xref: /titanic_50/usr/src/uts/common/inet/tcp/tcp.c (revision 471fb14e1ef453ca10871d66de96105f33392fe0)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 /* Copyright (c) 1990 Mentat Inc. */
27 
28 #include <sys/types.h>
29 #include <sys/stream.h>
30 #include <sys/strsun.h>
31 #include <sys/strsubr.h>
32 #include <sys/stropts.h>
33 #include <sys/strlog.h>
34 #include <sys/strsun.h>
35 #define	_SUN_TPI_VERSION 2
36 #include <sys/tihdr.h>
37 #include <sys/timod.h>
38 #include <sys/ddi.h>
39 #include <sys/sunddi.h>
40 #include <sys/suntpi.h>
41 #include <sys/xti_inet.h>
42 #include <sys/cmn_err.h>
43 #include <sys/debug.h>
44 #include <sys/sdt.h>
45 #include <sys/vtrace.h>
46 #include <sys/kmem.h>
47 #include <sys/ethernet.h>
48 #include <sys/cpuvar.h>
49 #include <sys/dlpi.h>
50 #include <sys/multidata.h>
51 #include <sys/multidata_impl.h>
52 #include <sys/pattr.h>
53 #include <sys/policy.h>
54 #include <sys/priv.h>
55 #include <sys/zone.h>
56 #include <sys/sunldi.h>
57 
58 #include <sys/errno.h>
59 #include <sys/signal.h>
60 #include <sys/socket.h>
61 #include <sys/sockio.h>
62 #include <sys/isa_defs.h>
63 #include <sys/md5.h>
64 #include <sys/random.h>
65 #include <sys/sodirect.h>
66 #include <sys/uio.h>
67 #include <netinet/in.h>
68 #include <netinet/tcp.h>
69 #include <netinet/ip6.h>
70 #include <netinet/icmp6.h>
71 #include <net/if.h>
72 #include <net/route.h>
73 #include <inet/ipsec_impl.h>
74 
75 #include <inet/common.h>
76 #include <inet/ip.h>
77 #include <inet/ip_impl.h>
78 #include <inet/ip6.h>
79 #include <inet/ip_ndp.h>
80 #include <inet/mi.h>
81 #include <inet/mib2.h>
82 #include <inet/nd.h>
83 #include <inet/optcom.h>
84 #include <inet/snmpcom.h>
85 #include <inet/kstatcom.h>
86 #include <inet/tcp.h>
87 #include <inet/tcp_impl.h>
88 #include <net/pfkeyv2.h>
89 #include <inet/ipsec_info.h>
90 #include <inet/ipdrop.h>
91 
92 #include <inet/ipclassifier.h>
93 #include <inet/ip_ire.h>
94 #include <inet/ip_ftable.h>
95 #include <inet/ip_if.h>
96 #include <inet/ipp_common.h>
97 #include <inet/ip_netinfo.h>
98 #include <sys/squeue.h>
99 #include <inet/kssl/ksslapi.h>
100 #include <sys/tsol/label.h>
101 #include <sys/tsol/tnet.h>
102 #include <rpc/pmap_prot.h>
103 
104 /*
105  * TCP Notes: aka FireEngine Phase I (PSARC 2002/433)
106  *
107  * (Read the detailed design doc in PSARC case directory)
108  *
109  * The entire tcp state is contained in tcp_t and conn_t structure
110  * which are allocated in tandem using ipcl_conn_create() and passing
111  * IPCL_CONNTCP as a flag. We use 'conn_ref' and 'conn_lock' to protect
112  * the references on the tcp_t. The tcp_t structure is never compressed
113  * and packets always land on the correct TCP perimeter from the time
114  * eager is created till the time tcp_t dies (as such the old mentat
115  * TCP global queue is not used for detached state and no IPSEC checking
116  * is required). The global queue is still allocated to send out resets
117  * for connection which have no listeners and IP directly calls
118  * tcp_xmit_listeners_reset() which does any policy check.
119  *
120  * Protection and Synchronisation mechanism:
121  *
122  * The tcp data structure does not use any kind of lock for protecting
123  * its state but instead uses 'squeues' for mutual exclusion from various
124  * read and write side threads. To access a tcp member, the thread should
125  * always be behind squeue (via squeue_enter, squeue_enter_nodrain, or
126  * squeue_fill). Since the squeues allow a direct function call, caller
127  * can pass any tcp function having prototype of edesc_t as argument
128  * (different from traditional STREAMs model where packets come in only
129  * designated entry points). The list of functions that can be directly
130  * called via squeue are listed before the usual function prototype.
131  *
132  * Referencing:
133  *
134  * TCP is MT-Hot and we use a reference based scheme to make sure that the
135  * tcp structure doesn't disappear when its needed. When the application
136  * creates an outgoing connection or accepts an incoming connection, we
137  * start out with 2 references on 'conn_ref'. One for TCP and one for IP.
138  * The IP reference is just a symbolic reference since ip_tcpclose()
139  * looks at tcp structure after tcp_close_output() returns which could
140  * have dropped the last TCP reference. So as long as the connection is
141  * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the
142  * conn_t. The classifier puts its own reference when the connection is
143  * inserted in listen or connected hash. Anytime a thread needs to enter
144  * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr
145  * on write side or by doing a classify on read side and then puts a
146  * reference on the conn before doing squeue_enter/tryenter/fill. For
147  * read side, the classifier itself puts the reference under fanout lock
148  * to make sure that tcp can't disappear before it gets processed. The
149  * squeue will drop this reference automatically so the called function
150  * doesn't have to do a DEC_REF.
151  *
152  * Opening a new connection:
153  *
154  * The outgoing connection open is pretty simple. tcp_open() does the
155  * work in creating the conn/tcp structure and initializing it. The
156  * squeue assignment is done based on the CPU the application
157  * is running on. So for outbound connections, processing is always done
158  * on application CPU which might be different from the incoming CPU
159  * being interrupted by the NIC. An optimal way would be to figure out
160  * the NIC <-> CPU binding at listen time, and assign the outgoing
161  * connection to the squeue attached to the CPU that will be interrupted
162  * for incoming packets (we know the NIC based on the bind IP address).
163  * This might seem like a problem if more data is going out but the
164  * fact is that in most cases the transmit is ACK driven transmit where
165  * the outgoing data normally sits on TCP's xmit queue waiting to be
166  * transmitted.
167  *
168  * Accepting a connection:
169  *
170  * This is a more interesting case because of various races involved in
171  * establishing a eager in its own perimeter. Read the meta comment on
172  * top of tcp_conn_request(). But briefly, the squeue is picked by
173  * ip_tcp_input()/ip_fanout_tcp_v6() based on the interrupted CPU.
174  *
175  * Closing a connection:
176  *
177  * The close is fairly straight forward. tcp_close() calls tcp_close_output()
178  * via squeue to do the close and mark the tcp as detached if the connection
179  * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its
180  * reference but tcp_close() drop IP's reference always. So if tcp was
181  * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP
182  * and 1 because it is in classifier's connected hash. This is the condition
183  * we use to determine that its OK to clean up the tcp outside of squeue
184  * when time wait expires (check the ref under fanout and conn_lock and
185  * if it is 2, remove it from fanout hash and kill it).
186  *
187  * Although close just drops the necessary references and marks the
188  * tcp_detached state, tcp_close needs to know the tcp_detached has been
189  * set (under squeue) before letting the STREAM go away (because a
190  * inbound packet might attempt to go up the STREAM while the close
191  * has happened and tcp_detached is not set). So a special lock and
192  * flag is used along with a condition variable (tcp_closelock, tcp_closed,
193  * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked
194  * tcp_detached.
195  *
196  * Special provisions and fast paths:
197  *
198  * We make special provision for (AF_INET, SOCK_STREAM) sockets which
199  * can't have 'ipv6_recvpktinfo' set and for these type of sockets, IP
200  * will never send a M_CTL to TCP. As such, ip_tcp_input() which handles
201  * all TCP packets from the wire makes a IPCL_IS_TCP4_CONNECTED_NO_POLICY
202  * check to send packets directly to tcp_rput_data via squeue. Everyone
203  * else comes through tcp_input() on the read side.
204  *
205  * We also make special provisions for sockfs by marking tcp_issocket
206  * whenever we have only sockfs on top of TCP. This allows us to skip
207  * putting the tcp in acceptor hash since a sockfs listener can never
208  * become acceptor and also avoid allocating a tcp_t for acceptor STREAM
209  * since eager has already been allocated and the accept now happens
210  * on acceptor STREAM. There is a big blob of comment on top of
211  * tcp_conn_request explaining the new accept. When socket is POP'd,
212  * sockfs sends us an ioctl to mark the fact and we go back to old
213  * behaviour. Once tcp_issocket is unset, its never set for the
214  * life of that connection.
215  *
216  * In support of on-board asynchronous DMA hardware (e.g. Intel I/OAT)
217  * two consoldiation private KAPIs are used to enqueue M_DATA mblk_t's
218  * directly to the socket (sodirect) and start an asynchronous copyout
219  * to a user-land receive-side buffer (uioa) when a blocking socket read
220  * (e.g. read, recv, ...) is pending.
221  *
222  * This is accomplished when tcp_issocket is set and tcp_sodirect is not
223  * NULL so points to an sodirect_t and if marked enabled then we enqueue
224  * all mblk_t's directly to the socket.
225  *
226  * Further, if the sodirect_t sod_uioa and if marked enabled (due to a
227  * blocking socket read, e.g. user-land read, recv, ...) then an asynchronous
228  * copyout will be started directly to the user-land uio buffer. Also, as we
229  * have a pending read, TCP's push logic can take into account the number of
230  * bytes to be received and only awake the blocked read()er when the uioa_t
231  * byte count has been satisfied.
232  *
233  * IPsec notes :
234  *
235  * Since a packet is always executed on the correct TCP perimeter
236  * all IPsec processing is defered to IP including checking new
237  * connections and setting IPSEC policies for new connection. The
238  * only exception is tcp_xmit_listeners_reset() which is called
239  * directly from IP and needs to policy check to see if TH_RST
240  * can be sent out.
241  *
242  * PFHooks notes :
243  *
244  * For mdt case, one meta buffer contains multiple packets. Mblks for every
245  * packet are assembled and passed to the hooks. When packets are blocked,
246  * or boundary of any packet is changed, the mdt processing is stopped, and
247  * packets of the meta buffer are send to the IP path one by one.
248  */
249 
250 /*
251  * Values for squeue switch:
252  * 1: squeue_enter_nodrain
253  * 2: squeue_enter
254  * 3: squeue_fill
255  */
256 int tcp_squeue_close = 2;	/* Setable in /etc/system */
257 int tcp_squeue_wput = 2;
258 
259 squeue_func_t tcp_squeue_close_proc;
260 squeue_func_t tcp_squeue_wput_proc;
261 
262 /*
263  * Macros for sodirect:
264  *
265  * SOD_PTR_ENTER(tcp, sodp) - for the tcp_t pointer "tcp" set the
266  * sodirect_t pointer "sodp" to the socket/tcp shared sodirect_t
267  * if it exists and is enabled, else to NULL. Note, in the current
268  * sodirect implementation the sod_lockp must not be held across any
269  * STREAMS call (e.g. putnext) else a "recursive mutex_enter" PANIC
270  * will result as sod_lockp is the streamhead stdata.sd_lock.
271  *
272  * SOD_NOT_ENABLED(tcp) - return true if not a sodirect tcp_t or the
273  * sodirect_t isn't enabled, usefull for ASSERT()ing that a recieve
274  * side tcp code path dealing with a tcp_rcv_list or putnext() isn't
275  * being used when sodirect code paths should be.
276  */
277 
278 #define	SOD_PTR_ENTER(tcp, sodp)					\
279 	(sodp) = (tcp)->tcp_sodirect;					\
280 									\
281 	if ((sodp) != NULL) {						\
282 		mutex_enter((sodp)->sod_lockp);				\
283 		if (!((sodp)->sod_state & SOD_ENABLED)) {		\
284 			mutex_exit((sodp)->sod_lockp);			\
285 			(sodp) = NULL;					\
286 		}							\
287 	}
288 
289 #define	SOD_NOT_ENABLED(tcp)						\
290 	((tcp)->tcp_sodirect == NULL ||					\
291 	    !((tcp)->tcp_sodirect->sod_state & SOD_ENABLED))
292 
293 /*
294  * This controls how tiny a write must be before we try to copy it
295  * into the the mblk on the tail of the transmit queue.  Not much
296  * speedup is observed for values larger than sixteen.  Zero will
297  * disable the optimisation.
298  */
299 int tcp_tx_pull_len = 16;
300 
301 /*
302  * TCP Statistics.
303  *
304  * How TCP statistics work.
305  *
306  * There are two types of statistics invoked by two macros.
307  *
308  * TCP_STAT(name) does non-atomic increment of a named stat counter. It is
309  * supposed to be used in non MT-hot paths of the code.
310  *
311  * TCP_DBGSTAT(name) does atomic increment of a named stat counter. It is
312  * supposed to be used for DEBUG purposes and may be used on a hot path.
313  *
314  * Both TCP_STAT and TCP_DBGSTAT counters are available using kstat
315  * (use "kstat tcp" to get them).
316  *
317  * There is also additional debugging facility that marks tcp_clean_death()
318  * instances and saves them in tcp_t structure. It is triggered by
319  * TCP_TAG_CLEAN_DEATH define. Also, there is a global array of counters for
320  * tcp_clean_death() calls that counts the number of times each tag was hit. It
321  * is triggered by TCP_CLD_COUNTERS define.
322  *
323  * How to add new counters.
324  *
325  * 1) Add a field in the tcp_stat structure describing your counter.
326  * 2) Add a line in the template in tcp_kstat2_init() with the name
327  *    of the counter.
328  *
329  *    IMPORTANT!! - make sure that both are in sync !!
330  * 3) Use either TCP_STAT or TCP_DBGSTAT with the name.
331  *
332  * Please avoid using private counters which are not kstat-exported.
333  *
334  * TCP_TAG_CLEAN_DEATH set to 1 enables tagging of tcp_clean_death() instances
335  * in tcp_t structure.
336  *
337  * TCP_MAX_CLEAN_DEATH_TAG is the maximum number of possible clean death tags.
338  */
339 
340 #ifndef TCP_DEBUG_COUNTER
341 #ifdef DEBUG
342 #define	TCP_DEBUG_COUNTER 1
343 #else
344 #define	TCP_DEBUG_COUNTER 0
345 #endif
346 #endif
347 
348 #define	TCP_CLD_COUNTERS 0
349 
350 #define	TCP_TAG_CLEAN_DEATH 1
351 #define	TCP_MAX_CLEAN_DEATH_TAG 32
352 
353 #ifdef lint
354 static int _lint_dummy_;
355 #endif
356 
357 #if TCP_CLD_COUNTERS
358 static uint_t tcp_clean_death_stat[TCP_MAX_CLEAN_DEATH_TAG];
359 #define	TCP_CLD_STAT(x) tcp_clean_death_stat[x]++
360 #elif defined(lint)
361 #define	TCP_CLD_STAT(x) ASSERT(_lint_dummy_ == 0);
362 #else
363 #define	TCP_CLD_STAT(x)
364 #endif
365 
366 #if TCP_DEBUG_COUNTER
367 #define	TCP_DBGSTAT(tcps, x)	\
368 	atomic_add_64(&((tcps)->tcps_statistics.x.value.ui64), 1)
369 #define	TCP_G_DBGSTAT(x)	\
370 	atomic_add_64(&(tcp_g_statistics.x.value.ui64), 1)
371 #elif defined(lint)
372 #define	TCP_DBGSTAT(tcps, x) ASSERT(_lint_dummy_ == 0);
373 #define	TCP_G_DBGSTAT(x) ASSERT(_lint_dummy_ == 0);
374 #else
375 #define	TCP_DBGSTAT(tcps, x)
376 #define	TCP_G_DBGSTAT(x)
377 #endif
378 
379 #define	TCP_G_STAT(x)	(tcp_g_statistics.x.value.ui64++)
380 
381 tcp_g_stat_t	tcp_g_statistics;
382 kstat_t		*tcp_g_kstat;
383 
384 /*
385  * Call either ip_output or ip_output_v6. This replaces putnext() calls on the
386  * tcp write side.
387  */
388 #define	CALL_IP_WPUT(connp, q, mp) {					\
389 	tcp_stack_t	*tcps;						\
390 									\
391 	tcps = connp->conn_netstack->netstack_tcp;			\
392 	ASSERT(((q)->q_flag & QREADR) == 0);				\
393 	TCP_DBGSTAT(tcps, tcp_ip_output);				\
394 	connp->conn_send(connp, (mp), (q), IP_WPUT);			\
395 }
396 
397 /* Macros for timestamp comparisons */
398 #define	TSTMP_GEQ(a, b)	((int32_t)((a)-(b)) >= 0)
399 #define	TSTMP_LT(a, b)	((int32_t)((a)-(b)) < 0)
400 
401 /*
402  * Parameters for TCP Initial Send Sequence number (ISS) generation.  When
403  * tcp_strong_iss is set to 1, which is the default, the ISS is calculated
404  * by adding three components: a time component which grows by 1 every 4096
405  * nanoseconds (versus every 4 microseconds suggested by RFC 793, page 27);
406  * a per-connection component which grows by 125000 for every new connection;
407  * and an "extra" component that grows by a random amount centered
408  * approximately on 64000.  This causes the the ISS generator to cycle every
409  * 4.89 hours if no TCP connections are made, and faster if connections are
410  * made.
411  *
412  * When tcp_strong_iss is set to 0, ISS is calculated by adding two
413  * components: a time component which grows by 250000 every second; and
414  * a per-connection component which grows by 125000 for every new connections.
415  *
416  * A third method, when tcp_strong_iss is set to 2, for generating ISS is
417  * prescribed by Steve Bellovin.  This involves adding time, the 125000 per
418  * connection, and a one-way hash (MD5) of the connection ID <sport, dport,
419  * src, dst>, a "truly" random (per RFC 1750) number, and a console-entered
420  * password.
421  */
422 #define	ISS_INCR	250000
423 #define	ISS_NSEC_SHT	12
424 
425 static sin_t	sin_null;	/* Zero address for quick clears */
426 static sin6_t	sin6_null;	/* Zero address for quick clears */
427 
428 /*
429  * This implementation follows the 4.3BSD interpretation of the urgent
430  * pointer and not RFC 1122. Switching to RFC 1122 behavior would cause
431  * incompatible changes in protocols like telnet and rlogin.
432  */
433 #define	TCP_OLD_URP_INTERPRETATION	1
434 
435 #define	TCP_IS_DETACHED_NONEAGER(tcp)	\
436 	(TCP_IS_DETACHED(tcp) && \
437 	    (!(tcp)->tcp_hard_binding))
438 
439 /*
440  * TCP reassembly macros.  We hide starting and ending sequence numbers in
441  * b_next and b_prev of messages on the reassembly queue.  The messages are
442  * chained using b_cont.  These macros are used in tcp_reass() so we don't
443  * have to see the ugly casts and assignments.
444  */
445 #define	TCP_REASS_SEQ(mp)		((uint32_t)(uintptr_t)((mp)->b_next))
446 #define	TCP_REASS_SET_SEQ(mp, u)	((mp)->b_next = \
447 					(mblk_t *)(uintptr_t)(u))
448 #define	TCP_REASS_END(mp)		((uint32_t)(uintptr_t)((mp)->b_prev))
449 #define	TCP_REASS_SET_END(mp, u)	((mp)->b_prev = \
450 					(mblk_t *)(uintptr_t)(u))
451 
452 /*
453  * Implementation of TCP Timers.
454  * =============================
455  *
456  * INTERFACE:
457  *
458  * There are two basic functions dealing with tcp timers:
459  *
460  *	timeout_id_t	tcp_timeout(connp, func, time)
461  * 	clock_t		tcp_timeout_cancel(connp, timeout_id)
462  *	TCP_TIMER_RESTART(tcp, intvl)
463  *
464  * tcp_timeout() starts a timer for the 'tcp' instance arranging to call 'func'
465  * after 'time' ticks passed. The function called by timeout() must adhere to
466  * the same restrictions as a driver soft interrupt handler - it must not sleep
467  * or call other functions that might sleep. The value returned is the opaque
468  * non-zero timeout identifier that can be passed to tcp_timeout_cancel() to
469  * cancel the request. The call to tcp_timeout() may fail in which case it
470  * returns zero. This is different from the timeout(9F) function which never
471  * fails.
472  *
473  * The call-back function 'func' always receives 'connp' as its single
474  * argument. It is always executed in the squeue corresponding to the tcp
475  * structure. The tcp structure is guaranteed to be present at the time the
476  * call-back is called.
477  *
478  * NOTE: The call-back function 'func' is never called if tcp is in
479  * 	the TCPS_CLOSED state.
480  *
481  * tcp_timeout_cancel() attempts to cancel a pending tcp_timeout()
482  * request. locks acquired by the call-back routine should not be held across
483  * the call to tcp_timeout_cancel() or a deadlock may result.
484  *
485  * tcp_timeout_cancel() returns -1 if it can not cancel the timeout request.
486  * Otherwise, it returns an integer value greater than or equal to 0. In
487  * particular, if the call-back function is already placed on the squeue, it can
488  * not be canceled.
489  *
490  * NOTE: both tcp_timeout() and tcp_timeout_cancel() should always be called
491  * 	within squeue context corresponding to the tcp instance. Since the
492  *	call-back is also called via the same squeue, there are no race
493  *	conditions described in untimeout(9F) manual page since all calls are
494  *	strictly serialized.
495  *
496  *      TCP_TIMER_RESTART() is a macro that attempts to cancel a pending timeout
497  *	stored in tcp_timer_tid and starts a new one using
498  *	MSEC_TO_TICK(intvl). It always uses tcp_timer() function as a call-back
499  *	and stores the return value of tcp_timeout() in the tcp->tcp_timer_tid
500  *	field.
501  *
502  * NOTE: since the timeout cancellation is not guaranteed, the cancelled
503  *	call-back may still be called, so it is possible tcp_timer() will be
504  *	called several times. This should not be a problem since tcp_timer()
505  *	should always check the tcp instance state.
506  *
507  *
508  * IMPLEMENTATION:
509  *
510  * TCP timers are implemented using three-stage process. The call to
511  * tcp_timeout() uses timeout(9F) function to call tcp_timer_callback() function
512  * when the timer expires. The tcp_timer_callback() arranges the call of the
513  * tcp_timer_handler() function via squeue corresponding to the tcp
514  * instance. The tcp_timer_handler() calls actual requested timeout call-back
515  * and passes tcp instance as an argument to it. Information is passed between
516  * stages using the tcp_timer_t structure which contains the connp pointer, the
517  * tcp call-back to call and the timeout id returned by the timeout(9F).
518  *
519  * The tcp_timer_t structure is not used directly, it is embedded in an mblk_t -
520  * like structure that is used to enter an squeue. The mp->b_rptr of this pseudo
521  * mblk points to the beginning of tcp_timer_t structure. The tcp_timeout()
522  * returns the pointer to this mblk.
523  *
524  * The pseudo mblk is allocated from a special tcp_timer_cache kmem cache. It
525  * looks like a normal mblk without actual dblk attached to it.
526  *
527  * To optimize performance each tcp instance holds a small cache of timer
528  * mblocks. In the current implementation it caches up to two timer mblocks per
529  * tcp instance. The cache is preserved over tcp frees and is only freed when
530  * the whole tcp structure is destroyed by its kmem destructor. Since all tcp
531  * timer processing happens on a corresponding squeue, the cache manipulation
532  * does not require any locks. Experiments show that majority of timer mblocks
533  * allocations are satisfied from the tcp cache and do not involve kmem calls.
534  *
535  * The tcp_timeout() places a refhold on the connp instance which guarantees
536  * that it will be present at the time the call-back function fires. The
537  * tcp_timer_handler() drops the reference after calling the call-back, so the
538  * call-back function does not need to manipulate the references explicitly.
539  */
540 
541 typedef struct tcp_timer_s {
542 	conn_t	*connp;
543 	void 	(*tcpt_proc)(void *);
544 	timeout_id_t   tcpt_tid;
545 } tcp_timer_t;
546 
547 static kmem_cache_t *tcp_timercache;
548 kmem_cache_t	*tcp_sack_info_cache;
549 kmem_cache_t	*tcp_iphc_cache;
550 
551 /*
552  * For scalability, we must not run a timer for every TCP connection
553  * in TIME_WAIT state.  To see why, consider (for time wait interval of
554  * 4 minutes):
555  *	1000 connections/sec * 240 seconds/time wait = 240,000 active conn's
556  *
557  * This list is ordered by time, so you need only delete from the head
558  * until you get to entries which aren't old enough to delete yet.
559  * The list consists of only the detached TIME_WAIT connections.
560  *
561  * Note that the timer (tcp_time_wait_expire) is started when the tcp_t
562  * becomes detached TIME_WAIT (either by changing the state and already
563  * being detached or the other way around). This means that the TIME_WAIT
564  * state can be extended (up to doubled) if the connection doesn't become
565  * detached for a long time.
566  *
567  * The list manipulations (including tcp_time_wait_next/prev)
568  * are protected by the tcp_time_wait_lock. The content of the
569  * detached TIME_WAIT connections is protected by the normal perimeters.
570  *
571  * This list is per squeue and squeues are shared across the tcp_stack_t's.
572  * Things on tcp_time_wait_head remain associated with the tcp_stack_t
573  * and conn_netstack.
574  * The tcp_t's that are added to tcp_free_list are disassociated and
575  * have NULL tcp_tcps and conn_netstack pointers.
576  */
577 typedef struct tcp_squeue_priv_s {
578 	kmutex_t	tcp_time_wait_lock;
579 	timeout_id_t	tcp_time_wait_tid;
580 	tcp_t		*tcp_time_wait_head;
581 	tcp_t		*tcp_time_wait_tail;
582 	tcp_t		*tcp_free_list;
583 	uint_t		tcp_free_list_cnt;
584 } tcp_squeue_priv_t;
585 
586 /*
587  * TCP_TIME_WAIT_DELAY governs how often the time_wait_collector runs.
588  * Running it every 5 seconds seems to give the best results.
589  */
590 #define	TCP_TIME_WAIT_DELAY drv_usectohz(5000000)
591 
592 /*
593  * To prevent memory hog, limit the number of entries in tcp_free_list
594  * to 1% of available memory / number of cpus
595  */
596 uint_t tcp_free_list_max_cnt = 0;
597 
598 #define	TCP_XMIT_LOWATER	4096
599 #define	TCP_XMIT_HIWATER	49152
600 #define	TCP_RECV_LOWATER	2048
601 #define	TCP_RECV_HIWATER	49152
602 
603 /*
604  *  PAWS needs a timer for 24 days.  This is the number of ticks in 24 days
605  */
606 #define	PAWS_TIMEOUT	((clock_t)(24*24*60*60*hz))
607 
608 #define	TIDUSZ	4096	/* transport interface data unit size */
609 
610 /*
611  * Bind hash list size and has function.  It has to be a power of 2 for
612  * hashing.
613  */
614 #define	TCP_BIND_FANOUT_SIZE	512
615 #define	TCP_BIND_HASH(lport) (ntohs(lport) & (TCP_BIND_FANOUT_SIZE - 1))
616 /*
617  * Size of listen and acceptor hash list.  It has to be a power of 2 for
618  * hashing.
619  */
620 #define	TCP_FANOUT_SIZE		256
621 
622 #ifdef	_ILP32
623 #define	TCP_ACCEPTOR_HASH(accid)					\
624 		(((uint_t)(accid) >> 8) & (TCP_FANOUT_SIZE - 1))
625 #else
626 #define	TCP_ACCEPTOR_HASH(accid)					\
627 		((uint_t)(accid) & (TCP_FANOUT_SIZE - 1))
628 #endif	/* _ILP32 */
629 
630 #define	IP_ADDR_CACHE_SIZE	2048
631 #define	IP_ADDR_CACHE_HASH(faddr)					\
632 	(ntohl(faddr) & (IP_ADDR_CACHE_SIZE -1))
633 
634 /* Hash for HSPs uses all 32 bits, since both networks and hosts are in table */
635 #define	TCP_HSP_HASH_SIZE 256
636 
637 #define	TCP_HSP_HASH(addr)					\
638 	(((addr>>24) ^ (addr >>16) ^			\
639 	    (addr>>8) ^ (addr)) % TCP_HSP_HASH_SIZE)
640 
641 /*
642  * TCP options struct returned from tcp_parse_options.
643  */
644 typedef struct tcp_opt_s {
645 	uint32_t	tcp_opt_mss;
646 	uint32_t	tcp_opt_wscale;
647 	uint32_t	tcp_opt_ts_val;
648 	uint32_t	tcp_opt_ts_ecr;
649 	tcp_t		*tcp;
650 } tcp_opt_t;
651 
652 /*
653  * RFC1323-recommended phrasing of TSTAMP option, for easier parsing
654  */
655 
656 #ifdef _BIG_ENDIAN
657 #define	TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \
658 	(TCPOPT_TSTAMP << 8) | 10)
659 #else
660 #define	TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \
661 	(TCPOPT_NOP << 8) | TCPOPT_NOP)
662 #endif
663 
664 /*
665  * Flags returned from tcp_parse_options.
666  */
667 #define	TCP_OPT_MSS_PRESENT	1
668 #define	TCP_OPT_WSCALE_PRESENT	2
669 #define	TCP_OPT_TSTAMP_PRESENT	4
670 #define	TCP_OPT_SACK_OK_PRESENT	8
671 #define	TCP_OPT_SACK_PRESENT	16
672 
673 /* TCP option length */
674 #define	TCPOPT_NOP_LEN		1
675 #define	TCPOPT_MAXSEG_LEN	4
676 #define	TCPOPT_WS_LEN		3
677 #define	TCPOPT_REAL_WS_LEN	(TCPOPT_WS_LEN+1)
678 #define	TCPOPT_TSTAMP_LEN	10
679 #define	TCPOPT_REAL_TS_LEN	(TCPOPT_TSTAMP_LEN+2)
680 #define	TCPOPT_SACK_OK_LEN	2
681 #define	TCPOPT_REAL_SACK_OK_LEN	(TCPOPT_SACK_OK_LEN+2)
682 #define	TCPOPT_REAL_SACK_LEN	4
683 #define	TCPOPT_MAX_SACK_LEN	36
684 #define	TCPOPT_HEADER_LEN	2
685 
686 /* TCP cwnd burst factor. */
687 #define	TCP_CWND_INFINITE	65535
688 #define	TCP_CWND_SS		3
689 #define	TCP_CWND_NORMAL		5
690 
691 /* Maximum TCP initial cwin (start/restart). */
692 #define	TCP_MAX_INIT_CWND	8
693 
694 /*
695  * Initialize cwnd according to RFC 3390.  def_max_init_cwnd is
696  * either tcp_slow_start_initial or tcp_slow_start_after idle
697  * depending on the caller.  If the upper layer has not used the
698  * TCP_INIT_CWND option to change the initial cwnd, tcp_init_cwnd
699  * should be 0 and we use the formula in RFC 3390 to set tcp_cwnd.
700  * If the upper layer has changed set the tcp_init_cwnd, just use
701  * it to calculate the tcp_cwnd.
702  */
703 #define	SET_TCP_INIT_CWND(tcp, mss, def_max_init_cwnd)			\
704 {									\
705 	if ((tcp)->tcp_init_cwnd == 0) {				\
706 		(tcp)->tcp_cwnd = MIN(def_max_init_cwnd * (mss),	\
707 		    MIN(4 * (mss), MAX(2 * (mss), 4380 / (mss) * (mss)))); \
708 	} else {							\
709 		(tcp)->tcp_cwnd = (tcp)->tcp_init_cwnd * (mss);		\
710 	}								\
711 	tcp->tcp_cwnd_cnt = 0;						\
712 }
713 
714 /* TCP Timer control structure */
715 typedef struct tcpt_s {
716 	pfv_t	tcpt_pfv;	/* The routine we are to call */
717 	tcp_t	*tcpt_tcp;	/* The parameter we are to pass in */
718 } tcpt_t;
719 
720 /* Host Specific Parameter structure */
721 typedef struct tcp_hsp {
722 	struct tcp_hsp	*tcp_hsp_next;
723 	in6_addr_t	tcp_hsp_addr_v6;
724 	in6_addr_t	tcp_hsp_subnet_v6;
725 	uint_t		tcp_hsp_vers;	/* IPV4_VERSION | IPV6_VERSION */
726 	int32_t		tcp_hsp_sendspace;
727 	int32_t		tcp_hsp_recvspace;
728 	int32_t		tcp_hsp_tstamp;
729 } tcp_hsp_t;
730 #define	tcp_hsp_addr	V4_PART_OF_V6(tcp_hsp_addr_v6)
731 #define	tcp_hsp_subnet	V4_PART_OF_V6(tcp_hsp_subnet_v6)
732 
733 /*
734  * Functions called directly via squeue having a prototype of edesc_t.
735  */
736 void		tcp_conn_request(void *arg, mblk_t *mp, void *arg2);
737 static void	tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2);
738 void		tcp_accept_finish(void *arg, mblk_t *mp, void *arg2);
739 static void	tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2);
740 static void	tcp_wput_proto(void *arg, mblk_t *mp, void *arg2);
741 void 		tcp_input(void *arg, mblk_t *mp, void *arg2);
742 void		tcp_rput_data(void *arg, mblk_t *mp, void *arg2);
743 static void	tcp_close_output(void *arg, mblk_t *mp, void *arg2);
744 void		tcp_output(void *arg, mblk_t *mp, void *arg2);
745 static void	tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2);
746 static void	tcp_timer_handler(void *arg, mblk_t *mp, void *arg2);
747 static void	tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2);
748 
749 
750 /* Prototype for TCP functions */
751 static void	tcp_random_init(void);
752 int		tcp_random(void);
753 static void	tcp_accept(tcp_t *tcp, mblk_t *mp);
754 static void	tcp_accept_swap(tcp_t *listener, tcp_t *acceptor,
755 		    tcp_t *eager);
756 static int	tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp);
757 static in_port_t tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr,
758     int reuseaddr, boolean_t quick_connect, boolean_t bind_to_req_port_only,
759     boolean_t user_specified);
760 static void	tcp_closei_local(tcp_t *tcp);
761 static void	tcp_close_detached(tcp_t *tcp);
762 static boolean_t tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph,
763 			mblk_t *idmp, mblk_t **defermp);
764 static void	tcp_connect(tcp_t *tcp, mblk_t *mp);
765 static void	tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp,
766 		    in_port_t dstport, uint_t srcid);
767 static void	tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp,
768 		    in_port_t dstport, uint32_t flowinfo, uint_t srcid,
769 		    uint32_t scope_id);
770 static int	tcp_clean_death(tcp_t *tcp, int err, uint8_t tag);
771 static void	tcp_def_q_set(tcp_t *tcp, mblk_t *mp);
772 static void	tcp_disconnect(tcp_t *tcp, mblk_t *mp);
773 static char	*tcp_display(tcp_t *tcp, char *, char);
774 static boolean_t tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum);
775 static void	tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only);
776 static void	tcp_eager_unlink(tcp_t *tcp);
777 static void	tcp_err_ack(tcp_t *tcp, mblk_t *mp, int tlierr,
778 		    int unixerr);
779 static void	tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive,
780 		    int tlierr, int unixerr);
781 static int	tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp,
782 		    cred_t *cr);
783 static int	tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp,
784 		    char *value, caddr_t cp, cred_t *cr);
785 static int	tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp,
786 		    char *value, caddr_t cp, cred_t *cr);
787 static int	tcp_tpistate(tcp_t *tcp);
788 static void	tcp_bind_hash_insert(tf_t *tf, tcp_t *tcp,
789     int caller_holds_lock);
790 static void	tcp_bind_hash_remove(tcp_t *tcp);
791 static tcp_t	*tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *);
792 void		tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp);
793 static void	tcp_acceptor_hash_remove(tcp_t *tcp);
794 static void	tcp_capability_req(tcp_t *tcp, mblk_t *mp);
795 static void	tcp_info_req(tcp_t *tcp, mblk_t *mp);
796 static void	tcp_addr_req(tcp_t *tcp, mblk_t *mp);
797 static void	tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *mp);
798 void		tcp_g_q_setup(tcp_stack_t *);
799 void		tcp_g_q_create(tcp_stack_t *);
800 void		tcp_g_q_destroy(tcp_stack_t *);
801 static int	tcp_header_init_ipv4(tcp_t *tcp);
802 static int	tcp_header_init_ipv6(tcp_t *tcp);
803 int		tcp_init(tcp_t *tcp, queue_t *q);
804 static int	tcp_init_values(tcp_t *tcp);
805 static mblk_t	*tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic);
806 static mblk_t	*tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim,
807 		    t_scalar_t addr_length);
808 static void	tcp_ip_ire_mark_advice(tcp_t *tcp);
809 static void	tcp_ip_notify(tcp_t *tcp);
810 static mblk_t	*tcp_ire_mp(mblk_t *mp);
811 static void	tcp_iss_init(tcp_t *tcp);
812 static void	tcp_keepalive_killer(void *arg);
813 static int	tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt);
814 static void	tcp_mss_set(tcp_t *tcp, uint32_t size, boolean_t do_ss);
815 static int	tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp,
816 		    int *do_disconnectp, int *t_errorp, int *sys_errorp);
817 static boolean_t tcp_allow_connopt_set(int level, int name);
818 int		tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr);
819 int		tcp_opt_get(queue_t *q, int level, int name, uchar_t *ptr);
820 int		tcp_opt_set(queue_t *q, uint_t optset_context, int level,
821 		    int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp,
822 		    uchar_t *outvalp, void *thisdg_attrs, cred_t *cr,
823 		    mblk_t *mblk);
824 static void	tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha);
825 static int	tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly,
826 		    uchar_t *ptr, uint_t len);
827 static int	tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr);
828 static boolean_t tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt,
829     tcp_stack_t *);
830 static int	tcp_param_set(queue_t *q, mblk_t *mp, char *value,
831 		    caddr_t cp, cred_t *cr);
832 static int	tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value,
833 		    caddr_t cp, cred_t *cr);
834 static void	tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *);
835 static int	tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value,
836 		    caddr_t cp, cred_t *cr);
837 static void	tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_cnt);
838 static mblk_t	*tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start);
839 static void	tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp);
840 static void	tcp_reinit(tcp_t *tcp);
841 static void	tcp_reinit_values(tcp_t *tcp);
842 static void	tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval,
843 		    tcp_t *thisstream, cred_t *cr);
844 
845 static uint_t	tcp_rcv_drain(queue_t *q, tcp_t *tcp);
846 static void	tcp_sack_rxmit(tcp_t *tcp, uint_t *flags);
847 static boolean_t tcp_send_rst_chk(tcp_stack_t *);
848 static void	tcp_ss_rexmit(tcp_t *tcp);
849 static mblk_t	*tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp);
850 static void	tcp_process_options(tcp_t *, tcph_t *);
851 static void	tcp_rput_common(tcp_t *tcp, mblk_t *mp);
852 static void	tcp_rsrv(queue_t *q);
853 static int	tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd);
854 static int	tcp_snmp_state(tcp_t *tcp);
855 static int	tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp,
856 		    cred_t *cr);
857 static int	tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
858 		    cred_t *cr);
859 static int	tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
860 		    cred_t *cr);
861 static int	tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
862 		    cred_t *cr);
863 static int	tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
864 		    cred_t *cr);
865 static void	tcp_timer(void *arg);
866 static void	tcp_timer_callback(void *);
867 static in_port_t tcp_update_next_port(in_port_t port, const tcp_t *tcp,
868     boolean_t random);
869 static in_port_t tcp_get_next_priv_port(const tcp_t *);
870 static void	tcp_wput_sock(queue_t *q, mblk_t *mp);
871 void		tcp_wput_accept(queue_t *q, mblk_t *mp);
872 static void	tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent);
873 static void	tcp_wput_flush(tcp_t *tcp, mblk_t *mp);
874 static void	tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp);
875 static int	tcp_send(queue_t *q, tcp_t *tcp, const int mss,
876 		    const int tcp_hdr_len, const int tcp_tcp_hdr_len,
877 		    const int num_sack_blk, int *usable, uint_t *snxt,
878 		    int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
879 		    const int mdt_thres);
880 static int	tcp_multisend(queue_t *q, tcp_t *tcp, const int mss,
881 		    const int tcp_hdr_len, const int tcp_tcp_hdr_len,
882 		    const int num_sack_blk, int *usable, uint_t *snxt,
883 		    int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
884 		    const int mdt_thres);
885 static void	tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now,
886 		    int num_sack_blk);
887 static void	tcp_wsrv(queue_t *q);
888 static int	tcp_xmit_end(tcp_t *tcp);
889 static void	tcp_ack_timer(void *arg);
890 static mblk_t	*tcp_ack_mp(tcp_t *tcp);
891 static void	tcp_xmit_early_reset(char *str, mblk_t *mp,
892 		    uint32_t seq, uint32_t ack, int ctl, uint_t ip_hdr_len,
893 		    zoneid_t zoneid, tcp_stack_t *, conn_t *connp);
894 static void	tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq,
895 		    uint32_t ack, int ctl);
896 static tcp_hsp_t *tcp_hsp_lookup(ipaddr_t addr, tcp_stack_t *);
897 static tcp_hsp_t *tcp_hsp_lookup_ipv6(in6_addr_t *addr, tcp_stack_t *);
898 static int	setmaxps(queue_t *q, int maxpsz);
899 static void	tcp_set_rto(tcp_t *, time_t);
900 static boolean_t tcp_check_policy(tcp_t *, mblk_t *, ipha_t *, ip6_t *,
901 		    boolean_t, boolean_t);
902 static void	tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp,
903 		    boolean_t ipsec_mctl);
904 static mblk_t	*tcp_setsockopt_mp(int level, int cmd,
905 		    char *opt, int optlen);
906 static int	tcp_build_hdrs(queue_t *, tcp_t *);
907 static void	tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp,
908 		    uint32_t seg_seq, uint32_t seg_ack, int seg_len,
909 		    tcph_t *tcph);
910 boolean_t	tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp);
911 static mblk_t	*tcp_mdt_info_mp(mblk_t *);
912 static void	tcp_mdt_update(tcp_t *, ill_mdt_capab_t *, boolean_t);
913 static int	tcp_mdt_add_attrs(multidata_t *, const mblk_t *,
914 		    const boolean_t, const uint32_t, const uint32_t,
915 		    const uint32_t, const uint32_t, tcp_stack_t *);
916 static void	tcp_multisend_data(tcp_t *, ire_t *, const ill_t *, mblk_t *,
917 		    const uint_t, const uint_t, boolean_t *);
918 static mblk_t	*tcp_lso_info_mp(mblk_t *);
919 static void	tcp_lso_update(tcp_t *, ill_lso_capab_t *);
920 static void	tcp_send_data(tcp_t *, queue_t *, mblk_t *);
921 extern mblk_t	*tcp_timermp_alloc(int);
922 extern void	tcp_timermp_free(tcp_t *);
923 static void	tcp_timer_free(tcp_t *tcp, mblk_t *mp);
924 static void	tcp_stop_lingering(tcp_t *tcp);
925 static void	tcp_close_linger_timeout(void *arg);
926 static void	*tcp_stack_init(netstackid_t stackid, netstack_t *ns);
927 static void	tcp_stack_shutdown(netstackid_t stackid, void *arg);
928 static void	tcp_stack_fini(netstackid_t stackid, void *arg);
929 static void	*tcp_g_kstat_init(tcp_g_stat_t *);
930 static void	tcp_g_kstat_fini(kstat_t *);
931 static void	*tcp_kstat_init(netstackid_t, tcp_stack_t *);
932 static void	tcp_kstat_fini(netstackid_t, kstat_t *);
933 static void	*tcp_kstat2_init(netstackid_t, tcp_stat_t *);
934 static void	tcp_kstat2_fini(netstackid_t, kstat_t *);
935 static int	tcp_kstat_update(kstat_t *kp, int rw);
936 void		tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp);
937 static int	tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp,
938 			tcph_t *tcph, uint_t ipvers, mblk_t *idmp);
939 static int	tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha,
940 			tcph_t *tcph, mblk_t *idmp);
941 static squeue_func_t tcp_squeue_switch(int);
942 
943 static int	tcp_open(queue_t *, dev_t *, int, int, cred_t *, boolean_t);
944 static int	tcp_openv4(queue_t *, dev_t *, int, int, cred_t *);
945 static int	tcp_openv6(queue_t *, dev_t *, int, int, cred_t *);
946 static int	tcp_close(queue_t *, int);
947 static int	tcpclose_accept(queue_t *);
948 
949 static void	tcp_squeue_add(squeue_t *);
950 static boolean_t tcp_zcopy_check(tcp_t *);
951 static void	tcp_zcopy_notify(tcp_t *);
952 static mblk_t	*tcp_zcopy_disable(tcp_t *, mblk_t *);
953 static mblk_t	*tcp_zcopy_backoff(tcp_t *, mblk_t *, int);
954 static void	tcp_ire_ill_check(tcp_t *, ire_t *, ill_t *, boolean_t);
955 
956 extern void	tcp_kssl_input(tcp_t *, mblk_t *);
957 
958 void tcp_eager_kill(void *arg, mblk_t *mp, void *arg2);
959 void tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2);
960 
961 /*
962  * Routines related to the TCP_IOC_ABORT_CONN ioctl command.
963  *
964  * TCP_IOC_ABORT_CONN is a non-transparent ioctl command used for aborting
965  * TCP connections. To invoke this ioctl, a tcp_ioc_abort_conn_t structure
966  * (defined in tcp.h) needs to be filled in and passed into the kernel
967  * via an I_STR ioctl command (see streamio(7I)). The tcp_ioc_abort_conn_t
968  * structure contains the four-tuple of a TCP connection and a range of TCP
969  * states (specified by ac_start and ac_end). The use of wildcard addresses
970  * and ports is allowed. Connections with a matching four tuple and a state
971  * within the specified range will be aborted. The valid states for the
972  * ac_start and ac_end fields are in the range TCPS_SYN_SENT to TCPS_TIME_WAIT,
973  * inclusive.
974  *
975  * An application which has its connection aborted by this ioctl will receive
976  * an error that is dependent on the connection state at the time of the abort.
977  * If the connection state is < TCPS_TIME_WAIT, an application should behave as
978  * though a RST packet has been received.  If the connection state is equal to
979  * TCPS_TIME_WAIT, the 2MSL timeout will immediately be canceled by the kernel
980  * and all resources associated with the connection will be freed.
981  */
982 static mblk_t	*tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *, tcp_t *);
983 static void	tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *);
984 static void	tcp_ioctl_abort_handler(tcp_t *, mblk_t *);
985 static int	tcp_ioctl_abort(tcp_ioc_abort_conn_t *, tcp_stack_t *tcps);
986 static void	tcp_ioctl_abort_conn(queue_t *, mblk_t *);
987 static int	tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *, int, int *,
988     boolean_t, tcp_stack_t *);
989 
990 static struct module_info tcp_rinfo =  {
991 	TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER
992 };
993 
994 static struct module_info tcp_winfo =  {
995 	TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16
996 };
997 
998 /*
999  * Entry points for TCP as a device. The normal case which supports
1000  * the TCP functionality.
1001  * We have separate open functions for the /dev/tcp and /dev/tcp6 devices.
1002  */
1003 struct qinit tcp_rinitv4 = {
1004 	NULL, (pfi_t)tcp_rsrv, tcp_openv4, tcp_close, NULL, &tcp_rinfo
1005 };
1006 
1007 struct qinit tcp_rinitv6 = {
1008 	NULL, (pfi_t)tcp_rsrv, tcp_openv6, tcp_close, NULL, &tcp_rinfo
1009 };
1010 
1011 struct qinit tcp_winit = {
1012 	(pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
1013 };
1014 
1015 /* Initial entry point for TCP in socket mode. */
1016 struct qinit tcp_sock_winit = {
1017 	(pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
1018 };
1019 
1020 /*
1021  * Entry points for TCP as a acceptor STREAM opened by sockfs when doing
1022  * an accept. Avoid allocating data structures since eager has already
1023  * been created.
1024  */
1025 struct qinit tcp_acceptor_rinit = {
1026 	NULL, (pfi_t)tcp_rsrv, NULL, tcpclose_accept, NULL, &tcp_winfo
1027 };
1028 
1029 struct qinit tcp_acceptor_winit = {
1030 	(pfi_t)tcp_wput_accept, NULL, NULL, NULL, NULL, &tcp_winfo
1031 };
1032 
1033 /*
1034  * Entry points for TCP loopback (read side only)
1035  * The open routine is only used for reopens, thus no need to
1036  * have a separate one for tcp_openv6.
1037  */
1038 struct qinit tcp_loopback_rinit = {
1039 	(pfi_t)0, (pfi_t)tcp_rsrv, tcp_openv4, tcp_close, (pfi_t)0,
1040 	&tcp_rinfo, NULL, tcp_fuse_rrw, tcp_fuse_rinfop, STRUIOT_STANDARD
1041 };
1042 
1043 /* For AF_INET aka /dev/tcp */
1044 struct streamtab tcpinfov4 = {
1045 	&tcp_rinitv4, &tcp_winit
1046 };
1047 
1048 /* For AF_INET6 aka /dev/tcp6 */
1049 struct streamtab tcpinfov6 = {
1050 	&tcp_rinitv6, &tcp_winit
1051 };
1052 
1053 /*
1054  * Have to ensure that tcp_g_q_close is not done by an
1055  * interrupt thread.
1056  */
1057 static taskq_t *tcp_taskq;
1058 
1059 /* Setable only in /etc/system. Move to ndd? */
1060 boolean_t tcp_icmp_source_quench = B_FALSE;
1061 
1062 /*
1063  * Following assumes TPI alignment requirements stay along 32 bit
1064  * boundaries
1065  */
1066 #define	ROUNDUP32(x) \
1067 	(((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1))
1068 
1069 /* Template for response to info request. */
1070 static struct T_info_ack tcp_g_t_info_ack = {
1071 	T_INFO_ACK,		/* PRIM_type */
1072 	0,			/* TSDU_size */
1073 	T_INFINITE,		/* ETSDU_size */
1074 	T_INVALID,		/* CDATA_size */
1075 	T_INVALID,		/* DDATA_size */
1076 	sizeof (sin_t),		/* ADDR_size */
1077 	0,			/* OPT_size - not initialized here */
1078 	TIDUSZ,			/* TIDU_size */
1079 	T_COTS_ORD,		/* SERV_type */
1080 	TCPS_IDLE,		/* CURRENT_state */
1081 	(XPG4_1|EXPINLINE)	/* PROVIDER_flag */
1082 };
1083 
1084 static struct T_info_ack tcp_g_t_info_ack_v6 = {
1085 	T_INFO_ACK,		/* PRIM_type */
1086 	0,			/* TSDU_size */
1087 	T_INFINITE,		/* ETSDU_size */
1088 	T_INVALID,		/* CDATA_size */
1089 	T_INVALID,		/* DDATA_size */
1090 	sizeof (sin6_t),	/* ADDR_size */
1091 	0,			/* OPT_size - not initialized here */
1092 	TIDUSZ,		/* TIDU_size */
1093 	T_COTS_ORD,		/* SERV_type */
1094 	TCPS_IDLE,		/* CURRENT_state */
1095 	(XPG4_1|EXPINLINE)	/* PROVIDER_flag */
1096 };
1097 
1098 #define	MS	1L
1099 #define	SECONDS	(1000 * MS)
1100 #define	MINUTES	(60 * SECONDS)
1101 #define	HOURS	(60 * MINUTES)
1102 #define	DAYS	(24 * HOURS)
1103 
1104 #define	PARAM_MAX (~(uint32_t)0)
1105 
1106 /* Max size IP datagram is 64k - 1 */
1107 #define	TCP_MSS_MAX_IPV4 (IP_MAXPACKET - (sizeof (ipha_t) + sizeof (tcph_t)))
1108 #define	TCP_MSS_MAX_IPV6 (IP_MAXPACKET - (sizeof (ip6_t) + sizeof (tcph_t)))
1109 /* Max of the above */
1110 #define	TCP_MSS_MAX	TCP_MSS_MAX_IPV4
1111 
1112 /* Largest TCP port number */
1113 #define	TCP_MAX_PORT	(64 * 1024 - 1)
1114 
1115 /*
1116  * tcp_wroff_xtra is the extra space in front of TCP/IP header for link
1117  * layer header.  It has to be a multiple of 4.
1118  */
1119 static tcpparam_t lcl_tcp_wroff_xtra_param = { 0, 256, 32, "tcp_wroff_xtra" };
1120 #define	tcps_wroff_xtra	tcps_wroff_xtra_param->tcp_param_val
1121 
1122 /*
1123  * All of these are alterable, within the min/max values given, at run time.
1124  * Note that the default value of "tcp_time_wait_interval" is four minutes,
1125  * per the TCP spec.
1126  */
1127 /* BEGIN CSTYLED */
1128 static tcpparam_t	lcl_tcp_param_arr[] = {
1129  /*min		max		value		name */
1130  { 1*SECONDS,	10*MINUTES,	1*MINUTES,	"tcp_time_wait_interval"},
1131  { 1,		PARAM_MAX,	128,		"tcp_conn_req_max_q" },
1132  { 0,		PARAM_MAX,	1024,		"tcp_conn_req_max_q0" },
1133  { 1,		1024,		1,		"tcp_conn_req_min" },
1134  { 0*MS,	20*SECONDS,	0*MS,		"tcp_conn_grace_period" },
1135  { 128,		(1<<30),	1024*1024,	"tcp_cwnd_max" },
1136  { 0,		10,		0,		"tcp_debug" },
1137  { 1024,	(32*1024),	1024,		"tcp_smallest_nonpriv_port"},
1138  { 1*SECONDS,	PARAM_MAX,	3*MINUTES,	"tcp_ip_abort_cinterval"},
1139  { 1*SECONDS,	PARAM_MAX,	3*MINUTES,	"tcp_ip_abort_linterval"},
1140  { 500*MS,	PARAM_MAX,	8*MINUTES,	"tcp_ip_abort_interval"},
1141  { 1*SECONDS,	PARAM_MAX,	10*SECONDS,	"tcp_ip_notify_cinterval"},
1142  { 500*MS,	PARAM_MAX,	10*SECONDS,	"tcp_ip_notify_interval"},
1143  { 1,		255,		64,		"tcp_ipv4_ttl"},
1144  { 10*SECONDS,	10*DAYS,	2*HOURS,	"tcp_keepalive_interval"},
1145  { 0,		100,		10,		"tcp_maxpsz_multiplier" },
1146  { 1,		TCP_MSS_MAX_IPV4, 536,		"tcp_mss_def_ipv4"},
1147  { 1,		TCP_MSS_MAX_IPV4, TCP_MSS_MAX_IPV4, "tcp_mss_max_ipv4"},
1148  { 1,		TCP_MSS_MAX,	108,		"tcp_mss_min"},
1149  { 1,		(64*1024)-1,	(4*1024)-1,	"tcp_naglim_def"},
1150  { 1*MS,	20*SECONDS,	3*SECONDS,	"tcp_rexmit_interval_initial"},
1151  { 1*MS,	2*HOURS,	60*SECONDS,	"tcp_rexmit_interval_max"},
1152  { 1*MS,	2*HOURS,	400*MS,		"tcp_rexmit_interval_min"},
1153  { 1*MS,	1*MINUTES,	100*MS,		"tcp_deferred_ack_interval" },
1154  { 0,		16,		0,		"tcp_snd_lowat_fraction" },
1155  { 0,		128000,		0,		"tcp_sth_rcv_hiwat" },
1156  { 0,		128000,		0,		"tcp_sth_rcv_lowat" },
1157  { 1,		10000,		3,		"tcp_dupack_fast_retransmit" },
1158  { 0,		1,		0,		"tcp_ignore_path_mtu" },
1159  { 1024,	TCP_MAX_PORT,	32*1024,	"tcp_smallest_anon_port"},
1160  { 1024,	TCP_MAX_PORT,	TCP_MAX_PORT,	"tcp_largest_anon_port"},
1161  { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_HIWATER,"tcp_xmit_hiwat"},
1162  { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_LOWATER,"tcp_xmit_lowat"},
1163  { TCP_RECV_LOWATER, (1<<30), TCP_RECV_HIWATER,"tcp_recv_hiwat"},
1164  { 1,		65536,		4,		"tcp_recv_hiwat_minmss"},
1165  { 1*SECONDS,	PARAM_MAX,	675*SECONDS,	"tcp_fin_wait_2_flush_interval"},
1166  { 8192,	(1<<30),	1024*1024,	"tcp_max_buf"},
1167 /*
1168  * Question:  What default value should I set for tcp_strong_iss?
1169  */
1170  { 0,		2,		1,		"tcp_strong_iss"},
1171  { 0,		65536,		20,		"tcp_rtt_updates"},
1172  { 0,		1,		1,		"tcp_wscale_always"},
1173  { 0,		1,		0,		"tcp_tstamp_always"},
1174  { 0,		1,		1,		"tcp_tstamp_if_wscale"},
1175  { 0*MS,	2*HOURS,	0*MS,		"tcp_rexmit_interval_extra"},
1176  { 0,		16,		2,		"tcp_deferred_acks_max"},
1177  { 1,		16384,		4,		"tcp_slow_start_after_idle"},
1178  { 1,		4,		4,		"tcp_slow_start_initial"},
1179  { 0,		2,		2,		"tcp_sack_permitted"},
1180  { 0,		1,		1,		"tcp_compression_enabled"},
1181  { 0,		IPV6_MAX_HOPS,	IPV6_DEFAULT_HOPS,	"tcp_ipv6_hoplimit"},
1182  { 1,		TCP_MSS_MAX_IPV6, 1220,		"tcp_mss_def_ipv6"},
1183  { 1,		TCP_MSS_MAX_IPV6, TCP_MSS_MAX_IPV6, "tcp_mss_max_ipv6"},
1184  { 0,		1,		0,		"tcp_rev_src_routes"},
1185  { 10*MS,	500*MS,		50*MS,		"tcp_local_dack_interval"},
1186  { 100*MS,	60*SECONDS,	1*SECONDS,	"tcp_ndd_get_info_interval"},
1187  { 0,		16,		8,		"tcp_local_dacks_max"},
1188  { 0,		2,		1,		"tcp_ecn_permitted"},
1189  { 0,		1,		1,		"tcp_rst_sent_rate_enabled"},
1190  { 0,		PARAM_MAX,	40,		"tcp_rst_sent_rate"},
1191  { 0,		100*MS,		50*MS,		"tcp_push_timer_interval"},
1192  { 0,		1,		0,		"tcp_use_smss_as_mss_opt"},
1193  { 0,		PARAM_MAX,	8*MINUTES,	"tcp_keepalive_abort_interval"},
1194 };
1195 /* END CSTYLED */
1196 
1197 /*
1198  * tcp_mdt_hdr_{head,tail}_min are the leading and trailing spaces of
1199  * each header fragment in the header buffer.  Each parameter value has
1200  * to be a multiple of 4 (32-bit aligned).
1201  */
1202 static tcpparam_t lcl_tcp_mdt_head_param =
1203 	{ 32, 256, 32, "tcp_mdt_hdr_head_min" };
1204 static tcpparam_t lcl_tcp_mdt_tail_param =
1205 	{ 0,  256, 32, "tcp_mdt_hdr_tail_min" };
1206 #define	tcps_mdt_hdr_head_min	tcps_mdt_head_param->tcp_param_val
1207 #define	tcps_mdt_hdr_tail_min	tcps_mdt_tail_param->tcp_param_val
1208 
1209 /*
1210  * tcp_mdt_max_pbufs is the upper limit value that tcp uses to figure out
1211  * the maximum number of payload buffers associated per Multidata.
1212  */
1213 static tcpparam_t lcl_tcp_mdt_max_pbufs_param =
1214 	{ 1, MULTIDATA_MAX_PBUFS, MULTIDATA_MAX_PBUFS, "tcp_mdt_max_pbufs" };
1215 #define	tcps_mdt_max_pbufs	tcps_mdt_max_pbufs_param->tcp_param_val
1216 
1217 /* Round up the value to the nearest mss. */
1218 #define	MSS_ROUNDUP(value, mss)		((((value) - 1) / (mss) + 1) * (mss))
1219 
1220 /*
1221  * Set ECN capable transport (ECT) code point in IP header.
1222  *
1223  * Note that there are 2 ECT code points '01' and '10', which are called
1224  * ECT(1) and ECT(0) respectively.  Here we follow the original ECT code
1225  * point ECT(0) for TCP as described in RFC 2481.
1226  */
1227 #define	SET_ECT(tcp, iph) \
1228 	if ((tcp)->tcp_ipversion == IPV4_VERSION) { \
1229 		/* We need to clear the code point first. */ \
1230 		((ipha_t *)(iph))->ipha_type_of_service &= 0xFC; \
1231 		((ipha_t *)(iph))->ipha_type_of_service |= IPH_ECN_ECT0; \
1232 	} else { \
1233 		((ip6_t *)(iph))->ip6_vcf &= htonl(0xFFCFFFFF); \
1234 		((ip6_t *)(iph))->ip6_vcf |= htonl(IPH_ECN_ECT0 << 20); \
1235 	}
1236 
1237 /*
1238  * The format argument to pass to tcp_display().
1239  * DISP_PORT_ONLY means that the returned string has only port info.
1240  * DISP_ADDR_AND_PORT means that the returned string also contains the
1241  * remote and local IP address.
1242  */
1243 #define	DISP_PORT_ONLY		1
1244 #define	DISP_ADDR_AND_PORT	2
1245 
1246 #define	NDD_TOO_QUICK_MSG \
1247 	"ndd get info rate too high for non-privileged users, try again " \
1248 	"later.\n"
1249 #define	NDD_OUT_OF_BUF_MSG	"<< Out of buffer >>\n"
1250 
1251 #define	IS_VMLOANED_MBLK(mp) \
1252 	(((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0)
1253 
1254 
1255 /* Enable or disable b_cont M_MULTIDATA chaining for MDT. */
1256 boolean_t tcp_mdt_chain = B_TRUE;
1257 
1258 /*
1259  * MDT threshold in the form of effective send MSS multiplier; we take
1260  * the MDT path if the amount of unsent data exceeds the threshold value
1261  * (default threshold is 1*SMSS).
1262  */
1263 uint_t tcp_mdt_smss_threshold = 1;
1264 
1265 uint32_t do_tcpzcopy = 1;		/* 0: disable, 1: enable, 2: force */
1266 
1267 /*
1268  * Forces all connections to obey the value of the tcps_maxpsz_multiplier
1269  * tunable settable via NDD.  Otherwise, the per-connection behavior is
1270  * determined dynamically during tcp_adapt_ire(), which is the default.
1271  */
1272 boolean_t tcp_static_maxpsz = B_FALSE;
1273 
1274 /* Setable in /etc/system */
1275 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */
1276 uint32_t tcp_random_anon_port = 1;
1277 
1278 /*
1279  * To reach to an eager in Q0 which can be dropped due to an incoming
1280  * new SYN request when Q0 is full, a new doubly linked list is
1281  * introduced. This list allows to select an eager from Q0 in O(1) time.
1282  * This is needed to avoid spending too much time walking through the
1283  * long list of eagers in Q0 when tcp_drop_q0() is called. Each member of
1284  * this new list has to be a member of Q0.
1285  * This list is headed by listener's tcp_t. When the list is empty,
1286  * both the pointers - tcp_eager_next_drop_q0 and tcp_eager_prev_drop_q0,
1287  * of listener's tcp_t point to listener's tcp_t itself.
1288  *
1289  * Given an eager in Q0 and a listener, MAKE_DROPPABLE() puts the eager
1290  * in the list. MAKE_UNDROPPABLE() takes the eager out of the list.
1291  * These macros do not affect the eager's membership to Q0.
1292  */
1293 
1294 
1295 #define	MAKE_DROPPABLE(listener, eager)					\
1296 	if ((eager)->tcp_eager_next_drop_q0 == NULL) {			\
1297 		(listener)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0\
1298 		    = (eager);						\
1299 		(eager)->tcp_eager_prev_drop_q0 = (listener);		\
1300 		(eager)->tcp_eager_next_drop_q0 =			\
1301 		    (listener)->tcp_eager_next_drop_q0;			\
1302 		(listener)->tcp_eager_next_drop_q0 = (eager);		\
1303 	}
1304 
1305 #define	MAKE_UNDROPPABLE(eager)						\
1306 	if ((eager)->tcp_eager_next_drop_q0 != NULL) {			\
1307 		(eager)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0	\
1308 		    = (eager)->tcp_eager_prev_drop_q0;			\
1309 		(eager)->tcp_eager_prev_drop_q0->tcp_eager_next_drop_q0	\
1310 		    = (eager)->tcp_eager_next_drop_q0;			\
1311 		(eager)->tcp_eager_prev_drop_q0 = NULL;			\
1312 		(eager)->tcp_eager_next_drop_q0 = NULL;			\
1313 	}
1314 
1315 /*
1316  * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more
1317  * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent
1318  * data, TCP will not respond with an ACK.  RFC 793 requires that
1319  * TCP responds with an ACK for such a bogus ACK.  By not following
1320  * the RFC, we prevent TCP from getting into an ACK storm if somehow
1321  * an attacker successfully spoofs an acceptable segment to our
1322  * peer; or when our peer is "confused."
1323  */
1324 uint32_t tcp_drop_ack_unsent_cnt = 10;
1325 
1326 /*
1327  * Hook functions to enable cluster networking
1328  * On non-clustered systems these vectors must always be NULL.
1329  */
1330 
1331 void (*cl_inet_listen)(uint8_t protocol, sa_family_t addr_family,
1332 			    uint8_t *laddrp, in_port_t lport) = NULL;
1333 void (*cl_inet_unlisten)(uint8_t protocol, sa_family_t addr_family,
1334 			    uint8_t *laddrp, in_port_t lport) = NULL;
1335 void (*cl_inet_connect)(uint8_t protocol, sa_family_t addr_family,
1336 			    uint8_t *laddrp, in_port_t lport,
1337 			    uint8_t *faddrp, in_port_t fport) = NULL;
1338 void (*cl_inet_disconnect)(uint8_t protocol, sa_family_t addr_family,
1339 			    uint8_t *laddrp, in_port_t lport,
1340 			    uint8_t *faddrp, in_port_t fport) = NULL;
1341 
1342 /*
1343  * The following are defined in ip.c
1344  */
1345 extern int (*cl_inet_isclusterwide)(uint8_t protocol, sa_family_t addr_family,
1346 				uint8_t *laddrp);
1347 extern uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family,
1348 				uint8_t *laddrp, uint8_t *faddrp);
1349 
1350 #define	CL_INET_CONNECT(tcp)		{			\
1351 	if (cl_inet_connect != NULL) {				\
1352 		/*						\
1353 		 * Running in cluster mode - register active connection	\
1354 		 * information						\
1355 		 */							\
1356 		if ((tcp)->tcp_ipversion == IPV4_VERSION) {		\
1357 			if ((tcp)->tcp_ipha->ipha_src != 0) {		\
1358 				(*cl_inet_connect)(IPPROTO_TCP, AF_INET,\
1359 				    (uint8_t *)(&((tcp)->tcp_ipha->ipha_src)),\
1360 				    (in_port_t)(tcp)->tcp_lport,	\
1361 				    (uint8_t *)(&((tcp)->tcp_ipha->ipha_dst)),\
1362 				    (in_port_t)(tcp)->tcp_fport);	\
1363 			}						\
1364 		} else {						\
1365 			if (!IN6_IS_ADDR_UNSPECIFIED(			\
1366 			    &(tcp)->tcp_ip6h->ip6_src)) {\
1367 				(*cl_inet_connect)(IPPROTO_TCP, AF_INET6,\
1368 				    (uint8_t *)(&((tcp)->tcp_ip6h->ip6_src)),\
1369 				    (in_port_t)(tcp)->tcp_lport,	\
1370 				    (uint8_t *)(&((tcp)->tcp_ip6h->ip6_dst)),\
1371 				    (in_port_t)(tcp)->tcp_fport);	\
1372 			}						\
1373 		}							\
1374 	}								\
1375 }
1376 
1377 #define	CL_INET_DISCONNECT(tcp)	{				\
1378 	if (cl_inet_disconnect != NULL) {				\
1379 		/*							\
1380 		 * Running in cluster mode - deregister active		\
1381 		 * connection information				\
1382 		 */							\
1383 		if ((tcp)->tcp_ipversion == IPV4_VERSION) {		\
1384 			if ((tcp)->tcp_ip_src != 0) {			\
1385 				(*cl_inet_disconnect)(IPPROTO_TCP,	\
1386 				    AF_INET,				\
1387 				    (uint8_t *)(&((tcp)->tcp_ip_src)),\
1388 				    (in_port_t)(tcp)->tcp_lport,	\
1389 				    (uint8_t *)				\
1390 				    (&((tcp)->tcp_ipha->ipha_dst)),\
1391 				    (in_port_t)(tcp)->tcp_fport);	\
1392 			}						\
1393 		} else {						\
1394 			if (!IN6_IS_ADDR_UNSPECIFIED(			\
1395 			    &(tcp)->tcp_ip_src_v6)) {			\
1396 				(*cl_inet_disconnect)(IPPROTO_TCP, AF_INET6,\
1397 				    (uint8_t *)(&((tcp)->tcp_ip_src_v6)),\
1398 				    (in_port_t)(tcp)->tcp_lport,	\
1399 				    (uint8_t *)				\
1400 				    (&((tcp)->tcp_ip6h->ip6_dst)),\
1401 				    (in_port_t)(tcp)->tcp_fport);	\
1402 			}						\
1403 		}							\
1404 	}								\
1405 }
1406 
1407 /*
1408  * Cluster networking hook for traversing current connection list.
1409  * This routine is used to extract the current list of live connections
1410  * which must continue to to be dispatched to this node.
1411  */
1412 int cl_tcp_walk_list(int (*callback)(cl_tcp_info_t *, void *), void *arg);
1413 
1414 static int cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *),
1415     void *arg, tcp_stack_t *tcps);
1416 
1417 #define	DTRACE_IP_FASTPATH(mp, iph, ill, ipha, ip6h) 			\
1418 	DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, void_ip_t *,	\
1419 	    iph, __dtrace_ipsr_ill_t *, ill, ipha_t *, ipha,		\
1420 	    ip6_t *, ip6h, int, 0);
1421 
1422 /*
1423  * Figure out the value of window scale opton.  Note that the rwnd is
1424  * ASSUMED to be rounded up to the nearest MSS before the calculation.
1425  * We cannot find the scale value and then do a round up of tcp_rwnd
1426  * because the scale value may not be correct after that.
1427  *
1428  * Set the compiler flag to make this function inline.
1429  */
1430 static void
1431 tcp_set_ws_value(tcp_t *tcp)
1432 {
1433 	int i;
1434 	uint32_t rwnd = tcp->tcp_rwnd;
1435 
1436 	for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT;
1437 	    i++, rwnd >>= 1)
1438 		;
1439 	tcp->tcp_rcv_ws = i;
1440 }
1441 
1442 /*
1443  * Remove a connection from the list of detached TIME_WAIT connections.
1444  * It returns B_FALSE if it can't remove the connection from the list
1445  * as the connection has already been removed from the list due to an
1446  * earlier call to tcp_time_wait_remove(); otherwise it returns B_TRUE.
1447  */
1448 static boolean_t
1449 tcp_time_wait_remove(tcp_t *tcp, tcp_squeue_priv_t *tcp_time_wait)
1450 {
1451 	boolean_t	locked = B_FALSE;
1452 
1453 	if (tcp_time_wait == NULL) {
1454 		tcp_time_wait = *((tcp_squeue_priv_t **)
1455 		    squeue_getprivate(tcp->tcp_connp->conn_sqp, SQPRIVATE_TCP));
1456 		mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1457 		locked = B_TRUE;
1458 	} else {
1459 		ASSERT(MUTEX_HELD(&tcp_time_wait->tcp_time_wait_lock));
1460 	}
1461 
1462 	if (tcp->tcp_time_wait_expire == 0) {
1463 		ASSERT(tcp->tcp_time_wait_next == NULL);
1464 		ASSERT(tcp->tcp_time_wait_prev == NULL);
1465 		if (locked)
1466 			mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1467 		return (B_FALSE);
1468 	}
1469 	ASSERT(TCP_IS_DETACHED(tcp));
1470 	ASSERT(tcp->tcp_state == TCPS_TIME_WAIT);
1471 
1472 	if (tcp == tcp_time_wait->tcp_time_wait_head) {
1473 		ASSERT(tcp->tcp_time_wait_prev == NULL);
1474 		tcp_time_wait->tcp_time_wait_head = tcp->tcp_time_wait_next;
1475 		if (tcp_time_wait->tcp_time_wait_head != NULL) {
1476 			tcp_time_wait->tcp_time_wait_head->tcp_time_wait_prev =
1477 			    NULL;
1478 		} else {
1479 			tcp_time_wait->tcp_time_wait_tail = NULL;
1480 		}
1481 	} else if (tcp == tcp_time_wait->tcp_time_wait_tail) {
1482 		ASSERT(tcp != tcp_time_wait->tcp_time_wait_head);
1483 		ASSERT(tcp->tcp_time_wait_next == NULL);
1484 		tcp_time_wait->tcp_time_wait_tail = tcp->tcp_time_wait_prev;
1485 		ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL);
1486 		tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = NULL;
1487 	} else {
1488 		ASSERT(tcp->tcp_time_wait_prev->tcp_time_wait_next == tcp);
1489 		ASSERT(tcp->tcp_time_wait_next->tcp_time_wait_prev == tcp);
1490 		tcp->tcp_time_wait_prev->tcp_time_wait_next =
1491 		    tcp->tcp_time_wait_next;
1492 		tcp->tcp_time_wait_next->tcp_time_wait_prev =
1493 		    tcp->tcp_time_wait_prev;
1494 	}
1495 	tcp->tcp_time_wait_next = NULL;
1496 	tcp->tcp_time_wait_prev = NULL;
1497 	tcp->tcp_time_wait_expire = 0;
1498 
1499 	if (locked)
1500 		mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1501 	return (B_TRUE);
1502 }
1503 
1504 /*
1505  * Add a connection to the list of detached TIME_WAIT connections
1506  * and set its time to expire.
1507  */
1508 static void
1509 tcp_time_wait_append(tcp_t *tcp)
1510 {
1511 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1512 	tcp_squeue_priv_t *tcp_time_wait =
1513 	    *((tcp_squeue_priv_t **)squeue_getprivate(tcp->tcp_connp->conn_sqp,
1514 	    SQPRIVATE_TCP));
1515 
1516 	tcp_timers_stop(tcp);
1517 
1518 	/* Freed above */
1519 	ASSERT(tcp->tcp_timer_tid == 0);
1520 	ASSERT(tcp->tcp_ack_tid == 0);
1521 
1522 	/* must have happened at the time of detaching the tcp */
1523 	ASSERT(tcp->tcp_ptpahn == NULL);
1524 	ASSERT(tcp->tcp_flow_stopped == 0);
1525 	ASSERT(tcp->tcp_time_wait_next == NULL);
1526 	ASSERT(tcp->tcp_time_wait_prev == NULL);
1527 	ASSERT(tcp->tcp_time_wait_expire == NULL);
1528 	ASSERT(tcp->tcp_listener == NULL);
1529 
1530 	tcp->tcp_time_wait_expire = ddi_get_lbolt();
1531 	/*
1532 	 * The value computed below in tcp->tcp_time_wait_expire may
1533 	 * appear negative or wrap around. That is ok since our
1534 	 * interest is only in the difference between the current lbolt
1535 	 * value and tcp->tcp_time_wait_expire. But the value should not
1536 	 * be zero, since it means the tcp is not in the TIME_WAIT list.
1537 	 * The corresponding comparison in tcp_time_wait_collector() uses
1538 	 * modular arithmetic.
1539 	 */
1540 	tcp->tcp_time_wait_expire +=
1541 	    drv_usectohz(tcps->tcps_time_wait_interval * 1000);
1542 	if (tcp->tcp_time_wait_expire == 0)
1543 		tcp->tcp_time_wait_expire = 1;
1544 
1545 	ASSERT(TCP_IS_DETACHED(tcp));
1546 	ASSERT(tcp->tcp_state == TCPS_TIME_WAIT);
1547 	ASSERT(tcp->tcp_time_wait_next == NULL);
1548 	ASSERT(tcp->tcp_time_wait_prev == NULL);
1549 	TCP_DBGSTAT(tcps, tcp_time_wait);
1550 
1551 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1552 	if (tcp_time_wait->tcp_time_wait_head == NULL) {
1553 		ASSERT(tcp_time_wait->tcp_time_wait_tail == NULL);
1554 		tcp_time_wait->tcp_time_wait_head = tcp;
1555 	} else {
1556 		ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL);
1557 		ASSERT(tcp_time_wait->tcp_time_wait_tail->tcp_state ==
1558 		    TCPS_TIME_WAIT);
1559 		tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = tcp;
1560 		tcp->tcp_time_wait_prev = tcp_time_wait->tcp_time_wait_tail;
1561 	}
1562 	tcp_time_wait->tcp_time_wait_tail = tcp;
1563 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1564 }
1565 
1566 /* ARGSUSED */
1567 void
1568 tcp_timewait_output(void *arg, mblk_t *mp, void *arg2)
1569 {
1570 	conn_t	*connp = (conn_t *)arg;
1571 	tcp_t	*tcp = connp->conn_tcp;
1572 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1573 
1574 	ASSERT(tcp != NULL);
1575 	if (tcp->tcp_state == TCPS_CLOSED) {
1576 		return;
1577 	}
1578 
1579 	ASSERT((tcp->tcp_family == AF_INET &&
1580 	    tcp->tcp_ipversion == IPV4_VERSION) ||
1581 	    (tcp->tcp_family == AF_INET6 &&
1582 	    (tcp->tcp_ipversion == IPV4_VERSION ||
1583 	    tcp->tcp_ipversion == IPV6_VERSION)));
1584 	ASSERT(!tcp->tcp_listener);
1585 
1586 	TCP_STAT(tcps, tcp_time_wait_reap);
1587 	ASSERT(TCP_IS_DETACHED(tcp));
1588 
1589 	/*
1590 	 * Because they have no upstream client to rebind or tcp_close()
1591 	 * them later, we axe the connection here and now.
1592 	 */
1593 	tcp_close_detached(tcp);
1594 }
1595 
1596 /*
1597  * Remove cached/latched IPsec references.
1598  */
1599 void
1600 tcp_ipsec_cleanup(tcp_t *tcp)
1601 {
1602 	conn_t		*connp = tcp->tcp_connp;
1603 
1604 	ASSERT(connp->conn_flags & IPCL_TCPCONN);
1605 
1606 	if (connp->conn_latch != NULL) {
1607 		IPLATCH_REFRELE(connp->conn_latch,
1608 		    connp->conn_netstack);
1609 		connp->conn_latch = NULL;
1610 	}
1611 	if (connp->conn_policy != NULL) {
1612 		IPPH_REFRELE(connp->conn_policy, connp->conn_netstack);
1613 		connp->conn_policy = NULL;
1614 	}
1615 }
1616 
1617 /*
1618  * Cleaup before placing on free list.
1619  * Disassociate from the netstack/tcp_stack_t since the freelist
1620  * is per squeue and not per netstack.
1621  */
1622 void
1623 tcp_cleanup(tcp_t *tcp)
1624 {
1625 	mblk_t		*mp;
1626 	char		*tcp_iphc;
1627 	int		tcp_iphc_len;
1628 	int		tcp_hdr_grown;
1629 	tcp_sack_info_t	*tcp_sack_info;
1630 	conn_t		*connp = tcp->tcp_connp;
1631 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1632 	netstack_t	*ns = tcps->tcps_netstack;
1633 	mblk_t		*tcp_rsrv_mp;
1634 
1635 	tcp_bind_hash_remove(tcp);
1636 
1637 	/* Cleanup that which needs the netstack first */
1638 	tcp_ipsec_cleanup(tcp);
1639 
1640 	tcp_free(tcp);
1641 
1642 	/* Release any SSL context */
1643 	if (tcp->tcp_kssl_ent != NULL) {
1644 		kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY);
1645 		tcp->tcp_kssl_ent = NULL;
1646 	}
1647 
1648 	if (tcp->tcp_kssl_ctx != NULL) {
1649 		kssl_release_ctx(tcp->tcp_kssl_ctx);
1650 		tcp->tcp_kssl_ctx = NULL;
1651 	}
1652 	tcp->tcp_kssl_pending = B_FALSE;
1653 
1654 	conn_delete_ire(connp, NULL);
1655 
1656 	/*
1657 	 * Since we will bzero the entire structure, we need to
1658 	 * remove it and reinsert it in global hash list. We
1659 	 * know the walkers can't get to this conn because we
1660 	 * had set CONDEMNED flag earlier and checked reference
1661 	 * under conn_lock so walker won't pick it and when we
1662 	 * go the ipcl_globalhash_remove() below, no walker
1663 	 * can get to it.
1664 	 */
1665 	ipcl_globalhash_remove(connp);
1666 
1667 	/*
1668 	 * Now it is safe to decrement the reference counts.
1669 	 * This might be the last reference on the netstack and TCPS
1670 	 * in which case it will cause the tcp_g_q_close and
1671 	 * the freeing of the IP Instance.
1672 	 */
1673 	connp->conn_netstack = NULL;
1674 	netstack_rele(ns);
1675 	ASSERT(tcps != NULL);
1676 	tcp->tcp_tcps = NULL;
1677 	TCPS_REFRELE(tcps);
1678 
1679 	/* Save some state */
1680 	mp = tcp->tcp_timercache;
1681 
1682 	tcp_sack_info = tcp->tcp_sack_info;
1683 	tcp_iphc = tcp->tcp_iphc;
1684 	tcp_iphc_len = tcp->tcp_iphc_len;
1685 	tcp_hdr_grown = tcp->tcp_hdr_grown;
1686 	tcp_rsrv_mp = tcp->tcp_rsrv_mp;
1687 
1688 	if (connp->conn_cred != NULL) {
1689 		crfree(connp->conn_cred);
1690 		connp->conn_cred = NULL;
1691 	}
1692 	if (connp->conn_peercred != NULL) {
1693 		crfree(connp->conn_peercred);
1694 		connp->conn_peercred = NULL;
1695 	}
1696 	ipcl_conn_cleanup(connp);
1697 	connp->conn_flags = IPCL_TCPCONN;
1698 	bzero(tcp, sizeof (tcp_t));
1699 
1700 	/* restore the state */
1701 	tcp->tcp_timercache = mp;
1702 
1703 	tcp->tcp_sack_info = tcp_sack_info;
1704 	tcp->tcp_iphc = tcp_iphc;
1705 	tcp->tcp_iphc_len = tcp_iphc_len;
1706 	tcp->tcp_hdr_grown = tcp_hdr_grown;
1707 	tcp->tcp_rsrv_mp = tcp_rsrv_mp;
1708 
1709 	tcp->tcp_connp = connp;
1710 
1711 	ASSERT(connp->conn_tcp == tcp);
1712 	ASSERT(connp->conn_flags & IPCL_TCPCONN);
1713 	connp->conn_state_flags = CONN_INCIPIENT;
1714 	ASSERT(connp->conn_ulp == IPPROTO_TCP);
1715 	ASSERT(connp->conn_ref == 1);
1716 }
1717 
1718 /*
1719  * Blows away all tcps whose TIME_WAIT has expired. List traversal
1720  * is done forwards from the head.
1721  * This walks all stack instances since
1722  * tcp_time_wait remains global across all stacks.
1723  */
1724 /* ARGSUSED */
1725 void
1726 tcp_time_wait_collector(void *arg)
1727 {
1728 	tcp_t *tcp;
1729 	clock_t now;
1730 	mblk_t *mp;
1731 	conn_t *connp;
1732 	kmutex_t *lock;
1733 	boolean_t removed;
1734 
1735 	squeue_t *sqp = (squeue_t *)arg;
1736 	tcp_squeue_priv_t *tcp_time_wait =
1737 	    *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP));
1738 
1739 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1740 	tcp_time_wait->tcp_time_wait_tid = 0;
1741 
1742 	if (tcp_time_wait->tcp_free_list != NULL &&
1743 	    tcp_time_wait->tcp_free_list->tcp_in_free_list == B_TRUE) {
1744 		TCP_G_STAT(tcp_freelist_cleanup);
1745 		while ((tcp = tcp_time_wait->tcp_free_list) != NULL) {
1746 			tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next;
1747 			tcp->tcp_time_wait_next = NULL;
1748 			tcp_time_wait->tcp_free_list_cnt--;
1749 			ASSERT(tcp->tcp_tcps == NULL);
1750 			CONN_DEC_REF(tcp->tcp_connp);
1751 		}
1752 		ASSERT(tcp_time_wait->tcp_free_list_cnt == 0);
1753 	}
1754 
1755 	/*
1756 	 * In order to reap time waits reliably, we should use a
1757 	 * source of time that is not adjustable by the user -- hence
1758 	 * the call to ddi_get_lbolt().
1759 	 */
1760 	now = ddi_get_lbolt();
1761 	while ((tcp = tcp_time_wait->tcp_time_wait_head) != NULL) {
1762 		/*
1763 		 * Compare times using modular arithmetic, since
1764 		 * lbolt can wrapover.
1765 		 */
1766 		if ((now - tcp->tcp_time_wait_expire) < 0) {
1767 			break;
1768 		}
1769 
1770 		removed = tcp_time_wait_remove(tcp, tcp_time_wait);
1771 		ASSERT(removed);
1772 
1773 		connp = tcp->tcp_connp;
1774 		ASSERT(connp->conn_fanout != NULL);
1775 		lock = &connp->conn_fanout->connf_lock;
1776 		/*
1777 		 * This is essentially a TW reclaim fast path optimization for
1778 		 * performance where the timewait collector checks under the
1779 		 * fanout lock (so that no one else can get access to the
1780 		 * conn_t) that the refcnt is 2 i.e. one for TCP and one for
1781 		 * the classifier hash list. If ref count is indeed 2, we can
1782 		 * just remove the conn under the fanout lock and avoid
1783 		 * cleaning up the conn under the squeue, provided that
1784 		 * clustering callbacks are not enabled. If clustering is
1785 		 * enabled, we need to make the clustering callback before
1786 		 * setting the CONDEMNED flag and after dropping all locks and
1787 		 * so we forego this optimization and fall back to the slow
1788 		 * path. Also please see the comments in tcp_closei_local
1789 		 * regarding the refcnt logic.
1790 		 *
1791 		 * Since we are holding the tcp_time_wait_lock, its better
1792 		 * not to block on the fanout_lock because other connections
1793 		 * can't add themselves to time_wait list. So we do a
1794 		 * tryenter instead of mutex_enter.
1795 		 */
1796 		if (mutex_tryenter(lock)) {
1797 			mutex_enter(&connp->conn_lock);
1798 			if ((connp->conn_ref == 2) &&
1799 			    (cl_inet_disconnect == NULL)) {
1800 				ipcl_hash_remove_locked(connp,
1801 				    connp->conn_fanout);
1802 				/*
1803 				 * Set the CONDEMNED flag now itself so that
1804 				 * the refcnt cannot increase due to any
1805 				 * walker. But we have still not cleaned up
1806 				 * conn_ire_cache. This is still ok since
1807 				 * we are going to clean it up in tcp_cleanup
1808 				 * immediately and any interface unplumb
1809 				 * thread will wait till the ire is blown away
1810 				 */
1811 				connp->conn_state_flags |= CONN_CONDEMNED;
1812 				mutex_exit(lock);
1813 				mutex_exit(&connp->conn_lock);
1814 				if (tcp_time_wait->tcp_free_list_cnt <
1815 				    tcp_free_list_max_cnt) {
1816 					/* Add to head of tcp_free_list */
1817 					mutex_exit(
1818 					    &tcp_time_wait->tcp_time_wait_lock);
1819 					tcp_cleanup(tcp);
1820 					ASSERT(connp->conn_latch == NULL);
1821 					ASSERT(connp->conn_policy == NULL);
1822 					ASSERT(tcp->tcp_tcps == NULL);
1823 					ASSERT(connp->conn_netstack == NULL);
1824 
1825 					mutex_enter(
1826 					    &tcp_time_wait->tcp_time_wait_lock);
1827 					tcp->tcp_time_wait_next =
1828 					    tcp_time_wait->tcp_free_list;
1829 					tcp_time_wait->tcp_free_list = tcp;
1830 					tcp_time_wait->tcp_free_list_cnt++;
1831 					continue;
1832 				} else {
1833 					/* Do not add to tcp_free_list */
1834 					mutex_exit(
1835 					    &tcp_time_wait->tcp_time_wait_lock);
1836 					tcp_bind_hash_remove(tcp);
1837 					conn_delete_ire(tcp->tcp_connp, NULL);
1838 					tcp_ipsec_cleanup(tcp);
1839 					CONN_DEC_REF(tcp->tcp_connp);
1840 				}
1841 			} else {
1842 				CONN_INC_REF_LOCKED(connp);
1843 				mutex_exit(lock);
1844 				mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1845 				mutex_exit(&connp->conn_lock);
1846 				/*
1847 				 * We can reuse the closemp here since conn has
1848 				 * detached (otherwise we wouldn't even be in
1849 				 * time_wait list). tcp_closemp_used can safely
1850 				 * be changed without taking a lock as no other
1851 				 * thread can concurrently access it at this
1852 				 * point in the connection lifecycle.
1853 				 */
1854 
1855 				if (tcp->tcp_closemp.b_prev == NULL)
1856 					tcp->tcp_closemp_used = B_TRUE;
1857 				else
1858 					cmn_err(CE_PANIC,
1859 					    "tcp_timewait_collector: "
1860 					    "concurrent use of tcp_closemp: "
1861 					    "connp %p tcp %p\n", (void *)connp,
1862 					    (void *)tcp);
1863 
1864 				TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
1865 				mp = &tcp->tcp_closemp;
1866 				squeue_fill(connp->conn_sqp, mp,
1867 				    tcp_timewait_output, connp,
1868 				    SQTAG_TCP_TIMEWAIT);
1869 			}
1870 		} else {
1871 			mutex_enter(&connp->conn_lock);
1872 			CONN_INC_REF_LOCKED(connp);
1873 			mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1874 			mutex_exit(&connp->conn_lock);
1875 			/*
1876 			 * We can reuse the closemp here since conn has
1877 			 * detached (otherwise we wouldn't even be in
1878 			 * time_wait list). tcp_closemp_used can safely
1879 			 * be changed without taking a lock as no other
1880 			 * thread can concurrently access it at this
1881 			 * point in the connection lifecycle.
1882 			 */
1883 
1884 			if (tcp->tcp_closemp.b_prev == NULL)
1885 				tcp->tcp_closemp_used = B_TRUE;
1886 			else
1887 				cmn_err(CE_PANIC, "tcp_timewait_collector: "
1888 				    "concurrent use of tcp_closemp: "
1889 				    "connp %p tcp %p\n", (void *)connp,
1890 				    (void *)tcp);
1891 
1892 			TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
1893 			mp = &tcp->tcp_closemp;
1894 			squeue_fill(connp->conn_sqp, mp,
1895 			    tcp_timewait_output, connp, 0);
1896 		}
1897 		mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1898 	}
1899 
1900 	if (tcp_time_wait->tcp_free_list != NULL)
1901 		tcp_time_wait->tcp_free_list->tcp_in_free_list = B_TRUE;
1902 
1903 	tcp_time_wait->tcp_time_wait_tid =
1904 	    timeout(tcp_time_wait_collector, sqp, TCP_TIME_WAIT_DELAY);
1905 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1906 }
1907 /*
1908  * Reply to a clients T_CONN_RES TPI message. This function
1909  * is used only for TLI/XTI listener. Sockfs sends T_CONN_RES
1910  * on the acceptor STREAM and processed in tcp_wput_accept().
1911  * Read the block comment on top of tcp_conn_request().
1912  */
1913 static void
1914 tcp_accept(tcp_t *listener, mblk_t *mp)
1915 {
1916 	tcp_t	*acceptor;
1917 	tcp_t	*eager;
1918 	tcp_t   *tcp;
1919 	struct T_conn_res	*tcr;
1920 	t_uscalar_t	acceptor_id;
1921 	t_scalar_t	seqnum;
1922 	mblk_t	*opt_mp = NULL;	/* T_OPTMGMT_REQ messages */
1923 	mblk_t	*ok_mp;
1924 	mblk_t	*mp1;
1925 	tcp_stack_t	*tcps = listener->tcp_tcps;
1926 
1927 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) {
1928 		tcp_err_ack(listener, mp, TPROTO, 0);
1929 		return;
1930 	}
1931 	tcr = (struct T_conn_res *)mp->b_rptr;
1932 
1933 	/*
1934 	 * Under ILP32 the stream head points tcr->ACCEPTOR_id at the
1935 	 * read side queue of the streams device underneath us i.e. the
1936 	 * read side queue of 'ip'. Since we can't deference QUEUE_ptr we
1937 	 * look it up in the queue_hash.  Under LP64 it sends down the
1938 	 * minor_t of the accepting endpoint.
1939 	 *
1940 	 * Once the acceptor/eager are modified (in tcp_accept_swap) the
1941 	 * fanout hash lock is held.
1942 	 * This prevents any thread from entering the acceptor queue from
1943 	 * below (since it has not been hard bound yet i.e. any inbound
1944 	 * packets will arrive on the listener or default tcp queue and
1945 	 * go through tcp_lookup).
1946 	 * The CONN_INC_REF will prevent the acceptor from closing.
1947 	 *
1948 	 * XXX It is still possible for a tli application to send down data
1949 	 * on the accepting stream while another thread calls t_accept.
1950 	 * This should not be a problem for well-behaved applications since
1951 	 * the T_OK_ACK is sent after the queue swapping is completed.
1952 	 *
1953 	 * If the accepting fd is the same as the listening fd, avoid
1954 	 * queue hash lookup since that will return an eager listener in a
1955 	 * already established state.
1956 	 */
1957 	acceptor_id = tcr->ACCEPTOR_id;
1958 	mutex_enter(&listener->tcp_eager_lock);
1959 	if (listener->tcp_acceptor_id == acceptor_id) {
1960 		eager = listener->tcp_eager_next_q;
1961 		/* only count how many T_CONN_INDs so don't count q0 */
1962 		if ((listener->tcp_conn_req_cnt_q != 1) ||
1963 		    (eager->tcp_conn_req_seqnum != tcr->SEQ_number)) {
1964 			mutex_exit(&listener->tcp_eager_lock);
1965 			tcp_err_ack(listener, mp, TBADF, 0);
1966 			return;
1967 		}
1968 		if (listener->tcp_conn_req_cnt_q0 != 0) {
1969 			/* Throw away all the eagers on q0. */
1970 			tcp_eager_cleanup(listener, 1);
1971 		}
1972 		if (listener->tcp_syn_defense) {
1973 			listener->tcp_syn_defense = B_FALSE;
1974 			if (listener->tcp_ip_addr_cache != NULL) {
1975 				kmem_free(listener->tcp_ip_addr_cache,
1976 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
1977 				listener->tcp_ip_addr_cache = NULL;
1978 			}
1979 		}
1980 		/*
1981 		 * Transfer tcp_conn_req_max to the eager so that when
1982 		 * a disconnect occurs we can revert the endpoint to the
1983 		 * listen state.
1984 		 */
1985 		eager->tcp_conn_req_max = listener->tcp_conn_req_max;
1986 		ASSERT(listener->tcp_conn_req_cnt_q0 == 0);
1987 		/*
1988 		 * Get a reference on the acceptor just like the
1989 		 * tcp_acceptor_hash_lookup below.
1990 		 */
1991 		acceptor = listener;
1992 		CONN_INC_REF(acceptor->tcp_connp);
1993 	} else {
1994 		acceptor = tcp_acceptor_hash_lookup(acceptor_id, tcps);
1995 		if (acceptor == NULL) {
1996 			if (listener->tcp_debug) {
1997 				(void) strlog(TCP_MOD_ID, 0, 1,
1998 				    SL_ERROR|SL_TRACE,
1999 				    "tcp_accept: did not find acceptor 0x%x\n",
2000 				    acceptor_id);
2001 			}
2002 			mutex_exit(&listener->tcp_eager_lock);
2003 			tcp_err_ack(listener, mp, TPROVMISMATCH, 0);
2004 			return;
2005 		}
2006 		/*
2007 		 * Verify acceptor state. The acceptable states for an acceptor
2008 		 * include TCPS_IDLE and TCPS_BOUND.
2009 		 */
2010 		switch (acceptor->tcp_state) {
2011 		case TCPS_IDLE:
2012 			/* FALLTHRU */
2013 		case TCPS_BOUND:
2014 			break;
2015 		default:
2016 			CONN_DEC_REF(acceptor->tcp_connp);
2017 			mutex_exit(&listener->tcp_eager_lock);
2018 			tcp_err_ack(listener, mp, TOUTSTATE, 0);
2019 			return;
2020 		}
2021 	}
2022 
2023 	/* The listener must be in TCPS_LISTEN */
2024 	if (listener->tcp_state != TCPS_LISTEN) {
2025 		CONN_DEC_REF(acceptor->tcp_connp);
2026 		mutex_exit(&listener->tcp_eager_lock);
2027 		tcp_err_ack(listener, mp, TOUTSTATE, 0);
2028 		return;
2029 	}
2030 
2031 	/*
2032 	 * Rendezvous with an eager connection request packet hanging off
2033 	 * 'tcp' that has the 'seqnum' tag.  We tagged the detached open
2034 	 * tcp structure when the connection packet arrived in
2035 	 * tcp_conn_request().
2036 	 */
2037 	seqnum = tcr->SEQ_number;
2038 	eager = listener;
2039 	do {
2040 		eager = eager->tcp_eager_next_q;
2041 		if (eager == NULL) {
2042 			CONN_DEC_REF(acceptor->tcp_connp);
2043 			mutex_exit(&listener->tcp_eager_lock);
2044 			tcp_err_ack(listener, mp, TBADSEQ, 0);
2045 			return;
2046 		}
2047 	} while (eager->tcp_conn_req_seqnum != seqnum);
2048 	mutex_exit(&listener->tcp_eager_lock);
2049 
2050 	/*
2051 	 * At this point, both acceptor and listener have 2 ref
2052 	 * that they begin with. Acceptor has one additional ref
2053 	 * we placed in lookup while listener has 3 additional
2054 	 * ref for being behind the squeue (tcp_accept() is
2055 	 * done on listener's squeue); being in classifier hash;
2056 	 * and eager's ref on listener.
2057 	 */
2058 	ASSERT(listener->tcp_connp->conn_ref >= 5);
2059 	ASSERT(acceptor->tcp_connp->conn_ref >= 3);
2060 
2061 	/*
2062 	 * The eager at this point is set in its own squeue and
2063 	 * could easily have been killed (tcp_accept_finish will
2064 	 * deal with that) because of a TH_RST so we can only
2065 	 * ASSERT for a single ref.
2066 	 */
2067 	ASSERT(eager->tcp_connp->conn_ref >= 1);
2068 
2069 	/* Pre allocate the stroptions mblk also */
2070 	opt_mp = allocb(sizeof (struct stroptions), BPRI_HI);
2071 	if (opt_mp == NULL) {
2072 		CONN_DEC_REF(acceptor->tcp_connp);
2073 		CONN_DEC_REF(eager->tcp_connp);
2074 		tcp_err_ack(listener, mp, TSYSERR, ENOMEM);
2075 		return;
2076 	}
2077 	DB_TYPE(opt_mp) = M_SETOPTS;
2078 	opt_mp->b_wptr += sizeof (struct stroptions);
2079 
2080 	/*
2081 	 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO
2082 	 * from listener to acceptor. The message is chained on opt_mp
2083 	 * which will be sent onto eager's squeue.
2084 	 */
2085 	if (listener->tcp_bound_if != 0) {
2086 		/* allocate optmgmt req */
2087 		mp1 = tcp_setsockopt_mp(IPPROTO_IPV6,
2088 		    IPV6_BOUND_IF, (char *)&listener->tcp_bound_if,
2089 		    sizeof (int));
2090 		if (mp1 != NULL)
2091 			linkb(opt_mp, mp1);
2092 	}
2093 	if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) {
2094 		uint_t on = 1;
2095 
2096 		/* allocate optmgmt req */
2097 		mp1 = tcp_setsockopt_mp(IPPROTO_IPV6,
2098 		    IPV6_RECVPKTINFO, (char *)&on, sizeof (on));
2099 		if (mp1 != NULL)
2100 			linkb(opt_mp, mp1);
2101 	}
2102 
2103 	/* Re-use mp1 to hold a copy of mp, in case reallocb fails */
2104 	if ((mp1 = copymsg(mp)) == NULL) {
2105 		CONN_DEC_REF(acceptor->tcp_connp);
2106 		CONN_DEC_REF(eager->tcp_connp);
2107 		freemsg(opt_mp);
2108 		tcp_err_ack(listener, mp, TSYSERR, ENOMEM);
2109 		return;
2110 	}
2111 
2112 	tcr = (struct T_conn_res *)mp1->b_rptr;
2113 
2114 	/*
2115 	 * This is an expanded version of mi_tpi_ok_ack_alloc()
2116 	 * which allocates a larger mblk and appends the new
2117 	 * local address to the ok_ack.  The address is copied by
2118 	 * soaccept() for getsockname().
2119 	 */
2120 	{
2121 		int extra;
2122 
2123 		extra = (eager->tcp_family == AF_INET) ?
2124 		    sizeof (sin_t) : sizeof (sin6_t);
2125 
2126 		/*
2127 		 * Try to re-use mp, if possible.  Otherwise, allocate
2128 		 * an mblk and return it as ok_mp.  In any case, mp
2129 		 * is no longer usable upon return.
2130 		 */
2131 		if ((ok_mp = mi_tpi_ok_ack_alloc_extra(mp, extra)) == NULL) {
2132 			CONN_DEC_REF(acceptor->tcp_connp);
2133 			CONN_DEC_REF(eager->tcp_connp);
2134 			freemsg(opt_mp);
2135 			/* Original mp has been freed by now, so use mp1 */
2136 			tcp_err_ack(listener, mp1, TSYSERR, ENOMEM);
2137 			return;
2138 		}
2139 
2140 		mp = NULL;	/* We should never use mp after this point */
2141 
2142 		switch (extra) {
2143 		case sizeof (sin_t): {
2144 				sin_t *sin = (sin_t *)ok_mp->b_wptr;
2145 
2146 				ok_mp->b_wptr += extra;
2147 				sin->sin_family = AF_INET;
2148 				sin->sin_port = eager->tcp_lport;
2149 				sin->sin_addr.s_addr =
2150 				    eager->tcp_ipha->ipha_src;
2151 				break;
2152 			}
2153 		case sizeof (sin6_t): {
2154 				sin6_t *sin6 = (sin6_t *)ok_mp->b_wptr;
2155 
2156 				ok_mp->b_wptr += extra;
2157 				sin6->sin6_family = AF_INET6;
2158 				sin6->sin6_port = eager->tcp_lport;
2159 				if (eager->tcp_ipversion == IPV4_VERSION) {
2160 					sin6->sin6_flowinfo = 0;
2161 					IN6_IPADDR_TO_V4MAPPED(
2162 					    eager->tcp_ipha->ipha_src,
2163 					    &sin6->sin6_addr);
2164 				} else {
2165 					ASSERT(eager->tcp_ip6h != NULL);
2166 					sin6->sin6_flowinfo =
2167 					    eager->tcp_ip6h->ip6_vcf &
2168 					    ~IPV6_VERS_AND_FLOW_MASK;
2169 					sin6->sin6_addr =
2170 					    eager->tcp_ip6h->ip6_src;
2171 				}
2172 				sin6->sin6_scope_id = 0;
2173 				sin6->__sin6_src_id = 0;
2174 				break;
2175 			}
2176 		default:
2177 			break;
2178 		}
2179 		ASSERT(ok_mp->b_wptr <= ok_mp->b_datap->db_lim);
2180 	}
2181 
2182 	/*
2183 	 * If there are no options we know that the T_CONN_RES will
2184 	 * succeed. However, we can't send the T_OK_ACK upstream until
2185 	 * the tcp_accept_swap is done since it would be dangerous to
2186 	 * let the application start using the new fd prior to the swap.
2187 	 */
2188 	tcp_accept_swap(listener, acceptor, eager);
2189 
2190 	/*
2191 	 * tcp_accept_swap unlinks eager from listener but does not drop
2192 	 * the eager's reference on the listener.
2193 	 */
2194 	ASSERT(eager->tcp_listener == NULL);
2195 	ASSERT(listener->tcp_connp->conn_ref >= 5);
2196 
2197 	/*
2198 	 * The eager is now associated with its own queue. Insert in
2199 	 * the hash so that the connection can be reused for a future
2200 	 * T_CONN_RES.
2201 	 */
2202 	tcp_acceptor_hash_insert(acceptor_id, eager);
2203 
2204 	/*
2205 	 * We now do the processing of options with T_CONN_RES.
2206 	 * We delay till now since we wanted to have queue to pass to
2207 	 * option processing routines that points back to the right
2208 	 * instance structure which does not happen until after
2209 	 * tcp_accept_swap().
2210 	 *
2211 	 * Note:
2212 	 * The sanity of the logic here assumes that whatever options
2213 	 * are appropriate to inherit from listner=>eager are done
2214 	 * before this point, and whatever were to be overridden (or not)
2215 	 * in transfer logic from eager=>acceptor in tcp_accept_swap().
2216 	 * [ Warning: acceptor endpoint can have T_OPTMGMT_REQ done to it
2217 	 *   before its ACCEPTOR_id comes down in T_CONN_RES ]
2218 	 * This may not be true at this point in time but can be fixed
2219 	 * independently. This option processing code starts with
2220 	 * the instantiated acceptor instance and the final queue at
2221 	 * this point.
2222 	 */
2223 
2224 	if (tcr->OPT_length != 0) {
2225 		/* Options to process */
2226 		int t_error = 0;
2227 		int sys_error = 0;
2228 		int do_disconnect = 0;
2229 
2230 		if (tcp_conprim_opt_process(eager, mp1,
2231 		    &do_disconnect, &t_error, &sys_error) < 0) {
2232 			eager->tcp_accept_error = 1;
2233 			if (do_disconnect) {
2234 				/*
2235 				 * An option failed which does not allow
2236 				 * connection to be accepted.
2237 				 *
2238 				 * We allow T_CONN_RES to succeed and
2239 				 * put a T_DISCON_IND on the eager queue.
2240 				 */
2241 				ASSERT(t_error == 0 && sys_error == 0);
2242 				eager->tcp_send_discon_ind = 1;
2243 			} else {
2244 				ASSERT(t_error != 0);
2245 				freemsg(ok_mp);
2246 				/*
2247 				 * Original mp was either freed or set
2248 				 * to ok_mp above, so use mp1 instead.
2249 				 */
2250 				tcp_err_ack(listener, mp1, t_error, sys_error);
2251 				goto finish;
2252 			}
2253 		}
2254 		/*
2255 		 * Most likely success in setting options (except if
2256 		 * eager->tcp_send_discon_ind set).
2257 		 * mp1 option buffer represented by OPT_length/offset
2258 		 * potentially modified and contains results of setting
2259 		 * options at this point
2260 		 */
2261 	}
2262 
2263 	/* We no longer need mp1, since all options processing has passed */
2264 	freemsg(mp1);
2265 
2266 	putnext(listener->tcp_rq, ok_mp);
2267 
2268 	mutex_enter(&listener->tcp_eager_lock);
2269 	if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) {
2270 		tcp_t	*tail;
2271 		mblk_t	*conn_ind;
2272 
2273 		/*
2274 		 * This path should not be executed if listener and
2275 		 * acceptor streams are the same.
2276 		 */
2277 		ASSERT(listener != acceptor);
2278 
2279 		tcp = listener->tcp_eager_prev_q0;
2280 		/*
2281 		 * listener->tcp_eager_prev_q0 points to the TAIL of the
2282 		 * deferred T_conn_ind queue. We need to get to the head of
2283 		 * the queue in order to send up T_conn_ind the same order as
2284 		 * how the 3WHS is completed.
2285 		 */
2286 		while (tcp != listener) {
2287 			if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0)
2288 				break;
2289 			else
2290 				tcp = tcp->tcp_eager_prev_q0;
2291 		}
2292 		ASSERT(tcp != listener);
2293 		conn_ind = tcp->tcp_conn.tcp_eager_conn_ind;
2294 		ASSERT(conn_ind != NULL);
2295 		tcp->tcp_conn.tcp_eager_conn_ind = NULL;
2296 
2297 		/* Move from q0 to q */
2298 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
2299 		listener->tcp_conn_req_cnt_q0--;
2300 		listener->tcp_conn_req_cnt_q++;
2301 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
2302 		    tcp->tcp_eager_prev_q0;
2303 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
2304 		    tcp->tcp_eager_next_q0;
2305 		tcp->tcp_eager_prev_q0 = NULL;
2306 		tcp->tcp_eager_next_q0 = NULL;
2307 		tcp->tcp_conn_def_q0 = B_FALSE;
2308 
2309 		/* Make sure the tcp isn't in the list of droppables */
2310 		ASSERT(tcp->tcp_eager_next_drop_q0 == NULL &&
2311 		    tcp->tcp_eager_prev_drop_q0 == NULL);
2312 
2313 		/*
2314 		 * Insert at end of the queue because sockfs sends
2315 		 * down T_CONN_RES in chronological order. Leaving
2316 		 * the older conn indications at front of the queue
2317 		 * helps reducing search time.
2318 		 */
2319 		tail = listener->tcp_eager_last_q;
2320 		if (tail != NULL)
2321 			tail->tcp_eager_next_q = tcp;
2322 		else
2323 			listener->tcp_eager_next_q = tcp;
2324 		listener->tcp_eager_last_q = tcp;
2325 		tcp->tcp_eager_next_q = NULL;
2326 		mutex_exit(&listener->tcp_eager_lock);
2327 		putnext(tcp->tcp_rq, conn_ind);
2328 	} else {
2329 		mutex_exit(&listener->tcp_eager_lock);
2330 	}
2331 
2332 	/*
2333 	 * Done with the acceptor - free it
2334 	 *
2335 	 * Note: from this point on, no access to listener should be made
2336 	 * as listener can be equal to acceptor.
2337 	 */
2338 finish:
2339 	ASSERT(acceptor->tcp_detached);
2340 	ASSERT(tcps->tcps_g_q != NULL);
2341 	acceptor->tcp_rq = tcps->tcps_g_q;
2342 	acceptor->tcp_wq = WR(tcps->tcps_g_q);
2343 	(void) tcp_clean_death(acceptor, 0, 2);
2344 	CONN_DEC_REF(acceptor->tcp_connp);
2345 
2346 	/*
2347 	 * In case we already received a FIN we have to make tcp_rput send
2348 	 * the ordrel_ind. This will also send up a window update if the window
2349 	 * has opened up.
2350 	 *
2351 	 * In the normal case of a successful connection acceptance
2352 	 * we give the O_T_BIND_REQ to the read side put procedure as an
2353 	 * indication that this was just accepted. This tells tcp_rput to
2354 	 * pass up any data queued in tcp_rcv_list.
2355 	 *
2356 	 * In the fringe case where options sent with T_CONN_RES failed and
2357 	 * we required, we would be indicating a T_DISCON_IND to blow
2358 	 * away this connection.
2359 	 */
2360 
2361 	/*
2362 	 * XXX: we currently have a problem if XTI application closes the
2363 	 * acceptor stream in between. This problem exists in on10-gate also
2364 	 * and is well know but nothing can be done short of major rewrite
2365 	 * to fix it. Now it is possible to take care of it by assigning TLI/XTI
2366 	 * eager same squeue as listener (we can distinguish non socket
2367 	 * listeners at the time of handling a SYN in tcp_conn_request)
2368 	 * and do most of the work that tcp_accept_finish does here itself
2369 	 * and then get behind the acceptor squeue to access the acceptor
2370 	 * queue.
2371 	 */
2372 	/*
2373 	 * We already have a ref on tcp so no need to do one before squeue_fill
2374 	 */
2375 	squeue_fill(eager->tcp_connp->conn_sqp, opt_mp,
2376 	    tcp_accept_finish, eager->tcp_connp, SQTAG_TCP_ACCEPT_FINISH);
2377 }
2378 
2379 /*
2380  * Swap information between the eager and acceptor for a TLI/XTI client.
2381  * The sockfs accept is done on the acceptor stream and control goes
2382  * through tcp_wput_accept() and tcp_accept()/tcp_accept_swap() is not
2383  * called. In either case, both the eager and listener are in their own
2384  * perimeter (squeue) and the code has to deal with potential race.
2385  *
2386  * See the block comment on top of tcp_accept() and tcp_wput_accept().
2387  */
2388 static void
2389 tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, tcp_t *eager)
2390 {
2391 	conn_t	*econnp, *aconnp;
2392 
2393 	ASSERT(eager->tcp_rq == listener->tcp_rq);
2394 	ASSERT(eager->tcp_detached && !acceptor->tcp_detached);
2395 	ASSERT(!eager->tcp_hard_bound);
2396 	ASSERT(!TCP_IS_SOCKET(acceptor));
2397 	ASSERT(!TCP_IS_SOCKET(eager));
2398 	ASSERT(!TCP_IS_SOCKET(listener));
2399 
2400 	acceptor->tcp_detached = B_TRUE;
2401 	/*
2402 	 * To permit stream re-use by TLI/XTI, the eager needs a copy of
2403 	 * the acceptor id.
2404 	 */
2405 	eager->tcp_acceptor_id = acceptor->tcp_acceptor_id;
2406 
2407 	/* remove eager from listen list... */
2408 	mutex_enter(&listener->tcp_eager_lock);
2409 	tcp_eager_unlink(eager);
2410 	ASSERT(eager->tcp_eager_next_q == NULL &&
2411 	    eager->tcp_eager_last_q == NULL);
2412 	ASSERT(eager->tcp_eager_next_q0 == NULL &&
2413 	    eager->tcp_eager_prev_q0 == NULL);
2414 	mutex_exit(&listener->tcp_eager_lock);
2415 	eager->tcp_rq = acceptor->tcp_rq;
2416 	eager->tcp_wq = acceptor->tcp_wq;
2417 
2418 	econnp = eager->tcp_connp;
2419 	aconnp = acceptor->tcp_connp;
2420 
2421 	eager->tcp_rq->q_ptr = econnp;
2422 	eager->tcp_wq->q_ptr = econnp;
2423 
2424 	/*
2425 	 * In the TLI/XTI loopback case, we are inside the listener's squeue,
2426 	 * which might be a different squeue from our peer TCP instance.
2427 	 * For TCP Fusion, the peer expects that whenever tcp_detached is
2428 	 * clear, our TCP queues point to the acceptor's queues.  Thus, use
2429 	 * membar_producer() to ensure that the assignments of tcp_rq/tcp_wq
2430 	 * above reach global visibility prior to the clearing of tcp_detached.
2431 	 */
2432 	membar_producer();
2433 	eager->tcp_detached = B_FALSE;
2434 
2435 	ASSERT(eager->tcp_ack_tid == 0);
2436 
2437 	econnp->conn_dev = aconnp->conn_dev;
2438 	econnp->conn_minor_arena = aconnp->conn_minor_arena;
2439 	ASSERT(econnp->conn_minor_arena != NULL);
2440 	if (eager->tcp_cred != NULL)
2441 		crfree(eager->tcp_cred);
2442 	eager->tcp_cred = econnp->conn_cred = aconnp->conn_cred;
2443 	ASSERT(econnp->conn_netstack == aconnp->conn_netstack);
2444 	ASSERT(eager->tcp_tcps == acceptor->tcp_tcps);
2445 
2446 	aconnp->conn_cred = NULL;
2447 
2448 	econnp->conn_zoneid = aconnp->conn_zoneid;
2449 	econnp->conn_allzones = aconnp->conn_allzones;
2450 
2451 	econnp->conn_mac_exempt = aconnp->conn_mac_exempt;
2452 	aconnp->conn_mac_exempt = B_FALSE;
2453 
2454 	ASSERT(aconnp->conn_peercred == NULL);
2455 
2456 	/* Do the IPC initialization */
2457 	CONN_INC_REF(econnp);
2458 
2459 	econnp->conn_multicast_loop = aconnp->conn_multicast_loop;
2460 	econnp->conn_af_isv6 = aconnp->conn_af_isv6;
2461 	econnp->conn_pkt_isv6 = aconnp->conn_pkt_isv6;
2462 
2463 	/* Done with old IPC. Drop its ref on its connp */
2464 	CONN_DEC_REF(aconnp);
2465 }
2466 
2467 
2468 /*
2469  * Adapt to the information, such as rtt and rtt_sd, provided from the
2470  * ire cached in conn_cache_ire. If no ire cached, do a ire lookup.
2471  *
2472  * Checks for multicast and broadcast destination address.
2473  * Returns zero on failure; non-zero if ok.
2474  *
2475  * Note that the MSS calculation here is based on the info given in
2476  * the IRE.  We do not do any calculation based on TCP options.  They
2477  * will be handled in tcp_rput_other() and tcp_rput_data() when TCP
2478  * knows which options to use.
2479  *
2480  * Note on how TCP gets its parameters for a connection.
2481  *
2482  * When a tcp_t structure is allocated, it gets all the default parameters.
2483  * In tcp_adapt_ire(), it gets those metric parameters, like rtt, rtt_sd,
2484  * spipe, rpipe, ... from the route metrics.  Route metric overrides the
2485  * default.
2486  *
2487  * An incoming SYN with a multicast or broadcast destination address, is dropped
2488  * in 1 of 2 places.
2489  *
2490  * 1. If the packet was received over the wire it is dropped in
2491  * ip_rput_process_broadcast()
2492  *
2493  * 2. If the packet was received through internal IP loopback, i.e. the packet
2494  * was generated and received on the same machine, it is dropped in
2495  * ip_wput_local()
2496  *
2497  * An incoming SYN with a multicast or broadcast source address is always
2498  * dropped in tcp_adapt_ire. The same logic in tcp_adapt_ire also serves to
2499  * reject an attempt to connect to a broadcast or multicast (destination)
2500  * address.
2501  */
2502 static int
2503 tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp)
2504 {
2505 	tcp_hsp_t	*hsp;
2506 	ire_t		*ire;
2507 	ire_t		*sire = NULL;
2508 	iulp_t		*ire_uinfo = NULL;
2509 	uint32_t	mss_max;
2510 	uint32_t	mss;
2511 	boolean_t	tcp_detached = TCP_IS_DETACHED(tcp);
2512 	conn_t		*connp = tcp->tcp_connp;
2513 	boolean_t	ire_cacheable = B_FALSE;
2514 	zoneid_t	zoneid = connp->conn_zoneid;
2515 	int		match_flags = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT |
2516 	    MATCH_IRE_SECATTR;
2517 	ts_label_t	*tsl = crgetlabel(CONN_CRED(connp));
2518 	ill_t		*ill = NULL;
2519 	boolean_t	incoming = (ire_mp == NULL);
2520 	tcp_stack_t	*tcps = tcp->tcp_tcps;
2521 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
2522 
2523 	ASSERT(connp->conn_ire_cache == NULL);
2524 
2525 	if (tcp->tcp_ipversion == IPV4_VERSION) {
2526 
2527 		if (CLASSD(tcp->tcp_connp->conn_rem)) {
2528 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards);
2529 			return (0);
2530 		}
2531 		/*
2532 		 * If IP_NEXTHOP is set, then look for an IRE_CACHE
2533 		 * for the destination with the nexthop as gateway.
2534 		 * ire_ctable_lookup() is used because this particular
2535 		 * ire, if it exists, will be marked private.
2536 		 * If that is not available, use the interface ire
2537 		 * for the nexthop.
2538 		 *
2539 		 * TSol: tcp_update_label will detect label mismatches based
2540 		 * only on the destination's label, but that would not
2541 		 * detect label mismatches based on the security attributes
2542 		 * of routes or next hop gateway. Hence we need to pass the
2543 		 * label to ire_ftable_lookup below in order to locate the
2544 		 * right prefix (and/or) ire cache. Similarly we also need
2545 		 * pass the label to the ire_cache_lookup below to locate
2546 		 * the right ire that also matches on the label.
2547 		 */
2548 		if (tcp->tcp_connp->conn_nexthop_set) {
2549 			ire = ire_ctable_lookup(tcp->tcp_connp->conn_rem,
2550 			    tcp->tcp_connp->conn_nexthop_v4, 0, NULL, zoneid,
2551 			    tsl, MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW,
2552 			    ipst);
2553 			if (ire == NULL) {
2554 				ire = ire_ftable_lookup(
2555 				    tcp->tcp_connp->conn_nexthop_v4,
2556 				    0, 0, IRE_INTERFACE, NULL, NULL, zoneid, 0,
2557 				    tsl, match_flags, ipst);
2558 				if (ire == NULL)
2559 					return (0);
2560 			} else {
2561 				ire_uinfo = &ire->ire_uinfo;
2562 			}
2563 		} else {
2564 			ire = ire_cache_lookup(tcp->tcp_connp->conn_rem,
2565 			    zoneid, tsl, ipst);
2566 			if (ire != NULL) {
2567 				ire_cacheable = B_TRUE;
2568 				ire_uinfo = (ire_mp != NULL) ?
2569 				    &((ire_t *)ire_mp->b_rptr)->ire_uinfo:
2570 				    &ire->ire_uinfo;
2571 
2572 			} else {
2573 				if (ire_mp == NULL) {
2574 					ire = ire_ftable_lookup(
2575 					    tcp->tcp_connp->conn_rem,
2576 					    0, 0, 0, NULL, &sire, zoneid, 0,
2577 					    tsl, (MATCH_IRE_RECURSIVE |
2578 					    MATCH_IRE_DEFAULT), ipst);
2579 					if (ire == NULL)
2580 						return (0);
2581 					ire_uinfo = (sire != NULL) ?
2582 					    &sire->ire_uinfo :
2583 					    &ire->ire_uinfo;
2584 				} else {
2585 					ire = (ire_t *)ire_mp->b_rptr;
2586 					ire_uinfo =
2587 					    &((ire_t *)
2588 					    ire_mp->b_rptr)->ire_uinfo;
2589 				}
2590 			}
2591 		}
2592 		ASSERT(ire != NULL);
2593 
2594 		if ((ire->ire_src_addr == INADDR_ANY) ||
2595 		    (ire->ire_type & IRE_BROADCAST)) {
2596 			/*
2597 			 * ire->ire_mp is non null when ire_mp passed in is used
2598 			 * ire->ire_mp is set in ip_bind_insert_ire[_v6]().
2599 			 */
2600 			if (ire->ire_mp == NULL)
2601 				ire_refrele(ire);
2602 			if (sire != NULL)
2603 				ire_refrele(sire);
2604 			return (0);
2605 		}
2606 
2607 		if (tcp->tcp_ipha->ipha_src == INADDR_ANY) {
2608 			ipaddr_t src_addr;
2609 
2610 			/*
2611 			 * ip_bind_connected() has stored the correct source
2612 			 * address in conn_src.
2613 			 */
2614 			src_addr = tcp->tcp_connp->conn_src;
2615 			tcp->tcp_ipha->ipha_src = src_addr;
2616 			/*
2617 			 * Copy of the src addr. in tcp_t is needed
2618 			 * for the lookup funcs.
2619 			 */
2620 			IN6_IPADDR_TO_V4MAPPED(src_addr, &tcp->tcp_ip_src_v6);
2621 		}
2622 		/*
2623 		 * Set the fragment bit so that IP will tell us if the MTU
2624 		 * should change. IP tells us the latest setting of
2625 		 * ip_path_mtu_discovery through ire_frag_flag.
2626 		 */
2627 		if (ipst->ips_ip_path_mtu_discovery) {
2628 			tcp->tcp_ipha->ipha_fragment_offset_and_flags =
2629 			    htons(IPH_DF);
2630 		}
2631 		/*
2632 		 * If ire_uinfo is NULL, this is the IRE_INTERFACE case
2633 		 * for IP_NEXTHOP. No cache ire has been found for the
2634 		 * destination and we are working with the nexthop's
2635 		 * interface ire. Since we need to forward all packets
2636 		 * to the nexthop first, we "blindly" set tcp_localnet
2637 		 * to false, eventhough the destination may also be
2638 		 * onlink.
2639 		 */
2640 		if (ire_uinfo == NULL)
2641 			tcp->tcp_localnet = 0;
2642 		else
2643 			tcp->tcp_localnet = (ire->ire_gateway_addr == 0);
2644 	} else {
2645 		/*
2646 		 * For incoming connection ire_mp = NULL
2647 		 * For outgoing connection ire_mp != NULL
2648 		 * Technically we should check conn_incoming_ill
2649 		 * when ire_mp is NULL and conn_outgoing_ill when
2650 		 * ire_mp is non-NULL. But this is performance
2651 		 * critical path and for IPV*_BOUND_IF, outgoing
2652 		 * and incoming ill are always set to the same value.
2653 		 */
2654 		ill_t	*dst_ill = NULL;
2655 		ipif_t  *dst_ipif = NULL;
2656 
2657 		ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill);
2658 
2659 		if (connp->conn_outgoing_ill != NULL) {
2660 			/* Outgoing or incoming path */
2661 			int   err;
2662 
2663 			dst_ill = conn_get_held_ill(connp,
2664 			    &connp->conn_outgoing_ill, &err);
2665 			if (err == ILL_LOOKUP_FAILED || dst_ill == NULL) {
2666 				ip1dbg(("tcp_adapt_ire: ill_lookup failed\n"));
2667 				return (0);
2668 			}
2669 			match_flags |= MATCH_IRE_ILL;
2670 			dst_ipif = dst_ill->ill_ipif;
2671 		}
2672 		ire = ire_ctable_lookup_v6(&tcp->tcp_connp->conn_remv6,
2673 		    0, 0, dst_ipif, zoneid, tsl, match_flags, ipst);
2674 
2675 		if (ire != NULL) {
2676 			ire_cacheable = B_TRUE;
2677 			ire_uinfo = (ire_mp != NULL) ?
2678 			    &((ire_t *)ire_mp->b_rptr)->ire_uinfo:
2679 			    &ire->ire_uinfo;
2680 		} else {
2681 			if (ire_mp == NULL) {
2682 				ire = ire_ftable_lookup_v6(
2683 				    &tcp->tcp_connp->conn_remv6,
2684 				    0, 0, 0, dst_ipif, &sire, zoneid,
2685 				    0, tsl, match_flags, ipst);
2686 				if (ire == NULL) {
2687 					if (dst_ill != NULL)
2688 						ill_refrele(dst_ill);
2689 					return (0);
2690 				}
2691 				ire_uinfo = (sire != NULL) ? &sire->ire_uinfo :
2692 				    &ire->ire_uinfo;
2693 			} else {
2694 				ire = (ire_t *)ire_mp->b_rptr;
2695 				ire_uinfo =
2696 				    &((ire_t *)ire_mp->b_rptr)->ire_uinfo;
2697 			}
2698 		}
2699 		if (dst_ill != NULL)
2700 			ill_refrele(dst_ill);
2701 
2702 		ASSERT(ire != NULL);
2703 		ASSERT(ire_uinfo != NULL);
2704 
2705 		if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6) ||
2706 		    IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) {
2707 			/*
2708 			 * ire->ire_mp is non null when ire_mp passed in is used
2709 			 * ire->ire_mp is set in ip_bind_insert_ire[_v6]().
2710 			 */
2711 			if (ire->ire_mp == NULL)
2712 				ire_refrele(ire);
2713 			if (sire != NULL)
2714 				ire_refrele(sire);
2715 			return (0);
2716 		}
2717 
2718 		if (IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) {
2719 			in6_addr_t	src_addr;
2720 
2721 			/*
2722 			 * ip_bind_connected_v6() has stored the correct source
2723 			 * address per IPv6 addr. selection policy in
2724 			 * conn_src_v6.
2725 			 */
2726 			src_addr = tcp->tcp_connp->conn_srcv6;
2727 
2728 			tcp->tcp_ip6h->ip6_src = src_addr;
2729 			/*
2730 			 * Copy of the src addr. in tcp_t is needed
2731 			 * for the lookup funcs.
2732 			 */
2733 			tcp->tcp_ip_src_v6 = src_addr;
2734 			ASSERT(IN6_ARE_ADDR_EQUAL(&tcp->tcp_ip6h->ip6_src,
2735 			    &connp->conn_srcv6));
2736 		}
2737 		tcp->tcp_localnet =
2738 		    IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6);
2739 	}
2740 
2741 	/*
2742 	 * This allows applications to fail quickly when connections are made
2743 	 * to dead hosts. Hosts can be labeled dead by adding a reject route
2744 	 * with both the RTF_REJECT and RTF_PRIVATE flags set.
2745 	 */
2746 	if ((ire->ire_flags & RTF_REJECT) &&
2747 	    (ire->ire_flags & RTF_PRIVATE))
2748 		goto error;
2749 
2750 	/*
2751 	 * Make use of the cached rtt and rtt_sd values to calculate the
2752 	 * initial RTO.  Note that they are already initialized in
2753 	 * tcp_init_values().
2754 	 * If ire_uinfo is NULL, i.e., we do not have a cache ire for
2755 	 * IP_NEXTHOP, but instead are using the interface ire for the
2756 	 * nexthop, then we do not use the ire_uinfo from that ire to
2757 	 * do any initializations.
2758 	 */
2759 	if (ire_uinfo != NULL) {
2760 		if (ire_uinfo->iulp_rtt != 0) {
2761 			clock_t	rto;
2762 
2763 			tcp->tcp_rtt_sa = ire_uinfo->iulp_rtt;
2764 			tcp->tcp_rtt_sd = ire_uinfo->iulp_rtt_sd;
2765 			rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
2766 			    tcps->tcps_rexmit_interval_extra +
2767 			    (tcp->tcp_rtt_sa >> 5);
2768 
2769 			if (rto > tcps->tcps_rexmit_interval_max) {
2770 				tcp->tcp_rto = tcps->tcps_rexmit_interval_max;
2771 			} else if (rto < tcps->tcps_rexmit_interval_min) {
2772 				tcp->tcp_rto = tcps->tcps_rexmit_interval_min;
2773 			} else {
2774 				tcp->tcp_rto = rto;
2775 			}
2776 		}
2777 		if (ire_uinfo->iulp_ssthresh != 0)
2778 			tcp->tcp_cwnd_ssthresh = ire_uinfo->iulp_ssthresh;
2779 		else
2780 			tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
2781 		if (ire_uinfo->iulp_spipe > 0) {
2782 			tcp->tcp_xmit_hiwater = MIN(ire_uinfo->iulp_spipe,
2783 			    tcps->tcps_max_buf);
2784 			if (tcps->tcps_snd_lowat_fraction != 0)
2785 				tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater /
2786 				    tcps->tcps_snd_lowat_fraction;
2787 			(void) tcp_maxpsz_set(tcp, B_TRUE);
2788 		}
2789 		/*
2790 		 * Note that up till now, acceptor always inherits receive
2791 		 * window from the listener.  But if there is a metrics
2792 		 * associated with a host, we should use that instead of
2793 		 * inheriting it from listener. Thus we need to pass this
2794 		 * info back to the caller.
2795 		 */
2796 		if (ire_uinfo->iulp_rpipe > 0) {
2797 			tcp->tcp_rwnd = MIN(ire_uinfo->iulp_rpipe,
2798 			    tcps->tcps_max_buf);
2799 		}
2800 
2801 		if (ire_uinfo->iulp_rtomax > 0) {
2802 			tcp->tcp_second_timer_threshold =
2803 			    ire_uinfo->iulp_rtomax;
2804 		}
2805 
2806 		/*
2807 		 * Use the metric option settings, iulp_tstamp_ok and
2808 		 * iulp_wscale_ok, only for active open. What this means
2809 		 * is that if the other side uses timestamp or window
2810 		 * scale option, TCP will also use those options. That
2811 		 * is for passive open.  If the application sets a
2812 		 * large window, window scale is enabled regardless of
2813 		 * the value in iulp_wscale_ok.  This is the behavior
2814 		 * since 2.6.  So we keep it.
2815 		 * The only case left in passive open processing is the
2816 		 * check for SACK.
2817 		 * For ECN, it should probably be like SACK.  But the
2818 		 * current value is binary, so we treat it like the other
2819 		 * cases.  The metric only controls active open.For passive
2820 		 * open, the ndd param, tcp_ecn_permitted, controls the
2821 		 * behavior.
2822 		 */
2823 		if (!tcp_detached) {
2824 			/*
2825 			 * The if check means that the following can only
2826 			 * be turned on by the metrics only IRE, but not off.
2827 			 */
2828 			if (ire_uinfo->iulp_tstamp_ok)
2829 				tcp->tcp_snd_ts_ok = B_TRUE;
2830 			if (ire_uinfo->iulp_wscale_ok)
2831 				tcp->tcp_snd_ws_ok = B_TRUE;
2832 			if (ire_uinfo->iulp_sack == 2)
2833 				tcp->tcp_snd_sack_ok = B_TRUE;
2834 			if (ire_uinfo->iulp_ecn_ok)
2835 				tcp->tcp_ecn_ok = B_TRUE;
2836 		} else {
2837 			/*
2838 			 * Passive open.
2839 			 *
2840 			 * As above, the if check means that SACK can only be
2841 			 * turned on by the metric only IRE.
2842 			 */
2843 			if (ire_uinfo->iulp_sack > 0) {
2844 				tcp->tcp_snd_sack_ok = B_TRUE;
2845 			}
2846 		}
2847 	}
2848 
2849 
2850 	/*
2851 	 * XXX: Note that currently, ire_max_frag can be as small as 68
2852 	 * because of PMTUd.  So tcp_mss may go to negative if combined
2853 	 * length of all those options exceeds 28 bytes.  But because
2854 	 * of the tcp_mss_min check below, we may not have a problem if
2855 	 * tcp_mss_min is of a reasonable value.  The default is 1 so
2856 	 * the negative problem still exists.  And the check defeats PMTUd.
2857 	 * In fact, if PMTUd finds that the MSS should be smaller than
2858 	 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min
2859 	 * value.
2860 	 *
2861 	 * We do not deal with that now.  All those problems related to
2862 	 * PMTUd will be fixed later.
2863 	 */
2864 	ASSERT(ire->ire_max_frag != 0);
2865 	mss = tcp->tcp_if_mtu = ire->ire_max_frag;
2866 	if (tcp->tcp_ipp_fields & IPPF_USE_MIN_MTU) {
2867 		if (tcp->tcp_ipp_use_min_mtu == IPV6_USE_MIN_MTU_NEVER) {
2868 			mss = MIN(mss, IPV6_MIN_MTU);
2869 		}
2870 	}
2871 
2872 	/* Sanity check for MSS value. */
2873 	if (tcp->tcp_ipversion == IPV4_VERSION)
2874 		mss_max = tcps->tcps_mss_max_ipv4;
2875 	else
2876 		mss_max = tcps->tcps_mss_max_ipv6;
2877 
2878 	if (tcp->tcp_ipversion == IPV6_VERSION &&
2879 	    (ire->ire_frag_flag & IPH_FRAG_HDR)) {
2880 		/*
2881 		 * After receiving an ICMPv6 "packet too big" message with a
2882 		 * MTU < 1280, and for multirouted IPv6 packets, the IP layer
2883 		 * will insert a 8-byte fragment header in every packet; we
2884 		 * reduce the MSS by that amount here.
2885 		 */
2886 		mss -= sizeof (ip6_frag_t);
2887 	}
2888 
2889 	if (tcp->tcp_ipsec_overhead == 0)
2890 		tcp->tcp_ipsec_overhead = conn_ipsec_length(connp);
2891 
2892 	mss -= tcp->tcp_ipsec_overhead;
2893 
2894 	if (mss < tcps->tcps_mss_min)
2895 		mss = tcps->tcps_mss_min;
2896 	if (mss > mss_max)
2897 		mss = mss_max;
2898 
2899 	/* Note that this is the maximum MSS, excluding all options. */
2900 	tcp->tcp_mss = mss;
2901 
2902 	/*
2903 	 * Initialize the ISS here now that we have the full connection ID.
2904 	 * The RFC 1948 method of initial sequence number generation requires
2905 	 * knowledge of the full connection ID before setting the ISS.
2906 	 */
2907 
2908 	tcp_iss_init(tcp);
2909 
2910 	if (ire->ire_type & (IRE_LOOPBACK | IRE_LOCAL))
2911 		tcp->tcp_loopback = B_TRUE;
2912 
2913 	if (tcp->tcp_ipversion == IPV4_VERSION) {
2914 		hsp = tcp_hsp_lookup(tcp->tcp_remote, tcps);
2915 	} else {
2916 		hsp = tcp_hsp_lookup_ipv6(&tcp->tcp_remote_v6, tcps);
2917 	}
2918 
2919 	if (hsp != NULL) {
2920 		/* Only modify if we're going to make them bigger */
2921 		if (hsp->tcp_hsp_sendspace > tcp->tcp_xmit_hiwater) {
2922 			tcp->tcp_xmit_hiwater = hsp->tcp_hsp_sendspace;
2923 			if (tcps->tcps_snd_lowat_fraction != 0)
2924 				tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater /
2925 				    tcps->tcps_snd_lowat_fraction;
2926 		}
2927 
2928 		if (hsp->tcp_hsp_recvspace > tcp->tcp_rwnd) {
2929 			tcp->tcp_rwnd = hsp->tcp_hsp_recvspace;
2930 		}
2931 
2932 		/* Copy timestamp flag only for active open */
2933 		if (!tcp_detached)
2934 			tcp->tcp_snd_ts_ok = hsp->tcp_hsp_tstamp;
2935 	}
2936 
2937 	if (sire != NULL)
2938 		IRE_REFRELE(sire);
2939 
2940 	/*
2941 	 * If we got an IRE_CACHE and an ILL, go through their properties;
2942 	 * otherwise, this is deferred until later when we have an IRE_CACHE.
2943 	 */
2944 	if (tcp->tcp_loopback ||
2945 	    (ire_cacheable && (ill = ire_to_ill(ire)) != NULL)) {
2946 		/*
2947 		 * For incoming, see if this tcp may be MDT-capable.  For
2948 		 * outgoing, this process has been taken care of through
2949 		 * tcp_rput_other.
2950 		 */
2951 		tcp_ire_ill_check(tcp, ire, ill, incoming);
2952 		tcp->tcp_ire_ill_check_done = B_TRUE;
2953 	}
2954 
2955 	mutex_enter(&connp->conn_lock);
2956 	/*
2957 	 * Make sure that conn is not marked incipient
2958 	 * for incoming connections. A blind
2959 	 * removal of incipient flag is cheaper than
2960 	 * check and removal.
2961 	 */
2962 	connp->conn_state_flags &= ~CONN_INCIPIENT;
2963 
2964 	/*
2965 	 * Must not cache forwarding table routes
2966 	 * or recache an IRE after the conn_t has
2967 	 * had conn_ire_cache cleared and is flagged
2968 	 * unusable, (see the CONN_CACHE_IRE() macro).
2969 	 */
2970 	if (ire_cacheable && CONN_CACHE_IRE(connp)) {
2971 		rw_enter(&ire->ire_bucket->irb_lock, RW_READER);
2972 		if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) {
2973 			connp->conn_ire_cache = ire;
2974 			IRE_UNTRACE_REF(ire);
2975 			rw_exit(&ire->ire_bucket->irb_lock);
2976 			mutex_exit(&connp->conn_lock);
2977 			return (1);
2978 		}
2979 		rw_exit(&ire->ire_bucket->irb_lock);
2980 	}
2981 	mutex_exit(&connp->conn_lock);
2982 
2983 	if (ire->ire_mp == NULL)
2984 		ire_refrele(ire);
2985 	return (1);
2986 
2987 error:
2988 	if (ire->ire_mp == NULL)
2989 		ire_refrele(ire);
2990 	if (sire != NULL)
2991 		ire_refrele(sire);
2992 	return (0);
2993 }
2994 
2995 /*
2996  * tcp_bind is called (holding the writer lock) by tcp_wput_proto to process a
2997  * O_T_BIND_REQ/T_BIND_REQ message.
2998  */
2999 static void
3000 tcp_bind(tcp_t *tcp, mblk_t *mp)
3001 {
3002 	sin_t	*sin;
3003 	sin6_t	*sin6;
3004 	mblk_t	*mp1;
3005 	in_port_t requested_port;
3006 	in_port_t allocated_port;
3007 	struct T_bind_req *tbr;
3008 	boolean_t	bind_to_req_port_only;
3009 	boolean_t	backlog_update = B_FALSE;
3010 	boolean_t	user_specified;
3011 	in6_addr_t	v6addr;
3012 	ipaddr_t	v4addr;
3013 	uint_t	origipversion;
3014 	int	err;
3015 	queue_t *q = tcp->tcp_wq;
3016 	conn_t	*connp = tcp->tcp_connp;
3017 	mlp_type_t addrtype, mlptype;
3018 	zone_t	*zone;
3019 	cred_t	*cr;
3020 	in_port_t mlp_port;
3021 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3022 
3023 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
3024 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) {
3025 		if (tcp->tcp_debug) {
3026 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
3027 			    "tcp_bind: bad req, len %u",
3028 			    (uint_t)(mp->b_wptr - mp->b_rptr));
3029 		}
3030 		tcp_err_ack(tcp, mp, TPROTO, 0);
3031 		return;
3032 	}
3033 	/* Make sure the largest address fits */
3034 	mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t) + 1, 1);
3035 	if (mp1 == NULL) {
3036 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
3037 		return;
3038 	}
3039 	mp = mp1;
3040 	tbr = (struct T_bind_req *)mp->b_rptr;
3041 	if (tcp->tcp_state >= TCPS_BOUND) {
3042 		if ((tcp->tcp_state == TCPS_BOUND ||
3043 		    tcp->tcp_state == TCPS_LISTEN) &&
3044 		    tcp->tcp_conn_req_max != tbr->CONIND_number &&
3045 		    tbr->CONIND_number > 0) {
3046 			/*
3047 			 * Handle listen() increasing CONIND_number.
