |= MIB2_TMEF_PRIVATE;
15872 				needattr = B_TRUE;
15873 			}
15874 			if (connp->conn_peercred != NULL) {
15875 				ts_label_t *tsl;
15876 
15877 				tsl = crgetlabel(connp->conn_peercred);
15878 				mlp.tme_doi = label2doi(tsl);
15879 				mlp.tme_label = *label2bslabel(tsl);
15880 				needattr = B_TRUE;
15881 			}
15882 
15883 			/* Create a message to report on IPv6 entries */
15884 			if (tcp->tcp_ipversion == IPV6_VERSION) {
15885 			tce6.tcp6ConnLocalAddress = tcp->tcp_ip_src_v6;
15886 			tce6.tcp6ConnRemAddress = tcp->tcp_remote_v6;
15887 			tce6.tcp6ConnLocalPort = ntohs(tcp->tcp_lport);
15888 			tce6.tcp6ConnRemPort = ntohs(tcp->tcp_fport);
15889 			tce6.tcp6ConnIfIndex = tcp->tcp_bound_if;
15890 			/* Don't want just anybody seeing these... */
15891 			if (ispriv) {
15892 				tce6.tcp6ConnEntryInfo.ce_snxt =
15893 				    tcp->tcp_snxt;
15894 				tce6.tcp6ConnEntryInfo.ce_suna =
15895 				    tcp->tcp_suna;
15896 				tce6.tcp6ConnEntryInfo.ce_rnxt =
15897 				    tcp->tcp_rnxt;
15898 				tce6.tcp6ConnEntryInfo.ce_rack =
15899 				    tcp->tcp_rack;
15900 			} else {
15901 				/*
15902 				 * Netstat, unfortunately, uses this to
15903 				 * get send/receive queue sizes.  How to fix?
15904 				 * Why not compute the difference only?
15905 				 */
15906 				tce6.tcp6ConnEntryInfo.ce_snxt =
15907 				    tcp->tcp_snxt - tcp->tcp_suna;
15908 				tce6.tcp6ConnEntryInfo.ce_suna = 0;
15909 				tce6.tcp6ConnEntryInfo.ce_rnxt =
15910 				    tcp->tcp_rnxt - tcp->tcp_rack;
15911 				tce6.tcp6ConnEntryInfo.ce_rack = 0;
15912 			}
15913 
15914 			tce6.tcp6ConnEntryInfo.ce_swnd = tcp->tcp_swnd;
15915 			tce6.tcp6ConnEntryInfo.ce_rwnd = tcp->tcp_rwnd;
15916 			tce6.tcp6ConnEntryInfo.ce_rto =  tcp->tcp_rto;
15917 			tce6.tcp6ConnEntryInfo.ce_mss =  tcp->tcp_mss;
15918 			tce6.tcp6ConnEntryInfo.ce_state = tcp->tcp_state;
15919 
15920 			(void) snmp_append_data2(mp6_conn_ctl->b_cont,
15921 			    &mp6_conn_tail, (char *)&tce6, sizeof (tce6));
15922 
15923 			mlp.tme_connidx = v6_conn_idx++;
15924 			if (needattr)
15925 				(void) snmp_append_data2(mp6_attr_ctl->b_cont,
15926 				    &mp6_attr_tail, (char *)&mlp, sizeof (mlp));
15927 			}
15928 			/*
15929 			 * Create an IPv4 table entry for IPv4 entries and also
15930 			 * for IPv6 entries which are bound to in6addr_any
15931 			 * but don't have IPV6_V6ONLY set.
15932 			 * (i.e. anything an IPv4 peer could connect to)
15933 			 */
15934 			if (tcp->tcp_ipversion == IPV4_VERSION ||
15935 			    (tcp->tcp_state <= TCPS_LISTEN &&
15936 			    !tcp->tcp_connp->conn_ipv6_v6only &&
15937 			    IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip_src_v6))) {
15938 				if (tcp->tcp_ipversion == IPV6_VERSION) {
15939 					tce.tcpConnRemAddress = INADDR_ANY;
15940 					tce.tcpConnLocalAddress = INADDR_ANY;
15941 				} else {
15942 					tce.tcpConnRemAddress =
15943 					    tcp->tcp_remote;
15944 					tce.tcpConnLocalAddress =
15945 					    tcp->tcp_ip_src;
15946 				}
15947 				tce.tcpConnLocalPort = ntohs(tcp->tcp_lport);
15948 				tce.tcpConnRemPort = ntohs(tcp->tcp_fport);
15949 				/* Don't want just anybody seeing these... */
15950 				if (ispriv) {
15951 					tce.tcpConnEntryInfo.ce_snxt =
15952 					    tcp->tcp_snxt;
15953 					tce.tcpConnEntryInfo.ce_suna =
15954 					    tcp->tcp_suna;
15955 					tce.tcpConnEntryInfo.ce_rnxt =
15956 					    tcp->tcp_rnxt;
15957 					tce.tcpConnEntryInfo.ce_rack =
15958 					    tcp->tcp_rack;
15959 				} else {
15960 					/*
15961 					 * Netstat, unfortunately, uses this to
15962 					 * get send/receive queue sizes.  How
15963 					 * to fix?
15964 					 * Why not compute the difference only?
15965 					 */
15966 					tce.tcpConnEntryInfo.ce_snxt =
15967 					    tcp->tcp_snxt - tcp->tcp_suna;
15968 					tce.tcpConnEntryInfo.ce_suna = 0;
15969 					tce.tcpConnEntryInfo.ce_rnxt =
15970 					    tcp->tcp_rnxt - tcp->tcp_rack;
15971 					tce.tcpConnEntryInfo.ce_rack = 0;
15972 				}
15973 
15974 				tce.tcpConnEntryInfo.ce_swnd = tcp->tcp_swnd;
15975 				tce.tcpConnEntryInfo.ce_rwnd = tcp->tcp_rwnd;
15976 				tce.tcpConnEntryInfo.ce_rto =  tcp->tcp_rto;
15977 				tce.tcpConnEntryInfo.ce_mss =  tcp->tcp_mss;
15978 				tce.tcpConnEntryInfo.ce_state =
15979 				    tcp->tcp_state;
15980 
15981 				(void) snmp_append_data2(mp_conn_ctl->b_cont,
15982 				    &mp_conn_tail, (char *)&tce, sizeof (tce));
15983 
15984 				mlp.tme_connidx = v4_conn_idx++;
15985 				if (needattr)
15986 					(void) snmp_append_data2(
15987 					    mp_attr_ctl->b_cont,
15988 					    &mp_attr_tail, (char *)&mlp,
15989 					    sizeof (mlp));
15990 			}
15991 		}
15992 	}
15993 
15994 	/* fixed length structure for IPv4 and IPv6 counters */
15995 	SET_MIB(tcp_mib.tcpConnTableSize, sizeof (mib2_tcpConnEntry_t));
15996 	SET_MIB(tcp_mib.tcp6ConnTableSize, sizeof (mib2_tcp6ConnEntry_t));
15997 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
15998 	optp->level = MIB2_TCP;
15999 	optp->name = 0;
16000 	(void) snmp_append_data(mpdata, (char *)&tcp_mib, sizeof (tcp_mib));
16001 	optp->len = msgdsize(mpdata);
16002 	qreply(q, mpctl);
16003 
16004 	/* table of connections... */
16005 	optp = (struct opthdr *)&mp_conn_ctl->b_rptr[
16006 	    sizeof (struct T_optmgmt_ack)];
16007 	optp->level = MIB2_TCP;
16008 	optp->name = MIB2_TCP_CONN;
16009 	optp->len = msgdsize(mp_conn_ctl->b_cont);
16010 	qreply(q, mp_conn_ctl);
16011 
16012 	/* table of MLP attributes... */
16013 	optp = (struct opthdr *)&mp_attr_ctl->b_rptr[
16014 	    sizeof (struct T_optmgmt_ack)];
16015 	optp->level = MIB2_TCP;
16016 	optp->name = EXPER_XPORT_MLP;
16017 	optp->len = msgdsize(mp_attr_ctl->b_cont);
16018 	if (optp->len == 0)
16019 		freemsg(mp_attr_ctl);
16020 	else
16021 		qreply(q, mp_attr_ctl);
16022 
16023 	/* table of IPv6 connections... */
16024 	optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[
16025 	    sizeof (struct T_optmgmt_ack)];
16026 	optp->level = MIB2_TCP6;
16027 	optp->name = MIB2_TCP6_CONN;
16028 	optp->len = msgdsize(mp6_conn_ctl->b_cont);
16029 	qreply(q, mp6_conn_ctl);
16030 
16031 	/* table of IPv6 MLP attributes... */
16032 	optp = (struct opthdr *)&mp6_attr_ctl->b_rptr[
16033 	    sizeof (struct T_optmgmt_ack)];
16034 	optp->level = MIB2_TCP6;
16035 	optp->name = EXPER_XPORT_MLP;
16036 	optp->len = msgdsize(mp6_attr_ctl->b_cont);
16037 	if (optp->len == 0)
16038 		freemsg(mp6_attr_ctl);
16039 	else
16040 		qreply(q, mp6_attr_ctl);
16041 	return (1);
16042 }
16043 
16044 /* Return 0 if invalid set request, 1 otherwise, including non-tcp requests  */
16045 /* ARGSUSED */
16046 int
16047 tcp_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len)
16048 {
16049 	mib2_tcpConnEntry_t	*tce = (mib2_tcpConnEntry_t *)ptr;
16050 
16051 	switch (level) {
16052 	case MIB2_TCP:
16053 		switch (name) {
16054 		case 13:
16055 			if (tce->tcpConnState != MIB2_TCP_deleteTCB)
16056 				return (0);
16057 			/* TODO: delete entry defined by tce */
16058 			return (1);
16059 		default:
16060 			return (0);
16061 		}
16062 	default:
16063 		return (1);
16064 	}
16065 }
16066 
16067 /* Translate TCP state to MIB2 TCP state. */
16068 static int
16069 tcp_snmp_state(tcp_t *tcp)
16070 {
16071 	if (tcp == NULL)
16072 		return (0);
16073 
16074 	switch (tcp->tcp_state) {
16075 	case TCPS_CLOSED:
16076 	case TCPS_IDLE:	/* RFC1213 doesn't have analogue for IDLE & BOUND */
16077 	case TCPS_BOUND:
16078 		return (MIB2_TCP_closed);
16079 	case TCPS_LISTEN:
16080 		return (MIB2_TCP_listen);
16081 	case TCPS_SYN_SENT:
16082 		return (MIB2_TCP_synSent);
16083 	case TCPS_SYN_RCVD:
16084 		return (MIB2_TCP_synReceived);
16085 	case TCPS_ESTABLISHED:
16086 		return (MIB2_TCP_established);
16087 	case TCPS_CLOSE_WAIT:
16088 		return (MIB2_TCP_closeWait);
16089 	case TCPS_FIN_WAIT_1:
16090 		return (MIB2_TCP_finWait1);
16091 	case TCPS_CLOSING:
16092 		return (MIB2_TCP_closing);
16093 	case TCPS_LAST_ACK:
16094 		return (MIB2_TCP_lastAck);
16095 	case TCPS_FIN_WAIT_2:
16096 		return (MIB2_TCP_finWait2);
16097 	case TCPS_TIME_WAIT:
16098 		return (MIB2_TCP_timeWait);
16099 	default:
16100 		return (0);
16101 	}
16102 }
16103 
16104 static char tcp_report_header[] =
16105 	"TCP     " MI_COL_HDRPAD_STR
16106 	"zone dest            snxt     suna     "
16107 	"swnd       rnxt     rack     rwnd       rto   mss   w sw rw t "
16108 	"recent   [lport,fport] state";
16109 
16110 /*
16111  * TCP status report triggered via the Named Dispatch mechanism.
16112  */
16113 /* ARGSUSED */
16114 static void
16115 tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval, tcp_t *thisstream,
16116     cred_t *cr)
16117 {
16118 	char hash[10], addrbuf[INET6_ADDRSTRLEN];
16119 	boolean_t ispriv = secpolicy_net_config(cr, B_TRUE) == 0;
16120 	char cflag;
16121 	in6_addr_t	v6dst;
16122 	char buf[80];
16123 	uint_t print_len, buf_len;
16124 
16125 	buf_len = mp->b_datap->db_lim - mp->b_wptr;
16126 	if (buf_len <= 0)
16127 		return;
16128 
16129 	if (hashval >= 0)
16130 		(void) sprintf(hash, "%03d ", hashval);
16131 	else
16132 		hash[0] = '\0';
16133 
16134 	/*
16135 	 * Note that we use the remote address in the tcp_b  structure.
16136 	 * This means that it will print out the real destination address,
16137 	 * not the next hop's address if source routing is used.  This
16138 	 * avoid the confusion on the output because user may not
16139 	 * know that source routing is used for a connection.
16140 	 */
16141 	if (tcp->tcp_ipversion == IPV4_VERSION) {
16142 		IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &v6dst);
16143 	} else {
16144 		v6dst = tcp->tcp_remote_v6;
16145 	}
16146 	(void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf));
16147 	/*
16148 	 * the ispriv checks are so that normal users cannot determine
16149 	 * sequence number information using NDD.
16150 	 */
16151 
16152 	if (TCP_IS_DETACHED(tcp))
16153 		cflag = '*';
16154 	else
16155 		cflag = ' ';
16156 	print_len = snprintf((char *)mp->b_wptr, buf_len,
16157 	    "%s " MI_COL_PTRFMT_STR "%d %s %08x %08x %010d %08x %08x "
16158 	    "%010d %05ld %05d %1d %02d %02d %1d %08x %s%c\n",
16159 	    hash,
16160 	    (void *)tcp,
16161 	    tcp->tcp_connp->conn_zoneid,
16162 	    addrbuf,
16163 	    (ispriv) ? tcp->tcp_snxt : 0,
16164 	    (ispriv) ? tcp->tcp_suna : 0,
16165 	    tcp->tcp_swnd,
16166 	    (ispriv) ? tcp->tcp_rnxt : 0,
16167 	    (ispriv) ? tcp->tcp_rack : 0,
16168 	    tcp->tcp_rwnd,
16169 	    tcp->tcp_rto,
16170 	    tcp->tcp_mss,
16171 	    tcp->tcp_snd_ws_ok,
16172 	    tcp->tcp_snd_ws,
16173 	    tcp->tcp_rcv_ws,
16174 	    tcp->tcp_snd_ts_ok,
16175 	    tcp->tcp_ts_recent,
16176 	    tcp_display(tcp, buf, DISP_PORT_ONLY), cflag);
16177 	if (print_len < buf_len) {
16178 		((mblk_t *)mp)->b_wptr += print_len;
16179 	} else {
16180 		((mblk_t *)mp)->b_wptr += buf_len;
16181 	}
16182 }
16183 
16184 /*
16185  * TCP status report (for listeners only) triggered via the Named Dispatch
16186  * mechanism.
16187  */
16188 /* ARGSUSED */
16189 static void
16190 tcp_report_listener(mblk_t *mp, tcp_t *tcp, int hashval)
16191 {
16192 	char addrbuf[INET6_ADDRSTRLEN];
16193 	in6_addr_t	v6dst;
16194 	uint_t print_len, buf_len;
16195 
16196 	buf_len = mp->b_datap->db_lim - mp->b_wptr;
16197 	if (buf_len <= 0)
16198 		return;
16199 
16200 	if (tcp->tcp_ipversion == IPV4_VERSION) {
16201 		IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6dst);
16202 		(void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf));
16203 	} else {
16204 		(void) inet_ntop(AF_INET6, &tcp->tcp_ip6h->ip6_src,
16205 		    addrbuf, sizeof (addrbuf));
16206 	}
16207 	print_len = snprintf((char *)mp->b_wptr, buf_len,
16208 	    "%03d "
16209 	    MI_COL_PTRFMT_STR
16210 	    "%d %s %05u %08u %d/%d/%d%c\n",
16211 	    hashval, (void *)tcp,
16212 	    tcp->tcp_connp->conn_zoneid,
16213 	    addrbuf,
16214 	    (uint_t)BE16_TO_U16(tcp->tcp_tcph->th_lport),
16215 	    tcp->tcp_conn_req_seqnum,
16216 	    tcp->tcp_conn_req_cnt_q0, tcp->tcp_conn_req_cnt_q,
16217 	    tcp->tcp_conn_req_max,
16218 	    tcp->tcp_syn_defense ? '*' : ' ');
16219 	if (print_len < buf_len) {
16220 		((mblk_t *)mp)->b_wptr += print_len;
16221 	} else {
16222 		((mblk_t *)mp)->b_wptr += buf_len;
16223 	}
16224 }
16225 
16226 /* TCP status report triggered via the Named Dispatch mechanism. */
16227 /* ARGSUSED */
16228 static int
16229 tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16230 {
16231 	tcp_t	*tcp;
16232 	int	i;
16233 	conn_t	*connp;
16234 	connf_t	*connfp;
16235 	zoneid_t zoneid;
16236 
16237 	/*
16238 	 * Because of the ndd constraint, at most we can have 64K buffer
16239 	 * to put in all TCP info.  So to be more efficient, just
16240 	 * allocate a 64K buffer here, assuming we need that large buffer.
16241 	 * This may be a problem as any user can read tcp_status.  Therefore
16242 	 * we limit the rate of doing this using tcp_ndd_get_info_interval.
16243 	 * This should be OK as normal users should not do this too often.
16244 	 */
16245 	if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) {
16246 		if (ddi_get_lbolt() - tcp_last_ndd_get_info_time <
16247 		    drv_usectohz(tcp_ndd_get_info_interval * 1000)) {
16248 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16249 			return (0);
16250 		}
16251 	}
16252 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16253 		/* The following may work even if we cannot get a large buf. */
16254 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16255 		return (0);
16256 	}
16257 
16258 	(void) mi_mpprintf(mp, "%s", tcp_report_header);
16259 
16260 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16261 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
16262 
16263 		connfp = &ipcl_globalhash_fanout[i];
16264 
16265 		connp = NULL;
16266 
16267 		while ((connp =
16268 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
16269 			tcp = connp->conn_tcp;
16270 			if (zoneid != GLOBAL_ZONEID &&
16271 			    zoneid != connp->conn_zoneid)
16272 				continue;
16273 			tcp_report_item(mp->b_cont, tcp, -1, tcp,
16274 			    cr);
16275 		}
16276 
16277 	}
16278 
16279 	tcp_last_ndd_get_info_time = ddi_get_lbolt();
16280 	return (0);
16281 }
16282 
16283 /* TCP status report triggered via the Named Dispatch mechanism. */
16284 /* ARGSUSED */
16285 static int
16286 tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16287 {
16288 	tf_t	*tbf;
16289 	tcp_t	*tcp;
16290 	int	i;
16291 	zoneid_t zoneid;
16292 
16293 	/* Refer to comments in tcp_status_report(). */
16294 	if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) {
16295 		if (ddi_get_lbolt() - tcp_last_ndd_get_info_time <
16296 		    drv_usectohz(tcp_ndd_get_info_interval * 1000)) {
16297 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16298 			return (0);
16299 		}
16300 	}
16301 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16302 		/* The following may work even if we cannot get a large buf. */
16303 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16304 		return (0);
16305 	}
16306 
16307 	(void) mi_mpprintf(mp, "    %s", tcp_report_header);
16308 
16309 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16310 
16311 	for (i = 0; i < A_CNT(tcp_bind_fanout); i++) {
16312 		tbf = &tcp_bind_fanout[i];
16313 		mutex_enter(&tbf->tf_lock);
16314 		for (tcp = tbf->tf_tcp; tcp != NULL;
16315 		    tcp = tcp->tcp_bind_hash) {
16316 			if (zoneid != GLOBAL_ZONEID &&
16317 			    zoneid != tcp->tcp_connp->conn_zoneid)
16318 				continue;
16319 			CONN_INC_REF(tcp->tcp_connp);
16320 			tcp_report_item(mp->b_cont, tcp, i,
16321 			    Q_TO_TCP(q), cr);
16322 			CONN_DEC_REF(tcp->tcp_connp);
16323 		}
16324 		mutex_exit(&tbf->tf_lock);
16325 	}
16326 	tcp_last_ndd_get_info_time = ddi_get_lbolt();
16327 	return (0);
16328 }
16329 
16330 /* TCP status report triggered via the Named Dispatch mechanism. */
16331 /* ARGSUSED */
16332 static int
16333 tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16334 {
16335 	connf_t	*connfp;
16336 	conn_t	*connp;
16337 	tcp_t	*tcp;
16338 	int	i;
16339 	zoneid_t zoneid;
16340 
16341 	/* Refer to comments in tcp_status_report(). */
16342 	if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) {
16343 		if (ddi_get_lbolt() - tcp_last_ndd_get_info_time <
16344 		    drv_usectohz(tcp_ndd_get_info_interval * 1000)) {
16345 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16346 			return (0);
16347 		}
16348 	}
16349 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16350 		/* The following may work even if we cannot get a large buf. */
16351 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16352 		return (0);
16353 	}
16354 
16355 	(void) mi_mpprintf(mp,
16356 	    "    TCP    " MI_COL_HDRPAD_STR
16357 	    "zone IP addr         port  seqnum   backlog (q0/q/max)");
16358 
16359 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16360 
16361 	for (i = 0; i < ipcl_bind_fanout_size; i++) {
16362 		connfp =  &ipcl_bind_fanout[i];
16363 		connp = NULL;
16364 		while ((connp =
16365 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
16366 			tcp = connp->conn_tcp;
16367 			if (zoneid != GLOBAL_ZONEID &&
16368 			    zoneid != connp->conn_zoneid)
16369 				continue;
16370 			tcp_report_listener(mp->b_cont, tcp, i);
16371 		}
16372 	}
16373 
16374 	tcp_last_ndd_get_info_time = ddi_get_lbolt();
16375 	return (0);
16376 }
16377 
16378 /* TCP status report triggered via the Named Dispatch mechanism. */
16379 /* ARGSUSED */
16380 static int
16381 tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16382 {
16383 	connf_t	*connfp;
16384 	conn_t	*connp;
16385 	tcp_t	*tcp;
16386 	int	i;
16387 	zoneid_t zoneid;
16388 
16389 	/* Refer to comments in tcp_status_report(). */
16390 	if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) {
16391 		if (ddi_get_lbolt() - tcp_last_ndd_get_info_time <
16392 		    drv_usectohz(tcp_ndd_get_info_interval * 1000)) {
16393 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16394 			return (0);
16395 		}
16396 	}
16397 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16398 		/* The following may work even if we cannot get a large buf. */
16399 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16400 		return (0);
16401 	}
16402 
16403 	(void) mi_mpprintf(mp, "tcp_conn_hash_size = %d",
16404 	    ipcl_conn_fanout_size);
16405 	(void) mi_mpprintf(mp, "    %s", tcp_report_header);
16406 
16407 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16408 
16409 	for (i = 0; i < ipcl_conn_fanout_size; i++) {
16410 		connfp =  &ipcl_conn_fanout[i];
16411 		connp = NULL;
16412 		while ((connp =
16413 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
16414 			tcp = connp->conn_tcp;
16415 			if (zoneid != GLOBAL_ZONEID &&
16416 			    zoneid != connp->conn_zoneid)
16417 				continue;
16418 			tcp_report_item(mp->b_cont, tcp, i,
16419 			    Q_TO_TCP(q), cr);
16420 		}
16421 	}
16422 
16423 	tcp_last_ndd_get_info_time = ddi_get_lbolt();
16424 	return (0);
16425 }
16426 
16427 /* TCP status report triggered via the Named Dispatch mechanism. */
16428 /* ARGSUSED */
16429 static int
16430 tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16431 {
16432 	tf_t	*tf;
16433 	tcp_t	*tcp;
16434 	int	i;
16435 	zoneid_t zoneid;
16436 
16437 	/* Refer to comments in tcp_status_report(). */
16438 	if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) {
16439 		if (ddi_get_lbolt() - tcp_last_ndd_get_info_time <
16440 		    drv_usectohz(tcp_ndd_get_info_interval * 1000)) {
16441 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16442 			return (0);
16443 		}
16444 	}
16445 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16446 		/* The following may work even if we cannot get a large buf. */
16447 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16448 		return (0);
16449 	}
16450 
16451 	(void) mi_mpprintf(mp, "    %s", tcp_report_header);
16452 
16453 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16454 
16455 	for (i = 0; i < A_CNT(tcp_acceptor_fanout); i++) {
16456 		tf = &tcp_acceptor_fanout[i];
16457 		mutex_enter(&tf->tf_lock);
16458 		for (tcp = tf->tf_tcp; tcp != NULL;
16459 		    tcp = tcp->tcp_acceptor_hash) {
16460 			if (zoneid != GLOBAL_ZONEID &&
16461 			    zoneid != tcp->tcp_connp->conn_zoneid)
16462 				continue;
16463 			tcp_report_item(mp->b_cont, tcp, i,
16464 			    Q_TO_TCP(q), cr);
16465 		}
16466 		mutex_exit(&tf->tf_lock);
16467 	}
16468 	tcp_last_ndd_get_info_time = ddi_get_lbolt();
16469 	return (0);
16470 }
16471 
16472 /*
16473  * tcp_timer is the timer service routine.  It handles the retransmission,
16474  * FIN_WAIT_2 flush, and zero window probe timeout events.  It figures out
16475  * from the state of the tcp instance what kind of action needs to be done
16476  * at the time it is called.
16477  */
16478 static void
16479 tcp_timer(void *arg)
16480 {
16481 	mblk_t		*mp;
16482 	clock_t		first_threshold;
16483 	clock_t		second_threshold;
16484 	clock_t		ms;
16485 	uint32_t	mss;
16486 	conn_t		*connp = (conn_t *)arg;
16487 	tcp_t		*tcp = connp->conn_tcp;
16488 
16489 	tcp->tcp_timer_tid = 0;
16490 
16491 	if (tcp->tcp_fused)
16492 		return;
16493 
16494 	first_threshold =  tcp->tcp_first_timer_threshold;
16495 	second_threshold = tcp->tcp_second_timer_threshold;
16496 	switch (tcp->tcp_state) {
16497 	case TCPS_IDLE:
16498 	case TCPS_BOUND:
16499 	case TCPS_LISTEN:
16500 		return;
16501 	case TCPS_SYN_RCVD: {
16502 		tcp_t	*listener = tcp->tcp_listener;
16503 
16504 		if (tcp->tcp_syn_rcvd_timeout == 0 && (listener != NULL)) {
16505 			ASSERT(tcp->tcp_rq == listener->tcp_rq);
16506 			/* it's our first timeout */
16507 			tcp->tcp_syn_rcvd_timeout = 1;
16508 			mutex_enter(&listener->tcp_eager_lock);
16509 			listener->tcp_syn_rcvd_timeout++;
16510 			if (!listener->tcp_syn_defense &&
16511 			    (listener->tcp_syn_rcvd_timeout >
16512 			    (tcp_conn_req_max_q0 >> 2)) &&
16513 			    (tcp_conn_req_max_q0 > 200)) {
16514 				/* We may be under attack. Put on a defense. */
16515 				listener->tcp_syn_defense = B_TRUE;
16516 				cmn_err(CE_WARN, "High TCP connect timeout "
16517 				    "rate! System (port %d) may be under a "
16518 				    "SYN flood attack!",
16519 				    BE16_TO_U16(listener->tcp_tcph->th_lport));
16520 
16521 				listener->tcp_ip_addr_cache = kmem_zalloc(
16522 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t),
16523 				    KM_NOSLEEP);
16524 			}
16525 			mutex_exit(&listener->tcp_eager_lock);
16526 		}
16527 	}
16528 		/* FALLTHRU */
16529 	case TCPS_SYN_SENT:
16530 		first_threshold =  tcp->tcp_first_ctimer_threshold;
16531 		second_threshold = tcp->tcp_second_ctimer_threshold;
16532 		break;
16533 	case TCPS_ESTABLISHED:
16534 	case TCPS_FIN_WAIT_1:
16535 	case TCPS_CLOSING:
16536 	case TCPS_CLOSE_WAIT:
16537 	case TCPS_LAST_ACK:
16538 		/* If we have data to rexmit */
16539 		if (tcp->tcp_suna != tcp->tcp_snxt) {
16540 			clock_t	time_to_wait;
16541 
16542 			BUMP_MIB(&tcp_mib, tcpTimRetrans);
16543 			if (!tcp->tcp_xmit_head)
16544 				break;
16545 			time_to_wait = lbolt -
16546 			    (clock_t)tcp->tcp_xmit_head->b_prev;
16547 			time_to_wait = tcp->tcp_rto -
16548 			    TICK_TO_MSEC(time_to_wait);
16549 			/*
16550 			 * If the timer fires too early, 1 clock tick earlier,
16551 			 * restart the timer.
16552 			 */
16553 			if (time_to_wait > msec_per_tick) {
16554 				TCP_STAT(tcp_timer_fire_early);
16555 				TCP_TIMER_RESTART(tcp, time_to_wait);
16556 				return;
16557 			}
16558 			/*
16559 			 * When we probe zero windows, we force the swnd open.
16560 			 * If our peer acks with a closed window swnd will be
16561 			 * set to zero by tcp_rput(). As long as we are
16562 			 * receiving acks tcp_rput will
16563 			 * reset 'tcp_ms_we_have_waited' so as not to trip the
16564 			 * first and second interval actions.  NOTE: the timer
16565 			 * interval is allowed to continue its exponential
16566 			 * backoff.
16567 			 */
16568 			if (tcp->tcp_swnd == 0 || tcp->tcp_zero_win_probe) {
16569 				if (tcp->tcp_debug) {
16570 					(void) strlog(TCP_MOD_ID, 0, 1,
16571 					    SL_TRACE, "tcp_timer: zero win");
16572 				}
16573 			} else {
16574 				/*
16575 				 * After retransmission, we need to do
16576 				 * slow start.  Set the ssthresh to one
16577 				 * half of current effective window and
16578 				 * cwnd to one MSS.  Also reset
16579 				 * tcp_cwnd_cnt.
16580 				 *
16581 				 * Note that if tcp_ssthresh is reduced because
16582 				 * of ECN, do not reduce it again unless it is
16583 				 * already one window of data away (tcp_cwr
16584 				 * should then be cleared) or this is a
16585 				 * timeout for a retransmitted segment.
16586 				 */
16587 				uint32_t npkt;
16588 
16589 				if (!tcp->tcp_cwr || tcp->tcp_rexmit) {
16590 					npkt = ((tcp->tcp_timer_backoff ?
16591 					    tcp->tcp_cwnd_ssthresh :
16592 					    tcp->tcp_snxt -
16593 					    tcp->tcp_suna) >> 1) / tcp->tcp_mss;
16594 					tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) *
16595 					    tcp->tcp_mss;
16596 				}
16597 				tcp->tcp_cwnd = tcp->tcp_mss;
16598 				tcp->tcp_cwnd_cnt = 0;
16599 				if (tcp->tcp_ecn_ok) {
16600 					tcp->tcp_cwr = B_TRUE;
16601 					tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
16602 					tcp->tcp_ecn_cwr_sent = B_FALSE;
16603 				}
16604 			}
16605 			break;
16606 		}
16607 		/*
16608 		 * We have something to send yet we cannot send.  The
16609 		 * reason can be:
16610 		 *
16611 		 * 1. Zero send window: we need to do zero window probe.
16612 		 * 2. Zero cwnd: because of ECN, we need to "clock out
16613 		 * segments.
16614 		 * 3. SWS avoidance: receiver may have shrunk window,
16615 		 * reset our knowledge.
16616 		 *
16617 		 * Note that condition 2 can happen with either 1 or
16618 		 * 3.  But 1 and 3 are exclusive.
16619 		 */
16620 		if (tcp->tcp_unsent != 0) {
16621 			if (tcp->tcp_cwnd == 0) {
16622 				/*
16623 				 * Set tcp_cwnd to 1 MSS so that a
16624 				 * new segment can be sent out.  We
16625 				 * are "clocking out" new data when
16626 				 * the network is really congested.
16627 				 */
16628 				ASSERT(tcp->tcp_ecn_ok);
16629 				tcp->tcp_cwnd = tcp->tcp_mss;
16630 			}
16631 			if (tcp->tcp_swnd == 0) {
16632 				/* Extend window for zero window probe */
16633 				tcp->tcp_swnd++;
16634 				tcp->tcp_zero_win_probe = B_TRUE;
16635 				BUMP_MIB(&tcp_mib, tcpOutWinProbe);
16636 			} else {
16637 				/*
16638 				 * Handle timeout from sender SWS avoidance.
16639 				 * Reset our knowledge of the max send window
16640 				 * since the receiver might have reduced its
16641 				 * receive buffer.  Avoid setting tcp_max_swnd
16642 				 * to one since that will essentially disable
16643 				 * the SWS checks.
16644 				 *
16645 				 * Note that since we don't have a SWS
16646 				 * state variable, if the timeout is set
16647 				 * for ECN but not for SWS, this
16648 				 * code will also be executed.  This is
16649 				 * fine as tcp_max_swnd is updated
16650 				 * constantly and it will not affect
16651 				 * anything.
16652 				 */
16653 				tcp->tcp_max_swnd = MAX(tcp->tcp_swnd, 2);
16654 			}
16655 			tcp_wput_data(tcp, NULL, B_FALSE);
16656 			return;
16657 		}
16658 		/* Is there a FIN that needs to be to re retransmitted? */
16659 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
16660 		    !tcp->tcp_fin_acked)
16661 			break;
16662 		/* Nothing to do, return without restarting timer. */
16663 		TCP_STAT(tcp_timer_fire_miss);
16664 		return;
16665 	case TCPS_FIN_WAIT_2:
16666 		/*
16667 		 * User closed the TCP endpoint and peer ACK'ed our FIN.
16668 		 * We waited some time for for peer's FIN, but it hasn't
16669 		 * arrived.  We flush the connection now to avoid
16670 		 * case where the peer has rebooted.
16671 		 */
16672 		if (TCP_IS_DETACHED(tcp)) {
16673 			(void) tcp_clean_death(tcp, 0, 23);
16674 		} else {
16675 			TCP_TIMER_RESTART(tcp, tcp_fin_wait_2_flush_interval);
16676 		}
16677 		return;
16678 	case TCPS_TIME_WAIT:
16679 		(void) tcp_clean_death(tcp, 0, 24);
16680 		return;
16681 	default:
16682 		if (tcp->tcp_debug) {
16683 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
16684 			    "tcp_timer: strange state (%d) %s",
16685 			    tcp->tcp_state, tcp_display(tcp, NULL,
16686 			    DISP_PORT_ONLY));
16687 		}
16688 		return;
16689 	}
16690 	if ((ms = tcp->tcp_ms_we_have_waited) > second_threshold) {
16691 		/*
16692 		 * For zero window probe, we need to send indefinitely,
16693 		 * unless we have not heard from the other side for some
16694 		 * time...
16695 		 */
16696 		if ((tcp->tcp_zero_win_probe == 0) ||
16697 		    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >
16698 		    second_threshold)) {
16699 			BUMP_MIB(&tcp_mib, tcpTimRetransDrop);
16700 			/*
16701 			 * If TCP is in SYN_RCVD state, send back a
16702 			 * RST|ACK as BSD does.  Note that tcp_zero_win_probe
16703 			 * should be zero in TCPS_SYN_RCVD state.
16704 			 */
16705 			if (tcp->tcp_state == TCPS_SYN_RCVD) {
16706 				tcp_xmit_ctl("tcp_timer: RST sent on timeout "
16707 				    "in SYN_RCVD",
16708 				    tcp, tcp->tcp_snxt,
16709 				    tcp->tcp_rnxt, TH_RST | TH_ACK);
16710 			}
16711 			(void) tcp_clean_death(tcp,
16712 			    tcp->tcp_client_errno ?
16713 			    tcp->tcp_client_errno : ETIMEDOUT, 25);
16714 			return;
16715 		} else {
16716 			/*
16717 			 * Set tcp_ms_we_have_waited to second_threshold
16718 			 * so that in next timeout, we will do the above
16719 			 * check (lbolt - tcp_last_recv_time).  This is
16720 			 * also to avoid overflow.
16721 			 *
16722 			 * We don't need to decrement tcp_timer_backoff
16723 			 * to avoid overflow because it will be decremented
16724 			 * later if new timeout value is greater than
16725 			 * tcp_rexmit_interval_max.  In the case when
16726 			 * tcp_rexmit_interval_max is greater than
16727 			 * second_threshold, it means that we will wait
16728 			 * longer than second_threshold to send the next
16729 			 * window probe.
16730 			 */
16731 			tcp->tcp_ms_we_have_waited = second_threshold;
16732 		}
16733 	} else if (ms > first_threshold) {
16734 		if (tcp->tcp_snd_zcopy_aware && (!tcp->tcp_xmit_zc_clean) &&
16735 		    tcp->tcp_xmit_head != NULL) {
16736 			tcp->tcp_xmit_head =
16737 			    tcp_zcopy_backoff(tcp, tcp->tcp_xmit_head, 1);
16738 		}
16739 		/*
16740 		 * We have been retransmitting for too long...  The RTT
16741 		 * we calculated is probably incorrect.  Reinitialize it.
16742 		 * Need to compensate for 0 tcp_rtt_sa.  Reset
16743 		 * tcp_rtt_update so that we won't accidentally cache a
16744 		 * bad value.  But only do this if this is not a zero
16745 		 * window probe.
16746 		 */
16747 		if (tcp->tcp_rtt_sa != 0 && tcp->tcp_zero_win_probe == 0) {
16748 			tcp->tcp_rtt_sd += (tcp->tcp_rtt_sa >> 3) +
16749 			    (tcp->tcp_rtt_sa >> 5);
16750 			tcp->tcp_rtt_sa = 0;
16751 			tcp_ip_notify(tcp);
16752 			tcp->tcp_rtt_update = 0;
16753 		}
16754 	}
16755 	tcp->tcp_timer_backoff++;
16756 	if ((ms = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
16757 	    tcp_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5)) <
16758 	    tcp_rexmit_interval_min) {
16759 		/*
16760 		 * This means the original RTO is tcp_rexmit_interval_min.
16761 		 * So we will use tcp_rexmit_interval_min as the RTO value
16762 		 * and do the backoff.
16763 		 */
16764 		ms = tcp_rexmit_interval_min << tcp->tcp_timer_backoff;
16765 	} else {
16766 		ms <<= tcp->tcp_timer_backoff;
16767 	}
16768 	if (ms > tcp_rexmit_interval_max) {
16769 		ms = tcp_rexmit_interval_max;
16770 		/*
16771 		 * ms is at max, decrement tcp_timer_backoff to avoid
16772 		 * overflow.
16773 		 */
16774 		tcp->tcp_timer_backoff--;
16775 	}
16776 	tcp->tcp_ms_we_have_waited += ms;
16777 	if (tcp->tcp_zero_win_probe == 0) {
16778 		tcp->tcp_rto = ms;
16779 	}
16780 	TCP_TIMER_RESTART(tcp, ms);
16781 	/*
16782 	 * This is after a timeout and tcp_rto is backed off.  Set
16783 	 * tcp_set_timer to 1 so that next time RTO is updated, we will
16784 	 * restart the timer with a correct value.
16785 	 */
16786 	tcp->tcp_set_timer = 1;
16787 	mss = tcp->tcp_snxt - tcp->tcp_suna;
16788 	if (mss > tcp->tcp_mss)
16789 		mss = tcp->tcp_mss;
16790 	if (mss > tcp->tcp_swnd && tcp->tcp_swnd != 0)
16791 		mss = tcp->tcp_swnd;
16792 
16793 	if ((mp = tcp->tcp_xmit_head) != NULL)
16794 		mp->b_prev = (mblk_t *)lbolt;
16795 	mp = tcp_xmit_mp(tcp, mp, mss, NULL, NULL, tcp->tcp_suna, B_TRUE, &mss,
16796 	    B_TRUE);
16797 
16798 	/*
16799 	 * When slow start after retransmission begins, start with
16800 	 * this seq no.  tcp_rexmit_max marks the end of special slow
16801 	 * start phase.  tcp_snd_burst controls how many segments
16802 	 * can be sent because of an ack.
16803 	 */
16804 	tcp->tcp_rexmit_nxt = tcp->tcp_suna;
16805 	tcp->tcp_snd_burst = TCP_CWND_SS;
16806 	if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
16807 	    (tcp->tcp_unsent == 0)) {
16808 		tcp->tcp_rexmit_max = tcp->tcp_fss;
16809 	} else {
16810 		tcp->tcp_rexmit_max = tcp->tcp_snxt;
16811 	}
16812 	tcp->tcp_rexmit = B_TRUE;
16813 	tcp->tcp_dupack_cnt = 0;
16814 
16815 	/*
16816 	 * Remove all rexmit SACK blk to start from fresh.
16817 	 */
16818 	if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
16819 		TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
16820 		tcp->tcp_num_notsack_blk = 0;
16821 		tcp->tcp_cnt_notsack_list = 0;
16822 	}
16823 	if (mp == NULL) {
16824 		return;
16825 	}
16826 	/* Attach credentials to retransmitted initial SYNs. */
16827 	if (tcp->tcp_state == TCPS_SYN_SENT) {
16828 		mblk_setcred(mp, tcp->tcp_cred);
16829 		DB_CPID(mp) = tcp->tcp_cpid;
16830 	}
16831 
16832 	tcp->tcp_csuna = tcp->tcp_snxt;
16833 	BUMP_MIB(&tcp_mib, tcpRetransSegs);
16834 	UPDATE_MIB(&tcp_mib, tcpRetransBytes, mss);
16835 	TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
16836 	tcp_send_data(tcp, tcp->tcp_wq, mp);
16837 
16838 }
16839 
16840 /* tcp_unbind is called by tcp_wput_proto to handle T_UNBIND_REQ messages. */
16841 static void
16842 tcp_unbind(tcp_t *tcp, mblk_t *mp)
16843 {
16844 	conn_t	*connp;
16845 
16846 	switch (tcp->tcp_state) {
16847 	case TCPS_BOUND:
16848 	case TCPS_LISTEN:
16849 		break;
16850 	default:
16851 		tcp_err_ack(tcp, mp, TOUTSTATE, 0);
16852 		return;
16853 	}
16854 
16855 	/*
16856 	 * Need to clean up all the eagers since after the unbind, segments
16857 	 * will no longer be delivered to this listener stream.
16858 	 */
16859 	mutex_enter(&tcp->tcp_eager_lock);
16860 	if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) {
16861 		tcp_eager_cleanup(tcp, 0);
16862 	}
16863 	mutex_exit(&tcp->tcp_eager_lock);
16864 
16865 	if (tcp->tcp_ipversion == IPV4_VERSION) {
16866 		tcp->tcp_ipha->ipha_src = 0;
16867 	} else {
16868 		V6_SET_ZERO(tcp->tcp_ip6h->ip6_src);
16869 	}
16870 	V6_SET_ZERO(tcp->tcp_ip_src_v6);
16871 	bzero(tcp->tcp_tcph->th_lport, sizeof (tcp->tcp_tcph->th_lport));
16872 	tcp_bind_hash_remove(tcp);
16873 	tcp->tcp_state = TCPS_IDLE;
16874 	tcp->tcp_mdt = B_FALSE;
16875 	/* Send M_FLUSH according to TPI */
16876 	(void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW);
16877 	connp = tcp->tcp_connp;
16878 	connp->conn_mdt_ok = B_FALSE;
16879 	ipcl_hash_remove(connp);
16880 	bzero(&connp->conn_ports, sizeof (connp->conn_ports));
16881 	mp = mi_tpi_ok_ack_alloc(mp);
16882 	putnext(tcp->tcp_rq, mp);
16883 }
16884 
16885 /*
16886  * Don't let port fall into the privileged range.
16887  * Since the extra privileged ports can be arbitrary we also
16888  * ensure that we exclude those from consideration.
16889  * tcp_g_epriv_ports is not sorted thus we loop over it until
16890  * there are no changes.
16891  *
16892  * Note: No locks are held when inspecting tcp_g_*epriv_ports
16893  * but instead the code relies on:
16894  * - the fact that the address of the array and its size never changes
16895  * - the atomic assignment of the elements of the array
16896  *
16897  * Returns 0 if there are no more ports available.
16898  *
16899  * TS note: skip multilevel ports.
16900  */
16901 static in_port_t
16902 tcp_update_next_port(in_port_t port, const tcp_t *tcp, boolean_t random)
16903 {
16904 	int i;
16905 	boolean_t restart = B_FALSE;
16906 
16907 	if (random && tcp_random_anon_port != 0) {
16908 		(void) random_get_pseudo_bytes((uint8_t *)&port,
16909 		    sizeof (in_port_t));
16910 		/*
16911 		 * Unless changed by a sys admin, the smallest anon port
16912 		 * is 32768 and the largest anon port is 65535.  It is
16913 		 * very likely (50%) for the random port to be smaller
16914 		 * than the smallest anon port.  When that happens,
16915 		 * add port % (anon port range) to the smallest anon
16916 		 * port to get the random port.  It should fall into the
16917 		 * valid anon port range.
16918 		 */
16919 		if (port < tcp_smallest_anon_port) {
16920 			port = tcp_smallest_anon_port +
16921 			    port % (tcp_largest_anon_port -
16922 				tcp_smallest_anon_port);
16923 		}
16924 	}
16925 
16926 retry:
16927 	if (port < tcp_smallest_anon_port)
16928 		port = (in_port_t)tcp_smallest_anon_port;
16929 
16930 	if (port > tcp_largest_anon_port) {
16931 		if (restart)
16932 			return (0);
16933 		restart = B_TRUE;
16934 		port = (in_port_t)tcp_smallest_anon_port;
16935 	}
16936 
16937 	if (port < tcp_smallest_nonpriv_port)
16938 		port = (in_port_t)tcp_smallest_nonpriv_port;
16939 
16940 	for (i = 0; i < tcp_g_num_epriv_ports; i++) {
16941 		if (port == tcp_g_epriv_ports[i]) {
16942 			port++;
16943 			/*
16944 			 * Make sure whether the port is in the
16945 			 * valid range.
16946 			 */
16947 			goto retry;
16948 		}
16949 	}
16950 	if (is_system_labeled() &&
16951 	    (i = tsol_next_port(crgetzone(tcp->tcp_cred), port,
16952 	    IPPROTO_TCP, B_TRUE)) != 0) {
16953 		port = i;
16954 		goto retry;
16955 	}
16956 	return (port);
16957 }
16958 
16959 /*
16960  * Return the next anonymous port in the privileged port range for
16961  * bind checking.  It starts at IPPORT_RESERVED - 1 and goes
16962  * downwards.  This is the same behavior as documented in the userland
16963  * library call rresvport(3N).
16964  *
16965  * TS note: skip multilevel ports.
16966  */
16967 static in_port_t
16968 tcp_get_next_priv_port(const tcp_t *tcp)
16969 {
16970 	static in_port_t next_priv_port = IPPORT_RESERVED - 1;
16971 	in_port_t nextport;
16972 	boolean_t restart = B_FALSE;
16973 
16974 retry:
16975 	if (next_priv_port < tcp_min_anonpriv_port ||
16976 	    next_priv_port >= IPPORT_RESERVED) {
16977 		next_priv_port = IPPORT_RESERVED - 1;
16978 		if (restart)
16979 			return (0);
16980 		restart = B_TRUE;
16981 	}
16982 	if (is_system_labeled() &&
16983 	    (nextport = tsol_next_port(crgetzone(tcp->tcp_cred),
16984 	    next_priv_port, IPPROTO_TCP, B_FALSE)) != 0) {
16985 		next_priv_port = nextport;
16986 		goto retry;
16987 	}
16988 	return (next_priv_port--);
16989 }
16990 
16991 /* The write side r/w procedure. */
16992 
16993 #if CCS_STATS
16994 struct {
16995 	struct {
16996 		int64_t count, bytes;
16997 	} tot, hit;
16998 } wrw_stats;
16999 #endif
17000 
17001 /*
17002  * Call by tcp_wput() to handle all non data, except M_PROTO and M_PCPROTO,
17003  * messages.
17004  */
17005 /* ARGSUSED */
17006 static void
17007 tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2)
17008 {
17009 	conn_t	*connp = (conn_t *)arg;
17010 	tcp_t	*tcp = connp->conn_tcp;
17011 	queue_t	*q = tcp->tcp_wq;
17012 
17013 	ASSERT(DB_TYPE(mp) != M_IOCTL);
17014 	/*
17015 	 * TCP is D_MP and qprocsoff() is done towards the end of the tcp_close.
17016 	 * Once the close starts, streamhead and sockfs will not let any data
17017 	 * packets come down (close ensures that there are no threads using the
17018 	 * queue and no new threads will come down) but since qprocsoff()
17019 	 * hasn't happened yet, a M_FLUSH or some non data message might
17020 	 * get reflected back (in response to our own FLUSHRW) and get
17021 	 * processed after tcp_close() is done. The conn would still be valid
17022 	 * because a ref would have added but we need to check the state
17023 	 * before actually processing the packet.
