1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #include <sys/types.h> 29 #include <sys/stream.h> 30 #include <sys/strsun.h> 31 #include <sys/strsubr.h> 32 #include <sys/stropts.h> 33 #include <sys/strlog.h> 34 #define _SUN_TPI_VERSION 2 35 #include <sys/tihdr.h> 36 #include <sys/timod.h> 37 #include <sys/ddi.h> 38 #include <sys/sunddi.h> 39 #include <sys/suntpi.h> 40 #include <sys/xti_inet.h> 41 #include <sys/cmn_err.h> 42 #include <sys/debug.h> 43 #include <sys/sdt.h> 44 #include <sys/vtrace.h> 45 #include <sys/kmem.h> 46 #include <sys/ethernet.h> 47 #include <sys/cpuvar.h> 48 #include <sys/dlpi.h> 49 #include <sys/multidata.h> 50 #include <sys/multidata_impl.h> 51 #include <sys/pattr.h> 52 #include <sys/policy.h> 53 #include <sys/priv.h> 54 #include <sys/zone.h> 55 #include <sys/sunldi.h> 56 57 #include <sys/errno.h> 58 #include <sys/signal.h> 59 #include <sys/socket.h> 60 #include <sys/socketvar.h> 61 #include <sys/sockio.h> 62 #include <sys/isa_defs.h> 63 #include <sys/md5.h> 64 #include <sys/random.h> 65 #include <sys/sodirect.h> 66 #include <sys/uio.h> 67 #include <sys/systm.h> 68 #include <netinet/in.h> 69 #include <netinet/tcp.h> 70 #include <netinet/ip6.h> 71 #include <netinet/icmp6.h> 72 #include <net/if.h> 73 #include <net/route.h> 74 #include <inet/ipsec_impl.h> 75 76 #include <inet/common.h> 77 #include <inet/ip.h> 78 #include <inet/ip_impl.h> 79 #include <inet/ip6.h> 80 #include <inet/ip_ndp.h> 81 #include <inet/proto_set.h> 82 #include <inet/mib2.h> 83 #include <inet/nd.h> 84 #include <inet/optcom.h> 85 #include <inet/snmpcom.h> 86 #include <inet/kstatcom.h> 87 #include <inet/tcp.h> 88 #include <inet/tcp_impl.h> 89 #include <inet/udp_impl.h> 90 #include <net/pfkeyv2.h> 91 #include <inet/ipsec_info.h> 92 #include <inet/ipdrop.h> 93 94 #include <inet/ipclassifier.h> 95 #include <inet/ip_ire.h> 96 #include <inet/ip_ftable.h> 97 #include <inet/ip_if.h> 98 #include <inet/ipp_common.h> 99 #include <inet/ip_netinfo.h> 100 #include <sys/squeue_impl.h> 101 #include <sys/squeue.h> 102 #include <inet/kssl/ksslapi.h> 103 #include <sys/tsol/label.h> 104 #include <sys/tsol/tnet.h> 105 #include <rpc/pmap_prot.h> 106 #include <sys/callo.h> 107 108 /* 109 * TCP Notes: aka FireEngine Phase I (PSARC 2002/433) 110 * 111 * (Read the detailed design doc in PSARC case directory) 112 * 113 * The entire tcp state is contained in tcp_t and conn_t structure 114 * which are allocated in tandem using ipcl_conn_create() and passing 115 * IPCL_CONNTCP as a flag. We use 'conn_ref' and 'conn_lock' to protect 116 * the references on the tcp_t. The tcp_t structure is never compressed 117 * and packets always land on the correct TCP perimeter from the time 118 * eager is created till the time tcp_t dies (as such the old mentat 119 * TCP global queue is not used for detached state and no IPSEC checking 120 * is required). The global queue is still allocated to send out resets 121 * for connection which have no listeners and IP directly calls 122 * tcp_xmit_listeners_reset() which does any policy check. 123 * 124 * Protection and Synchronisation mechanism: 125 * 126 * The tcp data structure does not use any kind of lock for protecting 127 * its state but instead uses 'squeues' for mutual exclusion from various 128 * read and write side threads. To access a tcp member, the thread should 129 * always be behind squeue (via squeue_enter with flags as SQ_FILL, SQ_PROCESS, 130 * or SQ_NODRAIN). Since the squeues allow a direct function call, caller 131 * can pass any tcp function having prototype of edesc_t as argument 132 * (different from traditional STREAMs model where packets come in only 133 * designated entry points). The list of functions that can be directly 134 * called via squeue are listed before the usual function prototype. 135 * 136 * Referencing: 137 * 138 * TCP is MT-Hot and we use a reference based scheme to make sure that the 139 * tcp structure doesn't disappear when its needed. When the application 140 * creates an outgoing connection or accepts an incoming connection, we 141 * start out with 2 references on 'conn_ref'. One for TCP and one for IP. 142 * The IP reference is just a symbolic reference since ip_tcpclose() 143 * looks at tcp structure after tcp_close_output() returns which could 144 * have dropped the last TCP reference. So as long as the connection is 145 * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the 146 * conn_t. The classifier puts its own reference when the connection is 147 * inserted in listen or connected hash. Anytime a thread needs to enter 148 * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr 149 * on write side or by doing a classify on read side and then puts a 150 * reference on the conn before doing squeue_enter/tryenter/fill. For 151 * read side, the classifier itself puts the reference under fanout lock 152 * to make sure that tcp can't disappear before it gets processed. The 153 * squeue will drop this reference automatically so the called function 154 * doesn't have to do a DEC_REF. 155 * 156 * Opening a new connection: 157 * 158 * The outgoing connection open is pretty simple. tcp_open() does the 159 * work in creating the conn/tcp structure and initializing it. The 160 * squeue assignment is done based on the CPU the application 161 * is running on. So for outbound connections, processing is always done 162 * on application CPU which might be different from the incoming CPU 163 * being interrupted by the NIC. An optimal way would be to figure out 164 * the NIC <-> CPU binding at listen time, and assign the outgoing 165 * connection to the squeue attached to the CPU that will be interrupted 166 * for incoming packets (we know the NIC based on the bind IP address). 167 * This might seem like a problem if more data is going out but the 168 * fact is that in most cases the transmit is ACK driven transmit where 169 * the outgoing data normally sits on TCP's xmit queue waiting to be 170 * transmitted. 171 * 172 * Accepting a connection: 173 * 174 * This is a more interesting case because of various races involved in 175 * establishing a eager in its own perimeter. Read the meta comment on 176 * top of tcp_conn_request(). But briefly, the squeue is picked by 177 * ip_tcp_input()/ip_fanout_tcp_v6() based on the interrupted CPU. 178 * 179 * Closing a connection: 180 * 181 * The close is fairly straight forward. tcp_close() calls tcp_close_output() 182 * via squeue to do the close and mark the tcp as detached if the connection 183 * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its 184 * reference but tcp_close() drop IP's reference always. So if tcp was 185 * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP 186 * and 1 because it is in classifier's connected hash. This is the condition 187 * we use to determine that its OK to clean up the tcp outside of squeue 188 * when time wait expires (check the ref under fanout and conn_lock and 189 * if it is 2, remove it from fanout hash and kill it). 190 * 191 * Although close just drops the necessary references and marks the 192 * tcp_detached state, tcp_close needs to know the tcp_detached has been 193 * set (under squeue) before letting the STREAM go away (because a 194 * inbound packet might attempt to go up the STREAM while the close 195 * has happened and tcp_detached is not set). So a special lock and 196 * flag is used along with a condition variable (tcp_closelock, tcp_closed, 197 * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked 198 * tcp_detached. 199 * 200 * Special provisions and fast paths: 201 * 202 * We make special provision for (AF_INET, SOCK_STREAM) sockets which 203 * can't have 'ipv6_recvpktinfo' set and for these type of sockets, IP 204 * will never send a M_CTL to TCP. As such, ip_tcp_input() which handles 205 * all TCP packets from the wire makes a IPCL_IS_TCP4_CONNECTED_NO_POLICY 206 * check to send packets directly to tcp_rput_data via squeue. Everyone 207 * else comes through tcp_input() on the read side. 208 * 209 * We also make special provisions for sockfs by marking tcp_issocket 210 * whenever we have only sockfs on top of TCP. This allows us to skip 211 * putting the tcp in acceptor hash since a sockfs listener can never 212 * become acceptor and also avoid allocating a tcp_t for acceptor STREAM 213 * since eager has already been allocated and the accept now happens 214 * on acceptor STREAM. There is a big blob of comment on top of 215 * tcp_conn_request explaining the new accept. When socket is POP'd, 216 * sockfs sends us an ioctl to mark the fact and we go back to old 217 * behaviour. Once tcp_issocket is unset, its never set for the 218 * life of that connection. 219 * 220 * In support of on-board asynchronous DMA hardware (e.g. Intel I/OAT) 221 * two consoldiation private KAPIs are used to enqueue M_DATA mblk_t's 222 * directly to the socket (sodirect) and start an asynchronous copyout 223 * to a user-land receive-side buffer (uioa) when a blocking socket read 224 * (e.g. read, recv, ...) is pending. 225 * 226 * This is accomplished when tcp_issocket is set and tcp_sodirect is not 227 * NULL so points to an sodirect_t and if marked enabled then we enqueue 228 * all mblk_t's directly to the socket. 229 * 230 * Further, if the sodirect_t sod_uioa and if marked enabled (due to a 231 * blocking socket read, e.g. user-land read, recv, ...) then an asynchronous 232 * copyout will be started directly to the user-land uio buffer. Also, as we 233 * have a pending read, TCP's push logic can take into account the number of 234 * bytes to be received and only awake the blocked read()er when the uioa_t 235 * byte count has been satisfied. 236 * 237 * IPsec notes : 238 * 239 * Since a packet is always executed on the correct TCP perimeter 240 * all IPsec processing is defered to IP including checking new 241 * connections and setting IPSEC policies for new connection. The 242 * only exception is tcp_xmit_listeners_reset() which is called 243 * directly from IP and needs to policy check to see if TH_RST 244 * can be sent out. 245 * 246 * PFHooks notes : 247 * 248 * For mdt case, one meta buffer contains multiple packets. Mblks for every 249 * packet are assembled and passed to the hooks. When packets are blocked, 250 * or boundary of any packet is changed, the mdt processing is stopped, and 251 * packets of the meta buffer are send to the IP path one by one. 252 */ 253 254 /* 255 * Values for squeue switch: 256 * 1: SQ_NODRAIN 257 * 2: SQ_PROCESS 258 * 3: SQ_FILL 259 */ 260 int tcp_squeue_wput = 2; /* /etc/systems */ 261 int tcp_squeue_flag; 262 263 /* 264 * Macros for sodirect: 265 * 266 * SOD_PTR_ENTER(tcp, sodp) - for the tcp_t pointer "tcp" set the 267 * sodirect_t pointer "sodp" to the socket/tcp shared sodirect_t 268 * if it exists and is enabled, else to NULL. Note, in the current 269 * sodirect implementation the sod_lockp must not be held across any 270 * STREAMS call (e.g. putnext) else a "recursive mutex_enter" PANIC 271 * will result as sod_lockp is the streamhead stdata.sd_lock. 272 * 273 * SOD_NOT_ENABLED(tcp) - return true if not a sodirect tcp_t or the 274 * sodirect_t isn't enabled, usefull for ASSERT()ing that a recieve 275 * side tcp code path dealing with a tcp_rcv_list or putnext() isn't 276 * being used when sodirect code paths should be. 277 */ 278 279 #define SOD_PTR_ENTER(tcp, sodp) \ 280 (sodp) = (tcp)->tcp_sodirect; \ 281 \ 282 if ((sodp) != NULL) { \ 283 mutex_enter((sodp)->sod_lockp); \ 284 if (!((sodp)->sod_state & SOD_ENABLED)) { \ 285 mutex_exit((sodp)->sod_lockp); \ 286 (sodp) = NULL; \ 287 } \ 288 } 289 290 #define SOD_NOT_ENABLED(tcp) \ 291 ((tcp)->tcp_sodirect == NULL || \ 292 !((tcp)->tcp_sodirect->sod_state & SOD_ENABLED)) 293 294 /* 295 * This controls how tiny a write must be before we try to copy it 296 * into the the mblk on the tail of the transmit queue. Not much 297 * speedup is observed for values larger than sixteen. Zero will 298 * disable the optimisation. 299 */ 300 int tcp_tx_pull_len = 16; 301 302 /* 303 * TCP Statistics. 304 * 305 * How TCP statistics work. 306 * 307 * There are two types of statistics invoked by two macros. 308 * 309 * TCP_STAT(name) does non-atomic increment of a named stat counter. It is 310 * supposed to be used in non MT-hot paths of the code. 311 * 312 * TCP_DBGSTAT(name) does atomic increment of a named stat counter. It is 313 * supposed to be used for DEBUG purposes and may be used on a hot path. 314 * 315 * Both TCP_STAT and TCP_DBGSTAT counters are available using kstat 316 * (use "kstat tcp" to get them). 317 * 318 * There is also additional debugging facility that marks tcp_clean_death() 319 * instances and saves them in tcp_t structure. It is triggered by 320 * TCP_TAG_CLEAN_DEATH define. Also, there is a global array of counters for 321 * tcp_clean_death() calls that counts the number of times each tag was hit. It 322 * is triggered by TCP_CLD_COUNTERS define. 323 * 324 * How to add new counters. 325 * 326 * 1) Add a field in the tcp_stat structure describing your counter. 327 * 2) Add a line in the template in tcp_kstat2_init() with the name 328 * of the counter. 329 * 330 * IMPORTANT!! - make sure that both are in sync !! 331 * 3) Use either TCP_STAT or TCP_DBGSTAT with the name. 332 * 333 * Please avoid using private counters which are not kstat-exported. 334 * 335 * TCP_TAG_CLEAN_DEATH set to 1 enables tagging of tcp_clean_death() instances 336 * in tcp_t structure. 337 * 338 * TCP_MAX_CLEAN_DEATH_TAG is the maximum number of possible clean death tags. 339 */ 340 341 #ifndef TCP_DEBUG_COUNTER 342 #ifdef DEBUG 343 #define TCP_DEBUG_COUNTER 1 344 #else 345 #define TCP_DEBUG_COUNTER 0 346 #endif 347 #endif 348 349 #define TCP_CLD_COUNTERS 0 350 351 #define TCP_TAG_CLEAN_DEATH 1 352 #define TCP_MAX_CLEAN_DEATH_TAG 32 353 354 #ifdef lint 355 static int _lint_dummy_; 356 #endif 357 358 #if TCP_CLD_COUNTERS 359 static uint_t tcp_clean_death_stat[TCP_MAX_CLEAN_DEATH_TAG]; 360 #define TCP_CLD_STAT(x) tcp_clean_death_stat[x]++ 361 #elif defined(lint) 362 #define TCP_CLD_STAT(x) ASSERT(_lint_dummy_ == 0); 363 #else 364 #define TCP_CLD_STAT(x) 365 #endif 366 367 #if TCP_DEBUG_COUNTER 368 #define TCP_DBGSTAT(tcps, x) \ 369 atomic_add_64(&((tcps)->tcps_statistics.x.value.ui64), 1) 370 #define TCP_G_DBGSTAT(x) \ 371 atomic_add_64(&(tcp_g_statistics.x.value.ui64), 1) 372 #elif defined(lint) 373 #define TCP_DBGSTAT(tcps, x) ASSERT(_lint_dummy_ == 0); 374 #define TCP_G_DBGSTAT(x) ASSERT(_lint_dummy_ == 0); 375 #else 376 #define TCP_DBGSTAT(tcps, x) 377 #define TCP_G_DBGSTAT(x) 378 #endif 379 380 #define TCP_G_STAT(x) (tcp_g_statistics.x.value.ui64++) 381 382 tcp_g_stat_t tcp_g_statistics; 383 kstat_t *tcp_g_kstat; 384 385 /* 386 * Call either ip_output or ip_output_v6. This replaces putnext() calls on the 387 * tcp write side. 388 */ 389 #define CALL_IP_WPUT(connp, q, mp) { \ 390 ASSERT(((q)->q_flag & QREADR) == 0); \ 391 TCP_DBGSTAT(connp->conn_netstack->netstack_tcp, tcp_ip_output); \ 392 connp->conn_send(connp, (mp), (q), IP_WPUT); \ 393 } 394 395 /* Macros for timestamp comparisons */ 396 #define TSTMP_GEQ(a, b) ((int32_t)((a)-(b)) >= 0) 397 #define TSTMP_LT(a, b) ((int32_t)((a)-(b)) < 0) 398 399 /* 400 * Parameters for TCP Initial Send Sequence number (ISS) generation. When 401 * tcp_strong_iss is set to 1, which is the default, the ISS is calculated 402 * by adding three components: a time component which grows by 1 every 4096 403 * nanoseconds (versus every 4 microseconds suggested by RFC 793, page 27); 404 * a per-connection component which grows by 125000 for every new connection; 405 * and an "extra" component that grows by a random amount centered 406 * approximately on 64000. This causes the the ISS generator to cycle every 407 * 4.89 hours if no TCP connections are made, and faster if connections are 408 * made. 409 * 410 * When tcp_strong_iss is set to 0, ISS is calculated by adding two 411 * components: a time component which grows by 250000 every second; and 412 * a per-connection component which grows by 125000 for every new connections. 413 * 414 * A third method, when tcp_strong_iss is set to 2, for generating ISS is 415 * prescribed by Steve Bellovin. This involves adding time, the 125000 per 416 * connection, and a one-way hash (MD5) of the connection ID <sport, dport, 417 * src, dst>, a "truly" random (per RFC 1750) number, and a console-entered 418 * password. 419 */ 420 #define ISS_INCR 250000 421 #define ISS_NSEC_SHT 12 422 423 static sin_t sin_null; /* Zero address for quick clears */ 424 static sin6_t sin6_null; /* Zero address for quick clears */ 425 426 /* 427 * This implementation follows the 4.3BSD interpretation of the urgent 428 * pointer and not RFC 1122. Switching to RFC 1122 behavior would cause 429 * incompatible changes in protocols like telnet and rlogin. 430 */ 431 #define TCP_OLD_URP_INTERPRETATION 1 432 433 #define TCP_IS_DETACHED_NONEAGER(tcp) \ 434 (TCP_IS_DETACHED(tcp) && \ 435 (!(tcp)->tcp_hard_binding)) 436 437 /* 438 * TCP reassembly macros. We hide starting and ending sequence numbers in 439 * b_next and b_prev of messages on the reassembly queue. The messages are 440 * chained using b_cont. These macros are used in tcp_reass() so we don't 441 * have to see the ugly casts and assignments. 442 */ 443 #define TCP_REASS_SEQ(mp) ((uint32_t)(uintptr_t)((mp)->b_next)) 444 #define TCP_REASS_SET_SEQ(mp, u) ((mp)->b_next = \ 445 (mblk_t *)(uintptr_t)(u)) 446 #define TCP_REASS_END(mp) ((uint32_t)(uintptr_t)((mp)->b_prev)) 447 #define TCP_REASS_SET_END(mp, u) ((mp)->b_prev = \ 448 (mblk_t *)(uintptr_t)(u)) 449 450 /* 451 * Implementation of TCP Timers. 452 * ============================= 453 * 454 * INTERFACE: 455 * 456 * There are two basic functions dealing with tcp timers: 457 * 458 * timeout_id_t tcp_timeout(connp, func, time) 459 * clock_t tcp_timeout_cancel(connp, timeout_id) 460 * TCP_TIMER_RESTART(tcp, intvl) 461 * 462 * tcp_timeout() starts a timer for the 'tcp' instance arranging to call 'func' 463 * after 'time' ticks passed. The function called by timeout() must adhere to 464 * the same restrictions as a driver soft interrupt handler - it must not sleep 465 * or call other functions that might sleep. The value returned is the opaque 466 * non-zero timeout identifier that can be passed to tcp_timeout_cancel() to 467 * cancel the request. The call to tcp_timeout() may fail in which case it 468 * returns zero. This is different from the timeout(9F) function which never 469 * fails. 470 * 471 * The call-back function 'func' always receives 'connp' as its single 472 * argument. It is always executed in the squeue corresponding to the tcp 473 * structure. The tcp structure is guaranteed to be present at the time the 474 * call-back is called. 475 * 476 * NOTE: The call-back function 'func' is never called if tcp is in 477 * the TCPS_CLOSED state. 478 * 479 * tcp_timeout_cancel() attempts to cancel a pending tcp_timeout() 480 * request. locks acquired by the call-back routine should not be held across 481 * the call to tcp_timeout_cancel() or a deadlock may result. 482 * 483 * tcp_timeout_cancel() returns -1 if it can not cancel the timeout request. 484 * Otherwise, it returns an integer value greater than or equal to 0. In 485 * particular, if the call-back function is already placed on the squeue, it can 486 * not be canceled. 487 * 488 * NOTE: both tcp_timeout() and tcp_timeout_cancel() should always be called 489 * within squeue context corresponding to the tcp instance. Since the 490 * call-back is also called via the same squeue, there are no race 491 * conditions described in untimeout(9F) manual page since all calls are 492 * strictly serialized. 493 * 494 * TCP_TIMER_RESTART() is a macro that attempts to cancel a pending timeout 495 * stored in tcp_timer_tid and starts a new one using 496 * MSEC_TO_TICK(intvl). It always uses tcp_timer() function as a call-back 497 * and stores the return value of tcp_timeout() in the tcp->tcp_timer_tid 498 * field. 499 * 500 * NOTE: since the timeout cancellation is not guaranteed, the cancelled 501 * call-back may still be called, so it is possible tcp_timer() will be 502 * called several times. This should not be a problem since tcp_timer() 503 * should always check the tcp instance state. 504 * 505 * 506 * IMPLEMENTATION: 507 * 508 * TCP timers are implemented using three-stage process. The call to 509 * tcp_timeout() uses timeout(9F) function to call tcp_timer_callback() function 510 * when the timer expires. The tcp_timer_callback() arranges the call of the 511 * tcp_timer_handler() function via squeue corresponding to the tcp 512 * instance. The tcp_timer_handler() calls actual requested timeout call-back 513 * and passes tcp instance as an argument to it. Information is passed between 514 * stages using the tcp_timer_t structure which contains the connp pointer, the 515 * tcp call-back to call and the timeout id returned by the timeout(9F). 516 * 517 * The tcp_timer_t structure is not used directly, it is embedded in an mblk_t - 518 * like structure that is used to enter an squeue. The mp->b_rptr of this pseudo 519 * mblk points to the beginning of tcp_timer_t structure. The tcp_timeout() 520 * returns the pointer to this mblk. 521 * 522 * The pseudo mblk is allocated from a special tcp_timer_cache kmem cache. It 523 * looks like a normal mblk without actual dblk attached to it. 524 * 525 * To optimize performance each tcp instance holds a small cache of timer 526 * mblocks. In the current implementation it caches up to two timer mblocks per 527 * tcp instance. The cache is preserved over tcp frees and is only freed when 528 * the whole tcp structure is destroyed by its kmem destructor. Since all tcp 529 * timer processing happens on a corresponding squeue, the cache manipulation 530 * does not require any locks. Experiments show that majority of timer mblocks 531 * allocations are satisfied from the tcp cache and do not involve kmem calls. 532 * 533 * The tcp_timeout() places a refhold on the connp instance which guarantees 534 * that it will be present at the time the call-back function fires. The 535 * tcp_timer_handler() drops the reference after calling the call-back, so the 536 * call-back function does not need to manipulate the references explicitly. 537 */ 538 539 typedef struct tcp_timer_s { 540 conn_t *connp; 541 void (*tcpt_proc)(void *); 542 callout_id_t tcpt_tid; 543 } tcp_timer_t; 544 545 static kmem_cache_t *tcp_timercache; 546 kmem_cache_t *tcp_sack_info_cache; 547 kmem_cache_t *tcp_iphc_cache; 548 549 /* 550 * For scalability, we must not run a timer for every TCP connection 551 * in TIME_WAIT state. To see why, consider (for time wait interval of 552 * 4 minutes): 553 * 1000 connections/sec * 240 seconds/time wait = 240,000 active conn's 554 * 555 * This list is ordered by time, so you need only delete from the head 556 * until you get to entries which aren't old enough to delete yet. 557 * The list consists of only the detached TIME_WAIT connections. 558 * 559 * Note that the timer (tcp_time_wait_expire) is started when the tcp_t 560 * becomes detached TIME_WAIT (either by changing the state and already 561 * being detached or the other way around). This means that the TIME_WAIT 562 * state can be extended (up to doubled) if the connection doesn't become 563 * detached for a long time. 564 * 565 * The list manipulations (including tcp_time_wait_next/prev) 566 * are protected by the tcp_time_wait_lock. The content of the 567 * detached TIME_WAIT connections is protected by the normal perimeters. 568 * 569 * This list is per squeue and squeues are shared across the tcp_stack_t's. 570 * Things on tcp_time_wait_head remain associated with the tcp_stack_t 571 * and conn_netstack. 572 * The tcp_t's that are added to tcp_free_list are disassociated and 573 * have NULL tcp_tcps and conn_netstack pointers. 574 */ 575 typedef struct tcp_squeue_priv_s { 576 kmutex_t tcp_time_wait_lock; 577 callout_id_t tcp_time_wait_tid; 578 tcp_t *tcp_time_wait_head; 579 tcp_t *tcp_time_wait_tail; 580 tcp_t *tcp_free_list; 581 uint_t tcp_free_list_cnt; 582 } tcp_squeue_priv_t; 583 584 /* 585 * TCP_TIME_WAIT_DELAY governs how often the time_wait_collector runs. 586 * Running it every 5 seconds seems to give the best results. 587 */ 588 #define TCP_TIME_WAIT_DELAY drv_usectohz(5000000) 589 590 /* 591 * To prevent memory hog, limit the number of entries in tcp_free_list 592 * to 1% of available memory / number of cpus 593 */ 594 uint_t tcp_free_list_max_cnt = 0; 595 596 #define TCP_XMIT_LOWATER 4096 597 #define TCP_XMIT_HIWATER 49152 598 #define TCP_RECV_LOWATER 2048 599 #define TCP_RECV_HIWATER 49152 600 601 /* 602 * PAWS needs a timer for 24 days. This is the number of ticks in 24 days 603 */ 604 #define PAWS_TIMEOUT ((clock_t)(24*24*60*60*hz)) 605 606 #define TIDUSZ 4096 /* transport interface data unit size */ 607 608 /* 609 * Bind hash list size and has function. It has to be a power of 2 for 610 * hashing. 611 */ 612 #define TCP_BIND_FANOUT_SIZE 512 613 #define TCP_BIND_HASH(lport) (ntohs(lport) & (TCP_BIND_FANOUT_SIZE - 1)) 614 /* 615 * Size of listen and acceptor hash list. It has to be a power of 2 for 616 * hashing. 617 */ 618 #define TCP_FANOUT_SIZE 256 619 620 #ifdef _ILP32 621 #define TCP_ACCEPTOR_HASH(accid) \ 622 (((uint_t)(accid) >> 8) & (TCP_FANOUT_SIZE - 1)) 623 #else 624 #define TCP_ACCEPTOR_HASH(accid) \ 625 ((uint_t)(accid) & (TCP_FANOUT_SIZE - 1)) 626 #endif /* _ILP32 */ 627 628 #define IP_ADDR_CACHE_SIZE 2048 629 #define IP_ADDR_CACHE_HASH(faddr) \ 630 (ntohl(faddr) & (IP_ADDR_CACHE_SIZE -1)) 631 632 /* 633 * TCP options struct returned from tcp_parse_options. 634 */ 635 typedef struct tcp_opt_s { 636 uint32_t tcp_opt_mss; 637 uint32_t tcp_opt_wscale; 638 uint32_t tcp_opt_ts_val; 639 uint32_t tcp_opt_ts_ecr; 640 tcp_t *tcp; 641 } tcp_opt_t; 642 643 /* 644 * TCP option struct passing information b/w lisenter and eager. 645 */ 646 struct tcp_options { 647 uint_t to_flags; 648 ssize_t to_boundif; /* IPV6_BOUND_IF */ 649 }; 650 651 #define TCPOPT_BOUNDIF 0x00000001 /* set IPV6_BOUND_IF */ 652 #define TCPOPT_RECVPKTINFO 0x00000002 /* set IPV6_RECVPKTINFO */ 653 654 /* 655 * RFC1323-recommended phrasing of TSTAMP option, for easier parsing 656 */ 657 658 #ifdef _BIG_ENDIAN 659 #define TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \ 660 (TCPOPT_TSTAMP << 8) | 10) 661 #else 662 #define TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \ 663 (TCPOPT_NOP << 8) | TCPOPT_NOP) 664 #endif 665 666 /* 667 * Flags returned from tcp_parse_options. 668 */ 669 #define TCP_OPT_MSS_PRESENT 1 670 #define TCP_OPT_WSCALE_PRESENT 2 671 #define TCP_OPT_TSTAMP_PRESENT 4 672 #define TCP_OPT_SACK_OK_PRESENT 8 673 #define TCP_OPT_SACK_PRESENT 16 674 675 /* TCP option length */ 676 #define TCPOPT_NOP_LEN 1 677 #define TCPOPT_MAXSEG_LEN 4 678 #define TCPOPT_WS_LEN 3 679 #define TCPOPT_REAL_WS_LEN (TCPOPT_WS_LEN+1) 680 #define TCPOPT_TSTAMP_LEN 10 681 #define TCPOPT_REAL_TS_LEN (TCPOPT_TSTAMP_LEN+2) 682 #define TCPOPT_SACK_OK_LEN 2 683 #define TCPOPT_REAL_SACK_OK_LEN (TCPOPT_SACK_OK_LEN+2) 684 #define TCPOPT_REAL_SACK_LEN 4 685 #define TCPOPT_MAX_SACK_LEN 36 686 #define TCPOPT_HEADER_LEN 2 687 688 /* TCP cwnd burst factor. */ 689 #define TCP_CWND_INFINITE 65535 690 #define TCP_CWND_SS 3 691 #define TCP_CWND_NORMAL 5 692 693 /* Maximum TCP initial cwin (start/restart). */ 694 #define TCP_MAX_INIT_CWND 8 695 696 /* 697 * Initialize cwnd according to RFC 3390. def_max_init_cwnd is 698 * either tcp_slow_start_initial or tcp_slow_start_after idle 699 * depending on the caller. If the upper layer has not used the 700 * TCP_INIT_CWND option to change the initial cwnd, tcp_init_cwnd 701 * should be 0 and we use the formula in RFC 3390 to set tcp_cwnd. 702 * If the upper layer has changed set the tcp_init_cwnd, just use 703 * it to calculate the tcp_cwnd. 704 */ 705 #define SET_TCP_INIT_CWND(tcp, mss, def_max_init_cwnd) \ 706 { \ 707 if ((tcp)->tcp_init_cwnd == 0) { \ 708 (tcp)->tcp_cwnd = MIN(def_max_init_cwnd * (mss), \ 709 MIN(4 * (mss), MAX(2 * (mss), 4380 / (mss) * (mss)))); \ 710 } else { \ 711 (tcp)->tcp_cwnd = (tcp)->tcp_init_cwnd * (mss); \ 712 } \ 713 tcp->tcp_cwnd_cnt = 0; \ 714 } 715 716 /* TCP Timer control structure */ 717 typedef struct tcpt_s { 718 pfv_t tcpt_pfv; /* The routine we are to call */ 719 tcp_t *tcpt_tcp; /* The parameter we are to pass in */ 720 } tcpt_t; 721 722 /* 723 * Functions called directly via squeue having a prototype of edesc_t. 724 */ 725 void tcp_conn_request(void *arg, mblk_t *mp, void *arg2); 726 static void tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2); 727 void tcp_accept_finish(void *arg, mblk_t *mp, void *arg2); 728 static void tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2); 729 static void tcp_wput_proto(void *arg, mblk_t *mp, void *arg2); 730 void tcp_input(void *arg, mblk_t *mp, void *arg2); 731 void tcp_rput_data(void *arg, mblk_t *mp, void *arg2); 732 static void tcp_close_output(void *arg, mblk_t *mp, void *arg2); 733 void tcp_output(void *arg, mblk_t *mp, void *arg2); 734 void tcp_output_urgent(void *arg, mblk_t *mp, void *arg2); 735 static void tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2); 736 static void tcp_timer_handler(void *arg, mblk_t *mp, void *arg2); 737 static void tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2); 738 739 740 /* Prototype for TCP functions */ 741 static void tcp_random_init(void); 742 int tcp_random(void); 743 static void tcp_tli_accept(tcp_t *tcp, mblk_t *mp); 744 static void tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, 745 tcp_t *eager); 746 static int tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp); 747 static in_port_t tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, 748 int reuseaddr, boolean_t quick_connect, boolean_t bind_to_req_port_only, 749 boolean_t user_specified); 750 static void tcp_closei_local(tcp_t *tcp); 751 static void tcp_close_detached(tcp_t *tcp); 752 static boolean_t tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, 753 mblk_t *idmp, mblk_t **defermp); 754 static void tcp_tpi_connect(tcp_t *tcp, mblk_t *mp); 755 static int tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, 756 in_port_t dstport, uint_t srcid, cred_t *cr, pid_t pid); 757 static int tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, 758 in_port_t dstport, uint32_t flowinfo, uint_t srcid, 759 uint32_t scope_id, cred_t *cr, pid_t pid); 760 static int tcp_clean_death(tcp_t *tcp, int err, uint8_t tag); 761 static void tcp_def_q_set(tcp_t *tcp, mblk_t *mp); 762 static void tcp_disconnect(tcp_t *tcp, mblk_t *mp); 763 static char *tcp_display(tcp_t *tcp, char *, char); 764 static boolean_t tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum); 765 static void tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only); 766 static void tcp_eager_unlink(tcp_t *tcp); 767 static void tcp_err_ack(tcp_t *tcp, mblk_t *mp, int tlierr, 768 int unixerr); 769 static void tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, 770 int tlierr, int unixerr); 771 static int tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, 772 cred_t *cr); 773 static int tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, 774 char *value, caddr_t cp, cred_t *cr); 775 static int tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, 776 char *value, caddr_t cp, cred_t *cr); 777 static int tcp_tpistate(tcp_t *tcp); 778 static void tcp_bind_hash_insert(tf_t *tf, tcp_t *tcp, 779 int caller_holds_lock); 780 static void tcp_bind_hash_remove(tcp_t *tcp); 781 static tcp_t *tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *); 782 void tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp); 783 static void tcp_acceptor_hash_remove(tcp_t *tcp); 784 static void tcp_capability_req(tcp_t *tcp, mblk_t *mp); 785 static void tcp_info_req(tcp_t *tcp, mblk_t *mp); 786 static void tcp_addr_req(tcp_t *tcp, mblk_t *mp); 787 static void tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *mp); 788 void tcp_g_q_setup(tcp_stack_t *); 789 void tcp_g_q_create(tcp_stack_t *); 790 void tcp_g_q_destroy(tcp_stack_t *); 791 static int tcp_header_init_ipv4(tcp_t *tcp); 792 static int tcp_header_init_ipv6(tcp_t *tcp); 793 int tcp_init(tcp_t *tcp, queue_t *q); 794 static int tcp_init_values(tcp_t *tcp); 795 static mblk_t *tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic); 796 static void tcp_ip_ire_mark_advice(tcp_t *tcp); 797 static void tcp_ip_notify(tcp_t *tcp); 798 static mblk_t *tcp_ire_mp(mblk_t **mpp); 799 static void tcp_iss_init(tcp_t *tcp); 800 static void tcp_keepalive_killer(void *arg); 801 static int tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt); 802 static void tcp_mss_set(tcp_t *tcp, uint32_t size, boolean_t do_ss); 803 static int tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, 804 int *do_disconnectp, int *t_errorp, int *sys_errorp); 805 static boolean_t tcp_allow_connopt_set(int level, int name); 806 int tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr); 807 int tcp_tpi_opt_get(queue_t *q, int level, int name, uchar_t *ptr); 808 int tcp_tpi_opt_set(queue_t *q, uint_t optset_context, int level, 809 int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp, 810 uchar_t *outvalp, void *thisdg_attrs, cred_t *cr, 811 mblk_t *mblk); 812 static void tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha); 813 static int tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, 814 uchar_t *ptr, uint_t len); 815 static int tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr); 816 static boolean_t tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt, 817 tcp_stack_t *); 818 static int tcp_param_set(queue_t *q, mblk_t *mp, char *value, 819 caddr_t cp, cred_t *cr); 820 static int tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, 821 caddr_t cp, cred_t *cr); 822 static void tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *); 823 static int tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, 824 caddr_t cp, cred_t *cr); 825 static void tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_cnt); 826 static mblk_t *tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start); 827 static void tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp); 828 static void tcp_reinit(tcp_t *tcp); 829 static void tcp_reinit_values(tcp_t *tcp); 830 831 static uint_t tcp_rwnd_reopen(tcp_t *tcp); 832 static uint_t tcp_rcv_drain(tcp_t *tcp); 833 static void tcp_sack_rxmit(tcp_t *tcp, uint_t *flags); 834 static boolean_t tcp_send_rst_chk(tcp_stack_t *); 835 static void tcp_ss_rexmit(tcp_t *tcp); 836 static mblk_t *tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp); 837 static void tcp_process_options(tcp_t *, tcph_t *); 838 static void tcp_rput_common(tcp_t *tcp, mblk_t *mp); 839 static void tcp_rsrv(queue_t *q); 840 static int tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd); 841 static int tcp_snmp_state(tcp_t *tcp); 842 static void tcp_timer(void *arg); 843 static void tcp_timer_callback(void *); 844 static in_port_t tcp_update_next_port(in_port_t port, const tcp_t *tcp, 845 boolean_t random); 846 static in_port_t tcp_get_next_priv_port(const tcp_t *); 847 static void tcp_wput_sock(queue_t *q, mblk_t *mp); 848 static void tcp_wput_fallback(queue_t *q, mblk_t *mp); 849 void tcp_tpi_accept(queue_t *q, mblk_t *mp); 850 static void tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent); 851 static void tcp_wput_flush(tcp_t *tcp, mblk_t *mp); 852 static void tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp); 853 static int tcp_send(queue_t *q, tcp_t *tcp, const int mss, 854 const int tcp_hdr_len, const int tcp_tcp_hdr_len, 855 const int num_sack_blk, int *usable, uint_t *snxt, 856 int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 857 const int mdt_thres); 858 static int tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, 859 const int tcp_hdr_len, const int tcp_tcp_hdr_len, 860 const int num_sack_blk, int *usable, uint_t *snxt, 861 int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 862 const int mdt_thres); 863 static void tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, 864 int num_sack_blk); 865 static void tcp_wsrv(queue_t *q); 866 static int tcp_xmit_end(tcp_t *tcp); 867 static void tcp_ack_timer(void *arg); 868 static mblk_t *tcp_ack_mp(tcp_t *tcp); 869 static void tcp_xmit_early_reset(char *str, mblk_t *mp, 870 uint32_t seq, uint32_t ack, int ctl, uint_t ip_hdr_len, 871 zoneid_t zoneid, tcp_stack_t *, conn_t *connp); 872 static void tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, 873 uint32_t ack, int ctl); 874 static int setmaxps(queue_t *q, int maxpsz); 875 static void tcp_set_rto(tcp_t *, time_t); 876 static boolean_t tcp_check_policy(tcp_t *, mblk_t *, ipha_t *, ip6_t *, 877 boolean_t, boolean_t); 878 static void tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, 879 boolean_t ipsec_mctl); 880 static int tcp_build_hdrs(tcp_t *); 881 static void tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, 882 uint32_t seg_seq, uint32_t seg_ack, int seg_len, 883 tcph_t *tcph); 884 boolean_t tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp); 885 static mblk_t *tcp_mdt_info_mp(mblk_t *); 886 static void tcp_mdt_update(tcp_t *, ill_mdt_capab_t *, boolean_t); 887 static int tcp_mdt_add_attrs(multidata_t *, const mblk_t *, 888 const boolean_t, const uint32_t, const uint32_t, 889 const uint32_t, const uint32_t, tcp_stack_t *); 890 static void tcp_multisend_data(tcp_t *, ire_t *, const ill_t *, mblk_t *, 891 const uint_t, const uint_t, boolean_t *); 892 static mblk_t *tcp_lso_info_mp(mblk_t *); 893 static void tcp_lso_update(tcp_t *, ill_lso_capab_t *); 894 static void tcp_send_data(tcp_t *, queue_t *, mblk_t *); 895 extern mblk_t *tcp_timermp_alloc(int); 896 extern void tcp_timermp_free(tcp_t *); 897 static void tcp_timer_free(tcp_t *tcp, mblk_t *mp); 898 static void tcp_stop_lingering(tcp_t *tcp); 899 static void tcp_close_linger_timeout(void *arg); 900 static void *tcp_stack_init(netstackid_t stackid, netstack_t *ns); 901 static void tcp_stack_shutdown(netstackid_t stackid, void *arg); 902 static void tcp_stack_fini(netstackid_t stackid, void *arg); 903 static void *tcp_g_kstat_init(tcp_g_stat_t *); 904 static void tcp_g_kstat_fini(kstat_t *); 905 static void *tcp_kstat_init(netstackid_t, tcp_stack_t *); 906 static void tcp_kstat_fini(netstackid_t, kstat_t *); 907 static void *tcp_kstat2_init(netstackid_t, tcp_stat_t *); 908 static void tcp_kstat2_fini(netstackid_t, kstat_t *); 909 static int tcp_kstat_update(kstat_t *kp, int rw); 910 void tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp); 911 static int tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 912 tcph_t *tcph, uint_t ipvers, mblk_t *idmp); 913 static int tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha, 914 tcph_t *tcph, mblk_t *idmp); 915 static int tcp_squeue_switch(int); 916 917 static int tcp_open(queue_t *, dev_t *, int, int, cred_t *, boolean_t); 918 static int tcp_openv4(queue_t *, dev_t *, int, int, cred_t *); 919 static int tcp_openv6(queue_t *, dev_t *, int, int, cred_t *); 920 static int tcp_tpi_close(queue_t *, int); 921 static int tcpclose_accept(queue_t *); 922 923 static void tcp_squeue_add(squeue_t *); 924 static boolean_t tcp_zcopy_check(tcp_t *); 925 static void tcp_zcopy_notify(tcp_t *); 926 static mblk_t *tcp_zcopy_disable(tcp_t *, mblk_t *); 927 static mblk_t *tcp_zcopy_backoff(tcp_t *, mblk_t *, int); 928 static void tcp_ire_ill_check(tcp_t *, ire_t *, ill_t *, boolean_t); 929 930 extern void tcp_kssl_input(tcp_t *, mblk_t *); 931 932 void tcp_eager_kill(void *arg, mblk_t *mp, void *arg2); 933 void tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2); 934 935 static int tcp_accept(sock_lower_handle_t, sock_lower_handle_t, 936 sock_upper_handle_t, cred_t *); 937 static int tcp_listen(sock_lower_handle_t, int, cred_t *); 938 static int tcp_post_ip_bind(tcp_t *, mblk_t *, int, cred_t *, pid_t); 939 static int tcp_do_listen(conn_t *, int, cred_t *); 940 static int tcp_do_connect(conn_t *, const struct sockaddr *, socklen_t, 941 cred_t *, pid_t); 942 static int tcp_do_bind(conn_t *, struct sockaddr *, socklen_t, cred_t *, 943 boolean_t); 944 static int tcp_do_unbind(conn_t *); 945 static int tcp_bind_check(conn_t *, struct sockaddr *, socklen_t, cred_t *, 946 boolean_t); 947 948 static void tcp_ulp_newconn(conn_t *, conn_t *, mblk_t *); 949 950 /* 951 * Routines related to the TCP_IOC_ABORT_CONN ioctl command. 952 * 953 * TCP_IOC_ABORT_CONN is a non-transparent ioctl command used for aborting 954 * TCP connections. To invoke this ioctl, a tcp_ioc_abort_conn_t structure 955 * (defined in tcp.h) needs to be filled in and passed into the kernel 956 * via an I_STR ioctl command (see streamio(7I)). The tcp_ioc_abort_conn_t 957 * structure contains the four-tuple of a TCP connection and a range of TCP 958 * states (specified by ac_start and ac_end). The use of wildcard addresses 959 * and ports is allowed. Connections with a matching four tuple and a state 960 * within the specified range will be aborted. The valid states for the 961 * ac_start and ac_end fields are in the range TCPS_SYN_SENT to TCPS_TIME_WAIT, 962 * inclusive. 963 * 964 * An application which has its connection aborted by this ioctl will receive 965 * an error that is dependent on the connection state at the time of the abort. 966 * If the connection state is < TCPS_TIME_WAIT, an application should behave as 967 * though a RST packet has been received. If the connection state is equal to 968 * TCPS_TIME_WAIT, the 2MSL timeout will immediately be canceled by the kernel 969 * and all resources associated with the connection will be freed. 970 */ 971 static mblk_t *tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *, tcp_t *); 972 static void tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *); 973 static void tcp_ioctl_abort_handler(tcp_t *, mblk_t *); 974 static int tcp_ioctl_abort(tcp_ioc_abort_conn_t *, tcp_stack_t *tcps); 975 static void tcp_ioctl_abort_conn(queue_t *, mblk_t *); 976 static int tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *, int, int *, 977 boolean_t, tcp_stack_t *); 978 979 static struct module_info tcp_rinfo = { 980 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER 981 }; 982 983 static struct module_info tcp_winfo = { 984 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16 985 }; 986 987 /* 988 * Entry points for TCP as a device. The normal case which supports 989 * the TCP functionality. 990 * We have separate open functions for the /dev/tcp and /dev/tcp6 devices. 991 */ 992 struct qinit tcp_rinitv4 = { 993 NULL, (pfi_t)tcp_rsrv, tcp_openv4, tcp_tpi_close, NULL, &tcp_rinfo 994 }; 995 996 struct qinit tcp_rinitv6 = { 997 NULL, (pfi_t)tcp_rsrv, tcp_openv6, tcp_tpi_close, NULL, &tcp_rinfo 998 }; 999 1000 struct qinit tcp_winit = { 1001 (pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 1002 }; 1003 1004 /* Initial entry point for TCP in socket mode. */ 1005 struct qinit tcp_sock_winit = { 1006 (pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 1007 }; 1008 1009 /* TCP entry point during fallback */ 1010 struct qinit tcp_fallback_sock_winit = { 1011 (pfi_t)tcp_wput_fallback, NULL, NULL, NULL, NULL, &tcp_winfo 1012 }; 1013 1014 /* 1015 * Entry points for TCP as a acceptor STREAM opened by sockfs when doing 1016 * an accept. Avoid allocating data structures since eager has already 1017 * been created. 1018 */ 1019 struct qinit tcp_acceptor_rinit = { 1020 NULL, (pfi_t)tcp_rsrv, NULL, tcpclose_accept, NULL, &tcp_winfo 1021 }; 1022 1023 struct qinit tcp_acceptor_winit = { 1024 (pfi_t)tcp_tpi_accept, NULL, NULL, NULL, NULL, &tcp_winfo 1025 }; 1026 1027 /* 1028 * Entry points for TCP loopback (read side only) 1029 * The open routine is only used for reopens, thus no need to 1030 * have a separate one for tcp_openv6. 1031 */ 1032 struct qinit tcp_loopback_rinit = { 1033 (pfi_t)0, (pfi_t)tcp_rsrv, tcp_openv4, tcp_tpi_close, (pfi_t)0, 1034 &tcp_rinfo, NULL, tcp_fuse_rrw, tcp_fuse_rinfop, STRUIOT_STANDARD 1035 }; 1036 1037 /* For AF_INET aka /dev/tcp */ 1038 struct streamtab tcpinfov4 = { 1039 &tcp_rinitv4, &tcp_winit 1040 }; 1041 1042 /* For AF_INET6 aka /dev/tcp6 */ 1043 struct streamtab tcpinfov6 = { 1044 &tcp_rinitv6, &tcp_winit 1045 }; 1046 1047 sock_downcalls_t sock_tcp_downcalls; 1048 1049 /* 1050 * Have to ensure that tcp_g_q_close is not done by an 1051 * interrupt thread. 1052 */ 1053 static taskq_t *tcp_taskq; 1054 1055 /* Setable only in /etc/system. Move to ndd? */ 1056 boolean_t tcp_icmp_source_quench = B_FALSE; 1057 1058 /* 1059 * Following assumes TPI alignment requirements stay along 32 bit 1060 * boundaries 1061 */ 1062 #define ROUNDUP32(x) \ 1063 (((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1)) 1064 1065 /* Template for response to info request. */ 1066 static struct T_info_ack tcp_g_t_info_ack = { 1067 T_INFO_ACK, /* PRIM_type */ 1068 0, /* TSDU_size */ 1069 T_INFINITE, /* ETSDU_size */ 1070 T_INVALID, /* CDATA_size */ 1071 T_INVALID, /* DDATA_size */ 1072 sizeof (sin_t), /* ADDR_size */ 1073 0, /* OPT_size - not initialized here */ 1074 TIDUSZ, /* TIDU_size */ 1075 T_COTS_ORD, /* SERV_type */ 1076 TCPS_IDLE, /* CURRENT_state */ 1077 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 1078 }; 1079 1080 static struct T_info_ack tcp_g_t_info_ack_v6 = { 1081 T_INFO_ACK, /* PRIM_type */ 1082 0, /* TSDU_size */ 1083 T_INFINITE, /* ETSDU_size */ 1084 T_INVALID, /* CDATA_size */ 1085 T_INVALID, /* DDATA_size */ 1086 sizeof (sin6_t), /* ADDR_size */ 1087 0, /* OPT_size - not initialized here */ 1088 TIDUSZ, /* TIDU_size */ 1089 T_COTS_ORD, /* SERV_type */ 1090 TCPS_IDLE, /* CURRENT_state */ 1091 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 1092 }; 1093 1094 #define MS 1L 1095 #define SECONDS (1000 * MS) 1096 #define MINUTES (60 * SECONDS) 1097 #define HOURS (60 * MINUTES) 1098 #define DAYS (24 * HOURS) 1099 1100 #define PARAM_MAX (~(uint32_t)0) 1101 1102 /* Max size IP datagram is 64k - 1 */ 1103 #define TCP_MSS_MAX_IPV4 (IP_MAXPACKET - (sizeof (ipha_t) + sizeof (tcph_t))) 1104 #define TCP_MSS_MAX_IPV6 (IP_MAXPACKET - (sizeof (ip6_t) + sizeof (tcph_t))) 1105 /* Max of the above */ 1106 #define TCP_MSS_MAX TCP_MSS_MAX_IPV4 1107 1108 /* Largest TCP port number */ 1109 #define TCP_MAX_PORT (64 * 1024 - 1) 1110 1111 /* 1112 * tcp_wroff_xtra is the extra space in front of TCP/IP header for link 1113 * layer header. It has to be a multiple of 4. 1114 */ 1115 static tcpparam_t lcl_tcp_wroff_xtra_param = { 0, 256, 32, "tcp_wroff_xtra" }; 1116 #define tcps_wroff_xtra tcps_wroff_xtra_param->tcp_param_val 1117 1118 /* 1119 * All of these are alterable, within the min/max values given, at run time. 1120 * Note that the default value of "tcp_time_wait_interval" is four minutes, 1121 * per the TCP spec. 1122 */ 1123 /* BEGIN CSTYLED */ 1124 static tcpparam_t lcl_tcp_param_arr[] = { 1125 /*min max value name */ 1126 { 1*SECONDS, 10*MINUTES, 1*MINUTES, "tcp_time_wait_interval"}, 1127 { 1, PARAM_MAX, 128, "tcp_conn_req_max_q" }, 1128 { 0, PARAM_MAX, 1024, "tcp_conn_req_max_q0" }, 1129 { 1, 1024, 1, "tcp_conn_req_min" }, 1130 { 0*MS, 20*SECONDS, 0*MS, "tcp_conn_grace_period" }, 1131 { 128, (1<<30), 1024*1024, "tcp_cwnd_max" }, 1132 { 0, 10, 0, "tcp_debug" }, 1133 { 1024, (32*1024), 1024, "tcp_smallest_nonpriv_port"}, 1134 { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_cinterval"}, 1135 { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_linterval"}, 1136 { 500*MS, PARAM_MAX, 8*MINUTES, "tcp_ip_abort_interval"}, 1137 { 1*SECONDS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_cinterval"}, 1138 { 500*MS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_interval"}, 1139 { 1, 255, 64, "tcp_ipv4_ttl"}, 1140 { 10*SECONDS, 10*DAYS, 2*HOURS, "tcp_keepalive_interval"}, 1141 { 0, 100, 10, "tcp_maxpsz_multiplier" }, 1142 { 1, TCP_MSS_MAX_IPV4, 536, "tcp_mss_def_ipv4"}, 1143 { 1, TCP_MSS_MAX_IPV4, TCP_MSS_MAX_IPV4, "tcp_mss_max_ipv4"}, 1144 { 1, TCP_MSS_MAX, 108, "tcp_mss_min"}, 1145 { 1, (64*1024)-1, (4*1024)-1, "tcp_naglim_def"}, 1146 { 1*MS, 20*SECONDS, 3*SECONDS, "tcp_rexmit_interval_initial"}, 1147 { 1*MS, 2*HOURS, 60*SECONDS, "tcp_rexmit_interval_max"}, 1148 { 1*MS, 2*HOURS, 400*MS, "tcp_rexmit_interval_min"}, 1149 { 1*MS, 1*MINUTES, 100*MS, "tcp_deferred_ack_interval" }, 1150 { 0, 16, 0, "tcp_snd_lowat_fraction" }, 1151 { 0, 128000, 0, "tcp_sth_rcv_hiwat" }, 1152 { 0, 128000, 0, "tcp_sth_rcv_lowat" }, 1153 { 1, 10000, 3, "tcp_dupack_fast_retransmit" }, 1154 { 0, 1, 0, "tcp_ignore_path_mtu" }, 1155 { 1024, TCP_MAX_PORT, 32*1024, "tcp_smallest_anon_port"}, 1156 { 1024, TCP_MAX_PORT, TCP_MAX_PORT, "tcp_largest_anon_port"}, 1157 { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_HIWATER,"tcp_xmit_hiwat"}, 1158 { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_LOWATER,"tcp_xmit_lowat"}, 1159 { TCP_RECV_LOWATER, (1<<30), TCP_RECV_HIWATER,"tcp_recv_hiwat"}, 1160 { 1, 65536, 4, "tcp_recv_hiwat_minmss"}, 1161 { 1*SECONDS, PARAM_MAX, 675*SECONDS, "tcp_fin_wait_2_flush_interval"}, 1162 { 8192, (1<<30), 1024*1024, "tcp_max_buf"}, 1163 /* 1164 * Question: What default value should I set for tcp_strong_iss? 1165 */ 1166 { 0, 2, 1, "tcp_strong_iss"}, 1167 { 0, 65536, 20, "tcp_rtt_updates"}, 1168 { 0, 1, 1, "tcp_wscale_always"}, 1169 { 0, 1, 0, "tcp_tstamp_always"}, 1170 { 0, 1, 1, "tcp_tstamp_if_wscale"}, 1171 { 0*MS, 2*HOURS, 0*MS, "tcp_rexmit_interval_extra"}, 1172 { 0, 16, 2, "tcp_deferred_acks_max"}, 1173 { 1, 16384, 4, "tcp_slow_start_after_idle"}, 1174 { 1, 4, 4, "tcp_slow_start_initial"}, 1175 { 0, 2, 2, "tcp_sack_permitted"}, 1176 { 0, 1, 1, "tcp_compression_enabled"}, 1177 { 0, IPV6_MAX_HOPS, IPV6_DEFAULT_HOPS, "tcp_ipv6_hoplimit"}, 1178 { 1, TCP_MSS_MAX_IPV6, 1220, "tcp_mss_def_ipv6"}, 1179 { 1, TCP_MSS_MAX_IPV6, TCP_MSS_MAX_IPV6, "tcp_mss_max_ipv6"}, 1180 { 0, 1, 0, "tcp_rev_src_routes"}, 1181 { 10*MS, 500*MS, 50*MS, "tcp_local_dack_interval"}, 1182 { 0, 16, 8, "tcp_local_dacks_max"}, 1183 { 0, 2, 1, "tcp_ecn_permitted"}, 1184 { 0, 1, 1, "tcp_rst_sent_rate_enabled"}, 1185 { 0, PARAM_MAX, 40, "tcp_rst_sent_rate"}, 1186 { 0, 100*MS, 50*MS, "tcp_push_timer_interval"}, 1187 { 0, 1, 0, "tcp_use_smss_as_mss_opt"}, 1188 { 0, PARAM_MAX, 8*MINUTES, "tcp_keepalive_abort_interval"}, 1189 }; 1190 /* END CSTYLED */ 1191 1192 /* 1193 * tcp_mdt_hdr_{head,tail}_min are the leading and trailing spaces of 1194 * each header fragment in the header buffer. Each parameter value has 1195 * to be a multiple of 4 (32-bit aligned). 1196 */ 1197 static tcpparam_t lcl_tcp_mdt_head_param = 1198 { 32, 256, 32, "tcp_mdt_hdr_head_min" }; 1199 static tcpparam_t lcl_tcp_mdt_tail_param = 1200 { 0, 256, 32, "tcp_mdt_hdr_tail_min" }; 1201 #define tcps_mdt_hdr_head_min tcps_mdt_head_param->tcp_param_val 1202 #define tcps_mdt_hdr_tail_min tcps_mdt_tail_param->tcp_param_val 1203 1204 /* 1205 * tcp_mdt_max_pbufs is the upper limit value that tcp uses to figure out 1206 * the maximum number of payload buffers associated per Multidata. 1207 */ 1208 static tcpparam_t lcl_tcp_mdt_max_pbufs_param = 1209 { 1, MULTIDATA_MAX_PBUFS, MULTIDATA_MAX_PBUFS, "tcp_mdt_max_pbufs" }; 1210 #define tcps_mdt_max_pbufs tcps_mdt_max_pbufs_param->tcp_param_val 1211 1212 /* Round up the value to the nearest mss. */ 1213 #define MSS_ROUNDUP(value, mss) ((((value) - 1) / (mss) + 1) * (mss)) 1214 1215 /* 1216 * Set ECN capable transport (ECT) code point in IP header. 1217 * 1218 * Note that there are 2 ECT code points '01' and '10', which are called 1219 * ECT(1) and ECT(0) respectively. Here we follow the original ECT code 1220 * point ECT(0) for TCP as described in RFC 2481. 1221 */ 1222 #define SET_ECT(tcp, iph) \ 1223 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1224 /* We need to clear the code point first. */ \ 1225 ((ipha_t *)(iph))->ipha_type_of_service &= 0xFC; \ 1226 ((ipha_t *)(iph))->ipha_type_of_service |= IPH_ECN_ECT0; \ 1227 } else { \ 1228 ((ip6_t *)(iph))->ip6_vcf &= htonl(0xFFCFFFFF); \ 1229 ((ip6_t *)(iph))->ip6_vcf |= htonl(IPH_ECN_ECT0 << 20); \ 1230 } 1231 1232 /* 1233 * The format argument to pass to tcp_display(). 1234 * DISP_PORT_ONLY means that the returned string has only port info. 1235 * DISP_ADDR_AND_PORT means that the returned string also contains the 1236 * remote and local IP address. 1237 */ 1238 #define DISP_PORT_ONLY 1 1239 #define DISP_ADDR_AND_PORT 2 1240 1241 #define IS_VMLOANED_MBLK(mp) \ 1242 (((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0) 1243 1244 1245 /* Enable or disable b_cont M_MULTIDATA chaining for MDT. */ 1246 boolean_t tcp_mdt_chain = B_TRUE; 1247 1248 /* 1249 * MDT threshold in the form of effective send MSS multiplier; we take 1250 * the MDT path if the amount of unsent data exceeds the threshold value 1251 * (default threshold is 1*SMSS). 1252 */ 1253 uint_t tcp_mdt_smss_threshold = 1; 1254 1255 uint32_t do_tcpzcopy = 1; /* 0: disable, 1: enable, 2: force */ 1256 1257 /* 1258 * Forces all connections to obey the value of the tcps_maxpsz_multiplier 1259 * tunable settable via NDD. Otherwise, the per-connection behavior is 1260 * determined dynamically during tcp_adapt_ire(), which is the default. 1261 */ 1262 boolean_t tcp_static_maxpsz = B_FALSE; 1263 1264 /* Setable in /etc/system */ 1265 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */ 1266 uint32_t tcp_random_anon_port = 1; 1267 1268 /* 1269 * To reach to an eager in Q0 which can be dropped due to an incoming 1270 * new SYN request when Q0 is full, a new doubly linked list is 1271 * introduced. This list allows to select an eager from Q0 in O(1) time. 1272 * This is needed to avoid spending too much time walking through the 1273 * long list of eagers in Q0 when tcp_drop_q0() is called. Each member of 1274 * this new list has to be a member of Q0. 1275 * This list is headed by listener's tcp_t. When the list is empty, 1276 * both the pointers - tcp_eager_next_drop_q0 and tcp_eager_prev_drop_q0, 1277 * of listener's tcp_t point to listener's tcp_t itself. 1278 * 1279 * Given an eager in Q0 and a listener, MAKE_DROPPABLE() puts the eager 1280 * in the list. MAKE_UNDROPPABLE() takes the eager out of the list. 1281 * These macros do not affect the eager's membership to Q0. 1282 */ 1283 1284 1285 #define MAKE_DROPPABLE(listener, eager) \ 1286 if ((eager)->tcp_eager_next_drop_q0 == NULL) { \ 1287 (listener)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0\ 1288 = (eager); \ 1289 (eager)->tcp_eager_prev_drop_q0 = (listener); \ 1290 (eager)->tcp_eager_next_drop_q0 = \ 1291 (listener)->tcp_eager_next_drop_q0; \ 1292 (listener)->tcp_eager_next_drop_q0 = (eager); \ 1293 } 1294 1295 #define MAKE_UNDROPPABLE(eager) \ 1296 if ((eager)->tcp_eager_next_drop_q0 != NULL) { \ 1297 (eager)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0 \ 1298 = (eager)->tcp_eager_prev_drop_q0; \ 1299 (eager)->tcp_eager_prev_drop_q0->tcp_eager_next_drop_q0 \ 1300 = (eager)->tcp_eager_next_drop_q0; \ 1301 (eager)->tcp_eager_prev_drop_q0 = NULL; \ 1302 (eager)->tcp_eager_next_drop_q0 = NULL; \ 1303 } 1304 1305 /* 1306 * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more 1307 * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent 1308 * data, TCP will not respond with an ACK. RFC 793 requires that 1309 * TCP responds with an ACK for such a bogus ACK. By not following 1310 * the RFC, we prevent TCP from getting into an ACK storm if somehow 1311 * an attacker successfully spoofs an acceptable segment to our 1312 * peer; or when our peer is "confused." 1313 */ 1314 uint32_t tcp_drop_ack_unsent_cnt = 10; 1315 1316 /* 1317 * Hook functions to enable cluster networking 1318 * On non-clustered systems these vectors must always be NULL. 1319 */ 1320 1321 void (*cl_inet_listen)(netstackid_t stack_id, uint8_t protocol, 1322 sa_family_t addr_family, uint8_t *laddrp, 1323 in_port_t lport, void *args) = NULL; 1324 void (*cl_inet_unlisten)(netstackid_t stack_id, uint8_t protocol, 1325 sa_family_t addr_family, uint8_t *laddrp, 1326 in_port_t lport, void *args) = NULL; 1327 1328 int (*cl_inet_connect2)(netstackid_t stack_id, uint8_t protocol, 1329 boolean_t is_outgoing, 1330 sa_family_t addr_family, 1331 uint8_t *laddrp, in_port_t lport, 1332 uint8_t *faddrp, in_port_t fport, 1333 void *args) = NULL; 1334 1335 void (*cl_inet_disconnect)(netstackid_t stack_id, uint8_t protocol, 1336 sa_family_t addr_family, uint8_t *laddrp, 1337 in_port_t lport, uint8_t *faddrp, 1338 in_port_t fport, void *args) = NULL; 1339 1340 /* 1341 * The following are defined in ip.c 1342 */ 1343 extern int (*cl_inet_isclusterwide)(netstackid_t stack_id, uint8_t protocol, 1344 sa_family_t addr_family, uint8_t *laddrp, 1345 void *args); 1346 extern uint32_t (*cl_inet_ipident)(netstackid_t stack_id, uint8_t protocol, 1347 sa_family_t addr_family, uint8_t *laddrp, 1348 uint8_t *faddrp, void *args); 1349 1350 1351 /* 1352 * int CL_INET_CONNECT(conn_t *cp, tcp_t *tcp, boolean_t is_outgoing, int err) 1353 */ 1354 #define CL_INET_CONNECT(connp, tcp, is_outgoing, err) { \ 1355 (err) = 0; \ 1356 if (cl_inet_connect2 != NULL) { \ 1357 /* \ 1358 * Running in cluster mode - register active connection \ 1359 * information \ 1360 */ \ 1361 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1362 if ((tcp)->tcp_ipha->ipha_src != 0) { \ 1363 (err) = (*cl_inet_connect2)( \ 1364 (connp)->conn_netstack->netstack_stackid,\ 1365 IPPROTO_TCP, is_outgoing, AF_INET, \ 1366 (uint8_t *)(&((tcp)->tcp_ipha->ipha_src)),\ 1367 (in_port_t)(tcp)->tcp_lport, \ 1368 (uint8_t *)(&((tcp)->tcp_ipha->ipha_dst)),\ 1369 (in_port_t)(tcp)->tcp_fport, NULL); \ 1370 } \ 1371 } else { \ 1372 if (!IN6_IS_ADDR_UNSPECIFIED( \ 1373 &(tcp)->tcp_ip6h->ip6_src)) { \ 1374 (err) = (*cl_inet_connect2)( \ 1375 (connp)->conn_netstack->netstack_stackid,\ 1376 IPPROTO_TCP, is_outgoing, AF_INET6, \ 1377 (uint8_t *)(&((tcp)->tcp_ip6h->ip6_src)),\ 1378 (in_port_t)(tcp)->tcp_lport, \ 1379 (uint8_t *)(&((tcp)->tcp_ip6h->ip6_dst)),\ 1380 (in_port_t)(tcp)->tcp_fport, NULL); \ 1381 } \ 1382 } \ 1383 } \ 1384 } 1385 1386 #define CL_INET_DISCONNECT(connp, tcp) { \ 1387 if (cl_inet_disconnect != NULL) { \ 1388 /* \ 1389 * Running in cluster mode - deregister active \ 1390 * connection information \ 1391 */ \ 1392 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1393 if ((tcp)->tcp_ip_src != 0) { \ 1394 (*cl_inet_disconnect)( \ 1395 (connp)->conn_netstack->netstack_stackid,\ 1396 IPPROTO_TCP, AF_INET, \ 1397 (uint8_t *)(&((tcp)->tcp_ip_src)), \ 1398 (in_port_t)(tcp)->tcp_lport, \ 1399 (uint8_t *)(&((tcp)->tcp_ipha->ipha_dst)),\ 1400 (in_port_t)(tcp)->tcp_fport, NULL); \ 1401 } \ 1402 } else { \ 1403 if (!IN6_IS_ADDR_UNSPECIFIED( \ 1404 &(tcp)->tcp_ip_src_v6)) { \ 1405 (*cl_inet_disconnect)( \ 1406 (connp)->conn_netstack->netstack_stackid,\ 1407 IPPROTO_TCP, AF_INET6, \ 1408 (uint8_t *)(&((tcp)->tcp_ip_src_v6)),\ 1409 (in_port_t)(tcp)->tcp_lport, \ 1410 (uint8_t *)(&((tcp)->tcp_ip6h->ip6_dst)),\ 1411 (in_port_t)(tcp)->tcp_fport, NULL); \ 1412 } \ 1413 } \ 1414 } \ 1415 } 1416 1417 /* 1418 * Cluster networking hook for traversing current connection list. 1419 * This routine is used to extract the current list of live connections 1420 * which must continue to to be dispatched to this node. 1421 */ 1422 int cl_tcp_walk_list(netstackid_t stack_id, 1423 int (*callback)(cl_tcp_info_t *, void *), void *arg); 1424 1425 static int cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *), 1426 void *arg, tcp_stack_t *tcps); 1427 1428 #define DTRACE_IP_FASTPATH(mp, iph, ill, ipha, ip6h) \ 1429 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, void_ip_t *, \ 1430 iph, __dtrace_ipsr_ill_t *, ill, ipha_t *, ipha, \ 1431 ip6_t *, ip6h, int, 0); 1432 1433 /* 1434 * Figure out the value of window scale opton. Note that the rwnd is 1435 * ASSUMED to be rounded up to the nearest MSS before the calculation. 1436 * We cannot find the scale value and then do a round up of tcp_rwnd 1437 * because the scale value may not be correct after that. 1438 * 1439 * Set the compiler flag to make this function inline. 1440 */ 1441 static void 1442 tcp_set_ws_value(tcp_t *tcp) 1443 { 1444 int i; 1445 uint32_t rwnd = tcp->tcp_rwnd; 1446 1447 for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT; 1448 i++, rwnd >>= 1) 1449 ; 1450 tcp->tcp_rcv_ws = i; 1451 } 1452 1453 /* 1454 * Remove a connection from the list of detached TIME_WAIT connections. 1455 * It returns B_FALSE if it can't remove the connection from the list 1456 * as the connection has already been removed from the list due to an 1457 * earlier call to tcp_time_wait_remove(); otherwise it returns B_TRUE. 1458 */ 1459 static boolean_t 1460 tcp_time_wait_remove(tcp_t *tcp, tcp_squeue_priv_t *tcp_time_wait) 1461 { 1462 boolean_t locked = B_FALSE; 1463 1464 if (tcp_time_wait == NULL) { 1465 tcp_time_wait = *((tcp_squeue_priv_t **) 1466 squeue_getprivate(tcp->tcp_connp->conn_sqp, SQPRIVATE_TCP)); 1467 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1468 locked = B_TRUE; 1469 } else { 1470 ASSERT(MUTEX_HELD(&tcp_time_wait->tcp_time_wait_lock)); 1471 } 1472 1473 if (tcp->tcp_time_wait_expire == 0) { 1474 ASSERT(tcp->tcp_time_wait_next == NULL); 1475 ASSERT(tcp->tcp_time_wait_prev == NULL); 1476 if (locked) 1477 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1478 return (B_FALSE); 1479 } 1480 ASSERT(TCP_IS_DETACHED(tcp)); 1481 ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); 1482 1483 if (tcp == tcp_time_wait->tcp_time_wait_head) { 1484 ASSERT(tcp->tcp_time_wait_prev == NULL); 1485 tcp_time_wait->tcp_time_wait_head = tcp->tcp_time_wait_next; 1486 if (tcp_time_wait->tcp_time_wait_head != NULL) { 1487 tcp_time_wait->tcp_time_wait_head->tcp_time_wait_prev = 1488 NULL; 1489 } else { 1490 tcp_time_wait->tcp_time_wait_tail = NULL; 1491 } 1492 } else if (tcp == tcp_time_wait->tcp_time_wait_tail) { 1493 ASSERT(tcp != tcp_time_wait->tcp_time_wait_head); 1494 ASSERT(tcp->tcp_time_wait_next == NULL); 1495 tcp_time_wait->tcp_time_wait_tail = tcp->tcp_time_wait_prev; 1496 ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); 1497 tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = NULL; 1498 } else { 1499 ASSERT(tcp->tcp_time_wait_prev->tcp_time_wait_next == tcp); 1500 ASSERT(tcp->tcp_time_wait_next->tcp_time_wait_prev == tcp); 1501 tcp->tcp_time_wait_prev->tcp_time_wait_next = 1502 tcp->tcp_time_wait_next; 1503 tcp->tcp_time_wait_next->tcp_time_wait_prev = 1504 tcp->tcp_time_wait_prev; 1505 } 1506 tcp->tcp_time_wait_next = NULL; 1507 tcp->tcp_time_wait_prev = NULL; 1508 tcp->tcp_time_wait_expire = 0; 1509 1510 if (locked) 1511 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1512 return (B_TRUE); 1513 } 1514 1515 /* 1516 * Add a connection to the list of detached TIME_WAIT connections 1517 * and set its time to expire. 1518 */ 1519 static void 1520 tcp_time_wait_append(tcp_t *tcp) 1521 { 1522 tcp_stack_t *tcps = tcp->tcp_tcps; 1523 tcp_squeue_priv_t *tcp_time_wait = 1524 *((tcp_squeue_priv_t **)squeue_getprivate(tcp->tcp_connp->conn_sqp, 1525 SQPRIVATE_TCP)); 1526 1527 tcp_timers_stop(tcp); 1528 1529 /* Freed above */ 1530 ASSERT(tcp->tcp_timer_tid == 0); 1531 ASSERT(tcp->tcp_ack_tid == 0); 1532 1533 /* must have happened at the time of detaching the tcp */ 1534 ASSERT(tcp->tcp_ptpahn == NULL); 1535 ASSERT(tcp->tcp_flow_stopped == 0); 1536 ASSERT(tcp->tcp_time_wait_next == NULL); 1537 ASSERT(tcp->tcp_time_wait_prev == NULL); 1538 ASSERT(tcp->tcp_time_wait_expire == NULL); 1539 ASSERT(tcp->tcp_listener == NULL); 1540 1541 tcp->tcp_time_wait_expire = ddi_get_lbolt(); 1542 /* 1543 * The value computed below in tcp->tcp_time_wait_expire may 1544 * appear negative or wrap around. That is ok since our 1545 * interest is only in the difference between the current lbolt 1546 * value and tcp->tcp_time_wait_expire. But the value should not 1547 * be zero, since it means the tcp is not in the TIME_WAIT list. 1548 * The corresponding comparison in tcp_time_wait_collector() uses 1549 * modular arithmetic. 1550 */ 1551 tcp->tcp_time_wait_expire += 1552 drv_usectohz(tcps->tcps_time_wait_interval * 1000); 1553 if (tcp->tcp_time_wait_expire == 0) 1554 tcp->tcp_time_wait_expire = 1; 1555 1556 ASSERT(TCP_IS_DETACHED(tcp)); 1557 ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); 1558 ASSERT(tcp->tcp_time_wait_next == NULL); 1559 ASSERT(tcp->tcp_time_wait_prev == NULL); 1560 TCP_DBGSTAT(tcps, tcp_time_wait); 1561 1562 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1563 if (tcp_time_wait->tcp_time_wait_head == NULL) { 1564 ASSERT(tcp_time_wait->tcp_time_wait_tail == NULL); 1565 tcp_time_wait->tcp_time_wait_head = tcp; 1566 } else { 1567 ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); 1568 ASSERT(tcp_time_wait->tcp_time_wait_tail->tcp_state == 1569 TCPS_TIME_WAIT); 1570 tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = tcp; 1571 tcp->tcp_time_wait_prev = tcp_time_wait->tcp_time_wait_tail; 1572 } 1573 tcp_time_wait->tcp_time_wait_tail = tcp; 1574 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1575 } 1576 1577 /* ARGSUSED */ 1578 void 1579 tcp_timewait_output(void *arg, mblk_t *mp, void *arg2) 1580 { 1581 conn_t *connp = (conn_t *)arg; 1582 tcp_t *tcp = connp->conn_tcp; 1583 tcp_stack_t *tcps = tcp->tcp_tcps; 1584 1585 ASSERT(tcp != NULL); 1586 if (tcp->tcp_state == TCPS_CLOSED) { 1587 return; 1588 } 1589 1590 ASSERT((tcp->tcp_family == AF_INET && 1591 tcp->tcp_ipversion == IPV4_VERSION) || 1592 (tcp->tcp_family == AF_INET6 && 1593 (tcp->tcp_ipversion == IPV4_VERSION || 1594 tcp->tcp_ipversion == IPV6_VERSION))); 1595 ASSERT(!tcp->tcp_listener); 1596 1597 TCP_STAT(tcps, tcp_time_wait_reap); 1598 ASSERT(TCP_IS_DETACHED(tcp)); 1599 1600 /* 1601 * Because they have no upstream client to rebind or tcp_close() 1602 * them later, we axe the connection here and now. 1603 */ 1604 tcp_close_detached(tcp); 1605 } 1606 1607 /* 1608 * Remove cached/latched IPsec references. 1609 */ 1610 void 1611 tcp_ipsec_cleanup(tcp_t *tcp) 1612 { 1613 conn_t *connp = tcp->tcp_connp; 1614 1615 ASSERT(connp->conn_flags & IPCL_TCPCONN); 1616 1617 if (connp->conn_latch != NULL) { 1618 IPLATCH_REFRELE(connp->conn_latch, 1619 connp->conn_netstack); 1620 connp->conn_latch = NULL; 1621 } 1622 if (connp->conn_policy != NULL) { 1623 IPPH_REFRELE(connp->conn_policy, connp->conn_netstack); 1624 connp->conn_policy = NULL; 1625 } 1626 } 1627 1628 /* 1629 * Cleaup before placing on free list. 1630 * Disassociate from the netstack/tcp_stack_t since the freelist 1631 * is per squeue and not per netstack. 1632 */ 1633 void 1634 tcp_cleanup(tcp_t *tcp) 1635 { 1636 mblk_t *mp; 1637 char *tcp_iphc; 1638 int tcp_iphc_len; 1639 int tcp_hdr_grown; 1640 tcp_sack_info_t *tcp_sack_info; 1641 conn_t *connp = tcp->tcp_connp; 1642 tcp_stack_t *tcps = tcp->tcp_tcps; 1643 netstack_t *ns = tcps->tcps_netstack; 1644 mblk_t *tcp_rsrv_mp; 1645 1646 tcp_bind_hash_remove(tcp); 1647 1648 /* Cleanup that which needs the netstack first */ 1649 tcp_ipsec_cleanup(tcp); 1650 1651 tcp_free(tcp); 1652 1653 /* Release any SSL context */ 1654 if (tcp->tcp_kssl_ent != NULL) { 1655 kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); 1656 tcp->tcp_kssl_ent = NULL; 1657 } 1658 1659 if (tcp->tcp_kssl_ctx != NULL) { 1660 kssl_release_ctx(tcp->tcp_kssl_ctx); 1661 tcp->tcp_kssl_ctx = NULL; 1662 } 1663 tcp->tcp_kssl_pending = B_FALSE; 1664 1665 conn_delete_ire(connp, NULL); 1666 1667 /* 1668 * Since we will bzero the entire structure, we need to 1669 * remove it and reinsert it in global hash list. We 1670 * know the walkers can't get to this conn because we 1671 * had set CONDEMNED flag earlier and checked reference 1672 * under conn_lock so walker won't pick it and when we 1673 * go the ipcl_globalhash_remove() below, no walker 1674 * can get to it. 1675 */ 1676 ipcl_globalhash_remove(connp); 1677 1678 /* 1679 * Now it is safe to decrement the reference counts. 1680 * This might be the last reference on the netstack and TCPS 1681 * in which case it will cause the tcp_g_q_close and 1682 * the freeing of the IP Instance. 1683 */ 1684 connp->conn_netstack = NULL; 1685 netstack_rele(ns); 1686 ASSERT(tcps != NULL); 1687 tcp->tcp_tcps = NULL; 1688 TCPS_REFRELE(tcps); 1689 1690 /* Save some state */ 1691 mp = tcp->tcp_timercache; 1692 1693 tcp_sack_info = tcp->tcp_sack_info; 1694 tcp_iphc = tcp->tcp_iphc; 1695 tcp_iphc_len = tcp->tcp_iphc_len; 1696 tcp_hdr_grown = tcp->tcp_hdr_grown; 1697 tcp_rsrv_mp = tcp->tcp_rsrv_mp; 1698 1699 if (connp->conn_cred != NULL) { 1700 crfree(connp->conn_cred); 1701 connp->conn_cred = NULL; 1702 } 1703 if (connp->conn_peercred != NULL) { 1704 crfree(connp->conn_peercred); 1705 connp->conn_peercred = NULL; 1706 } 1707 ipcl_conn_cleanup(connp); 1708 connp->conn_flags = IPCL_TCPCONN; 1709 bzero(tcp, sizeof (tcp_t)); 1710 1711 /* restore the state */ 1712 tcp->tcp_timercache = mp; 1713 1714 tcp->tcp_sack_info = tcp_sack_info; 1715 tcp->tcp_iphc = tcp_iphc; 1716 tcp->tcp_iphc_len = tcp_iphc_len; 1717 tcp->tcp_hdr_grown = tcp_hdr_grown; 1718 tcp->tcp_rsrv_mp = tcp_rsrv_mp; 1719 1720 tcp->tcp_connp = connp; 1721 1722 ASSERT(connp->conn_tcp == tcp); 1723 ASSERT(connp->conn_flags & IPCL_TCPCONN); 1724 connp->conn_state_flags = CONN_INCIPIENT; 1725 ASSERT(connp->conn_ulp == IPPROTO_TCP); 1726 ASSERT(connp->conn_ref == 1); 1727 } 1728 1729 /* 1730 * Blows away all tcps whose TIME_WAIT has expired. List traversal 1731 * is done forwards from the head. 1732 * This walks all stack instances since 1733 * tcp_time_wait remains global across all stacks. 1734 */ 1735 /* ARGSUSED */ 1736 void 1737 tcp_time_wait_collector(void *arg) 1738 { 1739 tcp_t *tcp; 1740 clock_t now; 1741 mblk_t *mp; 1742 conn_t *connp; 1743 kmutex_t *lock; 1744 boolean_t removed; 1745 1746 squeue_t *sqp = (squeue_t *)arg; 1747 tcp_squeue_priv_t *tcp_time_wait = 1748 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 1749 1750 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1751 tcp_time_wait->tcp_time_wait_tid = 0; 1752 1753 if (tcp_time_wait->tcp_free_list != NULL && 1754 tcp_time_wait->tcp_free_list->tcp_in_free_list == B_TRUE) { 1755 TCP_G_STAT(tcp_freelist_cleanup); 1756 while ((tcp = tcp_time_wait->tcp_free_list) != NULL) { 1757 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 1758 tcp->tcp_time_wait_next = NULL; 1759 tcp_time_wait->tcp_free_list_cnt--; 1760 ASSERT(tcp->tcp_tcps == NULL); 1761 CONN_DEC_REF(tcp->tcp_connp); 1762 } 1763 ASSERT(tcp_time_wait->tcp_free_list_cnt == 0); 1764 } 1765 1766 /* 1767 * In order to reap time waits reliably, we should use a 1768 * source of time that is not adjustable by the user -- hence 1769 * the call to ddi_get_lbolt(). 1770 */ 1771 now = ddi_get_lbolt(); 1772 while ((tcp = tcp_time_wait->tcp_time_wait_head) != NULL) { 1773 /* 1774 * Compare times using modular arithmetic, since 1775 * lbolt can wrapover. 1776 */ 1777 if ((now - tcp->tcp_time_wait_expire) < 0) { 1778 break; 1779 } 1780 1781 removed = tcp_time_wait_remove(tcp, tcp_time_wait); 1782 ASSERT(removed); 1783 1784 connp = tcp->tcp_connp; 1785 ASSERT(connp->conn_fanout != NULL); 1786 lock = &connp->conn_fanout->connf_lock; 1787 /* 1788 * This is essentially a TW reclaim fast path optimization for 1789 * performance where the timewait collector checks under the 1790 * fanout lock (so that no one else can get access to the 1791 * conn_t) that the refcnt is 2 i.e. one for TCP and one for 1792 * the classifier hash list. If ref count is indeed 2, we can 1793 * just remove the conn under the fanout lock and avoid 1794 * cleaning up the conn under the squeue, provided that 1795 * clustering callbacks are not enabled. If clustering is 1796 * enabled, we need to make the clustering callback before 1797 * setting the CONDEMNED flag and after dropping all locks and 1798 * so we forego this optimization and fall back to the slow 1799 * path. Also please see the comments in tcp_closei_local 1800 * regarding the refcnt logic. 1801 * 1802 * Since we are holding the tcp_time_wait_lock, its better 1803 * not to block on the fanout_lock because other connections 1804 * can't add themselves to time_wait list. So we do a 1805 * tryenter instead of mutex_enter. 1806 */ 1807 if (mutex_tryenter(lock)) { 1808 mutex_enter(&connp->conn_lock); 1809 if ((connp->conn_ref == 2) && 1810 (cl_inet_disconnect == NULL)) { 1811 ipcl_hash_remove_locked(connp, 1812 connp->conn_fanout); 1813 /* 1814 * Set the CONDEMNED flag now itself so that 1815 * the refcnt cannot increase due to any 1816 * walker. But we have still not cleaned up 1817 * conn_ire_cache. This is still ok since 1818 * we are going to clean it up in tcp_cleanup 1819 * immediately and any interface unplumb 1820 * thread will wait till the ire is blown away 1821 */ 1822 connp->conn_state_flags |= CONN_CONDEMNED; 1823 mutex_exit(lock); 1824 mutex_exit(&connp->conn_lock); 1825 if (tcp_time_wait->tcp_free_list_cnt < 1826 tcp_free_list_max_cnt) { 1827 /* Add to head of tcp_free_list */ 1828 mutex_exit( 1829 &tcp_time_wait->tcp_time_wait_lock); 1830 tcp_cleanup(tcp); 1831 ASSERT(connp->conn_latch == NULL); 1832 ASSERT(connp->conn_policy == NULL); 1833 ASSERT(tcp->tcp_tcps == NULL); 1834 ASSERT(connp->conn_netstack == NULL); 1835 1836 mutex_enter( 1837 &tcp_time_wait->tcp_time_wait_lock); 1838 tcp->tcp_time_wait_next = 1839 tcp_time_wait->tcp_free_list; 1840 tcp_time_wait->tcp_free_list = tcp; 1841 tcp_time_wait->tcp_free_list_cnt++; 1842 continue; 1843 } else { 1844 /* Do not add to tcp_free_list */ 1845 mutex_exit( 1846 &tcp_time_wait->tcp_time_wait_lock); 1847 tcp_bind_hash_remove(tcp); 1848 conn_delete_ire(tcp->tcp_connp, NULL); 1849 tcp_ipsec_cleanup(tcp); 1850 CONN_DEC_REF(tcp->tcp_connp); 1851 } 1852 } else { 1853 CONN_INC_REF_LOCKED(connp); 1854 mutex_exit(lock); 1855 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1856 mutex_exit(&connp->conn_lock); 1857 /* 1858 * We can reuse the closemp here since conn has 1859 * detached (otherwise we wouldn't even be in 1860 * time_wait list). tcp_closemp_used can safely 1861 * be changed without taking a lock as no other 1862 * thread can concurrently access it at this 1863 * point in the connection lifecycle. 1864 */ 1865 1866 if (tcp->tcp_closemp.b_prev == NULL) 1867 tcp->tcp_closemp_used = B_TRUE; 1868 else 1869 cmn_err(CE_PANIC, 1870 "tcp_timewait_collector: " 1871 "concurrent use of tcp_closemp: " 1872 "connp %p tcp %p\n", (void *)connp, 1873 (void *)tcp); 1874 1875 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 1876 mp = &tcp->tcp_closemp; 1877 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 1878 tcp_timewait_output, connp, 1879 SQ_FILL, SQTAG_TCP_TIMEWAIT); 1880 } 1881 } else { 1882 mutex_enter(&connp->conn_lock); 1883 CONN_INC_REF_LOCKED(connp); 1884 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1885 mutex_exit(&connp->conn_lock); 1886 /* 1887 * We can reuse the closemp here since conn has 1888 * detached (otherwise we wouldn't even be in 1889 * time_wait list). tcp_closemp_used can safely 1890 * be changed without taking a lock as no other 1891 * thread can concurrently access it at this 1892 * point in the connection lifecycle. 1893 */ 1894 1895 if (tcp->tcp_closemp.b_prev == NULL) 1896 tcp->tcp_closemp_used = B_TRUE; 1897 else 1898 cmn_err(CE_PANIC, "tcp_timewait_collector: " 1899 "concurrent use of tcp_closemp: " 1900 "connp %p tcp %p\n", (void *)connp, 1901 (void *)tcp); 1902 1903 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 1904 mp = &tcp->tcp_closemp; 1905 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 1906 tcp_timewait_output, connp, 1907 SQ_FILL, SQTAG_TCP_TIMEWAIT); 1908 } 1909 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1910 } 1911 1912 if (tcp_time_wait->tcp_free_list != NULL) 1913 tcp_time_wait->tcp_free_list->tcp_in_free_list = B_TRUE; 1914 1915 tcp_time_wait->tcp_time_wait_tid = 1916 timeout_generic(CALLOUT_NORMAL, tcp_time_wait_collector, sqp, 1917 TICK_TO_NSEC(TCP_TIME_WAIT_DELAY), CALLOUT_TCP_RESOLUTION, 1918 CALLOUT_FLAG_ROUNDUP); 1919 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1920 } 1921 1922 /* 1923 * Reply to a clients T_CONN_RES TPI message. This function 1924 * is used only for TLI/XTI listener. Sockfs sends T_CONN_RES 1925 * on the acceptor STREAM and processed in tcp_wput_accept(). 1926 * Read the block comment on top of tcp_conn_request(). 1927 */ 1928 static void 1929 tcp_tli_accept(tcp_t *listener, mblk_t *mp) 1930 { 1931 tcp_t *acceptor; 1932 tcp_t *eager; 1933 tcp_t *tcp; 1934 struct T_conn_res *tcr; 1935 t_uscalar_t acceptor_id; 1936 t_scalar_t seqnum; 1937 mblk_t *opt_mp = NULL; /* T_OPTMGMT_REQ messages */ 1938 struct tcp_options *tcpopt; 1939 mblk_t *ok_mp; 1940 mblk_t *mp1; 1941 tcp_stack_t *tcps = listener->tcp_tcps; 1942 1943 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { 1944 tcp_err_ack(listener, mp, TPROTO, 0); 1945 return; 1946 } 1947 tcr = (struct T_conn_res *)mp->b_rptr; 1948 1949 /* 1950 * Under ILP32 the stream head points tcr->ACCEPTOR_id at the 1951 * read side queue of the streams device underneath us i.e. the 1952 * read side queue of 'ip'. Since we can't deference QUEUE_ptr we 1953 * look it up in the queue_hash. Under LP64 it sends down the 1954 * minor_t of the accepting endpoint. 1955 * 1956 * Once the acceptor/eager are modified (in tcp_accept_swap) the 1957 * fanout hash lock is held. 1958 * This prevents any thread from entering the acceptor queue from 1959 * below (since it has not been hard bound yet i.e. any inbound 1960 * packets will arrive on the listener or default tcp queue and 1961 * go through tcp_lookup). 1962 * The CONN_INC_REF will prevent the acceptor from closing. 1963 * 1964 * XXX It is still possible for a tli application to send down data 1965 * on the accepting stream while another thread calls t_accept. 1966 * This should not be a problem for well-behaved applications since 1967 * the T_OK_ACK is sent after the queue swapping is completed. 1968 * 1969 * If the accepting fd is the same as the listening fd, avoid 1970 * queue hash lookup since that will return an eager listener in a 1971 * already established state. 1972 */ 1973 acceptor_id = tcr->ACCEPTOR_id; 1974 mutex_enter(&listener->tcp_eager_lock); 1975 if (listener->tcp_acceptor_id == acceptor_id) { 1976 eager = listener->tcp_eager_next_q; 1977 /* only count how many T_CONN_INDs so don't count q0 */ 1978 if ((listener->tcp_conn_req_cnt_q != 1) || 1979 (eager->tcp_conn_req_seqnum != tcr->SEQ_number)) { 1980 mutex_exit(&listener->tcp_eager_lock); 1981 tcp_err_ack(listener, mp, TBADF, 0); 1982 return; 1983 } 1984 if (listener->tcp_conn_req_cnt_q0 != 0) { 1985 /* Throw away all the eagers on q0. */ 1986 tcp_eager_cleanup(listener, 1); 1987 } 1988 if (listener->tcp_syn_defense) { 1989 listener->tcp_syn_defense = B_FALSE; 1990 if (listener->tcp_ip_addr_cache != NULL) { 1991 kmem_free(listener->tcp_ip_addr_cache, 1992 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 1993 listener->tcp_ip_addr_cache = NULL; 1994 } 1995 } 1996 /* 1997 * Transfer tcp_conn_req_max to the eager so that when 1998 * a disconnect occurs we can revert the endpoint to the 1999 * listen state. 2000 */ 2001 eager->tcp_conn_req_max = listener->tcp_conn_req_max; 2002 ASSERT(listener->tcp_conn_req_cnt_q0 == 0); 2003 /* 2004 * Get a reference on the acceptor just like the 2005 * tcp_acceptor_hash_lookup below. 2006 */ 2007 acceptor = listener; 2008 CONN_INC_REF(acceptor->tcp_connp); 2009 } else { 2010 acceptor = tcp_acceptor_hash_lookup(acceptor_id, tcps); 2011 if (acceptor == NULL) { 2012 if (listener->tcp_debug) { 2013 (void) strlog(TCP_MOD_ID, 0, 1, 2014 SL_ERROR|SL_TRACE, 2015 "tcp_accept: did not find acceptor 0x%x\n", 2016 acceptor_id); 2017 } 2018 mutex_exit(&listener->tcp_eager_lock); 2019 tcp_err_ack(listener, mp, TPROVMISMATCH, 0); 2020 return; 2021 } 2022 /* 2023 * Verify acceptor state. The acceptable states for an acceptor 2024 * include TCPS_IDLE and TCPS_BOUND. 2025 */ 2026 switch (acceptor->tcp_state) { 2027 case TCPS_IDLE: 2028 /* FALLTHRU */ 2029 case TCPS_BOUND: 2030 break; 2031 default: 2032 CONN_DEC_REF(acceptor->tcp_connp); 2033 mutex_exit(&listener->tcp_eager_lock); 2034 tcp_err_ack(listener, mp, TOUTSTATE, 0); 2035 return; 2036 } 2037 } 2038 2039 /* The listener must be in TCPS_LISTEN */ 2040 if (listener->tcp_state != TCPS_LISTEN) { 2041 CONN_DEC_REF(acceptor->tcp_connp); 2042 mutex_exit(&listener->tcp_eager_lock); 2043 tcp_err_ack(listener, mp, TOUTSTATE, 0); 2044 return; 2045 } 2046 2047 /* 2048 * Rendezvous with an eager connection request packet hanging off 2049 * 'tcp' that has the 'seqnum' tag. We tagged the detached open 2050 * tcp structure when the connection packet arrived in 2051 * tcp_conn_request(). 2052 */ 2053 seqnum = tcr->SEQ_number; 2054 eager = listener; 2055 do { 2056 eager = eager->tcp_eager_next_q; 2057 if (eager == NULL) { 2058 CONN_DEC_REF(acceptor->tcp_connp); 2059 mutex_exit(&listener->tcp_eager_lock); 2060 tcp_err_ack(listener, mp, TBADSEQ, 0); 2061 return; 2062 } 2063 } while (eager->tcp_conn_req_seqnum != seqnum); 2064 mutex_exit(&listener->tcp_eager_lock); 2065 2066 /* 2067 * At this point, both acceptor and listener have 2 ref 2068 * that they begin with. Acceptor has one additional ref 2069 * we placed in lookup while listener has 3 additional 2070 * ref for being behind the squeue (tcp_accept() is 2071 * done on listener's squeue); being in classifier hash; 2072 * and eager's ref on listener. 2073 */ 2074 ASSERT(listener->tcp_connp->conn_ref >= 5); 2075 ASSERT(acceptor->tcp_connp->conn_ref >= 3); 2076 2077 /* 2078 * The eager at this point is set in its own squeue and 2079 * could easily have been killed (tcp_accept_finish will 2080 * deal with that) because of a TH_RST so we can only 2081 * ASSERT for a single ref. 2082 */ 2083 ASSERT(eager->tcp_connp->conn_ref >= 1); 2084 2085 /* Pre allocate the stroptions mblk also */ 2086 opt_mp = allocb(MAX(sizeof (struct tcp_options), 2087 sizeof (struct T_conn_res)), BPRI_HI); 2088 if (opt_mp == NULL) { 2089 CONN_DEC_REF(acceptor->tcp_connp); 2090 CONN_DEC_REF(eager->tcp_connp); 2091 tcp_err_ack(listener, mp, TSYSERR, ENOMEM); 2092 return; 2093 } 2094 DB_TYPE(opt_mp) = M_SETOPTS; 2095 opt_mp->b_wptr += sizeof (struct tcp_options); 2096 tcpopt = (struct tcp_options *)opt_mp->b_rptr; 2097 tcpopt->to_flags = 0; 2098 2099 /* 2100 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO 2101 * from listener to acceptor. 2102 */ 2103 if (listener->tcp_bound_if != 0) { 2104 tcpopt->to_flags |= TCPOPT_BOUNDIF; 2105 tcpopt->to_boundif = listener->tcp_bound_if; 2106 } 2107 if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) { 2108 tcpopt->to_flags |= TCPOPT_RECVPKTINFO; 2109 } 2110 2111 /* Re-use mp1 to hold a copy of mp, in case reallocb fails */ 2112 if ((mp1 = copymsg(mp)) == NULL) { 2113 CONN_DEC_REF(acceptor->tcp_connp); 2114 CONN_DEC_REF(eager->tcp_connp); 2115 freemsg(opt_mp); 2116 tcp_err_ack(listener, mp, TSYSERR, ENOMEM); 2117 return; 2118 } 2119 2120 tcr = (struct T_conn_res *)mp1->b_rptr; 2121 2122 /* 2123 * This is an expanded version of mi_tpi_ok_ack_alloc() 2124 * which allocates a larger mblk and appends the new 2125 * local address to the ok_ack. The address is copied by 2126 * soaccept() for getsockname(). 2127 */ 2128 { 2129 int extra; 2130 2131 extra = (eager->tcp_family == AF_INET) ? 2132 sizeof (sin_t) : sizeof (sin6_t); 2133 2134 /* 2135 * Try to re-use mp, if possible. Otherwise, allocate 2136 * an mblk and return it as ok_mp. In any case, mp 2137 * is no longer usable upon return. 2138 */ 2139 if ((ok_mp = mi_tpi_ok_ack_alloc_extra(mp, extra)) == NULL) { 2140 CONN_DEC_REF(acceptor->tcp_connp); 2141 CONN_DEC_REF(eager->tcp_connp); 2142 freemsg(opt_mp); 2143 /* Original mp has been freed by now, so use mp1 */ 2144 tcp_err_ack(listener, mp1, TSYSERR, ENOMEM); 2145 return; 2146 } 2147 2148 mp = NULL; /* We should never use mp after this point */ 2149 2150 switch (extra) { 2151 case sizeof (sin_t): { 2152 sin_t *sin = (sin_t *)ok_mp->b_wptr; 2153 2154 ok_mp->b_wptr += extra; 2155 sin->sin_family = AF_INET; 2156 sin->sin_port = eager->tcp_lport; 2157 sin->sin_addr.s_addr = 2158 eager->tcp_ipha->ipha_src; 2159 break; 2160 } 2161 case sizeof (sin6_t): { 2162 sin6_t *sin6 = (sin6_t *)ok_mp->b_wptr; 2163 2164 ok_mp->b_wptr += extra; 2165 sin6->sin6_family = AF_INET6; 2166 sin6->sin6_port = eager->tcp_lport; 2167 if (eager->tcp_ipversion == IPV4_VERSION) { 2168 sin6->sin6_flowinfo = 0; 2169 IN6_IPADDR_TO_V4MAPPED( 2170 eager->tcp_ipha->ipha_src, 2171 &sin6->sin6_addr); 2172 } else { 2173 ASSERT(eager->tcp_ip6h != NULL); 2174 sin6->sin6_flowinfo = 2175 eager->tcp_ip6h->ip6_vcf & 2176 ~IPV6_VERS_AND_FLOW_MASK; 2177 sin6->sin6_addr = 2178 eager->tcp_ip6h->ip6_src; 2179 } 2180 sin6->sin6_scope_id = 0; 2181 sin6->__sin6_src_id = 0; 2182 break; 2183 } 2184 default: 2185 break; 2186 } 2187 ASSERT(ok_mp->b_wptr <= ok_mp->b_datap->db_lim); 2188 } 2189 2190 /* 2191 * If there are no options we know that the T_CONN_RES will 2192 * succeed. However, we can't send the T_OK_ACK upstream until 2193 * the tcp_accept_swap is done since it would be dangerous to 2194 * let the application start using the new fd prior to the swap. 2195 */ 2196 tcp_accept_swap(listener, acceptor, eager); 2197 2198 /* 2199 * tcp_accept_swap unlinks eager from listener but does not drop 2200 * the eager's reference on the listener. 2201 */ 2202 ASSERT(eager->tcp_listener == NULL); 2203 ASSERT(listener->tcp_connp->conn_ref >= 5); 2204 2205 /* 2206 * The eager is now associated with its own queue. Insert in 2207 * the hash so that the connection can be reused for a future 2208 * T_CONN_RES. 2209 */ 2210 tcp_acceptor_hash_insert(acceptor_id, eager); 2211 2212 /* 2213 * We now do the processing of options with T_CONN_RES. 2214 * We delay till now since we wanted to have queue to pass to 2215 * option processing routines that points back to the right 2216 * instance structure which does not happen until after 2217 * tcp_accept_swap(). 2218 * 2219 * Note: 2220 * The sanity of the logic here assumes that whatever options 2221 * are appropriate to inherit from listner=>eager are done 2222 * before this point, and whatever were to be overridden (or not) 2223 * in transfer logic from eager=>acceptor in tcp_accept_swap(). 2224 * [ Warning: acceptor endpoint can have T_OPTMGMT_REQ done to it 2225 * before its ACCEPTOR_id comes down in T_CONN_RES ] 2226 * This may not be true at this point in time but can be fixed 2227 * independently. This option processing code starts with 2228 * the instantiated acceptor instance and the final queue at 2229 * this point. 2230 */ 2231 2232 if (tcr->OPT_length != 0) { 2233 /* Options to process */ 2234 int t_error = 0; 2235 int sys_error = 0; 2236 int do_disconnect = 0; 2237 2238 if (tcp_conprim_opt_process(eager, mp1, 2239 &do_disconnect, &t_error, &sys_error) < 0) { 2240 eager->tcp_accept_error = 1; 2241 if (do_disconnect) { 2242 /* 2243 * An option failed which does not allow 2244 * connection to be accepted. 2245 * 2246 * We allow T_CONN_RES to succeed and 2247 * put a T_DISCON_IND on the eager queue. 2248 */ 2249 ASSERT(t_error == 0 && sys_error == 0); 2250 eager->tcp_send_discon_ind = 1; 2251 } else { 2252 ASSERT(t_error != 0); 2253 freemsg(ok_mp); 2254 /* 2255 * Original mp was either freed or set 2256 * to ok_mp above, so use mp1 instead. 2257 */ 2258 tcp_err_ack(listener, mp1, t_error, sys_error); 2259 goto finish; 2260 } 2261 } 2262 /* 2263 * Most likely success in setting options (except if 2264 * eager->tcp_send_discon_ind set). 2265 * mp1 option buffer represented by OPT_length/offset 2266 * potentially modified and contains results of setting 2267 * options at this point 2268 */ 2269 } 2270 2271 /* We no longer need mp1, since all options processing has passed */ 2272 freemsg(mp1); 2273 2274 putnext(listener->tcp_rq, ok_mp); 2275 2276 mutex_enter(&listener->tcp_eager_lock); 2277 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 2278 tcp_t *tail; 2279 mblk_t *conn_ind; 2280 2281 /* 2282 * This path should not be executed if listener and 2283 * acceptor streams are the same. 2284 */ 2285 ASSERT(listener != acceptor); 2286 2287 tcp = listener->tcp_eager_prev_q0; 2288 /* 2289 * listener->tcp_eager_prev_q0 points to the TAIL of the 2290 * deferred T_conn_ind queue. We need to get to the head of 2291 * the queue in order to send up T_conn_ind the same order as 2292 * how the 3WHS is completed. 2293 */ 2294 while (tcp != listener) { 2295 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0) 2296 break; 2297 else 2298 tcp = tcp->tcp_eager_prev_q0; 2299 } 2300 ASSERT(tcp != listener); 2301 conn_ind = tcp->tcp_conn.tcp_eager_conn_ind; 2302 ASSERT(conn_ind != NULL); 2303 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 2304 2305 /* Move from q0 to q */ 2306 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 2307 listener->tcp_conn_req_cnt_q0--; 2308 listener->tcp_conn_req_cnt_q++; 2309 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 2310 tcp->tcp_eager_prev_q0; 2311 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 2312 tcp->tcp_eager_next_q0; 2313 tcp->tcp_eager_prev_q0 = NULL; 2314 tcp->tcp_eager_next_q0 = NULL; 2315 tcp->tcp_conn_def_q0 = B_FALSE; 2316 2317 /* Make sure the tcp isn't in the list of droppables */ 2318 ASSERT(tcp->tcp_eager_next_drop_q0 == NULL && 2319 tcp->tcp_eager_prev_drop_q0 == NULL); 2320 2321 /* 2322 * Insert at end of the queue because sockfs sends 2323 * down T_CONN_RES in chronological order. Leaving 2324 * the older conn indications at front of the queue 2325 * helps reducing search time. 2326 */ 2327 tail = listener->tcp_eager_last_q; 2328 if (tail != NULL) 2329 tail->tcp_eager_next_q = tcp; 2330 else 2331 listener->tcp_eager_next_q = tcp; 2332 listener->tcp_eager_last_q = tcp; 2333 tcp->tcp_eager_next_q = NULL; 2334 mutex_exit(&listener->tcp_eager_lock); 2335 putnext(tcp->tcp_rq, conn_ind); 2336 } else { 2337 mutex_exit(&listener->tcp_eager_lock); 2338 } 2339 2340 /* 2341 * Done with the acceptor - free it 2342 * 2343 * Note: from this point on, no access to listener should be made 2344 * as listener can be equal to acceptor. 2345 */ 2346 finish: 2347 ASSERT(acceptor->tcp_detached); 2348 ASSERT(tcps->tcps_g_q != NULL); 2349 ASSERT(!IPCL_IS_NONSTR(acceptor->tcp_connp)); 2350 acceptor->tcp_rq = tcps->tcps_g_q; 2351 acceptor->tcp_wq = WR(tcps->tcps_g_q); 2352 (void) tcp_clean_death(acceptor, 0, 2); 2353 CONN_DEC_REF(acceptor->tcp_connp); 2354 2355 /* 2356 * In case we already received a FIN we have to make tcp_rput send 2357 * the ordrel_ind. This will also send up a window update if the window 2358 * has opened up. 2359 * 2360 * In the normal case of a successful connection acceptance 2361 * we give the O_T_BIND_REQ to the read side put procedure as an 2362 * indication that this was just accepted. This tells tcp_rput to 2363 * pass up any data queued in tcp_rcv_list. 2364 * 2365 * In the fringe case where options sent with T_CONN_RES failed and 2366 * we required, we would be indicating a T_DISCON_IND to blow 2367 * away this connection. 2368 */ 2369 2370 /* 2371 * XXX: we currently have a problem if XTI application closes the 2372 * acceptor stream in between. This problem exists in on10-gate also 2373 * and is well know but nothing can be done short of major rewrite 2374 * to fix it. Now it is possible to take care of it by assigning TLI/XTI 2375 * eager same squeue as listener (we can distinguish non socket 2376 * listeners at the time of handling a SYN in tcp_conn_request) 2377 * and do most of the work that tcp_accept_finish does here itself 2378 * and then get behind the acceptor squeue to access the acceptor 2379 * queue. 2380 */ 2381 /* 2382 * We already have a ref on tcp so no need to do one before squeue_enter 2383 */ 2384 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, opt_mp, tcp_accept_finish, 2385 eager->tcp_connp, SQ_FILL, SQTAG_TCP_ACCEPT_FINISH); 2386 } 2387 2388 /* 2389 * Swap information between the eager and acceptor for a TLI/XTI client. 2390 * The sockfs accept is done on the acceptor stream and control goes 2391 * through tcp_wput_accept() and tcp_accept()/tcp_accept_swap() is not 2392 * called. In either case, both the eager and listener are in their own 2393 * perimeter (squeue) and the code has to deal with potential race. 2394 * 2395 * See the block comment on top of tcp_accept() and tcp_wput_accept(). 2396 */ 2397 static void 2398 tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, tcp_t *eager) 2399 { 2400 conn_t *econnp, *aconnp; 2401 2402 ASSERT(eager->tcp_rq == listener->tcp_rq); 2403 ASSERT(eager->tcp_detached && !acceptor->tcp_detached); 2404 ASSERT(!eager->tcp_hard_bound); 2405 ASSERT(!TCP_IS_SOCKET(acceptor)); 2406 ASSERT(!TCP_IS_SOCKET(eager)); 2407 ASSERT(!TCP_IS_SOCKET(listener)); 2408 2409 acceptor->tcp_detached = B_TRUE; 2410 /* 2411 * To permit stream re-use by TLI/XTI, the eager needs a copy of 2412 * the acceptor id. 2413 */ 2414 eager->tcp_acceptor_id = acceptor->tcp_acceptor_id; 2415 2416 /* remove eager from listen list... */ 2417 mutex_enter(&listener->tcp_eager_lock); 2418 tcp_eager_unlink(eager); 2419 ASSERT(eager->tcp_eager_next_q == NULL && 2420 eager->tcp_eager_last_q == NULL); 2421 ASSERT(eager->tcp_eager_next_q0 == NULL && 2422 eager->tcp_eager_prev_q0 == NULL); 2423 mutex_exit(&listener->tcp_eager_lock); 2424 eager->tcp_rq = acceptor->tcp_rq; 2425 eager->tcp_wq = acceptor->tcp_wq; 2426 2427 econnp = eager->tcp_connp; 2428 aconnp = acceptor->tcp_connp; 2429 2430 eager->tcp_rq->q_ptr = econnp; 2431 eager->tcp_wq->q_ptr = econnp; 2432 2433 /* 2434 * In the TLI/XTI loopback case, we are inside the listener's squeue, 2435 * which might be a different squeue from our peer TCP instance. 2436 * For TCP Fusion, the peer expects that whenever tcp_detached is 2437 * clear, our TCP queues point to the acceptor's queues. Thus, use 2438 * membar_producer() to ensure that the assignments of tcp_rq/tcp_wq 2439 * above reach global visibility prior to the clearing of tcp_detached. 2440 */ 2441 membar_producer(); 2442 eager->tcp_detached = B_FALSE; 2443 2444 ASSERT(eager->tcp_ack_tid == 0); 2445 2446 econnp->conn_dev = aconnp->conn_dev; 2447 econnp->conn_minor_arena = aconnp->conn_minor_arena; 2448 ASSERT(econnp->conn_minor_arena != NULL); 2449 if (eager->tcp_cred != NULL) 2450 crfree(eager->tcp_cred); 2451 eager->tcp_cred = econnp->conn_cred = aconnp->conn_cred; 2452 ASSERT(econnp->conn_netstack == aconnp->conn_netstack); 2453 ASSERT(eager->tcp_tcps == acceptor->tcp_tcps); 2454 2455 aconnp->conn_cred = NULL; 2456 2457 econnp->conn_zoneid = aconnp->conn_zoneid; 2458 econnp->conn_allzones = aconnp->conn_allzones; 2459 2460 econnp->conn_mac_exempt = aconnp->conn_mac_exempt; 2461 aconnp->conn_mac_exempt = B_FALSE; 2462 2463 ASSERT(aconnp->conn_peercred == NULL); 2464 2465 /* Do the IPC initialization */ 2466 CONN_INC_REF(econnp); 2467 2468 econnp->conn_multicast_loop = aconnp->conn_multicast_loop; 2469 econnp->conn_af_isv6 = aconnp->conn_af_isv6; 2470 econnp->conn_pkt_isv6 = aconnp->conn_pkt_isv6; 2471 2472 /* Done with old IPC. Drop its ref on its connp */ 2473 CONN_DEC_REF(aconnp); 2474 } 2475 2476 2477 /* 2478 * Adapt to the information, such as rtt and rtt_sd, provided from the 2479 * ire cached in conn_cache_ire. If no ire cached, do a ire lookup. 2480 * 2481 * Checks for multicast and broadcast destination address. 2482 * Returns zero on failure; non-zero if ok. 2483 * 2484 * Note that the MSS calculation here is based on the info given in 2485 * the IRE. We do not do any calculation based on TCP options. They 2486 * will be handled in tcp_rput_other() and tcp_rput_data() when TCP 2487 * knows which options to use. 2488 * 2489 * Note on how TCP gets its parameters for a connection. 2490 * 2491 * When a tcp_t structure is allocated, it gets all the default parameters. 2492 * In tcp_adapt_ire(), it gets those metric parameters, like rtt, rtt_sd, 2493 * spipe, rpipe, ... from the route metrics. Route metric overrides the 2494 * default. 2495 * 2496 * An incoming SYN with a multicast or broadcast destination address, is dropped 2497 * in 1 of 2 places. 2498 * 2499 * 1. If the packet was received over the wire it is dropped in 2500 * ip_rput_process_broadcast() 2501 * 2502 * 2. If the packet was received through internal IP loopback, i.e. the packet 2503 * was generated and received on the same machine, it is dropped in 2504 * ip_wput_local() 2505 * 2506 * An incoming SYN with a multicast or broadcast source address is always 2507 * dropped in tcp_adapt_ire. The same logic in tcp_adapt_ire also serves to 2508 * reject an attempt to connect to a broadcast or multicast (destination) 2509 * address. 2510 */ 2511 static int 2512 tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp) 2513 { 2514 ire_t *ire; 2515 ire_t *sire = NULL; 2516 iulp_t *ire_uinfo = NULL; 2517 uint32_t mss_max; 2518 uint32_t mss; 2519 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 2520 conn_t *connp = tcp->tcp_connp; 2521 boolean_t ire_cacheable = B_FALSE; 2522 zoneid_t zoneid = connp->conn_zoneid; 2523 int match_flags = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 2524 MATCH_IRE_SECATTR; 2525 ts_label_t *tsl = crgetlabel(CONN_CRED(connp)); 2526 ill_t *ill = NULL; 2527 boolean_t incoming = (ire_mp == NULL); 2528 tcp_stack_t *tcps = tcp->tcp_tcps; 2529 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 2530 2531 ASSERT(connp->conn_ire_cache == NULL); 2532 2533 if (tcp->tcp_ipversion == IPV4_VERSION) { 2534 2535 if (CLASSD(tcp->tcp_connp->conn_rem)) { 2536 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 2537 return (0); 2538 } 2539 /* 2540 * If IP_NEXTHOP is set, then look for an IRE_CACHE 2541 * for the destination with the nexthop as gateway. 2542 * ire_ctable_lookup() is used because this particular 2543 * ire, if it exists, will be marked private. 2544 * If that is not available, use the interface ire 2545 * for the nexthop. 2546 * 2547 * TSol: tcp_update_label will detect label mismatches based 2548 * only on the destination's label, but that would not 2549 * detect label mismatches based on the security attributes 2550 * of routes or next hop gateway. Hence we need to pass the 2551 * label to ire_ftable_lookup below in order to locate the 2552 * right prefix (and/or) ire cache. Similarly we also need 2553 * pass the label to the ire_cache_lookup below to locate 2554 * the right ire that also matches on the label. 2555 */ 2556 if (tcp->tcp_connp->conn_nexthop_set) { 2557 ire = ire_ctable_lookup(tcp->tcp_connp->conn_rem, 2558 tcp->tcp_connp->conn_nexthop_v4, 0, NULL, zoneid, 2559 tsl, MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW, 2560 ipst); 2561 if (ire == NULL) { 2562 ire = ire_ftable_lookup( 2563 tcp->tcp_connp->conn_nexthop_v4, 2564 0, 0, IRE_INTERFACE, NULL, NULL, zoneid, 0, 2565 tsl, match_flags, ipst); 2566 if (ire == NULL) 2567 return (0); 2568 } else { 2569 ire_uinfo = &ire->ire_uinfo; 2570 } 2571 } else { 2572 ire = ire_cache_lookup(tcp->tcp_connp->conn_rem, 2573 zoneid, tsl, ipst); 2574 if (ire != NULL) { 2575 ire_cacheable = B_TRUE; 2576 ire_uinfo = (ire_mp != NULL) ? 2577 &((ire_t *)ire_mp->b_rptr)->ire_uinfo: 2578 &ire->ire_uinfo; 2579 2580 } else { 2581 if (ire_mp == NULL) { 2582 ire = ire_ftable_lookup( 2583 tcp->tcp_connp->conn_rem, 2584 0, 0, 0, NULL, &sire, zoneid, 0, 2585 tsl, (MATCH_IRE_RECURSIVE | 2586 MATCH_IRE_DEFAULT), ipst); 2587 if (ire == NULL) 2588 return (0); 2589 ire_uinfo = (sire != NULL) ? 2590 &sire->ire_uinfo : 2591 &ire->ire_uinfo; 2592 } else { 2593 ire = (ire_t *)ire_mp->b_rptr; 2594 ire_uinfo = 2595 &((ire_t *) 2596 ire_mp->b_rptr)->ire_uinfo; 2597 } 2598 } 2599 } 2600 ASSERT(ire != NULL); 2601 2602 if ((ire->ire_src_addr == INADDR_ANY) || 2603 (ire->ire_type & IRE_BROADCAST)) { 2604 /* 2605 * ire->ire_mp is non null when ire_mp passed in is used 2606 * ire->ire_mp is set in ip_bind_insert_ire[_v6](). 2607 */ 2608 if (ire->ire_mp == NULL) 2609 ire_refrele(ire); 2610 if (sire != NULL) 2611 ire_refrele(sire); 2612 return (0); 2613 } 2614 2615 if (tcp->tcp_ipha->ipha_src == INADDR_ANY) { 2616 ipaddr_t src_addr; 2617 2618 /* 2619 * ip_bind_connected() has stored the correct source 2620 * address in conn_src. 2621 */ 2622 src_addr = tcp->tcp_connp->conn_src; 2623 tcp->tcp_ipha->ipha_src = src_addr; 2624 /* 2625 * Copy of the src addr. in tcp_t is needed 2626 * for the lookup funcs. 2627 */ 2628 IN6_IPADDR_TO_V4MAPPED(src_addr, &tcp->tcp_ip_src_v6); 2629 } 2630 /* 2631 * Set the fragment bit so that IP will tell us if the MTU 2632 * should change. IP tells us the latest setting of 2633 * ip_path_mtu_discovery through ire_frag_flag. 2634 */ 2635 if (ipst->ips_ip_path_mtu_discovery) { 2636 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 2637 htons(IPH_DF); 2638 } 2639 /* 2640 * If ire_uinfo is NULL, this is the IRE_INTERFACE case 2641 * for IP_NEXTHOP. No cache ire has been found for the 2642 * destination and we are working with the nexthop's 2643 * interface ire. Since we need to forward all packets 2644 * to the nexthop first, we "blindly" set tcp_localnet 2645 * to false, eventhough the destination may also be 2646 * onlink. 2647 */ 2648 if (ire_uinfo == NULL) 2649 tcp->tcp_localnet = 0; 2650 else 2651 tcp->tcp_localnet = (ire->ire_gateway_addr == 0); 2652 } else { 2653 /* 2654 * For incoming connection ire_mp = NULL 2655 * For outgoing connection ire_mp != NULL 2656 * Technically we should check conn_incoming_ill 2657 * when ire_mp is NULL and conn_outgoing_ill when 2658 * ire_mp is non-NULL. But this is performance 2659 * critical path and for IPV*_BOUND_IF, outgoing 2660 * and incoming ill are always set to the same value. 2661 */ 2662 ill_t *dst_ill = NULL; 2663 ipif_t *dst_ipif = NULL; 2664 2665 ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill); 2666 2667 if (connp->conn_outgoing_ill != NULL) { 2668 /* Outgoing or incoming path */ 2669 int err; 2670 2671 dst_ill = conn_get_held_ill(connp, 2672 &connp->conn_outgoing_ill, &err); 2673 if (err == ILL_LOOKUP_FAILED || dst_ill == NULL) { 2674 ip1dbg(("tcp_adapt_ire: ill_lookup failed\n")); 2675 return (0); 2676 } 2677 match_flags |= MATCH_IRE_ILL; 2678 dst_ipif = dst_ill->ill_ipif; 2679 } 2680 ire = ire_ctable_lookup_v6(&tcp->tcp_connp->conn_remv6, 2681 0, 0, dst_ipif, zoneid, tsl, match_flags, ipst); 2682 2683 if (ire != NULL) { 2684 ire_cacheable = B_TRUE; 2685 ire_uinfo = (ire_mp != NULL) ? 2686 &((ire_t *)ire_mp->b_rptr)->ire_uinfo: 2687 &ire->ire_uinfo; 2688 } else { 2689 if (ire_mp == NULL) { 2690 ire = ire_ftable_lookup_v6( 2691 &tcp->tcp_connp->conn_remv6, 2692 0, 0, 0, dst_ipif, &sire, zoneid, 2693 0, tsl, match_flags, ipst); 2694 if (ire == NULL) { 2695 if (dst_ill != NULL) 2696 ill_refrele(dst_ill); 2697 return (0); 2698 } 2699 ire_uinfo = (sire != NULL) ? &sire->ire_uinfo : 2700 &ire->ire_uinfo; 2701 } else { 2702 ire = (ire_t *)ire_mp->b_rptr; 2703 ire_uinfo = 2704 &((ire_t *)ire_mp->b_rptr)->ire_uinfo; 2705 } 2706 } 2707 if (dst_ill != NULL) 2708 ill_refrele(dst_ill); 2709 2710 ASSERT(ire != NULL); 2711 ASSERT(ire_uinfo != NULL); 2712 2713 if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6) || 2714 IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) { 2715 /* 2716 * ire->ire_mp is non null when ire_mp passed in is used 2717 * ire->ire_mp is set in ip_bind_insert_ire[_v6](). 2718 */ 2719 if (ire->ire_mp == NULL) 2720 ire_refrele(ire); 2721 if (sire != NULL) 2722 ire_refrele(sire); 2723 return (0); 2724 } 2725 2726 if (IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) { 2727 in6_addr_t src_addr; 2728 2729 /* 2730 * ip_bind_connected_v6() has stored the correct source 2731 * address per IPv6 addr. selection policy in 2732 * conn_src_v6. 2733 */ 2734 src_addr = tcp->tcp_connp->conn_srcv6; 2735 2736 tcp->tcp_ip6h->ip6_src = src_addr; 2737 /* 2738 * Copy of the src addr. in tcp_t is needed 2739 * for the lookup funcs. 2740 */ 2741 tcp->tcp_ip_src_v6 = src_addr; 2742 ASSERT(IN6_ARE_ADDR_EQUAL(&tcp->tcp_ip6h->ip6_src, 2743 &connp->conn_srcv6)); 2744 } 2745 tcp->tcp_localnet = 2746 IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6); 2747 } 2748 2749 /* 2750 * This allows applications to fail quickly when connections are made 2751 * to dead hosts. Hosts can be labeled dead by adding a reject route 2752 * with both the RTF_REJECT and RTF_PRIVATE flags set. 2753 */ 2754 if ((ire->ire_flags & RTF_REJECT) && 2755 (ire->ire_flags & RTF_PRIVATE)) 2756 goto error; 2757 2758 /* 2759 * Make use of the cached rtt and rtt_sd values to calculate the 2760 * initial RTO. Note that they are already initialized in 2761 * tcp_init_values(). 2762 * If ire_uinfo is NULL, i.e., we do not have a cache ire for 2763 * IP_NEXTHOP, but instead are using the interface ire for the 2764 * nexthop, then we do not use the ire_uinfo from that ire to 2765 * do any initializations. 2766 */ 2767 if (ire_uinfo != NULL) { 2768 if (ire_uinfo->iulp_rtt != 0) { 2769 clock_t rto; 2770 2771 tcp->tcp_rtt_sa = ire_uinfo->iulp_rtt; 2772 tcp->tcp_rtt_sd = ire_uinfo->iulp_rtt_sd; 2773 rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 2774 tcps->tcps_rexmit_interval_extra + 2775 (tcp->tcp_rtt_sa >> 5); 2776 2777 if (rto > tcps->tcps_rexmit_interval_max) { 2778 tcp->tcp_rto = tcps->tcps_rexmit_interval_max; 2779 } else if (rto < tcps->tcps_rexmit_interval_min) { 2780 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 2781 } else { 2782 tcp->tcp_rto = rto; 2783 } 2784 } 2785 if (ire_uinfo->iulp_ssthresh != 0) 2786 tcp->tcp_cwnd_ssthresh = ire_uinfo->iulp_ssthresh; 2787 else 2788 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 2789 if (ire_uinfo->iulp_spipe > 0) { 2790 tcp->tcp_xmit_hiwater = MIN(ire_uinfo->iulp_spipe, 2791 tcps->tcps_max_buf); 2792 if (tcps->tcps_snd_lowat_fraction != 0) 2793 tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater / 2794 tcps->tcps_snd_lowat_fraction; 2795 (void) tcp_maxpsz_set(tcp, B_TRUE); 2796 } 2797 /* 2798 * Note that up till now, acceptor always inherits receive 2799 * window from the listener. But if there is a metrics 2800 * associated with a host, we should use that instead of 2801 * inheriting it from listener. Thus we need to pass this 2802 * info back to the caller. 2803 */ 2804 if (ire_uinfo->iulp_rpipe > 0) { 2805 tcp->tcp_rwnd = MIN(ire_uinfo->iulp_rpipe, 2806 tcps->tcps_max_buf); 2807 } 2808 2809 if (ire_uinfo->iulp_rtomax > 0) { 2810 tcp->tcp_second_timer_threshold = 2811 ire_uinfo->iulp_rtomax; 2812 } 2813 2814 /* 2815 * Use the metric option settings, iulp_tstamp_ok and 2816 * iulp_wscale_ok, only for active open. What this means 2817 * is that if the other side uses timestamp or window 2818 * scale option, TCP will also use those options. That 2819 * is for passive open. If the application sets a 2820 * large window, window scale is enabled regardless of 2821 * the value in iulp_wscale_ok. This is the behavior 2822 * since 2.6. So we keep it. 2823 * The only case left in passive open processing is the 2824 * check for SACK. 2825 * For ECN, it should probably be like SACK. But the 2826 * current value is binary, so we treat it like the other 2827 * cases. The metric only controls active open.For passive 2828 * open, the ndd param, tcp_ecn_permitted, controls the 2829 * behavior. 2830 */ 2831 if (!tcp_detached) { 2832 /* 2833 * The if check means that the following can only 2834 * be turned on by the metrics only IRE, but not off. 2835 */ 2836 if (ire_uinfo->iulp_tstamp_ok) 2837 tcp->tcp_snd_ts_ok = B_TRUE; 2838 if (ire_uinfo->iulp_wscale_ok) 2839 tcp->tcp_snd_ws_ok = B_TRUE; 2840 if (ire_uinfo->iulp_sack == 2) 2841 tcp->tcp_snd_sack_ok = B_TRUE; 2842 if (ire_uinfo->iulp_ecn_ok) 2843 tcp->tcp_ecn_ok = B_TRUE; 2844 } else { 2845 /* 2846 * Passive open. 2847 * 2848 * As above, the if check means that SACK can only be 2849 * turned on by the metric only IRE. 2850 */ 2851 if (ire_uinfo->iulp_sack > 0) { 2852 tcp->tcp_snd_sack_ok = B_TRUE; 2853 } 2854 } 2855 } 2856 2857 2858 /* 2859 * XXX: Note that currently, ire_max_frag can be as small as 68 2860 * because of PMTUd. So tcp_mss may go to negative if combined 2861 * length of all those options exceeds 28 bytes. But because 2862 * of the tcp_mss_min check below, we may not have a problem if 2863 * tcp_mss_min is of a reasonable value. The default is 1 so 2864 * the negative problem still exists. And the check defeats PMTUd. 2865 * In fact, if PMTUd finds that the MSS should be smaller than 2866 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min 2867 * value. 2868 * 2869 * We do not deal with that now. All those problems related to 2870 * PMTUd will be fixed later. 2871 */ 2872 ASSERT(ire->ire_max_frag != 0); 2873 mss = tcp->tcp_if_mtu = ire->ire_max_frag; 2874 if (tcp->tcp_ipp_fields & IPPF_USE_MIN_MTU) { 2875 if (tcp->tcp_ipp_use_min_mtu == IPV6_USE_MIN_MTU_NEVER) { 2876 mss = MIN(mss, IPV6_MIN_MTU); 2877 } 2878 } 2879 2880 /* Sanity check for MSS value. */ 2881 if (tcp->tcp_ipversion == IPV4_VERSION) 2882 mss_max = tcps->tcps_mss_max_ipv4; 2883 else 2884 mss_max = tcps->tcps_mss_max_ipv6; 2885 2886 if (tcp->tcp_ipversion == IPV6_VERSION && 2887 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 2888 /* 2889 * After receiving an ICMPv6 "packet too big" message with a 2890 * MTU < 1280, and for multirouted IPv6 packets, the IP layer 2891 * will insert a 8-byte fragment header in every packet; we 2892 * reduce the MSS by that amount here. 2893 */ 2894 mss -= sizeof (ip6_frag_t); 2895 } 2896 2897 if (tcp->tcp_ipsec_overhead == 0) 2898 tcp->tcp_ipsec_overhead = conn_ipsec_length(connp); 2899 2900 mss -= tcp->tcp_ipsec_overhead; 2901 2902 if (mss < tcps->tcps_mss_min) 2903 mss = tcps->tcps_mss_min; 2904 if (mss > mss_max) 2905 mss = mss_max; 2906 2907 /* Note that this is the maximum MSS, excluding all options. */ 2908 tcp->tcp_mss = mss; 2909 2910 /* 2911 * Initialize the ISS here now that we have the full connection ID. 2912 * The RFC 1948 method of initial sequence number generation requires 2913 * knowledge of the full connection ID before setting the ISS. 2914 */ 2915 2916 tcp_iss_init(tcp); 2917 2918 if (ire->ire_type & (IRE_LOOPBACK | IRE_LOCAL)) 2919 tcp->tcp_loopback = B_TRUE; 2920 2921 if (sire != NULL) 2922 IRE_REFRELE(sire); 2923 2924 /* 2925 * If we got an IRE_CACHE and an ILL, go through their properties; 2926 * otherwise, this is deferred until later when we have an IRE_CACHE. 2927 */ 2928 if (tcp->tcp_loopback || 2929 (ire_cacheable && (ill = ire_to_ill(ire)) != NULL)) { 2930 /* 2931 * For incoming, see if this tcp may be MDT-capable. For 2932 * outgoing, this process has been taken care of through 2933 * tcp_rput_other. 2934 */ 2935 tcp_ire_ill_check(tcp, ire, ill, incoming); 2936 tcp->tcp_ire_ill_check_done = B_TRUE; 2937 } 2938 2939 mutex_enter(&connp->conn_lock); 2940 /* 2941 * Make sure that conn is not marked incipient 2942 * for incoming connections. A blind 2943 * removal of incipient flag is cheaper than 2944 * check and removal. 2945 */ 2946 connp->conn_state_flags &= ~CONN_INCIPIENT; 2947 2948 /* 2949 * Must not cache forwarding table routes 2950 * or recache an IRE after the conn_t has 2951 * had conn_ire_cache cleared and is flagged 2952 * unusable, (see the CONN_CACHE_IRE() macro). 