3048 			 * This is more "liberal" then what the TPI spec
3049 			 * requires but is needed to avoid a t_unbind
3050 			 * when handling listen() since the port number
3051 			 * might be "stolen" between the unbind and bind.
3052 			 */
3053 			backlog_update = B_TRUE;
3054 			goto do_bind;
3055 		}
3056 		if (tcp->tcp_debug) {
3057 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
3058 			    "tcp_bind: bad state, %d", tcp->tcp_state);
3059 		}
3060 		tcp_err_ack(tcp, mp, TOUTSTATE, 0);
3061 		return;
3062 	}
3063 	origipversion = tcp->tcp_ipversion;
3064 
3065 	switch (tbr->ADDR_length) {
3066 	case 0:			/* request for a generic port */
3067 		tbr->ADDR_offset = sizeof (struct T_bind_req);
3068 		if (tcp->tcp_family == AF_INET) {
3069 			tbr->ADDR_length = sizeof (sin_t);
3070 			sin = (sin_t *)&tbr[1];
3071 			*sin = sin_null;
3072 			sin->sin_family = AF_INET;
3073 			mp->b_wptr = (uchar_t *)&sin[1];
3074 			tcp->tcp_ipversion = IPV4_VERSION;
3075 			IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &v6addr);
3076 		} else {
3077 			ASSERT(tcp->tcp_family == AF_INET6);
3078 			tbr->ADDR_length = sizeof (sin6_t);
3079 			sin6 = (sin6_t *)&tbr[1];
3080 			*sin6 = sin6_null;
3081 			sin6->sin6_family = AF_INET6;
3082 			mp->b_wptr = (uchar_t *)&sin6[1];
3083 			tcp->tcp_ipversion = IPV6_VERSION;
3084 			V6_SET_ZERO(v6addr);
3085 		}
3086 		requested_port = 0;
3087 		break;
3088 
3089 	case sizeof (sin_t):	/* Complete IPv4 address */
3090 		sin = (sin_t *)mi_offset_param(mp, tbr->ADDR_offset,
3091 		    sizeof (sin_t));
3092 		if (sin == NULL || !OK_32PTR((char *)sin)) {
3093 			if (tcp->tcp_debug) {
3094 				(void) strlog(TCP_MOD_ID, 0, 1,
3095 				    SL_ERROR|SL_TRACE,
3096 				    "tcp_bind: bad address parameter, "
3097 				    "offset %d, len %d",
3098 				    tbr->ADDR_offset, tbr->ADDR_length);
3099 			}
3100 			tcp_err_ack(tcp, mp, TPROTO, 0);
3101 			return;
3102 		}
3103 		/*
3104 		 * With sockets sockfs will accept bogus sin_family in
3105 		 * bind() and replace it with the family used in the socket
3106 		 * call.
3107 		 */
3108 		if (sin->sin_family != AF_INET ||
3109 		    tcp->tcp_family != AF_INET) {
3110 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
3111 			return;
3112 		}
3113 		requested_port = ntohs(sin->sin_port);
3114 		tcp->tcp_ipversion = IPV4_VERSION;
3115 		v4addr = sin->sin_addr.s_addr;
3116 		IN6_IPADDR_TO_V4MAPPED(v4addr, &v6addr);
3117 		break;
3118 
3119 	case sizeof (sin6_t): /* Complete IPv6 address */
3120 		sin6 = (sin6_t *)mi_offset_param(mp,
3121 		    tbr->ADDR_offset, sizeof (sin6_t));
3122 		if (sin6 == NULL || !OK_32PTR((char *)sin6)) {
3123 			if (tcp->tcp_debug) {
3124 				(void) strlog(TCP_MOD_ID, 0, 1,
3125 				    SL_ERROR|SL_TRACE,
3126 				    "tcp_bind: bad IPv6 address parameter, "
3127 				    "offset %d, len %d", tbr->ADDR_offset,
3128 				    tbr->ADDR_length);
3129 			}
3130 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
3131 			return;
3132 		}
3133 		if (sin6->sin6_family != AF_INET6 ||
3134 		    tcp->tcp_family != AF_INET6) {
3135 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
3136 			return;
3137 		}
3138 		requested_port = ntohs(sin6->sin6_port);
3139 		tcp->tcp_ipversion = IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr) ?
3140 		    IPV4_VERSION : IPV6_VERSION;
3141 		v6addr = sin6->sin6_addr;
3142 		break;
3143 
3144 	default:
3145 		if (tcp->tcp_debug) {
3146 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
3147 			    "tcp_bind: bad address length, %d",
3148 			    tbr->ADDR_length);
3149 		}
3150 		tcp_err_ack(tcp, mp, TBADADDR, 0);
3151 		return;
3152 	}
3153 	tcp->tcp_bound_source_v6 = v6addr;
3154 
3155 	/* Check for change in ipversion */
3156 	if (origipversion != tcp->tcp_ipversion) {
3157 		ASSERT(tcp->tcp_family == AF_INET6);
3158 		err = tcp->tcp_ipversion == IPV6_VERSION ?
3159 		    tcp_header_init_ipv6(tcp) : tcp_header_init_ipv4(tcp);
3160 		if (err) {
3161 			tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
3162 			return;
3163 		}
3164 	}
3165 
3166 	/*
3167 	 * Initialize family specific fields. Copy of the src addr.
3168 	 * in tcp_t is needed for the lookup funcs.
3169 	 */
3170 	if (tcp->tcp_ipversion == IPV6_VERSION) {
3171 		tcp->tcp_ip6h->ip6_src = v6addr;
3172 	} else {
3173 		IN6_V4MAPPED_TO_IPADDR(&v6addr, tcp->tcp_ipha->ipha_src);
3174 	}
3175 	tcp->tcp_ip_src_v6 = v6addr;
3176 
3177 	/*
3178 	 * For O_T_BIND_REQ:
3179 	 * Verify that the target port/addr is available, or choose
3180 	 * another.
3181 	 * For  T_BIND_REQ:
3182 	 * Verify that the target port/addr is available or fail.
3183 	 * In both cases when it succeeds the tcp is inserted in the
3184 	 * bind hash table. This ensures that the operation is atomic
3185 	 * under the lock on the hash bucket.
3186 	 */
3187 	bind_to_req_port_only = requested_port != 0 &&
3188 	    tbr->PRIM_type != O_T_BIND_REQ;
3189 	/*
3190 	 * Get a valid port (within the anonymous range and should not
3191 	 * be a privileged one) to use if the user has not given a port.
3192 	 * If multiple threads are here, they may all start with
3193 	 * with the same initial port. But, it should be fine as long as
3194 	 * tcp_bindi will ensure that no two threads will be assigned
3195 	 * the same port.
3196 	 *
3197 	 * NOTE: XXX If a privileged process asks for an anonymous port, we
3198 	 * still check for ports only in the range > tcp_smallest_non_priv_port,
3199 	 * unless TCP_ANONPRIVBIND option is set.
3200 	 */
3201 	mlptype = mlptSingle;
3202 	mlp_port = requested_port;
3203 	if (requested_port == 0) {
3204 		requested_port = tcp->tcp_anon_priv_bind ?
3205 		    tcp_get_next_priv_port(tcp) :
3206 		    tcp_update_next_port(tcps->tcps_next_port_to_try,
3207 		    tcp, B_TRUE);
3208 		if (requested_port == 0) {
3209 			tcp_err_ack(tcp, mp, TNOADDR, 0);
3210 			return;
3211 		}
3212 		user_specified = B_FALSE;
3213 
3214 		/*
3215 		 * If the user went through one of the RPC interfaces to create
3216 		 * this socket and RPC is MLP in this zone, then give him an
3217 		 * anonymous MLP.
3218 		 */
3219 		cr = DB_CREDDEF(mp, tcp->tcp_cred);
3220 		if (connp->conn_anon_mlp && is_system_labeled()) {
3221 			zone = crgetzone(cr);
3222 			addrtype = tsol_mlp_addr_type(zone->zone_id,
3223 			    IPV6_VERSION, &v6addr,
3224 			    tcps->tcps_netstack->netstack_ip);
3225 			if (addrtype == mlptSingle) {
3226 				tcp_err_ack(tcp, mp, TNOADDR, 0);
3227 				return;
3228 			}
3229 			mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP,
3230 			    PMAPPORT, addrtype);
3231 			mlp_port = PMAPPORT;
3232 		}
3233 	} else {
3234 		int i;
3235 		boolean_t priv = B_FALSE;
3236 
3237 		/*
3238 		 * If the requested_port is in the well-known privileged range,
3239 		 * verify that the stream was opened by a privileged user.
3240 		 * Note: No locks are held when inspecting tcp_g_*epriv_ports
3241 		 * but instead the code relies on:
3242 		 * - the fact that the address of the array and its size never
3243 		 *   changes
3244 		 * - the atomic assignment of the elements of the array
3245 		 */
3246 		cr = DB_CREDDEF(mp, tcp->tcp_cred);
3247 		if (requested_port < tcps->tcps_smallest_nonpriv_port) {
3248 			priv = B_TRUE;
3249 		} else {
3250 			for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
3251 				if (requested_port ==
3252 				    tcps->tcps_g_epriv_ports[i]) {
3253 					priv = B_TRUE;
3254 					break;
3255 				}
3256 			}
3257 		}
3258 		if (priv) {
3259 			if (secpolicy_net_privaddr(cr, requested_port,
3260 			    IPPROTO_TCP) != 0) {
3261 				if (tcp->tcp_debug) {
3262 					(void) strlog(TCP_MOD_ID, 0, 1,
3263 					    SL_ERROR|SL_TRACE,
3264 					    "tcp_bind: no priv for port %d",
3265 					    requested_port);
3266 				}
3267 				tcp_err_ack(tcp, mp, TACCES, 0);
3268 				return;
3269 			}
3270 		}
3271 		user_specified = B_TRUE;
3272 
3273 		if (is_system_labeled()) {
3274 			zone = crgetzone(cr);
3275 			addrtype = tsol_mlp_addr_type(zone->zone_id,
3276 			    IPV6_VERSION, &v6addr,
3277 			    tcps->tcps_netstack->netstack_ip);
3278 			if (addrtype == mlptSingle) {
3279 				tcp_err_ack(tcp, mp, TNOADDR, 0);
3280 				return;
3281 			}
3282 			mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP,
3283 			    requested_port, addrtype);
3284 		}
3285 	}
3286 
3287 	if (mlptype != mlptSingle) {
3288 		if (secpolicy_net_bindmlp(cr) != 0) {
3289 			if (tcp->tcp_debug) {
3290 				(void) strlog(TCP_MOD_ID, 0, 1,
3291 				    SL_ERROR|SL_TRACE,
3292 				    "tcp_bind: no priv for multilevel port %d",
3293 				    requested_port);
3294 			}
3295 			tcp_err_ack(tcp, mp, TACCES, 0);
3296 			return;
3297 		}
3298 
3299 		/*
3300 		 * If we're specifically binding a shared IP address and the
3301 		 * port is MLP on shared addresses, then check to see if this
3302 		 * zone actually owns the MLP.  Reject if not.
3303 		 */
3304 		if (mlptype == mlptShared && addrtype == mlptShared) {
3305 			/*
3306 			 * No need to handle exclusive-stack zones since
3307 			 * ALL_ZONES only applies to the shared stack.
3308 			 */
3309 			zoneid_t mlpzone;
3310 
3311 			mlpzone = tsol_mlp_findzone(IPPROTO_TCP,
3312 			    htons(mlp_port));
3313 			if (connp->conn_zoneid != mlpzone) {
3314 				if (tcp->tcp_debug) {
3315 					(void) strlog(TCP_MOD_ID, 0, 1,
3316 					    SL_ERROR|SL_TRACE,
3317 					    "tcp_bind: attempt to bind port "
3318 					    "%d on shared addr in zone %d "
3319 					    "(should be %d)",
3320 					    mlp_port, connp->conn_zoneid,
3321 					    mlpzone);
3322 				}
3323 				tcp_err_ack(tcp, mp, TACCES, 0);
3324 				return;
3325 			}
3326 		}
3327 
3328 		if (!user_specified) {
3329 			err = tsol_mlp_anon(zone, mlptype, connp->conn_ulp,
3330 			    requested_port, B_TRUE);
3331 			if (err != 0) {
3332 				if (tcp->tcp_debug) {
3333 					(void) strlog(TCP_MOD_ID, 0, 1,
3334 					    SL_ERROR|SL_TRACE,
3335 					    "tcp_bind: cannot establish anon "
3336 					    "MLP for port %d",
3337 					    requested_port);
3338 				}
3339 				tcp_err_ack(tcp, mp, TSYSERR, err);
3340 				return;
3341 			}
3342 			connp->conn_anon_port = B_TRUE;
3343 		}
3344 		connp->conn_mlp_type = mlptype;
3345 	}
3346 
3347 	allocated_port = tcp_bindi(tcp, requested_port, &v6addr,
3348 	    tcp->tcp_reuseaddr, B_FALSE, bind_to_req_port_only, user_specified);
3349 
3350 	if (allocated_port == 0) {
3351 		connp->conn_mlp_type = mlptSingle;
3352 		if (connp->conn_anon_port) {
3353 			connp->conn_anon_port = B_FALSE;
3354 			(void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp,
3355 			    requested_port, B_FALSE);
3356 		}
3357 		if (bind_to_req_port_only) {
3358 			if (tcp->tcp_debug) {
3359 				(void) strlog(TCP_MOD_ID, 0, 1,
3360 				    SL_ERROR|SL_TRACE,
3361 				    "tcp_bind: requested addr busy");
3362 			}
3363 			tcp_err_ack(tcp, mp, TADDRBUSY, 0);
3364 		} else {
3365 			/* If we are out of ports, fail the bind. */
3366 			if (tcp->tcp_debug) {
3367 				(void) strlog(TCP_MOD_ID, 0, 1,
3368 				    SL_ERROR|SL_TRACE,
3369 				    "tcp_bind: out of ports?");
3370 			}
3371 			tcp_err_ack(tcp, mp, TNOADDR, 0);
3372 		}
3373 		return;
3374 	}
3375 	ASSERT(tcp->tcp_state == TCPS_BOUND);
3376 do_bind:
3377 	if (!backlog_update) {
3378 		if (tcp->tcp_family == AF_INET)
3379 			sin->sin_port = htons(allocated_port);
3380 		else
3381 			sin6->sin6_port = htons(allocated_port);
3382 	}
3383 	if (tcp->tcp_family == AF_INET) {
3384 		if (tbr->CONIND_number != 0) {
3385 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type,
3386 			    sizeof (sin_t));
3387 		} else {
3388 			/* Just verify the local IP address */
3389 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, IP_ADDR_LEN);
3390 		}
3391 	} else {
3392 		if (tbr->CONIND_number != 0) {
3393 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type,
3394 			    sizeof (sin6_t));
3395 		} else {
3396 			/* Just verify the local IP address */
3397 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type,
3398 			    IPV6_ADDR_LEN);
3399 		}
3400 	}
3401 	if (mp1 == NULL) {
3402 		if (connp->conn_anon_port) {
3403 			connp->conn_anon_port = B_FALSE;
3404 			(void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp,
3405 			    requested_port, B_FALSE);
3406 		}
3407 		connp->conn_mlp_type = mlptSingle;
3408 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
3409 		return;
3410 	}
3411 
3412 	tbr->PRIM_type = T_BIND_ACK;
3413 	mp->b_datap->db_type = M_PCPROTO;
3414 
3415 	/* Chain in the reply mp for tcp_rput() */
3416 	mp1->b_cont = mp;
3417 	mp = mp1;
3418 
3419 	tcp->tcp_conn_req_max = tbr->CONIND_number;
3420 	if (tcp->tcp_conn_req_max) {
3421 		if (tcp->tcp_conn_req_max < tcps->tcps_conn_req_min)
3422 			tcp->tcp_conn_req_max = tcps->tcps_conn_req_min;
3423 		if (tcp->tcp_conn_req_max > tcps->tcps_conn_req_max_q)
3424 			tcp->tcp_conn_req_max = tcps->tcps_conn_req_max_q;
3425 		/*
3426 		 * If this is a listener, do not reset the eager list
3427 		 * and other stuffs.  Note that we don't check if the
3428 		 * existing eager list meets the new tcp_conn_req_max
3429 		 * requirement.
3430 		 */
3431 		if (tcp->tcp_state != TCPS_LISTEN) {
3432 			tcp->tcp_state = TCPS_LISTEN;
3433 			/* Initialize the chain. Don't need the eager_lock */
3434 			tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
3435 			tcp->tcp_eager_next_drop_q0 = tcp;
3436 			tcp->tcp_eager_prev_drop_q0 = tcp;
3437 			tcp->tcp_second_ctimer_threshold =
3438 			    tcps->tcps_ip_abort_linterval;
3439 		}
3440 	}
3441 
3442 	/*
3443 	 * We can call ip_bind directly which returns a T_BIND_ACK mp. The
3444 	 * processing continues in tcp_rput_other().
3445 	 *
3446 	 * We need to make sure that the conn_recv is set to a non-null
3447 	 * value before we insert the conn into the classifier table.
3448 	 * This is to avoid a race with an incoming packet which does an
3449 	 * ipcl_classify().
3450 	 */
3451 	connp->conn_recv = tcp_conn_request;
3452 	if (tcp->tcp_family == AF_INET6) {
3453 		ASSERT(tcp->tcp_connp->conn_af_isv6);
3454 		mp = ip_bind_v6(q, mp, tcp->tcp_connp, &tcp->tcp_sticky_ipp);
3455 	} else {
3456 		ASSERT(!tcp->tcp_connp->conn_af_isv6);
3457 		mp = ip_bind_v4(q, mp, tcp->tcp_connp);
3458 	}
3459 	/*
3460 	 * If the bind cannot complete immediately
3461 	 * IP will arrange to call tcp_rput_other
3462 	 * when the bind completes.
3463 	 */
3464 	if (mp != NULL) {
3465 		tcp_rput_other(tcp, mp);
3466 	} else {
3467 		/*
3468 		 * Bind will be resumed later. Need to ensure
3469 		 * that conn doesn't disappear when that happens.
3470 		 * This will be decremented in ip_resume_tcp_bind().
3471 		 */
3472 		CONN_INC_REF(tcp->tcp_connp);
3473 	}
3474 }
3475 
3476 
3477 /*
3478  * If the "bind_to_req_port_only" parameter is set, if the requested port
3479  * number is available, return it, If not return 0
3480  *
3481  * If "bind_to_req_port_only" parameter is not set and
3482  * If the requested port number is available, return it.  If not, return
3483  * the first anonymous port we happen across.  If no anonymous ports are
3484  * available, return 0. addr is the requested local address, if any.
3485  *
3486  * In either case, when succeeding update the tcp_t to record the port number
3487  * and insert it in the bind hash table.
3488  *
3489  * Note that TCP over IPv4 and IPv6 sockets can use the same port number
3490  * without setting SO_REUSEADDR. This is needed so that they
3491  * can be viewed as two independent transport protocols.
3492  */
3493 static in_port_t
3494 tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr,
3495     int reuseaddr, boolean_t quick_connect,
3496     boolean_t bind_to_req_port_only, boolean_t user_specified)
3497 {
3498 	/* number of times we have run around the loop */
3499 	int count = 0;
3500 	/* maximum number of times to run around the loop */
3501 	int loopmax;
3502 	conn_t *connp = tcp->tcp_connp;
3503 	zoneid_t zoneid = connp->conn_zoneid;
3504 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3505 
3506 	/*
3507 	 * Lookup for free addresses is done in a loop and "loopmax"
3508 	 * influences how long we spin in the loop
3509 	 */
3510 	if (bind_to_req_port_only) {
3511 		/*
3512 		 * If the requested port is busy, don't bother to look
3513 		 * for a new one. Setting loop maximum count to 1 has
3514 		 * that effect.
3515 		 */
3516 		loopmax = 1;
3517 	} else {
3518 		/*
3519 		 * If the requested port is busy, look for a free one
3520 		 * in the anonymous port range.
3521 		 * Set loopmax appropriately so that one does not look
3522 		 * forever in the case all of the anonymous ports are in use.
3523 		 */
3524 		if (tcp->tcp_anon_priv_bind) {
3525 			/*
3526 			 * loopmax =
3527 			 * 	(IPPORT_RESERVED-1) - tcp_min_anonpriv_port + 1
3528 			 */
3529 			loopmax = IPPORT_RESERVED -
3530 			    tcps->tcps_min_anonpriv_port;
3531 		} else {
3532 			loopmax = (tcps->tcps_largest_anon_port -
3533 			    tcps->tcps_smallest_anon_port + 1);
3534 		}
3535 	}
3536 	do {
3537 		uint16_t	lport;
3538 		tf_t		*tbf;
3539 		tcp_t		*ltcp;
3540 		conn_t		*lconnp;
3541 
3542 		lport = htons(port);
3543 
3544 		/*
3545 		 * Ensure that the tcp_t is not currently in the bind hash.
3546 		 * Hold the lock on the hash bucket to ensure that
3547 		 * the duplicate check plus the insertion is an atomic
3548 		 * operation.
3549 		 *
3550 		 * This function does an inline lookup on the bind hash list
3551 		 * Make sure that we access only members of tcp_t
3552 		 * and that we don't look at tcp_tcp, since we are not
3553 		 * doing a CONN_INC_REF.
3554 		 */
3555 		tcp_bind_hash_remove(tcp);
3556 		tbf = &tcps->tcps_bind_fanout[TCP_BIND_HASH(lport)];
3557 		mutex_enter(&tbf->tf_lock);
3558 		for (ltcp = tbf->tf_tcp; ltcp != NULL;
3559 		    ltcp = ltcp->tcp_bind_hash) {
3560 			boolean_t not_socket;
3561 			boolean_t exclbind;
3562 
3563 			if (lport != ltcp->tcp_lport)
3564 				continue;
3565 
3566 			lconnp = ltcp->tcp_connp;
3567 
3568 			/*
3569 			 * On a labeled system, we must treat bindings to ports
3570 			 * on shared IP addresses by sockets with MAC exemption
3571 			 * privilege as being in all zones, as there's
3572 			 * otherwise no way to identify the right receiver.
3573 			 */
3574 			if (!(IPCL_ZONE_MATCH(ltcp->tcp_connp, zoneid) ||
3575 			    IPCL_ZONE_MATCH(connp,
3576 			    ltcp->tcp_connp->conn_zoneid)) &&
3577 			    !lconnp->conn_mac_exempt &&
3578 			    !connp->conn_mac_exempt)
3579 				continue;
3580 
3581 			/*
3582 			 * If TCP_EXCLBIND is set for either the bound or
3583 			 * binding endpoint, the semantics of bind
3584 			 * is changed according to the following.
3585 			 *
3586 			 * spec = specified address (v4 or v6)
3587 			 * unspec = unspecified address (v4 or v6)
3588 			 * A = specified addresses are different for endpoints
3589 			 *
3590 			 * bound	bind to		allowed
3591 			 * -------------------------------------
3592 			 * unspec	unspec		no
3593 			 * unspec	spec		no
3594 			 * spec		unspec		no
3595 			 * spec		spec		yes if A
3596 			 *
3597 			 * For labeled systems, SO_MAC_EXEMPT behaves the same
3598 			 * as TCP_EXCLBIND, except that zoneid is ignored.
3599 			 *
3600 			 * Note:
3601 			 *
3602 			 * 1. Because of TLI semantics, an endpoint can go
3603 			 * back from, say TCP_ESTABLISHED to TCPS_LISTEN or
3604 			 * TCPS_BOUND, depending on whether it is originally
3605 			 * a listener or not.  That is why we need to check
3606 			 * for states greater than or equal to TCPS_BOUND
3607 			 * here.
3608 			 *
3609 			 * 2. Ideally, we should only check for state equals
3610 			 * to TCPS_LISTEN. And the following check should be
3611 			 * added.
3612 			 *
3613 			 * if (ltcp->tcp_state == TCPS_LISTEN ||
3614 			 *	!reuseaddr || !ltcp->tcp_reuseaddr) {
3615 			 *		...
3616 			 * }
3617 			 *
3618 			 * The semantics will be changed to this.  If the
3619 			 * endpoint on the list is in state not equal to
3620 			 * TCPS_LISTEN and both endpoints have SO_REUSEADDR
3621 			 * set, let the bind succeed.
3622 			 *
3623 			 * Because of (1), we cannot do that for TLI
3624 			 * endpoints.  But we can do that for socket endpoints.
3625 			 * If in future, we can change this going back
3626 			 * semantics, we can use the above check for TLI also.
3627 			 */
3628 			not_socket = !(TCP_IS_SOCKET(ltcp) &&
3629 			    TCP_IS_SOCKET(tcp));
3630 			exclbind = ltcp->tcp_exclbind || tcp->tcp_exclbind;
3631 
3632 			if (lconnp->conn_mac_exempt || connp->conn_mac_exempt ||
3633 			    (exclbind && (not_socket ||
3634 			    ltcp->tcp_state <= TCPS_ESTABLISHED))) {
3635 				if (V6_OR_V4_INADDR_ANY(
3636 				    ltcp->tcp_bound_source_v6) ||
3637 				    V6_OR_V4_INADDR_ANY(*laddr) ||
3638 				    IN6_ARE_ADDR_EQUAL(laddr,
3639 				    &ltcp->tcp_bound_source_v6)) {
3640 					break;
3641 				}
3642 				continue;
3643 			}
3644 
3645 			/*
3646 			 * Check ipversion to allow IPv4 and IPv6 sockets to
3647 			 * have disjoint port number spaces, if *_EXCLBIND
3648 			 * is not set and only if the application binds to a
3649 			 * specific port. We use the same autoassigned port
3650 			 * number space for IPv4 and IPv6 sockets.
3651 			 */
3652 			if (tcp->tcp_ipversion != ltcp->tcp_ipversion &&
3653 			    bind_to_req_port_only)
3654 				continue;
3655 
3656 			/*
3657 			 * Ideally, we should make sure that the source
3658 			 * address, remote address, and remote port in the
3659 			 * four tuple for this tcp-connection is unique.
3660 			 * However, trying to find out the local source
3661 			 * address would require too much code duplication
3662 			 * with IP, since IP needs needs to have that code
3663 			 * to support userland TCP implementations.
3664 			 */
3665 			if (quick_connect &&
3666 			    (ltcp->tcp_state > TCPS_LISTEN) &&
3667 			    ((tcp->tcp_fport != ltcp->tcp_fport) ||
3668 			    !IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6,
3669 			    &ltcp->tcp_remote_v6)))
3670 				continue;
3671 
3672 			if (!reuseaddr) {
3673 				/*
3674 				 * No socket option SO_REUSEADDR.
3675 				 * If existing port is bound to
3676 				 * a non-wildcard IP address
3677 				 * and the requesting stream is
3678 				 * bound to a distinct
3679 				 * different IP addresses
3680 				 * (non-wildcard, also), keep
3681 				 * going.
3682 				 */
3683 				if (!V6_OR_V4_INADDR_ANY(*laddr) &&
3684 				    !V6_OR_V4_INADDR_ANY(
3685 				    ltcp->tcp_bound_source_v6) &&
3686 				    !IN6_ARE_ADDR_EQUAL(laddr,
3687 				    &ltcp->tcp_bound_source_v6))
3688 					continue;
3689 				if (ltcp->tcp_state >= TCPS_BOUND) {
3690 					/*
3691 					 * This port is being used and
3692 					 * its state is >= TCPS_BOUND,
3693 					 * so we can't bind to it.
3694 					 */
3695 					break;
3696 				}
3697 			} else {
3698 				/*
3699 				 * socket option SO_REUSEADDR is set on the
3700 				 * binding tcp_t.
3701 				 *
3702 				 * If two streams are bound to
3703 				 * same IP address or both addr
3704 				 * and bound source are wildcards
3705 				 * (INADDR_ANY), we want to stop
3706 				 * searching.
3707 				 * We have found a match of IP source
3708 				 * address and source port, which is
3709 				 * refused regardless of the
3710 				 * SO_REUSEADDR setting, so we break.
3711 				 */
3712 				if (IN6_ARE_ADDR_EQUAL(laddr,
3713 				    &ltcp->tcp_bound_source_v6) &&
3714 				    (ltcp->tcp_state == TCPS_LISTEN ||
3715 				    ltcp->tcp_state == TCPS_BOUND))
3716 					break;
3717 			}
3718 		}
3719 		if (ltcp != NULL) {
3720 			/* The port number is busy */
3721 			mutex_exit(&tbf->tf_lock);
3722 		} else {
3723 			/*
3724 			 * This port is ours. Insert in fanout and mark as
3725 			 * bound to prevent others from getting the port
3726 			 * number.
3727 			 */
3728 			tcp->tcp_state = TCPS_BOUND;
3729 			tcp->tcp_lport = htons(port);
3730 			*(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport;
3731 
3732 			ASSERT(&tcps->tcps_bind_fanout[TCP_BIND_HASH(
3733 			    tcp->tcp_lport)] == tbf);
3734 			tcp_bind_hash_insert(tbf, tcp, 1);
3735 
3736 			mutex_exit(&tbf->tf_lock);
3737 
3738 			/*
3739 			 * We don't want tcp_next_port_to_try to "inherit"
3740 			 * a port number supplied by the user in a bind.
3741 			 */
3742 			if (user_specified)
3743 				return (port);
3744 
3745 			/*
3746 			 * This is the only place where tcp_next_port_to_try
3747 			 * is updated. After the update, it may or may not
3748 			 * be in the valid range.
3749 			 */
3750 			if (!tcp->tcp_anon_priv_bind)
3751 				tcps->tcps_next_port_to_try = port + 1;
3752 			return (port);
3753 		}
3754 
3755 		if (tcp->tcp_anon_priv_bind) {
3756 			port = tcp_get_next_priv_port(tcp);
3757 		} else {
3758 			if (count == 0 && user_specified) {
3759 				/*
3760 				 * We may have to return an anonymous port. So
3761 				 * get one to start with.
3762 				 */
3763 				port =
3764 				    tcp_update_next_port(
3765 				    tcps->tcps_next_port_to_try,
3766 				    tcp, B_TRUE);
3767 				user_specified = B_FALSE;
3768 			} else {
3769 				port = tcp_update_next_port(port + 1, tcp,
3770 				    B_FALSE);
3771 			}
3772 		}
3773 		if (port == 0)
3774 			break;
3775 
3776 		/*
3777 		 * Don't let this loop run forever in the case where
3778 		 * all of the anonymous ports are in use.
3779 		 */
3780 	} while (++count < loopmax);
3781 	return (0);
3782 }
3783 
3784 /*
3785  * tcp_clean_death / tcp_close_detached must not be called more than once
3786  * on a tcp. Thus every function that potentially calls tcp_clean_death
3787  * must check for the tcp state before calling tcp_clean_death.
3788  * Eg. tcp_input, tcp_rput_data, tcp_eager_kill, tcp_clean_death_wrapper,
3789  * tcp_timer_handler, all check for the tcp state.
3790  */
3791 /* ARGSUSED */
3792 void
3793 tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2)
3794 {
3795 	tcp_t	*tcp = ((conn_t *)arg)->conn_tcp;
3796 
3797 	freemsg(mp);
3798 	if (tcp->tcp_state > TCPS_BOUND)
3799 		(void) tcp_clean_death(((conn_t *)arg)->conn_tcp,
3800 		    ETIMEDOUT, 5);
3801 }
3802 
3803 /*
3804  * We are dying for some reason.  Try to do it gracefully.  (May be called
3805  * as writer.)
3806  *
3807  * Return -1 if the structure was not cleaned up (if the cleanup had to be
3808  * done by a service procedure).
3809  * TBD - Should the return value distinguish between the tcp_t being
3810  * freed and it being reinitialized?
3811  */
3812 static int
3813 tcp_clean_death(tcp_t *tcp, int err, uint8_t tag)
3814 {
3815 	mblk_t	*mp;
3816 	queue_t	*q;
3817 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3818 	sodirect_t	*sodp;
3819 
3820 	TCP_CLD_STAT(tag);
3821 
3822 #if TCP_TAG_CLEAN_DEATH
3823 	tcp->tcp_cleandeathtag = tag;
3824 #endif
3825 
3826 	if (tcp->tcp_fused)
3827 		tcp_unfuse(tcp);
3828 
3829 	if (tcp->tcp_linger_tid != 0 &&
3830 	    TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) {
3831 		tcp_stop_lingering(tcp);
3832 	}
3833 
3834 	ASSERT(tcp != NULL);
3835 	ASSERT((tcp->tcp_family == AF_INET &&
3836 	    tcp->tcp_ipversion == IPV4_VERSION) ||
3837 	    (tcp->tcp_family == AF_INET6 &&
3838 	    (tcp->tcp_ipversion == IPV4_VERSION ||
3839 	    tcp->tcp_ipversion == IPV6_VERSION)));
3840 
3841 	if (TCP_IS_DETACHED(tcp)) {
3842 		if (tcp->tcp_hard_binding) {
3843 			/*
3844 			 * Its an eager that we are dealing with. We close the
3845 			 * eager but in case a conn_ind has already gone to the
3846 			 * listener, let tcp_accept_finish() send a discon_ind
3847 			 * to the listener and drop the last reference. If the
3848 			 * listener doesn't even know about the eager i.e. the
3849 			 * conn_ind hasn't gone up, blow away the eager and drop
3850 			 * the last reference as well. If the conn_ind has gone
3851 			 * up, state should be BOUND. tcp_accept_finish
3852 			 * will figure out that the connection has received a
3853 			 * RST and will send a DISCON_IND to the application.
3854 			 */
3855 			tcp_closei_local(tcp);
3856 			if (!tcp->tcp_tconnind_started) {
3857 				CONN_DEC_REF(tcp->tcp_connp);
3858 			} else {
3859 				tcp->tcp_state = TCPS_BOUND;
3860 			}
3861 		} else {
3862 			tcp_close_detached(tcp);
3863 		}
3864 		return (0);
3865 	}
3866 
3867 	TCP_STAT(tcps, tcp_clean_death_nondetached);
3868 
3869 	/* If sodirect, not anymore */
3870 	SOD_PTR_ENTER(tcp, sodp);
3871 	if (sodp != NULL) {
3872 		tcp->tcp_sodirect = NULL;
3873 		mutex_exit(sodp->sod_lockp);
3874 	}
3875 
3876 	q = tcp->tcp_rq;
3877 
3878 	/* Trash all inbound data */
3879 	flushq(q, FLUSHALL);
3880 
3881 	/*
3882 	 * If we are at least part way open and there is error
3883 	 * (err==0 implies no error)
3884 	 * notify our client by a T_DISCON_IND.
3885 	 */
3886 	if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) {
3887 		if (tcp->tcp_state >= TCPS_ESTABLISHED &&
3888 		    !TCP_IS_SOCKET(tcp)) {
3889 			/*
3890 			 * Send M_FLUSH according to TPI. Because sockets will
3891 			 * (and must) ignore FLUSHR we do that only for TPI
3892 			 * endpoints and sockets in STREAMS mode.
3893 			 */
3894 			(void) putnextctl1(q, M_FLUSH, FLUSHR);
3895 		}
3896 		if (tcp->tcp_debug) {
3897 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
3898 			    "tcp_clean_death: discon err %d", err);
3899 		}
3900 		mp = mi_tpi_discon_ind(NULL, err, 0);
3901 		if (mp != NULL) {
3902 			putnext(q, mp);
3903 		} else {
3904 			if (tcp->tcp_debug) {
3905 				(void) strlog(TCP_MOD_ID, 0, 1,
3906 				    SL_ERROR|SL_TRACE,
3907 				    "tcp_clean_death, sending M_ERROR");
3908 			}
3909 			(void) putnextctl1(q, M_ERROR, EPROTO);
3910 		}
3911 		if (tcp->tcp_state <= TCPS_SYN_RCVD) {
3912 			/* SYN_SENT or SYN_RCVD */
3913 			BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails);
3914 		} else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) {
3915 			/* ESTABLISHED or CLOSE_WAIT */
3916 			BUMP_MIB(&tcps->tcps_mib, tcpEstabResets);
3917 		}
3918 	}
3919 
3920 	tcp_reinit(tcp);
3921 	return (-1);
3922 }
3923 
3924 /*
3925  * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout
3926  * to expire, stop the wait and finish the close.
3927  */
3928 static void
3929 tcp_stop_lingering(tcp_t *tcp)
3930 {
3931 	clock_t	delta = 0;
3932 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3933 
3934 	tcp->tcp_linger_tid = 0;
3935 	if (tcp->tcp_state > TCPS_LISTEN) {
3936 		tcp_acceptor_hash_remove(tcp);
3937 		mutex_enter(&tcp->tcp_non_sq_lock);
3938 		if (tcp->tcp_flow_stopped) {
3939 			tcp_clrqfull(tcp);
3940 		}
3941 		mutex_exit(&tcp->tcp_non_sq_lock);
3942 
3943 		if (tcp->tcp_timer_tid != 0) {
3944 			delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
3945 			tcp->tcp_timer_tid = 0;
3946 		}
3947 		/*
3948 		 * Need to cancel those timers which will not be used when
3949 		 * TCP is detached.  This has to be done before the tcp_wq
3950 		 * is set to the global queue.
3951 		 */
3952 		tcp_timers_stop(tcp);
3953 
3954 
3955 		tcp->tcp_detached = B_TRUE;
3956 		ASSERT(tcps->tcps_g_q != NULL);
3957 		tcp->tcp_rq = tcps->tcps_g_q;
3958 		tcp->tcp_wq = WR(tcps->tcps_g_q);
3959 
3960 		if (tcp->tcp_state == TCPS_TIME_WAIT) {
3961 			tcp_time_wait_append(tcp);
3962 			TCP_DBGSTAT(tcps, tcp_detach_time_wait);
3963 			goto finish;
3964 		}
3965 
3966 		/*
3967 		 * If delta is zero the timer event wasn't executed and was
3968 		 * successfully canceled. In this case we need to restart it
3969 		 * with the minimal delta possible.
3970 		 */
3971 		if (delta >= 0) {
3972 			tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer,
3973 			    delta ? delta : 1);
3974 		}
3975 	} else {
3976 		tcp_closei_local(tcp);
3977 		CONN_DEC_REF(tcp->tcp_connp);
3978 	}
3979 finish:
3980 	/* Signal closing thread that it can complete close */
3981 	mutex_enter(&tcp->tcp_closelock);
3982 	tcp->tcp_detached = B_TRUE;
3983 	ASSERT(tcps->tcps_g_q != NULL);
3984 	tcp->tcp_rq = tcps->tcps_g_q;
3985 	tcp->tcp_wq = WR(tcps->tcps_g_q);
3986 	tcp->tcp_closed = 1;
3987 	cv_signal(&tcp->tcp_closecv);
3988 	mutex_exit(&tcp->tcp_closelock);
3989 }
3990 
3991 /*
3992  * Handle lingering timeouts. This function is called when the SO_LINGER timeout
3993  * expires.
3994  */
3995 static void
3996 tcp_close_linger_timeout(void *arg)
3997 {
3998 	conn_t	*connp = (conn_t *)arg;
3999 	tcp_t 	*tcp = connp->conn_tcp;
4000 
4001 	tcp->tcp_client_errno = ETIMEDOUT;
4002 	tcp_stop_lingering(tcp);
4003 }
4004 
4005 static int
4006 tcp_close(queue_t *q, int flags)
4007 {
4008 	conn_t		*connp = Q_TO_CONN(q);
4009 	tcp_t		*tcp = connp->conn_tcp;
4010 	mblk_t 		*mp = &tcp->tcp_closemp;
4011 	boolean_t	conn_ioctl_cleanup_reqd = B_FALSE;
4012 	mblk_t		*bp;
4013 
4014 	ASSERT(WR(q)->q_next == NULL);
4015 	ASSERT(connp->conn_ref >= 2);
4016 
4017 	/*
4018 	 * We are being closed as /dev/tcp or /dev/tcp6.
4019 	 *
4020 	 * Mark the conn as closing. ill_pending_mp_add will not
4021 	 * add any mp to the pending mp list, after this conn has
4022 	 * started closing. Same for sq_pending_mp_add
4023 	 */
4024 	mutex_enter(&connp->conn_lock);
4025 	connp->conn_state_flags |= CONN_CLOSING;
4026 	if (connp->conn_oper_pending_ill != NULL)
4027 		conn_ioctl_cleanup_reqd = B_TRUE;
4028 	CONN_INC_REF_LOCKED(connp);
4029 	mutex_exit(&connp->conn_lock);
4030 	tcp->tcp_closeflags = (uint8_t)flags;
4031 	ASSERT(connp->conn_ref >= 3);
4032 
4033 	/*
4034 	 * tcp_closemp_used is used below without any protection of a lock
4035 	 * as we don't expect any one else to use it concurrently at this
4036 	 * point otherwise it would be a major defect.
4037 	 */
4038 
4039 	if (mp->b_prev == NULL)
4040 		tcp->tcp_closemp_used = B_TRUE;
4041 	else
4042 		cmn_err(CE_PANIC, "tcp_close: concurrent use of tcp_closemp: "
4043 		    "connp %p tcp %p\n", (void *)connp, (void *)tcp);
4044 
4045 	TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
4046 
4047 	(*tcp_squeue_close_proc)(connp->conn_sqp, mp,
4048 	    tcp_close_output, connp, SQTAG_IP_TCP_CLOSE);
4049 
4050 	mutex_enter(&tcp->tcp_closelock);
4051 	while (!tcp->tcp_closed) {
4052 		if (!cv_wait_sig(&tcp->tcp_closecv, &tcp->tcp_closelock)) {
4053 			/*
4054 			 * The cv_wait_sig() was interrupted. We now do the
4055 			 * following:
4056 			 *
4057 			 * 1) If the endpoint was lingering, we allow this
4058 			 * to be interrupted by cancelling the linger timeout
4059 			 * and closing normally.
4060 			 *
4061 			 * 2) Revert to calling cv_wait()
4062 			 *
4063 			 * We revert to using cv_wait() to avoid an
4064 			 * infinite loop which can occur if the calling
4065 			 * thread is higher priority than the squeue worker
4066 			 * thread and is bound to the same cpu.
4067 			 */
4068 			if (tcp->tcp_linger && tcp->tcp_lingertime > 0) {
4069 				mutex_exit(&tcp->tcp_closelock);
4070 				/* Entering squeue, bump ref count. */
4071 				CONN_INC_REF(connp);
4072 				bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL);
4073 				squeue_enter(connp->conn_sqp, bp,
4074 				    tcp_linger_interrupted, connp,
4075 				    SQTAG_IP_TCP_CLOSE);
4076 				mutex_enter(&tcp->tcp_closelock);
4077 			}
4078 			break;
4079 		}
4080 	}
4081 	while (!tcp->tcp_closed)
4082 		cv_wait(&tcp->tcp_closecv, &tcp->tcp_closelock);
4083 	mutex_exit(&tcp->tcp_closelock);
4084 
4085 	/*
4086 	 * In the case of listener streams that have eagers in the q or q0
4087 	 * we wait for the eagers to drop their reference to us. tcp_rq and
4088 	 * tcp_wq of the eagers point to our queues. By waiting for the
4089 	 * refcnt to drop to 1, we are sure that the eagers have cleaned
4090 	 * up their queue pointers and also dropped their references to us.
4091 	 */
4092 	if (tcp->tcp_wait_for_eagers) {
4093 		mutex_enter(&connp->conn_lock);
4094 		while (connp->conn_ref != 1) {
4095 			cv_wait(&connp->conn_cv, &connp->conn_lock);
4096 		}
4097 		mutex_exit(&connp->conn_lock);
4098 	}
4099 	/*
4100 	 * ioctl cleanup. The mp is queued in the
4101 	 * ill_pending_mp or in the sq_pending_mp.
4102 	 */
4103 	if (conn_ioctl_cleanup_reqd)
4104 		conn_ioctl_cleanup(connp);
4105 
4106 	qprocsoff(q);
4107 	inet_minor_free(connp->conn_minor_arena, connp->conn_dev);
4108 
4109 	tcp->tcp_cpid = -1;
4110 
4111 	/*
4112 	 * Drop IP's reference on the conn. This is the last reference
4113 	 * on the connp if the state was less than established. If the
4114 	 * connection has gone into timewait state, then we will have
4115 	 * one ref for the TCP and one more ref (total of two) for the
4116 	 * classifier connected hash list (a timewait connections stays
4117 	 * in connected hash till closed).
4118 	 *
4119 	 * We can't assert the references because there might be other
4120 	 * transient reference places because of some walkers or queued
4121 	 * packets in squeue for the timewait state.
4122 	 */
4123 	CONN_DEC_REF(connp);
4124 	q->q_ptr = WR(q)->q_ptr = NULL;
4125 	return (0);
4126 }
4127 
4128 static int
4129 tcpclose_accept(queue_t *q)
4130 {
4131 	vmem_t	*minor_arena;
4132 	dev_t	conn_dev;
4133 
4134 	ASSERT(WR(q)->q_qinfo == &tcp_acceptor_winit);
4135 
4136 	/*
4137 	 * We had opened an acceptor STREAM for sockfs which is
4138 	 * now being closed due to some error.
4139 	 */
4140 	qprocsoff(q);
4141 
4142 	minor_arena = (vmem_t *)WR(q)->q_ptr;
4143 	conn_dev = (dev_t)RD(q)->q_ptr;
4144 	ASSERT(minor_arena != NULL);
4145 	ASSERT(conn_dev != 0);
4146 	inet_minor_free(minor_arena, conn_dev);
4147 	q->q_ptr = WR(q)->q_ptr = NULL;
4148 	return (0);
4149 }
4150 
4151 /*
4152  * Called by tcp_close() routine via squeue when lingering is
4153  * interrupted by a signal.
4154  */
4155 
4156 /* ARGSUSED */
4157 static void
4158 tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2)
4159 {
4160 	conn_t	*connp = (conn_t *)arg;
4161 	tcp_t	*tcp = connp->conn_tcp;
4162 
4163 	freeb(mp);
4164 	if (tcp->tcp_linger_tid != 0 &&
4165 	    TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) {
4166 		tcp_stop_lingering(tcp);
4167 		tcp->tcp_client_errno = EINTR;
4168 	}
4169 }
4170 
4171 /*
4172  * Called by streams close routine via squeues when our client blows off her
4173  * descriptor, we take this to mean: "close the stream state NOW, close the tcp
4174  * connection politely" When SO_LINGER is set (with a non-zero linger time and
4175  * it is not a nonblocking socket) then this routine sleeps until the FIN is
4176  * acked.
4177  *
4178  * NOTE: tcp_close potentially returns error when lingering.
4179  * However, the stream head currently does not pass these errors
4180  * to the application. 4.4BSD only returns EINTR and EWOULDBLOCK
4181  * errors to the application (from tsleep()) and not errors
4182  * like ECONNRESET caused by receiving a reset packet.
4183  */
4184 
4185 /* ARGSUSED */
4186 static void
4187 tcp_close_output(void *arg, mblk_t *mp, void *arg2)
4188 {
4189 	char	*msg;
4190 	conn_t	*connp = (conn_t *)arg;
4191 	tcp_t	*tcp = connp->conn_tcp;
4192 	clock_t	delta = 0;
4193 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4194 
4195 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
4196 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
4197 
4198 	/* End point has closed this TCP, no need to send up T_ordrel_ind. */
4199 	if (tcp->tcp_ordrel_mp != NULL) {
4200 		freeb(tcp->tcp_ordrel_mp);
4201 		tcp->tcp_ordrel_mp = NULL;
4202 	}
4203 
4204 	mutex_enter(&tcp->tcp_eager_lock);
4205 	if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) {
4206 		/* Cleanup for listener */
4207 		tcp_eager_cleanup(tcp, 0);
4208 		tcp->tcp_wait_for_eagers = 1;
4209 	}
4210 	mutex_exit(&tcp->tcp_eager_lock);
4211 
4212 	connp->conn_mdt_ok = B_FALSE;
4213 	tcp->tcp_mdt = B_FALSE;
4214 
4215 	connp->conn_lso_ok = B_FALSE;
4216 	tcp->tcp_lso = B_FALSE;
4217 
4218 	msg = NULL;
4219 	switch (tcp->tcp_state) {
4220 	case TCPS_CLOSED:
4221 	case TCPS_IDLE:
4222 	case TCPS_BOUND:
4223 	case TCPS_LISTEN:
4224 		break;
4225 	case TCPS_SYN_SENT:
4226 		msg = "tcp_close, during connect";
4227 		break;
4228 	case TCPS_SYN_RCVD:
4229 		/*
4230 		 * Close during the connect 3-way handshake
4231 		 * but here there may or may not be pending data
4232 		 * already on queue. Process almost same as in
4233 		 * the ESTABLISHED state.
4234 		 */
4235 		/* FALLTHRU */
4236 	default:
4237 		if (tcp->tcp_sodirect != NULL) {
4238 			/* Ok, no more sodirect */
4239 			tcp->tcp_sodirect = NULL;
4240 		}
4241 
4242 		if (tcp->tcp_fused)
4243 			tcp_unfuse(tcp);
4244 
4245 		/*
4246 		 * If SO_LINGER has set a zero linger time, abort the
4247 		 * connection with a reset.
4248 		 */
4249 		if (tcp->tcp_linger && tcp->tcp_lingertime == 0) {
4250 			msg = "tcp_close, zero lingertime";
4251 			break;
4252 		}
4253 
4254 		ASSERT(tcp->tcp_hard_bound || tcp->tcp_hard_binding);
4255 		/*
4256 		 * Abort connection if there is unread data queued.
4257 		 */
4258 		if (tcp->tcp_rcv_list || tcp->tcp_reass_head) {
4259 			msg = "tcp_close, unread data";
4260 			break;
4261 		}
4262 		/*
4263 		 * tcp_hard_bound is now cleared thus all packets go through
4264 		 * tcp_lookup. This fact is used by tcp_detach below.
4265 		 *
4266 		 * We have done a qwait() above which could have possibly
4267 		 * drained more messages in turn causing transition to a
4268 		 * different state. Check whether we have to do the rest
4269 		 * of the processing or not.
4270 		 */
4271 		if (tcp->tcp_state <= TCPS_LISTEN)
4272 			break;
4273 
4274 		/*
4275 		 * Transmit the FIN before detaching the tcp_t.
4276 		 * After tcp_detach returns this queue/perimeter
4277 		 * no longer owns the tcp_t thus others can modify it.
4278 		 */
4279 		(void) tcp_xmit_end(tcp);
4280 
4281 		/*
4282 		 * If lingering on close then wait until the fin is acked,
4283 		 * the SO_LINGER time passes, or a reset is sent/received.
4284 		 */
4285 		if (tcp->tcp_linger && tcp->tcp_lingertime > 0 &&
4286 		    !(tcp->tcp_fin_acked) &&
4287 		    tcp->tcp_state >= TCPS_ESTABLISHED) {
4288 			if (tcp->tcp_closeflags & (FNDELAY|FNONBLOCK)) {
4289 				tcp->tcp_client_errno = EWOULDBLOCK;
4290 			} else if (tcp->tcp_client_errno == 0) {
4291 
4292 				ASSERT(tcp->tcp_linger_tid == 0);
4293 
4294 				tcp->tcp_linger_tid = TCP_TIMER(tcp,
4295 				    tcp_close_linger_timeout,
4296 				    tcp->tcp_lingertime * hz);
4297 
4298 				/* tcp_close_linger_timeout will finish close */
4299 				if (tcp->tcp_linger_tid == 0)
4300 					tcp->tcp_client_errno = ENOSR;
4301 				else
4302 					return;
4303 			}
4304 
4305 			/*
4306 			 * Check if we need to detach or just close
4307 			 * the instance.
4308 			 */
4309 			if (tcp->tcp_state <= TCPS_LISTEN)
4310 				break;
4311 		}
4312 
4313 		/*
4314 		 * Make sure that no other thread will access the tcp_rq of
4315 		 * this instance (through lookups etc.) as tcp_rq will go
4316 		 * away shortly.
4317 		 */
4318 		tcp_acceptor_hash_remove(tcp);
4319 
4320 		mutex_enter(&tcp->tcp_non_sq_lock);
4321 		if (tcp->tcp_flow_stopped) {
4322 			tcp_clrqfull(tcp);
4323 		}
4324 		mutex_exit(&tcp->tcp_non_sq_lock);
4325 
4326 		if (tcp->tcp_timer_tid != 0) {
4327 			delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
4328 			tcp->tcp_timer_tid = 0;
4329 		}
4330 		/*
4331 		 * Need to cancel those timers which will not be used when
4332 		 * TCP is detached.  This has to be done before the tcp_wq
4333 		 * is set to the global queue.
4334 		 */
4335 		tcp_timers_stop(tcp);
4336 
4337 		tcp->tcp_detached = B_TRUE;
4338 		if (tcp->tcp_state == TCPS_TIME_WAIT) {
4339 			tcp_time_wait_append(tcp);
4340 			TCP_DBGSTAT(tcps, tcp_detach_time_wait);
4341 			ASSERT(connp->conn_ref >= 3);
4342 			goto finish;
4343 		}
4344 
4345 		/*
4346 		 * If delta is zero the timer event wasn't executed and was
4347 		 * successfully canceled. In this case we need to restart it
4348 		 * with the minimal delta possible.
4349 		 */
4350 		if (delta >= 0)
4351 			tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer,
4352 			    delta ? delta : 1);
4353 
4354 		ASSERT(connp->conn_ref >= 3);
4355 		goto finish;
4356 	}
4357 
4358 	/* Detach did not complete. Still need to remove q from stream. */
4359 	if (msg) {
4360 		if (tcp->tcp_state == TCPS_ESTABLISHED ||
4361 		    tcp->tcp_state == TCPS_CLOSE_WAIT)
4362 			BUMP_MIB(&tcps->tcps_mib, tcpEstabResets);
4363 		if (tcp->tcp_state == TCPS_SYN_SENT ||
4364 		    tcp->tcp_state == TCPS_SYN_RCVD)
4365 			BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails);
4366 		tcp_xmit_ctl(msg, tcp,  tcp->tcp_snxt, 0, TH_RST);
4367 	}
4368 
4369 	tcp_closei_local(tcp);
4370 	CONN_DEC_REF(connp);
4371 	ASSERT(connp->conn_ref >= 2);
4372 
4373 finish:
4374 	/*
4375 	 * Although packets are always processed on the correct
4376 	 * tcp's perimeter and access is serialized via squeue's,
4377 	 * IP still needs a queue when sending packets in time_wait
4378 	 * state so use WR(tcps_g_q) till ip_output() can be
4379 	 * changed to deal with just connp. For read side, we
4380 	 * could have set tcp_rq to NULL but there are some cases
4381 	 * in tcp_rput_data() from early days of this code which
4382 	 * do a putnext without checking if tcp is closed. Those
4383 	 * need to be identified before both tcp_rq and tcp_wq
4384 	 * can be set to NULL and tcps_g_q can disappear forever.
4385 	 */
4386 	mutex_enter(&tcp->tcp_closelock);
4387 	/*
4388 	 * Don't change the queues in the case of a listener that has
4389 	 * eagers in its q or q0. It could surprise the eagers.
4390 	 * Instead wait for the eagers outside the squeue.
4391 	 */
4392 	if (!tcp->tcp_wait_for_eagers) {
4393 		tcp->tcp_detached = B_TRUE;
4394 		/*
4395 		 * When default queue is closing we set tcps_g_q to NULL
4396 		 * after the close is done.
4397 		 */
4398 		ASSERT(tcps->tcps_g_q != NULL);
4399 		tcp->tcp_rq = tcps->tcps_g_q;
4400 		tcp->tcp_wq = WR(tcps->tcps_g_q);
4401 	}
4402 
4403 	/* Signal tcp_close() to finish closing. */
4404 	tcp->tcp_closed = 1;
4405 	cv_signal(&tcp->tcp_closecv);
4406 	mutex_exit(&tcp->tcp_closelock);
4407 }
4408 
4409 
4410 /*
4411  * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp.
4412  * Some stream heads get upset if they see these later on as anything but NULL.
4413  */
4414 static void
4415 tcp_close_mpp(mblk_t **mpp)
4416 {
4417 	mblk_t	*mp;
4418 
4419 	if ((mp = *mpp) != NULL) {
4420 		do {
4421 			mp->b_next = NULL;
4422 			mp->b_prev = NULL;
4423 		} while ((mp = mp->b_cont) != NULL);
4424 
4425 		mp = *mpp;
4426 		*mpp = NULL;
4427 		freemsg(mp);
4428 	}
4429 }
4430 
4431 /* Do detached close. */
4432 static void
4433 tcp_close_detached(tcp_t *tcp)
4434 {
4435 	if (tcp->tcp_fused)
4436 		tcp_unfuse(tcp);
4437 
4438 	/*
4439 	 * Clustering code serializes TCP disconnect callbacks and
4440 	 * cluster tcp list walks by blocking a TCP disconnect callback
4441 	 * if a cluster tcp list walk is in progress. This ensures
4442 	 * accurate accounting of TCPs in the cluster code even though
4443 	 * the TCP list walk itself is not atomic.
4444 	 */
4445 	tcp_closei_local(tcp);
4446 	CONN_DEC_REF(tcp->tcp_connp);
4447 }
4448 
4449 /*
4450  * Stop all TCP timers, and free the timer mblks if requested.
4451  */
4452 void
4453 tcp_timers_stop(tcp_t *tcp)
4454 {
4455 	if (tcp->tcp_timer_tid != 0) {
4456 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
4457 		tcp->tcp_timer_tid = 0;
4458 	}
4459 	if (tcp->tcp_ka_tid != 0) {
4460 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ka_tid);
4461 		tcp->tcp_ka_tid = 0;
4462 	}
4463 	if (tcp->tcp_ack_tid != 0) {
4464 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid);
4465 		tcp->tcp_ack_tid = 0;
4466 	}
4467 	if (tcp->tcp_push_tid != 0) {
4468 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
4469 		tcp->tcp_push_tid = 0;
4470 	}
4471 }
4472 
4473 /*
4474  * The tcp_t is going away. Remove it from all lists and set it
4475  * to TCPS_CLOSED. The freeing up of memory is deferred until
4476  * tcp_inactive. This is needed since a thread in tcp_rput might have
4477  * done a CONN_INC_REF on this structure before it was removed from the
4478  * hashes.
4479  */
4480 static void
4481 tcp_closei_local(tcp_t *tcp)
4482 {
4483 	ire_t 	*ire;
4484 	conn_t	*connp = tcp->tcp_connp;
4485 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4486 
4487 	if (!TCP_IS_SOCKET(tcp))
4488 		tcp_acceptor_hash_remove(tcp);
4489 
4490 	UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs);
4491 	tcp->tcp_ibsegs = 0;
4492 	UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs);
4493 	tcp->tcp_obsegs = 0;
4494 
4495 	/*
4496 	 * If we are an eager connection hanging off a listener that
4497 	 * hasn't formally accepted the connection yet, get off his
4498 	 * list and blow off any data that we have accumulated.
4499 	 */
4500 	if (tcp->tcp_listener != NULL) {
4501 		tcp_t	*listener = tcp->tcp_listener;
4502 		mutex_enter(&listener->tcp_eager_lock);
4503 		/*
4504 		 * tcp_tconnind_started == B_TRUE means that the
4505 		 * conn_ind has already gone to listener. At
4506 		 * this point, eager will be closed but we
4507 		 * leave it in listeners eager list so that
4508 		 * if listener decides to close without doing
4509 		 * accept, we can clean this up. In tcp_wput_accept
4510 		 * we take care of the case of accept on closed
4511 		 * eager.
4512 		 */
4513 		if (!tcp->tcp_tconnind_started) {
4514 			tcp_eager_unlink(tcp);
4515 			mutex_exit(&listener->tcp_eager_lock);
4516 			/*
4517 			 * We don't want to have any pointers to the
4518 			 * listener queue, after we have released our
4519 			 * reference on the listener
4520 			 */
4521 			ASSERT(tcps->tcps_g_q != NULL);
4522 			tcp->tcp_rq = tcps->tcps_g_q;
4523 			tcp->tcp_wq = WR(tcps->tcps_g_q);
4524 			CONN_DEC_REF(listener->tcp_connp);
4525 		} else {
4526 			mutex_exit(&listener->tcp_eager_lock);
4527 		}
4528 	}
4529 
4530 	/* Stop all the timers */
4531 	tcp_timers_stop(tcp);
4532 
4533 	if (tcp->tcp_state == TCPS_LISTEN) {
4534 		if (tcp->tcp_ip_addr_cache) {
4535 			kmem_free((void *)tcp->tcp_ip_addr_cache,
4536 			    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
4537 			tcp->tcp_ip_addr_cache = NULL;
4538 		}
4539 	}
4540 	mutex_enter(&tcp->tcp_non_sq_lock);
4541 	if (tcp->tcp_flow_stopped)
4542 		tcp_clrqfull(tcp);
4543 	mutex_exit(&tcp->tcp_non_sq_lock);
4544 
4545 	tcp_bind_hash_remove(tcp);
4546 	/*
4547 	 * If the tcp_time_wait_collector (which runs outside the squeue)
4548 	 * is trying to remove this tcp from the time wait list, we will
4549 	 * block in tcp_time_wait_remove while trying to acquire the
4550 	 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also
4551 	 * requires the ipcl_hash_remove to be ordered after the
4552 	 * tcp_time_wait_remove for the refcnt checks to work correctly.
4553 	 */
4554 	if (tcp->tcp_state == TCPS_TIME_WAIT)
4555 		(void) tcp_time_wait_remove(tcp, NULL);
4556 	CL_INET_DISCONNECT(tcp);
4557 	ipcl_hash_remove(connp);
4558 
4559 	/*
4560 	 * Delete the cached ire in conn_ire_cache and also mark
4561 	 * the conn as CONDEMNED
4562 	 */
4563 	mutex_enter(&connp->conn_lock);
4564 	connp->conn_state_flags |= CONN_CONDEMNED;
4565 	ire = connp->conn_ire_cache;
4566 	connp->conn_ire_cache = NULL;
4567 	mutex_exit(&connp->conn_lock);
4568 	if (ire != NULL)
4569 		IRE_REFRELE_NOTR(ire);
4570 
4571 	/* Need to cleanup any pending ioctls */
4572 	ASSERT(tcp->tcp_time_wait_next == NULL);
4573 	ASSERT(tcp->tcp_time_wait_prev == NULL);
4574 	ASSERT(tcp->tcp_time_wait_expire == 0);
4575 	tcp->tcp_state = TCPS_CLOSED;
4576 
4577 	/* Release any SSL context */
4578 	if (tcp->tcp_kssl_ent != NULL) {
4579 		kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY);
4580 		tcp->tcp_kssl_ent = NULL;
4581 	}
4582 	if (tcp->tcp_kssl_ctx != NULL) {
4583 		kssl_release_ctx(tcp->tcp_kssl_ctx);
4584 		tcp->tcp_kssl_ctx = NULL;
4585 	}
4586 	tcp->tcp_kssl_pending = B_FALSE;
4587 
4588 	tcp_ipsec_cleanup(tcp);
4589 }
4590 
4591 /*
4592  * tcp is dying (called from ipcl_conn_destroy and error cases).
4593  * Free the tcp_t in either case.
4594  */
4595 void
4596 tcp_free(tcp_t *tcp)
4597 {
4598 	mblk_t	*mp;
4599 	ip6_pkt_t	*ipp;
4600 
4601 	ASSERT(tcp != NULL);
4602 	ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL);
4603 
4604 	tcp->tcp_rq = NULL;
4605 	tcp->tcp_wq = NULL;
4606 
4607 	tcp_close_mpp(&tcp->tcp_xmit_head);
4608 	tcp_close_mpp(&tcp->tcp_reass_head);
4609 	if (tcp->tcp_rcv_list != NULL) {
4610 		/* Free b_next chain */
4611 		tcp_close_mpp(&tcp->tcp_rcv_list);
4612 	}
4613 	if ((mp = tcp->tcp_urp_mp) != NULL) {
4614 		freemsg(mp);
4615 	}
4616 	if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
4617 		freemsg(mp);
4618 	}
4619 
4620 	if (tcp->tcp_fused_sigurg_mp != NULL) {
4621 		freeb(tcp->tcp_fused_sigurg_mp);
4622 		tcp->tcp_fused_sigurg_mp = NULL;
4623 	}
4624 
4625 	if (tcp->tcp_sack_info != NULL) {
4626 		if (tcp->tcp_notsack_list != NULL) {
4627 			TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
4628 		}
4629 		bzero(tcp->tcp_sack_info, sizeof (tcp_sack_info_t));
4630 	}
4631 
4632 	if (tcp->tcp_hopopts != NULL) {
4633 		mi_free(tcp->tcp_hopopts);
4634 		tcp->tcp_hopopts = NULL;
4635 		tcp->tcp_hopoptslen = 0;
4636 	}
4637 	ASSERT(tcp->tcp_hopoptslen == 0);
4638 	if (tcp->tcp_dstopts != NULL) {
4639 		mi_free(tcp->tcp_dstopts);
4640 		tcp->tcp_dstopts = NULL;
4641 		tcp->tcp_dstoptslen = 0;
4642 	}
4643 	ASSERT(tcp->tcp_dstoptslen == 0);
4644 	if (tcp->tcp_rtdstopts != NULL) {
4645 		mi_free(tcp->tcp_rtdstopts);
4646 		tcp->tcp_rtdstopts = NULL;
4647 		tcp->tcp_rtdstoptslen = 0;
4648 	}
4649 	ASSERT(tcp->tcp_rtdstoptslen == 0);
4650 	if (tcp->tcp_rthdr != NULL) {
4651 		mi_free(tcp->tcp_rthdr);
4652 		tcp->tcp_rthdr = NULL;
4653 		tcp->tcp_rthdrlen = 0;
4654 	}
4655 	ASSERT(tcp->tcp_rthdrlen == 0);
4656 
4657 	ipp = &tcp->tcp_sticky_ipp;
4658 	if (ipp->ipp_fields & (IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS |
4659 	    IPPF_RTHDR))
4660 		ip6_pkt_free(ipp);
4661 
4662 	/*
4663 	 * Free memory associated with the tcp/ip header template.
4664 	 */
4665 
4666 	if (tcp->tcp_iphc != NULL)
4667 		bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
4668 
4669 	/*
4670 	 * Following is really a blowing away a union.
4671 	 * It happens to have exactly two members of identical size
4672 	 * the following code is enough.
4673 	 */
4674 	tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
4675 }
4676 
4677 
4678 /*
4679  * Put a connection confirmation message upstream built from the
4680  * address information within 'iph' and 'tcph'.  Report our success or failure.
4681  */
4682 static boolean_t
4683 tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, mblk_t *idmp,
4684     mblk_t **defermp)
4685 {
4686 	sin_t	sin;
4687 	sin6_t	sin6;
4688 	mblk_t	*mp;
4689 	char	*optp = NULL;
4690 	int	optlen = 0;
4691 	cred_t	*cr;
4692 
4693 	if (defermp != NULL)
4694 		*defermp = NULL;
4695 
4696 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL) {
4697 		/*
4698 		 * Return in T_CONN_CON results of option negotiation through
4699 		 * the T_CONN_REQ. Note: If there is an real end-to-end option
4700 		 * negotiation, then what is received from remote end needs
4701 		 * to be taken into account but there is no such thing (yet?)
4702 		 * in our TCP/IP.
4703 		 * Note: We do not use mi_offset_param() here as
4704 		 * tcp_opts_conn_req contents do not directly come from
4705 		 * an application and are either generated in kernel or
4706 		 * from user input that was already verified.
4707 		 */
4708 		mp = tcp->tcp_conn.tcp_opts_conn_req;
4709 		optp = (char *)(mp->b_rptr +
4710 		    ((struct T_conn_req *)mp->b_rptr)->OPT_offset);
4711 		optlen = (int)
4712 		    ((struct T_conn_req *)mp->b_rptr)->OPT_length;
4713 	}
4714 
4715 	if (IPH_HDR_VERSION(iphdr) == IPV4_VERSION) {
4716 		ipha_t *ipha = (ipha_t *)iphdr;
4717 
4718 		/* packet is IPv4 */
4719 		if (tcp->tcp_family == AF_INET) {
4720 			sin = sin_null;
4721 			sin.sin_addr.s_addr = ipha->ipha_src;
4722 			sin.sin_port = *(uint16_t *)tcph->th_lport;
4723 			sin.sin_family = AF_INET;
4724 			mp = mi_tpi_conn_con(NULL, (char *)&sin,
4725 			    (int)sizeof (sin_t), optp, optlen);
4726 		} else {
4727 			sin6 = sin6_null;
4728 			IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr);
4729 			sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4730 			sin6.sin6_family = AF_INET6;
4731 			mp = mi_tpi_conn_con(NULL, (char *)&sin6,
4732 			    (int)sizeof (sin6_t), optp, optlen);
4733 
4734 		}
4735 	} else {
4736 		ip6_t	*ip6h = (ip6_t *)iphdr;
4737 
4738 		ASSERT(IPH_HDR_VERSION(iphdr) == IPV6_VERSION);
4739 		ASSERT(tcp->tcp_family == AF_INET6);
4740 		sin6 = sin6_null;
4741 		sin6.sin6_addr = ip6h->ip6_src;
4742 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4743 		sin6.sin6_family = AF_INET6;
4744 		sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK;
4745 		mp = mi_tpi_conn_con(NULL, (char *)&sin6,
4746 		    (int)sizeof (sin6_t), optp, optlen);
4747 	}
4748 
4749 	if (!mp)
4750 		return (B_FALSE);
4751 
4752 	if ((cr = DB_CRED(idmp)) != NULL) {
4753 		mblk_setcred(mp, cr);
4754 		DB_CPID(mp) = DB_CPID(idmp);
4755 	}
4756 
4757 	if (defermp == NULL)
4758 		putnext(tcp->tcp_rq, mp);
4759 	else
4760 		*defermp = mp;
4761 
4762 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
4763 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
4764 	return (B_TRUE);
4765 }
4766 
4767 /*
4768  * Defense for the SYN attack -
4769  * 1. When q0 is full, drop from the tail (tcp_eager_prev_drop_q0) the oldest
4770  *    one from the list of droppable eagers. This list is a subset of q0.
4771  *    see comments before the definition of MAKE_DROPPABLE().
4772  * 2. Don't drop a SYN request before its first timeout. This gives every
4773  *    request at least til the first timeout to complete its 3-way handshake.
4774  * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many
4775  *    requests currently on the queue that has timed out. This will be used
4776  *    as an indicator of whether an attack is under way, so that appropriate
4777  *    actions can be taken. (It's incremented in tcp_timer() and decremented
4778  *    either when eager goes into ESTABLISHED, or gets freed up.)
4779  * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on
4780  *    # of timeout drops back to <= q0len/32 => SYN alert off
4781  */
4782 static boolean_t
4783 tcp_drop_q0(tcp_t *tcp)
4784 {
4785 	tcp_t	*eager;
4786 	mblk_t	*mp;
4787 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4788 
4789 	ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock));
4790 	ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0);
4791 
4792 	/* Pick oldest eager from the list of droppable eagers */
4793 	eager = tcp->tcp_eager_prev_drop_q0;
4794 
4795 	/* If list is empty. return B_FALSE */
4796 	if (eager == tcp) {
4797 		return (B_FALSE);
4798 	}
4799 
4800 	/* If allocated, the mp will be freed in tcp_clean_death_wrapper() */
4801 	if ((mp = allocb(0, BPRI_HI)) == NULL)
4802 		return (B_FALSE);
4803 
4804 	/*
4805 	 * Take this eager out from the list of droppable eagers since we are
4806 	 * going to drop it.
4807 	 */
4808 	MAKE_UNDROPPABLE(eager);
4809 
4810 	if (tcp->tcp_debug) {
4811 		(void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE,
4812 		    "tcp_drop_q0: listen half-open queue (max=%d) overflow"
4813 		    " (%d pending) on %s, drop one", tcps->tcps_conn_req_max_q0,
4814 		    tcp->tcp_conn_req_cnt_q0,
4815 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
4816 	}
4817 
4818 	BUMP_MIB(&tcps->tcps_mib, tcpHalfOpenDrop);
4819 
4820 	/* Put a reference on the conn as we are enqueueing it in the sqeue */
4821 	CONN_INC_REF(eager->tcp_connp);
4822 
4823 	/* Mark the IRE created for this SYN request temporary */
4824 	tcp_ip_ire_mark_advice(eager);
4825 	squeue_fill(eager->tcp_connp->conn_sqp, mp,
4826 	    tcp_clean_death_wrapper, eager->tcp_connp, SQTAG_TCP_DROP_Q0);
4827 
4828 	return (B_TRUE);
4829 }
4830 
4831 int
4832 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp,
4833     tcph_t *tcph, uint_t ipvers, mblk_t *idmp)
4834 {
4835 	tcp_t 		*ltcp = lconnp->conn_tcp;
4836 	tcp_t		*tcp = connp->conn_tcp;
4837 	mblk_t		*tpi_mp;
4838 	ipha_t		*ipha;
4839 	ip6_t		*ip6h;
4840 	sin6_t 		sin6;
4841 	in6_addr_t 	v6dst;
4842 	int		err;
4843 	int		ifindex = 0;
4844 	cred_t		*cr;
4845 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4846 
4847 	if (ipvers == IPV4_VERSION) {
4848 		ipha = (ipha_t *)mp->b_rptr;
4849 
4850 		connp->conn_send = ip_output;
4851 		connp->conn_recv = tcp_input;
4852 
4853 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6);
4854 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6);
4855 
4856 		sin6 = sin6_null;
4857 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr);
4858 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &v6dst);
4859 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4860 		sin6.sin6_family = AF_INET6;
4861 		sin6.__sin6_src_id = ip_srcid_find_addr(&v6dst,
4862 		    lconnp->conn_zoneid, tcps->tcps_netstack);
4863 		if (tcp->tcp_recvdstaddr) {
4864 			sin6_t	sin6d;
4865 
4866 			sin6d = sin6_null;
4867 			IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst,
4868 			    &sin6d.sin6_addr);
4869 			sin6d.sin6_port = *(uint16_t *)tcph->th_fport;
4870 			sin6d.sin6_family = AF_INET;
4871 			tpi_mp = mi_tpi_extconn_ind(NULL,
4872 			    (char *)&sin6d, sizeof (sin6_t),
4873 			    (char *)&tcp,
4874 			    (t_scalar_t)sizeof (intptr_t),
4875 			    (char *)&sin6d, sizeof (sin6_t),
4876 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4877 		} else {
4878 			tpi_mp = mi_tpi_conn_ind(NULL,
4879 			    (char *)&sin6, sizeof (sin6_t),
4880 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4881 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4882 		}
4883 	} else {
4884 		ip6h = (ip6_t *)mp->b_rptr;
4885 
4886 		connp->conn_send = ip_output_v6;
4887 		connp->conn_recv = tcp_input;
4888 
4889 		connp->conn_srcv6 = ip6h->ip6_dst;
4890 		connp->conn_remv6 = ip6h->ip6_src;
4891 
4892 		/* db_cksumstuff is set at ip_fanout_tcp_v6 */
4893 		ifindex = (int)DB_CKSUMSTUFF(mp);
4894 		DB_CKSUMSTUFF(mp) = 0;
4895 
4896 		sin6 = sin6_null;
4897 		sin6.sin6_addr = ip6h->ip6_src;
4898 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4899 		sin6.sin6_family = AF_INET6;
4900 		sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK;
4901 		sin6.__sin6_src_id = ip_srcid_find_addr(&ip6h->ip6_dst,
4902 		    lconnp->conn_zoneid, tcps->tcps_netstack);
4903 
4904 		if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) {
4905 			/* Pass up the scope_id of remote addr */
4906 			sin6.sin6_scope_id = ifindex;
4907 		} else {
4908 			sin6.sin6_scope_id = 0;
4909 		}
4910 		if (tcp->tcp_recvdstaddr) {
4911 			sin6_t	sin6d;
4912 
4913 			sin6d = sin6_null;
4914 			sin6.sin6_addr = ip6h->ip6_dst;
4915 			sin6d.sin6_port = *(uint16_t *)tcph->th_fport;
4916 			sin6d.sin6_family = AF_INET;
4917 			tpi_mp = mi_tpi_extconn_ind(NULL,
4918 			    (char *)&sin6d, sizeof (sin6_t),
4919 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4920 			    (char *)&sin6d, sizeof (sin6_t),
4921 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4922 		} else {
4923 			tpi_mp = mi_tpi_conn_ind(NULL,
4924 			    (char *)&sin6, sizeof (sin6_t),
4925 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4926 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4927 		}
4928 	}
4929 
4930 	if (tpi_mp == NULL)
4931 		return (ENOMEM);
4932 
4933 	connp->conn_fport = *(uint16_t *)tcph->th_lport;
4934 	connp->conn_lport = *(uint16_t *)tcph->th_fport;
4935 	connp->conn_flags |= (IPCL_TCP6|IPCL_EAGER);
4936 	connp->conn_fully_bound = B_FALSE;
4937 
4938 	/* Inherit information from the "parent" */
4939 	tcp->tcp_ipversion = ltcp->tcp_ipversion;
4940 	tcp->tcp_family = ltcp->tcp_family;
4941 	tcp->tcp_wq = ltcp->tcp_wq;
4942 	tcp->tcp_rq = ltcp->tcp_rq;
4943 	tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
4944 	tcp->tcp_detached = B_TRUE;
4945 	if ((err = tcp_init_values(tcp)) != 0) {
4946 		freemsg(tpi_mp);
4947 		return (err);
4948 	}
4949 
4950 	if (ipvers == IPV4_VERSION) {
4951 		if ((err = tcp_header_init_ipv4(tcp)) != 0) {
4952 			freemsg(tpi_mp);
4953 			return (err);
4954 		}
4955 		ASSERT(tcp->tcp_ipha != NULL);
4956 	} else {
4957 		/* ifindex must be already set */
4958 		ASSERT(ifindex != 0);
4959 
4960 		if (ltcp->tcp_bound_if != 0) {
4961 			/*
4962 			 * Set newtcp's bound_if equal to
4963 			 * listener's value. If ifindex is
4964 			 * not the same as ltcp->tcp_bound_if,
4965 			 * it must be a packet for the ipmp group
4966 			 * of interfaces
4967 			 */
4968 			tcp->tcp_bound_if = ltcp->tcp_bound_if;
4969 		} else if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) {
4970 			tcp->tcp_bound_if = ifindex;
4971 		}
4972 
4973 		tcp->tcp_ipv6_recvancillary = ltcp->tcp_ipv6_recvancillary;
4974 		tcp->tcp_recvifindex = 0;
4975 		tcp->tcp_recvhops = 0xffffffffU;
4976 		ASSERT(tcp->tcp_ip6h != NULL);
4977 	}
4978 
4979 	tcp->tcp_lport = ltcp->tcp_lport;
4980 
4981 	if (ltcp->tcp_ipversion == tcp->tcp_ipversion) {
4982 		if (tcp->tcp_iphc_len != ltcp->tcp_iphc_len) {
4983 			/*
4984 			 * Listener had options of some sort; eager inherits.
4985 			 * Free up the eager template and allocate one
4986 			 * of the right size.
4987 			 */
4988 			if (tcp->tcp_hdr_grown) {
4989 				kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len);
4990 			} else {
4991 				bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
4992 				kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc);
4993 			}
4994 			tcp->tcp_iphc = kmem_zalloc(ltcp->tcp_iphc_len,
4995 			    KM_NOSLEEP);
4996 			if (tcp->tcp_iphc == NULL) {
4997 				tcp->tcp_iphc_len = 0;
4998 				freemsg(tpi_mp);
4999 				return (ENOMEM);
5000 			}
5001 			tcp->tcp_iphc_len = ltcp->tcp_iphc_len;
5002 			tcp->tcp_hdr_grown = B_TRUE;
5003 		}
5004 		tcp->tcp_hdr_len = ltcp->tcp_hdr_len;
5005 		tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len;
5006 		tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
5007 		tcp->tcp_ip6_hops = ltcp->tcp_ip6_hops;
5008 		tcp->tcp_ip6_vcf = ltcp->tcp_ip6_vcf;
5009 
5010 		/*
5011 		 * Copy the IP+TCP header template from listener to eager
5012 		 */
5013 		bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len);
5014 		if (tcp->tcp_ipversion == IPV6_VERSION) {
5015 			if (((ip6i_t *)(tcp->tcp_iphc))->ip6i_nxt ==
5016 			    IPPROTO_RAW) {
5017 				tcp->tcp_ip6h =
5018 				    (ip6_t *)(tcp->tcp_iphc +
5019 				    sizeof (ip6i_t));
5020 			} else {
5021 				tcp->tcp_ip6h =
5022 				    (ip6_t *)(tcp->tcp_iphc);
5023 			}
5024 			tcp->tcp_ipha = NULL;
5025 		} else {
5026 			tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
5027 			tcp->tcp_ip6h = NULL;
5028 		}
5029 		tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc +
5030 		    tcp->tcp_ip_hdr_len);
5031 	} else {
5032 		/*
5033 		 * only valid case when ipversion of listener and
5034 		 * eager differ is when listener is IPv6 and
5035 		 * eager is IPv4.
5036 		 * Eager header template has been initialized to the
5037 		 * maximum v4 header sizes, which includes space for
5038 		 * TCP and IP options.
5039 		 */
5040 		ASSERT((ltcp->tcp_ipversion == IPV6_VERSION) &&
5041 		    (tcp->tcp_ipversion == IPV4_VERSION));
5042 		ASSERT(tcp->tcp_iphc_len >=
5043 		    TCP_MAX_COMBINED_HEADER_LENGTH);
5044 		tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
5045 		/* copy IP header fields individually */
5046 		tcp->tcp_ipha->ipha_ttl =
5047 		    ltcp->tcp_ip6h->ip6_hops;
5048 		bcopy(ltcp->tcp_tcph->th_lport,
5049 		    tcp->tcp_tcph->th_lport, sizeof (ushort_t));
5050 	}
5051 
5052 	bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t));
5053 	bcopy(tcp->tcp_tcph->th_fport, &tcp->tcp_fport,
5054 	    sizeof (in_port_t));
5055 
5056 	if (ltcp->tcp_lport == 0) {
5057 		tcp->tcp_lport = *(in_port_t *)tcph->th_fport;
5058 		bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport,
5059 		    sizeof (in_port_t));
5060 	}
5061 
5062 	if (tcp->tcp_ipversion == IPV4_VERSION) {
5063 		ASSERT(ipha != NULL);
5064 		tcp->tcp_ipha->ipha_dst = ipha->ipha_src;
5065 		tcp->tcp_ipha->ipha_src = ipha->ipha_dst;
5066 
5067 		/* Source routing option copyover (reverse it) */
5068 		if (tcps->tcps_rev_src_routes)
5069 			tcp_opt_reverse(tcp, ipha);
5070 	} else {
5071 		ASSERT(ip6h != NULL);
5072 		tcp->tcp_ip6h->ip6_dst = ip6h->ip6_src;
5073 		tcp->tcp_ip6h->ip6_src = ip6h->ip6_dst;
5074 	}
5075 
5076 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
5077 	ASSERT(!tcp->tcp_tconnind_started);
5078 	/*
5079 	 * If the SYN contains a credential, it's a loopback packet; attach
5080 	 * the credential to the TPI message.
5081 	 */
5082 	if ((cr = DB_CRED(idmp)) != NULL) {
5083 		mblk_setcred(tpi_mp, cr);
5084 		DB_CPID(tpi_mp) = DB_CPID(idmp);
5085 	}
5086 	tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp;
5087 
5088 	/* Inherit the listener's SSL protection state */
5089 
5090 	if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) {
5091 		kssl_hold_ent(tcp->tcp_kssl_ent);
5092 		tcp->tcp_kssl_pending = B_TRUE;
5093 	}
5094 
5095 	return (0);
5096 }
5097 
5098 
5099 int
5100 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha,
5101     tcph_t *tcph, mblk_t *idmp)
5102 {
5103 	tcp_t 		*ltcp = lconnp->conn_tcp;
5104 	tcp_t		*tcp = connp->conn_tcp;
5105 	sin_t		sin;
5106 	mblk_t		*tpi_mp = NULL;
5107 	int		err;
5108 	cred_t		*cr;
5109 	tcp_stack_t	*tcps = tcp->tcp_tcps;
5110 
5111 	sin = sin_null;
5112 	sin.sin_addr.s_addr = ipha->ipha_src;
5113 	sin.sin_port = *(uint16_t *)tcph->th_lport;
5114 	sin.sin_family = AF_INET;
5115 	if (ltcp->tcp_recvdstaddr) {
5116 		sin_t	sind;
5117 
5118 		sind = sin_null;
5119 		sind.sin_addr.s_addr = ipha->ipha_dst;
5120 		sind.sin_port = *(uint16_t *)tcph->th_fport;
5121 		sind.sin_family = AF_INET;
5122 		tpi_mp = mi_tpi_extconn_ind(NULL,
5123 		    (char *)&sind, sizeof (sin_t), (char *)&tcp,
5124 		    (t_scalar_t)sizeof (intptr_t), (char *)&sind,
5125 		    sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum);
5126 	} else {
5127 		tpi_mp = mi_tpi_conn_ind(NULL,
5128 		    (char *)&sin, sizeof (sin_t),
5129 		    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
5130 		    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
5131 	}
5132 
5133 	if (tpi_mp == NULL) {
5134 		return (ENOMEM);
5135 	}
5136 
5137 	connp->conn_flags |= (IPCL_TCP4|IPCL_EAGER);
5138 	connp->conn_send = ip_output;
5139 	connp->conn_recv = tcp_input;
5140 	connp->conn_fully_bound = B_FALSE;
5141 
5142 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6);
5143 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6);
5144 	connp->conn_fport = *(uint16_t *)tcph->th_lport;
5145 	connp->conn_lport = *(uint16_t *)tcph->th_fport;
5146 
5147 	/* Inherit information from the "parent" */
5148 	tcp->tcp_ipversion = ltcp->tcp_ipversion;
5149 	tcp->tcp_family = ltcp->tcp_family;
5150 	tcp->tcp_wq = ltcp->tcp_wq;
5151 	tcp->tcp_rq = ltcp->tcp_rq;
5152 	tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
5153 	tcp->tcp_detached = B_TRUE;
5154 	if ((err = tcp_init_values(tcp)) != 0) {
5155 		freemsg(tpi_mp);
5156 		return (err);
5157 	}
5158 
5159 	/*
5160 	 * Let's make sure that eager tcp template has enough space to
5161 	 * copy IPv4 listener's tcp template. Since the conn_t structure is
5162 	 * preserved and tcp_iphc_len is also preserved, an eager conn_t may
5163 	 * have a tcp_template of total len TCP_MAX_COMBINED_HEADER_LENGTH or
5164 	 * more (in case of re-allocation of conn_t with tcp-IPv6 template with
5165 	 * extension headers or with ip6i_t struct). Note that bcopy() below
5166 	 * copies listener tcp's hdr_len which cannot be greater than TCP_MAX_
5167 	 * COMBINED_HEADER_LENGTH as this listener must be a IPv4 listener.
5168 	 */
5169 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
5170 	ASSERT(ltcp->tcp_hdr_len <= TCP_MAX_COMBINED_HEADER_LENGTH);
5171 
5172 	tcp->tcp_hdr_len = ltcp->tcp_hdr_len;
5173 	tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len;
5174 	tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
5175 	tcp->tcp_ttl = ltcp->tcp_ttl;
5176 	tcp->tcp_tos = ltcp->tcp_tos;
5177 
5178 	/* Copy the IP+TCP header template from listener to eager */
5179 	bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len);
5180 	tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
5181 	tcp->tcp_ip6h = NULL;
5182 	tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc +
5183 	    tcp->tcp_ip_hdr_len);
5184 
5185 	/* Initialize the IP addresses and Ports */
5186 	tcp->tcp_ipha->ipha_dst = ipha->ipha_src;
5187 	tcp->tcp_ipha->ipha_src = ipha->ipha_dst;
5188 	bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t));
5189 	bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, sizeof (in_port_t));
5190 
5191 	/* Source routing option copyover (reverse it) */
5192 	if (tcps->tcps_rev_src_routes)
5193 		tcp_opt_reverse(tcp, ipha);
5194 
5195 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
5196 	ASSERT(!tcp->tcp_tconnind_started);
5197 
5198 	/*
5199 	 * If the SYN contains a credential, it's a loopback packet; attach
5200 	 * the credential to the TPI message.
5201 	 */
5202 	if ((cr = DB_CRED(idmp)) != NULL) {
5203 		mblk_setcred(tpi_mp, cr);
5204 		DB_CPID(tpi_mp) = DB_CPID(idmp);
5205 	}
5206 	tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp;
5207 
5208 	/* Inherit the listener's SSL protection state */
5209 	if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) {
5210 		kssl_hold_ent(tcp->tcp_kssl_ent);
5211 		tcp->tcp_kssl_pending = B_TRUE;
5212 	}
5213 
5214 	return (0);
5215 }
5216 
5217 /*
5218  * sets up conn for ipsec.
5219  * if the first mblk is M_CTL it is consumed and mpp is updated.
5220  * in case of error mpp is freed.
5221  */
5222 conn_t *
5223 tcp_get_ipsec_conn(tcp_t *tcp, squeue_t *sqp, mblk_t **mpp)
5224 {
5225 	conn_t 		*connp = tcp->tcp_connp;
5226 	conn_t 		*econnp;
5227 	squeue_t 	*new_sqp;
5228 	mblk_t 		*first_mp = *mpp;
5229 	mblk_t		*mp = *mpp;
5230 	boolean_t	mctl_present = B_FALSE;
5231 	uint_t		ipvers;
5232 
5233 	econnp = tcp_get_conn(sqp, tcp->tcp_tcps);
5234 	if (econnp == NULL) {
5235 		freemsg(first_mp);
5236 		return (NULL);
5237 	}
5238 	if (DB_TYPE(mp) == M_CTL) {
5239 		if (mp->b_cont == NULL ||
5240 		    mp->b_cont->b_datap->db_type != M_DATA) {
5241 			freemsg(first_mp);
5242 			return (NULL);
5243 		}
5244 		mp = mp->b_cont;
5245 		if ((mp->b_datap->db_struioflag & STRUIO_EAGER) == 0) {
5246 			freemsg(first_mp);
5247 			return (NULL);
5248 		}
5249 
5250 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
5251 		first_mp->b_datap->db_struioflag &= ~STRUIO_POLICY;
5252 		mctl_present = B_TRUE;
5253 	} else {
5254 		ASSERT(mp->b_datap->db_struioflag & STRUIO_POLICY);
5255 		mp->b_datap->db_struioflag &= ~STRUIO_POLICY;
5256 	}
5257 
5258 	new_sqp = (squeue_t *)DB_CKSUMSTART(mp);
5259 	DB_CKSUMSTART(mp) = 0;
5260 
5261 	ASSERT(OK_32PTR(mp->b_rptr));
5262 	ipvers = IPH_HDR_VERSION(mp->b_rptr);
5263 	if (ipvers == IPV4_VERSION) {
5264 		uint16_t  	*up;
5265 		uint32_t	ports;
5266 		ipha_t		*ipha;
5267 
5268 		ipha = (ipha_t *)mp->b_rptr;
5269 		up = (uint16_t *)((uchar_t *)ipha +
5270 		    IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET);
5271 		ports = *(uint32_t *)up;
5272 		IPCL_TCP_EAGER_INIT(econnp, IPPROTO_TCP,
5273 		    ipha->ipha_dst, ipha->ipha_src, ports);
5274 	} else {
5275 		uint16_t  	*up;
5276 		uint32_t	ports;
5277 		uint16_t	ip_hdr_len;
5278 		uint8_t		*nexthdrp;
5279 		ip6_t 		*ip6h;
5280 		tcph_t		*tcph;
5281 
5282 		ip6h = (ip6_t *)mp->b_rptr;
5283 		if (ip6h->ip6_nxt == IPPROTO_TCP) {
5284 			ip_hdr_len = IPV6_HDR_LEN;
5285 		} else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ip_hdr_len,
5286 		    &nexthdrp) || *nexthdrp != IPPROTO_TCP) {
5287 			CONN_DEC_REF(econnp);
5288 			freemsg(first_mp);
5289 			return (NULL);
5290 		}
5291 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
5292 		up = (uint16_t *)tcph->th_lport;
5293 		ports = *(uint32_t *)up;
5294 		IPCL_TCP_EAGER_INIT_V6(econnp, IPPROTO_TCP,
5295 		    ip6h->ip6_dst, ip6h->ip6_src, ports);
5296 	}
5297 
5298 	/*
5299 	 * The caller already ensured that there is a sqp present.
5300 	 */
5301 	econnp->conn_sqp = new_sqp;
5302 
5303 	if (connp->conn_policy != NULL) {
5304 		ipsec_in_t *ii;
5305 		ii = (ipsec_in_t *)(first_mp->b_rptr);
5306 		ASSERT(ii->ipsec_in_policy == NULL);
5307 		IPPH_REFHOLD(connp->conn_policy);
5308 		ii->ipsec_in_policy = connp->conn_policy;
5309 
5310 		first_mp->b_datap->db_type = IPSEC_POLICY_SET;
5311 		if (!ip_bind_ipsec_policy_set(econnp, first_mp)) {
5312 			CONN_DEC_REF(econnp);
5313 			freemsg(first_mp);
5314 			return (NULL);
5315 		}
5316 	}
5317 
5318 	if (ipsec_conn_cache_policy(econnp, ipvers == IPV4_VERSION) != 0) {
5319 		CONN_DEC_REF(econnp);
5320 		freemsg(first_mp);
5321 		return (NULL);
5322 	}
5323 
5324 	/*
5325 	 * If we know we have some policy, pass the "IPSEC"
5326 	 * options size TCP uses this adjust the MSS.
5327 	 */
5328 	econnp->conn_tcp->tcp_ipsec_overhead = conn_ipsec_length(econnp);
5329 	if (mctl_present) {
5330 		freeb(first_mp);
5331 		*mpp = mp;
5332 	}
5333 
5334 	return (econnp);
5335 }
5336 
5337 /*
5338  * tcp_get_conn/tcp_free_conn
5339  *
5340  * tcp_get_conn is used to get a clean tcp connection structure.
5341  * It tries to reuse the connections put on the freelist by the
5342  * time_wait_collector failing which it goes to kmem_cache. This
5343  * way has two benefits compared to just allocating from and
5344  * freeing to kmem_cache.
5345  * 1) The time_wait_collector can free (which includes the cleanup)
5346  * outside the squeue. So when the interrupt comes, we have a clean
5347  * connection sitting in the freelist. Obviously, this buys us
5348  * performance.
5349  *
5350  * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_conn_request
5351  * has multiple disadvantages - tying up the squeue during alloc, and the
5352  * fact that IPSec policy initialization has to happen here which
5353  * requires us sending a M_CTL and checking for it i.e. real ugliness.
5354  * But allocating the conn/tcp in IP land is also not the best since
5355  * we can't check the 'q' and 'q0' which are protected by squeue and
5356  * blindly allocate memory which might have to be freed here if we are
5357  * not allowed to accept the connection. By using the freelist and
5358  * putting the conn/tcp back in freelist, we don't pay a penalty for
5359  * allocating memory without checking 'q/q0' and freeing it if we can't
5360  * accept the connection.
5361  *
5362  * Care should be taken to put the conn back in the same squeue's freelist
5363  * from which it was allocated. Best results are obtained if conn is
5364  * allocated from listener's squeue and freed to the same. Time wait
5365  * collector will free up the freelist is the connection ends up sitting
5366  * there for too long.
5367  */
5368 void *
5369 tcp_get_conn(void *arg, tcp_stack_t *tcps)
5370 {
5371 	tcp_t			*tcp = NULL;
5372 	conn_t			*connp = NULL;
5373 	squeue_t		*sqp = (squeue_t *)arg;
5374 	tcp_squeue_priv_t 	*tcp_time_wait;
5375 	netstack_t		*ns;
5376 
5377 	tcp_time_wait =
5378 	    *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP));
5379 
5380 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
5381 	tcp = tcp_time_wait->tcp_free_list;
5382 	ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0));
5383 	if (tcp != NULL) {
5384 		tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next;
5385 		tcp_time_wait->tcp_free_list_cnt--;
5386 		mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
5387 		tcp->tcp_time_wait_next = NULL;
5388 		connp = tcp->tcp_connp;
5389 		connp->conn_flags |= IPCL_REUSED;
5390 
5391 		ASSERT(tcp->tcp_tcps == NULL);
5392 		ASSERT(connp->conn_netstack == NULL);
5393 		ASSERT(tcp->tcp_rsrv_mp != NULL);
5394 		ns = tcps->tcps_netstack;
5395 		netstack_hold(ns);
5396 		connp->conn_netstack = ns;
5397 		tcp->tcp_tcps = tcps;
5398 		TCPS_REFHOLD(tcps);
5399 		ipcl_globalhash_insert(connp);
5400 		return ((void *)connp);
5401 	}
5402 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
5403 	if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP,
5404 	    tcps->tcps_netstack)) == NULL)
5405 		return (NULL);
5406 	tcp = connp->conn_tcp;
5407 	/*
5408 	 * Pre-allocate the tcp_rsrv_mp.  This mblk will not be freed
5409 	 * until this conn_t/tcp_t is freed at ipcl_conn_destroy().
5410 	 */
5411 	if ((tcp->tcp_rsrv_mp = allocb(0, BPRI_HI)) == NULL) {
5412 		ipcl_conn_destroy(connp);
5413 		return (NULL);
5414 	}
5415 	mutex_init(&tcp->tcp_rsrv_mp_lock, NULL, MUTEX_DEFAULT, NULL);
5416 	tcp->tcp_tcps = tcps;
5417 	TCPS_REFHOLD(tcps);
5418 
5419 	return ((void *)connp);
5420 }
5421 
5422 /*
5423  * Update the cached label for the given tcp_t.  This should be called once per
5424  * connection, and before any packets are sent or tcp_process_options is
5425  * invoked.  Returns B_FALSE if the correct label could not be constructed.
5426  */
5427 static boolean_t
5428 tcp_update_label(tcp_t *tcp, const cred_t *cr)
5429 {
5430 	conn_t *connp = tcp->tcp_connp;
5431 
5432 	if (tcp->tcp_ipversion == IPV4_VERSION) {
5433 		uchar_t optbuf[IP_MAX_OPT_LENGTH];
5434 		int added;
5435 
5436 		if (tsol_compute_label(cr, tcp->tcp_remote, optbuf,
5437 		    connp->conn_mac_exempt,
5438 		    tcp->tcp_tcps->tcps_netstack->netstack_ip) != 0)
5439 			return (B_FALSE);
5440 
5441 		added = tsol_remove_secopt(tcp->tcp_ipha, tcp->tcp_hdr_len);
5442 		if (added == -1)
5443 			return (B_FALSE);
5444 		tcp->tcp_hdr_len += added;
5445 		tcp->tcp_tcph = (tcph_t *)((uchar_t *)tcp->tcp_tcph + added);
5446 		tcp->tcp_ip_hdr_len += added;
5447 		if ((tcp->tcp_label_len = optbuf[IPOPT_OLEN]) != 0) {
5448 			tcp->tcp_label_len = (tcp->tcp_label_len + 3) & ~3;
5449 			added = tsol_prepend_option(optbuf, tcp->tcp_ipha,
5450 			    tcp->tcp_hdr_len);
5451 			if (added == -1)
5452 				return (B_FALSE);
5453 			tcp->tcp_hdr_len += added;
5454 			tcp->tcp_tcph = (tcph_t *)
5455 			    ((uchar_t *)tcp->tcp_tcph + added);
5456 			tcp->tcp_ip_hdr_len += added;
5457 		}
5458 	} else {
5459 		uchar_t optbuf[TSOL_MAX_IPV6_OPTION];
5460 
5461 		if (tsol_compute_label_v6(cr, &tcp->tcp_remote_v6, optbuf,
5462 		    connp->conn_mac_exempt,
5463 		    tcp->tcp_tcps->tcps_netstack->netstack_ip) != 0)
5464 			return (B_FALSE);
5465 		if (tsol_update_sticky(&tcp->tcp_sticky_ipp,
5466 		    &tcp->tcp_label_len, optbuf) != 0)
5467 			return (B_FALSE);
5468 		if (tcp_build_hdrs(tcp->tcp_rq, tcp) != 0)
5469 			return (B_FALSE);
5470 	}
5471 
5472 	connp->conn_ulp_labeled = 1;
5473 
5474 	return (B_TRUE);
5475 }
5476 
5477 /* BEGIN CSTYLED */
5478 /*
5479  *
5480  * The sockfs ACCEPT path:
5481  * =======================
5482  *
5483  * The eager is now established in its own perimeter as soon as SYN is
5484  * received in tcp_conn_request(). When sockfs receives conn_ind, it
5485  * completes the accept processing on the acceptor STREAM. The sending
5486  * of conn_ind part is common for both sockfs listener and a TLI/XTI
5487  * listener but a TLI/XTI listener completes the accept processing
5488  * on the listener perimeter.
5489  *
5490  * Common control flow for 3 way handshake:
5491  * ----------------------------------------
5492  *
5493  * incoming SYN (listener perimeter) 	-> tcp_rput_data()
5494  *					-> tcp_conn_request()
5495  *
5496  * incoming SYN-ACK-ACK (eager perim) 	-> tcp_rput_data()
5497  * send T_CONN_IND (listener perim)	-> tcp_send_conn_ind()
5498  *
5499  * Sockfs ACCEPT Path:
5500  * -------------------
5501  *
5502  * open acceptor stream (tcp_open allocates tcp_wput_accept()
5503  * as STREAM entry point)
5504  *
5505  * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_wput_accept()
5506  *
5507  * tcp_wput_accept() extracts the eager and makes the q->q_ptr <-> eager
5508  * association (we are not behind eager's squeue but sockfs is protecting us
5509  * and no one knows about this stream yet. The STREAMS entry point q->q_info
5510  * is changed to point at tcp_wput().
5511  *
5512  * tcp_wput_accept() sends any deferred eagers via tcp_send_pending() to
5513  * listener (done on listener's perimeter).
5514  *
5515  * tcp_wput_accept() calls tcp_accept_finish() on eagers perimeter to finish
5516  * accept.
5517  *
5518  * TLI/XTI client ACCEPT path:
5519  * ---------------------------
5520  *
5521  * soaccept() sends T_CONN_RES on the listener STREAM.
5522  *
5523  * tcp_accept() -> tcp_accept_swap() complete the processing and send
5524  * the bind_mp to eager perimeter to finish accept (tcp_rput_other()).
5525  *
5526  * Locks:
5527  * ======
5528  *
5529  * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and
5530  * and listeners->tcp_eager_next_q.
5531  *
5532  * Referencing:
5533  * ============
5534  *
5535  * 1) We start out in tcp_conn_request by eager placing a ref on
5536  * listener and listener adding eager to listeners->tcp_eager_next_q0.
5537  *
5538  * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before
5539  * doing so we place a ref on the eager. This ref is finally dropped at the
5540  * end of tcp_accept_finish() while unwinding from the squeue, i.e. the
5541  * reference is dropped by the squeue framework.
5542  *
5543  * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish
5544  *
5545  * The reference must be released by the same entity that added the reference
5546  * In the above scheme, the eager is the entity that adds and releases the
5547  * references. Note that tcp_accept_finish executes in the squeue of the eager
5548  * (albeit after it is attached to the acceptor stream). Though 1. executes
5549  * in the listener's squeue, the eager is nascent at this point and the
5550  * reference can be considered to have been added on behalf of the eager.
5551  *
5552  * Eager getting a Reset or listener closing:
5553  * ==========================================
5554  *
5555  * Once the listener and eager are linked, the listener never does the unlink.
5556  * If the listener needs to close, tcp_eager_cleanup() is called which queues
5557  * a message on all eager perimeter. The eager then does the unlink, clears
5558  * any pointers to the listener's queue and drops the reference to the
5559  * listener. The listener waits in tcp_close outside the squeue until its
5560  * refcount has dropped to 1. This ensures that the listener has waited for
5561  * all eagers to clear their association with the listener.
5562  *
5563  * Similarly, if eager decides to go away, it can unlink itself and close.
5564  * When the T_CONN_RES comes down, we check if eager has closed. Note that
5565  * the reference to eager is still valid because of the extra ref we put
5566  * in tcp_send_conn_ind.
5567  *
5568  * Listener can always locate the eager under the protection
5569  * of the listener->tcp_eager_lock, and then do a refhold
5570  * on the eager during the accept processing.
5571  *
5572  * The acceptor stream accesses the eager in the accept processing
5573  * based on the ref placed on eager before sending T_conn_ind.
5574  * The only entity that can negate this refhold is a listener close
5575  * which is mutually exclusive with an active acceptor stream.
5576  *
5577  * Eager's reference on the listener
5578  * ===================================
5579  *
5580  * If the accept happens (even on a closed eager) the eager drops its
5581  * reference on the listener at the start of tcp_accept_finish. If the
5582  * eager is killed due to an incoming RST before the T_conn_ind is sent up,
5583  * the reference is dropped in tcp_closei_local. If the listener closes,
5584  * the reference is dropped in tcp_eager_kill. In all cases the reference
5585  * is dropped while executing in the eager's context (squeue).
5586  */
5587 /* END CSTYLED */
5588 
5589 /* Process the SYN packet, mp, directed at the listener 'tcp' */
5590 
5591 /*
5592  * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN.
5593  * tcp_rput_data will not see any SYN packets.
5594  */
5595 /* ARGSUSED */
5596 void
5597 tcp_conn_request(void *arg, mblk_t *mp, void *arg2)
5598 {
5599 	tcph_t		*tcph;
5600 	uint32_t	seg_seq;
5601 	tcp_t		*eager;
5602 	uint_t		ipvers;
5603 	ipha_t		*ipha;
5604 	ip6_t		*ip6h;
5605 	int		err;
5606 	conn_t		*econnp = NULL;
5607 	squeue_t	*new_sqp;
5608 	mblk_t		*mp1;
5609 	uint_t 		ip_hdr_len;
5610 	conn_t		*connp = (conn_t *)arg;
5611 	tcp_t		*tcp = connp->conn_tcp;
5612 	cred_t		*credp;
5613 	tcp_stack_t	*tcps = tcp->tcp_tcps;
5614 	ip_stack_t	*ipst;
5615 
5616 	if (tcp->tcp_state != TCPS_LISTEN)
5617 		goto error2;
5618 
5619 	ASSERT((tcp->tcp_connp->conn_flags & IPCL_BOUND) != 0);
5620 
5621 	mutex_enter(&tcp->tcp_eager_lock);
5622 	if (tcp->tcp_conn_req_cnt_q >= tcp->tcp_conn_req_max) {
5623 		mutex_exit(&tcp->tcp_eager_lock);
5624 		TCP_STAT(tcps, tcp_listendrop);
5625 		BUMP_MIB(&tcps->tcps_mib, tcpListenDrop);
5626 		if (tcp->tcp_debug) {
5627 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
5628 			    "tcp_conn_request: listen backlog (max=%d) "
5629 			    "overflow (%d pending) on %s",
5630 			    tcp->tcp_conn_req_max, tcp->tcp_conn_req_cnt_q,
5631 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
5632 		}
5633 		goto error2;
5634 	}
5635 
5636 	if (tcp->tcp_conn_req_cnt_q0 >=
5637 	    tcp->tcp_conn_req_max + tcps->tcps_conn_req_max_q0) {
5638 		/*
5639 		 * Q0 is full. Drop a pending half-open req from the queue
5640 		 * to make room for the new SYN req. Also mark the time we
5641 		 * drop a SYN.
5642 		 *
5643 		 * A more aggressive defense against SYN attack will
5644 		 * be to set the "tcp_syn_defense" flag now.
5645 		 */
5646 		TCP_STAT(tcps, tcp_listendropq0);
5647 		tcp->tcp_last_rcv_lbolt = lbolt64;
5648 		if (!tcp_drop_q0(tcp)) {
5649 			mutex_exit(&tcp->tcp_eager_lock);
5650 			BUMP_MIB(&tcps->tcps_mib, tcpListenDropQ0);
5651 			if (tcp->tcp_debug) {
5652 				(void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE,
5653 				    "tcp_conn_request: listen half-open queue "
5654 				    "(max=%d) full (%d pending) on %s",
5655 				    tcps->tcps_conn_req_max_q0,
5656 				    tcp->tcp_conn_req_cnt_q0,
5657 				    tcp_display(tcp, NULL,
5658 				    DISP_PORT_ONLY));
5659 			}
5660 			goto error2;
5661 		}
5662 	}
5663 	mutex_exit(&tcp->tcp_eager_lock);
5664 
5665 	/*
5666 	 * IP adds STRUIO_EAGER and ensures that the received packet is
5667 	 * M_DATA even if conn_ipv6_recvpktinfo is enabled or for ip6
5668 	 * link local address.  If IPSec is enabled, db_struioflag has
5669 	 * STRUIO_POLICY set (mutually exclusive from STRUIO_EAGER);
5670 	 * otherwise an error case if neither of them is set.
5671 	 */
5672 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
5673 		new_sqp = (squeue_t *)DB_CKSUMSTART(mp);
5674 		DB_CKSUMSTART(mp) = 0;
5675 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
5676 		econnp = (conn_t *)tcp_get_conn(arg2, tcps);
5677 		if (econnp == NULL)
5678 			goto error2;
5679 		ASSERT(econnp->conn_netstack == connp->conn_netstack);
5680 		econnp->conn_sqp = new_sqp;
5681 	} else if ((mp->b_datap->db_struioflag & STRUIO_POLICY) != 0) {
5682 		/*
5683 		 * mp is updated in tcp_get_ipsec_conn().
5684 		 */
5685 		econnp = tcp_get_ipsec_conn(tcp, arg2, &mp);
5686 		if (econnp == NULL) {
5687 			/*
5688 			 * mp freed by tcp_get_ipsec_conn.
5689 			 */
5690 			return;
5691 		}
5692 		ASSERT(econnp->conn_netstack == connp->conn_netstack);
5693 	} else {
5694 		goto error2;
5695 	}
5696 
5697 	ASSERT(DB_TYPE(mp) == M_DATA);
5698 
5699 	ipvers = IPH_HDR_VERSION(mp->b_rptr);
5700 	ASSERT(ipvers == IPV6_VERSION || ipvers == IPV4_VERSION);
5701 	ASSERT(OK_32PTR(mp->b_rptr));
5702 	if (ipvers == IPV4_VERSION) {
5703 		ipha = (ipha_t *)mp->b_rptr;
5704 		ip_hdr_len = IPH_HDR_LENGTH(ipha);
5705 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
5706 	} else {
5707 		ip6h = (ip6_t *)mp->b_rptr;
5708 		ip_hdr_len = ip_hdr_length_v6(mp, ip6h);
5709 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
5710 	}
5711 
5712 	if (tcp->tcp_family == AF_INET) {
5713 		ASSERT(ipvers == IPV4_VERSION);
5714 		err = tcp_conn_create_v4(connp, econnp, ipha, tcph, mp);
5715 	} else {
5716 		err = tcp_conn_create_v6(connp, econnp, mp, tcph, ipvers, mp);
5717 	}
5718 
5719 	if (err)
5720 		goto error3;
5721 
5722 	eager = econnp->conn_tcp;
5723 
5724 	/*
5725 	 * Pre-allocate the T_ordrel_ind mblk so that at close time, we
5726 	 * will always have that to send up.  Otherwise, we need to do
5727 	 * special handling in case the allocation fails at that time.
5728 	 */
5729 	ASSERT(eager->tcp_ordrel_mp == NULL);
5730 	if ((eager->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL)
5731 		goto error3;
5732 
5733 	/* Inherit various TCP parameters from the listener */
5734 	eager->tcp_naglim = tcp->tcp_naglim;
5735 	eager->tcp_first_timer_threshold =
5736 	    tcp->tcp_first_timer_threshold;
5737 	eager->tcp_second_timer_threshold =
5738 	    tcp->tcp_second_timer_threshold;
5739 
5740 	eager->tcp_first_ctimer_threshold =
5741 	    tcp->tcp_first_ctimer_threshold;
5742 	eager->tcp_second_ctimer_threshold =
5743 	    tcp->tcp_second_ctimer_threshold;
5744 
5745 	/*
5746 	 * tcp_adapt_ire() may change tcp_rwnd according to the ire metrics.
5747 	 * If it does not, the eager's receive window will be set to the
5748 	 * listener's receive window later in this function.
5749 	 */
5750 	eager->tcp_rwnd = 0;
5751 
5752 	/*
5753 	 * Inherit listener's tcp_init_cwnd.  Need to do this before
5754 	 * calling tcp_process_options() where tcp_mss_set() is called
5755 	 * to set the initial cwnd.
5756 	 */
5757 	eager->tcp_init_cwnd = tcp->tcp_init_cwnd;
5758 
5759 	/*
5760 	 * Zones: tcp_adapt_ire() and tcp_send_data() both need the
5761 	 * zone id before the accept is completed in tcp_wput_accept().
5762 	 */
5763 	econnp->conn_zoneid = connp->conn_zoneid;
5764 	econnp->conn_allzones = connp->conn_allzones;
5765 
5766 	/* Copy nexthop information from listener to eager */
5767 	if (connp->conn_nexthop_set) {
5768 		econnp->conn_nexthop_set = connp->conn_nexthop_set;
5769 		econnp->conn_nexthop_v4 = connp->conn_nexthop_v4;
5770 	}
5771 
5772 	/*
5773 	 * TSOL: tsol_input_proc() needs the eager's cred before the
5774 	 * eager is accepted
5775 	 */
5776 	econnp->conn_cred = eager->tcp_cred = credp = connp->conn_cred;
5777 	crhold(credp);
5778 
5779 	/*
5780 	 * If the caller has the process-wide flag set, then default to MAC
5781 	 * exempt mode.  This allows read-down to unlabeled hosts.
5782 	 */
5783 	if (getpflags(NET_MAC_AWARE, credp) != 0)
5784 		econnp->conn_mac_exempt = B_TRUE;
5785 
5786 	if (is_system_labeled()) {
5787 		cred_t *cr;
5788 
5789 		if (connp->conn_mlp_type != mlptSingle) {
5790 			cr = econnp->conn_peercred = DB_CRED(mp);
5791 			if (cr != NULL)
5792 				crhold(cr);
5793 			else
5794 				cr = econnp->conn_cred;
5795 			DTRACE_PROBE2(mlp_syn_accept, conn_t *,
5796 			    econnp, cred_t *, cr)
5797 		} else {
5798 			cr = econnp->conn_cred;
5799 			DTRACE_PROBE2(syn_accept, conn_t *,
5800 			    econnp, cred_t *, cr)
5801 		}
5802 
5803 		if (!tcp_update_label(eager, cr)) {
5804 			DTRACE_PROBE3(
5805 			    tx__ip__log__error__connrequest__tcp,
5806 			    char *, "eager connp(1) label on SYN mp(2) failed",
5807 			    conn_t *, econnp, mblk_t *, mp);
5808 			goto error3;
5809 		}
5810 	}
5811 
5812 	eager->tcp_hard_binding = B_TRUE;
5813 
5814 	tcp_bind_hash_insert(&tcps->tcps_bind_fanout[
5815 	    TCP_BIND_HASH(eager->tcp_lport)], eager, 0);
5816 
5817 	CL_INET_CONNECT(eager);
5818 
5819 	/*
5820 	 * No need to check for multicast destination since ip will only pass
5821 	 * up multicasts to those that have expressed interest
5822 	 * TODO: what about rejecting broadcasts?
5823 	 * Also check that source is not a multicast or broadcast address.
5824 	 */
5825 	eager->tcp_state = TCPS_SYN_RCVD;
5826 
5827 
5828 	/*
5829 	 * There should be no ire in the mp as we are being called after
5830 	 * receiving the SYN.
5831 	 */
5832 	ASSERT(tcp_ire_mp(mp) == NULL);
5833 
5834 	/*
5835 	 * Adapt our mss, ttl, ... according to information provided in IRE.
5836 	 */
5837 
5838 	if (tcp_adapt_ire(eager, NULL) == 0) {
5839 		/* Undo the bind_hash_insert */
5840 		tcp_bind_hash_remove(eager);
5841 		goto error3;
5842 	}
5843 
5844 	/* Process all TCP options. */
5845 	tcp_process_options(eager, tcph);
5846 
5847 	/* Is the other end ECN capable? */
5848 	if (tcps->tcps_ecn_permitted >= 1 &&
5849 	    (tcph->th_flags[0] & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) {
5850 		eager->tcp_ecn_ok = B_TRUE;
5851 	}
5852 
5853 	/*
5854 	 * listener->tcp_rq->q_hiwat should be the default window size or a
5855 	 * window size changed via SO_RCVBUF option.  First round up the
5856 	 * eager's tcp_rwnd to the nearest MSS.  Then find out the window
5857 	 * scale option value if needed.  Call tcp_rwnd_set() to finish the
5858 	 * setting.
5859 	 *
5860 	 * Note if there is a rpipe metric associated with the remote host,
5861 	 * we should not inherit receive window size from listener.
5862 	 */
5863 	eager->tcp_rwnd = MSS_ROUNDUP(
5864 	    (eager->tcp_rwnd == 0 ? tcp->tcp_rq->q_hiwat :
5865 	    eager->tcp_rwnd), eager->tcp_mss);
5866 	if (eager->tcp_snd_ws_ok)
5867 		tcp_set_ws_value(eager);
5868 	/*
5869 	 * Note that this is the only place tcp_rwnd_set() is called for
5870 	 * accepting a connection.  We need to call it here instead of
5871 	 * after the 3-way handshake because we need to tell the other
5872 	 * side our rwnd in the SYN-ACK segment.
5873 	 */
5874 	(void) tcp_rwnd_set(eager, eager->tcp_rwnd);
5875 
5876 	/*
5877 	 * We eliminate the need for sockfs to send down a T_SVR4_OPTMGMT_REQ
5878 	 * via soaccept()->soinheritoptions() which essentially applies
5879 	 * all the listener options to the new STREAM. The options that we
5880 	 * need to take care of are:
5881 	 * SO_DEBUG, SO_REUSEADDR, SO_KEEPALIVE, SO_DONTROUTE, SO_BROADCAST,
5882 	 * SO_USELOOPBACK, SO_OOBINLINE, SO_DGRAM_ERRIND, SO_LINGER,
5883 	 * SO_SNDBUF, SO_RCVBUF.
5884 	 *
5885 	 * SO_RCVBUF:	tcp_rwnd_set() above takes care of it.
5886 	 * SO_SNDBUF:	Set the tcp_xmit_hiwater for the eager. When
5887 	 *		tcp_maxpsz_set() gets called later from
5888 	 *		tcp_accept_finish(), the option takes effect.
5889 	 *
5890 	 */
5891 	/* Set the TCP options */
5892 	eager->tcp_xmit_hiwater = tcp->tcp_xmit_hiwater;
5893 	eager->tcp_dgram_errind = tcp->tcp_dgram_errind;
5894 	eager->tcp_oobinline = tcp->tcp_oobinline;
5895 	eager->tcp_reuseaddr = tcp->tcp_reuseaddr;
5896 	eager->tcp_broadcast = tcp->tcp_broadcast;
5897 	eager->tcp_useloopback = tcp->tcp_useloopback;
5898 	eager->tcp_dontroute = tcp->tcp_dontroute;
5899 	eager->tcp_linger = tcp->tcp_linger;
5900 	eager->tcp_lingertime = tcp->tcp_lingertime;
5901 	if (tcp->tcp_ka_enabled)
5902 		eager->tcp_ka_enabled = 1;
5903 
5904 	/* Set the IP options */
5905 	econnp->conn_broadcast = connp->conn_broadcast;
5906 	econnp->conn_loopback = connp->conn_loopback;
5907 	econnp->conn_dontroute = connp->conn_dontroute;
5908 	econnp->conn_reuseaddr = connp->conn_reuseaddr;
5909 
5910 	/* Put a ref on the listener for the eager. */
5911 	CONN_INC_REF(connp);
5912 	mutex_enter(&tcp->tcp_eager_lock);
5913 	tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = eager;
5914 	eager->tcp_eager_next_q0 = tcp->tcp_eager_next_q0;
5915 	tcp->tcp_eager_next_q0 = eager;
5916 	eager->tcp_eager_prev_q0 = tcp;
5917 
5918 	/* Set tcp_listener before adding it to tcp_conn_fanout */
5919 	eager->tcp_listener = tcp;
5920 	eager->tcp_saved_listener = tcp;
5921 
5922 	/*
5923 	 * Tag this detached tcp vector for later retrieval
5924 	 * by our listener client in tcp_accept().
5925 	 */
5926 	eager->tcp_conn_req_seqnum = tcp->tcp_conn_req_seqnum;
5927 	tcp->tcp_conn_req_cnt_q0++;
5928 	if (++tcp->tcp_conn_req_seqnum == -1) {
5929 		/*
5930 		 * -1 is "special" and defined in TPI as something
5931 		 * that should never be used in T_CONN_IND
5932 		 */
5933 		++tcp->tcp_conn_req_seqnum;
5934 	}
5935 	mutex_exit(&tcp->tcp_eager_lock);
5936 
5937 	if (tcp->tcp_syn_defense) {
5938 		/* Don't drop the SYN that comes from a good IP source */
5939 		ipaddr_t *addr_cache = (ipaddr_t *)(tcp->tcp_ip_addr_cache);
5940 		if (addr_cache != NULL && eager->tcp_remote ==
5941 		    addr_cache[IP_ADDR_CACHE_HASH(eager->tcp_remote)]) {
5942 			eager->tcp_dontdrop = B_TRUE;
5943 		}
5944 	}
5945 
5946 	/*
5947 	 * We need to insert the eager in its own perimeter but as soon
5948 	 * as we do that, we expose the eager to the classifier and
5949 	 * should not touch any field outside the eager's perimeter.
5950 	 * So do all the work necessary before inserting the eager
5951 	 * in its own perimeter. Be optimistic that ipcl_conn_insert()
5952 	 * will succeed but undo everything if it fails.
5953 	 */
5954 	seg_seq = ABE32_TO_U32(tcph->th_seq);
5955 	eager->tcp_irs = seg_seq;
5956 	eager->tcp_rack = seg_seq;
5957 	eager->tcp_rnxt = seg_seq + 1;
5958 	U32_TO_ABE32(eager->tcp_rnxt, eager->tcp_tcph->th_ack);
5959 	BUMP_MIB(&tcps->tcps_mib, tcpPassiveOpens);
5960 	eager->tcp_state = TCPS_SYN_RCVD;
5961 	mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss,
5962 	    NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE);
5963 	if (mp1 == NULL) {
5964 		/*
5965 		 * Increment the ref count as we are going to
5966 		 * enqueueing an mp in squeue
5967 		 */
5968 		CONN_INC_REF(econnp);
5969 		goto error;
5970 	}
5971 	DB_CPID(mp1) = tcp->tcp_cpid;
5972 	eager->tcp_cpid = tcp->tcp_cpid;
5973 	eager->tcp_open_time = lbolt64;
5974 
5975 	/*
5976 	 * We need to start the rto timer. In normal case, we start
5977 	 * the timer after sending the packet on the wire (or at
5978 	 * least believing that packet was sent by waiting for
5979 	 * CALL_IP_WPUT() to return). Since this is the first packet
5980 	 * being sent on the wire for the eager, our initial tcp_rto
5981 	 * is at least tcp_rexmit_interval_min which is a fairly
5982 	 * large value to allow the algorithm to adjust slowly to large
5983 	 * fluctuations of RTT during first few transmissions.
5984 	 *
5985 	 * Starting the timer first and then sending the packet in this
5986 	 * case shouldn't make much difference since tcp_rexmit_interval_min
5987 	 * is of the order of several 100ms and starting the timer
5988 	 * first and then sending the packet will result in difference
5989 	 * of few micro seconds.
5990 	 *
5991 	 * Without this optimization, we are forced to hold the fanout
5992 	 * lock across the ipcl_bind_insert() and sending the packet
5993 	 * so that we don't race against an incoming packet (maybe RST)
5994 	 * for this eager.
5995 	 *
5996 	 * It is necessary to acquire an extra reference on the eager
5997 	 * at this point and hold it until after tcp_send_data() to
5998 	 * ensure against an eager close race.
5999 	 */
6000 
6001 	CONN_INC_REF(eager->tcp_connp);
6002 
6003 	TCP_TIMER_RESTART(eager, eager->tcp_rto);
6004 
6005 	/*
6006 	 * Insert the eager in its own perimeter now. We are ready to deal
6007 	 * with any packets on eager.
6008 	 */
6009 	if (eager->tcp_ipversion == IPV4_VERSION) {
6010 		if (ipcl_conn_insert(econnp, IPPROTO_TCP, 0, 0, 0) != 0) {
6011 			goto error;
6012 		}
6013 	} else {
6014 		if (ipcl_conn_insert_v6(econnp, IPPROTO_TCP, 0, 0, 0, 0) != 0) {
6015 			goto error;
6016 		}
6017 	}
6018 
6019 	/* mark conn as fully-bound */
6020 	econnp->conn_fully_bound = B_TRUE;
6021 
6022 	/* Send the SYN-ACK */
6023 	tcp_send_data(eager, eager->tcp_wq, mp1);
6024 	CONN_DEC_REF(eager->tcp_connp);
6025 	freemsg(mp);
6026 
6027 	return;
6028 error:
6029 	freemsg(mp1);
6030 	eager->tcp_closemp_used = B_TRUE;
6031 	TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
6032 	squeue_fill(econnp->conn_sqp, &eager->tcp_closemp, tcp_eager_kill,
6033 	    econnp, SQTAG_TCP_CONN_REQ_2);
6034 
6035 	/*
6036 	 * If a connection already exists, send the mp to that connections so
6037 	 * that it can be appropriately dealt with.
6038 	 */
6039 	ipst = tcps->tcps_netstack->netstack_ip;
6040 
6041 	if ((econnp = ipcl_classify(mp, connp->conn_zoneid, ipst)) != NULL) {
6042 		if (!IPCL_IS_CONNECTED(econnp)) {
6043 			/*
6044 			 * Something bad happened. ipcl_conn_insert()
6045 			 * failed because a connection already existed
6046 			 * in connected hash but we can't find it
6047 			 * anymore (someone blew it away). Just
6048 			 * free this message and hopefully remote
6049 			 * will retransmit at which time the SYN can be
6050 			 * treated as a new connection or dealth with
6051 			 * a TH_RST if a connection already exists.
6052 			 */
6053 			CONN_DEC_REF(econnp);
6054 			freemsg(mp);
6055 		} else {
6056 			squeue_fill(econnp->conn_sqp, mp, tcp_input,
6057 			    econnp, SQTAG_TCP_CONN_REQ_1);
6058 		}
6059 	} else {
6060 		/* Nobody wants this packet */
6061 		freemsg(mp);
6062 	}
6063 	return;
6064 error3:
6065 	CONN_DEC_REF(econnp);
6066 error2:
6067 	freemsg(mp);
6068 }
6069 
6070 /*
6071  * In an ideal case of vertical partition in NUMA architecture, its
6072  * beneficial to have the listener and all the incoming connections
6073  * tied to the same squeue. The other constraint is that incoming
6074  * connections should be tied to the squeue attached to interrupted
6075  * CPU for obvious locality reason so this leaves the listener to
6076  * be tied to the same squeue. Our only problem is that when listener
6077  * is binding, the CPU that will get interrupted by the NIC whose
6078  * IP address the listener is binding to is not even known. So
6079  * the code below allows us to change that binding at the time the
6080  * CPU is interrupted by virtue of incoming connection's squeue.
6081  *
6082  * This is usefull only in case of a listener bound to a specific IP
6083  * address. For other kind of listeners, they get bound the
6084  * very first time and there is no attempt to rebind them.
6085  */
6086 void
6087 tcp_conn_request_unbound(void *arg, mblk_t *mp, void *arg2)
6088 {
6089 	conn_t		*connp = (conn_t *)arg;
6090 	squeue_t	*sqp = (squeue_t *)arg2;
6091 	squeue_t	*new_sqp;
6092 	uint32_t	conn_flags;
6093 
6094 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
6095 		new_sqp = (squeue_t *)DB_CKSUMSTART(mp);
6096 	} else {
6097 		goto done;
6098 	}
6099 
6100 	if (connp->conn_fanout == NULL)
6101 		goto done;
6102 
6103 	if (!(connp->conn_flags & IPCL_FULLY_BOUND)) {
6104 		mutex_enter(&connp->conn_fanout->connf_lock);
6105 		mutex_enter(&connp->conn_lock);
6106 		/*
6107 		 * No one from read or write side can access us now
6108 		 * except for already queued packets on this squeue.
6109 		 * But since we haven't changed the squeue yet, they
6110 		 * can't execute. If they are processed after we have
6111 		 * changed the squeue, they are sent back to the
6112 		 * correct squeue down below.
6113 		 * But a listner close can race with processing of
6114 		 * incoming SYN. If incoming SYN processing changes
6115 		 * the squeue then the listener close which is waiting
6116 		 * to enter the squeue would operate on the wrong
6117 		 * squeue. Hence we don't change the squeue here unless
6118 		 * the refcount is exactly the minimum refcount. The
6119 		 * minimum refcount of 4 is counted as - 1 each for
6120 		 * TCP and IP, 1 for being in the classifier hash, and
6121 		 * 1 for the mblk being processed.
6122 		 */
6123 
6124 		if (connp->conn_ref != 4 ||
6125 		    connp->conn_tcp->tcp_state != TCPS_LISTEN) {
6126 			mutex_exit(&connp->conn_lock);
6127 			mutex_exit(&connp->conn_fanout->connf_lock);
6128 			goto done;
6129 		}
6130 		if (connp->conn_sqp != new_sqp) {
6131 			while (connp->conn_sqp != new_sqp)
6132 				(void) casptr(&connp->conn_sqp, sqp, new_sqp);
6133 		}
6134 
6135 		do {
6136 			conn_flags = connp->conn_flags;
6137 			conn_flags |= IPCL_FULLY_BOUND;
6138 			(void) cas32(&connp->conn_flags, connp->conn_flags,
6139 			    conn_flags);
6140 		} while (!(connp->conn_flags & IPCL_FULLY_BOUND));
6141 
6142 		mutex_exit(&connp->conn_fanout->connf_lock);
6143 		mutex_exit(&connp->conn_lock);
6144 	}
6145 
6146 done:
6147 	if (connp->conn_sqp != sqp) {
6148 		CONN_INC_REF(connp);
6149 		squeue_fill(connp->conn_sqp, mp,
6150 		    connp->conn_recv, connp, SQTAG_TCP_CONN_REQ_UNBOUND);
6151 	} else {
6152 		tcp_conn_request(connp, mp, sqp);
6153 	}
6154 }
6155 
6156 /*
6157  * Successful connect request processing begins when our client passes
6158  * a T_CONN_REQ message into tcp_wput() and ends when tcp_rput() passes
6159  * our T_OK_ACK reply message upstream.  The control flow looks like this:
6160  *   upstream -> tcp_wput() -> tcp_wput_proto() -> tcp_connect() -> IP
6161  *   upstream <- tcp_rput()                <- IP
6162  * After various error checks are completed, tcp_connect() lays
6163  * the target address and port into the composite header template,
6164  * preallocates the T_OK_ACK reply message, construct a full 12 byte bind
6165  * request followed by an IRE request, and passes the three mblk message
6166  * down to IP looking like this:
6167  *   O_T_BIND_REQ for IP  --> IRE req --> T_OK_ACK for our client
6168  * Processing continues in tcp_rput() when we receive the following message:
6169  *   T_BIND_ACK from IP --> IRE ack --> T_OK_ACK for our client
6170  * After consuming the first two mblks, tcp_rput() calls tcp_timer(),
6171  * to fire off the connection request, and then passes the T_OK_ACK mblk
6172  * upstream that we filled in below.  There are, of course, numerous
6173  * error conditions along the way which truncate the processing described
6174  * above.
6175  */
6176 static void
6177 tcp_connect(tcp_t *tcp, mblk_t *mp)
6178 {
6179 	sin_t		*sin;
6180 	sin6_t		*sin6;
6181 	queue_t		*q = tcp->tcp_wq;
6182 	struct T_conn_req	*tcr;
6183 	ipaddr_t	*dstaddrp;
6184 	in_port_t	dstport;
6185 	uint_t		srcid;
6186 
6187 	tcr = (struct T_conn_req *)mp->b_rptr;
6188 
6189 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
6190 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) {
6191 		tcp_err_ack(tcp, mp, TPROTO, 0);
6192 		return;
6193 	}
6194 
6195 	/*
6196 	 * Pre-allocate the T_ordrel_ind mblk so that at close time, we
6197 	 * will always have that to send up.  Otherwise, we need to do
6198 	 * special handling in case the allocation fails at that time.
6199 	 */
6200 	ASSERT(tcp->tcp_ordrel_mp == NULL);
6201 	if ((tcp->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL) {
6202 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
6203 		return;
6204 	}
6205 
6206 	/*
6207 	 * Determine packet type based on type of address passed in
6208 	 * the request should contain an IPv4 or IPv6 address.
6209 	 * Make sure that address family matches the type of
6210 	 * family of the the address passed down
6211 	 */
6212 	switch (tcr->DEST_length) {
6213 	default:
6214 		tcp_err_ack(tcp, mp, TBADADDR, 0);
6215 		return;
6216 
6217 	case (sizeof (sin_t) - sizeof (sin->sin_zero)): {
6218 		/*
6219 		 * XXX: The check for valid DEST_length was not there
6220 		 * in earlier releases and some buggy
6221 		 * TLI apps (e.g Sybase) got away with not feeding
6222 		 * in sin_zero part of address.
6223 		 * We allow that bug to keep those buggy apps humming.
6224 		 * Test suites require the check on DEST_length.
6225 		 * We construct a new mblk with valid DEST_length
6226 		 * free the original so the rest of the code does
6227 		 * not have to keep track of this special shorter
6228 		 * length address case.
6229 		 */
6230 		mblk_t *nmp;
6231 		struct T_conn_req *ntcr;
6232 		sin_t *nsin;
6233 
6234 		nmp = allocb(sizeof (struct T_conn_req) + sizeof (sin_t) +
6235 		    tcr->OPT_length, BPRI_HI);
6236 		if (nmp == NULL) {
6237 			tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
6238 			return;
6239 		}
6240 		ntcr = (struct T_conn_req *)nmp->b_rptr;
6241 		bzero(ntcr, sizeof (struct T_conn_req)); /* zero fill */
6242 		ntcr->PRIM_type = T_CONN_REQ;
6243 		ntcr->DEST_length = sizeof (sin_t);
6244 		ntcr->DEST_offset = sizeof (struct T_conn_req);
6245 
6246 		nsin = (sin_t *)((uchar_t *)ntcr + ntcr->DEST_offset);
6247 		*nsin = sin_null;
6248 		/* Get pointer to shorter address to copy from original mp */
6249 		sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset,
6250 		    tcr->DEST_length); /* extract DEST_length worth of sin_t */
6251 		if (sin == NULL || !OK_32PTR((char *)sin)) {
6252 			freemsg(nmp);
6253 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
6254 			return;
6255 		}
6256 		nsin->sin_family = sin->sin_family;
6257 		nsin->sin_port = sin->sin_port;
6258 		nsin->sin_addr = sin->sin_addr;
6259 		/* Note:nsin->sin_zero zero-fill with sin_null assign above */
6260 		nmp->b_wptr = (uchar_t *)&nsin[1];
6261 		if (tcr->OPT_length != 0) {
6262 			ntcr->OPT_length = tcr->OPT_length;
6263 			ntcr->OPT_offset = nmp->b_wptr - nmp->b_rptr;
6264 			bcopy((uchar_t *)tcr + tcr->OPT_offset,
6265 			    (uchar_t *)ntcr + ntcr->OPT_offset,
6266 			    tcr->OPT_length);
6267 			nmp->b_wptr += tcr->OPT_length;
6268 		}
6269 		freemsg(mp);	/* original mp freed */
6270 		mp = nmp;	/* re-initialize original variables */
6271 		tcr = ntcr;
6272 	}
6273 	/* FALLTHRU */
6274 
6275 	case sizeof (sin_t):
6276 		sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset,
6277 		    sizeof (sin_t));
6278 		if (sin == NULL || !OK_32PTR((char *)sin)) {
6279 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
6280 			return;
6281 		}
6282 		if (tcp->tcp_family != AF_INET ||
6283 		    sin->sin_family != AF_INET) {
6284 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
6285 			return;
6286 		}
6287 		if (sin->sin_port == 0) {
6288 			tcp_err_ack(tcp, mp, TBADADDR, 0);
6289 			return;
6290 		}
6291 		if (tcp->tcp_connp && tcp->tcp_connp->conn_ipv6_v6only) {
6292 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
6293 			return;
6294 		}
6295 
6296 		break;
6297 
6298 	case sizeof (sin6_t):
6299 		sin6 = (sin6_t *)mi_offset_param(mp, tcr->DEST_offset,
6300 		    sizeof (sin6_t));
6301 		if (sin6 == NULL || !OK_32PTR((char *)sin6)) {
6302 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
6303 			return;
6304 		}
6305 		if (tcp->tcp_family != AF_INET6 ||
6306 		    sin6->sin6_family != AF_INET6) {
6307 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
6308 			return;
6309 		}
6310 		if (sin6->sin6_port == 0) {
6311 			tcp_err_ack(tcp, mp, TBADADDR, 0);
6312 			return;
6313 		}
6314 		break;
6315 	}
6316 	/*
6317 	 * TODO: If someone in TCPS_TIME_WAIT has this dst/port we
6318 	 * should key on their sequence number and cut them loose.
6319 	 */
6320 
6321 	/*
6322 	 * If options passed in, feed it for verification and handling
6323 	 */
6324 	if (tcr->OPT_length != 0) {
6325 		mblk_t	*ok_mp;
6326 		mblk_t	*discon_mp;
6327 		mblk_t  *conn_opts_mp;
6328 		int t_error, sys_error, do_disconnect;
6329 
6330 		conn_opts_mp = NULL;
6331 
6332 		if (tcp_conprim_opt_process(tcp, mp,
6333 		    &do_disconnect, &t_error, &sys_error) < 0) {
6334 			if (do_disconnect) {
6335 				ASSERT(t_error == 0 && sys_error == 0);
6336 				discon_mp = mi_tpi_discon_ind(NULL,
6337 				    ECONNREFUSED, 0);
6338 				if (!discon_mp) {
6339 					tcp_err_ack_prim(tcp, mp, T_CONN_REQ,
6340 					    TSYSERR, ENOMEM);
6341 					return;
6342 				}
6343 				ok_mp = mi_tpi_ok_ack_alloc(mp);
6344 				if (!ok_mp) {
6345 					tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6346 					    TSYSERR, ENOMEM);
6347 					return;
6348 				}
6349 				qreply(q, ok_mp);
6350 				qreply(q, discon_mp); /* no flush! */
6351 			} else {
6352 				ASSERT(t_error != 0);
6353 				tcp_err_ack_prim(tcp, mp, T_CONN_REQ, t_error,
6354 				    sys_error);
6355 			}
6356 			return;
6357 		}
6358 		/*
6359 		 * Success in setting options, the mp option buffer represented
6360 		 * by OPT_length/offset has been potentially modified and
6361 		 * contains results of option processing. We copy it in
6362 		 * another mp to save it for potentially influencing returning
6363 		 * it in T_CONN_CONN.
6364 		 */
6365 		if (tcr->OPT_length != 0) { /* there are resulting options */
6366 			conn_opts_mp = copyb(mp);
6367 			if (!conn_opts_mp) {
6368 				tcp_err_ack_prim(tcp, mp, T_CONN_REQ,
6369 				    TSYSERR, ENOMEM);
6370 				return;
6371 			}
6372 			ASSERT(tcp->tcp_conn.tcp_opts_conn_req == NULL);
6373 			tcp->tcp_conn.tcp_opts_conn_req = conn_opts_mp;
6374 			/*
6375 			 * Note:
6376 			 * These resulting option negotiation can include any
6377 			 * end-to-end negotiation options but there no such
6378 			 * thing (yet?) in our TCP/IP.
6379 			 */
6380 		}
6381 	}
6382 
6383 	/*
6384 	 * If we're connecting to an IPv4-mapped IPv6 address, we need to
6385 	 * make sure that the template IP header in the tcp structure is an
6386 	 * IPv4 header, and that the tcp_ipversion is IPV4_VERSION.  We
6387 	 * need to this before we call tcp_bindi() so that the port lookup
6388 	 * code will look for ports in the correct port space (IPv4 and
6389 	 * IPv6 have separate port spaces).