17024 	 */
17025 	if (TCP_IS_DETACHED(tcp) || (tcp->tcp_state == TCPS_CLOSED)) {
17026 		freemsg(mp);
17027 		return;
17028 	}
17029 
17030 	switch (DB_TYPE(mp)) {
17031 	case M_IOCDATA:
17032 		tcp_wput_iocdata(tcp, mp);
17033 		break;
17034 	case M_FLUSH:
17035 		tcp_wput_flush(tcp, mp);
17036 		break;
17037 	default:
17038 		CALL_IP_WPUT(connp, q, mp);
17039 		break;
17040 	}
17041 }
17042 
17043 /*
17044  * The TCP fast path write put procedure.
17045  * NOTE: the logic of the fast path is duplicated from tcp_wput_data()
17046  */
17047 /* ARGSUSED */
17048 void
17049 tcp_output(void *arg, mblk_t *mp, void *arg2)
17050 {
17051 	int		len;
17052 	int		hdrlen;
17053 	int		plen;
17054 	mblk_t		*mp1;
17055 	uchar_t		*rptr;
17056 	uint32_t	snxt;
17057 	tcph_t		*tcph;
17058 	struct datab	*db;
17059 	uint32_t	suna;
17060 	uint32_t	mss;
17061 	ipaddr_t	*dst;
17062 	ipaddr_t	*src;
17063 	uint32_t	sum;
17064 	int		usable;
17065 	conn_t		*connp = (conn_t *)arg;
17066 	tcp_t		*tcp = connp->conn_tcp;
17067 	uint32_t	msize;
17068 
17069 	/*
17070 	 * Try and ASSERT the minimum possible references on the
17071 	 * conn early enough. Since we are executing on write side,
17072 	 * the connection is obviously not detached and that means
17073 	 * there is a ref each for TCP and IP. Since we are behind
17074 	 * the squeue, the minimum references needed are 3. If the
17075 	 * conn is in classifier hash list, there should be an
17076 	 * extra ref for that (we check both the possibilities).
17077 	 */
17078 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
17079 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
17080 
17081 	ASSERT(DB_TYPE(mp) == M_DATA);
17082 	msize = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp);
17083 
17084 	mutex_enter(&connp->conn_lock);
17085 	tcp->tcp_squeue_bytes -= msize;
17086 	mutex_exit(&connp->conn_lock);
17087 
17088 	/* Bypass tcp protocol for fused tcp loopback */
17089 	if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize))
17090 		return;
17091 
17092 	mss = tcp->tcp_mss;
17093 	if (tcp->tcp_xmit_zc_clean)
17094 		mp = tcp_zcopy_backoff(tcp, mp, 0);
17095 
17096 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
17097 	len = (int)(mp->b_wptr - mp->b_rptr);
17098 
17099 	/*
17100 	 * Criteria for fast path:
17101 	 *
17102 	 *   1. no unsent data
17103 	 *   2. single mblk in request
17104 	 *   3. connection established
17105 	 *   4. data in mblk
17106 	 *   5. len <= mss
17107 	 *   6. no tcp_valid bits
17108 	 */
17109 	if ((tcp->tcp_unsent != 0) ||
17110 	    (tcp->tcp_cork) ||
17111 	    (mp->b_cont != NULL) ||
17112 	    (tcp->tcp_state != TCPS_ESTABLISHED) ||
17113 	    (len == 0) ||
17114 	    (len > mss) ||
17115 	    (tcp->tcp_valid_bits != 0)) {
17116 		tcp_wput_data(tcp, mp, B_FALSE);
17117 		return;
17118 	}
17119 
17120 	ASSERT(tcp->tcp_xmit_tail_unsent == 0);
17121 	ASSERT(tcp->tcp_fin_sent == 0);
17122 
17123 	/* queue new packet onto retransmission queue */
17124 	if (tcp->tcp_xmit_head == NULL) {
17125 		tcp->tcp_xmit_head = mp;
17126 	} else {
17127 		tcp->tcp_xmit_last->b_cont = mp;
17128 	}
17129 	tcp->tcp_xmit_last = mp;
17130 	tcp->tcp_xmit_tail = mp;
17131 
17132 	/* find out how much we can send */
17133 	/* BEGIN CSTYLED */
17134 	/*
17135 	 *    un-acked           usable
17136 	 *  |--------------|-----------------|
17137 	 *  tcp_suna       tcp_snxt          tcp_suna+tcp_swnd
17138 	 */
17139 	/* END CSTYLED */
17140 
17141 	/* start sending from tcp_snxt */
17142 	snxt = tcp->tcp_snxt;
17143 
17144 	/*
17145 	 * Check to see if this connection has been idled for some
17146 	 * time and no ACK is expected.  If it is, we need to slow
17147 	 * start again to get back the connection's "self-clock" as
17148 	 * described in VJ's paper.
17149 	 *
17150 	 * Refer to the comment in tcp_mss_set() for the calculation
17151 	 * of tcp_cwnd after idle.
17152 	 */
17153 	if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet &&
17154 	    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) {
17155 		SET_TCP_INIT_CWND(tcp, mss, tcp_slow_start_after_idle);
17156 	}
17157 
17158 	usable = tcp->tcp_swnd;		/* tcp window size */
17159 	if (usable > tcp->tcp_cwnd)
17160 		usable = tcp->tcp_cwnd;	/* congestion window smaller */
17161 	usable -= snxt;		/* subtract stuff already sent */
17162 	suna = tcp->tcp_suna;
17163 	usable += suna;
17164 	/* usable can be < 0 if the congestion window is smaller */
17165 	if (len > usable) {
17166 		/* Can't send complete M_DATA in one shot */
17167 		goto slow;
17168 	}
17169 
17170 	if (tcp->tcp_flow_stopped &&
17171 	    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
17172 		tcp_clrqfull(tcp);
17173 	}
17174 
17175 	/*
17176 	 * determine if anything to send (Nagle).
17177 	 *
17178 	 *   1. len < tcp_mss (i.e. small)
17179 	 *   2. unacknowledged data present
17180 	 *   3. len < nagle limit
17181 	 *   4. last packet sent < nagle limit (previous packet sent)
17182 	 */
17183 	if ((len < mss) && (snxt != suna) &&
17184 	    (len < (int)tcp->tcp_naglim) &&
17185 	    (tcp->tcp_last_sent_len < tcp->tcp_naglim)) {
17186 		/*
17187 		 * This was the first unsent packet and normally
17188 		 * mss < xmit_hiwater so there is no need to worry
17189 		 * about flow control. The next packet will go
17190 		 * through the flow control check in tcp_wput_data().
17191 		 */
17192 		/* leftover work from above */
17193 		tcp->tcp_unsent = len;
17194 		tcp->tcp_xmit_tail_unsent = len;
17195 
17196 		return;
17197 	}
17198 
17199 	/* len <= tcp->tcp_mss && len == unsent so no silly window */
17200 
17201 	if (snxt == suna) {
17202 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
17203 	}
17204 
17205 	/* we have always sent something */
17206 	tcp->tcp_rack_cnt = 0;
17207 
17208 	tcp->tcp_snxt = snxt + len;
17209 	tcp->tcp_rack = tcp->tcp_rnxt;
17210 
17211 	if ((mp1 = dupb(mp)) == 0)
17212 		goto no_memory;
17213 	mp->b_prev = (mblk_t *)(uintptr_t)lbolt;
17214 	mp->b_next = (mblk_t *)(uintptr_t)snxt;
17215 
17216 	/* adjust tcp header information */
17217 	tcph = tcp->tcp_tcph;
17218 	tcph->th_flags[0] = (TH_ACK|TH_PUSH);
17219 
17220 	sum = len + tcp->tcp_tcp_hdr_len + tcp->tcp_sum;
17221 	sum = (sum >> 16) + (sum & 0xFFFF);
17222 	U16_TO_ABE16(sum, tcph->th_sum);
17223 
17224 	U32_TO_ABE32(snxt, tcph->th_seq);
17225 
17226 	BUMP_MIB(&tcp_mib, tcpOutDataSegs);
17227 	UPDATE_MIB(&tcp_mib, tcpOutDataBytes, len);
17228 	BUMP_LOCAL(tcp->tcp_obsegs);
17229 
17230 	/* Update the latest receive window size in TCP header. */
17231 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
17232 	    tcph->th_win);
17233 
17234 	tcp->tcp_last_sent_len = (ushort_t)len;
17235 
17236 	plen = len + tcp->tcp_hdr_len;
17237 
17238 	if (tcp->tcp_ipversion == IPV4_VERSION) {
17239 		tcp->tcp_ipha->ipha_length = htons(plen);
17240 	} else {
17241 		tcp->tcp_ip6h->ip6_plen = htons(plen -
17242 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
17243 	}
17244 
17245 	/* see if we need to allocate a mblk for the headers */
17246 	hdrlen = tcp->tcp_hdr_len;
17247 	rptr = mp1->b_rptr - hdrlen;
17248 	db = mp1->b_datap;
17249 	if ((db->db_ref != 2) || rptr < db->db_base ||
17250 	    (!OK_32PTR(rptr))) {
17251 		/* NOTE: we assume allocb returns an OK_32PTR */
17252 		mp = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH +
17253 		    tcp_wroff_xtra, BPRI_MED);
17254 		if (!mp) {
17255 			freemsg(mp1);
17256 			goto no_memory;
17257 		}
17258 		mp->b_cont = mp1;
17259 		mp1 = mp;
17260 		/* Leave room for Link Level header */
17261 		/* hdrlen = tcp->tcp_hdr_len; */
17262 		rptr = &mp1->b_rptr[tcp_wroff_xtra];
17263 		mp1->b_wptr = &rptr[hdrlen];
17264 	}
17265 	mp1->b_rptr = rptr;
17266 
17267 	/* Fill in the timestamp option. */
17268 	if (tcp->tcp_snd_ts_ok) {
17269 		U32_TO_BE32((uint32_t)lbolt,
17270 		    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
17271 		U32_TO_BE32(tcp->tcp_ts_recent,
17272 		    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
17273 	} else {
17274 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
17275 	}
17276 
17277 	/* copy header into outgoing packet */
17278 	dst = (ipaddr_t *)rptr;
17279 	src = (ipaddr_t *)tcp->tcp_iphc;
17280 	dst[0] = src[0];
17281 	dst[1] = src[1];
17282 	dst[2] = src[2];
17283 	dst[3] = src[3];
17284 	dst[4] = src[4];
17285 	dst[5] = src[5];
17286 	dst[6] = src[6];
17287 	dst[7] = src[7];
17288 	dst[8] = src[8];
17289 	dst[9] = src[9];
17290 	if (hdrlen -= 40) {
17291 		hdrlen >>= 2;
17292 		dst += 10;
17293 		src += 10;
17294 		do {
17295 			*dst++ = *src++;
17296 		} while (--hdrlen);
17297 	}
17298 
17299 	/*
17300 	 * Set the ECN info in the TCP header.  Note that this
17301 	 * is not the template header.
17302 	 */
17303 	if (tcp->tcp_ecn_ok) {
17304 		SET_ECT(tcp, rptr);
17305 
17306 		tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
17307 		if (tcp->tcp_ecn_echo_on)
17308 			tcph->th_flags[0] |= TH_ECE;
17309 		if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
17310 			tcph->th_flags[0] |= TH_CWR;
17311 			tcp->tcp_ecn_cwr_sent = B_TRUE;
17312 		}
17313 	}
17314 
17315 	if (tcp->tcp_ip_forward_progress) {
17316 		ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
17317 		*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
17318 		tcp->tcp_ip_forward_progress = B_FALSE;
17319 	}
17320 	TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT);
17321 	tcp_send_data(tcp, tcp->tcp_wq, mp1);
17322 	return;
17323 
17324 	/*
17325 	 * If we ran out of memory, we pretend to have sent the packet
17326 	 * and that it was lost on the wire.
17327 	 */
17328 no_memory:
17329 	return;
17330 
17331 slow:
17332 	/* leftover work from above */
17333 	tcp->tcp_unsent = len;
17334 	tcp->tcp_xmit_tail_unsent = len;
17335 	tcp_wput_data(tcp, NULL, B_FALSE);
17336 }
17337 
17338 /*
17339  * The function called through squeue to get behind eager's perimeter to
17340  * finish the accept processing.
17341  */
17342 /* ARGSUSED */
17343 void
17344 tcp_accept_finish(void *arg, mblk_t *mp, void *arg2)
17345 {
17346 	conn_t			*connp = (conn_t *)arg;
17347 	tcp_t			*tcp = connp->conn_tcp;
17348 	queue_t			*q = tcp->tcp_rq;
17349 	mblk_t			*mp1;
17350 	mblk_t			*stropt_mp = mp;
17351 	struct  stroptions	*stropt;
17352 	uint_t			thwin;
17353 
17354 	/*
17355 	 * Drop the eager's ref on the listener, that was placed when
17356 	 * this eager began life in tcp_conn_request.
17357 	 */
17358 	CONN_DEC_REF(tcp->tcp_saved_listener->tcp_connp);
17359 
17360 	if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_accept_error) {
17361 		/*
17362 		 * Someone blewoff the eager before we could finish
17363 		 * the accept.
17364 		 *
17365 		 * The only reason eager exists it because we put in
17366 		 * a ref on it when conn ind went up. We need to send
17367 		 * a disconnect indication up while the last reference
17368 		 * on the eager will be dropped by the squeue when we
17369 		 * return.
17370 		 */
17371 		ASSERT(tcp->tcp_listener == NULL);
17372 		if (tcp->tcp_issocket || tcp->tcp_send_discon_ind) {
17373 			struct	T_discon_ind	*tdi;
17374 
17375 			(void) putnextctl1(q, M_FLUSH, FLUSHRW);
17376 			/*
17377 			 * Let us reuse the incoming mblk to avoid memory
17378 			 * allocation failure problems. We know that the
17379 			 * size of the incoming mblk i.e. stroptions is greater
17380 			 * than sizeof T_discon_ind. So the reallocb below
17381 			 * can't fail.
17382 			 */
17383 			freemsg(mp->b_cont);
17384 			mp->b_cont = NULL;
17385 			ASSERT(DB_REF(mp) == 1);
17386 			mp = reallocb(mp, sizeof (struct T_discon_ind),
17387 			    B_FALSE);
17388 			ASSERT(mp != NULL);
17389 			DB_TYPE(mp) = M_PROTO;
17390 			((union T_primitives *)mp->b_rptr)->type = T_DISCON_IND;
17391 			tdi = (struct T_discon_ind *)mp->b_rptr;
17392 			if (tcp->tcp_issocket) {
17393 				tdi->DISCON_reason = ECONNREFUSED;
17394 				tdi->SEQ_number = 0;
17395 			} else {
17396 				tdi->DISCON_reason = ENOPROTOOPT;
17397 				tdi->SEQ_number =
17398 				    tcp->tcp_conn_req_seqnum;
17399 			}
17400 			mp->b_wptr = mp->b_rptr + sizeof (struct T_discon_ind);
17401 			putnext(q, mp);
17402 		} else {
17403 			freemsg(mp);
17404 		}
17405 		if (tcp->tcp_hard_binding) {
17406 			tcp->tcp_hard_binding = B_FALSE;
17407 			tcp->tcp_hard_bound = B_TRUE;
17408 		}
17409 		tcp->tcp_detached = B_FALSE;
17410 		return;
17411 	}
17412 
17413 	mp1 = stropt_mp->b_cont;
17414 	stropt_mp->b_cont = NULL;
17415 	ASSERT(DB_TYPE(stropt_mp) == M_SETOPTS);
17416 	stropt = (struct stroptions *)stropt_mp->b_rptr;
17417 
17418 	while (mp1 != NULL) {
17419 		mp = mp1;
17420 		mp1 = mp1->b_cont;
17421 		mp->b_cont = NULL;
17422 		tcp->tcp_drop_opt_ack_cnt++;
17423 		CALL_IP_WPUT(connp, tcp->tcp_wq, mp);
17424 	}
17425 	mp = NULL;
17426 
17427 	/*
17428 	 * For a loopback connection with tcp_direct_sockfs on, note that
17429 	 * we don't have to protect tcp_rcv_list yet because synchronous
17430 	 * streams has not yet been enabled and tcp_fuse_rrw() cannot
17431 	 * possibly race with us.
17432 	 */
17433 
17434 	/*
17435 	 * Set the max window size (tcp_rq->q_hiwat) of the acceptor
17436 	 * properly.  This is the first time we know of the acceptor'
17437 	 * queue.  So we do it here.
17438 	 */
17439 	if (tcp->tcp_rcv_list == NULL) {
17440 		/*
17441 		 * Recv queue is empty, tcp_rwnd should not have changed.
17442 		 * That means it should be equal to the listener's tcp_rwnd.
17443 		 */
17444 		tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd;
17445 	} else {
17446 #ifdef DEBUG
17447 		uint_t cnt = 0;
17448 
17449 		mp1 = tcp->tcp_rcv_list;
17450 		while ((mp = mp1) != NULL) {
17451 			mp1 = mp->b_next;
17452 			cnt += msgdsize(mp);
17453 		}
17454 		ASSERT(cnt != 0 && tcp->tcp_rcv_cnt == cnt);
17455 #endif
17456 		/* There is some data, add them back to get the max. */
17457 		tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd + tcp->tcp_rcv_cnt;
17458 	}
17459 
17460 	stropt->so_flags = SO_HIWAT;
17461 	stropt->so_hiwat = MAX(q->q_hiwat, tcp_sth_rcv_hiwat);
17462 
17463 	stropt->so_flags |= SO_MAXBLK;
17464 	stropt->so_maxblk = tcp_maxpsz_set(tcp, B_FALSE);
17465 
17466 	/*
17467 	 * This is the first time we run on the correct
17468 	 * queue after tcp_accept. So fix all the q parameters
17469 	 * here.
17470 	 */
17471 	/* Allocate room for SACK options if needed. */
17472 	stropt->so_flags |= SO_WROFF;
17473 	if (tcp->tcp_fused) {
17474 		ASSERT(tcp->tcp_loopback);
17475 		ASSERT(tcp->tcp_loopback_peer != NULL);
17476 		/*
17477 		 * For fused tcp loopback, set the stream head's write
17478 		 * offset value to zero since we won't be needing any room
17479 		 * for TCP/IP headers.  This would also improve performance
17480 		 * since it would reduce the amount of work done by kmem.
17481 		 * Non-fused tcp loopback case is handled separately below.
17482 		 */
17483 		stropt->so_wroff = 0;
17484 		/*
17485 		 * Record the stream head's high water mark for this endpoint;
17486 		 * this is used for flow-control purposes in tcp_fuse_output().
17487 		 */
17488 		stropt->so_hiwat = tcp_fuse_set_rcv_hiwat(tcp, q->q_hiwat);
17489 		/*
17490 		 * Update the peer's transmit parameters according to
17491 		 * our recently calculated high water mark value.
17492 		 */
17493 		(void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE);
17494 	} else if (tcp->tcp_snd_sack_ok) {
17495 		stropt->so_wroff = tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN +
17496 		    (tcp->tcp_loopback ? 0 : tcp_wroff_xtra);
17497 	} else {
17498 		stropt->so_wroff = tcp->tcp_hdr_len + (tcp->tcp_loopback ? 0 :
17499 		    tcp_wroff_xtra);
17500 	}
17501 
17502 	/*
17503 	 * If this is endpoint is handling SSL, then reserve extra
17504 	 * offset and space at the end.
17505 	 * Also have the stream head allocate SSL3_MAX_RECORD_LEN packets,
17506 	 * overriding the previous setting. The extra cost of signing and
17507 	 * encrypting multiple MSS-size records (12 of them with Ethernet),
17508 	 * instead of a single contiguous one by the stream head
17509 	 * largely outweighs the statistical reduction of ACKs, when
17510 	 * applicable. The peer will also save on decyption and verification
17511 	 * costs.
17512 	 */
17513 	if (tcp->tcp_kssl_ctx != NULL) {
17514 		stropt->so_wroff += SSL3_WROFFSET;
17515 
17516 		stropt->so_flags |= SO_TAIL;
17517 		stropt->so_tail = SSL3_MAX_TAIL_LEN;
17518 
17519 		stropt->so_maxblk = SSL3_MAX_RECORD_LEN;
17520 	}
17521 
17522 	/* Send the options up */
17523 	putnext(q, stropt_mp);
17524 
17525 	/*
17526 	 * Pass up any data and/or a fin that has been received.
17527 	 *
17528 	 * Adjust receive window in case it had decreased
17529 	 * (because there is data <=> tcp_rcv_list != NULL)
17530 	 * while the connection was detached. Note that
17531 	 * in case the eager was flow-controlled, w/o this
17532 	 * code, the rwnd may never open up again!
17533 	 */
17534 	if (tcp->tcp_rcv_list != NULL) {
17535 		/* We drain directly in case of fused tcp loopback */
17536 		if (!tcp->tcp_fused && canputnext(q)) {
17537 			tcp->tcp_rwnd = q->q_hiwat;
17538 			thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
17539 			    << tcp->tcp_rcv_ws;
17540 			thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
17541 			if (tcp->tcp_state >= TCPS_ESTABLISHED &&
17542 			    (q->q_hiwat - thwin >= tcp->tcp_mss)) {
17543 				tcp_xmit_ctl(NULL,
17544 				    tcp, (tcp->tcp_swnd == 0) ?
17545 				    tcp->tcp_suna : tcp->tcp_snxt,
17546 				    tcp->tcp_rnxt, TH_ACK);
17547 				BUMP_MIB(&tcp_mib, tcpOutWinUpdate);
17548 			}
17549 
17550 		}
17551 		(void) tcp_rcv_drain(q, tcp);
17552 
17553 		/*
17554 		 * For fused tcp loopback, back-enable peer endpoint
17555 		 * if it's currently flow-controlled.
17556 		 */
17557 		if (tcp->tcp_fused &&
17558 		    tcp->tcp_loopback_peer->tcp_flow_stopped) {
17559 			tcp_t *peer_tcp = tcp->tcp_loopback_peer;
17560 
17561 			ASSERT(peer_tcp != NULL);
17562 			ASSERT(peer_tcp->tcp_fused);
17563 
17564 			tcp_clrqfull(peer_tcp);
17565 			TCP_STAT(tcp_fusion_backenabled);
17566 		}
17567 	}
17568 	ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
17569 	if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
17570 		mp = mi_tpi_ordrel_ind();
17571 		if (mp) {
17572 			tcp->tcp_ordrel_done = B_TRUE;
17573 			putnext(q, mp);
17574 			if (tcp->tcp_deferred_clean_death) {
17575 				/*
17576 				 * tcp_clean_death was deferred
17577 				 * for T_ORDREL_IND - do it now
17578 				 */
17579 				(void) tcp_clean_death(tcp,
17580 				    tcp->tcp_client_errno, 21);
17581 				tcp->tcp_deferred_clean_death = B_FALSE;
17582 			}
17583 		} else {
17584 			/*
17585 			 * Run the orderly release in the
17586 			 * service routine.
17587 			 */
17588 			qenable(q);
17589 		}
17590 	}
17591 	if (tcp->tcp_hard_binding) {
17592 		tcp->tcp_hard_binding = B_FALSE;
17593 		tcp->tcp_hard_bound = B_TRUE;
17594 	}
17595 
17596 	tcp->tcp_detached = B_FALSE;
17597 
17598 	/* We can enable synchronous streams now */
17599 	if (tcp->tcp_fused) {
17600 		tcp_fuse_syncstr_enable_pair(tcp);
17601 	}
17602 
17603 	if (tcp->tcp_ka_enabled) {
17604 		tcp->tcp_ka_last_intrvl = 0;
17605 		tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
17606 		    MSEC_TO_TICK(tcp->tcp_ka_interval));
17607 	}
17608 
17609 	/*
17610 	 * At this point, eager is fully established and will
17611 	 * have the following references -
17612 	 *
17613 	 * 2 references for connection to exist (1 for TCP and 1 for IP).
17614 	 * 1 reference for the squeue which will be dropped by the squeue as
17615 	 *	soon as this function returns.
17616 	 * There will be 1 additonal reference for being in classifier
17617 	 *	hash list provided something bad hasn't happened.
17618 	 */
17619 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
17620 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
17621 }
17622 
17623 /*
17624  * The function called through squeue to get behind listener's perimeter to
17625  * send a deffered conn_ind.
17626  */
17627 /* ARGSUSED */
17628 void
17629 tcp_send_pending(void *arg, mblk_t *mp, void *arg2)
17630 {
17631 	conn_t	*connp = (conn_t *)arg;
17632 	tcp_t *listener = connp->conn_tcp;
17633 
17634 	if (listener->tcp_state == TCPS_CLOSED ||
17635 	    TCP_IS_DETACHED(listener)) {
17636 		/*
17637 		 * If listener has closed, it would have caused a
17638 		 * a cleanup/blowoff to happen for the eager.
17639 		 */
17640 		tcp_t *tcp;
17641 		struct T_conn_ind	*conn_ind;
17642 
17643 		conn_ind = (struct T_conn_ind *)mp->b_rptr;
17644 		bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp,
17645 		    conn_ind->OPT_length);
17646 		/*
17647 		 * We need to drop the ref on eager that was put
17648 		 * tcp_rput_data() before trying to send the conn_ind
17649 		 * to listener. The conn_ind was deferred in tcp_send_conn_ind
17650 		 * and tcp_wput_accept() is sending this deferred conn_ind but
17651 		 * listener is closed so we drop the ref.
17652 		 */
17653 		CONN_DEC_REF(tcp->tcp_connp);
17654 		freemsg(mp);
17655 		return;
17656 	}
17657 	putnext(listener->tcp_rq, mp);
17658 }
17659 
17660 
17661 /*
17662  * This is the STREAMS entry point for T_CONN_RES coming down on
17663  * Acceptor STREAM when  sockfs listener does accept processing.
17664  * Read the block comment on top pf tcp_conn_request().
17665  */
17666 void
17667 tcp_wput_accept(queue_t *q, mblk_t *mp)
17668 {
17669 	queue_t *rq = RD(q);
17670 	struct T_conn_res *conn_res;
17671 	tcp_t *eager;
17672 	tcp_t *listener;
17673 	struct T_ok_ack *ok;
17674 	t_scalar_t PRIM_type;
17675 	mblk_t *opt_mp;
17676 	conn_t *econnp;
17677 
17678 	ASSERT(DB_TYPE(mp) == M_PROTO);
17679 
17680 	conn_res = (struct T_conn_res *)mp->b_rptr;
17681 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
17682 	if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_res)) {
17683 		mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0);
17684 		if (mp != NULL)
17685 			putnext(rq, mp);
17686 		return;
17687 	}
17688 	switch (conn_res->PRIM_type) {
17689 	case O_T_CONN_RES:
17690 	case T_CONN_RES:
17691 		/*
17692 		 * We pass up an err ack if allocb fails. This will
17693 		 * cause sockfs to issue a T_DISCON_REQ which will cause
17694 		 * tcp_eager_blowoff to be called. sockfs will then call
17695 		 * rq->q_qinfo->qi_qclose to cleanup the acceptor stream.
17696 		 * we need to do the allocb up here because we have to
17697 		 * make sure rq->q_qinfo->qi_qclose still points to the
17698 		 * correct function (tcpclose_accept) in case allocb
17699 		 * fails.
17700 		 */
17701 		opt_mp = allocb(sizeof (struct stroptions), BPRI_HI);
17702 		if (opt_mp == NULL) {
17703 			mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0);
17704 			if (mp != NULL)
17705 				putnext(rq, mp);
17706 			return;
17707 		}
17708 
17709 		bcopy(mp->b_rptr + conn_res->OPT_offset,
17710 		    &eager, conn_res->OPT_length);
17711 		PRIM_type = conn_res->PRIM_type;
17712 		mp->b_datap->db_type = M_PCPROTO;
17713 		mp->b_wptr = mp->b_rptr + sizeof (struct T_ok_ack);
17714 		ok = (struct T_ok_ack *)mp->b_rptr;
17715 		ok->PRIM_type = T_OK_ACK;
17716 		ok->CORRECT_prim = PRIM_type;
17717 		econnp = eager->tcp_connp;
17718 		econnp->conn_dev = (dev_t)q->q_ptr;
17719 		eager->tcp_rq = rq;
17720 		eager->tcp_wq = q;
17721 		rq->q_ptr = econnp;
17722 		rq->q_qinfo = &tcp_rinit;
17723 		q->q_ptr = econnp;
17724 		q->q_qinfo = &tcp_winit;
17725 		listener = eager->tcp_listener;
17726 		eager->tcp_issocket = B_TRUE;
17727 		econnp->conn_zoneid = listener->tcp_connp->conn_zoneid;
17728 
17729 		/* Put the ref for IP */
17730 		CONN_INC_REF(econnp);
17731 
17732 		/*
17733 		 * We should have minimum of 3 references on the conn
17734 		 * at this point. One each for TCP and IP and one for
17735 		 * the T_conn_ind that was sent up when the 3-way handshake
17736 		 * completed. In the normal case we would also have another
17737 		 * reference (making a total of 4) for the conn being in the
17738 		 * classifier hash list. However the eager could have received
17739 		 * an RST subsequently and tcp_closei_local could have removed
17740 		 * the eager from the classifier hash list, hence we can't
17741 		 * assert that reference.
17742 		 */
17743 		ASSERT(econnp->conn_ref >= 3);
17744 
17745 		/*
17746 		 * Send the new local address also up to sockfs. There
17747 		 * should already be enough space in the mp that came
17748 		 * down from soaccept().
17749 		 */
17750 		if (eager->tcp_family == AF_INET) {
17751 			sin_t *sin;
17752 
17753 			ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >=
17754 			    (sizeof (struct T_ok_ack) + sizeof (sin_t)));
17755 			sin = (sin_t *)mp->b_wptr;
17756 			mp->b_wptr += sizeof (sin_t);
17757 			sin->sin_family = AF_INET;
17758 			sin->sin_port = eager->tcp_lport;
17759 			sin->sin_addr.s_addr = eager->tcp_ipha->ipha_src;
17760 		} else {
17761 			sin6_t *sin6;
17762 
17763 			ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >=
17764 			    sizeof (struct T_ok_ack) + sizeof (sin6_t));
17765 			sin6 = (sin6_t *)mp->b_wptr;
17766 			mp->b_wptr += sizeof (sin6_t);
17767 			sin6->sin6_family = AF_INET6;
17768 			sin6->sin6_port = eager->tcp_lport;
17769 			if (eager->tcp_ipversion == IPV4_VERSION) {
17770 				sin6->sin6_flowinfo = 0;
17771 				IN6_IPADDR_TO_V4MAPPED(
17772 					eager->tcp_ipha->ipha_src,
17773 					    &sin6->sin6_addr);
17774 			} else {
17775 				ASSERT(eager->tcp_ip6h != NULL);
17776 				sin6->sin6_flowinfo =
17777 				    eager->tcp_ip6h->ip6_vcf &
17778 				    ~IPV6_VERS_AND_FLOW_MASK;
17779 				sin6->sin6_addr = eager->tcp_ip6h->ip6_src;
17780 			}
17781 			sin6->sin6_scope_id = 0;
17782 			sin6->__sin6_src_id = 0;
17783 		}
17784 
17785 		putnext(rq, mp);
17786 
17787 		opt_mp->b_datap->db_type = M_SETOPTS;
17788 		opt_mp->b_wptr += sizeof (struct stroptions);
17789 
17790 		/*
17791 		 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO
17792 		 * from listener to acceptor. The message is chained on the
17793 		 * bind_mp which tcp_rput_other will send down to IP.
17794 		 */
17795 		if (listener->tcp_bound_if != 0) {
17796 			/* allocate optmgmt req */
17797 			mp = tcp_setsockopt_mp(IPPROTO_IPV6,
17798 			    IPV6_BOUND_IF, (char *)&listener->tcp_bound_if,
17799 			    sizeof (int));
17800 			if (mp != NULL)
17801 				linkb(opt_mp, mp);
17802 		}
17803 		if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) {
17804 			uint_t on = 1;
17805 
17806 			/* allocate optmgmt req */
17807 			mp = tcp_setsockopt_mp(IPPROTO_IPV6,
17808 			    IPV6_RECVPKTINFO, (char *)&on, sizeof (on));
17809 			if (mp != NULL)
17810 				linkb(opt_mp, mp);
17811 		}
17812 
17813 
17814 		mutex_enter(&listener->tcp_eager_lock);
17815 
17816 		if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) {
17817 
17818 			tcp_t *tail;
17819 			tcp_t *tcp;
17820 			mblk_t *mp1;
17821 
17822 			tcp = listener->tcp_eager_prev_q0;
17823 			/*
17824 			 * listener->tcp_eager_prev_q0 points to the TAIL of the
17825 			 * deferred T_conn_ind queue. We need to get to the head
17826 			 * of the queue in order to send up T_conn_ind the same
17827 			 * order as how the 3WHS is completed.
17828 			 */
17829 			while (tcp != listener) {
17830 				if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0 &&
17831 				    !tcp->tcp_kssl_pending)
17832 					break;
17833 				else
17834 					tcp = tcp->tcp_eager_prev_q0;
17835 			}
17836 			/* None of the pending eagers can be sent up now */
17837 			if (tcp == listener)
17838 				goto no_more_eagers;
17839 
17840 			mp1 = tcp->tcp_conn.tcp_eager_conn_ind;
17841 			tcp->tcp_conn.tcp_eager_conn_ind = NULL;
17842 			/* Move from q0 to q */
17843 			ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
17844 			listener->tcp_conn_req_cnt_q0--;
17845 			listener->tcp_conn_req_cnt_q++;
17846 			tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
17847 			    tcp->tcp_eager_prev_q0;
17848 			tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
17849 			    tcp->tcp_eager_next_q0;
17850 			tcp->tcp_eager_prev_q0 = NULL;
17851 			tcp->tcp_eager_next_q0 = NULL;
17852 			tcp->tcp_conn_def_q0 = B_FALSE;
17853 
17854 			/*
17855 			 * Insert at end of the queue because sockfs sends
17856 			 * down T_CONN_RES in chronological order. Leaving
17857 			 * the older conn indications at front of the queue
17858 			 * helps reducing search time.
17859 			 */
17860 			tail = listener->tcp_eager_last_q;
17861 			if (tail != NULL) {
17862 				tail->tcp_eager_next_q = tcp;
17863 			} else {
17864 				listener->tcp_eager_next_q = tcp;
17865 			}
17866 			listener->tcp_eager_last_q = tcp;
17867 			tcp->tcp_eager_next_q = NULL;
17868 
17869 			/* Need to get inside the listener perimeter */
17870 			CONN_INC_REF(listener->tcp_connp);
17871 			squeue_fill(listener->tcp_connp->conn_sqp, mp1,
17872 			    tcp_send_pending, listener->tcp_connp,
17873 			    SQTAG_TCP_SEND_PENDING);
17874 		}
17875 no_more_eagers:
17876 		tcp_eager_unlink(eager);
17877 		mutex_exit(&listener->tcp_eager_lock);
17878 
17879 		/*
17880 		 * At this point, the eager is detached from the listener
17881 		 * but we still have an extra refs on eager (apart from the
17882 		 * usual tcp references). The ref was placed in tcp_rput_data
17883 		 * before sending the conn_ind in tcp_send_conn_ind.
17884 		 * The ref will be dropped in tcp_accept_finish().
17885 		 */
17886 		squeue_enter_nodrain(econnp->conn_sqp, opt_mp,
17887 		    tcp_accept_finish, econnp, SQTAG_TCP_ACCEPT_FINISH_Q0);
17888 		return;
17889 	default:
17890 		mp = mi_tpi_err_ack_alloc(mp, TNOTSUPPORT, 0);
17891 		if (mp != NULL)
17892 			putnext(rq, mp);
17893 		return;
17894 	}
17895 }
17896 
17897 void
17898 tcp_wput(queue_t *q, mblk_t *mp)
17899 {
17900 	conn_t	*connp = Q_TO_CONN(q);
17901 	tcp_t	*tcp;
17902 	void (*output_proc)();
17903 	t_scalar_t type;
17904 	uchar_t *rptr;
17905 	struct iocblk	*iocp;
17906 	uint32_t	msize;
17907 
17908 	ASSERT(connp->conn_ref >= 2);
17909 
17910 	switch (DB_TYPE(mp)) {
17911 	case M_DATA:
17912 		tcp = connp->conn_tcp;
17913 		ASSERT(tcp != NULL);
17914 
17915 		msize = msgdsize(mp);
17916 
17917 		mutex_enter(&connp->conn_lock);
17918 		CONN_INC_REF_LOCKED(connp);
17919 
17920 		tcp->tcp_squeue_bytes += msize;
17921 		if (TCP_UNSENT_BYTES(tcp) > tcp->tcp_xmit_hiwater) {
17922 			mutex_exit(&connp->conn_lock);
17923 			tcp_setqfull(tcp);
17924 		} else
17925 			mutex_exit(&connp->conn_lock);
17926 
17927 		(*tcp_squeue_wput_proc)(connp->conn_sqp, mp,
17928 		    tcp_output, connp, SQTAG_TCP_OUTPUT);
17929 		return;
17930 	case M_PROTO:
17931 	case M_PCPROTO:
17932 		/*
17933 		 * if it is a snmp message, don't get behind the squeue
17934 		 */
17935 		tcp = connp->conn_tcp;
17936 		rptr = mp->b_rptr;
17937 		if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) {
17938 			type = ((union T_primitives *)rptr)->type;
17939 		} else {
17940 			if (tcp->tcp_debug) {
17941 				(void) strlog(TCP_MOD_ID, 0, 1,
17942 				    SL_ERROR|SL_TRACE,
17943 				    "tcp_wput_proto, dropping one...");
17944 			}
17945 			freemsg(mp);
17946 			return;
17947 		}
17948 		if (type == T_SVR4_OPTMGMT_REQ) {
17949 			cred_t	*cr = DB_CREDDEF(mp, tcp->tcp_cred);
17950 			if (snmpcom_req(q, mp, tcp_snmp_set, tcp_snmp_get,
17951 			    cr)) {
17952 				/*
17953 				 * This was a SNMP request
17954 				 */
17955 				return;
17956 			} else {
17957 				output_proc = tcp_wput_proto;
17958 			}
17959 		} else {
17960 			output_proc = tcp_wput_proto;
17961 		}
17962 		break;
17963 	case M_IOCTL:
17964 		/*
17965 		 * Most ioctls can be processed right away without going via
17966 		 * squeues - process them right here. Those that do require
17967 		 * squeue (currently TCP_IOC_DEFAULT_Q and _SIOCSOCKFALLBACK)
17968 		 * are processed by tcp_wput_ioctl().
17969 		 */
17970 		iocp = (struct iocblk *)mp->b_rptr;
17971 		tcp = connp->conn_tcp;
17972 
17973 		switch (iocp->ioc_cmd) {
17974 		case TCP_IOC_ABORT_CONN:
17975 			tcp_ioctl_abort_conn(q, mp);
17976 			return;
17977 		case TI_GETPEERNAME:
17978 			if (tcp->tcp_state < TCPS_SYN_RCVD) {
17979 				iocp->ioc_error = ENOTCONN;
17980 				iocp->ioc_count = 0;
17981 				mp->b_datap->db_type = M_IOCACK;
17982 				qreply(q, mp);
17983 				return;
17984 			}
17985 			/* FALLTHRU */
17986 		case TI_GETMYNAME:
17987 			mi_copyin(q, mp, NULL,
17988 			    SIZEOF_STRUCT(strbuf, iocp->ioc_flag));
17989 			return;
17990 		case ND_SET:
17991 			/* nd_getset does the necessary checks */
17992 		case ND_GET:
17993 			if (!nd_getset(q, tcp_g_nd, mp)) {
17994 				CALL_IP_WPUT(connp, q, mp);
17995 				return;
17996 			}
17997 			qreply(q, mp);
17998 			return;
17999 		case TCP_IOC_DEFAULT_Q:
18000 			/*
18001 			 * Wants to be the default wq. Check the credentials
18002 			 * first, the rest is executed via squeue.
18003 			 */
18004 			if (secpolicy_net_config(iocp->ioc_cr, B_FALSE) != 0) {
18005 				iocp->ioc_error = EPERM;
18006 				iocp->ioc_count = 0;
18007 				mp->b_datap->db_type = M_IOCACK;
18008 				qreply(q, mp);
18009 				return;
18010 			}
18011 			output_proc = tcp_wput_ioctl;
18012 			break;
18013 		default:
18014 			output_proc = tcp_wput_ioctl;
18015 			break;
18016 		}
18017 		break;
18018 	default:
18019 		output_proc = tcp_wput_nondata;
18020 		break;
18021 	}
18022 
18023 	CONN_INC_REF(connp);
18024 	(*tcp_squeue_wput_proc)(connp->conn_sqp, mp,
18025 	    output_proc, connp, SQTAG_TCP_WPUT_OTHER);
18026 }
18027 
18028 /*
18029  * Initial STREAMS write side put() procedure for sockets. It tries to
18030  * handle the T_CAPABILITY_REQ which sockfs sends down while setting
18031  * up the socket without using the squeue. Non T_CAPABILITY_REQ messages
18032  * are handled by tcp_wput() as usual.
18033  *
18034  * All further messages will also be handled by tcp_wput() because we cannot
18035  * be sure that the above short cut is safe later.
18036  */
18037 static void
18038 tcp_wput_sock(queue_t *wq, mblk_t *mp)
18039 {
18040 	conn_t			*connp = Q_TO_CONN(wq);
18041 	tcp_t			*tcp = connp->conn_tcp;
18042 	struct T_capability_req	*car = (struct T_capability_req *)mp->b_rptr;
18043 
18044 	ASSERT(wq->q_qinfo == &tcp_sock_winit);
18045 	wq->q_qinfo = &tcp_winit;
18046 
18047 	ASSERT(IPCL_IS_TCP(connp));
18048 	ASSERT(TCP_IS_SOCKET(tcp));
18049 
18050 	if (DB_TYPE(mp) == M_PCPROTO &&
18051 	    MBLKL(mp) == sizeof (struct T_capability_req) &&
18052 	    car->PRIM_type == T_CAPABILITY_REQ) {
18053 		tcp_capability_req(tcp, mp);
18054 		return;
18055 	}
18056 
18057 	tcp_wput(wq, mp);
18058 }
18059 
18060 static boolean_t
18061 tcp_zcopy_check(tcp_t *tcp)
18062 {
18063 	conn_t	*connp = tcp->tcp_connp;
18064 	ire_t	*ire;
18065 	boolean_t	zc_enabled = B_FALSE;
18066 
18067 	if (do_tcpzcopy == 2)
18068 		zc_enabled = B_TRUE;
18069 	else if (tcp->tcp_ipversion == IPV4_VERSION &&
18070 	    IPCL_IS_CONNECTED(connp) &&
18071 	    (connp->conn_flags & IPCL_CHECK_POLICY) == 0 &&
18072 	    connp->conn_dontroute == 0 &&
18073 	    !connp->conn_nexthop_set &&
18074 	    connp->conn_xmit_if_ill == NULL &&
18075 	    connp->conn_nofailover_ill == NULL &&
18076 	    do_tcpzcopy == 1) {
18077 		/*
18078 		 * the checks above  closely resemble the fast path checks
18079 		 * in tcp_send_data().
18080 		 */
18081 		mutex_enter(&connp->conn_lock);
18082 		ire = connp->conn_ire_cache;
18083 		ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT));
18084 		if (ire != NULL && !(ire->ire_marks & IRE_MARK_CONDEMNED)) {
18085 			IRE_REFHOLD(ire);
18086 			if (ire->ire_stq != NULL) {
18087 				ill_t	*ill = (ill_t *)ire->ire_stq->q_ptr;
18088 
18089 				zc_enabled = ill && (ill->ill_capabilities &
18090 				    ILL_CAPAB_ZEROCOPY) &&
18091 				    (ill->ill_zerocopy_capab->
18092 				    ill_zerocopy_flags != 0);
18093 			}
18094 			IRE_REFRELE(ire);
18095 		}
18096 		mutex_exit(&connp->conn_lock);
18097 	}
18098 	tcp->tcp_snd_zcopy_on = zc_enabled;
18099 	if (!TCP_IS_DETACHED(tcp)) {
18100 		if (zc_enabled) {
18101 			(void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMSAFE);
18102 			TCP_STAT(tcp_zcopy_on);
18103 		} else {
18104 			(void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE);
18105 			TCP_STAT(tcp_zcopy_off);
18106 		}
18107 	}
18108 	return (zc_enabled);
18109 }
18110 
18111 static mblk_t *
18112 tcp_zcopy_disable(tcp_t *tcp, mblk_t *bp)
18113 {
18114 	if (do_tcpzcopy == 2)
18115 		return (bp);
18116 	else if (tcp->tcp_snd_zcopy_on) {
18117 		tcp->tcp_snd_zcopy_on = B_FALSE;
18118 		if (!TCP_IS_DETACHED(tcp)) {
18119 			(void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE);
18120 			TCP_STAT(tcp_zcopy_disable);
18121 		}
18122 	}
18123 	return (tcp_zcopy_backoff(tcp, bp, 0));
18124 }
18125 
18126 /*
18127  * Backoff from a zero-copy mblk by copying data to a new mblk and freeing
18128  * the original desballoca'ed segmapped mblk.
18129  */
18130 static mblk_t *
18131 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, int fix_xmitlist)
18132 {
18133 	mblk_t *head, *tail, *nbp;
18134 	if (IS_VMLOANED_MBLK(bp)) {
18135 		TCP_STAT(tcp_zcopy_backoff);
18136 		if ((head = copyb(bp)) == NULL) {
18137 			/* fail to backoff; leave it for the next backoff */
18138 			tcp->tcp_xmit_zc_clean = B_FALSE;
18139 			return (bp);
18140 		}
18141 		if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) {
18142 			if (fix_xmitlist)
18143 				tcp_zcopy_notify(tcp);
18144 			else
18145 				head->b_datap->db_struioflag |= STRUIO_ZCNOTIFY;
18146 		}
18147 		nbp = bp->b_cont;
18148 		if (fix_xmitlist) {
18149 			head->b_prev = bp->b_prev;
18150 			head->b_next = bp->b_next;
18151 			if (tcp->tcp_xmit_tail == bp)
18152 				tcp->tcp_xmit_tail = head;
18153 		}
18154 		bp->b_next = NULL;
18155 		bp->b_prev = NULL;
18156 		freeb(bp);
18157 	} else {
18158 		head = bp;
18159 		nbp = bp->b_cont;
18160 	}
18161 	tail = head;
18162 	while (nbp) {
18163 		if (IS_VMLOANED_MBLK(nbp)) {
18164 			TCP_STAT(tcp_zcopy_backoff);
18165 			if ((tail->b_cont = copyb(nbp)) == NULL) {
18166 				tcp->tcp_xmit_zc_clean = B_FALSE;
18167 				tail->b_cont = nbp;
18168 				return (head);
18169 			}
18170 			tail = tail->b_cont;
18171 			if (nbp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) {
18172 				if (fix_xmitlist)
18173 					tcp_zcopy_notify(tcp);
18174 				else
18175 					tail->b_datap->db_struioflag |=
18176 					    STRUIO_ZCNOTIFY;
18177 			}
18178 			bp = nbp;
18179 			nbp = nbp->b_cont;
18180 			if (fix_xmitlist) {
18181 				tail->b_prev = bp->b_prev;
18182 				tail->b_next = bp->b_next;
18183 				if (tcp->tcp_xmit_tail == bp)
18184 					tcp->tcp_xmit_tail = tail;
18185 			}
18186 			bp->b_next = NULL;
18187 			bp->b_prev = NULL;
18188 			freeb(bp);
18189 		} else {
18190 			tail->b_cont = nbp;
18191 			tail = nbp;
18192 			nbp = nbp->b_cont;
18193 		}
18194 	}
18195 	if (fix_xmitlist) {
18196 		tcp->tcp_xmit_last = tail;
18197 		tcp->tcp_xmit_zc_clean = B_TRUE;
18198 	}
18199 	return (head);
18200 }
18201 
18202 static void
18203 tcp_zcopy_notify(tcp_t *tcp)
18204 {
18205 	struct stdata	*stp;
18206 
18207 	if (tcp->tcp_detached)
18208 		return;
18209 	stp = STREAM(tcp->tcp_rq);
18210 	mutex_enter(&stp->sd_lock);
18211 	stp->sd_flag |= STZCNOTIFY;
18212 	cv_broadcast(&stp->sd_zcopy_wait);
18213 	mutex_exit(&stp->sd_lock);
18214 }
18215 
18216 static void
18217 tcp_send_data(tcp_t *tcp, queue_t *q, mblk_t *mp)
18218 {
18219 	ipha_t		*ipha;
18220 	ipaddr_t	src;
18221 	ipaddr_t	dst;
18222 	uint32_t	cksum;
18223 	ire_t		*ire;
18224 	uint16_t	*up;
18225 	ill_t		*ill;
18226 	conn_t		*connp = tcp->tcp_connp;
18227 	uint32_t	hcksum_txflags = 0;
18228 	mblk_t		*ire_fp_mp;
18229 	uint_t		ire_fp_mp_len;
18230 
18231 	ASSERT(DB_TYPE(mp) == M_DATA);
18232 
18233 	if (DB_CRED(mp) == NULL)
18234 		mblk_setcred(mp, CONN_CRED(connp));
18235 
18236 	ipha = (ipha_t *)mp->b_rptr;
18237 	src = ipha->ipha_src;
18238 	dst = ipha->ipha_dst;
18239 
18240 	/*
18241 	 * Drop off fast path for IPv6 and also if options are present or
18242 	 * we need to resolve a TS label.