2953 */ 2954 if (ire_cacheable && CONN_CACHE_IRE(connp)) { 2955 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 2956 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 2957 connp->conn_ire_cache = ire; 2958 IRE_UNTRACE_REF(ire); 2959 rw_exit(&ire->ire_bucket->irb_lock); 2960 mutex_exit(&connp->conn_lock); 2961 return (1); 2962 } 2963 rw_exit(&ire->ire_bucket->irb_lock); 2964 } 2965 mutex_exit(&connp->conn_lock); 2966 2967 if (ire->ire_mp == NULL) 2968 ire_refrele(ire); 2969 return (1); 2970 2971 error: 2972 if (ire->ire_mp == NULL) 2973 ire_refrele(ire); 2974 if (sire != NULL) 2975 ire_refrele(sire); 2976 return (0); 2977 } 2978 2979 static void 2980 tcp_tpi_bind(tcp_t *tcp, mblk_t *mp) 2981 { 2982 int error; 2983 conn_t *connp = tcp->tcp_connp; 2984 struct sockaddr *sa; 2985 mblk_t *mp1; 2986 struct T_bind_req *tbr; 2987 int backlog; 2988 socklen_t len; 2989 sin_t *sin; 2990 sin6_t *sin6; 2991 cred_t *cr; 2992 2993 /* 2994 * All Solaris components should pass a db_credp 2995 * for this TPI message, hence we ASSERT. 2996 * But in case there is some other M_PROTO that looks 2997 * like a TPI message sent by some other kernel 2998 * component, we check and return an error. 2999 */ 3000 cr = msg_getcred(mp, NULL); 3001 ASSERT(cr != NULL); 3002 if (cr == NULL) { 3003 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 3004 return; 3005 } 3006 3007 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 3008 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) { 3009 if (tcp->tcp_debug) { 3010 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 3011 "tcp_tpi_bind: bad req, len %u", 3012 (uint_t)(mp->b_wptr - mp->b_rptr)); 3013 } 3014 tcp_err_ack(tcp, mp, TPROTO, 0); 3015 return; 3016 } 3017 /* Make sure the largest address fits */ 3018 mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t) + 1, 1); 3019 if (mp1 == NULL) { 3020 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 3021 return; 3022 } 3023 mp = mp1; 3024 tbr = (struct T_bind_req *)mp->b_rptr; 3025 3026 backlog = tbr->CONIND_number; 3027 len = tbr->ADDR_length; 3028 3029 switch (len) { 3030 case 0: /* request for a generic port */ 3031 tbr->ADDR_offset = sizeof (struct T_bind_req); 3032 if (tcp->tcp_family == AF_INET) { 3033 tbr->ADDR_length = sizeof (sin_t); 3034 sin = (sin_t *)&tbr[1]; 3035 *sin = sin_null; 3036 sin->sin_family = AF_INET; 3037 sa = (struct sockaddr *)sin; 3038 len = sizeof (sin_t); 3039 mp->b_wptr = (uchar_t *)&sin[1]; 3040 } else { 3041 ASSERT(tcp->tcp_family == AF_INET6); 3042 tbr->ADDR_length = sizeof (sin6_t); 3043 sin6 = (sin6_t *)&tbr[1]; 3044 *sin6 = sin6_null; 3045 sin6->sin6_family = AF_INET6; 3046 sa = (struct sockaddr *)sin6; 3047 len = sizeof (sin6_t); 3048 mp->b_wptr = (uchar_t *)&sin6[1]; 3049 } 3050 break; 3051 3052 case sizeof (sin_t): /* Complete IPv4 address */ 3053 sa = (struct sockaddr *)mi_offset_param(mp, tbr->ADDR_offset, 3054 sizeof (sin_t)); 3055 break; 3056 3057 case sizeof (sin6_t): /* Complete IPv6 address */ 3058 sa = (struct sockaddr *)mi_offset_param(mp, 3059 tbr->ADDR_offset, sizeof (sin6_t)); 3060 break; 3061 3062 default: 3063 if (tcp->tcp_debug) { 3064 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 3065 "tcp_tpi_bind: bad address length, %d", 3066 tbr->ADDR_length); 3067 } 3068 tcp_err_ack(tcp, mp, TBADADDR, 0); 3069 return; 3070 } 3071 3072 error = tcp_bind_check(connp, sa, len, cr, 3073 tbr->PRIM_type != O_T_BIND_REQ); 3074 if (error == 0) { 3075 if (tcp->tcp_family == AF_INET) { 3076 sin = (sin_t *)sa; 3077 sin->sin_port = tcp->tcp_lport; 3078 } else { 3079 sin6 = (sin6_t *)sa; 3080 sin6->sin6_port = tcp->tcp_lport; 3081 } 3082 3083 if (backlog > 0) { 3084 error = tcp_do_listen(connp, backlog, cr); 3085 } 3086 } 3087 done: 3088 if (error > 0) { 3089 tcp_err_ack(tcp, mp, TSYSERR, error); 3090 } else if (error < 0) { 3091 tcp_err_ack(tcp, mp, -error, 0); 3092 } else { 3093 mp->b_datap->db_type = M_PCPROTO; 3094 tbr->PRIM_type = T_BIND_ACK; 3095 putnext(tcp->tcp_rq, mp); 3096 } 3097 } 3098 3099 /* 3100 * If the "bind_to_req_port_only" parameter is set, if the requested port 3101 * number is available, return it, If not return 0 3102 * 3103 * If "bind_to_req_port_only" parameter is not set and 3104 * If the requested port number is available, return it. If not, return 3105 * the first anonymous port we happen across. If no anonymous ports are 3106 * available, return 0. addr is the requested local address, if any. 3107 * 3108 * In either case, when succeeding update the tcp_t to record the port number 3109 * and insert it in the bind hash table. 3110 * 3111 * Note that TCP over IPv4 and IPv6 sockets can use the same port number 3112 * without setting SO_REUSEADDR. This is needed so that they 3113 * can be viewed as two independent transport protocols. 3114 */ 3115 static in_port_t 3116 tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, 3117 int reuseaddr, boolean_t quick_connect, 3118 boolean_t bind_to_req_port_only, boolean_t user_specified) 3119 { 3120 /* number of times we have run around the loop */ 3121 int count = 0; 3122 /* maximum number of times to run around the loop */ 3123 int loopmax; 3124 conn_t *connp = tcp->tcp_connp; 3125 zoneid_t zoneid = connp->conn_zoneid; 3126 tcp_stack_t *tcps = tcp->tcp_tcps; 3127 3128 /* 3129 * Lookup for free addresses is done in a loop and "loopmax" 3130 * influences how long we spin in the loop 3131 */ 3132 if (bind_to_req_port_only) { 3133 /* 3134 * If the requested port is busy, don't bother to look 3135 * for a new one. Setting loop maximum count to 1 has 3136 * that effect. 3137 */ 3138 loopmax = 1; 3139 } else { 3140 /* 3141 * If the requested port is busy, look for a free one 3142 * in the anonymous port range. 3143 * Set loopmax appropriately so that one does not look 3144 * forever in the case all of the anonymous ports are in use. 3145 */ 3146 if (tcp->tcp_anon_priv_bind) { 3147 /* 3148 * loopmax = 3149 * (IPPORT_RESERVED-1) - tcp_min_anonpriv_port + 1 3150 */ 3151 loopmax = IPPORT_RESERVED - 3152 tcps->tcps_min_anonpriv_port; 3153 } else { 3154 loopmax = (tcps->tcps_largest_anon_port - 3155 tcps->tcps_smallest_anon_port + 1); 3156 } 3157 } 3158 do { 3159 uint16_t lport; 3160 tf_t *tbf; 3161 tcp_t *ltcp; 3162 conn_t *lconnp; 3163 3164 lport = htons(port); 3165 3166 /* 3167 * Ensure that the tcp_t is not currently in the bind hash. 3168 * Hold the lock on the hash bucket to ensure that 3169 * the duplicate check plus the insertion is an atomic 3170 * operation. 3171 * 3172 * This function does an inline lookup on the bind hash list 3173 * Make sure that we access only members of tcp_t 3174 * and that we don't look at tcp_tcp, since we are not 3175 * doing a CONN_INC_REF. 3176 */ 3177 tcp_bind_hash_remove(tcp); 3178 tbf = &tcps->tcps_bind_fanout[TCP_BIND_HASH(lport)]; 3179 mutex_enter(&tbf->tf_lock); 3180 for (ltcp = tbf->tf_tcp; ltcp != NULL; 3181 ltcp = ltcp->tcp_bind_hash) { 3182 if (lport == ltcp->tcp_lport) 3183 break; 3184 } 3185 3186 for (; ltcp != NULL; ltcp = ltcp->tcp_bind_hash_port) { 3187 boolean_t not_socket; 3188 boolean_t exclbind; 3189 3190 lconnp = ltcp->tcp_connp; 3191 3192 /* 3193 * On a labeled system, we must treat bindings to ports 3194 * on shared IP addresses by sockets with MAC exemption 3195 * privilege as being in all zones, as there's 3196 * otherwise no way to identify the right receiver. 3197 */ 3198 if (!(IPCL_ZONE_MATCH(ltcp->tcp_connp, zoneid) || 3199 IPCL_ZONE_MATCH(connp, 3200 ltcp->tcp_connp->conn_zoneid)) && 3201 !lconnp->conn_mac_exempt && 3202 !connp->conn_mac_exempt) 3203 continue; 3204 3205 /* 3206 * If TCP_EXCLBIND is set for either the bound or 3207 * binding endpoint, the semantics of bind 3208 * is changed according to the following. 3209 * 3210 * spec = specified address (v4 or v6) 3211 * unspec = unspecified address (v4 or v6) 3212 * A = specified addresses are different for endpoints 3213 * 3214 * bound bind to allowed 3215 * ------------------------------------- 3216 * unspec unspec no 3217 * unspec spec no 3218 * spec unspec no 3219 * spec spec yes if A 3220 * 3221 * For labeled systems, SO_MAC_EXEMPT behaves the same 3222 * as TCP_EXCLBIND, except that zoneid is ignored. 3223 * 3224 * Note: 3225 * 3226 * 1. Because of TLI semantics, an endpoint can go 3227 * back from, say TCP_ESTABLISHED to TCPS_LISTEN or 3228 * TCPS_BOUND, depending on whether it is originally 3229 * a listener or not. That is why we need to check 3230 * for states greater than or equal to TCPS_BOUND 3231 * here. 3232 * 3233 * 2. Ideally, we should only check for state equals 3234 * to TCPS_LISTEN. And the following check should be 3235 * added. 3236 * 3237 * if (ltcp->tcp_state == TCPS_LISTEN || 3238 * !reuseaddr || !ltcp->tcp_reuseaddr) { 3239 * ... 3240 * } 3241 * 3242 * The semantics will be changed to this. If the 3243 * endpoint on the list is in state not equal to 3244 * TCPS_LISTEN and both endpoints have SO_REUSEADDR 3245 * set, let the bind succeed. 3246 * 3247 * Because of (1), we cannot do that for TLI 3248 * endpoints. But we can do that for socket endpoints. 3249 * If in future, we can change this going back 3250 * semantics, we can use the above check for TLI also. 3251 */ 3252 not_socket = !(TCP_IS_SOCKET(ltcp) && 3253 TCP_IS_SOCKET(tcp)); 3254 exclbind = ltcp->tcp_exclbind || tcp->tcp_exclbind; 3255 3256 if (lconnp->conn_mac_exempt || connp->conn_mac_exempt || 3257 (exclbind && (not_socket || 3258 ltcp->tcp_state <= TCPS_ESTABLISHED))) { 3259 if (V6_OR_V4_INADDR_ANY( 3260 ltcp->tcp_bound_source_v6) || 3261 V6_OR_V4_INADDR_ANY(*laddr) || 3262 IN6_ARE_ADDR_EQUAL(laddr, 3263 <cp->tcp_bound_source_v6)) { 3264 break; 3265 } 3266 continue; 3267 } 3268 3269 /* 3270 * Check ipversion to allow IPv4 and IPv6 sockets to 3271 * have disjoint port number spaces, if *_EXCLBIND 3272 * is not set and only if the application binds to a 3273 * specific port. We use the same autoassigned port 3274 * number space for IPv4 and IPv6 sockets. 3275 */ 3276 if (tcp->tcp_ipversion != ltcp->tcp_ipversion && 3277 bind_to_req_port_only) 3278 continue; 3279 3280 /* 3281 * Ideally, we should make sure that the source 3282 * address, remote address, and remote port in the 3283 * four tuple for this tcp-connection is unique. 3284 * However, trying to find out the local source 3285 * address would require too much code duplication 3286 * with IP, since IP needs needs to have that code 3287 * to support userland TCP implementations. 3288 */ 3289 if (quick_connect && 3290 (ltcp->tcp_state > TCPS_LISTEN) && 3291 ((tcp->tcp_fport != ltcp->tcp_fport) || 3292 !IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6, 3293 <cp->tcp_remote_v6))) 3294 continue; 3295 3296 if (!reuseaddr) { 3297 /* 3298 * No socket option SO_REUSEADDR. 3299 * If existing port is bound to 3300 * a non-wildcard IP address 3301 * and the requesting stream is 3302 * bound to a distinct 3303 * different IP addresses 3304 * (non-wildcard, also), keep 3305 * going. 3306 */ 3307 if (!V6_OR_V4_INADDR_ANY(*laddr) && 3308 !V6_OR_V4_INADDR_ANY( 3309 ltcp->tcp_bound_source_v6) && 3310 !IN6_ARE_ADDR_EQUAL(laddr, 3311 <cp->tcp_bound_source_v6)) 3312 continue; 3313 if (ltcp->tcp_state >= TCPS_BOUND) { 3314 /* 3315 * This port is being used and 3316 * its state is >= TCPS_BOUND, 3317 * so we can't bind to it. 3318 */ 3319 break; 3320 } 3321 } else { 3322 /* 3323 * socket option SO_REUSEADDR is set on the 3324 * binding tcp_t. 3325 * 3326 * If two streams are bound to 3327 * same IP address or both addr 3328 * and bound source are wildcards 3329 * (INADDR_ANY), we want to stop 3330 * searching. 3331 * We have found a match of IP source 3332 * address and source port, which is 3333 * refused regardless of the 3334 * SO_REUSEADDR setting, so we break. 3335 */ 3336 if (IN6_ARE_ADDR_EQUAL(laddr, 3337 <cp->tcp_bound_source_v6) && 3338 (ltcp->tcp_state == TCPS_LISTEN || 3339 ltcp->tcp_state == TCPS_BOUND)) 3340 break; 3341 } 3342 } 3343 if (ltcp != NULL) { 3344 /* The port number is busy */ 3345 mutex_exit(&tbf->tf_lock); 3346 } else { 3347 /* 3348 * This port is ours. Insert in fanout and mark as 3349 * bound to prevent others from getting the port 3350 * number. 3351 */ 3352 tcp->tcp_state = TCPS_BOUND; 3353 tcp->tcp_lport = htons(port); 3354 *(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport; 3355 3356 ASSERT(&tcps->tcps_bind_fanout[TCP_BIND_HASH( 3357 tcp->tcp_lport)] == tbf); 3358 tcp_bind_hash_insert(tbf, tcp, 1); 3359 3360 mutex_exit(&tbf->tf_lock); 3361 3362 /* 3363 * We don't want tcp_next_port_to_try to "inherit" 3364 * a port number supplied by the user in a bind. 3365 */ 3366 if (user_specified) 3367 return (port); 3368 3369 /* 3370 * This is the only place where tcp_next_port_to_try 3371 * is updated. After the update, it may or may not 3372 * be in the valid range. 3373 */ 3374 if (!tcp->tcp_anon_priv_bind) 3375 tcps->tcps_next_port_to_try = port + 1; 3376 return (port); 3377 } 3378 3379 if (tcp->tcp_anon_priv_bind) { 3380 port = tcp_get_next_priv_port(tcp); 3381 } else { 3382 if (count == 0 && user_specified) { 3383 /* 3384 * We may have to return an anonymous port. So 3385 * get one to start with. 3386 */ 3387 port = 3388 tcp_update_next_port( 3389 tcps->tcps_next_port_to_try, 3390 tcp, B_TRUE); 3391 user_specified = B_FALSE; 3392 } else { 3393 port = tcp_update_next_port(port + 1, tcp, 3394 B_FALSE); 3395 } 3396 } 3397 if (port == 0) 3398 break; 3399 3400 /* 3401 * Don't let this loop run forever in the case where 3402 * all of the anonymous ports are in use. 3403 */ 3404 } while (++count < loopmax); 3405 return (0); 3406 } 3407 3408 /* 3409 * tcp_clean_death / tcp_close_detached must not be called more than once 3410 * on a tcp. Thus every function that potentially calls tcp_clean_death 3411 * must check for the tcp state before calling tcp_clean_death. 3412 * Eg. tcp_input, tcp_rput_data, tcp_eager_kill, tcp_clean_death_wrapper, 3413 * tcp_timer_handler, all check for the tcp state. 3414 */ 3415 /* ARGSUSED */ 3416 void 3417 tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2) 3418 { 3419 tcp_t *tcp = ((conn_t *)arg)->conn_tcp; 3420 3421 freemsg(mp); 3422 if (tcp->tcp_state > TCPS_BOUND) 3423 (void) tcp_clean_death(((conn_t *)arg)->conn_tcp, 3424 ETIMEDOUT, 5); 3425 } 3426 3427 /* 3428 * We are dying for some reason. Try to do it gracefully. (May be called 3429 * as writer.) 3430 * 3431 * Return -1 if the structure was not cleaned up (if the cleanup had to be 3432 * done by a service procedure). 3433 * TBD - Should the return value distinguish between the tcp_t being 3434 * freed and it being reinitialized? 3435 */ 3436 static int 3437 tcp_clean_death(tcp_t *tcp, int err, uint8_t tag) 3438 { 3439 mblk_t *mp; 3440 queue_t *q; 3441 conn_t *connp = tcp->tcp_connp; 3442 tcp_stack_t *tcps = tcp->tcp_tcps; 3443 sodirect_t *sodp; 3444 3445 TCP_CLD_STAT(tag); 3446 3447 #if TCP_TAG_CLEAN_DEATH 3448 tcp->tcp_cleandeathtag = tag; 3449 #endif 3450 3451 if (tcp->tcp_fused) 3452 tcp_unfuse(tcp); 3453 3454 if (tcp->tcp_linger_tid != 0 && 3455 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 3456 tcp_stop_lingering(tcp); 3457 } 3458 3459 ASSERT(tcp != NULL); 3460 ASSERT((tcp->tcp_family == AF_INET && 3461 tcp->tcp_ipversion == IPV4_VERSION) || 3462 (tcp->tcp_family == AF_INET6 && 3463 (tcp->tcp_ipversion == IPV4_VERSION || 3464 tcp->tcp_ipversion == IPV6_VERSION))); 3465 3466 if (TCP_IS_DETACHED(tcp)) { 3467 if (tcp->tcp_hard_binding) { 3468 /* 3469 * Its an eager that we are dealing with. We close the 3470 * eager but in case a conn_ind has already gone to the 3471 * listener, let tcp_accept_finish() send a discon_ind 3472 * to the listener and drop the last reference. If the 3473 * listener doesn't even know about the eager i.e. the 3474 * conn_ind hasn't gone up, blow away the eager and drop 3475 * the last reference as well. If the conn_ind has gone 3476 * up, state should be BOUND. tcp_accept_finish 3477 * will figure out that the connection has received a 3478 * RST and will send a DISCON_IND to the application. 3479 */ 3480 tcp_closei_local(tcp); 3481 if (!tcp->tcp_tconnind_started) { 3482 CONN_DEC_REF(connp); 3483 } else { 3484 tcp->tcp_state = TCPS_BOUND; 3485 } 3486 } else { 3487 tcp_close_detached(tcp); 3488 } 3489 return (0); 3490 } 3491 3492 TCP_STAT(tcps, tcp_clean_death_nondetached); 3493 3494 /* If sodirect, not anymore */ 3495 SOD_PTR_ENTER(tcp, sodp); 3496 if (sodp != NULL) { 3497 tcp->tcp_sodirect = NULL; 3498 mutex_exit(sodp->sod_lockp); 3499 } 3500 3501 q = tcp->tcp_rq; 3502 3503 /* Trash all inbound data */ 3504 if (!IPCL_IS_NONSTR(connp)) { 3505 ASSERT(q != NULL); 3506 flushq(q, FLUSHALL); 3507 } 3508 3509 /* 3510 * If we are at least part way open and there is error 3511 * (err==0 implies no error) 3512 * notify our client by a T_DISCON_IND. 3513 */ 3514 if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) { 3515 if (tcp->tcp_state >= TCPS_ESTABLISHED && 3516 !TCP_IS_SOCKET(tcp)) { 3517 /* 3518 * Send M_FLUSH according to TPI. Because sockets will 3519 * (and must) ignore FLUSHR we do that only for TPI 3520 * endpoints and sockets in STREAMS mode. 3521 */ 3522 (void) putnextctl1(q, M_FLUSH, FLUSHR); 3523 } 3524 if (tcp->tcp_debug) { 3525 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 3526 "tcp_clean_death: discon err %d", err); 3527 } 3528 if (IPCL_IS_NONSTR(connp)) { 3529 /* Direct socket, use upcall */ 3530 (*connp->conn_upcalls->su_disconnected)( 3531 connp->conn_upper_handle, tcp->tcp_connid, err); 3532 } else { 3533 mp = mi_tpi_discon_ind(NULL, err, 0); 3534 if (mp != NULL) { 3535 putnext(q, mp); 3536 } else { 3537 if (tcp->tcp_debug) { 3538 (void) strlog(TCP_MOD_ID, 0, 1, 3539 SL_ERROR|SL_TRACE, 3540 "tcp_clean_death, sending M_ERROR"); 3541 } 3542 (void) putnextctl1(q, M_ERROR, EPROTO); 3543 } 3544 } 3545 if (tcp->tcp_state <= TCPS_SYN_RCVD) { 3546 /* SYN_SENT or SYN_RCVD */ 3547 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 3548 } else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) { 3549 /* ESTABLISHED or CLOSE_WAIT */ 3550 BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); 3551 } 3552 } 3553 3554 tcp_reinit(tcp); 3555 if (IPCL_IS_NONSTR(connp)) 3556 (void) tcp_do_unbind(connp); 3557 3558 return (-1); 3559 } 3560 3561 /* 3562 * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout 3563 * to expire, stop the wait and finish the close. 3564 */ 3565 static void 3566 tcp_stop_lingering(tcp_t *tcp) 3567 { 3568 clock_t delta = 0; 3569 tcp_stack_t *tcps = tcp->tcp_tcps; 3570 3571 tcp->tcp_linger_tid = 0; 3572 if (tcp->tcp_state > TCPS_LISTEN) { 3573 tcp_acceptor_hash_remove(tcp); 3574 mutex_enter(&tcp->tcp_non_sq_lock); 3575 if (tcp->tcp_flow_stopped) { 3576 tcp_clrqfull(tcp); 3577 } 3578 mutex_exit(&tcp->tcp_non_sq_lock); 3579 3580 if (tcp->tcp_timer_tid != 0) { 3581 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 3582 tcp->tcp_timer_tid = 0; 3583 } 3584 /* 3585 * Need to cancel those timers which will not be used when 3586 * TCP is detached. This has to be done before the tcp_wq 3587 * is set to the global queue. 3588 */ 3589 tcp_timers_stop(tcp); 3590 3591 tcp->tcp_detached = B_TRUE; 3592 ASSERT(tcps->tcps_g_q != NULL); 3593 tcp->tcp_rq = tcps->tcps_g_q; 3594 tcp->tcp_wq = WR(tcps->tcps_g_q); 3595 3596 if (tcp->tcp_state == TCPS_TIME_WAIT) { 3597 tcp_time_wait_append(tcp); 3598 TCP_DBGSTAT(tcps, tcp_detach_time_wait); 3599 goto finish; 3600 } 3601 3602 /* 3603 * If delta is zero the timer event wasn't executed and was 3604 * successfully canceled. In this case we need to restart it 3605 * with the minimal delta possible. 3606 */ 3607 if (delta >= 0) { 3608 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 3609 delta ? delta : 1); 3610 } 3611 } else { 3612 tcp_closei_local(tcp); 3613 CONN_DEC_REF(tcp->tcp_connp); 3614 } 3615 finish: 3616 /* Signal closing thread that it can complete close */ 3617 mutex_enter(&tcp->tcp_closelock); 3618 tcp->tcp_detached = B_TRUE; 3619 ASSERT(tcps->tcps_g_q != NULL); 3620 3621 tcp->tcp_rq = tcps->tcps_g_q; 3622 tcp->tcp_wq = WR(tcps->tcps_g_q); 3623 3624 tcp->tcp_closed = 1; 3625 cv_signal(&tcp->tcp_closecv); 3626 mutex_exit(&tcp->tcp_closelock); 3627 } 3628 3629 /* 3630 * Handle lingering timeouts. This function is called when the SO_LINGER timeout 3631 * expires. 3632 */ 3633 static void 3634 tcp_close_linger_timeout(void *arg) 3635 { 3636 conn_t *connp = (conn_t *)arg; 3637 tcp_t *tcp = connp->conn_tcp; 3638 3639 tcp->tcp_client_errno = ETIMEDOUT; 3640 tcp_stop_lingering(tcp); 3641 } 3642 3643 static void 3644 tcp_close_common(conn_t *connp, int flags) 3645 { 3646 tcp_t *tcp = connp->conn_tcp; 3647 mblk_t *mp = &tcp->tcp_closemp; 3648 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 3649 mblk_t *bp; 3650 3651 ASSERT(connp->conn_ref >= 2); 3652 3653 /* 3654 * Mark the conn as closing. ill_pending_mp_add will not 3655 * add any mp to the pending mp list, after this conn has 3656 * started closing. Same for sq_pending_mp_add 3657 */ 3658 mutex_enter(&connp->conn_lock); 3659 connp->conn_state_flags |= CONN_CLOSING; 3660 if (connp->conn_oper_pending_ill != NULL) 3661 conn_ioctl_cleanup_reqd = B_TRUE; 3662 CONN_INC_REF_LOCKED(connp); 3663 mutex_exit(&connp->conn_lock); 3664 tcp->tcp_closeflags = (uint8_t)flags; 3665 ASSERT(connp->conn_ref >= 3); 3666 3667 /* 3668 * tcp_closemp_used is used below without any protection of a lock 3669 * as we don't expect any one else to use it concurrently at this 3670 * point otherwise it would be a major defect. 3671 */ 3672 3673 if (mp->b_prev == NULL) 3674 tcp->tcp_closemp_used = B_TRUE; 3675 else 3676 cmn_err(CE_PANIC, "tcp_close: concurrent use of tcp_closemp: " 3677 "connp %p tcp %p\n", (void *)connp, (void *)tcp); 3678 3679 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 3680 3681 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_close_output, connp, 3682 tcp_squeue_flag, SQTAG_IP_TCP_CLOSE); 3683 3684 mutex_enter(&tcp->tcp_closelock); 3685 while (!tcp->tcp_closed) { 3686 if (!cv_wait_sig(&tcp->tcp_closecv, &tcp->tcp_closelock)) { 3687 /* 3688 * The cv_wait_sig() was interrupted. We now do the 3689 * following: 3690 * 3691 * 1) If the endpoint was lingering, we allow this 3692 * to be interrupted by cancelling the linger timeout 3693 * and closing normally. 3694 * 3695 * 2) Revert to calling cv_wait() 3696 * 3697 * We revert to using cv_wait() to avoid an 3698 * infinite loop which can occur if the calling 3699 * thread is higher priority than the squeue worker 3700 * thread and is bound to the same cpu. 3701 */ 3702 if (tcp->tcp_linger && tcp->tcp_lingertime > 0) { 3703 mutex_exit(&tcp->tcp_closelock); 3704 /* Entering squeue, bump ref count. */ 3705 CONN_INC_REF(connp); 3706 bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL); 3707 SQUEUE_ENTER_ONE(connp->conn_sqp, bp, 3708 tcp_linger_interrupted, connp, 3709 tcp_squeue_flag, SQTAG_IP_TCP_CLOSE); 3710 mutex_enter(&tcp->tcp_closelock); 3711 } 3712 break; 3713 } 3714 } 3715 while (!tcp->tcp_closed) 3716 cv_wait(&tcp->tcp_closecv, &tcp->tcp_closelock); 3717 mutex_exit(&tcp->tcp_closelock); 3718 3719 /* 3720 * In the case of listener streams that have eagers in the q or q0 3721 * we wait for the eagers to drop their reference to us. tcp_rq and 3722 * tcp_wq of the eagers point to our queues. By waiting for the 3723 * refcnt to drop to 1, we are sure that the eagers have cleaned 3724 * up their queue pointers and also dropped their references to us. 3725 */ 3726 if (tcp->tcp_wait_for_eagers) { 3727 mutex_enter(&connp->conn_lock); 3728 while (connp->conn_ref != 1) { 3729 cv_wait(&connp->conn_cv, &connp->conn_lock); 3730 } 3731 mutex_exit(&connp->conn_lock); 3732 } 3733 /* 3734 * ioctl cleanup. The mp is queued in the 3735 * ill_pending_mp or in the sq_pending_mp. 3736 */ 3737 if (conn_ioctl_cleanup_reqd) 3738 conn_ioctl_cleanup(connp); 3739 3740 tcp->tcp_cpid = -1; 3741 } 3742 3743 static int 3744 tcp_tpi_close(queue_t *q, int flags) 3745 { 3746 conn_t *connp; 3747 3748 ASSERT(WR(q)->q_next == NULL); 3749 3750 if (flags & SO_FALLBACK) { 3751 /* 3752 * stream is being closed while in fallback 3753 * simply free the resources that were allocated 3754 */ 3755 inet_minor_free(WR(q)->q_ptr, (dev_t)(RD(q)->q_ptr)); 3756 qprocsoff(q); 3757 goto done; 3758 } 3759 3760 connp = Q_TO_CONN(q); 3761 /* 3762 * We are being closed as /dev/tcp or /dev/tcp6. 3763 */ 3764 tcp_close_common(connp, flags); 3765 3766 qprocsoff(q); 3767 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 3768 3769 /* 3770 * Drop IP's reference on the conn. This is the last reference 3771 * on the connp if the state was less than established. If the 3772 * connection has gone into timewait state, then we will have 3773 * one ref for the TCP and one more ref (total of two) for the 3774 * classifier connected hash list (a timewait connections stays 3775 * in connected hash till closed). 3776 * 3777 * We can't assert the references because there might be other 3778 * transient reference places because of some walkers or queued 3779 * packets in squeue for the timewait state. 3780 */ 3781 CONN_DEC_REF(connp); 3782 done: 3783 q->q_ptr = WR(q)->q_ptr = NULL; 3784 return (0); 3785 } 3786 3787 static int 3788 tcpclose_accept(queue_t *q) 3789 { 3790 vmem_t *minor_arena; 3791 dev_t conn_dev; 3792 3793 ASSERT(WR(q)->q_qinfo == &tcp_acceptor_winit); 3794 3795 /* 3796 * We had opened an acceptor STREAM for sockfs which is 3797 * now being closed due to some error. 3798 */ 3799 qprocsoff(q); 3800 3801 minor_arena = (vmem_t *)WR(q)->q_ptr; 3802 conn_dev = (dev_t)RD(q)->q_ptr; 3803 ASSERT(minor_arena != NULL); 3804 ASSERT(conn_dev != 0); 3805 inet_minor_free(minor_arena, conn_dev); 3806 q->q_ptr = WR(q)->q_ptr = NULL; 3807 return (0); 3808 } 3809 3810 /* 3811 * Called by tcp_close() routine via squeue when lingering is 3812 * interrupted by a signal. 3813 */ 3814 3815 /* ARGSUSED */ 3816 static void 3817 tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2) 3818 { 3819 conn_t *connp = (conn_t *)arg; 3820 tcp_t *tcp = connp->conn_tcp; 3821 3822 freeb(mp); 3823 if (tcp->tcp_linger_tid != 0 && 3824 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 3825 tcp_stop_lingering(tcp); 3826 tcp->tcp_client_errno = EINTR; 3827 } 3828 } 3829 3830 /* 3831 * Called by streams close routine via squeues when our client blows off her 3832 * descriptor, we take this to mean: "close the stream state NOW, close the tcp 3833 * connection politely" When SO_LINGER is set (with a non-zero linger time and 3834 * it is not a nonblocking socket) then this routine sleeps until the FIN is 3835 * acked. 3836 * 3837 * NOTE: tcp_close potentially returns error when lingering. 3838 * However, the stream head currently does not pass these errors 3839 * to the application. 4.4BSD only returns EINTR and EWOULDBLOCK 3840 * errors to the application (from tsleep()) and not errors 3841 * like ECONNRESET caused by receiving a reset packet. 3842 */ 3843 3844 /* ARGSUSED */ 3845 static void 3846 tcp_close_output(void *arg, mblk_t *mp, void *arg2) 3847 { 3848 char *msg; 3849 conn_t *connp = (conn_t *)arg; 3850 tcp_t *tcp = connp->conn_tcp; 3851 clock_t delta = 0; 3852 tcp_stack_t *tcps = tcp->tcp_tcps; 3853 3854 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 3855 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 3856 3857 mutex_enter(&tcp->tcp_eager_lock); 3858 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 3859 /* Cleanup for listener */ 3860 tcp_eager_cleanup(tcp, 0); 3861 tcp->tcp_wait_for_eagers = 1; 3862 } 3863 mutex_exit(&tcp->tcp_eager_lock); 3864 3865 connp->conn_mdt_ok = B_FALSE; 3866 tcp->tcp_mdt = B_FALSE; 3867 3868 connp->conn_lso_ok = B_FALSE; 3869 tcp->tcp_lso = B_FALSE; 3870 3871 msg = NULL; 3872 switch (tcp->tcp_state) { 3873 case TCPS_CLOSED: 3874 case TCPS_IDLE: 3875 case TCPS_BOUND: 3876 case TCPS_LISTEN: 3877 break; 3878 case TCPS_SYN_SENT: 3879 msg = "tcp_close, during connect"; 3880 break; 3881 case TCPS_SYN_RCVD: 3882 /* 3883 * Close during the connect 3-way handshake 3884 * but here there may or may not be pending data 3885 * already on queue. Process almost same as in 3886 * the ESTABLISHED state. 3887 */ 3888 /* FALLTHRU */ 3889 default: 3890 if (tcp->tcp_sodirect != NULL) { 3891 /* Ok, no more sodirect */ 3892 tcp->tcp_sodirect = NULL; 3893 } 3894 3895 if (tcp->tcp_fused) 3896 tcp_unfuse(tcp); 3897 3898 /* 3899 * If SO_LINGER has set a zero linger time, abort the 3900 * connection with a reset. 3901 */ 3902 if (tcp->tcp_linger && tcp->tcp_lingertime == 0) { 3903 msg = "tcp_close, zero lingertime"; 3904 break; 3905 } 3906 3907 ASSERT(tcp->tcp_hard_bound || tcp->tcp_hard_binding); 3908 /* 3909 * Abort connection if there is unread data queued. 3910 */ 3911 if (tcp->tcp_rcv_list || tcp->tcp_reass_head) { 3912 msg = "tcp_close, unread data"; 3913 break; 3914 } 3915 /* 3916 * tcp_hard_bound is now cleared thus all packets go through 3917 * tcp_lookup. This fact is used by tcp_detach below. 3918 * 3919 * We have done a qwait() above which could have possibly 3920 * drained more messages in turn causing transition to a 3921 * different state. Check whether we have to do the rest 3922 * of the processing or not. 3923 */ 3924 if (tcp->tcp_state <= TCPS_LISTEN) 3925 break; 3926 3927 /* 3928 * Transmit the FIN before detaching the tcp_t. 3929 * After tcp_detach returns this queue/perimeter 3930 * no longer owns the tcp_t thus others can modify it. 3931 */ 3932 (void) tcp_xmit_end(tcp); 3933 3934 /* 3935 * If lingering on close then wait until the fin is acked, 3936 * the SO_LINGER time passes, or a reset is sent/received. 3937 */ 3938 if (tcp->tcp_linger && tcp->tcp_lingertime > 0 && 3939 !(tcp->tcp_fin_acked) && 3940 tcp->tcp_state >= TCPS_ESTABLISHED) { 3941 if (tcp->tcp_closeflags & (FNDELAY|FNONBLOCK)) { 3942 tcp->tcp_client_errno = EWOULDBLOCK; 3943 } else if (tcp->tcp_client_errno == 0) { 3944 3945 ASSERT(tcp->tcp_linger_tid == 0); 3946 3947 tcp->tcp_linger_tid = TCP_TIMER(tcp, 3948 tcp_close_linger_timeout, 3949 tcp->tcp_lingertime * hz); 3950 3951 /* tcp_close_linger_timeout will finish close */ 3952 if (tcp->tcp_linger_tid == 0) 3953 tcp->tcp_client_errno = ENOSR; 3954 else 3955 return; 3956 } 3957 3958 /* 3959 * Check if we need to detach or just close 3960 * the instance. 3961 */ 3962 if (tcp->tcp_state <= TCPS_LISTEN) 3963 break; 3964 } 3965 3966 /* 3967 * Make sure that no other thread will access the tcp_rq of 3968 * this instance (through lookups etc.) as tcp_rq will go 3969 * away shortly. 3970 */ 3971 tcp_acceptor_hash_remove(tcp); 3972 3973 mutex_enter(&tcp->tcp_non_sq_lock); 3974 if (tcp->tcp_flow_stopped) { 3975 tcp_clrqfull(tcp); 3976 } 3977 mutex_exit(&tcp->tcp_non_sq_lock); 3978 3979 if (tcp->tcp_timer_tid != 0) { 3980 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 3981 tcp->tcp_timer_tid = 0; 3982 } 3983 /* 3984 * Need to cancel those timers which will not be used when 3985 * TCP is detached. This has to be done before the tcp_wq 3986 * is set to the global queue. 3987 */ 3988 tcp_timers_stop(tcp); 3989 3990 tcp->tcp_detached = B_TRUE; 3991 if (tcp->tcp_state == TCPS_TIME_WAIT) { 3992 tcp_time_wait_append(tcp); 3993 TCP_DBGSTAT(tcps, tcp_detach_time_wait); 3994 ASSERT(connp->conn_ref >= 3); 3995 goto finish; 3996 } 3997 3998 /* 3999 * If delta is zero the timer event wasn't executed and was 4000 * successfully canceled. In this case we need to restart it 4001 * with the minimal delta possible. 4002 */ 4003 if (delta >= 0) 4004 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 4005 delta ? delta : 1); 4006 4007 ASSERT(connp->conn_ref >= 3); 4008 goto finish; 4009 } 4010 4011 /* Detach did not complete. Still need to remove q from stream. */ 4012 if (msg) { 4013 if (tcp->tcp_state == TCPS_ESTABLISHED || 4014 tcp->tcp_state == TCPS_CLOSE_WAIT) 4015 BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); 4016 if (tcp->tcp_state == TCPS_SYN_SENT || 4017 tcp->tcp_state == TCPS_SYN_RCVD) 4018 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 4019 tcp_xmit_ctl(msg, tcp, tcp->tcp_snxt, 0, TH_RST); 4020 } 4021 4022 tcp_closei_local(tcp); 4023 CONN_DEC_REF(connp); 4024 ASSERT(connp->conn_ref >= 2); 4025 4026 finish: 4027 /* 4028 * Although packets are always processed on the correct 4029 * tcp's perimeter and access is serialized via squeue's, 4030 * IP still needs a queue when sending packets in time_wait 4031 * state so use WR(tcps_g_q) till ip_output() can be 4032 * changed to deal with just connp. For read side, we 4033 * could have set tcp_rq to NULL but there are some cases 4034 * in tcp_rput_data() from early days of this code which 4035 * do a putnext without checking if tcp is closed. Those 4036 * need to be identified before both tcp_rq and tcp_wq 4037 * can be set to NULL and tcps_g_q can disappear forever. 4038 */ 4039 mutex_enter(&tcp->tcp_closelock); 4040 /* 4041 * Don't change the queues in the case of a listener that has 4042 * eagers in its q or q0. It could surprise the eagers. 4043 * Instead wait for the eagers outside the squeue. 4044 */ 4045 if (!tcp->tcp_wait_for_eagers) { 4046 tcp->tcp_detached = B_TRUE; 4047 /* 4048 * When default queue is closing we set tcps_g_q to NULL 4049 * after the close is done. 4050 */ 4051 ASSERT(tcps->tcps_g_q != NULL); 4052 tcp->tcp_rq = tcps->tcps_g_q; 4053 tcp->tcp_wq = WR(tcps->tcps_g_q); 4054 } 4055 4056 /* Signal tcp_close() to finish closing. */ 4057 tcp->tcp_closed = 1; 4058 cv_signal(&tcp->tcp_closecv); 4059 mutex_exit(&tcp->tcp_closelock); 4060 } 4061 4062 4063 /* 4064 * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp. 4065 * Some stream heads get upset if they see these later on as anything but NULL. 4066 */ 4067 static void 4068 tcp_close_mpp(mblk_t **mpp) 4069 { 4070 mblk_t *mp; 4071 4072 if ((mp = *mpp) != NULL) { 4073 do { 4074 mp->b_next = NULL; 4075 mp->b_prev = NULL; 4076 } while ((mp = mp->b_cont) != NULL); 4077 4078 mp = *mpp; 4079 *mpp = NULL; 4080 freemsg(mp); 4081 } 4082 } 4083 4084 /* Do detached close. */ 4085 static void 4086 tcp_close_detached(tcp_t *tcp) 4087 { 4088 if (tcp->tcp_fused) 4089 tcp_unfuse(tcp); 4090 4091 /* 4092 * Clustering code serializes TCP disconnect callbacks and 4093 * cluster tcp list walks by blocking a TCP disconnect callback 4094 * if a cluster tcp list walk is in progress. This ensures 4095 * accurate accounting of TCPs in the cluster code even though 4096 * the TCP list walk itself is not atomic. 4097 */ 4098 tcp_closei_local(tcp); 4099 CONN_DEC_REF(tcp->tcp_connp); 4100 } 4101 4102 /* 4103 * Stop all TCP timers, and free the timer mblks if requested. 4104 */ 4105 void 4106 tcp_timers_stop(tcp_t *tcp) 4107 { 4108 if (tcp->tcp_timer_tid != 0) { 4109 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 4110 tcp->tcp_timer_tid = 0; 4111 } 4112 if (tcp->tcp_ka_tid != 0) { 4113 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ka_tid); 4114 tcp->tcp_ka_tid = 0; 4115 } 4116 if (tcp->tcp_ack_tid != 0) { 4117 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 4118 tcp->tcp_ack_tid = 0; 4119 } 4120 if (tcp->tcp_push_tid != 0) { 4121 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 4122 tcp->tcp_push_tid = 0; 4123 } 4124 } 4125 4126 /* 4127 * The tcp_t is going away. Remove it from all lists and set it 4128 * to TCPS_CLOSED. The freeing up of memory is deferred until 4129 * tcp_inactive. This is needed since a thread in tcp_rput might have 4130 * done a CONN_INC_REF on this structure before it was removed from the 4131 * hashes. 4132 */ 4133 static void 4134 tcp_closei_local(tcp_t *tcp) 4135 { 4136 ire_t *ire; 4137 conn_t *connp = tcp->tcp_connp; 4138 tcp_stack_t *tcps = tcp->tcp_tcps; 4139 4140 if (!TCP_IS_SOCKET(tcp)) 4141 tcp_acceptor_hash_remove(tcp); 4142 4143 UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs); 4144 tcp->tcp_ibsegs = 0; 4145 UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs); 4146 tcp->tcp_obsegs = 0; 4147 4148 /* 4149 * If we are an eager connection hanging off a listener that 4150 * hasn't formally accepted the connection yet, get off his 4151 * list and blow off any data that we have accumulated. 4152 */ 4153 if (tcp->tcp_listener != NULL) { 4154 tcp_t *listener = tcp->tcp_listener; 4155 mutex_enter(&listener->tcp_eager_lock); 4156 /* 4157 * tcp_tconnind_started == B_TRUE means that the 4158 * conn_ind has already gone to listener. At 4159 * this point, eager will be closed but we 4160 * leave it in listeners eager list so that 4161 * if listener decides to close without doing 4162 * accept, we can clean this up. In tcp_wput_accept 4163 * we take care of the case of accept on closed 4164 * eager. 4165 */ 4166 if (!tcp->tcp_tconnind_started) { 4167 tcp_eager_unlink(tcp); 4168 mutex_exit(&listener->tcp_eager_lock); 4169 /* 4170 * We don't want to have any pointers to the 4171 * listener queue, after we have released our 4172 * reference on the listener 4173 */ 4174 ASSERT(tcps->tcps_g_q != NULL); 4175 tcp->tcp_rq = tcps->tcps_g_q; 4176 tcp->tcp_wq = WR(tcps->tcps_g_q); 4177 CONN_DEC_REF(listener->tcp_connp); 4178 } else { 4179 mutex_exit(&listener->tcp_eager_lock); 4180 } 4181 } 4182 4183 /* Stop all the timers */ 4184 tcp_timers_stop(tcp); 4185 4186 if (tcp->tcp_state == TCPS_LISTEN) { 4187 if (tcp->tcp_ip_addr_cache) { 4188 kmem_free((void *)tcp->tcp_ip_addr_cache, 4189 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 4190 tcp->tcp_ip_addr_cache = NULL; 4191 } 4192 } 4193 mutex_enter(&tcp->tcp_non_sq_lock); 4194 if (tcp->tcp_flow_stopped) 4195 tcp_clrqfull(tcp); 4196 mutex_exit(&tcp->tcp_non_sq_lock); 4197 4198 tcp_bind_hash_remove(tcp); 4199 /* 4200 * If the tcp_time_wait_collector (which runs outside the squeue) 4201 * is trying to remove this tcp from the time wait list, we will 4202 * block in tcp_time_wait_remove while trying to acquire the 4203 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also 4204 * requires the ipcl_hash_remove to be ordered after the 4205 * tcp_time_wait_remove for the refcnt checks to work correctly. 4206 */ 4207 if (tcp->tcp_state == TCPS_TIME_WAIT) 4208 (void) tcp_time_wait_remove(tcp, NULL); 4209 CL_INET_DISCONNECT(connp, tcp); 4210 ipcl_hash_remove(connp); 4211 4212 /* 4213 * Delete the cached ire in conn_ire_cache and also mark 4214 * the conn as CONDEMNED 4215 */ 4216 mutex_enter(&connp->conn_lock); 4217 connp->conn_state_flags |= CONN_CONDEMNED; 4218 ire = connp->conn_ire_cache; 4219 connp->conn_ire_cache = NULL; 4220 mutex_exit(&connp->conn_lock); 4221 if (ire != NULL) 4222 IRE_REFRELE_NOTR(ire); 4223 4224 /* Need to cleanup any pending ioctls */ 4225 ASSERT(tcp->tcp_time_wait_next == NULL); 4226 ASSERT(tcp->tcp_time_wait_prev == NULL); 4227 ASSERT(tcp->tcp_time_wait_expire == 0); 4228 tcp->tcp_state = TCPS_CLOSED; 4229 4230 /* Release any SSL context */ 4231 if (tcp->tcp_kssl_ent != NULL) { 4232 kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); 4233 tcp->tcp_kssl_ent = NULL; 4234 } 4235 if (tcp->tcp_kssl_ctx != NULL) { 4236 kssl_release_ctx(tcp->tcp_kssl_ctx); 4237 tcp->tcp_kssl_ctx = NULL; 4238 } 4239 tcp->tcp_kssl_pending = B_FALSE; 4240 4241 tcp_ipsec_cleanup(tcp); 4242 } 4243 4244 /* 4245 * tcp is dying (called from ipcl_conn_destroy and error cases). 4246 * Free the tcp_t in either case. 4247 */ 4248 void 4249 tcp_free(tcp_t *tcp) 4250 { 4251 mblk_t *mp; 4252 ip6_pkt_t *ipp; 4253 4254 ASSERT(tcp != NULL); 4255 ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL); 4256 4257 tcp->tcp_rq = NULL; 4258 tcp->tcp_wq = NULL; 4259 4260 tcp_close_mpp(&tcp->tcp_xmit_head); 4261 tcp_close_mpp(&tcp->tcp_reass_head); 4262 if (tcp->tcp_rcv_list != NULL) { 4263 /* Free b_next chain */ 4264 tcp_close_mpp(&tcp->tcp_rcv_list); 4265 } 4266 if ((mp = tcp->tcp_urp_mp) != NULL) { 4267 freemsg(mp); 4268 } 4269 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 4270 freemsg(mp); 4271 } 4272 4273 if (tcp->tcp_fused_sigurg_mp != NULL) { 4274 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 4275 freeb(tcp->tcp_fused_sigurg_mp); 4276 tcp->tcp_fused_sigurg_mp = NULL; 4277 } 4278 4279 if (tcp->tcp_ordrel_mp != NULL) { 4280 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 4281 freeb(tcp->tcp_ordrel_mp); 4282 tcp->tcp_ordrel_mp = NULL; 4283 } 4284 4285 if (tcp->tcp_sack_info != NULL) { 4286 if (tcp->tcp_notsack_list != NULL) { 4287 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 4288 } 4289 bzero(tcp->tcp_sack_info, sizeof (tcp_sack_info_t)); 4290 } 4291 4292 if (tcp->tcp_hopopts != NULL) { 4293 mi_free(tcp->tcp_hopopts); 4294 tcp->tcp_hopopts = NULL; 4295 tcp->tcp_hopoptslen = 0; 4296 } 4297 ASSERT(tcp->tcp_hopoptslen == 0); 4298 if (tcp->tcp_dstopts != NULL) { 4299 mi_free(tcp->tcp_dstopts); 4300 tcp->tcp_dstopts = NULL; 4301 tcp->tcp_dstoptslen = 0; 4302 } 4303 ASSERT(tcp->tcp_dstoptslen == 0); 4304 if (tcp->tcp_rtdstopts != NULL) { 4305 mi_free(tcp->tcp_rtdstopts); 4306 tcp->tcp_rtdstopts = NULL; 4307 tcp->tcp_rtdstoptslen = 0; 4308 } 4309 ASSERT(tcp->tcp_rtdstoptslen == 0); 4310 if (tcp->tcp_rthdr != NULL) { 4311 mi_free(tcp->tcp_rthdr); 4312 tcp->tcp_rthdr = NULL; 4313 tcp->tcp_rthdrlen = 0; 4314 } 4315 ASSERT(tcp->tcp_rthdrlen == 0); 4316 4317 ipp = &tcp->tcp_sticky_ipp; 4318 if (ipp->ipp_fields & (IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 4319 IPPF_RTHDR)) 4320 ip6_pkt_free(ipp); 4321 4322 /* 4323 * Free memory associated with the tcp/ip header template. 4324 */ 4325 4326 if (tcp->tcp_iphc != NULL) 4327 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 4328 4329 /* 4330 * Following is really a blowing away a union. 4331 * It happens to have exactly two members of identical size 4332 * the following code is enough. 4333 */ 4334 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 4335 } 4336 4337 4338 /* 4339 * Put a connection confirmation message upstream built from the 4340 * address information within 'iph' and 'tcph'. Report our success or failure. 4341 */ 4342 static boolean_t 4343 tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, mblk_t *idmp, 4344 mblk_t **defermp) 4345 { 4346 sin_t sin; 4347 sin6_t sin6; 4348 mblk_t *mp; 4349 char *optp = NULL; 4350 int optlen = 0; 4351 4352 if (defermp != NULL) 4353 *defermp = NULL; 4354 4355 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) { 4356 /* 4357 * Return in T_CONN_CON results of option negotiation through 4358 * the T_CONN_REQ. Note: If there is an real end-to-end option 4359 * negotiation, then what is received from remote end needs 4360 * to be taken into account but there is no such thing (yet?) 4361 * in our TCP/IP. 4362 * Note: We do not use mi_offset_param() here as 4363 * tcp_opts_conn_req contents do not directly come from 4364 * an application and are either generated in kernel or 4365 * from user input that was already verified. 4366 */ 4367 mp = tcp->tcp_conn.tcp_opts_conn_req; 4368 optp = (char *)(mp->b_rptr + 4369 ((struct T_conn_req *)mp->b_rptr)->OPT_offset); 4370 optlen = (int) 4371 ((struct T_conn_req *)mp->b_rptr)->OPT_length; 4372 } 4373 4374 if (IPH_HDR_VERSION(iphdr) == IPV4_VERSION) { 4375 ipha_t *ipha = (ipha_t *)iphdr; 4376 4377 /* packet is IPv4 */ 4378 if (tcp->tcp_family == AF_INET) { 4379 sin = sin_null; 4380 sin.sin_addr.s_addr = ipha->ipha_src; 4381 sin.sin_port = *(uint16_t *)tcph->th_lport; 4382 sin.sin_family = AF_INET; 4383 mp = mi_tpi_conn_con(NULL, (char *)&sin, 4384 (int)sizeof (sin_t), optp, optlen); 4385 } else { 4386 sin6 = sin6_null; 4387 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr); 4388 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4389 sin6.sin6_family = AF_INET6; 4390 mp = mi_tpi_conn_con(NULL, (char *)&sin6, 4391 (int)sizeof (sin6_t), optp, optlen); 4392 4393 } 4394 } else { 4395 ip6_t *ip6h = (ip6_t *)iphdr; 4396 4397 ASSERT(IPH_HDR_VERSION(iphdr) == IPV6_VERSION); 4398 ASSERT(tcp->tcp_family == AF_INET6); 4399 sin6 = sin6_null; 4400 sin6.sin6_addr = ip6h->ip6_src; 4401 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4402 sin6.sin6_family = AF_INET6; 4403 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 4404 mp = mi_tpi_conn_con(NULL, (char *)&sin6, 4405 (int)sizeof (sin6_t), optp, optlen); 4406 } 4407 4408 if (!mp) 4409 return (B_FALSE); 4410 4411 mblk_copycred(mp, idmp); 4412 4413 if (defermp == NULL) { 4414 conn_t *connp = tcp->tcp_connp; 4415 if (IPCL_IS_NONSTR(connp)) { 4416 cred_t *cr; 4417 pid_t cpid; 4418 4419 cr = msg_getcred(mp, &cpid); 4420 (*connp->conn_upcalls->su_connected) 4421 (connp->conn_upper_handle, tcp->tcp_connid, cr, 4422 cpid); 4423 freemsg(mp); 4424 } else { 4425 putnext(tcp->tcp_rq, mp); 4426 } 4427 } else { 4428 *defermp = mp; 4429 } 4430 4431 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 4432 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 4433 return (B_TRUE); 4434 } 4435 4436 /* 4437 * Defense for the SYN attack - 4438 * 1. When q0 is full, drop from the tail (tcp_eager_prev_drop_q0) the oldest 4439 * one from the list of droppable eagers. This list is a subset of q0. 4440 * see comments before the definition of MAKE_DROPPABLE(). 4441 * 2. Don't drop a SYN request before its first timeout. This gives every 4442 * request at least til the first timeout to complete its 3-way handshake. 4443 * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many 4444 * requests currently on the queue that has timed out. This will be used 4445 * as an indicator of whether an attack is under way, so that appropriate 4446 * actions can be taken. (It's incremented in tcp_timer() and decremented 4447 * either when eager goes into ESTABLISHED, or gets freed up.) 4448 * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on 4449 * # of timeout drops back to <= q0len/32 => SYN alert off 4450 */ 4451 static boolean_t 4452 tcp_drop_q0(tcp_t *tcp) 4453 { 4454 tcp_t *eager; 4455 mblk_t *mp; 4456 tcp_stack_t *tcps = tcp->tcp_tcps; 4457 4458 ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock)); 4459 ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0); 4460 4461 /* Pick oldest eager from the list of droppable eagers */ 4462 eager = tcp->tcp_eager_prev_drop_q0; 4463 4464 /* If list is empty. return B_FALSE */ 4465 if (eager == tcp) { 4466 return (B_FALSE); 4467 } 4468 4469 /* If allocated, the mp will be freed in tcp_clean_death_wrapper() */ 4470 if ((mp = allocb(0, BPRI_HI)) == NULL) 4471 return (B_FALSE); 4472 4473 /* 4474 * Take this eager out from the list of droppable eagers since we are 4475 * going to drop it. 4476 */ 4477 MAKE_UNDROPPABLE(eager); 4478 4479 if (tcp->tcp_debug) { 4480 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 4481 "tcp_drop_q0: listen half-open queue (max=%d) overflow" 4482 " (%d pending) on %s, drop one", tcps->tcps_conn_req_max_q0, 4483 tcp->tcp_conn_req_cnt_q0, 4484 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 4485 } 4486 4487 BUMP_MIB(&tcps->tcps_mib, tcpHalfOpenDrop); 4488 4489 /* Put a reference on the conn as we are enqueueing it in the sqeue */ 4490 CONN_INC_REF(eager->tcp_connp); 4491 4492 /* Mark the IRE created for this SYN request temporary */ 4493 tcp_ip_ire_mark_advice(eager); 4494 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, 4495 tcp_clean_death_wrapper, eager->tcp_connp, 4496 SQ_FILL, SQTAG_TCP_DROP_Q0); 4497 4498 return (B_TRUE); 4499 } 4500 4501 int 4502 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 4503 tcph_t *tcph, uint_t ipvers, mblk_t *idmp) 4504 { 4505 tcp_t *ltcp = lconnp->conn_tcp; 4506 tcp_t *tcp = connp->conn_tcp; 4507 mblk_t *tpi_mp; 4508 ipha_t *ipha; 4509 ip6_t *ip6h; 4510 sin6_t sin6; 4511 in6_addr_t v6dst; 4512 int err; 4513 int ifindex = 0; 4514 tcp_stack_t *tcps = tcp->tcp_tcps; 4515 4516 if (ipvers == IPV4_VERSION) { 4517 ipha = (ipha_t *)mp->b_rptr; 4518 4519 connp->conn_send = ip_output; 4520 connp->conn_recv = tcp_input; 4521 4522 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, 4523 &connp->conn_bound_source_v6); 4524 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6); 4525 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6); 4526 4527 sin6 = sin6_null; 4528 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr); 4529 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &v6dst); 4530 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4531 sin6.sin6_family = AF_INET6; 4532 sin6.__sin6_src_id = ip_srcid_find_addr(&v6dst, 4533 lconnp->conn_zoneid, tcps->tcps_netstack); 4534 if (tcp->tcp_recvdstaddr) { 4535 sin6_t sin6d; 4536 4537 sin6d = sin6_null; 4538 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, 4539 &sin6d.sin6_addr); 4540 sin6d.sin6_port = *(uint16_t *)tcph->th_fport; 4541 sin6d.sin6_family = AF_INET; 4542 tpi_mp = mi_tpi_extconn_ind(NULL, 4543 (char *)&sin6d, sizeof (sin6_t), 4544 (char *)&tcp, 4545 (t_scalar_t)sizeof (intptr_t), 4546 (char *)&sin6d, sizeof (sin6_t), 4547 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4548 } else { 4549 tpi_mp = mi_tpi_conn_ind(NULL, 4550 (char *)&sin6, sizeof (sin6_t), 4551 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4552 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4553 } 4554 } else { 4555 ip6h = (ip6_t *)mp->b_rptr; 4556 4557 connp->conn_send = ip_output_v6; 4558 connp->conn_recv = tcp_input; 4559 4560 connp->conn_bound_source_v6 = ip6h->ip6_dst; 4561 connp->conn_srcv6 = ip6h->ip6_dst; 4562 connp->conn_remv6 = ip6h->ip6_src; 4563 4564 /* db_cksumstuff is set at ip_fanout_tcp_v6 */ 4565 ifindex = (int)DB_CKSUMSTUFF(mp); 4566 DB_CKSUMSTUFF(mp) = 0; 4567 4568 sin6 = sin6_null; 4569 sin6.sin6_addr = ip6h->ip6_src; 4570 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4571 sin6.sin6_family = AF_INET6; 4572 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 4573 sin6.__sin6_src_id = ip_srcid_find_addr(&ip6h->ip6_dst, 4574 lconnp->conn_zoneid, tcps->tcps_netstack); 4575 4576 if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) { 4577 /* Pass up the scope_id of remote addr */ 4578 sin6.sin6_scope_id = ifindex; 4579 } else { 4580 sin6.sin6_scope_id = 0; 4581 } 4582 if (tcp->tcp_recvdstaddr) { 4583 sin6_t sin6d; 4584 4585 sin6d = sin6_null; 4586 sin6.sin6_addr = ip6h->ip6_dst; 4587 sin6d.sin6_port = *(uint16_t *)tcph->th_fport; 4588 sin6d.sin6_family = AF_INET; 4589 tpi_mp = mi_tpi_extconn_ind(NULL, 4590 (char *)&sin6d, sizeof (sin6_t), 4591 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4592 (char *)&sin6d, sizeof (sin6_t), 4593 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4594 } else { 4595 tpi_mp = mi_tpi_conn_ind(NULL, 4596 (char *)&sin6, sizeof (sin6_t), 4597 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4598 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4599 } 4600 } 4601 4602 if (tpi_mp == NULL) 4603 return (ENOMEM); 4604 4605 connp->conn_fport = *(uint16_t *)tcph->th_lport; 4606 connp->conn_lport = *(uint16_t *)tcph->th_fport; 4607 connp->conn_flags |= (IPCL_TCP6|IPCL_EAGER); 4608 connp->conn_fully_bound = B_FALSE; 4609 4610 /* Inherit information from the "parent" */ 4611 tcp->tcp_ipversion = ltcp->tcp_ipversion; 4612 tcp->tcp_family = ltcp->tcp_family; 4613 4614 tcp->tcp_wq = ltcp->tcp_wq; 4615 tcp->tcp_rq = ltcp->tcp_rq; 4616 4617 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 4618 tcp->tcp_detached = B_TRUE; 4619 SOCK_CONNID_INIT(tcp->tcp_connid); 4620 if ((err = tcp_init_values(tcp)) != 0) { 4621 freemsg(tpi_mp); 4622 return (err); 4623 } 4624 4625 if (ipvers == IPV4_VERSION) { 4626 if ((err = tcp_header_init_ipv4(tcp)) != 0) { 4627 freemsg(tpi_mp); 4628 return (err); 4629 } 4630 ASSERT(tcp->tcp_ipha != NULL); 4631 } else { 4632 /* ifindex must be already set */ 4633 ASSERT(ifindex != 0); 4634 4635 if (ltcp->tcp_bound_if != 0) 4636 tcp->tcp_bound_if = ltcp->tcp_bound_if; 4637 else if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) 4638 tcp->tcp_bound_if = ifindex; 4639 4640 tcp->tcp_ipv6_recvancillary = ltcp->tcp_ipv6_recvancillary; 4641 tcp->tcp_recvifindex = 0; 4642 tcp->tcp_recvhops = 0xffffffffU; 4643 ASSERT(tcp->tcp_ip6h != NULL); 4644 } 4645 4646 tcp->tcp_lport = ltcp->tcp_lport; 4647 4648 if (ltcp->tcp_ipversion == tcp->tcp_ipversion) { 4649 if (tcp->tcp_iphc_len != ltcp->tcp_iphc_len) { 4650 /* 4651 * Listener had options of some sort; eager inherits. 4652 * Free up the eager template and allocate one 4653 * of the right size. 4654 */ 4655 if (tcp->tcp_hdr_grown) { 4656 kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len); 4657 } else { 4658 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 4659 kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc); 4660 } 4661 tcp->tcp_iphc = kmem_zalloc(ltcp->tcp_iphc_len, 4662 KM_NOSLEEP); 4663 if (tcp->tcp_iphc == NULL) { 4664 tcp->tcp_iphc_len = 0; 4665 freemsg(tpi_mp); 4666 return (ENOMEM); 4667 } 4668 tcp->tcp_iphc_len = ltcp->tcp_iphc_len; 4669 tcp->tcp_hdr_grown = B_TRUE; 4670 } 4671 tcp->tcp_hdr_len = ltcp->tcp_hdr_len; 4672 tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len; 4673 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 4674 tcp->tcp_ip6_hops = ltcp->tcp_ip6_hops; 4675 tcp->tcp_ip6_vcf = ltcp->tcp_ip6_vcf; 4676 4677 /* 4678 * Copy the IP+TCP header template from listener to eager 4679 */ 4680 bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len); 4681 if (tcp->tcp_ipversion == IPV6_VERSION) { 4682 if (((ip6i_t *)(tcp->tcp_iphc))->ip6i_nxt == 4683 IPPROTO_RAW) { 4684 tcp->tcp_ip6h = 4685 (ip6_t *)(tcp->tcp_iphc + 4686 sizeof (ip6i_t)); 4687 } else { 4688 tcp->tcp_ip6h = 4689 (ip6_t *)(tcp->tcp_iphc); 4690 } 4691 tcp->tcp_ipha = NULL; 4692 } else { 4693 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 4694 tcp->tcp_ip6h = NULL; 4695 } 4696 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + 4697 tcp->tcp_ip_hdr_len); 4698 } else { 4699 /* 4700 * only valid case when ipversion of listener and 4701 * eager differ is when listener is IPv6 and 4702 * eager is IPv4. 4703 * Eager header template has been initialized to the 4704 * maximum v4 header sizes, which includes space for 4705 * TCP and IP options. 4706 */ 4707 ASSERT((ltcp->tcp_ipversion == IPV6_VERSION) && 4708 (tcp->tcp_ipversion == IPV4_VERSION)); 4709 ASSERT(tcp->tcp_iphc_len >= 4710 TCP_MAX_COMBINED_HEADER_LENGTH); 4711 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 4712 /* copy IP header fields individually */ 4713 tcp->tcp_ipha->ipha_ttl = 4714 ltcp->tcp_ip6h->ip6_hops; 4715 bcopy(ltcp->tcp_tcph->th_lport, 4716 tcp->tcp_tcph->th_lport, sizeof (ushort_t)); 4717 } 4718 4719 bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t)); 4720 bcopy(tcp->tcp_tcph->th_fport, &tcp->tcp_fport, 4721 sizeof (in_port_t)); 4722 4723 if (ltcp->tcp_lport == 0) { 4724 tcp->tcp_lport = *(in_port_t *)tcph->th_fport; 4725 bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, 4726 sizeof (in_port_t)); 4727 } 4728 4729 if (tcp->tcp_ipversion == IPV4_VERSION) { 4730 ASSERT(ipha != NULL); 4731 tcp->tcp_ipha->ipha_dst = ipha->ipha_src; 4732 tcp->tcp_ipha->ipha_src = ipha->ipha_dst; 4733 4734 /* Source routing option copyover (reverse it) */ 4735 if (tcps->tcps_rev_src_routes) 4736 tcp_opt_reverse(tcp, ipha); 4737 } else { 4738 ASSERT(ip6h != NULL); 4739 tcp->tcp_ip6h->ip6_dst = ip6h->ip6_src; 4740 tcp->tcp_ip6h->ip6_src = ip6h->ip6_dst; 4741 } 4742 4743 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 4744 ASSERT(!tcp->tcp_tconnind_started); 4745 /* 4746 * If the SYN contains a credential, it's a loopback packet; attach 4747 * the credential to the TPI message. 4748 */ 4749 mblk_copycred(tpi_mp, idmp); 4750 4751 tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp; 4752 4753 /* Inherit the listener's SSL protection state */ 4754 4755 if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) { 4756 kssl_hold_ent(tcp->tcp_kssl_ent); 4757 tcp->tcp_kssl_pending = B_TRUE; 4758 } 4759 4760 /* Inherit the listener's non-STREAMS flag */ 4761 if (IPCL_IS_NONSTR(lconnp)) { 4762 connp->conn_flags |= IPCL_NONSTR; 4763 } 4764 4765 return (0); 4766 } 4767 4768 4769 int 4770 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha, 4771 tcph_t *tcph, mblk_t *idmp) 4772 { 4773 tcp_t *ltcp = lconnp->conn_tcp; 4774 tcp_t *tcp = connp->conn_tcp; 4775 sin_t sin; 4776 mblk_t *tpi_mp = NULL; 4777 int err; 4778 tcp_stack_t *tcps = tcp->tcp_tcps; 4779 4780 sin = sin_null; 4781 sin.sin_addr.s_addr = ipha->ipha_src; 4782 sin.sin_port = *(uint16_t *)tcph->th_lport; 4783 sin.sin_family = AF_INET; 4784 if (ltcp->tcp_recvdstaddr) { 4785 sin_t sind; 4786 4787 sind = sin_null; 4788 sind.sin_addr.s_addr = ipha->ipha_dst; 4789 sind.sin_port = *(uint16_t *)tcph->th_fport; 4790 sind.sin_family = AF_INET; 4791 tpi_mp = mi_tpi_extconn_ind(NULL, 4792 (char *)&sind, sizeof (sin_t), (char *)&tcp, 4793 (t_scalar_t)sizeof (intptr_t), (char *)&sind, 4794 sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4795 } else { 4796 tpi_mp = mi_tpi_conn_ind(NULL, 4797 (char *)&sin, sizeof (sin_t), 4798 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4799 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4800 } 4801 4802 if (tpi_mp == NULL) { 4803 return (ENOMEM); 4804 } 4805 4806 connp->conn_flags |= (IPCL_TCP4|IPCL_EAGER); 4807 connp->conn_send = ip_output; 4808 connp->conn_recv = tcp_input; 4809 connp->conn_fully_bound = B_FALSE; 4810 4811 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_bound_source_v6); 4812 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6); 4813 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6); 4814 connp->conn_fport = *(uint16_t *)tcph->th_lport; 4815 connp->conn_lport = *(uint16_t *)tcph->th_fport; 4816 4817 /* Inherit information from the "parent" */ 4818 tcp->tcp_ipversion = ltcp->tcp_ipversion; 4819 tcp->tcp_family = ltcp->tcp_family; 4820 tcp->tcp_wq = ltcp->tcp_wq; 4821 tcp->tcp_rq = ltcp->tcp_rq; 4822 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 4823 tcp->tcp_detached = B_TRUE; 4824 SOCK_CONNID_INIT(tcp->tcp_connid); 4825 if ((err = tcp_init_values(tcp)) != 0) { 4826 freemsg(tpi_mp); 4827 return (err); 4828 } 4829 4830 /* 4831 * Let's make sure that eager tcp template has enough space to 4832 * copy IPv4 listener's tcp template. Since the conn_t structure is 4833 * preserved and tcp_iphc_len is also preserved, an eager conn_t may 4834 * have a tcp_template of total len TCP_MAX_COMBINED_HEADER_LENGTH or 4835 * more (in case of re-allocation of conn_t with tcp-IPv6 template with 4836 * extension headers or with ip6i_t struct). Note that bcopy() below 4837 * copies listener tcp's hdr_len which cannot be greater than TCP_MAX_ 4838 * COMBINED_HEADER_LENGTH as this listener must be a IPv4 listener. 4839 */ 4840 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 4841 ASSERT(ltcp->tcp_hdr_len <= TCP_MAX_COMBINED_HEADER_LENGTH); 4842 4843 tcp->tcp_hdr_len = ltcp->tcp_hdr_len; 4844 tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len; 4845 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 4846 tcp->tcp_ttl = ltcp->tcp_ttl; 4847 tcp->tcp_tos = ltcp->tcp_tos; 4848 4849 /* Copy the IP+TCP header template from listener to eager */ 4850 bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len); 4851 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 4852 tcp->tcp_ip6h = NULL; 4853 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + 4854 tcp->tcp_ip_hdr_len); 4855 4856 /* Initialize the IP addresses and Ports */ 4857 tcp->tcp_ipha->ipha_dst = ipha->ipha_src; 4858 tcp->tcp_ipha->ipha_src = ipha->ipha_dst; 4859 bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t)); 4860 bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, sizeof (in_port_t)); 4861 4862 /* Source routing option copyover (reverse it) */ 4863 if (tcps->tcps_rev_src_routes) 4864 tcp_opt_reverse(tcp, ipha); 4865 4866 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 4867 ASSERT(!tcp->tcp_tconnind_started); 4868 4869 /* 4870 * If the SYN contains a credential, it's a loopback packet; attach 4871 * the credential to the TPI message. 4872 */ 4873 mblk_copycred(tpi_mp, idmp); 4874 4875 tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp; 4876 4877 /* Inherit the listener's SSL protection state */ 4878 if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) { 4879 kssl_hold_ent(tcp->tcp_kssl_ent); 4880 tcp->tcp_kssl_pending = B_TRUE; 4881 } 4882 4883 /* Inherit the listener's non-STREAMS flag */ 4884 if (IPCL_IS_NONSTR(lconnp)) { 4885 connp->conn_flags |= IPCL_NONSTR; 4886 } 4887 4888 return (0); 4889 } 4890 4891 /* 4892 * sets up conn for ipsec. 4893 * if the first mblk is M_CTL it is consumed and mpp is updated. 4894 * in case of error mpp is freed. 4895 */ 4896 conn_t * 4897 tcp_get_ipsec_conn(tcp_t *tcp, squeue_t *sqp, mblk_t **mpp) 4898 { 4899 conn_t *connp = tcp->tcp_connp; 4900 conn_t *econnp; 4901 squeue_t *new_sqp; 4902 mblk_t *first_mp = *mpp; 4903 mblk_t *mp = *mpp; 4904 boolean_t mctl_present = B_FALSE; 4905 uint_t ipvers; 4906 4907 econnp = tcp_get_conn(sqp, tcp->tcp_tcps); 4908 if (econnp == NULL) { 4909 freemsg(first_mp); 4910 return (NULL); 4911 } 4912 if (DB_TYPE(mp) == M_CTL) { 4913 if (mp->b_cont == NULL || 4914 mp->b_cont->b_datap->db_type != M_DATA) { 4915 freemsg(first_mp); 4916 return (NULL); 4917 } 4918 mp = mp->b_cont; 4919 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) == 0) { 4920 freemsg(first_mp); 4921 return (NULL); 4922 } 4923 4924 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 4925 first_mp->b_datap->db_struioflag &= ~STRUIO_POLICY; 4926 mctl_present = B_TRUE; 4927 } else { 4928 ASSERT(mp->b_datap->db_struioflag & STRUIO_POLICY); 4929 mp->b_datap->db_struioflag &= ~STRUIO_POLICY; 4930 } 4931 4932 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 4933 DB_CKSUMSTART(mp) = 0; 4934 4935 ASSERT(OK_32PTR(mp->b_rptr)); 4936 ipvers = IPH_HDR_VERSION(mp->b_rptr); 4937 if (ipvers == IPV4_VERSION) { 4938 uint16_t *up; 4939 uint32_t ports; 4940 ipha_t *ipha; 4941 4942 ipha = (ipha_t *)mp->b_rptr; 4943 up = (uint16_t *)((uchar_t *)ipha + 4944 IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET); 4945 ports = *(uint32_t *)up; 4946 IPCL_TCP_EAGER_INIT(econnp, IPPROTO_TCP, 4947 ipha->ipha_dst, ipha->ipha_src, ports); 4948 } else { 4949 uint16_t *up; 4950 uint32_t ports; 4951 uint16_t ip_hdr_len; 4952 uint8_t *nexthdrp; 4953 ip6_t *ip6h; 4954 tcph_t *tcph; 4955 4956 ip6h = (ip6_t *)mp->b_rptr; 4957 if (ip6h->ip6_nxt == IPPROTO_TCP) { 4958 ip_hdr_len = IPV6_HDR_LEN; 4959 } else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ip_hdr_len, 4960 &nexthdrp) || *nexthdrp != IPPROTO_TCP) { 4961 CONN_DEC_REF(econnp); 4962 freemsg(first_mp); 4963 return (NULL); 4964 } 4965 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 4966 up = (uint16_t *)tcph->th_lport; 4967 ports = *(uint32_t *)up; 4968 IPCL_TCP_EAGER_INIT_V6(econnp, IPPROTO_TCP, 4969 ip6h->ip6_dst, ip6h->ip6_src, ports); 4970 } 4971 4972 /* 4973 * The caller already ensured that there is a sqp present. 4974 */ 4975 econnp->conn_sqp = new_sqp; 4976 econnp->conn_initial_sqp = new_sqp; 4977 4978 if (connp->conn_policy != NULL) { 4979 ipsec_in_t *ii; 4980 ii = (ipsec_in_t *)(first_mp->b_rptr); 4981 ASSERT(ii->ipsec_in_policy == NULL); 4982 IPPH_REFHOLD(connp->conn_policy); 4983 ii->ipsec_in_policy = connp->conn_policy; 4984 4985 first_mp->b_datap->db_type = IPSEC_POLICY_SET; 4986 if (!ip_bind_ipsec_policy_set(econnp, first_mp)) { 4987 CONN_DEC_REF(econnp); 4988 freemsg(first_mp); 4989 return (NULL); 4990 } 4991 } 4992 4993 if (ipsec_conn_cache_policy(econnp, ipvers == IPV4_VERSION) != 0) { 4994 CONN_DEC_REF(econnp); 4995 freemsg(first_mp); 4996 return (NULL); 4997 } 4998 4999 /* 5000 * If we know we have some policy, pass the "IPSEC" 5001 * options size TCP uses this adjust the MSS. 5002 */ 5003 econnp->conn_tcp->tcp_ipsec_overhead = conn_ipsec_length(econnp); 5004 if (mctl_present) { 5005 freeb(first_mp); 5006 *mpp = mp; 5007 } 5008 5009 return (econnp); 5010 } 5011 5012 /* 5013 * tcp_get_conn/tcp_free_conn 5014 * 5015 * tcp_get_conn is used to get a clean tcp connection structure. 5016 * It tries to reuse the connections put on the freelist by the 5017 * time_wait_collector failing which it goes to kmem_cache. This 5018 * way has two benefits compared to just allocating from and 5019 * freeing to kmem_cache. 5020 * 1) The time_wait_collector can free (which includes the cleanup) 5021 * outside the squeue. So when the interrupt comes, we have a clean 5022 * connection sitting in the freelist. Obviously, this buys us 5023 * performance. 5024 * 5025 * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_conn_request 5026 * has multiple disadvantages - tying up the squeue during alloc, and the 5027 * fact that IPSec policy initialization has to happen here which 5028 * requires us sending a M_CTL and checking for it i.e. real ugliness. 5029 * But allocating the conn/tcp in IP land is also not the best since 5030 * we can't check the 'q' and 'q0' which are protected by squeue and 5031 * blindly allocate memory which might have to be freed here if we are 5032 * not allowed to accept the connection. By using the freelist and 5033 * putting the conn/tcp back in freelist, we don't pay a penalty for 5034 * allocating memory without checking 'q/q0' and freeing it if we can't 5035 * accept the connection. 5036 * 5037 * Care should be taken to put the conn back in the same squeue's freelist 5038 * from which it was allocated. Best results are obtained if conn is 5039 * allocated from listener's squeue and freed to the same. Time wait 5040 * collector will free up the freelist is the connection ends up sitting 5041 * there for too long. 5042 */ 5043 void * 5044 tcp_get_conn(void *arg, tcp_stack_t *tcps) 5045 { 5046 tcp_t *tcp = NULL; 5047 conn_t *connp = NULL; 5048 squeue_t *sqp = (squeue_t *)arg; 5049 tcp_squeue_priv_t *tcp_time_wait; 5050 netstack_t *ns; 5051 mblk_t *rsrv_mp; 5052 5053 tcp_time_wait = 5054 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 5055 5056 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 5057 tcp = tcp_time_wait->tcp_free_list; 5058 ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0)); 5059 if (tcp != NULL) { 5060 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 5061 tcp_time_wait->tcp_free_list_cnt--; 5062 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 5063 tcp->tcp_time_wait_next = NULL; 5064 connp = tcp->tcp_connp; 5065 connp->conn_flags |= IPCL_REUSED; 5066 5067 ASSERT(tcp->tcp_tcps == NULL); 5068 ASSERT(connp->conn_netstack == NULL); 5069 ASSERT(tcp->tcp_rsrv_mp != NULL); 5070 ns = tcps->tcps_netstack; 5071 netstack_hold(ns); 5072 connp->conn_netstack = ns; 5073 tcp->tcp_tcps = tcps; 5074 TCPS_REFHOLD(tcps); 5075 ipcl_globalhash_insert(connp); 5076 return ((void *)connp); 5077 } 5078 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 5079 /* 5080 * Pre-allocate the tcp_rsrv_mp. This mblk will not be freed 5081 * until this conn_t/tcp_t is freed at ipcl_conn_destroy(). 5082 */ 5083 if ((rsrv_mp = allocb(0, BPRI_HI)) == NULL) 5084 return (NULL); 5085 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP, 5086 tcps->tcps_netstack)) == NULL) { 5087 freeb(rsrv_mp); 5088 return (NULL); 5089 } 5090 tcp = connp->conn_tcp; 5091 tcp->tcp_rsrv_mp = rsrv_mp; 5092 5093 mutex_init(&tcp->tcp_rsrv_mp_lock, NULL, MUTEX_DEFAULT, NULL); 5094 tcp->tcp_tcps = tcps; 5095 TCPS_REFHOLD(tcps); 5096 5097 return ((void *)connp); 5098 } 5099 5100 /* 5101 * Update the cached label for the given tcp_t. This should be called once per 5102 * connection, and before any packets are sent or tcp_process_options is 5103 * invoked. Returns B_FALSE if the correct label could not be constructed. 5104 */ 5105 static boolean_t 5106 tcp_update_label(tcp_t *tcp, const cred_t *cr) 5107 { 5108 conn_t *connp = tcp->tcp_connp; 5109 5110 if (tcp->tcp_ipversion == IPV4_VERSION) { 5111 uchar_t optbuf[IP_MAX_OPT_LENGTH]; 5112 int added; 5113 5114 if (tsol_compute_label(cr, tcp->tcp_remote, optbuf, 5115 connp->conn_mac_exempt, 5116 tcp->tcp_tcps->tcps_netstack->netstack_ip) != 0) 5117 return (B_FALSE); 5118 5119 added = tsol_remove_secopt(tcp->tcp_ipha, tcp->tcp_hdr_len); 5120 if (added == -1) 5121 return (B_FALSE); 5122 tcp->tcp_hdr_len += added; 5123 tcp->tcp_tcph = (tcph_t *)((uchar_t *)tcp->tcp_tcph + added); 5124 tcp->tcp_ip_hdr_len += added; 5125 if ((tcp->tcp_label_len = optbuf[IPOPT_OLEN]) != 0) { 5126 tcp->tcp_label_len = (tcp->tcp_label_len + 3) & ~3; 5127 added = tsol_prepend_option(optbuf, tcp->tcp_ipha, 5128 tcp->tcp_hdr_len); 5129 if (added == -1) 5130 return (B_FALSE); 5131 tcp->tcp_hdr_len += added; 5132 tcp->tcp_tcph = (tcph_t *) 5133 ((uchar_t *)tcp->tcp_tcph + added); 5134 tcp->tcp_ip_hdr_len += added; 5135 } 5136 } else { 5137 uchar_t optbuf[TSOL_MAX_IPV6_OPTION]; 5138 5139 if (tsol_compute_label_v6(cr, &tcp->tcp_remote_v6, optbuf, 5140 connp->conn_mac_exempt, 5141 tcp->tcp_tcps->tcps_netstack->netstack_ip) != 0) 5142 return (B_FALSE); 5143 if (tsol_update_sticky(&tcp->tcp_sticky_ipp, 5144 &tcp->tcp_label_len, optbuf) != 0) 5145 return (B_FALSE); 5146 if (tcp_build_hdrs(tcp) != 0) 5147 return (B_FALSE); 5148 } 5149 5150 connp->conn_ulp_labeled = 1; 5151 5152 return (B_TRUE); 5153 } 5154 5155 /* BEGIN CSTYLED */ 5156 /* 5157 * 5158 * The sockfs ACCEPT path: 5159 * ======================= 5160 * 5161 * The eager is now established in its own perimeter as soon as SYN is 5162 * received in tcp_conn_request(). When sockfs receives conn_ind, it 5163 * completes the accept processing on the acceptor STREAM. The sending 5164 * of conn_ind part is common for both sockfs listener and a TLI/XTI 5165 * listener but a TLI/XTI listener completes the accept processing 5166 * on the listener perimeter. 5167 * 5168 * Common control flow for 3 way handshake: 5169 * ---------------------------------------- 5170 * 5171 * incoming SYN (listener perimeter) -> tcp_rput_data() 5172 * -> tcp_conn_request() 5173 * 5174 * incoming SYN-ACK-ACK (eager perim) -> tcp_rput_data() 5175 * send T_CONN_IND (listener perim) -> tcp_send_conn_ind() 5176 * 5177 * Sockfs ACCEPT Path: 5178 * ------------------- 5179 * 5180 * open acceptor stream (tcp_open allocates tcp_wput_accept() 5181 * as STREAM entry point) 5182 * 5183 * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_wput_accept() 5184 * 5185 * tcp_wput_accept() extracts the eager and makes the q->q_ptr <-> eager 5186 * association (we are not behind eager's squeue but sockfs is protecting us 5187 * and no one knows about this stream yet. The STREAMS entry point q->q_info 5188 * is changed to point at tcp_wput(). 5189 * 5190 * tcp_wput_accept() sends any deferred eagers via tcp_send_pending() to 5191 * listener (done on listener's perimeter). 5192 * 5193 * tcp_wput_accept() calls tcp_accept_finish() on eagers perimeter to finish 5194 * accept. 5195 * 5196 * TLI/XTI client ACCEPT path: 5197 * --------------------------- 5198 * 5199 * soaccept() sends T_CONN_RES on the listener STREAM. 5200 * 5201 * tcp_accept() -> tcp_accept_swap() complete the processing and send 5202 * the bind_mp to eager perimeter to finish accept (tcp_rput_other()). 5203 * 5204 * Locks: 5205 * ====== 5206 * 5207 * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and 5208 * and listeners->tcp_eager_next_q. 5209 * 5210 * Referencing: 5211 * ============ 5212 * 5213 * 1) We start out in tcp_conn_request by eager placing a ref on 5214 * listener and listener adding eager to listeners->tcp_eager_next_q0. 5215 * 5216 * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before 5217 * doing so we place a ref on the eager. This ref is finally dropped at the 5218 * end of tcp_accept_finish() while unwinding from the squeue, i.e. the 5219 * reference is dropped by the squeue framework. 5220 * 5221 * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish 5222 * 5223 * The reference must be released by the same entity that added the reference 5224 * In the above scheme, the eager is the entity that adds and releases the 5225 * references. Note that tcp_accept_finish executes in the squeue of the eager 5226 * (albeit after it is attached to the acceptor stream). Though 1. executes 5227 * in the listener's squeue, the eager is nascent at this point and the 5228 * reference can be considered to have been added on behalf of the eager. 5229 * 5230 * Eager getting a Reset or listener closing: 5231 * ========================================== 5232 * 5233 * Once the listener and eager are linked, the listener never does the unlink. 5234 * If the listener needs to close, tcp_eager_cleanup() is called which queues 5235 * a message on all eager perimeter. The eager then does the unlink, clears 5236 * any pointers to the listener's queue and drops the reference to the 5237 * listener. The listener waits in tcp_close outside the squeue until its 5238 * refcount has dropped to 1. This ensures that the listener has waited for 5239 * all eagers to clear their association with the listener. 5240 * 5241 * Similarly, if eager decides to go away, it can unlink itself and close. 5242 * When the T_CONN_RES comes down, we check if eager has closed. Note that 5243 * the reference to eager is still valid because of the extra ref we put 5244 * in tcp_send_conn_ind. 5245 * 5246 * Listener can always locate the eager under the protection 5247 * of the listener->tcp_eager_lock, and then do a refhold 5248 * on the eager during the accept processing. 5249 * 5250 * The acceptor stream accesses the eager in the accept processing 5251 * based on the ref placed on eager before sending T_conn_ind. 5252 * The only entity that can negate this refhold is a listener close 5253 * which is mutually exclusive with an active acceptor stream. 5254 * 5255 * Eager's reference on the listener 5256 * =================================== 5257 * 5258 * If the accept happens (even on a closed eager) the eager drops its 5259 * reference on the listener at the start of tcp_accept_finish. If the 5260 * eager is killed due to an incoming RST before the T_conn_ind is sent up, 5261 * the reference is dropped in tcp_closei_local. If the listener closes, 5262 * the reference is dropped in tcp_eager_kill. In all cases the reference 5263 * is dropped while executing in the eager's context (squeue). 5264 */ 5265 /* END CSTYLED */ 5266 5267 /* Process the SYN packet, mp, directed at the listener 'tcp' */ 5268 5269 /* 5270 * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN. 5271 * tcp_rput_data will not see any SYN packets. 5272 */ 5273 /* ARGSUSED */ 5274 void 5275 tcp_conn_request(void *arg, mblk_t *mp, void *arg2) 5276 { 5277 tcph_t *tcph; 5278 uint32_t seg_seq; 5279 tcp_t *eager; 5280 uint_t ipvers; 5281 ipha_t *ipha; 5282 ip6_t *ip6h; 5283 int err; 5284 conn_t *econnp = NULL; 5285 squeue_t *new_sqp; 5286 mblk_t *mp1; 5287 uint_t ip_hdr_len; 5288 conn_t *connp = (conn_t *)arg; 5289 tcp_t *tcp = connp->conn_tcp; 5290 cred_t *credp; 5291 tcp_stack_t *tcps = tcp->tcp_tcps; 5292 ip_stack_t *ipst; 5293 5294 if (tcp->tcp_state != TCPS_LISTEN) 5295 goto error2; 5296 5297 ASSERT((tcp->tcp_connp->conn_flags & IPCL_BOUND) != 0); 5298 5299 mutex_enter(&tcp->tcp_eager_lock); 5300 if (tcp->tcp_conn_req_cnt_q >= tcp->tcp_conn_req_max) { 5301 mutex_exit(&tcp->tcp_eager_lock); 5302 TCP_STAT(tcps, tcp_listendrop); 5303 BUMP_MIB(&tcps->tcps_mib, tcpListenDrop); 5304 if (tcp->tcp_debug) { 5305 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 5306 "tcp_conn_request: listen backlog (max=%d) " 5307 "overflow (%d pending) on %s", 5308 tcp->tcp_conn_req_max, tcp->tcp_conn_req_cnt_q, 5309 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 5310 } 5311 goto error2; 5312 } 5313 5314 if (tcp->tcp_conn_req_cnt_q0 >= 5315 tcp->tcp_conn_req_max + tcps->tcps_conn_req_max_q0) { 5316 /* 5317 * Q0 is full. Drop a pending half-open req from the queue 5318 * to make room for the new SYN req. Also mark the time we 5319 * drop a SYN. 5320 * 5321 * A more aggressive defense against SYN attack will 5322 * be to set the "tcp_syn_defense" flag now. 5323 */ 5324 TCP_STAT(tcps, tcp_listendropq0); 5325 tcp->tcp_last_rcv_lbolt = lbolt64; 5326 if (!tcp_drop_q0(tcp)) { 5327 mutex_exit(&tcp->tcp_eager_lock); 5328 BUMP_MIB(&tcps->tcps_mib, tcpListenDropQ0); 5329 if (tcp->tcp_debug) { 5330 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 5331 "tcp_conn_request: listen half-open queue " 5332 "(max=%d) full (%d pending) on %s", 5333 tcps->tcps_conn_req_max_q0, 5334 tcp->tcp_conn_req_cnt_q0, 5335 tcp_display(tcp, NULL, 5336 DISP_PORT_ONLY)); 5337 } 5338 goto error2; 5339 } 5340 } 5341 mutex_exit(&tcp->tcp_eager_lock); 5342 5343 /* 5344 * IP adds STRUIO_EAGER and ensures that the received packet is 5345 * M_DATA even if conn_ipv6_recvpktinfo is enabled or for ip6 5346 * link local address. If IPSec is enabled, db_struioflag has 5347 * STRUIO_POLICY set (mutually exclusive from STRUIO_EAGER); 5348 * otherwise an error case if neither of them is set. 5349 */ 5350 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 5351 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 5352 DB_CKSUMSTART(mp) = 0; 5353 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 5354 econnp = (conn_t *)tcp_get_conn(arg2, tcps); 5355 if (econnp == NULL) 5356 goto error2; 5357 ASSERT(econnp->conn_netstack == connp->conn_netstack); 5358 econnp->conn_sqp = new_sqp; 5359 econnp->conn_initial_sqp = new_sqp; 5360 } else if ((mp->b_datap->db_struioflag & STRUIO_POLICY) != 0) { 5361 /* 5362 * mp is updated in tcp_get_ipsec_conn(). 5363 */ 5364 econnp = tcp_get_ipsec_conn(tcp, arg2, &mp); 5365 if (econnp == NULL) { 5366 /* 5367 * mp freed by tcp_get_ipsec_conn. 5368 */ 5369 return; 5370 } 5371 ASSERT(econnp->conn_netstack == connp->conn_netstack); 5372 } else { 5373 goto error2; 5374 } 5375 5376 ASSERT(DB_TYPE(mp) == M_DATA); 5377 5378 ipvers = IPH_HDR_VERSION(mp->b_rptr); 5379 ASSERT(ipvers == IPV6_VERSION || ipvers == IPV4_VERSION); 5380 ASSERT(OK_32PTR(mp->b_rptr)); 5381 if (ipvers == IPV4_VERSION) { 5382 ipha = (ipha_t *)mp->b_rptr; 5383 ip_hdr_len = IPH_HDR_LENGTH(ipha); 5384 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5385 } else { 5386 ip6h = (ip6_t *)mp->b_rptr; 5387 ip_hdr_len = ip_hdr_length_v6(mp, ip6h); 5388 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5389 } 5390 5391 if (tcp->tcp_family == AF_INET) { 5392 ASSERT(ipvers == IPV4_VERSION); 5393 err = tcp_conn_create_v4(connp, econnp, ipha, tcph, mp); 5394 } else { 5395 err = tcp_conn_create_v6(connp, econnp, mp, tcph, ipvers, mp); 5396 } 5397 5398 if (err) 5399 goto error3; 5400 5401 eager = econnp->conn_tcp; 5402 5403 /* 5404 * Pre-allocate the T_ordrel_ind mblk for TPI socket so that at close 5405 * time, we will always have that to send up. Otherwise, we need to do 5406 * special handling in case the allocation fails at that time. 5407 */ 5408 ASSERT(eager->tcp_ordrel_mp == NULL); 5409 if (!IPCL_IS_NONSTR(econnp) && 5410 (eager->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL) 5411 goto error3; 5412 5413 /* Inherit various TCP parameters from the listener */ 5414 eager->tcp_naglim = tcp->tcp_naglim; 5415 eager->tcp_first_timer_threshold = 5416 tcp->tcp_first_timer_threshold; 5417 eager->tcp_second_timer_threshold = 5418 tcp->tcp_second_timer_threshold; 5419 5420 eager->tcp_first_ctimer_threshold = 5421 tcp->tcp_first_ctimer_threshold; 5422 eager->tcp_second_ctimer_threshold = 5423 tcp->tcp_second_ctimer_threshold; 5424 5425 /* 5426 * tcp_adapt_ire() may change tcp_rwnd according to the ire metrics. 5427 * If it does not, the eager's receive window will be set to the 5428 * listener's receive window later in this function. 5429 */ 5430 eager->tcp_rwnd = 0; 5431 5432 /* 5433 * Inherit listener's tcp_init_cwnd. Need to do this before 5434 * calling tcp_process_options() where tcp_mss_set() is called 5435 * to set the initial cwnd. 5436 */ 5437 eager->tcp_init_cwnd = tcp->tcp_init_cwnd; 5438 5439 /* 5440 * Zones: tcp_adapt_ire() and tcp_send_data() both need the 5441 * zone id before the accept is completed in tcp_wput_accept(). 5442 */ 5443 econnp->conn_zoneid = connp->conn_zoneid; 5444 econnp->conn_allzones = connp->conn_allzones; 5445 5446 /* Copy nexthop information from listener to eager */ 5447 if (connp->conn_nexthop_set) { 5448 econnp->conn_nexthop_set = connp->conn_nexthop_set; 5449 econnp->conn_nexthop_v4 = connp->conn_nexthop_v4; 5450 } 5451 5452 /* 5453 * TSOL: tsol_input_proc() needs the eager's cred before the 5454 * eager is accepted 5455 */ 5456 econnp->conn_cred = eager->tcp_cred = credp = connp->conn_cred; 5457 crhold(credp); 5458 5459 /* 5460 * If the caller has the process-wide flag set, then default to MAC 5461 * exempt mode. This allows read-down to unlabeled hosts. 5462 */ 5463 if (getpflags(NET_MAC_AWARE, credp) != 0) 5464 econnp->conn_mac_exempt = B_TRUE; 5465 5466 if (is_system_labeled()) { 5467 cred_t *cr; 5468 5469 if (connp->conn_mlp_type != mlptSingle) { 5470 cr = econnp->conn_peercred = msg_getcred(mp, NULL); 5471 if (cr != NULL) 5472 crhold(cr); 5473 else 5474 cr = econnp->conn_cred; 5475 DTRACE_PROBE2(mlp_syn_accept, conn_t *, 5476 econnp, cred_t *, cr) 5477 } else { 5478 cr = econnp->conn_cred; 5479 DTRACE_PROBE2(syn_accept, conn_t *, 5480 econnp, cred_t *, cr) 5481 } 5482 5483 if (!tcp_update_label(eager, cr)) { 5484 DTRACE_PROBE3( 5485 tx__ip__log__error__connrequest__tcp, 5486 char *, "eager connp(1) label on SYN mp(2) failed", 5487 conn_t *, econnp, mblk_t *, mp); 5488 goto error3; 5489 } 5490 } 5491 5492 eager->tcp_hard_binding = B_TRUE; 5493 5494 tcp_bind_hash_insert(&tcps->tcps_bind_fanout[ 5495 TCP_BIND_HASH(eager->tcp_lport)], eager, 0); 5496 5497 CL_INET_CONNECT(connp, eager, B_FALSE, err); 5498 if (err != 0) { 5499 tcp_bind_hash_remove(eager); 5500 goto error3; 5501 } 5502 5503 /* 5504 * No need to check for multicast destination since ip will only pass 5505 * up multicasts to those that have expressed interest 5506 * TODO: what about rejecting broadcasts? 5507 * Also check that source is not a multicast or broadcast address. 5508 */ 5509 eager->tcp_state = TCPS_SYN_RCVD; 5510 5511 5512 /* 5513 * There should be no ire in the mp as we are being called after 5514 * receiving the SYN. 5515 */ 5516 ASSERT(tcp_ire_mp(&mp) == NULL); 5517 5518 /* 5519 * Adapt our mss, ttl, ... according to information provided in IRE. 5520 */ 5521 5522 if (tcp_adapt_ire(eager, NULL) == 0) { 5523 /* Undo the bind_hash_insert */ 5524 tcp_bind_hash_remove(eager); 5525 goto error3; 5526 } 5527 5528 /* Process all TCP options. */ 5529 tcp_process_options(eager, tcph); 5530 5531 /* Is the other end ECN capable? */ 5532 if (tcps->tcps_ecn_permitted >= 1 && 5533 (tcph->th_flags[0] & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) { 5534 eager->tcp_ecn_ok = B_TRUE; 5535 } 5536 5537 /* 5538 * listener->tcp_rq->q_hiwat should be the default window size or a 5539 * window size changed via SO_RCVBUF option. First round up the 5540 * eager's tcp_rwnd to the nearest MSS. Then find out the window 5541 * scale option value if needed. Call tcp_rwnd_set() to finish the 5542 * setting. 5543 * 5544 * Note if there is a rpipe metric associated with the remote host, 5545 * we should not inherit receive window size from listener. 5546 */ 5547 eager->tcp_rwnd = MSS_ROUNDUP( 5548 (eager->tcp_rwnd == 0 ? tcp->tcp_recv_hiwater: 5549 eager->tcp_rwnd), eager->tcp_mss); 5550 if (eager->tcp_snd_ws_ok) 5551 tcp_set_ws_value(eager); 5552 /* 5553 * Note that this is the only place tcp_rwnd_set() is called for 5554 * accepting a connection. We need to call it here instead of 5555 * after the 3-way handshake because we need to tell the other 5556 * side our rwnd in the SYN-ACK segment. 5557 */ 5558 (void) tcp_rwnd_set(eager, eager->tcp_rwnd); 5559 5560 /* 5561 * We eliminate the need for sockfs to send down a T_SVR4_OPTMGMT_REQ 5562 * via soaccept()->soinheritoptions() which essentially applies 5563 * all the listener options to the new STREAM. The options that we 5564 * need to take care of are: 5565 * SO_DEBUG, SO_REUSEADDR, SO_KEEPALIVE, SO_DONTROUTE, SO_BROADCAST, 5566 * SO_USELOOPBACK, SO_OOBINLINE, SO_DGRAM_ERRIND, SO_LINGER, 5567 * SO_SNDBUF, SO_RCVBUF. 5568 * 5569 * SO_RCVBUF: tcp_rwnd_set() above takes care of it. 5570 * SO_SNDBUF: Set the tcp_xmit_hiwater for the eager. When 5571 * tcp_maxpsz_set() gets called later from 5572 * tcp_accept_finish(), the option takes effect. 5573 * 5574 */ 5575 /* Set the TCP options */ 5576 eager->tcp_recv_hiwater = tcp->tcp_recv_hiwater; 5577 eager->tcp_recv_lowater = tcp->tcp_recv_lowater; 5578 eager->tcp_xmit_hiwater = tcp->tcp_xmit_hiwater; 5579 eager->tcp_dgram_errind = tcp->tcp_dgram_errind; 5580 eager->tcp_oobinline = tcp->tcp_oobinline; 5581 eager->tcp_reuseaddr = tcp->tcp_reuseaddr; 5582 eager->tcp_broadcast = tcp->tcp_broadcast; 5583 eager->tcp_useloopback = tcp->tcp_useloopback; 5584 eager->tcp_dontroute = tcp->tcp_dontroute; 5585 eager->tcp_debug = tcp->tcp_debug; 5586 eager->tcp_linger = tcp->tcp_linger; 5587 eager->tcp_lingertime = tcp->tcp_lingertime; 5588 if (tcp->tcp_ka_enabled) 5589 eager->tcp_ka_enabled = 1; 5590 5591 /* Set the IP options */ 5592 econnp->conn_broadcast = connp->conn_broadcast; 5593 econnp->conn_loopback = connp->conn_loopback; 5594 econnp->conn_dontroute = connp->conn_dontroute; 5595 econnp->conn_reuseaddr = connp->conn_reuseaddr; 5596 5597 /* Put a ref on the listener for the eager. */ 5598 CONN_INC_REF(connp); 5599 mutex_enter(&tcp->tcp_eager_lock); 5600 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = eager; 5601 eager->tcp_eager_next_q0 = tcp->tcp_eager_next_q0; 5602 tcp->tcp_eager_next_q0 = eager; 5603 eager->tcp_eager_prev_q0 = tcp; 5604 5605 /* Set tcp_listener before adding it to tcp_conn_fanout */ 5606 eager->tcp_listener = tcp; 5607 eager->tcp_saved_listener = tcp; 5608 5609 /* 5610 * Tag this detached tcp vector for later retrieval 5611 * by our listener client in tcp_accept(). 5612 */ 5613 eager->tcp_conn_req_seqnum = tcp->tcp_conn_req_seqnum; 5614 tcp->tcp_conn_req_cnt_q0++; 5615 if (++tcp->tcp_conn_req_seqnum == -1) { 5616 /* 5617 * -1 is "special" and defined in TPI as something 5618 * that should never be used in T_CONN_IND 5619 */ 5620 ++tcp->tcp_conn_req_seqnum; 5621 } 5622 mutex_exit(&tcp->tcp_eager_lock); 5623 5624 if (tcp->tcp_syn_defense) { 5625 /* Don't drop the SYN that comes from a good IP source */ 5626 ipaddr_t *addr_cache = (ipaddr_t *)(tcp->tcp_ip_addr_cache); 5627 if (addr_cache != NULL && eager->tcp_remote == 5628 addr_cache[IP_ADDR_CACHE_HASH(eager->tcp_remote)]) { 5629 eager->tcp_dontdrop = B_TRUE; 5630 } 5631 } 5632 5633 /* 5634 * We need to insert the eager in its own perimeter but as soon 5635 * as we do that, we expose the eager to the classifier and 5636 * should not touch any field outside the eager's perimeter. 5637 * So do all the work necessary before inserting the eager 5638 * in its own perimeter. Be optimistic that ipcl_conn_insert() 5639 * will succeed but undo everything if it fails. 5640 */ 5641 seg_seq = ABE32_TO_U32(tcph->th_seq); 5642 eager->tcp_irs = seg_seq; 5643 eager->tcp_rack = seg_seq; 5644 eager->tcp_rnxt = seg_seq + 1; 5645 U32_TO_ABE32(eager->tcp_rnxt, eager->tcp_tcph->th_ack); 5646 BUMP_MIB(&tcps->tcps_mib, tcpPassiveOpens); 5647 eager->tcp_state = TCPS_SYN_RCVD; 5648 mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss, 5649 NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE); 5650 if (mp1 == NULL) { 5651 /* 5652 * Increment the ref count as we are going to 5653 * enqueueing an mp in squeue 5654 */ 5655 CONN_INC_REF(econnp); 5656 goto error; 5657 } 5658 5659 /* 5660 * Note that in theory this should use the current pid 5661 * so that getpeerucred on the client returns the actual listener 5662 * that does accept. But accept() hasn't been called yet. We could use 5663 * the pid of the process that did bind/listen on the server. 5664 * However, with common usage like inetd() the bind/listen can be done 5665 * by a different process than the accept(). 5666 * Hence we do the simple thing of using the open pid here. 5667 * Note that db_credp is set later in tcp_send_data(). 5668 */ 5669 mblk_setcred(mp1, credp, tcp->tcp_cpid); 5670 eager->tcp_cpid = tcp->tcp_cpid; 5671 eager->tcp_open_time = lbolt64; 5672 5673 /* 5674 * We need to start the rto timer. In normal case, we start 5675 * the timer after sending the packet on the wire (or at 5676 * least believing that packet was sent by waiting for 5677 * CALL_IP_WPUT() to return). Since this is the first packet 5678 * being sent on the wire for the eager, our initial tcp_rto 5679 * is at least tcp_rexmit_interval_min which is a fairly 5680 * large value to allow the algorithm to adjust slowly to large 5681 * fluctuations of RTT during first few transmissions. 5682 * 5683 * Starting the timer first and then sending the packet in this 5684 * case shouldn't make much difference since tcp_rexmit_interval_min 5685 * is of the order of several 100ms and starting the timer 5686 * first and then sending the packet will result in difference 5687 * of few micro seconds. 5688 * 5689 * Without this optimization, we are forced to hold the fanout 5690 * lock across the ipcl_bind_insert() and sending the packet 5691 * so that we don't race against an incoming packet (maybe RST) 5692 * for this eager. 5693 * 5694 * It is necessary to acquire an extra reference on the eager 5695 * at this point and hold it until after tcp_send_data() to 5696 * ensure against an eager close race. 5697 */ 5698 5699 CONN_INC_REF(eager->tcp_connp); 5700 5701 TCP_TIMER_RESTART(eager, eager->tcp_rto); 5702 5703 /* 5704 * Insert the eager in its own perimeter now. We are ready to deal 5705 * with any packets on eager. 5706 */ 5707 if (eager->tcp_ipversion == IPV4_VERSION) { 5708 if (ipcl_conn_insert(econnp, IPPROTO_TCP, 0, 0, 0) != 0) { 5709 goto error; 5710 } 5711 } else { 5712 if (ipcl_conn_insert_v6(econnp, IPPROTO_TCP, 0, 0, 0, 0) != 0) { 5713 goto error; 5714 } 5715 } 5716 5717 /* mark conn as fully-bound */ 5718 econnp->conn_fully_bound = B_TRUE; 5719 5720 /* Send the SYN-ACK */ 5721 tcp_send_data(eager, eager->tcp_wq, mp1); 5722 CONN_DEC_REF(eager->tcp_connp); 5723 freemsg(mp); 5724 5725 return; 5726 error: 5727 freemsg(mp1); 5728 eager->tcp_closemp_used = B_TRUE; 5729 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 5730 mp1 = &eager->tcp_closemp; 5731 SQUEUE_ENTER_ONE(econnp->conn_sqp, mp1, tcp_eager_kill, 5732 econnp, SQ_FILL, SQTAG_TCP_CONN_REQ_2); 5733 5734 /* 5735 * If a connection already exists, send the mp to that connections so 5736 * that it can be appropriately dealt with. 5737 */ 5738 ipst = tcps->tcps_netstack->netstack_ip; 5739 5740 if ((econnp = ipcl_classify(mp, connp->conn_zoneid, ipst)) != NULL) { 5741 if (!IPCL_IS_CONNECTED(econnp)) { 5742 /* 5743 * Something bad happened. ipcl_conn_insert() 5744 * failed because a connection already existed 5745 * in connected hash but we can't find it 5746 * anymore (someone blew it away). Just 5747 * free this message and hopefully remote 5748 * will retransmit at which time the SYN can be 5749 * treated as a new connection or dealth with 5750 * a TH_RST if a connection already exists. 5751 */ 5752 CONN_DEC_REF(econnp); 5753 freemsg(mp); 5754 } else { 5755 SQUEUE_ENTER_ONE(econnp->conn_sqp, mp, 5756 tcp_input, econnp, SQ_FILL, SQTAG_TCP_CONN_REQ_1); 5757 } 5758 } else { 5759 /* Nobody wants this packet */ 5760 freemsg(mp); 5761 } 5762 return; 5763 error3: 5764 CONN_DEC_REF(econnp); 5765 error2: 5766 freemsg(mp); 5767 } 5768 5769 /* 5770 * In an ideal case of vertical partition in NUMA architecture, its 5771 * beneficial to have the listener and all the incoming connections 5772 * tied to the same squeue. The other constraint is that incoming 5773 * connections should be tied to the squeue attached to interrupted 5774 * CPU for obvious locality reason so this leaves the listener to 5775 * be tied to the same squeue. Our only problem is that when listener 5776 * is binding, the CPU that will get interrupted by the NIC whose 5777 * IP address the listener is binding to is not even known. So 5778 * the code below allows us to change that binding at the time the 5779 * CPU is interrupted by virtue of incoming connection's squeue. 5780 * 5781 * This is usefull only in case of a listener bound to a specific IP 5782 * address. For other kind of listeners, they get bound the 5783 * very first time and there is no attempt to rebind them. 5784 */ 5785 void 5786 tcp_conn_request_unbound(void *arg, mblk_t *mp, void *arg2) 5787 { 5788 conn_t *connp = (conn_t *)arg; 5789 squeue_t *sqp = (squeue_t *)arg2; 5790 squeue_t *new_sqp; 5791 uint32_t conn_flags; 5792 5793 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 5794 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 5795 } else { 5796 goto done; 5797 } 5798 5799 if (connp->conn_fanout == NULL) 5800 goto done; 5801 5802 if (!(connp->conn_flags & IPCL_FULLY_BOUND)) { 5803 mutex_enter(&connp->conn_fanout->connf_lock); 5804 mutex_enter(&connp->conn_lock); 5805 /* 5806 * No one from read or write side can access us now 5807 * except for already queued packets on this squeue. 5808 * But since we haven't changed the squeue yet, they 5809 * can't execute. If they are processed after we have 5810 * changed the squeue, they are sent back to the 5811 * correct squeue down below. 5812 * But a listner close can race with processing of 5813 * incoming SYN. If incoming SYN processing changes 5814 * the squeue then the listener close which is waiting 5815 * to enter the squeue would operate on the wrong 5816 * squeue. Hence we don't change the squeue here unless 5817 * the refcount is exactly the minimum refcount. The 5818 * minimum refcount of 4 is counted as - 1 each for 5819 * TCP and IP, 1 for being in the classifier hash, and 5820 * 1 for the mblk being processed. 5821 */ 5822 5823 if (connp->conn_ref != 4 || 5824 connp->conn_tcp->tcp_state != TCPS_LISTEN) { 5825 mutex_exit(&connp->conn_lock); 5826 mutex_exit(&connp->conn_fanout->connf_lock); 5827 goto done; 5828 } 5829 if (connp->conn_sqp != new_sqp) { 5830 while (connp->conn_sqp != new_sqp) 5831 (void) casptr(&connp->conn_sqp, sqp, new_sqp); 5832 } 5833 5834 do { 5835 conn_flags = connp->conn_flags; 5836 conn_flags |= IPCL_FULLY_BOUND; 5837 (void) cas32(&connp->conn_flags, connp->conn_flags, 5838 conn_flags); 5839 } while (!(connp->conn_flags & IPCL_FULLY_BOUND)); 5840 5841 mutex_exit(&connp->conn_fanout->connf_lock); 5842 mutex_exit(&connp->conn_lock); 5843 } 5844 5845 done: 5846 if (connp->conn_sqp != sqp) { 5847 CONN_INC_REF(connp); 5848 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp, 5849 SQ_FILL, SQTAG_TCP_CONN_REQ_UNBOUND); 5850 } else { 5851 tcp_conn_request(connp, mp, sqp); 5852 } 5853 } 5854 5855 /* 5856 * Successful connect request processing begins when our client passes 5857 * a T_CONN_REQ message into tcp_wput() and ends when tcp_rput() passes 5858 * our T_OK_ACK reply message upstream. The control flow looks like this: 5859 * upstream -> tcp_wput() -> tcp_wput_proto() -> tcp_tpi_connect() -> IP 5860 * upstream <- tcp_rput() <- IP 5861 * After various error checks are completed, tcp_tpi_connect() lays 5862 * the target address and port into the composite header template, 5863 * preallocates the T_OK_ACK reply message, construct a full 12 byte bind 5864 * request followed by an IRE request, and passes the three mblk message 5865 * down to IP looking like this: 5866 * O_T_BIND_REQ for IP --> IRE req --> T_OK_ACK for our client 5867 * Processing continues in tcp_rput() when we receive the following message: 5868 * T_BIND_ACK from IP --> IRE ack --> T_OK_ACK for our client 5869 * After consuming the first two mblks, tcp_rput() calls tcp_timer(), 5870 * to fire off the connection request, and then passes the T_OK_ACK mblk 5871 * upstream that we filled in below. There are, of course, numerous 5872 * error conditions along the way which truncate the processing described 5873 * above. 5874 */ 5875 static void 5876 tcp_tpi_connect(tcp_t *tcp, mblk_t *mp) 5877 { 5878 sin_t *sin; 5879 queue_t *q = tcp->tcp_wq; 5880 struct T_conn_req *tcr; 5881 struct sockaddr *sa; 5882 socklen_t len; 5883 int error; 5884 cred_t *cr; 5885 pid_t cpid; 5886 5887 /* 5888 * All Solaris components should pass a db_credp 5889 * for this TPI message, hence we ASSERT. 5890 * But in case there is some other M_PROTO that looks 5891 * like a TPI message sent by some other kernel 5892 * component, we check and return an error. 5893 */ 5894 cr = msg_getcred(mp, &cpid); 5895 ASSERT(cr != NULL); 5896 if (cr == NULL) { 5897 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 5898 return; 5899 } 5900 5901 tcr = (struct T_conn_req *)mp->b_rptr; 5902 5903 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 5904 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { 5905 tcp_err_ack(tcp, mp, TPROTO, 0); 5906 return; 5907 } 5908 5909 /* 5910 * Pre-allocate the T_ordrel_ind mblk so that at close time, we 5911 * will always have that to send up. Otherwise, we need to do 5912 * special handling in case the allocation fails at that time. 5913 * If the end point is TPI, the tcp_t can be reused and the 5914 * tcp_ordrel_mp may be allocated already. 5915 */ 5916 if (tcp->tcp_ordrel_mp == NULL) { 5917 if ((tcp->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL) { 5918 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 5919 return; 5920 } 5921 } 5922 5923 /* 5924 * Determine packet type based on type of address passed in 5925 * the request should contain an IPv4 or IPv6 address. 5926 * Make sure that address family matches the type of 5927 * family of the the address passed down 5928 */ 5929 switch (tcr->DEST_length) { 5930 default: 5931 tcp_err_ack(tcp, mp, TBADADDR, 0); 5932 return; 5933 5934 case (sizeof (sin_t) - sizeof (sin->sin_zero)): { 5935 /* 5936 * XXX: The check for valid DEST_length was not there 5937 * in earlier releases and some buggy 5938 * TLI apps (e.g Sybase) got away with not feeding 5939 * in sin_zero part of address. 5940 * We allow that bug to keep those buggy apps humming. 5941 * Test suites require the check on DEST_length. 5942 * We construct a new mblk with valid DEST_length 5943 * free the original so the rest of the code does 5944 * not have to keep track of this special shorter 5945 * length address case. 5946 */ 5947 mblk_t *nmp; 5948 struct T_conn_req *ntcr; 5949 sin_t *nsin; 5950 5951 nmp = allocb(sizeof (struct T_conn_req) + sizeof (sin_t) + 5952 tcr->OPT_length, BPRI_HI); 5953 if (nmp == NULL) { 5954 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 5955 return; 5956 } 5957 ntcr = (struct T_conn_req *)nmp->b_rptr; 5958 bzero(ntcr, sizeof (struct T_conn_req)); /* zero fill */ 5959 ntcr->PRIM_type = T_CONN_REQ; 5960 ntcr->DEST_length = sizeof (sin_t); 5961 ntcr->DEST_offset = sizeof (struct T_conn_req); 5962 5963 nsin = (sin_t *)((uchar_t *)ntcr + ntcr->DEST_offset); 5964 *nsin = sin_null; 5965 /* Get pointer to shorter address to copy from original mp */ 5966 sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset, 5967 tcr->DEST_length); /* extract DEST_length worth of sin_t */ 5968 if (sin == NULL || !OK_32PTR((char *)sin)) { 5969 freemsg(nmp); 5970 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 5971 return; 5972 } 5973 nsin->sin_family = sin->sin_family; 5974 nsin->sin_port = sin->sin_port; 5975 nsin->sin_addr = sin->sin_addr; 5976 /* Note:nsin->sin_zero zero-fill with sin_null assign above */ 5977 nmp->b_wptr = (uchar_t *)&nsin[1]; 5978 if (tcr->OPT_length != 0) { 5979 ntcr->OPT_length = tcr->OPT_length; 5980 ntcr->OPT_offset = nmp->b_wptr - nmp->b_rptr; 5981 bcopy((uchar_t *)tcr + tcr->OPT_offset, 5982 (uchar_t *)ntcr + ntcr->OPT_offset, 5983 tcr->OPT_length); 5984 nmp->b_wptr += tcr->OPT_length; 5985 } 5986 freemsg(mp); /* original mp freed */ 5987 mp = nmp; /* re-initialize original variables */ 5988 tcr = ntcr; 5989 } 5990 /* FALLTHRU */ 5991 5992 case sizeof (sin_t): 5993 sa = (struct sockaddr *)mi_offset_param(mp, tcr->DEST_offset, 5994 sizeof (sin_t)); 5995 len = sizeof (sin_t); 5996 break; 5997 5998 case sizeof (sin6_t): 5999 sa = (struct sockaddr *)mi_offset_param(mp, tcr->DEST_offset, 6000 sizeof (sin6_t)); 6001 len = sizeof (sin6_t); 6002 break; 6003 } 6004 6005 error = proto_verify_ip_addr(tcp->tcp_family, sa, len); 6006 if (error != 0) { 6007 tcp_err_ack(tcp, mp, TSYSERR, error); 6008 return; 6009 } 6010 6011 /* 6012 * TODO: If someone in TCPS_TIME_WAIT has this dst/port we 6013 * should key on their sequence number and cut them loose. 6014 */ 6015 6016 /* 6017 * If options passed in, feed it for verification and handling 6018 */ 6019 if (tcr->OPT_length != 0) { 6020 mblk_t *ok_mp; 6021 mblk_t *discon_mp; 6022 mblk_t *conn_opts_mp; 6023 int t_error, sys_error, do_disconnect; 6024 6025 conn_opts_mp = NULL; 6026 6027 if (tcp_conprim_opt_process(tcp, mp, 6028 &do_disconnect, &t_error, &sys_error) < 0) { 6029 if (do_disconnect) { 6030 ASSERT(t_error == 0 && sys_error == 0); 6031 discon_mp = mi_tpi_discon_ind(NULL, 6032 ECONNREFUSED, 0); 6033 if (!discon_mp) { 6034 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, 6035 TSYSERR, ENOMEM); 6036 return; 6037 } 6038 ok_mp = mi_tpi_ok_ack_alloc(mp); 6039 if (!ok_mp) { 6040 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6041 TSYSERR, ENOMEM); 6042 return; 6043 } 6044 qreply(q, ok_mp); 6045 qreply(q, discon_mp); /* no flush! */ 6046 } else { 6047 ASSERT(t_error != 0); 6048 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, t_error, 6049 sys_error); 6050 } 6051 return; 6052 } 6053 /* 6054 * Success in setting options, the mp option buffer represented 6055 * by OPT_length/offset has been potentially modified and 6056 * contains results of option processing. We copy it in 6057 * another mp to save it for potentially influencing returning 6058 * it in T_CONN_CONN. 6059 */ 6060 if (tcr->OPT_length != 0) { /* there are resulting options */ 6061 conn_opts_mp = copyb(mp); 6062 if (!conn_opts_mp) { 6063 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, 6064 TSYSERR, ENOMEM); 6065 return; 6066 } 6067 ASSERT(tcp->tcp_conn.tcp_opts_conn_req == NULL); 6068 tcp->tcp_conn.tcp_opts_conn_req = conn_opts_mp; 6069 /* 6070 * Note: 6071 * These resulting option negotiation can include any 6072 * end-to-end negotiation options but there no such 6073 * thing (yet?) in our TCP/IP. 6074 */ 6075 } 6076 } 6077 6078 /* call the non-TPI version */ 6079 error = tcp_do_connect(tcp->tcp_connp, sa, len, cr, cpid); 6080 if (error < 0) { 6081 mp = mi_tpi_err_ack_alloc(mp, -error, 0); 6082 } else if (error > 0) { 6083 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 6084 } else { 6085 mp = mi_tpi_ok_ack_alloc(mp); 6086 } 6087 6088 /* 6089 * Note: Code below is the "failure" case 6090 */ 6091 /* return error ack and blow away saved option results if any */ 6092 connect_failed: 6093 if (mp != NULL) 6094 putnext(tcp->tcp_rq, mp); 6095 else { 6096 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6097 TSYSERR, ENOMEM); 6098 } 6099 } 6100 6101 /* 6102 * Handle connect to IPv4 destinations, including connections for AF_INET6 6103 * sockets connecting to IPv4 mapped IPv6 destinations. 6104 */ 6105 static int 6106 tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, in_port_t dstport, 6107 uint_t srcid, cred_t *cr, pid_t pid) 6108 { 6109 tcph_t *tcph; 6110 mblk_t *mp; 6111 ipaddr_t dstaddr = *dstaddrp; 6112 int32_t oldstate; 6113 uint16_t lport; 6114 int error = 0; 6115 tcp_stack_t *tcps = tcp->tcp_tcps; 6116 6117 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 6118 6119 /* Check for attempt to connect to INADDR_ANY */ 6120 if (dstaddr == INADDR_ANY) { 6121 /* 6122 * SunOS 4.x and 4.3 BSD allow an application 6123 * to connect a TCP socket to INADDR_ANY. 6124 * When they do this, the kernel picks the 6125 * address of one interface and uses it 6126 * instead. The kernel usually ends up 6127 * picking the address of the loopback 6128 * interface. This is an undocumented feature. 6129 * However, we provide the same thing here 6130 * in order to have source and binary 6131 * compatibility with SunOS 4.x. 6132 * Update the T_CONN_REQ (sin/sin6) since it is used to 6133 * generate the T_CONN_CON. 6134 */ 6135 dstaddr = htonl(INADDR_LOOPBACK); 6136 *dstaddrp = dstaddr; 6137 } 6138 6139 /* Handle __sin6_src_id if socket not bound to an IP address */ 6140 if (srcid != 0 && tcp->tcp_ipha->ipha_src == INADDR_ANY) { 6141 ip_srcid_find_id(srcid, &tcp->tcp_ip_src_v6, 6142 tcp->tcp_connp->conn_zoneid, tcps->tcps_netstack); 6143 IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_ip_src_v6, 6144 tcp->tcp_ipha->ipha_src); 6145 } 6146 6147 /* 6148 * Don't let an endpoint connect to itself. Note that 6149 * the test here does not catch the case where the 6150 * source IP addr was left unspecified by the user. In 6151 * this case, the source addr is set in tcp_adapt_ire() 6152 * using the reply to the T_BIND message that we send 6153 * down to IP here and the check is repeated in tcp_rput_other. 6154 */ 6155 if (dstaddr == tcp->tcp_ipha->ipha_src && 6156 dstport == tcp->tcp_lport) { 6157 error = -TBADADDR; 6158 goto failed; 6159 } 6160 6161 tcp->tcp_ipha->ipha_dst = dstaddr; 6162 IN6_IPADDR_TO_V4MAPPED(dstaddr, &tcp->tcp_remote_v6); 6163 6164 /* 6165 * Massage a source route if any putting the first hop 6166 * in iph_dst. Compute a starting value for the checksum which 6167 * takes into account that the original iph_dst should be 6168 * included in the checksum but that ip will include the 6169 * first hop in the source route in the tcp checksum. 6170 */ 6171 tcp->tcp_sum = ip_massage_options(tcp->tcp_ipha, tcps->tcps_netstack); 6172 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 6173 tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) + 6174 (tcp->tcp_ipha->ipha_dst & 0xffff)); 6175 if ((int)tcp->tcp_sum < 0) 6176 tcp->tcp_sum--; 6177 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 6178 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 6179 (tcp->tcp_sum >> 16)); 6180 tcph = tcp->tcp_tcph; 6181 *(uint16_t *)tcph->th_fport = dstport; 6182 tcp->tcp_fport = dstport; 6183 6184 oldstate = tcp->tcp_state; 6185 /* 6186 * At this point the remote destination address and remote port fields 6187 * in the tcp-four-tuple have been filled in the tcp structure. Now we 6188 * have to see which state tcp was in so we can take apropriate action. 6189 */ 6190 if (oldstate == TCPS_IDLE) { 6191 /* 6192 * We support a quick connect capability here, allowing 6193 * clients to transition directly from IDLE to SYN_SENT 6194 * tcp_bindi will pick an unused port, insert the connection 6195 * in the bind hash and transition to BOUND state. 6196 */ 6197 lport = tcp_update_next_port(tcps->tcps_next_port_to_try, 6198 tcp, B_TRUE); 6199 lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE, 6200 B_FALSE, B_FALSE); 6201 if (lport == 0) { 6202 error = -TNOADDR; 6203 goto failed; 6204 } 6205 } 6206 tcp->tcp_state = TCPS_SYN_SENT; 6207 6208 mp = allocb(sizeof (ire_t), BPRI_HI); 6209 if (mp == NULL) { 6210 tcp->tcp_state = oldstate; 6211 error = ENOMEM; 6212 goto failed; 6213 } 6214 6215 mp->b_wptr += sizeof (ire_t); 6216 mp->b_datap->db_type = IRE_DB_REQ_TYPE; 6217 tcp->tcp_hard_binding = 1; 6218 6219 /* 6220 * We need to make sure that the conn_recv is set to a non-null 6221 * value before we insert the conn_t into the classifier table. 6222 * This is to avoid a race with an incoming packet which does 6223 * an ipcl_classify(). 6224 */ 6225 tcp->tcp_connp->conn_recv = tcp_input; 6226 6227 if (tcp->tcp_family == AF_INET) { 6228 error = ip_proto_bind_connected_v4(tcp->tcp_connp, &mp, 6229 IPPROTO_TCP, &tcp->tcp_ipha->ipha_src, tcp->tcp_lport, 6230 tcp->tcp_remote, tcp->tcp_fport, B_TRUE, B_TRUE, cr); 6231 } else { 6232 in6_addr_t v6src; 6233 if (tcp->tcp_ipversion == IPV4_VERSION) { 6234 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6src); 6235 } else { 6236 v6src = tcp->tcp_ip6h->ip6_src; 6237 } 6238 error = ip_proto_bind_connected_v6(tcp->tcp_connp, &mp, 6239 IPPROTO_TCP, &v6src, tcp->tcp_lport, &tcp->tcp_remote_v6, 6240 &tcp->tcp_sticky_ipp, tcp->tcp_fport, B_TRUE, B_TRUE, cr); 6241 } 6242 BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens); 6243 tcp->tcp_active_open = 1; 6244 6245 6246 return (tcp_post_ip_bind(tcp, mp, error, cr, pid)); 6247 failed: 6248 /* return error ack and blow away saved option results if any */ 6249 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 6250 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 6251 return (error); 6252 } 6253 6254 /* 6255 * Handle connect to IPv6 destinations. 6256 */ 6257 static int 6258 tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, in_port_t dstport, 6259 uint32_t flowinfo, uint_t srcid, uint32_t scope_id, cred_t *cr, pid_t pid) 6260 { 6261 tcph_t *tcph; 6262 mblk_t *mp; 6263 ip6_rthdr_t *rth; 6264 int32_t oldstate; 6265 uint16_t lport; 6266 tcp_stack_t *tcps = tcp->tcp_tcps; 6267 int error = 0; 6268 conn_t *connp = tcp->tcp_connp; 6269 6270 ASSERT(tcp->tcp_family == AF_INET6); 6271 6272 /* 6273 * If we're here, it means that the destination address is a native 6274 * IPv6 address. Return an error if tcp_ipversion is not IPv6. A 6275 * reason why it might not be IPv6 is if the socket was bound to an 6276 * IPv4-mapped IPv6 address. 6277 */ 6278 if (tcp->tcp_ipversion != IPV6_VERSION) { 6279 return (-TBADADDR); 6280 } 6281 6282 /* 6283 * Interpret a zero destination to mean loopback. 6284 * Update the T_CONN_REQ (sin/sin6) since it is used to 6285 * generate the T_CONN_CON. 6286 */ 6287 if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp)) { 6288 *dstaddrp = ipv6_loopback; 6289 } 6290 6291 /* Handle __sin6_src_id if socket not bound to an IP address */ 6292 if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) { 6293 ip_srcid_find_id(srcid, &tcp->tcp_ip6h->ip6_src, 6294 connp->conn_zoneid, tcps->tcps_netstack); 6295 tcp->tcp_ip_src_v6 = tcp->tcp_ip6h->ip6_src; 6296 } 6297 6298 /* 6299 * Take care of the scope_id now and add ip6i_t 6300 * if ip6i_t is not already allocated through TCP 6301 * sticky options. At this point tcp_ip6h does not 6302 * have dst info, thus use dstaddrp. 6303 */ 6304 if (scope_id != 0 && 6305 IN6_IS_ADDR_LINKSCOPE(dstaddrp)) { 6306 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 6307 ip6i_t *ip6i; 6308 6309 ipp->ipp_ifindex = scope_id; 6310 ip6i = (ip6i_t *)tcp->tcp_iphc; 6311 6312 if ((ipp->ipp_fields & IPPF_HAS_IP6I) && 6313 ip6i != NULL && (ip6i->ip6i_nxt == IPPROTO_RAW)) { 6314 /* Already allocated */ 6315 ip6i->ip6i_flags |= IP6I_IFINDEX; 6316 ip6i->ip6i_ifindex = ipp->ipp_ifindex; 6317 ipp->ipp_fields |= IPPF_SCOPE_ID; 6318 } else { 6319 int reterr; 6320 6321 ipp->ipp_fields |= IPPF_SCOPE_ID; 6322 if (ipp->ipp_fields & IPPF_HAS_IP6I) 6323 ip2dbg(("tcp_connect_v6: SCOPE_ID set\n")); 6324 reterr = tcp_build_hdrs(tcp); 6325 if (reterr != 0) 6326 goto failed; 6327 ip1dbg(("tcp_connect_ipv6: tcp_bld_hdrs returned\n")); 6328 } 6329 } 6330 6331 /* 6332 * Don't let an endpoint connect to itself. Note that 6333 * the test here does not catch the case where the 6334 * source IP addr was left unspecified by the user. In 6335 * this case, the source addr is set in tcp_adapt_ire() 6336 * using the reply to the T_BIND message that we send 6337 * down to IP here and the check is repeated in tcp_rput_other. 6338 */ 6339 if (IN6_ARE_ADDR_EQUAL(dstaddrp, &tcp->tcp_ip6h->ip6_src) && 6340 (dstport == tcp->tcp_lport)) { 6341 error = -TBADADDR; 6342 goto failed; 6343 } 6344 6345 tcp->tcp_ip6h->ip6_dst = *dstaddrp; 6346 tcp->tcp_remote_v6 = *dstaddrp; 6347 tcp->tcp_ip6h->ip6_vcf = 6348 (IPV6_DEFAULT_VERS_AND_FLOW & IPV6_VERS_AND_FLOW_MASK) | 6349 (flowinfo & ~IPV6_VERS_AND_FLOW_MASK); 6350 6351 /* 6352 * Massage a routing header (if present) putting the first hop 6353 * in ip6_dst. Compute a starting value for the checksum which 6354 * takes into account that the original ip6_dst should be 6355 * included in the checksum but that ip will include the 6356 * first hop in the source route in the tcp checksum. 