6390 	 */
6391 	if (tcp->tcp_family == AF_INET6 && tcp->tcp_ipversion == IPV6_VERSION &&
6392 	    IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
6393 		int err = 0;
6394 
6395 		err = tcp_header_init_ipv4(tcp);
6396 		if (err != 0) {
6397 			mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM);
6398 			goto connect_failed;
6399 		}
6400 		if (tcp->tcp_lport != 0)
6401 			*(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport;
6402 	}
6403 
6404 	if (tcp->tcp_issocket) {
6405 		/*
6406 		 * TCP is _D_SODIRECT and sockfs is directly above so save
6407 		 * the shared sonode sodirect_t pointer (if any) to enable
6408 		 * TCP sodirect.
6409 		 */
6410 		tcp->tcp_sodirect = SOD_QTOSODP(tcp->tcp_rq);
6411 	}
6412 
6413 	switch (tcp->tcp_state) {
6414 	case TCPS_IDLE:
6415 		/*
6416 		 * We support quick connect, refer to comments in
6417 		 * tcp_connect_*()
6418 		 */
6419 		/* FALLTHRU */
6420 	case TCPS_BOUND:
6421 	case TCPS_LISTEN:
6422 		if (tcp->tcp_family == AF_INET6) {
6423 			if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
6424 				tcp_connect_ipv6(tcp, mp,
6425 				    &sin6->sin6_addr,
6426 				    sin6->sin6_port, sin6->sin6_flowinfo,
6427 				    sin6->__sin6_src_id, sin6->sin6_scope_id);
6428 				return;
6429 			}
6430 			/*
6431 			 * Destination adress is mapped IPv6 address.
6432 			 * Source bound address should be unspecified or
6433 			 * IPv6 mapped address as well.
6434 			 */
6435 			if (!IN6_IS_ADDR_UNSPECIFIED(
6436 			    &tcp->tcp_bound_source_v6) &&
6437 			    !IN6_IS_ADDR_V4MAPPED(&tcp->tcp_bound_source_v6)) {
6438 				mp = mi_tpi_err_ack_alloc(mp, TSYSERR,
6439 				    EADDRNOTAVAIL);
6440 				break;
6441 			}
6442 			dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr));
6443 			dstport = sin6->sin6_port;
6444 			srcid = sin6->__sin6_src_id;
6445 		} else {
6446 			dstaddrp = &sin->sin_addr.s_addr;
6447 			dstport = sin->sin_port;
6448 			srcid = 0;
6449 		}
6450 
6451 		tcp_connect_ipv4(tcp, mp, dstaddrp, dstport, srcid);
6452 		return;
6453 	default:
6454 		mp = mi_tpi_err_ack_alloc(mp, TOUTSTATE, 0);
6455 		break;
6456 	}
6457 	/*
6458 	 * Note: Code below is the "failure" case
6459 	 */
6460 	/* return error ack and blow away saved option results if any */
6461 connect_failed:
6462 	if (mp != NULL)
6463 		putnext(tcp->tcp_rq, mp);
6464 	else {
6465 		tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6466 		    TSYSERR, ENOMEM);
6467 	}
6468 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
6469 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
6470 }
6471 
6472 /*
6473  * Handle connect to IPv4 destinations, including connections for AF_INET6
6474  * sockets connecting to IPv4 mapped IPv6 destinations.
6475  */
6476 static void
6477 tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp, in_port_t dstport,
6478     uint_t srcid)
6479 {
6480 	tcph_t	*tcph;
6481 	mblk_t	*mp1;
6482 	ipaddr_t dstaddr = *dstaddrp;
6483 	int32_t	oldstate;
6484 	uint16_t lport;
6485 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6486 
6487 	ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
6488 
6489 	/* Check for attempt to connect to INADDR_ANY */
6490 	if (dstaddr == INADDR_ANY)  {
6491 		/*
6492 		 * SunOS 4.x and 4.3 BSD allow an application
6493 		 * to connect a TCP socket to INADDR_ANY.
6494 		 * When they do this, the kernel picks the
6495 		 * address of one interface and uses it
6496 		 * instead.  The kernel usually ends up
6497 		 * picking the address of the loopback
6498 		 * interface.  This is an undocumented feature.
6499 		 * However, we provide the same thing here
6500 		 * in order to have source and binary
6501 		 * compatibility with SunOS 4.x.
6502 		 * Update the T_CONN_REQ (sin/sin6) since it is used to
6503 		 * generate the T_CONN_CON.
6504 		 */
6505 		dstaddr = htonl(INADDR_LOOPBACK);
6506 		*dstaddrp = dstaddr;
6507 	}
6508 
6509 	/* Handle __sin6_src_id if socket not bound to an IP address */
6510 	if (srcid != 0 && tcp->tcp_ipha->ipha_src == INADDR_ANY) {
6511 		ip_srcid_find_id(srcid, &tcp->tcp_ip_src_v6,
6512 		    tcp->tcp_connp->conn_zoneid, tcps->tcps_netstack);
6513 		IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_ip_src_v6,
6514 		    tcp->tcp_ipha->ipha_src);
6515 	}
6516 
6517 	/*
6518 	 * Don't let an endpoint connect to itself.  Note that
6519 	 * the test here does not catch the case where the
6520 	 * source IP addr was left unspecified by the user. In
6521 	 * this case, the source addr is set in tcp_adapt_ire()
6522 	 * using the reply to the T_BIND message that we send
6523 	 * down to IP here and the check is repeated in tcp_rput_other.
6524 	 */
6525 	if (dstaddr == tcp->tcp_ipha->ipha_src &&
6526 	    dstport == tcp->tcp_lport) {
6527 		mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0);
6528 		goto failed;
6529 	}
6530 
6531 	tcp->tcp_ipha->ipha_dst = dstaddr;
6532 	IN6_IPADDR_TO_V4MAPPED(dstaddr, &tcp->tcp_remote_v6);
6533 
6534 	/*
6535 	 * Massage a source route if any putting the first hop
6536 	 * in iph_dst. Compute a starting value for the checksum which
6537 	 * takes into account that the original iph_dst should be
6538 	 * included in the checksum but that ip will include the
6539 	 * first hop in the source route in the tcp checksum.
6540 	 */
6541 	tcp->tcp_sum = ip_massage_options(tcp->tcp_ipha, tcps->tcps_netstack);
6542 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
6543 	tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) +
6544 	    (tcp->tcp_ipha->ipha_dst & 0xffff));
6545 	if ((int)tcp->tcp_sum < 0)
6546 		tcp->tcp_sum--;
6547 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
6548 	tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
6549 	    (tcp->tcp_sum >> 16));
6550 	tcph = tcp->tcp_tcph;
6551 	*(uint16_t *)tcph->th_fport = dstport;
6552 	tcp->tcp_fport = dstport;
6553 
6554 	oldstate = tcp->tcp_state;
6555 	/*
6556 	 * At this point the remote destination address and remote port fields
6557 	 * in the tcp-four-tuple have been filled in the tcp structure. Now we
6558 	 * have to see which state tcp was in so we can take apropriate action.
6559 	 */
6560 	if (oldstate == TCPS_IDLE) {
6561 		/*
6562 		 * We support a quick connect capability here, allowing
6563 		 * clients to transition directly from IDLE to SYN_SENT
6564 		 * tcp_bindi will pick an unused port, insert the connection
6565 		 * in the bind hash and transition to BOUND state.
6566 		 */
6567 		lport = tcp_update_next_port(tcps->tcps_next_port_to_try,
6568 		    tcp, B_TRUE);
6569 		lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE,
6570 		    B_FALSE, B_FALSE);
6571 		if (lport == 0) {
6572 			mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0);
6573 			goto failed;
6574 		}
6575 	}
6576 	tcp->tcp_state = TCPS_SYN_SENT;
6577 
6578 	/*
6579 	 * TODO: allow data with connect requests
6580 	 * by unlinking M_DATA trailers here and
6581 	 * linking them in behind the T_OK_ACK mblk.
6582 	 * The tcp_rput() bind ack handler would then
6583 	 * feed them to tcp_wput_data() rather than call
6584 	 * tcp_timer().
6585 	 */
6586 	mp = mi_tpi_ok_ack_alloc(mp);
6587 	if (!mp) {
6588 		tcp->tcp_state = oldstate;
6589 		goto failed;
6590 	}
6591 	if (tcp->tcp_family == AF_INET) {
6592 		mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ,
6593 		    sizeof (ipa_conn_t));
6594 	} else {
6595 		mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ,
6596 		    sizeof (ipa6_conn_t));
6597 	}
6598 	if (mp1) {
6599 		/*
6600 		 * We need to make sure that the conn_recv is set to a non-null
6601 		 * value before we insert the conn_t into the classifier table.
6602 		 * This is to avoid a race with an incoming packet which does
6603 		 * an ipcl_classify().
6604 		 */
6605 		tcp->tcp_connp->conn_recv = tcp_input;
6606 
6607 		/* Hang onto the T_OK_ACK for later. */
6608 		linkb(mp1, mp);
6609 		mblk_setcred(mp1, tcp->tcp_cred);
6610 		if (tcp->tcp_family == AF_INET)
6611 			mp1 = ip_bind_v4(tcp->tcp_wq, mp1, tcp->tcp_connp);
6612 		else {
6613 			mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp,
6614 			    &tcp->tcp_sticky_ipp);
6615 		}
6616 		BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens);
6617 		tcp->tcp_active_open = 1;
6618 		/*
6619 		 * If the bind cannot complete immediately
6620 		 * IP will arrange to call tcp_rput_other
6621 		 * when the bind completes.
6622 		 */
6623 		if (mp1 != NULL)
6624 			tcp_rput_other(tcp, mp1);
6625 		return;
6626 	}
6627 	/* Error case */
6628 	tcp->tcp_state = oldstate;
6629 	mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM);
6630 
6631 failed:
6632 	/* return error ack and blow away saved option results if any */
6633 	if (mp != NULL)
6634 		putnext(tcp->tcp_rq, mp);
6635 	else {
6636 		tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6637 		    TSYSERR, ENOMEM);
6638 	}
6639 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
6640 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
6641 
6642 }
6643 
6644 /*
6645  * Handle connect to IPv6 destinations.
6646  */
6647 static void
6648 tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp,
6649     in_port_t dstport, uint32_t flowinfo, uint_t srcid, uint32_t scope_id)
6650 {
6651 	tcph_t	*tcph;
6652 	mblk_t	*mp1;
6653 	ip6_rthdr_t *rth;
6654 	int32_t  oldstate;
6655 	uint16_t lport;
6656 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6657 
6658 	ASSERT(tcp->tcp_family == AF_INET6);
6659 
6660 	/*
6661 	 * If we're here, it means that the destination address is a native
6662 	 * IPv6 address.  Return an error if tcp_ipversion is not IPv6.  A
6663 	 * reason why it might not be IPv6 is if the socket was bound to an
6664 	 * IPv4-mapped IPv6 address.
6665 	 */
6666 	if (tcp->tcp_ipversion != IPV6_VERSION) {
6667 		mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0);
6668 		goto failed;
6669 	}
6670 
6671 	/*
6672 	 * Interpret a zero destination to mean loopback.
6673 	 * Update the T_CONN_REQ (sin/sin6) since it is used to
6674 	 * generate the T_CONN_CON.
6675 	 */
6676 	if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp)) {
6677 		*dstaddrp = ipv6_loopback;
6678 	}
6679 
6680 	/* Handle __sin6_src_id if socket not bound to an IP address */
6681 	if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) {
6682 		ip_srcid_find_id(srcid, &tcp->tcp_ip6h->ip6_src,
6683 		    tcp->tcp_connp->conn_zoneid, tcps->tcps_netstack);
6684 		tcp->tcp_ip_src_v6 = tcp->tcp_ip6h->ip6_src;
6685 	}
6686 
6687 	/*
6688 	 * Take care of the scope_id now and add ip6i_t
6689 	 * if ip6i_t is not already allocated through TCP
6690 	 * sticky options. At this point tcp_ip6h does not
6691 	 * have dst info, thus use dstaddrp.
6692 	 */
6693 	if (scope_id != 0 &&
6694 	    IN6_IS_ADDR_LINKSCOPE(dstaddrp)) {
6695 		ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp;
6696 		ip6i_t  *ip6i;
6697 
6698 		ipp->ipp_ifindex = scope_id;
6699 		ip6i = (ip6i_t *)tcp->tcp_iphc;
6700 
6701 		if ((ipp->ipp_fields & IPPF_HAS_IP6I) &&
6702 		    ip6i != NULL && (ip6i->ip6i_nxt == IPPROTO_RAW)) {
6703 			/* Already allocated */
6704 			ip6i->ip6i_flags |= IP6I_IFINDEX;
6705 			ip6i->ip6i_ifindex = ipp->ipp_ifindex;
6706 			ipp->ipp_fields |= IPPF_SCOPE_ID;
6707 		} else {
6708 			int reterr;
6709 
6710 			ipp->ipp_fields |= IPPF_SCOPE_ID;
6711 			if (ipp->ipp_fields & IPPF_HAS_IP6I)
6712 				ip2dbg(("tcp_connect_v6: SCOPE_ID set\n"));
6713 			reterr = tcp_build_hdrs(tcp->tcp_rq, tcp);
6714 			if (reterr != 0)
6715 				goto failed;
6716 			ip1dbg(("tcp_connect_ipv6: tcp_bld_hdrs returned\n"));
6717 		}
6718 	}
6719 
6720 	/*
6721 	 * Don't let an endpoint connect to itself.  Note that
6722 	 * the test here does not catch the case where the
6723 	 * source IP addr was left unspecified by the user. In
6724 	 * this case, the source addr is set in tcp_adapt_ire()
6725 	 * using the reply to the T_BIND message that we send
6726 	 * down to IP here and the check is repeated in tcp_rput_other.
6727 	 */
6728 	if (IN6_ARE_ADDR_EQUAL(dstaddrp, &tcp->tcp_ip6h->ip6_src) &&
6729 	    (dstport == tcp->tcp_lport)) {
6730 		mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0);
6731 		goto failed;
6732 	}
6733 
6734 	tcp->tcp_ip6h->ip6_dst = *dstaddrp;
6735 	tcp->tcp_remote_v6 = *dstaddrp;
6736 	tcp->tcp_ip6h->ip6_vcf =
6737 	    (IPV6_DEFAULT_VERS_AND_FLOW & IPV6_VERS_AND_FLOW_MASK) |
6738 	    (flowinfo & ~IPV6_VERS_AND_FLOW_MASK);
6739 
6740 
6741 	/*
6742 	 * Massage a routing header (if present) putting the first hop
6743 	 * in ip6_dst. Compute a starting value for the checksum which
6744 	 * takes into account that the original ip6_dst should be
6745 	 * included in the checksum but that ip will include the
6746 	 * first hop in the source route in the tcp checksum.
6747 	 */
6748 	rth = ip_find_rthdr_v6(tcp->tcp_ip6h, (uint8_t *)tcp->tcp_tcph);
6749 	if (rth != NULL) {
6750 		tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, rth,
6751 		    tcps->tcps_netstack);
6752 		tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
6753 		    (tcp->tcp_sum >> 16));
6754 	} else {
6755 		tcp->tcp_sum = 0;
6756 	}
6757 
6758 	tcph = tcp->tcp_tcph;
6759 	*(uint16_t *)tcph->th_fport = dstport;
6760 	tcp->tcp_fport = dstport;
6761 
6762 	oldstate = tcp->tcp_state;
6763 	/*
6764 	 * At this point the remote destination address and remote port fields
6765 	 * in the tcp-four-tuple have been filled in the tcp structure. Now we
6766 	 * have to see which state tcp was in so we can take apropriate action.
6767 	 */
6768 	if (oldstate == TCPS_IDLE) {
6769 		/*
6770 		 * We support a quick connect capability here, allowing
6771 		 * clients to transition directly from IDLE to SYN_SENT
6772 		 * tcp_bindi will pick an unused port, insert the connection
6773 		 * in the bind hash and transition to BOUND state.
6774 		 */
6775 		lport = tcp_update_next_port(tcps->tcps_next_port_to_try,
6776 		    tcp, B_TRUE);
6777 		lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE,
6778 		    B_FALSE, B_FALSE);
6779 		if (lport == 0) {
6780 			mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0);
6781 			goto failed;
6782 		}
6783 	}
6784 	tcp->tcp_state = TCPS_SYN_SENT;
6785 	/*
6786 	 * TODO: allow data with connect requests
6787 	 * by unlinking M_DATA trailers here and
6788 	 * linking them in behind the T_OK_ACK mblk.
6789 	 * The tcp_rput() bind ack handler would then
6790 	 * feed them to tcp_wput_data() rather than call
6791 	 * tcp_timer().
6792 	 */
6793 	mp = mi_tpi_ok_ack_alloc(mp);
6794 	if (!mp) {
6795 		tcp->tcp_state = oldstate;
6796 		goto failed;
6797 	}
6798 	mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, sizeof (ipa6_conn_t));
6799 	if (mp1) {
6800 		/*
6801 		 * We need to make sure that the conn_recv is set to a non-null
6802 		 * value before we insert the conn_t into the classifier table.
6803 		 * This is to avoid a race with an incoming packet which does
6804 		 * an ipcl_classify().
6805 		 */
6806 		tcp->tcp_connp->conn_recv = tcp_input;
6807 
6808 		/* Hang onto the T_OK_ACK for later. */
6809 		linkb(mp1, mp);
6810 		mblk_setcred(mp1, tcp->tcp_cred);
6811 		mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp,
6812 		    &tcp->tcp_sticky_ipp);
6813 		BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens);
6814 		tcp->tcp_active_open = 1;
6815 		/* ip_bind_v6() may return ACK or ERROR */
6816 		if (mp1 != NULL)
6817 			tcp_rput_other(tcp, mp1);
6818 		return;
6819 	}
6820 	/* Error case */
6821 	tcp->tcp_state = oldstate;
6822 	mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM);
6823 
6824 failed:
6825 	/* return error ack and blow away saved option results if any */
6826 	if (mp != NULL)
6827 		putnext(tcp->tcp_rq, mp);
6828 	else {
6829 		tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6830 		    TSYSERR, ENOMEM);
6831 	}
6832 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
6833 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
6834 }
6835 
6836 /*
6837  * We need a stream q for detached closing tcp connections
6838  * to use.  Our client hereby indicates that this q is the
6839  * one to use.
6840  */
6841 static void
6842 tcp_def_q_set(tcp_t *tcp, mblk_t *mp)
6843 {
6844 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
6845 	queue_t	*q = tcp->tcp_wq;
6846 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6847 
6848 #ifdef NS_DEBUG
6849 	(void) printf("TCP_IOC_DEFAULT_Q for stack %d\n",
6850 	    tcps->tcps_netstack->netstack_stackid);
6851 #endif
6852 	mp->b_datap->db_type = M_IOCACK;
6853 	iocp->ioc_count = 0;
6854 	mutex_enter(&tcps->tcps_g_q_lock);
6855 	if (tcps->tcps_g_q != NULL) {
6856 		mutex_exit(&tcps->tcps_g_q_lock);
6857 		iocp->ioc_error = EALREADY;
6858 	} else {
6859 		mblk_t *mp1;
6860 
6861 		mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 0);
6862 		if (mp1 == NULL) {
6863 			mutex_exit(&tcps->tcps_g_q_lock);
6864 			iocp->ioc_error = ENOMEM;
6865 		} else {
6866 			tcps->tcps_g_q = tcp->tcp_rq;
6867 			mutex_exit(&tcps->tcps_g_q_lock);
6868 			iocp->ioc_error = 0;
6869 			iocp->ioc_rval = 0;
6870 			/*
6871 			 * We are passing tcp_sticky_ipp as NULL
6872 			 * as it is not useful for tcp_default queue
6873 			 *
6874 			 * Set conn_recv just in case.
6875 			 */
6876 			tcp->tcp_connp->conn_recv = tcp_conn_request;
6877 
6878 			mp1 = ip_bind_v6(q, mp1, tcp->tcp_connp, NULL);
6879 			if (mp1 != NULL)
6880 				tcp_rput_other(tcp, mp1);
6881 		}
6882 	}
6883 	qreply(q, mp);
6884 }
6885 
6886 /*
6887  * Our client hereby directs us to reject the connection request
6888  * that tcp_conn_request() marked with 'seqnum'.  Rejection consists
6889  * of sending the appropriate RST, not an ICMP error.
6890  */
6891 static void
6892 tcp_disconnect(tcp_t *tcp, mblk_t *mp)
6893 {
6894 	tcp_t	*ltcp = NULL;
6895 	t_scalar_t seqnum;
6896 	conn_t	*connp;
6897 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6898 
6899 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
6900 	if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) {
6901 		tcp_err_ack(tcp, mp, TPROTO, 0);
6902 		return;
6903 	}
6904 
6905 	/*
6906 	 * Right now, upper modules pass down a T_DISCON_REQ to TCP,
6907 	 * when the stream is in BOUND state. Do not send a reset,
6908 	 * since the destination IP address is not valid, and it can
6909 	 * be the initialized value of all zeros (broadcast address).
6910 	 *
6911 	 * If TCP has sent down a bind request to IP and has not
6912 	 * received the reply, reject the request.  Otherwise, TCP
6913 	 * will be confused.
6914 	 */
6915 	if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_hard_binding) {
6916 		if (tcp->tcp_debug) {
6917 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
6918 			    "tcp_disconnect: bad state, %d", tcp->tcp_state);
6919 		}
6920 		tcp_err_ack(tcp, mp, TOUTSTATE, 0);
6921 		return;
6922 	}
6923 
6924 	seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number;
6925 
6926 	if (seqnum == -1 || tcp->tcp_conn_req_max == 0) {
6927 
6928 		/*
6929 		 * According to TPI, for non-listeners, ignore seqnum
6930 		 * and disconnect.
6931 		 * Following interpretation of -1 seqnum is historical
6932 		 * and implied TPI ? (TPI only states that for T_CONN_IND,
6933 		 * a valid seqnum should not be -1).
6934 		 *
6935 		 *	-1 means disconnect everything
6936 		 *	regardless even on a listener.
6937 		 */
6938 
6939 		int old_state = tcp->tcp_state;
6940 		ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
6941 
6942 		/*
6943 		 * The connection can't be on the tcp_time_wait_head list
6944 		 * since it is not detached.
6945 		 */
6946 		ASSERT(tcp->tcp_time_wait_next == NULL);
6947 		ASSERT(tcp->tcp_time_wait_prev == NULL);
6948 		ASSERT(tcp->tcp_time_wait_expire == 0);
6949 		ltcp = NULL;
6950 		/*
6951 		 * If it used to be a listener, check to make sure no one else
6952 		 * has taken the port before switching back to LISTEN state.
6953 		 */
6954 		if (tcp->tcp_ipversion == IPV4_VERSION) {
6955 			connp = ipcl_lookup_listener_v4(tcp->tcp_lport,
6956 			    tcp->tcp_ipha->ipha_src,
6957 			    tcp->tcp_connp->conn_zoneid, ipst);
6958 			if (connp != NULL)
6959 				ltcp = connp->conn_tcp;
6960 		} else {
6961 			/* Allow tcp_bound_if listeners? */
6962 			connp = ipcl_lookup_listener_v6(tcp->tcp_lport,
6963 			    &tcp->tcp_ip6h->ip6_src, 0,
6964 			    tcp->tcp_connp->conn_zoneid, ipst);
6965 			if (connp != NULL)
6966 				ltcp = connp->conn_tcp;
6967 		}
6968 		if (tcp->tcp_conn_req_max && ltcp == NULL) {
6969 			tcp->tcp_state = TCPS_LISTEN;
6970 		} else if (old_state > TCPS_BOUND) {
6971 			tcp->tcp_conn_req_max = 0;
6972 			tcp->tcp_state = TCPS_BOUND;
6973 		}
6974 		if (ltcp != NULL)
6975 			CONN_DEC_REF(ltcp->tcp_connp);
6976 		if (old_state == TCPS_SYN_SENT || old_state == TCPS_SYN_RCVD) {
6977 			BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails);
6978 		} else if (old_state == TCPS_ESTABLISHED ||
6979 		    old_state == TCPS_CLOSE_WAIT) {
6980 			BUMP_MIB(&tcps->tcps_mib, tcpEstabResets);
6981 		}
6982 
6983 		if (tcp->tcp_fused)
6984 			tcp_unfuse(tcp);
6985 
6986 		mutex_enter(&tcp->tcp_eager_lock);
6987 		if ((tcp->tcp_conn_req_cnt_q0 != 0) ||
6988 		    (tcp->tcp_conn_req_cnt_q != 0)) {
6989 			tcp_eager_cleanup(tcp, 0);
6990 		}
6991 		mutex_exit(&tcp->tcp_eager_lock);
6992 
6993 		tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt,
6994 		    tcp->tcp_rnxt, TH_RST | TH_ACK);
6995 
6996 		tcp_reinit(tcp);
6997 
6998 		if (old_state >= TCPS_ESTABLISHED) {
6999 			/* Send M_FLUSH according to TPI */
7000 			(void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW);
7001 		}
7002 		mp = mi_tpi_ok_ack_alloc(mp);
7003 		if (mp)
7004 			putnext(tcp->tcp_rq, mp);
7005 		return;
7006 	} else if (!tcp_eager_blowoff(tcp, seqnum)) {
7007 		tcp_err_ack(tcp, mp, TBADSEQ, 0);
7008 		return;
7009 	}
7010 	if (tcp->tcp_state >= TCPS_ESTABLISHED) {
7011 		/* Send M_FLUSH according to TPI */
7012 		(void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW);
7013 	}
7014 	mp = mi_tpi_ok_ack_alloc(mp);
7015 	if (mp)
7016 		putnext(tcp->tcp_rq, mp);
7017 }
7018 
7019 /*
7020  * Diagnostic routine used to return a string associated with the tcp state.
7021  * Note that if the caller does not supply a buffer, it will use an internal
7022  * static string.  This means that if multiple threads call this function at
7023  * the same time, output can be corrupted...  Note also that this function
7024  * does not check the size of the supplied buffer.  The caller has to make
7025  * sure that it is big enough.
7026  */
7027 static char *
7028 tcp_display(tcp_t *tcp, char *sup_buf, char format)
7029 {
7030 	char		buf1[30];
7031 	static char	priv_buf[INET6_ADDRSTRLEN * 2 + 80];
7032 	char		*buf;
7033 	char		*cp;
7034 	in6_addr_t	local, remote;
7035 	char		local_addrbuf[INET6_ADDRSTRLEN];
7036 	char		remote_addrbuf[INET6_ADDRSTRLEN];
7037 
7038 	if (sup_buf != NULL)
7039 		buf = sup_buf;
7040 	else
7041 		buf = priv_buf;
7042 
7043 	if (tcp == NULL)
7044 		return ("NULL_TCP");
7045 	switch (tcp->tcp_state) {
7046 	case TCPS_CLOSED:
7047 		cp = "TCP_CLOSED";
7048 		break;
7049 	case TCPS_IDLE:
7050 		cp = "TCP_IDLE";
7051 		break;
7052 	case TCPS_BOUND:
7053 		cp = "TCP_BOUND";
7054 		break;
7055 	case TCPS_LISTEN:
7056 		cp = "TCP_LISTEN";
7057 		break;
7058 	case TCPS_SYN_SENT:
7059 		cp = "TCP_SYN_SENT";
7060 		break;
7061 	case TCPS_SYN_RCVD:
7062 		cp = "TCP_SYN_RCVD";
7063 		break;
7064 	case TCPS_ESTABLISHED:
7065 		cp = "TCP_ESTABLISHED";
7066 		break;
7067 	case TCPS_CLOSE_WAIT:
7068 		cp = "TCP_CLOSE_WAIT";
7069 		break;
7070 	case TCPS_FIN_WAIT_1:
7071 		cp = "TCP_FIN_WAIT_1";
7072 		break;
7073 	case TCPS_CLOSING:
7074 		cp = "TCP_CLOSING";
7075 		break;
7076 	case TCPS_LAST_ACK:
7077 		cp = "TCP_LAST_ACK";
7078 		break;
7079 	case TCPS_FIN_WAIT_2:
7080 		cp = "TCP_FIN_WAIT_2";
7081 		break;
7082 	case TCPS_TIME_WAIT:
7083 		cp = "TCP_TIME_WAIT";
7084 		break;
7085 	default:
7086 		(void) mi_sprintf(buf1, "TCPUnkState(%d)", tcp->tcp_state);
7087 		cp = buf1;
7088 		break;
7089 	}
7090 	switch (format) {
7091 	case DISP_ADDR_AND_PORT:
7092 		if (tcp->tcp_ipversion == IPV4_VERSION) {
7093 			/*
7094 			 * Note that we use the remote address in the tcp_b
7095 			 * structure.  This means that it will print out
7096 			 * the real destination address, not the next hop's
7097 			 * address if source routing is used.
7098 			 */
7099 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ip_src, &local);
7100 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &remote);
7101 
7102 		} else {
7103 			local = tcp->tcp_ip_src_v6;
7104 			remote = tcp->tcp_remote_v6;
7105 		}
7106 		(void) inet_ntop(AF_INET6, &local, local_addrbuf,
7107 		    sizeof (local_addrbuf));
7108 		(void) inet_ntop(AF_INET6, &remote, remote_addrbuf,
7109 		    sizeof (remote_addrbuf));
7110 		(void) mi_sprintf(buf, "[%s.%u, %s.%u] %s",
7111 		    local_addrbuf, ntohs(tcp->tcp_lport), remote_addrbuf,
7112 		    ntohs(tcp->tcp_fport), cp);
7113 		break;
7114 	case DISP_PORT_ONLY:
7115 	default:
7116 		(void) mi_sprintf(buf, "[%u, %u] %s",
7117 		    ntohs(tcp->tcp_lport), ntohs(tcp->tcp_fport), cp);
7118 		break;
7119 	}
7120 
7121 	return (buf);
7122 }
7123 
7124 /*
7125  * Called via squeue to get on to eager's perimeter. It sends a
7126  * TH_RST if eager is in the fanout table. The listener wants the
7127  * eager to disappear either by means of tcp_eager_blowoff() or
7128  * tcp_eager_cleanup() being called. tcp_eager_kill() can also be
7129  * called (via squeue) if the eager cannot be inserted in the
7130  * fanout table in tcp_conn_request().
7131  */
7132 /* ARGSUSED */
7133 void
7134 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2)
7135 {
7136 	conn_t	*econnp = (conn_t *)arg;
7137 	tcp_t	*eager = econnp->conn_tcp;
7138 	tcp_t	*listener = eager->tcp_listener;
7139 	tcp_stack_t	*tcps = eager->tcp_tcps;
7140 
7141 	/*
7142 	 * We could be called because listener is closing. Since
7143 	 * the eager is using listener's queue's, its not safe.
7144 	 * Better use the default queue just to send the TH_RST
7145 	 * out.
7146 	 */
7147 	ASSERT(tcps->tcps_g_q != NULL);
7148 	eager->tcp_rq = tcps->tcps_g_q;
7149 	eager->tcp_wq = WR(tcps->tcps_g_q);
7150 
7151 	/*
7152 	 * An eager's conn_fanout will be NULL if it's a duplicate
7153 	 * for an existing 4-tuples in the conn fanout table.
7154 	 * We don't want to send an RST out in such case.
7155 	 */
7156 	if (econnp->conn_fanout != NULL && eager->tcp_state > TCPS_LISTEN) {
7157 		tcp_xmit_ctl("tcp_eager_kill, can't wait",
7158 		    eager, eager->tcp_snxt, 0, TH_RST);
7159 	}
7160 
7161 	/* We are here because listener wants this eager gone */
7162 	if (listener != NULL) {
7163 		mutex_enter(&listener->tcp_eager_lock);
7164 		tcp_eager_unlink(eager);
7165 		if (eager->tcp_tconnind_started) {
7166 			/*
7167 			 * The eager has sent a conn_ind up to the
7168 			 * listener but listener decides to close
7169 			 * instead. We need to drop the extra ref
7170 			 * placed on eager in tcp_rput_data() before
7171 			 * sending the conn_ind to listener.
7172 			 */
7173 			CONN_DEC_REF(econnp);
7174 		}
7175 		mutex_exit(&listener->tcp_eager_lock);
7176 		CONN_DEC_REF(listener->tcp_connp);
7177 	}
7178 
7179 	if (eager->tcp_state > TCPS_BOUND)
7180 		tcp_close_detached(eager);
7181 }
7182 
7183 /*
7184  * Reset any eager connection hanging off this listener marked
7185  * with 'seqnum' and then reclaim it's resources.
7186  */
7187 static boolean_t
7188 tcp_eager_blowoff(tcp_t	*listener, t_scalar_t seqnum)
7189 {
7190 	tcp_t	*eager;
7191 	mblk_t 	*mp;
7192 	tcp_stack_t	*tcps = listener->tcp_tcps;
7193 
7194 	TCP_STAT(tcps, tcp_eager_blowoff_calls);
7195 	eager = listener;
7196 	mutex_enter(&listener->tcp_eager_lock);
7197 	do {
7198 		eager = eager->tcp_eager_next_q;
7199 		if (eager == NULL) {
7200 			mutex_exit(&listener->tcp_eager_lock);
7201 			return (B_FALSE);
7202 		}
7203 	} while (eager->tcp_conn_req_seqnum != seqnum);
7204 
7205 	if (eager->tcp_closemp_used) {
7206 		mutex_exit(&listener->tcp_eager_lock);
7207 		return (B_TRUE);
7208 	}
7209 	eager->tcp_closemp_used = B_TRUE;
7210 	TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
7211 	CONN_INC_REF(eager->tcp_connp);
7212 	mutex_exit(&listener->tcp_eager_lock);
7213 	mp = &eager->tcp_closemp;
7214 	squeue_fill(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill,
7215 	    eager->tcp_connp, SQTAG_TCP_EAGER_BLOWOFF);
7216 	return (B_TRUE);
7217 }
7218 
7219 /*
7220  * Reset any eager connection hanging off this listener
7221  * and then reclaim it's resources.
7222  */
7223 static void
7224 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only)
7225 {
7226 	tcp_t	*eager;
7227 	mblk_t	*mp;
7228 	tcp_stack_t	*tcps = listener->tcp_tcps;
7229 
7230 	ASSERT(MUTEX_HELD(&listener->tcp_eager_lock));
7231 
7232 	if (!q0_only) {
7233 		/* First cleanup q */
7234 		TCP_STAT(tcps, tcp_eager_blowoff_q);
7235 		eager = listener->tcp_eager_next_q;
7236 		while (eager != NULL) {
7237 			if (!eager->tcp_closemp_used) {
7238 				eager->tcp_closemp_used = B_TRUE;
7239 				TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
7240 				CONN_INC_REF(eager->tcp_connp);
7241 				mp = &eager->tcp_closemp;
7242 				squeue_fill(eager->tcp_connp->conn_sqp, mp,
7243 				    tcp_eager_kill, eager->tcp_connp,
7244 				    SQTAG_TCP_EAGER_CLEANUP);
7245 			}
7246 			eager = eager->tcp_eager_next_q;
7247 		}
7248 	}
7249 	/* Then cleanup q0 */
7250 	TCP_STAT(tcps, tcp_eager_blowoff_q0);
7251 	eager = listener->tcp_eager_next_q0;
7252 	while (eager != listener) {
7253 		if (!eager->tcp_closemp_used) {
7254 			eager->tcp_closemp_used = B_TRUE;
7255 			TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
7256 			CONN_INC_REF(eager->tcp_connp);
7257 			mp = &eager->tcp_closemp;
7258 			squeue_fill(eager->tcp_connp->conn_sqp, mp,
7259 			    tcp_eager_kill, eager->tcp_connp,
7260 			    SQTAG_TCP_EAGER_CLEANUP_Q0);
7261 		}
7262 		eager = eager->tcp_eager_next_q0;
7263 	}
7264 }
7265 
7266 /*
7267  * If we are an eager connection hanging off a listener that hasn't
7268  * formally accepted the connection yet, get off his list and blow off
7269  * any data that we have accumulated.
7270  */
7271 static void
7272 tcp_eager_unlink(tcp_t *tcp)
7273 {
7274 	tcp_t	*listener = tcp->tcp_listener;
7275 
7276 	ASSERT(MUTEX_HELD(&listener->tcp_eager_lock));
7277 	ASSERT(listener != NULL);
7278 	if (tcp->tcp_eager_next_q0 != NULL) {
7279 		ASSERT(tcp->tcp_eager_prev_q0 != NULL);
7280 
7281 		/* Remove the eager tcp from q0 */
7282 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
7283 		    tcp->tcp_eager_prev_q0;
7284 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
7285 		    tcp->tcp_eager_next_q0;
7286 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
7287 		listener->tcp_conn_req_cnt_q0--;
7288 
7289 		tcp->tcp_eager_next_q0 = NULL;
7290 		tcp->tcp_eager_prev_q0 = NULL;
7291 
7292 		/*
7293 		 * Take the eager out, if it is in the list of droppable
7294 		 * eagers.
7295 		 */
7296 		MAKE_UNDROPPABLE(tcp);
7297 
7298 		if (tcp->tcp_syn_rcvd_timeout != 0) {
7299 			/* we have timed out before */
7300 			ASSERT(listener->tcp_syn_rcvd_timeout > 0);
7301 			listener->tcp_syn_rcvd_timeout--;
7302 		}
7303 	} else {
7304 		tcp_t   **tcpp = &listener->tcp_eager_next_q;
7305 		tcp_t	*prev = NULL;
7306 
7307 		for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) {
7308 			if (tcpp[0] == tcp) {
7309 				if (listener->tcp_eager_last_q == tcp) {
7310 					/*
7311 					 * If we are unlinking the last
7312 					 * element on the list, adjust
7313 					 * tail pointer. Set tail pointer
7314 					 * to nil when list is empty.
7315 					 */
7316 					ASSERT(tcp->tcp_eager_next_q == NULL);
7317 					if (listener->tcp_eager_last_q ==
7318 					    listener->tcp_eager_next_q) {
7319 						listener->tcp_eager_last_q =
7320 						    NULL;
7321 					} else {
7322 						/*
7323 						 * We won't get here if there
7324 						 * is only one eager in the
7325 						 * list.
7326 						 */
7327 						ASSERT(prev != NULL);
7328 						listener->tcp_eager_last_q =
7329 						    prev;
7330 					}
7331 				}
7332 				tcpp[0] = tcp->tcp_eager_next_q;
7333 				tcp->tcp_eager_next_q = NULL;
7334 				tcp->tcp_eager_last_q = NULL;
7335 				ASSERT(listener->tcp_conn_req_cnt_q > 0);
7336 				listener->tcp_conn_req_cnt_q--;
7337 				break;
7338 			}
7339 			prev = tcpp[0];
7340 		}
7341 	}
7342 	tcp->tcp_listener = NULL;
7343 }
7344 
7345 /* Shorthand to generate and send TPI error acks to our client */
7346 static void
7347 tcp_err_ack(tcp_t *tcp, mblk_t *mp, int t_error, int sys_error)
7348 {
7349 	if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL)
7350 		putnext(tcp->tcp_rq, mp);
7351 }
7352 
7353 /* Shorthand to generate and send TPI error acks to our client */
7354 static void
7355 tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive,
7356     int t_error, int sys_error)
7357 {
7358 	struct T_error_ack	*teackp;
7359 
7360 	if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack),
7361 	    M_PCPROTO, T_ERROR_ACK)) != NULL) {
7362 		teackp = (struct T_error_ack *)mp->b_rptr;
7363 		teackp->ERROR_prim = primitive;
7364 		teackp->TLI_error = t_error;
7365 		teackp->UNIX_error = sys_error;
7366 		putnext(tcp->tcp_rq, mp);
7367 	}
7368 }
7369 
7370 /*
7371  * Note: No locks are held when inspecting tcp_g_*epriv_ports
7372  * but instead the code relies on:
7373  * - the fact that the address of the array and its size never changes
7374  * - the atomic assignment of the elements of the array
7375  */
7376 /* ARGSUSED */
7377 static int
7378 tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
7379 {
7380 	int i;
7381 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
7382 
7383 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
7384 		if (tcps->tcps_g_epriv_ports[i] != 0)
7385 			(void) mi_mpprintf(mp, "%d ",
7386 			    tcps->tcps_g_epriv_ports[i]);
7387 	}
7388 	return (0);
7389 }
7390 
7391 /*
7392  * Hold a lock while changing tcp_g_epriv_ports to prevent multiple
7393  * threads from changing it at the same time.
7394  */
7395 /* ARGSUSED */
7396 static int
7397 tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
7398     cred_t *cr)
7399 {
7400 	long	new_value;
7401 	int	i;
7402 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
7403 
7404 	/*
7405 	 * Fail the request if the new value does not lie within the
7406 	 * port number limits.
7407 	 */
7408 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
7409 	    new_value <= 0 || new_value >= 65536) {
7410 		return (EINVAL);
7411 	}
7412 
7413 	mutex_enter(&tcps->tcps_epriv_port_lock);
7414 	/* Check if the value is already in the list */
7415 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
7416 		if (new_value == tcps->tcps_g_epriv_ports[i]) {
7417 			mutex_exit(&tcps->tcps_epriv_port_lock);
7418 			return (EEXIST);
7419 		}
7420 	}
7421 	/* Find an empty slot */
7422 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
7423 		if (tcps->tcps_g_epriv_ports[i] == 0)
7424 			break;
7425 	}
7426 	if (i == tcps->tcps_g_num_epriv_ports) {
7427 		mutex_exit(&tcps->tcps_epriv_port_lock);
7428 		return (EOVERFLOW);
7429 	}
7430 	/* Set the new value */
7431 	tcps->tcps_g_epriv_ports[i] = (uint16_t)new_value;
7432 	mutex_exit(&tcps->tcps_epriv_port_lock);
7433 	return (0);
7434 }
7435 
7436 /*
7437  * Hold a lock while changing tcp_g_epriv_ports to prevent multiple
7438  * threads from changing it at the same time.
7439  */
7440 /* ARGSUSED */
7441 static int
7442 tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
7443     cred_t *cr)
7444 {
7445 	long	new_value;
7446 	int	i;
7447 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
7448 
7449 	/*
7450 	 * Fail the request if the new value does not lie within the
7451 	 * port number limits.
7452 	 */
7453 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value <= 0 ||
7454 	    new_value >= 65536) {
7455 		return (EINVAL);
7456 	}
7457 
7458 	mutex_enter(&tcps->tcps_epriv_port_lock);
7459 	/* Check that the value is already in the list */
7460 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
7461 		if (tcps->tcps_g_epriv_ports[i] == new_value)
7462 			break;
7463 	}
7464 	if (i == tcps->tcps_g_num_epriv_ports) {
7465 		mutex_exit(&tcps->tcps_epriv_port_lock);
7466 		return (ESRCH);
7467 	}
7468 	/* Clear the value */
7469 	tcps->tcps_g_epriv_ports[i] = 0;
7470 	mutex_exit(&tcps->tcps_epriv_port_lock);
7471 	return (0);
7472 }
7473 
7474 /* Return the TPI/TLI equivalent of our current tcp_state */
7475 static int
7476 tcp_tpistate(tcp_t *tcp)
7477 {
7478 	switch (tcp->tcp_state) {
7479 	case TCPS_IDLE:
7480 		return (TS_UNBND);
7481 	case TCPS_LISTEN:
7482 		/*
7483 		 * Return whether there are outstanding T_CONN_IND waiting
7484 		 * for the matching T_CONN_RES. Therefore don't count q0.
7485 		 */
7486 		if (tcp->tcp_conn_req_cnt_q > 0)
7487 			return (TS_WRES_CIND);
7488 		else
7489 			return (TS_IDLE);
7490 	case TCPS_BOUND:
7491 		return (TS_IDLE);
7492 	case TCPS_SYN_SENT:
7493 		return (TS_WCON_CREQ);
7494 	case TCPS_SYN_RCVD:
7495 		/*
7496 		 * Note: assumption: this has to the active open SYN_RCVD.
7497 		 * The passive instance is detached in SYN_RCVD stage of
7498 		 * incoming connection processing so we cannot get request
7499 		 * for T_info_ack on it.
7500 		 */
7501 		return (TS_WACK_CRES);
7502 	case TCPS_ESTABLISHED:
7503 		return (TS_DATA_XFER);
7504 	case TCPS_CLOSE_WAIT:
7505 		return (TS_WREQ_ORDREL);
7506 	case TCPS_FIN_WAIT_1:
7507 		return (TS_WIND_ORDREL);
7508 	case TCPS_FIN_WAIT_2:
7509 		return (TS_WIND_ORDREL);
7510 
7511 	case TCPS_CLOSING:
7512 	case TCPS_LAST_ACK:
7513 	case TCPS_TIME_WAIT:
7514 	case TCPS_CLOSED:
7515 		/*
7516 		 * Following TS_WACK_DREQ7 is a rendition of "not
7517 		 * yet TS_IDLE" TPI state. There is no best match to any
7518 		 * TPI state for TCPS_{CLOSING, LAST_ACK, TIME_WAIT} but we
7519 		 * choose a value chosen that will map to TLI/XTI level
7520 		 * state of TSTATECHNG (state is process of changing) which
7521 		 * captures what this dummy state represents.
7522 		 */
7523 		return (TS_WACK_DREQ7);
7524 	default:
7525 		cmn_err(CE_WARN, "tcp_tpistate: strange state (%d) %s",
7526 		    tcp->tcp_state, tcp_display(tcp, NULL,
7527 		    DISP_PORT_ONLY));
7528 		return (TS_UNBND);
7529 	}
7530 }
7531 
7532 static void
7533 tcp_copy_info(struct T_info_ack *tia, tcp_t *tcp)
7534 {
7535 	tcp_stack_t	*tcps = tcp->tcp_tcps;
7536 
7537 	if (tcp->tcp_family == AF_INET6)
7538 		*tia = tcp_g_t_info_ack_v6;
7539 	else
7540 		*tia = tcp_g_t_info_ack;
7541 	tia->CURRENT_state = tcp_tpistate(tcp);
7542 	tia->OPT_size = tcp_max_optsize;
7543 	if (tcp->tcp_mss == 0) {
7544 		/* Not yet set - tcp_open does not set mss */
7545 		if (tcp->tcp_ipversion == IPV4_VERSION)
7546 			tia->TIDU_size = tcps->tcps_mss_def_ipv4;
7547 		else
7548 			tia->TIDU_size = tcps->tcps_mss_def_ipv6;
7549 	} else {
7550 		tia->TIDU_size = tcp->tcp_mss;
7551 	}
7552 	/* TODO: Default ETSDU is 1.  Is that correct for tcp? */
7553 }
7554 
7555 /*
7556  * This routine responds to T_CAPABILITY_REQ messages.  It is called by
7557  * tcp_wput.  Much of the T_CAPABILITY_ACK information is copied from
7558  * tcp_g_t_info_ack.  The current state of the stream is copied from
7559  * tcp_state.
7560  */
7561 static void
7562 tcp_capability_req(tcp_t *tcp, mblk_t *mp)
7563 {
7564 	t_uscalar_t		cap_bits1;
7565 	struct T_capability_ack	*tcap;
7566 
7567 	if (MBLKL(mp) < sizeof (struct T_capability_req)) {
7568 		freemsg(mp);
7569 		return;
7570 	}
7571 
7572 	cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1;
7573 
7574 	mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack),
7575 	    mp->b_datap->db_type, T_CAPABILITY_ACK);
7576 	if (mp == NULL)
7577 		return;
7578 
7579 	tcap = (struct T_capability_ack *)mp->b_rptr;
7580 	tcap->CAP_bits1 = 0;
7581 
7582 	if (cap_bits1 & TC1_INFO) {
7583 		tcp_copy_info(&tcap->INFO_ack, tcp);
7584 		tcap->CAP_bits1 |= TC1_INFO;
7585 	}
7586 
7587 	if (cap_bits1 & TC1_ACCEPTOR_ID) {
7588 		tcap->ACCEPTOR_id = tcp->tcp_acceptor_id;
7589 		tcap->CAP_bits1 |= TC1_ACCEPTOR_ID;
7590 	}
7591 
7592 	putnext(tcp->tcp_rq, mp);
7593 }
7594 
7595 /*
7596  * This routine responds to T_INFO_REQ messages.  It is called by tcp_wput.
7597  * Most of the T_INFO_ACK information is copied from tcp_g_t_info_ack.
7598  * The current state of the stream is copied from tcp_state.
7599  */
7600 static void
7601 tcp_info_req(tcp_t *tcp, mblk_t *mp)
7602 {
7603 	mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO,
7604 	    T_INFO_ACK);
7605 	if (!mp) {
7606 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
7607 		return;
7608 	}
7609 	tcp_copy_info((struct T_info_ack *)mp->b_rptr, tcp);
7610 	putnext(tcp->tcp_rq, mp);
7611 }
7612 
7613 /* Respond to the TPI addr request */
7614 static void
7615 tcp_addr_req(tcp_t *tcp, mblk_t *mp)
7616 {
7617 	sin_t	*sin;
7618 	mblk_t	*ackmp;
7619 	struct T_addr_ack *taa;
7620 
7621 	/* Make it large enough for worst case */
7622 	ackmp = reallocb(mp, sizeof (struct T_addr_ack) +
7623 	    2 * sizeof (sin6_t), 1);
7624 	if (ackmp == NULL) {
7625 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
7626 		return;
7627 	}
7628 
7629 	if (tcp->tcp_ipversion == IPV6_VERSION) {
7630 		tcp_addr_req_ipv6(tcp, ackmp);
7631 		return;
7632 	}
7633 	taa = (struct T_addr_ack *)ackmp->b_rptr;
7634 
7635 	bzero(taa, sizeof (struct T_addr_ack));
7636 	ackmp->b_wptr = (uchar_t *)&taa[1];
7637 
7638 	taa->PRIM_type = T_ADDR_ACK;
7639 	ackmp->b_datap->db_type = M_PCPROTO;
7640 
7641 	/*
7642 	 * Note: Following code assumes 32 bit alignment of basic
7643 	 * data structures like sin_t and struct T_addr_ack.
7644 	 */
7645 	if (tcp->tcp_state >= TCPS_BOUND) {
7646 		/*
7647 		 * Fill in local address
7648 		 */
7649 		taa->LOCADDR_length = sizeof (sin_t);
7650 		taa->LOCADDR_offset = sizeof (*taa);
7651 
7652 		sin = (sin_t *)&taa[1];
7653 
7654 		/* Fill zeroes and then intialize non-zero fields */
7655 		*sin = sin_null;
7656 
7657 		sin->sin_family = AF_INET;
7658 
7659 		sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src;
7660 		sin->sin_port = *(uint16_t *)tcp->tcp_tcph->th_lport;
7661 
7662 		ackmp->b_wptr = (uchar_t *)&sin[1];
7663 
7664 		if (tcp->tcp_state >= TCPS_SYN_RCVD) {
7665 			/*
7666 			 * Fill in Remote address
7667 			 */
7668 			taa->REMADDR_length = sizeof (sin_t);
7669 			taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset +
7670 			    taa->LOCADDR_length);
7671 
7672 			sin = (sin_t *)(ackmp->b_rptr + taa->REMADDR_offset);
7673 			*sin = sin_null;
7674 			sin->sin_family = AF_INET;
7675 			sin->sin_addr.s_addr = tcp->tcp_remote;
7676 			sin->sin_port = tcp->tcp_fport;
7677 
7678 			ackmp->b_wptr = (uchar_t *)&sin[1];
7679 		}
7680 	}
7681 	putnext(tcp->tcp_rq, ackmp);
7682 }
7683 
7684 /* Assumes that tcp_addr_req gets enough space and alignment */
7685 static void
7686 tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *ackmp)
7687 {
7688 	sin6_t	*sin6;
7689 	struct T_addr_ack *taa;
7690 
7691 	ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
7692 	ASSERT(OK_32PTR(ackmp->b_rptr));
7693 	ASSERT(ackmp->b_wptr - ackmp->b_rptr >= sizeof (struct T_addr_ack) +
7694 	    2 * sizeof (sin6_t));
7695 
7696 	taa = (struct T_addr_ack *)ackmp->b_rptr;
7697 
7698 	bzero(taa, sizeof (struct T_addr_ack));
7699 	ackmp->b_wptr = (uchar_t *)&taa[1];
7700 
7701 	taa->PRIM_type = T_ADDR_ACK;
7702 	ackmp->b_datap->db_type = M_PCPROTO;
7703 
7704 	/*
7705 	 * Note: Following code assumes 32 bit alignment of basic
7706 	 * data structures like sin6_t and struct T_addr_ack.
7707 	 */
7708 	if (tcp->tcp_state >= TCPS_BOUND) {
7709 		/*
7710 		 * Fill in local address
7711 		 */
7712 		taa->LOCADDR_length = sizeof (sin6_t);
7713 		taa->LOCADDR_offset = sizeof (*taa);
7714 
7715 		sin6 = (sin6_t *)&taa[1];
7716 		*sin6 = sin6_null;
7717 
7718 		sin6->sin6_family = AF_INET6;
7719 		sin6->sin6_addr = tcp->tcp_ip6h->ip6_src;
7720 		sin6->sin6_port = tcp->tcp_lport;
7721 
7722 		ackmp->b_wptr = (uchar_t *)&sin6[1];
7723 
7724 		if (tcp->tcp_state >= TCPS_SYN_RCVD) {
7725 			/*
7726 			 * Fill in Remote address
7727 			 */
7728 			taa->REMADDR_length = sizeof (sin6_t);
7729 			taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset +
7730 			    taa->LOCADDR_length);
7731 
7732 			sin6 = (sin6_t *)(ackmp->b_rptr + taa->REMADDR_offset);
7733 			*sin6 = sin6_null;
7734 			sin6->sin6_family = AF_INET6;
7735 			sin6->sin6_flowinfo =
7736 			    tcp->tcp_ip6h->ip6_vcf &
7737 			    ~IPV6_VERS_AND_FLOW_MASK;
7738 			sin6->sin6_addr = tcp->tcp_remote_v6;
7739 			sin6->sin6_port = tcp->tcp_fport;
7740 
7741 			ackmp->b_wptr = (uchar_t *)&sin6[1];
7742 		}
7743 	}
7744 	putnext(tcp->tcp_rq, ackmp);
7745 }
7746 
7747 /*
7748  * Handle reinitialization of a tcp structure.
7749  * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE.
7750  */
7751 static void
7752 tcp_reinit(tcp_t *tcp)
7753 {
7754 	mblk_t	*mp;
7755 	int 	err;
7756 	tcp_stack_t	*tcps = tcp->tcp_tcps;
7757 
7758 	TCP_STAT(tcps, tcp_reinit_calls);
7759 
7760 	/* tcp_reinit should never be called for detached tcp_t's */
7761 	ASSERT(tcp->tcp_listener == NULL);
7762 	ASSERT((tcp->tcp_family == AF_INET &&
7763 	    tcp->tcp_ipversion == IPV4_VERSION) ||
7764 	    (tcp->tcp_family == AF_INET6 &&
7765 	    (tcp->tcp_ipversion == IPV4_VERSION ||
7766 	    tcp->tcp_ipversion == IPV6_VERSION)));
7767 
7768 	/* Cancel outstanding timers */
7769 	tcp_timers_stop(tcp);
7770 
7771 	/*
7772 	 * Reset everything in the state vector, after updating global
7773 	 * MIB data from instance counters.
7774 	 */
7775 	UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs);
7776 	tcp->tcp_ibsegs = 0;
7777 	UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs);
7778 	tcp->tcp_obsegs = 0;
7779 
7780 	tcp_close_mpp(&tcp->tcp_xmit_head);
7781 	if (tcp->tcp_snd_zcopy_aware)
7782 		tcp_zcopy_notify(tcp);
7783 	tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL;
7784 	tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0;
7785 	mutex_enter(&tcp->tcp_non_sq_lock);
7786 	if (tcp->tcp_flow_stopped &&
7787 	    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
7788 		tcp_clrqfull(tcp);
7789 	}
7790 	mutex_exit(&tcp->tcp_non_sq_lock);
7791 	tcp_close_mpp(&tcp->tcp_reass_head);
7792 	tcp->tcp_reass_tail = NULL;
7793 	if (tcp->tcp_rcv_list != NULL) {
7794 		/* Free b_next chain */
7795 		tcp_close_mpp(&tcp->tcp_rcv_list);
7796 		tcp->tcp_rcv_last_head = NULL;
7797 		tcp->tcp_rcv_last_tail = NULL;
7798 		tcp->tcp_rcv_cnt = 0;
7799 	}
7800 	tcp->tcp_rcv_last_tail = NULL;
7801 
7802 	if ((mp = tcp->tcp_urp_mp) != NULL) {
7803 		freemsg(mp);
7804 		tcp->tcp_urp_mp = NULL;
7805 	}
7806 	if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
7807 		freemsg(mp);
7808 		tcp->tcp_urp_mark_mp = NULL;
7809 	}
7810 	if (tcp->tcp_fused_sigurg_mp != NULL) {
7811 		freeb(tcp->tcp_fused_sigurg_mp);
7812 		tcp->tcp_fused_sigurg_mp = NULL;
7813 	}
7814 	if (tcp->tcp_ordrel_mp != NULL) {
7815 		freeb(tcp->tcp_ordrel_mp);
7816 		tcp->tcp_ordrel_mp = NULL;
7817 	}
7818 
7819 	/*
7820 	 * Following is a union with two members which are
7821 	 * identical types and size so the following cleanup
7822 	 * is enough.
7823 	 */
7824 	tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
7825 
7826 	CL_INET_DISCONNECT(tcp);
7827 
7828 	/*
7829 	 * The connection can't be on the tcp_time_wait_head list
7830 	 * since it is not detached.
7831 	 */
7832 	ASSERT(tcp->tcp_time_wait_next == NULL);
7833 	ASSERT(tcp->tcp_time_wait_prev == NULL);
7834 	ASSERT(tcp->tcp_time_wait_expire == 0);
7835 
7836 	if (tcp->tcp_kssl_pending) {
7837 		tcp->tcp_kssl_pending = B_FALSE;
7838 
7839 		/* Don't reset if the initialized by bind. */
7840 		if (tcp->tcp_kssl_ent != NULL) {
7841 			kssl_release_ent(tcp->tcp_kssl_ent, NULL,
7842 			    KSSL_NO_PROXY);
7843 		}
7844 	}
7845 	if (tcp->tcp_kssl_ctx != NULL) {
7846 		kssl_release_ctx(tcp->tcp_kssl_ctx);
7847 		tcp->tcp_kssl_ctx = NULL;
7848 	}
7849 
7850 	/*
7851 	 * Reset/preserve other values
7852 	 */
7853 	tcp_reinit_values(tcp);
7854 	ipcl_hash_remove(tcp->tcp_connp);
7855 	conn_delete_ire(tcp->tcp_connp, NULL);
7856 	tcp_ipsec_cleanup(tcp);
7857 
7858 	if (tcp->tcp_conn_req_max != 0) {
7859 		/*
7860 		 * This is the case when a TLI program uses the same
7861 		 * transport end point to accept a connection.  This
7862 		 * makes the TCP both a listener and acceptor.  When
7863 		 * this connection is closed, we need to set the state
7864 		 * back to TCPS_LISTEN.  Make sure that the eager list
7865 		 * is reinitialized.
7866 		 *
7867 		 * Note that this stream is still bound to the four
7868 		 * tuples of the previous connection in IP.  If a new
7869 		 * SYN with different foreign address comes in, IP will
7870 		 * not find it and will send it to the global queue.  In
7871 		 * the global queue, TCP will do a tcp_lookup_listener()
7872 		 * to find this stream.  This works because this stream
7873 		 * is only removed from connected hash.
7874 		 *
7875 		 */
7876 		tcp->tcp_state = TCPS_LISTEN;
7877 		tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
7878 		tcp->tcp_eager_next_drop_q0 = tcp;
7879 		tcp->tcp_eager_prev_drop_q0 = tcp;
7880 		tcp->tcp_connp->conn_recv = tcp_conn_request;
7881 		if (tcp->tcp_family == AF_INET6) {
7882 			ASSERT(tcp->tcp_connp->conn_af_isv6);
7883 			(void) ipcl_bind_insert_v6(tcp->tcp_connp, IPPROTO_TCP,
7884 			    &tcp->tcp_ip6h->ip6_src, tcp->tcp_lport);
7885 		} else {
7886 			ASSERT(!tcp->tcp_connp->conn_af_isv6);
7887 			(void) ipcl_bind_insert(tcp->tcp_connp, IPPROTO_TCP,
7888 			    tcp->tcp_ipha->ipha_src, tcp->tcp_lport);
7889 		}
7890 	} else {
7891 		tcp->tcp_state = TCPS_BOUND;
7892 	}
7893 
7894 	/*
7895 	 * Initialize to default values
7896 	 * Can't fail since enough header template space already allocated
7897 	 * at open().
7898 	 */
7899 	err = tcp_init_values(tcp);
7900 	ASSERT(err == 0);
7901 	/* Restore state in tcp_tcph */
7902 	bcopy(&tcp->tcp_lport, tcp->tcp_tcph->th_lport, TCP_PORT_LEN);
7903 	if (tcp->tcp_ipversion == IPV4_VERSION)
7904 		tcp->tcp_ipha->ipha_src = tcp->tcp_bound_source;
7905 	else
7906 		tcp->tcp_ip6h->ip6_src = tcp->tcp_bound_source_v6;
7907 	/*
7908 	 * Copy of the src addr. in tcp_t is needed in tcp_t
7909 	 * since the lookup funcs can only lookup on tcp_t
7910 	 */
7911 	tcp->tcp_ip_src_v6 = tcp->tcp_bound_source_v6;
7912 
7913 	ASSERT(tcp->tcp_ptpbhn != NULL);
7914 	tcp->tcp_rq->q_hiwat = tcps->tcps_recv_hiwat;
7915 	tcp->tcp_rwnd = tcps->tcps_recv_hiwat;
7916 	tcp->tcp_mss = tcp->tcp_ipversion != IPV4_VERSION ?
7917 	    tcps->tcps_mss_def_ipv6 : tcps->tcps_mss_def_ipv4;
7918 }
7919 
7920 /*
7921  * Force values to zero that need be zero.
7922  * Do not touch values asociated with the BOUND or LISTEN state
7923  * since the connection will end up in that state after the reinit.
7924  * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t
7925  * structure!
7926  */
7927 static void
7928 tcp_reinit_values(tcp)
7929 	tcp_t *tcp;
7930 {
7931 	tcp_stack_t	*tcps = tcp->tcp_tcps;
7932 
7933 #ifndef	lint
7934 #define	DONTCARE(x)
7935 #define	PRESERVE(x)
7936 #else
7937 #define	DONTCARE(x)	((x) = (x))
7938 #define	PRESERVE(x)	((x) = (x))
7939 #endif	/* lint */
7940 
7941 	PRESERVE(tcp->tcp_bind_hash);
7942 	PRESERVE(tcp->tcp_ptpbhn);
7943 	PRESERVE(tcp->tcp_acceptor_hash);
7944 	PRESERVE(tcp->tcp_ptpahn);
7945 
7946 	/* Should be ASSERT NULL on these with new code! */
7947 	ASSERT(tcp->tcp_time_wait_next == NULL);
7948 	ASSERT(tcp->tcp_time_wait_prev == NULL);
7949 	ASSERT(tcp->tcp_time_wait_expire == 0);
7950 	PRESERVE(tcp->tcp_state);
7951 	PRESERVE(tcp->tcp_rq);
7952 	PRESERVE(tcp->tcp_wq);
7953 
7954 	ASSERT(tcp->tcp_xmit_head == NULL);
7955 	ASSERT(tcp->tcp_xmit_last == NULL);
7956 	ASSERT(tcp->tcp_unsent == 0);
7957 	ASSERT(tcp->tcp_xmit_tail == NULL);
7958 	ASSERT(tcp->tcp_xmit_tail_unsent == 0);
7959 
7960 	tcp->tcp_snxt = 0;			/* Displayed in mib */
7961 	tcp->tcp_suna = 0;			/* Displayed in mib */
7962 	tcp->tcp_swnd = 0;
7963 	DONTCARE(tcp->tcp_cwnd);		/* Init in tcp_mss_set */
7964 
7965 	ASSERT(tcp->tcp_ibsegs == 0);
7966 	ASSERT(tcp->tcp_obsegs == 0);
7967 
7968 	if (tcp->tcp_iphc != NULL) {
7969 		ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
7970 		bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
7971 	}
7972 
7973 	DONTCARE(tcp->tcp_naglim);		/* Init in tcp_init_values */
7974 	DONTCARE(tcp->tcp_hdr_len);		/* Init in tcp_init_values */
7975 	DONTCARE(tcp->tcp_ipha);
7976 	DONTCARE(tcp->tcp_ip6h);
7977 	DONTCARE(tcp->tcp_ip_hdr_len);
7978 	DONTCARE(tcp->tcp_tcph);
7979 	DONTCARE(tcp->tcp_tcp_hdr_len);		/* Init in tcp_init_values */
7980 	tcp->tcp_valid_bits = 0;
7981 
7982 	DONTCARE(tcp->tcp_xmit_hiwater);	/* Init in tcp_init_values */
7983 	DONTCARE(tcp->tcp_timer_backoff);	/* Init in tcp_init_values */
7984 	DONTCARE(tcp->tcp_last_recv_time);	/* Init in tcp_init_values */
7985 	tcp->tcp_last_rcv_lbolt = 0;
7986 
7987 	tcp->tcp_init_cwnd = 0;
7988 
7989 	tcp->tcp_urp_last_valid = 0;
7990 	tcp->tcp_hard_binding = 0;
7991 	tcp->tcp_hard_bound = 0;
7992 	PRESERVE(tcp->tcp_cred);
7993 	PRESERVE(tcp->tcp_cpid);
7994 	PRESERVE(tcp->tcp_open_time);
7995 	PRESERVE(tcp->tcp_exclbind);
7996 
7997 	tcp->tcp_fin_acked = 0;
7998 	tcp->tcp_fin_rcvd = 0;
7999 	tcp->tcp_fin_sent = 0;
8000 	tcp->tcp_ordrel_done = 0;
8001 
8002 	tcp->tcp_debug = 0;
8003 	tcp->tcp_dontroute = 0;
8004 	tcp->tcp_broadcast = 0;
8005 
8006 	tcp->tcp_useloopback = 0;
8007 	tcp->tcp_reuseaddr = 0;
8008 	tcp->tcp_oobinline = 0;
8009 	tcp->tcp_dgram_errind = 0;
8010 
8011 	tcp->tcp_detached = 0;
8012 	tcp->tcp_bind_pending = 0;
8013 	tcp->tcp_unbind_pending = 0;
8014 
8015 	tcp->tcp_snd_ws_ok = B_FALSE;
8016 	tcp->tcp_snd_ts_ok = B_FALSE;
8017 	tcp->tcp_linger = 0;
8018 	tcp->tcp_ka_enabled = 0;
8019 	tcp->tcp_zero_win_probe = 0;
8020 
8021 	tcp->tcp_loopback = 0;
8022 	tcp->tcp_localnet = 0;
8023 	tcp->tcp_syn_defense = 0;
8024 	tcp->tcp_set_timer = 0;
8025 
8026 	tcp->tcp_active_open = 0;
8027 	tcp->tcp_rexmit = B_FALSE;
8028 	tcp->tcp_xmit_zc_clean = B_FALSE;
8029 
8030 	tcp->tcp_snd_sack_ok = B_FALSE;
8031 	PRESERVE(tcp->tcp_recvdstaddr);
8032 	tcp->tcp_hwcksum = B_FALSE;
8033 
8034 	tcp->tcp_ire_ill_check_done = B_FALSE;
8035 	DONTCARE(tcp->tcp_maxpsz);		/* Init in tcp_init_values */
8036 
8037 	tcp->tcp_mdt = B_FALSE;
8038 	tcp->tcp_mdt_hdr_head = 0;
8039 	tcp->tcp_mdt_hdr_tail = 0;
8040 
8041 	tcp->tcp_conn_def_q0 = 0;
8042 	tcp->tcp_ip_forward_progress = B_FALSE;
8043 	tcp->tcp_anon_priv_bind = 0;
8044 	tcp->tcp_ecn_ok = B_FALSE;
8045 
8046 	tcp->tcp_cwr = B_FALSE;
8047 	tcp->tcp_ecn_echo_on = B_FALSE;
8048 
8049 	if (tcp->tcp_sack_info != NULL) {
8050 		if (tcp->tcp_notsack_list != NULL) {
8051 			TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
8052 		}
8053 		kmem_cache_free(tcp_sack_info_cache, tcp->tcp_sack_info);
8054 		tcp->tcp_sack_info = NULL;
8055 	}
8056 
8057 	tcp->tcp_rcv_ws = 0;
8058 	tcp->tcp_snd_ws = 0;
8059 	tcp->tcp_ts_recent = 0;
8060 	tcp->tcp_rnxt = 0;			/* Displayed in mib */
8061 	DONTCARE(tcp->tcp_rwnd);		/* Set in tcp_reinit() */
8062 	tcp->tcp_if_mtu = 0;
8063 
8064 	ASSERT(tcp->tcp_reass_head == NULL);
8065 	ASSERT(tcp->tcp_reass_tail == NULL);
8066 
8067 	tcp->tcp_cwnd_cnt = 0;
8068 
8069 	ASSERT(tcp->tcp_rcv_list == NULL);
8070 	ASSERT(tcp->tcp_rcv_last_head == NULL);
8071 	ASSERT(tcp->tcp_rcv_last_tail == NULL);
8072 	ASSERT(tcp->tcp_rcv_cnt == 0);
8073 
8074 	DONTCARE(tcp->tcp_cwnd_ssthresh);	/* Init in tcp_adapt_ire */
8075 	DONTCARE(tcp->tcp_cwnd_max);		/* Init in tcp_init_values */
8076 	tcp->tcp_csuna = 0;
8077 
8078 	tcp->tcp_rto = 0;			/* Displayed in MIB */
8079 	DONTCARE(tcp->tcp_rtt_sa);		/* Init in tcp_init_values */
8080 	DONTCARE(tcp->tcp_rtt_sd);		/* Init in tcp_init_values */
8081 	tcp->tcp_rtt_update = 0;
8082 
8083 	DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
8084 	DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
8085 
8086 	tcp->tcp_rack = 0;			/* Displayed in mib */
8087 	tcp->tcp_rack_cnt = 0;
8088 	tcp->tcp_rack_cur_max = 0;
8089 	tcp->tcp_rack_abs_max = 0;
8090 
8091 	tcp->tcp_max_swnd = 0;
8092 
8093 	ASSERT(tcp->tcp_listener == NULL);
8094 
8095 	DONTCARE(tcp->tcp_xmit_lowater);	/* Init in tcp_init_values */
8096 
8097 	DONTCARE(tcp->tcp_irs);			/* tcp_valid_bits cleared */
8098 	DONTCARE(tcp->tcp_iss);			/* tcp_valid_bits cleared */
8099 	DONTCARE(tcp->tcp_fss);			/* tcp_valid_bits cleared */
8100 	DONTCARE(tcp->tcp_urg);			/* tcp_valid_bits cleared */
8101 
8102 	ASSERT(tcp->tcp_conn_req_cnt_q == 0);
8103 	ASSERT(tcp->tcp_conn_req_cnt_q0 == 0);
8104 	PRESERVE(tcp->tcp_conn_req_max);
8105 	PRESERVE(tcp->tcp_conn_req_seqnum);
8106 
8107 	DONTCARE(tcp->tcp_ip_hdr_len);		/* Init in tcp_init_values */
8108 	DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */
8109 	DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */
8110 	DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */
8111 	DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */
8112 
8113 	tcp->tcp_lingertime = 0;
8114 
8115 	DONTCARE(tcp->tcp_urp_last);	/* tcp_urp_last_valid is cleared */
8116 	ASSERT(tcp->tcp_urp_mp == NULL);
8117 	ASSERT(tcp->tcp_urp_mark_mp == NULL);
8118 	ASSERT(tcp->tcp_fused_sigurg_mp == NULL);
8119 
8120 	ASSERT(tcp->tcp_eager_next_q == NULL);
8121 	ASSERT(tcp->tcp_eager_last_q == NULL);
8122 	ASSERT((tcp->tcp_eager_next_q0 == NULL &&
8123 	    tcp->tcp_eager_prev_q0 == NULL) ||
8124 	    tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0);
8125 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
8126 
8127 	ASSERT((tcp->tcp_eager_next_drop_q0 == NULL &&
8128 	    tcp->tcp_eager_prev_drop_q0 == NULL) ||
8129 	    tcp->tcp_eager_next_drop_q0 == tcp->tcp_eager_prev_drop_q0);
8130 
8131 	tcp->tcp_client_errno = 0;
8132 
8133 	DONTCARE(tcp->tcp_sum);			/* Init in tcp_init_values */
8134 
8135 	tcp->tcp_remote_v6 = ipv6_all_zeros;	/* Displayed in MIB */
8136 
8137 	PRESERVE(tcp->tcp_bound_source_v6);
8138 	tcp->tcp_last_sent_len = 0;
8139 	tcp->tcp_dupack_cnt = 0;
8140 
8141 	tcp->tcp_fport = 0;			/* Displayed in MIB */
8142 	PRESERVE(tcp->tcp_lport);
8143 
8144 	PRESERVE(tcp->tcp_acceptor_lockp);
8145 
8146 	ASSERT(tcp->tcp_ordrel_mp == NULL);
8147 	PRESERVE(tcp->tcp_acceptor_id);
8148 	DONTCARE(tcp->tcp_ipsec_overhead);
8149 
8150 	PRESERVE(tcp->tcp_family);
8151 	if (tcp->tcp_family == AF_INET6) {
8152 		tcp->tcp_ipversion = IPV6_VERSION;
8153 		tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
8154 	} else {
8155 		tcp->tcp_ipversion = IPV4_VERSION;
8156 		tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
8157 	}
8158 
8159 	tcp->tcp_bound_if = 0;
8160 	tcp->tcp_ipv6_recvancillary = 0;
8161 	tcp->tcp_recvifindex = 0;
8162 	tcp->tcp_recvhops = 0;
8163 	tcp->tcp_closed = 0;
8164 	tcp->tcp_cleandeathtag = 0;
8165 	if (tcp->tcp_hopopts != NULL) {
8166 		mi_free(tcp->tcp_hopopts);
8167 		tcp->tcp_hopopts = NULL;
8168 		tcp->tcp_hopoptslen = 0;
8169 	}
8170 	ASSERT(tcp->tcp_hopoptslen == 0);
8171 	if (tcp->tcp_dstopts != NULL) {
8172 		mi_free(tcp->tcp_dstopts);
8173 		tcp->tcp_dstopts = NULL;
8174 		tcp->tcp_dstoptslen = 0;
8175 	}
8176 	ASSERT(tcp->tcp_dstoptslen == 0);
8177 	if (tcp->tcp_rtdstopts != NULL) {
8178 		mi_free(tcp->tcp_rtdstopts);
8179 		tcp->tcp_rtdstopts = NULL;
8180 		tcp->tcp_rtdstoptslen = 0;
8181 	}
8182 	ASSERT(tcp->tcp_rtdstoptslen == 0);
8183 	if (tcp->tcp_rthdr != NULL) {
8184 		mi_free(tcp->tcp_rthdr);
8185 		tcp->tcp_rthdr = NULL;
8186 		tcp->tcp_rthdrlen = 0;
8187 	}
8188 	ASSERT(tcp->tcp_rthdrlen == 0);
8189 	PRESERVE(tcp->tcp_drop_opt_ack_cnt);
8190 
8191 	/* Reset fusion-related fields */
8192 	tcp->tcp_fused = B_FALSE;
8193 	tcp->tcp_unfusable = B_FALSE;
8194 	tcp->tcp_fused_sigurg = B_FALSE;
8195 	tcp->tcp_direct_sockfs = B_FALSE;
8196 	tcp->tcp_fuse_syncstr_stopped = B_FALSE;
8197 	tcp->tcp_fuse_syncstr_plugged = B_FALSE;
8198 	tcp->tcp_loopback_peer = NULL;
8199 	tcp->tcp_fuse_rcv_hiwater = 0;
8200 	tcp->tcp_fuse_rcv_unread_hiwater = 0;
8201 	tcp->tcp_fuse_rcv_unread_cnt = 0;
8202 
8203 	tcp->tcp_lso = B_FALSE;
8204 
8205 	tcp->tcp_in_ack_unsent = 0;
8206 	tcp->tcp_cork = B_FALSE;
8207 	tcp->tcp_tconnind_started = B_FALSE;
8208 
8209 	PRESERVE(tcp->tcp_squeue_bytes);
8210 
8211 	ASSERT(tcp->tcp_kssl_ctx == NULL);
8212 	ASSERT(!tcp->tcp_kssl_pending);
8213 	PRESERVE(tcp->tcp_kssl_ent);
8214 
8215 	/* Sodirect */
8216 	tcp->tcp_sodirect = NULL;
8217 
8218 	tcp->tcp_closemp_used = B_FALSE;
8219 
8220 	PRESERVE(tcp->tcp_rsrv_mp);
8221 	PRESERVE(tcp->tcp_rsrv_mp_lock);
8222 
8223 #ifdef DEBUG
8224 	DONTCARE(tcp->tcmp_stk[0]);
8225 #endif
8226 
8227 
8228 #undef	DONTCARE
8229 #undef	PRESERVE
8230 }
8231 
8232 /*
8233  * Allocate necessary resources and initialize state vector.
8234  * Guaranteed not to fail so that when an error is returned,
8235  * the caller doesn't need to do any additional cleanup.
8236  */
8237 int
8238 tcp_init(tcp_t *tcp, queue_t *q)
8239 {
8240 	int	err;
8241 
8242 	tcp->tcp_rq = q;
8243 	tcp->tcp_wq = WR(q);
8244 	tcp->tcp_state = TCPS_IDLE;
8245 	if ((err = tcp_init_values(tcp)) != 0)
8246 		tcp_timers_stop(tcp);
8247 	return (err);
8248 }
8249 
8250 static int
8251 tcp_init_values(tcp_t *tcp)
8252 {
8253 	int	err;
8254 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8255 
8256 	ASSERT((tcp->tcp_family == AF_INET &&
8257 	    tcp->tcp_ipversion == IPV4_VERSION) ||
8258 	    (tcp->tcp_family == AF_INET6 &&
8259 	    (tcp->tcp_ipversion == IPV4_VERSION ||
8260 	    tcp->tcp_ipversion == IPV6_VERSION)));
8261 
8262 	/*
8263 	 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO
8264 	 * will be close to tcp_rexmit_interval_initial.  By doing this, we
8265 	 * allow the algorithm to adjust slowly to large fluctuations of RTT
8266 	 * during first few transmissions of a connection as seen in slow
8267 	 * links.
8268 	 */
8269 	tcp->tcp_rtt_sa = tcps->tcps_rexmit_interval_initial << 2;
8270 	tcp->tcp_rtt_sd = tcps->tcps_rexmit_interval_initial >> 1;
8271 	tcp->tcp_rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
8272 	    tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) +
8273 	    tcps->tcps_conn_grace_period;
8274 	if (tcp->tcp_rto < tcps->tcps_rexmit_interval_min)
8275 		tcp->tcp_rto = tcps->tcps_rexmit_interval_min;
8276 	tcp->tcp_timer_backoff = 0;
8277 	tcp->tcp_ms_we_have_waited = 0;
8278 	tcp->tcp_last_recv_time = lbolt;
8279 	tcp->tcp_cwnd_max = tcps->tcps_cwnd_max_;
8280 	tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
8281 	tcp->tcp_snd_burst = TCP_CWND_INFINITE;
8282 
8283 	tcp->tcp_maxpsz = tcps->tcps_maxpsz_multiplier;
8284 
8285 	tcp->tcp_first_timer_threshold = tcps->tcps_ip_notify_interval;
8286 	tcp->tcp_first_ctimer_threshold = tcps->tcps_ip_notify_cinterval;
8287 	tcp->tcp_second_timer_threshold = tcps->tcps_ip_abort_interval;
8288 	/*
8289 	 * Fix it to tcp_ip_abort_linterval later if it turns out to be a
8290 	 * passive open.
8291 	 */
8292 	tcp->tcp_second_ctimer_threshold = tcps->tcps_ip_abort_cinterval;
8293 
8294 	tcp->tcp_naglim = tcps->tcps_naglim_def;
8295 
8296 	/* NOTE:  ISS is now set in tcp_adapt_ire(). */
8297 
8298 	tcp->tcp_mdt_hdr_head = 0;
8299 	tcp->tcp_mdt_hdr_tail = 0;
8300 
8301 	/* Reset fusion-related fields */
8302 	tcp->tcp_fused = B_FALSE;
8303 	tcp->tcp_unfusable = B_FALSE;
8304 	tcp->tcp_fused_sigurg = B_FALSE;
8305 	tcp->tcp_direct_sockfs = B_FALSE;
8306 	tcp->tcp_fuse_syncstr_stopped = B_FALSE;
8307 	tcp->tcp_fuse_syncstr_plugged = B_FALSE;
8308 	tcp->tcp_loopback_peer = NULL;
8309 	tcp->tcp_fuse_rcv_hiwater = 0;
8310 	tcp->tcp_fuse_rcv_unread_hiwater = 0;
8311 	tcp->tcp_fuse_rcv_unread_cnt = 0;
8312 
8313 	/* Sodirect */
8314 	tcp->tcp_sodirect = NULL;
8315 
8316 	/* Initialize the header template */
8317 	if (tcp->tcp_ipversion == IPV4_VERSION) {
8318 		err = tcp_header_init_ipv4(tcp);
8319 	} else {
8320 		err = tcp_header_init_ipv6(tcp);
8321 	}
8322 	if (err)
8323 		return (err);
8324 
8325 	/*
8326 	 * Init the window scale to the max so tcp_rwnd_set() won't pare
8327 	 * down tcp_rwnd. tcp_adapt_ire() will set the right value later.
8328 	 */
8329 	tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT;
8330 	tcp->tcp_xmit_lowater = tcps->tcps_xmit_lowat;
8331 	tcp->tcp_xmit_hiwater = tcps->tcps_xmit_hiwat;
8332 
8333 	tcp->tcp_cork = B_FALSE;
8334 	/*
8335 	 * Init the tcp_debug option.  This value determines whether TCP
8336 	 * calls strlog() to print out debug messages.  Doing this
8337 	 * initialization here means that this value is not inherited thru
8338 	 * tcp_reinit().
8339 	 */
8340 	tcp->tcp_debug = tcps->tcps_dbg;
8341 
8342 	tcp->tcp_ka_interval = tcps->tcps_keepalive_interval;
8343 	tcp->tcp_ka_abort_thres = tcps->tcps_keepalive_abort_interval;
8344 
8345 	return (0);
8346 }
8347 
8348 /*
8349  * Initialize the IPv4 header. Loses any record of any IP options.
8350  */
8351 static int
8352 tcp_header_init_ipv4(tcp_t *tcp)
8353 {
8354 	tcph_t		*tcph;
8355 	uint32_t	sum;
8356 	conn_t		*connp;
8357 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8358 
8359 	/*
8360 	 * This is a simple initialization. If there's
8361 	 * already a template, it should never be too small,
8362 	 * so reuse it.  Otherwise, allocate space for the new one.
8363 	 */
8364 	if (tcp->tcp_iphc == NULL) {
8365 		ASSERT(tcp->tcp_iphc_len == 0);
8366 		tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH;
8367 		tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP);
8368 		if (tcp->tcp_iphc == NULL) {
8369 			tcp->tcp_iphc_len = 0;
8370 			return (ENOMEM);
8371 		}
8372 	}
8373 
8374 	/* options are gone; may need a new label */
8375 	connp = tcp->tcp_connp;
8376 	connp->conn_mlp_type = mlptSingle;
8377 	connp->conn_ulp_labeled = !is_system_labeled();
8378 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
8379 	tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
8380 	tcp->tcp_ip6h = NULL;
8381 	tcp->tcp_ipversion = IPV4_VERSION;
8382 	tcp->tcp_hdr_len = sizeof (ipha_t) + sizeof (tcph_t);
8383 	tcp->tcp_tcp_hdr_len = sizeof (tcph_t);
8384 	tcp->tcp_ip_hdr_len = sizeof (ipha_t);
8385 	tcp->tcp_ipha->ipha_length = htons(sizeof (ipha_t) + sizeof (tcph_t));
8386 	tcp->tcp_ipha->ipha_version_and_hdr_length
8387 	    = (IP_VERSION << 4) | IP_SIMPLE_HDR_LENGTH_IN_WORDS;
8388 	tcp->tcp_ipha->ipha_ident = 0;
8389 
8390 	tcp->tcp_ttl = (uchar_t)tcps->tcps_ipv4_ttl;
8391 	tcp->tcp_tos = 0;
8392 	tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0;
8393 	tcp->tcp_ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl;
8394 	tcp->tcp_ipha->ipha_protocol = IPPROTO_TCP;
8395 
8396 	tcph = (tcph_t *)(tcp->tcp_iphc + sizeof (ipha_t));
8397 	tcp->tcp_tcph = tcph;
8398 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
8399 	/*
8400 	 * IP wants our header length in the checksum field to
8401 	 * allow it to perform a single pseudo-header+checksum
8402 	 * calculation on behalf of TCP.
8403 	 * Include the adjustment for a source route once IP_OPTIONS is set.
8404 	 */
8405 	sum = sizeof (tcph_t) + tcp->tcp_sum;
8406 	sum = (sum >> 16) + (sum & 0xFFFF);
8407 	U16_TO_ABE16(sum, tcph->th_sum);
8408 	return (0);
8409 }
8410 
8411 /*
8412  * Initialize the IPv6 header. Loses any record of any IPv6 extension headers.
8413  */
8414 static int
8415 tcp_header_init_ipv6(tcp_t *tcp)
8416 {
8417 	tcph_t	*tcph;
8418 	uint32_t	sum;
8419 	conn_t	*connp;
8420 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8421 
8422 	/*
8423 	 * This is a simple initialization. If there's
8424 	 * already a template, it should never be too small,
8425 	 * so reuse it. Otherwise, allocate space for the new one.
8426 	 * Ensure that there is enough space to "downgrade" the tcp_t
8427 	 * to an IPv4 tcp_t. This requires having space for a full load
8428 	 * of IPv4 options, as well as a full load of TCP options
8429 	 * (TCP_MAX_COMBINED_HEADER_LENGTH, 120 bytes); this is more space
8430 	 * than a v6 header and a TCP header with a full load of TCP options
8431 	 * (IPV6_HDR_LEN is 40 bytes; TCP_MAX_HDR_LENGTH is 60 bytes).
8432 	 * We want to avoid reallocation in the "downgraded" case when
8433 	 * processing outbound IPv4 options.
8434 	 */
8435 	if (tcp->tcp_iphc == NULL) {
8436 		ASSERT(tcp->tcp_iphc_len == 0);
8437 		tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH;
8438 		tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP);
8439 		if (tcp->tcp_iphc == NULL) {
8440 			tcp->tcp_iphc_len = 0;
8441 			return (ENOMEM);
8442 		}
8443 	}
8444 
8445 	/* options are gone; may need a new label */
8446 	connp = tcp->tcp_connp;
8447 	connp->conn_mlp_type = mlptSingle;
8448 	connp->conn_ulp_labeled = !is_system_labeled();
8449 
8450 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
8451 	tcp->tcp_ipversion = IPV6_VERSION;
8452 	tcp->tcp_hdr_len = IPV6_HDR_LEN + sizeof (tcph_t);
8453 	tcp->tcp_tcp_hdr_len = sizeof (tcph_t);
8454 	tcp->tcp_ip_hdr_len = IPV6_HDR_LEN;
8455 	tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc;
8456 	tcp->tcp_ipha = NULL;
8457 
8458 	/* Initialize the header template */
8459 
8460 	tcp->tcp_ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW;
8461 	tcp->tcp_ip6h->ip6_plen = ntohs(sizeof (tcph_t));
8462 	tcp->tcp_ip6h->ip6_nxt = IPPROTO_TCP;
8463 	tcp->tcp_ip6h->ip6_hops = (uint8_t)tcps->tcps_ipv6_hoplimit;
8464 
8465 	tcph = (tcph_t *)(tcp->tcp_iphc + IPV6_HDR_LEN);
8466 	tcp->tcp_tcph = tcph;
8467 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
8468 	/*
8469 	 * IP wants our header length in the checksum field to
8470 	 * allow it to perform a single psuedo-header+checksum
8471 	 * calculation on behalf of TCP.
8472 	 * Include the adjustment for a source route when IPV6_RTHDR is set.
8473 	 */
8474 	sum = sizeof (tcph_t) + tcp->tcp_sum;
8475 	sum = (sum >> 16) + (sum & 0xFFFF);
8476 	U16_TO_ABE16(sum, tcph->th_sum);
8477 	return (0);
8478 }
8479 
8480 /* At minimum we need 8 bytes in the TCP header for the lookup */
8481 #define	ICMP_MIN_TCP_HDR	8
8482 
8483 /*
8484  * tcp_icmp_error is called by tcp_rput_other to process ICMP error messages
8485  * passed up by IP. The message is always received on the correct tcp_t.
8486  * Assumes that IP has pulled up everything up to and including the ICMP header.
8487  */
8488 void
8489 tcp_icmp_error(tcp_t *tcp, mblk_t *mp)
8490 {
8491 	icmph_t *icmph;
8492 	ipha_t	*ipha;
8493 	int	iph_hdr_length;
8494 	tcph_t	*tcph;
8495 	boolean_t ipsec_mctl = B_FALSE;
8496 	boolean_t secure;
8497 	mblk_t *first_mp = mp;
8498 	uint32_t new_mss;
8499 	uint32_t ratio;
8500 	size_t mp_size = MBLKL(mp);
8501 	uint32_t seg_seq;
8502 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8503 
8504 	/* Assume IP provides aligned packets - otherwise toss */
8505 	if (!OK_32PTR(mp->b_rptr)) {
8506 		freemsg(mp);
8507 		return;
8508 	}
8509 
8510 	/*
8511 	 * Since ICMP errors are normal data marked with M_CTL when sent
8512 	 * to TCP or UDP, we have to look for a IPSEC_IN value to identify
8513 	 * packets starting with an ipsec_info_t, see ipsec_info.h.
8514 	 */
8515 	if ((mp_size == sizeof (ipsec_info_t)) &&
8516 	    (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == IPSEC_IN)) {
8517 		ASSERT(mp->b_cont != NULL);
8518 		mp = mp->b_cont;
8519 		/* IP should have done this */
8520 		ASSERT(OK_32PTR(mp->b_rptr));
8521 		mp_size = MBLKL(mp);
8522 		ipsec_mctl = B_TRUE;
8523 	}
8524 
8525 	/*
8526 	 * Verify that we have a complete outer IP header. If not, drop it.
8527 	 */
8528 	if (mp_size < sizeof (ipha_t)) {
8529 noticmpv4:
8530 		freemsg(first_mp);
8531 		return;
8532 	}
8533 
8534 	ipha = (ipha_t *)mp->b_rptr;
8535 	/*
8536 	 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent
8537 	 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6.
8538 	 */
8539 	switch (IPH_HDR_VERSION(ipha)) {
8540 	case IPV6_VERSION:
8541 		tcp_icmp_error_ipv6(tcp, first_mp, ipsec_mctl);
8542 		return;
8543 	case IPV4_VERSION:
8544 		break;
8545 	default:
8546 		goto noticmpv4;
8547 	}
8548 
8549 	/* Skip past the outer IP and ICMP headers */
8550 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
8551 	icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
8552 	/*
8553 	 * If we don't have the correct outer IP header length or if the ULP
8554 	 * is not IPPROTO_ICMP or if we don't have a complete inner IP header
8555 	 * send it upstream.
8556 	 */
8557 	if (iph_hdr_length < sizeof (ipha_t) ||
8558 	    ipha->ipha_protocol != IPPROTO_ICMP ||
8559 	    (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) {
8560 		goto noticmpv4;
8561 	}
8562 	ipha = (ipha_t *)&icmph[1];
8563 
8564 	/* Skip past the inner IP and find the ULP header */
8565 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
8566 	tcph = (tcph_t *)((char *)ipha + iph_hdr_length);
8567 	/*
8568 	 * If we don't have the correct inner IP header length or if the ULP
8569 	 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR
8570 	 * bytes of TCP header, drop it.
8571 	 */
8572 	if (iph_hdr_length < sizeof (ipha_t) ||
8573 	    ipha->ipha_protocol != IPPROTO_TCP ||
8574 	    (uchar_t *)tcph + ICMP_MIN_TCP_HDR > mp->b_wptr) {
8575 		goto noticmpv4;
8576 	}
8577 
8578 	if (TCP_IS_DETACHED_NONEAGER(tcp)) {
8579 		if (ipsec_mctl) {
8580 			secure = ipsec_in_is_secure(first_mp);
8581 		} else {
8582 			secure = B_FALSE;
8583 		}
8584 		if (secure) {
8585 			/*
8586 			 * If we are willing to accept this in clear
8587 			 * we don't have to verify policy.
8588 			 */
8589 			if (!ipsec_inbound_accept_clear(mp, ipha, NULL)) {
8590 				if (!tcp_check_policy(tcp, first_mp,
8591 				    ipha, NULL, secure, ipsec_mctl)) {
8592 					/*
8593 					 * tcp_check_policy called
8594 					 * ip_drop_packet() on failure.
8595 					 */
8596 					return;
8597 				}
8598 			}
8599 		}
8600 	} else if (ipsec_mctl) {
8601 		/*
8602 		 * This is a hard_bound connection. IP has already
8603 		 * verified policy. We don't have to do it again.
8604 		 */
8605 		freeb(first_mp);
8606 		first_mp = mp;
8607 		ipsec_mctl = B_FALSE;
8608 	}
8609 
8610 	seg_seq = ABE32_TO_U32(tcph->th_seq);
8611 	/*
8612 	 * TCP SHOULD check that the TCP sequence number contained in
8613 	 * payload of the ICMP error message is within the range
8614 	 * SND.UNA <= SEG.SEQ < SND.NXT.
8615 	 */
8616 	if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) {
8617 		/*
8618 		 * If the ICMP message is bogus, should we kill the
8619 		 * connection, or should we just drop the bogus ICMP
8620 		 * message? It would probably make more sense to just
8621 		 * drop the message so that if this one managed to get
8622 		 * in, the real connection should not suffer.
8623 		 */
8624 		goto noticmpv4;
8625 	}
8626 
8627 	switch (icmph->icmph_type) {
8628 	case ICMP_DEST_UNREACHABLE:
8629 		switch (icmph->icmph_code) {
8630 		case ICMP_FRAGMENTATION_NEEDED:
8631 			/*
8632 			 * Reduce the MSS based on the new MTU.  This will
8633 			 * eliminate any fragmentation locally.
8634 			 * N.B.  There may well be some funny side-effects on
8635 			 * the local send policy and the remote receive policy.
8636 			 * Pending further research, we provide
8637 			 * tcp_ignore_path_mtu just in case this proves
8638 			 * disastrous somewhere.
8639 			 *
8640 			 * After updating the MSS, retransmit part of the
8641 			 * dropped segment using the new mss by calling
8642 			 * tcp_wput_data().  Need to adjust all those
8643 			 * params to make sure tcp_wput_data() work properly.
8644 			 */
8645 			if (tcps->tcps_ignore_path_mtu)
8646 				break;
8647 
8648 			/*
8649 			 * Decrease the MSS by time stamp options
8650 			 * IP options and IPSEC options. tcp_hdr_len
8651 			 * includes time stamp option and IP option
8652 			 * length.
8653 			 */
8654 
8655 			new_mss = ntohs(icmph->icmph_du_mtu) -
8656 			    tcp->tcp_hdr_len - tcp->tcp_ipsec_overhead;
8657 
8658 			/*
8659 			 * Only update the MSS if the new one is
8660 			 * smaller than the previous one.  This is
8661 			 * to avoid problems when getting multiple
8662 			 * ICMP errors for the same MTU.
8663 			 */
8664 			if (new_mss >= tcp->tcp_mss)
8665 				break;
8666 
8667 			/*
8668 			 * Stop doing PMTU if new_mss is less than 68
8669 			 * or less than tcp_mss_min.
8670 			 * The value 68 comes from rfc 1191.
8671 			 */
8672 			if (new_mss < MAX(68, tcps->tcps_mss_min))
8673 				tcp->tcp_ipha->ipha_fragment_offset_and_flags =
8674 				    0;
8675 
8676 			ratio = tcp->tcp_cwnd / tcp->tcp_mss;
8677 			ASSERT(ratio >= 1);
8678 			tcp_mss_set(tcp, new_mss, B_TRUE);
8679 
8680 			/*
8681 			 * Make sure we have something to
8682 			 * send.
8683 			 */
8684 			if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) &&
8685 			    (tcp->tcp_xmit_head != NULL)) {
8686 				/*
8687 				 * Shrink tcp_cwnd in
8688 				 * proportion to the old MSS/new MSS.
8689 				 */
8690 				tcp->tcp_cwnd = ratio * tcp->tcp_mss;
8691 				if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
8692 				    (tcp->tcp_unsent == 0)) {
8693 					tcp->tcp_rexmit_max = tcp->tcp_fss;
8694 				} else {
8695 					tcp->tcp_rexmit_max = tcp->tcp_snxt;
8696 				}
8697 				tcp->tcp_rexmit_nxt = tcp->tcp_suna;
8698 				tcp->tcp_rexmit = B_TRUE;
8699 				tcp->tcp_dupack_cnt = 0;
8700 				tcp->tcp_snd_burst = TCP_CWND_SS;
8701 				tcp_ss_rexmit(tcp);
8702 			}
8703 			break;
8704 		case ICMP_PORT_UNREACHABLE:
8705 		case ICMP_PROTOCOL_UNREACHABLE:
8706 			switch (tcp->tcp_state) {
8707 			case TCPS_SYN_SENT:
8708 			case TCPS_SYN_RCVD:
8709 				/*
8710 				 * ICMP can snipe away incipient
8711 				 * TCP connections as long as
8712 				 * seq number is same as initial
8713 				 * send seq number.
8714 				 */
8715 				if (seg_seq == tcp->tcp_iss) {
8716 					(void) tcp_clean_death(tcp,
8717 					    ECONNREFUSED, 6);
8718 				}
8719 				break;
8720 			}
8721 			break;
8722 		case ICMP_HOST_UNREACHABLE:
8723 		case ICMP_NET_UNREACHABLE:
8724 			/* Record the error in case we finally time out. */
8725 			if (icmph->icmph_code == ICMP_HOST_UNREACHABLE)
8726 				tcp->tcp_client_errno = EHOSTUNREACH;
8727 			else
8728 				tcp->tcp_client_errno = ENETUNREACH;
8729 			if (tcp->tcp_state == TCPS_SYN_RCVD) {
8730 				if (tcp->tcp_listener != NULL &&
8731 				    tcp->tcp_listener->tcp_syn_defense) {
8732 					/*
8733 					 * Ditch the half-open connection if we
8734 					 * suspect a SYN attack is under way.
8735 					 */
8736 					tcp_ip_ire_mark_advice(tcp);
8737 					(void) tcp_clean_death(tcp,
8738 					    tcp->tcp_client_errno, 7);
8739 				}
8740 			}
8741 			break;
8742 		default:
8743 			break;
8744 		}
8745 		break;
8746 	case ICMP_SOURCE_QUENCH: {
8747 		/*
8748 		 * use a global boolean to control
8749 		 * whether TCP should respond to ICMP_SOURCE_QUENCH.
8750 		 * The default is false.
8751 		 */
8752 		if (tcp_icmp_source_quench) {
8753 			/*
8754 			 * Reduce the sending rate as if we got a
8755 			 * retransmit timeout
8756 			 */
8757 			uint32_t npkt;
8758 
8759 			npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) /
8760 			    tcp->tcp_mss;
8761 			tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss;
8762 			tcp->tcp_cwnd = tcp->tcp_mss;
8763 			tcp->tcp_cwnd_cnt = 0;
8764 		}
8765 		break;
8766 	}
8767 	}
8768 	freemsg(first_mp);
8769 }
8770 
8771 /*
8772  * tcp_icmp_error_ipv6 is called by tcp_rput_other to process ICMPv6
8773  * error messages passed up by IP.
8774  * Assumes that IP has pulled up all the extension headers as well
8775  * as the ICMPv6 header.
8776  */
8777 static void
8778 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, boolean_t ipsec_mctl)
8779 {
8780 	icmp6_t *icmp6;
8781 	ip6_t	*ip6h;
8782 	uint16_t	iph_hdr_length;
8783 	tcpha_t	*tcpha;
8784 	uint8_t	*nexthdrp;
8785 	uint32_t new_mss;
8786 	uint32_t ratio;
8787 	boolean_t secure;
8788 	mblk_t *first_mp = mp;
8789 	size_t mp_size;
8790 	uint32_t seg_seq;
8791 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8792 
8793 	/*
8794 	 * The caller has determined if this is an IPSEC_IN packet and
8795 	 * set ipsec_mctl appropriately (see tcp_icmp_error).
8796 	 */
8797 	if (ipsec_mctl)
8798 		mp = mp->b_cont;
8799 
8800 	mp_size = MBLKL(mp);
8801 
8802 	/*
8803 	 * Verify that we have a complete IP header. If not, send it upstream.
8804 	 */
8805 	if (mp_size < sizeof (ip6_t)) {
8806 noticmpv6:
8807 		freemsg(first_mp);
8808 		return;
8809 	}
8810 
8811 	/*
8812 	 * Verify this is an ICMPV6 packet, else send it upstream.
8813 	 */
8814 	ip6h = (ip6_t *)mp->b_rptr;
8815 	if (ip6h->ip6_nxt == IPPROTO_ICMPV6) {
8816 		iph_hdr_length = IPV6_HDR_LEN;
8817 	} else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length,
8818 	    &nexthdrp) ||
8819 	    *nexthdrp != IPPROTO_ICMPV6) {
8820 		goto noticmpv6;
8821 	}
8822 	icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length];
8823 	ip6h = (ip6_t *)&icmp6[1];
8824 	/*
8825 	 * Verify if we have a complete ICMP and inner IP header.
8826 	 */
8827 	if ((uchar_t *)&ip6h[1] > mp->b_wptr)
8828 		goto noticmpv6;
8829 
8830 	if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp))
8831 		goto noticmpv6;
8832 	tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length);
8833 	/*
8834 	 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't
8835 	 * have at least ICMP_MIN_TCP_HDR bytes of  TCP header drop the
8836 	 * packet.
8837 	 */
8838 	if ((*nexthdrp != IPPROTO_TCP) ||
8839 	    ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) {
8840 		goto noticmpv6;
8841 	}
8842 
8843 	/*
8844 	 * ICMP errors come on the right queue or come on
8845 	 * listener/global queue for detached connections and
8846 	 * get switched to the right queue. If it comes on the
8847 	 * right queue, policy check has already been done by IP
8848 	 * and thus free the first_mp without verifying the policy.
8849 	 * If it has come for a non-hard bound connection, we need
8850 	 * to verify policy as IP may not have done it.
8851 	 */
8852 	if (!tcp->tcp_hard_bound) {
8853 		if (ipsec_mctl) {
8854 			secure = ipsec_in_is_secure(first_mp);
8855 		} else {
8856 			secure = B_FALSE;
8857 		}
8858 		if (secure) {
8859 			/*
8860 			 * If we are willing to accept this in clear
8861 			 * we don't have to verify policy.
8862 			 */
8863 			if (!ipsec_inbound_accept_clear(mp, NULL, ip6h)) {
8864 				if (!tcp_check_policy(tcp, first_mp,
8865 				    NULL, ip6h, secure, ipsec_mctl)) {
8866 					/*
8867 					 * tcp_check_policy called
8868 					 * ip_drop_packet() on failure.
8869 					 */
8870 					return;
8871 				}
8872 			}
8873 		}
8874 	} else if (ipsec_mctl) {
8875 		/*
8876 		 * This is a hard_bound connection. IP has already
8877 		 * verified policy. We don't have to do it again.
8878 		 */
8879 		freeb(first_mp);
8880 		first_mp = mp;
8881 		ipsec_mctl = B_FALSE;
8882 	}
8883 
8884 	seg_seq = ntohl(tcpha->tha_seq);
8885 	/*
8886 	 * TCP SHOULD check that the TCP sequence number contained in
8887 	 * payload of the ICMP error message is within the range
8888 	 * SND.UNA <= SEG.SEQ < SND.NXT.
8889 	 */
8890 	if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) {
8891 		/*
8892 		 * If the ICMP message is bogus, should we kill the
8893 		 * connection, or should we just drop the bogus ICMP
8894 		 * message? It would probably make more sense to just
8895 		 * drop the message so that if this one managed to get
8896 		 * in, the real connection should not suffer.
8897 		 */
8898 		goto noticmpv6;
8899 	}
8900 
8901 	switch (icmp6->icmp6_type) {
8902 	case ICMP6_PACKET_TOO_BIG:
8903 		/*
8904 		 * Reduce the MSS based on the new MTU.  This will
8905 		 * eliminate any fragmentation locally.
8906 		 * N.B.  There may well be some funny side-effects on
8907 		 * the local send policy and the remote receive policy.
8908 		 * Pending further research, we provide
8909 		 * tcp_ignore_path_mtu just in case this proves
8910 		 * disastrous somewhere.
8911 		 *
8912 		 * After updating the MSS, retransmit part of the
8913 		 * dropped segment using the new mss by calling
8914 		 * tcp_wput_data().  Need to adjust all those
8915 		 * params to make sure tcp_wput_data() work properly.
8916 		 */
8917 		if (tcps->tcps_ignore_path_mtu)
8918 			break;
8919 
8920 		/*
8921 		 * Decrease the MSS by time stamp options
8922 		 * IP options and IPSEC options. tcp_hdr_len
8923 		 * includes time stamp option and IP option
8924 		 * length.
8925 		 */
8926 		new_mss = ntohs(icmp6->icmp6_mtu) - tcp->tcp_hdr_len -
8927 		    tcp->tcp_ipsec_overhead;
8928 
8929 		/*
8930 		 * Only update the MSS if the new one is
8931 		 * smaller than the previous one.  This is
8932 		 * to avoid problems when getting multiple
8933 		 * ICMP errors for the same MTU.
8934 		 */
8935 		if (new_mss >= tcp->tcp_mss)
8936 			break;
8937 
8938 		ratio = tcp->tcp_cwnd / tcp->tcp_mss;
8939 		ASSERT(ratio >= 1);
8940 		tcp_mss_set(tcp, new_mss, B_TRUE);
8941 
8942 		/*
8943 		 * Make sure we have something to
8944 		 * send.
8945 		 */
8946 		if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) &&
8947 		    (tcp->tcp_xmit_head != NULL)) {
8948 			/*
8949 			 * Shrink tcp_cwnd in
8950 			 * proportion to the old MSS/new MSS.
8951 			 */
8952 			tcp->tcp_cwnd = ratio * tcp->tcp_mss;
8953 			if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
8954 			    (tcp->tcp_unsent == 0)) {
8955 				tcp->tcp_rexmit_max = tcp->tcp_fss;
8956 			} else {
8957 				tcp->tcp_rexmit_max = tcp->tcp_snxt;
8958 			}
8959 			tcp->tcp_rexmit_nxt = tcp->tcp_suna;
8960 			tcp->tcp_rexmit = B_TRUE;
8961 			tcp->tcp_dupack_cnt = 0;
8962 			tcp->tcp_snd_burst = TCP_CWND_SS;
8963 			tcp_ss_rexmit(tcp);
8964 		}
8965 		break;
8966 
8967 	case ICMP6_DST_UNREACH:
8968 		switch (icmp6->icmp6_code) {
8969 		case ICMP6_DST_UNREACH_NOPORT:
8970 			if (((tcp->tcp_state == TCPS_SYN_SENT) ||
8971 			    (tcp->tcp_state == TCPS_SYN_RCVD)) &&
8972 			    (seg_seq == tcp->tcp_iss)) {
8973 				(void) tcp_clean_death(tcp,
8974 				    ECONNREFUSED, 8);
8975 			}
8976 			break;
8977 
8978 		case ICMP6_DST_UNREACH_ADMIN:
8979 		case ICMP6_DST_UNREACH_NOROUTE:
8980 		case ICMP6_DST_UNREACH_BEYONDSCOPE:
8981 		case ICMP6_DST_UNREACH_ADDR:
8982 			/* Record the error in case we finally time out. */
8983 			tcp->tcp_client_errno = EHOSTUNREACH;
8984 			if (((tcp->tcp_state == TCPS_SYN_SENT) ||
8985 			    (tcp->tcp_state == TCPS_SYN_RCVD)) &&
8986 			    (seg_seq == tcp->tcp_iss)) {
8987 				if (tcp->tcp_listener != NULL &&
8988 				    tcp->tcp_listener->tcp_syn_defense) {
8989 					/*
8990 					 * Ditch the half-open connection if we
8991 					 * suspect a SYN attack is under way.
8992 					 */
8993 					tcp_ip_ire_mark_advice(tcp);
8994 					(void) tcp_clean_death(tcp,
8995 					    tcp->tcp_client_errno, 9);
8996 				}
8997 			}
8998 
8999 
9000 			break;
9001 		default:
9002 			break;
9003 		}
9004 		break;
9005 
9006 	case ICMP6_PARAM_PROB:
9007 		/* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */
9008 		if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER &&
9009 		    (uchar_t *)ip6h + icmp6->icmp6_pptr ==
9010 		    (uchar_t *)nexthdrp) {
9011 			if (tcp->tcp_state == TCPS_SYN_SENT ||
9012 			    tcp->tcp_state == TCPS_SYN_RCVD) {
9013 				(void) tcp_clean_death(tcp,
9014 				    ECONNREFUSED, 10);
9015 			}
9016 			break;
9017 		}
9018 		break;
9019 
9020 	case ICMP6_TIME_EXCEEDED:
9021 	default:
9022 		break;
9023 	}
9024 	freemsg(first_mp);
9025 }
9026 
9027 /*
9028  * IP recognizes seven kinds of bind requests:
9029  *
9030  * - A zero-length address binds only to the protocol number.
9031  *
9032  * - A 4-byte address is treated as a request to
9033  * validate that the address is a valid local IPv4
9034  * address, appropriate for an application to bind to.
9035  * IP does the verification, but does not make any note
9036  * of the address at this time.
9037  *
9038  * - A 16-byte address contains is treated as a request
9039  * to validate a local IPv6 address, as the 4-byte
9040  * address case above.
9041  *
9042  * - A 16-byte sockaddr_in to validate the local IPv4 address and also
9043  * use it for the inbound fanout of packets.
9044  *
9045  * - A 24-byte sockaddr_in6 to validate the local IPv6 address and also
9046  * use it for the inbound fanout of packets.
9047  *
9048  * - A 12-byte address (ipa_conn_t) containing complete IPv4 fanout
9049  * information consisting of local and remote addresses
9050  * and ports.  In this case, the addresses are both
9051  * validated as appropriate for this operation, and, if
9052  * so, the information is retained for use in the
9053  * inbound fanout.
9054  *
9055  * - A 36-byte address address (ipa6_conn_t) containing complete IPv6
9056  * fanout information, like the 12-byte case above.
9057  *
9058  * IP will also fill in the IRE request mblk with information
9059  * regarding our peer.  In all cases, we notify IP of our protocol
9060  * type by appending a single protocol byte to the bind request.
9061  */
9062 static mblk_t *
9063 tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim, t_scalar_t addr_length)
9064 {
9065 	char	*cp;
9066 	mblk_t	*mp;
9067 	struct T_bind_req *tbr;
9068 	ipa_conn_t	*ac;
9069 	ipa6_conn_t	*ac6;
9070 	sin_t		*sin;
9071 	sin6_t		*sin6;
9072 
9073 	ASSERT(bind_prim == O_T_BIND_REQ || bind_prim == T_BIND_REQ);
9074 	ASSERT((tcp->tcp_family == AF_INET &&
9075 	    tcp->tcp_ipversion == IPV4_VERSION) ||
9076 	    (tcp->tcp_family == AF_INET6 &&
9077 	    (tcp->tcp_ipversion == IPV4_VERSION ||
9078 	    tcp->tcp_ipversion == IPV6_VERSION)));
9079 
9080 	mp = allocb(sizeof (*tbr) + addr_length + 1, BPRI_HI);
9081 	if (!mp)
9082 		return (mp);
9083 	mp->b_datap->db_type = M_PROTO;
9084 	tbr = (struct T_bind_req *)mp->b_rptr;
9085 	tbr->PRIM_type = bind_prim;
9086 	tbr->ADDR_offset = sizeof (*tbr);
9087 	tbr->CONIND_number = 0;
9088 	tbr->ADDR_length = addr_length;
9089 	cp = (char *)&tbr[1];
9090 	switch (addr_length) {
9091 	case sizeof (ipa_conn_t):
9092 		ASSERT(tcp->tcp_family == AF_INET);
9093 		ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
9094 
9095 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
9096 		if (mp->b_cont == NULL) {
9097 			freemsg(mp);
9098 			return (NULL);
9099 		}
9100 		mp->b_cont->b_wptr += sizeof (ire_t);
9101 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
9102 
9103 		/* cp known to be 32 bit aligned */
9104 		ac = (ipa_conn_t *)cp;
9105 		ac->ac_laddr = tcp->tcp_ipha->ipha_src;
9106 		ac->ac_faddr = tcp->tcp_remote;
9107 		ac->ac_fport = tcp->tcp_fport;
9108 		ac->ac_lport = tcp->tcp_lport;
9109 		tcp->tcp_hard_binding = 1;
9110 		break;
9111 
9112 	case sizeof (ipa6_conn_t):
9113 		ASSERT(tcp->tcp_family == AF_INET6);
9114 
9115 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
9116 		if (mp->b_cont == NULL) {
9117 			freemsg(mp);
9118 			return (NULL);
9119 		}
9120 		mp->b_cont->b_wptr += sizeof (ire_t);
9121 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
9122 
9123 		/* cp known to be 32 bit aligned */
9124 		ac6 = (ipa6_conn_t *)cp;
9125 		if (tcp->tcp_ipversion == IPV4_VERSION) {
9126 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
9127 			    &ac6->ac6_laddr);
9128 		} else {
9129 			ac6->ac6_laddr = tcp->tcp_ip6h->ip6_src;
9130 		}
9131 		ac6->ac6_faddr = tcp->tcp_remote_v6;
9132 		ac6->ac6_fport = tcp->tcp_fport;
9133 		ac6->ac6_lport = tcp->tcp_lport;
9134 		tcp->tcp_hard_binding = 1;
9135 		break;
9136 
9137 	case sizeof (sin_t):
9138 		/*
9139 		 * NOTE: IPV6_ADDR_LEN also has same size.
9140 		 * Use family to discriminate.
9141 		 */
9142 		if (tcp->tcp_family == AF_INET) {
9143 			sin = (sin_t *)cp;
9144 
9145 			*sin = sin_null;
9146 			sin->sin_family = AF_INET;
9147 			sin->sin_addr.s_addr = tcp->tcp_bound_source;
9148 			sin->sin_port = tcp->tcp_lport;
9149 			break;
9150 		} else {
9151 			*(in6_addr_t *)cp = tcp->tcp_bound_source_v6;
9152 		}
9153 		break;
9154 
9155 	case sizeof (sin6_t):
9156 		ASSERT(tcp->tcp_family == AF_INET6);
9157 		sin6 = (sin6_t *)cp;
9158 
9159 		*sin6 = sin6_null;
9160 		sin6->sin6_family = AF_INET6;
9161 		sin6->sin6_addr = tcp->tcp_bound_source_v6;
9162 		sin6->sin6_port = tcp->tcp_lport;
9163 		break;
9164 
9165 	case IP_ADDR_LEN:
9166 		ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
9167 		*(uint32_t *)cp = tcp->tcp_ipha->ipha_src;
9168 		break;
9169 
9170 	}
9171 	/* Add protocol number to end */
9172 	cp[addr_length] = (char)IPPROTO_TCP;
9173 	mp->b_wptr = (uchar_t *)&cp[addr_length + 1];
9174 	return (mp);
9175 }
9176 
9177 /*
9178  * Notify IP that we are having trouble with this connection.  IP should
9179  * blow the IRE away and start over.
9180  */
9181 static void
9182 tcp_ip_notify(tcp_t *tcp)
9183 {
9184 	struct iocblk	*iocp;
9185 	ipid_t	*ipid;
9186 	mblk_t	*mp;
9187 
9188 	/* IPv6 has NUD thus notification to delete the IRE is not needed */
9189 	if (tcp->tcp_ipversion == IPV6_VERSION)
9190 		return;
9191 
9192 	mp = mkiocb(IP_IOCTL);
9193 	if (mp == NULL)
9194 		return;
9195 
9196 	iocp = (struct iocblk *)mp->b_rptr;
9197 	iocp->ioc_count = sizeof (ipid_t) + sizeof (tcp->tcp_ipha->ipha_dst);
9198 
9199 	mp->b_cont = allocb(iocp->ioc_count, BPRI_HI);
9200 	if (!mp->b_cont) {
9201 		freeb(mp);
9202 		return;
9203 	}
9204 
9205 	ipid = (ipid_t *)mp->b_cont->b_rptr;
9206 	mp->b_cont->b_wptr += iocp->ioc_count;
9207 	bzero(ipid, sizeof (*ipid));
9208 	ipid->ipid_cmd = IP_IOC_IRE_DELETE_NO_REPLY;
9209 	ipid->ipid_ire_type = IRE_CACHE;
9210 	ipid->ipid_addr_offset = sizeof (ipid_t);
9211 	ipid->ipid_addr_length = sizeof (tcp->tcp_ipha->ipha_dst);
9212 	/*
9213 	 * Note: in the case of source routing we want to blow away the
9214 	 * route to the first source route hop.
9215 	 */
9216 	bcopy(&tcp->tcp_ipha->ipha_dst, &ipid[1],
9217 	    sizeof (tcp->tcp_ipha->ipha_dst));
9218 
9219 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
9220 }
9221 
9222 /* Unlink and return any mblk that looks like it contains an ire */
9223 static mblk_t *
9224 tcp_ire_mp(mblk_t *mp)
9225 {
9226 	mblk_t	*prev_mp;
9227 
9228 	for (;;) {
9229 		prev_mp = mp;
9230 		mp = mp->b_cont;
9231 		if (mp == NULL)
9232 			break;
9233 		switch (DB_TYPE(mp)) {
9234 		case IRE_DB_TYPE:
9235 		case IRE_DB_REQ_TYPE:
9236 			if (prev_mp != NULL)
9237 				prev_mp->b_cont = mp->b_cont;
9238 			mp->b_cont = NULL;
9239 			return (mp);
9240 		default:
9241 			break;
9242 		}
9243 	}
9244 	return (mp);
9245 }
9246 
9247 /*
9248  * Timer callback routine for keepalive probe.  We do a fake resend of
9249  * last ACKed byte.  Then set a timer using RTO.  When the timer expires,
9250  * check to see if we have heard anything from the other end for the last
9251  * RTO period.  If we have, set the timer to expire for another
9252  * tcp_keepalive_intrvl and check again.  If we have not, set a timer using
9253  * RTO << 1 and check again when it expires.  Keep exponentially increasing
9254  * the timeout if we have not heard from the other side.  If for more than
9255  * (tcp_ka_interval + tcp_ka_abort_thres) we have not heard anything,
9256  * kill the connection unless the keepalive abort threshold is 0.  In
9257  * that case, we will probe "forever."
9258  */
9259 static void
9260 tcp_keepalive_killer(void *arg)
9261 {
9262 	mblk_t	*mp;
9263 	conn_t	*connp = (conn_t *)arg;
9264 	tcp_t  	*tcp = connp->conn_tcp;
9265 	int32_t	firetime;
9266 	int32_t	idletime;
9267 	int32_t	ka_intrvl;
9268 	tcp_stack_t	*tcps = tcp->tcp_tcps;
9269 
9270 	tcp->tcp_ka_tid = 0;
9271 
9272 	if (tcp->tcp_fused)
9273 		return;
9274 
9275 	BUMP_MIB(&tcps->tcps_mib, tcpTimKeepalive);
9276 	ka_intrvl = tcp->tcp_ka_interval;
9277 
9278 	/*
9279 	 * Keepalive probe should only be sent if the application has not
9280 	 * done a close on the connection.
9281 	 */
9282 	if (tcp->tcp_state > TCPS_CLOSE_WAIT) {
9283 		return;
9284 	}
9285 	/* Timer fired too early, restart it. */
9286 	if (tcp->tcp_state < TCPS_ESTABLISHED) {
9287 		tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
9288 		    MSEC_TO_TICK(ka_intrvl));
9289 		return;
9290 	}
9291 
9292 	idletime = TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time);
9293 	/*
9294 	 * If we have not heard from the other side for a long
9295 	 * time, kill the connection unless the keepalive abort
9296 	 * threshold is 0.  In that case, we will probe "forever."
9297 	 */
9298 	if (tcp->tcp_ka_abort_thres != 0 &&
9299 	    idletime > (ka_intrvl + tcp->tcp_ka_abort_thres)) {
9300 		BUMP_MIB(&tcps->tcps_mib, tcpTimKeepaliveDrop);
9301 		(void) tcp_clean_death(tcp, tcp->tcp_client_errno ?
9302 		    tcp->tcp_client_errno : ETIMEDOUT, 11);
9303 		return;
9304 	}
9305 
9306 	if (tcp->tcp_snxt == tcp->tcp_suna &&
9307 	    idletime >= ka_intrvl) {
9308 		/* Fake resend of last ACKed byte. */
9309 		mblk_t	*mp1 = allocb(1, BPRI_LO);
9310 
9311 		if (mp1 != NULL) {
9312 			*mp1->b_wptr++ = '\0';
9313 			mp = tcp_xmit_mp(tcp, mp1, 1, NULL, NULL,
9314 			    tcp->tcp_suna - 1, B_FALSE, NULL, B_TRUE);
9315 			freeb(mp1);
9316 			/*
9317 			 * if allocation failed, fall through to start the
9318 			 * timer back.
9319 			 */
9320 			if (mp != NULL) {
9321 				tcp_send_data(tcp, tcp->tcp_wq, mp);
9322 				BUMP_MIB(&tcps->tcps_mib,
9323 				    tcpTimKeepaliveProbe);
9324 				if (tcp->tcp_ka_last_intrvl != 0) {
9325 					int max;
9326 					/*
9327 					 * We should probe again at least
9328 					 * in ka_intrvl, but not more than
9329 					 * tcp_rexmit_interval_max.
9330 					 */
9331 					max = tcps->tcps_rexmit_interval_max;
9332 					firetime = MIN(ka_intrvl - 1,
9333 					    tcp->tcp_ka_last_intrvl << 1);
9334 					if (firetime > max)
9335 						firetime = max;
9336 				} else {
9337 					firetime = tcp->tcp_rto;
9338 				}
9339 				tcp->tcp_ka_tid = TCP_TIMER(tcp,
9340 				    tcp_keepalive_killer,
9341 				    MSEC_TO_TICK(firetime));
9342 				tcp->tcp_ka_last_intrvl = firetime;
9343 				return;
9344 			}
9345 		}
9346 	} else {
9347 		tcp->tcp_ka_last_intrvl = 0;
9348 	}
9349 
9350 	/* firetime can be negative if (mp1 == NULL || mp == NULL) */
9351 	if ((firetime = ka_intrvl - idletime) < 0) {
9352 		firetime = ka_intrvl;
9353 	}
9354 	tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
9355 	    MSEC_TO_TICK(firetime));
9356 }
9357 
9358 int
9359 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk)
9360 {
9361 	queue_t	*q = tcp->tcp_rq;
9362 	int32_t	mss = tcp->tcp_mss;
9363 	int	maxpsz;
9364 
9365 	if (TCP_IS_DETACHED(tcp))
9366 		return (mss);
9367 
9368 	if (tcp->tcp_fused) {
9369 		maxpsz = tcp_fuse_maxpsz_set(tcp);
9370 		mss = INFPSZ;
9371 	} else if (tcp->tcp_mdt || tcp->tcp_lso || tcp->tcp_maxpsz == 0) {
9372 		/*
9373 		 * Set the sd_qn_maxpsz according to the socket send buffer
9374 		 * size, and sd_maxblk to INFPSZ (-1).  This will essentially
9375 		 * instruct the stream head to copyin user data into contiguous
9376 		 * kernel-allocated buffers without breaking it up into smaller
9377 		 * chunks.  We round up the buffer size to the nearest SMSS.
9378 		 */
9379 		maxpsz = MSS_ROUNDUP(tcp->tcp_xmit_hiwater, mss);
9380 		if (tcp->tcp_kssl_ctx == NULL)
9381 			mss = INFPSZ;
9382 		else
9383 			mss = SSL3_MAX_RECORD_LEN;
9384 	} else {
9385 		/*
9386 		 * Set sd_qn_maxpsz to approx half the (receivers) buffer
9387 		 * (and a multiple of the mss).  This instructs the stream
9388 		 * head to break down larger than SMSS writes into SMSS-
9389 		 * size mblks, up to tcp_maxpsz_multiplier mblks at a time.
9390 		 */
9391 		maxpsz = tcp->tcp_maxpsz * mss;
9392 		if (maxpsz > tcp->tcp_xmit_hiwater/2) {
9393 			maxpsz = tcp->tcp_xmit_hiwater/2;
9394 			/* Round up to nearest mss */
9395 			maxpsz = MSS_ROUNDUP(maxpsz, mss);
9396 		}
9397 	}
9398 	(void) setmaxps(q, maxpsz);
9399 	tcp->tcp_wq->q_maxpsz = maxpsz;
9400 
9401 	if (set_maxblk)
9402 		(void) mi_set_sth_maxblk(q, mss);
9403 
9404 	return (mss);
9405 }
9406 
9407 /*
9408  * Extract option values from a tcp header.  We put any found values into the
9409  * tcpopt struct and return a bitmask saying which options were found.
9410  */
9411 static int
9412 tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt)
9413 {
9414 	uchar_t		*endp;
9415 	int		len;
9416 	uint32_t	mss;
9417 	uchar_t		*up = (uchar_t *)tcph;
9418 	int		found = 0;
9419 	int32_t		sack_len;
9420 	tcp_seq		sack_begin, sack_end;
9421 	tcp_t		*tcp;
9422 
9423 	endp = up + TCP_HDR_LENGTH(tcph);
9424 	up += TCP_MIN_HEADER_LENGTH;
9425 	while (up < endp) {
9426 		len = endp - up;
9427 		switch (*up) {
9428 		case TCPOPT_EOL:
9429 			break;
9430 
9431 		case TCPOPT_NOP:
9432 			up++;
9433 			continue;
9434 
9435 		case TCPOPT_MAXSEG:
9436 			if (len < TCPOPT_MAXSEG_LEN ||
9437 			    up[1] != TCPOPT_MAXSEG_LEN)
9438 				break;
9439 
9440 			mss = BE16_TO_U16(up+2);
9441 			/* Caller must handle tcp_mss_min and tcp_mss_max_* */
9442 			tcpopt->tcp_opt_mss = mss;
9443 			found |= TCP_OPT_MSS_PRESENT;
9444 
9445 			up += TCPOPT_MAXSEG_LEN;
9446 			continue;
9447 
9448 		case TCPOPT_WSCALE:
9449 			if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN)
9450 				break;
9451 
9452 			if (up[2] > TCP_MAX_WINSHIFT)
9453 				tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT;
9454 			else
9455 				tcpopt->tcp_opt_wscale = up[2];
9456 			found |= TCP_OPT_WSCALE_PRESENT;
9457 
9458 			up += TCPOPT_WS_LEN;
9459 			continue;
9460 
9461 		case TCPOPT_SACK_PERMITTED:
9462 			if (len < TCPOPT_SACK_OK_LEN ||
9463 			    up[1] != TCPOPT_SACK_OK_LEN)
9464 				break;
9465 			found |= TCP_OPT_SACK_OK_PRESENT;
9466 			up += TCPOPT_SACK_OK_LEN;
9467 			continue;
9468 
9469 		case TCPOPT_SACK:
9470 			if (len <= 2 || up[1] <= 2 || len < up[1])
9471 				break;
9472 
9473 			/* If TCP is not interested in SACK blks... */
9474 			if ((tcp = tcpopt->tcp) == NULL) {
9475 				up += up[1];
9476 				continue;
9477 			}
9478 			sack_len = up[1] - TCPOPT_HEADER_LEN;
9479 			up += TCPOPT_HEADER_LEN;
9480 
9481 			/*
9482 			 * If the list is empty, allocate one and assume
9483 			 * nothing is sack'ed.
9484 			 */
9485 			ASSERT(tcp->tcp_sack_info != NULL);
9486 			if (tcp->tcp_notsack_list == NULL) {
9487 				tcp_notsack_update(&(tcp->tcp_notsack_list),
9488 				    tcp->tcp_suna, tcp->tcp_snxt,
9489 				    &(tcp->tcp_num_notsack_blk),
9490 				    &(tcp->tcp_cnt_notsack_list));
9491 
9492 				/*
9493 				 * Make sure tcp_notsack_list is not NULL.
9494 				 * This happens when kmem_alloc(KM_NOSLEEP)
9495 				 * returns NULL.
9496 				 */
9497 				if (tcp->tcp_notsack_list == NULL) {
9498 					up += sack_len;
9499 					continue;
9500 				}
9501 				tcp->tcp_fack = tcp->tcp_suna;
9502 			}
9503 
9504 			while (sack_len > 0) {
9505 				if (up + 8 > endp) {
9506 					up = endp;
9507 					break;
9508 				}
9509 				sack_begin = BE32_TO_U32(up);
9510 				up += 4;
9511 				sack_end = BE32_TO_U32(up);
9512 				up += 4;
9513 				sack_len -= 8;
9514 				/*
9515 				 * Bounds checking.  Make sure the SACK
9516 				 * info is within tcp_suna and tcp_snxt.
9517 				 * If this SACK blk is out of bound, ignore
9518 				 * it but continue to parse the following
9519 				 * blks.
9520 				 */
9521 				if (SEQ_LEQ(sack_end, sack_begin) ||
9522 				    SEQ_LT(sack_begin, tcp->tcp_suna) ||
9523 				    SEQ_GT(sack_end, tcp->tcp_snxt)) {
9524 					continue;
9525 				}
9526 				tcp_notsack_insert(&(tcp->tcp_notsack_list),
9527 				    sack_begin, sack_end,
9528 				    &(tcp->tcp_num_notsack_blk),
9529 				    &(tcp->tcp_cnt_notsack_list));
9530 				if (SEQ_GT(sack_end, tcp->tcp_fack)) {
9531 					tcp->tcp_fack = sack_end;
9532 				}
9533 			}
9534 			found |= TCP_OPT_SACK_PRESENT;
9535 			continue;
9536 
9537 		case TCPOPT_TSTAMP:
9538 			if (len < TCPOPT_TSTAMP_LEN ||
9539 			    up[1] != TCPOPT_TSTAMP_LEN)
9540 				break;
9541 
9542 			tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2);
9543 			tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6);
9544 
9545 			found |= TCP_OPT_TSTAMP_PRESENT;
9546 
9547 			up += TCPOPT_TSTAMP_LEN;
9548 			continue;
9549 
9550 		default:
9551 			if (len <= 1 || len < (int)up[1] || up[1] == 0)
9552 				break;
9553 			up += up[1];
9554 			continue;
9555 		}
9556 		break;
9557 	}
9558 	return (found);
9559 }
9560 
9561 /*
9562  * Set the mss associated with a particular tcp based on its current value,
9563  * and a new one passed in. Observe minimums and maximums, and reset
9564  * other state variables that we want to view as multiples of mss.
9565  *
9566  * This function is called mainly because values like tcp_mss, tcp_cwnd,
9567  * highwater marks etc. need to be initialized or adjusted.
9568  * 1) From tcp_process_options() when the other side's SYN/SYN-ACK
9569  *    packet arrives.
9570  * 2) We need to set a new MSS when ICMP_FRAGMENTATION_NEEDED or
9571  *    ICMP6_PACKET_TOO_BIG arrives.
9572  * 3) From tcp_paws_check() if the other side stops sending the timestamp,
9573  *    to increase the MSS to use the extra bytes available.
9574  *
9575  * Callers except tcp_paws_check() ensure that they only reduce mss.
9576  */
9577 static void
9578 tcp_mss_set(tcp_t *tcp, uint32_t mss, boolean_t do_ss)
9579 {
9580 	uint32_t	mss_max;
9581 	tcp_stack_t	*tcps = tcp->tcp_tcps;
9582 
9583 	if (tcp->tcp_ipversion == IPV4_VERSION)
9584 		mss_max = tcps->tcps_mss_max_ipv4;
9585 	else
9586 		mss_max = tcps->tcps_mss_max_ipv6;
9587 
9588 	if (mss < tcps->tcps_mss_min)
9589 		mss = tcps->tcps_mss_min;
9590 	if (mss > mss_max)
9591 		mss = mss_max;
9592 	/*
9593 	 * Unless naglim has been set by our client to
9594 	 * a non-mss value, force naglim to track mss.
9595 	 * This can help to aggregate small writes.
9596 	 */
9597 	if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim)
9598 		tcp->tcp_naglim = mss;
9599 	/*
9600 	 * TCP should be able to buffer at least 4 MSS data for obvious
9601 	 * performance reason.
9602 	 */
9603 	if ((mss << 2) > tcp->tcp_xmit_hiwater)
9604 		tcp->tcp_xmit_hiwater = mss << 2;
9605 
9606 	if (do_ss) {
9607 		/*
9608 		 * Either the tcp_cwnd is as yet uninitialized, or mss is
9609 		 * changing due to a reduction in MTU, presumably as a
9610 		 * result of a new path component, reset cwnd to its
9611 		 * "initial" value, as a multiple of the new mss.
9612 		 */
9613 		SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_initial);
9614 	} else {
9615 		/*
9616 		 * Called by tcp_paws_check(), the mss increased
9617 		 * marginally to allow use of space previously taken
9618 		 * by the timestamp option. It would be inappropriate
9619 		 * to apply slow start or tcp_init_cwnd values to
9620 		 * tcp_cwnd, simply adjust to a multiple of the new mss.
9621 		 */
9622 		tcp->tcp_cwnd = (tcp->tcp_cwnd / tcp->tcp_mss) * mss;
9623 		tcp->tcp_cwnd_cnt = 0;
9624 	}
9625 	tcp->tcp_mss = mss;
9626 	(void) tcp_maxpsz_set(tcp, B_TRUE);
9627 }
9628 
9629 /* For /dev/tcp aka AF_INET open */
9630 static int
9631 tcp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
9632 {
9633 	return (tcp_open(q, devp, flag, sflag, credp, B_FALSE));
9634 }
9635 
9636 /* For /dev/tcp6 aka AF_INET6 open */
9637 static int
9638 tcp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
9639 {
9640 	return (tcp_open(q, devp, flag, sflag, credp, B_TRUE));
9641 }
9642 
9643 static int
9644 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp,
9645     boolean_t isv6)
9646 {
9647 	tcp_t		*tcp = NULL;
9648 	conn_t		*connp;
9649 	int		err;
9650 	vmem_t		*minor_arena = NULL;
9651 	dev_t		conn_dev;
9652 	zoneid_t	zoneid;
9653 	tcp_stack_t	*tcps = NULL;
9654 
9655 	if (q->q_ptr != NULL)
9656 		return (0);
9657 
9658 	if (sflag == MODOPEN)
9659 		return (EINVAL);
9660 
9661 	if (!(flag & SO_ACCEPTOR)) {
9662 		/*
9663 		 * Special case for install: miniroot needs to be able to
9664 		 * access files via NFS as though it were always in the
9665 		 * global zone.
9666 		 */
9667 		if (credp == kcred && nfs_global_client_only != 0) {
9668 			zoneid = GLOBAL_ZONEID;
9669 			tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)->
9670 			    netstack_tcp;
9671 			ASSERT(tcps != NULL);
9672 		} else {
9673 			netstack_t *ns;
9674 
9675 			ns = netstack_find_by_cred(credp);
9676 			ASSERT(ns != NULL);
9677 			tcps = ns->netstack_tcp;
9678 			ASSERT(tcps != NULL);
9679 
9680 			/*
9681 			 * For exclusive stacks we set the zoneid to zero
9682 			 * to make TCP operate as if in the global zone.
9683 			 */
9684 			if (tcps->tcps_netstack->netstack_stackid !=
9685 			    GLOBAL_NETSTACKID)
9686 				zoneid = GLOBAL_ZONEID;
9687 			else
9688 				zoneid = crgetzoneid(credp);
9689 		}
9690 		/*
9691 		 * For stackid zero this is done from strplumb.c, but
9692 		 * non-zero stackids are handled here.
9693 		 */
9694 		if (tcps->tcps_g_q == NULL &&
9695 		    tcps->tcps_netstack->netstack_stackid !=
9696 		    GLOBAL_NETSTACKID) {
9697 			tcp_g_q_setup(tcps);
9698 		}
9699 	}
9700 
9701 	if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) &&
9702 	    ((conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) {
9703 		minor_arena = ip_minor_arena_la;
9704 	} else {
9705 		/*
9706 		 * Either minor numbers in the large arena were exhausted
9707 		 * or a non socket application is doing the open.
9708 		 * Try to allocate from the small arena.
9709 		 */
9710 		if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0) {
9711 			if (tcps != NULL)
9712 				netstack_rele(tcps->tcps_netstack);
9713 			return (EBUSY);
9714 		}
9715 		minor_arena = ip_minor_arena_sa;
9716 	}
9717 	ASSERT(minor_arena != NULL);
9718 
9719 	*devp = makedevice(getemajor(*devp), (minor_t)conn_dev);
9720 
9721 	if (flag & SO_ACCEPTOR) {
9722 		/* No netstack_find_by_cred, hence no netstack_rele needed */
9723 		ASSERT(tcps == NULL);
9724 		q->q_qinfo = &tcp_acceptor_rinit;
9725 		/*
9726 		 * the conn_dev and minor_arena will be subsequently used by
9727 		 * tcp_wput_accept() and tcpclose_accept() to figure out the
9728 		 * minor device number for this connection from the q_ptr.
9729 		 */
9730 		RD(q)->q_ptr = (void *)conn_dev;
9731 		WR(q)->q_qinfo = &tcp_acceptor_winit;
9732 		WR(q)->q_ptr = (void *)minor_arena;
9733 		qprocson(q);
9734 		return (0);
9735 	}
9736 
9737 	connp = (conn_t *)tcp_get_conn(IP_SQUEUE_GET(lbolt), tcps);
9738 	/*
9739 	 * Both tcp_get_conn and netstack_find_by_cred incremented refcnt,
9740 	 * so we drop it by one.
9741 	 */
9742 	netstack_rele(tcps->tcps_netstack);
9743 	if (connp == NULL) {
9744 		inet_minor_free(minor_arena, conn_dev);
9745 		q->q_ptr = NULL;
9746 		return (ENOSR);
9747 	}
9748 	connp->conn_sqp = IP_SQUEUE_GET(lbolt);
9749 	tcp = connp->conn_tcp;
9750 
9751 	q->q_ptr = WR(q)->q_ptr = connp;
9752 	if (isv6) {
9753 		connp->conn_flags |= (IPCL_TCP6|IPCL_ISV6);
9754 		connp->conn_send = ip_output_v6;
9755 		connp->conn_af_isv6 = B_TRUE;
9756 		connp->conn_pkt_isv6 = B_TRUE;
9757 		connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT;
9758 		tcp->tcp_ipversion = IPV6_VERSION;
9759 		tcp->tcp_family = AF_INET6;
9760 		tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
9761 	} else {
9762 		connp->conn_flags |= IPCL_TCP4;
9763 		connp->conn_send = ip_output;
9764 		connp->conn_af_isv6 = B_FALSE;
9765 		connp->conn_pkt_isv6 = B_FALSE;
9766 		tcp->tcp_ipversion = IPV4_VERSION;
9767 		tcp->tcp_family = AF_INET;
9768 		tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
9769 	}
9770 
9771 	/*
9772 	 * TCP keeps a copy of cred for cache locality reasons but
9773 	 * we put a reference only once. If connp->conn_cred
9774 	 * becomes invalid, tcp_cred should also be set to NULL.
9775 	 */
9776 	tcp->tcp_cred = connp->conn_cred = credp;
9777 	crhold(connp->conn_cred);
9778 	tcp->tcp_cpid = curproc->p_pid;
9779 	tcp->tcp_open_time = lbolt64;
9780 	connp->conn_zoneid = zoneid;
9781 	connp->conn_mlp_type = mlptSingle;
9782 	connp->conn_ulp_labeled = !is_system_labeled();
9783 	ASSERT(connp->conn_netstack == tcps->tcps_netstack);
9784 	ASSERT(tcp->tcp_tcps == tcps);
9785 
9786 	/*
9787 	 * If the caller has the process-wide flag set, then default to MAC
9788 	 * exempt mode.  This allows read-down to unlabeled hosts.
9789 	 */
9790 	if (getpflags(NET_MAC_AWARE, credp) != 0)
9791 		connp->conn_mac_exempt = B_TRUE;
9792 
9793 	connp->conn_dev = conn_dev;
9794 	connp->conn_minor_arena = minor_arena;
9795 
9796 	ASSERT(q->q_qinfo == &tcp_rinitv4 || q->q_qinfo == &tcp_rinitv6);
9797 	ASSERT(WR(q)->q_qinfo == &tcp_winit);
9798 
9799 	if (flag & SO_SOCKSTR) {
9800 		/*
9801 		 * No need to insert a socket in tcp acceptor hash.
