xref: /titanic_50/usr/src/uts/common/inet/tcp/tcp.c (revision 4681df02a975abaaef76edec9f765eb3bf66585b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 /* Copyright (c) 1990 Mentat Inc. */
27 
28 #pragma ident	"%Z%%M%	%I%	%E% SMI"
29 const char tcp_version[] = "%Z%%M%	%I%	%E% SMI";
30 
31 
32 #include <sys/types.h>
33 #include <sys/stream.h>
34 #include <sys/strsun.h>
35 #include <sys/strsubr.h>
36 #include <sys/stropts.h>
37 #include <sys/strlog.h>
38 #include <sys/strsun.h>
39 #define	_SUN_TPI_VERSION 2
40 #include <sys/tihdr.h>
41 #include <sys/timod.h>
42 #include <sys/ddi.h>
43 #include <sys/sunddi.h>
44 #include <sys/suntpi.h>
45 #include <sys/xti_inet.h>
46 #include <sys/cmn_err.h>
47 #include <sys/debug.h>
48 #include <sys/vtrace.h>
49 #include <sys/kmem.h>
50 #include <sys/ethernet.h>
51 #include <sys/cpuvar.h>
52 #include <sys/dlpi.h>
53 #include <sys/multidata.h>
54 #include <sys/multidata_impl.h>
55 #include <sys/pattr.h>
56 #include <sys/policy.h>
57 #include <sys/priv.h>
58 #include <sys/zone.h>
59 
60 #include <sys/errno.h>
61 #include <sys/signal.h>
62 #include <sys/socket.h>
63 #include <sys/sockio.h>
64 #include <sys/isa_defs.h>
65 #include <sys/md5.h>
66 #include <sys/random.h>
67 #include <netinet/in.h>
68 #include <netinet/tcp.h>
69 #include <netinet/ip6.h>
70 #include <netinet/icmp6.h>
71 #include <net/if.h>
72 #include <net/route.h>
73 #include <inet/ipsec_impl.h>
74 
75 #include <inet/common.h>
76 #include <inet/ip.h>
77 #include <inet/ip_impl.h>
78 #include <inet/ip6.h>
79 #include <inet/ip_ndp.h>
80 #include <inet/mi.h>
81 #include <inet/mib2.h>
82 #include <inet/nd.h>
83 #include <inet/optcom.h>
84 #include <inet/snmpcom.h>
85 #include <inet/kstatcom.h>
86 #include <inet/tcp.h>
87 #include <inet/tcp_impl.h>
88 #include <net/pfkeyv2.h>
89 #include <inet/ipsec_info.h>
90 #include <inet/ipdrop.h>
91 #include <inet/tcp_trace.h>
92 
93 #include <inet/ipclassifier.h>
94 #include <inet/ip_ire.h>
95 #include <inet/ip_if.h>
96 #include <inet/ipp_common.h>
97 #include <sys/squeue.h>
98 #include <inet/kssl/ksslapi.h>
99 #include <sys/tsol/label.h>
100 #include <sys/tsol/tnet.h>
101 #include <sys/sdt.h>
102 #include <rpc/pmap_prot.h>
103 
104 /*
105  * TCP Notes: aka FireEngine Phase I (PSARC 2002/433)
106  *
107  * (Read the detailed design doc in PSARC case directory)
108  *
109  * The entire tcp state is contained in tcp_t and conn_t structure
110  * which are allocated in tandem using ipcl_conn_create() and passing
111  * IPCL_CONNTCP as a flag. We use 'conn_ref' and 'conn_lock' to protect
112  * the references on the tcp_t. The tcp_t structure is never compressed
113  * and packets always land on the correct TCP perimeter from the time
114  * eager is created till the time tcp_t dies (as such the old mentat
115  * TCP global queue is not used for detached state and no IPSEC checking
116  * is required). The global queue is still allocated to send out resets
117  * for connection which have no listeners and IP directly calls
118  * tcp_xmit_listeners_reset() which does any policy check.
119  *
120  * Protection and Synchronisation mechanism:
121  *
122  * The tcp data structure does not use any kind of lock for protecting
123  * its state but instead uses 'squeues' for mutual exclusion from various
124  * read and write side threads. To access a tcp member, the thread should
125  * always be behind squeue (via squeue_enter, squeue_enter_nodrain, or
126  * squeue_fill). Since the squeues allow a direct function call, caller
127  * can pass any tcp function having prototype of edesc_t as argument
128  * (different from traditional STREAMs model where packets come in only
129  * designated entry points). The list of functions that can be directly
130  * called via squeue are listed before the usual function prototype.
131  *
132  * Referencing:
133  *
134  * TCP is MT-Hot and we use a reference based scheme to make sure that the
135  * tcp structure doesn't disappear when its needed. When the application
136  * creates an outgoing connection or accepts an incoming connection, we
137  * start out with 2 references on 'conn_ref'. One for TCP and one for IP.
138  * The IP reference is just a symbolic reference since ip_tcpclose()
139  * looks at tcp structure after tcp_close_output() returns which could
140  * have dropped the last TCP reference. So as long as the connection is
141  * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the
142  * conn_t. The classifier puts its own reference when the connection is
143  * inserted in listen or connected hash. Anytime a thread needs to enter
144  * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr
145  * on write side or by doing a classify on read side and then puts a
146  * reference on the conn before doing squeue_enter/tryenter/fill. For
147  * read side, the classifier itself puts the reference under fanout lock
148  * to make sure that tcp can't disappear before it gets processed. The
149  * squeue will drop this reference automatically so the called function
150  * doesn't have to do a DEC_REF.
151  *
152  * Opening a new connection:
153  *
154  * The outgoing connection open is pretty simple. ip_tcpopen() does the
155  * work in creating the conn/tcp structure and initializing it. The
156  * squeue assignment is done based on the CPU the application
157  * is running on. So for outbound connections, processing is always done
158  * on application CPU which might be different from the incoming CPU
159  * being interrupted by the NIC. An optimal way would be to figure out
160  * the NIC <-> CPU binding at listen time, and assign the outgoing
161  * connection to the squeue attached to the CPU that will be interrupted
162  * for incoming packets (we know the NIC based on the bind IP address).
163  * This might seem like a problem if more data is going out but the
164  * fact is that in most cases the transmit is ACK driven transmit where
165  * the outgoing data normally sits on TCP's xmit queue waiting to be
166  * transmitted.
167  *
168  * Accepting a connection:
169  *
170  * This is a more interesting case because of various races involved in
171  * establishing a eager in its own perimeter. Read the meta comment on
172  * top of tcp_conn_request(). But briefly, the squeue is picked by
173  * ip_tcp_input()/ip_fanout_tcp_v6() based on the interrupted CPU.
174  *
175  * Closing a connection:
176  *
177  * The close is fairly straight forward. tcp_close() calls tcp_close_output()
178  * via squeue to do the close and mark the tcp as detached if the connection
179  * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its
180  * reference but tcp_close() drop IP's reference always. So if tcp was
181  * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP
182  * and 1 because it is in classifier's connected hash. This is the condition
183  * we use to determine that its OK to clean up the tcp outside of squeue
184  * when time wait expires (check the ref under fanout and conn_lock and
185  * if it is 2, remove it from fanout hash and kill it).
186  *
187  * Although close just drops the necessary references and marks the
188  * tcp_detached state, tcp_close needs to know the tcp_detached has been
189  * set (under squeue) before letting the STREAM go away (because a
190  * inbound packet might attempt to go up the STREAM while the close
191  * has happened and tcp_detached is not set). So a special lock and
192  * flag is used along with a condition variable (tcp_closelock, tcp_closed,
193  * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked
194  * tcp_detached.
195  *
196  * Special provisions and fast paths:
197  *
198  * We make special provision for (AF_INET, SOCK_STREAM) sockets which
199  * can't have 'ipv6_recvpktinfo' set and for these type of sockets, IP
200  * will never send a M_CTL to TCP. As such, ip_tcp_input() which handles
201  * all TCP packets from the wire makes a IPCL_IS_TCP4_CONNECTED_NO_POLICY
202  * check to send packets directly to tcp_rput_data via squeue. Everyone
203  * else comes through tcp_input() on the read side.
204  *
205  * We also make special provisions for sockfs by marking tcp_issocket
206  * whenever we have only sockfs on top of TCP. This allows us to skip
207  * putting the tcp in acceptor hash since a sockfs listener can never
208  * become acceptor and also avoid allocating a tcp_t for acceptor STREAM
209  * since eager has already been allocated and the accept now happens
210  * on acceptor STREAM. There is a big blob of comment on top of
211  * tcp_conn_request explaining the new accept. When socket is POP'd,
212  * sockfs sends us an ioctl to mark the fact and we go back to old
213  * behaviour. Once tcp_issocket is unset, its never set for the
214  * life of that connection.
215  *
216  * IPsec notes :
217  *
218  * Since a packet is always executed on the correct TCP perimeter
219  * all IPsec processing is defered to IP including checking new
220  * connections and setting IPSEC policies for new connection. The
221  * only exception is tcp_xmit_listeners_reset() which is called
222  * directly from IP and needs to policy check to see if TH_RST
223  * can be sent out.
224  */
225 
226 extern major_t TCP6_MAJ;
227 
228 /*
229  * Values for squeue switch:
230  * 1: squeue_enter_nodrain
231  * 2: squeue_enter
232  * 3: squeue_fill
233  */
234 int tcp_squeue_close = 2;
235 int tcp_squeue_wput = 2;
236 
237 squeue_func_t tcp_squeue_close_proc;
238 squeue_func_t tcp_squeue_wput_proc;
239 
240 /*
241  * This controls how tiny a write must be before we try to copy it
242  * into the the mblk on the tail of the transmit queue.  Not much
243  * speedup is observed for values larger than sixteen.  Zero will
244  * disable the optimisation.
245  */
246 int tcp_tx_pull_len = 16;
247 
248 /*
249  * TCP Statistics.
250  *
251  * How TCP statistics work.
252  *
253  * There are two types of statistics invoked by two macros.
254  *
255  * TCP_STAT(name) does non-atomic increment of a named stat counter. It is
256  * supposed to be used in non MT-hot paths of the code.
257  *
258  * TCP_DBGSTAT(name) does atomic increment of a named stat counter. It is
259  * supposed to be used for DEBUG purposes and may be used on a hot path.
260  *
261  * Both TCP_STAT and TCP_DBGSTAT counters are available using kstat
262  * (use "kstat tcp" to get them).
263  *
264  * There is also additional debugging facility that marks tcp_clean_death()
265  * instances and saves them in tcp_t structure. It is triggered by
266  * TCP_TAG_CLEAN_DEATH define. Also, there is a global array of counters for
267  * tcp_clean_death() calls that counts the number of times each tag was hit. It
268  * is triggered by TCP_CLD_COUNTERS define.
269  *
270  * How to add new counters.
271  *
272  * 1) Add a field in the tcp_stat structure describing your counter.
273  * 2) Add a line in tcp_statistics with the name of the counter.
274  *
275  *    IMPORTANT!! - make sure that both are in sync !!
276  * 3) Use either TCP_STAT or TCP_DBGSTAT with the name.
277  *
278  * Please avoid using private counters which are not kstat-exported.
279  *
280  * TCP_TAG_CLEAN_DEATH set to 1 enables tagging of tcp_clean_death() instances
281  * in tcp_t structure.
282  *
283  * TCP_MAX_CLEAN_DEATH_TAG is the maximum number of possible clean death tags.
284  */
285 
286 #ifndef TCP_DEBUG_COUNTER
287 #ifdef DEBUG
288 #define	TCP_DEBUG_COUNTER 1
289 #else
290 #define	TCP_DEBUG_COUNTER 0
291 #endif
292 #endif
293 
294 #define	TCP_CLD_COUNTERS 0
295 
296 #define	TCP_TAG_CLEAN_DEATH 1
297 #define	TCP_MAX_CLEAN_DEATH_TAG 32
298 
299 #ifdef lint
300 static int _lint_dummy_;
301 #endif
302 
303 #if TCP_CLD_COUNTERS
304 static uint_t tcp_clean_death_stat[TCP_MAX_CLEAN_DEATH_TAG];
305 #define	TCP_CLD_STAT(x) tcp_clean_death_stat[x]++
306 #elif defined(lint)
307 #define	TCP_CLD_STAT(x) ASSERT(_lint_dummy_ == 0);
308 #else
309 #define	TCP_CLD_STAT(x)
310 #endif
311 
312 #if TCP_DEBUG_COUNTER
313 #define	TCP_DBGSTAT(x) atomic_add_64(&(tcp_statistics.x.value.ui64), 1)
314 #elif defined(lint)
315 #define	TCP_DBGSTAT(x) ASSERT(_lint_dummy_ == 0);
316 #else
317 #define	TCP_DBGSTAT(x)
318 #endif
319 
320 tcp_stat_t tcp_statistics = {
321 	{ "tcp_time_wait",		KSTAT_DATA_UINT64 },
322 	{ "tcp_time_wait_syn",		KSTAT_DATA_UINT64 },
323 	{ "tcp_time_wait_success",	KSTAT_DATA_UINT64 },
324 	{ "tcp_time_wait_fail",		KSTAT_DATA_UINT64 },
325 	{ "tcp_reinput_syn",		KSTAT_DATA_UINT64 },
326 	{ "tcp_ip_output",		KSTAT_DATA_UINT64 },
327 	{ "tcp_detach_non_time_wait",	KSTAT_DATA_UINT64 },
328 	{ "tcp_detach_time_wait",	KSTAT_DATA_UINT64 },
329 	{ "tcp_time_wait_reap",		KSTAT_DATA_UINT64 },
330 	{ "tcp_clean_death_nondetached",	KSTAT_DATA_UINT64 },
331 	{ "tcp_reinit_calls",		KSTAT_DATA_UINT64 },
332 	{ "tcp_eager_err1",		KSTAT_DATA_UINT64 },
333 	{ "tcp_eager_err2",		KSTAT_DATA_UINT64 },
334 	{ "tcp_eager_blowoff_calls",	KSTAT_DATA_UINT64 },
335 	{ "tcp_eager_blowoff_q",	KSTAT_DATA_UINT64 },
336 	{ "tcp_eager_blowoff_q0",	KSTAT_DATA_UINT64 },
337 	{ "tcp_not_hard_bound",		KSTAT_DATA_UINT64 },
338 	{ "tcp_no_listener",		KSTAT_DATA_UINT64 },
339 	{ "tcp_found_eager",		KSTAT_DATA_UINT64 },
340 	{ "tcp_wrong_queue",		KSTAT_DATA_UINT64 },
341 	{ "tcp_found_eager_binding1",	KSTAT_DATA_UINT64 },
342 	{ "tcp_found_eager_bound1",	KSTAT_DATA_UINT64 },
343 	{ "tcp_eager_has_listener1",	KSTAT_DATA_UINT64 },
344 	{ "tcp_open_alloc",		KSTAT_DATA_UINT64 },
345 	{ "tcp_open_detached_alloc",	KSTAT_DATA_UINT64 },
346 	{ "tcp_rput_time_wait",		KSTAT_DATA_UINT64 },
347 	{ "tcp_listendrop",		KSTAT_DATA_UINT64 },
348 	{ "tcp_listendropq0",		KSTAT_DATA_UINT64 },
349 	{ "tcp_wrong_rq",		KSTAT_DATA_UINT64 },
350 	{ "tcp_rsrv_calls",		KSTAT_DATA_UINT64 },
351 	{ "tcp_eagerfree2",		KSTAT_DATA_UINT64 },
352 	{ "tcp_eagerfree3",		KSTAT_DATA_UINT64 },
353 	{ "tcp_eagerfree4",		KSTAT_DATA_UINT64 },
354 	{ "tcp_eagerfree5",		KSTAT_DATA_UINT64 },
355 	{ "tcp_timewait_syn_fail",	KSTAT_DATA_UINT64 },
356 	{ "tcp_listen_badflags",	KSTAT_DATA_UINT64 },
357 	{ "tcp_timeout_calls",		KSTAT_DATA_UINT64 },
358 	{ "tcp_timeout_cached_alloc",	KSTAT_DATA_UINT64 },
359 	{ "tcp_timeout_cancel_reqs",	KSTAT_DATA_UINT64 },
360 	{ "tcp_timeout_canceled",	KSTAT_DATA_UINT64 },
361 	{ "tcp_timermp_alloced",	KSTAT_DATA_UINT64 },
362 	{ "tcp_timermp_freed",		KSTAT_DATA_UINT64 },
363 	{ "tcp_timermp_allocfail",	KSTAT_DATA_UINT64 },
364 	{ "tcp_timermp_allocdblfail",	KSTAT_DATA_UINT64 },
365 	{ "tcp_push_timer_cnt",		KSTAT_DATA_UINT64 },
366 	{ "tcp_ack_timer_cnt",		KSTAT_DATA_UINT64 },
367 	{ "tcp_ire_null1",		KSTAT_DATA_UINT64 },
368 	{ "tcp_ire_null",		KSTAT_DATA_UINT64 },
369 	{ "tcp_ip_send",		KSTAT_DATA_UINT64 },
370 	{ "tcp_ip_ire_send",		KSTAT_DATA_UINT64 },
371 	{ "tcp_wsrv_called",		KSTAT_DATA_UINT64 },
372 	{ "tcp_flwctl_on",		KSTAT_DATA_UINT64 },
373 	{ "tcp_timer_fire_early",	KSTAT_DATA_UINT64 },
374 	{ "tcp_timer_fire_miss",	KSTAT_DATA_UINT64 },
375 	{ "tcp_freelist_cleanup",	KSTAT_DATA_UINT64 },
376 	{ "tcp_rput_v6_error",		KSTAT_DATA_UINT64 },
377 	{ "tcp_out_sw_cksum",		KSTAT_DATA_UINT64 },
378 	{ "tcp_out_sw_cksum_bytes",	KSTAT_DATA_UINT64 },
379 	{ "tcp_zcopy_on",		KSTAT_DATA_UINT64 },
380 	{ "tcp_zcopy_off",		KSTAT_DATA_UINT64 },
381 	{ "tcp_zcopy_backoff",		KSTAT_DATA_UINT64 },
382 	{ "tcp_zcopy_disable",		KSTAT_DATA_UINT64 },
383 	{ "tcp_mdt_pkt_out",		KSTAT_DATA_UINT64 },
384 	{ "tcp_mdt_pkt_out_v4",		KSTAT_DATA_UINT64 },
385 	{ "tcp_mdt_pkt_out_v6",		KSTAT_DATA_UINT64 },
386 	{ "tcp_mdt_discarded",		KSTAT_DATA_UINT64 },
387 	{ "tcp_mdt_conn_halted1",	KSTAT_DATA_UINT64 },
388 	{ "tcp_mdt_conn_halted2",	KSTAT_DATA_UINT64 },
389 	{ "tcp_mdt_conn_halted3",	KSTAT_DATA_UINT64 },
390 	{ "tcp_mdt_conn_resumed1",	KSTAT_DATA_UINT64 },
391 	{ "tcp_mdt_conn_resumed2",	KSTAT_DATA_UINT64 },
392 	{ "tcp_mdt_legacy_small",	KSTAT_DATA_UINT64 },
393 	{ "tcp_mdt_legacy_all",		KSTAT_DATA_UINT64 },
394 	{ "tcp_mdt_legacy_ret",		KSTAT_DATA_UINT64 },
395 	{ "tcp_mdt_allocfail",		KSTAT_DATA_UINT64 },
396 	{ "tcp_mdt_addpdescfail",	KSTAT_DATA_UINT64 },
397 	{ "tcp_mdt_allocd",		KSTAT_DATA_UINT64 },
398 	{ "tcp_mdt_linked",		KSTAT_DATA_UINT64 },
399 	{ "tcp_fusion_flowctl",		KSTAT_DATA_UINT64 },
400 	{ "tcp_fusion_backenabled",	KSTAT_DATA_UINT64 },
401 	{ "tcp_fusion_urg",		KSTAT_DATA_UINT64 },
402 	{ "tcp_fusion_putnext",		KSTAT_DATA_UINT64 },
403 	{ "tcp_fusion_unfusable",	KSTAT_DATA_UINT64 },
404 	{ "tcp_fusion_aborted",		KSTAT_DATA_UINT64 },
405 	{ "tcp_fusion_unqualified",	KSTAT_DATA_UINT64 },
406 	{ "tcp_fusion_rrw_busy",	KSTAT_DATA_UINT64 },
407 	{ "tcp_fusion_rrw_msgcnt",	KSTAT_DATA_UINT64 },
408 	{ "tcp_in_ack_unsent_drop",	KSTAT_DATA_UINT64 },
409 	{ "tcp_sock_fallback",		KSTAT_DATA_UINT64 },
410 };
411 
412 static kstat_t *tcp_kstat;
413 
414 /*
415  * Call either ip_output or ip_output_v6. This replaces putnext() calls on the
416  * tcp write side.
417  */
418 #define	CALL_IP_WPUT(connp, q, mp) {					\
419 	ASSERT(((q)->q_flag & QREADR) == 0);				\
420 	TCP_DBGSTAT(tcp_ip_output);					\
421 	connp->conn_send(connp, (mp), (q), IP_WPUT);			\
422 }
423 
424 /* Macros for timestamp comparisons */
425 #define	TSTMP_GEQ(a, b)	((int32_t)((a)-(b)) >= 0)
426 #define	TSTMP_LT(a, b)	((int32_t)((a)-(b)) < 0)
427 
428 /*
429  * Parameters for TCP Initial Send Sequence number (ISS) generation.  When
430  * tcp_strong_iss is set to 1, which is the default, the ISS is calculated
431  * by adding three components: a time component which grows by 1 every 4096
432  * nanoseconds (versus every 4 microseconds suggested by RFC 793, page 27);
433  * a per-connection component which grows by 125000 for every new connection;
434  * and an "extra" component that grows by a random amount centered
435  * approximately on 64000.  This causes the the ISS generator to cycle every
436  * 4.89 hours if no TCP connections are made, and faster if connections are
437  * made.
438  *
439  * When tcp_strong_iss is set to 0, ISS is calculated by adding two
440  * components: a time component which grows by 250000 every second; and
441  * a per-connection component which grows by 125000 for every new connections.
442  *
443  * A third method, when tcp_strong_iss is set to 2, for generating ISS is
444  * prescribed by Steve Bellovin.  This involves adding time, the 125000 per
445  * connection, and a one-way hash (MD5) of the connection ID <sport, dport,
446  * src, dst>, a "truly" random (per RFC 1750) number, and a console-entered
447  * password.
448  */
449 #define	ISS_INCR	250000
450 #define	ISS_NSEC_SHT	12
451 
452 static uint32_t tcp_iss_incr_extra;	/* Incremented for each connection */
453 static kmutex_t tcp_iss_key_lock;
454 static MD5_CTX tcp_iss_key;
455 static sin_t	sin_null;	/* Zero address for quick clears */
456 static sin6_t	sin6_null;	/* Zero address for quick clears */
457 
458 /* Packet dropper for TCP IPsec policy drops. */
459 static ipdropper_t tcp_dropper;
460 
461 /*
462  * This implementation follows the 4.3BSD interpretation of the urgent
463  * pointer and not RFC 1122. Switching to RFC 1122 behavior would cause
464  * incompatible changes in protocols like telnet and rlogin.
465  */
466 #define	TCP_OLD_URP_INTERPRETATION	1
467 
468 #define	TCP_IS_DETACHED_NONEAGER(tcp)	\
469 	(TCP_IS_DETACHED(tcp) && \
470 	    (!(tcp)->tcp_hard_binding))
471 
472 /*
473  * TCP reassembly macros.  We hide starting and ending sequence numbers in
474  * b_next and b_prev of messages on the reassembly queue.  The messages are
475  * chained using b_cont.  These macros are used in tcp_reass() so we don't
476  * have to see the ugly casts and assignments.
477  */
478 #define	TCP_REASS_SEQ(mp)		((uint32_t)(uintptr_t)((mp)->b_next))
479 #define	TCP_REASS_SET_SEQ(mp, u)	((mp)->b_next = \
480 					(mblk_t *)(uintptr_t)(u))
481 #define	TCP_REASS_END(mp)		((uint32_t)(uintptr_t)((mp)->b_prev))
482 #define	TCP_REASS_SET_END(mp, u)	((mp)->b_prev = \
483 					(mblk_t *)(uintptr_t)(u))
484 
485 /*
486  * Implementation of TCP Timers.
487  * =============================
488  *
489  * INTERFACE:
490  *
491  * There are two basic functions dealing with tcp timers:
492  *
493  *	timeout_id_t	tcp_timeout(connp, func, time)
494  * 	clock_t		tcp_timeout_cancel(connp, timeout_id)
495  *	TCP_TIMER_RESTART(tcp, intvl)
496  *
497  * tcp_timeout() starts a timer for the 'tcp' instance arranging to call 'func'
498  * after 'time' ticks passed. The function called by timeout() must adhere to
499  * the same restrictions as a driver soft interrupt handler - it must not sleep
500  * or call other functions that might sleep. The value returned is the opaque
501  * non-zero timeout identifier that can be passed to tcp_timeout_cancel() to
502  * cancel the request. The call to tcp_timeout() may fail in which case it
503  * returns zero. This is different from the timeout(9F) function which never
504  * fails.
505  *
506  * The call-back function 'func' always receives 'connp' as its single
507  * argument. It is always executed in the squeue corresponding to the tcp
508  * structure. The tcp structure is guaranteed to be present at the time the
509  * call-back is called.
510  *
511  * NOTE: The call-back function 'func' is never called if tcp is in
512  * 	the TCPS_CLOSED state.
513  *
514  * tcp_timeout_cancel() attempts to cancel a pending tcp_timeout()
515  * request. locks acquired by the call-back routine should not be held across
516  * the call to tcp_timeout_cancel() or a deadlock may result.
517  *
518  * tcp_timeout_cancel() returns -1 if it can not cancel the timeout request.
519  * Otherwise, it returns an integer value greater than or equal to 0. In
520  * particular, if the call-back function is already placed on the squeue, it can
521  * not be canceled.
522  *
523  * NOTE: both tcp_timeout() and tcp_timeout_cancel() should always be called
524  * 	within squeue context corresponding to the tcp instance. Since the
525  *	call-back is also called via the same squeue, there are no race
526  *	conditions described in untimeout(9F) manual page since all calls are
527  *	strictly serialized.
528  *
529  *      TCP_TIMER_RESTART() is a macro that attempts to cancel a pending timeout
530  *	stored in tcp_timer_tid and starts a new one using
531  *	MSEC_TO_TICK(intvl). It always uses tcp_timer() function as a call-back
532  *	and stores the return value of tcp_timeout() in the tcp->tcp_timer_tid
533  *	field.
534  *
535  * NOTE: since the timeout cancellation is not guaranteed, the cancelled
536  *	call-back may still be called, so it is possible tcp_timer() will be
537  *	called several times. This should not be a problem since tcp_timer()
538  *	should always check the tcp instance state.
539  *
540  *
541  * IMPLEMENTATION:
542  *
543  * TCP timers are implemented using three-stage process. The call to
544  * tcp_timeout() uses timeout(9F) function to call tcp_timer_callback() function
545  * when the timer expires. The tcp_timer_callback() arranges the call of the
546  * tcp_timer_handler() function via squeue corresponding to the tcp
547  * instance. The tcp_timer_handler() calls actual requested timeout call-back
548  * and passes tcp instance as an argument to it. Information is passed between
549  * stages using the tcp_timer_t structure which contains the connp pointer, the
550  * tcp call-back to call and the timeout id returned by the timeout(9F).
551  *
552  * The tcp_timer_t structure is not used directly, it is embedded in an mblk_t -
553  * like structure that is used to enter an squeue. The mp->b_rptr of this pseudo
554  * mblk points to the beginning of tcp_timer_t structure. The tcp_timeout()
555  * returns the pointer to this mblk.
556  *
557  * The pseudo mblk is allocated from a special tcp_timer_cache kmem cache. It
558  * looks like a normal mblk without actual dblk attached to it.
559  *
560  * To optimize performance each tcp instance holds a small cache of timer
561  * mblocks. In the current implementation it caches up to two timer mblocks per
562  * tcp instance. The cache is preserved over tcp frees and is only freed when
563  * the whole tcp structure is destroyed by its kmem destructor. Since all tcp
564  * timer processing happens on a corresponding squeue, the cache manipulation
565  * does not require any locks. Experiments show that majority of timer mblocks
566  * allocations are satisfied from the tcp cache and do not involve kmem calls.
567  *
568  * The tcp_timeout() places a refhold on the connp instance which guarantees
569  * that it will be present at the time the call-back function fires. The
570  * tcp_timer_handler() drops the reference after calling the call-back, so the
571  * call-back function does not need to manipulate the references explicitly.
572  */
573 
574 typedef struct tcp_timer_s {
575 	conn_t	*connp;
576 	void 	(*tcpt_proc)(void *);
577 	timeout_id_t   tcpt_tid;
578 } tcp_timer_t;
579 
580 static kmem_cache_t *tcp_timercache;
581 kmem_cache_t	*tcp_sack_info_cache;
582 kmem_cache_t	*tcp_iphc_cache;
583 
584 /*
585  * For scalability, we must not run a timer for every TCP connection
586  * in TIME_WAIT state.  To see why, consider (for time wait interval of
587  * 4 minutes):
588  *	1000 connections/sec * 240 seconds/time wait = 240,000 active conn's
589  *
590  * This list is ordered by time, so you need only delete from the head
591  * until you get to entries which aren't old enough to delete yet.
592  * The list consists of only the detached TIME_WAIT connections.
593  *
594  * Note that the timer (tcp_time_wait_expire) is started when the tcp_t
595  * becomes detached TIME_WAIT (either by changing the state and already
596  * being detached or the other way around). This means that the TIME_WAIT
597  * state can be extended (up to doubled) if the connection doesn't become
598  * detached for a long time.
599  *
600  * The list manipulations (including tcp_time_wait_next/prev)
601  * are protected by the tcp_time_wait_lock. The content of the
602  * detached TIME_WAIT connections is protected by the normal perimeters.
603  */
604 
605 typedef struct tcp_squeue_priv_s {
606 	kmutex_t	tcp_time_wait_lock;
607 				/* Protects the next 3 globals */
608 	timeout_id_t	tcp_time_wait_tid;
609 	tcp_t		*tcp_time_wait_head;
610 	tcp_t		*tcp_time_wait_tail;
611 	tcp_t		*tcp_free_list;
612 	uint_t		tcp_free_list_cnt;
613 } tcp_squeue_priv_t;
614 
615 /*
616  * TCP_TIME_WAIT_DELAY governs how often the time_wait_collector runs.
617  * Running it every 5 seconds seems to give the best results.
618  */
619 #define	TCP_TIME_WAIT_DELAY drv_usectohz(5000000)
620 
621 /*
622  * To prevent memory hog, limit the number of entries in tcp_free_list
623  * to 1% of available memory / number of cpus
624  */
625 uint_t tcp_free_list_max_cnt = 0;
626 
627 #define	TCP_XMIT_LOWATER	4096
628 #define	TCP_XMIT_HIWATER	49152
629 #define	TCP_RECV_LOWATER	2048
630 #define	TCP_RECV_HIWATER	49152
631 
632 /*
633  *  PAWS needs a timer for 24 days.  This is the number of ticks in 24 days
634  */
635 #define	PAWS_TIMEOUT	((clock_t)(24*24*60*60*hz))
636 
637 #define	TIDUSZ	4096	/* transport interface data unit size */
638 
639 /*
640  * Bind hash list size and has function.  It has to be a power of 2 for
641  * hashing.
642  */
643 #define	TCP_BIND_FANOUT_SIZE	512
644 #define	TCP_BIND_HASH(lport) (ntohs(lport) & (TCP_BIND_FANOUT_SIZE - 1))
645 /*
646  * Size of listen and acceptor hash list.  It has to be a power of 2 for
647  * hashing.
648  */
649 #define	TCP_FANOUT_SIZE		256
650 
651 #ifdef	_ILP32
652 #define	TCP_ACCEPTOR_HASH(accid)					\
653 		(((uint_t)(accid) >> 8) & (TCP_FANOUT_SIZE - 1))
654 #else
655 #define	TCP_ACCEPTOR_HASH(accid)					\
656 		((uint_t)(accid) & (TCP_FANOUT_SIZE - 1))
657 #endif	/* _ILP32 */
658 
659 #define	IP_ADDR_CACHE_SIZE	2048
660 #define	IP_ADDR_CACHE_HASH(faddr)					\
661 	(ntohl(faddr) & (IP_ADDR_CACHE_SIZE -1))
662 
663 /* Hash for HSPs uses all 32 bits, since both networks and hosts are in table */
664 #define	TCP_HSP_HASH_SIZE 256
665 
666 #define	TCP_HSP_HASH(addr)					\
667 	(((addr>>24) ^ (addr >>16) ^			\
668 	    (addr>>8) ^ (addr)) % TCP_HSP_HASH_SIZE)
669 
670 /*
671  * TCP options struct returned from tcp_parse_options.
672  */
673 typedef struct tcp_opt_s {
674 	uint32_t	tcp_opt_mss;
675 	uint32_t	tcp_opt_wscale;
676 	uint32_t	tcp_opt_ts_val;
677 	uint32_t	tcp_opt_ts_ecr;
678 	tcp_t		*tcp;
679 } tcp_opt_t;
680 
681 /*
682  * RFC1323-recommended phrasing of TSTAMP option, for easier parsing
683  */
684 
685 #ifdef _BIG_ENDIAN
686 #define	TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \
687 	(TCPOPT_TSTAMP << 8) | 10)
688 #else
689 #define	TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \
690 	(TCPOPT_NOP << 8) | TCPOPT_NOP)
691 #endif
692 
693 /*
694  * Flags returned from tcp_parse_options.
695  */
696 #define	TCP_OPT_MSS_PRESENT	1
697 #define	TCP_OPT_WSCALE_PRESENT	2
698 #define	TCP_OPT_TSTAMP_PRESENT	4
699 #define	TCP_OPT_SACK_OK_PRESENT	8
700 #define	TCP_OPT_SACK_PRESENT	16
701 
702 /* TCP option length */
703 #define	TCPOPT_NOP_LEN		1
704 #define	TCPOPT_MAXSEG_LEN	4
705 #define	TCPOPT_WS_LEN		3
706 #define	TCPOPT_REAL_WS_LEN	(TCPOPT_WS_LEN+1)
707 #define	TCPOPT_TSTAMP_LEN	10
708 #define	TCPOPT_REAL_TS_LEN	(TCPOPT_TSTAMP_LEN+2)
709 #define	TCPOPT_SACK_OK_LEN	2
710 #define	TCPOPT_REAL_SACK_OK_LEN	(TCPOPT_SACK_OK_LEN+2)
711 #define	TCPOPT_REAL_SACK_LEN	4
712 #define	TCPOPT_MAX_SACK_LEN	36
713 #define	TCPOPT_HEADER_LEN	2
714 
715 /* TCP cwnd burst factor. */
716 #define	TCP_CWND_INFINITE	65535
717 #define	TCP_CWND_SS		3
718 #define	TCP_CWND_NORMAL		5
719 
720 /* Maximum TCP initial cwin (start/restart). */
721 #define	TCP_MAX_INIT_CWND	8
722 
723 /*
724  * Initialize cwnd according to RFC 3390.  def_max_init_cwnd is
725  * either tcp_slow_start_initial or tcp_slow_start_after idle
726  * depending on the caller.  If the upper layer has not used the
727  * TCP_INIT_CWND option to change the initial cwnd, tcp_init_cwnd
728  * should be 0 and we use the formula in RFC 3390 to set tcp_cwnd.
729  * If the upper layer has changed set the tcp_init_cwnd, just use
730  * it to calculate the tcp_cwnd.
731  */
732 #define	SET_TCP_INIT_CWND(tcp, mss, def_max_init_cwnd)			\
733 {									\
734 	if ((tcp)->tcp_init_cwnd == 0) {				\
735 		(tcp)->tcp_cwnd = MIN(def_max_init_cwnd * (mss),	\
736 		    MIN(4 * (mss), MAX(2 * (mss), 4380 / (mss) * (mss)))); \
737 	} else {							\
738 		(tcp)->tcp_cwnd = (tcp)->tcp_init_cwnd * (mss);		\
739 	}								\
740 	tcp->tcp_cwnd_cnt = 0;						\
741 }
742 
743 /* TCP Timer control structure */
744 typedef struct tcpt_s {
745 	pfv_t	tcpt_pfv;	/* The routine we are to call */
746 	tcp_t	*tcpt_tcp;	/* The parameter we are to pass in */
747 } tcpt_t;
748 
749 /* Host Specific Parameter structure */
750 typedef struct tcp_hsp {
751 	struct tcp_hsp	*tcp_hsp_next;
752 	in6_addr_t	tcp_hsp_addr_v6;
753 	in6_addr_t	tcp_hsp_subnet_v6;
754 	uint_t		tcp_hsp_vers;	/* IPV4_VERSION | IPV6_VERSION */
755 	int32_t		tcp_hsp_sendspace;
756 	int32_t		tcp_hsp_recvspace;
757 	int32_t		tcp_hsp_tstamp;
758 } tcp_hsp_t;
759 #define	tcp_hsp_addr	V4_PART_OF_V6(tcp_hsp_addr_v6)
760 #define	tcp_hsp_subnet	V4_PART_OF_V6(tcp_hsp_subnet_v6)
761 
762 /*
763  * Functions called directly via squeue having a prototype of edesc_t.
764  */
765 void		tcp_conn_request(void *arg, mblk_t *mp, void *arg2);
766 static void	tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2);
767 void		tcp_accept_finish(void *arg, mblk_t *mp, void *arg2);
768 static void	tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2);
769 static void	tcp_wput_proto(void *arg, mblk_t *mp, void *arg2);
770 void 		tcp_input(void *arg, mblk_t *mp, void *arg2);
771 void		tcp_rput_data(void *arg, mblk_t *mp, void *arg2);
772 static void	tcp_close_output(void *arg, mblk_t *mp, void *arg2);
773 void		tcp_output(void *arg, mblk_t *mp, void *arg2);
774 static void	tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2);
775 static void	tcp_timer_handler(void *arg, mblk_t *mp, void *arg2);
776 
777 
778 /* Prototype for TCP functions */
779 static void	tcp_random_init(void);
780 int		tcp_random(void);
781 static void	tcp_accept(tcp_t *tcp, mblk_t *mp);
782 static void	tcp_accept_swap(tcp_t *listener, tcp_t *acceptor,
783 		    tcp_t *eager);
784 static int	tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp);
785 static in_port_t tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr,
786     int reuseaddr, boolean_t quick_connect, boolean_t bind_to_req_port_only,
787     boolean_t user_specified);
788 static void	tcp_closei_local(tcp_t *tcp);
789 static void	tcp_close_detached(tcp_t *tcp);
790 static boolean_t tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph,
791 			mblk_t *idmp, mblk_t **defermp);
792 static void	tcp_connect(tcp_t *tcp, mblk_t *mp);
793 static void	tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp,
794 		    in_port_t dstport, uint_t srcid);
795 static void	tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp,
796 		    in_port_t dstport, uint32_t flowinfo, uint_t srcid,
797 		    uint32_t scope_id);
798 static int	tcp_clean_death(tcp_t *tcp, int err, uint8_t tag);
799 static void	tcp_def_q_set(tcp_t *tcp, mblk_t *mp);
800 static void	tcp_disconnect(tcp_t *tcp, mblk_t *mp);
801 static char	*tcp_display(tcp_t *tcp, char *, char);
802 static boolean_t tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum);
803 static void	tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only);
804 static void	tcp_eager_unlink(tcp_t *tcp);
805 static void	tcp_err_ack(tcp_t *tcp, mblk_t *mp, int tlierr,
806 		    int unixerr);
807 static void	tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive,
808 		    int tlierr, int unixerr);
809 static int	tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp,
810 		    cred_t *cr);
811 static int	tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp,
812 		    char *value, caddr_t cp, cred_t *cr);
813 static int	tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp,
814 		    char *value, caddr_t cp, cred_t *cr);
815 static int	tcp_tpistate(tcp_t *tcp);
816 static void	tcp_bind_hash_insert(tf_t *tf, tcp_t *tcp,
817     int caller_holds_lock);
818 static void	tcp_bind_hash_remove(tcp_t *tcp);
819 static tcp_t	*tcp_acceptor_hash_lookup(t_uscalar_t id);
820 void		tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp);
821 static void	tcp_acceptor_hash_remove(tcp_t *tcp);
822 static void	tcp_capability_req(tcp_t *tcp, mblk_t *mp);
823 static void	tcp_info_req(tcp_t *tcp, mblk_t *mp);
824 static void	tcp_addr_req(tcp_t *tcp, mblk_t *mp);
825 static void	tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *mp);
826 static int	tcp_header_init_ipv4(tcp_t *tcp);
827 static int	tcp_header_init_ipv6(tcp_t *tcp);
828 int		tcp_init(tcp_t *tcp, queue_t *q);
829 static int	tcp_init_values(tcp_t *tcp);
830 static mblk_t	*tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic);
831 static mblk_t	*tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim,
832 		    t_scalar_t addr_length);
833 static void	tcp_ip_ire_mark_advice(tcp_t *tcp);
834 static void	tcp_ip_notify(tcp_t *tcp);
835 static mblk_t	*tcp_ire_mp(mblk_t *mp);
836 static void	tcp_iss_init(tcp_t *tcp);
837 static void	tcp_keepalive_killer(void *arg);
838 static int	tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt);
839 static void	tcp_mss_set(tcp_t *tcp, uint32_t size);
840 static int	tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp,
841 		    int *do_disconnectp, int *t_errorp, int *sys_errorp);
842 static boolean_t tcp_allow_connopt_set(int level, int name);
843 int		tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr);
844 int		tcp_opt_get(queue_t *q, int level, int name, uchar_t *ptr);
845 int		tcp_opt_set(queue_t *q, uint_t optset_context, int level,
846 		    int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp,
847 		    uchar_t *outvalp, void *thisdg_attrs, cred_t *cr,
848 		    mblk_t *mblk);
849 static void	tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha);
850 static int	tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly,
851 		    uchar_t *ptr, uint_t len);
852 static int	tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr);
853 static boolean_t tcp_param_register(tcpparam_t *tcppa, int cnt);
854 static int	tcp_param_set(queue_t *q, mblk_t *mp, char *value,
855 		    caddr_t cp, cred_t *cr);
856 static int	tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value,
857 		    caddr_t cp, cred_t *cr);
858 static void	tcp_iss_key_init(uint8_t *phrase, int len);
859 static int	tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value,
860 		    caddr_t cp, cred_t *cr);
861 static void	tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_cnt);
862 static mblk_t	*tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start);
863 static void	tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp);
864 static void	tcp_reinit(tcp_t *tcp);
865 static void	tcp_reinit_values(tcp_t *tcp);
866 static void	tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval,
867 		    tcp_t *thisstream, cred_t *cr);
868 
869 static uint_t	tcp_rcv_drain(queue_t *q, tcp_t *tcp);
870 static void	tcp_sack_rxmit(tcp_t *tcp, uint_t *flags);
871 static boolean_t tcp_send_rst_chk(void);
872 static void	tcp_ss_rexmit(tcp_t *tcp);
873 static mblk_t	*tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp);
874 static void	tcp_process_options(tcp_t *, tcph_t *);
875 static void	tcp_rput_common(tcp_t *tcp, mblk_t *mp);
876 static void	tcp_rsrv(queue_t *q);
877 static int	tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd);
878 static int	tcp_snmp_state(tcp_t *tcp);
879 static int	tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp,
880 		    cred_t *cr);
881 static int	tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
882 		    cred_t *cr);
883 static int	tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
884 		    cred_t *cr);
885 static int	tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
886 		    cred_t *cr);
887 static int	tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
888 		    cred_t *cr);
889 static int	tcp_host_param_set(queue_t *q, mblk_t *mp, char *value,
890 		    caddr_t cp, cred_t *cr);
891 static int	tcp_host_param_set_ipv6(queue_t *q, mblk_t *mp, char *value,
892 		    caddr_t cp, cred_t *cr);
893 static int	tcp_host_param_report(queue_t *q, mblk_t *mp, caddr_t cp,
894 		    cred_t *cr);
895 static void	tcp_timer(void *arg);
896 static void	tcp_timer_callback(void *);
897 static in_port_t tcp_update_next_port(in_port_t port, const tcp_t *tcp,
898     boolean_t random);
899 static in_port_t tcp_get_next_priv_port(const tcp_t *);
900 static void	tcp_wput_sock(queue_t *q, mblk_t *mp);
901 void		tcp_wput_accept(queue_t *q, mblk_t *mp);
902 static void	tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent);
903 static void	tcp_wput_flush(tcp_t *tcp, mblk_t *mp);
904 static void	tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp);
905 static int	tcp_send(queue_t *q, tcp_t *tcp, const int mss,
906 		    const int tcp_hdr_len, const int tcp_tcp_hdr_len,
907 		    const int num_sack_blk, int *usable, uint_t *snxt,
908 		    int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
909 		    const int mdt_thres);
910 static int	tcp_multisend(queue_t *q, tcp_t *tcp, const int mss,
911 		    const int tcp_hdr_len, const int tcp_tcp_hdr_len,
912 		    const int num_sack_blk, int *usable, uint_t *snxt,
913 		    int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
914 		    const int mdt_thres);
915 static void	tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now,
916 		    int num_sack_blk);
917 static void	tcp_wsrv(queue_t *q);
918 static int	tcp_xmit_end(tcp_t *tcp);
919 static mblk_t	*tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send,
920 		    int32_t *offset, mblk_t **end_mp, uint32_t seq,
921 		    boolean_t sendall, uint32_t *seg_len, boolean_t rexmit);
922 static void	tcp_ack_timer(void *arg);
923 static mblk_t	*tcp_ack_mp(tcp_t *tcp);
924 static void	tcp_xmit_early_reset(char *str, mblk_t *mp,
925 		    uint32_t seq, uint32_t ack, int ctl, uint_t ip_hdr_len);
926 static void	tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq,
927 		    uint32_t ack, int ctl);
928 static tcp_hsp_t *tcp_hsp_lookup(ipaddr_t addr);
929 static tcp_hsp_t *tcp_hsp_lookup_ipv6(in6_addr_t *addr);
930 static int	setmaxps(queue_t *q, int maxpsz);
931 static void	tcp_set_rto(tcp_t *, time_t);
932 static boolean_t tcp_check_policy(tcp_t *, mblk_t *, ipha_t *, ip6_t *,
933 		    boolean_t, boolean_t);
934 static void	tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp,
935 		    boolean_t ipsec_mctl);
936 static mblk_t	*tcp_setsockopt_mp(int level, int cmd,
937 		    char *opt, int optlen);
938 static int	tcp_build_hdrs(queue_t *, tcp_t *);
939 static void	tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp,
940 		    uint32_t seg_seq, uint32_t seg_ack, int seg_len,
941 		    tcph_t *tcph);
942 boolean_t	tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp);
943 boolean_t	tcp_reserved_port_add(int, in_port_t *, in_port_t *);
944 boolean_t	tcp_reserved_port_del(in_port_t, in_port_t);
945 boolean_t	tcp_reserved_port_check(in_port_t);
946 static tcp_t	*tcp_alloc_temp_tcp(in_port_t);
947 static int	tcp_reserved_port_list(queue_t *, mblk_t *, caddr_t, cred_t *);
948 static mblk_t	*tcp_mdt_info_mp(mblk_t *);
949 static void	tcp_mdt_update(tcp_t *, ill_mdt_capab_t *, boolean_t);
950 static int	tcp_mdt_add_attrs(multidata_t *, const mblk_t *,
951 		    const boolean_t, const uint32_t, const uint32_t,
952 		    const uint32_t, const uint32_t);
953 static void	tcp_multisend_data(tcp_t *, ire_t *, const ill_t *, mblk_t *,
954 		    const uint_t, const uint_t, boolean_t *);
955 static void	tcp_send_data(tcp_t *, queue_t *, mblk_t *);
956 extern mblk_t	*tcp_timermp_alloc(int);
957 extern void	tcp_timermp_free(tcp_t *);
958 static void	tcp_timer_free(tcp_t *tcp, mblk_t *mp);
959 static void	tcp_stop_lingering(tcp_t *tcp);
960 static void	tcp_close_linger_timeout(void *arg);
961 void		tcp_ddi_init(void);
962 void		tcp_ddi_destroy(void);
963 static void	tcp_kstat_init(void);
964 static void	tcp_kstat_fini(void);
965 static int	tcp_kstat_update(kstat_t *kp, int rw);
966 void		tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp);
967 static int	tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp,
968 			tcph_t *tcph, uint_t ipvers, mblk_t *idmp);
969 static int	tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha,
970 			tcph_t *tcph, mblk_t *idmp);
971 static squeue_func_t tcp_squeue_switch(int);
972 
973 static int	tcp_open(queue_t *, dev_t *, int, int, cred_t *);
974 static int	tcp_close(queue_t *, int);
975 static int	tcpclose_accept(queue_t *);
976 static int	tcp_modclose(queue_t *);
977 static void	tcp_wput_mod(queue_t *, mblk_t *);
978 
979 static void	tcp_squeue_add(squeue_t *);
980 static boolean_t tcp_zcopy_check(tcp_t *);
981 static void	tcp_zcopy_notify(tcp_t *);
982 static mblk_t	*tcp_zcopy_disable(tcp_t *, mblk_t *);
983 static mblk_t	*tcp_zcopy_backoff(tcp_t *, mblk_t *, int);
984 static void	tcp_ire_ill_check(tcp_t *, ire_t *, ill_t *, boolean_t);
985 
986 extern void	tcp_kssl_input(tcp_t *, mblk_t *);
987 
988 /*
989  * Routines related to the TCP_IOC_ABORT_CONN ioctl command.
990  *
991  * TCP_IOC_ABORT_CONN is a non-transparent ioctl command used for aborting
992  * TCP connections. To invoke this ioctl, a tcp_ioc_abort_conn_t structure
993  * (defined in tcp.h) needs to be filled in and passed into the kernel
994  * via an I_STR ioctl command (see streamio(7I)). The tcp_ioc_abort_conn_t
995  * structure contains the four-tuple of a TCP connection and a range of TCP
996  * states (specified by ac_start and ac_end). The use of wildcard addresses
997  * and ports is allowed. Connections with a matching four tuple and a state
998  * within the specified range will be aborted. The valid states for the
999  * ac_start and ac_end fields are in the range TCPS_SYN_SENT to TCPS_TIME_WAIT,
1000  * inclusive.
1001  *
1002  * An application which has its connection aborted by this ioctl will receive
1003  * an error that is dependent on the connection state at the time of the abort.
1004  * If the connection state is < TCPS_TIME_WAIT, an application should behave as
1005  * though a RST packet has been received.  If the connection state is equal to
1006  * TCPS_TIME_WAIT, the 2MSL timeout will immediately be canceled by the kernel
1007  * and all resources associated with the connection will be freed.
1008  */
1009 static mblk_t	*tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *, tcp_t *);
1010 static void	tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *);
1011 static void	tcp_ioctl_abort_handler(tcp_t *, mblk_t *);
1012 static int	tcp_ioctl_abort(tcp_ioc_abort_conn_t *);
1013 static void	tcp_ioctl_abort_conn(queue_t *, mblk_t *);
1014 static int	tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *, int, int *,
1015     boolean_t);
1016 
1017 static struct module_info tcp_rinfo =  {
1018 	TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER
1019 };
1020 
1021 static struct module_info tcp_winfo =  {
1022 	TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16
1023 };
1024 
1025 /*
1026  * Entry points for TCP as a module. It only allows SNMP requests
1027  * to pass through.
1028  */
1029 struct qinit tcp_mod_rinit = {
1030 	(pfi_t)putnext, NULL, tcp_open, ip_snmpmod_close, NULL, &tcp_rinfo,
1031 };
1032 
1033 struct qinit tcp_mod_winit = {
1034 	(pfi_t)ip_snmpmod_wput, NULL, tcp_open, ip_snmpmod_close, NULL,
1035 	&tcp_rinfo
1036 };
1037 
1038 /*
1039  * Entry points for TCP as a device. The normal case which supports
1040  * the TCP functionality.
1041  */
1042 struct qinit tcp_rinit = {
1043 	NULL, (pfi_t)tcp_rsrv, tcp_open, tcp_close, NULL, &tcp_rinfo
1044 };
1045 
1046 struct qinit tcp_winit = {
1047 	(pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
1048 };
1049 
1050 /* Initial entry point for TCP in socket mode. */
1051 struct qinit tcp_sock_winit = {
1052 	(pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
1053 };
1054 
1055 /*
1056  * Entry points for TCP as a acceptor STREAM opened by sockfs when doing
1057  * an accept. Avoid allocating data structures since eager has already
1058  * been created.
1059  */
1060 struct qinit tcp_acceptor_rinit = {
1061 	NULL, (pfi_t)tcp_rsrv, NULL, tcpclose_accept, NULL, &tcp_winfo
1062 };
1063 
1064 struct qinit tcp_acceptor_winit = {
1065 	(pfi_t)tcp_wput_accept, NULL, NULL, NULL, NULL, &tcp_winfo
1066 };
1067 
1068 /*
1069  * Entry points for TCP loopback (read side only)
1070  */
1071 struct qinit tcp_loopback_rinit = {
1072 	(pfi_t)0, (pfi_t)tcp_rsrv, tcp_open, tcp_close, (pfi_t)0,
1073 	&tcp_rinfo, NULL, tcp_fuse_rrw, tcp_fuse_rinfop, STRUIOT_STANDARD
1074 };
1075 
1076 struct streamtab tcpinfo = {
1077 	&tcp_rinit, &tcp_winit
1078 };
1079 
1080 extern squeue_func_t tcp_squeue_wput_proc;
1081 extern squeue_func_t tcp_squeue_timer_proc;
1082 
1083 /* Protected by tcp_g_q_lock */
1084 static queue_t	*tcp_g_q;	/* Default queue used during detached closes */
1085 kmutex_t tcp_g_q_lock;
1086 
1087 /* Protected by tcp_hsp_lock */
1088 /*
1089  * XXX The host param mechanism should go away and instead we should use
1090  * the metrics associated with the routes to determine the default sndspace
1091  * and rcvspace.
1092  */
1093 static tcp_hsp_t	**tcp_hsp_hash;	/* Hash table for HSPs */
1094 krwlock_t tcp_hsp_lock;
1095 
1096 /*
1097  * Extra privileged ports. In host byte order.
1098  * Protected by tcp_epriv_port_lock.
1099  */
1100 #define	TCP_NUM_EPRIV_PORTS	64
1101 static int	tcp_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS;
1102 static uint16_t	tcp_g_epriv_ports[TCP_NUM_EPRIV_PORTS] = { 2049, 4045 };
1103 kmutex_t tcp_epriv_port_lock;
1104 
1105 /*
1106  * The smallest anonymous port in the privileged port range which TCP
1107  * looks for free port.  Use in the option TCP_ANONPRIVBIND.
1108  */
1109 static in_port_t tcp_min_anonpriv_port = 512;
1110 
1111 /* Only modified during _init and _fini thus no locking is needed. */
1112 static caddr_t	tcp_g_nd;	/* Head of 'named dispatch' variable list */
1113 
1114 /* Hint not protected by any lock */
1115 static uint_t	tcp_next_port_to_try;
1116 
1117 
1118 /* TCP bind hash list - all tcp_t with state >= BOUND. */
1119 tf_t	tcp_bind_fanout[TCP_BIND_FANOUT_SIZE];
1120 
1121 /* TCP queue hash list - all tcp_t in case they will be an acceptor. */
1122 static tf_t	tcp_acceptor_fanout[TCP_FANOUT_SIZE];
1123 
1124 /*
1125  * TCP has a private interface for other kernel modules to reserve a
1126  * port range for them to use.  Once reserved, TCP will not use any ports
1127  * in the range.  This interface relies on the TCP_EXCLBIND feature.  If
1128  * the semantics of TCP_EXCLBIND is changed, implementation of this interface
1129  * has to be verified.
1130  *
1131  * There can be TCP_RESERVED_PORTS_ARRAY_MAX_SIZE port ranges.  Each port
1132  * range can cover at most TCP_RESERVED_PORTS_RANGE_MAX ports.  A port
1133  * range is [port a, port b] inclusive.  And each port range is between
1134  * TCP_LOWESET_RESERVED_PORT and TCP_LARGEST_RESERVED_PORT inclusive.
1135  *
1136  * Note that the default anonymous port range starts from 32768.  There is
1137  * no port "collision" between that and the reserved port range.  If there
1138  * is port collision (because the default smallest anonymous port is lowered
1139  * or some apps specifically bind to ports in the reserved port range), the
1140  * system may not be able to reserve a port range even there are enough
1141  * unbound ports as a reserved port range contains consecutive ports .
1142  */
1143 #define	TCP_RESERVED_PORTS_ARRAY_MAX_SIZE	5
1144 #define	TCP_RESERVED_PORTS_RANGE_MAX		1000
1145 #define	TCP_SMALLEST_RESERVED_PORT		10240
1146 #define	TCP_LARGEST_RESERVED_PORT		20480
1147 
1148 /* Structure to represent those reserved port ranges. */
1149 typedef struct tcp_rport_s {
1150 	in_port_t	lo_port;
1151 	in_port_t	hi_port;
1152 	tcp_t		**temp_tcp_array;
1153 } tcp_rport_t;
1154 
1155 /* The reserved port array. */
1156 static tcp_rport_t tcp_reserved_port[TCP_RESERVED_PORTS_ARRAY_MAX_SIZE];
1157 
1158 /* Locks to protect the tcp_reserved_ports array. */
1159 static krwlock_t tcp_reserved_port_lock;
1160 
1161 /* The number of ranges in the array. */
1162 uint32_t tcp_reserved_port_array_size = 0;
1163 
1164 /*
1165  * MIB-2 stuff for SNMP
1166  * Note: tcpInErrs {tcp 15} is accumulated in ip.c
1167  */
1168 mib2_tcp_t	tcp_mib;	/* SNMP fixed size info */
1169 kstat_t		*tcp_mibkp;	/* kstat exporting tcp_mib data */
1170 
1171 boolean_t tcp_icmp_source_quench = B_FALSE;
1172 /*
1173  * Following assumes TPI alignment requirements stay along 32 bit
1174  * boundaries
1175  */
1176 #define	ROUNDUP32(x) \
1177 	(((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1))
1178 
1179 /* Template for response to info request. */
1180 static struct T_info_ack tcp_g_t_info_ack = {
1181 	T_INFO_ACK,		/* PRIM_type */
1182 	0,			/* TSDU_size */
1183 	T_INFINITE,		/* ETSDU_size */
1184 	T_INVALID,		/* CDATA_size */
1185 	T_INVALID,		/* DDATA_size */
1186 	sizeof (sin_t),		/* ADDR_size */
1187 	0,			/* OPT_size - not initialized here */
1188 	TIDUSZ,			/* TIDU_size */
1189 	T_COTS_ORD,		/* SERV_type */
1190 	TCPS_IDLE,		/* CURRENT_state */
1191 	(XPG4_1|EXPINLINE)	/* PROVIDER_flag */
1192 };
1193 
1194 static struct T_info_ack tcp_g_t_info_ack_v6 = {
1195 	T_INFO_ACK,		/* PRIM_type */
1196 	0,			/* TSDU_size */
1197 	T_INFINITE,		/* ETSDU_size */
1198 	T_INVALID,		/* CDATA_size */
1199 	T_INVALID,		/* DDATA_size */
1200 	sizeof (sin6_t),	/* ADDR_size */
1201 	0,			/* OPT_size - not initialized here */
1202 	TIDUSZ,		/* TIDU_size */
1203 	T_COTS_ORD,		/* SERV_type */
1204 	TCPS_IDLE,		/* CURRENT_state */
1205 	(XPG4_1|EXPINLINE)	/* PROVIDER_flag */
1206 };
1207 
1208 #define	MS	1L
1209 #define	SECONDS	(1000 * MS)
1210 #define	MINUTES	(60 * SECONDS)
1211 #define	HOURS	(60 * MINUTES)
1212 #define	DAYS	(24 * HOURS)
1213 
1214 #define	PARAM_MAX (~(uint32_t)0)
1215 
1216 /* Max size IP datagram is 64k - 1 */
1217 #define	TCP_MSS_MAX_IPV4 (IP_MAXPACKET - (sizeof (ipha_t) + sizeof (tcph_t)))
1218 #define	TCP_MSS_MAX_IPV6 (IP_MAXPACKET - (sizeof (ip6_t) + sizeof (tcph_t)))
1219 /* Max of the above */
1220 #define	TCP_MSS_MAX	TCP_MSS_MAX_IPV4
1221 
1222 /* Largest TCP port number */
1223 #define	TCP_MAX_PORT	(64 * 1024 - 1)
1224 
1225 /*
1226  * tcp_wroff_xtra is the extra space in front of TCP/IP header for link
1227  * layer header.  It has to be a multiple of 4.
1228  */
1229 static tcpparam_t tcp_wroff_xtra_param = { 0, 256, 32, "tcp_wroff_xtra" };
1230 #define	tcp_wroff_xtra	tcp_wroff_xtra_param.tcp_param_val
1231 
1232 /*
1233  * All of these are alterable, within the min/max values given, at run time.
1234  * Note that the default value of "tcp_time_wait_interval" is four minutes,
1235  * per the TCP spec.
1236  */
1237 /* BEGIN CSTYLED */
1238 tcpparam_t	tcp_param_arr[] = {
1239  /*min		max		value		name */
1240  { 1*SECONDS,	10*MINUTES,	1*MINUTES,	"tcp_time_wait_interval"},
1241  { 1,		PARAM_MAX,	128,		"tcp_conn_req_max_q" },
1242  { 0,		PARAM_MAX,	1024,		"tcp_conn_req_max_q0" },
1243  { 1,		1024,		1,		"tcp_conn_req_min" },
1244  { 0*MS,	20*SECONDS,	0*MS,		"tcp_conn_grace_period" },
1245  { 128,		(1<<30),	1024*1024,	"tcp_cwnd_max" },
1246  { 0,		10,		0,		"tcp_debug" },
1247  { 1024,	(32*1024),	1024,		"tcp_smallest_nonpriv_port"},
1248  { 1*SECONDS,	PARAM_MAX,	3*MINUTES,	"tcp_ip_abort_cinterval"},
1249  { 1*SECONDS,	PARAM_MAX,	3*MINUTES,	"tcp_ip_abort_linterval"},
1250  { 500*MS,	PARAM_MAX,	8*MINUTES,	"tcp_ip_abort_interval"},
1251  { 1*SECONDS,	PARAM_MAX,	10*SECONDS,	"tcp_ip_notify_cinterval"},
1252  { 500*MS,	PARAM_MAX,	10*SECONDS,	"tcp_ip_notify_interval"},
1253  { 1,		255,		64,		"tcp_ipv4_ttl"},
1254  { 10*SECONDS,	10*DAYS,	2*HOURS,	"tcp_keepalive_interval"},
1255  { 0,		100,		10,		"tcp_maxpsz_multiplier" },
1256  { 1,		TCP_MSS_MAX_IPV4, 536,		"tcp_mss_def_ipv4"},
1257  { 1,		TCP_MSS_MAX_IPV4, TCP_MSS_MAX_IPV4, "tcp_mss_max_ipv4"},
1258  { 1,		TCP_MSS_MAX,	108,		"tcp_mss_min"},
1259  { 1,		(64*1024)-1,	(4*1024)-1,	"tcp_naglim_def"},
1260  { 1*MS,	20*SECONDS,	3*SECONDS,	"tcp_rexmit_interval_initial"},
1261  { 1*MS,	2*HOURS,	60*SECONDS,	"tcp_rexmit_interval_max"},
1262  { 1*MS,	2*HOURS,	400*MS,		"tcp_rexmit_interval_min"},
1263  { 1*MS,	1*MINUTES,	100*MS,		"tcp_deferred_ack_interval" },
1264  { 0,		16,		0,		"tcp_snd_lowat_fraction" },
1265  { 0,		128000,		0,		"tcp_sth_rcv_hiwat" },
1266  { 0,		128000,		0,		"tcp_sth_rcv_lowat" },
1267  { 1,		10000,		3,		"tcp_dupack_fast_retransmit" },
1268  { 0,		1,		0,		"tcp_ignore_path_mtu" },
1269  { 1024,	TCP_MAX_PORT,	32*1024,	"tcp_smallest_anon_port"},
1270  { 1024,	TCP_MAX_PORT,	TCP_MAX_PORT,	"tcp_largest_anon_port"},
1271  { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_HIWATER,"tcp_xmit_hiwat"},
1272  { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_LOWATER,"tcp_xmit_lowat"},
1273  { TCP_RECV_LOWATER, (1<<30), TCP_RECV_HIWATER,"tcp_recv_hiwat"},
1274  { 1,		65536,		4,		"tcp_recv_hiwat_minmss"},
1275  { 1*SECONDS,	PARAM_MAX,	675*SECONDS,	"tcp_fin_wait_2_flush_interval"},
1276  { 0,		TCP_MSS_MAX,	64,		"tcp_co_min"},
1277  { 8192,	(1<<30),	1024*1024,	"tcp_max_buf"},
1278 /*
1279  * Question:  What default value should I set for tcp_strong_iss?
1280  */
1281  { 0,		2,		1,		"tcp_strong_iss"},
1282  { 0,		65536,		20,		"tcp_rtt_updates"},
1283  { 0,		1,		1,		"tcp_wscale_always"},
1284  { 0,		1,		0,		"tcp_tstamp_always"},
1285  { 0,		1,		1,		"tcp_tstamp_if_wscale"},
1286  { 0*MS,	2*HOURS,	0*MS,		"tcp_rexmit_interval_extra"},
1287  { 0,		16,		2,		"tcp_deferred_acks_max"},
1288  { 1,		16384,		4,		"tcp_slow_start_after_idle"},
1289  { 1,		4,		4,		"tcp_slow_start_initial"},
1290  { 10*MS,	50*MS,		20*MS,		"tcp_co_timer_interval"},
1291  { 0,		2,		2,		"tcp_sack_permitted"},
1292  { 0,		1,		0,		"tcp_trace"},
1293  { 0,		1,		1,		"tcp_compression_enabled"},
1294  { 0,		IPV6_MAX_HOPS,	IPV6_DEFAULT_HOPS,	"tcp_ipv6_hoplimit"},
1295  { 1,		TCP_MSS_MAX_IPV6, 1220,		"tcp_mss_def_ipv6"},
1296  { 1,		TCP_MSS_MAX_IPV6, TCP_MSS_MAX_IPV6, "tcp_mss_max_ipv6"},
1297  { 0,		1,		0,		"tcp_rev_src_routes"},
1298  { 10*MS,	500*MS,		50*MS,		"tcp_local_dack_interval"},
1299  { 100*MS,	60*SECONDS,	1*SECONDS,	"tcp_ndd_get_info_interval"},
1300  { 0,		16,		8,		"tcp_local_dacks_max"},
1301  { 0,		2,		1,		"tcp_ecn_permitted"},
1302  { 0,		1,		1,		"tcp_rst_sent_rate_enabled"},
1303  { 0,		PARAM_MAX,	40,		"tcp_rst_sent_rate"},
1304  { 0,		100*MS,		50*MS,		"tcp_push_timer_interval"},
1305  { 0,		1,		0,		"tcp_use_smss_as_mss_opt"},
1306  { 0,		PARAM_MAX,	8*MINUTES,	"tcp_keepalive_abort_interval"},
1307 };
1308 /* END CSTYLED */
1309 
1310 /*
1311  * tcp_mdt_hdr_{head,tail}_min are the leading and trailing spaces of
1312  * each header fragment in the header buffer.  Each parameter value has
1313  * to be a multiple of 4 (32-bit aligned).
1314  */
1315 static tcpparam_t tcp_mdt_head_param = { 32, 256, 32, "tcp_mdt_hdr_head_min" };
1316 static tcpparam_t tcp_mdt_tail_param = { 0,  256, 32, "tcp_mdt_hdr_tail_min" };
1317 #define	tcp_mdt_hdr_head_min	tcp_mdt_head_param.tcp_param_val
1318 #define	tcp_mdt_hdr_tail_min	tcp_mdt_tail_param.tcp_param_val
1319 
1320 /*
1321  * tcp_mdt_max_pbufs is the upper limit value that tcp uses to figure out
1322  * the maximum number of payload buffers associated per Multidata.
1323  */
1324 static tcpparam_t tcp_mdt_max_pbufs_param =
1325 	{ 1, MULTIDATA_MAX_PBUFS, MULTIDATA_MAX_PBUFS, "tcp_mdt_max_pbufs" };
1326 #define	tcp_mdt_max_pbufs	tcp_mdt_max_pbufs_param.tcp_param_val
1327 
1328 /* Round up the value to the nearest mss. */
1329 #define	MSS_ROUNDUP(value, mss)		((((value) - 1) / (mss) + 1) * (mss))
1330 
1331 /*
1332  * Set ECN capable transport (ECT) code point in IP header.
1333  *
1334  * Note that there are 2 ECT code points '01' and '10', which are called
1335  * ECT(1) and ECT(0) respectively.  Here we follow the original ECT code
1336  * point ECT(0) for TCP as described in RFC 2481.
1337  */
1338 #define	SET_ECT(tcp, iph) \
1339 	if ((tcp)->tcp_ipversion == IPV4_VERSION) { \
1340 		/* We need to clear the code point first. */ \
1341 		((ipha_t *)(iph))->ipha_type_of_service &= 0xFC; \
1342 		((ipha_t *)(iph))->ipha_type_of_service |= IPH_ECN_ECT0; \
1343 	} else { \
1344 		((ip6_t *)(iph))->ip6_vcf &= htonl(0xFFCFFFFF); \
1345 		((ip6_t *)(iph))->ip6_vcf |= htonl(IPH_ECN_ECT0 << 20); \
1346 	}
1347 
1348 /*
1349  * The format argument to pass to tcp_display().
1350  * DISP_PORT_ONLY means that the returned string has only port info.
1351  * DISP_ADDR_AND_PORT means that the returned string also contains the
1352  * remote and local IP address.
1353  */
1354 #define	DISP_PORT_ONLY		1
1355 #define	DISP_ADDR_AND_PORT	2
1356 
1357 /*
1358  * This controls the rate some ndd info report functions can be used
1359  * by non-privileged users.  It stores the last time such info is
1360  * requested.  When those report functions are called again, this
1361  * is checked with the current time and compare with the ndd param
1362  * tcp_ndd_get_info_interval.
1363  */
1364 static clock_t tcp_last_ndd_get_info_time = 0;
1365 #define	NDD_TOO_QUICK_MSG \
1366 	"ndd get info rate too high for non-privileged users, try again " \
1367 	"later.\n"
1368 #define	NDD_OUT_OF_BUF_MSG	"<< Out of buffer >>\n"
1369 
1370 #define	IS_VMLOANED_MBLK(mp) \
1371 	(((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0)
1372 
1373 /*
1374  * These two variables control the rate for TCP to generate RSTs in
1375  * response to segments not belonging to any connections.  We limit
1376  * TCP to sent out tcp_rst_sent_rate (ndd param) number of RSTs in
1377  * each 1 second interval.  This is to protect TCP against DoS attack.
1378  */
1379 static clock_t tcp_last_rst_intrvl;
1380 static uint32_t tcp_rst_cnt;
1381 
1382 /* The number of RST not sent because of the rate limit. */
1383 static uint32_t tcp_rst_unsent;
1384 
1385 /* Enable or disable b_cont M_MULTIDATA chaining for MDT. */
1386 boolean_t tcp_mdt_chain = B_TRUE;
1387 
1388 /*
1389  * MDT threshold in the form of effective send MSS multiplier; we take
1390  * the MDT path if the amount of unsent data exceeds the threshold value
1391  * (default threshold is 1*SMSS).
1392  */
1393 uint_t tcp_mdt_smss_threshold = 1;
1394 
1395 uint32_t do_tcpzcopy = 1;		/* 0: disable, 1: enable, 2: force */
1396 
1397 /*
1398  * Forces all connections to obey the value of the tcp_maxpsz_multiplier
1399  * tunable settable via NDD.  Otherwise, the per-connection behavior is
1400  * determined dynamically during tcp_adapt_ire(), which is the default.
1401  */
1402 boolean_t tcp_static_maxpsz = B_FALSE;
1403 
1404 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */
1405 uint32_t tcp_random_anon_port = 1;
1406 
1407 /*
1408  * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more
1409  * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent
1410  * data, TCP will not respond with an ACK.  RFC 793 requires that
1411  * TCP responds with an ACK for such a bogus ACK.  By not following
1412  * the RFC, we prevent TCP from getting into an ACK storm if somehow
1413  * an attacker successfully spoofs an acceptable segment to our
1414  * peer; or when our peer is "confused."
1415  */
1416 uint32_t tcp_drop_ack_unsent_cnt = 10;
1417 
1418 /*
1419  * Hook functions to enable cluster networking
1420  * On non-clustered systems these vectors must always be NULL.
1421  */
1422 
1423 void (*cl_inet_listen)(uint8_t protocol, sa_family_t addr_family,
1424 			    uint8_t *laddrp, in_port_t lport) = NULL;
1425 void (*cl_inet_unlisten)(uint8_t protocol, sa_family_t addr_family,
1426 			    uint8_t *laddrp, in_port_t lport) = NULL;
1427 void (*cl_inet_connect)(uint8_t protocol, sa_family_t addr_family,
1428 			    uint8_t *laddrp, in_port_t lport,
1429 			    uint8_t *faddrp, in_port_t fport) = NULL;
1430 void (*cl_inet_disconnect)(uint8_t protocol, sa_family_t addr_family,
1431 			    uint8_t *laddrp, in_port_t lport,
1432 			    uint8_t *faddrp, in_port_t fport) = NULL;
1433 
1434 /*
1435  * The following are defined in ip.c
1436  */
1437 extern int (*cl_inet_isclusterwide)(uint8_t protocol, sa_family_t addr_family,
1438 				uint8_t *laddrp);
1439 extern uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family,
1440 				uint8_t *laddrp, uint8_t *faddrp);
1441 
1442 #define	CL_INET_CONNECT(tcp)		{			\
1443 	if (cl_inet_connect != NULL) {				\
1444 		/*						\
1445 		 * Running in cluster mode - register active connection	\
1446 		 * information						\
1447 		 */							\
1448 		if ((tcp)->tcp_ipversion == IPV4_VERSION) {		\
1449 			if ((tcp)->tcp_ipha->ipha_src != 0) {		\
1450 				(*cl_inet_connect)(IPPROTO_TCP, AF_INET,\
1451 				    (uint8_t *)(&((tcp)->tcp_ipha->ipha_src)),\
1452 				    (in_port_t)(tcp)->tcp_lport,	\
1453 				    (uint8_t *)(&((tcp)->tcp_ipha->ipha_dst)),\
1454 				    (in_port_t)(tcp)->tcp_fport);	\
1455 			}						\
1456 		} else {						\
1457 			if (!IN6_IS_ADDR_UNSPECIFIED(			\
1458 			    &(tcp)->tcp_ip6h->ip6_src)) {\
1459 				(*cl_inet_connect)(IPPROTO_TCP, AF_INET6,\
1460 				    (uint8_t *)(&((tcp)->tcp_ip6h->ip6_src)),\
1461 				    (in_port_t)(tcp)->tcp_lport,	\
1462 				    (uint8_t *)(&((tcp)->tcp_ip6h->ip6_dst)),\
1463 				    (in_port_t)(tcp)->tcp_fport);	\
1464 			}						\
1465 		}							\
1466 	}								\
1467 }
1468 
1469 #define	CL_INET_DISCONNECT(tcp)	{				\
1470 	if (cl_inet_disconnect != NULL) {				\
1471 		/*							\
1472 		 * Running in cluster mode - deregister active		\
1473 		 * connection information				\
1474 		 */							\
1475 		if ((tcp)->tcp_ipversion == IPV4_VERSION) {		\
1476 			if ((tcp)->tcp_ip_src != 0) {			\
1477 				(*cl_inet_disconnect)(IPPROTO_TCP,	\
1478 				    AF_INET,				\
1479 				    (uint8_t *)(&((tcp)->tcp_ip_src)),\
1480 				    (in_port_t)(tcp)->tcp_lport,	\
1481 				    (uint8_t *)				\
1482 				    (&((tcp)->tcp_ipha->ipha_dst)),\
1483 				    (in_port_t)(tcp)->tcp_fport);	\
1484 			}						\
1485 		} else {						\
1486 			if (!IN6_IS_ADDR_UNSPECIFIED(			\
1487 			    &(tcp)->tcp_ip_src_v6)) {			\
1488 				(*cl_inet_disconnect)(IPPROTO_TCP, AF_INET6,\
1489 				    (uint8_t *)(&((tcp)->tcp_ip_src_v6)),\
1490 				    (in_port_t)(tcp)->tcp_lport,	\
1491 				    (uint8_t *)				\
1492 				    (&((tcp)->tcp_ip6h->ip6_dst)),\
1493 				    (in_port_t)(tcp)->tcp_fport);	\
1494 			}						\
1495 		}							\
1496 	}								\
1497 }
1498 
1499 /*
1500  * Cluster networking hook for traversing current connection list.
1501  * This routine is used to extract the current list of live connections
1502  * which must continue to to be dispatched to this node.
1503  */
1504 int cl_tcp_walk_list(int (*callback)(cl_tcp_info_t *, void *), void *arg);
1505 
1506 /*
1507  * Figure out the value of window scale opton.  Note that the rwnd is
1508  * ASSUMED to be rounded up to the nearest MSS before the calculation.
1509  * We cannot find the scale value and then do a round up of tcp_rwnd
1510  * because the scale value may not be correct after that.
1511  *
1512  * Set the compiler flag to make this function inline.
1513  */
1514 static void
1515 tcp_set_ws_value(tcp_t *tcp)
1516 {
1517 	int i;
1518 	uint32_t rwnd = tcp->tcp_rwnd;
1519 
1520 	for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT;
1521 	    i++, rwnd >>= 1)
1522 		;
1523 	tcp->tcp_rcv_ws = i;
1524 }
1525 
1526 /*
1527  * Remove a connection from the list of detached TIME_WAIT connections.
1528  */
1529 static void
1530 tcp_time_wait_remove(tcp_t *tcp, tcp_squeue_priv_t *tcp_time_wait)
1531 {
1532 	boolean_t	locked = B_FALSE;
1533 
1534 	if (tcp_time_wait == NULL) {
1535 		tcp_time_wait = *((tcp_squeue_priv_t **)
1536 		    squeue_getprivate(tcp->tcp_connp->conn_sqp, SQPRIVATE_TCP));
1537 		mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1538 		locked = B_TRUE;
1539 	}
1540 
1541 	if (tcp->tcp_time_wait_expire == 0) {
1542 		ASSERT(tcp->tcp_time_wait_next == NULL);
1543 		ASSERT(tcp->tcp_time_wait_prev == NULL);
1544 		if (locked)
1545 			mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1546 		return;
1547 	}
1548 	ASSERT(TCP_IS_DETACHED(tcp));
1549 	ASSERT(tcp->tcp_state == TCPS_TIME_WAIT);
1550 
1551 	if (tcp == tcp_time_wait->tcp_time_wait_head) {
1552 		ASSERT(tcp->tcp_time_wait_prev == NULL);
1553 		tcp_time_wait->tcp_time_wait_head = tcp->tcp_time_wait_next;
1554 		if (tcp_time_wait->tcp_time_wait_head != NULL) {
1555 			tcp_time_wait->tcp_time_wait_head->tcp_time_wait_prev =
1556 			    NULL;
1557 		} else {
1558 			tcp_time_wait->tcp_time_wait_tail = NULL;
1559 		}
1560 	} else if (tcp == tcp_time_wait->tcp_time_wait_tail) {
1561 		ASSERT(tcp != tcp_time_wait->tcp_time_wait_head);
1562 		ASSERT(tcp->tcp_time_wait_next == NULL);
1563 		tcp_time_wait->tcp_time_wait_tail = tcp->tcp_time_wait_prev;
1564 		ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL);
1565 		tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = NULL;
1566 	} else {
1567 		ASSERT(tcp->tcp_time_wait_prev->tcp_time_wait_next == tcp);
1568 		ASSERT(tcp->tcp_time_wait_next->tcp_time_wait_prev == tcp);
1569 		tcp->tcp_time_wait_prev->tcp_time_wait_next =
1570 		    tcp->tcp_time_wait_next;
1571 		tcp->tcp_time_wait_next->tcp_time_wait_prev =
1572 		    tcp->tcp_time_wait_prev;
1573 	}
1574 	tcp->tcp_time_wait_next = NULL;
1575 	tcp->tcp_time_wait_prev = NULL;
1576 	tcp->tcp_time_wait_expire = 0;
1577 
1578 	if (locked)
1579 		mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1580 }
1581 
1582 /*
1583  * Add a connection to the list of detached TIME_WAIT connections
1584  * and set its time to expire.
1585  */
1586 static void
1587 tcp_time_wait_append(tcp_t *tcp)
1588 {
1589 	tcp_squeue_priv_t *tcp_time_wait =
1590 	    *((tcp_squeue_priv_t **)squeue_getprivate(tcp->tcp_connp->conn_sqp,
1591 		SQPRIVATE_TCP));
1592 
1593 	tcp_timers_stop(tcp);
1594 
1595 	/* Freed above */
1596 	ASSERT(tcp->tcp_timer_tid == 0);
1597 	ASSERT(tcp->tcp_ack_tid == 0);
1598 
1599 	/* must have happened at the time of detaching the tcp */
1600 	ASSERT(tcp->tcp_ptpahn == NULL);
1601 	ASSERT(tcp->tcp_flow_stopped == 0);
1602 	ASSERT(tcp->tcp_time_wait_next == NULL);
1603 	ASSERT(tcp->tcp_time_wait_prev == NULL);
1604 	ASSERT(tcp->tcp_time_wait_expire == NULL);
1605 	ASSERT(tcp->tcp_listener == NULL);
1606 
1607 	tcp->tcp_time_wait_expire = ddi_get_lbolt();
1608 	/*
1609 	 * The value computed below in tcp->tcp_time_wait_expire may
1610 	 * appear negative or wrap around. That is ok since our
1611 	 * interest is only in the difference between the current lbolt
1612 	 * value and tcp->tcp_time_wait_expire. But the value should not
1613 	 * be zero, since it means the tcp is not in the TIME_WAIT list.
1614 	 * The corresponding comparison in tcp_time_wait_collector() uses
1615 	 * modular arithmetic.
1616 	 */
1617 	tcp->tcp_time_wait_expire +=
1618 	    drv_usectohz(tcp_time_wait_interval * 1000);
1619 	if (tcp->tcp_time_wait_expire == 0)
1620 		tcp->tcp_time_wait_expire = 1;
1621 
1622 	ASSERT(TCP_IS_DETACHED(tcp));
1623 	ASSERT(tcp->tcp_state == TCPS_TIME_WAIT);
1624 	ASSERT(tcp->tcp_time_wait_next == NULL);
1625 	ASSERT(tcp->tcp_time_wait_prev == NULL);
1626 	TCP_DBGSTAT(tcp_time_wait);
1627 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1628 	if (tcp_time_wait->tcp_time_wait_head == NULL) {
1629 		ASSERT(tcp_time_wait->tcp_time_wait_tail == NULL);
1630 		tcp_time_wait->tcp_time_wait_head = tcp;
1631 	} else {
1632 		ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL);
1633 		ASSERT(tcp_time_wait->tcp_time_wait_tail->tcp_state ==
1634 		    TCPS_TIME_WAIT);
1635 		tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = tcp;
1636 		tcp->tcp_time_wait_prev = tcp_time_wait->tcp_time_wait_tail;
1637 	}
1638 	tcp_time_wait->tcp_time_wait_tail = tcp;
1639 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1640 }
1641 
1642 /* ARGSUSED */
1643 void
1644 tcp_timewait_output(void *arg, mblk_t *mp, void *arg2)
1645 {
1646 	conn_t	*connp = (conn_t *)arg;
1647 	tcp_t	*tcp = connp->conn_tcp;
1648 
1649 	ASSERT(tcp != NULL);
1650 	if (tcp->tcp_state == TCPS_CLOSED) {
1651 		return;
1652 	}
1653 
1654 	ASSERT((tcp->tcp_family == AF_INET &&
1655 	    tcp->tcp_ipversion == IPV4_VERSION) ||
1656 	    (tcp->tcp_family == AF_INET6 &&
1657 	    (tcp->tcp_ipversion == IPV4_VERSION ||
1658 	    tcp->tcp_ipversion == IPV6_VERSION)));
1659 	ASSERT(!tcp->tcp_listener);
1660 
1661 	TCP_STAT(tcp_time_wait_reap);
1662 	ASSERT(TCP_IS_DETACHED(tcp));
1663 
1664 	/*
1665 	 * Because they have no upstream client to rebind or tcp_close()
1666 	 * them later, we axe the connection here and now.
1667 	 */
1668 	tcp_close_detached(tcp);
1669 }
1670 
1671 void
1672 tcp_cleanup(tcp_t *tcp)
1673 {
1674 	mblk_t		*mp;
1675 	char		*tcp_iphc;
1676 	int		tcp_iphc_len;
1677 	int		tcp_hdr_grown;
1678 	tcp_sack_info_t	*tcp_sack_info;
1679 	conn_t		*connp = tcp->tcp_connp;
1680 
1681 	tcp_bind_hash_remove(tcp);
1682 	tcp_free(tcp);
1683 
1684 	/* Release any SSL context */
1685 	if (tcp->tcp_kssl_ent != NULL) {
1686 		kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY);
1687 		tcp->tcp_kssl_ent = NULL;
1688 	}
1689 
1690 	if (tcp->tcp_kssl_ctx != NULL) {
1691 		kssl_release_ctx(tcp->tcp_kssl_ctx);
1692 		tcp->tcp_kssl_ctx = NULL;
1693 	}
1694 	tcp->tcp_kssl_pending = B_FALSE;
1695 
1696 	conn_delete_ire(connp, NULL);
1697 	if (connp->conn_flags & IPCL_TCPCONN) {
1698 		if (connp->conn_latch != NULL)
1699 			IPLATCH_REFRELE(connp->conn_latch);
1700 		if (connp->conn_policy != NULL)
1701 			IPPH_REFRELE(connp->conn_policy);
1702 	}
1703 
1704 	/*
1705 	 * Since we will bzero the entire structure, we need to
1706 	 * remove it and reinsert it in global hash list. We
1707 	 * know the walkers can't get to this conn because we
1708 	 * had set CONDEMNED flag earlier and checked reference
1709 	 * under conn_lock so walker won't pick it and when we
1710 	 * go the ipcl_globalhash_remove() below, no walker
1711 	 * can get to it.
1712 	 */
1713 	ipcl_globalhash_remove(connp);
1714 
1715 	/* Save some state */
1716 	mp = tcp->tcp_timercache;
1717 
1718 	tcp_sack_info = tcp->tcp_sack_info;
1719 	tcp_iphc = tcp->tcp_iphc;
1720 	tcp_iphc_len = tcp->tcp_iphc_len;
1721 	tcp_hdr_grown = tcp->tcp_hdr_grown;
1722 
1723 	if (connp->conn_cred != NULL)
1724 		crfree(connp->conn_cred);
1725 	if (connp->conn_peercred != NULL)
1726 		crfree(connp->conn_peercred);
1727 	bzero(connp, sizeof (conn_t));
1728 	bzero(tcp, sizeof (tcp_t));
1729 
1730 	/* restore the state */
1731 	tcp->tcp_timercache = mp;
1732 
1733 	tcp->tcp_sack_info = tcp_sack_info;
1734 	tcp->tcp_iphc = tcp_iphc;
1735 	tcp->tcp_iphc_len = tcp_iphc_len;
1736 	tcp->tcp_hdr_grown = tcp_hdr_grown;
1737 
1738 
1739 	tcp->tcp_connp = connp;
1740 
1741 	connp->conn_tcp = tcp;
1742 	connp->conn_flags = IPCL_TCPCONN;
1743 	connp->conn_state_flags = CONN_INCIPIENT;
1744 	connp->conn_ulp = IPPROTO_TCP;
1745 	connp->conn_ref = 1;
1746 
1747 	ipcl_globalhash_insert(connp);
1748 }
1749 
1750 /*
1751  * Blows away all tcps whose TIME_WAIT has expired. List traversal
1752  * is done forwards from the head.
1753  */
1754 /* ARGSUSED */
1755 void
1756 tcp_time_wait_collector(void *arg)
1757 {
1758 	tcp_t *tcp;
1759 	clock_t now;
1760 	mblk_t *mp;
1761 	conn_t *connp;
1762 	kmutex_t *lock;
1763 
1764 	squeue_t *sqp = (squeue_t *)arg;
1765 	tcp_squeue_priv_t *tcp_time_wait =
1766 	    *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP));
1767 
1768 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1769 	tcp_time_wait->tcp_time_wait_tid = 0;
1770 
1771 	if (tcp_time_wait->tcp_free_list != NULL &&
1772 	    tcp_time_wait->tcp_free_list->tcp_in_free_list == B_TRUE) {
1773 		TCP_STAT(tcp_freelist_cleanup);
1774 		while ((tcp = tcp_time_wait->tcp_free_list) != NULL) {
1775 			tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next;
1776 			CONN_DEC_REF(tcp->tcp_connp);
1777 		}
1778 		tcp_time_wait->tcp_free_list_cnt = 0;
1779 	}
1780 
1781 	/*
1782 	 * In order to reap time waits reliably, we should use a
1783 	 * source of time that is not adjustable by the user -- hence
1784 	 * the call to ddi_get_lbolt().
1785 	 */
1786 	now = ddi_get_lbolt();
1787 	while ((tcp = tcp_time_wait->tcp_time_wait_head) != NULL) {
1788 		/*
1789 		 * Compare times using modular arithmetic, since
1790 		 * lbolt can wrapover.
1791 		 */
1792 		if ((now - tcp->tcp_time_wait_expire) < 0) {
1793 			break;
1794 		}
1795 
1796 		tcp_time_wait_remove(tcp, tcp_time_wait);
1797 
1798 		connp = tcp->tcp_connp;
1799 		ASSERT(connp->conn_fanout != NULL);
1800 		lock = &connp->conn_fanout->connf_lock;
1801 		/*
1802 		 * This is essentially a TW reclaim fast path optimization for
1803 		 * performance where the timewait collector checks under the
1804 		 * fanout lock (so that no one else can get access to the
1805 		 * conn_t) that the refcnt is 2 i.e. one for TCP and one for
1806 		 * the classifier hash list. If ref count is indeed 2, we can
1807 		 * just remove the conn under the fanout lock and avoid
1808 		 * cleaning up the conn under the squeue, provided that
1809 		 * clustering callbacks are not enabled. If clustering is
1810 		 * enabled, we need to make the clustering callback before
1811 		 * setting the CONDEMNED flag and after dropping all locks and
1812 		 * so we forego this optimization and fall back to the slow
1813 		 * path. Also please see the comments in tcp_closei_local
1814 		 * regarding the refcnt logic.
1815 		 *
1816 		 * Since we are holding the tcp_time_wait_lock, its better
1817 		 * not to block on the fanout_lock because other connections
1818 		 * can't add themselves to time_wait list. So we do a
1819 		 * tryenter instead of mutex_enter.
1820 		 */
1821 		if (mutex_tryenter(lock)) {
1822 			mutex_enter(&connp->conn_lock);
1823 			if ((connp->conn_ref == 2) &&
1824 			    (cl_inet_disconnect == NULL)) {
1825 				ipcl_hash_remove_locked(connp,
1826 				    connp->conn_fanout);
1827 				/*
1828 				 * Set the CONDEMNED flag now itself so that
1829 				 * the refcnt cannot increase due to any
1830 				 * walker. But we have still not cleaned up
1831 				 * conn_ire_cache. This is still ok since
1832 				 * we are going to clean it up in tcp_cleanup
1833 				 * immediately and any interface unplumb
1834 				 * thread will wait till the ire is blown away
1835 				 */
1836 				connp->conn_state_flags |= CONN_CONDEMNED;
1837 				mutex_exit(lock);
1838 				mutex_exit(&connp->conn_lock);
1839 				if (tcp_time_wait->tcp_free_list_cnt <
1840 				    tcp_free_list_max_cnt) {
1841 					/* Add to head of tcp_free_list */
1842 					mutex_exit(
1843 					    &tcp_time_wait->tcp_time_wait_lock);
1844 					tcp_cleanup(tcp);
1845 					mutex_enter(
1846 					    &tcp_time_wait->tcp_time_wait_lock);
1847 					tcp->tcp_time_wait_next =
1848 					    tcp_time_wait->tcp_free_list;
1849 					tcp_time_wait->tcp_free_list = tcp;
1850 					tcp_time_wait->tcp_free_list_cnt++;
1851 					continue;
1852 				} else {
1853 					/* Do not add to tcp_free_list */
1854 					mutex_exit(
1855 					    &tcp_time_wait->tcp_time_wait_lock);
1856 					tcp_bind_hash_remove(tcp);
1857 					conn_delete_ire(tcp->tcp_connp, NULL);
1858 					CONN_DEC_REF(tcp->tcp_connp);
1859 				}
1860 			} else {
1861 				CONN_INC_REF_LOCKED(connp);
1862 				mutex_exit(lock);
1863 				mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1864 				mutex_exit(&connp->conn_lock);
1865 				/*
1866 				 * We can reuse the closemp here since conn has
1867 				 * detached (otherwise we wouldn't even be in
1868 				 * time_wait list).
1869 				 */
1870 				mp = &tcp->tcp_closemp;
1871 				squeue_fill(connp->conn_sqp, mp,
1872 				    tcp_timewait_output, connp,
1873 				    SQTAG_TCP_TIMEWAIT);
1874 			}
1875 		} else {
1876 			mutex_enter(&connp->conn_lock);
1877 			CONN_INC_REF_LOCKED(connp);
1878 			mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1879 			mutex_exit(&connp->conn_lock);
1880 			/*
1881 			 * We can reuse the closemp here since conn has
1882 			 * detached (otherwise we wouldn't even be in
1883 			 * time_wait list).
1884 			 */
1885 			mp = &tcp->tcp_closemp;
1886 			squeue_fill(connp->conn_sqp, mp,
1887 			    tcp_timewait_output, connp, 0);
1888 		}
1889 		mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1890 	}
1891 
1892 	if (tcp_time_wait->tcp_free_list != NULL)
1893 		tcp_time_wait->tcp_free_list->tcp_in_free_list = B_TRUE;
1894 
1895 	tcp_time_wait->tcp_time_wait_tid =
1896 	    timeout(tcp_time_wait_collector, sqp, TCP_TIME_WAIT_DELAY);
1897 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1898 }
1899 
1900 /*
1901  * Reply to a clients T_CONN_RES TPI message. This function
1902  * is used only for TLI/XTI listener. Sockfs sends T_CONN_RES
1903  * on the acceptor STREAM and processed in tcp_wput_accept().
1904  * Read the block comment on top of tcp_conn_request().
1905  */
1906 static void
1907 tcp_accept(tcp_t *listener, mblk_t *mp)
1908 {
1909 	tcp_t	*acceptor;
1910 	tcp_t	*eager;
1911 	tcp_t   *tcp;
1912 	struct T_conn_res	*tcr;
1913 	t_uscalar_t	acceptor_id;
1914 	t_scalar_t	seqnum;
1915 	mblk_t	*opt_mp = NULL;	/* T_OPTMGMT_REQ messages */
1916 	mblk_t	*ok_mp;
1917 	mblk_t	*mp1;
1918 
1919 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) {
1920 		tcp_err_ack(listener, mp, TPROTO, 0);
1921 		return;
1922 	}
1923 	tcr = (struct T_conn_res *)mp->b_rptr;
1924 
1925 	/*
1926 	 * Under ILP32 the stream head points tcr->ACCEPTOR_id at the
1927 	 * read side queue of the streams device underneath us i.e. the
1928 	 * read side queue of 'ip'. Since we can't deference QUEUE_ptr we
1929 	 * look it up in the queue_hash.  Under LP64 it sends down the
1930 	 * minor_t of the accepting endpoint.
1931 	 *
1932 	 * Once the acceptor/eager are modified (in tcp_accept_swap) the
1933 	 * fanout hash lock is held.
1934 	 * This prevents any thread from entering the acceptor queue from
1935 	 * below (since it has not been hard bound yet i.e. any inbound
1936 	 * packets will arrive on the listener or default tcp queue and
1937 	 * go through tcp_lookup).
1938 	 * The CONN_INC_REF will prevent the acceptor from closing.
1939 	 *
1940 	 * XXX It is still possible for a tli application to send down data
1941 	 * on the accepting stream while another thread calls t_accept.
1942 	 * This should not be a problem for well-behaved applications since
1943 	 * the T_OK_ACK is sent after the queue swapping is completed.
1944 	 *
1945 	 * If the accepting fd is the same as the listening fd, avoid
1946 	 * queue hash lookup since that will return an eager listener in a
1947 	 * already established state.
1948 	 */
1949 	acceptor_id = tcr->ACCEPTOR_id;
1950 	mutex_enter(&listener->tcp_eager_lock);
1951 	if (listener->tcp_acceptor_id == acceptor_id) {
1952 		eager = listener->tcp_eager_next_q;
1953 		/* only count how many T_CONN_INDs so don't count q0 */
1954 		if ((listener->tcp_conn_req_cnt_q != 1) ||
1955 		    (eager->tcp_conn_req_seqnum != tcr->SEQ_number)) {
1956 			mutex_exit(&listener->tcp_eager_lock);
1957 			tcp_err_ack(listener, mp, TBADF, 0);
1958 			return;
1959 		}
1960 		if (listener->tcp_conn_req_cnt_q0 != 0) {
1961 			/* Throw away all the eagers on q0. */
1962 			tcp_eager_cleanup(listener, 1);
1963 		}
1964 		if (listener->tcp_syn_defense) {
1965 			listener->tcp_syn_defense = B_FALSE;
1966 			if (listener->tcp_ip_addr_cache != NULL) {
1967 				kmem_free(listener->tcp_ip_addr_cache,
1968 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
1969 				listener->tcp_ip_addr_cache = NULL;
1970 			}
1971 		}
1972 		/*
1973 		 * Transfer tcp_conn_req_max to the eager so that when
1974 		 * a disconnect occurs we can revert the endpoint to the
1975 		 * listen state.
1976 		 */
1977 		eager->tcp_conn_req_max = listener->tcp_conn_req_max;
1978 		ASSERT(listener->tcp_conn_req_cnt_q0 == 0);
1979 		/*
1980 		 * Get a reference on the acceptor just like the
1981 		 * tcp_acceptor_hash_lookup below.
1982 		 */
1983 		acceptor = listener;
1984 		CONN_INC_REF(acceptor->tcp_connp);
1985 	} else {
1986 		acceptor = tcp_acceptor_hash_lookup(acceptor_id);
1987 		if (acceptor == NULL) {
1988 			if (listener->tcp_debug) {
1989 				(void) strlog(TCP_MOD_ID, 0, 1,
1990 				    SL_ERROR|SL_TRACE,
1991 				    "tcp_accept: did not find acceptor 0x%x\n",
1992 				    acceptor_id);
1993 			}
1994 			mutex_exit(&listener->tcp_eager_lock);
1995 			tcp_err_ack(listener, mp, TPROVMISMATCH, 0);
1996 			return;
1997 		}
1998 		/*
1999 		 * Verify acceptor state. The acceptable states for an acceptor
2000 		 * include TCPS_IDLE and TCPS_BOUND.
2001 		 */
2002 		switch (acceptor->tcp_state) {
2003 		case TCPS_IDLE:
2004 			/* FALLTHRU */
2005 		case TCPS_BOUND:
2006 			break;
2007 		default:
2008 			CONN_DEC_REF(acceptor->tcp_connp);
2009 			mutex_exit(&listener->tcp_eager_lock);
2010 			tcp_err_ack(listener, mp, TOUTSTATE, 0);
2011 			return;
2012 		}
2013 	}
2014 
2015 	/* The listener must be in TCPS_LISTEN */
2016 	if (listener->tcp_state != TCPS_LISTEN) {
2017 		CONN_DEC_REF(acceptor->tcp_connp);
2018 		mutex_exit(&listener->tcp_eager_lock);
2019 		tcp_err_ack(listener, mp, TOUTSTATE, 0);
2020 		return;
2021 	}
2022 
2023 	/*
2024 	 * Rendezvous with an eager connection request packet hanging off
2025 	 * 'tcp' that has the 'seqnum' tag.  We tagged the detached open
2026 	 * tcp structure when the connection packet arrived in
2027 	 * tcp_conn_request().
2028 	 */
2029 	seqnum = tcr->SEQ_number;
2030 	eager = listener;
2031 	do {
2032 		eager = eager->tcp_eager_next_q;
2033 		if (eager == NULL) {
2034 			CONN_DEC_REF(acceptor->tcp_connp);
2035 			mutex_exit(&listener->tcp_eager_lock);
2036 			tcp_err_ack(listener, mp, TBADSEQ, 0);
2037 			return;
2038 		}
2039 	} while (eager->tcp_conn_req_seqnum != seqnum);
2040 	mutex_exit(&listener->tcp_eager_lock);
2041 
2042 	/*
2043 	 * At this point, both acceptor and listener have 2 ref
2044 	 * that they begin with. Acceptor has one additional ref
2045 	 * we placed in lookup while listener has 3 additional
2046 	 * ref for being behind the squeue (tcp_accept() is
2047 	 * done on listener's squeue); being in classifier hash;
2048 	 * and eager's ref on listener.
2049 	 */
2050 	ASSERT(listener->tcp_connp->conn_ref >= 5);
2051 	ASSERT(acceptor->tcp_connp->conn_ref >= 3);
2052 
2053 	/*
2054 	 * The eager at this point is set in its own squeue and
2055 	 * could easily have been killed (tcp_accept_finish will
2056 	 * deal with that) because of a TH_RST so we can only
2057 	 * ASSERT for a single ref.
2058 	 */
2059 	ASSERT(eager->tcp_connp->conn_ref >= 1);
2060 
2061 	/* Pre allocate the stroptions mblk also */
2062 	opt_mp = allocb(sizeof (struct stroptions), BPRI_HI);
2063 	if (opt_mp == NULL) {
2064 		CONN_DEC_REF(acceptor->tcp_connp);
2065 		CONN_DEC_REF(eager->tcp_connp);
2066 		tcp_err_ack(listener, mp, TSYSERR, ENOMEM);
2067 		return;
2068 	}
2069 	DB_TYPE(opt_mp) = M_SETOPTS;
2070 	opt_mp->b_wptr += sizeof (struct stroptions);
2071 
2072 	/*
2073 	 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO
2074 	 * from listener to acceptor. The message is chained on opt_mp
2075 	 * which will be sent onto eager's squeue.
2076 	 */
2077 	if (listener->tcp_bound_if != 0) {
2078 		/* allocate optmgmt req */
2079 		mp1 = tcp_setsockopt_mp(IPPROTO_IPV6,
2080 		    IPV6_BOUND_IF, (char *)&listener->tcp_bound_if,
2081 		    sizeof (int));
2082 		if (mp1 != NULL)
2083 			linkb(opt_mp, mp1);
2084 	}
2085 	if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) {
2086 		uint_t on = 1;
2087 
2088 		/* allocate optmgmt req */
2089 		mp1 = tcp_setsockopt_mp(IPPROTO_IPV6,
2090 		    IPV6_RECVPKTINFO, (char *)&on, sizeof (on));
2091 		if (mp1 != NULL)
2092 			linkb(opt_mp, mp1);
2093 	}
2094 
2095 	/* Re-use mp1 to hold a copy of mp, in case reallocb fails */
2096 	if ((mp1 = copymsg(mp)) == NULL) {
2097 		CONN_DEC_REF(acceptor->tcp_connp);
2098 		CONN_DEC_REF(eager->tcp_connp);
2099 		freemsg(opt_mp);
2100 		tcp_err_ack(listener, mp, TSYSERR, ENOMEM);
2101 		return;
2102 	}
2103 
2104 	tcr = (struct T_conn_res *)mp1->b_rptr;
2105 
2106 	/*
2107 	 * This is an expanded version of mi_tpi_ok_ack_alloc()
2108 	 * which allocates a larger mblk and appends the new
2109 	 * local address to the ok_ack.  The address is copied by
2110 	 * soaccept() for getsockname().
2111 	 */
2112 	{
2113 		int extra;
2114 
2115 		extra = (eager->tcp_family == AF_INET) ?
2116 		    sizeof (sin_t) : sizeof (sin6_t);
2117 
2118 		/*
2119 		 * Try to re-use mp, if possible.  Otherwise, allocate
2120 		 * an mblk and return it as ok_mp.  In any case, mp
2121 		 * is no longer usable upon return.
2122 		 */
2123 		if ((ok_mp = mi_tpi_ok_ack_alloc_extra(mp, extra)) == NULL) {
2124 			CONN_DEC_REF(acceptor->tcp_connp);
2125 			CONN_DEC_REF(eager->tcp_connp);
2126 			freemsg(opt_mp);
2127 			/* Original mp has been freed by now, so use mp1 */
2128 			tcp_err_ack(listener, mp1, TSYSERR, ENOMEM);
2129 			return;
2130 		}
2131 
2132 		mp = NULL;	/* We should never use mp after this point */
2133 
2134 		switch (extra) {
2135 		case sizeof (sin_t): {
2136 				sin_t *sin = (sin_t *)ok_mp->b_wptr;
2137 
2138 				ok_mp->b_wptr += extra;
2139 				sin->sin_family = AF_INET;
2140 				sin->sin_port = eager->tcp_lport;
2141 				sin->sin_addr.s_addr =
2142 				    eager->tcp_ipha->ipha_src;
2143 				break;
2144 			}
2145 		case sizeof (sin6_t): {
2146 				sin6_t *sin6 = (sin6_t *)ok_mp->b_wptr;
2147 
2148 				ok_mp->b_wptr += extra;
2149 				sin6->sin6_family = AF_INET6;
2150 				sin6->sin6_port = eager->tcp_lport;
2151 				if (eager->tcp_ipversion == IPV4_VERSION) {
2152 					sin6->sin6_flowinfo = 0;
2153 					IN6_IPADDR_TO_V4MAPPED(
2154 					    eager->tcp_ipha->ipha_src,
2155 					    &sin6->sin6_addr);
2156 				} else {
2157 					ASSERT(eager->tcp_ip6h != NULL);
2158 					sin6->sin6_flowinfo =
2159 					    eager->tcp_ip6h->ip6_vcf &
2160 					    ~IPV6_VERS_AND_FLOW_MASK;
2161 					sin6->sin6_addr =
2162 					    eager->tcp_ip6h->ip6_src;
2163 				}
2164 				break;
2165 			}
2166 		default:
2167 			break;
2168 		}
2169 		ASSERT(ok_mp->b_wptr <= ok_mp->b_datap->db_lim);
2170 	}
2171 
2172 	/*
2173 	 * If there are no options we know that the T_CONN_RES will
2174 	 * succeed. However, we can't send the T_OK_ACK upstream until
2175 	 * the tcp_accept_swap is done since it would be dangerous to
2176 	 * let the application start using the new fd prior to the swap.
2177 	 */
2178 	tcp_accept_swap(listener, acceptor, eager);
2179 
2180 	/*
2181 	 * tcp_accept_swap unlinks eager from listener but does not drop
2182 	 * the eager's reference on the listener.
2183 	 */
2184 	ASSERT(eager->tcp_listener == NULL);
2185 	ASSERT(listener->tcp_connp->conn_ref >= 5);
2186 
2187 	/*
2188 	 * The eager is now associated with its own queue. Insert in
2189 	 * the hash so that the connection can be reused for a future
2190 	 * T_CONN_RES.
2191 	 */
2192 	tcp_acceptor_hash_insert(acceptor_id, eager);
2193 
2194 	/*
2195 	 * We now do the processing of options with T_CONN_RES.
2196 	 * We delay till now since we wanted to have queue to pass to
2197 	 * option processing routines that points back to the right
2198 	 * instance structure which does not happen until after
2199 	 * tcp_accept_swap().
2200 	 *
2201 	 * Note:
2202 	 * The sanity of the logic here assumes that whatever options
2203 	 * are appropriate to inherit from listner=>eager are done
2204 	 * before this point, and whatever were to be overridden (or not)
2205 	 * in transfer logic from eager=>acceptor in tcp_accept_swap().
2206 	 * [ Warning: acceptor endpoint can have T_OPTMGMT_REQ done to it
2207 	 *   before its ACCEPTOR_id comes down in T_CONN_RES ]
2208 	 * This may not be true at this point in time but can be fixed
2209 	 * independently. This option processing code starts with
2210 	 * the instantiated acceptor instance and the final queue at
2211 	 * this point.
2212 	 */
2213 
2214 	if (tcr->OPT_length != 0) {
2215 		/* Options to process */
2216 		int t_error = 0;
2217 		int sys_error = 0;
2218 		int do_disconnect = 0;
2219 
2220 		if (tcp_conprim_opt_process(eager, mp1,
2221 		    &do_disconnect, &t_error, &sys_error) < 0) {
2222 			eager->tcp_accept_error = 1;
2223 			if (do_disconnect) {
2224 				/*
2225 				 * An option failed which does not allow
2226 				 * connection to be accepted.
2227 				 *
2228 				 * We allow T_CONN_RES to succeed and
2229 				 * put a T_DISCON_IND on the eager queue.
2230 				 */
2231 				ASSERT(t_error == 0 && sys_error == 0);
2232 				eager->tcp_send_discon_ind = 1;
2233 			} else {
2234 				ASSERT(t_error != 0);
2235 				freemsg(ok_mp);
2236 				/*
2237 				 * Original mp was either freed or set
2238 				 * to ok_mp above, so use mp1 instead.
2239 				 */
2240 				tcp_err_ack(listener, mp1, t_error, sys_error);
2241 				goto finish;
2242 			}
2243 		}
2244 		/*
2245 		 * Most likely success in setting options (except if
2246 		 * eager->tcp_send_discon_ind set).
2247 		 * mp1 option buffer represented by OPT_length/offset
2248 		 * potentially modified and contains results of setting
2249 		 * options at this point
2250 		 */
2251 	}
2252 
2253 	/* We no longer need mp1, since all options processing has passed */
2254 	freemsg(mp1);
2255 
2256 	putnext(listener->tcp_rq, ok_mp);
2257 
2258 	mutex_enter(&listener->tcp_eager_lock);
2259 	if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) {
2260 		tcp_t	*tail;
2261 		mblk_t	*conn_ind;
2262 
2263 		/*
2264 		 * This path should not be executed if listener and
2265 		 * acceptor streams are the same.
2266 		 */
2267 		ASSERT(listener != acceptor);
2268 
2269 		tcp = listener->tcp_eager_prev_q0;
2270 		/*
2271 		 * listener->tcp_eager_prev_q0 points to the TAIL of the
2272 		 * deferred T_conn_ind queue. We need to get to the head of
2273 		 * the queue in order to send up T_conn_ind the same order as
2274 		 * how the 3WHS is completed.
2275 		 */
2276 		while (tcp != listener) {
2277 			if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0)
2278 				break;
2279 			else
2280 				tcp = tcp->tcp_eager_prev_q0;
2281 		}
2282 		ASSERT(tcp != listener);
2283 		conn_ind = tcp->tcp_conn.tcp_eager_conn_ind;
2284 		ASSERT(conn_ind != NULL);
2285 		tcp->tcp_conn.tcp_eager_conn_ind = NULL;
2286 
2287 		/* Move from q0 to q */
2288 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
2289 		listener->tcp_conn_req_cnt_q0--;
2290 		listener->tcp_conn_req_cnt_q++;
2291 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
2292 		    tcp->tcp_eager_prev_q0;
2293 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
2294 		    tcp->tcp_eager_next_q0;
2295 		tcp->tcp_eager_prev_q0 = NULL;
2296 		tcp->tcp_eager_next_q0 = NULL;
2297 		tcp->tcp_conn_def_q0 = B_FALSE;
2298 
2299 		/*
2300 		 * Insert at end of the queue because sockfs sends
2301 		 * down T_CONN_RES in chronological order. Leaving
2302 		 * the older conn indications at front of the queue
2303 		 * helps reducing search time.
2304 		 */
2305 		tail = listener->tcp_eager_last_q;
2306 		if (tail != NULL)
2307 			tail->tcp_eager_next_q = tcp;
2308 		else
2309 			listener->tcp_eager_next_q = tcp;
2310 		listener->tcp_eager_last_q = tcp;
2311 		tcp->tcp_eager_next_q = NULL;
2312 		mutex_exit(&listener->tcp_eager_lock);
2313 		putnext(tcp->tcp_rq, conn_ind);
2314 	} else {
2315 		mutex_exit(&listener->tcp_eager_lock);
2316 	}
2317 
2318 	/*
2319 	 * Done with the acceptor - free it
2320 	 *
2321 	 * Note: from this point on, no access to listener should be made
2322 	 * as listener can be equal to acceptor.
2323 	 */
2324 finish:
2325 	ASSERT(acceptor->tcp_detached);
2326 	acceptor->tcp_rq = tcp_g_q;
2327 	acceptor->tcp_wq = WR(tcp_g_q);
2328 	(void) tcp_clean_death(acceptor, 0, 2);
2329 	CONN_DEC_REF(acceptor->tcp_connp);
2330 
2331 	/*
2332 	 * In case we already received a FIN we have to make tcp_rput send
2333 	 * the ordrel_ind. This will also send up a window update if the window
2334 	 * has opened up.
2335 	 *
2336 	 * In the normal case of a successful connection acceptance
2337 	 * we give the O_T_BIND_REQ to the read side put procedure as an
2338 	 * indication that this was just accepted. This tells tcp_rput to
2339 	 * pass up any data queued in tcp_rcv_list.
2340 	 *
2341 	 * In the fringe case where options sent with T_CONN_RES failed and
2342 	 * we required, we would be indicating a T_DISCON_IND to blow
2343 	 * away this connection.
2344 	 */
2345 
2346 	/*
2347 	 * XXX: we currently have a problem if XTI application closes the
2348 	 * acceptor stream in between. This problem exists in on10-gate also
2349 	 * and is well know but nothing can be done short of major rewrite
2350 	 * to fix it. Now it is possible to take care of it by assigning TLI/XTI
2351 	 * eager same squeue as listener (we can distinguish non socket
2352 	 * listeners at the time of handling a SYN in tcp_conn_request)
2353 	 * and do most of the work that tcp_accept_finish does here itself
2354 	 * and then get behind the acceptor squeue to access the acceptor
2355 	 * queue.
2356 	 */
2357 	/*
2358 	 * We already have a ref on tcp so no need to do one before squeue_fill
2359 	 */
2360 	squeue_fill(eager->tcp_connp->conn_sqp, opt_mp,
2361 	    tcp_accept_finish, eager->tcp_connp, SQTAG_TCP_ACCEPT_FINISH);
2362 }
2363 
2364 /*
2365  * Swap information between the eager and acceptor for a TLI/XTI client.
2366  * The sockfs accept is done on the acceptor stream and control goes
2367  * through tcp_wput_accept() and tcp_accept()/tcp_accept_swap() is not
2368  * called. In either case, both the eager and listener are in their own
2369  * perimeter (squeue) and the code has to deal with potential race.
2370  *
2371  * See the block comment on top of tcp_accept() and tcp_wput_accept().
2372  */
2373 static void
2374 tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, tcp_t *eager)
2375 {
2376 	conn_t	*econnp, *aconnp;
2377 
2378 	ASSERT(eager->tcp_rq == listener->tcp_rq);
2379 	ASSERT(eager->tcp_detached && !acceptor->tcp_detached);
2380 	ASSERT(!eager->tcp_hard_bound);
2381 	ASSERT(!TCP_IS_SOCKET(acceptor));
2382 	ASSERT(!TCP_IS_SOCKET(eager));
2383 	ASSERT(!TCP_IS_SOCKET(listener));
2384 
2385 	acceptor->tcp_detached = B_TRUE;
2386 	/*
2387 	 * To permit stream re-use by TLI/XTI, the eager needs a copy of
2388 	 * the acceptor id.
2389 	 */
2390 	eager->tcp_acceptor_id = acceptor->tcp_acceptor_id;
2391 
2392 	/* remove eager from listen list... */
2393 	mutex_enter(&listener->tcp_eager_lock);
2394 	tcp_eager_unlink(eager);
2395 	ASSERT(eager->tcp_eager_next_q == NULL &&
2396 	    eager->tcp_eager_last_q == NULL);
2397 	ASSERT(eager->tcp_eager_next_q0 == NULL &&
2398 	    eager->tcp_eager_prev_q0 == NULL);
2399 	mutex_exit(&listener->tcp_eager_lock);
2400 	eager->tcp_rq = acceptor->tcp_rq;
2401 	eager->tcp_wq = acceptor->tcp_wq;
2402 
2403 	econnp = eager->tcp_connp;
2404 	aconnp = acceptor->tcp_connp;
2405 
2406 	eager->tcp_rq->q_ptr = econnp;
2407 	eager->tcp_wq->q_ptr = econnp;
2408 
2409 	/*
2410 	 * In the TLI/XTI loopback case, we are inside the listener's squeue,
2411 	 * which might be a different squeue from our peer TCP instance.
2412 	 * For TCP Fusion, the peer expects that whenever tcp_detached is
2413 	 * clear, our TCP queues point to the acceptor's queues.  Thus, use
2414 	 * membar_producer() to ensure that the assignments of tcp_rq/tcp_wq
2415 	 * above reach global visibility prior to the clearing of tcp_detached.
2416 	 */
2417 	membar_producer();
2418 	eager->tcp_detached = B_FALSE;
2419 
2420 	ASSERT(eager->tcp_ack_tid == 0);
2421 
2422 	econnp->conn_dev = aconnp->conn_dev;
2423 	if (eager->tcp_cred != NULL)
2424 		crfree(eager->tcp_cred);
2425 	eager->tcp_cred = econnp->conn_cred = aconnp->conn_cred;
2426 	econnp->conn_zoneid = aconnp->conn_zoneid;
2427 	aconnp->conn_cred = NULL;
2428 
2429 	econnp->conn_mac_exempt = aconnp->conn_mac_exempt;
2430 	aconnp->conn_mac_exempt = B_FALSE;
2431 
2432 	ASSERT(aconnp->conn_peercred == NULL);
2433 
2434 	/* Do the IPC initialization */
2435 	CONN_INC_REF(econnp);
2436 
2437 	econnp->conn_multicast_loop = aconnp->conn_multicast_loop;
2438 	econnp->conn_af_isv6 = aconnp->conn_af_isv6;
2439 	econnp->conn_pkt_isv6 = aconnp->conn_pkt_isv6;
2440 	econnp->conn_ulp = aconnp->conn_ulp;
2441 
2442 	/* Done with old IPC. Drop its ref on its connp */
2443 	CONN_DEC_REF(aconnp);
2444 }
2445 
2446 
2447 /*
2448  * Adapt to the information, such as rtt and rtt_sd, provided from the
2449  * ire cached in conn_cache_ire. If no ire cached, do a ire lookup.
2450  *
2451  * Checks for multicast and broadcast destination address.
2452  * Returns zero on failure; non-zero if ok.
2453  *
2454  * Note that the MSS calculation here is based on the info given in
2455  * the IRE.  We do not do any calculation based on TCP options.  They
2456  * will be handled in tcp_rput_other() and tcp_rput_data() when TCP
2457  * knows which options to use.
2458  *
2459  * Note on how TCP gets its parameters for a connection.
2460  *
2461  * When a tcp_t structure is allocated, it gets all the default parameters.
2462  * In tcp_adapt_ire(), it gets those metric parameters, like rtt, rtt_sd,
2463  * spipe, rpipe, ... from the route metrics.  Route metric overrides the
2464  * default.  But if there is an associated tcp_host_param, it will override
2465  * the metrics.
2466  *
2467  * An incoming SYN with a multicast or broadcast destination address, is dropped
2468  * in 1 of 2 places.
2469  *
2470  * 1. If the packet was received over the wire it is dropped in
2471  * ip_rput_process_broadcast()
2472  *
2473  * 2. If the packet was received through internal IP loopback, i.e. the packet
2474  * was generated and received on the same machine, it is dropped in
2475  * ip_wput_local()
2476  *
2477  * An incoming SYN with a multicast or broadcast source address is always
2478  * dropped in tcp_adapt_ire. The same logic in tcp_adapt_ire also serves to
2479  * reject an attempt to connect to a broadcast or multicast (destination)
2480  * address.
2481  */
2482 static int
2483 tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp)
2484 {
2485 	tcp_hsp_t	*hsp;
2486 	ire_t		*ire;
2487 	ire_t		*sire = NULL;
2488 	iulp_t		*ire_uinfo = NULL;
2489 	uint32_t	mss_max;
2490 	uint32_t	mss;
2491 	boolean_t	tcp_detached = TCP_IS_DETACHED(tcp);
2492 	conn_t		*connp = tcp->tcp_connp;
2493 	boolean_t	ire_cacheable = B_FALSE;
2494 	zoneid_t	zoneid = connp->conn_zoneid;
2495 	int		match_flags = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT |
2496 			    MATCH_IRE_SECATTR;
2497 	ts_label_t	*tsl = crgetlabel(CONN_CRED(connp));
2498 	ill_t		*ill = NULL;
2499 	boolean_t	incoming = (ire_mp == NULL);
2500 
2501 	ASSERT(connp->conn_ire_cache == NULL);
2502 
2503 	if (tcp->tcp_ipversion == IPV4_VERSION) {
2504 
2505 		if (CLASSD(tcp->tcp_connp->conn_rem)) {
2506 			BUMP_MIB(&ip_mib, ipInDiscards);
2507 			return (0);
2508 		}
2509 		/*
2510 		 * If IP_NEXTHOP is set, then look for an IRE_CACHE
2511 		 * for the destination with the nexthop as gateway.
2512 		 * ire_ctable_lookup() is used because this particular
2513 		 * ire, if it exists, will be marked private.
2514 		 * If that is not available, use the interface ire
2515 		 * for the nexthop.
2516 		 *
2517 		 * TSol: tcp_update_label will detect label mismatches based
2518 		 * only on the destination's label, but that would not
2519 		 * detect label mismatches based on the security attributes
2520 		 * of routes or next hop gateway. Hence we need to pass the
2521 		 * label to ire_ftable_lookup below in order to locate the
2522 		 * right prefix (and/or) ire cache. Similarly we also need
2523 		 * pass the label to the ire_cache_lookup below to locate
2524 		 * the right ire that also matches on the label.
2525 		 */
2526 		if (tcp->tcp_connp->conn_nexthop_set) {
2527 			ire = ire_ctable_lookup(tcp->tcp_connp->conn_rem,
2528 			    tcp->tcp_connp->conn_nexthop_v4, 0, NULL, zoneid,
2529 			    tsl, MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW);
2530 			if (ire == NULL) {
2531 				ire = ire_ftable_lookup(
2532 				    tcp->tcp_connp->conn_nexthop_v4,
2533 				    0, 0, IRE_INTERFACE, NULL, NULL, zoneid, 0,
2534 				    tsl, match_flags);
2535 				if (ire == NULL)
2536 					return (0);
2537 			} else {
2538 				ire_uinfo = &ire->ire_uinfo;
2539 			}
2540 		} else {
2541 			ire = ire_cache_lookup(tcp->tcp_connp->conn_rem,
2542 			    zoneid, tsl);
2543 			if (ire != NULL) {
2544 				ire_cacheable = B_TRUE;
2545 				ire_uinfo = (ire_mp != NULL) ?
2546 				    &((ire_t *)ire_mp->b_rptr)->ire_uinfo:
2547 				    &ire->ire_uinfo;
2548 
2549 			} else {
2550 				if (ire_mp == NULL) {
2551 					ire = ire_ftable_lookup(
2552 					    tcp->tcp_connp->conn_rem,
2553 					    0, 0, 0, NULL, &sire, zoneid, 0,
2554 					    tsl, (MATCH_IRE_RECURSIVE |
2555 					    MATCH_IRE_DEFAULT));
2556 					if (ire == NULL)
2557 						return (0);
2558 					ire_uinfo = (sire != NULL) ?
2559 					    &sire->ire_uinfo :
2560 					    &ire->ire_uinfo;
2561 				} else {
2562 					ire = (ire_t *)ire_mp->b_rptr;
2563 					ire_uinfo =
2564 					    &((ire_t *)
2565 					    ire_mp->b_rptr)->ire_uinfo;
2566 				}
2567 			}
2568 		}
2569 		ASSERT(ire != NULL);
2570 
2571 		if ((ire->ire_src_addr == INADDR_ANY) ||
2572 		    (ire->ire_type & IRE_BROADCAST)) {
2573 			/*
2574 			 * ire->ire_mp is non null when ire_mp passed in is used
2575 			 * ire->ire_mp is set in ip_bind_insert_ire[_v6]().
2576 			 */
2577 			if (ire->ire_mp == NULL)
2578 				ire_refrele(ire);
2579 			if (sire != NULL)
2580 				ire_refrele(sire);
2581 			return (0);
2582 		}
2583 
2584 		if (tcp->tcp_ipha->ipha_src == INADDR_ANY) {
2585 			ipaddr_t src_addr;
2586 
2587 			/*
2588 			 * ip_bind_connected() has stored the correct source
2589 			 * address in conn_src.
2590 			 */
2591 			src_addr = tcp->tcp_connp->conn_src;
2592 			tcp->tcp_ipha->ipha_src = src_addr;
2593 			/*
2594 			 * Copy of the src addr. in tcp_t is needed
2595 			 * for the lookup funcs.
2596 			 */
2597 			IN6_IPADDR_TO_V4MAPPED(src_addr, &tcp->tcp_ip_src_v6);
2598 		}
2599 		/*
2600 		 * Set the fragment bit so that IP will tell us if the MTU
2601 		 * should change. IP tells us the latest setting of
2602 		 * ip_path_mtu_discovery through ire_frag_flag.
2603 		 */
2604 		if (ip_path_mtu_discovery) {
2605 			tcp->tcp_ipha->ipha_fragment_offset_and_flags =
2606 			    htons(IPH_DF);
2607 		}
2608 		/*
2609 		 * If ire_uinfo is NULL, this is the IRE_INTERFACE case
2610 		 * for IP_NEXTHOP. No cache ire has been found for the
2611 		 * destination and we are working with the nexthop's
2612 		 * interface ire. Since we need to forward all packets
2613 		 * to the nexthop first, we "blindly" set tcp_localnet
2614 		 * to false, eventhough the destination may also be
2615 		 * onlink.
2616 		 */
2617 		if (ire_uinfo == NULL)
2618 			tcp->tcp_localnet = 0;
2619 		else
2620 			tcp->tcp_localnet = (ire->ire_gateway_addr == 0);
2621 	} else {
2622 		/*
2623 		 * For incoming connection ire_mp = NULL
2624 		 * For outgoing connection ire_mp != NULL
2625 		 * Technically we should check conn_incoming_ill
2626 		 * when ire_mp is NULL and conn_outgoing_ill when
2627 		 * ire_mp is non-NULL. But this is performance
2628 		 * critical path and for IPV*_BOUND_IF, outgoing
2629 		 * and incoming ill are always set to the same value.
2630 		 */
2631 		ill_t	*dst_ill = NULL;
2632 		ipif_t  *dst_ipif = NULL;
2633 
2634 		ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill);
2635 
2636 		if (connp->conn_outgoing_ill != NULL) {
2637 			/* Outgoing or incoming path */
2638 			int   err;
2639 
2640 			dst_ill = conn_get_held_ill(connp,
2641 			    &connp->conn_outgoing_ill, &err);
2642 			if (err == ILL_LOOKUP_FAILED || dst_ill == NULL) {
2643 				ip1dbg(("tcp_adapt_ire: ill_lookup failed\n"));
2644 				return (0);
2645 			}
2646 			match_flags |= MATCH_IRE_ILL;
2647 			dst_ipif = dst_ill->ill_ipif;
2648 		}
2649 		ire = ire_ctable_lookup_v6(&tcp->tcp_connp->conn_remv6,
2650 		    0, 0, dst_ipif, zoneid, tsl, match_flags);
2651 
2652 		if (ire != NULL) {
2653 			ire_cacheable = B_TRUE;
2654 			ire_uinfo = (ire_mp != NULL) ?
2655 			    &((ire_t *)ire_mp->b_rptr)->ire_uinfo:
2656 			    &ire->ire_uinfo;
2657 		} else {
2658 			if (ire_mp == NULL) {
2659 				ire = ire_ftable_lookup_v6(
2660 				    &tcp->tcp_connp->conn_remv6,
2661 				    0, 0, 0, dst_ipif, &sire, zoneid,
2662 				    0, tsl, match_flags);
2663 				if (ire == NULL) {
2664 					if (dst_ill != NULL)
2665 						ill_refrele(dst_ill);
2666 					return (0);
2667 				}
2668 				ire_uinfo = (sire != NULL) ? &sire->ire_uinfo :
2669 				    &ire->ire_uinfo;
2670 			} else {
2671 				ire = (ire_t *)ire_mp->b_rptr;
2672 				ire_uinfo =
2673 				    &((ire_t *)ire_mp->b_rptr)->ire_uinfo;
2674 			}
2675 		}
2676 		if (dst_ill != NULL)
2677 			ill_refrele(dst_ill);
2678 
2679 		ASSERT(ire != NULL);
2680 		ASSERT(ire_uinfo != NULL);
2681 
2682 		if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6) ||
2683 		    IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) {
2684 			/*
2685 			 * ire->ire_mp is non null when ire_mp passed in is used
2686 			 * ire->ire_mp is set in ip_bind_insert_ire[_v6]().