18243 	 */
18244 	if (tcp->tcp_ipversion != IPV4_VERSION ||
18245 	    !IPCL_IS_CONNECTED(connp) ||
18246 	    (connp->conn_flags & IPCL_CHECK_POLICY) != 0 ||
18247 	    connp->conn_dontroute ||
18248 	    connp->conn_nexthop_set ||
18249 	    connp->conn_xmit_if_ill != NULL ||
18250 	    connp->conn_nofailover_ill != NULL ||
18251 	    !connp->conn_ulp_labeled ||
18252 	    ipha->ipha_ident == IP_HDR_INCLUDED ||
18253 	    ipha->ipha_version_and_hdr_length != IP_SIMPLE_HDR_VERSION ||
18254 	    IPP_ENABLED(IPP_LOCAL_OUT)) {
18255 		if (tcp->tcp_snd_zcopy_aware)
18256 			mp = tcp_zcopy_disable(tcp, mp);
18257 		TCP_STAT(tcp_ip_send);
18258 		CALL_IP_WPUT(connp, q, mp);
18259 		return;
18260 	}
18261 
18262 	mutex_enter(&connp->conn_lock);
18263 	ire = connp->conn_ire_cache;
18264 	ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT));
18265 	if (ire != NULL && ire->ire_addr == dst &&
18266 	    !(ire->ire_marks & IRE_MARK_CONDEMNED)) {
18267 		IRE_REFHOLD(ire);
18268 		mutex_exit(&connp->conn_lock);
18269 	} else {
18270 		boolean_t cached = B_FALSE;
18271 
18272 		/* force a recheck later on */
18273 		tcp->tcp_ire_ill_check_done = B_FALSE;
18274 
18275 		TCP_DBGSTAT(tcp_ire_null1);
18276 		connp->conn_ire_cache = NULL;
18277 		mutex_exit(&connp->conn_lock);
18278 		if (ire != NULL)
18279 			IRE_REFRELE_NOTR(ire);
18280 		ire = ire_cache_lookup(dst, connp->conn_zoneid,
18281 		    MBLK_GETLABEL(mp));
18282 		if (ire == NULL) {
18283 			if (tcp->tcp_snd_zcopy_aware)
18284 				mp = tcp_zcopy_backoff(tcp, mp, 0);
18285 			TCP_STAT(tcp_ire_null);
18286 			CALL_IP_WPUT(connp, q, mp);
18287 			return;
18288 		}
18289 		IRE_REFHOLD_NOTR(ire);
18290 		/*
18291 		 * Since we are inside the squeue, there cannot be another
18292 		 * thread in TCP trying to set the conn_ire_cache now.  The
18293 		 * check for IRE_MARK_CONDEMNED ensures that an interface
18294 		 * unplumb thread has not yet started cleaning up the conns.
18295 		 * Hence we don't need to grab the conn lock.
18296 		 */
18297 		if (!(connp->conn_state_flags & CONN_CLOSING)) {
18298 			rw_enter(&ire->ire_bucket->irb_lock, RW_READER);
18299 			if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) {
18300 				connp->conn_ire_cache = ire;
18301 				cached = B_TRUE;
18302 			}
18303 			rw_exit(&ire->ire_bucket->irb_lock);
18304 		}
18305 
18306 		/*
18307 		 * We can continue to use the ire but since it was
18308 		 * not cached, we should drop the extra reference.
18309 		 */
18310 		if (!cached)
18311 			IRE_REFRELE_NOTR(ire);
18312 
18313 		/*
18314 		 * Rampart note: no need to select a new label here, since
18315 		 * labels are not allowed to change during the life of a TCP
18316 		 * connection.
18317 		 */
18318 	}
18319 
18320 	/*
18321 	 * The following if case identifies whether or not
18322 	 * we are forced to take the slowpath.
18323 	 */
18324 	if (ire->ire_flags & RTF_MULTIRT ||
18325 	    ire->ire_stq == NULL ||
18326 	    ire->ire_max_frag < ntohs(ipha->ipha_length) ||
18327 	    (ire->ire_nce != NULL &&
18328 	    (ire_fp_mp = ire->ire_nce->nce_fp_mp) == NULL) ||
18329 	    (ire_fp_mp_len = MBLKL(ire_fp_mp)) > MBLKHEAD(mp)) {
18330 		if (tcp->tcp_snd_zcopy_aware)
18331 			mp = tcp_zcopy_disable(tcp, mp);
18332 		TCP_STAT(tcp_ip_ire_send);
18333 		IRE_REFRELE(ire);
18334 		CALL_IP_WPUT(connp, q, mp);
18335 		return;
18336 	}
18337 
18338 	ill = ire_to_ill(ire);
18339 	if (connp->conn_outgoing_ill != NULL) {
18340 		ill_t *conn_outgoing_ill = NULL;
18341 		/*
18342 		 * Choose a good ill in the group to send the packets on.
18343 		 */
18344 		ire = conn_set_outgoing_ill(connp, ire, &conn_outgoing_ill);
18345 		ill = ire_to_ill(ire);
18346 	}
18347 	ASSERT(ill != NULL);
18348 
18349 	if (!tcp->tcp_ire_ill_check_done) {
18350 		tcp_ire_ill_check(tcp, ire, ill, B_TRUE);
18351 		tcp->tcp_ire_ill_check_done = B_TRUE;
18352 	}
18353 
18354 	ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED);
18355 	ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1);
18356 #ifndef _BIG_ENDIAN
18357 	ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8);
18358 #endif
18359 
18360 	/*
18361 	 * Check to see if we need to re-enable MDT for this connection
18362 	 * because it was previously disabled due to changes in the ill;
18363 	 * note that by doing it here, this re-enabling only applies when
18364 	 * the packet is not dispatched through CALL_IP_WPUT().
18365 	 *
18366 	 * That means for IPv4, it is worth re-enabling MDT for the fastpath
18367 	 * case, since that's how we ended up here.  For IPv6, we do the
18368 	 * re-enabling work in ip_xmit_v6(), albeit indirectly via squeue.
18369 	 */
18370 	if (connp->conn_mdt_ok && !tcp->tcp_mdt && ILL_MDT_USABLE(ill)) {
18371 		/*
18372 		 * Restore MDT for this connection, so that next time around
18373 		 * it is eligible to go through tcp_multisend() path again.
18374 		 */
18375 		TCP_STAT(tcp_mdt_conn_resumed1);
18376 		tcp->tcp_mdt = B_TRUE;
18377 		ip1dbg(("tcp_send_data: reenabling MDT for connp %p on "
18378 		    "interface %s\n", (void *)connp, ill->ill_name));
18379 	}
18380 
18381 	if (tcp->tcp_snd_zcopy_aware) {
18382 		if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 ||
18383 		    (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0))
18384 			mp = tcp_zcopy_disable(tcp, mp);
18385 		/*
18386 		 * we shouldn't need to reset ipha as the mp containing
18387 		 * ipha should never be a zero-copy mp.
18388 		 */
18389 	}
18390 
18391 	if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) {
18392 		ASSERT(ill->ill_hcksum_capab != NULL);
18393 		hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags;
18394 	}
18395 
18396 	/* pseudo-header checksum (do it in parts for IP header checksum) */
18397 	cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF);
18398 
18399 	ASSERT(ipha->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION);
18400 	up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH);
18401 
18402 	IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up,
18403 	    IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum);
18404 
18405 	/* Software checksum? */
18406 	if (DB_CKSUMFLAGS(mp) == 0) {
18407 		TCP_STAT(tcp_out_sw_cksum);
18408 		TCP_STAT_UPDATE(tcp_out_sw_cksum_bytes,
18409 		    ntohs(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH);
18410 	}
18411 
18412 	ipha->ipha_fragment_offset_and_flags |=
18413 	    (uint32_t)htons(ire->ire_frag_flag);
18414 
18415 	/* Calculate IP header checksum if hardware isn't capable */
18416 	if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) {
18417 		IP_HDR_CKSUM(ipha, cksum, ((uint32_t *)ipha)[0],
18418 		    ((uint16_t *)ipha)[4]);
18419 	}
18420 
18421 	ASSERT(DB_TYPE(ire_fp_mp) == M_DATA);
18422 	mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len;
18423 	bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len);
18424 
18425 	UPDATE_OB_PKT_COUNT(ire);
18426 	ire->ire_last_used_time = lbolt;
18427 	BUMP_MIB(&ip_mib, ipOutRequests);
18428 
18429 	if (ILL_DLS_CAPABLE(ill)) {
18430 		/*
18431 		 * Send the packet directly to DLD, where it may be queued
18432 		 * depending on the availability of transmit resources at
18433 		 * the media layer.
18434 		 */
18435 		IP_DLS_ILL_TX(ill, mp);
18436 	} else {
18437 		putnext(ire->ire_stq, mp);
18438 	}
18439 	IRE_REFRELE(ire);
18440 }
18441 
18442 /*
18443  * This handles the case when the receiver has shrunk its win. Per RFC 1122
18444  * if the receiver shrinks the window, i.e. moves the right window to the
18445  * left, the we should not send new data, but should retransmit normally the
18446  * old unacked data between suna and suna + swnd. We might has sent data
18447  * that is now outside the new window, pretend that we didn't send  it.
18448  */
18449 static void
18450 tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_count)
18451 {
18452 	uint32_t	snxt = tcp->tcp_snxt;
18453 	mblk_t		*xmit_tail;
18454 	int32_t		offset;
18455 
18456 	ASSERT(shrunk_count > 0);
18457 
18458 	/* Pretend we didn't send the data outside the window */
18459 	snxt -= shrunk_count;
18460 
18461 	/* Get the mblk and the offset in it per the shrunk window */
18462 	xmit_tail = tcp_get_seg_mp(tcp, snxt, &offset);
18463 
18464 	ASSERT(xmit_tail != NULL);
18465 
18466 	/* Reset all the values per the now shrunk window */
18467 	tcp->tcp_snxt = snxt;
18468 	tcp->tcp_xmit_tail = xmit_tail;
18469 	tcp->tcp_xmit_tail_unsent = xmit_tail->b_wptr - xmit_tail->b_rptr -
18470 	    offset;
18471 	tcp->tcp_unsent += shrunk_count;
18472 
18473 	if (tcp->tcp_suna == tcp->tcp_snxt && tcp->tcp_swnd == 0)
18474 		/*
18475 		 * Make sure the timer is running so that we will probe a zero
18476 		 * window.
18477 		 */
18478 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
18479 }
18480 
18481 
18482 /*
18483  * The TCP normal data output path.
18484  * NOTE: the logic of the fast path is duplicated from this function.
18485  */
18486 static void
18487 tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent)
18488 {
18489 	int		len;
18490 	mblk_t		*local_time;
18491 	mblk_t		*mp1;
18492 	uint32_t	snxt;
18493 	int		tail_unsent;
18494 	int		tcpstate;
18495 	int		usable = 0;
18496 	mblk_t		*xmit_tail;
18497 	queue_t		*q = tcp->tcp_wq;
18498 	int32_t		mss;
18499 	int32_t		num_sack_blk = 0;
18500 	int32_t		tcp_hdr_len;
18501 	int32_t		tcp_tcp_hdr_len;
18502 	int		mdt_thres;
18503 	int		rc;
18504 
18505 	tcpstate = tcp->tcp_state;
18506 	if (mp == NULL) {
18507 		/*
18508 		 * tcp_wput_data() with NULL mp should only be called when
18509 		 * there is unsent data.
18510 		 */
18511 		ASSERT(tcp->tcp_unsent > 0);
18512 		/* Really tacky... but we need this for detached closes. */
18513 		len = tcp->tcp_unsent;
18514 		goto data_null;
18515 	}
18516 
18517 #if CCS_STATS
18518 	wrw_stats.tot.count++;
18519 	wrw_stats.tot.bytes += msgdsize(mp);
18520 #endif
18521 	ASSERT(mp->b_datap->db_type == M_DATA);
18522 	/*
18523 	 * Don't allow data after T_ORDREL_REQ or T_DISCON_REQ,
18524 	 * or before a connection attempt has begun.
18525 	 */
18526 	if (tcpstate < TCPS_SYN_SENT || tcpstate > TCPS_CLOSE_WAIT ||
18527 	    (tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) {
18528 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) {
18529 #ifdef DEBUG
18530 			cmn_err(CE_WARN,
18531 			    "tcp_wput_data: data after ordrel, %s",
18532 			    tcp_display(tcp, NULL,
18533 			    DISP_ADDR_AND_PORT));
18534 #else
18535 			if (tcp->tcp_debug) {
18536 				(void) strlog(TCP_MOD_ID, 0, 1,
18537 				    SL_TRACE|SL_ERROR,
18538 				    "tcp_wput_data: data after ordrel, %s\n",
18539 				    tcp_display(tcp, NULL,
18540 				    DISP_ADDR_AND_PORT));
18541 			}
18542 #endif /* DEBUG */
18543 		}
18544 		if (tcp->tcp_snd_zcopy_aware &&
18545 		    (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) != 0)
18546 			tcp_zcopy_notify(tcp);
18547 		freemsg(mp);
18548 		if (tcp->tcp_flow_stopped &&
18549 		    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
18550 			tcp_clrqfull(tcp);
18551 		}
18552 		return;
18553 	}
18554 
18555 	/* Strip empties */
18556 	for (;;) {
18557 		ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
18558 		    (uintptr_t)INT_MAX);
18559 		len = (int)(mp->b_wptr - mp->b_rptr);
18560 		if (len > 0)
18561 			break;
18562 		mp1 = mp;
18563 		mp = mp->b_cont;
18564 		freeb(mp1);
18565 		if (!mp) {
18566 			return;
18567 		}
18568 	}
18569 
18570 	/* If we are the first on the list ... */
18571 	if (tcp->tcp_xmit_head == NULL) {
18572 		tcp->tcp_xmit_head = mp;
18573 		tcp->tcp_xmit_tail = mp;
18574 		tcp->tcp_xmit_tail_unsent = len;
18575 	} else {
18576 		/* If tiny tx and room in txq tail, pullup to save mblks. */
18577 		struct datab *dp;
18578 
18579 		mp1 = tcp->tcp_xmit_last;
18580 		if (len < tcp_tx_pull_len &&
18581 		    (dp = mp1->b_datap)->db_ref == 1 &&
18582 		    dp->db_lim - mp1->b_wptr >= len) {
18583 			ASSERT(len > 0);
18584 			ASSERT(!mp1->b_cont);
18585 			if (len == 1) {
18586 				*mp1->b_wptr++ = *mp->b_rptr;
18587 			} else {
18588 				bcopy(mp->b_rptr, mp1->b_wptr, len);
18589 				mp1->b_wptr += len;
18590 			}
18591 			if (mp1 == tcp->tcp_xmit_tail)
18592 				tcp->tcp_xmit_tail_unsent += len;
18593 			mp1->b_cont = mp->b_cont;
18594 			if (tcp->tcp_snd_zcopy_aware &&
18595 			    (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY))
18596 				mp1->b_datap->db_struioflag |= STRUIO_ZCNOTIFY;
18597 			freeb(mp);
18598 			mp = mp1;
18599 		} else {
18600 			tcp->tcp_xmit_last->b_cont = mp;
18601 		}
18602 		len += tcp->tcp_unsent;
18603 	}
18604 
18605 	/* Tack on however many more positive length mblks we have */
18606 	if ((mp1 = mp->b_cont) != NULL) {
18607 		do {
18608 			int tlen;
18609 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
18610 			    (uintptr_t)INT_MAX);
18611 			tlen = (int)(mp1->b_wptr - mp1->b_rptr);
18612 			if (tlen <= 0) {
18613 				mp->b_cont = mp1->b_cont;
18614 				freeb(mp1);
18615 			} else {
18616 				len += tlen;
18617 				mp = mp1;
18618 			}
18619 		} while ((mp1 = mp->b_cont) != NULL);
18620 	}
18621 	tcp->tcp_xmit_last = mp;
18622 	tcp->tcp_unsent = len;
18623 
18624 	if (urgent)
18625 		usable = 1;
18626 
18627 data_null:
18628 	snxt = tcp->tcp_snxt;
18629 	xmit_tail = tcp->tcp_xmit_tail;
18630 	tail_unsent = tcp->tcp_xmit_tail_unsent;
18631 
18632 	/*
18633 	 * Note that tcp_mss has been adjusted to take into account the
18634 	 * timestamp option if applicable.  Because SACK options do not
18635 	 * appear in every TCP segments and they are of variable lengths,
18636 	 * they cannot be included in tcp_mss.  Thus we need to calculate
18637 	 * the actual segment length when we need to send a segment which
18638 	 * includes SACK options.
18639 	 */
18640 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
18641 		int32_t	opt_len;
18642 
18643 		num_sack_blk = MIN(tcp->tcp_max_sack_blk,
18644 		    tcp->tcp_num_sack_blk);
18645 		opt_len = num_sack_blk * sizeof (sack_blk_t) + TCPOPT_NOP_LEN *
18646 		    2 + TCPOPT_HEADER_LEN;
18647 		mss = tcp->tcp_mss - opt_len;
18648 		tcp_hdr_len = tcp->tcp_hdr_len + opt_len;
18649 		tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + opt_len;
18650 	} else {
18651 		mss = tcp->tcp_mss;
18652 		tcp_hdr_len = tcp->tcp_hdr_len;
18653 		tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len;
18654 	}
18655 
18656 	if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet &&
18657 	    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) {
18658 		SET_TCP_INIT_CWND(tcp, mss, tcp_slow_start_after_idle);
18659 	}
18660 	if (tcpstate == TCPS_SYN_RCVD) {
18661 		/*
18662 		 * The three-way connection establishment handshake is not
18663 		 * complete yet. We want to queue the data for transmission
18664 		 * after entering ESTABLISHED state (RFC793). A jump to
18665 		 * "done" label effectively leaves data on the queue.
18666 		 */
18667 		goto done;
18668 	} else {
18669 		int usable_r;
18670 
18671 		/*
18672 		 * In the special case when cwnd is zero, which can only
18673 		 * happen if the connection is ECN capable, return now.
18674 		 * New segments is sent using tcp_timer().  The timer
18675 		 * is set in tcp_rput_data().
18676 		 */
18677 		if (tcp->tcp_cwnd == 0) {
18678 			/*
18679 			 * Note that tcp_cwnd is 0 before 3-way handshake is
18680 			 * finished.
18681 			 */
18682 			ASSERT(tcp->tcp_ecn_ok ||
18683 			    tcp->tcp_state < TCPS_ESTABLISHED);
18684 			return;
18685 		}
18686 
18687 		/* NOTE: trouble if xmitting while SYN not acked? */
18688 		usable_r = snxt - tcp->tcp_suna;
18689 		usable_r = tcp->tcp_swnd - usable_r;
18690 
18691 		/*
18692 		 * Check if the receiver has shrunk the window.  If
18693 		 * tcp_wput_data() with NULL mp is called, tcp_fin_sent
18694 		 * cannot be set as there is unsent data, so FIN cannot
18695 		 * be sent out.  Otherwise, we need to take into account
18696 		 * of FIN as it consumes an "invisible" sequence number.
18697 		 */
18698 		ASSERT(tcp->tcp_fin_sent == 0);
18699 		if (usable_r < 0) {
18700 			/*
18701 			 * The receiver has shrunk the window and we have sent
18702 			 * -usable_r date beyond the window, re-adjust.
18703 			 *
18704 			 * If TCP window scaling is enabled, there can be
18705 			 * round down error as the advertised receive window
18706 			 * is actually right shifted n bits.  This means that
18707 			 * the lower n bits info is wiped out.  It will look
18708 			 * like the window is shrunk.  Do a check here to
18709 			 * see if the shrunk amount is actually within the
18710 			 * error in window calculation.  If it is, just
18711 			 * return.  Note that this check is inside the
18712 			 * shrunk window check.  This makes sure that even
18713 			 * though tcp_process_shrunk_swnd() is not called,
18714 			 * we will stop further processing.
18715 			 */
18716 			if ((-usable_r >> tcp->tcp_snd_ws) > 0) {
18717 				tcp_process_shrunk_swnd(tcp, -usable_r);
18718 			}
18719 			return;
18720 		}
18721 
18722 		/* usable = MIN(swnd, cwnd) - unacked_bytes */
18723 		if (tcp->tcp_swnd > tcp->tcp_cwnd)
18724 			usable_r -= tcp->tcp_swnd - tcp->tcp_cwnd;
18725 
18726 		/* usable = MIN(usable, unsent) */
18727 		if (usable_r > len)
18728 			usable_r = len;
18729 
18730 		/* usable = MAX(usable, {1 for urgent, 0 for data}) */
18731 		if (usable_r > 0) {
18732 			usable = usable_r;
18733 		} else {
18734 			/* Bypass all other unnecessary processing. */
18735 			goto done;
18736 		}
18737 	}
18738 
18739 	local_time = (mblk_t *)lbolt;
18740 
18741 	/*
18742 	 * "Our" Nagle Algorithm.  This is not the same as in the old
18743 	 * BSD.  This is more in line with the true intent of Nagle.
18744 	 *
18745 	 * The conditions are:
18746 	 * 1. The amount of unsent data (or amount of data which can be
18747 	 *    sent, whichever is smaller) is less than Nagle limit.
18748 	 * 2. The last sent size is also less than Nagle limit.
18749 	 * 3. There is unack'ed data.
18750 	 * 4. Urgent pointer is not set.  Send urgent data ignoring the
18751 	 *    Nagle algorithm.  This reduces the probability that urgent
18752 	 *    bytes get "merged" together.
18753 	 * 5. The app has not closed the connection.  This eliminates the
18754 	 *    wait time of the receiving side waiting for the last piece of
18755 	 *    (small) data.
18756 	 *
18757 	 * If all are satisified, exit without sending anything.  Note
18758 	 * that Nagle limit can be smaller than 1 MSS.  Nagle limit is
18759 	 * the smaller of 1 MSS and global tcp_naglim_def (default to be
18760 	 * 4095).
18761 	 */
18762 	if (usable < (int)tcp->tcp_naglim &&
18763 	    tcp->tcp_naglim > tcp->tcp_last_sent_len &&
18764 	    snxt != tcp->tcp_suna &&
18765 	    !(tcp->tcp_valid_bits & TCP_URG_VALID) &&
18766 	    !(tcp->tcp_valid_bits & TCP_FSS_VALID)) {
18767 		goto done;
18768 	}
18769 
18770 	if (tcp->tcp_cork) {
18771 		/*
18772 		 * if the tcp->tcp_cork option is set, then we have to force
18773 		 * TCP not to send partial segment (smaller than MSS bytes).
18774 		 * We are calculating the usable now based on full mss and
18775 		 * will save the rest of remaining data for later.
18776 		 */
18777 		if (usable < mss)
18778 			goto done;
18779 		usable = (usable / mss) * mss;
18780 	}
18781 
18782 	/* Update the latest receive window size in TCP header. */
18783 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
18784 	    tcp->tcp_tcph->th_win);
18785 
18786 	/*
18787 	 * Determine if it's worthwhile to attempt MDT, based on:
18788 	 *
18789 	 * 1. Simple TCP/IP{v4,v6} (no options).
18790 	 * 2. IPSEC/IPQoS processing is not needed for the TCP connection.
18791 	 * 3. If the TCP connection is in ESTABLISHED state.
18792 	 * 4. The TCP is not detached.
18793 	 *
18794 	 * If any of the above conditions have changed during the
18795 	 * connection, stop using MDT and restore the stream head
18796 	 * parameters accordingly.
18797 	 */
18798 	if (tcp->tcp_mdt &&
18799 	    ((tcp->tcp_ipversion == IPV4_VERSION &&
18800 	    tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) ||
18801 	    (tcp->tcp_ipversion == IPV6_VERSION &&
18802 	    tcp->tcp_ip_hdr_len != IPV6_HDR_LEN) ||
18803 	    tcp->tcp_state != TCPS_ESTABLISHED ||
18804 	    TCP_IS_DETACHED(tcp) || !CONN_IS_MD_FASTPATH(tcp->tcp_connp) ||
18805 	    CONN_IPSEC_OUT_ENCAPSULATED(tcp->tcp_connp) ||
18806 	    IPP_ENABLED(IPP_LOCAL_OUT))) {
18807 		tcp->tcp_connp->conn_mdt_ok = B_FALSE;
18808 		tcp->tcp_mdt = B_FALSE;
18809 
18810 		/* Anything other than detached is considered pathological */
18811 		if (!TCP_IS_DETACHED(tcp)) {
18812 			TCP_STAT(tcp_mdt_conn_halted1);
18813 			(void) tcp_maxpsz_set(tcp, B_TRUE);
18814 		}
18815 	}
18816 
18817 	/* Use MDT if sendable amount is greater than the threshold */
18818 	if (tcp->tcp_mdt &&
18819 	    (mdt_thres = mss << tcp_mdt_smss_threshold, usable > mdt_thres) &&
18820 	    (tail_unsent > mdt_thres || (xmit_tail->b_cont != NULL &&
18821 	    MBLKL(xmit_tail->b_cont) > mdt_thres)) &&
18822 	    (tcp->tcp_valid_bits == 0 ||
18823 	    tcp->tcp_valid_bits == TCP_FSS_VALID)) {
18824 		ASSERT(tcp->tcp_connp->conn_mdt_ok);
18825 		rc = tcp_multisend(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len,
18826 		    num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail,
18827 		    local_time, mdt_thres);
18828 	} else {
18829 		rc = tcp_send(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len,
18830 		    num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail,
18831 		    local_time, INT_MAX);
18832 	}
18833 
18834 	/* Pretend that all we were trying to send really got sent */
18835 	if (rc < 0 && tail_unsent < 0) {
18836 		do {
18837 			xmit_tail = xmit_tail->b_cont;
18838 			xmit_tail->b_prev = local_time;
18839 			ASSERT((uintptr_t)(xmit_tail->b_wptr -
18840 			    xmit_tail->b_rptr) <= (uintptr_t)INT_MAX);
18841 			tail_unsent += (int)(xmit_tail->b_wptr -
18842 			    xmit_tail->b_rptr);
18843 		} while (tail_unsent < 0);
18844 	}
18845 done:;
18846 	tcp->tcp_xmit_tail = xmit_tail;
18847 	tcp->tcp_xmit_tail_unsent = tail_unsent;
18848 	len = tcp->tcp_snxt - snxt;
18849 	if (len) {
18850 		/*
18851 		 * If new data was sent, need to update the notsack
18852 		 * list, which is, afterall, data blocks that have
18853 		 * not been sack'ed by the receiver.  New data is
18854 		 * not sack'ed.
18855 		 */
18856 		if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
18857 			/* len is a negative value. */
18858 			tcp->tcp_pipe -= len;
18859 			tcp_notsack_update(&(tcp->tcp_notsack_list),
18860 			    tcp->tcp_snxt, snxt,
18861 			    &(tcp->tcp_num_notsack_blk),
18862 			    &(tcp->tcp_cnt_notsack_list));
18863 		}
18864 		tcp->tcp_snxt = snxt + tcp->tcp_fin_sent;
18865 		tcp->tcp_rack = tcp->tcp_rnxt;
18866 		tcp->tcp_rack_cnt = 0;
18867 		if ((snxt + len) == tcp->tcp_suna) {
18868 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
18869 		}
18870 	} else if (snxt == tcp->tcp_suna && tcp->tcp_swnd == 0) {
18871 		/*
18872 		 * Didn't send anything. Make sure the timer is running
18873 		 * so that we will probe a zero window.
18874 		 */
18875 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
18876 	}
18877 	/* Note that len is the amount we just sent but with a negative sign */
18878 	tcp->tcp_unsent += len;
18879 	if (tcp->tcp_flow_stopped) {
18880 		if (TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
18881 			tcp_clrqfull(tcp);
18882 		}
18883 	} else if (TCP_UNSENT_BYTES(tcp) >= tcp->tcp_xmit_hiwater) {
18884 		tcp_setqfull(tcp);
18885 	}
18886 }
18887 
18888 /*
18889  * tcp_fill_header is called by tcp_send() and tcp_multisend() to fill the
18890  * outgoing TCP header with the template header, as well as other
18891  * options such as time-stamp, ECN and/or SACK.
18892  */
18893 static void
18894 tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, int num_sack_blk)
18895 {
18896 	tcph_t *tcp_tmpl, *tcp_h;
18897 	uint32_t *dst, *src;
18898 	int hdrlen;
18899 
18900 	ASSERT(OK_32PTR(rptr));
18901 
18902 	/* Template header */
18903 	tcp_tmpl = tcp->tcp_tcph;
18904 
18905 	/* Header of outgoing packet */
18906 	tcp_h = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
18907 
18908 	/* dst and src are opaque 32-bit fields, used for copying */
18909 	dst = (uint32_t *)rptr;
18910 	src = (uint32_t *)tcp->tcp_iphc;
18911 	hdrlen = tcp->tcp_hdr_len;
18912 
18913 	/* Fill time-stamp option if needed */
18914 	if (tcp->tcp_snd_ts_ok) {
18915 		U32_TO_BE32((uint32_t)now,
18916 		    (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 4);
18917 		U32_TO_BE32(tcp->tcp_ts_recent,
18918 		    (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 8);
18919 	} else {
18920 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
18921 	}
18922 
18923 	/*
18924 	 * Copy the template header; is this really more efficient than
18925 	 * calling bcopy()?  For simple IPv4/TCP, it may be the case,
18926 	 * but perhaps not for other scenarios.
18927 	 */
18928 	dst[0] = src[0];
18929 	dst[1] = src[1];
18930 	dst[2] = src[2];
18931 	dst[3] = src[3];
18932 	dst[4] = src[4];
18933 	dst[5] = src[5];
18934 	dst[6] = src[6];
18935 	dst[7] = src[7];
18936 	dst[8] = src[8];
18937 	dst[9] = src[9];
18938 	if (hdrlen -= 40) {
18939 		hdrlen >>= 2;
18940 		dst += 10;
18941 		src += 10;
18942 		do {
18943 			*dst++ = *src++;
18944 		} while (--hdrlen);
18945 	}
18946 
18947 	/*
18948 	 * Set the ECN info in the TCP header if it is not a zero
18949 	 * window probe.  Zero window probe is only sent in
18950 	 * tcp_wput_data() and tcp_timer().
18951 	 */
18952 	if (tcp->tcp_ecn_ok && !tcp->tcp_zero_win_probe) {
18953 		SET_ECT(tcp, rptr);
18954 
18955 		if (tcp->tcp_ecn_echo_on)
18956 			tcp_h->th_flags[0] |= TH_ECE;
18957 		if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
18958 			tcp_h->th_flags[0] |= TH_CWR;
18959 			tcp->tcp_ecn_cwr_sent = B_TRUE;
18960 		}
18961 	}
18962 
18963 	/* Fill in SACK options */
18964 	if (num_sack_blk > 0) {
18965 		uchar_t *wptr = rptr + tcp->tcp_hdr_len;
18966 		sack_blk_t *tmp;
18967 		int32_t	i;
18968 
18969 		wptr[0] = TCPOPT_NOP;
18970 		wptr[1] = TCPOPT_NOP;
18971 		wptr[2] = TCPOPT_SACK;
18972 		wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
18973 		    sizeof (sack_blk_t);
18974 		wptr += TCPOPT_REAL_SACK_LEN;
18975 
18976 		tmp = tcp->tcp_sack_list;
18977 		for (i = 0; i < num_sack_blk; i++) {
18978 			U32_TO_BE32(tmp[i].begin, wptr);
18979 			wptr += sizeof (tcp_seq);
18980 			U32_TO_BE32(tmp[i].end, wptr);
18981 			wptr += sizeof (tcp_seq);
18982 		}
18983 		tcp_h->th_offset_and_rsrvd[0] +=
18984 		    ((num_sack_blk * 2 + 1) << 4);
18985 	}
18986 }
18987 
18988 /*
18989  * tcp_mdt_add_attrs() is called by tcp_multisend() in order to attach
18990  * the destination address and SAP attribute, and if necessary, the
18991  * hardware checksum offload attribute to a Multidata message.
18992  */
18993 static int
18994 tcp_mdt_add_attrs(multidata_t *mmd, const mblk_t *dlmp, const boolean_t hwcksum,
18995     const uint32_t start, const uint32_t stuff, const uint32_t end,
18996     const uint32_t flags)
18997 {
18998 	/* Add global destination address & SAP attribute */
18999 	if (dlmp == NULL || !ip_md_addr_attr(mmd, NULL, dlmp)) {
19000 		ip1dbg(("tcp_mdt_add_attrs: can't add global physical "
19001 		    "destination address+SAP\n"));
19002 
19003 		if (dlmp != NULL)
19004 			TCP_STAT(tcp_mdt_allocfail);
19005 		return (-1);
19006 	}
19007 
19008 	/* Add global hwcksum attribute */
19009 	if (hwcksum &&
19010 	    !ip_md_hcksum_attr(mmd, NULL, start, stuff, end, flags)) {
19011 		ip1dbg(("tcp_mdt_add_attrs: can't add global hardware "
19012 		    "checksum attribute\n"));
19013 
19014 		TCP_STAT(tcp_mdt_allocfail);
19015 		return (-1);
19016 	}
19017 
19018 	return (0);
19019 }
19020 
19021 /*
19022  * Smaller and private version of pdescinfo_t used specifically for TCP,
19023  * which allows for only two payload spans per packet.
19024  */
19025 typedef struct tcp_pdescinfo_s PDESCINFO_STRUCT(2) tcp_pdescinfo_t;
19026 
19027 /*
19028  * tcp_multisend() is called by tcp_wput_data() for Multidata Transmit
19029  * scheme, and returns one the following:
19030  *
19031  * -1 = failed allocation.
19032  *  0 = success; burst count reached, or usable send window is too small,
19033  *      and that we'd rather wait until later before sending again.
19034  */
19035 static int
19036 tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len,
19037     const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable,
19038     uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
19039     const int mdt_thres)
19040 {
19041 	mblk_t		*md_mp_head, *md_mp, *md_pbuf, *md_pbuf_nxt, *md_hbuf;
19042 	multidata_t	*mmd;
19043 	uint_t		obsegs, obbytes, hdr_frag_sz;
19044 	uint_t		cur_hdr_off, cur_pld_off, base_pld_off, first_snxt;
19045 	int		num_burst_seg, max_pld;
19046 	pdesc_t		*pkt;
19047 	tcp_pdescinfo_t	tcp_pkt_info;
19048 	pdescinfo_t	*pkt_info;
19049 	int		pbuf_idx, pbuf_idx_nxt;
19050 	int		seg_len, len, spill, af;
19051 	boolean_t	add_buffer, zcopy, clusterwide;
19052 	boolean_t	rconfirm = B_FALSE;
19053 	boolean_t	done = B_FALSE;
19054 	uint32_t	cksum;
19055 	uint32_t	hwcksum_flags;
19056 	ire_t		*ire;
19057 	ill_t		*ill;
19058 	ipha_t		*ipha;
19059 	ip6_t		*ip6h;
19060 	ipaddr_t	src, dst;
19061 	ill_zerocopy_capab_t *zc_cap = NULL;
19062 	uint16_t	*up;
19063 	int		err;
19064 	conn_t		*connp;
19065 
19066 #ifdef	_BIG_ENDIAN
19067 #define	IPVER(ip6h)	((((uint32_t *)ip6h)[0] >> 28) & 0x7)
19068 #else
19069 #define	IPVER(ip6h)	((((uint32_t *)ip6h)[0] >> 4) & 0x7)
19070 #endif
19071 
19072 #define	PREP_NEW_MULTIDATA() {			\
19073 	mmd = NULL;				\
19074 	md_mp = md_hbuf = NULL;			\
19075 	cur_hdr_off = 0;			\
19076 	max_pld = tcp->tcp_mdt_max_pld;		\
19077 	pbuf_idx = pbuf_idx_nxt = -1;		\
19078 	add_buffer = B_TRUE;			\
19079 	zcopy = B_FALSE;			\
19080 }
19081 
19082 #define	PREP_NEW_PBUF() {			\
19083 	md_pbuf = md_pbuf_nxt = NULL;		\
19084 	pbuf_idx = pbuf_idx_nxt = -1;		\
19085 	cur_pld_off = 0;			\
19086 	first_snxt = *snxt;			\
19087 	ASSERT(*tail_unsent > 0);		\
19088 	base_pld_off = MBLKL(*xmit_tail) - *tail_unsent; \
19089 }
19090 
19091 	ASSERT(mdt_thres >= mss);
19092 	ASSERT(*usable > 0 && *usable > mdt_thres);
19093 	ASSERT(tcp->tcp_state == TCPS_ESTABLISHED);
19094 	ASSERT(!TCP_IS_DETACHED(tcp));
19095 	ASSERT(tcp->tcp_valid_bits == 0 ||
19096 	    tcp->tcp_valid_bits == TCP_FSS_VALID);
19097 	ASSERT((tcp->tcp_ipversion == IPV4_VERSION &&
19098 	    tcp->tcp_ip_hdr_len == IP_SIMPLE_HDR_LENGTH) ||
19099 	    (tcp->tcp_ipversion == IPV6_VERSION &&
19100 	    tcp->tcp_ip_hdr_len == IPV6_HDR_LEN));
19101 
19102 	connp = tcp->tcp_connp;
19103 	ASSERT(connp != NULL);
19104 	ASSERT(CONN_IS_MD_FASTPATH(connp));
19105 	ASSERT(!CONN_IPSEC_OUT_ENCAPSULATED(connp));
19106 
19107 	/*
19108 	 * Note that tcp will only declare at most 2 payload spans per
19109 	 * packet, which is much lower than the maximum allowable number
19110 	 * of packet spans per Multidata.  For this reason, we use the
19111 	 * privately declared and smaller descriptor info structure, in
19112 	 * order to save some stack space.
19113 	 */
19114 	pkt_info = (pdescinfo_t *)&tcp_pkt_info;
19115 
19116 	af = (tcp->tcp_ipversion == IPV4_VERSION) ? AF_INET : AF_INET6;
19117 	if (af == AF_INET) {
19118 		dst = tcp->tcp_ipha->ipha_dst;
19119 		src = tcp->tcp_ipha->ipha_src;
19120 		ASSERT(!CLASSD(dst));
19121 	}
19122 	ASSERT(af == AF_INET ||
19123 	    !IN6_IS_ADDR_MULTICAST(&tcp->tcp_ip6h->ip6_dst));
19124 
19125 	obsegs = obbytes = 0;
19126 	num_burst_seg = tcp->tcp_snd_burst;
19127 	md_mp_head = NULL;
19128 	PREP_NEW_MULTIDATA();
19129 
19130 	/*
19131 	 * Before we go on further, make sure there is an IRE that we can
19132 	 * use, and that the ILL supports MDT.  Otherwise, there's no point
19133 	 * in proceeding any further, and we should just hand everything
19134 	 * off to the legacy path.
19135 	 */
19136 	mutex_enter(&connp->conn_lock);
19137 	ire = connp->conn_ire_cache;
19138 	ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT));
19139 	if (ire != NULL && ((af == AF_INET && ire->ire_addr == dst) ||
19140 	    (af == AF_INET6 && IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6,
19141 	    &tcp->tcp_ip6h->ip6_dst))) &&
19142 	    !(ire->ire_marks & IRE_MARK_CONDEMNED)) {
19143 		IRE_REFHOLD(ire);
19144 		mutex_exit(&connp->conn_lock);
19145 	} else {
19146 		boolean_t cached = B_FALSE;
19147 		ts_label_t *tsl;
19148 
19149 		/* force a recheck later on */
19150 		tcp->tcp_ire_ill_check_done = B_FALSE;
19151 
19152 		TCP_DBGSTAT(tcp_ire_null1);
19153 		connp->conn_ire_cache = NULL;
19154 		mutex_exit(&connp->conn_lock);
19155 
19156 		/* Release the old ire */
19157 		if (ire != NULL)
19158 			IRE_REFRELE_NOTR(ire);
19159 
19160 		tsl = crgetlabel(CONN_CRED(connp));
19161 		ire = (af == AF_INET) ?
19162 		    ire_cache_lookup(dst, connp->conn_zoneid, tsl) :
19163 		    ire_cache_lookup_v6(&tcp->tcp_ip6h->ip6_dst,
19164 		    connp->conn_zoneid, tsl);
19165 
19166 		if (ire == NULL) {
19167 			TCP_STAT(tcp_ire_null);
19168 			goto legacy_send_no_md;
19169 		}
19170 
19171 		IRE_REFHOLD_NOTR(ire);
19172 		/*
19173 		 * Since we are inside the squeue, there cannot be another
19174 		 * thread in TCP trying to set the conn_ire_cache now. The
19175 		 * check for IRE_MARK_CONDEMNED ensures that an interface
19176 		 * unplumb thread has not yet started cleaning up the conns.
19177 		 * Hence we don't need to grab the conn lock.
19178 		 */
19179 		if (!(connp->conn_state_flags & CONN_CLOSING)) {
19180 			rw_enter(&ire->ire_bucket->irb_lock, RW_READER);
19181 			if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) {
19182 				connp->conn_ire_cache = ire;
19183 				cached = B_TRUE;
19184 			}
19185 			rw_exit(&ire->ire_bucket->irb_lock);
19186 		}
19187 
19188 		/*
19189 		 * We can continue to use the ire but since it was not
19190 		 * cached, we should drop the extra reference.
19191 		 */
19192 		if (!cached)
19193 			IRE_REFRELE_NOTR(ire);
19194 	}
19195 
19196 	ASSERT(ire != NULL);
19197 	ASSERT(af != AF_INET || ire->ire_ipversion == IPV4_VERSION);
19198 	ASSERT(af == AF_INET || !IN6_IS_ADDR_V4MAPPED(&(ire->ire_addr_v6)));
19199 	ASSERT(af == AF_INET || ire->ire_nce != NULL);
19200 	ASSERT(!(ire->ire_type & IRE_BROADCAST));
19201 	/*
19202 	 * If we do support loopback for MDT (which requires modifications
19203 	 * to the receiving paths), the following assertions should go away,
19204 	 * and we would be sending the Multidata to loopback conn later on.
19205 	 */
19206 	ASSERT(!IRE_IS_LOCAL(ire));
19207 	ASSERT(ire->ire_stq != NULL);
19208 
19209 	ill = ire_to_ill(ire);
19210 	ASSERT(ill != NULL);
19211 	ASSERT(!ILL_MDT_CAPABLE(ill) || ill->ill_mdt_capab != NULL);
19212 
19213 	if (!tcp->tcp_ire_ill_check_done) {
19214 		tcp_ire_ill_check(tcp, ire, ill, B_TRUE);
19215 		tcp->tcp_ire_ill_check_done = B_TRUE;
19216 	}
19217 
19218 	/*
19219 	 * If the underlying interface conditions have changed, or if the
19220 	 * new interface does not support MDT, go back to legacy path.
19221 	 */
19222 	if (!ILL_MDT_USABLE(ill) || (ire->ire_flags & RTF_MULTIRT) != 0) {
19223 		/* don't go through this path anymore for this connection */
19224 		TCP_STAT(tcp_mdt_conn_halted2);
19225 		tcp->tcp_mdt = B_FALSE;
19226 		ip1dbg(("tcp_multisend: disabling MDT for connp %p on "
19227 		    "interface %s\n", (void *)connp, ill->ill_name));
19228 		/* IRE will be released prior to returning */
19229 		goto legacy_send_no_md;
19230 	}
19231 
19232 	if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)
19233 		zc_cap = ill->ill_zerocopy_capab;
19234 
19235 	/*
19236 	 * Check if we can take tcp fast-path. Note that "incomplete"
19237 	 * ire's (where the link-layer for next hop is not resolved
19238 	 * or where the fast-path header in nce_fp_mp is not available
19239 	 * yet) are sent down the legacy (slow) path.
19240 	 * NOTE: We should fix ip_xmit_v4 to handle M_MULTIDATA
19241 	 */
19242 	if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) {
19243 		/* IRE will be released prior to returning */
19244 		goto legacy_send_no_md;
19245 	}
19246 
19247 	/* go to legacy path if interface doesn't support zerocopy */
19248 	if (tcp->tcp_snd_zcopy_aware && do_tcpzcopy != 2 &&
19249 	    (zc_cap == NULL || zc_cap->ill_zerocopy_flags == 0)) {
19250 		/* IRE will be released prior to returning */
19251 		goto legacy_send_no_md;
19252 	}
19253 
19254 	/* does the interface support hardware checksum offload? */
19255 	hwcksum_flags = 0;
19256 	if (ILL_HCKSUM_CAPABLE(ill) &&
19257 	    (ill->ill_hcksum_capab->ill_hcksum_txflags &
19258 	    (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6 | HCKSUM_INET_PARTIAL |
19259 	    HCKSUM_IPHDRCKSUM)) && dohwcksum) {
19260 		if (ill->ill_hcksum_capab->ill_hcksum_txflags &
19261 		    HCKSUM_IPHDRCKSUM)
19262 			hwcksum_flags = HCK_IPV4_HDRCKSUM;
19263 
19264 		if (ill->ill_hcksum_capab->ill_hcksum_txflags &
19265 		    (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6))
19266 			hwcksum_flags |= HCK_FULLCKSUM;
19267 		else if (ill->ill_hcksum_capab->ill_hcksum_txflags &
19268 		    HCKSUM_INET_PARTIAL)
19269 			hwcksum_flags |= HCK_PARTIALCKSUM;
19270 	}
19271 
19272 	/*
19273 	 * Each header fragment consists of the leading extra space,
19274 	 * followed by the TCP/IP header, and the trailing extra space.
19275 	 * We make sure that each header fragment begins on a 32-bit
19276 	 * aligned memory address (tcp_mdt_hdr_head is already 32-bit
19277 	 * aligned in tcp_mdt_update).
19278 	 */
19279 	hdr_frag_sz = roundup((tcp->tcp_mdt_hdr_head + tcp_hdr_len +
19280 	    tcp->tcp_mdt_hdr_tail), 4);
19281 
19282 	/* are we starting from the beginning of data block? */
19283 	if (*tail_unsent == 0) {
19284 		*xmit_tail = (*xmit_tail)->b_cont;
19285 		ASSERT((uintptr_t)MBLKL(*xmit_tail) <= (uintptr_t)INT_MAX);
19286 		*tail_unsent = (int)MBLKL(*xmit_tail);
19287 	}
19288 
19289 	/*
19290 	 * Here we create one or more Multidata messages, each made up of
19291 	 * one header buffer and up to N payload buffers.  This entire
19292 	 * operation is done within two loops:
19293 	 *
19294 	 * The outer loop mostly deals with creating the Multidata message,
19295 	 * as well as the header buffer that gets added to it.  It also
19296 	 * links the Multidata messages together such that all of them can
19297 	 * be sent down to the lower layer in a single putnext call; this
19298 	 * linking behavior depends on the tcp_mdt_chain tunable.
19299 	 *
19300 	 * The inner loop takes an existing Multidata message, and adds
19301 	 * one or more (up to tcp_mdt_max_pld) payload buffers to it.  It
19302 	 * packetizes those buffers by filling up the corresponding header
19303 	 * buffer fragments with the proper IP and TCP headers, and by
19304 	 * describing the layout of each packet in the packet descriptors
19305 	 * that get added to the Multidata.
19306 	 */
19307 	do {
19308 		/*
19309 		 * If usable send window is too small, or data blocks in
19310 		 * transmit list are smaller than our threshold (i.e. app
19311 		 * performs large writes followed by small ones), we hand
19312 		 * off the control over to the legacy path.  Note that we'll
19313 		 * get back the control once it encounters a large block.
19314 		 */
19315 		if (*usable < mss || (*tail_unsent <= mdt_thres &&
19316 		    (*xmit_tail)->b_cont != NULL &&
19317 		    MBLKL((*xmit_tail)->b_cont) <= mdt_thres)) {
19318 			/* send down what we've got so far */
19319 			if (md_mp_head != NULL) {
19320 				tcp_multisend_data(tcp, ire, ill, md_mp_head,
19321 				    obsegs, obbytes, &rconfirm);
19322 			}
19323 			/*
19324 			 * Pass control over to tcp_send(), but tell it to
19325 			 * return to us once a large-size transmission is
19326 			 * possible.
19327 			 */
19328 			TCP_STAT(tcp_mdt_legacy_small);
19329 			if ((err = tcp_send(q, tcp, mss, tcp_hdr_len,
19330 			    tcp_tcp_hdr_len, num_sack_blk, usable, snxt,
19331 			    tail_unsent, xmit_tail, local_time,
19332 			    mdt_thres)) <= 0) {
19333 				/* burst count reached, or alloc failed */
19334 				IRE_REFRELE(ire);
19335 				return (err);
19336 			}
19337 
19338 			/* tcp_send() may have sent everything, so check */
19339 			if (*usable <= 0) {
19340 				IRE_REFRELE(ire);
19341 				return (0);
19342 			}
19343 
19344 			TCP_STAT(tcp_mdt_legacy_ret);
19345 			/*
19346 			 * We may have delivered the Multidata, so make sure
19347 			 * to re-initialize before the next round.