6357 */ 6358 rth = ip_find_rthdr_v6(tcp->tcp_ip6h, (uint8_t *)tcp->tcp_tcph); 6359 if (rth != NULL) { 6360 tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, rth, 6361 tcps->tcps_netstack); 6362 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 6363 (tcp->tcp_sum >> 16)); 6364 } else { 6365 tcp->tcp_sum = 0; 6366 } 6367 6368 tcph = tcp->tcp_tcph; 6369 *(uint16_t *)tcph->th_fport = dstport; 6370 tcp->tcp_fport = dstport; 6371 6372 oldstate = tcp->tcp_state; 6373 /* 6374 * At this point the remote destination address and remote port fields 6375 * in the tcp-four-tuple have been filled in the tcp structure. Now we 6376 * have to see which state tcp was in so we can take apropriate action. 6377 */ 6378 if (oldstate == TCPS_IDLE) { 6379 /* 6380 * We support a quick connect capability here, allowing 6381 * clients to transition directly from IDLE to SYN_SENT 6382 * tcp_bindi will pick an unused port, insert the connection 6383 * in the bind hash and transition to BOUND state. 6384 */ 6385 lport = tcp_update_next_port(tcps->tcps_next_port_to_try, 6386 tcp, B_TRUE); 6387 lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE, 6388 B_FALSE, B_FALSE); 6389 if (lport == 0) { 6390 error = -TNOADDR; 6391 goto failed; 6392 } 6393 } 6394 tcp->tcp_state = TCPS_SYN_SENT; 6395 6396 mp = allocb(sizeof (ire_t), BPRI_HI); 6397 if (mp != NULL) { 6398 in6_addr_t v6src; 6399 6400 mp->b_wptr += sizeof (ire_t); 6401 mp->b_datap->db_type = IRE_DB_REQ_TYPE; 6402 6403 tcp->tcp_hard_binding = 1; 6404 6405 /* 6406 * We need to make sure that the conn_recv is set to a non-null 6407 * value before we insert the conn_t into the classifier table. 6408 * This is to avoid a race with an incoming packet which does 6409 * an ipcl_classify(). 6410 */ 6411 tcp->tcp_connp->conn_recv = tcp_input; 6412 6413 if (tcp->tcp_ipversion == IPV4_VERSION) { 6414 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6src); 6415 } else { 6416 v6src = tcp->tcp_ip6h->ip6_src; 6417 } 6418 error = ip_proto_bind_connected_v6(connp, &mp, IPPROTO_TCP, 6419 &v6src, tcp->tcp_lport, &tcp->tcp_remote_v6, 6420 &tcp->tcp_sticky_ipp, tcp->tcp_fport, B_TRUE, B_TRUE, cr); 6421 BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens); 6422 tcp->tcp_active_open = 1; 6423 6424 return (tcp_post_ip_bind(tcp, mp, error, cr, pid)); 6425 } 6426 /* Error case */ 6427 tcp->tcp_state = oldstate; 6428 error = ENOMEM; 6429 6430 failed: 6431 /* return error ack and blow away saved option results if any */ 6432 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 6433 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 6434 return (error); 6435 } 6436 6437 /* 6438 * We need a stream q for detached closing tcp connections 6439 * to use. Our client hereby indicates that this q is the 6440 * one to use. 6441 */ 6442 static void 6443 tcp_def_q_set(tcp_t *tcp, mblk_t *mp) 6444 { 6445 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 6446 queue_t *q = tcp->tcp_wq; 6447 tcp_stack_t *tcps = tcp->tcp_tcps; 6448 6449 #ifdef NS_DEBUG 6450 (void) printf("TCP_IOC_DEFAULT_Q for stack %d\n", 6451 tcps->tcps_netstack->netstack_stackid); 6452 #endif 6453 mp->b_datap->db_type = M_IOCACK; 6454 iocp->ioc_count = 0; 6455 mutex_enter(&tcps->tcps_g_q_lock); 6456 if (tcps->tcps_g_q != NULL) { 6457 mutex_exit(&tcps->tcps_g_q_lock); 6458 iocp->ioc_error = EALREADY; 6459 } else { 6460 int error = 0; 6461 conn_t *connp = tcp->tcp_connp; 6462 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 6463 6464 tcps->tcps_g_q = tcp->tcp_rq; 6465 mutex_exit(&tcps->tcps_g_q_lock); 6466 iocp->ioc_error = 0; 6467 iocp->ioc_rval = 0; 6468 /* 6469 * We are passing tcp_sticky_ipp as NULL 6470 * as it is not useful for tcp_default queue 6471 * 6472 * Set conn_recv just in case. 6473 */ 6474 tcp->tcp_connp->conn_recv = tcp_conn_request; 6475 6476 ASSERT(connp->conn_af_isv6); 6477 connp->conn_ulp = IPPROTO_TCP; 6478 6479 if (ipst->ips_ipcl_proto_fanout_v6[IPPROTO_TCP].connf_head != 6480 NULL || connp->conn_mac_exempt) { 6481 error = -TBADADDR; 6482 } else { 6483 connp->conn_srcv6 = ipv6_all_zeros; 6484 ipcl_proto_insert_v6(connp, IPPROTO_TCP); 6485 } 6486 6487 (void) tcp_post_ip_bind(tcp, NULL, error, NULL, 0); 6488 } 6489 qreply(q, mp); 6490 } 6491 6492 static int 6493 tcp_disconnect_common(tcp_t *tcp, t_scalar_t seqnum) 6494 { 6495 tcp_t *ltcp = NULL; 6496 conn_t *connp; 6497 tcp_stack_t *tcps = tcp->tcp_tcps; 6498 6499 /* 6500 * Right now, upper modules pass down a T_DISCON_REQ to TCP, 6501 * when the stream is in BOUND state. Do not send a reset, 6502 * since the destination IP address is not valid, and it can 6503 * be the initialized value of all zeros (broadcast address). 6504 * 6505 * XXX There won't be any pending bind request to IP. 6506 */ 6507 if (tcp->tcp_state <= TCPS_BOUND) { 6508 if (tcp->tcp_debug) { 6509 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 6510 "tcp_disconnect: bad state, %d", tcp->tcp_state); 6511 } 6512 return (TOUTSTATE); 6513 } 6514 6515 6516 if (seqnum == -1 || tcp->tcp_conn_req_max == 0) { 6517 6518 /* 6519 * According to TPI, for non-listeners, ignore seqnum 6520 * and disconnect. 6521 * Following interpretation of -1 seqnum is historical 6522 * and implied TPI ? (TPI only states that for T_CONN_IND, 6523 * a valid seqnum should not be -1). 6524 * 6525 * -1 means disconnect everything 6526 * regardless even on a listener. 6527 */ 6528 6529 int old_state = tcp->tcp_state; 6530 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 6531 6532 /* 6533 * The connection can't be on the tcp_time_wait_head list 6534 * since it is not detached. 6535 */ 6536 ASSERT(tcp->tcp_time_wait_next == NULL); 6537 ASSERT(tcp->tcp_time_wait_prev == NULL); 6538 ASSERT(tcp->tcp_time_wait_expire == 0); 6539 ltcp = NULL; 6540 /* 6541 * If it used to be a listener, check to make sure no one else 6542 * has taken the port before switching back to LISTEN state. 6543 */ 6544 if (tcp->tcp_ipversion == IPV4_VERSION) { 6545 connp = ipcl_lookup_listener_v4(tcp->tcp_lport, 6546 tcp->tcp_ipha->ipha_src, 6547 tcp->tcp_connp->conn_zoneid, ipst); 6548 if (connp != NULL) 6549 ltcp = connp->conn_tcp; 6550 } else { 6551 /* Allow tcp_bound_if listeners? */ 6552 connp = ipcl_lookup_listener_v6(tcp->tcp_lport, 6553 &tcp->tcp_ip6h->ip6_src, 0, 6554 tcp->tcp_connp->conn_zoneid, ipst); 6555 if (connp != NULL) 6556 ltcp = connp->conn_tcp; 6557 } 6558 if (tcp->tcp_conn_req_max && ltcp == NULL) { 6559 tcp->tcp_state = TCPS_LISTEN; 6560 } else if (old_state > TCPS_BOUND) { 6561 tcp->tcp_conn_req_max = 0; 6562 tcp->tcp_state = TCPS_BOUND; 6563 } 6564 if (ltcp != NULL) 6565 CONN_DEC_REF(ltcp->tcp_connp); 6566 if (old_state == TCPS_SYN_SENT || old_state == TCPS_SYN_RCVD) { 6567 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 6568 } else if (old_state == TCPS_ESTABLISHED || 6569 old_state == TCPS_CLOSE_WAIT) { 6570 BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); 6571 } 6572 6573 if (tcp->tcp_fused) 6574 tcp_unfuse(tcp); 6575 6576 mutex_enter(&tcp->tcp_eager_lock); 6577 if ((tcp->tcp_conn_req_cnt_q0 != 0) || 6578 (tcp->tcp_conn_req_cnt_q != 0)) { 6579 tcp_eager_cleanup(tcp, 0); 6580 } 6581 mutex_exit(&tcp->tcp_eager_lock); 6582 6583 tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt, 6584 tcp->tcp_rnxt, TH_RST | TH_ACK); 6585 6586 tcp_reinit(tcp); 6587 6588 return (0); 6589 } else if (!tcp_eager_blowoff(tcp, seqnum)) { 6590 return (TBADSEQ); 6591 } 6592 return (0); 6593 } 6594 6595 /* 6596 * Our client hereby directs us to reject the connection request 6597 * that tcp_conn_request() marked with 'seqnum'. Rejection consists 6598 * of sending the appropriate RST, not an ICMP error. 6599 */ 6600 static void 6601 tcp_disconnect(tcp_t *tcp, mblk_t *mp) 6602 { 6603 t_scalar_t seqnum; 6604 int error; 6605 6606 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 6607 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) { 6608 tcp_err_ack(tcp, mp, TPROTO, 0); 6609 return; 6610 } 6611 seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number; 6612 error = tcp_disconnect_common(tcp, seqnum); 6613 if (error != 0) 6614 tcp_err_ack(tcp, mp, error, 0); 6615 else { 6616 if (tcp->tcp_state >= TCPS_ESTABLISHED) { 6617 /* Send M_FLUSH according to TPI */ 6618 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 6619 } 6620 mp = mi_tpi_ok_ack_alloc(mp); 6621 if (mp) 6622 putnext(tcp->tcp_rq, mp); 6623 } 6624 } 6625 6626 /* 6627 * Diagnostic routine used to return a string associated with the tcp state. 6628 * Note that if the caller does not supply a buffer, it will use an internal 6629 * static string. This means that if multiple threads call this function at 6630 * the same time, output can be corrupted... Note also that this function 6631 * does not check the size of the supplied buffer. The caller has to make 6632 * sure that it is big enough. 6633 */ 6634 static char * 6635 tcp_display(tcp_t *tcp, char *sup_buf, char format) 6636 { 6637 char buf1[30]; 6638 static char priv_buf[INET6_ADDRSTRLEN * 2 + 80]; 6639 char *buf; 6640 char *cp; 6641 in6_addr_t local, remote; 6642 char local_addrbuf[INET6_ADDRSTRLEN]; 6643 char remote_addrbuf[INET6_ADDRSTRLEN]; 6644 6645 if (sup_buf != NULL) 6646 buf = sup_buf; 6647 else 6648 buf = priv_buf; 6649 6650 if (tcp == NULL) 6651 return ("NULL_TCP"); 6652 switch (tcp->tcp_state) { 6653 case TCPS_CLOSED: 6654 cp = "TCP_CLOSED"; 6655 break; 6656 case TCPS_IDLE: 6657 cp = "TCP_IDLE"; 6658 break; 6659 case TCPS_BOUND: 6660 cp = "TCP_BOUND"; 6661 break; 6662 case TCPS_LISTEN: 6663 cp = "TCP_LISTEN"; 6664 break; 6665 case TCPS_SYN_SENT: 6666 cp = "TCP_SYN_SENT"; 6667 break; 6668 case TCPS_SYN_RCVD: 6669 cp = "TCP_SYN_RCVD"; 6670 break; 6671 case TCPS_ESTABLISHED: 6672 cp = "TCP_ESTABLISHED"; 6673 break; 6674 case TCPS_CLOSE_WAIT: 6675 cp = "TCP_CLOSE_WAIT"; 6676 break; 6677 case TCPS_FIN_WAIT_1: 6678 cp = "TCP_FIN_WAIT_1"; 6679 break; 6680 case TCPS_CLOSING: 6681 cp = "TCP_CLOSING"; 6682 break; 6683 case TCPS_LAST_ACK: 6684 cp = "TCP_LAST_ACK"; 6685 break; 6686 case TCPS_FIN_WAIT_2: 6687 cp = "TCP_FIN_WAIT_2"; 6688 break; 6689 case TCPS_TIME_WAIT: 6690 cp = "TCP_TIME_WAIT"; 6691 break; 6692 default: 6693 (void) mi_sprintf(buf1, "TCPUnkState(%d)", tcp->tcp_state); 6694 cp = buf1; 6695 break; 6696 } 6697 switch (format) { 6698 case DISP_ADDR_AND_PORT: 6699 if (tcp->tcp_ipversion == IPV4_VERSION) { 6700 /* 6701 * Note that we use the remote address in the tcp_b 6702 * structure. This means that it will print out 6703 * the real destination address, not the next hop's 6704 * address if source routing is used. 6705 */ 6706 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ip_src, &local); 6707 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &remote); 6708 6709 } else { 6710 local = tcp->tcp_ip_src_v6; 6711 remote = tcp->tcp_remote_v6; 6712 } 6713 (void) inet_ntop(AF_INET6, &local, local_addrbuf, 6714 sizeof (local_addrbuf)); 6715 (void) inet_ntop(AF_INET6, &remote, remote_addrbuf, 6716 sizeof (remote_addrbuf)); 6717 (void) mi_sprintf(buf, "[%s.%u, %s.%u] %s", 6718 local_addrbuf, ntohs(tcp->tcp_lport), remote_addrbuf, 6719 ntohs(tcp->tcp_fport), cp); 6720 break; 6721 case DISP_PORT_ONLY: 6722 default: 6723 (void) mi_sprintf(buf, "[%u, %u] %s", 6724 ntohs(tcp->tcp_lport), ntohs(tcp->tcp_fport), cp); 6725 break; 6726 } 6727 6728 return (buf); 6729 } 6730 6731 /* 6732 * Called via squeue to get on to eager's perimeter. It sends a 6733 * TH_RST if eager is in the fanout table. The listener wants the 6734 * eager to disappear either by means of tcp_eager_blowoff() or 6735 * tcp_eager_cleanup() being called. tcp_eager_kill() can also be 6736 * called (via squeue) if the eager cannot be inserted in the 6737 * fanout table in tcp_conn_request(). 6738 */ 6739 /* ARGSUSED */ 6740 void 6741 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2) 6742 { 6743 conn_t *econnp = (conn_t *)arg; 6744 tcp_t *eager = econnp->conn_tcp; 6745 tcp_t *listener = eager->tcp_listener; 6746 tcp_stack_t *tcps = eager->tcp_tcps; 6747 6748 /* 6749 * We could be called because listener is closing. Since 6750 * the eager is using listener's queue's, its not safe. 6751 * Better use the default queue just to send the TH_RST 6752 * out. 6753 */ 6754 ASSERT(tcps->tcps_g_q != NULL); 6755 eager->tcp_rq = tcps->tcps_g_q; 6756 eager->tcp_wq = WR(tcps->tcps_g_q); 6757 6758 /* 6759 * An eager's conn_fanout will be NULL if it's a duplicate 6760 * for an existing 4-tuples in the conn fanout table. 6761 * We don't want to send an RST out in such case. 6762 */ 6763 if (econnp->conn_fanout != NULL && eager->tcp_state > TCPS_LISTEN) { 6764 tcp_xmit_ctl("tcp_eager_kill, can't wait", 6765 eager, eager->tcp_snxt, 0, TH_RST); 6766 } 6767 6768 /* We are here because listener wants this eager gone */ 6769 if (listener != NULL) { 6770 mutex_enter(&listener->tcp_eager_lock); 6771 tcp_eager_unlink(eager); 6772 if (eager->tcp_tconnind_started) { 6773 /* 6774 * The eager has sent a conn_ind up to the 6775 * listener but listener decides to close 6776 * instead. We need to drop the extra ref 6777 * placed on eager in tcp_rput_data() before 6778 * sending the conn_ind to listener. 6779 */ 6780 CONN_DEC_REF(econnp); 6781 } 6782 mutex_exit(&listener->tcp_eager_lock); 6783 CONN_DEC_REF(listener->tcp_connp); 6784 } 6785 6786 if (eager->tcp_state > TCPS_BOUND) 6787 tcp_close_detached(eager); 6788 } 6789 6790 /* 6791 * Reset any eager connection hanging off this listener marked 6792 * with 'seqnum' and then reclaim it's resources. 6793 */ 6794 static boolean_t 6795 tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum) 6796 { 6797 tcp_t *eager; 6798 mblk_t *mp; 6799 tcp_stack_t *tcps = listener->tcp_tcps; 6800 6801 TCP_STAT(tcps, tcp_eager_blowoff_calls); 6802 eager = listener; 6803 mutex_enter(&listener->tcp_eager_lock); 6804 do { 6805 eager = eager->tcp_eager_next_q; 6806 if (eager == NULL) { 6807 mutex_exit(&listener->tcp_eager_lock); 6808 return (B_FALSE); 6809 } 6810 } while (eager->tcp_conn_req_seqnum != seqnum); 6811 6812 if (eager->tcp_closemp_used) { 6813 mutex_exit(&listener->tcp_eager_lock); 6814 return (B_TRUE); 6815 } 6816 eager->tcp_closemp_used = B_TRUE; 6817 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 6818 CONN_INC_REF(eager->tcp_connp); 6819 mutex_exit(&listener->tcp_eager_lock); 6820 mp = &eager->tcp_closemp; 6821 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill, 6822 eager->tcp_connp, SQ_FILL, SQTAG_TCP_EAGER_BLOWOFF); 6823 return (B_TRUE); 6824 } 6825 6826 /* 6827 * Reset any eager connection hanging off this listener 6828 * and then reclaim it's resources. 6829 */ 6830 static void 6831 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only) 6832 { 6833 tcp_t *eager; 6834 mblk_t *mp; 6835 tcp_stack_t *tcps = listener->tcp_tcps; 6836 6837 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 6838 6839 if (!q0_only) { 6840 /* First cleanup q */ 6841 TCP_STAT(tcps, tcp_eager_blowoff_q); 6842 eager = listener->tcp_eager_next_q; 6843 while (eager != NULL) { 6844 if (!eager->tcp_closemp_used) { 6845 eager->tcp_closemp_used = B_TRUE; 6846 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 6847 CONN_INC_REF(eager->tcp_connp); 6848 mp = &eager->tcp_closemp; 6849 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, 6850 tcp_eager_kill, eager->tcp_connp, 6851 SQ_FILL, SQTAG_TCP_EAGER_CLEANUP); 6852 } 6853 eager = eager->tcp_eager_next_q; 6854 } 6855 } 6856 /* Then cleanup q0 */ 6857 TCP_STAT(tcps, tcp_eager_blowoff_q0); 6858 eager = listener->tcp_eager_next_q0; 6859 while (eager != listener) { 6860 if (!eager->tcp_closemp_used) { 6861 eager->tcp_closemp_used = B_TRUE; 6862 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 6863 CONN_INC_REF(eager->tcp_connp); 6864 mp = &eager->tcp_closemp; 6865 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, 6866 tcp_eager_kill, eager->tcp_connp, SQ_FILL, 6867 SQTAG_TCP_EAGER_CLEANUP_Q0); 6868 } 6869 eager = eager->tcp_eager_next_q0; 6870 } 6871 } 6872 6873 /* 6874 * If we are an eager connection hanging off a listener that hasn't 6875 * formally accepted the connection yet, get off his list and blow off 6876 * any data that we have accumulated. 6877 */ 6878 static void 6879 tcp_eager_unlink(tcp_t *tcp) 6880 { 6881 tcp_t *listener = tcp->tcp_listener; 6882 6883 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 6884 ASSERT(listener != NULL); 6885 if (tcp->tcp_eager_next_q0 != NULL) { 6886 ASSERT(tcp->tcp_eager_prev_q0 != NULL); 6887 6888 /* Remove the eager tcp from q0 */ 6889 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 6890 tcp->tcp_eager_prev_q0; 6891 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 6892 tcp->tcp_eager_next_q0; 6893 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 6894 listener->tcp_conn_req_cnt_q0--; 6895 6896 tcp->tcp_eager_next_q0 = NULL; 6897 tcp->tcp_eager_prev_q0 = NULL; 6898 6899 /* 6900 * Take the eager out, if it is in the list of droppable 6901 * eagers. 6902 */ 6903 MAKE_UNDROPPABLE(tcp); 6904 6905 if (tcp->tcp_syn_rcvd_timeout != 0) { 6906 /* we have timed out before */ 6907 ASSERT(listener->tcp_syn_rcvd_timeout > 0); 6908 listener->tcp_syn_rcvd_timeout--; 6909 } 6910 } else { 6911 tcp_t **tcpp = &listener->tcp_eager_next_q; 6912 tcp_t *prev = NULL; 6913 6914 for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) { 6915 if (tcpp[0] == tcp) { 6916 if (listener->tcp_eager_last_q == tcp) { 6917 /* 6918 * If we are unlinking the last 6919 * element on the list, adjust 6920 * tail pointer. Set tail pointer 6921 * to nil when list is empty. 6922 */ 6923 ASSERT(tcp->tcp_eager_next_q == NULL); 6924 if (listener->tcp_eager_last_q == 6925 listener->tcp_eager_next_q) { 6926 listener->tcp_eager_last_q = 6927 NULL; 6928 } else { 6929 /* 6930 * We won't get here if there 6931 * is only one eager in the 6932 * list. 6933 */ 6934 ASSERT(prev != NULL); 6935 listener->tcp_eager_last_q = 6936 prev; 6937 } 6938 } 6939 tcpp[0] = tcp->tcp_eager_next_q; 6940 tcp->tcp_eager_next_q = NULL; 6941 tcp->tcp_eager_last_q = NULL; 6942 ASSERT(listener->tcp_conn_req_cnt_q > 0); 6943 listener->tcp_conn_req_cnt_q--; 6944 break; 6945 } 6946 prev = tcpp[0]; 6947 } 6948 } 6949 tcp->tcp_listener = NULL; 6950 } 6951 6952 /* Shorthand to generate and send TPI error acks to our client */ 6953 static void 6954 tcp_err_ack(tcp_t *tcp, mblk_t *mp, int t_error, int sys_error) 6955 { 6956 if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL) 6957 putnext(tcp->tcp_rq, mp); 6958 } 6959 6960 /* Shorthand to generate and send TPI error acks to our client */ 6961 static void 6962 tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, 6963 int t_error, int sys_error) 6964 { 6965 struct T_error_ack *teackp; 6966 6967 if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack), 6968 M_PCPROTO, T_ERROR_ACK)) != NULL) { 6969 teackp = (struct T_error_ack *)mp->b_rptr; 6970 teackp->ERROR_prim = primitive; 6971 teackp->TLI_error = t_error; 6972 teackp->UNIX_error = sys_error; 6973 putnext(tcp->tcp_rq, mp); 6974 } 6975 } 6976 6977 /* 6978 * Note: No locks are held when inspecting tcp_g_*epriv_ports 6979 * but instead the code relies on: 6980 * - the fact that the address of the array and its size never changes 6981 * - the atomic assignment of the elements of the array 6982 */ 6983 /* ARGSUSED */ 6984 static int 6985 tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 6986 { 6987 int i; 6988 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 6989 6990 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 6991 if (tcps->tcps_g_epriv_ports[i] != 0) 6992 (void) mi_mpprintf(mp, "%d ", 6993 tcps->tcps_g_epriv_ports[i]); 6994 } 6995 return (0); 6996 } 6997 6998 /* 6999 * Hold a lock while changing tcp_g_epriv_ports to prevent multiple 7000 * threads from changing it at the same time. 7001 */ 7002 /* ARGSUSED */ 7003 static int 7004 tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 7005 cred_t *cr) 7006 { 7007 long new_value; 7008 int i; 7009 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 7010 7011 /* 7012 * Fail the request if the new value does not lie within the 7013 * port number limits. 7014 */ 7015 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 7016 new_value <= 0 || new_value >= 65536) { 7017 return (EINVAL); 7018 } 7019 7020 mutex_enter(&tcps->tcps_epriv_port_lock); 7021 /* Check if the value is already in the list */ 7022 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 7023 if (new_value == tcps->tcps_g_epriv_ports[i]) { 7024 mutex_exit(&tcps->tcps_epriv_port_lock); 7025 return (EEXIST); 7026 } 7027 } 7028 /* Find an empty slot */ 7029 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 7030 if (tcps->tcps_g_epriv_ports[i] == 0) 7031 break; 7032 } 7033 if (i == tcps->tcps_g_num_epriv_ports) { 7034 mutex_exit(&tcps->tcps_epriv_port_lock); 7035 return (EOVERFLOW); 7036 } 7037 /* Set the new value */ 7038 tcps->tcps_g_epriv_ports[i] = (uint16_t)new_value; 7039 mutex_exit(&tcps->tcps_epriv_port_lock); 7040 return (0); 7041 } 7042 7043 /* 7044 * Hold a lock while changing tcp_g_epriv_ports to prevent multiple 7045 * threads from changing it at the same time. 7046 */ 7047 /* ARGSUSED */ 7048 static int 7049 tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 7050 cred_t *cr) 7051 { 7052 long new_value; 7053 int i; 7054 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 7055 7056 /* 7057 * Fail the request if the new value does not lie within the 7058 * port number limits. 7059 */ 7060 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value <= 0 || 7061 new_value >= 65536) { 7062 return (EINVAL); 7063 } 7064 7065 mutex_enter(&tcps->tcps_epriv_port_lock); 7066 /* Check that the value is already in the list */ 7067 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 7068 if (tcps->tcps_g_epriv_ports[i] == new_value) 7069 break; 7070 } 7071 if (i == tcps->tcps_g_num_epriv_ports) { 7072 mutex_exit(&tcps->tcps_epriv_port_lock); 7073 return (ESRCH); 7074 } 7075 /* Clear the value */ 7076 tcps->tcps_g_epriv_ports[i] = 0; 7077 mutex_exit(&tcps->tcps_epriv_port_lock); 7078 return (0); 7079 } 7080 7081 /* Return the TPI/TLI equivalent of our current tcp_state */ 7082 static int 7083 tcp_tpistate(tcp_t *tcp) 7084 { 7085 switch (tcp->tcp_state) { 7086 case TCPS_IDLE: 7087 return (TS_UNBND); 7088 case TCPS_LISTEN: 7089 /* 7090 * Return whether there are outstanding T_CONN_IND waiting 7091 * for the matching T_CONN_RES. Therefore don't count q0. 7092 */ 7093 if (tcp->tcp_conn_req_cnt_q > 0) 7094 return (TS_WRES_CIND); 7095 else 7096 return (TS_IDLE); 7097 case TCPS_BOUND: 7098 return (TS_IDLE); 7099 case TCPS_SYN_SENT: 7100 return (TS_WCON_CREQ); 7101 case TCPS_SYN_RCVD: 7102 /* 7103 * Note: assumption: this has to the active open SYN_RCVD. 7104 * The passive instance is detached in SYN_RCVD stage of 7105 * incoming connection processing so we cannot get request 7106 * for T_info_ack on it. 7107 */ 7108 return (TS_WACK_CRES); 7109 case TCPS_ESTABLISHED: 7110 return (TS_DATA_XFER); 7111 case TCPS_CLOSE_WAIT: 7112 return (TS_WREQ_ORDREL); 7113 case TCPS_FIN_WAIT_1: 7114 return (TS_WIND_ORDREL); 7115 case TCPS_FIN_WAIT_2: 7116 return (TS_WIND_ORDREL); 7117 7118 case TCPS_CLOSING: 7119 case TCPS_LAST_ACK: 7120 case TCPS_TIME_WAIT: 7121 case TCPS_CLOSED: 7122 /* 7123 * Following TS_WACK_DREQ7 is a rendition of "not 7124 * yet TS_IDLE" TPI state. There is no best match to any 7125 * TPI state for TCPS_{CLOSING, LAST_ACK, TIME_WAIT} but we 7126 * choose a value chosen that will map to TLI/XTI level 7127 * state of TSTATECHNG (state is process of changing) which 7128 * captures what this dummy state represents. 7129 */ 7130 return (TS_WACK_DREQ7); 7131 default: 7132 cmn_err(CE_WARN, "tcp_tpistate: strange state (%d) %s", 7133 tcp->tcp_state, tcp_display(tcp, NULL, 7134 DISP_PORT_ONLY)); 7135 return (TS_UNBND); 7136 } 7137 } 7138 7139 static void 7140 tcp_copy_info(struct T_info_ack *tia, tcp_t *tcp) 7141 { 7142 tcp_stack_t *tcps = tcp->tcp_tcps; 7143 7144 if (tcp->tcp_family == AF_INET6) 7145 *tia = tcp_g_t_info_ack_v6; 7146 else 7147 *tia = tcp_g_t_info_ack; 7148 tia->CURRENT_state = tcp_tpistate(tcp); 7149 tia->OPT_size = tcp_max_optsize; 7150 if (tcp->tcp_mss == 0) { 7151 /* Not yet set - tcp_open does not set mss */ 7152 if (tcp->tcp_ipversion == IPV4_VERSION) 7153 tia->TIDU_size = tcps->tcps_mss_def_ipv4; 7154 else 7155 tia->TIDU_size = tcps->tcps_mss_def_ipv6; 7156 } else { 7157 tia->TIDU_size = tcp->tcp_mss; 7158 } 7159 /* TODO: Default ETSDU is 1. Is that correct for tcp? */ 7160 } 7161 7162 static void 7163 tcp_do_capability_ack(tcp_t *tcp, struct T_capability_ack *tcap, 7164 t_uscalar_t cap_bits1) 7165 { 7166 tcap->CAP_bits1 = 0; 7167 7168 if (cap_bits1 & TC1_INFO) { 7169 tcp_copy_info(&tcap->INFO_ack, tcp); 7170 tcap->CAP_bits1 |= TC1_INFO; 7171 } 7172 7173 if (cap_bits1 & TC1_ACCEPTOR_ID) { 7174 tcap->ACCEPTOR_id = tcp->tcp_acceptor_id; 7175 tcap->CAP_bits1 |= TC1_ACCEPTOR_ID; 7176 } 7177 7178 } 7179 7180 /* 7181 * This routine responds to T_CAPABILITY_REQ messages. It is called by 7182 * tcp_wput. Much of the T_CAPABILITY_ACK information is copied from 7183 * tcp_g_t_info_ack. The current state of the stream is copied from 7184 * tcp_state. 7185 */ 7186 static void 7187 tcp_capability_req(tcp_t *tcp, mblk_t *mp) 7188 { 7189 t_uscalar_t cap_bits1; 7190 struct T_capability_ack *tcap; 7191 7192 if (MBLKL(mp) < sizeof (struct T_capability_req)) { 7193 freemsg(mp); 7194 return; 7195 } 7196 7197 cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1; 7198 7199 mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack), 7200 mp->b_datap->db_type, T_CAPABILITY_ACK); 7201 if (mp == NULL) 7202 return; 7203 7204 tcap = (struct T_capability_ack *)mp->b_rptr; 7205 tcp_do_capability_ack(tcp, tcap, cap_bits1); 7206 7207 putnext(tcp->tcp_rq, mp); 7208 } 7209 7210 /* 7211 * This routine responds to T_INFO_REQ messages. It is called by tcp_wput. 7212 * Most of the T_INFO_ACK information is copied from tcp_g_t_info_ack. 7213 * The current state of the stream is copied from tcp_state. 7214 */ 7215 static void 7216 tcp_info_req(tcp_t *tcp, mblk_t *mp) 7217 { 7218 mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO, 7219 T_INFO_ACK); 7220 if (!mp) { 7221 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 7222 return; 7223 } 7224 tcp_copy_info((struct T_info_ack *)mp->b_rptr, tcp); 7225 putnext(tcp->tcp_rq, mp); 7226 } 7227 7228 /* Respond to the TPI addr request */ 7229 static void 7230 tcp_addr_req(tcp_t *tcp, mblk_t *mp) 7231 { 7232 sin_t *sin; 7233 mblk_t *ackmp; 7234 struct T_addr_ack *taa; 7235 7236 /* Make it large enough for worst case */ 7237 ackmp = reallocb(mp, sizeof (struct T_addr_ack) + 7238 2 * sizeof (sin6_t), 1); 7239 if (ackmp == NULL) { 7240 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 7241 return; 7242 } 7243 7244 if (tcp->tcp_ipversion == IPV6_VERSION) { 7245 tcp_addr_req_ipv6(tcp, ackmp); 7246 return; 7247 } 7248 taa = (struct T_addr_ack *)ackmp->b_rptr; 7249 7250 bzero(taa, sizeof (struct T_addr_ack)); 7251 ackmp->b_wptr = (uchar_t *)&taa[1]; 7252 7253 taa->PRIM_type = T_ADDR_ACK; 7254 ackmp->b_datap->db_type = M_PCPROTO; 7255 7256 /* 7257 * Note: Following code assumes 32 bit alignment of basic 7258 * data structures like sin_t and struct T_addr_ack. 7259 */ 7260 if (tcp->tcp_state >= TCPS_BOUND) { 7261 /* 7262 * Fill in local address 7263 */ 7264 taa->LOCADDR_length = sizeof (sin_t); 7265 taa->LOCADDR_offset = sizeof (*taa); 7266 7267 sin = (sin_t *)&taa[1]; 7268 7269 /* Fill zeroes and then intialize non-zero fields */ 7270 *sin = sin_null; 7271 7272 sin->sin_family = AF_INET; 7273 7274 sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src; 7275 sin->sin_port = *(uint16_t *)tcp->tcp_tcph->th_lport; 7276 7277 ackmp->b_wptr = (uchar_t *)&sin[1]; 7278 7279 if (tcp->tcp_state >= TCPS_SYN_RCVD) { 7280 /* 7281 * Fill in Remote address 7282 */ 7283 taa->REMADDR_length = sizeof (sin_t); 7284 taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset + 7285 taa->LOCADDR_length); 7286 7287 sin = (sin_t *)(ackmp->b_rptr + taa->REMADDR_offset); 7288 *sin = sin_null; 7289 sin->sin_family = AF_INET; 7290 sin->sin_addr.s_addr = tcp->tcp_remote; 7291 sin->sin_port = tcp->tcp_fport; 7292 7293 ackmp->b_wptr = (uchar_t *)&sin[1]; 7294 } 7295 } 7296 putnext(tcp->tcp_rq, ackmp); 7297 } 7298 7299 /* Assumes that tcp_addr_req gets enough space and alignment */ 7300 static void 7301 tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *ackmp) 7302 { 7303 sin6_t *sin6; 7304 struct T_addr_ack *taa; 7305 7306 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 7307 ASSERT(OK_32PTR(ackmp->b_rptr)); 7308 ASSERT(ackmp->b_wptr - ackmp->b_rptr >= sizeof (struct T_addr_ack) + 7309 2 * sizeof (sin6_t)); 7310 7311 taa = (struct T_addr_ack *)ackmp->b_rptr; 7312 7313 bzero(taa, sizeof (struct T_addr_ack)); 7314 ackmp->b_wptr = (uchar_t *)&taa[1]; 7315 7316 taa->PRIM_type = T_ADDR_ACK; 7317 ackmp->b_datap->db_type = M_PCPROTO; 7318 7319 /* 7320 * Note: Following code assumes 32 bit alignment of basic 7321 * data structures like sin6_t and struct T_addr_ack. 7322 */ 7323 if (tcp->tcp_state >= TCPS_BOUND) { 7324 /* 7325 * Fill in local address 7326 */ 7327 taa->LOCADDR_length = sizeof (sin6_t); 7328 taa->LOCADDR_offset = sizeof (*taa); 7329 7330 sin6 = (sin6_t *)&taa[1]; 7331 *sin6 = sin6_null; 7332 7333 sin6->sin6_family = AF_INET6; 7334 sin6->sin6_addr = tcp->tcp_ip6h->ip6_src; 7335 sin6->sin6_port = tcp->tcp_lport; 7336 7337 ackmp->b_wptr = (uchar_t *)&sin6[1]; 7338 7339 if (tcp->tcp_state >= TCPS_SYN_RCVD) { 7340 /* 7341 * Fill in Remote address 7342 */ 7343 taa->REMADDR_length = sizeof (sin6_t); 7344 taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset + 7345 taa->LOCADDR_length); 7346 7347 sin6 = (sin6_t *)(ackmp->b_rptr + taa->REMADDR_offset); 7348 *sin6 = sin6_null; 7349 sin6->sin6_family = AF_INET6; 7350 sin6->sin6_flowinfo = 7351 tcp->tcp_ip6h->ip6_vcf & 7352 ~IPV6_VERS_AND_FLOW_MASK; 7353 sin6->sin6_addr = tcp->tcp_remote_v6; 7354 sin6->sin6_port = tcp->tcp_fport; 7355 7356 ackmp->b_wptr = (uchar_t *)&sin6[1]; 7357 } 7358 } 7359 putnext(tcp->tcp_rq, ackmp); 7360 } 7361 7362 /* 7363 * Handle reinitialization of a tcp structure. 7364 * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE. 7365 */ 7366 static void 7367 tcp_reinit(tcp_t *tcp) 7368 { 7369 mblk_t *mp; 7370 int err; 7371 tcp_stack_t *tcps = tcp->tcp_tcps; 7372 7373 TCP_STAT(tcps, tcp_reinit_calls); 7374 7375 /* tcp_reinit should never be called for detached tcp_t's */ 7376 ASSERT(tcp->tcp_listener == NULL); 7377 ASSERT((tcp->tcp_family == AF_INET && 7378 tcp->tcp_ipversion == IPV4_VERSION) || 7379 (tcp->tcp_family == AF_INET6 && 7380 (tcp->tcp_ipversion == IPV4_VERSION || 7381 tcp->tcp_ipversion == IPV6_VERSION))); 7382 7383 /* Cancel outstanding timers */ 7384 tcp_timers_stop(tcp); 7385 7386 /* 7387 * Reset everything in the state vector, after updating global 7388 * MIB data from instance counters. 7389 */ 7390 UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs); 7391 tcp->tcp_ibsegs = 0; 7392 UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs); 7393 tcp->tcp_obsegs = 0; 7394 7395 tcp_close_mpp(&tcp->tcp_xmit_head); 7396 if (tcp->tcp_snd_zcopy_aware) 7397 tcp_zcopy_notify(tcp); 7398 tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL; 7399 tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0; 7400 mutex_enter(&tcp->tcp_non_sq_lock); 7401 if (tcp->tcp_flow_stopped && 7402 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 7403 tcp_clrqfull(tcp); 7404 } 7405 mutex_exit(&tcp->tcp_non_sq_lock); 7406 tcp_close_mpp(&tcp->tcp_reass_head); 7407 tcp->tcp_reass_tail = NULL; 7408 if (tcp->tcp_rcv_list != NULL) { 7409 /* Free b_next chain */ 7410 tcp_close_mpp(&tcp->tcp_rcv_list); 7411 tcp->tcp_rcv_last_head = NULL; 7412 tcp->tcp_rcv_last_tail = NULL; 7413 tcp->tcp_rcv_cnt = 0; 7414 } 7415 tcp->tcp_rcv_last_tail = NULL; 7416 7417 if ((mp = tcp->tcp_urp_mp) != NULL) { 7418 freemsg(mp); 7419 tcp->tcp_urp_mp = NULL; 7420 } 7421 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 7422 freemsg(mp); 7423 tcp->tcp_urp_mark_mp = NULL; 7424 } 7425 if (tcp->tcp_fused_sigurg_mp != NULL) { 7426 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 7427 freeb(tcp->tcp_fused_sigurg_mp); 7428 tcp->tcp_fused_sigurg_mp = NULL; 7429 } 7430 if (tcp->tcp_ordrel_mp != NULL) { 7431 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 7432 freeb(tcp->tcp_ordrel_mp); 7433 tcp->tcp_ordrel_mp = NULL; 7434 } 7435 7436 /* 7437 * Following is a union with two members which are 7438 * identical types and size so the following cleanup 7439 * is enough. 7440 */ 7441 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 7442 7443 CL_INET_DISCONNECT(tcp->tcp_connp, tcp); 7444 7445 /* 7446 * The connection can't be on the tcp_time_wait_head list 7447 * since it is not detached. 7448 */ 7449 ASSERT(tcp->tcp_time_wait_next == NULL); 7450 ASSERT(tcp->tcp_time_wait_prev == NULL); 7451 ASSERT(tcp->tcp_time_wait_expire == 0); 7452 7453 if (tcp->tcp_kssl_pending) { 7454 tcp->tcp_kssl_pending = B_FALSE; 7455 7456 /* Don't reset if the initialized by bind. */ 7457 if (tcp->tcp_kssl_ent != NULL) { 7458 kssl_release_ent(tcp->tcp_kssl_ent, NULL, 7459 KSSL_NO_PROXY); 7460 } 7461 } 7462 if (tcp->tcp_kssl_ctx != NULL) { 7463 kssl_release_ctx(tcp->tcp_kssl_ctx); 7464 tcp->tcp_kssl_ctx = NULL; 7465 } 7466 7467 /* 7468 * Reset/preserve other values 7469 */ 7470 tcp_reinit_values(tcp); 7471 ipcl_hash_remove(tcp->tcp_connp); 7472 conn_delete_ire(tcp->tcp_connp, NULL); 7473 tcp_ipsec_cleanup(tcp); 7474 7475 if (tcp->tcp_conn_req_max != 0) { 7476 /* 7477 * This is the case when a TLI program uses the same 7478 * transport end point to accept a connection. This 7479 * makes the TCP both a listener and acceptor. When 7480 * this connection is closed, we need to set the state 7481 * back to TCPS_LISTEN. Make sure that the eager list 7482 * is reinitialized. 7483 * 7484 * Note that this stream is still bound to the four 7485 * tuples of the previous connection in IP. If a new 7486 * SYN with different foreign address comes in, IP will 7487 * not find it and will send it to the global queue. In 7488 * the global queue, TCP will do a tcp_lookup_listener() 7489 * to find this stream. This works because this stream 7490 * is only removed from connected hash. 7491 * 7492 */ 7493 tcp->tcp_state = TCPS_LISTEN; 7494 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 7495 tcp->tcp_eager_next_drop_q0 = tcp; 7496 tcp->tcp_eager_prev_drop_q0 = tcp; 7497 tcp->tcp_connp->conn_recv = tcp_conn_request; 7498 if (tcp->tcp_family == AF_INET6) { 7499 ASSERT(tcp->tcp_connp->conn_af_isv6); 7500 (void) ipcl_bind_insert_v6(tcp->tcp_connp, IPPROTO_TCP, 7501 &tcp->tcp_ip6h->ip6_src, tcp->tcp_lport); 7502 } else { 7503 ASSERT(!tcp->tcp_connp->conn_af_isv6); 7504 (void) ipcl_bind_insert(tcp->tcp_connp, IPPROTO_TCP, 7505 tcp->tcp_ipha->ipha_src, tcp->tcp_lport); 7506 } 7507 } else { 7508 tcp->tcp_state = TCPS_BOUND; 7509 } 7510 7511 /* 7512 * Initialize to default values 7513 * Can't fail since enough header template space already allocated 7514 * at open(). 7515 */ 7516 err = tcp_init_values(tcp); 7517 ASSERT(err == 0); 7518 /* Restore state in tcp_tcph */ 7519 bcopy(&tcp->tcp_lport, tcp->tcp_tcph->th_lport, TCP_PORT_LEN); 7520 if (tcp->tcp_ipversion == IPV4_VERSION) 7521 tcp->tcp_ipha->ipha_src = tcp->tcp_bound_source; 7522 else 7523 tcp->tcp_ip6h->ip6_src = tcp->tcp_bound_source_v6; 7524 /* 7525 * Copy of the src addr. in tcp_t is needed in tcp_t 7526 * since the lookup funcs can only lookup on tcp_t 7527 */ 7528 tcp->tcp_ip_src_v6 = tcp->tcp_bound_source_v6; 7529 7530 ASSERT(tcp->tcp_ptpbhn != NULL); 7531 if (!IPCL_IS_NONSTR(tcp->tcp_connp)) 7532 tcp->tcp_rq->q_hiwat = tcps->tcps_recv_hiwat; 7533 tcp->tcp_recv_hiwater = tcps->tcps_recv_hiwat; 7534 tcp->tcp_recv_lowater = tcp_rinfo.mi_lowat; 7535 tcp->tcp_rwnd = tcps->tcps_recv_hiwat; 7536 tcp->tcp_mss = tcp->tcp_ipversion != IPV4_VERSION ? 7537 tcps->tcps_mss_def_ipv6 : tcps->tcps_mss_def_ipv4; 7538 } 7539 7540 /* 7541 * Force values to zero that need be zero. 7542 * Do not touch values asociated with the BOUND or LISTEN state 7543 * since the connection will end up in that state after the reinit. 7544 * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t 7545 * structure! 7546 */ 7547 static void 7548 tcp_reinit_values(tcp) 7549 tcp_t *tcp; 7550 { 7551 tcp_stack_t *tcps = tcp->tcp_tcps; 7552 7553 #ifndef lint 7554 #define DONTCARE(x) 7555 #define PRESERVE(x) 7556 #else 7557 #define DONTCARE(x) ((x) = (x)) 7558 #define PRESERVE(x) ((x) = (x)) 7559 #endif /* lint */ 7560 7561 PRESERVE(tcp->tcp_bind_hash_port); 7562 PRESERVE(tcp->tcp_bind_hash); 7563 PRESERVE(tcp->tcp_ptpbhn); 7564 PRESERVE(tcp->tcp_acceptor_hash); 7565 PRESERVE(tcp->tcp_ptpahn); 7566 7567 /* Should be ASSERT NULL on these with new code! */ 7568 ASSERT(tcp->tcp_time_wait_next == NULL); 7569 ASSERT(tcp->tcp_time_wait_prev == NULL); 7570 ASSERT(tcp->tcp_time_wait_expire == 0); 7571 PRESERVE(tcp->tcp_state); 7572 PRESERVE(tcp->tcp_rq); 7573 PRESERVE(tcp->tcp_wq); 7574 7575 ASSERT(tcp->tcp_xmit_head == NULL); 7576 ASSERT(tcp->tcp_xmit_last == NULL); 7577 ASSERT(tcp->tcp_unsent == 0); 7578 ASSERT(tcp->tcp_xmit_tail == NULL); 7579 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 7580 7581 tcp->tcp_snxt = 0; /* Displayed in mib */ 7582 tcp->tcp_suna = 0; /* Displayed in mib */ 7583 tcp->tcp_swnd = 0; 7584 DONTCARE(tcp->tcp_cwnd); /* Init in tcp_mss_set */ 7585 7586 ASSERT(tcp->tcp_ibsegs == 0); 7587 ASSERT(tcp->tcp_obsegs == 0); 7588 7589 if (tcp->tcp_iphc != NULL) { 7590 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 7591 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 7592 } 7593 7594 DONTCARE(tcp->tcp_naglim); /* Init in tcp_init_values */ 7595 DONTCARE(tcp->tcp_hdr_len); /* Init in tcp_init_values */ 7596 DONTCARE(tcp->tcp_ipha); 7597 DONTCARE(tcp->tcp_ip6h); 7598 DONTCARE(tcp->tcp_ip_hdr_len); 7599 DONTCARE(tcp->tcp_tcph); 7600 DONTCARE(tcp->tcp_tcp_hdr_len); /* Init in tcp_init_values */ 7601 tcp->tcp_valid_bits = 0; 7602 7603 DONTCARE(tcp->tcp_xmit_hiwater); /* Init in tcp_init_values */ 7604 DONTCARE(tcp->tcp_timer_backoff); /* Init in tcp_init_values */ 7605 DONTCARE(tcp->tcp_last_recv_time); /* Init in tcp_init_values */ 7606 tcp->tcp_last_rcv_lbolt = 0; 7607 7608 tcp->tcp_init_cwnd = 0; 7609 7610 tcp->tcp_urp_last_valid = 0; 7611 tcp->tcp_hard_binding = 0; 7612 tcp->tcp_hard_bound = 0; 7613 PRESERVE(tcp->tcp_cred); 7614 PRESERVE(tcp->tcp_cpid); 7615 PRESERVE(tcp->tcp_open_time); 7616 PRESERVE(tcp->tcp_exclbind); 7617 7618 tcp->tcp_fin_acked = 0; 7619 tcp->tcp_fin_rcvd = 0; 7620 tcp->tcp_fin_sent = 0; 7621 tcp->tcp_ordrel_done = 0; 7622 7623 tcp->tcp_debug = 0; 7624 tcp->tcp_dontroute = 0; 7625 tcp->tcp_broadcast = 0; 7626 7627 tcp->tcp_useloopback = 0; 7628 tcp->tcp_reuseaddr = 0; 7629 tcp->tcp_oobinline = 0; 7630 tcp->tcp_dgram_errind = 0; 7631 7632 tcp->tcp_detached = 0; 7633 tcp->tcp_bind_pending = 0; 7634 tcp->tcp_unbind_pending = 0; 7635 7636 tcp->tcp_snd_ws_ok = B_FALSE; 7637 tcp->tcp_snd_ts_ok = B_FALSE; 7638 tcp->tcp_linger = 0; 7639 tcp->tcp_ka_enabled = 0; 7640 tcp->tcp_zero_win_probe = 0; 7641 7642 tcp->tcp_loopback = 0; 7643 tcp->tcp_refuse = 0; 7644 tcp->tcp_localnet = 0; 7645 tcp->tcp_syn_defense = 0; 7646 tcp->tcp_set_timer = 0; 7647 7648 tcp->tcp_active_open = 0; 7649 tcp->tcp_rexmit = B_FALSE; 7650 tcp->tcp_xmit_zc_clean = B_FALSE; 7651 7652 tcp->tcp_snd_sack_ok = B_FALSE; 7653 PRESERVE(tcp->tcp_recvdstaddr); 7654 tcp->tcp_hwcksum = B_FALSE; 7655 7656 tcp->tcp_ire_ill_check_done = B_FALSE; 7657 DONTCARE(tcp->tcp_maxpsz); /* Init in tcp_init_values */ 7658 7659 tcp->tcp_mdt = B_FALSE; 7660 tcp->tcp_mdt_hdr_head = 0; 7661 tcp->tcp_mdt_hdr_tail = 0; 7662 7663 tcp->tcp_conn_def_q0 = 0; 7664 tcp->tcp_ip_forward_progress = B_FALSE; 7665 tcp->tcp_anon_priv_bind = 0; 7666 tcp->tcp_ecn_ok = B_FALSE; 7667 7668 tcp->tcp_cwr = B_FALSE; 7669 tcp->tcp_ecn_echo_on = B_FALSE; 7670 7671 if (tcp->tcp_sack_info != NULL) { 7672 if (tcp->tcp_notsack_list != NULL) { 7673 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 7674 } 7675 kmem_cache_free(tcp_sack_info_cache, tcp->tcp_sack_info); 7676 tcp->tcp_sack_info = NULL; 7677 } 7678 7679 tcp->tcp_rcv_ws = 0; 7680 tcp->tcp_snd_ws = 0; 7681 tcp->tcp_ts_recent = 0; 7682 tcp->tcp_rnxt = 0; /* Displayed in mib */ 7683 DONTCARE(tcp->tcp_rwnd); /* Set in tcp_reinit() */ 7684 tcp->tcp_if_mtu = 0; 7685 7686 ASSERT(tcp->tcp_reass_head == NULL); 7687 ASSERT(tcp->tcp_reass_tail == NULL); 7688 7689 tcp->tcp_cwnd_cnt = 0; 7690 7691 ASSERT(tcp->tcp_rcv_list == NULL); 7692 ASSERT(tcp->tcp_rcv_last_head == NULL); 7693 ASSERT(tcp->tcp_rcv_last_tail == NULL); 7694 ASSERT(tcp->tcp_rcv_cnt == 0); 7695 7696 DONTCARE(tcp->tcp_cwnd_ssthresh); /* Init in tcp_adapt_ire */ 7697 DONTCARE(tcp->tcp_cwnd_max); /* Init in tcp_init_values */ 7698 tcp->tcp_csuna = 0; 7699 7700 tcp->tcp_rto = 0; /* Displayed in MIB */ 7701 DONTCARE(tcp->tcp_rtt_sa); /* Init in tcp_init_values */ 7702 DONTCARE(tcp->tcp_rtt_sd); /* Init in tcp_init_values */ 7703 tcp->tcp_rtt_update = 0; 7704 7705 DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 7706 DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 7707 7708 tcp->tcp_rack = 0; /* Displayed in mib */ 7709 tcp->tcp_rack_cnt = 0; 7710 tcp->tcp_rack_cur_max = 0; 7711 tcp->tcp_rack_abs_max = 0; 7712 7713 tcp->tcp_max_swnd = 0; 7714 7715 ASSERT(tcp->tcp_listener == NULL); 7716 7717 DONTCARE(tcp->tcp_xmit_lowater); /* Init in tcp_init_values */ 7718 7719 DONTCARE(tcp->tcp_irs); /* tcp_valid_bits cleared */ 7720 DONTCARE(tcp->tcp_iss); /* tcp_valid_bits cleared */ 7721 DONTCARE(tcp->tcp_fss); /* tcp_valid_bits cleared */ 7722 DONTCARE(tcp->tcp_urg); /* tcp_valid_bits cleared */ 7723 7724 ASSERT(tcp->tcp_conn_req_cnt_q == 0); 7725 ASSERT(tcp->tcp_conn_req_cnt_q0 == 0); 7726 PRESERVE(tcp->tcp_conn_req_max); 7727 PRESERVE(tcp->tcp_conn_req_seqnum); 7728 7729 DONTCARE(tcp->tcp_ip_hdr_len); /* Init in tcp_init_values */ 7730 DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */ 7731 DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */ 7732 DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */ 7733 DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */ 7734 7735 tcp->tcp_lingertime = 0; 7736 7737 DONTCARE(tcp->tcp_urp_last); /* tcp_urp_last_valid is cleared */ 7738 ASSERT(tcp->tcp_urp_mp == NULL); 7739 ASSERT(tcp->tcp_urp_mark_mp == NULL); 7740 ASSERT(tcp->tcp_fused_sigurg_mp == NULL); 7741 7742 ASSERT(tcp->tcp_eager_next_q == NULL); 7743 ASSERT(tcp->tcp_eager_last_q == NULL); 7744 ASSERT((tcp->tcp_eager_next_q0 == NULL && 7745 tcp->tcp_eager_prev_q0 == NULL) || 7746 tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0); 7747 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 7748 7749 ASSERT((tcp->tcp_eager_next_drop_q0 == NULL && 7750 tcp->tcp_eager_prev_drop_q0 == NULL) || 7751 tcp->tcp_eager_next_drop_q0 == tcp->tcp_eager_prev_drop_q0); 7752 7753 tcp->tcp_client_errno = 0; 7754 7755 DONTCARE(tcp->tcp_sum); /* Init in tcp_init_values */ 7756 7757 tcp->tcp_remote_v6 = ipv6_all_zeros; /* Displayed in MIB */ 7758 7759 PRESERVE(tcp->tcp_bound_source_v6); 7760 tcp->tcp_last_sent_len = 0; 7761 tcp->tcp_dupack_cnt = 0; 7762 7763 tcp->tcp_fport = 0; /* Displayed in MIB */ 7764 PRESERVE(tcp->tcp_lport); 7765 7766 PRESERVE(tcp->tcp_acceptor_lockp); 7767 7768 ASSERT(tcp->tcp_ordrel_mp == NULL); 7769 PRESERVE(tcp->tcp_acceptor_id); 7770 DONTCARE(tcp->tcp_ipsec_overhead); 7771 7772 PRESERVE(tcp->tcp_family); 7773 if (tcp->tcp_family == AF_INET6) { 7774 tcp->tcp_ipversion = IPV6_VERSION; 7775 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 7776 } else { 7777 tcp->tcp_ipversion = IPV4_VERSION; 7778 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 7779 } 7780 7781 tcp->tcp_bound_if = 0; 7782 tcp->tcp_ipv6_recvancillary = 0; 7783 tcp->tcp_recvifindex = 0; 7784 tcp->tcp_recvhops = 0; 7785 tcp->tcp_closed = 0; 7786 tcp->tcp_cleandeathtag = 0; 7787 if (tcp->tcp_hopopts != NULL) { 7788 mi_free(tcp->tcp_hopopts); 7789 tcp->tcp_hopopts = NULL; 7790 tcp->tcp_hopoptslen = 0; 7791 } 7792 ASSERT(tcp->tcp_hopoptslen == 0); 7793 if (tcp->tcp_dstopts != NULL) { 7794 mi_free(tcp->tcp_dstopts); 7795 tcp->tcp_dstopts = NULL; 7796 tcp->tcp_dstoptslen = 0; 7797 } 7798 ASSERT(tcp->tcp_dstoptslen == 0); 7799 if (tcp->tcp_rtdstopts != NULL) { 7800 mi_free(tcp->tcp_rtdstopts); 7801 tcp->tcp_rtdstopts = NULL; 7802 tcp->tcp_rtdstoptslen = 0; 7803 } 7804 ASSERT(tcp->tcp_rtdstoptslen == 0); 7805 if (tcp->tcp_rthdr != NULL) { 7806 mi_free(tcp->tcp_rthdr); 7807 tcp->tcp_rthdr = NULL; 7808 tcp->tcp_rthdrlen = 0; 7809 } 7810 ASSERT(tcp->tcp_rthdrlen == 0); 7811 PRESERVE(tcp->tcp_drop_opt_ack_cnt); 7812 7813 /* Reset fusion-related fields */ 7814 tcp->tcp_fused = B_FALSE; 7815 tcp->tcp_unfusable = B_FALSE; 7816 tcp->tcp_fused_sigurg = B_FALSE; 7817 tcp->tcp_direct_sockfs = B_FALSE; 7818 tcp->tcp_fuse_syncstr_stopped = B_FALSE; 7819 tcp->tcp_fuse_syncstr_plugged = B_FALSE; 7820 tcp->tcp_loopback_peer = NULL; 7821 tcp->tcp_fuse_rcv_hiwater = 0; 7822 tcp->tcp_fuse_rcv_unread_hiwater = 0; 7823 tcp->tcp_fuse_rcv_unread_cnt = 0; 7824 7825 tcp->tcp_lso = B_FALSE; 7826 7827 tcp->tcp_in_ack_unsent = 0; 7828 tcp->tcp_cork = B_FALSE; 7829 tcp->tcp_tconnind_started = B_FALSE; 7830 7831 PRESERVE(tcp->tcp_squeue_bytes); 7832 7833 ASSERT(tcp->tcp_kssl_ctx == NULL); 7834 ASSERT(!tcp->tcp_kssl_pending); 7835 PRESERVE(tcp->tcp_kssl_ent); 7836 7837 /* Sodirect */ 7838 tcp->tcp_sodirect = NULL; 7839 7840 tcp->tcp_closemp_used = B_FALSE; 7841 7842 PRESERVE(tcp->tcp_rsrv_mp); 7843 PRESERVE(tcp->tcp_rsrv_mp_lock); 7844 7845 #ifdef DEBUG 7846 DONTCARE(tcp->tcmp_stk[0]); 7847 #endif 7848 7849 PRESERVE(tcp->tcp_connid); 7850 7851 7852 #undef DONTCARE 7853 #undef PRESERVE 7854 } 7855 7856 /* 7857 * Allocate necessary resources and initialize state vector. 7858 * Guaranteed not to fail so that when an error is returned, 7859 * the caller doesn't need to do any additional cleanup. 7860 */ 7861 int 7862 tcp_init(tcp_t *tcp, queue_t *q) 7863 { 7864 int err; 7865 7866 tcp->tcp_rq = q; 7867 tcp->tcp_wq = WR(q); 7868 tcp->tcp_state = TCPS_IDLE; 7869 if ((err = tcp_init_values(tcp)) != 0) 7870 tcp_timers_stop(tcp); 7871 return (err); 7872 } 7873 7874 static int 7875 tcp_init_values(tcp_t *tcp) 7876 { 7877 int err; 7878 tcp_stack_t *tcps = tcp->tcp_tcps; 7879 7880 ASSERT((tcp->tcp_family == AF_INET && 7881 tcp->tcp_ipversion == IPV4_VERSION) || 7882 (tcp->tcp_family == AF_INET6 && 7883 (tcp->tcp_ipversion == IPV4_VERSION || 7884 tcp->tcp_ipversion == IPV6_VERSION))); 7885 7886 /* 7887 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO 7888 * will be close to tcp_rexmit_interval_initial. By doing this, we 7889 * allow the algorithm to adjust slowly to large fluctuations of RTT 7890 * during first few transmissions of a connection as seen in slow 7891 * links. 7892 */ 7893 tcp->tcp_rtt_sa = tcps->tcps_rexmit_interval_initial << 2; 7894 tcp->tcp_rtt_sd = tcps->tcps_rexmit_interval_initial >> 1; 7895 tcp->tcp_rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 7896 tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) + 7897 tcps->tcps_conn_grace_period; 7898 if (tcp->tcp_rto < tcps->tcps_rexmit_interval_min) 7899 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 7900 tcp->tcp_timer_backoff = 0; 7901 tcp->tcp_ms_we_have_waited = 0; 7902 tcp->tcp_last_recv_time = lbolt; 7903 tcp->tcp_cwnd_max = tcps->tcps_cwnd_max_; 7904 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 7905 tcp->tcp_snd_burst = TCP_CWND_INFINITE; 7906 7907 tcp->tcp_maxpsz = tcps->tcps_maxpsz_multiplier; 7908 7909 tcp->tcp_first_timer_threshold = tcps->tcps_ip_notify_interval; 7910 tcp->tcp_first_ctimer_threshold = tcps->tcps_ip_notify_cinterval; 7911 tcp->tcp_second_timer_threshold = tcps->tcps_ip_abort_interval; 7912 /* 7913 * Fix it to tcp_ip_abort_linterval later if it turns out to be a 7914 * passive open. 7915 */ 7916 tcp->tcp_second_ctimer_threshold = tcps->tcps_ip_abort_cinterval; 7917 7918 tcp->tcp_naglim = tcps->tcps_naglim_def; 7919 7920 /* NOTE: ISS is now set in tcp_adapt_ire(). */ 7921 7922 tcp->tcp_mdt_hdr_head = 0; 7923 tcp->tcp_mdt_hdr_tail = 0; 7924 7925 /* Reset fusion-related fields */ 7926 tcp->tcp_fused = B_FALSE; 7927 tcp->tcp_unfusable = B_FALSE; 7928 tcp->tcp_fused_sigurg = B_FALSE; 7929 tcp->tcp_direct_sockfs = B_FALSE; 7930 tcp->tcp_fuse_syncstr_stopped = B_FALSE; 7931 tcp->tcp_fuse_syncstr_plugged = B_FALSE; 7932 tcp->tcp_loopback_peer = NULL; 7933 tcp->tcp_fuse_rcv_hiwater = 0; 7934 tcp->tcp_fuse_rcv_unread_hiwater = 0; 7935 tcp->tcp_fuse_rcv_unread_cnt = 0; 7936 7937 /* Sodirect */ 7938 tcp->tcp_sodirect = NULL; 7939 7940 /* Initialize the header template */ 7941 if (tcp->tcp_ipversion == IPV4_VERSION) { 7942 err = tcp_header_init_ipv4(tcp); 7943 } else { 7944 err = tcp_header_init_ipv6(tcp); 7945 } 7946 if (err) 7947 return (err); 7948 7949 /* 7950 * Init the window scale to the max so tcp_rwnd_set() won't pare 7951 * down tcp_rwnd. tcp_adapt_ire() will set the right value later. 7952 */ 7953 tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT; 7954 tcp->tcp_xmit_lowater = tcps->tcps_xmit_lowat; 7955 tcp->tcp_xmit_hiwater = tcps->tcps_xmit_hiwat; 7956 7957 tcp->tcp_cork = B_FALSE; 7958 /* 7959 * Init the tcp_debug option. This value determines whether TCP 7960 * calls strlog() to print out debug messages. Doing this 7961 * initialization here means that this value is not inherited thru 7962 * tcp_reinit(). 7963 */ 7964 tcp->tcp_debug = tcps->tcps_dbg; 7965 7966 tcp->tcp_ka_interval = tcps->tcps_keepalive_interval; 7967 tcp->tcp_ka_abort_thres = tcps->tcps_keepalive_abort_interval; 7968 7969 return (0); 7970 } 7971 7972 /* 7973 * Initialize the IPv4 header. Loses any record of any IP options. 7974 */ 7975 static int 7976 tcp_header_init_ipv4(tcp_t *tcp) 7977 { 7978 tcph_t *tcph; 7979 uint32_t sum; 7980 conn_t *connp; 7981 tcp_stack_t *tcps = tcp->tcp_tcps; 7982 7983 /* 7984 * This is a simple initialization. If there's 7985 * already a template, it should never be too small, 7986 * so reuse it. Otherwise, allocate space for the new one. 7987 */ 7988 if (tcp->tcp_iphc == NULL) { 7989 ASSERT(tcp->tcp_iphc_len == 0); 7990 tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH; 7991 tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP); 7992 if (tcp->tcp_iphc == NULL) { 7993 tcp->tcp_iphc_len = 0; 7994 return (ENOMEM); 7995 } 7996 } 7997 7998 /* options are gone; may need a new label */ 7999 connp = tcp->tcp_connp; 8000 connp->conn_mlp_type = mlptSingle; 8001 connp->conn_ulp_labeled = !is_system_labeled(); 8002 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 8003 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 8004 tcp->tcp_ip6h = NULL; 8005 tcp->tcp_ipversion = IPV4_VERSION; 8006 tcp->tcp_hdr_len = sizeof (ipha_t) + sizeof (tcph_t); 8007 tcp->tcp_tcp_hdr_len = sizeof (tcph_t); 8008 tcp->tcp_ip_hdr_len = sizeof (ipha_t); 8009 tcp->tcp_ipha->ipha_length = htons(sizeof (ipha_t) + sizeof (tcph_t)); 8010 tcp->tcp_ipha->ipha_version_and_hdr_length 8011 = (IP_VERSION << 4) | IP_SIMPLE_HDR_LENGTH_IN_WORDS; 8012 tcp->tcp_ipha->ipha_ident = 0; 8013 8014 tcp->tcp_ttl = (uchar_t)tcps->tcps_ipv4_ttl; 8015 tcp->tcp_tos = 0; 8016 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0; 8017 tcp->tcp_ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl; 8018 tcp->tcp_ipha->ipha_protocol = IPPROTO_TCP; 8019 8020 tcph = (tcph_t *)(tcp->tcp_iphc + sizeof (ipha_t)); 8021 tcp->tcp_tcph = tcph; 8022 tcph->th_offset_and_rsrvd[0] = (5 << 4); 8023 /* 8024 * IP wants our header length in the checksum field to 8025 * allow it to perform a single pseudo-header+checksum 8026 * calculation on behalf of TCP. 8027 * Include the adjustment for a source route once IP_OPTIONS is set. 8028 */ 8029 sum = sizeof (tcph_t) + tcp->tcp_sum; 8030 sum = (sum >> 16) + (sum & 0xFFFF); 8031 U16_TO_ABE16(sum, tcph->th_sum); 8032 return (0); 8033 } 8034 8035 /* 8036 * Initialize the IPv6 header. Loses any record of any IPv6 extension headers. 8037 */ 8038 static int 8039 tcp_header_init_ipv6(tcp_t *tcp) 8040 { 8041 tcph_t *tcph; 8042 uint32_t sum; 8043 conn_t *connp; 8044 tcp_stack_t *tcps = tcp->tcp_tcps; 8045 8046 /* 8047 * This is a simple initialization. If there's 8048 * already a template, it should never be too small, 8049 * so reuse it. Otherwise, allocate space for the new one. 8050 * Ensure that there is enough space to "downgrade" the tcp_t 8051 * to an IPv4 tcp_t. This requires having space for a full load 8052 * of IPv4 options, as well as a full load of TCP options 8053 * (TCP_MAX_COMBINED_HEADER_LENGTH, 120 bytes); this is more space 8054 * than a v6 header and a TCP header with a full load of TCP options 8055 * (IPV6_HDR_LEN is 40 bytes; TCP_MAX_HDR_LENGTH is 60 bytes). 8056 * We want to avoid reallocation in the "downgraded" case when 8057 * processing outbound IPv4 options. 8058 */ 8059 if (tcp->tcp_iphc == NULL) { 8060 ASSERT(tcp->tcp_iphc_len == 0); 8061 tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH; 8062 tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP); 8063 if (tcp->tcp_iphc == NULL) { 8064 tcp->tcp_iphc_len = 0; 8065 return (ENOMEM); 8066 } 8067 } 8068 8069 /* options are gone; may need a new label */ 8070 connp = tcp->tcp_connp; 8071 connp->conn_mlp_type = mlptSingle; 8072 connp->conn_ulp_labeled = !is_system_labeled(); 8073 8074 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 8075 tcp->tcp_ipversion = IPV6_VERSION; 8076 tcp->tcp_hdr_len = IPV6_HDR_LEN + sizeof (tcph_t); 8077 tcp->tcp_tcp_hdr_len = sizeof (tcph_t); 8078 tcp->tcp_ip_hdr_len = IPV6_HDR_LEN; 8079 tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc; 8080 tcp->tcp_ipha = NULL; 8081 8082 /* Initialize the header template */ 8083 8084 tcp->tcp_ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW; 8085 tcp->tcp_ip6h->ip6_plen = ntohs(sizeof (tcph_t)); 8086 tcp->tcp_ip6h->ip6_nxt = IPPROTO_TCP; 8087 tcp->tcp_ip6h->ip6_hops = (uint8_t)tcps->tcps_ipv6_hoplimit; 8088 8089 tcph = (tcph_t *)(tcp->tcp_iphc + IPV6_HDR_LEN); 8090 tcp->tcp_tcph = tcph; 8091 tcph->th_offset_and_rsrvd[0] = (5 << 4); 8092 /* 8093 * IP wants our header length in the checksum field to 8094 * allow it to perform a single psuedo-header+checksum 8095 * calculation on behalf of TCP. 8096 * Include the adjustment for a source route when IPV6_RTHDR is set. 8097 */ 8098 sum = sizeof (tcph_t) + tcp->tcp_sum; 8099 sum = (sum >> 16) + (sum & 0xFFFF); 8100 U16_TO_ABE16(sum, tcph->th_sum); 8101 return (0); 8102 } 8103 8104 /* At minimum we need 8 bytes in the TCP header for the lookup */ 8105 #define ICMP_MIN_TCP_HDR 8 8106 8107 /* 8108 * tcp_icmp_error is called by tcp_rput_other to process ICMP error messages 8109 * passed up by IP. The message is always received on the correct tcp_t. 8110 * Assumes that IP has pulled up everything up to and including the ICMP header. 8111 */ 8112 void 8113 tcp_icmp_error(tcp_t *tcp, mblk_t *mp) 8114 { 8115 icmph_t *icmph; 8116 ipha_t *ipha; 8117 int iph_hdr_length; 8118 tcph_t *tcph; 8119 boolean_t ipsec_mctl = B_FALSE; 8120 boolean_t secure; 8121 mblk_t *first_mp = mp; 8122 int32_t new_mss; 8123 uint32_t ratio; 8124 size_t mp_size = MBLKL(mp); 8125 uint32_t seg_seq; 8126 tcp_stack_t *tcps = tcp->tcp_tcps; 8127 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 8128 8129 /* Assume IP provides aligned packets - otherwise toss */ 8130 if (!OK_32PTR(mp->b_rptr)) { 8131 freemsg(mp); 8132 return; 8133 } 8134 8135 /* 8136 * Since ICMP errors are normal data marked with M_CTL when sent 8137 * to TCP or UDP, we have to look for a IPSEC_IN value to identify 8138 * packets starting with an ipsec_info_t, see ipsec_info.h. 8139 */ 8140 if ((mp_size == sizeof (ipsec_info_t)) && 8141 (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == IPSEC_IN)) { 8142 ASSERT(mp->b_cont != NULL); 8143 mp = mp->b_cont; 8144 /* IP should have done this */ 8145 ASSERT(OK_32PTR(mp->b_rptr)); 8146 mp_size = MBLKL(mp); 8147 ipsec_mctl = B_TRUE; 8148 } 8149 8150 /* 8151 * Verify that we have a complete outer IP header. If not, drop it. 8152 */ 8153 if (mp_size < sizeof (ipha_t)) { 8154 noticmpv4: 8155 freemsg(first_mp); 8156 return; 8157 } 8158 8159 ipha = (ipha_t *)mp->b_rptr; 8160 /* 8161 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent 8162 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6. 8163 */ 8164 switch (IPH_HDR_VERSION(ipha)) { 8165 case IPV6_VERSION: 8166 tcp_icmp_error_ipv6(tcp, first_mp, ipsec_mctl); 8167 return; 8168 case IPV4_VERSION: 8169 break; 8170 default: 8171 goto noticmpv4; 8172 } 8173 8174 /* Skip past the outer IP and ICMP headers */ 8175 iph_hdr_length = IPH_HDR_LENGTH(ipha); 8176 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 8177 /* 8178 * If we don't have the correct outer IP header length or if the ULP 8179 * is not IPPROTO_ICMP or if we don't have a complete inner IP header 8180 * send it upstream. 8181 */ 8182 if (iph_hdr_length < sizeof (ipha_t) || 8183 ipha->ipha_protocol != IPPROTO_ICMP || 8184 (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) { 8185 goto noticmpv4; 8186 } 8187 ipha = (ipha_t *)&icmph[1]; 8188 8189 /* Skip past the inner IP and find the ULP header */ 8190 iph_hdr_length = IPH_HDR_LENGTH(ipha); 8191 tcph = (tcph_t *)((char *)ipha + iph_hdr_length); 8192 /* 8193 * If we don't have the correct inner IP header length or if the ULP 8194 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR 8195 * bytes of TCP header, drop it. 8196 */ 8197 if (iph_hdr_length < sizeof (ipha_t) || 8198 ipha->ipha_protocol != IPPROTO_TCP || 8199 (uchar_t *)tcph + ICMP_MIN_TCP_HDR > mp->b_wptr) { 8200 goto noticmpv4; 8201 } 8202 8203 if (TCP_IS_DETACHED_NONEAGER(tcp)) { 8204 if (ipsec_mctl) { 8205 secure = ipsec_in_is_secure(first_mp); 8206 } else { 8207 secure = B_FALSE; 8208 } 8209 if (secure) { 8210 /* 8211 * If we are willing to accept this in clear 8212 * we don't have to verify policy. 8213 */ 8214 if (!ipsec_inbound_accept_clear(mp, ipha, NULL)) { 8215 if (!tcp_check_policy(tcp, first_mp, 8216 ipha, NULL, secure, ipsec_mctl)) { 8217 /* 8218 * tcp_check_policy called 8219 * ip_drop_packet() on failure. 8220 */ 8221 return; 8222 } 8223 } 8224 } 8225 } else if (ipsec_mctl) { 8226 /* 8227 * This is a hard_bound connection. IP has already 8228 * verified policy. We don't have to do it again. 8229 */ 8230 freeb(first_mp); 8231 first_mp = mp; 8232 ipsec_mctl = B_FALSE; 8233 } 8234 8235 seg_seq = ABE32_TO_U32(tcph->th_seq); 8236 /* 8237 * TCP SHOULD check that the TCP sequence number contained in 8238 * payload of the ICMP error message is within the range 8239 * SND.UNA <= SEG.SEQ < SND.NXT. 8240 */ 8241 if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) { 8242 /* 8243 * The ICMP message is bogus, just drop it. But if this is 8244 * an ICMP too big message, IP has already changed 8245 * the ire_max_frag to the bogus value. We need to change 8246 * it back. 8247 */ 8248 if (icmph->icmph_type == ICMP_DEST_UNREACHABLE && 8249 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 8250 conn_t *connp = tcp->tcp_connp; 8251 ire_t *ire; 8252 int flag; 8253 8254 if (tcp->tcp_ipversion == IPV4_VERSION) { 8255 flag = tcp->tcp_ipha-> 8256 ipha_fragment_offset_and_flags; 8257 } else { 8258 flag = 0; 8259 } 8260 mutex_enter(&connp->conn_lock); 8261 if ((ire = connp->conn_ire_cache) != NULL) { 8262 mutex_enter(&ire->ire_lock); 8263 mutex_exit(&connp->conn_lock); 8264 ire->ire_max_frag = tcp->tcp_if_mtu; 8265 ire->ire_frag_flag |= flag; 8266 mutex_exit(&ire->ire_lock); 8267 } else { 8268 mutex_exit(&connp->conn_lock); 8269 } 8270 } 8271 goto noticmpv4; 8272 } 8273 8274 switch (icmph->icmph_type) { 8275 case ICMP_DEST_UNREACHABLE: 8276 switch (icmph->icmph_code) { 8277 case ICMP_FRAGMENTATION_NEEDED: 8278 /* 8279 * Reduce the MSS based on the new MTU. This will 8280 * eliminate any fragmentation locally. 8281 * N.B. There may well be some funny side-effects on 8282 * the local send policy and the remote receive policy. 8283 * Pending further research, we provide 8284 * tcp_ignore_path_mtu just in case this proves 8285 * disastrous somewhere. 8286 * 8287 * After updating the MSS, retransmit part of the 8288 * dropped segment using the new mss by calling 8289 * tcp_wput_data(). Need to adjust all those 8290 * params to make sure tcp_wput_data() work properly. 8291 */ 8292 if (tcps->tcps_ignore_path_mtu || 8293 tcp->tcp_ipha->ipha_fragment_offset_and_flags == 0) 8294 break; 8295 8296 /* 8297 * Decrease the MSS by time stamp options 8298 * IP options and IPSEC options. tcp_hdr_len 8299 * includes time stamp option and IP option 8300 * length. Note that new_mss may be negative 8301 * if tcp_ipsec_overhead is large and the 8302 * icmph_du_mtu is the minimum value, which is 68. 8303 */ 8304 new_mss = ntohs(icmph->icmph_du_mtu) - 8305 tcp->tcp_hdr_len - tcp->tcp_ipsec_overhead; 8306 8307 DTRACE_PROBE2(tcp__pmtu__change, tcp_t *, tcp, int, 8308 new_mss); 8309 8310 /* 8311 * Only update the MSS if the new one is 8312 * smaller than the previous one. This is 8313 * to avoid problems when getting multiple 8314 * ICMP errors for the same MTU. 8315 */ 8316 if (new_mss >= tcp->tcp_mss) 8317 break; 8318 8319 /* 8320 * Note that we are using the template header's DF 8321 * bit in the fast path sending. So we need to compare 8322 * the new mss with both tcps_mss_min and ip_pmtu_min. 8323 * And stop doing IPv4 PMTUd if new_mss is less than 8324 * MAX(tcps_mss_min, ip_pmtu_min). 8325 */ 8326 if (new_mss < tcps->tcps_mss_min || 8327 new_mss < ipst->ips_ip_pmtu_min) { 8328 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 8329 0; 8330 } 8331 8332 ratio = tcp->tcp_cwnd / tcp->tcp_mss; 8333 ASSERT(ratio >= 1); 8334 tcp_mss_set(tcp, new_mss, B_TRUE); 8335 8336 /* 8337 * Make sure we have something to 8338 * send. 8339 */ 8340 if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) && 8341 (tcp->tcp_xmit_head != NULL)) { 8342 /* 8343 * Shrink tcp_cwnd in 8344 * proportion to the old MSS/new MSS. 8345 */ 8346 tcp->tcp_cwnd = ratio * tcp->tcp_mss; 8347 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 8348 (tcp->tcp_unsent == 0)) { 8349 tcp->tcp_rexmit_max = tcp->tcp_fss; 8350 } else { 8351 tcp->tcp_rexmit_max = tcp->tcp_snxt; 8352 } 8353 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 8354 tcp->tcp_rexmit = B_TRUE; 8355 tcp->tcp_dupack_cnt = 0; 8356 tcp->tcp_snd_burst = TCP_CWND_SS; 8357 tcp_ss_rexmit(tcp); 8358 } 8359 break; 8360 case ICMP_PORT_UNREACHABLE: 8361 case ICMP_PROTOCOL_UNREACHABLE: 8362 switch (tcp->tcp_state) { 8363 case TCPS_SYN_SENT: 8364 case TCPS_SYN_RCVD: 8365 /* 8366 * ICMP can snipe away incipient 8367 * TCP connections as long as 8368 * seq number is same as initial 8369 * send seq number. 8370 */ 8371 if (seg_seq == tcp->tcp_iss) { 8372 (void) tcp_clean_death(tcp, 8373 ECONNREFUSED, 6); 8374 } 8375 break; 8376 } 8377 break; 8378 case ICMP_HOST_UNREACHABLE: 8379 case ICMP_NET_UNREACHABLE: 8380 /* Record the error in case we finally time out. */ 8381 if (icmph->icmph_code == ICMP_HOST_UNREACHABLE) 8382 tcp->tcp_client_errno = EHOSTUNREACH; 8383 else 8384 tcp->tcp_client_errno = ENETUNREACH; 8385 if (tcp->tcp_state == TCPS_SYN_RCVD) { 8386 if (tcp->tcp_listener != NULL && 8387 tcp->tcp_listener->tcp_syn_defense) { 8388 /* 8389 * Ditch the half-open connection if we 8390 * suspect a SYN attack is under way. 8391 */ 8392 tcp_ip_ire_mark_advice(tcp); 8393 (void) tcp_clean_death(tcp, 8394 tcp->tcp_client_errno, 7); 8395 } 8396 } 8397 break; 8398 default: 8399 break; 8400 } 8401 break; 8402 case ICMP_SOURCE_QUENCH: { 8403 /* 8404 * use a global boolean to control 8405 * whether TCP should respond to ICMP_SOURCE_QUENCH. 8406 * The default is false. 8407 */ 8408 if (tcp_icmp_source_quench) { 8409 /* 8410 * Reduce the sending rate as if we got a 8411 * retransmit timeout 8412 */ 8413 uint32_t npkt; 8414 8415 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / 8416 tcp->tcp_mss; 8417 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss; 8418 tcp->tcp_cwnd = tcp->tcp_mss; 8419 tcp->tcp_cwnd_cnt = 0; 8420 } 8421 break; 8422 } 8423 } 8424 freemsg(first_mp); 8425 } 8426 8427 /* 8428 * tcp_icmp_error_ipv6 is called by tcp_rput_other to process ICMPv6 8429 * error messages passed up by IP. 8430 * Assumes that IP has pulled up all the extension headers as well 8431 * as the ICMPv6 header. 8432 */ 8433 static void 8434 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, boolean_t ipsec_mctl) 8435 { 8436 icmp6_t *icmp6; 8437 ip6_t *ip6h; 8438 uint16_t iph_hdr_length; 8439 tcpha_t *tcpha; 8440 uint8_t *nexthdrp; 8441 uint32_t new_mss; 8442 uint32_t ratio; 8443 boolean_t secure; 8444 mblk_t *first_mp = mp; 8445 size_t mp_size; 8446 uint32_t seg_seq; 8447 tcp_stack_t *tcps = tcp->tcp_tcps; 8448 8449 /* 8450 * The caller has determined if this is an IPSEC_IN packet and 8451 * set ipsec_mctl appropriately (see tcp_icmp_error). 8452 */ 8453 if (ipsec_mctl) 8454 mp = mp->b_cont; 8455 8456 mp_size = MBLKL(mp); 8457 8458 /* 8459 * Verify that we have a complete IP header. If not, send it upstream. 8460 */ 8461 if (mp_size < sizeof (ip6_t)) { 8462 noticmpv6: 8463 freemsg(first_mp); 8464 return; 8465 } 8466 8467 /* 8468 * Verify this is an ICMPV6 packet, else send it upstream. 8469 */ 8470 ip6h = (ip6_t *)mp->b_rptr; 8471 if (ip6h->ip6_nxt == IPPROTO_ICMPV6) { 8472 iph_hdr_length = IPV6_HDR_LEN; 8473 } else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, 8474 &nexthdrp) || 8475 *nexthdrp != IPPROTO_ICMPV6) { 8476 goto noticmpv6; 8477 } 8478 icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length]; 8479 ip6h = (ip6_t *)&icmp6[1]; 8480 /* 8481 * Verify if we have a complete ICMP and inner IP header. 8482 */ 8483 if ((uchar_t *)&ip6h[1] > mp->b_wptr) 8484 goto noticmpv6; 8485 8486 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp)) 8487 goto noticmpv6; 8488 tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length); 8489 /* 8490 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't 8491 * have at least ICMP_MIN_TCP_HDR bytes of TCP header drop the 8492 * packet. 8493 */ 8494 if ((*nexthdrp != IPPROTO_TCP) || 8495 ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) { 8496 goto noticmpv6; 8497 } 8498 8499 /* 8500 * ICMP errors come on the right queue or come on 8501 * listener/global queue for detached connections and 8502 * get switched to the right queue. If it comes on the 8503 * right queue, policy check has already been done by IP 8504 * and thus free the first_mp without verifying the policy. 8505 * If it has come for a non-hard bound connection, we need 8506 * to verify policy as IP may not have done it. 8507 */ 8508 if (!tcp->tcp_hard_bound) { 8509 if (ipsec_mctl) { 8510 secure = ipsec_in_is_secure(first_mp); 8511 } else { 8512 secure = B_FALSE; 8513 } 8514 if (secure) { 8515 /* 8516 * If we are willing to accept this in clear 8517 * we don't have to verify policy. 8518 */ 8519 if (!ipsec_inbound_accept_clear(mp, NULL, ip6h)) { 8520 if (!tcp_check_policy(tcp, first_mp, 8521 NULL, ip6h, secure, ipsec_mctl)) { 8522 /* 8523 * tcp_check_policy called 8524 * ip_drop_packet() on failure. 8525 */ 8526 return; 8527 } 8528 } 8529 } 8530 } else if (ipsec_mctl) { 8531 /* 8532 * This is a hard_bound connection. IP has already 8533 * verified policy. We don't have to do it again. 8534 */ 8535 freeb(first_mp); 8536 first_mp = mp; 8537 ipsec_mctl = B_FALSE; 8538 } 8539 8540 seg_seq = ntohl(tcpha->tha_seq); 8541 /* 8542 * TCP SHOULD check that the TCP sequence number contained in 8543 * payload of the ICMP error message is within the range 8544 * SND.UNA <= SEG.SEQ < SND.NXT. 8545 */ 8546 if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) { 8547 /* 8548 * If the ICMP message is bogus, should we kill the 8549 * connection, or should we just drop the bogus ICMP 8550 * message? It would probably make more sense to just 8551 * drop the message so that if this one managed to get 8552 * in, the real connection should not suffer. 8553 */ 8554 goto noticmpv6; 8555 } 8556 8557 switch (icmp6->icmp6_type) { 8558 case ICMP6_PACKET_TOO_BIG: 8559 /* 8560 * Reduce the MSS based on the new MTU. This will 8561 * eliminate any fragmentation locally. 8562 * N.B. There may well be some funny side-effects on 8563 * the local send policy and the remote receive policy. 8564 * Pending further research, we provide 8565 * tcp_ignore_path_mtu just in case this proves 8566 * disastrous somewhere. 8567 * 8568 * After updating the MSS, retransmit part of the 8569 * dropped segment using the new mss by calling 8570 * tcp_wput_data(). Need to adjust all those 8571 * params to make sure tcp_wput_data() work properly. 8572 */ 8573 if (tcps->tcps_ignore_path_mtu) 8574 break; 8575 8576 /* 8577 * Decrease the MSS by time stamp options 8578 * IP options and IPSEC options. tcp_hdr_len 8579 * includes time stamp option and IP option 8580 * length. 8581 */ 8582 new_mss = ntohs(icmp6->icmp6_mtu) - tcp->tcp_hdr_len - 8583 tcp->tcp_ipsec_overhead; 8584 8585 /* 8586 * Only update the MSS if the new one is 8587 * smaller than the previous one. This is 8588 * to avoid problems when getting multiple 8589 * ICMP errors for the same MTU. 8590 */ 8591 if (new_mss >= tcp->tcp_mss) 8592 break; 8593 8594 ratio = tcp->tcp_cwnd / tcp->tcp_mss; 8595 ASSERT(ratio >= 1); 8596 tcp_mss_set(tcp, new_mss, B_TRUE); 8597 8598 /* 8599 * Make sure we have something to 8600 * send. 8601 */ 8602 if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) && 8603 (tcp->tcp_xmit_head != NULL)) { 8604 /* 8605 * Shrink tcp_cwnd in 8606 * proportion to the old MSS/new MSS. 8607 */ 8608 tcp->tcp_cwnd = ratio * tcp->tcp_mss; 8609 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 8610 (tcp->tcp_unsent == 0)) { 8611 tcp->tcp_rexmit_max = tcp->tcp_fss; 8612 } else { 8613 tcp->tcp_rexmit_max = tcp->tcp_snxt; 8614 } 8615 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 8616 tcp->tcp_rexmit = B_TRUE; 8617 tcp->tcp_dupack_cnt = 0; 8618 tcp->tcp_snd_burst = TCP_CWND_SS; 8619 tcp_ss_rexmit(tcp); 8620 } 8621 break; 8622 8623 case ICMP6_DST_UNREACH: 8624 switch (icmp6->icmp6_code) { 8625 case ICMP6_DST_UNREACH_NOPORT: 8626 if (((tcp->tcp_state == TCPS_SYN_SENT) || 8627 (tcp->tcp_state == TCPS_SYN_RCVD)) && 8628 (seg_seq == tcp->tcp_iss)) { 8629 (void) tcp_clean_death(tcp, 8630 ECONNREFUSED, 8); 8631 } 8632 break; 8633 8634 case ICMP6_DST_UNREACH_ADMIN: 8635 case ICMP6_DST_UNREACH_NOROUTE: 8636 case ICMP6_DST_UNREACH_BEYONDSCOPE: 8637 case ICMP6_DST_UNREACH_ADDR: 8638 /* Record the error in case we finally time out. */ 8639 tcp->tcp_client_errno = EHOSTUNREACH; 8640 if (((tcp->tcp_state == TCPS_SYN_SENT) || 8641 (tcp->tcp_state == TCPS_SYN_RCVD)) && 8642 (seg_seq == tcp->tcp_iss)) { 8643 if (tcp->tcp_listener != NULL && 8644 tcp->tcp_listener->tcp_syn_defense) { 8645 /* 8646 * Ditch the half-open connection if we 8647 * suspect a SYN attack is under way. 8648 */ 8649 tcp_ip_ire_mark_advice(tcp); 8650 (void) tcp_clean_death(tcp, 8651 tcp->tcp_client_errno, 9); 8652 } 8653 } 8654 8655 8656 break; 8657 default: 8658 break; 8659 } 8660 break; 8661 8662 case ICMP6_PARAM_PROB: 8663 /* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */ 8664 if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER && 8665 (uchar_t *)ip6h + icmp6->icmp6_pptr == 8666 (uchar_t *)nexthdrp) { 8667 if (tcp->tcp_state == TCPS_SYN_SENT || 8668 tcp->tcp_state == TCPS_SYN_RCVD) { 8669 (void) tcp_clean_death(tcp, 8670 ECONNREFUSED, 10); 8671 } 8672 break; 8673 } 8674 break; 8675 8676 case ICMP6_TIME_EXCEEDED: 8677 default: 8678 break; 8679 } 8680 freemsg(first_mp); 8681 } 8682 8683 /* 8684 * Notify IP that we are having trouble with this connection. IP should 8685 * blow the IRE away and start over. 8686 */ 8687 static void 8688 tcp_ip_notify(tcp_t *tcp) 8689 { 8690 struct iocblk *iocp; 8691 ipid_t *ipid; 8692 mblk_t *mp; 8693 8694 /* IPv6 has NUD thus notification to delete the IRE is not needed */ 8695 if (tcp->tcp_ipversion == IPV6_VERSION) 8696 return; 8697 8698 mp = mkiocb(IP_IOCTL); 8699 if (mp == NULL) 8700 return; 8701 8702 iocp = (struct iocblk *)mp->b_rptr; 8703 iocp->ioc_count = sizeof (ipid_t) + sizeof (tcp->tcp_ipha->ipha_dst); 8704 8705 mp->b_cont = allocb(iocp->ioc_count, BPRI_HI); 8706 if (!mp->b_cont) { 8707 freeb(mp); 8708 return; 8709 } 8710 8711 ipid = (ipid_t *)mp->b_cont->b_rptr; 8712 mp->b_cont->b_wptr += iocp->ioc_count; 8713 bzero(ipid, sizeof (*ipid)); 8714 ipid->ipid_cmd = IP_IOC_IRE_DELETE_NO_REPLY; 8715 ipid->ipid_ire_type = IRE_CACHE; 8716 ipid->ipid_addr_offset = sizeof (ipid_t); 8717 ipid->ipid_addr_length = sizeof (tcp->tcp_ipha->ipha_dst); 8718 /* 8719 * Note: in the case of source routing we want to blow away the 8720 * route to the first source route hop. 8721 */ 8722 bcopy(&tcp->tcp_ipha->ipha_dst, &ipid[1], 8723 sizeof (tcp->tcp_ipha->ipha_dst)); 8724 8725 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 8726 } 8727 8728 /* Unlink and return any mblk that looks like it contains an ire */ 8729 static mblk_t * 8730 tcp_ire_mp(mblk_t **mpp) 8731 { 8732 mblk_t *mp = *mpp; 8733 mblk_t *prev_mp = NULL; 8734 8735 for (;;) { 8736 switch (DB_TYPE(mp)) { 8737 case IRE_DB_TYPE: 8738 case IRE_DB_REQ_TYPE: 8739 if (mp == *mpp) { 8740 *mpp = mp->b_cont; 8741 } else { 8742 prev_mp->b_cont = mp->b_cont; 8743 } 8744 mp->b_cont = NULL; 8745 return (mp); 8746 default: 8747 break; 8748 } 8749 prev_mp = mp; 8750 mp = mp->b_cont; 8751 if (mp == NULL) 8752 break; 8753 } 8754 return (mp); 8755 } 8756 8757 /* 8758 * Timer callback routine for keepalive probe. We do a fake resend of 8759 * last ACKed byte. Then set a timer using RTO. When the timer expires, 8760 * check to see if we have heard anything from the other end for the last 8761 * RTO period. If we have, set the timer to expire for another 8762 * tcp_keepalive_intrvl and check again. If we have not, set a timer using 8763 * RTO << 1 and check again when it expires. Keep exponentially increasing 8764 * the timeout if we have not heard from the other side. If for more than 8765 * (tcp_ka_interval + tcp_ka_abort_thres) we have not heard anything, 8766 * kill the connection unless the keepalive abort threshold is 0. In 8767 * that case, we will probe "forever." 8768 */ 8769 static void 8770 tcp_keepalive_killer(void *arg) 8771 { 8772 mblk_t *mp; 8773 conn_t *connp = (conn_t *)arg; 8774 tcp_t *tcp = connp->conn_tcp; 8775 int32_t firetime; 8776 int32_t idletime; 8777 int32_t ka_intrvl; 8778 tcp_stack_t *tcps = tcp->tcp_tcps; 8779 8780 tcp->tcp_ka_tid = 0; 8781 8782 if (tcp->tcp_fused) 8783 return; 8784 8785 BUMP_MIB(&tcps->tcps_mib, tcpTimKeepalive); 8786 ka_intrvl = tcp->tcp_ka_interval; 8787 8788 /* 8789 * Keepalive probe should only be sent if the application has not 8790 * done a close on the connection. 8791 */ 8792 if (tcp->tcp_state > TCPS_CLOSE_WAIT) { 8793 return; 8794 } 8795 /* Timer fired too early, restart it. */ 8796 if (tcp->tcp_state < TCPS_ESTABLISHED) { 8797 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 8798 MSEC_TO_TICK(ka_intrvl)); 8799 return; 8800 } 8801 8802 idletime = TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time); 8803 /* 8804 * If we have not heard from the other side for a long 8805 * time, kill the connection unless the keepalive abort 8806 * threshold is 0. In that case, we will probe "forever." 8807 */ 8808 if (tcp->tcp_ka_abort_thres != 0 && 8809 idletime > (ka_intrvl + tcp->tcp_ka_abort_thres)) { 8810 BUMP_MIB(&tcps->tcps_mib, tcpTimKeepaliveDrop); 8811 (void) tcp_clean_death(tcp, tcp->tcp_client_errno ? 8812 tcp->tcp_client_errno : ETIMEDOUT, 11); 8813 return; 8814 } 8815 8816 if (tcp->tcp_snxt == tcp->tcp_suna && 8817 idletime >= ka_intrvl) { 8818 /* Fake resend of last ACKed byte. */ 8819 mblk_t *mp1 = allocb(1, BPRI_LO); 8820 8821 if (mp1 != NULL) { 8822 *mp1->b_wptr++ = '\0'; 8823 mp = tcp_xmit_mp(tcp, mp1, 1, NULL, NULL, 8824 tcp->tcp_suna - 1, B_FALSE, NULL, B_TRUE); 8825 freeb(mp1); 8826 /* 8827 * if allocation failed, fall through to start the 8828 * timer back. 8829 */ 8830 if (mp != NULL) { 8831 tcp_send_data(tcp, tcp->tcp_wq, mp); 8832 BUMP_MIB(&tcps->tcps_mib, 8833 tcpTimKeepaliveProbe); 8834 if (tcp->tcp_ka_last_intrvl != 0) { 8835 int max; 8836 /* 8837 * We should probe again at least 8838 * in ka_intrvl, but not more than 8839 * tcp_rexmit_interval_max. 8840 */ 8841 max = tcps->tcps_rexmit_interval_max; 8842 firetime = MIN(ka_intrvl - 1, 8843 tcp->tcp_ka_last_intrvl << 1); 8844 if (firetime > max) 8845 firetime = max; 8846 } else { 8847 firetime = tcp->tcp_rto; 8848 } 8849 tcp->tcp_ka_tid = TCP_TIMER(tcp, 8850 tcp_keepalive_killer, 8851 MSEC_TO_TICK(firetime)); 8852 tcp->tcp_ka_last_intrvl = firetime; 8853 return; 8854 } 8855 } 8856 } else { 8857 tcp->tcp_ka_last_intrvl = 0; 8858 } 8859 8860 /* firetime can be negative if (mp1 == NULL || mp == NULL) */ 8861 if ((firetime = ka_intrvl - idletime) < 0) { 8862 firetime = ka_intrvl; 8863 } 8864 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 8865 MSEC_TO_TICK(firetime)); 8866 } 8867 8868 int 8869 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk) 8870 { 8871 queue_t *q = tcp->tcp_rq; 8872 int32_t mss = tcp->tcp_mss; 8873 int maxpsz; 8874 conn_t *connp = tcp->tcp_connp; 8875 8876 if (TCP_IS_DETACHED(tcp)) 8877 return (mss); 8878 if (tcp->tcp_fused) { 8879 maxpsz = tcp_fuse_maxpsz_set(tcp); 8880 mss = INFPSZ; 8881 } else if (tcp->tcp_mdt || tcp->tcp_lso || tcp->tcp_maxpsz == 0) { 8882 /* 8883 * Set the sd_qn_maxpsz according to the socket send buffer 8884 * size, and sd_maxblk to INFPSZ (-1). This will essentially 8885 * instruct the stream head to copyin user data into contiguous 8886 * kernel-allocated buffers without breaking it up into smaller 8887 * chunks. We round up the buffer size to the nearest SMSS. 8888 */ 8889 maxpsz = MSS_ROUNDUP(tcp->tcp_xmit_hiwater, mss); 8890 if (tcp->tcp_kssl_ctx == NULL) 8891 mss = INFPSZ; 8892 else 8893 mss = SSL3_MAX_RECORD_LEN; 8894 } else { 8895 /* 8896 * Set sd_qn_maxpsz to approx half the (receivers) buffer 8897 * (and a multiple of the mss). This instructs the stream 8898 * head to break down larger than SMSS writes into SMSS- 8899 * size mblks, up to tcp_maxpsz_multiplier mblks at a time. 8900 */ 8901 /* XXX tune this with ndd tcp_maxpsz_multiplier */ 8902 maxpsz = tcp->tcp_maxpsz * mss; 8903 if (maxpsz > tcp->tcp_xmit_hiwater/2) { 8904 maxpsz = tcp->tcp_xmit_hiwater/2; 8905 /* Round up to nearest mss */ 8906 maxpsz = MSS_ROUNDUP(maxpsz, mss); 8907 } 8908 } 8909 8910 (void) proto_set_maxpsz(q, connp, maxpsz); 8911 if (!(IPCL_IS_NONSTR(connp))) { 8912 /* XXX do it in set_maxpsz()? */ 8913 tcp->tcp_wq->q_maxpsz = maxpsz; 8914 } 8915 8916 if (set_maxblk) 8917 (void) proto_set_tx_maxblk(q, connp, mss); 8918 return (mss); 8919 } 8920 8921 /* 8922 * Extract option values from a tcp header. We put any found values into the 8923 * tcpopt struct and return a bitmask saying which options were found. 8924 */ 8925 static int 8926 tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt) 8927 { 8928 uchar_t *endp; 8929 int len; 8930 uint32_t mss; 8931 uchar_t *up = (uchar_t *)tcph; 8932 int found = 0; 8933 int32_t sack_len; 8934 tcp_seq sack_begin, sack_end; 8935 tcp_t *tcp; 8936 8937 endp = up + TCP_HDR_LENGTH(tcph); 8938 up += TCP_MIN_HEADER_LENGTH; 8939 while (up < endp) { 8940 len = endp - up; 8941 switch (*up) { 8942 case TCPOPT_EOL: 8943 break; 8944 8945 case TCPOPT_NOP: 8946 up++; 8947 continue; 8948 8949 case TCPOPT_MAXSEG: 8950 if (len < TCPOPT_MAXSEG_LEN || 8951 up[1] != TCPOPT_MAXSEG_LEN) 8952 break; 8953 8954 mss = BE16_TO_U16(up+2); 8955 /* Caller must handle tcp_mss_min and tcp_mss_max_* */ 8956 tcpopt->tcp_opt_mss = mss; 8957 found |= TCP_OPT_MSS_PRESENT; 8958 8959 up += TCPOPT_MAXSEG_LEN; 8960 continue; 8961 8962 case TCPOPT_WSCALE: 8963 if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN) 8964 break; 8965 8966 if (up[2] > TCP_MAX_WINSHIFT) 8967 tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT; 8968 else 8969 tcpopt->tcp_opt_wscale = up[2]; 8970 found |= TCP_OPT_WSCALE_PRESENT; 8971 8972 up += TCPOPT_WS_LEN; 8973 continue; 8974 8975 case TCPOPT_SACK_PERMITTED: 8976 if (len < TCPOPT_SACK_OK_LEN || 8977 up[1] != TCPOPT_SACK_OK_LEN) 8978 break; 8979 found |= TCP_OPT_SACK_OK_PRESENT; 8980 up += TCPOPT_SACK_OK_LEN; 8981 continue; 8982 8983 case TCPOPT_SACK: 8984 if (len <= 2 || up[1] <= 2 || len < up[1]) 8985 break; 8986 8987 /* If TCP is not interested in SACK blks... */ 8988 if ((tcp = tcpopt->tcp) == NULL) { 8989 up += up[1]; 8990 continue; 8991 } 8992 sack_len = up[1] - TCPOPT_HEADER_LEN; 8993 up += TCPOPT_HEADER_LEN; 8994 8995 /* 8996 * If the list is empty, allocate one and assume 8997 * nothing is sack'ed. 8998 */ 8999 ASSERT(tcp->tcp_sack_info != NULL); 9000 if (tcp->tcp_notsack_list == NULL) { 9001 tcp_notsack_update(&(tcp->tcp_notsack_list), 9002 tcp->tcp_suna, tcp->tcp_snxt, 9003 &(tcp->tcp_num_notsack_blk), 9004 &(tcp->tcp_cnt_notsack_list)); 9005 9006 /* 9007 * Make sure tcp_notsack_list is not NULL. 9008 * This happens when kmem_alloc(KM_NOSLEEP) 9009 * returns NULL. 9010 */ 9011 if (tcp->tcp_notsack_list == NULL) { 9012 up += sack_len; 9013 continue; 9014 } 9015 tcp->tcp_fack = tcp->tcp_suna; 9016 } 9017 9018 while (sack_len > 0) { 9019 if (up + 8 > endp) { 9020 up = endp; 9021 break; 9022 } 9023 sack_begin = BE32_TO_U32(up); 9024 up += 4; 9025 sack_end = BE32_TO_U32(up); 9026 up += 4; 9027 sack_len -= 8; 9028 /* 9029 * Bounds checking. Make sure the SACK 9030 * info is within tcp_suna and tcp_snxt. 9031 * If this SACK blk is out of bound, ignore 9032 * it but continue to parse the following 9033 * blks. 9034 */ 9035 if (SEQ_LEQ(sack_end, sack_begin) || 9036 SEQ_LT(sack_begin, tcp->tcp_suna) || 9037 SEQ_GT(sack_end, tcp->tcp_snxt)) { 9038 continue; 9039 } 9040 tcp_notsack_insert(&(tcp->tcp_notsack_list), 9041 sack_begin, sack_end, 9042 &(tcp->tcp_num_notsack_blk), 9043 &(tcp->tcp_cnt_notsack_list)); 9044 if (SEQ_GT(sack_end, tcp->tcp_fack)) { 9045 tcp->tcp_fack = sack_end; 9046 } 9047 } 9048 found |= TCP_OPT_SACK_PRESENT; 9049 continue; 9050 9051 case TCPOPT_TSTAMP: 9052 if (len < TCPOPT_TSTAMP_LEN || 9053 up[1] != TCPOPT_TSTAMP_LEN) 9054 break; 9055 9056 tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2); 9057 tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6); 9058 9059 found |= TCP_OPT_TSTAMP_PRESENT; 9060 9061 up += TCPOPT_TSTAMP_LEN; 9062 continue; 9063 9064 default: 9065 if (len <= 1 || len < (int)up[1] || up[1] == 0) 9066 break; 9067 up += up[1]; 9068 continue; 9069 } 9070 break; 9071 } 9072 return (found); 9073 } 9074 9075 /* 9076 * Set the mss associated with a particular tcp based on its current value, 9077 * and a new one passed in. Observe minimums and maximums, and reset 9078 * other state variables that we want to view as multiples of mss. 9079 * 9080 * This function is called mainly because values like tcp_mss, tcp_cwnd, 9081 * highwater marks etc. need to be initialized or adjusted. 9082 * 1) From tcp_process_options() when the other side's SYN/SYN-ACK 9083 * packet arrives. 9084 * 2) We need to set a new MSS when ICMP_FRAGMENTATION_NEEDED or 9085 * ICMP6_PACKET_TOO_BIG arrives. 9086 * 3) From tcp_paws_check() if the other side stops sending the timestamp, 9087 * to increase the MSS to use the extra bytes available. 9088 * 9089 * Callers except tcp_paws_check() ensure that they only reduce mss. 9090 */ 9091 static void 9092 tcp_mss_set(tcp_t *tcp, uint32_t mss, boolean_t do_ss) 9093 { 9094 uint32_t mss_max; 9095 tcp_stack_t *tcps = tcp->tcp_tcps; 9096 9097 if (tcp->tcp_ipversion == IPV4_VERSION) 9098 mss_max = tcps->tcps_mss_max_ipv4; 9099 else 9100 mss_max = tcps->tcps_mss_max_ipv6; 9101 9102 if (mss < tcps->tcps_mss_min) 9103 mss = tcps->tcps_mss_min; 9104 if (mss > mss_max) 9105 mss = mss_max; 9106 /* 9107 * Unless naglim has been set by our client to 9108 * a non-mss value, force naglim to track mss. 9109 * This can help to aggregate small writes. 9110 */ 9111 if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim) 9112 tcp->tcp_naglim = mss; 9113 /* 9114 * TCP should be able to buffer at least 4 MSS data for obvious 9115 * performance reason. 9116 */ 9117 if ((mss << 2) > tcp->tcp_xmit_hiwater) 9118 tcp->tcp_xmit_hiwater = mss << 2; 9119 9120 if (do_ss) { 9121 /* 9122 * Either the tcp_cwnd is as yet uninitialized, or mss is 9123 * changing due to a reduction in MTU, presumably as a 9124 * result of a new path component, reset cwnd to its 9125 * "initial" value, as a multiple of the new mss. 9126 */ 9127 SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_initial); 9128 } else { 9129 /* 9130 * Called by tcp_paws_check(), the mss increased 9131 * marginally to allow use of space previously taken 9132 * by the timestamp option. It would be inappropriate 9133 * to apply slow start or tcp_init_cwnd values to 9134 * tcp_cwnd, simply adjust to a multiple of the new mss. 9135 */ 9136 tcp->tcp_cwnd = (tcp->tcp_cwnd / tcp->tcp_mss) * mss; 9137 tcp->tcp_cwnd_cnt = 0; 9138 } 9139 tcp->tcp_mss = mss; 9140 (void) tcp_maxpsz_set(tcp, B_TRUE); 9141 } 9142 9143 /* For /dev/tcp aka AF_INET open */ 9144 static int 9145 tcp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9146 { 9147 return (tcp_open(q, devp, flag, sflag, credp, B_FALSE)); 9148 } 9149 9150 /* For /dev/tcp6 aka AF_INET6 open */ 9151 static int 9152 tcp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9153 { 9154 return (tcp_open(q, devp, flag, sflag, credp, B_TRUE)); 9155 } 9156 9157 static conn_t * 9158 tcp_create_common(queue_t *q, cred_t *credp, boolean_t isv6, 9159 boolean_t issocket, int *errorp) 9160 { 9161 tcp_t *tcp = NULL; 9162 conn_t *connp; 9163 int err; 9164 zoneid_t zoneid; 9165 tcp_stack_t *tcps; 9166 squeue_t *sqp; 9167 9168 ASSERT(errorp != NULL); 9169 /* 9170 * Find the proper zoneid and netstack. 9171 */ 9172 /* 9173 * Special case for install: miniroot needs to be able to 9174 * access files via NFS as though it were always in the 9175 * global zone. 9176 */ 9177 if (credp == kcred && nfs_global_client_only != 0) { 9178 zoneid = GLOBAL_ZONEID; 9179 tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)-> 9180 netstack_tcp; 9181 ASSERT(tcps != NULL); 9182 } else { 9183 netstack_t *ns; 9184 9185 ns = netstack_find_by_cred(credp); 9186 ASSERT(ns != NULL); 9187 tcps = ns->netstack_tcp; 9188 ASSERT(tcps != NULL); 9189 9190 /* 9191 * For exclusive stacks we set the zoneid to zero 9192 * to make TCP operate as if in the global zone. 9193 */ 9194 if (tcps->tcps_netstack->netstack_stackid != 9195 GLOBAL_NETSTACKID) 9196 zoneid = GLOBAL_ZONEID; 9197 else 9198 zoneid = crgetzoneid(credp); 9199 } 9200 /* 9201 * For stackid zero this is done from strplumb.c, but 9202 * non-zero stackids are handled here. 9203 */ 9204 if (tcps->tcps_g_q == NULL && 9205 tcps->tcps_netstack->netstack_stackid != 9206 GLOBAL_NETSTACKID) { 9207 tcp_g_q_setup(tcps); 9208 } 9209 9210 sqp = IP_SQUEUE_GET((uint_t)gethrtime()); 9211 connp = (conn_t *)tcp_get_conn(sqp, tcps); 9212 /* 9213 * Both tcp_get_conn and netstack_find_by_cred incremented refcnt, 9214 * so we drop it by one. 9215 */ 9216 netstack_rele(tcps->tcps_netstack); 9217 if (connp == NULL) { 9218 *errorp = ENOSR; 9219 return (NULL); 9220 } 9221 connp->conn_sqp = sqp; 9222 connp->conn_initial_sqp = connp->conn_sqp; 9223 tcp = connp->conn_tcp; 9224 9225 if (isv6) { 9226 connp->conn_flags |= (IPCL_TCP6|IPCL_ISV6); 9227 connp->conn_send = ip_output_v6; 9228 connp->conn_af_isv6 = B_TRUE; 9229 connp->conn_pkt_isv6 = B_TRUE; 9230 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 9231 tcp->tcp_ipversion = IPV6_VERSION; 9232 tcp->tcp_family = AF_INET6; 9233 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 9234 } else { 9235 connp->conn_flags |= IPCL_TCP4; 9236 connp->conn_send = ip_output; 9237 connp->conn_af_isv6 = B_FALSE; 9238 connp->conn_pkt_isv6 = B_FALSE; 9239 tcp->tcp_ipversion = IPV4_VERSION; 9240 tcp->tcp_family = AF_INET; 9241 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 9242 } 9243 9244 /* 9245 * TCP keeps a copy of cred for cache locality reasons but 9246 * we put a reference only once. If connp->conn_cred 9247 * becomes invalid, tcp_cred should also be set to NULL. 9248 */ 9249 tcp->tcp_cred = connp->conn_cred = credp; 9250 crhold(connp->conn_cred); 9251 tcp->tcp_cpid = curproc->p_pid; 9252 tcp->tcp_open_time = lbolt64; 9253 connp->conn_zoneid = zoneid; 9254 connp->conn_mlp_type = mlptSingle; 9255 connp->conn_ulp_labeled = !is_system_labeled(); 9256 ASSERT(connp->conn_netstack == tcps->tcps_netstack); 9257 ASSERT(tcp->tcp_tcps == tcps); 9258 9259 /* 9260 * If the caller has the process-wide flag set, then default to MAC 9261 * exempt mode. This allows read-down to unlabeled hosts. 9262 */ 9263 if (getpflags(NET_MAC_AWARE, credp) != 0) 9264 connp->conn_mac_exempt = B_TRUE; 9265 9266 connp->conn_dev = NULL; 9267 if (issocket) { 9268 connp->conn_flags |= IPCL_SOCKET; 9269 tcp->tcp_issocket = 1; 9270 } 9271 9272 tcp->tcp_recv_hiwater = tcps->tcps_recv_hiwat; 9273 tcp->tcp_rwnd = tcps->tcps_recv_hiwat; 9274 tcp->tcp_recv_lowater = tcp_rinfo.mi_lowat; 9275 9276 /* Non-zero default values */ 9277 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 9278 9279 if (q == NULL) { 9280 /* 9281 * Create a helper stream for non-STREAMS socket. 9282 */ 9283 err = ip_create_helper_stream(connp, tcps->tcps_ldi_ident); 9284 if (err != 0) { 9285 ip1dbg(("tcp_create_common: create of IP helper stream " 9286 "failed\n")); 9287 CONN_DEC_REF(connp); 9288 *errorp = err; 9289 return (NULL); 9290 } 9291 q = connp->conn_rq; 9292 } else { 9293 RD(q)->q_hiwat = tcps->tcps_recv_hiwat; 9294 } 9295 9296 SOCK_CONNID_INIT(tcp->tcp_connid); 9297 err = tcp_init(tcp, q); 9298 if (err != 0) { 9299 CONN_DEC_REF(connp); 9300 *errorp = err; 9301 return (NULL); 9302 } 9303 9304 return (connp); 9305 } 9306 9307 static int 9308 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 9309 boolean_t isv6) 9310 { 9311 tcp_t *tcp = NULL; 9312 conn_t *connp = NULL; 9313 int err; 9314 vmem_t *minor_arena = NULL; 9315 dev_t conn_dev; 9316 boolean_t issocket; 9317 9318 if (q->q_ptr != NULL) 9319 return (0); 9320 9321 if (sflag == MODOPEN) 9322 return (EINVAL); 9323 9324 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 9325 ((conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 9326 minor_arena = ip_minor_arena_la; 9327 } else { 9328 /* 9329 * Either minor numbers in the large arena were exhausted 9330 * or a non socket application is doing the open. 9331 * Try to allocate from the small arena. 9332 */ 9333 if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0) { 9334 return (EBUSY); 9335 } 9336 minor_arena = ip_minor_arena_sa; 9337 } 9338 9339 ASSERT(minor_arena != NULL); 9340 9341 *devp = makedevice(getmajor(*devp), (minor_t)conn_dev); 9342 9343 if (flag & SO_FALLBACK) { 9344 /* 9345 * Non streams socket needs a stream to fallback to 9346 */ 9347 RD(q)->q_ptr = (void *)conn_dev; 9348 WR(q)->q_qinfo = &tcp_fallback_sock_winit; 9349 WR(q)->q_ptr = (void *)minor_arena; 9350 qprocson(q); 9351 return (0); 9352 } else if (flag & SO_ACCEPTOR) { 9353 q->q_qinfo = &tcp_acceptor_rinit; 9354 /* 9355 * the conn_dev and minor_arena will be subsequently used by 9356 * tcp_wput_accept() and tcpclose_accept() to figure out the 9357 * minor device number for this connection from the q_ptr. 9358 */ 9359 RD(q)->q_ptr = (void *)conn_dev; 9360 WR(q)->q_qinfo = &tcp_acceptor_winit; 9361 WR(q)->q_ptr = (void *)minor_arena; 9362 qprocson(q); 9363 return (0); 9364 } 9365 9366 issocket = flag & SO_SOCKSTR; 9367 connp = tcp_create_common(q, credp, isv6, issocket, &err); 9368 9369 if (connp == NULL) { 9370 inet_minor_free(minor_arena, conn_dev); 9371 q->q_ptr = WR(q)->q_ptr = NULL; 9372 return (err); 9373 } 9374 9375 q->q_ptr = WR(q)->q_ptr = connp; 9376 9377 connp->conn_dev = conn_dev; 9378 connp->conn_minor_arena = minor_arena; 9379 9380 ASSERT(q->q_qinfo == &tcp_rinitv4 || q->q_qinfo == &tcp_rinitv6); 9381 ASSERT(WR(q)->q_qinfo == &tcp_winit); 9382 9383 if (issocket) { 9384 WR(q)->q_qinfo = &tcp_sock_winit; 9385 } else { 9386 tcp = connp->conn_tcp; 9387 #ifdef _ILP32 9388 tcp->tcp_acceptor_id = (t_uscalar_t)RD(q); 9389 #else 9390 tcp->tcp_acceptor_id = conn_dev; 9391 #endif /* _ILP32 */ 9392 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 9393 } 9394 9395 /* 9396 * Put the ref for TCP. Ref for IP was already put 9397 * by ipcl_conn_create. Also Make the conn_t globally 9398 * visible to walkers 9399 */ 9400 mutex_enter(&connp->conn_lock); 9401 CONN_INC_REF_LOCKED(connp); 9402 ASSERT(connp->conn_ref == 2); 9403 connp->conn_state_flags &= ~CONN_INCIPIENT; 9404 mutex_exit(&connp->conn_lock); 9405 9406 qprocson(q); 9407 return (0); 9408 } 9409 9410 /* 9411 * Some TCP options can be "set" by requesting them in the option 9412 * buffer. This is needed for XTI feature test though we do not 9413 * allow it in general. We interpret that this mechanism is more 9414 * applicable to OSI protocols and need not be allowed in general. 9415 * This routine filters out options for which it is not allowed (most) 9416 * and lets through those (few) for which it is. [ The XTI interface 9417 * test suite specifics will imply that any XTI_GENERIC level XTI_* if 9418 * ever implemented will have to be allowed here ]. 9419 */ 9420 static boolean_t 9421 tcp_allow_connopt_set(int level, int name) 9422 { 9423 9424 switch (level) { 9425 case IPPROTO_TCP: 9426 switch (name) { 9427 case TCP_NODELAY: 9428 return (B_TRUE); 9429 default: 9430 return (B_FALSE); 9431 } 9432 /*NOTREACHED*/ 9433 default: 9434 return (B_FALSE); 9435 } 9436 /*NOTREACHED*/ 9437 } 9438 9439 /* 9440 * this routine gets default values of certain options whose default 9441 * values are maintained by protocol specific code 9442 */ 9443 /* ARGSUSED */ 9444 int 9445 tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 9446 { 9447 int32_t *i1 = (int32_t *)ptr; 9448 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 9449 9450 switch (level) { 9451 case IPPROTO_TCP: 9452 switch (name) { 9453 case TCP_NOTIFY_THRESHOLD: 9454 *i1 = tcps->tcps_ip_notify_interval; 9455 break; 9456 case TCP_ABORT_THRESHOLD: 9457 *i1 = tcps->tcps_ip_abort_interval; 9458 break; 9459 case TCP_CONN_NOTIFY_THRESHOLD: 9460 *i1 = tcps->tcps_ip_notify_cinterval; 9461 break; 9462 case TCP_CONN_ABORT_THRESHOLD: 9463 *i1 = tcps->tcps_ip_abort_cinterval; 9464 break; 9465 default: 9466 return (-1); 9467 } 9468 break; 9469 case IPPROTO_IP: 9470 switch (name) { 9471 case IP_TTL: 9472 *i1 = tcps->tcps_ipv4_ttl; 9473 break; 9474 default: 9475 return (-1); 9476 } 9477 break; 9478 case IPPROTO_IPV6: 9479 switch (name) { 9480 case IPV6_UNICAST_HOPS: 9481 *i1 = tcps->tcps_ipv6_hoplimit; 9482 break; 9483 default: 9484 return (-1); 9485 } 9486 break; 9487 default: 9488 return (-1); 9489 } 9490 return (sizeof (int)); 9491 } 9492 9493 static int 9494 tcp_opt_get(conn_t *connp, int level, int name, uchar_t *ptr) 9495 { 9496 int *i1 = (int *)ptr; 9497 tcp_t *tcp = connp->conn_tcp; 9498 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 9499 9500 switch (level) { 9501 case SOL_SOCKET: 9502 switch (name) { 9503 case SO_LINGER: { 9504 struct linger *lgr = (struct linger *)ptr; 9505 9506 lgr->l_onoff = tcp->tcp_linger ? SO_LINGER : 0; 9507 lgr->l_linger = tcp->tcp_lingertime; 9508 } 9509 return (sizeof (struct linger)); 9510 case SO_DEBUG: 9511 *i1 = tcp->tcp_debug ? SO_DEBUG : 0; 9512 break; 9513 case SO_KEEPALIVE: 9514 *i1 = tcp->tcp_ka_enabled ? SO_KEEPALIVE : 0; 9515 break; 9516 case SO_DONTROUTE: 9517 *i1 = tcp->tcp_dontroute ? SO_DONTROUTE : 0; 9518 break; 9519 case SO_USELOOPBACK: 9520 *i1 = tcp->tcp_useloopback ? SO_USELOOPBACK : 0; 9521 break; 9522 case SO_BROADCAST: 9523 *i1 = tcp->tcp_broadcast ? SO_BROADCAST : 0; 9524 break; 9525 case SO_REUSEADDR: 9526 *i1 = tcp->tcp_reuseaddr ? SO_REUSEADDR : 0; 9527 break; 9528 case SO_OOBINLINE: 9529 *i1 = tcp->tcp_oobinline ? SO_OOBINLINE : 0; 9530 break; 9531 case SO_DGRAM_ERRIND: 9532 *i1 = tcp->tcp_dgram_errind ? SO_DGRAM_ERRIND : 0; 9533 break; 9534 case SO_TYPE: 9535 *i1 = SOCK_STREAM; 9536 break; 9537 case SO_SNDBUF: 9538 *i1 = tcp->tcp_xmit_hiwater; 9539 break; 9540 case SO_RCVBUF: 9541 *i1 = tcp->tcp_recv_hiwater; 9542 break; 9543 case SO_SND_COPYAVOID: 9544 *i1 = tcp->tcp_snd_zcopy_on ? 9545 SO_SND_COPYAVOID : 0; 9546 break; 9547 case SO_ALLZONES: 9548 *i1 = connp->conn_allzones ? 1 : 0; 9549 break; 9550 case SO_ANON_MLP: 9551 *i1 = connp->conn_anon_mlp; 9552 break; 9553 case SO_MAC_EXEMPT: 9554 *i1 = connp->conn_mac_exempt; 9555 break; 9556 case SO_EXCLBIND: 9557 *i1 = tcp->tcp_exclbind ? SO_EXCLBIND : 0; 9558 break; 9559 case SO_PROTOTYPE: 9560 *i1 = IPPROTO_TCP; 9561 break; 9562 case SO_DOMAIN: 9563 *i1 = tcp->tcp_family; 9564 break; 9565 case SO_ACCEPTCONN: 9566 *i1 = (tcp->tcp_state == TCPS_LISTEN); 9567 default: 9568 return (-1); 9569 } 9570 break; 9571 case IPPROTO_TCP: 9572 switch (name) { 9573 case TCP_NODELAY: 9574 *i1 = (tcp->tcp_naglim == 1) ? TCP_NODELAY : 0; 9575 break; 9576 case TCP_MAXSEG: 9577 *i1 = tcp->tcp_mss; 9578 break; 9579 case TCP_NOTIFY_THRESHOLD: 9580 *i1 = (int)tcp->tcp_first_timer_threshold; 9581 break; 9582 case TCP_ABORT_THRESHOLD: 9583 *i1 = tcp->tcp_second_timer_threshold; 9584 break; 9585 case TCP_CONN_NOTIFY_THRESHOLD: 9586 *i1 = tcp->tcp_first_ctimer_threshold; 9587 break; 9588 case TCP_CONN_ABORT_THRESHOLD: 9589 *i1 = tcp->tcp_second_ctimer_threshold; 9590 break; 9591 case TCP_RECVDSTADDR: 9592 *i1 = tcp->tcp_recvdstaddr; 9593 break; 9594 case TCP_ANONPRIVBIND: 9595 *i1 = tcp->tcp_anon_priv_bind; 9596 break; 9597 case TCP_EXCLBIND: 9598 *i1 = tcp->tcp_exclbind ? TCP_EXCLBIND : 0; 9599 break; 9600 case TCP_INIT_CWND: 9601 *i1 = tcp->tcp_init_cwnd; 9602 break; 9603 case TCP_KEEPALIVE_THRESHOLD: 9604 *i1 = tcp->tcp_ka_interval; 9605 break; 9606 case TCP_KEEPALIVE_ABORT_THRESHOLD: 9607 *i1 = tcp->tcp_ka_abort_thres; 9608 break; 9609 case TCP_CORK: 9610 *i1 = tcp->tcp_cork; 9611 break; 9612 default: 9613 return (-1); 9614 } 9615 break; 9616 case IPPROTO_IP: 9617 if (tcp->tcp_family != AF_INET) 9618 return (-1); 9619 switch (name) { 9620 case IP_OPTIONS: 9621 case T_IP_OPTIONS: { 9622 /* 9623 * This is compatible with BSD in that in only return 9624 * the reverse source route with the final destination 9625 * as the last entry. The first 4 bytes of the option 9626 * will contain the final destination. 9627 */ 9628 int opt_len; 9629 9630 opt_len = (char *)tcp->tcp_tcph - (char *)tcp->tcp_ipha; 9631 opt_len -= tcp->tcp_label_len + IP_SIMPLE_HDR_LENGTH; 9632 ASSERT(opt_len >= 0); 9633 /* Caller ensures enough space */ 9634 if (opt_len > 0) { 9635 /* 9636 * TODO: Do we have to handle getsockopt on an 9637 * initiator as well? 9638 */ 9639 return (ip_opt_get_user(tcp->tcp_ipha, ptr)); 9640 } 9641 return (0); 9642 } 9643 case IP_TOS: 9644 case T_IP_TOS: 9645 *i1 = (int)tcp->tcp_ipha->ipha_type_of_service; 9646 break; 9647 case IP_TTL: 9648 *i1 = (int)tcp->tcp_ipha->ipha_ttl; 9649 break; 9650 case IP_NEXTHOP: 9651 /* Handled at IP level */ 9652 return (-EINVAL); 9653 default: 9654 return (-1); 9655 } 9656 break; 9657 case IPPROTO_IPV6: 9658 /* 9659 * IPPROTO_IPV6 options are only supported for sockets 9660 * that are using IPv6 on the wire. 9661 */ 9662 if (tcp->tcp_ipversion != IPV6_VERSION) { 9663 return (-1); 9664 } 9665 switch (name) { 9666 case IPV6_UNICAST_HOPS: 9667 *i1 = (unsigned int) tcp->tcp_ip6h->ip6_hops; 9668 break; /* goto sizeof (int) option return */ 9669 case IPV6_BOUND_IF: 9670 /* Zero if not set */ 9671 *i1 = tcp->tcp_bound_if; 9672 break; /* goto sizeof (int) option return */ 9673 case IPV6_RECVPKTINFO: 9674 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) 9675 *i1 = 1; 9676 else 9677 *i1 = 0; 9678 break; /* goto sizeof (int) option return */ 9679 case IPV6_RECVTCLASS: 9680 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS) 9681 *i1 = 1; 9682 else 9683 *i1 = 0; 9684 break; /* goto sizeof (int) option return */ 9685 case IPV6_RECVHOPLIMIT: 9686 if (tcp->tcp_ipv6_recvancillary & 9687 TCP_IPV6_RECVHOPLIMIT) 9688 *i1 = 1; 9689 else 9690 *i1 = 0; 9691 break; /* goto sizeof (int) option return */ 9692 case IPV6_RECVHOPOPTS: 9693 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) 9694 *i1 = 1; 9695 else 9696 *i1 = 0; 9697 break; /* goto sizeof (int) option return */ 9698 case IPV6_RECVDSTOPTS: 9699 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVDSTOPTS) 9700 *i1 = 1; 9701 else 9702 *i1 = 0; 9703 break; /* goto sizeof (int) option return */ 9704 case _OLD_IPV6_RECVDSTOPTS: 9705 if (tcp->tcp_ipv6_recvancillary & 9706 TCP_OLD_IPV6_RECVDSTOPTS) 9707 *i1 = 1; 9708 else 9709 *i1 = 0; 9710 break; /* goto sizeof (int) option return */ 9711 case IPV6_RECVRTHDR: 9712 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) 9713 *i1 = 1; 9714 else 9715 *i1 = 0; 9716 break; /* goto sizeof (int) option return */ 9717 case IPV6_RECVRTHDRDSTOPTS: 9718 if (tcp->tcp_ipv6_recvancillary & 9719 TCP_IPV6_RECVRTDSTOPTS) 9720 *i1 = 1; 9721 else 9722 *i1 = 0; 9723 break; /* goto sizeof (int) option return */ 9724 case IPV6_PKTINFO: { 9725 /* XXX assumes that caller has room for max size! */ 9726 struct in6_pktinfo *pkti; 9727 9728 pkti = (struct in6_pktinfo *)ptr; 9729 if (ipp->ipp_fields & IPPF_IFINDEX) 9730 pkti->ipi6_ifindex = ipp->ipp_ifindex; 9731 else 9732 pkti->ipi6_ifindex = 0; 9733 if (ipp->ipp_fields & IPPF_ADDR) 9734 pkti->ipi6_addr = ipp->ipp_addr; 9735 else 9736 pkti->ipi6_addr = ipv6_all_zeros; 9737 return (sizeof (struct in6_pktinfo)); 9738 } 9739 case IPV6_TCLASS: 9740 if (ipp->ipp_fields & IPPF_TCLASS) 9741 *i1 = ipp->ipp_tclass; 9742 else 9743 *i1 = IPV6_FLOW_TCLASS( 9744 IPV6_DEFAULT_VERS_AND_FLOW); 9745 break; /* goto sizeof (int) option return */ 9746 case IPV6_NEXTHOP: { 9747 sin6_t *sin6 = (sin6_t *)ptr; 9748 9749 if (!(ipp->ipp_fields & IPPF_NEXTHOP)) 9750 return (0); 9751 *sin6 = sin6_null; 9752 sin6->sin6_family = AF_INET6; 9753 sin6->sin6_addr = ipp->ipp_nexthop; 9754 return (sizeof (sin6_t)); 9755 } 9756 case IPV6_HOPOPTS: 9757 if (!(ipp->ipp_fields & IPPF_HOPOPTS)) 9758 return (0); 9759 if (ipp->ipp_hopoptslen <= tcp->tcp_label_len) 9760 return (0); 9761 bcopy((char *)ipp->ipp_hopopts + tcp->tcp_label_len, 9762 ptr, ipp->ipp_hopoptslen - tcp->tcp_label_len); 9763 if (tcp->tcp_label_len > 0) { 9764 ptr[0] = ((char *)ipp->ipp_hopopts)[0]; 9765 ptr[1] = (ipp->ipp_hopoptslen - 9766 tcp->tcp_label_len + 7) / 8 - 1; 9767 } 9768 return (ipp->ipp_hopoptslen - tcp->tcp_label_len); 9769 case IPV6_RTHDRDSTOPTS: 9770 if (!(ipp->ipp_fields & IPPF_RTDSTOPTS)) 9771 return (0); 9772 bcopy(ipp->ipp_rtdstopts, ptr, ipp->ipp_rtdstoptslen); 9773 return (ipp->ipp_rtdstoptslen); 9774 case IPV6_RTHDR: 9775 if (!(ipp->ipp_fields & IPPF_RTHDR)) 9776 return (0); 9777 bcopy(ipp->ipp_rthdr, ptr, ipp->ipp_rthdrlen); 9778 return (ipp->ipp_rthdrlen); 9779 case IPV6_DSTOPTS: 9780 if (!(ipp->ipp_fields & IPPF_DSTOPTS)) 9781 return (0); 9782 bcopy(ipp->ipp_dstopts, ptr, ipp->ipp_dstoptslen); 9783 return (ipp->ipp_dstoptslen); 9784 case IPV6_SRC_PREFERENCES: 9785 return (ip6_get_src_preferences(connp, 9786 (uint32_t *)ptr)); 9787 case IPV6_PATHMTU: { 9788 struct ip6_mtuinfo *mtuinfo = (struct ip6_mtuinfo *)ptr; 9789 9790 if (tcp->tcp_state < TCPS_ESTABLISHED) 9791 return (-1); 9792 9793 return (ip_fill_mtuinfo(&connp->conn_remv6, 9794 connp->conn_fport, mtuinfo, 9795 connp->conn_netstack)); 9796 } 9797 default: 9798 return (-1); 9799 } 9800 break; 9801 default: 9802 return (-1); 9803 } 9804 return (sizeof (int)); 9805 } 9806 9807 /* 9808 * TCP routine to get the values of options. 9809 */ 9810 int 9811 tcp_tpi_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 9812 { 9813 return (tcp_opt_get(Q_TO_CONN(q), level, name, ptr)); 9814 } 9815 9816 /* returns UNIX error, the optlen is a value-result arg */ 9817 int 9818 tcp_getsockopt(sock_lower_handle_t proto_handle, int level, int option_name, 9819 void *optvalp, socklen_t *optlen, cred_t *cr) 9820 { 9821 conn_t *connp = (conn_t *)proto_handle; 9822 squeue_t *sqp = connp->conn_sqp; 9823 int error; 9824 t_uscalar_t max_optbuf_len; 9825 void *optvalp_buf; 9826 int len; 9827 9828 ASSERT(connp->conn_upper_handle != NULL); 9829 9830 error = proto_opt_check(level, option_name, *optlen, &max_optbuf_len, 9831 tcp_opt_obj.odb_opt_des_arr, 9832 tcp_opt_obj.odb_opt_arr_cnt, 9833 tcp_opt_obj.odb_topmost_tpiprovider, 9834 B_FALSE, B_TRUE, cr); 9835 if (error != 0) { 9836 if (error < 0) { 9837 error = proto_tlitosyserr(-error); 9838 } 9839 return (error); 9840 } 9841 9842 optvalp_buf = kmem_alloc(max_optbuf_len, KM_SLEEP); 9843 9844 error = squeue_synch_enter(sqp, connp, 0); 9845 if (error == ENOMEM) { 9846 return (ENOMEM); 9847 } 9848 9849 len = tcp_opt_get(connp, level, option_name, optvalp_buf); 9850 squeue_synch_exit(sqp, connp); 9851 9852 if (len < 0) { 9853 /* 9854 * Pass on to IP 9855 */ 9856 kmem_free(optvalp_buf, max_optbuf_len); 9857 return (ip_get_options(connp, level, option_name, 9858 optvalp, optlen, cr)); 9859 } else { 9860 /* 9861 * update optlen and copy option value 9862 */ 9863 t_uscalar_t size = MIN(len, *optlen); 9864 bcopy(optvalp_buf, optvalp, size); 9865 bcopy(&size, optlen, sizeof (size)); 9866 9867 kmem_free(optvalp_buf, max_optbuf_len); 9868 return (0); 9869 } 9870 } 9871 9872 /* 9873 * We declare as 'int' rather than 'void' to satisfy pfi_t arg requirements. 9874 * Parameters are assumed to be verified by the caller. 9875 */ 9876 /* ARGSUSED */ 9877 int 9878 tcp_opt_set(conn_t *connp, uint_t optset_context, int level, int name, 9879 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 9880 void *thisdg_attrs, cred_t *cr, mblk_t *mblk) 9881 { 9882 tcp_t *tcp = connp->conn_tcp; 9883 int *i1 = (int *)invalp; 9884 boolean_t onoff = (*i1 == 0) ? 0 : 1; 9885 boolean_t checkonly; 9886 int reterr; 9887 tcp_stack_t *tcps = tcp->tcp_tcps; 9888 9889 switch (optset_context) { 9890 case SETFN_OPTCOM_CHECKONLY: 9891 checkonly = B_TRUE; 9892 /* 9893 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 9894 * inlen != 0 implies value supplied and 9895 * we have to "pretend" to set it. 9896 * inlen == 0 implies that there is no 9897 * value part in T_CHECK request and just validation 9898 * done elsewhere should be enough, we just return here. 9899 */ 9900 if (inlen == 0) { 9901 *outlenp = 0; 9902 return (0); 9903 } 9904 break; 9905 case SETFN_OPTCOM_NEGOTIATE: 9906 checkonly = B_FALSE; 9907 break; 9908 case SETFN_UD_NEGOTIATE: /* error on conn-oriented transports ? */ 9909 case SETFN_CONN_NEGOTIATE: 9910 checkonly = B_FALSE; 9911 /* 9912 * Negotiating local and "association-related" options 9913 * from other (T_CONN_REQ, T_CONN_RES,T_UNITDATA_REQ) 9914 * primitives is allowed by XTI, but we choose 9915 * to not implement this style negotiation for Internet 9916 * protocols (We interpret it is a must for OSI world but 9917 * optional for Internet protocols) for all options. 9918 * [ Will do only for the few options that enable test 9919 * suites that our XTI implementation of this feature 9920 * works for transports that do allow it ] 9921 */ 9922 if (!tcp_allow_connopt_set(level, name)) { 9923 *outlenp = 0; 9924 return (EINVAL); 9925 } 9926 break; 9927 default: 9928 /* 9929 * We should never get here 9930 */ 9931 *outlenp = 0; 9932 return (EINVAL); 9933 } 9934 9935 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 9936 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 9937 9938 /* 9939 * For TCP, we should have no ancillary data sent down 9940 * (sendmsg isn't supported for SOCK_STREAM), so thisdg_attrs 9941 * has to be zero. 9942 */ 9943 ASSERT(thisdg_attrs == NULL); 9944 9945 /* 9946 * For fixed length options, no sanity check 9947 * of passed in length is done. It is assumed *_optcom_req() 9948 * routines do the right thing. 9949 */ 9950 switch (level) { 9951 case SOL_SOCKET: 9952 switch (name) { 9953 case SO_LINGER: { 9954 struct linger *lgr = (struct linger *)invalp; 9955 9956 if (!checkonly) { 9957 if (lgr->l_onoff) { 9958 tcp->tcp_linger = 1; 9959 tcp->tcp_lingertime = lgr->l_linger; 9960 } else { 9961 tcp->tcp_linger = 0; 9962 tcp->tcp_lingertime = 0; 9963 } 9964 /* struct copy */ 9965 *(struct linger *)outvalp = *lgr; 9966 } else { 9967 if (!lgr->l_onoff) { 9968 ((struct linger *) 9969 outvalp)->l_onoff = 0; 9970 ((struct linger *) 9971 outvalp)->l_linger = 0; 9972 } else { 9973 /* struct copy */ 9974 *(struct linger *)outvalp = *lgr; 9975 } 9976 } 9977 *outlenp = sizeof (struct linger); 9978 return (0); 9979 } 9980 case SO_DEBUG: 9981 if (!checkonly) 9982 tcp->tcp_debug = onoff; 9983 break; 9984 case SO_KEEPALIVE: 9985 if (checkonly) { 9986 /* check only case */ 9987 break; 9988 } 9989 9990 if (!onoff) { 9991 if (tcp->tcp_ka_enabled) { 9992 if (tcp->tcp_ka_tid != 0) { 9993 (void) TCP_TIMER_CANCEL(tcp, 9994 tcp->tcp_ka_tid); 9995 tcp->tcp_ka_tid = 0; 9996 } 9997 tcp->tcp_ka_enabled = 0; 9998 } 9999 break; 10000 } 10001 if (!tcp->tcp_ka_enabled) { 10002 /* Crank up the keepalive timer */ 10003 tcp->tcp_ka_last_intrvl = 0; 10004 tcp->tcp_ka_tid = TCP_TIMER(tcp, 10005 tcp_keepalive_killer, 10006 MSEC_TO_TICK(tcp->tcp_ka_interval)); 10007 tcp->tcp_ka_enabled = 1; 10008 } 10009 break; 10010 case SO_DONTROUTE: 10011 /* 10012 * SO_DONTROUTE, SO_USELOOPBACK, and SO_BROADCAST are 10013 * only of interest to IP. We track them here only so 10014 * that we can report their current value. 10015 */ 10016 if (!checkonly) { 10017 tcp->tcp_dontroute = onoff; 10018 tcp->tcp_connp->conn_dontroute = onoff; 10019 } 10020 break; 10021 case SO_USELOOPBACK: 10022 if (!checkonly) { 10023 tcp->tcp_useloopback = onoff; 10024 tcp->tcp_connp->conn_loopback = onoff; 10025 } 10026 break; 10027 case SO_BROADCAST: 10028 if (!checkonly) { 10029 tcp->tcp_broadcast = onoff; 10030 tcp->tcp_connp->conn_broadcast = onoff; 10031 } 10032 break; 10033 case SO_REUSEADDR: 10034 if (!checkonly) { 10035 tcp->tcp_reuseaddr = onoff; 10036 tcp->tcp_connp->conn_reuseaddr = onoff; 10037 } 10038 break; 10039 case SO_OOBINLINE: 10040 if (!checkonly) { 10041 tcp->tcp_oobinline = onoff; 10042 if (IPCL_IS_NONSTR(tcp->tcp_connp)) 10043 proto_set_rx_oob_opt(connp, onoff); 10044 } 10045 break; 10046 case SO_DGRAM_ERRIND: 10047 if (!checkonly) 10048 tcp->tcp_dgram_errind = onoff; 10049 break; 10050 case SO_SNDBUF: { 10051 if (*i1 > tcps->tcps_max_buf) { 10052 *outlenp = 0; 10053 return (ENOBUFS); 10054 } 10055 if (checkonly) 10056 break; 10057 10058 tcp->tcp_xmit_hiwater = *i1; 10059 if (tcps->tcps_snd_lowat_fraction != 0) 10060 tcp->tcp_xmit_lowater = 10061 tcp->tcp_xmit_hiwater / 10062 tcps->tcps_snd_lowat_fraction; 10063 (void) tcp_maxpsz_set(tcp, B_TRUE); 10064 /* 10065 * If we are flow-controlled, recheck the condition. 10066 * There are apps that increase SO_SNDBUF size when 10067 * flow-controlled (EWOULDBLOCK), and expect the flow 10068 * control condition to be lifted right away. 10069 */ 10070 mutex_enter(&tcp->tcp_non_sq_lock); 10071 if (tcp->tcp_flow_stopped && 10072 TCP_UNSENT_BYTES(tcp) < tcp->tcp_xmit_hiwater) { 10073 tcp_clrqfull(tcp); 10074 } 10075 mutex_exit(&tcp->tcp_non_sq_lock); 10076 break; 10077 } 10078 case SO_RCVBUF: 10079 if (*i1 > tcps->tcps_max_buf) { 10080 *outlenp = 0; 10081 return (ENOBUFS); 10082 } 10083 /* Silently ignore zero */ 10084 if (!checkonly && *i1 != 0) { 10085 *i1 = MSS_ROUNDUP(*i1, tcp->tcp_mss); 10086 (void) tcp_rwnd_set(tcp, *i1); 10087 } 10088 /* 10089 * XXX should we return the rwnd here 10090 * and tcp_opt_get ? 