2687 			 */
2688 			if (ire->ire_mp == NULL)
2689 				ire_refrele(ire);
2690 			if (sire != NULL)
2691 				ire_refrele(sire);
2692 			return (0);
2693 		}
2694 
2695 		if (IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) {
2696 			in6_addr_t	src_addr;
2697 
2698 			/*
2699 			 * ip_bind_connected_v6() has stored the correct source
2700 			 * address per IPv6 addr. selection policy in
2701 			 * conn_src_v6.
2702 			 */
2703 			src_addr = tcp->tcp_connp->conn_srcv6;
2704 
2705 			tcp->tcp_ip6h->ip6_src = src_addr;
2706 			/*
2707 			 * Copy of the src addr. in tcp_t is needed
2708 			 * for the lookup funcs.
2709 			 */
2710 			tcp->tcp_ip_src_v6 = src_addr;
2711 			ASSERT(IN6_ARE_ADDR_EQUAL(&tcp->tcp_ip6h->ip6_src,
2712 			    &connp->conn_srcv6));
2713 		}
2714 		tcp->tcp_localnet =
2715 		    IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6);
2716 	}
2717 
2718 	/*
2719 	 * This allows applications to fail quickly when connections are made
2720 	 * to dead hosts. Hosts can be labeled dead by adding a reject route
2721 	 * with both the RTF_REJECT and RTF_PRIVATE flags set.
2722 	 */
2723 	if ((ire->ire_flags & RTF_REJECT) &&
2724 	    (ire->ire_flags & RTF_PRIVATE))
2725 		goto error;
2726 
2727 	/*
2728 	 * Make use of the cached rtt and rtt_sd values to calculate the
2729 	 * initial RTO.  Note that they are already initialized in
2730 	 * tcp_init_values().
2731 	 * If ire_uinfo is NULL, i.e., we do not have a cache ire for
2732 	 * IP_NEXTHOP, but instead are using the interface ire for the
2733 	 * nexthop, then we do not use the ire_uinfo from that ire to
2734 	 * do any initializations.
2735 	 */
2736 	if (ire_uinfo != NULL) {
2737 		if (ire_uinfo->iulp_rtt != 0) {
2738 			clock_t	rto;
2739 
2740 			tcp->tcp_rtt_sa = ire_uinfo->iulp_rtt;
2741 			tcp->tcp_rtt_sd = ire_uinfo->iulp_rtt_sd;
2742 			rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
2743 			    tcp_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5);
2744 
2745 			if (rto > tcp_rexmit_interval_max) {
2746 				tcp->tcp_rto = tcp_rexmit_interval_max;
2747 			} else if (rto < tcp_rexmit_interval_min) {
2748 				tcp->tcp_rto = tcp_rexmit_interval_min;
2749 			} else {
2750 				tcp->tcp_rto = rto;
2751 			}
2752 		}
2753 		if (ire_uinfo->iulp_ssthresh != 0)
2754 			tcp->tcp_cwnd_ssthresh = ire_uinfo->iulp_ssthresh;
2755 		else
2756 			tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
2757 		if (ire_uinfo->iulp_spipe > 0) {
2758 			tcp->tcp_xmit_hiwater = MIN(ire_uinfo->iulp_spipe,
2759 			    tcp_max_buf);
2760 			if (tcp_snd_lowat_fraction != 0)
2761 				tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater /
2762 				    tcp_snd_lowat_fraction;
2763 			(void) tcp_maxpsz_set(tcp, B_TRUE);
2764 		}
2765 		/*
2766 		 * Note that up till now, acceptor always inherits receive
2767 		 * window from the listener.  But if there is a metrics
2768 		 * associated with a host, we should use that instead of
2769 		 * inheriting it from listener. Thus we need to pass this
2770 		 * info back to the caller.
2771 		 */
2772 		if (ire_uinfo->iulp_rpipe > 0) {
2773 			tcp->tcp_rwnd = MIN(ire_uinfo->iulp_rpipe, tcp_max_buf);
2774 		}
2775 
2776 		if (ire_uinfo->iulp_rtomax > 0) {
2777 			tcp->tcp_second_timer_threshold =
2778 			    ire_uinfo->iulp_rtomax;
2779 		}
2780 
2781 		/*
2782 		 * Use the metric option settings, iulp_tstamp_ok and
2783 		 * iulp_wscale_ok, only for active open. What this means
2784 		 * is that if the other side uses timestamp or window
2785 		 * scale option, TCP will also use those options. That
2786 		 * is for passive open.  If the application sets a
2787 		 * large window, window scale is enabled regardless of
2788 		 * the value in iulp_wscale_ok.  This is the behavior
2789 		 * since 2.6.  So we keep it.
2790 		 * The only case left in passive open processing is the
2791 		 * check for SACK.
2792 		 * For ECN, it should probably be like SACK.  But the
2793 		 * current value is binary, so we treat it like the other
2794 		 * cases.  The metric only controls active open.For passive
2795 		 * open, the ndd param, tcp_ecn_permitted, controls the
2796 		 * behavior.
2797 		 */
2798 		if (!tcp_detached) {
2799 			/*
2800 			 * The if check means that the following can only
2801 			 * be turned on by the metrics only IRE, but not off.
2802 			 */
2803 			if (ire_uinfo->iulp_tstamp_ok)
2804 				tcp->tcp_snd_ts_ok = B_TRUE;
2805 			if (ire_uinfo->iulp_wscale_ok)
2806 				tcp->tcp_snd_ws_ok = B_TRUE;
2807 			if (ire_uinfo->iulp_sack == 2)
2808 				tcp->tcp_snd_sack_ok = B_TRUE;
2809 			if (ire_uinfo->iulp_ecn_ok)
2810 				tcp->tcp_ecn_ok = B_TRUE;
2811 		} else {
2812 			/*
2813 			 * Passive open.
2814 			 *
2815 			 * As above, the if check means that SACK can only be
2816 			 * turned on by the metric only IRE.
2817 			 */
2818 			if (ire_uinfo->iulp_sack > 0) {
2819 				tcp->tcp_snd_sack_ok = B_TRUE;
2820 			}
2821 		}
2822 	}
2823 
2824 
2825 	/*
2826 	 * XXX: Note that currently, ire_max_frag can be as small as 68
2827 	 * because of PMTUd.  So tcp_mss may go to negative if combined
2828 	 * length of all those options exceeds 28 bytes.  But because
2829 	 * of the tcp_mss_min check below, we may not have a problem if
2830 	 * tcp_mss_min is of a reasonable value.  The default is 1 so
2831 	 * the negative problem still exists.  And the check defeats PMTUd.
2832 	 * In fact, if PMTUd finds that the MSS should be smaller than
2833 	 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min
2834 	 * value.
2835 	 *
2836 	 * We do not deal with that now.  All those problems related to
2837 	 * PMTUd will be fixed later.
2838 	 */
2839 	ASSERT(ire->ire_max_frag != 0);
2840 	mss = tcp->tcp_if_mtu = ire->ire_max_frag;
2841 	if (tcp->tcp_ipp_fields & IPPF_USE_MIN_MTU) {
2842 		if (tcp->tcp_ipp_use_min_mtu == IPV6_USE_MIN_MTU_NEVER) {
2843 			mss = MIN(mss, IPV6_MIN_MTU);
2844 		}
2845 	}
2846 
2847 	/* Sanity check for MSS value. */
2848 	if (tcp->tcp_ipversion == IPV4_VERSION)
2849 		mss_max = tcp_mss_max_ipv4;
2850 	else
2851 		mss_max = tcp_mss_max_ipv6;
2852 
2853 	if (tcp->tcp_ipversion == IPV6_VERSION &&
2854 	    (ire->ire_frag_flag & IPH_FRAG_HDR)) {
2855 		/*
2856 		 * After receiving an ICMPv6 "packet too big" message with a
2857 		 * MTU < 1280, and for multirouted IPv6 packets, the IP layer
2858 		 * will insert a 8-byte fragment header in every packet; we
2859 		 * reduce the MSS by that amount here.
2860 		 */
2861 		mss -= sizeof (ip6_frag_t);
2862 	}
2863 
2864 	if (tcp->tcp_ipsec_overhead == 0)
2865 		tcp->tcp_ipsec_overhead = conn_ipsec_length(connp);
2866 
2867 	mss -= tcp->tcp_ipsec_overhead;
2868 
2869 	if (mss < tcp_mss_min)
2870 		mss = tcp_mss_min;
2871 	if (mss > mss_max)
2872 		mss = mss_max;
2873 
2874 	/* Note that this is the maximum MSS, excluding all options. */
2875 	tcp->tcp_mss = mss;
2876 
2877 	/*
2878 	 * Initialize the ISS here now that we have the full connection ID.
2879 	 * The RFC 1948 method of initial sequence number generation requires
2880 	 * knowledge of the full connection ID before setting the ISS.
2881 	 */
2882 
2883 	tcp_iss_init(tcp);
2884 
2885 	if (ire->ire_type & (IRE_LOOPBACK | IRE_LOCAL))
2886 		tcp->tcp_loopback = B_TRUE;
2887 
2888 	if (tcp->tcp_ipversion == IPV4_VERSION) {
2889 		hsp = tcp_hsp_lookup(tcp->tcp_remote);
2890 	} else {
2891 		hsp = tcp_hsp_lookup_ipv6(&tcp->tcp_remote_v6);
2892 	}
2893 
2894 	if (hsp != NULL) {
2895 		/* Only modify if we're going to make them bigger */
2896 		if (hsp->tcp_hsp_sendspace > tcp->tcp_xmit_hiwater) {
2897 			tcp->tcp_xmit_hiwater = hsp->tcp_hsp_sendspace;
2898 			if (tcp_snd_lowat_fraction != 0)
2899 				tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater /
2900 					tcp_snd_lowat_fraction;
2901 		}
2902 
2903 		if (hsp->tcp_hsp_recvspace > tcp->tcp_rwnd) {
2904 			tcp->tcp_rwnd = hsp->tcp_hsp_recvspace;
2905 		}
2906 
2907 		/* Copy timestamp flag only for active open */
2908 		if (!tcp_detached)
2909 			tcp->tcp_snd_ts_ok = hsp->tcp_hsp_tstamp;
2910 	}
2911 
2912 	if (sire != NULL)
2913 		IRE_REFRELE(sire);
2914 
2915 	/*
2916 	 * If we got an IRE_CACHE and an ILL, go through their properties;
2917 	 * otherwise, this is deferred until later when we have an IRE_CACHE.
2918 	 */
2919 	if (tcp->tcp_loopback ||
2920 	    (ire_cacheable && (ill = ire_to_ill(ire)) != NULL)) {
2921 		/*
2922 		 * For incoming, see if this tcp may be MDT-capable.  For
2923 		 * outgoing, this process has been taken care of through
2924 		 * tcp_rput_other.
2925 		 */
2926 		tcp_ire_ill_check(tcp, ire, ill, incoming);
2927 		tcp->tcp_ire_ill_check_done = B_TRUE;
2928 	}
2929 
2930 	mutex_enter(&connp->conn_lock);
2931 	/*
2932 	 * Make sure that conn is not marked incipient
2933 	 * for incoming connections. A blind
2934 	 * removal of incipient flag is cheaper than
2935 	 * check and removal.
2936 	 */
2937 	connp->conn_state_flags &= ~CONN_INCIPIENT;
2938 
2939 	/* Must not cache forwarding table routes. */
2940 	if (ire_cacheable) {
2941 		rw_enter(&ire->ire_bucket->irb_lock, RW_READER);
2942 		if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) {
2943 			connp->conn_ire_cache = ire;
2944 			IRE_UNTRACE_REF(ire);
2945 			rw_exit(&ire->ire_bucket->irb_lock);
2946 			mutex_exit(&connp->conn_lock);
2947 			return (1);
2948 		}
2949 		rw_exit(&ire->ire_bucket->irb_lock);
2950 	}
2951 	mutex_exit(&connp->conn_lock);
2952 
2953 	if (ire->ire_mp == NULL)
2954 		ire_refrele(ire);
2955 	return (1);
2956 
2957 error:
2958 	if (ire->ire_mp == NULL)
2959 		ire_refrele(ire);
2960 	if (sire != NULL)
2961 		ire_refrele(sire);
2962 	return (0);
2963 }
2964 
2965 /*
2966  * tcp_bind is called (holding the writer lock) by tcp_wput_proto to process a
2967  * O_T_BIND_REQ/T_BIND_REQ message.
2968  */
2969 static void
2970 tcp_bind(tcp_t *tcp, mblk_t *mp)
2971 {
2972 	sin_t	*sin;
2973 	sin6_t	*sin6;
2974 	mblk_t	*mp1;
2975 	in_port_t requested_port;
2976 	in_port_t allocated_port;
2977 	struct T_bind_req *tbr;
2978 	boolean_t	bind_to_req_port_only;
2979 	boolean_t	backlog_update = B_FALSE;
2980 	boolean_t	user_specified;
2981 	in6_addr_t	v6addr;
2982 	ipaddr_t	v4addr;
2983 	uint_t	origipversion;
2984 	int	err;
2985 	queue_t *q = tcp->tcp_wq;
2986 	conn_t	*connp;
2987 	mlp_type_t addrtype, mlptype;
2988 	zone_t	*zone;
2989 	cred_t	*cr;
2990 	in_port_t mlp_port;
2991 
2992 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
2993 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) {
2994 		if (tcp->tcp_debug) {
2995 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
2996 			    "tcp_bind: bad req, len %u",
2997 			    (uint_t)(mp->b_wptr - mp->b_rptr));
2998 		}
2999 		tcp_err_ack(tcp, mp, TPROTO, 0);
3000 		return;
3001 	}
3002 	/* Make sure the largest address fits */
3003 	mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t) + 1, 1);
3004 	if (mp1 == NULL) {
3005 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
3006 		return;
3007 	}
3008 	mp = mp1;
3009 	tbr = (struct T_bind_req *)mp->b_rptr;
3010 	if (tcp->tcp_state >= TCPS_BOUND) {
3011 		if ((tcp->tcp_state == TCPS_BOUND ||
3012 		    tcp->tcp_state == TCPS_LISTEN) &&
3013 		    tcp->tcp_conn_req_max != tbr->CONIND_number &&
3014 		    tbr->CONIND_number > 0) {
3015 			/*
3016 			 * Handle listen() increasing CONIND_number.
3017 			 * This is more "liberal" then what the TPI spec
3018 			 * requires but is needed to avoid a t_unbind
3019 			 * when handling listen() since the port number
3020 			 * might be "stolen" between the unbind and bind.
3021 			 */
3022 			backlog_update = B_TRUE;
3023 			goto do_bind;
3024 		}
3025 		if (tcp->tcp_debug) {
3026 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
3027 			    "tcp_bind: bad state, %d", tcp->tcp_state);
3028 		}
3029 		tcp_err_ack(tcp, mp, TOUTSTATE, 0);
3030 		return;
3031 	}
3032 	origipversion = tcp->tcp_ipversion;
3033 
3034 	switch (tbr->ADDR_length) {
3035 	case 0:			/* request for a generic port */
3036 		tbr->ADDR_offset = sizeof (struct T_bind_req);
3037 		if (tcp->tcp_family == AF_INET) {
3038 			tbr->ADDR_length = sizeof (sin_t);
3039 			sin = (sin_t *)&tbr[1];
3040 			*sin = sin_null;
3041 			sin->sin_family = AF_INET;
3042 			mp->b_wptr = (uchar_t *)&sin[1];
3043 			tcp->tcp_ipversion = IPV4_VERSION;
3044 			IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &v6addr);
3045 		} else {
3046 			ASSERT(tcp->tcp_family == AF_INET6);
3047 			tbr->ADDR_length = sizeof (sin6_t);
3048 			sin6 = (sin6_t *)&tbr[1];
3049 			*sin6 = sin6_null;
3050 			sin6->sin6_family = AF_INET6;
3051 			mp->b_wptr = (uchar_t *)&sin6[1];
3052 			tcp->tcp_ipversion = IPV6_VERSION;
3053 			V6_SET_ZERO(v6addr);
3054 		}
3055 		requested_port = 0;
3056 		break;
3057 
3058 	case sizeof (sin_t):	/* Complete IPv4 address */
3059 		sin = (sin_t *)mi_offset_param(mp, tbr->ADDR_offset,
3060 		    sizeof (sin_t));
3061 		if (sin == NULL || !OK_32PTR((char *)sin)) {
3062 			if (tcp->tcp_debug) {
3063 				(void) strlog(TCP_MOD_ID, 0, 1,
3064 				    SL_ERROR|SL_TRACE,
3065 				    "tcp_bind: bad address parameter, "
3066 				    "offset %d, len %d",
3067 				    tbr->ADDR_offset, tbr->ADDR_length);
3068 			}
3069 			tcp_err_ack(tcp, mp, TPROTO, 0);
3070 			return;
3071 		}
3072 		/*
3073 		 * With sockets sockfs will accept bogus sin_family in
3074 		 * bind() and replace it with the family used in the socket
3075 		 * call.
3076 		 */
3077 		if (sin->sin_family != AF_INET ||
3078 		    tcp->tcp_family != AF_INET) {
3079 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
3080 			return;
3081 		}
3082 		requested_port = ntohs(sin->sin_port);
3083 		tcp->tcp_ipversion = IPV4_VERSION;
3084 		v4addr = sin->sin_addr.s_addr;
3085 		IN6_IPADDR_TO_V4MAPPED(v4addr, &v6addr);
3086 		break;
3087 
3088 	case sizeof (sin6_t): /* Complete IPv6 address */
3089 		sin6 = (sin6_t *)mi_offset_param(mp,
3090 		    tbr->ADDR_offset, sizeof (sin6_t));
3091 		if (sin6 == NULL || !OK_32PTR((char *)sin6)) {
3092 			if (tcp->tcp_debug) {
3093 				(void) strlog(TCP_MOD_ID, 0, 1,
3094 				    SL_ERROR|SL_TRACE,
3095 				    "tcp_bind: bad IPv6 address parameter, "
3096 				    "offset %d, len %d", tbr->ADDR_offset,
3097 				    tbr->ADDR_length);
3098 			}
3099 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
3100 			return;
3101 		}
3102 		if (sin6->sin6_family != AF_INET6 ||
3103 		    tcp->tcp_family != AF_INET6) {
3104 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
3105 			return;
3106 		}
3107 		requested_port = ntohs(sin6->sin6_port);
3108 		tcp->tcp_ipversion = IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr) ?
3109 		    IPV4_VERSION : IPV6_VERSION;
3110 		v6addr = sin6->sin6_addr;
3111 		break;
3112 
3113 	default:
3114 		if (tcp->tcp_debug) {
3115 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
3116 			    "tcp_bind: bad address length, %d",
3117 			    tbr->ADDR_length);
3118 		}
3119 		tcp_err_ack(tcp, mp, TBADADDR, 0);
3120 		return;
3121 	}
3122 	tcp->tcp_bound_source_v6 = v6addr;
3123 
3124 	/* Check for change in ipversion */
3125 	if (origipversion != tcp->tcp_ipversion) {
3126 		ASSERT(tcp->tcp_family == AF_INET6);
3127 		err = tcp->tcp_ipversion == IPV6_VERSION ?
3128 		    tcp_header_init_ipv6(tcp) : tcp_header_init_ipv4(tcp);
3129 		if (err) {
3130 			tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
3131 			return;
3132 		}
3133 	}
3134 
3135 	/*
3136 	 * Initialize family specific fields. Copy of the src addr.
3137 	 * in tcp_t is needed for the lookup funcs.
3138 	 */
3139 	if (tcp->tcp_ipversion == IPV6_VERSION) {
3140 		tcp->tcp_ip6h->ip6_src = v6addr;
3141 	} else {
3142 		IN6_V4MAPPED_TO_IPADDR(&v6addr, tcp->tcp_ipha->ipha_src);
3143 	}
3144 	tcp->tcp_ip_src_v6 = v6addr;
3145 
3146 	/*
3147 	 * For O_T_BIND_REQ:
3148 	 * Verify that the target port/addr is available, or choose
3149 	 * another.
3150 	 * For  T_BIND_REQ:
3151 	 * Verify that the target port/addr is available or fail.
3152 	 * In both cases when it succeeds the tcp is inserted in the
3153 	 * bind hash table. This ensures that the operation is atomic
3154 	 * under the lock on the hash bucket.
3155 	 */
3156 	bind_to_req_port_only = requested_port != 0 &&
3157 	    tbr->PRIM_type != O_T_BIND_REQ;
3158 	/*
3159 	 * Get a valid port (within the anonymous range and should not
3160 	 * be a privileged one) to use if the user has not given a port.
3161 	 * If multiple threads are here, they may all start with
3162 	 * with the same initial port. But, it should be fine as long as
3163 	 * tcp_bindi will ensure that no two threads will be assigned
3164 	 * the same port.
3165 	 *
3166 	 * NOTE: XXX If a privileged process asks for an anonymous port, we
3167 	 * still check for ports only in the range > tcp_smallest_non_priv_port,
3168 	 * unless TCP_ANONPRIVBIND option is set.
3169 	 */
3170 	mlptype = mlptSingle;
3171 	mlp_port = requested_port;
3172 	if (requested_port == 0) {
3173 		requested_port = tcp->tcp_anon_priv_bind ?
3174 		    tcp_get_next_priv_port(tcp) :
3175 		    tcp_update_next_port(tcp_next_port_to_try, tcp, B_TRUE);
3176 		if (requested_port == 0) {
3177 			tcp_err_ack(tcp, mp, TNOADDR, 0);
3178 			return;
3179 		}
3180 		user_specified = B_FALSE;
3181 
3182 		/*
3183 		 * If the user went through one of the RPC interfaces to create
3184 		 * this socket and RPC is MLP in this zone, then give him an
3185 		 * anonymous MLP.
3186 		 */
3187 		cr = DB_CREDDEF(mp, tcp->tcp_cred);
3188 		connp = tcp->tcp_connp;
3189 		if (connp->conn_anon_mlp && is_system_labeled()) {
3190 			zone = crgetzone(cr);
3191 			addrtype = tsol_mlp_addr_type(zone->zone_id,
3192 			    IPV6_VERSION, &v6addr);
3193 			if (addrtype == mlptSingle) {
3194 				tcp_err_ack(tcp, mp, TNOADDR, 0);
3195 				return;
3196 			}
3197 			mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP,
3198 			    PMAPPORT, addrtype);
3199 			mlp_port = PMAPPORT;
3200 		}
3201 	} else {
3202 		int i;
3203 		boolean_t priv = B_FALSE;
3204 
3205 		/*
3206 		 * If the requested_port is in the well-known privileged range,
3207 		 * verify that the stream was opened by a privileged user.
3208 		 * Note: No locks are held when inspecting tcp_g_*epriv_ports
3209 		 * but instead the code relies on:
3210 		 * - the fact that the address of the array and its size never
3211 		 *   changes
3212 		 * - the atomic assignment of the elements of the array
3213 		 */
3214 		cr = DB_CREDDEF(mp, tcp->tcp_cred);
3215 		if (requested_port < tcp_smallest_nonpriv_port) {
3216 			priv = B_TRUE;
3217 		} else {
3218 			for (i = 0; i < tcp_g_num_epriv_ports; i++) {
3219 				if (requested_port ==
3220 				    tcp_g_epriv_ports[i]) {
3221 					priv = B_TRUE;
3222 					break;
3223 				}
3224 			}
3225 		}
3226 		if (priv) {
3227 			if (secpolicy_net_privaddr(cr, requested_port) != 0) {
3228 				if (tcp->tcp_debug) {
3229 					(void) strlog(TCP_MOD_ID, 0, 1,
3230 					    SL_ERROR|SL_TRACE,
3231 					    "tcp_bind: no priv for port %d",
3232 					    requested_port);
3233 				}
3234 				tcp_err_ack(tcp, mp, TACCES, 0);
3235 				return;
3236 			}
3237 		}
3238 		user_specified = B_TRUE;
3239 
3240 		connp = tcp->tcp_connp;
3241 		if (is_system_labeled()) {
3242 			zone = crgetzone(cr);
3243 			addrtype = tsol_mlp_addr_type(zone->zone_id,
3244 			    IPV6_VERSION, &v6addr);
3245 			if (addrtype == mlptSingle) {
3246 				tcp_err_ack(tcp, mp, TNOADDR, 0);
3247 				return;
3248 			}
3249 			mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP,
3250 			    requested_port, addrtype);
3251 		}
3252 	}
3253 
3254 	if (mlptype != mlptSingle) {
3255 		if (secpolicy_net_bindmlp(cr) != 0) {
3256 			if (tcp->tcp_debug) {
3257 				(void) strlog(TCP_MOD_ID, 0, 1,
3258 				    SL_ERROR|SL_TRACE,
3259 				    "tcp_bind: no priv for multilevel port %d",
3260 				    requested_port);
3261 			}
3262 			tcp_err_ack(tcp, mp, TACCES, 0);
3263 			return;
3264 		}
3265 
3266 		/*
3267 		 * If we're specifically binding a shared IP address and the
3268 		 * port is MLP on shared addresses, then check to see if this
3269 		 * zone actually owns the MLP.  Reject if not.
3270 		 */
3271 		if (mlptype == mlptShared && addrtype == mlptShared) {
3272 			zoneid_t mlpzone;
3273 
3274 			mlpzone = tsol_mlp_findzone(IPPROTO_TCP,
3275 			    htons(mlp_port));
3276 			if (connp->conn_zoneid != mlpzone) {
3277 				if (tcp->tcp_debug) {
3278 					(void) strlog(TCP_MOD_ID, 0, 1,
3279 					    SL_ERROR|SL_TRACE,
3280 					    "tcp_bind: attempt to bind port "
3281 					    "%d on shared addr in zone %d "
3282 					    "(should be %d)",
3283 					    mlp_port, connp->conn_zoneid,
3284 					    mlpzone);
3285 				}
3286 				tcp_err_ack(tcp, mp, TACCES, 0);
3287 				return;
3288 			}
3289 		}
3290 
3291 		if (!user_specified) {
3292 			err = tsol_mlp_anon(zone, mlptype, connp->conn_ulp,
3293 			    requested_port, B_TRUE);
3294 			if (err != 0) {
3295 				if (tcp->tcp_debug) {
3296 					(void) strlog(TCP_MOD_ID, 0, 1,
3297 					    SL_ERROR|SL_TRACE,
3298 					    "tcp_bind: cannot establish anon "
3299 					    "MLP for port %d",
3300 					    requested_port);
3301 				}
3302 				tcp_err_ack(tcp, mp, TSYSERR, err);
3303 				return;
3304 			}
3305 			connp->conn_anon_port = B_TRUE;
3306 		}
3307 		connp->conn_mlp_type = mlptype;
3308 	}
3309 
3310 	allocated_port = tcp_bindi(tcp, requested_port, &v6addr,
3311 	    tcp->tcp_reuseaddr, B_FALSE, bind_to_req_port_only, user_specified);
3312 
3313 	if (allocated_port == 0) {
3314 		connp->conn_mlp_type = mlptSingle;
3315 		if (connp->conn_anon_port) {
3316 			connp->conn_anon_port = B_FALSE;
3317 			(void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp,
3318 			    requested_port, B_FALSE);
3319 		}
3320 		if (bind_to_req_port_only) {
3321 			if (tcp->tcp_debug) {
3322 				(void) strlog(TCP_MOD_ID, 0, 1,
3323 				    SL_ERROR|SL_TRACE,
3324 				    "tcp_bind: requested addr busy");
3325 			}
3326 			tcp_err_ack(tcp, mp, TADDRBUSY, 0);
3327 		} else {
3328 			/* If we are out of ports, fail the bind. */
3329 			if (tcp->tcp_debug) {
3330 				(void) strlog(TCP_MOD_ID, 0, 1,
3331 				    SL_ERROR|SL_TRACE,
3332 				    "tcp_bind: out of ports?");
3333 			}
3334 			tcp_err_ack(tcp, mp, TNOADDR, 0);
3335 		}
3336 		return;
3337 	}
3338 	ASSERT(tcp->tcp_state == TCPS_BOUND);
3339 do_bind:
3340 	if (!backlog_update) {
3341 		if (tcp->tcp_family == AF_INET)
3342 			sin->sin_port = htons(allocated_port);
3343 		else
3344 			sin6->sin6_port = htons(allocated_port);
3345 	}
3346 	if (tcp->tcp_family == AF_INET) {
3347 		if (tbr->CONIND_number != 0) {
3348 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type,
3349 			    sizeof (sin_t));
3350 		} else {
3351 			/* Just verify the local IP address */
3352 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, IP_ADDR_LEN);
3353 		}
3354 	} else {
3355 		if (tbr->CONIND_number != 0) {
3356 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type,
3357 			    sizeof (sin6_t));
3358 		} else {
3359 			/* Just verify the local IP address */
3360 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type,
3361 			    IPV6_ADDR_LEN);
3362 		}
3363 	}
3364 	if (mp1 == NULL) {
3365 		if (connp->conn_anon_port) {
3366 			connp->conn_anon_port = B_FALSE;
3367 			(void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp,
3368 			    requested_port, B_FALSE);
3369 		}
3370 		connp->conn_mlp_type = mlptSingle;
3371 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
3372 		return;
3373 	}
3374 
3375 	tbr->PRIM_type = T_BIND_ACK;
3376 	mp->b_datap->db_type = M_PCPROTO;
3377 
3378 	/* Chain in the reply mp for tcp_rput() */
3379 	mp1->b_cont = mp;
3380 	mp = mp1;
3381 
3382 	tcp->tcp_conn_req_max = tbr->CONIND_number;
3383 	if (tcp->tcp_conn_req_max) {
3384 		if (tcp->tcp_conn_req_max < tcp_conn_req_min)
3385 			tcp->tcp_conn_req_max = tcp_conn_req_min;
3386 		if (tcp->tcp_conn_req_max > tcp_conn_req_max_q)
3387 			tcp->tcp_conn_req_max = tcp_conn_req_max_q;
3388 		/*
3389 		 * If this is a listener, do not reset the eager list
3390 		 * and other stuffs.  Note that we don't check if the
3391 		 * existing eager list meets the new tcp_conn_req_max
3392 		 * requirement.
3393 		 */
3394 		if (tcp->tcp_state != TCPS_LISTEN) {
3395 			tcp->tcp_state = TCPS_LISTEN;
3396 			/* Initialize the chain. Don't need the eager_lock */
3397 			tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
3398 			tcp->tcp_second_ctimer_threshold =
3399 			    tcp_ip_abort_linterval;
3400 		}
3401 	}
3402 
3403 	/*
3404 	 * We can call ip_bind directly which returns a T_BIND_ACK mp. The
3405 	 * processing continues in tcp_rput_other().
3406 	 */
3407 	if (tcp->tcp_family == AF_INET6) {
3408 		ASSERT(tcp->tcp_connp->conn_af_isv6);
3409 		mp = ip_bind_v6(q, mp, tcp->tcp_connp, &tcp->tcp_sticky_ipp);
3410 	} else {
3411 		ASSERT(!tcp->tcp_connp->conn_af_isv6);
3412 		mp = ip_bind_v4(q, mp, tcp->tcp_connp);
3413 	}
3414 	/*
3415 	 * If the bind cannot complete immediately
3416 	 * IP will arrange to call tcp_rput_other
3417 	 * when the bind completes.
3418 	 */
3419 	if (mp != NULL) {
3420 		tcp_rput_other(tcp, mp);
3421 	} else {
3422 		/*
3423 		 * Bind will be resumed later. Need to ensure
3424 		 * that conn doesn't disappear when that happens.
3425 		 * This will be decremented in ip_resume_tcp_bind().
3426 		 */
3427 		CONN_INC_REF(tcp->tcp_connp);
3428 	}
3429 }
3430 
3431 
3432 /*
3433  * If the "bind_to_req_port_only" parameter is set, if the requested port
3434  * number is available, return it, If not return 0
3435  *
3436  * If "bind_to_req_port_only" parameter is not set and
3437  * If the requested port number is available, return it.  If not, return
3438  * the first anonymous port we happen across.  If no anonymous ports are
3439  * available, return 0. addr is the requested local address, if any.
3440  *
3441  * In either case, when succeeding update the tcp_t to record the port number
3442  * and insert it in the bind hash table.
3443  *
3444  * Note that TCP over IPv4 and IPv6 sockets can use the same port number
3445  * without setting SO_REUSEADDR. This is needed so that they
3446  * can be viewed as two independent transport protocols.
3447  */
3448 static in_port_t
3449 tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr,
3450     int reuseaddr, boolean_t quick_connect,
3451     boolean_t bind_to_req_port_only, boolean_t user_specified)
3452 {
3453 	/* number of times we have run around the loop */
3454 	int count = 0;
3455 	/* maximum number of times to run around the loop */
3456 	int loopmax;
3457 	conn_t *connp = tcp->tcp_connp;
3458 	zoneid_t zoneid = connp->conn_zoneid;
3459 
3460 	/*
3461 	 * Lookup for free addresses is done in a loop and "loopmax"
3462 	 * influences how long we spin in the loop
3463 	 */
3464 	if (bind_to_req_port_only) {
3465 		/*
3466 		 * If the requested port is busy, don't bother to look
3467 		 * for a new one. Setting loop maximum count to 1 has
3468 		 * that effect.
3469 		 */
3470 		loopmax = 1;
3471 	} else {
3472 		/*
3473 		 * If the requested port is busy, look for a free one
3474 		 * in the anonymous port range.
3475 		 * Set loopmax appropriately so that one does not look
3476 		 * forever in the case all of the anonymous ports are in use.
3477 		 */
3478 		if (tcp->tcp_anon_priv_bind) {
3479 			/*
3480 			 * loopmax =
3481 			 * 	(IPPORT_RESERVED-1) - tcp_min_anonpriv_port + 1
3482 			 */
3483 			loopmax = IPPORT_RESERVED - tcp_min_anonpriv_port;
3484 		} else {
3485 			loopmax = (tcp_largest_anon_port -
3486 			    tcp_smallest_anon_port + 1);
3487 		}
3488 	}
3489 	do {
3490 		uint16_t	lport;
3491 		tf_t		*tbf;
3492 		tcp_t		*ltcp;
3493 		conn_t		*lconnp;
3494 
3495 		lport = htons(port);
3496 
3497 		/*
3498 		 * Ensure that the tcp_t is not currently in the bind hash.
3499 		 * Hold the lock on the hash bucket to ensure that
3500 		 * the duplicate check plus the insertion is an atomic
3501 		 * operation.
3502 		 *
3503 		 * This function does an inline lookup on the bind hash list
3504 		 * Make sure that we access only members of tcp_t
3505 		 * and that we don't look at tcp_tcp, since we are not
3506 		 * doing a CONN_INC_REF.
3507 		 */
3508 		tcp_bind_hash_remove(tcp);
3509 		tbf = &tcp_bind_fanout[TCP_BIND_HASH(lport)];
3510 		mutex_enter(&tbf->tf_lock);
3511 		for (ltcp = tbf->tf_tcp; ltcp != NULL;
3512 		    ltcp = ltcp->tcp_bind_hash) {
3513 			boolean_t not_socket;
3514 			boolean_t exclbind;
3515 
3516 			if (lport != ltcp->tcp_lport)
3517 				continue;
3518 
3519 			lconnp = ltcp->tcp_connp;
3520 
3521 			/*
3522 			 * On a labeled system, we must treat bindings to ports
3523 			 * on shared IP addresses by sockets with MAC exemption
3524 			 * privilege as being in all zones, as there's
3525 			 * otherwise no way to identify the right receiver.
3526 			 */
3527 			if (!IPCL_ZONE_MATCH(ltcp->tcp_connp, zoneid) &&
3528 			    !lconnp->conn_mac_exempt &&
3529 			    !connp->conn_mac_exempt)
3530 				continue;
3531 
3532 			/*
3533 			 * If TCP_EXCLBIND is set for either the bound or
3534 			 * binding endpoint, the semantics of bind
3535 			 * is changed according to the following.
3536 			 *
3537 			 * spec = specified address (v4 or v6)
3538 			 * unspec = unspecified address (v4 or v6)
3539 			 * A = specified addresses are different for endpoints
3540 			 *
3541 			 * bound	bind to		allowed
3542 			 * -------------------------------------
3543 			 * unspec	unspec		no
3544 			 * unspec	spec		no
3545 			 * spec		unspec		no
3546 			 * spec		spec		yes if A
3547 			 *
3548 			 * For labeled systems, SO_MAC_EXEMPT behaves the same
3549 			 * as TCP_EXCLBIND, except that zoneid is ignored.
3550 			 *
3551 			 * Note:
3552 			 *
3553 			 * 1. Because of TLI semantics, an endpoint can go
3554 			 * back from, say TCP_ESTABLISHED to TCPS_LISTEN or
3555 			 * TCPS_BOUND, depending on whether it is originally
3556 			 * a listener or not.  That is why we need to check
3557 			 * for states greater than or equal to TCPS_BOUND
3558 			 * here.
3559 			 *
3560 			 * 2. Ideally, we should only check for state equals
3561 			 * to TCPS_LISTEN. And the following check should be
3562 			 * added.
3563 			 *
3564 			 * if (ltcp->tcp_state == TCPS_LISTEN ||
3565 			 *	!reuseaddr || !ltcp->tcp_reuseaddr) {
3566 			 *		...
3567 			 * }
3568 			 *
3569 			 * The semantics will be changed to this.  If the
3570 			 * endpoint on the list is in state not equal to
3571 			 * TCPS_LISTEN and both endpoints have SO_REUSEADDR
3572 			 * set, let the bind succeed.
3573 			 *
3574 			 * Because of (1), we cannot do that for TLI
3575 			 * endpoints.  But we can do that for socket endpoints.
3576 			 * If in future, we can change this going back
3577 			 * semantics, we can use the above check for TLI also.
3578 			 */
3579 			not_socket = !(TCP_IS_SOCKET(ltcp) &&
3580 			    TCP_IS_SOCKET(tcp));
3581 			exclbind = ltcp->tcp_exclbind || tcp->tcp_exclbind;
3582 
3583 			if (lconnp->conn_mac_exempt || connp->conn_mac_exempt ||
3584 			    (exclbind && (not_socket ||
3585 			    ltcp->tcp_state <= TCPS_ESTABLISHED))) {
3586 				if (V6_OR_V4_INADDR_ANY(
3587 				    ltcp->tcp_bound_source_v6) ||
3588 				    V6_OR_V4_INADDR_ANY(*laddr) ||
3589 				    IN6_ARE_ADDR_EQUAL(laddr,
3590 				    &ltcp->tcp_bound_source_v6)) {
3591 					break;
3592 				}
3593 				continue;
3594 			}
3595 
3596 			/*
3597 			 * Check ipversion to allow IPv4 and IPv6 sockets to
3598 			 * have disjoint port number spaces, if *_EXCLBIND
3599 			 * is not set and only if the application binds to a
3600 			 * specific port. We use the same autoassigned port
3601 			 * number space for IPv4 and IPv6 sockets.
3602 			 */
3603 			if (tcp->tcp_ipversion != ltcp->tcp_ipversion &&
3604 			    bind_to_req_port_only)
3605 				continue;
3606 
3607 			/*
3608 			 * Ideally, we should make sure that the source
3609 			 * address, remote address, and remote port in the
3610 			 * four tuple for this tcp-connection is unique.
3611 			 * However, trying to find out the local source
3612 			 * address would require too much code duplication
3613 			 * with IP, since IP needs needs to have that code
3614 			 * to support userland TCP implementations.
3615 			 */
3616 			if (quick_connect &&
3617 			    (ltcp->tcp_state > TCPS_LISTEN) &&
3618 			    ((tcp->tcp_fport != ltcp->tcp_fport) ||
3619 				!IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6,
3620 				    &ltcp->tcp_remote_v6)))
3621 				continue;
3622 
3623 			if (!reuseaddr) {
3624 				/*
3625 				 * No socket option SO_REUSEADDR.
3626 				 * If existing port is bound to
3627 				 * a non-wildcard IP address
3628 				 * and the requesting stream is
3629 				 * bound to a distinct
3630 				 * different IP addresses
3631 				 * (non-wildcard, also), keep
3632 				 * going.
3633 				 */
3634 				if (!V6_OR_V4_INADDR_ANY(*laddr) &&
3635 				    !V6_OR_V4_INADDR_ANY(
3636 				    ltcp->tcp_bound_source_v6) &&
3637 				    !IN6_ARE_ADDR_EQUAL(laddr,
3638 					&ltcp->tcp_bound_source_v6))
3639 					continue;
3640 				if (ltcp->tcp_state >= TCPS_BOUND) {
3641 					/*
3642 					 * This port is being used and
3643 					 * its state is >= TCPS_BOUND,
3644 					 * so we can't bind to it.
3645 					 */
3646 					break;
3647 				}
3648 			} else {
3649 				/*
3650 				 * socket option SO_REUSEADDR is set on the
3651 				 * binding tcp_t.
3652 				 *
3653 				 * If two streams are bound to
3654 				 * same IP address or both addr
3655 				 * and bound source are wildcards
3656 				 * (INADDR_ANY), we want to stop
3657 				 * searching.
3658 				 * We have found a match of IP source
3659 				 * address and source port, which is
3660 				 * refused regardless of the
3661 				 * SO_REUSEADDR setting, so we break.
3662 				 */
3663 				if (IN6_ARE_ADDR_EQUAL(laddr,
3664 				    &ltcp->tcp_bound_source_v6) &&
3665 				    (ltcp->tcp_state == TCPS_LISTEN ||
3666 					ltcp->tcp_state == TCPS_BOUND))
3667 					break;
3668 			}
3669 		}
3670 		if (ltcp != NULL) {
3671 			/* The port number is busy */
3672 			mutex_exit(&tbf->tf_lock);
3673 		} else {
3674 			/*
3675 			 * This port is ours. Insert in fanout and mark as
3676 			 * bound to prevent others from getting the port
3677 			 * number.
3678 			 */
3679 			tcp->tcp_state = TCPS_BOUND;
3680 			tcp->tcp_lport = htons(port);
3681 			*(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport;
3682 
3683 			ASSERT(&tcp_bind_fanout[TCP_BIND_HASH(
3684 			    tcp->tcp_lport)] == tbf);
3685 			tcp_bind_hash_insert(tbf, tcp, 1);
3686 
3687 			mutex_exit(&tbf->tf_lock);
3688 
3689 			/*
3690 			 * We don't want tcp_next_port_to_try to "inherit"
3691 			 * a port number supplied by the user in a bind.
3692 			 */
3693 			if (user_specified)
3694 				return (port);
3695 
3696 			/*
3697 			 * This is the only place where tcp_next_port_to_try
3698 			 * is updated. After the update, it may or may not
3699 			 * be in the valid range.
3700 			 */
3701 			if (!tcp->tcp_anon_priv_bind)
3702 				tcp_next_port_to_try = port + 1;
3703 			return (port);
3704 		}
3705 
3706 		if (tcp->tcp_anon_priv_bind) {
3707 			port = tcp_get_next_priv_port(tcp);
3708 		} else {
3709 			if (count == 0 && user_specified) {
3710 				/*
3711 				 * We may have to return an anonymous port. So
3712 				 * get one to start with.
3713 				 */
3714 				port =
3715 				    tcp_update_next_port(tcp_next_port_to_try,
3716 					tcp, B_TRUE);
3717 				user_specified = B_FALSE;
3718 			} else {
3719 				port = tcp_update_next_port(port + 1, tcp,
3720 				    B_FALSE);
3721 			}
3722 		}
3723 		if (port == 0)
3724 			break;
3725 
3726 		/*
3727 		 * Don't let this loop run forever in the case where
3728 		 * all of the anonymous ports are in use.
3729 		 */
3730 	} while (++count < loopmax);
3731 	return (0);
3732 }
3733 
3734 /*
3735  * We are dying for some reason.  Try to do it gracefully.  (May be called
3736  * as writer.)
3737  *
3738  * Return -1 if the structure was not cleaned up (if the cleanup had to be
3739  * done by a service procedure).
3740  * TBD - Should the return value distinguish between the tcp_t being
3741  * freed and it being reinitialized?
3742  */
3743 static int
3744 tcp_clean_death(tcp_t *tcp, int err, uint8_t tag)
3745 {
3746 	mblk_t	*mp;
3747 	queue_t	*q;
3748 
3749 	TCP_CLD_STAT(tag);
3750 
3751 #if TCP_TAG_CLEAN_DEATH
3752 	tcp->tcp_cleandeathtag = tag;
3753 #endif
3754 
3755 	if (tcp->tcp_fused)
3756 		tcp_unfuse(tcp);
3757 
3758 	if (tcp->tcp_linger_tid != 0 &&
3759 	    TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) {
3760 		tcp_stop_lingering(tcp);
3761 	}
3762 
3763 	ASSERT(tcp != NULL);
3764 	ASSERT((tcp->tcp_family == AF_INET &&
3765 	    tcp->tcp_ipversion == IPV4_VERSION) ||
3766 	    (tcp->tcp_family == AF_INET6 &&
3767 	    (tcp->tcp_ipversion == IPV4_VERSION ||
3768 	    tcp->tcp_ipversion == IPV6_VERSION)));
3769 
3770 	if (TCP_IS_DETACHED(tcp)) {
3771 		if (tcp->tcp_hard_binding) {
3772 			/*
3773 			 * Its an eager that we are dealing with. We close the
3774 			 * eager but in case a conn_ind has already gone to the
3775 			 * listener, let tcp_accept_finish() send a discon_ind
3776 			 * to the listener and drop the last reference. If the
3777 			 * listener doesn't even know about the eager i.e. the
3778 			 * conn_ind hasn't gone up, blow away the eager and drop
3779 			 * the last reference as well. If the conn_ind has gone
3780 			 * up, state should be BOUND. tcp_accept_finish
3781 			 * will figure out that the connection has received a
3782 			 * RST and will send a DISCON_IND to the application.
3783 			 */
3784 			tcp_closei_local(tcp);
3785 			if (tcp->tcp_conn.tcp_eager_conn_ind != NULL) {
3786 				CONN_DEC_REF(tcp->tcp_connp);
3787 			} else {
3788 				tcp->tcp_state = TCPS_BOUND;
3789 			}
3790 		} else {
3791 			tcp_close_detached(tcp);
3792 		}
3793 		return (0);
3794 	}
3795 
3796 	TCP_STAT(tcp_clean_death_nondetached);
3797 
3798 	/*
3799 	 * If T_ORDREL_IND has not been sent yet (done when service routine
3800 	 * is run) postpone cleaning up the endpoint until service routine
3801 	 * has sent up the T_ORDREL_IND. Avoid clearing out an existing
3802 	 * client_errno since tcp_close uses the client_errno field.
3803 	 */
3804 	if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
3805 		if (err != 0)
3806 			tcp->tcp_client_errno = err;
3807 
3808 		tcp->tcp_deferred_clean_death = B_TRUE;
3809 		return (-1);
3810 	}
3811 
3812 	q = tcp->tcp_rq;
3813 
3814 	/* Trash all inbound data */
3815 	flushq(q, FLUSHALL);
3816 
3817 	/*
3818 	 * If we are at least part way open and there is error
3819 	 * (err==0 implies no error)
3820 	 * notify our client by a T_DISCON_IND.
3821 	 */
3822 	if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) {
3823 		if (tcp->tcp_state >= TCPS_ESTABLISHED &&
3824 		    !TCP_IS_SOCKET(tcp)) {
3825 			/*
3826 			 * Send M_FLUSH according to TPI. Because sockets will
3827 			 * (and must) ignore FLUSHR we do that only for TPI
3828 			 * endpoints and sockets in STREAMS mode.
3829 			 */
3830 			(void) putnextctl1(q, M_FLUSH, FLUSHR);
3831 		}
3832 		if (tcp->tcp_debug) {
3833 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
3834 			    "tcp_clean_death: discon err %d", err);
3835 		}
3836 		mp = mi_tpi_discon_ind(NULL, err, 0);
3837 		if (mp != NULL) {
3838 			putnext(q, mp);
3839 		} else {
3840 			if (tcp->tcp_debug) {
3841 				(void) strlog(TCP_MOD_ID, 0, 1,
3842 				    SL_ERROR|SL_TRACE,
3843 				    "tcp_clean_death, sending M_ERROR");
3844 			}
3845 			(void) putnextctl1(q, M_ERROR, EPROTO);
3846 		}
3847 		if (tcp->tcp_state <= TCPS_SYN_RCVD) {
3848 			/* SYN_SENT or SYN_RCVD */
3849 			BUMP_MIB(&tcp_mib, tcpAttemptFails);
3850 		} else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) {
3851 			/* ESTABLISHED or CLOSE_WAIT */
3852 			BUMP_MIB(&tcp_mib, tcpEstabResets);
3853 		}
3854 	}
3855 
3856 	tcp_reinit(tcp);
3857 	return (-1);
3858 }
3859 
3860 /*
3861  * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout
3862  * to expire, stop the wait and finish the close.
3863  */
3864 static void
3865 tcp_stop_lingering(tcp_t *tcp)
3866 {
3867 	clock_t	delta = 0;
3868 
3869 	tcp->tcp_linger_tid = 0;
3870 	if (tcp->tcp_state > TCPS_LISTEN) {
3871 		tcp_acceptor_hash_remove(tcp);
3872 		if (tcp->tcp_flow_stopped) {
3873 			tcp_clrqfull(tcp);
3874 		}
3875 
3876 		if (tcp->tcp_timer_tid != 0) {
3877 			delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
3878 			tcp->tcp_timer_tid = 0;
3879 		}
3880 		/*
3881 		 * Need to cancel those timers which will not be used when
3882 		 * TCP is detached.  This has to be done before the tcp_wq
3883 		 * is set to the global queue.
3884 		 */
3885 		tcp_timers_stop(tcp);
3886 
3887 
3888 		tcp->tcp_detached = B_TRUE;
3889 		tcp->tcp_rq = tcp_g_q;
3890 		tcp->tcp_wq = WR(tcp_g_q);
3891 
3892 		if (tcp->tcp_state == TCPS_TIME_WAIT) {
3893 			tcp_time_wait_append(tcp);
3894 			TCP_DBGSTAT(tcp_detach_time_wait);
3895 			goto finish;
3896 		}
3897 
3898 		/*
3899 		 * If delta is zero the timer event wasn't executed and was
3900 		 * successfully canceled. In this case we need to restart it
3901 		 * with the minimal delta possible.
3902 		 */
3903 		if (delta >= 0) {
3904 			tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer,
3905 			    delta ? delta : 1);
3906 		}
3907 	} else {
3908 		tcp_closei_local(tcp);
3909 		CONN_DEC_REF(tcp->tcp_connp);
3910 	}
3911 finish:
3912 	/* Signal closing thread that it can complete close */
3913 	mutex_enter(&tcp->tcp_closelock);
3914 	tcp->tcp_detached = B_TRUE;
3915 	tcp->tcp_rq = tcp_g_q;
3916 	tcp->tcp_wq = WR(tcp_g_q);
3917 	tcp->tcp_closed = 1;
3918 	cv_signal(&tcp->tcp_closecv);
3919 	mutex_exit(&tcp->tcp_closelock);
3920 }
3921 
3922 /*
3923  * Handle lingering timeouts. This function is called when the SO_LINGER timeout
3924  * expires.
3925  */
3926 static void
3927 tcp_close_linger_timeout(void *arg)
3928 {
3929 	conn_t	*connp = (conn_t *)arg;
3930 	tcp_t 	*tcp = connp->conn_tcp;
3931 
3932 	tcp->tcp_client_errno = ETIMEDOUT;
3933 	tcp_stop_lingering(tcp);
3934 }
3935 
3936 static int
3937 tcp_close(queue_t *q, int flags)
3938 {
3939 	conn_t		*connp = Q_TO_CONN(q);
3940 	tcp_t		*tcp = connp->conn_tcp;
3941 	mblk_t 		*mp = &tcp->tcp_closemp;
3942 	boolean_t	conn_ioctl_cleanup_reqd = B_FALSE;
3943 
3944 	ASSERT(WR(q)->q_next == NULL);
3945 	ASSERT(connp->conn_ref >= 2);
3946 	ASSERT((connp->conn_flags & IPCL_TCPMOD) == 0);
3947 
3948 	/*
3949 	 * We are being closed as /dev/tcp or /dev/tcp6.
3950 	 *
3951 	 * Mark the conn as closing. ill_pending_mp_add will not
3952 	 * add any mp to the pending mp list, after this conn has
3953 	 * started closing. Same for sq_pending_mp_add
3954 	 */
3955 	mutex_enter(&connp->conn_lock);
3956 	connp->conn_state_flags |= CONN_CLOSING;
3957 	if (connp->conn_oper_pending_ill != NULL)
3958 		conn_ioctl_cleanup_reqd = B_TRUE;
3959 	CONN_INC_REF_LOCKED(connp);
3960 	mutex_exit(&connp->conn_lock);
3961 	tcp->tcp_closeflags = (uint8_t)flags;
3962 	ASSERT(connp->conn_ref >= 3);
3963 
3964 	(*tcp_squeue_close_proc)(connp->conn_sqp, mp,
3965 	    tcp_close_output, connp, SQTAG_IP_TCP_CLOSE);
3966 
3967 	mutex_enter(&tcp->tcp_closelock);
3968 
3969 	while (!tcp->tcp_closed)
3970 		cv_wait(&tcp->tcp_closecv, &tcp->tcp_closelock);
3971 	mutex_exit(&tcp->tcp_closelock);
3972 	/*
3973 	 * In the case of listener streams that have eagers in the q or q0
3974 	 * we wait for the eagers to drop their reference to us. tcp_rq and
3975 	 * tcp_wq of the eagers point to our queues. By waiting for the
3976 	 * refcnt to drop to 1, we are sure that the eagers have cleaned
3977 	 * up their queue pointers and also dropped their references to us.
3978 	 */
3979 	if (tcp->tcp_wait_for_eagers) {
3980 		mutex_enter(&connp->conn_lock);
3981 		while (connp->conn_ref != 1) {
3982 			cv_wait(&connp->conn_cv, &connp->conn_lock);
3983 		}
3984 		mutex_exit(&connp->conn_lock);
3985 	}
3986 	/*
3987 	 * ioctl cleanup. The mp is queued in the
3988 	 * ill_pending_mp or in the sq_pending_mp.
3989 	 */
3990 	if (conn_ioctl_cleanup_reqd)
3991 		conn_ioctl_cleanup(connp);
3992 
3993 	qprocsoff(q);
3994 	inet_minor_free(ip_minor_arena, connp->conn_dev);
3995 
3996 	tcp->tcp_cpid = -1;
3997 
3998 	/*
3999 	 * Drop IP's reference on the conn. This is the last reference
4000 	 * on the connp if the state was less than established. If the
4001 	 * connection has gone into timewait state, then we will have
4002 	 * one ref for the TCP and one more ref (total of two) for the
4003 	 * classifier connected hash list (a timewait connections stays
4004 	 * in connected hash till closed).
4005 	 *
4006 	 * We can't assert the references because there might be other
4007 	 * transient reference places because of some walkers or queued
4008 	 * packets in squeue for the timewait state.
4009 	 */
4010 	CONN_DEC_REF(connp);
4011 	q->q_ptr = WR(q)->q_ptr = NULL;
4012 	return (0);
4013 }
4014 
4015 static int
4016 tcpclose_accept(queue_t *q)
4017 {
4018 	ASSERT(WR(q)->q_qinfo == &tcp_acceptor_winit);
4019 
4020 	/*
4021 	 * We had opened an acceptor STREAM for sockfs which is
4022 	 * now being closed due to some error.
4023 	 */
4024 	qprocsoff(q);
4025 	inet_minor_free(ip_minor_arena, (dev_t)q->q_ptr);
4026 	q->q_ptr = WR(q)->q_ptr = NULL;
4027 	return (0);
4028 }
4029 
4030 
4031 /*
4032  * Called by streams close routine via squeues when our client blows off her
4033  * descriptor, we take this to mean: "close the stream state NOW, close the tcp
4034  * connection politely" When SO_LINGER is set (with a non-zero linger time and
4035  * it is not a nonblocking socket) then this routine sleeps until the FIN is
4036  * acked.
4037  *
4038  * NOTE: tcp_close potentially returns error when lingering.
4039  * However, the stream head currently does not pass these errors
4040  * to the application. 4.4BSD only returns EINTR and EWOULDBLOCK
4041  * errors to the application (from tsleep()) and not errors
4042  * like ECONNRESET caused by receiving a reset packet.
4043  */
4044 
4045 /* ARGSUSED */
4046 static void
4047 tcp_close_output(void *arg, mblk_t *mp, void *arg2)
4048 {
4049 	char	*msg;
4050 	conn_t	*connp = (conn_t *)arg;
4051 	tcp_t	*tcp = connp->conn_tcp;
4052 	clock_t	delta = 0;
4053 
4054 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
4055 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
4056 
4057 	/* Cancel any pending timeout */
4058 	if (tcp->tcp_ordrelid != 0) {
4059 		if (tcp->tcp_timeout) {
4060 			(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ordrelid);
4061 		}
4062 		tcp->tcp_ordrelid = 0;
4063 		tcp->tcp_timeout = B_FALSE;
4064 	}
4065 
4066 	mutex_enter(&tcp->tcp_eager_lock);
4067 	if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) {
4068 		/* Cleanup for listener */
4069 		tcp_eager_cleanup(tcp, 0);
4070 		tcp->tcp_wait_for_eagers = 1;
4071 	}
4072 	mutex_exit(&tcp->tcp_eager_lock);
4073 
4074 	connp->conn_mdt_ok = B_FALSE;
4075 	tcp->tcp_mdt = B_FALSE;
4076 
4077 	msg = NULL;
4078 	switch (tcp->tcp_state) {
4079 	case TCPS_CLOSED:
4080 	case TCPS_IDLE:
4081 	case TCPS_BOUND:
4082 	case TCPS_LISTEN:
4083 		break;
4084 	case TCPS_SYN_SENT:
4085 		msg = "tcp_close, during connect";
4086 		break;
4087 	case TCPS_SYN_RCVD:
4088 		/*
4089 		 * Close during the connect 3-way handshake
4090 		 * but here there may or may not be pending data
4091 		 * already on queue. Process almost same as in
4092 		 * the ESTABLISHED state.
4093 		 */
4094 		/* FALLTHRU */
4095 	default:
4096 		if (tcp->tcp_fused)
4097 			tcp_unfuse(tcp);
4098 
4099 		/*
4100 		 * If SO_LINGER has set a zero linger time, abort the
4101 		 * connection with a reset.
4102 		 */
4103 		if (tcp->tcp_linger && tcp->tcp_lingertime == 0) {
4104 			msg = "tcp_close, zero lingertime";
4105 			break;
4106 		}
4107 
4108 		ASSERT(tcp->tcp_hard_bound || tcp->tcp_hard_binding);
4109 		/*
4110 		 * Abort connection if there is unread data queued.
4111 		 */
4112 		if (tcp->tcp_rcv_list || tcp->tcp_reass_head) {
4113 			msg = "tcp_close, unread data";
4114 			break;
4115 		}
4116 		/*
4117 		 * tcp_hard_bound is now cleared thus all packets go through
4118 		 * tcp_lookup. This fact is used by tcp_detach below.
4119 		 *
4120 		 * We have done a qwait() above which could have possibly
4121 		 * drained more messages in turn causing transition to a
4122 		 * different state. Check whether we have to do the rest
4123 		 * of the processing or not.
4124 		 */
4125 		if (tcp->tcp_state <= TCPS_LISTEN)
4126 			break;
4127 
4128 		/*
4129 		 * Transmit the FIN before detaching the tcp_t.
4130 		 * After tcp_detach returns this queue/perimeter
4131 		 * no longer owns the tcp_t thus others can modify it.
4132 		 */
4133 		(void) tcp_xmit_end(tcp);
4134 
4135 		/*
4136 		 * If lingering on close then wait until the fin is acked,
4137 		 * the SO_LINGER time passes, or a reset is sent/received.
4138 		 */
4139 		if (tcp->tcp_linger && tcp->tcp_lingertime > 0 &&
4140 		    !(tcp->tcp_fin_acked) &&
4141 		    tcp->tcp_state >= TCPS_ESTABLISHED) {
4142 			if (tcp->tcp_closeflags & (FNDELAY|FNONBLOCK)) {
4143 				tcp->tcp_client_errno = EWOULDBLOCK;
4144 			} else if (tcp->tcp_client_errno == 0) {
4145 
4146 				ASSERT(tcp->tcp_linger_tid == 0);
4147 
4148 				tcp->tcp_linger_tid = TCP_TIMER(tcp,
4149 				    tcp_close_linger_timeout,
4150 				    tcp->tcp_lingertime * hz);
4151 
4152 				/* tcp_close_linger_timeout will finish close */
4153 				if (tcp->tcp_linger_tid == 0)
4154 					tcp->tcp_client_errno = ENOSR;
4155 				else
4156 					return;
4157 			}
4158 
4159 			/*
4160 			 * Check if we need to detach or just close
4161 			 * the instance.
4162 			 */
4163 			if (tcp->tcp_state <= TCPS_LISTEN)
4164 				break;
4165 		}
4166 
4167 		/*
4168 		 * Make sure that no other thread will access the tcp_rq of
4169 		 * this instance (through lookups etc.) as tcp_rq will go
4170 		 * away shortly.
4171 		 */
4172 		tcp_acceptor_hash_remove(tcp);
4173 
4174 		if (tcp->tcp_flow_stopped) {
4175 			tcp_clrqfull(tcp);
4176 		}
4177 
4178 		if (tcp->tcp_timer_tid != 0) {
4179 			delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
4180 			tcp->tcp_timer_tid = 0;
4181 		}
4182 		/*
4183 		 * Need to cancel those timers which will not be used when
4184 		 * TCP is detached.  This has to be done before the tcp_wq
4185 		 * is set to the global queue.
4186 		 */
4187 		tcp_timers_stop(tcp);
4188 
4189 		tcp->tcp_detached = B_TRUE;
4190 		if (tcp->tcp_state == TCPS_TIME_WAIT) {
4191 			tcp_time_wait_append(tcp);
4192 			TCP_DBGSTAT(tcp_detach_time_wait);
4193 			ASSERT(connp->conn_ref >= 3);
4194 			goto finish;
4195 		}
4196 
4197 		/*
4198 		 * If delta is zero the timer event wasn't executed and was
4199 		 * successfully canceled. In this case we need to restart it
4200 		 * with the minimal delta possible.
4201 		 */
4202 		if (delta >= 0)
4203 			tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer,
4204 			    delta ? delta : 1);
4205 
4206 		ASSERT(connp->conn_ref >= 3);
4207 		goto finish;
4208 	}
4209 
4210 	/* Detach did not complete. Still need to remove q from stream. */
4211 	if (msg) {
4212 		if (tcp->tcp_state == TCPS_ESTABLISHED ||
4213 		    tcp->tcp_state == TCPS_CLOSE_WAIT)
4214 			BUMP_MIB(&tcp_mib, tcpEstabResets);
4215 		if (tcp->tcp_state == TCPS_SYN_SENT ||
4216 		    tcp->tcp_state == TCPS_SYN_RCVD)
4217 			BUMP_MIB(&tcp_mib, tcpAttemptFails);
4218 		tcp_xmit_ctl(msg, tcp,  tcp->tcp_snxt, 0, TH_RST);
4219 	}
4220 
4221 	tcp_closei_local(tcp);
4222 	CONN_DEC_REF(connp);
4223 	ASSERT(connp->conn_ref >= 2);
4224 
4225 finish:
4226 	/*
4227 	 * Although packets are always processed on the correct
4228 	 * tcp's perimeter and access is serialized via squeue's,
4229 	 * IP still needs a queue when sending packets in time_wait
4230 	 * state so use WR(tcp_g_q) till ip_output() can be
4231 	 * changed to deal with just connp. For read side, we
4232 	 * could have set tcp_rq to NULL but there are some cases
4233 	 * in tcp_rput_data() from early days of this code which
4234 	 * do a putnext without checking if tcp is closed. Those
4235 	 * need to be identified before both tcp_rq and tcp_wq
4236 	 * can be set to NULL and tcp_q_q can disappear forever.
4237 	 */
4238 	mutex_enter(&tcp->tcp_closelock);
4239 	/*
4240 	 * Don't change the queues in the case of a listener that has
4241 	 * eagers in its q or q0. It could surprise the eagers.
4242 	 * Instead wait for the eagers outside the squeue.
4243 	 */
4244 	if (!tcp->tcp_wait_for_eagers) {
4245 		tcp->tcp_detached = B_TRUE;
4246 		tcp->tcp_rq = tcp_g_q;
4247 		tcp->tcp_wq = WR(tcp_g_q);
4248 	}
4249 
4250 	/* Signal tcp_close() to finish closing. */
4251 	tcp->tcp_closed = 1;
4252 	cv_signal(&tcp->tcp_closecv);
4253 	mutex_exit(&tcp->tcp_closelock);
4254 }
4255 
4256 
4257 /*
4258  * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp.
4259  * Some stream heads get upset if they see these later on as anything but NULL.
4260  */
4261 static void
4262 tcp_close_mpp(mblk_t **mpp)
4263 {
4264 	mblk_t	*mp;
4265 
4266 	if ((mp = *mpp) != NULL) {
4267 		do {
4268 			mp->b_next = NULL;
4269 			mp->b_prev = NULL;
4270 		} while ((mp = mp->b_cont) != NULL);
4271 
4272 		mp = *mpp;
4273 		*mpp = NULL;
4274 		freemsg(mp);
4275 	}
4276 }
4277 
4278 /* Do detached close. */
4279 static void
4280 tcp_close_detached(tcp_t *tcp)
4281 {
4282 	if (tcp->tcp_fused)
4283 		tcp_unfuse(tcp);
4284 
4285 	/*
4286 	 * Clustering code serializes TCP disconnect callbacks and
4287 	 * cluster tcp list walks by blocking a TCP disconnect callback
4288 	 * if a cluster tcp list walk is in progress. This ensures
4289 	 * accurate accounting of TCPs in the cluster code even though
4290 	 * the TCP list walk itself is not atomic.
4291 	 */
4292 	tcp_closei_local(tcp);
4293 	CONN_DEC_REF(tcp->tcp_connp);
4294 }
4295 
4296 /*
4297  * Stop all TCP timers, and free the timer mblks if requested.
4298  */
4299 void
4300 tcp_timers_stop(tcp_t *tcp)
4301 {
4302 	if (tcp->tcp_timer_tid != 0) {
4303 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
4304 		tcp->tcp_timer_tid = 0;
4305 	}
4306 	if (tcp->tcp_ka_tid != 0) {
4307 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ka_tid);
4308 		tcp->tcp_ka_tid = 0;
4309 	}
4310 	if (tcp->tcp_ack_tid != 0) {
4311 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid);
4312 		tcp->tcp_ack_tid = 0;
4313 	}
4314 	if (tcp->tcp_push_tid != 0) {
4315 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
4316 		tcp->tcp_push_tid = 0;
4317 	}
4318 }
4319 
4320 /*
4321  * The tcp_t is going away. Remove it from all lists and set it
4322  * to TCPS_CLOSED. The freeing up of memory is deferred until
4323  * tcp_inactive. This is needed since a thread in tcp_rput might have
4324  * done a CONN_INC_REF on this structure before it was removed from the
4325  * hashes.
4326  */
4327 static void
4328 tcp_closei_local(tcp_t *tcp)
4329 {
4330 	ire_t 	*ire;
4331 	conn_t	*connp = tcp->tcp_connp;
4332 
4333 	if (!TCP_IS_SOCKET(tcp))
4334 		tcp_acceptor_hash_remove(tcp);
4335 
4336 	UPDATE_MIB(&tcp_mib, tcpInSegs, tcp->tcp_ibsegs);
4337 	tcp->tcp_ibsegs = 0;
4338 	UPDATE_MIB(&tcp_mib, tcpOutSegs, tcp->tcp_obsegs);
4339 	tcp->tcp_obsegs = 0;
4340 
4341 	/*
4342 	 * If we are an eager connection hanging off a listener that
4343 	 * hasn't formally accepted the connection yet, get off his
4344 	 * list and blow off any data that we have accumulated.
4345 	 */
4346 	if (tcp->tcp_listener != NULL) {
4347 		tcp_t	*listener = tcp->tcp_listener;
4348 		mutex_enter(&listener->tcp_eager_lock);
4349 		/*
4350 		 * tcp_eager_conn_ind == NULL means that the
4351 		 * conn_ind has already gone to listener. At
4352 		 * this point, eager will be closed but we
4353 		 * leave it in listeners eager list so that
4354 		 * if listener decides to close without doing
4355 		 * accept, we can clean this up. In tcp_wput_accept
4356 		 * we take case of the case of accept on closed
4357 		 * eager.
4358 		 */
4359 		if (tcp->tcp_conn.tcp_eager_conn_ind != NULL) {
4360 			tcp_eager_unlink(tcp);
4361 			mutex_exit(&listener->tcp_eager_lock);
4362 			/*
4363 			 * We don't want to have any pointers to the
4364 			 * listener queue, after we have released our
4365 			 * reference on the listener
4366 			 */
4367 			tcp->tcp_rq = tcp_g_q;
4368 			tcp->tcp_wq = WR(tcp_g_q);
4369 			CONN_DEC_REF(listener->tcp_connp);
4370 		} else {
4371 			mutex_exit(&listener->tcp_eager_lock);
4372 		}
4373 	}
4374 
4375 	/* Stop all the timers */
4376 	tcp_timers_stop(tcp);
4377 
4378 	if (tcp->tcp_state == TCPS_LISTEN) {
4379 		if (tcp->tcp_ip_addr_cache) {
4380 			kmem_free((void *)tcp->tcp_ip_addr_cache,
4381 			    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
4382 			tcp->tcp_ip_addr_cache = NULL;
4383 		}
4384 	}
4385 	if (tcp->tcp_flow_stopped)
4386 		tcp_clrqfull(tcp);
4387 
4388 	tcp_bind_hash_remove(tcp);
4389 	/*
4390 	 * If the tcp_time_wait_collector (which runs outside the squeue)
4391 	 * is trying to remove this tcp from the time wait list, we will
4392 	 * block in tcp_time_wait_remove while trying to acquire the
4393 	 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also
4394 	 * requires the ipcl_hash_remove to be ordered after the
4395 	 * tcp_time_wait_remove for the refcnt checks to work correctly.
4396 	 */
4397 	if (tcp->tcp_state == TCPS_TIME_WAIT)
4398 		tcp_time_wait_remove(tcp, NULL);
4399 	CL_INET_DISCONNECT(tcp);
4400 	ipcl_hash_remove(connp);
4401 
4402 	/*
4403 	 * Delete the cached ire in conn_ire_cache and also mark
4404 	 * the conn as CONDEMNED
4405 	 */
4406 	mutex_enter(&connp->conn_lock);
4407 	connp->conn_state_flags |= CONN_CONDEMNED;
4408 	ire = connp->conn_ire_cache;
4409 	connp->conn_ire_cache = NULL;
4410 	mutex_exit(&connp->conn_lock);
4411 	if (ire != NULL)
4412 		IRE_REFRELE_NOTR(ire);
4413 
4414 	/* Need to cleanup any pending ioctls */
4415 	ASSERT(tcp->tcp_time_wait_next == NULL);
4416 	ASSERT(tcp->tcp_time_wait_prev == NULL);
4417 	ASSERT(tcp->tcp_time_wait_expire == 0);
4418 	tcp->tcp_state = TCPS_CLOSED;
4419 
4420 	/* Release any SSL context */
4421 	if (tcp->tcp_kssl_ent != NULL) {
4422 		kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY);
4423 		tcp->tcp_kssl_ent = NULL;
4424 	}
4425 	if (tcp->tcp_kssl_ctx != NULL) {
4426 		kssl_release_ctx(tcp->tcp_kssl_ctx);
4427 		tcp->tcp_kssl_ctx = NULL;
4428 	}
4429 	tcp->tcp_kssl_pending = B_FALSE;
4430 }
4431 
4432 /*
4433  * tcp is dying (called from ipcl_conn_destroy and error cases).
4434  * Free the tcp_t in either case.
4435  */
4436 void
4437 tcp_free(tcp_t *tcp)
4438 {
4439 	mblk_t	*mp;
4440 	ip6_pkt_t	*ipp;
4441 
4442 	ASSERT(tcp != NULL);
4443 	ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL);
4444 
4445 	tcp->tcp_rq = NULL;
4446 	tcp->tcp_wq = NULL;
4447 
4448 	tcp_close_mpp(&tcp->tcp_xmit_head);
4449 	tcp_close_mpp(&tcp->tcp_reass_head);
4450 	if (tcp->tcp_rcv_list != NULL) {
4451 		/* Free b_next chain */
4452 		tcp_close_mpp(&tcp->tcp_rcv_list);
4453 	}
4454 	if ((mp = tcp->tcp_urp_mp) != NULL) {
4455 		freemsg(mp);
4456 	}
4457 	if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
4458 		freemsg(mp);
4459 	}
4460 
4461 	if (tcp->tcp_fused_sigurg_mp != NULL) {
4462 		freeb(tcp->tcp_fused_sigurg_mp);
4463 		tcp->tcp_fused_sigurg_mp = NULL;
4464 	}
4465 
4466 	if (tcp->tcp_sack_info != NULL) {
4467 		if (tcp->tcp_notsack_list != NULL) {
4468 			TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
4469 		}
4470 		bzero(tcp->tcp_sack_info, sizeof (tcp_sack_info_t));
4471 	}
4472 
4473 	if (tcp->tcp_hopopts != NULL) {
4474 		mi_free(tcp->tcp_hopopts);
4475 		tcp->tcp_hopopts = NULL;
4476 		tcp->tcp_hopoptslen = 0;
4477 	}
4478 	ASSERT(tcp->tcp_hopoptslen == 0);
4479 	if (tcp->tcp_dstopts != NULL) {
4480 		mi_free(tcp->tcp_dstopts);
4481 		tcp->tcp_dstopts = NULL;
4482 		tcp->tcp_dstoptslen = 0;
4483 	}
4484 	ASSERT(tcp->tcp_dstoptslen == 0);
4485 	if (tcp->tcp_rtdstopts != NULL) {
4486 		mi_free(tcp->tcp_rtdstopts);
4487 		tcp->tcp_rtdstopts = NULL;
4488 		tcp->tcp_rtdstoptslen = 0;
4489 	}
4490 	ASSERT(tcp->tcp_rtdstoptslen == 0);
4491 	if (tcp->tcp_rthdr != NULL) {
4492 		mi_free(tcp->tcp_rthdr);
4493 		tcp->tcp_rthdr = NULL;
4494 		tcp->tcp_rthdrlen = 0;
4495 	}
4496 	ASSERT(tcp->tcp_rthdrlen == 0);
4497 
4498 	ipp = &tcp->tcp_sticky_ipp;
4499 	if (ipp->ipp_fields & (IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS |
4500 	    IPPF_RTHDR))
4501 		ip6_pkt_free(ipp);
4502 
4503 	/*
4504 	 * Free memory associated with the tcp/ip header template.
4505 	 */
4506 
4507 	if (tcp->tcp_iphc != NULL)
4508 		bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
4509 
4510 	/*
4511 	 * Following is really a blowing away a union.
4512 	 * It happens to have exactly two members of identical size
4513 	 * the following code is enough.
4514 	 */
4515 	tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
4516 
4517 	if (tcp->tcp_tracebuf != NULL) {
4518 		kmem_free(tcp->tcp_tracebuf, sizeof (tcptrch_t));
4519 		tcp->tcp_tracebuf = NULL;
4520 	}
4521 }
4522 
4523 
4524 /*
4525  * Put a connection confirmation message upstream built from the
4526  * address information within 'iph' and 'tcph'.  Report our success or failure.
4527  */
4528 static boolean_t
4529 tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, mblk_t *idmp,
4530     mblk_t **defermp)
4531 {
4532 	sin_t	sin;
4533 	sin6_t	sin6;
4534 	mblk_t	*mp;
4535 	char	*optp = NULL;
4536 	int	optlen = 0;
4537 	cred_t	*cr;
4538 
4539 	if (defermp != NULL)
4540 		*defermp = NULL;
4541 
4542 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL) {
4543 		/*
4544 		 * Return in T_CONN_CON results of option negotiation through
4545 		 * the T_CONN_REQ. Note: If there is an real end-to-end option
4546 		 * negotiation, then what is received from remote end needs
4547 		 * to be taken into account but there is no such thing (yet?)
4548 		 * in our TCP/IP.
4549 		 * Note: We do not use mi_offset_param() here as
4550 		 * tcp_opts_conn_req contents do not directly come from
4551 		 * an application and are either generated in kernel or
4552 		 * from user input that was already verified.
4553 		 */
4554 		mp = tcp->tcp_conn.tcp_opts_conn_req;
4555 		optp = (char *)(mp->b_rptr +
4556 		    ((struct T_conn_req *)mp->b_rptr)->OPT_offset);
4557 		optlen = (int)
4558 		    ((struct T_conn_req *)mp->b_rptr)->OPT_length;
4559 	}
4560 
4561 	if (IPH_HDR_VERSION(iphdr) == IPV4_VERSION) {
4562 		ipha_t *ipha = (ipha_t *)iphdr;
4563 
4564 		/* packet is IPv4 */
4565 		if (tcp->tcp_family == AF_INET) {
4566 			sin = sin_null;
4567 			sin.sin_addr.s_addr = ipha->ipha_src;
4568 			sin.sin_port = *(uint16_t *)tcph->th_lport;
4569 			sin.sin_family = AF_INET;
4570 			mp = mi_tpi_conn_con(NULL, (char *)&sin,
4571 			    (int)sizeof (sin_t), optp, optlen);
4572 		} else {
4573 			sin6 = sin6_null;
4574 			IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr);
4575 			sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4576 			sin6.sin6_family = AF_INET6;
4577 			mp = mi_tpi_conn_con(NULL, (char *)&sin6,
4578 			    (int)sizeof (sin6_t), optp, optlen);
4579 
4580 		}
4581 	} else {
4582 		ip6_t	*ip6h = (ip6_t *)iphdr;
4583 
4584 		ASSERT(IPH_HDR_VERSION(iphdr) == IPV6_VERSION);
4585 		ASSERT(tcp->tcp_family == AF_INET6);
4586 		sin6 = sin6_null;
4587 		sin6.sin6_addr = ip6h->ip6_src;
4588 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4589 		sin6.sin6_family = AF_INET6;
4590 		sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK;
4591 		mp = mi_tpi_conn_con(NULL, (char *)&sin6,
4592 		    (int)sizeof (sin6_t), optp, optlen);
4593 	}
4594 
4595 	if (!mp)
4596 		return (B_FALSE);
4597 
4598 	if ((cr = DB_CRED(idmp)) != NULL) {
4599 		mblk_setcred(mp, cr);
4600 		DB_CPID(mp) = DB_CPID(idmp);
4601 	}
4602 
4603 	if (defermp == NULL)
4604 		putnext(tcp->tcp_rq, mp);
4605 	else
4606 		*defermp = mp;
4607 
4608 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
4609 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
4610 	return (B_TRUE);
4611 }
4612 
4613 /*
4614  * Defense for the SYN attack -
4615  * 1. When q0 is full, drop from the tail (tcp_eager_prev_q0) the oldest
4616  *    one that doesn't have the dontdrop bit set.
4617  * 2. Don't drop a SYN request before its first timeout. This gives every
4618  *    request at least til the first timeout to complete its 3-way handshake.
4619  * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many
4620  *    requests currently on the queue that has timed out. This will be used
4621  *    as an indicator of whether an attack is under way, so that appropriate
4622  *    actions can be taken. (It's incremented in tcp_timer() and decremented
4623  *    either when eager goes into ESTABLISHED, or gets freed up.)
4624  * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on
4625  *    # of timeout drops back to <= q0len/32 => SYN alert off
4626  */
4627 static boolean_t
4628 tcp_drop_q0(tcp_t *tcp)
4629 {
4630 	tcp_t	*eager;
4631 
4632 	ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock));
4633 	ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0);
4634 	/*
4635 	 * New one is added after next_q0 so prev_q0 points to the oldest
4636 	 * Also do not drop any established connections that are deferred on
4637 	 * q0 due to q being full
4638 	 */
4639 
4640 	eager = tcp->tcp_eager_prev_q0;
4641 	while (eager->tcp_dontdrop || eager->tcp_conn_def_q0) {
4642 		eager = eager->tcp_eager_prev_q0;
4643 		if (eager == tcp) {
4644 			eager = tcp->tcp_eager_prev_q0;
4645 			break;
4646 		}
4647 	}
4648 	if (eager->tcp_syn_rcvd_timeout == 0)
4649 		return (B_FALSE);
4650 
4651 	if (tcp->tcp_debug) {
4652 		(void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE,
4653 		    "tcp_drop_q0: listen half-open queue (max=%d) overflow"
4654 		    " (%d pending) on %s, drop one", tcp_conn_req_max_q0,
4655 		    tcp->tcp_conn_req_cnt_q0,
4656 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
4657 	}
4658 
4659 	BUMP_MIB(&tcp_mib, tcpHalfOpenDrop);
4660 
4661 	/*
4662 	 * need to do refhold here because the selected eager could
4663 	 * be removed by someone else if we release the eager lock.
4664 	 */
4665 	CONN_INC_REF(eager->tcp_connp);
4666 	mutex_exit(&tcp->tcp_eager_lock);
4667 
4668 	/* Mark the IRE created for this SYN request temporary */
4669 	tcp_ip_ire_mark_advice(eager);
4670 	(void) tcp_clean_death(eager, ETIMEDOUT, 5);
4671 	CONN_DEC_REF(eager->tcp_connp);
4672 
4673 	mutex_enter(&tcp->tcp_eager_lock);
4674 	return (B_TRUE);
4675 }
4676 
4677 int
4678 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp,
4679     tcph_t *tcph, uint_t ipvers, mblk_t *idmp)
4680 {
4681 	tcp_t 		*ltcp = lconnp->conn_tcp;
4682 	tcp_t		*tcp = connp->conn_tcp;
4683 	mblk_t		*tpi_mp;
4684 	ipha_t		*ipha;
4685 	ip6_t		*ip6h;
4686 	sin6_t 		sin6;
4687 	in6_addr_t 	v6dst;
4688 	int		err;
4689 	int		ifindex = 0;
4690 	cred_t		*cr;
4691 
4692 	if (ipvers == IPV4_VERSION) {
4693 		ipha = (ipha_t *)mp->b_rptr;
4694 
4695 		connp->conn_send = ip_output;
4696 		connp->conn_recv = tcp_input;
4697 
4698 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6);
4699 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6);
4700 
4701 		sin6 = sin6_null;
4702 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr);
4703 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &v6dst);
4704 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4705 		sin6.sin6_family = AF_INET6;
4706 		sin6.__sin6_src_id = ip_srcid_find_addr(&v6dst,
4707 		    lconnp->conn_zoneid);
4708 		if (tcp->tcp_recvdstaddr) {
4709 			sin6_t	sin6d;
4710 
4711 			sin6d = sin6_null;
4712 			IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst,
4713 			    &sin6d.sin6_addr);
4714 			sin6d.sin6_port = *(uint16_t *)tcph->th_fport;
4715 			sin6d.sin6_family = AF_INET;
4716 			tpi_mp = mi_tpi_extconn_ind(NULL,
4717 			    (char *)&sin6d, sizeof (sin6_t),
4718 			    (char *)&tcp,
4719 			    (t_scalar_t)sizeof (intptr_t),
4720 			    (char *)&sin6d, sizeof (sin6_t),
4721 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4722 		} else {
4723 			tpi_mp = mi_tpi_conn_ind(NULL,
4724 			    (char *)&sin6, sizeof (sin6_t),
4725 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4726 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4727 		}
4728 	} else {
4729 		ip6h = (ip6_t *)mp->b_rptr;
4730 
4731 		connp->conn_send = ip_output_v6;
4732 		connp->conn_recv = tcp_input;
4733 
4734 		connp->conn_srcv6 = ip6h->ip6_dst;
4735 		connp->conn_remv6 = ip6h->ip6_src;
4736 
4737 		/* db_cksumstuff is set at ip_fanout_tcp_v6 */
4738 		ifindex = (int)DB_CKSUMSTUFF(mp);
4739 		DB_CKSUMSTUFF(mp) = 0;
4740 
4741 		sin6 = sin6_null;
4742 		sin6.sin6_addr = ip6h->ip6_src;
4743 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4744 		sin6.sin6_family = AF_INET6;
4745 		sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK;
4746 		sin6.__sin6_src_id = ip_srcid_find_addr(&ip6h->ip6_dst,
4747 		    lconnp->conn_zoneid);
4748 
4749 		if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) {
4750 			/* Pass up the scope_id of remote addr */
4751 			sin6.sin6_scope_id = ifindex;
4752 		} else {
4753 			sin6.sin6_scope_id = 0;
4754 		}
4755 		if (tcp->tcp_recvdstaddr) {
4756 			sin6_t	sin6d;
4757 
4758 			sin6d = sin6_null;
4759 			sin6.sin6_addr = ip6h->ip6_dst;
4760 			sin6d.sin6_port = *(uint16_t *)tcph->th_fport;
4761 			sin6d.sin6_family = AF_INET;
4762 			tpi_mp = mi_tpi_extconn_ind(NULL,
4763 			    (char *)&sin6d, sizeof (sin6_t),
4764 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4765 			    (char *)&sin6d, sizeof (sin6_t),
4766 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4767 		} else {
4768 			tpi_mp = mi_tpi_conn_ind(NULL,
4769 			    (char *)&sin6, sizeof (sin6_t),
4770 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4771 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4772 		}
4773 	}
4774 
4775 	if (tpi_mp == NULL)
4776 		return (ENOMEM);
4777 
4778 	connp->conn_fport = *(uint16_t *)tcph->th_lport;
4779 	connp->conn_lport = *(uint16_t *)tcph->th_fport;
4780 	connp->conn_flags |= (IPCL_TCP6|IPCL_EAGER);
4781 	connp->conn_fully_bound = B_FALSE;
4782 
4783 	if (tcp_trace)
4784 		tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_NOSLEEP);
4785 
4786 	/* Inherit information from the "parent" */
4787 	tcp->tcp_ipversion = ltcp->tcp_ipversion;
4788 	tcp->tcp_family = ltcp->tcp_family;
4789 	tcp->tcp_wq = ltcp->tcp_wq;
4790 	tcp->tcp_rq = ltcp->tcp_rq;
4791 	tcp->tcp_mss = tcp_mss_def_ipv6;
4792 	tcp->tcp_detached = B_TRUE;
4793 	if ((err = tcp_init_values(tcp)) != 0) {
4794 		freemsg(tpi_mp);
4795 		return (err);
4796 	}
4797 
4798 	if (ipvers == IPV4_VERSION) {
4799 		if ((err = tcp_header_init_ipv4(tcp)) != 0) {
4800 			freemsg(tpi_mp);
4801 			return (err);
4802 		}
4803 		ASSERT(tcp->tcp_ipha != NULL);
4804 	} else {
4805 		/* ifindex must be already set */
4806 		ASSERT(ifindex != 0);
4807 
4808 		if (ltcp->tcp_bound_if != 0) {
4809 			/*
4810 			 * Set newtcp's bound_if equal to
4811 			 * listener's value. If ifindex is
4812 			 * not the same as ltcp->tcp_bound_if,
4813 			 * it must be a packet for the ipmp group
4814 			 * of interfaces
4815 			 */
4816 			tcp->tcp_bound_if = ltcp->tcp_bound_if;
4817 		} else if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) {
4818 			tcp->tcp_bound_if = ifindex;
4819 		}
4820 
4821 		tcp->tcp_ipv6_recvancillary = ltcp->tcp_ipv6_recvancillary;
4822 		tcp->tcp_recvifindex = 0;
4823 		tcp->tcp_recvhops = 0xffffffffU;
4824 		ASSERT(tcp->tcp_ip6h != NULL);
4825 	}
4826 
4827 	tcp->tcp_lport = ltcp->tcp_lport;
4828 
4829 	if (ltcp->tcp_ipversion == tcp->tcp_ipversion) {
4830 		if (tcp->tcp_iphc_len != ltcp->tcp_iphc_len) {
4831 			/*
4832 			 * Listener had options of some sort; eager inherits.
4833 			 * Free up the eager template and allocate one
4834 			 * of the right size.
4835 			 */
4836 			if (tcp->tcp_hdr_grown) {
4837 				kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len);
4838 			} else {
4839 				bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
4840 				kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc);
4841 			}
4842 			tcp->tcp_iphc = kmem_zalloc(ltcp->tcp_iphc_len,
4843 			    KM_NOSLEEP);
4844 			if (tcp->tcp_iphc == NULL) {
4845 				tcp->tcp_iphc_len = 0;
4846 				freemsg(tpi_mp);
4847 				return (ENOMEM);
4848 			}
4849 			tcp->tcp_iphc_len = ltcp->tcp_iphc_len;
4850 			tcp->tcp_hdr_grown = B_TRUE;
4851 		}
4852 		tcp->tcp_hdr_len = ltcp->tcp_hdr_len;
4853 		tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len;
4854 		tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
4855 		tcp->tcp_ip6_hops = ltcp->tcp_ip6_hops;
4856 		tcp->tcp_ip6_vcf = ltcp->tcp_ip6_vcf;
4857 
4858 		/*
4859 		 * Copy the IP+TCP header template from listener to eager
4860 		 */
4861 		bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len);
4862 		if (tcp->tcp_ipversion == IPV6_VERSION) {
4863 			if (((ip6i_t *)(tcp->tcp_iphc))->ip6i_nxt ==
4864 			    IPPROTO_RAW) {
4865 				tcp->tcp_ip6h =
4866 				    (ip6_t *)(tcp->tcp_iphc +
4867 					sizeof (ip6i_t));
4868 			} else {
4869 				tcp->tcp_ip6h =
4870 				    (ip6_t *)(tcp->tcp_iphc);
4871 			}
4872 			tcp->tcp_ipha = NULL;
4873 		} else {
4874 			tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
4875 			tcp->tcp_ip6h = NULL;
4876 		}
4877 		tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc +
4878 		    tcp->tcp_ip_hdr_len);
4879 	} else {
4880 		/*
4881 		 * only valid case when ipversion of listener and
4882 		 * eager differ is when listener is IPv6 and
4883 		 * eager is IPv4.
4884 		 * Eager header template has been initialized to the
4885 		 * maximum v4 header sizes, which includes space for
4886 		 * TCP and IP options.
4887 		 */
4888 		ASSERT((ltcp->tcp_ipversion == IPV6_VERSION) &&
4889 		    (tcp->tcp_ipversion == IPV4_VERSION));
4890 		ASSERT(tcp->tcp_iphc_len >=
4891 		    TCP_MAX_COMBINED_HEADER_LENGTH);
4892 		tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
4893 		/* copy IP header fields individually */
4894 		tcp->tcp_ipha->ipha_ttl =
4895 		    ltcp->tcp_ip6h->ip6_hops;
4896 		bcopy(ltcp->tcp_tcph->th_lport,
4897 		    tcp->tcp_tcph->th_lport, sizeof (ushort_t));
4898 	}
4899 
4900 	bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t));
4901 	bcopy(tcp->tcp_tcph->th_fport, &tcp->tcp_fport,
4902 	    sizeof (in_port_t));
4903 
4904 	if (ltcp->tcp_lport == 0) {
4905 		tcp->tcp_lport = *(in_port_t *)tcph->th_fport;
4906 		bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport,
4907 		    sizeof (in_port_t));
4908 	}
4909 
4910 	if (tcp->tcp_ipversion == IPV4_VERSION) {
4911 		ASSERT(ipha != NULL);
4912 		tcp->tcp_ipha->ipha_dst = ipha->ipha_src;
4913 		tcp->tcp_ipha->ipha_src = ipha->ipha_dst;
4914 
4915 		/* Source routing option copyover (reverse it) */
4916 		if (tcp_rev_src_routes)
4917 			tcp_opt_reverse(tcp, ipha);
4918 	} else {
4919 		ASSERT(ip6h != NULL);
4920 		tcp->tcp_ip6h->ip6_dst = ip6h->ip6_src;
4921 		tcp->tcp_ip6h->ip6_src = ip6h->ip6_dst;
4922 	}
4923 
4924 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
4925 	/*
4926 	 * If the SYN contains a credential, it's a loopback packet; attach
4927 	 * the credential to the TPI message.
4928 	 */
4929 	if ((cr = DB_CRED(idmp)) != NULL) {
4930 		mblk_setcred(tpi_mp, cr);
4931 		DB_CPID(tpi_mp) = DB_CPID(idmp);
4932 	}
4933 	tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp;
4934 
4935 	/* Inherit the listener's SSL protection state */
4936 
4937 	if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) {
4938 		kssl_hold_ent(tcp->tcp_kssl_ent);
4939 		tcp->tcp_kssl_pending = B_TRUE;
4940 	}
4941 
4942 	return (0);
4943 }
4944 
4945 
4946 int
4947 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha,
4948     tcph_t *tcph, mblk_t *idmp)
4949 {
4950 	tcp_t 		*ltcp = lconnp->conn_tcp;
4951 	tcp_t		*tcp = connp->conn_tcp;
4952 	sin_t		sin;
4953 	mblk_t		*tpi_mp = NULL;
4954 	int		err;
4955 	cred_t		*cr;
4956 
4957 	sin = sin_null;
4958 	sin.sin_addr.s_addr = ipha->ipha_src;
4959 	sin.sin_port = *(uint16_t *)tcph->th_lport;
4960 	sin.sin_family = AF_INET;
4961 	if (ltcp->tcp_recvdstaddr) {
4962 		sin_t	sind;
4963 
4964 		sind = sin_null;
4965 		sind.sin_addr.s_addr = ipha->ipha_dst;
4966 		sind.sin_port = *(uint16_t *)tcph->th_fport;
4967 		sind.sin_family = AF_INET;
4968 		tpi_mp = mi_tpi_extconn_ind(NULL,
4969 		    (char *)&sind, sizeof (sin_t), (char *)&tcp,
4970 		    (t_scalar_t)sizeof (intptr_t), (char *)&sind,
4971 		    sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4972 	} else {
4973 		tpi_mp = mi_tpi_conn_ind(NULL,
4974 		    (char *)&sin, sizeof (sin_t),
4975 		    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4976 		    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4977 	}
4978 
4979 	if (tpi_mp == NULL) {
4980 		return (ENOMEM);
4981 	}
4982 
4983 	connp->conn_flags |= (IPCL_TCP4|IPCL_EAGER);
4984 	connp->conn_send = ip_output;
4985 	connp->conn_recv = tcp_input;
4986 	connp->conn_fully_bound = B_FALSE;
4987 
4988 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6);
4989 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6);
4990 	connp->conn_fport = *(uint16_t *)tcph->th_lport;
4991 	connp->conn_lport = *(uint16_t *)tcph->th_fport;
4992 
4993 	if (tcp_trace) {
4994 		tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_NOSLEEP);
4995 	}
4996 
4997 	/* Inherit information from the "parent" */
4998 	tcp->tcp_ipversion = ltcp->tcp_ipversion;
4999 	tcp->tcp_family = ltcp->tcp_family;
5000 	tcp->tcp_wq = ltcp->tcp_wq;
5001 	tcp->tcp_rq = ltcp->tcp_rq;
5002 	tcp->tcp_mss = tcp_mss_def_ipv4;
5003 	tcp->tcp_detached = B_TRUE;
5004 	if ((err = tcp_init_values(tcp)) != 0) {
5005 		freemsg(tpi_mp);
5006 		return (err);
5007 	}
5008 
5009 	/*
5010 	 * Let's make sure that eager tcp template has enough space to
5011 	 * copy IPv4 listener's tcp template. Since the conn_t structure is
5012 	 * preserved and tcp_iphc_len is also preserved, an eager conn_t may
5013 	 * have a tcp_template of total len TCP_MAX_COMBINED_HEADER_LENGTH or
5014 	 * more (in case of re-allocation of conn_t with tcp-IPv6 template with
5015 	 * extension headers or with ip6i_t struct). Note that bcopy() below
5016 	 * copies listener tcp's hdr_len which cannot be greater than TCP_MAX_
5017 	 * COMBINED_HEADER_LENGTH as this listener must be a IPv4 listener.
5018 	 */
5019 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
5020 	ASSERT(ltcp->tcp_hdr_len <= TCP_MAX_COMBINED_HEADER_LENGTH);
5021 
5022 	tcp->tcp_hdr_len = ltcp->tcp_hdr_len;
5023 	tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len;
5024 	tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
5025 	tcp->tcp_ttl = ltcp->tcp_ttl;
5026 	tcp->tcp_tos = ltcp->tcp_tos;
5027 
5028 	/* Copy the IP+TCP header template from listener to eager */
5029 	bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len);
5030 	tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
5031 	tcp->tcp_ip6h = NULL;
5032 	tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc +
5033 	    tcp->tcp_ip_hdr_len);
5034 
5035 	/* Initialize the IP addresses and Ports */
5036 	tcp->tcp_ipha->ipha_dst = ipha->ipha_src;
5037 	tcp->tcp_ipha->ipha_src = ipha->ipha_dst;
5038 	bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t));
5039 	bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, sizeof (in_port_t));
5040 
5041 	/* Source routing option copyover (reverse it) */
5042 	if (tcp_rev_src_routes)
5043 		tcp_opt_reverse(tcp, ipha);
5044 
5045 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
5046 
5047 	/*
5048 	 * If the SYN contains a credential, it's a loopback packet; attach
5049 	 * the credential to the TPI message.
5050 	 */
5051 	if ((cr = DB_CRED(idmp)) != NULL) {
5052 		mblk_setcred(tpi_mp, cr);
5053 		DB_CPID(tpi_mp) = DB_CPID(idmp);
5054 	}
5055 	tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp;
5056 
5057 	/* Inherit the listener's SSL protection state */
5058 	if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) {
5059 		kssl_hold_ent(tcp->tcp_kssl_ent);
5060 		tcp->tcp_kssl_pending = B_TRUE;
5061 	}
5062 
5063 	return (0);
5064 }
5065 
5066 /*
5067  * sets up conn for ipsec.
5068  * if the first mblk is M_CTL it is consumed and mpp is updated.
5069  * in case of error mpp is freed.
5070  */
5071 conn_t *
5072 tcp_get_ipsec_conn(tcp_t *tcp, squeue_t *sqp, mblk_t **mpp)
5073 {
5074 	conn_t 		*connp = tcp->tcp_connp;
5075 	conn_t 		*econnp;
5076 	squeue_t 	*new_sqp;
5077 	mblk_t 		*first_mp = *mpp;
5078 	mblk_t		*mp = *mpp;
5079 	boolean_t	mctl_present = B_FALSE;
5080 	uint_t		ipvers;
5081 
5082 	econnp = tcp_get_conn(sqp);
5083 	if (econnp == NULL) {
5084 		freemsg(first_mp);
5085 		return (NULL);
5086 	}
5087 	if (DB_TYPE(mp) == M_CTL) {
5088 		if (mp->b_cont == NULL ||
5089 		    mp->b_cont->b_datap->db_type != M_DATA) {
5090 			freemsg(first_mp);
5091 			return (NULL);
5092 		}
5093 		mp = mp->b_cont;
5094 		if ((mp->b_datap->db_struioflag & STRUIO_EAGER) == 0) {
5095 			freemsg(first_mp);
5096 			return (NULL);
5097 		}
5098 
5099 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
5100 		first_mp->b_datap->db_struioflag &= ~STRUIO_POLICY;
5101 		mctl_present = B_TRUE;
5102 	} else {
5103 		ASSERT(mp->b_datap->db_struioflag & STRUIO_POLICY);
5104 		mp->b_datap->db_struioflag &= ~STRUIO_POLICY;
5105 	}
5106 
5107 	new_sqp = (squeue_t *)DB_CKSUMSTART(mp);
5108 	DB_CKSUMSTART(mp) = 0;
5109 
5110 	ASSERT(OK_32PTR(mp->b_rptr));
5111 	ipvers = IPH_HDR_VERSION(mp->b_rptr);
5112 	if (ipvers == IPV4_VERSION) {
5113 		uint16_t  	*up;
5114 		uint32_t	ports;
5115 		ipha_t		*ipha;
5116 
5117 		ipha = (ipha_t *)mp->b_rptr;
5118 		up = (uint16_t *)((uchar_t *)ipha +
5119 		    IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET);
5120 		ports = *(uint32_t *)up;
5121 		IPCL_TCP_EAGER_INIT(econnp, IPPROTO_TCP,
5122 		    ipha->ipha_dst, ipha->ipha_src, ports);
5123 	} else {
5124 		uint16_t  	*up;
5125 		uint32_t	ports;
5126 		uint16_t	ip_hdr_len;
5127 		uint8_t		*nexthdrp;
5128 		ip6_t 		*ip6h;
5129 		tcph_t		*tcph;
5130 
5131 		ip6h = (ip6_t *)mp->b_rptr;
5132 		if (ip6h->ip6_nxt == IPPROTO_TCP) {
5133 			ip_hdr_len = IPV6_HDR_LEN;
5134 		} else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ip_hdr_len,
5135 		    &nexthdrp) || *nexthdrp != IPPROTO_TCP) {
5136 			CONN_DEC_REF(econnp);
5137 			freemsg(first_mp);
5138 			return (NULL);
5139 		}
5140 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
5141 		up = (uint16_t *)tcph->th_lport;
5142 		ports = *(uint32_t *)up;
5143 		IPCL_TCP_EAGER_INIT_V6(econnp, IPPROTO_TCP,
5144 		    ip6h->ip6_dst, ip6h->ip6_src, ports);
5145 	}
5146 
5147 	/*
5148 	 * The caller already ensured that there is a sqp present.
5149 	 */
5150 	econnp->conn_sqp = new_sqp;
5151 
5152 	if (connp->conn_policy != NULL) {
5153 		ipsec_in_t *ii;
5154 		ii = (ipsec_in_t *)(first_mp->b_rptr);
5155 		ASSERT(ii->ipsec_in_policy == NULL);
5156 		IPPH_REFHOLD(connp->conn_policy);
5157 		ii->ipsec_in_policy = connp->conn_policy;
5158 
5159 		first_mp->b_datap->db_type = IPSEC_POLICY_SET;
5160 		if (!ip_bind_ipsec_policy_set(econnp, first_mp)) {
5161 			CONN_DEC_REF(econnp);
5162 			freemsg(first_mp);
5163 			return (NULL);
5164 		}
5165 	}
5166 
5167 	if (ipsec_conn_cache_policy(econnp, ipvers == IPV4_VERSION) != 0) {
5168 		CONN_DEC_REF(econnp);
5169 		freemsg(first_mp);
5170 		return (NULL);
5171 	}
5172 
5173 	/*
5174 	 * If we know we have some policy, pass the "IPSEC"
5175 	 * options size TCP uses this adjust the MSS.
5176 	 */
5177 	econnp->conn_tcp->tcp_ipsec_overhead = conn_ipsec_length(econnp);
5178 	if (mctl_present) {
5179 		freeb(first_mp);
5180 		*mpp = mp;
5181 	}
5182 
5183 	return (econnp);
5184 }
5185 
5186 /*
5187  * tcp_get_conn/tcp_free_conn
5188  *
5189  * tcp_get_conn is used to get a clean tcp connection structure.
5190  * It tries to reuse the connections put on the freelist by the
5191  * time_wait_collector failing which it goes to kmem_cache. This
5192  * way has two benefits compared to just allocating from and
5193  * freeing to kmem_cache.
5194  * 1) The time_wait_collector can free (which includes the cleanup)
5195  * outside the squeue. So when the interrupt comes, we have a clean
5196  * connection sitting in the freelist. Obviously, this buys us
5197  * performance.
5198  *
5199  * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_conn_request
5200  * has multiple disadvantages - tying up the squeue during alloc, and the
5201  * fact that IPSec policy initialization has to happen here which
5202  * requires us sending a M_CTL and checking for it i.e. real ugliness.
5203  * But allocating the conn/tcp in IP land is also not the best since
5204  * we can't check the 'q' and 'q0' which are protected by squeue and
5205  * blindly allocate memory which might have to be freed here if we are
5206  * not allowed to accept the connection. By using the freelist and
5207  * putting the conn/tcp back in freelist, we don't pay a penalty for
5208  * allocating memory without checking 'q/q0' and freeing it if we can't
5209  * accept the connection.
5210  *
5211  * Care should be taken to put the conn back in the same squeue's freelist
5212  * from which it was allocated. Best results are obtained if conn is
5213  * allocated from listener's squeue and freed to the same. Time wait
5214  * collector will free up the freelist is the connection ends up sitting
5215  * there for too long.
5216  */
5217 void *
5218 tcp_get_conn(void *arg)
5219 {
5220 	tcp_t			*tcp = NULL;
5221 	conn_t			*connp = NULL;
5222 	squeue_t		*sqp = (squeue_t *)arg;
5223 	tcp_squeue_priv_t 	*tcp_time_wait;
5224 
5225 	tcp_time_wait =
5226 	    *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP));
5227 
5228 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
5229 	tcp = tcp_time_wait->tcp_free_list;
5230 	ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0));
5231 	if (tcp != NULL) {
5232 		tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next;
5233 		tcp_time_wait->tcp_free_list_cnt--;
5234 		mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
5235 		tcp->tcp_time_wait_next = NULL;
5236 		connp = tcp->tcp_connp;
5237 		connp->conn_flags |= IPCL_REUSED;
5238 		return ((void *)connp);
5239 	}
5240 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
5241 	if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP)) == NULL)
5242 		return (NULL);
5243 	return ((void *)connp);
5244 }
5245 
5246 /*
5247  * Update the cached label for the given tcp_t.  This should be called once per
5248  * connection, and before any packets are sent or tcp_process_options is
5249  * invoked.  Returns B_FALSE if the correct label could not be constructed.
5250  */
5251 static boolean_t
5252 tcp_update_label(tcp_t *tcp, const cred_t *cr)
5253 {
5254 	conn_t *connp = tcp->tcp_connp;
5255 
5256 	if (tcp->tcp_ipversion == IPV4_VERSION) {
5257 		uchar_t optbuf[IP_MAX_OPT_LENGTH];
5258 		int added;
5259 
5260 		if (tsol_compute_label(cr, tcp->tcp_remote, optbuf,
5261 		    connp->conn_mac_exempt) != 0)
5262 			return (B_FALSE);
5263 
5264 		added = tsol_remove_secopt(tcp->tcp_ipha, tcp->tcp_hdr_len);
5265 		if (added == -1)
5266 			return (B_FALSE);
5267 		tcp->tcp_hdr_len += added;
5268 		tcp->tcp_tcph = (tcph_t *)((uchar_t *)tcp->tcp_tcph + added);
5269 		tcp->tcp_ip_hdr_len += added;
5270 		if ((tcp->tcp_label_len = optbuf[IPOPT_OLEN]) != 0) {
5271 			tcp->tcp_label_len = (tcp->tcp_label_len + 3) & ~3;
5272 			added = tsol_prepend_option(optbuf, tcp->tcp_ipha,
5273 			    tcp->tcp_hdr_len);
5274 			if (added == -1)
5275 				return (B_FALSE);
5276 			tcp->tcp_hdr_len += added;
5277 			tcp->tcp_tcph = (tcph_t *)
5278 			    ((uchar_t *)tcp->tcp_tcph + added);
5279 			tcp->tcp_ip_hdr_len += added;
5280 		}
5281 	} else {
5282 		uchar_t optbuf[TSOL_MAX_IPV6_OPTION];
5283 
5284 		if (tsol_compute_label_v6(cr, &tcp->tcp_remote_v6, optbuf,
5285 		    connp->conn_mac_exempt) != 0)
5286 			return (B_FALSE);
5287 		if (tsol_update_sticky(&tcp->tcp_sticky_ipp,
5288 		    &tcp->tcp_label_len, optbuf) != 0)
5289 			return (B_FALSE);
5290 		if (tcp_build_hdrs(tcp->tcp_rq, tcp) != 0)
5291 			return (B_FALSE);
5292 	}
5293 
5294 	connp->conn_ulp_labeled = 1;
5295 
5296 	return (B_TRUE);
5297 }
5298 
5299 /* BEGIN CSTYLED */
5300 /*
5301  *
5302  * The sockfs ACCEPT path:
5303  * =======================
5304  *
5305  * The eager is now established in its own perimeter as soon as SYN is
5306  * received in tcp_conn_request(). When sockfs receives conn_ind, it
5307  * completes the accept processing on the acceptor STREAM. The sending
5308  * of conn_ind part is common for both sockfs listener and a TLI/XTI
5309  * listener but a TLI/XTI listener completes the accept processing
5310  * on the listener perimeter.
5311  *
5312  * Common control flow for 3 way handshake:
5313  * ----------------------------------------
5314  *
5315  * incoming SYN (listener perimeter) 	-> tcp_rput_data()
5316  *					-> tcp_conn_request()
5317  *
5318  * incoming SYN-ACK-ACK (eager perim) 	-> tcp_rput_data()
5319  * send T_CONN_IND (listener perim)	-> tcp_send_conn_ind()
5320  *
5321  * Sockfs ACCEPT Path:
5322  * -------------------
5323  *
5324  * open acceptor stream (ip_tcpopen allocates tcp_wput_accept()
5325  * as STREAM entry point)
5326  *
5327  * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_wput_accept()
5328  *
5329  * tcp_wput_accept() extracts the eager and makes the q->q_ptr <-> eager
5330  * association (we are not behind eager's squeue but sockfs is protecting us
5331  * and no one knows about this stream yet. The STREAMS entry point q->q_info
5332  * is changed to point at tcp_wput().
5333  *
5334  * tcp_wput_accept() sends any deferred eagers via tcp_send_pending() to
5335  * listener (done on listener's perimeter).
5336  *
5337  * tcp_wput_accept() calls tcp_accept_finish() on eagers perimeter to finish
5338  * accept.
5339  *
5340  * TLI/XTI client ACCEPT path:
5341  * ---------------------------
5342  *
5343  * soaccept() sends T_CONN_RES on the listener STREAM.
5344  *
5345  * tcp_accept() -> tcp_accept_swap() complete the processing and send
5346  * the bind_mp to eager perimeter to finish accept (tcp_rput_other()).
5347  *
5348  * Locks:
5349  * ======
5350  *
5351  * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and
5352  * and listeners->tcp_eager_next_q.
5353  *
5354  * Referencing:
5355  * ============
5356  *
5357  * 1) We start out in tcp_conn_request by eager placing a ref on
5358  * listener and listener adding eager to listeners->tcp_eager_next_q0.
5359  *
5360  * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before
5361  * doing so we place a ref on the eager. This ref is finally dropped at the
5362  * end of tcp_accept_finish() while unwinding from the squeue, i.e. the
5363  * reference is dropped by the squeue framework.
5364  *
5365  * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish
5366  *
5367  * The reference must be released by the same entity that added the reference
5368  * In the above scheme, the eager is the entity that adds and releases the
5369  * references. Note that tcp_accept_finish executes in the squeue of the eager
5370  * (albeit after it is attached to the acceptor stream). Though 1. executes
5371  * in the listener's squeue, the eager is nascent at this point and the
5372  * reference can be considered to have been added on behalf of the eager.
5373  *
5374  * Eager getting a Reset or listener closing:
5375  * ==========================================
5376  *
5377  * Once the listener and eager are linked, the listener never does the unlink.
5378  * If the listener needs to close, tcp_eager_cleanup() is called which queues
5379  * a message on all eager perimeter. The eager then does the unlink, clears
5380  * any pointers to the listener's queue and drops the reference to the
5381  * listener. The listener waits in tcp_close outside the squeue until its
5382  * refcount has dropped to 1. This ensures that the listener has waited for
5383  * all eagers to clear their association with the listener.
5384  *
5385  * Similarly, if eager decides to go away, it can unlink itself and close.
5386  * When the T_CONN_RES comes down, we check if eager has closed. Note that
5387  * the reference to eager is still valid because of the extra ref we put
5388  * in tcp_send_conn_ind.
5389  *
5390  * Listener can always locate the eager under the protection
5391  * of the listener->tcp_eager_lock, and then do a refhold
5392  * on the eager during the accept processing.
5393  *
5394  * The acceptor stream accesses the eager in the accept processing
5395  * based on the ref placed on eager before sending T_conn_ind.
5396  * The only entity that can negate this refhold is a listener close
5397  * which is mutually exclusive with an active acceptor stream.
5398  *
5399  * Eager's reference on the listener
5400  * ===================================
5401  *
5402  * If the accept happens (even on a closed eager) the eager drops its
5403  * reference on the listener at the start of tcp_accept_finish. If the
5404  * eager is killed due to an incoming RST before the T_conn_ind is sent up,
5405  * the reference is dropped in tcp_closei_local. If the listener closes,
5406  * the reference is dropped in tcp_eager_kill. In all cases the reference
5407  * is dropped while executing in the eager's context (squeue).
5408  */
5409 /* END CSTYLED */
5410 
5411 /* Process the SYN packet, mp, directed at the listener 'tcp' */
5412 
5413 /*
5414  * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN.
5415  * tcp_rput_data will not see any SYN packets.
5416  */
5417 /* ARGSUSED */
5418 void
5419 tcp_conn_request(void *arg, mblk_t *mp, void *arg2)
5420 {
5421 	tcph_t		*tcph;
5422 	uint32_t	seg_seq;
5423 	tcp_t		*eager;
5424 	uint_t		ipvers;
5425 	ipha_t		*ipha;
5426 	ip6_t		*ip6h;
5427 	int		err;
5428 	conn_t		*econnp = NULL;
5429 	squeue_t	*new_sqp;
5430 	mblk_t		*mp1;
5431 	uint_t 		ip_hdr_len;
5432 	conn_t		*connp = (conn_t *)arg;
5433 	tcp_t		*tcp = connp->conn_tcp;
5434 	ire_t		*ire;
5435 	cred_t		*credp;
5436 
5437 	if (tcp->tcp_state != TCPS_LISTEN)
5438 		goto error2;
5439 
5440 	ASSERT((tcp->tcp_connp->conn_flags & IPCL_BOUND) != 0);
5441 
5442 	mutex_enter(&tcp->tcp_eager_lock);
5443 	if (tcp->tcp_conn_req_cnt_q >= tcp->tcp_conn_req_max) {
5444 		mutex_exit(&tcp->tcp_eager_lock);
5445 		TCP_STAT(tcp_listendrop);
5446 		BUMP_MIB(&tcp_mib, tcpListenDrop);
5447 		if (tcp->tcp_debug) {
5448 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
5449 			    "tcp_conn_request: listen backlog (max=%d) "
5450 			    "overflow (%d pending) on %s",
5451 			    tcp->tcp_conn_req_max, tcp->tcp_conn_req_cnt_q,
5452 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
5453 		}
5454 		goto error2;
5455 	}
5456 
5457 	if (tcp->tcp_conn_req_cnt_q0 >=
5458 	    tcp->tcp_conn_req_max + tcp_conn_req_max_q0) {
5459 		/*
5460 		 * Q0 is full. Drop a pending half-open req from the queue
5461 		 * to make room for the new SYN req. Also mark the time we
5462 		 * drop a SYN.
5463 		 *
5464 		 * A more aggressive defense against SYN attack will
5465 		 * be to set the "tcp_syn_defense" flag now.
5466 		 */
5467 		TCP_STAT(tcp_listendropq0);
5468 		tcp->tcp_last_rcv_lbolt = lbolt64;
5469 		if (!tcp_drop_q0(tcp)) {
5470 			mutex_exit(&tcp->tcp_eager_lock);
5471 			BUMP_MIB(&tcp_mib, tcpListenDropQ0);
5472 			if (tcp->tcp_debug) {
5473 				(void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE,
5474 				    "tcp_conn_request: listen half-open queue "
5475 				    "(max=%d) full (%d pending) on %s",
5476 				    tcp_conn_req_max_q0,
5477 				    tcp->tcp_conn_req_cnt_q0,
5478 				    tcp_display(tcp, NULL,
5479 				    DISP_PORT_ONLY));
5480 			}
5481 			goto error2;
5482 		}
5483 	}
5484 	mutex_exit(&tcp->tcp_eager_lock);
5485 
5486 	/*
5487 	 * IP adds STRUIO_EAGER and ensures that the received packet is
5488 	 * M_DATA even if conn_ipv6_recvpktinfo is enabled or for ip6
5489 	 * link local address.  If IPSec is enabled, db_struioflag has
5490 	 * STRUIO_POLICY set (mutually exclusive from STRUIO_EAGER);
5491 	 * otherwise an error case if neither of them is set.
5492 	 */
5493 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
5494 		new_sqp = (squeue_t *)DB_CKSUMSTART(mp);
5495 		DB_CKSUMSTART(mp) = 0;
5496 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
5497 		econnp = (conn_t *)tcp_get_conn(arg2);
5498 		if (econnp == NULL)
5499 			goto error2;
5500 		econnp->conn_sqp = new_sqp;
5501 	} else if ((mp->b_datap->db_struioflag & STRUIO_POLICY) != 0) {
5502 		/*
5503 		 * mp is updated in tcp_get_ipsec_conn().
5504 		 */
5505 		econnp = tcp_get_ipsec_conn(tcp, arg2, &mp);
5506 		if (econnp == NULL) {
5507 			/*
5508 			 * mp freed by tcp_get_ipsec_conn.
5509 			 */
5510 			return;
5511 		}
5512 	} else {
5513 		goto error2;
5514 	}
5515 
5516 	ASSERT(DB_TYPE(mp) == M_DATA);
5517 
5518 	ipvers = IPH_HDR_VERSION(mp->b_rptr);
5519 	ASSERT(ipvers == IPV6_VERSION || ipvers == IPV4_VERSION);
5520 	ASSERT(OK_32PTR(mp->b_rptr));
5521 	if (ipvers == IPV4_VERSION) {
5522 		ipha = (ipha_t *)mp->b_rptr;
5523 		ip_hdr_len = IPH_HDR_LENGTH(ipha);
5524 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
5525 	} else {
5526 		ip6h = (ip6_t *)mp->b_rptr;
5527 		ip_hdr_len = ip_hdr_length_v6(mp, ip6h);
5528 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
5529 	}
5530 
5531 	if (tcp->tcp_family == AF_INET) {
5532 		ASSERT(ipvers == IPV4_VERSION);
5533 		err = tcp_conn_create_v4(connp, econnp, ipha, tcph, mp);
5534 	} else {
5535 		err = tcp_conn_create_v6(connp, econnp, mp, tcph, ipvers, mp);
5536 	}
5537 
5538 	if (err)
5539 		goto error3;
5540 
5541 	eager = econnp->conn_tcp;
5542 
5543 	/* Inherit various TCP parameters from the listener */
5544 	eager->tcp_naglim = tcp->tcp_naglim;
5545 	eager->tcp_first_timer_threshold =
5546 	    tcp->tcp_first_timer_threshold;
5547 	eager->tcp_second_timer_threshold =
5548 	    tcp->tcp_second_timer_threshold;
5549 
5550 	eager->tcp_first_ctimer_threshold =
5551 	    tcp->tcp_first_ctimer_threshold;
5552 	eager->tcp_second_ctimer_threshold =
5553 	    tcp->tcp_second_ctimer_threshold;
5554 
5555 	/*
5556 	 * tcp_adapt_ire() may change tcp_rwnd according to the ire metrics.
5557 	 * If it does not, the eager's receive window will be set to the
5558 	 * listener's receive window later in this function.
5559 	 */
5560 	eager->tcp_rwnd = 0;
5561 
5562 	/*
5563 	 * Inherit listener's tcp_init_cwnd.  Need to do this before
5564 	 * calling tcp_process_options() where tcp_mss_set() is called
5565 	 * to set the initial cwnd.
5566 	 */
5567 	eager->tcp_init_cwnd = tcp->tcp_init_cwnd;
5568 
5569 	/*
5570 	 * Zones: tcp_adapt_ire() and tcp_send_data() both need the
5571 	 * zone id before the accept is completed in tcp_wput_accept().
5572 	 */
5573 	econnp->conn_zoneid = connp->conn_zoneid;
5574 
5575 	/* Copy nexthop information from listener to eager */
5576 	if (connp->conn_nexthop_set) {
5577 		econnp->conn_nexthop_set = connp->conn_nexthop_set;
5578 		econnp->conn_nexthop_v4 = connp->conn_nexthop_v4;
5579 	}
5580 
5581 	/*
5582 	 * TSOL: tsol_input_proc() needs the eager's cred before the
5583 	 * eager is accepted
5584 	 */
5585 	econnp->conn_cred = eager->tcp_cred = credp = connp->conn_cred;
5586 	crhold(credp);
5587 
5588 	/*
5589 	 * If the caller has the process-wide flag set, then default to MAC
5590 	 * exempt mode.  This allows read-down to unlabeled hosts.
5591 	 */
5592 	if (getpflags(NET_MAC_AWARE, credp) != 0)
5593 		econnp->conn_mac_exempt = B_TRUE;
5594 
5595 	if (is_system_labeled()) {
5596 		cred_t *cr;
5597 
5598 		if (connp->conn_mlp_type != mlptSingle) {
5599 			cr = econnp->conn_peercred = DB_CRED(mp);
5600 			if (cr != NULL)
5601 				crhold(cr);
5602 			else
5603 				cr = econnp->conn_cred;
5604 			DTRACE_PROBE2(mlp_syn_accept, conn_t *,
5605 			    econnp, cred_t *, cr)
5606 		} else {
5607 			cr = econnp->conn_cred;
5608 			DTRACE_PROBE2(syn_accept, conn_t *,
5609 			    econnp, cred_t *, cr)
5610 		}
5611 
5612 		if (!tcp_update_label(eager, cr)) {
5613 			DTRACE_PROBE3(
5614 			    tx__ip__log__error__connrequest__tcp,
5615 			    char *, "eager connp(1) label on SYN mp(2) failed",
5616 			    conn_t *, econnp, mblk_t *, mp);
5617 			goto error3;
5618 		}
5619 	}
5620 
5621 	eager->tcp_hard_binding = B_TRUE;
5622 
5623 	tcp_bind_hash_insert(&tcp_bind_fanout[
5624 	    TCP_BIND_HASH(eager->tcp_lport)], eager, 0);
5625 
5626 	CL_INET_CONNECT(eager);
5627 
5628 	/*
5629 	 * No need to check for multicast destination since ip will only pass
5630 	 * up multicasts to those that have expressed interest
5631 	 * TODO: what about rejecting broadcasts?
5632 	 * Also check that source is not a multicast or broadcast address.
5633 	 */
5634 	eager->tcp_state = TCPS_SYN_RCVD;
5635 
5636 
5637 	/*
5638 	 * There should be no ire in the mp as we are being called after
5639 	 * receiving the SYN.
5640 	 */
5641 	ASSERT(tcp_ire_mp(mp) == NULL);
5642 
5643 	/*
5644 	 * Adapt our mss, ttl, ... according to information provided in IRE.
5645 	 */
5646 
5647 	if (tcp_adapt_ire(eager, NULL) == 0) {
5648 		/* Undo the bind_hash_insert */
5649 		tcp_bind_hash_remove(eager);
5650 		goto error3;
5651 	}
5652 
5653 	/* Process all TCP options. */
5654 	tcp_process_options(eager, tcph);
5655 
5656 	/* Is the other end ECN capable? */
5657 	if (tcp_ecn_permitted >= 1 &&
5658 	    (tcph->th_flags[0] & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) {
5659 		eager->tcp_ecn_ok = B_TRUE;
5660 	}
5661 
5662 	/*
5663 	 * listener->tcp_rq->q_hiwat should be the default window size or a
5664 	 * window size changed via SO_RCVBUF option.  First round up the
5665 	 * eager's tcp_rwnd to the nearest MSS.  Then find out the window
5666 	 * scale option value if needed.  Call tcp_rwnd_set() to finish the
5667 	 * setting.
5668 	 *
5669 	 * Note if there is a rpipe metric associated with the remote host,
5670 	 * we should not inherit receive window size from listener.
5671 	 */
5672 	eager->tcp_rwnd = MSS_ROUNDUP(
5673 	    (eager->tcp_rwnd == 0 ? tcp->tcp_rq->q_hiwat :
5674 	    eager->tcp_rwnd), eager->tcp_mss);
5675 	if (eager->tcp_snd_ws_ok)
5676 		tcp_set_ws_value(eager);
5677 	/*
5678 	 * Note that this is the only place tcp_rwnd_set() is called for
5679 	 * accepting a connection.  We need to call it here instead of
5680 	 * after the 3-way handshake because we need to tell the other
5681 	 * side our rwnd in the SYN-ACK segment.
5682 	 */
5683 	(void) tcp_rwnd_set(eager, eager->tcp_rwnd);
5684 
5685 	/*
5686 	 * We eliminate the need for sockfs to send down a T_SVR4_OPTMGMT_REQ
5687 	 * via soaccept()->soinheritoptions() which essentially applies
5688 	 * all the listener options to the new STREAM. The options that we
5689 	 * need to take care of are:
5690 	 * SO_DEBUG, SO_REUSEADDR, SO_KEEPALIVE, SO_DONTROUTE, SO_BROADCAST,
5691 	 * SO_USELOOPBACK, SO_OOBINLINE, SO_DGRAM_ERRIND, SO_LINGER,
5692 	 * SO_SNDBUF, SO_RCVBUF.
5693 	 *
5694 	 * SO_RCVBUF:	tcp_rwnd_set() above takes care of it.
5695 	 * SO_SNDBUF:	Set the tcp_xmit_hiwater for the eager. When
5696 	 *		tcp_maxpsz_set() gets called later from
5697 	 *		tcp_accept_finish(), the option takes effect.
5698 	 *
5699 	 */
5700 	/* Set the TCP options */
5701 	eager->tcp_xmit_hiwater = tcp->tcp_xmit_hiwater;
5702 	eager->tcp_dgram_errind = tcp->tcp_dgram_errind;
5703 	eager->tcp_oobinline = tcp->tcp_oobinline;
5704 	eager->tcp_reuseaddr = tcp->tcp_reuseaddr;
5705 	eager->tcp_broadcast = tcp->tcp_broadcast;
5706 	eager->tcp_useloopback = tcp->tcp_useloopback;
5707 	eager->tcp_dontroute = tcp->tcp_dontroute;
5708 	eager->tcp_linger = tcp->tcp_linger;
5709 	eager->tcp_lingertime = tcp->tcp_lingertime;
5710 	if (tcp->tcp_ka_enabled)
5711 		eager->tcp_ka_enabled = 1;
5712 
5713 	/* Set the IP options */
5714 	econnp->conn_broadcast = connp->conn_broadcast;
5715 	econnp->conn_loopback = connp->conn_loopback;
5716 	econnp->conn_dontroute = connp->conn_dontroute;
5717 	econnp->conn_reuseaddr = connp->conn_reuseaddr;
5718 
5719 	/* Put a ref on the listener for the eager. */
5720 	CONN_INC_REF(connp);
5721 	mutex_enter(&tcp->tcp_eager_lock);
5722 	tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = eager;
5723 	eager->tcp_eager_next_q0 = tcp->tcp_eager_next_q0;
5724 	tcp->tcp_eager_next_q0 = eager;
5725 	eager->tcp_eager_prev_q0 = tcp;
5726 
5727 	/* Set tcp_listener before adding it to tcp_conn_fanout */
5728 	eager->tcp_listener = tcp;
5729 	eager->tcp_saved_listener = tcp;
5730 
5731 	/*
5732 	 * Tag this detached tcp vector for later retrieval
5733 	 * by our listener client in tcp_accept().
5734 	 */
5735 	eager->tcp_conn_req_seqnum = tcp->tcp_conn_req_seqnum;
5736 	tcp->tcp_conn_req_cnt_q0++;
5737 	if (++tcp->tcp_conn_req_seqnum == -1) {
5738 		/*
5739 		 * -1 is "special" and defined in TPI as something
5740 		 * that should never be used in T_CONN_IND
5741 		 */
5742 		++tcp->tcp_conn_req_seqnum;
5743 	}
5744 	mutex_exit(&tcp->tcp_eager_lock);
5745 
5746 	if (tcp->tcp_syn_defense) {
5747 		/* Don't drop the SYN that comes from a good IP source */
5748 		ipaddr_t *addr_cache = (ipaddr_t *)(tcp->tcp_ip_addr_cache);
5749 		if (addr_cache != NULL && eager->tcp_remote ==
5750 		    addr_cache[IP_ADDR_CACHE_HASH(eager->tcp_remote)]) {
5751 			eager->tcp_dontdrop = B_TRUE;
5752 		}
5753 	}
5754 
5755 	/*
5756 	 * We need to insert the eager in its own perimeter but as soon
5757 	 * as we do that, we expose the eager to the classifier and
5758 	 * should not touch any field outside the eager's perimeter.
5759 	 * So do all the work necessary before inserting the eager
5760 	 * in its own perimeter. Be optimistic that ipcl_conn_insert()
5761 	 * will succeed but undo everything if it fails.