9802 		 * If it was a socket acceptor stream, we dealt with
9803 		 * it above. A socket listener can never accept a
9804 		 * connection and doesn't need acceptor_id.
9805 		 */
9806 		connp->conn_flags |= IPCL_SOCKET;
9807 		tcp->tcp_issocket = 1;
9808 		WR(q)->q_qinfo = &tcp_sock_winit;
9809 	} else {
9810 #ifdef	_ILP32
9811 		tcp->tcp_acceptor_id = (t_uscalar_t)RD(q);
9812 #else
9813 		tcp->tcp_acceptor_id = conn_dev;
9814 #endif	/* _ILP32 */
9815 		tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp);
9816 	}
9817 
9818 	err = tcp_init(tcp, q);
9819 	if (err != 0) {
9820 		inet_minor_free(connp->conn_minor_arena, connp->conn_dev);
9821 		tcp_acceptor_hash_remove(tcp);
9822 		CONN_DEC_REF(connp);
9823 		q->q_ptr = WR(q)->q_ptr = NULL;
9824 		return (err);
9825 	}
9826 
9827 	RD(q)->q_hiwat = tcps->tcps_recv_hiwat;
9828 	tcp->tcp_rwnd = tcps->tcps_recv_hiwat;
9829 
9830 	/* Non-zero default values */
9831 	connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
9832 	/*
9833 	 * Put the ref for TCP. Ref for IP was already put
9834 	 * by ipcl_conn_create. Also Make the conn_t globally
9835 	 * visible to walkers
9836 	 */
9837 	mutex_enter(&connp->conn_lock);
9838 	CONN_INC_REF_LOCKED(connp);
9839 	ASSERT(connp->conn_ref == 2);
9840 	connp->conn_state_flags &= ~CONN_INCIPIENT;
9841 	mutex_exit(&connp->conn_lock);
9842 
9843 	qprocson(q);
9844 	return (0);
9845 }
9846 
9847 /*
9848  * Some TCP options can be "set" by requesting them in the option
9849  * buffer. This is needed for XTI feature test though we do not
9850  * allow it in general. We interpret that this mechanism is more
9851  * applicable to OSI protocols and need not be allowed in general.
9852  * This routine filters out options for which it is not allowed (most)
9853  * and lets through those (few) for which it is. [ The XTI interface
9854  * test suite specifics will imply that any XTI_GENERIC level XTI_* if
9855  * ever implemented will have to be allowed here ].
9856  */
9857 static boolean_t
9858 tcp_allow_connopt_set(int level, int name)
9859 {
9860 
9861 	switch (level) {
9862 	case IPPROTO_TCP:
9863 		switch (name) {
9864 		case TCP_NODELAY:
9865 			return (B_TRUE);
9866 		default:
9867 			return (B_FALSE);
9868 		}
9869 		/*NOTREACHED*/
9870 	default:
9871 		return (B_FALSE);
9872 	}
9873 	/*NOTREACHED*/
9874 }
9875 
9876 /*
9877  * This routine gets default values of certain options whose default
9878  * values are maintained by protocol specific code
9879  */
9880 /* ARGSUSED */
9881 int
9882 tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr)
9883 {
9884 	int32_t	*i1 = (int32_t *)ptr;
9885 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
9886 
9887 	switch (level) {
9888 	case IPPROTO_TCP:
9889 		switch (name) {
9890 		case TCP_NOTIFY_THRESHOLD:
9891 			*i1 = tcps->tcps_ip_notify_interval;
9892 			break;
9893 		case TCP_ABORT_THRESHOLD:
9894 			*i1 = tcps->tcps_ip_abort_interval;
9895 			break;
9896 		case TCP_CONN_NOTIFY_THRESHOLD:
9897 			*i1 = tcps->tcps_ip_notify_cinterval;
9898 			break;
9899 		case TCP_CONN_ABORT_THRESHOLD:
9900 			*i1 = tcps->tcps_ip_abort_cinterval;
9901 			break;
9902 		default:
9903 			return (-1);
9904 		}
9905 		break;
9906 	case IPPROTO_IP:
9907 		switch (name) {
9908 		case IP_TTL:
9909 			*i1 = tcps->tcps_ipv4_ttl;
9910 			break;
9911 		default:
9912 			return (-1);
9913 		}
9914 		break;
9915 	case IPPROTO_IPV6:
9916 		switch (name) {
9917 		case IPV6_UNICAST_HOPS:
9918 			*i1 = tcps->tcps_ipv6_hoplimit;
9919 			break;
9920 		default:
9921 			return (-1);
9922 		}
9923 		break;
9924 	default:
9925 		return (-1);
9926 	}
9927 	return (sizeof (int));
9928 }
9929 
9930 
9931 /*
9932  * TCP routine to get the values of options.
9933  */
9934 int
9935 tcp_opt_get(queue_t *q, int level, int	name, uchar_t *ptr)
9936 {
9937 	int		*i1 = (int *)ptr;
9938 	conn_t		*connp = Q_TO_CONN(q);
9939 	tcp_t		*tcp = connp->conn_tcp;
9940 	ip6_pkt_t	*ipp = &tcp->tcp_sticky_ipp;
9941 
9942 	switch (level) {
9943 	case SOL_SOCKET:
9944 		switch (name) {
9945 		case SO_LINGER:	{
9946 			struct linger *lgr = (struct linger *)ptr;
9947 
9948 			lgr->l_onoff = tcp->tcp_linger ? SO_LINGER : 0;
9949 			lgr->l_linger = tcp->tcp_lingertime;
9950 			}
9951 			return (sizeof (struct linger));
9952 		case SO_DEBUG:
9953 			*i1 = tcp->tcp_debug ? SO_DEBUG : 0;
9954 			break;
9955 		case SO_KEEPALIVE:
9956 			*i1 = tcp->tcp_ka_enabled ? SO_KEEPALIVE : 0;
9957 			break;
9958 		case SO_DONTROUTE:
9959 			*i1 = tcp->tcp_dontroute ? SO_DONTROUTE : 0;
9960 			break;
9961 		case SO_USELOOPBACK:
9962 			*i1 = tcp->tcp_useloopback ? SO_USELOOPBACK : 0;
9963 			break;
9964 		case SO_BROADCAST:
9965 			*i1 = tcp->tcp_broadcast ? SO_BROADCAST : 0;
9966 			break;
9967 		case SO_REUSEADDR:
9968 			*i1 = tcp->tcp_reuseaddr ? SO_REUSEADDR : 0;
9969 			break;
9970 		case SO_OOBINLINE:
9971 			*i1 = tcp->tcp_oobinline ? SO_OOBINLINE : 0;
9972 			break;
9973 		case SO_DGRAM_ERRIND:
9974 			*i1 = tcp->tcp_dgram_errind ? SO_DGRAM_ERRIND : 0;
9975 			break;
9976 		case SO_TYPE:
9977 			*i1 = SOCK_STREAM;
9978 			break;
9979 		case SO_SNDBUF:
9980 			*i1 = tcp->tcp_xmit_hiwater;
9981 			break;
9982 		case SO_RCVBUF:
9983 			*i1 = RD(q)->q_hiwat;
9984 			break;
9985 		case SO_SND_COPYAVOID:
9986 			*i1 = tcp->tcp_snd_zcopy_on ?
9987 			    SO_SND_COPYAVOID : 0;
9988 			break;
9989 		case SO_ALLZONES:
9990 			*i1 = connp->conn_allzones ? 1 : 0;
9991 			break;
9992 		case SO_ANON_MLP:
9993 			*i1 = connp->conn_anon_mlp;
9994 			break;
9995 		case SO_MAC_EXEMPT:
9996 			*i1 = connp->conn_mac_exempt;
9997 			break;
9998 		case SO_EXCLBIND:
9999 			*i1 = tcp->tcp_exclbind ? SO_EXCLBIND : 0;
10000 			break;
10001 		case SO_PROTOTYPE:
10002 			*i1 = IPPROTO_TCP;
10003 			break;
10004 		case SO_DOMAIN:
10005 			*i1 = tcp->tcp_family;
10006 			break;
10007 		default:
10008 			return (-1);
10009 		}
10010 		break;
10011 	case IPPROTO_TCP:
10012 		switch (name) {
10013 		case TCP_NODELAY:
10014 			*i1 = (tcp->tcp_naglim == 1) ? TCP_NODELAY : 0;
10015 			break;
10016 		case TCP_MAXSEG:
10017 			*i1 = tcp->tcp_mss;
10018 			break;
10019 		case TCP_NOTIFY_THRESHOLD:
10020 			*i1 = (int)tcp->tcp_first_timer_threshold;
10021 			break;
10022 		case TCP_ABORT_THRESHOLD:
10023 			*i1 = tcp->tcp_second_timer_threshold;
10024 			break;
10025 		case TCP_CONN_NOTIFY_THRESHOLD:
10026 			*i1 = tcp->tcp_first_ctimer_threshold;
10027 			break;
10028 		case TCP_CONN_ABORT_THRESHOLD:
10029 			*i1 = tcp->tcp_second_ctimer_threshold;
10030 			break;
10031 		case TCP_RECVDSTADDR:
10032 			*i1 = tcp->tcp_recvdstaddr;
10033 			break;
10034 		case TCP_ANONPRIVBIND:
10035 			*i1 = tcp->tcp_anon_priv_bind;
10036 			break;
10037 		case TCP_EXCLBIND:
10038 			*i1 = tcp->tcp_exclbind ? TCP_EXCLBIND : 0;
10039 			break;
10040 		case TCP_INIT_CWND:
10041 			*i1 = tcp->tcp_init_cwnd;
10042 			break;
10043 		case TCP_KEEPALIVE_THRESHOLD:
10044 			*i1 = tcp->tcp_ka_interval;
10045 			break;
10046 		case TCP_KEEPALIVE_ABORT_THRESHOLD:
10047 			*i1 = tcp->tcp_ka_abort_thres;
10048 			break;
10049 		case TCP_CORK:
10050 			*i1 = tcp->tcp_cork;
10051 			break;
10052 		default:
10053 			return (-1);
10054 		}
10055 		break;
10056 	case IPPROTO_IP:
10057 		if (tcp->tcp_family != AF_INET)
10058 			return (-1);
10059 		switch (name) {
10060 		case IP_OPTIONS:
10061 		case T_IP_OPTIONS: {
10062 			/*
10063 			 * This is compatible with BSD in that in only return
10064 			 * the reverse source route with the final destination
10065 			 * as the last entry. The first 4 bytes of the option
10066 			 * will contain the final destination.
10067 			 */
10068 			int	opt_len;
10069 
10070 			opt_len = (char *)tcp->tcp_tcph - (char *)tcp->tcp_ipha;
10071 			opt_len -= tcp->tcp_label_len + IP_SIMPLE_HDR_LENGTH;
10072 			ASSERT(opt_len >= 0);
10073 			/* Caller ensures enough space */
10074 			if (opt_len > 0) {
10075 				/*
10076 				 * TODO: Do we have to handle getsockopt on an
10077 				 * initiator as well?
10078 				 */
10079 				return (ip_opt_get_user(tcp->tcp_ipha, ptr));
10080 			}
10081 			return (0);
10082 			}
10083 		case IP_TOS:
10084 		case T_IP_TOS:
10085 			*i1 = (int)tcp->tcp_ipha->ipha_type_of_service;
10086 			break;
10087 		case IP_TTL:
10088 			*i1 = (int)tcp->tcp_ipha->ipha_ttl;
10089 			break;
10090 		case IP_NEXTHOP:
10091 			/* Handled at IP level */
10092 			return (-EINVAL);
10093 		default:
10094 			return (-1);
10095 		}
10096 		break;
10097 	case IPPROTO_IPV6:
10098 		/*
10099 		 * IPPROTO_IPV6 options are only supported for sockets
10100 		 * that are using IPv6 on the wire.
10101 		 */
10102 		if (tcp->tcp_ipversion != IPV6_VERSION) {
10103 			return (-1);
10104 		}
10105 		switch (name) {
10106 		case IPV6_UNICAST_HOPS:
10107 			*i1 = (unsigned int) tcp->tcp_ip6h->ip6_hops;
10108 			break;	/* goto sizeof (int) option return */
10109 		case IPV6_BOUND_IF:
10110 			/* Zero if not set */
10111 			*i1 = tcp->tcp_bound_if;
10112 			break;	/* goto sizeof (int) option return */
10113 		case IPV6_RECVPKTINFO:
10114 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)
10115 				*i1 = 1;
10116 			else
10117 				*i1 = 0;
10118 			break;	/* goto sizeof (int) option return */
10119 		case IPV6_RECVTCLASS:
10120 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)
10121 				*i1 = 1;
10122 			else
10123 				*i1 = 0;
10124 			break;	/* goto sizeof (int) option return */
10125 		case IPV6_RECVHOPLIMIT:
10126 			if (tcp->tcp_ipv6_recvancillary &
10127 			    TCP_IPV6_RECVHOPLIMIT)
10128 				*i1 = 1;
10129 			else
10130 				*i1 = 0;
10131 			break;	/* goto sizeof (int) option return */
10132 		case IPV6_RECVHOPOPTS:
10133 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS)
10134 				*i1 = 1;
10135 			else
10136 				*i1 = 0;
10137 			break;	/* goto sizeof (int) option return */
10138 		case IPV6_RECVDSTOPTS:
10139 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVDSTOPTS)
10140 				*i1 = 1;
10141 			else
10142 				*i1 = 0;
10143 			break;	/* goto sizeof (int) option return */
10144 		case _OLD_IPV6_RECVDSTOPTS:
10145 			if (tcp->tcp_ipv6_recvancillary &
10146 			    TCP_OLD_IPV6_RECVDSTOPTS)
10147 				*i1 = 1;
10148 			else
10149 				*i1 = 0;
10150 			break;	/* goto sizeof (int) option return */
10151 		case IPV6_RECVRTHDR:
10152 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR)
10153 				*i1 = 1;
10154 			else
10155 				*i1 = 0;
10156 			break;	/* goto sizeof (int) option return */
10157 		case IPV6_RECVRTHDRDSTOPTS:
10158 			if (tcp->tcp_ipv6_recvancillary &
10159 			    TCP_IPV6_RECVRTDSTOPTS)
10160 				*i1 = 1;
10161 			else
10162 				*i1 = 0;
10163 			break;	/* goto sizeof (int) option return */
10164 		case IPV6_PKTINFO: {
10165 			/* XXX assumes that caller has room for max size! */
10166 			struct in6_pktinfo *pkti;
10167 
10168 			pkti = (struct in6_pktinfo *)ptr;
10169 			if (ipp->ipp_fields & IPPF_IFINDEX)
10170 				pkti->ipi6_ifindex = ipp->ipp_ifindex;
10171 			else
10172 				pkti->ipi6_ifindex = 0;
10173 			if (ipp->ipp_fields & IPPF_ADDR)
10174 				pkti->ipi6_addr = ipp->ipp_addr;
10175 			else
10176 				pkti->ipi6_addr = ipv6_all_zeros;
10177 			return (sizeof (struct in6_pktinfo));
10178 		}
10179 		case IPV6_TCLASS:
10180 			if (ipp->ipp_fields & IPPF_TCLASS)
10181 				*i1 = ipp->ipp_tclass;
10182 			else
10183 				*i1 = IPV6_FLOW_TCLASS(
10184 				    IPV6_DEFAULT_VERS_AND_FLOW);
10185 			break;	/* goto sizeof (int) option return */
10186 		case IPV6_NEXTHOP: {
10187 			sin6_t *sin6 = (sin6_t *)ptr;
10188 
10189 			if (!(ipp->ipp_fields & IPPF_NEXTHOP))
10190 				return (0);
10191 			*sin6 = sin6_null;
10192 			sin6->sin6_family = AF_INET6;
10193 			sin6->sin6_addr = ipp->ipp_nexthop;
10194 			return (sizeof (sin6_t));
10195 		}
10196 		case IPV6_HOPOPTS:
10197 			if (!(ipp->ipp_fields & IPPF_HOPOPTS))
10198 				return (0);
10199 			if (ipp->ipp_hopoptslen <= tcp->tcp_label_len)
10200 				return (0);
10201 			bcopy((char *)ipp->ipp_hopopts + tcp->tcp_label_len,
10202 			    ptr, ipp->ipp_hopoptslen - tcp->tcp_label_len);
10203 			if (tcp->tcp_label_len > 0) {
10204 				ptr[0] = ((char *)ipp->ipp_hopopts)[0];
10205 				ptr[1] = (ipp->ipp_hopoptslen -
10206 				    tcp->tcp_label_len + 7) / 8 - 1;
10207 			}
10208 			return (ipp->ipp_hopoptslen - tcp->tcp_label_len);
10209 		case IPV6_RTHDRDSTOPTS:
10210 			if (!(ipp->ipp_fields & IPPF_RTDSTOPTS))
10211 				return (0);
10212 			bcopy(ipp->ipp_rtdstopts, ptr, ipp->ipp_rtdstoptslen);
10213 			return (ipp->ipp_rtdstoptslen);
10214 		case IPV6_RTHDR:
10215 			if (!(ipp->ipp_fields & IPPF_RTHDR))
10216 				return (0);
10217 			bcopy(ipp->ipp_rthdr, ptr, ipp->ipp_rthdrlen);
10218 			return (ipp->ipp_rthdrlen);
10219 		case IPV6_DSTOPTS:
10220 			if (!(ipp->ipp_fields & IPPF_DSTOPTS))
10221 				return (0);
10222 			bcopy(ipp->ipp_dstopts, ptr, ipp->ipp_dstoptslen);
10223 			return (ipp->ipp_dstoptslen);
10224 		case IPV6_SRC_PREFERENCES:
10225 			return (ip6_get_src_preferences(connp,
10226 			    (uint32_t *)ptr));
10227 		case IPV6_PATHMTU: {
10228 			struct ip6_mtuinfo *mtuinfo = (struct ip6_mtuinfo *)ptr;
10229 
10230 			if (tcp->tcp_state < TCPS_ESTABLISHED)
10231 				return (-1);
10232 
10233 			return (ip_fill_mtuinfo(&connp->conn_remv6,
10234 			    connp->conn_fport, mtuinfo,
10235 			    connp->conn_netstack));
10236 		}
10237 		default:
10238 			return (-1);
10239 		}
10240 		break;
10241 	default:
10242 		return (-1);
10243 	}
10244 	return (sizeof (int));
10245 }
10246 
10247 /*
10248  * We declare as 'int' rather than 'void' to satisfy pfi_t arg requirements.
10249  * Parameters are assumed to be verified by the caller.
10250  */
10251 /* ARGSUSED */
10252 int
10253 tcp_opt_set(queue_t *q, uint_t optset_context, int level, int name,
10254     uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp,
10255     void *thisdg_attrs, cred_t *cr, mblk_t *mblk)
10256 {
10257 	conn_t	*connp = Q_TO_CONN(q);
10258 	tcp_t	*tcp = connp->conn_tcp;
10259 	int	*i1 = (int *)invalp;
10260 	boolean_t onoff = (*i1 == 0) ? 0 : 1;
10261 	boolean_t checkonly;
10262 	int	reterr;
10263 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
10264 
10265 	switch (optset_context) {
10266 	case SETFN_OPTCOM_CHECKONLY:
10267 		checkonly = B_TRUE;
10268 		/*
10269 		 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ
10270 		 * inlen != 0 implies value supplied and
10271 		 * 	we have to "pretend" to set it.
10272 		 * inlen == 0 implies that there is no
10273 		 * 	value part in T_CHECK request and just validation
10274 		 * done elsewhere should be enough, we just return here.
10275 		 */
10276 		if (inlen == 0) {
10277 			*outlenp = 0;
10278 			return (0);
10279 		}
10280 		break;
10281 	case SETFN_OPTCOM_NEGOTIATE:
10282 		checkonly = B_FALSE;
10283 		break;
10284 	case SETFN_UD_NEGOTIATE: /* error on conn-oriented transports ? */
10285 	case SETFN_CONN_NEGOTIATE:
10286 		checkonly = B_FALSE;
10287 		/*
10288 		 * Negotiating local and "association-related" options
10289 		 * from other (T_CONN_REQ, T_CONN_RES,T_UNITDATA_REQ)
10290 		 * primitives is allowed by XTI, but we choose
10291 		 * to not implement this style negotiation for Internet
10292 		 * protocols (We interpret it is a must for OSI world but
10293 		 * optional for Internet protocols) for all options.
10294 		 * [ Will do only for the few options that enable test
10295 		 * suites that our XTI implementation of this feature
10296 		 * works for transports that do allow it ]
10297 		 */
10298 		if (!tcp_allow_connopt_set(level, name)) {
10299 			*outlenp = 0;
10300 			return (EINVAL);
10301 		}
10302 		break;
10303 	default:
10304 		/*
10305 		 * We should never get here
10306 		 */
10307 		*outlenp = 0;
10308 		return (EINVAL);
10309 	}
10310 
10311 	ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) ||
10312 	    (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0));
10313 
10314 	/*
10315 	 * For TCP, we should have no ancillary data sent down
10316 	 * (sendmsg isn't supported for SOCK_STREAM), so thisdg_attrs
10317 	 * has to be zero.
10318 	 */
10319 	ASSERT(thisdg_attrs == NULL);
10320 
10321 	/*
10322 	 * For fixed length options, no sanity check
10323 	 * of passed in length is done. It is assumed *_optcom_req()
10324 	 * routines do the right thing.
10325 	 */
10326 
10327 	switch (level) {
10328 	case SOL_SOCKET:
10329 		switch (name) {
10330 		case SO_LINGER: {
10331 			struct linger *lgr = (struct linger *)invalp;
10332 
10333 			if (!checkonly) {
10334 				if (lgr->l_onoff) {
10335 					tcp->tcp_linger = 1;
10336 					tcp->tcp_lingertime = lgr->l_linger;
10337 				} else {
10338 					tcp->tcp_linger = 0;
10339 					tcp->tcp_lingertime = 0;
10340 				}
10341 				/* struct copy */
10342 				*(struct linger *)outvalp = *lgr;
10343 			} else {
10344 				if (!lgr->l_onoff) {
10345 					((struct linger *)
10346 					    outvalp)->l_onoff = 0;
10347 					((struct linger *)
10348 					    outvalp)->l_linger = 0;
10349 				} else {
10350 					/* struct copy */
10351 					*(struct linger *)outvalp = *lgr;
10352 				}
10353 			}
10354 			*outlenp = sizeof (struct linger);
10355 			return (0);
10356 		}
10357 		case SO_DEBUG:
10358 			if (!checkonly)
10359 				tcp->tcp_debug = onoff;
10360 			break;
10361 		case SO_KEEPALIVE:
10362 			if (checkonly) {
10363 				/* T_CHECK case */
10364 				break;
10365 			}
10366 
10367 			if (!onoff) {
10368 				if (tcp->tcp_ka_enabled) {
10369 					if (tcp->tcp_ka_tid != 0) {
10370 						(void) TCP_TIMER_CANCEL(tcp,
10371 						    tcp->tcp_ka_tid);
10372 						tcp->tcp_ka_tid = 0;
10373 					}
10374 					tcp->tcp_ka_enabled = 0;
10375 				}
10376 				break;
10377 			}
10378 			if (!tcp->tcp_ka_enabled) {
10379 				/* Crank up the keepalive timer */
10380 				tcp->tcp_ka_last_intrvl = 0;
10381 				tcp->tcp_ka_tid = TCP_TIMER(tcp,
10382 				    tcp_keepalive_killer,
10383 				    MSEC_TO_TICK(tcp->tcp_ka_interval));
10384 				tcp->tcp_ka_enabled = 1;
10385 			}
10386 			break;
10387 		case SO_DONTROUTE:
10388 			/*
10389 			 * SO_DONTROUTE, SO_USELOOPBACK, and SO_BROADCAST are
10390 			 * only of interest to IP.  We track them here only so
10391 			 * that we can report their current value.
10392 			 */
10393 			if (!checkonly) {
10394 				tcp->tcp_dontroute = onoff;
10395 				tcp->tcp_connp->conn_dontroute = onoff;
10396 			}
10397 			break;
10398 		case SO_USELOOPBACK:
10399 			if (!checkonly) {
10400 				tcp->tcp_useloopback = onoff;
10401 				tcp->tcp_connp->conn_loopback = onoff;
10402 			}
10403 			break;
10404 		case SO_BROADCAST:
10405 			if (!checkonly) {
10406 				tcp->tcp_broadcast = onoff;
10407 				tcp->tcp_connp->conn_broadcast = onoff;
10408 			}
10409 			break;
10410 		case SO_REUSEADDR:
10411 			if (!checkonly) {
10412 				tcp->tcp_reuseaddr = onoff;
10413 				tcp->tcp_connp->conn_reuseaddr = onoff;
10414 			}
10415 			break;
10416 		case SO_OOBINLINE:
10417 			if (!checkonly)
10418 				tcp->tcp_oobinline = onoff;
10419 			break;
10420 		case SO_DGRAM_ERRIND:
10421 			if (!checkonly)
10422 				tcp->tcp_dgram_errind = onoff;
10423 			break;
10424 		case SO_SNDBUF: {
10425 			if (*i1 > tcps->tcps_max_buf) {
10426 				*outlenp = 0;
10427 				return (ENOBUFS);
10428 			}
10429 			if (checkonly)
10430 				break;
10431 
10432 			tcp->tcp_xmit_hiwater = *i1;
10433 			if (tcps->tcps_snd_lowat_fraction != 0)
10434 				tcp->tcp_xmit_lowater =
10435 				    tcp->tcp_xmit_hiwater /
10436 				    tcps->tcps_snd_lowat_fraction;
10437 			(void) tcp_maxpsz_set(tcp, B_TRUE);
10438 			/*
10439 			 * If we are flow-controlled, recheck the condition.
10440 			 * There are apps that increase SO_SNDBUF size when
10441 			 * flow-controlled (EWOULDBLOCK), and expect the flow
10442 			 * control condition to be lifted right away.
10443 			 */
10444 			mutex_enter(&tcp->tcp_non_sq_lock);
10445 			if (tcp->tcp_flow_stopped &&
10446 			    TCP_UNSENT_BYTES(tcp) < tcp->tcp_xmit_hiwater) {
10447 				tcp_clrqfull(tcp);
10448 			}
10449 			mutex_exit(&tcp->tcp_non_sq_lock);
10450 			break;
10451 		}
10452 		case SO_RCVBUF:
10453 			if (*i1 > tcps->tcps_max_buf) {
10454 				*outlenp = 0;
10455 				return (ENOBUFS);
10456 			}
10457 			/* Silently ignore zero */
10458 			if (!checkonly && *i1 != 0) {
10459 				*i1 = MSS_ROUNDUP(*i1, tcp->tcp_mss);
10460 				(void) tcp_rwnd_set(tcp, *i1);
10461 			}
10462 			/*
10463 			 * XXX should we return the rwnd here
10464 			 * and tcp_opt_get ?
10465 			 */
10466 			break;
10467 		case SO_SND_COPYAVOID:
10468 			if (!checkonly) {
10469 				/* we only allow enable at most once for now */
10470 				if (tcp->tcp_loopback ||
10471 				    (tcp->tcp_kssl_ctx != NULL) ||
10472 				    (!tcp->tcp_snd_zcopy_aware &&
10473 				    (onoff != 1 || !tcp_zcopy_check(tcp)))) {
10474 					*outlenp = 0;
10475 					return (EOPNOTSUPP);
10476 				}
10477 				tcp->tcp_snd_zcopy_aware = 1;
10478 			}
10479 			break;
10480 		case SO_ALLZONES:
10481 			/* Pass option along to IP level for handling */
10482 			return (-EINVAL);
10483 		case SO_ANON_MLP:
10484 			/* Pass option along to IP level for handling */
10485 			return (-EINVAL);
10486 		case SO_MAC_EXEMPT:
10487 			/* Pass option along to IP level for handling */
10488 			return (-EINVAL);
10489 		case SO_EXCLBIND:
10490 			if (!checkonly)
10491 				tcp->tcp_exclbind = onoff;
10492 			break;
10493 		default:
10494 			*outlenp = 0;
10495 			return (EINVAL);
10496 		}
10497 		break;
10498 	case IPPROTO_TCP:
10499 		switch (name) {
10500 		case TCP_NODELAY:
10501 			if (!checkonly)
10502 				tcp->tcp_naglim = *i1 ? 1 : tcp->tcp_mss;
10503 			break;
10504 		case TCP_NOTIFY_THRESHOLD:
10505 			if (!checkonly)
10506 				tcp->tcp_first_timer_threshold = *i1;
10507 			break;
10508 		case TCP_ABORT_THRESHOLD:
10509 			if (!checkonly)
10510 				tcp->tcp_second_timer_threshold = *i1;
10511 			break;
10512 		case TCP_CONN_NOTIFY_THRESHOLD:
10513 			if (!checkonly)
10514 				tcp->tcp_first_ctimer_threshold = *i1;
10515 			break;
10516 		case TCP_CONN_ABORT_THRESHOLD:
10517 			if (!checkonly)
10518 				tcp->tcp_second_ctimer_threshold = *i1;
10519 			break;
10520 		case TCP_RECVDSTADDR:
10521 			if (tcp->tcp_state > TCPS_LISTEN)
10522 				return (EOPNOTSUPP);
10523 			if (!checkonly)
10524 				tcp->tcp_recvdstaddr = onoff;
10525 			break;
10526 		case TCP_ANONPRIVBIND:
10527 			if ((reterr = secpolicy_net_privaddr(cr, 0,
10528 			    IPPROTO_TCP)) != 0) {
10529 				*outlenp = 0;
10530 				return (reterr);
10531 			}
10532 			if (!checkonly) {
10533 				tcp->tcp_anon_priv_bind = onoff;
10534 			}
10535 			break;
10536 		case TCP_EXCLBIND:
10537 			if (!checkonly)
10538 				tcp->tcp_exclbind = onoff;
10539 			break;	/* goto sizeof (int) option return */
10540 		case TCP_INIT_CWND: {
10541 			uint32_t init_cwnd = *((uint32_t *)invalp);
10542 
10543 			if (checkonly)
10544 				break;
10545 
10546 			/*
10547 			 * Only allow socket with network configuration
10548 			 * privilege to set the initial cwnd to be larger
10549 			 * than allowed by RFC 3390.
10550 			 */
10551 			if (init_cwnd <= MIN(4, MAX(2, 4380 / tcp->tcp_mss))) {
10552 				tcp->tcp_init_cwnd = init_cwnd;
10553 				break;
10554 			}
10555 			if ((reterr = secpolicy_ip_config(cr, B_TRUE)) != 0) {
10556 				*outlenp = 0;
10557 				return (reterr);
10558 			}
10559 			if (init_cwnd > TCP_MAX_INIT_CWND) {
10560 				*outlenp = 0;
10561 				return (EINVAL);
10562 			}
10563 			tcp->tcp_init_cwnd = init_cwnd;
10564 			break;
10565 		}
10566 		case TCP_KEEPALIVE_THRESHOLD:
10567 			if (checkonly)
10568 				break;
10569 
10570 			if (*i1 < tcps->tcps_keepalive_interval_low ||
10571 			    *i1 > tcps->tcps_keepalive_interval_high) {
10572 				*outlenp = 0;
10573 				return (EINVAL);
10574 			}
10575 			if (*i1 != tcp->tcp_ka_interval) {
10576 				tcp->tcp_ka_interval = *i1;
10577 				/*
10578 				 * Check if we need to restart the
10579 				 * keepalive timer.
10580 				 */
10581 				if (tcp->tcp_ka_tid != 0) {
10582 					ASSERT(tcp->tcp_ka_enabled);
10583 					(void) TCP_TIMER_CANCEL(tcp,
10584 					    tcp->tcp_ka_tid);
10585 					tcp->tcp_ka_last_intrvl = 0;
10586 					tcp->tcp_ka_tid = TCP_TIMER(tcp,
10587 					    tcp_keepalive_killer,
10588 					    MSEC_TO_TICK(tcp->tcp_ka_interval));
10589 				}
10590 			}
10591 			break;
10592 		case TCP_KEEPALIVE_ABORT_THRESHOLD:
10593 			if (!checkonly) {
10594 				if (*i1 <
10595 				    tcps->tcps_keepalive_abort_interval_low ||
10596 				    *i1 >
10597 				    tcps->tcps_keepalive_abort_interval_high) {
10598 					*outlenp = 0;
10599 					return (EINVAL);
10600 				}
10601 				tcp->tcp_ka_abort_thres = *i1;
10602 			}
10603 			break;
10604 		case TCP_CORK:
10605 			if (!checkonly) {
10606 				/*
10607 				 * if tcp->tcp_cork was set and is now
10608 				 * being unset, we have to make sure that
10609 				 * the remaining data gets sent out. Also
10610 				 * unset tcp->tcp_cork so that tcp_wput_data()
10611 				 * can send data even if it is less than mss
10612 				 */
10613 				if (tcp->tcp_cork && onoff == 0 &&
10614 				    tcp->tcp_unsent > 0) {
10615 					tcp->tcp_cork = B_FALSE;
10616 					tcp_wput_data(tcp, NULL, B_FALSE);
10617 				}
10618 				tcp->tcp_cork = onoff;
10619 			}
10620 			break;
10621 		default:
10622 			*outlenp = 0;
10623 			return (EINVAL);
10624 		}
10625 		break;
10626 	case IPPROTO_IP:
10627 		if (tcp->tcp_family != AF_INET) {
10628 			*outlenp = 0;
10629 			return (ENOPROTOOPT);
10630 		}
10631 		switch (name) {
10632 		case IP_OPTIONS:
10633 		case T_IP_OPTIONS:
10634 			reterr = tcp_opt_set_header(tcp, checkonly,
10635 			    invalp, inlen);
10636 			if (reterr) {
10637 				*outlenp = 0;
10638 				return (reterr);
10639 			}
10640 			/* OK return - copy input buffer into output buffer */
10641 			if (invalp != outvalp) {
10642 				/* don't trust bcopy for identical src/dst */
10643 				bcopy(invalp, outvalp, inlen);
10644 			}
10645 			*outlenp = inlen;
10646 			return (0);
10647 		case IP_TOS:
10648 		case T_IP_TOS:
10649 			if (!checkonly) {
10650 				tcp->tcp_ipha->ipha_type_of_service =
10651 				    (uchar_t)*i1;
10652 				tcp->tcp_tos = (uchar_t)*i1;
10653 			}
10654 			break;
10655 		case IP_TTL:
10656 			if (!checkonly) {
10657 				tcp->tcp_ipha->ipha_ttl = (uchar_t)*i1;
10658 				tcp->tcp_ttl = (uchar_t)*i1;
10659 			}
10660 			break;
10661 		case IP_BOUND_IF:
10662 		case IP_NEXTHOP:
10663 			/* Handled at the IP level */
10664 			return (-EINVAL);
10665 		case IP_SEC_OPT:
10666 			/*
10667 			 * We should not allow policy setting after
10668 			 * we start listening for connections.
10669 			 */
10670 			if (tcp->tcp_state == TCPS_LISTEN) {
10671 				return (EINVAL);
10672 			} else {
10673 				/* Handled at the IP level */
10674 				return (-EINVAL);
10675 			}
10676 		default:
10677 			*outlenp = 0;
10678 			return (EINVAL);
10679 		}
10680 		break;
10681 	case IPPROTO_IPV6: {
10682 		ip6_pkt_t		*ipp;
10683 
10684 		/*
10685 		 * IPPROTO_IPV6 options are only supported for sockets
10686 		 * that are using IPv6 on the wire.
10687 		 */
10688 		if (tcp->tcp_ipversion != IPV6_VERSION) {
10689 			*outlenp = 0;
10690 			return (ENOPROTOOPT);
10691 		}
10692 		/*
10693 		 * Only sticky options; no ancillary data
10694 		 */
10695 		ASSERT(thisdg_attrs == NULL);
10696 		ipp = &tcp->tcp_sticky_ipp;
10697 
10698 		switch (name) {
10699 		case IPV6_UNICAST_HOPS:
10700 			/* -1 means use default */
10701 			if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) {
10702 				*outlenp = 0;
10703 				return (EINVAL);
10704 			}
10705 			if (!checkonly) {
10706 				if (*i1 == -1) {
10707 					tcp->tcp_ip6h->ip6_hops =
10708 					    ipp->ipp_unicast_hops =
10709 					    (uint8_t)tcps->tcps_ipv6_hoplimit;
10710 					ipp->ipp_fields &= ~IPPF_UNICAST_HOPS;
10711 					/* Pass modified value to IP. */
10712 					*i1 = tcp->tcp_ip6h->ip6_hops;
10713 				} else {
10714 					tcp->tcp_ip6h->ip6_hops =
10715 					    ipp->ipp_unicast_hops =
10716 					    (uint8_t)*i1;
10717 					ipp->ipp_fields |= IPPF_UNICAST_HOPS;
10718 				}
10719 				reterr = tcp_build_hdrs(q, tcp);
10720 				if (reterr != 0)
10721 					return (reterr);
10722 			}
10723 			break;
10724 		case IPV6_BOUND_IF:
10725 			if (!checkonly) {
10726 				int error = 0;
10727 
10728 				tcp->tcp_bound_if = *i1;
10729 				error = ip_opt_set_ill(tcp->tcp_connp, *i1,
10730 				    B_TRUE, checkonly, level, name, mblk);
10731 				if (error != 0) {
10732 					*outlenp = 0;
10733 					return (error);
10734 				}
10735 			}
10736 			break;
10737 		/*
10738 		 * Set boolean switches for ancillary data delivery
10739 		 */
10740 		case IPV6_RECVPKTINFO:
10741 			if (!checkonly) {
10742 				if (onoff)
10743 					tcp->tcp_ipv6_recvancillary |=
10744 					    TCP_IPV6_RECVPKTINFO;
10745 				else
10746 					tcp->tcp_ipv6_recvancillary &=
10747 					    ~TCP_IPV6_RECVPKTINFO;
10748 				/* Force it to be sent up with the next msg */
10749 				tcp->tcp_recvifindex = 0;
10750 			}
10751 			break;
10752 		case IPV6_RECVTCLASS:
10753 			if (!checkonly) {
10754 				if (onoff)
10755 					tcp->tcp_ipv6_recvancillary |=
10756 					    TCP_IPV6_RECVTCLASS;
10757 				else
10758 					tcp->tcp_ipv6_recvancillary &=
10759 					    ~TCP_IPV6_RECVTCLASS;
10760 			}
10761 			break;
10762 		case IPV6_RECVHOPLIMIT:
10763 			if (!checkonly) {
10764 				if (onoff)
10765 					tcp->tcp_ipv6_recvancillary |=
10766 					    TCP_IPV6_RECVHOPLIMIT;
10767 				else
10768 					tcp->tcp_ipv6_recvancillary &=
10769 					    ~TCP_IPV6_RECVHOPLIMIT;
10770 				/* Force it to be sent up with the next msg */
10771 				tcp->tcp_recvhops = 0xffffffffU;
10772 			}
10773 			break;
10774 		case IPV6_RECVHOPOPTS:
10775 			if (!checkonly) {
10776 				if (onoff)
10777 					tcp->tcp_ipv6_recvancillary |=
10778 					    TCP_IPV6_RECVHOPOPTS;
10779 				else
10780 					tcp->tcp_ipv6_recvancillary &=
10781 					    ~TCP_IPV6_RECVHOPOPTS;
10782 			}
10783 			break;
10784 		case IPV6_RECVDSTOPTS:
10785 			if (!checkonly) {
10786 				if (onoff)
10787 					tcp->tcp_ipv6_recvancillary |=
10788 					    TCP_IPV6_RECVDSTOPTS;
10789 				else
10790 					tcp->tcp_ipv6_recvancillary &=
10791 					    ~TCP_IPV6_RECVDSTOPTS;
10792 			}
10793 			break;
10794 		case _OLD_IPV6_RECVDSTOPTS:
10795 			if (!checkonly) {
10796 				if (onoff)
10797 					tcp->tcp_ipv6_recvancillary |=
10798 					    TCP_OLD_IPV6_RECVDSTOPTS;
10799 				else
10800 					tcp->tcp_ipv6_recvancillary &=
10801 					    ~TCP_OLD_IPV6_RECVDSTOPTS;
10802 			}
10803 			break;
10804 		case IPV6_RECVRTHDR:
10805 			if (!checkonly) {
10806 				if (onoff)
10807 					tcp->tcp_ipv6_recvancillary |=
10808 					    TCP_IPV6_RECVRTHDR;
10809 				else
10810 					tcp->tcp_ipv6_recvancillary &=
10811 					    ~TCP_IPV6_RECVRTHDR;
10812 			}
10813 			break;
10814 		case IPV6_RECVRTHDRDSTOPTS:
10815 			if (!checkonly) {
10816 				if (onoff)
10817 					tcp->tcp_ipv6_recvancillary |=
10818 					    TCP_IPV6_RECVRTDSTOPTS;
10819 				else
10820 					tcp->tcp_ipv6_recvancillary &=
10821 					    ~TCP_IPV6_RECVRTDSTOPTS;
10822 			}
10823 			break;
10824 		case IPV6_PKTINFO:
10825 			if (inlen != 0 && inlen != sizeof (struct in6_pktinfo))
10826 				return (EINVAL);
10827 			if (checkonly)
10828 				break;
10829 
10830 			if (inlen == 0) {
10831 				ipp->ipp_fields &= ~(IPPF_IFINDEX|IPPF_ADDR);
10832 			} else {
10833 				struct in6_pktinfo *pkti;
10834 
10835 				pkti = (struct in6_pktinfo *)invalp;
10836 				/*
10837 				 * RFC 3542 states that ipi6_addr must be
10838 				 * the unspecified address when setting the
10839 				 * IPV6_PKTINFO sticky socket option on a
10840 				 * TCP socket.
10841 				 */
10842 				if (!IN6_IS_ADDR_UNSPECIFIED(&pkti->ipi6_addr))
10843 					return (EINVAL);
10844 				/*
10845 				 * ip6_set_pktinfo() validates the source
10846 				 * address and interface index.
10847 				 */
10848 				reterr = ip6_set_pktinfo(cr, tcp->tcp_connp,
10849 				    pkti, mblk);
10850 				if (reterr != 0)
10851 					return (reterr);
10852 				ipp->ipp_ifindex = pkti->ipi6_ifindex;
10853 				ipp->ipp_addr = pkti->ipi6_addr;
10854 				if (ipp->ipp_ifindex != 0)
10855 					ipp->ipp_fields |= IPPF_IFINDEX;
10856 				else
10857 					ipp->ipp_fields &= ~IPPF_IFINDEX;
10858 				if (!IN6_IS_ADDR_UNSPECIFIED(&ipp->ipp_addr))
10859 					ipp->ipp_fields |= IPPF_ADDR;
10860 				else
10861 					ipp->ipp_fields &= ~IPPF_ADDR;
10862 			}
10863 			reterr = tcp_build_hdrs(q, tcp);
10864 			if (reterr != 0)
10865 				return (reterr);
10866 			break;
10867 		case IPV6_TCLASS:
10868 			if (inlen != 0 && inlen != sizeof (int))
10869 				return (EINVAL);
10870 			if (checkonly)
10871 				break;
10872 
10873 			if (inlen == 0) {
10874 				ipp->ipp_fields &= ~IPPF_TCLASS;
10875 			} else {
10876 				if (*i1 > 255 || *i1 < -1)
10877 					return (EINVAL);
10878 				if (*i1 == -1) {
10879 					ipp->ipp_tclass = 0;
10880 					*i1 = 0;
10881 				} else {
10882 					ipp->ipp_tclass = *i1;
10883 				}
10884 				ipp->ipp_fields |= IPPF_TCLASS;
10885 			}
10886 			reterr = tcp_build_hdrs(q, tcp);
10887 			if (reterr != 0)
10888 				return (reterr);
10889 			break;
10890 		case IPV6_NEXTHOP:
10891 			/*
10892 			 * IP will verify that the nexthop is reachable
10893 			 * and fail for sticky options.
10894 			 */
10895 			if (inlen != 0 && inlen != sizeof (sin6_t))
10896 				return (EINVAL);
10897 			if (checkonly)
10898 				break;
10899 
10900 			if (inlen == 0) {
10901 				ipp->ipp_fields &= ~IPPF_NEXTHOP;
10902 			} else {
10903 				sin6_t *sin6 = (sin6_t *)invalp;
10904 
10905 				if (sin6->sin6_family != AF_INET6)
10906 					return (EAFNOSUPPORT);
10907 				if (IN6_IS_ADDR_V4MAPPED(
10908 				    &sin6->sin6_addr))
10909 					return (EADDRNOTAVAIL);
10910 				ipp->ipp_nexthop = sin6->sin6_addr;
10911 				if (!IN6_IS_ADDR_UNSPECIFIED(
10912 				    &ipp->ipp_nexthop))
10913 					ipp->ipp_fields |= IPPF_NEXTHOP;
10914 				else
10915 					ipp->ipp_fields &= ~IPPF_NEXTHOP;
10916 			}
10917 			reterr = tcp_build_hdrs(q, tcp);
10918 			if (reterr != 0)
10919 				return (reterr);
10920 			break;
10921 		case IPV6_HOPOPTS: {
10922 			ip6_hbh_t *hopts = (ip6_hbh_t *)invalp;
10923 
10924 			/*
10925 			 * Sanity checks - minimum size, size a multiple of
10926 			 * eight bytes, and matching size passed in.
10927 			 */
10928 			if (inlen != 0 &&
10929 			    inlen != (8 * (hopts->ip6h_len + 1)))
10930 				return (EINVAL);
10931 
10932 			if (checkonly)
10933 				break;
10934 
10935 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10936 			    (uchar_t **)&ipp->ipp_hopopts,
10937 			    &ipp->ipp_hopoptslen, tcp->tcp_label_len);
10938 			if (reterr != 0)
10939 				return (reterr);
10940 			if (ipp->ipp_hopoptslen == 0)
10941 				ipp->ipp_fields &= ~IPPF_HOPOPTS;
10942 			else
10943 				ipp->ipp_fields |= IPPF_HOPOPTS;
10944 			reterr = tcp_build_hdrs(q, tcp);
10945 			if (reterr != 0)
10946 				return (reterr);
10947 			break;
10948 		}
10949 		case IPV6_RTHDRDSTOPTS: {
10950 			ip6_dest_t *dopts = (ip6_dest_t *)invalp;
10951 
10952 			/*
10953 			 * Sanity checks - minimum size, size a multiple of
10954 			 * eight bytes, and matching size passed in.
10955 			 */
10956 			if (inlen != 0 &&
10957 			    inlen != (8 * (dopts->ip6d_len + 1)))
10958 				return (EINVAL);
10959 
10960 			if (checkonly)
10961 				break;
10962 
10963 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10964 			    (uchar_t **)&ipp->ipp_rtdstopts,
10965 			    &ipp->ipp_rtdstoptslen, 0);
10966 			if (reterr != 0)
10967 				return (reterr);
10968 			if (ipp->ipp_rtdstoptslen == 0)
10969 				ipp->ipp_fields &= ~IPPF_RTDSTOPTS;
10970 			else
10971 				ipp->ipp_fields |= IPPF_RTDSTOPTS;
10972 			reterr = tcp_build_hdrs(q, tcp);
10973 			if (reterr != 0)
10974 				return (reterr);
10975 			break;
10976 		}
10977 		case IPV6_DSTOPTS: {
10978 			ip6_dest_t *dopts = (ip6_dest_t *)invalp;
10979 
10980 			/*
10981 			 * Sanity checks - minimum size, size a multiple of
10982 			 * eight bytes, and matching size passed in.
10983 			 */
10984 			if (inlen != 0 &&
10985 			    inlen != (8 * (dopts->ip6d_len + 1)))
10986 				return (EINVAL);
10987 
10988 			if (checkonly)
10989 				break;
10990 
10991 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10992 			    (uchar_t **)&ipp->ipp_dstopts,
10993 			    &ipp->ipp_dstoptslen, 0);
10994 			if (reterr != 0)
10995 				return (reterr);
10996 			if (ipp->ipp_dstoptslen == 0)
10997 				ipp->ipp_fields &= ~IPPF_DSTOPTS;
10998 			else
10999 				ipp->ipp_fields |= IPPF_DSTOPTS;
11000 			reterr = tcp_build_hdrs(q, tcp);
11001 			if (reterr != 0)
11002 				return (reterr);
11003 			break;
11004 		}
11005 		case IPV6_RTHDR: {
11006 			ip6_rthdr_t *rt = (ip6_rthdr_t *)invalp;
11007 
11008 			/*
11009 			 * Sanity checks - minimum size, size a multiple of
11010 			 * eight bytes, and matching size passed in.
11011 			 */
11012 			if (inlen != 0 &&
11013 			    inlen != (8 * (rt->ip6r_len + 1)))
11014 				return (EINVAL);
11015 
11016 			if (checkonly)
11017 				break;
11018 
11019 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
11020 			    (uchar_t **)&ipp->ipp_rthdr,
11021 			    &ipp->ipp_rthdrlen, 0);
11022 			if (reterr != 0)
11023 				return (reterr);
11024 			if (ipp->ipp_rthdrlen == 0)
11025 				ipp->ipp_fields &= ~IPPF_RTHDR;
11026 			else
11027 				ipp->ipp_fields |= IPPF_RTHDR;
11028 			reterr = tcp_build_hdrs(q, tcp);
11029 			if (reterr != 0)
11030 				return (reterr);
11031 			break;
11032 		}
11033 		case IPV6_V6ONLY:
11034 			if (!checkonly)
11035 				tcp->tcp_connp->conn_ipv6_v6only = onoff;
11036 			break;
11037 		case IPV6_USE_MIN_MTU:
11038 			if (inlen != sizeof (int))
11039 				return (EINVAL);
11040 
11041 			if (*i1 < -1 || *i1 > 1)
11042 				return (EINVAL);
11043 
11044 			if (checkonly)
11045 				break;
11046 
11047 			ipp->ipp_fields |= IPPF_USE_MIN_MTU;
11048 			ipp->ipp_use_min_mtu = *i1;
11049 			break;
11050 		case IPV6_BOUND_PIF:
11051 			/* Handled at the IP level */
11052 			return (-EINVAL);
11053 		case IPV6_SEC_OPT:
11054 			/*
11055 			 * We should not allow policy setting after
11056 			 * we start listening for connections.
11057 			 */
11058 			if (tcp->tcp_state == TCPS_LISTEN) {
11059 				return (EINVAL);
11060 			} else {
11061 				/* Handled at the IP level */
11062 				return (-EINVAL);
11063 			}
11064 		case IPV6_SRC_PREFERENCES:
11065 			if (inlen != sizeof (uint32_t))
11066 				return (EINVAL);
11067 			reterr = ip6_set_src_preferences(tcp->tcp_connp,
11068 			    *(uint32_t *)invalp);
11069 			if (reterr != 0) {
11070 				*outlenp = 0;
11071 				return (reterr);
11072 			}
11073 			break;
11074 		default:
11075 			*outlenp = 0;
11076 			return (EINVAL);
11077 		}
11078 		break;
11079 	}		/* end IPPROTO_IPV6 */
11080 	default:
11081 		*outlenp = 0;
11082 		return (EINVAL);
11083 	}
11084 	/*
11085 	 * Common case of OK return with outval same as inval
11086 	 */
11087 	if (invalp != outvalp) {
11088 		/* don't trust bcopy for identical src/dst */
11089 		(void) bcopy(invalp, outvalp, inlen);
11090 	}
11091 	*outlenp = inlen;
11092 	return (0);
11093 }
11094 
11095 /*
11096  * Update tcp_sticky_hdrs based on tcp_sticky_ipp.
11097  * The headers include ip6i_t (if needed), ip6_t, any sticky extension
11098  * headers, and the maximum size tcp header (to avoid reallocation
11099  * on the fly for additional tcp options).
11100  * Returns failure if can't allocate memory.
11101  */
11102 static int
11103 tcp_build_hdrs(queue_t *q, tcp_t *tcp)
11104 {
11105 	char	*hdrs;
11106 	uint_t	hdrs_len;
11107 	ip6i_t	*ip6i;
11108 	char	buf[TCP_MAX_HDR_LENGTH];
11109 	ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp;
11110 	in6_addr_t src, dst;
11111 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11112 
11113 	/*
11114 	 * save the existing tcp header and source/dest IP addresses
11115 	 */
11116 	bcopy(tcp->tcp_tcph, buf, tcp->tcp_tcp_hdr_len);
11117 	src = tcp->tcp_ip6h->ip6_src;
11118 	dst = tcp->tcp_ip6h->ip6_dst;
11119 	hdrs_len = ip_total_hdrs_len_v6(ipp) + TCP_MAX_HDR_LENGTH;
11120 	ASSERT(hdrs_len != 0);
11121 	if (hdrs_len > tcp->tcp_iphc_len) {
11122 		/* Need to reallocate */
11123 		hdrs = kmem_zalloc(hdrs_len, KM_NOSLEEP);
11124 		if (hdrs == NULL)
11125 			return (ENOMEM);
11126 		if (tcp->tcp_iphc != NULL) {
11127 			if (tcp->tcp_hdr_grown) {
11128 				kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len);
11129 			} else {
11130 				bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
11131 				kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc);
11132 			}
11133 			tcp->tcp_iphc_len = 0;
11134 		}
11135 		ASSERT(tcp->tcp_iphc_len == 0);
11136 		tcp->tcp_iphc = hdrs;
11137 		tcp->tcp_iphc_len = hdrs_len;
11138 		tcp->tcp_hdr_grown = B_TRUE;
11139 	}
11140 	ip_build_hdrs_v6((uchar_t *)tcp->tcp_iphc,
11141 	    hdrs_len - TCP_MAX_HDR_LENGTH, ipp, IPPROTO_TCP);
11142 
11143 	/* Set header fields not in ipp */
11144 	if (ipp->ipp_fields & IPPF_HAS_IP6I) {
11145 		ip6i = (ip6i_t *)tcp->tcp_iphc;
11146 		tcp->tcp_ip6h = (ip6_t *)&ip6i[1];
11147 	} else {
11148 		tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc;
11149 	}
11150 	/*
11151 	 * tcp->tcp_ip_hdr_len will include ip6i_t if there is one.
11152 	 *
11153 	 * tcp->tcp_tcp_hdr_len doesn't change here.
11154 	 */
11155 	tcp->tcp_ip_hdr_len = hdrs_len - TCP_MAX_HDR_LENGTH;
11156 	tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + tcp->tcp_ip_hdr_len);
11157 	tcp->tcp_hdr_len = tcp->tcp_ip_hdr_len + tcp->tcp_tcp_hdr_len;
11158 
11159 	bcopy(buf, tcp->tcp_tcph, tcp->tcp_tcp_hdr_len);
11160 
11161 	tcp->tcp_ip6h->ip6_src = src;
11162 	tcp->tcp_ip6h->ip6_dst = dst;
11163 
11164 	/*
11165 	 * If the hop limit was not set by ip_build_hdrs_v6(), set it to
11166 	 * the default value for TCP.
11167 	 */
11168 	if (!(ipp->ipp_fields & IPPF_UNICAST_HOPS))
11169 		tcp->tcp_ip6h->ip6_hops = tcps->tcps_ipv6_hoplimit;
11170 
11171 	/*
11172 	 * If we're setting extension headers after a connection
11173 	 * has been established, and if we have a routing header
11174 	 * among the extension headers, call ip_massage_options_v6 to
11175 	 * manipulate the routing header/ip6_dst set the checksum
11176 	 * difference in the tcp header template.
11177 	 * (This happens in tcp_connect_ipv6 if the routing header
11178 	 * is set prior to the connect.)
11179 	 * Set the tcp_sum to zero first in case we've cleared a
11180 	 * routing header or don't have one at all.
11181 	 */
11182 	tcp->tcp_sum = 0;
11183 	if ((tcp->tcp_state >= TCPS_SYN_SENT) &&
11184 	    (tcp->tcp_ipp_fields & IPPF_RTHDR)) {
11185 		ip6_rthdr_t *rth = ip_find_rthdr_v6(tcp->tcp_ip6h,
11186 		    (uint8_t *)tcp->tcp_tcph);
11187 		if (rth != NULL) {
11188 			tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h,
11189 			    rth, tcps->tcps_netstack);
11190 			tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
11191 			    (tcp->tcp_sum >> 16));
11192 		}
11193 	}
11194 
11195 	/* Try to get everything in a single mblk */
11196 	(void) mi_set_sth_wroff(RD(q), hdrs_len + tcps->tcps_wroff_xtra);
11197 	return (0);
11198 }
11199 
11200 /*
11201  * Transfer any source route option from ipha to buf/dst in reversed form.
11202  */
11203 static int
11204 tcp_opt_rev_src_route(ipha_t *ipha, char *buf, uchar_t *dst)
11205 {
11206 	ipoptp_t	opts;
11207 	uchar_t		*opt;
11208 	uint8_t		optval;
11209 	uint8_t		optlen;
11210 	uint32_t	len = 0;
11211 
11212 	for (optval = ipoptp_first(&opts, ipha);
11213 	    optval != IPOPT_EOL;
11214 	    optval = ipoptp_next(&opts)) {
11215 		opt = opts.ipoptp_cur;
11216 		optlen = opts.ipoptp_len;
11217 		switch (optval) {
11218 			int	off1, off2;
11219 		case IPOPT_SSRR:
11220 		case IPOPT_LSRR:
11221 
11222 			/* Reverse source route */
11223 			/*
11224 			 * First entry should be the next to last one in the
11225 			 * current source route (the last entry is our
11226 			 * address.)
11227 			 * The last entry should be the final destination.
11228 			 */
11229 			buf[IPOPT_OPTVAL] = (uint8_t)optval;
11230 			buf[IPOPT_OLEN] = (uint8_t)optlen;
11231 			off1 = IPOPT_MINOFF_SR - 1;
11232 			off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1;
11233 			if (off2 < 0) {
11234 				/* No entries in source route */
11235 				break;
11236 			}
11237 			bcopy(opt + off2, dst, IP_ADDR_LEN);
11238 			/*
11239 			 * Note: use src since ipha has not had its src
11240 			 * and dst reversed (it is in the state it was
11241 			 * received.
11242 			 */
11243 			bcopy(&ipha->ipha_src, buf + off2,
11244 			    IP_ADDR_LEN);
11245 			off2 -= IP_ADDR_LEN;
11246 
11247 			while (off2 > 0) {
11248 				bcopy(opt + off2, buf + off1,
11249 				    IP_ADDR_LEN);
11250 				off1 += IP_ADDR_LEN;
11251 				off2 -= IP_ADDR_LEN;
11252 			}
11253 			buf[IPOPT_OFFSET] = IPOPT_MINOFF_SR;
11254 			buf += optlen;
11255 			len += optlen;
11256 			break;
11257 		}
11258 	}
11259 done:
11260 	/* Pad the resulting options */
11261 	while (len & 0x3) {
11262 		*buf++ = IPOPT_EOL;
11263 		len++;
11264 	}
11265 	return (len);
11266 }
11267 
11268 
11269 /*
11270  * Extract and revert a source route from ipha (if any)
11271  * and then update the relevant fields in both tcp_t and the standard header.
11272  */
11273 static void
11274 tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha)
11275 {
11276 	char	buf[TCP_MAX_HDR_LENGTH];
11277 	uint_t	tcph_len;
11278 	int	len;
11279 
11280 	ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION);
11281 	len = IPH_HDR_LENGTH(ipha);
11282 	if (len == IP_SIMPLE_HDR_LENGTH)
11283 		/* Nothing to do */
11284 		return;
11285 	if (len > IP_SIMPLE_HDR_LENGTH + TCP_MAX_IP_OPTIONS_LENGTH ||
11286 	    (len & 0x3))
11287 		return;
11288 
11289 	tcph_len = tcp->tcp_tcp_hdr_len;
11290 	bcopy(tcp->tcp_tcph, buf, tcph_len);
11291 	tcp->tcp_sum = (tcp->tcp_ipha->ipha_dst >> 16) +
11292 	    (tcp->tcp_ipha->ipha_dst & 0xffff);
11293 	len = tcp_opt_rev_src_route(ipha, (char *)tcp->tcp_ipha +
11294 	    IP_SIMPLE_HDR_LENGTH, (uchar_t *)&tcp->tcp_ipha->ipha_dst);
11295 	len += IP_SIMPLE_HDR_LENGTH;
11296 	tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) +
11297 	    (tcp->tcp_ipha->ipha_dst & 0xffff));
11298 	if ((int)tcp->tcp_sum < 0)
11299 		tcp->tcp_sum--;
11300 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
11301 	tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16));
11302 	tcp->tcp_tcph = (tcph_t *)((char *)tcp->tcp_ipha + len);
11303 	bcopy(buf, tcp->tcp_tcph, tcph_len);
11304 	tcp->tcp_ip_hdr_len = len;
11305 	tcp->tcp_ipha->ipha_version_and_hdr_length =
11306 	    (IP_VERSION << 4) | (len >> 2);
11307 	len += tcph_len;
11308 	tcp->tcp_hdr_len = len;
11309 }
11310 
11311 /*
11312  * Copy the standard header into its new location,
11313  * lay in the new options and then update the relevant
11314  * fields in both tcp_t and the standard header.
11315  */
11316 static int
11317 tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, uchar_t *ptr, uint_t len)
11318 {
11319 	uint_t	tcph_len;
11320 	uint8_t	*ip_optp;
11321 	tcph_t	*new_tcph;
11322 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11323 
11324 	if ((len > TCP_MAX_IP_OPTIONS_LENGTH) || (len & 0x3))
11325 		return (EINVAL);
11326 
11327 	if (len > IP_MAX_OPT_LENGTH - tcp->tcp_label_len)
11328 		return (EINVAL);
11329 
11330 	if (checkonly) {
11331 		/*
11332 		 * do not really set, just pretend to - T_CHECK
11333 		 */
11334 		return (0);
11335 	}
11336 
11337 	ip_optp = (uint8_t *)tcp->tcp_ipha + IP_SIMPLE_HDR_LENGTH;
11338 	if (tcp->tcp_label_len > 0) {
11339 		int padlen;
11340 		uint8_t opt;
11341 
11342 		/* convert list termination to no-ops */
11343 		padlen = tcp->tcp_label_len - ip_optp[IPOPT_OLEN];
11344 		ip_optp += ip_optp[IPOPT_OLEN];
11345 		opt = len > 0 ? IPOPT_NOP : IPOPT_EOL;
11346 		while (--padlen >= 0)
11347 			*ip_optp++ = opt;
11348 	}
11349 	tcph_len = tcp->tcp_tcp_hdr_len;
11350 	new_tcph = (tcph_t *)(ip_optp + len);
11351 	ovbcopy(tcp->tcp_tcph, new_tcph, tcph_len);
11352 	tcp->tcp_tcph = new_tcph;
11353 	bcopy(ptr, ip_optp, len);
11354 
11355 	len += IP_SIMPLE_HDR_LENGTH + tcp->tcp_label_len;
11356 
11357 	tcp->tcp_ip_hdr_len = len;
11358 	tcp->tcp_ipha->ipha_version_and_hdr_length =
11359 	    (IP_VERSION << 4) | (len >> 2);
11360 	tcp->tcp_hdr_len = len + tcph_len;
11361 	if (!TCP_IS_DETACHED(tcp)) {
11362 		/* Always allocate room for all options. */
11363 		(void) mi_set_sth_wroff(tcp->tcp_rq,
11364 		    TCP_MAX_COMBINED_HEADER_LENGTH + tcps->tcps_wroff_xtra);
11365 	}
11366 	return (0);
11367 }
11368 
11369 /* Get callback routine passed to nd_load by tcp_param_register */
11370 /* ARGSUSED */
11371 static int
11372 tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
11373 {
11374 	tcpparam_t	*tcppa = (tcpparam_t *)cp;
11375 
11376 	(void) mi_mpprintf(mp, "%u", tcppa->tcp_param_val);
11377 	return (0);
11378 }
11379 
11380 /*
11381  * Walk through the param array specified registering each element with the
11382  * named dispatch handler.
11383  */
11384 static boolean_t
11385 tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt, tcp_stack_t *tcps)
11386 {
11387 	for (; cnt-- > 0; tcppa++) {
11388 		if (tcppa->tcp_param_name && tcppa->tcp_param_name[0]) {
11389 			if (!nd_load(ndp, tcppa->tcp_param_name,
11390 			    tcp_param_get, tcp_param_set,
11391 			    (caddr_t)tcppa)) {
11392 				nd_free(ndp);
11393 				return (B_FALSE);
11394 			}
11395 		}
11396 	}
11397 	tcps->tcps_wroff_xtra_param = kmem_zalloc(sizeof (tcpparam_t),
11398 	    KM_SLEEP);
11399 	bcopy(&lcl_tcp_wroff_xtra_param, tcps->tcps_wroff_xtra_param,
11400 	    sizeof (tcpparam_t));
11401 	if (!nd_load(ndp, tcps->tcps_wroff_xtra_param->tcp_param_name,
11402 	    tcp_param_get, tcp_param_set_aligned,
11403 	    (caddr_t)tcps->tcps_wroff_xtra_param)) {
11404 		nd_free(ndp);
11405 		return (B_FALSE);
11406 	}
11407 	tcps->tcps_mdt_head_param = kmem_zalloc(sizeof (tcpparam_t),
11408 	    KM_SLEEP);
11409 	bcopy(&lcl_tcp_mdt_head_param, tcps->tcps_mdt_head_param,
11410 	    sizeof (tcpparam_t));
11411 	if (!nd_load(ndp, tcps->tcps_mdt_head_param->tcp_param_name,
11412 	    tcp_param_get, tcp_param_set_aligned,
11413 	    (caddr_t)tcps->tcps_mdt_head_param)) {
11414 		nd_free(ndp);
11415 		return (B_FALSE);
11416 	}
11417 	tcps->tcps_mdt_tail_param = kmem_zalloc(sizeof (tcpparam_t),
11418 	    KM_SLEEP);
11419 	bcopy(&lcl_tcp_mdt_tail_param, tcps->tcps_mdt_tail_param,
11420 	    sizeof (tcpparam_t));
11421 	if (!nd_load(ndp, tcps->tcps_mdt_tail_param->tcp_param_name,
11422 	    tcp_param_get, tcp_param_set_aligned,
11423 	    (caddr_t)tcps->tcps_mdt_tail_param)) {
11424 		nd_free(ndp);
11425 		return (B_FALSE);
11426 	}
11427 	tcps->tcps_mdt_max_pbufs_param = kmem_zalloc(sizeof (tcpparam_t),
11428 	    KM_SLEEP);
11429 	bcopy(&lcl_tcp_mdt_max_pbufs_param, tcps->tcps_mdt_max_pbufs_param,
11430 	    sizeof (tcpparam_t));
11431 	if (!nd_load(ndp, tcps->tcps_mdt_max_pbufs_param->tcp_param_name,
11432 	    tcp_param_get, tcp_param_set_aligned,
11433 	    (caddr_t)tcps->tcps_mdt_max_pbufs_param)) {
11434 		nd_free(ndp);
11435 		return (B_FALSE);
11436 	}
11437 	if (!nd_load(ndp, "tcp_extra_priv_ports",
11438 	    tcp_extra_priv_ports_get, NULL, NULL)) {
11439 		nd_free(ndp);
11440 		return (B_FALSE);
11441 	}
11442 	if (!nd_load(ndp, "tcp_extra_priv_ports_add",
11443 	    NULL, tcp_extra_priv_ports_add, NULL)) {
11444 		nd_free(ndp);
11445 		return (B_FALSE);
11446 	}
11447 	if (!nd_load(ndp, "tcp_extra_priv_ports_del",
11448 	    NULL, tcp_extra_priv_ports_del, NULL)) {
11449 		nd_free(ndp);
11450 		return (B_FALSE);
11451 	}
11452 	if (!nd_load(ndp, "tcp_status", tcp_status_report, NULL,
11453 	    NULL)) {
11454 		nd_free(ndp);
11455 		return (B_FALSE);
11456 	}
11457 	if (!nd_load(ndp, "tcp_bind_hash", tcp_bind_hash_report,
11458 	    NULL, NULL)) {
11459 		nd_free(ndp);
11460 		return (B_FALSE);
11461 	}
11462 	if (!nd_load(ndp, "tcp_listen_hash",
11463 	    tcp_listen_hash_report, NULL, NULL)) {
11464 		nd_free(ndp);
11465 		return (B_FALSE);
11466 	}
11467 	if (!nd_load(ndp, "tcp_conn_hash", tcp_conn_hash_report,
11468 	    NULL, NULL)) {
11469 		nd_free(ndp);
11470 		return (B_FALSE);
11471 	}
11472 	if (!nd_load(ndp, "tcp_acceptor_hash",
11473 	    tcp_acceptor_hash_report, NULL, NULL)) {
11474 		nd_free(ndp);
11475 		return (B_FALSE);
11476 	}
11477 	if (!nd_load(ndp, "tcp_1948_phrase", NULL,
11478 	    tcp_1948_phrase_set, NULL)) {
11479 		nd_free(ndp);
11480 		return (B_FALSE);
11481 	}
11482 	/*
11483 	 * Dummy ndd variables - only to convey obsolescence information
11484 	 * through printing of their name (no get or set routines)
11485 	 * XXX Remove in future releases ?
11486 	 */
11487 	if (!nd_load(ndp,
11488 	    "tcp_close_wait_interval(obsoleted - "
11489 	    "use tcp_time_wait_interval)", NULL, NULL, NULL)) {
11490 		nd_free(ndp);
11491 		return (B_FALSE);
11492 	}
11493 	return (B_TRUE);
11494 }
11495 
11496 /* ndd set routine for tcp_wroff_xtra, tcp_mdt_hdr_{head,tail}_min. */
11497 /* ARGSUSED */
11498 static int
11499 tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
11500     cred_t *cr)
11501 {
11502 	long new_value;
11503 	tcpparam_t *tcppa = (tcpparam_t *)cp;
11504 
11505 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
11506 	    new_value < tcppa->tcp_param_min ||
11507 	    new_value > tcppa->tcp_param_max) {
11508 		return (EINVAL);
11509 	}
11510 	/*
11511 	 * Need to make sure new_value is a multiple of 4.  If it is not,
11512 	 * round it up.  For future 64 bit requirement, we actually make it
11513 	 * a multiple of 8.
11514 	 */
11515 	if (new_value & 0x7) {
11516 		new_value = (new_value & ~0x7) + 0x8;
11517 	}
11518 	tcppa->tcp_param_val = new_value;
11519 	return (0);
11520 }
11521 
11522 /* Set callback routine passed to nd_load by tcp_param_register */
11523 /* ARGSUSED */
11524 static int
11525 tcp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr)
11526 {
11527 	long	new_value;
11528 	tcpparam_t	*tcppa = (tcpparam_t *)cp;
11529 
11530 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
11531 	    new_value < tcppa->tcp_param_min ||
11532 	    new_value > tcppa->tcp_param_max) {
11533 		return (EINVAL);
11534 	}
11535 	tcppa->tcp_param_val = new_value;
11536 	return (0);
11537 }
11538 
11539 /*
11540  * Add a new piece to the tcp reassembly queue.  If the gap at the beginning
11541  * is filled, return as much as we can.  The message passed in may be
11542  * multi-part, chained using b_cont.  "start" is the starting sequence
11543  * number for this piece.
11544  */
11545 static mblk_t *
11546 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start)
11547 {
11548 	uint32_t	end;
11549 	mblk_t		*mp1;
11550 	mblk_t		*mp2;
11551 	mblk_t		*next_mp;
11552 	uint32_t	u1;
11553 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11554 
11555 	/* Walk through all the new pieces. */
11556 	do {
11557 		ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
11558 		    (uintptr_t)INT_MAX);
11559 		end = start + (int)(mp->b_wptr - mp->b_rptr);
11560 		next_mp = mp->b_cont;
11561 		if (start == end) {
11562 			/* Empty.  Blast it. */
11563 			freeb(mp);
11564 			continue;
11565 		}
11566 		mp->b_cont = NULL;
11567 		TCP_REASS_SET_SEQ(mp, start);
11568 		TCP_REASS_SET_END(mp, end);
11569 		mp1 = tcp->tcp_reass_tail;
11570 		if (!mp1) {
11571 			tcp->tcp_reass_tail = mp;
11572 			tcp->tcp_reass_head = mp;
11573 			BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs);
11574 			UPDATE_MIB(&tcps->tcps_mib,
11575 			    tcpInDataUnorderBytes, end - start);
11576 			continue;
11577 		}
11578 		/* New stuff completely beyond tail? */
11579 		if (SEQ_GEQ(start, TCP_REASS_END(mp1))) {
11580 			/* Link it on end. */
11581 			mp1->b_cont = mp;
11582 			tcp->tcp_reass_tail = mp;
11583 			BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs);
11584 			UPDATE_MIB(&tcps->tcps_mib,
11585 			    tcpInDataUnorderBytes, end - start);
11586 			continue;
11587 		}
11588 		mp1 = tcp->tcp_reass_head;
11589 		u1 = TCP_REASS_SEQ(mp1);
11590 		/* New stuff at the front? */
11591 		if (SEQ_LT(start, u1)) {
11592 			/* Yes... Check for overlap. */
11593 			mp->b_cont = mp1;
11594 			tcp->tcp_reass_head = mp;
11595 			tcp_reass_elim_overlap(tcp, mp);
11596 			continue;
11597 		}
11598 		/*
11599 		 * The new piece fits somewhere between the head and tail.
11600 		 * We find our slot, where mp1 precedes us and mp2 trails.
11601 		 */
11602 		for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) {
11603 			u1 = TCP_REASS_SEQ(mp2);
11604 			if (SEQ_LEQ(start, u1))
11605 				break;
11606 		}
11607 		/* Link ourselves in */
11608 		mp->b_cont = mp2;
11609 		mp1->b_cont = mp;
11610 
11611 		/* Trim overlap with following mblk(s) first */
11612 		tcp_reass_elim_overlap(tcp, mp);
11613 
11614 		/* Trim overlap with preceding mblk */
11615 		tcp_reass_elim_overlap(tcp, mp1);
11616 
11617 	} while (start = end, mp = next_mp);
11618 	mp1 = tcp->tcp_reass_head;
11619 	/* Anything ready to go? */
11620 	if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt)
11621 		return (NULL);
11622 	/* Eat what we can off the queue */
11623 	for (;;) {
11624 		mp = mp1->b_cont;
11625 		end = TCP_REASS_END(mp1);
11626 		TCP_REASS_SET_SEQ(mp1, 0);
11627 		TCP_REASS_SET_END(mp1, 0);
11628 		if (!mp) {
11629 			tcp->tcp_reass_tail = NULL;
11630 			break;
11631 		}
11632 		if (end != TCP_REASS_SEQ(mp)) {
11633 			mp1->b_cont = NULL;
11634 			break;
11635 		}
11636 		mp1 = mp;
11637 	}
11638 	mp1 = tcp->tcp_reass_head;
11639 	tcp->tcp_reass_head = mp;
11640 	return (mp1);
11641 }
11642 
11643 /* Eliminate any overlap that mp may have over later mblks */
11644 static void
11645 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp)
11646 {
11647 	uint32_t	end;
11648 	mblk_t		*mp1;
11649 	uint32_t	u1;
11650 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11651 
11652 	end = TCP_REASS_END(mp);
11653 	while ((mp1 = mp->b_cont) != NULL) {
11654 		u1 = TCP_REASS_SEQ(mp1);
11655 		if (!SEQ_GT(end, u1))
11656 			break;
11657 		if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) {
11658 			mp->b_wptr -= end - u1;
11659 			TCP_REASS_SET_END(mp, u1);
11660 			BUMP_MIB(&tcps->tcps_mib, tcpInDataPartDupSegs);
11661 			UPDATE_MIB(&tcps->tcps_mib,
11662 			    tcpInDataPartDupBytes, end - u1);
11663 			break;
11664 		}
11665 		mp->b_cont = mp1->b_cont;
11666 		TCP_REASS_SET_SEQ(mp1, 0);
11667 		TCP_REASS_SET_END(mp1, 0);
11668 		freeb(mp1);
11669 		BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs);
11670 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, end - u1);
11671 	}
11672 	if (!mp1)
11673 		tcp->tcp_reass_tail = mp;
11674 }
11675 
11676 /*
11677  * Send up all messages queued on tcp_rcv_list.
11678  */
11679 static uint_t
11680 tcp_rcv_drain(queue_t *q, tcp_t *tcp)
11681 {
11682 	mblk_t *mp;
11683 	uint_t ret = 0;
11684 	uint_t thwin;
11685 #ifdef DEBUG
11686 	uint_t cnt = 0;
11687 #endif
11688 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11689 
11690 	/* Can't drain on an eager connection */
11691 	if (tcp->tcp_listener != NULL)
11692 		return (ret);
11693 
11694 	/* Can't be sodirect enabled */
11695 	ASSERT(SOD_NOT_ENABLED(tcp));
11696 
11697 	/* No need for the push timer now. */
11698 	if (tcp->tcp_push_tid != 0) {
11699 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
11700 		tcp->tcp_push_tid = 0;
11701 	}
11702 
11703 	/*
11704 	 * Handle two cases here: we are currently fused or we were
11705 	 * previously fused and have some urgent data to be delivered
11706 	 * upstream.  The latter happens because we either ran out of
11707 	 * memory or were detached and therefore sending the SIGURG was
11708 	 * deferred until this point.  In either case we pass control
11709 	 * over to tcp_fuse_rcv_drain() since it may need to complete
11710 	 * some work.
11711 	 */
11712 	if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) {
11713 		ASSERT(tcp->tcp_fused_sigurg_mp != NULL);
11714 		if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL :
11715 		    &tcp->tcp_fused_sigurg_mp))
11716 			return (ret);
11717 	}
11718 
11719 	while ((mp = tcp->tcp_rcv_list) != NULL) {
11720 		tcp->tcp_rcv_list = mp->b_next;
11721 		mp->b_next = NULL;
11722 #ifdef DEBUG
11723 		cnt += msgdsize(mp);
11724 #endif
11725 		/* Does this need SSL processing first? */
11726 		if ((tcp->tcp_kssl_ctx != NULL) && (DB_TYPE(mp) == M_DATA)) {
11727 			DTRACE_PROBE1(kssl_mblk__ksslinput_rcvdrain,
11728 			    mblk_t *, mp);
11729 			tcp_kssl_input(tcp, mp);
11730 			continue;
11731 		}
11732 		putnext(q, mp);
11733 	}
11734 	ASSERT(cnt == tcp->tcp_rcv_cnt);
11735 	tcp->tcp_rcv_last_head = NULL;
11736 	tcp->tcp_rcv_last_tail = NULL;
11737 	tcp->tcp_rcv_cnt = 0;
11738 
11739 	/* Learn the latest rwnd information that we sent to the other side. */
11740 	thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
11741 	    << tcp->tcp_rcv_ws;
11742 	/* This is peer's calculated send window (our receive window). */
11743 	thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
11744 	/*
11745 	 * Increase the receive window to max.  But we need to do receiver
11746 	 * SWS avoidance.  This means that we need to check the increase of
11747 	 * of receive window is at least 1 MSS.
11748 	 */
11749 	if (canputnext(q) && (q->q_hiwat - thwin >= tcp->tcp_mss)) {
11750 		/*
11751 		 * If the window that the other side knows is less than max
11752 		 * deferred acks segments, send an update immediately.
11753 		 */
11754 		if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) {
11755 			BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate);
11756 			ret = TH_ACK_NEEDED;
11757 		}
11758 		tcp->tcp_rwnd = q->q_hiwat;
11759 	}
11760 	return (ret);
11761 }
11762 
11763 /*
11764  * Queue data on tcp_rcv_list which is a b_next chain.
11765  * tcp_rcv_last_head/tail is the last element of this chain.
11766  * Each element of the chain is a b_cont chain.
11767  *
11768  * M_DATA messages are added to the current element.
11769  * Other messages are added as new (b_next) elements.
11770  */
11771 void
11772 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len)
11773 {
11774 	ASSERT(seg_len == msgdsize(mp));
11775 	ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL);
11776 
11777 	if (tcp->tcp_rcv_list == NULL) {
11778 		ASSERT(tcp->tcp_rcv_last_head == NULL);
11779 		tcp->tcp_rcv_list = mp;
11780 		tcp->tcp_rcv_last_head = mp;
11781 	} else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) {
11782 		tcp->tcp_rcv_last_tail->b_cont = mp;
11783 	} else {
11784 		tcp->tcp_rcv_last_head->b_next = mp;
11785 		tcp->tcp_rcv_last_head = mp;
11786 	}
11787 
11788 	while (mp->b_cont)
11789 		mp = mp->b_cont;
11790 
11791 	tcp->tcp_rcv_last_tail = mp;
11792 	tcp->tcp_rcv_cnt += seg_len;
11793 	tcp->tcp_rwnd -= seg_len;
11794 }
11795 
11796 /*
11797  * The tcp_rcv_sod_XXX() functions enqueue data directly to the socket
11798  * above, in addition when uioa is enabled schedule an asynchronous uio
11799  * prior to enqueuing. They implement the combinhed semantics of the
11800  * tcp_rcv_XXX() functions, tcp_rcv_list push logic, and STREAMS putnext()
11801  * canputnext(), i.e. flow-control with backenable.
11802  *
11803  * tcp_sod_wakeup() is called where tcp_rcv_drain() would be called in the
11804  * non sodirect connection but as there are no tcp_tcv_list mblk_t's we deal
11805  * with the rcv_wnd and push timer and call the sodirect wakeup function.
11806  *
11807  * Must be called with sodp->sod_lockp held and will return with the lock
11808  * released.
11809  */
11810 static uint_t
11811 tcp_rcv_sod_wakeup(tcp_t *tcp, sodirect_t *sodp)
11812 {
11813 	queue_t		*q = tcp->tcp_rq;
11814 	uint_t		thwin;
11815 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11816 	uint_t		ret = 0;
11817 
11818 	/* Can't be an eager connection */
11819 	ASSERT(tcp->tcp_listener == NULL);
11820 
11821 	/* Caller must have lock held */
11822 	ASSERT(MUTEX_HELD(sodp->sod_lockp));
11823 
11824 	/* Sodirect mode so must not be a tcp_rcv_list */
11825 	ASSERT(tcp->tcp_rcv_list == NULL);
11826 
11827 	if (SOD_QFULL(sodp)) {
11828 		/* Q is full, mark Q for need backenable */
11829 		SOD_QSETBE(sodp);
11830 	}
11831 	/* Last advertised rwnd, i.e. rwnd last sent in a packet */
11832 	thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
11833 	    << tcp->tcp_rcv_ws;
11834 	/* This is peer's calculated send window (our available rwnd). */
11835 	thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
11836 	/*
11837 	 * Increase the receive window to max.  But we need to do receiver
11838 	 * SWS avoidance.  This means that we need to check the increase of
11839 	 * of receive window is at least 1 MSS.
11840 	 */
11841 	if (!SOD_QFULL(sodp) && (q->q_hiwat - thwin >= tcp->tcp_mss)) {
11842 		/*
11843 		 * If the window that the other side knows is less than max
11844 		 * deferred acks segments, send an update immediately.
11845 		 */
11846 		if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) {
11847 			BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate);
11848 			ret = TH_ACK_NEEDED;
11849 		}
11850 		tcp->tcp_rwnd = q->q_hiwat;
11851 	}
11852 
11853 	if (!SOD_QEMPTY(sodp)) {
11854 		/* Wakeup to socket */
11855 		sodp->sod_state &= SOD_WAKE_CLR;
11856 		sodp->sod_state |= SOD_WAKE_DONE;
11857 		(sodp->sod_wakeup)(sodp);
11858 		/* wakeup() does the mutex_ext() */
11859 	} else {
11860 		/* Q is empty, no need to wake */
11861 		sodp->sod_state &= SOD_WAKE_CLR;
11862 		sodp->sod_state |= SOD_WAKE_NOT;
11863 		mutex_exit(sodp->sod_lockp);
11864 	}
11865 
11866 	/* No need for the push timer now. */
11867 	if (tcp->tcp_push_tid != 0) {
11868 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
11869 		tcp->tcp_push_tid = 0;
11870 	}
11871 
11872 	return (ret);
11873 }
11874 
11875 /*
11876  * Called where tcp_rcv_enqueue()/putnext(RD(q)) would be. For M_DATA
11877  * mblk_t's if uioa enabled then start a uioa asynchronous copy directly
11878  * to the user-land buffer and flag the mblk_t as such.
11879  *
11880  * Also, handle tcp_rwnd.
11881  */
11882 uint_t
11883 tcp_rcv_sod_enqueue(tcp_t *tcp, sodirect_t *sodp, mblk_t *mp, uint_t seg_len)
11884 {
11885 	uioa_t		*uioap = &sodp->sod_uioa;
11886 	boolean_t	qfull;
11887 	uint_t		thwin;
11888 
11889 	/* Can't be an eager connection */
11890 	ASSERT(tcp->tcp_listener == NULL);
11891 
11892 	/* Caller must have lock held */
11893 	ASSERT(MUTEX_HELD(sodp->sod_lockp));
11894 
11895 	/* Sodirect mode so must not be a tcp_rcv_list */
11896 	ASSERT(tcp->tcp_rcv_list == NULL);
11897 
11898 	/* Passed in segment length must be equal to mblk_t chain data size */
11899 	ASSERT(seg_len == msgdsize(mp));
11900 
11901 	if (DB_TYPE(mp) != M_DATA) {
11902 		/* Only process M_DATA mblk_t's */
11903 		goto enq;
11904 	}
11905 	if (uioap->uioa_state & UIOA_ENABLED) {
11906 		/* Uioa is enabled */
11907 		mblk_t		*mp1 = mp;
11908 		mblk_t		*lmp = NULL;
11909 
11910 		if (seg_len > uioap->uio_resid) {
11911 			/*
11912 			 * There isn't enough uio space for the mblk_t chain
11913 			 * so disable uioa such that this and any additional
11914 			 * mblk_t data is handled by the socket and schedule
11915 			 * the socket for wakeup to finish this uioa.
11916 			 */
11917 			uioap->uioa_state &= UIOA_CLR;
11918 			uioap->uioa_state |= UIOA_FINI;
11919 			if (sodp->sod_state & SOD_WAKE_NOT) {
11920 				sodp->sod_state &= SOD_WAKE_CLR;
11921 				sodp->sod_state |= SOD_WAKE_NEED;
11922 			}
11923 			goto enq;
11924 		}
11925 		do {
11926 			uint32_t	len = MBLKL(mp1);
11927 
11928 			if (!uioamove(mp1->b_rptr, len, UIO_READ, uioap)) {
11929 				/* Scheduled, mark dblk_t as such */
11930 				DB_FLAGS(mp1) |= DBLK_UIOA;
11931 			} else {
11932 				/* Error, turn off async processing */
11933 				uioap->uioa_state &= UIOA_CLR;
11934 				uioap->uioa_state |= UIOA_FINI;
11935 				break;
11936 			}
11937 			lmp = mp1;
11938 		} while ((mp1 = mp1->b_cont) != NULL);
11939 
11940 		if (mp1 != NULL || uioap->uio_resid == 0) {
11941 			/*
11942 			 * Not all mblk_t(s) uioamoved (error) or all uio
11943 			 * space has been consumed so schedule the socket
11944 			 * for wakeup to finish this uio.
11945 			 */
11946 			sodp->sod_state &= SOD_WAKE_CLR;
11947 			sodp->sod_state |= SOD_WAKE_NEED;
11948 
11949 			/* Break the mblk chain if neccessary. */
11950 			if (mp1 != NULL && lmp != NULL) {
11951 				mp->b_next = mp1;
11952 				lmp->b_cont = NULL;
11953 			}
11954 		}
11955 	} else if (uioap->uioa_state & UIOA_FINI) {
11956 		/*
11957 		 * Post UIO_ENABLED waiting for socket to finish processing
11958 		 * so just enqueue and update tcp_rwnd.
11959 		 */
11960 		if (SOD_QFULL(sodp))
11961 			tcp->tcp_rwnd -= seg_len;
11962 	} else if (sodp->sod_want > 0) {
11963 		/*
11964 		 * Uioa isn't enabled but sodirect has a pending read().
11965 		 */
11966 		if (SOD_QCNT(sodp) + seg_len >= sodp->sod_want) {
11967 			if (sodp->sod_state & SOD_WAKE_NOT) {
11968 				/* Schedule socket for wakeup */
11969 				sodp->sod_state &= SOD_WAKE_CLR;
11970 				sodp->sod_state |= SOD_WAKE_NEED;
11971 			}
11972 			tcp->tcp_rwnd -= seg_len;
11973 		}
11974 	} else if (SOD_QCNT(sodp) + seg_len >= tcp->tcp_rq->q_hiwat >> 3) {
11975 		/*
11976 		 * No pending sodirect read() so used the default
11977 		 * TCP push logic to guess that a push is needed.
11978 		 */
11979 		if (sodp->sod_state & SOD_WAKE_NOT) {
11980 			/* Schedule socket for wakeup */
11981 			sodp->sod_state &= SOD_WAKE_CLR;
11982 			sodp->sod_state |= SOD_WAKE_NEED;
11983 		}
11984 		tcp->tcp_rwnd -= seg_len;
11985 	} else {
11986 		/* Just update tcp_rwnd */
11987 		tcp->tcp_rwnd -= seg_len;
11988 	}
11989 enq:
11990 	qfull = SOD_QFULL(sodp);
11991 
11992 	(sodp->sod_enqueue)(sodp, mp);
11993 
11994 	if (! qfull && SOD_QFULL(sodp)) {
11995 		/* Wasn't QFULL, now QFULL, need back-enable */
11996 		SOD_QSETBE(sodp);
11997 	}
11998 
11999 	/*
12000 	 * Check to see if remote avail swnd < mss due to delayed ACK,
12001 	 * first get advertised rwnd.
12002 	 */
12003 	thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win));
12004 	/* Minus delayed ACK count */
12005 	thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
12006 	if (thwin < tcp->tcp_mss) {
12007 		/* Remote avail swnd < mss, need ACK now */
12008 		return (TH_ACK_NEEDED);
12009 	}
12010 
12011 	return (0);
12012 }
12013 
12014 /*
12015  * DEFAULT TCP ENTRY POINT via squeue on READ side.
12016  *
12017  * This is the default entry function into TCP on the read side. TCP is
12018  * always entered via squeue i.e. using squeue's for mutual exclusion.
12019  * When classifier does a lookup to find the tcp, it also puts a reference
12020  * on the conn structure associated so the tcp is guaranteed to exist
12021  * when we come here. We still need to check the state because it might
12022  * as well has been closed. The squeue processing function i.e. squeue_enter,
12023  * squeue_enter_nodrain, or squeue_drain is responsible for doing the
12024  * CONN_DEC_REF.
12025  *
12026  * Apart from the default entry point, IP also sends packets directly to
12027  * tcp_rput_data for AF_INET fast path and tcp_conn_request for incoming
12028  * connections.
12029  */
12030 void
12031 tcp_input(void *arg, mblk_t *mp, void *arg2)
12032 {
12033 	conn_t	*connp = (conn_t *)arg;
12034 	tcp_t	*tcp = (tcp_t *)connp->conn_tcp;
12035 
12036 	/* arg2 is the sqp */
12037 	ASSERT(arg2 != NULL);
12038 	ASSERT(mp != NULL);
12039 
12040 	/*
12041 	 * Don't accept any input on a closed tcp as this TCP logically does
12042 	 * not exist on the system. Don't proceed further with this TCP.
12043 	 * For eg. this packet could trigger another close of this tcp
12044 	 * which would be disastrous for tcp_refcnt. tcp_close_detached /
12045 	 * tcp_clean_death / tcp_closei_local must be called at most once
12046 	 * on a TCP. In this case we need to refeed the packet into the
12047 	 * classifier and figure out where the packet should go. Need to
12048 	 * preserve the recv_ill somehow. Until we figure that out, for
12049 	 * now just drop the packet if we can't classify the packet.
12050 	 */
12051 	if (tcp->tcp_state == TCPS_CLOSED ||
12052 	    tcp->tcp_state == TCPS_BOUND) {
12053 		conn_t	*new_connp;
12054 		ip_stack_t *ipst = tcp->tcp_tcps->tcps_netstack->netstack_ip;
12055 
12056 		new_connp = ipcl_classify(mp, connp->conn_zoneid, ipst);
12057 		if (new_connp != NULL) {
12058 			tcp_reinput(new_connp, mp, arg2);
12059 			return;
12060 		}
12061 		/* We failed to classify. For now just drop the packet */
12062 		freemsg(mp);
12063 		return;
12064 	}
12065 
12066 	if (DB_TYPE(mp) == M_DATA)
12067 		tcp_rput_data(connp, mp, arg2);
12068 	else
12069 		tcp_rput_common(tcp, mp);
12070 }
12071 
12072 /*
12073  * The read side put procedure.
12074  * The packets passed up by ip are assume to be aligned according to
12075  * OK_32PTR and the IP+TCP headers fitting in the first mblk.
12076  */
12077 static void
12078 tcp_rput_common(tcp_t *tcp, mblk_t *mp)
12079 {
12080 	/*
12081 	 * tcp_rput_data() does not expect M_CTL except for the case
12082 	 * where tcp_ipv6_recvancillary is set and we get a IN_PKTINFO
12083 	 * type. Need to make sure that any other M_CTLs don't make
12084 	 * it to tcp_rput_data since it is not expecting any and doesn't
12085 	 * check for it.
12086 	 */
12087 	if (DB_TYPE(mp) == M_CTL) {
12088 		switch (*(uint32_t *)(mp->b_rptr)) {
12089 		case TCP_IOC_ABORT_CONN:
12090 			/*
12091 			 * Handle connection abort request.
12092 			 */
12093 			tcp_ioctl_abort_handler(tcp, mp);
12094 			return;
12095 		case IPSEC_IN:
12096 			/*
12097 			 * Only secure icmp arrive in TCP and they
12098 			 * don't go through data path.
12099 			 */
12100 			tcp_icmp_error(tcp, mp);
12101 			return;
12102 		case IN_PKTINFO:
12103 			/*
12104 			 * Handle IPV6_RECVPKTINFO socket option on AF_INET6
12105 			 * sockets that are receiving IPv4 traffic. tcp
12106 			 */
12107 			ASSERT(tcp->tcp_family == AF_INET6);
12108 			ASSERT(tcp->tcp_ipv6_recvancillary &
12109 			    TCP_IPV6_RECVPKTINFO);
12110 			tcp_rput_data(tcp->tcp_connp, mp,
12111 			    tcp->tcp_connp->conn_sqp);
12112 			return;
12113 		case MDT_IOC_INFO_UPDATE:
12114 			/*
12115 			 * Handle Multidata information update; the
12116 			 * following routine will free the message.
12117 			 */
12118 			if (tcp->tcp_connp->conn_mdt_ok) {
12119 				tcp_mdt_update(tcp,
12120 				    &((ip_mdt_info_t *)mp->b_rptr)->mdt_capab,
12121 				    B_FALSE);
12122 			}
12123 			freemsg(mp);
12124 			return;
12125 		case LSO_IOC_INFO_UPDATE:
12126 			/*
12127 			 * Handle LSO information update; the following
12128 			 * routine will free the message.
12129 			 */
12130 			if (tcp->tcp_connp->conn_lso_ok) {
12131 				tcp_lso_update(tcp,
12132 				    &((ip_lso_info_t *)mp->b_rptr)->lso_capab);
12133 			}
12134 			freemsg(mp);
12135 			return;
12136 		default:
12137 			/*
12138 			 * tcp_icmp_err() will process the M_CTL packets.
12139 			 * Non-ICMP packets, if any, will be discarded in
12140 			 * tcp_icmp_err(). We will process the ICMP packet
12141 			 * even if we are TCP_IS_DETACHED_NONEAGER as the
12142 			 * incoming ICMP packet may result in changing
12143 			 * the tcp_mss, which we would need if we have
12144 			 * packets to retransmit.
12145 			 */
12146 			tcp_icmp_error(tcp, mp);
12147 			return;
12148 		}
12149 	}
12150 
12151 	/* No point processing the message if tcp is already closed */
12152 	if (TCP_IS_DETACHED_NONEAGER(tcp)) {
12153 		freemsg(mp);
12154 		return;
12155 	}
12156 
12157 	tcp_rput_other(tcp, mp);
12158 }
12159 
12160 
12161 /* The minimum of smoothed mean deviation in RTO calculation. */
12162 #define	TCP_SD_MIN	400
12163 
12164 /*
12165  * Set RTO for this connection.  The formula is from Jacobson and Karels'
12166  * "Congestion Avoidance and Control" in SIGCOMM '88.  The variable names
12167  * are the same as those in Appendix A.2 of that paper.
12168  *
12169  * m = new measurement
12170  * sa = smoothed RTT average (8 * average estimates).
12171  * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates).
12172  */
12173 static void
12174 tcp_set_rto(tcp_t *tcp, clock_t rtt)
12175 {
12176 	long m = TICK_TO_MSEC(rtt);
12177 	clock_t sa = tcp->tcp_rtt_sa;
12178 	clock_t sv = tcp->tcp_rtt_sd;
12179 	clock_t rto;
12180 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12181 
12182 	BUMP_MIB(&tcps->tcps_mib, tcpRttUpdate);
12183 	tcp->tcp_rtt_update++;
12184 
12185 	/* tcp_rtt_sa is not 0 means this is a new sample. */
12186 	if (sa != 0) {
12187 		/*
12188 		 * Update average estimator:
12189 		 *	new rtt = 7/8 old rtt + 1/8 Error
12190 		 */
12191 
12192 		/* m is now Error in estimate. */
12193 		m -= sa >> 3;
12194 		if ((sa += m) <= 0) {
12195 			/*
12196 			 * Don't allow the smoothed average to be negative.
12197 			 * We use 0 to denote reinitialization of the
12198 			 * variables.
12199 			 */
12200 			sa = 1;
12201 		}
12202 
12203 		/*
12204 		 * Update deviation estimator:
12205 		 *	new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev)
12206 		 */
12207 		if (m < 0)
12208 			m = -m;
12209 		m -= sv >> 2;
12210 		sv += m;
12211 	} else {
12212 		/*
12213 		 * This follows BSD's implementation.  So the reinitialized
12214 		 * RTO is 3 * m.  We cannot go less than 2 because if the
12215 		 * link is bandwidth dominated, doubling the window size
12216 		 * during slow start means doubling the RTT.  We want to be
12217 		 * more conservative when we reinitialize our estimates.  3
12218 		 * is just a convenient number.
12219 		 */
12220 		sa = m << 3;
12221 		sv = m << 1;
12222 	}
12223 	if (sv < TCP_SD_MIN) {
12224 		/*
12225 		 * We do not know that if sa captures the delay ACK
12226 		 * effect as in a long train of segments, a receiver
12227 		 * does not delay its ACKs.  So set the minimum of sv
12228 		 * to be TCP_SD_MIN, which is default to 400 ms, twice
12229 		 * of BSD DATO.  That means the minimum of mean
12230 		 * deviation is 100 ms.
12231 		 *
12232 		 */
12233 		sv = TCP_SD_MIN;
12234 	}
12235 	tcp->tcp_rtt_sa = sa;
12236 	tcp->tcp_rtt_sd = sv;
12237 	/*
12238 	 * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv)
12239 	 *
12240 	 * Add tcp_rexmit_interval extra in case of extreme environment
12241 	 * where the algorithm fails to work.  The default value of
12242 	 * tcp_rexmit_interval_extra should be 0.
12243 	 *
12244 	 * As we use a finer grained clock than BSD and update
12245 	 * RTO for every ACKs, add in another .25 of RTT to the
12246 	 * deviation of RTO to accomodate burstiness of 1/4 of
12247 	 * window size.
12248 	 */
12249 	rto = (sa >> 3) + sv + tcps->tcps_rexmit_interval_extra + (sa >> 5);
12250 
12251 	if (rto > tcps->tcps_rexmit_interval_max) {
12252 		tcp->tcp_rto = tcps->tcps_rexmit_interval_max;
12253 	} else if (rto < tcps->tcps_rexmit_interval_min) {
12254 		tcp->tcp_rto = tcps->tcps_rexmit_interval_min;
12255 	} else {
12256 		tcp->tcp_rto = rto;
12257 	}
12258 
12259 	/* Now, we can reset tcp_timer_backoff to use the new RTO... */
12260 	tcp->tcp_timer_backoff = 0;
12261 }
12262 
12263 /*
12264  * tcp_get_seg_mp() is called to get the pointer to a segment in the
12265  * send queue which starts at the given seq. no.
12266  *
12267  * Parameters:
12268  *	tcp_t *tcp: the tcp instance pointer.
12269  *	uint32_t seq: the starting seq. no of the requested segment.
12270  *	int32_t *off: after the execution, *off will be the offset to
12271  *		the returned mblk which points to the requested seq no.
12272  *		It is the caller's responsibility to send in a non-null off.
12273  *
12274  * Return:
12275  *	A mblk_t pointer pointing to the requested segment in send queue.
12276  */
12277 static mblk_t *
12278 tcp_get_seg_mp(tcp_t *tcp, uint32_t seq, int32_t *off)
12279 {
12280 	int32_t	cnt;
12281 	mblk_t	*mp;
12282 
12283 	/* Defensive coding.  Make sure we don't send incorrect data. */
12284 	if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt))
12285 		return (NULL);
12286 
12287 	cnt = seq - tcp->tcp_suna;
12288 	mp = tcp->tcp_xmit_head;
12289 	while (cnt > 0 && mp != NULL) {
12290 		cnt -= mp->b_wptr - mp->b_rptr;
12291 		if (cnt < 0) {
12292 			cnt += mp->b_wptr - mp->b_rptr;
12293 			break;
12294 		}
12295 		mp = mp->b_cont;
12296 	}
12297 	ASSERT(mp != NULL);
12298 	*off = cnt;
12299 	return (mp);
12300 }
12301 
12302 /*
12303  * This function handles all retransmissions if SACK is enabled for this
12304  * connection.  First it calculates how many segments can be retransmitted
12305  * based on tcp_pipe.  Then it goes thru the notsack list to find eligible
12306  * segments.  A segment is eligible if sack_cnt for that segment is greater
12307  * than or equal tcp_dupack_fast_retransmit.  After it has retransmitted
12308  * all eligible segments, it checks to see if TCP can send some new segments
12309  * (fast recovery).  If it can, set the appropriate flag for tcp_rput_data().
12310  *
12311  * Parameters:
12312  *	tcp_t *tcp: the tcp structure of the connection.
12313  *	uint_t *flags: in return, appropriate value will be set for
12314  *	tcp_rput_data().
12315  */
12316 static void
12317 tcp_sack_rxmit(tcp_t *tcp, uint_t *flags)
12318 {
12319 	notsack_blk_t	*notsack_blk;
12320 	int32_t		usable_swnd;
12321 	int32_t		mss;
12322 	uint32_t	seg_len;
12323 	mblk_t		*xmit_mp;
12324 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12325 
12326 	ASSERT(tcp->tcp_sack_info != NULL);
12327 	ASSERT(tcp->tcp_notsack_list != NULL);
12328 	ASSERT(tcp->tcp_rexmit == B_FALSE);
12329 
12330 	/* Defensive coding in case there is a bug... */
12331 	if (tcp->tcp_notsack_list == NULL) {
12332 		return;
12333 	}
12334 	notsack_blk = tcp->tcp_notsack_list;
12335 	mss = tcp->tcp_mss;
12336 
12337 	/*
12338 	 * Limit the num of outstanding data in the network to be
12339 	 * tcp_cwnd_ssthresh, which is half of the original congestion wnd.
12340 	 */
12341 	usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe;
12342 
12343 	/* At least retransmit 1 MSS of data. */
12344 	if (usable_swnd <= 0) {
12345 		usable_swnd = mss;
12346 	}
12347 
12348 	/* Make sure no new RTT samples will be taken. */
12349 	tcp->tcp_csuna = tcp->tcp_snxt;
12350 
12351 	notsack_blk = tcp->tcp_notsack_list;
12352 	while (usable_swnd > 0) {
12353 		mblk_t		*snxt_mp, *tmp_mp;
12354 		tcp_seq		begin = tcp->tcp_sack_snxt;
12355 		tcp_seq		end;
12356 		int32_t		off;
12357 
12358 		for (; notsack_blk != NULL; notsack_blk = notsack_blk->next) {
12359 			if (SEQ_GT(notsack_blk->end, begin) &&
12360 			    (notsack_blk->sack_cnt >=
12361 			    tcps->tcps_dupack_fast_retransmit)) {
12362 				end = notsack_blk->end;
12363 				if (SEQ_LT(begin, notsack_blk->begin)) {
12364 					begin = notsack_blk->begin;
12365 				}
12366 				break;
12367 			}
12368 		}
12369 		/*
12370 		 * All holes are filled.  Manipulate tcp_cwnd to send more
12371 		 * if we can.  Note that after the SACK recovery, tcp_cwnd is
12372 		 * set to tcp_cwnd_ssthresh.
12373 		 */
12374 		if (notsack_blk == NULL) {
12375 			usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe;
12376 			if (usable_swnd <= 0 || tcp->tcp_unsent == 0) {
12377 				tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna;
12378 				ASSERT(tcp->tcp_cwnd > 0);
12379 				return;
12380 			} else {
12381 				usable_swnd = usable_swnd / mss;
12382 				tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna +
12383 				    MAX(usable_swnd * mss, mss);
12384 				*flags |= TH_XMIT_NEEDED;
12385 				return;
12386 			}
12387 		}
12388 
12389 		/*
12390 		 * Note that we may send more than usable_swnd allows here
12391 		 * because of round off, but no more than 1 MSS of data.
12392 		 */
12393 		seg_len = end - begin;
12394 		if (seg_len > mss)
12395 			seg_len = mss;
12396 		snxt_mp = tcp_get_seg_mp(tcp, begin, &off);
12397 		ASSERT(snxt_mp != NULL);
12398 		/* This should not happen.  Defensive coding again... */
12399 		if (snxt_mp == NULL) {
12400 			return;
12401 		}
12402 
12403 		xmit_mp = tcp_xmit_mp(tcp, snxt_mp, seg_len, &off,
12404 		    &tmp_mp, begin, B_TRUE, &seg_len, B_TRUE);
12405 		if (xmit_mp == NULL)
12406 			return;
12407 
12408 		usable_swnd -= seg_len;
12409 		tcp->tcp_pipe += seg_len;
12410 		tcp->tcp_sack_snxt = begin + seg_len;
12411 
12412 		tcp_send_data(tcp, tcp->tcp_wq, xmit_mp);
12413 
12414 		/*
12415 		 * Update the send timestamp to avoid false retransmission.
12416 		 */
12417 		snxt_mp->b_prev = (mblk_t *)lbolt;
12418 
12419 		BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
12420 		UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, seg_len);
12421 		BUMP_MIB(&tcps->tcps_mib, tcpOutSackRetransSegs);
12422 		/*
12423 		 * Update tcp_rexmit_max to extend this SACK recovery phase.
12424 		 * This happens when new data sent during fast recovery is
12425 		 * also lost.  If TCP retransmits those new data, it needs
12426 		 * to extend SACK recover phase to avoid starting another
12427 		 * fast retransmit/recovery unnecessarily.
12428 		 */
12429 		if (SEQ_GT(tcp->tcp_sack_snxt, tcp->tcp_rexmit_max)) {
12430 			tcp->tcp_rexmit_max = tcp->tcp_sack_snxt;
12431 		}
12432 	}
12433 }
12434 
12435 /*
12436  * This function handles policy checking at TCP level for non-hard_bound/
12437  * detached connections.
12438  */
12439 static boolean_t
12440 tcp_check_policy(tcp_t *tcp, mblk_t *first_mp, ipha_t *ipha, ip6_t *ip6h,
12441     boolean_t secure, boolean_t mctl_present)
12442 {
12443 	ipsec_latch_t *ipl = NULL;
12444 	ipsec_action_t *act = NULL;
12445 	mblk_t *data_mp;
12446 	ipsec_in_t *ii;
12447 	const char *reason;
12448 	kstat_named_t *counter;
12449 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12450 	ipsec_stack_t	*ipss;
12451 	ip_stack_t	*ipst;
12452 
12453 	ASSERT(mctl_present || !secure);
12454 
12455 	ASSERT((ipha == NULL && ip6h != NULL) ||
12456 	    (ip6h == NULL && ipha != NULL));
12457 
12458 	/*
12459 	 * We don't necessarily have an ipsec_in_act action to verify
12460 	 * policy because of assymetrical policy where we have only
12461 	 * outbound policy and no inbound policy (possible with global
12462 	 * policy).
12463 	 */
12464 	if (!secure) {
12465 		if (act == NULL || act->ipa_act.ipa_type == IPSEC_ACT_BYPASS ||
12466 		    act->ipa_act.ipa_type == IPSEC_ACT_CLEAR)
12467 			return (B_TRUE);
12468 		ipsec_log_policy_failure(IPSEC_POLICY_MISMATCH,
12469 		    "tcp_check_policy", ipha, ip6h, secure,
12470 		    tcps->tcps_netstack);
12471 		ipss = tcps->tcps_netstack->netstack_ipsec;
12472 
12473 		ip_drop_packet(first_mp, B_TRUE, NULL, NULL,
12474 		    DROPPER(ipss, ipds_tcp_clear),
12475 		    &tcps->tcps_dropper);
12476 		return (B_FALSE);
12477 	}
12478 
12479 	/*
12480 	 * We have a secure packet.
12481 	 */
12482 	if (act == NULL) {
12483 		ipsec_log_policy_failure(IPSEC_POLICY_NOT_NEEDED,
12484 		    "tcp_check_policy", ipha, ip6h, secure,
12485 		    tcps->tcps_netstack);
12486 		ipss = tcps->tcps_netstack->netstack_ipsec;
12487 
12488 		ip_drop_packet(first_mp, B_TRUE, NULL, NULL,
12489 		    DROPPER(ipss, ipds_tcp_secure),
12490 		    &tcps->tcps_dropper);
12491 		return (B_FALSE);
12492 	}
12493 
12494 	/*
12495 	 * XXX This whole routine is currently incorrect.  ipl should
12496 	 * be set to the latch pointer, but is currently not set, so
12497 	 * we initialize it to NULL to avoid picking up random garbage.
12498 	 */
12499 	if (ipl == NULL)
12500 		return (B_TRUE);
12501 
12502 	data_mp = first_mp->b_cont;
12503 
12504 	ii = (ipsec_in_t *)first_mp->b_rptr;
12505 
12506 	ipst = tcps->tcps_netstack->netstack_ip;
12507 
12508 	if (ipsec_check_ipsecin_latch(ii, data_mp, ipl, ipha, ip6h, &reason,
12509 	    &counter, tcp->tcp_connp)) {
12510 		BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded);
12511 		return (B_TRUE);
12512 	}
12513 	(void) strlog(TCP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE,
12514 	    "tcp inbound policy mismatch: %s, packet dropped\n",
12515 	    reason);
12516 	BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed);
12517 
12518 	ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter,
12519 	    &tcps->tcps_dropper);
12520 	return (B_FALSE);
12521 }
12522 
12523 /*
12524  * tcp_ss_rexmit() is called in tcp_rput_data() to do slow start
12525  * retransmission after a timeout.
12526  *
12527  * To limit the number of duplicate segments, we limit the number of segment
12528  * to be sent in one time to tcp_snd_burst, the burst variable.
12529  */
12530 static void
12531 tcp_ss_rexmit(tcp_t *tcp)
12532 {
12533 	uint32_t	snxt;
12534 	uint32_t	smax;
12535 	int32_t		win;
12536 	int32_t		mss;
12537 	int32_t		off;
12538 	int32_t		burst = tcp->tcp_snd_burst;
12539 	mblk_t		*snxt_mp;
12540 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12541 
12542 	/*
12543 	 * Note that tcp_rexmit can be set even though TCP has retransmitted
12544 	 * all unack'ed segments.
12545 	 */
12546 	if (SEQ_LT(tcp->tcp_rexmit_nxt, tcp->tcp_rexmit_max)) {
12547 		smax = tcp->tcp_rexmit_max;
12548 		snxt = tcp->tcp_rexmit_nxt;
12549 		if (SEQ_LT(snxt, tcp->tcp_suna)) {
12550 			snxt = tcp->tcp_suna;
12551 		}
12552 		win = MIN(tcp->tcp_cwnd, tcp->tcp_swnd);
12553 		win -= snxt - tcp->tcp_suna;
12554 		mss = tcp->tcp_mss;
12555 		snxt_mp = tcp_get_seg_mp(tcp, snxt, &off);
12556 
12557 		while (SEQ_LT(snxt, smax) && (win > 0) &&
12558 		    (burst > 0) && (snxt_mp != NULL)) {
12559 			mblk_t	*xmit_mp;
12560 			mblk_t	*old_snxt_mp = snxt_mp;
12561 			uint32_t cnt = mss;
12562 
12563 			if (win < cnt) {
12564 				cnt = win;
12565 			}
12566 			if (SEQ_GT(snxt + cnt, smax)) {
12567 				cnt = smax - snxt;
12568 			}
12569 			xmit_mp = tcp_xmit_mp(tcp, snxt_mp, cnt, &off,
12570 			    &snxt_mp, snxt, B_TRUE, &cnt, B_TRUE);
12571 			if (xmit_mp == NULL)
12572 				return;
12573 
12574 			tcp_send_data(tcp, tcp->tcp_wq, xmit_mp);
12575 
12576 			snxt += cnt;
12577 			win -= cnt;
12578 			/*
12579 			 * Update the send timestamp to avoid false
12580 			 * retransmission.
12581 			 */
12582 			old_snxt_mp->b_prev = (mblk_t *)lbolt;
12583 			BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
12584 			UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, cnt);
12585 
12586 			tcp->tcp_rexmit_nxt = snxt;
12587 			burst--;
12588 		}
12589 		/*
12590 		 * If we have transmitted all we have at the time
12591 		 * we started the retranmission, we can leave
12592 		 * the rest of the job to tcp_wput_data().  But we
12593 		 * need to check the send window first.  If the
12594 		 * win is not 0, go on with tcp_wput_data().
12595 		 */
12596 		if (SEQ_LT(snxt, smax) || win == 0) {
12597 			return;
12598 		}
12599 	}
12600 	/* Only call tcp_wput_data() if there is data to be sent. */
12601 	if (tcp->tcp_unsent) {
12602 		tcp_wput_data(tcp, NULL, B_FALSE);
12603 	}
12604 }
12605 
12606 /*
12607  * Process all TCP option in SYN segment.  Note that this function should
12608  * be called after tcp_adapt_ire() is called so that the necessary info
12609  * from IRE is already set in the tcp structure.
12610  *
12611  * This function sets up the correct tcp_mss value according to the
12612  * MSS option value and our header size.  It also sets up the window scale
12613  * and timestamp values, and initialize SACK info blocks.  But it does not
12614  * change receive window size after setting the tcp_mss value.  The caller
12615  * should do the appropriate change.
12616  */
12617 void
12618 tcp_process_options(tcp_t *tcp, tcph_t *tcph)
12619 {
12620 	int options;
12621 	tcp_opt_t tcpopt;
12622 	uint32_t mss_max;
12623 	char *tmp_tcph;
12624 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12625 
12626 	tcpopt.tcp = NULL;
12627 	options = tcp_parse_options(tcph, &tcpopt);
12628 
12629 	/*
12630 	 * Process MSS option.  Note that MSS option value does not account
12631 	 * for IP or TCP options.  This means that it is equal to MTU - minimum
12632 	 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for
12633 	 * IPv6.
12634 	 */
12635 	if (!(options & TCP_OPT_MSS_PRESENT)) {
12636 		if (tcp->tcp_ipversion == IPV4_VERSION)
12637 			tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv4;
12638 		else
12639 			tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv6;
12640 	} else {
12641 		if (tcp->tcp_ipversion == IPV4_VERSION)
12642 			mss_max = tcps->tcps_mss_max_ipv4;
12643 		else
12644 			mss_max = tcps->tcps_mss_max_ipv6;
12645 		if (tcpopt.tcp_opt_mss < tcps->tcps_mss_min)
12646 			tcpopt.tcp_opt_mss = tcps->tcps_mss_min;
12647 		else if (tcpopt.tcp_opt_mss > mss_max)
12648 			tcpopt.tcp_opt_mss = mss_max;
12649 	}
12650 
12651 	/* Process Window Scale option. */
12652 	if (options & TCP_OPT_WSCALE_PRESENT) {
12653 		tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale;
12654 		tcp->tcp_snd_ws_ok = B_TRUE;
12655 	} else {
12656 		tcp->tcp_snd_ws = B_FALSE;
12657 		tcp->tcp_snd_ws_ok = B_FALSE;
12658 		tcp->tcp_rcv_ws = B_FALSE;
12659 	}
12660 
12661 	/* Process Timestamp option. */
12662 	if ((options & TCP_OPT_TSTAMP_PRESENT) &&
12663 	    (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) {
12664 		tmp_tcph = (char *)tcp->tcp_tcph;
12665 
12666 		tcp->tcp_snd_ts_ok = B_TRUE;
12667 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
12668 		tcp->tcp_last_rcv_lbolt = lbolt64;
12669 		ASSERT(OK_32PTR(tmp_tcph));
12670 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
12671 
12672 		/* Fill in our template header with basic timestamp option. */
12673 		tmp_tcph += tcp->tcp_tcp_hdr_len;
12674 		tmp_tcph[0] = TCPOPT_NOP;
12675 		tmp_tcph[1] = TCPOPT_NOP;
12676 		tmp_tcph[2] = TCPOPT_TSTAMP;
12677 		tmp_tcph[3] = TCPOPT_TSTAMP_LEN;
12678 		tcp->tcp_hdr_len += TCPOPT_REAL_TS_LEN;
12679 		tcp->tcp_tcp_hdr_len += TCPOPT_REAL_TS_LEN;
12680 		tcp->tcp_tcph->th_offset_and_rsrvd[0] += (3 << 4);
12681 	} else {
12682 		tcp->tcp_snd_ts_ok = B_FALSE;
12683 	}
12684 
12685 	/*
12686 	 * Process SACK options.  If SACK is enabled for this connection,
12687 	 * then allocate the SACK info structure.  Note the following ways
12688 	 * when tcp_snd_sack_ok is set to true.
12689 	 *
12690 	 * For active connection: in tcp_adapt_ire() called in
12691 	 * tcp_rput_other(), or in tcp_rput_other() when tcp_sack_permitted
12692 	 * is checked.
12693 	 *
12694 	 * For passive connection: in tcp_adapt_ire() called in
12695 	 * tcp_accept_comm().
12696 	 *
12697 	 * That's the reason why the extra TCP_IS_DETACHED() check is there.
12698 	 * That check makes sure that if we did not send a SACK OK option,
12699 	 * we will not enable SACK for this connection even though the other
12700 	 * side sends us SACK OK option.  For active connection, the SACK
12701 	 * info structure has already been allocated.  So we need to free
12702 	 * it if SACK is disabled.
12703 	 */
12704 	if ((options & TCP_OPT_SACK_OK_PRESENT) &&
12705 	    (tcp->tcp_snd_sack_ok ||
12706 	    (tcps->tcps_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) {
12707 		/* This should be true only in the passive case. */
12708 		if (tcp->tcp_sack_info == NULL) {
12709 			ASSERT(TCP_IS_DETACHED(tcp));
12710 			tcp->tcp_sack_info =
12711 			    kmem_cache_alloc(tcp_sack_info_cache, KM_NOSLEEP);
12712 		}
12713 		if (tcp->tcp_sack_info == NULL) {
12714 			tcp->tcp_snd_sack_ok = B_FALSE;
12715 		} else {
12716 			tcp->tcp_snd_sack_ok = B_TRUE;
12717 			if (tcp->tcp_snd_ts_ok) {
12718 				tcp->tcp_max_sack_blk = 3;
12719 			} else {
12720 				tcp->tcp_max_sack_blk = 4;
12721 			}
12722 		}
12723 	} else {
12724 		/*
12725 		 * Resetting tcp_snd_sack_ok to B_FALSE so that
12726 		 * no SACK info will be used for this
12727 		 * connection.  This assumes that SACK usage
12728 		 * permission is negotiated.  This may need
12729 		 * to be changed once this is clarified.
12730 		 */
12731 		if (tcp->tcp_sack_info != NULL) {
12732 			ASSERT(tcp->tcp_notsack_list == NULL);
12733 			kmem_cache_free(tcp_sack_info_cache,
12734 			    tcp->tcp_sack_info);
12735 			tcp->tcp_sack_info = NULL;
12736 		}
12737 		tcp->tcp_snd_sack_ok = B_FALSE;
12738 	}
12739 
12740 	/*
12741 	 * Now we know the exact TCP/IP header length, subtract
12742 	 * that from tcp_mss to get our side's MSS.
12743 	 */
12744 	tcp->tcp_mss -= tcp->tcp_hdr_len;
12745 	/*
12746 	 * Here we assume that the other side's header size will be equal to
12747 	 * our header size.  We calculate the real MSS accordingly.  Need to
12748 	 * take into additional stuffs IPsec puts in.
12749 	 *
12750 	 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header)
12751 	 */
12752 	tcpopt.tcp_opt_mss -= tcp->tcp_hdr_len + tcp->tcp_ipsec_overhead -
12753 	    ((tcp->tcp_ipversion == IPV4_VERSION ?
12754 	    IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH);
12755 
12756 	/*
12757 	 * Set MSS to the smaller one of both ends of the connection.
12758 	 * We should not have called tcp_mss_set() before, but our
12759 	 * side of the MSS should have been set to a proper value
12760 	 * by tcp_adapt_ire().  tcp_mss_set() will also set up the
12761 	 * STREAM head parameters properly.
12762 	 *
12763 	 * If we have a larger-than-16-bit window but the other side
12764 	 * didn't want to do window scale, tcp_rwnd_set() will take
12765 	 * care of that.
12766 	 */
12767 	tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss), B_TRUE);
12768 }
12769 
12770 /*
12771  * Sends the T_CONN_IND to the listener. The caller calls this
12772  * functions via squeue to get inside the listener's perimeter
12773  * once the 3 way hand shake is done a T_CONN_IND needs to be
12774  * sent. As an optimization, the caller can call this directly
12775  * if listener's perimeter is same as eager's.
12776  */
12777 /* ARGSUSED */
12778 void
12779 tcp_send_conn_ind(void *arg, mblk_t *mp, void *arg2)
12780 {
12781 	conn_t			*lconnp = (conn_t *)arg;
12782 	tcp_t			*listener = lconnp->conn_tcp;
12783 	tcp_t			*tcp;
12784 	struct T_conn_ind	*conn_ind;
12785 	ipaddr_t 		*addr_cache;
12786 	boolean_t		need_send_conn_ind = B_FALSE;
12787 	tcp_stack_t		*tcps = listener->tcp_tcps;
12788 
12789 	/* retrieve the eager */
12790 	conn_ind = (struct T_conn_ind *)mp->b_rptr;
12791 	ASSERT(conn_ind->OPT_offset != 0 &&
12792 	    conn_ind->OPT_length == sizeof (intptr_t));
12793 	bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp,
12794 	    conn_ind->OPT_length);
12795 
12796 	/*
12797 	 * TLI/XTI applications will get confused by
12798 	 * sending eager as an option since it violates
12799 	 * the option semantics. So remove the eager as
12800 	 * option since TLI/XTI app doesn't need it anyway.
12801 	 */
12802 	if (!TCP_IS_SOCKET(listener)) {
12803 		conn_ind->OPT_length = 0;
12804 		conn_ind->OPT_offset = 0;
12805 	}
12806 	if (listener->tcp_state == TCPS_CLOSED ||
12807 	    TCP_IS_DETACHED(listener)) {
12808 		/*
12809 		 * If listener has closed, it would have caused a
12810 		 * a cleanup/blowoff to happen for the eager. We
12811 		 * just need to return.
12812 		 */
12813 		freemsg(mp);
12814 		return;
12815 	}
12816 
12817 
12818 	/*
12819 	 * if the conn_req_q is full defer passing up the
12820 	 * T_CONN_IND until space is availabe after t_accept()
12821 	 * processing
12822 	 */
12823 	mutex_enter(&listener->tcp_eager_lock);
12824 
12825 	/*
12826 	 * Take the eager out, if it is in the list of droppable eagers
12827 	 * as we are here because the 3W handshake is over.
12828 	 */
12829 	MAKE_UNDROPPABLE(tcp);
12830 
12831 	if (listener->tcp_conn_req_cnt_q < listener->tcp_conn_req_max) {
12832 		tcp_t *tail;
12833 
12834 		/*
12835 		 * The eager already has an extra ref put in tcp_rput_data
12836 		 * so that it stays till accept comes back even though it
12837 		 * might get into TCPS_CLOSED as a result of a TH_RST etc.
12838 		 */
12839 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
12840 		listener->tcp_conn_req_cnt_q0--;
12841 		listener->tcp_conn_req_cnt_q++;
12842 
12843 		/* Move from SYN_RCVD to ESTABLISHED list  */
12844 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
12845 		    tcp->tcp_eager_prev_q0;
12846 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
12847 		    tcp->tcp_eager_next_q0;
12848 		tcp->tcp_eager_prev_q0 = NULL;
12849 		tcp->tcp_eager_next_q0 = NULL;
12850 
12851 		/*
12852 		 * Insert at end of the queue because sockfs
12853 		 * sends down T_CONN_RES in chronological
12854 		 * order. Leaving the older conn indications
12855 		 * at front of the queue helps reducing search
12856 		 * time.
12857 		 */
12858 		tail = listener->tcp_eager_last_q;
12859 		if (tail != NULL)
12860 			tail->tcp_eager_next_q = tcp;
12861 		else
12862 			listener->tcp_eager_next_q = tcp;
12863 		listener->tcp_eager_last_q = tcp;
12864 		tcp->tcp_eager_next_q = NULL;
12865 		/*
12866 		 * Delay sending up the T_conn_ind until we are
12867 		 * done with the eager. Once we have have sent up
12868 		 * the T_conn_ind, the accept can potentially complete
12869 		 * any time and release the refhold we have on the eager.
12870 		 */
12871 		need_send_conn_ind = B_TRUE;
12872 	} else {
12873 		/*
12874 		 * Defer connection on q0 and set deferred
12875 		 * connection bit true
12876 		 */
12877 		tcp->tcp_conn_def_q0 = B_TRUE;
12878 
12879 		/* take tcp out of q0 ... */
12880 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
12881 		    tcp->tcp_eager_next_q0;
12882 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
12883 		    tcp->tcp_eager_prev_q0;
12884 
12885 		/* ... and place it at the end of q0 */
12886 		tcp->tcp_eager_prev_q0 = listener->tcp_eager_prev_q0;
12887 		tcp->tcp_eager_next_q0 = listener;
12888 		listener->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp;
12889 		listener->tcp_eager_prev_q0 = tcp;
12890 		tcp->tcp_conn.tcp_eager_conn_ind = mp;
12891 	}
12892 
12893 	/* we have timed out before */
12894 	if (tcp->tcp_syn_rcvd_timeout != 0) {
12895 		tcp->tcp_syn_rcvd_timeout = 0;
12896 		listener->tcp_syn_rcvd_timeout--;
12897 		if (listener->tcp_syn_defense &&
12898 		    listener->tcp_syn_rcvd_timeout <=
12899 		    (tcps->tcps_conn_req_max_q0 >> 5) &&
12900 		    10*MINUTES < TICK_TO_MSEC(lbolt64 -
12901 		    listener->tcp_last_rcv_lbolt)) {
12902 			/*
12903 			 * Turn off the defense mode if we
12904 			 * believe the SYN attack is over.
12905 			 */
12906 			listener->tcp_syn_defense = B_FALSE;
12907 			if (listener->tcp_ip_addr_cache) {
12908 				kmem_free((void *)listener->tcp_ip_addr_cache,
12909 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
12910 				listener->tcp_ip_addr_cache = NULL;
12911 			}
12912 		}
12913 	}
12914 	addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache);
12915 	if (addr_cache != NULL) {
12916 		/*
12917 		 * We have finished a 3-way handshake with this
12918 		 * remote host. This proves the IP addr is good.
12919 		 * Cache it!
12920 		 */
12921 		addr_cache[IP_ADDR_CACHE_HASH(
12922 		    tcp->tcp_remote)] = tcp->tcp_remote;
12923 	}
12924 	mutex_exit(&listener->tcp_eager_lock);
12925 	if (need_send_conn_ind)
12926 		putnext(listener->tcp_rq, mp);
12927 }
12928 
12929 mblk_t *
12930 tcp_find_pktinfo(tcp_t *tcp, mblk_t *mp, uint_t *ipversp, uint_t *ip_hdr_lenp,
12931     uint_t *ifindexp, ip6_pkt_t *ippp)
12932 {
12933 	ip_pktinfo_t	*pinfo;
12934 	ip6_t		*ip6h;
12935 	uchar_t		*rptr;
12936 	mblk_t		*first_mp = mp;
12937 	boolean_t	mctl_present = B_FALSE;
12938 	uint_t 		ifindex = 0;
12939 	ip6_pkt_t	ipp;
12940 	uint_t		ipvers;
12941 	uint_t		ip_hdr_len;
12942 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12943 
12944 	rptr = mp->b_rptr;
12945 	ASSERT(OK_32PTR(rptr));
12946 	ASSERT(tcp != NULL);
12947 	ipp.ipp_fields = 0;
12948 
12949 	switch DB_TYPE(mp) {
12950 	case M_CTL:
12951 		mp = mp->b_cont;
12952 		if (mp == NULL) {
12953 			freemsg(first_mp);
12954 			return (NULL);
12955 		}
12956 		if (DB_TYPE(mp) != M_DATA) {
12957 			freemsg(first_mp);
12958 			return (NULL);
12959 		}
12960 		mctl_present = B_TRUE;
12961 		break;
12962 	case M_DATA:
12963 		break;
12964 	default:
12965 		cmn_err(CE_NOTE, "tcp_find_pktinfo: unknown db_type");
12966 		freemsg(mp);
12967 		return (NULL);
12968 	}
12969 	ipvers = IPH_HDR_VERSION(rptr);
12970 	if (ipvers == IPV4_VERSION) {
12971 		if (tcp == NULL) {
12972 			ip_hdr_len = IPH_HDR_LENGTH(rptr);
12973 			goto done;
12974 		}
12975 
12976 		ipp.ipp_fields |= IPPF_HOPLIMIT;
12977 		ipp.ipp_hoplimit = ((ipha_t *)rptr)->ipha_ttl;
12978 
12979 		/*
12980 		 * If we have IN_PKTINFO in an M_CTL and tcp_ipv6_recvancillary
12981 		 * has TCP_IPV6_RECVPKTINFO set, pass I/F index along in ipp.
12982 		 */
12983 		if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) &&
12984 		    mctl_present) {
12985 			pinfo = (ip_pktinfo_t *)first_mp->b_rptr;
12986 			if ((MBLKL(first_mp) == sizeof (ip_pktinfo_t)) &&
12987 			    (pinfo->ip_pkt_ulp_type == IN_PKTINFO) &&
12988 			    (pinfo->ip_pkt_flags & IPF_RECVIF)) {
12989 				ipp.ipp_fields |= IPPF_IFINDEX;
12990 				ipp.ipp_ifindex = pinfo->ip_pkt_ifindex;
12991 				ifindex = pinfo->ip_pkt_ifindex;
12992 			}
12993 			freeb(first_mp);
12994 			mctl_present = B_FALSE;
12995 		}
12996 		ip_hdr_len = IPH_HDR_LENGTH(rptr);
12997 	} else {
12998 		ip6h = (ip6_t *)rptr;
12999 
13000 		ASSERT(ipvers == IPV6_VERSION);
13001 		ipp.ipp_fields = IPPF_HOPLIMIT | IPPF_TCLASS;
13002 		ipp.ipp_tclass = (ip6h->ip6_flow & 0x0FF00000) >> 20;
13003 		ipp.ipp_hoplimit = ip6h->ip6_hops;
13004 
13005 		if (ip6h->ip6_nxt != IPPROTO_TCP) {
13006 			uint8_t	nexthdrp;
13007 			ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
13008 
13009 			/* Look for ifindex information */
13010 			if (ip6h->ip6_nxt == IPPROTO_RAW) {
13011 				ip6i_t *ip6i = (ip6i_t *)ip6h;
13012 				if ((uchar_t *)&ip6i[1] > mp->b_wptr) {
13013 					BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs);
13014 					freemsg(first_mp);
13015 					return (NULL);
13016 				}
13017 
13018 				if (ip6i->ip6i_flags & IP6I_IFINDEX) {
13019 					ASSERT(ip6i->ip6i_ifindex != 0);
13020 					ipp.ipp_fields |= IPPF_IFINDEX;
13021 					ipp.ipp_ifindex = ip6i->ip6i_ifindex;
13022 					ifindex = ip6i->ip6i_ifindex;
13023 				}
13024 				rptr = (uchar_t *)&ip6i[1];
13025 				mp->b_rptr = rptr;
13026 				if (rptr == mp->b_wptr) {
13027 					mblk_t *mp1;
13028 					mp1 = mp->b_cont;
13029 					freeb(mp);
13030 					mp = mp1;
13031 					rptr = mp->b_rptr;
13032 				}
13033 				if (MBLKL(mp) < IPV6_HDR_LEN +
13034 				    sizeof (tcph_t)) {
13035 					BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs);
13036 					freemsg(first_mp);
13037 					return (NULL);
13038 				}
13039 				ip6h = (ip6_t *)rptr;
13040 			}
13041 
13042 			/*
13043 			 * Find any potentially interesting extension headers
13044 			 * as well as the length of the IPv6 + extension
13045 			 * headers.
13046 			 */
13047 			ip_hdr_len = ip_find_hdr_v6(mp, ip6h, &ipp, &nexthdrp);
13048 			/* Verify if this is a TCP packet */
13049 			if (nexthdrp != IPPROTO_TCP) {
13050 				BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs);
13051 				freemsg(first_mp);
13052 				return (NULL);
13053 			}
13054 		} else {
13055 			ip_hdr_len = IPV6_HDR_LEN;
13056 		}
13057 	}
13058 
13059 done:
13060 	if (ipversp != NULL)
13061 		*ipversp = ipvers;
13062 	if (ip_hdr_lenp != NULL)
13063 		*ip_hdr_lenp = ip_hdr_len;
13064 	if (ippp != NULL)
13065 		*ippp = ipp;
13066 	if (ifindexp != NULL)
13067 		*ifindexp = ifindex;
13068 	if (mctl_present) {
13069 		freeb(first_mp);
13070 	}
13071 	return (mp);
13072 }
13073 
13074 /*
13075  * Handle M_DATA messages from IP. Its called directly from IP via
13076  * squeue for AF_INET type sockets fast path. No M_CTL are expected
13077  * in this path.
13078  *
13079  * For everything else (including AF_INET6 sockets with 'tcp_ipversion'
13080  * v4 and v6), we are called through tcp_input() and a M_CTL can
13081  * be present for options but tcp_find_pktinfo() deals with it. We
13082  * only expect M_DATA packets after tcp_find_pktinfo() is done.
13083  *
13084  * The first argument is always the connp/tcp to which the mp belongs.
13085  * There are no exceptions to this rule. The caller has already put
13086  * a reference on this connp/tcp and once tcp_rput_data() returns,
13087  * the squeue will do the refrele.
13088  *
13089  * The TH_SYN for the listener directly go to tcp_conn_request via
13090  * squeue.
13091  *
13092  * sqp: NULL = recursive, sqp != NULL means called from squeue
13093  */
13094 void
13095 tcp_rput_data(void *arg, mblk_t *mp, void *arg2)
13096 {
13097 	int32_t		bytes_acked;
13098 	int32_t		gap;
13099 	mblk_t		*mp1;
13100 	uint_t		flags;
13101 	uint32_t	new_swnd = 0;
13102 	uchar_t		*iphdr;
13103 	uchar_t		*rptr;
13104 	int32_t		rgap;
13105 	uint32_t	seg_ack;
13106 	int		seg_len;
13107 	uint_t		ip_hdr_len;
13108 	uint32_t	seg_seq;
13109 	tcph_t		*tcph;
13110 	int		urp;
13111 	tcp_opt_t	tcpopt;
13112 	uint_t		ipvers;
13113 	ip6_pkt_t	ipp;
13114 	boolean_t	ofo_seg = B_FALSE; /* Out of order segment */
13115 	uint32_t	cwnd;
13116 	uint32_t	add;
13117 	int		npkt;
13118 	int		mss;
13119 	conn_t		*connp = (conn_t *)arg;
13120 	squeue_t	*sqp = (squeue_t *)arg2;
13121 	tcp_t		*tcp = connp->conn_tcp;
13122 	tcp_stack_t	*tcps = tcp->tcp_tcps;
13123 
13124 	/*
13125 	 * RST from fused tcp loopback peer should trigger an unfuse.
13126 	 */
13127 	if (tcp->tcp_fused) {
13128 		TCP_STAT(tcps, tcp_fusion_aborted);
13129 		tcp_unfuse(tcp);
13130 	}
13131 
13132 	iphdr = mp->b_rptr;
13133 	rptr = mp->b_rptr;
13134 	ASSERT(OK_32PTR(rptr));
13135 
13136 	/*
13137 	 * An AF_INET socket is not capable of receiving any pktinfo. Do inline
13138 	 * processing here. For rest call tcp_find_pktinfo to fill up the
13139 	 * necessary information.
13140 	 */
13141 	if (IPCL_IS_TCP4(connp)) {
13142 		ipvers = IPV4_VERSION;
13143 		ip_hdr_len = IPH_HDR_LENGTH(rptr);
13144 	} else {
13145 		mp = tcp_find_pktinfo(tcp, mp, &ipvers, &ip_hdr_len,
13146 		    NULL, &ipp);
13147 		if (mp == NULL) {
13148 			TCP_STAT(tcps, tcp_rput_v6_error);
13149 			return;
13150 		}
13151 		iphdr = mp->b_rptr;
13152 		rptr = mp->b_rptr;
13153 	}
13154 	ASSERT(DB_TYPE(mp) == M_DATA);
13155 
13156 	tcph = (tcph_t *)&rptr[ip_hdr_len];
13157 	seg_seq = ABE32_TO_U32(tcph->th_seq);
13158 	seg_ack = ABE32_TO_U32(tcph->th_ack);
13159 	ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
13160 	seg_len = (int)(mp->b_wptr - rptr) -
13161 	    (ip_hdr_len + TCP_HDR_LENGTH(tcph));
13162 	if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) {
13163 		do {
13164 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
13165 			    (uintptr_t)INT_MAX);
13166 			seg_len += (int)(mp1->b_wptr - mp1->b_rptr);
13167 		} while ((mp1 = mp1->b_cont) != NULL &&
13168 		    mp1->b_datap->db_type == M_DATA);
13169 	}
13170 
13171 	if (tcp->tcp_state == TCPS_TIME_WAIT) {
13172 		tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack,
13173 		    seg_len, tcph);
13174 		return;
13175 	}
13176 
13177 	if (sqp != NULL) {
13178 		/*
13179 		 * This is the correct place to update tcp_last_recv_time. Note
13180 		 * that it is also updated for tcp structure that belongs to
13181 		 * global and listener queues which do not really need updating.
13182 		 * But that should not cause any harm.  And it is updated for
13183 		 * all kinds of incoming segments, not only for data segments.
13184 		 */
13185 		tcp->tcp_last_recv_time = lbolt;
13186 	}
13187 
13188 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
13189 
13190 	BUMP_LOCAL(tcp->tcp_ibsegs);
13191 	DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp);
13192 
13193 	if ((flags & TH_URG) && sqp != NULL) {
13194 		/*
13195 		 * TCP can't handle urgent pointers that arrive before
13196 		 * the connection has been accept()ed since it can't
13197 		 * buffer OOB data.  Discard segment if this happens.
13198 		 *
13199 		 * We can't just rely on a non-null tcp_listener to indicate
13200 		 * that the accept() has completed since unlinking of the
13201 		 * eager and completion of the accept are not atomic.
13202 		 * tcp_detached, when it is not set (B_FALSE) indicates
13203 		 * that the accept() has completed.
13204 		 *
13205 		 * Nor can it reassemble urgent pointers, so discard
13206 		 * if it's not the next segment expected.
13207 		 *
13208 		 * Otherwise, collapse chain into one mblk (discard if
13209 		 * that fails).  This makes sure the headers, retransmitted
13210 		 * data, and new data all are in the same mblk.
13211 		 */
13212 		ASSERT(mp != NULL);
13213 		if (tcp->tcp_detached || !pullupmsg(mp, -1)) {
13214 			freemsg(mp);
13215 			return;
13216 		}
13217 		/* Update pointers into message */
13218 		iphdr = rptr = mp->b_rptr;
13219 		tcph = (tcph_t *)&rptr[ip_hdr_len];
13220 		if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) {
13221 			/*
13222 			 * Since we can't handle any data with this urgent
13223 			 * pointer that is out of sequence, we expunge
13224 			 * the data.  This allows us to still register
13225 			 * the urgent mark and generate the M_PCSIG,
13226 			 * which we can do.