10091 */ 10092 break; 10093 case SO_SND_COPYAVOID: 10094 if (!checkonly) { 10095 /* we only allow enable at most once for now */ 10096 if (tcp->tcp_loopback || 10097 (tcp->tcp_kssl_ctx != NULL) || 10098 (!tcp->tcp_snd_zcopy_aware && 10099 (onoff != 1 || !tcp_zcopy_check(tcp)))) { 10100 *outlenp = 0; 10101 return (EOPNOTSUPP); 10102 } 10103 tcp->tcp_snd_zcopy_aware = 1; 10104 } 10105 break; 10106 case SO_RCVTIMEO: 10107 case SO_SNDTIMEO: 10108 /* 10109 * Pass these two options in order for third part 10110 * protocol usage. Here just return directly. 10111 */ 10112 return (0); 10113 case SO_ALLZONES: 10114 /* Pass option along to IP level for handling */ 10115 return (-EINVAL); 10116 case SO_ANON_MLP: 10117 /* Pass option along to IP level for handling */ 10118 return (-EINVAL); 10119 case SO_MAC_EXEMPT: 10120 /* Pass option along to IP level for handling */ 10121 return (-EINVAL); 10122 case SO_EXCLBIND: 10123 if (!checkonly) 10124 tcp->tcp_exclbind = onoff; 10125 break; 10126 default: 10127 *outlenp = 0; 10128 return (EINVAL); 10129 } 10130 break; 10131 case IPPROTO_TCP: 10132 switch (name) { 10133 case TCP_NODELAY: 10134 if (!checkonly) 10135 tcp->tcp_naglim = *i1 ? 1 : tcp->tcp_mss; 10136 break; 10137 case TCP_NOTIFY_THRESHOLD: 10138 if (!checkonly) 10139 tcp->tcp_first_timer_threshold = *i1; 10140 break; 10141 case TCP_ABORT_THRESHOLD: 10142 if (!checkonly) 10143 tcp->tcp_second_timer_threshold = *i1; 10144 break; 10145 case TCP_CONN_NOTIFY_THRESHOLD: 10146 if (!checkonly) 10147 tcp->tcp_first_ctimer_threshold = *i1; 10148 break; 10149 case TCP_CONN_ABORT_THRESHOLD: 10150 if (!checkonly) 10151 tcp->tcp_second_ctimer_threshold = *i1; 10152 break; 10153 case TCP_RECVDSTADDR: 10154 if (tcp->tcp_state > TCPS_LISTEN) 10155 return (EOPNOTSUPP); 10156 if (!checkonly) 10157 tcp->tcp_recvdstaddr = onoff; 10158 break; 10159 case TCP_ANONPRIVBIND: 10160 if ((reterr = secpolicy_net_privaddr(cr, 0, 10161 IPPROTO_TCP)) != 0) { 10162 *outlenp = 0; 10163 return (reterr); 10164 } 10165 if (!checkonly) { 10166 tcp->tcp_anon_priv_bind = onoff; 10167 } 10168 break; 10169 case TCP_EXCLBIND: 10170 if (!checkonly) 10171 tcp->tcp_exclbind = onoff; 10172 break; /* goto sizeof (int) option return */ 10173 case TCP_INIT_CWND: { 10174 uint32_t init_cwnd = *((uint32_t *)invalp); 10175 10176 if (checkonly) 10177 break; 10178 10179 /* 10180 * Only allow socket with network configuration 10181 * privilege to set the initial cwnd to be larger 10182 * than allowed by RFC 3390. 10183 */ 10184 if (init_cwnd <= MIN(4, MAX(2, 4380 / tcp->tcp_mss))) { 10185 tcp->tcp_init_cwnd = init_cwnd; 10186 break; 10187 } 10188 if ((reterr = secpolicy_ip_config(cr, B_TRUE)) != 0) { 10189 *outlenp = 0; 10190 return (reterr); 10191 } 10192 if (init_cwnd > TCP_MAX_INIT_CWND) { 10193 *outlenp = 0; 10194 return (EINVAL); 10195 } 10196 tcp->tcp_init_cwnd = init_cwnd; 10197 break; 10198 } 10199 case TCP_KEEPALIVE_THRESHOLD: 10200 if (checkonly) 10201 break; 10202 10203 if (*i1 < tcps->tcps_keepalive_interval_low || 10204 *i1 > tcps->tcps_keepalive_interval_high) { 10205 *outlenp = 0; 10206 return (EINVAL); 10207 } 10208 if (*i1 != tcp->tcp_ka_interval) { 10209 tcp->tcp_ka_interval = *i1; 10210 /* 10211 * Check if we need to restart the 10212 * keepalive timer. 10213 */ 10214 if (tcp->tcp_ka_tid != 0) { 10215 ASSERT(tcp->tcp_ka_enabled); 10216 (void) TCP_TIMER_CANCEL(tcp, 10217 tcp->tcp_ka_tid); 10218 tcp->tcp_ka_last_intrvl = 0; 10219 tcp->tcp_ka_tid = TCP_TIMER(tcp, 10220 tcp_keepalive_killer, 10221 MSEC_TO_TICK(tcp->tcp_ka_interval)); 10222 } 10223 } 10224 break; 10225 case TCP_KEEPALIVE_ABORT_THRESHOLD: 10226 if (!checkonly) { 10227 if (*i1 < 10228 tcps->tcps_keepalive_abort_interval_low || 10229 *i1 > 10230 tcps->tcps_keepalive_abort_interval_high) { 10231 *outlenp = 0; 10232 return (EINVAL); 10233 } 10234 tcp->tcp_ka_abort_thres = *i1; 10235 } 10236 break; 10237 case TCP_CORK: 10238 if (!checkonly) { 10239 /* 10240 * if tcp->tcp_cork was set and is now 10241 * being unset, we have to make sure that 10242 * the remaining data gets sent out. Also 10243 * unset tcp->tcp_cork so that tcp_wput_data() 10244 * can send data even if it is less than mss 10245 */ 10246 if (tcp->tcp_cork && onoff == 0 && 10247 tcp->tcp_unsent > 0) { 10248 tcp->tcp_cork = B_FALSE; 10249 tcp_wput_data(tcp, NULL, B_FALSE); 10250 } 10251 tcp->tcp_cork = onoff; 10252 } 10253 break; 10254 default: 10255 *outlenp = 0; 10256 return (EINVAL); 10257 } 10258 break; 10259 case IPPROTO_IP: 10260 if (tcp->tcp_family != AF_INET) { 10261 *outlenp = 0; 10262 return (ENOPROTOOPT); 10263 } 10264 switch (name) { 10265 case IP_OPTIONS: 10266 case T_IP_OPTIONS: 10267 reterr = tcp_opt_set_header(tcp, checkonly, 10268 invalp, inlen); 10269 if (reterr) { 10270 *outlenp = 0; 10271 return (reterr); 10272 } 10273 /* OK return - copy input buffer into output buffer */ 10274 if (invalp != outvalp) { 10275 /* don't trust bcopy for identical src/dst */ 10276 bcopy(invalp, outvalp, inlen); 10277 } 10278 *outlenp = inlen; 10279 return (0); 10280 case IP_TOS: 10281 case T_IP_TOS: 10282 if (!checkonly) { 10283 tcp->tcp_ipha->ipha_type_of_service = 10284 (uchar_t)*i1; 10285 tcp->tcp_tos = (uchar_t)*i1; 10286 } 10287 break; 10288 case IP_TTL: 10289 if (!checkonly) { 10290 tcp->tcp_ipha->ipha_ttl = (uchar_t)*i1; 10291 tcp->tcp_ttl = (uchar_t)*i1; 10292 } 10293 break; 10294 case IP_BOUND_IF: 10295 case IP_NEXTHOP: 10296 /* Handled at the IP level */ 10297 return (-EINVAL); 10298 case IP_SEC_OPT: 10299 /* 10300 * We should not allow policy setting after 10301 * we start listening for connections. 10302 */ 10303 if (tcp->tcp_state == TCPS_LISTEN) { 10304 return (EINVAL); 10305 } else { 10306 /* Handled at the IP level */ 10307 return (-EINVAL); 10308 } 10309 default: 10310 *outlenp = 0; 10311 return (EINVAL); 10312 } 10313 break; 10314 case IPPROTO_IPV6: { 10315 ip6_pkt_t *ipp; 10316 10317 /* 10318 * IPPROTO_IPV6 options are only supported for sockets 10319 * that are using IPv6 on the wire. 10320 */ 10321 if (tcp->tcp_ipversion != IPV6_VERSION) { 10322 *outlenp = 0; 10323 return (ENOPROTOOPT); 10324 } 10325 /* 10326 * Only sticky options; no ancillary data 10327 */ 10328 ipp = &tcp->tcp_sticky_ipp; 10329 10330 switch (name) { 10331 case IPV6_UNICAST_HOPS: 10332 /* -1 means use default */ 10333 if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) { 10334 *outlenp = 0; 10335 return (EINVAL); 10336 } 10337 if (!checkonly) { 10338 if (*i1 == -1) { 10339 tcp->tcp_ip6h->ip6_hops = 10340 ipp->ipp_unicast_hops = 10341 (uint8_t)tcps->tcps_ipv6_hoplimit; 10342 ipp->ipp_fields &= ~IPPF_UNICAST_HOPS; 10343 /* Pass modified value to IP. */ 10344 *i1 = tcp->tcp_ip6h->ip6_hops; 10345 } else { 10346 tcp->tcp_ip6h->ip6_hops = 10347 ipp->ipp_unicast_hops = 10348 (uint8_t)*i1; 10349 ipp->ipp_fields |= IPPF_UNICAST_HOPS; 10350 } 10351 reterr = tcp_build_hdrs(tcp); 10352 if (reterr != 0) 10353 return (reterr); 10354 } 10355 break; 10356 case IPV6_BOUND_IF: 10357 if (!checkonly) { 10358 tcp->tcp_bound_if = *i1; 10359 PASS_OPT_TO_IP(connp); 10360 } 10361 break; 10362 /* 10363 * Set boolean switches for ancillary data delivery 10364 */ 10365 case IPV6_RECVPKTINFO: 10366 if (!checkonly) { 10367 if (onoff) 10368 tcp->tcp_ipv6_recvancillary |= 10369 TCP_IPV6_RECVPKTINFO; 10370 else 10371 tcp->tcp_ipv6_recvancillary &= 10372 ~TCP_IPV6_RECVPKTINFO; 10373 /* Force it to be sent up with the next msg */ 10374 tcp->tcp_recvifindex = 0; 10375 PASS_OPT_TO_IP(connp); 10376 } 10377 break; 10378 case IPV6_RECVTCLASS: 10379 if (!checkonly) { 10380 if (onoff) 10381 tcp->tcp_ipv6_recvancillary |= 10382 TCP_IPV6_RECVTCLASS; 10383 else 10384 tcp->tcp_ipv6_recvancillary &= 10385 ~TCP_IPV6_RECVTCLASS; 10386 PASS_OPT_TO_IP(connp); 10387 } 10388 break; 10389 case IPV6_RECVHOPLIMIT: 10390 if (!checkonly) { 10391 if (onoff) 10392 tcp->tcp_ipv6_recvancillary |= 10393 TCP_IPV6_RECVHOPLIMIT; 10394 else 10395 tcp->tcp_ipv6_recvancillary &= 10396 ~TCP_IPV6_RECVHOPLIMIT; 10397 /* Force it to be sent up with the next msg */ 10398 tcp->tcp_recvhops = 0xffffffffU; 10399 PASS_OPT_TO_IP(connp); 10400 } 10401 break; 10402 case IPV6_RECVHOPOPTS: 10403 if (!checkonly) { 10404 if (onoff) 10405 tcp->tcp_ipv6_recvancillary |= 10406 TCP_IPV6_RECVHOPOPTS; 10407 else 10408 tcp->tcp_ipv6_recvancillary &= 10409 ~TCP_IPV6_RECVHOPOPTS; 10410 PASS_OPT_TO_IP(connp); 10411 } 10412 break; 10413 case IPV6_RECVDSTOPTS: 10414 if (!checkonly) { 10415 if (onoff) 10416 tcp->tcp_ipv6_recvancillary |= 10417 TCP_IPV6_RECVDSTOPTS; 10418 else 10419 tcp->tcp_ipv6_recvancillary &= 10420 ~TCP_IPV6_RECVDSTOPTS; 10421 PASS_OPT_TO_IP(connp); 10422 } 10423 break; 10424 case _OLD_IPV6_RECVDSTOPTS: 10425 if (!checkonly) { 10426 if (onoff) 10427 tcp->tcp_ipv6_recvancillary |= 10428 TCP_OLD_IPV6_RECVDSTOPTS; 10429 else 10430 tcp->tcp_ipv6_recvancillary &= 10431 ~TCP_OLD_IPV6_RECVDSTOPTS; 10432 } 10433 break; 10434 case IPV6_RECVRTHDR: 10435 if (!checkonly) { 10436 if (onoff) 10437 tcp->tcp_ipv6_recvancillary |= 10438 TCP_IPV6_RECVRTHDR; 10439 else 10440 tcp->tcp_ipv6_recvancillary &= 10441 ~TCP_IPV6_RECVRTHDR; 10442 PASS_OPT_TO_IP(connp); 10443 } 10444 break; 10445 case IPV6_RECVRTHDRDSTOPTS: 10446 if (!checkonly) { 10447 if (onoff) 10448 tcp->tcp_ipv6_recvancillary |= 10449 TCP_IPV6_RECVRTDSTOPTS; 10450 else 10451 tcp->tcp_ipv6_recvancillary &= 10452 ~TCP_IPV6_RECVRTDSTOPTS; 10453 PASS_OPT_TO_IP(connp); 10454 } 10455 break; 10456 case IPV6_PKTINFO: 10457 if (inlen != 0 && inlen != sizeof (struct in6_pktinfo)) 10458 return (EINVAL); 10459 if (checkonly) 10460 break; 10461 10462 if (inlen == 0) { 10463 ipp->ipp_fields &= ~(IPPF_IFINDEX|IPPF_ADDR); 10464 } else { 10465 struct in6_pktinfo *pkti; 10466 10467 pkti = (struct in6_pktinfo *)invalp; 10468 /* 10469 * RFC 3542 states that ipi6_addr must be 10470 * the unspecified address when setting the 10471 * IPV6_PKTINFO sticky socket option on a 10472 * TCP socket. 10473 */ 10474 if (!IN6_IS_ADDR_UNSPECIFIED(&pkti->ipi6_addr)) 10475 return (EINVAL); 10476 /* 10477 * IP will validate the source address and 10478 * interface index. 10479 */ 10480 if (IPCL_IS_NONSTR(tcp->tcp_connp)) { 10481 reterr = ip_set_options(tcp->tcp_connp, 10482 level, name, invalp, inlen, cr); 10483 } else { 10484 reterr = ip6_set_pktinfo(cr, 10485 tcp->tcp_connp, pkti); 10486 } 10487 if (reterr != 0) 10488 return (reterr); 10489 ipp->ipp_ifindex = pkti->ipi6_ifindex; 10490 ipp->ipp_addr = pkti->ipi6_addr; 10491 if (ipp->ipp_ifindex != 0) 10492 ipp->ipp_fields |= IPPF_IFINDEX; 10493 else 10494 ipp->ipp_fields &= ~IPPF_IFINDEX; 10495 if (!IN6_IS_ADDR_UNSPECIFIED(&ipp->ipp_addr)) 10496 ipp->ipp_fields |= IPPF_ADDR; 10497 else 10498 ipp->ipp_fields &= ~IPPF_ADDR; 10499 } 10500 reterr = tcp_build_hdrs(tcp); 10501 if (reterr != 0) 10502 return (reterr); 10503 break; 10504 case IPV6_TCLASS: 10505 if (inlen != 0 && inlen != sizeof (int)) 10506 return (EINVAL); 10507 if (checkonly) 10508 break; 10509 10510 if (inlen == 0) { 10511 ipp->ipp_fields &= ~IPPF_TCLASS; 10512 } else { 10513 if (*i1 > 255 || *i1 < -1) 10514 return (EINVAL); 10515 if (*i1 == -1) { 10516 ipp->ipp_tclass = 0; 10517 *i1 = 0; 10518 } else { 10519 ipp->ipp_tclass = *i1; 10520 } 10521 ipp->ipp_fields |= IPPF_TCLASS; 10522 } 10523 reterr = tcp_build_hdrs(tcp); 10524 if (reterr != 0) 10525 return (reterr); 10526 break; 10527 case IPV6_NEXTHOP: 10528 /* 10529 * IP will verify that the nexthop is reachable 10530 * and fail for sticky options. 10531 */ 10532 if (inlen != 0 && inlen != sizeof (sin6_t)) 10533 return (EINVAL); 10534 if (checkonly) 10535 break; 10536 10537 if (inlen == 0) { 10538 ipp->ipp_fields &= ~IPPF_NEXTHOP; 10539 } else { 10540 sin6_t *sin6 = (sin6_t *)invalp; 10541 10542 if (sin6->sin6_family != AF_INET6) 10543 return (EAFNOSUPPORT); 10544 if (IN6_IS_ADDR_V4MAPPED( 10545 &sin6->sin6_addr)) 10546 return (EADDRNOTAVAIL); 10547 ipp->ipp_nexthop = sin6->sin6_addr; 10548 if (!IN6_IS_ADDR_UNSPECIFIED( 10549 &ipp->ipp_nexthop)) 10550 ipp->ipp_fields |= IPPF_NEXTHOP; 10551 else 10552 ipp->ipp_fields &= ~IPPF_NEXTHOP; 10553 } 10554 reterr = tcp_build_hdrs(tcp); 10555 if (reterr != 0) 10556 return (reterr); 10557 PASS_OPT_TO_IP(connp); 10558 break; 10559 case IPV6_HOPOPTS: { 10560 ip6_hbh_t *hopts = (ip6_hbh_t *)invalp; 10561 10562 /* 10563 * Sanity checks - minimum size, size a multiple of 10564 * eight bytes, and matching size passed in. 10565 */ 10566 if (inlen != 0 && 10567 inlen != (8 * (hopts->ip6h_len + 1))) 10568 return (EINVAL); 10569 10570 if (checkonly) 10571 break; 10572 10573 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10574 (uchar_t **)&ipp->ipp_hopopts, 10575 &ipp->ipp_hopoptslen, tcp->tcp_label_len); 10576 if (reterr != 0) 10577 return (reterr); 10578 if (ipp->ipp_hopoptslen == 0) 10579 ipp->ipp_fields &= ~IPPF_HOPOPTS; 10580 else 10581 ipp->ipp_fields |= IPPF_HOPOPTS; 10582 reterr = tcp_build_hdrs(tcp); 10583 if (reterr != 0) 10584 return (reterr); 10585 break; 10586 } 10587 case IPV6_RTHDRDSTOPTS: { 10588 ip6_dest_t *dopts = (ip6_dest_t *)invalp; 10589 10590 /* 10591 * Sanity checks - minimum size, size a multiple of 10592 * eight bytes, and matching size passed in. 10593 */ 10594 if (inlen != 0 && 10595 inlen != (8 * (dopts->ip6d_len + 1))) 10596 return (EINVAL); 10597 10598 if (checkonly) 10599 break; 10600 10601 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10602 (uchar_t **)&ipp->ipp_rtdstopts, 10603 &ipp->ipp_rtdstoptslen, 0); 10604 if (reterr != 0) 10605 return (reterr); 10606 if (ipp->ipp_rtdstoptslen == 0) 10607 ipp->ipp_fields &= ~IPPF_RTDSTOPTS; 10608 else 10609 ipp->ipp_fields |= IPPF_RTDSTOPTS; 10610 reterr = tcp_build_hdrs(tcp); 10611 if (reterr != 0) 10612 return (reterr); 10613 break; 10614 } 10615 case IPV6_DSTOPTS: { 10616 ip6_dest_t *dopts = (ip6_dest_t *)invalp; 10617 10618 /* 10619 * Sanity checks - minimum size, size a multiple of 10620 * eight bytes, and matching size passed in. 10621 */ 10622 if (inlen != 0 && 10623 inlen != (8 * (dopts->ip6d_len + 1))) 10624 return (EINVAL); 10625 10626 if (checkonly) 10627 break; 10628 10629 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10630 (uchar_t **)&ipp->ipp_dstopts, 10631 &ipp->ipp_dstoptslen, 0); 10632 if (reterr != 0) 10633 return (reterr); 10634 if (ipp->ipp_dstoptslen == 0) 10635 ipp->ipp_fields &= ~IPPF_DSTOPTS; 10636 else 10637 ipp->ipp_fields |= IPPF_DSTOPTS; 10638 reterr = tcp_build_hdrs(tcp); 10639 if (reterr != 0) 10640 return (reterr); 10641 break; 10642 } 10643 case IPV6_RTHDR: { 10644 ip6_rthdr_t *rt = (ip6_rthdr_t *)invalp; 10645 10646 /* 10647 * Sanity checks - minimum size, size a multiple of 10648 * eight bytes, and matching size passed in. 10649 */ 10650 if (inlen != 0 && 10651 inlen != (8 * (rt->ip6r_len + 1))) 10652 return (EINVAL); 10653 10654 if (checkonly) 10655 break; 10656 10657 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10658 (uchar_t **)&ipp->ipp_rthdr, 10659 &ipp->ipp_rthdrlen, 0); 10660 if (reterr != 0) 10661 return (reterr); 10662 if (ipp->ipp_rthdrlen == 0) 10663 ipp->ipp_fields &= ~IPPF_RTHDR; 10664 else 10665 ipp->ipp_fields |= IPPF_RTHDR; 10666 reterr = tcp_build_hdrs(tcp); 10667 if (reterr != 0) 10668 return (reterr); 10669 break; 10670 } 10671 case IPV6_V6ONLY: 10672 if (!checkonly) { 10673 tcp->tcp_connp->conn_ipv6_v6only = onoff; 10674 } 10675 break; 10676 case IPV6_USE_MIN_MTU: 10677 if (inlen != sizeof (int)) 10678 return (EINVAL); 10679 10680 if (*i1 < -1 || *i1 > 1) 10681 return (EINVAL); 10682 10683 if (checkonly) 10684 break; 10685 10686 ipp->ipp_fields |= IPPF_USE_MIN_MTU; 10687 ipp->ipp_use_min_mtu = *i1; 10688 break; 10689 case IPV6_SEC_OPT: 10690 /* 10691 * We should not allow policy setting after 10692 * we start listening for connections. 10693 */ 10694 if (tcp->tcp_state == TCPS_LISTEN) { 10695 return (EINVAL); 10696 } else { 10697 /* Handled at the IP level */ 10698 return (-EINVAL); 10699 } 10700 case IPV6_SRC_PREFERENCES: 10701 if (inlen != sizeof (uint32_t)) 10702 return (EINVAL); 10703 reterr = ip6_set_src_preferences(tcp->tcp_connp, 10704 *(uint32_t *)invalp); 10705 if (reterr != 0) { 10706 *outlenp = 0; 10707 return (reterr); 10708 } 10709 break; 10710 default: 10711 *outlenp = 0; 10712 return (EINVAL); 10713 } 10714 break; 10715 } /* end IPPROTO_IPV6 */ 10716 default: 10717 *outlenp = 0; 10718 return (EINVAL); 10719 } 10720 /* 10721 * Common case of OK return with outval same as inval 10722 */ 10723 if (invalp != outvalp) { 10724 /* don't trust bcopy for identical src/dst */ 10725 (void) bcopy(invalp, outvalp, inlen); 10726 } 10727 *outlenp = inlen; 10728 return (0); 10729 } 10730 10731 /* ARGSUSED */ 10732 int 10733 tcp_tpi_opt_set(queue_t *q, uint_t optset_context, int level, int name, 10734 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 10735 void *thisdg_attrs, cred_t *cr, mblk_t *mblk) 10736 { 10737 conn_t *connp = Q_TO_CONN(q); 10738 10739 return (tcp_opt_set(connp, optset_context, level, name, inlen, invalp, 10740 outlenp, outvalp, thisdg_attrs, cr, mblk)); 10741 } 10742 10743 int 10744 tcp_setsockopt(sock_lower_handle_t proto_handle, int level, int option_name, 10745 const void *optvalp, socklen_t optlen, cred_t *cr) 10746 { 10747 conn_t *connp = (conn_t *)proto_handle; 10748 squeue_t *sqp = connp->conn_sqp; 10749 int error; 10750 10751 ASSERT(connp->conn_upper_handle != NULL); 10752 /* 10753 * Entering the squeue synchronously can result in a context switch, 10754 * which can cause a rather sever performance degradation. So we try to 10755 * handle whatever options we can without entering the squeue. 10756 */ 10757 if (level == IPPROTO_TCP) { 10758 switch (option_name) { 10759 case TCP_NODELAY: 10760 if (optlen != sizeof (int32_t)) 10761 return (EINVAL); 10762 mutex_enter(&connp->conn_tcp->tcp_non_sq_lock); 10763 connp->conn_tcp->tcp_naglim = *(int *)optvalp ? 1 : 10764 connp->conn_tcp->tcp_mss; 10765 mutex_exit(&connp->conn_tcp->tcp_non_sq_lock); 10766 return (0); 10767 default: 10768 break; 10769 } 10770 } 10771 10772 error = squeue_synch_enter(sqp, connp, 0); 10773 if (error == ENOMEM) { 10774 return (ENOMEM); 10775 } 10776 10777 error = proto_opt_check(level, option_name, optlen, NULL, 10778 tcp_opt_obj.odb_opt_des_arr, 10779 tcp_opt_obj.odb_opt_arr_cnt, 10780 tcp_opt_obj.odb_topmost_tpiprovider, 10781 B_TRUE, B_FALSE, cr); 10782 10783 if (error != 0) { 10784 if (error < 0) { 10785 error = proto_tlitosyserr(-error); 10786 } 10787 squeue_synch_exit(sqp, connp); 10788 return (error); 10789 } 10790 10791 error = tcp_opt_set(connp, SETFN_OPTCOM_NEGOTIATE, level, option_name, 10792 optlen, (uchar_t *)optvalp, (uint_t *)&optlen, (uchar_t *)optvalp, 10793 NULL, cr, NULL); 10794 squeue_synch_exit(sqp, connp); 10795 10796 if (error < 0) { 10797 /* 10798 * Pass on to ip 10799 */ 10800 error = ip_set_options(connp, level, option_name, optvalp, 10801 optlen, cr); 10802 } 10803 return (error); 10804 } 10805 10806 /* 10807 * Update tcp_sticky_hdrs based on tcp_sticky_ipp. 10808 * The headers include ip6i_t (if needed), ip6_t, any sticky extension 10809 * headers, and the maximum size tcp header (to avoid reallocation 10810 * on the fly for additional tcp options). 10811 * Returns failure if can't allocate memory. 10812 */ 10813 static int 10814 tcp_build_hdrs(tcp_t *tcp) 10815 { 10816 char *hdrs; 10817 uint_t hdrs_len; 10818 ip6i_t *ip6i; 10819 char buf[TCP_MAX_HDR_LENGTH]; 10820 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 10821 in6_addr_t src, dst; 10822 tcp_stack_t *tcps = tcp->tcp_tcps; 10823 conn_t *connp = tcp->tcp_connp; 10824 10825 /* 10826 * save the existing tcp header and source/dest IP addresses 10827 */ 10828 bcopy(tcp->tcp_tcph, buf, tcp->tcp_tcp_hdr_len); 10829 src = tcp->tcp_ip6h->ip6_src; 10830 dst = tcp->tcp_ip6h->ip6_dst; 10831 hdrs_len = ip_total_hdrs_len_v6(ipp) + TCP_MAX_HDR_LENGTH; 10832 ASSERT(hdrs_len != 0); 10833 if (hdrs_len > tcp->tcp_iphc_len) { 10834 /* Need to reallocate */ 10835 hdrs = kmem_zalloc(hdrs_len, KM_NOSLEEP); 10836 if (hdrs == NULL) 10837 return (ENOMEM); 10838 if (tcp->tcp_iphc != NULL) { 10839 if (tcp->tcp_hdr_grown) { 10840 kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len); 10841 } else { 10842 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 10843 kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc); 10844 } 10845 tcp->tcp_iphc_len = 0; 10846 } 10847 ASSERT(tcp->tcp_iphc_len == 0); 10848 tcp->tcp_iphc = hdrs; 10849 tcp->tcp_iphc_len = hdrs_len; 10850 tcp->tcp_hdr_grown = B_TRUE; 10851 } 10852 ip_build_hdrs_v6((uchar_t *)tcp->tcp_iphc, 10853 hdrs_len - TCP_MAX_HDR_LENGTH, ipp, IPPROTO_TCP); 10854 10855 /* Set header fields not in ipp */ 10856 if (ipp->ipp_fields & IPPF_HAS_IP6I) { 10857 ip6i = (ip6i_t *)tcp->tcp_iphc; 10858 tcp->tcp_ip6h = (ip6_t *)&ip6i[1]; 10859 } else { 10860 tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc; 10861 } 10862 /* 10863 * tcp->tcp_ip_hdr_len will include ip6i_t if there is one. 10864 * 10865 * tcp->tcp_tcp_hdr_len doesn't change here. 10866 */ 10867 tcp->tcp_ip_hdr_len = hdrs_len - TCP_MAX_HDR_LENGTH; 10868 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + tcp->tcp_ip_hdr_len); 10869 tcp->tcp_hdr_len = tcp->tcp_ip_hdr_len + tcp->tcp_tcp_hdr_len; 10870 10871 bcopy(buf, tcp->tcp_tcph, tcp->tcp_tcp_hdr_len); 10872 10873 tcp->tcp_ip6h->ip6_src = src; 10874 tcp->tcp_ip6h->ip6_dst = dst; 10875 10876 /* 10877 * If the hop limit was not set by ip_build_hdrs_v6(), set it to 10878 * the default value for TCP. 10879 */ 10880 if (!(ipp->ipp_fields & IPPF_UNICAST_HOPS)) 10881 tcp->tcp_ip6h->ip6_hops = tcps->tcps_ipv6_hoplimit; 10882 10883 /* 10884 * If we're setting extension headers after a connection 10885 * has been established, and if we have a routing header 10886 * among the extension headers, call ip_massage_options_v6 to 10887 * manipulate the routing header/ip6_dst set the checksum 10888 * difference in the tcp header template. 10889 * (This happens in tcp_connect_ipv6 if the routing header 10890 * is set prior to the connect.) 10891 * Set the tcp_sum to zero first in case we've cleared a 10892 * routing header or don't have one at all. 10893 */ 10894 tcp->tcp_sum = 0; 10895 if ((tcp->tcp_state >= TCPS_SYN_SENT) && 10896 (tcp->tcp_ipp_fields & IPPF_RTHDR)) { 10897 ip6_rthdr_t *rth = ip_find_rthdr_v6(tcp->tcp_ip6h, 10898 (uint8_t *)tcp->tcp_tcph); 10899 if (rth != NULL) { 10900 tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, 10901 rth, tcps->tcps_netstack); 10902 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 10903 (tcp->tcp_sum >> 16)); 10904 } 10905 } 10906 10907 /* Try to get everything in a single mblk */ 10908 (void) proto_set_tx_wroff(tcp->tcp_rq, connp, 10909 hdrs_len + tcps->tcps_wroff_xtra); 10910 return (0); 10911 } 10912 10913 /* 10914 * Transfer any source route option from ipha to buf/dst in reversed form. 10915 */ 10916 static int 10917 tcp_opt_rev_src_route(ipha_t *ipha, char *buf, uchar_t *dst) 10918 { 10919 ipoptp_t opts; 10920 uchar_t *opt; 10921 uint8_t optval; 10922 uint8_t optlen; 10923 uint32_t len = 0; 10924 10925 for (optval = ipoptp_first(&opts, ipha); 10926 optval != IPOPT_EOL; 10927 optval = ipoptp_next(&opts)) { 10928 opt = opts.ipoptp_cur; 10929 optlen = opts.ipoptp_len; 10930 switch (optval) { 10931 int off1, off2; 10932 case IPOPT_SSRR: 10933 case IPOPT_LSRR: 10934 10935 /* Reverse source route */ 10936 /* 10937 * First entry should be the next to last one in the 10938 * current source route (the last entry is our 10939 * address.) 10940 * The last entry should be the final destination. 10941 */ 10942 buf[IPOPT_OPTVAL] = (uint8_t)optval; 10943 buf[IPOPT_OLEN] = (uint8_t)optlen; 10944 off1 = IPOPT_MINOFF_SR - 1; 10945 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 10946 if (off2 < 0) { 10947 /* No entries in source route */ 10948 break; 10949 } 10950 bcopy(opt + off2, dst, IP_ADDR_LEN); 10951 /* 10952 * Note: use src since ipha has not had its src 10953 * and dst reversed (it is in the state it was 10954 * received. 10955 */ 10956 bcopy(&ipha->ipha_src, buf + off2, 10957 IP_ADDR_LEN); 10958 off2 -= IP_ADDR_LEN; 10959 10960 while (off2 > 0) { 10961 bcopy(opt + off2, buf + off1, 10962 IP_ADDR_LEN); 10963 off1 += IP_ADDR_LEN; 10964 off2 -= IP_ADDR_LEN; 10965 } 10966 buf[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 10967 buf += optlen; 10968 len += optlen; 10969 break; 10970 } 10971 } 10972 done: 10973 /* Pad the resulting options */ 10974 while (len & 0x3) { 10975 *buf++ = IPOPT_EOL; 10976 len++; 10977 } 10978 return (len); 10979 } 10980 10981 10982 /* 10983 * Extract and revert a source route from ipha (if any) 10984 * and then update the relevant fields in both tcp_t and the standard header. 10985 */ 10986 static void 10987 tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha) 10988 { 10989 char buf[TCP_MAX_HDR_LENGTH]; 10990 uint_t tcph_len; 10991 int len; 10992 10993 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION); 10994 len = IPH_HDR_LENGTH(ipha); 10995 if (len == IP_SIMPLE_HDR_LENGTH) 10996 /* Nothing to do */ 10997 return; 10998 if (len > IP_SIMPLE_HDR_LENGTH + TCP_MAX_IP_OPTIONS_LENGTH || 10999 (len & 0x3)) 11000 return; 11001 11002 tcph_len = tcp->tcp_tcp_hdr_len; 11003 bcopy(tcp->tcp_tcph, buf, tcph_len); 11004 tcp->tcp_sum = (tcp->tcp_ipha->ipha_dst >> 16) + 11005 (tcp->tcp_ipha->ipha_dst & 0xffff); 11006 len = tcp_opt_rev_src_route(ipha, (char *)tcp->tcp_ipha + 11007 IP_SIMPLE_HDR_LENGTH, (uchar_t *)&tcp->tcp_ipha->ipha_dst); 11008 len += IP_SIMPLE_HDR_LENGTH; 11009 tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) + 11010 (tcp->tcp_ipha->ipha_dst & 0xffff)); 11011 if ((int)tcp->tcp_sum < 0) 11012 tcp->tcp_sum--; 11013 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 11014 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16)); 11015 tcp->tcp_tcph = (tcph_t *)((char *)tcp->tcp_ipha + len); 11016 bcopy(buf, tcp->tcp_tcph, tcph_len); 11017 tcp->tcp_ip_hdr_len = len; 11018 tcp->tcp_ipha->ipha_version_and_hdr_length = 11019 (IP_VERSION << 4) | (len >> 2); 11020 len += tcph_len; 11021 tcp->tcp_hdr_len = len; 11022 } 11023 11024 /* 11025 * Copy the standard header into its new location, 11026 * lay in the new options and then update the relevant 11027 * fields in both tcp_t and the standard header. 11028 */ 11029 static int 11030 tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, uchar_t *ptr, uint_t len) 11031 { 11032 uint_t tcph_len; 11033 uint8_t *ip_optp; 11034 tcph_t *new_tcph; 11035 tcp_stack_t *tcps = tcp->tcp_tcps; 11036 conn_t *connp = tcp->tcp_connp; 11037 11038 if ((len > TCP_MAX_IP_OPTIONS_LENGTH) || (len & 0x3)) 11039 return (EINVAL); 11040 11041 if (len > IP_MAX_OPT_LENGTH - tcp->tcp_label_len) 11042 return (EINVAL); 11043 11044 if (checkonly) { 11045 /* 11046 * do not really set, just pretend to - T_CHECK 11047 */ 11048 return (0); 11049 } 11050 11051 ip_optp = (uint8_t *)tcp->tcp_ipha + IP_SIMPLE_HDR_LENGTH; 11052 if (tcp->tcp_label_len > 0) { 11053 int padlen; 11054 uint8_t opt; 11055 11056 /* convert list termination to no-ops */ 11057 padlen = tcp->tcp_label_len - ip_optp[IPOPT_OLEN]; 11058 ip_optp += ip_optp[IPOPT_OLEN]; 11059 opt = len > 0 ? IPOPT_NOP : IPOPT_EOL; 11060 while (--padlen >= 0) 11061 *ip_optp++ = opt; 11062 } 11063 tcph_len = tcp->tcp_tcp_hdr_len; 11064 new_tcph = (tcph_t *)(ip_optp + len); 11065 ovbcopy(tcp->tcp_tcph, new_tcph, tcph_len); 11066 tcp->tcp_tcph = new_tcph; 11067 bcopy(ptr, ip_optp, len); 11068 11069 len += IP_SIMPLE_HDR_LENGTH + tcp->tcp_label_len; 11070 11071 tcp->tcp_ip_hdr_len = len; 11072 tcp->tcp_ipha->ipha_version_and_hdr_length = 11073 (IP_VERSION << 4) | (len >> 2); 11074 tcp->tcp_hdr_len = len + tcph_len; 11075 if (!TCP_IS_DETACHED(tcp)) { 11076 /* Always allocate room for all options. */ 11077 (void) proto_set_tx_wroff(tcp->tcp_rq, connp, 11078 TCP_MAX_COMBINED_HEADER_LENGTH + tcps->tcps_wroff_xtra); 11079 } 11080 return (0); 11081 } 11082 11083 /* Get callback routine passed to nd_load by tcp_param_register */ 11084 /* ARGSUSED */ 11085 static int 11086 tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 11087 { 11088 tcpparam_t *tcppa = (tcpparam_t *)cp; 11089 11090 (void) mi_mpprintf(mp, "%u", tcppa->tcp_param_val); 11091 return (0); 11092 } 11093 11094 /* 11095 * Walk through the param array specified registering each element with the 11096 * named dispatch handler. 11097 */ 11098 static boolean_t 11099 tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt, tcp_stack_t *tcps) 11100 { 11101 for (; cnt-- > 0; tcppa++) { 11102 if (tcppa->tcp_param_name && tcppa->tcp_param_name[0]) { 11103 if (!nd_load(ndp, tcppa->tcp_param_name, 11104 tcp_param_get, tcp_param_set, 11105 (caddr_t)tcppa)) { 11106 nd_free(ndp); 11107 return (B_FALSE); 11108 } 11109 } 11110 } 11111 tcps->tcps_wroff_xtra_param = kmem_zalloc(sizeof (tcpparam_t), 11112 KM_SLEEP); 11113 bcopy(&lcl_tcp_wroff_xtra_param, tcps->tcps_wroff_xtra_param, 11114 sizeof (tcpparam_t)); 11115 if (!nd_load(ndp, tcps->tcps_wroff_xtra_param->tcp_param_name, 11116 tcp_param_get, tcp_param_set_aligned, 11117 (caddr_t)tcps->tcps_wroff_xtra_param)) { 11118 nd_free(ndp); 11119 return (B_FALSE); 11120 } 11121 tcps->tcps_mdt_head_param = kmem_zalloc(sizeof (tcpparam_t), 11122 KM_SLEEP); 11123 bcopy(&lcl_tcp_mdt_head_param, tcps->tcps_mdt_head_param, 11124 sizeof (tcpparam_t)); 11125 if (!nd_load(ndp, tcps->tcps_mdt_head_param->tcp_param_name, 11126 tcp_param_get, tcp_param_set_aligned, 11127 (caddr_t)tcps->tcps_mdt_head_param)) { 11128 nd_free(ndp); 11129 return (B_FALSE); 11130 } 11131 tcps->tcps_mdt_tail_param = kmem_zalloc(sizeof (tcpparam_t), 11132 KM_SLEEP); 11133 bcopy(&lcl_tcp_mdt_tail_param, tcps->tcps_mdt_tail_param, 11134 sizeof (tcpparam_t)); 11135 if (!nd_load(ndp, tcps->tcps_mdt_tail_param->tcp_param_name, 11136 tcp_param_get, tcp_param_set_aligned, 11137 (caddr_t)tcps->tcps_mdt_tail_param)) { 11138 nd_free(ndp); 11139 return (B_FALSE); 11140 } 11141 tcps->tcps_mdt_max_pbufs_param = kmem_zalloc(sizeof (tcpparam_t), 11142 KM_SLEEP); 11143 bcopy(&lcl_tcp_mdt_max_pbufs_param, tcps->tcps_mdt_max_pbufs_param, 11144 sizeof (tcpparam_t)); 11145 if (!nd_load(ndp, tcps->tcps_mdt_max_pbufs_param->tcp_param_name, 11146 tcp_param_get, tcp_param_set_aligned, 11147 (caddr_t)tcps->tcps_mdt_max_pbufs_param)) { 11148 nd_free(ndp); 11149 return (B_FALSE); 11150 } 11151 if (!nd_load(ndp, "tcp_extra_priv_ports", 11152 tcp_extra_priv_ports_get, NULL, NULL)) { 11153 nd_free(ndp); 11154 return (B_FALSE); 11155 } 11156 if (!nd_load(ndp, "tcp_extra_priv_ports_add", 11157 NULL, tcp_extra_priv_ports_add, NULL)) { 11158 nd_free(ndp); 11159 return (B_FALSE); 11160 } 11161 if (!nd_load(ndp, "tcp_extra_priv_ports_del", 11162 NULL, tcp_extra_priv_ports_del, NULL)) { 11163 nd_free(ndp); 11164 return (B_FALSE); 11165 } 11166 if (!nd_load(ndp, "tcp_1948_phrase", NULL, 11167 tcp_1948_phrase_set, NULL)) { 11168 nd_free(ndp); 11169 return (B_FALSE); 11170 } 11171 /* 11172 * Dummy ndd variables - only to convey obsolescence information 11173 * through printing of their name (no get or set routines) 11174 * XXX Remove in future releases ? 11175 */ 11176 if (!nd_load(ndp, 11177 "tcp_close_wait_interval(obsoleted - " 11178 "use tcp_time_wait_interval)", NULL, NULL, NULL)) { 11179 nd_free(ndp); 11180 return (B_FALSE); 11181 } 11182 return (B_TRUE); 11183 } 11184 11185 /* ndd set routine for tcp_wroff_xtra, tcp_mdt_hdr_{head,tail}_min. */ 11186 /* ARGSUSED */ 11187 static int 11188 tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 11189 cred_t *cr) 11190 { 11191 long new_value; 11192 tcpparam_t *tcppa = (tcpparam_t *)cp; 11193 11194 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11195 new_value < tcppa->tcp_param_min || 11196 new_value > tcppa->tcp_param_max) { 11197 return (EINVAL); 11198 } 11199 /* 11200 * Need to make sure new_value is a multiple of 4. If it is not, 11201 * round it up. For future 64 bit requirement, we actually make it 11202 * a multiple of 8. 11203 */ 11204 if (new_value & 0x7) { 11205 new_value = (new_value & ~0x7) + 0x8; 11206 } 11207 tcppa->tcp_param_val = new_value; 11208 return (0); 11209 } 11210 11211 /* Set callback routine passed to nd_load by tcp_param_register */ 11212 /* ARGSUSED */ 11213 static int 11214 tcp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) 11215 { 11216 long new_value; 11217 tcpparam_t *tcppa = (tcpparam_t *)cp; 11218 11219 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11220 new_value < tcppa->tcp_param_min || 11221 new_value > tcppa->tcp_param_max) { 11222 return (EINVAL); 11223 } 11224 tcppa->tcp_param_val = new_value; 11225 return (0); 11226 } 11227 11228 /* 11229 * Add a new piece to the tcp reassembly queue. If the gap at the beginning 11230 * is filled, return as much as we can. The message passed in may be 11231 * multi-part, chained using b_cont. "start" is the starting sequence 11232 * number for this piece. 11233 */ 11234 static mblk_t * 11235 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start) 11236 { 11237 uint32_t end; 11238 mblk_t *mp1; 11239 mblk_t *mp2; 11240 mblk_t *next_mp; 11241 uint32_t u1; 11242 tcp_stack_t *tcps = tcp->tcp_tcps; 11243 11244 /* Walk through all the new pieces. */ 11245 do { 11246 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 11247 (uintptr_t)INT_MAX); 11248 end = start + (int)(mp->b_wptr - mp->b_rptr); 11249 next_mp = mp->b_cont; 11250 if (start == end) { 11251 /* Empty. Blast it. */ 11252 freeb(mp); 11253 continue; 11254 } 11255 mp->b_cont = NULL; 11256 TCP_REASS_SET_SEQ(mp, start); 11257 TCP_REASS_SET_END(mp, end); 11258 mp1 = tcp->tcp_reass_tail; 11259 if (!mp1) { 11260 tcp->tcp_reass_tail = mp; 11261 tcp->tcp_reass_head = mp; 11262 BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs); 11263 UPDATE_MIB(&tcps->tcps_mib, 11264 tcpInDataUnorderBytes, end - start); 11265 continue; 11266 } 11267 /* New stuff completely beyond tail? */ 11268 if (SEQ_GEQ(start, TCP_REASS_END(mp1))) { 11269 /* Link it on end. */ 11270 mp1->b_cont = mp; 11271 tcp->tcp_reass_tail = mp; 11272 BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs); 11273 UPDATE_MIB(&tcps->tcps_mib, 11274 tcpInDataUnorderBytes, end - start); 11275 continue; 11276 } 11277 mp1 = tcp->tcp_reass_head; 11278 u1 = TCP_REASS_SEQ(mp1); 11279 /* New stuff at the front? */ 11280 if (SEQ_LT(start, u1)) { 11281 /* Yes... Check for overlap. */ 11282 mp->b_cont = mp1; 11283 tcp->tcp_reass_head = mp; 11284 tcp_reass_elim_overlap(tcp, mp); 11285 continue; 11286 } 11287 /* 11288 * The new piece fits somewhere between the head and tail. 11289 * We find our slot, where mp1 precedes us and mp2 trails. 11290 */ 11291 for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) { 11292 u1 = TCP_REASS_SEQ(mp2); 11293 if (SEQ_LEQ(start, u1)) 11294 break; 11295 } 11296 /* Link ourselves in */ 11297 mp->b_cont = mp2; 11298 mp1->b_cont = mp; 11299 11300 /* Trim overlap with following mblk(s) first */ 11301 tcp_reass_elim_overlap(tcp, mp); 11302 11303 /* Trim overlap with preceding mblk */ 11304 tcp_reass_elim_overlap(tcp, mp1); 11305 11306 } while (start = end, mp = next_mp); 11307 mp1 = tcp->tcp_reass_head; 11308 /* Anything ready to go? */ 11309 if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt) 11310 return (NULL); 11311 /* Eat what we can off the queue */ 11312 for (;;) { 11313 mp = mp1->b_cont; 11314 end = TCP_REASS_END(mp1); 11315 TCP_REASS_SET_SEQ(mp1, 0); 11316 TCP_REASS_SET_END(mp1, 0); 11317 if (!mp) { 11318 tcp->tcp_reass_tail = NULL; 11319 break; 11320 } 11321 if (end != TCP_REASS_SEQ(mp)) { 11322 mp1->b_cont = NULL; 11323 break; 11324 } 11325 mp1 = mp; 11326 } 11327 mp1 = tcp->tcp_reass_head; 11328 tcp->tcp_reass_head = mp; 11329 return (mp1); 11330 } 11331 11332 /* Eliminate any overlap that mp may have over later mblks */ 11333 static void 11334 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp) 11335 { 11336 uint32_t end; 11337 mblk_t *mp1; 11338 uint32_t u1; 11339 tcp_stack_t *tcps = tcp->tcp_tcps; 11340 11341 end = TCP_REASS_END(mp); 11342 while ((mp1 = mp->b_cont) != NULL) { 11343 u1 = TCP_REASS_SEQ(mp1); 11344 if (!SEQ_GT(end, u1)) 11345 break; 11346 if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) { 11347 mp->b_wptr -= end - u1; 11348 TCP_REASS_SET_END(mp, u1); 11349 BUMP_MIB(&tcps->tcps_mib, tcpInDataPartDupSegs); 11350 UPDATE_MIB(&tcps->tcps_mib, 11351 tcpInDataPartDupBytes, end - u1); 11352 break; 11353 } 11354 mp->b_cont = mp1->b_cont; 11355 TCP_REASS_SET_SEQ(mp1, 0); 11356 TCP_REASS_SET_END(mp1, 0); 11357 freeb(mp1); 11358 BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); 11359 UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, end - u1); 11360 } 11361 if (!mp1) 11362 tcp->tcp_reass_tail = mp; 11363 } 11364 11365 static uint_t 11366 tcp_rwnd_reopen(tcp_t *tcp) 11367 { 11368 uint_t ret = 0; 11369 uint_t thwin; 11370 11371 /* Learn the latest rwnd information that we sent to the other side. */ 11372 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 11373 << tcp->tcp_rcv_ws; 11374 /* This is peer's calculated send window (our receive window). */ 11375 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 11376 /* 11377 * Increase the receive window to max. But we need to do receiver 11378 * SWS avoidance. This means that we need to check the increase of 11379 * of receive window is at least 1 MSS. 11380 */ 11381 if (tcp->tcp_recv_hiwater - thwin >= tcp->tcp_mss) { 11382 /* 11383 * If the window that the other side knows is less than max 11384 * deferred acks segments, send an update immediately. 11385 */ 11386 if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) { 11387 BUMP_MIB(&tcp->tcp_tcps->tcps_mib, tcpOutWinUpdate); 11388 ret = TH_ACK_NEEDED; 11389 } 11390 tcp->tcp_rwnd = tcp->tcp_recv_hiwater; 11391 } 11392 return (ret); 11393 } 11394 11395 /* 11396 * Send up all messages queued on tcp_rcv_list. 11397 */ 11398 static uint_t 11399 tcp_rcv_drain(tcp_t *tcp) 11400 { 11401 mblk_t *mp; 11402 uint_t ret = 0; 11403 #ifdef DEBUG 11404 uint_t cnt = 0; 11405 #endif 11406 queue_t *q = tcp->tcp_rq; 11407 11408 /* Can't drain on an eager connection */ 11409 if (tcp->tcp_listener != NULL) 11410 return (ret); 11411 11412 /* Can't be a non-STREAMS connection or sodirect enabled */ 11413 ASSERT((!IPCL_IS_NONSTR(tcp->tcp_connp)) && SOD_NOT_ENABLED(tcp)); 11414 11415 /* No need for the push timer now. */ 11416 if (tcp->tcp_push_tid != 0) { 11417 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 11418 tcp->tcp_push_tid = 0; 11419 } 11420 11421 /* 11422 * Handle two cases here: we are currently fused or we were 11423 * previously fused and have some urgent data to be delivered 11424 * upstream. The latter happens because we either ran out of 11425 * memory or were detached and therefore sending the SIGURG was 11426 * deferred until this point. In either case we pass control 11427 * over to tcp_fuse_rcv_drain() since it may need to complete 11428 * some work. 11429 */ 11430 if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) { 11431 ASSERT(IPCL_IS_NONSTR(tcp->tcp_connp) || 11432 tcp->tcp_fused_sigurg_mp != NULL); 11433 if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL : 11434 &tcp->tcp_fused_sigurg_mp)) 11435 return (ret); 11436 } 11437 11438 while ((mp = tcp->tcp_rcv_list) != NULL) { 11439 tcp->tcp_rcv_list = mp->b_next; 11440 mp->b_next = NULL; 11441 #ifdef DEBUG 11442 cnt += msgdsize(mp); 11443 #endif 11444 /* Does this need SSL processing first? */ 11445 if ((tcp->tcp_kssl_ctx != NULL) && (DB_TYPE(mp) == M_DATA)) { 11446 DTRACE_PROBE1(kssl_mblk__ksslinput_rcvdrain, 11447 mblk_t *, mp); 11448 tcp_kssl_input(tcp, mp); 11449 continue; 11450 } 11451 putnext(q, mp); 11452 } 11453 #ifdef DEBUG 11454 ASSERT(cnt == tcp->tcp_rcv_cnt); 11455 #endif 11456 tcp->tcp_rcv_last_head = NULL; 11457 tcp->tcp_rcv_last_tail = NULL; 11458 tcp->tcp_rcv_cnt = 0; 11459 11460 if (canputnext(q)) 11461 return (tcp_rwnd_reopen(tcp)); 11462 11463 return (ret); 11464 } 11465 11466 /* 11467 * Queue data on tcp_rcv_list which is a b_next chain. 11468 * tcp_rcv_last_head/tail is the last element of this chain. 11469 * Each element of the chain is a b_cont chain. 11470 * 11471 * M_DATA messages are added to the current element. 11472 * Other messages are added as new (b_next) elements. 11473 */ 11474 void 11475 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len) 11476 { 11477 ASSERT(seg_len == msgdsize(mp)); 11478 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL); 11479 11480 if (tcp->tcp_rcv_list == NULL) { 11481 ASSERT(tcp->tcp_rcv_last_head == NULL); 11482 tcp->tcp_rcv_list = mp; 11483 tcp->tcp_rcv_last_head = mp; 11484 } else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) { 11485 tcp->tcp_rcv_last_tail->b_cont = mp; 11486 } else { 11487 tcp->tcp_rcv_last_head->b_next = mp; 11488 tcp->tcp_rcv_last_head = mp; 11489 } 11490 11491 while (mp->b_cont) 11492 mp = mp->b_cont; 11493 11494 tcp->tcp_rcv_last_tail = mp; 11495 tcp->tcp_rcv_cnt += seg_len; 11496 tcp->tcp_rwnd -= seg_len; 11497 } 11498 11499 /* 11500 * The tcp_rcv_sod_XXX() functions enqueue data directly to the socket 11501 * above, in addition when uioa is enabled schedule an asynchronous uio 11502 * prior to enqueuing. They implement the combinhed semantics of the 11503 * tcp_rcv_XXX() functions, tcp_rcv_list push logic, and STREAMS putnext() 11504 * canputnext(), i.e. flow-control with backenable. 11505 * 11506 * tcp_sod_wakeup() is called where tcp_rcv_drain() would be called in the 11507 * non sodirect connection but as there are no tcp_tcv_list mblk_t's we deal 11508 * with the rcv_wnd and push timer and call the sodirect wakeup function. 11509 * 11510 * Must be called with sodp->sod_lockp held and will return with the lock 11511 * released. 11512 */ 11513 static uint_t 11514 tcp_rcv_sod_wakeup(tcp_t *tcp, sodirect_t *sodp) 11515 { 11516 queue_t *q = tcp->tcp_rq; 11517 uint_t thwin; 11518 tcp_stack_t *tcps = tcp->tcp_tcps; 11519 uint_t ret = 0; 11520 11521 /* Can't be an eager connection */ 11522 ASSERT(tcp->tcp_listener == NULL); 11523 11524 /* Caller must have lock held */ 11525 ASSERT(MUTEX_HELD(sodp->sod_lockp)); 11526 11527 /* Sodirect mode so must not be a tcp_rcv_list */ 11528 ASSERT(tcp->tcp_rcv_list == NULL); 11529 11530 if (SOD_QFULL(sodp)) { 11531 /* Q is full, mark Q for need backenable */ 11532 SOD_QSETBE(sodp); 11533 } 11534 /* Last advertised rwnd, i.e. rwnd last sent in a packet */ 11535 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 11536 << tcp->tcp_rcv_ws; 11537 /* This is peer's calculated send window (our available rwnd). */ 11538 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 11539 /* 11540 * Increase the receive window to max. But we need to do receiver 11541 * SWS avoidance. This means that we need to check the increase of 11542 * of receive window is at least 1 MSS. 11543 */ 11544 if (!SOD_QFULL(sodp) && (q->q_hiwat - thwin >= tcp->tcp_mss)) { 11545 /* 11546 * If the window that the other side knows is less than max 11547 * deferred acks segments, send an update immediately. 11548 */ 11549 if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) { 11550 BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate); 11551 ret = TH_ACK_NEEDED; 11552 } 11553 tcp->tcp_rwnd = q->q_hiwat; 11554 } 11555 11556 if (!SOD_QEMPTY(sodp)) { 11557 /* Wakeup to socket */ 11558 sodp->sod_state &= SOD_WAKE_CLR; 11559 sodp->sod_state |= SOD_WAKE_DONE; 11560 (sodp->sod_wakeup)(sodp); 11561 /* wakeup() does the mutex_ext() */ 11562 } else { 11563 /* Q is empty, no need to wake */ 11564 sodp->sod_state &= SOD_WAKE_CLR; 11565 sodp->sod_state |= SOD_WAKE_NOT; 11566 mutex_exit(sodp->sod_lockp); 11567 } 11568 11569 /* No need for the push timer now. */ 11570 if (tcp->tcp_push_tid != 0) { 11571 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 11572 tcp->tcp_push_tid = 0; 11573 } 11574 11575 return (ret); 11576 } 11577 11578 /* 11579 * Called where tcp_rcv_enqueue()/putnext(RD(q)) would be. For M_DATA 11580 * mblk_t's if uioa enabled then start a uioa asynchronous copy directly 11581 * to the user-land buffer and flag the mblk_t as such. 11582 * 11583 * Also, handle tcp_rwnd. 11584 */ 11585 uint_t 11586 tcp_rcv_sod_enqueue(tcp_t *tcp, sodirect_t *sodp, mblk_t *mp, uint_t seg_len) 11587 { 11588 uioa_t *uioap = &sodp->sod_uioa; 11589 boolean_t qfull; 11590 uint_t thwin; 11591 11592 /* Can't be an eager connection */ 11593 ASSERT(tcp->tcp_listener == NULL); 11594 11595 /* Caller must have lock held */ 11596 ASSERT(MUTEX_HELD(sodp->sod_lockp)); 11597 11598 /* Sodirect mode so must not be a tcp_rcv_list */ 11599 ASSERT(tcp->tcp_rcv_list == NULL); 11600 11601 /* Passed in segment length must be equal to mblk_t chain data size */ 11602 ASSERT(seg_len == msgdsize(mp)); 11603 11604 if (DB_TYPE(mp) != M_DATA) { 11605 /* Only process M_DATA mblk_t's */ 11606 goto enq; 11607 } 11608 if (uioap->uioa_state & UIOA_ENABLED) { 11609 /* Uioa is enabled */ 11610 mblk_t *mp1 = mp; 11611 mblk_t *lmp = NULL; 11612 11613 if (seg_len > uioap->uio_resid) { 11614 /* 11615 * There isn't enough uio space for the mblk_t chain 11616 * so disable uioa such that this and any additional 11617 * mblk_t data is handled by the socket and schedule 11618 * the socket for wakeup to finish this uioa. 11619 */ 11620 uioap->uioa_state &= UIOA_CLR; 11621 uioap->uioa_state |= UIOA_FINI; 11622 if (sodp->sod_state & SOD_WAKE_NOT) { 11623 sodp->sod_state &= SOD_WAKE_CLR; 11624 sodp->sod_state |= SOD_WAKE_NEED; 11625 } 11626 goto enq; 11627 } 11628 do { 11629 uint32_t len = MBLKL(mp1); 11630 11631 if (!uioamove(mp1->b_rptr, len, UIO_READ, uioap)) { 11632 /* Scheduled, mark dblk_t as such */ 11633 DB_FLAGS(mp1) |= DBLK_UIOA; 11634 } else { 11635 /* Error, turn off async processing */ 11636 uioap->uioa_state &= UIOA_CLR; 11637 uioap->uioa_state |= UIOA_FINI; 11638 break; 11639 } 11640 lmp = mp1; 11641 } while ((mp1 = mp1->b_cont) != NULL); 11642 11643 if (mp1 != NULL || uioap->uio_resid == 0) { 11644 /* 11645 * Not all mblk_t(s) uioamoved (error) or all uio 11646 * space has been consumed so schedule the socket 11647 * for wakeup to finish this uio. 11648 */ 11649 sodp->sod_state &= SOD_WAKE_CLR; 11650 sodp->sod_state |= SOD_WAKE_NEED; 11651 11652 /* Break the mblk chain if neccessary. */ 11653 if (mp1 != NULL && lmp != NULL) { 11654 mp->b_next = mp1; 11655 lmp->b_cont = NULL; 11656 } 11657 } 11658 } else if (uioap->uioa_state & UIOA_FINI) { 11659 /* 11660 * Post UIO_ENABLED waiting for socket to finish processing 11661 * so just enqueue and update tcp_rwnd. 11662 */ 11663 if (SOD_QFULL(sodp)) 11664 tcp->tcp_rwnd -= seg_len; 11665 } else if (sodp->sod_want > 0) { 11666 /* 11667 * Uioa isn't enabled but sodirect has a pending read(). 11668 */ 11669 if (SOD_QCNT(sodp) + seg_len >= sodp->sod_want) { 11670 if (sodp->sod_state & SOD_WAKE_NOT) { 11671 /* Schedule socket for wakeup */ 11672 sodp->sod_state &= SOD_WAKE_CLR; 11673 sodp->sod_state |= SOD_WAKE_NEED; 11674 } 11675 tcp->tcp_rwnd -= seg_len; 11676 } 11677 } else if (SOD_QCNT(sodp) + seg_len >= tcp->tcp_rq->q_hiwat >> 3) { 11678 /* 11679 * No pending sodirect read() so used the default 11680 * TCP push logic to guess that a push is needed. 11681 */ 11682 if (sodp->sod_state & SOD_WAKE_NOT) { 11683 /* Schedule socket for wakeup */ 11684 sodp->sod_state &= SOD_WAKE_CLR; 11685 sodp->sod_state |= SOD_WAKE_NEED; 11686 } 11687 tcp->tcp_rwnd -= seg_len; 11688 } else { 11689 /* Just update tcp_rwnd */ 11690 tcp->tcp_rwnd -= seg_len; 11691 } 11692 enq: 11693 qfull = SOD_QFULL(sodp); 11694 11695 (sodp->sod_enqueue)(sodp, mp); 11696 11697 if (! qfull && SOD_QFULL(sodp)) { 11698 /* Wasn't QFULL, now QFULL, need back-enable */ 11699 SOD_QSETBE(sodp); 11700 } 11701 11702 /* 11703 * Check to see if remote avail swnd < mss due to delayed ACK, 11704 * first get advertised rwnd. 11705 */ 11706 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)); 11707 /* Minus delayed ACK count */ 11708 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 11709 if (thwin < tcp->tcp_mss) { 11710 /* Remote avail swnd < mss, need ACK now */ 11711 return (TH_ACK_NEEDED); 11712 } 11713 11714 return (0); 11715 } 11716 11717 /* 11718 * DEFAULT TCP ENTRY POINT via squeue on READ side. 11719 * 11720 * This is the default entry function into TCP on the read side. TCP is 11721 * always entered via squeue i.e. using squeue's for mutual exclusion. 11722 * When classifier does a lookup to find the tcp, it also puts a reference 11723 * on the conn structure associated so the tcp is guaranteed to exist 11724 * when we come here. We still need to check the state because it might 11725 * as well has been closed. The squeue processing function i.e. squeue_enter, 11726 * is responsible for doing the CONN_DEC_REF. 11727 * 11728 * Apart from the default entry point, IP also sends packets directly to 11729 * tcp_rput_data for AF_INET fast path and tcp_conn_request for incoming 11730 * connections. 11731 */ 11732 boolean_t tcp_outbound_squeue_switch = B_FALSE; 11733 void 11734 tcp_input(void *arg, mblk_t *mp, void *arg2) 11735 { 11736 conn_t *connp = (conn_t *)arg; 11737 tcp_t *tcp = (tcp_t *)connp->conn_tcp; 11738 11739 /* arg2 is the sqp */ 11740 ASSERT(arg2 != NULL); 11741 ASSERT(mp != NULL); 11742 11743 /* 11744 * Don't accept any input on a closed tcp as this TCP logically does 11745 * not exist on the system. Don't proceed further with this TCP. 11746 * For eg. this packet could trigger another close of this tcp 11747 * which would be disastrous for tcp_refcnt. tcp_close_detached / 11748 * tcp_clean_death / tcp_closei_local must be called at most once 11749 * on a TCP. In this case we need to refeed the packet into the 11750 * classifier and figure out where the packet should go. Need to 11751 * preserve the recv_ill somehow. Until we figure that out, for 11752 * now just drop the packet if we can't classify the packet. 11753 */ 11754 if (tcp->tcp_state == TCPS_CLOSED || 11755 tcp->tcp_state == TCPS_BOUND) { 11756 conn_t *new_connp; 11757 ip_stack_t *ipst = tcp->tcp_tcps->tcps_netstack->netstack_ip; 11758 11759 new_connp = ipcl_classify(mp, connp->conn_zoneid, ipst); 11760 if (new_connp != NULL) { 11761 tcp_reinput(new_connp, mp, arg2); 11762 return; 11763 } 11764 /* We failed to classify. For now just drop the packet */ 11765 freemsg(mp); 11766 return; 11767 } 11768 11769 if (DB_TYPE(mp) != M_DATA) { 11770 tcp_rput_common(tcp, mp); 11771 return; 11772 } 11773 11774 if (mp->b_datap->db_struioflag & STRUIO_CONNECT) { 11775 squeue_t *final_sqp; 11776 11777 mp->b_datap->db_struioflag &= ~STRUIO_CONNECT; 11778 final_sqp = (squeue_t *)DB_CKSUMSTART(mp); 11779 DB_CKSUMSTART(mp) = 0; 11780 if (tcp->tcp_state == TCPS_SYN_SENT && 11781 connp->conn_final_sqp == NULL && 11782 tcp_outbound_squeue_switch) { 11783 ASSERT(connp->conn_initial_sqp == connp->conn_sqp); 11784 connp->conn_final_sqp = final_sqp; 11785 if (connp->conn_final_sqp != connp->conn_sqp) { 11786 CONN_INC_REF(connp); 11787 SQUEUE_SWITCH(connp, connp->conn_final_sqp); 11788 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 11789 tcp_rput_data, connp, ip_squeue_flag, 11790 SQTAG_CONNECT_FINISH); 11791 return; 11792 } 11793 } 11794 } 11795 tcp_rput_data(connp, mp, arg2); 11796 } 11797 11798 /* 11799 * The read side put procedure. 11800 * The packets passed up by ip are assume to be aligned according to 11801 * OK_32PTR and the IP+TCP headers fitting in the first mblk. 11802 */ 11803 static void 11804 tcp_rput_common(tcp_t *tcp, mblk_t *mp) 11805 { 11806 /* 11807 * tcp_rput_data() does not expect M_CTL except for the case 11808 * where tcp_ipv6_recvancillary is set and we get a IN_PKTINFO 11809 * type. Need to make sure that any other M_CTLs don't make 11810 * it to tcp_rput_data since it is not expecting any and doesn't 11811 * check for it. 11812 */ 11813 if (DB_TYPE(mp) == M_CTL) { 11814 switch (*(uint32_t *)(mp->b_rptr)) { 11815 case TCP_IOC_ABORT_CONN: 11816 /* 11817 * Handle connection abort request. 11818 */ 11819 tcp_ioctl_abort_handler(tcp, mp); 11820 return; 11821 case IPSEC_IN: 11822 /* 11823 * Only secure icmp arrive in TCP and they 11824 * don't go through data path. 11825 */ 11826 tcp_icmp_error(tcp, mp); 11827 return; 11828 case IN_PKTINFO: 11829 /* 11830 * Handle IPV6_RECVPKTINFO socket option on AF_INET6 11831 * sockets that are receiving IPv4 traffic. tcp 11832 */ 11833 ASSERT(tcp->tcp_family == AF_INET6); 11834 ASSERT(tcp->tcp_ipv6_recvancillary & 11835 TCP_IPV6_RECVPKTINFO); 11836 tcp_rput_data(tcp->tcp_connp, mp, 11837 tcp->tcp_connp->conn_sqp); 11838 return; 11839 case MDT_IOC_INFO_UPDATE: 11840 /* 11841 * Handle Multidata information update; the 11842 * following routine will free the message. 11843 */ 11844 if (tcp->tcp_connp->conn_mdt_ok) { 11845 tcp_mdt_update(tcp, 11846 &((ip_mdt_info_t *)mp->b_rptr)->mdt_capab, 11847 B_FALSE); 11848 } 11849 freemsg(mp); 11850 return; 11851 case LSO_IOC_INFO_UPDATE: 11852 /* 11853 * Handle LSO information update; the following 11854 * routine will free the message. 11855 */ 11856 if (tcp->tcp_connp->conn_lso_ok) { 11857 tcp_lso_update(tcp, 11858 &((ip_lso_info_t *)mp->b_rptr)->lso_capab); 11859 } 11860 freemsg(mp); 11861 return; 11862 default: 11863 /* 11864 * tcp_icmp_err() will process the M_CTL packets. 11865 * Non-ICMP packets, if any, will be discarded in 11866 * tcp_icmp_err(). We will process the ICMP packet 11867 * even if we are TCP_IS_DETACHED_NONEAGER as the 11868 * incoming ICMP packet may result in changing 11869 * the tcp_mss, which we would need if we have 11870 * packets to retransmit. 11871 */ 11872 tcp_icmp_error(tcp, mp); 11873 return; 11874 } 11875 } 11876 11877 /* No point processing the message if tcp is already closed */ 11878 if (TCP_IS_DETACHED_NONEAGER(tcp)) { 11879 freemsg(mp); 11880 return; 11881 } 11882 11883 tcp_rput_other(tcp, mp); 11884 } 11885 11886 11887 /* The minimum of smoothed mean deviation in RTO calculation. */ 11888 #define TCP_SD_MIN 400 11889 11890 /* 11891 * Set RTO for this connection. The formula is from Jacobson and Karels' 11892 * "Congestion Avoidance and Control" in SIGCOMM '88. The variable names 11893 * are the same as those in Appendix A.2 of that paper. 11894 * 11895 * m = new measurement 11896 * sa = smoothed RTT average (8 * average estimates). 11897 * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates). 11898 */ 11899 static void 11900 tcp_set_rto(tcp_t *tcp, clock_t rtt) 11901 { 11902 long m = TICK_TO_MSEC(rtt); 11903 clock_t sa = tcp->tcp_rtt_sa; 11904 clock_t sv = tcp->tcp_rtt_sd; 11905 clock_t rto; 11906 tcp_stack_t *tcps = tcp->tcp_tcps; 11907 11908 BUMP_MIB(&tcps->tcps_mib, tcpRttUpdate); 11909 tcp->tcp_rtt_update++; 11910 11911 /* tcp_rtt_sa is not 0 means this is a new sample. */ 11912 if (sa != 0) { 11913 /* 11914 * Update average estimator: 11915 * new rtt = 7/8 old rtt + 1/8 Error 11916 */ 11917 11918 /* m is now Error in estimate. */ 11919 m -= sa >> 3; 11920 if ((sa += m) <= 0) { 11921 /* 11922 * Don't allow the smoothed average to be negative. 11923 * We use 0 to denote reinitialization of the 11924 * variables. 11925 */ 11926 sa = 1; 11927 } 11928 11929 /* 11930 * Update deviation estimator: 11931 * new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev) 11932 */ 11933 if (m < 0) 11934 m = -m; 11935 m -= sv >> 2; 11936 sv += m; 11937 } else { 11938 /* 11939 * This follows BSD's implementation. So the reinitialized 11940 * RTO is 3 * m. We cannot go less than 2 because if the 11941 * link is bandwidth dominated, doubling the window size 11942 * during slow start means doubling the RTT. We want to be 11943 * more conservative when we reinitialize our estimates. 3 11944 * is just a convenient number. 11945 */ 11946 sa = m << 3; 11947 sv = m << 1; 11948 } 11949 if (sv < TCP_SD_MIN) { 11950 /* 11951 * We do not know that if sa captures the delay ACK 11952 * effect as in a long train of segments, a receiver 11953 * does not delay its ACKs. So set the minimum of sv 11954 * to be TCP_SD_MIN, which is default to 400 ms, twice 11955 * of BSD DATO. That means the minimum of mean 11956 * deviation is 100 ms. 11957 * 11958 */ 11959 sv = TCP_SD_MIN; 11960 } 11961 tcp->tcp_rtt_sa = sa; 11962 tcp->tcp_rtt_sd = sv; 11963 /* 11964 * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv) 11965 * 11966 * Add tcp_rexmit_interval extra in case of extreme environment 11967 * where the algorithm fails to work. The default value of 11968 * tcp_rexmit_interval_extra should be 0. 11969 * 11970 * As we use a finer grained clock than BSD and update 11971 * RTO for every ACKs, add in another .25 of RTT to the 11972 * deviation of RTO to accomodate burstiness of 1/4 of 11973 * window size. 11974 */ 11975 rto = (sa >> 3) + sv + tcps->tcps_rexmit_interval_extra + (sa >> 5); 11976 11977 if (rto > tcps->tcps_rexmit_interval_max) { 11978 tcp->tcp_rto = tcps->tcps_rexmit_interval_max; 11979 } else if (rto < tcps->tcps_rexmit_interval_min) { 11980 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 11981 } else { 11982 tcp->tcp_rto = rto; 11983 } 11984 11985 /* Now, we can reset tcp_timer_backoff to use the new RTO... */ 11986 tcp->tcp_timer_backoff = 0; 11987 } 11988 11989 /* 11990 * tcp_get_seg_mp() is called to get the pointer to a segment in the 11991 * send queue which starts at the given seq. no. 11992 * 11993 * Parameters: 11994 * tcp_t *tcp: the tcp instance pointer. 11995 * uint32_t seq: the starting seq. no of the requested segment. 11996 * int32_t *off: after the execution, *off will be the offset to 11997 * the returned mblk which points to the requested seq no. 11998 * It is the caller's responsibility to send in a non-null off. 11999 * 12000 * Return: 12001 * A mblk_t pointer pointing to the requested segment in send queue. 12002 */ 12003 static mblk_t * 12004 tcp_get_seg_mp(tcp_t *tcp, uint32_t seq, int32_t *off) 12005 { 12006 int32_t cnt; 12007 mblk_t *mp; 12008 12009 /* Defensive coding. Make sure we don't send incorrect data. */ 12010 if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt)) 12011 return (NULL); 12012 12013 cnt = seq - tcp->tcp_suna; 12014 mp = tcp->tcp_xmit_head; 12015 while (cnt > 0 && mp != NULL) { 12016 cnt -= mp->b_wptr - mp->b_rptr; 12017 if (cnt < 0) { 12018 cnt += mp->b_wptr - mp->b_rptr; 12019 break; 12020 } 12021 mp = mp->b_cont; 12022 } 12023 ASSERT(mp != NULL); 12024 *off = cnt; 12025 return (mp); 12026 } 12027 12028 /* 12029 * This function handles all retransmissions if SACK is enabled for this 12030 * connection. First it calculates how many segments can be retransmitted 12031 * based on tcp_pipe. Then it goes thru the notsack list to find eligible 12032 * segments. A segment is eligible if sack_cnt for that segment is greater 12033 * than or equal tcp_dupack_fast_retransmit. After it has retransmitted 12034 * all eligible segments, it checks to see if TCP can send some new segments 12035 * (fast recovery). If it can, set the appropriate flag for tcp_rput_data(). 12036 * 12037 * Parameters: 12038 * tcp_t *tcp: the tcp structure of the connection. 12039 * uint_t *flags: in return, appropriate value will be set for 12040 * tcp_rput_data(). 12041 */ 12042 static void 12043 tcp_sack_rxmit(tcp_t *tcp, uint_t *flags) 12044 { 12045 notsack_blk_t *notsack_blk; 12046 int32_t usable_swnd; 12047 int32_t mss; 12048 uint32_t seg_len; 12049 mblk_t *xmit_mp; 12050 tcp_stack_t *tcps = tcp->tcp_tcps; 12051 12052 ASSERT(tcp->tcp_sack_info != NULL); 12053 ASSERT(tcp->tcp_notsack_list != NULL); 12054 ASSERT(tcp->tcp_rexmit == B_FALSE); 12055 12056 /* Defensive coding in case there is a bug... */ 12057 if (tcp->tcp_notsack_list == NULL) { 12058 return; 12059 } 12060 notsack_blk = tcp->tcp_notsack_list; 12061 mss = tcp->tcp_mss; 12062 12063 /* 12064 * Limit the num of outstanding data in the network to be 12065 * tcp_cwnd_ssthresh, which is half of the original congestion wnd. 12066 */ 12067 usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; 12068 12069 /* At least retransmit 1 MSS of data. */ 12070 if (usable_swnd <= 0) { 12071 usable_swnd = mss; 12072 } 12073 12074 /* Make sure no new RTT samples will be taken. */ 12075 tcp->tcp_csuna = tcp->tcp_snxt; 12076 12077 notsack_blk = tcp->tcp_notsack_list; 12078 while (usable_swnd > 0) { 12079 mblk_t *snxt_mp, *tmp_mp; 12080 tcp_seq begin = tcp->tcp_sack_snxt; 12081 tcp_seq end; 12082 int32_t off; 12083 12084 for (; notsack_blk != NULL; notsack_blk = notsack_blk->next) { 12085 if (SEQ_GT(notsack_blk->end, begin) && 12086 (notsack_blk->sack_cnt >= 12087 tcps->tcps_dupack_fast_retransmit)) { 12088 end = notsack_blk->end; 12089 if (SEQ_LT(begin, notsack_blk->begin)) { 12090 begin = notsack_blk->begin; 12091 } 12092 break; 12093 } 12094 } 12095 /* 12096 * All holes are filled. Manipulate tcp_cwnd to send more 12097 * if we can. Note that after the SACK recovery, tcp_cwnd is 12098 * set to tcp_cwnd_ssthresh. 12099 */ 12100 if (notsack_blk == NULL) { 12101 usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; 12102 if (usable_swnd <= 0 || tcp->tcp_unsent == 0) { 12103 tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna; 12104 ASSERT(tcp->tcp_cwnd > 0); 12105 return; 12106 } else { 12107 usable_swnd = usable_swnd / mss; 12108 tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna + 12109 MAX(usable_swnd * mss, mss); 12110 *flags |= TH_XMIT_NEEDED; 12111 return; 12112 } 12113 } 12114 12115 /* 12116 * Note that we may send more than usable_swnd allows here 12117 * because of round off, but no more than 1 MSS of data. 12118 */ 12119 seg_len = end - begin; 12120 if (seg_len > mss) 12121 seg_len = mss; 12122 snxt_mp = tcp_get_seg_mp(tcp, begin, &off); 12123 ASSERT(snxt_mp != NULL); 12124 /* This should not happen. Defensive coding again... */ 12125 if (snxt_mp == NULL) { 12126 return; 12127 } 12128 12129 xmit_mp = tcp_xmit_mp(tcp, snxt_mp, seg_len, &off, 12130 &tmp_mp, begin, B_TRUE, &seg_len, B_TRUE); 12131 if (xmit_mp == NULL) 12132 return; 12133 12134 usable_swnd -= seg_len; 12135 tcp->tcp_pipe += seg_len; 12136 tcp->tcp_sack_snxt = begin + seg_len; 12137 12138 tcp_send_data(tcp, tcp->tcp_wq, xmit_mp); 12139 12140 /* 12141 * Update the send timestamp to avoid false retransmission. 12142 */ 12143 snxt_mp->b_prev = (mblk_t *)lbolt; 12144 12145 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 12146 UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, seg_len); 12147 BUMP_MIB(&tcps->tcps_mib, tcpOutSackRetransSegs); 12148 /* 12149 * Update tcp_rexmit_max to extend this SACK recovery phase. 12150 * This happens when new data sent during fast recovery is 12151 * also lost. If TCP retransmits those new data, it needs 12152 * to extend SACK recover phase to avoid starting another 12153 * fast retransmit/recovery unnecessarily. 12154 */ 12155 if (SEQ_GT(tcp->tcp_sack_snxt, tcp->tcp_rexmit_max)) { 12156 tcp->tcp_rexmit_max = tcp->tcp_sack_snxt; 12157 } 12158 } 12159 } 12160 12161 /* 12162 * This function handles policy checking at TCP level for non-hard_bound/ 12163 * detached connections. 12164 */ 12165 static boolean_t 12166 tcp_check_policy(tcp_t *tcp, mblk_t *first_mp, ipha_t *ipha, ip6_t *ip6h, 12167 boolean_t secure, boolean_t mctl_present) 12168 { 12169 ipsec_latch_t *ipl = NULL; 12170 ipsec_action_t *act = NULL; 12171 mblk_t *data_mp; 12172 ipsec_in_t *ii; 12173 const char *reason; 12174 kstat_named_t *counter; 12175 tcp_stack_t *tcps = tcp->tcp_tcps; 12176 ipsec_stack_t *ipss; 12177 ip_stack_t *ipst; 12178 12179 ASSERT(mctl_present || !secure); 12180 12181 ASSERT((ipha == NULL && ip6h != NULL) || 12182 (ip6h == NULL && ipha != NULL)); 12183 12184 /* 12185 * We don't necessarily have an ipsec_in_act action to verify 12186 * policy because of assymetrical policy where we have only 12187 * outbound policy and no inbound policy (possible with global 12188 * policy). 12189 */ 12190 if (!secure) { 12191 if (act == NULL || act->ipa_act.ipa_type == IPSEC_ACT_BYPASS || 12192 act->ipa_act.ipa_type == IPSEC_ACT_CLEAR) 12193 return (B_TRUE); 12194 ipsec_log_policy_failure(IPSEC_POLICY_MISMATCH, 12195 "tcp_check_policy", ipha, ip6h, secure, 12196 tcps->tcps_netstack); 12197 ipss = tcps->tcps_netstack->netstack_ipsec; 12198 12199 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, 12200 DROPPER(ipss, ipds_tcp_clear), 12201 &tcps->tcps_dropper); 12202 return (B_FALSE); 12203 } 12204 12205 /* 12206 * We have a secure packet. 12207 */ 12208 if (act == NULL) { 12209 ipsec_log_policy_failure(IPSEC_POLICY_NOT_NEEDED, 12210 "tcp_check_policy", ipha, ip6h, secure, 12211 tcps->tcps_netstack); 12212 ipss = tcps->tcps_netstack->netstack_ipsec; 12213 12214 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, 12215 DROPPER(ipss, ipds_tcp_secure), 12216 &tcps->tcps_dropper); 12217 return (B_FALSE); 12218 } 12219 12220 /* 12221 * XXX This whole routine is currently incorrect. ipl should 12222 * be set to the latch pointer, but is currently not set, so 12223 * we initialize it to NULL to avoid picking up random garbage. 12224 */ 12225 if (ipl == NULL) 12226 return (B_TRUE); 12227 12228 data_mp = first_mp->b_cont; 12229 12230 ii = (ipsec_in_t *)first_mp->b_rptr; 12231 12232 ipst = tcps->tcps_netstack->netstack_ip; 12233 12234 if (ipsec_check_ipsecin_latch(ii, data_mp, ipl, ipha, ip6h, &reason, 12235 &counter, tcp->tcp_connp)) { 12236 BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded); 12237 return (B_TRUE); 12238 } 12239 (void) strlog(TCP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE, 12240 "tcp inbound policy mismatch: %s, packet dropped\n", 12241 reason); 12242 BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed); 12243 12244 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter, 12245 &tcps->tcps_dropper); 12246 return (B_FALSE); 12247 } 12248 12249 /* 12250 * tcp_ss_rexmit() is called in tcp_rput_data() to do slow start 12251 * retransmission after a timeout. 12252 * 12253 * To limit the number of duplicate segments, we limit the number of segment 12254 * to be sent in one time to tcp_snd_burst, the burst variable. 12255 */ 12256 static void 12257 tcp_ss_rexmit(tcp_t *tcp) 12258 { 12259 uint32_t snxt; 12260 uint32_t smax; 12261 int32_t win; 12262 int32_t mss; 12263 int32_t off; 12264 int32_t burst = tcp->tcp_snd_burst; 12265 mblk_t *snxt_mp; 12266 tcp_stack_t *tcps = tcp->tcp_tcps; 12267 12268 /* 12269 * Note that tcp_rexmit can be set even though TCP has retransmitted 12270 * all unack'ed segments. 12271 */ 12272 if (SEQ_LT(tcp->tcp_rexmit_nxt, tcp->tcp_rexmit_max)) { 12273 smax = tcp->tcp_rexmit_max; 12274 snxt = tcp->tcp_rexmit_nxt; 12275 if (SEQ_LT(snxt, tcp->tcp_suna)) { 12276 snxt = tcp->tcp_suna; 12277 } 12278 win = MIN(tcp->tcp_cwnd, tcp->tcp_swnd); 12279 win -= snxt - tcp->tcp_suna; 12280 mss = tcp->tcp_mss; 12281 snxt_mp = tcp_get_seg_mp(tcp, snxt, &off); 12282 12283 while (SEQ_LT(snxt, smax) && (win > 0) && 12284 (burst > 0) && (snxt_mp != NULL)) { 12285 mblk_t *xmit_mp; 12286 mblk_t *old_snxt_mp = snxt_mp; 12287 uint32_t cnt = mss; 12288 12289 if (win < cnt) { 12290 cnt = win; 12291 } 12292 if (SEQ_GT(snxt + cnt, smax)) { 12293 cnt = smax - snxt; 12294 } 12295 xmit_mp = tcp_xmit_mp(tcp, snxt_mp, cnt, &off, 12296 &snxt_mp, snxt, B_TRUE, &cnt, B_TRUE); 12297 if (xmit_mp == NULL) 12298 return; 12299 12300 tcp_send_data(tcp, tcp->tcp_wq, xmit_mp); 12301 12302 snxt += cnt; 12303 win -= cnt; 12304 /* 12305 * Update the send timestamp to avoid false 12306 * retransmission. 12307 */ 12308 old_snxt_mp->b_prev = (mblk_t *)lbolt; 12309 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 12310 UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, cnt); 12311 12312 tcp->tcp_rexmit_nxt = snxt; 12313 burst--; 12314 } 12315 /* 12316 * If we have transmitted all we have at the time 12317 * we started the retranmission, we can leave 12318 * the rest of the job to tcp_wput_data(). But we 12319 * need to check the send window first. If the 12320 * win is not 0, go on with tcp_wput_data(). 12321 */ 12322 if (SEQ_LT(snxt, smax) || win == 0) { 12323 return; 12324 } 12325 } 12326 /* Only call tcp_wput_data() if there is data to be sent. */ 12327 if (tcp->tcp_unsent) { 12328 tcp_wput_data(tcp, NULL, B_FALSE); 12329 } 12330 } 12331 12332 /* 12333 * Process all TCP option in SYN segment. Note that this function should 12334 * be called after tcp_adapt_ire() is called so that the necessary info 12335 * from IRE is already set in the tcp structure. 12336 * 12337 * This function sets up the correct tcp_mss value according to the 12338 * MSS option value and our header size. It also sets up the window scale 12339 * and timestamp values, and initialize SACK info blocks. But it does not 12340 * change receive window size after setting the tcp_mss value. The caller 12341 * should do the appropriate change. 12342 */ 12343 void 12344 tcp_process_options(tcp_t *tcp, tcph_t *tcph) 12345 { 12346 int options; 12347 tcp_opt_t tcpopt; 12348 uint32_t mss_max; 12349 char *tmp_tcph; 12350 tcp_stack_t *tcps = tcp->tcp_tcps; 12351 12352 tcpopt.tcp = NULL; 12353 options = tcp_parse_options(tcph, &tcpopt); 12354 12355 /* 12356 * Process MSS option. Note that MSS option value does not account 12357 * for IP or TCP options. This means that it is equal to MTU - minimum 12358 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for 12359 * IPv6. 12360 */ 12361 if (!(options & TCP_OPT_MSS_PRESENT)) { 12362 if (tcp->tcp_ipversion == IPV4_VERSION) 12363 tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv4; 12364 else 12365 tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv6; 12366 } else { 12367 if (tcp->tcp_ipversion == IPV4_VERSION) 12368 mss_max = tcps->tcps_mss_max_ipv4; 12369 else 12370 mss_max = tcps->tcps_mss_max_ipv6; 12371 if (tcpopt.tcp_opt_mss < tcps->tcps_mss_min) 12372 tcpopt.tcp_opt_mss = tcps->tcps_mss_min; 12373 else if (tcpopt.tcp_opt_mss > mss_max) 12374 tcpopt.tcp_opt_mss = mss_max; 12375 } 12376 12377 /* Process Window Scale option. */ 12378 if (options & TCP_OPT_WSCALE_PRESENT) { 12379 tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale; 12380 tcp->tcp_snd_ws_ok = B_TRUE; 12381 } else { 12382 tcp->tcp_snd_ws = B_FALSE; 12383 tcp->tcp_snd_ws_ok = B_FALSE; 12384 tcp->tcp_rcv_ws = B_FALSE; 12385 } 12386 12387 /* Process Timestamp option. */ 12388 if ((options & TCP_OPT_TSTAMP_PRESENT) && 12389 (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) { 12390 tmp_tcph = (char *)tcp->tcp_tcph; 12391 12392 tcp->tcp_snd_ts_ok = B_TRUE; 12393 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 12394 tcp->tcp_last_rcv_lbolt = lbolt64; 12395 ASSERT(OK_32PTR(tmp_tcph)); 12396 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 12397 12398 /* Fill in our template header with basic timestamp option. */ 12399 tmp_tcph += tcp->tcp_tcp_hdr_len; 12400 tmp_tcph[0] = TCPOPT_NOP; 12401 tmp_tcph[1] = TCPOPT_NOP; 12402 tmp_tcph[2] = TCPOPT_TSTAMP; 12403 tmp_tcph[3] = TCPOPT_TSTAMP_LEN; 12404 tcp->tcp_hdr_len += TCPOPT_REAL_TS_LEN; 12405 tcp->tcp_tcp_hdr_len += TCPOPT_REAL_TS_LEN; 12406 tcp->tcp_tcph->th_offset_and_rsrvd[0] += (3 << 4); 12407 } else { 12408 tcp->tcp_snd_ts_ok = B_FALSE; 12409 } 12410 12411 /* 12412 * Process SACK options. If SACK is enabled for this connection, 12413 * then allocate the SACK info structure. Note the following ways 12414 * when tcp_snd_sack_ok is set to true. 12415 * 12416 * For active connection: in tcp_adapt_ire() called in 12417 * tcp_rput_other(), or in tcp_rput_other() when tcp_sack_permitted 12418 * is checked. 12419 * 12420 * For passive connection: in tcp_adapt_ire() called in 12421 * tcp_accept_comm(). 12422 * 12423 * That's the reason why the extra TCP_IS_DETACHED() check is there. 12424 * That check makes sure that if we did not send a SACK OK option, 12425 * we will not enable SACK for this connection even though the other 12426 * side sends us SACK OK option. For active connection, the SACK 12427 * info structure has already been allocated. So we need to free 12428 * it if SACK is disabled. 12429 */ 12430 if ((options & TCP_OPT_SACK_OK_PRESENT) && 12431 (tcp->tcp_snd_sack_ok || 12432 (tcps->tcps_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) { 12433 /* This should be true only in the passive case. */ 12434 if (tcp->tcp_sack_info == NULL) { 12435 ASSERT(TCP_IS_DETACHED(tcp)); 12436 tcp->tcp_sack_info = 12437 kmem_cache_alloc(tcp_sack_info_cache, KM_NOSLEEP); 12438 } 12439 if (tcp->tcp_sack_info == NULL) { 12440 tcp->tcp_snd_sack_ok = B_FALSE; 12441 } else { 12442 tcp->tcp_snd_sack_ok = B_TRUE; 12443 if (tcp->tcp_snd_ts_ok) { 12444 tcp->tcp_max_sack_blk = 3; 12445 } else { 12446 tcp->tcp_max_sack_blk = 4; 12447 } 12448 } 12449 } else { 12450 /* 12451 * Resetting tcp_snd_sack_ok to B_FALSE so that 12452 * no SACK info will be used for this 12453 * connection. This assumes that SACK usage 12454 * permission is negotiated. This may need 12455 * to be changed once this is clarified. 12456 */ 12457 if (tcp->tcp_sack_info != NULL) { 12458 ASSERT(tcp->tcp_notsack_list == NULL); 12459 kmem_cache_free(tcp_sack_info_cache, 12460 tcp->tcp_sack_info); 12461 tcp->tcp_sack_info = NULL; 12462 } 12463 tcp->tcp_snd_sack_ok = B_FALSE; 12464 } 12465 12466 /* 12467 * Now we know the exact TCP/IP header length, subtract 12468 * that from tcp_mss to get our side's MSS. 12469 */ 12470 tcp->tcp_mss -= tcp->tcp_hdr_len; 12471 /* 12472 * Here we assume that the other side's header size will be equal to 12473 * our header size. We calculate the real MSS accordingly. Need to 12474 * take into additional stuffs IPsec puts in. 12475 * 12476 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header) 12477 */ 12478 tcpopt.tcp_opt_mss -= tcp->tcp_hdr_len + tcp->tcp_ipsec_overhead - 12479 ((tcp->tcp_ipversion == IPV4_VERSION ? 12480 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH); 12481 12482 /* 12483 * Set MSS to the smaller one of both ends of the connection. 12484 * We should not have called tcp_mss_set() before, but our 12485 * side of the MSS should have been set to a proper value 12486 * by tcp_adapt_ire(). tcp_mss_set() will also set up the 12487 * STREAM head parameters properly. 12488 * 12489 * If we have a larger-than-16-bit window but the other side 12490 * didn't want to do window scale, tcp_rwnd_set() will take 12491 * care of that. 12492 */ 12493 tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss), B_TRUE); 12494 } 12495 12496 /* 12497 * Sends the T_CONN_IND to the listener. The caller calls this 12498 * functions via squeue to get inside the listener's perimeter 12499 * once the 3 way hand shake is done a T_CONN_IND needs to be 12500 * sent. As an optimization, the caller can call this directly 12501 * if listener's perimeter is same as eager's. 12502 */ 12503 /* ARGSUSED */ 12504 void 12505 tcp_send_conn_ind(void *arg, mblk_t *mp, void *arg2) 12506 { 12507 conn_t *lconnp = (conn_t *)arg; 12508 tcp_t *listener = lconnp->conn_tcp; 12509 tcp_t *tcp; 12510 struct T_conn_ind *conn_ind; 12511 ipaddr_t *addr_cache; 12512 boolean_t need_send_conn_ind = B_FALSE; 12513 tcp_stack_t *tcps = listener->tcp_tcps; 12514 12515 /* retrieve the eager */ 12516 conn_ind = (struct T_conn_ind *)mp->b_rptr; 12517 ASSERT(conn_ind->OPT_offset != 0 && 12518 conn_ind->OPT_length == sizeof (intptr_t)); 12519 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 12520 conn_ind->OPT_length); 12521 12522 /* 12523 * TLI/XTI applications will get confused by 12524 * sending eager as an option since it violates 12525 * the option semantics. So remove the eager as 12526 * option since TLI/XTI app doesn't need it anyway. 12527 */ 12528 if (!TCP_IS_SOCKET(listener)) { 12529 conn_ind->OPT_length = 0; 12530 conn_ind->OPT_offset = 0; 12531 } 12532 if (listener->tcp_state == TCPS_CLOSED || 12533 TCP_IS_DETACHED(listener)) { 12534 /* 12535 * If listener has closed, it would have caused a 12536 * a cleanup/blowoff to happen for the eager. We 12537 * just need to return. 12538 */ 12539 freemsg(mp); 12540 return; 12541 } 12542 12543 12544 /* 12545 * if the conn_req_q is full defer passing up the 12546 * T_CONN_IND until space is availabe after t_accept() 12547 * processing 12548 */ 12549 mutex_enter(&listener->tcp_eager_lock); 12550 12551 /* 12552 * Take the eager out, if it is in the list of droppable eagers 12553 * as we are here because the 3W handshake is over. 12554 */ 12555 MAKE_UNDROPPABLE(tcp); 12556 12557 if (listener->tcp_conn_req_cnt_q < listener->tcp_conn_req_max) { 12558 tcp_t *tail; 12559 12560 /* 12561 * The eager already has an extra ref put in tcp_rput_data 12562 * so that it stays till accept comes back even though it 12563 * might get into TCPS_CLOSED as a result of a TH_RST etc. 12564 */ 12565 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 12566 listener->tcp_conn_req_cnt_q0--; 12567 listener->tcp_conn_req_cnt_q++; 12568 12569 /* Move from SYN_RCVD to ESTABLISHED list */ 12570 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 12571 tcp->tcp_eager_prev_q0; 12572 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 12573 tcp->tcp_eager_next_q0; 12574 tcp->tcp_eager_prev_q0 = NULL; 12575 tcp->tcp_eager_next_q0 = NULL; 12576 12577 /* 12578 * Insert at end of the queue because sockfs 12579 * sends down T_CONN_RES in chronological 12580 * order. Leaving the older conn indications 12581 * at front of the queue helps reducing search 12582 * time. 12583 */ 12584 tail = listener->tcp_eager_last_q; 12585 if (tail != NULL) 12586 tail->tcp_eager_next_q = tcp; 12587 else 12588 listener->tcp_eager_next_q = tcp; 12589 listener->tcp_eager_last_q = tcp; 12590 tcp->tcp_eager_next_q = NULL; 12591 /* 12592 * Delay sending up the T_conn_ind until we are 12593 * done with the eager. Once we have have sent up 12594 * the T_conn_ind, the accept can potentially complete 12595 * any time and release the refhold we have on the eager. 12596 */ 12597 need_send_conn_ind = B_TRUE; 12598 } else { 12599 /* 12600 * Defer connection on q0 and set deferred 12601 * connection bit true 12602 */ 12603 tcp->tcp_conn_def_q0 = B_TRUE; 12604 12605 /* take tcp out of q0 ... */ 12606 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 12607 tcp->tcp_eager_next_q0; 12608 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 12609 tcp->tcp_eager_prev_q0; 12610 12611 /* ... and place it at the end of q0 */ 12612 tcp->tcp_eager_prev_q0 = listener->tcp_eager_prev_q0; 12613 tcp->tcp_eager_next_q0 = listener; 12614 listener->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp; 12615 listener->tcp_eager_prev_q0 = tcp; 12616 tcp->tcp_conn.tcp_eager_conn_ind = mp; 12617 } 12618 12619 /* we have timed out before */ 12620 if (tcp->tcp_syn_rcvd_timeout != 0) { 12621 tcp->tcp_syn_rcvd_timeout = 0; 12622 listener->tcp_syn_rcvd_timeout--; 12623 if (listener->tcp_syn_defense && 12624 listener->tcp_syn_rcvd_timeout <= 12625 (tcps->tcps_conn_req_max_q0 >> 5) && 12626 10*MINUTES < TICK_TO_MSEC(lbolt64 - 12627 listener->tcp_last_rcv_lbolt)) { 12628 /* 12629 * Turn off the defense mode if we 12630 * believe the SYN attack is over. 12631 */ 12632 listener->tcp_syn_defense = B_FALSE; 12633 if (listener->tcp_ip_addr_cache) { 12634 kmem_free((void *)listener->tcp_ip_addr_cache, 12635 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 12636 listener->tcp_ip_addr_cache = NULL; 12637 } 12638 } 12639 } 12640 addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache); 12641 if (addr_cache != NULL) { 12642 /* 12643 * We have finished a 3-way handshake with this 12644 * remote host. This proves the IP addr is good. 12645 * Cache it! 12646 */ 12647 addr_cache[IP_ADDR_CACHE_HASH( 12648 tcp->tcp_remote)] = tcp->tcp_remote; 12649 } 12650 mutex_exit(&listener->tcp_eager_lock); 12651 if (need_send_conn_ind) 12652 tcp_ulp_newconn(lconnp, tcp->tcp_connp, mp); 12653 } 12654 12655 /* 12656 * Send the newconn notification to ulp. The eager is blown off if the 12657 * notification fails. 12658 */ 12659 static void 12660 tcp_ulp_newconn(conn_t *lconnp, conn_t *econnp, mblk_t *mp) 12661 { 12662 if (IPCL_IS_NONSTR(lconnp)) { 12663 cred_t *cr; 12664 pid_t cpid; 12665 12666 cr = msg_getcred(mp, &cpid); 12667 12668 ASSERT(econnp->conn_tcp->tcp_listener == lconnp->conn_tcp); 12669 ASSERT(econnp->conn_tcp->tcp_saved_listener == 12670 lconnp->conn_tcp); 12671 12672 /* Keep the message around in case of a fallback to TPI */ 12673 econnp->conn_tcp->tcp_conn.tcp_eager_conn_ind = mp; 12674 12675 /* 12676 * Notify the ULP about the newconn. It is guaranteed that no 12677 * tcp_accept() call will be made for the eager if the 12678 * notification fails, so it's safe to blow it off in that 12679 * case. 12680 * 12681 * The upper handle will be assigned when tcp_accept() is 12682 * called. 12683 */ 12684 if ((*lconnp->conn_upcalls->su_newconn) 12685 (lconnp->conn_upper_handle, 12686 (sock_lower_handle_t)econnp, 12687 &sock_tcp_downcalls, cr, cpid, 12688 &econnp->conn_upcalls) == NULL) { 12689 /* Failed to allocate a socket */ 12690 BUMP_MIB(&lconnp->conn_tcp->tcp_tcps->tcps_mib, 12691 tcpEstabResets); 12692 (void) tcp_eager_blowoff(lconnp->conn_tcp, 12693 econnp->conn_tcp->tcp_conn_req_seqnum); 12694 } 12695 } else { 12696 putnext(lconnp->conn_tcp->tcp_rq, mp); 12697 } 12698 } 12699 12700 mblk_t * 12701 tcp_find_pktinfo(tcp_t *tcp, mblk_t *mp, uint_t *ipversp, uint_t *ip_hdr_lenp, 12702 uint_t *ifindexp, ip6_pkt_t *ippp) 12703 { 12704 ip_pktinfo_t *pinfo; 12705 ip6_t *ip6h; 12706 uchar_t *rptr; 12707 mblk_t *first_mp = mp; 12708 boolean_t mctl_present = B_FALSE; 12709 uint_t ifindex = 0; 12710 ip6_pkt_t ipp; 12711 uint_t ipvers; 12712 uint_t ip_hdr_len; 12713 tcp_stack_t *tcps = tcp->tcp_tcps; 12714 12715 rptr = mp->b_rptr; 12716 ASSERT(OK_32PTR(rptr)); 12717 ASSERT(tcp != NULL); 12718 ipp.ipp_fields = 0; 12719 12720 switch DB_TYPE(mp) { 12721 case M_CTL: 12722 mp = mp->b_cont; 12723 if (mp == NULL) { 12724 freemsg(first_mp); 12725 return (NULL); 12726 } 12727 if (DB_TYPE(mp) != M_DATA) { 12728 freemsg(first_mp); 12729 return (NULL); 12730 } 12731 mctl_present = B_TRUE; 12732 break; 12733 case M_DATA: 12734 break; 12735 default: 12736 cmn_err(CE_NOTE, "tcp_find_pktinfo: unknown db_type"); 12737 freemsg(mp); 12738 return (NULL); 12739 } 12740 ipvers = IPH_HDR_VERSION(rptr); 12741 if (ipvers == IPV4_VERSION) { 12742 if (tcp == NULL) { 12743 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12744 goto done; 12745 } 12746 12747 ipp.ipp_fields |= IPPF_HOPLIMIT; 12748 ipp.ipp_hoplimit = ((ipha_t *)rptr)->ipha_ttl; 12749 12750 /* 12751 * If we have IN_PKTINFO in an M_CTL and tcp_ipv6_recvancillary 12752 * has TCP_IPV6_RECVPKTINFO set, pass I/F index along in ipp. 12753 */ 12754 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) && 12755 mctl_present) { 12756 pinfo = (ip_pktinfo_t *)first_mp->b_rptr; 12757 if ((MBLKL(first_mp) == sizeof (ip_pktinfo_t)) && 12758 (pinfo->ip_pkt_ulp_type == IN_PKTINFO) && 12759 (pinfo->ip_pkt_flags & IPF_RECVIF)) { 12760 ipp.ipp_fields |= IPPF_IFINDEX; 12761 ipp.ipp_ifindex = pinfo->ip_pkt_ifindex; 12762 ifindex = pinfo->ip_pkt_ifindex; 12763 } 12764 freeb(first_mp); 12765 mctl_present = B_FALSE; 12766 } 12767 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12768 } else { 12769 ip6h = (ip6_t *)rptr; 12770 12771 ASSERT(ipvers == IPV6_VERSION); 12772 ipp.ipp_fields = IPPF_HOPLIMIT | IPPF_TCLASS; 12773 ipp.ipp_tclass = (ip6h->ip6_flow & 0x0FF00000) >> 20; 12774 ipp.ipp_hoplimit = ip6h->ip6_hops; 12775 12776 if (ip6h->ip6_nxt != IPPROTO_TCP) { 12777 uint8_t nexthdrp; 12778 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 12779 12780 /* Look for ifindex information */ 12781 if (ip6h->ip6_nxt == IPPROTO_RAW) { 12782 ip6i_t *ip6i = (ip6i_t *)ip6h; 12783 if ((uchar_t *)&ip6i[1] > mp->b_wptr) { 12784 BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs); 12785 freemsg(first_mp); 12786 return (NULL); 12787 } 12788 12789 if (ip6i->ip6i_flags & IP6I_IFINDEX) { 12790 ASSERT(ip6i->ip6i_ifindex != 0); 12791 ipp.ipp_fields |= IPPF_IFINDEX; 12792 ipp.ipp_ifindex = ip6i->ip6i_ifindex; 12793 ifindex = ip6i->ip6i_ifindex; 12794 } 12795 rptr = (uchar_t *)&ip6i[1]; 12796 mp->b_rptr = rptr; 12797 if (rptr == mp->b_wptr) { 12798 mblk_t *mp1; 12799 mp1 = mp->b_cont; 12800 freeb(mp); 12801 mp = mp1; 12802 rptr = mp->b_rptr; 12803 } 12804 if (MBLKL(mp) < IPV6_HDR_LEN + 12805 sizeof (tcph_t)) { 12806 BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs); 12807 freemsg(first_mp); 12808 return (NULL); 12809 } 12810 ip6h = (ip6_t *)rptr; 12811 } 12812 12813 /* 12814 * Find any potentially interesting extension headers 12815 * as well as the length of the IPv6 + extension 12816 * headers. 12817 */ 12818 ip_hdr_len = ip_find_hdr_v6(mp, ip6h, &ipp, &nexthdrp); 12819 /* Verify if this is a TCP packet */ 12820 if (nexthdrp != IPPROTO_TCP) { 12821 BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs); 12822 freemsg(first_mp); 12823 return (NULL); 12824 } 12825 } else { 12826 ip_hdr_len = IPV6_HDR_LEN; 12827 } 12828 } 12829 12830 done: 12831 if (ipversp != NULL) 12832 *ipversp = ipvers; 12833 if (ip_hdr_lenp != NULL) 12834 *ip_hdr_lenp = ip_hdr_len; 12835 if (ippp != NULL) 12836 *ippp = ipp; 12837 if (ifindexp != NULL) 12838 *ifindexp = ifindex; 12839 if (mctl_present) { 12840 freeb(first_mp); 12841 } 12842 return (mp); 12843 } 12844 12845 /* 12846 * Handle M_DATA messages from IP. Its called directly from IP via 12847 * squeue for AF_INET type sockets fast path. No M_CTL are expected 12848 * in this path. 12849 * 12850 * For everything else (including AF_INET6 sockets with 'tcp_ipversion' 12851 * v4 and v6), we are called through tcp_input() and a M_CTL can 12852 * be present for options but tcp_find_pktinfo() deals with it. We 12853 * only expect M_DATA packets after tcp_find_pktinfo() is done. 12854 * 12855 * The first argument is always the connp/tcp to which the mp belongs. 12856 * There are no exceptions to this rule. The caller has already put 12857 * a reference on this connp/tcp and once tcp_rput_data() returns, 12858 * the squeue will do the refrele. 12859 * 12860 * The TH_SYN for the listener directly go to tcp_conn_request via 12861 * squeue. 12862 * 12863 * sqp: NULL = recursive, sqp != NULL means called from squeue 12864 */ 12865 void 12866 tcp_rput_data(void *arg, mblk_t *mp, void *arg2) 12867 { 12868 int32_t bytes_acked; 12869 int32_t gap; 12870 mblk_t *mp1; 12871 uint_t flags; 12872 uint32_t new_swnd = 0; 12873 uchar_t *iphdr; 12874 uchar_t *rptr; 12875 int32_t rgap; 12876 uint32_t seg_ack; 12877 int seg_len; 12878 uint_t ip_hdr_len; 12879 uint32_t seg_seq; 12880 tcph_t *tcph; 12881 int urp; 12882 tcp_opt_t tcpopt; 12883 uint_t ipvers; 12884 ip6_pkt_t ipp; 12885 boolean_t ofo_seg = B_FALSE; /* Out of order segment */ 12886 uint32_t cwnd; 12887 uint32_t add; 12888 int npkt; 12889 int mss; 12890 conn_t *connp = (conn_t *)arg; 12891 squeue_t *sqp = (squeue_t *)arg2; 12892 tcp_t *tcp = connp->conn_tcp; 12893 tcp_stack_t *tcps = tcp->tcp_tcps; 12894 12895 /* 12896 * RST from fused tcp loopback peer should trigger an unfuse. 12897 */ 12898 if (tcp->tcp_fused) { 12899 TCP_STAT(tcps, tcp_fusion_aborted); 12900 tcp_unfuse(tcp); 12901 } 12902 12903 iphdr = mp->b_rptr; 12904 rptr = mp->b_rptr; 12905 ASSERT(OK_32PTR(rptr)); 12906 12907 /* 12908 * An AF_INET socket is not capable of receiving any pktinfo. Do inline 12909 * processing here. For rest call tcp_find_pktinfo to fill up the 12910 * necessary information. 12911 */ 12912 if (IPCL_IS_TCP4(connp)) { 12913 ipvers = IPV4_VERSION; 12914 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12915 } else { 12916 mp = tcp_find_pktinfo(tcp, mp, &ipvers, &ip_hdr_len, 12917 NULL, &ipp); 12918 if (mp == NULL) { 12919 TCP_STAT(tcps, tcp_rput_v6_error); 12920 return; 12921 } 12922 iphdr = mp->b_rptr; 12923 rptr = mp->b_rptr; 12924 } 12925 ASSERT(DB_TYPE(mp) == M_DATA); 12926 ASSERT(mp->b_next == NULL); 12927 12928 tcph = (tcph_t *)&rptr[ip_hdr_len]; 12929 seg_seq = ABE32_TO_U32(tcph->th_seq); 12930 seg_ack = ABE32_TO_U32(tcph->th_ack); 12931 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 12932 seg_len = (int)(mp->b_wptr - rptr) - 12933 (ip_hdr_len + TCP_HDR_LENGTH(tcph)); 12934 if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) { 12935 do { 12936 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 12937 (uintptr_t)INT_MAX); 12938 seg_len += (int)(mp1->b_wptr - mp1->b_rptr); 12939 } while ((mp1 = mp1->b_cont) != NULL && 12940 mp1->b_datap->db_type == M_DATA); 12941 } 12942 12943 if (tcp->tcp_state == TCPS_TIME_WAIT) { 12944 tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack, 12945 seg_len, tcph); 12946 return; 12947 } 12948 12949 if (sqp != NULL) { 12950 /* 12951 * This is the correct place to update tcp_last_recv_time. Note 12952 * that it is also updated for tcp structure that belongs to 12953 * global and listener queues which do not really need updating. 12954 * But that should not cause any harm. And it is updated for 12955 * all kinds of incoming segments, not only for data segments. 12956 */ 12957 tcp->tcp_last_recv_time = lbolt; 12958 } 12959 12960 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 12961 12962 BUMP_LOCAL(tcp->tcp_ibsegs); 12963 DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp); 12964 12965 if ((flags & TH_URG) && sqp != NULL) { 12966 /* 12967 * TCP can't handle urgent pointers that arrive before 12968 * the connection has been accept()ed since it can't 12969 * buffer OOB data. Discard segment if this happens. 12970 * 12971 * We can't just rely on a non-null tcp_listener to indicate 12972 * that the accept() has completed since unlinking of the 12973 * eager and completion of the accept are not atomic. 12974 * tcp_detached, when it is not set (B_FALSE) indicates 12975 * that the accept() has completed. 12976 * 12977 * Nor can it reassemble urgent pointers, so discard 12978 * if it's not the next segment expected. 12979 * 12980 * Otherwise, collapse chain into one mblk (discard if 12981 * that fails). This makes sure the headers, retransmitted 12982 * data, and new data all are in the same mblk. 12983 */ 12984 ASSERT(mp != NULL); 12985 if (tcp->tcp_detached || !pullupmsg(mp, -1)) { 12986 freemsg(mp); 12987 return; 12988 } 12989 /* Update pointers into message */ 12990 iphdr = rptr = mp->b_rptr; 12991 tcph = (tcph_t *)&rptr[ip_hdr_len]; 12992 if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) { 12993 /* 12994 * Since we can't handle any data with this urgent 12995 * pointer that is out of sequence, we expunge 12996 * the data. This allows us to still register 12997 * the urgent mark and generate the M_PCSIG, 12998 * which we can do. 12999 */ 13000 mp->b_wptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph); 13001 seg_len = 0; 13002 } 13003 } 13004 13005 switch (tcp->tcp_state) { 13006 case TCPS_SYN_SENT: 13007 if (flags & TH_ACK) { 13008 /* 13009 * Note that our stack cannot send data before a 13010 * connection is established, therefore the 13011 * following check is valid. Otherwise, it has 13012 * to be changed. 13013 */ 13014 if (SEQ_LEQ(seg_ack, tcp->tcp_iss) || 13015 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 13016 freemsg(mp); 13017 if (flags & TH_RST) 13018 return; 13019 tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq", 13020 tcp, seg_ack, 0, TH_RST); 13021 return; 13022 } 13023 ASSERT(tcp->tcp_suna + 1 == seg_ack); 13024 } 13025 if (flags & TH_RST) { 13026 freemsg(mp); 13027 if (flags & TH_ACK) 13028 (void) tcp_clean_death(tcp, 13029 ECONNREFUSED, 13); 13030 return; 13031 } 13032 if (!(flags & TH_SYN)) { 13033 freemsg(mp); 13034 return; 13035 } 13036 13037 /* Process all TCP options. */ 13038 tcp_process_options(tcp, tcph); 13039 /* 13040 * The following changes our rwnd to be a multiple of the 13041 * MIN(peer MSS, our MSS) for performance reason. 13042 */ 13043 (void) tcp_rwnd_set(tcp, 13044 MSS_ROUNDUP(tcp->tcp_recv_hiwater, tcp->tcp_mss)); 13045 13046 /* Is the other end ECN capable? */ 13047 if (tcp->tcp_ecn_ok) { 13048 if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) { 13049 tcp->tcp_ecn_ok = B_FALSE; 13050 } 13051 } 13052 /* 13053 * Clear ECN flags because it may interfere with later 13054 * processing. 13055 */ 13056 flags &= ~(TH_ECE|TH_CWR); 13057 13058 tcp->tcp_irs = seg_seq; 13059 tcp->tcp_rack = seg_seq; 13060 tcp->tcp_rnxt = seg_seq + 1; 13061 U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack); 13062 if (!TCP_IS_DETACHED(tcp)) { 13063 /* Allocate room for SACK options if needed. */ 13064 if (tcp->tcp_snd_sack_ok) { 13065 (void) proto_set_tx_wroff(tcp->tcp_rq, connp, 13066 tcp->tcp_hdr_len + 13067 TCPOPT_MAX_SACK_LEN + 13068 (tcp->tcp_loopback ? 0 : 13069 tcps->tcps_wroff_xtra)); 13070 } else { 13071 (void) proto_set_tx_wroff(tcp->tcp_rq, connp, 13072 tcp->tcp_hdr_len + 13073 (tcp->tcp_loopback ? 0 : 13074 tcps->tcps_wroff_xtra)); 13075 } 13076 } 13077 if (flags & TH_ACK) { 13078 /* 13079 * If we can't get the confirmation upstream, pretend 13080 * we didn't even see this one. 13081 * 13082 * XXX: how can we pretend we didn't see it if we 13083 * have updated rnxt et. al. 13084 * 13085 * For loopback we defer sending up the T_CONN_CON 13086 * until after some checks below. 13087 */ 13088 mp1 = NULL; 13089 if (!tcp_conn_con(tcp, iphdr, tcph, mp, 13090 tcp->tcp_loopback ? &mp1 : NULL)) { 13091 freemsg(mp); 13092 return; 13093 } 13094 /* SYN was acked - making progress */ 13095 if (tcp->tcp_ipversion == IPV6_VERSION) 13096 tcp->tcp_ip_forward_progress = B_TRUE; 13097 13098 /* One for the SYN */ 13099 tcp->tcp_suna = tcp->tcp_iss + 1; 13100 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 13101 tcp->tcp_state = TCPS_ESTABLISHED; 13102 13103 /* 13104 * If SYN was retransmitted, need to reset all 13105 * retransmission info. This is because this 13106 * segment will be treated as a dup ACK. 13107 */ 13108 if (tcp->tcp_rexmit) { 13109 tcp->tcp_rexmit = B_FALSE; 13110 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 13111 tcp->tcp_rexmit_max = tcp->tcp_snxt; 13112 tcp->tcp_snd_burst = tcp->tcp_localnet ? 13113 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 13114 tcp->tcp_ms_we_have_waited = 0; 13115 13116 /* 13117 * Set tcp_cwnd back to 1 MSS, per 13118 * recommendation from 13119 * draft-floyd-incr-init-win-01.txt, 13120 * Increasing TCP's Initial Window. 13121 */ 13122 tcp->tcp_cwnd = tcp->tcp_mss; 13123 } 13124 13125 tcp->tcp_swl1 = seg_seq; 13126 tcp->tcp_swl2 = seg_ack; 13127 13128 new_swnd = BE16_TO_U16(tcph->th_win); 13129 tcp->tcp_swnd = new_swnd; 13130 if (new_swnd > tcp->tcp_max_swnd) 13131 tcp->tcp_max_swnd = new_swnd; 13132 13133 /* 13134 * Always send the three-way handshake ack immediately 13135 * in order to make the connection complete as soon as 13136 * possible on the accepting host. 13137 */ 13138 flags |= TH_ACK_NEEDED; 13139 13140 /* 13141 * Special case for loopback. At this point we have 13142 * received SYN-ACK from the remote endpoint. In 13143 * order to ensure that both endpoints reach the 13144 * fused state prior to any data exchange, the final 13145 * ACK needs to be sent before we indicate T_CONN_CON 13146 * to the module upstream. 13147 */ 13148 if (tcp->tcp_loopback) { 13149 mblk_t *ack_mp; 13150 13151 ASSERT(!tcp->tcp_unfusable); 13152 ASSERT(mp1 != NULL); 13153 /* 13154 * For loopback, we always get a pure SYN-ACK 13155 * and only need to send back the final ACK 13156 * with no data (this is because the other 13157 * tcp is ours and we don't do T/TCP). This 13158 * final ACK triggers the passive side to 13159 * perform fusion in ESTABLISHED state. 13160 */ 13161 if ((ack_mp = tcp_ack_mp(tcp)) != NULL) { 13162 if (tcp->tcp_ack_tid != 0) { 13163 (void) TCP_TIMER_CANCEL(tcp, 13164 tcp->tcp_ack_tid); 13165 tcp->tcp_ack_tid = 0; 13166 } 13167 tcp_send_data(tcp, tcp->tcp_wq, ack_mp); 13168 BUMP_LOCAL(tcp->tcp_obsegs); 13169 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 13170 13171 if (!IPCL_IS_NONSTR(connp)) { 13172 /* Send up T_CONN_CON */ 13173 putnext(tcp->tcp_rq, mp1); 13174 } else { 13175 cred_t *cr; 13176 pid_t cpid; 13177 13178 cr = msg_getcred(mp1, &cpid); 13179 (*connp->conn_upcalls-> 13180 su_connected) 13181 (connp->conn_upper_handle, 13182 tcp->tcp_connid, cr, cpid); 13183 freemsg(mp1); 13184 } 13185 13186 freemsg(mp); 13187 return; 13188 } 13189 /* 13190 * Forget fusion; we need to handle more 13191 * complex cases below. Send the deferred 13192 * T_CONN_CON message upstream and proceed 13193 * as usual. Mark this tcp as not capable 13194 * of fusion. 13195 */ 13196 TCP_STAT(tcps, tcp_fusion_unfusable); 13197 tcp->tcp_unfusable = B_TRUE; 13198 if (!IPCL_IS_NONSTR(connp)) { 13199 putnext(tcp->tcp_rq, mp1); 13200 } else { 13201 cred_t *cr; 13202 pid_t cpid; 13203 13204 cr = msg_getcred(mp1, &cpid); 13205 (*connp->conn_upcalls->su_connected) 13206 (connp->conn_upper_handle, 13207 tcp->tcp_connid, cr, cpid); 13208 freemsg(mp1); 13209 } 13210 } 13211 13212 /* 13213 * Check to see if there is data to be sent. If 13214 * yes, set the transmit flag. Then check to see 13215 * if received data processing needs to be done. 13216 * If not, go straight to xmit_check. This short 13217 * cut is OK as we don't support T/TCP. 13218 */ 13219 if (tcp->tcp_unsent) 13220 flags |= TH_XMIT_NEEDED; 13221 13222 if (seg_len == 0 && !(flags & TH_URG)) { 13223 freemsg(mp); 13224 goto xmit_check; 13225 } 13226 13227 flags &= ~TH_SYN; 13228 seg_seq++; 13229 break; 13230 } 13231 tcp->tcp_state = TCPS_SYN_RCVD; 13232 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss, 13233 NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 13234 if (mp1) { 13235 /* 13236 * See comment in tcp_conn_request() for why we use 13237 * the open() time pid here. 13238 */ 13239 DB_CPID(mp1) = tcp->tcp_cpid; 13240 tcp_send_data(tcp, tcp->tcp_wq, mp1); 13241 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 13242 } 13243 freemsg(mp); 13244 return; 13245 case TCPS_SYN_RCVD: 13246 if (flags & TH_ACK) { 13247 /* 13248 * In this state, a SYN|ACK packet is either bogus 13249 * because the other side must be ACKing our SYN which 13250 * indicates it has seen the ACK for their SYN and 13251 * shouldn't retransmit it or we're crossing SYNs 13252 * on active open. 13253 */ 13254 if ((flags & TH_SYN) && !tcp->tcp_active_open) { 13255 freemsg(mp); 13256 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn", 13257 tcp, seg_ack, 0, TH_RST); 13258 return; 13259 } 13260 /* 13261 * NOTE: RFC 793 pg. 72 says this should be 13262 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt 13263 * but that would mean we have an ack that ignored 13264 * our SYN. 13265 */ 13266 if (SEQ_LEQ(seg_ack, tcp->tcp_suna) || 13267 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 13268 freemsg(mp); 13269 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack", 13270 tcp, seg_ack, 0, TH_RST); 13271 return; 13272 } 13273 } 13274 break; 13275 case TCPS_LISTEN: 13276 /* 13277 * Only a TLI listener can come through this path when a 13278 * acceptor is going back to be a listener and a packet 13279 * for the acceptor hits the classifier. For a socket 13280 * listener, this can never happen because a listener 13281 * can never accept connection on itself and hence a 13282 * socket acceptor can not go back to being a listener. 13283 */ 13284 ASSERT(!TCP_IS_SOCKET(tcp)); 13285 /*FALLTHRU*/ 13286 case TCPS_CLOSED: 13287 case TCPS_BOUND: { 13288 conn_t *new_connp; 13289 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 13290 13291 new_connp = ipcl_classify(mp, connp->conn_zoneid, ipst); 13292 if (new_connp != NULL) { 13293 tcp_reinput(new_connp, mp, connp->conn_sqp); 13294 return; 13295 } 13296 /* We failed to classify. For now just drop the packet */ 13297 freemsg(mp); 13298 return; 13299 } 13300 case TCPS_IDLE: 13301 /* 13302 * Handle the case where the tcp_clean_death() has happened 13303 * on a connection (application hasn't closed yet) but a packet 13304 * was already queued on squeue before tcp_clean_death() 13305 * was processed. Calling tcp_clean_death() twice on same 13306 * connection can result in weird behaviour. 13307 */ 13308 freemsg(mp); 13309 return; 13310 default: 13311 break; 13312 } 13313 13314 /* 13315 * Already on the correct queue/perimeter. 13316 * If this is a detached connection and not an eager 13317 * connection hanging off a listener then new data 13318 * (past the FIN) will cause a reset. 13319 * We do a special check here where it 13320 * is out of the main line, rather than check 13321 * if we are detached every time we see new 13322 * data down below. 13323 */ 13324 if (TCP_IS_DETACHED_NONEAGER(tcp) && 13325 (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) { 13326 BUMP_MIB(&tcps->tcps_mib, tcpInClosed); 13327 DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp); 13328 13329 freemsg(mp); 13330 /* 13331 * This could be an SSL closure alert. We're detached so just 13332 * acknowledge it this last time. 13333 */ 13334 if (tcp->tcp_kssl_ctx != NULL) { 13335 kssl_release_ctx(tcp->tcp_kssl_ctx); 13336 tcp->tcp_kssl_ctx = NULL; 13337 13338 tcp->tcp_rnxt += seg_len; 13339 U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack); 13340 flags |= TH_ACK_NEEDED; 13341 goto ack_check; 13342 } 13343 13344 tcp_xmit_ctl("new data when detached", tcp, 13345 tcp->tcp_snxt, 0, TH_RST); 13346 (void) tcp_clean_death(tcp, EPROTO, 12); 13347 return; 13348 } 13349 13350 mp->b_rptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph); 13351 urp = BE16_TO_U16(tcph->th_urp) - TCP_OLD_URP_INTERPRETATION; 13352 new_swnd = BE16_TO_U16(tcph->th_win) << 13353 ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws); 13354 13355 if (tcp->tcp_snd_ts_ok) { 13356 if (!tcp_paws_check(tcp, tcph, &tcpopt)) { 13357 /* 13358 * This segment is not acceptable. 13359 * Drop it and send back an ACK. 13360 */ 13361 freemsg(mp); 13362 flags |= TH_ACK_NEEDED; 13363 goto ack_check; 13364 } 13365 } else if (tcp->tcp_snd_sack_ok) { 13366 ASSERT(tcp->tcp_sack_info != NULL); 13367 tcpopt.tcp = tcp; 13368 /* 13369 * SACK info in already updated in tcp_parse_options. Ignore 13370 * all other TCP options... 13371 */ 13372 (void) tcp_parse_options(tcph, &tcpopt); 13373 } 13374 try_again:; 13375 mss = tcp->tcp_mss; 13376 gap = seg_seq - tcp->tcp_rnxt; 13377 rgap = tcp->tcp_rwnd - (gap + seg_len); 13378 /* 13379 * gap is the amount of sequence space between what we expect to see 13380 * and what we got for seg_seq. A positive value for gap means 13381 * something got lost. A negative value means we got some old stuff. 13382 */ 13383 if (gap < 0) { 13384 /* Old stuff present. Is the SYN in there? */ 13385 if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) && 13386 (seg_len != 0)) { 13387 flags &= ~TH_SYN; 13388 seg_seq++; 13389 urp--; 13390 /* Recompute the gaps after noting the SYN. */ 13391 goto try_again; 13392 } 13393 BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); 13394 UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, 13395 (seg_len > -gap ? -gap : seg_len)); 13396 /* Remove the old stuff from seg_len. */ 13397 seg_len += gap; 13398 /* 13399 * Anything left? 13400 * Make sure to check for unack'd FIN when rest of data 13401 * has been previously ack'd. 13402 */ 13403 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 13404 /* 13405 * Resets are only valid if they lie within our offered 13406 * window. If the RST bit is set, we just ignore this 13407 * segment. 13408 */ 13409 if (flags & TH_RST) { 13410 freemsg(mp); 13411 return; 13412 } 13413 13414 /* 13415 * The arriving of dup data packets indicate that we 13416 * may have postponed an ack for too long, or the other 13417 * side's RTT estimate is out of shape. Start acking 13418 * more often. 13419 */ 13420 if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) && 13421 tcp->tcp_rack_cnt >= 1 && 13422 tcp->tcp_rack_abs_max > 2) { 13423 tcp->tcp_rack_abs_max--; 13424 } 13425 tcp->tcp_rack_cur_max = 1; 13426 13427 /* 13428 * This segment is "unacceptable". None of its 13429 * sequence space lies within our advertized window. 13430 * 13431 * Adjust seg_len to the original value for tracing. 13432 */ 13433 seg_len -= gap; 13434 if (tcp->tcp_debug) { 13435 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13436 "tcp_rput: unacceptable, gap %d, rgap %d, " 13437 "flags 0x%x, seg_seq %u, seg_ack %u, " 13438 "seg_len %d, rnxt %u, snxt %u, %s", 13439 gap, rgap, flags, seg_seq, seg_ack, 13440 seg_len, tcp->tcp_rnxt, tcp->tcp_snxt, 13441 tcp_display(tcp, NULL, 13442 DISP_ADDR_AND_PORT)); 13443 } 13444 13445 /* 13446 * Arrange to send an ACK in response to the 13447 * unacceptable segment per RFC 793 page 69. There 13448 * is only one small difference between ours and the 13449 * acceptability test in the RFC - we accept ACK-only 13450 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK 13451 * will be generated. 13452 * 13453 * Note that we have to ACK an ACK-only packet at least 13454 * for stacks that send 0-length keep-alives with 13455 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122, 13456 * section 4.2.3.6. As long as we don't ever generate 13457 * an unacceptable packet in response to an incoming 13458 * packet that is unacceptable, it should not cause 13459 * "ACK wars". 13460 */ 13461 flags |= TH_ACK_NEEDED; 13462 13463 /* 13464 * Continue processing this segment in order to use the 13465 * ACK information it contains, but skip all other 13466 * sequence-number processing. Processing the ACK 13467 * information is necessary in order to 13468 * re-synchronize connections that may have lost 13469 * synchronization. 13470 * 13471 * We clear seg_len and flag fields related to 13472 * sequence number processing as they are not 13473 * to be trusted for an unacceptable segment. 13474 */ 13475 seg_len = 0; 13476 flags &= ~(TH_SYN | TH_FIN | TH_URG); 13477 goto process_ack; 13478 } 13479 13480 /* Fix seg_seq, and chew the gap off the front. */ 13481 seg_seq = tcp->tcp_rnxt; 13482 urp += gap; 13483 do { 13484 mblk_t *mp2; 13485 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 13486 (uintptr_t)UINT_MAX); 13487 gap += (uint_t)(mp->b_wptr - mp->b_rptr); 13488 if (gap > 0) { 13489 mp->b_rptr = mp->b_wptr - gap; 13490 break; 13491 } 13492 mp2 = mp; 13493 mp = mp->b_cont; 13494 freeb(mp2); 13495 } while (gap < 0); 13496 /* 13497 * If the urgent data has already been acknowledged, we 13498 * should ignore TH_URG below 13499 */ 13500 if (urp < 0) 13501 flags &= ~TH_URG; 13502 } 13503 /* 13504 * rgap is the amount of stuff received out of window. A negative 13505 * value is the amount out of window. 13506 */ 13507 if (rgap < 0) { 13508 mblk_t *mp2; 13509 13510 if (tcp->tcp_rwnd == 0) { 13511 BUMP_MIB(&tcps->tcps_mib, tcpInWinProbe); 13512 } else { 13513 BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs); 13514 UPDATE_MIB(&tcps->tcps_mib, 13515 tcpInDataPastWinBytes, -rgap); 13516 } 13517 13518 /* 13519 * seg_len does not include the FIN, so if more than 13520 * just the FIN is out of window, we act like we don't 13521 * see it. (If just the FIN is out of window, rgap 13522 * will be zero and we will go ahead and acknowledge 13523 * the FIN.) 13524 */ 13525 flags &= ~TH_FIN; 13526 13527 /* Fix seg_len and make sure there is something left. */ 13528 seg_len += rgap; 13529 if (seg_len <= 0) { 13530 /* 13531 * Resets are only valid if they lie within our offered 13532 * window. If the RST bit is set, we just ignore this 13533 * segment. 13534 */ 13535 if (flags & TH_RST) { 13536 freemsg(mp); 13537 return; 13538 } 13539 13540 /* Per RFC 793, we need to send back an ACK. */ 13541 flags |= TH_ACK_NEEDED; 13542 13543 /* 13544 * Send SIGURG as soon as possible i.e. even 13545 * if the TH_URG was delivered in a window probe 13546 * packet (which will be unacceptable). 13547 * 13548 * We generate a signal if none has been generated 13549 * for this connection or if this is a new urgent 13550 * byte. Also send a zero-length "unmarked" message 13551 * to inform SIOCATMARK that this is not the mark. 13552 * 13553 * tcp_urp_last_valid is cleared when the T_exdata_ind 13554 * is sent up. This plus the check for old data 13555 * (gap >= 0) handles the wraparound of the sequence 13556 * number space without having to always track the 13557 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks 13558 * this max in its rcv_up variable). 13559 * 13560 * This prevents duplicate SIGURGS due to a "late" 13561 * zero-window probe when the T_EXDATA_IND has already 13562 * been sent up. 13563 */ 13564 if ((flags & TH_URG) && 13565 (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq, 13566 tcp->tcp_urp_last))) { 13567 if (IPCL_IS_NONSTR(connp)) { 13568 if (!TCP_IS_DETACHED(tcp)) { 13569 (*connp->conn_upcalls-> 13570 su_signal_oob) 13571 (connp->conn_upper_handle, 13572 urp); 13573 } 13574 } else { 13575 mp1 = allocb(0, BPRI_MED); 13576 if (mp1 == NULL) { 13577 freemsg(mp); 13578 return; 13579 } 13580 if (!TCP_IS_DETACHED(tcp) && 13581 !putnextctl1(tcp->tcp_rq, 13582 M_PCSIG, SIGURG)) { 13583 /* Try again on the rexmit. */ 13584 freemsg(mp1); 13585 freemsg(mp); 13586 return; 13587 } 13588 /* 13589 * If the next byte would be the mark 13590 * then mark with MARKNEXT else mark 13591 * with NOTMARKNEXT. 13592 */ 13593 if (gap == 0 && urp == 0) 13594 mp1->b_flag |= MSGMARKNEXT; 13595 else 13596 mp1->b_flag |= MSGNOTMARKNEXT; 13597 freemsg(tcp->tcp_urp_mark_mp); 13598 tcp->tcp_urp_mark_mp = mp1; 13599 flags |= TH_SEND_URP_MARK; 13600 } 13601 tcp->tcp_urp_last_valid = B_TRUE; 13602 tcp->tcp_urp_last = urp + seg_seq; 13603 } 13604 /* 13605 * If this is a zero window probe, continue to 13606 * process the ACK part. But we need to set seg_len 13607 * to 0 to avoid data processing. Otherwise just 13608 * drop the segment and send back an ACK. 13609 */ 13610 if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) { 13611 flags &= ~(TH_SYN | TH_URG); 13612 seg_len = 0; 13613 goto process_ack; 13614 } else { 13615 freemsg(mp); 13616 goto ack_check; 13617 } 13618 } 13619 /* Pitch out of window stuff off the end. */ 13620 rgap = seg_len; 13621 mp2 = mp; 13622 do { 13623 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 13624 (uintptr_t)INT_MAX); 13625 rgap -= (int)(mp2->b_wptr - mp2->b_rptr); 13626 if (rgap < 0) { 13627 mp2->b_wptr += rgap; 13628 if ((mp1 = mp2->b_cont) != NULL) { 13629 mp2->b_cont = NULL; 13630 freemsg(mp1); 13631 } 13632 break; 13633 } 13634 } while ((mp2 = mp2->b_cont) != NULL); 13635 } 13636 ok:; 13637 /* 13638 * TCP should check ECN info for segments inside the window only. 13639 * Therefore the check should be done here. 13640 */ 13641 if (tcp->tcp_ecn_ok) { 13642 if (flags & TH_CWR) { 13643 tcp->tcp_ecn_echo_on = B_FALSE; 13644 } 13645 /* 13646 * Note that both ECN_CE and CWR can be set in the 13647 * same segment. In this case, we once again turn 13648 * on ECN_ECHO. 13649 */ 13650 if (tcp->tcp_ipversion == IPV4_VERSION) { 13651 uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service; 13652 13653 if ((tos & IPH_ECN_CE) == IPH_ECN_CE) { 13654 tcp->tcp_ecn_echo_on = B_TRUE; 13655 } 13656 } else { 13657 uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf; 13658 13659 if ((vcf & htonl(IPH_ECN_CE << 20)) == 13660 htonl(IPH_ECN_CE << 20)) { 13661 tcp->tcp_ecn_echo_on = B_TRUE; 13662 } 13663 } 13664 } 13665 13666 /* 13667 * Check whether we can update tcp_ts_recent. This test is 13668 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 13669 * Extensions for High Performance: An Update", Internet Draft. 