5762 	 */
5763 	seg_seq = ABE32_TO_U32(tcph->th_seq);
5764 	eager->tcp_irs = seg_seq;
5765 	eager->tcp_rack = seg_seq;
5766 	eager->tcp_rnxt = seg_seq + 1;
5767 	U32_TO_ABE32(eager->tcp_rnxt, eager->tcp_tcph->th_ack);
5768 	BUMP_MIB(&tcp_mib, tcpPassiveOpens);
5769 	eager->tcp_state = TCPS_SYN_RCVD;
5770 	mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss,
5771 	    NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE);
5772 	if (mp1 == NULL)
5773 		goto error1;
5774 	DB_CPID(mp1) = tcp->tcp_cpid;
5775 
5776 	/*
5777 	 * We need to start the rto timer. In normal case, we start
5778 	 * the timer after sending the packet on the wire (or at
5779 	 * least believing that packet was sent by waiting for
5780 	 * CALL_IP_WPUT() to return). Since this is the first packet
5781 	 * being sent on the wire for the eager, our initial tcp_rto
5782 	 * is at least tcp_rexmit_interval_min which is a fairly
5783 	 * large value to allow the algorithm to adjust slowly to large
5784 	 * fluctuations of RTT during first few transmissions.
5785 	 *
5786 	 * Starting the timer first and then sending the packet in this
5787 	 * case shouldn't make much difference since tcp_rexmit_interval_min
5788 	 * is of the order of several 100ms and starting the timer
5789 	 * first and then sending the packet will result in difference
5790 	 * of few micro seconds.
5791 	 *
5792 	 * Without this optimization, we are forced to hold the fanout
5793 	 * lock across the ipcl_bind_insert() and sending the packet
5794 	 * so that we don't race against an incoming packet (maybe RST)
5795 	 * for this eager.
5796 	 */
5797 
5798 	TCP_RECORD_TRACE(eager, mp1, TCP_TRACE_SEND_PKT);
5799 	TCP_TIMER_RESTART(eager, eager->tcp_rto);
5800 
5801 
5802 	/*
5803 	 * Insert the eager in its own perimeter now. We are ready to deal
5804 	 * with any packets on eager.
5805 	 */
5806 	if (eager->tcp_ipversion == IPV4_VERSION) {
5807 		if (ipcl_conn_insert(econnp, IPPROTO_TCP, 0, 0, 0) != 0) {
5808 			goto error;
5809 		}
5810 	} else {
5811 		if (ipcl_conn_insert_v6(econnp, IPPROTO_TCP, 0, 0, 0, 0) != 0) {
5812 			goto error;
5813 		}
5814 	}
5815 
5816 	/* mark conn as fully-bound */
5817 	econnp->conn_fully_bound = B_TRUE;
5818 
5819 	/* Send the SYN-ACK */
5820 	tcp_send_data(eager, eager->tcp_wq, mp1);
5821 	freemsg(mp);
5822 
5823 	return;
5824 error:
5825 	(void) TCP_TIMER_CANCEL(eager, eager->tcp_timer_tid);
5826 	freemsg(mp1);
5827 error1:
5828 	/* Undo what we did above */
5829 	mutex_enter(&tcp->tcp_eager_lock);
5830 	tcp_eager_unlink(eager);
5831 	mutex_exit(&tcp->tcp_eager_lock);
5832 	/* Drop eager's reference on the listener */
5833 	CONN_DEC_REF(connp);
5834 
5835 	/*
5836 	 * Delete the cached ire in conn_ire_cache and also mark
5837 	 * the conn as CONDEMNED
5838 	 */
5839 	mutex_enter(&econnp->conn_lock);
5840 	econnp->conn_state_flags |= CONN_CONDEMNED;
5841 	ire = econnp->conn_ire_cache;
5842 	econnp->conn_ire_cache = NULL;
5843 	mutex_exit(&econnp->conn_lock);
5844 	if (ire != NULL)
5845 		IRE_REFRELE_NOTR(ire);
5846 
5847 	/*
5848 	 * tcp_accept_comm inserts the eager to the bind_hash
5849 	 * we need to remove it from the hash if ipcl_conn_insert
5850 	 * fails.
5851 	 */
5852 	tcp_bind_hash_remove(eager);
5853 	/* Drop the eager ref placed in tcp_open_detached */
5854 	CONN_DEC_REF(econnp);
5855 
5856 	/*
5857 	 * If a connection already exists, send the mp to that connections so
5858 	 * that it can be appropriately dealt with.
5859 	 */
5860 	if ((econnp = ipcl_classify(mp, connp->conn_zoneid)) != NULL) {
5861 		if (!IPCL_IS_CONNECTED(econnp)) {
5862 			/*
5863 			 * Something bad happened. ipcl_conn_insert()
5864 			 * failed because a connection already existed
5865 			 * in connected hash but we can't find it
5866 			 * anymore (someone blew it away). Just
5867 			 * free this message and hopefully remote
5868 			 * will retransmit at which time the SYN can be
5869 			 * treated as a new connection or dealth with
5870 			 * a TH_RST if a connection already exists.
5871 			 */
5872 			freemsg(mp);
5873 		} else {
5874 			squeue_fill(econnp->conn_sqp, mp, tcp_input,
5875 			    econnp, SQTAG_TCP_CONN_REQ);
5876 		}
5877 	} else {
5878 		/* Nobody wants this packet */
5879 		freemsg(mp);
5880 	}
5881 	return;
5882 error2:
5883 	freemsg(mp);
5884 	return;
5885 error3:
5886 	CONN_DEC_REF(econnp);
5887 	freemsg(mp);
5888 }
5889 
5890 /*
5891  * In an ideal case of vertical partition in NUMA architecture, its
5892  * beneficial to have the listener and all the incoming connections
5893  * tied to the same squeue. The other constraint is that incoming
5894  * connections should be tied to the squeue attached to interrupted
5895  * CPU for obvious locality reason so this leaves the listener to
5896  * be tied to the same squeue. Our only problem is that when listener
5897  * is binding, the CPU that will get interrupted by the NIC whose
5898  * IP address the listener is binding to is not even known. So
5899  * the code below allows us to change that binding at the time the
5900  * CPU is interrupted by virtue of incoming connection's squeue.
5901  *
5902  * This is usefull only in case of a listener bound to a specific IP
5903  * address. For other kind of listeners, they get bound the
5904  * very first time and there is no attempt to rebind them.
5905  */
5906 void
5907 tcp_conn_request_unbound(void *arg, mblk_t *mp, void *arg2)
5908 {
5909 	conn_t		*connp = (conn_t *)arg;
5910 	squeue_t	*sqp = (squeue_t *)arg2;
5911 	squeue_t	*new_sqp;
5912 	uint32_t	conn_flags;
5913 
5914 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
5915 		new_sqp = (squeue_t *)DB_CKSUMSTART(mp);
5916 	} else {
5917 		goto done;
5918 	}
5919 
5920 	if (connp->conn_fanout == NULL)
5921 		goto done;
5922 
5923 	if (!(connp->conn_flags & IPCL_FULLY_BOUND)) {
5924 		mutex_enter(&connp->conn_fanout->connf_lock);
5925 		mutex_enter(&connp->conn_lock);
5926 		/*
5927 		 * No one from read or write side can access us now
5928 		 * except for already queued packets on this squeue.
5929 		 * But since we haven't changed the squeue yet, they
5930 		 * can't execute. If they are processed after we have
5931 		 * changed the squeue, they are sent back to the
5932 		 * correct squeue down below.
5933 		 */
5934 		if (connp->conn_sqp != new_sqp) {
5935 			while (connp->conn_sqp != new_sqp)
5936 				(void) casptr(&connp->conn_sqp, sqp, new_sqp);
5937 		}
5938 
5939 		do {
5940 			conn_flags = connp->conn_flags;
5941 			conn_flags |= IPCL_FULLY_BOUND;
5942 			(void) cas32(&connp->conn_flags, connp->conn_flags,
5943 			    conn_flags);
5944 		} while (!(connp->conn_flags & IPCL_FULLY_BOUND));
5945 
5946 		mutex_exit(&connp->conn_fanout->connf_lock);
5947 		mutex_exit(&connp->conn_lock);
5948 	}
5949 
5950 done:
5951 	if (connp->conn_sqp != sqp) {
5952 		CONN_INC_REF(connp);
5953 		squeue_fill(connp->conn_sqp, mp,
5954 		    connp->conn_recv, connp, SQTAG_TCP_CONN_REQ_UNBOUND);
5955 	} else {
5956 		tcp_conn_request(connp, mp, sqp);
5957 	}
5958 }
5959 
5960 /*
5961  * Successful connect request processing begins when our client passes
5962  * a T_CONN_REQ message into tcp_wput() and ends when tcp_rput() passes
5963  * our T_OK_ACK reply message upstream.  The control flow looks like this:
5964  *   upstream -> tcp_wput() -> tcp_wput_proto() -> tcp_connect() -> IP
5965  *   upstream <- tcp_rput()                <- IP
5966  * After various error checks are completed, tcp_connect() lays
5967  * the target address and port into the composite header template,
5968  * preallocates the T_OK_ACK reply message, construct a full 12 byte bind
5969  * request followed by an IRE request, and passes the three mblk message
5970  * down to IP looking like this:
5971  *   O_T_BIND_REQ for IP  --> IRE req --> T_OK_ACK for our client
5972  * Processing continues in tcp_rput() when we receive the following message:
5973  *   T_BIND_ACK from IP --> IRE ack --> T_OK_ACK for our client
5974  * After consuming the first two mblks, tcp_rput() calls tcp_timer(),
5975  * to fire off the connection request, and then passes the T_OK_ACK mblk
5976  * upstream that we filled in below.  There are, of course, numerous
5977  * error conditions along the way which truncate the processing described
5978  * above.
5979  */
5980 static void
5981 tcp_connect(tcp_t *tcp, mblk_t *mp)
5982 {
5983 	sin_t		*sin;
5984 	sin6_t		*sin6;
5985 	queue_t		*q = tcp->tcp_wq;
5986 	struct T_conn_req	*tcr;
5987 	ipaddr_t	*dstaddrp;
5988 	in_port_t	dstport;
5989 	uint_t		srcid;
5990 
5991 	tcr = (struct T_conn_req *)mp->b_rptr;
5992 
5993 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
5994 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) {
5995 		tcp_err_ack(tcp, mp, TPROTO, 0);
5996 		return;
5997 	}
5998 
5999 	/*
6000 	 * Determine packet type based on type of address passed in
6001 	 * the request should contain an IPv4 or IPv6 address.
6002 	 * Make sure that address family matches the type of
6003 	 * family of the the address passed down
6004 	 */
6005 	switch (tcr->DEST_length) {
6006 	default:
6007 		tcp_err_ack(tcp, mp, TBADADDR, 0);
6008 		return;
6009 
6010 	case (sizeof (sin_t) - sizeof (sin->sin_zero)): {
6011 		/*
6012 		 * XXX: The check for valid DEST_length was not there
6013 		 * in earlier releases and some buggy
6014 		 * TLI apps (e.g Sybase) got away with not feeding
6015 		 * in sin_zero part of address.
6016 		 * We allow that bug to keep those buggy apps humming.
6017 		 * Test suites require the check on DEST_length.
6018 		 * We construct a new mblk with valid DEST_length
6019 		 * free the original so the rest of the code does
6020 		 * not have to keep track of this special shorter
6021 		 * length address case.
6022 		 */
6023 		mblk_t *nmp;
6024 		struct T_conn_req *ntcr;
6025 		sin_t *nsin;
6026 
6027 		nmp = allocb(sizeof (struct T_conn_req) + sizeof (sin_t) +
6028 		    tcr->OPT_length, BPRI_HI);
6029 		if (nmp == NULL) {
6030 			tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
6031 			return;
6032 		}
6033 		ntcr = (struct T_conn_req *)nmp->b_rptr;
6034 		bzero(ntcr, sizeof (struct T_conn_req)); /* zero fill */
6035 		ntcr->PRIM_type = T_CONN_REQ;
6036 		ntcr->DEST_length = sizeof (sin_t);
6037 		ntcr->DEST_offset = sizeof (struct T_conn_req);
6038 
6039 		nsin = (sin_t *)((uchar_t *)ntcr + ntcr->DEST_offset);
6040 		*nsin = sin_null;
6041 		/* Get pointer to shorter address to copy from original mp */
6042 		sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset,
6043 		    tcr->DEST_length); /* extract DEST_length worth of sin_t */
6044 		if (sin == NULL || !OK_32PTR((char *)sin)) {
6045 			freemsg(nmp);
6046 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
6047 			return;
6048 		}
6049 		nsin->sin_family = sin->sin_family;
6050 		nsin->sin_port = sin->sin_port;
6051 		nsin->sin_addr = sin->sin_addr;
6052 		/* Note:nsin->sin_zero zero-fill with sin_null assign above */
6053 		nmp->b_wptr = (uchar_t *)&nsin[1];
6054 		if (tcr->OPT_length != 0) {
6055 			ntcr->OPT_length = tcr->OPT_length;
6056 			ntcr->OPT_offset = nmp->b_wptr - nmp->b_rptr;
6057 			bcopy((uchar_t *)tcr + tcr->OPT_offset,
6058 			    (uchar_t *)ntcr + ntcr->OPT_offset,
6059 			    tcr->OPT_length);
6060 			nmp->b_wptr += tcr->OPT_length;
6061 		}
6062 		freemsg(mp);	/* original mp freed */
6063 		mp = nmp;	/* re-initialize original variables */
6064 		tcr = ntcr;
6065 	}
6066 	/* FALLTHRU */
6067 
6068 	case sizeof (sin_t):
6069 		sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset,
6070 		    sizeof (sin_t));
6071 		if (sin == NULL || !OK_32PTR((char *)sin)) {
6072 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
6073 			return;
6074 		}
6075 		if (tcp->tcp_family != AF_INET ||
6076 		    sin->sin_family != AF_INET) {
6077 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
6078 			return;
6079 		}
6080 		if (sin->sin_port == 0) {
6081 			tcp_err_ack(tcp, mp, TBADADDR, 0);
6082 			return;
6083 		}
6084 		if (tcp->tcp_connp && tcp->tcp_connp->conn_ipv6_v6only) {
6085 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
6086 			return;
6087 		}
6088 
6089 		break;
6090 
6091 	case sizeof (sin6_t):
6092 		sin6 = (sin6_t *)mi_offset_param(mp, tcr->DEST_offset,
6093 		    sizeof (sin6_t));
6094 		if (sin6 == NULL || !OK_32PTR((char *)sin6)) {
6095 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
6096 			return;
6097 		}
6098 		if (tcp->tcp_family != AF_INET6 ||
6099 		    sin6->sin6_family != AF_INET6) {
6100 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
6101 			return;
6102 		}
6103 		if (sin6->sin6_port == 0) {
6104 			tcp_err_ack(tcp, mp, TBADADDR, 0);
6105 			return;
6106 		}
6107 		break;
6108 	}
6109 	/*
6110 	 * TODO: If someone in TCPS_TIME_WAIT has this dst/port we
6111 	 * should key on their sequence number and cut them loose.
6112 	 */
6113 
6114 	/*
6115 	 * If options passed in, feed it for verification and handling
6116 	 */
6117 	if (tcr->OPT_length != 0) {
6118 		mblk_t	*ok_mp;
6119 		mblk_t	*discon_mp;
6120 		mblk_t  *conn_opts_mp;
6121 		int t_error, sys_error, do_disconnect;
6122 
6123 		conn_opts_mp = NULL;
6124 
6125 		if (tcp_conprim_opt_process(tcp, mp,
6126 			&do_disconnect, &t_error, &sys_error) < 0) {
6127 			if (do_disconnect) {
6128 				ASSERT(t_error == 0 && sys_error == 0);
6129 				discon_mp = mi_tpi_discon_ind(NULL,
6130 				    ECONNREFUSED, 0);
6131 				if (!discon_mp) {
6132 					tcp_err_ack_prim(tcp, mp, T_CONN_REQ,
6133 					    TSYSERR, ENOMEM);
6134 					return;
6135 				}
6136 				ok_mp = mi_tpi_ok_ack_alloc(mp);
6137 				if (!ok_mp) {
6138 					tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6139 					    TSYSERR, ENOMEM);
6140 					return;
6141 				}
6142 				qreply(q, ok_mp);
6143 				qreply(q, discon_mp); /* no flush! */
6144 			} else {
6145 				ASSERT(t_error != 0);
6146 				tcp_err_ack_prim(tcp, mp, T_CONN_REQ, t_error,
6147 				    sys_error);
6148 			}
6149 			return;
6150 		}
6151 		/*
6152 		 * Success in setting options, the mp option buffer represented
6153 		 * by OPT_length/offset has been potentially modified and
6154 		 * contains results of option processing. We copy it in
6155 		 * another mp to save it for potentially influencing returning
6156 		 * it in T_CONN_CONN.
6157 		 */
6158 		if (tcr->OPT_length != 0) { /* there are resulting options */
6159 			conn_opts_mp = copyb(mp);
6160 			if (!conn_opts_mp) {
6161 				tcp_err_ack_prim(tcp, mp, T_CONN_REQ,
6162 				    TSYSERR, ENOMEM);
6163 				return;
6164 			}
6165 			ASSERT(tcp->tcp_conn.tcp_opts_conn_req == NULL);
6166 			tcp->tcp_conn.tcp_opts_conn_req = conn_opts_mp;
6167 			/*
6168 			 * Note:
6169 			 * These resulting option negotiation can include any
6170 			 * end-to-end negotiation options but there no such
6171 			 * thing (yet?) in our TCP/IP.
6172 			 */
6173 		}
6174 	}
6175 
6176 	/*
6177 	 * If we're connecting to an IPv4-mapped IPv6 address, we need to
6178 	 * make sure that the template IP header in the tcp structure is an
6179 	 * IPv4 header, and that the tcp_ipversion is IPV4_VERSION.  We
6180 	 * need to this before we call tcp_bindi() so that the port lookup
6181 	 * code will look for ports in the correct port space (IPv4 and
6182 	 * IPv6 have separate port spaces).
6183 	 */
6184 	if (tcp->tcp_family == AF_INET6 && tcp->tcp_ipversion == IPV6_VERSION &&
6185 	    IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
6186 		int err = 0;
6187 
6188 		err = tcp_header_init_ipv4(tcp);
6189 		if (err != 0) {
6190 			mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM);
6191 			goto connect_failed;
6192 		}
6193 		if (tcp->tcp_lport != 0)
6194 			*(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport;
6195 	}
6196 
6197 	switch (tcp->tcp_state) {
6198 	case TCPS_IDLE:
6199 		/*
6200 		 * We support quick connect, refer to comments in
6201 		 * tcp_connect_*()
6202 		 */
6203 		/* FALLTHRU */
6204 	case TCPS_BOUND:
6205 	case TCPS_LISTEN:
6206 		if (tcp->tcp_family == AF_INET6) {
6207 			if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
6208 				tcp_connect_ipv6(tcp, mp,
6209 				    &sin6->sin6_addr,
6210 				    sin6->sin6_port, sin6->sin6_flowinfo,
6211 				    sin6->__sin6_src_id, sin6->sin6_scope_id);
6212 				return;
6213 			}
6214 			/*
6215 			 * Destination adress is mapped IPv6 address.
6216 			 * Source bound address should be unspecified or
6217 			 * IPv6 mapped address as well.
6218 			 */
6219 			if (!IN6_IS_ADDR_UNSPECIFIED(
6220 			    &tcp->tcp_bound_source_v6) &&
6221 			    !IN6_IS_ADDR_V4MAPPED(&tcp->tcp_bound_source_v6)) {
6222 				mp = mi_tpi_err_ack_alloc(mp, TSYSERR,
6223 				    EADDRNOTAVAIL);
6224 				break;
6225 			}
6226 			dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr));
6227 			dstport = sin6->sin6_port;
6228 			srcid = sin6->__sin6_src_id;
6229 		} else {
6230 			dstaddrp = &sin->sin_addr.s_addr;
6231 			dstport = sin->sin_port;
6232 			srcid = 0;
6233 		}
6234 
6235 		tcp_connect_ipv4(tcp, mp, dstaddrp, dstport, srcid);
6236 		return;
6237 	default:
6238 		mp = mi_tpi_err_ack_alloc(mp, TOUTSTATE, 0);
6239 		break;
6240 	}
6241 	/*
6242 	 * Note: Code below is the "failure" case
6243 	 */
6244 	/* return error ack and blow away saved option results if any */
6245 connect_failed:
6246 	if (mp != NULL)
6247 		putnext(tcp->tcp_rq, mp);
6248 	else {
6249 		tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6250 		    TSYSERR, ENOMEM);
6251 	}
6252 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
6253 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
6254 }
6255 
6256 /*
6257  * Handle connect to IPv4 destinations, including connections for AF_INET6
6258  * sockets connecting to IPv4 mapped IPv6 destinations.
6259  */
6260 static void
6261 tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp, in_port_t dstport,
6262     uint_t srcid)
6263 {
6264 	tcph_t	*tcph;
6265 	mblk_t	*mp1;
6266 	ipaddr_t dstaddr = *dstaddrp;
6267 	int32_t	oldstate;
6268 	uint16_t lport;
6269 
6270 	ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
6271 
6272 	/* Check for attempt to connect to INADDR_ANY */
6273 	if (dstaddr == INADDR_ANY)  {
6274 		/*
6275 		 * SunOS 4.x and 4.3 BSD allow an application
6276 		 * to connect a TCP socket to INADDR_ANY.
6277 		 * When they do this, the kernel picks the
6278 		 * address of one interface and uses it
6279 		 * instead.  The kernel usually ends up
6280 		 * picking the address of the loopback
6281 		 * interface.  This is an undocumented feature.
6282 		 * However, we provide the same thing here
6283 		 * in order to have source and binary
6284 		 * compatibility with SunOS 4.x.
6285 		 * Update the T_CONN_REQ (sin/sin6) since it is used to
6286 		 * generate the T_CONN_CON.
6287 		 */
6288 		dstaddr = htonl(INADDR_LOOPBACK);
6289 		*dstaddrp = dstaddr;
6290 	}
6291 
6292 	/* Handle __sin6_src_id if socket not bound to an IP address */
6293 	if (srcid != 0 && tcp->tcp_ipha->ipha_src == INADDR_ANY) {
6294 		ip_srcid_find_id(srcid, &tcp->tcp_ip_src_v6,
6295 		    tcp->tcp_connp->conn_zoneid);
6296 		IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_ip_src_v6,
6297 		    tcp->tcp_ipha->ipha_src);
6298 	}
6299 
6300 	/*
6301 	 * Don't let an endpoint connect to itself.  Note that
6302 	 * the test here does not catch the case where the
6303 	 * source IP addr was left unspecified by the user. In
6304 	 * this case, the source addr is set in tcp_adapt_ire()
6305 	 * using the reply to the T_BIND message that we send
6306 	 * down to IP here and the check is repeated in tcp_rput_other.
6307 	 */
6308 	if (dstaddr == tcp->tcp_ipha->ipha_src &&
6309 	    dstport == tcp->tcp_lport) {
6310 		mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0);
6311 		goto failed;
6312 	}
6313 
6314 	tcp->tcp_ipha->ipha_dst = dstaddr;
6315 	IN6_IPADDR_TO_V4MAPPED(dstaddr, &tcp->tcp_remote_v6);
6316 
6317 	/*
6318 	 * Massage a source route if any putting the first hop
6319 	 * in iph_dst. Compute a starting value for the checksum which
6320 	 * takes into account that the original iph_dst should be
6321 	 * included in the checksum but that ip will include the
6322 	 * first hop in the source route in the tcp checksum.
6323 	 */
6324 	tcp->tcp_sum = ip_massage_options(tcp->tcp_ipha);
6325 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
6326 	tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) +
6327 	    (tcp->tcp_ipha->ipha_dst & 0xffff));
6328 	if ((int)tcp->tcp_sum < 0)
6329 		tcp->tcp_sum--;
6330 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
6331 	tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
6332 	    (tcp->tcp_sum >> 16));
6333 	tcph = tcp->tcp_tcph;
6334 	*(uint16_t *)tcph->th_fport = dstport;
6335 	tcp->tcp_fport = dstport;
6336 
6337 	oldstate = tcp->tcp_state;
6338 	/*
6339 	 * At this point the remote destination address and remote port fields
6340 	 * in the tcp-four-tuple have been filled in the tcp structure. Now we
6341 	 * have to see which state tcp was in so we can take apropriate action.
6342 	 */
6343 	if (oldstate == TCPS_IDLE) {
6344 		/*
6345 		 * We support a quick connect capability here, allowing
6346 		 * clients to transition directly from IDLE to SYN_SENT
6347 		 * tcp_bindi will pick an unused port, insert the connection
6348 		 * in the bind hash and transition to BOUND state.
6349 		 */
6350 		lport = tcp_update_next_port(tcp_next_port_to_try, tcp, B_TRUE);
6351 		lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE,
6352 		    B_FALSE, B_FALSE);
6353 		if (lport == 0) {
6354 			mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0);
6355 			goto failed;
6356 		}
6357 	}
6358 	tcp->tcp_state = TCPS_SYN_SENT;
6359 
6360 	/*
6361 	 * TODO: allow data with connect requests
6362 	 * by unlinking M_DATA trailers here and
6363 	 * linking them in behind the T_OK_ACK mblk.
6364 	 * The tcp_rput() bind ack handler would then
6365 	 * feed them to tcp_wput_data() rather than call
6366 	 * tcp_timer().
6367 	 */
6368 	mp = mi_tpi_ok_ack_alloc(mp);
6369 	if (!mp) {
6370 		tcp->tcp_state = oldstate;
6371 		goto failed;
6372 	}
6373 	if (tcp->tcp_family == AF_INET) {
6374 		mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ,
6375 		    sizeof (ipa_conn_t));
6376 	} else {
6377 		mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ,
6378 		    sizeof (ipa6_conn_t));
6379 	}
6380 	if (mp1) {
6381 		/* Hang onto the T_OK_ACK for later. */
6382 		linkb(mp1, mp);
6383 		mblk_setcred(mp1, tcp->tcp_cred);
6384 		if (tcp->tcp_family == AF_INET)
6385 			mp1 = ip_bind_v4(tcp->tcp_wq, mp1, tcp->tcp_connp);
6386 		else {
6387 			mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp,
6388 			    &tcp->tcp_sticky_ipp);
6389 		}
6390 		BUMP_MIB(&tcp_mib, tcpActiveOpens);
6391 		tcp->tcp_active_open = 1;
6392 		/*
6393 		 * If the bind cannot complete immediately
6394 		 * IP will arrange to call tcp_rput_other
6395 		 * when the bind completes.
6396 		 */
6397 		if (mp1 != NULL)
6398 			tcp_rput_other(tcp, mp1);
6399 		return;
6400 	}
6401 	/* Error case */
6402 	tcp->tcp_state = oldstate;
6403 	mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM);
6404 
6405 failed:
6406 	/* return error ack and blow away saved option results if any */
6407 	if (mp != NULL)
6408 		putnext(tcp->tcp_rq, mp);
6409 	else {
6410 		tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6411 		    TSYSERR, ENOMEM);
6412 	}
6413 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
6414 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
6415 
6416 }
6417 
6418 /*
6419  * Handle connect to IPv6 destinations.
6420  */
6421 static void
6422 tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp,
6423     in_port_t dstport, uint32_t flowinfo, uint_t srcid, uint32_t scope_id)
6424 {
6425 	tcph_t	*tcph;
6426 	mblk_t	*mp1;
6427 	ip6_rthdr_t *rth;
6428 	int32_t  oldstate;
6429 	uint16_t lport;
6430 
6431 	ASSERT(tcp->tcp_family == AF_INET6);
6432 
6433 	/*
6434 	 * If we're here, it means that the destination address is a native
6435 	 * IPv6 address.  Return an error if tcp_ipversion is not IPv6.  A
6436 	 * reason why it might not be IPv6 is if the socket was bound to an
6437 	 * IPv4-mapped IPv6 address.
6438 	 */
6439 	if (tcp->tcp_ipversion != IPV6_VERSION) {
6440 		mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0);
6441 		goto failed;
6442 	}
6443 
6444 	/*
6445 	 * Interpret a zero destination to mean loopback.
6446 	 * Update the T_CONN_REQ (sin/sin6) since it is used to
6447 	 * generate the T_CONN_CON.
6448 	 */
6449 	if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp)) {
6450 		*dstaddrp = ipv6_loopback;
6451 	}
6452 
6453 	/* Handle __sin6_src_id if socket not bound to an IP address */
6454 	if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) {
6455 		ip_srcid_find_id(srcid, &tcp->tcp_ip6h->ip6_src,
6456 		    tcp->tcp_connp->conn_zoneid);
6457 		tcp->tcp_ip_src_v6 = tcp->tcp_ip6h->ip6_src;
6458 	}
6459 
6460 	/*
6461 	 * Take care of the scope_id now and add ip6i_t
6462 	 * if ip6i_t is not already allocated through TCP
6463 	 * sticky options. At this point tcp_ip6h does not
6464 	 * have dst info, thus use dstaddrp.
6465 	 */
6466 	if (scope_id != 0 &&
6467 	    IN6_IS_ADDR_LINKSCOPE(dstaddrp)) {
6468 		ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp;
6469 		ip6i_t  *ip6i;
6470 
6471 		ipp->ipp_ifindex = scope_id;
6472 		ip6i = (ip6i_t *)tcp->tcp_iphc;
6473 
6474 		if ((ipp->ipp_fields & IPPF_HAS_IP6I) &&
6475 		    ip6i != NULL && (ip6i->ip6i_nxt == IPPROTO_RAW)) {
6476 			/* Already allocated */
6477 			ip6i->ip6i_flags |= IP6I_IFINDEX;
6478 			ip6i->ip6i_ifindex = ipp->ipp_ifindex;
6479 			ipp->ipp_fields |= IPPF_SCOPE_ID;
6480 		} else {
6481 			int reterr;
6482 
6483 			ipp->ipp_fields |= IPPF_SCOPE_ID;
6484 			if (ipp->ipp_fields & IPPF_HAS_IP6I)
6485 				ip2dbg(("tcp_connect_v6: SCOPE_ID set\n"));
6486 			reterr = tcp_build_hdrs(tcp->tcp_rq, tcp);
6487 			if (reterr != 0)
6488 				goto failed;
6489 			ip1dbg(("tcp_connect_ipv6: tcp_bld_hdrs returned\n"));
6490 		}
6491 	}
6492 
6493 	/*
6494 	 * Don't let an endpoint connect to itself.  Note that
6495 	 * the test here does not catch the case where the
6496 	 * source IP addr was left unspecified by the user. In
6497 	 * this case, the source addr is set in tcp_adapt_ire()
6498 	 * using the reply to the T_BIND message that we send
6499 	 * down to IP here and the check is repeated in tcp_rput_other.
6500 	 */
6501 	if (IN6_ARE_ADDR_EQUAL(dstaddrp, &tcp->tcp_ip6h->ip6_src) &&
6502 	    (dstport == tcp->tcp_lport)) {
6503 		mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0);
6504 		goto failed;
6505 	}
6506 
6507 	tcp->tcp_ip6h->ip6_dst = *dstaddrp;
6508 	tcp->tcp_remote_v6 = *dstaddrp;
6509 	tcp->tcp_ip6h->ip6_vcf =
6510 	    (IPV6_DEFAULT_VERS_AND_FLOW & IPV6_VERS_AND_FLOW_MASK) |
6511 	    (flowinfo & ~IPV6_VERS_AND_FLOW_MASK);
6512 
6513 
6514 	/*
6515 	 * Massage a routing header (if present) putting the first hop
6516 	 * in ip6_dst. Compute a starting value for the checksum which
6517 	 * takes into account that the original ip6_dst should be
6518 	 * included in the checksum but that ip will include the
6519 	 * first hop in the source route in the tcp checksum.
6520 	 */
6521 	rth = ip_find_rthdr_v6(tcp->tcp_ip6h, (uint8_t *)tcp->tcp_tcph);
6522 	if (rth != NULL) {
6523 
6524 		tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, rth);
6525 		tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
6526 		    (tcp->tcp_sum >> 16));
6527 	} else {
6528 		tcp->tcp_sum = 0;
6529 	}
6530 
6531 	tcph = tcp->tcp_tcph;
6532 	*(uint16_t *)tcph->th_fport = dstport;
6533 	tcp->tcp_fport = dstport;
6534 
6535 	oldstate = tcp->tcp_state;
6536 	/*
6537 	 * At this point the remote destination address and remote port fields
6538 	 * in the tcp-four-tuple have been filled in the tcp structure. Now we
6539 	 * have to see which state tcp was in so we can take apropriate action.
6540 	 */
6541 	if (oldstate == TCPS_IDLE) {
6542 		/*
6543 		 * We support a quick connect capability here, allowing
6544 		 * clients to transition directly from IDLE to SYN_SENT
6545 		 * tcp_bindi will pick an unused port, insert the connection
6546 		 * in the bind hash and transition to BOUND state.
6547 		 */
6548 		lport = tcp_update_next_port(tcp_next_port_to_try, tcp, B_TRUE);
6549 		lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE,
6550 		    B_FALSE, B_FALSE);
6551 		if (lport == 0) {
6552 			mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0);
6553 			goto failed;
6554 		}
6555 	}
6556 	tcp->tcp_state = TCPS_SYN_SENT;
6557 	/*
6558 	 * TODO: allow data with connect requests
6559 	 * by unlinking M_DATA trailers here and
6560 	 * linking them in behind the T_OK_ACK mblk.
6561 	 * The tcp_rput() bind ack handler would then
6562 	 * feed them to tcp_wput_data() rather than call
6563 	 * tcp_timer().
6564 	 */
6565 	mp = mi_tpi_ok_ack_alloc(mp);
6566 	if (!mp) {
6567 		tcp->tcp_state = oldstate;
6568 		goto failed;
6569 	}
6570 	mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, sizeof (ipa6_conn_t));
6571 	if (mp1) {
6572 		/* Hang onto the T_OK_ACK for later. */
6573 		linkb(mp1, mp);
6574 		mblk_setcred(mp1, tcp->tcp_cred);
6575 		mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp,
6576 		    &tcp->tcp_sticky_ipp);
6577 		BUMP_MIB(&tcp_mib, tcpActiveOpens);
6578 		tcp->tcp_active_open = 1;
6579 		/* ip_bind_v6() may return ACK or ERROR */
6580 		if (mp1 != NULL)
6581 			tcp_rput_other(tcp, mp1);
6582 		return;
6583 	}
6584 	/* Error case */
6585 	tcp->tcp_state = oldstate;
6586 	mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM);
6587 
6588 failed:
6589 	/* return error ack and blow away saved option results if any */
6590 	if (mp != NULL)
6591 		putnext(tcp->tcp_rq, mp);
6592 	else {
6593 		tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6594 		    TSYSERR, ENOMEM);
6595 	}
6596 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
6597 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
6598 }
6599 
6600 /*
6601  * We need a stream q for detached closing tcp connections
6602  * to use.  Our client hereby indicates that this q is the
6603  * one to use.
6604  */
6605 static void
6606 tcp_def_q_set(tcp_t *tcp, mblk_t *mp)
6607 {
6608 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
6609 	queue_t	*q = tcp->tcp_wq;
6610 
6611 	mp->b_datap->db_type = M_IOCACK;
6612 	iocp->ioc_count = 0;
6613 	mutex_enter(&tcp_g_q_lock);
6614 	if (tcp_g_q != NULL) {
6615 		mutex_exit(&tcp_g_q_lock);
6616 		iocp->ioc_error = EALREADY;
6617 	} else {
6618 		mblk_t *mp1;
6619 
6620 		mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 0);
6621 		if (mp1 == NULL) {
6622 			mutex_exit(&tcp_g_q_lock);
6623 			iocp->ioc_error = ENOMEM;
6624 		} else {
6625 			tcp_g_q = tcp->tcp_rq;
6626 			mutex_exit(&tcp_g_q_lock);
6627 			iocp->ioc_error = 0;
6628 			iocp->ioc_rval = 0;
6629 			/*
6630 			 * We are passing tcp_sticky_ipp as NULL
6631 			 * as it is not useful for tcp_default queue
6632 			 */
6633 			mp1 = ip_bind_v6(q, mp1, tcp->tcp_connp, NULL);
6634 			if (mp1 != NULL)
6635 				tcp_rput_other(tcp, mp1);
6636 		}
6637 	}
6638 	qreply(q, mp);
6639 }
6640 
6641 /*
6642  * Our client hereby directs us to reject the connection request
6643  * that tcp_conn_request() marked with 'seqnum'.  Rejection consists
6644  * of sending the appropriate RST, not an ICMP error.
6645  */
6646 static void
6647 tcp_disconnect(tcp_t *tcp, mblk_t *mp)
6648 {
6649 	tcp_t	*ltcp = NULL;
6650 	t_scalar_t seqnum;
6651 	conn_t	*connp;
6652 
6653 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
6654 	if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) {
6655 		tcp_err_ack(tcp, mp, TPROTO, 0);
6656 		return;
6657 	}
6658 
6659 	/*
6660 	 * Right now, upper modules pass down a T_DISCON_REQ to TCP,
6661 	 * when the stream is in BOUND state. Do not send a reset,
6662 	 * since the destination IP address is not valid, and it can
6663 	 * be the initialized value of all zeros (broadcast address).
6664 	 *
6665 	 * If TCP has sent down a bind request to IP and has not
6666 	 * received the reply, reject the request.  Otherwise, TCP
6667 	 * will be confused.
6668 	 */
6669 	if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_hard_binding) {
6670 		if (tcp->tcp_debug) {
6671 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
6672 			    "tcp_disconnect: bad state, %d", tcp->tcp_state);
6673 		}
6674 		tcp_err_ack(tcp, mp, TOUTSTATE, 0);
6675 		return;
6676 	}
6677 
6678 	seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number;
6679 
6680 	if (seqnum == -1 || tcp->tcp_conn_req_max == 0) {
6681 
6682 		/*
6683 		 * According to TPI, for non-listeners, ignore seqnum
6684 		 * and disconnect.
6685 		 * Following interpretation of -1 seqnum is historical
6686 		 * and implied TPI ? (TPI only states that for T_CONN_IND,
6687 		 * a valid seqnum should not be -1).
6688 		 *
6689 		 *	-1 means disconnect everything
6690 		 *	regardless even on a listener.
6691 		 */
6692 
6693 		int old_state = tcp->tcp_state;
6694 
6695 		/*
6696 		 * The connection can't be on the tcp_time_wait_head list
6697 		 * since it is not detached.
6698 		 */
6699 		ASSERT(tcp->tcp_time_wait_next == NULL);
6700 		ASSERT(tcp->tcp_time_wait_prev == NULL);
6701 		ASSERT(tcp->tcp_time_wait_expire == 0);
6702 		ltcp = NULL;
6703 		/*
6704 		 * If it used to be a listener, check to make sure no one else
6705 		 * has taken the port before switching back to LISTEN state.
6706 		 */
6707 		if (tcp->tcp_ipversion == IPV4_VERSION) {
6708 			connp = ipcl_lookup_listener_v4(tcp->tcp_lport,
6709 			    tcp->tcp_ipha->ipha_src,
6710 			    tcp->tcp_connp->conn_zoneid);
6711 			if (connp != NULL)
6712 				ltcp = connp->conn_tcp;
6713 		} else {
6714 			/* Allow tcp_bound_if listeners? */
6715 			connp = ipcl_lookup_listener_v6(tcp->tcp_lport,
6716 			    &tcp->tcp_ip6h->ip6_src, 0,
6717 			    tcp->tcp_connp->conn_zoneid);
6718 			if (connp != NULL)
6719 				ltcp = connp->conn_tcp;
6720 		}
6721 		if (tcp->tcp_conn_req_max && ltcp == NULL) {
6722 			tcp->tcp_state = TCPS_LISTEN;
6723 		} else if (old_state > TCPS_BOUND) {
6724 			tcp->tcp_conn_req_max = 0;
6725 			tcp->tcp_state = TCPS_BOUND;
6726 		}
6727 		if (ltcp != NULL)
6728 			CONN_DEC_REF(ltcp->tcp_connp);
6729 		if (old_state == TCPS_SYN_SENT || old_state == TCPS_SYN_RCVD) {
6730 			BUMP_MIB(&tcp_mib, tcpAttemptFails);
6731 		} else if (old_state == TCPS_ESTABLISHED ||
6732 		    old_state == TCPS_CLOSE_WAIT) {
6733 			BUMP_MIB(&tcp_mib, tcpEstabResets);
6734 		}
6735 
6736 		if (tcp->tcp_fused)
6737 			tcp_unfuse(tcp);
6738 
6739 		mutex_enter(&tcp->tcp_eager_lock);
6740 		if ((tcp->tcp_conn_req_cnt_q0 != 0) ||
6741 		    (tcp->tcp_conn_req_cnt_q != 0)) {
6742 			tcp_eager_cleanup(tcp, 0);
6743 		}
6744 		mutex_exit(&tcp->tcp_eager_lock);
6745 
6746 		tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt,
6747 		    tcp->tcp_rnxt, TH_RST | TH_ACK);
6748 
6749 		tcp_reinit(tcp);
6750 
6751 		if (old_state >= TCPS_ESTABLISHED) {
6752 			/* Send M_FLUSH according to TPI */
6753 			(void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW);
6754 		}
6755 		mp = mi_tpi_ok_ack_alloc(mp);
6756 		if (mp)
6757 			putnext(tcp->tcp_rq, mp);
6758 		return;
6759 	} else if (!tcp_eager_blowoff(tcp, seqnum)) {
6760 		tcp_err_ack(tcp, mp, TBADSEQ, 0);
6761 		return;
6762 	}
6763 	if (tcp->tcp_state >= TCPS_ESTABLISHED) {
6764 		/* Send M_FLUSH according to TPI */
6765 		(void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW);
6766 	}
6767 	mp = mi_tpi_ok_ack_alloc(mp);
6768 	if (mp)
6769 		putnext(tcp->tcp_rq, mp);
6770 }
6771 
6772 /*
6773  * Diagnostic routine used to return a string associated with the tcp state.
6774  * Note that if the caller does not supply a buffer, it will use an internal
6775  * static string.  This means that if multiple threads call this function at
6776  * the same time, output can be corrupted...  Note also that this function
6777  * does not check the size of the supplied buffer.  The caller has to make
6778  * sure that it is big enough.
6779  */
6780 static char *
6781 tcp_display(tcp_t *tcp, char *sup_buf, char format)
6782 {
6783 	char		buf1[30];
6784 	static char	priv_buf[INET6_ADDRSTRLEN * 2 + 80];
6785 	char		*buf;
6786 	char		*cp;
6787 	in6_addr_t	local, remote;
6788 	char		local_addrbuf[INET6_ADDRSTRLEN];
6789 	char		remote_addrbuf[INET6_ADDRSTRLEN];
6790 
6791 	if (sup_buf != NULL)
6792 		buf = sup_buf;
6793 	else
6794 		buf = priv_buf;
6795 
6796 	if (tcp == NULL)
6797 		return ("NULL_TCP");
6798 	switch (tcp->tcp_state) {
6799 	case TCPS_CLOSED:
6800 		cp = "TCP_CLOSED";
6801 		break;
6802 	case TCPS_IDLE:
6803 		cp = "TCP_IDLE";
6804 		break;
6805 	case TCPS_BOUND:
6806 		cp = "TCP_BOUND";
6807 		break;
6808 	case TCPS_LISTEN:
6809 		cp = "TCP_LISTEN";
6810 		break;
6811 	case TCPS_SYN_SENT:
6812 		cp = "TCP_SYN_SENT";
6813 		break;
6814 	case TCPS_SYN_RCVD:
6815 		cp = "TCP_SYN_RCVD";
6816 		break;
6817 	case TCPS_ESTABLISHED:
6818 		cp = "TCP_ESTABLISHED";
6819 		break;
6820 	case TCPS_CLOSE_WAIT:
6821 		cp = "TCP_CLOSE_WAIT";
6822 		break;
6823 	case TCPS_FIN_WAIT_1:
6824 		cp = "TCP_FIN_WAIT_1";
6825 		break;
6826 	case TCPS_CLOSING:
6827 		cp = "TCP_CLOSING";
6828 		break;
6829 	case TCPS_LAST_ACK:
6830 		cp = "TCP_LAST_ACK";
6831 		break;
6832 	case TCPS_FIN_WAIT_2:
6833 		cp = "TCP_FIN_WAIT_2";
6834 		break;
6835 	case TCPS_TIME_WAIT:
6836 		cp = "TCP_TIME_WAIT";
6837 		break;
6838 	default:
6839 		(void) mi_sprintf(buf1, "TCPUnkState(%d)", tcp->tcp_state);
6840 		cp = buf1;
6841 		break;
6842 	}
6843 	switch (format) {
6844 	case DISP_ADDR_AND_PORT:
6845 		if (tcp->tcp_ipversion == IPV4_VERSION) {
6846 			/*
6847 			 * Note that we use the remote address in the tcp_b
6848 			 * structure.  This means that it will print out
6849 			 * the real destination address, not the next hop's
6850 			 * address if source routing is used.
6851 			 */
6852 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ip_src, &local);
6853 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &remote);
6854 
6855 		} else {
6856 			local = tcp->tcp_ip_src_v6;
6857 			remote = tcp->tcp_remote_v6;
6858 		}
6859 		(void) inet_ntop(AF_INET6, &local, local_addrbuf,
6860 		    sizeof (local_addrbuf));
6861 		(void) inet_ntop(AF_INET6, &remote, remote_addrbuf,
6862 		    sizeof (remote_addrbuf));
6863 		(void) mi_sprintf(buf, "[%s.%u, %s.%u] %s",
6864 		    local_addrbuf, ntohs(tcp->tcp_lport), remote_addrbuf,
6865 		    ntohs(tcp->tcp_fport), cp);
6866 		break;
6867 	case DISP_PORT_ONLY:
6868 	default:
6869 		(void) mi_sprintf(buf, "[%u, %u] %s",
6870 		    ntohs(tcp->tcp_lport), ntohs(tcp->tcp_fport), cp);
6871 		break;
6872 	}
6873 
6874 	return (buf);
6875 }
6876 
6877 /*
6878  * Called via squeue to get on to eager's perimeter to send a
6879  * TH_RST. The listener wants the eager to disappear either
6880  * by means of tcp_eager_blowoff() or tcp_eager_cleanup()
6881  * being called.
6882  */
6883 /* ARGSUSED */
6884 void
6885 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2)
6886 {
6887 	conn_t	*econnp = (conn_t *)arg;
6888 	tcp_t	*eager = econnp->conn_tcp;
6889 	tcp_t	*listener = eager->tcp_listener;
6890 
6891 	/*
6892 	 * We could be called because listener is closing. Since
6893 	 * the eager is using listener's queue's, its not safe.
6894 	 * Better use the default queue just to send the TH_RST
6895 	 * out.
6896 	 */
6897 	eager->tcp_rq = tcp_g_q;
6898 	eager->tcp_wq = WR(tcp_g_q);
6899 
6900 	if (eager->tcp_state > TCPS_LISTEN) {
6901 		tcp_xmit_ctl("tcp_eager_kill, can't wait",
6902 		    eager, eager->tcp_snxt, 0, TH_RST);
6903 	}
6904 
6905 	/* We are here because listener wants this eager gone */
6906 	if (listener != NULL) {
6907 		mutex_enter(&listener->tcp_eager_lock);
6908 		tcp_eager_unlink(eager);
6909 		if (eager->tcp_conn.tcp_eager_conn_ind == NULL) {
6910 			/*
6911 			 * The eager has sent a conn_ind up to the
6912 			 * listener but listener decides to close
6913 			 * instead. We need to drop the extra ref
6914 			 * placed on eager in tcp_rput_data() before
6915 			 * sending the conn_ind to listener.
6916 			 */
6917 			CONN_DEC_REF(econnp);
6918 		}
6919 		mutex_exit(&listener->tcp_eager_lock);
6920 		CONN_DEC_REF(listener->tcp_connp);
6921 	}
6922 
6923 	if (eager->tcp_state > TCPS_BOUND)
6924 		tcp_close_detached(eager);
6925 }
6926 
6927 /*
6928  * Reset any eager connection hanging off this listener marked
6929  * with 'seqnum' and then reclaim it's resources.
6930  */
6931 static boolean_t
6932 tcp_eager_blowoff(tcp_t	*listener, t_scalar_t seqnum)
6933 {
6934 	tcp_t	*eager;
6935 	mblk_t 	*mp;
6936 
6937 	TCP_STAT(tcp_eager_blowoff_calls);
6938 	eager = listener;
6939 	mutex_enter(&listener->tcp_eager_lock);
6940 	do {
6941 		eager = eager->tcp_eager_next_q;
6942 		if (eager == NULL) {
6943 			mutex_exit(&listener->tcp_eager_lock);
6944 			return (B_FALSE);
6945 		}
6946 	} while (eager->tcp_conn_req_seqnum != seqnum);
6947 	CONN_INC_REF(eager->tcp_connp);
6948 	mutex_exit(&listener->tcp_eager_lock);
6949 	mp = &eager->tcp_closemp;
6950 	squeue_fill(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill,
6951 	    eager->tcp_connp, SQTAG_TCP_EAGER_BLOWOFF);
6952 	return (B_TRUE);
6953 }
6954 
6955 /*
6956  * Reset any eager connection hanging off this listener
6957  * and then reclaim it's resources.
6958  */
6959 static void
6960 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only)
6961 {
6962 	tcp_t	*eager;
6963 	mblk_t	*mp;
6964 
6965 	ASSERT(MUTEX_HELD(&listener->tcp_eager_lock));
6966 
6967 	if (!q0_only) {
6968 		/* First cleanup q */
6969 		TCP_STAT(tcp_eager_blowoff_q);
6970 		eager = listener->tcp_eager_next_q;
6971 		while (eager != NULL) {
6972 			CONN_INC_REF(eager->tcp_connp);
6973 			mp = &eager->tcp_closemp;
6974 			squeue_fill(eager->tcp_connp->conn_sqp, mp,
6975 			    tcp_eager_kill, eager->tcp_connp,
6976 			    SQTAG_TCP_EAGER_CLEANUP);
6977 			eager = eager->tcp_eager_next_q;
6978 		}
6979 	}
6980 	/* Then cleanup q0 */
6981 	TCP_STAT(tcp_eager_blowoff_q0);
6982 	eager = listener->tcp_eager_next_q0;
6983 	while (eager != listener) {
6984 		CONN_INC_REF(eager->tcp_connp);
6985 		mp = &eager->tcp_closemp;
6986 		squeue_fill(eager->tcp_connp->conn_sqp, mp,
6987 		    tcp_eager_kill, eager->tcp_connp,
6988 		    SQTAG_TCP_EAGER_CLEANUP_Q0);
6989 		eager = eager->tcp_eager_next_q0;
6990 	}
6991 }
6992 
6993 /*
6994  * If we are an eager connection hanging off a listener that hasn't
6995  * formally accepted the connection yet, get off his list and blow off
6996  * any data that we have accumulated.
6997  */
6998 static void
6999 tcp_eager_unlink(tcp_t *tcp)
7000 {
7001 	tcp_t	*listener = tcp->tcp_listener;
7002 
7003 	ASSERT(MUTEX_HELD(&listener->tcp_eager_lock));
7004 	ASSERT(listener != NULL);
7005 	if (tcp->tcp_eager_next_q0 != NULL) {
7006 		ASSERT(tcp->tcp_eager_prev_q0 != NULL);
7007 
7008 		/* Remove the eager tcp from q0 */
7009 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
7010 		    tcp->tcp_eager_prev_q0;
7011 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
7012 		    tcp->tcp_eager_next_q0;
7013 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
7014 		listener->tcp_conn_req_cnt_q0--;
7015 
7016 		tcp->tcp_eager_next_q0 = NULL;
7017 		tcp->tcp_eager_prev_q0 = NULL;
7018 
7019 		if (tcp->tcp_syn_rcvd_timeout != 0) {
7020 			/* we have timed out before */
7021 			ASSERT(listener->tcp_syn_rcvd_timeout > 0);
7022 			listener->tcp_syn_rcvd_timeout--;
7023 		}
7024 	} else {
7025 		tcp_t   **tcpp = &listener->tcp_eager_next_q;
7026 		tcp_t	*prev = NULL;
7027 
7028 		for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) {
7029 			if (tcpp[0] == tcp) {
7030 				if (listener->tcp_eager_last_q == tcp) {
7031 					/*
7032 					 * If we are unlinking the last
7033 					 * element on the list, adjust
7034 					 * tail pointer. Set tail pointer
7035 					 * to nil when list is empty.
7036 					 */
7037 					ASSERT(tcp->tcp_eager_next_q == NULL);
7038 					if (listener->tcp_eager_last_q ==
7039 					    listener->tcp_eager_next_q) {
7040 						listener->tcp_eager_last_q =
7041 						NULL;
7042 					} else {
7043 						/*
7044 						 * We won't get here if there
7045 						 * is only one eager in the
7046 						 * list.
7047 						 */
7048 						ASSERT(prev != NULL);
7049 						listener->tcp_eager_last_q =
7050 						    prev;
7051 					}
7052 				}
7053 				tcpp[0] = tcp->tcp_eager_next_q;
7054 				tcp->tcp_eager_next_q = NULL;
7055 				tcp->tcp_eager_last_q = NULL;
7056 				ASSERT(listener->tcp_conn_req_cnt_q > 0);
7057 				listener->tcp_conn_req_cnt_q--;
7058 				break;
7059 			}
7060 			prev = tcpp[0];
7061 		}
7062 	}
7063 	tcp->tcp_listener = NULL;
7064 }
7065 
7066 /* Shorthand to generate and send TPI error acks to our client */
7067 static void
7068 tcp_err_ack(tcp_t *tcp, mblk_t *mp, int t_error, int sys_error)
7069 {
7070 	if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL)
7071 		putnext(tcp->tcp_rq, mp);
7072 }
7073 
7074 /* Shorthand to generate and send TPI error acks to our client */
7075 static void
7076 tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive,
7077     int t_error, int sys_error)
7078 {
7079 	struct T_error_ack	*teackp;
7080 
7081 	if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack),
7082 	    M_PCPROTO, T_ERROR_ACK)) != NULL) {
7083 		teackp = (struct T_error_ack *)mp->b_rptr;
7084 		teackp->ERROR_prim = primitive;
7085 		teackp->TLI_error = t_error;
7086 		teackp->UNIX_error = sys_error;
7087 		putnext(tcp->tcp_rq, mp);
7088 	}
7089 }
7090 
7091 /*
7092  * Note: No locks are held when inspecting tcp_g_*epriv_ports
7093  * but instead the code relies on:
7094  * - the fact that the address of the array and its size never changes
7095  * - the atomic assignment of the elements of the array
7096  */
7097 /* ARGSUSED */
7098 static int
7099 tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
7100 {
7101 	int i;
7102 
7103 	for (i = 0; i < tcp_g_num_epriv_ports; i++) {
7104 		if (tcp_g_epriv_ports[i] != 0)
7105 			(void) mi_mpprintf(mp, "%d ", tcp_g_epriv_ports[i]);
7106 	}
7107 	return (0);
7108 }
7109 
7110 /*
7111  * Hold a lock while changing tcp_g_epriv_ports to prevent multiple
7112  * threads from changing it at the same time.
7113  */
7114 /* ARGSUSED */
7115 static int
7116 tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
7117     cred_t *cr)
7118 {
7119 	long	new_value;
7120 	int	i;
7121 
7122 	/*
7123 	 * Fail the request if the new value does not lie within the
7124 	 * port number limits.
7125 	 */
7126 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
7127 	    new_value <= 0 || new_value >= 65536) {
7128 		return (EINVAL);
7129 	}
7130 
7131 	mutex_enter(&tcp_epriv_port_lock);
7132 	/* Check if the value is already in the list */
7133 	for (i = 0; i < tcp_g_num_epriv_ports; i++) {
7134 		if (new_value == tcp_g_epriv_ports[i]) {
7135 			mutex_exit(&tcp_epriv_port_lock);
7136 			return (EEXIST);
7137 		}
7138 	}
7139 	/* Find an empty slot */
7140 	for (i = 0; i < tcp_g_num_epriv_ports; i++) {
7141 		if (tcp_g_epriv_ports[i] == 0)
7142 			break;
7143 	}
7144 	if (i == tcp_g_num_epriv_ports) {
7145 		mutex_exit(&tcp_epriv_port_lock);
7146 		return (EOVERFLOW);
7147 	}
7148 	/* Set the new value */
7149 	tcp_g_epriv_ports[i] = (uint16_t)new_value;
7150 	mutex_exit(&tcp_epriv_port_lock);
7151 	return (0);
7152 }
7153 
7154 /*
7155  * Hold a lock while changing tcp_g_epriv_ports to prevent multiple
7156  * threads from changing it at the same time.
7157  */
7158 /* ARGSUSED */
7159 static int
7160 tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
7161     cred_t *cr)
7162 {
7163 	long	new_value;
7164 	int	i;
7165 
7166 	/*
7167 	 * Fail the request if the new value does not lie within the
7168 	 * port number limits.
7169 	 */
7170 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value <= 0 ||
7171 	    new_value >= 65536) {
7172 		return (EINVAL);
7173 	}
7174 
7175 	mutex_enter(&tcp_epriv_port_lock);
7176 	/* Check that the value is already in the list */
7177 	for (i = 0; i < tcp_g_num_epriv_ports; i++) {
7178 		if (tcp_g_epriv_ports[i] == new_value)
7179 			break;
7180 	}
7181 	if (i == tcp_g_num_epriv_ports) {
7182 		mutex_exit(&tcp_epriv_port_lock);
7183 		return (ESRCH);
7184 	}
7185 	/* Clear the value */
7186 	tcp_g_epriv_ports[i] = 0;
7187 	mutex_exit(&tcp_epriv_port_lock);
7188 	return (0);
7189 }
7190 
7191 /* Return the TPI/TLI equivalent of our current tcp_state */
7192 static int
7193 tcp_tpistate(tcp_t *tcp)
7194 {
7195 	switch (tcp->tcp_state) {
7196 	case TCPS_IDLE:
7197 		return (TS_UNBND);
7198 	case TCPS_LISTEN:
7199 		/*
7200 		 * Return whether there are outstanding T_CONN_IND waiting
7201 		 * for the matching T_CONN_RES. Therefore don't count q0.
7202 		 */
7203 		if (tcp->tcp_conn_req_cnt_q > 0)
7204 			return (TS_WRES_CIND);
7205 		else
7206 			return (TS_IDLE);
7207 	case TCPS_BOUND:
7208 		return (TS_IDLE);
7209 	case TCPS_SYN_SENT:
7210 		return (TS_WCON_CREQ);
7211 	case TCPS_SYN_RCVD:
7212 		/*
7213 		 * Note: assumption: this has to the active open SYN_RCVD.
7214 		 * The passive instance is detached in SYN_RCVD stage of
7215 		 * incoming connection processing so we cannot get request
7216 		 * for T_info_ack on it.
7217 		 */
7218 		return (TS_WACK_CRES);
7219 	case TCPS_ESTABLISHED:
7220 		return (TS_DATA_XFER);
7221 	case TCPS_CLOSE_WAIT:
7222 		return (TS_WREQ_ORDREL);
7223 	case TCPS_FIN_WAIT_1:
7224 		return (TS_WIND_ORDREL);
7225 	case TCPS_FIN_WAIT_2:
7226 		return (TS_WIND_ORDREL);
7227 
7228 	case TCPS_CLOSING:
7229 	case TCPS_LAST_ACK:
7230 	case TCPS_TIME_WAIT:
7231 	case TCPS_CLOSED:
7232 		/*
7233 		 * Following TS_WACK_DREQ7 is a rendition of "not
7234 		 * yet TS_IDLE" TPI state. There is no best match to any
7235 		 * TPI state for TCPS_{CLOSING, LAST_ACK, TIME_WAIT} but we
7236 		 * choose a value chosen that will map to TLI/XTI level
7237 		 * state of TSTATECHNG (state is process of changing) which
7238 		 * captures what this dummy state represents.
7239 		 */
7240 		return (TS_WACK_DREQ7);
7241 	default:
7242 		cmn_err(CE_WARN, "tcp_tpistate: strange state (%d) %s",
7243 		    tcp->tcp_state, tcp_display(tcp, NULL,
7244 		    DISP_PORT_ONLY));
7245 		return (TS_UNBND);
7246 	}
7247 }
7248 
7249 static void
7250 tcp_copy_info(struct T_info_ack *tia, tcp_t *tcp)
7251 {
7252 	if (tcp->tcp_family == AF_INET6)
7253 		*tia = tcp_g_t_info_ack_v6;
7254 	else
7255 		*tia = tcp_g_t_info_ack;
7256 	tia->CURRENT_state = tcp_tpistate(tcp);
7257 	tia->OPT_size = tcp_max_optsize;
7258 	if (tcp->tcp_mss == 0) {
7259 		/* Not yet set - tcp_open does not set mss */
7260 		if (tcp->tcp_ipversion == IPV4_VERSION)
7261 			tia->TIDU_size = tcp_mss_def_ipv4;
7262 		else
7263 			tia->TIDU_size = tcp_mss_def_ipv6;
7264 	} else {
7265 		tia->TIDU_size = tcp->tcp_mss;
7266 	}
7267 	/* TODO: Default ETSDU is 1.  Is that correct for tcp? */
7268 }
7269 
7270 /*
7271  * This routine responds to T_CAPABILITY_REQ messages.  It is called by
7272  * tcp_wput.  Much of the T_CAPABILITY_ACK information is copied from
7273  * tcp_g_t_info_ack.  The current state of the stream is copied from
7274  * tcp_state.
7275  */
7276 static void
7277 tcp_capability_req(tcp_t *tcp, mblk_t *mp)
7278 {
7279 	t_uscalar_t		cap_bits1;
7280 	struct T_capability_ack	*tcap;
7281 
7282 	if (MBLKL(mp) < sizeof (struct T_capability_req)) {
7283 		freemsg(mp);
7284 		return;
7285 	}
7286 
7287 	cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1;
7288 
7289 	mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack),
7290 	    mp->b_datap->db_type, T_CAPABILITY_ACK);
7291 	if (mp == NULL)
7292 		return;
7293 
7294 	tcap = (struct T_capability_ack *)mp->b_rptr;
7295 	tcap->CAP_bits1 = 0;
7296 
7297 	if (cap_bits1 & TC1_INFO) {
7298 		tcp_copy_info(&tcap->INFO_ack, tcp);
7299 		tcap->CAP_bits1 |= TC1_INFO;
7300 	}
7301 
7302 	if (cap_bits1 & TC1_ACCEPTOR_ID) {
7303 		tcap->ACCEPTOR_id = tcp->tcp_acceptor_id;
7304 		tcap->CAP_bits1 |= TC1_ACCEPTOR_ID;
7305 	}
7306 
7307 	putnext(tcp->tcp_rq, mp);
7308 }
7309 
7310 /*
7311  * This routine responds to T_INFO_REQ messages.  It is called by tcp_wput.
7312  * Most of the T_INFO_ACK information is copied from tcp_g_t_info_ack.
7313  * The current state of the stream is copied from tcp_state.
7314  */
7315 static void
7316 tcp_info_req(tcp_t *tcp, mblk_t *mp)
7317 {
7318 	mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO,
7319 	    T_INFO_ACK);
7320 	if (!mp) {
7321 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
7322 		return;
7323 	}
7324 	tcp_copy_info((struct T_info_ack *)mp->b_rptr, tcp);
7325 	putnext(tcp->tcp_rq, mp);
7326 }
7327 
7328 /* Respond to the TPI addr request */
7329 static void
7330 tcp_addr_req(tcp_t *tcp, mblk_t *mp)
7331 {
7332 	sin_t	*sin;
7333 	mblk_t	*ackmp;
7334 	struct T_addr_ack *taa;
7335 
7336 	/* Make it large enough for worst case */
7337 	ackmp = reallocb(mp, sizeof (struct T_addr_ack) +
7338 	    2 * sizeof (sin6_t), 1);
7339 	if (ackmp == NULL) {
7340 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
7341 		return;
7342 	}
7343 
7344 	if (tcp->tcp_ipversion == IPV6_VERSION) {
7345 		tcp_addr_req_ipv6(tcp, ackmp);
7346 		return;
7347 	}
7348 	taa = (struct T_addr_ack *)ackmp->b_rptr;
7349 
7350 	bzero(taa, sizeof (struct T_addr_ack));
7351 	ackmp->b_wptr = (uchar_t *)&taa[1];
7352 
7353 	taa->PRIM_type = T_ADDR_ACK;
7354 	ackmp->b_datap->db_type = M_PCPROTO;
7355 
7356 	/*
7357 	 * Note: Following code assumes 32 bit alignment of basic
7358 	 * data structures like sin_t and struct T_addr_ack.
7359 	 */
7360 	if (tcp->tcp_state >= TCPS_BOUND) {
7361 		/*
7362 		 * Fill in local address
7363 		 */
7364 		taa->LOCADDR_length = sizeof (sin_t);
7365 		taa->LOCADDR_offset = sizeof (*taa);
7366 
7367 		sin = (sin_t *)&taa[1];
7368 
7369 		/* Fill zeroes and then intialize non-zero fields */
7370 		*sin = sin_null;
7371 
7372 		sin->sin_family = AF_INET;
7373 
7374 		sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src;
7375 		sin->sin_port = *(uint16_t *)tcp->tcp_tcph->th_lport;
7376 
7377 		ackmp->b_wptr = (uchar_t *)&sin[1];
7378 
7379 		if (tcp->tcp_state >= TCPS_SYN_RCVD) {
7380 			/*
7381 			 * Fill in Remote address
7382 			 */
7383 			taa->REMADDR_length = sizeof (sin_t);
7384 			taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset +
7385 						taa->LOCADDR_length);
7386 
7387 			sin = (sin_t *)(ackmp->b_rptr + taa->REMADDR_offset);
7388 			*sin = sin_null;
7389 			sin->sin_family = AF_INET;
7390 			sin->sin_addr.s_addr = tcp->tcp_remote;
7391 			sin->sin_port = tcp->tcp_fport;
7392 
7393 			ackmp->b_wptr = (uchar_t *)&sin[1];
7394 		}
7395 	}
7396 	putnext(tcp->tcp_rq, ackmp);
7397 }
7398 
7399 /* Assumes that tcp_addr_req gets enough space and alignment */
7400 static void
7401 tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *ackmp)
7402 {
7403 	sin6_t	*sin6;
7404 	struct T_addr_ack *taa;
7405 
7406 	ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
7407 	ASSERT(OK_32PTR(ackmp->b_rptr));
7408 	ASSERT(ackmp->b_wptr - ackmp->b_rptr >= sizeof (struct T_addr_ack) +
7409 	    2 * sizeof (sin6_t));
7410 
7411 	taa = (struct T_addr_ack *)ackmp->b_rptr;
7412 
7413 	bzero(taa, sizeof (struct T_addr_ack));
7414 	ackmp->b_wptr = (uchar_t *)&taa[1];
7415 
7416 	taa->PRIM_type = T_ADDR_ACK;
7417 	ackmp->b_datap->db_type = M_PCPROTO;
7418 
7419 	/*
7420 	 * Note: Following code assumes 32 bit alignment of basic
7421 	 * data structures like sin6_t and struct T_addr_ack.
7422 	 */
7423 	if (tcp->tcp_state >= TCPS_BOUND) {
7424 		/*
7425 		 * Fill in local address
7426 		 */
7427 		taa->LOCADDR_length = sizeof (sin6_t);
7428 		taa->LOCADDR_offset = sizeof (*taa);
7429 
7430 		sin6 = (sin6_t *)&taa[1];
7431 		*sin6 = sin6_null;
7432 
7433 		sin6->sin6_family = AF_INET6;
7434 		sin6->sin6_addr = tcp->tcp_ip6h->ip6_src;
7435 		sin6->sin6_port = tcp->tcp_lport;
7436 
7437 		ackmp->b_wptr = (uchar_t *)&sin6[1];
7438 
7439 		if (tcp->tcp_state >= TCPS_SYN_RCVD) {
7440 			/*
7441 			 * Fill in Remote address
7442 			 */
7443 			taa->REMADDR_length = sizeof (sin6_t);
7444 			taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset +
7445 						taa->LOCADDR_length);
7446 
7447 			sin6 = (sin6_t *)(ackmp->b_rptr + taa->REMADDR_offset);
7448 			*sin6 = sin6_null;
7449 			sin6->sin6_family = AF_INET6;
7450 			sin6->sin6_flowinfo =
7451 			    tcp->tcp_ip6h->ip6_vcf &
7452 			    ~IPV6_VERS_AND_FLOW_MASK;
7453 			sin6->sin6_addr = tcp->tcp_remote_v6;
7454 			sin6->sin6_port = tcp->tcp_fport;
7455 
7456 			ackmp->b_wptr = (uchar_t *)&sin6[1];
7457 		}
7458 	}
7459 	putnext(tcp->tcp_rq, ackmp);
7460 }
7461 
7462 /*
7463  * Handle reinitialization of a tcp structure.
7464  * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE.
7465  */
7466 static void
7467 tcp_reinit(tcp_t *tcp)
7468 {
7469 	mblk_t	*mp;
7470 	int 	err;
7471 
7472 	TCP_STAT(tcp_reinit_calls);
7473 
7474 	/* tcp_reinit should never be called for detached tcp_t's */
7475 	ASSERT(tcp->tcp_listener == NULL);
7476 	ASSERT((tcp->tcp_family == AF_INET &&
7477 	    tcp->tcp_ipversion == IPV4_VERSION) ||
7478 	    (tcp->tcp_family == AF_INET6 &&
7479 	    (tcp->tcp_ipversion == IPV4_VERSION ||
7480 	    tcp->tcp_ipversion == IPV6_VERSION)));
7481 
7482 	/* Cancel outstanding timers */
7483 	tcp_timers_stop(tcp);
7484 
7485 	/*
7486 	 * Reset everything in the state vector, after updating global
7487 	 * MIB data from instance counters.
7488 	 */
7489 	UPDATE_MIB(&tcp_mib, tcpInSegs, tcp->tcp_ibsegs);
7490 	tcp->tcp_ibsegs = 0;
7491 	UPDATE_MIB(&tcp_mib, tcpOutSegs, tcp->tcp_obsegs);
7492 	tcp->tcp_obsegs = 0;
7493 
7494 	tcp_close_mpp(&tcp->tcp_xmit_head);
7495 	if (tcp->tcp_snd_zcopy_aware)
7496 		tcp_zcopy_notify(tcp);
7497 	tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL;
7498 	tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0;
7499 	if (tcp->tcp_flow_stopped &&
7500 	    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
7501 		tcp_clrqfull(tcp);
7502 	}
7503 	tcp_close_mpp(&tcp->tcp_reass_head);
7504 	tcp->tcp_reass_tail = NULL;
7505 	if (tcp->tcp_rcv_list != NULL) {
7506 		/* Free b_next chain */
7507 		tcp_close_mpp(&tcp->tcp_rcv_list);
7508 		tcp->tcp_rcv_last_head = NULL;
7509 		tcp->tcp_rcv_last_tail = NULL;
7510 		tcp->tcp_rcv_cnt = 0;
7511 	}
7512 	tcp->tcp_rcv_last_tail = NULL;
7513 
7514 	if ((mp = tcp->tcp_urp_mp) != NULL) {
7515 		freemsg(mp);
7516 		tcp->tcp_urp_mp = NULL;
7517 	}
7518 	if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
7519 		freemsg(mp);
7520 		tcp->tcp_urp_mark_mp = NULL;
7521 	}
7522 	if (tcp->tcp_fused_sigurg_mp != NULL) {
7523 		freeb(tcp->tcp_fused_sigurg_mp);
7524 		tcp->tcp_fused_sigurg_mp = NULL;
7525 	}
7526 
7527 	/*
7528 	 * Following is a union with two members which are
7529 	 * identical types and size so the following cleanup
7530 	 * is enough.
7531 	 */
7532 	tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
7533 
7534 	CL_INET_DISCONNECT(tcp);
7535 
7536 	/*
7537 	 * The connection can't be on the tcp_time_wait_head list
7538 	 * since it is not detached.
7539 	 */
7540 	ASSERT(tcp->tcp_time_wait_next == NULL);
7541 	ASSERT(tcp->tcp_time_wait_prev == NULL);
7542 	ASSERT(tcp->tcp_time_wait_expire == 0);
7543 
7544 	if (tcp->tcp_kssl_pending) {
7545 		tcp->tcp_kssl_pending = B_FALSE;
7546 
7547 		/* Don't reset if the initialized by bind. */
7548 		if (tcp->tcp_kssl_ent != NULL) {
7549 			kssl_release_ent(tcp->tcp_kssl_ent, NULL,
7550 			    KSSL_NO_PROXY);
7551 		}
7552 	}
7553 	if (tcp->tcp_kssl_ctx != NULL) {
7554 		kssl_release_ctx(tcp->tcp_kssl_ctx);
7555 		tcp->tcp_kssl_ctx = NULL;
7556 	}
7557 
7558 	/*
7559 	 * Reset/preserve other values
7560 	 */
7561 	tcp_reinit_values(tcp);
7562 	ipcl_hash_remove(tcp->tcp_connp);
7563 	conn_delete_ire(tcp->tcp_connp, NULL);
7564 
7565 	if (tcp->tcp_conn_req_max != 0) {
7566 		/*
7567 		 * This is the case when a TLI program uses the same
7568 		 * transport end point to accept a connection.  This
7569 		 * makes the TCP both a listener and acceptor.  When
7570 		 * this connection is closed, we need to set the state
7571 		 * back to TCPS_LISTEN.  Make sure that the eager list
7572 		 * is reinitialized.
7573 		 *
7574 		 * Note that this stream is still bound to the four
7575 		 * tuples of the previous connection in IP.  If a new
7576 		 * SYN with different foreign address comes in, IP will
7577 		 * not find it and will send it to the global queue.  In
7578 		 * the global queue, TCP will do a tcp_lookup_listener()
7579 		 * to find this stream.  This works because this stream
7580 		 * is only removed from connected hash.
7581 		 *
7582 		 */
7583 		tcp->tcp_state = TCPS_LISTEN;
7584 		tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
7585 		tcp->tcp_connp->conn_recv = tcp_conn_request;
7586 		if (tcp->tcp_family == AF_INET6) {
7587 			ASSERT(tcp->tcp_connp->conn_af_isv6);
7588 			(void) ipcl_bind_insert_v6(tcp->tcp_connp, IPPROTO_TCP,
7589 			    &tcp->tcp_ip6h->ip6_src, tcp->tcp_lport);
7590 		} else {
7591 			ASSERT(!tcp->tcp_connp->conn_af_isv6);
7592 			(void) ipcl_bind_insert(tcp->tcp_connp, IPPROTO_TCP,
7593 			    tcp->tcp_ipha->ipha_src, tcp->tcp_lport);
7594 		}
7595 	} else {
7596 		tcp->tcp_state = TCPS_BOUND;
7597 	}
7598 
7599 	/*
7600 	 * Initialize to default values
7601 	 * Can't fail since enough header template space already allocated
7602 	 * at open().
7603 	 */
7604 	err = tcp_init_values(tcp);
7605 	ASSERT(err == 0);
7606 	/* Restore state in tcp_tcph */
7607 	bcopy(&tcp->tcp_lport, tcp->tcp_tcph->th_lport, TCP_PORT_LEN);
7608 	if (tcp->tcp_ipversion == IPV4_VERSION)
7609 		tcp->tcp_ipha->ipha_src = tcp->tcp_bound_source;
7610 	else
7611 		tcp->tcp_ip6h->ip6_src = tcp->tcp_bound_source_v6;
7612 	/*
7613 	 * Copy of the src addr. in tcp_t is needed in tcp_t
7614 	 * since the lookup funcs can only lookup on tcp_t
7615 	 */
7616 	tcp->tcp_ip_src_v6 = tcp->tcp_bound_source_v6;
7617 
7618 	ASSERT(tcp->tcp_ptpbhn != NULL);
7619 	tcp->tcp_rq->q_hiwat = tcp_recv_hiwat;
7620 	tcp->tcp_rwnd = tcp_recv_hiwat;
7621 	tcp->tcp_mss = tcp->tcp_ipversion != IPV4_VERSION ?
7622 	    tcp_mss_def_ipv6 : tcp_mss_def_ipv4;
7623 }
7624 
7625 /*
7626  * Force values to zero that need be zero.
7627  * Do not touch values asociated with the BOUND or LISTEN state
7628  * since the connection will end up in that state after the reinit.
7629  * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t
7630  * structure!
7631  */
7632 static void
7633 tcp_reinit_values(tcp)
7634 	tcp_t *tcp;
7635 {
7636 #ifndef	lint
7637 #define	DONTCARE(x)
7638 #define	PRESERVE(x)
7639 #else
7640 #define	DONTCARE(x)	((x) = (x))
7641 #define	PRESERVE(x)	((x) = (x))
7642 #endif	/* lint */
7643 
7644 	PRESERVE(tcp->tcp_bind_hash);
7645 	PRESERVE(tcp->tcp_ptpbhn);
7646 	PRESERVE(tcp->tcp_acceptor_hash);
7647 	PRESERVE(tcp->tcp_ptpahn);
7648 
7649 	/* Should be ASSERT NULL on these with new code! */
7650 	ASSERT(tcp->tcp_time_wait_next == NULL);
7651 	ASSERT(tcp->tcp_time_wait_prev == NULL);
7652 	ASSERT(tcp->tcp_time_wait_expire == 0);
7653 	PRESERVE(tcp->tcp_state);
7654 	PRESERVE(tcp->tcp_rq);
7655 	PRESERVE(tcp->tcp_wq);
7656 
7657 	ASSERT(tcp->tcp_xmit_head == NULL);
7658 	ASSERT(tcp->tcp_xmit_last == NULL);
7659 	ASSERT(tcp->tcp_unsent == 0);
7660 	ASSERT(tcp->tcp_xmit_tail == NULL);
7661 	ASSERT(tcp->tcp_xmit_tail_unsent == 0);
7662 
7663 	tcp->tcp_snxt = 0;			/* Displayed in mib */
7664 	tcp->tcp_suna = 0;			/* Displayed in mib */
7665 	tcp->tcp_swnd = 0;
7666 	DONTCARE(tcp->tcp_cwnd);		/* Init in tcp_mss_set */
7667 
7668 	ASSERT(tcp->tcp_ibsegs == 0);
7669 	ASSERT(tcp->tcp_obsegs == 0);
7670 
7671 	if (tcp->tcp_iphc != NULL) {
7672 		ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
7673 		bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
7674 	}
7675 
7676 	DONTCARE(tcp->tcp_naglim);		/* Init in tcp_init_values */
7677 	DONTCARE(tcp->tcp_hdr_len);		/* Init in tcp_init_values */
7678 	DONTCARE(tcp->tcp_ipha);
7679 	DONTCARE(tcp->tcp_ip6h);
7680 	DONTCARE(tcp->tcp_ip_hdr_len);
7681 	DONTCARE(tcp->tcp_tcph);
7682 	DONTCARE(tcp->tcp_tcp_hdr_len);		/* Init in tcp_init_values */
7683 	tcp->tcp_valid_bits = 0;
7684 
7685 	DONTCARE(tcp->tcp_xmit_hiwater);	/* Init in tcp_init_values */
7686 	DONTCARE(tcp->tcp_timer_backoff);	/* Init in tcp_init_values */
7687 	DONTCARE(tcp->tcp_last_recv_time);	/* Init in tcp_init_values */
7688 	tcp->tcp_last_rcv_lbolt = 0;
7689 
7690 	tcp->tcp_init_cwnd = 0;
7691 
7692 	tcp->tcp_urp_last_valid = 0;
7693 	tcp->tcp_hard_binding = 0;
7694 	tcp->tcp_hard_bound = 0;
7695 	PRESERVE(tcp->tcp_cred);
7696 	PRESERVE(tcp->tcp_cpid);
7697 	PRESERVE(tcp->tcp_exclbind);
7698 
7699 	tcp->tcp_fin_acked = 0;
7700 	tcp->tcp_fin_rcvd = 0;
7701 	tcp->tcp_fin_sent = 0;
7702 	tcp->tcp_ordrel_done = 0;
7703 
7704 	tcp->tcp_debug = 0;
7705 	tcp->tcp_dontroute = 0;
7706 	tcp->tcp_broadcast = 0;
7707 
7708 	tcp->tcp_useloopback = 0;
7709 	tcp->tcp_reuseaddr = 0;
7710 	tcp->tcp_oobinline = 0;
7711 	tcp->tcp_dgram_errind = 0;
7712 
7713 	tcp->tcp_detached = 0;
7714 	tcp->tcp_bind_pending = 0;
7715 	tcp->tcp_unbind_pending = 0;
7716 	tcp->tcp_deferred_clean_death = 0;
7717 
7718 	tcp->tcp_snd_ws_ok = B_FALSE;
7719 	tcp->tcp_snd_ts_ok = B_FALSE;
7720 	tcp->tcp_linger = 0;
7721 	tcp->tcp_ka_enabled = 0;
7722 	tcp->tcp_zero_win_probe = 0;
7723 
7724 	tcp->tcp_loopback = 0;
7725 	tcp->tcp_localnet = 0;
7726 	tcp->tcp_syn_defense = 0;
7727 	tcp->tcp_set_timer = 0;
7728 
7729 	tcp->tcp_active_open = 0;
7730 	ASSERT(tcp->tcp_timeout == B_FALSE);
7731 	tcp->tcp_rexmit = B_FALSE;
7732 	tcp->tcp_xmit_zc_clean = B_FALSE;
7733 
7734 	tcp->tcp_snd_sack_ok = B_FALSE;
7735 	PRESERVE(tcp->tcp_recvdstaddr);
7736 	tcp->tcp_hwcksum = B_FALSE;
7737 
7738 	tcp->tcp_ire_ill_check_done = B_FALSE;
7739 	DONTCARE(tcp->tcp_maxpsz);		/* Init in tcp_init_values */
7740 
7741 	tcp->tcp_mdt = B_FALSE;
7742 	tcp->tcp_mdt_hdr_head = 0;
7743 	tcp->tcp_mdt_hdr_tail = 0;
7744 
7745 	tcp->tcp_conn_def_q0 = 0;
7746 	tcp->tcp_ip_forward_progress = B_FALSE;
7747 	tcp->tcp_anon_priv_bind = 0;
7748 	tcp->tcp_ecn_ok = B_FALSE;
7749 
7750 	tcp->tcp_cwr = B_FALSE;
7751 	tcp->tcp_ecn_echo_on = B_FALSE;
7752 
7753 	if (tcp->tcp_sack_info != NULL) {
7754 		if (tcp->tcp_notsack_list != NULL) {
7755 			TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
7756 		}
7757 		kmem_cache_free(tcp_sack_info_cache, tcp->tcp_sack_info);
7758 		tcp->tcp_sack_info = NULL;
7759 	}
7760 
7761 	tcp->tcp_rcv_ws = 0;
7762 	tcp->tcp_snd_ws = 0;
7763 	tcp->tcp_ts_recent = 0;
7764 	tcp->tcp_rnxt = 0;			/* Displayed in mib */
7765 	DONTCARE(tcp->tcp_rwnd);		/* Set in tcp_reinit() */
7766 	tcp->tcp_if_mtu = 0;
7767 
7768 	ASSERT(tcp->tcp_reass_head == NULL);
7769 	ASSERT(tcp->tcp_reass_tail == NULL);
7770 
7771 	tcp->tcp_cwnd_cnt = 0;
7772 
7773 	ASSERT(tcp->tcp_rcv_list == NULL);
7774 	ASSERT(tcp->tcp_rcv_last_head == NULL);
7775 	ASSERT(tcp->tcp_rcv_last_tail == NULL);
7776 	ASSERT(tcp->tcp_rcv_cnt == 0);
7777 
7778 	DONTCARE(tcp->tcp_cwnd_ssthresh);	/* Init in tcp_adapt_ire */
7779 	DONTCARE(tcp->tcp_cwnd_max);		/* Init in tcp_init_values */
7780 	tcp->tcp_csuna = 0;
7781 
7782 	tcp->tcp_rto = 0;			/* Displayed in MIB */
7783 	DONTCARE(tcp->tcp_rtt_sa);		/* Init in tcp_init_values */
7784 	DONTCARE(tcp->tcp_rtt_sd);		/* Init in tcp_init_values */
7785 	tcp->tcp_rtt_update = 0;
7786 
7787 	DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
7788 	DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
7789 
7790 	tcp->tcp_rack = 0;			/* Displayed in mib */
7791 	tcp->tcp_rack_cnt = 0;
7792 	tcp->tcp_rack_cur_max = 0;
7793 	tcp->tcp_rack_abs_max = 0;
7794 
7795 	tcp->tcp_max_swnd = 0;
7796 
7797 	ASSERT(tcp->tcp_listener == NULL);
7798 
7799 	DONTCARE(tcp->tcp_xmit_lowater);	/* Init in tcp_init_values */
7800 
7801 	DONTCARE(tcp->tcp_irs);			/* tcp_valid_bits cleared */
7802 	DONTCARE(tcp->tcp_iss);			/* tcp_valid_bits cleared */
7803 	DONTCARE(tcp->tcp_fss);			/* tcp_valid_bits cleared */
7804 	DONTCARE(tcp->tcp_urg);			/* tcp_valid_bits cleared */
7805 
7806 	ASSERT(tcp->tcp_conn_req_cnt_q == 0);
7807 	ASSERT(tcp->tcp_conn_req_cnt_q0 == 0);
7808 	PRESERVE(tcp->tcp_conn_req_max);
7809 	PRESERVE(tcp->tcp_conn_req_seqnum);
7810 
7811 	DONTCARE(tcp->tcp_ip_hdr_len);		/* Init in tcp_init_values */
7812 	DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */
7813 	DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */
7814 	DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */
7815 	DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */
7816 
7817 	tcp->tcp_lingertime = 0;
7818 
7819 	DONTCARE(tcp->tcp_urp_last);	/* tcp_urp_last_valid is cleared */
7820 	ASSERT(tcp->tcp_urp_mp == NULL);
7821 	ASSERT(tcp->tcp_urp_mark_mp == NULL);
7822 	ASSERT(tcp->tcp_fused_sigurg_mp == NULL);
7823 
7824 	ASSERT(tcp->tcp_eager_next_q == NULL);
7825 	ASSERT(tcp->tcp_eager_last_q == NULL);
7826 	ASSERT((tcp->tcp_eager_next_q0 == NULL &&
7827 	    tcp->tcp_eager_prev_q0 == NULL) ||
7828 	    tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0);
7829 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
7830 
7831 	tcp->tcp_client_errno = 0;
7832 
7833 	DONTCARE(tcp->tcp_sum);			/* Init in tcp_init_values */
7834 
7835 	tcp->tcp_remote_v6 = ipv6_all_zeros;	/* Displayed in MIB */
7836 
7837 	PRESERVE(tcp->tcp_bound_source_v6);
7838 	tcp->tcp_last_sent_len = 0;
7839 	tcp->tcp_dupack_cnt = 0;
7840 
7841 	tcp->tcp_fport = 0;			/* Displayed in MIB */
7842 	PRESERVE(tcp->tcp_lport);
7843 
7844 	PRESERVE(tcp->tcp_acceptor_lockp);
7845 
7846 	ASSERT(tcp->tcp_ordrelid == 0);
7847 	PRESERVE(tcp->tcp_acceptor_id);
7848 	DONTCARE(tcp->tcp_ipsec_overhead);
7849 
7850 	/*
7851 	 * If tcp_tracing flag is ON (i.e. We have a trace buffer
7852 	 * in tcp structure and now tracing), Re-initialize all
7853 	 * members of tcp_traceinfo.
7854 	 */
7855 	if (tcp->tcp_tracebuf != NULL) {
7856 		bzero(tcp->tcp_tracebuf, sizeof (tcptrch_t));
7857 	}
7858 
7859 	PRESERVE(tcp->tcp_family);
7860 	if (tcp->tcp_family == AF_INET6) {
7861 		tcp->tcp_ipversion = IPV6_VERSION;
7862 		tcp->tcp_mss = tcp_mss_def_ipv6;
7863 	} else {
7864 		tcp->tcp_ipversion = IPV4_VERSION;
7865 		tcp->tcp_mss = tcp_mss_def_ipv4;
7866 	}
7867 
7868 	tcp->tcp_bound_if = 0;
7869 	tcp->tcp_ipv6_recvancillary = 0;
7870 	tcp->tcp_recvifindex = 0;
7871 	tcp->tcp_recvhops = 0;
7872 	tcp->tcp_closed = 0;
7873 	tcp->tcp_cleandeathtag = 0;
7874 	if (tcp->tcp_hopopts != NULL) {
7875 		mi_free(tcp->tcp_hopopts);
7876 		tcp->tcp_hopopts = NULL;
7877 		tcp->tcp_hopoptslen = 0;
7878 	}
7879 	ASSERT(tcp->tcp_hopoptslen == 0);
7880 	if (tcp->tcp_dstopts != NULL) {
7881 		mi_free(tcp->tcp_dstopts);
7882 		tcp->tcp_dstopts = NULL;
7883 		tcp->tcp_dstoptslen = 0;
7884 	}
7885 	ASSERT(tcp->tcp_dstoptslen == 0);
7886 	if (tcp->tcp_rtdstopts != NULL) {
7887 		mi_free(tcp->tcp_rtdstopts);
7888 		tcp->tcp_rtdstopts = NULL;
7889 		tcp->tcp_rtdstoptslen = 0;
7890 	}
7891 	ASSERT(tcp->tcp_rtdstoptslen == 0);
7892 	if (tcp->tcp_rthdr != NULL) {
7893 		mi_free(tcp->tcp_rthdr);
7894 		tcp->tcp_rthdr = NULL;
7895 		tcp->tcp_rthdrlen = 0;
7896 	}
7897 	ASSERT(tcp->tcp_rthdrlen == 0);
7898 	PRESERVE(tcp->tcp_drop_opt_ack_cnt);
7899 
7900 	/* Reset fusion-related fields */
7901 	tcp->tcp_fused = B_FALSE;
7902 	tcp->tcp_unfusable = B_FALSE;
7903 	tcp->tcp_fused_sigurg = B_FALSE;
7904 	tcp->tcp_direct_sockfs = B_FALSE;
7905 	tcp->tcp_fuse_syncstr_stopped = B_FALSE;
7906 	tcp->tcp_loopback_peer = NULL;
7907 	tcp->tcp_fuse_rcv_hiwater = 0;
7908 	tcp->tcp_fuse_rcv_unread_hiwater = 0;
7909 	tcp->tcp_fuse_rcv_unread_cnt = 0;
7910 
7911 	tcp->tcp_in_ack_unsent = 0;
7912 	tcp->tcp_cork = B_FALSE;
7913 
7914 	PRESERVE(tcp->tcp_squeue_bytes);
7915 
7916 	ASSERT(tcp->tcp_kssl_ctx == NULL);
7917 	ASSERT(!tcp->tcp_kssl_pending);
7918 	PRESERVE(tcp->tcp_kssl_ent);
7919 
7920 #undef	DONTCARE
7921 #undef	PRESERVE
7922 }
7923 
7924 /*
7925  * Allocate necessary resources and initialize state vector.
7926  * Guaranteed not to fail so that when an error is returned,
7927  * the caller doesn't need to do any additional cleanup.
7928  */
7929 int
7930 tcp_init(tcp_t *tcp, queue_t *q)
7931 {
7932 	int	err;
7933 
7934 	tcp->tcp_rq = q;
7935 	tcp->tcp_wq = WR(q);
7936 	tcp->tcp_state = TCPS_IDLE;
7937 	if ((err = tcp_init_values(tcp)) != 0)
7938 		tcp_timers_stop(tcp);
7939 	return (err);
7940 }
7941 
7942 static int
7943 tcp_init_values(tcp_t *tcp)
7944 {
7945 	int	err;
7946 
7947 	ASSERT((tcp->tcp_family == AF_INET &&
7948 	    tcp->tcp_ipversion == IPV4_VERSION) ||
7949 	    (tcp->tcp_family == AF_INET6 &&
7950 	    (tcp->tcp_ipversion == IPV4_VERSION ||
7951 	    tcp->tcp_ipversion == IPV6_VERSION)));
7952 
7953 	/*
7954 	 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO
7955 	 * will be close to tcp_rexmit_interval_initial.  By doing this, we
7956 	 * allow the algorithm to adjust slowly to large fluctuations of RTT
7957 	 * during first few transmissions of a connection as seen in slow
7958 	 * links.
7959 	 */
7960 	tcp->tcp_rtt_sa = tcp_rexmit_interval_initial << 2;
7961 	tcp->tcp_rtt_sd = tcp_rexmit_interval_initial >> 1;
7962 	tcp->tcp_rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
7963 	    tcp_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) +
7964 	    tcp_conn_grace_period;
7965 	if (tcp->tcp_rto < tcp_rexmit_interval_min)
7966 		tcp->tcp_rto = tcp_rexmit_interval_min;
7967 	tcp->tcp_timer_backoff = 0;
7968 	tcp->tcp_ms_we_have_waited = 0;
7969 	tcp->tcp_last_recv_time = lbolt;
7970 	tcp->tcp_cwnd_max = tcp_cwnd_max_;
7971 	tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
7972 	tcp->tcp_snd_burst = TCP_CWND_INFINITE;
7973 
7974 	tcp->tcp_maxpsz = tcp_maxpsz_multiplier;
7975 
7976 	tcp->tcp_first_timer_threshold = tcp_ip_notify_interval;
7977 	tcp->tcp_first_ctimer_threshold = tcp_ip_notify_cinterval;
7978 	tcp->tcp_second_timer_threshold = tcp_ip_abort_interval;
7979 	/*
7980 	 * Fix it to tcp_ip_abort_linterval later if it turns out to be a
7981 	 * passive open.
7982 	 */
7983 	tcp->tcp_second_ctimer_threshold = tcp_ip_abort_cinterval;
7984 
7985 	tcp->tcp_naglim = tcp_naglim_def;
7986 
7987 	/* NOTE:  ISS is now set in tcp_adapt_ire(). */
7988 
7989 	tcp->tcp_mdt_hdr_head = 0;
7990 	tcp->tcp_mdt_hdr_tail = 0;
7991 
7992 	/* Reset fusion-related fields */
7993 	tcp->tcp_fused = B_FALSE;
7994 	tcp->tcp_unfusable = B_FALSE;
7995 	tcp->tcp_fused_sigurg = B_FALSE;
7996 	tcp->tcp_direct_sockfs = B_FALSE;
7997 	tcp->tcp_fuse_syncstr_stopped = B_FALSE;
7998 	tcp->tcp_loopback_peer = NULL;
7999 	tcp->tcp_fuse_rcv_hiwater = 0;
8000 	tcp->tcp_fuse_rcv_unread_hiwater = 0;
8001 	tcp->tcp_fuse_rcv_unread_cnt = 0;
8002 
8003 	/* Initialize the header template */
8004 	if (tcp->tcp_ipversion == IPV4_VERSION) {
8005 		err = tcp_header_init_ipv4(tcp);
8006 	} else {
8007 		err = tcp_header_init_ipv6(tcp);
8008 	}
8009 	if (err)
8010 		return (err);
8011 
8012 	/*
8013 	 * Init the window scale to the max so tcp_rwnd_set() won't pare
8014 	 * down tcp_rwnd. tcp_adapt_ire() will set the right value later.
8015 	 */
8016 	tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT;
8017 	tcp->tcp_xmit_lowater = tcp_xmit_lowat;
8018 	tcp->tcp_xmit_hiwater = tcp_xmit_hiwat;
8019 
8020 	tcp->tcp_cork = B_FALSE;
8021 	/*
8022 	 * Init the tcp_debug option.  This value determines whether TCP
8023 	 * calls strlog() to print out debug messages.  Doing this
8024 	 * initialization here means that this value is not inherited thru
8025 	 * tcp_reinit().
8026 	 */
8027 	tcp->tcp_debug = tcp_dbg;
8028 
8029 	tcp->tcp_ka_interval = tcp_keepalive_interval;
8030 	tcp->tcp_ka_abort_thres = tcp_keepalive_abort_interval;
8031 
8032 	return (0);
8033 }
8034 
8035 /*
8036  * Initialize the IPv4 header. Loses any record of any IP options.
8037  */
8038 static int
8039 tcp_header_init_ipv4(tcp_t *tcp)
8040 {
8041 	tcph_t		*tcph;
8042 	uint32_t	sum;
8043 	conn_t		*connp;
8044 
8045 	/*
8046 	 * This is a simple initialization. If there's
8047 	 * already a template, it should never be too small,
8048 	 * so reuse it.  Otherwise, allocate space for the new one.
8049 	 */
8050 	if (tcp->tcp_iphc == NULL) {
8051 		ASSERT(tcp->tcp_iphc_len == 0);
8052 		tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH;
8053 		tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP);
8054 		if (tcp->tcp_iphc == NULL) {
8055 			tcp->tcp_iphc_len = 0;
8056 			return (ENOMEM);
8057 		}
8058 	}
8059 
8060 	/* options are gone; may need a new label */
8061 	connp = tcp->tcp_connp;
8062 	connp->conn_mlp_type = mlptSingle;
8063 	connp->conn_ulp_labeled = !is_system_labeled();
8064 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
8065 	tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
8066 	tcp->tcp_ip6h = NULL;
8067 	tcp->tcp_ipversion = IPV4_VERSION;
8068 	tcp->tcp_hdr_len = sizeof (ipha_t) + sizeof (tcph_t);
8069 	tcp->tcp_tcp_hdr_len = sizeof (tcph_t);
8070 	tcp->tcp_ip_hdr_len = sizeof (ipha_t);
8071 	tcp->tcp_ipha->ipha_length = htons(sizeof (ipha_t) + sizeof (tcph_t));
8072 	tcp->tcp_ipha->ipha_version_and_hdr_length
8073 		= (IP_VERSION << 4) | IP_SIMPLE_HDR_LENGTH_IN_WORDS;
8074 	tcp->tcp_ipha->ipha_ident = 0;
8075 
8076 	tcp->tcp_ttl = (uchar_t)tcp_ipv4_ttl;
8077 	tcp->tcp_tos = 0;
8078 	tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0;
8079 	tcp->tcp_ipha->ipha_ttl = (uchar_t)tcp_ipv4_ttl;
8080 	tcp->tcp_ipha->ipha_protocol = IPPROTO_TCP;
8081 
8082 	tcph = (tcph_t *)(tcp->tcp_iphc + sizeof (ipha_t));
8083 	tcp->tcp_tcph = tcph;
8084 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
8085 	/*
8086 	 * IP wants our header length in the checksum field to
8087 	 * allow it to perform a single pseudo-header+checksum
8088 	 * calculation on behalf of TCP.
8089 	 * Include the adjustment for a source route once IP_OPTIONS is set.
8090 	 */
8091 	sum = sizeof (tcph_t) + tcp->tcp_sum;
8092 	sum = (sum >> 16) + (sum & 0xFFFF);
8093 	U16_TO_ABE16(sum, tcph->th_sum);
8094 	return (0);
8095 }
8096 
8097 /*
8098  * Initialize the IPv6 header. Loses any record of any IPv6 extension headers.
8099  */
8100 static int
8101 tcp_header_init_ipv6(tcp_t *tcp)
8102 {
8103 	tcph_t	*tcph;
8104 	uint32_t	sum;
8105 	conn_t	*connp;
8106 
8107 	/*
8108 	 * This is a simple initialization. If there's
8109 	 * already a template, it should never be too small,
8110 	 * so reuse it. Otherwise, allocate space for the new one.
8111 	 * Ensure that there is enough space to "downgrade" the tcp_t
8112 	 * to an IPv4 tcp_t. This requires having space for a full load
8113 	 * of IPv4 options, as well as a full load of TCP options
8114 	 * (TCP_MAX_COMBINED_HEADER_LENGTH, 120 bytes); this is more space
8115 	 * than a v6 header and a TCP header with a full load of TCP options
8116 	 * (IPV6_HDR_LEN is 40 bytes; TCP_MAX_HDR_LENGTH is 60 bytes).
8117 	 * We want to avoid reallocation in the "downgraded" case when
8118 	 * processing outbound IPv4 options.
8119 	 */
8120 	if (tcp->tcp_iphc == NULL) {
8121 		ASSERT(tcp->tcp_iphc_len == 0);
8122 		tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH;
8123 		tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP);
8124 		if (tcp->tcp_iphc == NULL) {
8125 			tcp->tcp_iphc_len = 0;
8126 			return (ENOMEM);
8127 		}
8128 	}
8129 
8130 	/* options are gone; may need a new label */
8131 	connp = tcp->tcp_connp;
8132 	connp->conn_mlp_type = mlptSingle;
8133 	connp->conn_ulp_labeled = !is_system_labeled();
8134 
8135 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
8136 	tcp->tcp_ipversion = IPV6_VERSION;
8137 	tcp->tcp_hdr_len = IPV6_HDR_LEN + sizeof (tcph_t);
8138 	tcp->tcp_tcp_hdr_len = sizeof (tcph_t);
8139 	tcp->tcp_ip_hdr_len = IPV6_HDR_LEN;
8140 	tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc;
8141 	tcp->tcp_ipha = NULL;
8142 
8143 	/* Initialize the header template */
8144 
8145 	tcp->tcp_ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW;
8146 	tcp->tcp_ip6h->ip6_plen = ntohs(sizeof (tcph_t));
8147 	tcp->tcp_ip6h->ip6_nxt = IPPROTO_TCP;
8148 	tcp->tcp_ip6h->ip6_hops = (uint8_t)tcp_ipv6_hoplimit;
8149 
8150 	tcph = (tcph_t *)(tcp->tcp_iphc + IPV6_HDR_LEN);
8151 	tcp->tcp_tcph = tcph;
8152 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
8153 	/*
8154 	 * IP wants our header length in the checksum field to
8155 	 * allow it to perform a single psuedo-header+checksum
8156 	 * calculation on behalf of TCP.
8157 	 * Include the adjustment for a source route when IPV6_RTHDR is set.
8158 	 */
8159 	sum = sizeof (tcph_t) + tcp->tcp_sum;
8160 	sum = (sum >> 16) + (sum & 0xFFFF);
8161 	U16_TO_ABE16(sum, tcph->th_sum);
8162 	return (0);
8163 }
8164 
8165 /* At minimum we need 4 bytes in the TCP header for the lookup */
8166 #define	ICMP_MIN_TCP_HDR	12
8167 
8168 /*
8169  * tcp_icmp_error is called by tcp_rput_other to process ICMP error messages
8170  * passed up by IP. The message is always received on the correct tcp_t.
8171  * Assumes that IP has pulled up everything up to and including the ICMP header.
8172  */
8173 void
8174 tcp_icmp_error(tcp_t *tcp, mblk_t *mp)
8175 {
8176 	icmph_t *icmph;
8177 	ipha_t	*ipha;
8178 	int	iph_hdr_length;
8179 	tcph_t	*tcph;
8180 	boolean_t ipsec_mctl = B_FALSE;
8181 	boolean_t secure;
8182 	mblk_t *first_mp = mp;
8183 	uint32_t new_mss;
8184 	uint32_t ratio;
8185 	size_t mp_size = MBLKL(mp);
8186 	uint32_t seg_ack;
8187 	uint32_t seg_seq;
8188 
8189 	/* Assume IP provides aligned packets - otherwise toss */
8190 	if (!OK_32PTR(mp->b_rptr)) {
8191 		freemsg(mp);
8192 		return;
8193 	}
8194 
8195 	/*
8196 	 * Since ICMP errors are normal data marked with M_CTL when sent
8197 	 * to TCP or UDP, we have to look for a IPSEC_IN value to identify
8198 	 * packets starting with an ipsec_info_t, see ipsec_info.h.
8199 	 */
8200 	if ((mp_size == sizeof (ipsec_info_t)) &&
8201 	    (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == IPSEC_IN)) {
8202 		ASSERT(mp->b_cont != NULL);
8203 		mp = mp->b_cont;
8204 		/* IP should have done this */
8205 		ASSERT(OK_32PTR(mp->b_rptr));
8206 		mp_size = MBLKL(mp);
8207 		ipsec_mctl = B_TRUE;
8208 	}
8209 
8210 	/*
8211 	 * Verify that we have a complete outer IP header. If not, drop it.
8212 	 */
8213 	if (mp_size < sizeof (ipha_t)) {
8214 noticmpv4:
8215 		freemsg(first_mp);
8216 		return;
8217 	}
8218 
8219 	ipha = (ipha_t *)mp->b_rptr;
8220 	/*
8221 	 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent
8222 	 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6.
8223 	 */
8224 	switch (IPH_HDR_VERSION(ipha)) {
8225 	case IPV6_VERSION:
8226 		tcp_icmp_error_ipv6(tcp, first_mp, ipsec_mctl);
8227 		return;
8228 	case IPV4_VERSION:
8229 		break;
8230 	default:
8231 		goto noticmpv4;
8232 	}
8233 
8234 	/* Skip past the outer IP and ICMP headers */
8235 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
8236 	icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
8237 	/*
8238 	 * If we don't have the correct outer IP header length or if the ULP
8239 	 * is not IPPROTO_ICMP or if we don't have a complete inner IP header
8240 	 * send it upstream.
8241 	 */
8242 	if (iph_hdr_length < sizeof (ipha_t) ||
8243 	    ipha->ipha_protocol != IPPROTO_ICMP ||
8244 	    (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) {
8245 		goto noticmpv4;
8246 	}
8247 	ipha = (ipha_t *)&icmph[1];
8248 
8249 	/* Skip past the inner IP and find the ULP header */
8250 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
8251 	tcph = (tcph_t *)((char *)ipha + iph_hdr_length);
8252 	/*
8253 	 * If we don't have the correct inner IP header length or if the ULP
8254 	 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR
8255 	 * bytes of TCP header, drop it.
8256 	 */
8257 	if (iph_hdr_length < sizeof (ipha_t) ||
8258 	    ipha->ipha_protocol != IPPROTO_TCP ||
8259 	    (uchar_t *)tcph + ICMP_MIN_TCP_HDR > mp->b_wptr) {
8260 		goto noticmpv4;
8261 	}
8262 
8263 	if (TCP_IS_DETACHED_NONEAGER(tcp)) {
8264 		if (ipsec_mctl) {
8265 			secure = ipsec_in_is_secure(first_mp);
8266 		} else {
8267 			secure = B_FALSE;
8268 		}
8269 		if (secure) {
8270 			/*
8271 			 * If we are willing to accept this in clear
8272 			 * we don't have to verify policy.
8273 			 */
8274 			if (!ipsec_inbound_accept_clear(mp, ipha, NULL)) {
8275 				if (!tcp_check_policy(tcp, first_mp,
8276 				    ipha, NULL, secure, ipsec_mctl)) {
8277 					/*
8278 					 * tcp_check_policy called
8279 					 * ip_drop_packet() on failure.
8280 					 */
8281 					return;
8282 				}
8283 			}
8284 		}
8285 	} else if (ipsec_mctl) {
8286 		/*
8287 		 * This is a hard_bound connection. IP has already
8288 		 * verified policy. We don't have to do it again.
8289 		 */
8290 		freeb(first_mp);
8291 		first_mp = mp;
8292 		ipsec_mctl = B_FALSE;
8293 	}
8294 
8295 	seg_ack = ABE32_TO_U32(tcph->th_ack);
8296 	seg_seq = ABE32_TO_U32(tcph->th_seq);
8297 	/*
8298 	 * TCP SHOULD check that the TCP sequence number contained in
8299 	 * payload of the ICMP error message is within the range
8300 	 * SND.UNA <= SEG.SEQ < SND.NXT. and also SEG.ACK <= RECV.NXT
8301 	 */
8302 	if (SEQ_LT(seg_seq, tcp->tcp_suna) ||
8303 		SEQ_GEQ(seg_seq, tcp->tcp_snxt) ||
8304 		SEQ_GT(seg_ack, tcp->tcp_rnxt)) {
8305 		/*
8306 		 * If the ICMP message is bogus, should we kill the
8307 		 * connection, or should we just drop the bogus ICMP
8308 		 * message? It would probably make more sense to just
8309 		 * drop the message so that if this one managed to get
8310 		 * in, the real connection should not suffer.
8311 		 */
8312 		goto noticmpv4;
8313 	}
8314 
8315 	switch (icmph->icmph_type) {
8316 	case ICMP_DEST_UNREACHABLE:
8317 		switch (icmph->icmph_code) {
8318 		case ICMP_FRAGMENTATION_NEEDED:
8319 			/*
8320 			 * Reduce the MSS based on the new MTU.  This will
8321 			 * eliminate any fragmentation locally.
8322 			 * N.B.  There may well be some funny side-effects on
8323 			 * the local send policy and the remote receive policy.
8324 			 * Pending further research, we provide
8325 			 * tcp_ignore_path_mtu just in case this proves
8326 			 * disastrous somewhere.
8327 			 *
8328 			 * After updating the MSS, retransmit part of the
8329 			 * dropped segment using the new mss by calling
8330 			 * tcp_wput_data().  Need to adjust all those
8331 			 * params to make sure tcp_wput_data() work properly.
8332 			 */
8333 			if (tcp_ignore_path_mtu)
8334 				break;
8335 
8336 			/*
8337 			 * Decrease the MSS by time stamp options
8338 			 * IP options and IPSEC options. tcp_hdr_len
8339 			 * includes time stamp option and IP option
8340 			 * length.
8341 			 */
8342 
8343 			new_mss = ntohs(icmph->icmph_du_mtu) -
8344 			    tcp->tcp_hdr_len - tcp->tcp_ipsec_overhead;
8345 
8346 			/*
8347 			 * Only update the MSS if the new one is
8348 			 * smaller than the previous one.  This is
8349 			 * to avoid problems when getting multiple
8350 			 * ICMP errors for the same MTU.
8351 			 */
8352 			if (new_mss >= tcp->tcp_mss)
8353 				break;
8354 
8355 			/*
8356 			 * Stop doing PMTU if new_mss is less than 68
8357 			 * or less than tcp_mss_min.
8358 			 * The value 68 comes from rfc 1191.
8359 			 */
8360 			if (new_mss < MAX(68, tcp_mss_min))
8361 				tcp->tcp_ipha->ipha_fragment_offset_and_flags =
8362 				    0;
8363 
8364 			ratio = tcp->tcp_cwnd / tcp->tcp_mss;
8365 			ASSERT(ratio >= 1);
8366 			tcp_mss_set(tcp, new_mss);
8367 
8368 			/*
8369 			 * Make sure we have something to
8370 			 * send.
8371 			 */
8372 			if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) &&
8373 			    (tcp->tcp_xmit_head != NULL)) {
8374 				/*
8375 				 * Shrink tcp_cwnd in
8376 				 * proportion to the old MSS/new MSS.
8377 				 */
8378 				tcp->tcp_cwnd = ratio * tcp->tcp_mss;
8379 				if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
8380 				    (tcp->tcp_unsent == 0)) {
8381 					tcp->tcp_rexmit_max = tcp->tcp_fss;
8382 				} else {
8383 					tcp->tcp_rexmit_max = tcp->tcp_snxt;
8384 				}
8385 				tcp->tcp_rexmit_nxt = tcp->tcp_suna;
8386 				tcp->tcp_rexmit = B_TRUE;
8387 				tcp->tcp_dupack_cnt = 0;
8388 				tcp->tcp_snd_burst = TCP_CWND_SS;
8389 				tcp_ss_rexmit(tcp);
8390 			}
8391 			break;
8392 		case ICMP_PORT_UNREACHABLE:
8393 		case ICMP_PROTOCOL_UNREACHABLE:
8394 			switch (tcp->tcp_state) {
8395 			case TCPS_SYN_SENT:
8396 			case TCPS_SYN_RCVD:
8397 				/*
8398 				 * ICMP can snipe away incipient
8399 				 * TCP connections as long as
8400 				 * seq number is same as initial
8401 				 * send seq number.
8402 				 */
8403 				if (seg_seq == tcp->tcp_iss) {
8404 					(void) tcp_clean_death(tcp,
8405 					    ECONNREFUSED, 6);
8406 				}
8407 				break;
8408 			}
8409 			break;
8410 		case ICMP_HOST_UNREACHABLE:
8411 		case ICMP_NET_UNREACHABLE:
8412 			/* Record the error in case we finally time out. */
8413 			if (icmph->icmph_code == ICMP_HOST_UNREACHABLE)
8414 				tcp->tcp_client_errno = EHOSTUNREACH;
8415 			else
8416 				tcp->tcp_client_errno = ENETUNREACH;
8417 			if (tcp->tcp_state == TCPS_SYN_RCVD) {
8418 				if (tcp->tcp_listener != NULL &&
8419 				    tcp->tcp_listener->tcp_syn_defense) {
8420 					/*
8421 					 * Ditch the half-open connection if we
8422 					 * suspect a SYN attack is under way.
8423 					 */
8424 					tcp_ip_ire_mark_advice(tcp);
8425 					(void) tcp_clean_death(tcp,
8426 					    tcp->tcp_client_errno, 7);
8427 				}
8428 			}
8429 			break;
8430 		default:
8431 			break;
8432 		}
8433 		break;
8434 	case ICMP_SOURCE_QUENCH: {
8435 		/*
8436 		 * use a global boolean to control
8437 		 * whether TCP should respond to ICMP_SOURCE_QUENCH.
8438 		 * The default is false.
8439 		 */
8440 		if (tcp_icmp_source_quench) {
8441 			/*
8442 			 * Reduce the sending rate as if we got a
8443 			 * retransmit timeout
8444 			 */
8445 			uint32_t npkt;
8446 
8447 			npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) /
8448 			    tcp->tcp_mss;
8449 			tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss;
8450 			tcp->tcp_cwnd = tcp->tcp_mss;
8451 			tcp->tcp_cwnd_cnt = 0;
8452 		}
8453 		break;
8454 	}
8455 	}
8456 	freemsg(first_mp);
8457 }
8458 
8459 /*
8460  * tcp_icmp_error_ipv6 is called by tcp_rput_other to process ICMPv6
8461  * error messages passed up by IP.
8462  * Assumes that IP has pulled up all the extension headers as well
8463  * as the ICMPv6 header.
8464  */
8465 static void
8466 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, boolean_t ipsec_mctl)
8467 {
8468 	icmp6_t *icmp6;
8469 	ip6_t	*ip6h;
8470 	uint16_t	iph_hdr_length;
8471 	tcpha_t	*tcpha;
8472 	uint8_t	*nexthdrp;
8473 	uint32_t new_mss;
8474 	uint32_t ratio;
8475 	boolean_t secure;
8476 	mblk_t *first_mp = mp;
8477 	size_t mp_size;
8478 	uint32_t seg_ack;
8479 	uint32_t seg_seq;
8480 
8481 	/*
8482 	 * The caller has determined if this is an IPSEC_IN packet and
8483 	 * set ipsec_mctl appropriately (see tcp_icmp_error).
8484 	 */
8485 	if (ipsec_mctl)
8486 		mp = mp->b_cont;
8487 
8488 	mp_size = MBLKL(mp);
8489 
8490 	/*
8491 	 * Verify that we have a complete IP header. If not, send it upstream.
8492 	 */
8493 	if (mp_size < sizeof (ip6_t)) {
8494 noticmpv6:
8495 		freemsg(first_mp);
8496 		return;
8497 	}
8498 
8499 	/*
8500 	 * Verify this is an ICMPV6 packet, else send it upstream.
8501 	 */
8502 	ip6h = (ip6_t *)mp->b_rptr;
8503 	if (ip6h->ip6_nxt == IPPROTO_ICMPV6) {
8504 		iph_hdr_length = IPV6_HDR_LEN;
8505 	} else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length,
8506 	    &nexthdrp) ||
8507 	    *nexthdrp != IPPROTO_ICMPV6) {
8508 		goto noticmpv6;
8509 	}
8510 	icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length];
8511 	ip6h = (ip6_t *)&icmp6[1];
8512 	/*
8513 	 * Verify if we have a complete ICMP and inner IP header.
8514 	 */
8515 	if ((uchar_t *)&ip6h[1] > mp->b_wptr)
8516 		goto noticmpv6;
8517 
8518 	if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp))
8519 		goto noticmpv6;
8520 	tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length);
8521 	/*
8522 	 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't
8523 	 * have at least ICMP_MIN_TCP_HDR bytes of  TCP header drop the
8524 	 * packet.
8525 	 */
8526 	if ((*nexthdrp != IPPROTO_TCP) ||
8527 	    ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) {
8528 		goto noticmpv6;
8529 	}
8530 
8531 	/*
8532 	 * ICMP errors come on the right queue or come on
8533 	 * listener/global queue for detached connections and
8534 	 * get switched to the right queue. If it comes on the
8535 	 * right queue, policy check has already been done by IP
8536 	 * and thus free the first_mp without verifying the policy.
8537 	 * If it has come for a non-hard bound connection, we need
8538 	 * to verify policy as IP may not have done it.
8539 	 */
8540 	if (!tcp->tcp_hard_bound) {
8541 		if (ipsec_mctl) {
8542 			secure = ipsec_in_is_secure(first_mp);
8543 		} else {
8544 			secure = B_FALSE;
8545 		}
8546 		if (secure) {
8547 			/*
8548 			 * If we are willing to accept this in clear
8549 			 * we don't have to verify policy.
8550 			 */
8551 			if (!ipsec_inbound_accept_clear(mp, NULL, ip6h)) {
8552 				if (!tcp_check_policy(tcp, first_mp,
8553 				    NULL, ip6h, secure, ipsec_mctl)) {
8554 					/*
8555 					 * tcp_check_policy called
8556 					 * ip_drop_packet() on failure.
8557 					 */
8558 					return;
8559 				}
8560 			}
8561 		}
8562 	} else if (ipsec_mctl) {
8563 		/*
8564 		 * This is a hard_bound connection. IP has already
8565 		 * verified policy. We don't have to do it again.
8566 		 */
8567 		freeb(first_mp);
8568 		first_mp = mp;
8569 		ipsec_mctl = B_FALSE;
8570 	}
8571 
8572 	seg_ack = ntohl(tcpha->tha_ack);
8573 	seg_seq = ntohl(tcpha->tha_seq);
8574 	/*
8575 	 * TCP SHOULD check that the TCP sequence number contained in
8576 	 * payload of the ICMP error message is within the range
8577 	 * SND.UNA <= SEG.SEQ < SND.NXT. and also SEG.ACK <= RECV.NXT
8578 	 */
8579 	if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt) ||
8580 	    SEQ_GT(seg_ack, tcp->tcp_rnxt)) {
8581 		/*
8582 		 * If the ICMP message is bogus, should we kill the
8583 		 * connection, or should we just drop the bogus ICMP
8584 		 * message? It would probably make more sense to just
8585 		 * drop the message so that if this one managed to get
8586 		 * in, the real connection should not suffer.
8587 		 */
8588 		goto noticmpv6;
8589 	}
8590 
8591 	switch (icmp6->icmp6_type) {
8592 	case ICMP6_PACKET_TOO_BIG:
8593 		/*
8594 		 * Reduce the MSS based on the new MTU.  This will
8595 		 * eliminate any fragmentation locally.
8596 		 * N.B.  There may well be some funny side-effects on
8597 		 * the local send policy and the remote receive policy.
8598 		 * Pending further research, we provide
8599 		 * tcp_ignore_path_mtu just in case this proves
8600 		 * disastrous somewhere.
8601 		 *
8602 		 * After updating the MSS, retransmit part of the
8603 		 * dropped segment using the new mss by calling
8604 		 * tcp_wput_data().  Need to adjust all those
8605 		 * params to make sure tcp_wput_data() work properly.
8606 		 */
8607 		if (tcp_ignore_path_mtu)
8608 			break;
8609 
8610 		/*
8611 		 * Decrease the MSS by time stamp options
8612 		 * IP options and IPSEC options. tcp_hdr_len
8613 		 * includes time stamp option and IP option
8614 		 * length.
8615 		 */
8616 		new_mss = ntohs(icmp6->icmp6_mtu) - tcp->tcp_hdr_len -
8617 			    tcp->tcp_ipsec_overhead;
8618 
8619 		/*
8620 		 * Only update the MSS if the new one is
8621 		 * smaller than the previous one.  This is
8622 		 * to avoid problems when getting multiple
8623 		 * ICMP errors for the same MTU.
8624 		 */
8625 		if (new_mss >= tcp->tcp_mss)
8626 			break;
8627 
8628 		ratio = tcp->tcp_cwnd / tcp->tcp_mss;
8629 		ASSERT(ratio >= 1);
8630 		tcp_mss_set(tcp, new_mss);
8631 
8632 		/*
8633 		 * Make sure we have something to
8634 		 * send.
8635 		 */
8636 		if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) &&
8637 		    (tcp->tcp_xmit_head != NULL)) {
8638 			/*
8639 			 * Shrink tcp_cwnd in
8640 			 * proportion to the old MSS/new MSS.
8641 			 */
8642 			tcp->tcp_cwnd = ratio * tcp->tcp_mss;
8643 			if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
8644 			    (tcp->tcp_unsent == 0)) {
8645 				tcp->tcp_rexmit_max = tcp->tcp_fss;
8646 			} else {
8647 				tcp->tcp_rexmit_max = tcp->tcp_snxt;
8648 			}
8649 			tcp->tcp_rexmit_nxt = tcp->tcp_suna;
8650 			tcp->tcp_rexmit = B_TRUE;
8651 			tcp->tcp_dupack_cnt = 0;
8652 			tcp->tcp_snd_burst = TCP_CWND_SS;
8653 			tcp_ss_rexmit(tcp);
8654 		}
8655 		break;
8656 
8657 	case ICMP6_DST_UNREACH:
8658 		switch (icmp6->icmp6_code) {
8659 		case ICMP6_DST_UNREACH_NOPORT:
8660 			if (((tcp->tcp_state == TCPS_SYN_SENT) ||
8661 			    (tcp->tcp_state == TCPS_SYN_RCVD)) &&
8662 			    (seg_seq == tcp->tcp_iss)) {
8663 				(void) tcp_clean_death(tcp,
8664 				    ECONNREFUSED, 8);
8665 			}
8666 			break;
8667 
8668 		case ICMP6_DST_UNREACH_ADMIN:
8669 		case ICMP6_DST_UNREACH_NOROUTE:
8670 		case ICMP6_DST_UNREACH_BEYONDSCOPE:
8671 		case ICMP6_DST_UNREACH_ADDR:
8672 			/* Record the error in case we finally time out. */
8673 			tcp->tcp_client_errno = EHOSTUNREACH;
8674 			if (((tcp->tcp_state == TCPS_SYN_SENT) ||
8675 			    (tcp->tcp_state == TCPS_SYN_RCVD)) &&
8676 			    (seg_seq == tcp->tcp_iss)) {
8677 				if (tcp->tcp_listener != NULL &&
8678 				    tcp->tcp_listener->tcp_syn_defense) {
8679 					/*
8680 					 * Ditch the half-open connection if we
8681 					 * suspect a SYN attack is under way.
8682 					 */
8683 					tcp_ip_ire_mark_advice(tcp);
8684 					(void) tcp_clean_death(tcp,
8685 					    tcp->tcp_client_errno, 9);
8686 				}
8687 			}
8688 
8689 
8690 			break;
8691 		default:
8692 			break;
8693 		}
8694 		break;
8695 
8696 	case ICMP6_PARAM_PROB:
8697 		/* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */
8698 		if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER &&
8699 		    (uchar_t *)ip6h + icmp6->icmp6_pptr ==
8700 		    (uchar_t *)nexthdrp) {
8701 			if (tcp->tcp_state == TCPS_SYN_SENT ||
8702 			    tcp->tcp_state == TCPS_SYN_RCVD) {
8703 				(void) tcp_clean_death(tcp,
8704 				    ECONNREFUSED, 10);
8705 			}
8706 			break;
8707 		}
8708 		break;
8709 
8710 	case ICMP6_TIME_EXCEEDED:
8711 	default:
8712 		break;
8713 	}
8714 	freemsg(first_mp);
8715 }
8716 
8717 /*
8718  * IP recognizes seven kinds of bind requests:
8719  *
8720  * - A zero-length address binds only to the protocol number.
8721  *
8722  * - A 4-byte address is treated as a request to
8723  * validate that the address is a valid local IPv4
8724  * address, appropriate for an application to bind to.
8725  * IP does the verification, but does not make any note
8726  * of the address at this time.
8727  *
8728  * - A 16-byte address contains is treated as a request
8729  * to validate a local IPv6 address, as the 4-byte
8730  * address case above.
8731  *
8732  * - A 16-byte sockaddr_in to validate the local IPv4 address and also
8733  * use it for the inbound fanout of packets.
8734  *
8735  * - A 24-byte sockaddr_in6 to validate the local IPv6 address and also
8736  * use it for the inbound fanout of packets.
8737  *
8738  * - A 12-byte address (ipa_conn_t) containing complete IPv4 fanout
8739  * information consisting of local and remote addresses
8740  * and ports.  In this case, the addresses are both
8741  * validated as appropriate for this operation, and, if
8742  * so, the information is retained for use in the
8743  * inbound fanout.
8744  *
8745  * - A 36-byte address address (ipa6_conn_t) containing complete IPv6
8746  * fanout information, like the 12-byte case above.
8747  *
8748  * IP will also fill in the IRE request mblk with information
8749  * regarding our peer.  In all cases, we notify IP of our protocol
8750  * type by appending a single protocol byte to the bind request.
8751  */
8752 static mblk_t *
8753 tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim, t_scalar_t addr_length)
8754 {
8755 	char	*cp;
8756 	mblk_t	*mp;
8757 	struct T_bind_req *tbr;
8758 	ipa_conn_t	*ac;
8759 	ipa6_conn_t	*ac6;
8760 	sin_t		*sin;
8761 	sin6_t		*sin6;
8762 
8763 	ASSERT(bind_prim == O_T_BIND_REQ || bind_prim == T_BIND_REQ);
8764 	ASSERT((tcp->tcp_family == AF_INET &&
8765 	    tcp->tcp_ipversion == IPV4_VERSION) ||
8766 	    (tcp->tcp_family == AF_INET6 &&
8767 	    (tcp->tcp_ipversion == IPV4_VERSION ||
8768 	    tcp->tcp_ipversion == IPV6_VERSION)));
8769 
8770 	mp = allocb(sizeof (*tbr) + addr_length + 1, BPRI_HI);
8771 	if (!mp)
8772 		return (mp);
8773 	mp->b_datap->db_type = M_PROTO;
8774 	tbr = (struct T_bind_req *)mp->b_rptr;
8775 	tbr->PRIM_type = bind_prim;
8776 	tbr->ADDR_offset = sizeof (*tbr);
8777 	tbr->CONIND_number = 0;
8778 	tbr->ADDR_length = addr_length;
8779 	cp = (char *)&tbr[1];
8780 	switch (addr_length) {
8781 	case sizeof (ipa_conn_t):
8782 		ASSERT(tcp->tcp_family == AF_INET);
8783 		ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
8784 
8785 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
8786 		if (mp->b_cont == NULL) {
8787 			freemsg(mp);
8788 			return (NULL);
8789 		}
8790 		mp->b_cont->b_wptr += sizeof (ire_t);
8791 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
8792 
8793 		/* cp known to be 32 bit aligned */
8794 		ac = (ipa_conn_t *)cp;
8795 		ac->ac_laddr = tcp->tcp_ipha->ipha_src;
8796 		ac->ac_faddr = tcp->tcp_remote;
8797 		ac->ac_fport = tcp->tcp_fport;
8798 		ac->ac_lport = tcp->tcp_lport;
8799 		tcp->tcp_hard_binding = 1;
8800 		break;
8801 
8802 	case sizeof (ipa6_conn_t):
8803 		ASSERT(tcp->tcp_family == AF_INET6);
8804 
8805 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
8806 		if (mp->b_cont == NULL) {
8807 			freemsg(mp);
8808 			return (NULL);
8809 		}
8810 		mp->b_cont->b_wptr += sizeof (ire_t);
8811 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
8812 
8813 		/* cp known to be 32 bit aligned */
8814 		ac6 = (ipa6_conn_t *)cp;
8815 		if (tcp->tcp_ipversion == IPV4_VERSION) {
8816 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
8817 			    &ac6->ac6_laddr);
8818 		} else {
8819 			ac6->ac6_laddr = tcp->tcp_ip6h->ip6_src;
8820 		}
8821 		ac6->ac6_faddr = tcp->tcp_remote_v6;
8822 		ac6->ac6_fport = tcp->tcp_fport;
8823 		ac6->ac6_lport = tcp->tcp_lport;
8824 		tcp->tcp_hard_binding = 1;
8825 		break;
8826 
8827 	case sizeof (sin_t):
8828 		/*
8829 		 * NOTE: IPV6_ADDR_LEN also has same size.
8830 		 * Use family to discriminate.
8831 		 */
8832 		if (tcp->tcp_family == AF_INET) {
8833 			sin = (sin_t *)cp;
8834 
8835 			*sin = sin_null;
8836 			sin->sin_family = AF_INET;
8837 			sin->sin_addr.s_addr = tcp->tcp_bound_source;
8838 			sin->sin_port = tcp->tcp_lport;
8839 			break;
8840 		} else {
8841 			*(in6_addr_t *)cp = tcp->tcp_bound_source_v6;
8842 		}
8843 		break;
8844 
8845 	case sizeof (sin6_t):
8846 		ASSERT(tcp->tcp_family == AF_INET6);
8847 		sin6 = (sin6_t *)cp;
8848 
8849 		*sin6 = sin6_null;
8850 		sin6->sin6_family = AF_INET6;
8851 		sin6->sin6_addr = tcp->tcp_bound_source_v6;
8852 		sin6->sin6_port = tcp->tcp_lport;
8853 		break;
8854 
8855 	case IP_ADDR_LEN:
8856 		ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
8857 		*(uint32_t *)cp = tcp->tcp_ipha->ipha_src;
8858 		break;
8859 
8860 	}
8861 	/* Add protocol number to end */
8862 	cp[addr_length] = (char)IPPROTO_TCP;
8863 	mp->b_wptr = (uchar_t *)&cp[addr_length + 1];
8864 	return (mp);
8865 }
8866 
8867 /*
8868  * Notify IP that we are having trouble with this connection.  IP should
8869  * blow the IRE away and start over.