13227 			 */
13228 			mp->b_wptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph);
13229 			seg_len = 0;
13230 		}
13231 	}
13232 
13233 	switch (tcp->tcp_state) {
13234 	case TCPS_SYN_SENT:
13235 		if (flags & TH_ACK) {
13236 			/*
13237 			 * Note that our stack cannot send data before a
13238 			 * connection is established, therefore the
13239 			 * following check is valid.  Otherwise, it has
13240 			 * to be changed.
13241 			 */
13242 			if (SEQ_LEQ(seg_ack, tcp->tcp_iss) ||
13243 			    SEQ_GT(seg_ack, tcp->tcp_snxt)) {
13244 				freemsg(mp);
13245 				if (flags & TH_RST)
13246 					return;
13247 				tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq",
13248 				    tcp, seg_ack, 0, TH_RST);
13249 				return;
13250 			}
13251 			ASSERT(tcp->tcp_suna + 1 == seg_ack);
13252 		}
13253 		if (flags & TH_RST) {
13254 			freemsg(mp);
13255 			if (flags & TH_ACK)
13256 				(void) tcp_clean_death(tcp,
13257 				    ECONNREFUSED, 13);
13258 			return;
13259 		}
13260 		if (!(flags & TH_SYN)) {
13261 			freemsg(mp);
13262 			return;
13263 		}
13264 
13265 		/* Process all TCP options. */
13266 		tcp_process_options(tcp, tcph);
13267 		/*
13268 		 * The following changes our rwnd to be a multiple of the
13269 		 * MIN(peer MSS, our MSS) for performance reason.
13270 		 */
13271 		(void) tcp_rwnd_set(tcp, MSS_ROUNDUP(tcp->tcp_rq->q_hiwat,
13272 		    tcp->tcp_mss));
13273 
13274 		/* Is the other end ECN capable? */
13275 		if (tcp->tcp_ecn_ok) {
13276 			if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) {
13277 				tcp->tcp_ecn_ok = B_FALSE;
13278 			}
13279 		}
13280 		/*
13281 		 * Clear ECN flags because it may interfere with later
13282 		 * processing.
13283 		 */
13284 		flags &= ~(TH_ECE|TH_CWR);
13285 
13286 		tcp->tcp_irs = seg_seq;
13287 		tcp->tcp_rack = seg_seq;
13288 		tcp->tcp_rnxt = seg_seq + 1;
13289 		U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack);
13290 		if (!TCP_IS_DETACHED(tcp)) {
13291 			/* Allocate room for SACK options if needed. */
13292 			if (tcp->tcp_snd_sack_ok) {
13293 				(void) mi_set_sth_wroff(tcp->tcp_rq,
13294 				    tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN +
13295 				    (tcp->tcp_loopback ? 0 :
13296 				    tcps->tcps_wroff_xtra));
13297 			} else {
13298 				(void) mi_set_sth_wroff(tcp->tcp_rq,
13299 				    tcp->tcp_hdr_len +
13300 				    (tcp->tcp_loopback ? 0 :
13301 				    tcps->tcps_wroff_xtra));
13302 			}
13303 		}
13304 		if (flags & TH_ACK) {
13305 			/*
13306 			 * If we can't get the confirmation upstream, pretend
13307 			 * we didn't even see this one.
13308 			 *
13309 			 * XXX: how can we pretend we didn't see it if we
13310 			 * have updated rnxt et. al.
13311 			 *
13312 			 * For loopback we defer sending up the T_CONN_CON
13313 			 * until after some checks below.
13314 			 */
13315 			mp1 = NULL;
13316 			if (!tcp_conn_con(tcp, iphdr, tcph, mp,
13317 			    tcp->tcp_loopback ? &mp1 : NULL)) {
13318 				freemsg(mp);
13319 				return;
13320 			}
13321 			/* SYN was acked - making progress */
13322 			if (tcp->tcp_ipversion == IPV6_VERSION)
13323 				tcp->tcp_ip_forward_progress = B_TRUE;
13324 
13325 			/* One for the SYN */
13326 			tcp->tcp_suna = tcp->tcp_iss + 1;
13327 			tcp->tcp_valid_bits &= ~TCP_ISS_VALID;
13328 			tcp->tcp_state = TCPS_ESTABLISHED;
13329 
13330 			/*
13331 			 * If SYN was retransmitted, need to reset all
13332 			 * retransmission info.  This is because this
13333 			 * segment will be treated as a dup ACK.
13334 			 */
13335 			if (tcp->tcp_rexmit) {
13336 				tcp->tcp_rexmit = B_FALSE;
13337 				tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
13338 				tcp->tcp_rexmit_max = tcp->tcp_snxt;
13339 				tcp->tcp_snd_burst = tcp->tcp_localnet ?
13340 				    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
13341 				tcp->tcp_ms_we_have_waited = 0;
13342 
13343 				/*
13344 				 * Set tcp_cwnd back to 1 MSS, per
13345 				 * recommendation from
13346 				 * draft-floyd-incr-init-win-01.txt,
13347 				 * Increasing TCP's Initial Window.
13348 				 */
13349 				tcp->tcp_cwnd = tcp->tcp_mss;
13350 			}
13351 
13352 			tcp->tcp_swl1 = seg_seq;
13353 			tcp->tcp_swl2 = seg_ack;
13354 
13355 			new_swnd = BE16_TO_U16(tcph->th_win);
13356 			tcp->tcp_swnd = new_swnd;
13357 			if (new_swnd > tcp->tcp_max_swnd)
13358 				tcp->tcp_max_swnd = new_swnd;
13359 
13360 			/*
13361 			 * Always send the three-way handshake ack immediately
13362 			 * in order to make the connection complete as soon as
13363 			 * possible on the accepting host.
13364 			 */
13365 			flags |= TH_ACK_NEEDED;
13366 
13367 			/*
13368 			 * Special case for loopback.  At this point we have
13369 			 * received SYN-ACK from the remote endpoint.  In
13370 			 * order to ensure that both endpoints reach the
13371 			 * fused state prior to any data exchange, the final
13372 			 * ACK needs to be sent before we indicate T_CONN_CON
13373 			 * to the module upstream.
13374 			 */
13375 			if (tcp->tcp_loopback) {
13376 				mblk_t *ack_mp;
13377 
13378 				ASSERT(!tcp->tcp_unfusable);
13379 				ASSERT(mp1 != NULL);
13380 				/*
13381 				 * For loopback, we always get a pure SYN-ACK
13382 				 * and only need to send back the final ACK
13383 				 * with no data (this is because the other
13384 				 * tcp is ours and we don't do T/TCP).  This
13385 				 * final ACK triggers the passive side to
13386 				 * perform fusion in ESTABLISHED state.
13387 				 */
13388 				if ((ack_mp = tcp_ack_mp(tcp)) != NULL) {
13389 					if (tcp->tcp_ack_tid != 0) {
13390 						(void) TCP_TIMER_CANCEL(tcp,
13391 						    tcp->tcp_ack_tid);
13392 						tcp->tcp_ack_tid = 0;
13393 					}
13394 					tcp_send_data(tcp, tcp->tcp_wq, ack_mp);
13395 					BUMP_LOCAL(tcp->tcp_obsegs);
13396 					BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
13397 
13398 					/* Send up T_CONN_CON */
13399 					putnext(tcp->tcp_rq, mp1);
13400 
13401 					freemsg(mp);
13402 					return;
13403 				}
13404 				/*
13405 				 * Forget fusion; we need to handle more
13406 				 * complex cases below.  Send the deferred
13407 				 * T_CONN_CON message upstream and proceed
13408 				 * as usual.  Mark this tcp as not capable
13409 				 * of fusion.
13410 				 */
13411 				TCP_STAT(tcps, tcp_fusion_unfusable);
13412 				tcp->tcp_unfusable = B_TRUE;
13413 				putnext(tcp->tcp_rq, mp1);
13414 			}
13415 
13416 			/*
13417 			 * Check to see if there is data to be sent.  If
13418 			 * yes, set the transmit flag.  Then check to see
13419 			 * if received data processing needs to be done.
13420 			 * If not, go straight to xmit_check.  This short
13421 			 * cut is OK as we don't support T/TCP.
13422 			 */
13423 			if (tcp->tcp_unsent)
13424 				flags |= TH_XMIT_NEEDED;
13425 
13426 			if (seg_len == 0 && !(flags & TH_URG)) {
13427 				freemsg(mp);
13428 				goto xmit_check;
13429 			}
13430 
13431 			flags &= ~TH_SYN;
13432 			seg_seq++;
13433 			break;
13434 		}
13435 		tcp->tcp_state = TCPS_SYN_RCVD;
13436 		mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss,
13437 		    NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
13438 		if (mp1) {
13439 			DB_CPID(mp1) = tcp->tcp_cpid;
13440 			tcp_send_data(tcp, tcp->tcp_wq, mp1);
13441 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
13442 		}
13443 		freemsg(mp);
13444 		return;
13445 	case TCPS_SYN_RCVD:
13446 		if (flags & TH_ACK) {
13447 			/*
13448 			 * In this state, a SYN|ACK packet is either bogus
13449 			 * because the other side must be ACKing our SYN which
13450 			 * indicates it has seen the ACK for their SYN and
13451 			 * shouldn't retransmit it or we're crossing SYNs
13452 			 * on active open.
13453 			 */
13454 			if ((flags & TH_SYN) && !tcp->tcp_active_open) {
13455 				freemsg(mp);
13456 				tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn",
13457 				    tcp, seg_ack, 0, TH_RST);
13458 				return;
13459 			}
13460 			/*
13461 			 * NOTE: RFC 793 pg. 72 says this should be
13462 			 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt
13463 			 * but that would mean we have an ack that ignored
13464 			 * our SYN.
13465 			 */
13466 			if (SEQ_LEQ(seg_ack, tcp->tcp_suna) ||
13467 			    SEQ_GT(seg_ack, tcp->tcp_snxt)) {
13468 				freemsg(mp);
13469 				tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack",
13470 				    tcp, seg_ack, 0, TH_RST);
13471 				return;
13472 			}
13473 		}
13474 		break;
13475 	case TCPS_LISTEN:
13476 		/*
13477 		 * Only a TLI listener can come through this path when a
13478 		 * acceptor is going back to be a listener and a packet
13479 		 * for the acceptor hits the classifier. For a socket
13480 		 * listener, this can never happen because a listener
13481 		 * can never accept connection on itself and hence a
13482 		 * socket acceptor can not go back to being a listener.
13483 		 */
13484 		ASSERT(!TCP_IS_SOCKET(tcp));
13485 		/*FALLTHRU*/
13486 	case TCPS_CLOSED:
13487 	case TCPS_BOUND: {
13488 		conn_t	*new_connp;
13489 		ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
13490 
13491 		new_connp = ipcl_classify(mp, connp->conn_zoneid, ipst);
13492 		if (new_connp != NULL) {
13493 			tcp_reinput(new_connp, mp, connp->conn_sqp);
13494 			return;
13495 		}
13496 		/* We failed to classify. For now just drop the packet */
13497 		freemsg(mp);
13498 		return;
13499 	}
13500 	case TCPS_IDLE:
13501 		/*
13502 		 * Handle the case where the tcp_clean_death() has happened
13503 		 * on a connection (application hasn't closed yet) but a packet
13504 		 * was already queued on squeue before tcp_clean_death()
13505 		 * was processed. Calling tcp_clean_death() twice on same
13506 		 * connection can result in weird behaviour.
13507 		 */
13508 		freemsg(mp);
13509 		return;
13510 	default:
13511 		break;
13512 	}
13513 
13514 	/*
13515 	 * Already on the correct queue/perimeter.
13516 	 * If this is a detached connection and not an eager
13517 	 * connection hanging off a listener then new data
13518 	 * (past the FIN) will cause a reset.
13519 	 * We do a special check here where it
13520 	 * is out of the main line, rather than check
13521 	 * if we are detached every time we see new
13522 	 * data down below.
13523 	 */
13524 	if (TCP_IS_DETACHED_NONEAGER(tcp) &&
13525 	    (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) {
13526 		BUMP_MIB(&tcps->tcps_mib, tcpInClosed);
13527 		DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp);
13528 
13529 		freemsg(mp);
13530 		/*
13531 		 * This could be an SSL closure alert. We're detached so just
13532 		 * acknowledge it this last time.
13533 		 */
13534 		if (tcp->tcp_kssl_ctx != NULL) {
13535 			kssl_release_ctx(tcp->tcp_kssl_ctx);
13536 			tcp->tcp_kssl_ctx = NULL;
13537 
13538 			tcp->tcp_rnxt += seg_len;
13539 			U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack);
13540 			flags |= TH_ACK_NEEDED;
13541 			goto ack_check;
13542 		}
13543 
13544 		tcp_xmit_ctl("new data when detached", tcp,
13545 		    tcp->tcp_snxt, 0, TH_RST);
13546 		(void) tcp_clean_death(tcp, EPROTO, 12);
13547 		return;
13548 	}
13549 
13550 	mp->b_rptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph);
13551 	urp = BE16_TO_U16(tcph->th_urp) - TCP_OLD_URP_INTERPRETATION;
13552 	new_swnd = BE16_TO_U16(tcph->th_win) <<
13553 	    ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws);
13554 
13555 	if (tcp->tcp_snd_ts_ok) {
13556 		if (!tcp_paws_check(tcp, tcph, &tcpopt)) {
13557 			/*
13558 			 * This segment is not acceptable.
13559 			 * Drop it and send back an ACK.
13560 			 */
13561 			freemsg(mp);
13562 			flags |= TH_ACK_NEEDED;
13563 			goto ack_check;
13564 		}
13565 	} else if (tcp->tcp_snd_sack_ok) {
13566 		ASSERT(tcp->tcp_sack_info != NULL);
13567 		tcpopt.tcp = tcp;
13568 		/*
13569 		 * SACK info in already updated in tcp_parse_options.  Ignore
13570 		 * all other TCP options...
13571 		 */
13572 		(void) tcp_parse_options(tcph, &tcpopt);
13573 	}
13574 try_again:;
13575 	mss = tcp->tcp_mss;
13576 	gap = seg_seq - tcp->tcp_rnxt;
13577 	rgap = tcp->tcp_rwnd - (gap + seg_len);
13578 	/*
13579 	 * gap is the amount of sequence space between what we expect to see
13580 	 * and what we got for seg_seq.  A positive value for gap means
13581 	 * something got lost.  A negative value means we got some old stuff.
13582 	 */
13583 	if (gap < 0) {
13584 		/* Old stuff present.  Is the SYN in there? */
13585 		if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) &&
13586 		    (seg_len != 0)) {
13587 			flags &= ~TH_SYN;
13588 			seg_seq++;
13589 			urp--;
13590 			/* Recompute the gaps after noting the SYN. */
13591 			goto try_again;
13592 		}
13593 		BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs);
13594 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes,
13595 		    (seg_len > -gap ? -gap : seg_len));
13596 		/* Remove the old stuff from seg_len. */
13597 		seg_len += gap;
13598 		/*
13599 		 * Anything left?
13600 		 * Make sure to check for unack'd FIN when rest of data
13601 		 * has been previously ack'd.
13602 		 */
13603 		if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) {
13604 			/*
13605 			 * Resets are only valid if they lie within our offered
13606 			 * window.  If the RST bit is set, we just ignore this
13607 			 * segment.
13608 			 */
13609 			if (flags & TH_RST) {
13610 				freemsg(mp);
13611 				return;
13612 			}
13613 
13614 			/*
13615 			 * The arriving of dup data packets indicate that we
13616 			 * may have postponed an ack for too long, or the other
13617 			 * side's RTT estimate is out of shape. Start acking
13618 			 * more often.
13619 			 */
13620 			if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) &&
13621 			    tcp->tcp_rack_cnt >= 1 &&
13622 			    tcp->tcp_rack_abs_max > 2) {
13623 				tcp->tcp_rack_abs_max--;
13624 			}
13625 			tcp->tcp_rack_cur_max = 1;
13626 
13627 			/*
13628 			 * This segment is "unacceptable".  None of its
13629 			 * sequence space lies within our advertized window.
13630 			 *
13631 			 * Adjust seg_len to the original value for tracing.
13632 			 */
13633 			seg_len -= gap;
13634 			if (tcp->tcp_debug) {
13635 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13636 				    "tcp_rput: unacceptable, gap %d, rgap %d, "
13637 				    "flags 0x%x, seg_seq %u, seg_ack %u, "
13638 				    "seg_len %d, rnxt %u, snxt %u, %s",
13639 				    gap, rgap, flags, seg_seq, seg_ack,
13640 				    seg_len, tcp->tcp_rnxt, tcp->tcp_snxt,
13641 				    tcp_display(tcp, NULL,
13642 				    DISP_ADDR_AND_PORT));
13643 			}
13644 
13645 			/*
13646 			 * Arrange to send an ACK in response to the
13647 			 * unacceptable segment per RFC 793 page 69. There
13648 			 * is only one small difference between ours and the
13649 			 * acceptability test in the RFC - we accept ACK-only
13650 			 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK
13651 			 * will be generated.
13652 			 *
13653 			 * Note that we have to ACK an ACK-only packet at least
13654 			 * for stacks that send 0-length keep-alives with
13655 			 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122,
13656 			 * section 4.2.3.6. As long as we don't ever generate
13657 			 * an unacceptable packet in response to an incoming
13658 			 * packet that is unacceptable, it should not cause
13659 			 * "ACK wars".
13660 			 */
13661 			flags |=  TH_ACK_NEEDED;
13662 
13663 			/*
13664 			 * Continue processing this segment in order to use the
13665 			 * ACK information it contains, but skip all other
13666 			 * sequence-number processing.	Processing the ACK
13667 			 * information is necessary in order to
13668 			 * re-synchronize connections that may have lost
13669 			 * synchronization.
13670 			 *
13671 			 * We clear seg_len and flag fields related to
13672 			 * sequence number processing as they are not
13673 			 * to be trusted for an unacceptable segment.
13674 			 */
13675 			seg_len = 0;
13676 			flags &= ~(TH_SYN | TH_FIN | TH_URG);
13677 			goto process_ack;
13678 		}
13679 
13680 		/* Fix seg_seq, and chew the gap off the front. */
13681 		seg_seq = tcp->tcp_rnxt;
13682 		urp += gap;
13683 		do {
13684 			mblk_t	*mp2;
13685 			ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
13686 			    (uintptr_t)UINT_MAX);
13687 			gap += (uint_t)(mp->b_wptr - mp->b_rptr);
13688 			if (gap > 0) {
13689 				mp->b_rptr = mp->b_wptr - gap;
13690 				break;
13691 			}
13692 			mp2 = mp;
13693 			mp = mp->b_cont;
13694 			freeb(mp2);
13695 		} while (gap < 0);
13696 		/*
13697 		 * If the urgent data has already been acknowledged, we
13698 		 * should ignore TH_URG below
13699 		 */
13700 		if (urp < 0)
13701 			flags &= ~TH_URG;
13702 	}
13703 	/*
13704 	 * rgap is the amount of stuff received out of window.  A negative
13705 	 * value is the amount out of window.
13706 	 */
13707 	if (rgap < 0) {
13708 		mblk_t	*mp2;
13709 
13710 		if (tcp->tcp_rwnd == 0) {
13711 			BUMP_MIB(&tcps->tcps_mib, tcpInWinProbe);
13712 		} else {
13713 			BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs);
13714 			UPDATE_MIB(&tcps->tcps_mib,
13715 			    tcpInDataPastWinBytes, -rgap);
13716 		}
13717 
13718 		/*
13719 		 * seg_len does not include the FIN, so if more than
13720 		 * just the FIN is out of window, we act like we don't
13721 		 * see it.  (If just the FIN is out of window, rgap
13722 		 * will be zero and we will go ahead and acknowledge
13723 		 * the FIN.)
13724 		 */
13725 		flags &= ~TH_FIN;
13726 
13727 		/* Fix seg_len and make sure there is something left. */
13728 		seg_len += rgap;
13729 		if (seg_len <= 0) {
13730 			/*
13731 			 * Resets are only valid if they lie within our offered
13732 			 * window.  If the RST bit is set, we just ignore this
13733 			 * segment.
13734 			 */
13735 			if (flags & TH_RST) {
13736 				freemsg(mp);
13737 				return;
13738 			}
13739 
13740 			/* Per RFC 793, we need to send back an ACK. */
13741 			flags |= TH_ACK_NEEDED;
13742 
13743 			/*
13744 			 * Send SIGURG as soon as possible i.e. even
13745 			 * if the TH_URG was delivered in a window probe
13746 			 * packet (which will be unacceptable).
13747 			 *
13748 			 * We generate a signal if none has been generated
13749 			 * for this connection or if this is a new urgent
13750 			 * byte. Also send a zero-length "unmarked" message
13751 			 * to inform SIOCATMARK that this is not the mark.
13752 			 *
13753 			 * tcp_urp_last_valid is cleared when the T_exdata_ind
13754 			 * is sent up. This plus the check for old data
13755 			 * (gap >= 0) handles the wraparound of the sequence
13756 			 * number space without having to always track the
13757 			 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks
13758 			 * this max in its rcv_up variable).
13759 			 *
13760 			 * This prevents duplicate SIGURGS due to a "late"
13761 			 * zero-window probe when the T_EXDATA_IND has already
13762 			 * been sent up.
13763 			 */
13764 			if ((flags & TH_URG) &&
13765 			    (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq,
13766 			    tcp->tcp_urp_last))) {
13767 				mp1 = allocb(0, BPRI_MED);
13768 				if (mp1 == NULL) {
13769 					freemsg(mp);
13770 					return;
13771 				}
13772 				if (!TCP_IS_DETACHED(tcp) &&
13773 				    !putnextctl1(tcp->tcp_rq, M_PCSIG,
13774 				    SIGURG)) {
13775 					/* Try again on the rexmit. */
13776 					freemsg(mp1);
13777 					freemsg(mp);
13778 					return;
13779 				}
13780 				/*
13781 				 * If the next byte would be the mark
13782 				 * then mark with MARKNEXT else mark
13783 				 * with NOTMARKNEXT.
13784 				 */
13785 				if (gap == 0 && urp == 0)
13786 					mp1->b_flag |= MSGMARKNEXT;
13787 				else
13788 					mp1->b_flag |= MSGNOTMARKNEXT;
13789 				freemsg(tcp->tcp_urp_mark_mp);
13790 				tcp->tcp_urp_mark_mp = mp1;
13791 				flags |= TH_SEND_URP_MARK;
13792 				tcp->tcp_urp_last_valid = B_TRUE;
13793 				tcp->tcp_urp_last = urp + seg_seq;
13794 			}
13795 			/*
13796 			 * If this is a zero window probe, continue to
13797 			 * process the ACK part.  But we need to set seg_len
13798 			 * to 0 to avoid data processing.  Otherwise just
13799 			 * drop the segment and send back an ACK.
13800 			 */
13801 			if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) {
13802 				flags &= ~(TH_SYN | TH_URG);
13803 				seg_len = 0;
13804 				goto process_ack;
13805 			} else {
13806 				freemsg(mp);
13807 				goto ack_check;
13808 			}
13809 		}
13810 		/* Pitch out of window stuff off the end. */
13811 		rgap = seg_len;
13812 		mp2 = mp;
13813 		do {
13814 			ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <=
13815 			    (uintptr_t)INT_MAX);
13816 			rgap -= (int)(mp2->b_wptr - mp2->b_rptr);
13817 			if (rgap < 0) {
13818 				mp2->b_wptr += rgap;
13819 				if ((mp1 = mp2->b_cont) != NULL) {
13820 					mp2->b_cont = NULL;
13821 					freemsg(mp1);
13822 				}
13823 				break;
13824 			}
13825 		} while ((mp2 = mp2->b_cont) != NULL);
13826 	}
13827 ok:;
13828 	/*
13829 	 * TCP should check ECN info for segments inside the window only.
13830 	 * Therefore the check should be done here.
13831 	 */
13832 	if (tcp->tcp_ecn_ok) {
13833 		if (flags & TH_CWR) {
13834 			tcp->tcp_ecn_echo_on = B_FALSE;
13835 		}
13836 		/*
13837 		 * Note that both ECN_CE and CWR can be set in the
13838 		 * same segment.  In this case, we once again turn
13839 		 * on ECN_ECHO.
13840 		 */
13841 		if (tcp->tcp_ipversion == IPV4_VERSION) {
13842 			uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service;
13843 
13844 			if ((tos & IPH_ECN_CE) == IPH_ECN_CE) {
13845 				tcp->tcp_ecn_echo_on = B_TRUE;
13846 			}
13847 		} else {
13848 			uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf;
13849 
13850 			if ((vcf & htonl(IPH_ECN_CE << 20)) ==
13851 			    htonl(IPH_ECN_CE << 20)) {
13852 				tcp->tcp_ecn_echo_on = B_TRUE;
13853 			}
13854 		}
13855 	}
13856 
13857 	/*
13858 	 * Check whether we can update tcp_ts_recent.  This test is
13859 	 * NOT the one in RFC 1323 3.4.  It is from Braden, 1993, "TCP
13860 	 * Extensions for High Performance: An Update", Internet Draft.
13861 	 */
13862 	if (tcp->tcp_snd_ts_ok &&
13863 	    TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) &&
13864 	    SEQ_LEQ(seg_seq, tcp->tcp_rack)) {
13865 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
13866 		tcp->tcp_last_rcv_lbolt = lbolt64;
13867 	}
13868 
13869 	if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) {
13870 		/*
13871 		 * FIN in an out of order segment.  We record this in
13872 		 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq.
13873 		 * Clear the FIN so that any check on FIN flag will fail.
13874 		 * Remember that FIN also counts in the sequence number
13875 		 * space.  So we need to ack out of order FIN only segments.
13876 		 */
13877 		if (flags & TH_FIN) {
13878 			tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID;
13879 			tcp->tcp_ofo_fin_seq = seg_seq + seg_len;
13880 			flags &= ~TH_FIN;
13881 			flags |= TH_ACK_NEEDED;
13882 		}
13883 		if (seg_len > 0) {
13884 			/* Fill in the SACK blk list. */
13885 			if (tcp->tcp_snd_sack_ok) {
13886 				ASSERT(tcp->tcp_sack_info != NULL);
13887 				tcp_sack_insert(tcp->tcp_sack_list,
13888 				    seg_seq, seg_seq + seg_len,
13889 				    &(tcp->tcp_num_sack_blk));
13890 			}
13891 
13892 			/*
13893 			 * Attempt reassembly and see if we have something
13894 			 * ready to go.
13895 			 */
13896 			mp = tcp_reass(tcp, mp, seg_seq);
13897 			/* Always ack out of order packets */
13898 			flags |= TH_ACK_NEEDED | TH_PUSH;
13899 			if (mp) {
13900 				ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
13901 				    (uintptr_t)INT_MAX);
13902 				seg_len = mp->b_cont ? msgdsize(mp) :
13903 				    (int)(mp->b_wptr - mp->b_rptr);
13904 				seg_seq = tcp->tcp_rnxt;
13905 				/*
13906 				 * A gap is filled and the seq num and len
13907 				 * of the gap match that of a previously
13908 				 * received FIN, put the FIN flag back in.
13909 				 */
13910 				if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) &&
13911 				    seg_seq + seg_len == tcp->tcp_ofo_fin_seq) {
13912 					flags |= TH_FIN;
13913 					tcp->tcp_valid_bits &=
13914 					    ~TCP_OFO_FIN_VALID;
13915 				}
13916 			} else {
13917 				/*
13918 				 * Keep going even with NULL mp.
13919 				 * There may be a useful ACK or something else
13920 				 * we don't want to miss.
13921 				 *
13922 				 * But TCP should not perform fast retransmit
13923 				 * because of the ack number.  TCP uses
13924 				 * seg_len == 0 to determine if it is a pure
13925 				 * ACK.  And this is not a pure ACK.
13926 				 */
13927 				seg_len = 0;
13928 				ofo_seg = B_TRUE;
13929 			}
13930 		}
13931 	} else if (seg_len > 0) {
13932 		BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs);
13933 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len);
13934 		/*
13935 		 * If an out of order FIN was received before, and the seq
13936 		 * num and len of the new segment match that of the FIN,
13937 		 * put the FIN flag back in.
13938 		 */
13939 		if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) &&
13940 		    seg_seq + seg_len == tcp->tcp_ofo_fin_seq) {
13941 			flags |= TH_FIN;
13942 			tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID;
13943 		}
13944 	}
13945 	if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) {
13946 	if (flags & TH_RST) {
13947 		freemsg(mp);
13948 		switch (tcp->tcp_state) {
13949 		case TCPS_SYN_RCVD:
13950 			(void) tcp_clean_death(tcp, ECONNREFUSED, 14);
13951 			break;
13952 		case TCPS_ESTABLISHED:
13953 		case TCPS_FIN_WAIT_1:
13954 		case TCPS_FIN_WAIT_2:
13955 		case TCPS_CLOSE_WAIT:
13956 			(void) tcp_clean_death(tcp, ECONNRESET, 15);
13957 			break;
13958 		case TCPS_CLOSING:
13959 		case TCPS_LAST_ACK:
13960 			(void) tcp_clean_death(tcp, 0, 16);
13961 			break;
13962 		default:
13963 			ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
13964 			(void) tcp_clean_death(tcp, ENXIO, 17);
13965 			break;
13966 		}
13967 		return;
13968 	}
13969 	if (flags & TH_SYN) {
13970 		/*
13971 		 * See RFC 793, Page 71
13972 		 *
13973 		 * The seq number must be in the window as it should
13974 		 * be "fixed" above.  If it is outside window, it should
13975 		 * be already rejected.  Note that we allow seg_seq to be
13976 		 * rnxt + rwnd because we want to accept 0 window probe.
13977 		 */
13978 		ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) &&
13979 		    SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd));
13980 		freemsg(mp);
13981 		/*
13982 		 * If the ACK flag is not set, just use our snxt as the
13983 		 * seq number of the RST segment.
13984 		 */
13985 		if (!(flags & TH_ACK)) {
13986 			seg_ack = tcp->tcp_snxt;
13987 		}
13988 		tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1,
13989 		    TH_RST|TH_ACK);
13990 		ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
13991 		(void) tcp_clean_death(tcp, ECONNRESET, 18);
13992 		return;
13993 	}
13994 	/*
13995 	 * urp could be -1 when the urp field in the packet is 0
13996 	 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent
13997 	 * byte was at seg_seq - 1, in which case we ignore the urgent flag.
13998 	 */
13999 	if (flags & TH_URG && urp >= 0) {
14000 		if (!tcp->tcp_urp_last_valid ||
14001 		    SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) {
14002 			/*
14003 			 * If we haven't generated the signal yet for this
14004 			 * urgent pointer value, do it now.  Also, send up a
14005 			 * zero-length M_DATA indicating whether or not this is
14006 			 * the mark. The latter is not needed when a
14007 			 * T_EXDATA_IND is sent up. However, if there are
14008 			 * allocation failures this code relies on the sender
14009 			 * retransmitting and the socket code for determining
14010 			 * the mark should not block waiting for the peer to
14011 			 * transmit. Thus, for simplicity we always send up the
14012 			 * mark indication.
14013 			 */
14014 			mp1 = allocb(0, BPRI_MED);
14015 			if (mp1 == NULL) {
14016 				freemsg(mp);
14017 				return;
14018 			}
14019 			if (!TCP_IS_DETACHED(tcp) &&
14020 			    !putnextctl1(tcp->tcp_rq, M_PCSIG, SIGURG)) {
14021 				/* Try again on the rexmit. */
14022 				freemsg(mp1);
14023 				freemsg(mp);
14024 				return;
14025 			}
14026 			/*
14027 			 * Mark with NOTMARKNEXT for now.
14028 			 * The code below will change this to MARKNEXT
14029 			 * if we are at the mark.
14030 			 *
14031 			 * If there are allocation failures (e.g. in dupmsg
14032 			 * below) the next time tcp_rput_data sees the urgent
14033 			 * segment it will send up the MSG*MARKNEXT message.
14034 			 */
14035 			mp1->b_flag |= MSGNOTMARKNEXT;
14036 			freemsg(tcp->tcp_urp_mark_mp);
14037 			tcp->tcp_urp_mark_mp = mp1;
14038 			flags |= TH_SEND_URP_MARK;
14039 #ifdef DEBUG
14040 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
14041 			    "tcp_rput: sent M_PCSIG 2 seq %x urp %x "
14042 			    "last %x, %s",
14043 			    seg_seq, urp, tcp->tcp_urp_last,
14044 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
14045 #endif /* DEBUG */
14046 			tcp->tcp_urp_last_valid = B_TRUE;
14047 			tcp->tcp_urp_last = urp + seg_seq;
14048 		} else if (tcp->tcp_urp_mark_mp != NULL) {
14049 			/*
14050 			 * An allocation failure prevented the previous
14051 			 * tcp_rput_data from sending up the allocated
14052 			 * MSG*MARKNEXT message - send it up this time
14053 			 * around.
14054 			 */
14055 			flags |= TH_SEND_URP_MARK;
14056 		}
14057 
14058 		/*
14059 		 * If the urgent byte is in this segment, make sure that it is
14060 		 * all by itself.  This makes it much easier to deal with the
14061 		 * possibility of an allocation failure on the T_exdata_ind.
14062 		 * Note that seg_len is the number of bytes in the segment, and
14063 		 * urp is the offset into the segment of the urgent byte.
14064 		 * urp < seg_len means that the urgent byte is in this segment.
14065 		 */
14066 		if (urp < seg_len) {
14067 			if (seg_len != 1) {
14068 				uint32_t  tmp_rnxt;
14069 				/*
14070 				 * Break it up and feed it back in.
14071 				 * Re-attach the IP header.
14072 				 */
14073 				mp->b_rptr = iphdr;
14074 				if (urp > 0) {
14075 					/*
14076 					 * There is stuff before the urgent
14077 					 * byte.
14078 					 */
14079 					mp1 = dupmsg(mp);
14080 					if (!mp1) {
14081 						/*
14082 						 * Trim from urgent byte on.
14083 						 * The rest will come back.
14084 						 */
14085 						(void) adjmsg(mp,
14086 						    urp - seg_len);
14087 						tcp_rput_data(connp,
14088 						    mp, NULL);
14089 						return;
14090 					}
14091 					(void) adjmsg(mp1, urp - seg_len);
14092 					/* Feed this piece back in. */
14093 					tmp_rnxt = tcp->tcp_rnxt;
14094 					tcp_rput_data(connp, mp1, NULL);
14095 					/*
14096 					 * If the data passed back in was not
14097 					 * processed (ie: bad ACK) sending
14098 					 * the remainder back in will cause a
14099 					 * loop. In this case, drop the
14100 					 * packet and let the sender try
14101 					 * sending a good packet.
14102 					 */
14103 					if (tmp_rnxt == tcp->tcp_rnxt) {
14104 						freemsg(mp);
14105 						return;
14106 					}
14107 				}
14108 				if (urp != seg_len - 1) {
14109 					uint32_t  tmp_rnxt;
14110 					/*
14111 					 * There is stuff after the urgent
14112 					 * byte.
14113 					 */
14114 					mp1 = dupmsg(mp);
14115 					if (!mp1) {
14116 						/*
14117 						 * Trim everything beyond the
14118 						 * urgent byte.  The rest will
14119 						 * come back.
14120 						 */
14121 						(void) adjmsg(mp,
14122 						    urp + 1 - seg_len);
14123 						tcp_rput_data(connp,
14124 						    mp, NULL);
14125 						return;
14126 					}
14127 					(void) adjmsg(mp1, urp + 1 - seg_len);
14128 					tmp_rnxt = tcp->tcp_rnxt;
14129 					tcp_rput_data(connp, mp1, NULL);
14130 					/*
14131 					 * If the data passed back in was not
14132 					 * processed (ie: bad ACK) sending
14133 					 * the remainder back in will cause a
14134 					 * loop. In this case, drop the
14135 					 * packet and let the sender try
14136 					 * sending a good packet.
14137 					 */
14138 					if (tmp_rnxt == tcp->tcp_rnxt) {
14139 						freemsg(mp);
14140 						return;
14141 					}
14142 				}
14143 				tcp_rput_data(connp, mp, NULL);
14144 				return;
14145 			}
14146 			/*
14147 			 * This segment contains only the urgent byte.  We
14148 			 * have to allocate the T_exdata_ind, if we can.
14149 			 */
14150 			if (!tcp->tcp_urp_mp) {
14151 				struct T_exdata_ind *tei;
14152 				mp1 = allocb(sizeof (struct T_exdata_ind),
14153 				    BPRI_MED);
14154 				if (!mp1) {
14155 					/*
14156 					 * Sigh... It'll be back.
14157 					 * Generate any MSG*MARK message now.
14158 					 */
14159 					freemsg(mp);
14160 					seg_len = 0;
14161 					if (flags & TH_SEND_URP_MARK) {
14162 
14163 
14164 						ASSERT(tcp->tcp_urp_mark_mp);
14165 						tcp->tcp_urp_mark_mp->b_flag &=
14166 						    ~MSGNOTMARKNEXT;
14167 						tcp->tcp_urp_mark_mp->b_flag |=
14168 						    MSGMARKNEXT;
14169 					}
14170 					goto ack_check;
14171 				}
14172 				mp1->b_datap->db_type = M_PROTO;
14173 				tei = (struct T_exdata_ind *)mp1->b_rptr;
14174 				tei->PRIM_type = T_EXDATA_IND;
14175 				tei->MORE_flag = 0;
14176 				mp1->b_wptr = (uchar_t *)&tei[1];
14177 				tcp->tcp_urp_mp = mp1;
14178 #ifdef DEBUG
14179 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
14180 				    "tcp_rput: allocated exdata_ind %s",
14181 				    tcp_display(tcp, NULL,
14182 				    DISP_PORT_ONLY));
14183 #endif /* DEBUG */
14184 				/*
14185 				 * There is no need to send a separate MSG*MARK
14186 				 * message since the T_EXDATA_IND will be sent
14187 				 * now.
14188 				 */
14189 				flags &= ~TH_SEND_URP_MARK;
14190 				freemsg(tcp->tcp_urp_mark_mp);
14191 				tcp->tcp_urp_mark_mp = NULL;
14192 			}
14193 			/*
14194 			 * Now we are all set.  On the next putnext upstream,
14195 			 * tcp_urp_mp will be non-NULL and will get prepended
14196 			 * to what has to be this piece containing the urgent
14197 			 * byte.  If for any reason we abort this segment below,
14198 			 * if it comes back, we will have this ready, or it
14199 			 * will get blown off in close.
14200 			 */
14201 		} else if (urp == seg_len) {
14202 			/*
14203 			 * The urgent byte is the next byte after this sequence
14204 			 * number. If there is data it is marked with
14205 			 * MSGMARKNEXT and any tcp_urp_mark_mp is discarded
14206 			 * since it is not needed. Otherwise, if the code
14207 			 * above just allocated a zero-length tcp_urp_mark_mp
14208 			 * message, that message is tagged with MSGMARKNEXT.
14209 			 * Sending up these MSGMARKNEXT messages makes
14210 			 * SIOCATMARK work correctly even though
14211 			 * the T_EXDATA_IND will not be sent up until the
14212 			 * urgent byte arrives.
14213 			 */
14214 			if (seg_len != 0) {
14215 				flags |= TH_MARKNEXT_NEEDED;
14216 				freemsg(tcp->tcp_urp_mark_mp);
14217 				tcp->tcp_urp_mark_mp = NULL;
14218 				flags &= ~TH_SEND_URP_MARK;
14219 			} else if (tcp->tcp_urp_mark_mp != NULL) {
14220 				flags |= TH_SEND_URP_MARK;
14221 				tcp->tcp_urp_mark_mp->b_flag &=
14222 				    ~MSGNOTMARKNEXT;
14223 				tcp->tcp_urp_mark_mp->b_flag |= MSGMARKNEXT;
14224 			}
14225 #ifdef DEBUG
14226 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
14227 			    "tcp_rput: AT MARK, len %d, flags 0x%x, %s",
14228 			    seg_len, flags,
14229 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
14230 #endif /* DEBUG */
14231 		} else {
14232 			/* Data left until we hit mark */
14233 #ifdef DEBUG
14234 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
14235 			    "tcp_rput: URP %d bytes left, %s",
14236 			    urp - seg_len, tcp_display(tcp, NULL,
14237 			    DISP_PORT_ONLY));
14238 #endif /* DEBUG */
14239 		}
14240 	}
14241 
14242 process_ack:
14243 	if (!(flags & TH_ACK)) {
14244 		freemsg(mp);
14245 		goto xmit_check;
14246 	}
14247 	}
14248 	bytes_acked = (int)(seg_ack - tcp->tcp_suna);
14249 
14250 	if (tcp->tcp_ipversion == IPV6_VERSION && bytes_acked > 0)
14251 		tcp->tcp_ip_forward_progress = B_TRUE;
14252 	if (tcp->tcp_state == TCPS_SYN_RCVD) {
14253 		if ((tcp->tcp_conn.tcp_eager_conn_ind != NULL) &&
14254 		    ((tcp->tcp_kssl_ent == NULL) || !tcp->tcp_kssl_pending)) {
14255 			/* 3-way handshake complete - pass up the T_CONN_IND */
14256 			tcp_t	*listener = tcp->tcp_listener;
14257 			mblk_t	*mp = tcp->tcp_conn.tcp_eager_conn_ind;
14258 
14259 			tcp->tcp_tconnind_started = B_TRUE;
14260 			tcp->tcp_conn.tcp_eager_conn_ind = NULL;
14261 			/*
14262 			 * We are here means eager is fine but it can
14263 			 * get a TH_RST at any point between now and till
14264 			 * accept completes and disappear. We need to
14265 			 * ensure that reference to eager is valid after
14266 			 * we get out of eager's perimeter. So we do
14267 			 * an extra refhold.
14268 			 */
14269 			CONN_INC_REF(connp);
14270 
14271 			/*
14272 			 * The listener also exists because of the refhold
14273 			 * done in tcp_conn_request. Its possible that it
14274 			 * might have closed. We will check that once we
14275 			 * get inside listeners context.
14276 			 */
14277 			CONN_INC_REF(listener->tcp_connp);
14278 			if (listener->tcp_connp->conn_sqp ==
14279 			    connp->conn_sqp) {
14280 				tcp_send_conn_ind(listener->tcp_connp, mp,
14281 				    listener->tcp_connp->conn_sqp);
14282 				CONN_DEC_REF(listener->tcp_connp);
14283 			} else if (!tcp->tcp_loopback) {
14284 				squeue_fill(listener->tcp_connp->conn_sqp, mp,
14285 				    tcp_send_conn_ind,
14286 				    listener->tcp_connp, SQTAG_TCP_CONN_IND);
14287 			} else {
14288 				squeue_enter(listener->tcp_connp->conn_sqp, mp,
14289 				    tcp_send_conn_ind, listener->tcp_connp,
14290 				    SQTAG_TCP_CONN_IND);
14291 			}
14292 		}
14293 
14294 		if (tcp->tcp_active_open) {
14295 			/*
14296 			 * We are seeing the final ack in the three way
14297 			 * hand shake of a active open'ed connection
14298 			 * so we must send up a T_CONN_CON
14299 			 */
14300 			if (!tcp_conn_con(tcp, iphdr, tcph, mp, NULL)) {
14301 				freemsg(mp);
14302 				return;
14303 			}
14304 			/*
14305 			 * Don't fuse the loopback endpoints for
14306 			 * simultaneous active opens.
14307 			 */
14308 			if (tcp->tcp_loopback) {
14309 				TCP_STAT(tcps, tcp_fusion_unfusable);
14310 				tcp->tcp_unfusable = B_TRUE;
14311 			}
14312 		}
14313 
14314 		tcp->tcp_suna = tcp->tcp_iss + 1;	/* One for the SYN */
14315 		bytes_acked--;
14316 		/* SYN was acked - making progress */
14317 		if (tcp->tcp_ipversion == IPV6_VERSION)
14318 			tcp->tcp_ip_forward_progress = B_TRUE;
14319 
14320 		/*
14321 		 * If SYN was retransmitted, need to reset all
14322 		 * retransmission info as this segment will be
14323 		 * treated as a dup ACK.
14324 		 */
14325 		if (tcp->tcp_rexmit) {
14326 			tcp->tcp_rexmit = B_FALSE;
14327 			tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
14328 			tcp->tcp_rexmit_max = tcp->tcp_snxt;
14329 			tcp->tcp_snd_burst = tcp->tcp_localnet ?
14330 			    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
14331 			tcp->tcp_ms_we_have_waited = 0;
14332 			tcp->tcp_cwnd = mss;
14333 		}
14334 
14335 		/*
14336 		 * We set the send window to zero here.
14337 		 * This is needed if there is data to be
14338 		 * processed already on the queue.
14339 		 * Later (at swnd_update label), the
14340 		 * "new_swnd > tcp_swnd" condition is satisfied
14341 		 * the XMIT_NEEDED flag is set in the current
14342 		 * (SYN_RCVD) state. This ensures tcp_wput_data() is
14343 		 * called if there is already data on queue in
14344 		 * this state.
14345 		 */
14346 		tcp->tcp_swnd = 0;
14347 
14348 		if (new_swnd > tcp->tcp_max_swnd)
14349 			tcp->tcp_max_swnd = new_swnd;
14350 		tcp->tcp_swl1 = seg_seq;
14351 		tcp->tcp_swl2 = seg_ack;
14352 		tcp->tcp_state = TCPS_ESTABLISHED;
14353 		tcp->tcp_valid_bits &= ~TCP_ISS_VALID;
14354 
14355 		/* Fuse when both sides are in ESTABLISHED state */
14356 		if (tcp->tcp_loopback && do_tcp_fusion)
14357 			tcp_fuse(tcp, iphdr, tcph);
14358 
14359 	}
14360 	/* This code follows 4.4BSD-Lite2 mostly. */
14361 	if (bytes_acked < 0)
14362 		goto est;
14363 
14364 	/*
14365 	 * If TCP is ECN capable and the congestion experience bit is
14366 	 * set, reduce tcp_cwnd and tcp_ssthresh.  But this should only be
14367 	 * done once per window (or more loosely, per RTT).
14368 	 */
14369 	if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max))
14370 		tcp->tcp_cwr = B_FALSE;
14371 	if (tcp->tcp_ecn_ok && (flags & TH_ECE)) {
14372 		if (!tcp->tcp_cwr) {
14373 			npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss;
14374 			tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss;
14375 			tcp->tcp_cwnd = npkt * mss;
14376 			/*
14377 			 * If the cwnd is 0, use the timer to clock out
14378 			 * new segments.  This is required by the ECN spec.
14379 			 */
14380 			if (npkt == 0) {
14381 				TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
14382 				/*
14383 				 * This makes sure that when the ACK comes
14384 				 * back, we will increase tcp_cwnd by 1 MSS.
14385 				 */
14386 				tcp->tcp_cwnd_cnt = 0;
14387 			}
14388 			tcp->tcp_cwr = B_TRUE;
14389 			/*
14390 			 * This marks the end of the current window of in
14391 			 * flight data.  That is why we don't use
14392 			 * tcp_suna + tcp_swnd.  Only data in flight can
14393 			 * provide ECN info.
14394 			 */
14395 			tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
14396 			tcp->tcp_ecn_cwr_sent = B_FALSE;
14397 		}
14398 	}
14399 
14400 	mp1 = tcp->tcp_xmit_head;
14401 	if (bytes_acked == 0) {
14402 		if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) {
14403 			int dupack_cnt;
14404 
14405 			BUMP_MIB(&tcps->tcps_mib, tcpInDupAck);
14406 			/*
14407 			 * Fast retransmit.  When we have seen exactly three
14408 			 * identical ACKs while we have unacked data
14409 			 * outstanding we take it as a hint that our peer
14410 			 * dropped something.
14411 			 *
14412 			 * If TCP is retransmitting, don't do fast retransmit.
14413 			 */
14414 			if (mp1 && tcp->tcp_suna != tcp->tcp_snxt &&
14415 			    ! tcp->tcp_rexmit) {
14416 				/* Do Limited Transmit */
14417 				if ((dupack_cnt = ++tcp->tcp_dupack_cnt) <
14418 				    tcps->tcps_dupack_fast_retransmit) {
14419 					/*
14420 					 * RFC 3042
14421 					 *
14422 					 * What we need to do is temporarily
14423 					 * increase tcp_cwnd so that new
14424 					 * data can be sent if it is allowed
14425 					 * by the receive window (tcp_rwnd).
14426 					 * tcp_wput_data() will take care of
14427 					 * the rest.
14428 					 *
14429 					 * If the connection is SACK capable,
14430 					 * only do limited xmit when there
14431 					 * is SACK info.
14432 					 *
14433 					 * Note how tcp_cwnd is incremented.
14434 					 * The first dup ACK will increase
14435 					 * it by 1 MSS.  The second dup ACK
14436 					 * will increase it by 2 MSS.  This
14437 					 * means that only 1 new segment will
14438 					 * be sent for each dup ACK.
14439 					 */
14440 					if (tcp->tcp_unsent > 0 &&
14441 					    (!tcp->tcp_snd_sack_ok ||
14442 					    (tcp->tcp_snd_sack_ok &&
14443 					    tcp->tcp_notsack_list != NULL))) {
14444 						tcp->tcp_cwnd += mss <<
14445 						    (tcp->tcp_dupack_cnt - 1);
14446 						flags |= TH_LIMIT_XMIT;
14447 					}
14448 				} else if (dupack_cnt ==
14449 				    tcps->tcps_dupack_fast_retransmit) {
14450 
14451 				/*
14452 				 * If we have reduced tcp_ssthresh
14453 				 * because of ECN, do not reduce it again
14454 				 * unless it is already one window of data
14455 				 * away.  After one window of data, tcp_cwr
14456 				 * should then be cleared.  Note that
14457 				 * for non ECN capable connection, tcp_cwr
14458 				 * should always be false.
14459 				 *
14460 				 * Adjust cwnd since the duplicate
14461 				 * ack indicates that a packet was
14462 				 * dropped (due to congestion.)
14463 				 */
14464 				if (!tcp->tcp_cwr) {
14465 					npkt = ((tcp->tcp_snxt -
14466 					    tcp->tcp_suna) >> 1) / mss;
14467 					tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) *
14468 					    mss;
14469 					tcp->tcp_cwnd = (npkt +
14470 					    tcp->tcp_dupack_cnt) * mss;
14471 				}
14472 				if (tcp->tcp_ecn_ok) {
14473 					tcp->tcp_cwr = B_TRUE;
14474 					tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
14475 					tcp->tcp_ecn_cwr_sent = B_FALSE;
14476 				}
14477 
14478 				/*
14479 				 * We do Hoe's algorithm.  Refer to her
14480 				 * paper "Improving the Start-up Behavior
14481 				 * of a Congestion Control Scheme for TCP,"
14482 				 * appeared in SIGCOMM'96.
14483 				 *
14484 				 * Save highest seq no we have sent so far.
14485 				 * Be careful about the invisible FIN byte.
14486 				 */
14487 				if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
14488 				    (tcp->tcp_unsent == 0)) {
14489 					tcp->tcp_rexmit_max = tcp->tcp_fss;
14490 				} else {
14491 					tcp->tcp_rexmit_max = tcp->tcp_snxt;
14492 				}
14493 
14494 				/*
14495 				 * Do not allow bursty traffic during.
14496 				 * fast recovery.  Refer to Fall and Floyd's
14497 				 * paper "Simulation-based Comparisons of
14498 				 * Tahoe, Reno and SACK TCP" (in CCR?)
14499 				 * This is a best current practise.
14500 				 */
14501 				tcp->tcp_snd_burst = TCP_CWND_SS;
14502 
14503 				/*
14504 				 * For SACK:
14505 				 * Calculate tcp_pipe, which is the
14506 				 * estimated number of bytes in
14507 				 * network.
14508 				 *
14509 				 * tcp_fack is the highest sack'ed seq num
14510 				 * TCP has received.
14511 				 *
14512 				 * tcp_pipe is explained in the above quoted
14513 				 * Fall and Floyd's paper.  tcp_fack is
14514 				 * explained in Mathis and Mahdavi's
14515 				 * "Forward Acknowledgment: Refining TCP
14516 				 * Congestion Control" in SIGCOMM '96.
14517 				 */
14518 				if (tcp->tcp_snd_sack_ok) {
14519 					ASSERT(tcp->tcp_sack_info != NULL);
14520 					if (tcp->tcp_notsack_list != NULL) {
14521 						tcp->tcp_pipe = tcp->tcp_snxt -
14522 						    tcp->tcp_fack;
14523 						tcp->tcp_sack_snxt = seg_ack;
14524 						flags |= TH_NEED_SACK_REXMIT;
14525 					} else {
14526 						/*
14527 						 * Always initialize tcp_pipe
14528 						 * even though we don't have
14529 						 * any SACK info.  If later
14530 						 * we get SACK info and
14531 						 * tcp_pipe is not initialized,
14532 						 * funny things will happen.
14533 						 */
14534 						tcp->tcp_pipe =
14535 						    tcp->tcp_cwnd_ssthresh;
14536 					}
14537 				} else {
14538 					flags |= TH_REXMIT_NEEDED;
14539 				} /* tcp_snd_sack_ok */
14540 
14541 				} else {
14542 					/*
14543 					 * Here we perform congestion
14544 					 * avoidance, but NOT slow start.
14545 					 * This is known as the Fast
14546 					 * Recovery Algorithm.
14547 					 */
14548 					if (tcp->tcp_snd_sack_ok &&
14549 					    tcp->tcp_notsack_list != NULL) {
14550 						flags |= TH_NEED_SACK_REXMIT;
14551 						tcp->tcp_pipe -= mss;
14552 						if (tcp->tcp_pipe < 0)
14553 							tcp->tcp_pipe = 0;
14554 					} else {
14555 					/*
14556 					 * We know that one more packet has
14557 					 * left the pipe thus we can update
14558 					 * cwnd.
14559 					 */
14560 					cwnd = tcp->tcp_cwnd + mss;
14561 					if (cwnd > tcp->tcp_cwnd_max)
14562 						cwnd = tcp->tcp_cwnd_max;
14563 					tcp->tcp_cwnd = cwnd;
14564 					if (tcp->tcp_unsent > 0)
14565 						flags |= TH_XMIT_NEEDED;
14566 					}
14567 				}
14568 			}
14569 		} else if (tcp->tcp_zero_win_probe) {
14570 			/*
14571 			 * If the window has opened, need to arrange
14572 			 * to send additional data.
14573 			 */
14574 			if (new_swnd != 0) {
14575 				/* tcp_suna != tcp_snxt */
14576 				/* Packet contains a window update */
14577 				BUMP_MIB(&tcps->tcps_mib, tcpInWinUpdate);
14578 				tcp->tcp_zero_win_probe = 0;
14579 				tcp->tcp_timer_backoff = 0;
14580 				tcp->tcp_ms_we_have_waited = 0;
14581 
14582 				/*
14583 				 * Transmit starting with tcp_suna since
14584 				 * the one byte probe is not ack'ed.
14585 				 * If TCP has sent more than one identical
14586 				 * probe, tcp_rexmit will be set.  That means
14587 				 * tcp_ss_rexmit() will send out the one
14588 				 * byte along with new data.  Otherwise,
14589 				 * fake the retransmission.
14590 				 */
14591 				flags |= TH_XMIT_NEEDED;
14592 				if (!tcp->tcp_rexmit) {
14593 					tcp->tcp_rexmit = B_TRUE;
14594 					tcp->tcp_dupack_cnt = 0;
14595 					tcp->tcp_rexmit_nxt = tcp->tcp_suna;
14596 					tcp->tcp_rexmit_max = tcp->tcp_suna + 1;
14597 				}
14598 			}
14599 		}
14600 		goto swnd_update;
14601 	}
14602 
14603 	/*
14604 	 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73.
14605 	 * If the ACK value acks something that we have not yet sent, it might
14606 	 * be an old duplicate segment.  Send an ACK to re-synchronize the
14607 	 * other side.
14608 	 * Note: reset in response to unacceptable ACK in SYN_RECEIVE
14609 	 * state is handled above, so we can always just drop the segment and
14610 	 * send an ACK here.
14611 	 *
14612 	 * Should we send ACKs in response to ACK only segments?
14613 	 */
14614 	if (SEQ_GT(seg_ack, tcp->tcp_snxt)) {
14615 		BUMP_MIB(&tcps->tcps_mib, tcpInAckUnsent);
14616 		/* drop the received segment */
14617 		freemsg(mp);
14618 
14619 		/*
14620 		 * Send back an ACK.  If tcp_drop_ack_unsent_cnt is
14621 		 * greater than 0, check if the number of such
14622 		 * bogus ACks is greater than that count.  If yes,
14623 		 * don't send back any ACK.  This prevents TCP from
14624 		 * getting into an ACK storm if somehow an attacker
14625 		 * successfully spoofs an acceptable segment to our
14626 		 * peer.
14627 		 */
14628 		if (tcp_drop_ack_unsent_cnt > 0 &&
14629 		    ++tcp->tcp_in_ack_unsent > tcp_drop_ack_unsent_cnt) {
14630 			TCP_STAT(tcps, tcp_in_ack_unsent_drop);
14631 			return;
14632 		}
14633 		mp = tcp_ack_mp(tcp);
14634 		if (mp != NULL) {
14635 			BUMP_LOCAL(tcp->tcp_obsegs);
14636 			BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
14637 			tcp_send_data(tcp, tcp->tcp_wq, mp);
14638 		}
14639 		return;
14640 	}
14641 
14642 	/*
14643 	 * TCP gets a new ACK, update the notsack'ed list to delete those
14644 	 * blocks that are covered by this ACK.
14645 	 */
14646 	if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
14647 		tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack,
14648 		    &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list));
14649 	}
14650 
14651 	/*
14652 	 * If we got an ACK after fast retransmit, check to see
14653 	 * if it is a partial ACK.  If it is not and the congestion
14654 	 * window was inflated to account for the other side's
14655 	 * cached packets, retract it.  If it is, do Hoe's algorithm.
14656 	 */
14657 	if (tcp->tcp_dupack_cnt >= tcps->tcps_dupack_fast_retransmit) {
14658 		ASSERT(tcp->tcp_rexmit == B_FALSE);
14659 		if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) {
14660 			tcp->tcp_dupack_cnt = 0;
14661 			/*
14662 			 * Restore the orig tcp_cwnd_ssthresh after
14663 			 * fast retransmit phase.
14664 			 */
14665 			if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) {
14666 				tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh;
14667 			}
14668 			tcp->tcp_rexmit_max = seg_ack;
14669 			tcp->tcp_cwnd_cnt = 0;
14670 			tcp->tcp_snd_burst = tcp->tcp_localnet ?
14671 			    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
14672 
14673 			/*
14674 			 * Remove all notsack info to avoid confusion with
14675 			 * the next fast retrasnmit/recovery phase.
14676 			 */
14677 			if (tcp->tcp_snd_sack_ok &&
14678 			    tcp->tcp_notsack_list != NULL) {
14679 				TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
14680 			}
14681 		} else {
14682 			if (tcp->tcp_snd_sack_ok &&
14683 			    tcp->tcp_notsack_list != NULL) {
14684 				flags |= TH_NEED_SACK_REXMIT;
14685 				tcp->tcp_pipe -= mss;
14686 				if (tcp->tcp_pipe < 0)
14687 					tcp->tcp_pipe = 0;
14688 			} else {
14689 				/*
14690 				 * Hoe's algorithm:
14691 				 *
14692 				 * Retransmit the unack'ed segment and
14693 				 * restart fast recovery.  Note that we
14694 				 * need to scale back tcp_cwnd to the
14695 				 * original value when we started fast
14696 				 * recovery.  This is to prevent overly
14697 				 * aggressive behaviour in sending new
14698 				 * segments.
14699 				 */
14700 				tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh +
14701 				    tcps->tcps_dupack_fast_retransmit * mss;
14702 				tcp->tcp_cwnd_cnt = tcp->tcp_cwnd;
14703 				flags |= TH_REXMIT_NEEDED;
14704 			}
14705 		}
14706 	} else {
14707 		tcp->tcp_dupack_cnt = 0;
14708 		if (tcp->tcp_rexmit) {
14709 			/*
14710 			 * TCP is retranmitting.  If the ACK ack's all
14711 			 * outstanding data, update tcp_rexmit_max and
14712 			 * tcp_rexmit_nxt.  Otherwise, update tcp_rexmit_nxt
14713 			 * to the correct value.
14714 			 *
14715 			 * Note that SEQ_LEQ() is used.  This is to avoid
14716 			 * unnecessary fast retransmit caused by dup ACKs
14717 			 * received when TCP does slow start retransmission
14718 			 * after a time out.  During this phase, TCP may
14719 			 * send out segments which are already received.
14720 			 * This causes dup ACKs to be sent back.
14721 			 */
14722 			if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) {
14723 				if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) {
14724 					tcp->tcp_rexmit_nxt = seg_ack;
14725 				}
14726 				if (seg_ack != tcp->tcp_rexmit_max) {
14727 					flags |= TH_XMIT_NEEDED;
14728 				}
14729 			} else {
14730 				tcp->tcp_rexmit = B_FALSE;
14731 				tcp->tcp_xmit_zc_clean = B_FALSE;
14732 				tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
14733 				tcp->tcp_snd_burst = tcp->tcp_localnet ?
14734 				    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
14735 			}
14736 			tcp->tcp_ms_we_have_waited = 0;
14737 		}
14738 	}
14739 
14740 	BUMP_MIB(&tcps->tcps_mib, tcpInAckSegs);
14741 	UPDATE_MIB(&tcps->tcps_mib, tcpInAckBytes, bytes_acked);
14742 	tcp->tcp_suna = seg_ack;
14743 	if (tcp->tcp_zero_win_probe != 0) {
14744 		tcp->tcp_zero_win_probe = 0;
14745 		tcp->tcp_timer_backoff = 0;
14746 	}
14747 
14748 	/*
14749 	 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed.
14750 	 * Note that it cannot be the SYN being ack'ed.  The code flow
14751 	 * will not reach here.
14752 	 */
14753 	if (mp1 == NULL) {
14754 		goto fin_acked;
14755 	}
14756 
14757 	/*
14758 	 * Update the congestion window.
14759 	 *
14760 	 * If TCP is not ECN capable or TCP is ECN capable but the
14761 	 * congestion experience bit is not set, increase the tcp_cwnd as
14762 	 * usual.
14763 	 */
14764 	if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) {
14765 		cwnd = tcp->tcp_cwnd;
14766 		add = mss;
14767 
14768 		if (cwnd >= tcp->tcp_cwnd_ssthresh) {
14769 			/*
14770 			 * This is to prevent an increase of less than 1 MSS of
14771 			 * tcp_cwnd.  With partial increase, tcp_wput_data()
14772 			 * may send out tinygrams in order to preserve mblk
14773 			 * boundaries.
14774 			 *
14775 			 * By initializing tcp_cwnd_cnt to new tcp_cwnd and
14776 			 * decrementing it by 1 MSS for every ACKs, tcp_cwnd is
14777 			 * increased by 1 MSS for every RTTs.
14778 			 */
14779 			if (tcp->tcp_cwnd_cnt <= 0) {
14780 				tcp->tcp_cwnd_cnt = cwnd + add;
14781 			} else {
14782 				tcp->tcp_cwnd_cnt -= add;
14783 				add = 0;
14784 			}
14785 		}
14786 		tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max);
14787 	}
14788 
14789 	/* See if the latest urgent data has been acknowledged */
14790 	if ((tcp->tcp_valid_bits & TCP_URG_VALID) &&
14791 	    SEQ_GT(seg_ack, tcp->tcp_urg))
14792 		tcp->tcp_valid_bits &= ~TCP_URG_VALID;
14793 
14794 	/* Can we update the RTT estimates? */
14795 	if (tcp->tcp_snd_ts_ok) {
14796 		/* Ignore zero timestamp echo-reply. */
14797 		if (tcpopt.tcp_opt_ts_ecr != 0) {
14798 			tcp_set_rto(tcp, (int32_t)lbolt -
14799 			    (int32_t)tcpopt.tcp_opt_ts_ecr);
14800 		}
14801 
14802 		/* If needed, restart the timer. */
14803 		if (tcp->tcp_set_timer == 1) {
14804 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
14805 			tcp->tcp_set_timer = 0;
14806 		}
14807 		/*
14808 		 * Update tcp_csuna in case the other side stops sending
14809 		 * us timestamps.
14810 		 */
14811 		tcp->tcp_csuna = tcp->tcp_snxt;
14812 	} else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) {
14813 		/*
14814 		 * An ACK sequence we haven't seen before, so get the RTT
14815 		 * and update the RTO. But first check if the timestamp is
14816 		 * valid to use.
14817 		 */
14818 		if ((mp1->b_next != NULL) &&
14819 		    SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next)))
14820 			tcp_set_rto(tcp, (int32_t)lbolt -
14821 			    (int32_t)(intptr_t)mp1->b_prev);
14822 		else
14823 			BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate);
14824 
14825 		/* Remeber the last sequence to be ACKed */
14826 		tcp->tcp_csuna = seg_ack;
14827 		if (tcp->tcp_set_timer == 1) {
14828 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
14829 			tcp->tcp_set_timer = 0;
14830 		}
14831 	} else {
14832 		BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate);
14833 	}
14834 
14835 	/* Eat acknowledged bytes off the xmit queue. */
14836 	for (;;) {
14837 		mblk_t	*mp2;
14838 		uchar_t	*wptr;
14839 
14840 		wptr = mp1->b_wptr;
14841 		ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX);
14842 		bytes_acked -= (int)(wptr - mp1->b_rptr);
14843 		if (bytes_acked < 0) {
14844 			mp1->b_rptr = wptr + bytes_acked;
14845 			/*
14846 			 * Set a new timestamp if all the bytes timed by the
14847 			 * old timestamp have been ack'ed.
14848 			 */
14849 			if (SEQ_GT(seg_ack,
14850 			    (uint32_t)(uintptr_t)(mp1->b_next))) {
14851 				mp1->b_prev = (mblk_t *)(uintptr_t)lbolt;
14852 				mp1->b_next = NULL;
14853 			}
14854 			break;
14855 		}
14856 		mp1->b_next = NULL;
14857 		mp1->b_prev = NULL;
14858 		mp2 = mp1;
14859 		mp1 = mp1->b_cont;
14860 
14861 		/*
14862 		 * This notification is required for some zero-copy
14863 		 * clients to maintain a copy semantic. After the data
14864 		 * is ack'ed, client is safe to modify or reuse the buffer.
14865 		 */
14866 		if (tcp->tcp_snd_zcopy_aware &&
14867 		    (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY))
14868 			tcp_zcopy_notify(tcp);
14869 		freeb(mp2);
14870 		if (bytes_acked == 0) {
14871 			if (mp1 == NULL) {
14872 				/* Everything is ack'ed, clear the tail. */
14873 				tcp->tcp_xmit_tail = NULL;
14874 				/*
14875 				 * Cancel the timer unless we are still
14876 				 * waiting for an ACK for the FIN packet.
14877 				 */
14878 				if (tcp->tcp_timer_tid != 0 &&
14879 				    tcp->tcp_snxt == tcp->tcp_suna) {
14880 					(void) TCP_TIMER_CANCEL(tcp,
14881 					    tcp->tcp_timer_tid);
14882 					tcp->tcp_timer_tid = 0;
14883 				}
14884 				goto pre_swnd_update;
14885 			}
14886 			if (mp2 != tcp->tcp_xmit_tail)
14887 				break;
14888 			tcp->tcp_xmit_tail = mp1;
14889 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
14890 			    (uintptr_t)INT_MAX);
14891 			tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr -
14892 			    mp1->b_rptr);
14893 			break;
14894 		}
14895 		if (mp1 == NULL) {
14896 			/*
14897 			 * More was acked but there is nothing more
14898 			 * outstanding.  This means that the FIN was
14899 			 * just acked or that we're talking to a clown.
14900 			 */
14901 fin_acked:
14902 			ASSERT(tcp->tcp_fin_sent);
14903 			tcp->tcp_xmit_tail = NULL;
14904 			if (tcp->tcp_fin_sent) {
14905 				/* FIN was acked - making progress */
14906 				if (tcp->tcp_ipversion == IPV6_VERSION &&
14907 				    !tcp->tcp_fin_acked)
14908 					tcp->tcp_ip_forward_progress = B_TRUE;
14909 				tcp->tcp_fin_acked = B_TRUE;
14910 				if (tcp->tcp_linger_tid != 0 &&
14911 				    TCP_TIMER_CANCEL(tcp,
14912 				    tcp->tcp_linger_tid) >= 0) {
14913 					tcp_stop_lingering(tcp);
14914 					freemsg(mp);
14915 					mp = NULL;
14916 				}
14917 			} else {
14918 				/*
14919 				 * We should never get here because
14920 				 * we have already checked that the
14921 				 * number of bytes ack'ed should be
14922 				 * smaller than or equal to what we
14923 				 * have sent so far (it is the
14924 				 * acceptability check of the ACK).
14925 				 * We can only get here if the send
14926 				 * queue is corrupted.
14927 				 *
14928 				 * Terminate the connection and
14929 				 * panic the system.  It is better
14930 				 * for us to panic instead of
14931 				 * continuing to avoid other disaster.
14932 				 */
14933 				tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
14934 				    tcp->tcp_rnxt, TH_RST|TH_ACK);
14935 				panic("Memory corruption "
14936 				    "detected for connection %s.",
14937 				    tcp_display(tcp, NULL,
14938 				    DISP_ADDR_AND_PORT));
14939 				/*NOTREACHED*/
14940 			}
14941 			goto pre_swnd_update;
14942 		}
14943 		ASSERT(mp2 != tcp->tcp_xmit_tail);
14944 	}
14945 	if (tcp->tcp_unsent) {
14946 		flags |= TH_XMIT_NEEDED;
14947 	}
14948 pre_swnd_update:
14949 	tcp->tcp_xmit_head = mp1;
14950 swnd_update:
14951 	/*
14952 	 * The following check is different from most other implementations.
14953 	 * For bi-directional transfer, when segments are dropped, the
14954 	 * "normal" check will not accept a window update in those
14955 	 * retransmitted segemnts.  Failing to do that, TCP may send out
14956 	 * segments which are outside receiver's window.  As TCP accepts
14957 	 * the ack in those retransmitted segments, if the window update in
14958 	 * the same segment is not accepted, TCP will incorrectly calculates
14959 	 * that it can send more segments.  This can create a deadlock
14960 	 * with the receiver if its window becomes zero.
14961 	 */
14962 	if (SEQ_LT(tcp->tcp_swl2, seg_ack) ||
14963 	    SEQ_LT(tcp->tcp_swl1, seg_seq) ||
14964 	    (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) {
14965 		/*
14966 		 * The criteria for update is:
14967 		 *
14968 		 * 1. the segment acknowledges some data.  Or
14969 		 * 2. the segment is new, i.e. it has a higher seq num. Or
14970 		 * 3. the segment is not old and the advertised window is
14971 		 * larger than the previous advertised window.
14972 		 */
14973 		if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd)
14974 			flags |= TH_XMIT_NEEDED;
14975 		tcp->tcp_swnd = new_swnd;
14976 		if (new_swnd > tcp->tcp_max_swnd)
14977 			tcp->tcp_max_swnd = new_swnd;
14978 		tcp->tcp_swl1 = seg_seq;
14979 		tcp->tcp_swl2 = seg_ack;
14980 	}
14981 est:
14982 	if (tcp->tcp_state > TCPS_ESTABLISHED) {
14983 
14984 		switch (tcp->tcp_state) {
14985 		case TCPS_FIN_WAIT_1:
14986 			if (tcp->tcp_fin_acked) {
14987 				tcp->tcp_state = TCPS_FIN_WAIT_2;
14988 				/*
14989 				 * We implement the non-standard BSD/SunOS
14990 				 * FIN_WAIT_2 flushing algorithm.
14991 				 * If there is no user attached to this
14992 				 * TCP endpoint, then this TCP struct
14993 				 * could hang around forever in FIN_WAIT_2
14994 				 * state if the peer forgets to send us
14995 				 * a FIN.  To prevent this, we wait only
14996 				 * 2*MSL (a convenient time value) for
14997 				 * the FIN to arrive.  If it doesn't show up,
14998 				 * we flush the TCP endpoint.  This algorithm,
14999 				 * though a violation of RFC-793, has worked
15000 				 * for over 10 years in BSD systems.
15001 				 * Note: SunOS 4.x waits 675 seconds before
15002 				 * flushing the FIN_WAIT_2 connection.
15003 				 */
15004 				TCP_TIMER_RESTART(tcp,
15005 				    tcps->tcps_fin_wait_2_flush_interval);
15006 			}
15007 			break;
15008 		case TCPS_FIN_WAIT_2:
15009 			break;	/* Shutdown hook? */
15010 		case TCPS_LAST_ACK:
15011 			freemsg(mp);
15012 			if (tcp->tcp_fin_acked) {
15013 				(void) tcp_clean_death(tcp, 0, 19);
15014 				return;
15015 			}
15016 			goto xmit_check;
15017 		case TCPS_CLOSING:
15018 			if (tcp->tcp_fin_acked) {
15019 				tcp->tcp_state = TCPS_TIME_WAIT;
15020 				/*
15021 				 * Unconditionally clear the exclusive binding
15022 				 * bit so this TIME-WAIT connection won't
15023 				 * interfere with new ones.
15024 				 */
15025 				tcp->tcp_exclbind = 0;
15026 				if (!TCP_IS_DETACHED(tcp)) {
15027 					TCP_TIMER_RESTART(tcp,
15028 					    tcps->tcps_time_wait_interval);
15029 				} else {
15030 					tcp_time_wait_append(tcp);
15031 					TCP_DBGSTAT(tcps, tcp_rput_time_wait);
15032 				}
15033 			}
15034 			/*FALLTHRU*/
15035 		case TCPS_CLOSE_WAIT:
15036 			freemsg(mp);
15037 			goto xmit_check;
15038 		default:
15039 			ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
15040 			break;
15041 		}
15042 	}
15043 	if (flags & TH_FIN) {
15044 		/* Make sure we ack the fin */
15045 		flags |= TH_ACK_NEEDED;
15046 		if (!tcp->tcp_fin_rcvd) {
15047 			tcp->tcp_fin_rcvd = B_TRUE;
15048 			tcp->tcp_rnxt++;
15049 			tcph = tcp->tcp_tcph;
15050 			U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack);
15051 
15052 			/*
15053 			 * Generate the ordrel_ind at the end unless we
15054 			 * are an eager guy.
15055 			 * In the eager case tcp_rsrv will do this when run
15056 			 * after tcp_accept is done.
15057 			 */
15058 			if (tcp->tcp_listener == NULL &&
15059 			    !TCP_IS_DETACHED(tcp) && (!tcp->tcp_hard_binding))
15060 				flags |= TH_ORDREL_NEEDED;
15061 			switch (tcp->tcp_state) {
15062 			case TCPS_SYN_RCVD:
15063 			case TCPS_ESTABLISHED:
15064 				tcp->tcp_state = TCPS_CLOSE_WAIT;
15065 				/* Keepalive? */
15066 				break;
15067 			case TCPS_FIN_WAIT_1:
15068 				if (!tcp->tcp_fin_acked) {
15069 					tcp->tcp_state = TCPS_CLOSING;
15070 					break;
15071 				}
15072 				/* FALLTHRU */
15073 			case TCPS_FIN_WAIT_2:
15074 				tcp->tcp_state = TCPS_TIME_WAIT;
15075 				/*
15076 				 * Unconditionally clear the exclusive binding
15077 				 * bit so this TIME-WAIT connection won't
15078 				 * interfere with new ones.
15079 				 */
15080 				tcp->tcp_exclbind = 0;
15081 				if (!TCP_IS_DETACHED(tcp)) {
15082 					TCP_TIMER_RESTART(tcp,
15083 					    tcps->tcps_time_wait_interval);
15084 				} else {
15085 					tcp_time_wait_append(tcp);
15086 					TCP_DBGSTAT(tcps, tcp_rput_time_wait);
15087 				}
15088 				if (seg_len) {
15089 					/*
15090 					 * implies data piggybacked on FIN.
15091 					 * break to handle data.
15092 					 */
15093 					break;
15094 				}
15095 				freemsg(mp);
15096 				goto ack_check;
15097 			}
15098 		}
15099 	}
15100 	if (mp == NULL)
15101 		goto xmit_check;
15102 	if (seg_len == 0) {
15103 		freemsg(mp);
15104 		goto xmit_check;
15105 	}
15106 	if (mp->b_rptr == mp->b_wptr) {
15107 		/*
15108 		 * The header has been consumed, so we remove the
15109 		 * zero-length mblk here.
15110 		 */
15111 		mp1 = mp;
15112 		mp = mp->b_cont;
15113 		freeb(mp1);
15114 	}
15115 	tcph = tcp->tcp_tcph;
15116 	tcp->tcp_rack_cnt++;
15117 	{
15118 		uint32_t cur_max;
15119 
15120 		cur_max = tcp->tcp_rack_cur_max;
15121 		if (tcp->tcp_rack_cnt >= cur_max) {
15122 			/*
15123 			 * We have more unacked data than we should - send
15124 			 * an ACK now.
15125 			 */
15126 			flags |= TH_ACK_NEEDED;
15127 			cur_max++;
15128 			if (cur_max > tcp->tcp_rack_abs_max)
15129 				tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max;
15130 			else
15131 				tcp->tcp_rack_cur_max = cur_max;
15132 		} else if (TCP_IS_DETACHED(tcp)) {
15133 			/* We don't have an ACK timer for detached TCP. */
15134 			flags |= TH_ACK_NEEDED;
15135 		} else if (seg_len < mss) {
15136 			/*
15137 			 * If we get a segment that is less than an mss, and we
15138 			 * already have unacknowledged data, and the amount
15139 			 * unacknowledged is not a multiple of mss, then we
15140 			 * better generate an ACK now.  Otherwise, this may be
15141 			 * the tail piece of a transaction, and we would rather
15142 			 * wait for the response.
15143 			 */
15144 			uint32_t udif;
15145 			ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <=
15146 			    (uintptr_t)INT_MAX);
15147 			udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack);
15148 			if (udif && (udif % mss))
15149 				flags |= TH_ACK_NEEDED;
15150 			else
15151 				flags |= TH_ACK_TIMER_NEEDED;
15152 		} else {
15153 			/* Start delayed ack timer */
15154 			flags |= TH_ACK_TIMER_NEEDED;
15155 		}
15156 	}
15157 	tcp->tcp_rnxt += seg_len;
15158 	U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack);
15159 
15160 	/* Update SACK list */
15161 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
15162 		tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt,
15163 		    &(tcp->tcp_num_sack_blk));
15164 	}
15165 
15166 	if (tcp->tcp_urp_mp) {
15167 		tcp->tcp_urp_mp->b_cont = mp;
15168 		mp = tcp->tcp_urp_mp;
15169 		tcp->tcp_urp_mp = NULL;
15170 		/* Ready for a new signal. */
15171 		tcp->tcp_urp_last_valid = B_FALSE;
15172 #ifdef DEBUG
15173 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
15174 		    "tcp_rput: sending exdata_ind %s",
15175 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
15176 #endif /* DEBUG */
15177 	}
15178 
15179 	/*
15180 	 * Check for ancillary data changes compared to last segment.
15181 	 */
15182 	if (tcp->tcp_ipv6_recvancillary != 0) {
15183 		mp = tcp_rput_add_ancillary(tcp, mp, &ipp);
15184 		ASSERT(mp != NULL);
15185 	}
15186 
15187 	if (tcp->tcp_listener || tcp->tcp_hard_binding) {
15188 		/*
15189 		 * Side queue inbound data until the accept happens.
15190 		 * tcp_accept/tcp_rput drains this when the accept happens.
15191 		 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or
15192 		 * T_EXDATA_IND) it is queued on b_next.
15193 		 * XXX Make urgent data use this. Requires:
15194 		 *	Removing tcp_listener check for TH_URG
15195 		 *	Making M_PCPROTO and MARK messages skip the eager case
15196 		 */
15197 
15198 		if (tcp->tcp_kssl_pending) {
15199 			DTRACE_PROBE1(kssl_mblk__ksslinput_pending,
15200 			    mblk_t *, mp);
15201 			tcp_kssl_input(tcp, mp);
15202 		} else {
15203 			tcp_rcv_enqueue(tcp, mp, seg_len);
15204 		}
15205 	} else {
15206 		sodirect_t	*sodp = tcp->tcp_sodirect;
15207 
15208 		/*
15209 		 * If an sodirect connection and an enabled sodirect_t then
15210 		 * sodp will be set to point to the tcp_t/sonode_t shared
15211 		 * sodirect_t and the sodirect_t's lock will be held.
15212 		 */
15213 		if (sodp != NULL) {
15214 			mutex_enter(sodp->sod_lockp);
15215 			if (!(sodp->sod_state & SOD_ENABLED) ||
15216 			    (tcp->tcp_kssl_ctx != NULL &&
15217 			    DB_TYPE(mp) == M_DATA)) {
15218 				mutex_exit(sodp->sod_lockp);
15219 				sodp = NULL;
15220 			}
15221 		}
15222 		if (mp->b_datap->db_type != M_DATA ||
15223 		    (flags & TH_MARKNEXT_NEEDED)) {
15224 			if (sodp != NULL) {
15225 				if (sodp->sod_uioa.uioa_state & UIOA_ENABLED) {
15226 					sodp->sod_uioa.uioa_state &= UIOA_CLR;
15227 					sodp->sod_uioa.uioa_state |= UIOA_FINI;
15228 				}
15229 				if (!SOD_QEMPTY(sodp) &&
15230 				    (sodp->sod_state & SOD_WAKE_NOT)) {
15231 					flags |= tcp_rcv_sod_wakeup(tcp, sodp);
15232 					/* sod_wakeup() did the mutex_exit() */
15233 				} else {
15234 					mutex_exit(sodp->sod_lockp);
15235 				}
15236 			} else if (tcp->tcp_rcv_list != NULL) {
15237 				flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
15238 			}
15239 			ASSERT(tcp->tcp_rcv_list == NULL ||
15240 			    tcp->tcp_fused_sigurg);
15241 
15242 			if (flags & TH_MARKNEXT_NEEDED) {
15243 #ifdef DEBUG
15244 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
15245 				    "tcp_rput: sending MSGMARKNEXT %s",
15246 				    tcp_display(tcp, NULL,
15247 				    DISP_PORT_ONLY));
15248 #endif /* DEBUG */
15249 				mp->b_flag |= MSGMARKNEXT;
15250 				flags &= ~TH_MARKNEXT_NEEDED;
15251 			}
15252 
15253 			/* Does this need SSL processing first? */
15254 			if ((tcp->tcp_kssl_ctx != NULL) &&
15255 			    (DB_TYPE(mp) == M_DATA)) {
15256 				DTRACE_PROBE1(kssl_mblk__ksslinput_data1,
15257 				    mblk_t *, mp);
15258 				tcp_kssl_input(tcp, mp);
15259 			} else {
15260 				putnext(tcp->tcp_rq, mp);
15261 				if (!canputnext(tcp->tcp_rq))
15262 					tcp->tcp_rwnd -= seg_len;
15263 			}
15264 		} else if ((tcp->tcp_kssl_ctx != NULL) &&
15265 		    (DB_TYPE(mp) == M_DATA)) {
15266 			/* Do SSL processing first */
15267 			DTRACE_PROBE1(kssl_mblk__ksslinput_data2,
15268 			    mblk_t *, mp);
15269 			tcp_kssl_input(tcp, mp);
15270 		} else if (sodp != NULL) {
15271 			/*
15272 			 * Sodirect so all mblk_t's are queued on the
15273 			 * socket directly, check for wakeup of blocked
15274 			 * reader (if any), and last if flow-controled.
15275 			 */
15276 			flags |= tcp_rcv_sod_enqueue(tcp, sodp, mp, seg_len);
15277 			if ((sodp->sod_state & SOD_WAKE_NEED) ||
15278 			    (flags & (TH_PUSH|TH_FIN))) {
15279 				flags |= tcp_rcv_sod_wakeup(tcp, sodp);
15280 				/* sod_wakeup() did the mutex_exit() */
15281 			} else {
15282 				if (SOD_QFULL(sodp)) {
15283 					/* Q is full, need backenable */
15284 					SOD_QSETBE(sodp);
15285 				}
15286 				mutex_exit(sodp->sod_lockp);
15287 			}
15288 		} else if ((flags & (TH_PUSH|TH_FIN)) ||
15289 		    tcp->tcp_rcv_cnt + seg_len >= tcp->tcp_rq->q_hiwat >> 3) {
15290 			if (tcp->tcp_rcv_list != NULL) {
15291 				/*
15292 				 * Enqueue the new segment first and then
15293 				 * call tcp_rcv_drain() to send all data
15294 				 * up.  The other way to do this is to
15295 				 * send all queued data up and then call
15296 				 * putnext() to send the new segment up.
15297 				 * This way can remove the else part later
15298 				 * on.
15299 				 *
15300 				 * We don't this to avoid one more call to
15301 				 * canputnext() as tcp_rcv_drain() needs to
15302 				 * call canputnext().
15303 				 */
15304 				tcp_rcv_enqueue(tcp, mp, seg_len);
15305 				flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
15306 			} else {
15307 				putnext(tcp->tcp_rq, mp);
15308 				if (!canputnext(tcp->tcp_rq))
15309 					tcp->tcp_rwnd -= seg_len;
15310 			}
15311 		} else {
15312 			/*
15313 			 * Enqueue all packets when processing an mblk
15314 			 * from the co queue and also enqueue normal packets.
15315 			 */
15316 			tcp_rcv_enqueue(tcp, mp, seg_len);
15317 		}
15318 		/*
15319 		 * Make sure the timer is running if we have data waiting
15320 		 * for a push bit. This provides resiliency against
15321 		 * implementations that do not correctly generate push bits.
15322 		 *
15323 		 * Note, for sodirect if Q isn't empty and there's not a
15324 		 * pending wakeup then we need a timer. Also note that sodp
15325 		 * is assumed to be still valid after exit()ing the sod_lockp
15326 		 * above and while the SOD state can change it can only change
15327 		 * such that the Q is empty now even though data was added
15328 		 * above.
15329 		 */
15330 		if (((sodp != NULL && !SOD_QEMPTY(sodp) &&
15331 		    (sodp->sod_state & SOD_WAKE_NOT)) ||
15332 		    (sodp == NULL && tcp->tcp_rcv_list != NULL)) &&
15333 		    tcp->tcp_push_tid == 0) {
15334 			/*
15335 			 * The connection may be closed at this point, so don't
15336 			 * do anything for a detached tcp.
15337 			 */
15338 			if (!TCP_IS_DETACHED(tcp))
15339 				tcp->tcp_push_tid = TCP_TIMER(tcp,
15340 				    tcp_push_timer,
15341 				    MSEC_TO_TICK(
15342 				    tcps->tcps_push_timer_interval));
15343 		}
15344 	}
15345 
15346 xmit_check:
15347 	/* Is there anything left to do? */
15348 	ASSERT(!(flags & TH_MARKNEXT_NEEDED));
15349 	if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED|
15350 	    TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED|
15351 	    TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0)
15352 		goto done;
15353 
15354 	/* Any transmit work to do and a non-zero window? */
15355 	if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT|
15356 	    TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) {
15357 		if (flags & TH_REXMIT_NEEDED) {
15358 			uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna;
15359 
15360 			BUMP_MIB(&tcps->tcps_mib, tcpOutFastRetrans);
15361 			if (snd_size > mss)
15362 				snd_size = mss;
15363 			if (snd_size > tcp->tcp_swnd)
15364 				snd_size = tcp->tcp_swnd;
15365 			mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size,
15366 			    NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size,
15367 			    B_TRUE);
15368 
15369 			if (mp1 != NULL) {
15370 				tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt;
15371 				tcp->tcp_csuna = tcp->tcp_snxt;
15372 				BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
15373 				UPDATE_MIB(&tcps->tcps_mib,
15374 				    tcpRetransBytes, snd_size);
15375 				tcp_send_data(tcp, tcp->tcp_wq, mp1);
15376 			}
15377 		}
15378 		if (flags & TH_NEED_SACK_REXMIT) {
15379 			tcp_sack_rxmit(tcp, &flags);
15380 		}
15381 		/*
15382 		 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send
15383 		 * out new segment.  Note that tcp_rexmit should not be
15384 		 * set, otherwise TH_LIMIT_XMIT should not be set.
15385 		 */
15386 		if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) {
15387 			if (!tcp->tcp_rexmit) {
15388 				tcp_wput_data(tcp, NULL, B_FALSE);
15389 			} else {
15390 				tcp_ss_rexmit(tcp);
15391 			}
15392 		}
15393 		/*
15394 		 * Adjust tcp_cwnd back to normal value after sending
15395 		 * new data segments.
15396 		 */
15397 		if (flags & TH_LIMIT_XMIT) {
15398 			tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1);
15399 			/*
15400 			 * This will restart the timer.  Restarting the
15401 			 * timer is used to avoid a timeout before the
15402 			 * limited transmitted segment's ACK gets back.
15403 			 */
15404 			if (tcp->tcp_xmit_head != NULL)
15405 				tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt;
15406 		}
15407 
15408 		/* Anything more to do? */
15409 		if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED|
15410 		    TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0)
15411 			goto done;
15412 	}
15413 ack_check:
15414 	if (flags & TH_SEND_URP_MARK) {
15415 		ASSERT(tcp->tcp_urp_mark_mp);
15416 		/*
15417 		 * Send up any queued data and then send the mark message
15418 		 */
15419 		sodirect_t *sodp;
15420 
15421 		SOD_PTR_ENTER(tcp, sodp);
15422 
15423 		mp1 = tcp->tcp_urp_mark_mp;
15424 		tcp->tcp_urp_mark_mp = NULL;
15425 		if (sodp != NULL) {
15426 			if (sodp->sod_uioa.uioa_state & UIOA_ENABLED) {
15427 				sodp->sod_uioa.uioa_state &= UIOA_CLR;
15428 				sodp->sod_uioa.uioa_state |= UIOA_FINI;
15429 			}
15430 			ASSERT(tcp->tcp_rcv_list == NULL);
15431 
15432 			flags |= tcp_rcv_sod_wakeup(tcp, sodp);
15433 			/* sod_wakeup() does the mutex_exit() */
15434 		} else if (tcp->tcp_rcv_list != NULL) {
15435 			flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
15436 
15437 			ASSERT(tcp->tcp_rcv_list == NULL ||
15438 			    tcp->tcp_fused_sigurg);
15439 
15440 		}
15441 		putnext(tcp->tcp_rq, mp1);
15442 #ifdef DEBUG
15443 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
15444 		    "tcp_rput: sending zero-length %s %s",
15445 		    ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" :
15446 		    "MSGNOTMARKNEXT"),
15447 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
15448 #endif /* DEBUG */
15449 		flags &= ~TH_SEND_URP_MARK;
15450 	}
15451 	if (flags & TH_ACK_NEEDED) {
15452 		/*
15453 		 * Time to send an ack for some reason.
15454 		 */
15455 		mp1 = tcp_ack_mp(tcp);
15456 
15457 		if (mp1 != NULL) {
15458 			tcp_send_data(tcp, tcp->tcp_wq, mp1);
15459 			BUMP_LOCAL(tcp->tcp_obsegs);
15460 			BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
15461 		}
15462 		if (tcp->tcp_ack_tid != 0) {
15463 			(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid);
15464 			tcp->tcp_ack_tid = 0;
15465 		}
15466 	}
15467 	if (flags & TH_ACK_TIMER_NEEDED) {
15468 		/*
15469 		 * Arrange for deferred ACK or push wait timeout.
15470 		 * Start timer if it is not already running.
15471 		 */
15472 		if (tcp->tcp_ack_tid == 0) {
15473 			tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer,
15474 			    MSEC_TO_TICK(tcp->tcp_localnet ?
15475 			    (clock_t)tcps->tcps_local_dack_interval :
15476 			    (clock_t)tcps->tcps_deferred_ack_interval));
15477 		}
15478 	}
15479 	if (flags & TH_ORDREL_NEEDED) {
15480 		/*
15481 		 * Send up the ordrel_ind unless we are an eager guy.
15482 		 * In the eager case tcp_rsrv will do this when run
15483 		 * after tcp_accept is done.
15484 		 */
15485 		sodirect_t *sodp;
15486 
15487 		ASSERT(tcp->tcp_listener == NULL);
15488 
15489 		SOD_PTR_ENTER(tcp, sodp);
15490 		if (sodp != NULL) {
15491 			if (sodp->sod_uioa.uioa_state & UIOA_ENABLED) {
15492 				sodp->sod_uioa.uioa_state &= UIOA_CLR;
15493 				sodp->sod_uioa.uioa_state |= UIOA_FINI;
15494 			}
15495 			/* No more sodirect */
15496 			tcp->tcp_sodirect = NULL;
15497 			if (!SOD_QEMPTY(sodp)) {
15498 				/* Mblk(s) to process, notify */
15499 				flags |= tcp_rcv_sod_wakeup(tcp, sodp);
15500 				/* sod_wakeup() does the mutex_exit() */
15501 			} else {
15502 				/* Nothing to process */
15503 				mutex_exit(sodp->sod_lockp);
15504 			}
15505 		} else if (tcp->tcp_rcv_list != NULL) {
15506 			/*
15507 			 * Push any mblk(s) enqueued from co processing.
15508 			 */
15509 			flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
15510 
15511 			ASSERT(tcp->tcp_rcv_list == NULL ||
15512 			    tcp->tcp_fused_sigurg);
15513 		}
15514 
15515 		mp1 = tcp->tcp_ordrel_mp;
15516 		tcp->tcp_ordrel_mp = NULL;
15517 		tcp->tcp_ordrel_done = B_TRUE;
15518 		putnext(tcp->tcp_rq, mp1);
15519 	}
15520 done:
15521 	ASSERT(!(flags & TH_MARKNEXT_NEEDED));
15522 }
15523 
15524 /*
15525  * This function does PAWS protection check. Returns B_TRUE if the
15526  * segment passes the PAWS test, else returns B_FALSE.
15527  */
15528 boolean_t
15529 tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp)
15530 {
15531 	uint8_t	flags;
15532 	int	options;
15533 	uint8_t *up;
15534 
15535 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
15536 	/*
15537 	 * If timestamp option is aligned nicely, get values inline,
15538 	 * otherwise call general routine to parse.  Only do that
15539 	 * if timestamp is the only option.
15540 	 */
15541 	if (TCP_HDR_LENGTH(tcph) == (uint32_t)TCP_MIN_HEADER_LENGTH +
15542 	    TCPOPT_REAL_TS_LEN &&
15543 	    OK_32PTR((up = ((uint8_t *)tcph) +
15544 	    TCP_MIN_HEADER_LENGTH)) &&
15545 	    *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) {
15546 		tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4));
15547 		tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8));
15548 
15549 		options = TCP_OPT_TSTAMP_PRESENT;
15550 	} else {
15551 		if (tcp->tcp_snd_sack_ok) {
15552 			tcpoptp->tcp = tcp;
15553 		} else {
15554 			tcpoptp->tcp = NULL;
15555 		}
15556 		options = tcp_parse_options(tcph, tcpoptp);
15557 	}
15558 
15559 	if (options & TCP_OPT_TSTAMP_PRESENT) {
15560 		/*
15561 		 * Do PAWS per RFC 1323 section 4.2.  Accept RST
15562 		 * regardless of the timestamp, page 18 RFC 1323.bis.
15563 		 */
15564 		if ((flags & TH_RST) == 0 &&
15565 		    TSTMP_LT(tcpoptp->tcp_opt_ts_val,
15566 		    tcp->tcp_ts_recent)) {
15567 			if (TSTMP_LT(lbolt64, tcp->tcp_last_rcv_lbolt +
15568 			    PAWS_TIMEOUT)) {
15569 				/* This segment is not acceptable. */
15570 				return (B_FALSE);
15571 			} else {
15572 				/*
15573 				 * Connection has been idle for
15574 				 * too long.  Reset the timestamp
15575 				 * and assume the segment is valid.
15576 				 */
15577 				tcp->tcp_ts_recent =
15578 				    tcpoptp->tcp_opt_ts_val;
15579 			}
15580 		}
15581 	} else {
15582 		/*
15583 		 * If we don't get a timestamp on every packet, we
15584 		 * figure we can't really trust 'em, so we stop sending
15585 		 * and parsing them.
15586 		 */
15587 		tcp->tcp_snd_ts_ok = B_FALSE;
15588 
15589 		tcp->tcp_hdr_len -= TCPOPT_REAL_TS_LEN;
15590 		tcp->tcp_tcp_hdr_len -= TCPOPT_REAL_TS_LEN;
15591 		tcp->tcp_tcph->th_offset_and_rsrvd[0] -= (3 << 4);
15592 		/*
15593 		 * Adjust the tcp_mss accordingly. We also need to
15594 		 * adjust tcp_cwnd here in accordance with the new mss.
15595 		 * But we avoid doing a slow start here so as to not
15596 		 * to lose on the transfer rate built up so far.
15597 		 */
15598 		tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN, B_FALSE);
15599 		if (tcp->tcp_snd_sack_ok) {
15600 			ASSERT(tcp->tcp_sack_info != NULL);
15601 			tcp->tcp_max_sack_blk = 4;
15602 		}
15603 	}
15604 	return (B_TRUE);
15605 }
15606 
15607 /*
15608  * Attach ancillary data to a received TCP segments for the
15609  * ancillary pieces requested by the application that are
15610  * different than they were in the previous data segment.
15611  *
15612  * Save the "current" values once memory allocation is ok so that
15613  * when memory allocation fails we can just wait for the next data segment.
15614  */
15615 static mblk_t *
15616 tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp)
15617 {
15618 	struct T_optdata_ind *todi;
15619 	int optlen;
15620 	uchar_t *optptr;
15621 	struct T_opthdr *toh;
15622 	uint_t addflag;	/* Which pieces to add */
15623 	mblk_t *mp1;
15624 
15625 	optlen = 0;
15626 	addflag = 0;
15627 	/* If app asked for pktinfo and the index has changed ... */
15628 	if ((ipp->ipp_fields & IPPF_IFINDEX) &&
15629 	    ipp->ipp_ifindex != tcp->tcp_recvifindex &&
15630 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)) {
15631 		optlen += sizeof (struct T_opthdr) +
15632 		    sizeof (struct in6_pktinfo);
15633 		addflag |= TCP_IPV6_RECVPKTINFO;
15634 	}
15635 	/* If app asked for hoplimit and it has changed ... */
15636 	if ((ipp->ipp_fields & IPPF_HOPLIMIT) &&
15637 	    ipp->ipp_hoplimit != tcp->tcp_recvhops &&
15638 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPLIMIT)) {
15639 		optlen += sizeof (struct T_opthdr) + sizeof (uint_t);
15640 		addflag |= TCP_IPV6_RECVHOPLIMIT;
15641 	}
15642 	/* If app asked for tclass and it has changed ... */
15643 	if ((ipp->ipp_fields & IPPF_TCLASS) &&
15644 	    ipp->ipp_tclass != tcp->tcp_recvtclass &&
15645 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)) {
15646 		optlen += sizeof (struct T_opthdr) + sizeof (uint_t);
15647 		addflag |= TCP_IPV6_RECVTCLASS;
15648 	}
15649 	/*
15650 	 * If app asked for hopbyhop headers and it has changed ...
15651 	 * For security labels, note that (1) security labels can't change on
15652 	 * a connected socket at all, (2) we're connected to at most one peer,
15653 	 * (3) if anything changes, then it must be some other extra option.
15654 	 */
15655 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) &&
15656 	    ip_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen,
15657 	    (ipp->ipp_fields & IPPF_HOPOPTS),
15658 	    ipp->ipp_hopopts, ipp->ipp_hopoptslen)) {
15659 		optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen -
15660 		    tcp->tcp_label_len;
15661 		addflag |= TCP_IPV6_RECVHOPOPTS;
15662 		if (!ip_allocbuf((void **)&tcp->tcp_hopopts,
15663 		    &tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS),
15664 		    ipp->ipp_hopopts, ipp->ipp_hopoptslen))
15665 			return (mp);
15666 	}
15667 	/* If app asked for dst headers before routing headers ... */
15668 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTDSTOPTS) &&
15669 	    ip_cmpbuf(tcp->tcp_rtdstopts, tcp->tcp_rtdstoptslen,
15670 	    (ipp->ipp_fields & IPPF_RTDSTOPTS),
15671 	    ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) {
15672 		optlen += sizeof (struct T_opthdr) +
15673 		    ipp->ipp_rtdstoptslen;
15674 		addflag |= TCP_IPV6_RECVRTDSTOPTS;
15675 		if (!ip_allocbuf((void **)&tcp->tcp_rtdstopts,
15676 		    &tcp->tcp_rtdstoptslen, (ipp->ipp_fields & IPPF_RTDSTOPTS),
15677 		    ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen))
15678 			return (mp);
15679 	}
15680 	/* If app asked for routing headers and it has changed ... */
15681 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) &&
15682 	    ip_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen,
15683 	    (ipp->ipp_fields & IPPF_RTHDR),
15684 	    ipp->ipp_rthdr, ipp->ipp_rthdrlen)) {
15685 		optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen;
15686 		addflag |= TCP_IPV6_RECVRTHDR;
15687 		if (!ip_allocbuf((void **)&tcp->tcp_rthdr,
15688 		    &tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR),
15689 		    ipp->ipp_rthdr, ipp->ipp_rthdrlen))
15690 			return (mp);
15691 	}
15692 	/* If app asked for dest headers and it has changed ... */
15693 	if ((tcp->tcp_ipv6_recvancillary &
15694 	    (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) &&
15695 	    ip_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen,
15696 	    (ipp->ipp_fields & IPPF_DSTOPTS),
15697 	    ipp->ipp_dstopts, ipp->ipp_dstoptslen)) {
15698 		optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen;
15699 		addflag |= TCP_IPV6_RECVDSTOPTS;
15700 		if (!ip_allocbuf((void **)&tcp->tcp_dstopts,
15701 		    &tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS),
15702 		    ipp->ipp_dstopts, ipp->ipp_dstoptslen))
15703 			return (mp);
15704 	}
15705 
15706 	if (optlen == 0) {
15707 		/* Nothing to add */
15708 		return (mp);
15709 	}
15710 	mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED);
15711 	if (mp1 == NULL) {
15712 		/*
15713 		 * Defer sending ancillary data until the next TCP segment
15714 		 * arrives.
15715 		 */
15716 		return (mp);
15717 	}
15718 	mp1->b_cont = mp;
15719 	mp = mp1;
15720 	mp->b_wptr += sizeof (*todi) + optlen;
15721 	mp->b_datap->db_type = M_PROTO;
15722 	todi = (struct T_optdata_ind *)mp->b_rptr;
15723 	todi->PRIM_type = T_OPTDATA_IND;
15724 	todi->DATA_flag = 1;	/* MORE data */
15725 	todi->OPT_length = optlen;
15726 	todi->OPT_offset = sizeof (*todi);
15727 	optptr = (uchar_t *)&todi[1];
15728 	/*
15729 	 * If app asked for pktinfo and the index has changed ...
15730 	 * Note that the local address never changes for the connection.
15731 	 */
15732 	if (addflag & TCP_IPV6_RECVPKTINFO) {
15733 		struct in6_pktinfo *pkti;
15734 
15735 		toh = (struct T_opthdr *)optptr;
15736 		toh->level = IPPROTO_IPV6;
15737 		toh->name = IPV6_PKTINFO;
15738 		toh->len = sizeof (*toh) + sizeof (*pkti);
15739 		toh->status = 0;
15740 		optptr += sizeof (*toh);
15741 		pkti = (struct in6_pktinfo *)optptr;
15742 		if (tcp->tcp_ipversion == IPV6_VERSION)
15743 			pkti->ipi6_addr = tcp->tcp_ip6h->ip6_src;
15744 		else
15745 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
15746 			    &pkti->ipi6_addr);
15747 		pkti->ipi6_ifindex = ipp->ipp_ifindex;
15748 		optptr += sizeof (*pkti);
15749 		ASSERT(OK_32PTR(optptr));
15750 		/* Save as "last" value */
15751 		tcp->tcp_recvifindex = ipp->ipp_ifindex;
15752 	}
15753 	/* If app asked for hoplimit and it has changed ... */
15754 	if (addflag & TCP_IPV6_RECVHOPLIMIT) {
15755 		toh = (struct T_opthdr *)optptr;
15756 		toh->level = IPPROTO_IPV6;
15757 		toh->name = IPV6_HOPLIMIT;
15758 		toh->len = sizeof (*toh) + sizeof (uint_t);
15759 		toh->status = 0;
15760 		optptr += sizeof (*toh);
15761 		*(uint_t *)optptr = ipp->ipp_hoplimit;
15762 		optptr += sizeof (uint_t);
15763 		ASSERT(OK_32PTR(optptr));
15764 		/* Save as "last" value */
15765 		tcp->tcp_recvhops = ipp->ipp_hoplimit;
15766 	}
15767 	/* If app asked for tclass and it has changed ... */
15768 	if (addflag & TCP_IPV6_RECVTCLASS) {
15769 		toh = (struct T_opthdr *)optptr;
15770 		toh->level = IPPROTO_IPV6;
15771 		toh->name = IPV6_TCLASS;
15772 		toh->len = sizeof (*toh) + sizeof (uint_t);
15773 		toh->status = 0;
15774 		optptr += sizeof (*toh);
15775 		*(uint_t *)optptr = ipp->ipp_tclass;
15776 		optptr += sizeof (uint_t);
15777 		ASSERT(OK_32PTR(optptr));
15778 		/* Save as "last" value */
15779 		tcp->tcp_recvtclass = ipp->ipp_tclass;
15780 	}
15781 	if (addflag & TCP_IPV6_RECVHOPOPTS) {
15782 		toh = (struct T_opthdr *)optptr;
15783 		toh->level = IPPROTO_IPV6;
15784 		toh->name = IPV6_HOPOPTS;
15785 		toh->len = sizeof (*toh) + ipp->ipp_hopoptslen -
15786 		    tcp->tcp_label_len;
15787 		toh->status = 0;
15788 		optptr += sizeof (*toh);
15789 		bcopy((uchar_t *)ipp->ipp_hopopts + tcp->tcp_label_len, optptr,
15790 		    ipp->ipp_hopoptslen - tcp->tcp_label_len);
15791 		optptr += ipp->ipp_hopoptslen - tcp->tcp_label_len;
15792 		ASSERT(OK_32PTR(optptr));
15793 		/* Save as last value */
15794 		ip_savebuf((void **)&tcp->tcp_hopopts, &tcp->tcp_hopoptslen,
15795 		    (ipp->ipp_fields & IPPF_HOPOPTS),
15796 		    ipp->ipp_hopopts, ipp->ipp_hopoptslen);
15797 	}
15798 	if (addflag & TCP_IPV6_RECVRTDSTOPTS) {
15799 		toh = (struct T_opthdr *)optptr;
15800 		toh->level = IPPROTO_IPV6;
15801 		toh->name = IPV6_RTHDRDSTOPTS;
15802 		toh->len = sizeof (*toh) + ipp->ipp_rtdstoptslen;
15803 		toh->status = 0;
15804 		optptr += sizeof (*toh);
15805 		bcopy(ipp->ipp_rtdstopts, optptr, ipp->ipp_rtdstoptslen);
15806 		optptr += ipp->ipp_rtdstoptslen;
15807 		ASSERT(OK_32PTR(optptr));
15808 		/* Save as last value */
15809 		ip_savebuf((void **)&tcp->tcp_rtdstopts,
15810 		    &tcp->tcp_rtdstoptslen,
15811 		    (ipp->ipp_fields & IPPF_RTDSTOPTS),
15812 		    ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen);
15813 	}
15814 	if (addflag & TCP_IPV6_RECVRTHDR) {
15815 		toh = (struct T_opthdr *)optptr;
15816 		toh->level = IPPROTO_IPV6;
15817 		toh->name = IPV6_RTHDR;
15818 		toh->len = sizeof (*toh) + ipp->ipp_rthdrlen;
15819 		toh->status = 0;
15820 		optptr += sizeof (*toh);
15821 		bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen);
15822 		optptr += ipp->ipp_rthdrlen;
15823 		ASSERT(OK_32PTR(optptr));
15824 		/* Save as last value */
15825 		ip_savebuf((void **)&tcp->tcp_rthdr, &tcp->tcp_rthdrlen,
15826 		    (ipp->ipp_fields & IPPF_RTHDR),
15827 		    ipp->ipp_rthdr, ipp->ipp_rthdrlen);
15828 	}
15829 	if (addflag & (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) {
15830 		toh = (struct T_opthdr *)optptr;
15831 		toh->level = IPPROTO_IPV6;
15832 		toh->name = IPV6_DSTOPTS;
15833 		toh->len = sizeof (*toh) + ipp->ipp_dstoptslen;
15834 		toh->status = 0;
15835 		optptr += sizeof (*toh);
15836 		bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen);
15837 		optptr += ipp->ipp_dstoptslen;
15838 		ASSERT(OK_32PTR(optptr));
15839 		/* Save as last value */
15840 		ip_savebuf((void **)&tcp->tcp_dstopts, &tcp->tcp_dstoptslen,
15841 		    (ipp->ipp_fields & IPPF_DSTOPTS),
15842 		    ipp->ipp_dstopts, ipp->ipp_dstoptslen);
15843 	}
15844 	ASSERT(optptr == mp->b_wptr);
15845 	return (mp);
15846 }
15847 
15848 
15849 /*
15850  * Handle a *T_BIND_REQ that has failed either due to a T_ERROR_ACK
15851  * or a "bad" IRE detected by tcp_adapt_ire.
15852  * We can't tell if the failure was due to the laddr or the faddr
15853  * thus we clear out all addresses and ports.
15854  */
15855 static void
15856 tcp_bind_failed(tcp_t *tcp, mblk_t *mp, int error)
15857 {
15858 	queue_t	*q = tcp->tcp_rq;
15859 	tcph_t	*tcph;
15860 	struct T_error_ack *tea;
15861 	conn_t	*connp = tcp->tcp_connp;
15862 
15863 
15864 	ASSERT(mp->b_datap->db_type == M_PCPROTO);
15865 
15866 	if (mp->b_cont) {
15867 		freemsg(mp->b_cont);
15868 		mp->b_cont = NULL;
15869 	}
15870 	tea = (struct T_error_ack *)mp->b_rptr;
15871 	switch (tea->PRIM_type) {
15872 	case T_BIND_ACK:
15873 		/*
15874 		 * Need to unbind with classifier since we were just told that
15875 		 * our bind succeeded.
15876 		 */
15877 		tcp->tcp_hard_bound = B_FALSE;
15878 		tcp->tcp_hard_binding = B_FALSE;
15879 
15880 		ipcl_hash_remove(connp);
15881 		/* Reuse the mblk if possible */
15882 		ASSERT(mp->b_datap->db_lim - mp->b_datap->db_base >=
15883 		    sizeof (*tea));
15884 		mp->b_rptr = mp->b_datap->db_base;
15885 		mp->b_wptr = mp->b_rptr + sizeof (*tea);
15886 		tea = (struct T_error_ack *)mp->b_rptr;
15887 		tea->PRIM_type = T_ERROR_ACK;
15888 		tea->TLI_error = TSYSERR;
15889 		tea->UNIX_error = error;
15890 		if (tcp->tcp_state >= TCPS_SYN_SENT) {
15891 			tea->ERROR_prim = T_CONN_REQ;
15892 		} else {
15893 			tea->ERROR_prim = O_T_BIND_REQ;
15894 		}
15895 		break;
15896 
15897 	case T_ERROR_ACK:
15898 		if (tcp->tcp_state >= TCPS_SYN_SENT)
15899 			tea->ERROR_prim = T_CONN_REQ;
15900 		break;
15901 	default:
15902 		panic("tcp_bind_failed: unexpected TPI type");
15903 		/*NOTREACHED*/
15904 	}
15905 
15906 	tcp->tcp_state = TCPS_IDLE;
15907 	if (tcp->tcp_ipversion == IPV4_VERSION)
15908 		tcp->tcp_ipha->ipha_src = 0;
15909 	else
15910 		V6_SET_ZERO(tcp->tcp_ip6h->ip6_src);
15911 	/*
15912 	 * Copy of the src addr. in tcp_t is needed since
15913 	 * the lookup funcs. can only look at tcp_t
15914 	 */
15915 	V6_SET_ZERO(tcp->tcp_ip_src_v6);
15916 
15917 	tcph = tcp->tcp_tcph;
15918 	tcph->th_lport[0] = 0;
15919 	tcph->th_lport[1] = 0;
15920 	tcp_bind_hash_remove(tcp);
15921 	bzero(&connp->u_port, sizeof (connp->u_port));
15922 	/* blow away saved option results if any */
15923 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
15924 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
15925 
15926 	conn_delete_ire(tcp->tcp_connp, NULL);
15927 	putnext(q, mp);
15928 }
15929 
15930 /*
15931  * tcp_rput_other is called by tcp_rput to handle everything other than M_DATA
15932  * messages.
15933  */
15934 void
15935 tcp_rput_other(tcp_t *tcp, mblk_t *mp)
15936 {
15937 	mblk_t	*mp1;
15938 	uchar_t	*rptr = mp->b_rptr;
15939 	queue_t	*q = tcp->tcp_rq;
15940 	struct T_error_ack *tea;
15941 	uint32_t mss;
15942 	mblk_t *syn_mp;
15943 	mblk_t *mdti;
15944 	mblk_t *lsoi;
15945 	int	retval;
15946 	mblk_t *ire_mp;
15947 	tcp_stack_t	*tcps = tcp->tcp_tcps;
15948 
15949 	switch (mp->b_datap->db_type) {
15950 	case M_PROTO:
15951 	case M_PCPROTO:
15952 		ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
15953 		if ((mp->b_wptr - rptr) < sizeof (t_scalar_t))
15954 			break;
15955 		tea = (struct T_error_ack *)rptr;
15956 		switch (tea->PRIM_type) {
15957 		case T_BIND_ACK:
15958 			/*
15959 			 * Adapt Multidata information, if any.  The
15960 			 * following tcp_mdt_update routine will free
15961 			 * the message.
15962 			 */
15963 			if ((mdti = tcp_mdt_info_mp(mp)) != NULL) {
15964 				tcp_mdt_update(tcp, &((ip_mdt_info_t *)mdti->
15965 				    b_rptr)->mdt_capab, B_TRUE);
15966 				freemsg(mdti);
15967 			}
15968 
15969 			/*
15970 			 * Check to update LSO information with tcp, and
15971 			 * tcp_lso_update routine will free the message.
15972 			 */
15973 			if ((lsoi = tcp_lso_info_mp(mp)) != NULL) {
15974 				tcp_lso_update(tcp, &((ip_lso_info_t *)lsoi->
15975 				    b_rptr)->lso_capab);
15976 				freemsg(lsoi);
15977 			}
15978 
15979 			/* Get the IRE, if we had requested for it */
15980 			ire_mp = tcp_ire_mp(mp);
15981 
15982 			if (tcp->tcp_hard_binding) {
15983 				tcp->tcp_hard_binding = B_FALSE;
15984 				tcp->tcp_hard_bound = B_TRUE;
15985 				CL_INET_CONNECT(tcp);
15986 			} else {
15987 				if (ire_mp != NULL)
15988 					freeb(ire_mp);
15989 				goto after_syn_sent;
15990 			}
15991 
15992 			retval = tcp_adapt_ire(tcp, ire_mp);
15993 			if (ire_mp != NULL)
15994 				freeb(ire_mp);
15995 			if (retval == 0) {
15996 				tcp_bind_failed(tcp, mp,
15997 				    (int)((tcp->tcp_state >= TCPS_SYN_SENT) ?
15998 				    ENETUNREACH : EADDRNOTAVAIL));
15999 				return;
16000 			}
16001 			/*
16002 			 * Don't let an endpoint connect to itself.
16003 			 * Also checked in tcp_connect() but that
16004 			 * check can't handle the case when the
16005 			 * local IP address is INADDR_ANY.
16006 			 */
16007 			if (tcp->tcp_ipversion == IPV4_VERSION) {
16008 				if ((tcp->tcp_ipha->ipha_dst ==
16009 				    tcp->tcp_ipha->ipha_src) &&
16010 				    (BE16_EQL(tcp->tcp_tcph->th_lport,
16011 				    tcp->tcp_tcph->th_fport))) {
16012 					tcp_bind_failed(tcp, mp, EADDRNOTAVAIL);
16013 					return;
16014 				}
16015 			} else {
16016 				if (IN6_ARE_ADDR_EQUAL(
16017 				    &tcp->tcp_ip6h->ip6_dst,
16018 				    &tcp->tcp_ip6h->ip6_src) &&
16019 				    (BE16_EQL(tcp->tcp_tcph->th_lport,
16020 				    tcp->tcp_tcph->th_fport))) {
16021 					tcp_bind_failed(tcp, mp, EADDRNOTAVAIL);
16022 					return;
16023 				}
16024 			}
16025 			ASSERT(tcp->tcp_state == TCPS_SYN_SENT);
16026 			/*
16027 			 * This should not be possible!  Just for
16028 			 * defensive coding...
16029 			 */
16030 			if (tcp->tcp_state != TCPS_SYN_SENT)
16031 				goto after_syn_sent;
16032 
16033 			if (is_system_labeled() &&
16034 			    !tcp_update_label(tcp, CONN_CRED(tcp->tcp_connp))) {
16035 				tcp_bind_failed(tcp, mp, EHOSTUNREACH);
16036 				return;
16037 			}
16038 
16039 			ASSERT(q == tcp->tcp_rq);
16040 			/*
16041 			 * tcp_adapt_ire() does not adjust
16042 			 * for TCP/IP header length.
16043 			 */
16044 			mss = tcp->tcp_mss - tcp->tcp_hdr_len;
16045 
16046 			/*
16047 			 * Just make sure our rwnd is at
16048 			 * least tcp_recv_hiwat_mss * MSS
16049 			 * large, and round up to the nearest
16050 			 * MSS.
16051 			 *
16052 			 * We do the round up here because
16053 			 * we need to get the interface
16054 			 * MTU first before we can do the
16055 			 * round up.
16056 			 */
16057 			tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss),
16058 			    tcps->tcps_recv_hiwat_minmss * mss);
16059 			q->q_hiwat = tcp->tcp_rwnd;
16060 			tcp_set_ws_value(tcp);
16061 			U32_TO_ABE16((tcp->tcp_rwnd >> tcp->tcp_rcv_ws),
16062 			    tcp->tcp_tcph->th_win);
16063 			if (tcp->tcp_rcv_ws > 0 || tcps->tcps_wscale_always)
16064 				tcp->tcp_snd_ws_ok = B_TRUE;
16065 
16066 			/*
16067 			 * Set tcp_snd_ts_ok to true
16068 			 * so that tcp_xmit_mp will
16069 			 * include the timestamp
16070 			 * option in the SYN segment.
16071 			 */
16072 			if (tcps->tcps_tstamp_always ||
16073 			    (tcp->tcp_rcv_ws && tcps->tcps_tstamp_if_wscale)) {
16074 				tcp->tcp_snd_ts_ok = B_TRUE;
16075 			}
16076 
16077 			/*
16078 			 * tcp_snd_sack_ok can be set in
16079 			 * tcp_adapt_ire() if the sack metric
16080 			 * is set.  So check it here also.
16081 			 */
16082 			if (tcps->tcps_sack_permitted == 2 ||
16083 			    tcp->tcp_snd_sack_ok) {
16084 				if (tcp->tcp_sack_info == NULL) {
16085 					tcp->tcp_sack_info =
16086 					    kmem_cache_alloc(
16087 					    tcp_sack_info_cache,
16088 					    KM_SLEEP);
16089 				}
16090 				tcp->tcp_snd_sack_ok = B_TRUE;
16091 			}
16092 
16093 			/*
16094 			 * Should we use ECN?  Note that the current
16095 			 * default value (SunOS 5.9) of tcp_ecn_permitted
16096 			 * is 1.  The reason for doing this is that there
16097 			 * are equipments out there that will drop ECN
16098 			 * enabled IP packets.  Setting it to 1 avoids
16099 			 * compatibility problems.
16100 			 */
16101 			if (tcps->tcps_ecn_permitted == 2)
16102 				tcp->tcp_ecn_ok = B_TRUE;
16103 
16104 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
16105 			syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL,
16106 			    tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
16107 			if (syn_mp) {
16108 				cred_t *cr;
16109 				pid_t pid;
16110 
16111 				/*
16112 				 * Obtain the credential from the
16113 				 * thread calling connect(); the credential
16114 				 * lives on in the second mblk which
16115 				 * originated from T_CONN_REQ and is echoed
16116 				 * with the T_BIND_ACK from ip.  If none
16117 				 * can be found, default to the creator
16118 				 * of the socket.
16119 				 */
16120 				if (mp->b_cont == NULL ||
16121 				    (cr = DB_CRED(mp->b_cont)) == NULL) {
16122 					cr = tcp->tcp_cred;
16123 					pid = tcp->tcp_cpid;
16124 				} else {
16125 					pid = DB_CPID(mp->b_cont);
16126 				}
16127 				mblk_setcred(syn_mp, cr);
16128 				DB_CPID(syn_mp) = pid;
16129 				tcp_send_data(tcp, tcp->tcp_wq, syn_mp);
16130 			}
16131 		after_syn_sent:
16132 			/*
16133 			 * A trailer mblk indicates a waiting client upstream.
16134 			 * We complete here the processing begun in
16135 			 * either tcp_bind() or tcp_connect() by passing
16136 			 * upstream the reply message they supplied.
16137 			 */
16138 			mp1 = mp;
16139 			mp = mp->b_cont;
16140 			freeb(mp1);
16141 			if (mp)
16142 				break;
16143 			return;
16144 		case T_ERROR_ACK:
16145 			if (tcp->tcp_debug) {
16146 				(void) strlog(TCP_MOD_ID, 0, 1,
16147 				    SL_TRACE|SL_ERROR,
16148 				    "tcp_rput_other: case T_ERROR_ACK, "
16149 				    "ERROR_prim == %d",
16150 				    tea->ERROR_prim);
16151 			}
16152 			switch (tea->ERROR_prim) {
16153 			case O_T_BIND_REQ:
16154 			case T_BIND_REQ:
16155 				tcp_bind_failed(tcp, mp,
16156 				    (int)((tcp->tcp_state >= TCPS_SYN_SENT) ?
16157 				    ENETUNREACH : EADDRNOTAVAIL));
16158 				return;
16159 			case T_UNBIND_REQ:
16160 				tcp->tcp_hard_binding = B_FALSE;
16161 				tcp->tcp_hard_bound = B_FALSE;
16162 				if (mp->b_cont) {
16163 					freemsg(mp->b_cont);
16164 					mp->b_cont = NULL;
16165 				}
16166 				if (tcp->tcp_unbind_pending)
16167 					tcp->tcp_unbind_pending = 0;
16168 				else {
16169 					/* From tcp_ip_unbind() - free */
16170 					freemsg(mp);
16171 					return;
16172 				}
16173 				break;
16174 			case T_SVR4_OPTMGMT_REQ:
16175 				if (tcp->tcp_drop_opt_ack_cnt > 0) {
16176 					/* T_OPTMGMT_REQ generated by TCP */
16177 					printf("T_SVR4_OPTMGMT_REQ failed "
16178 					    "%d/%d - dropped (cnt %d)\n",
16179 					    tea->TLI_error, tea->UNIX_error,
16180 					    tcp->tcp_drop_opt_ack_cnt);
16181 					freemsg(mp);
16182 					tcp->tcp_drop_opt_ack_cnt--;
16183 					return;
16184 				}
16185 				break;
16186 			}
16187 			if (tea->ERROR_prim == T_SVR4_OPTMGMT_REQ &&
16188 			    tcp->tcp_drop_opt_ack_cnt > 0) {
16189 				printf("T_SVR4_OPTMGMT_REQ failed %d/%d "
16190 				    "- dropped (cnt %d)\n",
16191 				    tea->TLI_error, tea->UNIX_error,
16192 				    tcp->tcp_drop_opt_ack_cnt);
16193 				freemsg(mp);
16194 				tcp->tcp_drop_opt_ack_cnt--;
16195 				return;
16196 			}
16197 			break;
16198 		case T_OPTMGMT_ACK:
16199 			if (tcp->tcp_drop_opt_ack_cnt > 0) {
16200 				/* T_OPTMGMT_REQ generated by TCP */
16201 				freemsg(mp);
16202 				tcp->tcp_drop_opt_ack_cnt--;
16203 				return;
16204 			}
16205 			break;
16206 		default:
16207 			break;
16208 		}
16209 		break;
16210 	case M_FLUSH:
16211 		if (*rptr & FLUSHR)
16212 			flushq(q, FLUSHDATA);
16213 		break;
16214 	default:
16215 		/* M_CTL will be directly sent to tcp_icmp_error() */
16216 		ASSERT(DB_TYPE(mp) != M_CTL);
16217 		break;
16218 	}
16219 	/*
16220 	 * Make sure we set this bit before sending the ACK for
16221 	 * bind. Otherwise accept could possibly run and free
16222 	 * this tcp struct.
16223 	 */
16224 	putnext(q, mp);
16225 }
16226 
16227 /* ARGSUSED */
16228 static void
16229 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2)
16230 {
16231 	conn_t	*connp = (conn_t *)arg;
16232 	tcp_t	*tcp = connp->conn_tcp;
16233 	queue_t	*q = tcp->tcp_rq;
16234 	uint_t	thwin;
16235 	tcp_stack_t	*tcps = tcp->tcp_tcps;
16236 	sodirect_t	*sodp;
16237 	boolean_t	fc;
16238 
16239 	mutex_enter(&tcp->tcp_rsrv_mp_lock);
16240 	tcp->tcp_rsrv_mp = mp;
16241 	mutex_exit(&tcp->tcp_rsrv_mp_lock);
16242 
16243 	TCP_STAT(tcps, tcp_rsrv_calls);
16244 
16245 	if (TCP_IS_DETACHED(tcp) || q == NULL) {
16246 		return;
16247 	}
16248 
16249 	if (tcp->tcp_fused) {
16250 		tcp_t *peer_tcp = tcp->tcp_loopback_peer;
16251 
16252 		ASSERT(tcp->tcp_fused);
16253 		ASSERT(peer_tcp != NULL && peer_tcp->tcp_fused);
16254 		ASSERT(peer_tcp->tcp_loopback_peer == tcp);
16255 		ASSERT(!TCP_IS_DETACHED(tcp));
16256 		ASSERT(tcp->tcp_connp->conn_sqp ==
16257 		    peer_tcp->tcp_connp->conn_sqp);
16258 
16259 		/*
16260 		 * Normally we would not get backenabled in synchronous
16261 		 * streams mode, but in case this happens, we need to plug
16262 		 * synchronous streams during our drain to prevent a race
16263 		 * with tcp_fuse_rrw() or tcp_fuse_rinfop().
16264 		 */
16265 		TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp);
16266 		if (tcp->tcp_rcv_list != NULL)
16267 			(void) tcp_rcv_drain(tcp->tcp_rq, tcp);
16268 
16269 		if (peer_tcp > tcp) {
16270 			mutex_enter(&peer_tcp->tcp_non_sq_lock);
16271 			mutex_enter(&tcp->tcp_non_sq_lock);
16272 		} else {
16273 			mutex_enter(&tcp->tcp_non_sq_lock);
16274 			mutex_enter(&peer_tcp->tcp_non_sq_lock);
16275 		}
16276 
16277 		if (peer_tcp->tcp_flow_stopped &&
16278 		    (TCP_UNSENT_BYTES(peer_tcp) <=
16279 		    peer_tcp->tcp_xmit_lowater)) {
16280 			tcp_clrqfull(peer_tcp);
16281 		}
16282 		mutex_exit(&peer_tcp->tcp_non_sq_lock);
16283 		mutex_exit(&tcp->tcp_non_sq_lock);
16284 
16285 		TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp);
16286 		TCP_STAT(tcps, tcp_fusion_backenabled);
16287 		return;
16288 	}
16289 
16290 	SOD_PTR_ENTER(tcp, sodp);
16291 	if (sodp != NULL) {
16292 		/* An sodirect connection */
16293 		if (SOD_QFULL(sodp)) {
16294 			/* Flow-controlled, need another back-enable */
16295 			fc = B_TRUE;
16296 			SOD_QSETBE(sodp);
16297 		} else {
16298 			/* Not flow-controlled */
16299 			fc = B_FALSE;
16300 		}
16301 		mutex_exit(sodp->sod_lockp);
16302 	} else if (canputnext(q)) {
16303 		/* STREAMS, not flow-controlled */
16304 		fc = B_FALSE;
16305 	} else {
16306 		/* STREAMS, flow-controlled */
16307 		fc = B_TRUE;
16308 	}
16309 	if (!fc) {
16310 		/* Not flow-controlled, open rwnd */
16311 		tcp->tcp_rwnd = q->q_hiwat;
16312 		thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
16313 		    << tcp->tcp_rcv_ws;
16314 		thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
16315 		/*
16316 		 * Send back a window update immediately if TCP is above
16317 		 * ESTABLISHED state and the increase of the rcv window
16318 		 * that the other side knows is at least 1 MSS after flow
16319 		 * control is lifted.
16320 		 */
16321 		if (tcp->tcp_state >= TCPS_ESTABLISHED &&
16322 		    (q->q_hiwat - thwin >= tcp->tcp_mss)) {
16323 			tcp_xmit_ctl(NULL, tcp,
16324 			    (tcp->tcp_swnd == 0) ? tcp->tcp_suna :
16325 			    tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK);
16326 			BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate);
16327 		}
16328 	}
16329 }
16330 
16331 /*
16332  * The read side service routine is called mostly when we get back-enabled as a
16333  * result of flow control relief.  Since we don't actually queue anything in
16334  * TCP, we have no data to send out of here.  What we do is clear the receive
16335  * window, and send out a window update.
16336  */
16337 static void
16338 tcp_rsrv(queue_t *q)
16339 {
16340 	conn_t		*connp = Q_TO_CONN(q);
16341 	tcp_t		*tcp = connp->conn_tcp;
16342 	mblk_t		*mp;
16343 	tcp_stack_t	*tcps = tcp->tcp_tcps;
16344 
16345 	/* No code does a putq on the read side */
16346 	ASSERT(q->q_first == NULL);
16347 
16348 	/* Nothing to do for the default queue */
16349 	if (q == tcps->tcps_g_q) {
16350 		return;
16351 	}
16352 
16353 	/*
16354 	 * If tcp->tcp_rsrv_mp == NULL, it means that tcp_rsrv() has already
16355 	 * been run.  So just return.
16356 	 */
16357 	mutex_enter(&tcp->tcp_rsrv_mp_lock);
16358 	if ((mp = tcp->tcp_rsrv_mp) == NULL) {
16359 		mutex_exit(&tcp->tcp_rsrv_mp_lock);
16360 		return;
16361 	}
16362 	tcp->tcp_rsrv_mp = NULL;
16363 	mutex_exit(&tcp->tcp_rsrv_mp_lock);
16364 
16365 	CONN_INC_REF(connp);
16366 	squeue_enter(connp->conn_sqp, mp, tcp_rsrv_input, connp,
16367 	    SQTAG_TCP_RSRV);
16368 }
16369 
16370 /*
16371  * tcp_rwnd_set() is called to adjust the receive window to a desired value.
16372  * We do not allow the receive window to shrink.  After setting rwnd,
16373  * set the flow control hiwat of the stream.
16374  *
16375  * This function is called in 2 cases:
16376  *
16377  * 1) Before data transfer begins, in tcp_accept_comm() for accepting a
16378  *    connection (passive open) and in tcp_rput_data() for active connect.
16379  *    This is called after tcp_mss_set() when the desired MSS value is known.
16380  *    This makes sure that our window size is a mutiple of the other side's
16381  *    MSS.
16382  * 2) Handling SO_RCVBUF option.
16383  *
16384  * It is ASSUMED that the requested size is a multiple of the current MSS.
16385  *
16386  * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the
16387  * user requests so.
16388  */
16389 static int
16390 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd)
16391 {
16392 	uint32_t	mss = tcp->tcp_mss;
16393 	uint32_t	old_max_rwnd;
16394 	uint32_t	max_transmittable_rwnd;
16395 	boolean_t	tcp_detached = TCP_IS_DETACHED(tcp);
16396 	tcp_stack_t	*tcps = tcp->tcp_tcps;
16397 
16398 	if (tcp->tcp_fused) {
16399 		size_t sth_hiwat;
16400 		tcp_t *peer_tcp = tcp->tcp_loopback_peer;
16401 
16402 		ASSERT(peer_tcp != NULL);
16403 		/*
16404 		 * Record the stream head's high water mark for
16405 		 * this endpoint; this is used for flow-control
16406 		 * purposes in tcp_fuse_output().
16407 		 */
16408 		sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd);
16409 		if (!tcp_detached)
16410 			(void) mi_set_sth_hiwat(tcp->tcp_rq, sth_hiwat);
16411 
16412 		/*
16413 		 * In the fusion case, the maxpsz stream head value of
16414 		 * our peer is set according to its send buffer size
16415 		 * and our receive buffer size; since the latter may
16416 		 * have changed we need to update the peer's maxpsz.
16417 		 */
16418 		(void) tcp_maxpsz_set(peer_tcp, B_TRUE);
16419 		return (rwnd);
16420 	}
16421 
16422 	if (tcp_detached)
16423 		old_max_rwnd = tcp->tcp_rwnd;
16424 	else
16425 		old_max_rwnd = tcp->tcp_rq->q_hiwat;
16426 
16427 	/*
16428 	 * Insist on a receive window that is at least
16429 	 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid
16430 	 * funny TCP interactions of Nagle algorithm, SWS avoidance
16431 	 * and delayed acknowledgement.
16432 	 */
16433 	rwnd = MAX(rwnd, tcps->tcps_recv_hiwat_minmss * mss);
16434 
16435 	/*
16436 	 * If window size info has already been exchanged, TCP should not
16437 	 * shrink the window.  Shrinking window is doable if done carefully.
16438 	 * We may add that support later.  But so far there is not a real
16439 	 * need to do that.
16440 	 */
16441 	if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) {
16442 		/* MSS may have changed, do a round up again. */
16443 		rwnd = MSS_ROUNDUP(old_max_rwnd, mss);
16444 	}
16445 
16446 	/*
16447 	 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check
16448 	 * can be applied even before the window scale option is decided.
16449 	 */
16450 	max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws;
16451 	if (rwnd > max_transmittable_rwnd) {
16452 		rwnd = max_transmittable_rwnd -
16453 		    (max_transmittable_rwnd % mss);
16454 		if (rwnd < mss)
16455 			rwnd = max_transmittable_rwnd;
16456 		/*
16457 		 * If we're over the limit we may have to back down tcp_rwnd.
16458 		 * The increment below won't work for us. So we set all three
16459 		 * here and the increment below will have no effect.
16460 		 */
16461 		tcp->tcp_rwnd = old_max_rwnd = rwnd;
16462 	}
16463 	if (tcp->tcp_localnet) {
16464 		tcp->tcp_rack_abs_max =
16465 		    MIN(tcps->tcps_local_dacks_max, rwnd / mss / 2);
16466 	} else {
16467 		/*
16468 		 * For a remote host on a different subnet (through a router),
16469 		 * we ack every other packet to be conforming to RFC1122.
16470 		 * tcp_deferred_acks_max is default to 2.
16471 		 */
16472 		tcp->tcp_rack_abs_max =
16473 		    MIN(tcps->tcps_deferred_acks_max, rwnd / mss / 2);
16474 	}
16475 	if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max)
16476 		tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max;
16477 	else
16478 		tcp->tcp_rack_cur_max = 0;
16479 	/*
16480 	 * Increment the current rwnd by the amount the maximum grew (we
16481 	 * can not overwrite it since we might be in the middle of a
16482 	 * connection.)
16483 	 */
16484 	tcp->tcp_rwnd += rwnd - old_max_rwnd;
16485 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, tcp->tcp_tcph->th_win);
16486 	if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max)
16487 		tcp->tcp_cwnd_max = rwnd;
16488 
16489 	if (tcp_detached)
16490 		return (rwnd);
16491 	/*
16492 	 * We set the maximum receive window into rq->q_hiwat.
16493 	 * This is not actually used for flow control.
16494 	 */
16495 	tcp->tcp_rq->q_hiwat = rwnd;
16496 	/*
16497 	 * Set the Stream head high water mark. This doesn't have to be
16498 	 * here, since we are simply using default values, but we would
16499 	 * prefer to choose these values algorithmically, with a likely
16500 	 * relationship to rwnd.
16501 	 */
16502 	(void) mi_set_sth_hiwat(tcp->tcp_rq,
16503 	    MAX(rwnd, tcps->tcps_sth_rcv_hiwat));
16504 	return (rwnd);
16505 }
16506 
16507 /*
16508  * Return SNMP stuff in buffer in mpdata.
16509  */
16510 mblk_t *
16511 tcp_snmp_get(queue_t *q, mblk_t *mpctl)
16512 {
16513 	mblk_t			*mpdata;
16514 	mblk_t			*mp_conn_ctl = NULL;
16515 	mblk_t			*mp_conn_tail;
16516 	mblk_t			*mp_attr_ctl = NULL;
16517 	mblk_t			*mp_attr_tail;
16518 	mblk_t			*mp6_conn_ctl = NULL;
16519 	mblk_t			*mp6_conn_tail;
16520 	mblk_t			*mp6_attr_ctl = NULL;
16521 	mblk_t			*mp6_attr_tail;
16522 	struct opthdr		*optp;
16523 	mib2_tcpConnEntry_t	tce;
16524 	mib2_tcp6ConnEntry_t	tce6;
16525 	mib2_transportMLPEntry_t mlp;
16526 	connf_t			*connfp;
16527 	int			i;
16528 	boolean_t 		ispriv;
16529 	zoneid_t 		zoneid;
16530 	int			v4_conn_idx;
16531 	int			v6_conn_idx;
16532 	conn_t			*connp = Q_TO_CONN(q);
16533 	tcp_stack_t		*tcps;
16534 	ip_stack_t		*ipst;
16535 	mblk_t			*mp2ctl;
16536 
16537 	/*
16538 	 * make a copy of the original message
16539 	 */
16540 	mp2ctl = copymsg(mpctl);
16541 
16542 	if (mpctl == NULL ||
16543 	    (mpdata = mpctl->b_cont) == NULL ||
16544 	    (mp_conn_ctl = copymsg(mpctl)) == NULL ||
16545 	    (mp_attr_ctl = copymsg(mpctl)) == NULL ||
16546 	    (mp6_conn_ctl = copymsg(mpctl)) == NULL ||
16547 	    (mp6_attr_ctl = copymsg(mpctl)) == NULL) {
16548 		freemsg(mp_conn_ctl);
16549 		freemsg(mp_attr_ctl);
16550 		freemsg(mp6_conn_ctl);
16551 		freemsg(mp6_attr_ctl);
16552 		freemsg(mpctl);
16553 		freemsg(mp2ctl);
16554 		return (NULL);
16555 	}
16556 
16557 	ipst = connp->conn_netstack->netstack_ip;
16558 	tcps = connp->conn_netstack->netstack_tcp;
16559 
16560 	/* build table of connections -- need count in fixed part */
16561 	SET_MIB(tcps->tcps_mib.tcpRtoAlgorithm, 4);   /* vanj */
16562 	SET_MIB(tcps->tcps_mib.tcpRtoMin, tcps->tcps_rexmit_interval_min);
16563 	SET_MIB(tcps->tcps_mib.tcpRtoMax, tcps->tcps_rexmit_interval_max);
16564 	SET_MIB(tcps->tcps_mib.tcpMaxConn, -1);
16565 	SET_MIB(tcps->tcps_mib.tcpCurrEstab, 0);
16566 
16567 	ispriv =
16568 	    secpolicy_ip_config((Q_TO_CONN(q))->conn_cred, B_TRUE) == 0;
16569 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16570 
16571 	v4_conn_idx = v6_conn_idx = 0;
16572 	mp_conn_tail = mp_attr_tail = mp6_conn_tail = mp6_attr_tail = NULL;
16573 
16574 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
16575 		ipst = tcps->tcps_netstack->netstack_ip;
16576 
16577 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
16578 
16579 		connp = NULL;
16580 
16581 		while ((connp =
16582 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
16583 			tcp_t *tcp;
16584 			boolean_t needattr;
16585 
16586 			if (connp->conn_zoneid != zoneid)
16587 				continue;	/* not in this zone */
16588 
16589 			tcp = connp->conn_tcp;
16590 			UPDATE_MIB(&tcps->tcps_mib,
16591 			    tcpHCInSegs, tcp->tcp_ibsegs);
16592 			tcp->tcp_ibsegs = 0;
16593 			UPDATE_MIB(&tcps->tcps_mib,
16594 			    tcpHCOutSegs, tcp->tcp_obsegs);
16595 			tcp->tcp_obsegs = 0;
16596 
16597 			tce6.tcp6ConnState = tce.tcpConnState =
16598 			    tcp_snmp_state(tcp);
16599 			if (tce.tcpConnState == MIB2_TCP_established ||
16600 			    tce.tcpConnState == MIB2_TCP_closeWait)
16601 				BUMP_MIB(&tcps->tcps_mib, tcpCurrEstab);
16602 
16603 			needattr = B_FALSE;
16604 			bzero(&mlp, sizeof (mlp));
16605 			if (connp->conn_mlp_type != mlptSingle) {
16606 				if (connp->conn_mlp_type == mlptShared ||
16607 				    connp->conn_mlp_type == mlptBoth)
16608 					mlp.tme_flags |= MIB2_TMEF_SHARED;
16609 				if (connp->conn_mlp_type == mlptPrivate ||
16610 				    connp->conn_mlp_type == mlptBoth)
16611 					mlp.tme_flags |= MIB2_TMEF_PRIVATE;
16612 				needattr = B_TRUE;
16613 			}
16614 			if (connp->conn_peercred != NULL) {
16615 				ts_label_t *tsl;
16616 
16617 				tsl = crgetlabel(connp->conn_peercred);
16618 				mlp.tme_doi = label2doi(tsl);
16619 				mlp.tme_label = *label2bslabel(tsl);
16620 				needattr = B_TRUE;
16621 			}
16622 
16623 			/* Create a message to report on IPv6 entries */
16624 			if (tcp->tcp_ipversion == IPV6_VERSION) {
16625 			tce6.tcp6ConnLocalAddress = tcp->tcp_ip_src_v6;
16626 			tce6.tcp6ConnRemAddress = tcp->tcp_remote_v6;
16627 			tce6.tcp6ConnLocalPort = ntohs(tcp->tcp_lport);
16628 			tce6.tcp6ConnRemPort = ntohs(tcp->tcp_fport);
16629 			tce6.tcp6ConnIfIndex = tcp->tcp_bound_if;
16630 			/* Don't want just anybody seeing these... */
16631 			if (ispriv) {
16632 				tce6.tcp6ConnEntryInfo.ce_snxt =
16633 				    tcp->tcp_snxt;
16634 				tce6.tcp6ConnEntryInfo.ce_suna =
16635 				    tcp->tcp_suna;
16636 				tce6.tcp6ConnEntryInfo.ce_rnxt =
16637 				    tcp->tcp_rnxt;
16638 				tce6.tcp6ConnEntryInfo.ce_rack =
16639 				    tcp->tcp_rack;
16640 			} else {
16641 				/*
16642 				 * Netstat, unfortunately, uses this to
16643 				 * get send/receive queue sizes.  How to fix?