19348 			 */
19349 			md_mp_head = NULL;
19350 			obsegs = obbytes = 0;
19351 			num_burst_seg = tcp->tcp_snd_burst;
19352 			PREP_NEW_MULTIDATA();
19353 
19354 			/* are we starting from the beginning of data block? */
19355 			if (*tail_unsent == 0) {
19356 				*xmit_tail = (*xmit_tail)->b_cont;
19357 				ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
19358 				    (uintptr_t)INT_MAX);
19359 				*tail_unsent = (int)MBLKL(*xmit_tail);
19360 			}
19361 		}
19362 
19363 		/*
19364 		 * max_pld limits the number of mblks in tcp's transmit
19365 		 * queue that can be added to a Multidata message.  Once
19366 		 * this counter reaches zero, no more additional mblks
19367 		 * can be added to it.  What happens afterwards depends
19368 		 * on whether or not we are set to chain the Multidata
19369 		 * messages.  If we are to link them together, reset
19370 		 * max_pld to its original value (tcp_mdt_max_pld) and
19371 		 * prepare to create a new Multidata message which will
19372 		 * get linked to md_mp_head.  Else, leave it alone and
19373 		 * let the inner loop break on its own.
19374 		 */
19375 		if (tcp_mdt_chain && max_pld == 0)
19376 			PREP_NEW_MULTIDATA();
19377 
19378 		/* adding a payload buffer; re-initialize values */
19379 		if (add_buffer)
19380 			PREP_NEW_PBUF();
19381 
19382 		/*
19383 		 * If we don't have a Multidata, either because we just
19384 		 * (re)entered this outer loop, or after we branched off
19385 		 * to tcp_send above, setup the Multidata and header
19386 		 * buffer to be used.
19387 		 */
19388 		if (md_mp == NULL) {
19389 			int md_hbuflen;
19390 			uint32_t start, stuff;
19391 
19392 			/*
19393 			 * Calculate Multidata header buffer size large enough
19394 			 * to hold all of the headers that can possibly be
19395 			 * sent at this moment.  We'd rather over-estimate
19396 			 * the size than running out of space; this is okay
19397 			 * since this buffer is small anyway.
19398 			 */
19399 			md_hbuflen = (howmany(*usable, mss) + 1) * hdr_frag_sz;
19400 
19401 			/*
19402 			 * Start and stuff offset for partial hardware
19403 			 * checksum offload; these are currently for IPv4.
19404 			 * For full checksum offload, they are set to zero.
19405 			 */
19406 			if ((hwcksum_flags & HCK_PARTIALCKSUM)) {
19407 				if (af == AF_INET) {
19408 					start = IP_SIMPLE_HDR_LENGTH;
19409 					stuff = IP_SIMPLE_HDR_LENGTH +
19410 					    TCP_CHECKSUM_OFFSET;
19411 				} else {
19412 					start = IPV6_HDR_LEN;
19413 					stuff = IPV6_HDR_LEN +
19414 					    TCP_CHECKSUM_OFFSET;
19415 				}
19416 			} else {
19417 				start = stuff = 0;
19418 			}
19419 
19420 			/*
19421 			 * Create the header buffer, Multidata, as well as
19422 			 * any necessary attributes (destination address,
19423 			 * SAP and hardware checksum offload) that should
19424 			 * be associated with the Multidata message.
19425 			 */
19426 			ASSERT(cur_hdr_off == 0);
19427 			if ((md_hbuf = allocb(md_hbuflen, BPRI_HI)) == NULL ||
19428 			    ((md_hbuf->b_wptr += md_hbuflen),
19429 			    (mmd = mmd_alloc(md_hbuf, &md_mp,
19430 			    KM_NOSLEEP)) == NULL) || (tcp_mdt_add_attrs(mmd,
19431 			    /* fastpath mblk */
19432 			    ire->ire_nce->nce_res_mp,
19433 			    /* hardware checksum enabled */
19434 			    (hwcksum_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)),
19435 			    /* hardware checksum offsets */
19436 			    start, stuff, 0,
19437 			    /* hardware checksum flag */
19438 			    hwcksum_flags) != 0)) {
19439 legacy_send:
19440 				if (md_mp != NULL) {
19441 					/* Unlink message from the chain */
19442 					if (md_mp_head != NULL) {
19443 						err = (intptr_t)rmvb(md_mp_head,
19444 						    md_mp);
19445 						/*
19446 						 * We can't assert that rmvb
19447 						 * did not return -1, since we
19448 						 * may get here before linkb
19449 						 * happens.  We do, however,
19450 						 * check if we just removed the
19451 						 * only element in the list.
19452 						 */
19453 						if (err == 0)
19454 							md_mp_head = NULL;
19455 					}
19456 					/* md_hbuf gets freed automatically */
19457 					TCP_STAT(tcp_mdt_discarded);
19458 					freeb(md_mp);
19459 				} else {
19460 					/* Either allocb or mmd_alloc failed */
19461 					TCP_STAT(tcp_mdt_allocfail);
19462 					if (md_hbuf != NULL)
19463 						freeb(md_hbuf);
19464 				}
19465 
19466 				/* send down what we've got so far */
19467 				if (md_mp_head != NULL) {
19468 					tcp_multisend_data(tcp, ire, ill,
19469 					    md_mp_head, obsegs, obbytes,
19470 					    &rconfirm);
19471 				}
19472 legacy_send_no_md:
19473 				if (ire != NULL)
19474 					IRE_REFRELE(ire);
19475 				/*
19476 				 * Too bad; let the legacy path handle this.
19477 				 * We specify INT_MAX for the threshold, since
19478 				 * we gave up with the Multidata processings
19479 				 * and let the old path have it all.
19480 				 */
19481 				TCP_STAT(tcp_mdt_legacy_all);
19482 				return (tcp_send(q, tcp, mss, tcp_hdr_len,
19483 				    tcp_tcp_hdr_len, num_sack_blk, usable,
19484 				    snxt, tail_unsent, xmit_tail, local_time,
19485 				    INT_MAX));
19486 			}
19487 
19488 			/* link to any existing ones, if applicable */
19489 			TCP_STAT(tcp_mdt_allocd);
19490 			if (md_mp_head == NULL) {
19491 				md_mp_head = md_mp;
19492 			} else if (tcp_mdt_chain) {
19493 				TCP_STAT(tcp_mdt_linked);
19494 				linkb(md_mp_head, md_mp);
19495 			}
19496 		}
19497 
19498 		ASSERT(md_mp_head != NULL);
19499 		ASSERT(tcp_mdt_chain || md_mp_head->b_cont == NULL);
19500 		ASSERT(md_mp != NULL && mmd != NULL);
19501 		ASSERT(md_hbuf != NULL);
19502 
19503 		/*
19504 		 * Packetize the transmittable portion of the data block;
19505 		 * each data block is essentially added to the Multidata
19506 		 * as a payload buffer.  We also deal with adding more
19507 		 * than one payload buffers, which happens when the remaining
19508 		 * packetized portion of the current payload buffer is less
19509 		 * than MSS, while the next data block in transmit queue
19510 		 * has enough data to make up for one.  This "spillover"
19511 		 * case essentially creates a split-packet, where portions
19512 		 * of the packet's payload fragments may span across two
19513 		 * virtually discontiguous address blocks.
19514 		 */
19515 		seg_len = mss;
19516 		do {
19517 			len = seg_len;
19518 
19519 			ASSERT(len > 0);
19520 			ASSERT(max_pld >= 0);
19521 			ASSERT(!add_buffer || cur_pld_off == 0);
19522 
19523 			/*
19524 			 * First time around for this payload buffer; note
19525 			 * in the case of a spillover, the following has
19526 			 * been done prior to adding the split-packet
19527 			 * descriptor to Multidata, and we don't want to
19528 			 * repeat the process.
19529 			 */
19530 			if (add_buffer) {
19531 				ASSERT(mmd != NULL);
19532 				ASSERT(md_pbuf == NULL);
19533 				ASSERT(md_pbuf_nxt == NULL);
19534 				ASSERT(pbuf_idx == -1 && pbuf_idx_nxt == -1);
19535 
19536 				/*
19537 				 * Have we reached the limit?  We'd get to
19538 				 * this case when we're not chaining the
19539 				 * Multidata messages together, and since
19540 				 * we're done, terminate this loop.
19541 				 */
19542 				if (max_pld == 0)
19543 					break; /* done */
19544 
19545 				if ((md_pbuf = dupb(*xmit_tail)) == NULL) {
19546 					TCP_STAT(tcp_mdt_allocfail);
19547 					goto legacy_send; /* out_of_mem */
19548 				}
19549 
19550 				if (IS_VMLOANED_MBLK(md_pbuf) && !zcopy &&
19551 				    zc_cap != NULL) {
19552 					if (!ip_md_zcopy_attr(mmd, NULL,
19553 					    zc_cap->ill_zerocopy_flags)) {
19554 						freeb(md_pbuf);
19555 						TCP_STAT(tcp_mdt_allocfail);
19556 						/* out_of_mem */
19557 						goto legacy_send;
19558 					}
19559 					zcopy = B_TRUE;
19560 				}
19561 
19562 				md_pbuf->b_rptr += base_pld_off;
19563 
19564 				/*
19565 				 * Add a payload buffer to the Multidata; this
19566 				 * operation must not fail, or otherwise our
19567 				 * logic in this routine is broken.  There
19568 				 * is no memory allocation done by the
19569 				 * routine, so any returned failure simply
19570 				 * tells us that we've done something wrong.
19571 				 *
19572 				 * A failure tells us that either we're adding
19573 				 * the same payload buffer more than once, or
19574 				 * we're trying to add more buffers than
19575 				 * allowed (max_pld calculation is wrong).
19576 				 * None of the above cases should happen, and
19577 				 * we panic because either there's horrible
19578 				 * heap corruption, and/or programming mistake.
19579 				 */
19580 				pbuf_idx = mmd_addpldbuf(mmd, md_pbuf);
19581 				if (pbuf_idx < 0) {
19582 					cmn_err(CE_PANIC, "tcp_multisend: "
19583 					    "payload buffer logic error "
19584 					    "detected for tcp %p mmd %p "
19585 					    "pbuf %p (%d)\n",
19586 					    (void *)tcp, (void *)mmd,
19587 					    (void *)md_pbuf, pbuf_idx);
19588 				}
19589 
19590 				ASSERT(max_pld > 0);
19591 				--max_pld;
19592 				add_buffer = B_FALSE;
19593 			}
19594 
19595 			ASSERT(md_mp_head != NULL);
19596 			ASSERT(md_pbuf != NULL);
19597 			ASSERT(md_pbuf_nxt == NULL);
19598 			ASSERT(pbuf_idx != -1);
19599 			ASSERT(pbuf_idx_nxt == -1);
19600 			ASSERT(*usable > 0);
19601 
19602 			/*
19603 			 * We spillover to the next payload buffer only
19604 			 * if all of the following is true:
19605 			 *
19606 			 *   1. There is not enough data on the current
19607 			 *	payload buffer to make up `len',
19608 			 *   2. We are allowed to send `len',
19609 			 *   3. The next payload buffer length is large
19610 			 *	enough to accomodate `spill'.
19611 			 */
19612 			if ((spill = len - *tail_unsent) > 0 &&
19613 			    *usable >= len &&
19614 			    MBLKL((*xmit_tail)->b_cont) >= spill &&
19615 			    max_pld > 0) {
19616 				md_pbuf_nxt = dupb((*xmit_tail)->b_cont);
19617 				if (md_pbuf_nxt == NULL) {
19618 					TCP_STAT(tcp_mdt_allocfail);
19619 					goto legacy_send; /* out_of_mem */
19620 				}
19621 
19622 				if (IS_VMLOANED_MBLK(md_pbuf_nxt) && !zcopy &&
19623 				    zc_cap != NULL) {
19624 					if (!ip_md_zcopy_attr(mmd, NULL,
19625 					    zc_cap->ill_zerocopy_flags)) {
19626 						freeb(md_pbuf_nxt);
19627 						TCP_STAT(tcp_mdt_allocfail);
19628 						/* out_of_mem */
19629 						goto legacy_send;
19630 					}
19631 					zcopy = B_TRUE;
19632 				}
19633 
19634 				/*
19635 				 * See comments above on the first call to
19636 				 * mmd_addpldbuf for explanation on the panic.
19637 				 */
19638 				pbuf_idx_nxt = mmd_addpldbuf(mmd, md_pbuf_nxt);
19639 				if (pbuf_idx_nxt < 0) {
19640 					panic("tcp_multisend: "
19641 					    "next payload buffer logic error "
19642 					    "detected for tcp %p mmd %p "
19643 					    "pbuf %p (%d)\n",
19644 					    (void *)tcp, (void *)mmd,
19645 					    (void *)md_pbuf_nxt, pbuf_idx_nxt);
19646 				}
19647 
19648 				ASSERT(max_pld > 0);
19649 				--max_pld;
19650 			} else if (spill > 0) {
19651 				/*
19652 				 * If there's a spillover, but the following
19653 				 * xmit_tail couldn't give us enough octets
19654 				 * to reach "len", then stop the current
19655 				 * Multidata creation and let the legacy
19656 				 * tcp_send() path take over.  We don't want
19657 				 * to send the tiny segment as part of this
19658 				 * Multidata for performance reasons; instead,
19659 				 * we let the legacy path deal with grouping
19660 				 * it with the subsequent small mblks.
19661 				 */
19662 				if (*usable >= len &&
19663 				    MBLKL((*xmit_tail)->b_cont) < spill) {
19664 					max_pld = 0;
19665 					break;	/* done */
19666 				}
19667 
19668 				/*
19669 				 * We can't spillover, and we are near
19670 				 * the end of the current payload buffer,
19671 				 * so send what's left.
19672 				 */
19673 				ASSERT(*tail_unsent > 0);
19674 				len = *tail_unsent;
19675 			}
19676 
19677 			/* tail_unsent is negated if there is a spillover */
19678 			*tail_unsent -= len;
19679 			*usable -= len;
19680 			ASSERT(*usable >= 0);
19681 
19682 			if (*usable < mss)
19683 				seg_len = *usable;
19684 			/*
19685 			 * Sender SWS avoidance; see comments in tcp_send();
19686 			 * everything else is the same, except that we only
19687 			 * do this here if there is no more data to be sent
19688 			 * following the current xmit_tail.  We don't check
19689 			 * for 1-byte urgent data because we shouldn't get
19690 			 * here if TCP_URG_VALID is set.
19691 			 */
19692 			if (*usable > 0 && *usable < mss &&
19693 			    ((md_pbuf_nxt == NULL &&
19694 			    (*xmit_tail)->b_cont == NULL) ||
19695 			    (md_pbuf_nxt != NULL &&
19696 			    (*xmit_tail)->b_cont->b_cont == NULL)) &&
19697 			    seg_len < (tcp->tcp_max_swnd >> 1) &&
19698 			    (tcp->tcp_unsent -
19699 			    ((*snxt + len) - tcp->tcp_snxt)) > seg_len &&
19700 			    !tcp->tcp_zero_win_probe) {
19701 				if ((*snxt + len) == tcp->tcp_snxt &&
19702 				    (*snxt + len) == tcp->tcp_suna) {
19703 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
19704 				}
19705 				done = B_TRUE;
19706 			}
19707 
19708 			/*
19709 			 * Prime pump for IP's checksumming on our behalf;
19710 			 * include the adjustment for a source route if any.
19711 			 * Do this only for software/partial hardware checksum
19712 			 * offload, as this field gets zeroed out later for
19713 			 * the full hardware checksum offload case.
19714 			 */
19715 			if (!(hwcksum_flags & HCK_FULLCKSUM)) {
19716 				cksum = len + tcp_tcp_hdr_len + tcp->tcp_sum;
19717 				cksum = (cksum >> 16) + (cksum & 0xFFFF);
19718 				U16_TO_ABE16(cksum, tcp->tcp_tcph->th_sum);
19719 			}
19720 
19721 			U32_TO_ABE32(*snxt, tcp->tcp_tcph->th_seq);
19722 			*snxt += len;
19723 
19724 			tcp->tcp_tcph->th_flags[0] = TH_ACK;
19725 			/*
19726 			 * We set the PUSH bit only if TCP has no more buffered
19727 			 * data to be transmitted (or if sender SWS avoidance
19728 			 * takes place), as opposed to setting it for every
19729 			 * last packet in the burst.
19730 			 */
19731 			if (done ||
19732 			    (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) == 0)
19733 				tcp->tcp_tcph->th_flags[0] |= TH_PUSH;
19734 
19735 			/*
19736 			 * Set FIN bit if this is our last segment; snxt
19737 			 * already includes its length, and it will not
19738 			 * be adjusted after this point.
19739 			 */
19740 			if (tcp->tcp_valid_bits == TCP_FSS_VALID &&
19741 			    *snxt == tcp->tcp_fss) {
19742 				if (!tcp->tcp_fin_acked) {
19743 					tcp->tcp_tcph->th_flags[0] |= TH_FIN;
19744 					BUMP_MIB(&tcp_mib, tcpOutControl);
19745 				}
19746 				if (!tcp->tcp_fin_sent) {
19747 					tcp->tcp_fin_sent = B_TRUE;
19748 					/*
19749 					 * tcp state must be ESTABLISHED
19750 					 * in order for us to get here in
19751 					 * the first place.
19752 					 */
19753 					tcp->tcp_state = TCPS_FIN_WAIT_1;
19754 
19755 					/*
19756 					 * Upon returning from this routine,
19757 					 * tcp_wput_data() will set tcp_snxt
19758 					 * to be equal to snxt + tcp_fin_sent.
19759 					 * This is essentially the same as
19760 					 * setting it to tcp_fss + 1.
19761 					 */
19762 				}
19763 			}
19764 
19765 			tcp->tcp_last_sent_len = (ushort_t)len;
19766 
19767 			len += tcp_hdr_len;
19768 			if (tcp->tcp_ipversion == IPV4_VERSION)
19769 				tcp->tcp_ipha->ipha_length = htons(len);
19770 			else
19771 				tcp->tcp_ip6h->ip6_plen = htons(len -
19772 				    ((char *)&tcp->tcp_ip6h[1] -
19773 				    tcp->tcp_iphc));
19774 
19775 			pkt_info->flags = (PDESC_HBUF_REF | PDESC_PBUF_REF);
19776 
19777 			/* setup header fragment */
19778 			PDESC_HDR_ADD(pkt_info,
19779 			    md_hbuf->b_rptr + cur_hdr_off,	/* base */
19780 			    tcp->tcp_mdt_hdr_head,		/* head room */
19781 			    tcp_hdr_len,			/* len */
19782 			    tcp->tcp_mdt_hdr_tail);		/* tail room */
19783 
19784 			ASSERT(pkt_info->hdr_lim - pkt_info->hdr_base ==
19785 			    hdr_frag_sz);
19786 			ASSERT(MBLKIN(md_hbuf,
19787 			    (pkt_info->hdr_base - md_hbuf->b_rptr),
19788 			    PDESC_HDRSIZE(pkt_info)));
19789 
19790 			/* setup first payload fragment */
19791 			PDESC_PLD_INIT(pkt_info);
19792 			PDESC_PLD_SPAN_ADD(pkt_info,
19793 			    pbuf_idx,				/* index */
19794 			    md_pbuf->b_rptr + cur_pld_off,	/* start */
19795 			    tcp->tcp_last_sent_len);		/* len */
19796 
19797 			/* create a split-packet in case of a spillover */
19798 			if (md_pbuf_nxt != NULL) {
19799 				ASSERT(spill > 0);
19800 				ASSERT(pbuf_idx_nxt > pbuf_idx);
19801 				ASSERT(!add_buffer);
19802 
19803 				md_pbuf = md_pbuf_nxt;
19804 				md_pbuf_nxt = NULL;
19805 				pbuf_idx = pbuf_idx_nxt;
19806 				pbuf_idx_nxt = -1;
19807 				cur_pld_off = spill;
19808 
19809 				/* trim out first payload fragment */
19810 				PDESC_PLD_SPAN_TRIM(pkt_info, 0, spill);
19811 
19812 				/* setup second payload fragment */
19813 				PDESC_PLD_SPAN_ADD(pkt_info,
19814 				    pbuf_idx,			/* index */
19815 				    md_pbuf->b_rptr,		/* start */
19816 				    spill);			/* len */
19817 
19818 				if ((*xmit_tail)->b_next == NULL) {
19819 					/*
19820 					 * Store the lbolt used for RTT
19821 					 * estimation. We can only record one
19822 					 * timestamp per mblk so we do it when
19823 					 * we reach the end of the payload
19824 					 * buffer.  Also we only take a new
19825 					 * timestamp sample when the previous
19826 					 * timed data from the same mblk has
19827 					 * been ack'ed.
19828 					 */
19829 					(*xmit_tail)->b_prev = local_time;
19830 					(*xmit_tail)->b_next =
19831 					    (mblk_t *)(uintptr_t)first_snxt;
19832 				}
19833 
19834 				first_snxt = *snxt - spill;
19835 
19836 				/*
19837 				 * Advance xmit_tail; usable could be 0 by
19838 				 * the time we got here, but we made sure
19839 				 * above that we would only spillover to
19840 				 * the next data block if usable includes
19841 				 * the spilled-over amount prior to the
19842 				 * subtraction.  Therefore, we are sure
19843 				 * that xmit_tail->b_cont can't be NULL.
19844 				 */
19845 				ASSERT((*xmit_tail)->b_cont != NULL);
19846 				*xmit_tail = (*xmit_tail)->b_cont;
19847 				ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
19848 				    (uintptr_t)INT_MAX);
19849 				*tail_unsent = (int)MBLKL(*xmit_tail) - spill;
19850 			} else {
19851 				cur_pld_off += tcp->tcp_last_sent_len;
19852 			}
19853 
19854 			/*
19855 			 * Fill in the header using the template header, and
19856 			 * add options such as time-stamp, ECN and/or SACK,
19857 			 * as needed.
19858 			 */
19859 			tcp_fill_header(tcp, pkt_info->hdr_rptr,
19860 			    (clock_t)local_time, num_sack_blk);
19861 
19862 			/* take care of some IP header businesses */
19863 			if (af == AF_INET) {
19864 				ipha = (ipha_t *)pkt_info->hdr_rptr;
19865 
19866 				ASSERT(OK_32PTR((uchar_t *)ipha));
19867 				ASSERT(PDESC_HDRL(pkt_info) >=
19868 				    IP_SIMPLE_HDR_LENGTH);
19869 				ASSERT(ipha->ipha_version_and_hdr_length ==
19870 				    IP_SIMPLE_HDR_VERSION);
19871 
19872 				/*
19873 				 * Assign ident value for current packet; see
19874 				 * related comments in ip_wput_ire() about the
19875 				 * contract private interface with clustering
19876 				 * group.
19877 				 */
19878 				clusterwide = B_FALSE;
19879 				if (cl_inet_ipident != NULL) {
19880 					ASSERT(cl_inet_isclusterwide != NULL);
19881 					if ((*cl_inet_isclusterwide)(IPPROTO_IP,
19882 					    AF_INET,
19883 					    (uint8_t *)(uintptr_t)src)) {
19884 						ipha->ipha_ident =
19885 						    (*cl_inet_ipident)
19886 						    (IPPROTO_IP, AF_INET,
19887 						    (uint8_t *)(uintptr_t)src,
19888 						    (uint8_t *)(uintptr_t)dst);
19889 						clusterwide = B_TRUE;
19890 					}
19891 				}
19892 
19893 				if (!clusterwide) {
19894 					ipha->ipha_ident = (uint16_t)
19895 					    atomic_add_32_nv(
19896 						&ire->ire_ident, 1);
19897 				}
19898 #ifndef _BIG_ENDIAN
19899 				ipha->ipha_ident = (ipha->ipha_ident << 8) |
19900 				    (ipha->ipha_ident >> 8);
19901 #endif
19902 			} else {
19903 				ip6h = (ip6_t *)pkt_info->hdr_rptr;
19904 
19905 				ASSERT(OK_32PTR((uchar_t *)ip6h));
19906 				ASSERT(IPVER(ip6h) == IPV6_VERSION);
19907 				ASSERT(ip6h->ip6_nxt == IPPROTO_TCP);
19908 				ASSERT(PDESC_HDRL(pkt_info) >=
19909 				    (IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET +
19910 				    TCP_CHECKSUM_SIZE));
19911 				ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
19912 
19913 				if (tcp->tcp_ip_forward_progress) {
19914 					rconfirm = B_TRUE;
19915 					tcp->tcp_ip_forward_progress = B_FALSE;
19916 				}
19917 			}
19918 
19919 			/* at least one payload span, and at most two */
19920 			ASSERT(pkt_info->pld_cnt > 0 && pkt_info->pld_cnt < 3);
19921 
19922 			/* add the packet descriptor to Multidata */
19923 			if ((pkt = mmd_addpdesc(mmd, pkt_info, &err,
19924 			    KM_NOSLEEP)) == NULL) {
19925 				/*
19926 				 * Any failure other than ENOMEM indicates
19927 				 * that we have passed in invalid pkt_info
19928 				 * or parameters to mmd_addpdesc, which must
19929 				 * not happen.
19930 				 *
19931 				 * EINVAL is a result of failure on boundary
19932 				 * checks against the pkt_info contents.  It
19933 				 * should not happen, and we panic because
19934 				 * either there's horrible heap corruption,
19935 				 * and/or programming mistake.
19936 				 */
19937 				if (err != ENOMEM) {
19938 					cmn_err(CE_PANIC, "tcp_multisend: "
19939 					    "pdesc logic error detected for "
19940 					    "tcp %p mmd %p pinfo %p (%d)\n",
19941 					    (void *)tcp, (void *)mmd,
19942 					    (void *)pkt_info, err);
19943 				}
19944 				TCP_STAT(tcp_mdt_addpdescfail);
19945 				goto legacy_send; /* out_of_mem */
19946 			}
19947 			ASSERT(pkt != NULL);
19948 
19949 			/* calculate IP header and TCP checksums */
19950 			if (af == AF_INET) {
19951 				/* calculate pseudo-header checksum */
19952 				cksum = (dst >> 16) + (dst & 0xFFFF) +
19953 				    (src >> 16) + (src & 0xFFFF);
19954 
19955 				/* offset for TCP header checksum */
19956 				up = IPH_TCPH_CHECKSUMP(ipha,
19957 				    IP_SIMPLE_HDR_LENGTH);
19958 			} else {
19959 				up = (uint16_t *)&ip6h->ip6_src;
19960 
19961 				/* calculate pseudo-header checksum */
19962 				cksum = up[0] + up[1] + up[2] + up[3] +
19963 				    up[4] + up[5] + up[6] + up[7] +
19964 				    up[8] + up[9] + up[10] + up[11] +
19965 				    up[12] + up[13] + up[14] + up[15];
19966 
19967 				/* Fold the initial sum */
19968 				cksum = (cksum & 0xffff) + (cksum >> 16);
19969 
19970 				up = (uint16_t *)(((uchar_t *)ip6h) +
19971 				    IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET);
19972 			}
19973 
19974 			if (hwcksum_flags & HCK_FULLCKSUM) {
19975 				/* clear checksum field for hardware */
19976 				*up = 0;
19977 			} else if (hwcksum_flags & HCK_PARTIALCKSUM) {
19978 				uint32_t sum;
19979 
19980 				/* pseudo-header checksumming */
19981 				sum = *up + cksum + IP_TCP_CSUM_COMP;
19982 				sum = (sum & 0xFFFF) + (sum >> 16);
19983 				*up = (sum & 0xFFFF) + (sum >> 16);
19984 			} else {
19985 				/* software checksumming */
19986 				TCP_STAT(tcp_out_sw_cksum);
19987 				TCP_STAT_UPDATE(tcp_out_sw_cksum_bytes,
19988 				    tcp->tcp_hdr_len + tcp->tcp_last_sent_len);
19989 				*up = IP_MD_CSUM(pkt, tcp->tcp_ip_hdr_len,
19990 				    cksum + IP_TCP_CSUM_COMP);
19991 				if (*up == 0)
19992 					*up = 0xFFFF;
19993 			}
19994 
19995 			/* IPv4 header checksum */
19996 			if (af == AF_INET) {
19997 				ipha->ipha_fragment_offset_and_flags |=
19998 				    (uint32_t)htons(ire->ire_frag_flag);
19999 
20000 				if (hwcksum_flags & HCK_IPV4_HDRCKSUM) {
20001 					ipha->ipha_hdr_checksum = 0;
20002 				} else {
20003 					IP_HDR_CKSUM(ipha, cksum,
20004 					    ((uint32_t *)ipha)[0],
20005 					    ((uint16_t *)ipha)[4]);
20006 				}
20007 			}
20008 
20009 			/* advance header offset */
20010 			cur_hdr_off += hdr_frag_sz;
20011 
20012 			obbytes += tcp->tcp_last_sent_len;
20013 			++obsegs;
20014 		} while (!done && *usable > 0 && --num_burst_seg > 0 &&
20015 		    *tail_unsent > 0);
20016 
20017 		if ((*xmit_tail)->b_next == NULL) {
20018 			/*
20019 			 * Store the lbolt used for RTT estimation. We can only
20020 			 * record one timestamp per mblk so we do it when we
20021 			 * reach the end of the payload buffer. Also we only
20022 			 * take a new timestamp sample when the previous timed
20023 			 * data from the same mblk has been ack'ed.
20024 			 */
20025 			(*xmit_tail)->b_prev = local_time;
20026 			(*xmit_tail)->b_next = (mblk_t *)(uintptr_t)first_snxt;
20027 		}
20028 
20029 		ASSERT(*tail_unsent >= 0);
20030 		if (*tail_unsent > 0) {
20031 			/*
20032 			 * We got here because we broke out of the above
20033 			 * loop due to of one of the following cases:
20034 			 *
20035 			 *   1. len < adjusted MSS (i.e. small),
20036 			 *   2. Sender SWS avoidance,
20037 			 *   3. max_pld is zero.
20038 			 *
20039 			 * We are done for this Multidata, so trim our
20040 			 * last payload buffer (if any) accordingly.
20041 			 */
20042 			if (md_pbuf != NULL)
20043 				md_pbuf->b_wptr -= *tail_unsent;
20044 		} else if (*usable > 0) {
20045 			*xmit_tail = (*xmit_tail)->b_cont;
20046 			ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
20047 			    (uintptr_t)INT_MAX);
20048 			*tail_unsent = (int)MBLKL(*xmit_tail);
20049 			add_buffer = B_TRUE;
20050 		}
20051 	} while (!done && *usable > 0 && num_burst_seg > 0 &&
20052 	    (tcp_mdt_chain || max_pld > 0));
20053 
20054 	/* send everything down */
20055 	tcp_multisend_data(tcp, ire, ill, md_mp_head, obsegs, obbytes,
20056 	    &rconfirm);
20057 
20058 #undef PREP_NEW_MULTIDATA
20059 #undef PREP_NEW_PBUF
20060 #undef IPVER
20061 
20062 	IRE_REFRELE(ire);
20063 	return (0);
20064 }
20065 
20066 /*
20067  * A wrapper function for sending one or more Multidata messages down to
20068  * the module below ip; this routine does not release the reference of the
20069  * IRE (caller does that).  This routine is analogous to tcp_send_data().
20070  */
20071 static void
20072 tcp_multisend_data(tcp_t *tcp, ire_t *ire, const ill_t *ill, mblk_t *md_mp_head,
20073     const uint_t obsegs, const uint_t obbytes, boolean_t *rconfirm)
20074 {
20075 	uint64_t delta;
20076 	nce_t *nce;
20077 
20078 	ASSERT(ire != NULL && ill != NULL);
20079 	ASSERT(ire->ire_stq != NULL);
20080 	ASSERT(md_mp_head != NULL);
20081 	ASSERT(rconfirm != NULL);
20082 
20083 	/* adjust MIBs and IRE timestamp */
20084 	TCP_RECORD_TRACE(tcp, md_mp_head, TCP_TRACE_SEND_PKT);
20085 	tcp->tcp_obsegs += obsegs;
20086 	UPDATE_MIB(&tcp_mib, tcpOutDataSegs, obsegs);
20087 	UPDATE_MIB(&tcp_mib, tcpOutDataBytes, obbytes);
20088 	TCP_STAT_UPDATE(tcp_mdt_pkt_out, obsegs);
20089 
20090 	if (tcp->tcp_ipversion == IPV4_VERSION) {
20091 		TCP_STAT_UPDATE(tcp_mdt_pkt_out_v4, obsegs);
20092 		UPDATE_MIB(&ip_mib, ipOutRequests, obsegs);
20093 	} else {
20094 		TCP_STAT_UPDATE(tcp_mdt_pkt_out_v6, obsegs);
20095 		UPDATE_MIB(&ip6_mib, ipv6OutRequests, obsegs);
20096 	}
20097 
20098 	ire->ire_ob_pkt_count += obsegs;
20099 	if (ire->ire_ipif != NULL)
20100 		atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, obsegs);
20101 	ire->ire_last_used_time = lbolt;
20102 
20103 	/* send it down */
20104 	putnext(ire->ire_stq, md_mp_head);
20105 
20106 	/* we're done for TCP/IPv4 */
20107 	if (tcp->tcp_ipversion == IPV4_VERSION)
20108 		return;
20109 
20110 	nce = ire->ire_nce;
20111 
20112 	ASSERT(nce != NULL);
20113 	ASSERT(!(nce->nce_flags & (NCE_F_NONUD|NCE_F_PERMANENT)));
20114 	ASSERT(nce->nce_state != ND_INCOMPLETE);
20115 
20116 	/* reachability confirmation? */
20117 	if (*rconfirm) {
20118 		nce->nce_last = TICK_TO_MSEC(lbolt64);
20119 		if (nce->nce_state != ND_REACHABLE) {
20120 			mutex_enter(&nce->nce_lock);
20121 			nce->nce_state = ND_REACHABLE;
20122 			nce->nce_pcnt = ND_MAX_UNICAST_SOLICIT;
20123 			mutex_exit(&nce->nce_lock);
20124 			(void) untimeout(nce->nce_timeout_id);
20125 			if (ip_debug > 2) {
20126 				/* ip1dbg */
20127 				pr_addr_dbg("tcp_multisend_data: state "
20128 				    "for %s changed to REACHABLE\n",
20129 				    AF_INET6, &ire->ire_addr_v6);
20130 			}
20131 		}
20132 		/* reset transport reachability confirmation */
20133 		*rconfirm = B_FALSE;
20134 	}
20135 
20136 	delta =  TICK_TO_MSEC(lbolt64) - nce->nce_last;
20137 	ip1dbg(("tcp_multisend_data: delta = %" PRId64
20138 	    " ill_reachable_time = %d \n", delta, ill->ill_reachable_time));
20139 
20140 	if (delta > (uint64_t)ill->ill_reachable_time) {
20141 		mutex_enter(&nce->nce_lock);
20142 		switch (nce->nce_state) {
20143 		case ND_REACHABLE:
20144 		case ND_STALE:
20145 			/*
20146 			 * ND_REACHABLE is identical to ND_STALE in this
20147 			 * specific case. If reachable time has expired for
20148 			 * this neighbor (delta is greater than reachable
20149 			 * time), conceptually, the neighbor cache is no
20150 			 * longer in REACHABLE state, but already in STALE
20151 			 * state.  So the correct transition here is to
20152 			 * ND_DELAY.
20153 			 */
20154 			nce->nce_state = ND_DELAY;
20155 			mutex_exit(&nce->nce_lock);
20156 			NDP_RESTART_TIMER(nce, delay_first_probe_time);
20157 			if (ip_debug > 3) {
20158 				/* ip2dbg */
20159 				pr_addr_dbg("tcp_multisend_data: state "
20160 				    "for %s changed to DELAY\n",
20161 				    AF_INET6, &ire->ire_addr_v6);
20162 			}
20163 			break;
20164 		case ND_DELAY:
20165 		case ND_PROBE:
20166 			mutex_exit(&nce->nce_lock);
20167 			/* Timers have already started */
20168 			break;
20169 		case ND_UNREACHABLE:
20170 			/*
20171 			 * ndp timer has detected that this nce is
20172 			 * unreachable and initiated deleting this nce
20173 			 * and all its associated IREs. This is a race
20174 			 * where we found the ire before it was deleted
20175 			 * and have just sent out a packet using this
20176 			 * unreachable nce.
20177 			 */
20178 			mutex_exit(&nce->nce_lock);
20179 			break;
20180 		default:
20181 			ASSERT(0);
20182 		}
20183 	}
20184 }
20185 
20186 /*
20187  * tcp_send() is called by tcp_wput_data() for non-Multidata transmission
20188  * scheme, and returns one of the following:
20189  *
20190  * -1 = failed allocation.
20191  *  0 = success; burst count reached, or usable send window is too small,
20192  *      and that we'd rather wait until later before sending again.
20193  *  1 = success; we are called from tcp_multisend(), and both usable send
20194  *      window and tail_unsent are greater than the MDT threshold, and thus
20195  *      Multidata Transmit should be used instead.
20196  */
20197 static int
20198 tcp_send(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len,
20199     const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable,
20200     uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
20201     const int mdt_thres)
20202 {
20203 	int num_burst_seg = tcp->tcp_snd_burst;
20204 
20205 	for (;;) {
20206 		struct datab	*db;
20207 		tcph_t		*tcph;
20208 		uint32_t	sum;
20209 		mblk_t		*mp, *mp1;
20210 		uchar_t		*rptr;
20211 		int		len;
20212 
20213 		/*
20214 		 * If we're called by tcp_multisend(), and the amount of
20215 		 * sendable data as well as the size of current xmit_tail
20216 		 * is beyond the MDT threshold, return to the caller and
20217 		 * let the large data transmit be done using MDT.
20218 		 */
20219 		if (*usable > 0 && *usable > mdt_thres &&
20220 		    (*tail_unsent > mdt_thres || (*tail_unsent == 0 &&
20221 		    MBLKL((*xmit_tail)->b_cont) > mdt_thres))) {
20222 			ASSERT(tcp->tcp_mdt);
20223 			return (1);	/* success; do large send */
20224 		}
20225 
20226 		if (num_burst_seg-- == 0)
20227 			break;		/* success; burst count reached */
20228 
20229 		len = mss;
20230 		if (len > *usable) {
20231 			len = *usable;
20232 			if (len <= 0) {
20233 				/* Terminate the loop */
20234 				break;	/* success; too small */
20235 			}
20236 			/*
20237 			 * Sender silly-window avoidance.
20238 			 * Ignore this if we are going to send a
20239 			 * zero window probe out.
20240 			 *
20241 			 * TODO: force data into microscopic window?
20242 			 *	==> (!pushed || (unsent > usable))
20243 			 */
20244 			if (len < (tcp->tcp_max_swnd >> 1) &&
20245 			    (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) > len &&
20246 			    !((tcp->tcp_valid_bits & TCP_URG_VALID) &&
20247 			    len == 1) && (! tcp->tcp_zero_win_probe)) {
20248 				/*
20249 				 * If the retransmit timer is not running
20250 				 * we start it so that we will retransmit
20251 				 * in the case when the the receiver has
20252 				 * decremented the window.
20253 				 */
20254 				if (*snxt == tcp->tcp_snxt &&
20255 				    *snxt == tcp->tcp_suna) {
20256 					/*
20257 					 * We are not supposed to send
20258 					 * anything.  So let's wait a little
20259 					 * bit longer before breaking SWS
20260 					 * avoidance.
20261 					 *
20262 					 * What should the value be?
20263 					 * Suggestion: MAX(init rexmit time,
20264 					 * tcp->tcp_rto)
20265 					 */
20266 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
20267 				}
20268 				break;	/* success; too small */
20269 			}
20270 		}
20271 
20272 		tcph = tcp->tcp_tcph;
20273 
20274 		*usable -= len; /* Approximate - can be adjusted later */
20275 		if (*usable > 0)
20276 			tcph->th_flags[0] = TH_ACK;
20277 		else
20278 			tcph->th_flags[0] = (TH_ACK | TH_PUSH);
20279 
20280 		/*
20281 		 * Prime pump for IP's checksumming on our behalf
20282 		 * Include the adjustment for a source route if any.
20283 		 */
20284 		sum = len + tcp_tcp_hdr_len + tcp->tcp_sum;
20285 		sum = (sum >> 16) + (sum & 0xFFFF);
20286 		U16_TO_ABE16(sum, tcph->th_sum);
20287 
20288 		U32_TO_ABE32(*snxt, tcph->th_seq);
20289 
20290 		/*
20291 		 * Branch off to tcp_xmit_mp() if any of the VALID bits is
20292 		 * set.  For the case when TCP_FSS_VALID is the only valid
20293 		 * bit (normal active close), branch off only when we think
20294 		 * that the FIN flag needs to be set.  Note for this case,
20295 		 * that (snxt + len) may not reflect the actual seg_len,
20296 		 * as len may be further reduced in tcp_xmit_mp().  If len
20297 		 * gets modified, we will end up here again.
20298 		 */
20299 		if (tcp->tcp_valid_bits != 0 &&
20300 		    (tcp->tcp_valid_bits != TCP_FSS_VALID ||
20301 		    ((*snxt + len) == tcp->tcp_fss))) {
20302 			uchar_t		*prev_rptr;
20303 			uint32_t	prev_snxt = tcp->tcp_snxt;
20304 
20305 			if (*tail_unsent == 0) {
20306 				ASSERT((*xmit_tail)->b_cont != NULL);
20307 				*xmit_tail = (*xmit_tail)->b_cont;
20308 				prev_rptr = (*xmit_tail)->b_rptr;
20309 				*tail_unsent = (int)((*xmit_tail)->b_wptr -
20310 				    (*xmit_tail)->b_rptr);
20311 			} else {
20312 				prev_rptr = (*xmit_tail)->b_rptr;
20313 				(*xmit_tail)->b_rptr = (*xmit_tail)->b_wptr -
20314 				    *tail_unsent;
20315 			}
20316 			mp = tcp_xmit_mp(tcp, *xmit_tail, len, NULL, NULL,
20317 			    *snxt, B_FALSE, (uint32_t *)&len, B_FALSE);
20318 			/* Restore tcp_snxt so we get amount sent right. */
20319 			tcp->tcp_snxt = prev_snxt;
20320 			if (prev_rptr == (*xmit_tail)->b_rptr) {
20321 				/*
20322 				 * If the previous timestamp is still in use,
20323 				 * don't stomp on it.
20324 				 */
20325 				if ((*xmit_tail)->b_next == NULL) {
20326 					(*xmit_tail)->b_prev = local_time;
20327 					(*xmit_tail)->b_next =
20328 					    (mblk_t *)(uintptr_t)(*snxt);
20329 				}
20330 			} else
20331 				(*xmit_tail)->b_rptr = prev_rptr;
20332 
20333 			if (mp == NULL)
20334 				return (-1);
20335 			mp1 = mp->b_cont;
20336 
20337 			tcp->tcp_last_sent_len = (ushort_t)len;
20338 			while (mp1->b_cont) {
20339 				*xmit_tail = (*xmit_tail)->b_cont;
20340 				(*xmit_tail)->b_prev = local_time;
20341 				(*xmit_tail)->b_next =
20342 				    (mblk_t *)(uintptr_t)(*snxt);
20343 				mp1 = mp1->b_cont;
20344 			}
20345 			*snxt += len;
20346 			*tail_unsent = (*xmit_tail)->b_wptr - mp1->b_wptr;
20347 			BUMP_LOCAL(tcp->tcp_obsegs);
20348 			BUMP_MIB(&tcp_mib, tcpOutDataSegs);
20349 			UPDATE_MIB(&tcp_mib, tcpOutDataBytes, len);
20350 			TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
20351 			tcp_send_data(tcp, q, mp);
20352 			continue;
20353 		}
20354 
20355 		*snxt += len;	/* Adjust later if we don't send all of len */
20356 		BUMP_MIB(&tcp_mib, tcpOutDataSegs);
20357 		UPDATE_MIB(&tcp_mib, tcpOutDataBytes, len);
20358 
20359 		if (*tail_unsent) {
20360 			/* Are the bytes above us in flight? */
20361 			rptr = (*xmit_tail)->b_wptr - *tail_unsent;
20362 			if (rptr != (*xmit_tail)->b_rptr) {
20363 				*tail_unsent -= len;
20364 				tcp->tcp_last_sent_len = (ushort_t)len;
20365 				len += tcp_hdr_len;
20366 				if (tcp->tcp_ipversion == IPV4_VERSION)
20367 					tcp->tcp_ipha->ipha_length = htons(len);
20368 				else
20369 					tcp->tcp_ip6h->ip6_plen =
20370 					    htons(len -
20371 					    ((char *)&tcp->tcp_ip6h[1] -
20372 					    tcp->tcp_iphc));
20373 				mp = dupb(*xmit_tail);
20374 				if (!mp)
20375 					return (-1);	/* out_of_mem */
20376 				mp->b_rptr = rptr;
20377 				/*
20378 				 * If the old timestamp is no longer in use,
20379 				 * sample a new timestamp now.
20380 				 */
20381 				if ((*xmit_tail)->b_next == NULL) {
20382 					(*xmit_tail)->b_prev = local_time;
20383 					(*xmit_tail)->b_next =
20384 					    (mblk_t *)(uintptr_t)(*snxt-len);
20385 				}
20386 				goto must_alloc;
20387 			}
20388 		} else {
20389 			*xmit_tail = (*xmit_tail)->b_cont;
20390 			ASSERT((uintptr_t)((*xmit_tail)->b_wptr -
20391 			    (*xmit_tail)->b_rptr) <= (uintptr_t)INT_MAX);
20392 			*tail_unsent = (int)((*xmit_tail)->b_wptr -
20393 			    (*xmit_tail)->b_rptr);
20394 		}
20395 
20396 		(*xmit_tail)->b_prev = local_time;
20397 		(*xmit_tail)->b_next = (mblk_t *)(uintptr_t)(*snxt - len);
20398 
20399 		*tail_unsent -= len;
20400 		tcp->tcp_last_sent_len = (ushort_t)len;
20401 
20402 		len += tcp_hdr_len;
20403 		if (tcp->tcp_ipversion == IPV4_VERSION)
20404 			tcp->tcp_ipha->ipha_length = htons(len);
20405 		else
20406 			tcp->tcp_ip6h->ip6_plen = htons(len -
20407 			    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
20408 
20409 		mp = dupb(*xmit_tail);
20410 		if (!mp)
20411 			return (-1);	/* out_of_mem */
20412 
20413 		len = tcp_hdr_len;
20414 		/*
20415 		 * There are four reasons to allocate a new hdr mblk:
20416 		 *  1) The bytes above us are in use by another packet
20417 		 *  2) We don't have good alignment
20418 		 *  3) The mblk is being shared
20419 		 *  4) We don't have enough room for a header
20420 		 */
20421 		rptr = mp->b_rptr - len;
20422 		if (!OK_32PTR(rptr) ||
20423 		    ((db = mp->b_datap), db->db_ref != 2) ||
20424 		    rptr < db->db_base) {
20425 			/* NOTE: we assume allocb returns an OK_32PTR */
20426 
20427 		must_alloc:;
20428 			mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH +
20429 			    tcp_wroff_xtra, BPRI_MED);
20430 			if (!mp1) {
20431 				freemsg(mp);
20432 				return (-1);	/* out_of_mem */
20433 			}
20434 			mp1->b_cont = mp;
20435 			mp = mp1;
20436 			/* Leave room for Link Level header */
20437 			len = tcp_hdr_len;
20438 			rptr = &mp->b_rptr[tcp_wroff_xtra];
20439 			mp->b_wptr = &rptr[len];
20440 		}
20441 
20442 		/*
20443 		 * Fill in the header using the template header, and add
20444 		 * options such as time-stamp, ECN and/or SACK, as needed.
20445 		 */
20446 		tcp_fill_header(tcp, rptr, (clock_t)local_time, num_sack_blk);
20447 
20448 		mp->b_rptr = rptr;
20449 
20450 		if (*tail_unsent) {
20451 			int spill = *tail_unsent;
20452 
20453 			mp1 = mp->b_cont;
20454 			if (!mp1)
20455 				mp1 = mp;
20456 
20457 			/*
20458 			 * If we're a little short, tack on more mblks until
20459 			 * there is no more spillover.
20460 			 */
20461 			while (spill < 0) {
20462 				mblk_t *nmp;
20463 				int nmpsz;
20464 
20465 				nmp = (*xmit_tail)->b_cont;
20466 				nmpsz = MBLKL(nmp);
20467 
20468 				/*
20469 				 * Excess data in mblk; can we split it?
20470 				 * If MDT is enabled for the connection,
20471 				 * keep on splitting as this is a transient
20472 				 * send path.
20473 				 */
20474 				if (!tcp->tcp_mdt && (spill + nmpsz > 0)) {
20475 					/*
20476 					 * Don't split if stream head was
20477 					 * told to break up larger writes
20478 					 * into smaller ones.