8870  */
8871 static void
8872 tcp_ip_notify(tcp_t *tcp)
8873 {
8874 	struct iocblk	*iocp;
8875 	ipid_t	*ipid;
8876 	mblk_t	*mp;
8877 
8878 	/* IPv6 has NUD thus notification to delete the IRE is not needed */
8879 	if (tcp->tcp_ipversion == IPV6_VERSION)
8880 		return;
8881 
8882 	mp = mkiocb(IP_IOCTL);
8883 	if (mp == NULL)
8884 		return;
8885 
8886 	iocp = (struct iocblk *)mp->b_rptr;
8887 	iocp->ioc_count = sizeof (ipid_t) + sizeof (tcp->tcp_ipha->ipha_dst);
8888 
8889 	mp->b_cont = allocb(iocp->ioc_count, BPRI_HI);
8890 	if (!mp->b_cont) {
8891 		freeb(mp);
8892 		return;
8893 	}
8894 
8895 	ipid = (ipid_t *)mp->b_cont->b_rptr;
8896 	mp->b_cont->b_wptr += iocp->ioc_count;
8897 	bzero(ipid, sizeof (*ipid));
8898 	ipid->ipid_cmd = IP_IOC_IRE_DELETE_NO_REPLY;
8899 	ipid->ipid_ire_type = IRE_CACHE;
8900 	ipid->ipid_addr_offset = sizeof (ipid_t);
8901 	ipid->ipid_addr_length = sizeof (tcp->tcp_ipha->ipha_dst);
8902 	/*
8903 	 * Note: in the case of source routing we want to blow away the
8904 	 * route to the first source route hop.
8905 	 */
8906 	bcopy(&tcp->tcp_ipha->ipha_dst, &ipid[1],
8907 	    sizeof (tcp->tcp_ipha->ipha_dst));
8908 
8909 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
8910 }
8911 
8912 /* Unlink and return any mblk that looks like it contains an ire */
8913 static mblk_t *
8914 tcp_ire_mp(mblk_t *mp)
8915 {
8916 	mblk_t	*prev_mp;
8917 
8918 	for (;;) {
8919 		prev_mp = mp;
8920 		mp = mp->b_cont;
8921 		if (mp == NULL)
8922 			break;
8923 		switch (DB_TYPE(mp)) {
8924 		case IRE_DB_TYPE:
8925 		case IRE_DB_REQ_TYPE:
8926 			if (prev_mp != NULL)
8927 				prev_mp->b_cont = mp->b_cont;
8928 			mp->b_cont = NULL;
8929 			return (mp);
8930 		default:
8931 			break;
8932 		}
8933 	}
8934 	return (mp);
8935 }
8936 
8937 /*
8938  * Timer callback routine for keepalive probe.  We do a fake resend of
8939  * last ACKed byte.  Then set a timer using RTO.  When the timer expires,
8940  * check to see if we have heard anything from the other end for the last
8941  * RTO period.  If we have, set the timer to expire for another
8942  * tcp_keepalive_intrvl and check again.  If we have not, set a timer using
8943  * RTO << 1 and check again when it expires.  Keep exponentially increasing
8944  * the timeout if we have not heard from the other side.  If for more than
8945  * (tcp_ka_interval + tcp_ka_abort_thres) we have not heard anything,
8946  * kill the connection unless the keepalive abort threshold is 0.  In
8947  * that case, we will probe "forever."
8948  */
8949 static void
8950 tcp_keepalive_killer(void *arg)
8951 {
8952 	mblk_t	*mp;
8953 	conn_t	*connp = (conn_t *)arg;
8954 	tcp_t  	*tcp = connp->conn_tcp;
8955 	int32_t	firetime;
8956 	int32_t	idletime;
8957 	int32_t	ka_intrvl;
8958 
8959 	tcp->tcp_ka_tid = 0;
8960 
8961 	if (tcp->tcp_fused)
8962 		return;
8963 
8964 	BUMP_MIB(&tcp_mib, tcpTimKeepalive);
8965 	ka_intrvl = tcp->tcp_ka_interval;
8966 
8967 	/*
8968 	 * Keepalive probe should only be sent if the application has not
8969 	 * done a close on the connection.
8970 	 */
8971 	if (tcp->tcp_state > TCPS_CLOSE_WAIT) {
8972 		return;
8973 	}
8974 	/* Timer fired too early, restart it. */
8975 	if (tcp->tcp_state < TCPS_ESTABLISHED) {
8976 		tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
8977 		    MSEC_TO_TICK(ka_intrvl));
8978 		return;
8979 	}
8980 
8981 	idletime = TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time);
8982 	/*
8983 	 * If we have not heard from the other side for a long
8984 	 * time, kill the connection unless the keepalive abort
8985 	 * threshold is 0.  In that case, we will probe "forever."
8986 	 */
8987 	if (tcp->tcp_ka_abort_thres != 0 &&
8988 	    idletime > (ka_intrvl + tcp->tcp_ka_abort_thres)) {
8989 		BUMP_MIB(&tcp_mib, tcpTimKeepaliveDrop);
8990 		(void) tcp_clean_death(tcp, tcp->tcp_client_errno ?
8991 		    tcp->tcp_client_errno : ETIMEDOUT, 11);
8992 		return;
8993 	}
8994 
8995 	if (tcp->tcp_snxt == tcp->tcp_suna &&
8996 	    idletime >= ka_intrvl) {
8997 		/* Fake resend of last ACKed byte. */
8998 		mblk_t	*mp1 = allocb(1, BPRI_LO);
8999 
9000 		if (mp1 != NULL) {
9001 			*mp1->b_wptr++ = '\0';
9002 			mp = tcp_xmit_mp(tcp, mp1, 1, NULL, NULL,
9003 			    tcp->tcp_suna - 1, B_FALSE, NULL, B_TRUE);
9004 			freeb(mp1);
9005 			/*
9006 			 * if allocation failed, fall through to start the
9007 			 * timer back.
9008 			 */
9009 			if (mp != NULL) {
9010 				TCP_RECORD_TRACE(tcp, mp,
9011 				    TCP_TRACE_SEND_PKT);
9012 				tcp_send_data(tcp, tcp->tcp_wq, mp);
9013 				BUMP_MIB(&tcp_mib, tcpTimKeepaliveProbe);
9014 				if (tcp->tcp_ka_last_intrvl != 0) {
9015 					/*
9016 					 * We should probe again at least
9017 					 * in ka_intrvl, but not more than
9018 					 * tcp_rexmit_interval_max.
9019 					 */
9020 					firetime = MIN(ka_intrvl - 1,
9021 					    tcp->tcp_ka_last_intrvl << 1);
9022 					if (firetime > tcp_rexmit_interval_max)
9023 						firetime =
9024 						    tcp_rexmit_interval_max;
9025 				} else {
9026 					firetime = tcp->tcp_rto;
9027 				}
9028 				tcp->tcp_ka_tid = TCP_TIMER(tcp,
9029 				    tcp_keepalive_killer,
9030 				    MSEC_TO_TICK(firetime));
9031 				tcp->tcp_ka_last_intrvl = firetime;
9032 				return;
9033 			}
9034 		}
9035 	} else {
9036 		tcp->tcp_ka_last_intrvl = 0;
9037 	}
9038 
9039 	/* firetime can be negative if (mp1 == NULL || mp == NULL) */
9040 	if ((firetime = ka_intrvl - idletime) < 0) {
9041 		firetime = ka_intrvl;
9042 	}
9043 	tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
9044 	    MSEC_TO_TICK(firetime));
9045 }
9046 
9047 int
9048 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk)
9049 {
9050 	queue_t	*q = tcp->tcp_rq;
9051 	int32_t	mss = tcp->tcp_mss;
9052 	int	maxpsz;
9053 
9054 	if (TCP_IS_DETACHED(tcp))
9055 		return (mss);
9056 
9057 	if (tcp->tcp_fused) {
9058 		maxpsz = tcp_fuse_maxpsz_set(tcp);
9059 		mss = INFPSZ;
9060 	} else if (tcp->tcp_mdt || tcp->tcp_maxpsz == 0) {
9061 		/*
9062 		 * Set the sd_qn_maxpsz according to the socket send buffer
9063 		 * size, and sd_maxblk to INFPSZ (-1).  This will essentially
9064 		 * instruct the stream head to copyin user data into contiguous
9065 		 * kernel-allocated buffers without breaking it up into smaller
9066 		 * chunks.  We round up the buffer size to the nearest SMSS.
9067 		 */
9068 		maxpsz = MSS_ROUNDUP(tcp->tcp_xmit_hiwater, mss);
9069 		if (tcp->tcp_kssl_ctx == NULL)
9070 			mss = INFPSZ;
9071 		else
9072 			mss = SSL3_MAX_RECORD_LEN;
9073 	} else {
9074 		/*
9075 		 * Set sd_qn_maxpsz to approx half the (receivers) buffer
9076 		 * (and a multiple of the mss).  This instructs the stream
9077 		 * head to break down larger than SMSS writes into SMSS-
9078 		 * size mblks, up to tcp_maxpsz_multiplier mblks at a time.
9079 		 */
9080 		maxpsz = tcp->tcp_maxpsz * mss;
9081 		if (maxpsz > tcp->tcp_xmit_hiwater/2) {
9082 			maxpsz = tcp->tcp_xmit_hiwater/2;
9083 			/* Round up to nearest mss */
9084 			maxpsz = MSS_ROUNDUP(maxpsz, mss);
9085 		}
9086 	}
9087 	(void) setmaxps(q, maxpsz);
9088 	tcp->tcp_wq->q_maxpsz = maxpsz;
9089 
9090 	if (set_maxblk)
9091 		(void) mi_set_sth_maxblk(q, mss);
9092 
9093 	return (mss);
9094 }
9095 
9096 /*
9097  * Extract option values from a tcp header.  We put any found values into the
9098  * tcpopt struct and return a bitmask saying which options were found.
9099  */
9100 static int
9101 tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt)
9102 {
9103 	uchar_t		*endp;
9104 	int		len;
9105 	uint32_t	mss;
9106 	uchar_t		*up = (uchar_t *)tcph;
9107 	int		found = 0;
9108 	int32_t		sack_len;
9109 	tcp_seq		sack_begin, sack_end;
9110 	tcp_t		*tcp;
9111 
9112 	endp = up + TCP_HDR_LENGTH(tcph);
9113 	up += TCP_MIN_HEADER_LENGTH;
9114 	while (up < endp) {
9115 		len = endp - up;
9116 		switch (*up) {
9117 		case TCPOPT_EOL:
9118 			break;
9119 
9120 		case TCPOPT_NOP:
9121 			up++;
9122 			continue;
9123 
9124 		case TCPOPT_MAXSEG:
9125 			if (len < TCPOPT_MAXSEG_LEN ||
9126 			    up[1] != TCPOPT_MAXSEG_LEN)
9127 				break;
9128 
9129 			mss = BE16_TO_U16(up+2);
9130 			/* Caller must handle tcp_mss_min and tcp_mss_max_* */
9131 			tcpopt->tcp_opt_mss = mss;
9132 			found |= TCP_OPT_MSS_PRESENT;
9133 
9134 			up += TCPOPT_MAXSEG_LEN;
9135 			continue;
9136 
9137 		case TCPOPT_WSCALE:
9138 			if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN)
9139 				break;
9140 
9141 			if (up[2] > TCP_MAX_WINSHIFT)
9142 				tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT;
9143 			else
9144 				tcpopt->tcp_opt_wscale = up[2];
9145 			found |= TCP_OPT_WSCALE_PRESENT;
9146 
9147 			up += TCPOPT_WS_LEN;
9148 			continue;
9149 
9150 		case TCPOPT_SACK_PERMITTED:
9151 			if (len < TCPOPT_SACK_OK_LEN ||
9152 			    up[1] != TCPOPT_SACK_OK_LEN)
9153 				break;
9154 			found |= TCP_OPT_SACK_OK_PRESENT;
9155 			up += TCPOPT_SACK_OK_LEN;
9156 			continue;
9157 
9158 		case TCPOPT_SACK:
9159 			if (len <= 2 || up[1] <= 2 || len < up[1])
9160 				break;
9161 
9162 			/* If TCP is not interested in SACK blks... */
9163 			if ((tcp = tcpopt->tcp) == NULL) {
9164 				up += up[1];
9165 				continue;
9166 			}
9167 			sack_len = up[1] - TCPOPT_HEADER_LEN;
9168 			up += TCPOPT_HEADER_LEN;
9169 
9170 			/*
9171 			 * If the list is empty, allocate one and assume
9172 			 * nothing is sack'ed.
9173 			 */
9174 			ASSERT(tcp->tcp_sack_info != NULL);
9175 			if (tcp->tcp_notsack_list == NULL) {
9176 				tcp_notsack_update(&(tcp->tcp_notsack_list),
9177 				    tcp->tcp_suna, tcp->tcp_snxt,
9178 				    &(tcp->tcp_num_notsack_blk),
9179 				    &(tcp->tcp_cnt_notsack_list));
9180 
9181 				/*
9182 				 * Make sure tcp_notsack_list is not NULL.
9183 				 * This happens when kmem_alloc(KM_NOSLEEP)
9184 				 * returns NULL.
9185 				 */
9186 				if (tcp->tcp_notsack_list == NULL) {
9187 					up += sack_len;
9188 					continue;
9189 				}
9190 				tcp->tcp_fack = tcp->tcp_suna;
9191 			}
9192 
9193 			while (sack_len > 0) {
9194 				if (up + 8 > endp) {
9195 					up = endp;
9196 					break;
9197 				}
9198 				sack_begin = BE32_TO_U32(up);
9199 				up += 4;
9200 				sack_end = BE32_TO_U32(up);
9201 				up += 4;
9202 				sack_len -= 8;
9203 				/*
9204 				 * Bounds checking.  Make sure the SACK
9205 				 * info is within tcp_suna and tcp_snxt.
9206 				 * If this SACK blk is out of bound, ignore
9207 				 * it but continue to parse the following
9208 				 * blks.
9209 				 */
9210 				if (SEQ_LEQ(sack_end, sack_begin) ||
9211 				    SEQ_LT(sack_begin, tcp->tcp_suna) ||
9212 				    SEQ_GT(sack_end, tcp->tcp_snxt)) {
9213 					continue;
9214 				}
9215 				tcp_notsack_insert(&(tcp->tcp_notsack_list),
9216 				    sack_begin, sack_end,
9217 				    &(tcp->tcp_num_notsack_blk),
9218 				    &(tcp->tcp_cnt_notsack_list));
9219 				if (SEQ_GT(sack_end, tcp->tcp_fack)) {
9220 					tcp->tcp_fack = sack_end;
9221 				}
9222 			}
9223 			found |= TCP_OPT_SACK_PRESENT;
9224 			continue;
9225 
9226 		case TCPOPT_TSTAMP:
9227 			if (len < TCPOPT_TSTAMP_LEN ||
9228 			    up[1] != TCPOPT_TSTAMP_LEN)
9229 				break;
9230 
9231 			tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2);
9232 			tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6);
9233 
9234 			found |= TCP_OPT_TSTAMP_PRESENT;
9235 
9236 			up += TCPOPT_TSTAMP_LEN;
9237 			continue;
9238 
9239 		default:
9240 			if (len <= 1 || len < (int)up[1] || up[1] == 0)
9241 				break;
9242 			up += up[1];
9243 			continue;
9244 		}
9245 		break;
9246 	}
9247 	return (found);
9248 }
9249 
9250 /*
9251  * Set the mss associated with a particular tcp based on its current value,
9252  * and a new one passed in. Observe minimums and maximums, and reset
9253  * other state variables that we want to view as multiples of mss.
9254  *
9255  * This function is called in various places mainly because
9256  * 1) Various stuffs, tcp_mss, tcp_cwnd, ... need to be adjusted when the
9257  *    other side's SYN/SYN-ACK packet arrives.
9258  * 2) PMTUd may get us a new MSS.
9259  * 3) If the other side stops sending us timestamp option, we need to
9260  *    increase the MSS size to use the extra bytes available.
9261  */
9262 static void
9263 tcp_mss_set(tcp_t *tcp, uint32_t mss)
9264 {
9265 	uint32_t	mss_max;
9266 
9267 	if (tcp->tcp_ipversion == IPV4_VERSION)
9268 		mss_max = tcp_mss_max_ipv4;
9269 	else
9270 		mss_max = tcp_mss_max_ipv6;
9271 
9272 	if (mss < tcp_mss_min)
9273 		mss = tcp_mss_min;
9274 	if (mss > mss_max)
9275 		mss = mss_max;
9276 	/*
9277 	 * Unless naglim has been set by our client to
9278 	 * a non-mss value, force naglim to track mss.
9279 	 * This can help to aggregate small writes.
9280 	 */
9281 	if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim)
9282 		tcp->tcp_naglim = mss;
9283 	/*
9284 	 * TCP should be able to buffer at least 4 MSS data for obvious
9285 	 * performance reason.
9286 	 */
9287 	if ((mss << 2) > tcp->tcp_xmit_hiwater)
9288 		tcp->tcp_xmit_hiwater = mss << 2;
9289 
9290 	/*
9291 	 * Check if we need to apply the tcp_init_cwnd here.  If
9292 	 * it is set and the MSS gets bigger (should not happen
9293 	 * normally), we need to adjust the resulting tcp_cwnd properly.
9294 	 * The new tcp_cwnd should not get bigger.
9295 	 */
9296 	if (tcp->tcp_init_cwnd == 0) {
9297 		tcp->tcp_cwnd = MIN(tcp_slow_start_initial * mss,
9298 		    MIN(4 * mss, MAX(2 * mss, 4380 / mss * mss)));
9299 	} else {
9300 		if (tcp->tcp_mss < mss) {
9301 			tcp->tcp_cwnd = MAX(1,
9302 			    (tcp->tcp_init_cwnd * tcp->tcp_mss / mss)) * mss;
9303 		} else {
9304 			tcp->tcp_cwnd = tcp->tcp_init_cwnd * mss;
9305 		}
9306 	}
9307 	tcp->tcp_mss = mss;
9308 	tcp->tcp_cwnd_cnt = 0;
9309 	(void) tcp_maxpsz_set(tcp, B_TRUE);
9310 }
9311 
9312 static int
9313 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
9314 {
9315 	tcp_t		*tcp = NULL;
9316 	conn_t		*connp;
9317 	int		err;
9318 	dev_t		conn_dev;
9319 	zoneid_t	zoneid = getzoneid();
9320 
9321 	/*
9322 	 * Special case for install: miniroot needs to be able to access files
9323 	 * via NFS as though it were always in the global zone.
9324 	 */
9325 	if (credp == kcred && nfs_global_client_only != 0)
9326 		zoneid = GLOBAL_ZONEID;
9327 
9328 	if (q->q_ptr != NULL)
9329 		return (0);
9330 
9331 	if (sflag == MODOPEN) {
9332 		/*
9333 		 * This is a special case. The purpose of a modopen
9334 		 * is to allow just the T_SVR4_OPTMGMT_REQ to pass
9335 		 * through for MIB browsers. Everything else is failed.
9336 		 */
9337 		connp = (conn_t *)tcp_get_conn(IP_SQUEUE_GET(lbolt));
9338 
9339 		if (connp == NULL)
9340 			return (ENOMEM);
9341 
9342 		connp->conn_flags |= IPCL_TCPMOD;
9343 		connp->conn_cred = credp;
9344 		connp->conn_zoneid = zoneid;
9345 		q->q_ptr = WR(q)->q_ptr = connp;
9346 		crhold(credp);
9347 		q->q_qinfo = &tcp_mod_rinit;
9348 		WR(q)->q_qinfo = &tcp_mod_winit;
9349 		qprocson(q);
9350 		return (0);
9351 	}
9352 
9353 	if ((conn_dev = inet_minor_alloc(ip_minor_arena)) == 0)
9354 		return (EBUSY);
9355 
9356 	*devp = makedevice(getemajor(*devp), (minor_t)conn_dev);
9357 
9358 	if (flag & SO_ACCEPTOR) {
9359 		q->q_qinfo = &tcp_acceptor_rinit;
9360 		q->q_ptr = (void *)conn_dev;
9361 		WR(q)->q_qinfo = &tcp_acceptor_winit;
9362 		WR(q)->q_ptr = (void *)conn_dev;
9363 		qprocson(q);
9364 		return (0);
9365 	}
9366 
9367 	connp = (conn_t *)tcp_get_conn(IP_SQUEUE_GET(lbolt));
9368 	if (connp == NULL) {
9369 		inet_minor_free(ip_minor_arena, conn_dev);
9370 		q->q_ptr = NULL;
9371 		return (ENOSR);
9372 	}
9373 	connp->conn_sqp = IP_SQUEUE_GET(lbolt);
9374 	tcp = connp->conn_tcp;
9375 
9376 	q->q_ptr = WR(q)->q_ptr = connp;
9377 	if (getmajor(*devp) == TCP6_MAJ) {
9378 		connp->conn_flags |= (IPCL_TCP6|IPCL_ISV6);
9379 		connp->conn_send = ip_output_v6;
9380 		connp->conn_af_isv6 = B_TRUE;
9381 		connp->conn_pkt_isv6 = B_TRUE;
9382 		connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT;
9383 		tcp->tcp_ipversion = IPV6_VERSION;
9384 		tcp->tcp_family = AF_INET6;
9385 		tcp->tcp_mss = tcp_mss_def_ipv6;
9386 	} else {
9387 		connp->conn_flags |= IPCL_TCP4;
9388 		connp->conn_send = ip_output;
9389 		connp->conn_af_isv6 = B_FALSE;
9390 		connp->conn_pkt_isv6 = B_FALSE;
9391 		tcp->tcp_ipversion = IPV4_VERSION;
9392 		tcp->tcp_family = AF_INET;
9393 		tcp->tcp_mss = tcp_mss_def_ipv4;
9394 	}
9395 
9396 	/*
9397 	 * TCP keeps a copy of cred for cache locality reasons but
9398 	 * we put a reference only once. If connp->conn_cred
9399 	 * becomes invalid, tcp_cred should also be set to NULL.
9400 	 */
9401 	tcp->tcp_cred = connp->conn_cred = credp;
9402 	crhold(connp->conn_cred);
9403 	tcp->tcp_cpid = curproc->p_pid;
9404 	connp->conn_zoneid = zoneid;
9405 	connp->conn_mlp_type = mlptSingle;
9406 	connp->conn_ulp_labeled = !is_system_labeled();
9407 
9408 	/*
9409 	 * If the caller has the process-wide flag set, then default to MAC
9410 	 * exempt mode.  This allows read-down to unlabeled hosts.
9411 	 */
9412 	if (getpflags(NET_MAC_AWARE, credp) != 0)
9413 		connp->conn_mac_exempt = B_TRUE;
9414 
9415 	connp->conn_dev = conn_dev;
9416 
9417 	ASSERT(q->q_qinfo == &tcp_rinit);
9418 	ASSERT(WR(q)->q_qinfo == &tcp_winit);
9419 
9420 	if (flag & SO_SOCKSTR) {
9421 		/*
9422 		 * No need to insert a socket in tcp acceptor hash.
9423 		 * If it was a socket acceptor stream, we dealt with
9424 		 * it above. A socket listener can never accept a
9425 		 * connection and doesn't need acceptor_id.
9426 		 */
9427 		connp->conn_flags |= IPCL_SOCKET;
9428 		tcp->tcp_issocket = 1;
9429 		WR(q)->q_qinfo = &tcp_sock_winit;
9430 	} else {
9431 #ifdef	_ILP32
9432 		tcp->tcp_acceptor_id = (t_uscalar_t)RD(q);
9433 #else
9434 		tcp->tcp_acceptor_id = conn_dev;
9435 #endif	/* _ILP32 */
9436 		tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp);
9437 	}
9438 
9439 	if (tcp_trace)
9440 		tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_SLEEP);
9441 
9442 	err = tcp_init(tcp, q);
9443 	if (err != 0) {
9444 		inet_minor_free(ip_minor_arena, connp->conn_dev);
9445 		tcp_acceptor_hash_remove(tcp);
9446 		CONN_DEC_REF(connp);
9447 		q->q_ptr = WR(q)->q_ptr = NULL;
9448 		return (err);
9449 	}
9450 
9451 	RD(q)->q_hiwat = tcp_recv_hiwat;
9452 	tcp->tcp_rwnd = tcp_recv_hiwat;
9453 
9454 	/* Non-zero default values */
9455 	connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
9456 	/*
9457 	 * Put the ref for TCP. Ref for IP was already put
9458 	 * by ipcl_conn_create. Also Make the conn_t globally
9459 	 * visible to walkers
9460 	 */
9461 	mutex_enter(&connp->conn_lock);
9462 	CONN_INC_REF_LOCKED(connp);
9463 	ASSERT(connp->conn_ref == 2);
9464 	connp->conn_state_flags &= ~CONN_INCIPIENT;
9465 	mutex_exit(&connp->conn_lock);
9466 
9467 	qprocson(q);
9468 	return (0);
9469 }
9470 
9471 /*
9472  * Some TCP options can be "set" by requesting them in the option
9473  * buffer. This is needed for XTI feature test though we do not
9474  * allow it in general. We interpret that this mechanism is more
9475  * applicable to OSI protocols and need not be allowed in general.
9476  * This routine filters out options for which it is not allowed (most)
9477  * and lets through those (few) for which it is. [ The XTI interface
9478  * test suite specifics will imply that any XTI_GENERIC level XTI_* if
9479  * ever implemented will have to be allowed here ].
9480  */
9481 static boolean_t
9482 tcp_allow_connopt_set(int level, int name)
9483 {
9484 
9485 	switch (level) {
9486 	case IPPROTO_TCP:
9487 		switch (name) {
9488 		case TCP_NODELAY:
9489 			return (B_TRUE);
9490 		default:
9491 			return (B_FALSE);
9492 		}
9493 		/*NOTREACHED*/
9494 	default:
9495 		return (B_FALSE);
9496 	}
9497 	/*NOTREACHED*/
9498 }
9499 
9500 /*
9501  * This routine gets default values of certain options whose default
9502  * values are maintained by protocol specific code
9503  */
9504 /* ARGSUSED */
9505 int
9506 tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr)
9507 {
9508 	int32_t	*i1 = (int32_t *)ptr;
9509 
9510 	switch (level) {
9511 	case IPPROTO_TCP:
9512 		switch (name) {
9513 		case TCP_NOTIFY_THRESHOLD:
9514 			*i1 = tcp_ip_notify_interval;
9515 			break;
9516 		case TCP_ABORT_THRESHOLD:
9517 			*i1 = tcp_ip_abort_interval;
9518 			break;
9519 		case TCP_CONN_NOTIFY_THRESHOLD:
9520 			*i1 = tcp_ip_notify_cinterval;
9521 			break;
9522 		case TCP_CONN_ABORT_THRESHOLD:
9523 			*i1 = tcp_ip_abort_cinterval;
9524 			break;
9525 		default:
9526 			return (-1);
9527 		}
9528 		break;
9529 	case IPPROTO_IP:
9530 		switch (name) {
9531 		case IP_TTL:
9532 			*i1 = tcp_ipv4_ttl;
9533 			break;
9534 		default:
9535 			return (-1);
9536 		}
9537 		break;
9538 	case IPPROTO_IPV6:
9539 		switch (name) {
9540 		case IPV6_UNICAST_HOPS:
9541 			*i1 = tcp_ipv6_hoplimit;
9542 			break;
9543 		default:
9544 			return (-1);
9545 		}
9546 		break;
9547 	default:
9548 		return (-1);
9549 	}
9550 	return (sizeof (int));
9551 }
9552 
9553 
9554 /*
9555  * TCP routine to get the values of options.
9556  */
9557 int
9558 tcp_opt_get(queue_t *q, int level, int	name, uchar_t *ptr)
9559 {
9560 	int		*i1 = (int *)ptr;
9561 	conn_t		*connp = Q_TO_CONN(q);
9562 	tcp_t		*tcp = connp->conn_tcp;
9563 	ip6_pkt_t	*ipp = &tcp->tcp_sticky_ipp;
9564 
9565 	switch (level) {
9566 	case SOL_SOCKET:
9567 		switch (name) {
9568 		case SO_LINGER:	{
9569 			struct linger *lgr = (struct linger *)ptr;
9570 
9571 			lgr->l_onoff = tcp->tcp_linger ? SO_LINGER : 0;
9572 			lgr->l_linger = tcp->tcp_lingertime;
9573 			}
9574 			return (sizeof (struct linger));
9575 		case SO_DEBUG:
9576 			*i1 = tcp->tcp_debug ? SO_DEBUG : 0;
9577 			break;
9578 		case SO_KEEPALIVE:
9579 			*i1 = tcp->tcp_ka_enabled ? SO_KEEPALIVE : 0;
9580 			break;
9581 		case SO_DONTROUTE:
9582 			*i1 = tcp->tcp_dontroute ? SO_DONTROUTE : 0;
9583 			break;
9584 		case SO_USELOOPBACK:
9585 			*i1 = tcp->tcp_useloopback ? SO_USELOOPBACK : 0;
9586 			break;
9587 		case SO_BROADCAST:
9588 			*i1 = tcp->tcp_broadcast ? SO_BROADCAST : 0;
9589 			break;
9590 		case SO_REUSEADDR:
9591 			*i1 = tcp->tcp_reuseaddr ? SO_REUSEADDR : 0;
9592 			break;
9593 		case SO_OOBINLINE:
9594 			*i1 = tcp->tcp_oobinline ? SO_OOBINLINE : 0;
9595 			break;
9596 		case SO_DGRAM_ERRIND:
9597 			*i1 = tcp->tcp_dgram_errind ? SO_DGRAM_ERRIND : 0;
9598 			break;
9599 		case SO_TYPE:
9600 			*i1 = SOCK_STREAM;
9601 			break;
9602 		case SO_SNDBUF:
9603 			*i1 = tcp->tcp_xmit_hiwater;
9604 			break;
9605 		case SO_RCVBUF:
9606 			*i1 = RD(q)->q_hiwat;
9607 			break;
9608 		case SO_SND_COPYAVOID:
9609 			*i1 = tcp->tcp_snd_zcopy_on ?
9610 			    SO_SND_COPYAVOID : 0;
9611 			break;
9612 		case SO_ALLZONES:
9613 			*i1 = connp->conn_allzones ? 1 : 0;
9614 			break;
9615 		case SO_ANON_MLP:
9616 			*i1 = connp->conn_anon_mlp;
9617 			break;
9618 		case SO_MAC_EXEMPT:
9619 			*i1 = connp->conn_mac_exempt;
9620 			break;
9621 		case SO_EXCLBIND:
9622 			*i1 = tcp->tcp_exclbind ? SO_EXCLBIND : 0;
9623 			break;
9624 		default:
9625 			return (-1);
9626 		}
9627 		break;
9628 	case IPPROTO_TCP:
9629 		switch (name) {
9630 		case TCP_NODELAY:
9631 			*i1 = (tcp->tcp_naglim == 1) ? TCP_NODELAY : 0;
9632 			break;
9633 		case TCP_MAXSEG:
9634 			*i1 = tcp->tcp_mss;
9635 			break;
9636 		case TCP_NOTIFY_THRESHOLD:
9637 			*i1 = (int)tcp->tcp_first_timer_threshold;
9638 			break;
9639 		case TCP_ABORT_THRESHOLD:
9640 			*i1 = tcp->tcp_second_timer_threshold;
9641 			break;
9642 		case TCP_CONN_NOTIFY_THRESHOLD:
9643 			*i1 = tcp->tcp_first_ctimer_threshold;
9644 			break;
9645 		case TCP_CONN_ABORT_THRESHOLD:
9646 			*i1 = tcp->tcp_second_ctimer_threshold;
9647 			break;
9648 		case TCP_RECVDSTADDR:
9649 			*i1 = tcp->tcp_recvdstaddr;
9650 			break;
9651 		case TCP_ANONPRIVBIND:
9652 			*i1 = tcp->tcp_anon_priv_bind;
9653 			break;
9654 		case TCP_EXCLBIND:
9655 			*i1 = tcp->tcp_exclbind ? TCP_EXCLBIND : 0;
9656 			break;
9657 		case TCP_INIT_CWND:
9658 			*i1 = tcp->tcp_init_cwnd;
9659 			break;
9660 		case TCP_KEEPALIVE_THRESHOLD:
9661 			*i1 = tcp->tcp_ka_interval;
9662 			break;
9663 		case TCP_KEEPALIVE_ABORT_THRESHOLD:
9664 			*i1 = tcp->tcp_ka_abort_thres;
9665 			break;
9666 		case TCP_CORK:
9667 			*i1 = tcp->tcp_cork;
9668 			break;
9669 		default:
9670 			return (-1);
9671 		}
9672 		break;
9673 	case IPPROTO_IP:
9674 		if (tcp->tcp_family != AF_INET)
9675 			return (-1);
9676 		switch (name) {
9677 		case IP_OPTIONS:
9678 		case T_IP_OPTIONS: {
9679 			/*
9680 			 * This is compatible with BSD in that in only return
9681 			 * the reverse source route with the final destination
9682 			 * as the last entry. The first 4 bytes of the option
9683 			 * will contain the final destination.
9684 			 */
9685 			int	opt_len;
9686 
9687 			opt_len = (char *)tcp->tcp_tcph - (char *)tcp->tcp_ipha;
9688 			opt_len -= tcp->tcp_label_len + IP_SIMPLE_HDR_LENGTH;
9689 			ASSERT(opt_len >= 0);
9690 			/* Caller ensures enough space */
9691 			if (opt_len > 0) {
9692 				/*
9693 				 * TODO: Do we have to handle getsockopt on an
9694 				 * initiator as well?
9695 				 */
9696 				return (ip_opt_get_user(tcp->tcp_ipha, ptr));
9697 			}
9698 			return (0);
9699 			}
9700 		case IP_TOS:
9701 		case T_IP_TOS:
9702 			*i1 = (int)tcp->tcp_ipha->ipha_type_of_service;
9703 			break;
9704 		case IP_TTL:
9705 			*i1 = (int)tcp->tcp_ipha->ipha_ttl;
9706 			break;
9707 		case IP_NEXTHOP:
9708 			/* Handled at IP level */
9709 			return (-EINVAL);
9710 		default:
9711 			return (-1);
9712 		}
9713 		break;
9714 	case IPPROTO_IPV6:
9715 		/*
9716 		 * IPPROTO_IPV6 options are only supported for sockets
9717 		 * that are using IPv6 on the wire.
9718 		 */
9719 		if (tcp->tcp_ipversion != IPV6_VERSION) {
9720 			return (-1);
9721 		}
9722 		switch (name) {
9723 		case IPV6_UNICAST_HOPS:
9724 			*i1 = (unsigned int) tcp->tcp_ip6h->ip6_hops;
9725 			break;	/* goto sizeof (int) option return */
9726 		case IPV6_BOUND_IF:
9727 			/* Zero if not set */
9728 			*i1 = tcp->tcp_bound_if;
9729 			break;	/* goto sizeof (int) option return */
9730 		case IPV6_RECVPKTINFO:
9731 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)
9732 				*i1 = 1;
9733 			else
9734 				*i1 = 0;
9735 			break;	/* goto sizeof (int) option return */
9736 		case IPV6_RECVTCLASS:
9737 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)
9738 				*i1 = 1;
9739 			else
9740 				*i1 = 0;
9741 			break;	/* goto sizeof (int) option return */
9742 		case IPV6_RECVHOPLIMIT:
9743 			if (tcp->tcp_ipv6_recvancillary &
9744 			    TCP_IPV6_RECVHOPLIMIT)
9745 				*i1 = 1;
9746 			else
9747 				*i1 = 0;
9748 			break;	/* goto sizeof (int) option return */
9749 		case IPV6_RECVHOPOPTS:
9750 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS)
9751 				*i1 = 1;
9752 			else
9753 				*i1 = 0;
9754 			break;	/* goto sizeof (int) option return */
9755 		case IPV6_RECVDSTOPTS:
9756 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVDSTOPTS)
9757 				*i1 = 1;
9758 			else
9759 				*i1 = 0;
9760 			break;	/* goto sizeof (int) option return */
9761 		case _OLD_IPV6_RECVDSTOPTS:
9762 			if (tcp->tcp_ipv6_recvancillary &
9763 			    TCP_OLD_IPV6_RECVDSTOPTS)
9764 				*i1 = 1;
9765 			else
9766 				*i1 = 0;
9767 			break;	/* goto sizeof (int) option return */
9768 		case IPV6_RECVRTHDR:
9769 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR)
9770 				*i1 = 1;
9771 			else
9772 				*i1 = 0;
9773 			break;	/* goto sizeof (int) option return */
9774 		case IPV6_RECVRTHDRDSTOPTS:
9775 			if (tcp->tcp_ipv6_recvancillary &
9776 			    TCP_IPV6_RECVRTDSTOPTS)
9777 				*i1 = 1;
9778 			else
9779 				*i1 = 0;
9780 			break;	/* goto sizeof (int) option return */
9781 		case IPV6_PKTINFO: {
9782 			/* XXX assumes that caller has room for max size! */
9783 			struct in6_pktinfo *pkti;
9784 
9785 			pkti = (struct in6_pktinfo *)ptr;
9786 			if (ipp->ipp_fields & IPPF_IFINDEX)
9787 				pkti->ipi6_ifindex = ipp->ipp_ifindex;
9788 			else
9789 				pkti->ipi6_ifindex = 0;
9790 			if (ipp->ipp_fields & IPPF_ADDR)
9791 				pkti->ipi6_addr = ipp->ipp_addr;
9792 			else
9793 				pkti->ipi6_addr = ipv6_all_zeros;
9794 			return (sizeof (struct in6_pktinfo));
9795 		}
9796 		case IPV6_TCLASS:
9797 			if (ipp->ipp_fields & IPPF_TCLASS)
9798 				*i1 = ipp->ipp_tclass;
9799 			else
9800 				*i1 = IPV6_FLOW_TCLASS(
9801 				    IPV6_DEFAULT_VERS_AND_FLOW);
9802 			break;	/* goto sizeof (int) option return */
9803 		case IPV6_NEXTHOP: {
9804 			sin6_t *sin6 = (sin6_t *)ptr;
9805 
9806 			if (!(ipp->ipp_fields & IPPF_NEXTHOP))
9807 				return (0);
9808 			*sin6 = sin6_null;
9809 			sin6->sin6_family = AF_INET6;
9810 			sin6->sin6_addr = ipp->ipp_nexthop;
9811 			return (sizeof (sin6_t));
9812 		}
9813 		case IPV6_HOPOPTS:
9814 			if (!(ipp->ipp_fields & IPPF_HOPOPTS))
9815 				return (0);
9816 			if (ipp->ipp_hopoptslen <= tcp->tcp_label_len)
9817 				return (0);
9818 			bcopy((char *)ipp->ipp_hopopts + tcp->tcp_label_len,
9819 			    ptr, ipp->ipp_hopoptslen - tcp->tcp_label_len);
9820 			if (tcp->tcp_label_len > 0) {
9821 				ptr[0] = ((char *)ipp->ipp_hopopts)[0];
9822 				ptr[1] = (ipp->ipp_hopoptslen -
9823 				    tcp->tcp_label_len + 7) / 8 - 1;
9824 			}
9825 			return (ipp->ipp_hopoptslen - tcp->tcp_label_len);
9826 		case IPV6_RTHDRDSTOPTS:
9827 			if (!(ipp->ipp_fields & IPPF_RTDSTOPTS))
9828 				return (0);
9829 			bcopy(ipp->ipp_rtdstopts, ptr, ipp->ipp_rtdstoptslen);
9830 			return (ipp->ipp_rtdstoptslen);
9831 		case IPV6_RTHDR:
9832 			if (!(ipp->ipp_fields & IPPF_RTHDR))
9833 				return (0);
9834 			bcopy(ipp->ipp_rthdr, ptr, ipp->ipp_rthdrlen);
9835 			return (ipp->ipp_rthdrlen);
9836 		case IPV6_DSTOPTS:
9837 			if (!(ipp->ipp_fields & IPPF_DSTOPTS))
9838 				return (0);
9839 			bcopy(ipp->ipp_dstopts, ptr, ipp->ipp_dstoptslen);
9840 			return (ipp->ipp_dstoptslen);
9841 		case IPV6_SRC_PREFERENCES:
9842 			return (ip6_get_src_preferences(connp,
9843 			    (uint32_t *)ptr));
9844 		case IPV6_PATHMTU: {
9845 			struct ip6_mtuinfo *mtuinfo = (struct ip6_mtuinfo *)ptr;
9846 
9847 			if (tcp->tcp_state < TCPS_ESTABLISHED)
9848 				return (-1);
9849 
9850 			return (ip_fill_mtuinfo(&connp->conn_remv6,
9851 				connp->conn_fport, mtuinfo));
9852 		}
9853 		default:
9854 			return (-1);
9855 		}
9856 		break;
9857 	default:
9858 		return (-1);
9859 	}
9860 	return (sizeof (int));
9861 }
9862 
9863 /*
9864  * We declare as 'int' rather than 'void' to satisfy pfi_t arg requirements.
9865  * Parameters are assumed to be verified by the caller.
9866  */
9867 /* ARGSUSED */
9868 int
9869 tcp_opt_set(queue_t *q, uint_t optset_context, int level, int name,
9870     uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp,
9871     void *thisdg_attrs, cred_t *cr, mblk_t *mblk)
9872 {
9873 	conn_t	*connp = Q_TO_CONN(q);
9874 	tcp_t	*tcp = connp->conn_tcp;
9875 	int	*i1 = (int *)invalp;
9876 	boolean_t onoff = (*i1 == 0) ? 0 : 1;
9877 	boolean_t checkonly;
9878 	int	reterr;
9879 
9880 	switch (optset_context) {
9881 	case SETFN_OPTCOM_CHECKONLY:
9882 		checkonly = B_TRUE;
9883 		/*
9884 		 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ
9885 		 * inlen != 0 implies value supplied and
9886 		 * 	we have to "pretend" to set it.
9887 		 * inlen == 0 implies that there is no
9888 		 * 	value part in T_CHECK request and just validation
9889 		 * done elsewhere should be enough, we just return here.
9890 		 */
9891 		if (inlen == 0) {
9892 			*outlenp = 0;
9893 			return (0);
9894 		}
9895 		break;
9896 	case SETFN_OPTCOM_NEGOTIATE:
9897 		checkonly = B_FALSE;
9898 		break;
9899 	case SETFN_UD_NEGOTIATE: /* error on conn-oriented transports ? */
9900 	case SETFN_CONN_NEGOTIATE:
9901 		checkonly = B_FALSE;
9902 		/*
9903 		 * Negotiating local and "association-related" options
9904 		 * from other (T_CONN_REQ, T_CONN_RES,T_UNITDATA_REQ)
9905 		 * primitives is allowed by XTI, but we choose
9906 		 * to not implement this style negotiation for Internet
9907 		 * protocols (We interpret it is a must for OSI world but
9908 		 * optional for Internet protocols) for all options.
9909 		 * [ Will do only for the few options that enable test
9910 		 * suites that our XTI implementation of this feature
9911 		 * works for transports that do allow it ]
9912 		 */
9913 		if (!tcp_allow_connopt_set(level, name)) {
9914 			*outlenp = 0;
9915 			return (EINVAL);
9916 		}
9917 		break;
9918 	default:
9919 		/*
9920 		 * We should never get here
9921 		 */
9922 		*outlenp = 0;
9923 		return (EINVAL);
9924 	}
9925 
9926 	ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) ||
9927 	    (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0));
9928 
9929 	/*
9930 	 * For TCP, we should have no ancillary data sent down
9931 	 * (sendmsg isn't supported for SOCK_STREAM), so thisdg_attrs
9932 	 * has to be zero.
9933 	 */
9934 	ASSERT(thisdg_attrs == NULL);
9935 
9936 	/*
9937 	 * For fixed length options, no sanity check
9938 	 * of passed in length is done. It is assumed *_optcom_req()
9939 	 * routines do the right thing.
9940 	 */
9941 
9942 	switch (level) {
9943 	case SOL_SOCKET:
9944 		switch (name) {
9945 		case SO_LINGER: {
9946 			struct linger *lgr = (struct linger *)invalp;
9947 
9948 			if (!checkonly) {
9949 				if (lgr->l_onoff) {
9950 					tcp->tcp_linger = 1;
9951 					tcp->tcp_lingertime = lgr->l_linger;
9952 				} else {
9953 					tcp->tcp_linger = 0;
9954 					tcp->tcp_lingertime = 0;
9955 				}
9956 				/* struct copy */
9957 				*(struct linger *)outvalp = *lgr;
9958 			} else {
9959 				if (!lgr->l_onoff) {
9960 				    ((struct linger *)outvalp)->l_onoff = 0;
9961 				    ((struct linger *)outvalp)->l_linger = 0;
9962 				} else {
9963 				    /* struct copy */
9964 				    *(struct linger *)outvalp = *lgr;
9965 				}
9966 			}
9967 			*outlenp = sizeof (struct linger);
9968 			return (0);
9969 		}
9970 		case SO_DEBUG:
9971 			if (!checkonly)
9972 				tcp->tcp_debug = onoff;
9973 			break;
9974 		case SO_KEEPALIVE:
9975 			if (checkonly) {
9976 				/* T_CHECK case */
9977 				break;
9978 			}
9979 
9980 			if (!onoff) {
9981 				if (tcp->tcp_ka_enabled) {
9982 					if (tcp->tcp_ka_tid != 0) {
9983 						(void) TCP_TIMER_CANCEL(tcp,
9984 						    tcp->tcp_ka_tid);
9985 						tcp->tcp_ka_tid = 0;
9986 					}
9987 					tcp->tcp_ka_enabled = 0;
9988 				}
9989 				break;
9990 			}
9991 			if (!tcp->tcp_ka_enabled) {
9992 				/* Crank up the keepalive timer */
9993 				tcp->tcp_ka_last_intrvl = 0;
9994 				tcp->tcp_ka_tid = TCP_TIMER(tcp,
9995 				    tcp_keepalive_killer,
9996 				    MSEC_TO_TICK(tcp->tcp_ka_interval));
9997 				tcp->tcp_ka_enabled = 1;
9998 			}
9999 			break;
10000 		case SO_DONTROUTE:
10001 			/*
10002 			 * SO_DONTROUTE, SO_USELOOPBACK, and SO_BROADCAST are
10003 			 * only of interest to IP.  We track them here only so
10004 			 * that we can report their current value.
10005 			 */
10006 			if (!checkonly) {
10007 				tcp->tcp_dontroute = onoff;
10008 				tcp->tcp_connp->conn_dontroute = onoff;
10009 			}
10010 			break;
10011 		case SO_USELOOPBACK:
10012 			if (!checkonly) {
10013 				tcp->tcp_useloopback = onoff;
10014 				tcp->tcp_connp->conn_loopback = onoff;
10015 			}
10016 			break;
10017 		case SO_BROADCAST:
10018 			if (!checkonly) {
10019 				tcp->tcp_broadcast = onoff;
10020 				tcp->tcp_connp->conn_broadcast = onoff;
10021 			}
10022 			break;
10023 		case SO_REUSEADDR:
10024 			if (!checkonly) {
10025 				tcp->tcp_reuseaddr = onoff;
10026 				tcp->tcp_connp->conn_reuseaddr = onoff;
10027 			}
10028 			break;
10029 		case SO_OOBINLINE:
10030 			if (!checkonly)
10031 				tcp->tcp_oobinline = onoff;
10032 			break;
10033 		case SO_DGRAM_ERRIND:
10034 			if (!checkonly)
10035 				tcp->tcp_dgram_errind = onoff;
10036 			break;
10037 		case SO_SNDBUF: {
10038 			tcp_t *peer_tcp;
10039 
10040 			if (*i1 > tcp_max_buf) {
10041 				*outlenp = 0;
10042 				return (ENOBUFS);
10043 			}
10044 			if (checkonly)
10045 				break;
10046 
10047 			tcp->tcp_xmit_hiwater = *i1;
10048 			if (tcp_snd_lowat_fraction != 0)
10049 				tcp->tcp_xmit_lowater =
10050 				    tcp->tcp_xmit_hiwater /
10051 				    tcp_snd_lowat_fraction;
10052 			(void) tcp_maxpsz_set(tcp, B_TRUE);
10053 			/*
10054 			 * If we are flow-controlled, recheck the condition.
10055 			 * There are apps that increase SO_SNDBUF size when
10056 			 * flow-controlled (EWOULDBLOCK), and expect the flow
10057 			 * control condition to be lifted right away.
10058 			 *
10059 			 * For the fused tcp loopback case, in order to avoid
10060 			 * a race with the peer's tcp_fuse_rrw() we need to
10061 			 * hold its fuse_lock while accessing tcp_flow_stopped.
10062 			 */
10063 			peer_tcp = tcp->tcp_loopback_peer;
10064 			ASSERT(!tcp->tcp_fused || peer_tcp != NULL);
10065 			if (tcp->tcp_fused)
10066 				mutex_enter(&peer_tcp->tcp_fuse_lock);
10067 
10068 			if (tcp->tcp_flow_stopped &&
10069 			    TCP_UNSENT_BYTES(tcp) < tcp->tcp_xmit_hiwater) {
10070 				tcp_clrqfull(tcp);
10071 			}
10072 			if (tcp->tcp_fused)
10073 				mutex_exit(&peer_tcp->tcp_fuse_lock);
10074 			break;
10075 		}
10076 		case SO_RCVBUF:
10077 			if (*i1 > tcp_max_buf) {
10078 				*outlenp = 0;
10079 				return (ENOBUFS);
10080 			}
10081 			/* Silently ignore zero */
10082 			if (!checkonly && *i1 != 0) {
10083 				*i1 = MSS_ROUNDUP(*i1, tcp->tcp_mss);
10084 				(void) tcp_rwnd_set(tcp, *i1);
10085 			}
10086 			/*
10087 			 * XXX should we return the rwnd here
10088 			 * and tcp_opt_get ?
10089 			 */
10090 			break;
10091 		case SO_SND_COPYAVOID:
10092 			if (!checkonly) {
10093 				/* we only allow enable at most once for now */
10094 				if (tcp->tcp_loopback ||
10095 				    (!tcp->tcp_snd_zcopy_aware &&
10096 				    (onoff != 1 || !tcp_zcopy_check(tcp)))) {
10097 					*outlenp = 0;
10098 					return (EOPNOTSUPP);
10099 				}
10100 				tcp->tcp_snd_zcopy_aware = 1;
10101 			}
10102 			break;
10103 		case SO_ALLZONES:
10104 			/* Handled at the IP level */
10105 			return (-EINVAL);
10106 		case SO_ANON_MLP:
10107 			if (!checkonly) {
10108 				mutex_enter(&connp->conn_lock);
10109 				connp->conn_anon_mlp = onoff;
10110 				mutex_exit(&connp->conn_lock);
10111 			}
10112 			break;
10113 		case SO_MAC_EXEMPT:
10114 			if (secpolicy_net_mac_aware(cr) != 0 ||
10115 			    IPCL_IS_BOUND(connp))
10116 				return (EACCES);
10117 			if (!checkonly) {
10118 				mutex_enter(&connp->conn_lock);
10119 				connp->conn_mac_exempt = onoff;
10120 				mutex_exit(&connp->conn_lock);
10121 			}
10122 			break;
10123 		case SO_EXCLBIND:
10124 			if (!checkonly)
10125 				tcp->tcp_exclbind = onoff;
10126 			break;
10127 		default:
10128 			*outlenp = 0;
10129 			return (EINVAL);
10130 		}
10131 		break;
10132 	case IPPROTO_TCP:
10133 		switch (name) {
10134 		case TCP_NODELAY:
10135 			if (!checkonly)
10136 				tcp->tcp_naglim = *i1 ? 1 : tcp->tcp_mss;
10137 			break;
10138 		case TCP_NOTIFY_THRESHOLD:
10139 			if (!checkonly)
10140 				tcp->tcp_first_timer_threshold = *i1;
10141 			break;
10142 		case TCP_ABORT_THRESHOLD:
10143 			if (!checkonly)
10144 				tcp->tcp_second_timer_threshold = *i1;
10145 			break;
10146 		case TCP_CONN_NOTIFY_THRESHOLD:
10147 			if (!checkonly)
10148 				tcp->tcp_first_ctimer_threshold = *i1;
10149 			break;
10150 		case TCP_CONN_ABORT_THRESHOLD:
10151 			if (!checkonly)
10152 				tcp->tcp_second_ctimer_threshold = *i1;
10153 			break;
10154 		case TCP_RECVDSTADDR:
10155 			if (tcp->tcp_state > TCPS_LISTEN)
10156 				return (EOPNOTSUPP);
10157 			if (!checkonly)
10158 				tcp->tcp_recvdstaddr = onoff;
10159 			break;
10160 		case TCP_ANONPRIVBIND:
10161 			if ((reterr = secpolicy_net_privaddr(cr, 0)) != 0) {
10162 				*outlenp = 0;
10163 				return (reterr);
10164 			}
10165 			if (!checkonly) {
10166 				tcp->tcp_anon_priv_bind = onoff;
10167 			}
10168 			break;
10169 		case TCP_EXCLBIND:
10170 			if (!checkonly)
10171 				tcp->tcp_exclbind = onoff;
10172 			break;	/* goto sizeof (int) option return */
10173 		case TCP_INIT_CWND: {
10174 			uint32_t init_cwnd = *((uint32_t *)invalp);
10175 
10176 			if (checkonly)
10177 				break;
10178 
10179 			/*
10180 			 * Only allow socket with network configuration
10181 			 * privilege to set the initial cwnd to be larger
10182 			 * than allowed by RFC 3390.
10183 			 */
10184 			if (init_cwnd <= MIN(4, MAX(2, 4380 / tcp->tcp_mss))) {
10185 				tcp->tcp_init_cwnd = init_cwnd;
10186 				break;
10187 			}
10188 			if ((reterr = secpolicy_net_config(cr, B_TRUE)) != 0) {
10189 				*outlenp = 0;
10190 				return (reterr);
10191 			}
10192 			if (init_cwnd > TCP_MAX_INIT_CWND) {
10193 				*outlenp = 0;
10194 				return (EINVAL);
10195 			}
10196 			tcp->tcp_init_cwnd = init_cwnd;
10197 			break;
10198 		}
10199 		case TCP_KEEPALIVE_THRESHOLD:
10200 			if (checkonly)
10201 				break;
10202 
10203 			if (*i1 < tcp_keepalive_interval_low ||
10204 			    *i1 > tcp_keepalive_interval_high) {
10205 				*outlenp = 0;
10206 				return (EINVAL);
10207 			}
10208 			if (*i1 != tcp->tcp_ka_interval) {
10209 				tcp->tcp_ka_interval = *i1;
10210 				/*
10211 				 * Check if we need to restart the
10212 				 * keepalive timer.
10213 				 */
10214 				if (tcp->tcp_ka_tid != 0) {
10215 					ASSERT(tcp->tcp_ka_enabled);
10216 					(void) TCP_TIMER_CANCEL(tcp,
10217 					    tcp->tcp_ka_tid);
10218 					tcp->tcp_ka_last_intrvl = 0;
10219 					tcp->tcp_ka_tid = TCP_TIMER(tcp,
10220 					    tcp_keepalive_killer,
10221 					    MSEC_TO_TICK(tcp->tcp_ka_interval));
10222 				}
10223 			}
10224 			break;
10225 		case TCP_KEEPALIVE_ABORT_THRESHOLD:
10226 			if (!checkonly) {
10227 				if (*i1 < tcp_keepalive_abort_interval_low ||
10228 				    *i1 > tcp_keepalive_abort_interval_high) {
10229 					*outlenp = 0;
10230 					return (EINVAL);
10231 				}
10232 				tcp->tcp_ka_abort_thres = *i1;
10233 			}
10234 			break;
10235 		case TCP_CORK:
10236 			if (!checkonly) {
10237 				/*
10238 				 * if tcp->tcp_cork was set and is now
10239 				 * being unset, we have to make sure that
10240 				 * the remaining data gets sent out. Also
10241 				 * unset tcp->tcp_cork so that tcp_wput_data()
10242 				 * can send data even if it is less than mss
10243 				 */
10244 				if (tcp->tcp_cork && onoff == 0 &&
10245 				    tcp->tcp_unsent > 0) {
10246 					tcp->tcp_cork = B_FALSE;
10247 					tcp_wput_data(tcp, NULL, B_FALSE);
10248 				}
10249 				tcp->tcp_cork = onoff;
10250 			}
10251 			break;
10252 		default:
10253 			*outlenp = 0;
10254 			return (EINVAL);
10255 		}
10256 		break;
10257 	case IPPROTO_IP:
10258 		if (tcp->tcp_family != AF_INET) {
10259 			*outlenp = 0;
10260 			return (ENOPROTOOPT);
10261 		}
10262 		switch (name) {
10263 		case IP_OPTIONS:
10264 		case T_IP_OPTIONS:
10265 			reterr = tcp_opt_set_header(tcp, checkonly,
10266 			    invalp, inlen);
10267 			if (reterr) {
10268 				*outlenp = 0;
10269 				return (reterr);
10270 			}
10271 			/* OK return - copy input buffer into output buffer */
10272 			if (invalp != outvalp) {
10273 				/* don't trust bcopy for identical src/dst */
10274 				bcopy(invalp, outvalp, inlen);
10275 			}
10276 			*outlenp = inlen;
10277 			return (0);
10278 		case IP_TOS:
10279 		case T_IP_TOS:
10280 			if (!checkonly) {
10281 				tcp->tcp_ipha->ipha_type_of_service =
10282 				    (uchar_t)*i1;
10283 				tcp->tcp_tos = (uchar_t)*i1;
10284 			}
10285 			break;
10286 		case IP_TTL:
10287 			if (!checkonly) {
10288 				tcp->tcp_ipha->ipha_ttl = (uchar_t)*i1;
10289 				tcp->tcp_ttl = (uchar_t)*i1;
10290 			}
10291 			break;
10292 		case IP_BOUND_IF:
10293 		case IP_NEXTHOP:
10294 			/* Handled at the IP level */
10295 			return (-EINVAL);
10296 		case IP_SEC_OPT:
10297 			/*
10298 			 * We should not allow policy setting after
10299 			 * we start listening for connections.
10300 			 */
10301 			if (tcp->tcp_state == TCPS_LISTEN) {
10302 				return (EINVAL);
10303 			} else {
10304 				/* Handled at the IP level */
10305 				return (-EINVAL);
10306 			}
10307 		default:
10308 			*outlenp = 0;
10309 			return (EINVAL);
10310 		}
10311 		break;
10312 	case IPPROTO_IPV6: {
10313 		ip6_pkt_t		*ipp;
10314 
10315 		/*
10316 		 * IPPROTO_IPV6 options are only supported for sockets
10317 		 * that are using IPv6 on the wire.
10318 		 */
10319 		if (tcp->tcp_ipversion != IPV6_VERSION) {
10320 			*outlenp = 0;
10321 			return (ENOPROTOOPT);
10322 		}
10323 		/*
10324 		 * Only sticky options; no ancillary data
10325 		 */
10326 		ASSERT(thisdg_attrs == NULL);
10327 		ipp = &tcp->tcp_sticky_ipp;
10328 
10329 		switch (name) {
10330 		case IPV6_UNICAST_HOPS:
10331 			/* -1 means use default */
10332 			if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) {
10333 				*outlenp = 0;
10334 				return (EINVAL);
10335 			}
10336 			if (!checkonly) {
10337 				if (*i1 == -1) {
10338 					tcp->tcp_ip6h->ip6_hops =
10339 					    ipp->ipp_unicast_hops =
10340 					    (uint8_t)tcp_ipv6_hoplimit;
10341 					ipp->ipp_fields &= ~IPPF_UNICAST_HOPS;
10342 					/* Pass modified value to IP. */
10343 					*i1 = tcp->tcp_ip6h->ip6_hops;
10344 				} else {
10345 					tcp->tcp_ip6h->ip6_hops =
10346 					    ipp->ipp_unicast_hops =
10347 					    (uint8_t)*i1;
10348 					ipp->ipp_fields |= IPPF_UNICAST_HOPS;
10349 				}
10350 				reterr = tcp_build_hdrs(q, tcp);
10351 				if (reterr != 0)
10352 					return (reterr);
10353 			}
10354 			break;
10355 		case IPV6_BOUND_IF:
10356 			if (!checkonly) {
10357 				int error = 0;
10358 
10359 				tcp->tcp_bound_if = *i1;
10360 				error = ip_opt_set_ill(tcp->tcp_connp, *i1,
10361 				    B_TRUE, checkonly, level, name, mblk);
10362 				if (error != 0) {
10363 					*outlenp = 0;
10364 					return (error);
10365 				}
10366 			}
10367 			break;
10368 		/*
10369 		 * Set boolean switches for ancillary data delivery
10370 		 */
10371 		case IPV6_RECVPKTINFO:
10372 			if (!checkonly) {
10373 				if (onoff)
10374 					tcp->tcp_ipv6_recvancillary |=
10375 					    TCP_IPV6_RECVPKTINFO;
10376 				else
10377 					tcp->tcp_ipv6_recvancillary &=
10378 					    ~TCP_IPV6_RECVPKTINFO;
10379 				/* Force it to be sent up with the next msg */
10380 				tcp->tcp_recvifindex = 0;
10381 			}
10382 			break;
10383 		case IPV6_RECVTCLASS:
10384 			if (!checkonly) {
10385 				if (onoff)
10386 					tcp->tcp_ipv6_recvancillary |=
10387 					    TCP_IPV6_RECVTCLASS;
10388 				else
10389 					tcp->tcp_ipv6_recvancillary &=
10390 					    ~TCP_IPV6_RECVTCLASS;
10391 			}
10392 			break;
10393 		case IPV6_RECVHOPLIMIT:
10394 			if (!checkonly) {
10395 				if (onoff)
10396 					tcp->tcp_ipv6_recvancillary |=
10397 					    TCP_IPV6_RECVHOPLIMIT;
10398 				else
10399 					tcp->tcp_ipv6_recvancillary &=
10400 					    ~TCP_IPV6_RECVHOPLIMIT;
10401 				/* Force it to be sent up with the next msg */
10402 				tcp->tcp_recvhops = 0xffffffffU;
10403 			}
10404 			break;
10405 		case IPV6_RECVHOPOPTS:
10406 			if (!checkonly) {
10407 				if (onoff)
10408 					tcp->tcp_ipv6_recvancillary |=
10409 					    TCP_IPV6_RECVHOPOPTS;
10410 				else
10411 					tcp->tcp_ipv6_recvancillary &=
10412 					    ~TCP_IPV6_RECVHOPOPTS;
10413 			}
10414 			break;
10415 		case IPV6_RECVDSTOPTS:
10416 			if (!checkonly) {
10417 				if (onoff)
10418 					tcp->tcp_ipv6_recvancillary |=
10419 					    TCP_IPV6_RECVDSTOPTS;
10420 				else
10421 					tcp->tcp_ipv6_recvancillary &=
10422 					    ~TCP_IPV6_RECVDSTOPTS;
10423 			}
10424 			break;
10425 		case _OLD_IPV6_RECVDSTOPTS:
10426 			if (!checkonly) {
10427 				if (onoff)
10428 					tcp->tcp_ipv6_recvancillary |=
10429 					    TCP_OLD_IPV6_RECVDSTOPTS;
10430 				else
10431 					tcp->tcp_ipv6_recvancillary &=
10432 					    ~TCP_OLD_IPV6_RECVDSTOPTS;
10433 			}
10434 			break;
10435 		case IPV6_RECVRTHDR:
10436 			if (!checkonly) {
10437 				if (onoff)
10438 					tcp->tcp_ipv6_recvancillary |=
10439 					    TCP_IPV6_RECVRTHDR;
10440 				else
10441 					tcp->tcp_ipv6_recvancillary &=
10442 					    ~TCP_IPV6_RECVRTHDR;
10443 			}
10444 			break;
10445 		case IPV6_RECVRTHDRDSTOPTS:
10446 			if (!checkonly) {
10447 				if (onoff)
10448 					tcp->tcp_ipv6_recvancillary |=
10449 					    TCP_IPV6_RECVRTDSTOPTS;
10450 				else
10451 					tcp->tcp_ipv6_recvancillary &=
10452 					    ~TCP_IPV6_RECVRTDSTOPTS;
10453 			}
10454 			break;
10455 		case IPV6_PKTINFO:
10456 			if (inlen != 0 && inlen != sizeof (struct in6_pktinfo))
10457 				return (EINVAL);
10458 			if (checkonly)
10459 				break;
10460 
10461 			if (inlen == 0) {
10462 				ipp->ipp_fields &= ~(IPPF_IFINDEX|IPPF_ADDR);
10463 			} else {
10464 				struct in6_pktinfo *pkti;
10465 
10466 				pkti = (struct in6_pktinfo *)invalp;
10467 				/*
10468 				 * RFC 3542 states that ipi6_addr must be
10469 				 * the unspecified address when setting the
10470 				 * IPV6_PKTINFO sticky socket option on a
10471 				 * TCP socket.
10472 				 */
10473 				if (!IN6_IS_ADDR_UNSPECIFIED(&pkti->ipi6_addr))
10474 					return (EINVAL);
10475 				/*
10476 				 * ip6_set_pktinfo() validates the source
10477 				 * address and interface index.
10478 				 */
10479 				reterr = ip6_set_pktinfo(cr, tcp->tcp_connp,
10480 				    pkti, mblk);
10481 				if (reterr != 0)
10482 					return (reterr);
10483 				ipp->ipp_ifindex = pkti->ipi6_ifindex;
10484 				ipp->ipp_addr = pkti->ipi6_addr;
10485 				if (ipp->ipp_ifindex != 0)
10486 					ipp->ipp_fields |= IPPF_IFINDEX;
10487 				else
10488 					ipp->ipp_fields &= ~IPPF_IFINDEX;
10489 				if (!IN6_IS_ADDR_UNSPECIFIED(&ipp->ipp_addr))
10490 					ipp->ipp_fields |= IPPF_ADDR;
10491 				else
10492 					ipp->ipp_fields &= ~IPPF_ADDR;
10493 			}
10494 			reterr = tcp_build_hdrs(q, tcp);
10495 			if (reterr != 0)
10496 				return (reterr);
10497 			break;
10498 		case IPV6_TCLASS:
10499 			if (inlen != 0 && inlen != sizeof (int))
10500 				return (EINVAL);
10501 			if (checkonly)
10502 				break;
10503 
10504 			if (inlen == 0) {
10505 				ipp->ipp_fields &= ~IPPF_TCLASS;
10506 			} else {
10507 				if (*i1 > 255 || *i1 < -1)
10508 					return (EINVAL);
10509 				if (*i1 == -1) {
10510 					ipp->ipp_tclass = 0;
10511 					*i1 = 0;
10512 				} else {
10513 					ipp->ipp_tclass = *i1;
10514 				}
10515 				ipp->ipp_fields |= IPPF_TCLASS;
10516 			}
10517 			reterr = tcp_build_hdrs(q, tcp);
10518 			if (reterr != 0)
10519 				return (reterr);
10520 			break;
10521 		case IPV6_NEXTHOP:
10522 			/*
10523 			 * IP will verify that the nexthop is reachable
10524 			 * and fail for sticky options.
10525 			 */
10526 			if (inlen != 0 && inlen != sizeof (sin6_t))
10527 				return (EINVAL);
10528 			if (checkonly)
10529 				break;
10530 
10531 			if (inlen == 0) {
10532 				ipp->ipp_fields &= ~IPPF_NEXTHOP;
10533 			} else {
10534 				sin6_t *sin6 = (sin6_t *)invalp;
10535 
10536 				if (sin6->sin6_family != AF_INET6)
10537 					return (EAFNOSUPPORT);
10538 				if (IN6_IS_ADDR_V4MAPPED(
10539 				    &sin6->sin6_addr))
10540 					return (EADDRNOTAVAIL);
10541 				ipp->ipp_nexthop = sin6->sin6_addr;
10542 				if (!IN6_IS_ADDR_UNSPECIFIED(
10543 				    &ipp->ipp_nexthop))
10544 					ipp->ipp_fields |= IPPF_NEXTHOP;
10545 				else
10546 					ipp->ipp_fields &= ~IPPF_NEXTHOP;
10547 			}
10548 			reterr = tcp_build_hdrs(q, tcp);
10549 			if (reterr != 0)
10550 				return (reterr);
10551 			break;
10552 		case IPV6_HOPOPTS: {
10553 			ip6_hbh_t *hopts = (ip6_hbh_t *)invalp;
10554 
10555 			/*
10556 			 * Sanity checks - minimum size, size a multiple of
10557 			 * eight bytes, and matching size passed in.
10558 			 */
10559 			if (inlen != 0 &&
10560 			    inlen != (8 * (hopts->ip6h_len + 1)))
10561 				return (EINVAL);
10562 
10563 			if (checkonly)
10564 				break;
10565 
10566 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10567 			    (uchar_t **)&ipp->ipp_hopopts,
10568 			    &ipp->ipp_hopoptslen, tcp->tcp_label_len);
10569 			if (reterr != 0)
10570 				return (reterr);
10571 			if (ipp->ipp_hopoptslen == 0)
10572 				ipp->ipp_fields &= ~IPPF_HOPOPTS;
10573 			else
10574 				ipp->ipp_fields |= IPPF_HOPOPTS;
10575 			reterr = tcp_build_hdrs(q, tcp);
10576 			if (reterr != 0)
10577 				return (reterr);
10578 			break;
10579 		}
10580 		case IPV6_RTHDRDSTOPTS: {
10581 			ip6_dest_t *dopts = (ip6_dest_t *)invalp;
10582 
10583 			/*
10584 			 * Sanity checks - minimum size, size a multiple of
10585 			 * eight bytes, and matching size passed in.
10586 			 */
10587 			if (inlen != 0 &&
10588 			    inlen != (8 * (dopts->ip6d_len + 1)))
10589 				return (EINVAL);
10590 
10591 			if (checkonly)
10592 				break;
10593 
10594 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10595 			    (uchar_t **)&ipp->ipp_rtdstopts,
10596 			    &ipp->ipp_rtdstoptslen, 0);
10597 			if (reterr != 0)
10598 				return (reterr);
10599 			if (ipp->ipp_rtdstoptslen == 0)
10600 				ipp->ipp_fields &= ~IPPF_RTDSTOPTS;
10601 			else
10602 				ipp->ipp_fields |= IPPF_RTDSTOPTS;
10603 			reterr = tcp_build_hdrs(q, tcp);
10604 			if (reterr != 0)
10605 				return (reterr);
10606 			break;
10607 		}
10608 		case IPV6_DSTOPTS: {
10609 			ip6_dest_t *dopts = (ip6_dest_t *)invalp;
10610 
10611 			/*
10612 			 * Sanity checks - minimum size, size a multiple of
10613 			 * eight bytes, and matching size passed in.
10614 			 */
10615 			if (inlen != 0 &&
10616 			    inlen != (8 * (dopts->ip6d_len + 1)))
10617 				return (EINVAL);
10618 
10619 			if (checkonly)
10620 				break;
10621 
10622 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10623 			    (uchar_t **)&ipp->ipp_dstopts,
10624 			    &ipp->ipp_dstoptslen, 0);
10625 			if (reterr != 0)
10626 				return (reterr);
10627 			if (ipp->ipp_dstoptslen == 0)
10628 				ipp->ipp_fields &= ~IPPF_DSTOPTS;
10629 			else
10630 				ipp->ipp_fields |= IPPF_DSTOPTS;
10631 			reterr = tcp_build_hdrs(q, tcp);
10632 			if (reterr != 0)
10633 				return (reterr);
10634 			break;
10635 		}
10636 		case IPV6_RTHDR: {
10637 			ip6_rthdr_t *rt = (ip6_rthdr_t *)invalp;
10638 
10639 			/*
10640 			 * Sanity checks - minimum size, size a multiple of
10641 			 * eight bytes, and matching size passed in.
10642 			 */
10643 			if (inlen != 0 &&
10644 			    inlen != (8 * (rt->ip6r_len + 1)))
10645 				return (EINVAL);
10646 
10647 			if (checkonly)
10648 				break;
10649 
10650 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10651 			    (uchar_t **)&ipp->ipp_rthdr,
10652 			    &ipp->ipp_rthdrlen, 0);
10653 			if (reterr != 0)
10654 				return (reterr);
10655 			if (ipp->ipp_rthdrlen == 0)
10656 				ipp->ipp_fields &= ~IPPF_RTHDR;
10657 			else
10658 				ipp->ipp_fields |= IPPF_RTHDR;
10659 			reterr = tcp_build_hdrs(q, tcp);
10660 			if (reterr != 0)
10661 				return (reterr);
10662 			break;
10663 		}
10664 		case IPV6_V6ONLY:
10665 			if (!checkonly)
10666 				tcp->tcp_connp->conn_ipv6_v6only = onoff;
10667 			break;
10668 		case IPV6_USE_MIN_MTU:
10669 			if (inlen != sizeof (int))
10670 				return (EINVAL);
10671 
10672 			if (*i1 < -1 || *i1 > 1)
10673 				return (EINVAL);
10674 
10675 			if (checkonly)
10676 				break;
10677 
10678 			ipp->ipp_fields |= IPPF_USE_MIN_MTU;
10679 			ipp->ipp_use_min_mtu = *i1;
10680 			break;
10681 		case IPV6_BOUND_PIF:
10682 			/* Handled at the IP level */
10683 			return (-EINVAL);
10684 		case IPV6_SEC_OPT:
10685 			/*
10686 			 * We should not allow policy setting after
10687 			 * we start listening for connections.
10688 			 */
10689 			if (tcp->tcp_state == TCPS_LISTEN) {
10690 				return (EINVAL);
10691 			} else {
10692 				/* Handled at the IP level */
10693 				return (-EINVAL);
10694 			}
10695 		case IPV6_SRC_PREFERENCES:
10696 			if (inlen != sizeof (uint32_t))
10697 				return (EINVAL);
10698 			reterr = ip6_set_src_preferences(tcp->tcp_connp,
10699 			    *(uint32_t *)invalp);
10700 			if (reterr != 0) {
10701 				*outlenp = 0;
10702 				return (reterr);
10703 			}
10704 			break;
10705 		default:
10706 			*outlenp = 0;
10707 			return (EINVAL);
10708 		}
10709 		break;
10710 	}		/* end IPPROTO_IPV6 */
10711 	default:
10712 		*outlenp = 0;
10713 		return (EINVAL);
10714 	}
10715 	/*
10716 	 * Common case of OK return with outval same as inval
10717 	 */
10718 	if (invalp != outvalp) {
10719 		/* don't trust bcopy for identical src/dst */
10720 		(void) bcopy(invalp, outvalp, inlen);
10721 	}
10722 	*outlenp = inlen;
10723 	return (0);
10724 }
10725 
10726 /*
10727  * Update tcp_sticky_hdrs based on tcp_sticky_ipp.
10728  * The headers include ip6i_t (if needed), ip6_t, any sticky extension
10729  * headers, and the maximum size tcp header (to avoid reallocation
10730  * on the fly for additional tcp options).
10731  * Returns failure if can't allocate memory.
10732  */
10733 static int
10734 tcp_build_hdrs(queue_t *q, tcp_t *tcp)
10735 {
10736 	char	*hdrs;
10737 	uint_t	hdrs_len;
10738 	ip6i_t	*ip6i;
10739 	char	buf[TCP_MAX_HDR_LENGTH];
10740 	ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp;
10741 	in6_addr_t src, dst;
10742 
10743 	/*
10744 	 * save the existing tcp header and source/dest IP addresses
10745 	 */
10746 	bcopy(tcp->tcp_tcph, buf, tcp->tcp_tcp_hdr_len);
10747 	src = tcp->tcp_ip6h->ip6_src;
10748 	dst = tcp->tcp_ip6h->ip6_dst;
10749 	hdrs_len = ip_total_hdrs_len_v6(ipp) + TCP_MAX_HDR_LENGTH;
10750 	ASSERT(hdrs_len != 0);
10751 	if (hdrs_len > tcp->tcp_iphc_len) {
10752 		/* Need to reallocate */
10753 		hdrs = kmem_zalloc(hdrs_len, KM_NOSLEEP);
10754 		if (hdrs == NULL)
10755 			return (ENOMEM);
10756 		if (tcp->tcp_iphc != NULL) {
10757 			if (tcp->tcp_hdr_grown) {
10758 				kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len);
10759 			} else {
10760 				bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
10761 				kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc);
10762 			}
10763 			tcp->tcp_iphc_len = 0;
10764 		}
10765 		ASSERT(tcp->tcp_iphc_len == 0);
10766 		tcp->tcp_iphc = hdrs;
10767 		tcp->tcp_iphc_len = hdrs_len;
10768 		tcp->tcp_hdr_grown = B_TRUE;
10769 	}
10770 	ip_build_hdrs_v6((uchar_t *)tcp->tcp_iphc,
10771 	    hdrs_len - TCP_MAX_HDR_LENGTH, ipp, IPPROTO_TCP);
10772 
10773 	/* Set header fields not in ipp */
10774 	if (ipp->ipp_fields & IPPF_HAS_IP6I) {
10775 		ip6i = (ip6i_t *)tcp->tcp_iphc;
10776 		tcp->tcp_ip6h = (ip6_t *)&ip6i[1];
10777 	} else {
10778 		tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc;
10779 	}
10780 	/*
10781 	 * tcp->tcp_ip_hdr_len will include ip6i_t if there is one.
10782 	 *
10783 	 * tcp->tcp_tcp_hdr_len doesn't change here.
10784 	 */
10785 	tcp->tcp_ip_hdr_len = hdrs_len - TCP_MAX_HDR_LENGTH;
10786 	tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + tcp->tcp_ip_hdr_len);
10787 	tcp->tcp_hdr_len = tcp->tcp_ip_hdr_len + tcp->tcp_tcp_hdr_len;
10788 
10789 	bcopy(buf, tcp->tcp_tcph, tcp->tcp_tcp_hdr_len);
10790 
10791 	tcp->tcp_ip6h->ip6_src = src;
10792 	tcp->tcp_ip6h->ip6_dst = dst;
10793 
10794 	/*
10795 	 * If the hop limit was not set by ip_build_hdrs_v6(), set it to
10796 	 * the default value for TCP.
10797 	 */
10798 	if (!(ipp->ipp_fields & IPPF_UNICAST_HOPS))
10799 		tcp->tcp_ip6h->ip6_hops = tcp_ipv6_hoplimit;
10800 
10801 	/*
10802 	 * If we're setting extension headers after a connection
10803 	 * has been established, and if we have a routing header
10804 	 * among the extension headers, call ip_massage_options_v6 to
10805 	 * manipulate the routing header/ip6_dst set the checksum
10806 	 * difference in the tcp header template.
10807 	 * (This happens in tcp_connect_ipv6 if the routing header
10808 	 * is set prior to the connect.)
10809 	 * Set the tcp_sum to zero first in case we've cleared a
10810 	 * routing header or don't have one at all.
10811 	 */
10812 	tcp->tcp_sum = 0;
10813 	if ((tcp->tcp_state >= TCPS_SYN_SENT) &&
10814 	    (tcp->tcp_ipp_fields & IPPF_RTHDR)) {
10815 		ip6_rthdr_t *rth = ip_find_rthdr_v6(tcp->tcp_ip6h,
10816 		    (uint8_t *)tcp->tcp_tcph);
10817 		if (rth != NULL) {
10818 			tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h,
10819 			    rth);
10820 			tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
10821 			    (tcp->tcp_sum >> 16));
10822 		}
10823 	}
10824 
10825 	/* Try to get everything in a single mblk */
10826 	(void) mi_set_sth_wroff(RD(q), hdrs_len + tcp_wroff_xtra);
10827 	return (0);
10828 }
10829 
10830 /*
10831  * Transfer any source route option from ipha to buf/dst in reversed form.
10832  */
10833 static int
10834 tcp_opt_rev_src_route(ipha_t *ipha, char *buf, uchar_t *dst)
10835 {
10836 	ipoptp_t	opts;
10837 	uchar_t		*opt;
10838 	uint8_t		optval;
10839 	uint8_t		optlen;
10840 	uint32_t	len = 0;
10841 
10842 	for (optval = ipoptp_first(&opts, ipha);
10843 	    optval != IPOPT_EOL;
10844 	    optval = ipoptp_next(&opts)) {
10845 		opt = opts.ipoptp_cur;
10846 		optlen = opts.ipoptp_len;
10847 		switch (optval) {
10848 			int	off1, off2;
10849 		case IPOPT_SSRR:
10850 		case IPOPT_LSRR:
10851 
10852 			/* Reverse source route */
10853 			/*
10854 			 * First entry should be the next to last one in the
10855 			 * current source route (the last entry is our
10856 			 * address.)
10857 			 * The last entry should be the final destination.
10858 			 */
10859 			buf[IPOPT_OPTVAL] = (uint8_t)optval;
10860 			buf[IPOPT_OLEN] = (uint8_t)optlen;
10861 			off1 = IPOPT_MINOFF_SR - 1;
10862 			off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1;
10863 			if (off2 < 0) {
10864 				/* No entries in source route */
10865 				break;
10866 			}
10867 			bcopy(opt + off2, dst, IP_ADDR_LEN);
10868 			/*
10869 			 * Note: use src since ipha has not had its src
10870 			 * and dst reversed (it is in the state it was
10871 			 * received.
10872 			 */
10873 			bcopy(&ipha->ipha_src, buf + off2,
10874 			    IP_ADDR_LEN);
10875 			off2 -= IP_ADDR_LEN;
10876 
10877 			while (off2 > 0) {
10878 				bcopy(opt + off2, buf + off1,
10879 				    IP_ADDR_LEN);
10880 				off1 += IP_ADDR_LEN;
10881 				off2 -= IP_ADDR_LEN;
10882 			}
10883 			buf[IPOPT_OFFSET] = IPOPT_MINOFF_SR;
10884 			buf += optlen;
10885 			len += optlen;
10886 			break;
10887 		}
10888 	}
10889 done:
10890 	/* Pad the resulting options */
10891 	while (len & 0x3) {
10892 		*buf++ = IPOPT_EOL;
10893 		len++;
10894 	}
10895 	return (len);
10896 }
10897 
10898 
10899 /*
10900  * Extract and revert a source route from ipha (if any)
10901  * and then update the relevant fields in both tcp_t and the standard header.
10902  */
10903 static void
10904 tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha)
10905 {
10906 	char	buf[TCP_MAX_HDR_LENGTH];
10907 	uint_t	tcph_len;
10908 	int	len;
10909 
10910 	ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION);
10911 	len = IPH_HDR_LENGTH(ipha);
10912 	if (len == IP_SIMPLE_HDR_LENGTH)
10913 		/* Nothing to do */
10914 		return;
10915 	if (len > IP_SIMPLE_HDR_LENGTH + TCP_MAX_IP_OPTIONS_LENGTH ||
10916 	    (len & 0x3))
10917 		return;
10918 
10919 	tcph_len = tcp->tcp_tcp_hdr_len;
10920 	bcopy(tcp->tcp_tcph, buf, tcph_len);
10921 	tcp->tcp_sum = (tcp->tcp_ipha->ipha_dst >> 16) +
10922 		(tcp->tcp_ipha->ipha_dst & 0xffff);
10923 	len = tcp_opt_rev_src_route(ipha, (char *)tcp->tcp_ipha +
10924 	    IP_SIMPLE_HDR_LENGTH, (uchar_t *)&tcp->tcp_ipha->ipha_dst);
10925 	len += IP_SIMPLE_HDR_LENGTH;
10926 	tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) +
10927 	    (tcp->tcp_ipha->ipha_dst & 0xffff));
10928 	if ((int)tcp->tcp_sum < 0)
10929 		tcp->tcp_sum--;
10930 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
10931 	tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16));
10932 	tcp->tcp_tcph = (tcph_t *)((char *)tcp->tcp_ipha + len);
10933 	bcopy(buf, tcp->tcp_tcph, tcph_len);
10934 	tcp->tcp_ip_hdr_len = len;
10935 	tcp->tcp_ipha->ipha_version_and_hdr_length =
10936 	    (IP_VERSION << 4) | (len >> 2);
10937 	len += tcph_len;
10938 	tcp->tcp_hdr_len = len;
10939 }
10940 
10941 /*
10942  * Copy the standard header into its new location,
10943  * lay in the new options and then update the relevant
10944  * fields in both tcp_t and the standard header.
10945  */
10946 static int
10947 tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, uchar_t *ptr, uint_t len)
10948 {
10949 	uint_t	tcph_len;
10950 	uint8_t	*ip_optp;
10951 	tcph_t	*new_tcph;
10952 
10953 	if ((len > TCP_MAX_IP_OPTIONS_LENGTH) || (len & 0x3))
10954 		return (EINVAL);
10955 
10956 	if (len > IP_MAX_OPT_LENGTH - tcp->tcp_label_len)
10957 		return (EINVAL);
10958 
10959 	if (checkonly) {
10960 		/*
10961 		 * do not really set, just pretend to - T_CHECK
10962 		 */
10963 		return (0);
10964 	}
10965 
10966 	ip_optp = (uint8_t *)tcp->tcp_ipha + IP_SIMPLE_HDR_LENGTH;
10967 	if (tcp->tcp_label_len > 0) {
10968 		int padlen;
10969 		uint8_t opt;
10970 
10971 		/* convert list termination to no-ops */
10972 		padlen = tcp->tcp_label_len - ip_optp[IPOPT_OLEN];
10973 		ip_optp += ip_optp[IPOPT_OLEN];
10974 		opt = len > 0 ? IPOPT_NOP : IPOPT_EOL;
10975 		while (--padlen >= 0)
10976 			*ip_optp++ = opt;
10977 	}
10978 	tcph_len = tcp->tcp_tcp_hdr_len;
10979 	new_tcph = (tcph_t *)(ip_optp + len);
10980 	ovbcopy(tcp->tcp_tcph, new_tcph, tcph_len);
10981 	tcp->tcp_tcph = new_tcph;
10982 	bcopy(ptr, ip_optp, len);
10983 
10984 	len += IP_SIMPLE_HDR_LENGTH + tcp->tcp_label_len;
10985 
10986 	tcp->tcp_ip_hdr_len = len;
10987 	tcp->tcp_ipha->ipha_version_and_hdr_length =
10988 	    (IP_VERSION << 4) | (len >> 2);
10989 	tcp->tcp_hdr_len = len + tcph_len;
10990 	if (!TCP_IS_DETACHED(tcp)) {
10991 		/* Always allocate room for all options. */
10992 		(void) mi_set_sth_wroff(tcp->tcp_rq,
10993 		    TCP_MAX_COMBINED_HEADER_LENGTH + tcp_wroff_xtra);
10994 	}
10995 	return (0);
10996 }
10997 
10998 /* Get callback routine passed to nd_load by tcp_param_register */
10999 /* ARGSUSED */
11000 static int
11001 tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
11002 {
11003 	tcpparam_t	*tcppa = (tcpparam_t *)cp;
11004 
11005 	(void) mi_mpprintf(mp, "%u", tcppa->tcp_param_val);
11006 	return (0);
11007 }
11008 
11009 /*
11010  * Walk through the param array specified registering each element with the
11011  * named dispatch handler.
11012  */
11013 static boolean_t
11014 tcp_param_register(tcpparam_t *tcppa, int cnt)
11015 {
11016 	for (; cnt-- > 0; tcppa++) {
11017 		if (tcppa->tcp_param_name && tcppa->tcp_param_name[0]) {
11018 			if (!nd_load(&tcp_g_nd, tcppa->tcp_param_name,
11019 			    tcp_param_get, tcp_param_set,
11020 			    (caddr_t)tcppa)) {
11021 				nd_free(&tcp_g_nd);
11022 				return (B_FALSE);
11023 			}
11024 		}
11025 	}
11026 	if (!nd_load(&tcp_g_nd, tcp_wroff_xtra_param.tcp_param_name,
11027 	    tcp_param_get, tcp_param_set_aligned,
11028 	    (caddr_t)&tcp_wroff_xtra_param)) {
11029 		nd_free(&tcp_g_nd);
11030 		return (B_FALSE);
11031 	}
11032 	if (!nd_load(&tcp_g_nd, tcp_mdt_head_param.tcp_param_name,
11033 	    tcp_param_get, tcp_param_set_aligned,
11034 	    (caddr_t)&tcp_mdt_head_param)) {
11035 		nd_free(&tcp_g_nd);
11036 		return (B_FALSE);
11037 	}
11038 	if (!nd_load(&tcp_g_nd, tcp_mdt_tail_param.tcp_param_name,
11039 	    tcp_param_get, tcp_param_set_aligned,
11040 	    (caddr_t)&tcp_mdt_tail_param)) {
11041 		nd_free(&tcp_g_nd);
11042 		return (B_FALSE);
11043 	}
11044 	if (!nd_load(&tcp_g_nd, tcp_mdt_max_pbufs_param.tcp_param_name,
11045 	    tcp_param_get, tcp_param_set,
11046 	    (caddr_t)&tcp_mdt_max_pbufs_param)) {
11047 		nd_free(&tcp_g_nd);
11048 		return (B_FALSE);
11049 	}
11050 	if (!nd_load(&tcp_g_nd, "tcp_extra_priv_ports",
11051 	    tcp_extra_priv_ports_get, NULL, NULL)) {
11052 		nd_free(&tcp_g_nd);
11053 		return (B_FALSE);
11054 	}
11055 	if (!nd_load(&tcp_g_nd, "tcp_extra_priv_ports_add",
11056 	    NULL, tcp_extra_priv_ports_add, NULL)) {
11057 		nd_free(&tcp_g_nd);
11058 		return (B_FALSE);
11059 	}
11060 	if (!nd_load(&tcp_g_nd, "tcp_extra_priv_ports_del",
11061 	    NULL, tcp_extra_priv_ports_del, NULL)) {
11062 		nd_free(&tcp_g_nd);
11063 		return (B_FALSE);
11064 	}
11065 	if (!nd_load(&tcp_g_nd, "tcp_status", tcp_status_report, NULL,
11066 	    NULL)) {
11067 		nd_free(&tcp_g_nd);
11068 		return (B_FALSE);
11069 	}
11070 	if (!nd_load(&tcp_g_nd, "tcp_bind_hash", tcp_bind_hash_report,
11071 	    NULL, NULL)) {
11072 		nd_free(&tcp_g_nd);
11073 		return (B_FALSE);
11074 	}
11075 	if (!nd_load(&tcp_g_nd, "tcp_listen_hash", tcp_listen_hash_report,
11076 	    NULL, NULL)) {
11077 		nd_free(&tcp_g_nd);
11078 		return (B_FALSE);
11079 	}
11080 	if (!nd_load(&tcp_g_nd, "tcp_conn_hash", tcp_conn_hash_report,
11081 	    NULL, NULL)) {
11082 		nd_free(&tcp_g_nd);
11083 		return (B_FALSE);
11084 	}
11085 	if (!nd_load(&tcp_g_nd, "tcp_acceptor_hash", tcp_acceptor_hash_report,
11086 	    NULL, NULL)) {
11087 		nd_free(&tcp_g_nd);
11088 		return (B_FALSE);
11089 	}
11090 	if (!nd_load(&tcp_g_nd, "tcp_host_param", tcp_host_param_report,
11091 	    tcp_host_param_set, NULL)) {
11092 		nd_free(&tcp_g_nd);
11093 		return (B_FALSE);
11094 	}
11095 	if (!nd_load(&tcp_g_nd, "tcp_host_param_ipv6", tcp_host_param_report,
11096 	    tcp_host_param_set_ipv6, NULL)) {
11097 		nd_free(&tcp_g_nd);
11098 		return (B_FALSE);
11099 	}
11100 	if (!nd_load(&tcp_g_nd, "tcp_1948_phrase", NULL, tcp_1948_phrase_set,
11101 	    NULL)) {
11102 		nd_free(&tcp_g_nd);
11103 		return (B_FALSE);
11104 	}
11105 	if (!nd_load(&tcp_g_nd, "tcp_reserved_port_list",
11106 	    tcp_reserved_port_list, NULL, NULL)) {
11107 		nd_free(&tcp_g_nd);
11108 		return (B_FALSE);
11109 	}
11110 	/*
11111 	 * Dummy ndd variables - only to convey obsolescence information
11112 	 * through printing of their name (no get or set routines)
11113 	 * XXX Remove in future releases ?
11114 	 */
11115 	if (!nd_load(&tcp_g_nd,
11116 	    "tcp_close_wait_interval(obsoleted - "
11117 	    "use tcp_time_wait_interval)", NULL, NULL, NULL)) {
11118 		nd_free(&tcp_g_nd);
11119 		return (B_FALSE);
11120 	}
11121 	return (B_TRUE);
11122 }
11123 
11124 /* ndd set routine for tcp_wroff_xtra, tcp_mdt_hdr_{head,tail}_min. */
11125 /* ARGSUSED */
11126 static int
11127 tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
11128     cred_t *cr)
11129 {
11130 	long new_value;
11131 	tcpparam_t *tcppa = (tcpparam_t *)cp;
11132 
11133 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
11134 	    new_value < tcppa->tcp_param_min ||
11135 	    new_value > tcppa->tcp_param_max) {
11136 		return (EINVAL);
11137 	}
11138 	/*
11139 	 * Need to make sure new_value is a multiple of 4.  If it is not,
11140 	 * round it up.  For future 64 bit requirement, we actually make it
11141 	 * a multiple of 8.
11142 	 */
11143 	if (new_value & 0x7) {
11144 		new_value = (new_value & ~0x7) + 0x8;
11145 	}
11146 	tcppa->tcp_param_val = new_value;
11147 	return (0);
11148 }
11149 
11150 /* Set callback routine passed to nd_load by tcp_param_register */
11151 /* ARGSUSED */
11152 static int
11153 tcp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr)
11154 {
11155 	long	new_value;
11156 	tcpparam_t	*tcppa = (tcpparam_t *)cp;
11157 
11158 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
11159 	    new_value < tcppa->tcp_param_min ||
11160 	    new_value > tcppa->tcp_param_max) {
11161 		return (EINVAL);
11162 	}
11163 	tcppa->tcp_param_val = new_value;
11164 	return (0);
11165 }
11166 
11167 /*
11168  * Add a new piece to the tcp reassembly queue.  If the gap at the beginning
11169  * is filled, return as much as we can.  The message passed in may be
11170  * multi-part, chained using b_cont.  "start" is the starting sequence
11171  * number for this piece.
11172  */
11173 static mblk_t *
11174 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start)
11175 {
11176 	uint32_t	end;
11177 	mblk_t		*mp1;
11178 	mblk_t		*mp2;
11179 	mblk_t		*next_mp;
11180 	uint32_t	u1;
11181 
11182 	/* Walk through all the new pieces. */
11183 	do {
11184 		ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
11185 		    (uintptr_t)INT_MAX);
11186 		end = start + (int)(mp->b_wptr - mp->b_rptr);
11187 		next_mp = mp->b_cont;
11188 		if (start == end) {
11189 			/* Empty.  Blast it. */
11190 			freeb(mp);
11191 			continue;
11192 		}
11193 		mp->b_cont = NULL;
11194 		TCP_REASS_SET_SEQ(mp, start);
11195 		TCP_REASS_SET_END(mp, end);
11196 		mp1 = tcp->tcp_reass_tail;
11197 		if (!mp1) {
11198 			tcp->tcp_reass_tail = mp;
11199 			tcp->tcp_reass_head = mp;
11200 			BUMP_MIB(&tcp_mib, tcpInDataUnorderSegs);
11201 			UPDATE_MIB(&tcp_mib,
11202 			    tcpInDataUnorderBytes, end - start);
11203 			continue;
11204 		}
11205 		/* New stuff completely beyond tail? */
11206 		if (SEQ_GEQ(start, TCP_REASS_END(mp1))) {
11207 			/* Link it on end. */
11208 			mp1->b_cont = mp;
11209 			tcp->tcp_reass_tail = mp;
11210 			BUMP_MIB(&tcp_mib, tcpInDataUnorderSegs);
11211 			UPDATE_MIB(&tcp_mib,
11212 			    tcpInDataUnorderBytes, end - start);
11213 			continue;
11214 		}
11215 		mp1 = tcp->tcp_reass_head;
11216 		u1 = TCP_REASS_SEQ(mp1);
11217 		/* New stuff at the front? */
11218 		if (SEQ_LT(start, u1)) {
11219 			/* Yes... Check for overlap. */
11220 			mp->b_cont = mp1;
11221 			tcp->tcp_reass_head = mp;
11222 			tcp_reass_elim_overlap(tcp, mp);
11223 			continue;
11224 		}
11225 		/*
11226 		 * The new piece fits somewhere between the head and tail.
11227 		 * We find our slot, where mp1 precedes us and mp2 trails.
11228 		 */
11229 		for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) {
11230 			u1 = TCP_REASS_SEQ(mp2);
11231 			if (SEQ_LEQ(start, u1))
11232 				break;
11233 		}
11234 		/* Link ourselves in */
11235 		mp->b_cont = mp2;
11236 		mp1->b_cont = mp;
11237 
11238 		/* Trim overlap with following mblk(s) first */
11239 		tcp_reass_elim_overlap(tcp, mp);
11240 
11241 		/* Trim overlap with preceding mblk */
11242 		tcp_reass_elim_overlap(tcp, mp1);
11243 
11244 	} while (start = end, mp = next_mp);
11245 	mp1 = tcp->tcp_reass_head;
11246 	/* Anything ready to go? */
11247 	if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt)
11248 		return (NULL);
11249 	/* Eat what we can off the queue */
11250 	for (;;) {
11251 		mp = mp1->b_cont;
11252 		end = TCP_REASS_END(mp1);
11253 		TCP_REASS_SET_SEQ(mp1, 0);
11254 		TCP_REASS_SET_END(mp1, 0);
11255 		if (!mp) {
11256 			tcp->tcp_reass_tail = NULL;
11257 			break;
11258 		}
11259 		if (end != TCP_REASS_SEQ(mp)) {
11260 			mp1->b_cont = NULL;
11261 			break;
11262 		}
11263 		mp1 = mp;
11264 	}
11265 	mp1 = tcp->tcp_reass_head;
11266 	tcp->tcp_reass_head = mp;
11267 	return (mp1);
11268 }
11269 
11270 /* Eliminate any overlap that mp may have over later mblks */
11271 static void
11272 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp)
11273 {
11274 	uint32_t	end;
11275 	mblk_t		*mp1;
11276 	uint32_t	u1;
11277 
11278 	end = TCP_REASS_END(mp);
11279 	while ((mp1 = mp->b_cont) != NULL) {
11280 		u1 = TCP_REASS_SEQ(mp1);
11281 		if (!SEQ_GT(end, u1))
11282 			break;
11283 		if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) {
11284 			mp->b_wptr -= end - u1;
11285 			TCP_REASS_SET_END(mp, u1);
11286 			BUMP_MIB(&tcp_mib, tcpInDataPartDupSegs);
11287 			UPDATE_MIB(&tcp_mib, tcpInDataPartDupBytes, end - u1);
11288 			break;
11289 		}
11290 		mp->b_cont = mp1->b_cont;
11291 		TCP_REASS_SET_SEQ(mp1, 0);
11292 		TCP_REASS_SET_END(mp1, 0);
11293 		freeb(mp1);
11294 		BUMP_MIB(&tcp_mib, tcpInDataDupSegs);
11295 		UPDATE_MIB(&tcp_mib, tcpInDataDupBytes, end - u1);
11296 	}
11297 	if (!mp1)
11298 		tcp->tcp_reass_tail = mp;
11299 }
11300 
11301 /*
11302  * Send up all messages queued on tcp_rcv_list.
11303  */
11304 static uint_t
11305 tcp_rcv_drain(queue_t *q, tcp_t *tcp)
11306 {
11307 	mblk_t *mp;
11308 	uint_t ret = 0;
11309 	uint_t thwin;
11310 #ifdef DEBUG
11311 	uint_t cnt = 0;
11312 #endif
11313 	/* Can't drain on an eager connection */
11314 	if (tcp->tcp_listener != NULL)
11315 		return (ret);
11316 
11317 	/*
11318 	 * Handle two cases here: we are currently fused or we were
11319 	 * previously fused and have some urgent data to be delivered
11320 	 * upstream.  The latter happens because we either ran out of
11321 	 * memory or were detached and therefore sending the SIGURG was
11322 	 * deferred until this point.  In either case we pass control
11323 	 * over to tcp_fuse_rcv_drain() since it may need to complete
11324 	 * some work.
11325 	 */
11326 	if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) {
11327 		ASSERT(tcp->tcp_fused_sigurg_mp != NULL);
11328 		if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL :
11329 		    &tcp->tcp_fused_sigurg_mp))
11330 			return (ret);
11331 	}
11332 
11333 	while ((mp = tcp->tcp_rcv_list) != NULL) {
11334 		tcp->tcp_rcv_list = mp->b_next;
11335 		mp->b_next = NULL;
11336 #ifdef DEBUG
11337 		cnt += msgdsize(mp);
11338 #endif
11339 		/* Does this need SSL processing first? */
11340 		if ((tcp->tcp_kssl_ctx  != NULL) && (DB_TYPE(mp) == M_DATA)) {
11341 			tcp_kssl_input(tcp, mp);
11342 			continue;
11343 		}
11344 		putnext(q, mp);
11345 	}
11346 	ASSERT(cnt == tcp->tcp_rcv_cnt);
11347 	tcp->tcp_rcv_last_head = NULL;
11348 	tcp->tcp_rcv_last_tail = NULL;
11349 	tcp->tcp_rcv_cnt = 0;
11350 
11351 	/* Learn the latest rwnd information that we sent to the other side. */
11352 	thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
11353 	    << tcp->tcp_rcv_ws;
11354 	/* This is peer's calculated send window (our receive window). */
11355 	thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
11356 	/*
11357 	 * Increase the receive window to max.  But we need to do receiver
11358 	 * SWS avoidance.  This means that we need to check the increase of
11359 	 * of receive window is at least 1 MSS.
11360 	 */
11361 	if (canputnext(q) && (q->q_hiwat - thwin >= tcp->tcp_mss)) {
11362 		/*
11363 		 * If the window that the other side knows is less than max
11364 		 * deferred acks segments, send an update immediately.
11365 		 */
11366 		if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) {
11367 			BUMP_MIB(&tcp_mib, tcpOutWinUpdate);
11368 			ret = TH_ACK_NEEDED;
11369 		}
11370 		tcp->tcp_rwnd = q->q_hiwat;
11371 	}
11372 	/* No need for the push timer now. */
11373 	if (tcp->tcp_push_tid != 0) {
11374 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
11375 		tcp->tcp_push_tid = 0;
11376 	}
11377 	return (ret);
11378 }
11379 
11380 /*
11381  * Queue data on tcp_rcv_list which is a b_next chain.
11382  * tcp_rcv_last_head/tail is the last element of this chain.
11383  * Each element of the chain is a b_cont chain.
11384  *
11385  * M_DATA messages are added to the current element.
11386  * Other messages are added as new (b_next) elements.
11387  */
11388 void
11389 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len)
11390 {
11391 	ASSERT(seg_len == msgdsize(mp));
11392 	ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL);
11393 
11394 	if (tcp->tcp_rcv_list == NULL) {
11395 		ASSERT(tcp->tcp_rcv_last_head == NULL);
11396 		tcp->tcp_rcv_list = mp;
11397 		tcp->tcp_rcv_last_head = mp;
11398 	} else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) {
11399 		tcp->tcp_rcv_last_tail->b_cont = mp;
11400 	} else {
11401 		tcp->tcp_rcv_last_head->b_next = mp;
11402 		tcp->tcp_rcv_last_head = mp;
11403 	}
11404 
11405 	while (mp->b_cont)
11406 		mp = mp->b_cont;
11407 
11408 	tcp->tcp_rcv_last_tail = mp;
11409 	tcp->tcp_rcv_cnt += seg_len;
11410 	tcp->tcp_rwnd -= seg_len;
11411 }
11412 
11413 /*
11414  * DEFAULT TCP ENTRY POINT via squeue on READ side.
11415  *
11416  * This is the default entry function into TCP on the read side. TCP is
11417  * always entered via squeue i.e. using squeue's for mutual exclusion.
11418  * When classifier does a lookup to find the tcp, it also puts a reference
11419  * on the conn structure associated so the tcp is guaranteed to exist
11420  * when we come here. We still need to check the state because it might
11421  * as well has been closed. The squeue processing function i.e. squeue_enter,
11422  * squeue_enter_nodrain, or squeue_drain is responsible for doing the
11423  * CONN_DEC_REF.
11424  *
11425  * Apart from the default entry point, IP also sends packets directly to
11426  * tcp_rput_data for AF_INET fast path and tcp_conn_request for incoming
11427  * connections.
11428  */
11429 void
11430 tcp_input(void *arg, mblk_t *mp, void *arg2)
11431 {
11432 	conn_t	*connp = (conn_t *)arg;
11433 	tcp_t	*tcp = (tcp_t *)connp->conn_tcp;
11434 
11435 	/* arg2 is the sqp */
11436 	ASSERT(arg2 != NULL);
11437 	ASSERT(mp != NULL);
11438 
11439 	/*
11440 	 * Don't accept any input on a closed tcp as this TCP logically does
11441 	 * not exist on the system. Don't proceed further with this TCP.
11442 	 * For eg. this packet could trigger another close of this tcp
11443 	 * which would be disastrous for tcp_refcnt. tcp_close_detached /
11444 	 * tcp_clean_death / tcp_closei_local must be called at most once
11445 	 * on a TCP. In this case we need to refeed the packet into the
11446 	 * classifier and figure out where the packet should go. Need to
11447 	 * preserve the recv_ill somehow. Until we figure that out, for
11448 	 * now just drop the packet if we can't classify the packet.
11449 	 */
11450 	if (tcp->tcp_state == TCPS_CLOSED ||
11451 	    tcp->tcp_state == TCPS_BOUND) {
11452 		conn_t	*new_connp;
11453 
11454 		new_connp = ipcl_classify(mp, connp->conn_zoneid);
11455 		if (new_connp != NULL) {
11456 			tcp_reinput(new_connp, mp, arg2);
11457 			return;
11458 		}
11459 		/* We failed to classify. For now just drop the packet */
11460 		freemsg(mp);
11461 		return;
11462 	}
11463 
11464 	if (DB_TYPE(mp) == M_DATA)
11465 		tcp_rput_data(connp, mp, arg2);
11466 	else
11467 		tcp_rput_common(tcp, mp);
11468 }
11469 
11470 /*
11471  * The read side put procedure.
11472  * The packets passed up by ip are assume to be aligned according to
11473  * OK_32PTR and the IP+TCP headers fitting in the first mblk.
11474  */
11475 static void
11476 tcp_rput_common(tcp_t *tcp, mblk_t *mp)
11477 {
11478 	/*
11479 	 * tcp_rput_data() does not expect M_CTL except for the case
11480 	 * where tcp_ipv6_recvancillary is set and we get a IN_PKTINFO
11481 	 * type. Need to make sure that any other M_CTLs don't make
11482 	 * it to tcp_rput_data since it is not expecting any and doesn't
11483 	 * check for it.
11484 	 */
11485 	if (DB_TYPE(mp) == M_CTL) {
11486 		switch (*(uint32_t *)(mp->b_rptr)) {
11487 		case TCP_IOC_ABORT_CONN:
11488 			/*
11489 			 * Handle connection abort request.
11490 			 */
11491 			tcp_ioctl_abort_handler(tcp, mp);
11492 			return;
11493 		case IPSEC_IN:
11494 			/*
11495 			 * Only secure icmp arrive in TCP and they
11496 			 * don't go through data path.
11497 			 */
11498 			tcp_icmp_error(tcp, mp);
11499 			return;
11500 		case IN_PKTINFO:
11501 			/*
11502 			 * Handle IPV6_RECVPKTINFO socket option on AF_INET6
11503 			 * sockets that are receiving IPv4 traffic. tcp
11504 			 */
11505 			ASSERT(tcp->tcp_family == AF_INET6);
11506 			ASSERT(tcp->tcp_ipv6_recvancillary &
11507 			    TCP_IPV6_RECVPKTINFO);
11508 			tcp_rput_data(tcp->tcp_connp, mp,
11509 			    tcp->tcp_connp->conn_sqp);
11510 			return;
11511 		case MDT_IOC_INFO_UPDATE:
11512 			/*
11513 			 * Handle Multidata information update; the
11514 			 * following routine will free the message.
11515 			 */
11516 			if (tcp->tcp_connp->conn_mdt_ok) {
11517 				tcp_mdt_update(tcp,
11518 				    &((ip_mdt_info_t *)mp->b_rptr)->mdt_capab,
11519 				    B_FALSE);
11520 			}
11521 			freemsg(mp);
11522 			return;
11523 		default:
11524 			break;
11525 		}
11526 	}
11527 
11528 	/* No point processing the message if tcp is already closed */
11529 	if (TCP_IS_DETACHED_NONEAGER(tcp)) {
11530 		freemsg(mp);
11531 		return;
11532 	}
11533 
11534 	tcp_rput_other(tcp, mp);
11535 }
11536 
11537 
11538 /* The minimum of smoothed mean deviation in RTO calculation. */
11539 #define	TCP_SD_MIN	400
11540 
11541 /*
11542  * Set RTO for this connection.  The formula is from Jacobson and Karels'
11543  * "Congestion Avoidance and Control" in SIGCOMM '88.  The variable names
11544  * are the same as those in Appendix A.2 of that paper.
11545  *
11546  * m = new measurement
11547  * sa = smoothed RTT average (8 * average estimates).
11548  * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates).
11549  */
11550 static void
11551 tcp_set_rto(tcp_t *tcp, clock_t rtt)
11552 {
11553 	long m = TICK_TO_MSEC(rtt);
11554 	clock_t sa = tcp->tcp_rtt_sa;
11555 	clock_t sv = tcp->tcp_rtt_sd;
11556 	clock_t rto;
11557 
11558 	BUMP_MIB(&tcp_mib, tcpRttUpdate);
11559 	tcp->tcp_rtt_update++;
11560 
11561 	/* tcp_rtt_sa is not 0 means this is a new sample. */
11562 	if (sa != 0) {
11563 		/*
11564 		 * Update average estimator:
11565 		 *	new rtt = 7/8 old rtt + 1/8 Error
11566 		 */
11567 
11568 		/* m is now Error in estimate. */
11569 		m -= sa >> 3;
11570 		if ((sa += m) <= 0) {
11571 			/*
11572 			 * Don't allow the smoothed average to be negative.
11573 			 * We use 0 to denote reinitialization of the
11574 			 * variables.
11575 			 */
11576 			sa = 1;
11577 		}
11578 
11579 		/*
11580 		 * Update deviation estimator:
11581 		 *	new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev)
11582 		 */
11583 		if (m < 0)
11584 			m = -m;
11585 		m -= sv >> 2;
11586 		sv += m;
11587 	} else {
11588 		/*
11589 		 * This follows BSD's implementation.  So the reinitialized
11590 		 * RTO is 3 * m.  We cannot go less than 2 because if the
11591 		 * link is bandwidth dominated, doubling the window size
11592 		 * during slow start means doubling the RTT.  We want to be
11593 		 * more conservative when we reinitialize our estimates.  3
11594 		 * is just a convenient number.
11595 		 */
11596 		sa = m << 3;
11597 		sv = m << 1;
11598 	}
11599 	if (sv < TCP_SD_MIN) {
11600 		/*
11601 		 * We do not know that if sa captures the delay ACK
11602 		 * effect as in a long train of segments, a receiver
11603 		 * does not delay its ACKs.  So set the minimum of sv
11604 		 * to be TCP_SD_MIN, which is default to 400 ms, twice
11605 		 * of BSD DATO.  That means the minimum of mean
11606 		 * deviation is 100 ms.
11607 		 *
11608 		 */
11609 		sv = TCP_SD_MIN;
11610 	}
11611 	tcp->tcp_rtt_sa = sa;
11612 	tcp->tcp_rtt_sd = sv;
11613 	/*
11614 	 * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv)
11615 	 *
11616 	 * Add tcp_rexmit_interval extra in case of extreme environment
11617 	 * where the algorithm fails to work.  The default value of
11618 	 * tcp_rexmit_interval_extra should be 0.
11619 	 *
11620 	 * As we use a finer grained clock than BSD and update
11621 	 * RTO for every ACKs, add in another .25 of RTT to the
11622 	 * deviation of RTO to accomodate burstiness of 1/4 of
11623 	 * window size.
11624 	 */
11625 	rto = (sa >> 3) + sv + tcp_rexmit_interval_extra + (sa >> 5);
11626 
11627 	if (rto > tcp_rexmit_interval_max) {
11628 		tcp->tcp_rto = tcp_rexmit_interval_max;
11629 	} else if (rto < tcp_rexmit_interval_min) {
11630 		tcp->tcp_rto = tcp_rexmit_interval_min;
11631 	} else {
11632 		tcp->tcp_rto = rto;
11633 	}
11634 
11635 	/* Now, we can reset tcp_timer_backoff to use the new RTO... */
11636 	tcp->tcp_timer_backoff = 0;
11637 }
11638 
11639 /*
11640  * tcp_get_seg_mp() is called to get the pointer to a segment in the
11641  * send queue which starts at the given seq. no.
11642  *
11643  * Parameters:
11644  *	tcp_t *tcp: the tcp instance pointer.
11645  *	uint32_t seq: the starting seq. no of the requested segment.
11646  *	int32_t *off: after the execution, *off will be the offset to
11647  *		the returned mblk which points to the requested seq no.
11648  *		It is the caller's responsibility to send in a non-null off.
11649  *
11650  * Return:
11651  *	A mblk_t pointer pointing to the requested segment in send queue.
11652  */
11653 static mblk_t *
11654 tcp_get_seg_mp(tcp_t *tcp, uint32_t seq, int32_t *off)
11655 {
11656 	int32_t	cnt;
11657 	mblk_t	*mp;
11658 
11659 	/* Defensive coding.  Make sure we don't send incorrect data. */
11660 	if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt))
11661 		return (NULL);
11662 
11663 	cnt = seq - tcp->tcp_suna;
11664 	mp = tcp->tcp_xmit_head;
11665 	while (cnt > 0 && mp != NULL) {
11666 		cnt -= mp->b_wptr - mp->b_rptr;
11667 		if (cnt < 0) {
11668 			cnt += mp->b_wptr - mp->b_rptr;
11669 			break;
11670 		}
11671 		mp = mp->b_cont;
11672 	}
11673 	ASSERT(mp != NULL);
11674 	*off = cnt;
11675 	return (mp);
11676 }
11677 
11678 /*
11679  * This function handles all retransmissions if SACK is enabled for this
11680  * connection.  First it calculates how many segments can be retransmitted
11681  * based on tcp_pipe.  Then it goes thru the notsack list to find eligible
11682  * segments.  A segment is eligible if sack_cnt for that segment is greater
11683  * than or equal tcp_dupack_fast_retransmit.  After it has retransmitted
11684  * all eligible segments, it checks to see if TCP can send some new segments
11685  * (fast recovery).  If it can, set the appropriate flag for tcp_rput_data().
11686  *
11687  * Parameters:
11688  *	tcp_t *tcp: the tcp structure of the connection.
11689  *	uint_t *flags: in return, appropriate value will be set for
11690  *	tcp_rput_data().
11691  */
11692 static void
11693 tcp_sack_rxmit(tcp_t *tcp, uint_t *flags)
11694 {
11695 	notsack_blk_t	*notsack_blk;
11696 	int32_t		usable_swnd;
11697 	int32_t		mss;
11698 	uint32_t	seg_len;
11699 	mblk_t		*xmit_mp;
11700 
11701 	ASSERT(tcp->tcp_sack_info != NULL);
11702 	ASSERT(tcp->tcp_notsack_list != NULL);
11703 	ASSERT(tcp->tcp_rexmit == B_FALSE);
11704 
11705 	/* Defensive coding in case there is a bug... */
11706 	if (tcp->tcp_notsack_list == NULL) {
11707 		return;
11708 	}
11709 	notsack_blk = tcp->tcp_notsack_list;
11710 	mss = tcp->tcp_mss;
11711 
11712 	/*
11713 	 * Limit the num of outstanding data in the network to be
11714 	 * tcp_cwnd_ssthresh, which is half of the original congestion wnd.
11715 	 */
11716 	usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe;
11717 
11718 	/* At least retransmit 1 MSS of data. */
11719 	if (usable_swnd <= 0) {
11720 		usable_swnd = mss;
11721 	}
11722 
11723 	/* Make sure no new RTT samples will be taken. */
11724 	tcp->tcp_csuna = tcp->tcp_snxt;
11725 
11726 	notsack_blk = tcp->tcp_notsack_list;
11727 	while (usable_swnd > 0) {
11728 		mblk_t		*snxt_mp, *tmp_mp;
11729 		tcp_seq		begin = tcp->tcp_sack_snxt;
11730 		tcp_seq		end;
11731 		int32_t		off;
11732 
11733 		for (; notsack_blk != NULL; notsack_blk = notsack_blk->next) {
11734 			if (SEQ_GT(notsack_blk->end, begin) &&
11735 			    (notsack_blk->sack_cnt >=
11736 			    tcp_dupack_fast_retransmit)) {
11737 				end = notsack_blk->end;
11738 				if (SEQ_LT(begin, notsack_blk->begin)) {
11739 					begin = notsack_blk->begin;
11740 				}
11741 				break;
11742 			}
11743 		}
11744 		/*
11745 		 * All holes are filled.  Manipulate tcp_cwnd to send more
11746 		 * if we can.  Note that after the SACK recovery, tcp_cwnd is
11747 		 * set to tcp_cwnd_ssthresh.
11748 		 */
11749 		if (notsack_blk == NULL) {
11750 			usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe;
11751 			if (usable_swnd <= 0 || tcp->tcp_unsent == 0) {
11752 				tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna;
11753 				ASSERT(tcp->tcp_cwnd > 0);
11754 				return;
11755 			} else {
11756 				usable_swnd = usable_swnd / mss;
11757 				tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna +
11758 				    MAX(usable_swnd * mss, mss);
11759 				*flags |= TH_XMIT_NEEDED;
11760 				return;
11761 			}
11762 		}
11763 
11764 		/*
11765 		 * Note that we may send more than usable_swnd allows here
11766 		 * because of round off, but no more than 1 MSS of data.
11767 		 */
11768 		seg_len = end - begin;
11769 		if (seg_len > mss)
11770 			seg_len = mss;
11771 		snxt_mp = tcp_get_seg_mp(tcp, begin, &off);
11772 		ASSERT(snxt_mp != NULL);
11773 		/* This should not happen.  Defensive coding again... */
11774 		if (snxt_mp == NULL) {
11775 			return;
11776 		}
11777 
11778 		xmit_mp = tcp_xmit_mp(tcp, snxt_mp, seg_len, &off,
11779 		    &tmp_mp, begin, B_TRUE, &seg_len, B_TRUE);
11780 		if (xmit_mp == NULL)
11781 			return;
11782 
11783 		usable_swnd -= seg_len;
11784 		tcp->tcp_pipe += seg_len;
11785 		tcp->tcp_sack_snxt = begin + seg_len;
11786 		TCP_RECORD_TRACE(tcp, xmit_mp, TCP_TRACE_SEND_PKT);
11787 		tcp_send_data(tcp, tcp->tcp_wq, xmit_mp);
11788 
11789 		/*
11790 		 * Update the send timestamp to avoid false retransmission.
11791 		 */
11792 		snxt_mp->b_prev = (mblk_t *)lbolt;
11793 
11794 		BUMP_MIB(&tcp_mib, tcpRetransSegs);
11795 		UPDATE_MIB(&tcp_mib, tcpRetransBytes, seg_len);
11796 		BUMP_MIB(&tcp_mib, tcpOutSackRetransSegs);
11797 		/*
11798 		 * Update tcp_rexmit_max to extend this SACK recovery phase.
11799 		 * This happens when new data sent during fast recovery is
11800 		 * also lost.  If TCP retransmits those new data, it needs
11801 		 * to extend SACK recover phase to avoid starting another
11802 		 * fast retransmit/recovery unnecessarily.
11803 		 */
11804 		if (SEQ_GT(tcp->tcp_sack_snxt, tcp->tcp_rexmit_max)) {
11805 			tcp->tcp_rexmit_max = tcp->tcp_sack_snxt;
11806 		}
11807 	}
11808 }
11809 
11810 /*
11811  * This function handles policy checking at TCP level for non-hard_bound/
11812  * detached connections.
11813  */
11814 static boolean_t
11815 tcp_check_policy(tcp_t *tcp, mblk_t *first_mp, ipha_t *ipha, ip6_t *ip6h,
11816     boolean_t secure, boolean_t mctl_present)
11817 {
11818 	ipsec_latch_t *ipl = NULL;
11819 	ipsec_action_t *act = NULL;
11820 	mblk_t *data_mp;
11821 	ipsec_in_t *ii;
11822 	const char *reason;
11823 	kstat_named_t *counter;
11824 
11825 	ASSERT(mctl_present || !secure);
11826 
11827 	ASSERT((ipha == NULL && ip6h != NULL) ||
11828 	    (ip6h == NULL && ipha != NULL));
11829 
11830 	/*
11831 	 * We don't necessarily have an ipsec_in_act action to verify
11832 	 * policy because of assymetrical policy where we have only
11833 	 * outbound policy and no inbound policy (possible with global
11834 	 * policy).
11835 	 */
11836 	if (!secure) {
11837 		if (act == NULL || act->ipa_act.ipa_type == IPSEC_ACT_BYPASS ||
11838 		    act->ipa_act.ipa_type == IPSEC_ACT_CLEAR)
11839 			return (B_TRUE);
11840 		ipsec_log_policy_failure(tcp->tcp_wq, IPSEC_POLICY_MISMATCH,
11841 		    "tcp_check_policy", ipha, ip6h, secure);
11842 		ip_drop_packet(first_mp, B_TRUE, NULL, NULL,
11843 		    &ipdrops_tcp_clear, &tcp_dropper);
11844 		return (B_FALSE);
11845 	}
11846 
11847 	/*
11848 	 * We have a secure packet.
11849 	 */
11850 	if (act == NULL) {
11851 		ipsec_log_policy_failure(tcp->tcp_wq,
11852 		    IPSEC_POLICY_NOT_NEEDED, "tcp_check_policy", ipha, ip6h,
11853 		    secure);
11854 		ip_drop_packet(first_mp, B_TRUE, NULL, NULL,
11855 		    &ipdrops_tcp_secure, &tcp_dropper);
11856 		return (B_FALSE);
11857 	}
11858 
11859 	/*
11860 	 * XXX This whole routine is currently incorrect.  ipl should
11861 	 * be set to the latch pointer, but is currently not set, so
11862 	 * we initialize it to NULL to avoid picking up random garbage.
11863 	 */
11864 	if (ipl == NULL)
11865 		return (B_TRUE);
11866 
11867 	data_mp = first_mp->b_cont;
11868 
11869 	ii = (ipsec_in_t *)first_mp->b_rptr;
11870 
11871 	if (ipsec_check_ipsecin_latch(ii, data_mp, ipl, ipha, ip6h, &reason,
11872 	    &counter)) {
11873 		BUMP_MIB(&ip_mib, ipsecInSucceeded);
11874 		return (B_TRUE);
11875 	}
11876 	(void) strlog(TCP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE,
11877 	    "tcp inbound policy mismatch: %s, packet dropped\n",
11878 	    reason);
11879 	BUMP_MIB(&ip_mib, ipsecInFailed);
11880 
11881 	ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter, &tcp_dropper);
11882 	return (B_FALSE);
11883 }
11884 
11885 /*
11886  * tcp_ss_rexmit() is called in tcp_rput_data() to do slow start
11887  * retransmission after a timeout.
11888  *
11889  * To limit the number of duplicate segments, we limit the number of segment
11890  * to be sent in one time to tcp_snd_burst, the burst variable.
11891  */
11892 static void
11893 tcp_ss_rexmit(tcp_t *tcp)
11894 {
11895 	uint32_t	snxt;
11896 	uint32_t	smax;
11897 	int32_t		win;
11898 	int32_t		mss;
11899 	int32_t		off;
11900 	int32_t		burst = tcp->tcp_snd_burst;
11901 	mblk_t		*snxt_mp;
11902 
11903 	/*
11904 	 * Note that tcp_rexmit can be set even though TCP has retransmitted
11905 	 * all unack'ed segments.
11906 	 */
11907 	if (SEQ_LT(tcp->tcp_rexmit_nxt, tcp->tcp_rexmit_max)) {
11908 		smax = tcp->tcp_rexmit_max;
11909 		snxt = tcp->tcp_rexmit_nxt;
11910 		if (SEQ_LT(snxt, tcp->tcp_suna)) {
11911 			snxt = tcp->tcp_suna;
11912 		}
11913 		win = MIN(tcp->tcp_cwnd, tcp->tcp_swnd);
11914 		win -= snxt - tcp->tcp_suna;
11915 		mss = tcp->tcp_mss;
11916 		snxt_mp = tcp_get_seg_mp(tcp, snxt, &off);
11917 
11918 		while (SEQ_LT(snxt, smax) && (win > 0) &&
11919 		    (burst > 0) && (snxt_mp != NULL)) {
11920 			mblk_t	*xmit_mp;
11921 			mblk_t	*old_snxt_mp = snxt_mp;
11922 			uint32_t cnt = mss;
11923 
11924 			if (win < cnt) {
11925 				cnt = win;
11926 			}
11927 			if (SEQ_GT(snxt + cnt, smax)) {
11928 				cnt = smax - snxt;
11929 			}
11930 			xmit_mp = tcp_xmit_mp(tcp, snxt_mp, cnt, &off,
11931 			    &snxt_mp, snxt, B_TRUE, &cnt, B_TRUE);
11932 			if (xmit_mp == NULL)
11933 				return;
11934 
11935 			tcp_send_data(tcp, tcp->tcp_wq, xmit_mp);
11936 
11937 			snxt += cnt;
11938 			win -= cnt;
11939 			/*
11940 			 * Update the send timestamp to avoid false
11941 			 * retransmission.
11942 			 */
11943 			old_snxt_mp->b_prev = (mblk_t *)lbolt;
11944 			BUMP_MIB(&tcp_mib, tcpRetransSegs);
11945 			UPDATE_MIB(&tcp_mib, tcpRetransBytes, cnt);
11946 
11947 			tcp->tcp_rexmit_nxt = snxt;
11948 			burst--;
11949 		}
11950 		/*
11951 		 * If we have transmitted all we have at the time
11952 		 * we started the retranmission, we can leave
11953 		 * the rest of the job to tcp_wput_data().  But we
11954 		 * need to check the send window first.  If the
11955 		 * win is not 0, go on with tcp_wput_data().
11956 		 */
11957 		if (SEQ_LT(snxt, smax) || win == 0) {
11958 			return;
11959 		}
11960 	}
11961 	/* Only call tcp_wput_data() if there is data to be sent. */
11962 	if (tcp->tcp_unsent) {
11963 		tcp_wput_data(tcp, NULL, B_FALSE);
11964 	}
11965 }
11966 
11967 /*
11968  * Process all TCP option in SYN segment.  Note that this function should
11969  * be called after tcp_adapt_ire() is called so that the necessary info
11970  * from IRE is already set in the tcp structure.
11971  *
11972  * This function sets up the correct tcp_mss value according to the
11973  * MSS option value and our header size.  It also sets up the window scale
11974  * and timestamp values, and initialize SACK info blocks.  But it does not
11975  * change receive window size after setting the tcp_mss value.  The caller
11976  * should do the appropriate change.
11977  */
11978 void
11979 tcp_process_options(tcp_t *tcp, tcph_t *tcph)
11980 {
11981 	int options;
11982 	tcp_opt_t tcpopt;
11983 	uint32_t mss_max;
11984 	char *tmp_tcph;
11985 
11986 	tcpopt.tcp = NULL;
11987 	options = tcp_parse_options(tcph, &tcpopt);
11988 
11989 	/*
11990 	 * Process MSS option.  Note that MSS option value does not account
11991 	 * for IP or TCP options.  This means that it is equal to MTU - minimum
11992 	 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for
11993 	 * IPv6.