13670 */ 13671 if (tcp->tcp_snd_ts_ok && 13672 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 13673 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 13674 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 13675 tcp->tcp_last_rcv_lbolt = lbolt64; 13676 } 13677 13678 if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) { 13679 /* 13680 * FIN in an out of order segment. We record this in 13681 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq. 13682 * Clear the FIN so that any check on FIN flag will fail. 13683 * Remember that FIN also counts in the sequence number 13684 * space. So we need to ack out of order FIN only segments. 13685 */ 13686 if (flags & TH_FIN) { 13687 tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID; 13688 tcp->tcp_ofo_fin_seq = seg_seq + seg_len; 13689 flags &= ~TH_FIN; 13690 flags |= TH_ACK_NEEDED; 13691 } 13692 if (seg_len > 0) { 13693 /* Fill in the SACK blk list. */ 13694 if (tcp->tcp_snd_sack_ok) { 13695 ASSERT(tcp->tcp_sack_info != NULL); 13696 tcp_sack_insert(tcp->tcp_sack_list, 13697 seg_seq, seg_seq + seg_len, 13698 &(tcp->tcp_num_sack_blk)); 13699 } 13700 13701 /* 13702 * Attempt reassembly and see if we have something 13703 * ready to go. 13704 */ 13705 mp = tcp_reass(tcp, mp, seg_seq); 13706 /* Always ack out of order packets */ 13707 flags |= TH_ACK_NEEDED | TH_PUSH; 13708 if (mp) { 13709 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 13710 (uintptr_t)INT_MAX); 13711 seg_len = mp->b_cont ? msgdsize(mp) : 13712 (int)(mp->b_wptr - mp->b_rptr); 13713 seg_seq = tcp->tcp_rnxt; 13714 /* 13715 * A gap is filled and the seq num and len 13716 * of the gap match that of a previously 13717 * received FIN, put the FIN flag back in. 13718 */ 13719 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 13720 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 13721 flags |= TH_FIN; 13722 tcp->tcp_valid_bits &= 13723 ~TCP_OFO_FIN_VALID; 13724 } 13725 } else { 13726 /* 13727 * Keep going even with NULL mp. 13728 * There may be a useful ACK or something else 13729 * we don't want to miss. 13730 * 13731 * But TCP should not perform fast retransmit 13732 * because of the ack number. TCP uses 13733 * seg_len == 0 to determine if it is a pure 13734 * ACK. And this is not a pure ACK. 13735 */ 13736 seg_len = 0; 13737 ofo_seg = B_TRUE; 13738 } 13739 } 13740 } else if (seg_len > 0) { 13741 BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs); 13742 UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len); 13743 /* 13744 * If an out of order FIN was received before, and the seq 13745 * num and len of the new segment match that of the FIN, 13746 * put the FIN flag back in. 13747 */ 13748 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 13749 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 13750 flags |= TH_FIN; 13751 tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID; 13752 } 13753 } 13754 if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) { 13755 if (flags & TH_RST) { 13756 freemsg(mp); 13757 switch (tcp->tcp_state) { 13758 case TCPS_SYN_RCVD: 13759 (void) tcp_clean_death(tcp, ECONNREFUSED, 14); 13760 break; 13761 case TCPS_ESTABLISHED: 13762 case TCPS_FIN_WAIT_1: 13763 case TCPS_FIN_WAIT_2: 13764 case TCPS_CLOSE_WAIT: 13765 (void) tcp_clean_death(tcp, ECONNRESET, 15); 13766 break; 13767 case TCPS_CLOSING: 13768 case TCPS_LAST_ACK: 13769 (void) tcp_clean_death(tcp, 0, 16); 13770 break; 13771 default: 13772 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 13773 (void) tcp_clean_death(tcp, ENXIO, 17); 13774 break; 13775 } 13776 return; 13777 } 13778 if (flags & TH_SYN) { 13779 /* 13780 * See RFC 793, Page 71 13781 * 13782 * The seq number must be in the window as it should 13783 * be "fixed" above. If it is outside window, it should 13784 * be already rejected. Note that we allow seg_seq to be 13785 * rnxt + rwnd because we want to accept 0 window probe. 13786 */ 13787 ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) && 13788 SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd)); 13789 freemsg(mp); 13790 /* 13791 * If the ACK flag is not set, just use our snxt as the 13792 * seq number of the RST segment. 13793 */ 13794 if (!(flags & TH_ACK)) { 13795 seg_ack = tcp->tcp_snxt; 13796 } 13797 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 13798 TH_RST|TH_ACK); 13799 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 13800 (void) tcp_clean_death(tcp, ECONNRESET, 18); 13801 return; 13802 } 13803 /* 13804 * urp could be -1 when the urp field in the packet is 0 13805 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent 13806 * byte was at seg_seq - 1, in which case we ignore the urgent flag. 13807 */ 13808 if (flags & TH_URG && urp >= 0) { 13809 if (!tcp->tcp_urp_last_valid || 13810 SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) { 13811 if (IPCL_IS_NONSTR(connp)) { 13812 if (!TCP_IS_DETACHED(tcp)) { 13813 (*connp->conn_upcalls->su_signal_oob) 13814 (connp->conn_upper_handle, urp); 13815 } 13816 } else { 13817 /* 13818 * If we haven't generated the signal yet for 13819 * this urgent pointer value, do it now. Also, 13820 * send up a zero-length M_DATA indicating 13821 * whether or not this is the mark. The latter 13822 * is not needed when a T_EXDATA_IND is sent up. 13823 * However, if there are allocation failures 13824 * this code relies on the sender retransmitting 13825 * and the socket code for determining the mark 13826 * should not block waiting for the peer to 13827 * transmit. Thus, for simplicity we always 13828 * send up the mark indication. 13829 */ 13830 mp1 = allocb(0, BPRI_MED); 13831 if (mp1 == NULL) { 13832 freemsg(mp); 13833 return; 13834 } 13835 if (!TCP_IS_DETACHED(tcp) && 13836 !putnextctl1(tcp->tcp_rq, M_PCSIG, 13837 SIGURG)) { 13838 /* Try again on the rexmit. */ 13839 freemsg(mp1); 13840 freemsg(mp); 13841 return; 13842 } 13843 /* 13844 * Mark with NOTMARKNEXT for now. 13845 * The code below will change this to MARKNEXT 13846 * if we are at the mark. 13847 * 13848 * If there are allocation failures (e.g. in 13849 * dupmsg below) the next time tcp_rput_data 13850 * sees the urgent segment it will send up the 13851 * MSGMARKNEXT message. 13852 */ 13853 mp1->b_flag |= MSGNOTMARKNEXT; 13854 freemsg(tcp->tcp_urp_mark_mp); 13855 tcp->tcp_urp_mark_mp = mp1; 13856 flags |= TH_SEND_URP_MARK; 13857 #ifdef DEBUG 13858 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13859 "tcp_rput: sent M_PCSIG 2 seq %x urp %x " 13860 "last %x, %s", 13861 seg_seq, urp, tcp->tcp_urp_last, 13862 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 13863 #endif /* DEBUG */ 13864 } 13865 tcp->tcp_urp_last_valid = B_TRUE; 13866 tcp->tcp_urp_last = urp + seg_seq; 13867 } else if (tcp->tcp_urp_mark_mp != NULL) { 13868 /* 13869 * An allocation failure prevented the previous 13870 * tcp_rput_data from sending up the allocated 13871 * MSG*MARKNEXT message - send it up this time 13872 * around. 13873 */ 13874 flags |= TH_SEND_URP_MARK; 13875 } 13876 13877 /* 13878 * If the urgent byte is in this segment, make sure that it is 13879 * all by itself. This makes it much easier to deal with the 13880 * possibility of an allocation failure on the T_exdata_ind. 13881 * Note that seg_len is the number of bytes in the segment, and 13882 * urp is the offset into the segment of the urgent byte. 13883 * urp < seg_len means that the urgent byte is in this segment. 13884 */ 13885 if (urp < seg_len) { 13886 if (seg_len != 1) { 13887 uint32_t tmp_rnxt; 13888 /* 13889 * Break it up and feed it back in. 13890 * Re-attach the IP header. 13891 */ 13892 mp->b_rptr = iphdr; 13893 if (urp > 0) { 13894 /* 13895 * There is stuff before the urgent 13896 * byte. 13897 */ 13898 mp1 = dupmsg(mp); 13899 if (!mp1) { 13900 /* 13901 * Trim from urgent byte on. 13902 * The rest will come back. 13903 */ 13904 (void) adjmsg(mp, 13905 urp - seg_len); 13906 tcp_rput_data(connp, 13907 mp, NULL); 13908 return; 13909 } 13910 (void) adjmsg(mp1, urp - seg_len); 13911 /* Feed this piece back in. */ 13912 tmp_rnxt = tcp->tcp_rnxt; 13913 tcp_rput_data(connp, mp1, NULL); 13914 /* 13915 * If the data passed back in was not 13916 * processed (ie: bad ACK) sending 13917 * the remainder back in will cause a 13918 * loop. In this case, drop the 13919 * packet and let the sender try 13920 * sending a good packet. 13921 */ 13922 if (tmp_rnxt == tcp->tcp_rnxt) { 13923 freemsg(mp); 13924 return; 13925 } 13926 } 13927 if (urp != seg_len - 1) { 13928 uint32_t tmp_rnxt; 13929 /* 13930 * There is stuff after the urgent 13931 * byte. 13932 */ 13933 mp1 = dupmsg(mp); 13934 if (!mp1) { 13935 /* 13936 * Trim everything beyond the 13937 * urgent byte. The rest will 13938 * come back. 13939 */ 13940 (void) adjmsg(mp, 13941 urp + 1 - seg_len); 13942 tcp_rput_data(connp, 13943 mp, NULL); 13944 return; 13945 } 13946 (void) adjmsg(mp1, urp + 1 - seg_len); 13947 tmp_rnxt = tcp->tcp_rnxt; 13948 tcp_rput_data(connp, mp1, NULL); 13949 /* 13950 * If the data passed back in was not 13951 * processed (ie: bad ACK) sending 13952 * the remainder back in will cause a 13953 * loop. In this case, drop the 13954 * packet and let the sender try 13955 * sending a good packet. 13956 */ 13957 if (tmp_rnxt == tcp->tcp_rnxt) { 13958 freemsg(mp); 13959 return; 13960 } 13961 } 13962 tcp_rput_data(connp, mp, NULL); 13963 return; 13964 } 13965 /* 13966 * This segment contains only the urgent byte. We 13967 * have to allocate the T_exdata_ind, if we can. 13968 */ 13969 if (IPCL_IS_NONSTR(connp)) { 13970 int error; 13971 13972 (*connp->conn_upcalls->su_recv) 13973 (connp->conn_upper_handle, mp, seg_len, 13974 MSG_OOB, &error, NULL); 13975 /* 13976 * We should never be in middle of a 13977 * fallback, the squeue guarantees that. 13978 */ 13979 ASSERT(error != EOPNOTSUPP); 13980 mp = NULL; 13981 goto update_ack; 13982 } else if (!tcp->tcp_urp_mp) { 13983 struct T_exdata_ind *tei; 13984 mp1 = allocb(sizeof (struct T_exdata_ind), 13985 BPRI_MED); 13986 if (!mp1) { 13987 /* 13988 * Sigh... It'll be back. 13989 * Generate any MSG*MARK message now. 13990 */ 13991 freemsg(mp); 13992 seg_len = 0; 13993 if (flags & TH_SEND_URP_MARK) { 13994 13995 13996 ASSERT(tcp->tcp_urp_mark_mp); 13997 tcp->tcp_urp_mark_mp->b_flag &= 13998 ~MSGNOTMARKNEXT; 13999 tcp->tcp_urp_mark_mp->b_flag |= 14000 MSGMARKNEXT; 14001 } 14002 goto ack_check; 14003 } 14004 mp1->b_datap->db_type = M_PROTO; 14005 tei = (struct T_exdata_ind *)mp1->b_rptr; 14006 tei->PRIM_type = T_EXDATA_IND; 14007 tei->MORE_flag = 0; 14008 mp1->b_wptr = (uchar_t *)&tei[1]; 14009 tcp->tcp_urp_mp = mp1; 14010 #ifdef DEBUG 14011 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14012 "tcp_rput: allocated exdata_ind %s", 14013 tcp_display(tcp, NULL, 14014 DISP_PORT_ONLY)); 14015 #endif /* DEBUG */ 14016 /* 14017 * There is no need to send a separate MSG*MARK 14018 * message since the T_EXDATA_IND will be sent 14019 * now. 14020 */ 14021 flags &= ~TH_SEND_URP_MARK; 14022 freemsg(tcp->tcp_urp_mark_mp); 14023 tcp->tcp_urp_mark_mp = NULL; 14024 } 14025 /* 14026 * Now we are all set. On the next putnext upstream, 14027 * tcp_urp_mp will be non-NULL and will get prepended 14028 * to what has to be this piece containing the urgent 14029 * byte. If for any reason we abort this segment below, 14030 * if it comes back, we will have this ready, or it 14031 * will get blown off in close. 14032 */ 14033 } else if (urp == seg_len) { 14034 /* 14035 * The urgent byte is the next byte after this sequence 14036 * number. If there is data it is marked with 14037 * MSGMARKNEXT and any tcp_urp_mark_mp is discarded 14038 * since it is not needed. Otherwise, if the code 14039 * above just allocated a zero-length tcp_urp_mark_mp 14040 * message, that message is tagged with MSGMARKNEXT. 14041 * Sending up these MSGMARKNEXT messages makes 14042 * SIOCATMARK work correctly even though 14043 * the T_EXDATA_IND will not be sent up until the 14044 * urgent byte arrives. 14045 */ 14046 if (seg_len != 0) { 14047 flags |= TH_MARKNEXT_NEEDED; 14048 freemsg(tcp->tcp_urp_mark_mp); 14049 tcp->tcp_urp_mark_mp = NULL; 14050 flags &= ~TH_SEND_URP_MARK; 14051 } else if (tcp->tcp_urp_mark_mp != NULL) { 14052 flags |= TH_SEND_URP_MARK; 14053 tcp->tcp_urp_mark_mp->b_flag &= 14054 ~MSGNOTMARKNEXT; 14055 tcp->tcp_urp_mark_mp->b_flag |= MSGMARKNEXT; 14056 } 14057 #ifdef DEBUG 14058 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14059 "tcp_rput: AT MARK, len %d, flags 0x%x, %s", 14060 seg_len, flags, 14061 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 14062 #endif /* DEBUG */ 14063 } 14064 #ifdef DEBUG 14065 else { 14066 /* Data left until we hit mark */ 14067 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14068 "tcp_rput: URP %d bytes left, %s", 14069 urp - seg_len, tcp_display(tcp, NULL, 14070 DISP_PORT_ONLY)); 14071 } 14072 #endif /* DEBUG */ 14073 } 14074 14075 process_ack: 14076 if (!(flags & TH_ACK)) { 14077 freemsg(mp); 14078 goto xmit_check; 14079 } 14080 } 14081 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 14082 14083 if (tcp->tcp_ipversion == IPV6_VERSION && bytes_acked > 0) 14084 tcp->tcp_ip_forward_progress = B_TRUE; 14085 if (tcp->tcp_state == TCPS_SYN_RCVD) { 14086 if ((tcp->tcp_conn.tcp_eager_conn_ind != NULL) && 14087 ((tcp->tcp_kssl_ent == NULL) || !tcp->tcp_kssl_pending)) { 14088 /* 3-way handshake complete - pass up the T_CONN_IND */ 14089 tcp_t *listener = tcp->tcp_listener; 14090 mblk_t *mp = tcp->tcp_conn.tcp_eager_conn_ind; 14091 14092 tcp->tcp_tconnind_started = B_TRUE; 14093 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 14094 /* 14095 * We are here means eager is fine but it can 14096 * get a TH_RST at any point between now and till 14097 * accept completes and disappear. We need to 14098 * ensure that reference to eager is valid after 14099 * we get out of eager's perimeter. So we do 14100 * an extra refhold. 14101 */ 14102 CONN_INC_REF(connp); 14103 14104 /* 14105 * The listener also exists because of the refhold 14106 * done in tcp_conn_request. Its possible that it 14107 * might have closed. We will check that once we 14108 * get inside listeners context. 14109 */ 14110 CONN_INC_REF(listener->tcp_connp); 14111 if (listener->tcp_connp->conn_sqp == 14112 connp->conn_sqp) { 14113 /* 14114 * We optimize by not calling an SQUEUE_ENTER 14115 * on the listener since we know that the 14116 * listener and eager squeues are the same. 14117 * We are able to make this check safely only 14118 * because neither the eager nor the listener 14119 * can change its squeue. Only an active connect 14120 * can change its squeue 14121 */ 14122 tcp_send_conn_ind(listener->tcp_connp, mp, 14123 listener->tcp_connp->conn_sqp); 14124 CONN_DEC_REF(listener->tcp_connp); 14125 } else if (!tcp->tcp_loopback) { 14126 SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, 14127 mp, tcp_send_conn_ind, 14128 listener->tcp_connp, SQ_FILL, 14129 SQTAG_TCP_CONN_IND); 14130 } else { 14131 SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, 14132 mp, tcp_send_conn_ind, 14133 listener->tcp_connp, SQ_PROCESS, 14134 SQTAG_TCP_CONN_IND); 14135 } 14136 } 14137 14138 if (tcp->tcp_active_open) { 14139 /* 14140 * We are seeing the final ack in the three way 14141 * hand shake of a active open'ed connection 14142 * so we must send up a T_CONN_CON 14143 */ 14144 if (!tcp_conn_con(tcp, iphdr, tcph, mp, NULL)) { 14145 freemsg(mp); 14146 return; 14147 } 14148 /* 14149 * Don't fuse the loopback endpoints for 14150 * simultaneous active opens. 14151 */ 14152 if (tcp->tcp_loopback) { 14153 TCP_STAT(tcps, tcp_fusion_unfusable); 14154 tcp->tcp_unfusable = B_TRUE; 14155 } 14156 } 14157 14158 tcp->tcp_suna = tcp->tcp_iss + 1; /* One for the SYN */ 14159 bytes_acked--; 14160 /* SYN was acked - making progress */ 14161 if (tcp->tcp_ipversion == IPV6_VERSION) 14162 tcp->tcp_ip_forward_progress = B_TRUE; 14163 14164 /* 14165 * If SYN was retransmitted, need to reset all 14166 * retransmission info as this segment will be 14167 * treated as a dup ACK. 14168 */ 14169 if (tcp->tcp_rexmit) { 14170 tcp->tcp_rexmit = B_FALSE; 14171 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 14172 tcp->tcp_rexmit_max = tcp->tcp_snxt; 14173 tcp->tcp_snd_burst = tcp->tcp_localnet ? 14174 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 14175 tcp->tcp_ms_we_have_waited = 0; 14176 tcp->tcp_cwnd = mss; 14177 } 14178 14179 /* 14180 * We set the send window to zero here. 14181 * This is needed if there is data to be 14182 * processed already on the queue. 14183 * Later (at swnd_update label), the 14184 * "new_swnd > tcp_swnd" condition is satisfied 14185 * the XMIT_NEEDED flag is set in the current 14186 * (SYN_RCVD) state. This ensures tcp_wput_data() is 14187 * called if there is already data on queue in 14188 * this state. 14189 */ 14190 tcp->tcp_swnd = 0; 14191 14192 if (new_swnd > tcp->tcp_max_swnd) 14193 tcp->tcp_max_swnd = new_swnd; 14194 tcp->tcp_swl1 = seg_seq; 14195 tcp->tcp_swl2 = seg_ack; 14196 tcp->tcp_state = TCPS_ESTABLISHED; 14197 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 14198 14199 /* Fuse when both sides are in ESTABLISHED state */ 14200 if (tcp->tcp_loopback && do_tcp_fusion) 14201 tcp_fuse(tcp, iphdr, tcph); 14202 14203 } 14204 /* This code follows 4.4BSD-Lite2 mostly. */ 14205 if (bytes_acked < 0) 14206 goto est; 14207 14208 /* 14209 * If TCP is ECN capable and the congestion experience bit is 14210 * set, reduce tcp_cwnd and tcp_ssthresh. But this should only be 14211 * done once per window (or more loosely, per RTT). 14212 */ 14213 if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max)) 14214 tcp->tcp_cwr = B_FALSE; 14215 if (tcp->tcp_ecn_ok && (flags & TH_ECE)) { 14216 if (!tcp->tcp_cwr) { 14217 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss; 14218 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss; 14219 tcp->tcp_cwnd = npkt * mss; 14220 /* 14221 * If the cwnd is 0, use the timer to clock out 14222 * new segments. This is required by the ECN spec. 14223 */ 14224 if (npkt == 0) { 14225 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14226 /* 14227 * This makes sure that when the ACK comes 14228 * back, we will increase tcp_cwnd by 1 MSS. 14229 */ 14230 tcp->tcp_cwnd_cnt = 0; 14231 } 14232 tcp->tcp_cwr = B_TRUE; 14233 /* 14234 * This marks the end of the current window of in 14235 * flight data. That is why we don't use 14236 * tcp_suna + tcp_swnd. Only data in flight can 14237 * provide ECN info. 14238 */ 14239 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 14240 tcp->tcp_ecn_cwr_sent = B_FALSE; 14241 } 14242 } 14243 14244 mp1 = tcp->tcp_xmit_head; 14245 if (bytes_acked == 0) { 14246 if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) { 14247 int dupack_cnt; 14248 14249 BUMP_MIB(&tcps->tcps_mib, tcpInDupAck); 14250 /* 14251 * Fast retransmit. When we have seen exactly three 14252 * identical ACKs while we have unacked data 14253 * outstanding we take it as a hint that our peer 14254 * dropped something. 14255 * 14256 * If TCP is retransmitting, don't do fast retransmit. 14257 */ 14258 if (mp1 && tcp->tcp_suna != tcp->tcp_snxt && 14259 ! tcp->tcp_rexmit) { 14260 /* Do Limited Transmit */ 14261 if ((dupack_cnt = ++tcp->tcp_dupack_cnt) < 14262 tcps->tcps_dupack_fast_retransmit) { 14263 /* 14264 * RFC 3042 14265 * 14266 * What we need to do is temporarily 14267 * increase tcp_cwnd so that new 14268 * data can be sent if it is allowed 14269 * by the receive window (tcp_rwnd). 14270 * tcp_wput_data() will take care of 14271 * the rest. 14272 * 14273 * If the connection is SACK capable, 14274 * only do limited xmit when there 14275 * is SACK info. 14276 * 14277 * Note how tcp_cwnd is incremented. 14278 * The first dup ACK will increase 14279 * it by 1 MSS. The second dup ACK 14280 * will increase it by 2 MSS. This 14281 * means that only 1 new segment will 14282 * be sent for each dup ACK. 14283 */ 14284 if (tcp->tcp_unsent > 0 && 14285 (!tcp->tcp_snd_sack_ok || 14286 (tcp->tcp_snd_sack_ok && 14287 tcp->tcp_notsack_list != NULL))) { 14288 tcp->tcp_cwnd += mss << 14289 (tcp->tcp_dupack_cnt - 1); 14290 flags |= TH_LIMIT_XMIT; 14291 } 14292 } else if (dupack_cnt == 14293 tcps->tcps_dupack_fast_retransmit) { 14294 14295 /* 14296 * If we have reduced tcp_ssthresh 14297 * because of ECN, do not reduce it again 14298 * unless it is already one window of data 14299 * away. After one window of data, tcp_cwr 14300 * should then be cleared. Note that 14301 * for non ECN capable connection, tcp_cwr 14302 * should always be false. 14303 * 14304 * Adjust cwnd since the duplicate 14305 * ack indicates that a packet was 14306 * dropped (due to congestion.) 14307 */ 14308 if (!tcp->tcp_cwr) { 14309 npkt = ((tcp->tcp_snxt - 14310 tcp->tcp_suna) >> 1) / mss; 14311 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 14312 mss; 14313 tcp->tcp_cwnd = (npkt + 14314 tcp->tcp_dupack_cnt) * mss; 14315 } 14316 if (tcp->tcp_ecn_ok) { 14317 tcp->tcp_cwr = B_TRUE; 14318 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 14319 tcp->tcp_ecn_cwr_sent = B_FALSE; 14320 } 14321 14322 /* 14323 * We do Hoe's algorithm. Refer to her 14324 * paper "Improving the Start-up Behavior 14325 * of a Congestion Control Scheme for TCP," 14326 * appeared in SIGCOMM'96. 14327 * 14328 * Save highest seq no we have sent so far. 14329 * Be careful about the invisible FIN byte. 14330 */ 14331 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 14332 (tcp->tcp_unsent == 0)) { 14333 tcp->tcp_rexmit_max = tcp->tcp_fss; 14334 } else { 14335 tcp->tcp_rexmit_max = tcp->tcp_snxt; 14336 } 14337 14338 /* 14339 * Do not allow bursty traffic during. 14340 * fast recovery. Refer to Fall and Floyd's 14341 * paper "Simulation-based Comparisons of 14342 * Tahoe, Reno and SACK TCP" (in CCR?) 14343 * This is a best current practise. 14344 */ 14345 tcp->tcp_snd_burst = TCP_CWND_SS; 14346 14347 /* 14348 * For SACK: 14349 * Calculate tcp_pipe, which is the 14350 * estimated number of bytes in 14351 * network. 14352 * 14353 * tcp_fack is the highest sack'ed seq num 14354 * TCP has received. 14355 * 14356 * tcp_pipe is explained in the above quoted 14357 * Fall and Floyd's paper. tcp_fack is 14358 * explained in Mathis and Mahdavi's 14359 * "Forward Acknowledgment: Refining TCP 14360 * Congestion Control" in SIGCOMM '96. 14361 */ 14362 if (tcp->tcp_snd_sack_ok) { 14363 ASSERT(tcp->tcp_sack_info != NULL); 14364 if (tcp->tcp_notsack_list != NULL) { 14365 tcp->tcp_pipe = tcp->tcp_snxt - 14366 tcp->tcp_fack; 14367 tcp->tcp_sack_snxt = seg_ack; 14368 flags |= TH_NEED_SACK_REXMIT; 14369 } else { 14370 /* 14371 * Always initialize tcp_pipe 14372 * even though we don't have 14373 * any SACK info. If later 14374 * we get SACK info and 14375 * tcp_pipe is not initialized, 14376 * funny things will happen. 14377 */ 14378 tcp->tcp_pipe = 14379 tcp->tcp_cwnd_ssthresh; 14380 } 14381 } else { 14382 flags |= TH_REXMIT_NEEDED; 14383 } /* tcp_snd_sack_ok */ 14384 14385 } else { 14386 /* 14387 * Here we perform congestion 14388 * avoidance, but NOT slow start. 14389 * This is known as the Fast 14390 * Recovery Algorithm. 14391 */ 14392 if (tcp->tcp_snd_sack_ok && 14393 tcp->tcp_notsack_list != NULL) { 14394 flags |= TH_NEED_SACK_REXMIT; 14395 tcp->tcp_pipe -= mss; 14396 if (tcp->tcp_pipe < 0) 14397 tcp->tcp_pipe = 0; 14398 } else { 14399 /* 14400 * We know that one more packet has 14401 * left the pipe thus we can update 14402 * cwnd. 14403 */ 14404 cwnd = tcp->tcp_cwnd + mss; 14405 if (cwnd > tcp->tcp_cwnd_max) 14406 cwnd = tcp->tcp_cwnd_max; 14407 tcp->tcp_cwnd = cwnd; 14408 if (tcp->tcp_unsent > 0) 14409 flags |= TH_XMIT_NEEDED; 14410 } 14411 } 14412 } 14413 } else if (tcp->tcp_zero_win_probe) { 14414 /* 14415 * If the window has opened, need to arrange 14416 * to send additional data. 14417 */ 14418 if (new_swnd != 0) { 14419 /* tcp_suna != tcp_snxt */ 14420 /* Packet contains a window update */ 14421 BUMP_MIB(&tcps->tcps_mib, tcpInWinUpdate); 14422 tcp->tcp_zero_win_probe = 0; 14423 tcp->tcp_timer_backoff = 0; 14424 tcp->tcp_ms_we_have_waited = 0; 14425 14426 /* 14427 * Transmit starting with tcp_suna since 14428 * the one byte probe is not ack'ed. 14429 * If TCP has sent more than one identical 14430 * probe, tcp_rexmit will be set. That means 14431 * tcp_ss_rexmit() will send out the one 14432 * byte along with new data. Otherwise, 14433 * fake the retransmission. 14434 */ 14435 flags |= TH_XMIT_NEEDED; 14436 if (!tcp->tcp_rexmit) { 14437 tcp->tcp_rexmit = B_TRUE; 14438 tcp->tcp_dupack_cnt = 0; 14439 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 14440 tcp->tcp_rexmit_max = tcp->tcp_suna + 1; 14441 } 14442 } 14443 } 14444 goto swnd_update; 14445 } 14446 14447 /* 14448 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73. 14449 * If the ACK value acks something that we have not yet sent, it might 14450 * be an old duplicate segment. Send an ACK to re-synchronize the 14451 * other side. 14452 * Note: reset in response to unacceptable ACK in SYN_RECEIVE 14453 * state is handled above, so we can always just drop the segment and 14454 * send an ACK here. 14455 * 14456 * Should we send ACKs in response to ACK only segments? 14457 */ 14458 if (SEQ_GT(seg_ack, tcp->tcp_snxt)) { 14459 BUMP_MIB(&tcps->tcps_mib, tcpInAckUnsent); 14460 /* drop the received segment */ 14461 freemsg(mp); 14462 14463 /* 14464 * Send back an ACK. If tcp_drop_ack_unsent_cnt is 14465 * greater than 0, check if the number of such 14466 * bogus ACks is greater than that count. If yes, 14467 * don't send back any ACK. This prevents TCP from 14468 * getting into an ACK storm if somehow an attacker 14469 * successfully spoofs an acceptable segment to our 14470 * peer. 14471 */ 14472 if (tcp_drop_ack_unsent_cnt > 0 && 14473 ++tcp->tcp_in_ack_unsent > tcp_drop_ack_unsent_cnt) { 14474 TCP_STAT(tcps, tcp_in_ack_unsent_drop); 14475 return; 14476 } 14477 mp = tcp_ack_mp(tcp); 14478 if (mp != NULL) { 14479 BUMP_LOCAL(tcp->tcp_obsegs); 14480 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 14481 tcp_send_data(tcp, tcp->tcp_wq, mp); 14482 } 14483 return; 14484 } 14485 14486 /* 14487 * TCP gets a new ACK, update the notsack'ed list to delete those 14488 * blocks that are covered by this ACK. 14489 */ 14490 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 14491 tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack, 14492 &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list)); 14493 } 14494 14495 /* 14496 * If we got an ACK after fast retransmit, check to see 14497 * if it is a partial ACK. If it is not and the congestion 14498 * window was inflated to account for the other side's 14499 * cached packets, retract it. If it is, do Hoe's algorithm. 14500 */ 14501 if (tcp->tcp_dupack_cnt >= tcps->tcps_dupack_fast_retransmit) { 14502 ASSERT(tcp->tcp_rexmit == B_FALSE); 14503 if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) { 14504 tcp->tcp_dupack_cnt = 0; 14505 /* 14506 * Restore the orig tcp_cwnd_ssthresh after 14507 * fast retransmit phase. 14508 */ 14509 if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) { 14510 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh; 14511 } 14512 tcp->tcp_rexmit_max = seg_ack; 14513 tcp->tcp_cwnd_cnt = 0; 14514 tcp->tcp_snd_burst = tcp->tcp_localnet ? 14515 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 14516 14517 /* 14518 * Remove all notsack info to avoid confusion with 14519 * the next fast retrasnmit/recovery phase. 14520 */ 14521 if (tcp->tcp_snd_sack_ok && 14522 tcp->tcp_notsack_list != NULL) { 14523 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 14524 } 14525 } else { 14526 if (tcp->tcp_snd_sack_ok && 14527 tcp->tcp_notsack_list != NULL) { 14528 flags |= TH_NEED_SACK_REXMIT; 14529 tcp->tcp_pipe -= mss; 14530 if (tcp->tcp_pipe < 0) 14531 tcp->tcp_pipe = 0; 14532 } else { 14533 /* 14534 * Hoe's algorithm: 14535 * 14536 * Retransmit the unack'ed segment and 14537 * restart fast recovery. Note that we 14538 * need to scale back tcp_cwnd to the 14539 * original value when we started fast 14540 * recovery. This is to prevent overly 14541 * aggressive behaviour in sending new 14542 * segments. 14543 */ 14544 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh + 14545 tcps->tcps_dupack_fast_retransmit * mss; 14546 tcp->tcp_cwnd_cnt = tcp->tcp_cwnd; 14547 flags |= TH_REXMIT_NEEDED; 14548 } 14549 } 14550 } else { 14551 tcp->tcp_dupack_cnt = 0; 14552 if (tcp->tcp_rexmit) { 14553 /* 14554 * TCP is retranmitting. If the ACK ack's all 14555 * outstanding data, update tcp_rexmit_max and 14556 * tcp_rexmit_nxt. Otherwise, update tcp_rexmit_nxt 14557 * to the correct value. 14558 * 14559 * Note that SEQ_LEQ() is used. This is to avoid 14560 * unnecessary fast retransmit caused by dup ACKs 14561 * received when TCP does slow start retransmission 14562 * after a time out. During this phase, TCP may 14563 * send out segments which are already received. 14564 * This causes dup ACKs to be sent back. 14565 */ 14566 if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) { 14567 if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) { 14568 tcp->tcp_rexmit_nxt = seg_ack; 14569 } 14570 if (seg_ack != tcp->tcp_rexmit_max) { 14571 flags |= TH_XMIT_NEEDED; 14572 } 14573 } else { 14574 tcp->tcp_rexmit = B_FALSE; 14575 tcp->tcp_xmit_zc_clean = B_FALSE; 14576 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 14577 tcp->tcp_snd_burst = tcp->tcp_localnet ? 14578 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 14579 } 14580 tcp->tcp_ms_we_have_waited = 0; 14581 } 14582 } 14583 14584 BUMP_MIB(&tcps->tcps_mib, tcpInAckSegs); 14585 UPDATE_MIB(&tcps->tcps_mib, tcpInAckBytes, bytes_acked); 14586 tcp->tcp_suna = seg_ack; 14587 if (tcp->tcp_zero_win_probe != 0) { 14588 tcp->tcp_zero_win_probe = 0; 14589 tcp->tcp_timer_backoff = 0; 14590 } 14591 14592 /* 14593 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed. 14594 * Note that it cannot be the SYN being ack'ed. The code flow 14595 * will not reach here. 14596 */ 14597 if (mp1 == NULL) { 14598 goto fin_acked; 14599 } 14600 14601 /* 14602 * Update the congestion window. 14603 * 14604 * If TCP is not ECN capable or TCP is ECN capable but the 14605 * congestion experience bit is not set, increase the tcp_cwnd as 14606 * usual. 14607 */ 14608 if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) { 14609 cwnd = tcp->tcp_cwnd; 14610 add = mss; 14611 14612 if (cwnd >= tcp->tcp_cwnd_ssthresh) { 14613 /* 14614 * This is to prevent an increase of less than 1 MSS of 14615 * tcp_cwnd. With partial increase, tcp_wput_data() 14616 * may send out tinygrams in order to preserve mblk 14617 * boundaries. 14618 * 14619 * By initializing tcp_cwnd_cnt to new tcp_cwnd and 14620 * decrementing it by 1 MSS for every ACKs, tcp_cwnd is 14621 * increased by 1 MSS for every RTTs. 14622 */ 14623 if (tcp->tcp_cwnd_cnt <= 0) { 14624 tcp->tcp_cwnd_cnt = cwnd + add; 14625 } else { 14626 tcp->tcp_cwnd_cnt -= add; 14627 add = 0; 14628 } 14629 } 14630 tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max); 14631 } 14632 14633 /* See if the latest urgent data has been acknowledged */ 14634 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && 14635 SEQ_GT(seg_ack, tcp->tcp_urg)) 14636 tcp->tcp_valid_bits &= ~TCP_URG_VALID; 14637 14638 /* Can we update the RTT estimates? */ 14639 if (tcp->tcp_snd_ts_ok) { 14640 /* Ignore zero timestamp echo-reply. */ 14641 if (tcpopt.tcp_opt_ts_ecr != 0) { 14642 tcp_set_rto(tcp, (int32_t)lbolt - 14643 (int32_t)tcpopt.tcp_opt_ts_ecr); 14644 } 14645 14646 /* If needed, restart the timer. */ 14647 if (tcp->tcp_set_timer == 1) { 14648 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14649 tcp->tcp_set_timer = 0; 14650 } 14651 /* 14652 * Update tcp_csuna in case the other side stops sending 14653 * us timestamps. 14654 */ 14655 tcp->tcp_csuna = tcp->tcp_snxt; 14656 } else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) { 14657 /* 14658 * An ACK sequence we haven't seen before, so get the RTT 14659 * and update the RTO. But first check if the timestamp is 14660 * valid to use. 14661 */ 14662 if ((mp1->b_next != NULL) && 14663 SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next))) 14664 tcp_set_rto(tcp, (int32_t)lbolt - 14665 (int32_t)(intptr_t)mp1->b_prev); 14666 else 14667 BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate); 14668 14669 /* Remeber the last sequence to be ACKed */ 14670 tcp->tcp_csuna = seg_ack; 14671 if (tcp->tcp_set_timer == 1) { 14672 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14673 tcp->tcp_set_timer = 0; 14674 } 14675 } else { 14676 BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate); 14677 } 14678 14679 /* Eat acknowledged bytes off the xmit queue. */ 14680 for (;;) { 14681 mblk_t *mp2; 14682 uchar_t *wptr; 14683 14684 wptr = mp1->b_wptr; 14685 ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX); 14686 bytes_acked -= (int)(wptr - mp1->b_rptr); 14687 if (bytes_acked < 0) { 14688 mp1->b_rptr = wptr + bytes_acked; 14689 /* 14690 * Set a new timestamp if all the bytes timed by the 14691 * old timestamp have been ack'ed. 14692 */ 14693 if (SEQ_GT(seg_ack, 14694 (uint32_t)(uintptr_t)(mp1->b_next))) { 14695 mp1->b_prev = (mblk_t *)(uintptr_t)lbolt; 14696 mp1->b_next = NULL; 14697 } 14698 break; 14699 } 14700 mp1->b_next = NULL; 14701 mp1->b_prev = NULL; 14702 mp2 = mp1; 14703 mp1 = mp1->b_cont; 14704 14705 /* 14706 * This notification is required for some zero-copy 14707 * clients to maintain a copy semantic. After the data 14708 * is ack'ed, client is safe to modify or reuse the buffer. 14709 */ 14710 if (tcp->tcp_snd_zcopy_aware && 14711 (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 14712 tcp_zcopy_notify(tcp); 14713 freeb(mp2); 14714 if (bytes_acked == 0) { 14715 if (mp1 == NULL) { 14716 /* Everything is ack'ed, clear the tail. */ 14717 tcp->tcp_xmit_tail = NULL; 14718 /* 14719 * Cancel the timer unless we are still 14720 * waiting for an ACK for the FIN packet. 14721 */ 14722 if (tcp->tcp_timer_tid != 0 && 14723 tcp->tcp_snxt == tcp->tcp_suna) { 14724 (void) TCP_TIMER_CANCEL(tcp, 14725 tcp->tcp_timer_tid); 14726 tcp->tcp_timer_tid = 0; 14727 } 14728 goto pre_swnd_update; 14729 } 14730 if (mp2 != tcp->tcp_xmit_tail) 14731 break; 14732 tcp->tcp_xmit_tail = mp1; 14733 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 14734 (uintptr_t)INT_MAX); 14735 tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr - 14736 mp1->b_rptr); 14737 break; 14738 } 14739 if (mp1 == NULL) { 14740 /* 14741 * More was acked but there is nothing more 14742 * outstanding. This means that the FIN was 14743 * just acked or that we're talking to a clown. 14744 */ 14745 fin_acked: 14746 ASSERT(tcp->tcp_fin_sent); 14747 tcp->tcp_xmit_tail = NULL; 14748 if (tcp->tcp_fin_sent) { 14749 /* FIN was acked - making progress */ 14750 if (tcp->tcp_ipversion == IPV6_VERSION && 14751 !tcp->tcp_fin_acked) 14752 tcp->tcp_ip_forward_progress = B_TRUE; 14753 tcp->tcp_fin_acked = B_TRUE; 14754 if (tcp->tcp_linger_tid != 0 && 14755 TCP_TIMER_CANCEL(tcp, 14756 tcp->tcp_linger_tid) >= 0) { 14757 tcp_stop_lingering(tcp); 14758 freemsg(mp); 14759 mp = NULL; 14760 } 14761 } else { 14762 /* 14763 * We should never get here because 14764 * we have already checked that the 14765 * number of bytes ack'ed should be 14766 * smaller than or equal to what we 14767 * have sent so far (it is the 14768 * acceptability check of the ACK). 14769 * We can only get here if the send 14770 * queue is corrupted. 14771 * 14772 * Terminate the connection and 14773 * panic the system. It is better 14774 * for us to panic instead of 14775 * continuing to avoid other disaster. 14776 */ 14777 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 14778 tcp->tcp_rnxt, TH_RST|TH_ACK); 14779 panic("Memory corruption " 14780 "detected for connection %s.", 14781 tcp_display(tcp, NULL, 14782 DISP_ADDR_AND_PORT)); 14783 /*NOTREACHED*/ 14784 } 14785 goto pre_swnd_update; 14786 } 14787 ASSERT(mp2 != tcp->tcp_xmit_tail); 14788 } 14789 if (tcp->tcp_unsent) { 14790 flags |= TH_XMIT_NEEDED; 14791 } 14792 pre_swnd_update: 14793 tcp->tcp_xmit_head = mp1; 14794 swnd_update: 14795 /* 14796 * The following check is different from most other implementations. 14797 * For bi-directional transfer, when segments are dropped, the 14798 * "normal" check will not accept a window update in those 14799 * retransmitted segemnts. Failing to do that, TCP may send out 14800 * segments which are outside receiver's window. As TCP accepts 14801 * the ack in those retransmitted segments, if the window update in 14802 * the same segment is not accepted, TCP will incorrectly calculates 14803 * that it can send more segments. This can create a deadlock 14804 * with the receiver if its window becomes zero. 14805 */ 14806 if (SEQ_LT(tcp->tcp_swl2, seg_ack) || 14807 SEQ_LT(tcp->tcp_swl1, seg_seq) || 14808 (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) { 14809 /* 14810 * The criteria for update is: 14811 * 14812 * 1. the segment acknowledges some data. Or 14813 * 2. the segment is new, i.e. it has a higher seq num. Or 14814 * 3. the segment is not old and the advertised window is 14815 * larger than the previous advertised window. 14816 */ 14817 if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd) 14818 flags |= TH_XMIT_NEEDED; 14819 tcp->tcp_swnd = new_swnd; 14820 if (new_swnd > tcp->tcp_max_swnd) 14821 tcp->tcp_max_swnd = new_swnd; 14822 tcp->tcp_swl1 = seg_seq; 14823 tcp->tcp_swl2 = seg_ack; 14824 } 14825 est: 14826 if (tcp->tcp_state > TCPS_ESTABLISHED) { 14827 14828 switch (tcp->tcp_state) { 14829 case TCPS_FIN_WAIT_1: 14830 if (tcp->tcp_fin_acked) { 14831 tcp->tcp_state = TCPS_FIN_WAIT_2; 14832 /* 14833 * We implement the non-standard BSD/SunOS 14834 * FIN_WAIT_2 flushing algorithm. 14835 * If there is no user attached to this 14836 * TCP endpoint, then this TCP struct 14837 * could hang around forever in FIN_WAIT_2 14838 * state if the peer forgets to send us 14839 * a FIN. To prevent this, we wait only 14840 * 2*MSL (a convenient time value) for 14841 * the FIN to arrive. If it doesn't show up, 14842 * we flush the TCP endpoint. This algorithm, 14843 * though a violation of RFC-793, has worked 14844 * for over 10 years in BSD systems. 14845 * Note: SunOS 4.x waits 675 seconds before 14846 * flushing the FIN_WAIT_2 connection. 14847 */ 14848 TCP_TIMER_RESTART(tcp, 14849 tcps->tcps_fin_wait_2_flush_interval); 14850 } 14851 break; 14852 case TCPS_FIN_WAIT_2: 14853 break; /* Shutdown hook? */ 14854 case TCPS_LAST_ACK: 14855 freemsg(mp); 14856 if (tcp->tcp_fin_acked) { 14857 (void) tcp_clean_death(tcp, 0, 19); 14858 return; 14859 } 14860 goto xmit_check; 14861 case TCPS_CLOSING: 14862 if (tcp->tcp_fin_acked) { 14863 tcp->tcp_state = TCPS_TIME_WAIT; 14864 /* 14865 * Unconditionally clear the exclusive binding 14866 * bit so this TIME-WAIT connection won't 14867 * interfere with new ones. 14868 */ 14869 tcp->tcp_exclbind = 0; 14870 if (!TCP_IS_DETACHED(tcp)) { 14871 TCP_TIMER_RESTART(tcp, 14872 tcps->tcps_time_wait_interval); 14873 } else { 14874 tcp_time_wait_append(tcp); 14875 TCP_DBGSTAT(tcps, tcp_rput_time_wait); 14876 } 14877 } 14878 /*FALLTHRU*/ 14879 case TCPS_CLOSE_WAIT: 14880 freemsg(mp); 14881 goto xmit_check; 14882 default: 14883 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 14884 break; 14885 } 14886 } 14887 if (flags & TH_FIN) { 14888 /* Make sure we ack the fin */ 14889 flags |= TH_ACK_NEEDED; 14890 if (!tcp->tcp_fin_rcvd) { 14891 tcp->tcp_fin_rcvd = B_TRUE; 14892 tcp->tcp_rnxt++; 14893 tcph = tcp->tcp_tcph; 14894 U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack); 14895 14896 /* 14897 * Generate the ordrel_ind at the end unless we 14898 * are an eager guy. 14899 * In the eager case tcp_rsrv will do this when run 14900 * after tcp_accept is done. 14901 */ 14902 if (tcp->tcp_listener == NULL && 14903 !TCP_IS_DETACHED(tcp) && (!tcp->tcp_hard_binding)) 14904 flags |= TH_ORDREL_NEEDED; 14905 switch (tcp->tcp_state) { 14906 case TCPS_SYN_RCVD: 14907 case TCPS_ESTABLISHED: 14908 tcp->tcp_state = TCPS_CLOSE_WAIT; 14909 /* Keepalive? */ 14910 break; 14911 case TCPS_FIN_WAIT_1: 14912 if (!tcp->tcp_fin_acked) { 14913 tcp->tcp_state = TCPS_CLOSING; 14914 break; 14915 } 14916 /* FALLTHRU */ 14917 case TCPS_FIN_WAIT_2: 14918 tcp->tcp_state = TCPS_TIME_WAIT; 14919 /* 14920 * Unconditionally clear the exclusive binding 14921 * bit so this TIME-WAIT connection won't 14922 * interfere with new ones. 14923 */ 14924 tcp->tcp_exclbind = 0; 14925 if (!TCP_IS_DETACHED(tcp)) { 14926 TCP_TIMER_RESTART(tcp, 14927 tcps->tcps_time_wait_interval); 14928 } else { 14929 tcp_time_wait_append(tcp); 14930 TCP_DBGSTAT(tcps, tcp_rput_time_wait); 14931 } 14932 if (seg_len) { 14933 /* 14934 * implies data piggybacked on FIN. 14935 * break to handle data. 14936 */ 14937 break; 14938 } 14939 freemsg(mp); 14940 goto ack_check; 14941 } 14942 } 14943 } 14944 if (mp == NULL) 14945 goto xmit_check; 14946 if (seg_len == 0) { 14947 freemsg(mp); 14948 goto xmit_check; 14949 } 14950 if (mp->b_rptr == mp->b_wptr) { 14951 /* 14952 * The header has been consumed, so we remove the 14953 * zero-length mblk here. 14954 */ 14955 mp1 = mp; 14956 mp = mp->b_cont; 14957 freeb(mp1); 14958 } 14959 update_ack: 14960 tcph = tcp->tcp_tcph; 14961 tcp->tcp_rack_cnt++; 14962 { 14963 uint32_t cur_max; 14964 14965 cur_max = tcp->tcp_rack_cur_max; 14966 if (tcp->tcp_rack_cnt >= cur_max) { 14967 /* 14968 * We have more unacked data than we should - send 14969 * an ACK now. 14970 */ 14971 flags |= TH_ACK_NEEDED; 14972 cur_max++; 14973 if (cur_max > tcp->tcp_rack_abs_max) 14974 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 14975 else 14976 tcp->tcp_rack_cur_max = cur_max; 14977 } else if (TCP_IS_DETACHED(tcp)) { 14978 /* We don't have an ACK timer for detached TCP. */ 14979 flags |= TH_ACK_NEEDED; 14980 } else if (seg_len < mss) { 14981 /* 14982 * If we get a segment that is less than an mss, and we 14983 * already have unacknowledged data, and the amount 14984 * unacknowledged is not a multiple of mss, then we 14985 * better generate an ACK now. Otherwise, this may be 14986 * the tail piece of a transaction, and we would rather 14987 * wait for the response. 14988 */ 14989 uint32_t udif; 14990 ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <= 14991 (uintptr_t)INT_MAX); 14992 udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack); 14993 if (udif && (udif % mss)) 14994 flags |= TH_ACK_NEEDED; 14995 else 14996 flags |= TH_ACK_TIMER_NEEDED; 14997 } else { 14998 /* Start delayed ack timer */ 14999 flags |= TH_ACK_TIMER_NEEDED; 15000 } 15001 } 15002 tcp->tcp_rnxt += seg_len; 15003 U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack); 15004 15005 if (mp == NULL) 15006 goto xmit_check; 15007 15008 /* Update SACK list */ 15009 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 15010 tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt, 15011 &(tcp->tcp_num_sack_blk)); 15012 } 15013 15014 if (tcp->tcp_urp_mp) { 15015 tcp->tcp_urp_mp->b_cont = mp; 15016 mp = tcp->tcp_urp_mp; 15017 tcp->tcp_urp_mp = NULL; 15018 /* Ready for a new signal. */ 15019 tcp->tcp_urp_last_valid = B_FALSE; 15020 #ifdef DEBUG 15021 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 15022 "tcp_rput: sending exdata_ind %s", 15023 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 15024 #endif /* DEBUG */ 15025 } 15026 15027 /* 15028 * Check for ancillary data changes compared to last segment. 15029 */ 15030 if (tcp->tcp_ipv6_recvancillary != 0) { 15031 mp = tcp_rput_add_ancillary(tcp, mp, &ipp); 15032 ASSERT(mp != NULL); 15033 } 15034 15035 if (tcp->tcp_listener || tcp->tcp_hard_binding) { 15036 /* 15037 * Side queue inbound data until the accept happens. 15038 * tcp_accept/tcp_rput drains this when the accept happens. 15039 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or 15040 * T_EXDATA_IND) it is queued on b_next. 15041 * XXX Make urgent data use this. Requires: 15042 * Removing tcp_listener check for TH_URG 15043 * Making M_PCPROTO and MARK messages skip the eager case 15044 */ 15045 15046 if (tcp->tcp_kssl_pending) { 15047 DTRACE_PROBE1(kssl_mblk__ksslinput_pending, 15048 mblk_t *, mp); 15049 tcp_kssl_input(tcp, mp); 15050 } else { 15051 tcp_rcv_enqueue(tcp, mp, seg_len); 15052 } 15053 } else { 15054 sodirect_t *sodp = tcp->tcp_sodirect; 15055 15056 /* 15057 * If an sodirect connection and an enabled sodirect_t then 15058 * sodp will be set to point to the tcp_t/sonode_t shared 15059 * sodirect_t and the sodirect_t's lock will be held. 15060 */ 15061 if (sodp != NULL) { 15062 mutex_enter(sodp->sod_lockp); 15063 if (!(sodp->sod_state & SOD_ENABLED) || 15064 (tcp->tcp_kssl_ctx != NULL && 15065 DB_TYPE(mp) == M_DATA)) { 15066 mutex_exit(sodp->sod_lockp); 15067 sodp = NULL; 15068 } else { 15069 mutex_exit(sodp->sod_lockp); 15070 } 15071 } 15072 if (mp->b_datap->db_type != M_DATA || 15073 (flags & TH_MARKNEXT_NEEDED)) { 15074 if (IPCL_IS_NONSTR(connp)) { 15075 int error; 15076 15077 if ((*connp->conn_upcalls->su_recv) 15078 (connp->conn_upper_handle, mp, 15079 seg_len, 0, &error, NULL) <= 0) { 15080 /* 15081 * We should never be in middle of a 15082 * fallback, the squeue guarantees that. 15083 */ 15084 ASSERT(error != EOPNOTSUPP); 15085 if (error == ENOSPC) 15086 tcp->tcp_rwnd -= seg_len; 15087 } 15088 } else if (sodp != NULL) { 15089 mutex_enter(sodp->sod_lockp); 15090 SOD_UIOAFINI(sodp); 15091 if (!SOD_QEMPTY(sodp) && 15092 (sodp->sod_state & SOD_WAKE_NOT)) { 15093 flags |= tcp_rcv_sod_wakeup(tcp, sodp); 15094 /* sod_wakeup() did the mutex_exit() */ 15095 } else { 15096 mutex_exit(sodp->sod_lockp); 15097 } 15098 } else if (tcp->tcp_rcv_list != NULL) { 15099 flags |= tcp_rcv_drain(tcp); 15100 } 15101 ASSERT(tcp->tcp_rcv_list == NULL || 15102 tcp->tcp_fused_sigurg); 15103 15104 if (flags & TH_MARKNEXT_NEEDED) { 15105 #ifdef DEBUG 15106 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 15107 "tcp_rput: sending MSGMARKNEXT %s", 15108 tcp_display(tcp, NULL, 15109 DISP_PORT_ONLY)); 15110 #endif /* DEBUG */ 15111 mp->b_flag |= MSGMARKNEXT; 15112 flags &= ~TH_MARKNEXT_NEEDED; 15113 } 15114 15115 /* Does this need SSL processing first? */ 15116 if ((tcp->tcp_kssl_ctx != NULL) && 15117 (DB_TYPE(mp) == M_DATA)) { 15118 DTRACE_PROBE1(kssl_mblk__ksslinput_data1, 15119 mblk_t *, mp); 15120 tcp_kssl_input(tcp, mp); 15121 } else if (!IPCL_IS_NONSTR(connp)) { 15122 /* Already handled non-STREAMS case. */ 15123 putnext(tcp->tcp_rq, mp); 15124 if (!canputnext(tcp->tcp_rq)) 15125 tcp->tcp_rwnd -= seg_len; 15126 } 15127 } else if ((tcp->tcp_kssl_ctx != NULL) && 15128 (DB_TYPE(mp) == M_DATA)) { 15129 /* Does this need SSL processing first? */ 15130 DTRACE_PROBE1(kssl_mblk__ksslinput_data2, mblk_t *, mp); 15131 tcp_kssl_input(tcp, mp); 15132 } else if (IPCL_IS_NONSTR(connp)) { 15133 /* Non-STREAMS socket */ 15134 boolean_t push = flags & (TH_PUSH|TH_FIN); 15135 int error; 15136 15137 if ((*connp->conn_upcalls->su_recv)( 15138 connp->conn_upper_handle, 15139 mp, seg_len, 0, &error, &push) <= 0) { 15140 /* 15141 * We should never be in middle of a 15142 * fallback, the squeue guarantees that. 15143 */ 15144 ASSERT(error != EOPNOTSUPP); 15145 if (error == ENOSPC) 15146 tcp->tcp_rwnd -= seg_len; 15147 } else if (push) { 15148 /* 15149 * PUSH bit set and sockfs is not 15150 * flow controlled 15151 */ 15152 flags |= tcp_rwnd_reopen(tcp); 15153 } 15154 } else if (sodp != NULL) { 15155 /* 15156 * Sodirect so all mblk_t's are queued on the 15157 * socket directly, check for wakeup of blocked 15158 * reader (if any), and last if flow-controled. 15159 */ 15160 mutex_enter(sodp->sod_lockp); 15161 flags |= tcp_rcv_sod_enqueue(tcp, sodp, mp, seg_len); 15162 if ((sodp->sod_state & SOD_WAKE_NEED) || 15163 (flags & (TH_PUSH|TH_FIN))) { 15164 flags |= tcp_rcv_sod_wakeup(tcp, sodp); 15165 /* sod_wakeup() did the mutex_exit() */ 15166 } else { 15167 if (SOD_QFULL(sodp)) { 15168 /* Q is full, need backenable */ 15169 SOD_QSETBE(sodp); 15170 } 15171 mutex_exit(sodp->sod_lockp); 15172 } 15173 } else if ((flags & (TH_PUSH|TH_FIN)) || 15174 tcp->tcp_rcv_cnt + seg_len >= tcp->tcp_recv_hiwater >> 3) { 15175 if (tcp->tcp_rcv_list != NULL) { 15176 /* 15177 * Enqueue the new segment first and then 15178 * call tcp_rcv_drain() to send all data 15179 * up. The other way to do this is to 15180 * send all queued data up and then call 15181 * putnext() to send the new segment up. 15182 * This way can remove the else part later 15183 * on. 15184 * 15185 * We don't do this to avoid one more call to 15186 * canputnext() as tcp_rcv_drain() needs to 15187 * call canputnext(). 15188 */ 15189 tcp_rcv_enqueue(tcp, mp, seg_len); 15190 flags |= tcp_rcv_drain(tcp); 15191 } else { 15192 putnext(tcp->tcp_rq, mp); 15193 if (!canputnext(tcp->tcp_rq)) 15194 tcp->tcp_rwnd -= seg_len; 15195 } 15196 } else { 15197 /* 15198 * Enqueue all packets when processing an mblk 15199 * from the co queue and also enqueue normal packets. 15200 * For packets which belong to SSL stream do SSL 15201 * processing first. 15202 */ 15203 tcp_rcv_enqueue(tcp, mp, seg_len); 15204 } 15205 /* 15206 * Make sure the timer is running if we have data waiting 15207 * for a push bit. This provides resiliency against 15208 * implementations that do not correctly generate push bits. 15209 * 15210 * Note, for sodirect if Q isn't empty and there's not a 15211 * pending wakeup then we need a timer. Also note that sodp 15212 * is assumed to be still valid after exit()ing the sod_lockp 15213 * above and while the SOD state can change it can only change 15214 * such that the Q is empty now even though data was added 15215 * above. 15216 */ 15217 if (!IPCL_IS_NONSTR(connp) && 15218 ((sodp != NULL && !SOD_QEMPTY(sodp) && 15219 (sodp->sod_state & SOD_WAKE_NOT)) || 15220 (sodp == NULL && tcp->tcp_rcv_list != NULL)) && 15221 tcp->tcp_push_tid == 0) { 15222 /* 15223 * The connection may be closed at this point, so don't 15224 * do anything for a detached tcp. 15225 */ 15226 if (!TCP_IS_DETACHED(tcp)) 15227 tcp->tcp_push_tid = TCP_TIMER(tcp, 15228 tcp_push_timer, 15229 MSEC_TO_TICK( 15230 tcps->tcps_push_timer_interval)); 15231 } 15232 } 15233 15234 xmit_check: 15235 /* Is there anything left to do? */ 15236 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 15237 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED| 15238 TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED| 15239 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 15240 goto done; 15241 15242 /* Any transmit work to do and a non-zero window? */ 15243 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT| 15244 TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) { 15245 if (flags & TH_REXMIT_NEEDED) { 15246 uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna; 15247 15248 BUMP_MIB(&tcps->tcps_mib, tcpOutFastRetrans); 15249 if (snd_size > mss) 15250 snd_size = mss; 15251 if (snd_size > tcp->tcp_swnd) 15252 snd_size = tcp->tcp_swnd; 15253 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size, 15254 NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size, 15255 B_TRUE); 15256 15257 if (mp1 != NULL) { 15258 tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt; 15259 tcp->tcp_csuna = tcp->tcp_snxt; 15260 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 15261 UPDATE_MIB(&tcps->tcps_mib, 15262 tcpRetransBytes, snd_size); 15263 tcp_send_data(tcp, tcp->tcp_wq, mp1); 15264 } 15265 } 15266 if (flags & TH_NEED_SACK_REXMIT) { 15267 tcp_sack_rxmit(tcp, &flags); 15268 } 15269 /* 15270 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send 15271 * out new segment. Note that tcp_rexmit should not be 15272 * set, otherwise TH_LIMIT_XMIT should not be set. 15273 */ 15274 if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) { 15275 if (!tcp->tcp_rexmit) { 15276 tcp_wput_data(tcp, NULL, B_FALSE); 15277 } else { 15278 tcp_ss_rexmit(tcp); 15279 } 15280 } 15281 /* 15282 * Adjust tcp_cwnd back to normal value after sending 15283 * new data segments. 15284 */ 15285 if (flags & TH_LIMIT_XMIT) { 15286 tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1); 15287 /* 15288 * This will restart the timer. Restarting the 15289 * timer is used to avoid a timeout before the 15290 * limited transmitted segment's ACK gets back. 15291 */ 15292 if (tcp->tcp_xmit_head != NULL) 15293 tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt; 15294 } 15295 15296 /* Anything more to do? */ 15297 if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED| 15298 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 15299 goto done; 15300 } 15301 ack_check: 15302 if (flags & TH_SEND_URP_MARK) { 15303 ASSERT(tcp->tcp_urp_mark_mp); 15304 ASSERT(!IPCL_IS_NONSTR(connp)); 15305 /* 15306 * Send up any queued data and then send the mark message 15307 */ 15308 sodirect_t *sodp; 15309 15310 SOD_PTR_ENTER(tcp, sodp); 15311 15312 mp1 = tcp->tcp_urp_mark_mp; 15313 tcp->tcp_urp_mark_mp = NULL; 15314 if (sodp != NULL) { 15315 if (sodp->sod_uioa.uioa_state & UIOA_ENABLED) { 15316 sodp->sod_uioa.uioa_state &= UIOA_CLR; 15317 sodp->sod_uioa.uioa_state |= UIOA_FINI; 15318 } 15319 ASSERT(tcp->tcp_rcv_list == NULL); 15320 15321 flags |= tcp_rcv_sod_wakeup(tcp, sodp); 15322 /* sod_wakeup() does the mutex_exit() */ 15323 } else if (tcp->tcp_rcv_list != NULL) { 15324 flags |= tcp_rcv_drain(tcp); 15325 15326 ASSERT(tcp->tcp_rcv_list == NULL || 15327 tcp->tcp_fused_sigurg); 15328 15329 } 15330 putnext(tcp->tcp_rq, mp1); 15331 #ifdef DEBUG 15332 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 15333 "tcp_rput: sending zero-length %s %s", 15334 ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" : 15335 "MSGNOTMARKNEXT"), 15336 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 15337 #endif /* DEBUG */ 15338 flags &= ~TH_SEND_URP_MARK; 15339 } 15340 if (flags & TH_ACK_NEEDED) { 15341 /* 15342 * Time to send an ack for some reason. 15343 */ 15344 mp1 = tcp_ack_mp(tcp); 15345 15346 if (mp1 != NULL) { 15347 tcp_send_data(tcp, tcp->tcp_wq, mp1); 15348 BUMP_LOCAL(tcp->tcp_obsegs); 15349 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 15350 } 15351 if (tcp->tcp_ack_tid != 0) { 15352 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 15353 tcp->tcp_ack_tid = 0; 15354 } 15355 } 15356 if (flags & TH_ACK_TIMER_NEEDED) { 15357 /* 15358 * Arrange for deferred ACK or push wait timeout. 15359 * Start timer if it is not already running. 15360 */ 15361 if (tcp->tcp_ack_tid == 0) { 15362 tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer, 15363 MSEC_TO_TICK(tcp->tcp_localnet ? 15364 (clock_t)tcps->tcps_local_dack_interval : 15365 (clock_t)tcps->tcps_deferred_ack_interval)); 15366 } 15367 } 15368 if (flags & TH_ORDREL_NEEDED) { 15369 /* 15370 * Send up the ordrel_ind unless we are an eager guy. 15371 * In the eager case tcp_rsrv will do this when run 15372 * after tcp_accept is done. 15373 */ 15374 sodirect_t *sodp; 15375 15376 ASSERT(tcp->tcp_listener == NULL); 15377 15378 if (IPCL_IS_NONSTR(connp)) { 15379 ASSERT(tcp->tcp_ordrel_mp == NULL); 15380 tcp->tcp_ordrel_done = B_TRUE; 15381 (*connp->conn_upcalls->su_opctl) 15382 (connp->conn_upper_handle, SOCK_OPCTL_SHUT_RECV, 0); 15383 goto done; 15384 } 15385 15386 SOD_PTR_ENTER(tcp, sodp); 15387 if (sodp != NULL) { 15388 if (sodp->sod_uioa.uioa_state & UIOA_ENABLED) { 15389 sodp->sod_uioa.uioa_state &= UIOA_CLR; 15390 sodp->sod_uioa.uioa_state |= UIOA_FINI; 15391 } 15392 /* No more sodirect */ 15393 tcp->tcp_sodirect = NULL; 15394 if (!SOD_QEMPTY(sodp)) { 15395 /* Mblk(s) to process, notify */ 15396 flags |= tcp_rcv_sod_wakeup(tcp, sodp); 15397 /* sod_wakeup() does the mutex_exit() */ 15398 } else { 15399 /* Nothing to process */ 15400 mutex_exit(sodp->sod_lockp); 15401 } 15402 } else if (tcp->tcp_rcv_list != NULL) { 15403 /* 15404 * Push any mblk(s) enqueued from co processing. 15405 */ 15406 flags |= tcp_rcv_drain(tcp); 15407 15408 ASSERT(tcp->tcp_rcv_list == NULL || 15409 tcp->tcp_fused_sigurg); 15410 } 15411 15412 mp1 = tcp->tcp_ordrel_mp; 15413 tcp->tcp_ordrel_mp = NULL; 15414 tcp->tcp_ordrel_done = B_TRUE; 15415 putnext(tcp->tcp_rq, mp1); 15416 } 15417 done: 15418 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 15419 } 15420 15421 /* 15422 * This function does PAWS protection check. Returns B_TRUE if the 15423 * segment passes the PAWS test, else returns B_FALSE. 15424 */ 15425 boolean_t 15426 tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp) 15427 { 15428 uint8_t flags; 15429 int options; 15430 uint8_t *up; 15431 15432 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 15433 /* 15434 * If timestamp option is aligned nicely, get values inline, 15435 * otherwise call general routine to parse. Only do that 15436 * if timestamp is the only option. 15437 */ 15438 if (TCP_HDR_LENGTH(tcph) == (uint32_t)TCP_MIN_HEADER_LENGTH + 15439 TCPOPT_REAL_TS_LEN && 15440 OK_32PTR((up = ((uint8_t *)tcph) + 15441 TCP_MIN_HEADER_LENGTH)) && 15442 *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) { 15443 tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4)); 15444 tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8)); 15445 15446 options = TCP_OPT_TSTAMP_PRESENT; 15447 } else { 15448 if (tcp->tcp_snd_sack_ok) { 15449 tcpoptp->tcp = tcp; 15450 } else { 15451 tcpoptp->tcp = NULL; 15452 } 15453 options = tcp_parse_options(tcph, tcpoptp); 15454 } 15455 15456 if (options & TCP_OPT_TSTAMP_PRESENT) { 15457 /* 15458 * Do PAWS per RFC 1323 section 4.2. Accept RST 15459 * regardless of the timestamp, page 18 RFC 1323.bis. 15460 */ 15461 if ((flags & TH_RST) == 0 && 15462 TSTMP_LT(tcpoptp->tcp_opt_ts_val, 15463 tcp->tcp_ts_recent)) { 15464 if (TSTMP_LT(lbolt64, tcp->tcp_last_rcv_lbolt + 15465 PAWS_TIMEOUT)) { 15466 /* This segment is not acceptable. */ 15467 return (B_FALSE); 15468 } else { 15469 /* 15470 * Connection has been idle for 15471 * too long. Reset the timestamp 15472 * and assume the segment is valid. 15473 */ 15474 tcp->tcp_ts_recent = 15475 tcpoptp->tcp_opt_ts_val; 15476 } 15477 } 15478 } else { 15479 /* 15480 * If we don't get a timestamp on every packet, we 15481 * figure we can't really trust 'em, so we stop sending 15482 * and parsing them. 15483 */ 15484 tcp->tcp_snd_ts_ok = B_FALSE; 15485 15486 tcp->tcp_hdr_len -= TCPOPT_REAL_TS_LEN; 15487 tcp->tcp_tcp_hdr_len -= TCPOPT_REAL_TS_LEN; 15488 tcp->tcp_tcph->th_offset_and_rsrvd[0] -= (3 << 4); 15489 /* 15490 * Adjust the tcp_mss accordingly. We also need to 15491 * adjust tcp_cwnd here in accordance with the new mss. 15492 * But we avoid doing a slow start here so as to not 15493 * to lose on the transfer rate built up so far. 15494 */ 15495 tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN, B_FALSE); 15496 if (tcp->tcp_snd_sack_ok) { 15497 ASSERT(tcp->tcp_sack_info != NULL); 15498 tcp->tcp_max_sack_blk = 4; 15499 } 15500 } 15501 return (B_TRUE); 15502 } 15503 15504 /* 15505 * Attach ancillary data to a received TCP segments for the 15506 * ancillary pieces requested by the application that are 15507 * different than they were in the previous data segment. 15508 * 15509 * Save the "current" values once memory allocation is ok so that 15510 * when memory allocation fails we can just wait for the next data segment. 15511 */ 15512 static mblk_t * 15513 tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp) 15514 { 15515 struct T_optdata_ind *todi; 15516 int optlen; 15517 uchar_t *optptr; 15518 struct T_opthdr *toh; 15519 uint_t addflag; /* Which pieces to add */ 15520 mblk_t *mp1; 15521 15522 optlen = 0; 15523 addflag = 0; 15524 /* If app asked for pktinfo and the index has changed ... */ 15525 if ((ipp->ipp_fields & IPPF_IFINDEX) && 15526 ipp->ipp_ifindex != tcp->tcp_recvifindex && 15527 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)) { 15528 optlen += sizeof (struct T_opthdr) + 15529 sizeof (struct in6_pktinfo); 15530 addflag |= TCP_IPV6_RECVPKTINFO; 15531 } 15532 /* If app asked for hoplimit and it has changed ... */ 15533 if ((ipp->ipp_fields & IPPF_HOPLIMIT) && 15534 ipp->ipp_hoplimit != tcp->tcp_recvhops && 15535 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPLIMIT)) { 15536 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 15537 addflag |= TCP_IPV6_RECVHOPLIMIT; 15538 } 15539 /* If app asked for tclass and it has changed ... */ 15540 if ((ipp->ipp_fields & IPPF_TCLASS) && 15541 ipp->ipp_tclass != tcp->tcp_recvtclass && 15542 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)) { 15543 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 15544 addflag |= TCP_IPV6_RECVTCLASS; 15545 } 15546 /* 15547 * If app asked for hopbyhop headers and it has changed ... 15548 * For security labels, note that (1) security labels can't change on 15549 * a connected socket at all, (2) we're connected to at most one peer, 15550 * (3) if anything changes, then it must be some other extra option. 15551 */ 15552 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) && 15553 ip_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen, 15554 (ipp->ipp_fields & IPPF_HOPOPTS), 15555 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) { 15556 optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen - 15557 tcp->tcp_label_len; 15558 addflag |= TCP_IPV6_RECVHOPOPTS; 15559 if (!ip_allocbuf((void **)&tcp->tcp_hopopts, 15560 &tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS), 15561 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) 15562 return (mp); 15563 } 15564 /* If app asked for dst headers before routing headers ... */ 15565 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTDSTOPTS) && 15566 ip_cmpbuf(tcp->tcp_rtdstopts, tcp->tcp_rtdstoptslen, 15567 (ipp->ipp_fields & IPPF_RTDSTOPTS), 15568 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) { 15569 optlen += sizeof (struct T_opthdr) + 15570 ipp->ipp_rtdstoptslen; 15571 addflag |= TCP_IPV6_RECVRTDSTOPTS; 15572 if (!ip_allocbuf((void **)&tcp->tcp_rtdstopts, 15573 &tcp->tcp_rtdstoptslen, (ipp->ipp_fields & IPPF_RTDSTOPTS), 15574 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) 15575 return (mp); 15576 } 15577 /* If app asked for routing headers and it has changed ... */ 15578 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) && 15579 ip_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen, 15580 (ipp->ipp_fields & IPPF_RTHDR), 15581 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) { 15582 optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen; 15583 addflag |= TCP_IPV6_RECVRTHDR; 15584 if (!ip_allocbuf((void **)&tcp->tcp_rthdr, 15585 &tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR), 15586 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) 15587 return (mp); 15588 } 15589 /* If app asked for dest headers and it has changed ... */ 15590 if ((tcp->tcp_ipv6_recvancillary & 15591 (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) && 15592 ip_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen, 15593 (ipp->ipp_fields & IPPF_DSTOPTS), 15594 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) { 15595 optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen; 15596 addflag |= TCP_IPV6_RECVDSTOPTS; 15597 if (!ip_allocbuf((void **)&tcp->tcp_dstopts, 15598 &tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS), 15599 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) 15600 return (mp); 15601 } 15602 15603 if (optlen == 0) { 15604 /* Nothing to add */ 15605 return (mp); 15606 } 15607 mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED); 15608 if (mp1 == NULL) { 15609 /* 15610 * Defer sending ancillary data until the next TCP segment 15611 * arrives. 15612 */ 15613 return (mp); 15614 } 15615 mp1->b_cont = mp; 15616 mp = mp1; 15617 mp->b_wptr += sizeof (*todi) + optlen; 15618 mp->b_datap->db_type = M_PROTO; 15619 todi = (struct T_optdata_ind *)mp->b_rptr; 15620 todi->PRIM_type = T_OPTDATA_IND; 15621 todi->DATA_flag = 1; /* MORE data */ 15622 todi->OPT_length = optlen; 15623 todi->OPT_offset = sizeof (*todi); 15624 optptr = (uchar_t *)&todi[1]; 15625 /* 15626 * If app asked for pktinfo and the index has changed ... 15627 * Note that the local address never changes for the connection. 15628 */ 15629 if (addflag & TCP_IPV6_RECVPKTINFO) { 15630 struct in6_pktinfo *pkti; 15631 15632 toh = (struct T_opthdr *)optptr; 15633 toh->level = IPPROTO_IPV6; 15634 toh->name = IPV6_PKTINFO; 15635 toh->len = sizeof (*toh) + sizeof (*pkti); 15636 toh->status = 0; 15637 optptr += sizeof (*toh); 15638 pkti = (struct in6_pktinfo *)optptr; 15639 if (tcp->tcp_ipversion == IPV6_VERSION) 15640 pkti->ipi6_addr = tcp->tcp_ip6h->ip6_src; 15641 else 15642 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 15643 &pkti->ipi6_addr); 15644 pkti->ipi6_ifindex = ipp->ipp_ifindex; 15645 optptr += sizeof (*pkti); 15646 ASSERT(OK_32PTR(optptr)); 15647 /* Save as "last" value */ 15648 tcp->tcp_recvifindex = ipp->ipp_ifindex; 15649 } 15650 /* If app asked for hoplimit and it has changed ... */ 15651 if (addflag & TCP_IPV6_RECVHOPLIMIT) { 15652 toh = (struct T_opthdr *)optptr; 15653 toh->level = IPPROTO_IPV6; 15654 toh->name = IPV6_HOPLIMIT; 15655 toh->len = sizeof (*toh) + sizeof (uint_t); 15656 toh->status = 0; 15657 optptr += sizeof (*toh); 15658 *(uint_t *)optptr = ipp->ipp_hoplimit; 15659 optptr += sizeof (uint_t); 15660 ASSERT(OK_32PTR(optptr)); 15661 /* Save as "last" value */ 15662 tcp->tcp_recvhops = ipp->ipp_hoplimit; 15663 } 15664 /* If app asked for tclass and it has changed ... */ 15665 if (addflag & TCP_IPV6_RECVTCLASS) { 15666 toh = (struct T_opthdr *)optptr; 15667 toh->level = IPPROTO_IPV6; 15668 toh->name = IPV6_TCLASS; 15669 toh->len = sizeof (*toh) + sizeof (uint_t); 15670 toh->status = 0; 15671 optptr += sizeof (*toh); 15672 *(uint_t *)optptr = ipp->ipp_tclass; 15673 optptr += sizeof (uint_t); 15674 ASSERT(OK_32PTR(optptr)); 15675 /* Save as "last" value */ 15676 tcp->tcp_recvtclass = ipp->ipp_tclass; 15677 } 15678 if (addflag & TCP_IPV6_RECVHOPOPTS) { 15679 toh = (struct T_opthdr *)optptr; 15680 toh->level = IPPROTO_IPV6; 15681 toh->name = IPV6_HOPOPTS; 15682 toh->len = sizeof (*toh) + ipp->ipp_hopoptslen - 15683 tcp->tcp_label_len; 15684 toh->status = 0; 15685 optptr += sizeof (*toh); 15686 bcopy((uchar_t *)ipp->ipp_hopopts + tcp->tcp_label_len, optptr, 15687 ipp->ipp_hopoptslen - tcp->tcp_label_len); 15688 optptr += ipp->ipp_hopoptslen - tcp->tcp_label_len; 15689 ASSERT(OK_32PTR(optptr)); 15690 /* Save as last value */ 15691 ip_savebuf((void **)&tcp->tcp_hopopts, &tcp->tcp_hopoptslen, 15692 (ipp->ipp_fields & IPPF_HOPOPTS), 15693 ipp->ipp_hopopts, ipp->ipp_hopoptslen); 15694 } 15695 if (addflag & TCP_IPV6_RECVRTDSTOPTS) { 15696 toh = (struct T_opthdr *)optptr; 15697 toh->level = IPPROTO_IPV6; 15698 toh->name = IPV6_RTHDRDSTOPTS; 15699 toh->len = sizeof (*toh) + ipp->ipp_rtdstoptslen; 15700 toh->status = 0; 15701 optptr += sizeof (*toh); 15702 bcopy(ipp->ipp_rtdstopts, optptr, ipp->ipp_rtdstoptslen); 15703 optptr += ipp->ipp_rtdstoptslen; 15704 ASSERT(OK_32PTR(optptr)); 15705 /* Save as last value */ 15706 ip_savebuf((void **)&tcp->tcp_rtdstopts, 15707 &tcp->tcp_rtdstoptslen, 15708 (ipp->ipp_fields & IPPF_RTDSTOPTS), 15709 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 15710 } 15711 if (addflag & TCP_IPV6_RECVRTHDR) { 15712 toh = (struct T_opthdr *)optptr; 15713 toh->level = IPPROTO_IPV6; 15714 toh->name = IPV6_RTHDR; 15715 toh->len = sizeof (*toh) + ipp->ipp_rthdrlen; 15716 toh->status = 0; 15717 optptr += sizeof (*toh); 15718 bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen); 15719 optptr += ipp->ipp_rthdrlen; 15720 ASSERT(OK_32PTR(optptr)); 15721 /* Save as last value */ 15722 ip_savebuf((void **)&tcp->tcp_rthdr, &tcp->tcp_rthdrlen, 15723 (ipp->ipp_fields & IPPF_RTHDR), 15724 ipp->ipp_rthdr, ipp->ipp_rthdrlen); 15725 } 15726 if (addflag & (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) { 15727 toh = (struct T_opthdr *)optptr; 15728 toh->level = IPPROTO_IPV6; 15729 toh->name = IPV6_DSTOPTS; 15730 toh->len = sizeof (*toh) + ipp->ipp_dstoptslen; 15731 toh->status = 0; 15732 optptr += sizeof (*toh); 15733 bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen); 15734 optptr += ipp->ipp_dstoptslen; 15735 ASSERT(OK_32PTR(optptr)); 15736 /* Save as last value */ 15737 ip_savebuf((void **)&tcp->tcp_dstopts, &tcp->tcp_dstoptslen, 15738 (ipp->ipp_fields & IPPF_DSTOPTS), 15739 ipp->ipp_dstopts, ipp->ipp_dstoptslen); 15740 } 15741 ASSERT(optptr == mp->b_wptr); 15742 return (mp); 15743 } 15744 15745 /* 15746 * tcp_rput_other is called by tcp_rput to handle everything other than M_DATA 15747 * messages. 15748 */ 15749 void 15750 tcp_rput_other(tcp_t *tcp, mblk_t *mp) 15751 { 15752 uchar_t *rptr = mp->b_rptr; 15753 queue_t *q = tcp->tcp_rq; 15754 struct T_error_ack *tea; 15755 15756 switch (mp->b_datap->db_type) { 15757 case M_PROTO: 15758 case M_PCPROTO: 15759 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 15760 if ((mp->b_wptr - rptr) < sizeof (t_scalar_t)) 15761 break; 15762 tea = (struct T_error_ack *)rptr; 15763 ASSERT(tea->PRIM_type != T_BIND_ACK); 15764 ASSERT(tea->ERROR_prim != O_T_BIND_REQ && 15765 tea->ERROR_prim != T_BIND_REQ); 15766 switch (tea->PRIM_type) { 15767 case T_ERROR_ACK: 15768 if (tcp->tcp_debug) { 15769 (void) strlog(TCP_MOD_ID, 0, 1, 15770 SL_TRACE|SL_ERROR, 15771 "tcp_rput_other: case T_ERROR_ACK, " 15772 "ERROR_prim == %d", 15773 tea->ERROR_prim); 15774 } 15775 switch (tea->ERROR_prim) { 15776 case T_SVR4_OPTMGMT_REQ: 15777 if (tcp->tcp_drop_opt_ack_cnt > 0) { 15778 /* T_OPTMGMT_REQ generated by TCP */ 15779 printf("T_SVR4_OPTMGMT_REQ failed " 15780 "%d/%d - dropped (cnt %d)\n", 15781 tea->TLI_error, tea->UNIX_error, 15782 tcp->tcp_drop_opt_ack_cnt); 15783 freemsg(mp); 15784 tcp->tcp_drop_opt_ack_cnt--; 15785 return; 15786 } 15787 break; 15788 } 15789 if (tea->ERROR_prim == T_SVR4_OPTMGMT_REQ && 15790 tcp->tcp_drop_opt_ack_cnt > 0) { 15791 printf("T_SVR4_OPTMGMT_REQ failed %d/%d " 15792 "- dropped (cnt %d)\n", 15793 tea->TLI_error, tea->UNIX_error, 15794 tcp->tcp_drop_opt_ack_cnt); 15795 freemsg(mp); 15796 tcp->tcp_drop_opt_ack_cnt--; 15797 return; 15798 } 15799 break; 15800 case T_OPTMGMT_ACK: 15801 if (tcp->tcp_drop_opt_ack_cnt > 0) { 15802 /* T_OPTMGMT_REQ generated by TCP */ 15803 freemsg(mp); 15804 tcp->tcp_drop_opt_ack_cnt--; 15805 return; 15806 } 15807 break; 15808 default: 15809 ASSERT(tea->ERROR_prim != T_UNBIND_REQ); 15810 break; 15811 } 15812 break; 15813 case M_FLUSH: 15814 if (*rptr & FLUSHR) 15815 flushq(q, FLUSHDATA); 15816 break; 15817 default: 15818 /* M_CTL will be directly sent to tcp_icmp_error() */ 15819 ASSERT(DB_TYPE(mp) != M_CTL); 15820 break; 15821 } 15822 /* 15823 * Make sure we set this bit before sending the ACK for 15824 * bind. Otherwise accept could possibly run and free 15825 * this tcp struct. 15826 */ 15827 ASSERT(q != NULL); 15828 putnext(q, mp); 15829 } 15830 15831 /* ARGSUSED */ 15832 static void 15833 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2) 15834 { 15835 conn_t *connp = (conn_t *)arg; 15836 tcp_t *tcp = connp->conn_tcp; 15837 queue_t *q = tcp->tcp_rq; 15838 uint_t thwin; 15839 tcp_stack_t *tcps = tcp->tcp_tcps; 15840 sodirect_t *sodp; 15841 boolean_t fc; 15842 15843 mutex_enter(&tcp->tcp_rsrv_mp_lock); 15844 tcp->tcp_rsrv_mp = mp; 15845 mutex_exit(&tcp->tcp_rsrv_mp_lock); 15846 15847 TCP_STAT(tcps, tcp_rsrv_calls); 15848 15849 if (TCP_IS_DETACHED(tcp) || q == NULL) { 15850 return; 15851 } 15852 15853 if (tcp->tcp_fused) { 15854 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 15855 15856 ASSERT(tcp->tcp_fused); 15857 ASSERT(peer_tcp != NULL && peer_tcp->tcp_fused); 15858 ASSERT(peer_tcp->tcp_loopback_peer == tcp); 15859 ASSERT(!TCP_IS_DETACHED(tcp)); 15860 ASSERT(tcp->tcp_connp->conn_sqp == 15861 peer_tcp->tcp_connp->conn_sqp); 15862 15863 /* 15864 * Normally we would not get backenabled in synchronous 15865 * streams mode, but in case this happens, we need to plug 15866 * synchronous streams during our drain to prevent a race 15867 * with tcp_fuse_rrw() or tcp_fuse_rinfop(). 15868 */ 15869 TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp); 15870 if (tcp->tcp_rcv_list != NULL) 15871 (void) tcp_rcv_drain(tcp); 15872 15873 if (peer_tcp > tcp) { 15874 mutex_enter(&peer_tcp->tcp_non_sq_lock); 15875 mutex_enter(&tcp->tcp_non_sq_lock); 15876 } else { 15877 mutex_enter(&tcp->tcp_non_sq_lock); 15878 mutex_enter(&peer_tcp->tcp_non_sq_lock); 15879 } 15880 15881 if (peer_tcp->tcp_flow_stopped && 15882 (TCP_UNSENT_BYTES(peer_tcp) <= 15883 peer_tcp->tcp_xmit_lowater)) { 15884 tcp_clrqfull(peer_tcp); 15885 } 15886 mutex_exit(&peer_tcp->tcp_non_sq_lock); 15887 mutex_exit(&tcp->tcp_non_sq_lock); 15888 15889 TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp); 15890 TCP_STAT(tcps, tcp_fusion_backenabled); 15891 return; 15892 } 15893 15894 SOD_PTR_ENTER(tcp, sodp); 15895 if (sodp != NULL) { 15896 /* An sodirect connection */ 15897 if (SOD_QFULL(sodp)) { 15898 /* Flow-controlled, need another back-enable */ 15899 fc = B_TRUE; 15900 SOD_QSETBE(sodp); 15901 } else { 15902 /* Not flow-controlled */ 15903 fc = B_FALSE; 15904 } 15905 mutex_exit(sodp->sod_lockp); 15906 } else if (canputnext(q)) { 15907 /* STREAMS, not flow-controlled */ 15908 fc = B_FALSE; 15909 } else { 15910 /* STREAMS, flow-controlled */ 15911 fc = B_TRUE; 15912 } 15913 if (!fc) { 15914 /* Not flow-controlled, open rwnd */ 15915 tcp->tcp_rwnd = q->q_hiwat; 15916 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 15917 << tcp->tcp_rcv_ws; 15918 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 15919 /* 15920 * Send back a window update immediately if TCP is above 15921 * ESTABLISHED state and the increase of the rcv window 15922 * that the other side knows is at least 1 MSS after flow 15923 * control is lifted. 15924 */ 15925 if (tcp->tcp_state >= TCPS_ESTABLISHED && 15926 (q->q_hiwat - thwin >= tcp->tcp_mss)) { 15927 tcp_xmit_ctl(NULL, tcp, 15928 (tcp->tcp_swnd == 0) ? tcp->tcp_suna : 15929 tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 15930 BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate); 15931 } 15932 } 15933 } 15934 15935 /* 15936 * The read side service routine is called mostly when we get back-enabled as a 15937 * result of flow control relief. Since we don't actually queue anything in 15938 * TCP, we have no data to send out of here. What we do is clear the receive 15939 * window, and send out a window update. 15940 */ 15941 static void 15942 tcp_rsrv(queue_t *q) 15943 { 15944 conn_t *connp = Q_TO_CONN(q); 15945 tcp_t *tcp = connp->conn_tcp; 15946 mblk_t *mp; 15947 tcp_stack_t *tcps = tcp->tcp_tcps; 15948 15949 /* No code does a putq on the read side */ 15950 ASSERT(q->q_first == NULL); 15951 15952 /* Nothing to do for the default queue */ 15953 if (q == tcps->tcps_g_q) { 15954 return; 15955 } 15956 15957 /* 15958 * If tcp->tcp_rsrv_mp == NULL, it means that tcp_rsrv() has already 15959 * been run. So just return. 15960 */ 15961 mutex_enter(&tcp->tcp_rsrv_mp_lock); 15962 if ((mp = tcp->tcp_rsrv_mp) == NULL) { 15963 mutex_exit(&tcp->tcp_rsrv_mp_lock); 15964 return; 15965 } 15966 tcp->tcp_rsrv_mp = NULL; 15967 mutex_exit(&tcp->tcp_rsrv_mp_lock); 15968 15969 CONN_INC_REF(connp); 15970 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_rsrv_input, connp, 15971 SQ_PROCESS, SQTAG_TCP_RSRV); 15972 } 15973 15974 /* 15975 * tcp_rwnd_set() is called to adjust the receive window to a desired value. 15976 * We do not allow the receive window to shrink. After setting rwnd, 15977 * set the flow control hiwat of the stream. 15978 * 15979 * This function is called in 2 cases: 15980 * 15981 * 1) Before data transfer begins, in tcp_accept_comm() for accepting a 15982 * connection (passive open) and in tcp_rput_data() for active connect. 15983 * This is called after tcp_mss_set() when the desired MSS value is known. 15984 * This makes sure that our window size is a mutiple of the other side's 15985 * MSS. 15986 * 2) Handling SO_RCVBUF option. 15987 * 15988 * It is ASSUMED that the requested size is a multiple of the current MSS. 15989 * 15990 * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the 15991 * user requests so. 15992 */ 15993 static int 15994 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd) 15995 { 15996 uint32_t mss = tcp->tcp_mss; 15997 uint32_t old_max_rwnd; 15998 uint32_t max_transmittable_rwnd; 15999 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 16000 tcp_stack_t *tcps = tcp->tcp_tcps; 16001 16002 if (tcp->tcp_fused) { 16003 size_t sth_hiwat; 16004 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 16005 16006 ASSERT(peer_tcp != NULL); 16007 /* 16008 * Record the stream head's high water mark for 16009 * this endpoint; this is used for flow-control 16010 * purposes in tcp_fuse_output(). 16011 */ 16012 sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd); 16013 if (!tcp_detached) { 16014 (void) proto_set_rx_hiwat(tcp->tcp_rq, tcp->tcp_connp, 16015 sth_hiwat); 16016 if (IPCL_IS_NONSTR(tcp->tcp_connp)) { 16017 conn_t *connp = tcp->tcp_connp; 16018 struct sock_proto_props sopp; 16019 16020 sopp.sopp_flags = SOCKOPT_RCVTHRESH; 16021 sopp.sopp_rcvthresh = sth_hiwat >> 3; 16022 16023 (*connp->conn_upcalls->su_set_proto_props) 16024 (connp->conn_upper_handle, &sopp); 16025 } 16026 } 16027 16028 /* 16029 * In the fusion case, the maxpsz stream head value of 16030 * our peer is set according to its send buffer size 16031 * and our receive buffer size; since the latter may 16032 * have changed we need to update the peer's maxpsz. 16033 */ 16034 (void) tcp_maxpsz_set(peer_tcp, B_TRUE); 16035 return (rwnd); 16036 } 16037 16038 if (tcp_detached) { 16039 old_max_rwnd = tcp->tcp_rwnd; 16040 } else { 16041 old_max_rwnd = tcp->tcp_recv_hiwater; 16042 } 16043 16044 /* 16045 * Insist on a receive window that is at least 16046 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid 16047 * funny TCP interactions of Nagle algorithm, SWS avoidance 16048 * and delayed acknowledgement. 16049 */ 16050 rwnd = MAX(rwnd, tcps->tcps_recv_hiwat_minmss * mss); 16051 16052 /* 16053 * If window size info has already been exchanged, TCP should not 16054 * shrink the window. Shrinking window is doable if done carefully. 16055 * We may add that support later. But so far there is not a real 16056 * need to do that. 16057 */ 16058 if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) { 16059 /* MSS may have changed, do a round up again. */ 16060 rwnd = MSS_ROUNDUP(old_max_rwnd, mss); 16061 } 16062 16063 /* 16064 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check 16065 * can be applied even before the window scale option is decided. 16066 */ 16067 max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws; 16068 if (rwnd > max_transmittable_rwnd) { 16069 rwnd = max_transmittable_rwnd - 16070 (max_transmittable_rwnd % mss); 16071 if (rwnd < mss) 16072 rwnd = max_transmittable_rwnd; 16073 /* 16074 * If we're over the limit we may have to back down tcp_rwnd. 16075 * The increment below won't work for us. So we set all three 16076 * here and the increment below will have no effect. 16077 */ 16078 tcp->tcp_rwnd = old_max_rwnd = rwnd; 16079 } 16080 if (tcp->tcp_localnet) { 16081 tcp->tcp_rack_abs_max = 16082 MIN(tcps->tcps_local_dacks_max, rwnd / mss / 2); 16083 } else { 16084 /* 16085 * For a remote host on a different subnet (through a router), 16086 * we ack every other packet to be conforming to RFC1122. 16087 * tcp_deferred_acks_max is default to 2. 16088 */ 16089 tcp->tcp_rack_abs_max = 16090 MIN(tcps->tcps_deferred_acks_max, rwnd / mss / 2); 16091 } 16092 if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max) 16093 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 16094 else 16095 tcp->tcp_rack_cur_max = 0; 16096 /* 16097 * Increment the current rwnd by the amount the maximum grew (we 16098 * can not overwrite it since we might be in the middle of a 16099 * connection.) 16100 */ 16101 tcp->tcp_rwnd += rwnd - old_max_rwnd; 16102 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, tcp->tcp_tcph->th_win); 16103 if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max) 16104 tcp->tcp_cwnd_max = rwnd; 16105 16106 if (tcp_detached) 16107 return (rwnd); 16108 /* 16109 * We set the maximum receive window into rq->q_hiwat if it is 16110 * a STREAMS socket. 16111 * This is not actually used for flow control. 16112 */ 16113 if (!IPCL_IS_NONSTR(tcp->tcp_connp)) 16114 tcp->tcp_rq->q_hiwat = rwnd; 16115 tcp->tcp_recv_hiwater = rwnd; 16116 /* 16117 * Set the STREAM head high water mark. This doesn't have to be 16118 * here, since we are simply using default values, but we would 16119 * prefer to choose these values algorithmically, with a likely 16120 * relationship to rwnd. 16121 */ 16122 (void) proto_set_rx_hiwat(tcp->tcp_rq, tcp->tcp_connp, 16123 MAX(rwnd, tcps->tcps_sth_rcv_hiwat)); 16124 return (rwnd); 16125 } 16126 16127 /* 16128 * Return SNMP stuff in buffer in mpdata. 16129 */ 16130 mblk_t * 16131 tcp_snmp_get(queue_t *q, mblk_t *mpctl) 16132 { 16133 mblk_t *mpdata; 16134 mblk_t *mp_conn_ctl = NULL; 16135 mblk_t *mp_conn_tail; 16136 mblk_t *mp_attr_ctl = NULL; 16137 mblk_t *mp_attr_tail; 16138 mblk_t *mp6_conn_ctl = NULL; 16139 mblk_t *mp6_conn_tail; 16140 mblk_t *mp6_attr_ctl = NULL; 16141 mblk_t *mp6_attr_tail; 16142 struct opthdr *optp; 16143 mib2_tcpConnEntry_t tce; 16144 mib2_tcp6ConnEntry_t tce6; 16145 mib2_transportMLPEntry_t mlp; 16146 connf_t *connfp; 16147 int i; 16148 boolean_t ispriv; 16149 zoneid_t zoneid; 16150 int v4_conn_idx; 16151 int v6_conn_idx; 16152 conn_t *connp = Q_TO_CONN(q); 16153 tcp_stack_t *tcps; 16154 ip_stack_t *ipst; 16155 mblk_t *mp2ctl; 16156 16157 /* 16158 * make a copy of the original message 16159 */ 16160 mp2ctl = copymsg(mpctl); 16161 16162 if (mpctl == NULL || 16163 (mpdata = mpctl->b_cont) == NULL || 16164 (mp_conn_ctl = copymsg(mpctl)) == NULL || 16165 (mp_attr_ctl = copymsg(mpctl)) == NULL || 16166 (mp6_conn_ctl = copymsg(mpctl)) == NULL || 16167 (mp6_attr_ctl = copymsg(mpctl)) == NULL) { 16168 freemsg(mp_conn_ctl); 16169 freemsg(mp_attr_ctl); 16170 freemsg(mp6_conn_ctl); 16171 freemsg(mp6_attr_ctl); 16172 freemsg(mpctl); 16173 freemsg(mp2ctl); 16174 return (NULL); 16175 } 16176 16177 ipst = connp->conn_netstack->netstack_ip; 16178 tcps = connp->conn_netstack->netstack_tcp; 16179 16180 /* build table of connections -- need count in fixed part */ 16181 SET_MIB(tcps->tcps_mib.tcpRtoAlgorithm, 4); /* vanj */ 16182 SET_MIB(tcps->tcps_mib.tcpRtoMin, tcps->tcps_rexmit_interval_min); 16183 SET_MIB(tcps->tcps_mib.tcpRtoMax, tcps->tcps_rexmit_interval_max); 16184 SET_MIB(tcps->tcps_mib.tcpMaxConn, -1); 16185 SET_MIB(tcps->tcps_mib.tcpCurrEstab, 0); 16186 16187 ispriv = 16188 secpolicy_ip_config((Q_TO_CONN(q))->conn_cred, B_TRUE) == 0; 16189 zoneid = Q_TO_CONN(q)->conn_zoneid; 16190 16191 v4_conn_idx = v6_conn_idx = 0; 16192 mp_conn_tail = mp_attr_tail = mp6_conn_tail = mp6_attr_tail = NULL; 16193 16194 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 16195 ipst = tcps->tcps_netstack->netstack_ip; 16196 16197 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 16198 16199 connp = NULL; 16200 16201 while ((connp = 16202 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 16203 tcp_t *tcp; 16204 boolean_t needattr; 16205 16206 if (connp->conn_zoneid != zoneid) 16207 continue; /* not in this zone */ 16208 16209 tcp = connp->conn_tcp; 16210 UPDATE_MIB(&tcps->tcps_mib, 16211 tcpHCInSegs, tcp->tcp_ibsegs); 16212 tcp->tcp_ibsegs = 0; 16213 UPDATE_MIB(&tcps->tcps_mib, 16214 tcpHCOutSegs, tcp->tcp_obsegs); 16215 tcp->tcp_obsegs = 0; 16216 16217 tce6.tcp6ConnState = tce.tcpConnState = 16218 tcp_snmp_state(tcp); 16219 if (tce.tcpConnState == MIB2_TCP_established || 16220 tce.tcpConnState == MIB2_TCP_closeWait) 16221 BUMP_MIB(&tcps->tcps_mib, tcpCurrEstab); 16222 16223 needattr = B_FALSE; 16224 bzero(&mlp, sizeof (mlp)); 16225 if (connp->conn_mlp_type != mlptSingle) { 16226 if (connp->conn_mlp_type == mlptShared || 16227 connp->conn_mlp_type == mlptBoth) 16228 mlp.tme_flags |= MIB2_TMEF_SHARED; 16229 if (connp->conn_mlp_type == mlptPrivate || 16230 connp->conn_mlp_type == mlptBoth) 16231 mlp.tme_flags |= MIB2_TMEF_PRIVATE; 16232 needattr = B_TRUE; 16233 } 16234 if (connp->conn_peercred != NULL) { 16235 ts_label_t *tsl; 16236 16237 tsl = crgetlabel(connp->conn_peercred); 16238 mlp.tme_doi = label2doi(tsl); 16239 mlp.tme_label = *label2bslabel(tsl); 16240 needattr = B_TRUE; 16241 } 16242 16243 /* Create a message to report on IPv6 entries */ 16244 if (tcp->tcp_ipversion == IPV6_VERSION) { 16245 tce6.tcp6ConnLocalAddress = tcp->tcp_ip_src_v6; 16246 tce6.tcp6ConnRemAddress = tcp->tcp_remote_v6; 16247 tce6.tcp6ConnLocalPort = ntohs(tcp->tcp_lport); 16248 tce6.tcp6ConnRemPort = ntohs(tcp->tcp_fport); 16249 tce6.tcp6ConnIfIndex = tcp->tcp_bound_if; 16250 /* Don't want just anybody seeing these... */ 16251 if (ispriv) { 16252 tce6.tcp6ConnEntryInfo.ce_snxt = 16253 tcp->tcp_snxt; 16254 tce6.tcp6ConnEntryInfo.ce_suna = 16255 tcp->tcp_suna; 16256 tce6.tcp6ConnEntryInfo.ce_rnxt = 16257 tcp->tcp_rnxt; 16258 tce6.tcp6ConnEntryInfo.ce_rack = 16259 tcp->tcp_rack; 16260 } else { 16261 /* 16262 * Netstat, unfortunately, uses this to 16263 * get send/receive queue sizes. How to fix? 16264 * Why not compute the difference only? 16265 */ 16266 tce6.tcp6ConnEntryInfo.ce_snxt = 16267 tcp->tcp_snxt - tcp->tcp_suna; 16268 tce6.tcp6ConnEntryInfo.ce_suna = 0; 16269 tce6.tcp6ConnEntryInfo.ce_rnxt = 16270 tcp->tcp_rnxt - tcp->tcp_rack; 16271 tce6.tcp6ConnEntryInfo.ce_rack = 0; 16272 } 16273 16274 tce6.tcp6ConnEntryInfo.ce_swnd = tcp->tcp_swnd; 16275 tce6.tcp6ConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; 16276 tce6.tcp6ConnEntryInfo.ce_rto = tcp->tcp_rto; 16277 tce6.tcp6ConnEntryInfo.ce_mss = tcp->tcp_mss; 16278 tce6.tcp6ConnEntryInfo.ce_state = tcp->tcp_state; 16279 16280 tce6.tcp6ConnCreationProcess = 16281 (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS : 16282 tcp->tcp_cpid; 16283 tce6.tcp6ConnCreationTime = tcp->tcp_open_time; 16284 16285 (void) snmp_append_data2(mp6_conn_ctl->b_cont, 16286 &mp6_conn_tail, (char *)&tce6, sizeof (tce6)); 16287 16288 mlp.tme_connidx = v6_conn_idx++; 16289 if (needattr) 16290 (void) snmp_append_data2(mp6_attr_ctl->b_cont, 16291 &mp6_attr_tail, (char *)&mlp, sizeof (mlp)); 16292 } 16293 /* 16294 * Create an IPv4 table entry for IPv4 entries and also 16295 * for IPv6 entries which are bound to in6addr_any 16296 * but don't have IPV6_V6ONLY set. 16297 * (i.e. anything an IPv4 peer could connect to) 16298 */ 16299 if (tcp->tcp_ipversion == IPV4_VERSION || 16300 (tcp->tcp_state <= TCPS_LISTEN && 16301 !tcp->tcp_connp->conn_ipv6_v6only && 16302 IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip_src_v6))) { 16303 if (tcp->tcp_ipversion == IPV6_VERSION) { 16304 tce.tcpConnRemAddress = INADDR_ANY; 16305 tce.tcpConnLocalAddress = INADDR_ANY; 16306 } else { 16307 tce.tcpConnRemAddress = 16308 tcp->tcp_remote; 16309 tce.tcpConnLocalAddress = 16310 tcp->tcp_ip_src; 16311 } 16312 tce.tcpConnLocalPort = ntohs(tcp->tcp_lport); 16313 tce.tcpConnRemPort = ntohs(tcp->tcp_fport); 16314 /* Don't want just anybody seeing these... */ 16315 if (ispriv) { 16316 tce.tcpConnEntryInfo.ce_snxt = 16317 tcp->tcp_snxt; 16318 tce.tcpConnEntryInfo.ce_suna = 16319 tcp->tcp_suna; 16320 tce.tcpConnEntryInfo.ce_rnxt = 16321 tcp->tcp_rnxt; 16322 tce.tcpConnEntryInfo.ce_rack = 16323 tcp->tcp_rack; 16324 } else { 16325 /* 16326 * Netstat, unfortunately, uses this to 16327 * get send/receive queue sizes. How 16328 * to fix? 16329 * Why not compute the difference only? 16330 */ 16331 tce.tcpConnEntryInfo.ce_snxt = 16332 tcp->tcp_snxt - tcp->tcp_suna; 16333 tce.tcpConnEntryInfo.ce_suna = 0; 16334 tce.tcpConnEntryInfo.ce_rnxt = 16335 tcp->tcp_rnxt - tcp->tcp_rack; 16336 tce.tcpConnEntryInfo.ce_rack = 0; 16337 } 16338 16339 tce.tcpConnEntryInfo.ce_swnd = tcp->tcp_swnd; 16340 tce.tcpConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; 16341 tce.tcpConnEntryInfo.ce_rto = tcp->tcp_rto; 16342 tce.tcpConnEntryInfo.ce_mss = tcp->tcp_mss; 16343 tce.tcpConnEntryInfo.ce_state = 16344 tcp->tcp_state; 16345 16346 tce.tcpConnCreationProcess = 16347 (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS : 16348 tcp->tcp_cpid; 16349 tce.tcpConnCreationTime = tcp->tcp_open_time; 16350 16351 (void) snmp_append_data2(mp_conn_ctl->b_cont, 16352 &mp_conn_tail, (char *)&tce, sizeof (tce)); 16353 16354 mlp.tme_connidx = v4_conn_idx++; 16355 if (needattr) 16356 (void) snmp_append_data2( 16357 mp_attr_ctl->b_cont, 16358 &mp_attr_tail, (char *)&mlp, 16359 sizeof (mlp)); 16360 } 16361 } 16362 } 16363 16364 /* fixed length structure for IPv4 and IPv6 counters */ 16365 SET_MIB(tcps->tcps_mib.tcpConnTableSize, sizeof (mib2_tcpConnEntry_t)); 16366 SET_MIB(tcps->tcps_mib.tcp6ConnTableSize, 16367 sizeof (mib2_tcp6ConnEntry_t)); 16368 /* synchronize 32- and 64-bit counters */ 16369 SYNC32_MIB(&tcps->tcps_mib, tcpInSegs, tcpHCInSegs); 16370 SYNC32_MIB(&tcps->tcps_mib, tcpOutSegs, tcpHCOutSegs); 16371 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16372 optp->level = MIB2_TCP; 16373 optp->name = 0; 16374 (void) snmp_append_data(mpdata, (char *)&tcps->tcps_mib, 16375 sizeof (tcps->tcps_mib)); 16376 optp->len = msgdsize(mpdata); 16377 qreply(q, mpctl); 16378 16379 /* table of connections... */ 16380 optp = (struct opthdr *)&mp_conn_ctl->b_rptr[ 16381 sizeof (struct T_optmgmt_ack)]; 16382 optp->level = MIB2_TCP; 16383 optp->name = MIB2_TCP_CONN; 16384 optp->len = msgdsize(mp_conn_ctl->b_cont); 16385 qreply(q, mp_conn_ctl); 16386 16387 /* table of MLP attributes... */ 16388 optp = (struct opthdr *)&mp_attr_ctl->b_rptr[ 16389 sizeof (struct T_optmgmt_ack)]; 16390 optp->level = MIB2_TCP; 16391 optp->name = EXPER_XPORT_MLP; 16392 optp->len = msgdsize(mp_attr_ctl->b_cont); 16393 if (optp->len == 0) 16394 freemsg(mp_attr_ctl); 16395 else 16396 qreply(q, mp_attr_ctl); 16397 16398 /* table of IPv6 connections... */ 16399 optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[ 16400 sizeof (struct T_optmgmt_ack)]; 16401 optp->level = MIB2_TCP6; 16402 optp->name = MIB2_TCP6_CONN; 16403 optp->len = msgdsize(mp6_conn_ctl->b_cont); 16404 qreply(q, mp6_conn_ctl); 16405 16406 /* table of IPv6 MLP attributes... */ 16407 optp = (struct opthdr *)&mp6_attr_ctl->b_rptr[ 16408 sizeof (struct T_optmgmt_ack)]; 16409 optp->level = MIB2_TCP6; 16410 optp->name = EXPER_XPORT_MLP; 16411 optp->len = msgdsize(mp6_attr_ctl->b_cont); 16412 if (optp->len == 0) 16413 freemsg(mp6_attr_ctl); 16414 else 16415 qreply(q, mp6_attr_ctl); 16416 return (mp2ctl); 16417 } 16418 16419 /* Return 0 if invalid set request, 1 otherwise, including non-tcp requests */ 16420 /* ARGSUSED */ 16421 int 16422 tcp_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 16423 { 16424 mib2_tcpConnEntry_t *tce = (mib2_tcpConnEntry_t *)ptr; 16425 16426 switch (level) { 16427 case MIB2_TCP: 16428 switch (name) { 16429 case 13: 16430 if (tce->tcpConnState != MIB2_TCP_deleteTCB) 16431 return (0); 16432 /* TODO: delete entry defined by tce */ 16433 return (1); 16434 default: 16435 return (0); 16436 } 16437 default: 16438 return (1); 16439 } 16440 } 16441 16442 /* Translate TCP state to MIB2 TCP state. */ 16443 static int 16444 tcp_snmp_state(tcp_t *tcp) 16445 { 16446 if (tcp == NULL) 16447 return (0); 16448 16449 switch (tcp->tcp_state) { 16450 case TCPS_CLOSED: 16451 case TCPS_IDLE: /* RFC1213 doesn't have analogue for IDLE & BOUND */ 16452 case TCPS_BOUND: 16453 return (MIB2_TCP_closed); 16454 case TCPS_LISTEN: 16455 return (MIB2_TCP_listen); 16456 case TCPS_SYN_SENT: 16457 return (MIB2_TCP_synSent); 16458 case TCPS_SYN_RCVD: 16459 return (MIB2_TCP_synReceived); 16460 case TCPS_ESTABLISHED: 16461 return (MIB2_TCP_established); 16462 case TCPS_CLOSE_WAIT: 16463 return (MIB2_TCP_closeWait); 16464 case TCPS_FIN_WAIT_1: 16465 return (MIB2_TCP_finWait1); 16466 case TCPS_CLOSING: 16467 return (MIB2_TCP_closing); 16468 case TCPS_LAST_ACK: 16469 return (MIB2_TCP_lastAck); 16470 case TCPS_FIN_WAIT_2: 16471 return (MIB2_TCP_finWait2); 16472 case TCPS_TIME_WAIT: 16473 return (MIB2_TCP_timeWait); 16474 default: 16475 return (0); 16476 } 16477 } 16478 16479 /* 16480 * tcp_timer is the timer service routine. It handles the retransmission, 16481 * FIN_WAIT_2 flush, and zero window probe timeout events. It figures out 16482 * from the state of the tcp instance what kind of action needs to be done 16483 * at the time it is called. 16484 */ 16485 static void 16486 tcp_timer(void *arg) 16487 { 16488 mblk_t *mp; 16489 clock_t first_threshold; 16490 clock_t second_threshold; 16491 clock_t ms; 16492 uint32_t mss; 16493 conn_t *connp = (conn_t *)arg; 16494 tcp_t *tcp = connp->conn_tcp; 16495 tcp_stack_t *tcps = tcp->tcp_tcps; 16496 16497 tcp->tcp_timer_tid = 0; 16498 16499 if (tcp->tcp_fused) 16500 return; 16501 16502 first_threshold = tcp->tcp_first_timer_threshold; 16503 second_threshold = tcp->tcp_second_timer_threshold; 16504 switch (tcp->tcp_state) { 16505 case TCPS_IDLE: 16506 case TCPS_BOUND: 16507 case TCPS_LISTEN: 16508 return; 16509 case TCPS_SYN_RCVD: { 16510 tcp_t *listener = tcp->tcp_listener; 16511 16512 if (tcp->tcp_syn_rcvd_timeout == 0 && (listener != NULL)) { 16513 ASSERT(tcp->tcp_rq == listener->tcp_rq); 16514 /* it's our first timeout */ 16515 tcp->tcp_syn_rcvd_timeout = 1; 16516 mutex_enter(&listener->tcp_eager_lock); 16517 listener->tcp_syn_rcvd_timeout++; 16518 if (!tcp->tcp_dontdrop && !tcp->tcp_closemp_used) { 16519 /* 16520 * Make this eager available for drop if we 16521 * need to drop one to accomodate a new 16522 * incoming SYN request. 16523 */ 16524 MAKE_DROPPABLE(listener, tcp); 16525 } 16526 if (!listener->tcp_syn_defense && 16527 (listener->tcp_syn_rcvd_timeout > 16528 (tcps->tcps_conn_req_max_q0 >> 2)) && 16529 (tcps->tcps_conn_req_max_q0 > 200)) { 16530 /* We may be under attack. Put on a defense. */ 16531 listener->tcp_syn_defense = B_TRUE; 16532 cmn_err(CE_WARN, "High TCP connect timeout " 16533 "rate! System (port %d) may be under a " 16534 "SYN flood attack!", 16535 BE16_TO_U16(listener->tcp_tcph->th_lport)); 16536 16537 listener->tcp_ip_addr_cache = kmem_zalloc( 16538 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t), 16539 KM_NOSLEEP); 16540 } 16541 mutex_exit(&listener->tcp_eager_lock); 16542 } else if (listener != NULL) { 16543 mutex_enter(&listener->tcp_eager_lock); 16544 tcp->tcp_syn_rcvd_timeout++; 16545 if (tcp->tcp_syn_rcvd_timeout > 1 && 16546 !tcp->tcp_closemp_used) { 16547 /* 16548 * This is our second timeout. Put the tcp in 16549 * the list of droppable eagers to allow it to 16550 * be dropped, if needed. We don't check 16551 * whether tcp_dontdrop is set or not to 16552 * protect ourselve from a SYN attack where a 16553 * remote host can spoof itself as one of the 16554 * good IP source and continue to hold 16555 * resources too long. 16556 */ 16557 MAKE_DROPPABLE(listener, tcp); 16558 } 16559 mutex_exit(&listener->tcp_eager_lock); 16560 } 16561 } 16562 /* FALLTHRU */ 16563 case TCPS_SYN_SENT: 16564 first_threshold = tcp->tcp_first_ctimer_threshold; 16565 second_threshold = tcp->tcp_second_ctimer_threshold; 16566 break; 16567 case TCPS_ESTABLISHED: 16568 case TCPS_FIN_WAIT_1: 16569 case TCPS_CLOSING: 16570 case TCPS_CLOSE_WAIT: 16571 case TCPS_LAST_ACK: 16572 /* If we have data to rexmit */ 16573 if (tcp->tcp_suna != tcp->tcp_snxt) { 16574 clock_t time_to_wait; 16575 16576 BUMP_MIB(&tcps->tcps_mib, tcpTimRetrans); 16577 if (!tcp->tcp_xmit_head) 16578 break; 16579 time_to_wait = lbolt - 16580 (clock_t)tcp->tcp_xmit_head->b_prev; 16581 time_to_wait = tcp->tcp_rto - 16582 TICK_TO_MSEC(time_to_wait); 16583 /* 16584 * If the timer fires too early, 1 clock tick earlier, 16585 * restart the timer. 16586 */ 16587 if (time_to_wait > msec_per_tick) { 16588 TCP_STAT(tcps, tcp_timer_fire_early); 16589 TCP_TIMER_RESTART(tcp, time_to_wait); 16590 return; 16591 } 16592 /* 16593 * When we probe zero windows, we force the swnd open. 16594 * If our peer acks with a closed window swnd will be 16595 * set to zero by tcp_rput(). As long as we are 16596 * receiving acks tcp_rput will 16597 * reset 'tcp_ms_we_have_waited' so as not to trip the 16598 * first and second interval actions. NOTE: the timer 16599 * interval is allowed to continue its exponential 16600 * backoff. 16601 */ 16602 if (tcp->tcp_swnd == 0 || tcp->tcp_zero_win_probe) { 16603 if (tcp->tcp_debug) { 16604 (void) strlog(TCP_MOD_ID, 0, 1, 16605 SL_TRACE, "tcp_timer: zero win"); 16606 } 16607 } else { 16608 /* 16609 * After retransmission, we need to do 16610 * slow start. Set the ssthresh to one 16611 * half of current effective window and 16612 * cwnd to one MSS. Also reset 16613 * tcp_cwnd_cnt. 16614 * 16615 * Note that if tcp_ssthresh is reduced because 16616 * of ECN, do not reduce it again unless it is 16617 * already one window of data away (tcp_cwr 16618 * should then be cleared) or this is a 16619 * timeout for a retransmitted segment. 16620 */ 16621 uint32_t npkt; 16622 16623 if (!tcp->tcp_cwr || tcp->tcp_rexmit) { 16624 npkt = ((tcp->tcp_timer_backoff ? 16625 tcp->tcp_cwnd_ssthresh : 16626 tcp->tcp_snxt - 16627 tcp->tcp_suna) >> 1) / tcp->tcp_mss; 16628 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 16629 tcp->tcp_mss; 16630 } 16631 tcp->tcp_cwnd = tcp->tcp_mss; 16632 tcp->tcp_cwnd_cnt = 0; 16633 if (tcp->tcp_ecn_ok) { 16634 tcp->tcp_cwr = B_TRUE; 16635 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 16636 tcp->tcp_ecn_cwr_sent = B_FALSE; 16637 } 16638 } 16639 break; 16640 } 16641 /* 16642 * We have something to send yet we cannot send. The 16643 * reason can be: 16644 * 16645 * 1. Zero send window: we need to do zero window probe. 16646 * 2. Zero cwnd: because of ECN, we need to "clock out 16647 * segments. 16648 * 3. SWS avoidance: receiver may have shrunk window, 16649 * reset our knowledge. 16650 * 16651 * Note that condition 2 can happen with either 1 or 16652 * 3. But 1 and 3 are exclusive. 16653 */ 16654 if (tcp->tcp_unsent != 0) { 16655 if (tcp->tcp_cwnd == 0) { 16656 /* 16657 * Set tcp_cwnd to 1 MSS so that a 16658 * new segment can be sent out. We 16659 * are "clocking out" new data when 16660 * the network is really congested. 16661 */ 16662 ASSERT(tcp->tcp_ecn_ok); 16663 tcp->tcp_cwnd = tcp->tcp_mss; 16664 } 16665 if (tcp->tcp_swnd == 0) { 16666 /* Extend window for zero window probe */ 16667 tcp->tcp_swnd++; 16668 tcp->tcp_zero_win_probe = B_TRUE; 16669 BUMP_MIB(&tcps->tcps_mib, tcpOutWinProbe); 16670 } else { 16671 /* 16672 * Handle timeout from sender SWS avoidance. 16673 * Reset our knowledge of the max send window 16674 * since the receiver might have reduced its 16675 * receive buffer. Avoid setting tcp_max_swnd 16676 * to one since that will essentially disable 16677 * the SWS checks. 16678 * 16679 * Note that since we don't have a SWS 16680 * state variable, if the timeout is set 16681 * for ECN but not for SWS, this 16682 * code will also be executed. This is 16683 * fine as tcp_max_swnd is updated 16684 * constantly and it will not affect 16685 * anything. 16686 */ 16687 tcp->tcp_max_swnd = MAX(tcp->tcp_swnd, 2); 16688 } 16689 tcp_wput_data(tcp, NULL, B_FALSE); 16690 return; 16691 } 16692 /* Is there a FIN that needs to be to re retransmitted? */ 16693 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 16694 !tcp->tcp_fin_acked) 16695 break; 16696 /* Nothing to do, return without restarting timer. */ 16697 TCP_STAT(tcps, tcp_timer_fire_miss); 16698 return; 16699 case TCPS_FIN_WAIT_2: 16700 /* 16701 * User closed the TCP endpoint and peer ACK'ed our FIN. 16702 * We waited some time for for peer's FIN, but it hasn't 16703 * arrived. We flush the connection now to avoid 16704 * case where the peer has rebooted. 16705 */ 16706 if (TCP_IS_DETACHED(tcp)) { 16707 (void) tcp_clean_death(tcp, 0, 23); 16708 } else { 16709 TCP_TIMER_RESTART(tcp, 16710 tcps->tcps_fin_wait_2_flush_interval); 16711 } 16712 return; 16713 case TCPS_TIME_WAIT: 16714 (void) tcp_clean_death(tcp, 0, 24); 16715 return; 16716 default: 16717 if (tcp->tcp_debug) { 16718 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 16719 "tcp_timer: strange state (%d) %s", 16720 tcp->tcp_state, tcp_display(tcp, NULL, 16721 DISP_PORT_ONLY)); 16722 } 16723 return; 16724 } 16725 if ((ms = tcp->tcp_ms_we_have_waited) > second_threshold) { 16726 /* 16727 * For zero window probe, we need to send indefinitely, 16728 * unless we have not heard from the other side for some 16729 * time... 16730 */ 16731 if ((tcp->tcp_zero_win_probe == 0) || 16732 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) > 16733 second_threshold)) { 16734 BUMP_MIB(&tcps->tcps_mib, tcpTimRetransDrop); 16735 /* 16736 * If TCP is in SYN_RCVD state, send back a 16737 * RST|ACK as BSD does. Note that tcp_zero_win_probe 16738 * should be zero in TCPS_SYN_RCVD state. 16739 */ 16740 if (tcp->tcp_state == TCPS_SYN_RCVD) { 16741 tcp_xmit_ctl("tcp_timer: RST sent on timeout " 16742 "in SYN_RCVD", 16743 tcp, tcp->tcp_snxt, 16744 tcp->tcp_rnxt, TH_RST | TH_ACK); 16745 } 16746 (void) tcp_clean_death(tcp, 16747 tcp->tcp_client_errno ? 16748 tcp->tcp_client_errno : ETIMEDOUT, 25); 16749 return; 16750 } else { 16751 /* 16752 * Set tcp_ms_we_have_waited to second_threshold 16753 * so that in next timeout, we will do the above 16754 * check (lbolt - tcp_last_recv_time). This is 16755 * also to avoid overflow. 16756 * 16757 * We don't need to decrement tcp_timer_backoff 16758 * to avoid overflow because it will be decremented 16759 * later if new timeout value is greater than 16760 * tcp_rexmit_interval_max. In the case when 16761 * tcp_rexmit_interval_max is greater than 16762 * second_threshold, it means that we will wait 16763 * longer than second_threshold to send the next 16764 * window probe. 16765 */ 16766 tcp->tcp_ms_we_have_waited = second_threshold; 16767 } 16768 } else if (ms > first_threshold) { 16769 if (tcp->tcp_snd_zcopy_aware && (!tcp->tcp_xmit_zc_clean) && 16770 tcp->tcp_xmit_head != NULL) { 16771 tcp->tcp_xmit_head = 16772 tcp_zcopy_backoff(tcp, tcp->tcp_xmit_head, 1); 16773 } 16774 /* 16775 * We have been retransmitting for too long... The RTT 16776 * we calculated is probably incorrect. Reinitialize it. 16777 * Need to compensate for 0 tcp_rtt_sa. Reset 16778 * tcp_rtt_update so that we won't accidentally cache a 16779 * bad value. But only do this if this is not a zero 16780 * window probe. 16781 */ 16782 if (tcp->tcp_rtt_sa != 0 && tcp->tcp_zero_win_probe == 0) { 16783 tcp->tcp_rtt_sd += (tcp->tcp_rtt_sa >> 3) + 16784 (tcp->tcp_rtt_sa >> 5); 16785 tcp->tcp_rtt_sa = 0; 16786 tcp_ip_notify(tcp); 16787 tcp->tcp_rtt_update = 0; 16788 } 16789 } 16790 tcp->tcp_timer_backoff++; 16791 if ((ms = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 16792 tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5)) < 16793 tcps->tcps_rexmit_interval_min) { 16794 /* 16795 * This means the original RTO is tcp_rexmit_interval_min. 16796 * So we will use tcp_rexmit_interval_min as the RTO value 16797 * and do the backoff. 16798 */ 16799 ms = tcps->tcps_rexmit_interval_min << tcp->tcp_timer_backoff; 16800 } else { 16801 ms <<= tcp->tcp_timer_backoff; 16802 } 16803 if (ms > tcps->tcps_rexmit_interval_max) { 16804 ms = tcps->tcps_rexmit_interval_max; 16805 /* 16806 * ms is at max, decrement tcp_timer_backoff to avoid 16807 * overflow. 16808 */ 16809 tcp->tcp_timer_backoff--; 16810 } 16811 tcp->tcp_ms_we_have_waited += ms; 16812 if (tcp->tcp_zero_win_probe == 0) { 16813 tcp->tcp_rto = ms; 16814 } 16815 TCP_TIMER_RESTART(tcp, ms); 16816 /* 16817 * This is after a timeout and tcp_rto is backed off. Set 16818 * tcp_set_timer to 1 so that next time RTO is updated, we will 16819 * restart the timer with a correct value. 16820 */ 16821 tcp->tcp_set_timer = 1; 16822 mss = tcp->tcp_snxt - tcp->tcp_suna; 16823 if (mss > tcp->tcp_mss) 16824 mss = tcp->tcp_mss; 16825 if (mss > tcp->tcp_swnd && tcp->tcp_swnd != 0) 16826 mss = tcp->tcp_swnd; 16827 16828 if ((mp = tcp->tcp_xmit_head) != NULL) 16829 mp->b_prev = (mblk_t *)lbolt; 16830 mp = tcp_xmit_mp(tcp, mp, mss, NULL, NULL, tcp->tcp_suna, B_TRUE, &mss, 16831 B_TRUE); 16832 16833 /* 16834 * When slow start after retransmission begins, start with 16835 * this seq no. tcp_rexmit_max marks the end of special slow 16836 * start phase. tcp_snd_burst controls how many segments 16837 * can be sent because of an ack. 16838 */ 16839 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 16840 tcp->tcp_snd_burst = TCP_CWND_SS; 16841 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 16842 (tcp->tcp_unsent == 0)) { 16843 tcp->tcp_rexmit_max = tcp->tcp_fss; 16844 } else { 16845 tcp->tcp_rexmit_max = tcp->tcp_snxt; 16846 } 16847 tcp->tcp_rexmit = B_TRUE; 16848 tcp->tcp_dupack_cnt = 0; 16849 16850 /* 16851 * Remove all rexmit SACK blk to start from fresh. 16852 */ 16853 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 16854 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 16855 tcp->tcp_num_notsack_blk = 0; 16856 tcp->tcp_cnt_notsack_list = 0; 16857 } 16858 if (mp == NULL) { 16859 return; 16860 } 16861 /* 16862 * Attach credentials to retransmitted initial SYNs. 16863 * In theory we should use the credentials from the connect() 16864 * call to ensure that getpeerucred() on the peer will be correct. 16865 * But we assume that SYN's are not dropped for loopback connections. 16866 */ 16867 if (tcp->tcp_state == TCPS_SYN_SENT) { 16868 mblk_setcred(mp, tcp->tcp_cred, tcp->tcp_cpid); 16869 } 16870 16871 tcp->tcp_csuna = tcp->tcp_snxt; 16872 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 16873 UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, mss); 16874 tcp_send_data(tcp, tcp->tcp_wq, mp); 16875 16876 } 16877 16878 static int 16879 tcp_do_unbind(conn_t *connp) 16880 { 16881 tcp_t *tcp = connp->conn_tcp; 16882 int error = 0; 16883 16884 switch (tcp->tcp_state) { 16885 case TCPS_BOUND: 16886 case TCPS_LISTEN: 16887 break; 16888 default: 16889 return (-TOUTSTATE); 16890 } 16891 16892 /* 16893 * Need to clean up all the eagers since after the unbind, segments 16894 * will no longer be delivered to this listener stream. 16895 */ 16896 mutex_enter(&tcp->tcp_eager_lock); 16897 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 16898 tcp_eager_cleanup(tcp, 0); 16899 } 16900 mutex_exit(&tcp->tcp_eager_lock); 16901 16902 if (tcp->tcp_ipversion == IPV4_VERSION) { 16903 tcp->tcp_ipha->ipha_src = 0; 16904 } else { 16905 V6_SET_ZERO(tcp->tcp_ip6h->ip6_src); 16906 } 16907 V6_SET_ZERO(tcp->tcp_ip_src_v6); 16908 bzero(tcp->tcp_tcph->th_lport, sizeof (tcp->tcp_tcph->th_lport)); 16909 tcp_bind_hash_remove(tcp); 16910 tcp->tcp_state = TCPS_IDLE; 16911 tcp->tcp_mdt = B_FALSE; 16912 16913 connp = tcp->tcp_connp; 16914 connp->conn_mdt_ok = B_FALSE; 16915 ipcl_hash_remove(connp); 16916 bzero(&connp->conn_ports, sizeof (connp->conn_ports)); 16917 16918 return (error); 16919 } 16920 16921 /* tcp_unbind is called by tcp_wput_proto to handle T_UNBIND_REQ messages. */ 16922 static void 16923 tcp_tpi_unbind(tcp_t *tcp, mblk_t *mp) 16924 { 16925 int error = tcp_do_unbind(tcp->tcp_connp); 16926 16927 if (error > 0) { 16928 tcp_err_ack(tcp, mp, TSYSERR, error); 16929 } else if (error < 0) { 16930 tcp_err_ack(tcp, mp, -error, 0); 16931 } else { 16932 /* Send M_FLUSH according to TPI */ 16933 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 16934 16935 mp = mi_tpi_ok_ack_alloc(mp); 16936 putnext(tcp->tcp_rq, mp); 16937 } 16938 } 16939 16940 /* 16941 * Don't let port fall into the privileged range. 16942 * Since the extra privileged ports can be arbitrary we also 16943 * ensure that we exclude those from consideration. 16944 * tcp_g_epriv_ports is not sorted thus we loop over it until 16945 * there are no changes. 16946 * 16947 * Note: No locks are held when inspecting tcp_g_*epriv_ports 16948 * but instead the code relies on: 16949 * - the fact that the address of the array and its size never changes 16950 * - the atomic assignment of the elements of the array 16951 * 16952 * Returns 0 if there are no more ports available. 16953 * 16954 * TS note: skip multilevel ports. 16955 */ 16956 static in_port_t 16957 tcp_update_next_port(in_port_t port, const tcp_t *tcp, boolean_t random) 16958 { 16959 int i; 16960 boolean_t restart = B_FALSE; 16961 tcp_stack_t *tcps = tcp->tcp_tcps; 16962 16963 if (random && tcp_random_anon_port != 0) { 16964 (void) random_get_pseudo_bytes((uint8_t *)&port, 16965 sizeof (in_port_t)); 16966 /* 16967 * Unless changed by a sys admin, the smallest anon port 16968 * is 32768 and the largest anon port is 65535. It is 16969 * very likely (50%) for the random port to be smaller 16970 * than the smallest anon port. When that happens, 16971 * add port % (anon port range) to the smallest anon 16972 * port to get the random port. It should fall into the 16973 * valid anon port range. 16974 */ 16975 if (port < tcps->tcps_smallest_anon_port) { 16976 port = tcps->tcps_smallest_anon_port + 16977 port % (tcps->tcps_largest_anon_port - 16978 tcps->tcps_smallest_anon_port); 16979 } 16980 } 16981 16982 retry: 16983 if (port < tcps->tcps_smallest_anon_port) 16984 port = (in_port_t)tcps->tcps_smallest_anon_port; 16985 16986 if (port > tcps->tcps_largest_anon_port) { 16987 if (restart) 16988 return (0); 16989 restart = B_TRUE; 16990 port = (in_port_t)tcps->tcps_smallest_anon_port; 16991 } 16992 16993 if (port < tcps->tcps_smallest_nonpriv_port) 16994 port = (in_port_t)tcps->tcps_smallest_nonpriv_port; 16995 16996 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 16997 if (port == tcps->tcps_g_epriv_ports[i]) { 16998 port++; 16999 /* 17000 * Make sure whether the port is in the 17001 * valid range. 17002 */ 17003 goto retry; 17004 } 17005 } 17006 if (is_system_labeled() && 17007 (i = tsol_next_port(crgetzone(tcp->tcp_cred), port, 17008 IPPROTO_TCP, B_TRUE)) != 0) { 17009 port = i; 17010 goto retry; 17011 } 17012 return (port); 17013 } 17014 17015 /* 17016 * Return the next anonymous port in the privileged port range for 17017 * bind checking. It starts at IPPORT_RESERVED - 1 and goes 17018 * downwards. This is the same behavior as documented in the userland 17019 * library call rresvport(3N). 17020 * 17021 * TS note: skip multilevel ports. 17022 */ 17023 static in_port_t 17024 tcp_get_next_priv_port(const tcp_t *tcp) 17025 { 17026 static in_port_t next_priv_port = IPPORT_RESERVED - 1; 17027 in_port_t nextport; 17028 boolean_t restart = B_FALSE; 17029 tcp_stack_t *tcps = tcp->tcp_tcps; 17030 retry: 17031 if (next_priv_port < tcps->tcps_min_anonpriv_port || 17032 next_priv_port >= IPPORT_RESERVED) { 17033 next_priv_port = IPPORT_RESERVED - 1; 17034 if (restart) 17035 return (0); 17036 restart = B_TRUE; 17037 } 17038 if (is_system_labeled() && 17039 (nextport = tsol_next_port(crgetzone(tcp->tcp_cred), 17040 next_priv_port, IPPROTO_TCP, B_FALSE)) != 0) { 17041 next_priv_port = nextport; 17042 goto retry; 17043 } 17044 return (next_priv_port--); 17045 } 17046 17047 /* The write side r/w procedure. */ 17048 17049 #if CCS_STATS 17050 struct { 17051 struct { 17052 int64_t count, bytes; 17053 } tot, hit; 17054 } wrw_stats; 17055 #endif 17056 17057 /* 17058 * Call by tcp_wput() to handle all non data, except M_PROTO and M_PCPROTO, 17059 * messages. 17060 */ 17061 /* ARGSUSED */ 17062 static void 17063 tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2) 17064 { 17065 conn_t *connp = (conn_t *)arg; 17066 tcp_t *tcp = connp->conn_tcp; 17067 queue_t *q = tcp->tcp_wq; 17068 17069 ASSERT(DB_TYPE(mp) != M_IOCTL); 17070 /* 17071 * TCP is D_MP and qprocsoff() is done towards the end of the tcp_close. 