16644 				 * Why not compute the difference only?
16645 				 */
16646 				tce6.tcp6ConnEntryInfo.ce_snxt =
16647 				    tcp->tcp_snxt - tcp->tcp_suna;
16648 				tce6.tcp6ConnEntryInfo.ce_suna = 0;
16649 				tce6.tcp6ConnEntryInfo.ce_rnxt =
16650 				    tcp->tcp_rnxt - tcp->tcp_rack;
16651 				tce6.tcp6ConnEntryInfo.ce_rack = 0;
16652 			}
16653 
16654 			tce6.tcp6ConnEntryInfo.ce_swnd = tcp->tcp_swnd;
16655 			tce6.tcp6ConnEntryInfo.ce_rwnd = tcp->tcp_rwnd;
16656 			tce6.tcp6ConnEntryInfo.ce_rto =  tcp->tcp_rto;
16657 			tce6.tcp6ConnEntryInfo.ce_mss =  tcp->tcp_mss;
16658 			tce6.tcp6ConnEntryInfo.ce_state = tcp->tcp_state;
16659 
16660 			tce6.tcp6ConnCreationProcess =
16661 			    (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS :
16662 			    tcp->tcp_cpid;
16663 			tce6.tcp6ConnCreationTime = tcp->tcp_open_time;
16664 
16665 			(void) snmp_append_data2(mp6_conn_ctl->b_cont,
16666 			    &mp6_conn_tail, (char *)&tce6, sizeof (tce6));
16667 
16668 			mlp.tme_connidx = v6_conn_idx++;
16669 			if (needattr)
16670 				(void) snmp_append_data2(mp6_attr_ctl->b_cont,
16671 				    &mp6_attr_tail, (char *)&mlp, sizeof (mlp));
16672 			}
16673 			/*
16674 			 * Create an IPv4 table entry for IPv4 entries and also
16675 			 * for IPv6 entries which are bound to in6addr_any
16676 			 * but don't have IPV6_V6ONLY set.
16677 			 * (i.e. anything an IPv4 peer could connect to)
16678 			 */
16679 			if (tcp->tcp_ipversion == IPV4_VERSION ||
16680 			    (tcp->tcp_state <= TCPS_LISTEN &&
16681 			    !tcp->tcp_connp->conn_ipv6_v6only &&
16682 			    IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip_src_v6))) {
16683 				if (tcp->tcp_ipversion == IPV6_VERSION) {
16684 					tce.tcpConnRemAddress = INADDR_ANY;
16685 					tce.tcpConnLocalAddress = INADDR_ANY;
16686 				} else {
16687 					tce.tcpConnRemAddress =
16688 					    tcp->tcp_remote;
16689 					tce.tcpConnLocalAddress =
16690 					    tcp->tcp_ip_src;
16691 				}
16692 				tce.tcpConnLocalPort = ntohs(tcp->tcp_lport);
16693 				tce.tcpConnRemPort = ntohs(tcp->tcp_fport);
16694 				/* Don't want just anybody seeing these... */
16695 				if (ispriv) {
16696 					tce.tcpConnEntryInfo.ce_snxt =
16697 					    tcp->tcp_snxt;
16698 					tce.tcpConnEntryInfo.ce_suna =
16699 					    tcp->tcp_suna;
16700 					tce.tcpConnEntryInfo.ce_rnxt =
16701 					    tcp->tcp_rnxt;
16702 					tce.tcpConnEntryInfo.ce_rack =
16703 					    tcp->tcp_rack;
16704 				} else {
16705 					/*
16706 					 * Netstat, unfortunately, uses this to
16707 					 * get send/receive queue sizes.  How
16708 					 * to fix?
16709 					 * Why not compute the difference only?
16710 					 */
16711 					tce.tcpConnEntryInfo.ce_snxt =
16712 					    tcp->tcp_snxt - tcp->tcp_suna;
16713 					tce.tcpConnEntryInfo.ce_suna = 0;
16714 					tce.tcpConnEntryInfo.ce_rnxt =
16715 					    tcp->tcp_rnxt - tcp->tcp_rack;
16716 					tce.tcpConnEntryInfo.ce_rack = 0;
16717 				}
16718 
16719 				tce.tcpConnEntryInfo.ce_swnd = tcp->tcp_swnd;
16720 				tce.tcpConnEntryInfo.ce_rwnd = tcp->tcp_rwnd;
16721 				tce.tcpConnEntryInfo.ce_rto =  tcp->tcp_rto;
16722 				tce.tcpConnEntryInfo.ce_mss =  tcp->tcp_mss;
16723 				tce.tcpConnEntryInfo.ce_state =
16724 				    tcp->tcp_state;
16725 
16726 				tce.tcpConnCreationProcess =
16727 				    (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS :
16728 				    tcp->tcp_cpid;
16729 				tce.tcpConnCreationTime = tcp->tcp_open_time;
16730 
16731 				(void) snmp_append_data2(mp_conn_ctl->b_cont,
16732 				    &mp_conn_tail, (char *)&tce, sizeof (tce));
16733 
16734 				mlp.tme_connidx = v4_conn_idx++;
16735 				if (needattr)
16736 					(void) snmp_append_data2(
16737 					    mp_attr_ctl->b_cont,
16738 					    &mp_attr_tail, (char *)&mlp,
16739 					    sizeof (mlp));
16740 			}
16741 		}
16742 	}
16743 
16744 	/* fixed length structure for IPv4 and IPv6 counters */
16745 	SET_MIB(tcps->tcps_mib.tcpConnTableSize, sizeof (mib2_tcpConnEntry_t));
16746 	SET_MIB(tcps->tcps_mib.tcp6ConnTableSize,
16747 	    sizeof (mib2_tcp6ConnEntry_t));
16748 	/* synchronize 32- and 64-bit counters */
16749 	SYNC32_MIB(&tcps->tcps_mib, tcpInSegs, tcpHCInSegs);
16750 	SYNC32_MIB(&tcps->tcps_mib, tcpOutSegs, tcpHCOutSegs);
16751 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
16752 	optp->level = MIB2_TCP;
16753 	optp->name = 0;
16754 	(void) snmp_append_data(mpdata, (char *)&tcps->tcps_mib,
16755 	    sizeof (tcps->tcps_mib));
16756 	optp->len = msgdsize(mpdata);
16757 	qreply(q, mpctl);
16758 
16759 	/* table of connections... */
16760 	optp = (struct opthdr *)&mp_conn_ctl->b_rptr[
16761 	    sizeof (struct T_optmgmt_ack)];
16762 	optp->level = MIB2_TCP;
16763 	optp->name = MIB2_TCP_CONN;
16764 	optp->len = msgdsize(mp_conn_ctl->b_cont);
16765 	qreply(q, mp_conn_ctl);
16766 
16767 	/* table of MLP attributes... */
16768 	optp = (struct opthdr *)&mp_attr_ctl->b_rptr[
16769 	    sizeof (struct T_optmgmt_ack)];
16770 	optp->level = MIB2_TCP;
16771 	optp->name = EXPER_XPORT_MLP;
16772 	optp->len = msgdsize(mp_attr_ctl->b_cont);
16773 	if (optp->len == 0)
16774 		freemsg(mp_attr_ctl);
16775 	else
16776 		qreply(q, mp_attr_ctl);
16777 
16778 	/* table of IPv6 connections... */
16779 	optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[
16780 	    sizeof (struct T_optmgmt_ack)];
16781 	optp->level = MIB2_TCP6;
16782 	optp->name = MIB2_TCP6_CONN;
16783 	optp->len = msgdsize(mp6_conn_ctl->b_cont);
16784 	qreply(q, mp6_conn_ctl);
16785 
16786 	/* table of IPv6 MLP attributes... */
16787 	optp = (struct opthdr *)&mp6_attr_ctl->b_rptr[
16788 	    sizeof (struct T_optmgmt_ack)];
16789 	optp->level = MIB2_TCP6;
16790 	optp->name = EXPER_XPORT_MLP;
16791 	optp->len = msgdsize(mp6_attr_ctl->b_cont);
16792 	if (optp->len == 0)
16793 		freemsg(mp6_attr_ctl);
16794 	else
16795 		qreply(q, mp6_attr_ctl);
16796 	return (mp2ctl);
16797 }
16798 
16799 /* Return 0 if invalid set request, 1 otherwise, including non-tcp requests  */
16800 /* ARGSUSED */
16801 int
16802 tcp_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len)
16803 {
16804 	mib2_tcpConnEntry_t	*tce = (mib2_tcpConnEntry_t *)ptr;
16805 
16806 	switch (level) {
16807 	case MIB2_TCP:
16808 		switch (name) {
16809 		case 13:
16810 			if (tce->tcpConnState != MIB2_TCP_deleteTCB)
16811 				return (0);
16812 			/* TODO: delete entry defined by tce */
16813 			return (1);
16814 		default:
16815 			return (0);
16816 		}
16817 	default:
16818 		return (1);
16819 	}
16820 }
16821 
16822 /* Translate TCP state to MIB2 TCP state. */
16823 static int
16824 tcp_snmp_state(tcp_t *tcp)
16825 {
16826 	if (tcp == NULL)
16827 		return (0);
16828 
16829 	switch (tcp->tcp_state) {
16830 	case TCPS_CLOSED:
16831 	case TCPS_IDLE:	/* RFC1213 doesn't have analogue for IDLE & BOUND */
16832 	case TCPS_BOUND:
16833 		return (MIB2_TCP_closed);
16834 	case TCPS_LISTEN:
16835 		return (MIB2_TCP_listen);
16836 	case TCPS_SYN_SENT:
16837 		return (MIB2_TCP_synSent);
16838 	case TCPS_SYN_RCVD:
16839 		return (MIB2_TCP_synReceived);
16840 	case TCPS_ESTABLISHED:
16841 		return (MIB2_TCP_established);
16842 	case TCPS_CLOSE_WAIT:
16843 		return (MIB2_TCP_closeWait);
16844 	case TCPS_FIN_WAIT_1:
16845 		return (MIB2_TCP_finWait1);
16846 	case TCPS_CLOSING:
16847 		return (MIB2_TCP_closing);
16848 	case TCPS_LAST_ACK:
16849 		return (MIB2_TCP_lastAck);
16850 	case TCPS_FIN_WAIT_2:
16851 		return (MIB2_TCP_finWait2);
16852 	case TCPS_TIME_WAIT:
16853 		return (MIB2_TCP_timeWait);
16854 	default:
16855 		return (0);
16856 	}
16857 }
16858 
16859 static char tcp_report_header[] =
16860 	"TCP     " MI_COL_HDRPAD_STR
16861 	"zone dest            snxt     suna     "
16862 	"swnd       rnxt     rack     rwnd       rto   mss   w sw rw t "
16863 	"recent   [lport,fport] state";
16864 
16865 /*
16866  * TCP status report triggered via the Named Dispatch mechanism.
16867  */
16868 /* ARGSUSED */
16869 static void
16870 tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval, tcp_t *thisstream,
16871     cred_t *cr)
16872 {
16873 	char hash[10], addrbuf[INET6_ADDRSTRLEN];
16874 	boolean_t ispriv = secpolicy_ip_config(cr, B_TRUE) == 0;
16875 	char cflag;
16876 	in6_addr_t	v6dst;
16877 	char buf[80];
16878 	uint_t print_len, buf_len;
16879 
16880 	buf_len = mp->b_datap->db_lim - mp->b_wptr;
16881 	if (buf_len <= 0)
16882 		return;
16883 
16884 	if (hashval >= 0)
16885 		(void) sprintf(hash, "%03d ", hashval);
16886 	else
16887 		hash[0] = '\0';
16888 
16889 	/*
16890 	 * Note that we use the remote address in the tcp_b  structure.
16891 	 * This means that it will print out the real destination address,
16892 	 * not the next hop's address if source routing is used.  This
16893 	 * avoid the confusion on the output because user may not
16894 	 * know that source routing is used for a connection.
16895 	 */
16896 	if (tcp->tcp_ipversion == IPV4_VERSION) {
16897 		IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &v6dst);
16898 	} else {
16899 		v6dst = tcp->tcp_remote_v6;
16900 	}
16901 	(void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf));
16902 	/*
16903 	 * the ispriv checks are so that normal users cannot determine
16904 	 * sequence number information using NDD.
16905 	 */
16906 
16907 	if (TCP_IS_DETACHED(tcp))
16908 		cflag = '*';
16909 	else
16910 		cflag = ' ';
16911 	print_len = snprintf((char *)mp->b_wptr, buf_len,
16912 	    "%s " MI_COL_PTRFMT_STR "%d %s %08x %08x %010d %08x %08x "
16913 	    "%010d %05ld %05d %1d %02d %02d %1d %08x %s%c\n",
16914 	    hash,
16915 	    (void *)tcp,
16916 	    tcp->tcp_connp->conn_zoneid,
16917 	    addrbuf,
16918 	    (ispriv) ? tcp->tcp_snxt : 0,
16919 	    (ispriv) ? tcp->tcp_suna : 0,
16920 	    tcp->tcp_swnd,
16921 	    (ispriv) ? tcp->tcp_rnxt : 0,
16922 	    (ispriv) ? tcp->tcp_rack : 0,
16923 	    tcp->tcp_rwnd,
16924 	    tcp->tcp_rto,
16925 	    tcp->tcp_mss,
16926 	    tcp->tcp_snd_ws_ok,
16927 	    tcp->tcp_snd_ws,
16928 	    tcp->tcp_rcv_ws,
16929 	    tcp->tcp_snd_ts_ok,
16930 	    tcp->tcp_ts_recent,
16931 	    tcp_display(tcp, buf, DISP_PORT_ONLY), cflag);
16932 	if (print_len < buf_len) {
16933 		((mblk_t *)mp)->b_wptr += print_len;
16934 	} else {
16935 		((mblk_t *)mp)->b_wptr += buf_len;
16936 	}
16937 }
16938 
16939 /*
16940  * TCP status report (for listeners only) triggered via the Named Dispatch
16941  * mechanism.
16942  */
16943 /* ARGSUSED */
16944 static void
16945 tcp_report_listener(mblk_t *mp, tcp_t *tcp, int hashval)
16946 {
16947 	char addrbuf[INET6_ADDRSTRLEN];
16948 	in6_addr_t	v6dst;
16949 	uint_t print_len, buf_len;
16950 
16951 	buf_len = mp->b_datap->db_lim - mp->b_wptr;
16952 	if (buf_len <= 0)
16953 		return;
16954 
16955 	if (tcp->tcp_ipversion == IPV4_VERSION) {
16956 		IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6dst);
16957 		(void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf));
16958 	} else {
16959 		(void) inet_ntop(AF_INET6, &tcp->tcp_ip6h->ip6_src,
16960 		    addrbuf, sizeof (addrbuf));
16961 	}
16962 	print_len = snprintf((char *)mp->b_wptr, buf_len,
16963 	    "%03d "
16964 	    MI_COL_PTRFMT_STR
16965 	    "%d %s %05u %08u %d/%d/%d%c\n",
16966 	    hashval, (void *)tcp,
16967 	    tcp->tcp_connp->conn_zoneid,
16968 	    addrbuf,
16969 	    (uint_t)BE16_TO_U16(tcp->tcp_tcph->th_lport),
16970 	    tcp->tcp_conn_req_seqnum,
16971 	    tcp->tcp_conn_req_cnt_q0, tcp->tcp_conn_req_cnt_q,
16972 	    tcp->tcp_conn_req_max,
16973 	    tcp->tcp_syn_defense ? '*' : ' ');
16974 	if (print_len < buf_len) {
16975 		((mblk_t *)mp)->b_wptr += print_len;
16976 	} else {
16977 		((mblk_t *)mp)->b_wptr += buf_len;
16978 	}
16979 }
16980 
16981 /* TCP status report triggered via the Named Dispatch mechanism. */
16982 /* ARGSUSED */
16983 static int
16984 tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16985 {
16986 	tcp_t	*tcp;
16987 	int	i;
16988 	conn_t	*connp;
16989 	connf_t	*connfp;
16990 	zoneid_t zoneid;
16991 	tcp_stack_t *tcps;
16992 	ip_stack_t *ipst;
16993 
16994 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16995 	tcps = Q_TO_TCP(q)->tcp_tcps;
16996 
16997 	/*
16998 	 * Because of the ndd constraint, at most we can have 64K buffer
16999 	 * to put in all TCP info.  So to be more efficient, just
17000 	 * allocate a 64K buffer here, assuming we need that large buffer.
17001 	 * This may be a problem as any user can read tcp_status.  Therefore
17002 	 * we limit the rate of doing this using tcp_ndd_get_info_interval.
17003 	 * This should be OK as normal users should not do this too often.
17004 	 */
17005 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
17006 		if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time <
17007 		    drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) {
17008 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
17009 			return (0);
17010 		}
17011 	}
17012 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
17013 		/* The following may work even if we cannot get a large buf. */
17014 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
17015 		return (0);
17016 	}
17017 
17018 	(void) mi_mpprintf(mp, "%s", tcp_report_header);
17019 
17020 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
17021 
17022 		ipst = tcps->tcps_netstack->netstack_ip;
17023 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
17024 
17025 		connp = NULL;
17026 
17027 		while ((connp =
17028 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
17029 			tcp = connp->conn_tcp;
17030 			if (zoneid != GLOBAL_ZONEID &&
17031 			    zoneid != connp->conn_zoneid)
17032 				continue;
17033 			tcp_report_item(mp->b_cont, tcp, -1, tcp,
17034 			    cr);
17035 		}
17036 
17037 	}
17038 
17039 	tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt();
17040 	return (0);
17041 }
17042 
17043 /* TCP status report triggered via the Named Dispatch mechanism. */
17044 /* ARGSUSED */
17045 static int
17046 tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
17047 {
17048 	tf_t	*tbf;
17049 	tcp_t	*tcp;
17050 	int	i;
17051 	zoneid_t zoneid;
17052 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
17053 
17054 	zoneid = Q_TO_CONN(q)->conn_zoneid;
17055 
17056 	/* Refer to comments in tcp_status_report(). */
17057 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
17058 		if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time <
17059 		    drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) {
17060 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
17061 			return (0);
17062 		}
17063 	}
17064 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
17065 		/* The following may work even if we cannot get a large buf. */
17066 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
17067 		return (0);
17068 	}
17069 
17070 	(void) mi_mpprintf(mp, "    %s", tcp_report_header);
17071 
17072 	for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) {
17073 		tbf = &tcps->tcps_bind_fanout[i];
17074 		mutex_enter(&tbf->tf_lock);
17075 		for (tcp = tbf->tf_tcp; tcp != NULL;
17076 		    tcp = tcp->tcp_bind_hash) {
17077 			if (zoneid != GLOBAL_ZONEID &&
17078 			    zoneid != tcp->tcp_connp->conn_zoneid)
17079 				continue;
17080 			CONN_INC_REF(tcp->tcp_connp);
17081 			tcp_report_item(mp->b_cont, tcp, i,
17082 			    Q_TO_TCP(q), cr);
17083 			CONN_DEC_REF(tcp->tcp_connp);
17084 		}
17085 		mutex_exit(&tbf->tf_lock);
17086 	}
17087 	tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt();
17088 	return (0);
17089 }
17090 
17091 /* TCP status report triggered via the Named Dispatch mechanism. */
17092 /* ARGSUSED */
17093 static int
17094 tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
17095 {
17096 	connf_t	*connfp;
17097 	conn_t	*connp;
17098 	tcp_t	*tcp;
17099 	int	i;
17100 	zoneid_t zoneid;
17101 	tcp_stack_t *tcps;
17102 	ip_stack_t	*ipst;
17103 
17104 	zoneid = Q_TO_CONN(q)->conn_zoneid;
17105 	tcps = Q_TO_TCP(q)->tcp_tcps;
17106 
17107 	/* Refer to comments in tcp_status_report(). */
17108 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
17109 		if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time <
17110 		    drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) {
17111 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
17112 			return (0);
17113 		}
17114 	}
17115 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
17116 		/* The following may work even if we cannot get a large buf. */
17117 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
17118 		return (0);
17119 	}
17120 
17121 	(void) mi_mpprintf(mp,
17122 	    "    TCP    " MI_COL_HDRPAD_STR
17123 	    "zone IP addr         port  seqnum   backlog (q0/q/max)");
17124 
17125 	ipst = tcps->tcps_netstack->netstack_ip;
17126 
17127 	for (i = 0; i < ipst->ips_ipcl_bind_fanout_size; i++) {
17128 		connfp = &ipst->ips_ipcl_bind_fanout[i];
17129 		connp = NULL;
17130 		while ((connp =
17131 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
17132 			tcp = connp->conn_tcp;
17133 			if (zoneid != GLOBAL_ZONEID &&
17134 			    zoneid != connp->conn_zoneid)
17135 				continue;
17136 			tcp_report_listener(mp->b_cont, tcp, i);
17137 		}
17138 	}
17139 
17140 	tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt();
17141 	return (0);
17142 }
17143 
17144 /* TCP status report triggered via the Named Dispatch mechanism. */
17145 /* ARGSUSED */
17146 static int
17147 tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
17148 {
17149 	connf_t	*connfp;
17150 	conn_t	*connp;
17151 	tcp_t	*tcp;
17152 	int	i;
17153 	zoneid_t zoneid;
17154 	tcp_stack_t *tcps;
17155 	ip_stack_t *ipst;
17156 
17157 	zoneid = Q_TO_CONN(q)->conn_zoneid;
17158 	tcps = Q_TO_TCP(q)->tcp_tcps;
17159 	ipst = tcps->tcps_netstack->netstack_ip;
17160 
17161 	/* Refer to comments in tcp_status_report(). */
17162 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
17163 		if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time <
17164 		    drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) {
17165 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
17166 			return (0);
17167 		}
17168 	}
17169 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
17170 		/* The following may work even if we cannot get a large buf. */
17171 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
17172 		return (0);
17173 	}
17174 
17175 	(void) mi_mpprintf(mp, "tcp_conn_hash_size = %d",
17176 	    ipst->ips_ipcl_conn_fanout_size);
17177 	(void) mi_mpprintf(mp, "    %s", tcp_report_header);
17178 
17179 	for (i = 0; i < ipst->ips_ipcl_conn_fanout_size; i++) {
17180 		connfp =  &ipst->ips_ipcl_conn_fanout[i];
17181 		connp = NULL;
17182 		while ((connp =
17183 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
17184 			tcp = connp->conn_tcp;
17185 			if (zoneid != GLOBAL_ZONEID &&
17186 			    zoneid != connp->conn_zoneid)
17187 				continue;
17188 			tcp_report_item(mp->b_cont, tcp, i,
17189 			    Q_TO_TCP(q), cr);
17190 		}
17191 	}
17192 
17193 	tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt();
17194 	return (0);
17195 }
17196 
17197 /* TCP status report triggered via the Named Dispatch mechanism. */
17198 /* ARGSUSED */
17199 static int
17200 tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
17201 {
17202 	tf_t	*tf;
17203 	tcp_t	*tcp;
17204 	int	i;
17205 	zoneid_t zoneid;
17206 	tcp_stack_t	*tcps;
17207 
17208 	zoneid = Q_TO_CONN(q)->conn_zoneid;
17209 	tcps = Q_TO_TCP(q)->tcp_tcps;
17210 
17211 	/* Refer to comments in tcp_status_report(). */
17212 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
17213 		if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time <
17214 		    drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) {
17215 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
17216 			return (0);
17217 		}
17218 	}
17219 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
17220 		/* The following may work even if we cannot get a large buf. */
17221 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
17222 		return (0);
17223 	}
17224 
17225 	(void) mi_mpprintf(mp, "    %s", tcp_report_header);
17226 
17227 	for (i = 0; i < TCP_FANOUT_SIZE; i++) {
17228 		tf = &tcps->tcps_acceptor_fanout[i];
17229 		mutex_enter(&tf->tf_lock);
17230 		for (tcp = tf->tf_tcp; tcp != NULL;
17231 		    tcp = tcp->tcp_acceptor_hash) {
17232 			if (zoneid != GLOBAL_ZONEID &&
17233 			    zoneid != tcp->tcp_connp->conn_zoneid)
17234 				continue;
17235 			tcp_report_item(mp->b_cont, tcp, i,
17236 			    Q_TO_TCP(q), cr);
17237 		}
17238 		mutex_exit(&tf->tf_lock);
17239 	}
17240 	tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt();
17241 	return (0);
17242 }
17243 
17244 /*
17245  * tcp_timer is the timer service routine.  It handles the retransmission,
17246  * FIN_WAIT_2 flush, and zero window probe timeout events.  It figures out
17247  * from the state of the tcp instance what kind of action needs to be done
17248  * at the time it is called.
17249  */
17250 static void
17251 tcp_timer(void *arg)
17252 {
17253 	mblk_t		*mp;
17254 	clock_t		first_threshold;
17255 	clock_t		second_threshold;
17256 	clock_t		ms;
17257 	uint32_t	mss;
17258 	conn_t		*connp = (conn_t *)arg;
17259 	tcp_t		*tcp = connp->conn_tcp;
17260 	tcp_stack_t	*tcps = tcp->tcp_tcps;
17261 
17262 	tcp->tcp_timer_tid = 0;
17263 
17264 	if (tcp->tcp_fused)
17265 		return;
17266 
17267 	first_threshold =  tcp->tcp_first_timer_threshold;
17268 	second_threshold = tcp->tcp_second_timer_threshold;
17269 	switch (tcp->tcp_state) {
17270 	case TCPS_IDLE:
17271 	case TCPS_BOUND:
17272 	case TCPS_LISTEN:
17273 		return;
17274 	case TCPS_SYN_RCVD: {
17275 		tcp_t	*listener = tcp->tcp_listener;
17276 
17277 		if (tcp->tcp_syn_rcvd_timeout == 0 && (listener != NULL)) {
17278 			ASSERT(tcp->tcp_rq == listener->tcp_rq);
17279 			/* it's our first timeout */
17280 			tcp->tcp_syn_rcvd_timeout = 1;
17281 			mutex_enter(&listener->tcp_eager_lock);
17282 			listener->tcp_syn_rcvd_timeout++;
17283 			if (!tcp->tcp_dontdrop && !tcp->tcp_closemp_used) {
17284 				/*
17285 				 * Make this eager available for drop if we
17286 				 * need to drop one to accomodate a new
17287 				 * incoming SYN request.
17288 				 */
17289 				MAKE_DROPPABLE(listener, tcp);
17290 			}
17291 			if (!listener->tcp_syn_defense &&
17292 			    (listener->tcp_syn_rcvd_timeout >
17293 			    (tcps->tcps_conn_req_max_q0 >> 2)) &&
17294 			    (tcps->tcps_conn_req_max_q0 > 200)) {
17295 				/* We may be under attack. Put on a defense. */
17296 				listener->tcp_syn_defense = B_TRUE;
17297 				cmn_err(CE_WARN, "High TCP connect timeout "
17298 				    "rate! System (port %d) may be under a "
17299 				    "SYN flood attack!",
17300 				    BE16_TO_U16(listener->tcp_tcph->th_lport));
17301 
17302 				listener->tcp_ip_addr_cache = kmem_zalloc(
17303 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t),
17304 				    KM_NOSLEEP);
17305 			}
17306 			mutex_exit(&listener->tcp_eager_lock);
17307 		} else if (listener != NULL) {
17308 			mutex_enter(&listener->tcp_eager_lock);
17309 			tcp->tcp_syn_rcvd_timeout++;
17310 			if (tcp->tcp_syn_rcvd_timeout > 1 &&
17311 			    !tcp->tcp_closemp_used) {
17312 				/*
17313 				 * This is our second timeout. Put the tcp in
17314 				 * the list of droppable eagers to allow it to
17315 				 * be dropped, if needed. We don't check
17316 				 * whether tcp_dontdrop is set or not to
17317 				 * protect ourselve from a SYN attack where a
17318 				 * remote host can spoof itself as one of the
17319 				 * good IP source and continue to hold
17320 				 * resources too long.
17321 				 */
17322 				MAKE_DROPPABLE(listener, tcp);
17323 			}
17324 			mutex_exit(&listener->tcp_eager_lock);
17325 		}
17326 	}
17327 		/* FALLTHRU */
17328 	case TCPS_SYN_SENT:
17329 		first_threshold =  tcp->tcp_first_ctimer_threshold;
17330 		second_threshold = tcp->tcp_second_ctimer_threshold;
17331 		break;
17332 	case TCPS_ESTABLISHED:
17333 	case TCPS_FIN_WAIT_1:
17334 	case TCPS_CLOSING:
17335 	case TCPS_CLOSE_WAIT:
17336 	case TCPS_LAST_ACK:
17337 		/* If we have data to rexmit */
17338 		if (tcp->tcp_suna != tcp->tcp_snxt) {
17339 			clock_t	time_to_wait;
17340 
17341 			BUMP_MIB(&tcps->tcps_mib, tcpTimRetrans);
17342 			if (!tcp->tcp_xmit_head)
17343 				break;
17344 			time_to_wait = lbolt -
17345 			    (clock_t)tcp->tcp_xmit_head->b_prev;
17346 			time_to_wait = tcp->tcp_rto -
17347 			    TICK_TO_MSEC(time_to_wait);
17348 			/*
17349 			 * If the timer fires too early, 1 clock tick earlier,
17350 			 * restart the timer.
17351 			 */
17352 			if (time_to_wait > msec_per_tick) {
17353 				TCP_STAT(tcps, tcp_timer_fire_early);
17354 				TCP_TIMER_RESTART(tcp, time_to_wait);
17355 				return;
17356 			}
17357 			/*
17358 			 * When we probe zero windows, we force the swnd open.
17359 			 * If our peer acks with a closed window swnd will be
17360 			 * set to zero by tcp_rput(). As long as we are
17361 			 * receiving acks tcp_rput will
17362 			 * reset 'tcp_ms_we_have_waited' so as not to trip the
17363 			 * first and second interval actions.  NOTE: the timer
17364 			 * interval is allowed to continue its exponential
17365 			 * backoff.
17366 			 */
17367 			if (tcp->tcp_swnd == 0 || tcp->tcp_zero_win_probe) {
17368 				if (tcp->tcp_debug) {
17369 					(void) strlog(TCP_MOD_ID, 0, 1,
17370 					    SL_TRACE, "tcp_timer: zero win");
17371 				}
17372 			} else {
17373 				/*
17374 				 * After retransmission, we need to do
17375 				 * slow start.  Set the ssthresh to one
17376 				 * half of current effective window and
17377 				 * cwnd to one MSS.  Also reset
17378 				 * tcp_cwnd_cnt.
17379 				 *
17380 				 * Note that if tcp_ssthresh is reduced because
17381 				 * of ECN, do not reduce it again unless it is
17382 				 * already one window of data away (tcp_cwr
17383 				 * should then be cleared) or this is a
17384 				 * timeout for a retransmitted segment.
17385 				 */
17386 				uint32_t npkt;
17387 
17388 				if (!tcp->tcp_cwr || tcp->tcp_rexmit) {
17389 					npkt = ((tcp->tcp_timer_backoff ?
17390 					    tcp->tcp_cwnd_ssthresh :
17391 					    tcp->tcp_snxt -
17392 					    tcp->tcp_suna) >> 1) / tcp->tcp_mss;
17393 					tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) *
17394 					    tcp->tcp_mss;
17395 				}
17396 				tcp->tcp_cwnd = tcp->tcp_mss;
17397 				tcp->tcp_cwnd_cnt = 0;
17398 				if (tcp->tcp_ecn_ok) {
17399 					tcp->tcp_cwr = B_TRUE;
17400 					tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
17401 					tcp->tcp_ecn_cwr_sent = B_FALSE;
17402 				}
17403 			}
17404 			break;
17405 		}
17406 		/*
17407 		 * We have something to send yet we cannot send.  The
17408 		 * reason can be:
17409 		 *
17410 		 * 1. Zero send window: we need to do zero window probe.
17411 		 * 2. Zero cwnd: because of ECN, we need to "clock out
17412 		 * segments.
17413 		 * 3. SWS avoidance: receiver may have shrunk window,
17414 		 * reset our knowledge.
17415 		 *
17416 		 * Note that condition 2 can happen with either 1 or
17417 		 * 3.  But 1 and 3 are exclusive.
17418 		 */
17419 		if (tcp->tcp_unsent != 0) {
17420 			if (tcp->tcp_cwnd == 0) {
17421 				/*
17422 				 * Set tcp_cwnd to 1 MSS so that a
17423 				 * new segment can be sent out.  We
17424 				 * are "clocking out" new data when
17425 				 * the network is really congested.
17426 				 */
17427 				ASSERT(tcp->tcp_ecn_ok);
17428 				tcp->tcp_cwnd = tcp->tcp_mss;
17429 			}
17430 			if (tcp->tcp_swnd == 0) {
17431 				/* Extend window for zero window probe */
17432 				tcp->tcp_swnd++;
17433 				tcp->tcp_zero_win_probe = B_TRUE;
17434 				BUMP_MIB(&tcps->tcps_mib, tcpOutWinProbe);
17435 			} else {
17436 				/*
17437 				 * Handle timeout from sender SWS avoidance.
17438 				 * Reset our knowledge of the max send window
17439 				 * since the receiver might have reduced its
17440 				 * receive buffer.  Avoid setting tcp_max_swnd
17441 				 * to one since that will essentially disable
17442 				 * the SWS checks.
17443 				 *
17444 				 * Note that since we don't have a SWS
17445 				 * state variable, if the timeout is set
17446 				 * for ECN but not for SWS, this
17447 				 * code will also be executed.  This is
17448 				 * fine as tcp_max_swnd is updated
17449 				 * constantly and it will not affect
17450 				 * anything.
17451 				 */
17452 				tcp->tcp_max_swnd = MAX(tcp->tcp_swnd, 2);
17453 			}
17454 			tcp_wput_data(tcp, NULL, B_FALSE);
17455 			return;
17456 		}
17457 		/* Is there a FIN that needs to be to re retransmitted? */
17458 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
17459 		    !tcp->tcp_fin_acked)
17460 			break;
17461 		/* Nothing to do, return without restarting timer. */
17462 		TCP_STAT(tcps, tcp_timer_fire_miss);
17463 		return;
17464 	case TCPS_FIN_WAIT_2:
17465 		/*
17466 		 * User closed the TCP endpoint and peer ACK'ed our FIN.
17467 		 * We waited some time for for peer's FIN, but it hasn't
17468 		 * arrived.  We flush the connection now to avoid
17469 		 * case where the peer has rebooted.
17470 		 */
17471 		if (TCP_IS_DETACHED(tcp)) {
17472 			(void) tcp_clean_death(tcp, 0, 23);
17473 		} else {
17474 			TCP_TIMER_RESTART(tcp,
17475 			    tcps->tcps_fin_wait_2_flush_interval);
17476 		}
17477 		return;
17478 	case TCPS_TIME_WAIT:
17479 		(void) tcp_clean_death(tcp, 0, 24);
17480 		return;
17481 	default:
17482 		if (tcp->tcp_debug) {
17483 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
17484 			    "tcp_timer: strange state (%d) %s",
17485 			    tcp->tcp_state, tcp_display(tcp, NULL,
17486 			    DISP_PORT_ONLY));
17487 		}
17488 		return;
17489 	}
17490 	if ((ms = tcp->tcp_ms_we_have_waited) > second_threshold) {
17491 		/*
17492 		 * For zero window probe, we need to send indefinitely,
17493 		 * unless we have not heard from the other side for some
17494 		 * time...
17495 		 */
17496 		if ((tcp->tcp_zero_win_probe == 0) ||
17497 		    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >
17498 		    second_threshold)) {
17499 			BUMP_MIB(&tcps->tcps_mib, tcpTimRetransDrop);
17500 			/*
17501 			 * If TCP is in SYN_RCVD state, send back a
17502 			 * RST|ACK as BSD does.  Note that tcp_zero_win_probe
17503 			 * should be zero in TCPS_SYN_RCVD state.
17504 			 */
17505 			if (tcp->tcp_state == TCPS_SYN_RCVD) {
17506 				tcp_xmit_ctl("tcp_timer: RST sent on timeout "
17507 				    "in SYN_RCVD",
17508 				    tcp, tcp->tcp_snxt,
17509 				    tcp->tcp_rnxt, TH_RST | TH_ACK);
17510 			}
17511 			(void) tcp_clean_death(tcp,
17512 			    tcp->tcp_client_errno ?
17513 			    tcp->tcp_client_errno : ETIMEDOUT, 25);
17514 			return;
17515 		} else {
17516 			/*
17517 			 * Set tcp_ms_we_have_waited to second_threshold
17518 			 * so that in next timeout, we will do the above
17519 			 * check (lbolt - tcp_last_recv_time).  This is
17520 			 * also to avoid overflow.
17521 			 *
17522 			 * We don't need to decrement tcp_timer_backoff
17523 			 * to avoid overflow because it will be decremented
17524 			 * later if new timeout value is greater than
17525 			 * tcp_rexmit_interval_max.  In the case when
17526 			 * tcp_rexmit_interval_max is greater than
17527 			 * second_threshold, it means that we will wait
17528 			 * longer than second_threshold to send the next
17529 			 * window probe.
17530 			 */
17531 			tcp->tcp_ms_we_have_waited = second_threshold;
17532 		}
17533 	} else if (ms > first_threshold) {
17534 		if (tcp->tcp_snd_zcopy_aware && (!tcp->tcp_xmit_zc_clean) &&
17535 		    tcp->tcp_xmit_head != NULL) {
17536 			tcp->tcp_xmit_head =
17537 			    tcp_zcopy_backoff(tcp, tcp->tcp_xmit_head, 1);
17538 		}
17539 		/*
17540 		 * We have been retransmitting for too long...  The RTT
17541 		 * we calculated is probably incorrect.  Reinitialize it.
17542 		 * Need to compensate for 0 tcp_rtt_sa.  Reset
17543 		 * tcp_rtt_update so that we won't accidentally cache a
17544 		 * bad value.  But only do this if this is not a zero
17545 		 * window probe.
17546 		 */
17547 		if (tcp->tcp_rtt_sa != 0 && tcp->tcp_zero_win_probe == 0) {
17548 			tcp->tcp_rtt_sd += (tcp->tcp_rtt_sa >> 3) +
17549 			    (tcp->tcp_rtt_sa >> 5);
17550 			tcp->tcp_rtt_sa = 0;
17551 			tcp_ip_notify(tcp);
17552 			tcp->tcp_rtt_update = 0;
17553 		}
17554 	}
17555 	tcp->tcp_timer_backoff++;
17556 	if ((ms = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
17557 	    tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5)) <
17558 	    tcps->tcps_rexmit_interval_min) {
17559 		/*
17560 		 * This means the original RTO is tcp_rexmit_interval_min.
17561 		 * So we will use tcp_rexmit_interval_min as the RTO value
17562 		 * and do the backoff.
17563 		 */
17564 		ms = tcps->tcps_rexmit_interval_min << tcp->tcp_timer_backoff;
17565 	} else {
17566 		ms <<= tcp->tcp_timer_backoff;
17567 	}
17568 	if (ms > tcps->tcps_rexmit_interval_max) {
17569 		ms = tcps->tcps_rexmit_interval_max;
17570 		/*
17571 		 * ms is at max, decrement tcp_timer_backoff to avoid
17572 		 * overflow.
17573 		 */
17574 		tcp->tcp_timer_backoff--;
17575 	}
17576 	tcp->tcp_ms_we_have_waited += ms;
17577 	if (tcp->tcp_zero_win_probe == 0) {
17578 		tcp->tcp_rto = ms;
17579 	}
17580 	TCP_TIMER_RESTART(tcp, ms);
17581 	/*
17582 	 * This is after a timeout and tcp_rto is backed off.  Set
17583 	 * tcp_set_timer to 1 so that next time RTO is updated, we will
17584 	 * restart the timer with a correct value.
17585 	 */
17586 	tcp->tcp_set_timer = 1;
17587 	mss = tcp->tcp_snxt - tcp->tcp_suna;
17588 	if (mss > tcp->tcp_mss)
17589 		mss = tcp->tcp_mss;
17590 	if (mss > tcp->tcp_swnd && tcp->tcp_swnd != 0)
17591 		mss = tcp->tcp_swnd;
17592 
17593 	if ((mp = tcp->tcp_xmit_head) != NULL)
17594 		mp->b_prev = (mblk_t *)lbolt;
17595 	mp = tcp_xmit_mp(tcp, mp, mss, NULL, NULL, tcp->tcp_suna, B_TRUE, &mss,
17596 	    B_TRUE);
17597 
17598 	/*
17599 	 * When slow start after retransmission begins, start with
17600 	 * this seq no.  tcp_rexmit_max marks the end of special slow
17601 	 * start phase.  tcp_snd_burst controls how many segments
17602 	 * can be sent because of an ack.
17603 	 */
17604 	tcp->tcp_rexmit_nxt = tcp->tcp_suna;
17605 	tcp->tcp_snd_burst = TCP_CWND_SS;
17606 	if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
17607 	    (tcp->tcp_unsent == 0)) {
17608 		tcp->tcp_rexmit_max = tcp->tcp_fss;
17609 	} else {
17610 		tcp->tcp_rexmit_max = tcp->tcp_snxt;
17611 	}
17612 	tcp->tcp_rexmit = B_TRUE;
17613 	tcp->tcp_dupack_cnt = 0;
17614 
17615 	/*
17616 	 * Remove all rexmit SACK blk to start from fresh.
17617 	 */
17618 	if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
17619 		TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
17620 		tcp->tcp_num_notsack_blk = 0;
17621 		tcp->tcp_cnt_notsack_list = 0;
17622 	}
17623 	if (mp == NULL) {
17624 		return;
17625 	}
17626 	/* Attach credentials to retransmitted initial SYNs. */
17627 	if (tcp->tcp_state == TCPS_SYN_SENT) {
17628 		mblk_setcred(mp, tcp->tcp_cred);
17629 		DB_CPID(mp) = tcp->tcp_cpid;
17630 	}
17631 
17632 	tcp->tcp_csuna = tcp->tcp_snxt;
17633 	BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
17634 	UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, mss);
17635 	tcp_send_data(tcp, tcp->tcp_wq, mp);
17636 
17637 }
17638 
17639 /* tcp_unbind is called by tcp_wput_proto to handle T_UNBIND_REQ messages. */
17640 static void
17641 tcp_unbind(tcp_t *tcp, mblk_t *mp)
17642 {
17643 	conn_t	*connp;
17644 
17645 	switch (tcp->tcp_state) {
17646 	case TCPS_BOUND:
17647 	case TCPS_LISTEN:
17648 		break;
17649 	default:
17650 		tcp_err_ack(tcp, mp, TOUTSTATE, 0);
17651 		return;
17652 	}
17653 
17654 	/*
17655 	 * Need to clean up all the eagers since after the unbind, segments
17656 	 * will no longer be delivered to this listener stream.
17657 	 */
17658 	mutex_enter(&tcp->tcp_eager_lock);
17659 	if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) {
17660 		tcp_eager_cleanup(tcp, 0);
17661 	}
17662 	mutex_exit(&tcp->tcp_eager_lock);
17663 
17664 	if (tcp->tcp_ipversion == IPV4_VERSION) {
17665 		tcp->tcp_ipha->ipha_src = 0;
17666 	} else {
17667 		V6_SET_ZERO(tcp->tcp_ip6h->ip6_src);
17668 	}
17669 	V6_SET_ZERO(tcp->tcp_ip_src_v6);
17670 	bzero(tcp->tcp_tcph->th_lport, sizeof (tcp->tcp_tcph->th_lport));
17671 	tcp_bind_hash_remove(tcp);
17672 	tcp->tcp_state = TCPS_IDLE;
17673 	tcp->tcp_mdt = B_FALSE;
17674 	/* Send M_FLUSH according to TPI */
17675 	(void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW);
17676 	connp = tcp->tcp_connp;
17677 	connp->conn_mdt_ok = B_FALSE;
17678 	ipcl_hash_remove(connp);
17679 	bzero(&connp->conn_ports, sizeof (connp->conn_ports));
17680 	mp = mi_tpi_ok_ack_alloc(mp);
17681 	putnext(tcp->tcp_rq, mp);
17682 }
17683 
17684 /*
17685  * Don't let port fall into the privileged range.
17686  * Since the extra privileged ports can be arbitrary we also
17687  * ensure that we exclude those from consideration.
17688  * tcp_g_epriv_ports is not sorted thus we loop over it until
17689  * there are no changes.
17690  *
17691  * Note: No locks are held when inspecting tcp_g_*epriv_ports
17692  * but instead the code relies on:
17693  * - the fact that the address of the array and its size never changes
17694  * - the atomic assignment of the elements of the array
17695  *
17696  * Returns 0 if there are no more ports available.
17697  *
17698  * TS note: skip multilevel ports.
17699  */
17700 static in_port_t
17701 tcp_update_next_port(in_port_t port, const tcp_t *tcp, boolean_t random)
17702 {
17703 	int i;
17704 	boolean_t restart = B_FALSE;
17705 	tcp_stack_t *tcps = tcp->tcp_tcps;
17706 
17707 	if (random && tcp_random_anon_port != 0) {
17708 		(void) random_get_pseudo_bytes((uint8_t *)&port,
17709 		    sizeof (in_port_t));
17710 		/*
17711 		 * Unless changed by a sys admin, the smallest anon port
17712 		 * is 32768 and the largest anon port is 65535.  It is
17713 		 * very likely (50%) for the random port to be smaller
17714 		 * than the smallest anon port.  When that happens,
17715 		 * add port % (anon port range) to the smallest anon
17716 		 * port to get the random port.  It should fall into the
17717 		 * valid anon port range.
17718 		 */
17719 		if (port < tcps->tcps_smallest_anon_port) {
17720 			port = tcps->tcps_smallest_anon_port +
17721 			    port % (tcps->tcps_largest_anon_port -
17722 			    tcps->tcps_smallest_anon_port);
17723 		}
17724 	}
17725 
17726 retry:
17727 	if (port < tcps->tcps_smallest_anon_port)
17728 		port = (in_port_t)tcps->tcps_smallest_anon_port;
17729 
17730 	if (port > tcps->tcps_largest_anon_port) {
17731 		if (restart)
17732 			return (0);
17733 		restart = B_TRUE;
17734 		port = (in_port_t)tcps->tcps_smallest_anon_port;
17735 	}
17736 
17737 	if (port < tcps->tcps_smallest_nonpriv_port)
17738 		port = (in_port_t)tcps->tcps_smallest_nonpriv_port;
17739 
17740 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
17741 		if (port == tcps->tcps_g_epriv_ports[i]) {
17742 			port++;
17743 			/*
17744 			 * Make sure whether the port is in the
17745 			 * valid range.
17746 			 */
17747 			goto retry;
17748 		}
17749 	}
17750 	if (is_system_labeled() &&
17751 	    (i = tsol_next_port(crgetzone(tcp->tcp_cred), port,
17752 	    IPPROTO_TCP, B_TRUE)) != 0) {
17753 		port = i;
17754 		goto retry;
17755 	}
17756 	return (port);
17757 }
17758 
17759 /*
17760  * Return the next anonymous port in the privileged port range for
17761  * bind checking.  It starts at IPPORT_RESERVED - 1 and goes
17762  * downwards.  This is the same behavior as documented in the userland
17763  * library call rresvport(3N).
17764  *
17765  * TS note: skip multilevel ports.
17766  */
17767 static in_port_t
17768 tcp_get_next_priv_port(const tcp_t *tcp)
17769 {
17770 	static in_port_t next_priv_port = IPPORT_RESERVED - 1;
17771 	in_port_t nextport;
17772 	boolean_t restart = B_FALSE;
17773 	tcp_stack_t *tcps = tcp->tcp_tcps;
17774 retry:
17775 	if (next_priv_port < tcps->tcps_min_anonpriv_port ||
17776 	    next_priv_port >= IPPORT_RESERVED) {
17777 		next_priv_port = IPPORT_RESERVED - 1;
17778 		if (restart)
17779 			return (0);
17780 		restart = B_TRUE;
17781 	}
17782 	if (is_system_labeled() &&
17783 	    (nextport = tsol_next_port(crgetzone(tcp->tcp_cred),
17784 	    next_priv_port, IPPROTO_TCP, B_FALSE)) != 0) {
17785 		next_priv_port = nextport;
17786 		goto retry;
17787 	}
17788 	return (next_priv_port--);
17789 }
17790 
17791 /* The write side r/w procedure. */
17792 
17793 #if CCS_STATS
17794 struct {
17795 	struct {
17796 		int64_t count, bytes;
17797 	} tot, hit;
17798 } wrw_stats;
17799 #endif
17800 
17801 /*
17802  * Call by tcp_wput() to handle all non data, except M_PROTO and M_PCPROTO,
17803  * messages.
17804  */
17805 /* ARGSUSED */
17806 static void
17807 tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2)
17808 {
17809 	conn_t	*connp = (conn_t *)arg;
17810 	tcp_t	*tcp = connp->conn_tcp;
17811 	queue_t	*q = tcp->tcp_wq;
17812 
17813 	ASSERT(DB_TYPE(mp) != M_IOCTL);
17814 	/*
17815 	 * TCP is D_MP and qprocsoff() is done towards the end of the tcp_close.
17816 	 * Once the close starts, streamhead and sockfs will not let any data
17817 	 * packets come down (close ensures that there are no threads using the
17818 	 * queue and no new threads will come down) but since qprocsoff()
17819 	 * hasn't happened yet, a M_FLUSH or some non data message might
17820 	 * get reflected back (in response to our own FLUSHRW) and get
17821 	 * processed after tcp_close() is done. The conn would still be valid
17822 	 * because a ref would have added but we need to check the state
17823 	 * before actually processing the packet.
17824 	 */
17825 	if (TCP_IS_DETACHED(tcp) || (tcp->tcp_state == TCPS_CLOSED)) {
17826 		freemsg(mp);
17827 		return;
17828 	}
17829 
17830 	switch (DB_TYPE(mp)) {
17831 	case M_IOCDATA:
17832 		tcp_wput_iocdata(tcp, mp);
17833 		break;
17834 	case M_FLUSH:
17835 		tcp_wput_flush(tcp, mp);
17836 		break;
17837 	default:
17838 		CALL_IP_WPUT(connp, q, mp);
17839 		break;
17840 	}
17841 }
17842 
17843 /*
17844  * The TCP fast path write put procedure.
17845  * NOTE: the logic of the fast path is duplicated from tcp_wput_data()
17846  */
17847 /* ARGSUSED */
17848 void
17849 tcp_output(void *arg, mblk_t *mp, void *arg2)
17850 {
17851 	int		len;
17852 	int		hdrlen;
17853 	int		plen;
17854 	mblk_t		*mp1;
17855 	uchar_t		*rptr;
17856 	uint32_t	snxt;
17857 	tcph_t		*tcph;
17858 	struct datab	*db;
17859 	uint32_t	suna;
17860 	uint32_t	mss;
17861 	ipaddr_t	*dst;
17862 	ipaddr_t	*src;
17863 	uint32_t	sum;
17864 	int		usable;
17865 	conn_t		*connp = (conn_t *)arg;
17866 	tcp_t		*tcp = connp->conn_tcp;
17867 	uint32_t	msize;
17868 	tcp_stack_t	*tcps = tcp->tcp_tcps;
17869 
17870 	/*
17871 	 * Try and ASSERT the minimum possible references on the
17872 	 * conn early enough. Since we are executing on write side,
17873 	 * the connection is obviously not detached and that means
17874 	 * there is a ref each for TCP and IP. Since we are behind
17875 	 * the squeue, the minimum references needed are 3. If the
17876 	 * conn is in classifier hash list, there should be an
17877 	 * extra ref for that (we check both the possibilities).
17878 	 */
17879 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
17880 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
17881 
17882 	ASSERT(DB_TYPE(mp) == M_DATA);
17883 	msize = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp);
17884 
17885 	mutex_enter(&tcp->tcp_non_sq_lock);
17886 	tcp->tcp_squeue_bytes -= msize;
17887 	mutex_exit(&tcp->tcp_non_sq_lock);
17888 
17889 	/* Bypass tcp protocol for fused tcp loopback */
17890 	if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize))
17891 		return;
17892 
17893 	mss = tcp->tcp_mss;
17894 	if (tcp->tcp_xmit_zc_clean)
17895 		mp = tcp_zcopy_backoff(tcp, mp, 0);
17896 
17897 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
17898 	len = (int)(mp->b_wptr - mp->b_rptr);
17899 
17900 	/*
17901 	 * Criteria for fast path:
17902 	 *
17903 	 *   1. no unsent data
17904 	 *   2. single mblk in request
17905 	 *   3. connection established
17906 	 *   4. data in mblk
17907 	 *   5. len <= mss
17908 	 *   6. no tcp_valid bits
17909 	 */
17910 	if ((tcp->tcp_unsent != 0) ||
17911 	    (tcp->tcp_cork) ||
17912 	    (mp->b_cont != NULL) ||
17913 	    (tcp->tcp_state != TCPS_ESTABLISHED) ||
17914 	    (len == 0) ||
17915 	    (len > mss) ||
17916 	    (tcp->tcp_valid_bits != 0)) {
17917 		tcp_wput_data(tcp, mp, B_FALSE);
17918 		return;
17919 	}
17920 
17921 	ASSERT(tcp->tcp_xmit_tail_unsent == 0);
17922 	ASSERT(tcp->tcp_fin_sent == 0);
17923 
17924 	/* queue new packet onto retransmission queue */
17925 	if (tcp->tcp_xmit_head == NULL) {
17926 		tcp->tcp_xmit_head = mp;
17927 	} else {
17928 		tcp->tcp_xmit_last->b_cont = mp;
17929 	}
17930 	tcp->tcp_xmit_last = mp;
17931 	tcp->tcp_xmit_tail = mp;
17932 
17933 	/* find out how much we can send */
17934 	/* BEGIN CSTYLED */
17935 	/*
17936 	 *    un-acked           usable
17937 	 *  |--------------|-----------------|
17938 	 *  tcp_suna       tcp_snxt          tcp_suna+tcp_swnd
17939 	 */
17940 	/* END CSTYLED */
17941 
17942 	/* start sending from tcp_snxt */
17943 	snxt = tcp->tcp_snxt;
17944 
17945 	/*
17946 	 * Check to see if this connection has been idled for some
17947 	 * time and no ACK is expected.  If it is, we need to slow
17948 	 * start again to get back the connection's "self-clock" as
17949 	 * described in VJ's paper.
17950 	 *
17951 	 * Refer to the comment in tcp_mss_set() for the calculation
17952 	 * of tcp_cwnd after idle.
17953 	 */
17954 	if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet &&
17955 	    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) {
17956 		SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle);
17957 	}
17958 
17959 	usable = tcp->tcp_swnd;		/* tcp window size */
17960 	if (usable > tcp->tcp_cwnd)
17961 		usable = tcp->tcp_cwnd;	/* congestion window smaller */
17962 	usable -= snxt;		/* subtract stuff already sent */
17963 	suna = tcp->tcp_suna;
17964 	usable += suna;
17965 	/* usable can be < 0 if the congestion window is smaller */
17966 	if (len > usable) {
17967 		/* Can't send complete M_DATA in one shot */
17968 		goto slow;
17969 	}
17970 
17971 	mutex_enter(&tcp->tcp_non_sq_lock);
17972 	if (tcp->tcp_flow_stopped &&
17973 	    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
17974 		tcp_clrqfull(tcp);
17975 	}
17976 	mutex_exit(&tcp->tcp_non_sq_lock);
17977 
17978 	/*
17979 	 * determine if anything to send (Nagle).
17980 	 *
17981 	 *   1. len < tcp_mss (i.e. small)
17982 	 *   2. unacknowledged data present
17983 	 *   3. len < nagle limit
17984 	 *   4. last packet sent < nagle limit (previous packet sent)
17985 	 */
17986 	if ((len < mss) && (snxt != suna) &&
17987 	    (len < (int)tcp->tcp_naglim) &&
17988 	    (tcp->tcp_last_sent_len < tcp->tcp_naglim)) {
17989 		/*
17990 		 * This was the first unsent packet and normally
17991 		 * mss < xmit_hiwater so there is no need to worry
17992 		 * about flow control. The next packet will go
17993 		 * through the flow control check in tcp_wput_data().
17994 		 */
17995 		/* leftover work from above */
17996 		tcp->tcp_unsent = len;
17997 		tcp->tcp_xmit_tail_unsent = len;
17998 
17999 		return;
18000 	}
18001 
18002 	/* len <= tcp->tcp_mss && len == unsent so no silly window */
18003 
18004 	if (snxt == suna) {
18005 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
18006 	}
18007 
18008 	/* we have always sent something */
18009 	tcp->tcp_rack_cnt = 0;
18010 
18011 	tcp->tcp_snxt = snxt + len;
18012 	tcp->tcp_rack = tcp->tcp_rnxt;
18013 
18014 	if ((mp1 = dupb(mp)) == 0)
18015 		goto no_memory;
18016 	mp->b_prev = (mblk_t *)(uintptr_t)lbolt;
18017 	mp->b_next = (mblk_t *)(uintptr_t)snxt;
18018 
18019 	/* adjust tcp header information */
18020 	tcph = tcp->tcp_tcph;
18021 	tcph->th_flags[0] = (TH_ACK|TH_PUSH);
18022 
18023 	sum = len + tcp->tcp_tcp_hdr_len + tcp->tcp_sum;
18024 	sum = (sum >> 16) + (sum & 0xFFFF);
18025 	U16_TO_ABE16(sum, tcph->th_sum);
18026 
18027 	U32_TO_ABE32(snxt, tcph->th_seq);
18028 
18029 	BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs);
18030 	UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len);
18031 	BUMP_LOCAL(tcp->tcp_obsegs);
18032 
18033 	/* Update the latest receive window size in TCP header. */
18034 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
18035 	    tcph->th_win);
18036 
18037 	tcp->tcp_last_sent_len = (ushort_t)len;
18038 
18039 	plen = len + tcp->tcp_hdr_len;
18040 
18041 	if (tcp->tcp_ipversion == IPV4_VERSION) {
18042 		tcp->tcp_ipha->ipha_length = htons(plen);
18043 	} else {
18044 		tcp->tcp_ip6h->ip6_plen = htons(plen -
18045 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
18046 	}
18047 
18048 	/* see if we need to allocate a mblk for the headers */
18049 	hdrlen = tcp->tcp_hdr_len;
18050 	rptr = mp1->b_rptr - hdrlen;
18051 	db = mp1->b_datap;
18052 	if ((db->db_ref != 2) || rptr < db->db_base ||
18053 	    (!OK_32PTR(rptr))) {
18054 		/* NOTE: we assume allocb returns an OK_32PTR */
18055 		mp = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH +
18056 		    tcps->tcps_wroff_xtra, BPRI_MED);
18057 		if (!mp) {
18058 			freemsg(mp1);
18059 			goto no_memory;
18060 		}
18061 		mp->b_cont = mp1;
18062 		mp1 = mp;
18063 		/* Leave room for Link Level header */
18064 		/* hdrlen = tcp->tcp_hdr_len; */
18065 		rptr = &mp1->b_rptr[tcps->tcps_wroff_xtra];
18066 		mp1->b_wptr = &rptr[hdrlen];
18067 	}
18068 	mp1->b_rptr = rptr;
18069 
18070 	/* Fill in the timestamp option. */
18071 	if (tcp->tcp_snd_ts_ok) {
18072 		U32_TO_BE32((uint32_t)lbolt,
18073 		    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
18074 		U32_TO_BE32(tcp->tcp_ts_recent,
18075 		    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
18076 	} else {
18077 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
18078 	}
18079 
18080 	/* copy header into outgoing packet */
18081 	dst = (ipaddr_t *)rptr;
18082 	src = (ipaddr_t *)tcp->tcp_iphc;
18083 	dst[0] = src[0];
18084 	dst[1] = src[1];
18085 	dst[2] = src[2];
18086 	dst[3] = src[3];
18087 	dst[4] = src[4];
18088 	dst[5] = src[5];
18089 	dst[6] = src[6];
18090 	dst[7] = src[7];
18091 	dst[8] = src[8];
18092 	dst[9] = src[9];
18093 	if (hdrlen -= 40) {
18094 		hdrlen >>= 2;
18095 		dst += 10;
18096 		src += 10;
18097 		do {
18098 			*dst++ = *src++;
18099 		} while (--hdrlen);
18100 	}
18101 
18102 	/*
18103 	 * Set the ECN info in the TCP header.  Note that this
18104 	 * is not the template header.
18105 	 */
18106 	if (tcp->tcp_ecn_ok) {
18107 		SET_ECT(tcp, rptr);
18108 
18109 		tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
18110 		if (tcp->tcp_ecn_echo_on)
18111 			tcph->th_flags[0] |= TH_ECE;
18112 		if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
18113 			tcph->th_flags[0] |= TH_CWR;
18114 			tcp->tcp_ecn_cwr_sent = B_TRUE;
18115 		}
18116 	}
18117 
18118 	if (tcp->tcp_ip_forward_progress) {
18119 		ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
18120 		*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
18121 		tcp->tcp_ip_forward_progress = B_FALSE;
18122 	}
18123 	tcp_send_data(tcp, tcp->tcp_wq, mp1);
18124 	return;
18125 
18126 	/*
18127 	 * If we ran out of memory, we pretend to have sent the packet
18128 	 * and that it was lost on the wire.
18129 	 */
18130 no_memory:
18131 	return;
18132 
18133 slow:
18134 	/* leftover work from above */
18135 	tcp->tcp_unsent = len;
18136 	tcp->tcp_xmit_tail_unsent = len;
18137 	tcp_wput_data(tcp, NULL, B_FALSE);
18138 }
18139 
18140 /*
18141  * The function called through squeue to get behind eager's perimeter to
18142  * finish the accept processing.
18143  */
18144 /* ARGSUSED */
18145 void
18146 tcp_accept_finish(void *arg, mblk_t *mp, void *arg2)
18147 {
18148 	conn_t			*connp = (conn_t *)arg;
18149 	tcp_t			*tcp = connp->conn_tcp;
18150 	queue_t			*q = tcp->tcp_rq;
18151 	mblk_t			*mp1;
18152 	mblk_t			*stropt_mp = mp;
18153 	struct  stroptions	*stropt;
18154 	uint_t			thwin;
18155 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18156 
18157 	/*
18158 	 * Drop the eager's ref on the listener, that was placed when
18159 	 * this eager began life in tcp_conn_request.
18160 	 */
18161 	CONN_DEC_REF(tcp->tcp_saved_listener->tcp_connp);
18162 
18163 	tcp->tcp_detached = B_FALSE;
18164 
18165 	if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_accept_error) {
18166 		/*
18167 		 * Someone blewoff the eager before we could finish
18168 		 * the accept.
18169 		 *
18170 		 * The only reason eager exists it because we put in
18171 		 * a ref on it when conn ind went up. We need to send
18172 		 * a disconnect indication up while the last reference
18173 		 * on the eager will be dropped by the squeue when we
18174 		 * return.
18175 		 */
18176 		ASSERT(tcp->tcp_listener == NULL);
18177 		if (tcp->tcp_issocket || tcp->tcp_send_discon_ind) {
18178 			struct	T_discon_ind	*tdi;
18179 
18180 			(void) putnextctl1(q, M_FLUSH, FLUSHRW);
18181 			/*
18182 			 * Let us reuse the incoming mblk to avoid memory
18183 			 * allocation failure problems. We know that the
18184 			 * size of the incoming mblk i.e. stroptions is greater
18185 			 * than sizeof T_discon_ind. So the reallocb below
18186 			 * can't fail.
18187 			 */
18188 			freemsg(mp->b_cont);
18189 			mp->b_cont = NULL;
18190 			ASSERT(DB_REF(mp) == 1);
18191 			mp = reallocb(mp, sizeof (struct T_discon_ind),
18192 			    B_FALSE);
18193 			ASSERT(mp != NULL);
18194 			DB_TYPE(mp) = M_PROTO;
18195 			((union T_primitives *)mp->b_rptr)->type = T_DISCON_IND;
18196 			tdi = (struct T_discon_ind *)mp->b_rptr;
18197 			if (tcp->tcp_issocket) {
18198 				tdi->DISCON_reason = ECONNREFUSED;
18199 				tdi->SEQ_number = 0;
18200 			} else {
18201 				tdi->DISCON_reason = ENOPROTOOPT;
18202 				tdi->SEQ_number =
18203 				    tcp->tcp_conn_req_seqnum;
18204 			}
18205 			mp->b_wptr = mp->b_rptr + sizeof (struct T_discon_ind);
18206 			putnext(q, mp);
18207 		} else {
18208 			freemsg(mp);
18209 		}
18210 		if (tcp->tcp_hard_binding) {
18211 			tcp->tcp_hard_binding = B_FALSE;
18212 			tcp->tcp_hard_bound = B_TRUE;
18213 		}
18214 		return;
18215 	}
18216 
18217 	mp1 = stropt_mp->b_cont;
18218 	stropt_mp->b_cont = NULL;
18219 	ASSERT(DB_TYPE(stropt_mp) == M_SETOPTS);
18220 	stropt = (struct stroptions *)stropt_mp->b_rptr;
18221 
18222 	while (mp1 != NULL) {
18223 		mp = mp1;
18224 		mp1 = mp1->b_cont;
18225 		mp->b_cont = NULL;
18226 		tcp->tcp_drop_opt_ack_cnt++;
18227 		CALL_IP_WPUT(connp, tcp->tcp_wq, mp);
18228 	}
18229 	mp = NULL;
18230 
18231 	/*
18232 	 * For a loopback connection with tcp_direct_sockfs on, note that
18233 	 * we don't have to protect tcp_rcv_list yet because synchronous
18234 	 * streams has not yet been enabled and tcp_fuse_rrw() cannot
18235 	 * possibly race with us.
18236 	 */
18237 
18238 	/*
18239 	 * Set the max window size (tcp_rq->q_hiwat) of the acceptor
18240 	 * properly.  This is the first time we know of the acceptor'
18241 	 * queue.  So we do it here.
18242 	 */
18243 	if (tcp->tcp_rcv_list == NULL) {
18244 		/*
18245 		 * Recv queue is empty, tcp_rwnd should not have changed.
18246 		 * That means it should be equal to the listener's tcp_rwnd.
18247 		 */
18248 		tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd;
18249 	} else {
18250 #ifdef DEBUG
18251 		uint_t cnt = 0;
18252 
18253 		mp1 = tcp->tcp_rcv_list;
18254 		while ((mp = mp1) != NULL) {
18255 			mp1 = mp->b_next;
18256 			cnt += msgdsize(mp);
18257 		}
18258 		ASSERT(cnt != 0 && tcp->tcp_rcv_cnt == cnt);
18259 #endif
18260 		/* There is some data, add them back to get the max. */
18261 		tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd + tcp->tcp_rcv_cnt;
18262 	}
18263 	/*
18264 	 * This is the first time we run on the correct
18265 	 * queue after tcp_accept. So fix all the q parameters
18266 	 * here.
18267 	 */
18268 	stropt->so_flags = SO_HIWAT | SO_MAXBLK | SO_WROFF;
18269 	stropt->so_maxblk = tcp_maxpsz_set(tcp, B_FALSE);
18270 
18271 	/*
18272 	 * Record the stream head's high water mark for this endpoint;
18273 	 * this is used for flow-control purposes.
18274 	 */
18275 	stropt->so_hiwat = tcp->tcp_fused ?
18276 	    tcp_fuse_set_rcv_hiwat(tcp, q->q_hiwat) :
18277 	    MAX(q->q_hiwat, tcps->tcps_sth_rcv_hiwat);
18278 
18279 	/*
18280 	 * Determine what write offset value to use depending on SACK and
18281 	 * whether the endpoint is fused or not.
18282 	 */
18283 	if (tcp->tcp_fused) {
18284 		ASSERT(tcp->tcp_loopback);
18285 		ASSERT(tcp->tcp_loopback_peer != NULL);
18286 		/*
18287 		 * For fused tcp loopback, set the stream head's write
18288 		 * offset value to zero since we won't be needing any room
18289 		 * for TCP/IP headers.  This would also improve performance
18290 		 * since it would reduce the amount of work done by kmem.
18291 		 * Non-fused tcp loopback case is handled separately below.
18292 		 */
18293 		stropt->so_wroff = 0;
18294 		/*
18295 		 * Update the peer's transmit parameters according to
18296 		 * our recently calculated high water mark value.
18297 		 */
18298 		(void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE);
18299 	} else if (tcp->tcp_snd_sack_ok) {
18300 		stropt->so_wroff = tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN +
18301 		    (tcp->tcp_loopback ? 0 : tcps->tcps_wroff_xtra);
18302 	} else {
18303 		stropt->so_wroff = tcp->tcp_hdr_len + (tcp->tcp_loopback ? 0 :
18304 		    tcps->tcps_wroff_xtra);
18305 	}
18306 
18307 	/*
18308 	 * If this is endpoint is handling SSL, then reserve extra
18309 	 * offset and space at the end.
18310 	 * Also have the stream head allocate SSL3_MAX_RECORD_LEN packets,
18311 	 * overriding the previous setting. The extra cost of signing and
18312 	 * encrypting multiple MSS-size records (12 of them with Ethernet),
18313 	 * instead of a single contiguous one by the stream head
18314 	 * largely outweighs the statistical reduction of ACKs, when
18315 	 * applicable. The peer will also save on decryption and verification
18316 	 * costs.
18317 	 */
18318 	if (tcp->tcp_kssl_ctx != NULL) {
18319 		stropt->so_wroff += SSL3_WROFFSET;
18320 
18321 		stropt->so_flags |= SO_TAIL;
18322 		stropt->so_tail = SSL3_MAX_TAIL_LEN;
18323 
18324 		stropt->so_flags |= SO_COPYOPT;
18325 		stropt->so_copyopt = ZCVMUNSAFE;
18326 
18327 		stropt->so_maxblk = SSL3_MAX_RECORD_LEN;
18328 	}
18329 
18330 	/* Send the options up */
18331 	putnext(q, stropt_mp);
18332 
18333 	/*
18334 	 * Pass up any data and/or a fin that has been received.
18335 	 *
18336 	 * Adjust receive window in case it had decreased
18337 	 * (because there is data <=> tcp_rcv_list != NULL)
18338 	 * while the connection was detached. Note that
18339 	 * in case the eager was flow-controlled, w/o this
18340 	 * code, the rwnd may never open up again!
18341 	 */
18342 	if (tcp->tcp_rcv_list != NULL) {
18343 		/* We drain directly in case of fused tcp loopback */
18344 		sodirect_t *sodp;
18345 
18346 		if (!tcp->tcp_fused && canputnext(q)) {
18347 			tcp->tcp_rwnd = q->q_hiwat;
18348 			thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
18349 			    << tcp->tcp_rcv_ws;
18350 			thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
18351 			if (tcp->tcp_state >= TCPS_ESTABLISHED &&
18352 			    (q->q_hiwat - thwin >= tcp->tcp_mss)) {
18353 				tcp_xmit_ctl(NULL,
18354 				    tcp, (tcp->tcp_swnd == 0) ?
18355 				    tcp->tcp_suna : tcp->tcp_snxt,
18356 				    tcp->tcp_rnxt, TH_ACK);
18357 				BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate);
18358 			}
18359 
18360 		}
18361 
18362 		SOD_PTR_ENTER(tcp, sodp);
18363 		if (sodp != NULL) {
18364 			/* Sodirect, move from rcv_list */
18365 			ASSERT(!tcp->tcp_fused);
18366 			while ((mp = tcp->tcp_rcv_list) != NULL) {
18367 				tcp->tcp_rcv_list = mp->b_next;
18368 				mp->b_next = NULL;
18369 				(void) tcp_rcv_sod_enqueue(tcp, sodp, mp,
18370 				    msgdsize(mp));
18371 			}
18372 			tcp->tcp_rcv_last_head = NULL;
18373 			tcp->tcp_rcv_last_tail = NULL;
18374 			tcp->tcp_rcv_cnt = 0;
18375 			(void) tcp_rcv_sod_wakeup(tcp, sodp);
18376 			/* sod_wakeup() did the mutex_exit() */
18377 		} else {
18378 			/* Not sodirect, drain */
18379 			(void) tcp_rcv_drain(q, tcp);
18380 		}
18381 
18382 		/*
18383 		 * For fused tcp loopback, back-enable peer endpoint
18384 		 * if it's currently flow-controlled.
18385 		 */
18386 		if (tcp->tcp_fused) {
18387 			tcp_t *peer_tcp = tcp->tcp_loopback_peer;
18388 
18389 			ASSERT(peer_tcp != NULL);
18390 			ASSERT(peer_tcp->tcp_fused);
18391 			/*
18392 			 * In order to change the peer's tcp_flow_stopped,
18393 			 * we need to take locks for both end points. The
18394 			 * highest address is taken first.
18395 			 */
18396 			if (peer_tcp > tcp) {
18397 				mutex_enter(&peer_tcp->tcp_non_sq_lock);
18398 				mutex_enter(&tcp->tcp_non_sq_lock);
18399 			} else {
18400 				mutex_enter(&tcp->tcp_non_sq_lock);
18401 				mutex_enter(&peer_tcp->tcp_non_sq_lock);
18402 			}
18403 			if (peer_tcp->tcp_flow_stopped) {
18404 				tcp_clrqfull(peer_tcp);
18405 				TCP_STAT(tcps, tcp_fusion_backenabled);
18406 			}
18407 			mutex_exit(&peer_tcp->tcp_non_sq_lock);
18408 			mutex_exit(&tcp->tcp_non_sq_lock);
18409 		}
18410 	}
18411 	ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
18412 	if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
18413 		mp = tcp->tcp_ordrel_mp;
18414 		tcp->tcp_ordrel_mp = NULL;
18415 		tcp->tcp_ordrel_done = B_TRUE;
18416 		putnext(q, mp);
18417 	}
18418 	if (tcp->tcp_hard_binding) {
18419 		tcp->tcp_hard_binding = B_FALSE;
18420 		tcp->tcp_hard_bound = B_TRUE;
18421 	}
18422 
18423 	/* We can enable synchronous streams now */
18424 	if (tcp->tcp_fused) {
18425 		tcp_fuse_syncstr_enable_pair(tcp);
18426 	}
18427 
18428 	if (tcp->tcp_ka_enabled) {
18429 		tcp->tcp_ka_last_intrvl = 0;
18430 		tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
18431 		    MSEC_TO_TICK(tcp->tcp_ka_interval));
18432 	}
18433 
18434 	/*
18435 	 * At this point, eager is fully established and will
18436 	 * have the following references -
18437 	 *
18438 	 * 2 references for connection to exist (1 for TCP and 1 for IP).
18439 	 * 1 reference for the squeue which will be dropped by the squeue as
18440 	 *	soon as this function returns.
18441 	 * There will be 1 additonal reference for being in classifier
18442 	 *	hash list provided something bad hasn't happened.
18443 	 */
18444 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
18445 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
18446 }
18447 
18448 /*
18449  * The function called through squeue to get behind listener's perimeter to
18450  * send a deffered conn_ind.
18451  */
18452 /* ARGSUSED */
18453 void
18454 tcp_send_pending(void *arg, mblk_t *mp, void *arg2)
18455 {
18456 	conn_t	*connp = (conn_t *)arg;
18457 	tcp_t *listener = connp->conn_tcp;
18458 
18459 	if (listener->tcp_state == TCPS_CLOSED ||
18460 	    TCP_IS_DETACHED(listener)) {
18461 		/*
18462 		 * If listener has closed, it would have caused a
18463 		 * a cleanup/blowoff to happen for the eager.
18464 		 */
18465 		tcp_t *tcp;
18466 		struct T_conn_ind	*conn_ind;
18467 
18468 		conn_ind = (struct T_conn_ind *)mp->b_rptr;
18469 		bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp,
18470 		    conn_ind->OPT_length);
18471 		/*
18472 		 * We need to drop the ref on eager that was put
18473 		 * tcp_rput_data() before trying to send the conn_ind
18474 		 * to listener. The conn_ind was deferred in tcp_send_conn_ind
18475 		 * and tcp_wput_accept() is sending this deferred conn_ind but
18476 		 * listener is closed so we drop the ref.
18477 		 */
18478 		CONN_DEC_REF(tcp->tcp_connp);
18479 		freemsg(mp);
18480 		return;
18481 	}
18482 	putnext(listener->tcp_rq, mp);
18483 }
18484 
18485 
18486 /*
18487  * This is the STREAMS entry point for T_CONN_RES coming down on
18488  * Acceptor STREAM when  sockfs listener does accept processing.
18489  * Read the block comment on top of tcp_conn_request().
18490  */
18491 void
18492 tcp_wput_accept(queue_t *q, mblk_t *mp)
18493 {
18494 	queue_t *rq = RD(q);
18495 	struct T_conn_res *conn_res;
18496 	tcp_t *eager;
18497 	tcp_t *listener;
18498 	struct T_ok_ack *ok;
18499 	t_scalar_t PRIM_type;
18500 	mblk_t *opt_mp;
18501 	conn_t *econnp;
18502 
18503 	ASSERT(DB_TYPE(mp) == M_PROTO);
18504 
18505 	conn_res = (struct T_conn_res *)mp->b_rptr;
18506 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
18507 	if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_res)) {
18508 		mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0);
18509 		if (mp != NULL)
18510 			putnext(rq, mp);
18511 		return;
18512 	}
18513 	switch (conn_res->PRIM_type) {
18514 	case O_T_CONN_RES:
18515 	case T_CONN_RES:
18516 		/*
18517 		 * We pass up an err ack if allocb fails. This will
18518 		 * cause sockfs to issue a T_DISCON_REQ which will cause
18519 		 * tcp_eager_blowoff to be called. sockfs will then call
18520 		 * rq->q_qinfo->qi_qclose to cleanup the acceptor stream.
18521 		 * we need to do the allocb up here because we have to
18522 		 * make sure rq->q_qinfo->qi_qclose still points to the
18523 		 * correct function (tcpclose_accept) in case allocb
18524 		 * fails.
18525 		 */
18526 		opt_mp = allocb(sizeof (struct stroptions), BPRI_HI);
18527 		if (opt_mp == NULL) {
18528 			mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0);
18529 			if (mp != NULL)
18530 				putnext(rq, mp);
18531 			return;
18532 		}
18533 
18534 		bcopy(mp->b_rptr + conn_res->OPT_offset,
18535 		    &eager, conn_res->OPT_length);
18536 		PRIM_type = conn_res->PRIM_type;
18537 		mp->b_datap->db_type = M_PCPROTO;
18538 		mp->b_wptr = mp->b_rptr + sizeof (struct T_ok_ack);
18539 		ok = (struct T_ok_ack *)mp->b_rptr;
18540 		ok->PRIM_type = T_OK_ACK;
18541 		ok->CORRECT_prim = PRIM_type;
18542 		econnp = eager->tcp_connp;
18543 		econnp->conn_dev = (dev_t)RD(q)->q_ptr;
18544 		econnp->conn_minor_arena = (vmem_t *)(WR(q)->q_ptr);
18545 		eager->tcp_rq = rq;
18546 		eager->tcp_wq = q;
18547 		rq->q_ptr = econnp;
18548 		rq->q_qinfo = &tcp_rinitv4;	/* No open - same as rinitv6 */
18549 		q->q_ptr = econnp;
18550 		q->q_qinfo = &tcp_winit;
18551 		listener = eager->tcp_listener;
18552 		eager->tcp_issocket = B_TRUE;
18553 
18554 		/*
18555 		 * TCP is _D_SODIRECT and sockfs is directly above so
18556 		 * save shared sodirect_t pointer (if any).
18557 		 *
18558 		 * If tcp_fused and sodirect enabled disable it.
18559 		 */
18560 		eager->tcp_sodirect = SOD_QTOSODP(eager->tcp_rq);
18561 		if (eager->tcp_fused && eager->tcp_sodirect != NULL) {
18562 			/* Fused, disable sodirect */
18563 			mutex_enter(eager->tcp_sodirect->sod_lockp);
18564 			SOD_DISABLE(eager->tcp_sodirect);
18565 			mutex_exit(eager->tcp_sodirect->sod_lockp);
18566 			eager->tcp_sodirect = NULL;
18567 		}
18568 
18569 		econnp->conn_zoneid = listener->tcp_connp->conn_zoneid;
18570 		econnp->conn_allzones = listener->tcp_connp->conn_allzones;
18571 		ASSERT(econnp->conn_netstack ==
18572 		    listener->tcp_connp->conn_netstack);
18573 		ASSERT(eager->tcp_tcps == listener->tcp_tcps);
18574 
18575 		/* Put the ref for IP */
18576 		CONN_INC_REF(econnp);
18577 
18578 		/*
18579 		 * We should have minimum of 3 references on the conn
18580 		 * at this point. One each for TCP and IP and one for
18581 		 * the T_conn_ind that was sent up when the 3-way handshake
18582 		 * completed. In the normal case we would also have another
18583 		 * reference (making a total of 4) for the conn being in the
18584 		 * classifier hash list. However the eager could have received
18585 		 * an RST subsequently and tcp_closei_local could have removed
18586 		 * the eager from the classifier hash list, hence we can't
18587 		 * assert that reference.
18588 		 */
18589 		ASSERT(econnp->conn_ref >= 3);
18590 
18591 		/*
18592 		 * Send the new local address also up to sockfs. There
18593 		 * should already be enough space in the mp that came
18594 		 * down from soaccept().
18595 		 */
18596 		if (eager->tcp_family == AF_INET) {
18597 			sin_t *sin;
18598 
18599 			ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >=
18600 			    (sizeof (struct T_ok_ack) + sizeof (sin_t)));
18601 			sin = (sin_t *)mp->b_wptr;
18602 			mp->b_wptr += sizeof (sin_t);
18603 			sin->sin_family = AF_INET;
18604 			sin->sin_port = eager->tcp_lport;
18605 			sin->sin_addr.s_addr = eager->tcp_ipha->ipha_src;
18606 		} else {
18607 			sin6_t *sin6;
18608 
18609 			ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >=
18610 			    sizeof (struct T_ok_ack) + sizeof (sin6_t));
18611 			sin6 = (sin6_t *)mp->b_wptr;
18612 			mp->b_wptr += sizeof (sin6_t);
18613 			sin6->sin6_family = AF_INET6;
18614 			sin6->sin6_port = eager->tcp_lport;
18615 			if (eager->tcp_ipversion == IPV4_VERSION) {
18616 				sin6->sin6_flowinfo = 0;
18617 				IN6_IPADDR_TO_V4MAPPED(
18618 				    eager->tcp_ipha->ipha_src,
18619 				    &sin6->sin6_addr);
18620 			} else {
18621 				ASSERT(eager->tcp_ip6h != NULL);
18622 				sin6->sin6_flowinfo =
18623 				    eager->tcp_ip6h->ip6_vcf &
18624 				    ~IPV6_VERS_AND_FLOW_MASK;
18625 				sin6->sin6_addr = eager->tcp_ip6h->ip6_src;
18626 			}
18627 			sin6->sin6_scope_id = 0;
18628 			sin6->__sin6_src_id = 0;
18629 		}
18630 
18631 		putnext(rq, mp);
18632 
18633 		opt_mp->b_datap->db_type = M_SETOPTS;
18634 		opt_mp->b_wptr += sizeof (struct stroptions);
18635 
18636 		/*
18637 		 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO
18638 		 * from listener to acceptor. The message is chained on the
18639 		 * bind_mp which tcp_rput_other will send down to IP.
18640 		 */
18641 		if (listener->tcp_bound_if != 0) {
18642 			/* allocate optmgmt req */
18643 			mp = tcp_setsockopt_mp(IPPROTO_IPV6,
18644 			    IPV6_BOUND_IF, (char *)&listener->tcp_bound_if,
18645 			    sizeof (int));
18646 			if (mp != NULL)
18647 				linkb(opt_mp, mp);
18648 		}
18649 		if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) {
18650 			uint_t on = 1;
18651 
18652 			/* allocate optmgmt req */
18653 			mp = tcp_setsockopt_mp(IPPROTO_IPV6,
18654 			    IPV6_RECVPKTINFO, (char *)&on, sizeof (on));
18655 			if (mp != NULL)
18656 				linkb(opt_mp, mp);
18657 		}
18658 
18659 
18660 		mutex_enter(&listener->tcp_eager_lock);
18661 
18662 		if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) {
18663 
18664 			tcp_t *tail;
18665 			tcp_t *tcp;
18666 			mblk_t *mp1;
18667 
18668 			tcp = listener->tcp_eager_prev_q0;
18669 			/*
18670 			 * listener->tcp_eager_prev_q0 points to the TAIL of the
18671 			 * deferred T_conn_ind queue. We need to get to the head
18672 			 * of the queue in order to send up T_conn_ind the same
18673 			 * order as how the 3WHS is completed.
18674 			 */
18675 			while (tcp != listener) {
18676 				if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0 &&
18677 				    !tcp->tcp_kssl_pending)
18678 					break;
18679 				else
18680 					tcp = tcp->tcp_eager_prev_q0;
18681 			}
18682 			/* None of the pending eagers can be sent up now */
18683 			if (tcp == listener)
18684 				goto no_more_eagers;
18685 
18686 			mp1 = tcp->tcp_conn.tcp_eager_conn_ind;
18687 			tcp->tcp_conn.tcp_eager_conn_ind = NULL;
18688 			/* Move from q0 to q */
18689 			ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
18690 			listener->tcp_conn_req_cnt_q0--;
18691 			listener->tcp_conn_req_cnt_q++;
18692 			tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
18693 			    tcp->tcp_eager_prev_q0;
18694 			tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
18695 			    tcp->tcp_eager_next_q0;
18696 			tcp->tcp_eager_prev_q0 = NULL;
18697 			tcp->tcp_eager_next_q0 = NULL;
18698 			tcp->tcp_conn_def_q0 = B_FALSE;
18699 
18700 			/* Make sure the tcp isn't in the list of droppables */
18701 			ASSERT(tcp->tcp_eager_next_drop_q0 == NULL &&
18702 			    tcp->tcp_eager_prev_drop_q0 == NULL);
18703 
18704 			/*
18705 			 * Insert at end of the queue because sockfs sends
18706 			 * down T_CONN_RES in chronological order. Leaving
18707 			 * the older conn indications at front of the queue
18708 			 * helps reducing search time.
18709 			 */
18710 			tail = listener->tcp_eager_last_q;
18711 			if (tail != NULL) {
18712 				tail->tcp_eager_next_q = tcp;
18713 			} else {
18714 				listener->tcp_eager_next_q = tcp;
18715 			}
18716 			listener->tcp_eager_last_q = tcp;
18717 			tcp->tcp_eager_next_q = NULL;
18718 
18719 			/* Need to get inside the listener perimeter */
18720 			CONN_INC_REF(listener->tcp_connp);
18721 			squeue_fill(listener->tcp_connp->conn_sqp, mp1,
18722 			    tcp_send_pending, listener->tcp_connp,
18723 			    SQTAG_TCP_SEND_PENDING);
18724 		}
18725 no_more_eagers:
18726 		tcp_eager_unlink(eager);
18727 		mutex_exit(&listener->tcp_eager_lock);
18728 
18729 		/*
18730 		 * At this point, the eager is detached from the listener
18731 		 * but we still have an extra refs on eager (apart from the
18732 		 * usual tcp references). The ref was placed in tcp_rput_data
18733 		 * before sending the conn_ind in tcp_send_conn_ind.
18734 		 * The ref will be dropped in tcp_accept_finish().
18735 		 */
18736 		squeue_enter_nodrain(econnp->conn_sqp, opt_mp,
18737 		    tcp_accept_finish, econnp, SQTAG_TCP_ACCEPT_FINISH_Q0);
18738 		return;
18739 	default:
18740 		mp = mi_tpi_err_ack_alloc(mp, TNOTSUPPORT, 0);
18741 		if (mp != NULL)
18742 			putnext(rq, mp);
18743 		return;
18744 	}
18745 }
18746 
18747 static int
18748 tcp_getmyname(tcp_t *tcp, struct sockaddr *sa, uint_t *salenp)
18749 {
18750 	sin_t *sin = (sin_t *)sa;
18751 	sin6_t *sin6 = (sin6_t *)sa;
18752 
18753 	switch (tcp->tcp_family) {
18754 	case AF_INET:
18755 		ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
18756 
18757 		if (*salenp < sizeof (sin_t))
18758 			return (EINVAL);
18759 
18760 		*sin = sin_null;
18761 		sin->sin_family = AF_INET;
18762 		sin->sin_port = tcp->tcp_lport;
18763 		sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src;
18764 		break;
18765 
18766 	case AF_INET6:
18767 		if (*salenp < sizeof (sin6_t))
18768 			return (EINVAL);
18769 
18770 		*sin6 = sin6_null;
18771 		sin6->sin6_family = AF_INET6;
18772 		sin6->sin6_port = tcp->tcp_lport;
18773 		if (tcp->tcp_ipversion == IPV4_VERSION) {
18774 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
18775 			    &sin6->sin6_addr);
18776 		} else {
18777 			sin6->sin6_addr = tcp->tcp_ip6h->ip6_src;
18778 		}
18779 		break;
18780 	}
18781 
18782 	return (0);
18783 }
18784 
18785 static int
18786 tcp_getpeername(tcp_t *tcp, struct sockaddr *sa, uint_t *salenp)
18787 {
18788 	sin_t *sin = (sin_t *)sa;
18789 	sin6_t *sin6 = (sin6_t *)sa;
18790 
18791 	if (tcp->tcp_state < TCPS_SYN_RCVD)
18792 		return (ENOTCONN);
18793 
18794 	switch (tcp->tcp_family) {
18795 	case AF_INET:
18796 		ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
18797 
18798 		if (*salenp < sizeof (sin_t))
18799 			return (EINVAL);
18800 
18801 		*sin = sin_null;
18802 		sin->sin_family = AF_INET;
18803 		sin->sin_port = tcp->tcp_fport;
18804 		IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_remote_v6,
18805 		    sin->sin_addr.s_addr);
18806 		break;
18807 
18808 	case AF_INET6:
18809 		if (*salenp < sizeof (sin6_t))
18810 			return (EINVAL);
18811 
18812 		*sin6 = sin6_null;
18813 		sin6->sin6_family = AF_INET6;
18814 		sin6->sin6_port = tcp->tcp_fport;
18815 		sin6->sin6_addr = tcp->tcp_remote_v6;
18816 		if (tcp->tcp_ipversion == IPV6_VERSION) {
18817 			sin6->sin6_flowinfo = tcp->tcp_ip6h->ip6_vcf &
18818 			    ~IPV6_VERS_AND_FLOW_MASK;
18819 		}
18820 		break;
18821 	}
18822 
18823 	return (0);
18824 }
18825 
18826 /*
18827  * Handle special out-of-band ioctl requests (see PSARC/2008/265).
18828  */
18829 static void
18830 tcp_wput_cmdblk(queue_t *q, mblk_t *mp)
18831 {
18832 	void	*data;
18833 	mblk_t	*datamp = mp->b_cont;
18834 	tcp_t	*tcp = Q_TO_TCP(q);
18835 	cmdblk_t *cmdp = (cmdblk_t *)mp->b_rptr;
18836 
18837 	if (datamp == NULL || MBLKL(datamp) < cmdp->cb_len) {
18838 		cmdp->cb_error = EPROTO;
18839 		qreply(q, mp);
18840 		return;
18841 	}
18842 
18843 	data = datamp->b_rptr;
18844 
18845 	switch (cmdp->cb_cmd) {
18846 	case TI_GETPEERNAME:
18847 		cmdp->cb_error = tcp_getpeername(tcp, data, &cmdp->cb_len);
18848 		break;
18849 	case TI_GETMYNAME:
18850 		cmdp->cb_error = tcp_getmyname(tcp, data, &cmdp->cb_len);
18851 		break;
18852 	default:
18853 		cmdp->cb_error = EINVAL;
18854 		break;
18855 	}
18856 
18857 	qreply(q, mp);
18858 }
18859 
18860 void
18861 tcp_wput(queue_t *q, mblk_t *mp)
18862 {
18863 	conn_t	*connp = Q_TO_CONN(q);
18864 	tcp_t	*tcp;
18865 	void (*output_proc)();
18866 	t_scalar_t type;
18867 	uchar_t *rptr;
18868 	struct iocblk	*iocp;
18869 	uint32_t	msize;
18870 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
18871 
18872 	ASSERT(connp->conn_ref >= 2);
18873 
18874 	switch (DB_TYPE(mp)) {
18875 	case M_DATA:
18876 		tcp = connp->conn_tcp;
18877 		ASSERT(tcp != NULL);
18878 
18879 		msize = msgdsize(mp);
18880 
18881 		mutex_enter(&tcp->tcp_non_sq_lock);
18882 		tcp->tcp_squeue_bytes += msize;
18883 		if (TCP_UNSENT_BYTES(tcp) > tcp->tcp_xmit_hiwater) {
18884 			tcp_setqfull(tcp);
18885 		}
18886 		mutex_exit(&tcp->tcp_non_sq_lock);
18887 
18888 		CONN_INC_REF(connp);
18889 		(*tcp_squeue_wput_proc)(connp->conn_sqp, mp,
18890 		    tcp_output, connp, SQTAG_TCP_OUTPUT);
18891 		return;
18892 
18893 	case M_CMD:
18894 		tcp_wput_cmdblk(q, mp);
18895 		return;
18896 
18897 	case M_PROTO:
18898 	case M_PCPROTO:
18899 		/*
18900 		 * if it is a snmp message, don't get behind the squeue
18901 		 */
18902 		tcp = connp->conn_tcp;
18903 		rptr = mp->b_rptr;
18904 		if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) {
18905 			type = ((union T_primitives *)rptr)->type;
18906 		} else {
18907 			if (tcp->tcp_debug) {
18908 				(void) strlog(TCP_MOD_ID, 0, 1,
18909 				    SL_ERROR|SL_TRACE,
18910 				    "tcp_wput_proto, dropping one...");
18911 			}
18912 			freemsg(mp);
18913 			return;
18914 		}
18915 		if (type == T_SVR4_OPTMGMT_REQ) {
18916 			cred_t	*cr = DB_CREDDEF(mp, tcp->tcp_cred);
18917 			if (snmpcom_req(q, mp, tcp_snmp_set, ip_snmp_get,
18918 			    cr)) {
18919 				/*
18920 				 * This was a SNMP request
18921 				 */
18922 				return;
18923 			} else {
18924 				output_proc = tcp_wput_proto;
18925 			}
18926 		} else {
18927 			output_proc = tcp_wput_proto;
18928 		}
18929 		break;
18930 	case M_IOCTL:
18931 		/*
18932 		 * Most ioctls can be processed right away without going via
18933 		 * squeues - process them right here. Those that do require
18934 		 * squeue (currently TCP_IOC_DEFAULT_Q and _SIOCSOCKFALLBACK)
18935 		 * are processed by tcp_wput_ioctl().
18936 		 */
18937 		iocp = (struct iocblk *)mp->b_rptr;
18938 		tcp = connp->conn_tcp;
18939 
18940 		switch (iocp->ioc_cmd) {
18941 		case TCP_IOC_ABORT_CONN:
18942 			tcp_ioctl_abort_conn(q, mp);
18943 			return;
18944 		case TI_GETPEERNAME:
18945 		case TI_GETMYNAME:
18946 			mi_copyin(q, mp, NULL,
18947 			    SIZEOF_STRUCT(strbuf, iocp->ioc_flag));
18948 			return;
18949 		case ND_SET:
18950 			/* nd_getset does the necessary checks */
18951 		case ND_GET:
18952 			if (!nd_getset(q, tcps->tcps_g_nd, mp)) {
18953 				CALL_IP_WPUT(connp, q, mp);
18954 				return;
18955 			}
18956 			qreply(q, mp);
18957 			return;
18958 		case TCP_IOC_DEFAULT_Q:
18959 			/*
18960 			 * Wants to be the default wq. Check the credentials
18961 			 * first, the rest is executed via squeue.
18962 			 */
18963 			if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) {
18964 				iocp->ioc_error = EPERM;
18965 				iocp->ioc_count = 0;
18966 				mp->b_datap->db_type = M_IOCACK;
18967 				qreply(q, mp);
18968 				return;
18969 			}
18970 			output_proc = tcp_wput_ioctl;
18971 			break;
18972 		default:
18973 			output_proc = tcp_wput_ioctl;
18974 			break;
18975 		}
18976 		break;
18977 	default:
18978 		output_proc = tcp_wput_nondata;
18979 		break;
18980 	}
18981 
18982 	CONN_INC_REF(connp);
18983 	(*tcp_squeue_wput_proc)(connp->conn_sqp, mp,
18984 	    output_proc, connp, SQTAG_TCP_WPUT_OTHER);
18985 }
18986 
18987 /*
18988  * Initial STREAMS write side put() procedure for sockets. It tries to
18989  * handle the T_CAPABILITY_REQ which sockfs sends down while setting
18990  * up the socket without using the squeue. Non T_CAPABILITY_REQ messages
18991  * are handled by tcp_wput() as usual.
18992  *
18993  * All further messages will also be handled by tcp_wput() because we cannot
18994  * be sure that the above short cut is safe later.
18995  */
18996 static void
18997 tcp_wput_sock(queue_t *wq, mblk_t *mp)
18998 {
18999 	conn_t			*connp = Q_TO_CONN(wq);
19000 	tcp_t			*tcp = connp->conn_tcp;
19001 	struct T_capability_req	*car = (struct T_capability_req *)mp->b_rptr;
19002 
19003 	ASSERT(wq->q_qinfo == &tcp_sock_winit);
19004 	wq->q_qinfo = &tcp_winit;
19005 
19006 	ASSERT(IPCL_IS_TCP(connp));
19007 	ASSERT(TCP_IS_SOCKET(tcp));
19008 
19009 	if (DB_TYPE(mp) == M_PCPROTO &&
19010 	    MBLKL(mp) == sizeof (struct T_capability_req) &&
19011 	    car->PRIM_type == T_CAPABILITY_REQ) {
19012 		tcp_capability_req(tcp, mp);
19013 		return;
19014 	}
19015 
19016 	tcp_wput(wq, mp);
19017 }
19018 
19019 static boolean_t
19020 tcp_zcopy_check(tcp_t *tcp)
19021 {
19022 	conn_t	*connp = tcp->tcp_connp;
19023 	ire_t	*ire;
19024 	boolean_t	zc_enabled = B_FALSE;
19025 	tcp_stack_t	*tcps = tcp->tcp_tcps;
19026 
19027 	if (do_tcpzcopy == 2)
19028 		zc_enabled = B_TRUE;
19029 	else if (tcp->tcp_ipversion == IPV4_VERSION &&
19030 	    IPCL_IS_CONNECTED(connp) &&
19031 	    (connp->conn_flags & IPCL_CHECK_POLICY) == 0 &&
19032 	    connp->conn_dontroute == 0 &&
19033 	    !connp->conn_nexthop_set &&
19034 	    connp->conn_outgoing_ill == NULL &&
19035 	    connp->conn_nofailover_ill == NULL &&
19036 	    do_tcpzcopy == 1) {
19037 		/*
19038 		 * the checks above  closely resemble the fast path checks
19039 		 * in tcp_send_data().
19040 		 */
19041 		mutex_enter(&connp->conn_lock);
19042 		ire = connp->conn_ire_cache;
19043 		ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT));
19044 		if (ire != NULL && !(ire->ire_marks & IRE_MARK_CONDEMNED)) {
19045 			IRE_REFHOLD(ire);
19046 			if (ire->ire_stq != NULL) {
19047 				ill_t	*ill = (ill_t *)ire->ire_stq->q_ptr;
19048 
19049 				zc_enabled = ill && (ill->ill_capabilities &
19050 				    ILL_CAPAB_ZEROCOPY) &&
19051 				    (ill->ill_zerocopy_capab->
19052 				    ill_zerocopy_flags != 0);
19053 			}
19054 			IRE_REFRELE(ire);
19055 		}
19056 		mutex_exit(&connp->conn_lock);
19057 	}
19058 	tcp->tcp_snd_zcopy_on = zc_enabled;
19059 	if (!TCP_IS_DETACHED(tcp)) {
19060 		if (zc_enabled) {
19061 			(void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMSAFE);
19062 			TCP_STAT(tcps, tcp_zcopy_on);
19063 		} else {
19064 			(void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE);
19065 			TCP_STAT(tcps, tcp_zcopy_off);
19066 		}
19067 	}
19068 	return (zc_enabled);
19069 }
19070 
19071 static mblk_t *
19072 tcp_zcopy_disable(tcp_t *tcp, mblk_t *bp)
19073 {
19074 	tcp_stack_t	*tcps = tcp->tcp_tcps;
19075 
19076 	if (do_tcpzcopy == 2)
19077 		return (bp);
19078 	else if (tcp->tcp_snd_zcopy_on) {
19079 		tcp->tcp_snd_zcopy_on = B_FALSE;
19080 		if (!TCP_IS_DETACHED(tcp)) {
19081 			(void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE);
19082 			TCP_STAT(tcps, tcp_zcopy_disable);
19083 		}
19084 	}
19085 	return (tcp_zcopy_backoff(tcp, bp, 0));
19086 }
19087 
19088 /*
19089  * Backoff from a zero-copy mblk by copying data to a new mblk and freeing
19090  * the original desballoca'ed segmapped mblk.
19091  */
19092 static mblk_t *
19093 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, int fix_xmitlist)
19094 {
19095 	mblk_t *head, *tail, *nbp;
19096 	tcp_stack_t	*tcps = tcp->tcp_tcps;
19097 
19098 	if (IS_VMLOANED_MBLK(bp)) {
19099 		TCP_STAT(tcps, tcp_zcopy_backoff);
19100 		if ((head = copyb(bp)) == NULL) {
19101 			/* fail to backoff; leave it for the next backoff */
19102 			tcp->tcp_xmit_zc_clean = B_FALSE;
19103 			return (bp);
19104 		}
19105 		if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) {
19106 			if (fix_xmitlist)
19107 				tcp_zcopy_notify(tcp);
19108 			else
19109 				head->b_datap->db_struioflag |= STRUIO_ZCNOTIFY;
19110 		}
19111 		nbp = bp->b_cont;
19112 		if (fix_xmitlist) {
19113 			head->b_prev = bp->b_prev;
19114 			head->b_next = bp->b_next;
19115 			if (tcp->tcp_xmit_tail == bp)
19116 				tcp->tcp_xmit_tail = head;
19117 		}
19118 		bp->b_next = NULL;
19119 		bp->b_prev = NULL;
19120 		freeb(bp);
19121 	} else {
19122 		head = bp;
19123 		nbp = bp->b_cont;
19124 	}
19125 	tail = head;
19126 	while (nbp) {
19127 		if (IS_VMLOANED_MBLK(nbp)) {
19128 			TCP_STAT(tcps, tcp_zcopy_backoff);
19129 			if ((tail->b_cont = copyb(nbp)) == NULL) {
19130 				tcp->tcp_xmit_zc_clean = B_FALSE;
19131 				tail->b_cont = nbp;
19132 				return (head);
19133 			}
19134 			tail = tail->b_cont;
19135 			if (nbp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) {
19136 				if (fix_xmitlist)
19137 					tcp_zcopy_notify(tcp);
19138 				else
19139 					tail->b_datap->db_struioflag |=
19140 					    STRUIO_ZCNOTIFY;
19141 			}
19142 			bp = nbp;
19143 			nbp = nbp->b_cont;
19144 			if (fix_xmitlist) {
19145 				tail->b_prev = bp->b_prev;
19146 				tail->b_next = bp->b_next;
19147 				if (tcp->tcp_xmit_tail == bp)
19148 					tcp->tcp_xmit_tail = tail;
19149 			}
19150 			bp->b_next = NULL;
19151 			bp->b_prev = NULL;
19152 			freeb(bp);
19153 		} else {
19154 			tail->b_cont = nbp;
19155 			tail = nbp;
19156 			nbp = nbp->b_cont;
19157 		}
19158 	}
19159 	if (fix_xmitlist) {
19160 		tcp->tcp_xmit_last = tail;
19161 		tcp->tcp_xmit_zc_clean = B_TRUE;
19162 	}
19163 	return (head);
19164 }
19165 
19166 static void
19167 tcp_zcopy_notify(tcp_t *tcp)
19168 {
19169 	struct stdata	*stp;
19170 
19171 	if (tcp->tcp_detached)
19172 		return;
19173 	stp = STREAM(tcp->tcp_rq);
19174 	mutex_enter(&stp->sd_lock);
19175 	stp->sd_flag |= STZCNOTIFY;
19176 	cv_broadcast(&stp->sd_zcopy_wait);
19177 	mutex_exit(&stp->sd_lock);
19178 }
19179 
19180 static boolean_t
19181 tcp_send_find_ire(tcp_t *tcp, ipaddr_t *dst, ire_t **irep)
19182 {
19183 	ire_t	*ire;
19184 	conn_t	*connp = tcp->tcp_connp;
19185 	tcp_stack_t	*tcps = tcp->tcp_tcps;
19186 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
19187 
19188 	mutex_enter(&connp->conn_lock);
19189 	ire = connp->conn_ire_cache;
19190 	ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT));
19191 
19192 	if ((ire != NULL) &&
19193 	    (((dst != NULL) && (ire->ire_addr == *dst)) || ((dst == NULL) &&
19194 	    IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, &tcp->tcp_ip6h->ip6_dst))) &&
19195 	    !(ire->ire_marks & IRE_MARK_CONDEMNED)) {
19196 		IRE_REFHOLD(ire);
19197 		mutex_exit(&connp->conn_lock);
19198 	} else {
19199 		boolean_t cached = B_FALSE;
19200 		ts_label_t *tsl;
19201 
19202 		/* force a recheck later on */
19203 		tcp->tcp_ire_ill_check_done = B_FALSE;
19204 
19205 		TCP_DBGSTAT(tcps, tcp_ire_null1);
19206 		connp->conn_ire_cache = NULL;
19207 		mutex_exit(&connp->conn_lock);
19208 
19209 		if (ire != NULL)
19210 			IRE_REFRELE_NOTR(ire);
19211 
19212 		tsl = crgetlabel(CONN_CRED(connp));
19213 		ire = (dst ?
19214 		    ire_cache_lookup(*dst, connp->conn_zoneid, tsl, ipst) :
19215 		    ire_cache_lookup_v6(&tcp->tcp_ip6h->ip6_dst,
19216 		    connp->conn_zoneid, tsl, ipst));
19217 
19218 		if (ire == NULL) {
19219 			TCP_STAT(tcps, tcp_ire_null);
19220 			return (B_FALSE);
19221 		}
19222 
19223 		IRE_REFHOLD_NOTR(ire);
19224 
19225 		mutex_enter(&connp->conn_lock);
19226 		if (CONN_CACHE_IRE(connp)) {
19227 			rw_enter(&ire->ire_bucket->irb_lock, RW_READER);
19228 			if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) {
19229 				TCP_CHECK_IREINFO(tcp, ire);
19230 				connp->conn_ire_cache = ire;
19231 				cached = B_TRUE;
19232 			}
19233 			rw_exit(&ire->ire_bucket->irb_lock);
19234 		}
19235 		mutex_exit(&connp->conn_lock);
19236 
19237 		/*
19238 		 * We can continue to use the ire but since it was
19239 		 * not cached, we should drop the extra reference.
19240 		 */
19241 		if (!cached)
19242 			IRE_REFRELE_NOTR(ire);
19243 
19244 		/*
19245 		 * Rampart note: no need to select a new label here, since
19246 		 * labels are not allowed to change during the life of a TCP
19247 		 * connection.
19248 		 */
19249 	}
19250 
19251 	*irep = ire;
19252 
19253 	return (B_TRUE);
19254 }
19255 
19256 /*
19257  * Called from tcp_send() or tcp_send_data() to find workable IRE.
19258  *
19259  * 0 = success;
19260  * 1 = failed to find ire and ill.
19261  */
19262 static boolean_t
19263 tcp_send_find_ire_ill(tcp_t *tcp, mblk_t *mp, ire_t **irep, ill_t **illp)
19264 {
19265 	ipha_t		*ipha;
19266 	ipaddr_t	dst;
19267 	ire_t		*ire;
19268 	ill_t		*ill;
19269 	conn_t		*connp = tcp->tcp_connp;
19270 	mblk_t		*ire_fp_mp;
19271 	tcp_stack_t	*tcps = tcp->tcp_tcps;
19272 
19273 	if (mp != NULL)
19274 		ipha = (ipha_t *)mp->b_rptr;
19275 	else
19276 		ipha = tcp->tcp_ipha;
19277 	dst = ipha->ipha_dst;
19278 
19279 	if (!tcp_send_find_ire(tcp, &dst, &ire))
19280 		return (B_FALSE);
19281 
19282 	if ((ire->ire_flags & RTF_MULTIRT) ||
19283 	    (ire->ire_stq == NULL) ||
19284 	    (ire->ire_nce == NULL) ||
19285 	    ((ire_fp_mp = ire->ire_nce->nce_fp_mp) == NULL) ||
19286 	    ((mp != NULL) && (ire->ire_max_frag < ntohs(ipha->ipha_length) ||
19287 	    MBLKL(ire_fp_mp) > MBLKHEAD(mp)))) {
19288 		TCP_STAT(tcps, tcp_ip_ire_send);
19289 		IRE_REFRELE(ire);
19290 		return (B_FALSE);
19291 	}
19292 
19293 	ill = ire_to_ill(ire);
19294 	if (connp->conn_outgoing_ill != NULL) {
19295 		ill_t *conn_outgoing_ill = NULL;
19296 		/*
19297 		 * Choose a good ill in the group to send the packets on.
19298 		 */
19299 		ire = conn_set_outgoing_ill(connp, ire, &conn_outgoing_ill);
19300 		ill = ire_to_ill(ire);
19301 	}
19302 	ASSERT(ill != NULL);
19303 
19304 	if (!tcp->tcp_ire_ill_check_done) {
19305 		tcp_ire_ill_check(tcp, ire, ill, B_TRUE);
19306 		tcp->tcp_ire_ill_check_done = B_TRUE;
19307 	}
19308 
19309 	*irep = ire;
19310 	*illp = ill;
19311 
19312 	return (B_TRUE);
19313 }
19314 
19315 static void
19316 tcp_send_data(tcp_t *tcp, queue_t *q, mblk_t *mp)
19317 {
19318 	ipha_t		*ipha;
19319 	ipaddr_t	src;
19320 	ipaddr_t	dst;
19321 	uint32_t	cksum;
19322 	ire_t		*ire;
19323 	uint16_t	*up;
19324 	ill_t		*ill;
19325 	conn_t		*connp = tcp->tcp_connp;
19326 	uint32_t	hcksum_txflags = 0;
19327 	mblk_t		*ire_fp_mp;
19328 	uint_t		ire_fp_mp_len;
19329 	tcp_stack_t	*tcps = tcp->tcp_tcps;
19330 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
19331 
19332 	ASSERT(DB_TYPE(mp) == M_DATA);
19333 
19334 	if (DB_CRED(mp) == NULL)
19335 		mblk_setcred(mp, CONN_CRED(connp));
19336 
19337 	ipha = (ipha_t *)mp->b_rptr;
19338 	src = ipha->ipha_src;
19339 	dst = ipha->ipha_dst;
19340 
19341 	DTRACE_PROBE2(tcp__trace__send, mblk_t *, mp, tcp_t *, tcp);
19342 
19343 	/*
19344 	 * Drop off fast path for IPv6 and also if options are present or
19345 	 * we need to resolve a TS label.
19346 	 */
19347 	if (tcp->tcp_ipversion != IPV4_VERSION ||
19348 	    !IPCL_IS_CONNECTED(connp) ||
19349 	    !CONN_IS_LSO_MD_FASTPATH(connp) ||
19350 	    (connp->conn_flags & IPCL_CHECK_POLICY) != 0 ||
19351 	    !connp->conn_ulp_labeled ||
19352 	    ipha->ipha_ident == IP_HDR_INCLUDED ||
19353 	    ipha->ipha_version_and_hdr_length != IP_SIMPLE_HDR_VERSION ||
19354 	    IPP_ENABLED(IPP_LOCAL_OUT, ipst)) {
19355 		if (tcp->tcp_snd_zcopy_aware)
19356 			mp = tcp_zcopy_disable(tcp, mp);
19357 		TCP_STAT(tcps, tcp_ip_send);
19358 		CALL_IP_WPUT(connp, q, mp);
19359 		return;
19360 	}
19361 
19362 	if (!tcp_send_find_ire_ill(tcp, mp, &ire, &ill)) {
19363 		if (tcp->tcp_snd_zcopy_aware)
19364 			mp = tcp_zcopy_backoff(tcp, mp, 0);
19365 		CALL_IP_WPUT(connp, q, mp);
19366 		return;
19367 	}
19368 	ire_fp_mp = ire->ire_nce->nce_fp_mp;
19369 	ire_fp_mp_len = MBLKL(ire_fp_mp);
19370 
19371 	ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED);
19372 	ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1);
19373 #ifndef _BIG_ENDIAN
19374 	ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8);
19375 #endif
19376 
19377 	/*
19378 	 * Check to see if we need to re-enable LSO/MDT for this connection
19379 	 * because it was previously disabled due to changes in the ill;
19380 	 * note that by doing it here, this re-enabling only applies when
19381 	 * the packet is not dispatched through CALL_IP_WPUT().
19382 	 *
19383 	 * That means for IPv4, it is worth re-enabling LSO/MDT for the fastpath
19384 	 * case, since that's how we ended up here.  For IPv6, we do the
19385 	 * re-enabling work in ip_xmit_v6(), albeit indirectly via squeue.
19386 	 */
19387 	if (connp->conn_lso_ok && !tcp->tcp_lso && ILL_LSO_TCP_USABLE(ill)) {
19388 		/*
19389 		 * Restore LSO for this connection, so that next time around
19390 		 * it is eligible to go through tcp_lsosend() path again.
19391 		 */
19392 		TCP_STAT(tcps, tcp_lso_enabled);
19393 		tcp->tcp_lso = B_TRUE;
19394 		ip1dbg(("tcp_send_data: reenabling LSO for connp %p on "
19395 		    "interface %s\n", (void *)connp, ill->ill_name));
19396 	} else if (connp->conn_mdt_ok && !tcp->tcp_mdt && ILL_MDT_USABLE(ill)) {
19397 		/*
19398 		 * Restore MDT for this connection, so that next time around
19399 		 * it is eligible to go through tcp_multisend() path again.
19400 		 */
19401 		TCP_STAT(tcps, tcp_mdt_conn_resumed1);
19402 		tcp->tcp_mdt = B_TRUE;
19403 		ip1dbg(("tcp_send_data: reenabling MDT for connp %p on "
19404 		    "interface %s\n", (void *)connp, ill->ill_name));
19405 	}
19406 
19407 	if (tcp->tcp_snd_zcopy_aware) {
19408 		if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 ||
19409 		    (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0))
19410 			mp = tcp_zcopy_disable(tcp, mp);
19411 		/*
19412 		 * we shouldn't need to reset ipha as the mp containing
19413 		 * ipha should never be a zero-copy mp.
19414 		 */
19415 	}
19416 
19417 	if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) {
19418 		ASSERT(ill->ill_hcksum_capab != NULL);
19419 		hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags;
19420 	}
19421 
19422 	/* pseudo-header checksum (do it in parts for IP header checksum) */
19423 	cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF);
19424 
19425 	ASSERT(ipha->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION);
19426 	up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH);
19427 
19428 	IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up,
19429 	    IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum);
19430 
19431 	/* Software checksum? */
19432 	if (DB_CKSUMFLAGS(mp) == 0) {
19433 		TCP_STAT(tcps, tcp_out_sw_cksum);
19434 		TCP_STAT_UPDATE(tcps, tcp_out_sw_cksum_bytes,
19435 		    ntohs(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH);
19436 	}
19437 
19438 	ipha->ipha_fragment_offset_and_flags |=
19439 	    (uint32_t)htons(ire->ire_frag_flag);
19440 
19441 	/* Calculate IP header checksum if hardware isn't capable */
19442 	if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) {
19443 		IP_HDR_CKSUM(ipha, cksum, ((uint32_t *)ipha)[0],
19444 		    ((uint16_t *)ipha)[4]);
19445 	}
19446 
19447 	ASSERT(DB_TYPE(ire_fp_mp) == M_DATA);
19448 	mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len;
19449 	bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len);
19450 
19451 	UPDATE_OB_PKT_COUNT(ire);
19452 	ire->ire_last_used_time = lbolt;
19453 
19454 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests);
19455 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits);
19456 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets,
19457 	    ntohs(ipha->ipha_length));
19458 
19459 	if (ILL_DLS_CAPABLE(ill)) {
19460 		/*
19461 		 * Send the packet directly to DLD, where it may be queued
19462 		 * depending on the availability of transmit resources at
19463 		 * the media layer.
19464 		 */
19465 		IP_DLS_ILL_TX(ill, ipha, mp, ipst);
19466 	} else {
19467 		ill_t *out_ill = (ill_t *)ire->ire_stq->q_ptr;
19468 		DTRACE_PROBE4(ip4__physical__out__start,
19469 		    ill_t *, NULL, ill_t *, out_ill,
19470 		    ipha_t *, ipha, mblk_t *, mp);
19471 		FW_HOOKS(ipst->ips_ip4_physical_out_event,
19472 		    ipst->ips_ipv4firewall_physical_out,
19473 		    NULL, out_ill, ipha, mp, mp, 0, ipst);
19474 		DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp);
19475 
19476 		if (mp != NULL) {
19477 			DTRACE_IP_FASTPATH(mp, ipha, out_ill, ipha, NULL);
19478 			putnext(ire->ire_stq, mp);
19479 		}
19480 	}
19481 	IRE_REFRELE(ire);
19482 }
19483 
19484 /*
19485  * This handles the case when the receiver has shrunk its win. Per RFC 1122
19486  * if the receiver shrinks the window, i.e. moves the right window to the
19487  * left, the we should not send new data, but should retransmit normally the
19488  * old unacked data between suna and suna + swnd. We might has sent data
19489  * that is now outside the new window, pretend that we didn't send  it.
19490  */
19491 static void
19492 tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_count)
19493 {
19494 	uint32_t	snxt = tcp->tcp_snxt;
19495 	mblk_t		*xmit_tail;
19496 	int32_t		offset;
19497 
19498 	ASSERT(shrunk_count > 0);
19499 
19500 	/* Pretend we didn't send the data outside the window */
19501 	snxt -= shrunk_count;
19502 
19503 	/* Get the mblk and the offset in it per the shrunk window */
19504 	xmit_tail = tcp_get_seg_mp(tcp, snxt, &offset);
19505 
19506 	ASSERT(xmit_tail != NULL);
19507 
19508 	/* Reset all the values per the now shrunk window */
19509 	tcp->tcp_snxt = snxt;
19510 	tcp->tcp_xmit_tail = xmit_tail;
19511 	tcp->tcp_xmit_tail_unsent = xmit_tail->b_wptr - xmit_tail->b_rptr -
19512 	    offset;
19513 	tcp->tcp_unsent += shrunk_count;
19514 
19515 	if (tcp->tcp_suna == tcp->tcp_snxt && tcp->tcp_swnd == 0)
19516 		/*
19517 		 * Make sure the timer is running so that we will probe a zero
19518 		 * window.
19519 		 */
19520 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
19521 }
19522 
19523 
19524 /*
19525  * The TCP normal data output path.
19526  * NOTE: the logic of the fast path is duplicated from this function.
19527  */
19528 static void
19529 tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent)
19530 {
19531 	int		len;
19532 	mblk_t		*local_time;
19533 	mblk_t		*mp1;
19534 	uint32_t	snxt;
19535 	int		tail_unsent;
19536 	int		tcpstate;
19537 	int		usable = 0;
19538 	mblk_t		*xmit_tail;
19539 	queue_t		*q = tcp->tcp_wq;
19540 	int32_t		mss;
19541 	int32_t		num_sack_blk = 0;
19542 	int32_t		tcp_hdr_len;
19543 	int32_t		tcp_tcp_hdr_len;
19544 	int		mdt_thres;
19545 	int		rc;
19546 	tcp_stack_t	*tcps = tcp->tcp_tcps;
19547 	ip_stack_t	*ipst;
19548 
19549 	tcpstate = tcp->tcp_state;
19550 	if (mp == NULL) {
19551 		/*
19552 		 * tcp_wput_data() with NULL mp should only be called when
19553 		 * there is unsent data.
19554 		 */
19555 		ASSERT(tcp->tcp_unsent > 0);
19556 		/* Really tacky... but we need this for detached closes. */
19557 		len = tcp->tcp_unsent;
19558 		goto data_null;
19559 	}
19560 
19561 #if CCS_STATS
19562 	wrw_stats.tot.count++;
19563 	wrw_stats.tot.bytes += msgdsize(mp);
19564 #endif
19565 	ASSERT(mp->b_datap->db_type == M_DATA);
19566 	/*
19567 	 * Don't allow data after T_ORDREL_REQ or T_DISCON_REQ,
19568 	 * or before a connection attempt has begun.
19569 	 */
19570 	if (tcpstate < TCPS_SYN_SENT || tcpstate > TCPS_CLOSE_WAIT ||
19571 	    (tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) {
19572 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) {
19573 #ifdef DEBUG
19574 			cmn_err(CE_WARN,
19575 			    "tcp_wput_data: data after ordrel, %s",
19576 			    tcp_display(tcp, NULL,
19577 			    DISP_ADDR_AND_PORT));
19578 #else
19579 			if (tcp->tcp_debug) {
19580 				(void) strlog(TCP_MOD_ID, 0, 1,
19581 				    SL_TRACE|SL_ERROR,
19582 				    "tcp_wput_data: data after ordrel, %s\n",
19583 				    tcp_display(tcp, NULL,
19584 				    DISP_ADDR_AND_PORT));
19585 			}
19586 #endif /* DEBUG */
19587 		}
19588 		if (tcp->tcp_snd_zcopy_aware &&
19589 		    (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) != 0)
19590 			tcp_zcopy_notify(tcp);
19591 		freemsg(mp);
19592 		mutex_enter(&tcp->tcp_non_sq_lock);
19593 		if (tcp->tcp_flow_stopped &&
19594 		    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
19595 			tcp_clrqfull(tcp);
19596 		}
19597 		mutex_exit(&tcp->tcp_non_sq_lock);
19598 		return;
19599 	}
19600 
19601 	/* Strip empties */
19602 	for (;;) {
19603 		ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
19604 		    (uintptr_t)INT_MAX);
19605 		len = (int)(mp->b_wptr - mp->b_rptr);
19606 		if (len > 0)
19607 			break;
19608 		mp1 = mp;
19609 		mp = mp->b_cont;
19610 		freeb(mp1);
19611 		if (!mp) {
19612 			return;
19613 		}
19614 	}
19615 
19616 	/* If we are the first on the list ... */
19617 	if (tcp->tcp_xmit_head == NULL) {
19618 		tcp->tcp_xmit_head = mp;
19619 		tcp->tcp_xmit_tail = mp;
19620 		tcp->tcp_xmit_tail_unsent = len;
19621 	} else {
19622 		/* If tiny tx and room in txq tail, pullup to save mblks. */
19623 		struct datab *dp;
19624 
19625 		mp1 = tcp->tcp_xmit_last;
19626 		if (len < tcp_tx_pull_len &&
19627 		    (dp = mp1->b_datap)->db_ref == 1 &&
19628 		    dp->db_lim - mp1->b_wptr >= len) {
19629 			ASSERT(len > 0);
19630 			ASSERT(!mp1->b_cont);
19631 			if (len == 1) {
19632 				*mp1->b_wptr++ = *mp->b_rptr;
19633 			} else {
19634 				bcopy(mp->b_rptr, mp1->b_wptr, len);
19635 				mp1->b_wptr += len;
19636 			}
19637 			if (mp1 == tcp->tcp_xmit_tail)
19638 				tcp->tcp_xmit_tail_unsent += len;
19639 			mp1->b_cont = mp->b_cont;
19640 			if (tcp->tcp_snd_zcopy_aware &&
19641 			    (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY))
19642 				mp1->b_datap->db_struioflag |= STRUIO_ZCNOTIFY;
19643 			freeb(mp);
19644 			mp = mp1;
19645 		} else {
19646 			tcp->tcp_xmit_last->b_cont = mp;
19647 		}
19648 		len += tcp->tcp_unsent;
19649 	}
19650 
19651 	/* Tack on however many more positive length mblks we have */
19652 	if ((mp1 = mp->b_cont) != NULL) {
19653 		do {
19654 			int tlen;
19655 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
19656 			    (uintptr_t)INT_MAX);
19657 			tlen = (int)(mp1->b_wptr - mp1->b_rptr);
19658 			if (tlen <= 0) {
19659 				mp->b_cont = mp1->b_cont;
19660 				freeb(mp1);
19661 			} else {
19662 				len += tlen;
19663 				mp = mp1;
19664 			}
19665 		} while ((mp1 = mp->b_cont) != NULL);
19666 	}
19667 	tcp->tcp_xmit_last = mp;
19668 	tcp->tcp_unsent = len;
19669 
19670 	if (urgent)
19671 		usable = 1;
19672 
19673 data_null:
19674 	snxt = tcp->tcp_snxt;
19675 	xmit_tail = tcp->tcp_xmit_tail;
19676 	tail_unsent = tcp->tcp_xmit_tail_unsent;
19677 
19678 	/*
19679 	 * Note that tcp_mss has been adjusted to take into account the
19680 	 * timestamp option if applicable.  Because SACK options do not
19681 	 * appear in every TCP segments and they are of variable lengths,
19682 	 * they cannot be included in tcp_mss.  Thus we need to calculate
19683 	 * the actual segment length when we need to send a segment which
19684 	 * includes SACK options.
19685 	 */
19686 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
19687 		int32_t	opt_len;
19688 
19689 		num_sack_blk = MIN(tcp->tcp_max_sack_blk,
19690 		    tcp->tcp_num_sack_blk);
19691 		opt_len = num_sack_blk * sizeof (sack_blk_t) + TCPOPT_NOP_LEN *
19692 		    2 + TCPOPT_HEADER_LEN;
19693 		mss = tcp->tcp_mss - opt_len;
19694 		tcp_hdr_len = tcp->tcp_hdr_len + opt_len;
19695 		tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + opt_len;
19696 	} else {
19697 		mss = tcp->tcp_mss;
19698 		tcp_hdr_len = tcp->tcp_hdr_len;
19699 		tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len;
19700 	}
19701 
19702 	if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet &&
19703 	    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) {
19704 		SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle);
19705 	}
19706 	if (tcpstate == TCPS_SYN_RCVD) {
19707 		/*
19708 		 * The three-way connection establishment handshake is not
19709 		 * complete yet. We want to queue the data for transmission
19710 		 * after entering ESTABLISHED state (RFC793). A jump to
19711 		 * "done" label effectively leaves data on the queue.
19712 		 */
19713 		goto done;
19714 	} else {
19715 		int usable_r;
19716 
19717 		/*
19718 		 * In the special case when cwnd is zero, which can only
19719 		 * happen if the connection is ECN capable, return now.
19720 		 * New segments is sent using tcp_timer().  The timer
19721 		 * is set in tcp_rput_data().
19722 		 */
19723 		if (tcp->tcp_cwnd == 0) {
19724 			/*
19725 			 * Note that tcp_cwnd is 0 before 3-way handshake is
19726 			 * finished.
19727 			 */
19728 			ASSERT(tcp->tcp_ecn_ok ||
19729 			    tcp->tcp_state < TCPS_ESTABLISHED);
19730 			return;
19731 		}
19732 
19733 		/* NOTE: trouble if xmitting while SYN not acked? */
19734 		usable_r = snxt - tcp->tcp_suna;
19735 		usable_r = tcp->tcp_swnd - usable_r;
19736 
19737 		/*
19738 		 * Check if the receiver has shrunk the window.  If
19739 		 * tcp_wput_data() with NULL mp is called, tcp_fin_sent
19740 		 * cannot be set as there is unsent data, so FIN cannot
19741 		 * be sent out.  Otherwise, we need to take into account
19742 		 * of FIN as it consumes an "invisible" sequence number.
19743 		 */
19744 		ASSERT(tcp->tcp_fin_sent == 0);
19745 		if (usable_r < 0) {
19746 			/*
19747 			 * The receiver has shrunk the window and we have sent
19748 			 * -usable_r date beyond the window, re-adjust.
19749 			 *
19750 			 * If TCP window scaling is enabled, there can be
19751 			 * round down error as the advertised receive window
19752 			 * is actually right shifted n bits.  This means that
19753 			 * the lower n bits info is wiped out.  It will look
19754 			 * like the window is shrunk.  Do a check here to
19755 			 * see if the shrunk amount is actually within the
19756 			 * error in window calculation.  If it is, just
19757 			 * return.  Note that this check is inside the
19758 			 * shrunk window check.  This makes sure that even
19759 			 * though tcp_process_shrunk_swnd() is not called,
19760 			 * we will stop further processing.
19761 			 */
19762 			if ((-usable_r >> tcp->tcp_snd_ws) > 0) {
19763 				tcp_process_shrunk_swnd(tcp, -usable_r);
19764 			}
19765 			return;
19766 		}
19767 
19768 		/* usable = MIN(swnd, cwnd) - unacked_bytes */
19769 		if (tcp->tcp_swnd > tcp->tcp_cwnd)
19770 			usable_r -= tcp->tcp_swnd - tcp->tcp_cwnd;
19771 
19772 		/* usable = MIN(usable, unsent) */
19773 		if (usable_r > len)
19774 			usable_r = len;
19775 
19776 		/* usable = MAX(usable, {1 for urgent, 0 for data}) */
19777 		if (usable_r > 0) {
19778 			usable = usable_r;
19779 		} else {
19780 			/* Bypass all other unnecessary processing. */
19781 			goto done;
19782 		}
19783 	}
19784 
19785 	local_time = (mblk_t *)lbolt;
19786 
19787 	/*
19788 	 * "Our" Nagle Algorithm.  This is not the same as in the old
19789 	 * BSD.  This is more in line with the true intent of Nagle.
19790 	 *
19791 	 * The conditions are:
19792 	 * 1. The amount of unsent data (or amount of data which can be
19793 	 *    sent, whichever is smaller) is less than Nagle limit.
19794 	 * 2. The last sent size is also less than Nagle limit.
19795 	 * 3. There is unack'ed data.
19796 	 * 4. Urgent pointer is not set.  Send urgent data ignoring the
19797 	 *    Nagle algorithm.  This reduces the probability that urgent
19798 	 *    bytes get "merged" together.
19799 	 * 5. The app has not closed the connection.  This eliminates the
19800 	 *    wait time of the receiving side waiting for the last piece of
19801 	 *    (small) data.
19802 	 *
19803 	 * If all are satisified, exit without sending anything.  Note
19804 	 * that Nagle limit can be smaller than 1 MSS.  Nagle limit is
19805 	 * the smaller of 1 MSS and global tcp_naglim_def (default to be
19806 	 * 4095).
19807 	 */
19808 	if (usable < (int)tcp->tcp_naglim &&
19809 	    tcp->tcp_naglim > tcp->tcp_last_sent_len &&
19810 	    snxt != tcp->tcp_suna &&
19811 	    !(tcp->tcp_valid_bits & TCP_URG_VALID) &&
19812 	    !(tcp->tcp_valid_bits & TCP_FSS_VALID)) {
19813 		goto done;
19814 	}
19815 
19816 	if (tcp->tcp_cork) {
19817 		/*
19818 		 * if the tcp->tcp_cork option is set, then we have to force
19819 		 * TCP not to send partial segment (smaller than MSS bytes).
19820 		 * We are calculating the usable now based on full mss and
19821 		 * will save the rest of remaining data for later.
19822 		 */
19823 		if (usable < mss)
19824 			goto done;
19825 		usable = (usable / mss) * mss;
19826 	}
19827 
19828 	/* Update the latest receive window size in TCP header. */
19829 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
19830 	    tcp->tcp_tcph->th_win);
19831 
19832 	/*
19833 	 * Determine if it's worthwhile to attempt LSO or MDT, based on:
19834 	 *
19835 	 * 1. Simple TCP/IP{v4,v6} (no options).
19836 	 * 2. IPSEC/IPQoS processing is not needed for the TCP connection.
19837 	 * 3. If the TCP connection is in ESTABLISHED state.
19838 	 * 4. The TCP is not detached.
19839 	 *
19840 	 * If any of the above conditions have changed during the
19841 	 * connection, stop using LSO/MDT and restore the stream head
19842 	 * parameters accordingly.
19843 	 */
19844 	ipst = tcps->tcps_netstack->netstack_ip;
19845 
19846 	if ((tcp->tcp_lso || tcp->tcp_mdt) &&
19847 	    ((tcp->tcp_ipversion == IPV4_VERSION &&
19848 	    tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) ||
19849 	    (tcp->tcp_ipversion == IPV6_VERSION &&
19850 	    tcp->tcp_ip_hdr_len != IPV6_HDR_LEN) ||
19851 	    tcp->tcp_state != TCPS_ESTABLISHED ||
19852 	    TCP_IS_DETACHED(tcp) || !CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp) ||
19853 	    CONN_IPSEC_OUT_ENCAPSULATED(tcp->tcp_connp) ||
19854 	    IPP_ENABLED(IPP_LOCAL_OUT, ipst))) {
19855 		if (tcp->tcp_lso) {
19856 			tcp->tcp_connp->conn_lso_ok = B_FALSE;
19857 			tcp->tcp_lso = B_FALSE;
19858 		} else {
19859 			tcp->tcp_connp->conn_mdt_ok = B_FALSE;
19860 			tcp->tcp_mdt = B_FALSE;
19861 		}
19862 
19863 		/* Anything other than detached is considered pathological */
19864 		if (!TCP_IS_DETACHED(tcp)) {
19865 			if (tcp->tcp_lso)
19866 				TCP_STAT(tcps, tcp_lso_disabled);
19867 			else
19868 				TCP_STAT(tcps, tcp_mdt_conn_halted1);
19869 			(void) tcp_maxpsz_set(tcp, B_TRUE);
19870 		}
19871 	}
19872 
19873 	/* Use MDT if sendable amount is greater than the threshold */
19874 	if (tcp->tcp_mdt &&
19875 	    (mdt_thres = mss << tcp_mdt_smss_threshold, usable > mdt_thres) &&
19876 	    (tail_unsent > mdt_thres || (xmit_tail->b_cont != NULL &&
19877 	    MBLKL(xmit_tail->b_cont) > mdt_thres)) &&
19878 	    (tcp->tcp_valid_bits == 0 ||
19879 	    tcp->tcp_valid_bits == TCP_FSS_VALID)) {
19880 		ASSERT(tcp->tcp_connp->conn_mdt_ok);
19881 		rc = tcp_multisend(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len,
19882 		    num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail,
19883 		    local_time, mdt_thres);
19884 	} else {
19885 		rc = tcp_send(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len,
19886 		    num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail,
19887 		    local_time, INT_MAX);
19888 	}
19889 
19890 	/* Pretend that all we were trying to send really got sent */
19891 	if (rc < 0 && tail_unsent < 0) {
19892 		do {
19893 			xmit_tail = xmit_tail->b_cont;
19894 			xmit_tail->b_prev = local_time;
19895 			ASSERT((uintptr_t)(xmit_tail->b_wptr -
19896 			    xmit_tail->b_rptr) <= (uintptr_t)INT_MAX);
19897 			tail_unsent += (int)(xmit_tail->b_wptr -
19898 			    xmit_tail->b_rptr);
19899 		} while (tail_unsent < 0);
19900 	}
19901 done:;
19902 	tcp->tcp_xmit_tail = xmit_tail;
19903 	tcp->tcp_xmit_tail_unsent = tail_unsent;
19904 	len = tcp->tcp_snxt - snxt;
19905 	if (len) {
19906 		/*
19907 		 * If new data was sent, need to update the notsack
19908 		 * list, which is, afterall, data blocks that have
19909 		 * not been sack'ed by the receiver.  New data is
19910 		 * not sack'ed.
19911 		 */
19912 		if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
19913 			/* len is a negative value. */
19914 			tcp->tcp_pipe -= len;
19915 			tcp_notsack_update(&(tcp->tcp_notsack_list),
19916 			    tcp->tcp_snxt, snxt,
19917 			    &(tcp->tcp_num_notsack_blk),
19918 			    &(tcp->tcp_cnt_notsack_list));
19919 		}
19920 		tcp->tcp_snxt = snxt + tcp->tcp_fin_sent;
19921 		tcp->tcp_rack = tcp->tcp_rnxt;
19922 		tcp->tcp_rack_cnt = 0;
19923 		if ((snxt + len) == tcp->tcp_suna) {
19924 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
19925 		}
19926 	} else if (snxt == tcp->tcp_suna && tcp->tcp_swnd == 0) {
19927 		/*
19928 		 * Didn't send anything. Make sure the timer is running
19929 		 * so that we will probe a zero window.
19930 		 */
19931 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
19932 	}
19933 	/* Note that len is the amount we just sent but with a negative sign */
19934 	tcp->tcp_unsent += len;
19935 	mutex_enter(&tcp->tcp_non_sq_lock);
19936 	if (tcp->tcp_flow_stopped) {
19937 		if (TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
19938 			tcp_clrqfull(tcp);
19939 		}
19940 	} else if (TCP_UNSENT_BYTES(tcp) >= tcp->tcp_xmit_hiwater) {
19941 		tcp_setqfull(tcp);
19942 	}
19943 	mutex_exit(&tcp->tcp_non_sq_lock);
19944 }
19945 
19946 /*
19947  * tcp_fill_header is called by tcp_send() and tcp_multisend() to fill the
19948  * outgoing TCP header with the template header, as well as other
19949  * options such as time-stamp, ECN and/or SACK.
19950  */
19951 static void
19952 tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, int num_sack_blk)
19953 {
19954 	tcph_t *tcp_tmpl, *tcp_h;
19955 	uint32_t *dst, *src;
19956 	int hdrlen;
19957 
19958 	ASSERT(OK_32PTR(rptr));
19959 
19960 	/* Template header */
19961 	tcp_tmpl = tcp->tcp_tcph;
19962 
19963 	/* Header of outgoing packet */
19964 	tcp_h = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
19965 
19966 	/* dst and src are opaque 32-bit fields, used for copying */
19967 	dst = (uint32_t *)rptr;
19968 	src = (uint32_t *)tcp->tcp_iphc;
19969 	hdrlen = tcp->tcp_hdr_len;
19970 
19971 	/* Fill time-stamp option if needed */
19972 	if (tcp->tcp_snd_ts_ok) {
19973 		U32_TO_BE32((uint32_t)now,
19974 		    (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 4);
19975 		U32_TO_BE32(tcp->tcp_ts_recent,
19976 		    (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 8);
19977 	} else {
19978 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
19979 	}
19980 
19981 	/*
19982 	 * Copy the template header; is this really more efficient than
19983 	 * calling bcopy()?  For simple IPv4/TCP, it may be the case,
19984 	 * but perhaps not for other scenarios.
19985 	 */
19986 	dst[0] = src[0];
19987 	dst[1] = src[1];
19988 	dst[2] = src[2];
19989 	dst[3] = src[3];
19990 	dst[4] = src[4];
19991 	dst[5] = src[5];
19992 	dst[6] = src[6];
19993 	dst[7] = src[7];
19994 	dst[8] = src[8];
19995 	dst[9] = src[9];
19996 	if (hdrlen -= 40) {
19997 		hdrlen >>= 2;
19998 		dst += 10;
19999 		src += 10;
20000 		do {
20001 			*dst++ = *src++;
20002 		} while (--hdrlen);
20003 	}
20004 
20005 	/*
20006 	 * Set the ECN info in the TCP header if it is not a zero
20007 	 * window probe.  Zero window probe is only sent in
20008 	 * tcp_wput_data() and tcp_timer().