11994 	 */
11995 	if (!(options & TCP_OPT_MSS_PRESENT)) {
11996 		if (tcp->tcp_ipversion == IPV4_VERSION)
11997 			tcpopt.tcp_opt_mss = tcp_mss_def_ipv4;
11998 		else
11999 			tcpopt.tcp_opt_mss = tcp_mss_def_ipv6;
12000 	} else {
12001 		if (tcp->tcp_ipversion == IPV4_VERSION)
12002 			mss_max = tcp_mss_max_ipv4;
12003 		else
12004 			mss_max = tcp_mss_max_ipv6;
12005 		if (tcpopt.tcp_opt_mss < tcp_mss_min)
12006 			tcpopt.tcp_opt_mss = tcp_mss_min;
12007 		else if (tcpopt.tcp_opt_mss > mss_max)
12008 			tcpopt.tcp_opt_mss = mss_max;
12009 	}
12010 
12011 	/* Process Window Scale option. */
12012 	if (options & TCP_OPT_WSCALE_PRESENT) {
12013 		tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale;
12014 		tcp->tcp_snd_ws_ok = B_TRUE;
12015 	} else {
12016 		tcp->tcp_snd_ws = B_FALSE;
12017 		tcp->tcp_snd_ws_ok = B_FALSE;
12018 		tcp->tcp_rcv_ws = B_FALSE;
12019 	}
12020 
12021 	/* Process Timestamp option. */
12022 	if ((options & TCP_OPT_TSTAMP_PRESENT) &&
12023 	    (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) {
12024 		tmp_tcph = (char *)tcp->tcp_tcph;
12025 
12026 		tcp->tcp_snd_ts_ok = B_TRUE;
12027 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
12028 		tcp->tcp_last_rcv_lbolt = lbolt64;
12029 		ASSERT(OK_32PTR(tmp_tcph));
12030 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
12031 
12032 		/* Fill in our template header with basic timestamp option. */
12033 		tmp_tcph += tcp->tcp_tcp_hdr_len;
12034 		tmp_tcph[0] = TCPOPT_NOP;
12035 		tmp_tcph[1] = TCPOPT_NOP;
12036 		tmp_tcph[2] = TCPOPT_TSTAMP;
12037 		tmp_tcph[3] = TCPOPT_TSTAMP_LEN;
12038 		tcp->tcp_hdr_len += TCPOPT_REAL_TS_LEN;
12039 		tcp->tcp_tcp_hdr_len += TCPOPT_REAL_TS_LEN;
12040 		tcp->tcp_tcph->th_offset_and_rsrvd[0] += (3 << 4);
12041 	} else {
12042 		tcp->tcp_snd_ts_ok = B_FALSE;
12043 	}
12044 
12045 	/*
12046 	 * Process SACK options.  If SACK is enabled for this connection,
12047 	 * then allocate the SACK info structure.  Note the following ways
12048 	 * when tcp_snd_sack_ok is set to true.
12049 	 *
12050 	 * For active connection: in tcp_adapt_ire() called in
12051 	 * tcp_rput_other(), or in tcp_rput_other() when tcp_sack_permitted
12052 	 * is checked.
12053 	 *
12054 	 * For passive connection: in tcp_adapt_ire() called in
12055 	 * tcp_accept_comm().
12056 	 *
12057 	 * That's the reason why the extra TCP_IS_DETACHED() check is there.
12058 	 * That check makes sure that if we did not send a SACK OK option,
12059 	 * we will not enable SACK for this connection even though the other
12060 	 * side sends us SACK OK option.  For active connection, the SACK
12061 	 * info structure has already been allocated.  So we need to free
12062 	 * it if SACK is disabled.
12063 	 */
12064 	if ((options & TCP_OPT_SACK_OK_PRESENT) &&
12065 	    (tcp->tcp_snd_sack_ok ||
12066 	    (tcp_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) {
12067 		/* This should be true only in the passive case. */
12068 		if (tcp->tcp_sack_info == NULL) {
12069 			ASSERT(TCP_IS_DETACHED(tcp));
12070 			tcp->tcp_sack_info =
12071 			    kmem_cache_alloc(tcp_sack_info_cache, KM_NOSLEEP);
12072 		}
12073 		if (tcp->tcp_sack_info == NULL) {
12074 			tcp->tcp_snd_sack_ok = B_FALSE;
12075 		} else {
12076 			tcp->tcp_snd_sack_ok = B_TRUE;
12077 			if (tcp->tcp_snd_ts_ok) {
12078 				tcp->tcp_max_sack_blk = 3;
12079 			} else {
12080 				tcp->tcp_max_sack_blk = 4;
12081 			}
12082 		}
12083 	} else {
12084 		/*
12085 		 * Resetting tcp_snd_sack_ok to B_FALSE so that
12086 		 * no SACK info will be used for this
12087 		 * connection.  This assumes that SACK usage
12088 		 * permission is negotiated.  This may need
12089 		 * to be changed once this is clarified.
12090 		 */
12091 		if (tcp->tcp_sack_info != NULL) {
12092 			ASSERT(tcp->tcp_notsack_list == NULL);
12093 			kmem_cache_free(tcp_sack_info_cache,
12094 			    tcp->tcp_sack_info);
12095 			tcp->tcp_sack_info = NULL;
12096 		}
12097 		tcp->tcp_snd_sack_ok = B_FALSE;
12098 	}
12099 
12100 	/*
12101 	 * Now we know the exact TCP/IP header length, subtract
12102 	 * that from tcp_mss to get our side's MSS.
12103 	 */
12104 	tcp->tcp_mss -= tcp->tcp_hdr_len;
12105 	/*
12106 	 * Here we assume that the other side's header size will be equal to
12107 	 * our header size.  We calculate the real MSS accordingly.  Need to
12108 	 * take into additional stuffs IPsec puts in.
12109 	 *
12110 	 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header)
12111 	 */
12112 	tcpopt.tcp_opt_mss -= tcp->tcp_hdr_len + tcp->tcp_ipsec_overhead -
12113 	    ((tcp->tcp_ipversion == IPV4_VERSION ?
12114 	    IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH);
12115 
12116 	/*
12117 	 * Set MSS to the smaller one of both ends of the connection.
12118 	 * We should not have called tcp_mss_set() before, but our
12119 	 * side of the MSS should have been set to a proper value
12120 	 * by tcp_adapt_ire().  tcp_mss_set() will also set up the
12121 	 * STREAM head parameters properly.
12122 	 *
12123 	 * If we have a larger-than-16-bit window but the other side
12124 	 * didn't want to do window scale, tcp_rwnd_set() will take
12125 	 * care of that.
12126 	 */
12127 	tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss));
12128 }
12129 
12130 /*
12131  * Sends the T_CONN_IND to the listener. The caller calls this
12132  * functions via squeue to get inside the listener's perimeter
12133  * once the 3 way hand shake is done a T_CONN_IND needs to be
12134  * sent. As an optimization, the caller can call this directly
12135  * if listener's perimeter is same as eager's.
12136  */
12137 /* ARGSUSED */
12138 void
12139 tcp_send_conn_ind(void *arg, mblk_t *mp, void *arg2)
12140 {
12141 	conn_t			*lconnp = (conn_t *)arg;
12142 	tcp_t			*listener = lconnp->conn_tcp;
12143 	tcp_t			*tcp;
12144 	struct T_conn_ind	*conn_ind;
12145 	ipaddr_t 		*addr_cache;
12146 	boolean_t		need_send_conn_ind = B_FALSE;
12147 
12148 	/* retrieve the eager */
12149 	conn_ind = (struct T_conn_ind *)mp->b_rptr;
12150 	ASSERT(conn_ind->OPT_offset != 0 &&
12151 	    conn_ind->OPT_length == sizeof (intptr_t));
12152 	bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp,
12153 		conn_ind->OPT_length);
12154 
12155 	/*
12156 	 * TLI/XTI applications will get confused by
12157 	 * sending eager as an option since it violates
12158 	 * the option semantics. So remove the eager as
12159 	 * option since TLI/XTI app doesn't need it anyway.
12160 	 */
12161 	if (!TCP_IS_SOCKET(listener)) {
12162 		conn_ind->OPT_length = 0;
12163 		conn_ind->OPT_offset = 0;
12164 	}
12165 	if (listener->tcp_state == TCPS_CLOSED ||
12166 	    TCP_IS_DETACHED(listener)) {
12167 		/*
12168 		 * If listener has closed, it would have caused a
12169 		 * a cleanup/blowoff to happen for the eager. We
12170 		 * just need to return.
12171 		 */
12172 		freemsg(mp);
12173 		return;
12174 	}
12175 
12176 
12177 	/*
12178 	 * if the conn_req_q is full defer passing up the
12179 	 * T_CONN_IND until space is availabe after t_accept()
12180 	 * processing
12181 	 */
12182 	mutex_enter(&listener->tcp_eager_lock);
12183 	if (listener->tcp_conn_req_cnt_q < listener->tcp_conn_req_max) {
12184 		tcp_t *tail;
12185 
12186 		/*
12187 		 * The eager already has an extra ref put in tcp_rput_data
12188 		 * so that it stays till accept comes back even though it
12189 		 * might get into TCPS_CLOSED as a result of a TH_RST etc.
12190 		 */
12191 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
12192 		listener->tcp_conn_req_cnt_q0--;
12193 		listener->tcp_conn_req_cnt_q++;
12194 
12195 		/* Move from SYN_RCVD to ESTABLISHED list  */
12196 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
12197 		    tcp->tcp_eager_prev_q0;
12198 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
12199 		    tcp->tcp_eager_next_q0;
12200 		tcp->tcp_eager_prev_q0 = NULL;
12201 		tcp->tcp_eager_next_q0 = NULL;
12202 
12203 		/*
12204 		 * Insert at end of the queue because sockfs
12205 		 * sends down T_CONN_RES in chronological
12206 		 * order. Leaving the older conn indications
12207 		 * at front of the queue helps reducing search
12208 		 * time.
12209 		 */
12210 		tail = listener->tcp_eager_last_q;
12211 		if (tail != NULL)
12212 			tail->tcp_eager_next_q = tcp;
12213 		else
12214 			listener->tcp_eager_next_q = tcp;
12215 		listener->tcp_eager_last_q = tcp;
12216 		tcp->tcp_eager_next_q = NULL;
12217 		/*
12218 		 * Delay sending up the T_conn_ind until we are
12219 		 * done with the eager. Once we have have sent up
12220 		 * the T_conn_ind, the accept can potentially complete
12221 		 * any time and release the refhold we have on the eager.
12222 		 */
12223 		need_send_conn_ind = B_TRUE;
12224 	} else {
12225 		/*
12226 		 * Defer connection on q0 and set deferred
12227 		 * connection bit true
12228 		 */
12229 		tcp->tcp_conn_def_q0 = B_TRUE;
12230 
12231 		/* take tcp out of q0 ... */
12232 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
12233 		    tcp->tcp_eager_next_q0;
12234 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
12235 		    tcp->tcp_eager_prev_q0;
12236 
12237 		/* ... and place it at the end of q0 */
12238 		tcp->tcp_eager_prev_q0 = listener->tcp_eager_prev_q0;
12239 		tcp->tcp_eager_next_q0 = listener;
12240 		listener->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp;
12241 		listener->tcp_eager_prev_q0 = tcp;
12242 		tcp->tcp_conn.tcp_eager_conn_ind = mp;
12243 	}
12244 
12245 	/* we have timed out before */
12246 	if (tcp->tcp_syn_rcvd_timeout != 0) {
12247 		tcp->tcp_syn_rcvd_timeout = 0;
12248 		listener->tcp_syn_rcvd_timeout--;
12249 		if (listener->tcp_syn_defense &&
12250 		    listener->tcp_syn_rcvd_timeout <=
12251 		    (tcp_conn_req_max_q0 >> 5) &&
12252 		    10*MINUTES < TICK_TO_MSEC(lbolt64 -
12253 			listener->tcp_last_rcv_lbolt)) {
12254 			/*
12255 			 * Turn off the defense mode if we
12256 			 * believe the SYN attack is over.
12257 			 */
12258 			listener->tcp_syn_defense = B_FALSE;
12259 			if (listener->tcp_ip_addr_cache) {
12260 				kmem_free((void *)listener->tcp_ip_addr_cache,
12261 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
12262 				listener->tcp_ip_addr_cache = NULL;
12263 			}
12264 		}
12265 	}
12266 	addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache);
12267 	if (addr_cache != NULL) {
12268 		/*
12269 		 * We have finished a 3-way handshake with this
12270 		 * remote host. This proves the IP addr is good.
12271 		 * Cache it!
12272 		 */
12273 		addr_cache[IP_ADDR_CACHE_HASH(
12274 			tcp->tcp_remote)] = tcp->tcp_remote;
12275 	}
12276 	mutex_exit(&listener->tcp_eager_lock);
12277 	if (need_send_conn_ind)
12278 		putnext(listener->tcp_rq, mp);
12279 }
12280 
12281 mblk_t *
12282 tcp_find_pktinfo(tcp_t *tcp, mblk_t *mp, uint_t *ipversp, uint_t *ip_hdr_lenp,
12283     uint_t *ifindexp, ip6_pkt_t *ippp)
12284 {
12285 	in_pktinfo_t	*pinfo;
12286 	ip6_t		*ip6h;
12287 	uchar_t		*rptr;
12288 	mblk_t		*first_mp = mp;
12289 	boolean_t	mctl_present = B_FALSE;
12290 	uint_t 		ifindex = 0;
12291 	ip6_pkt_t	ipp;
12292 	uint_t		ipvers;
12293 	uint_t		ip_hdr_len;
12294 
12295 	rptr = mp->b_rptr;
12296 	ASSERT(OK_32PTR(rptr));
12297 	ASSERT(tcp != NULL);
12298 	ipp.ipp_fields = 0;
12299 
12300 	switch DB_TYPE(mp) {
12301 	case M_CTL:
12302 		mp = mp->b_cont;
12303 		if (mp == NULL) {
12304 			freemsg(first_mp);
12305 			return (NULL);
12306 		}
12307 		if (DB_TYPE(mp) != M_DATA) {
12308 			freemsg(first_mp);
12309 			return (NULL);
12310 		}
12311 		mctl_present = B_TRUE;
12312 		break;
12313 	case M_DATA:
12314 		break;
12315 	default:
12316 		cmn_err(CE_NOTE, "tcp_find_pktinfo: unknown db_type");
12317 		freemsg(mp);
12318 		return (NULL);
12319 	}
12320 	ipvers = IPH_HDR_VERSION(rptr);
12321 	if (ipvers == IPV4_VERSION) {
12322 		if (tcp == NULL) {
12323 			ip_hdr_len = IPH_HDR_LENGTH(rptr);
12324 			goto done;
12325 		}
12326 
12327 		ipp.ipp_fields |= IPPF_HOPLIMIT;
12328 		ipp.ipp_hoplimit = ((ipha_t *)rptr)->ipha_ttl;
12329 
12330 		/*
12331 		 * If we have IN_PKTINFO in an M_CTL and tcp_ipv6_recvancillary
12332 		 * has TCP_IPV6_RECVPKTINFO set, pass I/F index along in ipp.
12333 		 */
12334 		if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) &&
12335 		    mctl_present) {
12336 			pinfo = (in_pktinfo_t *)first_mp->b_rptr;
12337 			if ((MBLKL(first_mp) == sizeof (in_pktinfo_t)) &&
12338 			    (pinfo->in_pkt_ulp_type == IN_PKTINFO) &&
12339 			    (pinfo->in_pkt_flags & IPF_RECVIF)) {
12340 				ipp.ipp_fields |= IPPF_IFINDEX;
12341 				ipp.ipp_ifindex = pinfo->in_pkt_ifindex;
12342 				ifindex = pinfo->in_pkt_ifindex;
12343 			}
12344 			freeb(first_mp);
12345 			mctl_present = B_FALSE;
12346 		}
12347 		ip_hdr_len = IPH_HDR_LENGTH(rptr);
12348 	} else {
12349 		ip6h = (ip6_t *)rptr;
12350 
12351 		ASSERT(ipvers == IPV6_VERSION);
12352 		ipp.ipp_fields = IPPF_HOPLIMIT | IPPF_TCLASS;
12353 		ipp.ipp_tclass = (ip6h->ip6_flow & 0x0FF00000) >> 20;
12354 		ipp.ipp_hoplimit = ip6h->ip6_hops;
12355 
12356 		if (ip6h->ip6_nxt != IPPROTO_TCP) {
12357 			uint8_t	nexthdrp;
12358 
12359 			/* Look for ifindex information */
12360 			if (ip6h->ip6_nxt == IPPROTO_RAW) {
12361 				ip6i_t *ip6i = (ip6i_t *)ip6h;
12362 				if ((uchar_t *)&ip6i[1] > mp->b_wptr) {
12363 					BUMP_MIB(&ip_mib, tcpInErrs);
12364 					freemsg(first_mp);
12365 					return (NULL);
12366 				}
12367 
12368 				if (ip6i->ip6i_flags & IP6I_IFINDEX) {
12369 					ASSERT(ip6i->ip6i_ifindex != 0);
12370 					ipp.ipp_fields |= IPPF_IFINDEX;
12371 					ipp.ipp_ifindex = ip6i->ip6i_ifindex;
12372 					ifindex = ip6i->ip6i_ifindex;
12373 				}
12374 				rptr = (uchar_t *)&ip6i[1];
12375 				mp->b_rptr = rptr;
12376 				if (rptr == mp->b_wptr) {
12377 					mblk_t *mp1;
12378 					mp1 = mp->b_cont;
12379 					freeb(mp);
12380 					mp = mp1;
12381 					rptr = mp->b_rptr;
12382 				}
12383 				if (MBLKL(mp) < IPV6_HDR_LEN +
12384 				    sizeof (tcph_t)) {
12385 					BUMP_MIB(&ip_mib, tcpInErrs);
12386 					freemsg(first_mp);
12387 					return (NULL);
12388 				}
12389 				ip6h = (ip6_t *)rptr;
12390 			}
12391 
12392 			/*
12393 			 * Find any potentially interesting extension headers
12394 			 * as well as the length of the IPv6 + extension
12395 			 * headers.
12396 			 */
12397 			ip_hdr_len = ip_find_hdr_v6(mp, ip6h, &ipp, &nexthdrp);
12398 			/* Verify if this is a TCP packet */
12399 			if (nexthdrp != IPPROTO_TCP) {
12400 				BUMP_MIB(&ip_mib, tcpInErrs);
12401 				freemsg(first_mp);
12402 				return (NULL);
12403 			}
12404 		} else {
12405 			ip_hdr_len = IPV6_HDR_LEN;
12406 		}
12407 	}
12408 
12409 done:
12410 	if (ipversp != NULL)
12411 		*ipversp = ipvers;
12412 	if (ip_hdr_lenp != NULL)
12413 		*ip_hdr_lenp = ip_hdr_len;
12414 	if (ippp != NULL)
12415 		*ippp = ipp;
12416 	if (ifindexp != NULL)
12417 		*ifindexp = ifindex;
12418 	if (mctl_present) {
12419 		freeb(first_mp);
12420 	}
12421 	return (mp);
12422 }
12423 
12424 /*
12425  * Handle M_DATA messages from IP. Its called directly from IP via
12426  * squeue for AF_INET type sockets fast path. No M_CTL are expected
12427  * in this path.
12428  *
12429  * For everything else (including AF_INET6 sockets with 'tcp_ipversion'
12430  * v4 and v6), we are called through tcp_input() and a M_CTL can
12431  * be present for options but tcp_find_pktinfo() deals with it. We
12432  * only expect M_DATA packets after tcp_find_pktinfo() is done.
12433  *
12434  * The first argument is always the connp/tcp to which the mp belongs.
12435  * There are no exceptions to this rule. The caller has already put
12436  * a reference on this connp/tcp and once tcp_rput_data() returns,
12437  * the squeue will do the refrele.
12438  *
12439  * The TH_SYN for the listener directly go to tcp_conn_request via
12440  * squeue.
12441  *
12442  * sqp: NULL = recursive, sqp != NULL means called from squeue
12443  */
12444 void
12445 tcp_rput_data(void *arg, mblk_t *mp, void *arg2)
12446 {
12447 	int32_t		bytes_acked;
12448 	int32_t		gap;
12449 	mblk_t		*mp1;
12450 	uint_t		flags;
12451 	uint32_t	new_swnd = 0;
12452 	uchar_t		*iphdr;
12453 	uchar_t		*rptr;
12454 	int32_t		rgap;
12455 	uint32_t	seg_ack;
12456 	int		seg_len;
12457 	uint_t		ip_hdr_len;
12458 	uint32_t	seg_seq;
12459 	tcph_t		*tcph;
12460 	int		urp;
12461 	tcp_opt_t	tcpopt;
12462 	uint_t		ipvers;
12463 	ip6_pkt_t	ipp;
12464 	boolean_t	ofo_seg = B_FALSE; /* Out of order segment */
12465 	uint32_t	cwnd;
12466 	uint32_t	add;
12467 	int		npkt;
12468 	int		mss;
12469 	conn_t		*connp = (conn_t *)arg;
12470 	squeue_t	*sqp = (squeue_t *)arg2;
12471 	tcp_t		*tcp = connp->conn_tcp;
12472 
12473 	/*
12474 	 * RST from fused tcp loopback peer should trigger an unfuse.
12475 	 */
12476 	if (tcp->tcp_fused) {
12477 		TCP_STAT(tcp_fusion_aborted);
12478 		tcp_unfuse(tcp);
12479 	}
12480 
12481 	iphdr = mp->b_rptr;
12482 	rptr = mp->b_rptr;
12483 	ASSERT(OK_32PTR(rptr));
12484 
12485 	/*
12486 	 * An AF_INET socket is not capable of receiving any pktinfo. Do inline
12487 	 * processing here. For rest call tcp_find_pktinfo to fill up the
12488 	 * necessary information.
12489 	 */
12490 	if (IPCL_IS_TCP4(connp)) {
12491 		ipvers = IPV4_VERSION;
12492 		ip_hdr_len = IPH_HDR_LENGTH(rptr);
12493 	} else {
12494 		mp = tcp_find_pktinfo(tcp, mp, &ipvers, &ip_hdr_len,
12495 		    NULL, &ipp);
12496 		if (mp == NULL) {
12497 			TCP_STAT(tcp_rput_v6_error);
12498 			return;
12499 		}
12500 		iphdr = mp->b_rptr;
12501 		rptr = mp->b_rptr;
12502 	}
12503 	ASSERT(DB_TYPE(mp) == M_DATA);
12504 
12505 	tcph = (tcph_t *)&rptr[ip_hdr_len];
12506 	seg_seq = ABE32_TO_U32(tcph->th_seq);
12507 	seg_ack = ABE32_TO_U32(tcph->th_ack);
12508 	ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
12509 	seg_len = (int)(mp->b_wptr - rptr) -
12510 	    (ip_hdr_len + TCP_HDR_LENGTH(tcph));
12511 	if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) {
12512 		do {
12513 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
12514 			    (uintptr_t)INT_MAX);
12515 			seg_len += (int)(mp1->b_wptr - mp1->b_rptr);
12516 		} while ((mp1 = mp1->b_cont) != NULL &&
12517 		    mp1->b_datap->db_type == M_DATA);
12518 	}
12519 
12520 	if (tcp->tcp_state == TCPS_TIME_WAIT) {
12521 		tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack,
12522 		    seg_len, tcph);
12523 		return;
12524 	}
12525 
12526 	if (sqp != NULL) {
12527 		/*
12528 		 * This is the correct place to update tcp_last_recv_time. Note
12529 		 * that it is also updated for tcp structure that belongs to
12530 		 * global and listener queues which do not really need updating.
12531 		 * But that should not cause any harm.  And it is updated for
12532 		 * all kinds of incoming segments, not only for data segments.
12533 		 */
12534 		tcp->tcp_last_recv_time = lbolt;
12535 	}
12536 
12537 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
12538 
12539 	BUMP_LOCAL(tcp->tcp_ibsegs);
12540 	TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_RECV_PKT);
12541 
12542 	if ((flags & TH_URG) && sqp != NULL) {
12543 		/*
12544 		 * TCP can't handle urgent pointers that arrive before
12545 		 * the connection has been accept()ed since it can't
12546 		 * buffer OOB data.  Discard segment if this happens.
12547 		 *
12548 		 * Nor can it reassemble urgent pointers, so discard
12549 		 * if it's not the next segment expected.
12550 		 *
12551 		 * Otherwise, collapse chain into one mblk (discard if
12552 		 * that fails).  This makes sure the headers, retransmitted
12553 		 * data, and new data all are in the same mblk.
12554 		 */
12555 		ASSERT(mp != NULL);
12556 		if (tcp->tcp_listener || !pullupmsg(mp, -1)) {
12557 			freemsg(mp);
12558 			return;
12559 		}
12560 		/* Update pointers into message */
12561 		iphdr = rptr = mp->b_rptr;
12562 		tcph = (tcph_t *)&rptr[ip_hdr_len];
12563 		if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) {
12564 			/*
12565 			 * Since we can't handle any data with this urgent
12566 			 * pointer that is out of sequence, we expunge
12567 			 * the data.  This allows us to still register
12568 			 * the urgent mark and generate the M_PCSIG,
12569 			 * which we can do.
12570 			 */
12571 			mp->b_wptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph);
12572 			seg_len = 0;
12573 		}
12574 	}
12575 
12576 	switch (tcp->tcp_state) {
12577 	case TCPS_SYN_SENT:
12578 		if (flags & TH_ACK) {
12579 			/*
12580 			 * Note that our stack cannot send data before a
12581 			 * connection is established, therefore the
12582 			 * following check is valid.  Otherwise, it has
12583 			 * to be changed.
12584 			 */
12585 			if (SEQ_LEQ(seg_ack, tcp->tcp_iss) ||
12586 			    SEQ_GT(seg_ack, tcp->tcp_snxt)) {
12587 				freemsg(mp);
12588 				if (flags & TH_RST)
12589 					return;
12590 				tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq",
12591 				    tcp, seg_ack, 0, TH_RST);
12592 				return;
12593 			}
12594 			ASSERT(tcp->tcp_suna + 1 == seg_ack);
12595 		}
12596 		if (flags & TH_RST) {
12597 			freemsg(mp);
12598 			if (flags & TH_ACK)
12599 				(void) tcp_clean_death(tcp,
12600 				    ECONNREFUSED, 13);
12601 			return;
12602 		}
12603 		if (!(flags & TH_SYN)) {
12604 			freemsg(mp);
12605 			return;
12606 		}
12607 
12608 		/* Process all TCP options. */
12609 		tcp_process_options(tcp, tcph);
12610 		/*
12611 		 * The following changes our rwnd to be a multiple of the
12612 		 * MIN(peer MSS, our MSS) for performance reason.
12613 		 */
12614 		(void) tcp_rwnd_set(tcp, MSS_ROUNDUP(tcp->tcp_rq->q_hiwat,
12615 		    tcp->tcp_mss));
12616 
12617 		/* Is the other end ECN capable? */
12618 		if (tcp->tcp_ecn_ok) {
12619 			if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) {
12620 				tcp->tcp_ecn_ok = B_FALSE;
12621 			}
12622 		}
12623 		/*
12624 		 * Clear ECN flags because it may interfere with later
12625 		 * processing.
12626 		 */
12627 		flags &= ~(TH_ECE|TH_CWR);
12628 
12629 		tcp->tcp_irs = seg_seq;
12630 		tcp->tcp_rack = seg_seq;
12631 		tcp->tcp_rnxt = seg_seq + 1;
12632 		U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack);
12633 		if (!TCP_IS_DETACHED(tcp)) {
12634 			/* Allocate room for SACK options if needed. */
12635 			if (tcp->tcp_snd_sack_ok) {
12636 				(void) mi_set_sth_wroff(tcp->tcp_rq,
12637 				    tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN +
12638 				    (tcp->tcp_loopback ? 0 : tcp_wroff_xtra));
12639 			} else {
12640 				(void) mi_set_sth_wroff(tcp->tcp_rq,
12641 				    tcp->tcp_hdr_len +
12642 				    (tcp->tcp_loopback ? 0 : tcp_wroff_xtra));
12643 			}
12644 		}
12645 		if (flags & TH_ACK) {
12646 			/*
12647 			 * If we can't get the confirmation upstream, pretend
12648 			 * we didn't even see this one.
12649 			 *
12650 			 * XXX: how can we pretend we didn't see it if we
12651 			 * have updated rnxt et. al.
12652 			 *
12653 			 * For loopback we defer sending up the T_CONN_CON
12654 			 * until after some checks below.
12655 			 */
12656 			mp1 = NULL;
12657 			if (!tcp_conn_con(tcp, iphdr, tcph, mp,
12658 			    tcp->tcp_loopback ? &mp1 : NULL)) {
12659 				freemsg(mp);
12660 				return;
12661 			}
12662 			/* SYN was acked - making progress */
12663 			if (tcp->tcp_ipversion == IPV6_VERSION)
12664 				tcp->tcp_ip_forward_progress = B_TRUE;
12665 
12666 			/* One for the SYN */
12667 			tcp->tcp_suna = tcp->tcp_iss + 1;
12668 			tcp->tcp_valid_bits &= ~TCP_ISS_VALID;
12669 			tcp->tcp_state = TCPS_ESTABLISHED;
12670 
12671 			/*
12672 			 * If SYN was retransmitted, need to reset all
12673 			 * retransmission info.  This is because this
12674 			 * segment will be treated as a dup ACK.
12675 			 */
12676 			if (tcp->tcp_rexmit) {
12677 				tcp->tcp_rexmit = B_FALSE;
12678 				tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
12679 				tcp->tcp_rexmit_max = tcp->tcp_snxt;
12680 				tcp->tcp_snd_burst = tcp->tcp_localnet ?
12681 				    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
12682 				tcp->tcp_ms_we_have_waited = 0;
12683 
12684 				/*
12685 				 * Set tcp_cwnd back to 1 MSS, per
12686 				 * recommendation from
12687 				 * draft-floyd-incr-init-win-01.txt,
12688 				 * Increasing TCP's Initial Window.
12689 				 */
12690 				tcp->tcp_cwnd = tcp->tcp_mss;
12691 			}
12692 
12693 			tcp->tcp_swl1 = seg_seq;
12694 			tcp->tcp_swl2 = seg_ack;
12695 
12696 			new_swnd = BE16_TO_U16(tcph->th_win);
12697 			tcp->tcp_swnd = new_swnd;
12698 			if (new_swnd > tcp->tcp_max_swnd)
12699 				tcp->tcp_max_swnd = new_swnd;
12700 
12701 			/*
12702 			 * Always send the three-way handshake ack immediately
12703 			 * in order to make the connection complete as soon as
12704 			 * possible on the accepting host.
12705 			 */
12706 			flags |= TH_ACK_NEEDED;
12707 
12708 			/*
12709 			 * Special case for loopback.  At this point we have
12710 			 * received SYN-ACK from the remote endpoint.  In
12711 			 * order to ensure that both endpoints reach the
12712 			 * fused state prior to any data exchange, the final
12713 			 * ACK needs to be sent before we indicate T_CONN_CON
12714 			 * to the module upstream.
12715 			 */
12716 			if (tcp->tcp_loopback) {
12717 				mblk_t *ack_mp;
12718 
12719 				ASSERT(!tcp->tcp_unfusable);
12720 				ASSERT(mp1 != NULL);
12721 				/*
12722 				 * For loopback, we always get a pure SYN-ACK
12723 				 * and only need to send back the final ACK
12724 				 * with no data (this is because the other
12725 				 * tcp is ours and we don't do T/TCP).  This
12726 				 * final ACK triggers the passive side to
12727 				 * perform fusion in ESTABLISHED state.
12728 				 */
12729 				if ((ack_mp = tcp_ack_mp(tcp)) != NULL) {
12730 					if (tcp->tcp_ack_tid != 0) {
12731 						(void) TCP_TIMER_CANCEL(tcp,
12732 						    tcp->tcp_ack_tid);
12733 						tcp->tcp_ack_tid = 0;
12734 					}
12735 					TCP_RECORD_TRACE(tcp, ack_mp,
12736 					    TCP_TRACE_SEND_PKT);
12737 					tcp_send_data(tcp, tcp->tcp_wq, ack_mp);
12738 					BUMP_LOCAL(tcp->tcp_obsegs);
12739 					BUMP_MIB(&tcp_mib, tcpOutAck);
12740 
12741 					/* Send up T_CONN_CON */
12742 					putnext(tcp->tcp_rq, mp1);
12743 
12744 					freemsg(mp);
12745 					return;
12746 				}
12747 				/*
12748 				 * Forget fusion; we need to handle more
12749 				 * complex cases below.  Send the deferred
12750 				 * T_CONN_CON message upstream and proceed
12751 				 * as usual.  Mark this tcp as not capable
12752 				 * of fusion.
12753 				 */
12754 				TCP_STAT(tcp_fusion_unfusable);
12755 				tcp->tcp_unfusable = B_TRUE;
12756 				putnext(tcp->tcp_rq, mp1);
12757 			}
12758 
12759 			/*
12760 			 * Check to see if there is data to be sent.  If
12761 			 * yes, set the transmit flag.  Then check to see
12762 			 * if received data processing needs to be done.
12763 			 * If not, go straight to xmit_check.  This short
12764 			 * cut is OK as we don't support T/TCP.
12765 			 */
12766 			if (tcp->tcp_unsent)
12767 				flags |= TH_XMIT_NEEDED;
12768 
12769 			if (seg_len == 0 && !(flags & TH_URG)) {
12770 				freemsg(mp);
12771 				goto xmit_check;
12772 			}
12773 
12774 			flags &= ~TH_SYN;
12775 			seg_seq++;
12776 			break;
12777 		}
12778 		tcp->tcp_state = TCPS_SYN_RCVD;
12779 		mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss,
12780 		    NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
12781 		if (mp1) {
12782 			DB_CPID(mp1) = tcp->tcp_cpid;
12783 			TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT);
12784 			tcp_send_data(tcp, tcp->tcp_wq, mp1);
12785 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
12786 		}
12787 		freemsg(mp);
12788 		return;
12789 	case TCPS_SYN_RCVD:
12790 		if (flags & TH_ACK) {
12791 			/*
12792 			 * In this state, a SYN|ACK packet is either bogus
12793 			 * because the other side must be ACKing our SYN which
12794 			 * indicates it has seen the ACK for their SYN and
12795 			 * shouldn't retransmit it or we're crossing SYNs
12796 			 * on active open.
12797 			 */
12798 			if ((flags & TH_SYN) && !tcp->tcp_active_open) {
12799 				freemsg(mp);
12800 				tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn",
12801 				    tcp, seg_ack, 0, TH_RST);
12802 				return;
12803 			}
12804 			/*
12805 			 * NOTE: RFC 793 pg. 72 says this should be
12806 			 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt
12807 			 * but that would mean we have an ack that ignored
12808 			 * our SYN.
12809 			 */
12810 			if (SEQ_LEQ(seg_ack, tcp->tcp_suna) ||
12811 			    SEQ_GT(seg_ack, tcp->tcp_snxt)) {
12812 				freemsg(mp);
12813 				tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack",
12814 				    tcp, seg_ack, 0, TH_RST);
12815 				return;
12816 			}
12817 		}
12818 		break;
12819 	case TCPS_LISTEN:
12820 		/*
12821 		 * Only a TLI listener can come through this path when a
12822 		 * acceptor is going back to be a listener and a packet
12823 		 * for the acceptor hits the classifier. For a socket
12824 		 * listener, this can never happen because a listener
12825 		 * can never accept connection on itself and hence a
12826 		 * socket acceptor can not go back to being a listener.
12827 		 */
12828 		ASSERT(!TCP_IS_SOCKET(tcp));
12829 		/*FALLTHRU*/
12830 	case TCPS_CLOSED:
12831 	case TCPS_BOUND: {
12832 		conn_t	*new_connp;
12833 
12834 		new_connp = ipcl_classify(mp, connp->conn_zoneid);
12835 		if (new_connp != NULL) {
12836 			tcp_reinput(new_connp, mp, connp->conn_sqp);
12837 			return;
12838 		}
12839 		/* We failed to classify. For now just drop the packet */
12840 		freemsg(mp);
12841 		return;
12842 	}
12843 	case TCPS_IDLE:
12844 		/*
12845 		 * Handle the case where the tcp_clean_death() has happened
12846 		 * on a connection (application hasn't closed yet) but a packet
12847 		 * was already queued on squeue before tcp_clean_death()
12848 		 * was processed. Calling tcp_clean_death() twice on same
12849 		 * connection can result in weird behaviour.
12850 		 */
12851 		freemsg(mp);
12852 		return;
12853 	default:
12854 		break;
12855 	}
12856 
12857 	/*
12858 	 * Already on the correct queue/perimeter.
12859 	 * If this is a detached connection and not an eager
12860 	 * connection hanging off a listener then new data
12861 	 * (past the FIN) will cause a reset.
12862 	 * We do a special check here where it
12863 	 * is out of the main line, rather than check
12864 	 * if we are detached every time we see new
12865 	 * data down below.
12866 	 */
12867 	if (TCP_IS_DETACHED_NONEAGER(tcp) &&
12868 	    (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) {
12869 		BUMP_MIB(&tcp_mib, tcpInClosed);
12870 		TCP_RECORD_TRACE(tcp,
12871 		    mp, TCP_TRACE_RECV_PKT);
12872 
12873 		freemsg(mp);
12874 		/*
12875 		 * This could be an SSL closure alert. We're detached so just
12876 		 * acknowledge it this last time.
12877 		 */
12878 		if (tcp->tcp_kssl_ctx != NULL) {
12879 			kssl_release_ctx(tcp->tcp_kssl_ctx);
12880 			tcp->tcp_kssl_ctx = NULL;
12881 
12882 			tcp->tcp_rnxt += seg_len;
12883 			U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack);
12884 			flags |= TH_ACK_NEEDED;
12885 			goto ack_check;
12886 		}
12887 
12888 		tcp_xmit_ctl("new data when detached", tcp,
12889 		    tcp->tcp_snxt, 0, TH_RST);
12890 		(void) tcp_clean_death(tcp, EPROTO, 12);
12891 		return;
12892 	}
12893 
12894 	mp->b_rptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph);
12895 	urp = BE16_TO_U16(tcph->th_urp) - TCP_OLD_URP_INTERPRETATION;
12896 	new_swnd = BE16_TO_U16(tcph->th_win) <<
12897 	    ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws);
12898 	mss = tcp->tcp_mss;
12899 
12900 	if (tcp->tcp_snd_ts_ok) {
12901 		if (!tcp_paws_check(tcp, tcph, &tcpopt)) {
12902 			/*
12903 			 * This segment is not acceptable.
12904 			 * Drop it and send back an ACK.
12905 			 */
12906 			freemsg(mp);
12907 			flags |= TH_ACK_NEEDED;
12908 			goto ack_check;
12909 		}
12910 	} else if (tcp->tcp_snd_sack_ok) {
12911 		ASSERT(tcp->tcp_sack_info != NULL);
12912 		tcpopt.tcp = tcp;
12913 		/*
12914 		 * SACK info in already updated in tcp_parse_options.  Ignore
12915 		 * all other TCP options...
12916 		 */
12917 		(void) tcp_parse_options(tcph, &tcpopt);
12918 	}
12919 try_again:;
12920 	gap = seg_seq - tcp->tcp_rnxt;
12921 	rgap = tcp->tcp_rwnd - (gap + seg_len);
12922 	/*
12923 	 * gap is the amount of sequence space between what we expect to see
12924 	 * and what we got for seg_seq.  A positive value for gap means
12925 	 * something got lost.  A negative value means we got some old stuff.
12926 	 */
12927 	if (gap < 0) {
12928 		/* Old stuff present.  Is the SYN in there? */
12929 		if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) &&
12930 		    (seg_len != 0)) {
12931 			flags &= ~TH_SYN;
12932 			seg_seq++;
12933 			urp--;
12934 			/* Recompute the gaps after noting the SYN. */
12935 			goto try_again;
12936 		}
12937 		BUMP_MIB(&tcp_mib, tcpInDataDupSegs);
12938 		UPDATE_MIB(&tcp_mib, tcpInDataDupBytes,
12939 		    (seg_len > -gap ? -gap : seg_len));
12940 		/* Remove the old stuff from seg_len. */
12941 		seg_len += gap;
12942 		/*
12943 		 * Anything left?
12944 		 * Make sure to check for unack'd FIN when rest of data
12945 		 * has been previously ack'd.
12946 		 */
12947 		if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) {
12948 			/*
12949 			 * Resets are only valid if they lie within our offered
12950 			 * window.  If the RST bit is set, we just ignore this
12951 			 * segment.
12952 			 */
12953 			if (flags & TH_RST) {
12954 				freemsg(mp);
12955 				return;
12956 			}
12957 
12958 			/*
12959 			 * The arriving of dup data packets indicate that we
12960 			 * may have postponed an ack for too long, or the other
12961 			 * side's RTT estimate is out of shape. Start acking
12962 			 * more often.
12963 			 */
12964 			if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) &&
12965 			    tcp->tcp_rack_cnt >= 1 &&
12966 			    tcp->tcp_rack_abs_max > 2) {
12967 				tcp->tcp_rack_abs_max--;
12968 			}
12969 			tcp->tcp_rack_cur_max = 1;
12970 
12971 			/*
12972 			 * This segment is "unacceptable".  None of its
12973 			 * sequence space lies within our advertized window.
12974 			 *
12975 			 * Adjust seg_len to the original value for tracing.
12976 			 */
12977 			seg_len -= gap;
12978 			if (tcp->tcp_debug) {
12979 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
12980 				    "tcp_rput: unacceptable, gap %d, rgap %d, "
12981 				    "flags 0x%x, seg_seq %u, seg_ack %u, "
12982 				    "seg_len %d, rnxt %u, snxt %u, %s",
12983 				    gap, rgap, flags, seg_seq, seg_ack,
12984 				    seg_len, tcp->tcp_rnxt, tcp->tcp_snxt,
12985 				    tcp_display(tcp, NULL,
12986 				    DISP_ADDR_AND_PORT));
12987 			}
12988 
12989 			/*
12990 			 * Arrange to send an ACK in response to the
12991 			 * unacceptable segment per RFC 793 page 69. There
12992 			 * is only one small difference between ours and the
12993 			 * acceptability test in the RFC - we accept ACK-only
12994 			 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK
12995 			 * will be generated.
12996 			 *
12997 			 * Note that we have to ACK an ACK-only packet at least
12998 			 * for stacks that send 0-length keep-alives with
12999 			 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122,
13000 			 * section 4.2.3.6. As long as we don't ever generate
13001 			 * an unacceptable packet in response to an incoming
13002 			 * packet that is unacceptable, it should not cause
13003 			 * "ACK wars".
13004 			 */
13005 			flags |=  TH_ACK_NEEDED;
13006 
13007 			/*
13008 			 * Continue processing this segment in order to use the
13009 			 * ACK information it contains, but skip all other
13010 			 * sequence-number processing.	Processing the ACK
13011 			 * information is necessary in order to
13012 			 * re-synchronize connections that may have lost
13013 			 * synchronization.
13014 			 *
13015 			 * We clear seg_len and flag fields related to
13016 			 * sequence number processing as they are not
13017 			 * to be trusted for an unacceptable segment.
13018 			 */
13019 			seg_len = 0;
13020 			flags &= ~(TH_SYN | TH_FIN | TH_URG);
13021 			goto process_ack;
13022 		}
13023 
13024 		/* Fix seg_seq, and chew the gap off the front. */
13025 		seg_seq = tcp->tcp_rnxt;
13026 		urp += gap;
13027 		do {
13028 			mblk_t	*mp2;
13029 			ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
13030 			    (uintptr_t)UINT_MAX);
13031 			gap += (uint_t)(mp->b_wptr - mp->b_rptr);
13032 			if (gap > 0) {
13033 				mp->b_rptr = mp->b_wptr - gap;
13034 				break;
13035 			}
13036 			mp2 = mp;
13037 			mp = mp->b_cont;
13038 			freeb(mp2);
13039 		} while (gap < 0);
13040 		/*
13041 		 * If the urgent data has already been acknowledged, we
13042 		 * should ignore TH_URG below
13043 		 */
13044 		if (urp < 0)
13045 			flags &= ~TH_URG;
13046 	}
13047 	/*
13048 	 * rgap is the amount of stuff received out of window.  A negative
13049 	 * value is the amount out of window.
13050 	 */
13051 	if (rgap < 0) {
13052 		mblk_t	*mp2;
13053 
13054 		if (tcp->tcp_rwnd == 0) {
13055 			BUMP_MIB(&tcp_mib, tcpInWinProbe);
13056 		} else {
13057 			BUMP_MIB(&tcp_mib, tcpInDataPastWinSegs);
13058 			UPDATE_MIB(&tcp_mib, tcpInDataPastWinBytes, -rgap);
13059 		}
13060 
13061 		/*
13062 		 * seg_len does not include the FIN, so if more than
13063 		 * just the FIN is out of window, we act like we don't
13064 		 * see it.  (If just the FIN is out of window, rgap
13065 		 * will be zero and we will go ahead and acknowledge
13066 		 * the FIN.)
13067 		 */
13068 		flags &= ~TH_FIN;
13069 
13070 		/* Fix seg_len and make sure there is something left. */
13071 		seg_len += rgap;
13072 		if (seg_len <= 0) {
13073 			/*
13074 			 * Resets are only valid if they lie within our offered
13075 			 * window.  If the RST bit is set, we just ignore this
13076 			 * segment.
13077 			 */
13078 			if (flags & TH_RST) {
13079 				freemsg(mp);
13080 				return;
13081 			}
13082 
13083 			/* Per RFC 793, we need to send back an ACK. */
13084 			flags |= TH_ACK_NEEDED;
13085 
13086 			/*
13087 			 * Send SIGURG as soon as possible i.e. even
13088 			 * if the TH_URG was delivered in a window probe
13089 			 * packet (which will be unacceptable).
13090 			 *
13091 			 * We generate a signal if none has been generated
13092 			 * for this connection or if this is a new urgent
13093 			 * byte. Also send a zero-length "unmarked" message
13094 			 * to inform SIOCATMARK that this is not the mark.
13095 			 *
13096 			 * tcp_urp_last_valid is cleared when the T_exdata_ind
13097 			 * is sent up. This plus the check for old data
13098 			 * (gap >= 0) handles the wraparound of the sequence
13099 			 * number space without having to always track the
13100 			 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks
13101 			 * this max in its rcv_up variable).
13102 			 *
13103 			 * This prevents duplicate SIGURGS due to a "late"
13104 			 * zero-window probe when the T_EXDATA_IND has already
13105 			 * been sent up.
13106 			 */
13107 			if ((flags & TH_URG) &&
13108 			    (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq,
13109 			    tcp->tcp_urp_last))) {
13110 				mp1 = allocb(0, BPRI_MED);
13111 				if (mp1 == NULL) {
13112 					freemsg(mp);
13113 					return;
13114 				}
13115 				if (!TCP_IS_DETACHED(tcp) &&
13116 				    !putnextctl1(tcp->tcp_rq, M_PCSIG,
13117 				    SIGURG)) {
13118 					/* Try again on the rexmit. */
13119 					freemsg(mp1);
13120 					freemsg(mp);
13121 					return;
13122 				}
13123 				/*
13124 				 * If the next byte would be the mark
13125 				 * then mark with MARKNEXT else mark
13126 				 * with NOTMARKNEXT.
13127 				 */
13128 				if (gap == 0 && urp == 0)
13129 					mp1->b_flag |= MSGMARKNEXT;
13130 				else
13131 					mp1->b_flag |= MSGNOTMARKNEXT;
13132 				freemsg(tcp->tcp_urp_mark_mp);
13133 				tcp->tcp_urp_mark_mp = mp1;
13134 				flags |= TH_SEND_URP_MARK;
13135 				tcp->tcp_urp_last_valid = B_TRUE;
13136 				tcp->tcp_urp_last = urp + seg_seq;
13137 			}
13138 			/*
13139 			 * If this is a zero window probe, continue to
13140 			 * process the ACK part.  But we need to set seg_len
13141 			 * to 0 to avoid data processing.  Otherwise just
13142 			 * drop the segment and send back an ACK.
13143 			 */
13144 			if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) {
13145 				flags &= ~(TH_SYN | TH_URG);
13146 				seg_len = 0;
13147 				goto process_ack;
13148 			} else {
13149 				freemsg(mp);
13150 				goto ack_check;
13151 			}
13152 		}
13153 		/* Pitch out of window stuff off the end. */
13154 		rgap = seg_len;
13155 		mp2 = mp;
13156 		do {
13157 			ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <=
13158 			    (uintptr_t)INT_MAX);
13159 			rgap -= (int)(mp2->b_wptr - mp2->b_rptr);
13160 			if (rgap < 0) {
13161 				mp2->b_wptr += rgap;
13162 				if ((mp1 = mp2->b_cont) != NULL) {
13163 					mp2->b_cont = NULL;
13164 					freemsg(mp1);
13165 				}
13166 				break;
13167 			}
13168 		} while ((mp2 = mp2->b_cont) != NULL);
13169 	}
13170 ok:;
13171 	/*
13172 	 * TCP should check ECN info for segments inside the window only.
13173 	 * Therefore the check should be done here.
13174 	 */
13175 	if (tcp->tcp_ecn_ok) {
13176 		if (flags & TH_CWR) {
13177 			tcp->tcp_ecn_echo_on = B_FALSE;
13178 		}
13179 		/*
13180 		 * Note that both ECN_CE and CWR can be set in the
13181 		 * same segment.  In this case, we once again turn
13182 		 * on ECN_ECHO.
13183 		 */
13184 		if (tcp->tcp_ipversion == IPV4_VERSION) {
13185 			uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service;
13186 
13187 			if ((tos & IPH_ECN_CE) == IPH_ECN_CE) {
13188 				tcp->tcp_ecn_echo_on = B_TRUE;
13189 			}
13190 		} else {
13191 			uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf;
13192 
13193 			if ((vcf & htonl(IPH_ECN_CE << 20)) ==
13194 			    htonl(IPH_ECN_CE << 20)) {
13195 				tcp->tcp_ecn_echo_on = B_TRUE;
13196 			}
13197 		}
13198 	}
13199 
13200 	/*
13201 	 * Check whether we can update tcp_ts_recent.  This test is
13202 	 * NOT the one in RFC 1323 3.4.  It is from Braden, 1993, "TCP
13203 	 * Extensions for High Performance: An Update", Internet Draft.
13204 	 */
13205 	if (tcp->tcp_snd_ts_ok &&
13206 	    TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) &&
13207 	    SEQ_LEQ(seg_seq, tcp->tcp_rack)) {
13208 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
13209 		tcp->tcp_last_rcv_lbolt = lbolt64;
13210 	}
13211 
13212 	if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) {
13213 		/*
13214 		 * FIN in an out of order segment.  We record this in
13215 		 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq.
13216 		 * Clear the FIN so that any check on FIN flag will fail.
13217 		 * Remember that FIN also counts in the sequence number
13218 		 * space.  So we need to ack out of order FIN only segments.
13219 		 */
13220 		if (flags & TH_FIN) {
13221 			tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID;
13222 			tcp->tcp_ofo_fin_seq = seg_seq + seg_len;
13223 			flags &= ~TH_FIN;
13224 			flags |= TH_ACK_NEEDED;
13225 		}
13226 		if (seg_len > 0) {
13227 			/* Fill in the SACK blk list. */
13228 			if (tcp->tcp_snd_sack_ok) {
13229 				ASSERT(tcp->tcp_sack_info != NULL);
13230 				tcp_sack_insert(tcp->tcp_sack_list,
13231 				    seg_seq, seg_seq + seg_len,
13232 				    &(tcp->tcp_num_sack_blk));
13233 			}
13234 
13235 			/*
13236 			 * Attempt reassembly and see if we have something
13237 			 * ready to go.
13238 			 */
13239 			mp = tcp_reass(tcp, mp, seg_seq);
13240 			/* Always ack out of order packets */
13241 			flags |= TH_ACK_NEEDED | TH_PUSH;
13242 			if (mp) {
13243 				ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
13244 				    (uintptr_t)INT_MAX);
13245 				seg_len = mp->b_cont ? msgdsize(mp) :
13246 					(int)(mp->b_wptr - mp->b_rptr);
13247 				seg_seq = tcp->tcp_rnxt;
13248 				/*
13249 				 * A gap is filled and the seq num and len
13250 				 * of the gap match that of a previously
13251 				 * received FIN, put the FIN flag back in.
13252 				 */
13253 				if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) &&
13254 				    seg_seq + seg_len == tcp->tcp_ofo_fin_seq) {
13255 					flags |= TH_FIN;
13256 					tcp->tcp_valid_bits &=
13257 					    ~TCP_OFO_FIN_VALID;
13258 				}
13259 			} else {
13260 				/*
13261 				 * Keep going even with NULL mp.
13262 				 * There may be a useful ACK or something else
13263 				 * we don't want to miss.
13264 				 *
13265 				 * But TCP should not perform fast retransmit
13266 				 * because of the ack number.  TCP uses
13267 				 * seg_len == 0 to determine if it is a pure
13268 				 * ACK.  And this is not a pure ACK.
13269 				 */
13270 				seg_len = 0;
13271 				ofo_seg = B_TRUE;
13272 			}
13273 		}
13274 	} else if (seg_len > 0) {
13275 		BUMP_MIB(&tcp_mib, tcpInDataInorderSegs);
13276 		UPDATE_MIB(&tcp_mib, tcpInDataInorderBytes, seg_len);
13277 		/*
13278 		 * If an out of order FIN was received before, and the seq
13279 		 * num and len of the new segment match that of the FIN,
13280 		 * put the FIN flag back in.
13281 		 */
13282 		if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) &&
13283 		    seg_seq + seg_len == tcp->tcp_ofo_fin_seq) {
13284 			flags |= TH_FIN;
13285 			tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID;
13286 		}
13287 	}
13288 	if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) {
13289 	if (flags & TH_RST) {
13290 		freemsg(mp);
13291 		switch (tcp->tcp_state) {
13292 		case TCPS_SYN_RCVD:
13293 			(void) tcp_clean_death(tcp, ECONNREFUSED, 14);
13294 			break;
13295 		case TCPS_ESTABLISHED:
13296 		case TCPS_FIN_WAIT_1:
13297 		case TCPS_FIN_WAIT_2:
13298 		case TCPS_CLOSE_WAIT:
13299 			(void) tcp_clean_death(tcp, ECONNRESET, 15);
13300 			break;
13301 		case TCPS_CLOSING:
13302 		case TCPS_LAST_ACK:
13303 			(void) tcp_clean_death(tcp, 0, 16);
13304 			break;
13305 		default:
13306 			ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
13307 			(void) tcp_clean_death(tcp, ENXIO, 17);
13308 			break;
13309 		}
13310 		return;
13311 	}
13312 	if (flags & TH_SYN) {
13313 		/*
13314 		 * See RFC 793, Page 71
13315 		 *
13316 		 * The seq number must be in the window as it should
13317 		 * be "fixed" above.  If it is outside window, it should
13318 		 * be already rejected.  Note that we allow seg_seq to be
13319 		 * rnxt + rwnd because we want to accept 0 window probe.
13320 		 */
13321 		ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) &&
13322 		    SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd));
13323 		freemsg(mp);
13324 		/*
13325 		 * If the ACK flag is not set, just use our snxt as the
13326 		 * seq number of the RST segment.
13327 		 */
13328 		if (!(flags & TH_ACK)) {
13329 			seg_ack = tcp->tcp_snxt;
13330 		}
13331 		tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1,
13332 		    TH_RST|TH_ACK);
13333 		ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
13334 		(void) tcp_clean_death(tcp, ECONNRESET, 18);
13335 		return;
13336 	}
13337 	/*
13338 	 * urp could be -1 when the urp field in the packet is 0
13339 	 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent
13340 	 * byte was at seg_seq - 1, in which case we ignore the urgent flag.
13341 	 */
13342 	if (flags & TH_URG && urp >= 0) {
13343 		if (!tcp->tcp_urp_last_valid ||
13344 		    SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) {
13345 			/*
13346 			 * If we haven't generated the signal yet for this
13347 			 * urgent pointer value, do it now.  Also, send up a
13348 			 * zero-length M_DATA indicating whether or not this is
13349 			 * the mark. The latter is not needed when a
13350 			 * T_EXDATA_IND is sent up. However, if there are
13351 			 * allocation failures this code relies on the sender
13352 			 * retransmitting and the socket code for determining
13353 			 * the mark should not block waiting for the peer to
13354 			 * transmit. Thus, for simplicity we always send up the
13355 			 * mark indication.
13356 			 */
13357 			mp1 = allocb(0, BPRI_MED);
13358 			if (mp1 == NULL) {
13359 				freemsg(mp);
13360 				return;
13361 			}
13362 			if (!TCP_IS_DETACHED(tcp) &&
13363 			    !putnextctl1(tcp->tcp_rq, M_PCSIG, SIGURG)) {
13364 				/* Try again on the rexmit. */
13365 				freemsg(mp1);
13366 				freemsg(mp);
13367 				return;
13368 			}
13369 			/*
13370 			 * Mark with NOTMARKNEXT for now.
13371 			 * The code below will change this to MARKNEXT
13372 			 * if we are at the mark.
13373 			 *
13374 			 * If there are allocation failures (e.g. in dupmsg
13375 			 * below) the next time tcp_rput_data sees the urgent
13376 			 * segment it will send up the MSG*MARKNEXT message.
13377 			 */
13378 			mp1->b_flag |= MSGNOTMARKNEXT;
13379 			freemsg(tcp->tcp_urp_mark_mp);
13380 			tcp->tcp_urp_mark_mp = mp1;
13381 			flags |= TH_SEND_URP_MARK;
13382 #ifdef DEBUG
13383 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13384 			    "tcp_rput: sent M_PCSIG 2 seq %x urp %x "
13385 			    "last %x, %s",
13386 			    seg_seq, urp, tcp->tcp_urp_last,
13387 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
13388 #endif /* DEBUG */
13389 			tcp->tcp_urp_last_valid = B_TRUE;
13390 			tcp->tcp_urp_last = urp + seg_seq;
13391 		} else if (tcp->tcp_urp_mark_mp != NULL) {
13392 			/*
13393 			 * An allocation failure prevented the previous
13394 			 * tcp_rput_data from sending up the allocated
13395 			 * MSG*MARKNEXT message - send it up this time
13396 			 * around.
13397 			 */
13398 			flags |= TH_SEND_URP_MARK;
13399 		}
13400 
13401 		/*
13402 		 * If the urgent byte is in this segment, make sure that it is
13403 		 * all by itself.  This makes it much easier to deal with the
13404 		 * possibility of an allocation failure on the T_exdata_ind.
13405 		 * Note that seg_len is the number of bytes in the segment, and
13406 		 * urp is the offset into the segment of the urgent byte.
13407 		 * urp < seg_len means that the urgent byte is in this segment.
13408 		 */
13409 		if (urp < seg_len) {
13410 			if (seg_len != 1) {
13411 				uint32_t  tmp_rnxt;
13412 				/*
13413 				 * Break it up and feed it back in.
13414 				 * Re-attach the IP header.
13415 				 */
13416 				mp->b_rptr = iphdr;
13417 				if (urp > 0) {
13418 					/*
13419 					 * There is stuff before the urgent
13420 					 * byte.
13421 					 */
13422 					mp1 = dupmsg(mp);
13423 					if (!mp1) {
13424 						/*
13425 						 * Trim from urgent byte on.
13426 						 * The rest will come back.
13427 						 */
13428 						(void) adjmsg(mp,
13429 						    urp - seg_len);
13430 						tcp_rput_data(connp,
13431 						    mp, NULL);
13432 						return;
13433 					}
13434 					(void) adjmsg(mp1, urp - seg_len);
13435 					/* Feed this piece back in. */
13436 					tmp_rnxt = tcp->tcp_rnxt;
13437 					tcp_rput_data(connp, mp1, NULL);
13438 					/*
13439 					 * If the data passed back in was not
13440 					 * processed (ie: bad ACK) sending
13441 					 * the remainder back in will cause a
13442 					 * loop. In this case, drop the
13443 					 * packet and let the sender try
13444 					 * sending a good packet.
13445 					 */
13446 					if (tmp_rnxt == tcp->tcp_rnxt) {
13447 						freemsg(mp);
13448 						return;
13449 					}
13450 				}
13451 				if (urp != seg_len - 1) {
13452 					uint32_t  tmp_rnxt;
13453 					/*
13454 					 * There is stuff after the urgent
13455 					 * byte.
13456 					 */
13457 					mp1 = dupmsg(mp);
13458 					if (!mp1) {
13459 						/*
13460 						 * Trim everything beyond the
13461 						 * urgent byte.  The rest will
13462 						 * come back.
13463 						 */
13464 						(void) adjmsg(mp,
13465 						    urp + 1 - seg_len);
13466 						tcp_rput_data(connp,
13467 						    mp, NULL);
13468 						return;
13469 					}
13470 					(void) adjmsg(mp1, urp + 1 - seg_len);
13471 					tmp_rnxt = tcp->tcp_rnxt;
13472 					tcp_rput_data(connp, mp1, NULL);
13473 					/*
13474 					 * If the data passed back in was not
13475 					 * processed (ie: bad ACK) sending
13476 					 * the remainder back in will cause a
13477 					 * loop. In this case, drop the
13478 					 * packet and let the sender try
13479 					 * sending a good packet.
13480 					 */
13481 					if (tmp_rnxt == tcp->tcp_rnxt) {
13482 						freemsg(mp);
13483 						return;
13484 					}
13485 				}
13486 				tcp_rput_data(connp, mp, NULL);
13487 				return;
13488 			}
13489 			/*
13490 			 * This segment contains only the urgent byte.  We
13491 			 * have to allocate the T_exdata_ind, if we can.
13492 			 */
13493 			if (!tcp->tcp_urp_mp) {
13494 				struct T_exdata_ind *tei;
13495 				mp1 = allocb(sizeof (struct T_exdata_ind),
13496 				    BPRI_MED);
13497 				if (!mp1) {
13498 					/*
13499 					 * Sigh... It'll be back.
13500 					 * Generate any MSG*MARK message now.
13501 					 */
13502 					freemsg(mp);
13503 					seg_len = 0;
13504 					if (flags & TH_SEND_URP_MARK) {
13505 
13506 
13507 						ASSERT(tcp->tcp_urp_mark_mp);
13508 						tcp->tcp_urp_mark_mp->b_flag &=
13509 							~MSGNOTMARKNEXT;
13510 						tcp->tcp_urp_mark_mp->b_flag |=
13511 							MSGMARKNEXT;
13512 					}
13513 					goto ack_check;
13514 				}
13515 				mp1->b_datap->db_type = M_PROTO;
13516 				tei = (struct T_exdata_ind *)mp1->b_rptr;
13517 				tei->PRIM_type = T_EXDATA_IND;
13518 				tei->MORE_flag = 0;
13519 				mp1->b_wptr = (uchar_t *)&tei[1];
13520 				tcp->tcp_urp_mp = mp1;
13521 #ifdef DEBUG
13522 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13523 				    "tcp_rput: allocated exdata_ind %s",
13524 				    tcp_display(tcp, NULL,
13525 				    DISP_PORT_ONLY));
13526 #endif /* DEBUG */
13527 				/*
13528 				 * There is no need to send a separate MSG*MARK
13529 				 * message since the T_EXDATA_IND will be sent
13530 				 * now.
13531 				 */
13532 				flags &= ~TH_SEND_URP_MARK;
13533 				freemsg(tcp->tcp_urp_mark_mp);
13534 				tcp->tcp_urp_mark_mp = NULL;
13535 			}
13536 			/*
13537 			 * Now we are all set.  On the next putnext upstream,
13538 			 * tcp_urp_mp will be non-NULL and will get prepended
13539 			 * to what has to be this piece containing the urgent
13540 			 * byte.  If for any reason we abort this segment below,
13541 			 * if it comes back, we will have this ready, or it
13542 			 * will get blown off in close.
13543 			 */
13544 		} else if (urp == seg_len) {
13545 			/*
13546 			 * The urgent byte is the next byte after this sequence
13547 			 * number. If there is data it is marked with
13548 			 * MSGMARKNEXT and any tcp_urp_mark_mp is discarded
13549 			 * since it is not needed. Otherwise, if the code
13550 			 * above just allocated a zero-length tcp_urp_mark_mp
13551 			 * message, that message is tagged with MSGMARKNEXT.
13552 			 * Sending up these MSGMARKNEXT messages makes
13553 			 * SIOCATMARK work correctly even though
13554 			 * the T_EXDATA_IND will not be sent up until the
13555 			 * urgent byte arrives.
13556 			 */
13557 			if (seg_len != 0) {
13558 				flags |= TH_MARKNEXT_NEEDED;
13559 				freemsg(tcp->tcp_urp_mark_mp);
13560 				tcp->tcp_urp_mark_mp = NULL;
13561 				flags &= ~TH_SEND_URP_MARK;
13562 			} else if (tcp->tcp_urp_mark_mp != NULL) {
13563 				flags |= TH_SEND_URP_MARK;
13564 				tcp->tcp_urp_mark_mp->b_flag &=
13565 					~MSGNOTMARKNEXT;
13566 				tcp->tcp_urp_mark_mp->b_flag |= MSGMARKNEXT;
13567 			}
13568 #ifdef DEBUG
13569 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13570 			    "tcp_rput: AT MARK, len %d, flags 0x%x, %s",
13571 			    seg_len, flags,
13572 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
13573 #endif /* DEBUG */
13574 		} else {
13575 			/* Data left until we hit mark */
13576 #ifdef DEBUG
13577 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13578 			    "tcp_rput: URP %d bytes left, %s",
13579 			    urp - seg_len, tcp_display(tcp, NULL,
13580 			    DISP_PORT_ONLY));
13581 #endif /* DEBUG */
13582 		}
13583 	}
13584 
13585 process_ack:
13586 	if (!(flags & TH_ACK)) {
13587 		freemsg(mp);
13588 		goto xmit_check;
13589 	}
13590 	}
13591 	bytes_acked = (int)(seg_ack - tcp->tcp_suna);
13592 
13593 	if (tcp->tcp_ipversion == IPV6_VERSION && bytes_acked > 0)
13594 		tcp->tcp_ip_forward_progress = B_TRUE;
13595 	if (tcp->tcp_state == TCPS_SYN_RCVD) {
13596 		if ((tcp->tcp_conn.tcp_eager_conn_ind != NULL) &&
13597 		    ((tcp->tcp_kssl_ent == NULL) || !tcp->tcp_kssl_pending)) {
13598 			/* 3-way handshake complete - pass up the T_CONN_IND */
13599 			tcp_t	*listener = tcp->tcp_listener;
13600 			mblk_t	*mp = tcp->tcp_conn.tcp_eager_conn_ind;
13601 
13602 			tcp->tcp_conn.tcp_eager_conn_ind = NULL;
13603 			/*
13604 			 * We are here means eager is fine but it can
13605 			 * get a TH_RST at any point between now and till
13606 			 * accept completes and disappear. We need to
13607 			 * ensure that reference to eager is valid after
13608 			 * we get out of eager's perimeter. So we do
13609 			 * an extra refhold.
13610 			 */
13611 			CONN_INC_REF(connp);
13612 
13613 			/*
13614 			 * The listener also exists because of the refhold
13615 			 * done in tcp_conn_request. Its possible that it
13616 			 * might have closed. We will check that once we
13617 			 * get inside listeners context.
13618 			 */
13619 			CONN_INC_REF(listener->tcp_connp);
13620 			if (listener->tcp_connp->conn_sqp ==
13621 			    connp->conn_sqp) {
13622 				tcp_send_conn_ind(listener->tcp_connp, mp,
13623 				    listener->tcp_connp->conn_sqp);
13624 				CONN_DEC_REF(listener->tcp_connp);
13625 			} else if (!tcp->tcp_loopback) {
13626 				squeue_fill(listener->tcp_connp->conn_sqp, mp,
13627 				    tcp_send_conn_ind,
13628 				    listener->tcp_connp, SQTAG_TCP_CONN_IND);
13629 			} else {
13630 				squeue_enter(listener->tcp_connp->conn_sqp, mp,
13631 				    tcp_send_conn_ind, listener->tcp_connp,
13632 				    SQTAG_TCP_CONN_IND);
13633 			}
13634 		}
13635 
13636 		if (tcp->tcp_active_open) {
13637 			/*
13638 			 * We are seeing the final ack in the three way
13639 			 * hand shake of a active open'ed connection
13640 			 * so we must send up a T_CONN_CON
13641 			 */
13642 			if (!tcp_conn_con(tcp, iphdr, tcph, mp, NULL)) {
13643 				freemsg(mp);
13644 				return;
13645 			}
13646 			/*
13647 			 * Don't fuse the loopback endpoints for
13648 			 * simultaneous active opens.
13649 			 */
13650 			if (tcp->tcp_loopback) {
13651 				TCP_STAT(tcp_fusion_unfusable);
13652 				tcp->tcp_unfusable = B_TRUE;
13653 			}
13654 		}
13655 
13656 		tcp->tcp_suna = tcp->tcp_iss + 1;	/* One for the SYN */
13657 		bytes_acked--;
13658 		/* SYN was acked - making progress */
13659 		if (tcp->tcp_ipversion == IPV6_VERSION)
13660 			tcp->tcp_ip_forward_progress = B_TRUE;
13661 
13662 		/*
13663 		 * If SYN was retransmitted, need to reset all
13664 		 * retransmission info as this segment will be
13665 		 * treated as a dup ACK.
13666 		 */
13667 		if (tcp->tcp_rexmit) {
13668 			tcp->tcp_rexmit = B_FALSE;
13669 			tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
13670 			tcp->tcp_rexmit_max = tcp->tcp_snxt;
13671 			tcp->tcp_snd_burst = tcp->tcp_localnet ?
13672 			    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
13673 			tcp->tcp_ms_we_have_waited = 0;
13674 			tcp->tcp_cwnd = mss;
13675 		}
13676 
13677 		/*
13678 		 * We set the send window to zero here.
13679 		 * This is needed if there is data to be
13680 		 * processed already on the queue.
13681 		 * Later (at swnd_update label), the
13682 		 * "new_swnd > tcp_swnd" condition is satisfied
13683 		 * the XMIT_NEEDED flag is set in the current
13684 		 * (SYN_RCVD) state. This ensures tcp_wput_data() is
13685 		 * called if there is already data on queue in
13686 		 * this state.
13687 		 */
13688 		tcp->tcp_swnd = 0;
13689 
13690 		if (new_swnd > tcp->tcp_max_swnd)
13691 			tcp->tcp_max_swnd = new_swnd;
13692 		tcp->tcp_swl1 = seg_seq;
13693 		tcp->tcp_swl2 = seg_ack;
13694 		tcp->tcp_state = TCPS_ESTABLISHED;
13695 		tcp->tcp_valid_bits &= ~TCP_ISS_VALID;
13696 
13697 		/* Fuse when both sides are in ESTABLISHED state */
13698 		if (tcp->tcp_loopback && do_tcp_fusion)
13699 			tcp_fuse(tcp, iphdr, tcph);
13700 
13701 	}
13702 	/* This code follows 4.4BSD-Lite2 mostly. */
13703 	if (bytes_acked < 0)
13704 		goto est;
13705 
13706 	/*
13707 	 * If TCP is ECN capable and the congestion experience bit is
13708 	 * set, reduce tcp_cwnd and tcp_ssthresh.  But this should only be
13709 	 * done once per window (or more loosely, per RTT).
13710 	 */
13711 	if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max))
13712 		tcp->tcp_cwr = B_FALSE;
13713 	if (tcp->tcp_ecn_ok && (flags & TH_ECE)) {
13714 		if (!tcp->tcp_cwr) {
13715 			npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss;
13716 			tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss;
13717 			tcp->tcp_cwnd = npkt * mss;
13718 			/*
13719 			 * If the cwnd is 0, use the timer to clock out
13720 			 * new segments.  This is required by the ECN spec.
13721 			 */
13722 			if (npkt == 0) {
13723 				TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
13724 				/*
13725 				 * This makes sure that when the ACK comes
13726 				 * back, we will increase tcp_cwnd by 1 MSS.
13727 				 */
13728 				tcp->tcp_cwnd_cnt = 0;
13729 			}
13730 			tcp->tcp_cwr = B_TRUE;
13731 			/*
13732 			 * This marks the end of the current window of in
13733 			 * flight data.  That is why we don't use
13734 			 * tcp_suna + tcp_swnd.  Only data in flight can
13735 			 * provide ECN info.
13736 			 */
13737 			tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
13738 			tcp->tcp_ecn_cwr_sent = B_FALSE;
13739 		}
13740 	}
13741 
13742 	mp1 = tcp->tcp_xmit_head;
13743 	if (bytes_acked == 0) {
13744 		if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) {
13745 			int dupack_cnt;
13746 
13747 			BUMP_MIB(&tcp_mib, tcpInDupAck);
13748 			/*
13749 			 * Fast retransmit.  When we have seen exactly three
13750 			 * identical ACKs while we have unacked data
13751 			 * outstanding we take it as a hint that our peer
13752 			 * dropped something.
13753 			 *
13754 			 * If TCP is retransmitting, don't do fast retransmit.
13755 			 */
13756 			if (mp1 && tcp->tcp_suna != tcp->tcp_snxt &&
13757 			    ! tcp->tcp_rexmit) {
13758 				/* Do Limited Transmit */
13759 				if ((dupack_cnt = ++tcp->tcp_dupack_cnt) <
13760 				    tcp_dupack_fast_retransmit) {
13761 					/*
13762 					 * RFC 3042
13763 					 *
13764 					 * What we need to do is temporarily
13765 					 * increase tcp_cwnd so that new
13766 					 * data can be sent if it is allowed
13767 					 * by the receive window (tcp_rwnd).
13768 					 * tcp_wput_data() will take care of
13769 					 * the rest.
13770 					 *
13771 					 * If the connection is SACK capable,
13772 					 * only do limited xmit when there
13773 					 * is SACK info.
13774 					 *
13775 					 * Note how tcp_cwnd is incremented.
13776 					 * The first dup ACK will increase
13777 					 * it by 1 MSS.  The second dup ACK
13778 					 * will increase it by 2 MSS.  This
13779 					 * means that only 1 new segment will
13780 					 * be sent for each dup ACK.
13781 					 */
13782 					if (tcp->tcp_unsent > 0 &&
13783 					    (!tcp->tcp_snd_sack_ok ||
13784 					    (tcp->tcp_snd_sack_ok &&
13785 					    tcp->tcp_notsack_list != NULL))) {
13786 						tcp->tcp_cwnd += mss <<
13787 						    (tcp->tcp_dupack_cnt - 1);
13788 						flags |= TH_LIMIT_XMIT;
13789 					}
13790 				} else if (dupack_cnt ==
13791 				    tcp_dupack_fast_retransmit) {
13792 
13793 				/*
13794 				 * If we have reduced tcp_ssthresh
13795 				 * because of ECN, do not reduce it again
13796 				 * unless it is already one window of data
13797 				 * away.  After one window of data, tcp_cwr
13798 				 * should then be cleared.  Note that
13799 				 * for non ECN capable connection, tcp_cwr
13800 				 * should always be false.
13801 				 *
13802 				 * Adjust cwnd since the duplicate
13803 				 * ack indicates that a packet was
13804 				 * dropped (due to congestion.)
13805 				 */
13806 				if (!tcp->tcp_cwr) {
13807 					npkt = ((tcp->tcp_snxt -
13808 					    tcp->tcp_suna) >> 1) / mss;
13809 					tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) *
13810 					    mss;
13811 					tcp->tcp_cwnd = (npkt +
13812 					    tcp->tcp_dupack_cnt) * mss;
13813 				}
13814 				if (tcp->tcp_ecn_ok) {
13815 					tcp->tcp_cwr = B_TRUE;
13816 					tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
13817 					tcp->tcp_ecn_cwr_sent = B_FALSE;
13818 				}
13819 
13820 				/*
13821 				 * We do Hoe's algorithm.  Refer to her
13822 				 * paper "Improving the Start-up Behavior
13823 				 * of a Congestion Control Scheme for TCP,"
13824 				 * appeared in SIGCOMM'96.
13825 				 *
13826 				 * Save highest seq no we have sent so far.
13827 				 * Be careful about the invisible FIN byte.
13828 				 */
13829 				if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
13830 				    (tcp->tcp_unsent == 0)) {
13831 					tcp->tcp_rexmit_max = tcp->tcp_fss;
13832 				} else {
13833 					tcp->tcp_rexmit_max = tcp->tcp_snxt;
13834 				}
13835 
13836 				/*
13837 				 * Do not allow bursty traffic during.
13838 				 * fast recovery.  Refer to Fall and Floyd's
13839 				 * paper "Simulation-based Comparisons of
13840 				 * Tahoe, Reno and SACK TCP" (in CCR?)
13841 				 * This is a best current practise.
13842 				 */
13843 				tcp->tcp_snd_burst = TCP_CWND_SS;
13844 
13845 				/*
13846 				 * For SACK:
13847 				 * Calculate tcp_pipe, which is the
13848 				 * estimated number of bytes in
13849 				 * network.
13850 				 *
13851 				 * tcp_fack is the highest sack'ed seq num
13852 				 * TCP has received.
13853 				 *
13854 				 * tcp_pipe is explained in the above quoted
13855 				 * Fall and Floyd's paper.  tcp_fack is
13856 				 * explained in Mathis and Mahdavi's
13857 				 * "Forward Acknowledgment: Refining TCP
13858 				 * Congestion Control" in SIGCOMM '96.
13859 				 */
13860 				if (tcp->tcp_snd_sack_ok) {
13861 					ASSERT(tcp->tcp_sack_info != NULL);
13862 					if (tcp->tcp_notsack_list != NULL) {
13863 						tcp->tcp_pipe = tcp->tcp_snxt -
13864 						    tcp->tcp_fack;
13865 						tcp->tcp_sack_snxt = seg_ack;
13866 						flags |= TH_NEED_SACK_REXMIT;
13867 					} else {
13868 						/*
13869 						 * Always initialize tcp_pipe
13870 						 * even though we don't have
13871 						 * any SACK info.  If later
13872 						 * we get SACK info and
13873 						 * tcp_pipe is not initialized,
13874 						 * funny things will happen.
13875 						 */
13876 						tcp->tcp_pipe =
13877 						    tcp->tcp_cwnd_ssthresh;
13878 					}
13879 				} else {
13880 					flags |= TH_REXMIT_NEEDED;
13881 				} /* tcp_snd_sack_ok */
13882 
13883 				} else {
13884 					/*
13885 					 * Here we perform congestion
13886 					 * avoidance, but NOT slow start.
13887 					 * This is known as the Fast
13888 					 * Recovery Algorithm.
13889 					 */
13890 					if (tcp->tcp_snd_sack_ok &&
13891 					    tcp->tcp_notsack_list != NULL) {
13892 						flags |= TH_NEED_SACK_REXMIT;
13893 						tcp->tcp_pipe -= mss;
13894 						if (tcp->tcp_pipe < 0)
13895 							tcp->tcp_pipe = 0;
13896 					} else {
13897 					/*
13898 					 * We know that one more packet has
13899 					 * left the pipe thus we can update
13900 					 * cwnd.
13901 					 */
13902 					cwnd = tcp->tcp_cwnd + mss;
13903 					if (cwnd > tcp->tcp_cwnd_max)
13904 						cwnd = tcp->tcp_cwnd_max;
13905 					tcp->tcp_cwnd = cwnd;
13906 					if (tcp->tcp_unsent > 0)
13907 						flags |= TH_XMIT_NEEDED;
13908 					}
13909 				}
13910 			}
13911 		} else if (tcp->tcp_zero_win_probe) {
13912 			/*
13913 			 * If the window has opened, need to arrange
13914 			 * to send additional data.
13915 			 */
13916 			if (new_swnd != 0) {
13917 				/* tcp_suna != tcp_snxt */
13918 				/* Packet contains a window update */
13919 				BUMP_MIB(&tcp_mib, tcpInWinUpdate);
13920 				tcp->tcp_zero_win_probe = 0;
13921 				tcp->tcp_timer_backoff = 0;
13922 				tcp->tcp_ms_we_have_waited = 0;
13923 
13924 				/*
13925 				 * Transmit starting with tcp_suna since
13926 				 * the one byte probe is not ack'ed.
13927 				 * If TCP has sent more than one identical
13928 				 * probe, tcp_rexmit will be set.  That means
13929 				 * tcp_ss_rexmit() will send out the one
13930 				 * byte along with new data.  Otherwise,
13931 				 * fake the retransmission.
13932 				 */
13933 				flags |= TH_XMIT_NEEDED;
13934 				if (!tcp->tcp_rexmit) {
13935 					tcp->tcp_rexmit = B_TRUE;
13936 					tcp->tcp_dupack_cnt = 0;
13937 					tcp->tcp_rexmit_nxt = tcp->tcp_suna;
13938 					tcp->tcp_rexmit_max = tcp->tcp_suna + 1;
13939 				}
13940 			}
13941 		}
13942 		goto swnd_update;
13943 	}
13944 
13945 	/*
13946 	 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73.
13947 	 * If the ACK value acks something that we have not yet sent, it might
13948 	 * be an old duplicate segment.  Send an ACK to re-synchronize the
13949 	 * other side.
13950 	 * Note: reset in response to unacceptable ACK in SYN_RECEIVE
13951 	 * state is handled above, so we can always just drop the segment and
13952 	 * send an ACK here.
13953 	 *
13954 	 * Should we send ACKs in response to ACK only segments?
13955 	 */
13956 	if (SEQ_GT(seg_ack, tcp->tcp_snxt)) {
13957 		BUMP_MIB(&tcp_mib, tcpInAckUnsent);
13958 		/* drop the received segment */
13959 		freemsg(mp);
13960 
13961 		/*
13962 		 * Send back an ACK.  If tcp_drop_ack_unsent_cnt is
13963 		 * greater than 0, check if the number of such
13964 		 * bogus ACks is greater than that count.  If yes,
13965 		 * don't send back any ACK.  This prevents TCP from
13966 		 * getting into an ACK storm if somehow an attacker
13967 		 * successfully spoofs an acceptable segment to our
13968 		 * peer.
13969 		 */
13970 		if (tcp_drop_ack_unsent_cnt > 0 &&
13971 		    ++tcp->tcp_in_ack_unsent > tcp_drop_ack_unsent_cnt) {
13972 			TCP_STAT(tcp_in_ack_unsent_drop);
13973 			return;
13974 		}
13975 		mp = tcp_ack_mp(tcp);
13976 		if (mp != NULL) {
13977 			TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
13978 			BUMP_LOCAL(tcp->tcp_obsegs);
13979 			BUMP_MIB(&tcp_mib, tcpOutAck);
13980 			tcp_send_data(tcp, tcp->tcp_wq, mp);
13981 		}
13982 		return;
13983 	}
13984 
13985 	/*
13986 	 * TCP gets a new ACK, update the notsack'ed list to delete those
13987 	 * blocks that are covered by this ACK.
13988 	 */
13989 	if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
13990 		tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack,
13991 		    &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list));
13992 	}
13993 
13994 	/*
13995 	 * If we got an ACK after fast retransmit, check to see
13996 	 * if it is a partial ACK.  If it is not and the congestion
13997 	 * window was inflated to account for the other side's
13998 	 * cached packets, retract it.  If it is, do Hoe's algorithm.
13999 	 */
14000 	if (tcp->tcp_dupack_cnt >= tcp_dupack_fast_retransmit) {
14001 		ASSERT(tcp->tcp_rexmit == B_FALSE);
14002 		if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) {
14003 			tcp->tcp_dupack_cnt = 0;
14004 			/*
14005 			 * Restore the orig tcp_cwnd_ssthresh after
14006 			 * fast retransmit phase.
14007 			 */
14008 			if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) {
14009 				tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh;
14010 			}
14011 			tcp->tcp_rexmit_max = seg_ack;
14012 			tcp->tcp_cwnd_cnt = 0;
14013 			tcp->tcp_snd_burst = tcp->tcp_localnet ?
14014 			    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
14015 
14016 			/*
14017 			 * Remove all notsack info to avoid confusion with
14018 			 * the next fast retrasnmit/recovery phase.
14019 			 */
14020 			if (tcp->tcp_snd_sack_ok &&
14021 			    tcp->tcp_notsack_list != NULL) {
14022 				TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
14023 			}
14024 		} else {
14025 			if (tcp->tcp_snd_sack_ok &&
14026 			    tcp->tcp_notsack_list != NULL) {
14027 				flags |= TH_NEED_SACK_REXMIT;
14028 				tcp->tcp_pipe -= mss;
14029 				if (tcp->tcp_pipe < 0)
14030 					tcp->tcp_pipe = 0;
14031 			} else {
14032 				/*
14033 				 * Hoe's algorithm:
14034 				 *
14035 				 * Retransmit the unack'ed segment and
14036 				 * restart fast recovery.  Note that we
14037 				 * need to scale back tcp_cwnd to the
14038 				 * original value when we started fast
14039 				 * recovery.  This is to prevent overly
14040 				 * aggressive behaviour in sending new
14041 				 * segments.
14042 				 */
14043 				tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh +
14044 					tcp_dupack_fast_retransmit * mss;
14045 				tcp->tcp_cwnd_cnt = tcp->tcp_cwnd;
14046 				flags |= TH_REXMIT_NEEDED;
14047 			}
14048 		}
14049 	} else {
14050 		tcp->tcp_dupack_cnt = 0;
14051 		if (tcp->tcp_rexmit) {
14052 			/*
14053 			 * TCP is retranmitting.  If the ACK ack's all
14054 			 * outstanding data, update tcp_rexmit_max and
14055 			 * tcp_rexmit_nxt.  Otherwise, update tcp_rexmit_nxt
14056 			 * to the correct value.
14057 			 *
14058 			 * Note that SEQ_LEQ() is used.  This is to avoid
14059 			 * unnecessary fast retransmit caused by dup ACKs
14060 			 * received when TCP does slow start retransmission
14061 			 * after a time out.  During this phase, TCP may
14062 			 * send out segments which are already received.
14063 			 * This causes dup ACKs to be sent back.
14064 			 */
14065 			if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) {
14066 				if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) {
14067 					tcp->tcp_rexmit_nxt = seg_ack;
14068 				}
14069 				if (seg_ack != tcp->tcp_rexmit_max) {
14070 					flags |= TH_XMIT_NEEDED;
14071 				}
14072 			} else {
14073 				tcp->tcp_rexmit = B_FALSE;
14074 				tcp->tcp_xmit_zc_clean = B_FALSE;
14075 				tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
14076 				tcp->tcp_snd_burst = tcp->tcp_localnet ?
14077 				    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
14078 			}
14079 			tcp->tcp_ms_we_have_waited = 0;
14080 		}
14081 	}
14082 
14083 	BUMP_MIB(&tcp_mib, tcpInAckSegs);
14084 	UPDATE_MIB(&tcp_mib, tcpInAckBytes, bytes_acked);
14085 	tcp->tcp_suna = seg_ack;
14086 	if (tcp->tcp_zero_win_probe != 0) {
14087 		tcp->tcp_zero_win_probe = 0;
14088 		tcp->tcp_timer_backoff = 0;
14089 	}
14090 
14091 	/*
14092 	 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed.
14093 	 * Note that it cannot be the SYN being ack'ed.  The code flow
14094 	 * will not reach here.
14095 	 */
14096 	if (mp1 == NULL) {
14097 		goto fin_acked;
14098 	}
14099 
14100 	/*
14101 	 * Update the congestion window.
14102 	 *
14103 	 * If TCP is not ECN capable or TCP is ECN capable but the
14104 	 * congestion experience bit is not set, increase the tcp_cwnd as
14105 	 * usual.
14106 	 */
14107 	if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) {
14108 		cwnd = tcp->tcp_cwnd;
14109 		add = mss;
14110 
14111 		if (cwnd >= tcp->tcp_cwnd_ssthresh) {
14112 			/*
14113 			 * This is to prevent an increase of less than 1 MSS of
14114 			 * tcp_cwnd.  With partial increase, tcp_wput_data()
14115 			 * may send out tinygrams in order to preserve mblk
14116 			 * boundaries.
14117 			 *
14118 			 * By initializing tcp_cwnd_cnt to new tcp_cwnd and
14119 			 * decrementing it by 1 MSS for every ACKs, tcp_cwnd is
14120 			 * increased by 1 MSS for every RTTs.
14121 			 */
14122 			if (tcp->tcp_cwnd_cnt <= 0) {
14123 				tcp->tcp_cwnd_cnt = cwnd + add;
14124 			} else {
14125 				tcp->tcp_cwnd_cnt -= add;
14126 				add = 0;
14127 			}
14128 		}
14129 		tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max);
14130 	}
14131 
14132 	/* See if the latest urgent data has been acknowledged */
14133 	if ((tcp->tcp_valid_bits & TCP_URG_VALID) &&
14134 	    SEQ_GT(seg_ack, tcp->tcp_urg))
14135 		tcp->tcp_valid_bits &= ~TCP_URG_VALID;
14136 
14137 	/* Can we update the RTT estimates? */
14138 	if (tcp->tcp_snd_ts_ok) {
14139 		/* Ignore zero timestamp echo-reply. */
14140 		if (tcpopt.tcp_opt_ts_ecr != 0) {
14141 			tcp_set_rto(tcp, (int32_t)lbolt -
14142 			    (int32_t)tcpopt.tcp_opt_ts_ecr);
14143 		}
14144 
14145 		/* If needed, restart the timer. */
14146 		if (tcp->tcp_set_timer == 1) {
14147 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
14148 			tcp->tcp_set_timer = 0;
14149 		}
14150 		/*
14151 		 * Update tcp_csuna in case the other side stops sending
14152 		 * us timestamps.
14153 		 */
14154 		tcp->tcp_csuna = tcp->tcp_snxt;
14155 	} else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) {
14156 		/*
14157 		 * An ACK sequence we haven't seen before, so get the RTT
14158 		 * and update the RTO. But first check if the timestamp is
14159 		 * valid to use.
14160 		 */
14161 		if ((mp1->b_next != NULL) &&
14162 		    SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next)))
14163 			tcp_set_rto(tcp, (int32_t)lbolt -
14164 			    (int32_t)(intptr_t)mp1->b_prev);
14165 		else
14166 			BUMP_MIB(&tcp_mib, tcpRttNoUpdate);
14167 
14168 		/* Remeber the last sequence to be ACKed */
14169 		tcp->tcp_csuna = seg_ack;
14170 		if (tcp->tcp_set_timer == 1) {
14171 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
14172 			tcp->tcp_set_timer = 0;
14173 		}
14174 	} else {
14175 		BUMP_MIB(&tcp_mib, tcpRttNoUpdate);
14176 	}
14177 
14178 	/* Eat acknowledged bytes off the xmit queue. */
14179 	for (;;) {
14180 		mblk_t	*mp2;
14181 		uchar_t	*wptr;
14182 
14183 		wptr = mp1->b_wptr;
14184 		ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX);
14185 		bytes_acked -= (int)(wptr - mp1->b_rptr);
14186 		if (bytes_acked < 0) {
14187 			mp1->b_rptr = wptr + bytes_acked;
14188 			/*
14189 			 * Set a new timestamp if all the bytes timed by the
14190 			 * old timestamp have been ack'ed.
14191 			 */
14192 			if (SEQ_GT(seg_ack,
14193 			    (uint32_t)(uintptr_t)(mp1->b_next))) {
14194 				mp1->b_prev = (mblk_t *)(uintptr_t)lbolt;
14195 				mp1->b_next = NULL;
14196 			}
14197 			break;
14198 		}
14199 		mp1->b_next = NULL;
14200 		mp1->b_prev = NULL;
14201 		mp2 = mp1;
14202 		mp1 = mp1->b_cont;
14203 
14204 		/*
14205 		 * This notification is required for some zero-copy
14206 		 * clients to maintain a copy semantic. After the data
14207 		 * is ack'ed, client is safe to modify or reuse the buffer.
14208 		 */
14209 		if (tcp->tcp_snd_zcopy_aware &&
14210 		    (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY))
14211 			tcp_zcopy_notify(tcp);
14212 		freeb(mp2);
14213 		if (bytes_acked == 0) {
14214 			if (mp1 == NULL) {
14215 				/* Everything is ack'ed, clear the tail. */
14216 				tcp->tcp_xmit_tail = NULL;
14217 				/*
14218 				 * Cancel the timer unless we are still
14219 				 * waiting for an ACK for the FIN packet.
14220 				 */
14221 				if (tcp->tcp_timer_tid != 0 &&
14222 				    tcp->tcp_snxt == tcp->tcp_suna) {
14223 					(void) TCP_TIMER_CANCEL(tcp,
14224 					    tcp->tcp_timer_tid);
14225 					tcp->tcp_timer_tid = 0;
14226 				}
14227 				goto pre_swnd_update;
14228 			}
14229 			if (mp2 != tcp->tcp_xmit_tail)
14230 				break;
14231 			tcp->tcp_xmit_tail = mp1;
14232 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
14233 			    (uintptr_t)INT_MAX);
14234 			tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr -
14235 			    mp1->b_rptr);
14236 			break;
14237 		}
14238 		if (mp1 == NULL) {
14239 			/*
14240 			 * More was acked but there is nothing more
14241 			 * outstanding.  This means that the FIN was
14242 			 * just acked or that we're talking to a clown.
14243 			 */
14244 fin_acked:
14245 			ASSERT(tcp->tcp_fin_sent);
14246 			tcp->tcp_xmit_tail = NULL;
14247 			if (tcp->tcp_fin_sent) {
14248 				/* FIN was acked - making progress */
14249 				if (tcp->tcp_ipversion == IPV6_VERSION &&
14250 				    !tcp->tcp_fin_acked)
14251 					tcp->tcp_ip_forward_progress = B_TRUE;
14252 				tcp->tcp_fin_acked = B_TRUE;
14253 				if (tcp->tcp_linger_tid != 0 &&
14254 				    TCP_TIMER_CANCEL(tcp,
14255 					tcp->tcp_linger_tid) >= 0) {
14256 					tcp_stop_lingering(tcp);
14257 				}
14258 			} else {
14259 				/*
14260 				 * We should never get here because
14261 				 * we have already checked that the
14262 				 * number of bytes ack'ed should be
14263 				 * smaller than or equal to what we
14264 				 * have sent so far (it is the
14265 				 * acceptability check of the ACK).
14266 				 * We can only get here if the send
14267 				 * queue is corrupted.
14268 				 *
14269 				 * Terminate the connection and
14270 				 * panic the system.  It is better
14271 				 * for us to panic instead of
14272 				 * continuing to avoid other disaster.
14273 				 */
14274 				tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
14275 				    tcp->tcp_rnxt, TH_RST|TH_ACK);
14276 				panic("Memory corruption "
14277 				    "detected for connection %s.",
14278 				    tcp_display(tcp, NULL,
14279 					DISP_ADDR_AND_PORT));
14280 				/*NOTREACHED*/
14281 			}
14282 			goto pre_swnd_update;
14283 		}
14284 		ASSERT(mp2 != tcp->tcp_xmit_tail);
14285 	}
14286 	if (tcp->tcp_unsent) {
14287 		flags |= TH_XMIT_NEEDED;
14288 	}
14289 pre_swnd_update:
14290 	tcp->tcp_xmit_head = mp1;
14291 swnd_update:
14292 	/*
14293 	 * The following check is different from most other implementations.
14294 	 * For bi-directional transfer, when segments are dropped, the
14295 	 * "normal" check will not accept a window update in those
14296 	 * retransmitted segemnts.  Failing to do that, TCP may send out
14297 	 * segments which are outside receiver's window.  As TCP accepts
14298 	 * the ack in those retransmitted segments, if the window update in
14299 	 * the same segment is not accepted, TCP will incorrectly calculates
14300 	 * that it can send more segments.  This can create a deadlock
14301 	 * with the receiver if its window becomes zero.
14302 	 */
14303 	if (SEQ_LT(tcp->tcp_swl2, seg_ack) ||
14304 	    SEQ_LT(tcp->tcp_swl1, seg_seq) ||
14305 	    (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) {
14306 		/*
14307 		 * The criteria for update is:
14308 		 *
14309 		 * 1. the segment acknowledges some data.  Or
14310 		 * 2. the segment is new, i.e. it has a higher seq num. Or
14311 		 * 3. the segment is not old and the advertised window is
14312 		 * larger than the previous advertised window.
14313 		 */
14314 		if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd)
14315 			flags |= TH_XMIT_NEEDED;
14316 		tcp->tcp_swnd = new_swnd;
14317 		if (new_swnd > tcp->tcp_max_swnd)
14318 			tcp->tcp_max_swnd = new_swnd;
14319 		tcp->tcp_swl1 = seg_seq;
14320 		tcp->tcp_swl2 = seg_ack;
14321 	}
14322 est:
14323 	if (tcp->tcp_state > TCPS_ESTABLISHED) {
14324 
14325 		switch (tcp->tcp_state) {
14326 		case TCPS_FIN_WAIT_1:
14327 			if (tcp->tcp_fin_acked) {
14328 				tcp->tcp_state = TCPS_FIN_WAIT_2;
14329 				/*
14330 				 * We implement the non-standard BSD/SunOS
14331 				 * FIN_WAIT_2 flushing algorithm.
14332 				 * If there is no user attached to this
14333 				 * TCP endpoint, then this TCP struct
14334 				 * could hang around forever in FIN_WAIT_2
14335 				 * state if the peer forgets to send us
14336 				 * a FIN.  To prevent this, we wait only
14337 				 * 2*MSL (a convenient time value) for
14338 				 * the FIN to arrive.  If it doesn't show up,
14339 				 * we flush the TCP endpoint.  This algorithm,
14340 				 * though a violation of RFC-793, has worked
14341 				 * for over 10 years in BSD systems.
14342 				 * Note: SunOS 4.x waits 675 seconds before
14343 				 * flushing the FIN_WAIT_2 connection.
14344 				 */
14345 				TCP_TIMER_RESTART(tcp,
14346 				    tcp_fin_wait_2_flush_interval);
14347 			}
14348 			break;
14349 		case TCPS_FIN_WAIT_2:
14350 			break;	/* Shutdown hook? */
14351 		case TCPS_LAST_ACK:
14352 			freemsg(mp);
14353 			if (tcp->tcp_fin_acked) {
14354 				(void) tcp_clean_death(tcp, 0, 19);
14355 				return;
14356 			}
14357 			goto xmit_check;
14358 		case TCPS_CLOSING:
14359 			if (tcp->tcp_fin_acked) {
14360 				tcp->tcp_state = TCPS_TIME_WAIT;
14361 				/*
14362 				 * Unconditionally clear the exclusive binding
14363 				 * bit so this TIME-WAIT connection won't
14364 				 * interfere with new ones.
14365 				 */
14366 				tcp->tcp_exclbind = 0;
14367 				if (!TCP_IS_DETACHED(tcp)) {
14368 					TCP_TIMER_RESTART(tcp,
14369 					    tcp_time_wait_interval);
14370 				} else {
14371 					tcp_time_wait_append(tcp);
14372 					TCP_DBGSTAT(tcp_rput_time_wait);
14373 				}
14374 			}
14375 			/*FALLTHRU*/
14376 		case TCPS_CLOSE_WAIT:
14377 			freemsg(mp);
14378 			goto xmit_check;
14379 		default:
14380 			ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
14381 			break;
14382 		}
14383 	}
14384 	if (flags & TH_FIN) {
14385 		/* Make sure we ack the fin */
14386 		flags |= TH_ACK_NEEDED;
14387 		if (!tcp->tcp_fin_rcvd) {
14388 			tcp->tcp_fin_rcvd = B_TRUE;
14389 			tcp->tcp_rnxt++;
14390 			tcph = tcp->tcp_tcph;
14391 			U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack);
14392 
14393 			/*
14394 			 * Generate the ordrel_ind at the end unless we
14395 			 * are an eager guy.
14396 			 * In the eager case tcp_rsrv will do this when run
14397 			 * after tcp_accept is done.
14398 			 */
14399 			if (tcp->tcp_listener == NULL &&
14400 			    !TCP_IS_DETACHED(tcp) && (!tcp->tcp_hard_binding))
14401 				flags |= TH_ORDREL_NEEDED;
14402 			switch (tcp->tcp_state) {
14403 			case TCPS_SYN_RCVD:
14404 			case TCPS_ESTABLISHED:
14405 				tcp->tcp_state = TCPS_CLOSE_WAIT;
14406 				/* Keepalive? */
14407 				break;
14408 			case TCPS_FIN_WAIT_1:
14409 				if (!tcp->tcp_fin_acked) {
14410 					tcp->tcp_state = TCPS_CLOSING;
14411 					break;
14412 				}
14413 				/* FALLTHRU */
14414 			case TCPS_FIN_WAIT_2:
14415 				tcp->tcp_state = TCPS_TIME_WAIT;
14416 				/*
14417 				 * Unconditionally clear the exclusive binding
14418 				 * bit so this TIME-WAIT connection won't
14419 				 * interfere with new ones.
14420 				 */
14421 				tcp->tcp_exclbind = 0;
14422 				if (!TCP_IS_DETACHED(tcp)) {
14423 					TCP_TIMER_RESTART(tcp,
14424 					    tcp_time_wait_interval);
14425 				} else {
14426 					tcp_time_wait_append(tcp);
14427 					TCP_DBGSTAT(tcp_rput_time_wait);
14428 				}
14429 				if (seg_len) {
14430 					/*
14431 					 * implies data piggybacked on FIN.
14432 					 * break to handle data.
14433 					 */
14434 					break;
14435 				}
14436 				freemsg(mp);
14437 				goto ack_check;
14438 			}
14439 		}
14440 	}
14441 	if (mp == NULL)
14442 		goto xmit_check;
14443 	if (seg_len == 0) {
14444 		freemsg(mp);
14445 		goto xmit_check;
14446 	}
14447 	if (mp->b_rptr == mp->b_wptr) {
14448 		/*
14449 		 * The header has been consumed, so we remove the
14450 		 * zero-length mblk here.
14451 		 */
14452 		mp1 = mp;
14453 		mp = mp->b_cont;
14454 		freeb(mp1);
14455 	}
14456 	tcph = tcp->tcp_tcph;
14457 	tcp->tcp_rack_cnt++;
14458 	{
14459 		uint32_t cur_max;
14460 
14461 		cur_max = tcp->tcp_rack_cur_max;
14462 		if (tcp->tcp_rack_cnt >= cur_max) {
14463 			/*
14464 			 * We have more unacked data than we should - send
14465 			 * an ACK now.
14466 			 */
14467 			flags |= TH_ACK_NEEDED;
14468 			cur_max++;
14469 			if (cur_max > tcp->tcp_rack_abs_max)
14470 				tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max;
14471 			else
14472 				tcp->tcp_rack_cur_max = cur_max;
14473 		} else if (TCP_IS_DETACHED(tcp)) {
14474 			/* We don't have an ACK timer for detached TCP. */
14475 			flags |= TH_ACK_NEEDED;
14476 		} else if (seg_len < mss) {
14477 			/*
14478 			 * If we get a segment that is less than an mss, and we
14479 			 * already have unacknowledged data, and the amount
14480 			 * unacknowledged is not a multiple of mss, then we
14481 			 * better generate an ACK now.  Otherwise, this may be
14482 			 * the tail piece of a transaction, and we would rather
14483 			 * wait for the response.
14484 			 */
14485 			uint32_t udif;
14486 			ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <=
14487 			    (uintptr_t)INT_MAX);
14488 			udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack);
14489 			if (udif && (udif % mss))
14490 				flags |= TH_ACK_NEEDED;
14491 			else
14492 				flags |= TH_ACK_TIMER_NEEDED;
14493 		} else {
14494 			/* Start delayed ack timer */
14495 			flags |= TH_ACK_TIMER_NEEDED;
14496 		}
14497 	}
14498 	tcp->tcp_rnxt += seg_len;
14499 	U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack);
14500 
14501 	/* Update SACK list */
14502 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
14503 		tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt,
14504 		    &(tcp->tcp_num_sack_blk));
14505 	}
14506 
14507 	if (tcp->tcp_urp_mp) {
14508 		tcp->tcp_urp_mp->b_cont = mp;
14509 		mp = tcp->tcp_urp_mp;
14510 		tcp->tcp_urp_mp = NULL;
14511 		/* Ready for a new signal. */
14512 		tcp->tcp_urp_last_valid = B_FALSE;
14513 #ifdef DEBUG
14514 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
14515 		    "tcp_rput: sending exdata_ind %s",
14516 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
14517 #endif /* DEBUG */
14518 	}
14519 
14520 	/*
14521 	 * Check for ancillary data changes compared to last segment.
14522 	 */
14523 	if (tcp->tcp_ipv6_recvancillary != 0) {
14524 		mp = tcp_rput_add_ancillary(tcp, mp, &ipp);
14525 		if (mp == NULL)
14526 			return;
14527 	}
14528 
14529 	if (tcp->tcp_listener || tcp->tcp_hard_binding) {
14530 		/*
14531 		 * Side queue inbound data until the accept happens.
14532 		 * tcp_accept/tcp_rput drains this when the accept happens.
14533 		 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or
14534 		 * T_EXDATA_IND) it is queued on b_next.
14535 		 * XXX Make urgent data use this. Requires:
14536 		 *	Removing tcp_listener check for TH_URG
14537 		 *	Making M_PCPROTO and MARK messages skip the eager case
14538 		 */
14539 
14540 		if (tcp->tcp_kssl_pending) {
14541 			tcp_kssl_input(tcp, mp);
14542 		} else {
14543 			tcp_rcv_enqueue(tcp, mp, seg_len);
14544 		}
14545 	} else {
14546 		if (mp->b_datap->db_type != M_DATA ||
14547 		    (flags & TH_MARKNEXT_NEEDED)) {
14548 			if (tcp->tcp_rcv_list != NULL) {
14549 				flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
14550 			}
14551 			ASSERT(tcp->tcp_rcv_list == NULL ||
14552 			    tcp->tcp_fused_sigurg);
14553 			if (flags & TH_MARKNEXT_NEEDED) {
14554 #ifdef DEBUG
14555 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
14556 				    "tcp_rput: sending MSGMARKNEXT %s",
14557 				    tcp_display(tcp, NULL,
14558 				    DISP_PORT_ONLY));
14559 #endif /* DEBUG */
14560 				mp->b_flag |= MSGMARKNEXT;
14561 				flags &= ~TH_MARKNEXT_NEEDED;
14562 			}
14563 
14564 			/* Does this need SSL processing first? */
14565 			if ((tcp->tcp_kssl_ctx  != NULL) &&
14566 			    (DB_TYPE(mp) == M_DATA)) {
14567 				tcp_kssl_input(tcp, mp);
14568 			} else {
14569 				putnext(tcp->tcp_rq, mp);
14570 				if (!canputnext(tcp->tcp_rq))
14571 					tcp->tcp_rwnd -= seg_len;
14572 			}
14573 		} else if ((flags & (TH_PUSH|TH_FIN)) ||
14574 		    tcp->tcp_rcv_cnt + seg_len >= tcp->tcp_rq->q_hiwat >> 3) {
14575 			if (tcp->tcp_rcv_list != NULL) {
14576 				/*
14577 				 * Enqueue the new segment first and then
14578 				 * call tcp_rcv_drain() to send all data
14579 				 * up.  The other way to do this is to
14580 				 * send all queued data up and then call
14581 				 * putnext() to send the new segment up.
14582 				 * This way can remove the else part later
14583 				 * on.
14584 				 *
14585 				 * We don't this to avoid one more call to
14586 				 * canputnext() as tcp_rcv_drain() needs to
14587 				 * call canputnext().
14588 				 */
14589 				tcp_rcv_enqueue(tcp, mp, seg_len);
14590 				flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
14591 			} else {
14592 				/* Does this need SSL processing first? */
14593 				if ((tcp->tcp_kssl_ctx  != NULL) &&
14594 				    (DB_TYPE(mp) == M_DATA)) {
14595 					tcp_kssl_input(tcp, mp);
14596 				} else {
14597 					putnext(tcp->tcp_rq, mp);
14598 					if (!canputnext(tcp->tcp_rq))
14599 						tcp->tcp_rwnd -= seg_len;
14600 				}
14601 			}
14602 		} else {
14603 			/*
14604 			 * Enqueue all packets when processing an mblk
14605 			 * from the co queue and also enqueue normal packets.
14606 			 */
14607 			tcp_rcv_enqueue(tcp, mp, seg_len);
14608 		}
14609 		/*
14610 		 * Make sure the timer is running if we have data waiting
14611 		 * for a push bit. This provides resiliency against
14612 		 * implementations that do not correctly generate push bits.
14613 		 */
14614 		if (tcp->tcp_rcv_list != NULL && tcp->tcp_push_tid == 0) {
14615 			/*
14616 			 * The connection may be closed at this point, so don't
14617 			 * do anything for a detached tcp.
14618 			 */
14619 			if (!TCP_IS_DETACHED(tcp))
14620 				tcp->tcp_push_tid = TCP_TIMER(tcp,
14621 				    tcp_push_timer,
14622 				    MSEC_TO_TICK(tcp_push_timer_interval));
14623 		}
14624 	}
14625 xmit_check:
14626 	/* Is there anything left to do? */
14627 	ASSERT(!(flags & TH_MARKNEXT_NEEDED));
14628 	if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED|
14629 	    TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED|
14630 	    TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0)
14631 		goto done;
14632 
14633 	/* Any transmit work to do and a non-zero window? */
14634 	if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT|
14635 	    TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) {
14636 		if (flags & TH_REXMIT_NEEDED) {
14637 			uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna;
14638 
14639 			BUMP_MIB(&tcp_mib, tcpOutFastRetrans);
14640 			if (snd_size > mss)
14641 				snd_size = mss;
14642 			if (snd_size > tcp->tcp_swnd)
14643 				snd_size = tcp->tcp_swnd;
14644 			mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size,
14645 			    NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size,
14646 			    B_TRUE);
14647 
14648 			if (mp1 != NULL) {
14649 				tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt;
14650 				tcp->tcp_csuna = tcp->tcp_snxt;
14651 				BUMP_MIB(&tcp_mib, tcpRetransSegs);
14652 				UPDATE_MIB(&tcp_mib, tcpRetransBytes, snd_size);
14653 				TCP_RECORD_TRACE(tcp, mp1,
14654 				    TCP_TRACE_SEND_PKT);
14655 				tcp_send_data(tcp, tcp->tcp_wq, mp1);
14656 			}
14657 		}
14658 		if (flags & TH_NEED_SACK_REXMIT) {
14659 			tcp_sack_rxmit(tcp, &flags);
14660 		}
14661 		/*
14662 		 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send
14663 		 * out new segment.  Note that tcp_rexmit should not be
14664 		 * set, otherwise TH_LIMIT_XMIT should not be set.
14665 		 */
14666 		if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) {
14667 			if (!tcp->tcp_rexmit) {
14668 				tcp_wput_data(tcp, NULL, B_FALSE);
14669 			} else {
14670 				tcp_ss_rexmit(tcp);
14671 			}
14672 		}
14673 		/*
14674 		 * Adjust tcp_cwnd back to normal value after sending
14675 		 * new data segments.
14676 		 */
14677 		if (flags & TH_LIMIT_XMIT) {
14678 			tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1);
14679 			/*
14680 			 * This will restart the timer.  Restarting the
14681 			 * timer is used to avoid a timeout before the
14682 			 * limited transmitted segment's ACK gets back.
14683 			 */
14684 			if (tcp->tcp_xmit_head != NULL)
14685 				tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt;
14686 		}
14687 
14688 		/* Anything more to do? */
14689 		if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED|
14690 		    TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0)
14691 			goto done;
14692 	}
14693 ack_check:
14694 	if (flags & TH_SEND_URP_MARK) {
14695 		ASSERT(tcp->tcp_urp_mark_mp);
14696 		/*
14697 		 * Send up any queued data and then send the mark message
14698 		 */
14699 		if (tcp->tcp_rcv_list != NULL) {
14700 			flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
14701 		}
14702 		ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
14703 
14704 		mp1 = tcp->tcp_urp_mark_mp;
14705 		tcp->tcp_urp_mark_mp = NULL;
14706 #ifdef DEBUG
14707 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
14708 		    "tcp_rput: sending zero-length %s %s",
14709 		    ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" :
14710 		    "MSGNOTMARKNEXT"),
14711 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
14712 #endif /* DEBUG */
14713 		putnext(tcp->tcp_rq, mp1);
14714 		flags &= ~TH_SEND_URP_MARK;
14715 	}
14716 	if (flags & TH_ACK_NEEDED) {
14717 		/*
14718 		 * Time to send an ack for some reason.
14719 		 */
14720 		mp1 = tcp_ack_mp(tcp);
14721 
14722 		if (mp1 != NULL) {
14723 			TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT);
14724 			tcp_send_data(tcp, tcp->tcp_wq, mp1);
14725 			BUMP_LOCAL(tcp->tcp_obsegs);
14726 			BUMP_MIB(&tcp_mib, tcpOutAck);
14727 		}
14728 		if (tcp->tcp_ack_tid != 0) {
14729 			(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid);
14730 			tcp->tcp_ack_tid = 0;
14731 		}
14732 	}
14733 	if (flags & TH_ACK_TIMER_NEEDED) {
14734 		/*
14735 		 * Arrange for deferred ACK or push wait timeout.
14736 		 * Start timer if it is not already running.
14737 		 */
14738 		if (tcp->tcp_ack_tid == 0) {
14739 			tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer,
14740 			    MSEC_TO_TICK(tcp->tcp_localnet ?
14741 			    (clock_t)tcp_local_dack_interval :
14742 			    (clock_t)tcp_deferred_ack_interval));
14743 		}
14744 	}
14745 	if (flags & TH_ORDREL_NEEDED) {
14746 		/*
14747 		 * Send up the ordrel_ind unless we are an eager guy.
14748 		 * In the eager case tcp_rsrv will do this when run
14749 		 * after tcp_accept is done.
14750 		 */
14751 		ASSERT(tcp->tcp_listener == NULL);
14752 		if (tcp->tcp_rcv_list != NULL) {
14753 			/*
14754 			 * Push any mblk(s) enqueued from co processing.
14755 			 */
14756 			flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
14757 		}
14758 		ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
14759 		if ((mp1 = mi_tpi_ordrel_ind()) != NULL) {
14760 			tcp->tcp_ordrel_done = B_TRUE;
14761 			putnext(tcp->tcp_rq, mp1);
14762 			if (tcp->tcp_deferred_clean_death) {
14763 				/*
14764 				 * tcp_clean_death was deferred
14765 				 * for T_ORDREL_IND - do it now
14766 				 */
14767 				(void) tcp_clean_death(tcp,
14768 				    tcp->tcp_client_errno, 20);
14769 				tcp->tcp_deferred_clean_death =	B_FALSE;
14770 			}
14771 		} else {
14772 			/*
14773 			 * Run the orderly release in the
14774 			 * service routine.
14775 			 */
14776 			qenable(tcp->tcp_rq);
14777 			/*
14778 			 * Caveat(XXX): The machine may be so
14779 			 * overloaded that tcp_rsrv() is not scheduled
14780 			 * until after the endpoint has transitioned
14781 			 * to TCPS_TIME_WAIT
14782 			 * and tcp_time_wait_interval expires. Then
14783 			 * tcp_timer() will blow away state in tcp_t
14784 			 * and T_ORDREL_IND will never be delivered
14785 			 * upstream. Unlikely but potentially
14786 			 * a problem.
14787 			 */
14788 		}
14789 	}
14790 done:
14791 	ASSERT(!(flags & TH_MARKNEXT_NEEDED));
14792 }
14793 
14794 /*
14795  * This function does PAWS protection check. Returns B_TRUE if the
14796  * segment passes the PAWS test, else returns B_FALSE.
14797  */
14798 boolean_t
14799 tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp)
14800 {
14801 	uint8_t	flags;
14802 	int	options;
14803 	uint8_t *up;
14804 
14805 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
14806 	/*
14807 	 * If timestamp option is aligned nicely, get values inline,
14808 	 * otherwise call general routine to parse.  Only do that
14809 	 * if timestamp is the only option.
14810 	 */
14811 	if (TCP_HDR_LENGTH(tcph) == (uint32_t)TCP_MIN_HEADER_LENGTH +
14812 	    TCPOPT_REAL_TS_LEN &&
14813 	    OK_32PTR((up = ((uint8_t *)tcph) +
14814 	    TCP_MIN_HEADER_LENGTH)) &&
14815 	    *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) {
14816 		tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4));
14817 		tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8));
14818 
14819 		options = TCP_OPT_TSTAMP_PRESENT;
14820 	} else {
14821 		if (tcp->tcp_snd_sack_ok) {
14822 			tcpoptp->tcp = tcp;
14823 		} else {
14824 			tcpoptp->tcp = NULL;
14825 		}
14826 		options = tcp_parse_options(tcph, tcpoptp);
14827 	}
14828 
14829 	if (options & TCP_OPT_TSTAMP_PRESENT) {
14830 		/*
14831 		 * Do PAWS per RFC 1323 section 4.2.  Accept RST
14832 		 * regardless of the timestamp, page 18 RFC 1323.bis.
14833 		 */
14834 		if ((flags & TH_RST) == 0 &&
14835 		    TSTMP_LT(tcpoptp->tcp_opt_ts_val,
14836 		    tcp->tcp_ts_recent)) {
14837 			if (TSTMP_LT(lbolt64, tcp->tcp_last_rcv_lbolt +
14838 			    PAWS_TIMEOUT)) {
14839 				/* This segment is not acceptable. */
14840 				return (B_FALSE);
14841 			} else {
14842 				/*
14843 				 * Connection has been idle for
14844 				 * too long.  Reset the timestamp
14845 				 * and assume the segment is valid.
14846 				 */
14847 				tcp->tcp_ts_recent =
14848 				    tcpoptp->tcp_opt_ts_val;
14849 			}
14850 		}
14851 	} else {
14852 		/*
14853 		 * If we don't get a timestamp on every packet, we
14854 		 * figure we can't really trust 'em, so we stop sending
14855 		 * and parsing them.
14856 		 */
14857 		tcp->tcp_snd_ts_ok = B_FALSE;
14858 
14859 		tcp->tcp_hdr_len -= TCPOPT_REAL_TS_LEN;
14860 		tcp->tcp_tcp_hdr_len -= TCPOPT_REAL_TS_LEN;
14861 		tcp->tcp_tcph->th_offset_and_rsrvd[0] -= (3 << 4);
14862 		tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN);
14863 		if (tcp->tcp_snd_sack_ok) {
14864 			ASSERT(tcp->tcp_sack_info != NULL);
14865 			tcp->tcp_max_sack_blk = 4;
14866 		}
14867 	}
14868 	return (B_TRUE);
14869 }
14870 
14871 /*
14872  * Attach ancillary data to a received TCP segments for the
14873  * ancillary pieces requested by the application that are
14874  * different than they were in the previous data segment.
14875  *
14876  * Save the "current" values once memory allocation is ok so that
14877  * when memory allocation fails we can just wait for the next data segment.
14878  */
14879 static mblk_t *
14880 tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp)
14881 {
14882 	struct T_optdata_ind *todi;
14883 	int optlen;
14884 	uchar_t *optptr;
14885 	struct T_opthdr *toh;
14886 	uint_t addflag;	/* Which pieces to add */
14887 	mblk_t *mp1;
14888 
14889 	optlen = 0;
14890 	addflag = 0;
14891 	/* If app asked for pktinfo and the index has changed ... */
14892 	if ((ipp->ipp_fields & IPPF_IFINDEX) &&
14893 	    ipp->ipp_ifindex != tcp->tcp_recvifindex &&
14894 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)) {
14895 		optlen += sizeof (struct T_opthdr) +
14896 		    sizeof (struct in6_pktinfo);
14897 		addflag |= TCP_IPV6_RECVPKTINFO;
14898 	}
14899 	/* If app asked for hoplimit and it has changed ... */
14900 	if ((ipp->ipp_fields & IPPF_HOPLIMIT) &&
14901 	    ipp->ipp_hoplimit != tcp->tcp_recvhops &&
14902 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPLIMIT)) {
14903 		optlen += sizeof (struct T_opthdr) + sizeof (uint_t);
14904 		addflag |= TCP_IPV6_RECVHOPLIMIT;
14905 	}
14906 	/* If app asked for tclass and it has changed ... */
14907 	if ((ipp->ipp_fields & IPPF_TCLASS) &&
14908 	    ipp->ipp_tclass != tcp->tcp_recvtclass &&
14909 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)) {
14910 		optlen += sizeof (struct T_opthdr) + sizeof (uint_t);
14911 		addflag |= TCP_IPV6_RECVTCLASS;
14912 	}
14913 	/*
14914 	 * If app asked for hopbyhop headers and it has changed ...
14915 	 * For security labels, note that (1) security labels can't change on
14916 	 * a connected socket at all, (2) we're connected to at most one peer,
14917 	 * (3) if anything changes, then it must be some other extra option.
14918 	 */
14919 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) &&
14920 	    ip_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen,
14921 	    (ipp->ipp_fields & IPPF_HOPOPTS),
14922 	    ipp->ipp_hopopts, ipp->ipp_hopoptslen)) {
14923 		optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen -
14924 		    tcp->tcp_label_len;
14925 		addflag |= TCP_IPV6_RECVHOPOPTS;
14926 		if (!ip_allocbuf((void **)&tcp->tcp_hopopts,
14927 		    &tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS),
14928 		    ipp->ipp_hopopts, ipp->ipp_hopoptslen))
14929 			return (mp);
14930 	}
14931 	/* If app asked for dst headers before routing headers ... */
14932 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTDSTOPTS) &&
14933 	    ip_cmpbuf(tcp->tcp_rtdstopts, tcp->tcp_rtdstoptslen,
14934 		(ipp->ipp_fields & IPPF_RTDSTOPTS),
14935 		ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) {
14936 		optlen += sizeof (struct T_opthdr) +
14937 		    ipp->ipp_rtdstoptslen;
14938 		addflag |= TCP_IPV6_RECVRTDSTOPTS;
14939 		if (!ip_allocbuf((void **)&tcp->tcp_rtdstopts,
14940 		    &tcp->tcp_rtdstoptslen, (ipp->ipp_fields & IPPF_RTDSTOPTS),
14941 		    ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen))
14942 			return (mp);
14943 	}
14944 	/* If app asked for routing headers and it has changed ... */
14945 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) &&
14946 	    ip_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen,
14947 	    (ipp->ipp_fields & IPPF_RTHDR),
14948 	    ipp->ipp_rthdr, ipp->ipp_rthdrlen)) {
14949 		optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen;
14950 		addflag |= TCP_IPV6_RECVRTHDR;
14951 		if (!ip_allocbuf((void **)&tcp->tcp_rthdr,
14952 		    &tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR),
14953 		    ipp->ipp_rthdr, ipp->ipp_rthdrlen))
14954 			return (mp);
14955 	}
14956 	/* If app asked for dest headers and it has changed ... */
14957 	if ((tcp->tcp_ipv6_recvancillary &
14958 	    (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) &&
14959 	    ip_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen,
14960 	    (ipp->ipp_fields & IPPF_DSTOPTS),
14961 	    ipp->ipp_dstopts, ipp->ipp_dstoptslen)) {
14962 		optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen;
14963 		addflag |= TCP_IPV6_RECVDSTOPTS;
14964 		if (!ip_allocbuf((void **)&tcp->tcp_dstopts,
14965 		    &tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS),
14966 		    ipp->ipp_dstopts, ipp->ipp_dstoptslen))
14967 			return (mp);
14968 	}
14969 
14970 	if (optlen == 0) {
14971 		/* Nothing to add */
14972 		return (mp);
14973 	}
14974 	mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED);
14975 	if (mp1 == NULL) {
14976 		/*
14977 		 * Defer sending ancillary data until the next TCP segment
14978 		 * arrives.
14979 		 */
14980 		return (mp);
14981 	}
14982 	mp1->b_cont = mp;
14983 	mp = mp1;
14984 	mp->b_wptr += sizeof (*todi) + optlen;
14985 	mp->b_datap->db_type = M_PROTO;
14986 	todi = (struct T_optdata_ind *)mp->b_rptr;
14987 	todi->PRIM_type = T_OPTDATA_IND;
14988 	todi->DATA_flag = 1;	/* MORE data */
14989 	todi->OPT_length = optlen;
14990 	todi->OPT_offset = sizeof (*todi);
14991 	optptr = (uchar_t *)&todi[1];
14992 	/*
14993 	 * If app asked for pktinfo and the index has changed ...
14994 	 * Note that the local address never changes for the connection.
14995 	 */
14996 	if (addflag & TCP_IPV6_RECVPKTINFO) {
14997 		struct in6_pktinfo *pkti;
14998 
14999 		toh = (struct T_opthdr *)optptr;
15000 		toh->level = IPPROTO_IPV6;
15001 		toh->name = IPV6_PKTINFO;
15002 		toh->len = sizeof (*toh) + sizeof (*pkti);
15003 		toh->status = 0;
15004 		optptr += sizeof (*toh);
15005 		pkti = (struct in6_pktinfo *)optptr;
15006 		if (tcp->tcp_ipversion == IPV6_VERSION)
15007 			pkti->ipi6_addr = tcp->tcp_ip6h->ip6_src;
15008 		else
15009 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
15010 			    &pkti->ipi6_addr);
15011 		pkti->ipi6_ifindex = ipp->ipp_ifindex;
15012 		optptr += sizeof (*pkti);
15013 		ASSERT(OK_32PTR(optptr));
15014 		/* Save as "last" value */
15015 		tcp->tcp_recvifindex = ipp->ipp_ifindex;
15016 	}
15017 	/* If app asked for hoplimit and it has changed ... */
15018 	if (addflag & TCP_IPV6_RECVHOPLIMIT) {
15019 		toh = (struct T_opthdr *)optptr;
15020 		toh->level = IPPROTO_IPV6;
15021 		toh->name = IPV6_HOPLIMIT;
15022 		toh->len = sizeof (*toh) + sizeof (uint_t);
15023 		toh->status = 0;
15024 		optptr += sizeof (*toh);
15025 		*(uint_t *)optptr = ipp->ipp_hoplimit;
15026 		optptr += sizeof (uint_t);
15027 		ASSERT(OK_32PTR(optptr));
15028 		/* Save as "last" value */
15029 		tcp->tcp_recvhops = ipp->ipp_hoplimit;
15030 	}
15031 	/* If app asked for tclass and it has changed ... */
15032 	if (addflag & TCP_IPV6_RECVTCLASS) {
15033 		toh = (struct T_opthdr *)optptr;
15034 		toh->level = IPPROTO_IPV6;
15035 		toh->name = IPV6_TCLASS;
15036 		toh->len = sizeof (*toh) + sizeof (uint_t);
15037 		toh->status = 0;
15038 		optptr += sizeof (*toh);
15039 		*(uint_t *)optptr = ipp->ipp_tclass;
15040 		optptr += sizeof (uint_t);
15041 		ASSERT(OK_32PTR(optptr));
15042 		/* Save as "last" value */
15043 		tcp->tcp_recvtclass = ipp->ipp_tclass;
15044 	}
15045 	if (addflag & TCP_IPV6_RECVHOPOPTS) {
15046 		toh = (struct T_opthdr *)optptr;
15047 		toh->level = IPPROTO_IPV6;
15048 		toh->name = IPV6_HOPOPTS;
15049 		toh->len = sizeof (*toh) + ipp->ipp_hopoptslen -
15050 		    tcp->tcp_label_len;
15051 		toh->status = 0;
15052 		optptr += sizeof (*toh);
15053 		bcopy((uchar_t *)ipp->ipp_hopopts + tcp->tcp_label_len, optptr,
15054 		    ipp->ipp_hopoptslen - tcp->tcp_label_len);
15055 		optptr += ipp->ipp_hopoptslen - tcp->tcp_label_len;
15056 		ASSERT(OK_32PTR(optptr));
15057 		/* Save as last value */
15058 		ip_savebuf((void **)&tcp->tcp_hopopts, &tcp->tcp_hopoptslen,
15059 		    (ipp->ipp_fields & IPPF_HOPOPTS),
15060 		    ipp->ipp_hopopts, ipp->ipp_hopoptslen);
15061 	}
15062 	if (addflag & TCP_IPV6_RECVRTDSTOPTS) {
15063 		toh = (struct T_opthdr *)optptr;
15064 		toh->level = IPPROTO_IPV6;
15065 		toh->name = IPV6_RTHDRDSTOPTS;
15066 		toh->len = sizeof (*toh) + ipp->ipp_rtdstoptslen;
15067 		toh->status = 0;
15068 		optptr += sizeof (*toh);
15069 		bcopy(ipp->ipp_rtdstopts, optptr, ipp->ipp_rtdstoptslen);
15070 		optptr += ipp->ipp_rtdstoptslen;
15071 		ASSERT(OK_32PTR(optptr));
15072 		/* Save as last value */
15073 		ip_savebuf((void **)&tcp->tcp_rtdstopts,
15074 		    &tcp->tcp_rtdstoptslen,
15075 		    (ipp->ipp_fields & IPPF_RTDSTOPTS),
15076 		    ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen);
15077 	}
15078 	if (addflag & TCP_IPV6_RECVRTHDR) {
15079 		toh = (struct T_opthdr *)optptr;
15080 		toh->level = IPPROTO_IPV6;
15081 		toh->name = IPV6_RTHDR;
15082 		toh->len = sizeof (*toh) + ipp->ipp_rthdrlen;
15083 		toh->status = 0;
15084 		optptr += sizeof (*toh);
15085 		bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen);
15086 		optptr += ipp->ipp_rthdrlen;
15087 		ASSERT(OK_32PTR(optptr));
15088 		/* Save as last value */
15089 		ip_savebuf((void **)&tcp->tcp_rthdr, &tcp->tcp_rthdrlen,
15090 		    (ipp->ipp_fields & IPPF_RTHDR),
15091 		    ipp->ipp_rthdr, ipp->ipp_rthdrlen);
15092 	}
15093 	if (addflag & (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) {
15094 		toh = (struct T_opthdr *)optptr;
15095 		toh->level = IPPROTO_IPV6;
15096 		toh->name = IPV6_DSTOPTS;
15097 		toh->len = sizeof (*toh) + ipp->ipp_dstoptslen;
15098 		toh->status = 0;
15099 		optptr += sizeof (*toh);
15100 		bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen);
15101 		optptr += ipp->ipp_dstoptslen;
15102 		ASSERT(OK_32PTR(optptr));
15103 		/* Save as last value */
15104 		ip_savebuf((void **)&tcp->tcp_dstopts, &tcp->tcp_dstoptslen,
15105 		    (ipp->ipp_fields & IPPF_DSTOPTS),
15106 		    ipp->ipp_dstopts, ipp->ipp_dstoptslen);
15107 	}
15108 	ASSERT(optptr == mp->b_wptr);
15109 	return (mp);
15110 }
15111 
15112 
15113 /*
15114  * Handle a *T_BIND_REQ that has failed either due to a T_ERROR_ACK
15115  * or a "bad" IRE detected by tcp_adapt_ire.