20479 					 */
20480 					if (tcp->tcp_maxpsz > 0)
20481 						break;
20482 
20483 					/*
20484 					 * Next mblk is less than SMSS/2
20485 					 * rounded up to nearest 64-byte;
20486 					 * let it get sent as part of the
20487 					 * next segment.
20488 					 */
20489 					if (tcp->tcp_localnet &&
20490 					    !tcp->tcp_cork &&
20491 					    (nmpsz < roundup((mss >> 1), 64)))
20492 						break;
20493 				}
20494 
20495 				*xmit_tail = nmp;
20496 				ASSERT((uintptr_t)nmpsz <= (uintptr_t)INT_MAX);
20497 				/* Stash for rtt use later */
20498 				(*xmit_tail)->b_prev = local_time;
20499 				(*xmit_tail)->b_next =
20500 				    (mblk_t *)(uintptr_t)(*snxt - len);
20501 				mp1->b_cont = dupb(*xmit_tail);
20502 				mp1 = mp1->b_cont;
20503 
20504 				spill += nmpsz;
20505 				if (mp1 == NULL) {
20506 					*tail_unsent = spill;
20507 					freemsg(mp);
20508 					return (-1);	/* out_of_mem */
20509 				}
20510 			}
20511 
20512 			/* Trim back any surplus on the last mblk */
20513 			if (spill >= 0) {
20514 				mp1->b_wptr -= spill;
20515 				*tail_unsent = spill;
20516 			} else {
20517 				/*
20518 				 * We did not send everything we could in
20519 				 * order to remain within the b_cont limit.
20520 				 */
20521 				*usable -= spill;
20522 				*snxt += spill;
20523 				tcp->tcp_last_sent_len += spill;
20524 				UPDATE_MIB(&tcp_mib, tcpOutDataBytes, spill);
20525 				/*
20526 				 * Adjust the checksum
20527 				 */
20528 				tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
20529 				sum += spill;
20530 				sum = (sum >> 16) + (sum & 0xFFFF);
20531 				U16_TO_ABE16(sum, tcph->th_sum);
20532 				if (tcp->tcp_ipversion == IPV4_VERSION) {
20533 					sum = ntohs(
20534 					    ((ipha_t *)rptr)->ipha_length) +
20535 					    spill;
20536 					((ipha_t *)rptr)->ipha_length =
20537 					    htons(sum);
20538 				} else {
20539 					sum = ntohs(
20540 					    ((ip6_t *)rptr)->ip6_plen) +
20541 					    spill;
20542 					((ip6_t *)rptr)->ip6_plen =
20543 					    htons(sum);
20544 				}
20545 				*tail_unsent = 0;
20546 			}
20547 		}
20548 		if (tcp->tcp_ip_forward_progress) {
20549 			ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
20550 			*(uint32_t *)mp->b_rptr  |= IP_FORWARD_PROG;
20551 			tcp->tcp_ip_forward_progress = B_FALSE;
20552 		}
20553 
20554 		TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
20555 		tcp_send_data(tcp, q, mp);
20556 		BUMP_LOCAL(tcp->tcp_obsegs);
20557 	}
20558 
20559 	return (0);
20560 }
20561 
20562 /* Unlink and return any mblk that looks like it contains a MDT info */
20563 static mblk_t *
20564 tcp_mdt_info_mp(mblk_t *mp)
20565 {
20566 	mblk_t	*prev_mp;
20567 
20568 	for (;;) {
20569 		prev_mp = mp;
20570 		/* no more to process? */
20571 		if ((mp = mp->b_cont) == NULL)
20572 			break;
20573 
20574 		switch (DB_TYPE(mp)) {
20575 		case M_CTL:
20576 			if (*(uint32_t *)mp->b_rptr != MDT_IOC_INFO_UPDATE)
20577 				continue;
20578 			ASSERT(prev_mp != NULL);
20579 			prev_mp->b_cont = mp->b_cont;
20580 			mp->b_cont = NULL;
20581 			return (mp);
20582 		default:
20583 			break;
20584 		}
20585 	}
20586 	return (mp);
20587 }
20588 
20589 /* MDT info update routine, called when IP notifies us about MDT */
20590 static void
20591 tcp_mdt_update(tcp_t *tcp, ill_mdt_capab_t *mdt_capab, boolean_t first)
20592 {
20593 	boolean_t prev_state;
20594 
20595 	/*
20596 	 * IP is telling us to abort MDT on this connection?  We know
20597 	 * this because the capability is only turned off when IP
20598 	 * encounters some pathological cases, e.g. link-layer change
20599 	 * where the new driver doesn't support MDT, or in situation
20600 	 * where MDT usage on the link-layer has been switched off.
20601 	 * IP would not have sent us the initial MDT_IOC_INFO_UPDATE
20602 	 * if the link-layer doesn't support MDT, and if it does, it
20603 	 * will indicate that the feature is to be turned on.
20604 	 */
20605 	prev_state = tcp->tcp_mdt;
20606 	tcp->tcp_mdt = (mdt_capab->ill_mdt_on != 0);
20607 	if (!tcp->tcp_mdt && !first) {
20608 		TCP_STAT(tcp_mdt_conn_halted3);
20609 		ip1dbg(("tcp_mdt_update: disabling MDT for connp %p\n",
20610 		    (void *)tcp->tcp_connp));
20611 	}
20612 
20613 	/*
20614 	 * We currently only support MDT on simple TCP/{IPv4,IPv6},
20615 	 * so disable MDT otherwise.  The checks are done here
20616 	 * and in tcp_wput_data().
20617 	 */
20618 	if (tcp->tcp_mdt &&
20619 	    (tcp->tcp_ipversion == IPV4_VERSION &&
20620 	    tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) ||
20621 	    (tcp->tcp_ipversion == IPV6_VERSION &&
20622 	    tcp->tcp_ip_hdr_len != IPV6_HDR_LEN))
20623 		tcp->tcp_mdt = B_FALSE;
20624 
20625 	if (tcp->tcp_mdt) {
20626 		if (mdt_capab->ill_mdt_version != MDT_VERSION_2) {
20627 			cmn_err(CE_NOTE, "tcp_mdt_update: unknown MDT "
20628 			    "version (%d), expected version is %d",
20629 			    mdt_capab->ill_mdt_version, MDT_VERSION_2);
20630 			tcp->tcp_mdt = B_FALSE;
20631 			return;
20632 		}
20633 
20634 		/*
20635 		 * We need the driver to be able to handle at least three
20636 		 * spans per packet in order for tcp MDT to be utilized.
20637 		 * The first is for the header portion, while the rest are
20638 		 * needed to handle a packet that straddles across two
20639 		 * virtually non-contiguous buffers; a typical tcp packet
20640 		 * therefore consists of only two spans.  Note that we take
20641 		 * a zero as "don't care".
20642 		 */
20643 		if (mdt_capab->ill_mdt_span_limit > 0 &&
20644 		    mdt_capab->ill_mdt_span_limit < 3) {
20645 			tcp->tcp_mdt = B_FALSE;
20646 			return;
20647 		}
20648 
20649 		/* a zero means driver wants default value */
20650 		tcp->tcp_mdt_max_pld = MIN(mdt_capab->ill_mdt_max_pld,
20651 		    tcp_mdt_max_pbufs);
20652 		if (tcp->tcp_mdt_max_pld == 0)
20653 			tcp->tcp_mdt_max_pld = tcp_mdt_max_pbufs;
20654 
20655 		/* ensure 32-bit alignment */
20656 		tcp->tcp_mdt_hdr_head = roundup(MAX(tcp_mdt_hdr_head_min,
20657 		    mdt_capab->ill_mdt_hdr_head), 4);
20658 		tcp->tcp_mdt_hdr_tail = roundup(MAX(tcp_mdt_hdr_tail_min,
20659 		    mdt_capab->ill_mdt_hdr_tail), 4);
20660 
20661 		if (!first && !prev_state) {
20662 			TCP_STAT(tcp_mdt_conn_resumed2);
20663 			ip1dbg(("tcp_mdt_update: reenabling MDT for connp %p\n",
20664 			    (void *)tcp->tcp_connp));
20665 		}
20666 	}
20667 }
20668 
20669 static void
20670 tcp_ire_ill_check(tcp_t *tcp, ire_t *ire, ill_t *ill, boolean_t check_mdt)
20671 {
20672 	conn_t *connp = tcp->tcp_connp;
20673 
20674 	ASSERT(ire != NULL);
20675 
20676 	/*
20677 	 * We may be in the fastpath here, and although we essentially do
20678 	 * similar checks as in ip_bind_connected{_v6}/ip_mdinfo_return,
20679 	 * we try to keep things as brief as possible.  After all, these
20680 	 * are only best-effort checks, and we do more thorough ones prior
20681 	 * to calling tcp_multisend().
20682 	 */
20683 	if (ip_multidata_outbound && check_mdt &&
20684 	    !(ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK)) &&
20685 	    ill != NULL && ILL_MDT_CAPABLE(ill) &&
20686 	    !CONN_IPSEC_OUT_ENCAPSULATED(connp) &&
20687 	    !(ire->ire_flags & RTF_MULTIRT) &&
20688 	    !IPP_ENABLED(IPP_LOCAL_OUT) &&
20689 	    CONN_IS_MD_FASTPATH(connp)) {
20690 		/* Remember the result */
20691 		connp->conn_mdt_ok = B_TRUE;
20692 
20693 		ASSERT(ill->ill_mdt_capab != NULL);
20694 		if (!ill->ill_mdt_capab->ill_mdt_on) {
20695 			/*
20696 			 * If MDT has been previously turned off in the past,
20697 			 * and we currently can do MDT (due to IPQoS policy
20698 			 * removal, etc.) then enable it for this interface.
20699 			 */
20700 			ill->ill_mdt_capab->ill_mdt_on = 1;
20701 			ip1dbg(("tcp_ire_ill_check: connp %p enables MDT for "
20702 			    "interface %s\n", (void *)connp, ill->ill_name));
20703 		}
20704 		tcp_mdt_update(tcp, ill->ill_mdt_capab, B_TRUE);
20705 	}
20706 
20707 	/*
20708 	 * The goal is to reduce the number of generated tcp segments by
20709 	 * setting the maxpsz multiplier to 0; this will have an affect on
20710 	 * tcp_maxpsz_set().  With this behavior, tcp will pack more data
20711 	 * into each packet, up to SMSS bytes.  Doing this reduces the number
20712 	 * of outbound segments and incoming ACKs, thus allowing for better
20713 	 * network and system performance.  In contrast the legacy behavior
20714 	 * may result in sending less than SMSS size, because the last mblk
20715 	 * for some packets may have more data than needed to make up SMSS,
20716 	 * and the legacy code refused to "split" it.
20717 	 *
20718 	 * We apply the new behavior on following situations:
20719 	 *
20720 	 *   1) Loopback connections,
20721 	 *   2) Connections in which the remote peer is not on local subnet,
20722 	 *   3) Local subnet connections over the bge interface (see below).
20723 	 *
20724 	 * Ideally, we would like this behavior to apply for interfaces other
20725 	 * than bge.  However, doing so would negatively impact drivers which
20726 	 * perform dynamic mapping and unmapping of DMA resources, which are
20727 	 * increased by setting the maxpsz multiplier to 0 (more mblks per
20728 	 * packet will be generated by tcp).  The bge driver does not suffer
20729 	 * from this, as it copies the mblks into pre-mapped buffers, and
20730 	 * therefore does not require more I/O resources than before.
20731 	 *
20732 	 * Otherwise, this behavior is present on all network interfaces when
20733 	 * the destination endpoint is non-local, since reducing the number
20734 	 * of packets in general is good for the network.
20735 	 *
20736 	 * TODO We need to remove this hard-coded conditional for bge once
20737 	 *	a better "self-tuning" mechanism, or a way to comprehend
20738 	 *	the driver transmit strategy is devised.  Until the solution
20739 	 *	is found and well understood, we live with this hack.
20740 	 */
20741 	if (!tcp_static_maxpsz &&
20742 	    (tcp->tcp_loopback || !tcp->tcp_localnet ||
20743 	    (ill->ill_name_length > 3 && bcmp(ill->ill_name, "bge", 3) == 0))) {
20744 		/* override the default value */
20745 		tcp->tcp_maxpsz = 0;
20746 
20747 		ip3dbg(("tcp_ire_ill_check: connp %p tcp_maxpsz %d on "
20748 		    "interface %s\n", (void *)connp, tcp->tcp_maxpsz,
20749 		    ill != NULL ? ill->ill_name : ipif_loopback_name));
20750 	}
20751 
20752 	/* set the stream head parameters accordingly */
20753 	(void) tcp_maxpsz_set(tcp, B_TRUE);
20754 }
20755 
20756 /* tcp_wput_flush is called by tcp_wput_nondata to handle M_FLUSH messages. */
20757 static void
20758 tcp_wput_flush(tcp_t *tcp, mblk_t *mp)
20759 {
20760 	uchar_t	fval = *mp->b_rptr;
20761 	mblk_t	*tail;
20762 	queue_t	*q = tcp->tcp_wq;
20763 
20764 	/* TODO: How should flush interact with urgent data? */
20765 	if ((fval & FLUSHW) && tcp->tcp_xmit_head &&
20766 	    !(tcp->tcp_valid_bits & TCP_URG_VALID)) {
20767 		/*
20768 		 * Flush only data that has not yet been put on the wire.  If
20769 		 * we flush data that we have already transmitted, life, as we
20770 		 * know it, may come to an end.
20771 		 */
20772 		tail = tcp->tcp_xmit_tail;
20773 		tail->b_wptr -= tcp->tcp_xmit_tail_unsent;
20774 		tcp->tcp_xmit_tail_unsent = 0;
20775 		tcp->tcp_unsent = 0;
20776 		if (tail->b_wptr != tail->b_rptr)
20777 			tail = tail->b_cont;
20778 		if (tail) {
20779 			mblk_t **excess = &tcp->tcp_xmit_head;
20780 			for (;;) {
20781 				mblk_t *mp1 = *excess;
20782 				if (mp1 == tail)
20783 					break;
20784 				tcp->tcp_xmit_tail = mp1;
20785 				tcp->tcp_xmit_last = mp1;
20786 				excess = &mp1->b_cont;
20787 			}
20788 			*excess = NULL;
20789 			tcp_close_mpp(&tail);
20790 			if (tcp->tcp_snd_zcopy_aware)
20791 				tcp_zcopy_notify(tcp);
20792 		}
20793 		/*
20794 		 * We have no unsent data, so unsent must be less than
20795 		 * tcp_xmit_lowater, so re-enable flow.
20796 		 */
20797 		if (tcp->tcp_flow_stopped) {
20798 			tcp_clrqfull(tcp);
20799 		}
20800 	}
20801 	/*
20802 	 * TODO: you can't just flush these, you have to increase rwnd for one
20803 	 * thing.  For another, how should urgent data interact?
20804 	 */
20805 	if (fval & FLUSHR) {
20806 		*mp->b_rptr = fval & ~FLUSHW;
20807 		/* XXX */
20808 		qreply(q, mp);
20809 		return;
20810 	}
20811 	freemsg(mp);
20812 }
20813 
20814 /*
20815  * tcp_wput_iocdata is called by tcp_wput_nondata to handle all M_IOCDATA
20816  * messages.
20817  */
20818 static void
20819 tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp)
20820 {
20821 	mblk_t	*mp1;
20822 	STRUCT_HANDLE(strbuf, sb);
20823 	uint16_t port;
20824 	queue_t 	*q = tcp->tcp_wq;
20825 	in6_addr_t	v6addr;
20826 	ipaddr_t	v4addr;
20827 	uint32_t	flowinfo = 0;
20828 	int		addrlen;
20829 
20830 	/* Make sure it is one of ours. */
20831 	switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) {
20832 	case TI_GETMYNAME:
20833 	case TI_GETPEERNAME:
20834 		break;
20835 	default:
20836 		CALL_IP_WPUT(tcp->tcp_connp, q, mp);
20837 		return;
20838 	}
20839 	switch (mi_copy_state(q, mp, &mp1)) {
20840 	case -1:
20841 		return;
20842 	case MI_COPY_CASE(MI_COPY_IN, 1):
20843 		break;
20844 	case MI_COPY_CASE(MI_COPY_OUT, 1):
20845 		/* Copy out the strbuf. */
20846 		mi_copyout(q, mp);
20847 		return;
20848 	case MI_COPY_CASE(MI_COPY_OUT, 2):
20849 		/* All done. */
20850 		mi_copy_done(q, mp, 0);
20851 		return;
20852 	default:
20853 		mi_copy_done(q, mp, EPROTO);
20854 		return;
20855 	}
20856 	/* Check alignment of the strbuf */
20857 	if (!OK_32PTR(mp1->b_rptr)) {
20858 		mi_copy_done(q, mp, EINVAL);
20859 		return;
20860 	}
20861 
20862 	STRUCT_SET_HANDLE(sb, ((struct iocblk *)mp->b_rptr)->ioc_flag,
20863 	    (void *)mp1->b_rptr);
20864 	addrlen = tcp->tcp_family == AF_INET ? sizeof (sin_t) : sizeof (sin6_t);
20865 
20866 	if (STRUCT_FGET(sb, maxlen) < addrlen) {
20867 		mi_copy_done(q, mp, EINVAL);
20868 		return;
20869 	}
20870 	switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) {
20871 	case TI_GETMYNAME:
20872 		if (tcp->tcp_family == AF_INET) {
20873 			if (tcp->tcp_ipversion == IPV4_VERSION) {
20874 				v4addr = tcp->tcp_ipha->ipha_src;
20875 			} else {
20876 				/* can't return an address in this case */
20877 				v4addr = 0;
20878 			}
20879 		} else {
20880 			/* tcp->tcp_family == AF_INET6 */
20881 			if (tcp->tcp_ipversion == IPV4_VERSION) {
20882 				IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
20883 				    &v6addr);
20884 			} else {
20885 				v6addr = tcp->tcp_ip6h->ip6_src;
20886 			}
20887 		}
20888 		port = tcp->tcp_lport;
20889 		break;
20890 	case TI_GETPEERNAME:
20891 		if (tcp->tcp_family == AF_INET) {
20892 			if (tcp->tcp_ipversion == IPV4_VERSION) {
20893 				IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_remote_v6,
20894 				    v4addr);
20895 			} else {
20896 				/* can't return an address in this case */
20897 				v4addr = 0;
20898 			}
20899 		} else {
20900 			/* tcp->tcp_family == AF_INET6) */
20901 			v6addr = tcp->tcp_remote_v6;
20902 			if (tcp->tcp_ipversion == IPV6_VERSION) {
20903 				/*
20904 				 * No flowinfo if tcp->tcp_ipversion is v4.
20905 				 *
20906 				 * flowinfo was already initialized to zero
20907 				 * where it was declared above, so only
20908 				 * set it if ipversion is v6.
20909 				 */
20910 				flowinfo = tcp->tcp_ip6h->ip6_vcf &
20911 				    ~IPV6_VERS_AND_FLOW_MASK;
20912 			}
20913 		}
20914 		port = tcp->tcp_fport;
20915 		break;
20916 	default:
20917 		mi_copy_done(q, mp, EPROTO);
20918 		return;
20919 	}
20920 	mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE);
20921 	if (!mp1)
20922 		return;
20923 
20924 	if (tcp->tcp_family == AF_INET) {
20925 		sin_t *sin;
20926 
20927 		STRUCT_FSET(sb, len, (int)sizeof (sin_t));
20928 		sin = (sin_t *)mp1->b_rptr;
20929 		mp1->b_wptr = (uchar_t *)&sin[1];
20930 		*sin = sin_null;
20931 		sin->sin_family = AF_INET;
20932 		sin->sin_addr.s_addr = v4addr;
20933 		sin->sin_port = port;
20934 	} else {
20935 		/* tcp->tcp_family == AF_INET6 */
20936 		sin6_t *sin6;
20937 
20938 		STRUCT_FSET(sb, len, (int)sizeof (sin6_t));
20939 		sin6 = (sin6_t *)mp1->b_rptr;
20940 		mp1->b_wptr = (uchar_t *)&sin6[1];
20941 		*sin6 = sin6_null;
20942 		sin6->sin6_family = AF_INET6;
20943 		sin6->sin6_flowinfo = flowinfo;
20944 		sin6->sin6_addr = v6addr;
20945 		sin6->sin6_port = port;
20946 	}
20947 	/* Copy out the address */
20948 	mi_copyout(q, mp);
20949 }
20950 
20951 /*
20952  * tcp_wput_ioctl is called by tcp_wput_nondata() to handle all M_IOCTL
20953  * messages.
20954  */
20955 /* ARGSUSED */
20956 static void
20957 tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2)
20958 {
20959 	conn_t 	*connp = (conn_t *)arg;
20960 	tcp_t	*tcp = connp->conn_tcp;
20961 	queue_t	*q = tcp->tcp_wq;
20962 	struct iocblk	*iocp;
20963 
20964 	ASSERT(DB_TYPE(mp) == M_IOCTL);
20965 	/*
20966 	 * Try and ASSERT the minimum possible references on the
20967 	 * conn early enough. Since we are executing on write side,
20968 	 * the connection is obviously not detached and that means
20969 	 * there is a ref each for TCP and IP. Since we are behind
20970 	 * the squeue, the minimum references needed are 3. If the
20971 	 * conn is in classifier hash list, there should be an
20972 	 * extra ref for that (we check both the possibilities).
20973 	 */
20974 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
20975 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
20976 
20977 	iocp = (struct iocblk *)mp->b_rptr;
20978 	switch (iocp->ioc_cmd) {
20979 	case TCP_IOC_DEFAULT_Q:
20980 		/* Wants to be the default wq. */
20981 		if (secpolicy_net_config(iocp->ioc_cr, B_FALSE) != 0) {
20982 			iocp->ioc_error = EPERM;
20983 			iocp->ioc_count = 0;
20984 			mp->b_datap->db_type = M_IOCACK;
20985 			qreply(q, mp);
20986 			return;
20987 		}
20988 		tcp_def_q_set(tcp, mp);
20989 		return;
20990 	case _SIOCSOCKFALLBACK:
20991 		/*
20992 		 * Either sockmod is about to be popped and the socket
20993 		 * would now be treated as a plain stream, or a module
20994 		 * is about to be pushed so we could no longer use read-
20995 		 * side synchronous streams for fused loopback tcp.
20996 		 * Drain any queued data and disable direct sockfs
20997 		 * interface from now on.
20998 		 */
20999 		if (!tcp->tcp_issocket) {
21000 			DB_TYPE(mp) = M_IOCNAK;
21001 			iocp->ioc_error = EINVAL;
21002 		} else {
21003 #ifdef	_ILP32
21004 			tcp->tcp_acceptor_id = (t_uscalar_t)RD(q);
21005 #else
21006 			tcp->tcp_acceptor_id = tcp->tcp_connp->conn_dev;
21007 #endif
21008 			/*
21009 			 * Insert this socket into the acceptor hash.
21010 			 * We might need it for T_CONN_RES message
21011 			 */
21012 			tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp);
21013 
21014 			if (tcp->tcp_fused) {
21015 				/*
21016 				 * This is a fused loopback tcp; disable
21017 				 * read-side synchronous streams interface
21018 				 * and drain any queued data.  It is okay
21019 				 * to do this for non-synchronous streams
21020 				 * fused tcp as well.
21021 				 */
21022 				tcp_fuse_disable_pair(tcp, B_FALSE);
21023 			}
21024 			tcp->tcp_issocket = B_FALSE;
21025 			TCP_STAT(tcp_sock_fallback);
21026 
21027 			DB_TYPE(mp) = M_IOCACK;
21028 			iocp->ioc_error = 0;
21029 		}
21030 		iocp->ioc_count = 0;
21031 		iocp->ioc_rval = 0;
21032 		qreply(q, mp);
21033 		return;
21034 	}
21035 	CALL_IP_WPUT(connp, q, mp);
21036 }
21037 
21038 /*
21039  * This routine is called by tcp_wput() to handle all TPI requests.
21040  */
21041 /* ARGSUSED */
21042 static void
21043 tcp_wput_proto(void *arg, mblk_t *mp, void *arg2)
21044 {
21045 	conn_t 	*connp = (conn_t *)arg;
21046 	tcp_t	*tcp = connp->conn_tcp;
21047 	union T_primitives *tprim = (union T_primitives *)mp->b_rptr;
21048 	uchar_t *rptr;
21049 	t_scalar_t type;
21050 	int len;
21051 	cred_t *cr = DB_CREDDEF(mp, tcp->tcp_cred);
21052 
21053 	/*
21054 	 * Try and ASSERT the minimum possible references on the
21055 	 * conn early enough. Since we are executing on write side,
21056 	 * the connection is obviously not detached and that means
21057 	 * there is a ref each for TCP and IP. Since we are behind
21058 	 * the squeue, the minimum references needed are 3. If the
21059 	 * conn is in classifier hash list, there should be an
21060 	 * extra ref for that (we check both the possibilities).
21061 	 */
21062 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
21063 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
21064 
21065 	rptr = mp->b_rptr;
21066 	ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
21067 	if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) {
21068 		type = ((union T_primitives *)rptr)->type;
21069 		if (type == T_EXDATA_REQ) {
21070 			uint32_t msize = msgdsize(mp->b_cont);
21071 
21072 			len = msize - 1;
21073 			if (len < 0) {
21074 				freemsg(mp);
21075 				return;
21076 			}
21077 			/*
21078 			 * Try to force urgent data out on the wire.
21079 			 * Even if we have unsent data this will
21080 			 * at least send the urgent flag.
21081 			 * XXX does not handle more flag correctly.
21082 			 */
21083 			len += tcp->tcp_unsent;
21084 			len += tcp->tcp_snxt;
21085 			tcp->tcp_urg = len;
21086 			tcp->tcp_valid_bits |= TCP_URG_VALID;
21087 
21088 			/* Bypass tcp protocol for fused tcp loopback */
21089 			if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize))
21090 				return;
21091 		} else if (type != T_DATA_REQ) {
21092 			goto non_urgent_data;
21093 		}
21094 		/* TODO: options, flags, ... from user */
21095 		/* Set length to zero for reclamation below */
21096 		tcp_wput_data(tcp, mp->b_cont, B_TRUE);
21097 		freeb(mp);
21098 		return;
21099 	} else {
21100 		if (tcp->tcp_debug) {
21101 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
21102 			    "tcp_wput_proto, dropping one...");
21103 		}
21104 		freemsg(mp);
21105 		return;
21106 	}
21107 
21108 non_urgent_data:
21109 
21110 	switch ((int)tprim->type) {
21111 	case T_SSL_PROXY_BIND_REQ:	/* an SSL proxy endpoint bind request */
21112 		/*
21113 		 * save the kssl_ent_t from the next block, and convert this
21114 		 * back to a normal bind_req.
21115 		 */
21116 		if (mp->b_cont != NULL) {
21117 		    ASSERT(MBLKL(mp->b_cont) >= sizeof (kssl_ent_t));
21118 
21119 			if (tcp->tcp_kssl_ent != NULL) {
21120 				kssl_release_ent(tcp->tcp_kssl_ent, NULL,
21121 				    KSSL_NO_PROXY);
21122 				tcp->tcp_kssl_ent = NULL;
21123 			}
21124 			bcopy(mp->b_cont->b_rptr, &tcp->tcp_kssl_ent,
21125 			    sizeof (kssl_ent_t));
21126 			kssl_hold_ent(tcp->tcp_kssl_ent);
21127 			freemsg(mp->b_cont);
21128 			mp->b_cont = NULL;
21129 		}
21130 		tprim->type = T_BIND_REQ;
21131 
21132 	/* FALLTHROUGH */
21133 	case O_T_BIND_REQ:	/* bind request */
21134 	case T_BIND_REQ:	/* new semantics bind request */
21135 		tcp_bind(tcp, mp);
21136 		break;
21137 	case T_UNBIND_REQ:	/* unbind request */
21138 		tcp_unbind(tcp, mp);
21139 		break;
21140 	case O_T_CONN_RES:	/* old connection response XXX */
21141 	case T_CONN_RES:	/* connection response */
21142 		tcp_accept(tcp, mp);
21143 		break;
21144 	case T_CONN_REQ:	/* connection request */
21145 		tcp_connect(tcp, mp);
21146 		break;
21147 	case T_DISCON_REQ:	/* disconnect request */
21148 		tcp_disconnect(tcp, mp);
21149 		break;
21150 	case T_CAPABILITY_REQ:
21151 		tcp_capability_req(tcp, mp);	/* capability request */
21152 		break;
21153 	case T_INFO_REQ:	/* information request */
21154 		tcp_info_req(tcp, mp);
21155 		break;
21156 	case T_SVR4_OPTMGMT_REQ:	/* manage options req */
21157 		/* Only IP is allowed to return meaningful value */
21158 		(void) svr4_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj);
21159 		break;
21160 	case T_OPTMGMT_REQ:
21161 		/*
21162 		 * Note:  no support for snmpcom_req() through new
21163 		 * T_OPTMGMT_REQ. See comments in ip.c
21164 		 */
21165 		/* Only IP is allowed to return meaningful value */
21166 		(void) tpi_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj);
21167 		break;
21168 
21169 	case T_UNITDATA_REQ:	/* unitdata request */
21170 		tcp_err_ack(tcp, mp, TNOTSUPPORT, 0);
21171 		break;
21172 	case T_ORDREL_REQ:	/* orderly release req */
21173 		freemsg(mp);
21174 
21175 		if (tcp->tcp_fused)
21176 			tcp_unfuse(tcp);
21177 
21178 		if (tcp_xmit_end(tcp) != 0) {
21179 			/*
21180 			 * We were crossing FINs and got a reset from
21181 			 * the other side. Just ignore it.
21182 			 */
21183 			if (tcp->tcp_debug) {
21184 				(void) strlog(TCP_MOD_ID, 0, 1,
21185 				    SL_ERROR|SL_TRACE,
21186 				    "tcp_wput_proto, T_ORDREL_REQ out of "
21187 				    "state %s",
21188 				    tcp_display(tcp, NULL,
21189 				    DISP_ADDR_AND_PORT));
21190 			}
21191 		}
21192 		break;
21193 	case T_ADDR_REQ:
21194 		tcp_addr_req(tcp, mp);
21195 		break;
21196 	default:
21197 		if (tcp->tcp_debug) {
21198 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
21199 			    "tcp_wput_proto, bogus TPI msg, type %d",
21200 			    tprim->type);
21201 		}
21202 		/*
21203 		 * We used to M_ERROR.  Sending TNOTSUPPORT gives the user
21204 		 * to recover.
21205 		 */
21206 		tcp_err_ack(tcp, mp, TNOTSUPPORT, 0);
21207 		break;
21208 	}
21209 }
21210 
21211 /*
21212  * The TCP write service routine should never be called...
21213  */
21214 /* ARGSUSED */
21215 static void
21216 tcp_wsrv(queue_t *q)
21217 {
21218 	TCP_STAT(tcp_wsrv_called);
21219 }
21220 
21221 /* Non overlapping byte exchanger */
21222 static void
21223 tcp_xchg(uchar_t *a, uchar_t *b, int len)
21224 {
21225 	uchar_t	uch;
21226 
21227 	while (len-- > 0) {
21228 		uch = a[len];
21229 		a[len] = b[len];
21230 		b[len] = uch;
21231 	}
21232 }
21233 
21234 /*
21235  * Send out a control packet on the tcp connection specified.  This routine
21236  * is typically called where we need a simple ACK or RST generated.
21237  */
21238 static void
21239 tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, uint32_t ack, int ctl)
21240 {
21241 	uchar_t		*rptr;
21242 	tcph_t		*tcph;
21243 	ipha_t		*ipha = NULL;
21244 	ip6_t		*ip6h = NULL;
21245 	uint32_t	sum;
21246 	int		tcp_hdr_len;
21247 	int		tcp_ip_hdr_len;
21248 	mblk_t		*mp;
21249 
21250 	/*
21251 	 * Save sum for use in source route later.
21252 	 */
21253 	ASSERT(tcp != NULL);
21254 	sum = tcp->tcp_tcp_hdr_len + tcp->tcp_sum;
21255 	tcp_hdr_len = tcp->tcp_hdr_len;
21256 	tcp_ip_hdr_len = tcp->tcp_ip_hdr_len;
21257 
21258 	/* If a text string is passed in with the request, pass it to strlog. */
21259 	if (str != NULL && tcp->tcp_debug) {
21260 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
21261 		    "tcp_xmit_ctl: '%s', seq 0x%x, ack 0x%x, ctl 0x%x",
21262 		    str, seq, ack, ctl);
21263 	}
21264 	mp = allocb(tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcp_wroff_xtra,
21265 	    BPRI_MED);
21266 	if (mp == NULL) {
21267 		return;
21268 	}
21269 	rptr = &mp->b_rptr[tcp_wroff_xtra];
21270 	mp->b_rptr = rptr;
21271 	mp->b_wptr = &rptr[tcp_hdr_len];
21272 	bcopy(tcp->tcp_iphc, rptr, tcp_hdr_len);
21273 
21274 	if (tcp->tcp_ipversion == IPV4_VERSION) {
21275 		ipha = (ipha_t *)rptr;
21276 		ipha->ipha_length = htons(tcp_hdr_len);
21277 	} else {
21278 		ip6h = (ip6_t *)rptr;
21279 		ASSERT(tcp != NULL);
21280 		ip6h->ip6_plen = htons(tcp->tcp_hdr_len -
21281 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
21282 	}
21283 	tcph = (tcph_t *)&rptr[tcp_ip_hdr_len];
21284 	tcph->th_flags[0] = (uint8_t)ctl;
21285 	if (ctl & TH_RST) {
21286 		BUMP_MIB(&tcp_mib, tcpOutRsts);
21287 		BUMP_MIB(&tcp_mib, tcpOutControl);
21288 		/*
21289 		 * Don't send TSopt w/ TH_RST packets per RFC 1323.
21290 		 */
21291 		if (tcp->tcp_snd_ts_ok &&
21292 		    tcp->tcp_state > TCPS_SYN_SENT) {
21293 			mp->b_wptr = &rptr[tcp_hdr_len - TCPOPT_REAL_TS_LEN];
21294 			*(mp->b_wptr) = TCPOPT_EOL;
21295 			if (tcp->tcp_ipversion == IPV4_VERSION) {
21296 				ipha->ipha_length = htons(tcp_hdr_len -
21297 				    TCPOPT_REAL_TS_LEN);
21298 			} else {
21299 				ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) -
21300 				    TCPOPT_REAL_TS_LEN);
21301 			}
21302 			tcph->th_offset_and_rsrvd[0] -= (3 << 4);
21303 			sum -= TCPOPT_REAL_TS_LEN;
21304 		}
21305 	}
21306 	if (ctl & TH_ACK) {
21307 		if (tcp->tcp_snd_ts_ok) {
21308 			U32_TO_BE32(lbolt,
21309 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
21310 			U32_TO_BE32(tcp->tcp_ts_recent,
21311 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
21312 		}
21313 
21314 		/* Update the latest receive window size in TCP header. */
21315 		U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
21316 		    tcph->th_win);
21317 		tcp->tcp_rack = ack;
21318 		tcp->tcp_rack_cnt = 0;
21319 		BUMP_MIB(&tcp_mib, tcpOutAck);
21320 	}
21321 	BUMP_LOCAL(tcp->tcp_obsegs);
21322 	U32_TO_BE32(seq, tcph->th_seq);
21323 	U32_TO_BE32(ack, tcph->th_ack);
21324 	/*
21325 	 * Include the adjustment for a source route if any.
21326 	 */
21327 	sum = (sum >> 16) + (sum & 0xFFFF);
21328 	U16_TO_BE16(sum, tcph->th_sum);
21329 	TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
21330 	tcp_send_data(tcp, tcp->tcp_wq, mp);
21331 }
21332 
21333 /*
21334  * If this routine returns B_TRUE, TCP can generate a RST in response
21335  * to a segment.  If it returns B_FALSE, TCP should not respond.
21336  */
21337 static boolean_t
21338 tcp_send_rst_chk(void)
21339 {
21340 	clock_t	now;
21341 
21342 	/*
21343 	 * TCP needs to protect itself from generating too many RSTs.
21344 	 * This can be a DoS attack by sending us random segments
21345 	 * soliciting RSTs.
21346 	 *
21347 	 * What we do here is to have a limit of tcp_rst_sent_rate RSTs
21348 	 * in each 1 second interval.  In this way, TCP still generate
21349 	 * RSTs in normal cases but when under attack, the impact is
21350 	 * limited.
21351 	 */
21352 	if (tcp_rst_sent_rate_enabled != 0) {
21353 		now = lbolt;
21354 		/* lbolt can wrap around. */
21355 		if ((tcp_last_rst_intrvl > now) ||
21356 		    (TICK_TO_MSEC(now - tcp_last_rst_intrvl) > 1*SECONDS)) {
21357 			tcp_last_rst_intrvl = now;
21358 			tcp_rst_cnt = 1;
21359 		} else if (++tcp_rst_cnt > tcp_rst_sent_rate) {
21360 			return (B_FALSE);
21361 		}
21362 	}
21363 	return (B_TRUE);
21364 }
21365 
21366 /*
21367  * Send down the advice IP ioctl to tell IP to mark an IRE temporary.
21368  */
21369 static void
21370 tcp_ip_ire_mark_advice(tcp_t *tcp)
21371 {
21372 	mblk_t *mp;
21373 	ipic_t *ipic;
21374 
21375 	if (tcp->tcp_ipversion == IPV4_VERSION) {
21376 		mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN,
21377 		    &ipic);
21378 	} else {
21379 		mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN,
21380 		    &ipic);
21381 	}
21382 	if (mp == NULL)
21383 		return;
21384 	ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY;
21385 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
21386 }
21387 
21388 /*
21389  * Return an IP advice ioctl mblk and set ipic to be the pointer
21390  * to the advice structure.
21391  */
21392 static mblk_t *
21393 tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic)
21394 {
21395 	struct iocblk *ioc;
21396 	mblk_t *mp, *mp1;
21397 
21398 	mp = allocb(sizeof (ipic_t) + addr_len, BPRI_HI);
21399 	if (mp == NULL)
21400 		return (NULL);
21401 	bzero(mp->b_rptr, sizeof (ipic_t) + addr_len);
21402 	*ipic = (ipic_t *)mp->b_rptr;
21403 	(*ipic)->ipic_cmd = IP_IOC_IRE_ADVISE_NO_REPLY;
21404 	(*ipic)->ipic_addr_offset = sizeof (ipic_t);
21405 
21406 	bcopy(addr, *ipic + 1, addr_len);
21407 
21408 	(*ipic)->ipic_addr_length = addr_len;
21409 	mp->b_wptr = &mp->b_rptr[sizeof (ipic_t) + addr_len];
21410 
21411 	mp1 = mkiocb(IP_IOCTL);
21412 	if (mp1 == NULL) {
21413 		freemsg(mp);
21414 		return (NULL);
21415 	}
21416 	mp1->b_cont = mp;
21417 	ioc = (struct iocblk *)mp1->b_rptr;
21418 	ioc->ioc_count = sizeof (ipic_t) + addr_len;
21419 
21420 	return (mp1);
21421 }
21422 
21423 /*
21424  * Generate a reset based on an inbound packet for which there is no active
21425  * tcp state that we can find.
21426  *
21427  * IPSEC NOTE : Try to send the reply with the same protection as it came
21428  * in.  We still have the ipsec_mp that the packet was attached to. Thus
21429  * the packet will go out at the same level of protection as it came in by
21430  * converting the IPSEC_IN to IPSEC_OUT.
21431  */
21432 static void
21433 tcp_xmit_early_reset(char *str, mblk_t *mp, uint32_t seq,
21434     uint32_t ack, int ctl, uint_t ip_hdr_len)
21435 {
21436 	ipha_t		*ipha = NULL;
21437 	ip6_t		*ip6h = NULL;
21438 	ushort_t	len;
21439 	tcph_t		*tcph;
21440 	int		i;
21441 	mblk_t		*ipsec_mp;
21442 	boolean_t	mctl_present;
21443 	ipic_t		*ipic;
21444 	ipaddr_t	v4addr;
21445 	in6_addr_t	v6addr;
21446 	int		addr_len;
21447 	void		*addr;
21448 	queue_t		*q = tcp_g_q;
21449 	tcp_t		*tcp = Q_TO_TCP(q);
21450 	cred_t		*cr;
21451 
21452 	if (!tcp_send_rst_chk()) {
21453 		tcp_rst_unsent++;
21454 		freemsg(mp);
21455 		return;
21456 	}
21457 
21458 	if (mp->b_datap->db_type == M_CTL) {
21459 		ipsec_mp = mp;
21460 		mp = mp->b_cont;
21461 		mctl_present = B_TRUE;
21462 	} else {
21463 		ipsec_mp = mp;
21464 		mctl_present = B_FALSE;
21465 	}
21466 
21467 	if (str && q && tcp_dbg) {
21468 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
21469 		    "tcp_xmit_early_reset: '%s', seq 0x%x, ack 0x%x, "
21470 		    "flags 0x%x",
21471 		    str, seq, ack, ctl);
21472 	}
21473 	if (mp->b_datap->db_ref != 1) {
21474 		mblk_t *mp1 = copyb(mp);
21475 		freemsg(mp);
21476 		mp = mp1;
21477 		if (!mp) {
21478 			if (mctl_present)
21479 				freeb(ipsec_mp);
21480 			return;
21481 		} else {
21482 			if (mctl_present) {
21483 				ipsec_mp->b_cont = mp;
21484 			} else {
21485 				ipsec_mp = mp;
21486 			}
21487 		}
21488 	} else if (mp->b_cont) {
21489 		freemsg(mp->b_cont);
21490 		mp->b_cont = NULL;
21491 	}
21492 	/*
21493 	 * We skip reversing source route here.
21494 	 * (for now we replace all IP options with EOL)
21495 	 */
21496 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
21497 		ipha = (ipha_t *)mp->b_rptr;
21498 		for (i = IP_SIMPLE_HDR_LENGTH; i < (int)ip_hdr_len; i++)
21499 			mp->b_rptr[i] = IPOPT_EOL;
21500 		/*
21501 		 * Make sure that src address isn't flagrantly invalid.
21502 		 * Not all broadcast address checking for the src address
21503 		 * is possible, since we don't know the netmask of the src
21504 		 * addr.  No check for destination address is done, since
21505 		 * IP will not pass up a packet with a broadcast dest
21506 		 * address to TCP.  Similar checks are done below for IPv6.
21507 		 */
21508 		if (ipha->ipha_src == 0 || ipha->ipha_src == INADDR_BROADCAST ||
21509 		    CLASSD(ipha->ipha_src)) {
21510 			freemsg(ipsec_mp);
21511 			BUMP_MIB(&ip_mib, ipInDiscards);
21512 			return;
21513 		}
21514 	} else {
21515 		ip6h = (ip6_t *)mp->b_rptr;
21516 
21517 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src) ||
21518 		    IN6_IS_ADDR_MULTICAST(&ip6h->ip6_src)) {
21519 			freemsg(ipsec_mp);
21520 			BUMP_MIB(&ip6_mib, ipv6InDiscards);
21521 			return;
21522 		}
21523 
21524 		/* Remove any extension headers assuming partial overlay */
21525 		if (ip_hdr_len > IPV6_HDR_LEN) {
21526 			uint8_t *to;
21527 
21528 			to = mp->b_rptr + ip_hdr_len - IPV6_HDR_LEN;
21529 			ovbcopy(ip6h, to, IPV6_HDR_LEN);
21530 			mp->b_rptr += ip_hdr_len - IPV6_HDR_LEN;
21531 			ip_hdr_len = IPV6_HDR_LEN;
21532 			ip6h = (ip6_t *)mp->b_rptr;
21533 			ip6h->ip6_nxt = IPPROTO_TCP;
21534 		}
21535 	}
21536 	tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
21537 	if (tcph->th_flags[0] & TH_RST) {
21538 		freemsg(ipsec_mp);
21539 		return;
21540 	}
21541 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
21542 	len = ip_hdr_len + sizeof (tcph_t);
21543 	mp->b_wptr = &mp->b_rptr[len];
21544 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
21545 		ipha->ipha_length = htons(len);
21546 		/* Swap addresses */
21547 		v4addr = ipha->ipha_src;
21548 		ipha->ipha_src = ipha->ipha_dst;
21549 		ipha->ipha_dst = v4addr;
21550 		ipha->ipha_ident = 0;
21551 		ipha->ipha_ttl = (uchar_t)tcp_ipv4_ttl;
21552 		addr_len = IP_ADDR_LEN;
21553 		addr = &v4addr;
21554 	} else {
21555 		/* No ip6i_t in this case */
21556 		ip6h->ip6_plen = htons(len - IPV6_HDR_LEN);
21557 		/* Swap addresses */
21558 		v6addr = ip6h->ip6_src;
21559 		ip6h->ip6_src = ip6h->ip6_dst;
21560 		ip6h->ip6_dst = v6addr;
21561 		ip6h->ip6_hops = (uchar_t)tcp_ipv6_hoplimit;
21562 		addr_len = IPV6_ADDR_LEN;
21563 		addr = &v6addr;
21564 	}
21565 	tcp_xchg(tcph->th_fport, tcph->th_lport, 2);
21566 	U32_TO_BE32(ack, tcph->th_ack);
21567 	U32_TO_BE32(seq, tcph->th_seq);
21568 	U16_TO_BE16(0, tcph->th_win);
21569 	U16_TO_BE16(sizeof (tcph_t), tcph->th_sum);
21570 	tcph->th_flags[0] = (uint8_t)ctl;
21571 	if (ctl & TH_RST) {
21572 		BUMP_MIB(&tcp_mib, tcpOutRsts);
21573 		BUMP_MIB(&tcp_mib, tcpOutControl);
21574 	}
21575 
21576 	/* IP trusts us to set up labels when required. */
21577 	if (is_system_labeled() && (cr = DB_CRED(mp)) != NULL &&
21578 	    crgetlabel(cr) != NULL) {
21579 		int err, adjust;
21580 
21581 		if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION)
21582 			err = tsol_check_label(cr, &mp, &adjust,
21583 			    tcp->tcp_connp->conn_mac_exempt);
21584 		else
21585 			err = tsol_check_label_v6(cr, &mp, &adjust,
21586 			    tcp->tcp_connp->conn_mac_exempt);
21587 		if (mctl_present)
21588 			ipsec_mp->b_cont = mp;
21589 		else
21590 			ipsec_mp = mp;
21591 		if (err != 0) {
21592 			freemsg(ipsec_mp);
21593 			return;
21594 		}
21595 		if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
21596 			ipha = (ipha_t *)mp->b_rptr;
21597 			adjust += ntohs(ipha->ipha_length);
21598 			ipha->ipha_length = htons(adjust);
21599 		} else {
21600 			ip6h = (ip6_t *)mp->b_rptr;
21601 		}
21602 	}
21603 
21604 	if (mctl_present) {
21605 		ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr;
21606 
21607 		ASSERT(ii->ipsec_in_type == IPSEC_IN);
21608 		if (!ipsec_in_to_out(ipsec_mp, ipha, ip6h)) {
21609 			return;
21610 		}
21611 	}
21612 	/*
21613 	 * NOTE:  one might consider tracing a TCP packet here, but
21614 	 * this function has no active TCP state and no tcp structure
21615 	 * that has a trace buffer.  If we traced here, we would have
21616 	 * to keep a local trace buffer in tcp_record_trace().
21617 	 *
21618 	 * TSol note: The mblk that contains the incoming packet was
21619 	 * reused by tcp_xmit_listener_reset, so it already contains
21620 	 * the right credentials and we don't need to call mblk_setcred.
21621 	 * Also the conn's cred is not right since it is associated
21622 	 * with tcp_g_q.
21623 	 */
21624 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, ipsec_mp);
21625 
21626 	/*
21627 	 * Tell IP to mark the IRE used for this destination temporary.
21628 	 * This way, we can limit our exposure to DoS attack because IP
21629 	 * creates an IRE for each destination.  If there are too many,
21630 	 * the time to do any routing lookup will be extremely long.  And
21631 	 * the lookup can be in interrupt context.
21632 	 *
21633 	 * Note that in normal circumstances, this marking should not
21634 	 * affect anything.  It would be nice if only 1 message is
21635 	 * needed to inform IP that the IRE created for this RST should
21636 	 * not be added to the cache table.  But there is currently
21637 	 * not such communication mechanism between TCP and IP.  So
21638 	 * the best we can do now is to send the advice ioctl to IP
21639 	 * to mark the IRE temporary.
21640 	 */
21641 	if ((mp = tcp_ip_advise_mblk(addr, addr_len, &ipic)) != NULL) {
21642 		ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY;
21643 		CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
21644 	}
21645 }
21646 
21647 /*
21648  * Initiate closedown sequence on an active connection.  (May be called as
21649  * writer.)  Return value zero for OK return, non-zero for error return.