20009 	 */
20010 	if (tcp->tcp_ecn_ok && !tcp->tcp_zero_win_probe) {
20011 		SET_ECT(tcp, rptr);
20012 
20013 		if (tcp->tcp_ecn_echo_on)
20014 			tcp_h->th_flags[0] |= TH_ECE;
20015 		if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
20016 			tcp_h->th_flags[0] |= TH_CWR;
20017 			tcp->tcp_ecn_cwr_sent = B_TRUE;
20018 		}
20019 	}
20020 
20021 	/* Fill in SACK options */
20022 	if (num_sack_blk > 0) {
20023 		uchar_t *wptr = rptr + tcp->tcp_hdr_len;
20024 		sack_blk_t *tmp;
20025 		int32_t	i;
20026 
20027 		wptr[0] = TCPOPT_NOP;
20028 		wptr[1] = TCPOPT_NOP;
20029 		wptr[2] = TCPOPT_SACK;
20030 		wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
20031 		    sizeof (sack_blk_t);
20032 		wptr += TCPOPT_REAL_SACK_LEN;
20033 
20034 		tmp = tcp->tcp_sack_list;
20035 		for (i = 0; i < num_sack_blk; i++) {
20036 			U32_TO_BE32(tmp[i].begin, wptr);
20037 			wptr += sizeof (tcp_seq);
20038 			U32_TO_BE32(tmp[i].end, wptr);
20039 			wptr += sizeof (tcp_seq);
20040 		}
20041 		tcp_h->th_offset_and_rsrvd[0] +=
20042 		    ((num_sack_blk * 2 + 1) << 4);
20043 	}
20044 }
20045 
20046 /*
20047  * tcp_mdt_add_attrs() is called by tcp_multisend() in order to attach
20048  * the destination address and SAP attribute, and if necessary, the
20049  * hardware checksum offload attribute to a Multidata message.
20050  */
20051 static int
20052 tcp_mdt_add_attrs(multidata_t *mmd, const mblk_t *dlmp, const boolean_t hwcksum,
20053     const uint32_t start, const uint32_t stuff, const uint32_t end,
20054     const uint32_t flags, tcp_stack_t *tcps)
20055 {
20056 	/* Add global destination address & SAP attribute */
20057 	if (dlmp == NULL || !ip_md_addr_attr(mmd, NULL, dlmp)) {
20058 		ip1dbg(("tcp_mdt_add_attrs: can't add global physical "
20059 		    "destination address+SAP\n"));
20060 
20061 		if (dlmp != NULL)
20062 			TCP_STAT(tcps, tcp_mdt_allocfail);
20063 		return (-1);
20064 	}
20065 
20066 	/* Add global hwcksum attribute */
20067 	if (hwcksum &&
20068 	    !ip_md_hcksum_attr(mmd, NULL, start, stuff, end, flags)) {
20069 		ip1dbg(("tcp_mdt_add_attrs: can't add global hardware "
20070 		    "checksum attribute\n"));
20071 
20072 		TCP_STAT(tcps, tcp_mdt_allocfail);
20073 		return (-1);
20074 	}
20075 
20076 	return (0);
20077 }
20078 
20079 /*
20080  * Smaller and private version of pdescinfo_t used specifically for TCP,
20081  * which allows for only two payload spans per packet.
20082  */
20083 typedef struct tcp_pdescinfo_s PDESCINFO_STRUCT(2) tcp_pdescinfo_t;
20084 
20085 /*
20086  * tcp_multisend() is called by tcp_wput_data() for Multidata Transmit
20087  * scheme, and returns one the following:
20088  *
20089  * -1 = failed allocation.
20090  *  0 = success; burst count reached, or usable send window is too small,
20091  *      and that we'd rather wait until later before sending again.
20092  */
20093 static int
20094 tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len,
20095     const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable,
20096     uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
20097     const int mdt_thres)
20098 {
20099 	mblk_t		*md_mp_head, *md_mp, *md_pbuf, *md_pbuf_nxt, *md_hbuf;
20100 	multidata_t	*mmd;
20101 	uint_t		obsegs, obbytes, hdr_frag_sz;
20102 	uint_t		cur_hdr_off, cur_pld_off, base_pld_off, first_snxt;
20103 	int		num_burst_seg, max_pld;
20104 	pdesc_t		*pkt;
20105 	tcp_pdescinfo_t	tcp_pkt_info;
20106 	pdescinfo_t	*pkt_info;
20107 	int		pbuf_idx, pbuf_idx_nxt;
20108 	int		seg_len, len, spill, af;
20109 	boolean_t	add_buffer, zcopy, clusterwide;
20110 	boolean_t	rconfirm = B_FALSE;
20111 	boolean_t	done = B_FALSE;
20112 	uint32_t	cksum;
20113 	uint32_t	hwcksum_flags;
20114 	ire_t		*ire = NULL;
20115 	ill_t		*ill;
20116 	ipha_t		*ipha;
20117 	ip6_t		*ip6h;
20118 	ipaddr_t	src, dst;
20119 	ill_zerocopy_capab_t *zc_cap = NULL;
20120 	uint16_t	*up;
20121 	int		err;
20122 	conn_t		*connp;
20123 	tcp_stack_t	*tcps = tcp->tcp_tcps;
20124 	ip_stack_t 	*ipst = tcps->tcps_netstack->netstack_ip;
20125 	int		usable_mmd, tail_unsent_mmd;
20126 	uint_t		snxt_mmd, obsegs_mmd, obbytes_mmd;
20127 	mblk_t		*xmit_tail_mmd;
20128 
20129 #ifdef	_BIG_ENDIAN
20130 #define	IPVER(ip6h)	((((uint32_t *)ip6h)[0] >> 28) & 0x7)
20131 #else
20132 #define	IPVER(ip6h)	((((uint32_t *)ip6h)[0] >> 4) & 0x7)
20133 #endif
20134 
20135 #define	PREP_NEW_MULTIDATA() {			\
20136 	mmd = NULL;				\
20137 	md_mp = md_hbuf = NULL;			\
20138 	cur_hdr_off = 0;			\
20139 	max_pld = tcp->tcp_mdt_max_pld;		\
20140 	pbuf_idx = pbuf_idx_nxt = -1;		\
20141 	add_buffer = B_TRUE;			\
20142 	zcopy = B_FALSE;			\
20143 }
20144 
20145 #define	PREP_NEW_PBUF() {			\
20146 	md_pbuf = md_pbuf_nxt = NULL;		\
20147 	pbuf_idx = pbuf_idx_nxt = -1;		\
20148 	cur_pld_off = 0;			\
20149 	first_snxt = *snxt;			\
20150 	ASSERT(*tail_unsent > 0);		\
20151 	base_pld_off = MBLKL(*xmit_tail) - *tail_unsent; \
20152 }
20153 
20154 	ASSERT(mdt_thres >= mss);
20155 	ASSERT(*usable > 0 && *usable > mdt_thres);
20156 	ASSERT(tcp->tcp_state == TCPS_ESTABLISHED);
20157 	ASSERT(!TCP_IS_DETACHED(tcp));
20158 	ASSERT(tcp->tcp_valid_bits == 0 ||
20159 	    tcp->tcp_valid_bits == TCP_FSS_VALID);
20160 	ASSERT((tcp->tcp_ipversion == IPV4_VERSION &&
20161 	    tcp->tcp_ip_hdr_len == IP_SIMPLE_HDR_LENGTH) ||
20162 	    (tcp->tcp_ipversion == IPV6_VERSION &&
20163 	    tcp->tcp_ip_hdr_len == IPV6_HDR_LEN));
20164 
20165 	connp = tcp->tcp_connp;
20166 	ASSERT(connp != NULL);
20167 	ASSERT(CONN_IS_LSO_MD_FASTPATH(connp));
20168 	ASSERT(!CONN_IPSEC_OUT_ENCAPSULATED(connp));
20169 
20170 	usable_mmd = tail_unsent_mmd = 0;
20171 	snxt_mmd = obsegs_mmd = obbytes_mmd = 0;
20172 	xmit_tail_mmd = NULL;
20173 	/*
20174 	 * Note that tcp will only declare at most 2 payload spans per
20175 	 * packet, which is much lower than the maximum allowable number
20176 	 * of packet spans per Multidata.  For this reason, we use the
20177 	 * privately declared and smaller descriptor info structure, in
20178 	 * order to save some stack space.
20179 	 */
20180 	pkt_info = (pdescinfo_t *)&tcp_pkt_info;
20181 
20182 	af = (tcp->tcp_ipversion == IPV4_VERSION) ? AF_INET : AF_INET6;
20183 	if (af == AF_INET) {
20184 		dst = tcp->tcp_ipha->ipha_dst;
20185 		src = tcp->tcp_ipha->ipha_src;
20186 		ASSERT(!CLASSD(dst));
20187 	}
20188 	ASSERT(af == AF_INET ||
20189 	    !IN6_IS_ADDR_MULTICAST(&tcp->tcp_ip6h->ip6_dst));
20190 
20191 	obsegs = obbytes = 0;
20192 	num_burst_seg = tcp->tcp_snd_burst;
20193 	md_mp_head = NULL;
20194 	PREP_NEW_MULTIDATA();
20195 
20196 	/*
20197 	 * Before we go on further, make sure there is an IRE that we can
20198 	 * use, and that the ILL supports MDT.  Otherwise, there's no point
20199 	 * in proceeding any further, and we should just hand everything
20200 	 * off to the legacy path.
20201 	 */
20202 	if (!tcp_send_find_ire(tcp, (af == AF_INET) ? &dst : NULL, &ire))
20203 		goto legacy_send_no_md;
20204 
20205 	ASSERT(ire != NULL);
20206 	ASSERT(af != AF_INET || ire->ire_ipversion == IPV4_VERSION);
20207 	ASSERT(af == AF_INET || !IN6_IS_ADDR_V4MAPPED(&(ire->ire_addr_v6)));
20208 	ASSERT(af == AF_INET || ire->ire_nce != NULL);
20209 	ASSERT(!(ire->ire_type & IRE_BROADCAST));
20210 	/*
20211 	 * If we do support loopback for MDT (which requires modifications
20212 	 * to the receiving paths), the following assertions should go away,
20213 	 * and we would be sending the Multidata to loopback conn later on.
20214 	 */
20215 	ASSERT(!IRE_IS_LOCAL(ire));
20216 	ASSERT(ire->ire_stq != NULL);
20217 
20218 	ill = ire_to_ill(ire);
20219 	ASSERT(ill != NULL);
20220 	ASSERT(!ILL_MDT_CAPABLE(ill) || ill->ill_mdt_capab != NULL);
20221 
20222 	if (!tcp->tcp_ire_ill_check_done) {
20223 		tcp_ire_ill_check(tcp, ire, ill, B_TRUE);
20224 		tcp->tcp_ire_ill_check_done = B_TRUE;
20225 	}
20226 
20227 	/*
20228 	 * If the underlying interface conditions have changed, or if the
20229 	 * new interface does not support MDT, go back to legacy path.
20230 	 */
20231 	if (!ILL_MDT_USABLE(ill) || (ire->ire_flags & RTF_MULTIRT) != 0) {
20232 		/* don't go through this path anymore for this connection */
20233 		TCP_STAT(tcps, tcp_mdt_conn_halted2);
20234 		tcp->tcp_mdt = B_FALSE;
20235 		ip1dbg(("tcp_multisend: disabling MDT for connp %p on "
20236 		    "interface %s\n", (void *)connp, ill->ill_name));
20237 		/* IRE will be released prior to returning */
20238 		goto legacy_send_no_md;
20239 	}
20240 
20241 	if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)
20242 		zc_cap = ill->ill_zerocopy_capab;
20243 
20244 	/*
20245 	 * Check if we can take tcp fast-path. Note that "incomplete"
20246 	 * ire's (where the link-layer for next hop is not resolved
20247 	 * or where the fast-path header in nce_fp_mp is not available
20248 	 * yet) are sent down the legacy (slow) path.
20249 	 * NOTE: We should fix ip_xmit_v4 to handle M_MULTIDATA
20250 	 */
20251 	if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) {
20252 		/* IRE will be released prior to returning */
20253 		goto legacy_send_no_md;
20254 	}
20255 
20256 	/* go to legacy path if interface doesn't support zerocopy */
20257 	if (tcp->tcp_snd_zcopy_aware && do_tcpzcopy != 2 &&
20258 	    (zc_cap == NULL || zc_cap->ill_zerocopy_flags == 0)) {
20259 		/* IRE will be released prior to returning */
20260 		goto legacy_send_no_md;
20261 	}
20262 
20263 	/* does the interface support hardware checksum offload? */
20264 	hwcksum_flags = 0;
20265 	if (ILL_HCKSUM_CAPABLE(ill) &&
20266 	    (ill->ill_hcksum_capab->ill_hcksum_txflags &
20267 	    (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6 | HCKSUM_INET_PARTIAL |
20268 	    HCKSUM_IPHDRCKSUM)) && dohwcksum) {
20269 		if (ill->ill_hcksum_capab->ill_hcksum_txflags &
20270 		    HCKSUM_IPHDRCKSUM)
20271 			hwcksum_flags = HCK_IPV4_HDRCKSUM;
20272 
20273 		if (ill->ill_hcksum_capab->ill_hcksum_txflags &
20274 		    (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6))
20275 			hwcksum_flags |= HCK_FULLCKSUM;
20276 		else if (ill->ill_hcksum_capab->ill_hcksum_txflags &
20277 		    HCKSUM_INET_PARTIAL)
20278 			hwcksum_flags |= HCK_PARTIALCKSUM;
20279 	}
20280 
20281 	/*
20282 	 * Each header fragment consists of the leading extra space,
20283 	 * followed by the TCP/IP header, and the trailing extra space.
20284 	 * We make sure that each header fragment begins on a 32-bit
20285 	 * aligned memory address (tcp_mdt_hdr_head is already 32-bit
20286 	 * aligned in tcp_mdt_update).
20287 	 */
20288 	hdr_frag_sz = roundup((tcp->tcp_mdt_hdr_head + tcp_hdr_len +
20289 	    tcp->tcp_mdt_hdr_tail), 4);
20290 
20291 	/* are we starting from the beginning of data block? */
20292 	if (*tail_unsent == 0) {
20293 		*xmit_tail = (*xmit_tail)->b_cont;
20294 		ASSERT((uintptr_t)MBLKL(*xmit_tail) <= (uintptr_t)INT_MAX);
20295 		*tail_unsent = (int)MBLKL(*xmit_tail);
20296 	}
20297 
20298 	/*
20299 	 * Here we create one or more Multidata messages, each made up of
20300 	 * one header buffer and up to N payload buffers.  This entire
20301 	 * operation is done within two loops:
20302 	 *
20303 	 * The outer loop mostly deals with creating the Multidata message,
20304 	 * as well as the header buffer that gets added to it.  It also
20305 	 * links the Multidata messages together such that all of them can
20306 	 * be sent down to the lower layer in a single putnext call; this
20307 	 * linking behavior depends on the tcp_mdt_chain tunable.
20308 	 *
20309 	 * The inner loop takes an existing Multidata message, and adds
20310 	 * one or more (up to tcp_mdt_max_pld) payload buffers to it.  It
20311 	 * packetizes those buffers by filling up the corresponding header
20312 	 * buffer fragments with the proper IP and TCP headers, and by
20313 	 * describing the layout of each packet in the packet descriptors
20314 	 * that get added to the Multidata.
20315 	 */
20316 	do {
20317 		/*
20318 		 * If usable send window is too small, or data blocks in
20319 		 * transmit list are smaller than our threshold (i.e. app
20320 		 * performs large writes followed by small ones), we hand
20321 		 * off the control over to the legacy path.  Note that we'll
20322 		 * get back the control once it encounters a large block.
20323 		 */
20324 		if (*usable < mss || (*tail_unsent <= mdt_thres &&
20325 		    (*xmit_tail)->b_cont != NULL &&
20326 		    MBLKL((*xmit_tail)->b_cont) <= mdt_thres)) {
20327 			/* send down what we've got so far */
20328 			if (md_mp_head != NULL) {
20329 				tcp_multisend_data(tcp, ire, ill, md_mp_head,
20330 				    obsegs, obbytes, &rconfirm);
20331 			}
20332 			/*
20333 			 * Pass control over to tcp_send(), but tell it to
20334 			 * return to us once a large-size transmission is
20335 			 * possible.
20336 			 */
20337 			TCP_STAT(tcps, tcp_mdt_legacy_small);
20338 			if ((err = tcp_send(q, tcp, mss, tcp_hdr_len,
20339 			    tcp_tcp_hdr_len, num_sack_blk, usable, snxt,
20340 			    tail_unsent, xmit_tail, local_time,
20341 			    mdt_thres)) <= 0) {
20342 				/* burst count reached, or alloc failed */
20343 				IRE_REFRELE(ire);
20344 				return (err);
20345 			}
20346 
20347 			/* tcp_send() may have sent everything, so check */
20348 			if (*usable <= 0) {
20349 				IRE_REFRELE(ire);
20350 				return (0);
20351 			}
20352 
20353 			TCP_STAT(tcps, tcp_mdt_legacy_ret);
20354 			/*
20355 			 * We may have delivered the Multidata, so make sure
20356 			 * to re-initialize before the next round.
20357 			 */
20358 			md_mp_head = NULL;
20359 			obsegs = obbytes = 0;
20360 			num_burst_seg = tcp->tcp_snd_burst;
20361 			PREP_NEW_MULTIDATA();
20362 
20363 			/* are we starting from the beginning of data block? */
20364 			if (*tail_unsent == 0) {
20365 				*xmit_tail = (*xmit_tail)->b_cont;
20366 				ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
20367 				    (uintptr_t)INT_MAX);
20368 				*tail_unsent = (int)MBLKL(*xmit_tail);
20369 			}
20370 		}
20371 		/*
20372 		 * Record current values for parameters we may need to pass
20373 		 * to tcp_send() or tcp_multisend_data(). We checkpoint at
20374 		 * each iteration of the outer loop (each multidata message
20375 		 * creation). If we have a failure in the inner loop, we send
20376 		 * any complete multidata messages we have before reverting
20377 		 * to using the traditional non-md path.
20378 		 */
20379 		snxt_mmd = *snxt;
20380 		usable_mmd = *usable;
20381 		xmit_tail_mmd = *xmit_tail;
20382 		tail_unsent_mmd = *tail_unsent;
20383 		obsegs_mmd = obsegs;
20384 		obbytes_mmd = obbytes;
20385 
20386 		/*
20387 		 * max_pld limits the number of mblks in tcp's transmit
20388 		 * queue that can be added to a Multidata message.  Once
20389 		 * this counter reaches zero, no more additional mblks
20390 		 * can be added to it.  What happens afterwards depends
20391 		 * on whether or not we are set to chain the Multidata
20392 		 * messages.  If we are to link them together, reset
20393 		 * max_pld to its original value (tcp_mdt_max_pld) and
20394 		 * prepare to create a new Multidata message which will
20395 		 * get linked to md_mp_head.  Else, leave it alone and
20396 		 * let the inner loop break on its own.
20397 		 */
20398 		if (tcp_mdt_chain && max_pld == 0)
20399 			PREP_NEW_MULTIDATA();
20400 
20401 		/* adding a payload buffer; re-initialize values */
20402 		if (add_buffer)
20403 			PREP_NEW_PBUF();
20404 
20405 		/*
20406 		 * If we don't have a Multidata, either because we just
20407 		 * (re)entered this outer loop, or after we branched off
20408 		 * to tcp_send above, setup the Multidata and header
20409 		 * buffer to be used.
20410 		 */
20411 		if (md_mp == NULL) {
20412 			int md_hbuflen;
20413 			uint32_t start, stuff;
20414 
20415 			/*
20416 			 * Calculate Multidata header buffer size large enough
20417 			 * to hold all of the headers that can possibly be
20418 			 * sent at this moment.  We'd rather over-estimate
20419 			 * the size than running out of space; this is okay
20420 			 * since this buffer is small anyway.
20421 			 */
20422 			md_hbuflen = (howmany(*usable, mss) + 1) * hdr_frag_sz;
20423 
20424 			/*
20425 			 * Start and stuff offset for partial hardware
20426 			 * checksum offload; these are currently for IPv4.
20427 			 * For full checksum offload, they are set to zero.
20428 			 */
20429 			if ((hwcksum_flags & HCK_PARTIALCKSUM)) {
20430 				if (af == AF_INET) {
20431 					start = IP_SIMPLE_HDR_LENGTH;
20432 					stuff = IP_SIMPLE_HDR_LENGTH +
20433 					    TCP_CHECKSUM_OFFSET;
20434 				} else {
20435 					start = IPV6_HDR_LEN;
20436 					stuff = IPV6_HDR_LEN +
20437 					    TCP_CHECKSUM_OFFSET;
20438 				}
20439 			} else {
20440 				start = stuff = 0;
20441 			}
20442 
20443 			/*
20444 			 * Create the header buffer, Multidata, as well as
20445 			 * any necessary attributes (destination address,
20446 			 * SAP and hardware checksum offload) that should
20447 			 * be associated with the Multidata message.
20448 			 */
20449 			ASSERT(cur_hdr_off == 0);
20450 			if ((md_hbuf = allocb(md_hbuflen, BPRI_HI)) == NULL ||
20451 			    ((md_hbuf->b_wptr += md_hbuflen),
20452 			    (mmd = mmd_alloc(md_hbuf, &md_mp,
20453 			    KM_NOSLEEP)) == NULL) || (tcp_mdt_add_attrs(mmd,
20454 			    /* fastpath mblk */
20455 			    ire->ire_nce->nce_res_mp,
20456 			    /* hardware checksum enabled */
20457 			    (hwcksum_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)),
20458 			    /* hardware checksum offsets */
20459 			    start, stuff, 0,
20460 			    /* hardware checksum flag */
20461 			    hwcksum_flags, tcps) != 0)) {
20462 legacy_send:
20463 				/*
20464 				 * We arrive here from a failure within the
20465 				 * inner (packetizer) loop or we fail one of
20466 				 * the conditionals above. We restore the
20467 				 * previously checkpointed values for:
20468 				 *    xmit_tail
20469 				 *    usable
20470 				 *    tail_unsent
20471 				 *    snxt
20472 				 *    obbytes
20473 				 *    obsegs
20474 				 * We should then be able to dispatch any
20475 				 * complete multidata before reverting to the
20476 				 * traditional path with consistent parameters
20477 				 * (the inner loop updates these as it
20478 				 * iterates).
20479 				 */
20480 				*xmit_tail = xmit_tail_mmd;
20481 				*usable = usable_mmd;
20482 				*tail_unsent = tail_unsent_mmd;
20483 				*snxt = snxt_mmd;
20484 				obbytes = obbytes_mmd;
20485 				obsegs = obsegs_mmd;
20486 				if (md_mp != NULL) {
20487 					/* Unlink message from the chain */
20488 					if (md_mp_head != NULL) {
20489 						err = (intptr_t)rmvb(md_mp_head,
20490 						    md_mp);
20491 						/*
20492 						 * We can't assert that rmvb
20493 						 * did not return -1, since we
20494 						 * may get here before linkb
20495 						 * happens.  We do, however,
20496 						 * check if we just removed the
20497 						 * only element in the list.
20498 						 */
20499 						if (err == 0)
20500 							md_mp_head = NULL;
20501 					}
20502 					/* md_hbuf gets freed automatically */
20503 					TCP_STAT(tcps, tcp_mdt_discarded);
20504 					freeb(md_mp);
20505 				} else {
20506 					/* Either allocb or mmd_alloc failed */
20507 					TCP_STAT(tcps, tcp_mdt_allocfail);
20508 					if (md_hbuf != NULL)
20509 						freeb(md_hbuf);
20510 				}
20511 
20512 				/* send down what we've got so far */
20513 				if (md_mp_head != NULL) {
20514 					tcp_multisend_data(tcp, ire, ill,
20515 					    md_mp_head, obsegs, obbytes,
20516 					    &rconfirm);
20517 				}
20518 legacy_send_no_md:
20519 				if (ire != NULL)
20520 					IRE_REFRELE(ire);
20521 				/*
20522 				 * Too bad; let the legacy path handle this.
20523 				 * We specify INT_MAX for the threshold, since
20524 				 * we gave up with the Multidata processings
20525 				 * and let the old path have it all.
20526 				 */
20527 				TCP_STAT(tcps, tcp_mdt_legacy_all);
20528 				return (tcp_send(q, tcp, mss, tcp_hdr_len,
20529 				    tcp_tcp_hdr_len, num_sack_blk, usable,
20530 				    snxt, tail_unsent, xmit_tail, local_time,
20531 				    INT_MAX));
20532 			}
20533 
20534 			/* link to any existing ones, if applicable */
20535 			TCP_STAT(tcps, tcp_mdt_allocd);
20536 			if (md_mp_head == NULL) {
20537 				md_mp_head = md_mp;
20538 			} else if (tcp_mdt_chain) {
20539 				TCP_STAT(tcps, tcp_mdt_linked);
20540 				linkb(md_mp_head, md_mp);
20541 			}
20542 		}
20543 
20544 		ASSERT(md_mp_head != NULL);
20545 		ASSERT(tcp_mdt_chain || md_mp_head->b_cont == NULL);
20546 		ASSERT(md_mp != NULL && mmd != NULL);
20547 		ASSERT(md_hbuf != NULL);
20548 
20549 		/*
20550 		 * Packetize the transmittable portion of the data block;
20551 		 * each data block is essentially added to the Multidata
20552 		 * as a payload buffer.  We also deal with adding more
20553 		 * than one payload buffers, which happens when the remaining
20554 		 * packetized portion of the current payload buffer is less
20555 		 * than MSS, while the next data block in transmit queue
20556 		 * has enough data to make up for one.  This "spillover"
20557 		 * case essentially creates a split-packet, where portions
20558 		 * of the packet's payload fragments may span across two
20559 		 * virtually discontiguous address blocks.
20560 		 */
20561 		seg_len = mss;
20562 		do {
20563 			len = seg_len;
20564 
20565 			/* one must remain NULL for DTRACE_IP_FASTPATH */
20566 			ipha = NULL;
20567 			ip6h = NULL;
20568 
20569 			ASSERT(len > 0);
20570 			ASSERT(max_pld >= 0);
20571 			ASSERT(!add_buffer || cur_pld_off == 0);
20572 
20573 			/*
20574 			 * First time around for this payload buffer; note
20575 			 * in the case of a spillover, the following has
20576 			 * been done prior to adding the split-packet
20577 			 * descriptor to Multidata, and we don't want to
20578 			 * repeat the process.
20579 			 */
20580 			if (add_buffer) {
20581 				ASSERT(mmd != NULL);
20582 				ASSERT(md_pbuf == NULL);
20583 				ASSERT(md_pbuf_nxt == NULL);
20584 				ASSERT(pbuf_idx == -1 && pbuf_idx_nxt == -1);
20585 
20586 				/*
20587 				 * Have we reached the limit?  We'd get to
20588 				 * this case when we're not chaining the
20589 				 * Multidata messages together, and since
20590 				 * we're done, terminate this loop.
20591 				 */
20592 				if (max_pld == 0)
20593 					break; /* done */
20594 
20595 				if ((md_pbuf = dupb(*xmit_tail)) == NULL) {
20596 					TCP_STAT(tcps, tcp_mdt_allocfail);
20597 					goto legacy_send; /* out_of_mem */
20598 				}
20599 
20600 				if (IS_VMLOANED_MBLK(md_pbuf) && !zcopy &&
20601 				    zc_cap != NULL) {
20602 					if (!ip_md_zcopy_attr(mmd, NULL,
20603 					    zc_cap->ill_zerocopy_flags)) {
20604 						freeb(md_pbuf);
20605 						TCP_STAT(tcps,
20606 						    tcp_mdt_allocfail);
20607 						/* out_of_mem */
20608 						goto legacy_send;
20609 					}
20610 					zcopy = B_TRUE;
20611 				}
20612 
20613 				md_pbuf->b_rptr += base_pld_off;
20614 
20615 				/*
20616 				 * Add a payload buffer to the Multidata; this
20617 				 * operation must not fail, or otherwise our
20618 				 * logic in this routine is broken.  There
20619 				 * is no memory allocation done by the
20620 				 * routine, so any returned failure simply
20621 				 * tells us that we've done something wrong.
20622 				 *
20623 				 * A failure tells us that either we're adding
20624 				 * the same payload buffer more than once, or
20625 				 * we're trying to add more buffers than
20626 				 * allowed (max_pld calculation is wrong).
20627 				 * None of the above cases should happen, and
20628 				 * we panic because either there's horrible
20629 				 * heap corruption, and/or programming mistake.
20630 				 */
20631 				pbuf_idx = mmd_addpldbuf(mmd, md_pbuf);
20632 				if (pbuf_idx < 0) {
20633 					cmn_err(CE_PANIC, "tcp_multisend: "
20634 					    "payload buffer logic error "
20635 					    "detected for tcp %p mmd %p "
20636 					    "pbuf %p (%d)\n",
20637 					    (void *)tcp, (void *)mmd,
20638 					    (void *)md_pbuf, pbuf_idx);
20639 				}
20640 
20641 				ASSERT(max_pld > 0);
20642 				--max_pld;
20643 				add_buffer = B_FALSE;
20644 			}
20645 
20646 			ASSERT(md_mp_head != NULL);
20647 			ASSERT(md_pbuf != NULL);
20648 			ASSERT(md_pbuf_nxt == NULL);
20649 			ASSERT(pbuf_idx != -1);
20650 			ASSERT(pbuf_idx_nxt == -1);
20651 			ASSERT(*usable > 0);
20652 
20653 			/*
20654 			 * We spillover to the next payload buffer only
20655 			 * if all of the following is true:
20656 			 *
20657 			 *   1. There is not enough data on the current
20658 			 *	payload buffer to make up `len',
20659 			 *   2. We are allowed to send `len',
20660 			 *   3. The next payload buffer length is large
20661 			 *	enough to accomodate `spill'.
20662 			 */
20663 			if ((spill = len - *tail_unsent) > 0 &&
20664 			    *usable >= len &&
20665 			    MBLKL((*xmit_tail)->b_cont) >= spill &&
20666 			    max_pld > 0) {
20667 				md_pbuf_nxt = dupb((*xmit_tail)->b_cont);
20668 				if (md_pbuf_nxt == NULL) {
20669 					TCP_STAT(tcps, tcp_mdt_allocfail);
20670 					goto legacy_send; /* out_of_mem */
20671 				}
20672 
20673 				if (IS_VMLOANED_MBLK(md_pbuf_nxt) && !zcopy &&
20674 				    zc_cap != NULL) {
20675 					if (!ip_md_zcopy_attr(mmd, NULL,
20676 					    zc_cap->ill_zerocopy_flags)) {
20677 						freeb(md_pbuf_nxt);
20678 						TCP_STAT(tcps,
20679 						    tcp_mdt_allocfail);
20680 						/* out_of_mem */
20681 						goto legacy_send;
20682 					}
20683 					zcopy = B_TRUE;
20684 				}
20685 
20686 				/*
20687 				 * See comments above on the first call to
20688 				 * mmd_addpldbuf for explanation on the panic.
20689 				 */
20690 				pbuf_idx_nxt = mmd_addpldbuf(mmd, md_pbuf_nxt);
20691 				if (pbuf_idx_nxt < 0) {
20692 					panic("tcp_multisend: "
20693 					    "next payload buffer logic error "
20694 					    "detected for tcp %p mmd %p "
20695 					    "pbuf %p (%d)\n",
20696 					    (void *)tcp, (void *)mmd,
20697 					    (void *)md_pbuf_nxt, pbuf_idx_nxt);
20698 				}
20699 
20700 				ASSERT(max_pld > 0);
20701 				--max_pld;
20702 			} else if (spill > 0) {
20703 				/*
20704 				 * If there's a spillover, but the following
20705 				 * xmit_tail couldn't give us enough octets
20706 				 * to reach "len", then stop the current
20707 				 * Multidata creation and let the legacy
20708 				 * tcp_send() path take over.  We don't want
20709 				 * to send the tiny segment as part of this
20710 				 * Multidata for performance reasons; instead,
20711 				 * we let the legacy path deal with grouping
20712 				 * it with the subsequent small mblks.
20713 				 */
20714 				if (*usable >= len &&
20715 				    MBLKL((*xmit_tail)->b_cont) < spill) {
20716 					max_pld = 0;
20717 					break;	/* done */
20718 				}
20719 
20720 				/*
20721 				 * We can't spillover, and we are near
20722 				 * the end of the current payload buffer,
20723 				 * so send what's left.
20724 				 */
20725 				ASSERT(*tail_unsent > 0);
20726 				len = *tail_unsent;
20727 			}
20728 
20729 			/* tail_unsent is negated if there is a spillover */
20730 			*tail_unsent -= len;
20731 			*usable -= len;
20732 			ASSERT(*usable >= 0);
20733 
20734 			if (*usable < mss)
20735 				seg_len = *usable;
20736 			/*
20737 			 * Sender SWS avoidance; see comments in tcp_send();
20738 			 * everything else is the same, except that we only
20739 			 * do this here if there is no more data to be sent
20740 			 * following the current xmit_tail.  We don't check
20741 			 * for 1-byte urgent data because we shouldn't get
20742 			 * here if TCP_URG_VALID is set.
20743 			 */
20744 			if (*usable > 0 && *usable < mss &&
20745 			    ((md_pbuf_nxt == NULL &&
20746 			    (*xmit_tail)->b_cont == NULL) ||
20747 			    (md_pbuf_nxt != NULL &&
20748 			    (*xmit_tail)->b_cont->b_cont == NULL)) &&
20749 			    seg_len < (tcp->tcp_max_swnd >> 1) &&
20750 			    (tcp->tcp_unsent -
20751 			    ((*snxt + len) - tcp->tcp_snxt)) > seg_len &&
20752 			    !tcp->tcp_zero_win_probe) {
20753 				if ((*snxt + len) == tcp->tcp_snxt &&
20754 				    (*snxt + len) == tcp->tcp_suna) {
20755 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
20756 				}
20757 				done = B_TRUE;
20758 			}
20759 
20760 			/*
20761 			 * Prime pump for IP's checksumming on our behalf;
20762 			 * include the adjustment for a source route if any.
20763 			 * Do this only for software/partial hardware checksum
20764 			 * offload, as this field gets zeroed out later for
20765 			 * the full hardware checksum offload case.
20766 			 */
20767 			if (!(hwcksum_flags & HCK_FULLCKSUM)) {
20768 				cksum = len + tcp_tcp_hdr_len + tcp->tcp_sum;
20769 				cksum = (cksum >> 16) + (cksum & 0xFFFF);
20770 				U16_TO_ABE16(cksum, tcp->tcp_tcph->th_sum);
20771 			}
20772 
20773 			U32_TO_ABE32(*snxt, tcp->tcp_tcph->th_seq);
20774 			*snxt += len;
20775 
20776 			tcp->tcp_tcph->th_flags[0] = TH_ACK;
20777 			/*
20778 			 * We set the PUSH bit only if TCP has no more buffered
20779 			 * data to be transmitted (or if sender SWS avoidance
20780 			 * takes place), as opposed to setting it for every
20781 			 * last packet in the burst.
20782 			 */
20783 			if (done ||
20784 			    (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) == 0)
20785 				tcp->tcp_tcph->th_flags[0] |= TH_PUSH;
20786 
20787 			/*
20788 			 * Set FIN bit if this is our last segment; snxt
20789 			 * already includes its length, and it will not
20790 			 * be adjusted after this point.
20791 			 */
20792 			if (tcp->tcp_valid_bits == TCP_FSS_VALID &&
20793 			    *snxt == tcp->tcp_fss) {
20794 				if (!tcp->tcp_fin_acked) {
20795 					tcp->tcp_tcph->th_flags[0] |= TH_FIN;
20796 					BUMP_MIB(&tcps->tcps_mib,
20797 					    tcpOutControl);
20798 				}
20799 				if (!tcp->tcp_fin_sent) {
20800 					tcp->tcp_fin_sent = B_TRUE;
20801 					/*
20802 					 * tcp state must be ESTABLISHED
20803 					 * in order for us to get here in
20804 					 * the first place.
20805 					 */
20806 					tcp->tcp_state = TCPS_FIN_WAIT_1;
20807 
20808 					/*
20809 					 * Upon returning from this routine,
20810 					 * tcp_wput_data() will set tcp_snxt
20811 					 * to be equal to snxt + tcp_fin_sent.
20812 					 * This is essentially the same as
20813 					 * setting it to tcp_fss + 1.
20814 					 */
20815 				}
20816 			}
20817 
20818 			tcp->tcp_last_sent_len = (ushort_t)len;
20819 
20820 			len += tcp_hdr_len;
20821 			if (tcp->tcp_ipversion == IPV4_VERSION)
20822 				tcp->tcp_ipha->ipha_length = htons(len);
20823 			else
20824 				tcp->tcp_ip6h->ip6_plen = htons(len -
20825 				    ((char *)&tcp->tcp_ip6h[1] -
20826 				    tcp->tcp_iphc));
20827 
20828 			pkt_info->flags = (PDESC_HBUF_REF | PDESC_PBUF_REF);
20829 
20830 			/* setup header fragment */
20831 			PDESC_HDR_ADD(pkt_info,
20832 			    md_hbuf->b_rptr + cur_hdr_off,	/* base */
20833 			    tcp->tcp_mdt_hdr_head,		/* head room */
20834 			    tcp_hdr_len,			/* len */
20835 			    tcp->tcp_mdt_hdr_tail);		/* tail room */
20836 
20837 			ASSERT(pkt_info->hdr_lim - pkt_info->hdr_base ==
20838 			    hdr_frag_sz);
20839 			ASSERT(MBLKIN(md_hbuf,
20840 			    (pkt_info->hdr_base - md_hbuf->b_rptr),
20841 			    PDESC_HDRSIZE(pkt_info)));
20842 
20843 			/* setup first payload fragment */
20844 			PDESC_PLD_INIT(pkt_info);
20845 			PDESC_PLD_SPAN_ADD(pkt_info,
20846 			    pbuf_idx,				/* index */
20847 			    md_pbuf->b_rptr + cur_pld_off,	/* start */
20848 			    tcp->tcp_last_sent_len);		/* len */
20849 
20850 			/* create a split-packet in case of a spillover */
20851 			if (md_pbuf_nxt != NULL) {
20852 				ASSERT(spill > 0);
20853 				ASSERT(pbuf_idx_nxt > pbuf_idx);
20854 				ASSERT(!add_buffer);
20855 
20856 				md_pbuf = md_pbuf_nxt;
20857 				md_pbuf_nxt = NULL;
20858 				pbuf_idx = pbuf_idx_nxt;
20859 				pbuf_idx_nxt = -1;
20860 				cur_pld_off = spill;
20861 
20862 				/* trim out first payload fragment */
20863 				PDESC_PLD_SPAN_TRIM(pkt_info, 0, spill);
20864 
20865 				/* setup second payload fragment */
20866 				PDESC_PLD_SPAN_ADD(pkt_info,
20867 				    pbuf_idx,			/* index */
20868 				    md_pbuf->b_rptr,		/* start */
20869 				    spill);			/* len */
20870 
20871 				if ((*xmit_tail)->b_next == NULL) {
20872 					/*
20873 					 * Store the lbolt used for RTT
20874 					 * estimation. We can only record one
20875 					 * timestamp per mblk so we do it when
20876 					 * we reach the end of the payload
20877 					 * buffer.  Also we only take a new
20878 					 * timestamp sample when the previous
20879 					 * timed data from the same mblk has
20880 					 * been ack'ed.
20881 					 */
20882 					(*xmit_tail)->b_prev = local_time;
20883 					(*xmit_tail)->b_next =
20884 					    (mblk_t *)(uintptr_t)first_snxt;
20885 				}
20886 
20887 				first_snxt = *snxt - spill;
20888 
20889 				/*
20890 				 * Advance xmit_tail; usable could be 0 by
20891 				 * the time we got here, but we made sure
20892 				 * above that we would only spillover to
20893 				 * the next data block if usable includes
20894 				 * the spilled-over amount prior to the
20895 				 * subtraction.  Therefore, we are sure
20896 				 * that xmit_tail->b_cont can't be NULL.
20897 				 */
20898 				ASSERT((*xmit_tail)->b_cont != NULL);
20899 				*xmit_tail = (*xmit_tail)->b_cont;
20900 				ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
20901 				    (uintptr_t)INT_MAX);
20902 				*tail_unsent = (int)MBLKL(*xmit_tail) - spill;
20903 			} else {
20904 				cur_pld_off += tcp->tcp_last_sent_len;
20905 			}
20906 
20907 			/*
20908 			 * Fill in the header using the template header, and
20909 			 * add options such as time-stamp, ECN and/or SACK,
20910 			 * as needed.
20911 			 */
20912 			tcp_fill_header(tcp, pkt_info->hdr_rptr,
20913 			    (clock_t)local_time, num_sack_blk);
20914 
20915 			/* take care of some IP header businesses */
20916 			if (af == AF_INET) {
20917 				ipha = (ipha_t *)pkt_info->hdr_rptr;
20918 
20919 				ASSERT(OK_32PTR((uchar_t *)ipha));
20920 				ASSERT(PDESC_HDRL(pkt_info) >=
20921 				    IP_SIMPLE_HDR_LENGTH);
20922 				ASSERT(ipha->ipha_version_and_hdr_length ==
20923 				    IP_SIMPLE_HDR_VERSION);
20924 
20925 				/*
20926 				 * Assign ident value for current packet; see
20927 				 * related comments in ip_wput_ire() about the
20928 				 * contract private interface with clustering
20929 				 * group.
20930 				 */
20931 				clusterwide = B_FALSE;
20932 				if (cl_inet_ipident != NULL) {
20933 					ASSERT(cl_inet_isclusterwide != NULL);
20934 					if ((*cl_inet_isclusterwide)(IPPROTO_IP,
20935 					    AF_INET,
20936 					    (uint8_t *)(uintptr_t)src)) {
20937 						ipha->ipha_ident =
20938 						    (*cl_inet_ipident)
20939 						    (IPPROTO_IP, AF_INET,
20940 						    (uint8_t *)(uintptr_t)src,
20941 						    (uint8_t *)(uintptr_t)dst);
20942 						clusterwide = B_TRUE;
20943 					}
20944 				}
20945 
20946 				if (!clusterwide) {
20947 					ipha->ipha_ident = (uint16_t)
20948 					    atomic_add_32_nv(
20949 						&ire->ire_ident, 1);
20950 				}
20951 #ifndef _BIG_ENDIAN
20952 				ipha->ipha_ident = (ipha->ipha_ident << 8) |
20953 				    (ipha->ipha_ident >> 8);
20954 #endif
20955 			} else {
20956 				ip6h = (ip6_t *)pkt_info->hdr_rptr;
20957 
20958 				ASSERT(OK_32PTR((uchar_t *)ip6h));
20959 				ASSERT(IPVER(ip6h) == IPV6_VERSION);
20960 				ASSERT(ip6h->ip6_nxt == IPPROTO_TCP);
20961 				ASSERT(PDESC_HDRL(pkt_info) >=
20962 				    (IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET +
20963 				    TCP_CHECKSUM_SIZE));
20964 				ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
20965 
20966 				if (tcp->tcp_ip_forward_progress) {
20967 					rconfirm = B_TRUE;
20968 					tcp->tcp_ip_forward_progress = B_FALSE;
20969 				}
20970 			}
20971 
20972 			/* at least one payload span, and at most two */
20973 			ASSERT(pkt_info->pld_cnt > 0 && pkt_info->pld_cnt < 3);
20974 
20975 			/* add the packet descriptor to Multidata */
20976 			if ((pkt = mmd_addpdesc(mmd, pkt_info, &err,
20977 			    KM_NOSLEEP)) == NULL) {
20978 				/*
20979 				 * Any failure other than ENOMEM indicates
20980 				 * that we have passed in invalid pkt_info
20981 				 * or parameters to mmd_addpdesc, which must
20982 				 * not happen.
20983 				 *
20984 				 * EINVAL is a result of failure on boundary
20985 				 * checks against the pkt_info contents.  It
20986 				 * should not happen, and we panic because
20987 				 * either there's horrible heap corruption,
20988 				 * and/or programming mistake.
20989 				 */
20990 				if (err != ENOMEM) {
20991 					cmn_err(CE_PANIC, "tcp_multisend: "
20992 					    "pdesc logic error detected for "
20993 					    "tcp %p mmd %p pinfo %p (%d)\n",
20994 					    (void *)tcp, (void *)mmd,
20995 					    (void *)pkt_info, err);
20996 				}
20997 				TCP_STAT(tcps, tcp_mdt_addpdescfail);
20998 				goto legacy_send; /* out_of_mem */
20999 			}
21000 			ASSERT(pkt != NULL);
21001 
21002 			/* calculate IP header and TCP checksums */
21003 			if (af == AF_INET) {
21004 				/* calculate pseudo-header checksum */
21005 				cksum = (dst >> 16) + (dst & 0xFFFF) +
21006 				    (src >> 16) + (src & 0xFFFF);
21007 
21008 				/* offset for TCP header checksum */
21009 				up = IPH_TCPH_CHECKSUMP(ipha,
21010 				    IP_SIMPLE_HDR_LENGTH);
21011 			} else {
21012 				up = (uint16_t *)&ip6h->ip6_src;
21013 
21014 				/* calculate pseudo-header checksum */
21015 				cksum = up[0] + up[1] + up[2] + up[3] +
21016 				    up[4] + up[5] + up[6] + up[7] +
21017 				    up[8] + up[9] + up[10] + up[11] +
21018 				    up[12] + up[13] + up[14] + up[15];
21019 
21020 				/* Fold the initial sum */
21021 				cksum = (cksum & 0xffff) + (cksum >> 16);
21022 
21023 				up = (uint16_t *)(((uchar_t *)ip6h) +
21024 				    IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET);
21025 			}
21026 
21027 			if (hwcksum_flags & HCK_FULLCKSUM) {
21028 				/* clear checksum field for hardware */
21029 				*up = 0;
21030 			} else if (hwcksum_flags & HCK_PARTIALCKSUM) {
21031 				uint32_t sum;
21032 
21033 				/* pseudo-header checksumming */
21034 				sum = *up + cksum + IP_TCP_CSUM_COMP;
21035 				sum = (sum & 0xFFFF) + (sum >> 16);
21036 				*up = (sum & 0xFFFF) + (sum >> 16);
21037 			} else {
21038 				/* software checksumming */
21039 				TCP_STAT(tcps, tcp_out_sw_cksum);
21040 				TCP_STAT_UPDATE(tcps, tcp_out_sw_cksum_bytes,
21041 				    tcp->tcp_hdr_len + tcp->tcp_last_sent_len);
21042 				*up = IP_MD_CSUM(pkt, tcp->tcp_ip_hdr_len,
21043 				    cksum + IP_TCP_CSUM_COMP);
21044 				if (*up == 0)
21045 					*up = 0xFFFF;
21046 			}
21047 
21048 			/* IPv4 header checksum */
21049 			if (af == AF_INET) {
21050 				ipha->ipha_fragment_offset_and_flags |=
21051 				    (uint32_t)htons(ire->ire_frag_flag);
21052 
21053 				if (hwcksum_flags & HCK_IPV4_HDRCKSUM) {
21054 					ipha->ipha_hdr_checksum = 0;
21055 				} else {
21056 					IP_HDR_CKSUM(ipha, cksum,
21057 					    ((uint32_t *)ipha)[0],
21058 					    ((uint16_t *)ipha)[4]);
21059 				}
21060 			}
21061 
21062 			if (af == AF_INET &&
21063 			    HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) ||
21064 			    af == AF_INET6 &&
21065 			    HOOKS6_INTERESTED_PHYSICAL_OUT(ipst)) {
21066 				mblk_t	*mp, *mp1;
21067 				uchar_t	*hdr_rptr, *hdr_wptr;
21068 				uchar_t	*pld_rptr, *pld_wptr;
21069 
21070 				/*
21071 				 * We reconstruct a pseudo packet for the hooks
21072 				 * framework using mmd_transform_link().
21073 				 * If it is a split packet we pullup the
21074 				 * payload. FW_HOOKS expects a pkt comprising
21075 				 * of two mblks: a header and the payload.
21076 				 */
21077 				if ((mp = mmd_transform_link(pkt)) == NULL) {
21078 					TCP_STAT(tcps, tcp_mdt_allocfail);
21079 					goto legacy_send;
21080 				}
21081 
21082 				if (pkt_info->pld_cnt > 1) {
21083 					/* split payload, more than one pld */
21084 					if ((mp1 = msgpullup(mp->b_cont, -1)) ==
21085 					    NULL) {
21086 						freemsg(mp);
21087 						TCP_STAT(tcps,
21088 						    tcp_mdt_allocfail);
21089 						goto legacy_send;
21090 					}
21091 					freemsg(mp->b_cont);
21092 					mp->b_cont = mp1;
21093 				} else {
21094 					mp1 = mp->b_cont;
21095 				}
21096 				ASSERT(mp1 != NULL && mp1->b_cont == NULL);
21097 
21098 				/*
21099 				 * Remember the message offsets. This is so we
21100 				 * can detect changes when we return from the
21101 				 * FW_HOOKS callbacks.
21102 				 */
21103 				hdr_rptr = mp->b_rptr;
21104 				hdr_wptr = mp->b_wptr;
21105 				pld_rptr = mp->b_cont->b_rptr;
21106 				pld_wptr = mp->b_cont->b_wptr;
21107 
21108 				if (af == AF_INET) {
21109 					DTRACE_PROBE4(
21110 					    ip4__physical__out__start,
21111 					    ill_t *, NULL,
21112 					    ill_t *, ill,
21113 					    ipha_t *, ipha,
21114 					    mblk_t *, mp);
21115 					FW_HOOKS(
21116 					    ipst->ips_ip4_physical_out_event,
21117 					    ipst->ips_ipv4firewall_physical_out,
21118 					    NULL, ill, ipha, mp, mp, 0, ipst);
21119 					DTRACE_PROBE1(
21120 					    ip4__physical__out__end,
21121 					    mblk_t *, mp);
21122 				} else {
21123 					DTRACE_PROBE4(
21124 					    ip6__physical__out_start,
21125 					    ill_t *, NULL,
21126 					    ill_t *, ill,
21127 					    ip6_t *, ip6h,
21128 					    mblk_t *, mp);
21129 					FW_HOOKS6(
21130 					    ipst->ips_ip6_physical_out_event,
21131 					    ipst->ips_ipv6firewall_physical_out,
21132 					    NULL, ill, ip6h, mp, mp, 0, ipst);
21133 					DTRACE_PROBE1(
21134 					    ip6__physical__out__end,
21135 					    mblk_t *, mp);
21136 				}
21137 
21138 				if (mp == NULL ||
21139 				    (mp1 = mp->b_cont) == NULL ||
21140 				    mp->b_rptr != hdr_rptr ||
21141 				    mp->b_wptr != hdr_wptr ||
21142 				    mp1->b_rptr != pld_rptr ||
21143 				    mp1->b_wptr != pld_wptr ||
21144 				    mp1->b_cont != NULL) {
21145 					/*
21146 					 * We abandon multidata processing and
21147 					 * return to the normal path, either
21148 					 * when a packet is blocked, or when
21149 					 * the boundaries of header buffer or
21150 					 * payload buffer have been changed by
21151 					 * FW_HOOKS[6].
21152 					 */
21153 					if (mp != NULL)
21154 						freemsg(mp);
21155 					goto legacy_send;
21156 				}
21157 				/* Finished with the pseudo packet */
21158 				freemsg(mp);
21159 			}
21160 			DTRACE_IP_FASTPATH(md_hbuf, pkt_info->hdr_rptr,
21161 			    ill, ipha, ip6h);
21162 			/* advance header offset */
21163 			cur_hdr_off += hdr_frag_sz;
21164 
21165 			obbytes += tcp->tcp_last_sent_len;
21166 			++obsegs;
21167 		} while (!done && *usable > 0 && --num_burst_seg > 0 &&
21168 		    *tail_unsent > 0);
21169 
21170 		if ((*xmit_tail)->b_next == NULL) {
21171 			/*
21172 			 * Store the lbolt used for RTT estimation. We can only
21173 			 * record one timestamp per mblk so we do it when we
21174 			 * reach the end of the payload buffer. Also we only
21175 			 * take a new timestamp sample when the previous timed
21176 			 * data from the same mblk has been ack'ed.
21177 			 */
21178 			(*xmit_tail)->b_prev = local_time;
21179 			(*xmit_tail)->b_next = (mblk_t *)(uintptr_t)first_snxt;
21180 		}
21181 
21182 		ASSERT(*tail_unsent >= 0);
21183 		if (*tail_unsent > 0) {
21184 			/*
21185 			 * We got here because we broke out of the above
21186 			 * loop due to of one of the following cases:
21187 			 *
21188 			 *   1. len < adjusted MSS (i.e. small),
21189 			 *   2. Sender SWS avoidance,
21190 			 *   3. max_pld is zero.
21191 			 *
21192 			 * We are done for this Multidata, so trim our
21193 			 * last payload buffer (if any) accordingly.
21194 			 */
21195 			if (md_pbuf != NULL)
21196 				md_pbuf->b_wptr -= *tail_unsent;
21197 		} else if (*usable > 0) {
21198 			*xmit_tail = (*xmit_tail)->b_cont;
21199 			ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
21200 			    (uintptr_t)INT_MAX);
21201 			*tail_unsent = (int)MBLKL(*xmit_tail);
21202 			add_buffer = B_TRUE;
21203 		}
21204 	} while (!done && *usable > 0 && num_burst_seg > 0 &&
21205 	    (tcp_mdt_chain || max_pld > 0));
21206 
21207 	if (md_mp_head != NULL) {
21208 		/* send everything down */
21209 		tcp_multisend_data(tcp, ire, ill, md_mp_head, obsegs, obbytes,
21210 		    &rconfirm);
21211 	}
21212 
21213 #undef PREP_NEW_MULTIDATA
21214 #undef PREP_NEW_PBUF
21215 #undef IPVER
21216 
21217 	IRE_REFRELE(ire);
21218 	return (0);
21219 }
21220 
21221 /*
21222  * A wrapper function for sending one or more Multidata messages down to
21223  * the module below ip; this routine does not release the reference of the
21224  * IRE (caller does that).  This routine is analogous to tcp_send_data().
21225  */
21226 static void
21227 tcp_multisend_data(tcp_t *tcp, ire_t *ire, const ill_t *ill, mblk_t *md_mp_head,
21228     const uint_t obsegs, const uint_t obbytes, boolean_t *rconfirm)
21229 {
21230 	uint64_t delta;
21231 	nce_t *nce;
21232 	tcp_stack_t	*tcps = tcp->tcp_tcps;
21233 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
21234 
21235 	ASSERT(ire != NULL && ill != NULL);
21236 	ASSERT(ire->ire_stq != NULL);
21237 	ASSERT(md_mp_head != NULL);
21238 	ASSERT(rconfirm != NULL);
21239 
21240 	/* adjust MIBs and IRE timestamp */
21241 	DTRACE_PROBE2(tcp__trace__send, mblk_t *, md_mp_head, tcp_t *, tcp);
21242 	tcp->tcp_obsegs += obsegs;
21243 	UPDATE_MIB(&tcps->tcps_mib, tcpOutDataSegs, obsegs);
21244 	UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, obbytes);
21245 	TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out, obsegs);
21246 
21247 	if (tcp->tcp_ipversion == IPV4_VERSION) {
21248 		TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out_v4, obsegs);
21249 	} else {
21250 		TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out_v6, obsegs);
21251 	}
21252 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests, obsegs);
21253 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, obsegs);
21254 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, obbytes);
21255 
21256 	ire->ire_ob_pkt_count += obsegs;
21257 	if (ire->ire_ipif != NULL)
21258 		atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, obsegs);
21259 	ire->ire_last_used_time = lbolt;
21260 
21261 	/* send it down */
21262 	if (ILL_DLS_CAPABLE(ill)) {
21263 		ill_dls_capab_t *ill_dls = ill->ill_dls_capab;
21264 		ill_dls->ill_tx(ill_dls->ill_tx_handle, md_mp_head);
21265 	} else {
21266 		putnext(ire->ire_stq, md_mp_head);
21267 	}
21268 
21269 	/* we're done for TCP/IPv4 */
21270 	if (tcp->tcp_ipversion == IPV4_VERSION)
21271 		return;
21272 
21273 	nce = ire->ire_nce;
21274 
21275 	ASSERT(nce != NULL);
21276 	ASSERT(!(nce->nce_flags & (NCE_F_NONUD|NCE_F_PERMANENT)));
21277 	ASSERT(nce->nce_state != ND_INCOMPLETE);
21278 
21279 	/* reachability confirmation? */
21280 	if (*rconfirm) {
21281 		nce->nce_last = TICK_TO_MSEC(lbolt64);
21282 		if (nce->nce_state != ND_REACHABLE) {
21283 			mutex_enter(&nce->nce_lock);
21284 			nce->nce_state = ND_REACHABLE;
21285 			nce->nce_pcnt = ND_MAX_UNICAST_SOLICIT;
21286 			mutex_exit(&nce->nce_lock);
21287 			(void) untimeout(nce->nce_timeout_id);
21288 			if (ip_debug > 2) {
21289 				/* ip1dbg */
21290 				pr_addr_dbg("tcp_multisend_data: state "
21291 				    "for %s changed to REACHABLE\n",
21292 				    AF_INET6, &ire->ire_addr_v6);
21293 			}
21294 		}
21295 		/* reset transport reachability confirmation */
21296 		*rconfirm = B_FALSE;
21297 	}
21298 
21299 	delta =  TICK_TO_MSEC(lbolt64) - nce->nce_last;
21300 	ip1dbg(("tcp_multisend_data: delta = %" PRId64
21301 	    " ill_reachable_time = %d \n", delta, ill->ill_reachable_time));
21302 
21303 	if (delta > (uint64_t)ill->ill_reachable_time) {
21304 		mutex_enter(&nce->nce_lock);
21305 		switch (nce->nce_state) {
21306 		case ND_REACHABLE:
21307 		case ND_STALE:
21308 			/*
21309 			 * ND_REACHABLE is identical to ND_STALE in this
21310 			 * specific case. If reachable time has expired for
21311 			 * this neighbor (delta is greater than reachable
21312 			 * time), conceptually, the neighbor cache is no
21313 			 * longer in REACHABLE state, but already in STALE
21314 			 * state.  So the correct transition here is to
21315 			 * ND_DELAY.
21316 			 */
21317 			nce->nce_state = ND_DELAY;
21318 			mutex_exit(&nce->nce_lock);
21319 			NDP_RESTART_TIMER(nce,
21320 			    ipst->ips_delay_first_probe_time);
21321 			if (ip_debug > 3) {
21322 				/* ip2dbg */
21323 				pr_addr_dbg("tcp_multisend_data: state "
21324 				    "for %s changed to DELAY\n",
21325 				    AF_INET6, &ire->ire_addr_v6);
21326 			}
21327 			break;
21328 		case ND_DELAY:
21329 		case ND_PROBE:
21330 			mutex_exit(&nce->nce_lock);
21331 			/* Timers have already started */
21332 			break;
21333 		case ND_UNREACHABLE:
21334 			/*
21335 			 * ndp timer has detected that this nce is
21336 			 * unreachable and initiated deleting this nce
21337 			 * and all its associated IREs. This is a race
21338 			 * where we found the ire before it was deleted
21339 			 * and have just sent out a packet using this
21340 			 * unreachable nce.
21341 			 */
21342 			mutex_exit(&nce->nce_lock);
21343 			break;
21344 		default:
21345 			ASSERT(0);
21346 		}
21347 	}
21348 }
21349 
21350 /*
21351  * Derived from tcp_send_data().
21352  */
21353 static void
21354 tcp_lsosend_data(tcp_t *tcp, mblk_t *mp, ire_t *ire, ill_t *ill, const int mss,
21355     int num_lso_seg)
21356 {
21357 	ipha_t		*ipha;
21358 	mblk_t		*ire_fp_mp;
21359 	uint_t		ire_fp_mp_len;
21360 	uint32_t	hcksum_txflags = 0;
21361 	ipaddr_t	src;
21362 	ipaddr_t	dst;
21363 	uint32_t	cksum;
21364 	uint16_t	*up;
21365 	tcp_stack_t	*tcps = tcp->tcp_tcps;
21366 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
21367 
21368 	ASSERT(DB_TYPE(mp) == M_DATA);
21369 	ASSERT(tcp->tcp_state == TCPS_ESTABLISHED);
21370 	ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
21371 	ASSERT(tcp->tcp_connp != NULL);
21372 	ASSERT(CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp));
21373 
21374 	ipha = (ipha_t *)mp->b_rptr;
21375 	src = ipha->ipha_src;
21376 	dst = ipha->ipha_dst;
21377 
21378 	DTRACE_PROBE2(tcp__trace__send, mblk_t *, mp, tcp_t *, tcp);
21379 
21380 	ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED);
21381 	ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident,
21382 	    num_lso_seg);
21383 #ifndef _BIG_ENDIAN
21384 	ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8);
21385 #endif
21386 	if (tcp->tcp_snd_zcopy_aware) {
21387 		if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 ||
21388 		    (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0))
21389 			mp = tcp_zcopy_disable(tcp, mp);
21390 	}
21391 
21392 	if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) {
21393 		ASSERT(ill->ill_hcksum_capab != NULL);
21394 		hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags;
21395 	}
21396 
21397 	/*
21398 	 * Since the TCP checksum should be recalculated by h/w, we can just
21399 	 * zero the checksum field for HCK_FULLCKSUM, or calculate partial
21400 	 * pseudo-header checksum for HCK_PARTIALCKSUM.
21401 	 * The partial pseudo-header excludes TCP length, that was calculated
21402 	 * in tcp_send(), so to zero *up before further processing.
21403 	 */
21404 	cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF);
21405 
21406 	up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH);
21407 	*up = 0;
21408 
21409 	IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up,
21410 	    IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum);
21411 
21412 	/*
21413 	 * Append LSO flag to DB_LSOFLAGS(mp) and set the mss to DB_LSOMSS(mp).
21414 	 */
21415 	DB_LSOFLAGS(mp) |= HW_LSO;
21416 	DB_LSOMSS(mp) = mss;
21417 
21418 	ipha->ipha_fragment_offset_and_flags |=
21419 	    (uint32_t)htons(ire->ire_frag_flag);
21420 
21421 	ire_fp_mp = ire->ire_nce->nce_fp_mp;
21422 	ire_fp_mp_len = MBLKL(ire_fp_mp);
21423 	ASSERT(DB_TYPE(ire_fp_mp) == M_DATA);
21424 	mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len;
21425 	bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len);
21426 
21427 	UPDATE_OB_PKT_COUNT(ire);
21428 	ire->ire_last_used_time = lbolt;
21429 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests);
21430 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits);
21431 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets,
21432 	    ntohs(ipha->ipha_length));
21433 
21434 	if (ILL_DLS_CAPABLE(ill)) {
21435 		/*
21436 		 * Send the packet directly to DLD, where it may be queued
21437 		 * depending on the availability of transmit resources at
21438 		 * the media layer.
21439 		 */
21440 		IP_DLS_ILL_TX(ill, ipha, mp, ipst);
21441 	} else {
21442 		ill_t *out_ill = (ill_t *)ire->ire_stq->q_ptr;
21443 		DTRACE_PROBE4(ip4__physical__out__start,
21444 		    ill_t *, NULL, ill_t *, out_ill,
21445 		    ipha_t *, ipha, mblk_t *, mp);
21446 		FW_HOOKS(ipst->ips_ip4_physical_out_event,
21447 		    ipst->ips_ipv4firewall_physical_out,
21448 		    NULL, out_ill, ipha, mp, mp, 0, ipst);
21449 		DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp);
21450 
21451 		if (mp != NULL) {
21452 			DTRACE_IP_FASTPATH(mp, ipha, out_ill, ipha, NULL);
21453 			putnext(ire->ire_stq, mp);
21454 		}
21455 	}
21456 }
21457 
21458 /*
21459  * tcp_send() is called by tcp_wput_data() for non-Multidata transmission
21460  * scheme, and returns one of the following:
21461  *
21462  * -1 = failed allocation.
21463  *  0 = success; burst count reached, or usable send window is too small,
21464  *      and that we'd rather wait until later before sending again.
21465  *  1 = success; we are called from tcp_multisend(), and both usable send
21466  *      window and tail_unsent are greater than the MDT threshold, and thus
21467  *      Multidata Transmit should be used instead.
21468  */
21469 static int
21470 tcp_send(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len,
21471     const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable,
21472     uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
21473     const int mdt_thres)
21474 {
21475 	int num_burst_seg = tcp->tcp_snd_burst;
21476 	ire_t		*ire = NULL;
21477 	ill_t		*ill = NULL;
21478 	mblk_t		*ire_fp_mp = NULL;
21479 	uint_t		ire_fp_mp_len = 0;
21480 	int		num_lso_seg = 1;
21481 	uint_t		lso_usable;
21482 	boolean_t	do_lso_send = B_FALSE;
21483 	tcp_stack_t	*tcps = tcp->tcp_tcps;
21484 
21485 	/*
21486 	 * Check LSO capability before any further work. And the similar check
21487 	 * need to be done in for(;;) loop.
21488 	 * LSO will be deployed when therer is more than one mss of available
21489 	 * data and a burst transmission is allowed.
21490 	 */
21491 	if (tcp->tcp_lso &&
21492 	    (tcp->tcp_valid_bits == 0 ||
21493 	    tcp->tcp_valid_bits == TCP_FSS_VALID) &&
21494 	    num_burst_seg >= 2 && (*usable - 1) / mss >= 1) {
21495 		/*
21496 		 * Try to find usable IRE/ILL and do basic check to the ILL.
21497 		 */
21498 		if (tcp_send_find_ire_ill(tcp, NULL, &ire, &ill)) {
21499 			/*
21500 			 * Enable LSO with this transmission.
21501 			 * Since IRE has been hold in
21502 			 * tcp_send_find_ire_ill(), IRE_REFRELE(ire)
21503 			 * should be called before return.
21504 			 */
21505 			do_lso_send = B_TRUE;
21506 			ire_fp_mp = ire->ire_nce->nce_fp_mp;
21507 			ire_fp_mp_len = MBLKL(ire_fp_mp);
21508 			/* Round up to multiple of 4 */
21509 			ire_fp_mp_len = ((ire_fp_mp_len + 3) / 4) * 4;
21510 		} else {
21511 			do_lso_send = B_FALSE;
21512 			ill = NULL;
21513 		}
21514 	}
21515 
21516 	for (;;) {
21517 		struct datab	*db;
21518 		tcph_t		*tcph;
21519 		uint32_t	sum;
21520 		mblk_t		*mp, *mp1;
21521 		uchar_t		*rptr;
21522 		int		len;
21523 
21524 		/*
21525 		 * If we're called by tcp_multisend(), and the amount of
21526 		 * sendable data as well as the size of current xmit_tail
21527 		 * is beyond the MDT threshold, return to the caller and
21528 		 * let the large data transmit be done using MDT.
21529 		 */
21530 		if (*usable > 0 && *usable > mdt_thres &&
21531 		    (*tail_unsent > mdt_thres || (*tail_unsent == 0 &&
21532 		    MBLKL((*xmit_tail)->b_cont) > mdt_thres))) {
21533 			ASSERT(tcp->tcp_mdt);
21534 			return (1);	/* success; do large send */
21535 		}
21536 
21537 		if (num_burst_seg == 0)
21538 			break;		/* success; burst count reached */
21539 
21540 		/*
21541 		 * Calculate the maximum payload length we can send in *one*
21542 		 * time.
21543 		 */
21544 		if (do_lso_send) {
21545 			/*
21546 			 * Check whether need to do LSO any more.
21547 			 */
21548 			if (num_burst_seg >= 2 && (*usable - 1) / mss >= 1) {
21549 				lso_usable = MIN(tcp->tcp_lso_max, *usable);
21550 				lso_usable = MIN(lso_usable,
21551 				    num_burst_seg * mss);
21552 
21553 				num_lso_seg = lso_usable / mss;
21554 				if (lso_usable % mss) {
21555 					num_lso_seg++;
21556 					tcp->tcp_last_sent_len = (ushort_t)
21557 					    (lso_usable % mss);
21558 				} else {
21559 					tcp->tcp_last_sent_len = (ushort_t)mss;
21560 				}
21561 			} else {
21562 				do_lso_send = B_FALSE;
21563 				num_lso_seg = 1;
21564 				lso_usable = mss;
21565 			}
21566 		}
21567 
21568 		ASSERT(num_lso_seg <= IP_MAXPACKET / mss + 1);
21569 
21570 		/*
21571 		 * Adjust num_burst_seg here.
21572 		 */
21573 		num_burst_seg -= num_lso_seg;
21574 
21575 		len = mss;
21576 		if (len > *usable) {
21577 			ASSERT(do_lso_send == B_FALSE);
21578 
21579 			len = *usable;
21580 			if (len <= 0) {
21581 				/* Terminate the loop */
21582 				break;	/* success; too small */
21583 			}
21584 			/*
21585 			 * Sender silly-window avoidance.
21586 			 * Ignore this if we are going to send a
21587 			 * zero window probe out.
21588 			 *
21589 			 * TODO: force data into microscopic window?
21590 			 *	==> (!pushed || (unsent > usable))
21591 			 */
21592 			if (len < (tcp->tcp_max_swnd >> 1) &&
21593 			    (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) > len &&
21594 			    !((tcp->tcp_valid_bits & TCP_URG_VALID) &&
21595 			    len == 1) && (! tcp->tcp_zero_win_probe)) {
21596 				/*
21597 				 * If the retransmit timer is not running
21598 				 * we start it so that we will retransmit
21599 				 * in the case when the the receiver has
21600 				 * decremented the window.
21601 				 */
21602 				if (*snxt == tcp->tcp_snxt &&
21603 				    *snxt == tcp->tcp_suna) {
21604 					/*
21605 					 * We are not supposed to send
21606 					 * anything.  So let's wait a little
21607 					 * bit longer before breaking SWS
21608 					 * avoidance.
21609 					 *
21610 					 * What should the value be?
21611 					 * Suggestion: MAX(init rexmit time,
21612 					 * tcp->tcp_rto)
21613 					 */
21614 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
21615 				}
21616 				break;	/* success; too small */
21617 			}
21618 		}
21619 
21620 		tcph = tcp->tcp_tcph;
21621 
21622 		/*
21623 		 * The reason to adjust len here is that we need to set flags
21624 		 * and calculate checksum.
21625 		 */
21626 		if (do_lso_send)
21627 			len = lso_usable;
21628 
21629 		*usable -= len; /* Approximate - can be adjusted later */
21630 		if (*usable > 0)
21631 			tcph->th_flags[0] = TH_ACK;
21632 		else
21633 			tcph->th_flags[0] = (TH_ACK | TH_PUSH);
21634 
21635 		/*
21636 		 * Prime pump for IP's checksumming on our behalf
21637 		 * Include the adjustment for a source route if any.
21638 		 */
21639 		sum = len + tcp_tcp_hdr_len + tcp->tcp_sum;
21640 		sum = (sum >> 16) + (sum & 0xFFFF);
21641 		U16_TO_ABE16(sum, tcph->th_sum);
21642 
21643 		U32_TO_ABE32(*snxt, tcph->th_seq);
21644 
21645 		/*
21646 		 * Branch off to tcp_xmit_mp() if any of the VALID bits is
21647 		 * set.  For the case when TCP_FSS_VALID is the only valid
21648 		 * bit (normal active close), branch off only when we think
21649 		 * that the FIN flag needs to be set.  Note for this case,
21650 		 * that (snxt + len) may not reflect the actual seg_len,
21651 		 * as len may be further reduced in tcp_xmit_mp().  If len
21652 		 * gets modified, we will end up here again.
21653 		 */
21654 		if (tcp->tcp_valid_bits != 0 &&
21655 		    (tcp->tcp_valid_bits != TCP_FSS_VALID ||
21656 		    ((*snxt + len) == tcp->tcp_fss))) {
21657 			uchar_t		*prev_rptr;
21658 			uint32_t	prev_snxt = tcp->tcp_snxt;
21659 
21660 			if (*tail_unsent == 0) {
21661 				ASSERT((*xmit_tail)->b_cont != NULL);
21662 				*xmit_tail = (*xmit_tail)->b_cont;
21663 				prev_rptr = (*xmit_tail)->b_rptr;
21664 				*tail_unsent = (int)((*xmit_tail)->b_wptr -
21665 				    (*xmit_tail)->b_rptr);
21666 			} else {
21667 				prev_rptr = (*xmit_tail)->b_rptr;
21668 				(*xmit_tail)->b_rptr = (*xmit_tail)->b_wptr -
21669 				    *tail_unsent;
21670 			}
21671 			mp = tcp_xmit_mp(tcp, *xmit_tail, len, NULL, NULL,
21672 			    *snxt, B_FALSE, (uint32_t *)&len, B_FALSE);
21673 			/* Restore tcp_snxt so we get amount sent right. */
21674 			tcp->tcp_snxt = prev_snxt;
21675 			if (prev_rptr == (*xmit_tail)->b_rptr) {
21676 				/*
21677 				 * If the previous timestamp is still in use,
21678 				 * don't stomp on it.
21679 				 */
21680 				if ((*xmit_tail)->b_next == NULL) {
21681 					(*xmit_tail)->b_prev = local_time;
21682 					(*xmit_tail)->b_next =
21683 					    (mblk_t *)(uintptr_t)(*snxt);
21684 				}
21685 			} else
21686 				(*xmit_tail)->b_rptr = prev_rptr;
21687 
21688 			if (mp == NULL) {
21689 				if (ire != NULL)
21690 					IRE_REFRELE(ire);
21691 				return (-1);
21692 			}
21693 			mp1 = mp->b_cont;
21694 
21695 			if (len <= mss) /* LSO is unusable (!do_lso_send) */
21696 				tcp->tcp_last_sent_len = (ushort_t)len;
21697 			while (mp1->b_cont) {
21698 				*xmit_tail = (*xmit_tail)->b_cont;
21699 				(*xmit_tail)->b_prev = local_time;
21700 				(*xmit_tail)->b_next =
21701 				    (mblk_t *)(uintptr_t)(*snxt);
21702 				mp1 = mp1->b_cont;
21703 			}
21704 			*snxt += len;
21705 			*tail_unsent = (*xmit_tail)->b_wptr - mp1->b_wptr;
21706 			BUMP_LOCAL(tcp->tcp_obsegs);
21707 			BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs);
21708 			UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len);
21709 			tcp_send_data(tcp, q, mp);
21710 			continue;
21711 		}
21712 
21713 		*snxt += len;	/* Adjust later if we don't send all of len */
21714 		BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs);
21715 		UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len);
21716 
21717 		if (*tail_unsent) {
21718 			/* Are the bytes above us in flight? */
21719 			rptr = (*xmit_tail)->b_wptr - *tail_unsent;
21720 			if (rptr != (*xmit_tail)->b_rptr) {
21721 				*tail_unsent -= len;
21722 				if (len <= mss) /* LSO is unusable */
21723 					tcp->tcp_last_sent_len = (ushort_t)len;
21724 				len += tcp_hdr_len;
21725 				if (tcp->tcp_ipversion == IPV4_VERSION)
21726 					tcp->tcp_ipha->ipha_length = htons(len);
21727 				else
21728 					tcp->tcp_ip6h->ip6_plen =
21729 					    htons(len -
21730 					    ((char *)&tcp->tcp_ip6h[1] -
21731 					    tcp->tcp_iphc));
21732 				mp = dupb(*xmit_tail);
21733 				if (mp == NULL) {
21734 					if (ire != NULL)
21735 						IRE_REFRELE(ire);
21736 					return (-1);	/* out_of_mem */
21737 				}
21738 				mp->b_rptr = rptr;
21739 				/*
21740 				 * If the old timestamp is no longer in use,
21741 				 * sample a new timestamp now.
21742 				 */
21743 				if ((*xmit_tail)->b_next == NULL) {
21744 					(*xmit_tail)->b_prev = local_time;
21745 					(*xmit_tail)->b_next =
21746 					    (mblk_t *)(uintptr_t)(*snxt-len);
21747 				}
21748 				goto must_alloc;
21749 			}
21750 		} else {
21751 			*xmit_tail = (*xmit_tail)->b_cont;
21752 			ASSERT((uintptr_t)((*xmit_tail)->b_wptr -
21753 			    (*xmit_tail)->b_rptr) <= (uintptr_t)INT_MAX);
21754 			*tail_unsent = (int)((*xmit_tail)->b_wptr -
21755 			    (*xmit_tail)->b_rptr);
21756 		}
21757 
21758 		(*xmit_tail)->b_prev = local_time;
21759 		(*xmit_tail)->b_next = (mblk_t *)(uintptr_t)(*snxt - len);
21760 
21761 		*tail_unsent -= len;
21762 		if (len <= mss) /* LSO is unusable (!do_lso_send) */
21763 			tcp->tcp_last_sent_len = (ushort_t)len;
21764 
21765 		len += tcp_hdr_len;
21766 		if (tcp->tcp_ipversion == IPV4_VERSION)
21767 			tcp->tcp_ipha->ipha_length = htons(len);
21768 		else
21769 			tcp->tcp_ip6h->ip6_plen = htons(len -
21770 			    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
21771 
21772 		mp = dupb(*xmit_tail);
21773 		if (mp == NULL) {
21774 			if (ire != NULL)
21775 				IRE_REFRELE(ire);
21776 			return (-1);	/* out_of_mem */
21777 		}
21778 
21779 		len = tcp_hdr_len;
21780 		/*
21781 		 * There are four reasons to allocate a new hdr mblk:
21782 		 *  1) The bytes above us are in use by another packet
21783 		 *  2) We don't have good alignment
21784 		 *  3) The mblk is being shared
21785 		 *  4) We don't have enough room for a header
21786 		 */
21787 		rptr = mp->b_rptr - len;
21788 		if (!OK_32PTR(rptr) ||
21789 		    ((db = mp->b_datap), db->db_ref != 2) ||
21790 		    rptr < db->db_base + ire_fp_mp_len) {
21791 			/* NOTE: we assume allocb returns an OK_32PTR */
21792 
21793 		must_alloc:;
21794 			mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH +
21795 			    tcps->tcps_wroff_xtra + ire_fp_mp_len, BPRI_MED);
21796 			if (mp1 == NULL) {
21797 				freemsg(mp);
21798 				if (ire != NULL)
21799 					IRE_REFRELE(ire);
21800 				return (-1);	/* out_of_mem */
21801 			}
21802 			mp1->b_cont = mp;
21803 			mp = mp1;
21804 			/* Leave room for Link Level header */
21805 			len = tcp_hdr_len;
21806 			rptr =
21807 			    &mp->b_rptr[tcps->tcps_wroff_xtra + ire_fp_mp_len];
21808 			mp->b_wptr = &rptr[len];
21809 		}
21810 
21811 		/*
21812 		 * Fill in the header using the template header, and add
21813 		 * options such as time-stamp, ECN and/or SACK, as needed.
21814 		 */
21815 		tcp_fill_header(tcp, rptr, (clock_t)local_time, num_sack_blk);
21816 
21817 		mp->b_rptr = rptr;
21818 
21819 		if (*tail_unsent) {
21820 			int spill = *tail_unsent;
21821 
21822 			mp1 = mp->b_cont;
21823 			if (mp1 == NULL)
21824 				mp1 = mp;
21825 
21826 			/*
21827 			 * If we're a little short, tack on more mblks until
21828 			 * there is no more spillover.
21829 			 */
21830 			while (spill < 0) {
21831 				mblk_t *nmp;
21832 				int nmpsz;
21833 
21834 				nmp = (*xmit_tail)->b_cont;
21835 				nmpsz = MBLKL(nmp);
21836 
21837 				/*
21838 				 * Excess data in mblk; can we split it?
21839 				 * If MDT is enabled for the connection,
21840 				 * keep on splitting as this is a transient
21841 				 * send path.
21842 				 */
21843 				if (!do_lso_send && !tcp->tcp_mdt &&
21844 				    (spill + nmpsz > 0)) {
21845 					/*
21846 					 * Don't split if stream head was
21847 					 * told to break up larger writes
21848 					 * into smaller ones.
21849 					 */
21850 					if (tcp->tcp_maxpsz > 0)
21851 						break;
21852 
21853 					/*
21854 					 * Next mblk is less than SMSS/2
21855 					 * rounded up to nearest 64-byte;
21856 					 * let it get sent as part of the
21857 					 * next segment.
21858 					 */
21859 					if (tcp->tcp_localnet &&
21860 					    !tcp->tcp_cork &&
21861 					    (nmpsz < roundup((mss >> 1), 64)))
21862 						break;
21863 				}
21864 
21865 				*xmit_tail = nmp;
21866 				ASSERT((uintptr_t)nmpsz <= (uintptr_t)INT_MAX);
21867 				/* Stash for rtt use later */
21868 				(*xmit_tail)->b_prev = local_time;
21869 				(*xmit_tail)->b_next =
21870 				    (mblk_t *)(uintptr_t)(*snxt - len);
21871 				mp1->b_cont = dupb(*xmit_tail);
21872 				mp1 = mp1->b_cont;
21873 
21874 				spill += nmpsz;
21875 				if (mp1 == NULL) {
21876 					*tail_unsent = spill;
21877 					freemsg(mp);
21878 					if (ire != NULL)
21879 						IRE_REFRELE(ire);
21880 					return (-1);	/* out_of_mem */
21881 				}
21882 			}
21883 
21884 			/* Trim back any surplus on the last mblk */
21885 			if (spill >= 0) {
21886 				mp1->b_wptr -= spill;
21887 				*tail_unsent = spill;
21888 			} else {
21889 				/*
21890 				 * We did not send everything we could in
21891 				 * order to remain within the b_cont limit.
21892 				 */
21893 				*usable -= spill;
21894 				*snxt += spill;
21895 				tcp->tcp_last_sent_len += spill;
21896 				UPDATE_MIB(&tcps->tcps_mib,
21897 				    tcpOutDataBytes, spill);
21898 				/*
21899 				 * Adjust the checksum
21900 				 */
21901 				tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
21902 				sum += spill;
21903 				sum = (sum >> 16) + (sum & 0xFFFF);
21904 				U16_TO_ABE16(sum, tcph->th_sum);
21905 				if (tcp->tcp_ipversion == IPV4_VERSION) {
21906 					sum = ntohs(
21907 					    ((ipha_t *)rptr)->ipha_length) +
21908 					    spill;
21909 					((ipha_t *)rptr)->ipha_length =
21910 					    htons(sum);
21911 				} else {
21912 					sum = ntohs(
21913 					    ((ip6_t *)rptr)->ip6_plen) +
21914 					    spill;
21915 					((ip6_t *)rptr)->ip6_plen =
21916 					    htons(sum);
21917 				}
21918 				*tail_unsent = 0;
21919 			}
21920 		}
21921 		if (tcp->tcp_ip_forward_progress) {
21922 			ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
21923 			*(uint32_t *)mp->b_rptr  |= IP_FORWARD_PROG;
21924 			tcp->tcp_ip_forward_progress = B_FALSE;
21925 		}
21926 
21927 		if (do_lso_send) {
21928 			tcp_lsosend_data(tcp, mp, ire, ill, mss,
21929 			    num_lso_seg);
21930 			tcp->tcp_obsegs += num_lso_seg;
21931 
21932 			TCP_STAT(tcps, tcp_lso_times);
21933 			TCP_STAT_UPDATE(tcps, tcp_lso_pkt_out, num_lso_seg);
21934 		} else {
21935 			tcp_send_data(tcp, q, mp);
21936 			BUMP_LOCAL(tcp->tcp_obsegs);
21937 		}
21938 	}
21939 
21940 	if (ire != NULL)
21941 		IRE_REFRELE(ire);
21942 	return (0);
21943 }
21944 
21945 /* Unlink and return any mblk that looks like it contains a MDT info */
21946 static mblk_t *
21947 tcp_mdt_info_mp(mblk_t *mp)
21948 {
21949 	mblk_t	*prev_mp;
21950 
21951 	for (;;) {
21952 		prev_mp = mp;
21953 		/* no more to process? */
21954 		if ((mp = mp->b_cont) == NULL)
21955 			break;
21956 
21957 		switch (DB_TYPE(mp)) {
21958 		case M_CTL:
21959 			if (*(uint32_t *)mp->b_rptr != MDT_IOC_INFO_UPDATE)
21960 				continue;
21961 			ASSERT(prev_mp != NULL);
21962 			prev_mp->b_cont = mp->b_cont;
21963 			mp->b_cont = NULL;
21964 			return (mp);
21965 		default:
21966 			break;
21967 		}
21968 	}
21969 	return (mp);
21970 }
21971 
21972 /* MDT info update routine, called when IP notifies us about MDT */
21973 static void
21974 tcp_mdt_update(tcp_t *tcp, ill_mdt_capab_t *mdt_capab, boolean_t first)
21975 {
21976 	boolean_t prev_state;
21977 	tcp_stack_t	*tcps = tcp->tcp_tcps;
21978 
21979 	/*
21980 	 * IP is telling us to abort MDT on this connection?  We know
21981 	 * this because the capability is only turned off when IP
21982 	 * encounters some pathological cases, e.g. link-layer change
21983 	 * where the new driver doesn't support MDT, or in situation
21984 	 * where MDT usage on the link-layer has been switched off.
21985 	 * IP would not have sent us the initial MDT_IOC_INFO_UPDATE
21986 	 * if the link-layer doesn't support MDT, and if it does, it
21987 	 * will indicate that the feature is to be turned on.
21988 	 */
21989 	prev_state = tcp->tcp_mdt;
21990 	tcp->tcp_mdt = (mdt_capab->ill_mdt_on != 0);
21991 	if (!tcp->tcp_mdt && !first) {
21992 		TCP_STAT(tcps, tcp_mdt_conn_halted3);
21993 		ip1dbg(("tcp_mdt_update: disabling MDT for connp %p\n",
21994 		    (void *)tcp->tcp_connp));
21995 	}
21996 
21997 	/*
21998 	 * We currently only support MDT on simple TCP/{IPv4,IPv6},
21999 	 * so disable MDT otherwise.  The checks are done here
22000 	 * and in tcp_wput_data().
22001 	 */
22002 	if (tcp->tcp_mdt &&
22003 	    (tcp->tcp_ipversion == IPV4_VERSION &&
22004 	    tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) ||
22005 	    (tcp->tcp_ipversion == IPV6_VERSION &&
22006 	    tcp->tcp_ip_hdr_len != IPV6_HDR_LEN))
22007 		tcp->tcp_mdt = B_FALSE;
22008 
22009 	if (tcp->tcp_mdt) {
22010 		if (mdt_capab->ill_mdt_version != MDT_VERSION_2) {
22011 			cmn_err(CE_NOTE, "tcp_mdt_update: unknown MDT "
22012 			    "version (%d), expected version is %d",
22013 			    mdt_capab->ill_mdt_version, MDT_VERSION_2);
22014 			tcp->tcp_mdt = B_FALSE;
22015 			return;
22016 		}
22017 
22018 		/*
22019 		 * We need the driver to be able to handle at least three
22020 		 * spans per packet in order for tcp MDT to be utilized.
22021 		 * The first is for the header portion, while the rest are
22022 		 * needed to handle a packet that straddles across two
22023 		 * virtually non-contiguous buffers; a typical tcp packet
22024 		 * therefore consists of only two spans.  Note that we take
22025 		 * a zero as "don't care".
22026 		 */
22027 		if (mdt_capab->ill_mdt_span_limit > 0 &&
22028 		    mdt_capab->ill_mdt_span_limit < 3) {
22029 			tcp->tcp_mdt = B_FALSE;
22030 			return;
22031 		}
22032 
22033 		/* a zero means driver wants default value */
22034 		tcp->tcp_mdt_max_pld = MIN(mdt_capab->ill_mdt_max_pld,
22035 		    tcps->tcps_mdt_max_pbufs);
22036 		if (tcp->tcp_mdt_max_pld == 0)
22037 			tcp->tcp_mdt_max_pld = tcps->tcps_mdt_max_pbufs;
22038 
22039 		/* ensure 32-bit alignment */
22040 		tcp->tcp_mdt_hdr_head = roundup(MAX(tcps->tcps_mdt_hdr_head_min,
22041 		    mdt_capab->ill_mdt_hdr_head), 4);
22042 		tcp->tcp_mdt_hdr_tail = roundup(MAX(tcps->tcps_mdt_hdr_tail_min,
22043 		    mdt_capab->ill_mdt_hdr_tail), 4);
22044 
22045 		if (!first && !prev_state) {
22046 			TCP_STAT(tcps, tcp_mdt_conn_resumed2);
22047 			ip1dbg(("tcp_mdt_update: reenabling MDT for connp %p\n",
22048 			    (void *)tcp->tcp_connp));
22049 		}
22050 	}
22051 }
22052 
22053 /* Unlink and return any mblk that looks like it contains a LSO info */
22054 static mblk_t *
22055 tcp_lso_info_mp(mblk_t *mp)
22056 {
22057 	mblk_t	*prev_mp;
22058 
22059 	for (;;) {
22060 		prev_mp = mp;
22061 		/* no more to process? */
22062 		if ((mp = mp->b_cont) == NULL)
22063 			break;
22064 
22065 		switch (DB_TYPE(mp)) {
22066 		case M_CTL:
22067 			if (*(uint32_t *)mp->b_rptr != LSO_IOC_INFO_UPDATE)
22068 				continue;
22069 			ASSERT(prev_mp != NULL);
22070 			prev_mp->b_cont = mp->b_cont;
22071 			mp->b_cont = NULL;
22072 			return (mp);
22073 		default:
22074 			break;
22075 		}
22076 	}
22077 
22078 	return (mp);
22079 }
22080 
22081 /* LSO info update routine, called when IP notifies us about LSO */
22082 static void
22083 tcp_lso_update(tcp_t *tcp, ill_lso_capab_t *lso_capab)
22084 {
22085 	tcp_stack_t *tcps = tcp->tcp_tcps;
22086 
22087 	/*
22088 	 * IP is telling us to abort LSO on this connection?  We know
22089 	 * this because the capability is only turned off when IP
22090 	 * encounters some pathological cases, e.g. link-layer change
22091 	 * where the new NIC/driver doesn't support LSO, or in situation
22092 	 * where LSO usage on the link-layer has been switched off.
22093 	 * IP would not have sent us the initial LSO_IOC_INFO_UPDATE
22094 	 * if the link-layer doesn't support LSO, and if it does, it
22095 	 * will indicate that the feature is to be turned on.
22096 	 */
22097 	tcp->tcp_lso = (lso_capab->ill_lso_on != 0);
22098 	TCP_STAT(tcps, tcp_lso_enabled);
22099 
22100 	/*
22101 	 * We currently only support LSO on simple TCP/IPv4,
22102 	 * so disable LSO otherwise.  The checks are done here
22103 	 * and in tcp_wput_data().
22104 	 */
22105 	if (tcp->tcp_lso &&
22106 	    (tcp->tcp_ipversion == IPV4_VERSION &&
22107 	    tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) ||
22108 	    (tcp->tcp_ipversion == IPV6_VERSION)) {
22109 		tcp->tcp_lso = B_FALSE;
22110 		TCP_STAT(tcps, tcp_lso_disabled);
22111 	} else {
22112 		tcp->tcp_lso_max = MIN(TCP_MAX_LSO_LENGTH,
22113 		    lso_capab->ill_lso_max);
22114 	}
22115 }
22116 
22117 static void
22118 tcp_ire_ill_check(tcp_t *tcp, ire_t *ire, ill_t *ill, boolean_t check_lso_mdt)
22119 {
22120 	conn_t *connp = tcp->tcp_connp;
22121 	tcp_stack_t	*tcps = tcp->tcp_tcps;
22122 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
22123 
22124 	ASSERT(ire != NULL);
22125 
22126 	/*
22127 	 * We may be in the fastpath here, and although we essentially do
22128 	 * similar checks as in ip_bind_connected{_v6}/ip_xxinfo_return,
22129 	 * we try to keep things as brief as possible.  After all, these
22130 	 * are only best-effort checks, and we do more thorough ones prior
22131 	 * to calling tcp_send()/tcp_multisend().
22132 	 */
22133 	if ((ipst->ips_ip_lso_outbound || ipst->ips_ip_multidata_outbound) &&
22134 	    check_lso_mdt && !(ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK)) &&
22135 	    ill != NULL && !CONN_IPSEC_OUT_ENCAPSULATED(connp) &&
22136 	    !(ire->ire_flags & RTF_MULTIRT) &&
22137 	    !IPP_ENABLED(IPP_LOCAL_OUT, ipst) &&
22138 	    CONN_IS_LSO_MD_FASTPATH(connp)) {
22139 		if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) {
22140 			/* Cache the result */
22141 			connp->conn_lso_ok = B_TRUE;
22142 
22143 			ASSERT(ill->ill_lso_capab != NULL);
22144 			if (!ill->ill_lso_capab->ill_lso_on) {
22145 				ill->ill_lso_capab->ill_lso_on = 1;
22146 				ip1dbg(("tcp_ire_ill_check: connp %p enables "
22147 				    "LSO for interface %s\n", (void *)connp,
22148 				    ill->ill_name));
22149 			}
22150 			tcp_lso_update(tcp, ill->ill_lso_capab);
22151 		} else if (ipst->ips_ip_multidata_outbound &&
22152 		    ILL_MDT_CAPABLE(ill)) {
22153 			/* Cache the result */
22154 			connp->conn_mdt_ok = B_TRUE;
22155 
22156 			ASSERT(ill->ill_mdt_capab != NULL);
22157 			if (!ill->ill_mdt_capab->ill_mdt_on) {
22158 				ill->ill_mdt_capab->ill_mdt_on = 1;
22159 				ip1dbg(("tcp_ire_ill_check: connp %p enables "
22160 				    "MDT for interface %s\n", (void *)connp,
22161 				    ill->ill_name));
22162 			}
22163 			tcp_mdt_update(tcp, ill->ill_mdt_capab, B_TRUE);
22164 		}
22165 	}
22166 
22167 	/*
22168 	 * The goal is to reduce the number of generated tcp segments by
22169 	 * setting the maxpsz multiplier to 0; this will have an affect on
22170 	 * tcp_maxpsz_set().  With this behavior, tcp will pack more data
22171 	 * into each packet, up to SMSS bytes.  Doing this reduces the number
22172 	 * of outbound segments and incoming ACKs, thus allowing for better
22173 	 * network and system performance.  In contrast the legacy behavior
22174 	 * may result in sending less than SMSS size, because the last mblk
22175 	 * for some packets may have more data than needed to make up SMSS,
22176 	 * and the legacy code refused to "split" it.
22177 	 *
22178 	 * We apply the new behavior on following situations:
22179 	 *
22180 	 *   1) Loopback connections,
22181 	 *   2) Connections in which the remote peer is not on local subnet,
22182 	 *   3) Local subnet connections over the bge interface (see below).
22183 	 *
22184 	 * Ideally, we would like this behavior to apply for interfaces other
22185 	 * than bge.  However, doing so would negatively impact drivers which
22186 	 * perform dynamic mapping and unmapping of DMA resources, which are
22187 	 * increased by setting the maxpsz multiplier to 0 (more mblks per
22188 	 * packet will be generated by tcp).  The bge driver does not suffer
22189 	 * from this, as it copies the mblks into pre-mapped buffers, and
22190 	 * therefore does not require more I/O resources than before.
22191 	 *
22192 	 * Otherwise, this behavior is present on all network interfaces when
22193 	 * the destination endpoint is non-local, since reducing the number
22194 	 * of packets in general is good for the network.
22195 	 *
22196 	 * TODO We need to remove this hard-coded conditional for bge once
22197 	 *	a better "self-tuning" mechanism, or a way to comprehend
22198 	 *	the driver transmit strategy is devised.  Until the solution
22199 	 *	is found and well understood, we live with this hack.
22200 	 */
22201 	if (!tcp_static_maxpsz &&
22202 	    (tcp->tcp_loopback || !tcp->tcp_localnet ||
22203 	    (ill->ill_name_length > 3 && bcmp(ill->ill_name, "bge", 3) == 0))) {
22204 		/* override the default value */
22205 		tcp->tcp_maxpsz = 0;
22206 
22207 		ip3dbg(("tcp_ire_ill_check: connp %p tcp_maxpsz %d on "
22208 		    "interface %s\n", (void *)connp, tcp->tcp_maxpsz,
22209 		    ill != NULL ? ill->ill_name : ipif_loopback_name));
22210 	}
22211 
22212 	/* set the stream head parameters accordingly */
22213 	(void) tcp_maxpsz_set(tcp, B_TRUE);
22214 }
22215 
22216 /* tcp_wput_flush is called by tcp_wput_nondata to handle M_FLUSH messages. */
22217 static void
22218 tcp_wput_flush(tcp_t *tcp, mblk_t *mp)
22219 {
22220 	uchar_t	fval = *mp->b_rptr;
22221 	mblk_t	*tail;
22222 	queue_t	*q = tcp->tcp_wq;
22223 
22224 	/* TODO: How should flush interact with urgent data? */
22225 	if ((fval & FLUSHW) && tcp->tcp_xmit_head &&
22226 	    !(tcp->tcp_valid_bits & TCP_URG_VALID)) {
22227 		/*
22228 		 * Flush only data that has not yet been put on the wire.  If
22229 		 * we flush data that we have already transmitted, life, as we
22230 		 * know it, may come to an end.
22231 		 */
22232 		tail = tcp->tcp_xmit_tail;
22233 		tail->b_wptr -= tcp->tcp_xmit_tail_unsent;
22234 		tcp->tcp_xmit_tail_unsent = 0;
22235 		tcp->tcp_unsent = 0;
22236 		if (tail->b_wptr != tail->b_rptr)
22237 			tail = tail->b_cont;
22238 		if (tail) {
22239 			mblk_t **excess = &tcp->tcp_xmit_head;
22240 			for (;;) {
22241 				mblk_t *mp1 = *excess;
22242 				if (mp1 == tail)
22243 					break;
22244 				tcp->tcp_xmit_tail = mp1;
22245 				tcp->tcp_xmit_last = mp1;
22246 				excess = &mp1->b_cont;
22247 			}
22248 			*excess = NULL;
22249 			tcp_close_mpp(&tail);
22250 			if (tcp->tcp_snd_zcopy_aware)
22251 				tcp_zcopy_notify(tcp);
22252 		}
22253 		/*
22254 		 * We have no unsent data, so unsent must be less than
22255 		 * tcp_xmit_lowater, so re-enable flow.
22256 		 */
22257 		mutex_enter(&tcp->tcp_non_sq_lock);
22258 		if (tcp->tcp_flow_stopped) {
22259 			tcp_clrqfull(tcp);
22260 		}
22261 		mutex_exit(&tcp->tcp_non_sq_lock);
22262 	}
22263 	/*
22264 	 * TODO: you can't just flush these, you have to increase rwnd for one
22265 	 * thing.  For another, how should urgent data interact?
22266 	 */
22267 	if (fval & FLUSHR) {
22268 		*mp->b_rptr = fval & ~FLUSHW;
22269 		/* XXX */
22270 		qreply(q, mp);
22271 		return;
22272 	}
22273 	freemsg(mp);
22274 }
22275 
22276 /*
22277  * tcp_wput_iocdata is called by tcp_wput_nondata to handle all M_IOCDATA
22278  * messages.
22279  */
22280 static void
22281 tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp)
22282 {
22283 	mblk_t	*mp1;
22284 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
22285 	STRUCT_HANDLE(strbuf, sb);
22286 	queue_t *q = tcp->tcp_wq;
22287 	int	error;
22288 	uint_t	addrlen;
22289 
22290 	/* Make sure it is one of ours. */
22291 	switch (iocp->ioc_cmd) {
22292 	case TI_GETMYNAME:
22293 	case TI_GETPEERNAME:
22294 		break;
22295 	default:
22296 		CALL_IP_WPUT(tcp->tcp_connp, q, mp);
22297 		return;
22298 	}
22299 	switch (mi_copy_state(q, mp, &mp1)) {
22300 	case -1:
22301 		return;
22302 	case MI_COPY_CASE(MI_COPY_IN, 1):
22303 		break;
22304 	case MI_COPY_CASE(MI_COPY_OUT, 1):
22305 		/* Copy out the strbuf. */
22306 		mi_copyout(q, mp);
22307 		return;
22308 	case MI_COPY_CASE(MI_COPY_OUT, 2):
22309 		/* All done. */
22310 		mi_copy_done(q, mp, 0);
22311 		return;
22312 	default:
22313 		mi_copy_done(q, mp, EPROTO);
22314 		return;
22315 	}
22316 	/* Check alignment of the strbuf */
22317 	if (!OK_32PTR(mp1->b_rptr)) {
22318 		mi_copy_done(q, mp, EINVAL);
22319 		return;
22320 	}
22321 
22322 	STRUCT_SET_HANDLE(sb, iocp->ioc_flag, (void *)mp1->b_rptr);
22323 	addrlen = tcp->tcp_family == AF_INET ? sizeof (sin_t) : sizeof (sin6_t);
22324 	if (STRUCT_FGET(sb, maxlen) < addrlen) {
22325 		mi_copy_done(q, mp, EINVAL);
22326 		return;
22327 	}
22328 
22329 	mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE);
22330 	if (mp1 == NULL)
22331 		return;
22332 
22333 	switch (iocp->ioc_cmd) {
22334 	case TI_GETMYNAME:
22335 		error = tcp_getmyname(tcp, (void *)mp1->b_rptr, &addrlen);
22336 		break;
22337 	case TI_GETPEERNAME:
22338 		error = tcp_getpeername(tcp, (void *)mp1->b_rptr, &addrlen);
22339 		break;
22340 	}
22341 
22342 	if (error != 0) {
22343 		mi_copy_done(q, mp, error);
22344 	} else {
22345 		mp1->b_wptr += addrlen;
22346 		STRUCT_FSET(sb, len, addrlen);
22347 
22348 		/* Copy out the address */
22349 		mi_copyout(q, mp);
22350 	}
22351 }
22352 
22353 /*
22354  * tcp_wput_ioctl is called by tcp_wput_nondata() to handle all M_IOCTL
22355  * messages.
22356  */
22357 /* ARGSUSED */
22358 static void
22359 tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2)
22360 {
22361 	conn_t 	*connp = (conn_t *)arg;
22362 	tcp_t	*tcp = connp->conn_tcp;
22363 	queue_t	*q = tcp->tcp_wq;
22364 	struct iocblk	*iocp;
22365 	tcp_stack_t	*tcps = tcp->tcp_tcps;
22366 
22367 	ASSERT(DB_TYPE(mp) == M_IOCTL);
22368 	/*
22369 	 * Try and ASSERT the minimum possible references on the
22370 	 * conn early enough. Since we are executing on write side,
22371 	 * the connection is obviously not detached and that means
22372 	 * there is a ref each for TCP and IP. Since we are behind
22373 	 * the squeue, the minimum references needed are 3. If the
22374 	 * conn is in classifier hash list, there should be an
22375 	 * extra ref for that (we check both the possibilities).
22376 	 */
22377 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
22378 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
22379 
22380 	iocp = (struct iocblk *)mp->b_rptr;
22381 	switch (iocp->ioc_cmd) {
22382 	case TCP_IOC_DEFAULT_Q:
22383 		/* Wants to be the default wq. */
22384 		if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) {
22385 			iocp->ioc_error = EPERM;
22386 			iocp->ioc_count = 0;
22387 			mp->b_datap->db_type = M_IOCACK;
22388 			qreply(q, mp);
22389 			return;
22390 		}
22391 		tcp_def_q_set(tcp, mp);
22392 		return;
22393 	case _SIOCSOCKFALLBACK:
22394 		/*
22395 		 * Either sockmod is about to be popped and the socket
22396 		 * would now be treated as a plain stream, or a module
22397 		 * is about to be pushed so we could no longer use read-
22398 		 * side synchronous streams for fused loopback tcp.
22399 		 * Drain any queued data and disable direct sockfs
22400 		 * interface from now on.
22401 		 */
22402 		if (!tcp->tcp_issocket) {
22403 			DB_TYPE(mp) = M_IOCNAK;
22404 			iocp->ioc_error = EINVAL;
22405 		} else {
22406 #ifdef	_ILP32
22407 			tcp->tcp_acceptor_id = (t_uscalar_t)RD(q);
22408 #else
22409 			tcp->tcp_acceptor_id = tcp->tcp_connp->conn_dev;
22410 #endif
22411 			/*
22412 			 * Insert this socket into the acceptor hash.
22413 			 * We might need it for T_CONN_RES message
22414 			 */
22415 			tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp);
22416 
22417 			if (tcp->tcp_fused) {
22418 				/*
22419 				 * This is a fused loopback tcp; disable
22420 				 * read-side synchronous streams interface
22421 				 * and drain any queued data.  It is okay
22422 				 * to do this for non-synchronous streams
22423 				 * fused tcp as well.
22424 				 */
22425 				tcp_fuse_disable_pair(tcp, B_FALSE);
22426 			}
22427 			tcp->tcp_issocket = B_FALSE;
22428 			tcp->tcp_sodirect = NULL;
22429 			TCP_STAT(tcps, tcp_sock_fallback);
22430 
22431 			DB_TYPE(mp) = M_IOCACK;
22432 			iocp->ioc_error = 0;
22433 		}
22434 		iocp->ioc_count = 0;
22435 		iocp->ioc_rval = 0;
22436 		qreply(q, mp);
22437 		return;
22438 	}
22439 	CALL_IP_WPUT(connp, q, mp);
22440 }
22441 
22442 /*
22443  * This routine is called by tcp_wput() to handle all TPI requests.
22444  */
22445 /* ARGSUSED */
22446 static void
22447 tcp_wput_proto(void *arg, mblk_t *mp, void *arg2)
22448 {
22449 	conn_t 	*connp = (conn_t *)arg;
22450 	tcp_t	*tcp = connp->conn_tcp;
22451 	union T_primitives *tprim = (union T_primitives *)mp->b_rptr;
22452 	uchar_t *rptr;
22453 	t_scalar_t type;
22454 	int len;
22455 	cred_t *cr = DB_CREDDEF(mp, tcp->tcp_cred);
22456 
22457 	/*
22458 	 * Try and ASSERT the minimum possible references on the
22459 	 * conn early enough. Since we are executing on write side,
22460 	 * the connection is obviously not detached and that means
22461 	 * there is a ref each for TCP and IP. Since we are behind
22462 	 * the squeue, the minimum references needed are 3. If the
22463 	 * conn is in classifier hash list, there should be an
22464 	 * extra ref for that (we check both the possibilities).
22465 	 */
22466 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
22467 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
22468 
22469 	rptr = mp->b_rptr;
22470 	ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
22471 	if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) {
22472 		type = ((union T_primitives *)rptr)->type;
22473 		if (type == T_EXDATA_REQ) {
22474 			uint32_t msize = msgdsize(mp->b_cont);
22475 
22476 			len = msize - 1;
22477 			if (len < 0) {
22478 				freemsg(mp);
22479 				return;
22480 			}
22481 			/*
22482 			 * Try to force urgent data out on the wire.
22483 			 * Even if we have unsent data this will
22484 			 * at least send the urgent flag.
22485 			 * XXX does not handle more flag correctly.
22486 			 */
22487 			len += tcp->tcp_unsent;
22488 			len += tcp->tcp_snxt;
22489 			tcp->tcp_urg = len;
22490 			tcp->tcp_valid_bits |= TCP_URG_VALID;
22491 
22492 			/* Bypass tcp protocol for fused tcp loopback */
22493 			if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize))
22494 				return;
22495 		} else if (type != T_DATA_REQ) {
22496 			goto non_urgent_data;
22497 		}
22498 		/* TODO: options, flags, ... from user */
22499 		/* Set length to zero for reclamation below */
22500 		tcp_wput_data(tcp, mp->b_cont, B_TRUE);
22501 		freeb(mp);
22502 		return;
22503 	} else {
22504 		if (tcp->tcp_debug) {
22505 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
22506 			    "tcp_wput_proto, dropping one...");
22507 		}
22508 		freemsg(mp);
22509 		return;
22510 	}
22511 
22512 non_urgent_data:
22513 
22514 	switch ((int)tprim->type) {
22515 	case T_SSL_PROXY_BIND_REQ:	/* an SSL proxy endpoint bind request */
22516 		/*
22517 		 * save the kssl_ent_t from the next block, and convert this
22518 		 * back to a normal bind_req.
22519 		 */
22520 		if (mp->b_cont != NULL) {
22521 			ASSERT(MBLKL(mp->b_cont) >= sizeof (kssl_ent_t));
22522 
22523 			if (tcp->tcp_kssl_ent != NULL) {
22524 				kssl_release_ent(tcp->tcp_kssl_ent, NULL,
22525 				    KSSL_NO_PROXY);
22526 				tcp->tcp_kssl_ent = NULL;
22527 			}
22528 			bcopy(mp->b_cont->b_rptr, &tcp->tcp_kssl_ent,
22529 			    sizeof (kssl_ent_t));
22530 			kssl_hold_ent(tcp->tcp_kssl_ent);
22531 			freemsg(mp->b_cont);
22532 			mp->b_cont = NULL;
22533 		}
22534 		tprim->type = T_BIND_REQ;
22535 
22536 	/* FALLTHROUGH */
22537 	case O_T_BIND_REQ:	/* bind request */
22538 	case T_BIND_REQ:	/* new semantics bind request */
22539 		tcp_bind(tcp, mp);
22540 		break;
22541 	case T_UNBIND_REQ:	/* unbind request */
22542 		tcp_unbind(tcp, mp);
22543 		break;
22544 	case O_T_CONN_RES:	/* old connection response XXX */
22545 	case T_CONN_RES:	/* connection response */
22546 		tcp_accept(tcp, mp);
22547 		break;
22548 	case T_CONN_REQ:	/* connection request */
22549 		tcp_connect(tcp, mp);
22550 		break;
22551 	case T_DISCON_REQ:	/* disconnect request */
22552 		tcp_disconnect(tcp, mp);
22553 		break;
22554 	case T_CAPABILITY_REQ:
22555 		tcp_capability_req(tcp, mp);	/* capability request */
22556 		break;
22557 	case T_INFO_REQ:	/* information request */
22558 		tcp_info_req(tcp, mp);
22559 		break;
22560 	case T_SVR4_OPTMGMT_REQ:	/* manage options req */
22561 		(void) svr4_optcom_req(tcp->tcp_wq, mp, cr,
22562 		    &tcp_opt_obj, B_TRUE);
22563 		break;
22564 	case T_OPTMGMT_REQ:
22565 		/*
22566 		 * Note:  no support for snmpcom_req() through new
22567 		 * T_OPTMGMT_REQ. See comments in ip.c
22568 		 */
22569 		/* Only IP is allowed to return meaningful value */
22570 		(void) tpi_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj,
22571 		    B_TRUE);
22572 		break;
22573 
22574 	case T_UNITDATA_REQ:	/* unitdata request */
22575 		tcp_err_ack(tcp, mp, TNOTSUPPORT, 0);
22576 		break;
22577 	case T_ORDREL_REQ:	/* orderly release req */
22578 		freemsg(mp);
22579 
22580 		if (tcp->tcp_fused)
22581 			tcp_unfuse(tcp);
22582 
22583 		if (tcp_xmit_end(tcp) != 0) {
22584 			/*
22585 			 * We were crossing FINs and got a reset from
22586 			 * the other side. Just ignore it.
22587 			 */
22588 			if (tcp->tcp_debug) {
22589 				(void) strlog(TCP_MOD_ID, 0, 1,
22590 				    SL_ERROR|SL_TRACE,
22591 				    "tcp_wput_proto, T_ORDREL_REQ out of "
22592 				    "state %s",
22593 				    tcp_display(tcp, NULL,
22594 				    DISP_ADDR_AND_PORT));
22595 			}
22596 		}
22597 		break;
22598 	case T_ADDR_REQ:
22599 		tcp_addr_req(tcp, mp);
22600 		break;
22601 	default:
22602 		if (tcp->tcp_debug) {
22603 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
22604 			    "tcp_wput_proto, bogus TPI msg, type %d",
22605 			    tprim->type);
22606 		}
22607 		/*
22608 		 * We used to M_ERROR.  Sending TNOTSUPPORT gives the user
22609 		 * to recover.
22610 		 */
22611 		tcp_err_ack(tcp, mp, TNOTSUPPORT, 0);
22612 		break;
22613 	}
22614 }
22615 
22616 /*
22617  * The TCP write service routine should never be called...
22618  */
22619 /* ARGSUSED */
22620 static void
22621 tcp_wsrv(queue_t *q)
22622 {
22623 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
22624 
22625 	TCP_STAT(tcps, tcp_wsrv_called);
22626 }
22627 
22628 /* Non overlapping byte exchanger */
22629 static void
22630 tcp_xchg(uchar_t *a, uchar_t *b, int len)
22631 {
22632 	uchar_t	uch;
22633 
22634 	while (len-- > 0) {
22635 		uch = a[len];
22636 		a[len] = b[len];
22637 		b[len] = uch;
22638 	}
22639 }
22640 
22641 /*
22642  * Send out a control packet on the tcp connection specified.  This routine
22643  * is typically called where we need a simple ACK or RST generated.
22644  */
22645 static void
22646 tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, uint32_t ack, int ctl)
22647 {
22648 	uchar_t		*rptr;
22649 	tcph_t		*tcph;
22650 	ipha_t		*ipha = NULL;
22651 	ip6_t		*ip6h = NULL;
22652 	uint32_t	sum;
22653 	int		tcp_hdr_len;
22654 	int		tcp_ip_hdr_len;
22655 	mblk_t		*mp;
22656 	tcp_stack_t	*tcps = tcp->tcp_tcps;
22657 
22658 	/*
22659 	 * Save sum for use in source route later.
22660 	 */
22661 	ASSERT(tcp != NULL);
22662 	sum = tcp->tcp_tcp_hdr_len + tcp->tcp_sum;
22663 	tcp_hdr_len = tcp->tcp_hdr_len;
22664 	tcp_ip_hdr_len = tcp->tcp_ip_hdr_len;
22665 
22666 	/* If a text string is passed in with the request, pass it to strlog. */
22667 	if (str != NULL && tcp->tcp_debug) {
22668 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
22669 		    "tcp_xmit_ctl: '%s', seq 0x%x, ack 0x%x, ctl 0x%x",
22670 		    str, seq, ack, ctl);
22671 	}
22672 	mp = allocb(tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcps->tcps_wroff_xtra,
22673 	    BPRI_MED);
22674 	if (mp == NULL) {
22675 		return;
22676 	}
22677 	rptr = &mp->b_rptr[tcps->tcps_wroff_xtra];
22678 	mp->b_rptr = rptr;
22679 	mp->b_wptr = &rptr[tcp_hdr_len];
22680 	bcopy(tcp->tcp_iphc, rptr, tcp_hdr_len);
22681 
22682 	if (tcp->tcp_ipversion == IPV4_VERSION) {
22683 		ipha = (ipha_t *)rptr;
22684 		ipha->ipha_length = htons(tcp_hdr_len);
22685 	} else {
22686 		ip6h = (ip6_t *)rptr;
22687 		ASSERT(tcp != NULL);
22688 		ip6h->ip6_plen = htons(tcp->tcp_hdr_len -
22689 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
22690 	}
22691 	tcph = (tcph_t *)&rptr[tcp_ip_hdr_len];
22692 	tcph->th_flags[0] = (uint8_t)ctl;
22693 	if (ctl & TH_RST) {
22694 		BUMP_MIB(&tcps->tcps_mib, tcpOutRsts);
22695 		BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
22696 		/*
22697 		 * Don't send TSopt w/ TH_RST packets per RFC 1323.
22698 		 */
22699 		if (tcp->tcp_snd_ts_ok &&
22700 		    tcp->tcp_state > TCPS_SYN_SENT) {
22701 			mp->b_wptr = &rptr[tcp_hdr_len - TCPOPT_REAL_TS_LEN];
22702 			*(mp->b_wptr) = TCPOPT_EOL;
22703 			if (tcp->tcp_ipversion == IPV4_VERSION) {
22704 				ipha->ipha_length = htons(tcp_hdr_len -
22705 				    TCPOPT_REAL_TS_LEN);
22706 			} else {
22707 				ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) -
22708 				    TCPOPT_REAL_TS_LEN);
22709 			}
22710 			tcph->th_offset_and_rsrvd[0] -= (3 << 4);
22711 			sum -= TCPOPT_REAL_TS_LEN;
22712 		}
22713 	}
22714 	if (ctl & TH_ACK) {
22715 		if (tcp->tcp_snd_ts_ok) {
22716 			U32_TO_BE32(lbolt,
22717 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
22718 			U32_TO_BE32(tcp->tcp_ts_recent,
22719 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
22720 		}
22721 
22722 		/* Update the latest receive window size in TCP header. */
22723 		U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
22724 		    tcph->th_win);
22725 		tcp->tcp_rack = ack;
22726 		tcp->tcp_rack_cnt = 0;
22727 		BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
22728 	}
22729 	BUMP_LOCAL(tcp->tcp_obsegs);
22730 	U32_TO_BE32(seq, tcph->th_seq);
22731 	U32_TO_BE32(ack, tcph->th_ack);
22732 	/*
22733 	 * Include the adjustment for a source route if any.
22734 	 */
22735 	sum = (sum >> 16) + (sum & 0xFFFF);
22736 	U16_TO_BE16(sum, tcph->th_sum);
22737 	tcp_send_data(tcp, tcp->tcp_wq, mp);
22738 }
22739 
22740 /*
22741  * If this routine returns B_TRUE, TCP can generate a RST in response
22742  * to a segment.  If it returns B_FALSE, TCP should not respond.
22743  */
22744 static boolean_t
22745 tcp_send_rst_chk(tcp_stack_t *tcps)
22746 {
22747 	clock_t	now;
22748 
22749 	/*
22750 	 * TCP needs to protect itself from generating too many RSTs.
22751 	 * This can be a DoS attack by sending us random segments
22752 	 * soliciting RSTs.
22753 	 *
22754 	 * What we do here is to have a limit of tcp_rst_sent_rate RSTs
22755 	 * in each 1 second interval.  In this way, TCP still generate
22756 	 * RSTs in normal cases but when under attack, the impact is
22757 	 * limited.
22758 	 */
22759 	if (tcps->tcps_rst_sent_rate_enabled != 0) {
22760 		now = lbolt;
22761 		/* lbolt can wrap around. */
22762 		if ((tcps->tcps_last_rst_intrvl > now) ||
22763 		    (TICK_TO_MSEC(now - tcps->tcps_last_rst_intrvl) >
22764 		    1*SECONDS)) {
22765 			tcps->tcps_last_rst_intrvl = now;
22766 			tcps->tcps_rst_cnt = 1;
22767 		} else if (++tcps->tcps_rst_cnt > tcps->tcps_rst_sent_rate) {
22768 			return (B_FALSE);
22769 		}
22770 	}
22771 	return (B_TRUE);
22772 }
22773 
22774 /*
22775  * Send down the advice IP ioctl to tell IP to mark an IRE temporary.
22776  */
22777 static void
22778 tcp_ip_ire_mark_advice(tcp_t *tcp)
22779 {
22780 	mblk_t *mp;
22781 	ipic_t *ipic;
22782 
22783 	if (tcp->tcp_ipversion == IPV4_VERSION) {
22784 		mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN,
22785 		    &ipic);
22786 	} else {
22787 		mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN,
22788 		    &ipic);
22789 	}
22790 	if (mp == NULL)
22791 		return;
22792 	ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY;
22793 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
22794 }
22795 
22796 /*
22797  * Return an IP advice ioctl mblk and set ipic to be the pointer
22798  * to the advice structure.
22799  */
22800 static mblk_t *
22801 tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic)
22802 {
22803 	struct iocblk *ioc;
22804 	mblk_t *mp, *mp1;
22805 
22806 	mp = allocb(sizeof (ipic_t) + addr_len, BPRI_HI);
22807 	if (mp == NULL)
22808 		return (NULL);
22809 	bzero(mp->b_rptr, sizeof (ipic_t) + addr_len);
22810 	*ipic = (ipic_t *)mp->b_rptr;
22811 	(*ipic)->ipic_cmd = IP_IOC_IRE_ADVISE_NO_REPLY;
22812 	(*ipic)->ipic_addr_offset = sizeof (ipic_t);
22813 
22814 	bcopy(addr, *ipic + 1, addr_len);
22815 
22816 	(*ipic)->ipic_addr_length = addr_len;
22817 	mp->b_wptr = &mp->b_rptr[sizeof (ipic_t) + addr_len];
22818 
22819 	mp1 = mkiocb(IP_IOCTL);
22820 	if (mp1 == NULL) {
22821 		freemsg(mp);
22822 		return (NULL);
22823 	}
22824 	mp1->b_cont = mp;
22825 	ioc = (struct iocblk *)mp1->b_rptr;
22826 	ioc->ioc_count = sizeof (ipic_t) + addr_len;
22827 
22828 	return (mp1);
22829 }
22830 
22831 /*
22832  * Generate a reset based on an inbound packet, connp is set by caller
22833  * when RST is in response to an unexpected inbound packet for which
22834  * there is active tcp state in the system.
22835  *
22836  * IPSEC NOTE : Try to send the reply with the same protection as it came
22837  * in.  We still have the ipsec_mp that the packet was attached to. Thus
22838  * the packet will go out at the same level of protection as it came in by
22839  * converting the IPSEC_IN to IPSEC_OUT.
22840  */
22841 static void
22842 tcp_xmit_early_reset(char *str, mblk_t *mp, uint32_t seq,
22843     uint32_t ack, int ctl, uint_t ip_hdr_len, zoneid_t zoneid,
22844     tcp_stack_t *tcps, conn_t *connp)
22845 {
22846 	ipha_t		*ipha = NULL;
22847 	ip6_t		*ip6h = NULL;
22848 	ushort_t	len;
22849 	tcph_t		*tcph;
22850 	int		i;
22851 	mblk_t		*ipsec_mp;
22852 	boolean_t	mctl_present;
22853 	ipic_t		*ipic;
22854 	ipaddr_t	v4addr;
22855 	in6_addr_t	v6addr;
22856 	int		addr_len;
22857 	void		*addr;
22858 	queue_t		*q = tcps->tcps_g_q;
22859 	tcp_t		*tcp;
22860 	cred_t		*cr;
22861 	mblk_t		*nmp;
22862 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
22863 
22864 	if (tcps->tcps_g_q == NULL) {
22865 		/*
22866 		 * For non-zero stackids the default queue isn't created
22867 		 * until the first open, thus there can be a need to send
22868 		 * a reset before then. But we can't do that, hence we just
22869 		 * drop the packet. Later during boot, when the default queue
22870 		 * has been setup, a retransmitted packet from the peer
22871 		 * will result in a reset.
22872 		 */
22873 		ASSERT(tcps->tcps_netstack->netstack_stackid !=
22874 		    GLOBAL_NETSTACKID);
22875 		freemsg(mp);
22876 		return;
22877 	}
22878 
22879 	if (connp != NULL)
22880 		tcp = connp->conn_tcp;
22881 	else
22882 		tcp = Q_TO_TCP(q);
22883 
22884 	if (!tcp_send_rst_chk(tcps)) {
22885 		tcps->tcps_rst_unsent++;
22886 		freemsg(mp);
22887 		return;
22888 	}
22889 
22890 	if (mp->b_datap->db_type == M_CTL) {
22891 		ipsec_mp = mp;
22892 		mp = mp->b_cont;
22893 		mctl_present = B_TRUE;
22894 	} else {
22895 		ipsec_mp = mp;
22896 		mctl_present = B_FALSE;
22897 	}
22898 
22899 	if (str && q && tcps->tcps_dbg) {
22900 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
22901 		    "tcp_xmit_early_reset: '%s', seq 0x%x, ack 0x%x, "
22902 		    "flags 0x%x",
22903 		    str, seq, ack, ctl);
22904 	}
22905 	if (mp->b_datap->db_ref != 1) {
22906 		mblk_t *mp1 = copyb(mp);
22907 		freemsg(mp);
22908 		mp = mp1;
22909 		if (!mp) {
22910 			if (mctl_present)
22911 				freeb(ipsec_mp);
22912 			return;
22913 		} else {
22914 			if (mctl_present) {
22915 				ipsec_mp->b_cont = mp;
22916 			} else {
22917 				ipsec_mp = mp;
22918 			}
22919 		}
22920 	} else if (mp->b_cont) {
22921 		freemsg(mp->b_cont);
22922 		mp->b_cont = NULL;
22923 	}
22924 	/*
22925 	 * We skip reversing source route here.
22926 	 * (for now we replace all IP options with EOL)
22927 	 */
22928 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
22929 		ipha = (ipha_t *)mp->b_rptr;
22930 		for (i = IP_SIMPLE_HDR_LENGTH; i < (int)ip_hdr_len; i++)
22931 			mp->b_rptr[i] = IPOPT_EOL;
22932 		/*
22933 		 * Make sure that src address isn't flagrantly invalid.
22934 		 * Not all broadcast address checking for the src address
22935 		 * is possible, since we don't know the netmask of the src
22936 		 * addr.  No check for destination address is done, since
22937 		 * IP will not pass up a packet with a broadcast dest
22938 		 * address to TCP.  Similar checks are done below for IPv6.
22939 		 */
22940 		if (ipha->ipha_src == 0 || ipha->ipha_src == INADDR_BROADCAST ||
22941 		    CLASSD(ipha->ipha_src)) {
22942 			freemsg(ipsec_mp);
22943 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards);
22944 			return;
22945 		}
22946 	} else {
22947 		ip6h = (ip6_t *)mp->b_rptr;
22948 
22949 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src) ||
22950 		    IN6_IS_ADDR_MULTICAST(&ip6h->ip6_src)) {
22951 			freemsg(ipsec_mp);
22952 			BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsInDiscards);
22953 			return;
22954 		}
22955 
22956 		/* Remove any extension headers assuming partial overlay */
22957 		if (ip_hdr_len > IPV6_HDR_LEN) {
22958 			uint8_t *to;
22959 
22960 			to = mp->b_rptr + ip_hdr_len - IPV6_HDR_LEN;
22961 			ovbcopy(ip6h, to, IPV6_HDR_LEN);
22962 			mp->b_rptr += ip_hdr_len - IPV6_HDR_LEN;
22963 			ip_hdr_len = IPV6_HDR_LEN;
22964 			ip6h = (ip6_t *)mp->b_rptr;
22965 			ip6h->ip6_nxt = IPPROTO_TCP;
22966 		}
22967 	}
22968 	tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
22969 	if (tcph->th_flags[0] & TH_RST) {
22970 		freemsg(ipsec_mp);
22971 		return;
22972 	}
22973 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
22974 	len = ip_hdr_len + sizeof (tcph_t);
22975 	mp->b_wptr = &mp->b_rptr[len];
22976 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
22977 		ipha->ipha_length = htons(len);
22978 		/* Swap addresses */
22979 		v4addr = ipha->ipha_src;
22980 		ipha->ipha_src = ipha->ipha_dst;
22981 		ipha->ipha_dst = v4addr;
22982 		ipha->ipha_ident = 0;
22983 		ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl;
22984 		addr_len = IP_ADDR_LEN;
22985 		addr = &v4addr;
22986 	} else {
22987 		/* No ip6i_t in this case */
22988 		ip6h->ip6_plen = htons(len - IPV6_HDR_LEN);
22989 		/* Swap addresses */
22990 		v6addr = ip6h->ip6_src;
22991 		ip6h->ip6_src = ip6h->ip6_dst;
22992 		ip6h->ip6_dst = v6addr;
22993 		ip6h->ip6_hops = (uchar_t)tcps->tcps_ipv6_hoplimit;
22994 		addr_len = IPV6_ADDR_LEN;
22995 		addr = &v6addr;
22996 	}
22997 	tcp_xchg(tcph->th_fport, tcph->th_lport, 2);
22998 	U32_TO_BE32(ack, tcph->th_ack);
22999 	U32_TO_BE32(seq, tcph->th_seq);
23000 	U16_TO_BE16(0, tcph->th_win);
23001 	U16_TO_BE16(sizeof (tcph_t), tcph->th_sum);
23002 	tcph->th_flags[0] = (uint8_t)ctl;
23003 	if (ctl & TH_RST) {
23004 		BUMP_MIB(&tcps->tcps_mib, tcpOutRsts);
23005 		BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
23006 	}
23007 
23008 	/* IP trusts us to set up labels when required. */
23009 	if (is_system_labeled() && (cr = DB_CRED(mp)) != NULL &&
23010 	    crgetlabel(cr) != NULL) {
23011 		int err;
23012 
23013 		if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION)
23014 			err = tsol_check_label(cr, &mp,
23015 			    tcp->tcp_connp->conn_mac_exempt,
23016 			    tcps->tcps_netstack->netstack_ip);
23017 		else
23018 			err = tsol_check_label_v6(cr, &mp,
23019 			    tcp->tcp_connp->conn_mac_exempt,
23020 			    tcps->tcps_netstack->netstack_ip);
23021 		if (mctl_present)
23022 			ipsec_mp->b_cont = mp;
23023 		else
23024 			ipsec_mp = mp;
23025 		if (err != 0) {
23026 			freemsg(ipsec_mp);
23027 			return;
23028 		}
23029 		if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
23030 			ipha = (ipha_t *)mp->b_rptr;
23031 		} else {
23032 			ip6h = (ip6_t *)mp->b_rptr;
23033 		}
23034 	}
23035 
23036 	if (mctl_present) {
23037 		ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr;
23038 
23039 		ASSERT(ii->ipsec_in_type == IPSEC_IN);
23040 		if (!ipsec_in_to_out(ipsec_mp, ipha, ip6h)) {
23041 			return;
23042 		}
23043 	}
23044 	if (zoneid == ALL_ZONES)
23045 		zoneid = GLOBAL_ZONEID;
23046 
23047 	/* Add the zoneid so ip_output routes it properly */
23048 	if ((nmp = ip_prepend_zoneid(ipsec_mp, zoneid, ipst)) == NULL) {
23049 		freemsg(ipsec_mp);
23050 		return;
23051 	}
23052 	ipsec_mp = nmp;
23053 
23054 	/*
23055 	 * NOTE:  one might consider tracing a TCP packet here, but
23056 	 * this function has no active TCP state and no tcp structure
23057 	 * that has a trace buffer.  If we traced here, we would have
23058 	 * to keep a local trace buffer in tcp_record_trace().
23059 	 *
23060 	 * TSol note: The mblk that contains the incoming packet was
23061 	 * reused by tcp_xmit_listener_reset, so it already contains
23062 	 * the right credentials and we don't need to call mblk_setcred.
23063 	 * Also the conn's cred is not right since it is associated
23064 	 * with tcps_g_q.
23065 	 */
23066 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, ipsec_mp);
23067 
23068 	/*
23069 	 * Tell IP to mark the IRE used for this destination temporary.
23070 	 * This way, we can limit our exposure to DoS attack because IP
23071 	 * creates an IRE for each destination.  If there are too many,
23072 	 * the time to do any routing lookup will be extremely long.  And
23073 	 * the lookup can be in interrupt context.
23074 	 *
23075 	 * Note that in normal circumstances, this marking should not
23076 	 * affect anything.  It would be nice if only 1 message is
23077 	 * needed to inform IP that the IRE created for this RST should
23078 	 * not be added to the cache table.  But there is currently
23079 	 * not such communication mechanism between TCP and IP.  So
23080 	 * the best we can do now is to send the advice ioctl to IP
23081 	 * to mark the IRE temporary.
23082 	 */
23083 	if ((mp = tcp_ip_advise_mblk(addr, addr_len, &ipic)) != NULL) {
23084 		ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY;
23085 		CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
23086 	}
23087 }
23088 
23089 /*
23090  * Initiate closedown sequence on an active connection.  (May be called as
23091  * writer.)  Return value zero for OK return, non-zero for error return.
23092  */
23093 static int
23094 tcp_xmit_end(tcp_t *tcp)
23095 {
23096 	ipic_t	*ipic;
23097 	mblk_t	*mp;
23098 	tcp_stack_t	*tcps = tcp->tcp_tcps;
23099 
23100 	if (tcp->tcp_state < TCPS_SYN_RCVD ||
23101 	    tcp->tcp_state > TCPS_CLOSE_WAIT) {
23102 		/*
23103 		 * Invalid state, only states TCPS_SYN_RCVD,
23104 		 * TCPS_ESTABLISHED and TCPS_CLOSE_WAIT are valid
23105 		 */
23106 		return (-1);
23107 	}
23108 
23109 	tcp->tcp_fss = tcp->tcp_snxt + tcp->tcp_unsent;
23110 	tcp->tcp_valid_bits |= TCP_FSS_VALID;
23111 	/*
23112 	 * If there is nothing more unsent, send the FIN now.
23113 	 * Otherwise, it will go out with the last segment.
23114 	 */
23115 	if (tcp->tcp_unsent == 0) {
23116 		mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL,
23117 		    tcp->tcp_fss, B_FALSE, NULL, B_FALSE);
23118 
23119 		if (mp) {
23120 			tcp_send_data(tcp, tcp->tcp_wq, mp);
23121 		} else {
23122 			/*
23123 			 * Couldn't allocate msg.  Pretend we got it out.
23124 			 * Wait for rexmit timeout.
23125 			 */
23126 			tcp->tcp_snxt = tcp->tcp_fss + 1;
23127 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
23128 		}
23129 
23130 		/*
23131 		 * If needed, update tcp_rexmit_snxt as tcp_snxt is
23132 		 * changed.
23133 		 */
23134 		if (tcp->tcp_rexmit && tcp->tcp_rexmit_nxt == tcp->tcp_fss) {
23135 			tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
23136 		}
23137 	} else {
23138 		/*
23139 		 * If tcp->tcp_cork is set, then the data will not get sent,
23140 		 * so we have to check that and unset it first.
23141 		 */
23142 		if (tcp->tcp_cork)
23143 			tcp->tcp_cork = B_FALSE;
23144 		tcp_wput_data(tcp, NULL, B_FALSE);
23145 	}
23146 
23147 	/*
23148 	 * If TCP does not get enough samples of RTT or tcp_rtt_updates
23149 	 * is 0, don't update the cache.
23150 	 */
23151 	if (tcps->tcps_rtt_updates == 0 ||
23152 	    tcp->tcp_rtt_update < tcps->tcps_rtt_updates)
23153 		return (0);
23154 
23155 	/*
23156 	 * NOTE: should not update if source routes i.e. if tcp_remote if
23157 	 * different from the destination.
23158 	 */
23159 	if (tcp->tcp_ipversion == IPV4_VERSION) {
23160 		if (tcp->tcp_remote !=  tcp->tcp_ipha->ipha_dst) {
23161 			return (0);
23162 		}
23163 		mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN,
23164 		    &ipic);
23165 	} else {
23166 		if (!(IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6,
23167 		    &tcp->tcp_ip6h->ip6_dst))) {
23168 			return (0);
23169 		}
23170 		mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN,
23171 		    &ipic);
23172 	}
23173 
23174 	/* Record route attributes in the IRE for use by future connections. */
23175 	if (mp == NULL)
23176 		return (0);
23177 
23178 	/*
23179 	 * We do not have a good algorithm to update ssthresh at this time.
23180 	 * So don't do any update.
23181 	 */
23182 	ipic->ipic_rtt = tcp->tcp_rtt_sa;
23183 	ipic->ipic_rtt_sd = tcp->tcp_rtt_sd;
23184 
23185 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
23186 	return (0);
23187 }
23188 
23189 /*
23190  * Generate a "no listener here" RST in response to an "unknown" segment.
23191  * connp is set by caller when RST is in response to an unexpected
23192  * inbound packet for which there is active tcp state in the system.
23193  * Note that we are reusing the incoming mp to construct the outgoing RST.
23194  */
23195 void
23196 tcp_xmit_listeners_reset(mblk_t *mp, uint_t ip_hdr_len, zoneid_t zoneid,
23197     tcp_stack_t *tcps, conn_t *connp)
23198 {
23199 	uchar_t		*rptr;
23200 	uint32_t	seg_len;
23201 	tcph_t		*tcph;
23202 	uint32_t	seg_seq;
23203 	uint32_t	seg_ack;
23204 	uint_t		flags;
23205 	mblk_t		*ipsec_mp;
23206 	ipha_t 		*ipha;
23207 	ip6_t 		*ip6h;
23208 	boolean_t	mctl_present = B_FALSE;
23209 	boolean_t	check = B_TRUE;
23210 	boolean_t	policy_present;
23211 	ipsec_stack_t	*ipss = tcps->tcps_netstack->netstack_ipsec;
23212 
23213 	TCP_STAT(tcps, tcp_no_listener);
23214 
23215 	ipsec_mp = mp;
23216 
23217 	if (mp->b_datap->db_type == M_CTL) {
23218 		ipsec_in_t *ii;
23219 
23220 		mctl_present = B_TRUE;
23221 		mp = mp->b_cont;
23222 
23223 		ii = (ipsec_in_t *)ipsec_mp->b_rptr;
23224 		ASSERT(ii->ipsec_in_type == IPSEC_IN);
23225 		if (ii->ipsec_in_dont_check) {
23226 			check = B_FALSE;
23227 			if (!ii->ipsec_in_secure) {
23228 				freeb(ipsec_mp);
23229 				mctl_present = B_FALSE;
23230 				ipsec_mp = mp;
23231 			}
23232 		}
23233 	}
23234 
23235 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
23236 		policy_present = ipss->ipsec_inbound_v4_policy_present;
23237 		ipha = (ipha_t *)mp->b_rptr;
23238 		ip6h = NULL;
23239 	} else {
23240 		policy_present = ipss->ipsec_inbound_v6_policy_present;
23241 		ipha = NULL;
23242 		ip6h = (ip6_t *)mp->b_rptr;
23243 	}
23244 
23245 	if (check && policy_present) {
23246 		/*
23247 		 * The conn_t parameter is NULL because we already know
23248 		 * nobody's home.
23249 		 */
23250 		ipsec_mp = ipsec_check_global_policy(
23251 		    ipsec_mp, (conn_t *)NULL, ipha, ip6h, mctl_present,
23252 		    tcps->tcps_netstack);
23253 		if (ipsec_mp == NULL)
23254 			return;
23255 	}
23256 	if (is_system_labeled() && !tsol_can_reply_error(mp)) {
23257 		DTRACE_PROBE2(
23258 		    tx__ip__log__error__nolistener__tcp,
23259 		    char *, "Could not reply with RST to mp(1)",
23260 		    mblk_t *, mp);
23261 		ip2dbg(("tcp_xmit_listeners_reset: not permitted to reply\n"));
23262 		freemsg(ipsec_mp);
23263 		return;
23264 	}
23265 
23266 	rptr = mp->b_rptr;
23267 
23268 	tcph = (tcph_t *)&rptr[ip_hdr_len];
23269 	seg_seq = BE32_TO_U32(tcph->th_seq);
23270 	seg_ack = BE32_TO_U32(tcph->th_ack);
23271 	flags = tcph->th_flags[0];
23272 
23273 	seg_len = msgdsize(mp) - (TCP_HDR_LENGTH(tcph) + ip_hdr_len);
23274 	if (flags & TH_RST) {
23275 		freemsg(ipsec_mp);
23276 	} else if (flags & TH_ACK) {
23277 		tcp_xmit_early_reset("no tcp, reset",
23278 		    ipsec_mp, seg_ack, 0, TH_RST, ip_hdr_len, zoneid, tcps,
23279 		    connp);
23280 	} else {
23281 		if (flags & TH_SYN) {
23282 			seg_len++;
23283 		} else {
23284 			/*
23285 			 * Here we violate the RFC.  Note that a normal
23286 			 * TCP will never send a segment without the ACK
23287 			 * flag, except for RST or SYN segment.  This
23288 			 * segment is neither.  Just drop it on the
23289 			 * floor.
23290 			 */
23291 			freemsg(ipsec_mp);
23292 			tcps->tcps_rst_unsent++;
23293 			return;
23294 		}
23295 
23296 		tcp_xmit_early_reset("no tcp, reset/ack",
23297 		    ipsec_mp, 0, seg_seq + seg_len,
23298 		    TH_RST | TH_ACK, ip_hdr_len, zoneid, tcps, connp);
23299 	}
23300 }
23301 
23302 /*
23303  * tcp_xmit_mp is called to return a pointer to an mblk chain complete with
23304  * ip and tcp header ready to pass down to IP.  If the mp passed in is
23305  * non-NULL, then up to max_to_send bytes of data will be dup'ed off that
23306  * mblk. (If sendall is not set the dup'ing will stop at an mblk boundary
23307  * otherwise it will dup partial mblks.)
23308  * Otherwise, an appropriate ACK packet will be generated.  This
23309  * routine is not usually called to send new data for the first time.  It
23310  * is mostly called out of the timer for retransmits, and to generate ACKs.
23311  *
23312  * If offset is not NULL, the returned mblk chain's first mblk's b_rptr will
23313  * be adjusted by *offset.  And after dupb(), the offset and the ending mblk
23314  * of the original mblk chain will be returned in *offset and *end_mp.