15116  * We can't tell if the failure was due to the laddr or the faddr
15117  * thus we clear out all addresses and ports.
15118  */
15119 static void
15120 tcp_bind_failed(tcp_t *tcp, mblk_t *mp, int error)
15121 {
15122 	queue_t	*q = tcp->tcp_rq;
15123 	tcph_t	*tcph;
15124 	struct T_error_ack *tea;
15125 	conn_t	*connp = tcp->tcp_connp;
15126 
15127 
15128 	ASSERT(mp->b_datap->db_type == M_PCPROTO);
15129 
15130 	if (mp->b_cont) {
15131 		freemsg(mp->b_cont);
15132 		mp->b_cont = NULL;
15133 	}
15134 	tea = (struct T_error_ack *)mp->b_rptr;
15135 	switch (tea->PRIM_type) {
15136 	case T_BIND_ACK:
15137 		/*
15138 		 * Need to unbind with classifier since we were just told that
15139 		 * our bind succeeded.
15140 		 */
15141 		tcp->tcp_hard_bound = B_FALSE;
15142 		tcp->tcp_hard_binding = B_FALSE;
15143 
15144 		ipcl_hash_remove(connp);
15145 		/* Reuse the mblk if possible */
15146 		ASSERT(mp->b_datap->db_lim - mp->b_datap->db_base >=
15147 			sizeof (*tea));
15148 		mp->b_rptr = mp->b_datap->db_base;
15149 		mp->b_wptr = mp->b_rptr + sizeof (*tea);
15150 		tea = (struct T_error_ack *)mp->b_rptr;
15151 		tea->PRIM_type = T_ERROR_ACK;
15152 		tea->TLI_error = TSYSERR;
15153 		tea->UNIX_error = error;
15154 		if (tcp->tcp_state >= TCPS_SYN_SENT) {
15155 			tea->ERROR_prim = T_CONN_REQ;
15156 		} else {
15157 			tea->ERROR_prim = O_T_BIND_REQ;
15158 		}
15159 		break;
15160 
15161 	case T_ERROR_ACK:
15162 		if (tcp->tcp_state >= TCPS_SYN_SENT)
15163 			tea->ERROR_prim = T_CONN_REQ;
15164 		break;
15165 	default:
15166 		panic("tcp_bind_failed: unexpected TPI type");
15167 		/*NOTREACHED*/
15168 	}
15169 
15170 	tcp->tcp_state = TCPS_IDLE;
15171 	if (tcp->tcp_ipversion == IPV4_VERSION)
15172 		tcp->tcp_ipha->ipha_src = 0;
15173 	else
15174 		V6_SET_ZERO(tcp->tcp_ip6h->ip6_src);
15175 	/*
15176 	 * Copy of the src addr. in tcp_t is needed since
15177 	 * the lookup funcs. can only look at tcp_t
15178 	 */
15179 	V6_SET_ZERO(tcp->tcp_ip_src_v6);
15180 
15181 	tcph = tcp->tcp_tcph;
15182 	tcph->th_lport[0] = 0;
15183 	tcph->th_lport[1] = 0;
15184 	tcp_bind_hash_remove(tcp);
15185 	bzero(&connp->u_port, sizeof (connp->u_port));
15186 	/* blow away saved option results if any */
15187 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
15188 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
15189 
15190 	conn_delete_ire(tcp->tcp_connp, NULL);
15191 	putnext(q, mp);
15192 }
15193 
15194 /*
15195  * tcp_rput_other is called by tcp_rput to handle everything other than M_DATA
15196  * messages.
15197  */
15198 void
15199 tcp_rput_other(tcp_t *tcp, mblk_t *mp)
15200 {
15201 	mblk_t	*mp1;
15202 	uchar_t	*rptr = mp->b_rptr;
15203 	queue_t	*q = tcp->tcp_rq;
15204 	struct T_error_ack *tea;
15205 	uint32_t mss;
15206 	mblk_t *syn_mp;
15207 	mblk_t *mdti;
15208 	int	retval;
15209 	mblk_t *ire_mp;
15210 
15211 	switch (mp->b_datap->db_type) {
15212 	case M_PROTO:
15213 	case M_PCPROTO:
15214 		ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
15215 		if ((mp->b_wptr - rptr) < sizeof (t_scalar_t))
15216 			break;
15217 		tea = (struct T_error_ack *)rptr;
15218 		switch (tea->PRIM_type) {
15219 		case T_BIND_ACK:
15220 			/*
15221 			 * Adapt Multidata information, if any.  The
15222 			 * following tcp_mdt_update routine will free
15223 			 * the message.
15224 			 */
15225 			if ((mdti = tcp_mdt_info_mp(mp)) != NULL) {
15226 				tcp_mdt_update(tcp, &((ip_mdt_info_t *)mdti->
15227 				    b_rptr)->mdt_capab, B_TRUE);
15228 				freemsg(mdti);
15229 			}
15230 
15231 			/* Get the IRE, if we had requested for it */
15232 			ire_mp = tcp_ire_mp(mp);
15233 
15234 			if (tcp->tcp_hard_binding) {
15235 				tcp->tcp_hard_binding = B_FALSE;
15236 				tcp->tcp_hard_bound = B_TRUE;
15237 				CL_INET_CONNECT(tcp);
15238 			} else {
15239 				if (ire_mp != NULL)
15240 					freeb(ire_mp);
15241 				goto after_syn_sent;
15242 			}
15243 
15244 			retval = tcp_adapt_ire(tcp, ire_mp);
15245 			if (ire_mp != NULL)
15246 				freeb(ire_mp);
15247 			if (retval == 0) {
15248 				tcp_bind_failed(tcp, mp,
15249 				    (int)((tcp->tcp_state >= TCPS_SYN_SENT) ?
15250 				    ENETUNREACH : EADDRNOTAVAIL));
15251 				return;
15252 			}
15253 			/*
15254 			 * Don't let an endpoint connect to itself.
15255 			 * Also checked in tcp_connect() but that
15256 			 * check can't handle the case when the
15257 			 * local IP address is INADDR_ANY.
15258 			 */
15259 			if (tcp->tcp_ipversion == IPV4_VERSION) {
15260 				if ((tcp->tcp_ipha->ipha_dst ==
15261 				    tcp->tcp_ipha->ipha_src) &&
15262 				    (BE16_EQL(tcp->tcp_tcph->th_lport,
15263 				    tcp->tcp_tcph->th_fport))) {
15264 					tcp_bind_failed(tcp, mp, EADDRNOTAVAIL);
15265 					return;
15266 				}
15267 			} else {
15268 				if (IN6_ARE_ADDR_EQUAL(
15269 				    &tcp->tcp_ip6h->ip6_dst,
15270 				    &tcp->tcp_ip6h->ip6_src) &&
15271 				    (BE16_EQL(tcp->tcp_tcph->th_lport,
15272 				    tcp->tcp_tcph->th_fport))) {
15273 					tcp_bind_failed(tcp, mp, EADDRNOTAVAIL);
15274 					return;
15275 				}
15276 			}
15277 			ASSERT(tcp->tcp_state == TCPS_SYN_SENT);
15278 			/*
15279 			 * This should not be possible!  Just for
15280 			 * defensive coding...
15281 			 */
15282 			if (tcp->tcp_state != TCPS_SYN_SENT)
15283 				goto after_syn_sent;
15284 
15285 			if (is_system_labeled() &&
15286 			    !tcp_update_label(tcp, CONN_CRED(tcp->tcp_connp))) {
15287 				tcp_bind_failed(tcp, mp, EHOSTUNREACH);
15288 				return;
15289 			}
15290 
15291 			ASSERT(q == tcp->tcp_rq);
15292 			/*
15293 			 * tcp_adapt_ire() does not adjust
15294 			 * for TCP/IP header length.
15295 			 */
15296 			mss = tcp->tcp_mss - tcp->tcp_hdr_len;
15297 
15298 			/*
15299 			 * Just make sure our rwnd is at
15300 			 * least tcp_recv_hiwat_mss * MSS
15301 			 * large, and round up to the nearest
15302 			 * MSS.
15303 			 *
15304 			 * We do the round up here because
15305 			 * we need to get the interface
15306 			 * MTU first before we can do the
15307 			 * round up.
15308 			 */
15309 			tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss),
15310 			    tcp_recv_hiwat_minmss * mss);
15311 			q->q_hiwat = tcp->tcp_rwnd;
15312 			tcp_set_ws_value(tcp);
15313 			U32_TO_ABE16((tcp->tcp_rwnd >> tcp->tcp_rcv_ws),
15314 			    tcp->tcp_tcph->th_win);
15315 			if (tcp->tcp_rcv_ws > 0 || tcp_wscale_always)
15316 				tcp->tcp_snd_ws_ok = B_TRUE;
15317 
15318 			/*
15319 			 * Set tcp_snd_ts_ok to true
15320 			 * so that tcp_xmit_mp will
15321 			 * include the timestamp
15322 			 * option in the SYN segment.
15323 			 */
15324 			if (tcp_tstamp_always ||
15325 			    (tcp->tcp_rcv_ws && tcp_tstamp_if_wscale)) {
15326 				tcp->tcp_snd_ts_ok = B_TRUE;
15327 			}
15328 
15329 			/*
15330 			 * tcp_snd_sack_ok can be set in
15331 			 * tcp_adapt_ire() if the sack metric
15332 			 * is set.  So check it here also.
15333 			 */
15334 			if (tcp_sack_permitted == 2 ||
15335 			    tcp->tcp_snd_sack_ok) {
15336 				if (tcp->tcp_sack_info == NULL) {
15337 					tcp->tcp_sack_info =
15338 					kmem_cache_alloc(tcp_sack_info_cache,
15339 					    KM_SLEEP);
15340 				}
15341 				tcp->tcp_snd_sack_ok = B_TRUE;
15342 			}
15343 
15344 			/*
15345 			 * Should we use ECN?  Note that the current
15346 			 * default value (SunOS 5.9) of tcp_ecn_permitted
15347 			 * is 1.  The reason for doing this is that there
15348 			 * are equipments out there that will drop ECN
15349 			 * enabled IP packets.  Setting it to 1 avoids
15350 			 * compatibility problems.
15351 			 */
15352 			if (tcp_ecn_permitted == 2)
15353 				tcp->tcp_ecn_ok = B_TRUE;
15354 
15355 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
15356 			syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL,
15357 			    tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
15358 			if (syn_mp) {
15359 				cred_t *cr;
15360 				pid_t pid;
15361 
15362 				/*
15363 				 * Obtain the credential from the
15364 				 * thread calling connect(); the credential
15365 				 * lives on in the second mblk which
15366 				 * originated from T_CONN_REQ and is echoed
15367 				 * with the T_BIND_ACK from ip.  If none
15368 				 * can be found, default to the creator
15369 				 * of the socket.
15370 				 */
15371 				if (mp->b_cont == NULL ||
15372 				    (cr = DB_CRED(mp->b_cont)) == NULL) {
15373 					cr = tcp->tcp_cred;
15374 					pid = tcp->tcp_cpid;
15375 				} else {
15376 					pid = DB_CPID(mp->b_cont);
15377 				}
15378 
15379 				TCP_RECORD_TRACE(tcp, syn_mp,
15380 				    TCP_TRACE_SEND_PKT);
15381 				mblk_setcred(syn_mp, cr);
15382 				DB_CPID(syn_mp) = pid;
15383 				tcp_send_data(tcp, tcp->tcp_wq, syn_mp);
15384 			}
15385 		after_syn_sent:
15386 			/*
15387 			 * A trailer mblk indicates a waiting client upstream.
15388 			 * We complete here the processing begun in
15389 			 * either tcp_bind() or tcp_connect() by passing
15390 			 * upstream the reply message they supplied.
15391 			 */
15392 			mp1 = mp;
15393 			mp = mp->b_cont;
15394 			freeb(mp1);
15395 			if (mp)
15396 				break;
15397 			return;
15398 		case T_ERROR_ACK:
15399 			if (tcp->tcp_debug) {
15400 				(void) strlog(TCP_MOD_ID, 0, 1,
15401 				    SL_TRACE|SL_ERROR,
15402 				    "tcp_rput_other: case T_ERROR_ACK, "
15403 				    "ERROR_prim == %d",
15404 				    tea->ERROR_prim);
15405 			}
15406 			switch (tea->ERROR_prim) {
15407 			case O_T_BIND_REQ:
15408 			case T_BIND_REQ:
15409 				tcp_bind_failed(tcp, mp,
15410 				    (int)((tcp->tcp_state >= TCPS_SYN_SENT) ?
15411 				    ENETUNREACH : EADDRNOTAVAIL));
15412 				return;
15413 			case T_UNBIND_REQ:
15414 				tcp->tcp_hard_binding = B_FALSE;
15415 				tcp->tcp_hard_bound = B_FALSE;
15416 				if (mp->b_cont) {
15417 					freemsg(mp->b_cont);
15418 					mp->b_cont = NULL;
15419 				}
15420 				if (tcp->tcp_unbind_pending)
15421 					tcp->tcp_unbind_pending = 0;
15422 				else {
15423 					/* From tcp_ip_unbind() - free */
15424 					freemsg(mp);
15425 					return;
15426 				}
15427 				break;
15428 			case T_SVR4_OPTMGMT_REQ:
15429 				if (tcp->tcp_drop_opt_ack_cnt > 0) {
15430 					/* T_OPTMGMT_REQ generated by TCP */
15431 					printf("T_SVR4_OPTMGMT_REQ failed "
15432 					    "%d/%d - dropped (cnt %d)\n",
15433 					    tea->TLI_error, tea->UNIX_error,
15434 					    tcp->tcp_drop_opt_ack_cnt);
15435 					freemsg(mp);
15436 					tcp->tcp_drop_opt_ack_cnt--;
15437 					return;
15438 				}
15439 				break;
15440 			}
15441 			if (tea->ERROR_prim == T_SVR4_OPTMGMT_REQ &&
15442 			    tcp->tcp_drop_opt_ack_cnt > 0) {
15443 				printf("T_SVR4_OPTMGMT_REQ failed %d/%d "
15444 				    "- dropped (cnt %d)\n",
15445 				    tea->TLI_error, tea->UNIX_error,
15446 				    tcp->tcp_drop_opt_ack_cnt);
15447 				freemsg(mp);
15448 				tcp->tcp_drop_opt_ack_cnt--;
15449 				return;
15450 			}
15451 			break;
15452 		case T_OPTMGMT_ACK:
15453 			if (tcp->tcp_drop_opt_ack_cnt > 0) {
15454 				/* T_OPTMGMT_REQ generated by TCP */
15455 				freemsg(mp);
15456 				tcp->tcp_drop_opt_ack_cnt--;
15457 				return;
15458 			}
15459 			break;
15460 		default:
15461 			break;
15462 		}
15463 		break;
15464 	case M_CTL:
15465 		/*
15466 		 * ICMP messages.
15467 		 */
15468 		tcp_icmp_error(tcp, mp);
15469 		return;
15470 	case M_FLUSH:
15471 		if (*rptr & FLUSHR)
15472 			flushq(q, FLUSHDATA);
15473 		break;
15474 	default:
15475 		break;
15476 	}
15477 	/*
15478 	 * Make sure we set this bit before sending the ACK for
15479 	 * bind. Otherwise accept could possibly run and free
15480 	 * this tcp struct.
15481 	 */
15482 	putnext(q, mp);
15483 }
15484 
15485 /*
15486  * Called as the result of a qbufcall or a qtimeout to remedy a failure
15487  * to allocate a T_ordrel_ind in tcp_rsrv().  qenable(q) will make
15488  * tcp_rsrv() try again.
15489  */
15490 static void
15491 tcp_ordrel_kick(void *arg)
15492 {
15493 	conn_t 	*connp = (conn_t *)arg;
15494 	tcp_t	*tcp = connp->conn_tcp;
15495 
15496 	tcp->tcp_ordrelid = 0;
15497 	tcp->tcp_timeout = B_FALSE;
15498 	if (!TCP_IS_DETACHED(tcp) && tcp->tcp_rq != NULL &&
15499 	    tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
15500 		qenable(tcp->tcp_rq);
15501 	}
15502 }
15503 
15504 /* ARGSUSED */
15505 static void
15506 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2)
15507 {
15508 	conn_t	*connp = (conn_t *)arg;
15509 	tcp_t	*tcp = connp->conn_tcp;
15510 	queue_t	*q = tcp->tcp_rq;
15511 	uint_t	thwin;
15512 
15513 	freeb(mp);
15514 
15515 	TCP_STAT(tcp_rsrv_calls);
15516 
15517 	if (TCP_IS_DETACHED(tcp) || q == NULL) {
15518 		return;
15519 	}
15520 
15521 	if (tcp->tcp_fused) {
15522 		tcp_t *peer_tcp = tcp->tcp_loopback_peer;
15523 
15524 		ASSERT(tcp->tcp_fused);
15525 		ASSERT(peer_tcp != NULL && peer_tcp->tcp_fused);
15526 		ASSERT(peer_tcp->tcp_loopback_peer == tcp);
15527 		ASSERT(!TCP_IS_DETACHED(tcp));
15528 		ASSERT(tcp->tcp_connp->conn_sqp ==
15529 		    peer_tcp->tcp_connp->conn_sqp);
15530 
15531 		/*
15532 		 * Normally we would not get backenabled in synchronous
15533 		 * streams mode, but in case this happens, we need to stop
15534 		 * synchronous streams temporarily to prevent a race with
15535 		 * tcp_fuse_rrw() or tcp_fuse_rinfop().  It is safe to access
15536 		 * tcp_rcv_list here because those entry points will return
15537 		 * right away when synchronous streams is stopped.
15538 		 */
15539 		TCP_FUSE_SYNCSTR_STOP(tcp);
15540 		if (tcp->tcp_rcv_list != NULL)
15541 			(void) tcp_rcv_drain(tcp->tcp_rq, tcp);
15542 
15543 		tcp_clrqfull(peer_tcp);
15544 		TCP_FUSE_SYNCSTR_RESUME(tcp);
15545 		TCP_STAT(tcp_fusion_backenabled);
15546 		return;
15547 	}
15548 
15549 	if (canputnext(q)) {
15550 		tcp->tcp_rwnd = q->q_hiwat;
15551 		thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
15552 		    << tcp->tcp_rcv_ws;
15553 		thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
15554 		/*
15555 		 * Send back a window update immediately if TCP is above
15556 		 * ESTABLISHED state and the increase of the rcv window
15557 		 * that the other side knows is at least 1 MSS after flow
15558 		 * control is lifted.
15559 		 */
15560 		if (tcp->tcp_state >= TCPS_ESTABLISHED &&
15561 		    (q->q_hiwat - thwin >= tcp->tcp_mss)) {
15562 			tcp_xmit_ctl(NULL, tcp,
15563 			    (tcp->tcp_swnd == 0) ? tcp->tcp_suna :
15564 			    tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK);
15565 			BUMP_MIB(&tcp_mib, tcpOutWinUpdate);
15566 		}
15567 	}
15568 	/* Handle a failure to allocate a T_ORDREL_IND here */
15569 	if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
15570 		ASSERT(tcp->tcp_listener == NULL);
15571 		if (tcp->tcp_rcv_list != NULL) {
15572 			(void) tcp_rcv_drain(q, tcp);
15573 		}
15574 		ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
15575 		mp = mi_tpi_ordrel_ind();
15576 		if (mp) {
15577 			tcp->tcp_ordrel_done = B_TRUE;
15578 			putnext(q, mp);
15579 			if (tcp->tcp_deferred_clean_death) {
15580 				/*
15581 				 * tcp_clean_death was deferred for
15582 				 * T_ORDREL_IND - do it now
15583 				 */
15584 				tcp->tcp_deferred_clean_death = B_FALSE;
15585 				(void) tcp_clean_death(tcp,
15586 				    tcp->tcp_client_errno, 22);
15587 			}
15588 		} else if (!tcp->tcp_timeout && tcp->tcp_ordrelid == 0) {
15589 			/*
15590 			 * If there isn't already a timer running
15591 			 * start one.  Use a 4 second
15592 			 * timer as a fallback since it can't fail.
15593 			 */
15594 			tcp->tcp_timeout = B_TRUE;
15595 			tcp->tcp_ordrelid = TCP_TIMER(tcp, tcp_ordrel_kick,
15596 			    MSEC_TO_TICK(4000));
15597 		}
15598 	}
15599 }
15600 
15601 /*
15602  * The read side service routine is called mostly when we get back-enabled as a
15603  * result of flow control relief.  Since we don't actually queue anything in
15604  * TCP, we have no data to send out of here.  What we do is clear the receive
15605  * window, and send out a window update.
15606  * This routine is also called to drive an orderly release message upstream
15607  * if the attempt in tcp_rput failed.
15608  */
15609 static void
15610 tcp_rsrv(queue_t *q)
15611 {
15612 	conn_t *connp = Q_TO_CONN(q);
15613 	tcp_t	*tcp = connp->conn_tcp;
15614 	mblk_t	*mp;
15615 
15616 	/* No code does a putq on the read side */
15617 	ASSERT(q->q_first == NULL);
15618 
15619 	/* Nothing to do for the default queue */
15620 	if (q == tcp_g_q) {
15621 		return;
15622 	}
15623 
15624 	mp = allocb(0, BPRI_HI);
15625 	if (mp == NULL) {
15626 		/*
15627 		 * We are under memory pressure. Return for now and we
15628 		 * we will be called again later.
15629 		 */
15630 		if (!tcp->tcp_timeout && tcp->tcp_ordrelid == 0) {
15631 			/*
15632 			 * If there isn't already a timer running
15633 			 * start one.  Use a 4 second
15634 			 * timer as a fallback since it can't fail.
15635 			 */
15636 			tcp->tcp_timeout = B_TRUE;
15637 			tcp->tcp_ordrelid = TCP_TIMER(tcp, tcp_ordrel_kick,
15638 			    MSEC_TO_TICK(4000));
15639 		}
15640 		return;
15641 	}
15642 	CONN_INC_REF(connp);
15643 	squeue_enter(connp->conn_sqp, mp, tcp_rsrv_input, connp,
15644 	    SQTAG_TCP_RSRV);
15645 }
15646 
15647 /*
15648  * tcp_rwnd_set() is called to adjust the receive window to a desired value.
15649  * We do not allow the receive window to shrink.  After setting rwnd,
15650  * set the flow control hiwat of the stream.
15651  *
15652  * This function is called in 2 cases:
15653  *
15654  * 1) Before data transfer begins, in tcp_accept_comm() for accepting a
15655  *    connection (passive open) and in tcp_rput_data() for active connect.
15656  *    This is called after tcp_mss_set() when the desired MSS value is known.
15657  *    This makes sure that our window size is a mutiple of the other side's
15658  *    MSS.
15659  * 2) Handling SO_RCVBUF option.
15660  *
15661  * It is ASSUMED that the requested size is a multiple of the current MSS.
15662  *
15663  * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the
15664  * user requests so.
15665  */
15666 static int
15667 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd)
15668 {
15669 	uint32_t	mss = tcp->tcp_mss;
15670 	uint32_t	old_max_rwnd;
15671 	uint32_t	max_transmittable_rwnd;
15672 	boolean_t	tcp_detached = TCP_IS_DETACHED(tcp);
15673 
15674 	if (tcp->tcp_fused) {
15675 		size_t sth_hiwat;
15676 		tcp_t *peer_tcp = tcp->tcp_loopback_peer;
15677 
15678 		ASSERT(peer_tcp != NULL);
15679 		/*
15680 		 * Record the stream head's high water mark for
15681 		 * this endpoint; this is used for flow-control
15682 		 * purposes in tcp_fuse_output().
15683 		 */
15684 		sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd);
15685 		if (!tcp_detached)
15686 			(void) mi_set_sth_hiwat(tcp->tcp_rq, sth_hiwat);
15687 
15688 		/*
15689 		 * In the fusion case, the maxpsz stream head value of
15690 		 * our peer is set according to its send buffer size
15691 		 * and our receive buffer size; since the latter may
15692 		 * have changed we need to update the peer's maxpsz.
15693 		 */
15694 		(void) tcp_maxpsz_set(peer_tcp, B_TRUE);
15695 		return (rwnd);
15696 	}
15697 
15698 	if (tcp_detached)
15699 		old_max_rwnd = tcp->tcp_rwnd;
15700 	else
15701 		old_max_rwnd = tcp->tcp_rq->q_hiwat;
15702 
15703 	/*
15704 	 * Insist on a receive window that is at least
15705 	 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid
15706 	 * funny TCP interactions of Nagle algorithm, SWS avoidance
15707 	 * and delayed acknowledgement.
15708 	 */
15709 	rwnd = MAX(rwnd, tcp_recv_hiwat_minmss * mss);
15710 
15711 	/*
15712 	 * If window size info has already been exchanged, TCP should not
15713 	 * shrink the window.  Shrinking window is doable if done carefully.
15714 	 * We may add that support later.  But so far there is not a real
15715 	 * need to do that.
15716 	 */
15717 	if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) {
15718 		/* MSS may have changed, do a round up again. */
15719 		rwnd = MSS_ROUNDUP(old_max_rwnd, mss);
15720 	}
15721 
15722 	/*
15723 	 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check
15724 	 * can be applied even before the window scale option is decided.
15725 	 */
15726 	max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws;
15727 	if (rwnd > max_transmittable_rwnd) {
15728 		rwnd = max_transmittable_rwnd -
15729 		    (max_transmittable_rwnd % mss);
15730 		if (rwnd < mss)
15731 			rwnd = max_transmittable_rwnd;
15732 		/*
15733 		 * If we're over the limit we may have to back down tcp_rwnd.
15734 		 * The increment below won't work for us. So we set all three
15735 		 * here and the increment below will have no effect.
15736 		 */
15737 		tcp->tcp_rwnd = old_max_rwnd = rwnd;
15738 	}
15739 	if (tcp->tcp_localnet) {
15740 		tcp->tcp_rack_abs_max =
15741 		    MIN(tcp_local_dacks_max, rwnd / mss / 2);
15742 	} else {
15743 		/*
15744 		 * For a remote host on a different subnet (through a router),
15745 		 * we ack every other packet to be conforming to RFC1122.
15746 		 * tcp_deferred_acks_max is default to 2.
15747 		 */
15748 		tcp->tcp_rack_abs_max =
15749 		    MIN(tcp_deferred_acks_max, rwnd / mss / 2);
15750 	}
15751 	if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max)
15752 		tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max;
15753 	else
15754 		tcp->tcp_rack_cur_max = 0;
15755 	/*
15756 	 * Increment the current rwnd by the amount the maximum grew (we
15757 	 * can not overwrite it since we might be in the middle of a
15758 	 * connection.)
15759 	 */
15760 	tcp->tcp_rwnd += rwnd - old_max_rwnd;
15761 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, tcp->tcp_tcph->th_win);
15762 	if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max)
15763 		tcp->tcp_cwnd_max = rwnd;
15764 
15765 	if (tcp_detached)
15766 		return (rwnd);
15767 	/*
15768 	 * We set the maximum receive window into rq->q_hiwat.
15769 	 * This is not actually used for flow control.
15770 	 */
15771 	tcp->tcp_rq->q_hiwat = rwnd;
15772 	/*
15773 	 * Set the Stream head high water mark. This doesn't have to be
15774 	 * here, since we are simply using default values, but we would
15775 	 * prefer to choose these values algorithmically, with a likely
15776 	 * relationship to rwnd.
15777 	 */
15778 	(void) mi_set_sth_hiwat(tcp->tcp_rq, MAX(rwnd, tcp_sth_rcv_hiwat));
15779 	return (rwnd);
15780 }
15781 
15782 /*
15783  * Return SNMP stuff in buffer in mpdata.
15784  */
15785 int
15786 tcp_snmp_get(queue_t *q, mblk_t *mpctl)
15787 {
15788 	mblk_t			*mpdata;
15789 	mblk_t			*mp_conn_ctl = NULL;
15790 	mblk_t			*mp_conn_tail;
15791 	mblk_t			*mp_attr_ctl = NULL;
15792 	mblk_t			*mp_attr_tail;
15793 	mblk_t			*mp6_conn_ctl = NULL;
15794 	mblk_t			*mp6_conn_tail;
15795 	mblk_t			*mp6_attr_ctl = NULL;
15796 	mblk_t			*mp6_attr_tail;
15797 	struct opthdr		*optp;
15798 	mib2_tcpConnEntry_t	tce;
15799 	mib2_tcp6ConnEntry_t	tce6;
15800 	mib2_transportMLPEntry_t mlp;
15801 	connf_t			*connfp;
15802 	conn_t			*connp;
15803 	int			i;
15804 	boolean_t 		ispriv;
15805 	zoneid_t 		zoneid;
15806 	int			v4_conn_idx;
15807 	int			v6_conn_idx;
15808 
15809 	if (mpctl == NULL ||
15810 	    (mpdata = mpctl->b_cont) == NULL ||
15811 	    (mp_conn_ctl = copymsg(mpctl)) == NULL ||
15812 	    (mp_attr_ctl = copymsg(mpctl)) == NULL ||
15813 	    (mp6_conn_ctl = copymsg(mpctl)) == NULL ||
15814 	    (mp6_attr_ctl = copymsg(mpctl)) == NULL) {
15815 		freemsg(mp_conn_ctl);
15816 		freemsg(mp_attr_ctl);
15817 		freemsg(mp6_conn_ctl);
15818 		freemsg(mp6_attr_ctl);
15819 		return (0);
15820 	}
15821 
15822 	/* build table of connections -- need count in fixed part */
15823 	SET_MIB(tcp_mib.tcpRtoAlgorithm, 4);   /* vanj */
15824 	SET_MIB(tcp_mib.tcpRtoMin, tcp_rexmit_interval_min);
15825 	SET_MIB(tcp_mib.tcpRtoMax, tcp_rexmit_interval_max);
15826 	SET_MIB(tcp_mib.tcpMaxConn, -1);
15827 	SET_MIB(tcp_mib.tcpCurrEstab, 0);
15828 
15829 	ispriv =
15830 	    secpolicy_net_config((Q_TO_CONN(q))->conn_cred, B_TRUE) == 0;
15831 	zoneid = Q_TO_CONN(q)->conn_zoneid;
15832 
15833 	v4_conn_idx = v6_conn_idx = 0;
15834 	mp_conn_tail = mp_attr_tail = mp6_conn_tail = mp6_attr_tail = NULL;
15835 
15836 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
15837 
15838 		connfp = &ipcl_globalhash_fanout[i];
15839 
15840 		connp = NULL;
15841 
15842 		while ((connp =
15843 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
15844 			tcp_t *tcp;
15845 			boolean_t needattr;
15846 
15847 			if (connp->conn_zoneid != zoneid)
15848 				continue;	/* not in this zone */
15849 
15850 			tcp = connp->conn_tcp;
15851 			UPDATE_MIB(&tcp_mib, tcpInSegs, tcp->tcp_ibsegs);
15852 			tcp->tcp_ibsegs = 0;
15853 			UPDATE_MIB(&tcp_mib, tcpOutSegs, tcp->tcp_obsegs);
15854 			tcp->tcp_obsegs = 0;
15855 
15856 			tce6.tcp6ConnState = tce.tcpConnState =
15857 			    tcp_snmp_state(tcp);
15858 			if (tce.tcpConnState == MIB2_TCP_established ||
15859 			    tce.tcpConnState == MIB2_TCP_closeWait)
15860 				BUMP_MIB(&tcp_mib, tcpCurrEstab);
15861 
15862 			needattr = B_FALSE;
15863 			bzero(&mlp, sizeof (mlp));
15864 			if (connp->conn_mlp_type != mlptSingle) {
15865 				if (connp->conn_mlp_type == mlptShared ||
15866 				    connp->conn_mlp_type == mlptBoth)
15867 					mlp.tme_flags |= MIB2_TMEF_SHARED;
15868 				if (connp->conn_mlp_type == mlptPrivate ||
15869 				    connp->conn_mlp_type == mlptBoth)
15870 					mlp.tme_flags |= MIB2_TMEF_PRIVATE;
15871 				needattr = B_TRUE;
15872 			}
15873 			if (connp->conn_peercred != NULL) {
15874 				ts_label_t *tsl;
15875 
15876 				tsl = crgetlabel(connp->conn_peercred);
15877 				mlp.tme_doi = label2doi(tsl);
15878 				mlp.tme_label = *label2bslabel(tsl);
15879 				needattr = B_TRUE;
15880 			}
15881 
15882 			/* Create a message to report on IPv6 entries */
15883 			if (tcp->tcp_ipversion == IPV6_VERSION) {
15884 			tce6.tcp6ConnLocalAddress = tcp->tcp_ip_src_v6;
15885 			tce6.tcp6ConnRemAddress = tcp->tcp_remote_v6;
15886 			tce6.tcp6ConnLocalPort = ntohs(tcp->tcp_lport);
15887 			tce6.tcp6ConnRemPort = ntohs(tcp->tcp_fport);
15888 			tce6.tcp6ConnIfIndex = tcp->tcp_bound_if;
15889 			/* Don't want just anybody seeing these... */
15890 			if (ispriv) {
15891 				tce6.tcp6ConnEntryInfo.ce_snxt =
15892 				    tcp->tcp_snxt;
15893 				tce6.tcp6ConnEntryInfo.ce_suna =
15894 				    tcp->tcp_suna;
15895 				tce6.tcp6ConnEntryInfo.ce_rnxt =
15896 				    tcp->tcp_rnxt;
15897 				tce6.tcp6ConnEntryInfo.ce_rack =
15898 				    tcp->tcp_rack;
15899 			} else {
15900 				/*
15901 				 * Netstat, unfortunately, uses this to
15902 				 * get send/receive queue sizes.  How to fix?
15903 				 * Why not compute the difference only?
15904 				 */
15905 				tce6.tcp6ConnEntryInfo.ce_snxt =
15906 				    tcp->tcp_snxt - tcp->tcp_suna;
15907 				tce6.tcp6ConnEntryInfo.ce_suna = 0;
15908 				tce6.tcp6ConnEntryInfo.ce_rnxt =
15909 				    tcp->tcp_rnxt - tcp->tcp_rack;
15910 				tce6.tcp6ConnEntryInfo.ce_rack = 0;
15911 			}
15912 
15913 			tce6.tcp6ConnEntryInfo.ce_swnd = tcp->tcp_swnd;
15914 			tce6.tcp6ConnEntryInfo.ce_rwnd = tcp->tcp_rwnd;
15915 			tce6.tcp6ConnEntryInfo.ce_rto =  tcp->tcp_rto;
15916 			tce6.tcp6ConnEntryInfo.ce_mss =  tcp->tcp_mss;
15917 			tce6.tcp6ConnEntryInfo.ce_state = tcp->tcp_state;
15918 
15919 			(void) snmp_append_data2(mp6_conn_ctl->b_cont,
15920 			    &mp6_conn_tail, (char *)&tce6, sizeof (tce6));
15921 
15922 			mlp.tme_connidx = v6_conn_idx++;
15923 			if (needattr)
15924 				(void) snmp_append_data2(mp6_attr_ctl->b_cont,
15925 				    &mp6_attr_tail, (char *)&mlp, sizeof (mlp));
15926 			}
15927 			/*
15928 			 * Create an IPv4 table entry for IPv4 entries and also
15929 			 * for IPv6 entries which are bound to in6addr_any
15930 			 * but don't have IPV6_V6ONLY set.
15931 			 * (i.e. anything an IPv4 peer could connect to)
15932 			 */
15933 			if (tcp->tcp_ipversion == IPV4_VERSION ||
15934 			    (tcp->tcp_state <= TCPS_LISTEN &&
15935 			    !tcp->tcp_connp->conn_ipv6_v6only &&
15936 			    IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip_src_v6))) {
15937 				if (tcp->tcp_ipversion == IPV6_VERSION) {
15938 					tce.tcpConnRemAddress = INADDR_ANY;
15939 					tce.tcpConnLocalAddress = INADDR_ANY;
15940 				} else {
15941 					tce.tcpConnRemAddress =
15942 					    tcp->tcp_remote;
15943 					tce.tcpConnLocalAddress =
15944 					    tcp->tcp_ip_src;
15945 				}
15946 				tce.tcpConnLocalPort = ntohs(tcp->tcp_lport);
15947 				tce.tcpConnRemPort = ntohs(tcp->tcp_fport);
15948 				/* Don't want just anybody seeing these... */
15949 				if (ispriv) {
15950 					tce.tcpConnEntryInfo.ce_snxt =
15951 					    tcp->tcp_snxt;
15952 					tce.tcpConnEntryInfo.ce_suna =
15953 					    tcp->tcp_suna;
15954 					tce.tcpConnEntryInfo.ce_rnxt =
15955 					    tcp->tcp_rnxt;
15956 					tce.tcpConnEntryInfo.ce_rack =
15957 					    tcp->tcp_rack;
15958 				} else {
15959 					/*
15960 					 * Netstat, unfortunately, uses this to
15961 					 * get send/receive queue sizes.  How
15962 					 * to fix?
15963 					 * Why not compute the difference only?
15964 					 */
15965 					tce.tcpConnEntryInfo.ce_snxt =
15966 					    tcp->tcp_snxt - tcp->tcp_suna;
15967 					tce.tcpConnEntryInfo.ce_suna = 0;
15968 					tce.tcpConnEntryInfo.ce_rnxt =
15969 					    tcp->tcp_rnxt - tcp->tcp_rack;
15970 					tce.tcpConnEntryInfo.ce_rack = 0;
15971 				}
15972 
15973 				tce.tcpConnEntryInfo.ce_swnd = tcp->tcp_swnd;
15974 				tce.tcpConnEntryInfo.ce_rwnd = tcp->tcp_rwnd;
15975 				tce.tcpConnEntryInfo.ce_rto =  tcp->tcp_rto;
15976 				tce.tcpConnEntryInfo.ce_mss =  tcp->tcp_mss;
15977 				tce.tcpConnEntryInfo.ce_state =
15978 				    tcp->tcp_state;
15979 
15980 				(void) snmp_append_data2(mp_conn_ctl->b_cont,
15981 				    &mp_conn_tail, (char *)&tce, sizeof (tce));
15982 
15983 				mlp.tme_connidx = v4_conn_idx++;
15984 				if (needattr)
15985 					(void) snmp_append_data2(
15986 					    mp_attr_ctl->b_cont,
15987 					    &mp_attr_tail, (char *)&mlp,
15988 					    sizeof (mlp));
15989 			}
15990 		}
15991 	}
15992 
15993 	/* fixed length structure for IPv4 and IPv6 counters */
15994 	SET_MIB(tcp_mib.tcpConnTableSize, sizeof (mib2_tcpConnEntry_t));
15995 	SET_MIB(tcp_mib.tcp6ConnTableSize, sizeof (mib2_tcp6ConnEntry_t));
15996 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
15997 	optp->level = MIB2_TCP;
15998 	optp->name = 0;
15999 	(void) snmp_append_data(mpdata, (char *)&tcp_mib, sizeof (tcp_mib));
16000 	optp->len = msgdsize(mpdata);
16001 	qreply(q, mpctl);
16002 
16003 	/* table of connections... */
16004 	optp = (struct opthdr *)&mp_conn_ctl->b_rptr[
16005 	    sizeof (struct T_optmgmt_ack)];
16006 	optp->level = MIB2_TCP;
16007 	optp->name = MIB2_TCP_CONN;
16008 	optp->len = msgdsize(mp_conn_ctl->b_cont);
16009 	qreply(q, mp_conn_ctl);
16010 
16011 	/* table of MLP attributes... */
16012 	optp = (struct opthdr *)&mp_attr_ctl->b_rptr[
16013 	    sizeof (struct T_optmgmt_ack)];
16014 	optp->level = MIB2_TCP;
16015 	optp->name = EXPER_XPORT_MLP;
16016 	optp->len = msgdsize(mp_attr_ctl->b_cont);
16017 	if (optp->len == 0)
16018 		freemsg(mp_attr_ctl);
16019 	else
16020 		qreply(q, mp_attr_ctl);
16021 
16022 	/* table of IPv6 connections... */
16023 	optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[
16024 	    sizeof (struct T_optmgmt_ack)];
16025 	optp->level = MIB2_TCP6;
16026 	optp->name = MIB2_TCP6_CONN;
16027 	optp->len = msgdsize(mp6_conn_ctl->b_cont);
16028 	qreply(q, mp6_conn_ctl);
16029 
16030 	/* table of IPv6 MLP attributes... */
16031 	optp = (struct opthdr *)&mp6_attr_ctl->b_rptr[
16032 	    sizeof (struct T_optmgmt_ack)];
16033 	optp->level = MIB2_TCP6;
16034 	optp->name = EXPER_XPORT_MLP;
16035 	optp->len = msgdsize(mp6_attr_ctl->b_cont);
16036 	if (optp->len == 0)
16037 		freemsg(mp6_attr_ctl);
16038 	else
16039 		qreply(q, mp6_attr_ctl);
16040 	return (1);
16041 }
16042 
16043 /* Return 0 if invalid set request, 1 otherwise, including non-tcp requests  */
16044 /* ARGSUSED */
16045 int
16046 tcp_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len)
16047 {
16048 	mib2_tcpConnEntry_t	*tce = (mib2_tcpConnEntry_t *)ptr;
16049 
16050 	switch (level) {
16051 	case MIB2_TCP:
16052 		switch (name) {
16053 		case 13:
16054 			if (tce->tcpConnState != MIB2_TCP_deleteTCB)
16055 				return (0);
16056 			/* TODO: delete entry defined by tce */
16057 			return (1);
16058 		default:
16059 			return (0);
16060 		}
16061 	default:
16062 		return (1);
16063 	}
16064 }
16065 
16066 /* Translate TCP state to MIB2 TCP state. */
16067 static int
16068 tcp_snmp_state(tcp_t *tcp)
16069 {
16070 	if (tcp == NULL)
16071 		return (0);
16072 
16073 	switch (tcp->tcp_state) {
16074 	case TCPS_CLOSED:
16075 	case TCPS_IDLE:	/* RFC1213 doesn't have analogue for IDLE & BOUND */
16076 	case TCPS_BOUND:
16077 		return (MIB2_TCP_closed);
16078 	case TCPS_LISTEN:
16079 		return (MIB2_TCP_listen);
16080 	case TCPS_SYN_SENT:
16081 		return (MIB2_TCP_synSent);
16082 	case TCPS_SYN_RCVD:
16083 		return (MIB2_TCP_synReceived);
16084 	case TCPS_ESTABLISHED:
16085 		return (MIB2_TCP_established);
16086 	case TCPS_CLOSE_WAIT:
16087 		return (MIB2_TCP_closeWait);
16088 	case TCPS_FIN_WAIT_1:
16089 		return (MIB2_TCP_finWait1);
16090 	case TCPS_CLOSING:
16091 		return (MIB2_TCP_closing);
16092 	case TCPS_LAST_ACK:
16093 		return (MIB2_TCP_lastAck);
16094 	case TCPS_FIN_WAIT_2:
16095 		return (MIB2_TCP_finWait2);
16096 	case TCPS_TIME_WAIT:
16097 		return (MIB2_TCP_timeWait);
16098 	default:
16099 		return (0);
16100 	}
16101 }
16102 
16103 static char tcp_report_header[] =
16104 	"TCP     " MI_COL_HDRPAD_STR
16105 	"zone dest            snxt     suna     "
16106 	"swnd       rnxt     rack     rwnd       rto   mss   w sw rw t "
16107 	"recent   [lport,fport] state";
16108 
16109 /*
16110  * TCP status report triggered via the Named Dispatch mechanism.
16111  */
16112 /* ARGSUSED */
16113 static void
16114 tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval, tcp_t *thisstream,
16115     cred_t *cr)
16116 {
16117 	char hash[10], addrbuf[INET6_ADDRSTRLEN];
16118 	boolean_t ispriv = secpolicy_net_config(cr, B_TRUE) == 0;
16119 	char cflag;
16120 	in6_addr_t	v6dst;
16121 	char buf[80];
16122 	uint_t print_len, buf_len;
16123 
16124 	buf_len = mp->b_datap->db_lim - mp->b_wptr;
16125 	if (buf_len <= 0)
16126 		return;
16127 
16128 	if (hashval >= 0)
16129 		(void) sprintf(hash, "%03d ", hashval);
16130 	else
16131 		hash[0] = '\0';
16132 
16133 	/*
16134 	 * Note that we use the remote address in the tcp_b  structure.
16135 	 * This means that it will print out the real destination address,
16136 	 * not the next hop's address if source routing is used.  This
16137 	 * avoid the confusion on the output because user may not
16138 	 * know that source routing is used for a connection.
16139 	 */
16140 	if (tcp->tcp_ipversion == IPV4_VERSION) {
16141 		IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &v6dst);
16142 	} else {
16143 		v6dst = tcp->tcp_remote_v6;
16144 	}
16145 	(void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf));
16146 	/*
16147 	 * the ispriv checks are so that normal users cannot determine
16148 	 * sequence number information using NDD.
16149 	 */
16150 
16151 	if (TCP_IS_DETACHED(tcp))
16152 		cflag = '*';
16153 	else
16154 		cflag = ' ';
16155 	print_len = snprintf((char *)mp->b_wptr, buf_len,
16156 	    "%s " MI_COL_PTRFMT_STR "%d %s %08x %08x %010d %08x %08x "
16157 	    "%010d %05ld %05d %1d %02d %02d %1d %08x %s%c\n",
16158 	    hash,
16159 	    (void *)tcp,
16160 	    tcp->tcp_connp->conn_zoneid,
16161 	    addrbuf,
16162 	    (ispriv) ? tcp->tcp_snxt : 0,
16163 	    (ispriv) ? tcp->tcp_suna : 0,
16164 	    tcp->tcp_swnd,
16165 	    (ispriv) ? tcp->tcp_rnxt : 0,
16166 	    (ispriv) ? tcp->tcp_rack : 0,
16167 	    tcp->tcp_rwnd,
16168 	    tcp->tcp_rto,
16169 	    tcp->tcp_mss,
16170 	    tcp->tcp_snd_ws_ok,
16171 	    tcp->tcp_snd_ws,
16172 	    tcp->tcp_rcv_ws,
16173 	    tcp->tcp_snd_ts_ok,
16174 	    tcp->tcp_ts_recent,
16175 	    tcp_display(tcp, buf, DISP_PORT_ONLY), cflag);
16176 	if (print_len < buf_len) {
16177 		((mblk_t *)mp)->b_wptr += print_len;
16178 	} else {
16179 		((mblk_t *)mp)->b_wptr += buf_len;
16180 	}
16181 }
16182 
16183 /*
16184  * TCP status report (for listeners only) triggered via the Named Dispatch
16185  * mechanism.
16186  */
16187 /* ARGSUSED */
16188 static void
16189 tcp_report_listener(mblk_t *mp, tcp_t *tcp, int hashval)
16190 {
16191 	char addrbuf[INET6_ADDRSTRLEN];
16192 	in6_addr_t	v6dst;
16193 	uint_t print_len, buf_len;
16194 
16195 	buf_len = mp->b_datap->db_lim - mp->b_wptr;
16196 	if (buf_len <= 0)
16197 		return;
16198 
16199 	if (tcp->tcp_ipversion == IPV4_VERSION) {
16200 		IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6dst);
16201 		(void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf));
16202 	} else {
16203 		(void) inet_ntop(AF_INET6, &tcp->tcp_ip6h->ip6_src,
16204 		    addrbuf, sizeof (addrbuf));
16205 	}
16206 	print_len = snprintf((char *)mp->b_wptr, buf_len,
16207 	    "%03d "
16208 	    MI_COL_PTRFMT_STR
16209 	    "%d %s %05u %08u %d/%d/%d%c\n",
16210 	    hashval, (void *)tcp,
16211 	    tcp->tcp_connp->conn_zoneid,
16212 	    addrbuf,
16213 	    (uint_t)BE16_TO_U16(tcp->tcp_tcph->th_lport),
16214 	    tcp->tcp_conn_req_seqnum,
16215 	    tcp->tcp_conn_req_cnt_q0, tcp->tcp_conn_req_cnt_q,
16216 	    tcp->tcp_conn_req_max,
16217 	    tcp->tcp_syn_defense ? '*' : ' ');
16218 	if (print_len < buf_len) {
16219 		((mblk_t *)mp)->b_wptr += print_len;
16220 	} else {
16221 		((mblk_t *)mp)->b_wptr += buf_len;
16222 	}
16223 }
16224 
16225 /* TCP status report triggered via the Named Dispatch mechanism. */
16226 /* ARGSUSED */
16227 static int
16228 tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16229 {
16230 	tcp_t	*tcp;
16231 	int	i;
16232 	conn_t	*connp;
16233 	connf_t	*connfp;
16234 	zoneid_t zoneid;
16235 
16236 	/*
16237 	 * Because of the ndd constraint, at most we can have 64K buffer
16238 	 * to put in all TCP info.  So to be more efficient, just
16239 	 * allocate a 64K buffer here, assuming we need that large buffer.
16240 	 * This may be a problem as any user can read tcp_status.  Therefore
16241 	 * we limit the rate of doing this using tcp_ndd_get_info_interval.
16242 	 * This should be OK as normal users should not do this too often.
16243 	 */
16244 	if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) {
16245 		if (ddi_get_lbolt() - tcp_last_ndd_get_info_time <
16246 		    drv_usectohz(tcp_ndd_get_info_interval * 1000)) {
16247 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16248 			return (0);
16249 		}
16250 	}
16251 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16252 		/* The following may work even if we cannot get a large buf. */
16253 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16254 		return (0);
16255 	}
16256 
16257 	(void) mi_mpprintf(mp, "%s", tcp_report_header);
16258 
16259 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16260 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
16261 
16262 		connfp = &ipcl_globalhash_fanout[i];
16263 
16264 		connp = NULL;
16265 
16266 		while ((connp =
16267 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
16268 			tcp = connp->conn_tcp;
16269 			if (zoneid != GLOBAL_ZONEID &&
16270 			    zoneid != connp->conn_zoneid)
16271 				continue;
16272 			tcp_report_item(mp->b_cont, tcp, -1, tcp,
16273 			    cr);
16274 		}
16275 
16276 	}
16277 
16278 	tcp_last_ndd_get_info_time = ddi_get_lbolt();
16279 	return (0);
16280 }
16281 
16282 /* TCP status report triggered via the Named Dispatch mechanism. */
16283 /* ARGSUSED */
16284 static int
16285 tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16286 {
16287 	tf_t	*tbf;
16288 	tcp_t	*tcp;
16289 	int	i;
16290 	zoneid_t zoneid;
16291 
16292 	/* Refer to comments in tcp_status_report(). */
16293 	if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) {
16294 		if (ddi_get_lbolt() - tcp_last_ndd_get_info_time <
16295 		    drv_usectohz(tcp_ndd_get_info_interval * 1000)) {
16296 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16297 			return (0);
16298 		}
16299 	}
16300 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16301 		/* The following may work even if we cannot get a large buf. */
16302 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16303 		return (0);
16304 	}
16305 
16306 	(void) mi_mpprintf(mp, "    %s", tcp_report_header);
16307 
16308 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16309 
16310 	for (i = 0; i < A_CNT(tcp_bind_fanout); i++) {
16311 		tbf = &tcp_bind_fanout[i];
16312 		mutex_enter(&tbf->tf_lock);
16313 		for (tcp = tbf->tf_tcp; tcp != NULL;
16314 		    tcp = tcp->tcp_bind_hash) {
16315 			if (zoneid != GLOBAL_ZONEID &&
16316 			    zoneid != tcp->tcp_connp->conn_zoneid)
16317 				continue;
16318 			CONN_INC_REF(tcp->tcp_connp);
16319 			tcp_report_item(mp->b_cont, tcp, i,
16320 			    Q_TO_TCP(q), cr);
16321 			CONN_DEC_REF(tcp->tcp_connp);
16322 		}
16323 		mutex_exit(&tbf->tf_lock);
16324 	}
16325 	tcp_last_ndd_get_info_time = ddi_get_lbolt();
16326 	return (0);
16327 }
16328 
16329 /* TCP status report triggered via the Named Dispatch mechanism. */
16330 /* ARGSUSED */
16331 static int
16332 tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16333 {
16334 	connf_t	*connfp;
16335 	conn_t	*connp;
16336 	tcp_t	*tcp;
16337 	int	i;
16338 	zoneid_t zoneid;
16339 
16340 	/* Refer to comments in tcp_status_report(). */
16341 	if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) {
16342 		if (ddi_get_lbolt() - tcp_last_ndd_get_info_time <
16343 		    drv_usectohz(tcp_ndd_get_info_interval * 1000)) {
16344 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16345 			return (0);
16346 		}
16347 	}
16348 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16349 		/* The following may work even if we cannot get a large buf. */
16350 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16351 		return (0);
16352 	}
16353 
16354 	(void) mi_mpprintf(mp,
16355 	    "    TCP    " MI_COL_HDRPAD_STR
16356 	    "zone IP addr         port  seqnum   backlog (q0/q/max)");
16357 
16358 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16359 
16360 	for (i = 0; i < ipcl_bind_fanout_size; i++) {
16361 		connfp =  &ipcl_bind_fanout[i];
16362 		connp = NULL;
16363 		while ((connp =
16364 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
16365 			tcp = connp->conn_tcp;
16366 			if (zoneid != GLOBAL_ZONEID &&
16367 			    zoneid != connp->conn_zoneid)
16368 				continue;
16369 			tcp_report_listener(mp->b_cont, tcp, i);
16370 		}
16371 	}
16372 
16373 	tcp_last_ndd_get_info_time = ddi_get_lbolt();
16374 	return (0);
16375 }
16376 
16377 /* TCP status report triggered via the Named Dispatch mechanism. */
16378 /* ARGSUSED */
16379 static int
16380 tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16381 {
16382 	connf_t	*connfp;
16383 	conn_t	*connp;
16384 	tcp_t	*tcp;
16385 	int	i;
16386 	zoneid_t zoneid;
16387 
16388 	/* Refer to comments in tcp_status_report(). */
16389 	if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) {
16390 		if (ddi_get_lbolt() - tcp_last_ndd_get_info_time <
16391 		    drv_usectohz(tcp_ndd_get_info_interval * 1000)) {
16392 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16393 			return (0);
16394 		}
16395 	}
16396 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16397 		/* The following may work even if we cannot get a large buf. */
16398 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16399 		return (0);
16400 	}
16401 
16402 	(void) mi_mpprintf(mp, "tcp_conn_hash_size = %d",
16403 	    ipcl_conn_fanout_size);
16404 	(void) mi_mpprintf(mp, "    %s", tcp_report_header);
16405 
16406 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16407 
16408 	for (i = 0; i < ipcl_conn_fanout_size; i++) {
16409 		connfp =  &ipcl_conn_fanout[i];
16410 		connp = NULL;
16411 		while ((connp =
16412 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
16413 			tcp = connp->conn_tcp;
16414 			if (zoneid != GLOBAL_ZONEID &&
16415 			    zoneid != connp->conn_zoneid)
16416 				continue;
16417 			tcp_report_item(mp->b_cont, tcp, i,
16418 			    Q_TO_TCP(q), cr);
16419 		}
16420 	}
16421 
16422 	tcp_last_ndd_get_info_time = ddi_get_lbolt();
16423 	return (0);
16424 }
16425 
16426 /* TCP status report triggered via the Named Dispatch mechanism. */
16427 /* ARGSUSED */
16428 static int
16429 tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16430 {
16431 	tf_t	*tf;
16432 	tcp_t	*tcp;
16433 	int	i;
16434 	zoneid_t zoneid;
16435 
16436 	/* Refer to comments in tcp_status_report(). */
16437 	if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) {
16438 		if (ddi_get_lbolt() - tcp_last_ndd_get_info_time <
16439 		    drv_usectohz(tcp_ndd_get_info_interval * 1000)) {
16440 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16441 			return (0);
16442 		}
16443 	}
16444 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16445 		/* The following may work even if we cannot get a large buf. */
16446 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16447 		return (0);
16448 	}
16449 
16450 	(void) mi_mpprintf(mp, "    %s", tcp_report_header);
16451 
16452 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16453 
16454 	for (i = 0; i < A_CNT(tcp_acceptor_fanout); i++) {
16455 		tf = &tcp_acceptor_fanout[i];
16456 		mutex_enter(&tf->tf_lock);
16457 		for (tcp = tf->tf_tcp; tcp != NULL;
16458 		    tcp = tcp->tcp_acceptor_hash) {
16459 			if (zoneid != GLOBAL_ZONEID &&
16460 			    zoneid != tcp->tcp_connp->conn_zoneid)
16461 				continue;
16462 			tcp_report_item(mp->b_cont, tcp, i,
16463 			    Q_TO_TCP(q), cr);
16464 		}
16465 		mutex_exit(&tf->tf_lock);
16466 	}
16467 	tcp_last_ndd_get_info_time = ddi_get_lbolt();
16468 	return (0);
16469 }
16470 
16471 /*
16472  * tcp_timer is the timer service routine.  It handles the retransmission,
16473  * FIN_WAIT_2 flush, and zero window probe timeout events.  It figures out
16474  * from the state of the tcp instance what kind of action needs to be done
16475  * at the time it is called.
16476  */
16477 static void
16478 tcp_timer(void *arg)
16479 {
16480 	mblk_t		*mp;
16481 	clock_t		first_threshold;
16482 	clock_t		second_threshold;
16483 	clock_t		ms;
16484 	uint32_t	mss;
16485 	conn_t		*connp = (conn_t *)arg;
16486 	tcp_t		*tcp = connp->conn_tcp;
16487 
16488 	tcp->tcp_timer_tid = 0;
16489 
16490 	if (tcp->tcp_fused)
16491 		return;
16492 
16493 	first_threshold =  tcp->tcp_first_timer_threshold;
16494 	second_threshold = tcp->tcp_second_timer_threshold;
16495 	switch (tcp->tcp_state) {
16496 	case TCPS_IDLE:
16497 	case TCPS_BOUND:
16498 	case TCPS_LISTEN:
16499 		return;
16500 	case TCPS_SYN_RCVD: {
16501 		tcp_t	*listener = tcp->tcp_listener;
16502 
16503 		if (tcp->tcp_syn_rcvd_timeout == 0 && (listener != NULL)) {
16504 			ASSERT(tcp->tcp_rq == listener->tcp_rq);
16505 			/* it's our first timeout */
16506 			tcp->tcp_syn_rcvd_timeout = 1;
16507 			mutex_enter(&listener->tcp_eager_lock);
16508 			listener->tcp_syn_rcvd_timeout++;
16509 			if (!listener->tcp_syn_defense &&
16510 			    (listener->tcp_syn_rcvd_timeout >
16511 			    (tcp_conn_req_max_q0 >> 2)) &&
16512 			    (tcp_conn_req_max_q0 > 200)) {
16513 				/* We may be under attack. Put on a defense. */
16514 				listener->tcp_syn_defense = B_TRUE;
16515 				cmn_err(CE_WARN, "High TCP connect timeout "
16516 				    "rate! System (port %d) may be under a "
16517 				    "SYN flood attack!",
16518 				    BE16_TO_U16(listener->tcp_tcph->th_lport));
16519 
16520 				listener->tcp_ip_addr_cache = kmem_zalloc(
16521 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t),
16522 				    KM_NOSLEEP);
16523 			}
16524 			mutex_exit(&listener->tcp_eager_lock);
16525 		}
16526 	}
16527 		/* FALLTHRU */
16528 	case TCPS_SYN_SENT:
16529 		first_threshold =  tcp->tcp_first_ctimer_threshold;
16530 		second_threshold = tcp->tcp_second_ctimer_threshold;
16531 		break;
16532 	case TCPS_ESTABLISHED:
16533 	case TCPS_FIN_WAIT_1:
16534 	case TCPS_CLOSING:
16535 	case TCPS_CLOSE_WAIT:
16536 	case TCPS_LAST_ACK:
16537 		/* If we have data to rexmit */
16538 		if (tcp->tcp_suna != tcp->tcp_snxt) {
16539 			clock_t	time_to_wait;
16540 
16541 			BUMP_MIB(&tcp_mib, tcpTimRetrans);
16542 			if (!tcp->tcp_xmit_head)
16543 				break;
16544 			time_to_wait = lbolt -
16545 			    (clock_t)tcp->tcp_xmit_head->b_prev;
16546 			time_to_wait = tcp->tcp_rto -
16547 			    TICK_TO_MSEC(time_to_wait);
16548 			/*
16549 			 * If the timer fires too early, 1 clock tick earlier,
16550 			 * restart the timer.
16551 			 */
16552 			if (time_to_wait > msec_per_tick) {
16553 				TCP_STAT(tcp_timer_fire_early);
16554 				TCP_TIMER_RESTART(tcp, time_to_wait);
16555 				return;
16556 			}
16557 			/*
16558 			 * When we probe zero windows, we force the swnd open.
16559 			 * If our peer acks with a closed window swnd will be
16560 			 * set to zero by tcp_rput(). As long as we are
16561 			 * receiving acks tcp_rput will
16562 			 * reset 'tcp_ms_we_have_waited' so as not to trip the
16563 			 * first and second interval actions.  NOTE: the timer
16564 			 * interval is allowed to continue its exponential
16565 			 * backoff.
16566 			 */
16567 			if (tcp->tcp_swnd == 0 || tcp->tcp_zero_win_probe) {
16568 				if (tcp->tcp_debug) {
16569 					(void) strlog(TCP_MOD_ID, 0, 1,
16570 					    SL_TRACE, "tcp_timer: zero win");
16571 				}
16572 			} else {
16573 				/*
16574 				 * After retransmission, we need to do
16575 				 * slow start.  Set the ssthresh to one
16576 				 * half of current effective window and
16577 				 * cwnd to one MSS.  Also reset
16578 				 * tcp_cwnd_cnt.
16579 				 *
16580 				 * Note that if tcp_ssthresh is reduced because
16581 				 * of ECN, do not reduce it again unless it is
16582 				 * already one window of data away (tcp_cwr
16583 				 * should then be cleared) or this is a
16584 				 * timeout for a retransmitted segment.
16585 				 */
16586 				uint32_t npkt;
16587 
16588 				if (!tcp->tcp_cwr || tcp->tcp_rexmit) {
16589 					npkt = ((tcp->tcp_timer_backoff ?
16590 					    tcp->tcp_cwnd_ssthresh :
16591 					    tcp->tcp_snxt -
16592 					    tcp->tcp_suna) >> 1) / tcp->tcp_mss;
16593 					tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) *
16594 					    tcp->tcp_mss;
16595 				}
16596 				tcp->tcp_cwnd = tcp->tcp_mss;
16597 				tcp->tcp_cwnd_cnt = 0;
16598 				if (tcp->tcp_ecn_ok) {
16599 					tcp->tcp_cwr = B_TRUE;
16600 					tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
16601 					tcp->tcp_ecn_cwr_sent = B_FALSE;
16602 				}
16603 			}
16604 			break;
16605 		}
16606 		/*
16607 		 * We have something to send yet we cannot send.  The
16608 		 * reason can be:
16609 		 *
16610 		 * 1. Zero send window: we need to do zero window probe.
16611 		 * 2. Zero cwnd: because of ECN, we need to "clock out
16612 		 * segments.
16613 		 * 3. SWS avoidance: receiver may have shrunk window,
16614 		 * reset our knowledge.
16615 		 *
16616 		 * Note that condition 2 can happen with either 1 or
16617 		 * 3.  But 1 and 3 are exclusive.
16618 		 */
16619 		if (tcp->tcp_unsent != 0) {
16620 			if (tcp->tcp_cwnd == 0) {
16621 				/*
16622 				 * Set tcp_cwnd to 1 MSS so that a
16623 				 * new segment can be sent out.  We
16624 				 * are "clocking out" new data when
16625 				 * the network is really congested.
16626 				 */
16627 				ASSERT(tcp->tcp_ecn_ok);
16628 				tcp->tcp_cwnd = tcp->tcp_mss;
16629 			}
16630 			if (tcp->tcp_swnd == 0) {
16631 				/* Extend window for zero window probe */
16632 				tcp->tcp_swnd++;
16633 				tcp->tcp_zero_win_probe = B_TRUE;
16634 				BUMP_MIB(&tcp_mib, tcpOutWinProbe);
16635 			} else {
16636 				/*
16637 				 * Handle timeout from sender SWS avoidance.
16638 				 * Reset our knowledge of the max send window
16639 				 * since the receiver might have reduced its
16640 				 * receive buffer.  Avoid setting tcp_max_swnd
16641 				 * to one since that will essentially disable
16642 				 * the SWS checks.
16643 				 *
16644 				 * Note that since we don't have a SWS
16645 				 * state variable, if the timeout is set
16646 				 * for ECN but not for SWS, this
16647 				 * code will also be executed.  This is
16648 				 * fine as tcp_max_swnd is updated
16649 				 * constantly and it will not affect
16650 				 * anything.
16651 				 */
16652 				tcp->tcp_max_swnd = MAX(tcp->tcp_swnd, 2);
16653 			}
16654 			tcp_wput_data(tcp, NULL, B_FALSE);
16655 			return;
16656 		}
16657 		/* Is there a FIN that needs to be to re retransmitted? */
16658 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
16659 		    !tcp->tcp_fin_acked)
16660 			break;
16661 		/* Nothing to do, return without restarting timer. */
16662 		TCP_STAT(tcp_timer_fire_miss);
16663 		return;
16664 	case TCPS_FIN_WAIT_2:
16665 		/*
16666 		 * User closed the TCP endpoint and peer ACK'ed our FIN.
16667 		 * We waited some time for for peer's FIN, but it hasn't
16668 		 * arrived.  We flush the connection now to avoid
16669 		 * case where the peer has rebooted.
16670 		 */
16671 		if (TCP_IS_DETACHED(tcp)) {
16672 			(void) tcp_clean_death(tcp, 0, 23);
16673 		} else {
16674 			TCP_TIMER_RESTART(tcp, tcp_fin_wait_2_flush_interval);
16675 		}
16676 		return;
16677 	case TCPS_TIME_WAIT:
16678 		(void) tcp_clean_death(tcp, 0, 24);
16679 		return;
16680 	default:
16681 		if (tcp->tcp_debug) {
16682 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
16683 			    "tcp_timer: strange state (%d) %s",
16684 			    tcp->tcp_state, tcp_display(tcp, NULL,
16685 			    DISP_PORT_ONLY));
16686 		}
16687 		return;
16688 	}
16689 	if ((ms = tcp->tcp_ms_we_have_waited) > second_threshold) {
16690 		/*
16691 		 * For zero window probe, we need to send indefinitely,
16692 		 * unless we have not heard from the other side for some
16693 		 * time...
16694 		 */
16695 		if ((tcp->tcp_zero_win_probe == 0) ||
16696 		    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >
16697 		    second_threshold)) {
16698 			BUMP_MIB(&tcp_mib, tcpTimRetransDrop);
16699 			/*
16700 			 * If TCP is in SYN_RCVD state, send back a
16701 			 * RST|ACK as BSD does.  Note that tcp_zero_win_probe
16702 			 * should be zero in TCPS_SYN_RCVD state.
16703 			 */
16704 			if (tcp->tcp_state == TCPS_SYN_RCVD) {
16705 				tcp_xmit_ctl("tcp_timer: RST sent on timeout "
16706 				    "in SYN_RCVD",
16707 				    tcp, tcp->tcp_snxt,
16708 				    tcp->tcp_rnxt, TH_RST | TH_ACK);
16709 			}
16710 			(void) tcp_clean_death(tcp,
16711 			    tcp->tcp_client_errno ?
16712 			    tcp->tcp_client_errno : ETIMEDOUT, 25);
16713 			return;
16714 		} else {
16715 			/*
16716 			 * Set tcp_ms_we_have_waited to second_threshold
16717 			 * so that in next timeout, we will do the above
16718 			 * check (lbolt - tcp_last_recv_time).  This is
16719 			 * also to avoid overflow.
16720 			 *
16721 			 * We don't need to decrement tcp_timer_backoff
16722 			 * to avoid overflow because it will be decremented
16723 			 * later if new timeout value is greater than
16724 			 * tcp_rexmit_interval_max.  In the case when
16725 			 * tcp_rexmit_interval_max is greater than
16726 			 * second_threshold, it means that we will wait
16727 			 * longer than second_threshold to send the next
16728 			 * window probe.
16729 			 */
16730 			tcp->tcp_ms_we_have_waited = second_threshold;
16731 		}
16732 	} else if (ms > first_threshold) {
16733 		if (tcp->tcp_snd_zcopy_aware && (!tcp->tcp_xmit_zc_clean) &&
16734 		    tcp->tcp_xmit_head != NULL) {
16735 			tcp->tcp_xmit_head =
16736 			    tcp_zcopy_backoff(tcp, tcp->tcp_xmit_head, 1);
16737 		}
16738 		/*
16739 		 * We have been retransmitting for too long...  The RTT
16740 		 * we calculated is probably incorrect.  Reinitialize it.
16741 		 * Need to compensate for 0 tcp_rtt_sa.  Reset
16742 		 * tcp_rtt_update so that we won't accidentally cache a
16743 		 * bad value.  But only do this if this is not a zero
16744 		 * window probe.
16745 		 */
16746 		if (tcp->tcp_rtt_sa != 0 && tcp->tcp_zero_win_probe == 0) {
16747 			tcp->tcp_rtt_sd += (tcp->tcp_rtt_sa >> 3) +
16748 			    (tcp->tcp_rtt_sa >> 5);
16749 			tcp->tcp_rtt_sa = 0;
16750 			tcp_ip_notify(tcp);
16751 			tcp->tcp_rtt_update = 0;
16752 		}
16753 	}
16754 	tcp->tcp_timer_backoff++;
16755 	if ((ms = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
16756 	    tcp_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5)) <
16757 	    tcp_rexmit_interval_min) {
16758 		/*
16759 		 * This means the original RTO is tcp_rexmit_interval_min.
16760 		 * So we will use tcp_rexmit_interval_min as the RTO value
16761 		 * and do the backoff.
16762 		 */
16763 		ms = tcp_rexmit_interval_min << tcp->tcp_timer_backoff;
16764 	} else {
16765 		ms <<= tcp->tcp_timer_backoff;
16766 	}
16767 	if (ms > tcp_rexmit_interval_max) {
16768 		ms = tcp_rexmit_interval_max;
16769 		/*
16770 		 * ms is at max, decrement tcp_timer_backoff to avoid
16771 		 * overflow.
16772 		 */
16773 		tcp->tcp_timer_backoff--;
16774 	}
16775 	tcp->tcp_ms_we_have_waited += ms;
16776 	if (tcp->tcp_zero_win_probe == 0) {
16777 		tcp->tcp_rto = ms;
16778 	}
16779 	TCP_TIMER_RESTART(tcp, ms);
16780 	/*
16781 	 * This is after a timeout and tcp_rto is backed off.  Set
16782 	 * tcp_set_timer to 1 so that next time RTO is updated, we will
16783 	 * restart the timer with a correct value.
16784 	 */
16785 	tcp->tcp_set_timer = 1;
16786 	mss = tcp->tcp_snxt - tcp->tcp_suna;
16787 	if (mss > tcp->tcp_mss)
16788 		mss = tcp->tcp_mss;
16789 	if (mss > tcp->tcp_swnd && tcp->tcp_swnd != 0)
16790 		mss = tcp->tcp_swnd;
16791 
16792 	if ((mp = tcp->tcp_xmit_head) != NULL)
16793 		mp->b_prev = (mblk_t *)lbolt;
16794 	mp = tcp_xmit_mp(tcp, mp, mss, NULL, NULL, tcp->tcp_suna, B_TRUE, &mss,
16795 	    B_TRUE);
16796 
16797 	/*
16798 	 * When slow start after retransmission begins, start with
16799 	 * this seq no.  tcp_rexmit_max marks the end of special slow
16800 	 * start phase.  tcp_snd_burst controls how many segments
16801 	 * can be sent because of an ack.
16802 	 */
16803 	tcp->tcp_rexmit_nxt = tcp->tcp_suna;
16804 	tcp->tcp_snd_burst = TCP_CWND_SS;
16805 	if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
16806 	    (tcp->tcp_unsent == 0)) {
16807 		tcp->tcp_rexmit_max = tcp->tcp_fss;
16808 	} else {
16809 		tcp->tcp_rexmit_max = tcp->tcp_snxt;
16810 	}
16811 	tcp->tcp_rexmit = B_TRUE;
16812 	tcp->tcp_dupack_cnt = 0;
16813 
16814 	/*
16815 	 * Remove all rexmit SACK blk to start from fresh.
16816 	 */
16817 	if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
16818 		TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
16819 		tcp->tcp_num_notsack_blk = 0;
16820 		tcp->tcp_cnt_notsack_list = 0;
16821 	}
16822 	if (mp == NULL) {
16823 		return;
16824 	}
16825 	/* Attach credentials to retransmitted initial SYNs. */
16826 	if (tcp->tcp_state == TCPS_SYN_SENT) {
16827 		mblk_setcred(mp, tcp->tcp_cred);
16828 		DB_CPID(mp) = tcp->tcp_cpid;
16829 	}
16830 
16831 	tcp->tcp_csuna = tcp->tcp_snxt;
16832 	BUMP_MIB(&tcp_mib, tcpRetransSegs);
16833 	UPDATE_MIB(&tcp_mib, tcpRetransBytes, mss);
16834 	TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
16835 	tcp_send_data(tcp, tcp->tcp_wq, mp);
16836 
16837 }
16838 
16839 /* tcp_unbind is called by tcp_wput_proto to handle T_UNBIND_REQ messages. */
16840 static void
16841 tcp_unbind(tcp_t *tcp, mblk_t *mp)
16842 {
16843 	conn_t	*connp;
16844 
16845 	switch (tcp->tcp_state) {
16846 	case TCPS_BOUND:
16847 	case TCPS_LISTEN:
16848 		break;
16849 	default:
16850 		tcp_err_ack(tcp, mp, TOUTSTATE, 0);
16851 		return;
16852 	}
16853 
16854 	/*
16855 	 * Need to clean up all the eagers since after the unbind, segments
16856 	 * will no longer be delivered to this listener stream.
16857 	 */
16858 	mutex_enter(&tcp->tcp_eager_lock);
16859 	if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) {
16860 		tcp_eager_cleanup(tcp, 0);
16861 	}
16862 	mutex_exit(&tcp->tcp_eager_lock);
16863 
16864 	if (tcp->tcp_ipversion == IPV4_VERSION) {
16865 		tcp->tcp_ipha->ipha_src = 0;
16866 	} else {
16867 		V6_SET_ZERO(tcp->tcp_ip6h->ip6_src);
16868 	}
16869 	V6_SET_ZERO(tcp->tcp_ip_src_v6);
16870 	bzero(tcp->tcp_tcph->th_lport, sizeof (tcp->tcp_tcph->th_lport));
16871 	tcp_bind_hash_remove(tcp);
16872 	tcp->tcp_state = TCPS_IDLE;
16873 	tcp->tcp_mdt = B_FALSE;
16874 	/* Send M_FLUSH according to TPI */
16875 	(void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW);
16876 	connp = tcp->tcp_connp;
16877 	connp->conn_mdt_ok = B_FALSE;
16878 	ipcl_hash_remove(connp);
16879 	bzero(&connp->conn_ports, sizeof (connp->conn_ports));
16880 	mp = mi_tpi_ok_ack_alloc(mp);
16881 	putnext(tcp->tcp_rq, mp);
16882 }
16883 
16884 /*
16885  * Don't let port fall into the privileged range.
16886  * Since the extra privileged ports can be arbitrary we also
16887  * ensure that we exclude those from consideration.
16888  * tcp_g_epriv_ports is not sorted thus we loop over it until
16889  * there are no changes.
16890  *
16891  * Note: No locks are held when inspecting tcp_g_*epriv_ports
16892  * but instead the code relies on:
16893  * - the fact that the address of the array and its size never changes
16894  * - the atomic assignment of the elements of the array
16895  *
16896  * Returns 0 if there are no more ports available.
16897  *
16898  * TS note: skip multilevel ports.
16899  */
16900 static in_port_t
16901 tcp_update_next_port(in_port_t port, const tcp_t *tcp, boolean_t random)
16902 {
16903 	int i;
16904 	boolean_t restart = B_FALSE;
16905 
16906 	if (random && tcp_random_anon_port != 0) {
16907 		(void) random_get_pseudo_bytes((uint8_t *)&port,
16908 		    sizeof (in_port_t));
16909 		/*
16910 		 * Unless changed by a sys admin, the smallest anon port
16911 		 * is 32768 and the largest anon port is 65535.  It is
16912 		 * very likely (50%) for the random port to be smaller
16913 		 * than the smallest anon port.  When that happens,
16914 		 * add port % (anon port range) to the smallest anon
16915 		 * port to get the random port.  It should fall into the
16916 		 * valid anon port range.
16917 		 */
16918 		if (port < tcp_smallest_anon_port) {
16919 			port = tcp_smallest_anon_port +
16920 			    port % (tcp_largest_anon_port -
16921 				tcp_smallest_anon_port);
16922 		}
16923 	}
16924 
16925 retry:
16926 	if (port < tcp_smallest_anon_port)
16927 		port = (in_port_t)tcp_smallest_anon_port;
16928 
16929 	if (port > tcp_largest_anon_port) {
16930 		if (restart)
16931 			return (0);
16932 		restart = B_TRUE;
16933 		port = (in_port_t)tcp_smallest_anon_port;
16934 	}
16935 
16936 	if (port < tcp_smallest_nonpriv_port)
16937 		port = (in_port_t)tcp_smallest_nonpriv_port;
16938 
16939 	for (i = 0; i < tcp_g_num_epriv_ports; i++) {
16940 		if (port == tcp_g_epriv_ports[i]) {
16941 			port++;
16942 			/*
16943 			 * Make sure whether the port is in the
16944 			 * valid range.
16945 			 */
16946 			goto retry;
16947 		}
16948 	}
16949 	if (is_system_labeled() &&
16950 	    (i = tsol_next_port(crgetzone(tcp->tcp_cred), port,
16951 	    IPPROTO_TCP, B_TRUE)) != 0) {
16952 		port = i;
16953 		goto retry;
16954 	}
16955 	return (port);
16956 }
16957 
16958 /*
16959  * Return the next anonymous port in the privileged port range for
16960  * bind checking.  It starts at IPPORT_RESERVED - 1 and goes
16961  * downwards.  This is the same behavior as documented in the userland
16962  * library call rresvport(3N).
16963  *
16964  * TS note: skip multilevel ports.
16965  */
16966 static in_port_t
16967 tcp_get_next_priv_port(const tcp_t *tcp)
16968 {
16969 	static in_port_t next_priv_port = IPPORT_RESERVED - 1;
16970 	in_port_t nextport;
16971 	boolean_t restart = B_FALSE;
16972 
16973 retry:
16974 	if (next_priv_port < tcp_min_anonpriv_port ||
16975 	    next_priv_port >= IPPORT_RESERVED) {
16976 		next_priv_port = IPPORT_RESERVED - 1;
16977 		if (restart)
16978 			return (0);
16979 		restart = B_TRUE;
16980 	}
16981 	if (is_system_labeled() &&
16982 	    (nextport = tsol_next_port(crgetzone(tcp->tcp_cred),
16983 	    next_priv_port, IPPROTO_TCP, B_FALSE)) != 0) {
16984 		next_priv_port = nextport;
16985 		goto retry;
16986 	}
16987 	return (next_priv_port--);
16988 }
16989 
16990 /* The write side r/w procedure. */
16991 
16992 #if CCS_STATS
16993 struct {
16994 	struct {
16995 		int64_t count, bytes;
16996 	} tot, hit;
16997 } wrw_stats;
16998 #endif
16999 
17000 /*
17001  * Call by tcp_wput() to handle all non data, except M_PROTO and M_PCPROTO,
17002  * messages.
17003  */
17004 /* ARGSUSED */
17005 static void
17006 tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2)
17007 {
17008 	conn_t	*connp = (conn_t *)arg;
17009 	tcp_t	*tcp = connp->conn_tcp;
17010 	queue_t	*q = tcp->tcp_wq;
17011 
17012 	ASSERT(DB_TYPE(mp) != M_IOCTL);
17013 	/*
17014 	 * TCP is D_MP and qprocsoff() is done towards the end of the tcp_close.
17015 	 * Once the close starts, streamhead and sockfs will not let any data
17016 	 * packets come down (close ensures that there are no threads using the
17017 	 * queue and no new threads will come down) but since qprocsoff()
17018 	 * hasn't happened yet, a M_FLUSH or some non data message might
17019 	 * get reflected back (in response to our own FLUSHRW) and get
17020 	 * processed after tcp_close() is done. The conn would still be valid
17021 	 * because a ref would have added but we need to check the state
17022 	 * before actually processing the packet.
17023 	 */
17024 	if (TCP_IS_DETACHED(tcp) || (tcp->tcp_state == TCPS_CLOSED)) {
17025 		freemsg(mp);
17026 		return;
17027 	}
17028 
17029 	switch (DB_TYPE(mp)) {
17030 	case M_IOCDATA:
17031 		tcp_wput_iocdata(tcp, mp);
17032 		break;
17033 	case M_FLUSH:
17034 		tcp_wput_flush(tcp, mp);
17035 		break;
17036 	default:
17037 		CALL_IP_WPUT(connp, q, mp);
17038 		break;
17039 	}
17040 }
17041 
17042 /*
17043  * The TCP fast path write put procedure.
17044  * NOTE: the logic of the fast path is duplicated from tcp_wput_data()
17045  */
17046 /* ARGSUSED */
17047 void
17048 tcp_output(void *arg, mblk_t *mp, void *arg2)
17049 {
17050 	int		len;
17051 	int		hdrlen;
17052 	int		plen;
17053 	mblk_t		*mp1;
17054 	uchar_t		*rptr;
17055 	uint32_t	snxt;
17056 	tcph_t		*tcph;
17057 	struct datab	*db;
17058 	uint32_t	suna;
17059 	uint32_t	mss;
17060 	ipaddr_t	*dst;
17061 	ipaddr_t	*src;
17062 	uint32_t	sum;
17063 	int		usable;
17064 	conn_t		*connp = (conn_t *)arg;
17065 	tcp_t		*tcp = connp->conn_tcp;
17066 	uint32_t	msize;
17067 
17068 	/*
17069 	 * Try and ASSERT the minimum possible references on the
17070 	 * conn early enough. Since we are executing on write side,
17071 	 * the connection is obviously not detached and that means
17072 	 * there is a ref each for TCP and IP. Since we are behind
17073 	 * the squeue, the minimum references needed are 3. If the
17074 	 * conn is in classifier hash list, there should be an
17075 	 * extra ref for that (we check both the possibilities).
17076 	 */
17077 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
17078 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
17079 
17080 	ASSERT(DB_TYPE(mp) == M_DATA);
17081 	msize = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp);
17082 
17083 	mutex_enter(&connp->conn_lock);
17084 	tcp->tcp_squeue_bytes -= msize;
17085 	mutex_exit(&connp->conn_lock);
17086 
17087 	/* Bypass tcp protocol for fused tcp loopback */
17088 	if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize))
17089 		return;
17090 
17091 	mss = tcp->tcp_mss;
17092 	if (tcp->tcp_xmit_zc_clean)
17093 		mp = tcp_zcopy_backoff(tcp, mp, 0);
17094 
17095 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
17096 	len = (int)(mp->b_wptr - mp->b_rptr);
17097 
17098 	/*
17099 	 * Criteria for fast path:
17100 	 *
17101 	 *   1. no unsent data
17102 	 *   2. single mblk in request
17103 	 *   3. connection established
17104 	 *   4. data in mblk
17105 	 *   5. len <= mss
17106 	 *   6. no tcp_valid bits
17107 	 */
17108 	if ((tcp->tcp_unsent != 0) ||
17109 	    (tcp->tcp_cork) ||
17110 	    (mp->b_cont != NULL) ||
17111 	    (tcp->tcp_state != TCPS_ESTABLISHED) ||
17112 	    (len == 0) ||
17113 	    (len > mss) ||
17114 	    (tcp->tcp_valid_bits != 0)) {
17115 		tcp_wput_data(tcp, mp, B_FALSE);
17116 		return;
17117 	}
17118 
17119 	ASSERT(tcp->tcp_xmit_tail_unsent == 0);
17120 	ASSERT(tcp->tcp_fin_sent == 0);
17121 
17122 	/* queue new packet onto retransmission queue */
17123 	if (tcp->tcp_xmit_head == NULL) {
17124 		tcp->tcp_xmit_head = mp;
17125 	} else {
17126 		tcp->tcp_xmit_last->b_cont = mp;
17127 	}
17128 	tcp->tcp_xmit_last = mp;
17129 	tcp->tcp_xmit_tail = mp;
17130 
17131 	/* find out how much we can send */
17132 	/* BEGIN CSTYLED */
17133 	/*
17134 	 *    un-acked           usable
17135 	 *  |--------------|-----------------|
17136 	 *  tcp_suna       tcp_snxt          tcp_suna+tcp_swnd
17137 	 */
17138 	/* END CSTYLED */
17139 
17140 	/* start sending from tcp_snxt */
17141 	snxt = tcp->tcp_snxt;
17142 
17143 	/*
17144 	 * Check to see if this connection has been idled for some
17145 	 * time and no ACK is expected.  If it is, we need to slow
17146 	 * start again to get back the connection's "self-clock" as
17147 	 * described in VJ's paper.
17148 	 *
17149 	 * Refer to the comment in tcp_mss_set() for the calculation
17150 	 * of tcp_cwnd after idle.
17151 	 */
17152 	if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet &&
17153 	    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) {
17154 		SET_TCP_INIT_CWND(tcp, mss, tcp_slow_start_after_idle);
17155 	}
17156 
17157 	usable = tcp->tcp_swnd;		/* tcp window size */
17158 	if (usable > tcp->tcp_cwnd)
17159 		usable = tcp->tcp_cwnd;	/* congestion window smaller */
17160 	usable -= snxt;		/* subtract stuff already sent */
17161 	suna = tcp->tcp_suna;
17162 	usable += suna;
17163 	/* usable can be < 0 if the congestion window is smaller */
17164 	if (len > usable) {
17165 		/* Can't send complete M_DATA in one shot */
17166 		goto slow;
17167 	}
17168 
17169 	if (tcp->tcp_flow_stopped &&
17170 	    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
17171 		tcp_clrqfull(tcp);
17172 	}
17173 
17174 	/*
17175 	 * determine if anything to send (Nagle).
17176 	 *
17177 	 *   1. len < tcp_mss (i.e. small)
17178 	 *   2. unacknowledged data present
17179 	 *   3. len < nagle limit
17180 	 *   4. last packet sent < nagle limit (previous packet sent)
17181 	 */
17182 	if ((len < mss) && (snxt != suna) &&
17183 	    (len < (int)tcp->tcp_naglim) &&
17184 	    (tcp->tcp_last_sent_len < tcp->tcp_naglim)) {
17185 		/*
17186 		 * This was the first unsent packet and normally
17187 		 * mss < xmit_hiwater so there is no need to worry
17188 		 * about flow control. The next packet will go
17189 		 * through the flow control check in tcp_wput_data().
17190 		 */
17191 		/* leftover work from above */
17192 		tcp->tcp_unsent = len;
17193 		tcp->tcp_xmit_tail_unsent = len;
17194 
17195 		return;
17196 	}
17197 
17198 	/* len <= tcp->tcp_mss && len == unsent so no silly window */
17199 
17200 	if (snxt == suna) {
17201 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
17202 	}
17203 
17204 	/* we have always sent something */
17205 	tcp->tcp_rack_cnt = 0;
17206 
17207 	tcp->tcp_snxt = snxt + len;
17208 	tcp->tcp_rack = tcp->tcp_rnxt;
17209 
17210 	if ((mp1 = dupb(mp)) == 0)
17211 		goto no_memory;
17212 	mp->b_prev = (mblk_t *)(uintptr_t)lbolt;
17213 	mp->b_next = (mblk_t *)(uintptr_t)snxt;
17214 
17215 	/* adjust tcp header information */
17216 	tcph = tcp->tcp_tcph;
17217 	tcph->th_flags[0] = (TH_ACK|TH_PUSH);
17218 
17219 	sum = len + tcp->tcp_tcp_hdr_len + tcp->tcp_sum;
17220 	sum = (sum >> 16) + (sum & 0xFFFF);
17221 	U16_TO_ABE16(sum, tcph->th_sum);
17222 
17223 	U32_TO_ABE32(snxt, tcph->th_seq);
17224 
17225 	BUMP_MIB(&tcp_mib, tcpOutDataSegs);
17226 	UPDATE_MIB(&tcp_mib, tcpOutDataBytes, len);
17227 	BUMP_LOCAL(tcp->tcp_obsegs);
17228 
17229 	/* Update the latest receive window size in TCP header. */
17230 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
17231 	    tcph->th_win);
17232 
17233 	tcp->tcp_last_sent_len = (ushort_t)len;
17234 
17235 	plen = len + tcp->tcp_hdr_len;
17236 
17237 	if (tcp->tcp_ipversion == IPV4_VERSION) {
17238 		tcp->tcp_ipha->ipha_length = htons(plen);
17239 	} else {
17240 		tcp->tcp_ip6h->ip6_plen = htons(plen -
17241 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
17242 	}
17243 
17244 	/* see if we need to allocate a mblk for the headers */
17245 	hdrlen = tcp->tcp_hdr_len;
17246 	rptr = mp1->b_rptr - hdrlen;
17247 	db = mp1->b_datap;
17248 	if ((db->db_ref != 2) || rptr < db->db_base ||
17249 	    (!OK_32PTR(rptr))) {
17250 		/* NOTE: we assume allocb returns an OK_32PTR */
17251 		mp = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH +
17252 		    tcp_wroff_xtra, BPRI_MED);
17253 		if (!mp) {
17254 			freemsg(mp1);
17255 			goto no_memory;
17256 		}
17257 		mp->b_cont = mp1;
17258 		mp1 = mp;
17259 		/* Leave room for Link Level header */
17260 		/* hdrlen = tcp->tcp_hdr_len; */
17261 		rptr = &mp1->b_rptr[tcp_wroff_xtra];
17262 		mp1->b_wptr = &rptr[hdrlen];
17263 	}
17264 	mp1->b_rptr = rptr;
17265 
17266 	/* Fill in the timestamp option. */
17267 	if (tcp->tcp_snd_ts_ok) {
17268 		U32_TO_BE32((uint32_t)lbolt,
17269 		    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
17270 		U32_TO_BE32(tcp->tcp_ts_recent,
17271 		    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
17272 	} else {
17273 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
17274 	}
17275 
17276 	/* copy header into outgoing packet */
17277 	dst = (ipaddr_t *)rptr;
17278 	src = (ipaddr_t *)tcp->tcp_iphc;
17279 	dst[0] = src[0];
17280 	dst[1] = src[1];
17281 	dst[2] = src[2];
17282 	dst[3] = src[3];
17283 	dst[4] = src[4];
17284 	dst[5] = src[5];
17285 	dst[6] = src[6];
17286 	dst[7] = src[7];
17287 	dst[8] = src[8];
17288 	dst[9] = src[9];
17289 	if (hdrlen -= 40) {
17290 		hdrlen >>= 2;
17291 		dst += 10;
17292 		src += 10;
17293 		do {
17294 			*dst++ = *src++;
17295 		} while (--hdrlen);
17296 	}
17297 
17298 	/*
17299 	 * Set the ECN info in the TCP header.  Note that this
17300 	 * is not the template header.
17301 	 */
17302 	if (tcp->tcp_ecn_ok) {
17303 		SET_ECT(tcp, rptr);
17304 
17305 		tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
17306 		if (tcp->tcp_ecn_echo_on)
17307 			tcph->th_flags[0] |= TH_ECE;
17308 		if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
17309 			tcph->th_flags[0] |= TH_CWR;
17310 			tcp->tcp_ecn_cwr_sent = B_TRUE;
17311 		}
17312 	}
17313 
17314 	if (tcp->tcp_ip_forward_progress) {
17315 		ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
17316 		*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
17317 		tcp->tcp_ip_forward_progress = B_FALSE;
17318 	}
17319 	TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT);
17320 	tcp_send_data(tcp, tcp->tcp_wq, mp1);
17321 	return;
17322 
17323 	/*
17324 	 * If we ran out of memory, we pretend to have sent the packet
17325 	 * and that it was lost on the wire.
17326 	 */
17327 no_memory:
17328 	return;
17329 
17330 slow:
17331 	/* leftover work from above */
17332 	tcp->tcp_unsent = len;
17333 	tcp->tcp_xmit_tail_unsent = len;
17334 	tcp_wput_data(tcp, NULL, B_FALSE);
17335 }
17336 
17337 /*
17338  * The function called through squeue to get behind eager's perimeter to
17339  * finish the accept processing.
17340  */
17341 /* ARGSUSED */
17342 void
17343 tcp_accept_finish(void *arg, mblk_t *mp, void *arg2)
17344 {
17345 	conn_t			*connp = (conn_t *)arg;
17346 	tcp_t			*tcp = connp->conn_tcp;
17347 	queue_t			*q = tcp->tcp_rq;
17348 	mblk_t			*mp1;
17349 	mblk_t			*stropt_mp = mp;
17350 	struct  stroptions	*stropt;
17351 	uint_t			thwin;
17352 
17353 	/*
17354 	 * Drop the eager's ref on the listener, that was placed when
17355 	 * this eager began life in tcp_conn_request.
17356 	 */
17357 	CONN_DEC_REF(tcp->tcp_saved_listener->tcp_connp);
17358 
17359 	if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_accept_error) {
17360 		/*
17361 		 * Someone blewoff the eager before we could finish
17362 		 * the accept.
17363 		 *
17364 		 * The only reason eager exists it because we put in
17365 		 * a ref on it when conn ind went up. We need to send
17366 		 * a disconnect indication up while the last reference
17367 		 * on the eager will be dropped by the squeue when we
17368 		 * return.
17369 		 */
17370 		ASSERT(tcp->tcp_listener == NULL);
17371 		if (tcp->tcp_issocket || tcp->tcp_send_discon_ind) {
17372 			struct	T_discon_ind	*tdi;
17373 
17374 			(void) putnextctl1(q, M_FLUSH, FLUSHRW);
17375 			/*
17376 			 * Let us reuse the incoming mblk to avoid memory
17377 			 * allocation failure problems. We know that the
17378 			 * size of the incoming mblk i.e. stroptions is greater
17379 			 * than sizeof T_discon_ind. So the reallocb below
17380 			 * can't fail.
17381 			 */
17382 			freemsg(mp->b_cont);
17383 			mp->b_cont = NULL;
17384 			ASSERT(DB_REF(mp) == 1);
17385 			mp = reallocb(mp, sizeof (struct T_discon_ind),
17386 			    B_FALSE);
17387 			ASSERT(mp != NULL);
17388 			DB_TYPE(mp) = M_PROTO;
17389 			((union T_primitives *)mp->b_rptr)->type = T_DISCON_IND;
17390 			tdi = (struct T_discon_ind *)mp->b_rptr;
17391 			if (tcp->tcp_issocket) {
17392 				tdi->DISCON_reason = ECONNREFUSED;
17393 				tdi->SEQ_number = 0;
17394 			} else {
17395 				tdi->DISCON_reason = ENOPROTOOPT;
17396 				tdi->SEQ_number =
17397 				    tcp->tcp_conn_req_seqnum;
17398 			}
17399 			mp->b_wptr = mp->b_rptr + sizeof (struct T_discon_ind);
17400 			putnext(q, mp);
17401 		} else {
17402 			freemsg(mp);
17403 		}
17404 		if (tcp->tcp_hard_binding) {
17405 			tcp->tcp_hard_binding = B_FALSE;
17406 			tcp->tcp_hard_bound = B_TRUE;
17407 		}
17408 		tcp->tcp_detached = B_FALSE;
17409 		return;
17410 	}
17411 
17412 	mp1 = stropt_mp->b_cont;
17413 	stropt_mp->b_cont = NULL;
17414 	ASSERT(DB_TYPE(stropt_mp) == M_SETOPTS);
17415 	stropt = (struct stroptions *)stropt_mp->b_rptr;
17416 
17417 	while (mp1 != NULL) {
17418 		mp = mp1;
17419 		mp1 = mp1->b_cont;
17420 		mp->b_cont = NULL;
17421 		tcp->tcp_drop_opt_ack_cnt++;
17422 		CALL_IP_WPUT(connp, tcp->tcp_wq, mp);
17423 	}
17424 	mp = NULL;
17425 
17426 	/*
17427 	 * For a loopback connection with tcp_direct_sockfs on, note that
17428 	 * we don't have to protect tcp_rcv_list yet because synchronous
17429 	 * streams has not yet been enabled and tcp_fuse_rrw() cannot
17430 	 * possibly race with us.
17431 	 */
17432 
17433 	/*
17434 	 * Set the max window size (tcp_rq->q_hiwat) of the acceptor
17435 	 * properly.  This is the first time we know of the acceptor'
17436 	 * queue.  So we do it here.
17437 	 */
17438 	if (tcp->tcp_rcv_list == NULL) {
17439 		/*
17440 		 * Recv queue is empty, tcp_rwnd should not have changed.
17441 		 * That means it should be equal to the listener's tcp_rwnd.
17442 		 */
17443 		tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd;
17444 	} else {
17445 #ifdef DEBUG
17446 		uint_t cnt = 0;
17447 
17448 		mp1 = tcp->tcp_rcv_list;
17449 		while ((mp = mp1) != NULL) {
17450 			mp1 = mp->b_next;
17451 			cnt += msgdsize(mp);
17452 		}
17453 		ASSERT(cnt != 0 && tcp->tcp_rcv_cnt == cnt);
17454 #endif
17455 		/* There is some data, add them back to get the max. */
17456 		tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd + tcp->tcp_rcv_cnt;
17457 	}
17458 
17459 	stropt->so_flags = SO_HIWAT;
17460 	stropt->so_hiwat = MAX(q->q_hiwat, tcp_sth_rcv_hiwat);
17461 
17462 	stropt->so_flags |= SO_MAXBLK;
17463 	stropt->so_maxblk = tcp_maxpsz_set(tcp, B_FALSE);
17464 
17465 	/*
17466 	 * This is the first time we run on the correct
17467 	 * queue after tcp_accept. So fix all the q parameters
17468 	 * here.
17469 	 */
17470 	/* Allocate room for SACK options if needed. */
17471 	stropt->so_flags |= SO_WROFF;
17472 	if (tcp->tcp_fused) {
17473 		ASSERT(tcp->tcp_loopback);
17474 		ASSERT(tcp->tcp_loopback_peer != NULL);
17475 		/*
17476 		 * For fused tcp loopback, set the stream head's write
17477 		 * offset value to zero since we won't be needing any room
17478 		 * for TCP/IP headers.  This would also improve performance
17479 		 * since it would reduce the amount of work done by kmem.
17480 		 * Non-fused tcp loopback case is handled separately below.
17481 		 */
17482 		stropt->so_wroff = 0;
17483 		/*
17484 		 * Record the stream head's high water mark for this endpoint;
17485 		 * this is used for flow-control purposes in tcp_fuse_output().
17486 		 */
17487 		stropt->so_hiwat = tcp_fuse_set_rcv_hiwat(tcp, q->q_hiwat);
17488 		/*
17489 		 * Update the peer's transmit parameters according to
17490 		 * our recently calculated high water mark value.
17491 		 */
17492 		(void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE);
17493 	} else if (tcp->tcp_snd_sack_ok) {
17494 		stropt->so_wroff = tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN +
17495 		    (tcp->tcp_loopback ? 0 : tcp_wroff_xtra);
17496 	} else {
17497 		stropt->so_wroff = tcp->tcp_hdr_len + (tcp->tcp_loopback ? 0 :
17498 		    tcp_wroff_xtra);
17499 	}
17500 
17501 	/*
17502 	 * If this is endpoint is handling SSL, then reserve extra
17503 	 * offset and space at the end.
17504 	 * Also have the stream head allocate SSL3_MAX_RECORD_LEN packets,
17505 	 * overriding the previous setting. The extra cost of signing and
17506 	 * encrypting multiple MSS-size records (12 of them with Ethernet),
17507 	 * instead of a single contiguous one by the stream head
17508 	 * largely outweighs the statistical reduction of ACKs, when
17509 	 * applicable. The peer will also save on decyption and verification
17510 	 * costs.
17511 	 */
17512 	if (tcp->tcp_kssl_ctx != NULL) {
17513 		stropt->so_wroff += SSL3_WROFFSET;
17514 
17515 		stropt->so_flags |= SO_TAIL;
17516 		stropt->so_tail = SSL3_MAX_TAIL_LEN;
17517 
17518 		stropt->so_maxblk = SSL3_MAX_RECORD_LEN;
17519 	}
17520 
17521 	/* Send the options up */
17522 	putnext(q, stropt_mp);
17523 
17524 	/*
17525 	 * Pass up any data and/or a fin that has been received.
17526 	 *
17527 	 * Adjust receive window in case it had decreased
17528 	 * (because there is data <=> tcp_rcv_list != NULL)
17529 	 * while the connection was detached. Note that
17530 	 * in case the eager was flow-controlled, w/o this
17531 	 * code, the rwnd may never open up again!
17532 	 */
17533 	if (tcp->tcp_rcv_list != NULL) {
17534 		/* We drain directly in case of fused tcp loopback */
17535 		if (!tcp->tcp_fused && canputnext(q)) {
17536 			tcp->tcp_rwnd = q->q_hiwat;
17537 			thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
17538 			    << tcp->tcp_rcv_ws;
17539 			thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
17540 			if (tcp->tcp_state >= TCPS_ESTABLISHED &&
17541 			    (q->q_hiwat - thwin >= tcp->tcp_mss)) {
17542 				tcp_xmit_ctl(NULL,
17543 				    tcp, (tcp->tcp_swnd == 0) ?
17544 				    tcp->tcp_suna : tcp->tcp_snxt,
17545 				    tcp->tcp_rnxt, TH_ACK);
17546 				BUMP_MIB(&tcp_mib, tcpOutWinUpdate);
17547 			}
17548 
17549 		}
17550 		(void) tcp_rcv_drain(q, tcp);
17551 
17552 		/*
17553 		 * For fused tcp loopback, back-enable peer endpoint
17554 		 * if it's currently flow-controlled.
17555 		 */
17556 		if (tcp->tcp_fused &&
17557 		    tcp->tcp_loopback_peer->tcp_flow_stopped) {
17558 			tcp_t *peer_tcp = tcp->tcp_loopback_peer;
17559 
17560 			ASSERT(peer_tcp != NULL);
17561 			ASSERT(peer_tcp->tcp_fused);
17562 
17563 			tcp_clrqfull(peer_tcp);
17564 			TCP_STAT(tcp_fusion_backenabled);
17565 		}
17566 	}
17567 	ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
17568 	if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
17569 		mp = mi_tpi_ordrel_ind();
17570 		if (mp) {
17571 			tcp->tcp_ordrel_done = B_TRUE;
17572 			putnext(q, mp);
17573 			if (tcp->tcp_deferred_clean_death) {
17574 				/*
17575 				 * tcp_clean_death was deferred
17576 				 * for T_ORDREL_IND - do it now
17577 				 */
17578 				(void) tcp_clean_death(tcp,
17579 				    tcp->tcp_client_errno, 21);
17580 				tcp->tcp_deferred_clean_death = B_FALSE;
17581 			}
17582 		} else {
17583 			/*
17584 			 * Run the orderly release in the
17585 			 * service routine.
17586 			 */
17587 			qenable(q);
17588 		}
17589 	}
17590 	if (tcp->tcp_hard_binding) {
17591 		tcp->tcp_hard_binding = B_FALSE;
17592 		tcp->tcp_hard_bound = B_TRUE;
17593 	}
17594 
17595 	tcp->tcp_detached = B_FALSE;
17596 
17597 	/* We can enable synchronous streams now */
17598 	if (tcp->tcp_fused) {
17599 		tcp_fuse_syncstr_enable_pair(tcp);
17600 	}
17601 
17602 	if (tcp->tcp_ka_enabled) {
17603 		tcp->tcp_ka_last_intrvl = 0;
17604 		tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
17605 		    MSEC_TO_TICK(tcp->tcp_ka_interval));
17606 	}
17607 
17608 	/*
17609 	 * At this point, eager is fully established and will
17610 	 * have the following references -
17611 	 *
17612 	 * 2 references for connection to exist (1 for TCP and 1 for IP).
17613 	 * 1 reference for the squeue which will be dropped by the squeue as
17614 	 *	soon as this function returns.
17615 	 * There will be 1 additonal reference for being in classifier
17616 	 *	hash list provided something bad hasn't happened.
17617 	 */
17618 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
17619 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
17620 }
17621 
17622 /*
17623  * The function called through squeue to get behind listener's perimeter to
17624  * send a deffered conn_ind.
17625  */
17626 /* ARGSUSED */
17627 void
17628 tcp_send_pending(void *arg, mblk_t *mp, void *arg2)
17629 {
17630 	conn_t	*connp = (conn_t *)arg;
17631 	tcp_t *listener = connp->conn_tcp;
17632 
17633 	if (listener->tcp_state == TCPS_CLOSED ||
17634 	    TCP_IS_DETACHED(listener)) {
17635 		/*
17636 		 * If listener has closed, it would have caused a
17637 		 * a cleanup/blowoff to happen for the eager.
17638 		 */
17639 		tcp_t *tcp;
17640 		struct T_conn_ind	*conn_ind;
17641 
17642 		conn_ind = (struct T_conn_ind *)mp->b_rptr;
17643 		bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp,
17644 		    conn_ind->OPT_length);
17645 		/*
17646 		 * We need to drop the ref on eager that was put
17647 		 * tcp_rput_data() before trying to send the conn_ind
17648 		 * to listener. The conn_ind was deferred in tcp_send_conn_ind
17649 		 * and tcp_wput_accept() is sending this deferred conn_ind but
17650 		 * listener is closed so we drop the ref.
17651 		 */
17652 		CONN_DEC_REF(tcp->tcp_connp);
17653 		freemsg(mp);
17654 		return;
17655 	}
17656 	putnext(listener->tcp_rq, mp);
17657 }
17658 
17659 
17660 /*
17661  * This is the STREAMS entry point for T_CONN_RES coming down on
17662  * Acceptor STREAM when  sockfs listener does accept processing.
17663  * Read the block comment on top pf tcp_conn_request().
17664  */
17665 void
17666 tcp_wput_accept(queue_t *q, mblk_t *mp)
17667 {
17668 	queue_t *rq = RD(q);
17669 	struct T_conn_res *conn_res;
17670 	tcp_t *eager;
17671 	tcp_t *listener;
17672 	struct T_ok_ack *ok;
17673 	t_scalar_t PRIM_type;
17674 	mblk_t *opt_mp;
17675 	conn_t *econnp;
17676 
17677 	ASSERT(DB_TYPE(mp) == M_PROTO);
17678 
17679 	conn_res = (struct T_conn_res *)mp->b_rptr;
17680 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
17681 	if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_res)) {
17682 		mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0);
17683 		if (mp != NULL)
17684 			putnext(rq, mp);
17685 		return;
17686 	}
17687 	switch (conn_res->PRIM_type) {
17688 	case O_T_CONN_RES:
17689 	case T_CONN_RES:
17690 		/*
17691 		 * We pass up an err ack if allocb fails. This will
17692 		 * cause sockfs to issue a T_DISCON_REQ which will cause
17693 		 * tcp_eager_blowoff to be called. sockfs will then call
17694 		 * rq->q_qinfo->qi_qclose to cleanup the acceptor stream.
17695 		 * we need to do the allocb up here because we have to
17696 		 * make sure rq->q_qinfo->qi_qclose still points to the
17697 		 * correct function (tcpclose_accept) in case allocb
17698 		 * fails.
17699 		 */
17700 		opt_mp = allocb(sizeof (struct stroptions), BPRI_HI);
17701 		if (opt_mp == NULL) {
17702 			mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0);
17703 			if (mp != NULL)
17704 				putnext(rq, mp);
17705 			return;
17706 		}
17707 
17708 		bcopy(mp->b_rptr + conn_res->OPT_offset,
17709 		    &eager, conn_res->OPT_length);
17710 		PRIM_type = conn_res->PRIM_type;
17711 		mp->b_datap->db_type = M_PCPROTO;
17712 		mp->b_wptr = mp->b_rptr + sizeof (struct T_ok_ack);
17713 		ok = (struct T_ok_ack *)mp->b_rptr;
17714 		ok->PRIM_type = T_OK_ACK;
17715 		ok->CORRECT_prim = PRIM_type;
17716 		econnp = eager->tcp_connp;
17717 		econnp->conn_dev = (dev_t)q->q_ptr;
17718 		eager->tcp_rq = rq;
17719 		eager->tcp_wq = q;
17720 		rq->q_ptr = econnp;
17721 		rq->q_qinfo = &tcp_rinit;
17722 		q->q_ptr = econnp;
17723 		q->q_qinfo = &tcp_winit;
17724 		listener = eager->tcp_listener;
17725 		eager->tcp_issocket = B_TRUE;
17726 		econnp->conn_zoneid = listener->tcp_connp->conn_zoneid;
17727 
17728 		/* Put the ref for IP */
17729 		CONN_INC_REF(econnp);
17730 
17731 		/*
17732 		 * We should have minimum of 3 references on the conn
17733 		 * at this point. One each for TCP and IP and one for
17734 		 * the T_conn_ind that was sent up when the 3-way handshake
17735 		 * completed. In the normal case we would also have another
17736 		 * reference (making a total of 4) for the conn being in the
17737 		 * classifier hash list. However the eager could have received
17738 		 * an RST subsequently and tcp_closei_local could have removed
17739 		 * the eager from the classifier hash list, hence we can't
17740 		 * assert that reference.
17741 		 */
17742 		ASSERT(econnp->conn_ref >= 3);
17743 
17744 		/*
17745 		 * Send the new local address also up to sockfs. There
17746 		 * should already be enough space in the mp that came
17747 		 * down from soaccept().
17748 		 */
17749 		if (eager->tcp_family == AF_INET) {
17750 			sin_t *sin;
17751 
17752 			ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >=
17753 			    (sizeof (struct T_ok_ack) + sizeof (sin_t)));
17754 			sin = (sin_t *)mp->b_wptr;
17755 			mp->b_wptr += sizeof (sin_t);
17756 			sin->sin_family = AF_INET;
17757 			sin->sin_port = eager->tcp_lport;
17758 			sin->sin_addr.s_addr = eager->tcp_ipha->ipha_src;
17759 		} else {
17760 			sin6_t *sin6;
17761 
17762 			ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >=
17763 			    sizeof (struct T_ok_ack) + sizeof (sin6_t));
17764 			sin6 = (sin6_t *)mp->b_wptr;
17765 			mp->b_wptr += sizeof (sin6_t);
17766 			sin6->sin6_family = AF_INET6;
17767 			sin6->sin6_port = eager->tcp_lport;
17768 			if (eager->tcp_ipversion == IPV4_VERSION) {
17769 				sin6->sin6_flowinfo = 0;
17770 				IN6_IPADDR_TO_V4MAPPED(
17771 					eager->tcp_ipha->ipha_src,
17772 					    &sin6->sin6_addr);
17773 			} else {
17774 				ASSERT(eager->tcp_ip6h != NULL);
17775 				sin6->sin6_flowinfo =
17776 				    eager->tcp_ip6h->ip6_vcf &
17777 				    ~IPV6_VERS_AND_FLOW_MASK;
17778 				sin6->sin6_addr = eager->tcp_ip6h->ip6_src;
17779 			}
17780 			sin6->sin6_scope_id = 0;
17781 			sin6->__sin6_src_id = 0;
17782 		}
17783 
17784 		putnext(rq, mp);
17785 
17786 		opt_mp->b_datap->db_type = M_SETOPTS;
17787 		opt_mp->b_wptr += sizeof (struct stroptions);
17788 
17789 		/*
17790 		 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO
17791 		 * from listener to acceptor. The message is chained on the
17792 		 * bind_mp which tcp_rput_other will send down to IP.
17793 		 */
17794 		if (listener->tcp_bound_if != 0) {
17795 			/* allocate optmgmt req */
17796 			mp = tcp_setsockopt_mp(IPPROTO_IPV6,
17797 			    IPV6_BOUND_IF, (char *)&listener->tcp_bound_if,
17798 			    sizeof (int));
17799 			if (mp != NULL)
17800 				linkb(opt_mp, mp);
17801 		}
17802 		if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) {
17803 			uint_t on = 1;
17804 
17805 			/* allocate optmgmt req */
17806 			mp = tcp_setsockopt_mp(IPPROTO_IPV6,
17807 			    IPV6_RECVPKTINFO, (char *)&on, sizeof (on));
17808 			if (mp != NULL)
17809 				linkb(opt_mp, mp);
17810 		}
17811 
17812 
17813 		mutex_enter(&listener->tcp_eager_lock);
17814 
17815 		if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) {
17816 
17817 			tcp_t *tail;
17818 			tcp_t *tcp;
17819 			mblk_t *mp1;
17820 
17821 			tcp = listener->tcp_eager_prev_q0;
17822 			/*
17823 			 * listener->tcp_eager_prev_q0 points to the TAIL of the
17824 			 * deferred T_conn_ind queue. We need to get to the head
17825 			 * of the queue in order to send up T_conn_ind the same
17826 			 * order as how the 3WHS is completed.
17827 			 */
17828 			while (tcp != listener) {
17829 				if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0 &&
17830 				    !tcp->tcp_kssl_pending)
17831 					break;
17832 				else
17833 					tcp = tcp->tcp_eager_prev_q0;
17834 			}
17835 			/* None of the pending eagers can be sent up now */
17836 			if (tcp == listener)
17837 				goto no_more_eagers;
17838 
17839 			mp1 = tcp->tcp_conn.tcp_eager_conn_ind;
17840 			tcp->tcp_conn.tcp_eager_conn_ind = NULL;
17841 			/* Move from q0 to q */
17842 			ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
17843 			listener->tcp_conn_req_cnt_q0--;
17844 			listener->tcp_conn_req_cnt_q++;
17845 			tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
17846 			    tcp->tcp_eager_prev_q0;
17847 			tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
17848 			    tcp->tcp_eager_next_q0;
17849 			tcp->tcp_eager_prev_q0 = NULL;
17850 			tcp->tcp_eager_next_q0 = NULL;
17851 			tcp->tcp_conn_def_q0 = B_FALSE;
17852 
17853 			/*
17854 			 * Insert at end of the queue because sockfs sends
17855 			 * down T_CONN_RES in chronological order. Leaving
17856 			 * the older conn indications at front of the queue
17857 			 * helps reducing search time.
17858 			 */
17859 			tail = listener->tcp_eager_last_q;
17860 			if (tail != NULL) {
17861 				tail->tcp_eager_next_q = tcp;
17862 			} else {
17863 				listener->tcp_eager_next_q = tcp;
17864 			}
17865 			listener->tcp_eager_last_q = tcp;
17866 			tcp->tcp_eager_next_q = NULL;
17867 
17868 			/* Need to get inside the listener perimeter */
17869 			CONN_INC_REF(listener->tcp_connp);
17870 			squeue_fill(listener->tcp_connp->conn_sqp, mp1,
17871 			    tcp_send_pending, listener->tcp_connp,
17872 			    SQTAG_TCP_SEND_PENDING);
17873 		}
17874 no_more_eagers:
17875 		tcp_eager_unlink(eager);
17876 		mutex_exit(&listener->tcp_eager_lock);
17877 
17878 		/*
17879 		 * At this point, the eager is detached from the listener
17880 		 * but we still have an extra refs on eager (apart from the
17881 		 * usual tcp references). The ref was placed in tcp_rput_data
17882 		 * before sending the conn_ind in tcp_send_conn_ind.
17883 		 * The ref will be dropped in tcp_accept_finish().
17884 		 */
17885 		squeue_enter_nodrain(econnp->conn_sqp, opt_mp,
17886 		    tcp_accept_finish, econnp, SQTAG_TCP_ACCEPT_FINISH_Q0);
17887 		return;
17888 	default:
17889 		mp = mi_tpi_err_ack_alloc(mp, TNOTSUPPORT, 0);
17890 		if (mp != NULL)
17891 			putnext(rq, mp);
17892 		return;
17893 	}
17894 }
17895 
17896 void
17897 tcp_wput(queue_t *q, mblk_t *mp)
17898 {
17899 	conn_t	*connp = Q_TO_CONN(q);
17900 	tcp_t	*tcp;
17901 	void (*output_proc)();
17902 	t_scalar_t type;
17903 	uchar_t *rptr;
17904 	struct iocblk	*iocp;
17905 	uint32_t	msize;
17906 
17907 	ASSERT(connp->conn_ref >= 2);
17908 
17909 	switch (DB_TYPE(mp)) {
17910 	case M_DATA:
17911 		tcp = connp->conn_tcp;
17912 		ASSERT(tcp != NULL);
17913 
17914 		msize = msgdsize(mp);
17915 
17916 		mutex_enter(&connp->conn_lock);
17917 		CONN_INC_REF_LOCKED(connp);
17918 
17919 		tcp->tcp_squeue_bytes += msize;
17920 		if (TCP_UNSENT_BYTES(tcp) > tcp->tcp_xmit_hiwater) {
17921 			mutex_exit(&connp->conn_lock);
17922 			tcp_setqfull(tcp);
17923 		} else
17924 			mutex_exit(&connp->conn_lock);
17925 
17926 		(*tcp_squeue_wput_proc)(connp->conn_sqp, mp,
17927 		    tcp_output, connp, SQTAG_TCP_OUTPUT);
17928 		return;
17929 	case M_PROTO:
17930 	case M_PCPROTO:
17931 		/*
17932 		 * if it is a snmp message, don't get behind the squeue
17933 		 */
17934 		tcp = connp->conn_tcp;
17935 		rptr = mp->b_rptr;
17936 		if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) {
17937 			type = ((union T_primitives *)rptr)->type;
17938 		} else {
17939 			if (tcp->tcp_debug) {
17940 				(void) strlog(TCP_MOD_ID, 0, 1,
17941 				    SL_ERROR|SL_TRACE,
17942 				    "tcp_wput_proto, dropping one...");
17943 			}
17944 			freemsg(mp);
17945 			return;
17946 		}
17947 		if (type == T_SVR4_OPTMGMT_REQ) {
17948 			cred_t	*cr = DB_CREDDEF(mp, tcp->tcp_cred);
17949 			if (snmpcom_req(q, mp, tcp_snmp_set, tcp_snmp_get,
17950 			    cr)) {
17951 				/*
17952 				 * This was a SNMP request
17953 				 */
17954 				return;
17955 			} else {
17956 				output_proc = tcp_wput_proto;
17957 			}
17958 		} else {
17959 			output_proc = tcp_wput_proto;
17960 		}
17961 		break;
17962 	case M_IOCTL:
17963 		/*
17964 		 * Most ioctls can be processed right away without going via
17965 		 * squeues - process them right here. Those that do require
17966 		 * squeue (currently TCP_IOC_DEFAULT_Q and _SIOCSOCKFALLBACK)
17967 		 * are processed by tcp_wput_ioctl().
17968 		 */
17969 		iocp = (struct iocblk *)mp->b_rptr;
17970 		tcp = connp->conn_tcp;
17971 
17972 		switch (iocp->ioc_cmd) {
17973 		case TCP_IOC_ABORT_CONN:
17974 			tcp_ioctl_abort_conn(q, mp);
17975 			return;
17976 		case TI_GETPEERNAME:
17977 			if (tcp->tcp_state < TCPS_SYN_RCVD) {
17978 				iocp->ioc_error = ENOTCONN;
17979 				iocp->ioc_count = 0;
17980 				mp->b_datap->db_type = M_IOCACK;
17981 				qreply(q, mp);
17982 				return;
17983 			}
17984 			/* FALLTHRU */
17985 		case TI_GETMYNAME:
17986 			mi_copyin(q, mp, NULL,
17987 			    SIZEOF_STRUCT(strbuf, iocp->ioc_flag));
17988 			return;
17989 		case ND_SET:
17990 			/* nd_getset does the necessary checks */
17991 		case ND_GET:
17992 			if (!nd_getset(q, tcp_g_nd, mp)) {
17993 				CALL_IP_WPUT(connp, q, mp);
17994 				return;
17995 			}
17996 			qreply(q, mp);
17997 			return;
17998 		case TCP_IOC_DEFAULT_Q:
17999 			/*
18000 			 * Wants to be the default wq. Check the credentials
18001 			 * first, the rest is executed via squeue.
18002 			 */
18003 			if (secpolicy_net_config(iocp->ioc_cr, B_FALSE) != 0) {
18004 				iocp->ioc_error = EPERM;
18005 				iocp->ioc_count = 0;
18006 				mp->b_datap->db_type = M_IOCACK;
18007 				qreply(q, mp);
18008 				return;
18009 			}
18010 			output_proc = tcp_wput_ioctl;
18011 			break;
18012 		default:
18013 			output_proc = tcp_wput_ioctl;
18014 			break;
18015 		}
18016 		break;
18017 	default:
18018 		output_proc = tcp_wput_nondata;
18019 		break;
18020 	}
18021 
18022 	CONN_INC_REF(connp);
18023 	(*tcp_squeue_wput_proc)(connp->conn_sqp, mp,
18024 	    output_proc, connp, SQTAG_TCP_WPUT_OTHER);
18025 }
18026 
18027 /*
18028  * Initial STREAMS write side put() procedure for sockets. It tries to
18029  * handle the T_CAPABILITY_REQ which sockfs sends down while setting
18030  * up the socket without using the squeue. Non T_CAPABILITY_REQ messages
18031  * are handled by tcp_wput() as usual.
18032  *
18033  * All further messages will also be handled by tcp_wput() because we cannot
18034  * be sure that the above short cut is safe later.
18035  */
18036 static void
18037 tcp_wput_sock(queue_t *wq, mblk_t *mp)
18038 {
18039 	conn_t			*connp = Q_TO_CONN(wq);
18040 	tcp_t			*tcp = connp->conn_tcp;
18041 	struct T_capability_req	*car = (struct T_capability_req *)mp->b_rptr;
18042 
18043 	ASSERT(wq->q_qinfo == &tcp_sock_winit);
18044 	wq->q_qinfo = &tcp_winit;
18045 
18046 	ASSERT(IPCL_IS_TCP(connp));
18047 	ASSERT(TCP_IS_SOCKET(tcp));
18048 
18049 	if (DB_TYPE(mp) == M_PCPROTO &&
18050 	    MBLKL(mp) == sizeof (struct T_capability_req) &&
18051 	    car->PRIM_type == T_CAPABILITY_REQ) {
18052 		tcp_capability_req(tcp, mp);
18053 		return;
18054 	}
18055 
18056 	tcp_wput(wq, mp);
18057 }
18058 
18059 static boolean_t
18060 tcp_zcopy_check(tcp_t *tcp)
18061 {
18062 	conn_t	*connp = tcp->tcp_connp;
18063 	ire_t	*ire;
18064 	boolean_t	zc_enabled = B_FALSE;
18065 
18066 	if (do_tcpzcopy == 2)
18067 		zc_enabled = B_TRUE;
18068 	else if (tcp->tcp_ipversion == IPV4_VERSION &&
18069 	    IPCL_IS_CONNECTED(connp) &&
18070 	    (connp->conn_flags & IPCL_CHECK_POLICY) == 0 &&
18071 	    connp->conn_dontroute == 0 &&
18072 	    !connp->conn_nexthop_set &&
18073 	    connp->conn_xmit_if_ill == NULL &&
18074 	    connp->conn_nofailover_ill == NULL &&
18075 	    do_tcpzcopy == 1) {
18076 		/*
18077 		 * the checks above  closely resemble the fast path checks
18078 		 * in tcp_send_data().
18079 		 */
18080 		mutex_enter(&connp->conn_lock);
18081 		ire = connp->conn_ire_cache;
18082 		ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT));
18083 		if (ire != NULL && !(ire->ire_marks & IRE_MARK_CONDEMNED)) {
18084 			IRE_REFHOLD(ire);
18085 			if (ire->ire_stq != NULL) {
18086 				ill_t	*ill = (ill_t *)ire->ire_stq->q_ptr;
18087 
18088 				zc_enabled = ill && (ill->ill_capabilities &
18089 				    ILL_CAPAB_ZEROCOPY) &&
18090 				    (ill->ill_zerocopy_capab->
18091 				    ill_zerocopy_flags != 0);
18092 			}
18093 			IRE_REFRELE(ire);
18094 		}
18095 		mutex_exit(&connp->conn_lock);
18096 	}
18097 	tcp->tcp_snd_zcopy_on = zc_enabled;
18098 	if (!TCP_IS_DETACHED(tcp)) {
18099 		if (zc_enabled) {
18100 			(void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMSAFE);
18101 			TCP_STAT(tcp_zcopy_on);
18102 		} else {
18103 			(void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE);
18104 			TCP_STAT(tcp_zcopy_off);
18105 		}
18106 	}
18107 	return (zc_enabled);
18108 }
18109 
18110 static mblk_t *
18111 tcp_zcopy_disable(tcp_t *tcp, mblk_t *bp)
18112 {
18113 	if (do_tcpzcopy == 2)
18114 		return (bp);
18115 	else if (tcp->tcp_snd_zcopy_on) {
18116 		tcp->tcp_snd_zcopy_on = B_FALSE;
18117 		if (!TCP_IS_DETACHED(tcp)) {
18118 			(void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE);
18119 			TCP_STAT(tcp_zcopy_disable);
18120 		}
18121 	}
18122 	return (tcp_zcopy_backoff(tcp, bp, 0));
18123 }
18124 
18125 /*
18126  * Backoff from a zero-copy mblk by copying data to a new mblk and freeing
18127  * the original desballoca'ed segmapped mblk.
18128  */
18129 static mblk_t *
18130 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, int fix_xmitlist)
18131 {
18132 	mblk_t *head, *tail, *nbp;
18133 	if (IS_VMLOANED_MBLK(bp)) {
18134 		TCP_STAT(tcp_zcopy_backoff);
18135 		if ((head = copyb(bp)) == NULL) {
18136 			/* fail to backoff; leave it for the next backoff */
18137 			tcp->tcp_xmit_zc_clean = B_FALSE;
18138 			return (bp);
18139 		}
18140 		if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) {
18141 			if (fix_xmitlist)
18142 				tcp_zcopy_notify(tcp);
18143 			else
18144 				head->b_datap->db_struioflag |= STRUIO_ZCNOTIFY;
18145 		}
18146 		nbp = bp->b_cont;
18147 		if (fix_xmitlist) {
18148 			head->b_prev = bp->b_prev;
18149 			head->b_next = bp->b_next;
18150 			if (tcp->tcp_xmit_tail == bp)
18151 				tcp->tcp_xmit_tail = head;
18152 		}
18153 		bp->b_next = NULL;
18154 		bp->b_prev = NULL;
18155 		freeb(bp);
18156 	} else {
18157 		head = bp;
18158 		nbp = bp->b_cont;
18159 	}
18160 	tail = head;
18161 	while (nbp) {
18162 		if (IS_VMLOANED_MBLK(nbp)) {
18163 			TCP_STAT(tcp_zcopy_backoff);
18164 			if ((tail->b_cont = copyb(nbp)) == NULL) {
18165 				tcp->tcp_xmit_zc_clean = B_FALSE;
18166 				tail->b_cont = nbp;
18167 				return (head);
18168 			}
18169 			tail = tail->b_cont;
18170 			if (nbp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) {
18171 				if (fix_xmitlist)
18172 					tcp_zcopy_notify(tcp);
18173 				else
18174 					tail->b_datap->db_struioflag |=
18175 					    STRUIO_ZCNOTIFY;
18176 			}
18177 			bp = nbp;
18178 			nbp = nbp->b_cont;
18179 			if (fix_xmitlist) {
18180 				tail->b_prev = bp->b_prev;
18181 				tail->b_next = bp->b_next;
18182 				if (tcp->tcp_xmit_tail == bp)
18183 					tcp->tcp_xmit_tail = tail;
18184 			}
18185 			bp->b_next = NULL;
18186 			bp->b_prev = NULL;
18187 			freeb(bp);
18188 		} else {
18189 			tail->b_cont = nbp;
18190 			tail = nbp;
18191 			nbp = nbp->b_cont;
18192 		}
18193 	}
18194 	if (fix_xmitlist) {
18195 		tcp->tcp_xmit_last = tail;
18196 		tcp->tcp_xmit_zc_clean = B_TRUE;
18197 	}
18198 	return (head);
18199 }
18200 
18201 static void
18202 tcp_zcopy_notify(tcp_t *tcp)
18203 {
18204 	struct stdata	*stp;
18205 
18206 	if (tcp->tcp_detached)
18207 		return;
18208 	stp = STREAM(tcp->tcp_rq);
18209 	mutex_enter(&stp->sd_lock);
18210 	stp->sd_flag |= STZCNOTIFY;
18211 	cv_broadcast(&stp->sd_zcopy_wait);
18212 	mutex_exit(&stp->sd_lock);
18213 }
18214 
18215 static void
18216 tcp_send_data(tcp_t *tcp, queue_t *q, mblk_t *mp)
18217 {
18218 	ipha_t		*ipha;
18219 	ipaddr_t	src;
18220 	ipaddr_t	dst;
18221 	uint32_t	cksum;
18222 	ire_t		*ire;
18223 	uint16_t	*up;
18224 	ill_t		*ill;
18225 	conn_t		*connp = tcp->tcp_connp;
18226 	uint32_t	hcksum_txflags = 0;
18227 	mblk_t		*ire_fp_mp;
18228 	uint_t		ire_fp_mp_len;
18229 
18230 	ASSERT(DB_TYPE(mp) == M_DATA);
18231 
18232 	if (DB_CRED(mp) == NULL)
18233 		mblk_setcred(mp, CONN_CRED(connp));
18234 
18235 	ipha = (ipha_t *)mp->b_rptr;
18236 	src = ipha->ipha_src;
18237 	dst = ipha->ipha_dst;
18238 
18239 	/*
18240 	 * Drop off fast path for IPv6 and also if options are present or
18241 	 * we need to resolve a TS label.