17072 * Once the close starts, streamhead and sockfs will not let any data 17073 * packets come down (close ensures that there are no threads using the 17074 * queue and no new threads will come down) but since qprocsoff() 17075 * hasn't happened yet, a M_FLUSH or some non data message might 17076 * get reflected back (in response to our own FLUSHRW) and get 17077 * processed after tcp_close() is done. The conn would still be valid 17078 * because a ref would have added but we need to check the state 17079 * before actually processing the packet. 17080 */ 17081 if (TCP_IS_DETACHED(tcp) || (tcp->tcp_state == TCPS_CLOSED)) { 17082 freemsg(mp); 17083 return; 17084 } 17085 17086 switch (DB_TYPE(mp)) { 17087 case M_IOCDATA: 17088 tcp_wput_iocdata(tcp, mp); 17089 break; 17090 case M_FLUSH: 17091 tcp_wput_flush(tcp, mp); 17092 break; 17093 default: 17094 CALL_IP_WPUT(connp, q, mp); 17095 break; 17096 } 17097 } 17098 17099 /* 17100 * The TCP fast path write put procedure. 17101 * NOTE: the logic of the fast path is duplicated from tcp_wput_data() 17102 */ 17103 /* ARGSUSED */ 17104 void 17105 tcp_output(void *arg, mblk_t *mp, void *arg2) 17106 { 17107 int len; 17108 int hdrlen; 17109 int plen; 17110 mblk_t *mp1; 17111 uchar_t *rptr; 17112 uint32_t snxt; 17113 tcph_t *tcph; 17114 struct datab *db; 17115 uint32_t suna; 17116 uint32_t mss; 17117 ipaddr_t *dst; 17118 ipaddr_t *src; 17119 uint32_t sum; 17120 int usable; 17121 conn_t *connp = (conn_t *)arg; 17122 tcp_t *tcp = connp->conn_tcp; 17123 uint32_t msize; 17124 tcp_stack_t *tcps = tcp->tcp_tcps; 17125 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 17126 17127 /* 17128 * Try and ASSERT the minimum possible references on the 17129 * conn early enough. Since we are executing on write side, 17130 * the connection is obviously not detached and that means 17131 * there is a ref each for TCP and IP. Since we are behind 17132 * the squeue, the minimum references needed are 3. If the 17133 * conn is in classifier hash list, there should be an 17134 * extra ref for that (we check both the possibilities). 17135 */ 17136 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 17137 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 17138 17139 ASSERT(DB_TYPE(mp) == M_DATA); 17140 msize = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp); 17141 17142 mutex_enter(&tcp->tcp_non_sq_lock); 17143 tcp->tcp_squeue_bytes -= msize; 17144 mutex_exit(&tcp->tcp_non_sq_lock); 17145 17146 /* Check to see if this connection wants to be re-fused. */ 17147 if (tcp->tcp_refuse && !ipst->ips_ipobs_enabled) { 17148 if (tcp->tcp_ipversion == IPV4_VERSION) { 17149 tcp_fuse(tcp, (uchar_t *)&tcp->tcp_saved_ipha, 17150 &tcp->tcp_saved_tcph); 17151 } else { 17152 tcp_fuse(tcp, (uchar_t *)&tcp->tcp_saved_ip6h, 17153 &tcp->tcp_saved_tcph); 17154 } 17155 } 17156 /* Bypass tcp protocol for fused tcp loopback */ 17157 if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize)) 17158 return; 17159 17160 mss = tcp->tcp_mss; 17161 if (tcp->tcp_xmit_zc_clean) 17162 mp = tcp_zcopy_backoff(tcp, mp, 0); 17163 17164 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 17165 len = (int)(mp->b_wptr - mp->b_rptr); 17166 17167 /* 17168 * Criteria for fast path: 17169 * 17170 * 1. no unsent data 17171 * 2. single mblk in request 17172 * 3. connection established 17173 * 4. data in mblk 17174 * 5. len <= mss 17175 * 6. no tcp_valid bits 17176 */ 17177 if ((tcp->tcp_unsent != 0) || 17178 (tcp->tcp_cork) || 17179 (mp->b_cont != NULL) || 17180 (tcp->tcp_state != TCPS_ESTABLISHED) || 17181 (len == 0) || 17182 (len > mss) || 17183 (tcp->tcp_valid_bits != 0)) { 17184 tcp_wput_data(tcp, mp, B_FALSE); 17185 return; 17186 } 17187 17188 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 17189 ASSERT(tcp->tcp_fin_sent == 0); 17190 17191 /* queue new packet onto retransmission queue */ 17192 if (tcp->tcp_xmit_head == NULL) { 17193 tcp->tcp_xmit_head = mp; 17194 } else { 17195 tcp->tcp_xmit_last->b_cont = mp; 17196 } 17197 tcp->tcp_xmit_last = mp; 17198 tcp->tcp_xmit_tail = mp; 17199 17200 /* find out how much we can send */ 17201 /* BEGIN CSTYLED */ 17202 /* 17203 * un-acked usable 17204 * |--------------|-----------------| 17205 * tcp_suna tcp_snxt tcp_suna+tcp_swnd 17206 */ 17207 /* END CSTYLED */ 17208 17209 /* start sending from tcp_snxt */ 17210 snxt = tcp->tcp_snxt; 17211 17212 /* 17213 * Check to see if this connection has been idled for some 17214 * time and no ACK is expected. If it is, we need to slow 17215 * start again to get back the connection's "self-clock" as 17216 * described in VJ's paper. 17217 * 17218 * Refer to the comment in tcp_mss_set() for the calculation 17219 * of tcp_cwnd after idle. 17220 */ 17221 if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && 17222 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) { 17223 SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle); 17224 } 17225 17226 usable = tcp->tcp_swnd; /* tcp window size */ 17227 if (usable > tcp->tcp_cwnd) 17228 usable = tcp->tcp_cwnd; /* congestion window smaller */ 17229 usable -= snxt; /* subtract stuff already sent */ 17230 suna = tcp->tcp_suna; 17231 usable += suna; 17232 /* usable can be < 0 if the congestion window is smaller */ 17233 if (len > usable) { 17234 /* Can't send complete M_DATA in one shot */ 17235 goto slow; 17236 } 17237 17238 mutex_enter(&tcp->tcp_non_sq_lock); 17239 if (tcp->tcp_flow_stopped && 17240 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 17241 tcp_clrqfull(tcp); 17242 } 17243 mutex_exit(&tcp->tcp_non_sq_lock); 17244 17245 /* 17246 * determine if anything to send (Nagle). 17247 * 17248 * 1. len < tcp_mss (i.e. small) 17249 * 2. unacknowledged data present 17250 * 3. len < nagle limit 17251 * 4. last packet sent < nagle limit (previous packet sent) 17252 */ 17253 if ((len < mss) && (snxt != suna) && 17254 (len < (int)tcp->tcp_naglim) && 17255 (tcp->tcp_last_sent_len < tcp->tcp_naglim)) { 17256 /* 17257 * This was the first unsent packet and normally 17258 * mss < xmit_hiwater so there is no need to worry 17259 * about flow control. The next packet will go 17260 * through the flow control check in tcp_wput_data(). 17261 */ 17262 /* leftover work from above */ 17263 tcp->tcp_unsent = len; 17264 tcp->tcp_xmit_tail_unsent = len; 17265 17266 return; 17267 } 17268 17269 /* len <= tcp->tcp_mss && len == unsent so no silly window */ 17270 17271 if (snxt == suna) { 17272 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 17273 } 17274 17275 /* we have always sent something */ 17276 tcp->tcp_rack_cnt = 0; 17277 17278 tcp->tcp_snxt = snxt + len; 17279 tcp->tcp_rack = tcp->tcp_rnxt; 17280 17281 if ((mp1 = dupb(mp)) == 0) 17282 goto no_memory; 17283 mp->b_prev = (mblk_t *)(uintptr_t)lbolt; 17284 mp->b_next = (mblk_t *)(uintptr_t)snxt; 17285 17286 /* adjust tcp header information */ 17287 tcph = tcp->tcp_tcph; 17288 tcph->th_flags[0] = (TH_ACK|TH_PUSH); 17289 17290 sum = len + tcp->tcp_tcp_hdr_len + tcp->tcp_sum; 17291 sum = (sum >> 16) + (sum & 0xFFFF); 17292 U16_TO_ABE16(sum, tcph->th_sum); 17293 17294 U32_TO_ABE32(snxt, tcph->th_seq); 17295 17296 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 17297 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); 17298 BUMP_LOCAL(tcp->tcp_obsegs); 17299 17300 /* Update the latest receive window size in TCP header. */ 17301 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 17302 tcph->th_win); 17303 17304 tcp->tcp_last_sent_len = (ushort_t)len; 17305 17306 plen = len + tcp->tcp_hdr_len; 17307 17308 if (tcp->tcp_ipversion == IPV4_VERSION) { 17309 tcp->tcp_ipha->ipha_length = htons(plen); 17310 } else { 17311 tcp->tcp_ip6h->ip6_plen = htons(plen - 17312 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 17313 } 17314 17315 /* see if we need to allocate a mblk for the headers */ 17316 hdrlen = tcp->tcp_hdr_len; 17317 rptr = mp1->b_rptr - hdrlen; 17318 db = mp1->b_datap; 17319 if ((db->db_ref != 2) || rptr < db->db_base || 17320 (!OK_32PTR(rptr))) { 17321 /* NOTE: we assume allocb returns an OK_32PTR */ 17322 mp = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 17323 tcps->tcps_wroff_xtra, BPRI_MED); 17324 if (!mp) { 17325 freemsg(mp1); 17326 goto no_memory; 17327 } 17328 mp->b_cont = mp1; 17329 mp1 = mp; 17330 /* Leave room for Link Level header */ 17331 /* hdrlen = tcp->tcp_hdr_len; */ 17332 rptr = &mp1->b_rptr[tcps->tcps_wroff_xtra]; 17333 mp1->b_wptr = &rptr[hdrlen]; 17334 } 17335 mp1->b_rptr = rptr; 17336 17337 /* Fill in the timestamp option. */ 17338 if (tcp->tcp_snd_ts_ok) { 17339 U32_TO_BE32((uint32_t)lbolt, 17340 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 17341 U32_TO_BE32(tcp->tcp_ts_recent, 17342 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 17343 } else { 17344 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 17345 } 17346 17347 /* copy header into outgoing packet */ 17348 dst = (ipaddr_t *)rptr; 17349 src = (ipaddr_t *)tcp->tcp_iphc; 17350 dst[0] = src[0]; 17351 dst[1] = src[1]; 17352 dst[2] = src[2]; 17353 dst[3] = src[3]; 17354 dst[4] = src[4]; 17355 dst[5] = src[5]; 17356 dst[6] = src[6]; 17357 dst[7] = src[7]; 17358 dst[8] = src[8]; 17359 dst[9] = src[9]; 17360 if (hdrlen -= 40) { 17361 hdrlen >>= 2; 17362 dst += 10; 17363 src += 10; 17364 do { 17365 *dst++ = *src++; 17366 } while (--hdrlen); 17367 } 17368 17369 /* 17370 * Set the ECN info in the TCP header. Note that this 17371 * is not the template header. 17372 */ 17373 if (tcp->tcp_ecn_ok) { 17374 SET_ECT(tcp, rptr); 17375 17376 tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 17377 if (tcp->tcp_ecn_echo_on) 17378 tcph->th_flags[0] |= TH_ECE; 17379 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 17380 tcph->th_flags[0] |= TH_CWR; 17381 tcp->tcp_ecn_cwr_sent = B_TRUE; 17382 } 17383 } 17384 17385 if (tcp->tcp_ip_forward_progress) { 17386 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 17387 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 17388 tcp->tcp_ip_forward_progress = B_FALSE; 17389 } 17390 tcp_send_data(tcp, tcp->tcp_wq, mp1); 17391 return; 17392 17393 /* 17394 * If we ran out of memory, we pretend to have sent the packet 17395 * and that it was lost on the wire. 17396 */ 17397 no_memory: 17398 return; 17399 17400 slow: 17401 /* leftover work from above */ 17402 tcp->tcp_unsent = len; 17403 tcp->tcp_xmit_tail_unsent = len; 17404 tcp_wput_data(tcp, NULL, B_FALSE); 17405 } 17406 17407 /* ARGSUSED */ 17408 void 17409 tcp_accept_finish(void *arg, mblk_t *mp, void *arg2) 17410 { 17411 conn_t *connp = (conn_t *)arg; 17412 tcp_t *tcp = connp->conn_tcp; 17413 queue_t *q = tcp->tcp_rq; 17414 struct tcp_options *tcpopt; 17415 tcp_stack_t *tcps = tcp->tcp_tcps; 17416 17417 /* socket options */ 17418 uint_t sopp_flags; 17419 ssize_t sopp_rxhiwat; 17420 ssize_t sopp_maxblk; 17421 ushort_t sopp_wroff; 17422 ushort_t sopp_tail; 17423 ushort_t sopp_copyopt; 17424 17425 tcpopt = (struct tcp_options *)mp->b_rptr; 17426 17427 /* 17428 * Drop the eager's ref on the listener, that was placed when 17429 * this eager began life in tcp_conn_request. 17430 */ 17431 CONN_DEC_REF(tcp->tcp_saved_listener->tcp_connp); 17432 if (IPCL_IS_NONSTR(connp)) { 17433 /* Safe to free conn_ind message */ 17434 freemsg(tcp->tcp_conn.tcp_eager_conn_ind); 17435 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 17436 } 17437 17438 tcp->tcp_detached = B_FALSE; 17439 17440 if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_accept_error) { 17441 /* 17442 * Someone blewoff the eager before we could finish 17443 * the accept. 17444 * 17445 * The only reason eager exists it because we put in 17446 * a ref on it when conn ind went up. We need to send 17447 * a disconnect indication up while the last reference 17448 * on the eager will be dropped by the squeue when we 17449 * return. 17450 */ 17451 ASSERT(tcp->tcp_listener == NULL); 17452 if (tcp->tcp_issocket || tcp->tcp_send_discon_ind) { 17453 if (IPCL_IS_NONSTR(connp)) { 17454 ASSERT(tcp->tcp_issocket); 17455 (*connp->conn_upcalls->su_disconnected)( 17456 connp->conn_upper_handle, tcp->tcp_connid, 17457 ECONNREFUSED); 17458 freemsg(mp); 17459 } else { 17460 struct T_discon_ind *tdi; 17461 17462 (void) putnextctl1(q, M_FLUSH, FLUSHRW); 17463 /* 17464 * Let us reuse the incoming mblk to avoid 17465 * memory allocation failure problems. We know 17466 * that the size of the incoming mblk i.e. 17467 * stroptions is greater than sizeof 17468 * T_discon_ind. So the reallocb below can't 17469 * fail. 17470 */ 17471 freemsg(mp->b_cont); 17472 mp->b_cont = NULL; 17473 ASSERT(DB_REF(mp) == 1); 17474 mp = reallocb(mp, sizeof (struct T_discon_ind), 17475 B_FALSE); 17476 ASSERT(mp != NULL); 17477 DB_TYPE(mp) = M_PROTO; 17478 ((union T_primitives *)mp->b_rptr)->type = 17479 T_DISCON_IND; 17480 tdi = (struct T_discon_ind *)mp->b_rptr; 17481 if (tcp->tcp_issocket) { 17482 tdi->DISCON_reason = ECONNREFUSED; 17483 tdi->SEQ_number = 0; 17484 } else { 17485 tdi->DISCON_reason = ENOPROTOOPT; 17486 tdi->SEQ_number = 17487 tcp->tcp_conn_req_seqnum; 17488 } 17489 mp->b_wptr = mp->b_rptr + 17490 sizeof (struct T_discon_ind); 17491 putnext(q, mp); 17492 return; 17493 } 17494 } 17495 if (tcp->tcp_hard_binding) { 17496 tcp->tcp_hard_binding = B_FALSE; 17497 tcp->tcp_hard_bound = B_TRUE; 17498 } 17499 return; 17500 } 17501 17502 if (tcpopt->to_flags & TCPOPT_BOUNDIF) { 17503 int boundif = tcpopt->to_boundif; 17504 uint_t len = sizeof (int); 17505 17506 (void) tcp_opt_set(connp, SETFN_OPTCOM_NEGOTIATE, IPPROTO_IPV6, 17507 IPV6_BOUND_IF, len, (uchar_t *)&boundif, &len, 17508 (uchar_t *)&boundif, NULL, tcp->tcp_cred, NULL); 17509 } 17510 if (tcpopt->to_flags & TCPOPT_RECVPKTINFO) { 17511 uint_t on = 1; 17512 uint_t len = sizeof (uint_t); 17513 (void) tcp_opt_set(connp, SETFN_OPTCOM_NEGOTIATE, IPPROTO_IPV6, 17514 IPV6_RECVPKTINFO, len, (uchar_t *)&on, &len, 17515 (uchar_t *)&on, NULL, tcp->tcp_cred, NULL); 17516 } 17517 17518 /* 17519 * For a loopback connection with tcp_direct_sockfs on, note that 17520 * we don't have to protect tcp_rcv_list yet because synchronous 17521 * streams has not yet been enabled and tcp_fuse_rrw() cannot 17522 * possibly race with us. 17523 */ 17524 17525 /* 17526 * Set the max window size (tcp_rq->q_hiwat) of the acceptor 17527 * properly. This is the first time we know of the acceptor' 17528 * queue. So we do it here. 17529 * 17530 * XXX 17531 */ 17532 if (tcp->tcp_rcv_list == NULL) { 17533 /* 17534 * Recv queue is empty, tcp_rwnd should not have changed. 17535 * That means it should be equal to the listener's tcp_rwnd. 17536 */ 17537 if (!IPCL_IS_NONSTR(connp)) 17538 tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd; 17539 tcp->tcp_recv_hiwater = tcp->tcp_rwnd; 17540 } else { 17541 #ifdef DEBUG 17542 mblk_t *tmp; 17543 mblk_t *mp1; 17544 uint_t cnt = 0; 17545 17546 mp1 = tcp->tcp_rcv_list; 17547 while ((tmp = mp1) != NULL) { 17548 mp1 = tmp->b_next; 17549 cnt += msgdsize(tmp); 17550 } 17551 ASSERT(cnt != 0 && tcp->tcp_rcv_cnt == cnt); 17552 #endif 17553 /* There is some data, add them back to get the max. */ 17554 if (!IPCL_IS_NONSTR(connp)) 17555 tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd + tcp->tcp_rcv_cnt; 17556 tcp->tcp_recv_hiwater = tcp->tcp_rwnd + tcp->tcp_rcv_cnt; 17557 } 17558 /* 17559 * This is the first time we run on the correct 17560 * queue after tcp_accept. So fix all the q parameters 17561 * here. 17562 */ 17563 sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_MAXBLK | SOCKOPT_WROFF; 17564 sopp_maxblk = tcp_maxpsz_set(tcp, B_FALSE); 17565 17566 /* 17567 * Record the stream head's high water mark for this endpoint; 17568 * this is used for flow-control purposes. 17569 */ 17570 sopp_rxhiwat = tcp->tcp_fused ? 17571 tcp_fuse_set_rcv_hiwat(tcp, tcp->tcp_recv_hiwater) : 17572 MAX(tcp->tcp_recv_hiwater, tcps->tcps_sth_rcv_hiwat); 17573 17574 /* 17575 * Determine what write offset value to use depending on SACK and 17576 * whether the endpoint is fused or not. 17577 */ 17578 if (tcp->tcp_fused) { 17579 ASSERT(tcp->tcp_loopback); 17580 ASSERT(tcp->tcp_loopback_peer != NULL); 17581 /* 17582 * For fused tcp loopback, set the stream head's write 17583 * offset value to zero since we won't be needing any room 17584 * for TCP/IP headers. This would also improve performance 17585 * since it would reduce the amount of work done by kmem. 17586 * Non-fused tcp loopback case is handled separately below. 17587 */ 17588 sopp_wroff = 0; 17589 /* 17590 * Update the peer's transmit parameters according to 17591 * our recently calculated high water mark value. 17592 */ 17593 (void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE); 17594 } else if (tcp->tcp_snd_sack_ok) { 17595 sopp_wroff = tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN + 17596 (tcp->tcp_loopback ? 0 : tcps->tcps_wroff_xtra); 17597 } else { 17598 sopp_wroff = tcp->tcp_hdr_len + (tcp->tcp_loopback ? 0 : 17599 tcps->tcps_wroff_xtra); 17600 } 17601 17602 /* 17603 * If this is endpoint is handling SSL, then reserve extra 17604 * offset and space at the end. 17605 * Also have the stream head allocate SSL3_MAX_RECORD_LEN packets, 17606 * overriding the previous setting. The extra cost of signing and 17607 * encrypting multiple MSS-size records (12 of them with Ethernet), 17608 * instead of a single contiguous one by the stream head 17609 * largely outweighs the statistical reduction of ACKs, when 17610 * applicable. The peer will also save on decryption and verification 17611 * costs. 17612 */ 17613 if (tcp->tcp_kssl_ctx != NULL) { 17614 sopp_wroff += SSL3_WROFFSET; 17615 17616 sopp_flags |= SOCKOPT_TAIL; 17617 sopp_tail = SSL3_MAX_TAIL_LEN; 17618 17619 sopp_flags |= SOCKOPT_ZCOPY; 17620 sopp_copyopt = ZCVMUNSAFE; 17621 17622 sopp_maxblk = SSL3_MAX_RECORD_LEN; 17623 } 17624 17625 /* Send the options up */ 17626 if (IPCL_IS_NONSTR(connp)) { 17627 struct sock_proto_props sopp; 17628 17629 sopp.sopp_flags = sopp_flags; 17630 sopp.sopp_wroff = sopp_wroff; 17631 sopp.sopp_maxblk = sopp_maxblk; 17632 sopp.sopp_rxhiwat = sopp_rxhiwat; 17633 if (sopp_flags & SOCKOPT_TAIL) { 17634 ASSERT(tcp->tcp_kssl_ctx != NULL); 17635 ASSERT(sopp_flags & SOCKOPT_ZCOPY); 17636 sopp.sopp_tail = sopp_tail; 17637 sopp.sopp_zcopyflag = sopp_copyopt; 17638 } 17639 (*connp->conn_upcalls->su_set_proto_props) 17640 (connp->conn_upper_handle, &sopp); 17641 } else { 17642 struct stroptions *stropt; 17643 mblk_t *stropt_mp = allocb(sizeof (struct stroptions), BPRI_HI); 17644 if (stropt_mp == NULL) { 17645 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 17646 return; 17647 } 17648 DB_TYPE(stropt_mp) = M_SETOPTS; 17649 stropt = (struct stroptions *)stropt_mp->b_rptr; 17650 stropt_mp->b_wptr += sizeof (struct stroptions); 17651 stropt = (struct stroptions *)stropt_mp->b_rptr; 17652 stropt->so_flags |= SO_HIWAT | SO_WROFF | SO_MAXBLK; 17653 stropt->so_hiwat = sopp_rxhiwat; 17654 stropt->so_wroff = sopp_wroff; 17655 stropt->so_maxblk = sopp_maxblk; 17656 17657 if (sopp_flags & SOCKOPT_TAIL) { 17658 ASSERT(tcp->tcp_kssl_ctx != NULL); 17659 17660 stropt->so_flags |= SO_TAIL | SO_COPYOPT; 17661 stropt->so_tail = sopp_tail; 17662 stropt->so_copyopt = sopp_copyopt; 17663 } 17664 17665 /* Send the options up */ 17666 putnext(q, stropt_mp); 17667 } 17668 17669 freemsg(mp); 17670 /* 17671 * Pass up any data and/or a fin that has been received. 17672 * 17673 * Adjust receive window in case it had decreased 17674 * (because there is data <=> tcp_rcv_list != NULL) 17675 * while the connection was detached. Note that 17676 * in case the eager was flow-controlled, w/o this 17677 * code, the rwnd may never open up again! 17678 */ 17679 if (tcp->tcp_rcv_list != NULL) { 17680 if (IPCL_IS_NONSTR(connp)) { 17681 mblk_t *mp; 17682 int space_left; 17683 int error; 17684 boolean_t push = B_TRUE; 17685 17686 if (!tcp->tcp_fused && (*connp->conn_upcalls->su_recv) 17687 (connp->conn_upper_handle, NULL, 0, 0, &error, 17688 &push) >= 0) { 17689 tcp->tcp_rwnd = tcp->tcp_recv_hiwater; 17690 if (tcp->tcp_state >= TCPS_ESTABLISHED && 17691 tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) { 17692 tcp_xmit_ctl(NULL, 17693 tcp, (tcp->tcp_swnd == 0) ? 17694 tcp->tcp_suna : tcp->tcp_snxt, 17695 tcp->tcp_rnxt, TH_ACK); 17696 } 17697 } 17698 while ((mp = tcp->tcp_rcv_list) != NULL) { 17699 push = B_TRUE; 17700 tcp->tcp_rcv_list = mp->b_next; 17701 mp->b_next = NULL; 17702 space_left = (*connp->conn_upcalls->su_recv) 17703 (connp->conn_upper_handle, mp, msgdsize(mp), 17704 0, &error, &push); 17705 if (space_left < 0) { 17706 /* 17707 * We should never be in middle of a 17708 * fallback, the squeue guarantees that. 17709 */ 17710 ASSERT(error != EOPNOTSUPP); 17711 } 17712 } 17713 tcp->tcp_rcv_last_head = NULL; 17714 tcp->tcp_rcv_last_tail = NULL; 17715 tcp->tcp_rcv_cnt = 0; 17716 } else { 17717 /* We drain directly in case of fused tcp loopback */ 17718 sodirect_t *sodp; 17719 17720 if (!tcp->tcp_fused && canputnext(q)) { 17721 tcp->tcp_rwnd = q->q_hiwat; 17722 if (tcp->tcp_state >= TCPS_ESTABLISHED && 17723 tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) { 17724 tcp_xmit_ctl(NULL, 17725 tcp, (tcp->tcp_swnd == 0) ? 17726 tcp->tcp_suna : tcp->tcp_snxt, 17727 tcp->tcp_rnxt, TH_ACK); 17728 } 17729 } 17730 17731 SOD_PTR_ENTER(tcp, sodp); 17732 if (sodp != NULL) { 17733 /* Sodirect, move from rcv_list */ 17734 ASSERT(!tcp->tcp_fused); 17735 while ((mp = tcp->tcp_rcv_list) != NULL) { 17736 tcp->tcp_rcv_list = mp->b_next; 17737 mp->b_next = NULL; 17738 (void) tcp_rcv_sod_enqueue(tcp, sodp, 17739 mp, msgdsize(mp)); 17740 } 17741 tcp->tcp_rcv_last_head = NULL; 17742 tcp->tcp_rcv_last_tail = NULL; 17743 tcp->tcp_rcv_cnt = 0; 17744 (void) tcp_rcv_sod_wakeup(tcp, sodp); 17745 /* sod_wakeup() did the mutex_exit() */ 17746 } else { 17747 /* Not sodirect, drain */ 17748 (void) tcp_rcv_drain(tcp); 17749 } 17750 } 17751 17752 /* 17753 * For fused tcp loopback, back-enable peer endpoint 17754 * if it's currently flow-controlled. 17755 */ 17756 if (tcp->tcp_fused) { 17757 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 17758 17759 ASSERT(peer_tcp != NULL); 17760 ASSERT(peer_tcp->tcp_fused); 17761 /* 17762 * In order to change the peer's tcp_flow_stopped, 17763 * we need to take locks for both end points. The 17764 * highest address is taken first. 17765 */ 17766 if (peer_tcp > tcp) { 17767 mutex_enter(&peer_tcp->tcp_non_sq_lock); 17768 mutex_enter(&tcp->tcp_non_sq_lock); 17769 } else { 17770 mutex_enter(&tcp->tcp_non_sq_lock); 17771 mutex_enter(&peer_tcp->tcp_non_sq_lock); 17772 } 17773 if (peer_tcp->tcp_flow_stopped) { 17774 tcp_clrqfull(peer_tcp); 17775 TCP_STAT(tcps, tcp_fusion_backenabled); 17776 } 17777 mutex_exit(&peer_tcp->tcp_non_sq_lock); 17778 mutex_exit(&tcp->tcp_non_sq_lock); 17779 } 17780 } 17781 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 17782 if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 17783 tcp->tcp_ordrel_done = B_TRUE; 17784 if (IPCL_IS_NONSTR(connp)) { 17785 ASSERT(tcp->tcp_ordrel_mp == NULL); 17786 (*connp->conn_upcalls->su_opctl)( 17787 connp->conn_upper_handle, 17788 SOCK_OPCTL_SHUT_RECV, 0); 17789 } else { 17790 mp = tcp->tcp_ordrel_mp; 17791 tcp->tcp_ordrel_mp = NULL; 17792 putnext(q, mp); 17793 } 17794 } 17795 if (tcp->tcp_hard_binding) { 17796 tcp->tcp_hard_binding = B_FALSE; 17797 tcp->tcp_hard_bound = B_TRUE; 17798 } 17799 17800 /* We can enable synchronous streams for STREAMS tcp endpoint now */ 17801 if (tcp->tcp_fused && !IPCL_IS_NONSTR(connp) && 17802 tcp->tcp_loopback_peer != NULL && 17803 !IPCL_IS_NONSTR(tcp->tcp_loopback_peer->tcp_connp)) { 17804 tcp_fuse_syncstr_enable_pair(tcp); 17805 } 17806 17807 if (tcp->tcp_ka_enabled) { 17808 tcp->tcp_ka_last_intrvl = 0; 17809 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 17810 MSEC_TO_TICK(tcp->tcp_ka_interval)); 17811 } 17812 17813 /* 17814 * At this point, eager is fully established and will 17815 * have the following references - 17816 * 17817 * 2 references for connection to exist (1 for TCP and 1 for IP). 17818 * 1 reference for the squeue which will be dropped by the squeue as 17819 * soon as this function returns. 17820 * There will be 1 additonal reference for being in classifier 17821 * hash list provided something bad hasn't happened. 17822 */ 17823 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 17824 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 17825 } 17826 17827 /* 17828 * The function called through squeue to get behind listener's perimeter to 17829 * send a deffered conn_ind. 17830 */ 17831 /* ARGSUSED */ 17832 void 17833 tcp_send_pending(void *arg, mblk_t *mp, void *arg2) 17834 { 17835 conn_t *connp = (conn_t *)arg; 17836 tcp_t *listener = connp->conn_tcp; 17837 struct T_conn_ind *conn_ind; 17838 tcp_t *tcp; 17839 17840 conn_ind = (struct T_conn_ind *)mp->b_rptr; 17841 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 17842 conn_ind->OPT_length); 17843 17844 if (listener->tcp_state == TCPS_CLOSED || 17845 TCP_IS_DETACHED(listener)) { 17846 /* 17847 * If listener has closed, it would have caused a 17848 * a cleanup/blowoff to happen for the eager. 17849 * 17850 * We need to drop the ref on eager that was put 17851 * tcp_rput_data() before trying to send the conn_ind 17852 * to listener. The conn_ind was deferred in tcp_send_conn_ind 17853 * and tcp_wput_accept() is sending this deferred conn_ind but 17854 * listener is closed so we drop the ref. 17855 */ 17856 CONN_DEC_REF(tcp->tcp_connp); 17857 freemsg(mp); 17858 return; 17859 } 17860 17861 tcp_ulp_newconn(connp, tcp->tcp_connp, mp); 17862 } 17863 17864 /* ARGSUSED */ 17865 static int 17866 tcp_accept_common(conn_t *lconnp, conn_t *econnp, cred_t *cr) 17867 { 17868 tcp_t *listener, *eager; 17869 mblk_t *opt_mp; 17870 struct tcp_options *tcpopt; 17871 17872 listener = lconnp->conn_tcp; 17873 ASSERT(listener->tcp_state == TCPS_LISTEN); 17874 eager = econnp->conn_tcp; 17875 ASSERT(eager->tcp_listener != NULL); 17876 17877 ASSERT(eager->tcp_rq != NULL); 17878 17879 /* If tcp_fused and sodirect enabled disable it */ 17880 if (eager->tcp_fused && eager->tcp_sodirect != NULL) { 17881 /* Fused, disable sodirect */ 17882 mutex_enter(eager->tcp_sodirect->sod_lockp); 17883 SOD_DISABLE(eager->tcp_sodirect); 17884 mutex_exit(eager->tcp_sodirect->sod_lockp); 17885 eager->tcp_sodirect = NULL; 17886 } 17887 17888 opt_mp = allocb(sizeof (struct tcp_options), BPRI_HI); 17889 if (opt_mp == NULL) { 17890 return (-TPROTO); 17891 } 17892 bzero((char *)opt_mp->b_rptr, sizeof (struct tcp_options)); 17893 eager->tcp_issocket = B_TRUE; 17894 17895 econnp->conn_zoneid = listener->tcp_connp->conn_zoneid; 17896 econnp->conn_allzones = listener->tcp_connp->conn_allzones; 17897 ASSERT(econnp->conn_netstack == 17898 listener->tcp_connp->conn_netstack); 17899 ASSERT(eager->tcp_tcps == listener->tcp_tcps); 17900 17901 /* Put the ref for IP */ 17902 CONN_INC_REF(econnp); 17903 17904 /* 17905 * We should have minimum of 3 references on the conn 17906 * at this point. One each for TCP and IP and one for 17907 * the T_conn_ind that was sent up when the 3-way handshake 17908 * completed. In the normal case we would also have another 17909 * reference (making a total of 4) for the conn being in the 17910 * classifier hash list. However the eager could have received 17911 * an RST subsequently and tcp_closei_local could have removed 17912 * the eager from the classifier hash list, hence we can't 17913 * assert that reference. 17914 */ 17915 ASSERT(econnp->conn_ref >= 3); 17916 17917 opt_mp->b_datap->db_type = M_SETOPTS; 17918 opt_mp->b_wptr += sizeof (struct tcp_options); 17919 17920 /* 17921 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO 17922 * from listener to acceptor. 17923 */ 17924 tcpopt = (struct tcp_options *)opt_mp->b_rptr; 17925 tcpopt->to_flags = 0; 17926 17927 if (listener->tcp_bound_if != 0) { 17928 tcpopt->to_flags |= TCPOPT_BOUNDIF; 17929 tcpopt->to_boundif = listener->tcp_bound_if; 17930 } 17931 if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) { 17932 tcpopt->to_flags |= TCPOPT_RECVPKTINFO; 17933 } 17934 17935 mutex_enter(&listener->tcp_eager_lock); 17936 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 17937 17938 tcp_t *tail; 17939 tcp_t *tcp; 17940 mblk_t *mp1; 17941 17942 tcp = listener->tcp_eager_prev_q0; 17943 /* 17944 * listener->tcp_eager_prev_q0 points to the TAIL of the 17945 * deferred T_conn_ind queue. We need to get to the head 17946 * of the queue in order to send up T_conn_ind the same 17947 * order as how the 3WHS is completed. 17948 */ 17949 while (tcp != listener) { 17950 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0 && 17951 !tcp->tcp_kssl_pending) 17952 break; 17953 else 17954 tcp = tcp->tcp_eager_prev_q0; 17955 } 17956 /* None of the pending eagers can be sent up now */ 17957 if (tcp == listener) 17958 goto no_more_eagers; 17959 17960 mp1 = tcp->tcp_conn.tcp_eager_conn_ind; 17961 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 17962 /* Move from q0 to q */ 17963 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 17964 listener->tcp_conn_req_cnt_q0--; 17965 listener->tcp_conn_req_cnt_q++; 17966 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 17967 tcp->tcp_eager_prev_q0; 17968 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 17969 tcp->tcp_eager_next_q0; 17970 tcp->tcp_eager_prev_q0 = NULL; 17971 tcp->tcp_eager_next_q0 = NULL; 17972 tcp->tcp_conn_def_q0 = B_FALSE; 17973 17974 /* Make sure the tcp isn't in the list of droppables */ 17975 ASSERT(tcp->tcp_eager_next_drop_q0 == NULL && 17976 tcp->tcp_eager_prev_drop_q0 == NULL); 17977 17978 /* 17979 * Insert at end of the queue because sockfs sends 17980 * down T_CONN_RES in chronological order. Leaving 17981 * the older conn indications at front of the queue 17982 * helps reducing search time. 17983 */ 17984 tail = listener->tcp_eager_last_q; 17985 if (tail != NULL) { 17986 tail->tcp_eager_next_q = tcp; 17987 } else { 17988 listener->tcp_eager_next_q = tcp; 17989 } 17990 listener->tcp_eager_last_q = tcp; 17991 tcp->tcp_eager_next_q = NULL; 17992 17993 /* Need to get inside the listener perimeter */ 17994 CONN_INC_REF(listener->tcp_connp); 17995 SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, mp1, 17996 tcp_send_pending, listener->tcp_connp, SQ_FILL, 17997 SQTAG_TCP_SEND_PENDING); 17998 } 17999 no_more_eagers: 18000 tcp_eager_unlink(eager); 18001 mutex_exit(&listener->tcp_eager_lock); 18002 18003 /* 18004 * At this point, the eager is detached from the listener 18005 * but we still have an extra refs on eager (apart from the 18006 * usual tcp references). The ref was placed in tcp_rput_data 18007 * before sending the conn_ind in tcp_send_conn_ind. 18008 * The ref will be dropped in tcp_accept_finish(). 18009 */ 18010 SQUEUE_ENTER_ONE(econnp->conn_sqp, opt_mp, tcp_accept_finish, 18011 econnp, SQ_NODRAIN, SQTAG_TCP_ACCEPT_FINISH_Q0); 18012 return (0); 18013 } 18014 18015 int 18016 tcp_accept(sock_lower_handle_t lproto_handle, 18017 sock_lower_handle_t eproto_handle, sock_upper_handle_t sock_handle, 18018 cred_t *cr) 18019 { 18020 conn_t *lconnp, *econnp; 18021 tcp_t *listener, *eager; 18022 tcp_stack_t *tcps; 18023 18024 lconnp = (conn_t *)lproto_handle; 18025 listener = lconnp->conn_tcp; 18026 ASSERT(listener->tcp_state == TCPS_LISTEN); 18027 econnp = (conn_t *)eproto_handle; 18028 eager = econnp->conn_tcp; 18029 ASSERT(eager->tcp_listener != NULL); 18030 tcps = eager->tcp_tcps; 18031 18032 /* 18033 * It is OK to manipulate these fields outside the eager's squeue 18034 * because they will not start being used until tcp_accept_finish 18035 * has been called. 18036 */ 18037 ASSERT(lconnp->conn_upper_handle != NULL); 18038 ASSERT(econnp->conn_upper_handle == NULL); 18039 econnp->conn_upper_handle = sock_handle; 18040 econnp->conn_upcalls = lconnp->conn_upcalls; 18041 ASSERT(IPCL_IS_NONSTR(econnp)); 18042 /* 18043 * Create helper stream if it is a non-TPI TCP connection. 18044 */ 18045 if (ip_create_helper_stream(econnp, tcps->tcps_ldi_ident)) { 18046 ip1dbg(("tcp_accept: create of IP helper stream" 18047 " failed\n")); 18048 return (EPROTO); 18049 } 18050 eager->tcp_rq = econnp->conn_rq; 18051 eager->tcp_wq = econnp->conn_wq; 18052 18053 ASSERT(eager->tcp_rq != NULL); 18054 18055 eager->tcp_sodirect = SOD_SOTOSODP(sock_handle); 18056 return (tcp_accept_common(lconnp, econnp, cr)); 18057 } 18058 18059 18060 /* 18061 * This is the STREAMS entry point for T_CONN_RES coming down on 18062 * Acceptor STREAM when sockfs listener does accept processing. 18063 * Read the block comment on top of tcp_conn_request(). 18064 */ 18065 void 18066 tcp_tpi_accept(queue_t *q, mblk_t *mp) 18067 { 18068 queue_t *rq = RD(q); 18069 struct T_conn_res *conn_res; 18070 tcp_t *eager; 18071 tcp_t *listener; 18072 struct T_ok_ack *ok; 18073 t_scalar_t PRIM_type; 18074 conn_t *econnp; 18075 cred_t *cr; 18076 18077 ASSERT(DB_TYPE(mp) == M_PROTO); 18078 18079 /* 18080 * All Solaris components should pass a db_credp 18081 * for this TPI message, hence we ASSERT. 18082 * But in case there is some other M_PROTO that looks 18083 * like a TPI message sent by some other kernel 18084 * component, we check and return an error. 18085 */ 18086 cr = msg_getcred(mp, NULL); 18087 ASSERT(cr != NULL); 18088 if (cr == NULL) { 18089 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL); 18090 if (mp != NULL) 18091 putnext(rq, mp); 18092 return; 18093 } 18094 conn_res = (struct T_conn_res *)mp->b_rptr; 18095 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 18096 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_res)) { 18097 mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); 18098 if (mp != NULL) 18099 putnext(rq, mp); 18100 return; 18101 } 18102 switch (conn_res->PRIM_type) { 18103 case O_T_CONN_RES: 18104 case T_CONN_RES: 18105 /* 18106 * We pass up an err ack if allocb fails. This will 18107 * cause sockfs to issue a T_DISCON_REQ which will cause 18108 * tcp_eager_blowoff to be called. sockfs will then call 18109 * rq->q_qinfo->qi_qclose to cleanup the acceptor stream. 18110 * we need to do the allocb up here because we have to 18111 * make sure rq->q_qinfo->qi_qclose still points to the 18112 * correct function (tcpclose_accept) in case allocb 18113 * fails. 18114 */ 18115 bcopy(mp->b_rptr + conn_res->OPT_offset, 18116 &eager, conn_res->OPT_length); 18117 PRIM_type = conn_res->PRIM_type; 18118 mp->b_datap->db_type = M_PCPROTO; 18119 mp->b_wptr = mp->b_rptr + sizeof (struct T_ok_ack); 18120 ok = (struct T_ok_ack *)mp->b_rptr; 18121 ok->PRIM_type = T_OK_ACK; 18122 ok->CORRECT_prim = PRIM_type; 18123 econnp = eager->tcp_connp; 18124 econnp->conn_dev = (dev_t)RD(q)->q_ptr; 18125 econnp->conn_minor_arena = (vmem_t *)(WR(q)->q_ptr); 18126 eager->tcp_rq = rq; 18127 eager->tcp_wq = q; 18128 rq->q_ptr = econnp; 18129 rq->q_qinfo = &tcp_rinitv4; /* No open - same as rinitv6 */ 18130 q->q_ptr = econnp; 18131 q->q_qinfo = &tcp_winit; 18132 listener = eager->tcp_listener; 18133 18134 /* 18135 * TCP is _D_SODIRECT and sockfs is directly above so 18136 * save shared sodirect_t pointer (if any). 18137 */ 18138 eager->tcp_sodirect = SOD_QTOSODP(eager->tcp_rq); 18139 if (tcp_accept_common(listener->tcp_connp, 18140 econnp, cr) < 0) { 18141 mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); 18142 if (mp != NULL) 18143 putnext(rq, mp); 18144 return; 18145 } 18146 18147 /* 18148 * Send the new local address also up to sockfs. There 18149 * should already be enough space in the mp that came 18150 * down from soaccept(). 18151 */ 18152 if (eager->tcp_family == AF_INET) { 18153 sin_t *sin; 18154 18155 ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= 18156 (sizeof (struct T_ok_ack) + sizeof (sin_t))); 18157 sin = (sin_t *)mp->b_wptr; 18158 mp->b_wptr += sizeof (sin_t); 18159 sin->sin_family = AF_INET; 18160 sin->sin_port = eager->tcp_lport; 18161 sin->sin_addr.s_addr = eager->tcp_ipha->ipha_src; 18162 } else { 18163 sin6_t *sin6; 18164 18165 ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= 18166 sizeof (struct T_ok_ack) + sizeof (sin6_t)); 18167 sin6 = (sin6_t *)mp->b_wptr; 18168 mp->b_wptr += sizeof (sin6_t); 18169 sin6->sin6_family = AF_INET6; 18170 sin6->sin6_port = eager->tcp_lport; 18171 if (eager->tcp_ipversion == IPV4_VERSION) { 18172 sin6->sin6_flowinfo = 0; 18173 IN6_IPADDR_TO_V4MAPPED( 18174 eager->tcp_ipha->ipha_src, 18175 &sin6->sin6_addr); 18176 } else { 18177 ASSERT(eager->tcp_ip6h != NULL); 18178 sin6->sin6_flowinfo = 18179 eager->tcp_ip6h->ip6_vcf & 18180 ~IPV6_VERS_AND_FLOW_MASK; 18181 sin6->sin6_addr = eager->tcp_ip6h->ip6_src; 18182 } 18183 sin6->sin6_scope_id = 0; 18184 sin6->__sin6_src_id = 0; 18185 } 18186 18187 putnext(rq, mp); 18188 return; 18189 default: 18190 mp = mi_tpi_err_ack_alloc(mp, TNOTSUPPORT, 0); 18191 if (mp != NULL) 18192 putnext(rq, mp); 18193 return; 18194 } 18195 } 18196 18197 static int 18198 tcp_do_getsockname(tcp_t *tcp, struct sockaddr *sa, uint_t *salenp) 18199 { 18200 sin_t *sin = (sin_t *)sa; 18201 sin6_t *sin6 = (sin6_t *)sa; 18202 18203 switch (tcp->tcp_family) { 18204 case AF_INET: 18205 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 18206 18207 if (*salenp < sizeof (sin_t)) 18208 return (EINVAL); 18209 18210 *sin = sin_null; 18211 sin->sin_family = AF_INET; 18212 if (tcp->tcp_state >= TCPS_BOUND) { 18213 sin->sin_port = tcp->tcp_lport; 18214 sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src; 18215 } 18216 *salenp = sizeof (sin_t); 18217 break; 18218 18219 case AF_INET6: 18220 if (*salenp < sizeof (sin6_t)) 18221 return (EINVAL); 18222 18223 *sin6 = sin6_null; 18224 sin6->sin6_family = AF_INET6; 18225 if (tcp->tcp_state >= TCPS_BOUND) { 18226 sin6->sin6_port = tcp->tcp_lport; 18227 if (tcp->tcp_ipversion == IPV4_VERSION) { 18228 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 18229 &sin6->sin6_addr); 18230 } else { 18231 sin6->sin6_addr = tcp->tcp_ip6h->ip6_src; 18232 } 18233 } 18234 *salenp = sizeof (sin6_t); 18235 break; 18236 } 18237 18238 return (0); 18239 } 18240 18241 static int 18242 tcp_do_getpeername(tcp_t *tcp, struct sockaddr *sa, uint_t *salenp) 18243 { 18244 sin_t *sin = (sin_t *)sa; 18245 sin6_t *sin6 = (sin6_t *)sa; 18246 18247 if (tcp->tcp_state < TCPS_SYN_RCVD) 18248 return (ENOTCONN); 18249 18250 switch (tcp->tcp_family) { 18251 case AF_INET: 18252 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 18253 18254 if (*salenp < sizeof (sin_t)) 18255 return (EINVAL); 18256 18257 *sin = sin_null; 18258 sin->sin_family = AF_INET; 18259 sin->sin_port = tcp->tcp_fport; 18260 IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_remote_v6, 18261 sin->sin_addr.s_addr); 18262 *salenp = sizeof (sin_t); 18263 break; 18264 18265 case AF_INET6: 18266 if (*salenp < sizeof (sin6_t)) 18267 return (EINVAL); 18268 18269 *sin6 = sin6_null; 18270 sin6->sin6_family = AF_INET6; 18271 sin6->sin6_port = tcp->tcp_fport; 18272 sin6->sin6_addr = tcp->tcp_remote_v6; 18273 if (tcp->tcp_ipversion == IPV6_VERSION) { 18274 sin6->sin6_flowinfo = tcp->tcp_ip6h->ip6_vcf & 18275 ~IPV6_VERS_AND_FLOW_MASK; 18276 } 18277 *salenp = sizeof (sin6_t); 18278 break; 18279 } 18280 18281 return (0); 18282 } 18283 18284 /* 18285 * Handle special out-of-band ioctl requests (see PSARC/2008/265). 18286 */ 18287 static void 18288 tcp_wput_cmdblk(queue_t *q, mblk_t *mp) 18289 { 18290 void *data; 18291 mblk_t *datamp = mp->b_cont; 18292 tcp_t *tcp = Q_TO_TCP(q); 18293 cmdblk_t *cmdp = (cmdblk_t *)mp->b_rptr; 18294 18295 if (datamp == NULL || MBLKL(datamp) < cmdp->cb_len) { 18296 cmdp->cb_error = EPROTO; 18297 qreply(q, mp); 18298 return; 18299 } 18300 18301 data = datamp->b_rptr; 18302 18303 switch (cmdp->cb_cmd) { 18304 case TI_GETPEERNAME: 18305 cmdp->cb_error = tcp_do_getpeername(tcp, data, &cmdp->cb_len); 18306 break; 18307 case TI_GETMYNAME: 18308 cmdp->cb_error = tcp_do_getsockname(tcp, data, &cmdp->cb_len); 18309 break; 18310 default: 18311 cmdp->cb_error = EINVAL; 18312 break; 18313 } 18314 18315 qreply(q, mp); 18316 } 18317 18318 void 18319 tcp_wput(queue_t *q, mblk_t *mp) 18320 { 18321 conn_t *connp = Q_TO_CONN(q); 18322 tcp_t *tcp; 18323 void (*output_proc)(); 18324 t_scalar_t type; 18325 uchar_t *rptr; 18326 struct iocblk *iocp; 18327 size_t size; 18328 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 18329 18330 ASSERT(connp->conn_ref >= 2); 18331 18332 switch (DB_TYPE(mp)) { 18333 case M_DATA: 18334 tcp = connp->conn_tcp; 18335 ASSERT(tcp != NULL); 18336 18337 size = msgdsize(mp); 18338 18339 mutex_enter(&tcp->tcp_non_sq_lock); 18340 tcp->tcp_squeue_bytes += size; 18341 if (TCP_UNSENT_BYTES(tcp) > tcp->tcp_xmit_hiwater) { 18342 tcp_setqfull(tcp); 18343 } 18344 mutex_exit(&tcp->tcp_non_sq_lock); 18345 18346 CONN_INC_REF(connp); 18347 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_output, connp, 18348 tcp_squeue_flag, SQTAG_TCP_OUTPUT); 18349 return; 18350 18351 case M_CMD: 18352 tcp_wput_cmdblk(q, mp); 18353 return; 18354 18355 case M_PROTO: 18356 case M_PCPROTO: 18357 /* 18358 * if it is a snmp message, don't get behind the squeue 18359 */ 18360 tcp = connp->conn_tcp; 18361 rptr = mp->b_rptr; 18362 if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { 18363 type = ((union T_primitives *)rptr)->type; 18364 } else { 18365 if (tcp->tcp_debug) { 18366 (void) strlog(TCP_MOD_ID, 0, 1, 18367 SL_ERROR|SL_TRACE, 18368 "tcp_wput_proto, dropping one..."); 18369 } 18370 freemsg(mp); 18371 return; 18372 } 18373 if (type == T_SVR4_OPTMGMT_REQ) { 18374 /* 18375 * All Solaris components should pass a db_credp 18376 * for this TPI message, hence we ASSERT. 18377 * But in case there is some other M_PROTO that looks 18378 * like a TPI message sent by some other kernel 18379 * component, we check and return an error. 18380 */ 18381 cred_t *cr = msg_getcred(mp, NULL); 18382 18383 ASSERT(cr != NULL); 18384 if (cr == NULL) { 18385 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 18386 return; 18387 } 18388 if (snmpcom_req(q, mp, tcp_snmp_set, ip_snmp_get, 18389 cr)) { 18390 /* 18391 * This was a SNMP request 18392 */ 18393 return; 18394 } else { 18395 output_proc = tcp_wput_proto; 18396 } 18397 } else { 18398 output_proc = tcp_wput_proto; 18399 } 18400 break; 18401 case M_IOCTL: 18402 /* 18403 * Most ioctls can be processed right away without going via 18404 * squeues - process them right here. Those that do require 18405 * squeue (currently TCP_IOC_DEFAULT_Q and _SIOCSOCKFALLBACK) 18406 * are processed by tcp_wput_ioctl(). 18407 */ 18408 iocp = (struct iocblk *)mp->b_rptr; 18409 tcp = connp->conn_tcp; 18410 18411 switch (iocp->ioc_cmd) { 18412 case TCP_IOC_ABORT_CONN: 18413 tcp_ioctl_abort_conn(q, mp); 18414 return; 18415 case TI_GETPEERNAME: 18416 case TI_GETMYNAME: 18417 mi_copyin(q, mp, NULL, 18418 SIZEOF_STRUCT(strbuf, iocp->ioc_flag)); 18419 return; 18420 case ND_SET: 18421 /* nd_getset does the necessary checks */ 18422 case ND_GET: 18423 if (!nd_getset(q, tcps->tcps_g_nd, mp)) { 18424 CALL_IP_WPUT(connp, q, mp); 18425 return; 18426 } 18427 qreply(q, mp); 18428 return; 18429 case TCP_IOC_DEFAULT_Q: 18430 /* 18431 * Wants to be the default wq. Check the credentials 18432 * first, the rest is executed via squeue. 18433 */ 18434 if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) { 18435 iocp->ioc_error = EPERM; 18436 iocp->ioc_count = 0; 18437 mp->b_datap->db_type = M_IOCACK; 18438 qreply(q, mp); 18439 return; 18440 } 18441 output_proc = tcp_wput_ioctl; 18442 break; 18443 default: 18444 output_proc = tcp_wput_ioctl; 18445 break; 18446 } 18447 break; 18448 default: 18449 output_proc = tcp_wput_nondata; 18450 break; 18451 } 18452 18453 CONN_INC_REF(connp); 18454 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, output_proc, connp, 18455 tcp_squeue_flag, SQTAG_TCP_WPUT_OTHER); 18456 } 18457 18458 /* 18459 * Initial STREAMS write side put() procedure for sockets. It tries to 18460 * handle the T_CAPABILITY_REQ which sockfs sends down while setting 18461 * up the socket without using the squeue. Non T_CAPABILITY_REQ messages 18462 * are handled by tcp_wput() as usual. 18463 * 18464 * All further messages will also be handled by tcp_wput() because we cannot 18465 * be sure that the above short cut is safe later. 18466 */ 18467 static void 18468 tcp_wput_sock(queue_t *wq, mblk_t *mp) 18469 { 18470 conn_t *connp = Q_TO_CONN(wq); 18471 tcp_t *tcp = connp->conn_tcp; 18472 struct T_capability_req *car = (struct T_capability_req *)mp->b_rptr; 18473 18474 ASSERT(wq->q_qinfo == &tcp_sock_winit); 18475 wq->q_qinfo = &tcp_winit; 18476 18477 ASSERT(IPCL_IS_TCP(connp)); 18478 ASSERT(TCP_IS_SOCKET(tcp)); 18479 18480 if (DB_TYPE(mp) == M_PCPROTO && 18481 MBLKL(mp) == sizeof (struct T_capability_req) && 18482 car->PRIM_type == T_CAPABILITY_REQ) { 18483 tcp_capability_req(tcp, mp); 18484 return; 18485 } 18486 18487 tcp_wput(wq, mp); 18488 } 18489 18490 /* ARGSUSED */ 18491 static void 18492 tcp_wput_fallback(queue_t *wq, mblk_t *mp) 18493 { 18494 #ifdef DEBUG 18495 cmn_err(CE_CONT, "tcp_wput_fallback: Message during fallback \n"); 18496 #endif 18497 freemsg(mp); 18498 } 18499 18500 static boolean_t 18501 tcp_zcopy_check(tcp_t *tcp) 18502 { 18503 conn_t *connp = tcp->tcp_connp; 18504 ire_t *ire; 18505 boolean_t zc_enabled = B_FALSE; 18506 tcp_stack_t *tcps = tcp->tcp_tcps; 18507 18508 if (do_tcpzcopy == 2) 18509 zc_enabled = B_TRUE; 18510 else if (tcp->tcp_ipversion == IPV4_VERSION && 18511 IPCL_IS_CONNECTED(connp) && 18512 (connp->conn_flags & IPCL_CHECK_POLICY) == 0 && 18513 connp->conn_dontroute == 0 && 18514 !connp->conn_nexthop_set && 18515 connp->conn_outgoing_ill == NULL && 18516 do_tcpzcopy == 1) { 18517 /* 18518 * the checks above closely resemble the fast path checks 18519 * in tcp_send_data(). 18520 */ 18521 mutex_enter(&connp->conn_lock); 18522 ire = connp->conn_ire_cache; 18523 ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT)); 18524 if (ire != NULL && !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18525 IRE_REFHOLD(ire); 18526 if (ire->ire_stq != NULL) { 18527 ill_t *ill = (ill_t *)ire->ire_stq->q_ptr; 18528 18529 zc_enabled = ill && (ill->ill_capabilities & 18530 ILL_CAPAB_ZEROCOPY) && 18531 (ill->ill_zerocopy_capab-> 18532 ill_zerocopy_flags != 0); 18533 } 18534 IRE_REFRELE(ire); 18535 } 18536 mutex_exit(&connp->conn_lock); 18537 } 18538 tcp->tcp_snd_zcopy_on = zc_enabled; 18539 if (!TCP_IS_DETACHED(tcp)) { 18540 if (zc_enabled) { 18541 (void) proto_set_tx_copyopt(tcp->tcp_rq, connp, 18542 ZCVMSAFE); 18543 TCP_STAT(tcps, tcp_zcopy_on); 18544 } else { 18545 (void) proto_set_tx_copyopt(tcp->tcp_rq, connp, 18546 ZCVMUNSAFE); 18547 TCP_STAT(tcps, tcp_zcopy_off); 18548 } 18549 } 18550 return (zc_enabled); 18551 } 18552 18553 static mblk_t * 18554 tcp_zcopy_disable(tcp_t *tcp, mblk_t *bp) 18555 { 18556 tcp_stack_t *tcps = tcp->tcp_tcps; 18557 18558 if (do_tcpzcopy == 2) 18559 return (bp); 18560 else if (tcp->tcp_snd_zcopy_on) { 18561 tcp->tcp_snd_zcopy_on = B_FALSE; 18562 if (!TCP_IS_DETACHED(tcp)) { 18563 (void) proto_set_tx_copyopt(tcp->tcp_rq, tcp->tcp_connp, 18564 ZCVMUNSAFE); 18565 TCP_STAT(tcps, tcp_zcopy_disable); 18566 } 18567 } 18568 return (tcp_zcopy_backoff(tcp, bp, 0)); 18569 } 18570 18571 /* 18572 * Backoff from a zero-copy mblk by copying data to a new mblk and freeing 18573 * the original desballoca'ed segmapped mblk. 18574 */ 18575 static mblk_t * 18576 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, int fix_xmitlist) 18577 { 18578 mblk_t *head, *tail, *nbp; 18579 tcp_stack_t *tcps = tcp->tcp_tcps; 18580 18581 if (IS_VMLOANED_MBLK(bp)) { 18582 TCP_STAT(tcps, tcp_zcopy_backoff); 18583 if ((head = copyb(bp)) == NULL) { 18584 /* fail to backoff; leave it for the next backoff */ 18585 tcp->tcp_xmit_zc_clean = B_FALSE; 18586 return (bp); 18587 } 18588 if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 18589 if (fix_xmitlist) 18590 tcp_zcopy_notify(tcp); 18591 else 18592 head->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; 18593 } 18594 nbp = bp->b_cont; 18595 if (fix_xmitlist) { 18596 head->b_prev = bp->b_prev; 18597 head->b_next = bp->b_next; 18598 if (tcp->tcp_xmit_tail == bp) 18599 tcp->tcp_xmit_tail = head; 18600 } 18601 bp->b_next = NULL; 18602 bp->b_prev = NULL; 18603 freeb(bp); 18604 } else { 18605 head = bp; 18606 nbp = bp->b_cont; 18607 } 18608 tail = head; 18609 while (nbp) { 18610 if (IS_VMLOANED_MBLK(nbp)) { 18611 TCP_STAT(tcps, tcp_zcopy_backoff); 18612 if ((tail->b_cont = copyb(nbp)) == NULL) { 18613 tcp->tcp_xmit_zc_clean = B_FALSE; 18614 tail->b_cont = nbp; 18615 return (head); 18616 } 18617 tail = tail->b_cont; 18618 if (nbp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 18619 if (fix_xmitlist) 18620 tcp_zcopy_notify(tcp); 18621 else 18622 tail->b_datap->db_struioflag |= 18623 STRUIO_ZCNOTIFY; 18624 } 18625 bp = nbp; 18626 nbp = nbp->b_cont; 18627 if (fix_xmitlist) { 18628 tail->b_prev = bp->b_prev; 18629 tail->b_next = bp->b_next; 18630 if (tcp->tcp_xmit_tail == bp) 18631 tcp->tcp_xmit_tail = tail; 18632 } 18633 bp->b_next = NULL; 18634 bp->b_prev = NULL; 18635 freeb(bp); 18636 } else { 18637 tail->b_cont = nbp; 18638 tail = nbp; 18639 nbp = nbp->b_cont; 18640 } 18641 } 18642 if (fix_xmitlist) { 18643 tcp->tcp_xmit_last = tail; 18644 tcp->tcp_xmit_zc_clean = B_TRUE; 18645 } 18646 return (head); 18647 } 18648 18649 static void 18650 tcp_zcopy_notify(tcp_t *tcp) 18651 { 18652 struct stdata *stp; 18653 conn_t *connp; 18654 18655 if (tcp->tcp_detached) 18656 return; 18657 connp = tcp->tcp_connp; 18658 if (IPCL_IS_NONSTR(connp)) { 18659 (*connp->conn_upcalls->su_zcopy_notify) 18660 (connp->conn_upper_handle); 18661 return; 18662 } 18663 stp = STREAM(tcp->tcp_rq); 18664 mutex_enter(&stp->sd_lock); 18665 stp->sd_flag |= STZCNOTIFY; 18666 cv_broadcast(&stp->sd_zcopy_wait); 18667 mutex_exit(&stp->sd_lock); 18668 } 18669 18670 static boolean_t 18671 tcp_send_find_ire(tcp_t *tcp, ipaddr_t *dst, ire_t **irep) 18672 { 18673 ire_t *ire; 18674 conn_t *connp = tcp->tcp_connp; 18675 tcp_stack_t *tcps = tcp->tcp_tcps; 18676 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 18677 18678 mutex_enter(&connp->conn_lock); 18679 ire = connp->conn_ire_cache; 18680 ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT)); 18681 18682 if ((ire != NULL) && 18683 (((dst != NULL) && (ire->ire_addr == *dst)) || ((dst == NULL) && 18684 IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, &tcp->tcp_ip6h->ip6_dst))) && 18685 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18686 IRE_REFHOLD(ire); 18687 mutex_exit(&connp->conn_lock); 18688 } else { 18689 boolean_t cached = B_FALSE; 18690 ts_label_t *tsl; 18691 18692 /* force a recheck later on */ 18693 tcp->tcp_ire_ill_check_done = B_FALSE; 18694 18695 TCP_DBGSTAT(tcps, tcp_ire_null1); 18696 connp->conn_ire_cache = NULL; 18697 mutex_exit(&connp->conn_lock); 18698 18699 if (ire != NULL) 18700 IRE_REFRELE_NOTR(ire); 18701 18702 tsl = crgetlabel(CONN_CRED(connp)); 18703 ire = (dst ? 18704 ire_cache_lookup(*dst, connp->conn_zoneid, tsl, ipst) : 18705 ire_cache_lookup_v6(&tcp->tcp_ip6h->ip6_dst, 18706 connp->conn_zoneid, tsl, ipst)); 18707 18708 if (ire == NULL) { 18709 TCP_STAT(tcps, tcp_ire_null); 18710 return (B_FALSE); 18711 } 18712 18713 IRE_REFHOLD_NOTR(ire); 18714 18715 mutex_enter(&connp->conn_lock); 18716 if (CONN_CACHE_IRE(connp)) { 18717 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 18718 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18719 TCP_CHECK_IREINFO(tcp, ire); 18720 connp->conn_ire_cache = ire; 18721 cached = B_TRUE; 18722 } 18723 rw_exit(&ire->ire_bucket->irb_lock); 18724 } 18725 mutex_exit(&connp->conn_lock); 18726 18727 /* 18728 * We can continue to use the ire but since it was 18729 * not cached, we should drop the extra reference. 18730 */ 18731 if (!cached) 18732 IRE_REFRELE_NOTR(ire); 18733 18734 /* 18735 * Rampart note: no need to select a new label here, since 18736 * labels are not allowed to change during the life of a TCP 18737 * connection. 18738 */ 18739 } 18740 18741 *irep = ire; 18742 18743 return (B_TRUE); 18744 } 18745 18746 /* 18747 * Called from tcp_send() or tcp_send_data() to find workable IRE. 18748 * 18749 * 0 = success; 18750 * 1 = failed to find ire and ill. 18751 */ 18752 static boolean_t 18753 tcp_send_find_ire_ill(tcp_t *tcp, mblk_t *mp, ire_t **irep, ill_t **illp) 18754 { 18755 ipha_t *ipha; 18756 ipaddr_t dst; 18757 ire_t *ire; 18758 ill_t *ill; 18759 mblk_t *ire_fp_mp; 18760 tcp_stack_t *tcps = tcp->tcp_tcps; 18761 18762 if (mp != NULL) 18763 ipha = (ipha_t *)mp->b_rptr; 18764 else 18765 ipha = tcp->tcp_ipha; 18766 dst = ipha->ipha_dst; 18767 18768 if (!tcp_send_find_ire(tcp, &dst, &ire)) 18769 return (B_FALSE); 18770 18771 if ((ire->ire_flags & RTF_MULTIRT) || 18772 (ire->ire_stq == NULL) || 18773 (ire->ire_nce == NULL) || 18774 ((ire_fp_mp = ire->ire_nce->nce_fp_mp) == NULL) || 18775 ((mp != NULL) && (ire->ire_max_frag < ntohs(ipha->ipha_length) || 18776 MBLKL(ire_fp_mp) > MBLKHEAD(mp)))) { 18777 TCP_STAT(tcps, tcp_ip_ire_send); 18778 IRE_REFRELE(ire); 18779 return (B_FALSE); 18780 } 18781 18782 ill = ire_to_ill(ire); 18783 ASSERT(ill != NULL); 18784 18785 if (!tcp->tcp_ire_ill_check_done) { 18786 tcp_ire_ill_check(tcp, ire, ill, B_TRUE); 18787 tcp->tcp_ire_ill_check_done = B_TRUE; 18788 } 18789 18790 *irep = ire; 18791 *illp = ill; 18792 18793 return (B_TRUE); 18794 } 18795 18796 static void 18797 tcp_send_data(tcp_t *tcp, queue_t *q, mblk_t *mp) 18798 { 18799 ipha_t *ipha; 18800 ipaddr_t src; 18801 ipaddr_t dst; 18802 uint32_t cksum; 18803 ire_t *ire; 18804 uint16_t *up; 18805 ill_t *ill; 18806 conn_t *connp = tcp->tcp_connp; 18807 uint32_t hcksum_txflags = 0; 18808 mblk_t *ire_fp_mp; 18809 uint_t ire_fp_mp_len; 18810 tcp_stack_t *tcps = tcp->tcp_tcps; 18811 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 18812 cred_t *cr; 18813 pid_t cpid; 18814 18815 ASSERT(DB_TYPE(mp) == M_DATA); 18816 18817 /* 18818 * Here we need to handle the overloading of the cred_t for 18819 * both getpeerucred and TX. 18820 * If this is a SYN then the caller already set db_credp so 18821 * that getpeerucred will work. But if TX is in use we might have 18822 * a conn_peercred which is different, and we need to use that cred 18823 * to make TX use the correct label and label dependent route. 18824 */ 18825 if (is_system_labeled()) { 18826 cr = msg_getcred(mp, &cpid); 18827 if (cr == NULL || connp->conn_peercred != NULL) 18828 mblk_setcred(mp, CONN_CRED(connp), cpid); 18829 } 18830 18831 ipha = (ipha_t *)mp->b_rptr; 18832 src = ipha->ipha_src; 18833 dst = ipha->ipha_dst; 18834 18835 ASSERT(q != NULL); 18836 DTRACE_PROBE2(tcp__trace__send, mblk_t *, mp, tcp_t *, tcp); 18837 18838 /* 18839 * Drop off fast path for IPv6 and also if options are present or 18840 * we need to resolve a TS label. 18841 */ 18842 if (tcp->tcp_ipversion != IPV4_VERSION || 18843 !IPCL_IS_CONNECTED(connp) || 18844 !CONN_IS_LSO_MD_FASTPATH(connp) || 18845 (connp->conn_flags & IPCL_CHECK_POLICY) != 0 || 18846 !connp->conn_ulp_labeled || 18847 ipha->ipha_ident == IP_HDR_INCLUDED || 18848 ipha->ipha_version_and_hdr_length != IP_SIMPLE_HDR_VERSION || 18849 IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 18850 if (tcp->tcp_snd_zcopy_aware) 18851 mp = tcp_zcopy_disable(tcp, mp); 18852 TCP_STAT(tcps, tcp_ip_send); 18853 CALL_IP_WPUT(connp, q, mp); 18854 return; 18855 } 18856 18857 if (!tcp_send_find_ire_ill(tcp, mp, &ire, &ill)) { 18858 if (tcp->tcp_snd_zcopy_aware) 18859 mp = tcp_zcopy_backoff(tcp, mp, 0); 18860 CALL_IP_WPUT(connp, q, mp); 18861 return; 18862 } 18863 ire_fp_mp = ire->ire_nce->nce_fp_mp; 18864 ire_fp_mp_len = MBLKL(ire_fp_mp); 18865 18866 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 18867 ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 18868 #ifndef _BIG_ENDIAN 18869 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 18870 #endif 18871 18872 /* 18873 * Check to see if we need to re-enable LSO/MDT for this connection 18874 * because it was previously disabled due to changes in the ill; 18875 * note that by doing it here, this re-enabling only applies when 18876 * the packet is not dispatched through CALL_IP_WPUT(). 18877 * 18878 * That means for IPv4, it is worth re-enabling LSO/MDT for the fastpath 18879 * case, since that's how we ended up here. For IPv6, we do the 18880 * re-enabling work in ip_xmit_v6(), albeit indirectly via squeue. 18881 */ 18882 if (connp->conn_lso_ok && !tcp->tcp_lso && ILL_LSO_TCP_USABLE(ill)) { 18883 /* 18884 * Restore LSO for this connection, so that next time around 18885 * it is eligible to go through tcp_lsosend() path again. 18886 */ 18887 TCP_STAT(tcps, tcp_lso_enabled); 18888 tcp->tcp_lso = B_TRUE; 18889 ip1dbg(("tcp_send_data: reenabling LSO for connp %p on " 18890 "interface %s\n", (void *)connp, ill->ill_name)); 18891 } else if (connp->conn_mdt_ok && !tcp->tcp_mdt && ILL_MDT_USABLE(ill)) { 18892 /* 18893 * Restore MDT for this connection, so that next time around 18894 * it is eligible to go through tcp_multisend() path again. 18895 */ 18896 TCP_STAT(tcps, tcp_mdt_conn_resumed1); 18897 tcp->tcp_mdt = B_TRUE; 18898 ip1dbg(("tcp_send_data: reenabling MDT for connp %p on " 18899 "interface %s\n", (void *)connp, ill->ill_name)); 18900 } 18901 18902 if (tcp->tcp_snd_zcopy_aware) { 18903 if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 || 18904 (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0)) 18905 mp = tcp_zcopy_disable(tcp, mp); 18906 /* 18907 * we shouldn't need to reset ipha as the mp containing 18908 * ipha should never be a zero-copy mp. 18909 */ 18910 } 18911 18912 if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) { 18913 ASSERT(ill->ill_hcksum_capab != NULL); 18914 hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags; 18915 } 18916 18917 /* pseudo-header checksum (do it in parts for IP header checksum) */ 18918 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 18919 18920 ASSERT(ipha->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION); 18921 up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH); 18922 18923 IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up, 18924 IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum); 18925 18926 /* Software checksum? */ 18927 if (DB_CKSUMFLAGS(mp) == 0) { 18928 TCP_STAT(tcps, tcp_out_sw_cksum); 18929 TCP_STAT_UPDATE(tcps, tcp_out_sw_cksum_bytes, 18930 ntohs(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH); 18931 } 18932 18933 /* Calculate IP header checksum if hardware isn't capable */ 18934 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 18935 IP_HDR_CKSUM(ipha, cksum, ((uint32_t *)ipha)[0], 18936 ((uint16_t *)ipha)[4]); 18937 } 18938 18939 ASSERT(DB_TYPE(ire_fp_mp) == M_DATA); 18940 mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len; 18941 bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len); 18942 18943 UPDATE_OB_PKT_COUNT(ire); 18944 ire->ire_last_used_time = lbolt; 18945 18946 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 18947 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 18948 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 18949 ntohs(ipha->ipha_length)); 18950 18951 DTRACE_PROBE4(ip4__physical__out__start, 18952 ill_t *, NULL, ill_t *, ill, ipha_t *, ipha, mblk_t *, mp); 18953 FW_HOOKS(ipst->ips_ip4_physical_out_event, 18954 ipst->ips_ipv4firewall_physical_out, 18955 NULL, ill, ipha, mp, mp, 0, ipst); 18956 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 18957 DTRACE_IP_FASTPATH(mp, ipha, ill, ipha, NULL); 18958 18959 if (mp != NULL) { 18960 if (ipst->ips_ipobs_enabled) { 18961 zoneid_t szone; 18962 18963 szone = ip_get_zoneid_v4(ipha->ipha_src, mp, 18964 ipst, ALL_ZONES); 18965 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, 18966 ALL_ZONES, ill, IPV4_VERSION, ire_fp_mp_len, ipst); 18967 } 18968 18969 ILL_SEND_TX(ill, ire, connp, mp, 0, NULL); 18970 } 18971 18972 IRE_REFRELE(ire); 18973 } 18974 18975 /* 18976 * This handles the case when the receiver has shrunk its win. Per RFC 1122 18977 * if the receiver shrinks the window, i.e. moves the right window to the 18978 * left, the we should not send new data, but should retransmit normally the 18979 * old unacked data between suna and suna + swnd. We might has sent data 18980 * that is now outside the new window, pretend that we didn't send it. 18981 */ 18982 static void 18983 tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_count) 18984 { 18985 uint32_t snxt = tcp->tcp_snxt; 18986 mblk_t *xmit_tail; 18987 int32_t offset; 18988 18989 ASSERT(shrunk_count > 0); 18990 18991 /* Pretend we didn't send the data outside the window */ 18992 snxt -= shrunk_count; 18993 18994 /* Get the mblk and the offset in it per the shrunk window */ 18995 xmit_tail = tcp_get_seg_mp(tcp, snxt, &offset); 18996 18997 ASSERT(xmit_tail != NULL); 18998 18999 /* Reset all the values per the now shrunk window */ 19000 tcp->tcp_snxt = snxt; 19001 tcp->tcp_xmit_tail = xmit_tail; 19002 tcp->tcp_xmit_tail_unsent = xmit_tail->b_wptr - xmit_tail->b_rptr - 19003 offset; 19004 tcp->tcp_unsent += shrunk_count; 19005 19006 if (tcp->tcp_suna == tcp->tcp_snxt && tcp->tcp_swnd == 0) 19007 /* 19008 * Make sure the timer is running so that we will probe a zero 19009 * window. 19010 */ 19011 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 19012 } 19013 19014 19015 /* 19016 * The TCP normal data output path. 19017 * NOTE: the logic of the fast path is duplicated from this function. 19018 */ 19019 static void 19020 tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent) 19021 { 19022 int len; 19023 mblk_t *local_time; 19024 mblk_t *mp1; 19025 uint32_t snxt; 19026 int tail_unsent; 19027 int tcpstate; 19028 int usable = 0; 19029 mblk_t *xmit_tail; 19030 queue_t *q = tcp->tcp_wq; 19031 int32_t mss; 19032 int32_t num_sack_blk = 0; 19033 int32_t tcp_hdr_len; 19034 int32_t tcp_tcp_hdr_len; 19035 int mdt_thres; 19036 int rc; 19037 tcp_stack_t *tcps = tcp->tcp_tcps; 19038 ip_stack_t *ipst; 19039 19040 tcpstate = tcp->tcp_state; 19041 if (mp == NULL) { 19042 /* 19043 * tcp_wput_data() with NULL mp should only be called when 19044 * there is unsent data. 19045 */ 19046 ASSERT(tcp->tcp_unsent > 0); 19047 /* Really tacky... but we need this for detached closes. */ 19048 len = tcp->tcp_unsent; 19049 goto data_null; 19050 } 19051 19052 #if CCS_STATS 19053 wrw_stats.tot.count++; 19054 wrw_stats.tot.bytes += msgdsize(mp); 19055 #endif 19056 ASSERT(mp->b_datap->db_type == M_DATA); 19057 /* 19058 * Don't allow data after T_ORDREL_REQ or T_DISCON_REQ, 19059 * or before a connection attempt has begun. 19060 */ 19061 if (tcpstate < TCPS_SYN_SENT || tcpstate > TCPS_CLOSE_WAIT || 19062 (tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { 19063 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { 19064 #ifdef DEBUG 19065 cmn_err(CE_WARN, 19066 "tcp_wput_data: data after ordrel, %s", 19067 tcp_display(tcp, NULL, 19068 DISP_ADDR_AND_PORT)); 19069 #else 19070 if (tcp->tcp_debug) { 19071 (void) strlog(TCP_MOD_ID, 0, 1, 19072 SL_TRACE|SL_ERROR, 19073 "tcp_wput_data: data after ordrel, %s\n", 19074 tcp_display(tcp, NULL, 19075 DISP_ADDR_AND_PORT)); 19076 } 19077 #endif /* DEBUG */ 19078 } 19079 if (tcp->tcp_snd_zcopy_aware && 19080 (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) != 0) 19081 tcp_zcopy_notify(tcp); 19082 freemsg(mp); 19083 mutex_enter(&tcp->tcp_non_sq_lock); 19084 if (tcp->tcp_flow_stopped && 19085 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 19086 tcp_clrqfull(tcp); 19087 } 19088 mutex_exit(&tcp->tcp_non_sq_lock); 19089 return; 19090 } 19091 19092 /* Strip empties */ 19093 for (;;) { 19094 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 19095 (uintptr_t)INT_MAX); 19096 len = (int)(mp->b_wptr - mp->b_rptr); 19097 if (len > 0) 19098 break; 19099 mp1 = mp; 19100 mp = mp->b_cont; 19101 freeb(mp1); 19102 if (!mp) { 19103 return; 19104 } 19105 } 19106 19107 /* If we are the first on the list ... */ 19108 if (tcp->tcp_xmit_head == NULL) { 19109 tcp->tcp_xmit_head = mp; 19110 tcp->tcp_xmit_tail = mp; 19111 tcp->tcp_xmit_tail_unsent = len; 19112 } else { 19113 /* If tiny tx and room in txq tail, pullup to save mblks. */ 19114 struct datab *dp; 19115 19116 mp1 = tcp->tcp_xmit_last; 19117 if (len < tcp_tx_pull_len && 19118 (dp = mp1->b_datap)->db_ref == 1 && 19119 dp->db_lim - mp1->b_wptr >= len) { 19120 ASSERT(len > 0); 19121 ASSERT(!mp1->b_cont); 19122 if (len == 1) { 19123 *mp1->b_wptr++ = *mp->b_rptr; 19124 } else { 19125 bcopy(mp->b_rptr, mp1->b_wptr, len); 19126 mp1->b_wptr += len; 19127 } 19128 if (mp1 == tcp->tcp_xmit_tail) 19129 tcp->tcp_xmit_tail_unsent += len; 19130 mp1->b_cont = mp->b_cont; 19131 if (tcp->tcp_snd_zcopy_aware && 19132 (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 19133 mp1->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; 19134 freeb(mp); 19135 mp = mp1; 19136 } else { 19137 tcp->tcp_xmit_last->b_cont = mp; 19138 } 19139 len += tcp->tcp_unsent; 19140 } 19141 19142 /* Tack on however many more positive length mblks we have */ 19143 if ((mp1 = mp->b_cont) != NULL) { 19144 do { 19145 int tlen; 19146 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 19147 (uintptr_t)INT_MAX); 19148 tlen = (int)(mp1->b_wptr - mp1->b_rptr); 19149 if (tlen <= 0) { 19150 mp->b_cont = mp1->b_cont; 19151 freeb(mp1); 19152 } else { 19153 len += tlen; 19154 mp = mp1; 19155 } 19156 } while ((mp1 = mp->b_cont) != NULL); 19157 } 19158 tcp->tcp_xmit_last = mp; 19159 tcp->tcp_unsent = len; 19160 19161 if (urgent) 19162 usable = 1; 19163 19164 data_null: 19165 snxt = tcp->tcp_snxt; 19166 xmit_tail = tcp->tcp_xmit_tail; 19167 tail_unsent = tcp->tcp_xmit_tail_unsent; 19168 19169 /* 19170 * Note that tcp_mss has been adjusted to take into account the 19171 * timestamp option if applicable. Because SACK options do not 19172 * appear in every TCP segments and they are of variable lengths, 19173 * they cannot be included in tcp_mss. Thus we need to calculate 19174 * the actual segment length when we need to send a segment which 19175 * includes SACK options. 19176 */ 19177 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 19178 int32_t opt_len; 19179 19180 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 19181 tcp->tcp_num_sack_blk); 19182 opt_len = num_sack_blk * sizeof (sack_blk_t) + TCPOPT_NOP_LEN * 19183 2 + TCPOPT_HEADER_LEN; 19184 mss = tcp->tcp_mss - opt_len; 19185 tcp_hdr_len = tcp->tcp_hdr_len + opt_len; 19186 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + opt_len; 19187 } else { 19188 mss = tcp->tcp_mss; 19189 tcp_hdr_len = tcp->tcp_hdr_len; 19190 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len; 19191 } 19192 19193 if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && 19194 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) { 19195 SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle); 19196 } 19197 if (tcpstate == TCPS_SYN_RCVD) { 19198 /* 19199 * The three-way connection establishment handshake is not 19200 * complete yet. We want to queue the data for transmission 19201 * after entering ESTABLISHED state (RFC793). A jump to 19202 * "done" label effectively leaves data on the queue. 19203 */ 19204 goto done; 19205 } else { 19206 int usable_r; 19207 19208 /* 19209 * In the special case when cwnd is zero, which can only 19210 * happen if the connection is ECN capable, return now. 19211 * New segments is sent using tcp_timer(). The timer 19212 * is set in tcp_rput_data(). 19213 */ 19214 if (tcp->tcp_cwnd == 0) { 19215 /* 19216 * Note that tcp_cwnd is 0 before 3-way handshake is 19217 * finished. 19218 */ 19219 ASSERT(tcp->tcp_ecn_ok || 19220 tcp->tcp_state < TCPS_ESTABLISHED); 19221 return; 19222 } 19223 19224 /* NOTE: trouble if xmitting while SYN not acked? */ 19225 usable_r = snxt - tcp->tcp_suna; 19226 usable_r = tcp->tcp_swnd - usable_r; 19227 19228 /* 19229 * Check if the receiver has shrunk the window. If 19230 * tcp_wput_data() with NULL mp is called, tcp_fin_sent 19231 * cannot be set as there is unsent data, so FIN cannot 19232 * be sent out. Otherwise, we need to take into account 19233 * of FIN as it consumes an "invisible" sequence number. 19234 */ 19235 ASSERT(tcp->tcp_fin_sent == 0); 19236 if (usable_r < 0) { 19237 /* 19238 * The receiver has shrunk the window and we have sent 19239 * -usable_r date beyond the window, re-adjust. 19240 * 19241 * If TCP window scaling is enabled, there can be 19242 * round down error as the advertised receive window 19243 * is actually right shifted n bits. This means that 19244 * the lower n bits info is wiped out. It will look 19245 * like the window is shrunk. Do a check here to 19246 * see if the shrunk amount is actually within the 19247 * error in window calculation. If it is, just 19248 * return. Note that this check is inside the 19249 * shrunk window check. This makes sure that even 19250 * though tcp_process_shrunk_swnd() is not called, 19251 * we will stop further processing. 19252 */ 19253 if ((-usable_r >> tcp->tcp_snd_ws) > 0) { 19254 tcp_process_shrunk_swnd(tcp, -usable_r); 19255 } 19256 return; 19257 } 19258 19259 /* usable = MIN(swnd, cwnd) - unacked_bytes */ 19260 if (tcp->tcp_swnd > tcp->tcp_cwnd) 19261 usable_r -= tcp->tcp_swnd - tcp->tcp_cwnd; 19262 19263 /* usable = MIN(usable, unsent) */ 19264 if (usable_r > len) 19265 usable_r = len; 19266 19267 /* usable = MAX(usable, {1 for urgent, 0 for data}) */ 19268 if (usable_r > 0) { 19269 usable = usable_r; 19270 } else { 19271 /* Bypass all other unnecessary processing. */ 19272 goto done; 19273 } 19274 } 19275 19276 local_time = (mblk_t *)lbolt; 19277 19278 /* 19279 * "Our" Nagle Algorithm. This is not the same as in the old 19280 * BSD. This is more in line with the true intent of Nagle. 19281 * 19282 * The conditions are: 19283 * 1. The amount of unsent data (or amount of data which can be 19284 * sent, whichever is smaller) is less than Nagle limit. 19285 * 2. The last sent size is also less than Nagle limit. 19286 * 3. There is unack'ed data. 19287 * 4. Urgent pointer is not set. Send urgent data ignoring the 19288 * Nagle algorithm. This reduces the probability that urgent 19289 * bytes get "merged" together. 19290 * 5. The app has not closed the connection. This eliminates the 19291 * wait time of the receiving side waiting for the last piece of 19292 * (small) data. 19293 * 19294 * If all are satisified, exit without sending anything. Note 19295 * that Nagle limit can be smaller than 1 MSS. Nagle limit is 19296 * the smaller of 1 MSS and global tcp_naglim_def (default to be 19297 * 4095). 19298 */ 19299 if (usable < (int)tcp->tcp_naglim && 19300 tcp->tcp_naglim > tcp->tcp_last_sent_len && 19301 snxt != tcp->tcp_suna && 19302 !(tcp->tcp_valid_bits & TCP_URG_VALID) && 19303 !(tcp->tcp_valid_bits & TCP_FSS_VALID)) { 19304 goto done; 19305 } 19306 19307 if (tcp->tcp_cork) { 19308 /* 19309 * if the tcp->tcp_cork option is set, then we have to force 19310 * TCP not to send partial segment (smaller than MSS bytes). 19311 * We are calculating the usable now based on full mss and 19312 * will save the rest of remaining data for later. 19313 */ 19314 if (usable < mss) 19315 goto done; 19316 usable = (usable / mss) * mss; 19317 } 19318 19319 /* Update the latest receive window size in TCP header. */ 19320 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 19321 tcp->tcp_tcph->th_win); 19322 19323 /* 19324 * Determine if it's worthwhile to attempt LSO or MDT, based on: 19325 * 19326 * 1. Simple TCP/IP{v4,v6} (no options). 19327 * 2. IPSEC/IPQoS processing is not needed for the TCP connection. 19328 * 3. If the TCP connection is in ESTABLISHED state. 19329 * 4. The TCP is not detached. 19330 * 19331 * If any of the above conditions have changed during the 19332 * connection, stop using LSO/MDT and restore the stream head 19333 * parameters accordingly. 19334 */ 19335 ipst = tcps->tcps_netstack->netstack_ip; 19336 19337 if ((tcp->tcp_lso || tcp->tcp_mdt) && 19338 ((tcp->tcp_ipversion == IPV4_VERSION && 19339 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 19340 (tcp->tcp_ipversion == IPV6_VERSION && 19341 tcp->tcp_ip_hdr_len != IPV6_HDR_LEN) || 19342 tcp->tcp_state != TCPS_ESTABLISHED || 19343 TCP_IS_DETACHED(tcp) || !CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp) || 19344 CONN_IPSEC_OUT_ENCAPSULATED(tcp->tcp_connp) || 19345 IPP_ENABLED(IPP_LOCAL_OUT, ipst))) { 19346 if (tcp->tcp_lso) { 19347 tcp->tcp_connp->conn_lso_ok = B_FALSE; 19348 tcp->tcp_lso = B_FALSE; 19349 } else { 19350 tcp->tcp_connp->conn_mdt_ok = B_FALSE; 19351 tcp->tcp_mdt = B_FALSE; 19352 } 19353 19354 /* Anything other than detached is considered pathological */ 19355 if (!TCP_IS_DETACHED(tcp)) { 19356 if (tcp->tcp_lso) 19357 TCP_STAT(tcps, tcp_lso_disabled); 19358 else 19359 TCP_STAT(tcps, tcp_mdt_conn_halted1); 19360 (void) tcp_maxpsz_set(tcp, B_TRUE); 19361 } 19362 } 19363 19364 /* Use MDT if sendable amount is greater than the threshold */ 19365 if (tcp->tcp_mdt && 19366 (mdt_thres = mss << tcp_mdt_smss_threshold, usable > mdt_thres) && 19367 (tail_unsent > mdt_thres || (xmit_tail->b_cont != NULL && 19368 MBLKL(xmit_tail->b_cont) > mdt_thres)) && 19369 (tcp->tcp_valid_bits == 0 || 19370 tcp->tcp_valid_bits == TCP_FSS_VALID)) { 19371 ASSERT(tcp->tcp_connp->conn_mdt_ok); 19372 rc = tcp_multisend(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len, 19373 num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail, 19374 local_time, mdt_thres); 19375 } else { 19376 rc = tcp_send(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len, 19377 num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail, 19378 local_time, INT_MAX); 19379 } 19380 19381 /* Pretend that all we were trying to send really got sent */ 19382 if (rc < 0 && tail_unsent < 0) { 19383 do { 19384 xmit_tail = xmit_tail->b_cont; 19385 xmit_tail->b_prev = local_time; 19386 ASSERT((uintptr_t)(xmit_tail->b_wptr - 19387 xmit_tail->b_rptr) <= (uintptr_t)INT_MAX); 19388 tail_unsent += (int)(xmit_tail->b_wptr - 19389 xmit_tail->b_rptr); 19390 } while (tail_unsent < 0); 19391 } 19392 done:; 19393 tcp->tcp_xmit_tail = xmit_tail; 19394 tcp->tcp_xmit_tail_unsent = tail_unsent; 19395 len = tcp->tcp_snxt - snxt; 19396 if (len) { 19397 /* 19398 * If new data was sent, need to update the notsack 19399 * list, which is, afterall, data blocks that have 19400 * not been sack'ed by the receiver. New data is 19401 * not sack'ed. 19402 */ 19403 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 19404 /* len is a negative value. */ 19405 tcp->tcp_pipe -= len; 19406 tcp_notsack_update(&(tcp->tcp_notsack_list), 19407 tcp->tcp_snxt, snxt, 19408 &(tcp->tcp_num_notsack_blk), 19409 &(tcp->tcp_cnt_notsack_list)); 19410 } 19411 tcp->tcp_snxt = snxt + tcp->tcp_fin_sent; 19412 tcp->tcp_rack = tcp->tcp_rnxt; 19413 tcp->tcp_rack_cnt = 0; 19414 if ((snxt + len) == tcp->tcp_suna) { 19415 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 19416 } 19417 } else if (snxt == tcp->tcp_suna && tcp->tcp_swnd == 0) { 19418 /* 19419 * Didn't send anything. Make sure the timer is running 19420 * so that we will probe a zero window. 19421 */ 19422 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 19423 } 19424 /* Note that len is the amount we just sent but with a negative sign */ 19425 tcp->tcp_unsent += len; 19426 mutex_enter(&tcp->tcp_non_sq_lock); 19427 if (tcp->tcp_flow_stopped) { 19428 if (TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 19429 tcp_clrqfull(tcp); 19430 } 19431 } else if (TCP_UNSENT_BYTES(tcp) >= tcp->tcp_xmit_hiwater) { 19432 tcp_setqfull(tcp); 19433 } 19434 mutex_exit(&tcp->tcp_non_sq_lock); 19435 } 19436 19437 /* 19438 * tcp_fill_header is called by tcp_send() and tcp_multisend() to fill the 19439 * outgoing TCP header with the template header, as well as other 19440 * options such as time-stamp, ECN and/or SACK. 19441 */ 19442 static void 19443 tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, int num_sack_blk) 19444 { 19445 tcph_t *tcp_tmpl, *tcp_h; 19446 uint32_t *dst, *src; 19447 int hdrlen; 19448 19449 ASSERT(OK_32PTR(rptr)); 19450 19451 /* Template header */ 19452 tcp_tmpl = tcp->tcp_tcph; 19453 19454 /* Header of outgoing packet */ 19455 tcp_h = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 19456 19457 /* dst and src are opaque 32-bit fields, used for copying */ 19458 dst = (uint32_t *)rptr; 19459 src = (uint32_t *)tcp->tcp_iphc; 19460 hdrlen = tcp->tcp_hdr_len; 19461 19462 /* Fill time-stamp option if needed */ 19463 if (tcp->tcp_snd_ts_ok) { 19464 U32_TO_BE32((uint32_t)now, 19465 (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 4); 19466 U32_TO_BE32(tcp->tcp_ts_recent, 19467 (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 8); 19468 } else { 19469 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 19470 } 19471 19472 /* 19473 * Copy the template header; is this really more efficient than 19474 * calling bcopy()? For simple IPv4/TCP, it may be the case, 19475 * but perhaps not for other scenarios. 19476 */ 19477 dst[0] = src[0]; 19478 dst[1] = src[1]; 19479 dst[2] = src[2]; 19480 dst[3] = src[3]; 19481 dst[4] = src[4]; 19482 dst[5] = src[5]; 19483 dst[6] = src[6]; 19484 dst[7] = src[7]; 19485 dst[8] = src[8]; 19486 dst[9] = src[9]; 19487 if (hdrlen -= 40) { 19488 hdrlen >>= 2; 19489 dst += 10; 19490 src += 10; 19491 do { 19492 *dst++ = *src++; 19493 } while (--hdrlen); 19494 } 19495 19496 /* 19497 * Set the ECN info in the TCP header if it is not a zero 19498 * window probe. Zero window probe is only sent in 19499 * tcp_wput_data() and tcp_timer(). 19500 */ 19501 if (tcp->tcp_ecn_ok && !tcp->tcp_zero_win_probe) { 19502 SET_ECT(tcp, rptr); 19503 19504 if (tcp->tcp_ecn_echo_on) 19505 tcp_h->th_flags[0] |= TH_ECE; 19506 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 19507 tcp_h->th_flags[0] |= TH_CWR; 19508 tcp->tcp_ecn_cwr_sent = B_TRUE; 19509 } 19510 } 19511 19512 /* Fill in SACK options */ 19513 if (num_sack_blk > 0) { 19514 uchar_t *wptr = rptr + tcp->tcp_hdr_len; 19515 sack_blk_t *tmp; 19516 int32_t i; 19517 19518 wptr[0] = TCPOPT_NOP; 19519 wptr[1] = TCPOPT_NOP; 19520 wptr[2] = TCPOPT_SACK; 19521 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 19522 sizeof (sack_blk_t); 19523 wptr += TCPOPT_REAL_SACK_LEN; 19524 19525 tmp = tcp->tcp_sack_list; 19526 for (i = 0; i < num_sack_blk; i++) { 19527 U32_TO_BE32(tmp[i].begin, wptr); 19528 wptr += sizeof (tcp_seq); 19529 U32_TO_BE32(tmp[i].end, wptr); 19530 wptr += sizeof (tcp_seq); 19531 } 19532 tcp_h->th_offset_and_rsrvd[0] += 19533 ((num_sack_blk * 2 + 1) << 4); 19534 } 19535 } 19536 19537 /* 19538 * tcp_mdt_add_attrs() is called by tcp_multisend() in order to attach 19539 * the destination address and SAP attribute, and if necessary, the 19540 * hardware checksum offload attribute to a Multidata message. 19541 */ 19542 static int 19543 tcp_mdt_add_attrs(multidata_t *mmd, const mblk_t *dlmp, const boolean_t hwcksum, 19544 const uint32_t start, const uint32_t stuff, const uint32_t end, 19545 const uint32_t flags, tcp_stack_t *tcps) 19546 { 19547 /* Add global destination address & SAP attribute */ 19548 if (dlmp == NULL || !ip_md_addr_attr(mmd, NULL, dlmp)) { 19549 ip1dbg(("tcp_mdt_add_attrs: can't add global physical " 19550 "destination address+SAP\n")); 19551 19552 if (dlmp != NULL) 19553 TCP_STAT(tcps, tcp_mdt_allocfail); 19554 return (-1); 19555 } 19556 19557 /* Add global hwcksum attribute */ 19558 if (hwcksum && 19559 !ip_md_hcksum_attr(mmd, NULL, start, stuff, end, flags)) { 19560 ip1dbg(("tcp_mdt_add_attrs: can't add global hardware " 19561 "checksum attribute\n")); 19562 19563 TCP_STAT(tcps, tcp_mdt_allocfail); 19564 return (-1); 19565 } 19566 19567 return (0); 19568 } 19569 19570 /* 19571 * Smaller and private version of pdescinfo_t used specifically for TCP, 19572 * which allows for only two payload spans per packet. 19573 */ 19574 typedef struct tcp_pdescinfo_s PDESCINFO_STRUCT(2) tcp_pdescinfo_t; 19575 19576 /* 19577 * tcp_multisend() is called by tcp_wput_data() for Multidata Transmit 19578 * scheme, and returns one the following: 19579 * 19580 * -1 = failed allocation. 19581 * 0 = success; burst count reached, or usable send window is too small, 19582 * and that we'd rather wait until later before sending again. 19583 */ 19584 static int 19585 tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len, 19586 const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable, 19587 uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 19588 const int mdt_thres) 19589 { 19590 mblk_t *md_mp_head, *md_mp, *md_pbuf, *md_pbuf_nxt, *md_hbuf; 19591 multidata_t *mmd; 19592 uint_t obsegs, obbytes, hdr_frag_sz; 19593 uint_t cur_hdr_off, cur_pld_off, base_pld_off, first_snxt; 19594 int num_burst_seg, max_pld; 19595 pdesc_t *pkt; 19596 tcp_pdescinfo_t tcp_pkt_info; 19597 pdescinfo_t *pkt_info; 19598 int pbuf_idx, pbuf_idx_nxt; 19599 int seg_len, len, spill, af; 19600 boolean_t add_buffer, zcopy, clusterwide; 19601 boolean_t rconfirm = B_FALSE; 19602 boolean_t done = B_FALSE; 19603 uint32_t cksum; 19604 uint32_t hwcksum_flags; 19605 ire_t *ire = NULL; 19606 ill_t *ill; 19607 ipha_t *ipha; 19608 ip6_t *ip6h; 19609 ipaddr_t src, dst; 19610 ill_zerocopy_capab_t *zc_cap = NULL; 19611 uint16_t *up; 19612 int err; 19613 conn_t *connp; 19614 tcp_stack_t *tcps = tcp->tcp_tcps; 19615 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 19616 int usable_mmd, tail_unsent_mmd; 19617 uint_t snxt_mmd, obsegs_mmd, obbytes_mmd; 19618 mblk_t *xmit_tail_mmd; 19619 netstackid_t stack_id; 19620 19621 #ifdef _BIG_ENDIAN 19622 #define IPVER(ip6h) ((((uint32_t *)ip6h)[0] >> 28) & 0x7) 19623 #else 19624 #define IPVER(ip6h) ((((uint32_t *)ip6h)[0] >> 4) & 0x7) 19625 #endif 19626 19627 #define PREP_NEW_MULTIDATA() { \ 19628 mmd = NULL; \ 19629 md_mp = md_hbuf = NULL; \ 19630 cur_hdr_off = 0; \ 19631 max_pld = tcp->tcp_mdt_max_pld; \ 19632 pbuf_idx = pbuf_idx_nxt = -1; \ 19633 add_buffer = B_TRUE; \ 19634 zcopy = B_FALSE; \ 19635 } 19636 19637 #define PREP_NEW_PBUF() { \ 19638 md_pbuf = md_pbuf_nxt = NULL; \ 19639 pbuf_idx = pbuf_idx_nxt = -1; \ 19640 cur_pld_off = 0; \ 19641 first_snxt = *snxt; \ 19642 ASSERT(*tail_unsent > 0); \ 19643 base_pld_off = MBLKL(*xmit_tail) - *tail_unsent; \ 19644 } 19645 19646 ASSERT(mdt_thres >= mss); 19647 ASSERT(*usable > 0 && *usable > mdt_thres); 19648 ASSERT(tcp->tcp_state == TCPS_ESTABLISHED); 19649 ASSERT(!TCP_IS_DETACHED(tcp)); 19650 ASSERT(tcp->tcp_valid_bits == 0 || 19651 tcp->tcp_valid_bits == TCP_FSS_VALID); 19652 ASSERT((tcp->tcp_ipversion == IPV4_VERSION && 19653 tcp->tcp_ip_hdr_len == IP_SIMPLE_HDR_LENGTH) || 19654 (tcp->tcp_ipversion == IPV6_VERSION && 19655 tcp->tcp_ip_hdr_len == IPV6_HDR_LEN)); 19656 19657 connp = tcp->tcp_connp; 19658 ASSERT(connp != NULL); 19659 ASSERT(CONN_IS_LSO_MD_FASTPATH(connp)); 19660 ASSERT(!CONN_IPSEC_OUT_ENCAPSULATED(connp)); 19661 19662 stack_id = connp->conn_netstack->netstack_stackid; 19663 19664 usable_mmd = tail_unsent_mmd = 0; 19665 snxt_mmd = obsegs_mmd = obbytes_mmd = 0; 19666 xmit_tail_mmd = NULL; 19667 /* 19668 * Note that tcp will only declare at most 2 payload spans per 19669 * packet, which is much lower than the maximum allowable number 19670 * of packet spans per Multidata. For this reason, we use the 19671 * privately declared and smaller descriptor info structure, in 19672 * order to save some stack space. 19673 */ 19674 pkt_info = (pdescinfo_t *)&tcp_pkt_info; 19675 19676 af = (tcp->tcp_ipversion == IPV4_VERSION) ? AF_INET : AF_INET6; 19677 if (af == AF_INET) { 19678 dst = tcp->tcp_ipha->ipha_dst; 19679 src = tcp->tcp_ipha->ipha_src; 19680 ASSERT(!CLASSD(dst)); 19681 } 19682 ASSERT(af == AF_INET || 19683 !IN6_IS_ADDR_MULTICAST(&tcp->tcp_ip6h->ip6_dst)); 19684 19685 obsegs = obbytes = 0; 19686 num_burst_seg = tcp->tcp_snd_burst; 19687 md_mp_head = NULL; 19688 PREP_NEW_MULTIDATA(); 19689 19690 /* 19691 * Before we go on further, make sure there is an IRE that we can 19692 * use, and that the ILL supports MDT. Otherwise, there's no point 19693 * in proceeding any further, and we should just hand everything 19694 * off to the legacy path. 19695 */ 19696 if (!tcp_send_find_ire(tcp, (af == AF_INET) ? &dst : NULL, &ire)) 19697 goto legacy_send_no_md; 19698 19699 ASSERT(ire != NULL); 19700 ASSERT(af != AF_INET || ire->ire_ipversion == IPV4_VERSION); 19701 ASSERT(af == AF_INET || !IN6_IS_ADDR_V4MAPPED(&(ire->ire_addr_v6))); 19702 ASSERT(af == AF_INET || ire->ire_nce != NULL); 19703 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 19704 /* 19705 * If we do support loopback for MDT (which requires modifications 19706 * to the receiving paths), the following assertions should go away, 19707 * and we would be sending the Multidata to loopback conn later on. 19708 */ 19709 ASSERT(!IRE_IS_LOCAL(ire)); 19710 ASSERT(ire->ire_stq != NULL); 19711 19712 ill = ire_to_ill(ire); 19713 ASSERT(ill != NULL); 19714 ASSERT(!ILL_MDT_CAPABLE(ill) || ill->ill_mdt_capab != NULL); 19715 19716 if (!tcp->tcp_ire_ill_check_done) { 19717 tcp_ire_ill_check(tcp, ire, ill, B_TRUE); 19718 tcp->tcp_ire_ill_check_done = B_TRUE; 19719 } 19720 19721 /* 19722 * If the underlying interface conditions have changed, or if the 19723 * new interface does not support MDT, go back to legacy path. 19724 */ 19725 if (!ILL_MDT_USABLE(ill) || (ire->ire_flags & RTF_MULTIRT) != 0) { 19726 /* don't go through this path anymore for this connection */ 19727 TCP_STAT(tcps, tcp_mdt_conn_halted2); 19728 tcp->tcp_mdt = B_FALSE; 19729 ip1dbg(("tcp_multisend: disabling MDT for connp %p on " 19730 "interface %s\n", (void *)connp, ill->ill_name)); 19731 /* IRE will be released prior to returning */ 19732 goto legacy_send_no_md; 19733 } 19734 19735 if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) 19736 zc_cap = ill->ill_zerocopy_capab; 19737 19738 /* 19739 * Check if we can take tcp fast-path. Note that "incomplete" 19740 * ire's (where the link-layer for next hop is not resolved 19741 * or where the fast-path header in nce_fp_mp is not available 19742 * yet) are sent down the legacy (slow) path. 19743 * NOTE: We should fix ip_xmit_v4 to handle M_MULTIDATA 19744 */ 19745 if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) { 19746 /* IRE will be released prior to returning */ 19747 goto legacy_send_no_md; 19748 } 19749 19750 /* go to legacy path if interface doesn't support zerocopy */ 19751 if (tcp->tcp_snd_zcopy_aware && do_tcpzcopy != 2 && 19752 (zc_cap == NULL || zc_cap->ill_zerocopy_flags == 0)) { 19753 /* IRE will be released prior to returning */ 19754 goto legacy_send_no_md; 19755 } 19756 19757 /* does the interface support hardware checksum offload? */ 19758 hwcksum_flags = 0; 19759 if (ILL_HCKSUM_CAPABLE(ill) && 19760 (ill->ill_hcksum_capab->ill_hcksum_txflags & 19761 (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6 | HCKSUM_INET_PARTIAL | 19762 HCKSUM_IPHDRCKSUM)) && dohwcksum) { 19763 if (ill->ill_hcksum_capab->ill_hcksum_txflags & 19764 HCKSUM_IPHDRCKSUM) 19765 hwcksum_flags = HCK_IPV4_HDRCKSUM; 19766 19767 if (ill->ill_hcksum_capab->ill_hcksum_txflags & 19768 (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6)) 19769 hwcksum_flags |= HCK_FULLCKSUM; 19770 else if (ill->ill_hcksum_capab->ill_hcksum_txflags & 19771 HCKSUM_INET_PARTIAL) 19772 hwcksum_flags |= HCK_PARTIALCKSUM; 19773 } 19774 19775 /* 19776 * Each header fragment consists of the leading extra space, 19777 * followed by the TCP/IP header, and the trailing extra space. 19778 * We make sure that each header fragment begins on a 32-bit 19779 * aligned memory address (tcp_mdt_hdr_head is already 32-bit 19780 * aligned in tcp_mdt_update). 19781 */ 19782 hdr_frag_sz = roundup((tcp->tcp_mdt_hdr_head + tcp_hdr_len + 19783 tcp->tcp_mdt_hdr_tail), 4); 19784 19785 /* are we starting from the beginning of data block? */ 19786 if (*tail_unsent == 0) { 19787 *xmit_tail = (*xmit_tail)->b_cont; 19788 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= (uintptr_t)INT_MAX); 19789 *tail_unsent = (int)MBLKL(*xmit_tail); 19790 } 19791 19792 /* 19793 * Here we create one or more Multidata messages, each made up of 19794 * one header buffer and up to N payload buffers. This entire 19795 * operation is done within two loops: 19796 * 19797 * The outer loop mostly deals with creating the Multidata message, 19798 * as well as the header buffer that gets added to it. It also 19799 * links the Multidata messages together such that all of them can 19800 * be sent down to the lower layer in a single putnext call; this 19801 * linking behavior depends on the tcp_mdt_chain tunable. 19802 * 19803 * The inner loop takes an existing Multidata message, and adds 19804 * one or more (up to tcp_mdt_max_pld) payload buffers to it. It 19805 * packetizes those buffers by filling up the corresponding header 19806 * buffer fragments with the proper IP and TCP headers, and by 19807 * describing the layout of each packet in the packet descriptors 19808 * that get added to the Multidata. 19809 */ 19810 do { 19811 /* 19812 * If usable send window is too small, or data blocks in 19813 * transmit list are smaller than our threshold (i.e. app 19814 * performs large writes followed by small ones), we hand 19815 * off the control over to the legacy path. Note that we'll 19816 * get back the control once it encounters a large block. 19817 */ 19818 if (*usable < mss || (*tail_unsent <= mdt_thres && 19819 (*xmit_tail)->b_cont != NULL && 19820 MBLKL((*xmit_tail)->b_cont) <= mdt_thres)) { 19821 /* send down what we've got so far */ 19822 if (md_mp_head != NULL) { 19823 tcp_multisend_data(tcp, ire, ill, md_mp_head, 19824 obsegs, obbytes, &rconfirm); 19825 } 19826 /* 19827 * Pass control over to tcp_send(), but tell it to 19828 * return to us once a large-size transmission is 19829 * possible. 19830 */ 19831 TCP_STAT(tcps, tcp_mdt_legacy_small); 19832 if ((err = tcp_send(q, tcp, mss, tcp_hdr_len, 19833 tcp_tcp_hdr_len, num_sack_blk, usable, snxt, 19834 tail_unsent, xmit_tail, local_time, 19835 mdt_thres)) <= 0) { 19836 /* burst count reached, or alloc failed */ 19837 IRE_REFRELE(ire); 19838 return (err); 19839 } 19840 19841 /* tcp_send() may have sent everything, so check */ 19842 if (*usable <= 0) { 19843 IRE_REFRELE(ire); 19844 return (0); 19845 } 19846 19847 TCP_STAT(tcps, tcp_mdt_legacy_ret); 19848 /* 19849 * We may have delivered the Multidata, so make sure 19850 * to re-initialize before the next round. 19851 */ 19852 md_mp_head = NULL; 19853 obsegs = obbytes = 0; 19854 num_burst_seg = tcp->tcp_snd_burst; 19855 PREP_NEW_MULTIDATA(); 19856 19857 /* are we starting from the beginning of data block? */ 19858 if (*tail_unsent == 0) { 19859 *xmit_tail = (*xmit_tail)->b_cont; 19860 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 19861 (uintptr_t)INT_MAX); 19862 *tail_unsent = (int)MBLKL(*xmit_tail); 19863 } 19864 } 19865 /* 19866 * Record current values for parameters we may need to pass 19867 * to tcp_send() or tcp_multisend_data(). We checkpoint at 19868 * each iteration of the outer loop (each multidata message 19869 * creation). If we have a failure in the inner loop, we send 19870 * any complete multidata messages we have before reverting 19871 * to using the traditional non-md path. 19872 */ 19873 snxt_mmd = *snxt; 19874 usable_mmd = *usable; 19875 xmit_tail_mmd = *xmit_tail; 19876 tail_unsent_mmd = *tail_unsent; 19877 obsegs_mmd = obsegs; 19878 obbytes_mmd = obbytes; 19879 19880 /* 19881 * max_pld limits the number of mblks in tcp's transmit 19882 * queue that can be added to a Multidata message. Once 19883 * this counter reaches zero, no more additional mblks 19884 * can be added to it. What happens afterwards depends 19885 * on whether or not we are set to chain the Multidata 19886 * messages. If we are to link them together, reset 19887 * max_pld to its original value (tcp_mdt_max_pld) and 19888 * prepare to create a new Multidata message which will 19889 * get linked to md_mp_head. Else, leave it alone and 19890 * let the inner loop break on its own. 19891 */ 19892 if (tcp_mdt_chain && max_pld == 0) 19893 PREP_NEW_MULTIDATA(); 19894 19895 /* adding a payload buffer; re-initialize values */ 19896 if (add_buffer) 19897 PREP_NEW_PBUF(); 19898 19899 /* 19900 * If we don't have a Multidata, either because we just 19901 * (re)entered this outer loop, or after we branched off 19902 * to tcp_send above, setup the Multidata and header 19903 * buffer to be used. 19904 */ 19905 if (md_mp == NULL) { 19906 int md_hbuflen; 19907 uint32_t start, stuff; 19908 19909 /* 19910 * Calculate Multidata header buffer size large enough 19911 * to hold all of the headers that can possibly be 19912 * sent at this moment. We'd rather over-estimate 19913 * the size than running out of space; this is okay 19914 * since this buffer is small anyway. 19915 */ 19916 md_hbuflen = (howmany(*usable, mss) + 1) * hdr_frag_sz; 19917 19918 /* 19919 * Start and stuff offset for partial hardware 19920 * checksum offload; these are currently for IPv4. 19921 * For full checksum offload, they are set to zero. 19922 */ 19923 if ((hwcksum_flags & HCK_PARTIALCKSUM)) { 19924 if (af == AF_INET) { 19925 start = IP_SIMPLE_HDR_LENGTH; 19926 stuff = IP_SIMPLE_HDR_LENGTH + 19927 TCP_CHECKSUM_OFFSET; 19928 } else { 19929 start = IPV6_HDR_LEN; 19930 stuff = IPV6_HDR_LEN + 19931 TCP_CHECKSUM_OFFSET; 19932 } 19933 } else { 19934 start = stuff = 0; 19935 } 19936 19937 /* 19938 * Create the header buffer, Multidata, as well as 19939 * any necessary attributes (destination address, 19940 * SAP and hardware checksum offload) that should 19941 * be associated with the Multidata message. 19942 */ 19943 ASSERT(cur_hdr_off == 0); 19944 if ((md_hbuf = allocb(md_hbuflen, BPRI_HI)) == NULL || 19945 ((md_hbuf->b_wptr += md_hbuflen), 19946 (mmd = mmd_alloc(md_hbuf, &md_mp, 19947 KM_NOSLEEP)) == NULL) || (tcp_mdt_add_attrs(mmd, 19948 /* fastpath mblk */ 19949 ire->ire_nce->nce_res_mp, 19950 /* hardware checksum enabled */ 19951 (hwcksum_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)), 19952 /* hardware checksum offsets */ 19953 start, stuff, 0, 19954 /* hardware checksum flag */ 19955 hwcksum_flags, tcps) != 0)) { 19956 legacy_send: 19957 /* 19958 * We arrive here from a failure within the 19959 * inner (packetizer) loop or we fail one of 19960 * the conditionals above. We restore the 19961 * previously checkpointed values for: 19962 * xmit_tail 19963 * usable 19964 * tail_unsent 19965 * snxt 19966 * obbytes 19967 * obsegs 19968 * We should then be able to dispatch any 19969 * complete multidata before reverting to the 19970 * traditional path with consistent parameters 19971 * (the inner loop updates these as it 19972 * iterates). 19973 */ 19974 *xmit_tail = xmit_tail_mmd; 19975 *usable = usable_mmd; 19976 *tail_unsent = tail_unsent_mmd; 19977 *snxt = snxt_mmd; 19978 obbytes = obbytes_mmd; 19979 obsegs = obsegs_mmd; 19980 if (md_mp != NULL) { 19981 /* Unlink message from the chain */ 19982 if (md_mp_head != NULL) { 19983 err = (intptr_t)rmvb(md_mp_head, 19984 md_mp); 19985 /* 19986 * We can't assert that rmvb 19987 * did not return -1, since we 19988 * may get here before linkb 19989 * happens. We do, however, 19990 * check if we just removed the 19991 * only element in the list. 19992 */ 19993 if (err == 0) 19994 md_mp_head = NULL; 19995 } 19996 /* md_hbuf gets freed automatically */ 19997 TCP_STAT(tcps, tcp_mdt_discarded); 19998 freeb(md_mp); 19999 } else { 20000 /* Either allocb or mmd_alloc failed */ 20001 TCP_STAT(tcps, tcp_mdt_allocfail); 20002 if (md_hbuf != NULL) 20003 freeb(md_hbuf); 20004 } 20005 20006 /* send down what we've got so far */ 20007 if (md_mp_head != NULL) { 20008 tcp_multisend_data(tcp, ire, ill, 20009 md_mp_head, obsegs, obbytes, 20010 &rconfirm); 20011 } 20012 legacy_send_no_md: 20013 if (ire != NULL) 20014 IRE_REFRELE(ire); 20015 /* 20016 * Too bad; let the legacy path handle this. 20017 * We specify INT_MAX for the threshold, since 20018 * we gave up with the Multidata processings 20019 * and let the old path have it all. 20020 */ 20021 TCP_STAT(tcps, tcp_mdt_legacy_all); 20022 return (tcp_send(q, tcp, mss, tcp_hdr_len, 20023 tcp_tcp_hdr_len, num_sack_blk, usable, 20024 snxt, tail_unsent, xmit_tail, local_time, 20025 INT_MAX)); 20026 } 20027 20028 /* link to any existing ones, if applicable */ 20029 TCP_STAT(tcps, tcp_mdt_allocd); 20030 if (md_mp_head == NULL) { 20031 md_mp_head = md_mp; 20032 } else if (tcp_mdt_chain) { 20033 TCP_STAT(tcps, tcp_mdt_linked); 20034 linkb(md_mp_head, md_mp); 20035 } 20036 } 20037 20038 ASSERT(md_mp_head != NULL); 20039 ASSERT(tcp_mdt_chain || md_mp_head->b_cont == NULL); 20040 ASSERT(md_mp != NULL && mmd != NULL); 20041 ASSERT(md_hbuf != NULL); 20042 20043 /* 20044 * Packetize the transmittable portion of the data block; 20045 * each data block is essentially added to the Multidata 20046 * as a payload buffer. We also deal with adding more 20047 * than one payload buffers, which happens when the remaining 20048 * packetized portion of the current payload buffer is less 20049 * than MSS, while the next data block in transmit queue 20050 * has enough data to make up for one. This "spillover" 20051 * case essentially creates a split-packet, where portions 20052 * of the packet's payload fragments may span across two 20053 * virtually discontiguous address blocks. 20054 */ 20055 seg_len = mss; 20056 do { 20057 len = seg_len; 20058 20059 /* one must remain NULL for DTRACE_IP_FASTPATH */ 20060 ipha = NULL; 20061 ip6h = NULL; 20062 20063 ASSERT(len > 0); 20064 ASSERT(max_pld >= 0); 20065 ASSERT(!add_buffer || cur_pld_off == 0); 20066 20067 /* 20068 * First time around for this payload buffer; note 20069 * in the case of a spillover, the following has 20070 * been done prior to adding the split-packet 20071 * descriptor to Multidata, and we don't want to 20072 * repeat the process. 20073 */ 20074 if (add_buffer) { 20075 ASSERT(mmd != NULL); 20076 ASSERT(md_pbuf == NULL); 20077 ASSERT(md_pbuf_nxt == NULL); 20078 ASSERT(pbuf_idx == -1 && pbuf_idx_nxt == -1); 20079 20080 /* 20081 * Have we reached the limit? We'd get to 20082 * this case when we're not chaining the 20083 * Multidata messages together, and since 20084 * we're done, terminate this loop. 20085 */ 20086 if (max_pld == 0) 20087 break; /* done */ 20088 20089 if ((md_pbuf = dupb(*xmit_tail)) == NULL) { 20090 TCP_STAT(tcps, tcp_mdt_allocfail); 20091 goto legacy_send; /* out_of_mem */ 20092 } 20093 20094 if (IS_VMLOANED_MBLK(md_pbuf) && !zcopy && 20095 zc_cap != NULL) { 20096 if (!ip_md_zcopy_attr(mmd, NULL, 20097 zc_cap->ill_zerocopy_flags)) { 20098 freeb(md_pbuf); 20099 TCP_STAT(tcps, 20100 tcp_mdt_allocfail); 20101 /* out_of_mem */ 20102 goto legacy_send; 20103 } 20104 zcopy = B_TRUE; 20105 } 20106 20107 md_pbuf->b_rptr += base_pld_off; 20108 20109 /* 20110 * Add a payload buffer to the Multidata; this 20111 * operation must not fail, or otherwise our 20112 * logic in this routine is broken. There 20113 * is no memory allocation done by the 20114 * routine, so any returned failure simply 20115 * tells us that we've done something wrong. 20116 * 20117 * A failure tells us that either we're adding 20118 * the same payload buffer more than once, or 20119 * we're trying to add more buffers than 20120 * allowed (max_pld calculation is wrong). 20121 * None of the above cases should happen, and 20122 * we panic because either there's horrible 20123 * heap corruption, and/or programming mistake. 20124 */ 20125 pbuf_idx = mmd_addpldbuf(mmd, md_pbuf); 20126 if (pbuf_idx < 0) { 20127 cmn_err(CE_PANIC, "tcp_multisend: " 20128 "payload buffer logic error " 20129 "detected for tcp %p mmd %p " 20130 "pbuf %p (%d)\n", 20131 (void *)tcp, (void *)mmd, 20132 (void *)md_pbuf, pbuf_idx); 20133 } 20134 20135 ASSERT(max_pld > 0); 20136 --max_pld; 20137 add_buffer = B_FALSE; 20138 } 20139 20140 ASSERT(md_mp_head != NULL); 20141 ASSERT(md_pbuf != NULL); 20142 ASSERT(md_pbuf_nxt == NULL); 20143 ASSERT(pbuf_idx != -1); 20144 ASSERT(pbuf_idx_nxt == -1); 20145 ASSERT(*usable > 0); 20146 20147 /* 20148 * We spillover to the next payload buffer only 20149 * if all of the following is true: 20150 * 20151 * 1. There is not enough data on the current 20152 * payload buffer to make up `len', 20153 * 2. We are allowed to send `len', 20154 * 3. The next payload buffer length is large 20155 * enough to accomodate `spill'. 20156 */ 20157 if ((spill = len - *tail_unsent) > 0 && 20158 *usable >= len && 20159 MBLKL((*xmit_tail)->b_cont) >= spill && 20160 max_pld > 0) { 20161 md_pbuf_nxt = dupb((*xmit_tail)->b_cont); 20162 if (md_pbuf_nxt == NULL) { 20163 TCP_STAT(tcps, tcp_mdt_allocfail); 20164 goto legacy_send; /* out_of_mem */ 20165 } 20166 20167 if (IS_VMLOANED_MBLK(md_pbuf_nxt) && !zcopy && 20168 zc_cap != NULL) { 20169 if (!ip_md_zcopy_attr(mmd, NULL, 20170 zc_cap->ill_zerocopy_flags)) { 20171 freeb(md_pbuf_nxt); 20172 TCP_STAT(tcps, 20173 tcp_mdt_allocfail); 20174 /* out_of_mem */ 20175 goto legacy_send; 20176 } 20177 zcopy = B_TRUE; 20178 } 20179 20180 /* 20181 * See comments above on the first call to 20182 * mmd_addpldbuf for explanation on the panic. 20183 */ 20184 pbuf_idx_nxt = mmd_addpldbuf(mmd, md_pbuf_nxt); 20185 if (pbuf_idx_nxt < 0) { 20186 panic("tcp_multisend: " 20187 "next payload buffer logic error " 20188 "detected for tcp %p mmd %p " 20189 "pbuf %p (%d)\n", 20190 (void *)tcp, (void *)mmd, 20191 (void *)md_pbuf_nxt, pbuf_idx_nxt); 20192 } 20193 20194 ASSERT(max_pld > 0); 20195 --max_pld; 20196 } else if (spill > 0) { 20197 /* 20198 * If there's a spillover, but the following 20199 * xmit_tail couldn't give us enough octets 20200 * to reach "len", then stop the current 20201 * Multidata creation and let the legacy 20202 * tcp_send() path take over. We don't want 20203 * to send the tiny segment as part of this 20204 * Multidata for performance reasons; instead, 20205 * we let the legacy path deal with grouping 20206 * it with the subsequent small mblks. 20207 */ 20208 if (*usable >= len && 20209 MBLKL((*xmit_tail)->b_cont) < spill) { 20210 max_pld = 0; 20211 break; /* done */ 20212 } 20213 20214 /* 20215 * We can't spillover, and we are near 20216 * the end of the current payload buffer, 20217 * so send what's left. 20218 */ 20219 ASSERT(*tail_unsent > 0); 20220 len = *tail_unsent; 20221 } 20222 20223 /* tail_unsent is negated if there is a spillover */ 20224 *tail_unsent -= len; 20225 *usable -= len; 20226 ASSERT(*usable >= 0); 20227 20228 if (*usable < mss) 20229 seg_len = *usable; 20230 /* 20231 * Sender SWS avoidance; see comments in tcp_send(); 20232 * everything else is the same, except that we only 20233 * do this here if there is no more data to be sent 20234 * following the current xmit_tail. We don't check 20235 * for 1-byte urgent data because we shouldn't get 20236 * here if TCP_URG_VALID is set. 20237 */ 20238 if (*usable > 0 && *usable < mss && 20239 ((md_pbuf_nxt == NULL && 20240 (*xmit_tail)->b_cont == NULL) || 20241 (md_pbuf_nxt != NULL && 20242 (*xmit_tail)->b_cont->b_cont == NULL)) && 20243 seg_len < (tcp->tcp_max_swnd >> 1) && 20244 (tcp->tcp_unsent - 20245 ((*snxt + len) - tcp->tcp_snxt)) > seg_len && 20246 !tcp->tcp_zero_win_probe) { 20247 if ((*snxt + len) == tcp->tcp_snxt && 20248 (*snxt + len) == tcp->tcp_suna) { 20249 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 20250 } 20251 done = B_TRUE; 20252 } 20253 20254 /* 20255 * Prime pump for IP's checksumming on our behalf; 20256 * include the adjustment for a source route if any. 20257 * Do this only for software/partial hardware checksum 20258 * offload, as this field gets zeroed out later for 20259 * the full hardware checksum offload case. 20260 */ 20261 if (!(hwcksum_flags & HCK_FULLCKSUM)) { 20262 cksum = len + tcp_tcp_hdr_len + tcp->tcp_sum; 20263 cksum = (cksum >> 16) + (cksum & 0xFFFF); 20264 U16_TO_ABE16(cksum, tcp->tcp_tcph->th_sum); 20265 } 20266 20267 U32_TO_ABE32(*snxt, tcp->tcp_tcph->th_seq); 20268 *snxt += len; 20269 20270 tcp->tcp_tcph->th_flags[0] = TH_ACK; 20271 /* 20272 * We set the PUSH bit only if TCP has no more buffered 20273 * data to be transmitted (or if sender SWS avoidance 20274 * takes place), as opposed to setting it for every 20275 * last packet in the burst. 20276 */ 20277 if (done || 20278 (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) == 0) 20279 tcp->tcp_tcph->th_flags[0] |= TH_PUSH; 20280 20281 /* 20282 * Set FIN bit if this is our last segment; snxt 20283 * already includes its length, and it will not 20284 * be adjusted after this point. 20285 */ 20286 if (tcp->tcp_valid_bits == TCP_FSS_VALID && 20287 *snxt == tcp->tcp_fss) { 20288 if (!tcp->tcp_fin_acked) { 20289 tcp->tcp_tcph->th_flags[0] |= TH_FIN; 20290 BUMP_MIB(&tcps->tcps_mib, 20291 tcpOutControl); 20292 } 20293 if (!tcp->tcp_fin_sent) { 20294 tcp->tcp_fin_sent = B_TRUE; 20295 /* 20296 * tcp state must be ESTABLISHED 20297 * in order for us to get here in 20298 * the first place. 20299 */ 20300 tcp->tcp_state = TCPS_FIN_WAIT_1; 20301 20302 /* 20303 * Upon returning from this routine, 20304 * tcp_wput_data() will set tcp_snxt 20305 * to be equal to snxt + tcp_fin_sent. 20306 * This is essentially the same as 20307 * setting it to tcp_fss + 1. 20308 */ 20309 } 20310 } 20311 20312 tcp->tcp_last_sent_len = (ushort_t)len; 20313 20314 len += tcp_hdr_len; 20315 if (tcp->tcp_ipversion == IPV4_VERSION) 20316 tcp->tcp_ipha->ipha_length = htons(len); 20317 else 20318 tcp->tcp_ip6h->ip6_plen = htons(len - 20319 ((char *)&tcp->tcp_ip6h[1] - 20320 tcp->tcp_iphc)); 20321 20322 pkt_info->flags = (PDESC_HBUF_REF | PDESC_PBUF_REF); 20323 20324 /* setup header fragment */ 20325 PDESC_HDR_ADD(pkt_info, 20326 md_hbuf->b_rptr + cur_hdr_off, /* base */ 20327 tcp->tcp_mdt_hdr_head, /* head room */ 20328 tcp_hdr_len, /* len */ 20329 tcp->tcp_mdt_hdr_tail); /* tail room */ 20330 20331 ASSERT(pkt_info->hdr_lim - pkt_info->hdr_base == 20332 hdr_frag_sz); 20333 ASSERT(MBLKIN(md_hbuf, 20334 (pkt_info->hdr_base - md_hbuf->b_rptr), 20335 PDESC_HDRSIZE(pkt_info))); 20336 20337 /* setup first payload fragment */ 20338 PDESC_PLD_INIT(pkt_info); 20339 PDESC_PLD_SPAN_ADD(pkt_info, 20340 pbuf_idx, /* index */ 20341 md_pbuf->b_rptr + cur_pld_off, /* start */ 20342 tcp->tcp_last_sent_len); /* len */ 20343 20344 /* create a split-packet in case of a spillover */ 20345 if (md_pbuf_nxt != NULL) { 20346 ASSERT(spill > 0); 20347 ASSERT(pbuf_idx_nxt > pbuf_idx); 20348 ASSERT(!add_buffer); 20349 20350 md_pbuf = md_pbuf_nxt; 20351 md_pbuf_nxt = NULL; 20352 pbuf_idx = pbuf_idx_nxt; 20353 pbuf_idx_nxt = -1; 20354 cur_pld_off = spill; 20355 20356 /* trim out first payload fragment */ 20357 PDESC_PLD_SPAN_TRIM(pkt_info, 0, spill); 20358 20359 /* setup second payload fragment */ 20360 PDESC_PLD_SPAN_ADD(pkt_info, 20361 pbuf_idx, /* index */ 20362 md_pbuf->b_rptr, /* start */ 20363 spill); /* len */ 20364 20365 if ((*xmit_tail)->b_next == NULL) { 20366 /* 20367 * Store the lbolt used for RTT 20368 * estimation. We can only record one 20369 * timestamp per mblk so we do it when 20370 * we reach the end of the payload 20371 * buffer. Also we only take a new 20372 * timestamp sample when the previous 20373 * timed data from the same mblk has 20374 * been ack'ed. 20375 */ 20376 (*xmit_tail)->b_prev = local_time; 20377 (*xmit_tail)->b_next = 20378 (mblk_t *)(uintptr_t)first_snxt; 20379 } 20380 20381 first_snxt = *snxt - spill; 20382 20383 /* 20384 * Advance xmit_tail; usable could be 0 by 20385 * the time we got here, but we made sure 20386 * above that we would only spillover to 20387 * the next data block if usable includes 20388 * the spilled-over amount prior to the 20389 * subtraction. Therefore, we are sure 20390 * that xmit_tail->b_cont can't be NULL. 20391 */ 20392 ASSERT((*xmit_tail)->b_cont != NULL); 20393 *xmit_tail = (*xmit_tail)->b_cont; 20394 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 20395 (uintptr_t)INT_MAX); 20396 *tail_unsent = (int)MBLKL(*xmit_tail) - spill; 20397 } else { 20398 cur_pld_off += tcp->tcp_last_sent_len; 20399 } 20400 20401 /* 20402 * Fill in the header using the template header, and 20403 * add options such as time-stamp, ECN and/or SACK, 20404 * as needed. 20405 */ 20406 tcp_fill_header(tcp, pkt_info->hdr_rptr, 20407 (clock_t)local_time, num_sack_blk); 20408 20409 /* take care of some IP header businesses */ 20410 if (af == AF_INET) { 20411 ipha = (ipha_t *)pkt_info->hdr_rptr; 20412 20413 ASSERT(OK_32PTR((uchar_t *)ipha)); 20414 ASSERT(PDESC_HDRL(pkt_info) >= 20415 IP_SIMPLE_HDR_LENGTH); 20416 ASSERT(ipha->ipha_version_and_hdr_length == 20417 IP_SIMPLE_HDR_VERSION); 20418 20419 /* 20420 * Assign ident value for current packet; see 20421 * related comments in ip_wput_ire() about the 20422 * contract private interface with clustering 20423 * group. 20424 */ 20425 clusterwide = B_FALSE; 20426 if (cl_inet_ipident != NULL) { 20427 ASSERT(cl_inet_isclusterwide != NULL); 20428 if ((*cl_inet_isclusterwide)(stack_id, 20429 IPPROTO_IP, AF_INET, 20430 (uint8_t *)(uintptr_t)src, NULL)) { 20431 ipha->ipha_ident = 20432 (*cl_inet_ipident)(stack_id, 20433 IPPROTO_IP, AF_INET, 20434 (uint8_t *)(uintptr_t)src, 20435 (uint8_t *)(uintptr_t)dst, 20436 NULL); 20437 clusterwide = B_TRUE; 20438 } 20439 } 20440 20441 if (!clusterwide) { 20442 ipha->ipha_ident = (uint16_t) 20443 atomic_add_32_nv( 20444 &ire->ire_ident, 1); 20445 } 20446 #ifndef _BIG_ENDIAN 20447 ipha->ipha_ident = (ipha->ipha_ident << 8) | 20448 (ipha->ipha_ident >> 8); 20449 #endif 20450 } else { 20451 ip6h = (ip6_t *)pkt_info->hdr_rptr; 20452 20453 ASSERT(OK_32PTR((uchar_t *)ip6h)); 20454 ASSERT(IPVER(ip6h) == IPV6_VERSION); 20455 ASSERT(ip6h->ip6_nxt == IPPROTO_TCP); 20456 ASSERT(PDESC_HDRL(pkt_info) >= 20457 (IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET + 20458 TCP_CHECKSUM_SIZE)); 20459 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 20460 20461 if (tcp->tcp_ip_forward_progress) { 20462 rconfirm = B_TRUE; 20463 tcp->tcp_ip_forward_progress = B_FALSE; 20464 } 20465 } 20466 20467 /* at least one payload span, and at most two */ 20468 ASSERT(pkt_info->pld_cnt > 0 && pkt_info->pld_cnt < 3); 20469 20470 /* add the packet descriptor to Multidata */ 20471 if ((pkt = mmd_addpdesc(mmd, pkt_info, &err, 20472 KM_NOSLEEP)) == NULL) { 20473 /* 20474 * Any failure other than ENOMEM indicates 20475 * that we have passed in invalid pkt_info 20476 * or parameters to mmd_addpdesc, which must 20477 * not happen. 20478 * 20479 * EINVAL is a result of failure on boundary 20480 * checks against the pkt_info contents. It 20481 * should not happen, and we panic because 20482 * either there's horrible heap corruption, 20483 * and/or programming mistake. 