23315  */
23316 mblk_t *
23317 tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, int32_t *offset,
23318     mblk_t **end_mp, uint32_t seq, boolean_t sendall, uint32_t *seg_len,
23319     boolean_t rexmit)
23320 {
23321 	int	data_length;
23322 	int32_t	off = 0;
23323 	uint_t	flags;
23324 	mblk_t	*mp1;
23325 	mblk_t	*mp2;
23326 	uchar_t	*rptr;
23327 	tcph_t	*tcph;
23328 	int32_t	num_sack_blk = 0;
23329 	int32_t	sack_opt_len = 0;
23330 	tcp_stack_t	*tcps = tcp->tcp_tcps;
23331 
23332 	/* Allocate for our maximum TCP header + link-level */
23333 	mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH +
23334 	    tcps->tcps_wroff_xtra, BPRI_MED);
23335 	if (!mp1)
23336 		return (NULL);
23337 	data_length = 0;
23338 
23339 	/*
23340 	 * Note that tcp_mss has been adjusted to take into account the
23341 	 * timestamp option if applicable.  Because SACK options do not
23342 	 * appear in every TCP segments and they are of variable lengths,
23343 	 * they cannot be included in tcp_mss.  Thus we need to calculate
23344 	 * the actual segment length when we need to send a segment which
23345 	 * includes SACK options.
23346 	 */
23347 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
23348 		num_sack_blk = MIN(tcp->tcp_max_sack_blk,
23349 		    tcp->tcp_num_sack_blk);
23350 		sack_opt_len = num_sack_blk * sizeof (sack_blk_t) +
23351 		    TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN;
23352 		if (max_to_send + sack_opt_len > tcp->tcp_mss)
23353 			max_to_send -= sack_opt_len;
23354 	}
23355 
23356 	if (offset != NULL) {
23357 		off = *offset;
23358 		/* We use offset as an indicator that end_mp is not NULL. */
23359 		*end_mp = NULL;
23360 	}
23361 	for (mp2 = mp1; mp && data_length != max_to_send; mp = mp->b_cont) {
23362 		/* This could be faster with cooperation from downstream */
23363 		if (mp2 != mp1 && !sendall &&
23364 		    data_length + (int)(mp->b_wptr - mp->b_rptr) >
23365 		    max_to_send)
23366 			/*
23367 			 * Don't send the next mblk since the whole mblk
23368 			 * does not fit.
23369 			 */
23370 			break;
23371 		mp2->b_cont = dupb(mp);
23372 		mp2 = mp2->b_cont;
23373 		if (!mp2) {
23374 			freemsg(mp1);
23375 			return (NULL);
23376 		}
23377 		mp2->b_rptr += off;
23378 		ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <=
23379 		    (uintptr_t)INT_MAX);
23380 
23381 		data_length += (int)(mp2->b_wptr - mp2->b_rptr);
23382 		if (data_length > max_to_send) {
23383 			mp2->b_wptr -= data_length - max_to_send;
23384 			data_length = max_to_send;
23385 			off = mp2->b_wptr - mp->b_rptr;
23386 			break;
23387 		} else {
23388 			off = 0;
23389 		}
23390 	}
23391 	if (offset != NULL) {
23392 		*offset = off;
23393 		*end_mp = mp;
23394 	}
23395 	if (seg_len != NULL) {
23396 		*seg_len = data_length;
23397 	}
23398 
23399 	/* Update the latest receive window size in TCP header. */
23400 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
23401 	    tcp->tcp_tcph->th_win);
23402 
23403 	rptr = mp1->b_rptr + tcps->tcps_wroff_xtra;
23404 	mp1->b_rptr = rptr;
23405 	mp1->b_wptr = rptr + tcp->tcp_hdr_len + sack_opt_len;
23406 	bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len);
23407 	tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len];
23408 	U32_TO_ABE32(seq, tcph->th_seq);
23409 
23410 	/*
23411 	 * Use tcp_unsent to determine if the PUSH bit should be used assumes
23412 	 * that this function was called from tcp_wput_data. Thus, when called
23413 	 * to retransmit data the setting of the PUSH bit may appear some
23414 	 * what random in that it might get set when it should not. This
23415 	 * should not pose any performance issues.
23416 	 */
23417 	if (data_length != 0 && (tcp->tcp_unsent == 0 ||
23418 	    tcp->tcp_unsent == data_length)) {
23419 		flags = TH_ACK | TH_PUSH;
23420 	} else {
23421 		flags = TH_ACK;
23422 	}
23423 
23424 	if (tcp->tcp_ecn_ok) {
23425 		if (tcp->tcp_ecn_echo_on)
23426 			flags |= TH_ECE;
23427 
23428 		/*
23429 		 * Only set ECT bit and ECN_CWR if a segment contains new data.
23430 		 * There is no TCP flow control for non-data segments, and
23431 		 * only data segment is transmitted reliably.
23432 		 */
23433 		if (data_length > 0 && !rexmit) {
23434 			SET_ECT(tcp, rptr);
23435 			if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
23436 				flags |= TH_CWR;
23437 				tcp->tcp_ecn_cwr_sent = B_TRUE;
23438 			}
23439 		}
23440 	}
23441 
23442 	if (tcp->tcp_valid_bits) {
23443 		uint32_t u1;
23444 
23445 		if ((tcp->tcp_valid_bits & TCP_ISS_VALID) &&
23446 		    seq == tcp->tcp_iss) {
23447 			uchar_t	*wptr;
23448 
23449 			/*
23450 			 * If TCP_ISS_VALID and the seq number is tcp_iss,
23451 			 * TCP can only be in SYN-SENT, SYN-RCVD or
23452 			 * FIN-WAIT-1 state.  It can be FIN-WAIT-1 if
23453 			 * our SYN is not ack'ed but the app closes this
23454 			 * TCP connection.
23455 			 */
23456 			ASSERT(tcp->tcp_state == TCPS_SYN_SENT ||
23457 			    tcp->tcp_state == TCPS_SYN_RCVD ||
23458 			    tcp->tcp_state == TCPS_FIN_WAIT_1);
23459 
23460 			/*
23461 			 * Tack on the MSS option.  It is always needed
23462 			 * for both active and passive open.
23463 			 *
23464 			 * MSS option value should be interface MTU - MIN
23465 			 * TCP/IP header according to RFC 793 as it means
23466 			 * the maximum segment size TCP can receive.  But
23467 			 * to get around some broken middle boxes/end hosts
23468 			 * out there, we allow the option value to be the
23469 			 * same as the MSS option size on the peer side.
23470 			 * In this way, the other side will not send
23471 			 * anything larger than they can receive.
23472 			 *
23473 			 * Note that for SYN_SENT state, the ndd param
23474 			 * tcp_use_smss_as_mss_opt has no effect as we
23475 			 * don't know the peer's MSS option value. So
23476 			 * the only case we need to take care of is in
23477 			 * SYN_RCVD state, which is done later.
23478 			 */
23479 			wptr = mp1->b_wptr;
23480 			wptr[0] = TCPOPT_MAXSEG;
23481 			wptr[1] = TCPOPT_MAXSEG_LEN;
23482 			wptr += 2;
23483 			u1 = tcp->tcp_if_mtu -
23484 			    (tcp->tcp_ipversion == IPV4_VERSION ?
23485 			    IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) -
23486 			    TCP_MIN_HEADER_LENGTH;
23487 			U16_TO_BE16(u1, wptr);
23488 			mp1->b_wptr = wptr + 2;
23489 			/* Update the offset to cover the additional word */
23490 			tcph->th_offset_and_rsrvd[0] += (1 << 4);
23491 
23492 			/*
23493 			 * Note that the following way of filling in
23494 			 * TCP options are not optimal.  Some NOPs can
23495 			 * be saved.  But there is no need at this time
23496 			 * to optimize it.  When it is needed, we will
23497 			 * do it.
23498 			 */
23499 			switch (tcp->tcp_state) {
23500 			case TCPS_SYN_SENT:
23501 				flags = TH_SYN;
23502 
23503 				if (tcp->tcp_snd_ts_ok) {
23504 					uint32_t llbolt = (uint32_t)lbolt;
23505 
23506 					wptr = mp1->b_wptr;
23507 					wptr[0] = TCPOPT_NOP;
23508 					wptr[1] = TCPOPT_NOP;
23509 					wptr[2] = TCPOPT_TSTAMP;
23510 					wptr[3] = TCPOPT_TSTAMP_LEN;
23511 					wptr += 4;
23512 					U32_TO_BE32(llbolt, wptr);
23513 					wptr += 4;
23514 					ASSERT(tcp->tcp_ts_recent == 0);
23515 					U32_TO_BE32(0L, wptr);
23516 					mp1->b_wptr += TCPOPT_REAL_TS_LEN;
23517 					tcph->th_offset_and_rsrvd[0] +=
23518 					    (3 << 4);
23519 				}
23520 
23521 				/*
23522 				 * Set up all the bits to tell other side
23523 				 * we are ECN capable.
23524 				 */
23525 				if (tcp->tcp_ecn_ok) {
23526 					flags |= (TH_ECE | TH_CWR);
23527 				}
23528 				break;
23529 			case TCPS_SYN_RCVD:
23530 				flags |= TH_SYN;
23531 
23532 				/*
23533 				 * Reset the MSS option value to be SMSS
23534 				 * We should probably add back the bytes
23535 				 * for timestamp option and IPsec.  We
23536 				 * don't do that as this is a workaround
23537 				 * for broken middle boxes/end hosts, it
23538 				 * is better for us to be more cautious.
23539 				 * They may not take these things into
23540 				 * account in their SMSS calculation.  Thus
23541 				 * the peer's calculated SMSS may be smaller
23542 				 * than what it can be.  This should be OK.
23543 				 */
23544 				if (tcps->tcps_use_smss_as_mss_opt) {
23545 					u1 = tcp->tcp_mss;
23546 					U16_TO_BE16(u1, wptr);
23547 				}
23548 
23549 				/*
23550 				 * If the other side is ECN capable, reply
23551 				 * that we are also ECN capable.
23552 				 */
23553 				if (tcp->tcp_ecn_ok)
23554 					flags |= TH_ECE;
23555 				break;
23556 			default:
23557 				/*
23558 				 * The above ASSERT() makes sure that this
23559 				 * must be FIN-WAIT-1 state.  Our SYN has
23560 				 * not been ack'ed so retransmit it.
23561 				 */
23562 				flags |= TH_SYN;
23563 				break;
23564 			}
23565 
23566 			if (tcp->tcp_snd_ws_ok) {
23567 				wptr = mp1->b_wptr;
23568 				wptr[0] =  TCPOPT_NOP;
23569 				wptr[1] =  TCPOPT_WSCALE;
23570 				wptr[2] =  TCPOPT_WS_LEN;
23571 				wptr[3] = (uchar_t)tcp->tcp_rcv_ws;
23572 				mp1->b_wptr += TCPOPT_REAL_WS_LEN;
23573 				tcph->th_offset_and_rsrvd[0] += (1 << 4);
23574 			}
23575 
23576 			if (tcp->tcp_snd_sack_ok) {
23577 				wptr = mp1->b_wptr;
23578 				wptr[0] = TCPOPT_NOP;
23579 				wptr[1] = TCPOPT_NOP;
23580 				wptr[2] = TCPOPT_SACK_PERMITTED;
23581 				wptr[3] = TCPOPT_SACK_OK_LEN;
23582 				mp1->b_wptr += TCPOPT_REAL_SACK_OK_LEN;
23583 				tcph->th_offset_and_rsrvd[0] += (1 << 4);
23584 			}
23585 
23586 			/* allocb() of adequate mblk assures space */
23587 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
23588 			    (uintptr_t)INT_MAX);
23589 			u1 = (int)(mp1->b_wptr - mp1->b_rptr);
23590 			/*
23591 			 * Get IP set to checksum on our behalf
23592 			 * Include the adjustment for a source route if any.
23593 			 */
23594 			u1 += tcp->tcp_sum;
23595 			u1 = (u1 >> 16) + (u1 & 0xFFFF);
23596 			U16_TO_BE16(u1, tcph->th_sum);
23597 			BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
23598 		}
23599 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
23600 		    (seq + data_length) == tcp->tcp_fss) {
23601 			if (!tcp->tcp_fin_acked) {
23602 				flags |= TH_FIN;
23603 				BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
23604 			}
23605 			if (!tcp->tcp_fin_sent) {
23606 				tcp->tcp_fin_sent = B_TRUE;
23607 				switch (tcp->tcp_state) {
23608 				case TCPS_SYN_RCVD:
23609 				case TCPS_ESTABLISHED:
23610 					tcp->tcp_state = TCPS_FIN_WAIT_1;
23611 					break;
23612 				case TCPS_CLOSE_WAIT:
23613 					tcp->tcp_state = TCPS_LAST_ACK;
23614 					break;
23615 				}
23616 				if (tcp->tcp_suna == tcp->tcp_snxt)
23617 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
23618 				tcp->tcp_snxt = tcp->tcp_fss + 1;
23619 			}
23620 		}
23621 		/*
23622 		 * Note the trick here.  u1 is unsigned.  When tcp_urg
23623 		 * is smaller than seq, u1 will become a very huge value.
23624 		 * So the comparison will fail.  Also note that tcp_urp
23625 		 * should be positive, see RFC 793 page 17.
23626 		 */
23627 		u1 = tcp->tcp_urg - seq + TCP_OLD_URP_INTERPRETATION;
23628 		if ((tcp->tcp_valid_bits & TCP_URG_VALID) && u1 != 0 &&
23629 		    u1 < (uint32_t)(64 * 1024)) {
23630 			flags |= TH_URG;
23631 			BUMP_MIB(&tcps->tcps_mib, tcpOutUrg);
23632 			U32_TO_ABE16(u1, tcph->th_urp);
23633 		}
23634 	}
23635 	tcph->th_flags[0] = (uchar_t)flags;
23636 	tcp->tcp_rack = tcp->tcp_rnxt;
23637 	tcp->tcp_rack_cnt = 0;
23638 
23639 	if (tcp->tcp_snd_ts_ok) {
23640 		if (tcp->tcp_state != TCPS_SYN_SENT) {
23641 			uint32_t llbolt = (uint32_t)lbolt;
23642 
23643 			U32_TO_BE32(llbolt,
23644 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
23645 			U32_TO_BE32(tcp->tcp_ts_recent,
23646 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
23647 		}
23648 	}
23649 
23650 	if (num_sack_blk > 0) {
23651 		uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len;
23652 		sack_blk_t *tmp;
23653 		int32_t	i;
23654 
23655 		wptr[0] = TCPOPT_NOP;
23656 		wptr[1] = TCPOPT_NOP;
23657 		wptr[2] = TCPOPT_SACK;
23658 		wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
23659 		    sizeof (sack_blk_t);
23660 		wptr += TCPOPT_REAL_SACK_LEN;
23661 
23662 		tmp = tcp->tcp_sack_list;
23663 		for (i = 0; i < num_sack_blk; i++) {
23664 			U32_TO_BE32(tmp[i].begin, wptr);
23665 			wptr += sizeof (tcp_seq);
23666 			U32_TO_BE32(tmp[i].end, wptr);
23667 			wptr += sizeof (tcp_seq);
23668 		}
23669 		tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) << 4);
23670 	}
23671 	ASSERT((uintptr_t)(mp1->b_wptr - rptr) <= (uintptr_t)INT_MAX);
23672 	data_length += (int)(mp1->b_wptr - rptr);
23673 	if (tcp->tcp_ipversion == IPV4_VERSION) {
23674 		((ipha_t *)rptr)->ipha_length = htons(data_length);
23675 	} else {
23676 		ip6_t *ip6 = (ip6_t *)(rptr +
23677 		    (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ?
23678 		    sizeof (ip6i_t) : 0));
23679 
23680 		ip6->ip6_plen = htons(data_length -
23681 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
23682 	}
23683 
23684 	/*
23685 	 * Prime pump for IP
23686 	 * Include the adjustment for a source route if any.
23687 	 */
23688 	data_length -= tcp->tcp_ip_hdr_len;
23689 	data_length += tcp->tcp_sum;
23690 	data_length = (data_length >> 16) + (data_length & 0xFFFF);
23691 	U16_TO_ABE16(data_length, tcph->th_sum);
23692 	if (tcp->tcp_ip_forward_progress) {
23693 		ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
23694 		*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
23695 		tcp->tcp_ip_forward_progress = B_FALSE;
23696 	}
23697 	return (mp1);
23698 }
23699 
23700 /* This function handles the push timeout. */
23701 void
23702 tcp_push_timer(void *arg)
23703 {
23704 	conn_t	*connp = (conn_t *)arg;
23705 	tcp_t *tcp = connp->conn_tcp;
23706 	tcp_stack_t	*tcps = tcp->tcp_tcps;
23707 	uint_t		flags;
23708 	sodirect_t	*sodp;
23709 
23710 	TCP_DBGSTAT(tcps, tcp_push_timer_cnt);
23711 
23712 	ASSERT(tcp->tcp_listener == NULL);
23713 
23714 	/*
23715 	 * We need to plug synchronous streams during our drain to prevent
23716 	 * a race with tcp_fuse_rrw() or tcp_fusion_rinfop().
23717 	 */
23718 	TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp);
23719 	tcp->tcp_push_tid = 0;
23720 
23721 	SOD_PTR_ENTER(tcp, sodp);
23722 	if (sodp != NULL) {
23723 		flags = tcp_rcv_sod_wakeup(tcp, sodp);
23724 		/* sod_wakeup() does the mutex_exit() */
23725 	} else if (tcp->tcp_rcv_list != NULL) {
23726 		flags = tcp_rcv_drain(tcp->tcp_rq, tcp);
23727 	}
23728 	if (flags == TH_ACK_NEEDED)
23729 		tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK);
23730 
23731 	TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp);
23732 }
23733 
23734 /*
23735  * This function handles delayed ACK timeout.
23736  */
23737 static void
23738 tcp_ack_timer(void *arg)
23739 {
23740 	conn_t	*connp = (conn_t *)arg;
23741 	tcp_t *tcp = connp->conn_tcp;
23742 	mblk_t *mp;
23743 	tcp_stack_t	*tcps = tcp->tcp_tcps;
23744 
23745 	TCP_DBGSTAT(tcps, tcp_ack_timer_cnt);
23746 
23747 	tcp->tcp_ack_tid = 0;
23748 
23749 	if (tcp->tcp_fused)
23750 		return;
23751 
23752 	/*
23753 	 * Do not send ACK if there is no outstanding unack'ed data.
23754 	 */
23755 	if (tcp->tcp_rnxt == tcp->tcp_rack) {
23756 		return;
23757 	}
23758 
23759 	if ((tcp->tcp_rnxt - tcp->tcp_rack) > tcp->tcp_mss) {
23760 		/*
23761 		 * Make sure we don't allow deferred ACKs to result in
23762 		 * timer-based ACKing.  If we have held off an ACK
23763 		 * when there was more than an mss here, and the timer
23764 		 * goes off, we have to worry about the possibility
23765 		 * that the sender isn't doing slow-start, or is out
23766 		 * of step with us for some other reason.  We fall
23767 		 * permanently back in the direction of
23768 		 * ACK-every-other-packet as suggested in RFC 1122.
23769 		 */
23770 		if (tcp->tcp_rack_abs_max > 2)
23771 			tcp->tcp_rack_abs_max--;
23772 		tcp->tcp_rack_cur_max = 2;
23773 	}
23774 	mp = tcp_ack_mp(tcp);
23775 
23776 	if (mp != NULL) {
23777 		BUMP_LOCAL(tcp->tcp_obsegs);
23778 		BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
23779 		BUMP_MIB(&tcps->tcps_mib, tcpOutAckDelayed);
23780 		tcp_send_data(tcp, tcp->tcp_wq, mp);
23781 	}
23782 }
23783 
23784 
23785 /* Generate an ACK-only (no data) segment for a TCP endpoint */
23786 static mblk_t *
23787 tcp_ack_mp(tcp_t *tcp)
23788 {
23789 	uint32_t	seq_no;
23790 	tcp_stack_t	*tcps = tcp->tcp_tcps;
23791 
23792 	/*
23793 	 * There are a few cases to be considered while setting the sequence no.
23794 	 * Essentially, we can come here while processing an unacceptable pkt
23795 	 * in the TCPS_SYN_RCVD state, in which case we set the sequence number
23796 	 * to snxt (per RFC 793), note the swnd wouldn't have been set yet.
23797 	 * If we are here for a zero window probe, stick with suna. In all
23798 	 * other cases, we check if suna + swnd encompasses snxt and set
23799 	 * the sequence number to snxt, if so. If snxt falls outside the
23800 	 * window (the receiver probably shrunk its window), we will go with
23801 	 * suna + swnd, otherwise the sequence no will be unacceptable to the
23802 	 * receiver.
23803 	 */
23804 	if (tcp->tcp_zero_win_probe) {
23805 		seq_no = tcp->tcp_suna;
23806 	} else if (tcp->tcp_state == TCPS_SYN_RCVD) {
23807 		ASSERT(tcp->tcp_swnd == 0);
23808 		seq_no = tcp->tcp_snxt;
23809 	} else {
23810 		seq_no = SEQ_GT(tcp->tcp_snxt,
23811 		    (tcp->tcp_suna + tcp->tcp_swnd)) ?
23812 		    (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt;
23813 	}
23814 
23815 	if (tcp->tcp_valid_bits) {
23816 		/*
23817 		 * For the complex case where we have to send some
23818 		 * controls (FIN or SYN), let tcp_xmit_mp do it.
23819 		 */
23820 		return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE,
23821 		    NULL, B_FALSE));
23822 	} else {
23823 		/* Generate a simple ACK */
23824 		int	data_length;
23825 		uchar_t	*rptr;
23826 		tcph_t	*tcph;
23827 		mblk_t	*mp1;
23828 		int32_t	tcp_hdr_len;
23829 		int32_t	tcp_tcp_hdr_len;
23830 		int32_t	num_sack_blk = 0;
23831 		int32_t sack_opt_len;
23832 
23833 		/*
23834 		 * Allocate space for TCP + IP headers
23835 		 * and link-level header
23836 		 */
23837 		if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
23838 			num_sack_blk = MIN(tcp->tcp_max_sack_blk,
23839 			    tcp->tcp_num_sack_blk);
23840 			sack_opt_len = num_sack_blk * sizeof (sack_blk_t) +
23841 			    TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN;
23842 			tcp_hdr_len = tcp->tcp_hdr_len + sack_opt_len;
23843 			tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + sack_opt_len;
23844 		} else {
23845 			tcp_hdr_len = tcp->tcp_hdr_len;
23846 			tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len;
23847 		}
23848 		mp1 = allocb(tcp_hdr_len + tcps->tcps_wroff_xtra, BPRI_MED);
23849 		if (!mp1)
23850 			return (NULL);
23851 
23852 		/* Update the latest receive window size in TCP header. */
23853 		U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
23854 		    tcp->tcp_tcph->th_win);
23855 		/* copy in prototype TCP + IP header */
23856 		rptr = mp1->b_rptr + tcps->tcps_wroff_xtra;
23857 		mp1->b_rptr = rptr;
23858 		mp1->b_wptr = rptr + tcp_hdr_len;
23859 		bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len);
23860 
23861 		tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len];
23862 
23863 		/* Set the TCP sequence number. */
23864 		U32_TO_ABE32(seq_no, tcph->th_seq);
23865 
23866 		/* Set up the TCP flag field. */
23867 		tcph->th_flags[0] = (uchar_t)TH_ACK;
23868 		if (tcp->tcp_ecn_echo_on)
23869 			tcph->th_flags[0] |= TH_ECE;
23870 
23871 		tcp->tcp_rack = tcp->tcp_rnxt;
23872 		tcp->tcp_rack_cnt = 0;
23873 
23874 		/* fill in timestamp option if in use */
23875 		if (tcp->tcp_snd_ts_ok) {
23876 			uint32_t llbolt = (uint32_t)lbolt;
23877 
23878 			U32_TO_BE32(llbolt,
23879 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
23880 			U32_TO_BE32(tcp->tcp_ts_recent,
23881 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
23882 		}
23883 
23884 		/* Fill in SACK options */
23885 		if (num_sack_blk > 0) {
23886 			uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len;
23887 			sack_blk_t *tmp;
23888 			int32_t	i;
23889 
23890 			wptr[0] = TCPOPT_NOP;
23891 			wptr[1] = TCPOPT_NOP;
23892 			wptr[2] = TCPOPT_SACK;
23893 			wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
23894 			    sizeof (sack_blk_t);
23895 			wptr += TCPOPT_REAL_SACK_LEN;
23896 
23897 			tmp = tcp->tcp_sack_list;
23898 			for (i = 0; i < num_sack_blk; i++) {
23899 				U32_TO_BE32(tmp[i].begin, wptr);
23900 				wptr += sizeof (tcp_seq);
23901 				U32_TO_BE32(tmp[i].end, wptr);
23902 				wptr += sizeof (tcp_seq);
23903 			}
23904 			tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1)
23905 			    << 4);
23906 		}
23907 
23908 		if (tcp->tcp_ipversion == IPV4_VERSION) {
23909 			((ipha_t *)rptr)->ipha_length = htons(tcp_hdr_len);
23910 		} else {
23911 			/* Check for ip6i_t header in sticky hdrs */
23912 			ip6_t *ip6 = (ip6_t *)(rptr +
23913 			    (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ?
23914 			    sizeof (ip6i_t) : 0));
23915 
23916 			ip6->ip6_plen = htons(tcp_hdr_len -
23917 			    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
23918 		}
23919 
23920 		/*
23921 		 * Prime pump for checksum calculation in IP.  Include the
23922 		 * adjustment for a source route if any.
23923 		 */
23924 		data_length = tcp_tcp_hdr_len + tcp->tcp_sum;
23925 		data_length = (data_length >> 16) + (data_length & 0xFFFF);
23926 		U16_TO_ABE16(data_length, tcph->th_sum);
23927 
23928 		if (tcp->tcp_ip_forward_progress) {
23929 			ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
23930 			*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
23931 			tcp->tcp_ip_forward_progress = B_FALSE;
23932 		}
23933 		return (mp1);
23934 	}
23935 }
23936 
23937 /*
23938  * Hash list insertion routine for tcp_t structures.
23939  * Inserts entries with the ones bound to a specific IP address first
23940  * followed by those bound to INADDR_ANY.
23941  */
23942 static void
23943 tcp_bind_hash_insert(tf_t *tbf, tcp_t *tcp, int caller_holds_lock)
23944 {
23945 	tcp_t	**tcpp;
23946 	tcp_t	*tcpnext;
23947 
23948 	if (tcp->tcp_ptpbhn != NULL) {
23949 		ASSERT(!caller_holds_lock);
23950 		tcp_bind_hash_remove(tcp);
23951 	}
23952 	tcpp = &tbf->tf_tcp;
23953 	if (!caller_holds_lock) {
23954 		mutex_enter(&tbf->tf_lock);
23955 	} else {
23956 		ASSERT(MUTEX_HELD(&tbf->tf_lock));
23957 	}
23958 	tcpnext = tcpp[0];
23959 	if (tcpnext) {
23960 		/*
23961 		 * If the new tcp bound to the INADDR_ANY address
23962 		 * and the first one in the list is not bound to
23963 		 * INADDR_ANY we skip all entries until we find the
23964 		 * first one bound to INADDR_ANY.
23965 		 * This makes sure that applications binding to a
23966 		 * specific address get preference over those binding to
23967 		 * INADDR_ANY.
23968 		 */
23969 		if (V6_OR_V4_INADDR_ANY(tcp->tcp_bound_source_v6) &&
23970 		    !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) {
23971 			while ((tcpnext = tcpp[0]) != NULL &&
23972 			    !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6))
23973 				tcpp = &(tcpnext->tcp_bind_hash);
23974 			if (tcpnext)
23975 				tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash;
23976 		} else
23977 			tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash;
23978 	}
23979 	tcp->tcp_bind_hash = tcpnext;
23980 	tcp->tcp_ptpbhn = tcpp;
23981 	tcpp[0] = tcp;
23982 	if (!caller_holds_lock)
23983 		mutex_exit(&tbf->tf_lock);
23984 }
23985 
23986 /*
23987  * Hash list removal routine for tcp_t structures.
23988  */
23989 static void
23990 tcp_bind_hash_remove(tcp_t *tcp)
23991 {
23992 	tcp_t	*tcpnext;
23993 	kmutex_t *lockp;
23994 	tcp_stack_t	*tcps = tcp->tcp_tcps;
23995 
23996 	if (tcp->tcp_ptpbhn == NULL)
23997 		return;
23998 
23999 	/*
24000 	 * Extract the lock pointer in case there are concurrent
24001 	 * hash_remove's for this instance.
24002 	 */
24003 	ASSERT(tcp->tcp_lport != 0);
24004 	lockp = &tcps->tcps_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)].tf_lock;
24005 
24006 	ASSERT(lockp != NULL);
24007 	mutex_enter(lockp);
24008 	if (tcp->tcp_ptpbhn) {
24009 		tcpnext = tcp->tcp_bind_hash;
24010 		if (tcpnext) {
24011 			tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn;
24012 			tcp->tcp_bind_hash = NULL;
24013 		}
24014 		*tcp->tcp_ptpbhn = tcpnext;
24015 		tcp->tcp_ptpbhn = NULL;
24016 	}
24017 	mutex_exit(lockp);
24018 }
24019 
24020 
24021 /*
24022  * Hash list lookup routine for tcp_t structures.
24023  * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF.
24024  */
24025 static tcp_t *
24026 tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *tcps)
24027 {
24028 	tf_t	*tf;
24029 	tcp_t	*tcp;
24030 
24031 	tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
24032 	mutex_enter(&tf->tf_lock);
24033 	for (tcp = tf->tf_tcp; tcp != NULL;
24034 	    tcp = tcp->tcp_acceptor_hash) {
24035 		if (tcp->tcp_acceptor_id == id) {
24036 			CONN_INC_REF(tcp->tcp_connp);
24037 			mutex_exit(&tf->tf_lock);
24038 			return (tcp);
24039 		}
24040 	}
24041 	mutex_exit(&tf->tf_lock);
24042 	return (NULL);
24043 }
24044 
24045 
24046 /*
24047  * Hash list insertion routine for tcp_t structures.
24048  */
24049 void
24050 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp)
24051 {
24052 	tf_t	*tf;
24053 	tcp_t	**tcpp;
24054 	tcp_t	*tcpnext;
24055 	tcp_stack_t	*tcps = tcp->tcp_tcps;
24056 
24057 	tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
24058 
24059 	if (tcp->tcp_ptpahn != NULL)
24060 		tcp_acceptor_hash_remove(tcp);
24061 	tcpp = &tf->tf_tcp;
24062 	mutex_enter(&tf->tf_lock);
24063 	tcpnext = tcpp[0];
24064 	if (tcpnext)
24065 		tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash;
24066 	tcp->tcp_acceptor_hash = tcpnext;
24067 	tcp->tcp_ptpahn = tcpp;
24068 	tcpp[0] = tcp;
24069 	tcp->tcp_acceptor_lockp = &tf->tf_lock;	/* For tcp_*_hash_remove */
24070 	mutex_exit(&tf->tf_lock);
24071 }
24072 
24073 /*
24074  * Hash list removal routine for tcp_t structures.
24075  */
24076 static void
24077 tcp_acceptor_hash_remove(tcp_t *tcp)
24078 {
24079 	tcp_t	*tcpnext;
24080 	kmutex_t *lockp;
24081 
24082 	/*
24083 	 * Extract the lock pointer in case there are concurrent
24084 	 * hash_remove's for this instance.
24085 	 */
24086 	lockp = tcp->tcp_acceptor_lockp;
24087 
24088 	if (tcp->tcp_ptpahn == NULL)
24089 		return;
24090 
24091 	ASSERT(lockp != NULL);
24092 	mutex_enter(lockp);
24093 	if (tcp->tcp_ptpahn) {
24094 		tcpnext = tcp->tcp_acceptor_hash;
24095 		if (tcpnext) {
24096 			tcpnext->tcp_ptpahn = tcp->tcp_ptpahn;
24097 			tcp->tcp_acceptor_hash = NULL;
24098 		}
24099 		*tcp->tcp_ptpahn = tcpnext;
24100 		tcp->tcp_ptpahn = NULL;
24101 	}
24102 	mutex_exit(lockp);
24103 	tcp->tcp_acceptor_lockp = NULL;
24104 }
24105 
24106 /* Data for fast netmask macro used by tcp_hsp_lookup */
24107 
24108 static ipaddr_t netmasks[] = {
24109 	IN_CLASSA_NET, IN_CLASSA_NET, IN_CLASSB_NET,
24110 	IN_CLASSC_NET | IN_CLASSD_NET  /* Class C,D,E */
24111 };
24112 
24113 #define	netmask(addr) (netmasks[(ipaddr_t)(addr) >> 30])
24114 
24115 /*
24116  * XXX This routine should go away and instead we should use the metrics
24117  * associated with the routes to determine the default sndspace and rcvspace.
24118  */
24119 static tcp_hsp_t *
24120 tcp_hsp_lookup(ipaddr_t addr, tcp_stack_t *tcps)
24121 {
24122 	tcp_hsp_t *hsp = NULL;
24123 
24124 	/* Quick check without acquiring the lock. */
24125 	if (tcps->tcps_hsp_hash == NULL)
24126 		return (NULL);
24127 
24128 	rw_enter(&tcps->tcps_hsp_lock, RW_READER);
24129 
24130 	/* This routine finds the best-matching HSP for address addr. */
24131 
24132 	if (tcps->tcps_hsp_hash) {
24133 		int i;
24134 		ipaddr_t srchaddr;
24135 		tcp_hsp_t *hsp_net;
24136 
24137 		/* We do three passes: host, network, and subnet. */
24138 
24139 		srchaddr = addr;
24140 
24141 		for (i = 1; i <= 3; i++) {
24142 			/* Look for exact match on srchaddr */
24143 
24144 			hsp = tcps->tcps_hsp_hash[TCP_HSP_HASH(srchaddr)];
24145 			while (hsp) {
24146 				if (hsp->tcp_hsp_vers == IPV4_VERSION &&
24147 				    hsp->tcp_hsp_addr == srchaddr)
24148 					break;
24149 				hsp = hsp->tcp_hsp_next;
24150 			}
24151 			ASSERT(hsp == NULL ||
24152 			    hsp->tcp_hsp_vers == IPV4_VERSION);
24153 
24154 			/*
24155 			 * If this is the first pass:
24156 			 *   If we found a match, great, return it.
24157 			 *   If not, search for the network on the second pass.
24158 			 */
24159 
24160 			if (i == 1)
24161 				if (hsp)
24162 					break;
24163 				else
24164 				{
24165 					srchaddr = addr & netmask(addr);
24166 					continue;
24167 				}
24168 
24169 			/*
24170 			 * If this is the second pass:
24171 			 *   If we found a match, but there's a subnet mask,
24172 			 *    save the match but try again using the subnet
24173 			 *    mask on the third pass.
24174 			 *   Otherwise, return whatever we found.
24175 			 */
24176 
24177 			if (i == 2) {
24178 				if (hsp && hsp->tcp_hsp_subnet) {
24179 					hsp_net = hsp;
24180 					srchaddr = addr & hsp->tcp_hsp_subnet;
24181 					continue;
24182 				} else {
24183 					break;
24184 				}
24185 			}
24186 
24187 			/*
24188 			 * This must be the third pass.  If we didn't find
24189 			 * anything, return the saved network HSP instead.
24190 			 */
24191 
24192 			if (!hsp)
24193 				hsp = hsp_net;
24194 		}
24195 	}
24196 
24197 	rw_exit(&tcps->tcps_hsp_lock);
24198 	return (hsp);
24199 }
24200 
24201 /*
24202  * XXX Equally broken as the IPv4 routine. Doesn't handle longest
24203  * match lookup.
24204  */
24205 static tcp_hsp_t *
24206 tcp_hsp_lookup_ipv6(in6_addr_t *v6addr, tcp_stack_t *tcps)
24207 {
24208 	tcp_hsp_t *hsp = NULL;
24209 
24210 	/* Quick check without acquiring the lock. */
24211 	if (tcps->tcps_hsp_hash == NULL)
24212 		return (NULL);
24213 
24214 	rw_enter(&tcps->tcps_hsp_lock, RW_READER);
24215 
24216 	/* This routine finds the best-matching HSP for address addr. */
24217 
24218 	if (tcps->tcps_hsp_hash) {
24219 		int i;
24220 		in6_addr_t v6srchaddr;
24221 		tcp_hsp_t *hsp_net;
24222 
24223 		/* We do three passes: host, network, and subnet. */
24224 
24225 		v6srchaddr = *v6addr;
24226 
24227 		for (i = 1; i <= 3; i++) {
24228 			/* Look for exact match on srchaddr */
24229 
24230 			hsp = tcps->tcps_hsp_hash[TCP_HSP_HASH(
24231 			    V4_PART_OF_V6(v6srchaddr))];
24232 			while (hsp) {
24233 				if (hsp->tcp_hsp_vers == IPV6_VERSION &&
24234 				    IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6,
24235 				    &v6srchaddr))
24236 					break;
24237 				hsp = hsp->tcp_hsp_next;
24238 			}
24239 
24240 			/*
24241 			 * If this is the first pass:
24242 			 *   If we found a match, great, return it.
24243 			 *   If not, search for the network on the second pass.
24244 			 */
24245 
24246 			if (i == 1)
24247 				if (hsp)
24248 					break;
24249 				else {
24250 					/* Assume a 64 bit mask */
24251 					v6srchaddr.s6_addr32[0] =
24252 					    v6addr->s6_addr32[0];
24253 					v6srchaddr.s6_addr32[1] =
24254 					    v6addr->s6_addr32[1];
24255 					v6srchaddr.s6_addr32[2] = 0;
24256 					v6srchaddr.s6_addr32[3] = 0;
24257 					continue;
24258 				}
24259 
24260 			/*
24261 			 * If this is the second pass:
24262 			 *   If we found a match, but there's a subnet mask,
24263 			 *    save the match but try again using the subnet
24264 			 *    mask on the third pass.
24265 			 *   Otherwise, return whatever we found.
24266 			 */
24267 
24268 			if (i == 2) {
24269 				ASSERT(hsp == NULL ||
24270 				    hsp->tcp_hsp_vers == IPV6_VERSION);
24271 				if (hsp &&
24272 				    !IN6_IS_ADDR_UNSPECIFIED(
24273 				    &hsp->tcp_hsp_subnet_v6)) {
24274 					hsp_net = hsp;
24275 					V6_MASK_COPY(*v6addr,
24276 					    hsp->tcp_hsp_subnet_v6, v6srchaddr);
24277 					continue;
24278 				} else {
24279 					break;
24280 				}
24281 			}
24282 
24283 			/*
24284 			 * This must be the third pass.  If we didn't find
24285 			 * anything, return the saved network HSP instead.
24286 			 */
24287 
24288 			if (!hsp)
24289 				hsp = hsp_net;
24290 		}
24291 	}
24292 
24293 	rw_exit(&tcps->tcps_hsp_lock);
24294 	return (hsp);
24295 }
24296 
24297 /*
24298  * Type three generator adapted from the random() function in 4.4 BSD:
24299  */
24300 
24301 /*
24302  * Copyright (c) 1983, 1993
24303  *	The Regents of the University of California.  All rights reserved.
24304  *
24305  * Redistribution and use in source and binary forms, with or without
24306  * modification, are permitted provided that the following conditions
24307  * are met:
24308  * 1. Redistributions of source code must retain the above copyright
24309  *    notice, this list of conditions and the following disclaimer.
24310  * 2. Redistributions in binary form must reproduce the above copyright
24311  *    notice, this list of conditions and the following disclaimer in the
24312  *    documentation and/or other materials provided with the distribution.
24313  * 3. All advertising materials mentioning features or use of this software
24314  *    must display the following acknowledgement:
24315  *	This product includes software developed by the University of
24316  *	California, Berkeley and its contributors.
24317  * 4. Neither the name of the University nor the names of its contributors
24318  *    may be used to endorse or promote products derived from this software
24319  *    without specific prior written permission.
24320  *
24321  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24322  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24323  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24324  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24325  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24326  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24327  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24328  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24329  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24330  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24331  * SUCH DAMAGE.
24332  */
24333 
24334 /* Type 3 -- x**31 + x**3 + 1 */
24335 #define	DEG_3		31
24336 #define	SEP_3		3
24337 
24338 
24339 /* Protected by tcp_random_lock */
24340 static int tcp_randtbl[DEG_3 + 1];
24341 
24342 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1];
24343 static int *tcp_random_rptr = &tcp_randtbl[1];
24344 
24345 static int *tcp_random_state = &tcp_randtbl[1];
24346 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1];
24347 
24348 kmutex_t tcp_random_lock;
24349 
24350 void
24351 tcp_random_init(void)
24352 {
24353 	int i;
24354 	hrtime_t hrt;
24355 	time_t wallclock;
24356 	uint64_t result;
24357 
24358 	/*
24359 	 * Use high-res timer and current time for seed.  Gethrtime() returns
24360 	 * a longlong, which may contain resolution down to nanoseconds.
24361 	 * The current time will either be a 32-bit or a 64-bit quantity.
24362 	 * XOR the two together in a 64-bit result variable.
24363 	 * Convert the result to a 32-bit value by multiplying the high-order
24364 	 * 32-bits by the low-order 32-bits.
24365 	 */
24366 
24367 	hrt = gethrtime();
24368 	(void) drv_getparm(TIME, &wallclock);
24369 	result = (uint64_t)wallclock ^ (uint64_t)hrt;
24370 	mutex_enter(&tcp_random_lock);
24371 	tcp_random_state[0] = ((result >> 32) & 0xffffffff) *
24372 	    (result & 0xffffffff);
24373 
24374 	for (i = 1; i < DEG_3; i++)
24375 		tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1]
24376 		    + 12345;
24377 	tcp_random_fptr = &tcp_random_state[SEP_3];
24378 	tcp_random_rptr = &tcp_random_state[0];
24379 	mutex_exit(&tcp_random_lock);
24380 	for (i = 0; i < 10 * DEG_3; i++)
24381 		(void) tcp_random();
24382 }
24383 
24384 /*
24385  * tcp_random: Return a random number in the range [1 - (128K + 1)].
24386  * This range is selected to be approximately centered on TCP_ISS / 2,
24387  * and easy to compute. We get this value by generating a 32-bit random
24388  * number, selecting out the high-order 17 bits, and then adding one so
24389  * that we never return zero.
24390  */
24391 int
24392 tcp_random(void)
24393 {
24394 	int i;
24395 
24396 	mutex_enter(&tcp_random_lock);
24397 	*tcp_random_fptr += *tcp_random_rptr;
24398 
24399 	/*
24400 	 * The high-order bits are more random than the low-order bits,
24401 	 * so we select out the high-order 17 bits and add one so that
24402 	 * we never return zero.
24403 	 */
24404 	i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1;
24405 	if (++tcp_random_fptr >= tcp_random_end_ptr) {
24406 		tcp_random_fptr = tcp_random_state;
24407 		++tcp_random_rptr;
24408 	} else if (++tcp_random_rptr >= tcp_random_end_ptr)
24409 		tcp_random_rptr = tcp_random_state;
24410 
24411 	mutex_exit(&tcp_random_lock);
24412 	return (i);
24413 }
24414 
24415 /*
24416  * XXX This will go away when TPI is extended to send
24417  * info reqs to sockfs/timod .....
24418  * Given a queue, set the max packet size for the write
24419  * side of the queue below stream head.  This value is
24420  * cached on the stream head.
24421  * Returns 1 on success, 0 otherwise.
24422  */
24423 static int
24424 setmaxps(queue_t *q, int maxpsz)
24425 {
24426 	struct stdata	*stp;
24427 	queue_t		*wq;
24428 	stp = STREAM(q);
24429 
24430 	/*
24431 	 * At this point change of a queue parameter is not allowed
24432 	 * when a multiplexor is sitting on top.
24433 	 */
24434 	if (stp->sd_flag & STPLEX)
24435 		return (0);
24436 
24437 	claimstr(stp->sd_wrq);
24438 	wq = stp->sd_wrq->q_next;
24439 	ASSERT(wq != NULL);
24440 	(void) strqset(wq, QMAXPSZ, 0, maxpsz);
24441 	releasestr(stp->sd_wrq);
24442 	return (1);
24443 }
24444 
24445 static int
24446 tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, int *do_disconnectp,
24447     int *t_errorp, int *sys_errorp)
24448 {
24449 	int error;
24450 	int is_absreq_failure;
24451 	t_scalar_t *opt_lenp;
24452 	t_scalar_t opt_offset;
24453 	int prim_type;
24454 	struct T_conn_req *tcreqp;
24455 	struct T_conn_res *tcresp;
24456 	cred_t *cr;
24457 
24458 	cr = DB_CREDDEF(mp, tcp->tcp_cred);
24459 
24460 	prim_type = ((union T_primitives *)mp->b_rptr)->type;
24461 	ASSERT(prim_type == T_CONN_REQ || prim_type == O_T_CONN_RES ||
24462 	    prim_type == T_CONN_RES);
24463 
24464 	switch (prim_type) {
24465 	case T_CONN_REQ:
24466 		tcreqp = (struct T_conn_req *)mp->b_rptr;
24467 		opt_offset = tcreqp->OPT_offset;
24468 		opt_lenp = (t_scalar_t *)&tcreqp->OPT_length;
24469 		break;
24470 	case O_T_CONN_RES:
24471 	case T_CONN_RES:
24472 		tcresp = (struct T_conn_res *)mp->b_rptr;
24473 		opt_offset = tcresp->OPT_offset;
24474 		opt_lenp = (t_scalar_t *)&tcresp->OPT_length;
24475 		break;
24476 	}
24477 
24478 	*t_errorp = 0;
24479 	*sys_errorp = 0;
24480 	*do_disconnectp = 0;
24481 
24482 	error = tpi_optcom_buf(tcp->tcp_wq, mp, opt_lenp,
24483 	    opt_offset, cr, &tcp_opt_obj,
24484 	    NULL, &is_absreq_failure);
24485 
24486 	switch (error) {
24487 	case  0:		/* no error */
24488 		ASSERT(is_absreq_failure == 0);
24489 		return (0);
24490 	case ENOPROTOOPT:
24491 		*t_errorp = TBADOPT;
24492 		break;
24493 	case EACCES:
24494 		*t_errorp = TACCES;
24495 		break;
24496 	default:
24497 		*t_errorp = TSYSERR; *sys_errorp = error;
24498 		break;
24499 	}
24500 	if (is_absreq_failure != 0) {
24501 		/*
24502 		 * The connection request should get the local ack
24503 		 * T_OK_ACK and then a T_DISCON_IND.
24504 		 */
24505 		*do_disconnectp = 1;
24506 	}
24507 	return (-1);
24508 }
24509 
24510 /*
24511  * Split this function out so that if the secret changes, I'm okay.
24512  *
24513  * Initialize the tcp_iss_cookie and tcp_iss_key.
24514  */
24515 
24516 #define	PASSWD_SIZE 16  /* MUST be multiple of 4 */
24517 
24518 static void
24519 tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *tcps)
24520 {
24521 	struct {
24522 		int32_t current_time;
24523 		uint32_t randnum;
24524 		uint16_t pad;
24525 		uint8_t ether[6];
24526 		uint8_t passwd[PASSWD_SIZE];
24527 	} tcp_iss_cookie;
24528 	time_t t;
24529 
24530 	/*
24531 	 * Start with the current absolute time.
24532 	 */
24533 	(void) drv_getparm(TIME, &t);
24534 	tcp_iss_cookie.current_time = t;
24535 
24536 	/*
24537 	 * XXX - Need a more random number per RFC 1750, not this crap.
24538 	 * OTOH, if what follows is pretty random, then I'm in better shape.
24539 	 */
24540 	tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random());
24541 	tcp_iss_cookie.pad = 0x365c;  /* Picked from HMAC pad values. */
24542 
24543 	/*
24544 	 * The cpu_type_info is pretty non-random.  Ugggh.  It does serve
24545 	 * as a good template.
24546 	 */
24547 	bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd,
24548 	    min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info)));
24549 
24550 	/*
24551 	 * The pass-phrase.  Normally this is supplied by user-called NDD.
24552 	 */
24553 	bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len));
24554 
24555 	/*
24556 	 * See 4010593 if this section becomes a problem again,
24557 	 * but the local ethernet address is useful here.
24558 	 */
24559 	(void) localetheraddr(NULL,
24560 	    (struct ether_addr *)&tcp_iss_cookie.ether);
24561 
24562 	/*
24563 	 * Hash 'em all together.  The MD5Final is called per-connection.
24564 	 */
24565 	mutex_enter(&tcps->tcps_iss_key_lock);
24566 	MD5Init(&tcps->tcps_iss_key);
24567 	MD5Update(&tcps->tcps_iss_key, (uchar_t *)&tcp_iss_cookie,
24568 	    sizeof (tcp_iss_cookie));
24569 	mutex_exit(&tcps->tcps_iss_key_lock);
24570 }
24571 
24572 /*
24573  * Set the RFC 1948 pass phrase
24574  */
24575 /* ARGSUSED */
24576 static int
24577 tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
24578     cred_t *cr)
24579 {
24580 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
24581 
24582 	/*
24583 	 * Basically, value contains a new pass phrase.  Pass it along!
24584 	 */
24585 	tcp_iss_key_init((uint8_t *)value, strlen(value), tcps);
24586 	return (0);
24587 }
24588 
24589 /* ARGSUSED */
24590 static int
24591 tcp_sack_info_constructor(void *buf, void *cdrarg, int kmflags)
24592 {
24593 	bzero(buf, sizeof (tcp_sack_info_t));
24594 	return (0);
24595 }
24596 
24597 /* ARGSUSED */
24598 static int
24599 tcp_iphc_constructor(void *buf, void *cdrarg, int kmflags)
24600 {
24601 	bzero(buf, TCP_MAX_COMBINED_HEADER_LENGTH);
24602 	return (0);
24603 }
24604 
24605 /*
24606  * Make sure we wait until the default queue is setup, yet allow
24607  * tcp_g_q_create() to open a TCP stream.
24608  * We need to allow tcp_g_q_create() do do an open
24609  * of tcp, hence we compare curhread.
24610  * All others have to wait until the tcps_g_q has been
24611  * setup.
24612  */
24613 void
24614 tcp_g_q_setup(tcp_stack_t *tcps)
24615 {
24616 	mutex_enter(&tcps->tcps_g_q_lock);
24617 	if (tcps->tcps_g_q != NULL) {
24618 		mutex_exit(&tcps->tcps_g_q_lock);
24619 		return;
24620 	}
24621 	if (tcps->tcps_g_q_creator == NULL) {
24622 		/* This thread will set it up */
24623 		tcps->tcps_g_q_creator = curthread;
24624 		mutex_exit(&tcps->tcps_g_q_lock);
24625 		tcp_g_q_create(tcps);
24626 		mutex_enter(&tcps->tcps_g_q_lock);
24627 		ASSERT(tcps->tcps_g_q_creator == curthread);
24628 		tcps->tcps_g_q_creator = NULL;
24629 		cv_signal(&tcps->tcps_g_q_cv);
24630 		ASSERT(tcps->tcps_g_q != NULL);
24631 		mutex_exit(&tcps->tcps_g_q_lock);
24632 		return;
24633 	}
24634 	/* Everybody but the creator has to wait */
24635 	if (tcps->tcps_g_q_creator != curthread) {
24636 		while (tcps->tcps_g_q == NULL)
24637 			cv_wait(&tcps->tcps_g_q_cv, &tcps->tcps_g_q_lock);
24638 	}
24639 	mutex_exit(&tcps->tcps_g_q_lock);
24640 }
24641 
24642 #define	IP	"ip"
24643 
24644 #define	TCP6DEV		"/devices/pseudo/tcp6@0:tcp6"
24645 
24646 /*
24647  * Create a default tcp queue here instead of in strplumb
24648  */
24649 void
24650 tcp_g_q_create(tcp_stack_t *tcps)
24651 {
24652 	int error;
24653 	ldi_handle_t	lh = NULL;
24654 	ldi_ident_t	li = NULL;
24655 	int		rval;
24656 	cred_t		*cr;
24657 	major_t IP_MAJ;
24658 
24659 #ifdef NS_DEBUG
24660 	(void) printf("tcp_g_q_create()\n");
24661 #endif
24662 
24663 	IP_MAJ = ddi_name_to_major(IP);
24664 
24665 	ASSERT(tcps->tcps_g_q_creator == curthread);
24666 
24667 	error = ldi_ident_from_major(IP_MAJ, &li);
24668 	if (error) {
24669 #ifdef DEBUG
24670 		printf("tcp_g_q_create: lyr ident get failed error %d\n",
24671 		    error);
24672 #endif
24673 		return;
24674 	}
24675 
24676 	cr = zone_get_kcred(netstackid_to_zoneid(
24677 	    tcps->tcps_netstack->netstack_stackid));
24678 	ASSERT(cr != NULL);
24679 	/*
24680 	 * We set the tcp default queue to IPv6 because IPv4 falls
24681 	 * back to IPv6 when it can't find a client, but
24682 	 * IPv6 does not fall back to IPv4.
24683 	 */
24684 	error = ldi_open_by_name(TCP6DEV, FREAD|FWRITE, cr, &lh, li);
24685 	if (error) {
24686 #ifdef DEBUG
24687 		printf("tcp_g_q_create: open of TCP6DEV failed error %d\n",
24688 		    error);
24689 #endif
24690 		goto out;
24691 	}
24692 
24693 	/*
24694 	 * This ioctl causes the tcp framework to cache a pointer to
24695 	 * this stream, so we don't want to close the stream after
24696 	 * this operation.
24697 	 * Use the kernel credentials that are for the zone we're in.
24698 	 */
24699 	error = ldi_ioctl(lh, TCP_IOC_DEFAULT_Q,
24700 	    (intptr_t)0, FKIOCTL, cr, &rval);
24701 	if (error) {
24702 #ifdef DEBUG
24703 		printf("tcp_g_q_create: ioctl TCP_IOC_DEFAULT_Q failed "
24704 		    "error %d\n", error);
24705 #endif
24706 		goto out;
24707 	}
24708 	tcps->tcps_g_q_lh = lh;	/* For tcp_g_q_close */
24709 	lh = NULL;
24710 out:
24711 	/* Close layered handles */
24712 	if (li)
24713 		ldi_ident_release(li);
24714 	/* Keep cred around until _inactive needs it */
24715 	tcps->tcps_g_q_cr = cr;
24716 }
24717 
24718 /*
24719  * We keep tcp_g_q set until all other tcp_t's in the zone
24720  * has gone away, and then when tcp_g_q_inactive() is called
24721  * we clear it.
24722  */
24723 void
24724 tcp_g_q_destroy(tcp_stack_t *tcps)
24725 {
24726 #ifdef NS_DEBUG
24727 	(void) printf("tcp_g_q_destroy()for stack %d\n",
24728 	    tcps->tcps_netstack->netstack_stackid);
24729 #endif
24730 
24731 	if (tcps->tcps_g_q == NULL) {
24732 		return;	/* Nothing to cleanup */
24733 	}
24734 	/*
24735 	 * Drop reference corresponding to the default queue.
24736 	 * This reference was added from tcp_open when the default queue
24737 	 * was created, hence we compensate for this extra drop in
24738 	 * tcp_g_q_close. If the refcnt drops to zero here it means
24739 	 * the default queue was the last one to be open, in which
24740 	 * case, then tcp_g_q_inactive will be
24741 	 * called as a result of the refrele.
24742 	 */
24743 	TCPS_REFRELE(tcps);
24744 }
24745 
24746 /*
24747  * Called when last tcp_t drops reference count using TCPS_REFRELE.
24748  * Run by tcp_q_q_inactive using a taskq.
24749  */
24750 static void
24751 tcp_g_q_close(void *arg)
24752 {
24753 	tcp_stack_t *tcps = arg;
24754 	int error;
24755 	ldi_handle_t	lh = NULL;
24756 	ldi_ident_t	li = NULL;
24757 	cred_t		*cr;
24758 	major_t IP_MAJ;
24759 
24760 	IP_MAJ = ddi_name_to_major(IP);
24761 
24762 #ifdef NS_DEBUG
24763 	(void) printf("tcp_g_q_inactive() for stack %d refcnt %d\n",
24764 	    tcps->tcps_netstack->netstack_stackid,
24765 	    tcps->tcps_netstack->netstack_refcnt);
24766 #endif
24767 	lh = tcps->tcps_g_q_lh;
24768 	if (lh == NULL)
24769 		return;	/* Nothing to cleanup */
24770 
24771 	ASSERT(tcps->tcps_refcnt == 1);
24772 	ASSERT(tcps->tcps_g_q != NULL);
24773 
24774 	error = ldi_ident_from_major(IP_MAJ, &li);
24775 	if (error) {
24776 #ifdef DEBUG
24777 		printf("tcp_g_q_inactive: lyr ident get failed error %d\n",
24778 		    error);
24779 #endif
24780 		return;
24781 	}
24782 
24783 	cr = tcps->tcps_g_q_cr;
24784 	tcps->tcps_g_q_cr = NULL;
24785 	ASSERT(cr != NULL);
24786 
24787 	/*
24788 	 * Make sure we can break the recursion when tcp_close decrements
24789 	 * the reference count causing g_q_inactive to be called again.
24790 	 */
24791 	tcps->tcps_g_q_lh = NULL;
24792 
24793 	/* close the default queue */
24794 	(void) ldi_close(lh, FREAD|FWRITE, cr);
24795 	/*
24796 	 * At this point in time tcps and the rest of netstack_t might
24797 	 * have been deleted.
24798 	 */
24799 	tcps = NULL;
24800 
24801 	/* Close layered handles */
24802 	ldi_ident_release(li);
24803 	crfree(cr);
24804 }
24805 
24806 /*
24807  * Called when last tcp_t drops reference count using TCPS_REFRELE.
24808  *
24809  * Have to ensure that the ldi routines are not used by an
24810  * interrupt thread by using a taskq.
24811  */
24812 void
24813 tcp_g_q_inactive(tcp_stack_t *tcps)
24814 {
24815 	if (tcps->tcps_g_q_lh == NULL)
24816 		return;	/* Nothing to cleanup */
24817 
24818 	ASSERT(tcps->tcps_refcnt == 0);
24819 	TCPS_REFHOLD(tcps); /* Compensate for what g_q_destroy did */
24820 
24821 	if (servicing_interrupt()) {
24822 		(void) taskq_dispatch(tcp_taskq, tcp_g_q_close,
24823 		    (void *) tcps, TQ_SLEEP);
24824 	} else {
24825 		tcp_g_q_close(tcps);
24826 	}
24827 }
24828 
24829 /*
24830  * Called by IP when IP is loaded into the kernel
24831  */
24832 void
24833 tcp_ddi_g_init(void)
24834 {
24835 	tcp_timercache = kmem_cache_create("tcp_timercache",
24836 	    sizeof (tcp_timer_t) + sizeof (mblk_t), 0,
24837 	    NULL, NULL, NULL, NULL, NULL, 0);
24838 
24839 	tcp_sack_info_cache = kmem_cache_create("tcp_sack_info_cache",
24840 	    sizeof (tcp_sack_info_t), 0,
24841 	    tcp_sack_info_constructor, NULL, NULL, NULL, NULL, 0);
24842 
24843 	tcp_iphc_cache = kmem_cache_create("tcp_iphc_cache",
24844 	    TCP_MAX_COMBINED_HEADER_LENGTH, 0,
24845 	    tcp_iphc_constructor, NULL, NULL, NULL, NULL, 0);
24846 
24847 	mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL);
24848 
24849 	/* Initialize the random number generator */
24850 	tcp_random_init();
24851 
24852 	tcp_squeue_wput_proc = tcp_squeue_switch(tcp_squeue_wput);
24853 	tcp_squeue_close_proc = tcp_squeue_switch(tcp_squeue_close);
24854 
24855 	/* A single callback independently of how many netstacks we have */
24856 	ip_squeue_init(tcp_squeue_add);
24857 
24858 	tcp_g_kstat = tcp_g_kstat_init(&tcp_g_statistics);
24859 
24860 	tcp_taskq = taskq_create("tcp_taskq", 1, minclsyspri, 1, 1,
24861 	    TASKQ_PREPOPULATE);
24862 
24863 	/*
24864 	 * We want to be informed each time a stack is created or
24865 	 * destroyed in the kernel, so we can maintain the
24866 	 * set of tcp_stack_t's.
24867 	 */
24868 	netstack_register(NS_TCP, tcp_stack_init, tcp_stack_shutdown,
24869 	    tcp_stack_fini);
24870 }
24871 
24872 
24873 /*
24874  * Initialize the TCP stack instance.
24875  */
24876 static void *
24877 tcp_stack_init(netstackid_t stackid, netstack_t *ns)
24878 {
24879 	tcp_stack_t	*tcps;
24880 	tcpparam_t	*pa;
24881 	int		i;
24882 
24883 	tcps = (tcp_stack_t *)kmem_zalloc(sizeof (*tcps), KM_SLEEP);
24884 	tcps->tcps_netstack = ns;
24885 
24886 	/* Initialize locks */
24887 	rw_init(&tcps->tcps_hsp_lock, NULL, RW_DEFAULT, NULL);
24888 	mutex_init(&tcps->tcps_g_q_lock, NULL, MUTEX_DEFAULT, NULL);
24889 	cv_init(&tcps->tcps_g_q_cv, NULL, CV_DEFAULT, NULL);
24890 	mutex_init(&tcps->tcps_iss_key_lock, NULL, MUTEX_DEFAULT, NULL);
24891 	mutex_init(&tcps->tcps_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL);
24892 
24893 	tcps->tcps_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS;
24894 	tcps->tcps_g_epriv_ports[0] = 2049;
24895 	tcps->tcps_g_epriv_ports[1] = 4045;
24896 	tcps->tcps_min_anonpriv_port = 512;
24897 
24898 	tcps->tcps_bind_fanout = kmem_zalloc(sizeof (tf_t) *
24899 	    TCP_BIND_FANOUT_SIZE, KM_SLEEP);
24900 	tcps->tcps_acceptor_fanout = kmem_zalloc(sizeof (tf_t) *
24901 	    TCP_FANOUT_SIZE, KM_SLEEP);
24902 
24903 	for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) {
24904 		mutex_init(&tcps->tcps_bind_fanout[i].tf_lock, NULL,
24905 		    MUTEX_DEFAULT, NULL);
24906 	}
24907 
24908 	for (i = 0; i < TCP_FANOUT_SIZE; i++) {
24909 		mutex_init(&tcps->tcps_acceptor_fanout[i].tf_lock, NULL,
24910 		    MUTEX_DEFAULT, NULL);
24911 	}
24912 
24913 	/* TCP's IPsec code calls the packet dropper. */
24914 	ip_drop_register(&tcps->tcps_dropper, "TCP IPsec policy enforcement");
24915 
24916 	pa = (tcpparam_t *)kmem_alloc(sizeof (lcl_tcp_param_arr), KM_SLEEP);
24917 	tcps->tcps_params = pa;
24918 	bcopy(lcl_tcp_param_arr, tcps->tcps_params, sizeof (lcl_tcp_param_arr));
24919 
24920 	(void) tcp_param_register(&tcps->tcps_g_nd, tcps->tcps_params,
24921 	    A_CNT(lcl_tcp_param_arr), tcps);
24922 
24923 	/*
24924 	 * Note: To really walk the device tree you need the devinfo
24925 	 * pointer to your device which is only available after probe/attach.
24926 	 * The following is safe only because it uses ddi_root_node()
24927 	 */
24928 	tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr,
24929 	    tcp_opt_obj.odb_opt_arr_cnt);
24930 
24931 	/*
24932 	 * Initialize RFC 1948 secret values.  This will probably be reset once
24933 	 * by the boot scripts.
24934 	 *
24935 	 * Use NULL name, as the name is caught by the new lockstats.
24936 	 *
24937 	 * Initialize with some random, non-guessable string, like the global
24938 	 * T_INFO_ACK.
24939 	 */
24940 
24941 	tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack,
24942 	    sizeof (tcp_g_t_info_ack), tcps);
24943 
24944 	tcps->tcps_kstat = tcp_kstat2_init(stackid, &tcps->tcps_statistics);
24945 	tcps->tcps_mibkp = tcp_kstat_init(stackid, tcps);
24946 
24947 	return (tcps);
24948 }
24949 
24950 /*
24951  * Called when the IP module is about to be unloaded.
24952  */
24953 void
24954 tcp_ddi_g_destroy(void)
24955 {
24956 	tcp_g_kstat_fini(tcp_g_kstat);
24957 	tcp_g_kstat = NULL;
24958 	bzero(&tcp_g_statistics, sizeof (tcp_g_statistics));
24959 
24960 	mutex_destroy(&tcp_random_lock);
24961 
24962 	kmem_cache_destroy(tcp_timercache);
24963 	kmem_cache_destroy(tcp_sack_info_cache);
24964 	kmem_cache_destroy(tcp_iphc_cache);
24965 
24966 	netstack_unregister(NS_TCP);
24967 	taskq_destroy(tcp_taskq);
24968 }
24969 
24970 /*
24971  * Shut down the TCP stack instance.
24972  */
24973 /* ARGSUSED */
24974 static void
24975 tcp_stack_shutdown(netstackid_t stackid, void *arg)
24976 {
24977 	tcp_stack_t *tcps = (tcp_stack_t *)arg;
24978 
24979 	tcp_g_q_destroy(tcps);
24980 }
24981 
24982 /*
24983  * Free the TCP stack instance.
24984  */
24985 static void
24986 tcp_stack_fini(netstackid_t stackid, void *arg)
24987 {
24988 	tcp_stack_t *tcps = (tcp_stack_t *)arg;
24989 	int i;
24990 
24991 	nd_free(&tcps->tcps_g_nd);
24992 	kmem_free(tcps->tcps_params, sizeof (lcl_tcp_param_arr));
24993 	tcps->tcps_params = NULL;
24994 	kmem_free(tcps->tcps_wroff_xtra_param, sizeof (tcpparam_t));
24995 	tcps->tcps_wroff_xtra_param = NULL;
24996 	kmem_free(tcps->tcps_mdt_head_param, sizeof (tcpparam_t));
24997 	tcps->tcps_mdt_head_param = NULL;
24998 	kmem_free(tcps->tcps_mdt_tail_param, sizeof (tcpparam_t));
24999 	tcps->tcps_mdt_tail_param = NULL;
25000 	kmem_free(tcps->tcps_mdt_max_pbufs_param, sizeof (tcpparam_t));
25001 	tcps->tcps_mdt_max_pbufs_param = NULL;
25002 
25003 	for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) {
25004 		ASSERT(tcps->tcps_bind_fanout[i].tf_tcp == NULL);
25005 		mutex_destroy(&tcps->tcps_bind_fanout[i].tf_lock);
25006 	}
25007 
25008 	for (i = 0; i < TCP_FANOUT_SIZE; i++) {
25009 		ASSERT(tcps->tcps_acceptor_fanout[i].tf_tcp == NULL);
25010 		mutex_destroy(&tcps->tcps_acceptor_fanout[i].tf_lock);
25011 	}
25012 
25013 	kmem_free(tcps->tcps_bind_fanout, sizeof (tf_t) * TCP_BIND_FANOUT_SIZE);
25014 	tcps->tcps_bind_fanout = NULL;
25015 
25016 	kmem_free(tcps->tcps_acceptor_fanout, sizeof (tf_t) * TCP_FANOUT_SIZE);
25017 	tcps->tcps_acceptor_fanout = NULL;
25018 
25019 	mutex_destroy(&tcps->tcps_iss_key_lock);
25020 	rw_destroy(&tcps->tcps_hsp_lock);
25021 	mutex_destroy(&tcps->tcps_g_q_lock);
25022 	cv_destroy(&tcps->tcps_g_q_cv);
25023 	mutex_destroy(&tcps->tcps_epriv_port_lock);
25024 
25025 	ip_drop_unregister(&tcps->tcps_dropper);
25026 
25027 	tcp_kstat2_fini(stackid, tcps->tcps_kstat);
25028 	tcps->tcps_kstat = NULL;
25029 	bzero(&tcps->tcps_statistics, sizeof (tcps->tcps_statistics));
25030 
25031 	tcp_kstat_fini(stackid, tcps->tcps_mibkp);
25032 	tcps->tcps_mibkp = NULL;
25033 
25034 	kmem_free(tcps, sizeof (*tcps));
25035 }
25036 
25037 /*
25038  * Generate ISS, taking into account NDD changes may happen halfway through.
25039  * (If the iss is not zero, set it.)
25040  */
25041 
25042 static void
25043 tcp_iss_init(tcp_t *tcp)
25044 {
25045 	MD5_CTX context;
25046 	struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg;
25047 	uint32_t answer[4];
25048 	tcp_stack_t	*tcps = tcp->tcp_tcps;
25049 
25050 	tcps->tcps_iss_incr_extra += (ISS_INCR >> 1);
25051 	tcp->tcp_iss = tcps->tcps_iss_incr_extra;
25052 	switch (tcps->tcps_strong_iss) {
25053 	case 2:
25054 		mutex_enter(&tcps->tcps_iss_key_lock);
25055 		context = tcps->tcps_iss_key;
25056 		mutex_exit(&tcps->tcps_iss_key_lock);
25057 		arg.ports = tcp->tcp_ports;
25058 		if (tcp->tcp_ipversion == IPV4_VERSION) {
25059 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
25060 			    &arg.src);
25061 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_dst,
25062 			    &arg.dst);
25063 		} else {
25064 			arg.src = tcp->tcp_ip6h->ip6_src;
25065 			arg.dst = tcp->tcp_ip6h->ip6_dst;
25066 		}
25067 		MD5Update(&context, (uchar_t *)&arg, sizeof (arg));
25068 		MD5Final((uchar_t *)answer, &context);
25069 		tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3];
25070 		/*
25071 		 * Now that we've hashed into a unique per-connection sequence
25072 		 * space, add a random increment per strong_iss == 1.  So I
25073 		 * guess we'll have to...
25074 		 */
25075 		/* FALLTHRU */
25076 	case 1:
25077 		tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random();
25078 		break;
25079 	default:
25080 		tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR;
25081 		break;
25082 	}
25083 	tcp->tcp_valid_bits = TCP_ISS_VALID;
25084 	tcp->tcp_fss = tcp->tcp_iss - 1;
25085 	tcp->tcp_suna = tcp->tcp_iss;
25086 	tcp->tcp_snxt = tcp->tcp_iss + 1;
25087 	tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
25088 	tcp->tcp_csuna = tcp->tcp_snxt;
25089 }
25090 
25091 /*
25092  * Exported routine for extracting active tcp connection status.
25093  *
25094  * This is used by the Solaris Cluster Networking software to
25095  * gather a list of connections that need to be forwarded to
25096  * specific nodes in the cluster when configuration changes occur.
25097  *
25098  * The callback is invoked for each tcp_t structure. Returning
25099  * non-zero from the callback routine terminates the search.
25100  */
25101 int
25102 cl_tcp_walk_list(int (*cl_callback)(cl_tcp_info_t *, void *),
25103     void *arg)
25104 {
25105 	netstack_handle_t nh;
25106 	netstack_t *ns;
25107 	int ret = 0;
25108 
25109 	netstack_next_init(&nh);
25110 	while ((ns = netstack_next(&nh)) != NULL) {
25111 		ret = cl_tcp_walk_list_stack(cl_callback, arg,
25112 		    ns->netstack_tcp);
25113 		netstack_rele(ns);
25114 	}
25115 	netstack_next_fini(&nh);
25116 	return (ret);
25117 }
25118 
25119 static int
25120 cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *), void *arg,
25121     tcp_stack_t *tcps)
25122 {
25123 	tcp_t *tcp;
25124 	cl_tcp_info_t	cl_tcpi;
25125 	connf_t	*connfp;
25126 	conn_t	*connp;
25127 	int	i;
25128 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
25129 
25130 	ASSERT(callback != NULL);
25131 
25132 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
25133 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
25134 		connp = NULL;
25135 
25136 		while ((connp =
25137 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
25138 
25139 			tcp = connp->conn_tcp;
25140 			cl_tcpi.cl_tcpi_version = CL_TCPI_V1;
25141 			cl_tcpi.cl_tcpi_ipversion = tcp->tcp_ipversion;
25142 			cl_tcpi.cl_tcpi_state = tcp->tcp_state;
25143 			cl_tcpi.cl_tcpi_lport = tcp->tcp_lport;
25144 			cl_tcpi.cl_tcpi_fport = tcp->tcp_fport;
25145 			/*
25146 			 * The macros tcp_laddr and tcp_faddr give the IPv4
25147 			 * addresses. They are copied implicitly below as
25148 			 * mapped addresses.
25149 			 */
25150 			cl_tcpi.cl_tcpi_laddr_v6 = tcp->tcp_ip_src_v6;
25151 			if (tcp->tcp_ipversion == IPV4_VERSION) {
25152 				cl_tcpi.cl_tcpi_faddr =
25153 				    tcp->tcp_ipha->ipha_dst;
25154 			} else {
25155 				cl_tcpi.cl_tcpi_faddr_v6 =
25156 				    tcp->tcp_ip6h->ip6_dst;
25157 			}
25158 
25159 			/*
25160 			 * If the callback returns non-zero
25161 			 * we terminate the traversal.
25162 			 */
25163 			if ((*callback)(&cl_tcpi, arg) != 0) {
25164 				CONN_DEC_REF(tcp->tcp_connp);
25165 				return (1);
25166 			}
25167 		}
25168 	}
25169 
25170 	return (0);
25171 }
25172 
25173 /*
25174  * Macros used for accessing the different types of sockaddr
25175  * structures inside a tcp_ioc_abort_conn_t.
25176  */
25177 #define	TCP_AC_V4LADDR(acp) ((sin_t *)&(acp)->ac_local)
25178 #define	TCP_AC_V4RADDR(acp) ((sin_t *)&(acp)->ac_remote)
25179 #define	TCP_AC_V4LOCAL(acp) (TCP_AC_V4LADDR(acp)->sin_addr.s_addr)
25180 #define	TCP_AC_V4REMOTE(acp) (TCP_AC_V4RADDR(acp)->sin_addr.s_addr)
25181 #define	TCP_AC_V4LPORT(acp) (TCP_AC_V4LADDR(acp)->sin_port)
25182 #define	TCP_AC_V4RPORT(acp) (TCP_AC_V4RADDR(acp)->sin_port)
25183 #define	TCP_AC_V6LADDR(acp) ((sin6_t *)&(acp)->ac_local)
25184 #define	TCP_AC_V6RADDR(acp) ((sin6_t *)&(acp)->ac_remote)
25185 #define	TCP_AC_V6LOCAL(acp) (TCP_AC_V6LADDR(acp)->sin6_addr)
25186 #define	TCP_AC_V6REMOTE(acp) (TCP_AC_V6RADDR(acp)->sin6_addr)
25187 #define	TCP_AC_V6LPORT(acp) (TCP_AC_V6LADDR(acp)->sin6_port)
25188 #define	TCP_AC_V6RPORT(acp) (TCP_AC_V6RADDR(acp)->sin6_port)
25189 
25190 /*
25191  * Return the correct error code to mimic the behavior
25192  * of a connection reset.
25193  */
25194 #define	TCP_AC_GET_ERRCODE(state, err) {	\
25195 		switch ((state)) {		\
25196 		case TCPS_SYN_SENT:		\
25197 		case TCPS_SYN_RCVD:		\
25198 			(err) = ECONNREFUSED;	\
25199 			break;			\
25200 		case TCPS_ESTABLISHED:		\
25201 		case TCPS_FIN_WAIT_1:		\
25202 		case TCPS_FIN_WAIT_2:		\
25203 		case TCPS_CLOSE_WAIT:		\
25204 			(err) = ECONNRESET;	\
25205 			break;			\
25206 		case TCPS_CLOSING:		\
25207 		case TCPS_LAST_ACK:		\
25208 		case TCPS_TIME_WAIT:		\
25209 			(err) = 0;		\
25210 			break;			\
25211 		default:			\
25212 			(err) = ENXIO;		\
25213 		}				\
25214 	}
25215 
25216 /*
25217  * Check if a tcp structure matches the info in acp.
25218  */
25219 #define	TCP_AC_ADDR_MATCH(acp, tcp)					\
25220 	(((acp)->ac_local.ss_family == AF_INET) ?		\
25221 	((TCP_AC_V4LOCAL((acp)) == INADDR_ANY ||		\
25222 	TCP_AC_V4LOCAL((acp)) == (tcp)->tcp_ip_src) &&	\
25223 	(TCP_AC_V4REMOTE((acp)) == INADDR_ANY ||		\
25224 	TCP_AC_V4REMOTE((acp)) == (tcp)->tcp_remote) &&	\
25225 	(TCP_AC_V4LPORT((acp)) == 0 ||				\
25226 	TCP_AC_V4LPORT((acp)) == (tcp)->tcp_lport) &&		\
25227 	(TCP_AC_V4RPORT((acp)) == 0 ||				\
25228 	TCP_AC_V4RPORT((acp)) == (tcp)->tcp_fport) &&		\
25229 	(acp)->ac_start <= (tcp)->tcp_state &&	\
25230 	(acp)->ac_end >= (tcp)->tcp_state) :		\
25231 	((IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL((acp))) ||	\
25232 	IN6_ARE_ADDR_EQUAL(&TCP_AC_V6LOCAL((acp)),		\
25233 	&(tcp)->tcp_ip_src_v6)) &&				\
25234 	(IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE((acp))) ||	\
25235 	IN6_ARE_ADDR_EQUAL(&TCP_AC_V6REMOTE((acp)),		\
25236 	&(tcp)->tcp_remote_v6)) &&				\
25237 	(TCP_AC_V6LPORT((acp)) == 0 ||				\
25238 	TCP_AC_V6LPORT((acp)) == (tcp)->tcp_lport) &&		\
25239 	(TCP_AC_V6RPORT((acp)) == 0 ||				\
25240 	TCP_AC_V6RPORT((acp)) == (tcp)->tcp_fport) &&		\
25241 	(acp)->ac_start <= (tcp)->tcp_state &&	\
25242 	(acp)->ac_end >= (tcp)->tcp_state))
25243 
25244 #define	TCP_AC_MATCH(acp, tcp)					\
25245 	(((acp)->ac_zoneid == ALL_ZONES ||			\
25246 	(acp)->ac_zoneid == tcp->tcp_connp->conn_zoneid) ?	\
25247 	TCP_AC_ADDR_MATCH(acp, tcp) : 0)
25248 
25249 /*
25250  * Build a message containing a tcp_ioc_abort_conn_t structure
25251  * which is filled in with information from acp and tp.
25252  */
25253 static mblk_t *
25254 tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *acp, tcp_t *tp)
25255 {
25256 	mblk_t *mp;
25257 	tcp_ioc_abort_conn_t *tacp;
25258 
25259 	mp = allocb(sizeof (uint32_t) + sizeof (*acp), BPRI_LO);
25260 	if (mp == NULL)
25261 		return (NULL);
25262 
25263 	mp->b_datap->db_type = M_CTL;
25264 
25265 	*((uint32_t *)mp->b_rptr) = TCP_IOC_ABORT_CONN;
25266 	tacp = (tcp_ioc_abort_conn_t *)((uchar_t *)mp->b_rptr +
25267 	    sizeof (uint32_t));
25268 
25269 	tacp->ac_start = acp->ac_start;
25270 	tacp->ac_end = acp->ac_end;
25271 	tacp->ac_zoneid = acp->ac_zoneid;
25272 
25273 	if (acp->ac_local.ss_family == AF_INET) {
25274 		tacp->ac_local.ss_family = AF_INET;
25275 		tacp->ac_remote.ss_family = AF_INET;
25276 		TCP_AC_V4LOCAL(tacp) = tp->tcp_ip_src;
25277 		TCP_AC_V4REMOTE(tacp) = tp->tcp_remote;
25278 		TCP_AC_V4LPORT(tacp) = tp->tcp_lport;
25279 		TCP_AC_V4RPORT(tacp) = tp->tcp_fport;
25280 	} else {
25281 		tacp->ac_local.ss_family = AF_INET6;
25282 		tacp->ac_remote.ss_family = AF_INET6;
25283 		TCP_AC_V6LOCAL(tacp) = tp->tcp_ip_src_v6;
25284 		TCP_AC_V6REMOTE(tacp) = tp->tcp_remote_v6;
25285 		TCP_AC_V6LPORT(tacp) = tp->tcp_lport;
25286 		TCP_AC_V6RPORT(tacp) = tp->tcp_fport;
25287 	}
25288 	mp->b_wptr = (uchar_t *)mp->b_rptr + sizeof (uint32_t) + sizeof (*acp);
25289 	return (mp);
25290 }
25291 
25292 /*
25293  * Print a tcp_ioc_abort_conn_t structure.
25294  */
25295 static void
25296 tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *acp)
25297 {
25298 	char lbuf[128];
25299 	char rbuf[128];
25300 	sa_family_t af;
25301 	in_port_t lport, rport;
25302 	ushort_t logflags;
25303 
25304 	af = acp->ac_local.ss_family;
25305 
25306 	if (af == AF_INET) {
25307 		(void) inet_ntop(af, (const void *)&TCP_AC_V4LOCAL(acp),
25308 		    lbuf, 128);
25309 		(void) inet_ntop(af, (const void *)&TCP_AC_V4REMOTE(acp),
25310 		    rbuf, 128);
25311 		lport = ntohs(TCP_AC_V4LPORT(acp));
25312 		rport = ntohs(TCP_AC_V4RPORT(acp));
25313 	} else {
25314 		(void) inet_ntop(af, (const void *)&TCP_AC_V6LOCAL(acp),
25315 		    lbuf, 128);
25316 		(void) inet_ntop(af, (const void *)&TCP_AC_V6REMOTE(acp),
25317 		    rbuf, 128);
25318 		lport = ntohs(TCP_AC_V6LPORT(acp));
25319 		rport = ntohs(TCP_AC_V6RPORT(acp));
25320 	}
25321 
25322 	logflags = SL_TRACE | SL_NOTE;
25323 	/*
25324 	 * Don't print this message to the console if the operation was done
25325 	 * to a non-global zone.
25326 	 */
25327 	if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES)
25328 		logflags |= SL_CONSOLE;
25329 	(void) strlog(TCP_MOD_ID, 0, 1, logflags,
25330 	    "TCP_IOC_ABORT_CONN: local = %s:%d, remote = %s:%d, "
25331 	    "start = %d, end = %d\n", lbuf, lport, rbuf, rport,
25332 	    acp->ac_start, acp->ac_end);
25333 }
25334 
25335 /*
25336  * Called inside tcp_rput when a message built using
25337  * tcp_ioctl_abort_build_msg is put into a queue.
25338  * Note that when we get here there is no wildcard in acp any more.
25339  */
25340 static void
25341 tcp_ioctl_abort_handler(tcp_t *tcp, mblk_t *mp)
25342 {
25343 	tcp_ioc_abort_conn_t *acp;
25344 
25345 	acp = (tcp_ioc_abort_conn_t *)(mp->b_rptr + sizeof (uint32_t));
25346 	if (tcp->tcp_state <= acp->ac_end) {
25347 		/*
25348 		 * If we get here, we are already on the correct
25349 		 * squeue. This ioctl follows the following path
25350 		 * tcp_wput -> tcp_wput_ioctl -> tcp_ioctl_abort_conn
25351 		 * ->tcp_ioctl_abort->squeue_fill (if on a
25352 		 * different squeue)
25353 		 */
25354 		int errcode;
25355 
25356 		TCP_AC_GET_ERRCODE(tcp->tcp_state, errcode);
25357 		(void) tcp_clean_death(tcp, errcode, 26);
25358 	}
25359 	freemsg(mp);
25360 }
25361 
25362 /*
25363  * Abort all matching connections on a hash chain.
25364  */
25365 static int
25366 tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *acp, int index, int *count,
25367     boolean_t exact, tcp_stack_t *tcps)
25368 {
25369 	int nmatch, err = 0;
25370 	tcp_t *tcp;
25371 	MBLKP mp, last, listhead = NULL;
25372 	conn_t	*tconnp;
25373 	connf_t	*connfp;
25374 	ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
25375 
25376 	connfp = &ipst->ips_ipcl_conn_fanout[index];
25377 
25378 startover:
25379 	nmatch = 0;
25380 
25381 	mutex_enter(&connfp->connf_lock);
25382 	for (tconnp = connfp->connf_head; tconnp != NULL;
25383 	    tconnp = tconnp->conn_next) {
25384 		tcp = tconnp->conn_tcp;
25385 		if (TCP_AC_MATCH(acp, tcp)) {
25386 			CONN_INC_REF(tcp->tcp_connp);
25387 			mp = tcp_ioctl_abort_build_msg(acp, tcp);
25388 			if (mp == NULL) {
25389 				err = ENOMEM;
25390 				CONN_DEC_REF(tcp->tcp_connp);
25391 				break;
25392 			}
25393 			mp->b_prev = (mblk_t *)tcp;
25394 
25395 			if (listhead == NULL) {
25396 				listhead = mp;
25397 				last = mp;
25398 			} else {
25399 				last->b_next = mp;
25400 				last = mp;
25401 			}
25402 			nmatch++;
25403 			if (exact)
25404 				break;
25405 		}
25406 
25407 		/* Avoid holding lock for too long. */
25408 		if (nmatch >= 500)
25409 			break;
25410 	}
25411 	mutex_exit(&connfp->connf_lock);
25412 
25413 	/* Pass mp into the correct tcp */
25414 	while ((mp = listhead) != NULL) {
25415 		listhead = listhead->b_next;
25416 		tcp = (tcp_t *)mp->b_prev;
25417 		mp->b_next = mp->b_prev = NULL;
25418 		squeue_fill(tcp->tcp_connp->conn_sqp, mp,
25419 		    tcp_input, tcp->tcp_connp, SQTAG_TCP_ABORT_BUCKET);
25420 	}
25421 
25422 	*count += nmatch;
25423 	if (nmatch >= 500 && err == 0)
25424 		goto startover;
25425 	return (err);
25426 }
25427 
25428 /*
25429  * Abort all connections that matches the attributes specified in acp.
25430  */
25431 static int
25432 tcp_ioctl_abort(tcp_ioc_abort_conn_t *acp, tcp_stack_t *tcps)
25433 {
25434 	sa_family_t af;
25435 	uint32_t  ports;
25436 	uint16_t *pports;
25437 	int err = 0, count = 0;
25438 	boolean_t exact = B_FALSE; /* set when there is no wildcard */
25439 	int index = -1;
25440 	ushort_t logflags;
25441 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
25442 
25443 	af = acp->ac_local.ss_family;
25444 
25445 	if (af == AF_INET) {
25446 		if (TCP_AC_V4REMOTE(acp) != INADDR_ANY &&
25447 		    TCP_AC_V4LPORT(acp) != 0 && TCP_AC_V4RPORT(acp) != 0) {
25448 			pports = (uint16_t *)&ports;
25449 			pports[1] = TCP_AC_V4LPORT(acp);
25450 			pports[0] = TCP_AC_V4RPORT(acp);
25451 			exact = (TCP_AC_V4LOCAL(acp) != INADDR_ANY);
25452 		}
25453 	} else {
25454 		if (!IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE(acp)) &&
25455 		    TCP_AC_V6LPORT(acp) != 0 && TCP_AC_V6RPORT(acp) != 0) {
25456 			pports = (uint16_t *)&ports;
25457 			pports[1] = TCP_AC_V6LPORT(acp);
25458 			pports[0] = TCP_AC_V6RPORT(acp);
25459 			exact = !IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL(acp));
25460 		}
25461 	}
25462 
25463 	/*
25464 	 * For cases where remote addr, local port, and remote port are non-
25465 	 * wildcards, tcp_ioctl_abort_bucket will only be called once.
25466 	 */
25467 	if (index != -1) {
25468 		err = tcp_ioctl_abort_bucket(acp, index,
25469 		    &count, exact, tcps);
25470 	} else {
25471 		/*
25472 		 * loop through all entries for wildcard case
25473 		 */
25474 		for (index = 0;
25475 		    index < ipst->ips_ipcl_conn_fanout_size;
25476 		    index++) {
25477 			err = tcp_ioctl_abort_bucket(acp, index,
25478 			    &count, exact, tcps);
25479 			if (err != 0)
25480 				break;
25481 		}
25482 	}
25483 
25484 	logflags = SL_TRACE | SL_NOTE;
25485 	/*
25486 	 * Don't print this message to the console if the operation was done
25487 	 * to a non-global zone.
25488 	 */
25489 	if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES)
25490 		logflags |= SL_CONSOLE;
25491 	(void) strlog(TCP_MOD_ID, 0, 1, logflags, "TCP_IOC_ABORT_CONN: "
25492 	    "aborted %d connection%c\n", count, ((count > 1) ? 's' : ' '));
25493 	if (err == 0 && count == 0)
25494 		err = ENOENT;
25495 	return (err);
25496 }
25497 
25498 /*
25499  * Process the TCP_IOC_ABORT_CONN ioctl request.
25500  */
25501 static void
25502 tcp_ioctl_abort_conn(queue_t *q, mblk_t *mp)
25503 {
25504 	int	err;
25505 	IOCP    iocp;
25506 	MBLKP   mp1;
25507 	sa_family_t laf, raf;
25508 	tcp_ioc_abort_conn_t *acp;
25509 	zone_t		*zptr;
25510 	conn_t		*connp = Q_TO_CONN(q);
25511 	zoneid_t	zoneid = connp->conn_zoneid;
25512 	tcp_t		*tcp = connp->conn_tcp;
25513 	tcp_stack_t	*tcps = tcp->tcp_tcps;
25514 
25515 	iocp = (IOCP)mp->b_rptr;
25516 
25517 	if ((mp1 = mp->b_cont) == NULL ||
25518 	    iocp->ioc_count != sizeof (tcp_ioc_abort_conn_t)) {
25519 		err = EINVAL;
25520 		goto out;
25521 	}
25522 
25523 	/* check permissions */
25524 	if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) {
25525 		err = EPERM;
25526 		goto out;
25527 	}
25528 
25529 	if (mp1->b_cont != NULL) {
25530 		freemsg(mp1->b_cont);
25531 		mp1->b_cont = NULL;
25532 	}
25533 
25534 	acp = (tcp_ioc_abort_conn_t *)mp1->b_rptr;
25535 	laf = acp->ac_local.ss_family;
25536 	raf = acp->ac_remote.ss_family;
25537 
25538 	/* check that a zone with the supplied zoneid exists */
25539 	if (acp->ac_zoneid != GLOBAL_ZONEID && acp->ac_zoneid != ALL_ZONES) {
25540 		zptr = zone_find_by_id(zoneid);
25541 		if (zptr != NULL) {
25542 			zone_rele(zptr);
25543 		} else {
25544 			err = EINVAL;
25545 			goto out;
25546 		}
25547 	}
25548 
25549 	/*
25550 	 * For exclusive stacks we set the zoneid to zero
25551 	 * to make TCP operate as if in the global zone.
25552 	 */
25553 	if (tcps->tcps_netstack->netstack_stackid != GLOBAL_NETSTACKID)
25554 		acp->ac_zoneid = GLOBAL_ZONEID;
25555 
25556 	if (acp->ac_start < TCPS_SYN_SENT || acp->ac_end > TCPS_TIME_WAIT ||
25557 	    acp->ac_start > acp->ac_end || laf != raf ||
25558 	    (laf != AF_INET && laf != AF_INET6)) {
25559 		err = EINVAL;
25560 		goto out;
25561 	}
25562 
25563 	tcp_ioctl_abort_dump(acp);
25564 	err = tcp_ioctl_abort(acp, tcps);
25565 
25566 out:
25567 	if (mp1 != NULL) {
25568 		freemsg(mp1);
25569 		mp->b_cont = NULL;
25570 	}
25571 
25572 	if (err != 0)
25573 		miocnak(q, mp, 0, err);
25574 	else
25575 		miocack(q, mp, 0, 0);
25576 }
25577 
25578 /*
25579  * tcp_time_wait_processing() handles processing of incoming packets when
25580  * the tcp is in the TIME_WAIT state.
25581  * A TIME_WAIT tcp that has an associated open TCP stream is never put
25582  * on the time wait list.
25583  */
25584 void
25585 tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, uint32_t seg_seq,
25586     uint32_t seg_ack, int seg_len, tcph_t *tcph)
25587 {
25588 	int32_t		bytes_acked;
25589 	int32_t		gap;
25590 	int32_t		rgap;
25591 	tcp_opt_t	tcpopt;
25592 	uint_t		flags;
25593 	uint32_t	new_swnd = 0;
25594 	conn_t		*connp;
25595 	tcp_stack_t	*tcps = tcp->tcp_tcps;
25596 
25597 	BUMP_LOCAL(tcp->tcp_ibsegs);
25598 	DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp);
25599 
25600 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
25601 	new_swnd = BE16_TO_U16(tcph->th_win) <<
25602 	    ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws);
25603 	if (tcp->tcp_snd_ts_ok) {
25604 		if (!tcp_paws_check(tcp, tcph, &tcpopt)) {
25605 			tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
25606 			    tcp->tcp_rnxt, TH_ACK);
25607 			goto done;
25608 		}
25609 	}
25610 	gap = seg_seq - tcp->tcp_rnxt;
25611 	rgap = tcp->tcp_rwnd - (gap + seg_len);
25612 	if (gap < 0) {
25613 		BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs);
25614 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes,
25615 		    (seg_len > -gap ? -gap : seg_len));
25616 		seg_len += gap;
25617 		if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) {
25618 			if (flags & TH_RST) {
25619 				goto done;
25620 			}
25621 			if ((flags & TH_FIN) && seg_len == -1) {
25622 				/*
25623 				 * When TCP receives a duplicate FIN in
25624 				 * TIME_WAIT state, restart the 2 MSL timer.
25625 				 * See page 73 in RFC 793. Make sure this TCP
25626 				 * is already on the TIME_WAIT list. If not,
25627 				 * just restart the timer.
25628 				 */
25629 				if (TCP_IS_DETACHED(tcp)) {
25630 					if (tcp_time_wait_remove(tcp, NULL) ==
25631 					    B_TRUE) {
25632 						tcp_time_wait_append(tcp);
25633 						TCP_DBGSTAT(tcps,
25634 						    tcp_rput_time_wait);
25635 					}
25636 				} else {
25637 					ASSERT(tcp != NULL);
25638 					TCP_TIMER_RESTART(tcp,
25639 					    tcps->tcps_time_wait_interval);
25640 				}
25641 				tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
25642 				    tcp->tcp_rnxt, TH_ACK);
25643 				goto done;
25644 			}
25645 			flags |=  TH_ACK_NEEDED;
25646 			seg_len = 0;
25647 			goto process_ack;
25648 		}
25649 
25650 		/* Fix seg_seq, and chew the gap off the front. */
25651 		seg_seq = tcp->tcp_rnxt;
25652 	}
25653 
25654 	if ((flags & TH_SYN) && gap > 0 && rgap < 0) {
25655 		/*
25656 		 * Make sure that when we accept the connection, pick
25657 		 * an ISS greater than (tcp_snxt + ISS_INCR/2) for the
25658 		 * old connection.
25659 		 *
25660 		 * The next ISS generated is equal to tcp_iss_incr_extra
25661 		 * + ISS_INCR/2 + other components depending on the
25662 		 * value of tcp_strong_iss.  We pre-calculate the new
25663 		 * ISS here and compare with tcp_snxt to determine if
25664 		 * we need to make adjustment to tcp_iss_incr_extra.
25665 		 *
25666 		 * The above calculation is ugly and is a
25667 		 * waste of CPU cycles...
25668 		 */
25669 		uint32_t new_iss = tcps->tcps_iss_incr_extra;
25670 		int32_t adj;
25671 		ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
25672 
25673 		switch (tcps->tcps_strong_iss) {
25674 		case 2: {
25675 			/* Add time and MD5 components. */
25676 			uint32_t answer[4];
25677 			struct {
25678 				uint32_t ports;
25679 				in6_addr_t src;
25680 				in6_addr_t dst;
25681 			} arg;
25682 			MD5_CTX context;
25683 
25684 			mutex_enter(&tcps->tcps_iss_key_lock);
25685 			context = tcps->tcps_iss_key;
25686 			mutex_exit(&tcps->tcps_iss_key_lock);
25687 			arg.ports = tcp->tcp_ports;
25688 			/* We use MAPPED addresses in tcp_iss_init */
25689 			arg.src = tcp->tcp_ip_src_v6;
25690 			if (tcp->tcp_ipversion == IPV4_VERSION) {
25691 				IN6_IPADDR_TO_V4MAPPED(
25692 				    tcp->tcp_ipha->ipha_dst,
25693 				    &arg.dst);
25694 			} else {
25695 				arg.dst =
25696 				    tcp->tcp_ip6h->ip6_dst;
25697 			}
25698 			MD5Update(&context, (uchar_t *)&arg,
25699 			    sizeof (arg));
25700 			MD5Final((uchar_t *)answer, &context);
25701 			answer[0] ^= answer[1] ^ answer[2] ^ answer[3];
25702 			new_iss += (gethrtime() >> ISS_NSEC_SHT) + answer[0];
25703 			break;
25704 		}
25705 		case 1:
25706 			/* Add time component and min random (i.e. 1). */
25707 			new_iss += (gethrtime() >> ISS_NSEC_SHT) + 1;
25708 			break;
25709 		default:
25710 			/* Add only time component. */
25711 			new_iss += (uint32_t)gethrestime_sec() * ISS_INCR;
25712 			break;
25713 		}
25714 		if ((adj = (int32_t)(tcp->tcp_snxt - new_iss)) > 0) {
25715 			/*
25716 			 * New ISS not guaranteed to be ISS_INCR/2
25717 			 * ahead of the current tcp_snxt, so add the
25718 			 * difference to tcp_iss_incr_extra.
25719 			 */
25720 			tcps->tcps_iss_incr_extra += adj;
25721 		}
25722 		/*
25723 		 * If tcp_clean_death() can not perform the task now,
25724 		 * drop the SYN packet and let the other side re-xmit.
25725 		 * Otherwise pass the SYN packet back in, since the
25726 		 * old tcp state has been cleaned up or freed.
25727 		 */
25728 		if (tcp_clean_death(tcp, 0, 27) == -1)
25729 			goto done;
25730 		/*
25731 		 * We will come back to tcp_rput_data
25732 		 * on the global queue. Packets destined
25733 		 * for the global queue will be checked
25734 		 * with global policy. But the policy for
25735 		 * this packet has already been checked as
25736 		 * this was destined for the detached
25737 		 * connection. We need to bypass policy
25738 		 * check this time by attaching a dummy
25739 		 * ipsec_in with ipsec_in_dont_check set.
25740 		 */
25741 		connp = ipcl_classify(mp, tcp->tcp_connp->conn_zoneid, ipst);
25742 		if (connp != NULL) {
25743 			TCP_STAT(tcps, tcp_time_wait_syn_success);
25744 			tcp_reinput(connp, mp, tcp->tcp_connp->conn_sqp);
25745 			return;
25746 		}
25747 		goto done;
25748 	}
25749 
25750 	/*
25751 	 * rgap is the amount of stuff received out of window.  A negative
25752 	 * value is the amount out of window.
25753 	 */
25754 	if (rgap < 0) {
25755 		BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs);
25756 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataPastWinBytes, -rgap);
25757 		/* Fix seg_len and make sure there is something left. */
25758 		seg_len += rgap;
25759 		if (seg_len <= 0) {
25760 			if (flags & TH_RST) {
25761 				goto done;
25762 			}
25763 			flags |=  TH_ACK_NEEDED;
25764 			seg_len = 0;
25765 			goto process_ack;
25766 		}
25767 	}
25768 	/*
25769 	 * Check whether we can update tcp_ts_recent.  This test is
25770 	 * NOT the one in RFC 1323 3.4.  It is from Braden, 1993, "TCP
25771 	 * Extensions for High Performance: An Update", Internet Draft.
25772 	 */
25773 	if (tcp->tcp_snd_ts_ok &&
25774 	    TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) &&
25775 	    SEQ_LEQ(seg_seq, tcp->tcp_rack)) {
25776 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
25777 		tcp->tcp_last_rcv_lbolt = lbolt64;
25778 	}
25779 
25780 	if (seg_seq != tcp->tcp_rnxt && seg_len > 0) {
25781 		/* Always ack out of order packets */
25782 		flags |= TH_ACK_NEEDED;
25783 		seg_len = 0;
25784 	} else if (seg_len > 0) {
25785 		BUMP_MIB(&tcps->tcps_mib, tcpInClosed);
25786 		BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs);
25787 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len);
25788 	}
25789 	if (flags & TH_RST) {
25790 		(void) tcp_clean_death(tcp, 0, 28);
25791 		goto done;
25792 	}
25793 	if (flags & TH_SYN) {
25794 		tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1,
25795 		    TH_RST|TH_ACK);
25796 		/*
25797 		 * Do not delete the TCP structure if it is in
25798 		 * TIME_WAIT state.  Refer to RFC 1122, 4.2.2.13.
25799 		 */
25800 		goto done;
25801 	}
25802 process_ack:
25803 	if (flags & TH_ACK) {
25804 		bytes_acked = (int)(seg_ack - tcp->tcp_suna);
25805 		if (bytes_acked <= 0) {
25806 			if (bytes_acked == 0 && seg_len == 0 &&
25807 			    new_swnd == tcp->tcp_swnd)
25808 				BUMP_MIB(&tcps->tcps_mib, tcpInDupAck);
25809 		} else {
25810 			/* Acks something not sent */
25811 			flags |= TH_ACK_NEEDED;
25812 		}
25813 	}
25814 	if (flags & TH_ACK_NEEDED) {
25815 		/*
25816 		 * Time to send an ack for some reason.
25817 		 */
25818 		tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
25819 		    tcp->tcp_rnxt, TH_ACK);
25820 	}
25821 done:
25822 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
25823 		DB_CKSUMSTART(mp) = 0;
25824 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
25825 		TCP_STAT(tcps, tcp_time_wait_syn_fail);
25826 	}
25827 	freemsg(mp);
25828 }
25829 
25830 /*
25831  * Allocate a T_SVR4_OPTMGMT_REQ.
25832  * The caller needs to increment tcp_drop_opt_ack_cnt when sending these so
25833  * that tcp_rput_other can drop the acks.
25834  */
25835 static mblk_t *
25836 tcp_setsockopt_mp(int level, int cmd, char *opt, int optlen)
25837 {
25838 	mblk_t *mp;
25839 	struct T_optmgmt_req *tor;
25840 	struct opthdr *oh;
25841 	uint_t size;
25842 	char *optptr;
25843 
25844 	size = sizeof (*tor) + sizeof (*oh) + optlen;
25845 	mp = allocb(size, BPRI_MED);
25846 	if (mp == NULL)
25847 		return (NULL);
25848 
25849 	mp->b_wptr += size;
25850 	mp->b_datap->db_type = M_PROTO;
25851 	tor = (struct T_optmgmt_req *)mp->b_rptr;
25852 	tor->PRIM_type = T_SVR4_OPTMGMT_REQ;
25853 	tor->MGMT_flags = T_NEGOTIATE;
25854 	tor->OPT_length = sizeof (*oh) + optlen;
25855 	tor->OPT_offset = (t_scalar_t)sizeof (*tor);
25856 
25857 	oh = (struct opthdr *)&tor[1];
25858 	oh->level = level;
25859 	oh->name = cmd;
25860 	oh->len = optlen;
25861 	if (optlen != 0) {
25862 		optptr = (char *)&oh[1];
25863 		bcopy(opt, optptr, optlen);
25864 	}
25865 	return (mp);
25866 }
25867 
25868 /*
25869  * TCP Timers Implementation.
25870  */
25871 timeout_id_t
25872 tcp_timeout(conn_t *connp, void (*f)(void *), clock_t tim)
25873 {
25874 	mblk_t *mp;
25875 	tcp_timer_t *tcpt;
25876 	tcp_t *tcp = connp->conn_tcp;
25877 	tcp_stack_t	*tcps = tcp->tcp_tcps;
25878 
25879 	ASSERT(connp->conn_sqp != NULL);
25880 
25881 	TCP_DBGSTAT(tcps, tcp_timeout_calls);
25882 
25883 	if (tcp->tcp_timercache == NULL) {
25884 		mp = tcp_timermp_alloc(KM_NOSLEEP | KM_PANIC);
25885 	} else {
25886 		TCP_DBGSTAT(tcps, tcp_timeout_cached_alloc);
25887 		mp = tcp->tcp_timercache;
25888 		tcp->tcp_timercache = mp->b_next;
25889 		mp->b_next = NULL;
25890 		ASSERT(mp->b_wptr == NULL);
25891 	}
25892 
25893 	CONN_INC_REF(connp);
25894 	tcpt = (tcp_timer_t *)mp->b_rptr;
25895 	tcpt->connp = connp;
25896 	tcpt->tcpt_proc = f;
25897 	tcpt->tcpt_tid = timeout(tcp_timer_callback, mp, tim);
25898 	return ((timeout_id_t)mp);
25899 }
25900 
25901 static void
25902 tcp_timer_callback(void *arg)
25903 {
25904 	mblk_t *mp = (mblk_t *)arg;
25905 	tcp_timer_t *tcpt;
25906 	conn_t	*connp;
25907 
25908 	tcpt = (tcp_timer_t *)mp->b_rptr;
25909 	connp = tcpt->connp;
25910 	squeue_fill(connp->conn_sqp, mp,
25911 	    tcp_timer_handler, connp, SQTAG_TCP_TIMER);
25912 }
25913 
25914 static void
25915 tcp_timer_handler(void *arg, mblk_t *mp, void *arg2)
25916 {
25917 	tcp_timer_t *tcpt;
25918 	conn_t *connp = (conn_t *)arg;
25919 	tcp_t *tcp = connp->conn_tcp;
25920 
25921 	tcpt = (tcp_timer_t *)mp->b_rptr;
25922 	ASSERT(connp == tcpt->connp);
25923 	ASSERT((squeue_t *)arg2 == connp->conn_sqp);
25924 
25925 	/*
25926 	 * If the TCP has reached the closed state, don't proceed any
25927 	 * further. This TCP logically does not exist on the system.
25928 	 * tcpt_proc could for example access queues, that have already
25929 	 * been qprocoff'ed off. Also see comments at the start of tcp_input
25930 	 */
25931 	if (tcp->tcp_state != TCPS_CLOSED) {
25932 		(*tcpt->tcpt_proc)(connp);
25933 	} else {
25934 		tcp->tcp_timer_tid = 0;
25935 	}
25936 	tcp_timer_free(connp->conn_tcp, mp);
25937 }
25938 
25939 /*
25940  * There is potential race with untimeout and the handler firing at the same
25941  * time. The mblock may be freed by the handler while we are trying to use
25942  * it. But since both should execute on the same squeue, this race should not
25943  * occur.
25944  */
25945 clock_t
25946 tcp_timeout_cancel(conn_t *connp, timeout_id_t id)
25947 {
25948 	mblk_t	*mp = (mblk_t *)id;
25949 	tcp_timer_t *tcpt;
25950 	clock_t delta;
25951 	tcp_stack_t	*tcps = connp->conn_tcp->tcp_tcps;
25952 
25953 	TCP_DBGSTAT(tcps, tcp_timeout_cancel_reqs);
25954 
25955 	if (mp == NULL)
25956 		return (-1);
25957 
25958 	tcpt = (tcp_timer_t *)mp->b_rptr;
25959 	ASSERT(tcpt->connp == connp);
25960 
25961 	delta = untimeout(tcpt->tcpt_tid);
25962 
25963 	if (delta >= 0) {
25964 		TCP_DBGSTAT(tcps, tcp_timeout_canceled);
25965 		tcp_timer_free(connp->conn_tcp, mp);
25966 		CONN_DEC_REF(connp);
25967 	}
25968 
25969 	return (delta);
25970 }
25971 
25972 /*
25973  * Allocate space for the timer event. The allocation looks like mblk, but it is
25974  * not a proper mblk. To avoid confusion we set b_wptr to NULL.
25975  *
25976  * Dealing with failures: If we can't allocate from the timer cache we try
25977  * allocating from dblock caches using allocb_tryhard(). In this case b_wptr
25978  * points to b_rptr.
25979  * If we can't allocate anything using allocb_tryhard(), we perform a last
25980  * attempt and use kmem_alloc_tryhard(). In this case we set b_wptr to -1 and
25981  * save the actual allocation size in b_datap.
25982  */
25983 mblk_t *
25984 tcp_timermp_alloc(int kmflags)
25985 {
25986 	mblk_t *mp = (mblk_t *)kmem_cache_alloc(tcp_timercache,
25987 	    kmflags & ~KM_PANIC);
25988 
25989 	if (mp != NULL) {
25990 		mp->b_next = mp->b_prev = NULL;
25991 		mp->b_rptr = (uchar_t *)(&mp[1]);
25992 		mp->b_wptr = NULL;
25993 		mp->b_datap = NULL;
25994 		mp->b_queue = NULL;
25995 		mp->b_cont = NULL;
25996 	} else if (kmflags & KM_PANIC) {
25997 		/*
25998 		 * Failed to allocate memory for the timer. Try allocating from
25999 		 * dblock caches.
26000 		 */
26001 		/* ipclassifier calls this from a constructor - hence no tcps */
26002 		TCP_G_STAT(tcp_timermp_allocfail);
26003 		mp = allocb_tryhard(sizeof (tcp_timer_t));
26004 		if (mp == NULL) {
26005 			size_t size = 0;
26006 			/*
26007 			 * Memory is really low. Try tryhard allocation.
26008 			 *
26009 			 * ipclassifier calls this from a constructor -
26010 			 * hence no tcps
26011 			 */
26012 			TCP_G_STAT(tcp_timermp_allocdblfail);
26013 			mp = kmem_alloc_tryhard(sizeof (mblk_t) +
26014 			    sizeof (tcp_timer_t), &size, kmflags);
26015 			mp->b_rptr = (uchar_t *)(&mp[1]);
26016 			mp->b_next = mp->b_prev = NULL;
26017 			mp->b_wptr = (uchar_t *)-1;
26018 			mp->b_datap = (dblk_t *)size;
26019 			mp->b_queue = NULL;
26020 			mp->b_cont = NULL;
26021 		}
26022 		ASSERT(mp->b_wptr != NULL);
26023 	}
26024 	/* ipclassifier calls this from a constructor - hence no tcps */
26025 	TCP_G_DBGSTAT(tcp_timermp_alloced);
26026 
26027 	return (mp);
26028 }
26029 
26030 /*
26031  * Free per-tcp timer cache.
26032  * It can only contain entries from tcp_timercache.
26033  */
26034 void
26035 tcp_timermp_free(tcp_t *tcp)
26036 {
26037 	mblk_t *mp;
26038 
26039 	while ((mp = tcp->tcp_timercache) != NULL) {
26040 		ASSERT(mp->b_wptr == NULL);
26041 		tcp->tcp_timercache = tcp->tcp_timercache->b_next;
26042 		kmem_cache_free(tcp_timercache, mp);
26043 	}
26044 }
26045 
26046 /*
26047  * Free timer event. Put it on the per-tcp timer cache if there is not too many
26048  * events there already (currently at most two events are cached).
26049  * If the event is not allocated from the timer cache, free it right away.
26050  */
26051 static void
26052 tcp_timer_free(tcp_t *tcp, mblk_t *mp)
26053 {
26054 	mblk_t *mp1 = tcp->tcp_timercache;
26055 	tcp_stack_t	*tcps = tcp->tcp_tcps;
26056 
26057 	if (mp->b_wptr != NULL) {
26058 		/*
26059 		 * This allocation is not from a timer cache, free it right
26060 		 * away.
26061 		 */
26062 		if (mp->b_wptr != (uchar_t *)-1)
26063 			freeb(mp);
26064 		else
26065 			kmem_free(mp, (size_t)mp->b_datap);
26066 	} else if (mp1 == NULL || mp1->b_next == NULL) {
26067 		/* Cache this timer block for future allocations */
26068 		mp->b_rptr = (uchar_t *)(&mp[1]);
26069 		mp->b_next = mp1;
26070 		tcp->tcp_timercache = mp;
26071 	} else {
26072 		kmem_cache_free(tcp_timercache, mp);
26073 		TCP_DBGSTAT(tcps, tcp_timermp_freed);
26074 	}
26075 }
26076 
26077 /*
26078  * End of TCP Timers implementation.
26079  */
26080 
26081 /*
26082  * tcp_{set,clr}qfull() functions are used to either set or clear QFULL
26083  * on the specified backing STREAMS q. Note, the caller may make the
26084  * decision to call based on the tcp_t.tcp_flow_stopped value which
26085  * when check outside the q's lock is only an advisory check ...
26086  */
26087 
26088 void
26089 tcp_setqfull(tcp_t *tcp)
26090 {
26091 	queue_t *q = tcp->tcp_wq;
26092 	tcp_stack_t	*tcps = tcp->tcp_tcps;
26093 
26094 	if (!(q->q_flag & QFULL)) {
26095 		mutex_enter(QLOCK(q));
26096 		if (!(q->q_flag & QFULL)) {
26097 			/* still need to set QFULL */
26098 			q->q_flag |= QFULL;
26099 			tcp->tcp_flow_stopped = B_TRUE;
26100 			mutex_exit(QLOCK(q));
26101 			TCP_STAT(tcps, tcp_flwctl_on);
26102 		} else {
26103 			mutex_exit(QLOCK(q));
26104 		}
26105 	}
26106 }
26107 
26108 void
26109 tcp_clrqfull(tcp_t *tcp)
26110 {
26111 	queue_t *q = tcp->tcp_wq;
26112 
26113 	if (q->q_flag & QFULL) {
26114 		mutex_enter(QLOCK(q));
26115 		if (q->q_flag & QFULL) {
26116 			q->q_flag &= ~QFULL;
26117 			tcp->tcp_flow_stopped = B_FALSE;
26118 			mutex_exit(QLOCK(q));
26119 			if (q->q_flag & QWANTW)
26120 				qbackenable(q, 0);
26121 		} else {
26122 			mutex_exit(QLOCK(q));
26123 		}
26124 	}
26125 }
26126 
26127 
26128 /*
26129  * kstats related to squeues i.e. not per IP instance
26130  */
26131 static void *
26132 tcp_g_kstat_init(tcp_g_stat_t *tcp_g_statp)
26133 {
26134 	kstat_t *ksp;
26135 
26136 	tcp_g_stat_t template = {
26137 		{ "tcp_timermp_alloced",	KSTAT_DATA_UINT64 },
26138 		{ "tcp_timermp_allocfail",	KSTAT_DATA_UINT64 },
26139 		{ "tcp_timermp_allocdblfail",	KSTAT_DATA_UINT64 },
26140 		{ "tcp_freelist_cleanup",	KSTAT_DATA_UINT64 },
26141 	};
26142 
26143 	ksp = kstat_create(TCP_MOD_NAME, 0, "tcpstat_g", "net",
26144 	    KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t),
26145 	    KSTAT_FLAG_VIRTUAL);
26146 
26147 	if (ksp == NULL)
26148 		return (NULL);
26149 
26150 	bcopy(&template, tcp_g_statp, sizeof (template));
26151 	ksp->ks_data = (void *)tcp_g_statp;
26152 
26153 	kstat_install(ksp);
26154 	return (ksp);
26155 }
26156 
26157 static void
26158 tcp_g_kstat_fini(kstat_t *ksp)
26159 {
26160 	if (ksp != NULL) {
26161 		kstat_delete(ksp);
26162 	}
26163 }
26164 
26165 
26166 static void *
26167 tcp_kstat2_init(netstackid_t stackid, tcp_stat_t *tcps_statisticsp)
26168 {
26169 	kstat_t *ksp;
26170 
26171 	tcp_stat_t template = {
26172 		{ "tcp_time_wait",		KSTAT_DATA_UINT64 },
26173 		{ "tcp_time_wait_syn",		KSTAT_DATA_UINT64 },
26174 		{ "tcp_time_wait_success",	KSTAT_DATA_UINT64 },
26175 		{ "tcp_time_wait_fail",		KSTAT_DATA_UINT64 },
26176 		{ "tcp_reinput_syn",		KSTAT_DATA_UINT64 },
26177 		{ "tcp_ip_output",		KSTAT_DATA_UINT64 },
26178 		{ "tcp_detach_non_time_wait",	KSTAT_DATA_UINT64 },
26179 		{ "tcp_detach_time_wait",	KSTAT_DATA_UINT64 },
26180 		{ "tcp_time_wait_reap",		KSTAT_DATA_UINT64 },
26181 		{ "tcp_clean_death_nondetached",	KSTAT_DATA_UINT64 },
26182 		{ "tcp_reinit_calls",		KSTAT_DATA_UINT64 },
26183 		{ "tcp_eager_err1",		KSTAT_DATA_UINT64 },
26184 		{ "tcp_eager_err2",		KSTAT_DATA_UINT64 },
26185 		{ "tcp_eager_blowoff_calls",	KSTAT_DATA_UINT64 },
26186 		{ "tcp_eager_blowoff_q",	KSTAT_DATA_UINT64 },
26187 		{ "tcp_eager_blowoff_q0",	KSTAT_DATA_UINT64 },
26188 		{ "tcp_not_hard_bound",		KSTAT_DATA_UINT64 },
26189 		{ "tcp_no_listener",		KSTAT_DATA_UINT64 },
26190 		{ "tcp_found_eager",		KSTAT_DATA_UINT64 },
26191 		{ "tcp_wrong_queue",		KSTAT_DATA_UINT64 },
26192 		{ "tcp_found_eager_binding1",	KSTAT_DATA_UINT64 },
26193 		{ "tcp_found_eager_bound1",	KSTAT_DATA_UINT64 },
26194 		{ "tcp_eager_has_listener1",	KSTAT_DATA_UINT64 },
26195 		{ "tcp_open_alloc",		KSTAT_DATA_UINT64 },
26196 		{ "tcp_open_detached_alloc",	KSTAT_DATA_UINT64 },
26197 		{ "tcp_rput_time_wait",		KSTAT_DATA_UINT64 },
26198 		{ "tcp_listendrop",		KSTAT_DATA_UINT64 },
26199 		{ "tcp_listendropq0",		KSTAT_DATA_UINT64 },
26200 		{ "tcp_wrong_rq",		KSTAT_DATA_UINT64 },
26201 		{ "tcp_rsrv_calls",		KSTAT_DATA_UINT64 },
26202 		{ "tcp_eagerfree2",		KSTAT_DATA_UINT64 },
26203 		{ "tcp_eagerfree3",		KSTAT_DATA_UINT64 },
26204 		{ "tcp_eagerfree4",		KSTAT_DATA_UINT64 },
26205 		{ "tcp_eagerfree5",		KSTAT_DATA_UINT64 },
26206 		{ "tcp_timewait_syn_fail",	KSTAT_DATA_UINT64 },
26207 		{ "tcp_listen_badflags",	KSTAT_DATA_UINT64 },
26208 		{ "tcp_timeout_calls",		KSTAT_DATA_UINT64 },
26209 		{ "tcp_timeout_cached_alloc",	KSTAT_DATA_UINT64 },
26210 		{ "tcp_timeout_cancel_reqs",	KSTAT_DATA_UINT64 },
26211 		{ "tcp_timeout_canceled",	KSTAT_DATA_UINT64 },
26212 		{ "tcp_timermp_freed",		KSTAT_DATA_UINT64 },
26213 		{ "tcp_push_timer_cnt",		KSTAT_DATA_UINT64 },
26214 		{ "tcp_ack_timer_cnt",		KSTAT_DATA_UINT64 },
26215 		{ "tcp_ire_null1",		KSTAT_DATA_UINT64 },
26216 		{ "tcp_ire_null",		KSTAT_DATA_UINT64 },
26217 		{ "tcp_ip_send",		KSTAT_DATA_UINT64 },
26218 		{ "tcp_ip_ire_send",		KSTAT_DATA_UINT64 },
26219 		{ "tcp_wsrv_called",		KSTAT_DATA_UINT64 },
26220 		{ "tcp_flwctl_on",		KSTAT_DATA_UINT64 },
26221 		{ "tcp_timer_fire_early",	KSTAT_DATA_UINT64 },
26222 		{ "tcp_timer_fire_miss",	KSTAT_DATA_UINT64 },
26223 		{ "tcp_rput_v6_error",		KSTAT_DATA_UINT64 },
26224 		{ "tcp_out_sw_cksum",		KSTAT_DATA_UINT64 },
26225 		{ "tcp_out_sw_cksum_bytes",	KSTAT_DATA_UINT64 },
26226 		{ "tcp_zcopy_on",		KSTAT_DATA_UINT64 },
26227 		{ "tcp_zcopy_off",		KSTAT_DATA_UINT64 },
26228 		{ "tcp_zcopy_backoff",		KSTAT_DATA_UINT64 },
26229 		{ "tcp_zcopy_disable",		KSTAT_DATA_UINT64 },
26230 		{ "tcp_mdt_pkt_out",		KSTAT_DATA_UINT64 },
26231 		{ "tcp_mdt_pkt_out_v4",		KSTAT_DATA_UINT64 },
26232 		{ "tcp_mdt_pkt_out_v6",		KSTAT_DATA_UINT64 },
26233 		{ "tcp_mdt_discarded",		KSTAT_DATA_UINT64 },
26234 		{ "tcp_mdt_conn_halted1",	KSTAT_DATA_UINT64 },
26235 		{ "tcp_mdt_conn_halted2",	KSTAT_DATA_UINT64 },
26236 		{ "tcp_mdt_conn_halted3",	KSTAT_DATA_UINT64 },
26237 		{ "tcp_mdt_conn_resumed1",	KSTAT_DATA_UINT64 },
26238 		{ "tcp_mdt_conn_resumed2",	KSTAT_DATA_UINT64 },
26239 		{ "tcp_mdt_legacy_small",	KSTAT_DATA_UINT64 },
26240 		{ "tcp_mdt_legacy_all",		KSTAT_DATA_UINT64 },
26241 		{ "tcp_mdt_legacy_ret",		KSTAT_DATA_UINT64 },
26242 		{ "tcp_mdt_allocfail",		KSTAT_DATA_UINT64 },
26243 		{ "tcp_mdt_addpdescfail",	KSTAT_DATA_UINT64 },
26244 		{ "tcp_mdt_allocd",		KSTAT_DATA_UINT64 },
26245 		{ "tcp_mdt_linked",		KSTAT_DATA_UINT64 },
26246 		{ "tcp_fusion_flowctl",		KSTAT_DATA_UINT64 },
26247 		{ "tcp_fusion_backenabled",	KSTAT_DATA_UINT64 },
26248 		{ "tcp_fusion_urg",		KSTAT_DATA_UINT64 },
26249 		{ "tcp_fusion_putnext",		KSTAT_DATA_UINT64 },
26250 		{ "tcp_fusion_unfusable",	KSTAT_DATA_UINT64 },
26251 		{ "tcp_fusion_aborted",		KSTAT_DATA_UINT64 },
26252 		{ "tcp_fusion_unqualified",	KSTAT_DATA_UINT64 },
26253 		{ "tcp_fusion_rrw_busy",	KSTAT_DATA_UINT64 },
26254 		{ "tcp_fusion_rrw_msgcnt",	KSTAT_DATA_UINT64 },
26255 		{ "tcp_fusion_rrw_plugged",	KSTAT_DATA_UINT64 },
26256 		{ "tcp_in_ack_unsent_drop",	KSTAT_DATA_UINT64 },
26257 		{ "tcp_sock_fallback",		KSTAT_DATA_UINT64 },
26258 		{ "tcp_lso_enabled",		KSTAT_DATA_UINT64 },
26259 		{ "tcp_lso_disabled",		KSTAT_DATA_UINT64 },
26260 		{ "tcp_lso_times",		KSTAT_DATA_UINT64 },
26261 		{ "tcp_lso_pkt_out",		KSTAT_DATA_UINT64 },
26262 	};
26263 
26264 	ksp = kstat_create_netstack(TCP_MOD_NAME, 0, "tcpstat", "net",
26265 	    KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t),
26266 	    KSTAT_FLAG_VIRTUAL, stackid);
26267 
26268 	if (ksp == NULL)
26269 		return (NULL);
26270 
26271 	bcopy(&template, tcps_statisticsp, sizeof (template));
26272 	ksp->ks_data = (void *)tcps_statisticsp;
26273 	ksp->ks_private = (void *)(uintptr_t)stackid;
26274 
26275 	kstat_install(ksp);
26276 	return (ksp);
26277 }
26278 
26279 static void
26280 tcp_kstat2_fini(netstackid_t stackid, kstat_t *ksp)
26281 {
26282 	if (ksp != NULL) {
26283 		ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
26284 		kstat_delete_netstack(ksp, stackid);
26285 	}
26286 }
26287 
26288 /*
26289  * TCP Kstats implementation
26290  */
26291 static void *
26292 tcp_kstat_init(netstackid_t stackid, tcp_stack_t *tcps)
26293 {
26294 	kstat_t	*ksp;
26295 
26296 	tcp_named_kstat_t template = {
26297 		{ "rtoAlgorithm",	KSTAT_DATA_INT32, 0 },
26298 		{ "rtoMin",		KSTAT_DATA_INT32, 0 },
26299 		{ "rtoMax",		KSTAT_DATA_INT32, 0 },
26300 		{ "maxConn",		KSTAT_DATA_INT32, 0 },
26301 		{ "activeOpens",	KSTAT_DATA_UINT32, 0 },
26302 		{ "passiveOpens",	KSTAT_DATA_UINT32, 0 },
26303 		{ "attemptFails",	KSTAT_DATA_UINT32, 0 },
26304 		{ "estabResets",	KSTAT_DATA_UINT32, 0 },
26305 		{ "currEstab",		KSTAT_DATA_UINT32, 0 },
26306 		{ "inSegs",		KSTAT_DATA_UINT64, 0 },
26307 		{ "outSegs",		KSTAT_DATA_UINT64, 0 },
26308 		{ "retransSegs",	KSTAT_DATA_UINT32, 0 },
26309 		{ "connTableSize",	KSTAT_DATA_INT32, 0 },
26310 		{ "outRsts",		KSTAT_DATA_UINT32, 0 },
26311 		{ "outDataSegs",	KSTAT_DATA_UINT32, 0 },
26312 		{ "outDataBytes",	KSTAT_DATA_UINT32, 0 },
26313 		{ "retransBytes",	KSTAT_DATA_UINT32, 0 },
26314 		{ "outAck",		KSTAT_DATA_UINT32, 0 },
26315 		{ "outAckDelayed",	KSTAT_DATA_UINT32, 0 },
26316 		{ "outUrg",		KSTAT_DATA_UINT32, 0 },
26317 		{ "outWinUpdate",	KSTAT_DATA_UINT32, 0 },
26318 		{ "outWinProbe",	KSTAT_DATA_UINT32, 0 },
26319 		{ "outControl",		KSTAT_DATA_UINT32, 0 },
26320 		{ "outFastRetrans",	KSTAT_DATA_UINT32, 0 },
26321 		{ "inAckSegs",		KSTAT_DATA_UINT32, 0 },
26322 		{ "inAckBytes",		KSTAT_DATA_UINT32, 0 },
26323 		{ "inDupAck",		KSTAT_DATA_UINT32, 0 },
26324 		{ "inAckUnsent",	KSTAT_DATA_UINT32, 0 },
26325 		{ "inDataInorderSegs",	KSTAT_DATA_UINT32, 0 },
26326 		{ "inDataInorderBytes",	KSTAT_DATA_UINT32, 0 },
26327 		{ "inDataUnorderSegs",	KSTAT_DATA_UINT32, 0 },
26328 		{ "inDataUnorderBytes",	KSTAT_DATA_UINT32, 0 },
26329 		{ "inDataDupSegs",	KSTAT_DATA_UINT32, 0 },
26330 		{ "inDataDupBytes",	KSTAT_DATA_UINT32, 0 },
26331 		{ "inDataPartDupSegs",	KSTAT_DATA_UINT32, 0 },
26332 		{ "inDataPartDupBytes",	KSTAT_DATA_UINT32, 0 },
26333 		{ "inDataPastWinSegs",	KSTAT_DATA_UINT32, 0 },
26334 		{ "inDataPastWinBytes",	KSTAT_DATA_UINT32, 0 },
26335 		{ "inWinProbe",		KSTAT_DATA_UINT32, 0 },
26336 		{ "inWinUpdate",	KSTAT_DATA_UINT32, 0 },
26337 		{ "inClosed",		KSTAT_DATA_UINT32, 0 },
26338 		{ "rttUpdate",		KSTAT_DATA_UINT32, 0 },
26339 		{ "rttNoUpdate",	KSTAT_DATA_UINT32, 0 },
26340 		{ "timRetrans",		KSTAT_DATA_UINT32, 0 },
26341 		{ "timRetransDrop",	KSTAT_DATA_UINT32, 0 },
26342 		{ "timKeepalive",	KSTAT_DATA_UINT32, 0 },
26343 		{ "timKeepaliveProbe",	KSTAT_DATA_UINT32, 0 },
26344 		{ "timKeepaliveDrop",	KSTAT_DATA_UINT32, 0 },
26345 		{ "listenDrop",		KSTAT_DATA_UINT32, 0 },
26346 		{ "listenDropQ0",	KSTAT_DATA_UINT32, 0 },
26347 		{ "halfOpenDrop",	KSTAT_DATA_UINT32, 0 },
26348 		{ "outSackRetransSegs",	KSTAT_DATA_UINT32, 0 },
26349 		{ "connTableSize6",	KSTAT_DATA_INT32, 0 }
26350 	};
26351 
26352 	ksp = kstat_create_netstack(TCP_MOD_NAME, 0, TCP_MOD_NAME, "mib2",
26353 	    KSTAT_TYPE_NAMED, NUM_OF_FIELDS(tcp_named_kstat_t), 0, stackid);
26354 
26355 	if (ksp == NULL)
26356 		return (NULL);
26357 
26358 	template.rtoAlgorithm.value.ui32 = 4;
26359 	template.rtoMin.value.ui32 = tcps->tcps_rexmit_interval_min;
26360 	template.rtoMax.value.ui32 = tcps->tcps_rexmit_interval_max;
26361 	template.maxConn.value.i32 = -1;
26362 
26363 	bcopy(&template, ksp->ks_data, sizeof (template));
26364 	ksp->ks_update = tcp_kstat_update;
26365 	ksp->ks_private = (void *)(uintptr_t)stackid;
26366 
26367 	kstat_install(ksp);
26368 	return (ksp);
26369 }
26370 
26371 static void
26372 tcp_kstat_fini(netstackid_t stackid, kstat_t *ksp)
26373 {
26374 	if (ksp != NULL) {
26375 		ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
26376 		kstat_delete_netstack(ksp, stackid);
26377 	}
26378 }
26379 
26380 static int
26381 tcp_kstat_update(kstat_t *kp, int rw)
26382 {
26383 	tcp_named_kstat_t *tcpkp;
26384 	tcp_t		*tcp;
26385 	connf_t		*connfp;
26386 	conn_t		*connp;
26387 	int 		i;
26388 	netstackid_t	stackid = (netstackid_t)(uintptr_t)kp->ks_private;
26389 	netstack_t	*ns;
26390 	tcp_stack_t	*tcps;
26391 	ip_stack_t	*ipst;
26392 
26393 	if ((kp == NULL) || (kp->ks_data == NULL))
26394 		return (EIO);
26395 
26396 	if (rw == KSTAT_WRITE)
26397 		return (EACCES);
26398 
26399 	ns = netstack_find_by_stackid(stackid);
26400 	if (ns == NULL)
26401 		return (-1);
26402 	tcps = ns->netstack_tcp;
26403 	if (tcps == NULL) {
26404 		netstack_rele(ns);
26405 		return (-1);
26406 	}
26407 	tcpkp = (tcp_named_kstat_t *)kp->ks_data;
26408 
26409 	tcpkp->currEstab.value.ui32 = 0;
26410 
26411 	ipst = ns->netstack_ip;
26412 
26413 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
26414 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
26415 		connp = NULL;
26416 		while ((connp =
26417 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
26418 			tcp = connp->conn_tcp;
26419 			switch (tcp_snmp_state(tcp)) {
26420 			case MIB2_TCP_established:
26421 			case MIB2_TCP_closeWait:
26422 				tcpkp->currEstab.value.ui32++;
26423 				break;
26424 			}
26425 		}
26426 	}
26427 
26428 	tcpkp->activeOpens.value.ui32 = tcps->tcps_mib.tcpActiveOpens;
26429 	tcpkp->passiveOpens.value.ui32 = tcps->tcps_mib.tcpPassiveOpens;
26430 	tcpkp->attemptFails.value.ui32 = tcps->tcps_mib.tcpAttemptFails;
26431 	tcpkp->estabResets.value.ui32 = tcps->tcps_mib.tcpEstabResets;
26432 	tcpkp->inSegs.value.ui64 = tcps->tcps_mib.tcpHCInSegs;
26433 	tcpkp->outSegs.value.ui64 = tcps->tcps_mib.tcpHCOutSegs;
26434 	tcpkp->retransSegs.value.ui32 =	tcps->tcps_mib.tcpRetransSegs;
26435 	tcpkp->connTableSize.value.i32 = tcps->tcps_mib.tcpConnTableSize;
26436 	tcpkp->outRsts.value.ui32 = tcps->tcps_mib.tcpOutRsts;
26437 	tcpkp->outDataSegs.value.ui32 = tcps->tcps_mib.tcpOutDataSegs;
26438 	tcpkp->outDataBytes.value.ui32 = tcps->tcps_mib.tcpOutDataBytes;
26439 	tcpkp->retransBytes.value.ui32 = tcps->tcps_mib.tcpRetransBytes;
26440 	tcpkp->outAck.value.ui32 = tcps->tcps_mib.tcpOutAck;
26441 	tcpkp->outAckDelayed.value.ui32 = tcps->tcps_mib.tcpOutAckDelayed;
26442 	tcpkp->outUrg.value.ui32 = tcps->tcps_mib.tcpOutUrg;
26443 	tcpkp->outWinUpdate.value.ui32 = tcps->tcps_mib.tcpOutWinUpdate;
26444 	tcpkp->outWinProbe.value.ui32 = tcps->tcps_mib.tcpOutWinProbe;
26445 	tcpkp->outControl.value.ui32 = tcps->tcps_mib.tcpOutControl;
26446 	tcpkp->outFastRetrans.value.ui32 = tcps->tcps_mib.tcpOutFastRetrans;
26447 	tcpkp->inAckSegs.value.ui32 = tcps->tcps_mib.tcpInAckSegs;
26448 	tcpkp->inAckBytes.value.ui32 = tcps->tcps_mib.tcpInAckBytes;
26449 	tcpkp->inDupAck.value.ui32 = tcps->tcps_mib.tcpInDupAck;
26450 	tcpkp->inAckUnsent.value.ui32 = tcps->tcps_mib.tcpInAckUnsent;
26451 	tcpkp->inDataInorderSegs.value.ui32 =
26452 	    tcps->tcps_mib.tcpInDataInorderSegs;
26453 	tcpkp->inDataInorderBytes.value.ui32 =
26454 	    tcps->tcps_mib.tcpInDataInorderBytes;
26455 	tcpkp->inDataUnorderSegs.value.ui32 =
26456 	    tcps->tcps_mib.tcpInDataUnorderSegs;
26457 	tcpkp->inDataUnorderBytes.value.ui32 =
26458 	    tcps->tcps_mib.tcpInDataUnorderBytes;
26459 	tcpkp->inDataDupSegs.value.ui32 = tcps->tcps_mib.tcpInDataDupSegs;
26460 	tcpkp->inDataDupBytes.value.ui32 = tcps->tcps_mib.tcpInDataDupBytes;
26461 	tcpkp->inDataPartDupSegs.value.ui32 =
26462 	    tcps->tcps_mib.tcpInDataPartDupSegs;
26463 	tcpkp->inDataPartDupBytes.value.ui32 =
26464 	    tcps->tcps_mib.tcpInDataPartDupBytes;
26465 	tcpkp->inDataPastWinSegs.value.ui32 =
26466 	    tcps->tcps_mib.tcpInDataPastWinSegs;
26467 	tcpkp->inDataPastWinBytes.value.ui32 =
26468 	    tcps->tcps_mib.tcpInDataPastWinBytes;
26469 	tcpkp->inWinProbe.value.ui32 = tcps->tcps_mib.tcpInWinProbe;
26470 	tcpkp->inWinUpdate.value.ui32 = tcps->tcps_mib.tcpInWinUpdate;
26471 	tcpkp->inClosed.value.ui32 = tcps->tcps_mib.tcpInClosed;
26472 	tcpkp->rttNoUpdate.value.ui32 = tcps->tcps_mib.tcpRttNoUpdate;
26473 	tcpkp->rttUpdate.value.ui32 = tcps->tcps_mib.tcpRttUpdate;
26474 	tcpkp->timRetrans.value.ui32 = tcps->tcps_mib.tcpTimRetrans;
26475 	tcpkp->timRetransDrop.value.ui32 = tcps->tcps_mib.tcpTimRetransDrop;
26476 	tcpkp->timKeepalive.value.ui32 = tcps->tcps_mib.tcpTimKeepalive;
26477 	tcpkp->timKeepaliveProbe.value.ui32 =
26478 	    tcps->tcps_mib.tcpTimKeepaliveProbe;
26479 	tcpkp->timKeepaliveDrop.value.ui32 =
26480 	    tcps->tcps_mib.tcpTimKeepaliveDrop;
26481 	tcpkp->listenDrop.value.ui32 = tcps->tcps_mib.tcpListenDrop;
26482 	tcpkp->listenDropQ0.value.ui32 = tcps->tcps_mib.tcpListenDropQ0;
26483 	tcpkp->halfOpenDrop.value.ui32 = tcps->tcps_mib.tcpHalfOpenDrop;
26484 	tcpkp->outSackRetransSegs.value.ui32 =
26485 	    tcps->tcps_mib.tcpOutSackRetransSegs;
26486 	tcpkp->connTableSize6.value.i32 = tcps->tcps_mib.tcp6ConnTableSize;
26487 
26488 	netstack_rele(ns);
26489 	return (0);
26490 }
26491 
26492 void
26493 tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp)
26494 {
26495 	uint16_t	hdr_len;
26496 	ipha_t		*ipha;
26497 	uint8_t		*nexthdrp;
26498 	tcph_t		*tcph;
26499 	tcp_stack_t	*tcps = connp->conn_tcp->tcp_tcps;
26500 
26501 	/* Already has an eager */
26502 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
26503 		TCP_STAT(tcps, tcp_reinput_syn);
26504 		squeue_enter(connp->conn_sqp, mp, connp->conn_recv,
26505 		    connp, SQTAG_TCP_REINPUT_EAGER);
26506 		return;
26507 	}
26508 
26509 	switch (IPH_HDR_VERSION(mp->b_rptr)) {
26510 	case IPV4_VERSION:
26511 		ipha = (ipha_t *)mp->b_rptr;
26512 		hdr_len = IPH_HDR_LENGTH(ipha);
26513 		break;
26514 	case IPV6_VERSION:
26515 		if (!ip_hdr_length_nexthdr_v6(mp, (ip6_t *)mp->b_rptr,
26516 		    &hdr_len, &nexthdrp)) {
26517 			CONN_DEC_REF(connp);
26518 			freemsg(mp);
26519 			return;
26520 		}
26521 		break;
26522 	}
26523 
26524 	tcph = (tcph_t *)&mp->b_rptr[hdr_len];
26525 	if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) {
26526 		mp->b_datap->db_struioflag |= STRUIO_EAGER;
26527 		DB_CKSUMSTART(mp) = (intptr_t)sqp;
26528 	}
26529 
26530 	squeue_fill(connp->conn_sqp, mp, connp->conn_recv, connp,
26531 	    SQTAG_TCP_REINPUT);
26532 }
26533 
26534 static squeue_func_t
26535 tcp_squeue_switch(int val)
26536 {
26537 	squeue_func_t rval = squeue_fill;
26538 
26539 	switch (val) {
26540 	case 1:
26541 		rval = squeue_enter_nodrain;
26542 		break;
26543 	case 2:
26544 		rval = squeue_enter;
26545 		break;
26546 	default:
26547 		break;
26548 	}
26549 	return (rval);
26550 }
26551 
26552 /*
26553  * This is called once for each squeue - globally for all stack
26554  * instances.
26555  */
26556 static void
26557 tcp_squeue_add(squeue_t *sqp)
26558 {
26559 	tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc(
26560 	    sizeof (tcp_squeue_priv_t), KM_SLEEP);
26561 
26562 	*squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait;
26563 	tcp_time_wait->tcp_time_wait_tid = timeout(tcp_time_wait_collector,
26564 	    sqp, TCP_TIME_WAIT_DELAY);
26565 	if (tcp_free_list_max_cnt == 0) {
26566 		int tcp_ncpus = ((boot_max_ncpus == -1) ?
26567 		    max_ncpus : boot_max_ncpus);
26568 
26569 		/*
26570 		 * Limit number of entries to 1% of availble memory / tcp_ncpus
26571 		 */
26572 		tcp_free_list_max_cnt = (freemem * PAGESIZE) /
26573 		    (tcp_ncpus * sizeof (tcp_t) * 100);
26574 	}
26575 	tcp_time_wait->tcp_free_list_cnt = 0;
26576 }
26577