18242 	 */
18243 	if (tcp->tcp_ipversion != IPV4_VERSION ||
18244 	    !IPCL_IS_CONNECTED(connp) ||
18245 	    (connp->conn_flags & IPCL_CHECK_POLICY) != 0 ||
18246 	    connp->conn_dontroute ||
18247 	    connp->conn_nexthop_set ||
18248 	    connp->conn_xmit_if_ill != NULL ||
18249 	    connp->conn_nofailover_ill != NULL ||
18250 	    !connp->conn_ulp_labeled ||
18251 	    ipha->ipha_ident == IP_HDR_INCLUDED ||
18252 	    ipha->ipha_version_and_hdr_length != IP_SIMPLE_HDR_VERSION ||
18253 	    IPP_ENABLED(IPP_LOCAL_OUT)) {
18254 		if (tcp->tcp_snd_zcopy_aware)
18255 			mp = tcp_zcopy_disable(tcp, mp);
18256 		TCP_STAT(tcp_ip_send);
18257 		CALL_IP_WPUT(connp, q, mp);
18258 		return;
18259 	}
18260 
18261 	mutex_enter(&connp->conn_lock);
18262 	ire = connp->conn_ire_cache;
18263 	ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT));
18264 	if (ire != NULL && ire->ire_addr == dst &&
18265 	    !(ire->ire_marks & IRE_MARK_CONDEMNED)) {
18266 		IRE_REFHOLD(ire);
18267 		mutex_exit(&connp->conn_lock);
18268 	} else {
18269 		boolean_t cached = B_FALSE;
18270 
18271 		/* force a recheck later on */
18272 		tcp->tcp_ire_ill_check_done = B_FALSE;
18273 
18274 		TCP_DBGSTAT(tcp_ire_null1);
18275 		connp->conn_ire_cache = NULL;
18276 		mutex_exit(&connp->conn_lock);
18277 		if (ire != NULL)
18278 			IRE_REFRELE_NOTR(ire);
18279 		ire = ire_cache_lookup(dst, connp->conn_zoneid,
18280 		    MBLK_GETLABEL(mp));
18281 		if (ire == NULL) {
18282 			if (tcp->tcp_snd_zcopy_aware)
18283 				mp = tcp_zcopy_backoff(tcp, mp, 0);
18284 			TCP_STAT(tcp_ire_null);
18285 			CALL_IP_WPUT(connp, q, mp);
18286 			return;
18287 		}
18288 		IRE_REFHOLD_NOTR(ire);
18289 		/*
18290 		 * Since we are inside the squeue, there cannot be another
18291 		 * thread in TCP trying to set the conn_ire_cache now.  The
18292 		 * check for IRE_MARK_CONDEMNED ensures that an interface
18293 		 * unplumb thread has not yet started cleaning up the conns.
18294 		 * Hence we don't need to grab the conn lock.
18295 		 */
18296 		if (!(connp->conn_state_flags & CONN_CLOSING)) {
18297 			rw_enter(&ire->ire_bucket->irb_lock, RW_READER);
18298 			if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) {
18299 				connp->conn_ire_cache = ire;
18300 				cached = B_TRUE;
18301 			}
18302 			rw_exit(&ire->ire_bucket->irb_lock);
18303 		}
18304 
18305 		/*
18306 		 * We can continue to use the ire but since it was
18307 		 * not cached, we should drop the extra reference.
18308 		 */
18309 		if (!cached)
18310 			IRE_REFRELE_NOTR(ire);
18311 
18312 		/*
18313 		 * Rampart note: no need to select a new label here, since
18314 		 * labels are not allowed to change during the life of a TCP
18315 		 * connection.
18316 		 */
18317 	}
18318 
18319 	if (ire->ire_flags & RTF_MULTIRT ||
18320 	    ire->ire_stq == NULL ||
18321 	    ire->ire_max_frag < ntohs(ipha->ipha_length) ||
18322 	    (ire_fp_mp = ire->ire_fp_mp) == NULL ||
18323 	    (ire_fp_mp_len = MBLKL(ire_fp_mp)) > MBLKHEAD(mp)) {
18324 		if (tcp->tcp_snd_zcopy_aware)
18325 			mp = tcp_zcopy_disable(tcp, mp);
18326 		TCP_STAT(tcp_ip_ire_send);
18327 		IRE_REFRELE(ire);
18328 		CALL_IP_WPUT(connp, q, mp);
18329 		return;
18330 	}
18331 
18332 	ill = ire_to_ill(ire);
18333 	if (connp->conn_outgoing_ill != NULL) {
18334 		ill_t *conn_outgoing_ill = NULL;
18335 		/*
18336 		 * Choose a good ill in the group to send the packets on.
18337 		 */
18338 		ire = conn_set_outgoing_ill(connp, ire, &conn_outgoing_ill);
18339 		ill = ire_to_ill(ire);
18340 	}
18341 	ASSERT(ill != NULL);
18342 
18343 	if (!tcp->tcp_ire_ill_check_done) {
18344 		tcp_ire_ill_check(tcp, ire, ill, B_TRUE);
18345 		tcp->tcp_ire_ill_check_done = B_TRUE;
18346 	}
18347 
18348 	ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED);
18349 	ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1);
18350 #ifndef _BIG_ENDIAN
18351 	ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8);
18352 #endif
18353 
18354 	/*
18355 	 * Check to see if we need to re-enable MDT for this connection
18356 	 * because it was previously disabled due to changes in the ill;
18357 	 * note that by doing it here, this re-enabling only applies when
18358 	 * the packet is not dispatched through CALL_IP_WPUT().
18359 	 *
18360 	 * That means for IPv4, it is worth re-enabling MDT for the fastpath
18361 	 * case, since that's how we ended up here.  For IPv6, we do the
18362 	 * re-enabling work in ip_xmit_v6(), albeit indirectly via squeue.
18363 	 */
18364 	if (connp->conn_mdt_ok && !tcp->tcp_mdt && ILL_MDT_USABLE(ill)) {
18365 		/*
18366 		 * Restore MDT for this connection, so that next time around
18367 		 * it is eligible to go through tcp_multisend() path again.
18368 		 */
18369 		TCP_STAT(tcp_mdt_conn_resumed1);
18370 		tcp->tcp_mdt = B_TRUE;
18371 		ip1dbg(("tcp_send_data: reenabling MDT for connp %p on "
18372 		    "interface %s\n", (void *)connp, ill->ill_name));
18373 	}
18374 
18375 	if (tcp->tcp_snd_zcopy_aware) {
18376 		if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 ||
18377 		    (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0))
18378 			mp = tcp_zcopy_disable(tcp, mp);
18379 		/*
18380 		 * we shouldn't need to reset ipha as the mp containing
18381 		 * ipha should never be a zero-copy mp.
18382 		 */
18383 	}
18384 
18385 	if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) {
18386 		ASSERT(ill->ill_hcksum_capab != NULL);
18387 		hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags;
18388 	}
18389 
18390 	/* pseudo-header checksum (do it in parts for IP header checksum) */
18391 	cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF);
18392 
18393 	ASSERT(ipha->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION);
18394 	up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH);
18395 
18396 	IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up,
18397 	    IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum);
18398 
18399 	/* Software checksum? */
18400 	if (DB_CKSUMFLAGS(mp) == 0) {
18401 		TCP_STAT(tcp_out_sw_cksum);
18402 		TCP_STAT_UPDATE(tcp_out_sw_cksum_bytes,
18403 		    ntohs(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH);
18404 	}
18405 
18406 	ipha->ipha_fragment_offset_and_flags |=
18407 	    (uint32_t)htons(ire->ire_frag_flag);
18408 
18409 	/* Calculate IP header checksum if hardware isn't capable */
18410 	if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) {
18411 		IP_HDR_CKSUM(ipha, cksum, ((uint32_t *)ipha)[0],
18412 		    ((uint16_t *)ipha)[4]);
18413 	}
18414 
18415 	ASSERT(DB_TYPE(ire_fp_mp) == M_DATA);
18416 	mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len;
18417 	bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len);
18418 
18419 	UPDATE_OB_PKT_COUNT(ire);
18420 	ire->ire_last_used_time = lbolt;
18421 	BUMP_MIB(&ip_mib, ipOutRequests);
18422 
18423 	if (ILL_DLS_CAPABLE(ill)) {
18424 		/*
18425 		 * Send the packet directly to DLD, where it may be queued
18426 		 * depending on the availability of transmit resources at
18427 		 * the media layer.
18428 		 */
18429 		IP_DLS_ILL_TX(ill, mp);
18430 	} else {
18431 		putnext(ire->ire_stq, mp);
18432 	}
18433 	IRE_REFRELE(ire);
18434 }
18435 
18436 /*
18437  * This handles the case when the receiver has shrunk its win. Per RFC 1122
18438  * if the receiver shrinks the window, i.e. moves the right window to the
18439  * left, the we should not send new data, but should retransmit normally the
18440  * old unacked data between suna and suna + swnd. We might has sent data
18441  * that is now outside the new window, pretend that we didn't send  it.
18442  */
18443 static void
18444 tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_count)
18445 {
18446 	uint32_t	snxt = tcp->tcp_snxt;
18447 	mblk_t		*xmit_tail;
18448 	int32_t		offset;
18449 
18450 	ASSERT(shrunk_count > 0);
18451 
18452 	/* Pretend we didn't send the data outside the window */
18453 	snxt -= shrunk_count;
18454 
18455 	/* Get the mblk and the offset in it per the shrunk window */
18456 	xmit_tail = tcp_get_seg_mp(tcp, snxt, &offset);
18457 
18458 	ASSERT(xmit_tail != NULL);
18459 
18460 	/* Reset all the values per the now shrunk window */
18461 	tcp->tcp_snxt = snxt;
18462 	tcp->tcp_xmit_tail = xmit_tail;
18463 	tcp->tcp_xmit_tail_unsent = xmit_tail->b_wptr - xmit_tail->b_rptr -
18464 	    offset;
18465 	tcp->tcp_unsent += shrunk_count;
18466 
18467 	if (tcp->tcp_suna == tcp->tcp_snxt && tcp->tcp_swnd == 0)
18468 		/*
18469 		 * Make sure the timer is running so that we will probe a zero
18470 		 * window.
18471 		 */
18472 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
18473 }
18474 
18475 
18476 /*
18477  * The TCP normal data output path.
18478  * NOTE: the logic of the fast path is duplicated from this function.
18479  */
18480 static void
18481 tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent)
18482 {
18483 	int		len;
18484 	mblk_t		*local_time;
18485 	mblk_t		*mp1;
18486 	uint32_t	snxt;
18487 	int		tail_unsent;
18488 	int		tcpstate;
18489 	int		usable = 0;
18490 	mblk_t		*xmit_tail;
18491 	queue_t		*q = tcp->tcp_wq;
18492 	int32_t		mss;
18493 	int32_t		num_sack_blk = 0;
18494 	int32_t		tcp_hdr_len;
18495 	int32_t		tcp_tcp_hdr_len;
18496 	int		mdt_thres;
18497 	int		rc;
18498 
18499 	tcpstate = tcp->tcp_state;
18500 	if (mp == NULL) {
18501 		/*
18502 		 * tcp_wput_data() with NULL mp should only be called when
18503 		 * there is unsent data.
18504 		 */
18505 		ASSERT(tcp->tcp_unsent > 0);
18506 		/* Really tacky... but we need this for detached closes. */
18507 		len = tcp->tcp_unsent;
18508 		goto data_null;
18509 	}
18510 
18511 #if CCS_STATS
18512 	wrw_stats.tot.count++;
18513 	wrw_stats.tot.bytes += msgdsize(mp);
18514 #endif
18515 	ASSERT(mp->b_datap->db_type == M_DATA);
18516 	/*
18517 	 * Don't allow data after T_ORDREL_REQ or T_DISCON_REQ,
18518 	 * or before a connection attempt has begun.
18519 	 */
18520 	if (tcpstate < TCPS_SYN_SENT || tcpstate > TCPS_CLOSE_WAIT ||
18521 	    (tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) {
18522 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) {
18523 #ifdef DEBUG
18524 			cmn_err(CE_WARN,
18525 			    "tcp_wput_data: data after ordrel, %s",
18526 			    tcp_display(tcp, NULL,
18527 			    DISP_ADDR_AND_PORT));
18528 #else
18529 			if (tcp->tcp_debug) {
18530 				(void) strlog(TCP_MOD_ID, 0, 1,
18531 				    SL_TRACE|SL_ERROR,
18532 				    "tcp_wput_data: data after ordrel, %s\n",
18533 				    tcp_display(tcp, NULL,
18534 				    DISP_ADDR_AND_PORT));
18535 			}
18536 #endif /* DEBUG */
18537 		}
18538 		if (tcp->tcp_snd_zcopy_aware &&
18539 		    (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) != 0)
18540 			tcp_zcopy_notify(tcp);
18541 		freemsg(mp);
18542 		if (tcp->tcp_flow_stopped &&
18543 		    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
18544 			tcp_clrqfull(tcp);
18545 		}
18546 		return;
18547 	}
18548 
18549 	/* Strip empties */
18550 	for (;;) {
18551 		ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
18552 		    (uintptr_t)INT_MAX);
18553 		len = (int)(mp->b_wptr - mp->b_rptr);
18554 		if (len > 0)
18555 			break;
18556 		mp1 = mp;
18557 		mp = mp->b_cont;
18558 		freeb(mp1);
18559 		if (!mp) {
18560 			return;
18561 		}
18562 	}
18563 
18564 	/* If we are the first on the list ... */
18565 	if (tcp->tcp_xmit_head == NULL) {
18566 		tcp->tcp_xmit_head = mp;
18567 		tcp->tcp_xmit_tail = mp;
18568 		tcp->tcp_xmit_tail_unsent = len;
18569 	} else {
18570 		/* If tiny tx and room in txq tail, pullup to save mblks. */
18571 		struct datab *dp;
18572 
18573 		mp1 = tcp->tcp_xmit_last;
18574 		if (len < tcp_tx_pull_len &&
18575 		    (dp = mp1->b_datap)->db_ref == 1 &&
18576 		    dp->db_lim - mp1->b_wptr >= len) {
18577 			ASSERT(len > 0);
18578 			ASSERT(!mp1->b_cont);
18579 			if (len == 1) {
18580 				*mp1->b_wptr++ = *mp->b_rptr;
18581 			} else {
18582 				bcopy(mp->b_rptr, mp1->b_wptr, len);
18583 				mp1->b_wptr += len;
18584 			}
18585 			if (mp1 == tcp->tcp_xmit_tail)
18586 				tcp->tcp_xmit_tail_unsent += len;
18587 			mp1->b_cont = mp->b_cont;
18588 			if (tcp->tcp_snd_zcopy_aware &&
18589 			    (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY))
18590 				mp1->b_datap->db_struioflag |= STRUIO_ZCNOTIFY;
18591 			freeb(mp);
18592 			mp = mp1;
18593 		} else {
18594 			tcp->tcp_xmit_last->b_cont = mp;
18595 		}
18596 		len += tcp->tcp_unsent;
18597 	}
18598 
18599 	/* Tack on however many more positive length mblks we have */
18600 	if ((mp1 = mp->b_cont) != NULL) {
18601 		do {
18602 			int tlen;
18603 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
18604 			    (uintptr_t)INT_MAX);
18605 			tlen = (int)(mp1->b_wptr - mp1->b_rptr);
18606 			if (tlen <= 0) {
18607 				mp->b_cont = mp1->b_cont;
18608 				freeb(mp1);
18609 			} else {
18610 				len += tlen;
18611 				mp = mp1;
18612 			}
18613 		} while ((mp1 = mp->b_cont) != NULL);
18614 	}
18615 	tcp->tcp_xmit_last = mp;
18616 	tcp->tcp_unsent = len;
18617 
18618 	if (urgent)
18619 		usable = 1;
18620 
18621 data_null:
18622 	snxt = tcp->tcp_snxt;
18623 	xmit_tail = tcp->tcp_xmit_tail;
18624 	tail_unsent = tcp->tcp_xmit_tail_unsent;
18625 
18626 	/*
18627 	 * Note that tcp_mss has been adjusted to take into account the
18628 	 * timestamp option if applicable.  Because SACK options do not
18629 	 * appear in every TCP segments and they are of variable lengths,
18630 	 * they cannot be included in tcp_mss.  Thus we need to calculate
18631 	 * the actual segment length when we need to send a segment which
18632 	 * includes SACK options.
18633 	 */
18634 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
18635 		int32_t	opt_len;
18636 
18637 		num_sack_blk = MIN(tcp->tcp_max_sack_blk,
18638 		    tcp->tcp_num_sack_blk);
18639 		opt_len = num_sack_blk * sizeof (sack_blk_t) + TCPOPT_NOP_LEN *
18640 		    2 + TCPOPT_HEADER_LEN;
18641 		mss = tcp->tcp_mss - opt_len;
18642 		tcp_hdr_len = tcp->tcp_hdr_len + opt_len;
18643 		tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + opt_len;
18644 	} else {
18645 		mss = tcp->tcp_mss;
18646 		tcp_hdr_len = tcp->tcp_hdr_len;
18647 		tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len;
18648 	}
18649 
18650 	if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet &&
18651 	    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) {
18652 		SET_TCP_INIT_CWND(tcp, mss, tcp_slow_start_after_idle);
18653 	}
18654 	if (tcpstate == TCPS_SYN_RCVD) {
18655 		/*
18656 		 * The three-way connection establishment handshake is not
18657 		 * complete yet. We want to queue the data for transmission
18658 		 * after entering ESTABLISHED state (RFC793). A jump to
18659 		 * "done" label effectively leaves data on the queue.
18660 		 */
18661 		goto done;
18662 	} else {
18663 		int usable_r;
18664 
18665 		/*
18666 		 * In the special case when cwnd is zero, which can only
18667 		 * happen if the connection is ECN capable, return now.
18668 		 * New segments is sent using tcp_timer().  The timer
18669 		 * is set in tcp_rput_data().
18670 		 */
18671 		if (tcp->tcp_cwnd == 0) {
18672 			/*
18673 			 * Note that tcp_cwnd is 0 before 3-way handshake is
18674 			 * finished.
18675 			 */
18676 			ASSERT(tcp->tcp_ecn_ok ||
18677 			    tcp->tcp_state < TCPS_ESTABLISHED);
18678 			return;
18679 		}
18680 
18681 		/* NOTE: trouble if xmitting while SYN not acked? */
18682 		usable_r = snxt - tcp->tcp_suna;
18683 		usable_r = tcp->tcp_swnd - usable_r;
18684 
18685 		/*
18686 		 * Check if the receiver has shrunk the window.  If
18687 		 * tcp_wput_data() with NULL mp is called, tcp_fin_sent
18688 		 * cannot be set as there is unsent data, so FIN cannot
18689 		 * be sent out.  Otherwise, we need to take into account
18690 		 * of FIN as it consumes an "invisible" sequence number.
18691 		 */
18692 		ASSERT(tcp->tcp_fin_sent == 0);
18693 		if (usable_r < 0) {
18694 			/*
18695 			 * The receiver has shrunk the window and we have sent
18696 			 * -usable_r date beyond the window, re-adjust.
18697 			 *
18698 			 * If TCP window scaling is enabled, there can be
18699 			 * round down error as the advertised receive window
18700 			 * is actually right shifted n bits.  This means that
18701 			 * the lower n bits info is wiped out.  It will look
18702 			 * like the window is shrunk.  Do a check here to
18703 			 * see if the shrunk amount is actually within the
18704 			 * error in window calculation.  If it is, just
18705 			 * return.  Note that this check is inside the
18706 			 * shrunk window check.  This makes sure that even
18707 			 * though tcp_process_shrunk_swnd() is not called,
18708 			 * we will stop further processing.
18709 			 */
18710 			if ((-usable_r >> tcp->tcp_snd_ws) > 0) {
18711 				tcp_process_shrunk_swnd(tcp, -usable_r);
18712 			}
18713 			return;
18714 		}
18715 
18716 		/* usable = MIN(swnd, cwnd) - unacked_bytes */
18717 		if (tcp->tcp_swnd > tcp->tcp_cwnd)
18718 			usable_r -= tcp->tcp_swnd - tcp->tcp_cwnd;
18719 
18720 		/* usable = MIN(usable, unsent) */
18721 		if (usable_r > len)
18722 			usable_r = len;
18723 
18724 		/* usable = MAX(usable, {1 for urgent, 0 for data}) */
18725 		if (usable_r > 0) {
18726 			usable = usable_r;
18727 		} else {
18728 			/* Bypass all other unnecessary processing. */
18729 			goto done;
18730 		}
18731 	}
18732 
18733 	local_time = (mblk_t *)lbolt;
18734 
18735 	/*
18736 	 * "Our" Nagle Algorithm.  This is not the same as in the old
18737 	 * BSD.  This is more in line with the true intent of Nagle.
18738 	 *
18739 	 * The conditions are:
18740 	 * 1. The amount of unsent data (or amount of data which can be
18741 	 *    sent, whichever is smaller) is less than Nagle limit.
18742 	 * 2. The last sent size is also less than Nagle limit.
18743 	 * 3. There is unack'ed data.
18744 	 * 4. Urgent pointer is not set.  Send urgent data ignoring the
18745 	 *    Nagle algorithm.  This reduces the probability that urgent
18746 	 *    bytes get "merged" together.
18747 	 * 5. The app has not closed the connection.  This eliminates the
18748 	 *    wait time of the receiving side waiting for the last piece of
18749 	 *    (small) data.
18750 	 *
18751 	 * If all are satisified, exit without sending anything.  Note
18752 	 * that Nagle limit can be smaller than 1 MSS.  Nagle limit is
18753 	 * the smaller of 1 MSS and global tcp_naglim_def (default to be
18754 	 * 4095).
18755 	 */
18756 	if (usable < (int)tcp->tcp_naglim &&
18757 	    tcp->tcp_naglim > tcp->tcp_last_sent_len &&
18758 	    snxt != tcp->tcp_suna &&
18759 	    !(tcp->tcp_valid_bits & TCP_URG_VALID) &&
18760 	    !(tcp->tcp_valid_bits & TCP_FSS_VALID)) {
18761 		goto done;
18762 	}
18763 
18764 	if (tcp->tcp_cork) {
18765 		/*
18766 		 * if the tcp->tcp_cork option is set, then we have to force
18767 		 * TCP not to send partial segment (smaller than MSS bytes).
18768 		 * We are calculating the usable now based on full mss and
18769 		 * will save the rest of remaining data for later.
18770 		 */
18771 		if (usable < mss)
18772 			goto done;
18773 		usable = (usable / mss) * mss;
18774 	}
18775 
18776 	/* Update the latest receive window size in TCP header. */
18777 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
18778 	    tcp->tcp_tcph->th_win);
18779 
18780 	/*
18781 	 * Determine if it's worthwhile to attempt MDT, based on:
18782 	 *
18783 	 * 1. Simple TCP/IP{v4,v6} (no options).
18784 	 * 2. IPSEC/IPQoS processing is not needed for the TCP connection.
18785 	 * 3. If the TCP connection is in ESTABLISHED state.
18786 	 * 4. The TCP is not detached.
18787 	 *
18788 	 * If any of the above conditions have changed during the
18789 	 * connection, stop using MDT and restore the stream head
18790 	 * parameters accordingly.
18791 	 */
18792 	if (tcp->tcp_mdt &&
18793 	    ((tcp->tcp_ipversion == IPV4_VERSION &&
18794 	    tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) ||
18795 	    (tcp->tcp_ipversion == IPV6_VERSION &&
18796 	    tcp->tcp_ip_hdr_len != IPV6_HDR_LEN) ||
18797 	    tcp->tcp_state != TCPS_ESTABLISHED ||
18798 	    TCP_IS_DETACHED(tcp) || !CONN_IS_MD_FASTPATH(tcp->tcp_connp) ||
18799 	    CONN_IPSEC_OUT_ENCAPSULATED(tcp->tcp_connp) ||
18800 	    IPP_ENABLED(IPP_LOCAL_OUT))) {
18801 		tcp->tcp_connp->conn_mdt_ok = B_FALSE;
18802 		tcp->tcp_mdt = B_FALSE;
18803 
18804 		/* Anything other than detached is considered pathological */
18805 		if (!TCP_IS_DETACHED(tcp)) {
18806 			TCP_STAT(tcp_mdt_conn_halted1);
18807 			(void) tcp_maxpsz_set(tcp, B_TRUE);
18808 		}
18809 	}
18810 
18811 	/* Use MDT if sendable amount is greater than the threshold */
18812 	if (tcp->tcp_mdt &&
18813 	    (mdt_thres = mss << tcp_mdt_smss_threshold, usable > mdt_thres) &&
18814 	    (tail_unsent > mdt_thres || (xmit_tail->b_cont != NULL &&
18815 	    MBLKL(xmit_tail->b_cont) > mdt_thres)) &&
18816 	    (tcp->tcp_valid_bits == 0 ||
18817 	    tcp->tcp_valid_bits == TCP_FSS_VALID)) {
18818 		ASSERT(tcp->tcp_connp->conn_mdt_ok);
18819 		rc = tcp_multisend(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len,
18820 		    num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail,
18821 		    local_time, mdt_thres);
18822 	} else {
18823 		rc = tcp_send(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len,
18824 		    num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail,
18825 		    local_time, INT_MAX);
18826 	}
18827 
18828 	/* Pretend that all we were trying to send really got sent */
18829 	if (rc < 0 && tail_unsent < 0) {
18830 		do {
18831 			xmit_tail = xmit_tail->b_cont;
18832 			xmit_tail->b_prev = local_time;
18833 			ASSERT((uintptr_t)(xmit_tail->b_wptr -
18834 			    xmit_tail->b_rptr) <= (uintptr_t)INT_MAX);
18835 			tail_unsent += (int)(xmit_tail->b_wptr -
18836 			    xmit_tail->b_rptr);
18837 		} while (tail_unsent < 0);
18838 	}
18839 done:;
18840 	tcp->tcp_xmit_tail = xmit_tail;
18841 	tcp->tcp_xmit_tail_unsent = tail_unsent;
18842 	len = tcp->tcp_snxt - snxt;
18843 	if (len) {
18844 		/*
18845 		 * If new data was sent, need to update the notsack
18846 		 * list, which is, afterall, data blocks that have
18847 		 * not been sack'ed by the receiver.  New data is
18848 		 * not sack'ed.
18849 		 */
18850 		if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
18851 			/* len is a negative value. */
18852 			tcp->tcp_pipe -= len;
18853 			tcp_notsack_update(&(tcp->tcp_notsack_list),
18854 			    tcp->tcp_snxt, snxt,
18855 			    &(tcp->tcp_num_notsack_blk),
18856 			    &(tcp->tcp_cnt_notsack_list));
18857 		}
18858 		tcp->tcp_snxt = snxt + tcp->tcp_fin_sent;
18859 		tcp->tcp_rack = tcp->tcp_rnxt;
18860 		tcp->tcp_rack_cnt = 0;
18861 		if ((snxt + len) == tcp->tcp_suna) {
18862 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
18863 		}
18864 	} else if (snxt == tcp->tcp_suna && tcp->tcp_swnd == 0) {
18865 		/*
18866 		 * Didn't send anything. Make sure the timer is running
18867 		 * so that we will probe a zero window.
18868 		 */
18869 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
18870 	}
18871 	/* Note that len is the amount we just sent but with a negative sign */
18872 	tcp->tcp_unsent += len;
18873 	if (tcp->tcp_flow_stopped) {
18874 		if (TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
18875 			tcp_clrqfull(tcp);
18876 		}
18877 	} else if (TCP_UNSENT_BYTES(tcp) >= tcp->tcp_xmit_hiwater) {
18878 		tcp_setqfull(tcp);
18879 	}
18880 }
18881 
18882 /*
18883  * tcp_fill_header is called by tcp_send() and tcp_multisend() to fill the
18884  * outgoing TCP header with the template header, as well as other
18885  * options such as time-stamp, ECN and/or SACK.
18886  */
18887 static void
18888 tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, int num_sack_blk)
18889 {
18890 	tcph_t *tcp_tmpl, *tcp_h;
18891 	uint32_t *dst, *src;
18892 	int hdrlen;
18893 
18894 	ASSERT(OK_32PTR(rptr));
18895 
18896 	/* Template header */
18897 	tcp_tmpl = tcp->tcp_tcph;
18898 
18899 	/* Header of outgoing packet */
18900 	tcp_h = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
18901 
18902 	/* dst and src are opaque 32-bit fields, used for copying */
18903 	dst = (uint32_t *)rptr;
18904 	src = (uint32_t *)tcp->tcp_iphc;
18905 	hdrlen = tcp->tcp_hdr_len;
18906 
18907 	/* Fill time-stamp option if needed */
18908 	if (tcp->tcp_snd_ts_ok) {
18909 		U32_TO_BE32((uint32_t)now,
18910 		    (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 4);
18911 		U32_TO_BE32(tcp->tcp_ts_recent,
18912 		    (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 8);
18913 	} else {
18914 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
18915 	}
18916 
18917 	/*
18918 	 * Copy the template header; is this really more efficient than
18919 	 * calling bcopy()?  For simple IPv4/TCP, it may be the case,
18920 	 * but perhaps not for other scenarios.
18921 	 */
18922 	dst[0] = src[0];
18923 	dst[1] = src[1];
18924 	dst[2] = src[2];
18925 	dst[3] = src[3];
18926 	dst[4] = src[4];
18927 	dst[5] = src[5];
18928 	dst[6] = src[6];
18929 	dst[7] = src[7];
18930 	dst[8] = src[8];
18931 	dst[9] = src[9];
18932 	if (hdrlen -= 40) {
18933 		hdrlen >>= 2;
18934 		dst += 10;
18935 		src += 10;
18936 		do {
18937 			*dst++ = *src++;
18938 		} while (--hdrlen);
18939 	}
18940 
18941 	/*
18942 	 * Set the ECN info in the TCP header if it is not a zero
18943 	 * window probe.  Zero window probe is only sent in
18944 	 * tcp_wput_data() and tcp_timer().
18945 	 */
18946 	if (tcp->tcp_ecn_ok && !tcp->tcp_zero_win_probe) {
18947 		SET_ECT(tcp, rptr);
18948 
18949 		if (tcp->tcp_ecn_echo_on)
18950 			tcp_h->th_flags[0] |= TH_ECE;
18951 		if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
18952 			tcp_h->th_flags[0] |= TH_CWR;
18953 			tcp->tcp_ecn_cwr_sent = B_TRUE;
18954 		}
18955 	}
18956 
18957 	/* Fill in SACK options */
18958 	if (num_sack_blk > 0) {
18959 		uchar_t *wptr = rptr + tcp->tcp_hdr_len;
18960 		sack_blk_t *tmp;
18961 		int32_t	i;
18962 
18963 		wptr[0] = TCPOPT_NOP;
18964 		wptr[1] = TCPOPT_NOP;
18965 		wptr[2] = TCPOPT_SACK;
18966 		wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
18967 		    sizeof (sack_blk_t);
18968 		wptr += TCPOPT_REAL_SACK_LEN;
18969 
18970 		tmp = tcp->tcp_sack_list;
18971 		for (i = 0; i < num_sack_blk; i++) {
18972 			U32_TO_BE32(tmp[i].begin, wptr);
18973 			wptr += sizeof (tcp_seq);
18974 			U32_TO_BE32(tmp[i].end, wptr);
18975 			wptr += sizeof (tcp_seq);
18976 		}
18977 		tcp_h->th_offset_and_rsrvd[0] +=
18978 		    ((num_sack_blk * 2 + 1) << 4);
18979 	}
18980 }
18981 
18982 /*
18983  * tcp_mdt_add_attrs() is called by tcp_multisend() in order to attach
18984  * the destination address and SAP attribute, and if necessary, the
18985  * hardware checksum offload attribute to a Multidata message.
18986  */
18987 static int
18988 tcp_mdt_add_attrs(multidata_t *mmd, const mblk_t *dlmp, const boolean_t hwcksum,
18989     const uint32_t start, const uint32_t stuff, const uint32_t end,
18990     const uint32_t flags)
18991 {
18992 	/* Add global destination address & SAP attribute */
18993 	if (dlmp == NULL || !ip_md_addr_attr(mmd, NULL, dlmp)) {
18994 		ip1dbg(("tcp_mdt_add_attrs: can't add global physical "
18995 		    "destination address+SAP\n"));
18996 
18997 		if (dlmp != NULL)
18998 			TCP_STAT(tcp_mdt_allocfail);
18999 		return (-1);
19000 	}
19001 
19002 	/* Add global hwcksum attribute */
19003 	if (hwcksum &&
19004 	    !ip_md_hcksum_attr(mmd, NULL, start, stuff, end, flags)) {
19005 		ip1dbg(("tcp_mdt_add_attrs: can't add global hardware "
19006 		    "checksum attribute\n"));
19007 
19008 		TCP_STAT(tcp_mdt_allocfail);
19009 		return (-1);
19010 	}
19011 
19012 	return (0);
19013 }
19014 
19015 /*
19016  * Smaller and private version of pdescinfo_t used specifically for TCP,
19017  * which allows for only two payload spans per packet.
19018  */
19019 typedef struct tcp_pdescinfo_s PDESCINFO_STRUCT(2) tcp_pdescinfo_t;
19020 
19021 /*
19022  * tcp_multisend() is called by tcp_wput_data() for Multidata Transmit
19023  * scheme, and returns one the following:
19024  *
19025  * -1 = failed allocation.
19026  *  0 = success; burst count reached, or usable send window is too small,
19027  *      and that we'd rather wait until later before sending again.
19028  */
19029 static int
19030 tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len,
19031     const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable,
19032     uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
19033     const int mdt_thres)
19034 {
19035 	mblk_t		*md_mp_head, *md_mp, *md_pbuf, *md_pbuf_nxt, *md_hbuf;
19036 	multidata_t	*mmd;
19037 	uint_t		obsegs, obbytes, hdr_frag_sz;
19038 	uint_t		cur_hdr_off, cur_pld_off, base_pld_off, first_snxt;
19039 	int		num_burst_seg, max_pld;
19040 	pdesc_t		*pkt;
19041 	tcp_pdescinfo_t	tcp_pkt_info;
19042 	pdescinfo_t	*pkt_info;
19043 	int		pbuf_idx, pbuf_idx_nxt;
19044 	int		seg_len, len, spill, af;
19045 	boolean_t	add_buffer, zcopy, clusterwide;
19046 	boolean_t	rconfirm = B_FALSE;
19047 	boolean_t	done = B_FALSE;
19048 	uint32_t	cksum;
19049 	uint32_t	hwcksum_flags;
19050 	ire_t		*ire;
19051 	ill_t		*ill;
19052 	ipha_t		*ipha;
19053 	ip6_t		*ip6h;
19054 	ipaddr_t	src, dst;
19055 	ill_zerocopy_capab_t *zc_cap = NULL;
19056 	uint16_t	*up;
19057 	int		err;
19058 	conn_t		*connp;
19059 
19060 #ifdef	_BIG_ENDIAN
19061 #define	IPVER(ip6h)	((((uint32_t *)ip6h)[0] >> 28) & 0x7)
19062 #else
19063 #define	IPVER(ip6h)	((((uint32_t *)ip6h)[0] >> 4) & 0x7)
19064 #endif
19065 
19066 #define	PREP_NEW_MULTIDATA() {			\
19067 	mmd = NULL;				\
19068 	md_mp = md_hbuf = NULL;			\
19069 	cur_hdr_off = 0;			\
19070 	max_pld = tcp->tcp_mdt_max_pld;		\
19071 	pbuf_idx = pbuf_idx_nxt = -1;		\
19072 	add_buffer = B_TRUE;			\
19073 	zcopy = B_FALSE;			\
19074 }
19075 
19076 #define	PREP_NEW_PBUF() {			\
19077 	md_pbuf = md_pbuf_nxt = NULL;		\
19078 	pbuf_idx = pbuf_idx_nxt = -1;		\
19079 	cur_pld_off = 0;			\
19080 	first_snxt = *snxt;			\
19081 	ASSERT(*tail_unsent > 0);		\
19082 	base_pld_off = MBLKL(*xmit_tail) - *tail_unsent; \
19083 }
19084 
19085 	ASSERT(mdt_thres >= mss);
19086 	ASSERT(*usable > 0 && *usable > mdt_thres);
19087 	ASSERT(tcp->tcp_state == TCPS_ESTABLISHED);
19088 	ASSERT(!TCP_IS_DETACHED(tcp));
19089 	ASSERT(tcp->tcp_valid_bits == 0 ||
19090 	    tcp->tcp_valid_bits == TCP_FSS_VALID);
19091 	ASSERT((tcp->tcp_ipversion == IPV4_VERSION &&
19092 	    tcp->tcp_ip_hdr_len == IP_SIMPLE_HDR_LENGTH) ||
19093 	    (tcp->tcp_ipversion == IPV6_VERSION &&
19094 	    tcp->tcp_ip_hdr_len == IPV6_HDR_LEN));
19095 
19096 	connp = tcp->tcp_connp;
19097 	ASSERT(connp != NULL);
19098 	ASSERT(CONN_IS_MD_FASTPATH(connp));
19099 	ASSERT(!CONN_IPSEC_OUT_ENCAPSULATED(connp));
19100 
19101 	/*
19102 	 * Note that tcp will only declare at most 2 payload spans per
19103 	 * packet, which is much lower than the maximum allowable number
19104 	 * of packet spans per Multidata.  For this reason, we use the
19105 	 * privately declared and smaller descriptor info structure, in
19106 	 * order to save some stack space.
19107 	 */
19108 	pkt_info = (pdescinfo_t *)&tcp_pkt_info;
19109 
19110 	af = (tcp->tcp_ipversion == IPV4_VERSION) ? AF_INET : AF_INET6;
19111 	if (af == AF_INET) {
19112 		dst = tcp->tcp_ipha->ipha_dst;
19113 		src = tcp->tcp_ipha->ipha_src;
19114 		ASSERT(!CLASSD(dst));
19115 	}
19116 	ASSERT(af == AF_INET ||
19117 	    !IN6_IS_ADDR_MULTICAST(&tcp->tcp_ip6h->ip6_dst));
19118 
19119 	obsegs = obbytes = 0;
19120 	num_burst_seg = tcp->tcp_snd_burst;
19121 	md_mp_head = NULL;
19122 	PREP_NEW_MULTIDATA();
19123 
19124 	/*
19125 	 * Before we go on further, make sure there is an IRE that we can
19126 	 * use, and that the ILL supports MDT.  Otherwise, there's no point
19127 	 * in proceeding any further, and we should just hand everything
19128 	 * off to the legacy path.
19129 	 */
19130 	mutex_enter(&connp->conn_lock);
19131 	ire = connp->conn_ire_cache;
19132 	ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT));
19133 	if (ire != NULL && ((af == AF_INET && ire->ire_addr == dst) ||
19134 	    (af == AF_INET6 && IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6,
19135 	    &tcp->tcp_ip6h->ip6_dst))) &&
19136 	    !(ire->ire_marks & IRE_MARK_CONDEMNED)) {
19137 		IRE_REFHOLD(ire);
19138 		mutex_exit(&connp->conn_lock);
19139 	} else {
19140 		boolean_t cached = B_FALSE;
19141 		ts_label_t *tsl;
19142 
19143 		/* force a recheck later on */
19144 		tcp->tcp_ire_ill_check_done = B_FALSE;
19145 
19146 		TCP_DBGSTAT(tcp_ire_null1);
19147 		connp->conn_ire_cache = NULL;
19148 		mutex_exit(&connp->conn_lock);
19149 
19150 		/* Release the old ire */
19151 		if (ire != NULL)
19152 			IRE_REFRELE_NOTR(ire);
19153 
19154 		tsl = crgetlabel(CONN_CRED(connp));
19155 		ire = (af == AF_INET) ?
19156 		    ire_cache_lookup(dst, connp->conn_zoneid, tsl) :
19157 		    ire_cache_lookup_v6(&tcp->tcp_ip6h->ip6_dst,
19158 		    connp->conn_zoneid, tsl);
19159 
19160 		if (ire == NULL) {
19161 			TCP_STAT(tcp_ire_null);
19162 			goto legacy_send_no_md;
19163 		}
19164 
19165 		IRE_REFHOLD_NOTR(ire);
19166 		/*
19167 		 * Since we are inside the squeue, there cannot be another
19168 		 * thread in TCP trying to set the conn_ire_cache now. The
19169 		 * check for IRE_MARK_CONDEMNED ensures that an interface
19170 		 * unplumb thread has not yet started cleaning up the conns.
19171 		 * Hence we don't need to grab the conn lock.
19172 		 */
19173 		if (!(connp->conn_state_flags & CONN_CLOSING)) {
19174 			rw_enter(&ire->ire_bucket->irb_lock, RW_READER);
19175 			if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) {
19176 				connp->conn_ire_cache = ire;
19177 				cached = B_TRUE;
19178 			}
19179 			rw_exit(&ire->ire_bucket->irb_lock);
19180 		}
19181 
19182 		/*
19183 		 * We can continue to use the ire but since it was not
19184 		 * cached, we should drop the extra reference.
19185 		 */
19186 		if (!cached)
19187 			IRE_REFRELE_NOTR(ire);
19188 	}
19189 
19190 	ASSERT(ire != NULL);
19191 	ASSERT(af != AF_INET || ire->ire_ipversion == IPV4_VERSION);
19192 	ASSERT(af == AF_INET || !IN6_IS_ADDR_V4MAPPED(&(ire->ire_addr_v6)));
19193 	ASSERT(af == AF_INET || ire->ire_nce != NULL);
19194 	ASSERT(!(ire->ire_type & IRE_BROADCAST));
19195 	/*
19196 	 * If we do support loopback for MDT (which requires modifications
19197 	 * to the receiving paths), the following assertions should go away,
19198 	 * and we would be sending the Multidata to loopback conn later on.
19199 	 */
19200 	ASSERT(!IRE_IS_LOCAL(ire));
19201 	ASSERT(ire->ire_stq != NULL);
19202 
19203 	ill = ire_to_ill(ire);
19204 	ASSERT(ill != NULL);
19205 	ASSERT(!ILL_MDT_CAPABLE(ill) || ill->ill_mdt_capab != NULL);
19206 
19207 	if (!tcp->tcp_ire_ill_check_done) {
19208 		tcp_ire_ill_check(tcp, ire, ill, B_TRUE);
19209 		tcp->tcp_ire_ill_check_done = B_TRUE;
19210 	}
19211 
19212 	/*
19213 	 * If the underlying interface conditions have changed, or if the
19214 	 * new interface does not support MDT, go back to legacy path.
19215 	 */
19216 	if (!ILL_MDT_USABLE(ill) || (ire->ire_flags & RTF_MULTIRT) != 0) {
19217 		/* don't go through this path anymore for this connection */
19218 		TCP_STAT(tcp_mdt_conn_halted2);
19219 		tcp->tcp_mdt = B_FALSE;
19220 		ip1dbg(("tcp_multisend: disabling MDT for connp %p on "
19221 		    "interface %s\n", (void *)connp, ill->ill_name));
19222 		/* IRE will be released prior to returning */
19223 		goto legacy_send_no_md;
19224 	}
19225 
19226 	if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)
19227 		zc_cap = ill->ill_zerocopy_capab;
19228 
19229 	/* go to legacy path if interface doesn't support zerocopy */
19230 	if (tcp->tcp_snd_zcopy_aware && do_tcpzcopy != 2 &&
19231 	    (zc_cap == NULL || zc_cap->ill_zerocopy_flags == 0)) {
19232 		/* IRE will be released prior to returning */
19233 		goto legacy_send_no_md;
19234 	}
19235 
19236 	/* does the interface support hardware checksum offload? */
19237 	hwcksum_flags = 0;
19238 	if (ILL_HCKSUM_CAPABLE(ill) &&
19239 	    (ill->ill_hcksum_capab->ill_hcksum_txflags &
19240 	    (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6 | HCKSUM_INET_PARTIAL |
19241 	    HCKSUM_IPHDRCKSUM)) && dohwcksum) {
19242 		if (ill->ill_hcksum_capab->ill_hcksum_txflags &
19243 		    HCKSUM_IPHDRCKSUM)
19244 			hwcksum_flags = HCK_IPV4_HDRCKSUM;
19245 
19246 		if (ill->ill_hcksum_capab->ill_hcksum_txflags &
19247 		    (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6))
19248 			hwcksum_flags |= HCK_FULLCKSUM;
19249 		else if (ill->ill_hcksum_capab->ill_hcksum_txflags &
19250 		    HCKSUM_INET_PARTIAL)
19251 			hwcksum_flags |= HCK_PARTIALCKSUM;
19252 	}
19253 
19254 	/*
19255 	 * Each header fragment consists of the leading extra space,
19256 	 * followed by the TCP/IP header, and the trailing extra space.
19257 	 * We make sure that each header fragment begins on a 32-bit
19258 	 * aligned memory address (tcp_mdt_hdr_head is already 32-bit
19259 	 * aligned in tcp_mdt_update).
19260 	 */
19261 	hdr_frag_sz = roundup((tcp->tcp_mdt_hdr_head + tcp_hdr_len +
19262 	    tcp->tcp_mdt_hdr_tail), 4);
19263 
19264 	/* are we starting from the beginning of data block? */
19265 	if (*tail_unsent == 0) {
19266 		*xmit_tail = (*xmit_tail)->b_cont;
19267 		ASSERT((uintptr_t)MBLKL(*xmit_tail) <= (uintptr_t)INT_MAX);
19268 		*tail_unsent = (int)MBLKL(*xmit_tail);
19269 	}
19270 
19271 	/*
19272 	 * Here we create one or more Multidata messages, each made up of
19273 	 * one header buffer and up to N payload buffers.  This entire
19274 	 * operation is done within two loops:
19275 	 *
19276 	 * The outer loop mostly deals with creating the Multidata message,
19277 	 * as well as the header buffer that gets added to it.  It also
19278 	 * links the Multidata messages together such that all of them can
19279 	 * be sent down to the lower layer in a single putnext call; this
19280 	 * linking behavior depends on the tcp_mdt_chain tunable.
19281 	 *
19282 	 * The inner loop takes an existing Multidata message, and adds
19283 	 * one or more (up to tcp_mdt_max_pld) payload buffers to it.  It
19284 	 * packetizes those buffers by filling up the corresponding header
19285 	 * buffer fragments with the proper IP and TCP headers, and by
19286 	 * describing the layout of each packet in the packet descriptors
19287 	 * that get added to the Multidata.
19288 	 */
19289 	do {
19290 		/*
19291 		 * If usable send window is too small, or data blocks in
19292 		 * transmit list are smaller than our threshold (i.e. app
19293 		 * performs large writes followed by small ones), we hand
19294 		 * off the control over to the legacy path.  Note that we'll
19295 		 * get back the control once it encounters a large block.
19296 		 */
19297 		if (*usable < mss || (*tail_unsent <= mdt_thres &&
19298 		    (*xmit_tail)->b_cont != NULL &&
19299 		    MBLKL((*xmit_tail)->b_cont) <= mdt_thres)) {
19300 			/* send down what we've got so far */
19301 			if (md_mp_head != NULL) {
19302 				tcp_multisend_data(tcp, ire, ill, md_mp_head,
19303 				    obsegs, obbytes, &rconfirm);
19304 			}
19305 			/*
19306 			 * Pass control over to tcp_send(), but tell it to
19307 			 * return to us once a large-size transmission is
19308 			 * possible.
19309 			 */
19310 			TCP_STAT(tcp_mdt_legacy_small);
19311 			if ((err = tcp_send(q, tcp, mss, tcp_hdr_len,
19312 			    tcp_tcp_hdr_len, num_sack_blk, usable, snxt,
19313 			    tail_unsent, xmit_tail, local_time,
19314 			    mdt_thres)) <= 0) {
19315 				/* burst count reached, or alloc failed */
19316 				IRE_REFRELE(ire);
19317 				return (err);
19318 			}
19319 
19320 			/* tcp_send() may have sent everything, so check */
19321 			if (*usable <= 0) {
19322 				IRE_REFRELE(ire);
19323 				return (0);
19324 			}
19325 
19326 			TCP_STAT(tcp_mdt_legacy_ret);
19327 			/*
19328 			 * We may have delivered the Multidata, so make sure
19329 			 * to re-initialize before the next round.
19330 			 */
19331 			md_mp_head = NULL;
19332 			obsegs = obbytes = 0;
19333 			num_burst_seg = tcp->tcp_snd_burst;
19334 			PREP_NEW_MULTIDATA();
19335 
19336 			/* are we starting from the beginning of data block? */
19337 			if (*tail_unsent == 0) {
19338 				*xmit_tail = (*xmit_tail)->b_cont;
19339 				ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
19340 				    (uintptr_t)INT_MAX);
19341 				*tail_unsent = (int)MBLKL(*xmit_tail);
19342 			}
19343 		}
19344 
19345 		/*
19346 		 * max_pld limits the number of mblks in tcp's transmit
19347 		 * queue that can be added to a Multidata message.  Once
19348 		 * this counter reaches zero, no more additional mblks
19349 		 * can be added to it.  What happens afterwards depends
19350 		 * on whether or not we are set to chain the Multidata
19351 		 * messages.  If we are to link them together, reset
19352 		 * max_pld to its original value (tcp_mdt_max_pld) and
19353 		 * prepare to create a new Multidata message which will
19354 		 * get linked to md_mp_head.  Else, leave it alone and
19355 		 * let the inner loop break on its own.
19356 		 */
19357 		if (tcp_mdt_chain && max_pld == 0)
19358 			PREP_NEW_MULTIDATA();
19359 
19360 		/* adding a payload buffer; re-initialize values */
19361 		if (add_buffer)
19362 			PREP_NEW_PBUF();
19363 
19364 		/*
19365 		 * If we don't have a Multidata, either because we just
19366 		 * (re)entered this outer loop, or after we branched off
19367 		 * to tcp_send above, setup the Multidata and header
19368 		 * buffer to be used.
19369 		 */
19370 		if (md_mp == NULL) {
19371 			int md_hbuflen;
19372 			uint32_t start, stuff;
19373 
19374 			/*
19375 			 * Calculate Multidata header buffer size large enough
19376 			 * to hold all of the headers that can possibly be
19377 			 * sent at this moment.  We'd rather over-estimate
19378 			 * the size than running out of space; this is okay
19379 			 * since this buffer is small anyway.
19380 			 */
19381 			md_hbuflen = (howmany(*usable, mss) + 1) * hdr_frag_sz;
19382 
19383 			/*
19384 			 * Start and stuff offset for partial hardware
19385 			 * checksum offload; these are currently for IPv4.
19386 			 * For full checksum offload, they are set to zero.
19387 			 */
19388 			if ((hwcksum_flags & HCK_PARTIALCKSUM)) {
19389 				if (af == AF_INET) {
19390 					start = IP_SIMPLE_HDR_LENGTH;
19391 					stuff = IP_SIMPLE_HDR_LENGTH +
19392 					    TCP_CHECKSUM_OFFSET;
19393 				} else {
19394 					start = IPV6_HDR_LEN;
19395 					stuff = IPV6_HDR_LEN +
19396 					    TCP_CHECKSUM_OFFSET;
19397 				}
19398 			} else {
19399 				start = stuff = 0;
19400 			}
19401 
19402 			/*
19403 			 * Create the header buffer, Multidata, as well as
19404 			 * any necessary attributes (destination address,
19405 			 * SAP and hardware checksum offload) that should
19406 			 * be associated with the Multidata message.
19407 			 */
19408 			ASSERT(cur_hdr_off == 0);
19409 			if ((md_hbuf = allocb(md_hbuflen, BPRI_HI)) == NULL ||
19410 			    ((md_hbuf->b_wptr += md_hbuflen),
19411 			    (mmd = mmd_alloc(md_hbuf, &md_mp,
19412 			    KM_NOSLEEP)) == NULL) || (tcp_mdt_add_attrs(mmd,
19413 			    /* fastpath mblk */
19414 			    (af == AF_INET) ? ire->ire_dlureq_mp :
19415 			    ire->ire_nce->nce_res_mp,
19416 			    /* hardware checksum enabled */
19417 			    (hwcksum_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)),
19418 			    /* hardware checksum offsets */
19419 			    start, stuff, 0,
19420 			    /* hardware checksum flag */
19421 			    hwcksum_flags) != 0)) {
19422 legacy_send:
19423 				if (md_mp != NULL) {
19424 					/* Unlink message from the chain */
19425 					if (md_mp_head != NULL) {
19426 						err = (intptr_t)rmvb(md_mp_head,
19427 						    md_mp);
19428 						/*
19429 						 * We can't assert that rmvb
19430 						 * did not return -1, since we
19431 						 * may get here before linkb
19432 						 * happens.  We do, however,
19433 						 * check if we just removed the
19434 						 * only element in the list.
19435 						 */
19436 						if (err == 0)
19437 							md_mp_head = NULL;
19438 					}
19439 					/* md_hbuf gets freed automatically */
19440 					TCP_STAT(tcp_mdt_discarded);
19441 					freeb(md_mp);
19442 				} else {
19443 					/* Either allocb or mmd_alloc failed */
19444 					TCP_STAT(tcp_mdt_allocfail);
19445 					if (md_hbuf != NULL)
19446 						freeb(md_hbuf);
19447 				}
19448 
19449 				/* send down what we've got so far */
19450 				if (md_mp_head != NULL) {
19451 					tcp_multisend_data(tcp, ire, ill,
19452 					    md_mp_head, obsegs, obbytes,
19453 					    &rconfirm);
19454 				}
19455 legacy_send_no_md:
19456 				if (ire != NULL)
19457 					IRE_REFRELE(ire);
19458 				/*
19459 				 * Too bad; let the legacy path handle this.
19460 				 * We specify INT_MAX for the threshold, since
19461 				 * we gave up with the Multidata processings
19462 				 * and let the old path have it all.
19463 				 */
19464 				TCP_STAT(tcp_mdt_legacy_all);
19465 				return (tcp_send(q, tcp, mss, tcp_hdr_len,
19466 				    tcp_tcp_hdr_len, num_sack_blk, usable,
19467 				    snxt, tail_unsent, xmit_tail, local_time,
19468 				    INT_MAX));
19469 			}
19470 
19471 			/* link to any existing ones, if applicable */
19472 			TCP_STAT(tcp_mdt_allocd);
19473 			if (md_mp_head == NULL) {
19474 				md_mp_head = md_mp;
19475 			} else if (tcp_mdt_chain) {
19476 				TCP_STAT(tcp_mdt_linked);
19477 				linkb(md_mp_head, md_mp);
19478 			}
19479 		}
19480 
19481 		ASSERT(md_mp_head != NULL);
19482 		ASSERT(tcp_mdt_chain || md_mp_head->b_cont == NULL);
19483 		ASSERT(md_mp != NULL && mmd != NULL);
19484 		ASSERT(md_hbuf != NULL);
19485 
19486 		/*
19487 		 * Packetize the transmittable portion of the data block;
19488 		 * each data block is essentially added to the Multidata
19489 		 * as a payload buffer.  We also deal with adding more
19490 		 * than one payload buffers, which happens when the remaining
19491 		 * packetized portion of the current payload buffer is less
19492 		 * than MSS, while the next data block in transmit queue
19493 		 * has enough data to make up for one.  This "spillover"
19494 		 * case essentially creates a split-packet, where portions
19495 		 * of the packet's payload fragments may span across two
19496 		 * virtually discontiguous address blocks.
19497 		 */
19498 		seg_len = mss;
19499 		do {
19500 			len = seg_len;
19501 
19502 			ASSERT(len > 0);
19503 			ASSERT(max_pld >= 0);
19504 			ASSERT(!add_buffer || cur_pld_off == 0);
19505 
19506 			/*
19507 			 * First time around for this payload buffer; note
19508 			 * in the case of a spillover, the following has
19509 			 * been done prior to adding the split-packet
19510 			 * descriptor to Multidata, and we don't want to
19511 			 * repeat the process.
19512 			 */
19513 			if (add_buffer) {
19514 				ASSERT(mmd != NULL);
19515 				ASSERT(md_pbuf == NULL);
19516 				ASSERT(md_pbuf_nxt == NULL);
19517 				ASSERT(pbuf_idx == -1 && pbuf_idx_nxt == -1);
19518 
19519 				/*
19520 				 * Have we reached the limit?  We'd get to
19521 				 * this case when we're not chaining the
19522 				 * Multidata messages together, and since
19523 				 * we're done, terminate this loop.
19524 				 */
19525 				if (max_pld == 0)
19526 					break; /* done */
19527 
19528 				if ((md_pbuf = dupb(*xmit_tail)) == NULL) {
19529 					TCP_STAT(tcp_mdt_allocfail);
19530 					goto legacy_send; /* out_of_mem */
19531 				}
19532 
19533 				if (IS_VMLOANED_MBLK(md_pbuf) && !zcopy &&
19534 				    zc_cap != NULL) {
19535 					if (!ip_md_zcopy_attr(mmd, NULL,
19536 					    zc_cap->ill_zerocopy_flags)) {
19537 						freeb(md_pbuf);
19538 						TCP_STAT(tcp_mdt_allocfail);
19539 						/* out_of_mem */
19540 						goto legacy_send;
19541 					}
19542 					zcopy = B_TRUE;
19543 				}
19544 
19545 				md_pbuf->b_rptr += base_pld_off;
19546 
19547 				/*
19548 				 * Add a payload buffer to the Multidata; this
19549 				 * operation must not fail, or otherwise our
19550 				 * logic in this routine is broken.  There
19551 				 * is no memory allocation done by the
19552 				 * routine, so any returned failure simply
19553 				 * tells us that we've done something wrong.
19554 				 *
19555 				 * A failure tells us that either we're adding
19556 				 * the same payload buffer more than once, or
19557 				 * we're trying to add more buffers than
19558 				 * allowed (max_pld calculation is wrong).
19559 				 * None of the above cases should happen, and
19560 				 * we panic because either there's horrible
19561 				 * heap corruption, and/or programming mistake.
19562 				 */
19563 				pbuf_idx = mmd_addpldbuf(mmd, md_pbuf);
19564 				if (pbuf_idx < 0) {
19565 					cmn_err(CE_PANIC, "tcp_multisend: "
19566 					    "payload buffer logic error "
19567 					    "detected for tcp %p mmd %p "
19568 					    "pbuf %p (%d)\n",
19569 					    (void *)tcp, (void *)mmd,
19570 					    (void *)md_pbuf, pbuf_idx);
19571 				}
19572 
19573 				ASSERT(max_pld > 0);
19574 				--max_pld;
19575 				add_buffer = B_FALSE;
19576 			}
19577 
19578 			ASSERT(md_mp_head != NULL);
19579 			ASSERT(md_pbuf != NULL);
19580 			ASSERT(md_pbuf_nxt == NULL);
19581 			ASSERT(pbuf_idx != -1);
19582 			ASSERT(pbuf_idx_nxt == -1);
19583 			ASSERT(*usable > 0);
19584 
19585 			/*
19586 			 * We spillover to the next payload buffer only
19587 			 * if all of the following is true:
19588 			 *
19589 			 *   1. There is not enough data on the current
19590 			 *	payload buffer to make up `len',
19591 			 *   2. We are allowed to send `len',
19592 			 *   3. The next payload buffer length is large
19593 			 *	enough to accomodate `spill'.
19594 			 */
19595 			if ((spill = len - *tail_unsent) > 0 &&
19596 			    *usable >= len &&
19597 			    MBLKL((*xmit_tail)->b_cont) >= spill &&
19598 			    max_pld > 0) {
19599 				md_pbuf_nxt = dupb((*xmit_tail)->b_cont);
19600 				if (md_pbuf_nxt == NULL) {
19601 					TCP_STAT(tcp_mdt_allocfail);
19602 					goto legacy_send; /* out_of_mem */
19603 				}
19604 
19605 				if (IS_VMLOANED_MBLK(md_pbuf_nxt) && !zcopy &&
19606 				    zc_cap != NULL) {
19607 					if (!ip_md_zcopy_attr(mmd, NULL,
19608 					    zc_cap->ill_zerocopy_flags)) {
19609 						freeb(md_pbuf_nxt);
19610 						TCP_STAT(tcp_mdt_allocfail);
19611 						/* out_of_mem */
19612 						goto legacy_send;
19613 					}
19614 					zcopy = B_TRUE;
19615 				}
19616 
19617 				/*
19618 				 * See comments above on the first call to
19619 				 * mmd_addpldbuf for explanation on the panic.
19620 				 */
19621 				pbuf_idx_nxt = mmd_addpldbuf(mmd, md_pbuf_nxt);
19622 				if (pbuf_idx_nxt < 0) {
19623 					panic("tcp_multisend: "
19624 					    "next payload buffer logic error "
19625 					    "detected for tcp %p mmd %p "
19626 					    "pbuf %p (%d)\n",
19627 					    (void *)tcp, (void *)mmd,
19628 					    (void *)md_pbuf_nxt, pbuf_idx_nxt);
19629 				}
19630 
19631 				ASSERT(max_pld > 0);
19632 				--max_pld;
19633 			} else if (spill > 0) {
19634 				/*
19635 				 * If there's a spillover, but the following
19636 				 * xmit_tail couldn't give us enough octets
19637 				 * to reach "len", then stop the current
19638 				 * Multidata creation and let the legacy
19639 				 * tcp_send() path take over.  We don't want
19640 				 * to send the tiny segment as part of this
19641 				 * Multidata for performance reasons; instead,
19642 				 * we let the legacy path deal with grouping
19643 				 * it with the subsequent small mblks.
19644 				 */
19645 				if (*usable >= len &&
19646 				    MBLKL((*xmit_tail)->b_cont) < spill) {
19647 					max_pld = 0;
19648 					break;	/* done */
19649 				}
19650 
19651 				/*
19652 				 * We can't spillover, and we are near
19653 				 * the end of the current payload buffer,
19654 				 * so send what's left.
19655 				 */
19656 				ASSERT(*tail_unsent > 0);
19657 				len = *tail_unsent;
19658 			}
19659 
19660 			/* tail_unsent is negated if there is a spillover */
19661 			*tail_unsent -= len;
19662 			*usable -= len;
19663 			ASSERT(*usable >= 0);
19664 
19665 			if (*usable < mss)
19666 				seg_len = *usable;
19667 			/*
19668 			 * Sender SWS avoidance; see comments in tcp_send();
19669 			 * everything else is the same, except that we only
19670 			 * do this here if there is no more data to be sent
19671 			 * following the current xmit_tail.  We don't check
19672 			 * for 1-byte urgent data because we shouldn't get
19673 			 * here if TCP_URG_VALID is set.
19674 			 */
19675 			if (*usable > 0 && *usable < mss &&
19676 			    ((md_pbuf_nxt == NULL &&
19677 			    (*xmit_tail)->b_cont == NULL) ||
19678 			    (md_pbuf_nxt != NULL &&
19679 			    (*xmit_tail)->b_cont->b_cont == NULL)) &&
19680 			    seg_len < (tcp->tcp_max_swnd >> 1) &&
19681 			    (tcp->tcp_unsent -
19682 			    ((*snxt + len) - tcp->tcp_snxt)) > seg_len &&
19683 			    !tcp->tcp_zero_win_probe) {
19684 				if ((*snxt + len) == tcp->tcp_snxt &&
19685 				    (*snxt + len) == tcp->tcp_suna) {
19686 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
19687 				}
19688 				done = B_TRUE;
19689 			}
19690 
19691 			/*
19692 			 * Prime pump for IP's checksumming on our behalf;
19693 			 * include the adjustment for a source route if any.
19694 			 * Do this only for software/partial hardware checksum
19695 			 * offload, as this field gets zeroed out later for
19696 			 * the full hardware checksum offload case.
19697 			 */
19698 			if (!(hwcksum_flags & HCK_FULLCKSUM)) {
19699 				cksum = len + tcp_tcp_hdr_len + tcp->tcp_sum;
19700 				cksum = (cksum >> 16) + (cksum & 0xFFFF);
19701 				U16_TO_ABE16(cksum, tcp->tcp_tcph->th_sum);
19702 			}
19703 
19704 			U32_TO_ABE32(*snxt, tcp->tcp_tcph->th_seq);
19705 			*snxt += len;
19706 
19707 			tcp->tcp_tcph->th_flags[0] = TH_ACK;
19708 			/*
19709 			 * We set the PUSH bit only if TCP has no more buffered
19710 			 * data to be transmitted (or if sender SWS avoidance
19711 			 * takes place), as opposed to setting it for every
19712 			 * last packet in the burst.
19713 			 */
19714 			if (done ||
19715 			    (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) == 0)
19716 				tcp->tcp_tcph->th_flags[0] |= TH_PUSH;
19717 
19718 			/*
19719 			 * Set FIN bit if this is our last segment; snxt
19720 			 * already includes its length, and it will not
19721 			 * be adjusted after this point.
19722 			 */
19723 			if (tcp->tcp_valid_bits == TCP_FSS_VALID &&
19724 			    *snxt == tcp->tcp_fss) {
19725 				if (!tcp->tcp_fin_acked) {
19726 					tcp->tcp_tcph->th_flags[0] |= TH_FIN;
19727 					BUMP_MIB(&tcp_mib, tcpOutControl);
19728 				}
19729 				if (!tcp->tcp_fin_sent) {
19730 					tcp->tcp_fin_sent = B_TRUE;
19731 					/*
19732 					 * tcp state must be ESTABLISHED
19733 					 * in order for us to get here in
19734 					 * the first place.
19735 					 */
19736 					tcp->tcp_state = TCPS_FIN_WAIT_1;
19737 
19738 					/*
19739 					 * Upon returning from this routine,
19740 					 * tcp_wput_data() will set tcp_snxt
19741 					 * to be equal to snxt + tcp_fin_sent.
19742 					 * This is essentially the same as
19743 					 * setting it to tcp_fss + 1.
19744 					 */
19745 				}
19746 			}
19747 
19748 			tcp->tcp_last_sent_len = (ushort_t)len;
19749 
19750 			len += tcp_hdr_len;
19751 			if (tcp->tcp_ipversion == IPV4_VERSION)
19752 				tcp->tcp_ipha->ipha_length = htons(len);
19753 			else
19754 				tcp->tcp_ip6h->ip6_plen = htons(len -
19755 				    ((char *)&tcp->tcp_ip6h[1] -
19756 				    tcp->tcp_iphc));
19757 
19758 			pkt_info->flags = (PDESC_HBUF_REF | PDESC_PBUF_REF);
19759 
19760 			/* setup header fragment */
19761 			PDESC_HDR_ADD(pkt_info,
19762 			    md_hbuf->b_rptr + cur_hdr_off,	/* base */
19763 			    tcp->tcp_mdt_hdr_head,		/* head room */
19764 			    tcp_hdr_len,			/* len */
19765 			    tcp->tcp_mdt_hdr_tail);		/* tail room */
19766 
19767 			ASSERT(pkt_info->hdr_lim - pkt_info->hdr_base ==
19768 			    hdr_frag_sz);
19769 			ASSERT(MBLKIN(md_hbuf,
19770 			    (pkt_info->hdr_base - md_hbuf->b_rptr),
19771 			    PDESC_HDRSIZE(pkt_info)));
19772 
19773 			/* setup first payload fragment */
19774 			PDESC_PLD_INIT(pkt_info);
19775 			PDESC_PLD_SPAN_ADD(pkt_info,
19776 			    pbuf_idx,				/* index */
19777 			    md_pbuf->b_rptr + cur_pld_off,	/* start */
19778 			    tcp->tcp_last_sent_len);		/* len */
19779 
19780 			/* create a split-packet in case of a spillover */
19781 			if (md_pbuf_nxt != NULL) {
19782 				ASSERT(spill > 0);
19783 				ASSERT(pbuf_idx_nxt > pbuf_idx);
19784 				ASSERT(!add_buffer);
19785 
19786 				md_pbuf = md_pbuf_nxt;
19787 				md_pbuf_nxt = NULL;
19788 				pbuf_idx = pbuf_idx_nxt;
19789 				pbuf_idx_nxt = -1;
19790 				cur_pld_off = spill;
19791 
19792 				/* trim out first payload fragment */
19793 				PDESC_PLD_SPAN_TRIM(pkt_info, 0, spill);
19794 
19795 				/* setup second payload fragment */
19796 				PDESC_PLD_SPAN_ADD(pkt_info,
19797 				    pbuf_idx,			/* index */
19798 				    md_pbuf->b_rptr,		/* start */
19799 				    spill);			/* len */
19800 
19801 				if ((*xmit_tail)->b_next == NULL) {
19802 					/*
19803 					 * Store the lbolt used for RTT
19804 					 * estimation. We can only record one
19805 					 * timestamp per mblk so we do it when
19806 					 * we reach the end of the payload
19807 					 * buffer.  Also we only take a new
19808 					 * timestamp sample when the previous
19809 					 * timed data from the same mblk has
19810 					 * been ack'ed.
19811 					 */
19812 					(*xmit_tail)->b_prev = local_time;
19813 					(*xmit_tail)->b_next =
19814 					    (mblk_t *)(uintptr_t)first_snxt;
19815 				}
19816 
19817 				first_snxt = *snxt - spill;
19818 
19819 				/*
19820 				 * Advance xmit_tail; usable could be 0 by
19821 				 * the time we got here, but we made sure
19822 				 * above that we would only spillover to
19823 				 * the next data block if usable includes
19824 				 * the spilled-over amount prior to the
19825 				 * subtraction.  Therefore, we are sure
19826 				 * that xmit_tail->b_cont can't be NULL.
19827 				 */
19828 				ASSERT((*xmit_tail)->b_cont != NULL);
19829 				*xmit_tail = (*xmit_tail)->b_cont;
19830 				ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
19831 				    (uintptr_t)INT_MAX);
19832 				*tail_unsent = (int)MBLKL(*xmit_tail) - spill;
19833 			} else {
19834 				cur_pld_off += tcp->tcp_last_sent_len;
19835 			}
19836 
19837 			/*
19838 			 * Fill in the header using the template header, and
19839 			 * add options such as time-stamp, ECN and/or SACK,
19840 			 * as needed.
19841 			 */
19842 			tcp_fill_header(tcp, pkt_info->hdr_rptr,
19843 			    (clock_t)local_time, num_sack_blk);
19844 
19845 			/* take care of some IP header businesses */
19846 			if (af == AF_INET) {
19847 				ipha = (ipha_t *)pkt_info->hdr_rptr;
19848 
19849 				ASSERT(OK_32PTR((uchar_t *)ipha));
19850 				ASSERT(PDESC_HDRL(pkt_info) >=
19851 				    IP_SIMPLE_HDR_LENGTH);
19852 				ASSERT(ipha->ipha_version_and_hdr_length ==
19853 				    IP_SIMPLE_HDR_VERSION);
19854 
19855 				/*
19856 				 * Assign ident value for current packet; see
19857 				 * related comments in ip_wput_ire() about the
19858 				 * contract private interface with clustering
19859 				 * group.
19860 				 */
19861 				clusterwide = B_FALSE;
19862 				if (cl_inet_ipident != NULL) {
19863 					ASSERT(cl_inet_isclusterwide != NULL);
19864 					if ((*cl_inet_isclusterwide)(IPPROTO_IP,
19865 					    AF_INET,
19866 					    (uint8_t *)(uintptr_t)src)) {
19867 						ipha->ipha_ident =
19868 						    (*cl_inet_ipident)
19869 						    (IPPROTO_IP, AF_INET,
19870 						    (uint8_t *)(uintptr_t)src,
19871 						    (uint8_t *)(uintptr_t)dst);
19872 						clusterwide = B_TRUE;
19873 					}
19874 				}
19875 
19876 				if (!clusterwide) {
19877 					ipha->ipha_ident = (uint16_t)
19878 					    atomic_add_32_nv(
19879 						&ire->ire_ident, 1);
19880 				}
19881 #ifndef _BIG_ENDIAN
19882 				ipha->ipha_ident = (ipha->ipha_ident << 8) |
19883 				    (ipha->ipha_ident >> 8);
19884 #endif
19885 			} else {
19886 				ip6h = (ip6_t *)pkt_info->hdr_rptr;
19887 
19888 				ASSERT(OK_32PTR((uchar_t *)ip6h));
19889 				ASSERT(IPVER(ip6h) == IPV6_VERSION);
19890 				ASSERT(ip6h->ip6_nxt == IPPROTO_TCP);
19891 				ASSERT(PDESC_HDRL(pkt_info) >=
19892 				    (IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET +
19893 				    TCP_CHECKSUM_SIZE));
19894 				ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
19895 
19896 				if (tcp->tcp_ip_forward_progress) {
19897 					rconfirm = B_TRUE;
19898 					tcp->tcp_ip_forward_progress = B_FALSE;
19899 				}
19900 			}
19901 
19902 			/* at least one payload span, and at most two */
19903 			ASSERT(pkt_info->pld_cnt > 0 && pkt_info->pld_cnt < 3);
19904 
19905 			/* add the packet descriptor to Multidata */
19906 			if ((pkt = mmd_addpdesc(mmd, pkt_info, &err,
19907 			    KM_NOSLEEP)) == NULL) {
19908 				/*
19909 				 * Any failure other than ENOMEM indicates
19910 				 * that we have passed in invalid pkt_info
19911 				 * or parameters to mmd_addpdesc, which must
19912 				 * not happen.
19913 				 *
19914 				 * EINVAL is a result of failure on boundary
19915 				 * checks against the pkt_info contents.  It
19916 				 * should not happen, and we panic because
19917 				 * either there's horrible heap corruption,
19918 				 * and/or programming mistake.
19919 				 */
19920 				if (err != ENOMEM) {
19921 					cmn_err(CE_PANIC, "tcp_multisend: "
19922 					    "pdesc logic error detected for "
19923 					    "tcp %p mmd %p pinfo %p (%d)\n",
19924 					    (void *)tcp, (void *)mmd,
19925 					    (void *)pkt_info, err);
19926 				}
19927 				TCP_STAT(tcp_mdt_addpdescfail);
19928 				goto legacy_send; /* out_of_mem */
19929 			}
19930 			ASSERT(pkt != NULL);
19931 
19932 			/* calculate IP header and TCP checksums */
19933 			if (af == AF_INET) {
19934 				/* calculate pseudo-header checksum */
19935 				cksum = (dst >> 16) + (dst & 0xFFFF) +
19936 				    (src >> 16) + (src & 0xFFFF);
19937 
19938 				/* offset for TCP header checksum */
19939 				up = IPH_TCPH_CHECKSUMP(ipha,
19940 				    IP_SIMPLE_HDR_LENGTH);
19941 			} else {
19942 				up = (uint16_t *)&ip6h->ip6_src;
19943 
19944 				/* calculate pseudo-header checksum */
19945 				cksum = up[0] + up[1] + up[2] + up[3] +
19946 				    up[4] + up[5] + up[6] + up[7] +
19947 				    up[8] + up[9] + up[10] + up[11] +
19948 				    up[12] + up[13] + up[14] + up[15];
19949 
19950 				/* Fold the initial sum */
19951 				cksum = (cksum & 0xffff) + (cksum >> 16);
19952 
19953 				up = (uint16_t *)(((uchar_t *)ip6h) +
19954 				    IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET);
19955 			}
19956 
19957 			if (hwcksum_flags & HCK_FULLCKSUM) {
19958 				/* clear checksum field for hardware */
19959 				*up = 0;
19960 			} else if (hwcksum_flags & HCK_PARTIALCKSUM) {
19961 				uint32_t sum;
19962 
19963 				/* pseudo-header checksumming */
19964 				sum = *up + cksum + IP_TCP_CSUM_COMP;
19965 				sum = (sum & 0xFFFF) + (sum >> 16);
19966 				*up = (sum & 0xFFFF) + (sum >> 16);
19967 			} else {
19968 				/* software checksumming */
19969 				TCP_STAT(tcp_out_sw_cksum);
19970 				TCP_STAT_UPDATE(tcp_out_sw_cksum_bytes,
19971 				    tcp->tcp_hdr_len + tcp->tcp_last_sent_len);
19972 				*up = IP_MD_CSUM(pkt, tcp->tcp_ip_hdr_len,
19973 				    cksum + IP_TCP_CSUM_COMP);
19974 				if (*up == 0)
19975 					*up = 0xFFFF;
19976 			}
19977 
19978 			/* IPv4 header checksum */
19979 			if (af == AF_INET) {
19980 				ipha->ipha_fragment_offset_and_flags |=
19981 				    (uint32_t)htons(ire->ire_frag_flag);
19982 
19983 				if (hwcksum_flags & HCK_IPV4_HDRCKSUM) {
19984 					ipha->ipha_hdr_checksum = 0;
19985 				} else {
19986 					IP_HDR_CKSUM(ipha, cksum,
19987 					    ((uint32_t *)ipha)[0],
19988 					    ((uint16_t *)ipha)[4]);
19989 				}
19990 			}
19991 
19992 			/* advance header offset */
19993 			cur_hdr_off += hdr_frag_sz;
19994 
19995 			obbytes += tcp->tcp_last_sent_len;
19996 			++obsegs;
19997 		} while (!done && *usable > 0 && --num_burst_seg > 0 &&
19998 		    *tail_unsent > 0);
19999 
20000 		if ((*xmit_tail)->b_next == NULL) {
20001 			/*
20002 			 * Store the lbolt used for RTT estimation. We can only
20003 			 * record one timestamp per mblk so we do it when we
20004 			 * reach the end of the payload buffer. Also we only
20005 			 * take a new timestamp sample when the previous timed
20006 			 * data from the same mblk has been ack'ed.
20007 			 */
20008 			(*xmit_tail)->b_prev = local_time;
20009 			(*xmit_tail)->b_next = (mblk_t *)(uintptr_t)first_snxt;
20010 		}
20011 
20012 		ASSERT(*tail_unsent >= 0);
20013 		if (*tail_unsent > 0) {
20014 			/*
20015 			 * We got here because we broke out of the above
20016 			 * loop due to of one of the following cases:
20017 			 *
20018 			 *   1. len < adjusted MSS (i.e. small),
20019 			 *   2. Sender SWS avoidance,
20020 			 *   3. max_pld is zero.
20021 			 *
20022 			 * We are done for this Multidata, so trim our
20023 			 * last payload buffer (if any) accordingly.
20024 			 */
20025 			if (md_pbuf != NULL)
20026 				md_pbuf->b_wptr -= *tail_unsent;
20027 		} else if (*usable > 0) {
20028 			*xmit_tail = (*xmit_tail)->b_cont;
20029 			ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
20030 			    (uintptr_t)INT_MAX);
20031 			*tail_unsent = (int)MBLKL(*xmit_tail);
20032 			add_buffer = B_TRUE;
20033 		}
20034 	} while (!done && *usable > 0 && num_burst_seg > 0 &&
20035 	    (tcp_mdt_chain || max_pld > 0));
20036 
20037 	/* send everything down */
20038 	tcp_multisend_data(tcp, ire, ill, md_mp_head, obsegs, obbytes,
20039 	    &rconfirm);
20040 
20041 #undef PREP_NEW_MULTIDATA
20042 #undef PREP_NEW_PBUF
20043 #undef IPVER
20044 
20045 	IRE_REFRELE(ire);
20046 	return (0);
20047 }
20048 
20049 /*
20050  * A wrapper function for sending one or more Multidata messages down to
20051  * the module below ip; this routine does not release the reference of the
20052  * IRE (caller does that).  This routine is analogous to tcp_send_data().
20053  */
20054 static void
20055 tcp_multisend_data(tcp_t *tcp, ire_t *ire, const ill_t *ill, mblk_t *md_mp_head,
20056     const uint_t obsegs, const uint_t obbytes, boolean_t *rconfirm)
20057 {
20058 	uint64_t delta;
20059 	nce_t *nce;
20060 
20061 	ASSERT(ire != NULL && ill != NULL);
20062 	ASSERT(ire->ire_stq != NULL);
20063 	ASSERT(md_mp_head != NULL);
20064 	ASSERT(rconfirm != NULL);
20065 
20066 	/* adjust MIBs and IRE timestamp */
20067 	TCP_RECORD_TRACE(tcp, md_mp_head, TCP_TRACE_SEND_PKT);
20068 	tcp->tcp_obsegs += obsegs;
20069 	UPDATE_MIB(&tcp_mib, tcpOutDataSegs, obsegs);
20070 	UPDATE_MIB(&tcp_mib, tcpOutDataBytes, obbytes);
20071 	TCP_STAT_UPDATE(tcp_mdt_pkt_out, obsegs);
20072 
20073 	if (tcp->tcp_ipversion == IPV4_VERSION) {
20074 		TCP_STAT_UPDATE(tcp_mdt_pkt_out_v4, obsegs);
20075 		UPDATE_MIB(&ip_mib, ipOutRequests, obsegs);
20076 	} else {
20077 		TCP_STAT_UPDATE(tcp_mdt_pkt_out_v6, obsegs);
20078 		UPDATE_MIB(&ip6_mib, ipv6OutRequests, obsegs);
20079 	}
20080 
20081 	ire->ire_ob_pkt_count += obsegs;
20082 	if (ire->ire_ipif != NULL)
20083 		atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, obsegs);
20084 	ire->ire_last_used_time = lbolt;
20085 
20086 	/* send it down */
20087 	putnext(ire->ire_stq, md_mp_head);
20088 
20089 	/* we're done for TCP/IPv4 */
20090 	if (tcp->tcp_ipversion == IPV4_VERSION)
20091 		return;
20092 
20093 	nce = ire->ire_nce;
20094 
20095 	ASSERT(nce != NULL);
20096 	ASSERT(!(nce->nce_flags & (NCE_F_NONUD|NCE_F_PERMANENT)));
20097 	ASSERT(nce->nce_state != ND_INCOMPLETE);
20098 
20099 	/* reachability confirmation? */
20100 	if (*rconfirm) {
20101 		nce->nce_last = TICK_TO_MSEC(lbolt64);
20102 		if (nce->nce_state != ND_REACHABLE) {
20103 			mutex_enter(&nce->nce_lock);
20104 			nce->nce_state = ND_REACHABLE;
20105 			nce->nce_pcnt = ND_MAX_UNICAST_SOLICIT;
20106 			mutex_exit(&nce->nce_lock);
20107 			(void) untimeout(nce->nce_timeout_id);
20108 			if (ip_debug > 2) {
20109 				/* ip1dbg */
20110 				pr_addr_dbg("tcp_multisend_data: state "
20111 				    "for %s changed to REACHABLE\n",
20112 				    AF_INET6, &ire->ire_addr_v6);
20113 			}
20114 		}
20115 		/* reset transport reachability confirmation */
20116 		*rconfirm = B_FALSE;
20117 	}
20118 
20119 	delta =  TICK_TO_MSEC(lbolt64) - nce->nce_last;
20120 	ip1dbg(("tcp_multisend_data: delta = %" PRId64
20121 	    " ill_reachable_time = %d \n", delta, ill->ill_reachable_time));
20122 
20123 	if (delta > (uint64_t)ill->ill_reachable_time) {
20124 		mutex_enter(&nce->nce_lock);
20125 		switch (nce->nce_state) {
20126 		case ND_REACHABLE:
20127 		case ND_STALE:
20128 			/*
20129 			 * ND_REACHABLE is identical to ND_STALE in this
20130 			 * specific case. If reachable time has expired for
20131 			 * this neighbor (delta is greater than reachable
20132 			 * time), conceptually, the neighbor cache is no
20133 			 * longer in REACHABLE state, but already in STALE
20134 			 * state.  So the correct transition here is to
20135 			 * ND_DELAY.
20136 			 */
20137 			nce->nce_state = ND_DELAY;
20138 			mutex_exit(&nce->nce_lock);
20139 			NDP_RESTART_TIMER(nce, delay_first_probe_time);
20140 			if (ip_debug > 3) {
20141 				/* ip2dbg */
20142 				pr_addr_dbg("tcp_multisend_data: state "
20143 				    "for %s changed to DELAY\n",
20144 				    AF_INET6, &ire->ire_addr_v6);
20145 			}
20146 			break;
20147 		case ND_DELAY:
20148 		case ND_PROBE:
20149 			mutex_exit(&nce->nce_lock);
20150 			/* Timers have already started */
20151 			break;
20152 		case ND_UNREACHABLE:
20153 			/*
20154 			 * ndp timer has detected that this nce is
20155 			 * unreachable and initiated deleting this nce
20156 			 * and all its associated IREs. This is a race
20157 			 * where we found the ire before it was deleted
20158 			 * and have just sent out a packet using this
20159 			 * unreachable nce.
20160 			 */
20161 			mutex_exit(&nce->nce_lock);
20162 			break;
20163 		default:
20164 			ASSERT(0);
20165 		}
20166 	}
20167 }
20168 
20169 /*
20170  * tcp_send() is called by tcp_wput_data() for non-Multidata transmission
20171  * scheme, and returns one of the following:
20172  *
20173  * -1 = failed allocation.
20174  *  0 = success; burst count reached, or usable send window is too small,
20175  *      and that we'd rather wait until later before sending again.
20176  *  1 = success; we are called from tcp_multisend(), and both usable send
20177  *      window and tail_unsent are greater than the MDT threshold, and thus
20178  *      Multidata Transmit should be used instead.
20179  */
20180 static int
20181 tcp_send(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len,
20182     const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable,
20183     uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
20184     const int mdt_thres)
20185 {
20186 	int num_burst_seg = tcp->tcp_snd_burst;
20187 
20188 	for (;;) {
20189 		struct datab	*db;
20190 		tcph_t		*tcph;
20191 		uint32_t	sum;
20192 		mblk_t		*mp, *mp1;
20193 		uchar_t		*rptr;
20194 		int		len;
20195 
20196 		/*
20197 		 * If we're called by tcp_multisend(), and the amount of
20198 		 * sendable data as well as the size of current xmit_tail
20199 		 * is beyond the MDT threshold, return to the caller and
20200 		 * let the large data transmit be done using MDT.
20201 		 */
20202 		if (*usable > 0 && *usable > mdt_thres &&
20203 		    (*tail_unsent > mdt_thres || (*tail_unsent == 0 &&
20204 		    MBLKL((*xmit_tail)->b_cont) > mdt_thres))) {
20205 			ASSERT(tcp->tcp_mdt);
20206 			return (1);	/* success; do large send */
20207 		}
20208 
20209 		if (num_burst_seg-- == 0)
20210 			break;		/* success; burst count reached */
20211 
20212 		len = mss;
20213 		if (len > *usable) {
20214 			len = *usable;
20215 			if (len <= 0) {
20216 				/* Terminate the loop */
20217 				break;	/* success; too small */
20218 			}
20219 			/*
20220 			 * Sender silly-window avoidance.
20221 			 * Ignore this if we are going to send a
20222 			 * zero window probe out.
20223 			 *
20224 			 * TODO: force data into microscopic window?
20225 			 *	==> (!pushed || (unsent > usable))
20226 			 */
20227 			if (len < (tcp->tcp_max_swnd >> 1) &&
20228 			    (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) > len &&
20229 			    !((tcp->tcp_valid_bits & TCP_URG_VALID) &&
20230 			    len == 1) && (! tcp->tcp_zero_win_probe)) {
20231 				/*
20232 				 * If the retransmit timer is not running
20233 				 * we start it so that we will retransmit
20234 				 * in the case when the the receiver has
20235 				 * decremented the window.
20236 				 */
20237 				if (*snxt == tcp->tcp_snxt &&
20238 				    *snxt == tcp->tcp_suna) {
20239 					/*
20240 					 * We are not supposed to send
20241 					 * anything.  So let's wait a little
20242 					 * bit longer before breaking SWS
20243 					 * avoidance.
20244 					 *
20245 					 * What should the value be?
20246 					 * Suggestion: MAX(init rexmit time,
20247 					 * tcp->tcp_rto)
20248 					 */
20249 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
20250 				}
20251 				break;	/* success; too small */
20252 			}
20253 		}
20254 
20255 		tcph = tcp->tcp_tcph;
20256 
20257 		*usable -= len; /* Approximate - can be adjusted later */
20258 		if (*usable > 0)
20259 			tcph->th_flags[0] = TH_ACK;
20260 		else
20261 			tcph->th_flags[0] = (TH_ACK | TH_PUSH);
20262 
20263 		/*
20264 		 * Prime pump for IP's checksumming on our behalf
20265 		 * Include the adjustment for a source route if any.
20266 		 */
20267 		sum = len + tcp_tcp_hdr_len + tcp->tcp_sum;
20268 		sum = (sum >> 16) + (sum & 0xFFFF);
20269 		U16_TO_ABE16(sum, tcph->th_sum);
20270 
20271 		U32_TO_ABE32(*snxt, tcph->th_seq);
20272 
20273 		/*
20274 		 * Branch off to tcp_xmit_mp() if any of the VALID bits is
20275 		 * set.  For the case when TCP_FSS_VALID is the only valid
20276 		 * bit (normal active close), branch off only when we think
20277 		 * that the FIN flag needs to be set.  Note for this case,
20278 		 * that (snxt + len) may not reflect the actual seg_len,
20279 		 * as len may be further reduced in tcp_xmit_mp().  If len
20280 		 * gets modified, we will end up here again.
20281 		 */
20282 		if (tcp->tcp_valid_bits != 0 &&
20283 		    (tcp->tcp_valid_bits != TCP_FSS_VALID ||
20284 		    ((*snxt + len) == tcp->tcp_fss))) {
20285 			uchar_t		*prev_rptr;
20286 			uint32_t	prev_snxt = tcp->tcp_snxt;
20287 
20288 			if (*tail_unsent == 0) {
20289 				ASSERT((*xmit_tail)->b_cont != NULL);
20290 				*xmit_tail = (*xmit_tail)->b_cont;
20291 				prev_rptr = (*xmit_tail)->b_rptr;
20292 				*tail_unsent = (int)((*xmit_tail)->b_wptr -
20293 				    (*xmit_tail)->b_rptr);
20294 			} else {
20295 				prev_rptr = (*xmit_tail)->b_rptr;
20296 				(*xmit_tail)->b_rptr = (*xmit_tail)->b_wptr -
20297 				    *tail_unsent;
20298 			}
20299 			mp = tcp_xmit_mp(tcp, *xmit_tail, len, NULL, NULL,
20300 			    *snxt, B_FALSE, (uint32_t *)&len, B_FALSE);
20301 			/* Restore tcp_snxt so we get amount sent right. */
20302 			tcp->tcp_snxt = prev_snxt;
20303 			if (prev_rptr == (*xmit_tail)->b_rptr) {
20304 				/*
20305 				 * If the previous timestamp is still in use,
20306 				 * don't stomp on it.
20307 				 */
20308 				if ((*xmit_tail)->b_next == NULL) {
20309 					(*xmit_tail)->b_prev = local_time;
20310 					(*xmit_tail)->b_next =
20311 					    (mblk_t *)(uintptr_t)(*snxt);
20312 				}
20313 			} else
20314 				(*xmit_tail)->b_rptr = prev_rptr;
20315 
20316 			if (mp == NULL)
20317 				return (-1);
20318 			mp1 = mp->b_cont;
20319 
20320 			tcp->tcp_last_sent_len = (ushort_t)len;
20321 			while (mp1->b_cont) {
20322 				*xmit_tail = (*xmit_tail)->b_cont;
20323 				(*xmit_tail)->b_prev = local_time;
20324 				(*xmit_tail)->b_next =
20325 				    (mblk_t *)(uintptr_t)(*snxt);
20326 				mp1 = mp1->b_cont;
20327 			}
20328 			*snxt += len;
20329 			*tail_unsent = (*xmit_tail)->b_wptr - mp1->b_wptr;
20330 			BUMP_LOCAL(tcp->tcp_obsegs);
20331 			BUMP_MIB(&tcp_mib, tcpOutDataSegs);
20332 			UPDATE_MIB(&tcp_mib, tcpOutDataBytes, len);
20333 			TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
20334 			tcp_send_data(tcp, q, mp);
20335 			continue;
20336 		}
20337 
20338 		*snxt += len;	/* Adjust later if we don't send all of len */
20339 		BUMP_MIB(&tcp_mib, tcpOutDataSegs);
20340 		UPDATE_MIB(&tcp_mib, tcpOutDataBytes, len);
20341 
20342 		if (*tail_unsent) {
20343 			/* Are the bytes above us in flight? */
20344 			rptr = (*xmit_tail)->b_wptr - *tail_unsent;
20345 			if (rptr != (*xmit_tail)->b_rptr) {
20346 				*tail_unsent -= len;
20347 				tcp->tcp_last_sent_len = (ushort_t)len;
20348 				len += tcp_hdr_len;
20349 				if (tcp->tcp_ipversion == IPV4_VERSION)
20350 					tcp->tcp_ipha->ipha_length = htons(len);
20351 				else
20352 					tcp->tcp_ip6h->ip6_plen =
20353 					    htons(len -
20354 					    ((char *)&tcp->tcp_ip6h[1] -
20355 					    tcp->tcp_iphc));
20356 				mp = dupb(*xmit_tail);
20357 				if (!mp)
20358 					return (-1);	/* out_of_mem */
20359 				mp->b_rptr = rptr;
20360 				/*
20361 				 * If the old timestamp is no longer in use,
20362 				 * sample a new timestamp now.
20363 				 */
20364 				if ((*xmit_tail)->b_next == NULL) {
20365 					(*xmit_tail)->b_prev = local_time;
20366 					(*xmit_tail)->b_next =
20367 					    (mblk_t *)(uintptr_t)(*snxt-len);
20368 				}
20369 				goto must_alloc;
20370 			}
20371 		} else {
20372 			*xmit_tail = (*xmit_tail)->b_cont;
20373 			ASSERT((uintptr_t)((*xmit_tail)->b_wptr -
20374 			    (*xmit_tail)->b_rptr) <= (uintptr_t)INT_MAX);
20375 			*tail_unsent = (int)((*xmit_tail)->b_wptr -
20376 			    (*xmit_tail)->b_rptr);
20377 		}
20378 
20379 		(*xmit_tail)->b_prev = local_time;
20380 		(*xmit_tail)->b_next = (mblk_t *)(uintptr_t)(*snxt - len);
20381 
20382 		*tail_unsent -= len;
20383 		tcp->tcp_last_sent_len = (ushort_t)len;
20384 
20385 		len += tcp_hdr_len;
20386 		if (tcp->tcp_ipversion == IPV4_VERSION)
20387 			tcp->tcp_ipha->ipha_length = htons(len);
20388 		else
20389 			tcp->tcp_ip6h->ip6_plen = htons(len -
20390 			    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
20391 
20392 		mp = dupb(*xmit_tail);
20393 		if (!mp)
20394 			return (-1);	/* out_of_mem */
20395 
20396 		len = tcp_hdr_len;
20397 		/*
20398 		 * There are four reasons to allocate a new hdr mblk:
20399 		 *  1) The bytes above us are in use by another packet
20400 		 *  2) We don't have good alignment
20401 		 *  3) The mblk is being shared
20402 		 *  4) We don't have enough room for a header
20403 		 */
20404 		rptr = mp->b_rptr - len;
20405 		if (!OK_32PTR(rptr) ||
20406 		    ((db = mp->b_datap), db->db_ref != 2) ||
20407 		    rptr < db->db_base) {
20408 			/* NOTE: we assume allocb returns an OK_32PTR */
20409 
20410 		must_alloc:;
20411 			mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH +
20412 			    tcp_wroff_xtra, BPRI_MED);
20413 			if (!mp1) {
20414 				freemsg(mp);
20415 				return (-1);	/* out_of_mem */
20416 			}
20417 			mp1->b_cont = mp;
20418 			mp = mp1;
20419 			/* Leave room for Link Level header */
20420 			len = tcp_hdr_len;
20421 			rptr = &mp->b_rptr[tcp_wroff_xtra];
20422 			mp->b_wptr = &rptr[len];
20423 		}
20424 
20425 		/*
20426 		 * Fill in the header using the template header, and add
20427 		 * options such as time-stamp, ECN and/or SACK, as needed.
20428 		 */
20429 		tcp_fill_header(tcp, rptr, (clock_t)local_time, num_sack_blk);
20430 
20431 		mp->b_rptr = rptr;
20432 
20433 		if (*tail_unsent) {
20434 			int spill = *tail_unsent;
20435 
20436 			mp1 = mp->b_cont;
20437 			if (!mp1)
20438 				mp1 = mp;
20439 
20440 			/*
20441 			 * If we're a little short, tack on more mblks until
20442 			 * there is no more spillover.
20443 			 */
20444 			while (spill < 0) {
20445 				mblk_t *nmp;
20446 				int nmpsz;
20447 
20448 				nmp = (*xmit_tail)->b_cont;
20449 				nmpsz = MBLKL(nmp);
20450 
20451 				/*
20452 				 * Excess data in mblk; can we split it?
20453 				 * If MDT is enabled for the connection,
20454 				 * keep on splitting as this is a transient
20455 				 * send path.
20456 				 */
20457 				if (!tcp->tcp_mdt && (spill + nmpsz > 0)) {
20458 					/*
20459 					 * Don't split if stream head was
20460 					 * told to break up larger writes
20461 					 * into smaller ones.
20462 					 */
20463 					if (tcp->tcp_maxpsz > 0)
20464 						break;
20465 
20466 					/*
20467 					 * Next mblk is less than SMSS/2
20468 					 * rounded up to nearest 64-byte;
20469 					 * let it get sent as part of the
20470 					 * next segment.
20471 					 */
20472 					if (tcp->tcp_localnet &&
20473 					    !tcp->tcp_cork &&
20474 					    (nmpsz < roundup((mss >> 1), 64)))
20475 						break;
20476 				}
20477 
20478 				*xmit_tail = nmp;
20479 				ASSERT((uintptr_t)nmpsz <= (uintptr_t)INT_MAX);
20480 				/* Stash for rtt use later */
20481 				(*xmit_tail)->b_prev = local_time;
20482 				(*xmit_tail)->b_next =
20483 				    (mblk_t *)(uintptr_t)(*snxt - len);
20484 				mp1->b_cont = dupb(*xmit_tail);
20485 				mp1 = mp1->b_cont;
20486 
20487 				spill += nmpsz;
20488 				if (mp1 == NULL) {
20489 					*tail_unsent = spill;
20490 					freemsg(mp);
20491 					return (-1);	/* out_of_mem */
20492 				}
20493 			}
20494 
20495 			/* Trim back any surplus on the last mblk */
20496 			if (spill >= 0) {
20497 				mp1->b_wptr -= spill;
20498 				*tail_unsent = spill;
20499 			} else {
20500 				/*
20501 				 * We did not send everything we could in
20502 				 * order to remain within the b_cont limit.
20503 				 */
20504 				*usable -= spill;
20505 				*snxt += spill;
20506 				tcp->tcp_last_sent_len += spill;
20507 				UPDATE_MIB(&tcp_mib, tcpOutDataBytes, spill);
20508 				/*
20509 				 * Adjust the checksum
20510 				 */
20511 				tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
20512 				sum += spill;
20513 				sum = (sum >> 16) + (sum & 0xFFFF);
20514 				U16_TO_ABE16(sum, tcph->th_sum);
20515 				if (tcp->tcp_ipversion == IPV4_VERSION) {
20516 					sum = ntohs(
20517 					    ((ipha_t *)rptr)->ipha_length) +
20518 					    spill;
20519 					((ipha_t *)rptr)->ipha_length =
20520 					    htons(sum);
20521 				} else {
20522 					sum = ntohs(
20523 					    ((ip6_t *)rptr)->ip6_plen) +
20524 					    spill;
20525 					((ip6_t *)rptr)->ip6_plen =
20526 					    htons(sum);
20527 				}
20528 				*tail_unsent = 0;
20529 			}
20530 		}
20531 		if (tcp->tcp_ip_forward_progress) {
20532 			ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
20533 			*(uint32_t *)mp->b_rptr  |= IP_FORWARD_PROG;
20534 			tcp->tcp_ip_forward_progress = B_FALSE;
20535 		}
20536 
20537 		TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
20538 		tcp_send_data(tcp, q, mp);
20539 		BUMP_LOCAL(tcp->tcp_obsegs);
20540 	}
20541 
20542 	return (0);
20543 }
20544 
20545 /* Unlink and return any mblk that looks like it contains a MDT info */
20546 static mblk_t *
20547 tcp_mdt_info_mp(mblk_t *mp)
20548 {
20549 	mblk_t	*prev_mp;
20550 
20551 	for (;;) {
20552 		prev_mp = mp;
20553 		/* no more to process? */
20554 		if ((mp = mp->b_cont) == NULL)
20555 			break;
20556 
20557 		switch (DB_TYPE(mp)) {
20558 		case M_CTL:
20559 			if (*(uint32_t *)mp->b_rptr != MDT_IOC_INFO_UPDATE)
20560 				continue;
20561 			ASSERT(prev_mp != NULL);
20562 			prev_mp->b_cont = mp->b_cont;
20563 			mp->b_cont = NULL;
20564 			return (mp);
20565 		default:
20566 			break;
20567 		}
20568 	}
20569 	return (mp);
20570 }
20571 
20572 /* MDT info update routine, called when IP notifies us about MDT */
20573 static void
20574 tcp_mdt_update(tcp_t *tcp, ill_mdt_capab_t *mdt_capab, boolean_t first)
20575 {
20576 	boolean_t prev_state;
20577 
20578 	/*
20579 	 * IP is telling us to abort MDT on this connection?  We know
20580 	 * this because the capability is only turned off when IP
20581 	 * encounters some pathological cases, e.g. link-layer change
20582 	 * where the new driver doesn't support MDT, or in situation
20583 	 * where MDT usage on the link-layer has been switched off.
20584 	 * IP would not have sent us the initial MDT_IOC_INFO_UPDATE
20585 	 * if the link-layer doesn't support MDT, and if it does, it
20586 	 * will indicate that the feature is to be turned on.
20587 	 */
20588 	prev_state = tcp->tcp_mdt;
20589 	tcp->tcp_mdt = (mdt_capab->ill_mdt_on != 0);
20590 	if (!tcp->tcp_mdt && !first) {
20591 		TCP_STAT(tcp_mdt_conn_halted3);
20592 		ip1dbg(("tcp_mdt_update: disabling MDT for connp %p\n",
20593 		    (void *)tcp->tcp_connp));
20594 	}
20595 
20596 	/*
20597 	 * We currently only support MDT on simple TCP/{IPv4,IPv6},
20598 	 * so disable MDT otherwise.  The checks are done here
20599 	 * and in tcp_wput_data().
20600 	 */
20601 	if (tcp->tcp_mdt &&
20602 	    (tcp->tcp_ipversion == IPV4_VERSION &&
20603 	    tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) ||
20604 	    (tcp->tcp_ipversion == IPV6_VERSION &&
20605 	    tcp->tcp_ip_hdr_len != IPV6_HDR_LEN))
20606 		tcp->tcp_mdt = B_FALSE;
20607 
20608 	if (tcp->tcp_mdt) {
20609 		if (mdt_capab->ill_mdt_version != MDT_VERSION_2) {
20610 			cmn_err(CE_NOTE, "tcp_mdt_update: unknown MDT "
20611 			    "version (%d), expected version is %d",
20612 			    mdt_capab->ill_mdt_version, MDT_VERSION_2);
20613 			tcp->tcp_mdt = B_FALSE;
20614 			return;
20615 		}
20616 
20617 		/*
20618 		 * We need the driver to be able to handle at least three
20619 		 * spans per packet in order for tcp MDT to be utilized.
20620 		 * The first is for the header portion, while the rest are
20621 		 * needed to handle a packet that straddles across two
20622 		 * virtually non-contiguous buffers; a typical tcp packet
20623 		 * therefore consists of only two spans.  Note that we take
20624 		 * a zero as "don't care".
20625 		 */
20626 		if (mdt_capab->ill_mdt_span_limit > 0 &&
20627 		    mdt_capab->ill_mdt_span_limit < 3) {
20628 			tcp->tcp_mdt = B_FALSE;
20629 			return;
20630 		}
20631 
20632 		/* a zero means driver wants default value */
20633 		tcp->tcp_mdt_max_pld = MIN(mdt_capab->ill_mdt_max_pld,
20634 		    tcp_mdt_max_pbufs);
20635 		if (tcp->tcp_mdt_max_pld == 0)
20636 			tcp->tcp_mdt_max_pld = tcp_mdt_max_pbufs;
20637 
20638 		/* ensure 32-bit alignment */
20639 		tcp->tcp_mdt_hdr_head = roundup(MAX(tcp_mdt_hdr_head_min,
20640 		    mdt_capab->ill_mdt_hdr_head), 4);
20641 		tcp->tcp_mdt_hdr_tail = roundup(MAX(tcp_mdt_hdr_tail_min,
20642 		    mdt_capab->ill_mdt_hdr_tail), 4);
20643 
20644 		if (!first && !prev_state) {
20645 			TCP_STAT(tcp_mdt_conn_resumed2);
20646 			ip1dbg(("tcp_mdt_update: reenabling MDT for connp %p\n",
20647 			    (void *)tcp->tcp_connp));
20648 		}
20649 	}
20650 }
20651 
20652 static void
20653 tcp_ire_ill_check(tcp_t *tcp, ire_t *ire, ill_t *ill, boolean_t check_mdt)
20654 {
20655 	conn_t *connp = tcp->tcp_connp;
20656 
20657 	ASSERT(ire != NULL);
20658 
20659 	/*
20660 	 * We may be in the fastpath here, and although we essentially do
20661 	 * similar checks as in ip_bind_connected{_v6}/ip_mdinfo_return,
20662 	 * we try to keep things as brief as possible.  After all, these
20663 	 * are only best-effort checks, and we do more thorough ones prior
20664 	 * to calling tcp_multisend().
20665 	 */
20666 	if (ip_multidata_outbound && check_mdt &&
20667 	    !(ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK)) &&
20668 	    ill != NULL && ILL_MDT_CAPABLE(ill) &&
20669 	    !CONN_IPSEC_OUT_ENCAPSULATED(connp) &&
20670 	    !(ire->ire_flags & RTF_MULTIRT) &&
20671 	    !IPP_ENABLED(IPP_LOCAL_OUT) &&
20672 	    CONN_IS_MD_FASTPATH(connp)) {
20673 		/* Remember the result */
20674 		connp->conn_mdt_ok = B_TRUE;
20675 
20676 		ASSERT(ill->ill_mdt_capab != NULL);
20677 		if (!ill->ill_mdt_capab->ill_mdt_on) {
20678 			/*
20679 			 * If MDT has been previously turned off in the past,
20680 			 * and we currently can do MDT (due to IPQoS policy
20681 			 * removal, etc.) then enable it for this interface.
20682 			 */
20683 			ill->ill_mdt_capab->ill_mdt_on = 1;
20684 			ip1dbg(("tcp_ire_ill_check: connp %p enables MDT for "
20685 			    "interface %s\n", (void *)connp, ill->ill_name));
20686 		}
20687 		tcp_mdt_update(tcp, ill->ill_mdt_capab, B_TRUE);
20688 	}
20689 
20690 	/*
20691 	 * The goal is to reduce the number of generated tcp segments by
20692 	 * setting the maxpsz multiplier to 0; this will have an affect on
20693 	 * tcp_maxpsz_set().  With this behavior, tcp will pack more data
20694 	 * into each packet, up to SMSS bytes.  Doing this reduces the number
20695 	 * of outbound segments and incoming ACKs, thus allowing for better
20696 	 * network and system performance.  In contrast the legacy behavior
20697 	 * may result in sending less than SMSS size, because the last mblk
20698 	 * for some packets may have more data than needed to make up SMSS,
20699 	 * and the legacy code refused to "split" it.
20700 	 *
20701 	 * We apply the new behavior on following situations:
20702 	 *
20703 	 *   1) Loopback connections,
20704 	 *   2) Connections in which the remote peer is not on local subnet,
20705 	 *   3) Local subnet connections over the bge interface (see below).
20706 	 *
20707 	 * Ideally, we would like this behavior to apply for interfaces other
20708 	 * than bge.  However, doing so would negatively impact drivers which
20709 	 * perform dynamic mapping and unmapping of DMA resources, which are
20710 	 * increased by setting the maxpsz multiplier to 0 (more mblks per
20711 	 * packet will be generated by tcp).  The bge driver does not suffer
20712 	 * from this, as it copies the mblks into pre-mapped buffers, and
20713 	 * therefore does not require more I/O resources than before.
20714 	 *
20715 	 * Otherwise, this behavior is present on all network interfaces when
20716 	 * the destination endpoint is non-local, since reducing the number
20717 	 * of packets in general is good for the network.
20718 	 *
20719 	 * TODO We need to remove this hard-coded conditional for bge once
20720 	 *	a better "self-tuning" mechanism, or a way to comprehend
20721 	 *	the driver transmit strategy is devised.  Until the solution
20722 	 *	is found and well understood, we live with this hack.
20723 	 */
20724 	if (!tcp_static_maxpsz &&
20725 	    (tcp->tcp_loopback || !tcp->tcp_localnet ||
20726 	    (ill->ill_name_length > 3 && bcmp(ill->ill_name, "bge", 3) == 0))) {
20727 		/* override the default value */
20728 		tcp->tcp_maxpsz = 0;
20729 
20730 		ip3dbg(("tcp_ire_ill_check: connp %p tcp_maxpsz %d on "
20731 		    "interface %s\n", (void *)connp, tcp->tcp_maxpsz,
20732 		    ill != NULL ? ill->ill_name : ipif_loopback_name));
20733 	}
20734 
20735 	/* set the stream head parameters accordingly */
20736 	(void) tcp_maxpsz_set(tcp, B_TRUE);
20737 }
20738 
20739 /* tcp_wput_flush is called by tcp_wput_nondata to handle M_FLUSH messages. */
20740 static void
20741 tcp_wput_flush(tcp_t *tcp, mblk_t *mp)
20742 {
20743 	uchar_t	fval = *mp->b_rptr;
20744 	mblk_t	*tail;
20745 	queue_t	*q = tcp->tcp_wq;
20746 
20747 	/* TODO: How should flush interact with urgent data? */
20748 	if ((fval & FLUSHW) && tcp->tcp_xmit_head &&
20749 	    !(tcp->tcp_valid_bits & TCP_URG_VALID)) {
20750 		/*
20751 		 * Flush only data that has not yet been put on the wire.  If
20752 		 * we flush data that we have already transmitted, life, as we
20753 		 * know it, may come to an end.
20754 		 */
20755 		tail = tcp->tcp_xmit_tail;
20756 		tail->b_wptr -= tcp->tcp_xmit_tail_unsent;
20757 		tcp->tcp_xmit_tail_unsent = 0;
20758 		tcp->tcp_unsent = 0;
20759 		if (tail->b_wptr != tail->b_rptr)
20760 			tail = tail->b_cont;
20761 		if (tail) {
20762 			mblk_t **excess = &tcp->tcp_xmit_head;
20763 			for (;;) {
20764 				mblk_t *mp1 = *excess;
20765 				if (mp1 == tail)
20766 					break;
20767 				tcp->tcp_xmit_tail = mp1;
20768 				tcp->tcp_xmit_last = mp1;
20769 				excess = &mp1->b_cont;
20770 			}
20771 			*excess = NULL;
20772 			tcp_close_mpp(&tail);
20773 			if (tcp->tcp_snd_zcopy_aware)
20774 				tcp_zcopy_notify(tcp);
20775 		}
20776 		/*
20777 		 * We have no unsent data, so unsent must be less than
20778 		 * tcp_xmit_lowater, so re-enable flow.
20779 		 */
20780 		if (tcp->tcp_flow_stopped) {
20781 			tcp_clrqfull(tcp);
20782 		}
20783 	}
20784 	/*
20785 	 * TODO: you can't just flush these, you have to increase rwnd for one
20786 	 * thing.  For another, how should urgent data interact?
20787 	 */
20788 	if (fval & FLUSHR) {
20789 		*mp->b_rptr = fval & ~FLUSHW;
20790 		/* XXX */
20791 		qreply(q, mp);
20792 		return;
20793 	}
20794 	freemsg(mp);
20795 }
20796 
20797 /*
20798  * tcp_wput_iocdata is called by tcp_wput_nondata to handle all M_IOCDATA
20799  * messages.
20800  */
20801 static void
20802 tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp)
20803 {
20804 	mblk_t	*mp1;
20805 	STRUCT_HANDLE(strbuf, sb);
20806 	uint16_t port;
20807 	queue_t 	*q = tcp->tcp_wq;
20808 	in6_addr_t	v6addr;
20809 	ipaddr_t	v4addr;
20810 	uint32_t	flowinfo = 0;
20811 	int		addrlen;
20812 
20813 	/* Make sure it is one of ours. */
20814 	switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) {
20815 	case TI_GETMYNAME:
20816 	case TI_GETPEERNAME:
20817 		break;
20818 	default:
20819 		CALL_IP_WPUT(tcp->tcp_connp, q, mp);
20820 		return;
20821 	}
20822 	switch (mi_copy_state(q, mp, &mp1)) {
20823 	case -1:
20824 		return;
20825 	case MI_COPY_CASE(MI_COPY_IN, 1):
20826 		break;
20827 	case MI_COPY_CASE(MI_COPY_OUT, 1):
20828 		/* Copy out the strbuf. */
20829 		mi_copyout(q, mp);
20830 		return;
20831 	case MI_COPY_CASE(MI_COPY_OUT, 2):
20832 		/* All done. */
20833 		mi_copy_done(q, mp, 0);
20834 		return;
20835 	default:
20836 		mi_copy_done(q, mp, EPROTO);
20837 		return;
20838 	}
20839 	/* Check alignment of the strbuf */
20840 	if (!OK_32PTR(mp1->b_rptr)) {
20841 		mi_copy_done(q, mp, EINVAL);
20842 		return;
20843 	}
20844 
20845 	STRUCT_SET_HANDLE(sb, ((struct iocblk *)mp->b_rptr)->ioc_flag,
20846 	    (void *)mp1->b_rptr);
20847 	addrlen = tcp->tcp_family == AF_INET ? sizeof (sin_t) : sizeof (sin6_t);
20848 
20849 	if (STRUCT_FGET(sb, maxlen) < addrlen) {
20850 		mi_copy_done(q, mp, EINVAL);
20851 		return;
20852 	}
20853 	switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) {
20854 	case TI_GETMYNAME:
20855 		if (tcp->tcp_family == AF_INET) {
20856 			if (tcp->tcp_ipversion == IPV4_VERSION) {
20857 				v4addr = tcp->tcp_ipha->ipha_src;
20858 			} else {
20859 				/* can't return an address in this case */
20860 				v4addr = 0;
20861 			}
20862 		} else {
20863 			/* tcp->tcp_family == AF_INET6 */
20864 			if (tcp->tcp_ipversion == IPV4_VERSION) {
20865 				IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
20866 				    &v6addr);
20867 			} else {
20868 				v6addr = tcp->tcp_ip6h->ip6_src;
20869 			}
20870 		}
20871 		port = tcp->tcp_lport;
20872 		break;
20873 	case TI_GETPEERNAME:
20874 		if (tcp->tcp_family == AF_INET) {
20875 			if (tcp->tcp_ipversion == IPV4_VERSION) {
20876 				IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_remote_v6,
20877 				    v4addr);
20878 			} else {
20879 				/* can't return an address in this case */
20880 				v4addr = 0;
20881 			}
20882 		} else {
20883 			/* tcp->tcp_family == AF_INET6) */
20884 			v6addr = tcp->tcp_remote_v6;
20885 			if (tcp->tcp_ipversion == IPV6_VERSION) {
20886 				/*
20887 				 * No flowinfo if tcp->tcp_ipversion is v4.
20888 				 *
20889 				 * flowinfo was already initialized to zero
20890 				 * where it was declared above, so only
20891 				 * set it if ipversion is v6.
20892 				 */
20893 				flowinfo = tcp->tcp_ip6h->ip6_vcf &
20894 				    ~IPV6_VERS_AND_FLOW_MASK;
20895 			}
20896 		}
20897 		port = tcp->tcp_fport;
20898 		break;
20899 	default:
20900 		mi_copy_done(q, mp, EPROTO);
20901 		return;
20902 	}
20903 	mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE);
20904 	if (!mp1)
20905 		return;
20906 
20907 	if (tcp->tcp_family == AF_INET) {
20908 		sin_t *sin;
20909 
20910 		STRUCT_FSET(sb, len, (int)sizeof (sin_t));
20911 		sin = (sin_t *)mp1->b_rptr;
20912 		mp1->b_wptr = (uchar_t *)&sin[1];
20913 		*sin = sin_null;
20914 		sin->sin_family = AF_INET;
20915 		sin->sin_addr.s_addr = v4addr;
20916 		sin->sin_port = port;
20917 	} else {
20918 		/* tcp->tcp_family == AF_INET6 */
20919 		sin6_t *sin6;
20920 
20921 		STRUCT_FSET(sb, len, (int)sizeof (sin6_t));
20922 		sin6 = (sin6_t *)mp1->b_rptr;
20923 		mp1->b_wptr = (uchar_t *)&sin6[1];
20924 		*sin6 = sin6_null;
20925 		sin6->sin6_family = AF_INET6;
20926 		sin6->sin6_flowinfo = flowinfo;
20927 		sin6->sin6_addr = v6addr;
20928 		sin6->sin6_port = port;
20929 	}
20930 	/* Copy out the address */
20931 	mi_copyout(q, mp);
20932 }
20933 
20934 /*
20935  * tcp_wput_ioctl is called by tcp_wput_nondata() to handle all M_IOCTL
20936  * messages.
20937  */
20938 /* ARGSUSED */
20939 static void
20940 tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2)
20941 {
20942 	conn_t 	*connp = (conn_t *)arg;
20943 	tcp_t	*tcp = connp->conn_tcp;
20944 	queue_t	*q = tcp->tcp_wq;
20945 	struct iocblk	*iocp;
20946 
20947 	ASSERT(DB_TYPE(mp) == M_IOCTL);
20948 	/*
20949 	 * Try and ASSERT the minimum possible references on the
20950 	 * conn early enough. Since we are executing on write side,
20951 	 * the connection is obviously not detached and that means
20952 	 * there is a ref each for TCP and IP. Since we are behind
20953 	 * the squeue, the minimum references needed are 3. If the
20954 	 * conn is in classifier hash list, there should be an
20955 	 * extra ref for that (we check both the possibilities).
20956 	 */
20957 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
20958 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
20959 
20960 	iocp = (struct iocblk *)mp->b_rptr;
20961 	switch (iocp->ioc_cmd) {
20962 	case TCP_IOC_DEFAULT_Q:
20963 		/* Wants to be the default wq. */
20964 		if (secpolicy_net_config(iocp->ioc_cr, B_FALSE) != 0) {
20965 			iocp->ioc_error = EPERM;
20966 			iocp->ioc_count = 0;
20967 			mp->b_datap->db_type = M_IOCACK;
20968 			qreply(q, mp);
20969 			return;
20970 		}
20971 		tcp_def_q_set(tcp, mp);
20972 		return;
20973 	case _SIOCSOCKFALLBACK:
20974 		/*
20975 		 * Either sockmod is about to be popped and the socket
20976 		 * would now be treated as a plain stream, or a module
20977 		 * is about to be pushed so we could no longer use read-
20978 		 * side synchronous streams for fused loopback tcp.
20979 		 * Drain any queued data and disable direct sockfs
20980 		 * interface from now on.
20981 		 */
20982 		if (!tcp->tcp_issocket) {
20983 			DB_TYPE(mp) = M_IOCNAK;
20984 			iocp->ioc_error = EINVAL;
20985 		} else {
20986 #ifdef	_ILP32
20987 			tcp->tcp_acceptor_id = (t_uscalar_t)RD(q);
20988 #else
20989 			tcp->tcp_acceptor_id = tcp->tcp_connp->conn_dev;
20990 #endif
20991 			/*
20992 			 * Insert this socket into the acceptor hash.
20993 			 * We might need it for T_CONN_RES message
20994 			 */
20995 			tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp);
20996 
20997 			if (tcp->tcp_fused) {
20998 				/*
20999 				 * This is a fused loopback tcp; disable
21000 				 * read-side synchronous streams interface
21001 				 * and drain any queued data.  It is okay
21002 				 * to do this for non-synchronous streams
21003 				 * fused tcp as well.
21004 				 */
21005 				tcp_fuse_disable_pair(tcp, B_FALSE);
21006 			}
21007 			tcp->tcp_issocket = B_FALSE;
21008 			TCP_STAT(tcp_sock_fallback);
21009 
21010 			DB_TYPE(mp) = M_IOCACK;
21011 			iocp->ioc_error = 0;
21012 		}
21013 		iocp->ioc_count = 0;
21014 		iocp->ioc_rval = 0;
21015 		qreply(q, mp);
21016 		return;
21017 	}
21018 	CALL_IP_WPUT(connp, q, mp);
21019 }
21020 
21021 /*
21022  * This routine is called by tcp_wput() to handle all TPI requests.
21023  */
21024 /* ARGSUSED */
21025 static void
21026 tcp_wput_proto(void *arg, mblk_t *mp, void *arg2)
21027 {
21028 	conn_t 	*connp = (conn_t *)arg;
21029 	tcp_t	*tcp = connp->conn_tcp;
21030 	union T_primitives *tprim = (union T_primitives *)mp->b_rptr;
21031 	uchar_t *rptr;
21032 	t_scalar_t type;
21033 	int len;
21034 	cred_t *cr = DB_CREDDEF(mp, tcp->tcp_cred);
21035 
21036 	/*
21037 	 * Try and ASSERT the minimum possible references on the
21038 	 * conn early enough. Since we are executing on write side,
21039 	 * the connection is obviously not detached and that means
21040 	 * there is a ref each for TCP and IP. Since we are behind
21041 	 * the squeue, the minimum references needed are 3. If the
21042 	 * conn is in classifier hash list, there should be an
21043 	 * extra ref for that (we check both the possibilities).
21044 	 */
21045 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
21046 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
21047 
21048 	rptr = mp->b_rptr;
21049 	ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
21050 	if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) {
21051 		type = ((union T_primitives *)rptr)->type;
21052 		if (type == T_EXDATA_REQ) {
21053 			uint32_t msize = msgdsize(mp->b_cont);
21054 
21055 			len = msize - 1;
21056 			if (len < 0) {
21057 				freemsg(mp);
21058 				return;
21059 			}
21060 			/*
21061 			 * Try to force urgent data out on the wire.
21062 			 * Even if we have unsent data this will
21063 			 * at least send the urgent flag.
21064 			 * XXX does not handle more flag correctly.
21065 			 */
21066 			len += tcp->tcp_unsent;
21067 			len += tcp->tcp_snxt;
21068 			tcp->tcp_urg = len;
21069 			tcp->tcp_valid_bits |= TCP_URG_VALID;
21070 
21071 			/* Bypass tcp protocol for fused tcp loopback */
21072 			if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize))
21073 				return;
21074 		} else if (type != T_DATA_REQ) {
21075 			goto non_urgent_data;
21076 		}
21077 		/* TODO: options, flags, ... from user */
21078 		/* Set length to zero for reclamation below */
21079 		tcp_wput_data(tcp, mp->b_cont, B_TRUE);
21080 		freeb(mp);
21081 		return;
21082 	} else {
21083 		if (tcp->tcp_debug) {
21084 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
21085 			    "tcp_wput_proto, dropping one...");
21086 		}
21087 		freemsg(mp);
21088 		return;
21089 	}
21090 
21091 non_urgent_data:
21092 
21093 	switch ((int)tprim->type) {
21094 	case T_SSL_PROXY_BIND_REQ:	/* an SSL proxy endpoint bind request */
21095 		/*
21096 		 * save the kssl_ent_t from the next block, and convert this
21097 		 * back to a normal bind_req.
21098 		 */
21099 		if (mp->b_cont != NULL) {
21100 		    ASSERT(MBLKL(mp->b_cont) >= sizeof (kssl_ent_t));
21101 
21102 			if (tcp->tcp_kssl_ent != NULL) {
21103 				kssl_release_ent(tcp->tcp_kssl_ent, NULL,
21104 				    KSSL_NO_PROXY);
21105 				tcp->tcp_kssl_ent = NULL;
21106 			}
21107 			bcopy(mp->b_cont->b_rptr, &tcp->tcp_kssl_ent,
21108 			    sizeof (kssl_ent_t));
21109 			kssl_hold_ent(tcp->tcp_kssl_ent);
21110 			freemsg(mp->b_cont);
21111 			mp->b_cont = NULL;
21112 		}
21113 		tprim->type = T_BIND_REQ;
21114 
21115 	/* FALLTHROUGH */
21116 	case O_T_BIND_REQ:	/* bind request */
21117 	case T_BIND_REQ:	/* new semantics bind request */
21118 		tcp_bind(tcp, mp);
21119 		break;
21120 	case T_UNBIND_REQ:	/* unbind request */
21121 		tcp_unbind(tcp, mp);
21122 		break;
21123 	case O_T_CONN_RES:	/* old connection response XXX */
21124 	case T_CONN_RES:	/* connection response */
21125 		tcp_accept(tcp, mp);
21126 		break;
21127 	case T_CONN_REQ:	/* connection request */
21128 		tcp_connect(tcp, mp);
21129 		break;
21130 	case T_DISCON_REQ:	/* disconnect request */
21131 		tcp_disconnect(tcp, mp);
21132 		break;
21133 	case T_CAPABILITY_REQ:
21134 		tcp_capability_req(tcp, mp);	/* capability request */
21135 		break;
21136 	case T_INFO_REQ:	/* information request */
21137 		tcp_info_req(tcp, mp);
21138 		break;
21139 	case T_SVR4_OPTMGMT_REQ:	/* manage options req */
21140 		/* Only IP is allowed to return meaningful value */
21141 		(void) svr4_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj);
21142 		break;
21143 	case T_OPTMGMT_REQ:
21144 		/*
21145 		 * Note:  no support for snmpcom_req() through new
21146 		 * T_OPTMGMT_REQ. See comments in ip.c
21147 		 */
21148 		/* Only IP is allowed to return meaningful value */
21149 		(void) tpi_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj);
21150 		break;
21151 
21152 	case T_UNITDATA_REQ:	/* unitdata request */
21153 		tcp_err_ack(tcp, mp, TNOTSUPPORT, 0);
21154 		break;
21155 	case T_ORDREL_REQ:	/* orderly release req */
21156 		freemsg(mp);
21157 
21158 		if (tcp->tcp_fused)
21159 			tcp_unfuse(tcp);
21160 
21161 		if (tcp_xmit_end(tcp) != 0) {
21162 			/*
21163 			 * We were crossing FINs and got a reset from
21164 			 * the other side. Just ignore it.
21165 			 */
21166 			if (tcp->tcp_debug) {
21167 				(void) strlog(TCP_MOD_ID, 0, 1,
21168 				    SL_ERROR|SL_TRACE,
21169 				    "tcp_wput_proto, T_ORDREL_REQ out of "
21170 				    "state %s",
21171 				    tcp_display(tcp, NULL,
21172 				    DISP_ADDR_AND_PORT));
21173 			}
21174 		}
21175 		break;
21176 	case T_ADDR_REQ:
21177 		tcp_addr_req(tcp, mp);
21178 		break;
21179 	default:
21180 		if (tcp->tcp_debug) {
21181 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
21182 			    "tcp_wput_proto, bogus TPI msg, type %d",
21183 			    tprim->type);
21184 		}
21185 		/*
21186 		 * We used to M_ERROR.  Sending TNOTSUPPORT gives the user
21187 		 * to recover.
21188 		 */
21189 		tcp_err_ack(tcp, mp, TNOTSUPPORT, 0);
21190 		break;
21191 	}
21192 }
21193 
21194 /*
21195  * The TCP write service routine should never be called...