20484 */ 20485 if (err != ENOMEM) { 20486 cmn_err(CE_PANIC, "tcp_multisend: " 20487 "pdesc logic error detected for " 20488 "tcp %p mmd %p pinfo %p (%d)\n", 20489 (void *)tcp, (void *)mmd, 20490 (void *)pkt_info, err); 20491 } 20492 TCP_STAT(tcps, tcp_mdt_addpdescfail); 20493 goto legacy_send; /* out_of_mem */ 20494 } 20495 ASSERT(pkt != NULL); 20496 20497 /* calculate IP header and TCP checksums */ 20498 if (af == AF_INET) { 20499 /* calculate pseudo-header checksum */ 20500 cksum = (dst >> 16) + (dst & 0xFFFF) + 20501 (src >> 16) + (src & 0xFFFF); 20502 20503 /* offset for TCP header checksum */ 20504 up = IPH_TCPH_CHECKSUMP(ipha, 20505 IP_SIMPLE_HDR_LENGTH); 20506 } else { 20507 up = (uint16_t *)&ip6h->ip6_src; 20508 20509 /* calculate pseudo-header checksum */ 20510 cksum = up[0] + up[1] + up[2] + up[3] + 20511 up[4] + up[5] + up[6] + up[7] + 20512 up[8] + up[9] + up[10] + up[11] + 20513 up[12] + up[13] + up[14] + up[15]; 20514 20515 /* Fold the initial sum */ 20516 cksum = (cksum & 0xffff) + (cksum >> 16); 20517 20518 up = (uint16_t *)(((uchar_t *)ip6h) + 20519 IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET); 20520 } 20521 20522 if (hwcksum_flags & HCK_FULLCKSUM) { 20523 /* clear checksum field for hardware */ 20524 *up = 0; 20525 } else if (hwcksum_flags & HCK_PARTIALCKSUM) { 20526 uint32_t sum; 20527 20528 /* pseudo-header checksumming */ 20529 sum = *up + cksum + IP_TCP_CSUM_COMP; 20530 sum = (sum & 0xFFFF) + (sum >> 16); 20531 *up = (sum & 0xFFFF) + (sum >> 16); 20532 } else { 20533 /* software checksumming */ 20534 TCP_STAT(tcps, tcp_out_sw_cksum); 20535 TCP_STAT_UPDATE(tcps, tcp_out_sw_cksum_bytes, 20536 tcp->tcp_hdr_len + tcp->tcp_last_sent_len); 20537 *up = IP_MD_CSUM(pkt, tcp->tcp_ip_hdr_len, 20538 cksum + IP_TCP_CSUM_COMP); 20539 if (*up == 0) 20540 *up = 0xFFFF; 20541 } 20542 20543 /* IPv4 header checksum */ 20544 if (af == AF_INET) { 20545 if (hwcksum_flags & HCK_IPV4_HDRCKSUM) { 20546 ipha->ipha_hdr_checksum = 0; 20547 } else { 20548 IP_HDR_CKSUM(ipha, cksum, 20549 ((uint32_t *)ipha)[0], 20550 ((uint16_t *)ipha)[4]); 20551 } 20552 } 20553 20554 if (af == AF_INET && 20555 HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) || 20556 af == AF_INET6 && 20557 HOOKS6_INTERESTED_PHYSICAL_OUT(ipst)) { 20558 mblk_t *mp, *mp1; 20559 uchar_t *hdr_rptr, *hdr_wptr; 20560 uchar_t *pld_rptr, *pld_wptr; 20561 20562 /* 20563 * We reconstruct a pseudo packet for the hooks 20564 * framework using mmd_transform_link(). 20565 * If it is a split packet we pullup the 20566 * payload. FW_HOOKS expects a pkt comprising 20567 * of two mblks: a header and the payload. 20568 */ 20569 if ((mp = mmd_transform_link(pkt)) == NULL) { 20570 TCP_STAT(tcps, tcp_mdt_allocfail); 20571 goto legacy_send; 20572 } 20573 20574 if (pkt_info->pld_cnt > 1) { 20575 /* split payload, more than one pld */ 20576 if ((mp1 = msgpullup(mp->b_cont, -1)) == 20577 NULL) { 20578 freemsg(mp); 20579 TCP_STAT(tcps, 20580 tcp_mdt_allocfail); 20581 goto legacy_send; 20582 } 20583 freemsg(mp->b_cont); 20584 mp->b_cont = mp1; 20585 } else { 20586 mp1 = mp->b_cont; 20587 } 20588 ASSERT(mp1 != NULL && mp1->b_cont == NULL); 20589 20590 /* 20591 * Remember the message offsets. This is so we 20592 * can detect changes when we return from the 20593 * FW_HOOKS callbacks. 20594 */ 20595 hdr_rptr = mp->b_rptr; 20596 hdr_wptr = mp->b_wptr; 20597 pld_rptr = mp->b_cont->b_rptr; 20598 pld_wptr = mp->b_cont->b_wptr; 20599 20600 if (af == AF_INET) { 20601 DTRACE_PROBE4( 20602 ip4__physical__out__start, 20603 ill_t *, NULL, 20604 ill_t *, ill, 20605 ipha_t *, ipha, 20606 mblk_t *, mp); 20607 FW_HOOKS( 20608 ipst->ips_ip4_physical_out_event, 20609 ipst->ips_ipv4firewall_physical_out, 20610 NULL, ill, ipha, mp, mp, 0, ipst); 20611 DTRACE_PROBE1( 20612 ip4__physical__out__end, 20613 mblk_t *, mp); 20614 } else { 20615 DTRACE_PROBE4( 20616 ip6__physical__out_start, 20617 ill_t *, NULL, 20618 ill_t *, ill, 20619 ip6_t *, ip6h, 20620 mblk_t *, mp); 20621 FW_HOOKS6( 20622 ipst->ips_ip6_physical_out_event, 20623 ipst->ips_ipv6firewall_physical_out, 20624 NULL, ill, ip6h, mp, mp, 0, ipst); 20625 DTRACE_PROBE1( 20626 ip6__physical__out__end, 20627 mblk_t *, mp); 20628 } 20629 20630 if (mp == NULL || 20631 (mp1 = mp->b_cont) == NULL || 20632 mp->b_rptr != hdr_rptr || 20633 mp->b_wptr != hdr_wptr || 20634 mp1->b_rptr != pld_rptr || 20635 mp1->b_wptr != pld_wptr || 20636 mp1->b_cont != NULL) { 20637 /* 20638 * We abandon multidata processing and 20639 * return to the normal path, either 20640 * when a packet is blocked, or when 20641 * the boundaries of header buffer or 20642 * payload buffer have been changed by 20643 * FW_HOOKS[6]. 20644 */ 20645 if (mp != NULL) 20646 freemsg(mp); 20647 goto legacy_send; 20648 } 20649 /* Finished with the pseudo packet */ 20650 freemsg(mp); 20651 } 20652 DTRACE_IP_FASTPATH(md_hbuf, pkt_info->hdr_rptr, 20653 ill, ipha, ip6h); 20654 /* advance header offset */ 20655 cur_hdr_off += hdr_frag_sz; 20656 20657 obbytes += tcp->tcp_last_sent_len; 20658 ++obsegs; 20659 } while (!done && *usable > 0 && --num_burst_seg > 0 && 20660 *tail_unsent > 0); 20661 20662 if ((*xmit_tail)->b_next == NULL) { 20663 /* 20664 * Store the lbolt used for RTT estimation. We can only 20665 * record one timestamp per mblk so we do it when we 20666 * reach the end of the payload buffer. Also we only 20667 * take a new timestamp sample when the previous timed 20668 * data from the same mblk has been ack'ed. 20669 */ 20670 (*xmit_tail)->b_prev = local_time; 20671 (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)first_snxt; 20672 } 20673 20674 ASSERT(*tail_unsent >= 0); 20675 if (*tail_unsent > 0) { 20676 /* 20677 * We got here because we broke out of the above 20678 * loop due to of one of the following cases: 20679 * 20680 * 1. len < adjusted MSS (i.e. small), 20681 * 2. Sender SWS avoidance, 20682 * 3. max_pld is zero. 20683 * 20684 * We are done for this Multidata, so trim our 20685 * last payload buffer (if any) accordingly. 20686 */ 20687 if (md_pbuf != NULL) 20688 md_pbuf->b_wptr -= *tail_unsent; 20689 } else if (*usable > 0) { 20690 *xmit_tail = (*xmit_tail)->b_cont; 20691 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 20692 (uintptr_t)INT_MAX); 20693 *tail_unsent = (int)MBLKL(*xmit_tail); 20694 add_buffer = B_TRUE; 20695 } 20696 } while (!done && *usable > 0 && num_burst_seg > 0 && 20697 (tcp_mdt_chain || max_pld > 0)); 20698 20699 if (md_mp_head != NULL) { 20700 /* send everything down */ 20701 tcp_multisend_data(tcp, ire, ill, md_mp_head, obsegs, obbytes, 20702 &rconfirm); 20703 } 20704 20705 #undef PREP_NEW_MULTIDATA 20706 #undef PREP_NEW_PBUF 20707 #undef IPVER 20708 20709 IRE_REFRELE(ire); 20710 return (0); 20711 } 20712 20713 /* 20714 * A wrapper function for sending one or more Multidata messages down to 20715 * the module below ip; this routine does not release the reference of the 20716 * IRE (caller does that). This routine is analogous to tcp_send_data(). 20717 */ 20718 static void 20719 tcp_multisend_data(tcp_t *tcp, ire_t *ire, const ill_t *ill, mblk_t *md_mp_head, 20720 const uint_t obsegs, const uint_t obbytes, boolean_t *rconfirm) 20721 { 20722 uint64_t delta; 20723 nce_t *nce; 20724 tcp_stack_t *tcps = tcp->tcp_tcps; 20725 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 20726 20727 ASSERT(ire != NULL && ill != NULL); 20728 ASSERT(ire->ire_stq != NULL); 20729 ASSERT(md_mp_head != NULL); 20730 ASSERT(rconfirm != NULL); 20731 20732 /* adjust MIBs and IRE timestamp */ 20733 DTRACE_PROBE2(tcp__trace__send, mblk_t *, md_mp_head, tcp_t *, tcp); 20734 tcp->tcp_obsegs += obsegs; 20735 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataSegs, obsegs); 20736 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, obbytes); 20737 TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out, obsegs); 20738 20739 if (tcp->tcp_ipversion == IPV4_VERSION) { 20740 TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out_v4, obsegs); 20741 } else { 20742 TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out_v6, obsegs); 20743 } 20744 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests, obsegs); 20745 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, obsegs); 20746 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, obbytes); 20747 20748 ire->ire_ob_pkt_count += obsegs; 20749 if (ire->ire_ipif != NULL) 20750 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, obsegs); 20751 ire->ire_last_used_time = lbolt; 20752 20753 if (ipst->ips_ipobs_enabled) { 20754 multidata_t *dlmdp = mmd_getmultidata(md_mp_head); 20755 pdesc_t *dl_pkt; 20756 pdescinfo_t pinfo; 20757 mblk_t *nmp; 20758 zoneid_t szone = tcp->tcp_connp->conn_zoneid; 20759 20760 for (dl_pkt = mmd_getfirstpdesc(dlmdp, &pinfo); 20761 (dl_pkt != NULL); 20762 dl_pkt = mmd_getnextpdesc(dl_pkt, &pinfo)) { 20763 if ((nmp = mmd_transform_link(dl_pkt)) == NULL) 20764 continue; 20765 ipobs_hook(nmp, IPOBS_HOOK_OUTBOUND, szone, 20766 ALL_ZONES, ill, tcp->tcp_ipversion, 0, ipst); 20767 freemsg(nmp); 20768 } 20769 } 20770 20771 /* send it down */ 20772 putnext(ire->ire_stq, md_mp_head); 20773 20774 /* we're done for TCP/IPv4 */ 20775 if (tcp->tcp_ipversion == IPV4_VERSION) 20776 return; 20777 20778 nce = ire->ire_nce; 20779 20780 ASSERT(nce != NULL); 20781 ASSERT(!(nce->nce_flags & (NCE_F_NONUD|NCE_F_PERMANENT))); 20782 ASSERT(nce->nce_state != ND_INCOMPLETE); 20783 20784 /* reachability confirmation? */ 20785 if (*rconfirm) { 20786 nce->nce_last = TICK_TO_MSEC(lbolt64); 20787 if (nce->nce_state != ND_REACHABLE) { 20788 mutex_enter(&nce->nce_lock); 20789 nce->nce_state = ND_REACHABLE; 20790 nce->nce_pcnt = ND_MAX_UNICAST_SOLICIT; 20791 mutex_exit(&nce->nce_lock); 20792 (void) untimeout(nce->nce_timeout_id); 20793 if (ip_debug > 2) { 20794 /* ip1dbg */ 20795 pr_addr_dbg("tcp_multisend_data: state " 20796 "for %s changed to REACHABLE\n", 20797 AF_INET6, &ire->ire_addr_v6); 20798 } 20799 } 20800 /* reset transport reachability confirmation */ 20801 *rconfirm = B_FALSE; 20802 } 20803 20804 delta = TICK_TO_MSEC(lbolt64) - nce->nce_last; 20805 ip1dbg(("tcp_multisend_data: delta = %" PRId64 20806 " ill_reachable_time = %d \n", delta, ill->ill_reachable_time)); 20807 20808 if (delta > (uint64_t)ill->ill_reachable_time) { 20809 mutex_enter(&nce->nce_lock); 20810 switch (nce->nce_state) { 20811 case ND_REACHABLE: 20812 case ND_STALE: 20813 /* 20814 * ND_REACHABLE is identical to ND_STALE in this 20815 * specific case. If reachable time has expired for 20816 * this neighbor (delta is greater than reachable 20817 * time), conceptually, the neighbor cache is no 20818 * longer in REACHABLE state, but already in STALE 20819 * state. So the correct transition here is to 20820 * ND_DELAY. 20821 */ 20822 nce->nce_state = ND_DELAY; 20823 mutex_exit(&nce->nce_lock); 20824 NDP_RESTART_TIMER(nce, 20825 ipst->ips_delay_first_probe_time); 20826 if (ip_debug > 3) { 20827 /* ip2dbg */ 20828 pr_addr_dbg("tcp_multisend_data: state " 20829 "for %s changed to DELAY\n", 20830 AF_INET6, &ire->ire_addr_v6); 20831 } 20832 break; 20833 case ND_DELAY: 20834 case ND_PROBE: 20835 mutex_exit(&nce->nce_lock); 20836 /* Timers have already started */ 20837 break; 20838 case ND_UNREACHABLE: 20839 /* 20840 * ndp timer has detected that this nce is 20841 * unreachable and initiated deleting this nce 20842 * and all its associated IREs. This is a race 20843 * where we found the ire before it was deleted 20844 * and have just sent out a packet using this 20845 * unreachable nce. 20846 */ 20847 mutex_exit(&nce->nce_lock); 20848 break; 20849 default: 20850 ASSERT(0); 20851 } 20852 } 20853 } 20854 20855 /* 20856 * Derived from tcp_send_data(). 20857 */ 20858 static void 20859 tcp_lsosend_data(tcp_t *tcp, mblk_t *mp, ire_t *ire, ill_t *ill, const int mss, 20860 int num_lso_seg) 20861 { 20862 ipha_t *ipha; 20863 mblk_t *ire_fp_mp; 20864 uint_t ire_fp_mp_len; 20865 uint32_t hcksum_txflags = 0; 20866 ipaddr_t src; 20867 ipaddr_t dst; 20868 uint32_t cksum; 20869 uint16_t *up; 20870 tcp_stack_t *tcps = tcp->tcp_tcps; 20871 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 20872 20873 ASSERT(DB_TYPE(mp) == M_DATA); 20874 ASSERT(tcp->tcp_state == TCPS_ESTABLISHED); 20875 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 20876 ASSERT(tcp->tcp_connp != NULL); 20877 ASSERT(CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp)); 20878 20879 ipha = (ipha_t *)mp->b_rptr; 20880 src = ipha->ipha_src; 20881 dst = ipha->ipha_dst; 20882 20883 DTRACE_PROBE2(tcp__trace__send, mblk_t *, mp, tcp_t *, tcp); 20884 20885 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 20886 ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 20887 num_lso_seg); 20888 #ifndef _BIG_ENDIAN 20889 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 20890 #endif 20891 if (tcp->tcp_snd_zcopy_aware) { 20892 if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 || 20893 (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0)) 20894 mp = tcp_zcopy_disable(tcp, mp); 20895 } 20896 20897 if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) { 20898 ASSERT(ill->ill_hcksum_capab != NULL); 20899 hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags; 20900 } 20901 20902 /* 20903 * Since the TCP checksum should be recalculated by h/w, we can just 20904 * zero the checksum field for HCK_FULLCKSUM, or calculate partial 20905 * pseudo-header checksum for HCK_PARTIALCKSUM. 20906 * The partial pseudo-header excludes TCP length, that was calculated 20907 * in tcp_send(), so to zero *up before further processing. 20908 */ 20909 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 20910 20911 up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH); 20912 *up = 0; 20913 20914 IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up, 20915 IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum); 20916 20917 /* 20918 * Append LSO flags and mss to the mp. 20919 */ 20920 lso_info_set(mp, mss, HW_LSO); 20921 20922 ipha->ipha_fragment_offset_and_flags |= 20923 (uint32_t)htons(ire->ire_frag_flag); 20924 20925 ire_fp_mp = ire->ire_nce->nce_fp_mp; 20926 ire_fp_mp_len = MBLKL(ire_fp_mp); 20927 ASSERT(DB_TYPE(ire_fp_mp) == M_DATA); 20928 mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len; 20929 bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len); 20930 20931 UPDATE_OB_PKT_COUNT(ire); 20932 ire->ire_last_used_time = lbolt; 20933 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 20934 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 20935 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 20936 ntohs(ipha->ipha_length)); 20937 20938 DTRACE_PROBE4(ip4__physical__out__start, 20939 ill_t *, NULL, ill_t *, ill, ipha_t *, ipha, mblk_t *, mp); 20940 FW_HOOKS(ipst->ips_ip4_physical_out_event, 20941 ipst->ips_ipv4firewall_physical_out, NULL, 20942 ill, ipha, mp, mp, 0, ipst); 20943 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 20944 DTRACE_IP_FASTPATH(mp, ipha, ill, ipha, NULL); 20945 20946 if (mp != NULL) { 20947 if (ipst->ips_ipobs_enabled) { 20948 zoneid_t szone; 20949 20950 szone = ip_get_zoneid_v4(ipha->ipha_src, mp, 20951 ipst, ALL_ZONES); 20952 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, 20953 ALL_ZONES, ill, IPV4_VERSION, ire_fp_mp_len, ipst); 20954 } 20955 20956 ILL_SEND_TX(ill, ire, tcp->tcp_connp, mp, 0, NULL); 20957 } 20958 } 20959 20960 /* 20961 * tcp_send() is called by tcp_wput_data() for non-Multidata transmission 20962 * scheme, and returns one of the following: 20963 * 20964 * -1 = failed allocation. 20965 * 0 = success; burst count reached, or usable send window is too small, 20966 * and that we'd rather wait until later before sending again. 20967 * 1 = success; we are called from tcp_multisend(), and both usable send 20968 * window and tail_unsent are greater than the MDT threshold, and thus 20969 * Multidata Transmit should be used instead. 20970 */ 20971 static int 20972 tcp_send(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len, 20973 const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable, 20974 uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 20975 const int mdt_thres) 20976 { 20977 int num_burst_seg = tcp->tcp_snd_burst; 20978 ire_t *ire = NULL; 20979 ill_t *ill = NULL; 20980 mblk_t *ire_fp_mp = NULL; 20981 uint_t ire_fp_mp_len = 0; 20982 int num_lso_seg = 1; 20983 uint_t lso_usable; 20984 boolean_t do_lso_send = B_FALSE; 20985 tcp_stack_t *tcps = tcp->tcp_tcps; 20986 20987 /* 20988 * Check LSO capability before any further work. And the similar check 20989 * need to be done in for(;;) loop. 20990 * LSO will be deployed when therer is more than one mss of available 20991 * data and a burst transmission is allowed. 20992 */ 20993 if (tcp->tcp_lso && 20994 (tcp->tcp_valid_bits == 0 || 20995 tcp->tcp_valid_bits == TCP_FSS_VALID) && 20996 num_burst_seg >= 2 && (*usable - 1) / mss >= 1) { 20997 /* 20998 * Try to find usable IRE/ILL and do basic check to the ILL. 20999 * Double check LSO usability before going further, since the 21000 * underlying interface could have been changed. In case of any 21001 * change of LSO capability, set tcp_ire_ill_check_done to 21002 * B_FALSE to force to check the ILL with the next send. 21003 */ 21004 if (tcp_send_find_ire_ill(tcp, NULL, &ire, &ill) && 21005 tcp->tcp_lso && ILL_LSO_TCP_USABLE(ill)) { 21006 /* 21007 * Enable LSO with this transmission. 21008 * Since IRE has been hold in tcp_send_find_ire_ill(), 21009 * IRE_REFRELE(ire) should be called before return. 21010 */ 21011 do_lso_send = B_TRUE; 21012 ire_fp_mp = ire->ire_nce->nce_fp_mp; 21013 ire_fp_mp_len = MBLKL(ire_fp_mp); 21014 /* Round up to multiple of 4 */ 21015 ire_fp_mp_len = ((ire_fp_mp_len + 3) / 4) * 4; 21016 } else { 21017 tcp->tcp_lso = B_FALSE; 21018 tcp->tcp_ire_ill_check_done = B_FALSE; 21019 do_lso_send = B_FALSE; 21020 ill = NULL; 21021 } 21022 } 21023 21024 for (;;) { 21025 struct datab *db; 21026 tcph_t *tcph; 21027 uint32_t sum; 21028 mblk_t *mp, *mp1; 21029 uchar_t *rptr; 21030 int len; 21031 21032 /* 21033 * If we're called by tcp_multisend(), and the amount of 21034 * sendable data as well as the size of current xmit_tail 21035 * is beyond the MDT threshold, return to the caller and 21036 * let the large data transmit be done using MDT. 21037 */ 21038 if (*usable > 0 && *usable > mdt_thres && 21039 (*tail_unsent > mdt_thres || (*tail_unsent == 0 && 21040 MBLKL((*xmit_tail)->b_cont) > mdt_thres))) { 21041 ASSERT(tcp->tcp_mdt); 21042 return (1); /* success; do large send */ 21043 } 21044 21045 if (num_burst_seg == 0) 21046 break; /* success; burst count reached */ 21047 21048 /* 21049 * Calculate the maximum payload length we can send in *one* 21050 * time. 21051 */ 21052 if (do_lso_send) { 21053 /* 21054 * Check whether need to do LSO any more. 21055 */ 21056 if (num_burst_seg >= 2 && (*usable - 1) / mss >= 1) { 21057 lso_usable = MIN(tcp->tcp_lso_max, *usable); 21058 lso_usable = MIN(lso_usable, 21059 num_burst_seg * mss); 21060 21061 num_lso_seg = lso_usable / mss; 21062 if (lso_usable % mss) { 21063 num_lso_seg++; 21064 tcp->tcp_last_sent_len = (ushort_t) 21065 (lso_usable % mss); 21066 } else { 21067 tcp->tcp_last_sent_len = (ushort_t)mss; 21068 } 21069 } else { 21070 do_lso_send = B_FALSE; 21071 num_lso_seg = 1; 21072 lso_usable = mss; 21073 } 21074 } 21075 21076 ASSERT(num_lso_seg <= IP_MAXPACKET / mss + 1); 21077 21078 /* 21079 * Adjust num_burst_seg here. 21080 */ 21081 num_burst_seg -= num_lso_seg; 21082 21083 len = mss; 21084 if (len > *usable) { 21085 ASSERT(do_lso_send == B_FALSE); 21086 21087 len = *usable; 21088 if (len <= 0) { 21089 /* Terminate the loop */ 21090 break; /* success; too small */ 21091 } 21092 /* 21093 * Sender silly-window avoidance. 21094 * Ignore this if we are going to send a 21095 * zero window probe out. 21096 * 21097 * TODO: force data into microscopic window? 21098 * ==> (!pushed || (unsent > usable)) 21099 */ 21100 if (len < (tcp->tcp_max_swnd >> 1) && 21101 (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) > len && 21102 !((tcp->tcp_valid_bits & TCP_URG_VALID) && 21103 len == 1) && (! tcp->tcp_zero_win_probe)) { 21104 /* 21105 * If the retransmit timer is not running 21106 * we start it so that we will retransmit 21107 * in the case when the the receiver has 21108 * decremented the window. 21109 */ 21110 if (*snxt == tcp->tcp_snxt && 21111 *snxt == tcp->tcp_suna) { 21112 /* 21113 * We are not supposed to send 21114 * anything. So let's wait a little 21115 * bit longer before breaking SWS 21116 * avoidance. 21117 * 21118 * What should the value be? 21119 * Suggestion: MAX(init rexmit time, 21120 * tcp->tcp_rto) 21121 */ 21122 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 21123 } 21124 break; /* success; too small */ 21125 } 21126 } 21127 21128 tcph = tcp->tcp_tcph; 21129 21130 /* 21131 * The reason to adjust len here is that we need to set flags 21132 * and calculate checksum. 21133 */ 21134 if (do_lso_send) 21135 len = lso_usable; 21136 21137 *usable -= len; /* Approximate - can be adjusted later */ 21138 if (*usable > 0) 21139 tcph->th_flags[0] = TH_ACK; 21140 else 21141 tcph->th_flags[0] = (TH_ACK | TH_PUSH); 21142 21143 /* 21144 * Prime pump for IP's checksumming on our behalf 21145 * Include the adjustment for a source route if any. 21146 */ 21147 sum = len + tcp_tcp_hdr_len + tcp->tcp_sum; 21148 sum = (sum >> 16) + (sum & 0xFFFF); 21149 U16_TO_ABE16(sum, tcph->th_sum); 21150 21151 U32_TO_ABE32(*snxt, tcph->th_seq); 21152 21153 /* 21154 * Branch off to tcp_xmit_mp() if any of the VALID bits is 21155 * set. For the case when TCP_FSS_VALID is the only valid 21156 * bit (normal active close), branch off only when we think 21157 * that the FIN flag needs to be set. Note for this case, 21158 * that (snxt + len) may not reflect the actual seg_len, 21159 * as len may be further reduced in tcp_xmit_mp(). If len 21160 * gets modified, we will end up here again. 21161 */ 21162 if (tcp->tcp_valid_bits != 0 && 21163 (tcp->tcp_valid_bits != TCP_FSS_VALID || 21164 ((*snxt + len) == tcp->tcp_fss))) { 21165 uchar_t *prev_rptr; 21166 uint32_t prev_snxt = tcp->tcp_snxt; 21167 21168 if (*tail_unsent == 0) { 21169 ASSERT((*xmit_tail)->b_cont != NULL); 21170 *xmit_tail = (*xmit_tail)->b_cont; 21171 prev_rptr = (*xmit_tail)->b_rptr; 21172 *tail_unsent = (int)((*xmit_tail)->b_wptr - 21173 (*xmit_tail)->b_rptr); 21174 } else { 21175 prev_rptr = (*xmit_tail)->b_rptr; 21176 (*xmit_tail)->b_rptr = (*xmit_tail)->b_wptr - 21177 *tail_unsent; 21178 } 21179 mp = tcp_xmit_mp(tcp, *xmit_tail, len, NULL, NULL, 21180 *snxt, B_FALSE, (uint32_t *)&len, B_FALSE); 21181 /* Restore tcp_snxt so we get amount sent right. */ 21182 tcp->tcp_snxt = prev_snxt; 21183 if (prev_rptr == (*xmit_tail)->b_rptr) { 21184 /* 21185 * If the previous timestamp is still in use, 21186 * don't stomp on it. 21187 */ 21188 if ((*xmit_tail)->b_next == NULL) { 21189 (*xmit_tail)->b_prev = local_time; 21190 (*xmit_tail)->b_next = 21191 (mblk_t *)(uintptr_t)(*snxt); 21192 } 21193 } else 21194 (*xmit_tail)->b_rptr = prev_rptr; 21195 21196 if (mp == NULL) { 21197 if (ire != NULL) 21198 IRE_REFRELE(ire); 21199 return (-1); 21200 } 21201 mp1 = mp->b_cont; 21202 21203 if (len <= mss) /* LSO is unusable (!do_lso_send) */ 21204 tcp->tcp_last_sent_len = (ushort_t)len; 21205 while (mp1->b_cont) { 21206 *xmit_tail = (*xmit_tail)->b_cont; 21207 (*xmit_tail)->b_prev = local_time; 21208 (*xmit_tail)->b_next = 21209 (mblk_t *)(uintptr_t)(*snxt); 21210 mp1 = mp1->b_cont; 21211 } 21212 *snxt += len; 21213 *tail_unsent = (*xmit_tail)->b_wptr - mp1->b_wptr; 21214 BUMP_LOCAL(tcp->tcp_obsegs); 21215 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 21216 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); 21217 tcp_send_data(tcp, q, mp); 21218 continue; 21219 } 21220 21221 *snxt += len; /* Adjust later if we don't send all of len */ 21222 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 21223 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); 21224 21225 if (*tail_unsent) { 21226 /* Are the bytes above us in flight? */ 21227 rptr = (*xmit_tail)->b_wptr - *tail_unsent; 21228 if (rptr != (*xmit_tail)->b_rptr) { 21229 *tail_unsent -= len; 21230 if (len <= mss) /* LSO is unusable */ 21231 tcp->tcp_last_sent_len = (ushort_t)len; 21232 len += tcp_hdr_len; 21233 if (tcp->tcp_ipversion == IPV4_VERSION) 21234 tcp->tcp_ipha->ipha_length = htons(len); 21235 else 21236 tcp->tcp_ip6h->ip6_plen = 21237 htons(len - 21238 ((char *)&tcp->tcp_ip6h[1] - 21239 tcp->tcp_iphc)); 21240 mp = dupb(*xmit_tail); 21241 if (mp == NULL) { 21242 if (ire != NULL) 21243 IRE_REFRELE(ire); 21244 return (-1); /* out_of_mem */ 21245 } 21246 mp->b_rptr = rptr; 21247 /* 21248 * If the old timestamp is no longer in use, 21249 * sample a new timestamp now. 21250 */ 21251 if ((*xmit_tail)->b_next == NULL) { 21252 (*xmit_tail)->b_prev = local_time; 21253 (*xmit_tail)->b_next = 21254 (mblk_t *)(uintptr_t)(*snxt-len); 21255 } 21256 goto must_alloc; 21257 } 21258 } else { 21259 *xmit_tail = (*xmit_tail)->b_cont; 21260 ASSERT((uintptr_t)((*xmit_tail)->b_wptr - 21261 (*xmit_tail)->b_rptr) <= (uintptr_t)INT_MAX); 21262 *tail_unsent = (int)((*xmit_tail)->b_wptr - 21263 (*xmit_tail)->b_rptr); 21264 } 21265 21266 (*xmit_tail)->b_prev = local_time; 21267 (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)(*snxt - len); 21268 21269 *tail_unsent -= len; 21270 if (len <= mss) /* LSO is unusable (!do_lso_send) */ 21271 tcp->tcp_last_sent_len = (ushort_t)len; 21272 21273 len += tcp_hdr_len; 21274 if (tcp->tcp_ipversion == IPV4_VERSION) 21275 tcp->tcp_ipha->ipha_length = htons(len); 21276 else 21277 tcp->tcp_ip6h->ip6_plen = htons(len - 21278 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 21279 21280 mp = dupb(*xmit_tail); 21281 if (mp == NULL) { 21282 if (ire != NULL) 21283 IRE_REFRELE(ire); 21284 return (-1); /* out_of_mem */ 21285 } 21286 21287 len = tcp_hdr_len; 21288 /* 21289 * There are four reasons to allocate a new hdr mblk: 21290 * 1) The bytes above us are in use by another packet 21291 * 2) We don't have good alignment 21292 * 3) The mblk is being shared 21293 * 4) We don't have enough room for a header 21294 */ 21295 rptr = mp->b_rptr - len; 21296 if (!OK_32PTR(rptr) || 21297 ((db = mp->b_datap), db->db_ref != 2) || 21298 rptr < db->db_base + ire_fp_mp_len) { 21299 /* NOTE: we assume allocb returns an OK_32PTR */ 21300 21301 must_alloc:; 21302 mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 21303 tcps->tcps_wroff_xtra + ire_fp_mp_len, BPRI_MED); 21304 if (mp1 == NULL) { 21305 freemsg(mp); 21306 if (ire != NULL) 21307 IRE_REFRELE(ire); 21308 return (-1); /* out_of_mem */ 21309 } 21310 mp1->b_cont = mp; 21311 mp = mp1; 21312 /* Leave room for Link Level header */ 21313 len = tcp_hdr_len; 21314 rptr = 21315 &mp->b_rptr[tcps->tcps_wroff_xtra + ire_fp_mp_len]; 21316 mp->b_wptr = &rptr[len]; 21317 } 21318 21319 /* 21320 * Fill in the header using the template header, and add 21321 * options such as time-stamp, ECN and/or SACK, as needed. 21322 */ 21323 tcp_fill_header(tcp, rptr, (clock_t)local_time, num_sack_blk); 21324 21325 mp->b_rptr = rptr; 21326 21327 if (*tail_unsent) { 21328 int spill = *tail_unsent; 21329 21330 mp1 = mp->b_cont; 21331 if (mp1 == NULL) 21332 mp1 = mp; 21333 21334 /* 21335 * If we're a little short, tack on more mblks until 21336 * there is no more spillover. 21337 */ 21338 while (spill < 0) { 21339 mblk_t *nmp; 21340 int nmpsz; 21341 21342 nmp = (*xmit_tail)->b_cont; 21343 nmpsz = MBLKL(nmp); 21344 21345 /* 21346 * Excess data in mblk; can we split it? 21347 * If MDT is enabled for the connection, 21348 * keep on splitting as this is a transient 21349 * send path. 21350 */ 21351 if (!do_lso_send && !tcp->tcp_mdt && 21352 (spill + nmpsz > 0)) { 21353 /* 21354 * Don't split if stream head was 21355 * told to break up larger writes 21356 * into smaller ones. 21357 */ 21358 if (tcp->tcp_maxpsz > 0) 21359 break; 21360 21361 /* 21362 * Next mblk is less than SMSS/2 21363 * rounded up to nearest 64-byte; 21364 * let it get sent as part of the 21365 * next segment. 21366 */ 21367 if (tcp->tcp_localnet && 21368 !tcp->tcp_cork && 21369 (nmpsz < roundup((mss >> 1), 64))) 21370 break; 21371 } 21372 21373 *xmit_tail = nmp; 21374 ASSERT((uintptr_t)nmpsz <= (uintptr_t)INT_MAX); 21375 /* Stash for rtt use later */ 21376 (*xmit_tail)->b_prev = local_time; 21377 (*xmit_tail)->b_next = 21378 (mblk_t *)(uintptr_t)(*snxt - len); 21379 mp1->b_cont = dupb(*xmit_tail); 21380 mp1 = mp1->b_cont; 21381 21382 spill += nmpsz; 21383 if (mp1 == NULL) { 21384 *tail_unsent = spill; 21385 freemsg(mp); 21386 if (ire != NULL) 21387 IRE_REFRELE(ire); 21388 return (-1); /* out_of_mem */ 21389 } 21390 } 21391 21392 /* Trim back any surplus on the last mblk */ 21393 if (spill >= 0) { 21394 mp1->b_wptr -= spill; 21395 *tail_unsent = spill; 21396 } else { 21397 /* 21398 * We did not send everything we could in 21399 * order to remain within the b_cont limit. 21400 */ 21401 *usable -= spill; 21402 *snxt += spill; 21403 tcp->tcp_last_sent_len += spill; 21404 UPDATE_MIB(&tcps->tcps_mib, 21405 tcpOutDataBytes, spill); 21406 /* 21407 * Adjust the checksum 21408 */ 21409 tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 21410 sum += spill; 21411 sum = (sum >> 16) + (sum & 0xFFFF); 21412 U16_TO_ABE16(sum, tcph->th_sum); 21413 if (tcp->tcp_ipversion == IPV4_VERSION) { 21414 sum = ntohs( 21415 ((ipha_t *)rptr)->ipha_length) + 21416 spill; 21417 ((ipha_t *)rptr)->ipha_length = 21418 htons(sum); 21419 } else { 21420 sum = ntohs( 21421 ((ip6_t *)rptr)->ip6_plen) + 21422 spill; 21423 ((ip6_t *)rptr)->ip6_plen = 21424 htons(sum); 21425 } 21426 *tail_unsent = 0; 21427 } 21428 } 21429 if (tcp->tcp_ip_forward_progress) { 21430 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 21431 *(uint32_t *)mp->b_rptr |= IP_FORWARD_PROG; 21432 tcp->tcp_ip_forward_progress = B_FALSE; 21433 } 21434 21435 if (do_lso_send) { 21436 tcp_lsosend_data(tcp, mp, ire, ill, mss, 21437 num_lso_seg); 21438 tcp->tcp_obsegs += num_lso_seg; 21439 21440 TCP_STAT(tcps, tcp_lso_times); 21441 TCP_STAT_UPDATE(tcps, tcp_lso_pkt_out, num_lso_seg); 21442 } else { 21443 tcp_send_data(tcp, q, mp); 21444 BUMP_LOCAL(tcp->tcp_obsegs); 21445 } 21446 } 21447 21448 if (ire != NULL) 21449 IRE_REFRELE(ire); 21450 return (0); 21451 } 21452 21453 /* Unlink and return any mblk that looks like it contains a MDT info */ 21454 static mblk_t * 21455 tcp_mdt_info_mp(mblk_t *mp) 21456 { 21457 mblk_t *prev_mp; 21458 21459 for (;;) { 21460 prev_mp = mp; 21461 /* no more to process? */ 21462 if ((mp = mp->b_cont) == NULL) 21463 break; 21464 21465 switch (DB_TYPE(mp)) { 21466 case M_CTL: 21467 if (*(uint32_t *)mp->b_rptr != MDT_IOC_INFO_UPDATE) 21468 continue; 21469 ASSERT(prev_mp != NULL); 21470 prev_mp->b_cont = mp->b_cont; 21471 mp->b_cont = NULL; 21472 return (mp); 21473 default: 21474 break; 21475 } 21476 } 21477 return (mp); 21478 } 21479 21480 /* MDT info update routine, called when IP notifies us about MDT */ 21481 static void 21482 tcp_mdt_update(tcp_t *tcp, ill_mdt_capab_t *mdt_capab, boolean_t first) 21483 { 21484 boolean_t prev_state; 21485 tcp_stack_t *tcps = tcp->tcp_tcps; 21486 21487 /* 21488 * IP is telling us to abort MDT on this connection? We know 21489 * this because the capability is only turned off when IP 21490 * encounters some pathological cases, e.g. link-layer change 21491 * where the new driver doesn't support MDT, or in situation 21492 * where MDT usage on the link-layer has been switched off. 21493 * IP would not have sent us the initial MDT_IOC_INFO_UPDATE 21494 * if the link-layer doesn't support MDT, and if it does, it 21495 * will indicate that the feature is to be turned on. 21496 */ 21497 prev_state = tcp->tcp_mdt; 21498 tcp->tcp_mdt = (mdt_capab->ill_mdt_on != 0); 21499 if (!tcp->tcp_mdt && !first) { 21500 TCP_STAT(tcps, tcp_mdt_conn_halted3); 21501 ip1dbg(("tcp_mdt_update: disabling MDT for connp %p\n", 21502 (void *)tcp->tcp_connp)); 21503 } 21504 21505 /* 21506 * We currently only support MDT on simple TCP/{IPv4,IPv6}, 21507 * so disable MDT otherwise. The checks are done here 21508 * and in tcp_wput_data(). 21509 */ 21510 if (tcp->tcp_mdt && 21511 (tcp->tcp_ipversion == IPV4_VERSION && 21512 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 21513 (tcp->tcp_ipversion == IPV6_VERSION && 21514 tcp->tcp_ip_hdr_len != IPV6_HDR_LEN)) 21515 tcp->tcp_mdt = B_FALSE; 21516 21517 if (tcp->tcp_mdt) { 21518 if (mdt_capab->ill_mdt_version != MDT_VERSION_2) { 21519 cmn_err(CE_NOTE, "tcp_mdt_update: unknown MDT " 21520 "version (%d), expected version is %d", 21521 mdt_capab->ill_mdt_version, MDT_VERSION_2); 21522 tcp->tcp_mdt = B_FALSE; 21523 return; 21524 } 21525 21526 /* 21527 * We need the driver to be able to handle at least three 21528 * spans per packet in order for tcp MDT to be utilized. 21529 * The first is for the header portion, while the rest are 21530 * needed to handle a packet that straddles across two 21531 * virtually non-contiguous buffers; a typical tcp packet 21532 * therefore consists of only two spans. Note that we take 21533 * a zero as "don't care". 21534 */ 21535 if (mdt_capab->ill_mdt_span_limit > 0 && 21536 mdt_capab->ill_mdt_span_limit < 3) { 21537 tcp->tcp_mdt = B_FALSE; 21538 return; 21539 } 21540 21541 /* a zero means driver wants default value */ 21542 tcp->tcp_mdt_max_pld = MIN(mdt_capab->ill_mdt_max_pld, 21543 tcps->tcps_mdt_max_pbufs); 21544 if (tcp->tcp_mdt_max_pld == 0) 21545 tcp->tcp_mdt_max_pld = tcps->tcps_mdt_max_pbufs; 21546 21547 /* ensure 32-bit alignment */ 21548 tcp->tcp_mdt_hdr_head = roundup(MAX(tcps->tcps_mdt_hdr_head_min, 21549 mdt_capab->ill_mdt_hdr_head), 4); 21550 tcp->tcp_mdt_hdr_tail = roundup(MAX(tcps->tcps_mdt_hdr_tail_min, 21551 mdt_capab->ill_mdt_hdr_tail), 4); 21552 21553 if (!first && !prev_state) { 21554 TCP_STAT(tcps, tcp_mdt_conn_resumed2); 21555 ip1dbg(("tcp_mdt_update: reenabling MDT for connp %p\n", 21556 (void *)tcp->tcp_connp)); 21557 } 21558 } 21559 } 21560 21561 /* Unlink and return any mblk that looks like it contains a LSO info */ 21562 static mblk_t * 21563 tcp_lso_info_mp(mblk_t *mp) 21564 { 21565 mblk_t *prev_mp; 21566 21567 for (;;) { 21568 prev_mp = mp; 21569 /* no more to process? */ 21570 if ((mp = mp->b_cont) == NULL) 21571 break; 21572 21573 switch (DB_TYPE(mp)) { 21574 case M_CTL: 21575 if (*(uint32_t *)mp->b_rptr != LSO_IOC_INFO_UPDATE) 21576 continue; 21577 ASSERT(prev_mp != NULL); 21578 prev_mp->b_cont = mp->b_cont; 21579 mp->b_cont = NULL; 21580 return (mp); 21581 default: 21582 break; 21583 } 21584 } 21585 21586 return (mp); 21587 } 21588 21589 /* LSO info update routine, called when IP notifies us about LSO */ 21590 static void 21591 tcp_lso_update(tcp_t *tcp, ill_lso_capab_t *lso_capab) 21592 { 21593 tcp_stack_t *tcps = tcp->tcp_tcps; 21594 21595 /* 21596 * IP is telling us to abort LSO on this connection? We know 21597 * this because the capability is only turned off when IP 21598 * encounters some pathological cases, e.g. link-layer change 21599 * where the new NIC/driver doesn't support LSO, or in situation 21600 * where LSO usage on the link-layer has been switched off. 21601 * IP would not have sent us the initial LSO_IOC_INFO_UPDATE 21602 * if the link-layer doesn't support LSO, and if it does, it 21603 * will indicate that the feature is to be turned on. 21604 */ 21605 tcp->tcp_lso = (lso_capab->ill_lso_on != 0); 21606 TCP_STAT(tcps, tcp_lso_enabled); 21607 21608 /* 21609 * We currently only support LSO on simple TCP/IPv4, 21610 * so disable LSO otherwise. The checks are done here 21611 * and in tcp_wput_data(). 21612 */ 21613 if (tcp->tcp_lso && 21614 (tcp->tcp_ipversion == IPV4_VERSION && 21615 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 21616 (tcp->tcp_ipversion == IPV6_VERSION)) { 21617 tcp->tcp_lso = B_FALSE; 21618 TCP_STAT(tcps, tcp_lso_disabled); 21619 } else { 21620 tcp->tcp_lso_max = MIN(TCP_MAX_LSO_LENGTH, 21621 lso_capab->ill_lso_max); 21622 } 21623 } 21624 21625 static void 21626 tcp_ire_ill_check(tcp_t *tcp, ire_t *ire, ill_t *ill, boolean_t check_lso_mdt) 21627 { 21628 conn_t *connp = tcp->tcp_connp; 21629 tcp_stack_t *tcps = tcp->tcp_tcps; 21630 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 21631 21632 ASSERT(ire != NULL); 21633 21634 /* 21635 * We may be in the fastpath here, and although we essentially do 21636 * similar checks as in ip_bind_connected{_v6}/ip_xxinfo_return, 21637 * we try to keep things as brief as possible. After all, these 21638 * are only best-effort checks, and we do more thorough ones prior 21639 * to calling tcp_send()/tcp_multisend(). 21640 */ 21641 if ((ipst->ips_ip_lso_outbound || ipst->ips_ip_multidata_outbound) && 21642 check_lso_mdt && !(ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK)) && 21643 ill != NULL && !CONN_IPSEC_OUT_ENCAPSULATED(connp) && 21644 !(ire->ire_flags & RTF_MULTIRT) && 21645 !IPP_ENABLED(IPP_LOCAL_OUT, ipst) && 21646 CONN_IS_LSO_MD_FASTPATH(connp)) { 21647 if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) { 21648 /* Cache the result */ 21649 connp->conn_lso_ok = B_TRUE; 21650 21651 ASSERT(ill->ill_lso_capab != NULL); 21652 if (!ill->ill_lso_capab->ill_lso_on) { 21653 ill->ill_lso_capab->ill_lso_on = 1; 21654 ip1dbg(("tcp_ire_ill_check: connp %p enables " 21655 "LSO for interface %s\n", (void *)connp, 21656 ill->ill_name)); 21657 } 21658 tcp_lso_update(tcp, ill->ill_lso_capab); 21659 } else if (ipst->ips_ip_multidata_outbound && 21660 ILL_MDT_CAPABLE(ill)) { 21661 /* Cache the result */ 21662 connp->conn_mdt_ok = B_TRUE; 21663 21664 ASSERT(ill->ill_mdt_capab != NULL); 21665 if (!ill->ill_mdt_capab->ill_mdt_on) { 21666 ill->ill_mdt_capab->ill_mdt_on = 1; 21667 ip1dbg(("tcp_ire_ill_check: connp %p enables " 21668 "MDT for interface %s\n", (void *)connp, 21669 ill->ill_name)); 21670 } 21671 tcp_mdt_update(tcp, ill->ill_mdt_capab, B_TRUE); 21672 } 21673 } 21674 21675 /* 21676 * The goal is to reduce the number of generated tcp segments by 21677 * setting the maxpsz multiplier to 0; this will have an affect on 21678 * tcp_maxpsz_set(). With this behavior, tcp will pack more data 21679 * into each packet, up to SMSS bytes. Doing this reduces the number 21680 * of outbound segments and incoming ACKs, thus allowing for better 21681 * network and system performance. In contrast the legacy behavior 21682 * may result in sending less than SMSS size, because the last mblk 21683 * for some packets may have more data than needed to make up SMSS, 21684 * and the legacy code refused to "split" it. 21685 * 21686 * We apply the new behavior on following situations: 21687 * 21688 * 1) Loopback connections, 21689 * 2) Connections in which the remote peer is not on local subnet, 21690 * 3) Local subnet connections over the bge interface (see below). 21691 * 21692 * Ideally, we would like this behavior to apply for interfaces other 21693 * than bge. However, doing so would negatively impact drivers which 21694 * perform dynamic mapping and unmapping of DMA resources, which are 21695 * increased by setting the maxpsz multiplier to 0 (more mblks per 21696 * packet will be generated by tcp). The bge driver does not suffer 21697 * from this, as it copies the mblks into pre-mapped buffers, and 21698 * therefore does not require more I/O resources than before. 21699 * 21700 * Otherwise, this behavior is present on all network interfaces when 21701 * the destination endpoint is non-local, since reducing the number 21702 * of packets in general is good for the network. 21703 * 21704 * TODO We need to remove this hard-coded conditional for bge once 21705 * a better "self-tuning" mechanism, or a way to comprehend 21706 * the driver transmit strategy is devised. Until the solution 21707 * is found and well understood, we live with this hack. 21708 */ 21709 if (!tcp_static_maxpsz && 21710 (tcp->tcp_loopback || !tcp->tcp_localnet || 21711 (ill->ill_name_length > 3 && bcmp(ill->ill_name, "bge", 3) == 0))) { 21712 /* override the default value */ 21713 tcp->tcp_maxpsz = 0; 21714 21715 ip3dbg(("tcp_ire_ill_check: connp %p tcp_maxpsz %d on " 21716 "interface %s\n", (void *)connp, tcp->tcp_maxpsz, 21717 ill != NULL ? ill->ill_name : ipif_loopback_name)); 21718 } 21719 21720 /* set the stream head parameters accordingly */ 21721 (void) tcp_maxpsz_set(tcp, B_TRUE); 21722 } 21723 21724 /* tcp_wput_flush is called by tcp_wput_nondata to handle M_FLUSH messages. */ 21725 static void 21726 tcp_wput_flush(tcp_t *tcp, mblk_t *mp) 21727 { 21728 uchar_t fval = *mp->b_rptr; 21729 mblk_t *tail; 21730 queue_t *q = tcp->tcp_wq; 21731 21732 /* TODO: How should flush interact with urgent data? */ 21733 if ((fval & FLUSHW) && tcp->tcp_xmit_head && 21734 !(tcp->tcp_valid_bits & TCP_URG_VALID)) { 21735 /* 21736 * Flush only data that has not yet been put on the wire. If 21737 * we flush data that we have already transmitted, life, as we 21738 * know it, may come to an end. 21739 */ 21740 tail = tcp->tcp_xmit_tail; 21741 tail->b_wptr -= tcp->tcp_xmit_tail_unsent; 21742 tcp->tcp_xmit_tail_unsent = 0; 21743 tcp->tcp_unsent = 0; 21744 if (tail->b_wptr != tail->b_rptr) 21745 tail = tail->b_cont; 21746 if (tail) { 21747 mblk_t **excess = &tcp->tcp_xmit_head; 21748 for (;;) { 21749 mblk_t *mp1 = *excess; 21750 if (mp1 == tail) 21751 break; 21752 tcp->tcp_xmit_tail = mp1; 21753 tcp->tcp_xmit_last = mp1; 21754 excess = &mp1->b_cont; 21755 } 21756 *excess = NULL; 21757 tcp_close_mpp(&tail); 21758 if (tcp->tcp_snd_zcopy_aware) 21759 tcp_zcopy_notify(tcp); 21760 } 21761 /* 21762 * We have no unsent data, so unsent must be less than 21763 * tcp_xmit_lowater, so re-enable flow. 21764 */ 21765 mutex_enter(&tcp->tcp_non_sq_lock); 21766 if (tcp->tcp_flow_stopped) { 21767 tcp_clrqfull(tcp); 21768 } 21769 mutex_exit(&tcp->tcp_non_sq_lock); 21770 } 21771 /* 21772 * TODO: you can't just flush these, you have to increase rwnd for one 21773 * thing. For another, how should urgent data interact? 21774 */ 21775 if (fval & FLUSHR) { 21776 *mp->b_rptr = fval & ~FLUSHW; 21777 /* XXX */ 21778 qreply(q, mp); 21779 return; 21780 } 21781 freemsg(mp); 21782 } 21783 21784 /* 21785 * tcp_wput_iocdata is called by tcp_wput_nondata to handle all M_IOCDATA 21786 * messages. 21787 */ 21788 static void 21789 tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp) 21790 { 21791 mblk_t *mp1; 21792 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 21793 STRUCT_HANDLE(strbuf, sb); 21794 queue_t *q = tcp->tcp_wq; 21795 int error; 21796 uint_t addrlen; 21797 21798 /* Make sure it is one of ours. */ 21799 switch (iocp->ioc_cmd) { 21800 case TI_GETMYNAME: 21801 case TI_GETPEERNAME: 21802 break; 21803 default: 21804 CALL_IP_WPUT(tcp->tcp_connp, q, mp); 21805 return; 21806 } 21807 switch (mi_copy_state(q, mp, &mp1)) { 21808 case -1: 21809 return; 21810 case MI_COPY_CASE(MI_COPY_IN, 1): 21811 break; 21812 case MI_COPY_CASE(MI_COPY_OUT, 1): 21813 /* Copy out the strbuf. */ 21814 mi_copyout(q, mp); 21815 return; 21816 case MI_COPY_CASE(MI_COPY_OUT, 2): 21817 /* All done. */ 21818 mi_copy_done(q, mp, 0); 21819 return; 21820 default: 21821 mi_copy_done(q, mp, EPROTO); 21822 return; 21823 } 21824 /* Check alignment of the strbuf */ 21825 if (!OK_32PTR(mp1->b_rptr)) { 21826 mi_copy_done(q, mp, EINVAL); 21827 return; 21828 } 21829 21830 STRUCT_SET_HANDLE(sb, iocp->ioc_flag, (void *)mp1->b_rptr); 21831 addrlen = tcp->tcp_family == AF_INET ? sizeof (sin_t) : sizeof (sin6_t); 21832 if (STRUCT_FGET(sb, maxlen) < addrlen) { 21833 mi_copy_done(q, mp, EINVAL); 21834 return; 21835 } 21836 21837 mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE); 21838 if (mp1 == NULL) 21839 return; 21840 21841 switch (iocp->ioc_cmd) { 21842 case TI_GETMYNAME: 21843 error = tcp_do_getsockname(tcp, (void *)mp1->b_rptr, &addrlen); 21844 break; 21845 case TI_GETPEERNAME: 21846 error = tcp_do_getpeername(tcp, (void *)mp1->b_rptr, &addrlen); 21847 break; 21848 } 21849 21850 if (error != 0) { 21851 mi_copy_done(q, mp, error); 21852 } else { 21853 mp1->b_wptr += addrlen; 21854 STRUCT_FSET(sb, len, addrlen); 21855 21856 /* Copy out the address */ 21857 mi_copyout(q, mp); 21858 } 21859 } 21860 21861 static void 21862 tcp_disable_direct_sockfs(tcp_t *tcp) 21863 { 21864 #ifdef _ILP32 21865 tcp->tcp_acceptor_id = (t_uscalar_t)tcp->tcp_rq; 21866 #else 21867 tcp->tcp_acceptor_id = tcp->tcp_connp->conn_dev; 21868 #endif 21869 /* 21870 * Insert this socket into the acceptor hash. 21871 * We might need it for T_CONN_RES message 21872 */ 21873 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 21874 21875 if (tcp->tcp_fused) { 21876 /* 21877 * This is a fused loopback tcp; disable 21878 * read-side synchronous streams interface 21879 * and drain any queued data. It is okay 21880 * to do this for non-synchronous streams 21881 * fused tcp as well. 21882 */ 21883 tcp_fuse_disable_pair(tcp, B_FALSE); 21884 } 21885 tcp->tcp_issocket = B_FALSE; 21886 tcp->tcp_sodirect = NULL; 21887 TCP_STAT(tcp->tcp_tcps, tcp_sock_fallback); 21888 } 21889 21890 /* 21891 * tcp_wput_ioctl is called by tcp_wput_nondata() to handle all M_IOCTL 21892 * messages. 21893 */ 21894 /* ARGSUSED */ 21895 static void 21896 tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2) 21897 { 21898 conn_t *connp = (conn_t *)arg; 21899 tcp_t *tcp = connp->conn_tcp; 21900 queue_t *q = tcp->tcp_wq; 21901 struct iocblk *iocp; 21902 21903 ASSERT(DB_TYPE(mp) == M_IOCTL); 21904 /* 21905 * Try and ASSERT the minimum possible references on the 21906 * conn early enough. Since we are executing on write side, 21907 * the connection is obviously not detached and that means 21908 * there is a ref each for TCP and IP. Since we are behind 21909 * the squeue, the minimum references needed are 3. If the 21910 * conn is in classifier hash list, there should be an 21911 * extra ref for that (we check both the possibilities). 21912 */ 21913 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 21914 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 21915 21916 iocp = (struct iocblk *)mp->b_rptr; 21917 switch (iocp->ioc_cmd) { 21918 case TCP_IOC_DEFAULT_Q: 21919 /* Wants to be the default wq. */ 21920 if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) { 21921 iocp->ioc_error = EPERM; 21922 iocp->ioc_count = 0; 21923 mp->b_datap->db_type = M_IOCACK; 21924 qreply(q, mp); 21925 return; 21926 } 21927 tcp_def_q_set(tcp, mp); 21928 return; 21929 case _SIOCSOCKFALLBACK: 21930 /* 21931 * Either sockmod is about to be popped and the socket 21932 * would now be treated as a plain stream, or a module 21933 * is about to be pushed so we could no longer use read- 21934 * side synchronous streams for fused loopback tcp. 21935 * Drain any queued data and disable direct sockfs 21936 * interface from now on. 21937 */ 21938 if (!tcp->tcp_issocket) { 21939 DB_TYPE(mp) = M_IOCNAK; 21940 iocp->ioc_error = EINVAL; 21941 } else { 21942 tcp_disable_direct_sockfs(tcp); 21943 DB_TYPE(mp) = M_IOCACK; 21944 iocp->ioc_error = 0; 21945 } 21946 iocp->ioc_count = 0; 21947 iocp->ioc_rval = 0; 21948 qreply(q, mp); 21949 return; 21950 } 21951 CALL_IP_WPUT(connp, q, mp); 21952 } 21953 21954 /* 21955 * This routine is called by tcp_wput() to handle all TPI requests. 21956 */ 21957 /* ARGSUSED */ 21958 static void 21959 tcp_wput_proto(void *arg, mblk_t *mp, void *arg2) 21960 { 21961 conn_t *connp = (conn_t *)arg; 21962 tcp_t *tcp = connp->conn_tcp; 21963 union T_primitives *tprim = (union T_primitives *)mp->b_rptr; 21964 uchar_t *rptr; 21965 t_scalar_t type; 21966 cred_t *cr; 21967 21968 /* 21969 * Try and ASSERT the minimum possible references on the 21970 * conn early enough. Since we are executing on write side, 21971 * the connection is obviously not detached and that means 21972 * there is a ref each for TCP and IP. Since we are behind 21973 * the squeue, the minimum references needed are 3. If the 21974 * conn is in classifier hash list, there should be an 21975 * extra ref for that (we check both the possibilities). 21976 */ 21977 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 21978 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 21979 21980 rptr = mp->b_rptr; 21981 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 21982 if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { 21983 type = ((union T_primitives *)rptr)->type; 21984 if (type == T_EXDATA_REQ) { 21985 tcp_output_urgent(connp, mp->b_cont, arg2); 21986 freeb(mp); 21987 } else if (type != T_DATA_REQ) { 21988 goto non_urgent_data; 21989 } else { 21990 /* TODO: options, flags, ... from user */ 21991 /* Set length to zero for reclamation below */ 21992 tcp_wput_data(tcp, mp->b_cont, B_TRUE); 21993 freeb(mp); 21994 } 21995 return; 21996 } else { 21997 if (tcp->tcp_debug) { 21998 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 21999 "tcp_wput_proto, dropping one..."); 22000 } 22001 freemsg(mp); 22002 return; 22003 } 22004 22005 non_urgent_data: 22006 22007 switch ((int)tprim->type) { 22008 case T_SSL_PROXY_BIND_REQ: /* an SSL proxy endpoint bind request */ 22009 /* 22010 * save the kssl_ent_t from the next block, and convert this 22011 * back to a normal bind_req. 22012 */ 22013 if (mp->b_cont != NULL) { 22014 ASSERT(MBLKL(mp->b_cont) >= sizeof (kssl_ent_t)); 22015 22016 if (tcp->tcp_kssl_ent != NULL) { 22017 kssl_release_ent(tcp->tcp_kssl_ent, NULL, 22018 KSSL_NO_PROXY); 22019 tcp->tcp_kssl_ent = NULL; 22020 } 22021 bcopy(mp->b_cont->b_rptr, &tcp->tcp_kssl_ent, 22022 sizeof (kssl_ent_t)); 22023 kssl_hold_ent(tcp->tcp_kssl_ent); 22024 freemsg(mp->b_cont); 22025 mp->b_cont = NULL; 22026 } 22027 tprim->type = T_BIND_REQ; 22028 22029 /* FALLTHROUGH */ 22030 case O_T_BIND_REQ: /* bind request */ 22031 case T_BIND_REQ: /* new semantics bind request */ 22032 tcp_tpi_bind(tcp, mp); 22033 break; 22034 case T_UNBIND_REQ: /* unbind request */ 22035 tcp_tpi_unbind(tcp, mp); 22036 break; 22037 case O_T_CONN_RES: /* old connection response XXX */ 22038 case T_CONN_RES: /* connection response */ 22039 tcp_tli_accept(tcp, mp); 22040 break; 22041 case T_CONN_REQ: /* connection request */ 22042 tcp_tpi_connect(tcp, mp); 22043 break; 22044 case T_DISCON_REQ: /* disconnect request */ 22045 tcp_disconnect(tcp, mp); 22046 break; 22047 case T_CAPABILITY_REQ: 22048 tcp_capability_req(tcp, mp); /* capability request */ 22049 break; 22050 case T_INFO_REQ: /* information request */ 22051 tcp_info_req(tcp, mp); 22052 break; 22053 case T_SVR4_OPTMGMT_REQ: /* manage options req */ 22054 case T_OPTMGMT_REQ: 22055 /* 22056 * Note: no support for snmpcom_req() through new 22057 * T_OPTMGMT_REQ. See comments in ip.c 22058 */ 22059 22060 /* 22061 * All Solaris components should pass a db_credp 22062 * for this TPI message, hence we ASSERT. 22063 * But in case there is some other M_PROTO that looks 22064 * like a TPI message sent by some other kernel 22065 * component, we check and return an error. 22066 */ 22067 cr = msg_getcred(mp, NULL); 22068 ASSERT(cr != NULL); 22069 if (cr == NULL) { 22070 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 22071 return; 22072 } 22073 /* 22074 * If EINPROGRESS is returned, the request has been queued 22075 * for subsequent processing by ip_restart_optmgmt(), which 22076 * will do the CONN_DEC_REF(). 22077 */ 22078 CONN_INC_REF(connp); 22079 if ((int)tprim->type == T_SVR4_OPTMGMT_REQ) { 22080 if (svr4_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj, 22081 B_TRUE) != EINPROGRESS) { 22082 CONN_DEC_REF(connp); 22083 } 22084 } else { 22085 if (tpi_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj, 22086 B_TRUE) != EINPROGRESS) { 22087 CONN_DEC_REF(connp); 22088 } 22089 } 22090 break; 22091 22092 case T_UNITDATA_REQ: /* unitdata request */ 22093 tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); 22094 break; 22095 case T_ORDREL_REQ: /* orderly release req */ 22096 freemsg(mp); 22097 22098 if (tcp->tcp_fused) 22099 tcp_unfuse(tcp); 22100 22101 if (tcp_xmit_end(tcp) != 0) { 22102 /* 22103 * We were crossing FINs and got a reset from 22104 * the other side. Just ignore it. 22105 */ 22106 if (tcp->tcp_debug) { 22107 (void) strlog(TCP_MOD_ID, 0, 1, 22108 SL_ERROR|SL_TRACE, 22109 "tcp_wput_proto, T_ORDREL_REQ out of " 22110 "state %s", 22111 tcp_display(tcp, NULL, 22112 DISP_ADDR_AND_PORT)); 22113 } 22114 } 22115 break; 22116 case T_ADDR_REQ: 22117 tcp_addr_req(tcp, mp); 22118 break; 22119 default: 22120 if (tcp->tcp_debug) { 22121 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 22122 "tcp_wput_proto, bogus TPI msg, type %d", 22123 tprim->type); 22124 } 22125 /* 22126 * We used to M_ERROR. Sending TNOTSUPPORT gives the user 22127 * to recover. 22128 */ 22129 tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); 22130 break; 22131 } 22132 } 22133 22134 /* 22135 * The TCP write service routine should never be called... 22136 */ 22137 /* ARGSUSED */ 22138 static void 22139 tcp_wsrv(queue_t *q) 22140 { 22141 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 22142 22143 TCP_STAT(tcps, tcp_wsrv_called); 22144 } 22145 22146 /* Non overlapping byte exchanger */ 22147 static void 22148 tcp_xchg(uchar_t *a, uchar_t *b, int len) 22149 { 22150 uchar_t uch; 22151 22152 while (len-- > 0) { 22153 uch = a[len]; 22154 a[len] = b[len]; 22155 b[len] = uch; 22156 } 22157 } 22158 22159 /* 22160 * Send out a control packet on the tcp connection specified. This routine 22161 * is typically called where we need a simple ACK or RST generated. 22162 */ 22163 static void 22164 tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, uint32_t ack, int ctl) 22165 { 22166 uchar_t *rptr; 22167 tcph_t *tcph; 22168 ipha_t *ipha = NULL; 22169 ip6_t *ip6h = NULL; 22170 uint32_t sum; 22171 int tcp_hdr_len; 22172 int tcp_ip_hdr_len; 22173 mblk_t *mp; 22174 tcp_stack_t *tcps = tcp->tcp_tcps; 22175 22176 /* 22177 * Save sum for use in source route later. 22178 */ 22179 ASSERT(tcp != NULL); 22180 sum = tcp->tcp_tcp_hdr_len + tcp->tcp_sum; 22181 tcp_hdr_len = tcp->tcp_hdr_len; 22182 tcp_ip_hdr_len = tcp->tcp_ip_hdr_len; 22183 22184 /* If a text string is passed in with the request, pass it to strlog. */ 22185 if (str != NULL && tcp->tcp_debug) { 22186 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 22187 "tcp_xmit_ctl: '%s', seq 0x%x, ack 0x%x, ctl 0x%x", 22188 str, seq, ack, ctl); 22189 } 22190 mp = allocb(tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcps->tcps_wroff_xtra, 22191 BPRI_MED); 22192 if (mp == NULL) { 22193 return; 22194 } 22195 rptr = &mp->b_rptr[tcps->tcps_wroff_xtra]; 22196 mp->b_rptr = rptr; 22197 mp->b_wptr = &rptr[tcp_hdr_len]; 22198 bcopy(tcp->tcp_iphc, rptr, tcp_hdr_len); 22199 22200 if (tcp->tcp_ipversion == IPV4_VERSION) { 22201 ipha = (ipha_t *)rptr; 22202 ipha->ipha_length = htons(tcp_hdr_len); 22203 } else { 22204 ip6h = (ip6_t *)rptr; 22205 ASSERT(tcp != NULL); 22206 ip6h->ip6_plen = htons(tcp->tcp_hdr_len - 22207 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 22208 } 22209 tcph = (tcph_t *)&rptr[tcp_ip_hdr_len]; 22210 tcph->th_flags[0] = (uint8_t)ctl; 22211 if (ctl & TH_RST) { 22212 BUMP_MIB(&tcps->tcps_mib, tcpOutRsts); 22213 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 22214 /* 22215 * Don't send TSopt w/ TH_RST packets per RFC 1323. 22216 */ 22217 if (tcp->tcp_snd_ts_ok && 22218 tcp->tcp_state > TCPS_SYN_SENT) { 22219 mp->b_wptr = &rptr[tcp_hdr_len - TCPOPT_REAL_TS_LEN]; 22220 *(mp->b_wptr) = TCPOPT_EOL; 22221 if (tcp->tcp_ipversion == IPV4_VERSION) { 22222 ipha->ipha_length = htons(tcp_hdr_len - 22223 TCPOPT_REAL_TS_LEN); 22224 } else { 22225 ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) - 22226 TCPOPT_REAL_TS_LEN); 22227 } 22228 tcph->th_offset_and_rsrvd[0] -= (3 << 4); 22229 sum -= TCPOPT_REAL_TS_LEN; 22230 } 22231 } 22232 if (ctl & TH_ACK) { 22233 if (tcp->tcp_snd_ts_ok) { 22234 U32_TO_BE32(lbolt, 22235 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 22236 U32_TO_BE32(tcp->tcp_ts_recent, 22237 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 22238 } 22239 22240 /* Update the latest receive window size in TCP header. */ 22241 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 22242 tcph->th_win); 22243 tcp->tcp_rack = ack; 22244 tcp->tcp_rack_cnt = 0; 22245 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 22246 } 22247 BUMP_LOCAL(tcp->tcp_obsegs); 22248 U32_TO_BE32(seq, tcph->th_seq); 22249 U32_TO_BE32(ack, tcph->th_ack); 22250 /* 22251 * Include the adjustment for a source route if any. 22252 */ 22253 sum = (sum >> 16) + (sum & 0xFFFF); 22254 U16_TO_BE16(sum, tcph->th_sum); 22255 tcp_send_data(tcp, tcp->tcp_wq, mp); 22256 } 22257 22258 /* 22259 * If this routine returns B_TRUE, TCP can generate a RST in response 22260 * to a segment. If it returns B_FALSE, TCP should not respond. 22261 */ 22262 static boolean_t 22263 tcp_send_rst_chk(tcp_stack_t *tcps) 22264 { 22265 clock_t now; 22266 22267 /* 22268 * TCP needs to protect itself from generating too many RSTs. 22269 * This can be a DoS attack by sending us random segments 22270 * soliciting RSTs. 22271 * 22272 * What we do here is to have a limit of tcp_rst_sent_rate RSTs 22273 * in each 1 second interval. In this way, TCP still generate 22274 * RSTs in normal cases but when under attack, the impact is 22275 * limited. 22276 */ 22277 if (tcps->tcps_rst_sent_rate_enabled != 0) { 22278 now = lbolt; 22279 /* lbolt can wrap around. */ 22280 if ((tcps->tcps_last_rst_intrvl > now) || 22281 (TICK_TO_MSEC(now - tcps->tcps_last_rst_intrvl) > 22282 1*SECONDS)) { 22283 tcps->tcps_last_rst_intrvl = now; 22284 tcps->tcps_rst_cnt = 1; 22285 } else if (++tcps->tcps_rst_cnt > tcps->tcps_rst_sent_rate) { 22286 return (B_FALSE); 22287 } 22288 } 22289 return (B_TRUE); 22290 } 22291 22292 /* 22293 * Send down the advice IP ioctl to tell IP to mark an IRE temporary. 22294 */ 22295 static void 22296 tcp_ip_ire_mark_advice(tcp_t *tcp) 22297 { 22298 mblk_t *mp; 22299 ipic_t *ipic; 22300 22301 if (tcp->tcp_ipversion == IPV4_VERSION) { 22302 mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN, 22303 &ipic); 22304 } else { 22305 mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN, 22306 &ipic); 22307 } 22308 if (mp == NULL) 22309 return; 22310 ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY; 22311 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 22312 } 22313 22314 /* 22315 * Return an IP advice ioctl mblk and set ipic to be the pointer 22316 * to the advice structure. 22317 */ 22318 static mblk_t * 22319 tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic) 22320 { 22321 struct iocblk *ioc; 22322 mblk_t *mp, *mp1; 22323 22324 mp = allocb(sizeof (ipic_t) + addr_len, BPRI_HI); 22325 if (mp == NULL) 22326 return (NULL); 22327 bzero(mp->b_rptr, sizeof (ipic_t) + addr_len); 22328 *ipic = (ipic_t *)mp->b_rptr; 22329 (*ipic)->ipic_cmd = IP_IOC_IRE_ADVISE_NO_REPLY; 22330 (*ipic)->ipic_addr_offset = sizeof (ipic_t); 22331 22332 bcopy(addr, *ipic + 1, addr_len); 22333 22334 (*ipic)->ipic_addr_length = addr_len; 22335 mp->b_wptr = &mp->b_rptr[sizeof (ipic_t) + addr_len]; 22336 22337 mp1 = mkiocb(IP_IOCTL); 22338 if (mp1 == NULL) { 22339 freemsg(mp); 22340 return (NULL); 22341 } 22342 mp1->b_cont = mp; 22343 ioc = (struct iocblk *)mp1->b_rptr; 22344 ioc->ioc_count = sizeof (ipic_t) + addr_len; 22345 22346 return (mp1); 22347 } 22348 22349 /* 22350 * Generate a reset based on an inbound packet, connp is set by caller 22351 * when RST is in response to an unexpected inbound packet for which 22352 * there is active tcp state in the system. 22353 * 22354 * IPSEC NOTE : Try to send the reply with the same protection as it came 22355 * in. We still have the ipsec_mp that the packet was attached to. Thus 22356 * the packet will go out at the same level of protection as it came in by 22357 * converting the IPSEC_IN to IPSEC_OUT. 22358 */ 22359 static void 22360 tcp_xmit_early_reset(char *str, mblk_t *mp, uint32_t seq, 22361 uint32_t ack, int ctl, uint_t ip_hdr_len, zoneid_t zoneid, 22362 tcp_stack_t *tcps, conn_t *connp) 22363 { 22364 ipha_t *ipha = NULL; 22365 ip6_t *ip6h = NULL; 22366 ushort_t len; 22367 tcph_t *tcph; 22368 int i; 22369 mblk_t *ipsec_mp; 22370 boolean_t mctl_present; 22371 ipic_t *ipic; 22372 ipaddr_t v4addr; 22373 in6_addr_t v6addr; 22374 int addr_len; 22375 void *addr; 22376 queue_t *q = tcps->tcps_g_q; 22377 tcp_t *tcp; 22378 cred_t *cr; 22379 mblk_t *nmp; 22380 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 22381 22382 if (tcps->tcps_g_q == NULL) { 22383 /* 22384 * For non-zero stackids the default queue isn't created 22385 * until the first open, thus there can be a need to send 22386 * a reset before then. But we can't do that, hence we just 22387 * drop the packet. Later during boot, when the default queue 22388 * has been setup, a retransmitted packet from the peer 22389 * will result in a reset. 22390 */ 22391 ASSERT(tcps->tcps_netstack->netstack_stackid != 22392 GLOBAL_NETSTACKID); 22393 freemsg(mp); 22394 return; 22395 } 22396 22397 if (connp != NULL) 22398 tcp = connp->conn_tcp; 22399 else 22400 tcp = Q_TO_TCP(q); 22401 22402 if (!tcp_send_rst_chk(tcps)) { 22403 tcps->tcps_rst_unsent++; 22404 freemsg(mp); 22405 return; 22406 } 22407 22408 if (mp->b_datap->db_type == M_CTL) { 22409 ipsec_mp = mp; 22410 mp = mp->b_cont; 22411 mctl_present = B_TRUE; 22412 } else { 22413 ipsec_mp = mp; 22414 mctl_present = B_FALSE; 22415 } 22416 22417 if (str && q && tcps->tcps_dbg) { 22418 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 22419 "tcp_xmit_early_reset: '%s', seq 0x%x, ack 0x%x, " 22420 "flags 0x%x", 22421 str, seq, ack, ctl); 22422 } 22423 if (mp->b_datap->db_ref != 1) { 22424 mblk_t *mp1 = copyb(mp); 22425 freemsg(mp); 22426 mp = mp1; 22427 if (!mp) { 22428 if (mctl_present) 22429 freeb(ipsec_mp); 22430 return; 22431 } else { 22432 if (mctl_present) { 22433 ipsec_mp->b_cont = mp; 22434 } else { 22435 ipsec_mp = mp; 22436 } 22437 } 22438 } else if (mp->b_cont) { 22439 freemsg(mp->b_cont); 22440 mp->b_cont = NULL; 22441 } 22442 /* 22443 * We skip reversing source route here. 22444 * (for now we replace all IP options with EOL) 22445 */ 22446 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 22447 ipha = (ipha_t *)mp->b_rptr; 22448 for (i = IP_SIMPLE_HDR_LENGTH; i < (int)ip_hdr_len; i++) 22449 mp->b_rptr[i] = IPOPT_EOL; 22450 /* 22451 * Make sure that src address isn't flagrantly invalid. 22452 * Not all broadcast address checking for the src address 22453 * is possible, since we don't know the netmask of the src 22454 * addr. No check for destination address is done, since 22455 * IP will not pass up a packet with a broadcast dest 22456 * address to TCP. Similar checks are done below for IPv6. 22457 */ 22458 if (ipha->ipha_src == 0 || ipha->ipha_src == INADDR_BROADCAST || 22459 CLASSD(ipha->ipha_src)) { 22460 freemsg(ipsec_mp); 22461 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 22462 return; 22463 } 22464 } else { 22465 ip6h = (ip6_t *)mp->b_rptr; 22466 22467 if (IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src) || 22468 IN6_IS_ADDR_MULTICAST(&ip6h->ip6_src)) { 22469 freemsg(ipsec_mp); 22470 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsInDiscards); 22471 return; 22472 } 22473 22474 /* Remove any extension headers assuming partial overlay */ 22475 if (ip_hdr_len > IPV6_HDR_LEN) { 22476 uint8_t *to; 22477 22478 to = mp->b_rptr + ip_hdr_len - IPV6_HDR_LEN; 22479 ovbcopy(ip6h, to, IPV6_HDR_LEN); 22480 mp->b_rptr += ip_hdr_len - IPV6_HDR_LEN; 22481 ip_hdr_len = IPV6_HDR_LEN; 22482 ip6h = (ip6_t *)mp->b_rptr; 22483 ip6h->ip6_nxt = IPPROTO_TCP; 22484 } 22485 } 22486 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 22487 if (tcph->th_flags[0] & TH_RST) { 22488 freemsg(ipsec_mp); 22489 return; 22490 } 22491 tcph->th_offset_and_rsrvd[0] = (5 << 4); 22492 len = ip_hdr_len + sizeof (tcph_t); 22493 mp->b_wptr = &mp->b_rptr[len]; 22494 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 22495 ipha->ipha_length = htons(len); 22496 /* Swap addresses */ 22497 v4addr = ipha->ipha_src; 22498 ipha->ipha_src = ipha->ipha_dst; 22499 ipha->ipha_dst = v4addr; 22500 ipha->ipha_ident = 0; 22501 ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl; 22502 addr_len = IP_ADDR_LEN; 22503 addr = &v4addr; 22504 } else { 22505 /* No ip6i_t in this case */ 22506 ip6h->ip6_plen = htons(len - IPV6_HDR_LEN); 22507 /* Swap addresses */ 22508 v6addr = ip6h->ip6_src; 22509 ip6h->ip6_src = ip6h->ip6_dst; 22510 ip6h->ip6_dst = v6addr; 22511 ip6h->ip6_hops = (uchar_t)tcps->tcps_ipv6_hoplimit; 22512 addr_len = IPV6_ADDR_LEN; 22513 addr = &v6addr; 22514 } 22515 tcp_xchg(tcph->th_fport, tcph->th_lport, 2); 22516 U32_TO_BE32(ack, tcph->th_ack); 22517 U32_TO_BE32(seq, tcph->th_seq); 22518 U16_TO_BE16(0, tcph->th_win); 22519 U16_TO_BE16(sizeof (tcph_t), tcph->th_sum); 22520 tcph->th_flags[0] = (uint8_t)ctl; 22521 if (ctl & TH_RST) { 22522 BUMP_MIB(&tcps->tcps_mib, tcpOutRsts); 22523 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 22524 } 22525 22526 /* IP trusts us to set up labels when required. */ 22527 if (is_system_labeled() && (cr = msg_getcred(mp, NULL)) != NULL && 22528 crgetlabel(cr) != NULL) { 22529 int err; 22530 22531 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) 22532 err = tsol_check_label(cr, &mp, 22533 tcp->tcp_connp->conn_mac_exempt, 22534 tcps->tcps_netstack->netstack_ip); 22535 else 22536 err = tsol_check_label_v6(cr, &mp, 22537 tcp->tcp_connp->conn_mac_exempt, 22538 tcps->tcps_netstack->netstack_ip); 22539 if (mctl_present) 22540 ipsec_mp->b_cont = mp; 22541 else 22542 ipsec_mp = mp; 22543 if (err != 0) { 22544 freemsg(ipsec_mp); 22545 return; 22546 } 22547 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 22548 ipha = (ipha_t *)mp->b_rptr; 22549 } else { 22550 ip6h = (ip6_t *)mp->b_rptr; 22551 } 22552 } 22553 22554 if (mctl_present) { 22555 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 22556 22557 ASSERT(ii->ipsec_in_type == IPSEC_IN); 22558 if (!ipsec_in_to_out(ipsec_mp, ipha, ip6h)) { 22559 return; 22560 } 22561 } 22562 if (zoneid == ALL_ZONES) 22563 zoneid = GLOBAL_ZONEID; 22564 22565 /* Add the zoneid so ip_output routes it properly */ 22566 if ((nmp = ip_prepend_zoneid(ipsec_mp, zoneid, ipst)) == NULL) { 22567 freemsg(ipsec_mp); 22568 return; 22569 } 22570 ipsec_mp = nmp; 22571 22572 /* 22573 * NOTE: one might consider tracing a TCP packet here, but 22574 * this function has no active TCP state and no tcp structure 22575 * that has a trace buffer. If we traced here, we would have 22576 * to keep a local trace buffer in tcp_record_trace(). 22577 * 22578 * TSol note: The mblk that contains the incoming packet was 22579 * reused by tcp_xmit_listener_reset, so it already contains 22580 * the right credentials and we don't need to call mblk_setcred. 22581 * Also the conn's cred is not right since it is associated 22582 * with tcps_g_q. 22583 */ 22584 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, ipsec_mp); 22585 22586 /* 22587 * Tell IP to mark the IRE used for this destination temporary. 22588 * This way, we can limit our exposure to DoS attack because IP 22589 * creates an IRE for each destination. If there are too many, 22590 * the time to do any routing lookup will be extremely long. And 22591 * the lookup can be in interrupt context. 22592 * 22593 * Note that in normal circumstances, this marking should not 22594 * affect anything. It would be nice if only 1 message is 22595 * needed to inform IP that the IRE created for this RST should 22596 * not be added to the cache table. But there is currently 22597 * not such communication mechanism between TCP and IP. So 22598 * the best we can do now is to send the advice ioctl to IP 22599 * to mark the IRE temporary. 22600 */ 22601 if ((mp = tcp_ip_advise_mblk(addr, addr_len, &ipic)) != NULL) { 22602 ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY; 22603 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 22604 } 22605 } 22606 22607 /* 22608 * Initiate closedown sequence on an active connection. (May be called as 22609 * writer.) Return value zero for OK return, non-zero for error return. 22610 */ 22611 static int 22612 tcp_xmit_end(tcp_t *tcp) 22613 { 22614 ipic_t *ipic; 22615 mblk_t *mp; 22616 tcp_stack_t *tcps = tcp->tcp_tcps; 22617 22618 if (tcp->tcp_state < TCPS_SYN_RCVD || 22619 tcp->tcp_state > TCPS_CLOSE_WAIT) { 22620 /* 22621 * Invalid state, only states TCPS_SYN_RCVD, 22622 * TCPS_ESTABLISHED and TCPS_CLOSE_WAIT are valid 22623 */ 22624 return (-1); 22625 } 22626 22627 tcp->tcp_fss = tcp->tcp_snxt + tcp->tcp_unsent; 22628 tcp->tcp_valid_bits |= TCP_FSS_VALID; 22629 /* 22630 * If there is nothing more unsent, send the FIN now. 22631 * Otherwise, it will go out with the last segment. 22632 */ 22633 if (tcp->tcp_unsent == 0) { 22634 mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 22635 tcp->tcp_fss, B_FALSE, NULL, B_FALSE); 22636 22637 if (mp) { 22638 tcp_send_data(tcp, tcp->tcp_wq, mp); 22639 } else { 22640 /* 22641 * Couldn't allocate msg. Pretend we got it out. 22642 * Wait for rexmit timeout. 22643 */ 22644 tcp->tcp_snxt = tcp->tcp_fss + 1; 22645 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 22646 } 22647 22648 /* 22649 * If needed, update tcp_rexmit_snxt as tcp_snxt is 22650 * changed. 22651 */ 22652 if (tcp->tcp_rexmit && tcp->tcp_rexmit_nxt == tcp->tcp_fss) { 22653 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 22654 } 22655 } else { 22656 /* 22657 * If tcp->tcp_cork is set, then the data will not get sent, 22658 * so we have to check that and unset it first. 22659 */ 22660 if (tcp->tcp_cork) 22661 tcp->tcp_cork = B_FALSE; 22662 tcp_wput_data(tcp, NULL, B_FALSE); 22663 } 22664 22665 /* 22666 * If TCP does not get enough samples of RTT or tcp_rtt_updates 22667 * is 0, don't update the cache. 22668 */ 22669 if (tcps->tcps_rtt_updates == 0 || 22670 tcp->tcp_rtt_update < tcps->tcps_rtt_updates) 22671 return (0); 22672 22673 /* 22674 * NOTE: should not update if source routes i.e. if tcp_remote if 22675 * different from the destination. 22676 */ 22677 if (tcp->tcp_ipversion == IPV4_VERSION) { 22678 if (tcp->tcp_remote != tcp->tcp_ipha->ipha_dst) { 22679 return (0); 22680 } 22681 mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN, 22682 &ipic); 22683 } else { 22684 if (!(IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6, 22685 &tcp->tcp_ip6h->ip6_dst))) { 22686 return (0); 22687 } 22688 mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN, 22689 &ipic); 22690 } 22691 22692 /* Record route attributes in the IRE for use by future connections. */ 22693 if (mp == NULL) 22694 return (0); 22695 22696 /* 22697 * We do not have a good algorithm to update ssthresh at this time. 22698 * So don't do any update. 22699 */ 22700 ipic->ipic_rtt = tcp->tcp_rtt_sa; 22701 ipic->ipic_rtt_sd = tcp->tcp_rtt_sd; 22702 22703 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 22704 22705 return (0); 22706 } 22707 22708 /* ARGSUSED */ 22709 void 22710 tcp_xmit_reset(void *arg, mblk_t *mp, void *arg2) 22711 { 22712 conn_t *connp = (conn_t *)arg; 22713 mblk_t *mp1; 22714 tcp_t *tcp = connp->conn_tcp; 22715 tcp_xmit_reset_event_t *eventp; 22716 22717 ASSERT(mp->b_datap->db_type == M_PROTO && 22718 MBLKL(mp) == sizeof (tcp_xmit_reset_event_t)); 22719 22720 if (tcp->tcp_state != TCPS_LISTEN) { 22721 freemsg(mp); 22722 return; 22723 } 22724 22725 mp1 = mp->b_cont; 22726 mp->b_cont = NULL; 22727 eventp = (tcp_xmit_reset_event_t *)mp->b_rptr; 22728 ASSERT(eventp->tcp_xre_tcps->tcps_netstack == 22729 connp->conn_netstack); 22730 22731 tcp_xmit_listeners_reset(mp1, eventp->tcp_xre_iphdrlen, 22732 eventp->tcp_xre_zoneid, eventp->tcp_xre_tcps, connp); 22733 freemsg(mp); 22734 } 22735 22736 /* 22737 * Generate a "no listener here" RST in response to an "unknown" segment. 22738 * connp is set by caller when RST is in response to an unexpected 22739 * inbound packet for which there is active tcp state in the system. 22740 * Note that we are reusing the incoming mp to construct the outgoing RST. 22741 */ 22742 void 22743 tcp_xmit_listeners_reset(mblk_t *mp, uint_t ip_hdr_len, zoneid_t zoneid, 22744 tcp_stack_t *tcps, conn_t *connp) 22745 { 22746 uchar_t *rptr; 22747 uint32_t seg_len; 22748 tcph_t *tcph; 22749 uint32_t seg_seq; 22750 uint32_t seg_ack; 22751 uint_t flags; 22752 mblk_t *ipsec_mp; 22753 ipha_t *ipha; 22754 ip6_t *ip6h; 22755 boolean_t mctl_present = B_FALSE; 22756 boolean_t check = B_TRUE; 22757 boolean_t policy_present; 22758 ipsec_stack_t *ipss = tcps->tcps_netstack->netstack_ipsec; 22759 22760 TCP_STAT(tcps, tcp_no_listener); 22761 22762 ipsec_mp = mp; 22763 22764 if (mp->b_datap->db_type == M_CTL) { 22765 ipsec_in_t *ii; 22766 22767 mctl_present = B_TRUE; 22768 mp = mp->b_cont; 22769 22770 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 22771 ASSERT(ii->ipsec_in_type == IPSEC_IN); 22772 if (ii->ipsec_in_dont_check) { 22773 check = B_FALSE; 22774 if (!ii->ipsec_in_secure) { 22775 freeb(ipsec_mp); 22776 mctl_present = B_FALSE; 22777 ipsec_mp = mp; 22778 } 22779 } 22780 } 22781 22782 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 22783 policy_present = ipss->ipsec_inbound_v4_policy_present; 22784 ipha = (ipha_t *)mp->b_rptr; 22785 ip6h = NULL; 22786 } else { 22787 policy_present = ipss->ipsec_inbound_v6_policy_present; 22788 ipha = NULL; 22789 ip6h = (ip6_t *)mp->b_rptr; 22790 } 22791 22792 if (check && policy_present) { 22793 /* 22794 * The conn_t parameter is NULL because we already know 22795 * nobody's home. 22796 */ 22797 ipsec_mp = ipsec_check_global_policy( 22798 ipsec_mp, (conn_t *)NULL, ipha, ip6h, mctl_present, 22799 tcps->tcps_netstack); 22800 if (ipsec_mp == NULL) 22801 return; 22802 } 22803 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 22804 DTRACE_PROBE2( 22805 tx__ip__log__error__nolistener__tcp, 22806 char *, "Could not reply with RST to mp(1)", 22807 mblk_t *, mp); 22808 ip2dbg(("tcp_xmit_listeners_reset: not permitted to reply\n")); 22809 freemsg(ipsec_mp); 22810 return; 22811 } 22812 22813 rptr = mp->b_rptr; 22814 22815 tcph = (tcph_t *)&rptr[ip_hdr_len]; 22816 seg_seq = BE32_TO_U32(tcph->th_seq); 22817 seg_ack = BE32_TO_U32(tcph->th_ack); 22818 flags = tcph->th_flags[0]; 22819 22820 seg_len = msgdsize(mp) - (TCP_HDR_LENGTH(tcph) + ip_hdr_len); 22821 if (flags & TH_RST) { 22822 freemsg(ipsec_mp); 22823 } else if (flags & TH_ACK) { 22824 tcp_xmit_early_reset("no tcp, reset", 22825 ipsec_mp, seg_ack, 0, TH_RST, ip_hdr_len, zoneid, tcps, 22826 connp); 22827 } else { 22828 if (flags & TH_SYN) { 22829 seg_len++; 22830 } else { 22831 /* 22832 * Here we violate the RFC. Note that a normal 22833 * TCP will never send a segment without the ACK 22834 * flag, except for RST or SYN segment. This 22835 * segment is neither. Just drop it on the 22836 * floor. 22837 */ 22838 freemsg(ipsec_mp); 22839 tcps->tcps_rst_unsent++; 22840 return; 22841 } 22842 22843 tcp_xmit_early_reset("no tcp, reset/ack", 22844 ipsec_mp, 0, seg_seq + seg_len, 22845 TH_RST | TH_ACK, ip_hdr_len, zoneid, tcps, connp); 22846 } 22847 } 22848 22849 /* 22850 * tcp_xmit_mp is called to return a pointer to an mblk chain complete with 22851 * ip and tcp header ready to pass down to IP. If the mp passed in is 22852 * non-NULL, then up to max_to_send bytes of data will be dup'ed off that 22853 * mblk. (If sendall is not set the dup'ing will stop at an mblk boundary 22854 * otherwise it will dup partial mblks.) 22855 * Otherwise, an appropriate ACK packet will be generated. This 22856 * routine is not usually called to send new data for the first time. It 22857 * is mostly called out of the timer for retransmits, and to generate ACKs. 22858 * 22859 * If offset is not NULL, the returned mblk chain's first mblk's b_rptr will 22860 * be adjusted by *offset. And after dupb(), the offset and the ending mblk 22861 * of the original mblk chain will be returned in *offset and *end_mp. 22862 */ 22863 mblk_t * 22864 tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, int32_t *offset, 22865 mblk_t **end_mp, uint32_t seq, boolean_t sendall, uint32_t *seg_len, 22866 boolean_t rexmit) 22867 { 22868 int data_length; 22869 int32_t off = 0; 22870 uint_t flags; 22871 mblk_t *mp1; 22872 mblk_t *mp2; 22873 uchar_t *rptr; 22874 tcph_t *tcph; 22875 int32_t num_sack_blk = 0; 22876 int32_t sack_opt_len = 0; 22877 tcp_stack_t *tcps = tcp->tcp_tcps; 22878 22879 /* Allocate for our maximum TCP header + link-level */ 22880 mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 22881 tcps->tcps_wroff_xtra, BPRI_MED); 22882 if (!mp1) 22883 return (NULL); 22884 data_length = 0; 22885 22886 /* 22887 * Note that tcp_mss has been adjusted to take into account the 22888 * timestamp option if applicable. Because SACK options do not 22889 * appear in every TCP segments and they are of variable lengths, 22890 * they cannot be included in tcp_mss. Thus we need to calculate 22891 * the actual segment length when we need to send a segment which 22892 * includes SACK options. 22893 */ 22894 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 22895 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 22896 tcp->tcp_num_sack_blk); 22897 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 22898 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 22899 if (max_to_send + sack_opt_len > tcp->tcp_mss) 22900 max_to_send -= sack_opt_len; 22901 } 22902 22903 if (offset != NULL) { 22904 off = *offset; 22905 /* We use offset as an indicator that end_mp is not NULL. */ 22906 *end_mp = NULL; 22907 } 22908 for (mp2 = mp1; mp && data_length != max_to_send; mp = mp->b_cont) { 22909 /* This could be faster with cooperation from downstream */ 22910 if (mp2 != mp1 && !sendall && 22911 data_length + (int)(mp->b_wptr - mp->b_rptr) > 22912 max_to_send) 22913 /* 22914 * Don't send the next mblk since the whole mblk 22915 * does not fit. 22916 */ 22917 break; 22918 mp2->b_cont = dupb(mp); 22919 mp2 = mp2->b_cont; 22920 if (!mp2) { 22921 freemsg(mp1); 22922 return (NULL); 22923 } 22924 mp2->b_rptr += off; 22925 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 22926 (uintptr_t)INT_MAX); 22927 22928 data_length += (int)(mp2->b_wptr - mp2->b_rptr); 22929 if (data_length > max_to_send) { 22930 mp2->b_wptr -= data_length - max_to_send; 22931 data_length = max_to_send; 22932 off = mp2->b_wptr - mp->b_rptr; 22933 break; 22934 } else { 22935 off = 0; 22936 } 22937 } 22938 if (offset != NULL) { 22939 *offset = off; 22940 *end_mp = mp; 22941 } 22942 if (seg_len != NULL) { 22943 *seg_len = data_length; 22944 } 22945 22946 /* Update the latest receive window size in TCP header. */ 22947 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 22948 tcp->tcp_tcph->th_win); 22949 22950 rptr = mp1->b_rptr + tcps->tcps_wroff_xtra; 22951 mp1->b_rptr = rptr; 22952 mp1->b_wptr = rptr + tcp->tcp_hdr_len + sack_opt_len; 22953 bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len); 22954 tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len]; 22955 U32_TO_ABE32(seq, tcph->th_seq); 22956 22957 /* 22958 * Use tcp_unsent to determine if the PUSH bit should be used assumes 22959 * that this function was called from tcp_wput_data. Thus, when called 22960 * to retransmit data the setting of the PUSH bit may appear some 22961 * what random in that it might get set when it should not. This 22962 * should not pose any performance issues. 22963 */ 22964 if (data_length != 0 && (tcp->tcp_unsent == 0 || 22965 tcp->tcp_unsent == data_length)) { 22966 flags = TH_ACK | TH_PUSH; 22967 } else { 22968 flags = TH_ACK; 22969 } 22970 22971 if (tcp->tcp_ecn_ok) { 22972 if (tcp->tcp_ecn_echo_on) 22973 flags |= TH_ECE; 22974 22975 /* 22976 * Only set ECT bit and ECN_CWR if a segment contains new data. 22977 * There is no TCP flow control for non-data segments, and 22978 * only data segment is transmitted reliably. 22979 */ 22980 if (data_length > 0 && !rexmit) { 22981 SET_ECT(tcp, rptr); 22982 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 22983 flags |= TH_CWR; 22984 tcp->tcp_ecn_cwr_sent = B_TRUE; 22985 } 22986 } 22987 } 22988 22989 if (tcp->tcp_valid_bits) { 22990 uint32_t u1; 22991 22992 if ((tcp->tcp_valid_bits & TCP_ISS_VALID) && 22993 seq == tcp->tcp_iss) { 22994 uchar_t *wptr; 22995 22996 /* 22997 * If TCP_ISS_VALID and the seq number is tcp_iss, 22998 * TCP can only be in SYN-SENT, SYN-RCVD or 22999 * FIN-WAIT-1 state. It can be FIN-WAIT-1 if 23000 * our SYN is not ack'ed but the app closes this 23001 * TCP connection. 23002 */ 23003 ASSERT(tcp->tcp_state == TCPS_SYN_SENT || 23004 tcp->tcp_state == TCPS_SYN_RCVD || 23005 tcp->tcp_state == TCPS_FIN_WAIT_1); 23006 23007 /* 23008 * Tack on the MSS option. It is always needed 23009 * for both active and passive open. 23010 * 23011 * MSS option value should be interface MTU - MIN 23012 * TCP/IP header according to RFC 793 as it means 23013 * the maximum segment size TCP can receive. But 23014 * to get around some broken middle boxes/end hosts 23015 * out there, we allow the option value to be the 23016 * same as the MSS option size on the peer side. 23017 * In this way, the other side will not send 23018 * anything larger than they can receive. 23019 * 23020 * Note that for SYN_SENT state, the ndd param 23021 * tcp_use_smss_as_mss_opt has no effect as we 23022 * don't know the peer's MSS option value. So 23023 * the only case we need to take care of is in 23024 * SYN_RCVD state, which is done later. 23025 */ 23026 wptr = mp1->b_wptr; 23027 wptr[0] = TCPOPT_MAXSEG; 23028 wptr[1] = TCPOPT_MAXSEG_LEN; 23029 wptr += 2; 23030 u1 = tcp->tcp_if_mtu - 23031 (tcp->tcp_ipversion == IPV4_VERSION ? 23032 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) - 23033 TCP_MIN_HEADER_LENGTH; 23034 U16_TO_BE16(u1, wptr); 23035 mp1->b_wptr = wptr + 2; 23036 /* Update the offset to cover the additional word */ 23037 tcph->th_offset_and_rsrvd[0] += (1 << 4); 23038 23039 /* 23040 * Note that the following way of filling in 23041 * TCP options are not optimal. Some NOPs can 23042 * be saved. But there is no need at this time 23043 * to optimize it. When it is needed, we will 23044 * do it. 23045 */ 23046 switch (tcp->tcp_state) { 23047 case TCPS_SYN_SENT: 23048 flags = TH_SYN; 23049 23050 if (tcp->tcp_snd_ts_ok) { 23051 uint32_t llbolt = (uint32_t)lbolt; 23052 23053 wptr = mp1->b_wptr; 23054 wptr[0] = TCPOPT_NOP; 23055 wptr[1] = TCPOPT_NOP; 23056 wptr[2] = TCPOPT_TSTAMP; 23057 wptr[3] = TCPOPT_TSTAMP_LEN; 23058 wptr += 4; 23059 U32_TO_BE32(llbolt, wptr); 23060 wptr += 4; 23061 ASSERT(tcp->tcp_ts_recent == 0); 23062 U32_TO_BE32(0L, wptr); 23063 mp1->b_wptr += TCPOPT_REAL_TS_LEN; 23064 tcph->th_offset_and_rsrvd[0] += 23065 (3 << 4); 23066 } 23067 23068 /* 23069 * Set up all the bits to tell other side 23070 * we are ECN capable. 23071 */ 23072 if (tcp->tcp_ecn_ok) { 23073 flags |= (TH_ECE | TH_CWR); 23074 } 23075 break; 23076 case TCPS_SYN_RCVD: 23077 flags |= TH_SYN; 23078 23079 /* 23080 * Reset the MSS option value to be SMSS 23081 * We should probably add back the bytes 23082 * for timestamp option and IPsec. We 23083 * don't do that as this is a workaround 23084 * for broken middle boxes/end hosts, it 23085 * is better for us to be more cautious. 23086 * They may not take these things into 23087 * account in their SMSS calculation. Thus 23088 * the peer's calculated SMSS may be smaller 23089 * than what it can be. This should be OK. 23090 */ 23091 if (tcps->tcps_use_smss_as_mss_opt) { 23092 u1 = tcp->tcp_mss; 23093 U16_TO_BE16(u1, wptr); 23094 } 23095 23096 /* 23097 * If the other side is ECN capable, reply 23098 * that we are also ECN capable. 23099 */ 23100 if (tcp->tcp_ecn_ok) 23101 flags |= TH_ECE; 23102 break; 23103 default: 23104 /* 23105 * The above ASSERT() makes sure that this 23106 * must be FIN-WAIT-1 state. Our SYN has 23107 * not been ack'ed so retransmit it. 23108 */ 23109 flags |= TH_SYN; 23110 break; 23111 } 23112 23113 if (tcp->tcp_snd_ws_ok) { 23114 wptr = mp1->b_wptr; 23115 wptr[0] = TCPOPT_NOP; 23116 wptr[1] = TCPOPT_WSCALE; 23117 wptr[2] = TCPOPT_WS_LEN; 23118 wptr[3] = (uchar_t)tcp->tcp_rcv_ws; 23119 mp1->b_wptr += TCPOPT_REAL_WS_LEN; 23120 tcph->th_offset_and_rsrvd[0] += (1 << 4); 23121 } 23122 23123 if (tcp->tcp_snd_sack_ok) { 23124 wptr = mp1->b_wptr; 23125 wptr[0] = TCPOPT_NOP; 23126 wptr[1] = TCPOPT_NOP; 23127 wptr[2] = TCPOPT_SACK_PERMITTED; 23128 wptr[3] = TCPOPT_SACK_OK_LEN; 23129 mp1->b_wptr += TCPOPT_REAL_SACK_OK_LEN; 23130 tcph->th_offset_and_rsrvd[0] += (1 << 4); 23131 } 23132 23133 /* allocb() of adequate mblk assures space */ 23134 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 23135 (uintptr_t)INT_MAX); 23136 u1 = (int)(mp1->b_wptr - mp1->b_rptr); 23137 /* 23138 * Get IP set to checksum on our behalf 23139 * Include the adjustment for a source route if any. 23140 */ 23141 u1 += tcp->tcp_sum; 23142 u1 = (u1 >> 16) + (u1 & 0xFFFF); 23143 U16_TO_BE16(u1, tcph->th_sum); 23144 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 23145 } 23146 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 23147 (seq + data_length) == tcp->tcp_fss) { 23148 if (!tcp->tcp_fin_acked) { 23149 flags |= TH_FIN; 23150 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 23151 } 23152 if (!tcp->tcp_fin_sent) { 23153 tcp->tcp_fin_sent = B_TRUE; 23154 switch (tcp->tcp_state) { 23155 case TCPS_SYN_RCVD: 23156 case TCPS_ESTABLISHED: 23157 tcp->tcp_state = TCPS_FIN_WAIT_1; 23158 break; 23159 case TCPS_CLOSE_WAIT: 23160 tcp->tcp_state = TCPS_LAST_ACK; 23161 break; 23162 } 23163 if (tcp->tcp_suna == tcp->tcp_snxt) 23164 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 23165 tcp->tcp_snxt = tcp->tcp_fss + 1; 23166 } 23167 } 23168 /* 23169 * Note the trick here. u1 is unsigned. When tcp_urg 23170 * is smaller than seq, u1 will become a very huge value. 23171 * So the comparison will fail. Also note that tcp_urp 23172 * should be positive, see RFC 793 page 17. 23173 */ 23174 u1 = tcp->tcp_urg - seq + TCP_OLD_URP_INTERPRETATION; 23175 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && u1 != 0 && 23176 u1 < (uint32_t)(64 * 1024)) { 23177 flags |= TH_URG; 23178 BUMP_MIB(&tcps->tcps_mib, tcpOutUrg); 23179 U32_TO_ABE16(u1, tcph->th_urp); 23180 } 23181 } 23182 tcph->th_flags[0] = (uchar_t)flags; 23183 tcp->tcp_rack = tcp->tcp_rnxt; 23184 tcp->tcp_rack_cnt = 0; 23185 23186 if (tcp->tcp_snd_ts_ok) { 23187 if (tcp->tcp_state != TCPS_SYN_SENT) { 23188 uint32_t llbolt = (uint32_t)lbolt; 23189 23190 U32_TO_BE32(llbolt, 23191 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 23192 U32_TO_BE32(tcp->tcp_ts_recent, 23193 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 23194 } 23195 } 23196 23197 if (num_sack_blk > 0) { 23198 uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len; 23199 sack_blk_t *tmp; 23200 int32_t i; 23201 23202 wptr[0] = TCPOPT_NOP; 23203 wptr[1] = TCPOPT_NOP; 23204 wptr[2] = TCPOPT_SACK; 23205 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 23206 sizeof (sack_blk_t); 23207 wptr += TCPOPT_REAL_SACK_LEN; 23208 23209 tmp = tcp->tcp_sack_list; 23210 for (i = 0; i < num_sack_blk; i++) { 23211 U32_TO_BE32(tmp[i].begin, wptr); 23212 wptr += sizeof (tcp_seq); 23213 U32_TO_BE32(tmp[i].end, wptr); 23214 wptr += sizeof (tcp_seq); 23215 } 23216 tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) << 4); 23217 } 23218 ASSERT((uintptr_t)(mp1->b_wptr - rptr) <= (uintptr_t)INT_MAX); 23219 data_length += (int)(mp1->b_wptr - rptr); 23220 if (tcp->tcp_ipversion == IPV4_VERSION) { 23221 ((ipha_t *)rptr)->ipha_length = htons(data_length); 23222 } else { 23223 ip6_t *ip6 = (ip6_t *)(rptr + 23224 (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ? 23225 sizeof (ip6i_t) : 0)); 23226 23227 ip6->ip6_plen = htons(data_length - 23228 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 23229 } 23230 23231 /* 23232 * Prime pump for IP 23233 * Include the adjustment for a source route if any. 23234 */ 23235 data_length -= tcp->tcp_ip_hdr_len; 23236 data_length += tcp->tcp_sum; 23237 data_length = (data_length >> 16) + (data_length & 0xFFFF); 23238 U16_TO_ABE16(data_length, tcph->th_sum); 23239 if (tcp->tcp_ip_forward_progress) { 23240 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 23241 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 23242 tcp->tcp_ip_forward_progress = B_FALSE; 23243 } 23244 return (mp1); 23245 } 23246 23247 /* This function handles the push timeout. */ 23248 void 23249 tcp_push_timer(void *arg) 23250 { 23251 conn_t *connp = (conn_t *)arg; 23252 tcp_t *tcp = connp->conn_tcp; 23253 uint_t flags; 23254 sodirect_t *sodp; 23255 23256 TCP_DBGSTAT(tcp->tcp_tcps, tcp_push_timer_cnt); 23257 23258 ASSERT(tcp->tcp_listener == NULL); 23259 23260 ASSERT(!IPCL_IS_NONSTR(connp)); 23261 23262 /* 23263 * We need to plug synchronous streams during our drain to prevent 23264 * a race with tcp_fuse_rrw() or tcp_fusion_rinfop(). 23265 */ 23266 TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp); 23267 tcp->tcp_push_tid = 0; 23268 23269 SOD_PTR_ENTER(tcp, sodp); 23270 if (sodp != NULL) { 23271 flags = tcp_rcv_sod_wakeup(tcp, sodp); 23272 /* sod_wakeup() does the mutex_exit() */ 23273 } else if (tcp->tcp_rcv_list != NULL) { 23274 flags = tcp_rcv_drain(tcp); 23275 } 23276 if (flags == TH_ACK_NEEDED) 23277 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 23278 23279 TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp); 23280 } 23281 23282 /* 23283 * This function handles delayed ACK timeout. 23284 */ 23285 static void 23286 tcp_ack_timer(void *arg) 23287 { 23288 conn_t *connp = (conn_t *)arg; 23289 tcp_t *tcp = connp->conn_tcp; 23290 mblk_t *mp; 23291 tcp_stack_t *tcps = tcp->tcp_tcps; 23292 23293 TCP_DBGSTAT(tcps, tcp_ack_timer_cnt); 23294 23295 tcp->tcp_ack_tid = 0; 23296 23297 if (tcp->tcp_fused) 23298 return; 23299 23300 /* 23301 * Do not send ACK if there is no outstanding unack'ed data. 23302 */ 23303 if (tcp->tcp_rnxt == tcp->tcp_rack) { 23304 return; 23305 } 23306 23307 if ((tcp->tcp_rnxt - tcp->tcp_rack) > tcp->tcp_mss) { 23308 /* 23309 * Make sure we don't allow deferred ACKs to result in 23310 * timer-based ACKing. If we have held off an ACK 23311 * when there was more than an mss here, and the timer 23312 * goes off, we have to worry about the possibility 23313 * that the sender isn't doing slow-start, or is out 23314 * of step with us for some other reason. We fall 23315 * permanently back in the direction of 23316 * ACK-every-other-packet as suggested in RFC 1122. 23317 */ 23318 if (tcp->tcp_rack_abs_max > 2) 23319 tcp->tcp_rack_abs_max--; 23320 tcp->tcp_rack_cur_max = 2; 23321 } 23322 mp = tcp_ack_mp(tcp); 23323 23324 if (mp != NULL) { 23325 BUMP_LOCAL(tcp->tcp_obsegs); 23326 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 23327 BUMP_MIB(&tcps->tcps_mib, tcpOutAckDelayed); 23328 tcp_send_data(tcp, tcp->tcp_wq, mp); 23329 } 23330 } 23331 23332 23333 /* Generate an ACK-only (no data) segment for a TCP endpoint */ 23334 static mblk_t * 23335 tcp_ack_mp(tcp_t *tcp) 23336 { 23337 uint32_t seq_no; 23338 tcp_stack_t *tcps = tcp->tcp_tcps; 23339 23340 /* 23341 * There are a few cases to be considered while setting the sequence no. 23342 * Essentially, we can come here while processing an unacceptable pkt 23343 * in the TCPS_SYN_RCVD state, in which case we set the sequence number 23344 * to snxt (per RFC 793), note the swnd wouldn't have been set yet. 23345 * If we are here for a zero window probe, stick with suna. In all 23346 * other cases, we check if suna + swnd encompasses snxt and set 23347 * the sequence number to snxt, if so. If snxt falls outside the 23348 * window (the receiver probably shrunk its window), we will go with 23349 * suna + swnd, otherwise the sequence no will be unacceptable to the 23350 * receiver. 23351 */ 23352 if (tcp->tcp_zero_win_probe) { 23353 seq_no = tcp->tcp_suna; 23354 } else if (tcp->tcp_state == TCPS_SYN_RCVD) { 23355 ASSERT(tcp->tcp_swnd == 0); 23356 seq_no = tcp->tcp_snxt; 23357 } else { 23358 seq_no = SEQ_GT(tcp->tcp_snxt, 23359 (tcp->tcp_suna + tcp->tcp_swnd)) ? 23360 (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt; 23361 } 23362 23363 if (tcp->tcp_valid_bits) { 23364 /* 23365 * For the complex case where we have to send some 23366 * controls (FIN or SYN), let tcp_xmit_mp do it. 23367 */ 23368 return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE, 23369 NULL, B_FALSE)); 23370 } else { 23371 /* Generate a simple ACK */ 23372 int data_length; 23373 uchar_t *rptr; 23374 tcph_t *tcph; 23375 mblk_t *mp1; 23376 int32_t tcp_hdr_len; 23377 int32_t tcp_tcp_hdr_len; 23378 int32_t num_sack_blk = 0; 23379 int32_t sack_opt_len; 23380 23381 /* 23382 * Allocate space for TCP + IP headers 23383 * and link-level header 23384 */ 23385 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 23386 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 23387 tcp->tcp_num_sack_blk); 23388 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 23389 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 23390 tcp_hdr_len = tcp->tcp_hdr_len + sack_opt_len; 23391 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + sack_opt_len; 23392 } else { 23393 tcp_hdr_len = tcp->tcp_hdr_len; 23394 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len; 23395 } 23396 mp1 = allocb(tcp_hdr_len + tcps->tcps_wroff_xtra, BPRI_MED); 23397 if (!mp1) 23398 return (NULL); 23399 23400 /* Update the latest receive window size in TCP header. */ 23401 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 23402 tcp->tcp_tcph->th_win); 23403 /* copy in prototype TCP + IP header */ 23404 rptr = mp1->b_rptr + tcps->tcps_wroff_xtra; 23405 mp1->b_rptr = rptr; 23406 mp1->b_wptr = rptr + tcp_hdr_len; 23407 bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len); 23408 23409 tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len]; 23410 23411 /* Set the TCP sequence number. */ 23412 U32_TO_ABE32(seq_no, tcph->th_seq); 23413 23414 /* Set up the TCP flag field. */ 23415 tcph->th_flags[0] = (uchar_t)TH_ACK; 23416 if (tcp->tcp_ecn_echo_on) 23417 tcph->th_flags[0] |= TH_ECE; 23418 23419 tcp->tcp_rack = tcp->tcp_rnxt; 23420 tcp->tcp_rack_cnt = 0; 23421 23422 /* fill in timestamp option if in use */ 23423 if (tcp->tcp_snd_ts_ok) { 23424 uint32_t llbolt = (uint32_t)lbolt; 23425 23426 U32_TO_BE32(llbolt, 23427 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 23428 U32_TO_BE32(tcp->tcp_ts_recent, 23429 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 23430 } 23431 23432 /* Fill in SACK options */ 23433 if (num_sack_blk > 0) { 23434 uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len; 23435 sack_blk_t *tmp; 23436 int32_t i; 23437 23438 wptr[0] = TCPOPT_NOP; 23439 wptr[1] = TCPOPT_NOP; 23440 wptr[2] = TCPOPT_SACK; 23441 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 23442 sizeof (sack_blk_t); 23443 wptr += TCPOPT_REAL_SACK_LEN; 23444 23445 tmp = tcp->tcp_sack_list; 23446 for (i = 0; i < num_sack_blk; i++) { 23447 U32_TO_BE32(tmp[i].begin, wptr); 23448 wptr += sizeof (tcp_seq); 23449 U32_TO_BE32(tmp[i].end, wptr); 23450 wptr += sizeof (tcp_seq); 23451 } 23452 tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) 23453 << 4); 23454 } 23455 23456 if (tcp->tcp_ipversion == IPV4_VERSION) { 23457 ((ipha_t *)rptr)->ipha_length = htons(tcp_hdr_len); 23458 } else { 23459 /* Check for ip6i_t header in sticky hdrs */ 23460 ip6_t *ip6 = (ip6_t *)(rptr + 23461 (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ? 23462 sizeof (ip6i_t) : 0)); 23463 23464 ip6->ip6_plen = htons(tcp_hdr_len - 23465 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 23466 } 23467 23468 /* 23469 * Prime pump for checksum calculation in IP. Include the 23470 * adjustment for a source route if any. 23471 */ 23472 data_length = tcp_tcp_hdr_len + tcp->tcp_sum; 23473 data_length = (data_length >> 16) + (data_length & 0xFFFF); 23474 U16_TO_ABE16(data_length, tcph->th_sum); 23475 23476 if (tcp->tcp_ip_forward_progress) { 23477 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 23478 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 23479 tcp->tcp_ip_forward_progress = B_FALSE; 23480 } 23481 return (mp1); 23482 } 23483 } 23484 23485 /* 23486 * Hash list insertion routine for tcp_t structures. Each hash bucket 23487 * contains a list of tcp_t entries, and each entry is bound to a unique 23488 * port. If there are multiple tcp_t's that are bound to the same port, then 23489 * one of them will be linked into the hash bucket list, and the rest will 23490 * hang off of that one entry. For each port, entries bound to a specific IP 23491 * address will be inserted before those those bound to INADDR_ANY. 23492 */ 23493 static void 23494 tcp_bind_hash_insert(tf_t *tbf, tcp_t *tcp, int caller_holds_lock) 23495 { 23496 tcp_t **tcpp; 23497 tcp_t *tcpnext; 23498 tcp_t *tcphash; 23499 23500 if (tcp->tcp_ptpbhn != NULL) { 23501 ASSERT(!caller_holds_lock); 23502 tcp_bind_hash_remove(tcp); 23503 } 23504 tcpp = &tbf->tf_tcp; 23505 if (!caller_holds_lock) { 23506 mutex_enter(&tbf->tf_lock); 23507 } else { 23508 ASSERT(MUTEX_HELD(&tbf->tf_lock)); 23509 } 23510 tcphash = tcpp[0]; 23511 tcpnext = NULL; 23512 if (tcphash != NULL) { 23513 /* Look for an entry using the same port */ 23514 while ((tcphash = tcpp[0]) != NULL && 23515 tcp->tcp_lport != tcphash->tcp_lport) 23516 tcpp = &(tcphash->tcp_bind_hash); 23517 23518 /* The port was not found, just add to the end */ 23519 if (tcphash == NULL) 23520 goto insert; 23521 23522 /* 23523 * OK, there already exists an entry bound to the 23524 * same port. 23525 * 23526 * If the new tcp bound to the INADDR_ANY address 23527 * and the first one in the list is not bound to 23528 * INADDR_ANY we skip all entries until we find the 23529 * first one bound to INADDR_ANY. 23530 * This makes sure that applications binding to a 23531 * specific address get preference over those binding to 23532 * INADDR_ANY. 23533 */ 23534 tcpnext = tcphash; 23535 tcphash = NULL; 23536 if (V6_OR_V4_INADDR_ANY(tcp->tcp_bound_source_v6) && 23537 !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) { 23538 while ((tcpnext = tcpp[0]) != NULL && 23539 !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) 23540 tcpp = &(tcpnext->tcp_bind_hash_port); 23541 23542 if (tcpnext) { 23543 tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash_port; 23544 tcphash = tcpnext->tcp_bind_hash; 23545 if (tcphash != NULL) { 23546 tcphash->tcp_ptpbhn = 23547 &(tcp->tcp_bind_hash); 23548 tcpnext->tcp_bind_hash = NULL; 23549 } 23550 } 23551 } else { 23552 tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash_port; 23553 tcphash = tcpnext->tcp_bind_hash; 23554 if (tcphash != NULL) { 23555 tcphash->tcp_ptpbhn = 23556 &(tcp->tcp_bind_hash); 23557 tcpnext->tcp_bind_hash = NULL; 23558 } 23559 } 23560 } 23561 insert: 23562 tcp->tcp_bind_hash_port = tcpnext; 23563 tcp->tcp_bind_hash = tcphash; 23564 tcp->tcp_ptpbhn = tcpp; 23565 tcpp[0] = tcp; 23566 if (!caller_holds_lock) 23567 mutex_exit(&tbf->tf_lock); 23568 } 23569 23570 /* 23571 * Hash list removal routine for tcp_t structures. 23572 */ 23573 static void 23574 tcp_bind_hash_remove(tcp_t *tcp) 23575 { 23576 tcp_t *tcpnext; 23577 kmutex_t *lockp; 23578 tcp_stack_t *tcps = tcp->tcp_tcps; 23579 23580 if (tcp->tcp_ptpbhn == NULL) 23581 return; 23582 23583 /* 23584 * Extract the lock pointer in case there are concurrent 23585 * hash_remove's for this instance. 23586 */ 23587 ASSERT(tcp->tcp_lport != 0); 23588 lockp = &tcps->tcps_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)].tf_lock; 23589 23590 ASSERT(lockp != NULL); 23591 mutex_enter(lockp); 23592 if (tcp->tcp_ptpbhn) { 23593 tcpnext = tcp->tcp_bind_hash_port; 23594 if (tcpnext != NULL) { 23595 tcp->tcp_bind_hash_port = NULL; 23596 tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn; 23597 tcpnext->tcp_bind_hash = tcp->tcp_bind_hash; 23598 if (tcpnext->tcp_bind_hash != NULL) { 23599 tcpnext->tcp_bind_hash->tcp_ptpbhn = 23600 &(tcpnext->tcp_bind_hash); 23601 tcp->tcp_bind_hash = NULL; 23602 } 23603 } else if ((tcpnext = tcp->tcp_bind_hash) != NULL) { 23604 tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn; 23605 tcp->tcp_bind_hash = NULL; 23606 } 23607 *tcp->tcp_ptpbhn = tcpnext; 23608 tcp->tcp_ptpbhn = NULL; 23609 } 23610 mutex_exit(lockp); 23611 } 23612 23613 23614 /* 23615 * Hash list lookup routine for tcp_t structures. 23616 * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF. 23617 */ 23618 static tcp_t * 23619 tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *tcps) 23620 { 23621 tf_t *tf; 23622 tcp_t *tcp; 23623 23624 tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 23625 mutex_enter(&tf->tf_lock); 23626 for (tcp = tf->tf_tcp; tcp != NULL; 23627 tcp = tcp->tcp_acceptor_hash) { 23628 if (tcp->tcp_acceptor_id == id) { 23629 CONN_INC_REF(tcp->tcp_connp); 23630 mutex_exit(&tf->tf_lock); 23631 return (tcp); 23632 } 23633 } 23634 mutex_exit(&tf->tf_lock); 23635 return (NULL); 23636 } 23637 23638 23639 /* 23640 * Hash list insertion routine for tcp_t structures. 23641 */ 23642 void 23643 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp) 23644 { 23645 tf_t *tf; 23646 tcp_t **tcpp; 23647 tcp_t *tcpnext; 23648 tcp_stack_t *tcps = tcp->tcp_tcps; 23649 23650 tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 23651 23652 if (tcp->tcp_ptpahn != NULL) 23653 tcp_acceptor_hash_remove(tcp); 23654 tcpp = &tf->tf_tcp; 23655 mutex_enter(&tf->tf_lock); 23656 tcpnext = tcpp[0]; 23657 if (tcpnext) 23658 tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash; 23659 tcp->tcp_acceptor_hash = tcpnext; 23660 tcp->tcp_ptpahn = tcpp; 23661 tcpp[0] = tcp; 23662 tcp->tcp_acceptor_lockp = &tf->tf_lock; /* For tcp_*_hash_remove */ 23663 mutex_exit(&tf->tf_lock); 23664 } 23665 23666 /* 23667 * Hash list removal routine for tcp_t structures. 23668 */ 23669 static void 23670 tcp_acceptor_hash_remove(tcp_t *tcp) 23671 { 23672 tcp_t *tcpnext; 23673 kmutex_t *lockp; 23674 23675 /* 23676 * Extract the lock pointer in case there are concurrent 23677 * hash_remove's for this instance. 23678 */ 23679 lockp = tcp->tcp_acceptor_lockp; 23680 23681 if (tcp->tcp_ptpahn == NULL) 23682 return; 23683 23684 ASSERT(lockp != NULL); 23685 mutex_enter(lockp); 23686 if (tcp->tcp_ptpahn) { 23687 tcpnext = tcp->tcp_acceptor_hash; 23688 if (tcpnext) { 23689 tcpnext->tcp_ptpahn = tcp->tcp_ptpahn; 23690 tcp->tcp_acceptor_hash = NULL; 23691 } 23692 *tcp->tcp_ptpahn = tcpnext; 23693 tcp->tcp_ptpahn = NULL; 23694 } 23695 mutex_exit(lockp); 23696 tcp->tcp_acceptor_lockp = NULL; 23697 } 23698 23699 /* 23700 * Type three generator adapted from the random() function in 4.4 BSD: 23701 */ 23702 23703 /* 23704 * Copyright (c) 1983, 1993 23705 * The Regents of the University of California. All rights reserved. 23706 * 23707 * Redistribution and use in source and binary forms, with or without 23708 * modification, are permitted provided that the following conditions 23709 * are met: 23710 * 1. Redistributions of source code must retain the above copyright 23711 * notice, this list of conditions and the following disclaimer. 23712 * 2. Redistributions in binary form must reproduce the above copyright 23713 * notice, this list of conditions and the following disclaimer in the 23714 * documentation and/or other materials provided with the distribution. 23715 * 3. All advertising materials mentioning features or use of this software 23716 * must display the following acknowledgement: 23717 * This product includes software developed by the University of 23718 * California, Berkeley and its contributors. 23719 * 4. Neither the name of the University nor the names of its contributors 23720 * may be used to endorse or promote products derived from this software 23721 * without specific prior written permission. 23722 * 23723 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23724 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23725 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23726 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23727 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23728 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23729 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23730 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23731 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23732 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 23733 * SUCH DAMAGE. 23734 */ 23735 23736 /* Type 3 -- x**31 + x**3 + 1 */ 23737 #define DEG_3 31 23738 #define SEP_3 3 23739 23740 23741 /* Protected by tcp_random_lock */ 23742 static int tcp_randtbl[DEG_3 + 1]; 23743 23744 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1]; 23745 static int *tcp_random_rptr = &tcp_randtbl[1]; 23746 23747 static int *tcp_random_state = &tcp_randtbl[1]; 23748 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1]; 23749 23750 kmutex_t tcp_random_lock; 23751 23752 void 23753 tcp_random_init(void) 23754 { 23755 int i; 23756 hrtime_t hrt; 23757 time_t wallclock; 23758 uint64_t result; 23759 23760 /* 23761 * Use high-res timer and current time for seed. Gethrtime() returns 23762 * a longlong, which may contain resolution down to nanoseconds. 23763 * The current time will either be a 32-bit or a 64-bit quantity. 23764 * XOR the two together in a 64-bit result variable. 23765 * Convert the result to a 32-bit value by multiplying the high-order 23766 * 32-bits by the low-order 32-bits. 23767 */ 23768 23769 hrt = gethrtime(); 23770 (void) drv_getparm(TIME, &wallclock); 23771 result = (uint64_t)wallclock ^ (uint64_t)hrt; 23772 mutex_enter(&tcp_random_lock); 23773 tcp_random_state[0] = ((result >> 32) & 0xffffffff) * 23774 (result & 0xffffffff); 23775 23776 for (i = 1; i < DEG_3; i++) 23777 tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1] 23778 + 12345; 23779 tcp_random_fptr = &tcp_random_state[SEP_3]; 23780 tcp_random_rptr = &tcp_random_state[0]; 23781 mutex_exit(&tcp_random_lock); 23782 for (i = 0; i < 10 * DEG_3; i++) 23783 (void) tcp_random(); 23784 } 23785 23786 /* 23787 * tcp_random: Return a random number in the range [1 - (128K + 1)]. 23788 * This range is selected to be approximately centered on TCP_ISS / 2, 23789 * and easy to compute. We get this value by generating a 32-bit random 23790 * number, selecting out the high-order 17 bits, and then adding one so 23791 * that we never return zero. 23792 */ 23793 int 23794 tcp_random(void) 23795 { 23796 int i; 23797 23798 mutex_enter(&tcp_random_lock); 23799 *tcp_random_fptr += *tcp_random_rptr; 23800 23801 /* 23802 * The high-order bits are more random than the low-order bits, 23803 * so we select out the high-order 17 bits and add one so that 23804 * we never return zero. 23805 */ 23806 i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1; 23807 if (++tcp_random_fptr >= tcp_random_end_ptr) { 23808 tcp_random_fptr = tcp_random_state; 23809 ++tcp_random_rptr; 23810 } else if (++tcp_random_rptr >= tcp_random_end_ptr) 23811 tcp_random_rptr = tcp_random_state; 23812 23813 mutex_exit(&tcp_random_lock); 23814 return (i); 23815 } 23816 23817 static int 23818 tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, int *do_disconnectp, 23819 int *t_errorp, int *sys_errorp) 23820 { 23821 int error; 23822 int is_absreq_failure; 23823 t_scalar_t *opt_lenp; 23824 t_scalar_t opt_offset; 23825 int prim_type; 23826 struct T_conn_req *tcreqp; 23827 struct T_conn_res *tcresp; 23828 cred_t *cr; 23829 23830 /* 23831 * All Solaris components should pass a db_credp 23832 * for this TPI message, hence we ASSERT. 23833 * But in case there is some other M_PROTO that looks 23834 * like a TPI message sent by some other kernel 23835 * component, we check and return an error. 23836 */ 23837 cr = msg_getcred(mp, NULL); 23838 ASSERT(cr != NULL); 23839 if (cr == NULL) 23840 return (-1); 23841 23842 prim_type = ((union T_primitives *)mp->b_rptr)->type; 23843 ASSERT(prim_type == T_CONN_REQ || prim_type == O_T_CONN_RES || 23844 prim_type == T_CONN_RES); 23845 23846 switch (prim_type) { 23847 case T_CONN_REQ: 23848 tcreqp = (struct T_conn_req *)mp->b_rptr; 23849 opt_offset = tcreqp->OPT_offset; 23850 opt_lenp = (t_scalar_t *)&tcreqp->OPT_length; 23851 break; 23852 case O_T_CONN_RES: 23853 case T_CONN_RES: 23854 tcresp = (struct T_conn_res *)mp->b_rptr; 23855 opt_offset = tcresp->OPT_offset; 23856 opt_lenp = (t_scalar_t *)&tcresp->OPT_length; 23857 break; 23858 } 23859 23860 *t_errorp = 0; 23861 *sys_errorp = 0; 23862 *do_disconnectp = 0; 23863 23864 error = tpi_optcom_buf(tcp->tcp_wq, mp, opt_lenp, 23865 opt_offset, cr, &tcp_opt_obj, 23866 NULL, &is_absreq_failure); 23867 23868 switch (error) { 23869 case 0: /* no error */ 23870 ASSERT(is_absreq_failure == 0); 23871 return (0); 23872 case ENOPROTOOPT: 23873 *t_errorp = TBADOPT; 23874 break; 23875 case EACCES: 23876 *t_errorp = TACCES; 23877 break; 23878 default: 23879 *t_errorp = TSYSERR; *sys_errorp = error; 23880 break; 23881 } 23882 if (is_absreq_failure != 0) { 23883 /* 23884 * The connection request should get the local ack 23885 * T_OK_ACK and then a T_DISCON_IND. 23886 */ 23887 *do_disconnectp = 1; 23888 } 23889 return (-1); 23890 } 23891 23892 /* 23893 * Split this function out so that if the secret changes, I'm okay. 23894 * 23895 * Initialize the tcp_iss_cookie and tcp_iss_key. 23896 */ 23897 23898 #define PASSWD_SIZE 16 /* MUST be multiple of 4 */ 23899 23900 static void 23901 tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *tcps) 23902 { 23903 struct { 23904 int32_t current_time; 23905 uint32_t randnum; 23906 uint16_t pad; 23907 uint8_t ether[6]; 23908 uint8_t passwd[PASSWD_SIZE]; 23909 } tcp_iss_cookie; 23910 time_t t; 23911 23912 /* 23913 * Start with the current absolute time. 23914 */ 23915 (void) drv_getparm(TIME, &t); 23916 tcp_iss_cookie.current_time = t; 23917 23918 /* 23919 * XXX - Need a more random number per RFC 1750, not this crap. 23920 * OTOH, if what follows is pretty random, then I'm in better shape. 23921 */ 23922 tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random()); 23923 tcp_iss_cookie.pad = 0x365c; /* Picked from HMAC pad values. */ 23924 23925 /* 23926 * The cpu_type_info is pretty non-random. Ugggh. It does serve 23927 * as a good template. 23928 */ 23929 bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd, 23930 min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info))); 23931 23932 /* 23933 * The pass-phrase. Normally this is supplied by user-called NDD. 23934 */ 23935 bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len)); 23936 23937 /* 23938 * See 4010593 if this section becomes a problem again, 23939 * but the local ethernet address is useful here. 23940 */ 23941 (void) localetheraddr(NULL, 23942 (struct ether_addr *)&tcp_iss_cookie.ether); 23943 23944 /* 23945 * Hash 'em all together. The MD5Final is called per-connection. 23946 */ 23947 mutex_enter(&tcps->tcps_iss_key_lock); 23948 MD5Init(&tcps->tcps_iss_key); 23949 MD5Update(&tcps->tcps_iss_key, (uchar_t *)&tcp_iss_cookie, 23950 sizeof (tcp_iss_cookie)); 23951 mutex_exit(&tcps->tcps_iss_key_lock); 23952 } 23953 23954 /* 23955 * Set the RFC 1948 pass phrase 23956 */ 23957 /* ARGSUSED */ 23958 static int 23959 tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 23960 cred_t *cr) 23961 { 23962 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 23963 23964 /* 23965 * Basically, value contains a new pass phrase. Pass it along! 23966 */ 23967 tcp_iss_key_init((uint8_t *)value, strlen(value), tcps); 23968 return (0); 23969 } 23970 23971 /* ARGSUSED */ 23972 static int 23973 tcp_sack_info_constructor(void *buf, void *cdrarg, int kmflags) 23974 { 23975 bzero(buf, sizeof (tcp_sack_info_t)); 23976 return (0); 23977 } 23978 23979 /* ARGSUSED */ 23980 static int 23981 tcp_iphc_constructor(void *buf, void *cdrarg, int kmflags) 23982 { 23983 bzero(buf, TCP_MAX_COMBINED_HEADER_LENGTH); 23984 return (0); 23985 } 23986 23987 /* 23988 * Make sure we wait until the default queue is setup, yet allow 23989 * tcp_g_q_create() to open a TCP stream. 23990 * We need to allow tcp_g_q_create() do do an open 23991 * of tcp, hence we compare curhread. 23992 * All others have to wait until the tcps_g_q has been 23993 * setup. 