21650  */
21651 static int
21652 tcp_xmit_end(tcp_t *tcp)
21653 {
21654 	ipic_t	*ipic;
21655 	mblk_t	*mp;
21656 
21657 	if (tcp->tcp_state < TCPS_SYN_RCVD ||
21658 	    tcp->tcp_state > TCPS_CLOSE_WAIT) {
21659 		/*
21660 		 * Invalid state, only states TCPS_SYN_RCVD,
21661 		 * TCPS_ESTABLISHED and TCPS_CLOSE_WAIT are valid
21662 		 */
21663 		return (-1);
21664 	}
21665 
21666 	tcp->tcp_fss = tcp->tcp_snxt + tcp->tcp_unsent;
21667 	tcp->tcp_valid_bits |= TCP_FSS_VALID;
21668 	/*
21669 	 * If there is nothing more unsent, send the FIN now.
21670 	 * Otherwise, it will go out with the last segment.
21671 	 */
21672 	if (tcp->tcp_unsent == 0) {
21673 		mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL,
21674 		    tcp->tcp_fss, B_FALSE, NULL, B_FALSE);
21675 
21676 		if (mp) {
21677 			TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
21678 			tcp_send_data(tcp, tcp->tcp_wq, mp);
21679 		} else {
21680 			/*
21681 			 * Couldn't allocate msg.  Pretend we got it out.
21682 			 * Wait for rexmit timeout.
21683 			 */
21684 			tcp->tcp_snxt = tcp->tcp_fss + 1;
21685 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
21686 		}
21687 
21688 		/*
21689 		 * If needed, update tcp_rexmit_snxt as tcp_snxt is
21690 		 * changed.
21691 		 */
21692 		if (tcp->tcp_rexmit && tcp->tcp_rexmit_nxt == tcp->tcp_fss) {
21693 			tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
21694 		}
21695 	} else {
21696 		/*
21697 		 * If tcp->tcp_cork is set, then the data will not get sent,
21698 		 * so we have to check that and unset it first.
21699 		 */
21700 		if (tcp->tcp_cork)
21701 			tcp->tcp_cork = B_FALSE;
21702 		tcp_wput_data(tcp, NULL, B_FALSE);
21703 	}
21704 
21705 	/*
21706 	 * If TCP does not get enough samples of RTT or tcp_rtt_updates
21707 	 * is 0, don't update the cache.
21708 	 */
21709 	if (tcp_rtt_updates == 0 || tcp->tcp_rtt_update < tcp_rtt_updates)
21710 		return (0);
21711 
21712 	/*
21713 	 * NOTE: should not update if source routes i.e. if tcp_remote if
21714 	 * different from the destination.
21715 	 */
21716 	if (tcp->tcp_ipversion == IPV4_VERSION) {
21717 		if (tcp->tcp_remote !=  tcp->tcp_ipha->ipha_dst) {
21718 			return (0);
21719 		}
21720 		mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN,
21721 		    &ipic);
21722 	} else {
21723 		if (!(IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6,
21724 		    &tcp->tcp_ip6h->ip6_dst))) {
21725 			return (0);
21726 		}
21727 		mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN,
21728 		    &ipic);
21729 	}
21730 
21731 	/* Record route attributes in the IRE for use by future connections. */
21732 	if (mp == NULL)
21733 		return (0);
21734 
21735 	/*
21736 	 * We do not have a good algorithm to update ssthresh at this time.
21737 	 * So don't do any update.
21738 	 */
21739 	ipic->ipic_rtt = tcp->tcp_rtt_sa;
21740 	ipic->ipic_rtt_sd = tcp->tcp_rtt_sd;
21741 
21742 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
21743 	return (0);
21744 }
21745 
21746 /*
21747  * Generate a "no listener here" RST in response to an "unknown" segment.
21748  * Note that we are reusing the incoming mp to construct the outgoing
21749  * RST.
21750  */
21751 void
21752 tcp_xmit_listeners_reset(mblk_t *mp, uint_t ip_hdr_len)
21753 {
21754 	uchar_t		*rptr;
21755 	uint32_t	seg_len;
21756 	tcph_t		*tcph;
21757 	uint32_t	seg_seq;
21758 	uint32_t	seg_ack;
21759 	uint_t		flags;
21760 	mblk_t		*ipsec_mp;
21761 	ipha_t 		*ipha;
21762 	ip6_t 		*ip6h;
21763 	boolean_t	mctl_present = B_FALSE;
21764 	boolean_t	check = B_TRUE;
21765 	boolean_t	policy_present;
21766 
21767 	TCP_STAT(tcp_no_listener);
21768 
21769 	ipsec_mp = mp;
21770 
21771 	if (mp->b_datap->db_type == M_CTL) {
21772 		ipsec_in_t *ii;
21773 
21774 		mctl_present = B_TRUE;
21775 		mp = mp->b_cont;
21776 
21777 		ii = (ipsec_in_t *)ipsec_mp->b_rptr;
21778 		ASSERT(ii->ipsec_in_type == IPSEC_IN);
21779 		if (ii->ipsec_in_dont_check) {
21780 			check = B_FALSE;
21781 			if (!ii->ipsec_in_secure) {
21782 				freeb(ipsec_mp);
21783 				mctl_present = B_FALSE;
21784 				ipsec_mp = mp;
21785 			}
21786 		}
21787 	}
21788 
21789 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
21790 		policy_present = ipsec_inbound_v4_policy_present;
21791 		ipha = (ipha_t *)mp->b_rptr;
21792 		ip6h = NULL;
21793 	} else {
21794 		policy_present = ipsec_inbound_v6_policy_present;
21795 		ipha = NULL;
21796 		ip6h = (ip6_t *)mp->b_rptr;
21797 	}
21798 
21799 	if (check && policy_present) {
21800 		/*
21801 		 * The conn_t parameter is NULL because we already know
21802 		 * nobody's home.
21803 		 */
21804 		ipsec_mp = ipsec_check_global_policy(
21805 			ipsec_mp, (conn_t *)NULL, ipha, ip6h, mctl_present);
21806 		if (ipsec_mp == NULL)
21807 			return;
21808 	}
21809 	if (is_system_labeled() && !tsol_can_reply_error(mp)) {
21810 		DTRACE_PROBE2(
21811 		    tx__ip__log__error__nolistener__tcp,
21812 		    char *, "Could not reply with RST to mp(1)",
21813 		    mblk_t *, mp);
21814 		ip2dbg(("tcp_xmit_listeners_reset: not permitted to reply\n"));
21815 		freemsg(ipsec_mp);
21816 		return;
21817 	}
21818 
21819 	rptr = mp->b_rptr;
21820 
21821 	tcph = (tcph_t *)&rptr[ip_hdr_len];
21822 	seg_seq = BE32_TO_U32(tcph->th_seq);
21823 	seg_ack = BE32_TO_U32(tcph->th_ack);
21824 	flags = tcph->th_flags[0];
21825 
21826 	seg_len = msgdsize(mp) - (TCP_HDR_LENGTH(tcph) + ip_hdr_len);
21827 	if (flags & TH_RST) {
21828 		freemsg(ipsec_mp);
21829 	} else if (flags & TH_ACK) {
21830 		tcp_xmit_early_reset("no tcp, reset",
21831 		    ipsec_mp, seg_ack, 0, TH_RST, ip_hdr_len);
21832 	} else {
21833 		if (flags & TH_SYN) {
21834 			seg_len++;
21835 		} else {
21836 			/*
21837 			 * Here we violate the RFC.  Note that a normal
21838 			 * TCP will never send a segment without the ACK
21839 			 * flag, except for RST or SYN segment.  This
21840 			 * segment is neither.  Just drop it on the
21841 			 * floor.
21842 			 */
21843 			freemsg(ipsec_mp);
21844 			tcp_rst_unsent++;
21845 			return;
21846 		}
21847 
21848 		tcp_xmit_early_reset("no tcp, reset/ack",
21849 		    ipsec_mp, 0, seg_seq + seg_len,
21850 		    TH_RST | TH_ACK, ip_hdr_len);
21851 	}
21852 }
21853 
21854 /*
21855  * tcp_xmit_mp is called to return a pointer to an mblk chain complete with
21856  * ip and tcp header ready to pass down to IP.  If the mp passed in is
21857  * non-NULL, then up to max_to_send bytes of data will be dup'ed off that
21858  * mblk. (If sendall is not set the dup'ing will stop at an mblk boundary
21859  * otherwise it will dup partial mblks.)
21860  * Otherwise, an appropriate ACK packet will be generated.  This
21861  * routine is not usually called to send new data for the first time.  It
21862  * is mostly called out of the timer for retransmits, and to generate ACKs.
21863  *
21864  * If offset is not NULL, the returned mblk chain's first mblk's b_rptr will
21865  * be adjusted by *offset.  And after dupb(), the offset and the ending mblk
21866  * of the original mblk chain will be returned in *offset and *end_mp.
21867  */
21868 static mblk_t *
21869 tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, int32_t *offset,
21870     mblk_t **end_mp, uint32_t seq, boolean_t sendall, uint32_t *seg_len,
21871     boolean_t rexmit)
21872 {
21873 	int	data_length;
21874 	int32_t	off = 0;
21875 	uint_t	flags;
21876 	mblk_t	*mp1;
21877 	mblk_t	*mp2;
21878 	uchar_t	*rptr;
21879 	tcph_t	*tcph;
21880 	int32_t	num_sack_blk = 0;
21881 	int32_t	sack_opt_len = 0;
21882 
21883 	/* Allocate for our maximum TCP header + link-level */
21884 	mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcp_wroff_xtra,
21885 	    BPRI_MED);
21886 	if (!mp1)
21887 		return (NULL);
21888 	data_length = 0;
21889 
21890 	/*
21891 	 * Note that tcp_mss has been adjusted to take into account the
21892 	 * timestamp option if applicable.  Because SACK options do not
21893 	 * appear in every TCP segments and they are of variable lengths,
21894 	 * they cannot be included in tcp_mss.  Thus we need to calculate
21895 	 * the actual segment length when we need to send a segment which
21896 	 * includes SACK options.
21897 	 */
21898 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
21899 		num_sack_blk = MIN(tcp->tcp_max_sack_blk,
21900 		    tcp->tcp_num_sack_blk);
21901 		sack_opt_len = num_sack_blk * sizeof (sack_blk_t) +
21902 		    TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN;
21903 		if (max_to_send + sack_opt_len > tcp->tcp_mss)
21904 			max_to_send -= sack_opt_len;
21905 	}
21906 
21907 	if (offset != NULL) {
21908 		off = *offset;
21909 		/* We use offset as an indicator that end_mp is not NULL. */
21910 		*end_mp = NULL;
21911 	}
21912 	for (mp2 = mp1; mp && data_length != max_to_send; mp = mp->b_cont) {
21913 		/* This could be faster with cooperation from downstream */
21914 		if (mp2 != mp1 && !sendall &&
21915 		    data_length + (int)(mp->b_wptr - mp->b_rptr) >
21916 		    max_to_send)
21917 			/*
21918 			 * Don't send the next mblk since the whole mblk
21919 			 * does not fit.
21920 			 */
21921 			break;
21922 		mp2->b_cont = dupb(mp);
21923 		mp2 = mp2->b_cont;
21924 		if (!mp2) {
21925 			freemsg(mp1);
21926 			return (NULL);
21927 		}
21928 		mp2->b_rptr += off;
21929 		ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <=
21930 		    (uintptr_t)INT_MAX);
21931 
21932 		data_length += (int)(mp2->b_wptr - mp2->b_rptr);
21933 		if (data_length > max_to_send) {
21934 			mp2->b_wptr -= data_length - max_to_send;
21935 			data_length = max_to_send;
21936 			off = mp2->b_wptr - mp->b_rptr;
21937 			break;
21938 		} else {
21939 			off = 0;
21940 		}
21941 	}
21942 	if (offset != NULL) {
21943 		*offset = off;
21944 		*end_mp = mp;
21945 	}
21946 	if (seg_len != NULL) {
21947 		*seg_len = data_length;
21948 	}
21949 
21950 	/* Update the latest receive window size in TCP header. */
21951 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
21952 	    tcp->tcp_tcph->th_win);
21953 
21954 	rptr = mp1->b_rptr + tcp_wroff_xtra;
21955 	mp1->b_rptr = rptr;
21956 	mp1->b_wptr = rptr + tcp->tcp_hdr_len + sack_opt_len;
21957 	bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len);
21958 	tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len];
21959 	U32_TO_ABE32(seq, tcph->th_seq);
21960 
21961 	/*
21962 	 * Use tcp_unsent to determine if the PUSH bit should be used assumes
21963 	 * that this function was called from tcp_wput_data. Thus, when called
21964 	 * to retransmit data the setting of the PUSH bit may appear some
21965 	 * what random in that it might get set when it should not. This
21966 	 * should not pose any performance issues.
21967 	 */
21968 	if (data_length != 0 && (tcp->tcp_unsent == 0 ||
21969 	    tcp->tcp_unsent == data_length)) {
21970 		flags = TH_ACK | TH_PUSH;
21971 	} else {
21972 		flags = TH_ACK;
21973 	}
21974 
21975 	if (tcp->tcp_ecn_ok) {
21976 		if (tcp->tcp_ecn_echo_on)
21977 			flags |= TH_ECE;
21978 
21979 		/*
21980 		 * Only set ECT bit and ECN_CWR if a segment contains new data.
21981 		 * There is no TCP flow control for non-data segments, and
21982 		 * only data segment is transmitted reliably.
21983 		 */
21984 		if (data_length > 0 && !rexmit) {
21985 			SET_ECT(tcp, rptr);
21986 			if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
21987 				flags |= TH_CWR;
21988 				tcp->tcp_ecn_cwr_sent = B_TRUE;
21989 			}
21990 		}
21991 	}
21992 
21993 	if (tcp->tcp_valid_bits) {
21994 		uint32_t u1;
21995 
21996 		if ((tcp->tcp_valid_bits & TCP_ISS_VALID) &&
21997 		    seq == tcp->tcp_iss) {
21998 			uchar_t	*wptr;
21999 
22000 			/*
22001 			 * If TCP_ISS_VALID and the seq number is tcp_iss,
22002 			 * TCP can only be in SYN-SENT, SYN-RCVD or
22003 			 * FIN-WAIT-1 state.  It can be FIN-WAIT-1 if
22004 			 * our SYN is not ack'ed but the app closes this
22005 			 * TCP connection.
22006 			 */
22007 			ASSERT(tcp->tcp_state == TCPS_SYN_SENT ||
22008 			    tcp->tcp_state == TCPS_SYN_RCVD ||
22009 			    tcp->tcp_state == TCPS_FIN_WAIT_1);
22010 
22011 			/*
22012 			 * Tack on the MSS option.  It is always needed
22013 			 * for both active and passive open.
22014 			 *
22015 			 * MSS option value should be interface MTU - MIN
22016 			 * TCP/IP header according to RFC 793 as it means
22017 			 * the maximum segment size TCP can receive.  But
22018 			 * to get around some broken middle boxes/end hosts
22019 			 * out there, we allow the option value to be the
22020 			 * same as the MSS option size on the peer side.
22021 			 * In this way, the other side will not send
22022 			 * anything larger than they can receive.
22023 			 *
22024 			 * Note that for SYN_SENT state, the ndd param
22025 			 * tcp_use_smss_as_mss_opt has no effect as we
22026 			 * don't know the peer's MSS option value. So
22027 			 * the only case we need to take care of is in
22028 			 * SYN_RCVD state, which is done later.
22029 			 */
22030 			wptr = mp1->b_wptr;
22031 			wptr[0] = TCPOPT_MAXSEG;
22032 			wptr[1] = TCPOPT_MAXSEG_LEN;
22033 			wptr += 2;
22034 			u1 = tcp->tcp_if_mtu -
22035 			    (tcp->tcp_ipversion == IPV4_VERSION ?
22036 			    IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) -
22037 			    TCP_MIN_HEADER_LENGTH;
22038 			U16_TO_BE16(u1, wptr);
22039 			mp1->b_wptr = wptr + 2;
22040 			/* Update the offset to cover the additional word */
22041 			tcph->th_offset_and_rsrvd[0] += (1 << 4);
22042 
22043 			/*
22044 			 * Note that the following way of filling in
22045 			 * TCP options are not optimal.  Some NOPs can
22046 			 * be saved.  But there is no need at this time
22047 			 * to optimize it.  When it is needed, we will
22048 			 * do it.
22049 			 */
22050 			switch (tcp->tcp_state) {
22051 			case TCPS_SYN_SENT:
22052 				flags = TH_SYN;
22053 
22054 				if (tcp->tcp_snd_ts_ok) {
22055 					uint32_t llbolt = (uint32_t)lbolt;
22056 
22057 					wptr = mp1->b_wptr;
22058 					wptr[0] = TCPOPT_NOP;
22059 					wptr[1] = TCPOPT_NOP;
22060 					wptr[2] = TCPOPT_TSTAMP;
22061 					wptr[3] = TCPOPT_TSTAMP_LEN;
22062 					wptr += 4;
22063 					U32_TO_BE32(llbolt, wptr);
22064 					wptr += 4;
22065 					ASSERT(tcp->tcp_ts_recent == 0);
22066 					U32_TO_BE32(0L, wptr);
22067 					mp1->b_wptr += TCPOPT_REAL_TS_LEN;
22068 					tcph->th_offset_and_rsrvd[0] +=
22069 					    (3 << 4);
22070 				}
22071 
22072 				/*
22073 				 * Set up all the bits to tell other side
22074 				 * we are ECN capable.
22075 				 */
22076 				if (tcp->tcp_ecn_ok) {
22077 					flags |= (TH_ECE | TH_CWR);
22078 				}
22079 				break;
22080 			case TCPS_SYN_RCVD:
22081 				flags |= TH_SYN;
22082 
22083 				/*
22084 				 * Reset the MSS option value to be SMSS
22085 				 * We should probably add back the bytes
22086 				 * for timestamp option and IPsec.  We
22087 				 * don't do that as this is a workaround
22088 				 * for broken middle boxes/end hosts, it
22089 				 * is better for us to be more cautious.
22090 				 * They may not take these things into
22091 				 * account in their SMSS calculation.  Thus
22092 				 * the peer's calculated SMSS may be smaller
22093 				 * than what it can be.  This should be OK.
22094 				 */
22095 				if (tcp_use_smss_as_mss_opt) {
22096 					u1 = tcp->tcp_mss;
22097 					U16_TO_BE16(u1, wptr);
22098 				}
22099 
22100 				/*
22101 				 * If the other side is ECN capable, reply
22102 				 * that we are also ECN capable.
22103 				 */
22104 				if (tcp->tcp_ecn_ok)
22105 					flags |= TH_ECE;
22106 				break;
22107 			default:
22108 				/*
22109 				 * The above ASSERT() makes sure that this
22110 				 * must be FIN-WAIT-1 state.  Our SYN has
22111 				 * not been ack'ed so retransmit it.
22112 				 */
22113 				flags |= TH_SYN;
22114 				break;
22115 			}
22116 
22117 			if (tcp->tcp_snd_ws_ok) {
22118 				wptr = mp1->b_wptr;
22119 				wptr[0] =  TCPOPT_NOP;
22120 				wptr[1] =  TCPOPT_WSCALE;
22121 				wptr[2] =  TCPOPT_WS_LEN;
22122 				wptr[3] = (uchar_t)tcp->tcp_rcv_ws;
22123 				mp1->b_wptr += TCPOPT_REAL_WS_LEN;
22124 				tcph->th_offset_and_rsrvd[0] += (1 << 4);
22125 			}
22126 
22127 			if (tcp->tcp_snd_sack_ok) {
22128 				wptr = mp1->b_wptr;
22129 				wptr[0] = TCPOPT_NOP;
22130 				wptr[1] = TCPOPT_NOP;
22131 				wptr[2] = TCPOPT_SACK_PERMITTED;
22132 				wptr[3] = TCPOPT_SACK_OK_LEN;
22133 				mp1->b_wptr += TCPOPT_REAL_SACK_OK_LEN;
22134 				tcph->th_offset_and_rsrvd[0] += (1 << 4);
22135 			}
22136 
22137 			/* allocb() of adequate mblk assures space */
22138 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
22139 			    (uintptr_t)INT_MAX);
22140 			u1 = (int)(mp1->b_wptr - mp1->b_rptr);
22141 			/*
22142 			 * Get IP set to checksum on our behalf
22143 			 * Include the adjustment for a source route if any.
22144 			 */
22145 			u1 += tcp->tcp_sum;
22146 			u1 = (u1 >> 16) + (u1 & 0xFFFF);
22147 			U16_TO_BE16(u1, tcph->th_sum);
22148 			BUMP_MIB(&tcp_mib, tcpOutControl);
22149 		}
22150 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
22151 		    (seq + data_length) == tcp->tcp_fss) {
22152 			if (!tcp->tcp_fin_acked) {
22153 				flags |= TH_FIN;
22154 				BUMP_MIB(&tcp_mib, tcpOutControl);
22155 			}
22156 			if (!tcp->tcp_fin_sent) {
22157 				tcp->tcp_fin_sent = B_TRUE;
22158 				switch (tcp->tcp_state) {
22159 				case TCPS_SYN_RCVD:
22160 				case TCPS_ESTABLISHED:
22161 					tcp->tcp_state = TCPS_FIN_WAIT_1;
22162 					break;
22163 				case TCPS_CLOSE_WAIT:
22164 					tcp->tcp_state = TCPS_LAST_ACK;
22165 					break;
22166 				}
22167 				if (tcp->tcp_suna == tcp->tcp_snxt)
22168 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
22169 				tcp->tcp_snxt = tcp->tcp_fss + 1;
22170 			}
22171 		}
22172 		/*
22173 		 * Note the trick here.  u1 is unsigned.  When tcp_urg
22174 		 * is smaller than seq, u1 will become a very huge value.
22175 		 * So the comparison will fail.  Also note that tcp_urp
22176 		 * should be positive, see RFC 793 page 17.
22177 		 */
22178 		u1 = tcp->tcp_urg - seq + TCP_OLD_URP_INTERPRETATION;
22179 		if ((tcp->tcp_valid_bits & TCP_URG_VALID) && u1 != 0 &&
22180 		    u1 < (uint32_t)(64 * 1024)) {
22181 			flags |= TH_URG;
22182 			BUMP_MIB(&tcp_mib, tcpOutUrg);
22183 			U32_TO_ABE16(u1, tcph->th_urp);
22184 		}
22185 	}
22186 	tcph->th_flags[0] = (uchar_t)flags;
22187 	tcp->tcp_rack = tcp->tcp_rnxt;
22188 	tcp->tcp_rack_cnt = 0;
22189 
22190 	if (tcp->tcp_snd_ts_ok) {
22191 		if (tcp->tcp_state != TCPS_SYN_SENT) {
22192 			uint32_t llbolt = (uint32_t)lbolt;
22193 
22194 			U32_TO_BE32(llbolt,
22195 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
22196 			U32_TO_BE32(tcp->tcp_ts_recent,
22197 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
22198 		}
22199 	}
22200 
22201 	if (num_sack_blk > 0) {
22202 		uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len;
22203 		sack_blk_t *tmp;
22204 		int32_t	i;
22205 
22206 		wptr[0] = TCPOPT_NOP;
22207 		wptr[1] = TCPOPT_NOP;
22208 		wptr[2] = TCPOPT_SACK;
22209 		wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
22210 		    sizeof (sack_blk_t);
22211 		wptr += TCPOPT_REAL_SACK_LEN;
22212 
22213 		tmp = tcp->tcp_sack_list;
22214 		for (i = 0; i < num_sack_blk; i++) {
22215 			U32_TO_BE32(tmp[i].begin, wptr);
22216 			wptr += sizeof (tcp_seq);
22217 			U32_TO_BE32(tmp[i].end, wptr);
22218 			wptr += sizeof (tcp_seq);
22219 		}
22220 		tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) << 4);
22221 	}
22222 	ASSERT((uintptr_t)(mp1->b_wptr - rptr) <= (uintptr_t)INT_MAX);
22223 	data_length += (int)(mp1->b_wptr - rptr);
22224 	if (tcp->tcp_ipversion == IPV4_VERSION) {
22225 		((ipha_t *)rptr)->ipha_length = htons(data_length);
22226 	} else {
22227 		ip6_t *ip6 = (ip6_t *)(rptr +
22228 		    (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ?
22229 		    sizeof (ip6i_t) : 0));
22230 
22231 		ip6->ip6_plen = htons(data_length -
22232 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
22233 	}
22234 
22235 	/*
22236 	 * Prime pump for IP
22237 	 * Include the adjustment for a source route if any.
22238 	 */
22239 	data_length -= tcp->tcp_ip_hdr_len;
22240 	data_length += tcp->tcp_sum;
22241 	data_length = (data_length >> 16) + (data_length & 0xFFFF);
22242 	U16_TO_ABE16(data_length, tcph->th_sum);
22243 	if (tcp->tcp_ip_forward_progress) {
22244 		ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
22245 		*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
22246 		tcp->tcp_ip_forward_progress = B_FALSE;
22247 	}
22248 	return (mp1);
22249 }
22250 
22251 /* This function handles the push timeout. */
22252 void
22253 tcp_push_timer(void *arg)
22254 {
22255 	conn_t	*connp = (conn_t *)arg;
22256 	tcp_t *tcp = connp->conn_tcp;
22257 
22258 	TCP_DBGSTAT(tcp_push_timer_cnt);
22259 
22260 	ASSERT(tcp->tcp_listener == NULL);
22261 
22262 	/*
22263 	 * We need to stop synchronous streams temporarily to prevent a race
22264 	 * with tcp_fuse_rrw() or tcp_fusion rinfop().  It is safe to access
22265 	 * tcp_rcv_list here because those entry points will return right
22266 	 * away when synchronous streams is stopped.
22267 	 */
22268 	TCP_FUSE_SYNCSTR_STOP(tcp);
22269 	tcp->tcp_push_tid = 0;
22270 	if ((tcp->tcp_rcv_list != NULL) &&
22271 	    (tcp_rcv_drain(tcp->tcp_rq, tcp) == TH_ACK_NEEDED))
22272 		tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK);
22273 	TCP_FUSE_SYNCSTR_RESUME(tcp);
22274 }
22275 
22276 /*
22277  * This function handles delayed ACK timeout.
22278  */
22279 static void
22280 tcp_ack_timer(void *arg)
22281 {
22282 	conn_t	*connp = (conn_t *)arg;
22283 	tcp_t *tcp = connp->conn_tcp;
22284 	mblk_t *mp;
22285 
22286 	TCP_DBGSTAT(tcp_ack_timer_cnt);
22287 
22288 	tcp->tcp_ack_tid = 0;
22289 
22290 	if (tcp->tcp_fused)
22291 		return;
22292 
22293 	/*
22294 	 * Do not send ACK if there is no outstanding unack'ed data.
22295 	 */
22296 	if (tcp->tcp_rnxt == tcp->tcp_rack) {
22297 		return;
22298 	}
22299 
22300 	if ((tcp->tcp_rnxt - tcp->tcp_rack) > tcp->tcp_mss) {
22301 		/*
22302 		 * Make sure we don't allow deferred ACKs to result in
22303 		 * timer-based ACKing.  If we have held off an ACK
22304 		 * when there was more than an mss here, and the timer
22305 		 * goes off, we have to worry about the possibility
22306 		 * that the sender isn't doing slow-start, or is out
22307 		 * of step with us for some other reason.  We fall
22308 		 * permanently back in the direction of
22309 		 * ACK-every-other-packet as suggested in RFC 1122.
22310 		 */
22311 		if (tcp->tcp_rack_abs_max > 2)
22312 			tcp->tcp_rack_abs_max--;
22313 		tcp->tcp_rack_cur_max = 2;
22314 	}
22315 	mp = tcp_ack_mp(tcp);
22316 
22317 	if (mp != NULL) {
22318 		TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
22319 		BUMP_LOCAL(tcp->tcp_obsegs);
22320 		BUMP_MIB(&tcp_mib, tcpOutAck);
22321 		BUMP_MIB(&tcp_mib, tcpOutAckDelayed);
22322 		tcp_send_data(tcp, tcp->tcp_wq, mp);
22323 	}
22324 }
22325 
22326 
22327 /* Generate an ACK-only (no data) segment for a TCP endpoint */
22328 static mblk_t *
22329 tcp_ack_mp(tcp_t *tcp)
22330 {
22331 	uint32_t	seq_no;
22332 
22333 	/*
22334 	 * There are a few cases to be considered while setting the sequence no.
22335 	 * Essentially, we can come here while processing an unacceptable pkt
22336 	 * in the TCPS_SYN_RCVD state, in which case we set the sequence number
22337 	 * to snxt (per RFC 793), note the swnd wouldn't have been set yet.
22338 	 * If we are here for a zero window probe, stick with suna. In all
22339 	 * other cases, we check if suna + swnd encompasses snxt and set
22340 	 * the sequence number to snxt, if so. If snxt falls outside the
22341 	 * window (the receiver probably shrunk its window), we will go with
22342 	 * suna + swnd, otherwise the sequence no will be unacceptable to the
22343 	 * receiver.
22344 	 */
22345 	if (tcp->tcp_zero_win_probe) {
22346 		seq_no = tcp->tcp_suna;
22347 	} else if (tcp->tcp_state == TCPS_SYN_RCVD) {
22348 		ASSERT(tcp->tcp_swnd == 0);
22349 		seq_no = tcp->tcp_snxt;
22350 	} else {
22351 		seq_no = SEQ_GT(tcp->tcp_snxt,
22352 		    (tcp->tcp_suna + tcp->tcp_swnd)) ?
22353 		    (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt;
22354 	}
22355 
22356 	if (tcp->tcp_valid_bits) {
22357 		/*
22358 		 * For the complex case where we have to send some
22359 		 * controls (FIN or SYN), let tcp_xmit_mp do it.
22360 		 */
22361 		return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE,
22362 		    NULL, B_FALSE));
22363 	} else {
22364 		/* Generate a simple ACK */
22365 		int	data_length;
22366 		uchar_t	*rptr;
22367 		tcph_t	*tcph;
22368 		mblk_t	*mp1;
22369 		int32_t	tcp_hdr_len;
22370 		int32_t	tcp_tcp_hdr_len;
22371 		int32_t	num_sack_blk = 0;
22372 		int32_t sack_opt_len;
22373 
22374 		/*
22375 		 * Allocate space for TCP + IP headers
22376 		 * and link-level header
22377 		 */
22378 		if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
22379 			num_sack_blk = MIN(tcp->tcp_max_sack_blk,
22380 			    tcp->tcp_num_sack_blk);
22381 			sack_opt_len = num_sack_blk * sizeof (sack_blk_t) +
22382 			    TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN;
22383 			tcp_hdr_len = tcp->tcp_hdr_len + sack_opt_len;
22384 			tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + sack_opt_len;
22385 		} else {
22386 			tcp_hdr_len = tcp->tcp_hdr_len;
22387 			tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len;
22388 		}
22389 		mp1 = allocb(tcp_hdr_len + tcp_wroff_xtra, BPRI_MED);
22390 		if (!mp1)
22391 			return (NULL);
22392 
22393 		/* Update the latest receive window size in TCP header. */
22394 		U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
22395 		    tcp->tcp_tcph->th_win);
22396 		/* copy in prototype TCP + IP header */
22397 		rptr = mp1->b_rptr + tcp_wroff_xtra;
22398 		mp1->b_rptr = rptr;
22399 		mp1->b_wptr = rptr + tcp_hdr_len;
22400 		bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len);
22401 
22402 		tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len];
22403 
22404 		/* Set the TCP sequence number. */
22405 		U32_TO_ABE32(seq_no, tcph->th_seq);
22406 
22407 		/* Set up the TCP flag field. */
22408 		tcph->th_flags[0] = (uchar_t)TH_ACK;
22409 		if (tcp->tcp_ecn_echo_on)
22410 			tcph->th_flags[0] |= TH_ECE;
22411 
22412 		tcp->tcp_rack = tcp->tcp_rnxt;
22413 		tcp->tcp_rack_cnt = 0;
22414 
22415 		/* fill in timestamp option if in use */
22416 		if (tcp->tcp_snd_ts_ok) {
22417 			uint32_t llbolt = (uint32_t)lbolt;
22418 
22419 			U32_TO_BE32(llbolt,
22420 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
22421 			U32_TO_BE32(tcp->tcp_ts_recent,
22422 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
22423 		}
22424 
22425 		/* Fill in SACK options */
22426 		if (num_sack_blk > 0) {
22427 			uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len;
22428 			sack_blk_t *tmp;
22429 			int32_t	i;
22430 
22431 			wptr[0] = TCPOPT_NOP;
22432 			wptr[1] = TCPOPT_NOP;
22433 			wptr[2] = TCPOPT_SACK;
22434 			wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
22435 			    sizeof (sack_blk_t);
22436 			wptr += TCPOPT_REAL_SACK_LEN;
22437 
22438 			tmp = tcp->tcp_sack_list;
22439 			for (i = 0; i < num_sack_blk; i++) {
22440 				U32_TO_BE32(tmp[i].begin, wptr);
22441 				wptr += sizeof (tcp_seq);
22442 				U32_TO_BE32(tmp[i].end, wptr);
22443 				wptr += sizeof (tcp_seq);
22444 			}
22445 			tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1)
22446 			    << 4);
22447 		}
22448 
22449 		if (tcp->tcp_ipversion == IPV4_VERSION) {
22450 			((ipha_t *)rptr)->ipha_length = htons(tcp_hdr_len);
22451 		} else {
22452 			/* Check for ip6i_t header in sticky hdrs */
22453 			ip6_t *ip6 = (ip6_t *)(rptr +
22454 			    (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ?
22455 			    sizeof (ip6i_t) : 0));
22456 
22457 			ip6->ip6_plen = htons(tcp_hdr_len -
22458 			    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
22459 		}
22460 
22461 		/*
22462 		 * Prime pump for checksum calculation in IP.  Include the
22463 		 * adjustment for a source route if any.
22464 		 */
22465 		data_length = tcp_tcp_hdr_len + tcp->tcp_sum;
22466 		data_length = (data_length >> 16) + (data_length & 0xFFFF);
22467 		U16_TO_ABE16(data_length, tcph->th_sum);
22468 
22469 		if (tcp->tcp_ip_forward_progress) {
22470 			ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
22471 			*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
22472 			tcp->tcp_ip_forward_progress = B_FALSE;
22473 		}
22474 		return (mp1);
22475 	}
22476 }
22477 
22478 /*
22479  * To create a temporary tcp structure for inserting into bind hash list.
22480  * The parameter is assumed to be in network byte order, ready for use.
22481  */
22482 /* ARGSUSED */
22483 static tcp_t *
22484 tcp_alloc_temp_tcp(in_port_t port)
22485 {
22486 	conn_t	*connp;
22487 	tcp_t	*tcp;
22488 
22489 	connp = ipcl_conn_create(IPCL_TCPCONN, KM_SLEEP);
22490 	if (connp == NULL)
22491 		return (NULL);
22492 
22493 	tcp = connp->conn_tcp;
22494 
22495 	/*
22496 	 * Only initialize the necessary info in those structures.  Note
22497 	 * that since INADDR_ANY is all 0, we do not need to set
22498 	 * tcp_bound_source to INADDR_ANY here.
22499 	 */
22500 	tcp->tcp_state = TCPS_BOUND;
22501 	tcp->tcp_lport = port;
22502 	tcp->tcp_exclbind = 1;
22503 	tcp->tcp_reserved_port = 1;
22504 
22505 	/* Just for place holding... */
22506 	tcp->tcp_ipversion = IPV4_VERSION;
22507 
22508 	return (tcp);
22509 }
22510 
22511 /*
22512  * To remove a port range specified by lo_port and hi_port from the
22513  * reserved port ranges.  This is one of the three public functions of
22514  * the reserved port interface.  Note that a port range has to be removed
22515  * as a whole.  Ports in a range cannot be removed individually.
22516  *
22517  * Params:
22518  *	in_port_t lo_port: the beginning port of the reserved port range to
22519  *		be deleted.
22520  *	in_port_t hi_port: the ending port of the reserved port range to
22521  *		be deleted.
22522  *
22523  * Return:
22524  *	B_TRUE if the deletion is successful, B_FALSE otherwise.
22525  */
22526 boolean_t
22527 tcp_reserved_port_del(in_port_t lo_port, in_port_t hi_port)
22528 {
22529 	int	i, j;
22530 	int	size;
22531 	tcp_t	**temp_tcp_array;
22532 	tcp_t	*tcp;
22533 
22534 	rw_enter(&tcp_reserved_port_lock, RW_WRITER);
22535 
22536 	/* First make sure that the port ranage is indeed reserved. */
22537 	for (i = 0; i < tcp_reserved_port_array_size; i++) {
22538 		if (tcp_reserved_port[i].lo_port == lo_port) {
22539 			hi_port = tcp_reserved_port[i].hi_port;
22540 			temp_tcp_array = tcp_reserved_port[i].temp_tcp_array;
22541 			break;
22542 		}
22543 	}
22544 	if (i == tcp_reserved_port_array_size) {
22545 		rw_exit(&tcp_reserved_port_lock);
22546 		return (B_FALSE);
22547 	}
22548 
22549 	/*
22550 	 * Remove the range from the array.  This simple loop is possible
22551 	 * because port ranges are inserted in ascending order.
22552 	 */
22553 	for (j = i; j < tcp_reserved_port_array_size - 1; j++) {
22554 		tcp_reserved_port[j].lo_port = tcp_reserved_port[j+1].lo_port;
22555 		tcp_reserved_port[j].hi_port = tcp_reserved_port[j+1].hi_port;
22556 		tcp_reserved_port[j].temp_tcp_array =
22557 		    tcp_reserved_port[j+1].temp_tcp_array;
22558 	}
22559 
22560 	/* Remove all the temporary tcp structures. */
22561 	size = hi_port - lo_port + 1;
22562 	while (size > 0) {
22563 		tcp = temp_tcp_array[size - 1];
22564 		ASSERT(tcp != NULL);
22565 		tcp_bind_hash_remove(tcp);
22566 		CONN_DEC_REF(tcp->tcp_connp);
22567 		size--;
22568 	}
22569 	kmem_free(temp_tcp_array, (hi_port - lo_port + 1) * sizeof (tcp_t *));
22570 	tcp_reserved_port_array_size--;
22571 	rw_exit(&tcp_reserved_port_lock);
22572 	return (B_TRUE);
22573 }
22574 
22575 /*
22576  * Macro to remove temporary tcp structure from the bind hash list.  The
22577  * first parameter is the list of tcp to be removed.  The second parameter
22578  * is the number of tcps in the array.
22579  */
22580 #define	TCP_TMP_TCP_REMOVE(tcp_array, num) \
22581 { \
22582 	while ((num) > 0) { \
22583 		tcp_t *tcp = (tcp_array)[(num) - 1]; \
22584 		tf_t *tbf; \
22585 		tcp_t *tcpnext; \
22586 		tbf = &tcp_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)]; \
22587 		mutex_enter(&tbf->tf_lock); \
22588 		tcpnext = tcp->tcp_bind_hash; \
22589 		if (tcpnext) { \
22590 			tcpnext->tcp_ptpbhn = \
22591 				tcp->tcp_ptpbhn; \
22592 		} \
22593 		*tcp->tcp_ptpbhn = tcpnext; \
22594 		mutex_exit(&tbf->tf_lock); \
22595 		kmem_free(tcp, sizeof (tcp_t)); \
22596 		(tcp_array)[(num) - 1] = NULL; \
22597 		(num)--; \
22598 	} \
22599 }
22600 
22601 /*
22602  * The public interface for other modules to call to reserve a port range
22603  * in TCP.  The caller passes in how large a port range it wants.  TCP
22604  * will try to find a range and return it via lo_port and hi_port.  This is
22605  * used by NCA's nca_conn_init.
22606  * NCA can only be used in the global zone so this only affects the global
22607  * zone's ports.
22608  *
22609  * Params:
22610  *	int size: the size of the port range to be reserved.
22611  *	in_port_t *lo_port (referenced): returns the beginning port of the
22612  *		reserved port range added.
22613  *	in_port_t *hi_port (referenced): returns the ending port of the
22614  *		reserved port range added.
22615  *
22616  * Return:
22617  *	B_TRUE if the port reservation is successful, B_FALSE otherwise.
22618  */
22619 boolean_t
22620 tcp_reserved_port_add(int size, in_port_t *lo_port, in_port_t *hi_port)
22621 {
22622 	tcp_t		*tcp;
22623 	tcp_t		*tmp_tcp;
22624 	tcp_t		**temp_tcp_array;
22625 	tf_t		*tbf;
22626 	in_port_t	net_port;
22627 	in_port_t	port;
22628 	int32_t		cur_size;
22629 	int		i, j;
22630 	boolean_t	used;
22631 	tcp_rport_t 	tmp_ports[TCP_RESERVED_PORTS_ARRAY_MAX_SIZE];
22632 	zoneid_t	zoneid = GLOBAL_ZONEID;
22633 
22634 	/* Sanity check. */
22635 	if (size <= 0 || size > TCP_RESERVED_PORTS_RANGE_MAX) {
22636 		return (B_FALSE);
22637 	}
22638 
22639 	rw_enter(&tcp_reserved_port_lock, RW_WRITER);
22640 	if (tcp_reserved_port_array_size == TCP_RESERVED_PORTS_ARRAY_MAX_SIZE) {
22641 		rw_exit(&tcp_reserved_port_lock);
22642 		return (B_FALSE);
22643 	}
22644 
22645 	/*
22646 	 * Find the starting port to try.  Since the port ranges are ordered
22647 	 * in the reserved port array, we can do a simple search here.
22648 	 */
22649 	*lo_port = TCP_SMALLEST_RESERVED_PORT;
22650 	*hi_port = TCP_LARGEST_RESERVED_PORT;
22651 	for (i = 0; i < tcp_reserved_port_array_size;
22652 	    *lo_port = tcp_reserved_port[i].hi_port + 1, i++) {
22653 		if (tcp_reserved_port[i].lo_port - *lo_port >= size) {
22654 			*hi_port = tcp_reserved_port[i].lo_port - 1;
22655 			break;
22656 		}
22657 	}
22658 	/* No available port range. */
22659 	if (i == tcp_reserved_port_array_size && *hi_port - *lo_port < size) {
22660 		rw_exit(&tcp_reserved_port_lock);
22661 		return (B_FALSE);
22662 	}
22663 
22664 	temp_tcp_array = kmem_zalloc(size * sizeof (tcp_t *), KM_NOSLEEP);
22665 	if (temp_tcp_array == NULL) {
22666 		rw_exit(&tcp_reserved_port_lock);
22667 		return (B_FALSE);
22668 	}
22669 
22670 	/* Go thru the port range to see if some ports are already bound. */
22671 	for (port = *lo_port, cur_size = 0;
22672 	    cur_size < size && port <= *hi_port;
22673 	    cur_size++, port++) {
22674 		used = B_FALSE;
22675 		net_port = htons(port);
22676 		tbf = &tcp_bind_fanout[TCP_BIND_HASH(net_port)];
22677 		mutex_enter(&tbf->tf_lock);
22678 		for (tcp = tbf->tf_tcp; tcp != NULL;
22679 		    tcp = tcp->tcp_bind_hash) {
22680 			if (IPCL_ZONE_MATCH(tcp->tcp_connp, zoneid) &&
22681 			    net_port == tcp->tcp_lport) {
22682 				/*
22683 				 * A port is already bound.  Search again
22684 				 * starting from port + 1.  Release all
22685 				 * temporary tcps.
22686 				 */
22687 				mutex_exit(&tbf->tf_lock);
22688 				TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size);
22689 				*lo_port = port + 1;
22690 				cur_size = -1;
22691 				used = B_TRUE;
22692 				break;
22693 			}
22694 		}
22695 		if (!used) {
22696 			if ((tmp_tcp = tcp_alloc_temp_tcp(net_port)) == NULL) {
22697 				/*
22698 				 * Allocation failure.  Just fail the request.
22699 				 * Need to remove all those temporary tcp
22700 				 * structures.
22701 				 */
22702 				mutex_exit(&tbf->tf_lock);
22703 				TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size);
22704 				rw_exit(&tcp_reserved_port_lock);
22705 				kmem_free(temp_tcp_array,
22706 				    (hi_port - lo_port + 1) *
22707 				    sizeof (tcp_t *));
22708 				return (B_FALSE);
22709 			}
22710 			temp_tcp_array[cur_size] = tmp_tcp;
22711 			tcp_bind_hash_insert(tbf, tmp_tcp, B_TRUE);
22712 			mutex_exit(&tbf->tf_lock);
22713 		}
22714 	}
22715 
22716 	/*
22717 	 * The current range is not large enough.  We can actually do another
22718 	 * search if this search is done between 2 reserved port ranges.  But
22719 	 * for first release, we just stop here and return saying that no port
22720 	 * range is available.
22721 	 */
22722 	if (cur_size < size) {
22723 		TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size);
22724 		rw_exit(&tcp_reserved_port_lock);
22725 		kmem_free(temp_tcp_array, size * sizeof (tcp_t *));
22726 		return (B_FALSE);
22727 	}
22728 	*hi_port = port - 1;
22729 
22730 	/*
22731 	 * Insert range into array in ascending order.  Since this function
22732 	 * must not be called often, we choose to use the simplest method.
22733 	 * The above array should not consume excessive stack space as
22734 	 * the size must be very small.  If in future releases, we find
22735 	 * that we should provide more reserved port ranges, this function
22736 	 * has to be modified to be more efficient.
22737 	 */
22738 	if (tcp_reserved_port_array_size == 0) {
22739 		tcp_reserved_port[0].lo_port = *lo_port;
22740 		tcp_reserved_port[0].hi_port = *hi_port;
22741 		tcp_reserved_port[0].temp_tcp_array = temp_tcp_array;
22742 	} else {
22743 		for (i = 0, j = 0; i < tcp_reserved_port_array_size; i++, j++) {
22744 			if (*lo_port < tcp_reserved_port[i].lo_port && i == j) {
22745 				tmp_ports[j].lo_port = *lo_port;
22746 				tmp_ports[j].hi_port = *hi_port;
22747 				tmp_ports[j].temp_tcp_array = temp_tcp_array;
22748 				j++;
22749 			}
22750 			tmp_ports[j].lo_port = tcp_reserved_port[i].lo_port;
22751 			tmp_ports[j].hi_port = tcp_reserved_port[i].hi_port;
22752 			tmp_ports[j].temp_tcp_array =
22753 			    tcp_reserved_port[i].temp_tcp_array;
22754 		}
22755 		if (j == i) {
22756 			tmp_ports[j].lo_port = *lo_port;
22757 			tmp_ports[j].hi_port = *hi_port;
22758 			tmp_ports[j].temp_tcp_array = temp_tcp_array;
22759 		}
22760 		bcopy(tmp_ports, tcp_reserved_port, sizeof (tmp_ports));
22761 	}
22762 	tcp_reserved_port_array_size++;
22763 	rw_exit(&tcp_reserved_port_lock);
22764 	return (B_TRUE);
22765 }
22766 
22767 /*
22768  * Check to see if a port is in any reserved port range.
22769  *
22770  * Params:
22771  *	in_port_t port: the port to be verified.
22772  *
22773  * Return:
22774  *	B_TRUE is the port is inside a reserved port range, B_FALSE otherwise.
22775  */
22776 boolean_t
22777 tcp_reserved_port_check(in_port_t port)
22778 {
22779 	int i;
22780 
22781 	rw_enter(&tcp_reserved_port_lock, RW_READER);
22782 	for (i = 0; i < tcp_reserved_port_array_size; i++) {
22783 		if (port >= tcp_reserved_port[i].lo_port ||
22784 		    port <= tcp_reserved_port[i].hi_port) {
22785 			rw_exit(&tcp_reserved_port_lock);
22786 			return (B_TRUE);
22787 		}
22788 	}
22789 	rw_exit(&tcp_reserved_port_lock);
22790 	return (B_FALSE);
22791 }
22792 
22793 /*
22794  * To list all reserved port ranges.  This is the function to handle
22795  * ndd tcp_reserved_port_list.
22796  */
22797 /* ARGSUSED */
22798 static int
22799 tcp_reserved_port_list(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
22800 {
22801 	int i;
22802 
22803 	rw_enter(&tcp_reserved_port_lock, RW_READER);
22804 	if (tcp_reserved_port_array_size > 0)
22805 		(void) mi_mpprintf(mp, "The following ports are reserved:");
22806 	else
22807 		(void) mi_mpprintf(mp, "No port is reserved.");
22808 	for (i = 0; i < tcp_reserved_port_array_size; i++) {
22809 		(void) mi_mpprintf(mp, "%d-%d",
22810 		    tcp_reserved_port[i].lo_port, tcp_reserved_port[i].hi_port);
22811 	}
22812 	rw_exit(&tcp_reserved_port_lock);
22813 	return (0);
22814 }
22815 
22816 /*
22817  * Hash list insertion routine for tcp_t structures.
22818  * Inserts entries with the ones bound to a specific IP address first
22819  * followed by those bound to INADDR_ANY.
22820  */
22821 static void
22822 tcp_bind_hash_insert(tf_t *tbf, tcp_t *tcp, int caller_holds_lock)
22823 {
22824 	tcp_t	**tcpp;
22825 	tcp_t	*tcpnext;
22826 
22827 	if (tcp->tcp_ptpbhn != NULL) {
22828 		ASSERT(!caller_holds_lock);
22829 		tcp_bind_hash_remove(tcp);
22830 	}
22831 	tcpp = &tbf->tf_tcp;
22832 	if (!caller_holds_lock) {
22833 		mutex_enter(&tbf->tf_lock);
22834 	} else {
22835 		ASSERT(MUTEX_HELD(&tbf->tf_lock));
22836 	}
22837 	tcpnext = tcpp[0];
22838 	if (tcpnext) {
22839 		/*
22840 		 * If the new tcp bound to the INADDR_ANY address
22841 		 * and the first one in the list is not bound to
22842 		 * INADDR_ANY we skip all entries until we find the
22843 		 * first one bound to INADDR_ANY.
22844 		 * This makes sure that applications binding to a
22845 		 * specific address get preference over those binding to
22846 		 * INADDR_ANY.
22847 		 */
22848 		if (V6_OR_V4_INADDR_ANY(tcp->tcp_bound_source_v6) &&
22849 		    !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) {
22850 			while ((tcpnext = tcpp[0]) != NULL &&
22851 			    !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6))
22852 				tcpp = &(tcpnext->tcp_bind_hash);
22853 			if (tcpnext)
22854 				tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash;
22855 		} else
22856 			tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash;
22857 	}
22858 	tcp->tcp_bind_hash = tcpnext;
22859 	tcp->tcp_ptpbhn = tcpp;
22860 	tcpp[0] = tcp;
22861 	if (!caller_holds_lock)
22862 		mutex_exit(&tbf->tf_lock);
22863 }
22864 
22865 /*
22866  * Hash list removal routine for tcp_t structures.
22867  */
22868 static void
22869 tcp_bind_hash_remove(tcp_t *tcp)
22870 {
22871 	tcp_t	*tcpnext;
22872 	kmutex_t *lockp;
22873 
22874 	if (tcp->tcp_ptpbhn == NULL)
22875 		return;
22876 
22877 	/*
22878 	 * Extract the lock pointer in case there are concurrent
22879 	 * hash_remove's for this instance.
22880 	 */
22881 	ASSERT(tcp->tcp_lport != 0);
22882 	lockp = &tcp_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)].tf_lock;
22883 
22884 	ASSERT(lockp != NULL);
22885 	mutex_enter(lockp);
22886 	if (tcp->tcp_ptpbhn) {
22887 		tcpnext = tcp->tcp_bind_hash;
22888 		if (tcpnext) {
22889 			tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn;
22890 			tcp->tcp_bind_hash = NULL;
22891 		}
22892 		*tcp->tcp_ptpbhn = tcpnext;
22893 		tcp->tcp_ptpbhn = NULL;
22894 	}
22895 	mutex_exit(lockp);
22896 }
22897 
22898 
22899 /*
22900  * Hash list lookup routine for tcp_t structures.
22901  * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF.
22902  */
22903 static tcp_t *
22904 tcp_acceptor_hash_lookup(t_uscalar_t id)
22905 {
22906 	tf_t	*tf;
22907 	tcp_t	*tcp;
22908 
22909 	tf = &tcp_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
22910 	mutex_enter(&tf->tf_lock);
22911 	for (tcp = tf->tf_tcp; tcp != NULL;
22912 	    tcp = tcp->tcp_acceptor_hash) {
22913 		if (tcp->tcp_acceptor_id == id) {
22914 			CONN_INC_REF(tcp->tcp_connp);
22915 			mutex_exit(&tf->tf_lock);
22916 			return (tcp);
22917 		}
22918 	}
22919 	mutex_exit(&tf->tf_lock);
22920 	return (NULL);
22921 }
22922 
22923 
22924 /*
22925  * Hash list insertion routine for tcp_t structures.
22926  */
22927 void
22928 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp)
22929 {
22930 	tf_t	*tf;
22931 	tcp_t	**tcpp;
22932 	tcp_t	*tcpnext;
22933 
22934 	tf = &tcp_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
22935 
22936 	if (tcp->tcp_ptpahn != NULL)
22937 		tcp_acceptor_hash_remove(tcp);
22938 	tcpp = &tf->tf_tcp;
22939 	mutex_enter(&tf->tf_lock);
22940 	tcpnext = tcpp[0];
22941 	if (tcpnext)
22942 		tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash;
22943 	tcp->tcp_acceptor_hash = tcpnext;
22944 	tcp->tcp_ptpahn = tcpp;
22945 	tcpp[0] = tcp;
22946 	tcp->tcp_acceptor_lockp = &tf->tf_lock;	/* For tcp_*_hash_remove */
22947 	mutex_exit(&tf->tf_lock);
22948 }
22949 
22950 /*
22951  * Hash list removal routine for tcp_t structures.
22952  */
22953 static void
22954 tcp_acceptor_hash_remove(tcp_t *tcp)
22955 {
22956 	tcp_t	*tcpnext;
22957 	kmutex_t *lockp;
22958 
22959 	/*
22960 	 * Extract the lock pointer in case there are concurrent
22961 	 * hash_remove's for this instance.
22962 	 */
22963 	lockp = tcp->tcp_acceptor_lockp;
22964 
22965 	if (tcp->tcp_ptpahn == NULL)
22966 		return;
22967 
22968 	ASSERT(lockp != NULL);
22969 	mutex_enter(lockp);
22970 	if (tcp->tcp_ptpahn) {
22971 		tcpnext = tcp->tcp_acceptor_hash;
22972 		if (tcpnext) {
22973 			tcpnext->tcp_ptpahn = tcp->tcp_ptpahn;
22974 			tcp->tcp_acceptor_hash = NULL;
22975 		}
22976 		*tcp->tcp_ptpahn = tcpnext;
22977 		tcp->tcp_ptpahn = NULL;
22978 	}
22979 	mutex_exit(lockp);
22980 	tcp->tcp_acceptor_lockp = NULL;
22981 }
22982 
22983 /* ARGSUSED */
22984 static int
22985 tcp_host_param_setvalue(queue_t *q, mblk_t *mp, char *value, caddr_t cp, int af)
22986 {
22987 	int error = 0;
22988 	int retval;
22989 	char *end;
22990 
22991 	tcp_hsp_t *hsp;
22992 	tcp_hsp_t *hspprev;
22993 
22994 	ipaddr_t addr = 0;		/* Address we're looking for */
22995 	in6_addr_t v6addr;		/* Address we're looking for */
22996 	uint32_t hash;			/* Hash of that address */
22997 
22998 	/*
22999 	 * If the following variables are still zero after parsing the input
23000 	 * string, the user didn't specify them and we don't change them in
23001 	 * the HSP.
23002 	 */
23003 
23004 	ipaddr_t mask = 0;		/* Subnet mask */
23005 	in6_addr_t v6mask;
23006 	long sendspace = 0;		/* Send buffer size */
23007 	long recvspace = 0;		/* Receive buffer size */
23008 	long timestamp = 0;	/* Originate TCP TSTAMP option, 1 = yes */
23009 	boolean_t delete = B_FALSE;	/* User asked to delete this HSP */
23010 
23011 	rw_enter(&tcp_hsp_lock, RW_WRITER);
23012 
23013 	/* Parse and validate address */
23014 	if (af == AF_INET) {
23015 		retval = inet_pton(af, value, &addr);
23016 		if (retval == 1)
23017 			IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
23018 	} else if (af == AF_INET6) {
23019 		retval = inet_pton(af, value, &v6addr);
23020 	} else {
23021 		error = EINVAL;
23022 		goto done;
23023 	}
23024 	if (retval == 0) {
23025 		error = EINVAL;
23026 		goto done;
23027 	}
23028 
23029 	while ((*value) && *value != ' ')
23030 		value++;
23031 
23032 	/* Parse individual keywords, set variables if found */
23033 	while (*value) {
23034 		/* Skip leading blanks */
23035 
23036 		while (*value == ' ' || *value == '\t')
23037 			value++;
23038 
23039 		/* If at end of string, we're done */
23040 
23041 		if (!*value)
23042 			break;
23043 
23044 		/* We have a word, figure out what it is */
23045 
23046 		if (strncmp("mask", value, 4) == 0) {
23047 			value += 4;
23048 			while (*value == ' ' || *value == '\t')
23049 				value++;
23050 			/* Parse subnet mask */
23051 			if (af == AF_INET) {
23052 				retval = inet_pton(af, value, &mask);
23053 				if (retval == 1) {
23054 					V4MASK_TO_V6(mask, v6mask);
23055 				}
23056 			} else if (af == AF_INET6) {
23057 				retval = inet_pton(af, value, &v6mask);
23058 			}
23059 			if (retval != 1) {
23060 				error = EINVAL;
23061 				goto done;
23062 			}
23063 			while ((*value) && *value != ' ')
23064 				value++;
23065 		} else if (strncmp("sendspace", value, 9) == 0) {
23066 			value += 9;
23067 
23068 			if (ddi_strtol(value, &end, 0, &sendspace) != 0 ||
23069 			    sendspace < TCP_XMIT_HIWATER ||
23070 			    sendspace >= (1L<<30)) {
23071 				error = EINVAL;
23072 				goto done;
23073 			}
23074 			value = end;
23075 		} else if (strncmp("recvspace", value, 9) == 0) {
23076 			value += 9;
23077 
23078 			if (ddi_strtol(value, &end, 0, &recvspace) != 0 ||
23079 			    recvspace < TCP_RECV_HIWATER ||
23080 			    recvspace >= (1L<<30)) {
23081 				error = EINVAL;
23082 				goto done;
23083 			}
23084 			value = end;
23085 		} else if (strncmp("timestamp", value, 9) == 0) {
23086 			value += 9;
23087 
23088 			if (ddi_strtol(value, &end, 0, &timestamp) != 0 ||
23089 			    timestamp < 0 || timestamp > 1) {
23090 				error = EINVAL;
23091 				goto done;
23092 			}
23093 
23094 			/*
23095 			 * We increment timestamp so we know it's been set;
23096 			 * this is undone when we put it in the HSP
23097 			 */
23098 			timestamp++;
23099 			value = end;
23100 		} else if (strncmp("delete", value, 6) == 0) {
23101 			value += 6;
23102 			delete = B_TRUE;
23103 		} else {
23104 			error = EINVAL;
23105 			goto done;
23106 		}
23107 	}
23108 
23109 	/* Hash address for lookup */
23110 
23111 	hash = TCP_HSP_HASH(addr);
23112 
23113 	if (delete) {
23114 		/*
23115 		 * Note that deletes don't return an error if the thing
23116 		 * we're trying to delete isn't there.
23117 		 */
23118 		if (tcp_hsp_hash == NULL)
23119 			goto done;
23120 		hsp = tcp_hsp_hash[hash];
23121 
23122 		if (hsp) {
23123 			if (IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6,
23124 			    &v6addr)) {
23125 				tcp_hsp_hash[hash] = hsp->tcp_hsp_next;
23126 				mi_free((char *)hsp);
23127 			} else {
23128 				hspprev = hsp;
23129 				while ((hsp = hsp->tcp_hsp_next) != NULL) {
23130 					if (IN6_ARE_ADDR_EQUAL(
23131 					    &hsp->tcp_hsp_addr_v6, &v6addr)) {
23132 						hspprev->tcp_hsp_next =
23133 						    hsp->tcp_hsp_next;
23134 						mi_free((char *)hsp);
23135 						break;
23136 					}
23137 					hspprev = hsp;
23138 				}
23139 			}
23140 		}
23141 	} else {
23142 		/*
23143 		 * We're adding/modifying an HSP.  If we haven't already done
23144 		 * so, allocate the hash table.
23145 		 */
23146 
23147 		if (!tcp_hsp_hash) {
23148 			tcp_hsp_hash = (tcp_hsp_t **)
23149 			    mi_zalloc(sizeof (tcp_hsp_t *) * TCP_HSP_HASH_SIZE);
23150 			if (!tcp_hsp_hash) {
23151 				error = EINVAL;
23152 				goto done;
23153 			}
23154 		}
23155 
23156 		/* Get head of hash chain */
23157 
23158 		hsp = tcp_hsp_hash[hash];
23159 
23160 		/* Try to find pre-existing hsp on hash chain */
23161 		/* Doesn't handle CIDR prefixes. */
23162 		while (hsp) {
23163 			if (IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, &v6addr))
23164 				break;
23165 			hsp = hsp->tcp_hsp_next;
23166 		}
23167 
23168 		/*
23169 		 * If we didn't, create one with default values and put it
23170 		 * at head of hash chain
23171 		 */
23172 
23173 		if (!hsp) {
23174 			hsp = (tcp_hsp_t *)mi_zalloc(sizeof (tcp_hsp_t));
23175 			if (!hsp) {
23176 				error = EINVAL;
23177 				goto done;
23178 			}
23179 			hsp->tcp_hsp_next = tcp_hsp_hash[hash];
23180 			tcp_hsp_hash[hash] = hsp;
23181 		}
23182 
23183 		/* Set values that the user asked us to change */
23184 
23185 		hsp->tcp_hsp_addr_v6 = v6addr;
23186 		if (IN6_IS_ADDR_V4MAPPED(&v6addr))
23187 			hsp->tcp_hsp_vers = IPV4_VERSION;
23188 		else
23189 			hsp->tcp_hsp_vers = IPV6_VERSION;
23190 		hsp->tcp_hsp_subnet_v6 = v6mask;
23191 		if (sendspace > 0)
23192 			hsp->tcp_hsp_sendspace = sendspace;
23193 		if (recvspace > 0)
23194 			hsp->tcp_hsp_recvspace = recvspace;
23195 		if (timestamp > 0)
23196 			hsp->tcp_hsp_tstamp = timestamp - 1;
23197 	}
23198 
23199 done:
23200 	rw_exit(&tcp_hsp_lock);
23201 	return (error);
23202 }
23203 
23204 /* Set callback routine passed to nd_load by tcp_param_register. */
23205 /* ARGSUSED */
23206 static int
23207 tcp_host_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr)
23208 {
23209 	return (tcp_host_param_setvalue(q, mp, value, cp, AF_INET));
23210 }
23211 /* ARGSUSED */
23212 static int
23213 tcp_host_param_set_ipv6(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
23214     cred_t *cr)
23215 {
23216 	return (tcp_host_param_setvalue(q, mp, value, cp, AF_INET6));
23217 }
23218 
23219 /* TCP host parameters report triggered via the Named Dispatch mechanism. */
23220 /* ARGSUSED */
23221 static int
23222 tcp_host_param_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
23223 {
23224 	tcp_hsp_t *hsp;
23225 	int i;
23226 	char addrbuf[INET6_ADDRSTRLEN], subnetbuf[INET6_ADDRSTRLEN];
23227 
23228 	rw_enter(&tcp_hsp_lock, RW_READER);
23229 	(void) mi_mpprintf(mp,
23230 	    "Hash HSP     " MI_COL_HDRPAD_STR
23231 	    "Address         Subnet Mask     Send       Receive    TStamp");
23232 	if (tcp_hsp_hash) {
23233 		for (i = 0; i < TCP_HSP_HASH_SIZE; i++) {
23234 			hsp = tcp_hsp_hash[i];
23235 			while (hsp) {
23236 				if (hsp->tcp_hsp_vers == IPV4_VERSION) {
23237 					(void) inet_ntop(AF_INET,
23238 					    &hsp->tcp_hsp_addr,
23239 					    addrbuf, sizeof (addrbuf));
23240 					(void) inet_ntop(AF_INET,
23241 					    &hsp->tcp_hsp_subnet,
23242 					    subnetbuf, sizeof (subnetbuf));
23243 				} else {
23244 					(void) inet_ntop(AF_INET6,
23245 					    &hsp->tcp_hsp_addr_v6,
23246 					    addrbuf, sizeof (addrbuf));
23247 					(void) inet_ntop(AF_INET6,
23248 					    &hsp->tcp_hsp_subnet_v6,
23249 					    subnetbuf, sizeof (subnetbuf));
23250 				}
23251 				(void) mi_mpprintf(mp,
23252 				    " %03d " MI_COL_PTRFMT_STR
23253 				    "%s %s %010d %010d      %d",
23254 				    i,
23255 				    (void *)hsp,
23256 				    addrbuf,
23257 				    subnetbuf,
23258 				    hsp->tcp_hsp_sendspace,
23259 				    hsp->tcp_hsp_recvspace,
23260 				    hsp->tcp_hsp_tstamp);
23261 
23262 				hsp = hsp->tcp_hsp_next;
23263 			}
23264 		}
23265 	}
23266 	rw_exit(&tcp_hsp_lock);
23267 	return (0);
23268 }
23269 
23270 
23271 /* Data for fast netmask macro used by tcp_hsp_lookup */
23272 
23273 static ipaddr_t netmasks[] = {
23274 	IN_CLASSA_NET, IN_CLASSA_NET, IN_CLASSB_NET,
23275 	IN_CLASSC_NET | IN_CLASSD_NET  /* Class C,D,E */
23276 };
23277 
23278 #define	netmask(addr) (netmasks[(ipaddr_t)(addr) >> 30])
23279 
23280 /*
23281  * XXX This routine should go away and instead we should use the metrics
23282  * associated with the routes to determine the default sndspace and rcvspace.
23283  */
23284 static tcp_hsp_t *
23285 tcp_hsp_lookup(ipaddr_t addr)
23286 {
23287 	tcp_hsp_t *hsp = NULL;
23288 
23289 	/* Quick check without acquiring the lock. */
23290 	if (tcp_hsp_hash == NULL)
23291 		return (NULL);
23292 
23293 	rw_enter(&tcp_hsp_lock, RW_READER);
23294 
23295 	/* This routine finds the best-matching HSP for address addr. */
23296 
23297 	if (tcp_hsp_hash) {
23298 		int i;
23299 		ipaddr_t srchaddr;
23300 		tcp_hsp_t *hsp_net;
23301 
23302 		/* We do three passes: host, network, and subnet. */
23303 
23304 		srchaddr = addr;
23305 
23306 		for (i = 1; i <= 3; i++) {
23307 			/* Look for exact match on srchaddr */
23308 
23309 			hsp = tcp_hsp_hash[TCP_HSP_HASH(srchaddr)];
23310 			while (hsp) {
23311 				if (hsp->tcp_hsp_vers == IPV4_VERSION &&
23312 				    hsp->tcp_hsp_addr == srchaddr)
23313 					break;
23314 				hsp = hsp->tcp_hsp_next;
23315 			}
23316 			ASSERT(hsp == NULL ||
23317 			    hsp->tcp_hsp_vers == IPV4_VERSION);
23318 
23319 			/*
23320 			 * If this is the first pass:
23321 			 *   If we found a match, great, return it.
23322 			 *   If not, search for the network on the second pass.
23323 			 */
23324 
23325 			if (i == 1)
23326 				if (hsp)
23327 					break;
23328 				else
23329 				{
23330 					srchaddr = addr & netmask(addr);
23331 					continue;
23332 				}
23333 
23334 			/*
23335 			 * If this is the second pass:
23336 			 *   If we found a match, but there's a subnet mask,
23337 			 *    save the match but try again using the subnet
23338 			 *    mask on the third pass.
23339 			 *   Otherwise, return whatever we found.
23340 			 */
23341 
23342 			if (i == 2) {
23343 				if (hsp && hsp->tcp_hsp_subnet) {
23344 					hsp_net = hsp;
23345 					srchaddr = addr & hsp->tcp_hsp_subnet;
23346 					continue;
23347 				} else {
23348 					break;
23349 				}
23350 			}
23351 
23352 			/*
23353 			 * This must be the third pass.  If we didn't find
23354 			 * anything, return the saved network HSP instead.
23355 			 */
23356 
23357 			if (!hsp)
23358 				hsp = hsp_net;
23359 		}
23360 	}
23361 
23362 	rw_exit(&tcp_hsp_lock);
23363 	return (hsp);
23364 }
23365 
23366 /*
23367  * XXX Equally broken as the IPv4 routine. Doesn't handle longest
23368  * match lookup.
23369  */
23370 static tcp_hsp_t *
23371 tcp_hsp_lookup_ipv6(in6_addr_t *v6addr)
23372 {
23373 	tcp_hsp_t *hsp = NULL;
23374 
23375 	/* Quick check without acquiring the lock. */
23376 	if (tcp_hsp_hash == NULL)
23377 		return (NULL);
23378 
23379 	rw_enter(&tcp_hsp_lock, RW_READER);
23380 
23381 	/* This routine finds the best-matching HSP for address addr. */
23382 
23383 	if (tcp_hsp_hash) {
23384 		int i;
23385 		in6_addr_t v6srchaddr;
23386 		tcp_hsp_t *hsp_net;
23387 
23388 		/* We do three passes: host, network, and subnet. */
23389 
23390 		v6srchaddr = *v6addr;
23391 
23392 		for (i = 1; i <= 3; i++) {
23393 			/* Look for exact match on srchaddr */
23394 
23395 			hsp = tcp_hsp_hash[TCP_HSP_HASH(
23396 			    V4_PART_OF_V6(v6srchaddr))];
23397 			while (hsp) {
23398 				if (hsp->tcp_hsp_vers == IPV6_VERSION &&
23399 				    IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6,
23400 				    &v6srchaddr))
23401 					break;
23402 				hsp = hsp->tcp_hsp_next;
23403 			}
23404 
23405 			/*
23406 			 * If this is the first pass:
23407 			 *   If we found a match, great, return it.
23408 			 *   If not, search for the network on the second pass.
23409 			 */
23410 
23411 			if (i == 1)
23412 				if (hsp)
23413 					break;
23414 				else {
23415 					/* Assume a 64 bit mask */
23416 					v6srchaddr.s6_addr32[0] =
23417 					    v6addr->s6_addr32[0];
23418 					v6srchaddr.s6_addr32[1] =
23419 					    v6addr->s6_addr32[1];
23420 					v6srchaddr.s6_addr32[2] = 0;
23421 					v6srchaddr.s6_addr32[3] = 0;
23422 					continue;
23423 				}
23424 
23425 			/*
23426 			 * If this is the second pass:
23427 			 *   If we found a match, but there's a subnet mask,
23428 			 *    save the match but try again using the subnet
23429 			 *    mask on the third pass.
23430 			 *   Otherwise, return whatever we found.
23431 			 */
23432 
23433 			if (i == 2) {
23434 				ASSERT(hsp == NULL ||
23435 				    hsp->tcp_hsp_vers == IPV6_VERSION);
23436 				if (hsp &&
23437 				    !IN6_IS_ADDR_UNSPECIFIED(
23438 				    &hsp->tcp_hsp_subnet_v6)) {
23439 					hsp_net = hsp;
23440 					V6_MASK_COPY(*v6addr,
23441 					    hsp->tcp_hsp_subnet_v6, v6srchaddr);
23442 					continue;
23443 				} else {
23444 					break;
23445 				}
23446 			}
23447 
23448 			/*
23449 			 * This must be the third pass.  If we didn't find
23450 			 * anything, return the saved network HSP instead.
23451 			 */
23452 
23453 			if (!hsp)
23454 				hsp = hsp_net;
23455 		}
23456 	}
23457 
23458 	rw_exit(&tcp_hsp_lock);
23459 	return (hsp);
23460 }
23461 
23462 /*
23463  * Type three generator adapted from the random() function in 4.4 BSD:
23464  */
23465 
23466 /*
23467  * Copyright (c) 1983, 1993
23468  *	The Regents of the University of California.  All rights reserved.
23469  *
23470  * Redistribution and use in source and binary forms, with or without
23471  * modification, are permitted provided that the following conditions
23472  * are met:
23473  * 1. Redistributions of source code must retain the above copyright
23474  *    notice, this list of conditions and the following disclaimer.
23475  * 2. Redistributions in binary form must reproduce the above copyright
23476  *    notice, this list of conditions and the following disclaimer in the
23477  *    documentation and/or other materials provided with the distribution.
23478  * 3. All advertising materials mentioning features or use of this software
23479  *    must display the following acknowledgement:
23480  *	This product includes software developed by the University of
23481  *	California, Berkeley and its contributors.
23482  * 4. Neither the name of the University nor the names of its contributors
23483  *    may be used to endorse or promote products derived from this software
23484  *    without specific prior written permission.
23485  *
23486  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23487  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23488  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23489  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23490  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23491  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23492  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23493  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23494  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23495  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23496  * SUCH DAMAGE.
23497  */
23498 
23499 /* Type 3 -- x**31 + x**3 + 1 */
23500 #define	DEG_3		31
23501 #define	SEP_3		3
23502 
23503 
23504 /* Protected by tcp_random_lock */
23505 static int tcp_randtbl[DEG_3 + 1];
23506 
23507 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1];
23508 static int *tcp_random_rptr = &tcp_randtbl[1];
23509 
23510 static int *tcp_random_state = &tcp_randtbl[1];
23511 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1];
23512 
23513 kmutex_t tcp_random_lock;
23514 
23515 void
23516 tcp_random_init(void)
23517 {
23518 	int i;
23519 	hrtime_t hrt;
23520 	time_t wallclock;
23521 	uint64_t result;
23522 
23523 	/*
23524 	 * Use high-res timer and current time for seed.  Gethrtime() returns
23525 	 * a longlong, which may contain resolution down to nanoseconds.
23526 	 * The current time will either be a 32-bit or a 64-bit quantity.
23527 	 * XOR the two together in a 64-bit result variable.
23528 	 * Convert the result to a 32-bit value by multiplying the high-order
23529 	 * 32-bits by the low-order 32-bits.
23530 	 */
23531 
23532 	hrt = gethrtime();
23533 	(void) drv_getparm(TIME, &wallclock);
23534 	result = (uint64_t)wallclock ^ (uint64_t)hrt;
23535 	mutex_enter(&tcp_random_lock);
23536 	tcp_random_state[0] = ((result >> 32) & 0xffffffff) *
23537 	    (result & 0xffffffff);
23538 
23539 	for (i = 1; i < DEG_3; i++)
23540 		tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1]
23541 			+ 12345;
23542 	tcp_random_fptr = &tcp_random_state[SEP_3];
23543 	tcp_random_rptr = &tcp_random_state[0];
23544 	mutex_exit(&tcp_random_lock);
23545 	for (i = 0; i < 10 * DEG_3; i++)
23546 		(void) tcp_random();
23547 }
23548 
23549 /*
23550  * tcp_random: Return a random number in the range [1 - (128K + 1)].
23551  * This range is selected to be approximately centered on TCP_ISS / 2,
23552  * and easy to compute. We get this value by generating a 32-bit random
23553  * number, selecting out the high-order 17 bits, and then adding one so
23554  * that we never return zero.
23555  */
23556 int
23557 tcp_random(void)
23558 {
23559 	int i;
23560 
23561 	mutex_enter(&tcp_random_lock);
23562 	*tcp_random_fptr += *tcp_random_rptr;
23563 
23564 	/*
23565 	 * The high-order bits are more random than the low-order bits,
23566 	 * so we select out the high-order 17 bits and add one so that
23567 	 * we never return zero.
23568 	 */
23569 	i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1;
23570 	if (++tcp_random_fptr >= tcp_random_end_ptr) {
23571 		tcp_random_fptr = tcp_random_state;
23572 		++tcp_random_rptr;
23573 	} else if (++tcp_random_rptr >= tcp_random_end_ptr)
23574 		tcp_random_rptr = tcp_random_state;
23575 
23576 	mutex_exit(&tcp_random_lock);
23577 	return (i);
23578 }
23579 
23580 /*
23581  * XXX This will go away when TPI is extended to send
23582  * info reqs to sockfs/timod .....
23583  * Given a queue, set the max packet size for the write
23584  * side of the queue below stream head.  This value is
23585  * cached on the stream head.
23586  * Returns 1 on success, 0 otherwise.
23587  */
23588 static int
23589 setmaxps(queue_t *q, int maxpsz)
23590 {
23591 	struct stdata	*stp;
23592 	queue_t		*wq;
23593 	stp = STREAM(q);
23594 
23595 	/*
23596 	 * At this point change of a queue parameter is not allowed
23597 	 * when a multiplexor is sitting on top.
23598 	 */
23599 	if (stp->sd_flag & STPLEX)
23600 		return (0);
23601 
23602 	claimstr(stp->sd_wrq);
23603 	wq = stp->sd_wrq->q_next;
23604 	ASSERT(wq != NULL);
23605 	(void) strqset(wq, QMAXPSZ, 0, maxpsz);
23606 	releasestr(stp->sd_wrq);
23607 	return (1);
23608 }
23609 
23610 static int
23611 tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, int *do_disconnectp,
23612     int *t_errorp, int *sys_errorp)
23613 {
23614 	int error;
23615 	int is_absreq_failure;
23616 	t_scalar_t *opt_lenp;
23617 	t_scalar_t opt_offset;
23618 	int prim_type;
23619 	struct T_conn_req *tcreqp;
23620 	struct T_conn_res *tcresp;
23621 	cred_t *cr;
23622 
23623 	cr = DB_CREDDEF(mp, tcp->tcp_cred);
23624 
23625 	prim_type = ((union T_primitives *)mp->b_rptr)->type;
23626 	ASSERT(prim_type == T_CONN_REQ || prim_type == O_T_CONN_RES ||
23627 	    prim_type == T_CONN_RES);
23628 
23629 	switch (prim_type) {
23630 	case T_CONN_REQ:
23631 		tcreqp = (struct T_conn_req *)mp->b_rptr;
23632 		opt_offset = tcreqp->OPT_offset;
23633 		opt_lenp = (t_scalar_t *)&tcreqp->OPT_length;
23634 		break;
23635 	case O_T_CONN_RES:
23636 	case T_CONN_RES:
23637 		tcresp = (struct T_conn_res *)mp->b_rptr;
23638 		opt_offset = tcresp->OPT_offset;
23639 		opt_lenp = (t_scalar_t *)&tcresp->OPT_length;
23640 		break;
23641 	}
23642 
23643 	*t_errorp = 0;
23644 	*sys_errorp = 0;
23645 	*do_disconnectp = 0;
23646 
23647 	error = tpi_optcom_buf(tcp->tcp_wq, mp, opt_lenp,
23648 	    opt_offset, cr, &tcp_opt_obj,
23649 	    NULL, &is_absreq_failure);
23650 
23651 	switch (error) {
23652 	case  0:		/* no error */
23653 		ASSERT(is_absreq_failure == 0);
23654 		return (0);
23655 	case ENOPROTOOPT:
23656 		*t_errorp = TBADOPT;
23657 		break;
23658 	case EACCES:
23659 		*t_errorp = TACCES;
23660 		break;
23661 	default:
23662 		*t_errorp = TSYSERR; *sys_errorp = error;
23663 		break;
23664 	}
23665 	if (is_absreq_failure != 0) {
23666 		/*
23667 		 * The connection request should get the local ack
23668 		 * T_OK_ACK and then a T_DISCON_IND.
23669 		 */
23670 		*do_disconnectp = 1;
23671 	}
23672 	return (-1);
23673 }
23674 
23675 /*
23676  * Split this function out so that if the secret changes, I'm okay.
23677  *
23678  * Initialize the tcp_iss_cookie and tcp_iss_key.
23679  */
23680 
23681 #define	PASSWD_SIZE 16  /* MUST be multiple of 4 */
23682 
23683 static void
23684 tcp_iss_key_init(uint8_t *phrase, int len)
23685 {
23686 	struct {
23687 		int32_t current_time;
23688 		uint32_t randnum;
23689 		uint16_t pad;
23690 		uint8_t ether[6];
23691 		uint8_t passwd[PASSWD_SIZE];
23692 	} tcp_iss_cookie;
23693 	time_t t;
23694 
23695 	/*
23696 	 * Start with the current absolute time.
23697 	 */
23698 	(void) drv_getparm(TIME, &t);
23699 	tcp_iss_cookie.current_time = t;
23700 
23701 	/*
23702 	 * XXX - Need a more random number per RFC 1750, not this crap.
23703 	 * OTOH, if what follows is pretty random, then I'm in better shape.
23704 	 */
23705 	tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random());
23706 	tcp_iss_cookie.pad = 0x365c;  /* Picked from HMAC pad values. */
23707 
23708 	/*
23709 	 * The cpu_type_info is pretty non-random.  Ugggh.  It does serve
23710 	 * as a good template.
23711 	 */
23712 	bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd,
23713 	    min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info)));
23714 
23715 	/*
23716 	 * The pass-phrase.  Normally this is supplied by user-called NDD.
23717 	 */
23718 	bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len));
23719 
23720 	/*
23721 	 * See 4010593 if this section becomes a problem again,
23722 	 * but the local ethernet address is useful here.
23723 	 */
23724 	(void) localetheraddr(NULL,
23725 	    (struct ether_addr *)&tcp_iss_cookie.ether);
23726 
23727 	/*
23728 	 * Hash 'em all together.  The MD5Final is called per-connection.
23729 	 */
23730 	mutex_enter(&tcp_iss_key_lock);
23731 	MD5Init(&tcp_iss_key);
23732 	MD5Update(&tcp_iss_key, (uchar_t *)&tcp_iss_cookie,
23733 	    sizeof (tcp_iss_cookie));
23734 	mutex_exit(&tcp_iss_key_lock);
23735 }
23736 
23737 /*
23738  * Set the RFC 1948 pass phrase
23739  */
23740 /* ARGSUSED */
23741 static int
23742 tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
23743     cred_t *cr)
23744 {
23745 	/*
23746 	 * Basically, value contains a new pass phrase.  Pass it along!
23747 	 */
23748 	tcp_iss_key_init((uint8_t *)value, strlen(value));
23749 	return (0);
23750 }
23751 
23752 /* ARGSUSED */
23753 static int
23754 tcp_sack_info_constructor(void *buf, void *cdrarg, int kmflags)
23755 {
23756 	bzero(buf, sizeof (tcp_sack_info_t));
23757 	return (0);
23758 }
23759 
23760 /* ARGSUSED */
23761 static int
23762 tcp_iphc_constructor(void *buf, void *cdrarg, int kmflags)
23763 {
23764 	bzero(buf, TCP_MAX_COMBINED_HEADER_LENGTH);
23765 	return (0);
23766 }
23767 
23768 void
23769 tcp_ddi_init(void)
23770 {
23771 	int i;
23772 
23773 	/* Initialize locks */
23774 	rw_init(&tcp_hsp_lock, NULL, RW_DEFAULT, NULL);
23775 	mutex_init(&tcp_g_q_lock, NULL, MUTEX_DEFAULT, NULL);
23776 	mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL);
23777 	mutex_init(&tcp_iss_key_lock, NULL, MUTEX_DEFAULT, NULL);
23778 	mutex_init(&tcp_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL);
23779 	rw_init(&tcp_reserved_port_lock, NULL, RW_DEFAULT, NULL);
23780 
23781 	for (i = 0; i < A_CNT(tcp_bind_fanout); i++) {
23782 		mutex_init(&tcp_bind_fanout[i].tf_lock, NULL,
23783 		    MUTEX_DEFAULT, NULL);
23784 	}
23785 
23786 	for (i = 0; i < A_CNT(tcp_acceptor_fanout); i++) {
23787 		mutex_init(&tcp_acceptor_fanout[i].tf_lock, NULL,
23788 		    MUTEX_DEFAULT, NULL);
23789 	}
23790 
23791 	/* TCP's IPsec code calls the packet dropper. */
23792 	ip_drop_register(&tcp_dropper, "TCP IPsec policy enforcement");
23793 
23794 	if (!tcp_g_nd) {
23795 		if (!tcp_param_register(tcp_param_arr, A_CNT(tcp_param_arr))) {
23796 			nd_free(&tcp_g_nd);
23797 		}
23798 	}
23799 
23800 	/*
23801 	 * Note: To really walk the device tree you need the devinfo
23802 	 * pointer to your device which is only available after probe/attach.
23803 	 * The following is safe only because it uses ddi_root_node()
23804 	 */
23805 	tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr,
23806 	    tcp_opt_obj.odb_opt_arr_cnt);
23807 
23808 	tcp_timercache = kmem_cache_create("tcp_timercache",
23809 	    sizeof (tcp_timer_t) + sizeof (mblk_t), 0,
23810 	    NULL, NULL, NULL, NULL, NULL, 0);
23811 
23812 	tcp_sack_info_cache = kmem_cache_create("tcp_sack_info_cache",
23813 	    sizeof (tcp_sack_info_t), 0,
23814 	    tcp_sack_info_constructor, NULL, NULL, NULL, NULL, 0);
23815 
23816 	tcp_iphc_cache = kmem_cache_create("tcp_iphc_cache",
23817 	    TCP_MAX_COMBINED_HEADER_LENGTH, 0,
23818 	    tcp_iphc_constructor, NULL, NULL, NULL, NULL, 0);
23819 
23820 	tcp_squeue_wput_proc = tcp_squeue_switch(tcp_squeue_wput);
23821 	tcp_squeue_close_proc = tcp_squeue_switch(tcp_squeue_close);
23822 
23823 	ip_squeue_init(tcp_squeue_add);
23824 
23825 	/* Initialize the random number generator */
23826 	tcp_random_init();
23827 
23828 	/*
23829 	 * Initialize RFC 1948 secret values.  This will probably be reset once
23830 	 * by the boot scripts.
23831 	 *
23832 	 * Use NULL name, as the name is caught by the new lockstats.
23833 	 *
23834 	 * Initialize with some random, non-guessable string, like the global
23835 	 * T_INFO_ACK.
23836 	 */
23837 
23838 	tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack,
23839 	    sizeof (tcp_g_t_info_ack));
23840 
23841 	if ((tcp_kstat = kstat_create(TCP_MOD_NAME, 0, "tcpstat",
23842 		"net", KSTAT_TYPE_NAMED,
23843 		sizeof (tcp_statistics) / sizeof (kstat_named_t),
23844 		KSTAT_FLAG_VIRTUAL)) != NULL) {
23845 		tcp_kstat->ks_data = &tcp_statistics;
23846 		kstat_install(tcp_kstat);
23847 	}
23848 
23849 	tcp_kstat_init();
23850 }
23851 
23852 void
23853 tcp_ddi_destroy(void)
23854 {
23855 	int i;
23856 
23857 	nd_free(&tcp_g_nd);
23858 
23859 	for (i = 0; i < A_CNT(tcp_bind_fanout); i++) {
23860 		mutex_destroy(&tcp_bind_fanout[i].tf_lock);
23861 	}
23862 
23863 	for (i = 0; i < A_CNT(tcp_acceptor_fanout); i++) {
23864 		mutex_destroy(&tcp_acceptor_fanout[i].tf_lock);
23865 	}
23866 
23867 	mutex_destroy(&tcp_iss_key_lock);
23868 	rw_destroy(&tcp_hsp_lock);
23869 	mutex_destroy(&tcp_g_q_lock);
23870 	mutex_destroy(&tcp_random_lock);
23871 	mutex_destroy(&tcp_epriv_port_lock);
23872 	rw_destroy(&tcp_reserved_port_lock);
23873 
23874 	ip_drop_unregister(&tcp_dropper);
23875 
23876 	kmem_cache_destroy(tcp_timercache);
23877 	kmem_cache_destroy(tcp_sack_info_cache);
23878 	kmem_cache_destroy(tcp_iphc_cache);
23879 
23880 	tcp_kstat_fini();
23881 }
23882 
23883 /*
23884  * Generate ISS, taking into account NDD changes may happen halfway through.
23885  * (If the iss is not zero, set it.)
23886  */
23887 
23888 static void
23889 tcp_iss_init(tcp_t *tcp)
23890 {
23891 	MD5_CTX context;
23892 	struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg;
23893 	uint32_t answer[4];
23894 
23895 	tcp_iss_incr_extra += (ISS_INCR >> 1);
23896 	tcp->tcp_iss = tcp_iss_incr_extra;
23897 	switch (tcp_strong_iss) {
23898 	case 2:
23899 		mutex_enter(&tcp_iss_key_lock);
23900 		context = tcp_iss_key;
23901 		mutex_exit(&tcp_iss_key_lock);
23902 		arg.ports = tcp->tcp_ports;
23903 		if (tcp->tcp_ipversion == IPV4_VERSION) {
23904 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
23905 			    &arg.src);
23906 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_dst,
23907 			    &arg.dst);
23908 		} else {
23909 			arg.src = tcp->tcp_ip6h->ip6_src;
23910 			arg.dst = tcp->tcp_ip6h->ip6_dst;
23911 		}
23912 		MD5Update(&context, (uchar_t *)&arg, sizeof (arg));
23913 		MD5Final((uchar_t *)answer, &context);
23914 		tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3];
23915 		/*
23916 		 * Now that we've hashed into a unique per-connection sequence
23917 		 * space, add a random increment per strong_iss == 1.  So I
23918 		 * guess we'll have to...
23919 		 */
23920 		/* FALLTHRU */
23921 	case 1:
23922 		tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random();
23923 		break;
23924 	default:
23925 		tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR;
23926 		break;
23927 	}
23928 	tcp->tcp_valid_bits = TCP_ISS_VALID;
23929 	tcp->tcp_fss = tcp->tcp_iss - 1;
23930 	tcp->tcp_suna = tcp->tcp_iss;
23931 	tcp->tcp_snxt = tcp->tcp_iss + 1;
23932 	tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
23933 	tcp->tcp_csuna = tcp->tcp_snxt;
23934 }
23935 
23936 /*
23937  * Exported routine for extracting active tcp connection status.
23938  *
23939  * This is used by the Solaris Cluster Networking software to
23940  * gather a list of connections that need to be forwarded to
23941  * specific nodes in the cluster when configuration changes occur.
23942  *
23943  * The callback is invoked for each tcp_t structure. Returning
23944  * non-zero from the callback routine terminates the search.
23945  */
23946 int
23947 cl_tcp_walk_list(int (*callback)(cl_tcp_info_t *, void *), void *arg)
23948 {
23949 	tcp_t *tcp;
23950 	cl_tcp_info_t	cl_tcpi;
23951 	connf_t	*connfp;
23952 	conn_t	*connp;
23953 	int	i;
23954 
23955 	ASSERT(callback != NULL);
23956 
23957 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
23958 
23959 		connfp = &ipcl_globalhash_fanout[i];
23960 		connp = NULL;
23961 
23962 		while ((connp =
23963 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
23964 
23965 			tcp = connp->conn_tcp;
23966 			cl_tcpi.cl_tcpi_version = CL_TCPI_V1;
23967 			cl_tcpi.cl_tcpi_ipversion = tcp->tcp_ipversion;
23968 			cl_tcpi.cl_tcpi_state = tcp->tcp_state;
23969 			cl_tcpi.cl_tcpi_lport = tcp->tcp_lport;
23970 			cl_tcpi.cl_tcpi_fport = tcp->tcp_fport;
23971 			/*
23972 			 * The macros tcp_laddr and tcp_faddr give the IPv4
23973 			 * addresses. They are copied implicitly below as
23974 			 * mapped addresses.
23975 			 */
23976 			cl_tcpi.cl_tcpi_laddr_v6 = tcp->tcp_ip_src_v6;
23977 			if (tcp->tcp_ipversion == IPV4_VERSION) {
23978 				cl_tcpi.cl_tcpi_faddr =
23979 				    tcp->tcp_ipha->ipha_dst;
23980 			} else {
23981 				cl_tcpi.cl_tcpi_faddr_v6 =
23982 				    tcp->tcp_ip6h->ip6_dst;
23983 			}
23984 
23985 			/*
23986 			 * If the callback returns non-zero
23987 			 * we terminate the traversal.
23988 			 */
23989 			if ((*callback)(&cl_tcpi, arg) != 0) {
23990 				CONN_DEC_REF(tcp->tcp_connp);
23991 				return (1);
23992 			}
23993 		}
23994 	}
23995 
23996 	return (0);
23997 }
23998 
23999 /*
24000  * Macros used for accessing the different types of sockaddr
24001  * structures inside a tcp_ioc_abort_conn_t.
24002  */
24003 #define	TCP_AC_V4LADDR(acp) ((sin_t *)&(acp)->ac_local)
24004 #define	TCP_AC_V4RADDR(acp) ((sin_t *)&(acp)->ac_remote)
24005 #define	TCP_AC_V4LOCAL(acp) (TCP_AC_V4LADDR(acp)->sin_addr.s_addr)
24006 #define	TCP_AC_V4REMOTE(acp) (TCP_AC_V4RADDR(acp)->sin_addr.s_addr)
24007 #define	TCP_AC_V4LPORT(acp) (TCP_AC_V4LADDR(acp)->sin_port)
24008 #define	TCP_AC_V4RPORT(acp) (TCP_AC_V4RADDR(acp)->sin_port)
24009 #define	TCP_AC_V6LADDR(acp) ((sin6_t *)&(acp)->ac_local)
24010 #define	TCP_AC_V6RADDR(acp) ((sin6_t *)&(acp)->ac_remote)
24011 #define	TCP_AC_V6LOCAL(acp) (TCP_AC_V6LADDR(acp)->sin6_addr)
24012 #define	TCP_AC_V6REMOTE(acp) (TCP_AC_V6RADDR(acp)->sin6_addr)
24013 #define	TCP_AC_V6LPORT(acp) (TCP_AC_V6LADDR(acp)->sin6_port)
24014 #define	TCP_AC_V6RPORT(acp) (TCP_AC_V6RADDR(acp)->sin6_port)
24015 
24016 /*
24017  * Return the correct error code to mimic the behavior
24018  * of a connection reset.
24019  */
24020 #define	TCP_AC_GET_ERRCODE(state, err) {	\
24021 		switch ((state)) {		\
24022 		case TCPS_SYN_SENT:		\
24023 		case TCPS_SYN_RCVD:		\
24024 			(err) = ECONNREFUSED;	\
24025 			break;			\
24026 		case TCPS_ESTABLISHED:		\
24027 		case TCPS_FIN_WAIT_1:		\
24028 		case TCPS_FIN_WAIT_2:		\
24029 		case TCPS_CLOSE_WAIT:		\
24030 			(err) = ECONNRESET;	\
24031 			break;			\
24032 		case TCPS_CLOSING:		\
24033 		case TCPS_LAST_ACK:		\
24034 		case TCPS_TIME_WAIT:		\
24035 			(err) = 0;		\
24036 			break;			\
24037 		default:			\
24038 			(err) = ENXIO;		\
24039 		}				\
24040 	}
24041 
24042 /*
24043  * Check if a tcp structure matches the info in acp.
24044  */
24045 #define	TCP_AC_ADDR_MATCH(acp, tcp)					\
24046 	(((acp)->ac_local.ss_family == AF_INET) ?		\
24047 	((TCP_AC_V4LOCAL((acp)) == INADDR_ANY ||		\
24048 	TCP_AC_V4LOCAL((acp)) == (tcp)->tcp_ip_src) &&	\
24049 	(TCP_AC_V4REMOTE((acp)) == INADDR_ANY ||		\
24050 	TCP_AC_V4REMOTE((acp)) == (tcp)->tcp_remote) &&	\
24051 	(TCP_AC_V4LPORT((acp)) == 0 ||				\
24052 	TCP_AC_V4LPORT((acp)) == (tcp)->tcp_lport) &&		\
24053 	(TCP_AC_V4RPORT((acp)) == 0 ||				\
24054 	TCP_AC_V4RPORT((acp)) == (tcp)->tcp_fport) &&		\
24055 	(acp)->ac_start <= (tcp)->tcp_state &&	\
24056 	(acp)->ac_end >= (tcp)->tcp_state) :		\
24057 	((IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL((acp))) ||	\
24058 	IN6_ARE_ADDR_EQUAL(&TCP_AC_V6LOCAL((acp)),		\
24059 	&(tcp)->tcp_ip_src_v6)) &&				\
24060 	(IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE((acp))) ||	\
24061 	IN6_ARE_ADDR_EQUAL(&TCP_AC_V6REMOTE((acp)),		\
24062 	&(tcp)->tcp_remote_v6)) &&				\
24063 	(TCP_AC_V6LPORT((acp)) == 0 ||				\
24064 	TCP_AC_V6LPORT((acp)) == (tcp)->tcp_lport) &&		\
24065 	(TCP_AC_V6RPORT((acp)) == 0 ||				\
24066 	TCP_AC_V6RPORT((acp)) == (tcp)->tcp_fport) &&		\
24067 	(acp)->ac_start <= (tcp)->tcp_state &&	\
24068 	(acp)->ac_end >= (tcp)->tcp_state))
24069 
24070 #define	TCP_AC_MATCH(acp, tcp)					\
24071 	(((acp)->ac_zoneid == ALL_ZONES ||			\
24072 	(acp)->ac_zoneid == tcp->tcp_connp->conn_zoneid) ?	\
24073 	TCP_AC_ADDR_MATCH(acp, tcp) : 0)
24074 
24075 /*
24076  * Build a message containing a tcp_ioc_abort_conn_t structure
24077  * which is filled in with information from acp and tp.