23994 */ 23995 void 23996 tcp_g_q_setup(tcp_stack_t *tcps) 23997 { 23998 mutex_enter(&tcps->tcps_g_q_lock); 23999 if (tcps->tcps_g_q != NULL) { 24000 mutex_exit(&tcps->tcps_g_q_lock); 24001 return; 24002 } 24003 if (tcps->tcps_g_q_creator == NULL) { 24004 /* This thread will set it up */ 24005 tcps->tcps_g_q_creator = curthread; 24006 mutex_exit(&tcps->tcps_g_q_lock); 24007 tcp_g_q_create(tcps); 24008 mutex_enter(&tcps->tcps_g_q_lock); 24009 ASSERT(tcps->tcps_g_q_creator == curthread); 24010 tcps->tcps_g_q_creator = NULL; 24011 cv_signal(&tcps->tcps_g_q_cv); 24012 ASSERT(tcps->tcps_g_q != NULL); 24013 mutex_exit(&tcps->tcps_g_q_lock); 24014 return; 24015 } 24016 /* Everybody but the creator has to wait */ 24017 if (tcps->tcps_g_q_creator != curthread) { 24018 while (tcps->tcps_g_q == NULL) 24019 cv_wait(&tcps->tcps_g_q_cv, &tcps->tcps_g_q_lock); 24020 } 24021 mutex_exit(&tcps->tcps_g_q_lock); 24022 } 24023 24024 #define IP "ip" 24025 24026 #define TCP6DEV "/devices/pseudo/tcp6@0:tcp6" 24027 24028 /* 24029 * Create a default tcp queue here instead of in strplumb 24030 */ 24031 void 24032 tcp_g_q_create(tcp_stack_t *tcps) 24033 { 24034 int error; 24035 ldi_handle_t lh = NULL; 24036 ldi_ident_t li = NULL; 24037 int rval; 24038 cred_t *cr; 24039 major_t IP_MAJ; 24040 24041 #ifdef NS_DEBUG 24042 (void) printf("tcp_g_q_create()\n"); 24043 #endif 24044 24045 IP_MAJ = ddi_name_to_major(IP); 24046 24047 ASSERT(tcps->tcps_g_q_creator == curthread); 24048 24049 error = ldi_ident_from_major(IP_MAJ, &li); 24050 if (error) { 24051 #ifdef DEBUG 24052 printf("tcp_g_q_create: lyr ident get failed error %d\n", 24053 error); 24054 #endif 24055 return; 24056 } 24057 24058 cr = zone_get_kcred(netstackid_to_zoneid( 24059 tcps->tcps_netstack->netstack_stackid)); 24060 ASSERT(cr != NULL); 24061 /* 24062 * We set the tcp default queue to IPv6 because IPv4 falls 24063 * back to IPv6 when it can't find a client, but 24064 * IPv6 does not fall back to IPv4. 24065 */ 24066 error = ldi_open_by_name(TCP6DEV, FREAD|FWRITE, cr, &lh, li); 24067 if (error) { 24068 #ifdef DEBUG 24069 printf("tcp_g_q_create: open of TCP6DEV failed error %d\n", 24070 error); 24071 #endif 24072 goto out; 24073 } 24074 24075 /* 24076 * This ioctl causes the tcp framework to cache a pointer to 24077 * this stream, so we don't want to close the stream after 24078 * this operation. 24079 * Use the kernel credentials that are for the zone we're in. 24080 */ 24081 error = ldi_ioctl(lh, TCP_IOC_DEFAULT_Q, 24082 (intptr_t)0, FKIOCTL, cr, &rval); 24083 if (error) { 24084 #ifdef DEBUG 24085 printf("tcp_g_q_create: ioctl TCP_IOC_DEFAULT_Q failed " 24086 "error %d\n", error); 24087 #endif 24088 goto out; 24089 } 24090 tcps->tcps_g_q_lh = lh; /* For tcp_g_q_close */ 24091 lh = NULL; 24092 out: 24093 /* Close layered handles */ 24094 if (li) 24095 ldi_ident_release(li); 24096 /* Keep cred around until _inactive needs it */ 24097 tcps->tcps_g_q_cr = cr; 24098 } 24099 24100 /* 24101 * We keep tcp_g_q set until all other tcp_t's in the zone 24102 * has gone away, and then when tcp_g_q_inactive() is called 24103 * we clear it. 24104 */ 24105 void 24106 tcp_g_q_destroy(tcp_stack_t *tcps) 24107 { 24108 #ifdef NS_DEBUG 24109 (void) printf("tcp_g_q_destroy()for stack %d\n", 24110 tcps->tcps_netstack->netstack_stackid); 24111 #endif 24112 24113 if (tcps->tcps_g_q == NULL) { 24114 return; /* Nothing to cleanup */ 24115 } 24116 /* 24117 * Drop reference corresponding to the default queue. 24118 * This reference was added from tcp_open when the default queue 24119 * was created, hence we compensate for this extra drop in 24120 * tcp_g_q_close. If the refcnt drops to zero here it means 24121 * the default queue was the last one to be open, in which 24122 * case, then tcp_g_q_inactive will be 24123 * called as a result of the refrele. 24124 */ 24125 TCPS_REFRELE(tcps); 24126 } 24127 24128 /* 24129 * Called when last tcp_t drops reference count using TCPS_REFRELE. 24130 * Run by tcp_q_q_inactive using a taskq. 24131 */ 24132 static void 24133 tcp_g_q_close(void *arg) 24134 { 24135 tcp_stack_t *tcps = arg; 24136 int error; 24137 ldi_handle_t lh = NULL; 24138 ldi_ident_t li = NULL; 24139 cred_t *cr; 24140 major_t IP_MAJ; 24141 24142 IP_MAJ = ddi_name_to_major(IP); 24143 24144 #ifdef NS_DEBUG 24145 (void) printf("tcp_g_q_inactive() for stack %d refcnt %d\n", 24146 tcps->tcps_netstack->netstack_stackid, 24147 tcps->tcps_netstack->netstack_refcnt); 24148 #endif 24149 lh = tcps->tcps_g_q_lh; 24150 if (lh == NULL) 24151 return; /* Nothing to cleanup */ 24152 24153 ASSERT(tcps->tcps_refcnt == 1); 24154 ASSERT(tcps->tcps_g_q != NULL); 24155 24156 error = ldi_ident_from_major(IP_MAJ, &li); 24157 if (error) { 24158 #ifdef DEBUG 24159 printf("tcp_g_q_inactive: lyr ident get failed error %d\n", 24160 error); 24161 #endif 24162 return; 24163 } 24164 24165 cr = tcps->tcps_g_q_cr; 24166 tcps->tcps_g_q_cr = NULL; 24167 ASSERT(cr != NULL); 24168 24169 /* 24170 * Make sure we can break the recursion when tcp_close decrements 24171 * the reference count causing g_q_inactive to be called again. 24172 */ 24173 tcps->tcps_g_q_lh = NULL; 24174 24175 /* close the default queue */ 24176 (void) ldi_close(lh, FREAD|FWRITE, cr); 24177 /* 24178 * At this point in time tcps and the rest of netstack_t might 24179 * have been deleted. 24180 */ 24181 tcps = NULL; 24182 24183 /* Close layered handles */ 24184 ldi_ident_release(li); 24185 crfree(cr); 24186 } 24187 24188 /* 24189 * Called when last tcp_t drops reference count using TCPS_REFRELE. 24190 * 24191 * Have to ensure that the ldi routines are not used by an 24192 * interrupt thread by using a taskq. 24193 */ 24194 void 24195 tcp_g_q_inactive(tcp_stack_t *tcps) 24196 { 24197 if (tcps->tcps_g_q_lh == NULL) 24198 return; /* Nothing to cleanup */ 24199 24200 ASSERT(tcps->tcps_refcnt == 0); 24201 TCPS_REFHOLD(tcps); /* Compensate for what g_q_destroy did */ 24202 24203 if (servicing_interrupt()) { 24204 (void) taskq_dispatch(tcp_taskq, tcp_g_q_close, 24205 (void *) tcps, TQ_SLEEP); 24206 } else { 24207 tcp_g_q_close(tcps); 24208 } 24209 } 24210 24211 /* 24212 * Called by IP when IP is loaded into the kernel 24213 */ 24214 void 24215 tcp_ddi_g_init(void) 24216 { 24217 tcp_timercache = kmem_cache_create("tcp_timercache", 24218 sizeof (tcp_timer_t) + sizeof (mblk_t), 0, 24219 NULL, NULL, NULL, NULL, NULL, 0); 24220 24221 tcp_sack_info_cache = kmem_cache_create("tcp_sack_info_cache", 24222 sizeof (tcp_sack_info_t), 0, 24223 tcp_sack_info_constructor, NULL, NULL, NULL, NULL, 0); 24224 24225 tcp_iphc_cache = kmem_cache_create("tcp_iphc_cache", 24226 TCP_MAX_COMBINED_HEADER_LENGTH, 0, 24227 tcp_iphc_constructor, NULL, NULL, NULL, NULL, 0); 24228 24229 mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL); 24230 24231 /* Initialize the random number generator */ 24232 tcp_random_init(); 24233 24234 /* A single callback independently of how many netstacks we have */ 24235 ip_squeue_init(tcp_squeue_add); 24236 24237 tcp_g_kstat = tcp_g_kstat_init(&tcp_g_statistics); 24238 24239 tcp_taskq = taskq_create("tcp_taskq", 1, minclsyspri, 1, 1, 24240 TASKQ_PREPOPULATE); 24241 24242 tcp_squeue_flag = tcp_squeue_switch(tcp_squeue_wput); 24243 24244 /* 24245 * We want to be informed each time a stack is created or 24246 * destroyed in the kernel, so we can maintain the 24247 * set of tcp_stack_t's. 24248 */ 24249 netstack_register(NS_TCP, tcp_stack_init, tcp_stack_shutdown, 24250 tcp_stack_fini); 24251 } 24252 24253 24254 #define INET_NAME "ip" 24255 24256 /* 24257 * Initialize the TCP stack instance. 24258 */ 24259 static void * 24260 tcp_stack_init(netstackid_t stackid, netstack_t *ns) 24261 { 24262 tcp_stack_t *tcps; 24263 tcpparam_t *pa; 24264 int i; 24265 int error = 0; 24266 major_t major; 24267 24268 tcps = (tcp_stack_t *)kmem_zalloc(sizeof (*tcps), KM_SLEEP); 24269 tcps->tcps_netstack = ns; 24270 24271 /* Initialize locks */ 24272 mutex_init(&tcps->tcps_g_q_lock, NULL, MUTEX_DEFAULT, NULL); 24273 cv_init(&tcps->tcps_g_q_cv, NULL, CV_DEFAULT, NULL); 24274 mutex_init(&tcps->tcps_iss_key_lock, NULL, MUTEX_DEFAULT, NULL); 24275 mutex_init(&tcps->tcps_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL); 24276 24277 tcps->tcps_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS; 24278 tcps->tcps_g_epriv_ports[0] = 2049; 24279 tcps->tcps_g_epriv_ports[1] = 4045; 24280 tcps->tcps_min_anonpriv_port = 512; 24281 24282 tcps->tcps_bind_fanout = kmem_zalloc(sizeof (tf_t) * 24283 TCP_BIND_FANOUT_SIZE, KM_SLEEP); 24284 tcps->tcps_acceptor_fanout = kmem_zalloc(sizeof (tf_t) * 24285 TCP_FANOUT_SIZE, KM_SLEEP); 24286 24287 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 24288 mutex_init(&tcps->tcps_bind_fanout[i].tf_lock, NULL, 24289 MUTEX_DEFAULT, NULL); 24290 } 24291 24292 for (i = 0; i < TCP_FANOUT_SIZE; i++) { 24293 mutex_init(&tcps->tcps_acceptor_fanout[i].tf_lock, NULL, 24294 MUTEX_DEFAULT, NULL); 24295 } 24296 24297 /* TCP's IPsec code calls the packet dropper. */ 24298 ip_drop_register(&tcps->tcps_dropper, "TCP IPsec policy enforcement"); 24299 24300 pa = (tcpparam_t *)kmem_alloc(sizeof (lcl_tcp_param_arr), KM_SLEEP); 24301 tcps->tcps_params = pa; 24302 bcopy(lcl_tcp_param_arr, tcps->tcps_params, sizeof (lcl_tcp_param_arr)); 24303 24304 (void) tcp_param_register(&tcps->tcps_g_nd, tcps->tcps_params, 24305 A_CNT(lcl_tcp_param_arr), tcps); 24306 24307 /* 24308 * Note: To really walk the device tree you need the devinfo 24309 * pointer to your device which is only available after probe/attach. 24310 * The following is safe only because it uses ddi_root_node() 24311 */ 24312 tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr, 24313 tcp_opt_obj.odb_opt_arr_cnt); 24314 24315 /* 24316 * Initialize RFC 1948 secret values. This will probably be reset once 24317 * by the boot scripts. 24318 * 24319 * Use NULL name, as the name is caught by the new lockstats. 24320 * 24321 * Initialize with some random, non-guessable string, like the global 24322 * T_INFO_ACK. 24323 */ 24324 24325 tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack, 24326 sizeof (tcp_g_t_info_ack), tcps); 24327 24328 tcps->tcps_kstat = tcp_kstat2_init(stackid, &tcps->tcps_statistics); 24329 tcps->tcps_mibkp = tcp_kstat_init(stackid, tcps); 24330 24331 major = mod_name_to_major(INET_NAME); 24332 error = ldi_ident_from_major(major, &tcps->tcps_ldi_ident); 24333 ASSERT(error == 0); 24334 return (tcps); 24335 } 24336 24337 /* 24338 * Called when the IP module is about to be unloaded. 24339 */ 24340 void 24341 tcp_ddi_g_destroy(void) 24342 { 24343 tcp_g_kstat_fini(tcp_g_kstat); 24344 tcp_g_kstat = NULL; 24345 bzero(&tcp_g_statistics, sizeof (tcp_g_statistics)); 24346 24347 mutex_destroy(&tcp_random_lock); 24348 24349 kmem_cache_destroy(tcp_timercache); 24350 kmem_cache_destroy(tcp_sack_info_cache); 24351 kmem_cache_destroy(tcp_iphc_cache); 24352 24353 netstack_unregister(NS_TCP); 24354 taskq_destroy(tcp_taskq); 24355 } 24356 24357 /* 24358 * Shut down the TCP stack instance. 24359 */ 24360 /* ARGSUSED */ 24361 static void 24362 tcp_stack_shutdown(netstackid_t stackid, void *arg) 24363 { 24364 tcp_stack_t *tcps = (tcp_stack_t *)arg; 24365 24366 tcp_g_q_destroy(tcps); 24367 } 24368 24369 /* 24370 * Free the TCP stack instance. 24371 */ 24372 static void 24373 tcp_stack_fini(netstackid_t stackid, void *arg) 24374 { 24375 tcp_stack_t *tcps = (tcp_stack_t *)arg; 24376 int i; 24377 24378 nd_free(&tcps->tcps_g_nd); 24379 kmem_free(tcps->tcps_params, sizeof (lcl_tcp_param_arr)); 24380 tcps->tcps_params = NULL; 24381 kmem_free(tcps->tcps_wroff_xtra_param, sizeof (tcpparam_t)); 24382 tcps->tcps_wroff_xtra_param = NULL; 24383 kmem_free(tcps->tcps_mdt_head_param, sizeof (tcpparam_t)); 24384 tcps->tcps_mdt_head_param = NULL; 24385 kmem_free(tcps->tcps_mdt_tail_param, sizeof (tcpparam_t)); 24386 tcps->tcps_mdt_tail_param = NULL; 24387 kmem_free(tcps->tcps_mdt_max_pbufs_param, sizeof (tcpparam_t)); 24388 tcps->tcps_mdt_max_pbufs_param = NULL; 24389 24390 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 24391 ASSERT(tcps->tcps_bind_fanout[i].tf_tcp == NULL); 24392 mutex_destroy(&tcps->tcps_bind_fanout[i].tf_lock); 24393 } 24394 24395 for (i = 0; i < TCP_FANOUT_SIZE; i++) { 24396 ASSERT(tcps->tcps_acceptor_fanout[i].tf_tcp == NULL); 24397 mutex_destroy(&tcps->tcps_acceptor_fanout[i].tf_lock); 24398 } 24399 24400 kmem_free(tcps->tcps_bind_fanout, sizeof (tf_t) * TCP_BIND_FANOUT_SIZE); 24401 tcps->tcps_bind_fanout = NULL; 24402 24403 kmem_free(tcps->tcps_acceptor_fanout, sizeof (tf_t) * TCP_FANOUT_SIZE); 24404 tcps->tcps_acceptor_fanout = NULL; 24405 24406 mutex_destroy(&tcps->tcps_iss_key_lock); 24407 mutex_destroy(&tcps->tcps_g_q_lock); 24408 cv_destroy(&tcps->tcps_g_q_cv); 24409 mutex_destroy(&tcps->tcps_epriv_port_lock); 24410 24411 ip_drop_unregister(&tcps->tcps_dropper); 24412 24413 tcp_kstat2_fini(stackid, tcps->tcps_kstat); 24414 tcps->tcps_kstat = NULL; 24415 bzero(&tcps->tcps_statistics, sizeof (tcps->tcps_statistics)); 24416 24417 tcp_kstat_fini(stackid, tcps->tcps_mibkp); 24418 tcps->tcps_mibkp = NULL; 24419 24420 ldi_ident_release(tcps->tcps_ldi_ident); 24421 kmem_free(tcps, sizeof (*tcps)); 24422 } 24423 24424 /* 24425 * Generate ISS, taking into account NDD changes may happen halfway through. 24426 * (If the iss is not zero, set it.) 24427 */ 24428 24429 static void 24430 tcp_iss_init(tcp_t *tcp) 24431 { 24432 MD5_CTX context; 24433 struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg; 24434 uint32_t answer[4]; 24435 tcp_stack_t *tcps = tcp->tcp_tcps; 24436 24437 tcps->tcps_iss_incr_extra += (ISS_INCR >> 1); 24438 tcp->tcp_iss = tcps->tcps_iss_incr_extra; 24439 switch (tcps->tcps_strong_iss) { 24440 case 2: 24441 mutex_enter(&tcps->tcps_iss_key_lock); 24442 context = tcps->tcps_iss_key; 24443 mutex_exit(&tcps->tcps_iss_key_lock); 24444 arg.ports = tcp->tcp_ports; 24445 if (tcp->tcp_ipversion == IPV4_VERSION) { 24446 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 24447 &arg.src); 24448 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_dst, 24449 &arg.dst); 24450 } else { 24451 arg.src = tcp->tcp_ip6h->ip6_src; 24452 arg.dst = tcp->tcp_ip6h->ip6_dst; 24453 } 24454 MD5Update(&context, (uchar_t *)&arg, sizeof (arg)); 24455 MD5Final((uchar_t *)answer, &context); 24456 tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3]; 24457 /* 24458 * Now that we've hashed into a unique per-connection sequence 24459 * space, add a random increment per strong_iss == 1. So I 24460 * guess we'll have to... 24461 */ 24462 /* FALLTHRU */ 24463 case 1: 24464 tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random(); 24465 break; 24466 default: 24467 tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 24468 break; 24469 } 24470 tcp->tcp_valid_bits = TCP_ISS_VALID; 24471 tcp->tcp_fss = tcp->tcp_iss - 1; 24472 tcp->tcp_suna = tcp->tcp_iss; 24473 tcp->tcp_snxt = tcp->tcp_iss + 1; 24474 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 24475 tcp->tcp_csuna = tcp->tcp_snxt; 24476 } 24477 24478 /* 24479 * Exported routine for extracting active tcp connection status. 24480 * 24481 * This is used by the Solaris Cluster Networking software to 24482 * gather a list of connections that need to be forwarded to 24483 * specific nodes in the cluster when configuration changes occur. 24484 * 24485 * The callback is invoked for each tcp_t structure from all netstacks, 24486 * if 'stack_id' is less than 0. Otherwise, only for tcp_t structures 24487 * from the netstack with the specified stack_id. Returning 24488 * non-zero from the callback routine terminates the search. 24489 */ 24490 int 24491 cl_tcp_walk_list(netstackid_t stack_id, 24492 int (*cl_callback)(cl_tcp_info_t *, void *), void *arg) 24493 { 24494 netstack_handle_t nh; 24495 netstack_t *ns; 24496 int ret = 0; 24497 24498 if (stack_id >= 0) { 24499 if ((ns = netstack_find_by_stackid(stack_id)) == NULL) 24500 return (EINVAL); 24501 24502 ret = cl_tcp_walk_list_stack(cl_callback, arg, 24503 ns->netstack_tcp); 24504 netstack_rele(ns); 24505 return (ret); 24506 } 24507 24508 netstack_next_init(&nh); 24509 while ((ns = netstack_next(&nh)) != NULL) { 24510 ret = cl_tcp_walk_list_stack(cl_callback, arg, 24511 ns->netstack_tcp); 24512 netstack_rele(ns); 24513 } 24514 netstack_next_fini(&nh); 24515 return (ret); 24516 } 24517 24518 static int 24519 cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *), void *arg, 24520 tcp_stack_t *tcps) 24521 { 24522 tcp_t *tcp; 24523 cl_tcp_info_t cl_tcpi; 24524 connf_t *connfp; 24525 conn_t *connp; 24526 int i; 24527 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 24528 24529 ASSERT(callback != NULL); 24530 24531 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 24532 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 24533 connp = NULL; 24534 24535 while ((connp = 24536 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 24537 24538 tcp = connp->conn_tcp; 24539 cl_tcpi.cl_tcpi_version = CL_TCPI_V1; 24540 cl_tcpi.cl_tcpi_ipversion = tcp->tcp_ipversion; 24541 cl_tcpi.cl_tcpi_state = tcp->tcp_state; 24542 cl_tcpi.cl_tcpi_lport = tcp->tcp_lport; 24543 cl_tcpi.cl_tcpi_fport = tcp->tcp_fport; 24544 /* 24545 * The macros tcp_laddr and tcp_faddr give the IPv4 24546 * addresses. They are copied implicitly below as 24547 * mapped addresses. 24548 */ 24549 cl_tcpi.cl_tcpi_laddr_v6 = tcp->tcp_ip_src_v6; 24550 if (tcp->tcp_ipversion == IPV4_VERSION) { 24551 cl_tcpi.cl_tcpi_faddr = 24552 tcp->tcp_ipha->ipha_dst; 24553 } else { 24554 cl_tcpi.cl_tcpi_faddr_v6 = 24555 tcp->tcp_ip6h->ip6_dst; 24556 } 24557 24558 /* 24559 * If the callback returns non-zero 24560 * we terminate the traversal. 24561 */ 24562 if ((*callback)(&cl_tcpi, arg) != 0) { 24563 CONN_DEC_REF(tcp->tcp_connp); 24564 return (1); 24565 } 24566 } 24567 } 24568 24569 return (0); 24570 } 24571 24572 /* 24573 * Macros used for accessing the different types of sockaddr 24574 * structures inside a tcp_ioc_abort_conn_t. 24575 */ 24576 #define TCP_AC_V4LADDR(acp) ((sin_t *)&(acp)->ac_local) 24577 #define TCP_AC_V4RADDR(acp) ((sin_t *)&(acp)->ac_remote) 24578 #define TCP_AC_V4LOCAL(acp) (TCP_AC_V4LADDR(acp)->sin_addr.s_addr) 24579 #define TCP_AC_V4REMOTE(acp) (TCP_AC_V4RADDR(acp)->sin_addr.s_addr) 24580 #define TCP_AC_V4LPORT(acp) (TCP_AC_V4LADDR(acp)->sin_port) 24581 #define TCP_AC_V4RPORT(acp) (TCP_AC_V4RADDR(acp)->sin_port) 24582 #define TCP_AC_V6LADDR(acp) ((sin6_t *)&(acp)->ac_local) 24583 #define TCP_AC_V6RADDR(acp) ((sin6_t *)&(acp)->ac_remote) 24584 #define TCP_AC_V6LOCAL(acp) (TCP_AC_V6LADDR(acp)->sin6_addr) 24585 #define TCP_AC_V6REMOTE(acp) (TCP_AC_V6RADDR(acp)->sin6_addr) 24586 #define TCP_AC_V6LPORT(acp) (TCP_AC_V6LADDR(acp)->sin6_port) 24587 #define TCP_AC_V6RPORT(acp) (TCP_AC_V6RADDR(acp)->sin6_port) 24588 24589 /* 24590 * Return the correct error code to mimic the behavior 24591 * of a connection reset. 24592 */ 24593 #define TCP_AC_GET_ERRCODE(state, err) { \ 24594 switch ((state)) { \ 24595 case TCPS_SYN_SENT: \ 24596 case TCPS_SYN_RCVD: \ 24597 (err) = ECONNREFUSED; \ 24598 break; \ 24599 case TCPS_ESTABLISHED: \ 24600 case TCPS_FIN_WAIT_1: \ 24601 case TCPS_FIN_WAIT_2: \ 24602 case TCPS_CLOSE_WAIT: \ 24603 (err) = ECONNRESET; \ 24604 break; \ 24605 case TCPS_CLOSING: \ 24606 case TCPS_LAST_ACK: \ 24607 case TCPS_TIME_WAIT: \ 24608 (err) = 0; \ 24609 break; \ 24610 default: \ 24611 (err) = ENXIO; \ 24612 } \ 24613 } 24614 24615 /* 24616 * Check if a tcp structure matches the info in acp. 24617 */ 24618 #define TCP_AC_ADDR_MATCH(acp, tcp) \ 24619 (((acp)->ac_local.ss_family == AF_INET) ? \ 24620 ((TCP_AC_V4LOCAL((acp)) == INADDR_ANY || \ 24621 TCP_AC_V4LOCAL((acp)) == (tcp)->tcp_ip_src) && \ 24622 (TCP_AC_V4REMOTE((acp)) == INADDR_ANY || \ 24623 TCP_AC_V4REMOTE((acp)) == (tcp)->tcp_remote) && \ 24624 (TCP_AC_V4LPORT((acp)) == 0 || \ 24625 TCP_AC_V4LPORT((acp)) == (tcp)->tcp_lport) && \ 24626 (TCP_AC_V4RPORT((acp)) == 0 || \ 24627 TCP_AC_V4RPORT((acp)) == (tcp)->tcp_fport) && \ 24628 (acp)->ac_start <= (tcp)->tcp_state && \ 24629 (acp)->ac_end >= (tcp)->tcp_state) : \ 24630 ((IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL((acp))) || \ 24631 IN6_ARE_ADDR_EQUAL(&TCP_AC_V6LOCAL((acp)), \ 24632 &(tcp)->tcp_ip_src_v6)) && \ 24633 (IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE((acp))) || \ 24634 IN6_ARE_ADDR_EQUAL(&TCP_AC_V6REMOTE((acp)), \ 24635 &(tcp)->tcp_remote_v6)) && \ 24636 (TCP_AC_V6LPORT((acp)) == 0 || \ 24637 TCP_AC_V6LPORT((acp)) == (tcp)->tcp_lport) && \ 24638 (TCP_AC_V6RPORT((acp)) == 0 || \ 24639 TCP_AC_V6RPORT((acp)) == (tcp)->tcp_fport) && \ 24640 (acp)->ac_start <= (tcp)->tcp_state && \ 24641 (acp)->ac_end >= (tcp)->tcp_state)) 24642 24643 #define TCP_AC_MATCH(acp, tcp) \ 24644 (((acp)->ac_zoneid == ALL_ZONES || \ 24645 (acp)->ac_zoneid == tcp->tcp_connp->conn_zoneid) ? \ 24646 TCP_AC_ADDR_MATCH(acp, tcp) : 0) 24647 24648 /* 24649 * Build a message containing a tcp_ioc_abort_conn_t structure 24650 * which is filled in with information from acp and tp. 24651 */ 24652 static mblk_t * 24653 tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *acp, tcp_t *tp) 24654 { 24655 mblk_t *mp; 24656 tcp_ioc_abort_conn_t *tacp; 24657 24658 mp = allocb(sizeof (uint32_t) + sizeof (*acp), BPRI_LO); 24659 if (mp == NULL) 24660 return (NULL); 24661 24662 mp->b_datap->db_type = M_CTL; 24663 24664 *((uint32_t *)mp->b_rptr) = TCP_IOC_ABORT_CONN; 24665 tacp = (tcp_ioc_abort_conn_t *)((uchar_t *)mp->b_rptr + 24666 sizeof (uint32_t)); 24667 24668 tacp->ac_start = acp->ac_start; 24669 tacp->ac_end = acp->ac_end; 24670 tacp->ac_zoneid = acp->ac_zoneid; 24671 24672 if (acp->ac_local.ss_family == AF_INET) { 24673 tacp->ac_local.ss_family = AF_INET; 24674 tacp->ac_remote.ss_family = AF_INET; 24675 TCP_AC_V4LOCAL(tacp) = tp->tcp_ip_src; 24676 TCP_AC_V4REMOTE(tacp) = tp->tcp_remote; 24677 TCP_AC_V4LPORT(tacp) = tp->tcp_lport; 24678 TCP_AC_V4RPORT(tacp) = tp->tcp_fport; 24679 } else { 24680 tacp->ac_local.ss_family = AF_INET6; 24681 tacp->ac_remote.ss_family = AF_INET6; 24682 TCP_AC_V6LOCAL(tacp) = tp->tcp_ip_src_v6; 24683 TCP_AC_V6REMOTE(tacp) = tp->tcp_remote_v6; 24684 TCP_AC_V6LPORT(tacp) = tp->tcp_lport; 24685 TCP_AC_V6RPORT(tacp) = tp->tcp_fport; 24686 } 24687 mp->b_wptr = (uchar_t *)mp->b_rptr + sizeof (uint32_t) + sizeof (*acp); 24688 return (mp); 24689 } 24690 24691 /* 24692 * Print a tcp_ioc_abort_conn_t structure. 24693 */ 24694 static void 24695 tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *acp) 24696 { 24697 char lbuf[128]; 24698 char rbuf[128]; 24699 sa_family_t af; 24700 in_port_t lport, rport; 24701 ushort_t logflags; 24702 24703 af = acp->ac_local.ss_family; 24704 24705 if (af == AF_INET) { 24706 (void) inet_ntop(af, (const void *)&TCP_AC_V4LOCAL(acp), 24707 lbuf, 128); 24708 (void) inet_ntop(af, (const void *)&TCP_AC_V4REMOTE(acp), 24709 rbuf, 128); 24710 lport = ntohs(TCP_AC_V4LPORT(acp)); 24711 rport = ntohs(TCP_AC_V4RPORT(acp)); 24712 } else { 24713 (void) inet_ntop(af, (const void *)&TCP_AC_V6LOCAL(acp), 24714 lbuf, 128); 24715 (void) inet_ntop(af, (const void *)&TCP_AC_V6REMOTE(acp), 24716 rbuf, 128); 24717 lport = ntohs(TCP_AC_V6LPORT(acp)); 24718 rport = ntohs(TCP_AC_V6RPORT(acp)); 24719 } 24720 24721 logflags = SL_TRACE | SL_NOTE; 24722 /* 24723 * Don't print this message to the console if the operation was done 24724 * to a non-global zone. 24725 */ 24726 if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) 24727 logflags |= SL_CONSOLE; 24728 (void) strlog(TCP_MOD_ID, 0, 1, logflags, 24729 "TCP_IOC_ABORT_CONN: local = %s:%d, remote = %s:%d, " 24730 "start = %d, end = %d\n", lbuf, lport, rbuf, rport, 24731 acp->ac_start, acp->ac_end); 24732 } 24733 24734 /* 24735 * Called inside tcp_rput when a message built using 24736 * tcp_ioctl_abort_build_msg is put into a queue. 24737 * Note that when we get here there is no wildcard in acp any more. 24738 */ 24739 static void 24740 tcp_ioctl_abort_handler(tcp_t *tcp, mblk_t *mp) 24741 { 24742 tcp_ioc_abort_conn_t *acp; 24743 24744 acp = (tcp_ioc_abort_conn_t *)(mp->b_rptr + sizeof (uint32_t)); 24745 if (tcp->tcp_state <= acp->ac_end) { 24746 /* 24747 * If we get here, we are already on the correct 24748 * squeue. This ioctl follows the following path 24749 * tcp_wput -> tcp_wput_ioctl -> tcp_ioctl_abort_conn 24750 * ->tcp_ioctl_abort->squeue_enter (if on a 24751 * different squeue) 24752 */ 24753 int errcode; 24754 24755 TCP_AC_GET_ERRCODE(tcp->tcp_state, errcode); 24756 (void) tcp_clean_death(tcp, errcode, 26); 24757 } 24758 freemsg(mp); 24759 } 24760 24761 /* 24762 * Abort all matching connections on a hash chain. 24763 */ 24764 static int 24765 tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *acp, int index, int *count, 24766 boolean_t exact, tcp_stack_t *tcps) 24767 { 24768 int nmatch, err = 0; 24769 tcp_t *tcp; 24770 MBLKP mp, last, listhead = NULL; 24771 conn_t *tconnp; 24772 connf_t *connfp; 24773 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 24774 24775 connfp = &ipst->ips_ipcl_conn_fanout[index]; 24776 24777 startover: 24778 nmatch = 0; 24779 24780 mutex_enter(&connfp->connf_lock); 24781 for (tconnp = connfp->connf_head; tconnp != NULL; 24782 tconnp = tconnp->conn_next) { 24783 tcp = tconnp->conn_tcp; 24784 if (TCP_AC_MATCH(acp, tcp)) { 24785 CONN_INC_REF(tcp->tcp_connp); 24786 mp = tcp_ioctl_abort_build_msg(acp, tcp); 24787 if (mp == NULL) { 24788 err = ENOMEM; 24789 CONN_DEC_REF(tcp->tcp_connp); 24790 break; 24791 } 24792 mp->b_prev = (mblk_t *)tcp; 24793 24794 if (listhead == NULL) { 24795 listhead = mp; 24796 last = mp; 24797 } else { 24798 last->b_next = mp; 24799 last = mp; 24800 } 24801 nmatch++; 24802 if (exact) 24803 break; 24804 } 24805 24806 /* Avoid holding lock for too long. */ 24807 if (nmatch >= 500) 24808 break; 24809 } 24810 mutex_exit(&connfp->connf_lock); 24811 24812 /* Pass mp into the correct tcp */ 24813 while ((mp = listhead) != NULL) { 24814 listhead = listhead->b_next; 24815 tcp = (tcp_t *)mp->b_prev; 24816 mp->b_next = mp->b_prev = NULL; 24817 SQUEUE_ENTER_ONE(tcp->tcp_connp->conn_sqp, mp, tcp_input, 24818 tcp->tcp_connp, SQ_FILL, SQTAG_TCP_ABORT_BUCKET); 24819 } 24820 24821 *count += nmatch; 24822 if (nmatch >= 500 && err == 0) 24823 goto startover; 24824 return (err); 24825 } 24826 24827 /* 24828 * Abort all connections that matches the attributes specified in acp. 24829 */ 24830 static int 24831 tcp_ioctl_abort(tcp_ioc_abort_conn_t *acp, tcp_stack_t *tcps) 24832 { 24833 sa_family_t af; 24834 uint32_t ports; 24835 uint16_t *pports; 24836 int err = 0, count = 0; 24837 boolean_t exact = B_FALSE; /* set when there is no wildcard */ 24838 int index = -1; 24839 ushort_t logflags; 24840 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 24841 24842 af = acp->ac_local.ss_family; 24843 24844 if (af == AF_INET) { 24845 if (TCP_AC_V4REMOTE(acp) != INADDR_ANY && 24846 TCP_AC_V4LPORT(acp) != 0 && TCP_AC_V4RPORT(acp) != 0) { 24847 pports = (uint16_t *)&ports; 24848 pports[1] = TCP_AC_V4LPORT(acp); 24849 pports[0] = TCP_AC_V4RPORT(acp); 24850 exact = (TCP_AC_V4LOCAL(acp) != INADDR_ANY); 24851 } 24852 } else { 24853 if (!IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE(acp)) && 24854 TCP_AC_V6LPORT(acp) != 0 && TCP_AC_V6RPORT(acp) != 0) { 24855 pports = (uint16_t *)&ports; 24856 pports[1] = TCP_AC_V6LPORT(acp); 24857 pports[0] = TCP_AC_V6RPORT(acp); 24858 exact = !IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL(acp)); 24859 } 24860 } 24861 24862 /* 24863 * For cases where remote addr, local port, and remote port are non- 24864 * wildcards, tcp_ioctl_abort_bucket will only be called once. 24865 */ 24866 if (index != -1) { 24867 err = tcp_ioctl_abort_bucket(acp, index, 24868 &count, exact, tcps); 24869 } else { 24870 /* 24871 * loop through all entries for wildcard case 24872 */ 24873 for (index = 0; 24874 index < ipst->ips_ipcl_conn_fanout_size; 24875 index++) { 24876 err = tcp_ioctl_abort_bucket(acp, index, 24877 &count, exact, tcps); 24878 if (err != 0) 24879 break; 24880 } 24881 } 24882 24883 logflags = SL_TRACE | SL_NOTE; 24884 /* 24885 * Don't print this message to the console if the operation was done 24886 * to a non-global zone. 24887 */ 24888 if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) 24889 logflags |= SL_CONSOLE; 24890 (void) strlog(TCP_MOD_ID, 0, 1, logflags, "TCP_IOC_ABORT_CONN: " 24891 "aborted %d connection%c\n", count, ((count > 1) ? 's' : ' ')); 24892 if (err == 0 && count == 0) 24893 err = ENOENT; 24894 return (err); 24895 } 24896 24897 /* 24898 * Process the TCP_IOC_ABORT_CONN ioctl request. 24899 */ 24900 static void 24901 tcp_ioctl_abort_conn(queue_t *q, mblk_t *mp) 24902 { 24903 int err; 24904 IOCP iocp; 24905 MBLKP mp1; 24906 sa_family_t laf, raf; 24907 tcp_ioc_abort_conn_t *acp; 24908 zone_t *zptr; 24909 conn_t *connp = Q_TO_CONN(q); 24910 zoneid_t zoneid = connp->conn_zoneid; 24911 tcp_t *tcp = connp->conn_tcp; 24912 tcp_stack_t *tcps = tcp->tcp_tcps; 24913 24914 iocp = (IOCP)mp->b_rptr; 24915 24916 if ((mp1 = mp->b_cont) == NULL || 24917 iocp->ioc_count != sizeof (tcp_ioc_abort_conn_t)) { 24918 err = EINVAL; 24919 goto out; 24920 } 24921 24922 /* check permissions */ 24923 if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) { 24924 err = EPERM; 24925 goto out; 24926 } 24927 24928 if (mp1->b_cont != NULL) { 24929 freemsg(mp1->b_cont); 24930 mp1->b_cont = NULL; 24931 } 24932 24933 acp = (tcp_ioc_abort_conn_t *)mp1->b_rptr; 24934 laf = acp->ac_local.ss_family; 24935 raf = acp->ac_remote.ss_family; 24936 24937 /* check that a zone with the supplied zoneid exists */ 24938 if (acp->ac_zoneid != GLOBAL_ZONEID && acp->ac_zoneid != ALL_ZONES) { 24939 zptr = zone_find_by_id(zoneid); 24940 if (zptr != NULL) { 24941 zone_rele(zptr); 24942 } else { 24943 err = EINVAL; 24944 goto out; 24945 } 24946 } 24947 24948 /* 24949 * For exclusive stacks we set the zoneid to zero 24950 * to make TCP operate as if in the global zone. 24951 */ 24952 if (tcps->tcps_netstack->netstack_stackid != GLOBAL_NETSTACKID) 24953 acp->ac_zoneid = GLOBAL_ZONEID; 24954 24955 if (acp->ac_start < TCPS_SYN_SENT || acp->ac_end > TCPS_TIME_WAIT || 24956 acp->ac_start > acp->ac_end || laf != raf || 24957 (laf != AF_INET && laf != AF_INET6)) { 24958 err = EINVAL; 24959 goto out; 24960 } 24961 24962 tcp_ioctl_abort_dump(acp); 24963 err = tcp_ioctl_abort(acp, tcps); 24964 24965 out: 24966 if (mp1 != NULL) { 24967 freemsg(mp1); 24968 mp->b_cont = NULL; 24969 } 24970 24971 if (err != 0) 24972 miocnak(q, mp, 0, err); 24973 else 24974 miocack(q, mp, 0, 0); 24975 } 24976 24977 /* 24978 * tcp_time_wait_processing() handles processing of incoming packets when 24979 * the tcp is in the TIME_WAIT state. 24980 * A TIME_WAIT tcp that has an associated open TCP stream is never put 24981 * on the time wait list. 24982 */ 24983 void 24984 tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, uint32_t seg_seq, 24985 uint32_t seg_ack, int seg_len, tcph_t *tcph) 24986 { 24987 int32_t bytes_acked; 24988 int32_t gap; 24989 int32_t rgap; 24990 tcp_opt_t tcpopt; 24991 uint_t flags; 24992 uint32_t new_swnd = 0; 24993 conn_t *connp; 24994 tcp_stack_t *tcps = tcp->tcp_tcps; 24995 24996 BUMP_LOCAL(tcp->tcp_ibsegs); 24997 DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp); 24998 24999 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 25000 new_swnd = BE16_TO_U16(tcph->th_win) << 25001 ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws); 25002 if (tcp->tcp_snd_ts_ok) { 25003 if (!tcp_paws_check(tcp, tcph, &tcpopt)) { 25004 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 25005 tcp->tcp_rnxt, TH_ACK); 25006 goto done; 25007 } 25008 } 25009 gap = seg_seq - tcp->tcp_rnxt; 25010 rgap = tcp->tcp_rwnd - (gap + seg_len); 25011 if (gap < 0) { 25012 BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); 25013 UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, 25014 (seg_len > -gap ? -gap : seg_len)); 25015 seg_len += gap; 25016 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 25017 if (flags & TH_RST) { 25018 goto done; 25019 } 25020 if ((flags & TH_FIN) && seg_len == -1) { 25021 /* 25022 * When TCP receives a duplicate FIN in 25023 * TIME_WAIT state, restart the 2 MSL timer. 25024 * See page 73 in RFC 793. Make sure this TCP 25025 * is already on the TIME_WAIT list. If not, 25026 * just restart the timer. 25027 */ 25028 if (TCP_IS_DETACHED(tcp)) { 25029 if (tcp_time_wait_remove(tcp, NULL) == 25030 B_TRUE) { 25031 tcp_time_wait_append(tcp); 25032 TCP_DBGSTAT(tcps, 25033 tcp_rput_time_wait); 25034 } 25035 } else { 25036 ASSERT(tcp != NULL); 25037 TCP_TIMER_RESTART(tcp, 25038 tcps->tcps_time_wait_interval); 25039 } 25040 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 25041 tcp->tcp_rnxt, TH_ACK); 25042 goto done; 25043 } 25044 flags |= TH_ACK_NEEDED; 25045 seg_len = 0; 25046 goto process_ack; 25047 } 25048 25049 /* Fix seg_seq, and chew the gap off the front. */ 25050 seg_seq = tcp->tcp_rnxt; 25051 } 25052 25053 if ((flags & TH_SYN) && gap > 0 && rgap < 0) { 25054 /* 25055 * Make sure that when we accept the connection, pick 25056 * an ISS greater than (tcp_snxt + ISS_INCR/2) for the 25057 * old connection. 25058 * 25059 * The next ISS generated is equal to tcp_iss_incr_extra 25060 * + ISS_INCR/2 + other components depending on the 25061 * value of tcp_strong_iss. We pre-calculate the new 25062 * ISS here and compare with tcp_snxt to determine if 25063 * we need to make adjustment to tcp_iss_incr_extra. 25064 * 25065 * The above calculation is ugly and is a 25066 * waste of CPU cycles... 25067 */ 25068 uint32_t new_iss = tcps->tcps_iss_incr_extra; 25069 int32_t adj; 25070 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 25071 25072 switch (tcps->tcps_strong_iss) { 25073 case 2: { 25074 /* Add time and MD5 components. */ 25075 uint32_t answer[4]; 25076 struct { 25077 uint32_t ports; 25078 in6_addr_t src; 25079 in6_addr_t dst; 25080 } arg; 25081 MD5_CTX context; 25082 25083 mutex_enter(&tcps->tcps_iss_key_lock); 25084 context = tcps->tcps_iss_key; 25085 mutex_exit(&tcps->tcps_iss_key_lock); 25086 arg.ports = tcp->tcp_ports; 25087 /* We use MAPPED addresses in tcp_iss_init */ 25088 arg.src = tcp->tcp_ip_src_v6; 25089 if (tcp->tcp_ipversion == IPV4_VERSION) { 25090 IN6_IPADDR_TO_V4MAPPED( 25091 tcp->tcp_ipha->ipha_dst, 25092 &arg.dst); 25093 } else { 25094 arg.dst = 25095 tcp->tcp_ip6h->ip6_dst; 25096 } 25097 MD5Update(&context, (uchar_t *)&arg, 25098 sizeof (arg)); 25099 MD5Final((uchar_t *)answer, &context); 25100 answer[0] ^= answer[1] ^ answer[2] ^ answer[3]; 25101 new_iss += (gethrtime() >> ISS_NSEC_SHT) + answer[0]; 25102 break; 25103 } 25104 case 1: 25105 /* Add time component and min random (i.e. 1). */ 25106 new_iss += (gethrtime() >> ISS_NSEC_SHT) + 1; 25107 break; 25108 default: 25109 /* Add only time component. */ 25110 new_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 25111 break; 25112 } 25113 if ((adj = (int32_t)(tcp->tcp_snxt - new_iss)) > 0) { 25114 /* 25115 * New ISS not guaranteed to be ISS_INCR/2 25116 * ahead of the current tcp_snxt, so add the 25117 * difference to tcp_iss_incr_extra. 25118 */ 25119 tcps->tcps_iss_incr_extra += adj; 25120 } 25121 /* 25122 * If tcp_clean_death() can not perform the task now, 25123 * drop the SYN packet and let the other side re-xmit. 25124 * Otherwise pass the SYN packet back in, since the 25125 * old tcp state has been cleaned up or freed. 25126 */ 25127 if (tcp_clean_death(tcp, 0, 27) == -1) 25128 goto done; 25129 /* 25130 * We will come back to tcp_rput_data 25131 * on the global queue. Packets destined 25132 * for the global queue will be checked 25133 * with global policy. But the policy for 25134 * this packet has already been checked as 25135 * this was destined for the detached 25136 * connection. We need to bypass policy 25137 * check this time by attaching a dummy 25138 * ipsec_in with ipsec_in_dont_check set. 25139 */ 25140 connp = ipcl_classify(mp, tcp->tcp_connp->conn_zoneid, ipst); 25141 if (connp != NULL) { 25142 TCP_STAT(tcps, tcp_time_wait_syn_success); 25143 tcp_reinput(connp, mp, tcp->tcp_connp->conn_sqp); 25144 return; 25145 } 25146 goto done; 25147 } 25148 25149 /* 25150 * rgap is the amount of stuff received out of window. A negative 25151 * value is the amount out of window. 25152 */ 25153 if (rgap < 0) { 25154 BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs); 25155 UPDATE_MIB(&tcps->tcps_mib, tcpInDataPastWinBytes, -rgap); 25156 /* Fix seg_len and make sure there is something left. */ 25157 seg_len += rgap; 25158 if (seg_len <= 0) { 25159 if (flags & TH_RST) { 25160 goto done; 25161 } 25162 flags |= TH_ACK_NEEDED; 25163 seg_len = 0; 25164 goto process_ack; 25165 } 25166 } 25167 /* 25168 * Check whether we can update tcp_ts_recent. This test is 25169 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 25170 * Extensions for High Performance: An Update", Internet Draft. 25171 */ 25172 if (tcp->tcp_snd_ts_ok && 25173 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 25174 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 25175 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 25176 tcp->tcp_last_rcv_lbolt = lbolt64; 25177 } 25178 25179 if (seg_seq != tcp->tcp_rnxt && seg_len > 0) { 25180 /* Always ack out of order packets */ 25181 flags |= TH_ACK_NEEDED; 25182 seg_len = 0; 25183 } else if (seg_len > 0) { 25184 BUMP_MIB(&tcps->tcps_mib, tcpInClosed); 25185 BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs); 25186 UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len); 25187 } 25188 if (flags & TH_RST) { 25189 (void) tcp_clean_death(tcp, 0, 28); 25190 goto done; 25191 } 25192 if (flags & TH_SYN) { 25193 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 25194 TH_RST|TH_ACK); 25195 /* 25196 * Do not delete the TCP structure if it is in 25197 * TIME_WAIT state. Refer to RFC 1122, 4.2.2.13. 25198 */ 25199 goto done; 25200 } 25201 process_ack: 25202 if (flags & TH_ACK) { 25203 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 25204 if (bytes_acked <= 0) { 25205 if (bytes_acked == 0 && seg_len == 0 && 25206 new_swnd == tcp->tcp_swnd) 25207 BUMP_MIB(&tcps->tcps_mib, tcpInDupAck); 25208 } else { 25209 /* Acks something not sent */ 25210 flags |= TH_ACK_NEEDED; 25211 } 25212 } 25213 if (flags & TH_ACK_NEEDED) { 25214 /* 25215 * Time to send an ack for some reason. 25216 */ 25217 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 25218 tcp->tcp_rnxt, TH_ACK); 25219 } 25220 done: 25221 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 25222 DB_CKSUMSTART(mp) = 0; 25223 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 25224 TCP_STAT(tcps, tcp_time_wait_syn_fail); 25225 } 25226 freemsg(mp); 25227 } 25228 25229 /* 25230 * TCP Timers Implementation. 25231 */ 25232 timeout_id_t 25233 tcp_timeout(conn_t *connp, void (*f)(void *), clock_t tim) 25234 { 25235 mblk_t *mp; 25236 tcp_timer_t *tcpt; 25237 tcp_t *tcp = connp->conn_tcp; 25238 25239 ASSERT(connp->conn_sqp != NULL); 25240 25241 TCP_DBGSTAT(tcp->tcp_tcps, tcp_timeout_calls); 25242 25243 if (tcp->tcp_timercache == NULL) { 25244 mp = tcp_timermp_alloc(KM_NOSLEEP | KM_PANIC); 25245 } else { 25246 TCP_DBGSTAT(tcp->tcp_tcps, tcp_timeout_cached_alloc); 25247 mp = tcp->tcp_timercache; 25248 tcp->tcp_timercache = mp->b_next; 25249 mp->b_next = NULL; 25250 ASSERT(mp->b_wptr == NULL); 25251 } 25252 25253 CONN_INC_REF(connp); 25254 tcpt = (tcp_timer_t *)mp->b_rptr; 25255 tcpt->connp = connp; 25256 tcpt->tcpt_proc = f; 25257 /* 25258 * TCP timers are normal timeouts. Plus, they do not require more than 25259 * a 10 millisecond resolution. By choosing a coarser resolution and by 25260 * rounding up the expiration to the next resolution boundary, we can 25261 * batch timers in the callout subsystem to make TCP timers more 25262 * efficient. The roundup also protects short timers from expiring too 25263 * early before they have a chance to be cancelled. 25264 */ 25265 tcpt->tcpt_tid = timeout_generic(CALLOUT_NORMAL, tcp_timer_callback, mp, 25266 TICK_TO_NSEC(tim), CALLOUT_TCP_RESOLUTION, CALLOUT_FLAG_ROUNDUP); 25267 25268 return ((timeout_id_t)mp); 25269 } 25270 25271 static void 25272 tcp_timer_callback(void *arg) 25273 { 25274 mblk_t *mp = (mblk_t *)arg; 25275 tcp_timer_t *tcpt; 25276 conn_t *connp; 25277 25278 tcpt = (tcp_timer_t *)mp->b_rptr; 25279 connp = tcpt->connp; 25280 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_timer_handler, connp, 25281 SQ_FILL, SQTAG_TCP_TIMER); 25282 } 25283 25284 static void 25285 tcp_timer_handler(void *arg, mblk_t *mp, void *arg2) 25286 { 25287 tcp_timer_t *tcpt; 25288 conn_t *connp = (conn_t *)arg; 25289 tcp_t *tcp = connp->conn_tcp; 25290 25291 tcpt = (tcp_timer_t *)mp->b_rptr; 25292 ASSERT(connp == tcpt->connp); 25293 ASSERT((squeue_t *)arg2 == connp->conn_sqp); 25294 25295 /* 25296 * If the TCP has reached the closed state, don't proceed any 25297 * further. This TCP logically does not exist on the system. 25298 * tcpt_proc could for example access queues, that have already 25299 * been qprocoff'ed off. Also see comments at the start of tcp_input 25300 */ 25301 if (tcp->tcp_state != TCPS_CLOSED) { 25302 (*tcpt->tcpt_proc)(connp); 25303 } else { 25304 tcp->tcp_timer_tid = 0; 25305 } 25306 tcp_timer_free(connp->conn_tcp, mp); 25307 } 25308 25309 /* 25310 * There is potential race with untimeout and the handler firing at the same 25311 * time. The mblock may be freed by the handler while we are trying to use 25312 * it. But since both should execute on the same squeue, this race should not 25313 * occur. 25314 */ 25315 clock_t 25316 tcp_timeout_cancel(conn_t *connp, timeout_id_t id) 25317 { 25318 mblk_t *mp = (mblk_t *)id; 25319 tcp_timer_t *tcpt; 25320 clock_t delta; 25321 25322 TCP_DBGSTAT(connp->conn_tcp->tcp_tcps, tcp_timeout_cancel_reqs); 25323 25324 if (mp == NULL) 25325 return (-1); 25326 25327 tcpt = (tcp_timer_t *)mp->b_rptr; 25328 ASSERT(tcpt->connp == connp); 25329 25330 delta = untimeout_default(tcpt->tcpt_tid, 0); 25331 25332 if (delta >= 0) { 25333 TCP_DBGSTAT(connp->conn_tcp->tcp_tcps, tcp_timeout_canceled); 25334 tcp_timer_free(connp->conn_tcp, mp); 25335 CONN_DEC_REF(connp); 25336 } 25337 25338 return (delta); 25339 } 25340 25341 /* 25342 * Allocate space for the timer event. The allocation looks like mblk, but it is 25343 * not a proper mblk. To avoid confusion we set b_wptr to NULL. 25344 * 25345 * Dealing with failures: If we can't allocate from the timer cache we try 25346 * allocating from dblock caches using allocb_tryhard(). In this case b_wptr 25347 * points to b_rptr. 25348 * If we can't allocate anything using allocb_tryhard(), we perform a last 25349 * attempt and use kmem_alloc_tryhard(). In this case we set b_wptr to -1 and 25350 * save the actual allocation size in b_datap. 25351 */ 25352 mblk_t * 25353 tcp_timermp_alloc(int kmflags) 25354 { 25355 mblk_t *mp = (mblk_t *)kmem_cache_alloc(tcp_timercache, 25356 kmflags & ~KM_PANIC); 25357 25358 if (mp != NULL) { 25359 mp->b_next = mp->b_prev = NULL; 25360 mp->b_rptr = (uchar_t *)(&mp[1]); 25361 mp->b_wptr = NULL; 25362 mp->b_datap = NULL; 25363 mp->b_queue = NULL; 25364 mp->b_cont = NULL; 25365 } else if (kmflags & KM_PANIC) { 25366 /* 25367 * Failed to allocate memory for the timer. Try allocating from 25368 * dblock caches. 25369 */ 25370 /* ipclassifier calls this from a constructor - hence no tcps */ 25371 TCP_G_STAT(tcp_timermp_allocfail); 25372 mp = allocb_tryhard(sizeof (tcp_timer_t)); 25373 if (mp == NULL) { 25374 size_t size = 0; 25375 /* 25376 * Memory is really low. Try tryhard allocation. 25377 * 25378 * ipclassifier calls this from a constructor - 25379 * hence no tcps 25380 */ 25381 TCP_G_STAT(tcp_timermp_allocdblfail); 25382 mp = kmem_alloc_tryhard(sizeof (mblk_t) + 25383 sizeof (tcp_timer_t), &size, kmflags); 25384 mp->b_rptr = (uchar_t *)(&mp[1]); 25385 mp->b_next = mp->b_prev = NULL; 25386 mp->b_wptr = (uchar_t *)-1; 25387 mp->b_datap = (dblk_t *)size; 25388 mp->b_queue = NULL; 25389 mp->b_cont = NULL; 25390 } 25391 ASSERT(mp->b_wptr != NULL); 25392 } 25393 /* ipclassifier calls this from a constructor - hence no tcps */ 25394 TCP_G_DBGSTAT(tcp_timermp_alloced); 25395 25396 return (mp); 25397 } 25398 25399 /* 25400 * Free per-tcp timer cache. 25401 * It can only contain entries from tcp_timercache. 25402 */ 25403 void 25404 tcp_timermp_free(tcp_t *tcp) 25405 { 25406 mblk_t *mp; 25407 25408 while ((mp = tcp->tcp_timercache) != NULL) { 25409 ASSERT(mp->b_wptr == NULL); 25410 tcp->tcp_timercache = tcp->tcp_timercache->b_next; 25411 kmem_cache_free(tcp_timercache, mp); 25412 } 25413 } 25414 25415 /* 25416 * Free timer event. Put it on the per-tcp timer cache if there is not too many 25417 * events there already (currently at most two events are cached). 25418 * If the event is not allocated from the timer cache, free it right away. 25419 */ 25420 static void 25421 tcp_timer_free(tcp_t *tcp, mblk_t *mp) 25422 { 25423 mblk_t *mp1 = tcp->tcp_timercache; 25424 25425 if (mp->b_wptr != NULL) { 25426 /* 25427 * This allocation is not from a timer cache, free it right 25428 * away. 25429 */ 25430 if (mp->b_wptr != (uchar_t *)-1) 25431 freeb(mp); 25432 else 25433 kmem_free(mp, (size_t)mp->b_datap); 25434 } else if (mp1 == NULL || mp1->b_next == NULL) { 25435 /* Cache this timer block for future allocations */ 25436 mp->b_rptr = (uchar_t *)(&mp[1]); 25437 mp->b_next = mp1; 25438 tcp->tcp_timercache = mp; 25439 } else { 25440 kmem_cache_free(tcp_timercache, mp); 25441 TCP_DBGSTAT(tcp->tcp_tcps, tcp_timermp_freed); 25442 } 25443 } 25444 25445 /* 25446 * End of TCP Timers implementation. 25447 */ 25448 25449 /* 25450 * tcp_{set,clr}qfull() functions are used to either set or clear QFULL 25451 * on the specified backing STREAMS q. Note, the caller may make the 25452 * decision to call based on the tcp_t.tcp_flow_stopped value which 25453 * when check outside the q's lock is only an advisory check ... 25454 */ 25455 void 25456 tcp_setqfull(tcp_t *tcp) 25457 { 25458 tcp_stack_t *tcps = tcp->tcp_tcps; 25459 conn_t *connp = tcp->tcp_connp; 25460 25461 if (tcp->tcp_closed) 25462 return; 25463 25464 if (IPCL_IS_NONSTR(connp)) { 25465 (*connp->conn_upcalls->su_txq_full) 25466 (tcp->tcp_connp->conn_upper_handle, B_TRUE); 25467 tcp->tcp_flow_stopped = B_TRUE; 25468 } else { 25469 queue_t *q = tcp->tcp_wq; 25470 25471 if (!(q->q_flag & QFULL)) { 25472 mutex_enter(QLOCK(q)); 25473 if (!(q->q_flag & QFULL)) { 25474 /* still need to set QFULL */ 25475 q->q_flag |= QFULL; 25476 tcp->tcp_flow_stopped = B_TRUE; 25477 mutex_exit(QLOCK(q)); 25478 TCP_STAT(tcps, tcp_flwctl_on); 25479 } else { 25480 mutex_exit(QLOCK(q)); 25481 } 25482 } 25483 } 25484 } 25485 25486 void 25487 tcp_clrqfull(tcp_t *tcp) 25488 { 25489 conn_t *connp = tcp->tcp_connp; 25490 25491 if (tcp->tcp_closed) 25492 return; 25493 25494 if (IPCL_IS_NONSTR(connp)) { 25495 (*connp->conn_upcalls->su_txq_full) 25496 (tcp->tcp_connp->conn_upper_handle, B_FALSE); 25497 tcp->tcp_flow_stopped = B_FALSE; 25498 } else { 25499 queue_t *q = tcp->tcp_wq; 25500 25501 if (q->q_flag & QFULL) { 25502 mutex_enter(QLOCK(q)); 25503 if (q->q_flag & QFULL) { 25504 q->q_flag &= ~QFULL; 25505 tcp->tcp_flow_stopped = B_FALSE; 25506 mutex_exit(QLOCK(q)); 25507 if (q->q_flag & QWANTW) 25508 qbackenable(q, 0); 25509 } else { 25510 mutex_exit(QLOCK(q)); 25511 } 25512 } 25513 } 25514 } 25515 25516 /* 25517 * kstats related to squeues i.e. not per IP instance 25518 */ 25519 static void * 25520 tcp_g_kstat_init(tcp_g_stat_t *tcp_g_statp) 25521 { 25522 kstat_t *ksp; 25523 25524 tcp_g_stat_t template = { 25525 { "tcp_timermp_alloced", KSTAT_DATA_UINT64 }, 25526 { "tcp_timermp_allocfail", KSTAT_DATA_UINT64 }, 25527 { "tcp_timermp_allocdblfail", KSTAT_DATA_UINT64 }, 25528 { "tcp_freelist_cleanup", KSTAT_DATA_UINT64 }, 25529 }; 25530 25531 ksp = kstat_create(TCP_MOD_NAME, 0, "tcpstat_g", "net", 25532 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 25533 KSTAT_FLAG_VIRTUAL); 25534 25535 if (ksp == NULL) 25536 return (NULL); 25537 25538 bcopy(&template, tcp_g_statp, sizeof (template)); 25539 ksp->ks_data = (void *)tcp_g_statp; 25540 25541 kstat_install(ksp); 25542 return (ksp); 25543 } 25544 25545 static void 25546 tcp_g_kstat_fini(kstat_t *ksp) 25547 { 25548 if (ksp != NULL) { 25549 kstat_delete(ksp); 25550 } 25551 } 25552 25553 25554 static void * 25555 tcp_kstat2_init(netstackid_t stackid, tcp_stat_t *tcps_statisticsp) 25556 { 25557 kstat_t *ksp; 25558 25559 tcp_stat_t template = { 25560 { "tcp_time_wait", KSTAT_DATA_UINT64 }, 25561 { "tcp_time_wait_syn", KSTAT_DATA_UINT64 }, 25562 { "tcp_time_wait_success", KSTAT_DATA_UINT64 }, 25563 { "tcp_time_wait_fail", KSTAT_DATA_UINT64 }, 25564 { "tcp_reinput_syn", KSTAT_DATA_UINT64 }, 25565 { "tcp_ip_output", KSTAT_DATA_UINT64 }, 25566 { "tcp_detach_non_time_wait", KSTAT_DATA_UINT64 }, 25567 { "tcp_detach_time_wait", KSTAT_DATA_UINT64 }, 25568 { "tcp_time_wait_reap", KSTAT_DATA_UINT64 }, 25569 { "tcp_clean_death_nondetached", KSTAT_DATA_UINT64 }, 25570 { "tcp_reinit_calls", KSTAT_DATA_UINT64 }, 25571 { "tcp_eager_err1", KSTAT_DATA_UINT64 }, 25572 { "tcp_eager_err2", KSTAT_DATA_UINT64 }, 25573 { "tcp_eager_blowoff_calls", KSTAT_DATA_UINT64 }, 25574 { "tcp_eager_blowoff_q", KSTAT_DATA_UINT64 }, 25575 { "tcp_eager_blowoff_q0", KSTAT_DATA_UINT64 }, 25576 { "tcp_not_hard_bound", KSTAT_DATA_UINT64 }, 25577 { "tcp_no_listener", KSTAT_DATA_UINT64 }, 25578 { "tcp_found_eager", KSTAT_DATA_UINT64 }, 25579 { "tcp_wrong_queue", KSTAT_DATA_UINT64 }, 25580 { "tcp_found_eager_binding1", KSTAT_DATA_UINT64 }, 25581 { "tcp_found_eager_bound1", KSTAT_DATA_UINT64 }, 25582 { "tcp_eager_has_listener1", KSTAT_DATA_UINT64 }, 25583 { "tcp_open_alloc", KSTAT_DATA_UINT64 }, 25584 { "tcp_open_detached_alloc", KSTAT_DATA_UINT64 }, 25585 { "tcp_rput_time_wait", KSTAT_DATA_UINT64 }, 25586 { "tcp_listendrop", KSTAT_DATA_UINT64 }, 25587 { "tcp_listendropq0", KSTAT_DATA_UINT64 }, 25588 { "tcp_wrong_rq", KSTAT_DATA_UINT64 }, 25589 { "tcp_rsrv_calls", KSTAT_DATA_UINT64 }, 25590 { "tcp_eagerfree2", KSTAT_DATA_UINT64 }, 25591 { "tcp_eagerfree3", KSTAT_DATA_UINT64 }, 25592 { "tcp_eagerfree4", KSTAT_DATA_UINT64 }, 25593 { "tcp_eagerfree5", KSTAT_DATA_UINT64 }, 25594 { "tcp_timewait_syn_fail", KSTAT_DATA_UINT64 }, 25595 { "tcp_listen_badflags", KSTAT_DATA_UINT64 }, 25596 { "tcp_timeout_calls", KSTAT_DATA_UINT64 }, 25597 { "tcp_timeout_cached_alloc", KSTAT_DATA_UINT64 }, 25598 { "tcp_timeout_cancel_reqs", KSTAT_DATA_UINT64 }, 25599 { "tcp_timeout_canceled", KSTAT_DATA_UINT64 }, 25600 { "tcp_timermp_freed", KSTAT_DATA_UINT64 }, 25601 { "tcp_push_timer_cnt", KSTAT_DATA_UINT64 }, 25602 { "tcp_ack_timer_cnt", KSTAT_DATA_UINT64 }, 25603 { "tcp_ire_null1", KSTAT_DATA_UINT64 }, 25604 { "tcp_ire_null", KSTAT_DATA_UINT64 }, 25605 { "tcp_ip_send", KSTAT_DATA_UINT64 }, 25606 { "tcp_ip_ire_send", KSTAT_DATA_UINT64 }, 25607 { "tcp_wsrv_called", KSTAT_DATA_UINT64 }, 25608 { "tcp_flwctl_on", KSTAT_DATA_UINT64 }, 25609 { "tcp_timer_fire_early", KSTAT_DATA_UINT64 }, 25610 { "tcp_timer_fire_miss", KSTAT_DATA_UINT64 }, 25611 { "tcp_rput_v6_error", KSTAT_DATA_UINT64 }, 25612 { "tcp_out_sw_cksum", KSTAT_DATA_UINT64 }, 25613 { "tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 25614 { "tcp_zcopy_on", KSTAT_DATA_UINT64 }, 25615 { "tcp_zcopy_off", KSTAT_DATA_UINT64 }, 25616 { "tcp_zcopy_backoff", KSTAT_DATA_UINT64 }, 25617 { "tcp_zcopy_disable", KSTAT_DATA_UINT64 }, 25618 { "tcp_mdt_pkt_out", KSTAT_DATA_UINT64 }, 25619 { "tcp_mdt_pkt_out_v4", KSTAT_DATA_UINT64 }, 25620 { "tcp_mdt_pkt_out_v6", KSTAT_DATA_UINT64 }, 25621 { "tcp_mdt_discarded", KSTAT_DATA_UINT64 }, 25622 { "tcp_mdt_conn_halted1", KSTAT_DATA_UINT64 }, 25623 { "tcp_mdt_conn_halted2", KSTAT_DATA_UINT64 }, 25624 { "tcp_mdt_conn_halted3", KSTAT_DATA_UINT64 }, 25625 { "tcp_mdt_conn_resumed1", KSTAT_DATA_UINT64 }, 25626 { "tcp_mdt_conn_resumed2", KSTAT_DATA_UINT64 }, 25627 { "tcp_mdt_legacy_small", KSTAT_DATA_UINT64 }, 25628 { "tcp_mdt_legacy_all", KSTAT_DATA_UINT64 }, 25629 { "tcp_mdt_legacy_ret", KSTAT_DATA_UINT64 }, 25630 { "tcp_mdt_allocfail", KSTAT_DATA_UINT64 }, 25631 { "tcp_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 25632 { "tcp_mdt_allocd", KSTAT_DATA_UINT64 }, 25633 { "tcp_mdt_linked", KSTAT_DATA_UINT64 }, 25634 { "tcp_fusion_flowctl", KSTAT_DATA_UINT64 }, 25635 { "tcp_fusion_backenabled", KSTAT_DATA_UINT64 }, 25636 { "tcp_fusion_urg", KSTAT_DATA_UINT64 }, 25637 { "tcp_fusion_putnext", KSTAT_DATA_UINT64 }, 25638 { "tcp_fusion_unfusable", KSTAT_DATA_UINT64 }, 25639 { "tcp_fusion_aborted", KSTAT_DATA_UINT64 }, 25640 { "tcp_fusion_unqualified", KSTAT_DATA_UINT64 }, 25641 { "tcp_fusion_rrw_busy", KSTAT_DATA_UINT64 }, 25642 { "tcp_fusion_rrw_msgcnt", KSTAT_DATA_UINT64 }, 25643 { "tcp_fusion_rrw_plugged", KSTAT_DATA_UINT64 }, 25644 { "tcp_in_ack_unsent_drop", KSTAT_DATA_UINT64 }, 25645 { "tcp_sock_fallback", KSTAT_DATA_UINT64 }, 25646 { "tcp_lso_enabled", KSTAT_DATA_UINT64 }, 25647 { "tcp_lso_disabled", KSTAT_DATA_UINT64 }, 25648 { "tcp_lso_times", KSTAT_DATA_UINT64 }, 25649 { "tcp_lso_pkt_out", KSTAT_DATA_UINT64 }, 25650 }; 25651 25652 ksp = kstat_create_netstack(TCP_MOD_NAME, 0, "tcpstat", "net", 25653 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 25654 KSTAT_FLAG_VIRTUAL, stackid); 25655 25656 if (ksp == NULL) 25657 return (NULL); 25658 25659 bcopy(&template, tcps_statisticsp, sizeof (template)); 25660 ksp->ks_data = (void *)tcps_statisticsp; 25661 ksp->ks_private = (void *)(uintptr_t)stackid; 25662 25663 kstat_install(ksp); 25664 return (ksp); 25665 } 25666 25667 static void 25668 tcp_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 25669 { 25670 if (ksp != NULL) { 25671 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 25672 kstat_delete_netstack(ksp, stackid); 25673 } 25674 } 25675 25676 /* 25677 * TCP Kstats implementation 25678 */ 25679 static void * 25680 tcp_kstat_init(netstackid_t stackid, tcp_stack_t *tcps) 25681 { 25682 kstat_t *ksp; 25683 25684 tcp_named_kstat_t template = { 25685 { "rtoAlgorithm", KSTAT_DATA_INT32, 0 }, 25686 { "rtoMin", KSTAT_DATA_INT32, 0 }, 25687 { "rtoMax", KSTAT_DATA_INT32, 0 }, 25688 { "maxConn", KSTAT_DATA_INT32, 0 }, 25689 { "activeOpens", KSTAT_DATA_UINT32, 0 }, 25690 { "passiveOpens", KSTAT_DATA_UINT32, 0 }, 25691 { "attemptFails", KSTAT_DATA_UINT32, 0 }, 25692 { "estabResets", KSTAT_DATA_UINT32, 0 }, 25693 { "currEstab", KSTAT_DATA_UINT32, 0 }, 25694 { "inSegs", KSTAT_DATA_UINT64, 0 }, 25695 { "outSegs", KSTAT_DATA_UINT64, 0 }, 25696 { "retransSegs", KSTAT_DATA_UINT32, 0 }, 25697 { "connTableSize", KSTAT_DATA_INT32, 0 }, 25698 { "outRsts", KSTAT_DATA_UINT32, 0 }, 25699 { "outDataSegs", KSTAT_DATA_UINT32, 0 }, 25700 { "outDataBytes", KSTAT_DATA_UINT32, 0 }, 25701 { "retransBytes", KSTAT_DATA_UINT32, 0 }, 25702 { "outAck", KSTAT_DATA_UINT32, 0 }, 25703 { "outAckDelayed", KSTAT_DATA_UINT32, 0 }, 25704 { "outUrg", KSTAT_DATA_UINT32, 0 }, 25705 { "outWinUpdate", KSTAT_DATA_UINT32, 0 }, 25706 { "outWinProbe", KSTAT_DATA_UINT32, 0 }, 25707 { "outControl", KSTAT_DATA_UINT32, 0 }, 25708 { "outFastRetrans", KSTAT_DATA_UINT32, 0 }, 25709 { "inAckSegs", KSTAT_DATA_UINT32, 0 }, 25710 { "inAckBytes", KSTAT_DATA_UINT32, 0 }, 25711 { "inDupAck", KSTAT_DATA_UINT32, 0 }, 25712 { "inAckUnsent", KSTAT_DATA_UINT32, 0 }, 25713 { "inDataInorderSegs", KSTAT_DATA_UINT32, 0 }, 25714 { "inDataInorderBytes", KSTAT_DATA_UINT32, 0 }, 25715 { "inDataUnorderSegs", KSTAT_DATA_UINT32, 0 }, 25716 { "inDataUnorderBytes", KSTAT_DATA_UINT32, 0 }, 25717 { "inDataDupSegs", KSTAT_DATA_UINT32, 0 }, 25718 { "inDataDupBytes", KSTAT_DATA_UINT32, 0 }, 25719 { "inDataPartDupSegs", KSTAT_DATA_UINT32, 0 }, 25720 { "inDataPartDupBytes", KSTAT_DATA_UINT32, 0 }, 25721 { "inDataPastWinSegs", KSTAT_DATA_UINT32, 0 }, 25722 { "inDataPastWinBytes", KSTAT_DATA_UINT32, 0 }, 25723 { "inWinProbe", KSTAT_DATA_UINT32, 0 }, 25724 { "inWinUpdate", KSTAT_DATA_UINT32, 0 }, 25725 { "inClosed", KSTAT_DATA_UINT32, 0 }, 25726 { "rttUpdate", KSTAT_DATA_UINT32, 0 }, 25727 { "rttNoUpdate", KSTAT_DATA_UINT32, 0 }, 25728 { "timRetrans", KSTAT_DATA_UINT32, 0 }, 25729 { "timRetransDrop", KSTAT_DATA_UINT32, 0 }, 25730 { "timKeepalive", KSTAT_DATA_UINT32, 0 }, 25731 { "timKeepaliveProbe", KSTAT_DATA_UINT32, 0 }, 25732 { "timKeepaliveDrop", KSTAT_DATA_UINT32, 0 }, 25733 { "listenDrop", KSTAT_DATA_UINT32, 0 }, 25734 { "listenDropQ0", KSTAT_DATA_UINT32, 0 }, 25735 { "halfOpenDrop", KSTAT_DATA_UINT32, 0 }, 25736 { "outSackRetransSegs", KSTAT_DATA_UINT32, 0 }, 25737 { "connTableSize6", KSTAT_DATA_INT32, 0 } 25738 }; 25739 25740 ksp = kstat_create_netstack(TCP_MOD_NAME, 0, TCP_MOD_NAME, "mib2", 25741 KSTAT_TYPE_NAMED, NUM_OF_FIELDS(tcp_named_kstat_t), 0, stackid); 25742 25743 if (ksp == NULL) 25744 return (NULL); 25745 25746 template.rtoAlgorithm.value.ui32 = 4; 25747 template.rtoMin.value.ui32 = tcps->tcps_rexmit_interval_min; 25748 template.rtoMax.value.ui32 = tcps->tcps_rexmit_interval_max; 25749 template.maxConn.value.i32 = -1; 25750 25751 bcopy(&template, ksp->ks_data, sizeof (template)); 25752 ksp->ks_update = tcp_kstat_update; 25753 ksp->ks_private = (void *)(uintptr_t)stackid; 25754 25755 kstat_install(ksp); 25756 return (ksp); 25757 } 25758 25759 static void 25760 tcp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 25761 { 25762 if (ksp != NULL) { 25763 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 25764 kstat_delete_netstack(ksp, stackid); 25765 } 25766 } 25767 25768 static int 25769 tcp_kstat_update(kstat_t *kp, int rw) 25770 { 25771 tcp_named_kstat_t *tcpkp; 25772 tcp_t *tcp; 25773 connf_t *connfp; 25774 conn_t *connp; 25775 int i; 25776 netstackid_t stackid = (netstackid_t)(uintptr_t)kp->ks_private; 25777 netstack_t *ns; 25778 tcp_stack_t *tcps; 25779 ip_stack_t *ipst; 25780 25781 if ((kp == NULL) || (kp->ks_data == NULL)) 25782 return (EIO); 25783 25784 if (rw == KSTAT_WRITE) 25785 return (EACCES); 25786 25787 ns = netstack_find_by_stackid(stackid); 25788 if (ns == NULL) 25789 return (-1); 25790 tcps = ns->netstack_tcp; 25791 if (tcps == NULL) { 25792 netstack_rele(ns); 25793 return (-1); 25794 } 25795 25796 tcpkp = (tcp_named_kstat_t *)kp->ks_data; 25797 25798 tcpkp->currEstab.value.ui32 = 0; 25799 25800 ipst = ns->netstack_ip; 25801 25802 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 25803 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 25804 connp = NULL; 25805 while ((connp = 25806 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 25807 tcp = connp->conn_tcp; 25808 switch (tcp_snmp_state(tcp)) { 25809 case MIB2_TCP_established: 25810 case MIB2_TCP_closeWait: 25811 tcpkp->currEstab.value.ui32++; 25812 break; 25813 } 25814 } 25815 } 25816 25817 tcpkp->activeOpens.value.ui32 = tcps->tcps_mib.tcpActiveOpens; 25818 tcpkp->passiveOpens.value.ui32 = tcps->tcps_mib.tcpPassiveOpens; 25819 tcpkp->attemptFails.value.ui32 = tcps->tcps_mib.tcpAttemptFails; 25820 tcpkp->estabResets.value.ui32 = tcps->tcps_mib.tcpEstabResets; 25821 tcpkp->inSegs.value.ui64 = tcps->tcps_mib.tcpHCInSegs; 25822 tcpkp->outSegs.value.ui64 = tcps->tcps_mib.tcpHCOutSegs; 25823 tcpkp->retransSegs.value.ui32 = tcps->tcps_mib.tcpRetransSegs; 25824 tcpkp->connTableSize.value.i32 = tcps->tcps_mib.tcpConnTableSize; 25825 tcpkp->outRsts.value.ui32 = tcps->tcps_mib.tcpOutRsts; 25826 tcpkp->outDataSegs.value.ui32 = tcps->tcps_mib.tcpOutDataSegs; 25827 tcpkp->outDataBytes.value.ui32 = tcps->tcps_mib.tcpOutDataBytes; 25828 tcpkp->retransBytes.value.ui32 = tcps->tcps_mib.tcpRetransBytes; 25829 tcpkp->outAck.value.ui32 = tcps->tcps_mib.tcpOutAck; 25830 tcpkp->outAckDelayed.value.ui32 = tcps->tcps_mib.tcpOutAckDelayed; 25831 tcpkp->outUrg.value.ui32 = tcps->tcps_mib.tcpOutUrg; 25832 tcpkp->outWinUpdate.value.ui32 = tcps->tcps_mib.tcpOutWinUpdate; 25833 tcpkp->outWinProbe.value.ui32 = tcps->tcps_mib.tcpOutWinProbe; 25834 tcpkp->outControl.value.ui32 = tcps->tcps_mib.tcpOutControl; 25835 tcpkp->outFastRetrans.value.ui32 = tcps->tcps_mib.tcpOutFastRetrans; 25836 tcpkp->inAckSegs.value.ui32 = tcps->tcps_mib.tcpInAckSegs; 25837 tcpkp->inAckBytes.value.ui32 = tcps->tcps_mib.tcpInAckBytes; 25838 tcpkp->inDupAck.value.ui32 = tcps->tcps_mib.tcpInDupAck; 25839 tcpkp->inAckUnsent.value.ui32 = tcps->tcps_mib.tcpInAckUnsent; 25840 tcpkp->inDataInorderSegs.value.ui32 = 25841 tcps->tcps_mib.tcpInDataInorderSegs; 25842 tcpkp->inDataInorderBytes.value.ui32 = 25843 tcps->tcps_mib.tcpInDataInorderBytes; 25844 tcpkp->inDataUnorderSegs.value.ui32 = 25845 tcps->tcps_mib.tcpInDataUnorderSegs; 25846 tcpkp->inDataUnorderBytes.value.ui32 = 25847 tcps->tcps_mib.tcpInDataUnorderBytes; 25848 tcpkp->inDataDupSegs.value.ui32 = tcps->tcps_mib.tcpInDataDupSegs; 25849 tcpkp->inDataDupBytes.value.ui32 = tcps->tcps_mib.tcpInDataDupBytes; 25850 tcpkp->inDataPartDupSegs.value.ui32 = 25851 tcps->tcps_mib.tcpInDataPartDupSegs; 25852 tcpkp->inDataPartDupBytes.value.ui32 = 25853 tcps->tcps_mib.tcpInDataPartDupBytes; 25854 tcpkp->inDataPastWinSegs.value.ui32 = 25855 tcps->tcps_mib.tcpInDataPastWinSegs; 25856 tcpkp->inDataPastWinBytes.value.ui32 = 25857 tcps->tcps_mib.tcpInDataPastWinBytes; 25858 tcpkp->inWinProbe.value.ui32 = tcps->tcps_mib.tcpInWinProbe; 25859 tcpkp->inWinUpdate.value.ui32 = tcps->tcps_mib.tcpInWinUpdate; 25860 tcpkp->inClosed.value.ui32 = tcps->tcps_mib.tcpInClosed; 25861 tcpkp->rttNoUpdate.value.ui32 = tcps->tcps_mib.tcpRttNoUpdate; 25862 tcpkp->rttUpdate.value.ui32 = tcps->tcps_mib.tcpRttUpdate; 25863 tcpkp->timRetrans.value.ui32 = tcps->tcps_mib.tcpTimRetrans; 25864 tcpkp->timRetransDrop.value.ui32 = tcps->tcps_mib.tcpTimRetransDrop; 25865 tcpkp->timKeepalive.value.ui32 = tcps->tcps_mib.tcpTimKeepalive; 25866 tcpkp->timKeepaliveProbe.value.ui32 = 25867 tcps->tcps_mib.tcpTimKeepaliveProbe; 25868 tcpkp->timKeepaliveDrop.value.ui32 = 25869 tcps->tcps_mib.tcpTimKeepaliveDrop; 25870 tcpkp->listenDrop.value.ui32 = tcps->tcps_mib.tcpListenDrop; 25871 tcpkp->listenDropQ0.value.ui32 = tcps->tcps_mib.tcpListenDropQ0; 25872 tcpkp->halfOpenDrop.value.ui32 = tcps->tcps_mib.tcpHalfOpenDrop; 25873 tcpkp->outSackRetransSegs.value.ui32 = 25874 tcps->tcps_mib.tcpOutSackRetransSegs; 25875 tcpkp->connTableSize6.value.i32 = tcps->tcps_mib.tcp6ConnTableSize; 25876 25877 netstack_rele(ns); 25878 return (0); 25879 } 25880 25881 void 25882 tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp) 25883 { 25884 uint16_t hdr_len; 25885 ipha_t *ipha; 25886 uint8_t *nexthdrp; 25887 tcph_t *tcph; 25888 tcp_stack_t *tcps = connp->conn_tcp->tcp_tcps; 25889 25890 /* Already has an eager */ 25891 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 25892 TCP_STAT(tcps, tcp_reinput_syn); 25893 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp, 25894 SQ_PROCESS, SQTAG_TCP_REINPUT_EAGER); 25895 return; 25896 } 25897 25898 switch (IPH_HDR_VERSION(mp->b_rptr)) { 25899 case IPV4_VERSION: 25900 ipha = (ipha_t *)mp->b_rptr; 25901 hdr_len = IPH_HDR_LENGTH(ipha); 25902 break; 25903 case IPV6_VERSION: 25904 if (!ip_hdr_length_nexthdr_v6(mp, (ip6_t *)mp->b_rptr, 25905 &hdr_len, &nexthdrp)) { 25906 CONN_DEC_REF(connp); 25907 freemsg(mp); 25908 return; 25909 } 25910 break; 25911 } 25912 25913 tcph = (tcph_t *)&mp->b_rptr[hdr_len]; 25914 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 25915 mp->b_datap->db_struioflag |= STRUIO_EAGER; 25916 DB_CKSUMSTART(mp) = (intptr_t)sqp; 25917 } 25918 25919 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp, 25920 SQ_FILL, SQTAG_TCP_REINPUT); 25921 } 25922 25923 static int 25924 tcp_squeue_switch(int val) 25925 { 25926 int rval = SQ_FILL; 25927 25928 switch (val) { 25929 case 1: 25930 rval = SQ_NODRAIN; 25931 break; 25932 case 2: 25933 rval = SQ_PROCESS; 25934 break; 25935 default: 25936 break; 25937 } 25938 return (rval); 25939 } 25940 25941 /* 25942 * This is called once for each squeue - globally for all stack 25943 * instances. 25944 */ 25945 static void 25946 tcp_squeue_add(squeue_t *sqp) 25947 { 25948 tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc( 25949 sizeof (tcp_squeue_priv_t), KM_SLEEP); 25950 25951 *squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait; 25952 tcp_time_wait->tcp_time_wait_tid = 25953 timeout_generic(CALLOUT_NORMAL, tcp_time_wait_collector, sqp, 25954 TICK_TO_NSEC(TCP_TIME_WAIT_DELAY), CALLOUT_TCP_RESOLUTION, 25955 CALLOUT_FLAG_ROUNDUP); 25956 if (tcp_free_list_max_cnt == 0) { 25957 int tcp_ncpus = ((boot_max_ncpus == -1) ? 25958 max_ncpus : boot_max_ncpus); 25959 25960 /* 25961 * Limit number of entries to 1% of availble memory / tcp_ncpus 25962 */ 25963 tcp_free_list_max_cnt = (freemem * PAGESIZE) / 25964 (tcp_ncpus * sizeof (tcp_t) * 100); 25965 } 25966 tcp_time_wait->tcp_free_list_cnt = 0; 25967 } 25968 25969 static int 25970 tcp_post_ip_bind(tcp_t *tcp, mblk_t *mp, int error, cred_t *cr, pid_t pid) 25971 { 25972 mblk_t *ire_mp = NULL; 25973 mblk_t *syn_mp; 25974 mblk_t *mdti; 25975 mblk_t *lsoi; 25976 int retval; 25977 tcph_t *tcph; 25978 uint32_t mss; 25979 queue_t *q = tcp->tcp_rq; 25980 conn_t *connp = tcp->tcp_connp; 25981 tcp_stack_t *tcps = tcp->tcp_tcps; 25982 25983 if (error == 0) { 25984 /* 25985 * Adapt Multidata information, if any. The 25986 * following tcp_mdt_update routine will free 25987 * the message. 25988 */ 25989 if (mp != NULL && ((mdti = tcp_mdt_info_mp(mp)) != NULL)) { 25990 tcp_mdt_update(tcp, &((ip_mdt_info_t *)mdti-> 25991 b_rptr)->mdt_capab, B_TRUE); 25992 freemsg(mdti); 25993 } 25994 25995 /* 25996 * Check to update LSO information with tcp, and 25997 * tcp_lso_update routine will free the message. 25998 */ 25999 if (mp != NULL && ((lsoi = tcp_lso_info_mp(mp)) != NULL)) { 26000 tcp_lso_update(tcp, &((ip_lso_info_t *)lsoi-> 26001 b_rptr)->lso_capab); 26002 freemsg(lsoi); 26003 } 26004 26005 /* Get the IRE, if we had requested for it */ 26006 if (mp != NULL) 26007 ire_mp = tcp_ire_mp(&mp); 26008 26009 if (tcp->tcp_hard_binding) { 26010 tcp->tcp_hard_binding = B_FALSE; 26011 tcp->tcp_hard_bound = B_TRUE; 26012 CL_INET_CONNECT(tcp->tcp_connp, tcp, B_TRUE, retval); 26013 if (retval != 0) { 26014 error = EADDRINUSE; 26015 goto bind_failed; 26016 } 26017 } else { 26018 if (ire_mp != NULL) 26019 freeb(ire_mp); 26020 goto after_syn_sent; 26021 } 26022 26023 retval = tcp_adapt_ire(tcp, ire_mp); 26024 if (ire_mp != NULL) 26025 freeb(ire_mp); 26026 if (retval == 0) { 26027 error = (int)((tcp->tcp_state >= TCPS_SYN_SENT) ? 26028 ENETUNREACH : EADDRNOTAVAIL); 26029 goto ipcl_rm; 26030 } 26031 /* 26032 * Don't let an endpoint connect to itself. 26033 * Also checked in tcp_connect() but that 26034 * check can't handle the case when the 26035 * local IP address is INADDR_ANY. 26036 */ 26037 if (tcp->tcp_ipversion == IPV4_VERSION) { 26038 if ((tcp->tcp_ipha->ipha_dst == 26039 tcp->tcp_ipha->ipha_src) && 26040 (BE16_EQL(tcp->tcp_tcph->th_lport, 26041 tcp->tcp_tcph->th_fport))) { 26042 error = EADDRNOTAVAIL; 26043 goto ipcl_rm; 26044 } 26045 } else { 26046 if (IN6_ARE_ADDR_EQUAL( 26047 &tcp->tcp_ip6h->ip6_dst, 26048 &tcp->tcp_ip6h->ip6_src) && 26049 (BE16_EQL(tcp->tcp_tcph->th_lport, 26050 tcp->tcp_tcph->th_fport))) { 26051 error = EADDRNOTAVAIL; 26052 goto ipcl_rm; 26053 } 26054 } 26055 ASSERT(tcp->tcp_state == TCPS_SYN_SENT); 26056 /* 26057 * This should not be possible! Just for 26058 * defensive coding... 26059 */ 26060 if (tcp->tcp_state != TCPS_SYN_SENT) 26061 goto after_syn_sent; 26062 26063 if (is_system_labeled() && 26064 !tcp_update_label(tcp, CONN_CRED(tcp->tcp_connp))) { 26065 error = EHOSTUNREACH; 26066 goto ipcl_rm; 26067 } 26068 26069 /* 26070 * tcp_adapt_ire() does not adjust 26071 * for TCP/IP header length. 26072 */ 26073 mss = tcp->tcp_mss - tcp->tcp_hdr_len; 26074 26075 /* 26076 * Just make sure our rwnd is at 26077 * least tcp_recv_hiwat_mss * MSS 26078 * large, and round up to the nearest 26079 * MSS. 26080 * 26081 * We do the round up here because 26082 * we need to get the interface 26083 * MTU first before we can do the 26084 * round up. 26085 */ 26086 tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss), 26087 tcps->tcps_recv_hiwat_minmss * mss); 26088 if (!IPCL_IS_NONSTR(connp)) 26089 q->q_hiwat = tcp->tcp_rwnd; 26090 tcp->tcp_recv_hiwater = tcp->tcp_rwnd; 26091 tcp_set_ws_value(tcp); 26092 U32_TO_ABE16((tcp->tcp_rwnd >> tcp->tcp_rcv_ws), 26093 tcp->tcp_tcph->th_win); 26094 if (tcp->tcp_rcv_ws > 0 || tcps->tcps_wscale_always) 26095 tcp->tcp_snd_ws_ok = B_TRUE; 26096 26097 /* 26098 * Set tcp_snd_ts_ok to true 26099 * so that tcp_xmit_mp will 26100 * include the timestamp 26101 * option in the SYN segment. 26102 */ 26103 if (tcps->tcps_tstamp_always || 26104 (tcp->tcp_rcv_ws && tcps->tcps_tstamp_if_wscale)) { 26105 tcp->tcp_snd_ts_ok = B_TRUE; 26106 } 26107 26108 /* 26109 * tcp_snd_sack_ok can be set in 26110 * tcp_adapt_ire() if the sack metric 26111 * is set. So check it here also. 26112 */ 26113 if (tcps->tcps_sack_permitted == 2 || 26114 tcp->tcp_snd_sack_ok) { 26115 if (tcp->tcp_sack_info == NULL) { 26116 tcp->tcp_sack_info = 26117 kmem_cache_alloc(tcp_sack_info_cache, 26118 KM_SLEEP); 26119 } 26120 tcp->tcp_snd_sack_ok = B_TRUE; 26121 } 26122 26123 /* 26124 * Should we use ECN? Note that the current 26125 * default value (SunOS 5.9) of tcp_ecn_permitted 26126 * is 1. The reason for doing this is that there 26127 * are equipments out there that will drop ECN 26128 * enabled IP packets. Setting it to 1 avoids 26129 * compatibility problems. 26130 */ 26131 if (tcps->tcps_ecn_permitted == 2) 26132 tcp->tcp_ecn_ok = B_TRUE; 26133 26134 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 26135 syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 26136 tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 26137 if (syn_mp) { 26138 if (cr == NULL) { 26139 cr = tcp->tcp_cred; 26140 pid = tcp->tcp_cpid; 26141 } 26142 mblk_setcred(syn_mp, cr, pid); 26143 tcp_send_data(tcp, tcp->tcp_wq, syn_mp); 26144 } 26145 after_syn_sent: 26146 if (mp != NULL) { 26147 ASSERT(mp->b_cont == NULL); 26148 freeb(mp); 26149 } 26150 return (error); 26151 } else { 26152 /* error */ 26153 if (tcp->tcp_debug) { 26154 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 26155 "tcp_post_ip_bind: error == %d", error); 26156 } 26157 if (mp != NULL) { 26158 freeb(mp); 26159 } 26160 } 26161 26162 ipcl_rm: 26163 /* 26164 * Need to unbind with classifier since we were just 26165 * told that our bind succeeded. a.k.a error == 0 at the entry. 26166 */ 26167 tcp->tcp_hard_bound = B_FALSE; 26168 tcp->tcp_hard_binding = B_FALSE; 26169 26170 ipcl_hash_remove(connp); 26171 26172 bind_failed: 26173 tcp->tcp_state = TCPS_IDLE; 26174 if (tcp->tcp_ipversion == IPV4_VERSION) 26175 tcp->tcp_ipha->ipha_src = 0; 26176 else 26177 V6_SET_ZERO(tcp->tcp_ip6h->ip6_src); 26178 /* 26179 * Copy of the src addr. in tcp_t is needed since 26180 * the lookup funcs. can only look at tcp_t 26181 */ 26182 V6_SET_ZERO(tcp->tcp_ip_src_v6); 26183 26184 tcph = tcp->tcp_tcph; 26185 tcph->th_lport[0] = 0; 26186 tcph->th_lport[1] = 0; 26187 tcp_bind_hash_remove(tcp); 26188 bzero(&connp->u_port, sizeof (connp->u_port)); 26189 /* blow away saved option results if any */ 26190 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 26191 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 26192 26193 conn_delete_ire(tcp->tcp_connp, NULL); 26194 26195 return (error); 26196 } 26197 26198 static int 26199 tcp_bind_select_lport(tcp_t *tcp, in_port_t *requested_port_ptr, 26200 boolean_t bind_to_req_port_only, cred_t *cr) 26201 { 26202 in_port_t mlp_port; 26203 mlp_type_t addrtype, mlptype; 26204 boolean_t user_specified; 26205 in_port_t allocated_port; 26206 in_port_t requested_port = *requested_port_ptr; 26207 conn_t *connp; 26208 zone_t *zone; 26209 tcp_stack_t *tcps = tcp->tcp_tcps; 26210 in6_addr_t v6addr = tcp->tcp_ip_src_v6; 26211 26212 /* 26213 * XXX It's up to the caller to specify bind_to_req_port_only or not. 26214 */ 26215 if (cr == NULL) 26216 cr = tcp->tcp_cred; 26217 /* 26218 * Get a valid port (within the anonymous range and should not 26219 * be a privileged one) to use if the user has not given a port. 26220 * If multiple threads are here, they may all start with 26221 * with the same initial port. But, it should be fine as long as 26222 * tcp_bindi will ensure that no two threads will be assigned 26223 * the same port. 26224 * 26225 * NOTE: XXX If a privileged process asks for an anonymous port, we 26226 * still check for ports only in the range > tcp_smallest_non_priv_port, 26227 * unless TCP_ANONPRIVBIND option is set. 26228 */ 26229 mlptype = mlptSingle; 26230 mlp_port = requested_port; 26231 if (requested_port == 0) { 26232 requested_port = tcp->tcp_anon_priv_bind ? 26233 tcp_get_next_priv_port(tcp) : 26234 tcp_update_next_port(tcps->tcps_next_port_to_try, 26235 tcp, B_TRUE); 26236 if (requested_port == 0) { 26237 return (-TNOADDR); 26238 } 26239 user_specified = B_FALSE; 26240 26241 /* 26242 * If the user went through one of the RPC interfaces to create 26243 * this socket and RPC is MLP in this zone, then give him an 26244 * anonymous MLP. 26245 */ 26246 connp = tcp->tcp_connp; 26247 if (connp->conn_anon_mlp && is_system_labeled()) { 26248 zone = crgetzone(cr); 26249 addrtype = tsol_mlp_addr_type(zone->zone_id, 26250 IPV6_VERSION, &v6addr, 26251 tcps->tcps_netstack->netstack_ip); 26252 if (addrtype == mlptSingle) { 26253 return (-TNOADDR); 26254 } 26255 mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP, 26256 PMAPPORT, addrtype); 26257 mlp_port = PMAPPORT; 26258 } 26259 } else { 26260 int i; 26261 boolean_t priv = B_FALSE; 26262 26263 /* 26264 * If the requested_port is in the well-known privileged range, 26265 * verify that the stream was opened by a privileged user. 26266 * Note: No locks are held when inspecting tcp_g_*epriv_ports 26267 * but instead the code relies on: 26268 * - the fact that the address of the array and its size never 26269 * changes 26270 * - the atomic assignment of the elements of the array 26271 */ 26272 if (requested_port < tcps->tcps_smallest_nonpriv_port) { 26273 priv = B_TRUE; 26274 } else { 26275 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 26276 if (requested_port == 26277 tcps->tcps_g_epriv_ports[i]) { 26278 priv = B_TRUE; 26279 break; 26280 } 26281 } 26282 } 26283 if (priv) { 26284 if (secpolicy_net_privaddr(cr, requested_port, 26285 IPPROTO_TCP) != 0) { 26286 if (tcp->tcp_debug) { 26287 (void) strlog(TCP_MOD_ID, 0, 1, 26288 SL_ERROR|SL_TRACE, 26289 "tcp_bind: no priv for port %d", 26290 requested_port); 26291 } 26292 return (-TACCES); 26293 } 26294 } 26295 user_specified = B_TRUE; 26296 26297 connp = tcp->tcp_connp; 26298 if (is_system_labeled()) { 26299 zone = crgetzone(cr); 26300 addrtype = tsol_mlp_addr_type(zone->zone_id, 26301 IPV6_VERSION, &v6addr, 26302 tcps->tcps_netstack->netstack_ip); 26303 if (addrtype == mlptSingle) { 26304 return (-TNOADDR); 26305 } 26306 mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP, 26307 requested_port, addrtype); 26308 } 26309 } 26310 26311 if (mlptype != mlptSingle) { 26312 if (secpolicy_net_bindmlp(cr) != 0) { 26313 if (tcp->tcp_debug) { 26314 (void) strlog(TCP_MOD_ID, 0, 1, 26315 SL_ERROR|SL_TRACE, 26316 "tcp_bind: no priv for multilevel port %d", 26317 requested_port); 26318 } 26319 return (-TACCES); 26320 } 26321 26322 /* 26323 * If we're specifically binding a shared IP address and the 26324 * port is MLP on shared addresses, then check to see if this 26325 * zone actually owns the MLP. Reject if not. 26326 */ 26327 if (mlptype == mlptShared && addrtype == mlptShared) { 26328 /* 26329 * No need to handle exclusive-stack zones since 26330 * ALL_ZONES only applies to the shared stack. 26331 */ 26332 zoneid_t mlpzone; 26333 26334 mlpzone = tsol_mlp_findzone(IPPROTO_TCP, 26335 htons(mlp_port)); 26336 if (connp->conn_zoneid != mlpzone) { 26337 if (tcp->tcp_debug) { 26338 (void) strlog(TCP_MOD_ID, 0, 1, 26339 SL_ERROR|SL_TRACE, 26340 "tcp_bind: attempt to bind port " 26341 "%d on shared addr in zone %d " 26342 "(should be %d)", 26343 mlp_port, connp->conn_zoneid, 26344 mlpzone); 26345 } 26346 return (-TACCES); 26347 } 26348 } 26349 26350 if (!user_specified) { 26351 int err; 26352 err = tsol_mlp_anon(zone, mlptype, connp->conn_ulp, 26353 requested_port, B_TRUE); 26354 if (err != 0) { 26355 if (tcp->tcp_debug) { 26356 (void) strlog(TCP_MOD_ID, 0, 1, 26357 SL_ERROR|SL_TRACE, 26358 "tcp_bind: cannot establish anon " 26359 "MLP for port %d", 26360 requested_port); 26361 } 26362 return (err); 26363 } 26364 connp->conn_anon_port = B_TRUE; 26365 } 26366 connp->conn_mlp_type = mlptype; 26367 } 26368 26369 allocated_port = tcp_bindi(tcp, requested_port, &v6addr, 26370 tcp->tcp_reuseaddr, B_FALSE, bind_to_req_port_only, user_specified); 26371 26372 if (allocated_port == 0) { 26373 connp->conn_mlp_type = mlptSingle; 26374 if (connp->conn_anon_port) { 26375 connp->conn_anon_port = B_FALSE; 26376 (void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp, 26377 requested_port, B_FALSE); 26378 } 26379 if (bind_to_req_port_only) { 26380 if (tcp->tcp_debug) { 26381 (void) strlog(TCP_MOD_ID, 0, 1, 26382 SL_ERROR|SL_TRACE, 26383 "tcp_bind: requested addr busy"); 26384 } 26385 return (-TADDRBUSY); 26386 } else { 26387 /* If we are out of ports, fail the bind. */ 26388 if (tcp->tcp_debug) { 26389 (void) strlog(TCP_MOD_ID, 0, 1, 26390 SL_ERROR|SL_TRACE, 26391 "tcp_bind: out of ports?"); 26392 } 26393 return (-TNOADDR); 26394 } 26395 } 26396 26397 /* Pass the allocated port back */ 26398 *requested_port_ptr = allocated_port; 26399 return (0); 26400 } 26401 26402 static int 26403 tcp_bind_check(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr, 26404 boolean_t bind_to_req_port_only) 26405 { 26406 tcp_t *tcp = connp->conn_tcp; 26407 sin_t *sin; 26408 sin6_t *sin6; 26409 sin6_t sin6addr; 26410 in_port_t requested_port; 26411 ipaddr_t v4addr; 26412 in6_addr_t v6addr; 26413 uint_t origipversion; 26414 int error = 0; 26415 26416 ASSERT((uintptr_t)len <= (uintptr_t)INT_MAX); 26417 26418 if (tcp->tcp_state == TCPS_BOUND) { 26419 return (0); 26420 } else if (tcp->tcp_state > TCPS_BOUND) { 26421 if (tcp->tcp_debug) { 26422 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 26423 "tcp_bind: bad state, %d", tcp->tcp_state); 26424 } 26425 return (-TOUTSTATE); 26426 } 26427 origipversion = tcp->tcp_ipversion; 26428 26429 if (sa != NULL && !OK_32PTR((char *)sa)) { 26430 if (tcp->tcp_debug) { 26431 (void) strlog(TCP_MOD_ID, 0, 1, 26432 SL_ERROR|SL_TRACE, 26433 "tcp_bind: bad address parameter, " 26434 "address %p, len %d", 26435 (void *)sa, len); 26436 } 26437 return (-TPROTO); 26438 } 26439 26440 switch (len) { 26441 case 0: /* request for a generic port */ 26442 if (tcp->tcp_family == AF_INET) { 26443 sin = (sin_t *)&sin6addr; 26444 *sin = sin_null; 26445 sin->sin_family = AF_INET; 26446 tcp->tcp_ipversion = IPV4_VERSION; 26447 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &v6addr); 26448 } else { 26449 ASSERT(tcp->tcp_family == AF_INET6); 26450 sin6 = (sin6_t *)&sin6addr; 26451 *sin6 = sin6_null; 26452 sin6->sin6_family = AF_INET6; 26453 tcp->tcp_ipversion = IPV6_VERSION; 26454 V6_SET_ZERO(v6addr); 26455 } 26456 requested_port = 0; 26457 break; 26458 26459 case sizeof (sin_t): /* Complete IPv4 address */ 26460 sin = (sin_t *)sa; 26461 /* 26462 * With sockets sockfs will accept bogus sin_family in 26463 * bind() and replace it with the family used in the socket 26464 * call. 26465 */ 26466 if (sin->sin_family != AF_INET || 26467 tcp->tcp_family != AF_INET) { 26468 return (EAFNOSUPPORT); 26469 } 26470 requested_port = ntohs(sin->sin_port); 26471 tcp->tcp_ipversion = IPV4_VERSION; 26472 v4addr = sin->sin_addr.s_addr; 26473 IN6_IPADDR_TO_V4MAPPED(v4addr, &v6addr); 26474 break; 26475 26476 case sizeof (sin6_t): /* Complete IPv6 address */ 26477 sin6 = (sin6_t *)sa; 26478 if (sin6->sin6_family != AF_INET6 || 26479 tcp->tcp_family != AF_INET6) { 26480 return (EAFNOSUPPORT); 26481 } 26482 requested_port = ntohs(sin6->sin6_port); 26483 tcp->tcp_ipversion = IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr) ? 26484 IPV4_VERSION : IPV6_VERSION; 26485 v6addr = sin6->sin6_addr; 26486 break; 26487 26488 default: 26489 if (tcp->tcp_debug) { 26490 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 26491 "tcp_bind: bad address length, %d", len); 26492 } 26493 return (EAFNOSUPPORT); 26494 /* return (-TBADADDR); */ 26495 } 26496 26497 tcp->tcp_bound_source_v6 = v6addr; 26498 26499 /* Check for change in ipversion */ 26500 if (origipversion != tcp->tcp_ipversion) { 26501 ASSERT(tcp->tcp_family == AF_INET6); 26502 error = tcp->tcp_ipversion == IPV6_VERSION ? 26503 tcp_header_init_ipv6(tcp) : tcp_header_init_ipv4(tcp); 26504 if (error) { 26505 return (ENOMEM); 26506 } 26507 } 26508 26509 /* 26510 * Initialize family specific fields. Copy of the src addr. 26511 * in tcp_t is needed for the lookup funcs. 26512 */ 26513 if (tcp->tcp_ipversion == IPV6_VERSION) { 26514 tcp->tcp_ip6h->ip6_src = v6addr; 26515 } else { 26516 IN6_V4MAPPED_TO_IPADDR(&v6addr, tcp->tcp_ipha->ipha_src); 26517 } 26518 tcp->tcp_ip_src_v6 = v6addr; 26519 26520 bind_to_req_port_only = requested_port != 0 && bind_to_req_port_only; 26521 26522 error = tcp_bind_select_lport(tcp, &requested_port, 26523 bind_to_req_port_only, cr); 26524 26525 return (error); 26526 } 26527 26528 /* 26529 * Return unix error is tli error is TSYSERR, otherwise return a negative 26530 * tli error. 26531 */ 26532 int 26533 tcp_do_bind(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr, 26534 boolean_t bind_to_req_port_only) 26535 { 26536 int error; 26537 tcp_t *tcp = connp->conn_tcp; 26538 26539 if (tcp->tcp_state >= TCPS_BOUND) { 26540 if (tcp->tcp_debug) { 26541 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 26542 "tcp_bind: bad state, %d", tcp->tcp_state); 26543 } 26544 return (-TOUTSTATE); 26545 } 26546 26547 error = tcp_bind_check(connp, sa, len, cr, bind_to_req_port_only); 26548 if (error != 0) 26549 return (error); 26550 26551 ASSERT(tcp->tcp_state == TCPS_BOUND); 26552 26553 tcp->tcp_conn_req_max = 0; 26554 26555 /* 26556 * We need to make sure that the conn_recv is set to a non-null 26557 * value before we insert the conn into the classifier table. 26558 * This is to avoid a race with an incoming packet which does an 26559 * ipcl_classify(). 26560 */ 26561 connp->conn_recv = tcp_conn_request; 26562 26563 if (tcp->tcp_family == AF_INET6) { 26564 ASSERT(tcp->tcp_connp->conn_af_isv6); 26565 error = ip_proto_bind_laddr_v6(connp, NULL, IPPROTO_TCP, 26566 &tcp->tcp_bound_source_v6, 0, B_FALSE); 26567 } else { 26568 ASSERT(!tcp->tcp_connp->conn_af_isv6); 26569 error = ip_proto_bind_laddr_v4(connp, NULL, IPPROTO_TCP, 26570 tcp->tcp_ipha->ipha_src, 0, B_FALSE); 26571 } 26572 return (tcp_post_ip_bind(tcp, NULL, error, NULL, 0)); 26573 } 26574 26575 int 26576 tcp_bind(sock_lower_handle_t proto_handle, struct sockaddr *sa, 26577 socklen_t len, cred_t *cr) 26578 { 26579 int error; 26580 conn_t *connp = (conn_t *)proto_handle; 26581 squeue_t *sqp = connp->conn_sqp; 26582 26583 /* All Solaris components should pass a cred for this operation. */ 26584 ASSERT(cr != NULL); 26585 26586 ASSERT(sqp != NULL); 26587 ASSERT(connp->conn_upper_handle != NULL); 26588 26589 error = squeue_synch_enter(sqp, connp, 0); 26590 if (error != 0) { 26591 /* failed to enter */ 26592 return (ENOSR); 26593 } 26594 26595 /* binding to a NULL address really means unbind */ 26596 if (sa == NULL) { 26597 if (connp->conn_tcp->tcp_state < TCPS_LISTEN) 26598 error = tcp_do_unbind(connp); 26599 else 26600 error = EINVAL; 26601 } else { 26602 error = tcp_do_bind(connp, sa, len, cr, B_TRUE); 26603 } 26604 26605 squeue_synch_exit(sqp, connp); 26606 26607 if (error < 0) { 26608 if (error == -TOUTSTATE) 26609 error = EINVAL; 26610 else 26611 error = proto_tlitosyserr(-error); 26612 } 26613 26614 return (error); 26615 } 26616 26617 /* 26618 * If the return value from this function is positive, it's a UNIX error. 26619 * Otherwise, if it's negative, then the absolute value is a TLI error. 26620 * the TPI routine tcp_tpi_connect() is a wrapper function for this. 26621 */ 26622 int 26623 tcp_do_connect(conn_t *connp, const struct sockaddr *sa, socklen_t len, 26624 cred_t *cr, pid_t pid) 26625 { 26626 tcp_t *tcp = connp->conn_tcp; 26627 sin_t *sin = (sin_t *)sa; 26628 sin6_t *sin6 = (sin6_t *)sa; 26629 ipaddr_t *dstaddrp; 26630 in_port_t dstport; 26631 uint_t srcid; 26632 int error = 0; 26633 26634 switch (len) { 26635 default: 26636 /* 26637 * Should never happen 26638 */ 26639 return (EINVAL); 26640 26641 case sizeof (sin_t): 26642 sin = (sin_t *)sa; 26643 if (sin->sin_port == 0) { 26644 return (-TBADADDR); 26645 } 26646 if (tcp->tcp_connp && tcp->tcp_connp->conn_ipv6_v6only) { 26647 return (EAFNOSUPPORT); 26648 } 26649 break; 26650 26651 case sizeof (sin6_t): 26652 sin6 = (sin6_t *)sa; 26653 if (sin6->sin6_port == 0) { 26654 return (-TBADADDR); 26655 } 26656 break; 26657 } 26658 /* 26659 * If we're connecting to an IPv4-mapped IPv6 address, we need to 26660 * make sure that the template IP header in the tcp structure is an 26661 * IPv4 header, and that the tcp_ipversion is IPV4_VERSION. We 26662 * need to this before we call tcp_bindi() so that the port lookup 26663 * code will look for ports in the correct port space (IPv4 and 26664 * IPv6 have separate port spaces). 26665 */ 26666 if (tcp->tcp_family == AF_INET6 && tcp->tcp_ipversion == IPV6_VERSION && 26667 IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 26668 int err = 0; 26669 26670 err = tcp_header_init_ipv4(tcp); 26671 if (err != 0) { 26672 error = ENOMEM; 26673 goto connect_failed; 26674 } 26675 if (tcp->tcp_lport != 0) 26676 *(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport; 26677 } 26678 26679 switch (tcp->tcp_state) { 26680 case TCPS_LISTEN: 26681 /* 26682 * Listening sockets are not allowed to issue connect(). 26683 */ 26684 if (IPCL_IS_NONSTR(connp)) 26685 return (EOPNOTSUPP); 26686 /* FALLTHRU */ 26687 case TCPS_IDLE: 26688 /* 26689 * We support quick connect, refer to comments in 26690 * tcp_connect_*() 26691 */ 26692 /* FALLTHRU */ 26693 case TCPS_BOUND: 26694 /* 26695 * We must bump the generation before the operation start. 26696 * This is done to ensure that any upcall made later on sends 26697 * up the right generation to the socket. 26698 */ 26699 SOCK_CONNID_BUMP(tcp->tcp_connid); 26700 26701 if (tcp->tcp_family == AF_INET6) { 26702 if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 26703 return (tcp_connect_ipv6(tcp, 26704 &sin6->sin6_addr, 26705 sin6->sin6_port, sin6->sin6_flowinfo, 26706 sin6->__sin6_src_id, sin6->sin6_scope_id, 26707 cr, pid)); 26708 } 26709 /* 26710 * Destination adress is mapped IPv6 address. 26711 * Source bound address should be unspecified or 26712 * IPv6 mapped address as well. 26713 */ 26714 if (!IN6_IS_ADDR_UNSPECIFIED( 26715 &tcp->tcp_bound_source_v6) && 26716 !IN6_IS_ADDR_V4MAPPED(&tcp->tcp_bound_source_v6)) { 26717 return (EADDRNOTAVAIL); 26718 } 26719 dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr)); 26720 dstport = sin6->sin6_port; 26721 srcid = sin6->__sin6_src_id; 26722 } else { 26723 dstaddrp = &sin->sin_addr.s_addr; 26724 dstport = sin->sin_port; 26725 srcid = 0; 26726 } 26727 26728 error = tcp_connect_ipv4(tcp, dstaddrp, dstport, srcid, cr, 26729 pid); 26730 break; 26731 default: 26732 return (-TOUTSTATE); 26733 } 26734 /* 26735 * Note: Code below is the "failure" case 26736 */ 26737 connect_failed: 26738 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 26739 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 26740 return (error); 26741 } 26742 26743 int 26744 tcp_connect(sock_lower_handle_t proto_handle, const struct sockaddr *sa, 26745 socklen_t len, sock_connid_t *id, cred_t *cr) 26746 { 26747 conn_t *connp = (conn_t *)proto_handle; 26748 tcp_t *tcp = connp->conn_tcp; 26749 squeue_t *sqp = connp->conn_sqp; 26750 int error; 26751 26752 ASSERT(connp->conn_upper_handle != NULL); 26753 26754 /* All Solaris components should pass a cred for this operation. */ 26755 ASSERT(cr != NULL); 26756 26757 error = proto_verify_ip_addr(tcp->tcp_family, sa, len); 26758 if (error != 0) { 26759 return (error); 26760 } 26761 26762 error = squeue_synch_enter(sqp, connp, 0); 26763 if (error != 0) { 26764 /* failed to enter */ 26765 return (ENOSR); 26766 } 26767 26768 /* 26769 * TCP supports quick connect, so no need to do an implicit bind 26770 */ 26771 error = tcp_do_connect(connp, sa, len, cr, curproc->p_pid); 26772 if (error == 0) { 26773 *id = connp->conn_tcp->tcp_connid; 26774 } else if (error < 0) { 26775 if (error == -TOUTSTATE) { 26776 switch (connp->conn_tcp->tcp_state) { 26777 case TCPS_SYN_SENT: 26778 error = EALREADY; 26779 break; 26780 case TCPS_ESTABLISHED: 26781 error = EISCONN; 26782 break; 26783 case TCPS_LISTEN: 26784 error = EOPNOTSUPP; 26785 break; 26786 default: 26787 error = EINVAL; 26788 break; 26789 } 26790 } else { 26791 error = proto_tlitosyserr(-error); 26792 } 26793 } 26794 done: 26795 squeue_synch_exit(sqp, connp); 26796 26797 return ((error == 0) ? EINPROGRESS : error); 26798 } 26799 26800 /* ARGSUSED */ 26801 sock_lower_handle_t 26802 tcp_create(int family, int type, int proto, sock_downcalls_t **sock_downcalls, 26803 uint_t *smodep, int *errorp, int flags, cred_t *credp) 26804 { 26805 conn_t *connp; 26806 boolean_t isv6 = family == AF_INET6; 26807 if (type != SOCK_STREAM || (family != AF_INET && family != AF_INET6) || 26808 (proto != 0 && proto != IPPROTO_TCP)) { 26809 *errorp = EPROTONOSUPPORT; 26810 return (NULL); 26811 } 26812 26813 connp = tcp_create_common(NULL, credp, isv6, B_TRUE, errorp); 26814 if (connp == NULL) { 26815 return (NULL); 26816 } 26817 26818 /* 26819 * Put the ref for TCP. Ref for IP was already put 26820 * by ipcl_conn_create. Also Make the conn_t globally 26821 * visible to walkers 26822 */ 26823 mutex_enter(&connp->conn_lock); 26824 CONN_INC_REF_LOCKED(connp); 26825 ASSERT(connp->conn_ref == 2); 26826 connp->conn_state_flags &= ~CONN_INCIPIENT; 26827 26828 connp->conn_flags |= IPCL_NONSTR; 26829 mutex_exit(&connp->conn_lock); 26830 26831 ASSERT(errorp != NULL); 26832 *errorp = 0; 26833 *sock_downcalls = &sock_tcp_downcalls; 26834 *smodep = SM_CONNREQUIRED | SM_EXDATA | SM_ACCEPTSUPP | 26835 SM_SENDFILESUPP; 26836 26837 return ((sock_lower_handle_t)connp); 26838 } 26839 26840 /* ARGSUSED */ 26841 void 26842 tcp_activate(sock_lower_handle_t proto_handle, sock_upper_handle_t sock_handle, 26843 sock_upcalls_t *sock_upcalls, int flags, cred_t *cr) 26844 { 26845 conn_t *connp = (conn_t *)proto_handle; 26846 struct sock_proto_props sopp; 26847 26848 ASSERT(connp->conn_upper_handle == NULL); 26849 26850 /* All Solaris components should pass a cred for this operation. */ 26851 ASSERT(cr != NULL); 26852 26853 sopp.sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_RCVLOWAT | 26854 SOCKOPT_MAXPSZ | SOCKOPT_MAXBLK | SOCKOPT_RCVTIMER | 26855 SOCKOPT_RCVTHRESH | SOCKOPT_MAXADDRLEN | SOCKOPT_MINPSZ; 26856 26857 sopp.sopp_rxhiwat = SOCKET_RECVHIWATER; 26858 sopp.sopp_rxlowat = SOCKET_RECVLOWATER; 26859 sopp.sopp_maxpsz = INFPSZ; 26860 sopp.sopp_maxblk = INFPSZ; 26861 sopp.sopp_rcvtimer = SOCKET_TIMER_INTERVAL; 26862 sopp.sopp_rcvthresh = SOCKET_RECVHIWATER >> 3; 26863 sopp.sopp_maxaddrlen = sizeof (sin6_t); 26864 sopp.sopp_minpsz = (tcp_rinfo.mi_minpsz == 1) ? 0 : 26865 tcp_rinfo.mi_minpsz; 26866 26867 connp->conn_upcalls = sock_upcalls; 26868 connp->conn_upper_handle = sock_handle; 26869 26870 (*sock_upcalls->su_set_proto_props)(sock_handle, &sopp); 26871 } 26872 26873 /* ARGSUSED */ 26874 int 26875 tcp_close(sock_lower_handle_t proto_handle, int flags, cred_t *cr) 26876 { 26877 conn_t *connp = (conn_t *)proto_handle; 26878 26879 ASSERT(connp->conn_upper_handle != NULL); 26880 26881 /* All Solaris components should pass a cred for this operation. */ 26882 ASSERT(cr != NULL); 26883 26884 tcp_close_common(connp, flags); 26885 26886 ip_free_helper_stream(connp); 26887 26888 /* 26889 * Drop IP's reference on the conn. This is the last reference 26890 * on the connp if the state was less than established. If the 26891 * connection has gone into timewait state, then we will have 26892 * one ref for the TCP and one more ref (total of two) for the 26893 * classifier connected hash list (a timewait connections stays 26894 * in connected hash till closed). 26895 * 26896 * We can't assert the references because there might be other 26897 * transient reference places because of some walkers or queued 26898 * packets in squeue for the timewait state. 26899 */ 26900 CONN_DEC_REF(connp); 26901 return (0); 26902 } 26903 26904 /* ARGSUSED */ 26905 int 26906 tcp_sendmsg(sock_lower_handle_t proto_handle, mblk_t *mp, struct nmsghdr *msg, 26907 cred_t *cr) 26908 { 26909 tcp_t *tcp; 26910 uint32_t msize; 26911 conn_t *connp = (conn_t *)proto_handle; 26912 int32_t tcpstate; 26913 26914 /* All Solaris components should pass a cred for this operation. */ 26915 ASSERT(cr != NULL); 26916 26917 ASSERT(connp->conn_ref >= 2); 26918 ASSERT(connp->conn_upper_handle != NULL); 26919 26920 if (msg->msg_controllen != 0) { 26921 return (EOPNOTSUPP); 26922 26923 } 26924 switch (DB_TYPE(mp)) { 26925 case M_DATA: 26926 tcp = connp->conn_tcp; 26927 ASSERT(tcp != NULL); 26928 26929 tcpstate = tcp->tcp_state; 26930 if (tcpstate < TCPS_ESTABLISHED) { 26931 freemsg(mp); 26932 return (ENOTCONN); 26933 } else if (tcpstate > TCPS_CLOSE_WAIT) { 26934 freemsg(mp); 26935 return (EPIPE); 26936 } 26937 26938 msize = msgdsize(mp); 26939 26940 mutex_enter(&tcp->tcp_non_sq_lock); 26941 tcp->tcp_squeue_bytes += msize; 26942 /* 26943 * Squeue Flow Control 26944 */ 26945 if (TCP_UNSENT_BYTES(tcp) > tcp->tcp_xmit_hiwater) { 26946 tcp_setqfull(tcp); 26947 } 26948 mutex_exit(&tcp->tcp_non_sq_lock); 26949 26950 /* 26951 * The application may pass in an address in the msghdr, but 26952 * we ignore the address on connection-oriented sockets. 26953 * Just like BSD this code does not generate an error for 26954 * TCP (a CONNREQUIRED socket) when sending to an address 26955 * passed in with sendto/sendmsg. Instead the data is 26956 * delivered on the connection as if no address had been 26957 * supplied. 26958 */ 26959 CONN_INC_REF(connp); 26960 26961 if (msg != NULL && msg->msg_flags & MSG_OOB) { 26962 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 26963 tcp_output_urgent, connp, tcp_squeue_flag, 26964 SQTAG_TCP_OUTPUT); 26965 } else { 26966 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_output, 26967 connp, tcp_squeue_flag, SQTAG_TCP_OUTPUT); 26968 } 26969 26970 return (0); 26971 26972 default: 26973 ASSERT(0); 26974 } 26975 26976 freemsg(mp); 26977 return (0); 26978 } 26979 26980 /* ARGSUSED */ 26981 void 26982 tcp_output_urgent(void *arg, mblk_t *mp, void *arg2) 26983 { 26984 int len; 26985 uint32_t msize; 26986 conn_t *connp = (conn_t *)arg; 26987 tcp_t *tcp = connp->conn_tcp; 26988 26989 msize = msgdsize(mp); 26990 26991 len = msize - 1; 26992 if (len < 0) { 26993 freemsg(mp); 26994 return; 26995 } 26996 26997 /* 26998 * Try to force urgent data out on the wire. 26999 * Even if we have unsent data this will 27000 * at least send the urgent flag. 27001 * XXX does not handle more flag correctly. 27002 */ 27003 len += tcp->tcp_unsent; 27004 len += tcp->tcp_snxt; 27005 tcp->tcp_urg = len; 27006 tcp->tcp_valid_bits |= TCP_URG_VALID; 27007 27008 /* Bypass tcp protocol for fused tcp loopback */ 27009 if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize)) 27010 return; 27011 tcp_wput_data(tcp, mp, B_TRUE); 27012 } 27013 27014 /* ARGSUSED */ 27015 int 27016 tcp_getpeername(sock_lower_handle_t proto_handle, struct sockaddr *addr, 27017 socklen_t *addrlenp, cred_t *cr) 27018 { 27019 conn_t *connp = (conn_t *)proto_handle; 27020 tcp_t *tcp = connp->conn_tcp; 27021 27022 ASSERT(connp->conn_upper_handle != NULL); 27023 /* All Solaris components should pass a cred for this operation. */ 27024 ASSERT(cr != NULL); 27025 27026 ASSERT(tcp != NULL); 27027 27028 return (tcp_do_getpeername(tcp, addr, addrlenp)); 27029 } 27030 27031 /* ARGSUSED */ 27032 int 27033 tcp_getsockname(sock_lower_handle_t proto_handle, struct sockaddr *addr, 27034 socklen_t *addrlenp, cred_t *cr) 27035 { 27036 conn_t *connp = (conn_t *)proto_handle; 27037 tcp_t *tcp = connp->conn_tcp; 27038 27039 /* All Solaris components should pass a cred for this operation. */ 27040 ASSERT(cr != NULL); 27041 27042 ASSERT(connp->conn_upper_handle != NULL); 27043 27044 return (tcp_do_getsockname(tcp, addr, addrlenp)); 27045 } 27046 27047 /* 27048 * tcp_fallback 27049 * 27050 * A direct socket is falling back to using STREAMS. The queue 27051 * that is being passed down was created using tcp_open() with 27052 * the SO_FALLBACK flag set. As a result, the queue is not 27053 * associated with a conn, and the q_ptrs instead contain the 27054 * dev and minor area that should be used. 27055 * 27056 * The 'direct_sockfs' flag indicates whether the FireEngine 27057 * optimizations should be used. The common case would be that 27058 * optimizations are enabled, and they might be subsequently 27059 * disabled using the _SIOCSOCKFALLBACK ioctl. 27060 */ 27061 27062 /* 27063 * An active connection is falling back to TPI. Gather all the information 27064 * required by the STREAM head and TPI sonode and send it up. 27065 */ 27066 void 27067 tcp_fallback_noneager(tcp_t *tcp, mblk_t *stropt_mp, queue_t *q, 27068 boolean_t direct_sockfs, so_proto_quiesced_cb_t quiesced_cb) 27069 { 27070 conn_t *connp = tcp->tcp_connp; 27071 struct stroptions *stropt; 27072 struct T_capability_ack tca; 27073 struct sockaddr_in6 laddr, faddr; 27074 socklen_t laddrlen, faddrlen; 27075 short opts; 27076 int error; 27077 mblk_t *mp; 27078 27079 /* Disable I/OAT during fallback */ 27080 tcp->tcp_sodirect = NULL; 27081 27082 connp->conn_dev = (dev_t)RD(q)->q_ptr; 27083 connp->conn_minor_arena = WR(q)->q_ptr; 27084 27085 RD(q)->q_ptr = WR(q)->q_ptr = connp; 27086 27087 connp->conn_tcp->tcp_rq = connp->conn_rq = RD(q); 27088 connp->conn_tcp->tcp_wq = connp->conn_wq = WR(q); 27089 27090 WR(q)->q_qinfo = &tcp_sock_winit; 27091 27092 if (!direct_sockfs) 27093 tcp_disable_direct_sockfs(tcp); 27094 27095 /* 27096 * free the helper stream 27097 */ 27098 ip_free_helper_stream(connp); 27099 27100 /* 27101 * Notify the STREAM head about options 27102 */ 27103 DB_TYPE(stropt_mp) = M_SETOPTS; 27104 stropt = (struct stroptions *)stropt_mp->b_rptr; 27105 stropt_mp->b_wptr += sizeof (struct stroptions); 27106 stropt = (struct stroptions *)stropt_mp->b_rptr; 27107 stropt->so_flags |= SO_HIWAT | SO_WROFF | SO_MAXBLK; 27108 27109 stropt->so_wroff = tcp->tcp_hdr_len + (tcp->tcp_loopback ? 0 : 27110 tcp->tcp_tcps->tcps_wroff_xtra); 27111 if (tcp->tcp_snd_sack_ok) 27112 stropt->so_wroff += TCPOPT_MAX_SACK_LEN; 27113 stropt->so_hiwat = tcp->tcp_fused ? 27114 tcp_fuse_set_rcv_hiwat(tcp, tcp->tcp_recv_hiwater) : 27115 MAX(tcp->tcp_recv_hiwater, tcp->tcp_tcps->tcps_sth_rcv_hiwat); 27116 stropt->so_maxblk = tcp_maxpsz_set(tcp, B_FALSE); 27117 27118 putnext(RD(q), stropt_mp); 27119 27120 /* 27121 * Collect the information needed to sync with the sonode 27122 */ 27123 tcp_do_capability_ack(tcp, &tca, TC1_INFO|TC1_ACCEPTOR_ID); 27124 27125 laddrlen = faddrlen = sizeof (sin6_t); 27126 (void) tcp_do_getsockname(tcp, (struct sockaddr *)&laddr, &laddrlen); 27127 error = tcp_do_getpeername(tcp, (struct sockaddr *)&faddr, &faddrlen); 27128 if (error != 0) 27129 faddrlen = 0; 27130 27131 opts = 0; 27132 if (tcp->tcp_oobinline) 27133 opts |= SO_OOBINLINE; 27134 if (tcp->tcp_dontroute) 27135 opts |= SO_DONTROUTE; 27136 27137 /* 27138 * Notify the socket that the protocol is now quiescent, 27139 * and it's therefore safe move data from the socket 27140 * to the stream head. 27141 */ 27142 (*quiesced_cb)(connp->conn_upper_handle, q, &tca, 27143 (struct sockaddr *)&laddr, laddrlen, 27144 (struct sockaddr *)&faddr, faddrlen, opts); 27145 27146 while ((mp = tcp->tcp_rcv_list) != NULL) { 27147 tcp->tcp_rcv_list = mp->b_next; 27148 mp->b_next = NULL; 27149 putnext(q, mp); 27150 } 27151 tcp->tcp_rcv_last_head = NULL; 27152 tcp->tcp_rcv_last_tail = NULL; 27153 tcp->tcp_rcv_cnt = 0; 27154 } 27155 27156 /* 27157 * An eager is falling back to TPI. All we have to do is send 27158 * up a T_CONN_IND. 27159 */ 27160 void 27161 tcp_fallback_eager(tcp_t *eager, boolean_t direct_sockfs) 27162 { 27163 tcp_t *listener = eager->tcp_listener; 27164 mblk_t *mp = eager->tcp_conn.tcp_eager_conn_ind; 27165 27166 ASSERT(listener != NULL); 27167 ASSERT(mp != NULL); 27168 27169 eager->tcp_conn.tcp_eager_conn_ind = NULL; 27170 27171 /* 27172 * TLI/XTI applications will get confused by 27173 * sending eager as an option since it violates 27174 * the option semantics. So remove the eager as 27175 * option since TLI/XTI app doesn't need it anyway. 27176 */ 27177 if (!direct_sockfs) { 27178 struct T_conn_ind *conn_ind; 27179 27180 conn_ind = (struct T_conn_ind *)mp->b_rptr; 27181 conn_ind->OPT_length = 0; 27182 conn_ind->OPT_offset = 0; 27183 } 27184 27185 /* 27186 * Sockfs guarantees that the listener will not be closed 27187 * during fallback. So we can safely use the listener's queue. 27188 */ 27189 putnext(listener->tcp_rq, mp); 27190 } 27191 27192 int 27193 tcp_fallback(sock_lower_handle_t proto_handle, queue_t *q, 27194 boolean_t direct_sockfs, so_proto_quiesced_cb_t quiesced_cb) 27195 { 27196 tcp_t *tcp; 27197 conn_t *connp = (conn_t *)proto_handle; 27198 int error; 27199 mblk_t *stropt_mp; 27200 mblk_t *ordrel_mp; 27201 mblk_t *fused_sigurp_mp; 27202 27203 tcp = connp->conn_tcp; 27204 27205 stropt_mp = allocb_wait(sizeof (struct stroptions), BPRI_HI, STR_NOSIG, 27206 NULL); 27207 27208 /* Pre-allocate the T_ordrel_ind mblk. */ 27209 ASSERT(tcp->tcp_ordrel_mp == NULL); 27210 ordrel_mp = allocb_wait(sizeof (struct T_ordrel_ind), BPRI_HI, 27211 STR_NOSIG, NULL); 27212 ordrel_mp->b_datap->db_type = M_PROTO; 27213 ((struct T_ordrel_ind *)ordrel_mp->b_rptr)->PRIM_type = T_ORDREL_IND; 27214 ordrel_mp->b_wptr += sizeof (struct T_ordrel_ind); 27215 27216 /* Pre-allocate the M_PCSIG used by fusion */ 27217 fused_sigurp_mp = allocb_wait(1, BPRI_HI, STR_NOSIG, NULL); 27218 27219 /* 27220 * Enter the squeue so that no new packets can come in 27221 */ 27222 error = squeue_synch_enter(connp->conn_sqp, connp, 0); 27223 if (error != 0) { 27224 /* failed to enter, free all the pre-allocated messages. */ 27225 freeb(stropt_mp); 27226 freeb(ordrel_mp); 27227 freeb(fused_sigurp_mp); 27228 /* 27229 * We cannot process the eager, so at least send out a 27230 * RST so the peer can reconnect. 27231 */ 27232 if (tcp->tcp_listener != NULL) { 27233 (void) tcp_eager_blowoff(tcp->tcp_listener, 27234 tcp->tcp_conn_req_seqnum); 27235 } 27236 return (ENOMEM); 27237 } 27238 27239 /* 27240 * No longer a direct socket 27241 */ 27242 connp->conn_flags &= ~IPCL_NONSTR; 27243 27244 tcp->tcp_ordrel_mp = ordrel_mp; 27245 27246 if (tcp->tcp_fused) { 27247 ASSERT(tcp->tcp_fused_sigurg_mp == NULL); 27248 tcp->tcp_fused_sigurg_mp = fused_sigurp_mp; 27249 } else { 27250 freeb(fused_sigurp_mp); 27251 } 27252 27253 if (tcp->tcp_listener != NULL) { 27254 /* The eager will deal with opts when accept() is called */ 27255 freeb(stropt_mp); 27256 tcp_fallback_eager(tcp, direct_sockfs); 27257 } else { 27258 tcp_fallback_noneager(tcp, stropt_mp, q, direct_sockfs, 27259 quiesced_cb); 27260 } 27261 27262 /* 27263 * There should be atleast two ref's (IP + TCP) 27264 */ 27265 ASSERT(connp->conn_ref >= 2); 27266 squeue_synch_exit(connp->conn_sqp, connp); 27267 27268 return (0); 27269 } 27270 27271 /* ARGSUSED */ 27272 static void 27273 tcp_shutdown_output(void *arg, mblk_t *mp, void *arg2) 27274 { 27275 conn_t *connp = (conn_t *)arg; 27276 tcp_t *tcp = connp->conn_tcp; 27277 27278 freemsg(mp); 27279 27280 if (tcp->tcp_fused) 27281 tcp_unfuse(tcp); 27282 27283 if (tcp_xmit_end(tcp) != 0) { 27284 /* 27285 * We were crossing FINs and got a reset from 27286 * the other side. Just ignore it. 27287 */ 27288 if (tcp->tcp_debug) { 27289 (void) strlog(TCP_MOD_ID, 0, 1, 27290 SL_ERROR|SL_TRACE, 27291 "tcp_shutdown_output() out of state %s", 27292 tcp_display(tcp, NULL, DISP_ADDR_AND_PORT)); 27293 } 27294 } 27295 } 27296 27297 /* ARGSUSED */ 27298 int 27299 tcp_shutdown(sock_lower_handle_t proto_handle, int how, cred_t *cr) 27300 { 27301 conn_t *connp = (conn_t *)proto_handle; 27302 tcp_t *tcp = connp->conn_tcp; 27303 27304 ASSERT(connp->conn_upper_handle != NULL); 27305 27306 /* All Solaris components should pass a cred for this operation. */ 27307 ASSERT(cr != NULL); 27308 27309 /* 27310 * X/Open requires that we check the connected state. 27311 */ 27312 if (tcp->tcp_state < TCPS_SYN_SENT) 27313 return (ENOTCONN); 27314 27315 /* shutdown the send side */ 27316 if (how != SHUT_RD) { 27317 mblk_t *bp; 27318 27319 bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL); 27320 CONN_INC_REF(connp); 27321 SQUEUE_ENTER_ONE(connp->conn_sqp, bp, tcp_shutdown_output, 27322 connp, SQ_NODRAIN, SQTAG_TCP_SHUTDOWN_OUTPUT); 27323 27324 (*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle, 27325 SOCK_OPCTL_SHUT_SEND, 0); 27326 } 27327 27328 /* shutdown the recv side */ 27329 if (how != SHUT_WR) 27330 (*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle, 27331 SOCK_OPCTL_SHUT_RECV, 0); 27332 27333 return (0); 27334 } 27335 27336 /* 27337 * SOP_LISTEN() calls into tcp_listen(). 27338 */ 27339 /* ARGSUSED */ 27340 int 27341 tcp_listen(sock_lower_handle_t proto_handle, int backlog, cred_t *cr) 27342 { 27343 conn_t *connp = (conn_t *)proto_handle; 27344 int error; 27345 squeue_t *sqp = connp->conn_sqp; 27346 27347 ASSERT(connp->conn_upper_handle != NULL); 27348 27349 /* All Solaris components should pass a cred for this operation. */ 27350 ASSERT(cr != NULL); 27351 27352 error = squeue_synch_enter(sqp, connp, 0); 27353 if (error != 0) { 27354 /* failed to enter */ 27355 return (ENOBUFS); 27356 } 27357 27358 error = tcp_do_listen(connp, backlog, cr); 27359 if (error == 0) { 27360 (*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle, 27361 SOCK_OPCTL_ENAB_ACCEPT, (uintptr_t)backlog); 27362 } else if (error < 0) { 27363 if (error == -TOUTSTATE) 27364 error = EINVAL; 27365 else 27366 error = proto_tlitosyserr(-error); 27367 } 27368 squeue_synch_exit(sqp, connp); 27369 return (error); 27370 } 27371 27372 static int 27373 tcp_do_listen(conn_t *connp, int backlog, cred_t *cr) 27374 { 27375 tcp_t *tcp = connp->conn_tcp; 27376 sin_t *sin; 27377 sin6_t *sin6; 27378 int error = 0; 27379 tcp_stack_t *tcps = tcp->tcp_tcps; 27380 27381 /* All Solaris components should pass a cred for this operation. */ 27382 ASSERT(cr != NULL); 27383 27384 if (tcp->tcp_state >= TCPS_BOUND) { 27385 if ((tcp->tcp_state == TCPS_BOUND || 27386 tcp->tcp_state == TCPS_LISTEN) && backlog > 0) { 27387 /* 27388 * Handle listen() increasing backlog. 27389 * This is more "liberal" then what the TPI spec 27390 * requires but is needed to avoid a t_unbind 27391 * when handling listen() since the port number 27392 * might be "stolen" between the unbind and bind. 27393 */ 27394 goto do_listen; 27395 } 27396 if (tcp->tcp_debug) { 27397 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 27398 "tcp_listen: bad state, %d", tcp->tcp_state); 27399 } 27400 return (-TOUTSTATE); 27401 } else { 27402 int32_t len; 27403 sin6_t addr; 27404 27405 /* Do an implicit bind: Request for a generic port. */ 27406 if (tcp->tcp_family == AF_INET) { 27407 len = sizeof (sin_t); 27408 sin = (sin_t *)&addr; 27409 *sin = sin_null; 27410 sin->sin_family = AF_INET; 27411 tcp->tcp_ipversion = IPV4_VERSION; 27412 } else { 27413 ASSERT(tcp->tcp_family == AF_INET6); 27414 len = sizeof (sin6_t); 27415 sin6 = (sin6_t *)&addr; 27416 *sin6 = sin6_null; 27417 sin6->sin6_family = AF_INET6; 27418 tcp->tcp_ipversion = IPV6_VERSION; 27419 } 27420 27421 error = tcp_bind_check(connp, (struct sockaddr *)&addr, len, 27422 cr, B_FALSE); 27423 if (error) 27424 return (error); 27425 /* Fall through and do the fanout insertion */ 27426 } 27427 27428 do_listen: 27429 ASSERT(tcp->tcp_state == TCPS_BOUND || tcp->tcp_state == TCPS_LISTEN); 27430 tcp->tcp_conn_req_max = backlog; 27431 if (tcp->tcp_conn_req_max) { 27432 if (tcp->tcp_conn_req_max < tcps->tcps_conn_req_min) 27433 tcp->tcp_conn_req_max = tcps->tcps_conn_req_min; 27434 if (tcp->tcp_conn_req_max > tcps->tcps_conn_req_max_q) 27435 tcp->tcp_conn_req_max = tcps->tcps_conn_req_max_q; 27436 /* 27437 * If this is a listener, do not reset the eager list 27438 * and other stuffs. Note that we don't check if the 27439 * existing eager list meets the new tcp_conn_req_max 27440 * requirement. 27441 */ 27442 if (tcp->tcp_state != TCPS_LISTEN) { 27443 tcp->tcp_state = TCPS_LISTEN; 27444 /* Initialize the chain. Don't need the eager_lock */ 27445 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 27446 tcp->tcp_eager_next_drop_q0 = tcp; 27447 tcp->tcp_eager_prev_drop_q0 = tcp; 27448 tcp->tcp_second_ctimer_threshold = 27449 tcps->tcps_ip_abort_linterval; 27450 } 27451 } 27452 27453 /* 27454 * We can call ip_bind directly, the processing continues 27455 * in tcp_post_ip_bind(). 27456 * 27457 * We need to make sure that the conn_recv is set to a non-null 27458 * value before we insert the conn into the classifier table. 27459 * This is to avoid a race with an incoming packet which does an 27460 * ipcl_classify(). 27461 */ 27462 connp->conn_recv = tcp_conn_request; 27463 if (tcp->tcp_family == AF_INET) { 27464 error = ip_proto_bind_laddr_v4(connp, NULL, 27465 IPPROTO_TCP, tcp->tcp_bound_source, tcp->tcp_lport, B_TRUE); 27466 } else { 27467 error = ip_proto_bind_laddr_v6(connp, NULL, IPPROTO_TCP, 27468 &tcp->tcp_bound_source_v6, tcp->tcp_lport, B_TRUE); 27469 } 27470 return (tcp_post_ip_bind(tcp, NULL, error, NULL, 0)); 27471 } 27472 27473 void 27474 tcp_clr_flowctrl(sock_lower_handle_t proto_handle) 27475 { 27476 conn_t *connp = (conn_t *)proto_handle; 27477 tcp_t *tcp = connp->conn_tcp; 27478 tcp_stack_t *tcps = tcp->tcp_tcps; 27479 uint_t thwin; 27480 27481 ASSERT(connp->conn_upper_handle != NULL); 27482 27483 (void) squeue_synch_enter(connp->conn_sqp, connp, 0); 27484 27485 /* Flow control condition has been removed. */ 27486 tcp->tcp_rwnd = tcp->tcp_recv_hiwater; 27487 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 27488 << tcp->tcp_rcv_ws; 27489 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 27490 /* 27491 * Send back a window update immediately if TCP is above 27492 * ESTABLISHED state and the increase of the rcv window 27493 * that the other side knows is at least 1 MSS after flow 27494 * control is lifted. 27495 */ 27496 if (tcp->tcp_state >= TCPS_ESTABLISHED && 27497 (tcp->tcp_recv_hiwater - thwin >= tcp->tcp_mss)) { 27498 tcp_xmit_ctl(NULL, tcp, 27499 (tcp->tcp_swnd == 0) ? tcp->tcp_suna : 27500 tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 27501 BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate); 27502 } 27503 27504 squeue_synch_exit(connp->conn_sqp, connp); 27505 } 27506 27507 /* ARGSUSED */ 27508 int 27509 tcp_ioctl(sock_lower_handle_t proto_handle, int cmd, intptr_t arg, 27510 int mode, int32_t *rvalp, cred_t *cr) 27511 { 27512 conn_t *connp = (conn_t *)proto_handle; 27513 int error; 27514 27515 ASSERT(connp->conn_upper_handle != NULL); 27516 27517 /* All Solaris components should pass a cred for this operation. */ 27518 ASSERT(cr != NULL); 27519 27520 switch (cmd) { 27521 case ND_SET: 27522 case ND_GET: 27523 case TCP_IOC_DEFAULT_Q: 27524 case _SIOCSOCKFALLBACK: 27525 case TCP_IOC_ABORT_CONN: 27526 case TI_GETPEERNAME: 27527 case TI_GETMYNAME: 27528 ip1dbg(("tcp_ioctl: cmd 0x%x on non sreams socket", 27529 cmd)); 27530 error = EINVAL; 27531 break; 27532 default: 27533 /* 27534 * Pass on to IP using helper stream 27535 */ 27536 error = ldi_ioctl(connp->conn_helper_info->iphs_handle, 27537 cmd, arg, mode, cr, rvalp); 27538 break; 27539 } 27540 return (error); 27541 } 27542 27543 sock_downcalls_t sock_tcp_downcalls = { 27544 tcp_activate, 27545 tcp_accept, 27546 tcp_bind, 27547 tcp_listen, 27548 tcp_connect, 27549 tcp_getpeername, 27550 tcp_getsockname, 27551 tcp_getsockopt, 27552 tcp_setsockopt, 27553 tcp_sendmsg, 27554 NULL, 27555 NULL, 27556 NULL, 27557 tcp_shutdown, 27558 tcp_clr_flowctrl, 27559 tcp_ioctl, 27560 tcp_close, 27561 }; 27562