24078  */
24079 static mblk_t *
24080 tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *acp, tcp_t *tp)
24081 {
24082 	mblk_t *mp;
24083 	tcp_ioc_abort_conn_t *tacp;
24084 
24085 	mp = allocb(sizeof (uint32_t) + sizeof (*acp), BPRI_LO);
24086 	if (mp == NULL)
24087 		return (NULL);
24088 
24089 	mp->b_datap->db_type = M_CTL;
24090 
24091 	*((uint32_t *)mp->b_rptr) = TCP_IOC_ABORT_CONN;
24092 	tacp = (tcp_ioc_abort_conn_t *)((uchar_t *)mp->b_rptr +
24093 		sizeof (uint32_t));
24094 
24095 	tacp->ac_start = acp->ac_start;
24096 	tacp->ac_end = acp->ac_end;
24097 	tacp->ac_zoneid = acp->ac_zoneid;
24098 
24099 	if (acp->ac_local.ss_family == AF_INET) {
24100 		tacp->ac_local.ss_family = AF_INET;
24101 		tacp->ac_remote.ss_family = AF_INET;
24102 		TCP_AC_V4LOCAL(tacp) = tp->tcp_ip_src;
24103 		TCP_AC_V4REMOTE(tacp) = tp->tcp_remote;
24104 		TCP_AC_V4LPORT(tacp) = tp->tcp_lport;
24105 		TCP_AC_V4RPORT(tacp) = tp->tcp_fport;
24106 	} else {
24107 		tacp->ac_local.ss_family = AF_INET6;
24108 		tacp->ac_remote.ss_family = AF_INET6;
24109 		TCP_AC_V6LOCAL(tacp) = tp->tcp_ip_src_v6;
24110 		TCP_AC_V6REMOTE(tacp) = tp->tcp_remote_v6;
24111 		TCP_AC_V6LPORT(tacp) = tp->tcp_lport;
24112 		TCP_AC_V6RPORT(tacp) = tp->tcp_fport;
24113 	}
24114 	mp->b_wptr = (uchar_t *)mp->b_rptr + sizeof (uint32_t) + sizeof (*acp);
24115 	return (mp);
24116 }
24117 
24118 /*
24119  * Print a tcp_ioc_abort_conn_t structure.
24120  */
24121 static void
24122 tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *acp)
24123 {
24124 	char lbuf[128];
24125 	char rbuf[128];
24126 	sa_family_t af;
24127 	in_port_t lport, rport;
24128 	ushort_t logflags;
24129 
24130 	af = acp->ac_local.ss_family;
24131 
24132 	if (af == AF_INET) {
24133 		(void) inet_ntop(af, (const void *)&TCP_AC_V4LOCAL(acp),
24134 				lbuf, 128);
24135 		(void) inet_ntop(af, (const void *)&TCP_AC_V4REMOTE(acp),
24136 				rbuf, 128);
24137 		lport = ntohs(TCP_AC_V4LPORT(acp));
24138 		rport = ntohs(TCP_AC_V4RPORT(acp));
24139 	} else {
24140 		(void) inet_ntop(af, (const void *)&TCP_AC_V6LOCAL(acp),
24141 				lbuf, 128);
24142 		(void) inet_ntop(af, (const void *)&TCP_AC_V6REMOTE(acp),
24143 				rbuf, 128);
24144 		lport = ntohs(TCP_AC_V6LPORT(acp));
24145 		rport = ntohs(TCP_AC_V6RPORT(acp));
24146 	}
24147 
24148 	logflags = SL_TRACE | SL_NOTE;
24149 	/*
24150 	 * Don't print this message to the console if the operation was done
24151 	 * to a non-global zone.
24152 	 */
24153 	if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES)
24154 		logflags |= SL_CONSOLE;
24155 	(void) strlog(TCP_MOD_ID, 0, 1, logflags,
24156 		"TCP_IOC_ABORT_CONN: local = %s:%d, remote = %s:%d, "
24157 		"start = %d, end = %d\n", lbuf, lport, rbuf, rport,
24158 		acp->ac_start, acp->ac_end);
24159 }
24160 
24161 /*
24162  * Called inside tcp_rput when a message built using
24163  * tcp_ioctl_abort_build_msg is put into a queue.
24164  * Note that when we get here there is no wildcard in acp any more.
24165  */
24166 static void
24167 tcp_ioctl_abort_handler(tcp_t *tcp, mblk_t *mp)
24168 {
24169 	tcp_ioc_abort_conn_t *acp;
24170 
24171 	acp = (tcp_ioc_abort_conn_t *)(mp->b_rptr + sizeof (uint32_t));
24172 	if (tcp->tcp_state <= acp->ac_end) {
24173 		/*
24174 		 * If we get here, we are already on the correct
24175 		 * squeue. This ioctl follows the following path
24176 		 * tcp_wput -> tcp_wput_ioctl -> tcp_ioctl_abort_conn
24177 		 * ->tcp_ioctl_abort->squeue_fill (if on a
24178 		 * different squeue)
24179 		 */
24180 		int errcode;
24181 
24182 		TCP_AC_GET_ERRCODE(tcp->tcp_state, errcode);
24183 		(void) tcp_clean_death(tcp, errcode, 26);
24184 	}
24185 	freemsg(mp);
24186 }
24187 
24188 /*
24189  * Abort all matching connections on a hash chain.
24190  */
24191 static int
24192 tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *acp, int index, int *count,
24193     boolean_t exact)
24194 {
24195 	int nmatch, err = 0;
24196 	tcp_t *tcp;
24197 	MBLKP mp, last, listhead = NULL;
24198 	conn_t	*tconnp;
24199 	connf_t	*connfp = &ipcl_conn_fanout[index];
24200 
24201 startover:
24202 	nmatch = 0;
24203 
24204 	mutex_enter(&connfp->connf_lock);
24205 	for (tconnp = connfp->connf_head; tconnp != NULL;
24206 	    tconnp = tconnp->conn_next) {
24207 		tcp = tconnp->conn_tcp;
24208 		if (TCP_AC_MATCH(acp, tcp)) {
24209 			CONN_INC_REF(tcp->tcp_connp);
24210 			mp = tcp_ioctl_abort_build_msg(acp, tcp);
24211 			if (mp == NULL) {
24212 				err = ENOMEM;
24213 				CONN_DEC_REF(tcp->tcp_connp);
24214 				break;
24215 			}
24216 			mp->b_prev = (mblk_t *)tcp;
24217 
24218 			if (listhead == NULL) {
24219 				listhead = mp;
24220 				last = mp;
24221 			} else {
24222 				last->b_next = mp;
24223 				last = mp;
24224 			}
24225 			nmatch++;
24226 			if (exact)
24227 				break;
24228 		}
24229 
24230 		/* Avoid holding lock for too long. */
24231 		if (nmatch >= 500)
24232 			break;
24233 	}
24234 	mutex_exit(&connfp->connf_lock);
24235 
24236 	/* Pass mp into the correct tcp */
24237 	while ((mp = listhead) != NULL) {
24238 		listhead = listhead->b_next;
24239 		tcp = (tcp_t *)mp->b_prev;
24240 		mp->b_next = mp->b_prev = NULL;
24241 		squeue_fill(tcp->tcp_connp->conn_sqp, mp,
24242 		    tcp_input, tcp->tcp_connp, SQTAG_TCP_ABORT_BUCKET);
24243 	}
24244 
24245 	*count += nmatch;
24246 	if (nmatch >= 500 && err == 0)
24247 		goto startover;
24248 	return (err);
24249 }
24250 
24251 /*
24252  * Abort all connections that matches the attributes specified in acp.
24253  */
24254 static int
24255 tcp_ioctl_abort(tcp_ioc_abort_conn_t *acp)
24256 {
24257 	sa_family_t af;
24258 	uint32_t  ports;
24259 	uint16_t *pports;
24260 	int err = 0, count = 0;
24261 	boolean_t exact = B_FALSE; /* set when there is no wildcard */
24262 	int index = -1;
24263 	ushort_t logflags;
24264 
24265 	af = acp->ac_local.ss_family;
24266 
24267 	if (af == AF_INET) {
24268 		if (TCP_AC_V4REMOTE(acp) != INADDR_ANY &&
24269 		    TCP_AC_V4LPORT(acp) != 0 && TCP_AC_V4RPORT(acp) != 0) {
24270 			pports = (uint16_t *)&ports;
24271 			pports[1] = TCP_AC_V4LPORT(acp);
24272 			pports[0] = TCP_AC_V4RPORT(acp);
24273 			exact = (TCP_AC_V4LOCAL(acp) != INADDR_ANY);
24274 		}
24275 	} else {
24276 		if (!IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE(acp)) &&
24277 		    TCP_AC_V6LPORT(acp) != 0 && TCP_AC_V6RPORT(acp) != 0) {
24278 			pports = (uint16_t *)&ports;
24279 			pports[1] = TCP_AC_V6LPORT(acp);
24280 			pports[0] = TCP_AC_V6RPORT(acp);
24281 			exact = !IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL(acp));
24282 		}
24283 	}
24284 
24285 	/*
24286 	 * For cases where remote addr, local port, and remote port are non-
24287 	 * wildcards, tcp_ioctl_abort_bucket will only be called once.
24288 	 */
24289 	if (index != -1) {
24290 		err = tcp_ioctl_abort_bucket(acp, index,
24291 			    &count, exact);
24292 	} else {
24293 		/*
24294 		 * loop through all entries for wildcard case
24295 		 */
24296 		for (index = 0; index < ipcl_conn_fanout_size; index++) {
24297 			err = tcp_ioctl_abort_bucket(acp, index,
24298 			    &count, exact);
24299 			if (err != 0)
24300 				break;
24301 		}
24302 	}
24303 
24304 	logflags = SL_TRACE | SL_NOTE;
24305 	/*
24306 	 * Don't print this message to the console if the operation was done
24307 	 * to a non-global zone.
24308 	 */
24309 	if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES)
24310 		logflags |= SL_CONSOLE;
24311 	(void) strlog(TCP_MOD_ID, 0, 1, logflags, "TCP_IOC_ABORT_CONN: "
24312 	    "aborted %d connection%c\n", count, ((count > 1) ? 's' : ' '));
24313 	if (err == 0 && count == 0)
24314 		err = ENOENT;
24315 	return (err);
24316 }
24317 
24318 /*
24319  * Process the TCP_IOC_ABORT_CONN ioctl request.
24320  */
24321 static void
24322 tcp_ioctl_abort_conn(queue_t *q, mblk_t *mp)
24323 {
24324 	int	err;
24325 	IOCP    iocp;
24326 	MBLKP   mp1;
24327 	sa_family_t laf, raf;
24328 	tcp_ioc_abort_conn_t *acp;
24329 	zone_t *zptr;
24330 	zoneid_t zoneid = Q_TO_CONN(q)->conn_zoneid;
24331 
24332 	iocp = (IOCP)mp->b_rptr;
24333 
24334 	if ((mp1 = mp->b_cont) == NULL ||
24335 	    iocp->ioc_count != sizeof (tcp_ioc_abort_conn_t)) {
24336 		err = EINVAL;
24337 		goto out;
24338 	}
24339 
24340 	/* check permissions */
24341 	if (secpolicy_net_config(iocp->ioc_cr, B_FALSE) != 0) {
24342 		err = EPERM;
24343 		goto out;
24344 	}
24345 
24346 	if (mp1->b_cont != NULL) {
24347 		freemsg(mp1->b_cont);
24348 		mp1->b_cont = NULL;
24349 	}
24350 
24351 	acp = (tcp_ioc_abort_conn_t *)mp1->b_rptr;
24352 	laf = acp->ac_local.ss_family;
24353 	raf = acp->ac_remote.ss_family;
24354 
24355 	/* check that a zone with the supplied zoneid exists */
24356 	if (acp->ac_zoneid != GLOBAL_ZONEID && acp->ac_zoneid != ALL_ZONES) {
24357 		zptr = zone_find_by_id(zoneid);
24358 		if (zptr != NULL) {
24359 			zone_rele(zptr);
24360 		} else {
24361 			err = EINVAL;
24362 			goto out;
24363 		}
24364 	}
24365 
24366 	if (acp->ac_start < TCPS_SYN_SENT || acp->ac_end > TCPS_TIME_WAIT ||
24367 	    acp->ac_start > acp->ac_end || laf != raf ||
24368 	    (laf != AF_INET && laf != AF_INET6)) {
24369 		err = EINVAL;
24370 		goto out;
24371 	}
24372 
24373 	tcp_ioctl_abort_dump(acp);
24374 	err = tcp_ioctl_abort(acp);
24375 
24376 out:
24377 	if (mp1 != NULL) {
24378 		freemsg(mp1);
24379 		mp->b_cont = NULL;
24380 	}
24381 
24382 	if (err != 0)
24383 		miocnak(q, mp, 0, err);
24384 	else
24385 		miocack(q, mp, 0, 0);
24386 }
24387 
24388 /*
24389  * tcp_time_wait_processing() handles processing of incoming packets when
24390  * the tcp is in the TIME_WAIT state.
24391  * A TIME_WAIT tcp that has an associated open TCP stream is never put
24392  * on the time wait list.
24393  */
24394 void
24395 tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, uint32_t seg_seq,
24396     uint32_t seg_ack, int seg_len, tcph_t *tcph)
24397 {
24398 	int32_t		bytes_acked;
24399 	int32_t		gap;
24400 	int32_t		rgap;
24401 	tcp_opt_t	tcpopt;
24402 	uint_t		flags;
24403 	uint32_t	new_swnd = 0;
24404 	conn_t		*connp;
24405 
24406 	BUMP_LOCAL(tcp->tcp_ibsegs);
24407 	TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_RECV_PKT);
24408 
24409 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
24410 	new_swnd = BE16_TO_U16(tcph->th_win) <<
24411 	    ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws);
24412 	if (tcp->tcp_snd_ts_ok) {
24413 		if (!tcp_paws_check(tcp, tcph, &tcpopt)) {
24414 			tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
24415 			    tcp->tcp_rnxt, TH_ACK);
24416 			goto done;
24417 		}
24418 	}
24419 	gap = seg_seq - tcp->tcp_rnxt;
24420 	rgap = tcp->tcp_rwnd - (gap + seg_len);
24421 	if (gap < 0) {
24422 		BUMP_MIB(&tcp_mib, tcpInDataDupSegs);
24423 		UPDATE_MIB(&tcp_mib, tcpInDataDupBytes,
24424 		    (seg_len > -gap ? -gap : seg_len));
24425 		seg_len += gap;
24426 		if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) {
24427 			if (flags & TH_RST) {
24428 				goto done;
24429 			}
24430 			if ((flags & TH_FIN) && seg_len == -1) {
24431 				/*
24432 				 * When TCP receives a duplicate FIN in
24433 				 * TIME_WAIT state, restart the 2 MSL timer.
24434 				 * See page 73 in RFC 793. Make sure this TCP
24435 				 * is already on the TIME_WAIT list. If not,
24436 				 * just restart the timer.
24437 				 */
24438 				if (TCP_IS_DETACHED(tcp)) {
24439 					tcp_time_wait_remove(tcp, NULL);
24440 					tcp_time_wait_append(tcp);
24441 					TCP_DBGSTAT(tcp_rput_time_wait);
24442 				} else {
24443 					ASSERT(tcp != NULL);
24444 					TCP_TIMER_RESTART(tcp,
24445 					    tcp_time_wait_interval);
24446 				}
24447 				tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
24448 				    tcp->tcp_rnxt, TH_ACK);
24449 				goto done;
24450 			}
24451 			flags |=  TH_ACK_NEEDED;
24452 			seg_len = 0;
24453 			goto process_ack;
24454 		}
24455 
24456 		/* Fix seg_seq, and chew the gap off the front. */
24457 		seg_seq = tcp->tcp_rnxt;
24458 	}
24459 
24460 	if ((flags & TH_SYN) && gap > 0 && rgap < 0) {
24461 		/*
24462 		 * Make sure that when we accept the connection, pick
24463 		 * an ISS greater than (tcp_snxt + ISS_INCR/2) for the
24464 		 * old connection.
24465 		 *
24466 		 * The next ISS generated is equal to tcp_iss_incr_extra
24467 		 * + ISS_INCR/2 + other components depending on the
24468 		 * value of tcp_strong_iss.  We pre-calculate the new
24469 		 * ISS here and compare with tcp_snxt to determine if
24470 		 * we need to make adjustment to tcp_iss_incr_extra.
24471 		 *
24472 		 * The above calculation is ugly and is a
24473 		 * waste of CPU cycles...
24474 		 */
24475 		uint32_t new_iss = tcp_iss_incr_extra;
24476 		int32_t adj;
24477 
24478 		switch (tcp_strong_iss) {
24479 		case 2: {
24480 			/* Add time and MD5 components. */
24481 			uint32_t answer[4];
24482 			struct {
24483 				uint32_t ports;
24484 				in6_addr_t src;
24485 				in6_addr_t dst;
24486 			} arg;
24487 			MD5_CTX context;
24488 
24489 			mutex_enter(&tcp_iss_key_lock);
24490 			context = tcp_iss_key;
24491 			mutex_exit(&tcp_iss_key_lock);
24492 			arg.ports = tcp->tcp_ports;
24493 			/* We use MAPPED addresses in tcp_iss_init */
24494 			arg.src = tcp->tcp_ip_src_v6;
24495 			if (tcp->tcp_ipversion == IPV4_VERSION) {
24496 				IN6_IPADDR_TO_V4MAPPED(
24497 					tcp->tcp_ipha->ipha_dst,
24498 					    &arg.dst);
24499 			} else {
24500 				arg.dst =
24501 				    tcp->tcp_ip6h->ip6_dst;
24502 			}
24503 			MD5Update(&context, (uchar_t *)&arg,
24504 			    sizeof (arg));
24505 			MD5Final((uchar_t *)answer, &context);
24506 			answer[0] ^= answer[1] ^ answer[2] ^ answer[3];
24507 			new_iss += (gethrtime() >> ISS_NSEC_SHT) + answer[0];
24508 			break;
24509 		}
24510 		case 1:
24511 			/* Add time component and min random (i.e. 1). */
24512 			new_iss += (gethrtime() >> ISS_NSEC_SHT) + 1;
24513 			break;
24514 		default:
24515 			/* Add only time component. */
24516 			new_iss += (uint32_t)gethrestime_sec() * ISS_INCR;
24517 			break;
24518 		}
24519 		if ((adj = (int32_t)(tcp->tcp_snxt - new_iss)) > 0) {
24520 			/*
24521 			 * New ISS not guaranteed to be ISS_INCR/2
24522 			 * ahead of the current tcp_snxt, so add the
24523 			 * difference to tcp_iss_incr_extra.
24524 			 */
24525 			tcp_iss_incr_extra += adj;
24526 		}
24527 		/*
24528 		 * If tcp_clean_death() can not perform the task now,
24529 		 * drop the SYN packet and let the other side re-xmit.
24530 		 * Otherwise pass the SYN packet back in, since the
24531 		 * old tcp state has been cleaned up or freed.
24532 		 */
24533 		if (tcp_clean_death(tcp, 0, 27) == -1)
24534 			goto done;
24535 		/*
24536 		 * We will come back to tcp_rput_data
24537 		 * on the global queue. Packets destined
24538 		 * for the global queue will be checked
24539 		 * with global policy. But the policy for
24540 		 * this packet has already been checked as
24541 		 * this was destined for the detached
24542 		 * connection. We need to bypass policy
24543 		 * check this time by attaching a dummy
24544 		 * ipsec_in with ipsec_in_dont_check set.
24545 		 */
24546 		if ((connp = ipcl_classify(mp, tcp->tcp_connp->conn_zoneid)) !=
24547 		    NULL) {
24548 			TCP_STAT(tcp_time_wait_syn_success);
24549 			tcp_reinput(connp, mp, tcp->tcp_connp->conn_sqp);
24550 			return;
24551 		}
24552 		goto done;
24553 	}
24554 
24555 	/*
24556 	 * rgap is the amount of stuff received out of window.  A negative
24557 	 * value is the amount out of window.
24558 	 */
24559 	if (rgap < 0) {
24560 		BUMP_MIB(&tcp_mib, tcpInDataPastWinSegs);
24561 		UPDATE_MIB(&tcp_mib, tcpInDataPastWinBytes, -rgap);
24562 		/* Fix seg_len and make sure there is something left. */
24563 		seg_len += rgap;
24564 		if (seg_len <= 0) {
24565 			if (flags & TH_RST) {
24566 				goto done;
24567 			}
24568 			flags |=  TH_ACK_NEEDED;
24569 			seg_len = 0;
24570 			goto process_ack;
24571 		}
24572 	}
24573 	/*
24574 	 * Check whether we can update tcp_ts_recent.  This test is
24575 	 * NOT the one in RFC 1323 3.4.  It is from Braden, 1993, "TCP
24576 	 * Extensions for High Performance: An Update", Internet Draft.
24577 	 */
24578 	if (tcp->tcp_snd_ts_ok &&
24579 	    TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) &&
24580 	    SEQ_LEQ(seg_seq, tcp->tcp_rack)) {
24581 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
24582 		tcp->tcp_last_rcv_lbolt = lbolt64;
24583 	}
24584 
24585 	if (seg_seq != tcp->tcp_rnxt && seg_len > 0) {
24586 		/* Always ack out of order packets */
24587 		flags |= TH_ACK_NEEDED;
24588 		seg_len = 0;
24589 	} else if (seg_len > 0) {
24590 		BUMP_MIB(&tcp_mib, tcpInClosed);
24591 		BUMP_MIB(&tcp_mib, tcpInDataInorderSegs);
24592 		UPDATE_MIB(&tcp_mib, tcpInDataInorderBytes, seg_len);
24593 	}
24594 	if (flags & TH_RST) {
24595 		(void) tcp_clean_death(tcp, 0, 28);
24596 		goto done;
24597 	}
24598 	if (flags & TH_SYN) {
24599 		tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1,
24600 		    TH_RST|TH_ACK);
24601 		/*
24602 		 * Do not delete the TCP structure if it is in
24603 		 * TIME_WAIT state.  Refer to RFC 1122, 4.2.2.13.
24604 		 */
24605 		goto done;
24606 	}
24607 process_ack:
24608 	if (flags & TH_ACK) {
24609 		bytes_acked = (int)(seg_ack - tcp->tcp_suna);
24610 		if (bytes_acked <= 0) {
24611 			if (bytes_acked == 0 && seg_len == 0 &&
24612 			    new_swnd == tcp->tcp_swnd)
24613 				BUMP_MIB(&tcp_mib, tcpInDupAck);
24614 		} else {
24615 			/* Acks something not sent */
24616 			flags |= TH_ACK_NEEDED;
24617 		}
24618 	}
24619 	if (flags & TH_ACK_NEEDED) {
24620 		/*
24621 		 * Time to send an ack for some reason.
24622 		 */
24623 		tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
24624 		    tcp->tcp_rnxt, TH_ACK);
24625 	}
24626 done:
24627 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
24628 		DB_CKSUMSTART(mp) = 0;
24629 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
24630 		TCP_STAT(tcp_time_wait_syn_fail);
24631 	}
24632 	freemsg(mp);
24633 }
24634 
24635 /*
24636  * Allocate a T_SVR4_OPTMGMT_REQ.
24637  * The caller needs to increment tcp_drop_opt_ack_cnt when sending these so
24638  * that tcp_rput_other can drop the acks.
24639  */
24640 static mblk_t *
24641 tcp_setsockopt_mp(int level, int cmd, char *opt, int optlen)
24642 {
24643 	mblk_t *mp;
24644 	struct T_optmgmt_req *tor;
24645 	struct opthdr *oh;
24646 	uint_t size;
24647 	char *optptr;
24648 
24649 	size = sizeof (*tor) + sizeof (*oh) + optlen;
24650 	mp = allocb(size, BPRI_MED);
24651 	if (mp == NULL)
24652 		return (NULL);
24653 
24654 	mp->b_wptr += size;
24655 	mp->b_datap->db_type = M_PROTO;
24656 	tor = (struct T_optmgmt_req *)mp->b_rptr;
24657 	tor->PRIM_type = T_SVR4_OPTMGMT_REQ;
24658 	tor->MGMT_flags = T_NEGOTIATE;
24659 	tor->OPT_length = sizeof (*oh) + optlen;
24660 	tor->OPT_offset = (t_scalar_t)sizeof (*tor);
24661 
24662 	oh = (struct opthdr *)&tor[1];
24663 	oh->level = level;
24664 	oh->name = cmd;
24665 	oh->len = optlen;
24666 	if (optlen != 0) {
24667 		optptr = (char *)&oh[1];
24668 		bcopy(opt, optptr, optlen);
24669 	}
24670 	return (mp);
24671 }
24672 
24673 /*
24674  * TCP Timers Implementation.
24675  */
24676 timeout_id_t
24677 tcp_timeout(conn_t *connp, void (*f)(void *), clock_t tim)
24678 {
24679 	mblk_t *mp;
24680 	tcp_timer_t *tcpt;
24681 	tcp_t *tcp = connp->conn_tcp;
24682 
24683 	ASSERT(connp->conn_sqp != NULL);
24684 
24685 	TCP_DBGSTAT(tcp_timeout_calls);
24686 
24687 	if (tcp->tcp_timercache == NULL) {
24688 		mp = tcp_timermp_alloc(KM_NOSLEEP | KM_PANIC);
24689 	} else {
24690 		TCP_DBGSTAT(tcp_timeout_cached_alloc);
24691 		mp = tcp->tcp_timercache;
24692 		tcp->tcp_timercache = mp->b_next;
24693 		mp->b_next = NULL;
24694 		ASSERT(mp->b_wptr == NULL);
24695 	}
24696 
24697 	CONN_INC_REF(connp);
24698 	tcpt = (tcp_timer_t *)mp->b_rptr;
24699 	tcpt->connp = connp;
24700 	tcpt->tcpt_proc = f;
24701 	tcpt->tcpt_tid = timeout(tcp_timer_callback, mp, tim);
24702 	return ((timeout_id_t)mp);
24703 }
24704 
24705 static void
24706 tcp_timer_callback(void *arg)
24707 {
24708 	mblk_t *mp = (mblk_t *)arg;
24709 	tcp_timer_t *tcpt;
24710 	conn_t	*connp;
24711 
24712 	tcpt = (tcp_timer_t *)mp->b_rptr;
24713 	connp = tcpt->connp;
24714 	squeue_fill(connp->conn_sqp, mp,
24715 	    tcp_timer_handler, connp, SQTAG_TCP_TIMER);
24716 }
24717 
24718 static void
24719 tcp_timer_handler(void *arg, mblk_t *mp, void *arg2)
24720 {
24721 	tcp_timer_t *tcpt;
24722 	conn_t *connp = (conn_t *)arg;
24723 	tcp_t *tcp = connp->conn_tcp;
24724 
24725 	tcpt = (tcp_timer_t *)mp->b_rptr;
24726 	ASSERT(connp == tcpt->connp);
24727 	ASSERT((squeue_t *)arg2 == connp->conn_sqp);
24728 
24729 	/*
24730 	 * If the TCP has reached the closed state, don't proceed any
24731 	 * further. This TCP logically does not exist on the system.
24732 	 * tcpt_proc could for example access queues, that have already
24733 	 * been qprocoff'ed off. Also see comments at the start of tcp_input
24734 	 */
24735 	if (tcp->tcp_state != TCPS_CLOSED) {
24736 		(*tcpt->tcpt_proc)(connp);
24737 	} else {
24738 		tcp->tcp_timer_tid = 0;
24739 	}
24740 	tcp_timer_free(connp->conn_tcp, mp);
24741 }
24742 
24743 /*
24744  * There is potential race with untimeout and the handler firing at the same
24745  * time. The mblock may be freed by the handler while we are trying to use
24746  * it. But since both should execute on the same squeue, this race should not
24747  * occur.
24748  */
24749 clock_t
24750 tcp_timeout_cancel(conn_t *connp, timeout_id_t id)
24751 {
24752 	mblk_t	*mp = (mblk_t *)id;
24753 	tcp_timer_t *tcpt;
24754 	clock_t delta;
24755 
24756 	TCP_DBGSTAT(tcp_timeout_cancel_reqs);
24757 
24758 	if (mp == NULL)
24759 		return (-1);
24760 
24761 	tcpt = (tcp_timer_t *)mp->b_rptr;
24762 	ASSERT(tcpt->connp == connp);
24763 
24764 	delta = untimeout(tcpt->tcpt_tid);
24765 
24766 	if (delta >= 0) {
24767 		TCP_DBGSTAT(tcp_timeout_canceled);
24768 		tcp_timer_free(connp->conn_tcp, mp);
24769 		CONN_DEC_REF(connp);
24770 	}
24771 
24772 	return (delta);
24773 }
24774 
24775 /*
24776  * Allocate space for the timer event. The allocation looks like mblk, but it is
24777  * not a proper mblk. To avoid confusion we set b_wptr to NULL.
24778  *
24779  * Dealing with failures: If we can't allocate from the timer cache we try
24780  * allocating from dblock caches using allocb_tryhard(). In this case b_wptr
24781  * points to b_rptr.
24782  * If we can't allocate anything using allocb_tryhard(), we perform a last
24783  * attempt and use kmem_alloc_tryhard(). In this case we set b_wptr to -1 and
24784  * save the actual allocation size in b_datap.
24785  */
24786 mblk_t *
24787 tcp_timermp_alloc(int kmflags)
24788 {
24789 	mblk_t *mp = (mblk_t *)kmem_cache_alloc(tcp_timercache,
24790 	    kmflags & ~KM_PANIC);
24791 
24792 	if (mp != NULL) {
24793 		mp->b_next = mp->b_prev = NULL;
24794 		mp->b_rptr = (uchar_t *)(&mp[1]);
24795 		mp->b_wptr = NULL;
24796 		mp->b_datap = NULL;
24797 		mp->b_queue = NULL;
24798 	} else if (kmflags & KM_PANIC) {
24799 		/*
24800 		 * Failed to allocate memory for the timer. Try allocating from
24801 		 * dblock caches.
24802 		 */
24803 		TCP_STAT(tcp_timermp_allocfail);
24804 		mp = allocb_tryhard(sizeof (tcp_timer_t));
24805 		if (mp == NULL) {
24806 			size_t size = 0;
24807 			/*
24808 			 * Memory is really low. Try tryhard allocation.
24809 			 */
24810 			TCP_STAT(tcp_timermp_allocdblfail);
24811 			mp = kmem_alloc_tryhard(sizeof (mblk_t) +
24812 			    sizeof (tcp_timer_t), &size, kmflags);
24813 			mp->b_rptr = (uchar_t *)(&mp[1]);
24814 			mp->b_next = mp->b_prev = NULL;
24815 			mp->b_wptr = (uchar_t *)-1;
24816 			mp->b_datap = (dblk_t *)size;
24817 			mp->b_queue = NULL;
24818 		}
24819 		ASSERT(mp->b_wptr != NULL);
24820 	}
24821 	TCP_DBGSTAT(tcp_timermp_alloced);
24822 
24823 	return (mp);
24824 }
24825 
24826 /*
24827  * Free per-tcp timer cache.
24828  * It can only contain entries from tcp_timercache.
24829  */
24830 void
24831 tcp_timermp_free(tcp_t *tcp)
24832 {
24833 	mblk_t *mp;
24834 
24835 	while ((mp = tcp->tcp_timercache) != NULL) {
24836 		ASSERT(mp->b_wptr == NULL);
24837 		tcp->tcp_timercache = tcp->tcp_timercache->b_next;
24838 		kmem_cache_free(tcp_timercache, mp);
24839 	}
24840 }
24841 
24842 /*
24843  * Free timer event. Put it on the per-tcp timer cache if there is not too many
24844  * events there already (currently at most two events are cached).
24845  * If the event is not allocated from the timer cache, free it right away.
24846  */
24847 static void
24848 tcp_timer_free(tcp_t *tcp, mblk_t *mp)
24849 {
24850 	mblk_t *mp1 = tcp->tcp_timercache;
24851 
24852 	if (mp->b_wptr != NULL) {
24853 		/*
24854 		 * This allocation is not from a timer cache, free it right
24855 		 * away.
24856 		 */
24857 		if (mp->b_wptr != (uchar_t *)-1)
24858 			freeb(mp);
24859 		else
24860 			kmem_free(mp, (size_t)mp->b_datap);
24861 	} else if (mp1 == NULL || mp1->b_next == NULL) {
24862 		/* Cache this timer block for future allocations */
24863 		mp->b_rptr = (uchar_t *)(&mp[1]);
24864 		mp->b_next = mp1;
24865 		tcp->tcp_timercache = mp;
24866 	} else {
24867 		kmem_cache_free(tcp_timercache, mp);
24868 		TCP_DBGSTAT(tcp_timermp_freed);
24869 	}
24870 }
24871 
24872 /*
24873  * End of TCP Timers implementation.
24874  */
24875 
24876 /*
24877  * tcp_{set,clr}qfull() functions are used to either set or clear QFULL
24878  * on the specified backing STREAMS q. Note, the caller may make the
24879  * decision to call based on the tcp_t.tcp_flow_stopped value which
24880  * when check outside the q's lock is only an advisory check ...
24881  */
24882 
24883 void
24884 tcp_setqfull(tcp_t *tcp)
24885 {
24886 	queue_t *q = tcp->tcp_wq;
24887 
24888 	if (!(q->q_flag & QFULL)) {
24889 		mutex_enter(QLOCK(q));
24890 		if (!(q->q_flag & QFULL)) {
24891 			/* still need to set QFULL */
24892 			q->q_flag |= QFULL;
24893 			tcp->tcp_flow_stopped = B_TRUE;
24894 			mutex_exit(QLOCK(q));
24895 			TCP_STAT(tcp_flwctl_on);
24896 		} else {
24897 			mutex_exit(QLOCK(q));
24898 		}
24899 	}
24900 }
24901 
24902 void
24903 tcp_clrqfull(tcp_t *tcp)
24904 {
24905 	queue_t *q = tcp->tcp_wq;
24906 
24907 	if (q->q_flag & QFULL) {
24908 		mutex_enter(QLOCK(q));
24909 		if (q->q_flag & QFULL) {
24910 			q->q_flag &= ~QFULL;
24911 			tcp->tcp_flow_stopped = B_FALSE;
24912 			mutex_exit(QLOCK(q));
24913 			if (q->q_flag & QWANTW)
24914 				qbackenable(q, 0);
24915 		} else {
24916 			mutex_exit(QLOCK(q));
24917 		}
24918 	}
24919 }
24920 
24921 /*
24922  * TCP Kstats implementation
24923  */
24924 static void
24925 tcp_kstat_init(void)
24926 {
24927 	tcp_named_kstat_t template = {
24928 		{ "rtoAlgorithm",	KSTAT_DATA_INT32, 0 },
24929 		{ "rtoMin",		KSTAT_DATA_INT32, 0 },
24930 		{ "rtoMax",		KSTAT_DATA_INT32, 0 },
24931 		{ "maxConn",		KSTAT_DATA_INT32, 0 },
24932 		{ "activeOpens",	KSTAT_DATA_UINT32, 0 },
24933 		{ "passiveOpens",	KSTAT_DATA_UINT32, 0 },
24934 		{ "attemptFails",	KSTAT_DATA_UINT32, 0 },
24935 		{ "estabResets",	KSTAT_DATA_UINT32, 0 },
24936 		{ "currEstab",		KSTAT_DATA_UINT32, 0 },
24937 		{ "inSegs",		KSTAT_DATA_UINT32, 0 },
24938 		{ "outSegs",		KSTAT_DATA_UINT32, 0 },
24939 		{ "retransSegs",	KSTAT_DATA_UINT32, 0 },
24940 		{ "connTableSize",	KSTAT_DATA_INT32, 0 },
24941 		{ "outRsts",		KSTAT_DATA_UINT32, 0 },
24942 		{ "outDataSegs",	KSTAT_DATA_UINT32, 0 },
24943 		{ "outDataBytes",	KSTAT_DATA_UINT32, 0 },
24944 		{ "retransBytes",	KSTAT_DATA_UINT32, 0 },
24945 		{ "outAck",		KSTAT_DATA_UINT32, 0 },
24946 		{ "outAckDelayed",	KSTAT_DATA_UINT32, 0 },
24947 		{ "outUrg",		KSTAT_DATA_UINT32, 0 },
24948 		{ "outWinUpdate",	KSTAT_DATA_UINT32, 0 },
24949 		{ "outWinProbe",	KSTAT_DATA_UINT32, 0 },
24950 		{ "outControl",		KSTAT_DATA_UINT32, 0 },
24951 		{ "outFastRetrans",	KSTAT_DATA_UINT32, 0 },
24952 		{ "inAckSegs",		KSTAT_DATA_UINT32, 0 },
24953 		{ "inAckBytes",		KSTAT_DATA_UINT32, 0 },
24954 		{ "inDupAck",		KSTAT_DATA_UINT32, 0 },
24955 		{ "inAckUnsent",	KSTAT_DATA_UINT32, 0 },
24956 		{ "inDataInorderSegs",	KSTAT_DATA_UINT32, 0 },
24957 		{ "inDataInorderBytes",	KSTAT_DATA_UINT32, 0 },
24958 		{ "inDataUnorderSegs",	KSTAT_DATA_UINT32, 0 },
24959 		{ "inDataUnorderBytes",	KSTAT_DATA_UINT32, 0 },
24960 		{ "inDataDupSegs",	KSTAT_DATA_UINT32, 0 },
24961 		{ "inDataDupBytes",	KSTAT_DATA_UINT32, 0 },
24962 		{ "inDataPartDupSegs",	KSTAT_DATA_UINT32, 0 },
24963 		{ "inDataPartDupBytes",	KSTAT_DATA_UINT32, 0 },
24964 		{ "inDataPastWinSegs",	KSTAT_DATA_UINT32, 0 },
24965 		{ "inDataPastWinBytes",	KSTAT_DATA_UINT32, 0 },
24966 		{ "inWinProbe",		KSTAT_DATA_UINT32, 0 },
24967 		{ "inWinUpdate",	KSTAT_DATA_UINT32, 0 },
24968 		{ "inClosed",		KSTAT_DATA_UINT32, 0 },
24969 		{ "rttUpdate",		KSTAT_DATA_UINT32, 0 },
24970 		{ "rttNoUpdate",	KSTAT_DATA_UINT32, 0 },
24971 		{ "timRetrans",		KSTAT_DATA_UINT32, 0 },
24972 		{ "timRetransDrop",	KSTAT_DATA_UINT32, 0 },
24973 		{ "timKeepalive",	KSTAT_DATA_UINT32, 0 },
24974 		{ "timKeepaliveProbe",	KSTAT_DATA_UINT32, 0 },
24975 		{ "timKeepaliveDrop",	KSTAT_DATA_UINT32, 0 },
24976 		{ "listenDrop",		KSTAT_DATA_UINT32, 0 },
24977 		{ "listenDropQ0",	KSTAT_DATA_UINT32, 0 },
24978 		{ "halfOpenDrop",	KSTAT_DATA_UINT32, 0 },
24979 		{ "outSackRetransSegs",	KSTAT_DATA_UINT32, 0 },
24980 		{ "connTableSize6",	KSTAT_DATA_INT32, 0 }
24981 	};
24982 
24983 	tcp_mibkp = kstat_create(TCP_MOD_NAME, 0, TCP_MOD_NAME,
24984 	    "mib2", KSTAT_TYPE_NAMED, NUM_OF_FIELDS(tcp_named_kstat_t), 0);
24985 
24986 	if (tcp_mibkp == NULL)
24987 		return;
24988 
24989 	template.rtoAlgorithm.value.ui32 = 4;
24990 	template.rtoMin.value.ui32 = tcp_rexmit_interval_min;
24991 	template.rtoMax.value.ui32 = tcp_rexmit_interval_max;
24992 	template.maxConn.value.i32 = -1;
24993 
24994 	bcopy(&template, tcp_mibkp->ks_data, sizeof (template));
24995 
24996 	tcp_mibkp->ks_update = tcp_kstat_update;
24997 
24998 	kstat_install(tcp_mibkp);
24999 }
25000 
25001 static void
25002 tcp_kstat_fini(void)
25003 {
25004 
25005 	if (tcp_mibkp != NULL) {
25006 		kstat_delete(tcp_mibkp);
25007 		tcp_mibkp = NULL;
25008 	}
25009 }
25010 
25011 static int
25012 tcp_kstat_update(kstat_t *kp, int rw)
25013 {
25014 	tcp_named_kstat_t	*tcpkp;
25015 	tcp_t			*tcp;
25016 	connf_t			*connfp;
25017 	conn_t			*connp;
25018 	int 			i;
25019 
25020 	if (!kp || !kp->ks_data)
25021 		return (EIO);
25022 
25023 	if (rw == KSTAT_WRITE)
25024 		return (EACCES);
25025 
25026 	tcpkp = (tcp_named_kstat_t *)kp->ks_data;
25027 
25028 	tcpkp->currEstab.value.ui32 = 0;
25029 
25030 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
25031 		connfp = &ipcl_globalhash_fanout[i];
25032 		connp = NULL;
25033 		while ((connp =
25034 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
25035 			tcp = connp->conn_tcp;
25036 			switch (tcp_snmp_state(tcp)) {
25037 			case MIB2_TCP_established:
25038 			case MIB2_TCP_closeWait:
25039 				tcpkp->currEstab.value.ui32++;
25040 				break;
25041 			}
25042 		}
25043 	}
25044 
25045 	tcpkp->activeOpens.value.ui32 = tcp_mib.tcpActiveOpens;
25046 	tcpkp->passiveOpens.value.ui32 = tcp_mib.tcpPassiveOpens;
25047 	tcpkp->attemptFails.value.ui32 = tcp_mib.tcpAttemptFails;
25048 	tcpkp->estabResets.value.ui32 = tcp_mib.tcpEstabResets;
25049 	tcpkp->inSegs.value.ui32 = tcp_mib.tcpInSegs;
25050 	tcpkp->outSegs.value.ui32 = tcp_mib.tcpOutSegs;
25051 	tcpkp->retransSegs.value.ui32 =	tcp_mib.tcpRetransSegs;
25052 	tcpkp->connTableSize.value.i32 = tcp_mib.tcpConnTableSize;
25053 	tcpkp->outRsts.value.ui32 = tcp_mib.tcpOutRsts;
25054 	tcpkp->outDataSegs.value.ui32 = tcp_mib.tcpOutDataSegs;
25055 	tcpkp->outDataBytes.value.ui32 = tcp_mib.tcpOutDataBytes;
25056 	tcpkp->retransBytes.value.ui32 = tcp_mib.tcpRetransBytes;
25057 	tcpkp->outAck.value.ui32 = tcp_mib.tcpOutAck;
25058 	tcpkp->outAckDelayed.value.ui32 = tcp_mib.tcpOutAckDelayed;
25059 	tcpkp->outUrg.value.ui32 = tcp_mib.tcpOutUrg;
25060 	tcpkp->outWinUpdate.value.ui32 = tcp_mib.tcpOutWinUpdate;
25061 	tcpkp->outWinProbe.value.ui32 = tcp_mib.tcpOutWinProbe;
25062 	tcpkp->outControl.value.ui32 = tcp_mib.tcpOutControl;
25063 	tcpkp->outFastRetrans.value.ui32 = tcp_mib.tcpOutFastRetrans;
25064 	tcpkp->inAckSegs.value.ui32 = tcp_mib.tcpInAckSegs;
25065 	tcpkp->inAckBytes.value.ui32 = tcp_mib.tcpInAckBytes;
25066 	tcpkp->inDupAck.value.ui32 = tcp_mib.tcpInDupAck;
25067 	tcpkp->inAckUnsent.value.ui32 = tcp_mib.tcpInAckUnsent;
25068 	tcpkp->inDataInorderSegs.value.ui32 = tcp_mib.tcpInDataInorderSegs;
25069 	tcpkp->inDataInorderBytes.value.ui32 = tcp_mib.tcpInDataInorderBytes;
25070 	tcpkp->inDataUnorderSegs.value.ui32 = tcp_mib.tcpInDataUnorderSegs;
25071 	tcpkp->inDataUnorderBytes.value.ui32 = tcp_mib.tcpInDataUnorderBytes;
25072 	tcpkp->inDataDupSegs.value.ui32 = tcp_mib.tcpInDataDupSegs;
25073 	tcpkp->inDataDupBytes.value.ui32 = tcp_mib.tcpInDataDupBytes;
25074 	tcpkp->inDataPartDupSegs.value.ui32 = tcp_mib.tcpInDataPartDupSegs;
25075 	tcpkp->inDataPartDupBytes.value.ui32 = tcp_mib.tcpInDataPartDupBytes;
25076 	tcpkp->inDataPastWinSegs.value.ui32 = tcp_mib.tcpInDataPastWinSegs;
25077 	tcpkp->inDataPastWinBytes.value.ui32 = tcp_mib.tcpInDataPastWinBytes;
25078 	tcpkp->inWinProbe.value.ui32 = tcp_mib.tcpInWinProbe;
25079 	tcpkp->inWinUpdate.value.ui32 = tcp_mib.tcpInWinUpdate;
25080 	tcpkp->inClosed.value.ui32 = tcp_mib.tcpInClosed;
25081 	tcpkp->rttNoUpdate.value.ui32 = tcp_mib.tcpRttNoUpdate;
25082 	tcpkp->rttUpdate.value.ui32 = tcp_mib.tcpRttUpdate;
25083 	tcpkp->timRetrans.value.ui32 = tcp_mib.tcpTimRetrans;
25084 	tcpkp->timRetransDrop.value.ui32 = tcp_mib.tcpTimRetransDrop;
25085 	tcpkp->timKeepalive.value.ui32 = tcp_mib.tcpTimKeepalive;
25086 	tcpkp->timKeepaliveProbe.value.ui32 = tcp_mib.tcpTimKeepaliveProbe;
25087 	tcpkp->timKeepaliveDrop.value.ui32 = tcp_mib.tcpTimKeepaliveDrop;
25088 	tcpkp->listenDrop.value.ui32 = tcp_mib.tcpListenDrop;
25089 	tcpkp->listenDropQ0.value.ui32 = tcp_mib.tcpListenDropQ0;
25090 	tcpkp->halfOpenDrop.value.ui32 = tcp_mib.tcpHalfOpenDrop;
25091 	tcpkp->outSackRetransSegs.value.ui32 = tcp_mib.tcpOutSackRetransSegs;
25092 	tcpkp->connTableSize6.value.i32 = tcp_mib.tcp6ConnTableSize;
25093 
25094 	return (0);
25095 }
25096 
25097 void
25098 tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp)
25099 {
25100 	uint16_t	hdr_len;
25101 	ipha_t		*ipha;
25102 	uint8_t		*nexthdrp;
25103 	tcph_t		*tcph;
25104 
25105 	/* Already has an eager */
25106 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
25107 		TCP_STAT(tcp_reinput_syn);
25108 		squeue_enter(connp->conn_sqp, mp, connp->conn_recv,
25109 		    connp, SQTAG_TCP_REINPUT_EAGER);
25110 		return;
25111 	}
25112 
25113 	switch (IPH_HDR_VERSION(mp->b_rptr)) {
25114 	case IPV4_VERSION:
25115 		ipha = (ipha_t *)mp->b_rptr;
25116 		hdr_len = IPH_HDR_LENGTH(ipha);
25117 		break;
25118 	case IPV6_VERSION:
25119 		if (!ip_hdr_length_nexthdr_v6(mp, (ip6_t *)mp->b_rptr,
25120 		    &hdr_len, &nexthdrp)) {
25121 			CONN_DEC_REF(connp);
25122 			freemsg(mp);
25123 			return;
25124 		}
25125 		break;
25126 	}
25127 
25128 	tcph = (tcph_t *)&mp->b_rptr[hdr_len];
25129 	if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) {
25130 		mp->b_datap->db_struioflag |= STRUIO_EAGER;
25131 		DB_CKSUMSTART(mp) = (intptr_t)sqp;
25132 	}
25133 
25134 	squeue_fill(connp->conn_sqp, mp, connp->conn_recv, connp,
25135 	    SQTAG_TCP_REINPUT);
25136 }
25137 
25138 static squeue_func_t
25139 tcp_squeue_switch(int val)
25140 {
25141 	squeue_func_t rval = squeue_fill;
25142 
25143 	switch (val) {
25144 	case 1:
25145 		rval = squeue_enter_nodrain;
25146 		break;
25147 	case 2:
25148 		rval = squeue_enter;
25149 		break;
25150 	default:
25151 		break;
25152 	}
25153 	return (rval);
25154 }
25155 
25156 static void
25157 tcp_squeue_add(squeue_t *sqp)
25158 {
25159 	tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc(
25160 		sizeof (tcp_squeue_priv_t), KM_SLEEP);
25161 
25162 	*squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait;
25163 	tcp_time_wait->tcp_time_wait_tid = timeout(tcp_time_wait_collector,
25164 	    sqp, TCP_TIME_WAIT_DELAY);
25165 	if (tcp_free_list_max_cnt == 0) {
25166 		int tcp_ncpus = ((boot_max_ncpus == -1) ?
25167 			max_ncpus : boot_max_ncpus);
25168 
25169 		/*
25170 		 * Limit number of entries to 1% of availble memory / tcp_ncpus
25171 		 */
25172 		tcp_free_list_max_cnt = (freemem * PAGESIZE) /
25173 			(tcp_ncpus * sizeof (tcp_t) * 100);
25174 	}
25175 	tcp_time_wait->tcp_free_list_cnt = 0;
25176 }
25177