21196  */
21197 /* ARGSUSED */
21198 static void
21199 tcp_wsrv(queue_t *q)
21200 {
21201 	TCP_STAT(tcp_wsrv_called);
21202 }
21203 
21204 /* Non overlapping byte exchanger */
21205 static void
21206 tcp_xchg(uchar_t *a, uchar_t *b, int len)
21207 {
21208 	uchar_t	uch;
21209 
21210 	while (len-- > 0) {
21211 		uch = a[len];
21212 		a[len] = b[len];
21213 		b[len] = uch;
21214 	}
21215 }
21216 
21217 /*
21218  * Send out a control packet on the tcp connection specified.  This routine
21219  * is typically called where we need a simple ACK or RST generated.
21220  */
21221 static void
21222 tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, uint32_t ack, int ctl)
21223 {
21224 	uchar_t		*rptr;
21225 	tcph_t		*tcph;
21226 	ipha_t		*ipha = NULL;
21227 	ip6_t		*ip6h = NULL;
21228 	uint32_t	sum;
21229 	int		tcp_hdr_len;
21230 	int		tcp_ip_hdr_len;
21231 	mblk_t		*mp;
21232 
21233 	/*
21234 	 * Save sum for use in source route later.
21235 	 */
21236 	ASSERT(tcp != NULL);
21237 	sum = tcp->tcp_tcp_hdr_len + tcp->tcp_sum;
21238 	tcp_hdr_len = tcp->tcp_hdr_len;
21239 	tcp_ip_hdr_len = tcp->tcp_ip_hdr_len;
21240 
21241 	/* If a text string is passed in with the request, pass it to strlog. */
21242 	if (str != NULL && tcp->tcp_debug) {
21243 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
21244 		    "tcp_xmit_ctl: '%s', seq 0x%x, ack 0x%x, ctl 0x%x",
21245 		    str, seq, ack, ctl);
21246 	}
21247 	mp = allocb(tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcp_wroff_xtra,
21248 	    BPRI_MED);
21249 	if (mp == NULL) {
21250 		return;
21251 	}
21252 	rptr = &mp->b_rptr[tcp_wroff_xtra];
21253 	mp->b_rptr = rptr;
21254 	mp->b_wptr = &rptr[tcp_hdr_len];
21255 	bcopy(tcp->tcp_iphc, rptr, tcp_hdr_len);
21256 
21257 	if (tcp->tcp_ipversion == IPV4_VERSION) {
21258 		ipha = (ipha_t *)rptr;
21259 		ipha->ipha_length = htons(tcp_hdr_len);
21260 	} else {
21261 		ip6h = (ip6_t *)rptr;
21262 		ASSERT(tcp != NULL);
21263 		ip6h->ip6_plen = htons(tcp->tcp_hdr_len -
21264 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
21265 	}
21266 	tcph = (tcph_t *)&rptr[tcp_ip_hdr_len];
21267 	tcph->th_flags[0] = (uint8_t)ctl;
21268 	if (ctl & TH_RST) {
21269 		BUMP_MIB(&tcp_mib, tcpOutRsts);
21270 		BUMP_MIB(&tcp_mib, tcpOutControl);
21271 		/*
21272 		 * Don't send TSopt w/ TH_RST packets per RFC 1323.
21273 		 */
21274 		if (tcp->tcp_snd_ts_ok &&
21275 		    tcp->tcp_state > TCPS_SYN_SENT) {
21276 			mp->b_wptr = &rptr[tcp_hdr_len - TCPOPT_REAL_TS_LEN];
21277 			*(mp->b_wptr) = TCPOPT_EOL;
21278 			if (tcp->tcp_ipversion == IPV4_VERSION) {
21279 				ipha->ipha_length = htons(tcp_hdr_len -
21280 				    TCPOPT_REAL_TS_LEN);
21281 			} else {
21282 				ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) -
21283 				    TCPOPT_REAL_TS_LEN);
21284 			}
21285 			tcph->th_offset_and_rsrvd[0] -= (3 << 4);
21286 			sum -= TCPOPT_REAL_TS_LEN;
21287 		}
21288 	}
21289 	if (ctl & TH_ACK) {
21290 		if (tcp->tcp_snd_ts_ok) {
21291 			U32_TO_BE32(lbolt,
21292 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
21293 			U32_TO_BE32(tcp->tcp_ts_recent,
21294 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
21295 		}
21296 
21297 		/* Update the latest receive window size in TCP header. */
21298 		U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
21299 		    tcph->th_win);
21300 		tcp->tcp_rack = ack;
21301 		tcp->tcp_rack_cnt = 0;
21302 		BUMP_MIB(&tcp_mib, tcpOutAck);
21303 	}
21304 	BUMP_LOCAL(tcp->tcp_obsegs);
21305 	U32_TO_BE32(seq, tcph->th_seq);
21306 	U32_TO_BE32(ack, tcph->th_ack);
21307 	/*
21308 	 * Include the adjustment for a source route if any.
21309 	 */
21310 	sum = (sum >> 16) + (sum & 0xFFFF);
21311 	U16_TO_BE16(sum, tcph->th_sum);
21312 	TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
21313 	tcp_send_data(tcp, tcp->tcp_wq, mp);
21314 }
21315 
21316 /*
21317  * If this routine returns B_TRUE, TCP can generate a RST in response
21318  * to a segment.  If it returns B_FALSE, TCP should not respond.
21319  */
21320 static boolean_t
21321 tcp_send_rst_chk(void)
21322 {
21323 	clock_t	now;
21324 
21325 	/*
21326 	 * TCP needs to protect itself from generating too many RSTs.
21327 	 * This can be a DoS attack by sending us random segments
21328 	 * soliciting RSTs.
21329 	 *
21330 	 * What we do here is to have a limit of tcp_rst_sent_rate RSTs
21331 	 * in each 1 second interval.  In this way, TCP still generate
21332 	 * RSTs in normal cases but when under attack, the impact is
21333 	 * limited.
21334 	 */
21335 	if (tcp_rst_sent_rate_enabled != 0) {
21336 		now = lbolt;
21337 		/* lbolt can wrap around. */
21338 		if ((tcp_last_rst_intrvl > now) ||
21339 		    (TICK_TO_MSEC(now - tcp_last_rst_intrvl) > 1*SECONDS)) {
21340 			tcp_last_rst_intrvl = now;
21341 			tcp_rst_cnt = 1;
21342 		} else if (++tcp_rst_cnt > tcp_rst_sent_rate) {
21343 			return (B_FALSE);
21344 		}
21345 	}
21346 	return (B_TRUE);
21347 }
21348 
21349 /*
21350  * Send down the advice IP ioctl to tell IP to mark an IRE temporary.
21351  */
21352 static void
21353 tcp_ip_ire_mark_advice(tcp_t *tcp)
21354 {
21355 	mblk_t *mp;
21356 	ipic_t *ipic;
21357 
21358 	if (tcp->tcp_ipversion == IPV4_VERSION) {
21359 		mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN,
21360 		    &ipic);
21361 	} else {
21362 		mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN,
21363 		    &ipic);
21364 	}
21365 	if (mp == NULL)
21366 		return;
21367 	ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY;
21368 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
21369 }
21370 
21371 /*
21372  * Return an IP advice ioctl mblk and set ipic to be the pointer
21373  * to the advice structure.
21374  */
21375 static mblk_t *
21376 tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic)
21377 {
21378 	struct iocblk *ioc;
21379 	mblk_t *mp, *mp1;
21380 
21381 	mp = allocb(sizeof (ipic_t) + addr_len, BPRI_HI);
21382 	if (mp == NULL)
21383 		return (NULL);
21384 	bzero(mp->b_rptr, sizeof (ipic_t) + addr_len);
21385 	*ipic = (ipic_t *)mp->b_rptr;
21386 	(*ipic)->ipic_cmd = IP_IOC_IRE_ADVISE_NO_REPLY;
21387 	(*ipic)->ipic_addr_offset = sizeof (ipic_t);
21388 
21389 	bcopy(addr, *ipic + 1, addr_len);
21390 
21391 	(*ipic)->ipic_addr_length = addr_len;
21392 	mp->b_wptr = &mp->b_rptr[sizeof (ipic_t) + addr_len];
21393 
21394 	mp1 = mkiocb(IP_IOCTL);
21395 	if (mp1 == NULL) {
21396 		freemsg(mp);
21397 		return (NULL);
21398 	}
21399 	mp1->b_cont = mp;
21400 	ioc = (struct iocblk *)mp1->b_rptr;
21401 	ioc->ioc_count = sizeof (ipic_t) + addr_len;
21402 
21403 	return (mp1);
21404 }
21405 
21406 /*
21407  * Generate a reset based on an inbound packet for which there is no active
21408  * tcp state that we can find.
21409  *
21410  * IPSEC NOTE : Try to send the reply with the same protection as it came
21411  * in.  We still have the ipsec_mp that the packet was attached to. Thus
21412  * the packet will go out at the same level of protection as it came in by
21413  * converting the IPSEC_IN to IPSEC_OUT.
21414  */
21415 static void
21416 tcp_xmit_early_reset(char *str, mblk_t *mp, uint32_t seq,
21417     uint32_t ack, int ctl, uint_t ip_hdr_len)
21418 {
21419 	ipha_t		*ipha = NULL;
21420 	ip6_t		*ip6h = NULL;
21421 	ushort_t	len;
21422 	tcph_t		*tcph;
21423 	int		i;
21424 	mblk_t		*ipsec_mp;
21425 	boolean_t	mctl_present;
21426 	ipic_t		*ipic;
21427 	ipaddr_t	v4addr;
21428 	in6_addr_t	v6addr;
21429 	int		addr_len;
21430 	void		*addr;
21431 	queue_t		*q = tcp_g_q;
21432 	tcp_t		*tcp = Q_TO_TCP(q);
21433 	cred_t		*cr;
21434 
21435 	if (!tcp_send_rst_chk()) {
21436 		tcp_rst_unsent++;
21437 		freemsg(mp);
21438 		return;
21439 	}
21440 
21441 	if (mp->b_datap->db_type == M_CTL) {
21442 		ipsec_mp = mp;
21443 		mp = mp->b_cont;
21444 		mctl_present = B_TRUE;
21445 	} else {
21446 		ipsec_mp = mp;
21447 		mctl_present = B_FALSE;
21448 	}
21449 
21450 	if (str && q && tcp_dbg) {
21451 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
21452 		    "tcp_xmit_early_reset: '%s', seq 0x%x, ack 0x%x, "
21453 		    "flags 0x%x",
21454 		    str, seq, ack, ctl);
21455 	}
21456 	if (mp->b_datap->db_ref != 1) {
21457 		mblk_t *mp1 = copyb(mp);
21458 		freemsg(mp);
21459 		mp = mp1;
21460 		if (!mp) {
21461 			if (mctl_present)
21462 				freeb(ipsec_mp);
21463 			return;
21464 		} else {
21465 			if (mctl_present) {
21466 				ipsec_mp->b_cont = mp;
21467 			} else {
21468 				ipsec_mp = mp;
21469 			}
21470 		}
21471 	} else if (mp->b_cont) {
21472 		freemsg(mp->b_cont);
21473 		mp->b_cont = NULL;
21474 	}
21475 	/*
21476 	 * We skip reversing source route here.
21477 	 * (for now we replace all IP options with EOL)
21478 	 */
21479 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
21480 		ipha = (ipha_t *)mp->b_rptr;
21481 		for (i = IP_SIMPLE_HDR_LENGTH; i < (int)ip_hdr_len; i++)
21482 			mp->b_rptr[i] = IPOPT_EOL;
21483 		/*
21484 		 * Make sure that src address isn't flagrantly invalid.
21485 		 * Not all broadcast address checking for the src address
21486 		 * is possible, since we don't know the netmask of the src
21487 		 * addr.  No check for destination address is done, since
21488 		 * IP will not pass up a packet with a broadcast dest
21489 		 * address to TCP.  Similar checks are done below for IPv6.
21490 		 */
21491 		if (ipha->ipha_src == 0 || ipha->ipha_src == INADDR_BROADCAST ||
21492 		    CLASSD(ipha->ipha_src)) {
21493 			freemsg(ipsec_mp);
21494 			BUMP_MIB(&ip_mib, ipInDiscards);
21495 			return;
21496 		}
21497 	} else {
21498 		ip6h = (ip6_t *)mp->b_rptr;
21499 
21500 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src) ||
21501 		    IN6_IS_ADDR_MULTICAST(&ip6h->ip6_src)) {
21502 			freemsg(ipsec_mp);
21503 			BUMP_MIB(&ip6_mib, ipv6InDiscards);
21504 			return;
21505 		}
21506 
21507 		/* Remove any extension headers assuming partial overlay */
21508 		if (ip_hdr_len > IPV6_HDR_LEN) {
21509 			uint8_t *to;
21510 
21511 			to = mp->b_rptr + ip_hdr_len - IPV6_HDR_LEN;
21512 			ovbcopy(ip6h, to, IPV6_HDR_LEN);
21513 			mp->b_rptr += ip_hdr_len - IPV6_HDR_LEN;
21514 			ip_hdr_len = IPV6_HDR_LEN;
21515 			ip6h = (ip6_t *)mp->b_rptr;
21516 			ip6h->ip6_nxt = IPPROTO_TCP;
21517 		}
21518 	}
21519 	tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
21520 	if (tcph->th_flags[0] & TH_RST) {
21521 		freemsg(ipsec_mp);
21522 		return;
21523 	}
21524 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
21525 	len = ip_hdr_len + sizeof (tcph_t);
21526 	mp->b_wptr = &mp->b_rptr[len];
21527 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
21528 		ipha->ipha_length = htons(len);
21529 		/* Swap addresses */
21530 		v4addr = ipha->ipha_src;
21531 		ipha->ipha_src = ipha->ipha_dst;
21532 		ipha->ipha_dst = v4addr;
21533 		ipha->ipha_ident = 0;
21534 		ipha->ipha_ttl = (uchar_t)tcp_ipv4_ttl;
21535 		addr_len = IP_ADDR_LEN;
21536 		addr = &v4addr;
21537 	} else {
21538 		/* No ip6i_t in this case */
21539 		ip6h->ip6_plen = htons(len - IPV6_HDR_LEN);
21540 		/* Swap addresses */
21541 		v6addr = ip6h->ip6_src;
21542 		ip6h->ip6_src = ip6h->ip6_dst;
21543 		ip6h->ip6_dst = v6addr;
21544 		ip6h->ip6_hops = (uchar_t)tcp_ipv6_hoplimit;
21545 		addr_len = IPV6_ADDR_LEN;
21546 		addr = &v6addr;
21547 	}
21548 	tcp_xchg(tcph->th_fport, tcph->th_lport, 2);
21549 	U32_TO_BE32(ack, tcph->th_ack);
21550 	U32_TO_BE32(seq, tcph->th_seq);
21551 	U16_TO_BE16(0, tcph->th_win);
21552 	U16_TO_BE16(sizeof (tcph_t), tcph->th_sum);
21553 	tcph->th_flags[0] = (uint8_t)ctl;
21554 	if (ctl & TH_RST) {
21555 		BUMP_MIB(&tcp_mib, tcpOutRsts);
21556 		BUMP_MIB(&tcp_mib, tcpOutControl);
21557 	}
21558 
21559 	/* IP trusts us to set up labels when required. */
21560 	if (is_system_labeled() && (cr = DB_CRED(mp)) != NULL &&
21561 	    crgetlabel(cr) != NULL) {
21562 		int err, adjust;
21563 
21564 		if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION)
21565 			err = tsol_check_label(cr, &mp, &adjust,
21566 			    tcp->tcp_connp->conn_mac_exempt);
21567 		else
21568 			err = tsol_check_label_v6(cr, &mp, &adjust,
21569 			    tcp->tcp_connp->conn_mac_exempt);
21570 		if (mctl_present)
21571 			ipsec_mp->b_cont = mp;
21572 		else
21573 			ipsec_mp = mp;
21574 		if (err != 0) {
21575 			freemsg(ipsec_mp);
21576 			return;
21577 		}
21578 		if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
21579 			ipha = (ipha_t *)mp->b_rptr;
21580 			adjust += ntohs(ipha->ipha_length);
21581 			ipha->ipha_length = htons(adjust);
21582 		} else {
21583 			ip6h = (ip6_t *)mp->b_rptr;
21584 		}
21585 	}
21586 
21587 	if (mctl_present) {
21588 		ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr;
21589 
21590 		ASSERT(ii->ipsec_in_type == IPSEC_IN);
21591 		if (!ipsec_in_to_out(ipsec_mp, ipha, ip6h)) {
21592 			return;
21593 		}
21594 	}
21595 	/*
21596 	 * NOTE:  one might consider tracing a TCP packet here, but
21597 	 * this function has no active TCP state and no tcp structure
21598 	 * that has a trace buffer.  If we traced here, we would have
21599 	 * to keep a local trace buffer in tcp_record_trace().
21600 	 *
21601 	 * TSol note: The mblk that contains the incoming packet was
21602 	 * reused by tcp_xmit_listener_reset, so it already contains
21603 	 * the right credentials and we don't need to call mblk_setcred.
21604 	 * Also the conn's cred is not right since it is associated
21605 	 * with tcp_g_q.
21606 	 */
21607 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, ipsec_mp);
21608 
21609 	/*
21610 	 * Tell IP to mark the IRE used for this destination temporary.
21611 	 * This way, we can limit our exposure to DoS attack because IP
21612 	 * creates an IRE for each destination.  If there are too many,
21613 	 * the time to do any routing lookup will be extremely long.  And
21614 	 * the lookup can be in interrupt context.
21615 	 *
21616 	 * Note that in normal circumstances, this marking should not
21617 	 * affect anything.  It would be nice if only 1 message is
21618 	 * needed to inform IP that the IRE created for this RST should
21619 	 * not be added to the cache table.  But there is currently
21620 	 * not such communication mechanism between TCP and IP.  So
21621 	 * the best we can do now is to send the advice ioctl to IP
21622 	 * to mark the IRE temporary.
21623 	 */
21624 	if ((mp = tcp_ip_advise_mblk(addr, addr_len, &ipic)) != NULL) {
21625 		ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY;
21626 		CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
21627 	}
21628 }
21629 
21630 /*
21631  * Initiate closedown sequence on an active connection.  (May be called as
21632  * writer.)  Return value zero for OK return, non-zero for error return.
21633  */
21634 static int
21635 tcp_xmit_end(tcp_t *tcp)
21636 {
21637 	ipic_t	*ipic;
21638 	mblk_t	*mp;
21639 
21640 	if (tcp->tcp_state < TCPS_SYN_RCVD ||
21641 	    tcp->tcp_state > TCPS_CLOSE_WAIT) {
21642 		/*
21643 		 * Invalid state, only states TCPS_SYN_RCVD,
21644 		 * TCPS_ESTABLISHED and TCPS_CLOSE_WAIT are valid
21645 		 */
21646 		return (-1);
21647 	}
21648 
21649 	tcp->tcp_fss = tcp->tcp_snxt + tcp->tcp_unsent;
21650 	tcp->tcp_valid_bits |= TCP_FSS_VALID;
21651 	/*
21652 	 * If there is nothing more unsent, send the FIN now.
21653 	 * Otherwise, it will go out with the last segment.
21654 	 */
21655 	if (tcp->tcp_unsent == 0) {
21656 		mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL,
21657 		    tcp->tcp_fss, B_FALSE, NULL, B_FALSE);
21658 
21659 		if (mp) {
21660 			TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
21661 			tcp_send_data(tcp, tcp->tcp_wq, mp);
21662 		} else {
21663 			/*
21664 			 * Couldn't allocate msg.  Pretend we got it out.
21665 			 * Wait for rexmit timeout.
21666 			 */
21667 			tcp->tcp_snxt = tcp->tcp_fss + 1;
21668 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
21669 		}
21670 
21671 		/*
21672 		 * If needed, update tcp_rexmit_snxt as tcp_snxt is
21673 		 * changed.
21674 		 */
21675 		if (tcp->tcp_rexmit && tcp->tcp_rexmit_nxt == tcp->tcp_fss) {
21676 			tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
21677 		}
21678 	} else {
21679 		/*
21680 		 * If tcp->tcp_cork is set, then the data will not get sent,
21681 		 * so we have to check that and unset it first.
21682 		 */
21683 		if (tcp->tcp_cork)
21684 			tcp->tcp_cork = B_FALSE;
21685 		tcp_wput_data(tcp, NULL, B_FALSE);
21686 	}
21687 
21688 	/*
21689 	 * If TCP does not get enough samples of RTT or tcp_rtt_updates
21690 	 * is 0, don't update the cache.
21691 	 */
21692 	if (tcp_rtt_updates == 0 || tcp->tcp_rtt_update < tcp_rtt_updates)
21693 		return (0);
21694 
21695 	/*
21696 	 * NOTE: should not update if source routes i.e. if tcp_remote if
21697 	 * different from the destination.
21698 	 */
21699 	if (tcp->tcp_ipversion == IPV4_VERSION) {
21700 		if (tcp->tcp_remote !=  tcp->tcp_ipha->ipha_dst) {
21701 			return (0);
21702 		}
21703 		mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN,
21704 		    &ipic);
21705 	} else {
21706 		if (!(IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6,
21707 		    &tcp->tcp_ip6h->ip6_dst))) {
21708 			return (0);
21709 		}
21710 		mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN,
21711 		    &ipic);
21712 	}
21713 
21714 	/* Record route attributes in the IRE for use by future connections. */
21715 	if (mp == NULL)
21716 		return (0);
21717 
21718 	/*
21719 	 * We do not have a good algorithm to update ssthresh at this time.
21720 	 * So don't do any update.
21721 	 */
21722 	ipic->ipic_rtt = tcp->tcp_rtt_sa;
21723 	ipic->ipic_rtt_sd = tcp->tcp_rtt_sd;
21724 
21725 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
21726 	return (0);
21727 }
21728 
21729 /*
21730  * Generate a "no listener here" RST in response to an "unknown" segment.
21731  * Note that we are reusing the incoming mp to construct the outgoing
21732  * RST.
21733  */
21734 void
21735 tcp_xmit_listeners_reset(mblk_t *mp, uint_t ip_hdr_len)
21736 {
21737 	uchar_t		*rptr;
21738 	uint32_t	seg_len;
21739 	tcph_t		*tcph;
21740 	uint32_t	seg_seq;
21741 	uint32_t	seg_ack;
21742 	uint_t		flags;
21743 	mblk_t		*ipsec_mp;
21744 	ipha_t 		*ipha;
21745 	ip6_t 		*ip6h;
21746 	boolean_t	mctl_present = B_FALSE;
21747 	boolean_t	check = B_TRUE;
21748 	boolean_t	policy_present;
21749 
21750 	TCP_STAT(tcp_no_listener);
21751 
21752 	ipsec_mp = mp;
21753 
21754 	if (mp->b_datap->db_type == M_CTL) {
21755 		ipsec_in_t *ii;
21756 
21757 		mctl_present = B_TRUE;
21758 		mp = mp->b_cont;
21759 
21760 		ii = (ipsec_in_t *)ipsec_mp->b_rptr;
21761 		ASSERT(ii->ipsec_in_type == IPSEC_IN);
21762 		if (ii->ipsec_in_dont_check) {
21763 			check = B_FALSE;
21764 			if (!ii->ipsec_in_secure) {
21765 				freeb(ipsec_mp);
21766 				mctl_present = B_FALSE;
21767 				ipsec_mp = mp;
21768 			}
21769 		}
21770 	}
21771 
21772 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
21773 		policy_present = ipsec_inbound_v4_policy_present;
21774 		ipha = (ipha_t *)mp->b_rptr;
21775 		ip6h = NULL;
21776 	} else {
21777 		policy_present = ipsec_inbound_v6_policy_present;
21778 		ipha = NULL;
21779 		ip6h = (ip6_t *)mp->b_rptr;
21780 	}
21781 
21782 	if (check && policy_present) {
21783 		/*
21784 		 * The conn_t parameter is NULL because we already know
21785 		 * nobody's home.
21786 		 */
21787 		ipsec_mp = ipsec_check_global_policy(
21788 			ipsec_mp, (conn_t *)NULL, ipha, ip6h, mctl_present);
21789 		if (ipsec_mp == NULL)
21790 			return;
21791 	}
21792 	if (is_system_labeled() && !tsol_can_reply_error(mp)) {
21793 		DTRACE_PROBE2(
21794 		    tx__ip__log__error__nolistener__tcp,
21795 		    char *, "Could not reply with RST to mp(1)",
21796 		    mblk_t *, mp);
21797 		ip2dbg(("tcp_xmit_listeners_reset: not permitted to reply\n"));
21798 		freemsg(ipsec_mp);
21799 		return;
21800 	}
21801 
21802 	rptr = mp->b_rptr;
21803 
21804 	tcph = (tcph_t *)&rptr[ip_hdr_len];
21805 	seg_seq = BE32_TO_U32(tcph->th_seq);
21806 	seg_ack = BE32_TO_U32(tcph->th_ack);
21807 	flags = tcph->th_flags[0];
21808 
21809 	seg_len = msgdsize(mp) - (TCP_HDR_LENGTH(tcph) + ip_hdr_len);
21810 	if (flags & TH_RST) {
21811 		freemsg(ipsec_mp);
21812 	} else if (flags & TH_ACK) {
21813 		tcp_xmit_early_reset("no tcp, reset",
21814 		    ipsec_mp, seg_ack, 0, TH_RST, ip_hdr_len);
21815 	} else {
21816 		if (flags & TH_SYN) {
21817 			seg_len++;
21818 		} else {
21819 			/*
21820 			 * Here we violate the RFC.  Note that a normal
21821 			 * TCP will never send a segment without the ACK
21822 			 * flag, except for RST or SYN segment.  This
21823 			 * segment is neither.  Just drop it on the
21824 			 * floor.
21825 			 */
21826 			freemsg(ipsec_mp);
21827 			tcp_rst_unsent++;
21828 			return;
21829 		}
21830 
21831 		tcp_xmit_early_reset("no tcp, reset/ack",
21832 		    ipsec_mp, 0, seg_seq + seg_len,
21833 		    TH_RST | TH_ACK, ip_hdr_len);
21834 	}
21835 }
21836 
21837 /*
21838  * tcp_xmit_mp is called to return a pointer to an mblk chain complete with
21839  * ip and tcp header ready to pass down to IP.  If the mp passed in is
21840  * non-NULL, then up to max_to_send bytes of data will be dup'ed off that
21841  * mblk. (If sendall is not set the dup'ing will stop at an mblk boundary
21842  * otherwise it will dup partial mblks.)
21843  * Otherwise, an appropriate ACK packet will be generated.  This
21844  * routine is not usually called to send new data for the first time.  It
21845  * is mostly called out of the timer for retransmits, and to generate ACKs.
21846  *
21847  * If offset is not NULL, the returned mblk chain's first mblk's b_rptr will
21848  * be adjusted by *offset.  And after dupb(), the offset and the ending mblk
21849  * of the original mblk chain will be returned in *offset and *end_mp.
21850  */
21851 static mblk_t *
21852 tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, int32_t *offset,
21853     mblk_t **end_mp, uint32_t seq, boolean_t sendall, uint32_t *seg_len,
21854     boolean_t rexmit)
21855 {
21856 	int	data_length;
21857 	int32_t	off = 0;
21858 	uint_t	flags;
21859 	mblk_t	*mp1;
21860 	mblk_t	*mp2;
21861 	uchar_t	*rptr;
21862 	tcph_t	*tcph;
21863 	int32_t	num_sack_blk = 0;
21864 	int32_t	sack_opt_len = 0;
21865 
21866 	/* Allocate for our maximum TCP header + link-level */
21867 	mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcp_wroff_xtra,
21868 	    BPRI_MED);
21869 	if (!mp1)
21870 		return (NULL);
21871 	data_length = 0;
21872 
21873 	/*
21874 	 * Note that tcp_mss has been adjusted to take into account the
21875 	 * timestamp option if applicable.  Because SACK options do not
21876 	 * appear in every TCP segments and they are of variable lengths,
21877 	 * they cannot be included in tcp_mss.  Thus we need to calculate
21878 	 * the actual segment length when we need to send a segment which
21879 	 * includes SACK options.
21880 	 */
21881 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
21882 		num_sack_blk = MIN(tcp->tcp_max_sack_blk,
21883 		    tcp->tcp_num_sack_blk);
21884 		sack_opt_len = num_sack_blk * sizeof (sack_blk_t) +
21885 		    TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN;
21886 		if (max_to_send + sack_opt_len > tcp->tcp_mss)
21887 			max_to_send -= sack_opt_len;
21888 	}
21889 
21890 	if (offset != NULL) {
21891 		off = *offset;
21892 		/* We use offset as an indicator that end_mp is not NULL. */
21893 		*end_mp = NULL;
21894 	}
21895 	for (mp2 = mp1; mp && data_length != max_to_send; mp = mp->b_cont) {
21896 		/* This could be faster with cooperation from downstream */
21897 		if (mp2 != mp1 && !sendall &&
21898 		    data_length + (int)(mp->b_wptr - mp->b_rptr) >
21899 		    max_to_send)
21900 			/*
21901 			 * Don't send the next mblk since the whole mblk
21902 			 * does not fit.
21903 			 */
21904 			break;
21905 		mp2->b_cont = dupb(mp);
21906 		mp2 = mp2->b_cont;
21907 		if (!mp2) {
21908 			freemsg(mp1);
21909 			return (NULL);
21910 		}
21911 		mp2->b_rptr += off;
21912 		ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <=
21913 		    (uintptr_t)INT_MAX);
21914 
21915 		data_length += (int)(mp2->b_wptr - mp2->b_rptr);
21916 		if (data_length > max_to_send) {
21917 			mp2->b_wptr -= data_length - max_to_send;
21918 			data_length = max_to_send;
21919 			off = mp2->b_wptr - mp->b_rptr;
21920 			break;
21921 		} else {
21922 			off = 0;
21923 		}
21924 	}
21925 	if (offset != NULL) {
21926 		*offset = off;
21927 		*end_mp = mp;
21928 	}
21929 	if (seg_len != NULL) {
21930 		*seg_len = data_length;
21931 	}
21932 
21933 	/* Update the latest receive window size in TCP header. */
21934 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
21935 	    tcp->tcp_tcph->th_win);
21936 
21937 	rptr = mp1->b_rptr + tcp_wroff_xtra;
21938 	mp1->b_rptr = rptr;
21939 	mp1->b_wptr = rptr + tcp->tcp_hdr_len + sack_opt_len;
21940 	bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len);
21941 	tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len];
21942 	U32_TO_ABE32(seq, tcph->th_seq);
21943 
21944 	/*
21945 	 * Use tcp_unsent to determine if the PUSH bit should be used assumes
21946 	 * that this function was called from tcp_wput_data. Thus, when called
21947 	 * to retransmit data the setting of the PUSH bit may appear some
21948 	 * what random in that it might get set when it should not. This
21949 	 * should not pose any performance issues.
21950 	 */
21951 	if (data_length != 0 && (tcp->tcp_unsent == 0 ||
21952 	    tcp->tcp_unsent == data_length)) {
21953 		flags = TH_ACK | TH_PUSH;
21954 	} else {
21955 		flags = TH_ACK;
21956 	}
21957 
21958 	if (tcp->tcp_ecn_ok) {
21959 		if (tcp->tcp_ecn_echo_on)
21960 			flags |= TH_ECE;
21961 
21962 		/*
21963 		 * Only set ECT bit and ECN_CWR if a segment contains new data.
21964 		 * There is no TCP flow control for non-data segments, and
21965 		 * only data segment is transmitted reliably.
21966 		 */
21967 		if (data_length > 0 && !rexmit) {
21968 			SET_ECT(tcp, rptr);
21969 			if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
21970 				flags |= TH_CWR;
21971 				tcp->tcp_ecn_cwr_sent = B_TRUE;
21972 			}
21973 		}
21974 	}
21975 
21976 	if (tcp->tcp_valid_bits) {
21977 		uint32_t u1;
21978 
21979 		if ((tcp->tcp_valid_bits & TCP_ISS_VALID) &&
21980 		    seq == tcp->tcp_iss) {
21981 			uchar_t	*wptr;
21982 
21983 			/*
21984 			 * If TCP_ISS_VALID and the seq number is tcp_iss,
21985 			 * TCP can only be in SYN-SENT, SYN-RCVD or
21986 			 * FIN-WAIT-1 state.  It can be FIN-WAIT-1 if
21987 			 * our SYN is not ack'ed but the app closes this
21988 			 * TCP connection.
21989 			 */
21990 			ASSERT(tcp->tcp_state == TCPS_SYN_SENT ||
21991 			    tcp->tcp_state == TCPS_SYN_RCVD ||
21992 			    tcp->tcp_state == TCPS_FIN_WAIT_1);
21993 
21994 			/*
21995 			 * Tack on the MSS option.  It is always needed
21996 			 * for both active and passive open.
21997 			 *
21998 			 * MSS option value should be interface MTU - MIN
21999 			 * TCP/IP header according to RFC 793 as it means
22000 			 * the maximum segment size TCP can receive.  But
22001 			 * to get around some broken middle boxes/end hosts
22002 			 * out there, we allow the option value to be the
22003 			 * same as the MSS option size on the peer side.
22004 			 * In this way, the other side will not send
22005 			 * anything larger than they can receive.
22006 			 *
22007 			 * Note that for SYN_SENT state, the ndd param
22008 			 * tcp_use_smss_as_mss_opt has no effect as we
22009 			 * don't know the peer's MSS option value. So
22010 			 * the only case we need to take care of is in
22011 			 * SYN_RCVD state, which is done later.
22012 			 */
22013 			wptr = mp1->b_wptr;
22014 			wptr[0] = TCPOPT_MAXSEG;
22015 			wptr[1] = TCPOPT_MAXSEG_LEN;
22016 			wptr += 2;
22017 			u1 = tcp->tcp_if_mtu -
22018 			    (tcp->tcp_ipversion == IPV4_VERSION ?
22019 			    IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) -
22020 			    TCP_MIN_HEADER_LENGTH;
22021 			U16_TO_BE16(u1, wptr);
22022 			mp1->b_wptr = wptr + 2;
22023 			/* Update the offset to cover the additional word */
22024 			tcph->th_offset_and_rsrvd[0] += (1 << 4);
22025 
22026 			/*
22027 			 * Note that the following way of filling in
22028 			 * TCP options are not optimal.  Some NOPs can
22029 			 * be saved.  But there is no need at this time
22030 			 * to optimize it.  When it is needed, we will
22031 			 * do it.
22032 			 */
22033 			switch (tcp->tcp_state) {
22034 			case TCPS_SYN_SENT:
22035 				flags = TH_SYN;
22036 
22037 				if (tcp->tcp_snd_ts_ok) {
22038 					uint32_t llbolt = (uint32_t)lbolt;
22039 
22040 					wptr = mp1->b_wptr;
22041 					wptr[0] = TCPOPT_NOP;
22042 					wptr[1] = TCPOPT_NOP;
22043 					wptr[2] = TCPOPT_TSTAMP;
22044 					wptr[3] = TCPOPT_TSTAMP_LEN;
22045 					wptr += 4;
22046 					U32_TO_BE32(llbolt, wptr);
22047 					wptr += 4;
22048 					ASSERT(tcp->tcp_ts_recent == 0);
22049 					U32_TO_BE32(0L, wptr);
22050 					mp1->b_wptr += TCPOPT_REAL_TS_LEN;
22051 					tcph->th_offset_and_rsrvd[0] +=
22052 					    (3 << 4);
22053 				}
22054 
22055 				/*
22056 				 * Set up all the bits to tell other side
22057 				 * we are ECN capable.
22058 				 */
22059 				if (tcp->tcp_ecn_ok) {
22060 					flags |= (TH_ECE | TH_CWR);
22061 				}
22062 				break;
22063 			case TCPS_SYN_RCVD:
22064 				flags |= TH_SYN;
22065 
22066 				/*
22067 				 * Reset the MSS option value to be SMSS
22068 				 * We should probably add back the bytes
22069 				 * for timestamp option and IPsec.  We
22070 				 * don't do that as this is a workaround
22071 				 * for broken middle boxes/end hosts, it
22072 				 * is better for us to be more cautious.
22073 				 * They may not take these things into
22074 				 * account in their SMSS calculation.  Thus
22075 				 * the peer's calculated SMSS may be smaller
22076 				 * than what it can be.  This should be OK.
22077 				 */
22078 				if (tcp_use_smss_as_mss_opt) {
22079 					u1 = tcp->tcp_mss;
22080 					U16_TO_BE16(u1, wptr);
22081 				}
22082 
22083 				/*
22084 				 * If the other side is ECN capable, reply
22085 				 * that we are also ECN capable.
22086 				 */
22087 				if (tcp->tcp_ecn_ok)
22088 					flags |= TH_ECE;
22089 				break;
22090 			default:
22091 				/*
22092 				 * The above ASSERT() makes sure that this
22093 				 * must be FIN-WAIT-1 state.  Our SYN has
22094 				 * not been ack'ed so retransmit it.
22095 				 */
22096 				flags |= TH_SYN;
22097 				break;
22098 			}
22099 
22100 			if (tcp->tcp_snd_ws_ok) {
22101 				wptr = mp1->b_wptr;
22102 				wptr[0] =  TCPOPT_NOP;
22103 				wptr[1] =  TCPOPT_WSCALE;
22104 				wptr[2] =  TCPOPT_WS_LEN;
22105 				wptr[3] = (uchar_t)tcp->tcp_rcv_ws;
22106 				mp1->b_wptr += TCPOPT_REAL_WS_LEN;
22107 				tcph->th_offset_and_rsrvd[0] += (1 << 4);
22108 			}
22109 
22110 			if (tcp->tcp_snd_sack_ok) {
22111 				wptr = mp1->b_wptr;
22112 				wptr[0] = TCPOPT_NOP;
22113 				wptr[1] = TCPOPT_NOP;
22114 				wptr[2] = TCPOPT_SACK_PERMITTED;
22115 				wptr[3] = TCPOPT_SACK_OK_LEN;
22116 				mp1->b_wptr += TCPOPT_REAL_SACK_OK_LEN;
22117 				tcph->th_offset_and_rsrvd[0] += (1 << 4);
22118 			}
22119 
22120 			/* allocb() of adequate mblk assures space */
22121 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
22122 			    (uintptr_t)INT_MAX);
22123 			u1 = (int)(mp1->b_wptr - mp1->b_rptr);
22124 			/*
22125 			 * Get IP set to checksum on our behalf
22126 			 * Include the adjustment for a source route if any.
22127 			 */
22128 			u1 += tcp->tcp_sum;
22129 			u1 = (u1 >> 16) + (u1 & 0xFFFF);
22130 			U16_TO_BE16(u1, tcph->th_sum);
22131 			BUMP_MIB(&tcp_mib, tcpOutControl);
22132 		}
22133 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
22134 		    (seq + data_length) == tcp->tcp_fss) {
22135 			if (!tcp->tcp_fin_acked) {
22136 				flags |= TH_FIN;
22137 				BUMP_MIB(&tcp_mib, tcpOutControl);
22138 			}
22139 			if (!tcp->tcp_fin_sent) {
22140 				tcp->tcp_fin_sent = B_TRUE;
22141 				switch (tcp->tcp_state) {
22142 				case TCPS_SYN_RCVD:
22143 				case TCPS_ESTABLISHED:
22144 					tcp->tcp_state = TCPS_FIN_WAIT_1;
22145 					break;
22146 				case TCPS_CLOSE_WAIT:
22147 					tcp->tcp_state = TCPS_LAST_ACK;
22148 					break;
22149 				}
22150 				if (tcp->tcp_suna == tcp->tcp_snxt)
22151 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
22152 				tcp->tcp_snxt = tcp->tcp_fss + 1;
22153 			}
22154 		}
22155 		/*
22156 		 * Note the trick here.  u1 is unsigned.  When tcp_urg
22157 		 * is smaller than seq, u1 will become a very huge value.
22158 		 * So the comparison will fail.  Also note that tcp_urp
22159 		 * should be positive, see RFC 793 page 17.
22160 		 */
22161 		u1 = tcp->tcp_urg - seq + TCP_OLD_URP_INTERPRETATION;
22162 		if ((tcp->tcp_valid_bits & TCP_URG_VALID) && u1 != 0 &&
22163 		    u1 < (uint32_t)(64 * 1024)) {
22164 			flags |= TH_URG;
22165 			BUMP_MIB(&tcp_mib, tcpOutUrg);
22166 			U32_TO_ABE16(u1, tcph->th_urp);
22167 		}
22168 	}
22169 	tcph->th_flags[0] = (uchar_t)flags;
22170 	tcp->tcp_rack = tcp->tcp_rnxt;
22171 	tcp->tcp_rack_cnt = 0;
22172 
22173 	if (tcp->tcp_snd_ts_ok) {
22174 		if (tcp->tcp_state != TCPS_SYN_SENT) {
22175 			uint32_t llbolt = (uint32_t)lbolt;
22176 
22177 			U32_TO_BE32(llbolt,
22178 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
22179 			U32_TO_BE32(tcp->tcp_ts_recent,
22180 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
22181 		}
22182 	}
22183 
22184 	if (num_sack_blk > 0) {
22185 		uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len;
22186 		sack_blk_t *tmp;
22187 		int32_t	i;
22188 
22189 		wptr[0] = TCPOPT_NOP;
22190 		wptr[1] = TCPOPT_NOP;
22191 		wptr[2] = TCPOPT_SACK;
22192 		wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
22193 		    sizeof (sack_blk_t);
22194 		wptr += TCPOPT_REAL_SACK_LEN;
22195 
22196 		tmp = tcp->tcp_sack_list;
22197 		for (i = 0; i < num_sack_blk; i++) {
22198 			U32_TO_BE32(tmp[i].begin, wptr);
22199 			wptr += sizeof (tcp_seq);
22200 			U32_TO_BE32(tmp[i].end, wptr);
22201 			wptr += sizeof (tcp_seq);
22202 		}
22203 		tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) << 4);
22204 	}
22205 	ASSERT((uintptr_t)(mp1->b_wptr - rptr) <= (uintptr_t)INT_MAX);
22206 	data_length += (int)(mp1->b_wptr - rptr);
22207 	if (tcp->tcp_ipversion == IPV4_VERSION) {
22208 		((ipha_t *)rptr)->ipha_length = htons(data_length);
22209 	} else {
22210 		ip6_t *ip6 = (ip6_t *)(rptr +
22211 		    (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ?
22212 		    sizeof (ip6i_t) : 0));
22213 
22214 		ip6->ip6_plen = htons(data_length -
22215 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
22216 	}
22217 
22218 	/*
22219 	 * Prime pump for IP
22220 	 * Include the adjustment for a source route if any.
22221 	 */
22222 	data_length -= tcp->tcp_ip_hdr_len;
22223 	data_length += tcp->tcp_sum;
22224 	data_length = (data_length >> 16) + (data_length & 0xFFFF);
22225 	U16_TO_ABE16(data_length, tcph->th_sum);
22226 	if (tcp->tcp_ip_forward_progress) {
22227 		ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
22228 		*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
22229 		tcp->tcp_ip_forward_progress = B_FALSE;
22230 	}
22231 	return (mp1);
22232 }
22233 
22234 /* This function handles the push timeout. */
22235 void
22236 tcp_push_timer(void *arg)
22237 {
22238 	conn_t	*connp = (conn_t *)arg;
22239 	tcp_t *tcp = connp->conn_tcp;
22240 
22241 	TCP_DBGSTAT(tcp_push_timer_cnt);
22242 
22243 	ASSERT(tcp->tcp_listener == NULL);
22244 
22245 	/*
22246 	 * We need to stop synchronous streams temporarily to prevent a race
22247 	 * with tcp_fuse_rrw() or tcp_fusion rinfop().  It is safe to access
22248 	 * tcp_rcv_list here because those entry points will return right
22249 	 * away when synchronous streams is stopped.
22250 	 */
22251 	TCP_FUSE_SYNCSTR_STOP(tcp);
22252 	tcp->tcp_push_tid = 0;
22253 	if ((tcp->tcp_rcv_list != NULL) &&
22254 	    (tcp_rcv_drain(tcp->tcp_rq, tcp) == TH_ACK_NEEDED))
22255 		tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK);
22256 	TCP_FUSE_SYNCSTR_RESUME(tcp);
22257 }
22258 
22259 /*
22260  * This function handles delayed ACK timeout.
22261  */
22262 static void
22263 tcp_ack_timer(void *arg)
22264 {
22265 	conn_t	*connp = (conn_t *)arg;
22266 	tcp_t *tcp = connp->conn_tcp;
22267 	mblk_t *mp;
22268 
22269 	TCP_DBGSTAT(tcp_ack_timer_cnt);
22270 
22271 	tcp->tcp_ack_tid = 0;
22272 
22273 	if (tcp->tcp_fused)
22274 		return;
22275 
22276 	/*
22277 	 * Do not send ACK if there is no outstanding unack'ed data.
22278 	 */
22279 	if (tcp->tcp_rnxt == tcp->tcp_rack) {
22280 		return;
22281 	}
22282 
22283 	if ((tcp->tcp_rnxt - tcp->tcp_rack) > tcp->tcp_mss) {
22284 		/*
22285 		 * Make sure we don't allow deferred ACKs to result in
22286 		 * timer-based ACKing.  If we have held off an ACK
22287 		 * when there was more than an mss here, and the timer
22288 		 * goes off, we have to worry about the possibility
22289 		 * that the sender isn't doing slow-start, or is out
22290 		 * of step with us for some other reason.  We fall
22291 		 * permanently back in the direction of
22292 		 * ACK-every-other-packet as suggested in RFC 1122.
22293 		 */
22294 		if (tcp->tcp_rack_abs_max > 2)
22295 			tcp->tcp_rack_abs_max--;
22296 		tcp->tcp_rack_cur_max = 2;
22297 	}
22298 	mp = tcp_ack_mp(tcp);
22299 
22300 	if (mp != NULL) {
22301 		TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
22302 		BUMP_LOCAL(tcp->tcp_obsegs);
22303 		BUMP_MIB(&tcp_mib, tcpOutAck);
22304 		BUMP_MIB(&tcp_mib, tcpOutAckDelayed);
22305 		tcp_send_data(tcp, tcp->tcp_wq, mp);
22306 	}
22307 }
22308 
22309 
22310 /* Generate an ACK-only (no data) segment for a TCP endpoint */
22311 static mblk_t *
22312 tcp_ack_mp(tcp_t *tcp)
22313 {
22314 	uint32_t	seq_no;
22315 
22316 	/*
22317 	 * There are a few cases to be considered while setting the sequence no.
22318 	 * Essentially, we can come here while processing an unacceptable pkt
22319 	 * in the TCPS_SYN_RCVD state, in which case we set the sequence number
22320 	 * to snxt (per RFC 793), note the swnd wouldn't have been set yet.
22321 	 * If we are here for a zero window probe, stick with suna. In all
22322 	 * other cases, we check if suna + swnd encompasses snxt and set
22323 	 * the sequence number to snxt, if so. If snxt falls outside the
22324 	 * window (the receiver probably shrunk its window), we will go with
22325 	 * suna + swnd, otherwise the sequence no will be unacceptable to the
22326 	 * receiver.
22327 	 */
22328 	if (tcp->tcp_zero_win_probe) {
22329 		seq_no = tcp->tcp_suna;
22330 	} else if (tcp->tcp_state == TCPS_SYN_RCVD) {
22331 		ASSERT(tcp->tcp_swnd == 0);
22332 		seq_no = tcp->tcp_snxt;
22333 	} else {
22334 		seq_no = SEQ_GT(tcp->tcp_snxt,
22335 		    (tcp->tcp_suna + tcp->tcp_swnd)) ?
22336 		    (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt;
22337 	}
22338 
22339 	if (tcp->tcp_valid_bits) {
22340 		/*
22341 		 * For the complex case where we have to send some
22342 		 * controls (FIN or SYN), let tcp_xmit_mp do it.
22343 		 */
22344 		return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE,
22345 		    NULL, B_FALSE));
22346 	} else {
22347 		/* Generate a simple ACK */
22348 		int	data_length;
22349 		uchar_t	*rptr;
22350 		tcph_t	*tcph;
22351 		mblk_t	*mp1;
22352 		int32_t	tcp_hdr_len;
22353 		int32_t	tcp_tcp_hdr_len;
22354 		int32_t	num_sack_blk = 0;
22355 		int32_t sack_opt_len;
22356 
22357 		/*
22358 		 * Allocate space for TCP + IP headers
22359 		 * and link-level header
22360 		 */
22361 		if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
22362 			num_sack_blk = MIN(tcp->tcp_max_sack_blk,
22363 			    tcp->tcp_num_sack_blk);
22364 			sack_opt_len = num_sack_blk * sizeof (sack_blk_t) +
22365 			    TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN;
22366 			tcp_hdr_len = tcp->tcp_hdr_len + sack_opt_len;
22367 			tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + sack_opt_len;
22368 		} else {
22369 			tcp_hdr_len = tcp->tcp_hdr_len;
22370 			tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len;
22371 		}
22372 		mp1 = allocb(tcp_hdr_len + tcp_wroff_xtra, BPRI_MED);
22373 		if (!mp1)
22374 			return (NULL);
22375 
22376 		/* Update the latest receive window size in TCP header. */
22377 		U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
22378 		    tcp->tcp_tcph->th_win);
22379 		/* copy in prototype TCP + IP header */
22380 		rptr = mp1->b_rptr + tcp_wroff_xtra;
22381 		mp1->b_rptr = rptr;
22382 		mp1->b_wptr = rptr + tcp_hdr_len;
22383 		bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len);
22384 
22385 		tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len];
22386 
22387 		/* Set the TCP sequence number. */
22388 		U32_TO_ABE32(seq_no, tcph->th_seq);
22389 
22390 		/* Set up the TCP flag field. */
22391 		tcph->th_flags[0] = (uchar_t)TH_ACK;
22392 		if (tcp->tcp_ecn_echo_on)
22393 			tcph->th_flags[0] |= TH_ECE;
22394 
22395 		tcp->tcp_rack = tcp->tcp_rnxt;
22396 		tcp->tcp_rack_cnt = 0;
22397 
22398 		/* fill in timestamp option if in use */
22399 		if (tcp->tcp_snd_ts_ok) {
22400 			uint32_t llbolt = (uint32_t)lbolt;
22401 
22402 			U32_TO_BE32(llbolt,
22403 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
22404 			U32_TO_BE32(tcp->tcp_ts_recent,
22405 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
22406 		}
22407 
22408 		/* Fill in SACK options */
22409 		if (num_sack_blk > 0) {
22410 			uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len;
22411 			sack_blk_t *tmp;
22412 			int32_t	i;
22413 
22414 			wptr[0] = TCPOPT_NOP;
22415 			wptr[1] = TCPOPT_NOP;
22416 			wptr[2] = TCPOPT_SACK;
22417 			wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
22418 			    sizeof (sack_blk_t);
22419 			wptr += TCPOPT_REAL_SACK_LEN;
22420 
22421 			tmp = tcp->tcp_sack_list;
22422 			for (i = 0; i < num_sack_blk; i++) {
22423 				U32_TO_BE32(tmp[i].begin, wptr);
22424 				wptr += sizeof (tcp_seq);
22425 				U32_TO_BE32(tmp[i].end, wptr);
22426 				wptr += sizeof (tcp_seq);
22427 			}
22428 			tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1)
22429 			    << 4);
22430 		}
22431 
22432 		if (tcp->tcp_ipversion == IPV4_VERSION) {
22433 			((ipha_t *)rptr)->ipha_length = htons(tcp_hdr_len);
22434 		} else {
22435 			/* Check for ip6i_t header in sticky hdrs */
22436 			ip6_t *ip6 = (ip6_t *)(rptr +
22437 			    (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ?
22438 			    sizeof (ip6i_t) : 0));
22439 
22440 			ip6->ip6_plen = htons(tcp_hdr_len -
22441 			    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
22442 		}
22443 
22444 		/*
22445 		 * Prime pump for checksum calculation in IP.  Include the
22446 		 * adjustment for a source route if any.
22447 		 */
22448 		data_length = tcp_tcp_hdr_len + tcp->tcp_sum;
22449 		data_length = (data_length >> 16) + (data_length & 0xFFFF);
22450 		U16_TO_ABE16(data_length, tcph->th_sum);
22451 
22452 		if (tcp->tcp_ip_forward_progress) {
22453 			ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
22454 			*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
22455 			tcp->tcp_ip_forward_progress = B_FALSE;
22456 		}
22457 		return (mp1);
22458 	}
22459 }
22460 
22461 /*
22462  * To create a temporary tcp structure for inserting into bind hash list.
22463  * The parameter is assumed to be in network byte order, ready for use.
22464  */
22465 /* ARGSUSED */
22466 static tcp_t *
22467 tcp_alloc_temp_tcp(in_port_t port)
22468 {
22469 	conn_t	*connp;
22470 	tcp_t	*tcp;
22471 
22472 	connp = ipcl_conn_create(IPCL_TCPCONN, KM_SLEEP);
22473 	if (connp == NULL)
22474 		return (NULL);
22475 
22476 	tcp = connp->conn_tcp;
22477 
22478 	/*
22479 	 * Only initialize the necessary info in those structures.  Note
22480 	 * that since INADDR_ANY is all 0, we do not need to set
22481 	 * tcp_bound_source to INADDR_ANY here.
22482 	 */
22483 	tcp->tcp_state = TCPS_BOUND;
22484 	tcp->tcp_lport = port;
22485 	tcp->tcp_exclbind = 1;
22486 	tcp->tcp_reserved_port = 1;
22487 
22488 	/* Just for place holding... */
22489 	tcp->tcp_ipversion = IPV4_VERSION;
22490 
22491 	return (tcp);
22492 }
22493 
22494 /*
22495  * To remove a port range specified by lo_port and hi_port from the
22496  * reserved port ranges.  This is one of the three public functions of
22497  * the reserved port interface.  Note that a port range has to be removed
22498  * as a whole.  Ports in a range cannot be removed individually.
22499  *
22500  * Params:
22501  *	in_port_t lo_port: the beginning port of the reserved port range to
22502  *		be deleted.
22503  *	in_port_t hi_port: the ending port of the reserved port range to
22504  *		be deleted.
22505  *
22506  * Return:
22507  *	B_TRUE if the deletion is successful, B_FALSE otherwise.
22508  */
22509 boolean_t
22510 tcp_reserved_port_del(in_port_t lo_port, in_port_t hi_port)
22511 {
22512 	int	i, j;
22513 	int	size;
22514 	tcp_t	**temp_tcp_array;
22515 	tcp_t	*tcp;
22516 
22517 	rw_enter(&tcp_reserved_port_lock, RW_WRITER);
22518 
22519 	/* First make sure that the port ranage is indeed reserved. */
22520 	for (i = 0; i < tcp_reserved_port_array_size; i++) {
22521 		if (tcp_reserved_port[i].lo_port == lo_port) {
22522 			hi_port = tcp_reserved_port[i].hi_port;
22523 			temp_tcp_array = tcp_reserved_port[i].temp_tcp_array;
22524 			break;
22525 		}
22526 	}
22527 	if (i == tcp_reserved_port_array_size) {
22528 		rw_exit(&tcp_reserved_port_lock);
22529 		return (B_FALSE);
22530 	}
22531 
22532 	/*
22533 	 * Remove the range from the array.  This simple loop is possible
22534 	 * because port ranges are inserted in ascending order.
22535 	 */
22536 	for (j = i; j < tcp_reserved_port_array_size - 1; j++) {
22537 		tcp_reserved_port[j].lo_port = tcp_reserved_port[j+1].lo_port;
22538 		tcp_reserved_port[j].hi_port = tcp_reserved_port[j+1].hi_port;
22539 		tcp_reserved_port[j].temp_tcp_array =
22540 		    tcp_reserved_port[j+1].temp_tcp_array;
22541 	}
22542 
22543 	/* Remove all the temporary tcp structures. */
22544 	size = hi_port - lo_port + 1;
22545 	while (size > 0) {
22546 		tcp = temp_tcp_array[size - 1];
22547 		ASSERT(tcp != NULL);
22548 		tcp_bind_hash_remove(tcp);
22549 		CONN_DEC_REF(tcp->tcp_connp);
22550 		size--;
22551 	}
22552 	kmem_free(temp_tcp_array, (hi_port - lo_port + 1) * sizeof (tcp_t *));
22553 	tcp_reserved_port_array_size--;
22554 	rw_exit(&tcp_reserved_port_lock);
22555 	return (B_TRUE);
22556 }
22557 
22558 /*
22559  * Macro to remove temporary tcp structure from the bind hash list.  The
22560  * first parameter is the list of tcp to be removed.  The second parameter
22561  * is the number of tcps in the array.
22562  */
22563 #define	TCP_TMP_TCP_REMOVE(tcp_array, num) \
22564 { \
22565 	while ((num) > 0) { \
22566 		tcp_t *tcp = (tcp_array)[(num) - 1]; \
22567 		tf_t *tbf; \
22568 		tcp_t *tcpnext; \
22569 		tbf = &tcp_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)]; \
22570 		mutex_enter(&tbf->tf_lock); \
22571 		tcpnext = tcp->tcp_bind_hash; \
22572 		if (tcpnext) { \
22573 			tcpnext->tcp_ptpbhn = \
22574 				tcp->tcp_ptpbhn; \
22575 		} \
22576 		*tcp->tcp_ptpbhn = tcpnext; \
22577 		mutex_exit(&tbf->tf_lock); \
22578 		kmem_free(tcp, sizeof (tcp_t)); \
22579 		(tcp_array)[(num) - 1] = NULL; \
22580 		(num)--; \
22581 	} \
22582 }
22583 
22584 /*
22585  * The public interface for other modules to call to reserve a port range
22586  * in TCP.  The caller passes in how large a port range it wants.  TCP
22587  * will try to find a range and return it via lo_port and hi_port.  This is
22588  * used by NCA's nca_conn_init.
22589  * NCA can only be used in the global zone so this only affects the global
22590  * zone's ports.
22591  *
22592  * Params:
22593  *	int size: the size of the port range to be reserved.
22594  *	in_port_t *lo_port (referenced): returns the beginning port of the
22595  *		reserved port range added.
22596  *	in_port_t *hi_port (referenced): returns the ending port of the
22597  *		reserved port range added.
22598  *
22599  * Return:
22600  *	B_TRUE if the port reservation is successful, B_FALSE otherwise.
22601  */
22602 boolean_t
22603 tcp_reserved_port_add(int size, in_port_t *lo_port, in_port_t *hi_port)
22604 {
22605 	tcp_t		*tcp;
22606 	tcp_t		*tmp_tcp;
22607 	tcp_t		**temp_tcp_array;
22608 	tf_t		*tbf;
22609 	in_port_t	net_port;
22610 	in_port_t	port;
22611 	int32_t		cur_size;
22612 	int		i, j;
22613 	boolean_t	used;
22614 	tcp_rport_t 	tmp_ports[TCP_RESERVED_PORTS_ARRAY_MAX_SIZE];
22615 	zoneid_t	zoneid = GLOBAL_ZONEID;
22616 
22617 	/* Sanity check. */
22618 	if (size <= 0 || size > TCP_RESERVED_PORTS_RANGE_MAX) {
22619 		return (B_FALSE);
22620 	}
22621 
22622 	rw_enter(&tcp_reserved_port_lock, RW_WRITER);
22623 	if (tcp_reserved_port_array_size == TCP_RESERVED_PORTS_ARRAY_MAX_SIZE) {
22624 		rw_exit(&tcp_reserved_port_lock);
22625 		return (B_FALSE);
22626 	}
22627 
22628 	/*
22629 	 * Find the starting port to try.  Since the port ranges are ordered
22630 	 * in the reserved port array, we can do a simple search here.
22631 	 */
22632 	*lo_port = TCP_SMALLEST_RESERVED_PORT;
22633 	*hi_port = TCP_LARGEST_RESERVED_PORT;
22634 	for (i = 0; i < tcp_reserved_port_array_size;
22635 	    *lo_port = tcp_reserved_port[i].hi_port + 1, i++) {
22636 		if (tcp_reserved_port[i].lo_port - *lo_port >= size) {
22637 			*hi_port = tcp_reserved_port[i].lo_port - 1;
22638 			break;
22639 		}
22640 	}
22641 	/* No available port range. */
22642 	if (i == tcp_reserved_port_array_size && *hi_port - *lo_port < size) {
22643 		rw_exit(&tcp_reserved_port_lock);
22644 		return (B_FALSE);
22645 	}
22646 
22647 	temp_tcp_array = kmem_zalloc(size * sizeof (tcp_t *), KM_NOSLEEP);
22648 	if (temp_tcp_array == NULL) {
22649 		rw_exit(&tcp_reserved_port_lock);
22650 		return (B_FALSE);
22651 	}
22652 
22653 	/* Go thru the port range to see if some ports are already bound. */
22654 	for (port = *lo_port, cur_size = 0;
22655 	    cur_size < size && port <= *hi_port;
22656 	    cur_size++, port++) {
22657 		used = B_FALSE;
22658 		net_port = htons(port);
22659 		tbf = &tcp_bind_fanout[TCP_BIND_HASH(net_port)];
22660 		mutex_enter(&tbf->tf_lock);
22661 		for (tcp = tbf->tf_tcp; tcp != NULL;
22662 		    tcp = tcp->tcp_bind_hash) {
22663 			if (IPCL_ZONE_MATCH(tcp->tcp_connp, zoneid) &&
22664 			    net_port == tcp->tcp_lport) {
22665 				/*
22666 				 * A port is already bound.  Search again
22667 				 * starting from port + 1.  Release all
22668 				 * temporary tcps.
22669 				 */
22670 				mutex_exit(&tbf->tf_lock);
22671 				TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size);
22672 				*lo_port = port + 1;
22673 				cur_size = -1;
22674 				used = B_TRUE;
22675 				break;
22676 			}
22677 		}
22678 		if (!used) {
22679 			if ((tmp_tcp = tcp_alloc_temp_tcp(net_port)) == NULL) {
22680 				/*
22681 				 * Allocation failure.  Just fail the request.
22682 				 * Need to remove all those temporary tcp
22683 				 * structures.
22684 				 */
22685 				mutex_exit(&tbf->tf_lock);
22686 				TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size);
22687 				rw_exit(&tcp_reserved_port_lock);
22688 				kmem_free(temp_tcp_array,
22689 				    (hi_port - lo_port + 1) *
22690 				    sizeof (tcp_t *));
22691 				return (B_FALSE);
22692 			}
22693 			temp_tcp_array[cur_size] = tmp_tcp;
22694 			tcp_bind_hash_insert(tbf, tmp_tcp, B_TRUE);
22695 			mutex_exit(&tbf->tf_lock);
22696 		}
22697 	}
22698 
22699 	/*
22700 	 * The current range is not large enough.  We can actually do another
22701 	 * search if this search is done between 2 reserved port ranges.  But
22702 	 * for first release, we just stop here and return saying that no port
22703 	 * range is available.
22704 	 */
22705 	if (cur_size < size) {
22706 		TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size);
22707 		rw_exit(&tcp_reserved_port_lock);
22708 		kmem_free(temp_tcp_array, size * sizeof (tcp_t *));
22709 		return (B_FALSE);
22710 	}
22711 	*hi_port = port - 1;
22712 
22713 	/*
22714 	 * Insert range into array in ascending order.  Since this function
22715 	 * must not be called often, we choose to use the simplest method.
22716 	 * The above array should not consume excessive stack space as
22717 	 * the size must be very small.  If in future releases, we find
22718 	 * that we should provide more reserved port ranges, this function
22719 	 * has to be modified to be more efficient.
22720 	 */
22721 	if (tcp_reserved_port_array_size == 0) {
22722 		tcp_reserved_port[0].lo_port = *lo_port;
22723 		tcp_reserved_port[0].hi_port = *hi_port;
22724 		tcp_reserved_port[0].temp_tcp_array = temp_tcp_array;
22725 	} else {
22726 		for (i = 0, j = 0; i < tcp_reserved_port_array_size; i++, j++) {
22727 			if (*lo_port < tcp_reserved_port[i].lo_port && i == j) {
22728 				tmp_ports[j].lo_port = *lo_port;
22729 				tmp_ports[j].hi_port = *hi_port;
22730 				tmp_ports[j].temp_tcp_array = temp_tcp_array;
22731 				j++;
22732 			}
22733 			tmp_ports[j].lo_port = tcp_reserved_port[i].lo_port;
22734 			tmp_ports[j].hi_port = tcp_reserved_port[i].hi_port;
22735 			tmp_ports[j].temp_tcp_array =
22736 			    tcp_reserved_port[i].temp_tcp_array;
22737 		}
22738 		if (j == i) {
22739 			tmp_ports[j].lo_port = *lo_port;
22740 			tmp_ports[j].hi_port = *hi_port;
22741 			tmp_ports[j].temp_tcp_array = temp_tcp_array;
22742 		}
22743 		bcopy(tmp_ports, tcp_reserved_port, sizeof (tmp_ports));
22744 	}
22745 	tcp_reserved_port_array_size++;
22746 	rw_exit(&tcp_reserved_port_lock);
22747 	return (B_TRUE);
22748 }
22749 
22750 /*
22751  * Check to see if a port is in any reserved port range.
22752  *
22753  * Params:
22754  *	in_port_t port: the port to be verified.
22755  *
22756  * Return:
22757  *	B_TRUE is the port is inside a reserved port range, B_FALSE otherwise.
22758  */
22759 boolean_t
22760 tcp_reserved_port_check(in_port_t port)
22761 {
22762 	int i;
22763 
22764 	rw_enter(&tcp_reserved_port_lock, RW_READER);
22765 	for (i = 0; i < tcp_reserved_port_array_size; i++) {
22766 		if (port >= tcp_reserved_port[i].lo_port ||
22767 		    port <= tcp_reserved_port[i].hi_port) {
22768 			rw_exit(&tcp_reserved_port_lock);
22769 			return (B_TRUE);
22770 		}
22771 	}
22772 	rw_exit(&tcp_reserved_port_lock);
22773 	return (B_FALSE);
22774 }
22775 
22776 /*
22777  * To list all reserved port ranges.  This is the function to handle
22778  * ndd tcp_reserved_port_list.
22779  */
22780 /* ARGSUSED */
22781 static int
22782 tcp_reserved_port_list(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
22783 {
22784 	int i;
22785 
22786 	rw_enter(&tcp_reserved_port_lock, RW_READER);
22787 	if (tcp_reserved_port_array_size > 0)
22788 		(void) mi_mpprintf(mp, "The following ports are reserved:");
22789 	else
22790 		(void) mi_mpprintf(mp, "No port is reserved.");
22791 	for (i = 0; i < tcp_reserved_port_array_size; i++) {
22792 		(void) mi_mpprintf(mp, "%d-%d",
22793 		    tcp_reserved_port[i].lo_port, tcp_reserved_port[i].hi_port);
22794 	}
22795 	rw_exit(&tcp_reserved_port_lock);
22796 	return (0);
22797 }
22798 
22799 /*
22800  * Hash list insertion routine for tcp_t structures.
22801  * Inserts entries with the ones bound to a specific IP address first
22802  * followed by those bound to INADDR_ANY.
22803  */
22804 static void
22805 tcp_bind_hash_insert(tf_t *tbf, tcp_t *tcp, int caller_holds_lock)
22806 {
22807 	tcp_t	**tcpp;
22808 	tcp_t	*tcpnext;
22809 
22810 	if (tcp->tcp_ptpbhn != NULL) {
22811 		ASSERT(!caller_holds_lock);
22812 		tcp_bind_hash_remove(tcp);
22813 	}
22814 	tcpp = &tbf->tf_tcp;
22815 	if (!caller_holds_lock) {
22816 		mutex_enter(&tbf->tf_lock);
22817 	} else {
22818 		ASSERT(MUTEX_HELD(&tbf->tf_lock));
22819 	}
22820 	tcpnext = tcpp[0];
22821 	if (tcpnext) {
22822 		/*
22823 		 * If the new tcp bound to the INADDR_ANY address
22824 		 * and the first one in the list is not bound to
22825 		 * INADDR_ANY we skip all entries until we find the
22826 		 * first one bound to INADDR_ANY.
22827 		 * This makes sure that applications binding to a
22828 		 * specific address get preference over those binding to
22829 		 * INADDR_ANY.
22830 		 */
22831 		if (V6_OR_V4_INADDR_ANY(tcp->tcp_bound_source_v6) &&
22832 		    !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) {
22833 			while ((tcpnext = tcpp[0]) != NULL &&
22834 			    !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6))
22835 				tcpp = &(tcpnext->tcp_bind_hash);
22836 			if (tcpnext)
22837 				tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash;
22838 		} else
22839 			tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash;
22840 	}
22841 	tcp->tcp_bind_hash = tcpnext;
22842 	tcp->tcp_ptpbhn = tcpp;
22843 	tcpp[0] = tcp;
22844 	if (!caller_holds_lock)
22845 		mutex_exit(&tbf->tf_lock);
22846 }
22847 
22848 /*
22849  * Hash list removal routine for tcp_t structures.
22850  */
22851 static void
22852 tcp_bind_hash_remove(tcp_t *tcp)
22853 {
22854 	tcp_t	*tcpnext;
22855 	kmutex_t *lockp;
22856 
22857 	if (tcp->tcp_ptpbhn == NULL)
22858 		return;
22859 
22860 	/*
22861 	 * Extract the lock pointer in case there are concurrent
22862 	 * hash_remove's for this instance.
22863 	 */
22864 	ASSERT(tcp->tcp_lport != 0);
22865 	lockp = &tcp_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)].tf_lock;
22866 
22867 	ASSERT(lockp != NULL);
22868 	mutex_enter(lockp);
22869 	if (tcp->tcp_ptpbhn) {
22870 		tcpnext = tcp->tcp_bind_hash;
22871 		if (tcpnext) {
22872 			tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn;
22873 			tcp->tcp_bind_hash = NULL;
22874 		}
22875 		*tcp->tcp_ptpbhn = tcpnext;
22876 		tcp->tcp_ptpbhn = NULL;
22877 	}
22878 	mutex_exit(lockp);
22879 }
22880 
22881 
22882 /*
22883  * Hash list lookup routine for tcp_t structures.
22884  * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF.
22885  */
22886 static tcp_t *
22887 tcp_acceptor_hash_lookup(t_uscalar_t id)
22888 {
22889 	tf_t	*tf;
22890 	tcp_t	*tcp;
22891 
22892 	tf = &tcp_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
22893 	mutex_enter(&tf->tf_lock);
22894 	for (tcp = tf->tf_tcp; tcp != NULL;
22895 	    tcp = tcp->tcp_acceptor_hash) {
22896 		if (tcp->tcp_acceptor_id == id) {
22897 			CONN_INC_REF(tcp->tcp_connp);
22898 			mutex_exit(&tf->tf_lock);
22899 			return (tcp);
22900 		}
22901 	}
22902 	mutex_exit(&tf->tf_lock);
22903 	return (NULL);
22904 }
22905 
22906 
22907 /*
22908  * Hash list insertion routine for tcp_t structures.
22909  */
22910 void
22911 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp)
22912 {
22913 	tf_t	*tf;
22914 	tcp_t	**tcpp;
22915 	tcp_t	*tcpnext;
22916 
22917 	tf = &tcp_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
22918 
22919 	if (tcp->tcp_ptpahn != NULL)
22920 		tcp_acceptor_hash_remove(tcp);
22921 	tcpp = &tf->tf_tcp;
22922 	mutex_enter(&tf->tf_lock);
22923 	tcpnext = tcpp[0];
22924 	if (tcpnext)
22925 		tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash;
22926 	tcp->tcp_acceptor_hash = tcpnext;
22927 	tcp->tcp_ptpahn = tcpp;
22928 	tcpp[0] = tcp;
22929 	tcp->tcp_acceptor_lockp = &tf->tf_lock;	/* For tcp_*_hash_remove */
22930 	mutex_exit(&tf->tf_lock);
22931 }
22932 
22933 /*
22934  * Hash list removal routine for tcp_t structures.
22935  */
22936 static void
22937 tcp_acceptor_hash_remove(tcp_t *tcp)
22938 {
22939 	tcp_t	*tcpnext;
22940 	kmutex_t *lockp;
22941 
22942 	/*
22943 	 * Extract the lock pointer in case there are concurrent
22944 	 * hash_remove's for this instance.
22945 	 */
22946 	lockp = tcp->tcp_acceptor_lockp;
22947 
22948 	if (tcp->tcp_ptpahn == NULL)
22949 		return;
22950 
22951 	ASSERT(lockp != NULL);
22952 	mutex_enter(lockp);
22953 	if (tcp->tcp_ptpahn) {
22954 		tcpnext = tcp->tcp_acceptor_hash;
22955 		if (tcpnext) {
22956 			tcpnext->tcp_ptpahn = tcp->tcp_ptpahn;
22957 			tcp->tcp_acceptor_hash = NULL;
22958 		}
22959 		*tcp->tcp_ptpahn = tcpnext;
22960 		tcp->tcp_ptpahn = NULL;
22961 	}
22962 	mutex_exit(lockp);
22963 	tcp->tcp_acceptor_lockp = NULL;
22964 }
22965 
22966 /* ARGSUSED */
22967 static int
22968 tcp_host_param_setvalue(queue_t *q, mblk_t *mp, char *value, caddr_t cp, int af)
22969 {
22970 	int error = 0;
22971 	int retval;
22972 	char *end;
22973 
22974 	tcp_hsp_t *hsp;
22975 	tcp_hsp_t *hspprev;
22976 
22977 	ipaddr_t addr = 0;		/* Address we're looking for */
22978 	in6_addr_t v6addr;		/* Address we're looking for */
22979 	uint32_t hash;			/* Hash of that address */
22980 
22981 	/*
22982 	 * If the following variables are still zero after parsing the input
22983 	 * string, the user didn't specify them and we don't change them in
22984 	 * the HSP.
22985 	 */
22986 
22987 	ipaddr_t mask = 0;		/* Subnet mask */
22988 	in6_addr_t v6mask;
22989 	long sendspace = 0;		/* Send buffer size */
22990 	long recvspace = 0;		/* Receive buffer size */
22991 	long timestamp = 0;	/* Originate TCP TSTAMP option, 1 = yes */
22992 	boolean_t delete = B_FALSE;	/* User asked to delete this HSP */
22993 
22994 	rw_enter(&tcp_hsp_lock, RW_WRITER);
22995 
22996 	/* Parse and validate address */
22997 	if (af == AF_INET) {
22998 		retval = inet_pton(af, value, &addr);
22999 		if (retval == 1)
23000 			IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
23001 	} else if (af == AF_INET6) {
23002 		retval = inet_pton(af, value, &v6addr);
23003 	} else {
23004 		error = EINVAL;
23005 		goto done;
23006 	}
23007 	if (retval == 0) {
23008 		error = EINVAL;
23009 		goto done;
23010 	}
23011 
23012 	while ((*value) && *value != ' ')
23013 		value++;
23014 
23015 	/* Parse individual keywords, set variables if found */
23016 	while (*value) {
23017 		/* Skip leading blanks */
23018 
23019 		while (*value == ' ' || *value == '\t')
23020 			value++;
23021 
23022 		/* If at end of string, we're done */
23023 
23024 		if (!*value)
23025 			break;
23026 
23027 		/* We have a word, figure out what it is */
23028 
23029 		if (strncmp("mask", value, 4) == 0) {
23030 			value += 4;
23031 			while (*value == ' ' || *value == '\t')
23032 				value++;
23033 			/* Parse subnet mask */
23034 			if (af == AF_INET) {
23035 				retval = inet_pton(af, value, &mask);
23036 				if (retval == 1) {
23037 					V4MASK_TO_V6(mask, v6mask);
23038 				}
23039 			} else if (af == AF_INET6) {
23040 				retval = inet_pton(af, value, &v6mask);
23041 			}
23042 			if (retval != 1) {
23043 				error = EINVAL;
23044 				goto done;
23045 			}
23046 			while ((*value) && *value != ' ')
23047 				value++;
23048 		} else if (strncmp("sendspace", value, 9) == 0) {
23049 			value += 9;
23050 
23051 			if (ddi_strtol(value, &end, 0, &sendspace) != 0 ||
23052 			    sendspace < TCP_XMIT_HIWATER ||
23053 			    sendspace >= (1L<<30)) {
23054 				error = EINVAL;
23055 				goto done;
23056 			}
23057 			value = end;
23058 		} else if (strncmp("recvspace", value, 9) == 0) {
23059 			value += 9;
23060 
23061 			if (ddi_strtol(value, &end, 0, &recvspace) != 0 ||
23062 			    recvspace < TCP_RECV_HIWATER ||
23063 			    recvspace >= (1L<<30)) {
23064 				error = EINVAL;
23065 				goto done;
23066 			}
23067 			value = end;
23068 		} else if (strncmp("timestamp", value, 9) == 0) {
23069 			value += 9;
23070 
23071 			if (ddi_strtol(value, &end, 0, &timestamp) != 0 ||
23072 			    timestamp < 0 || timestamp > 1) {
23073 				error = EINVAL;
23074 				goto done;
23075 			}
23076 
23077 			/*
23078 			 * We increment timestamp so we know it's been set;
23079 			 * this is undone when we put it in the HSP
23080 			 */
23081 			timestamp++;
23082 			value = end;
23083 		} else if (strncmp("delete", value, 6) == 0) {
23084 			value += 6;
23085 			delete = B_TRUE;
23086 		} else {
23087 			error = EINVAL;
23088 			goto done;
23089 		}
23090 	}
23091 
23092 	/* Hash address for lookup */
23093 
23094 	hash = TCP_HSP_HASH(addr);
23095 
23096 	if (delete) {
23097 		/*
23098 		 * Note that deletes don't return an error if the thing
23099 		 * we're trying to delete isn't there.
23100 		 */
23101 		if (tcp_hsp_hash == NULL)
23102 			goto done;
23103 		hsp = tcp_hsp_hash[hash];
23104 
23105 		if (hsp) {
23106 			if (IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6,
23107 			    &v6addr)) {
23108 				tcp_hsp_hash[hash] = hsp->tcp_hsp_next;
23109 				mi_free((char *)hsp);
23110 			} else {
23111 				hspprev = hsp;
23112 				while ((hsp = hsp->tcp_hsp_next) != NULL) {
23113 					if (IN6_ARE_ADDR_EQUAL(
23114 					    &hsp->tcp_hsp_addr_v6, &v6addr)) {
23115 						hspprev->tcp_hsp_next =
23116 						    hsp->tcp_hsp_next;
23117 						mi_free((char *)hsp);
23118 						break;
23119 					}
23120 					hspprev = hsp;
23121 				}
23122 			}
23123 		}
23124 	} else {
23125 		/*
23126 		 * We're adding/modifying an HSP.  If we haven't already done
23127 		 * so, allocate the hash table.
23128 		 */
23129 
23130 		if (!tcp_hsp_hash) {
23131 			tcp_hsp_hash = (tcp_hsp_t **)
23132 			    mi_zalloc(sizeof (tcp_hsp_t *) * TCP_HSP_HASH_SIZE);
23133 			if (!tcp_hsp_hash) {
23134 				error = EINVAL;
23135 				goto done;
23136 			}
23137 		}
23138 
23139 		/* Get head of hash chain */
23140 
23141 		hsp = tcp_hsp_hash[hash];
23142 
23143 		/* Try to find pre-existing hsp on hash chain */
23144 		/* Doesn't handle CIDR prefixes. */
23145 		while (hsp) {
23146 			if (IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, &v6addr))
23147 				break;
23148 			hsp = hsp->tcp_hsp_next;
23149 		}
23150 
23151 		/*
23152 		 * If we didn't, create one with default values and put it
23153 		 * at head of hash chain
23154 		 */
23155 
23156 		if (!hsp) {
23157 			hsp = (tcp_hsp_t *)mi_zalloc(sizeof (tcp_hsp_t));
23158 			if (!hsp) {
23159 				error = EINVAL;
23160 				goto done;
23161 			}
23162 			hsp->tcp_hsp_next = tcp_hsp_hash[hash];
23163 			tcp_hsp_hash[hash] = hsp;
23164 		}
23165 
23166 		/* Set values that the user asked us to change */
23167 
23168 		hsp->tcp_hsp_addr_v6 = v6addr;
23169 		if (IN6_IS_ADDR_V4MAPPED(&v6addr))
23170 			hsp->tcp_hsp_vers = IPV4_VERSION;
23171 		else
23172 			hsp->tcp_hsp_vers = IPV6_VERSION;
23173 		hsp->tcp_hsp_subnet_v6 = v6mask;
23174 		if (sendspace > 0)
23175 			hsp->tcp_hsp_sendspace = sendspace;
23176 		if (recvspace > 0)
23177 			hsp->tcp_hsp_recvspace = recvspace;
23178 		if (timestamp > 0)
23179 			hsp->tcp_hsp_tstamp = timestamp - 1;
23180 	}
23181 
23182 done:
23183 	rw_exit(&tcp_hsp_lock);
23184 	return (error);
23185 }
23186 
23187 /* Set callback routine passed to nd_load by tcp_param_register. */
23188 /* ARGSUSED */
23189 static int
23190 tcp_host_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr)
23191 {
23192 	return (tcp_host_param_setvalue(q, mp, value, cp, AF_INET));
23193 }
23194 /* ARGSUSED */
23195 static int
23196 tcp_host_param_set_ipv6(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
23197     cred_t *cr)
23198 {
23199 	return (tcp_host_param_setvalue(q, mp, value, cp, AF_INET6));
23200 }
23201 
23202 /* TCP host parameters report triggered via the Named Dispatch mechanism. */
23203 /* ARGSUSED */
23204 static int
23205 tcp_host_param_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
23206 {
23207 	tcp_hsp_t *hsp;
23208 	int i;
23209 	char addrbuf[INET6_ADDRSTRLEN], subnetbuf[INET6_ADDRSTRLEN];
23210 
23211 	rw_enter(&tcp_hsp_lock, RW_READER);
23212 	(void) mi_mpprintf(mp,
23213 	    "Hash HSP     " MI_COL_HDRPAD_STR
23214 	    "Address         Subnet Mask     Send       Receive    TStamp");
23215 	if (tcp_hsp_hash) {
23216 		for (i = 0; i < TCP_HSP_HASH_SIZE; i++) {
23217 			hsp = tcp_hsp_hash[i];
23218 			while (hsp) {
23219 				if (hsp->tcp_hsp_vers == IPV4_VERSION) {
23220 					(void) inet_ntop(AF_INET,
23221 					    &hsp->tcp_hsp_addr,
23222 					    addrbuf, sizeof (addrbuf));
23223 					(void) inet_ntop(AF_INET,
23224 					    &hsp->tcp_hsp_subnet,
23225 					    subnetbuf, sizeof (subnetbuf));
23226 				} else {
23227 					(void) inet_ntop(AF_INET6,
23228 					    &hsp->tcp_hsp_addr_v6,
23229 					    addrbuf, sizeof (addrbuf));
23230 					(void) inet_ntop(AF_INET6,
23231 					    &hsp->tcp_hsp_subnet_v6,
23232 					    subnetbuf, sizeof (subnetbuf));
23233 				}
23234 				(void) mi_mpprintf(mp,
23235 				    " %03d " MI_COL_PTRFMT_STR
23236 				    "%s %s %010d %010d      %d",
23237 				    i,
23238 				    (void *)hsp,
23239 				    addrbuf,
23240 				    subnetbuf,
23241 				    hsp->tcp_hsp_sendspace,
23242 				    hsp->tcp_hsp_recvspace,
23243 				    hsp->tcp_hsp_tstamp);
23244 
23245 				hsp = hsp->tcp_hsp_next;
23246 			}
23247 		}
23248 	}
23249 	rw_exit(&tcp_hsp_lock);
23250 	return (0);
23251 }
23252 
23253 
23254 /* Data for fast netmask macro used by tcp_hsp_lookup */
23255 
23256 static ipaddr_t netmasks[] = {
23257 	IN_CLASSA_NET, IN_CLASSA_NET, IN_CLASSB_NET,
23258 	IN_CLASSC_NET | IN_CLASSD_NET  /* Class C,D,E */
23259 };
23260 
23261 #define	netmask(addr) (netmasks[(ipaddr_t)(addr) >> 30])
23262 
23263 /*
23264  * XXX This routine should go away and instead we should use the metrics
23265  * associated with the routes to determine the default sndspace and rcvspace.
23266  */
23267 static tcp_hsp_t *
23268 tcp_hsp_lookup(ipaddr_t addr)
23269 {
23270 	tcp_hsp_t *hsp = NULL;
23271 
23272 	/* Quick check without acquiring the lock. */
23273 	if (tcp_hsp_hash == NULL)
23274 		return (NULL);
23275 
23276 	rw_enter(&tcp_hsp_lock, RW_READER);
23277 
23278 	/* This routine finds the best-matching HSP for address addr. */
23279 
23280 	if (tcp_hsp_hash) {
23281 		int i;
23282 		ipaddr_t srchaddr;
23283 		tcp_hsp_t *hsp_net;
23284 
23285 		/* We do three passes: host, network, and subnet. */
23286 
23287 		srchaddr = addr;
23288 
23289 		for (i = 1; i <= 3; i++) {
23290 			/* Look for exact match on srchaddr */
23291 
23292 			hsp = tcp_hsp_hash[TCP_HSP_HASH(srchaddr)];
23293 			while (hsp) {
23294 				if (hsp->tcp_hsp_vers == IPV4_VERSION &&
23295 				    hsp->tcp_hsp_addr == srchaddr)
23296 					break;
23297 				hsp = hsp->tcp_hsp_next;
23298 			}
23299 			ASSERT(hsp == NULL ||
23300 			    hsp->tcp_hsp_vers == IPV4_VERSION);
23301 
23302 			/*
23303 			 * If this is the first pass:
23304 			 *   If we found a match, great, return it.
23305 			 *   If not, search for the network on the second pass.
23306 			 */
23307 
23308 			if (i == 1)
23309 				if (hsp)
23310 					break;
23311 				else
23312 				{
23313 					srchaddr = addr & netmask(addr);
23314 					continue;
23315 				}
23316 
23317 			/*
23318 			 * If this is the second pass:
23319 			 *   If we found a match, but there's a subnet mask,
23320 			 *    save the match but try again using the subnet
23321 			 *    mask on the third pass.
23322 			 *   Otherwise, return whatever we found.
23323 			 */
23324 
23325 			if (i == 2) {
23326 				if (hsp && hsp->tcp_hsp_subnet) {
23327 					hsp_net = hsp;
23328 					srchaddr = addr & hsp->tcp_hsp_subnet;
23329 					continue;
23330 				} else {
23331 					break;
23332 				}
23333 			}
23334 
23335 			/*
23336 			 * This must be the third pass.  If we didn't find
23337 			 * anything, return the saved network HSP instead.
23338 			 */
23339 
23340 			if (!hsp)
23341 				hsp = hsp_net;
23342 		}
23343 	}
23344 
23345 	rw_exit(&tcp_hsp_lock);
23346 	return (hsp);
23347 }
23348 
23349 /*
23350  * XXX Equally broken as the IPv4 routine. Doesn't handle longest
23351  * match lookup.
23352  */
23353 static tcp_hsp_t *
23354 tcp_hsp_lookup_ipv6(in6_addr_t *v6addr)
23355 {
23356 	tcp_hsp_t *hsp = NULL;
23357 
23358 	/* Quick check without acquiring the lock. */
23359 	if (tcp_hsp_hash == NULL)
23360 		return (NULL);
23361 
23362 	rw_enter(&tcp_hsp_lock, RW_READER);
23363 
23364 	/* This routine finds the best-matching HSP for address addr. */
23365 
23366 	if (tcp_hsp_hash) {
23367 		int i;
23368 		in6_addr_t v6srchaddr;
23369 		tcp_hsp_t *hsp_net;
23370 
23371 		/* We do three passes: host, network, and subnet. */
23372 
23373 		v6srchaddr = *v6addr;
23374 
23375 		for (i = 1; i <= 3; i++) {
23376 			/* Look for exact match on srchaddr */
23377 
23378 			hsp = tcp_hsp_hash[TCP_HSP_HASH(
23379 			    V4_PART_OF_V6(v6srchaddr))];
23380 			while (hsp) {
23381 				if (hsp->tcp_hsp_vers == IPV6_VERSION &&
23382 				    IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6,
23383 				    &v6srchaddr))
23384 					break;
23385 				hsp = hsp->tcp_hsp_next;
23386 			}
23387 
23388 			/*
23389 			 * If this is the first pass:
23390 			 *   If we found a match, great, return it.
23391 			 *   If not, search for the network on the second pass.
23392 			 */
23393 
23394 			if (i == 1)
23395 				if (hsp)
23396 					break;
23397 				else {
23398 					/* Assume a 64 bit mask */
23399 					v6srchaddr.s6_addr32[0] =
23400 					    v6addr->s6_addr32[0];
23401 					v6srchaddr.s6_addr32[1] =
23402 					    v6addr->s6_addr32[1];
23403 					v6srchaddr.s6_addr32[2] = 0;
23404 					v6srchaddr.s6_addr32[3] = 0;
23405 					continue;
23406 				}
23407 
23408 			/*
23409 			 * If this is the second pass:
23410 			 *   If we found a match, but there's a subnet mask,
23411 			 *    save the match but try again using the subnet
23412 			 *    mask on the third pass.
23413 			 *   Otherwise, return whatever we found.
23414 			 */
23415 
23416 			if (i == 2) {
23417 				ASSERT(hsp == NULL ||
23418 				    hsp->tcp_hsp_vers == IPV6_VERSION);
23419 				if (hsp &&
23420 				    !IN6_IS_ADDR_UNSPECIFIED(
23421 				    &hsp->tcp_hsp_subnet_v6)) {
23422 					hsp_net = hsp;
23423 					V6_MASK_COPY(*v6addr,
23424 					    hsp->tcp_hsp_subnet_v6, v6srchaddr);
23425 					continue;
23426 				} else {
23427 					break;
23428 				}
23429 			}
23430 
23431 			/*
23432 			 * This must be the third pass.  If we didn't find
23433 			 * anything, return the saved network HSP instead.
23434 			 */
23435 
23436 			if (!hsp)
23437 				hsp = hsp_net;
23438 		}
23439 	}
23440 
23441 	rw_exit(&tcp_hsp_lock);
23442 	return (hsp);
23443 }
23444 
23445 /*
23446  * Type three generator adapted from the random() function in 4.4 BSD:
23447  */
23448 
23449 /*
23450  * Copyright (c) 1983, 1993
23451  *	The Regents of the University of California.  All rights reserved.
23452  *
23453  * Redistribution and use in source and binary forms, with or without
23454  * modification, are permitted provided that the following conditions
23455  * are met:
23456  * 1. Redistributions of source code must retain the above copyright
23457  *    notice, this list of conditions and the following disclaimer.
23458  * 2. Redistributions in binary form must reproduce the above copyright
23459  *    notice, this list of conditions and the following disclaimer in the
23460  *    documentation and/or other materials provided with the distribution.
23461  * 3. All advertising materials mentioning features or use of this software
23462  *    must display the following acknowledgement:
23463  *	This product includes software developed by the University of
23464  *	California, Berkeley and its contributors.
23465  * 4. Neither the name of the University nor the names of its contributors
23466  *    may be used to endorse or promote products derived from this software
23467  *    without specific prior written permission.
23468  *
23469  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23470  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23471  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23472  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23473  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23474  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23475  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23476  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23477  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23478  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23479  * SUCH DAMAGE.
23480  */
23481 
23482 /* Type 3 -- x**31 + x**3 + 1 */
23483 #define	DEG_3		31
23484 #define	SEP_3		3
23485 
23486 
23487 /* Protected by tcp_random_lock */
23488 static int tcp_randtbl[DEG_3 + 1];
23489 
23490 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1];
23491 static int *tcp_random_rptr = &tcp_randtbl[1];
23492 
23493 static int *tcp_random_state = &tcp_randtbl[1];
23494 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1];
23495 
23496 kmutex_t tcp_random_lock;
23497 
23498 void
23499 tcp_random_init(void)
23500 {
23501 	int i;
23502 	hrtime_t hrt;
23503 	time_t wallclock;
23504 	uint64_t result;
23505 
23506 	/*
23507 	 * Use high-res timer and current time for seed.  Gethrtime() returns
23508 	 * a longlong, which may contain resolution down to nanoseconds.
23509 	 * The current time will either be a 32-bit or a 64-bit quantity.
23510 	 * XOR the two together in a 64-bit result variable.
23511 	 * Convert the result to a 32-bit value by multiplying the high-order
23512 	 * 32-bits by the low-order 32-bits.
23513 	 */
23514 
23515 	hrt = gethrtime();
23516 	(void) drv_getparm(TIME, &wallclock);
23517 	result = (uint64_t)wallclock ^ (uint64_t)hrt;
23518 	mutex_enter(&tcp_random_lock);
23519 	tcp_random_state[0] = ((result >> 32) & 0xffffffff) *
23520 	    (result & 0xffffffff);
23521 
23522 	for (i = 1; i < DEG_3; i++)
23523 		tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1]
23524 			+ 12345;
23525 	tcp_random_fptr = &tcp_random_state[SEP_3];
23526 	tcp_random_rptr = &tcp_random_state[0];
23527 	mutex_exit(&tcp_random_lock);
23528 	for (i = 0; i < 10 * DEG_3; i++)
23529 		(void) tcp_random();
23530 }
23531 
23532 /*
23533  * tcp_random: Return a random number in the range [1 - (128K + 1)].
23534  * This range is selected to be approximately centered on TCP_ISS / 2,
23535  * and easy to compute. We get this value by generating a 32-bit random
23536  * number, selecting out the high-order 17 bits, and then adding one so
23537  * that we never return zero.
23538  */
23539 int
23540 tcp_random(void)
23541 {
23542 	int i;
23543 
23544 	mutex_enter(&tcp_random_lock);
23545 	*tcp_random_fptr += *tcp_random_rptr;
23546 
23547 	/*
23548 	 * The high-order bits are more random than the low-order bits,
23549 	 * so we select out the high-order 17 bits and add one so that
23550 	 * we never return zero.
23551 	 */
23552 	i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1;
23553 	if (++tcp_random_fptr >= tcp_random_end_ptr) {
23554 		tcp_random_fptr = tcp_random_state;
23555 		++tcp_random_rptr;
23556 	} else if (++tcp_random_rptr >= tcp_random_end_ptr)
23557 		tcp_random_rptr = tcp_random_state;
23558 
23559 	mutex_exit(&tcp_random_lock);
23560 	return (i);
23561 }
23562 
23563 /*
23564  * XXX This will go away when TPI is extended to send
23565  * info reqs to sockfs/timod .....
23566  * Given a queue, set the max packet size for the write
23567  * side of the queue below stream head.  This value is
23568  * cached on the stream head.
23569  * Returns 1 on success, 0 otherwise.
23570  */
23571 static int
23572 setmaxps(queue_t *q, int maxpsz)
23573 {
23574 	struct stdata	*stp;
23575 	queue_t		*wq;
23576 	stp = STREAM(q);
23577 
23578 	/*
23579 	 * At this point change of a queue parameter is not allowed
23580 	 * when a multiplexor is sitting on top.
23581 	 */
23582 	if (stp->sd_flag & STPLEX)
23583 		return (0);
23584 
23585 	claimstr(stp->sd_wrq);
23586 	wq = stp->sd_wrq->q_next;
23587 	ASSERT(wq != NULL);
23588 	(void) strqset(wq, QMAXPSZ, 0, maxpsz);
23589 	releasestr(stp->sd_wrq);
23590 	return (1);
23591 }
23592 
23593 static int
23594 tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, int *do_disconnectp,
23595     int *t_errorp, int *sys_errorp)
23596 {
23597 	int error;
23598 	int is_absreq_failure;
23599 	t_scalar_t *opt_lenp;
23600 	t_scalar_t opt_offset;
23601 	int prim_type;
23602 	struct T_conn_req *tcreqp;
23603 	struct T_conn_res *tcresp;
23604 	cred_t *cr;
23605 
23606 	cr = DB_CREDDEF(mp, tcp->tcp_cred);
23607 
23608 	prim_type = ((union T_primitives *)mp->b_rptr)->type;
23609 	ASSERT(prim_type == T_CONN_REQ || prim_type == O_T_CONN_RES ||
23610 	    prim_type == T_CONN_RES);
23611 
23612 	switch (prim_type) {
23613 	case T_CONN_REQ:
23614 		tcreqp = (struct T_conn_req *)mp->b_rptr;
23615 		opt_offset = tcreqp->OPT_offset;
23616 		opt_lenp = (t_scalar_t *)&tcreqp->OPT_length;
23617 		break;
23618 	case O_T_CONN_RES:
23619 	case T_CONN_RES:
23620 		tcresp = (struct T_conn_res *)mp->b_rptr;
23621 		opt_offset = tcresp->OPT_offset;
23622 		opt_lenp = (t_scalar_t *)&tcresp->OPT_length;
23623 		break;
23624 	}
23625 
23626 	*t_errorp = 0;
23627 	*sys_errorp = 0;
23628 	*do_disconnectp = 0;
23629 
23630 	error = tpi_optcom_buf(tcp->tcp_wq, mp, opt_lenp,
23631 	    opt_offset, cr, &tcp_opt_obj,
23632 	    NULL, &is_absreq_failure);
23633 
23634 	switch (error) {
23635 	case  0:		/* no error */
23636 		ASSERT(is_absreq_failure == 0);
23637 		return (0);
23638 	case ENOPROTOOPT:
23639 		*t_errorp = TBADOPT;
23640 		break;
23641 	case EACCES:
23642 		*t_errorp = TACCES;
23643 		break;
23644 	default:
23645 		*t_errorp = TSYSERR; *sys_errorp = error;
23646 		break;
23647 	}
23648 	if (is_absreq_failure != 0) {
23649 		/*
23650 		 * The connection request should get the local ack
23651 		 * T_OK_ACK and then a T_DISCON_IND.
23652 		 */
23653 		*do_disconnectp = 1;
23654 	}
23655 	return (-1);
23656 }
23657 
23658 /*
23659  * Split this function out so that if the secret changes, I'm okay.
23660  *
23661  * Initialize the tcp_iss_cookie and tcp_iss_key.
23662  */
23663 
23664 #define	PASSWD_SIZE 16  /* MUST be multiple of 4 */
23665 
23666 static void
23667 tcp_iss_key_init(uint8_t *phrase, int len)
23668 {
23669 	struct {
23670 		int32_t current_time;
23671 		uint32_t randnum;
23672 		uint16_t pad;
23673 		uint8_t ether[6];
23674 		uint8_t passwd[PASSWD_SIZE];
23675 	} tcp_iss_cookie;
23676 	time_t t;
23677 
23678 	/*
23679 	 * Start with the current absolute time.
23680 	 */
23681 	(void) drv_getparm(TIME, &t);
23682 	tcp_iss_cookie.current_time = t;
23683 
23684 	/*
23685 	 * XXX - Need a more random number per RFC 1750, not this crap.
23686 	 * OTOH, if what follows is pretty random, then I'm in better shape.
23687 	 */
23688 	tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random());
23689 	tcp_iss_cookie.pad = 0x365c;  /* Picked from HMAC pad values. */
23690 
23691 	/*
23692 	 * The cpu_type_info is pretty non-random.  Ugggh.  It does serve
23693 	 * as a good template.
23694 	 */
23695 	bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd,
23696 	    min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info)));
23697 
23698 	/*
23699 	 * The pass-phrase.  Normally this is supplied by user-called NDD.
23700 	 */
23701 	bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len));
23702 
23703 	/*
23704 	 * See 4010593 if this section becomes a problem again,
23705 	 * but the local ethernet address is useful here.
23706 	 */
23707 	(void) localetheraddr(NULL,
23708 	    (struct ether_addr *)&tcp_iss_cookie.ether);
23709 
23710 	/*
23711 	 * Hash 'em all together.  The MD5Final is called per-connection.
23712 	 */
23713 	mutex_enter(&tcp_iss_key_lock);
23714 	MD5Init(&tcp_iss_key);
23715 	MD5Update(&tcp_iss_key, (uchar_t *)&tcp_iss_cookie,
23716 	    sizeof (tcp_iss_cookie));
23717 	mutex_exit(&tcp_iss_key_lock);
23718 }
23719 
23720 /*
23721  * Set the RFC 1948 pass phrase
23722  */
23723 /* ARGSUSED */
23724 static int
23725 tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
23726     cred_t *cr)
23727 {
23728 	/*
23729 	 * Basically, value contains a new pass phrase.  Pass it along!
23730 	 */
23731 	tcp_iss_key_init((uint8_t *)value, strlen(value));
23732 	return (0);
23733 }
23734 
23735 /* ARGSUSED */
23736 static int
23737 tcp_sack_info_constructor(void *buf, void *cdrarg, int kmflags)
23738 {
23739 	bzero(buf, sizeof (tcp_sack_info_t));
23740 	return (0);
23741 }
23742 
23743 /* ARGSUSED */
23744 static int
23745 tcp_iphc_constructor(void *buf, void *cdrarg, int kmflags)
23746 {
23747 	bzero(buf, TCP_MAX_COMBINED_HEADER_LENGTH);
23748 	return (0);
23749 }
23750 
23751 void
23752 tcp_ddi_init(void)
23753 {
23754 	int i;
23755 
23756 	/* Initialize locks */
23757 	rw_init(&tcp_hsp_lock, NULL, RW_DEFAULT, NULL);
23758 	mutex_init(&tcp_g_q_lock, NULL, MUTEX_DEFAULT, NULL);
23759 	mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL);
23760 	mutex_init(&tcp_iss_key_lock, NULL, MUTEX_DEFAULT, NULL);
23761 	mutex_init(&tcp_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL);
23762 	rw_init(&tcp_reserved_port_lock, NULL, RW_DEFAULT, NULL);
23763 
23764 	for (i = 0; i < A_CNT(tcp_bind_fanout); i++) {
23765 		mutex_init(&tcp_bind_fanout[i].tf_lock, NULL,
23766 		    MUTEX_DEFAULT, NULL);
23767 	}
23768 
23769 	for (i = 0; i < A_CNT(tcp_acceptor_fanout); i++) {
23770 		mutex_init(&tcp_acceptor_fanout[i].tf_lock, NULL,
23771 		    MUTEX_DEFAULT, NULL);
23772 	}
23773 
23774 	/* TCP's IPsec code calls the packet dropper. */
23775 	ip_drop_register(&tcp_dropper, "TCP IPsec policy enforcement");
23776 
23777 	if (!tcp_g_nd) {
23778 		if (!tcp_param_register(tcp_param_arr, A_CNT(tcp_param_arr))) {
23779 			nd_free(&tcp_g_nd);
23780 		}
23781 	}
23782 
23783 	/*
23784 	 * Note: To really walk the device tree you need the devinfo
23785 	 * pointer to your device which is only available after probe/attach.
23786 	 * The following is safe only because it uses ddi_root_node()
23787 	 */
23788 	tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr,
23789 	    tcp_opt_obj.odb_opt_arr_cnt);
23790 
23791 	tcp_timercache = kmem_cache_create("tcp_timercache",
23792 	    sizeof (tcp_timer_t) + sizeof (mblk_t), 0,
23793 	    NULL, NULL, NULL, NULL, NULL, 0);
23794 
23795 	tcp_sack_info_cache = kmem_cache_create("tcp_sack_info_cache",
23796 	    sizeof (tcp_sack_info_t), 0,
23797 	    tcp_sack_info_constructor, NULL, NULL, NULL, NULL, 0);
23798 
23799 	tcp_iphc_cache = kmem_cache_create("tcp_iphc_cache",
23800 	    TCP_MAX_COMBINED_HEADER_LENGTH, 0,
23801 	    tcp_iphc_constructor, NULL, NULL, NULL, NULL, 0);
23802 
23803 	tcp_squeue_wput_proc = tcp_squeue_switch(tcp_squeue_wput);
23804 	tcp_squeue_close_proc = tcp_squeue_switch(tcp_squeue_close);
23805 
23806 	ip_squeue_init(tcp_squeue_add);
23807 
23808 	/* Initialize the random number generator */
23809 	tcp_random_init();
23810 
23811 	/*
23812 	 * Initialize RFC 1948 secret values.  This will probably be reset once
23813 	 * by the boot scripts.
23814 	 *
23815 	 * Use NULL name, as the name is caught by the new lockstats.
23816 	 *
23817 	 * Initialize with some random, non-guessable string, like the global
23818 	 * T_INFO_ACK.
23819 	 */
23820 
23821 	tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack,
23822 	    sizeof (tcp_g_t_info_ack));
23823 
23824 	if ((tcp_kstat = kstat_create(TCP_MOD_NAME, 0, "tcpstat",
23825 		"net", KSTAT_TYPE_NAMED,
23826 		sizeof (tcp_statistics) / sizeof (kstat_named_t),
23827 		KSTAT_FLAG_VIRTUAL)) != NULL) {
23828 		tcp_kstat->ks_data = &tcp_statistics;
23829 		kstat_install(tcp_kstat);
23830 	}
23831 
23832 	tcp_kstat_init();
23833 }
23834 
23835 void
23836 tcp_ddi_destroy(void)
23837 {
23838 	int i;
23839 
23840 	nd_free(&tcp_g_nd);
23841 
23842 	for (i = 0; i < A_CNT(tcp_bind_fanout); i++) {
23843 		mutex_destroy(&tcp_bind_fanout[i].tf_lock);
23844 	}
23845 
23846 	for (i = 0; i < A_CNT(tcp_acceptor_fanout); i++) {
23847 		mutex_destroy(&tcp_acceptor_fanout[i].tf_lock);
23848 	}
23849 
23850 	mutex_destroy(&tcp_iss_key_lock);
23851 	rw_destroy(&tcp_hsp_lock);
23852 	mutex_destroy(&tcp_g_q_lock);
23853 	mutex_destroy(&tcp_random_lock);
23854 	mutex_destroy(&tcp_epriv_port_lock);
23855 	rw_destroy(&tcp_reserved_port_lock);
23856 
23857 	ip_drop_unregister(&tcp_dropper);
23858 
23859 	kmem_cache_destroy(tcp_timercache);
23860 	kmem_cache_destroy(tcp_sack_info_cache);
23861 	kmem_cache_destroy(tcp_iphc_cache);
23862 
23863 	tcp_kstat_fini();
23864 }
23865 
23866 /*
23867  * Generate ISS, taking into account NDD changes may happen halfway through.
23868  * (If the iss is not zero, set it.)
23869  */
23870 
23871 static void
23872 tcp_iss_init(tcp_t *tcp)
23873 {
23874 	MD5_CTX context;
23875 	struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg;
23876 	uint32_t answer[4];
23877 
23878 	tcp_iss_incr_extra += (ISS_INCR >> 1);
23879 	tcp->tcp_iss = tcp_iss_incr_extra;
23880 	switch (tcp_strong_iss) {
23881 	case 2:
23882 		mutex_enter(&tcp_iss_key_lock);
23883 		context = tcp_iss_key;
23884 		mutex_exit(&tcp_iss_key_lock);
23885 		arg.ports = tcp->tcp_ports;
23886 		if (tcp->tcp_ipversion == IPV4_VERSION) {
23887 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
23888 			    &arg.src);
23889 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_dst,
23890 			    &arg.dst);
23891 		} else {
23892 			arg.src = tcp->tcp_ip6h->ip6_src;
23893 			arg.dst = tcp->tcp_ip6h->ip6_dst;
23894 		}
23895 		MD5Update(&context, (uchar_t *)&arg, sizeof (arg));
23896 		MD5Final((uchar_t *)answer, &context);
23897 		tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3];
23898 		/*
23899 		 * Now that we've hashed into a unique per-connection sequence
23900 		 * space, add a random increment per strong_iss == 1.  So I
23901 		 * guess we'll have to...
23902 		 */
23903 		/* FALLTHRU */
23904 	case 1:
23905 		tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random();
23906 		break;
23907 	default:
23908 		tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR;
23909 		break;
23910 	}
23911 	tcp->tcp_valid_bits = TCP_ISS_VALID;
23912 	tcp->tcp_fss = tcp->tcp_iss - 1;
23913 	tcp->tcp_suna = tcp->tcp_iss;
23914 	tcp->tcp_snxt = tcp->tcp_iss + 1;
23915 	tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
23916 	tcp->tcp_csuna = tcp->tcp_snxt;
23917 }
23918 
23919 /*
23920  * Exported routine for extracting active tcp connection status.
23921  *
23922  * This is used by the Solaris Cluster Networking software to
23923  * gather a list of connections that need to be forwarded to
23924  * specific nodes in the cluster when configuration changes occur.
23925  *
23926  * The callback is invoked for each tcp_t structure. Returning
23927  * non-zero from the callback routine terminates the search.
23928  */
23929 int
23930 cl_tcp_walk_list(int (*callback)(cl_tcp_info_t *, void *), void *arg)
23931 {
23932 	tcp_t *tcp;
23933 	cl_tcp_info_t	cl_tcpi;
23934 	connf_t	*connfp;
23935 	conn_t	*connp;
23936 	int	i;
23937 
23938 	ASSERT(callback != NULL);
23939 
23940 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
23941 
23942 		connfp = &ipcl_globalhash_fanout[i];
23943 		connp = NULL;
23944 
23945 		while ((connp =
23946 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
23947 
23948 			tcp = connp->conn_tcp;
23949 			cl_tcpi.cl_tcpi_version = CL_TCPI_V1;
23950 			cl_tcpi.cl_tcpi_ipversion = tcp->tcp_ipversion;
23951 			cl_tcpi.cl_tcpi_state = tcp->tcp_state;
23952 			cl_tcpi.cl_tcpi_lport = tcp->tcp_lport;
23953 			cl_tcpi.cl_tcpi_fport = tcp->tcp_fport;
23954 			/*
23955 			 * The macros tcp_laddr and tcp_faddr give the IPv4
23956 			 * addresses. They are copied implicitly below as
23957 			 * mapped addresses.
23958 			 */
23959 			cl_tcpi.cl_tcpi_laddr_v6 = tcp->tcp_ip_src_v6;
23960 			if (tcp->tcp_ipversion == IPV4_VERSION) {
23961 				cl_tcpi.cl_tcpi_faddr =
23962 				    tcp->tcp_ipha->ipha_dst;
23963 			} else {
23964 				cl_tcpi.cl_tcpi_faddr_v6 =
23965 				    tcp->tcp_ip6h->ip6_dst;
23966 			}
23967 
23968 			/*
23969 			 * If the callback returns non-zero
23970 			 * we terminate the traversal.
23971 			 */
23972 			if ((*callback)(&cl_tcpi, arg) != 0) {
23973 				CONN_DEC_REF(tcp->tcp_connp);
23974 				return (1);
23975 			}
23976 		}
23977 	}
23978 
23979 	return (0);
23980 }
23981 
23982 /*
23983  * Macros used for accessing the different types of sockaddr
23984  * structures inside a tcp_ioc_abort_conn_t.
23985  */
23986 #define	TCP_AC_V4LADDR(acp) ((sin_t *)&(acp)->ac_local)
23987 #define	TCP_AC_V4RADDR(acp) ((sin_t *)&(acp)->ac_remote)
23988 #define	TCP_AC_V4LOCAL(acp) (TCP_AC_V4LADDR(acp)->sin_addr.s_addr)
23989 #define	TCP_AC_V4REMOTE(acp) (TCP_AC_V4RADDR(acp)->sin_addr.s_addr)
23990 #define	TCP_AC_V4LPORT(acp) (TCP_AC_V4LADDR(acp)->sin_port)
23991 #define	TCP_AC_V4RPORT(acp) (TCP_AC_V4RADDR(acp)->sin_port)
23992 #define	TCP_AC_V6LADDR(acp) ((sin6_t *)&(acp)->ac_local)
23993 #define	TCP_AC_V6RADDR(acp) ((sin6_t *)&(acp)->ac_remote)
23994 #define	TCP_AC_V6LOCAL(acp) (TCP_AC_V6LADDR(acp)->sin6_addr)
23995 #define	TCP_AC_V6REMOTE(acp) (TCP_AC_V6RADDR(acp)->sin6_addr)
23996 #define	TCP_AC_V6LPORT(acp) (TCP_AC_V6LADDR(acp)->sin6_port)
23997 #define	TCP_AC_V6RPORT(acp) (TCP_AC_V6RADDR(acp)->sin6_port)
23998 
23999 /*
24000  * Return the correct error code to mimic the behavior
24001  * of a connection reset.
24002  */
24003 #define	TCP_AC_GET_ERRCODE(state, err) {	\
24004 		switch ((state)) {		\
24005 		case TCPS_SYN_SENT:		\
24006 		case TCPS_SYN_RCVD:		\
24007 			(err) = ECONNREFUSED;	\
24008 			break;			\
24009 		case TCPS_ESTABLISHED:		\
24010 		case TCPS_FIN_WAIT_1:		\
24011 		case TCPS_FIN_WAIT_2:		\
24012 		case TCPS_CLOSE_WAIT:		\
24013 			(err) = ECONNRESET;	\
24014 			break;			\
24015 		case TCPS_CLOSING:		\
24016 		case TCPS_LAST_ACK:		\
24017 		case TCPS_TIME_WAIT:		\
24018 			(err) = 0;		\
24019 			break;			\
24020 		default:			\
24021 			(err) = ENXIO;		\
24022 		}				\
24023 	}
24024 
24025 /*
24026  * Check if a tcp structure matches the info in acp.
24027  */
24028 #define	TCP_AC_ADDR_MATCH(acp, tcp)					\
24029 	(((acp)->ac_local.ss_family == AF_INET) ?		\
24030 	((TCP_AC_V4LOCAL((acp)) == INADDR_ANY ||		\
24031 	TCP_AC_V4LOCAL((acp)) == (tcp)->tcp_ip_src) &&	\
24032 	(TCP_AC_V4REMOTE((acp)) == INADDR_ANY ||		\
24033 	TCP_AC_V4REMOTE((acp)) == (tcp)->tcp_remote) &&	\
24034 	(TCP_AC_V4LPORT((acp)) == 0 ||				\
24035 	TCP_AC_V4LPORT((acp)) == (tcp)->tcp_lport) &&		\
24036 	(TCP_AC_V4RPORT((acp)) == 0 ||				\
24037 	TCP_AC_V4RPORT((acp)) == (tcp)->tcp_fport) &&		\
24038 	(acp)->ac_start <= (tcp)->tcp_state &&	\
24039 	(acp)->ac_end >= (tcp)->tcp_state) :		\
24040 	((IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL((acp))) ||	\
24041 	IN6_ARE_ADDR_EQUAL(&TCP_AC_V6LOCAL((acp)),		\
24042 	&(tcp)->tcp_ip_src_v6)) &&				\
24043 	(IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE((acp))) ||	\
24044 	IN6_ARE_ADDR_EQUAL(&TCP_AC_V6REMOTE((acp)),		\
24045 	&(tcp)->tcp_remote_v6)) &&				\
24046 	(TCP_AC_V6LPORT((acp)) == 0 ||				\
24047 	TCP_AC_V6LPORT((acp)) == (tcp)->tcp_lport) &&		\
24048 	(TCP_AC_V6RPORT((acp)) == 0 ||				\
24049 	TCP_AC_V6RPORT((acp)) == (tcp)->tcp_fport) &&		\
24050 	(acp)->ac_start <= (tcp)->tcp_state &&	\
24051 	(acp)->ac_end >= (tcp)->tcp_state))
24052 
24053 #define	TCP_AC_MATCH(acp, tcp)					\
24054 	(((acp)->ac_zoneid == ALL_ZONES ||			\
24055 	(acp)->ac_zoneid == tcp->tcp_connp->conn_zoneid) ?	\
24056 	TCP_AC_ADDR_MATCH(acp, tcp) : 0)
24057 
24058 /*
24059  * Build a message containing a tcp_ioc_abort_conn_t structure
24060  * which is filled in with information from acp and tp.
24061  */
24062 static mblk_t *
24063 tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *acp, tcp_t *tp)
24064 {
24065 	mblk_t *mp;
24066 	tcp_ioc_abort_conn_t *tacp;
24067 
24068 	mp = allocb(sizeof (uint32_t) + sizeof (*acp), BPRI_LO);
24069 	if (mp == NULL)
24070 		return (NULL);
24071 
24072 	mp->b_datap->db_type = M_CTL;
24073 
24074 	*((uint32_t *)mp->b_rptr) = TCP_IOC_ABORT_CONN;
24075 	tacp = (tcp_ioc_abort_conn_t *)((uchar_t *)mp->b_rptr +
24076 		sizeof (uint32_t));
24077 
24078 	tacp->ac_start = acp->ac_start;
24079 	tacp->ac_end = acp->ac_end;
24080 	tacp->ac_zoneid = acp->ac_zoneid;
24081 
24082 	if (acp->ac_local.ss_family == AF_INET) {
24083 		tacp->ac_local.ss_family = AF_INET;
24084 		tacp->ac_remote.ss_family = AF_INET;
24085 		TCP_AC_V4LOCAL(tacp) = tp->tcp_ip_src;
24086 		TCP_AC_V4REMOTE(tacp) = tp->tcp_remote;
24087 		TCP_AC_V4LPORT(tacp) = tp->tcp_lport;
24088 		TCP_AC_V4RPORT(tacp) = tp->tcp_fport;
24089 	} else {
24090 		tacp->ac_local.ss_family = AF_INET6;
24091 		tacp->ac_remote.ss_family = AF_INET6;
24092 		TCP_AC_V6LOCAL(tacp) = tp->tcp_ip_src_v6;
24093 		TCP_AC_V6REMOTE(tacp) = tp->tcp_remote_v6;
24094 		TCP_AC_V6LPORT(tacp) = tp->tcp_lport;
24095 		TCP_AC_V6RPORT(tacp) = tp->tcp_fport;
24096 	}
24097 	mp->b_wptr = (uchar_t *)mp->b_rptr + sizeof (uint32_t) + sizeof (*acp);
24098 	return (mp);
24099 }
24100 
24101 /*
24102  * Print a tcp_ioc_abort_conn_t structure.
24103  */
24104 static void
24105 tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *acp)
24106 {
24107 	char lbuf[128];
24108 	char rbuf[128];
24109 	sa_family_t af;
24110 	in_port_t lport, rport;
24111 	ushort_t logflags;
24112 
24113 	af = acp->ac_local.ss_family;
24114 
24115 	if (af == AF_INET) {
24116 		(void) inet_ntop(af, (const void *)&TCP_AC_V4LOCAL(acp),
24117 				lbuf, 128);
24118 		(void) inet_ntop(af, (const void *)&TCP_AC_V4REMOTE(acp),
24119 				rbuf, 128);
24120 		lport = ntohs(TCP_AC_V4LPORT(acp));
24121 		rport = ntohs(TCP_AC_V4RPORT(acp));
24122 	} else {
24123 		(void) inet_ntop(af, (const void *)&TCP_AC_V6LOCAL(acp),
24124 				lbuf, 128);
24125 		(void) inet_ntop(af, (const void *)&TCP_AC_V6REMOTE(acp),
24126 				rbuf, 128);
24127 		lport = ntohs(TCP_AC_V6LPORT(acp));
24128 		rport = ntohs(TCP_AC_V6RPORT(acp));
24129 	}
24130 
24131 	logflags = SL_TRACE | SL_NOTE;
24132 	/*
24133 	 * Don't print this message to the console if the operation was done
24134 	 * to a non-global zone.
24135 	 */
24136 	if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES)
24137 		logflags |= SL_CONSOLE;
24138 	(void) strlog(TCP_MOD_ID, 0, 1, logflags,
24139 		"TCP_IOC_ABORT_CONN: local = %s:%d, remote = %s:%d, "
24140 		"start = %d, end = %d\n", lbuf, lport, rbuf, rport,
24141 		acp->ac_start, acp->ac_end);
24142 }
24143 
24144 /*
24145  * Called inside tcp_rput when a message built using
24146  * tcp_ioctl_abort_build_msg is put into a queue.
24147  * Note that when we get here there is no wildcard in acp any more.
24148  */
24149 static void
24150 tcp_ioctl_abort_handler(tcp_t *tcp, mblk_t *mp)
24151 {
24152 	tcp_ioc_abort_conn_t *acp;
24153 
24154 	acp = (tcp_ioc_abort_conn_t *)(mp->b_rptr + sizeof (uint32_t));
24155 	if (tcp->tcp_state <= acp->ac_end) {
24156 		/*
24157 		 * If we get here, we are already on the correct
24158 		 * squeue. This ioctl follows the following path
24159 		 * tcp_wput -> tcp_wput_ioctl -> tcp_ioctl_abort_conn
24160 		 * ->tcp_ioctl_abort->squeue_fill (if on a
24161 		 * different squeue)
24162 		 */
24163 		int errcode;
24164 
24165 		TCP_AC_GET_ERRCODE(tcp->tcp_state, errcode);
24166 		(void) tcp_clean_death(tcp, errcode, 26);
24167 	}
24168 	freemsg(mp);
24169 }
24170 
24171 /*
24172  * Abort all matching connections on a hash chain.
24173  */
24174 static int
24175 tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *acp, int index, int *count,
24176     boolean_t exact)
24177 {
24178 	int nmatch, err = 0;
24179 	tcp_t *tcp;
24180 	MBLKP mp, last, listhead = NULL;
24181 	conn_t	*tconnp;
24182 	connf_t	*connfp = &ipcl_conn_fanout[index];
24183 
24184 startover:
24185 	nmatch = 0;
24186 
24187 	mutex_enter(&connfp->connf_lock);
24188 	for (tconnp = connfp->connf_head; tconnp != NULL;
24189 	    tconnp = tconnp->conn_next) {
24190 		tcp = tconnp->conn_tcp;
24191 		if (TCP_AC_MATCH(acp, tcp)) {
24192 			CONN_INC_REF(tcp->tcp_connp);
24193 			mp = tcp_ioctl_abort_build_msg(acp, tcp);
24194 			if (mp == NULL) {
24195 				err = ENOMEM;
24196 				CONN_DEC_REF(tcp->tcp_connp);
24197 				break;
24198 			}
24199 			mp->b_prev = (mblk_t *)tcp;
24200 
24201 			if (listhead == NULL) {
24202 				listhead = mp;
24203 				last = mp;
24204 			} else {
24205 				last->b_next = mp;
24206 				last = mp;
24207 			}
24208 			nmatch++;
24209 			if (exact)
24210 				break;
24211 		}
24212 
24213 		/* Avoid holding lock for too long. */
24214 		if (nmatch >= 500)
24215 			break;
24216 	}
24217 	mutex_exit(&connfp->connf_lock);
24218 
24219 	/* Pass mp into the correct tcp */
24220 	while ((mp = listhead) != NULL) {
24221 		listhead = listhead->b_next;
24222 		tcp = (tcp_t *)mp->b_prev;
24223 		mp->b_next = mp->b_prev = NULL;
24224 		squeue_fill(tcp->tcp_connp->conn_sqp, mp,
24225 		    tcp_input, tcp->tcp_connp, SQTAG_TCP_ABORT_BUCKET);
24226 	}
24227 
24228 	*count += nmatch;
24229 	if (nmatch >= 500 && err == 0)
24230 		goto startover;
24231 	return (err);
24232 }
24233 
24234 /*
24235  * Abort all connections that matches the attributes specified in acp.
24236  */
24237 static int
24238 tcp_ioctl_abort(tcp_ioc_abort_conn_t *acp)
24239 {
24240 	sa_family_t af;
24241 	uint32_t  ports;
24242 	uint16_t *pports;
24243 	int err = 0, count = 0;
24244 	boolean_t exact = B_FALSE; /* set when there is no wildcard */
24245 	int index = -1;
24246 	ushort_t logflags;
24247 
24248 	af = acp->ac_local.ss_family;
24249 
24250 	if (af == AF_INET) {
24251 		if (TCP_AC_V4REMOTE(acp) != INADDR_ANY &&
24252 		    TCP_AC_V4LPORT(acp) != 0 && TCP_AC_V4RPORT(acp) != 0) {
24253 			pports = (uint16_t *)&ports;
24254 			pports[1] = TCP_AC_V4LPORT(acp);
24255 			pports[0] = TCP_AC_V4RPORT(acp);
24256 			exact = (TCP_AC_V4LOCAL(acp) != INADDR_ANY);
24257 		}
24258 	} else {
24259 		if (!IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE(acp)) &&
24260 		    TCP_AC_V6LPORT(acp) != 0 && TCP_AC_V6RPORT(acp) != 0) {
24261 			pports = (uint16_t *)&ports;
24262 			pports[1] = TCP_AC_V6LPORT(acp);
24263 			pports[0] = TCP_AC_V6RPORT(acp);
24264 			exact = !IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL(acp));
24265 		}
24266 	}
24267 
24268 	/*
24269 	 * For cases where remote addr, local port, and remote port are non-
24270 	 * wildcards, tcp_ioctl_abort_bucket will only be called once.
24271 	 */
24272 	if (index != -1) {
24273 		err = tcp_ioctl_abort_bucket(acp, index,
24274 			    &count, exact);
24275 	} else {
24276 		/*
24277 		 * loop through all entries for wildcard case
24278 		 */
24279 		for (index = 0; index < ipcl_conn_fanout_size; index++) {
24280 			err = tcp_ioctl_abort_bucket(acp, index,
24281 			    &count, exact);
24282 			if (err != 0)
24283 				break;
24284 		}
24285 	}
24286 
24287 	logflags = SL_TRACE | SL_NOTE;
24288 	/*
24289 	 * Don't print this message to the console if the operation was done
24290 	 * to a non-global zone.
24291 	 */
24292 	if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES)
24293 		logflags |= SL_CONSOLE;
24294 	(void) strlog(TCP_MOD_ID, 0, 1, logflags, "TCP_IOC_ABORT_CONN: "
24295 	    "aborted %d connection%c\n", count, ((count > 1) ? 's' : ' '));
24296 	if (err == 0 && count == 0)
24297 		err = ENOENT;
24298 	return (err);
24299 }
24300 
24301 /*
24302  * Process the TCP_IOC_ABORT_CONN ioctl request.
24303  */
24304 static void
24305 tcp_ioctl_abort_conn(queue_t *q, mblk_t *mp)
24306 {
24307 	int	err;
24308 	IOCP    iocp;
24309 	MBLKP   mp1;
24310 	sa_family_t laf, raf;
24311 	tcp_ioc_abort_conn_t *acp;
24312 	zone_t *zptr;
24313 	zoneid_t zoneid = Q_TO_CONN(q)->conn_zoneid;
24314 
24315 	iocp = (IOCP)mp->b_rptr;
24316 
24317 	if ((mp1 = mp->b_cont) == NULL ||
24318 	    iocp->ioc_count != sizeof (tcp_ioc_abort_conn_t)) {
24319 		err = EINVAL;
24320 		goto out;
24321 	}
24322 
24323 	/* check permissions */
24324 	if (secpolicy_net_config(iocp->ioc_cr, B_FALSE) != 0) {
24325 		err = EPERM;
24326 		goto out;
24327 	}
24328 
24329 	if (mp1->b_cont != NULL) {
24330 		freemsg(mp1->b_cont);
24331 		mp1->b_cont = NULL;
24332 	}
24333 
24334 	acp = (tcp_ioc_abort_conn_t *)mp1->b_rptr;
24335 	laf = acp->ac_local.ss_family;
24336 	raf = acp->ac_remote.ss_family;
24337 
24338 	/* check that a zone with the supplied zoneid exists */
24339 	if (acp->ac_zoneid != GLOBAL_ZONEID && acp->ac_zoneid != ALL_ZONES) {
24340 		zptr = zone_find_by_id(zoneid);
24341 		if (zptr != NULL) {
24342 			zone_rele(zptr);
24343 		} else {
24344 			err = EINVAL;
24345 			goto out;
24346 		}
24347 	}
24348 
24349 	if (acp->ac_start < TCPS_SYN_SENT || acp->ac_end > TCPS_TIME_WAIT ||
24350 	    acp->ac_start > acp->ac_end || laf != raf ||
24351 	    (laf != AF_INET && laf != AF_INET6)) {
24352 		err = EINVAL;
24353 		goto out;
24354 	}
24355 
24356 	tcp_ioctl_abort_dump(acp);
24357 	err = tcp_ioctl_abort(acp);
24358 
24359 out:
24360 	if (mp1 != NULL) {
24361 		freemsg(mp1);
24362 		mp->b_cont = NULL;
24363 	}
24364 
24365 	if (err != 0)
24366 		miocnak(q, mp, 0, err);
24367 	else
24368 		miocack(q, mp, 0, 0);
24369 }
24370 
24371 /*
24372  * tcp_time_wait_processing() handles processing of incoming packets when
24373  * the tcp is in the TIME_WAIT state.
24374  * A TIME_WAIT tcp that has an associated open TCP stream is never put
24375  * on the time wait list.
24376  */
24377 void
24378 tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, uint32_t seg_seq,
24379     uint32_t seg_ack, int seg_len, tcph_t *tcph)
24380 {
24381 	int32_t		bytes_acked;
24382 	int32_t		gap;
24383 	int32_t		rgap;
24384 	tcp_opt_t	tcpopt;
24385 	uint_t		flags;
24386 	uint32_t	new_swnd = 0;
24387 	conn_t		*connp;
24388 
24389 	BUMP_LOCAL(tcp->tcp_ibsegs);
24390 	TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_RECV_PKT);
24391 
24392 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
24393 	new_swnd = BE16_TO_U16(tcph->th_win) <<
24394 	    ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws);
24395 	if (tcp->tcp_snd_ts_ok) {
24396 		if (!tcp_paws_check(tcp, tcph, &tcpopt)) {
24397 			tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
24398 			    tcp->tcp_rnxt, TH_ACK);
24399 			goto done;
24400 		}
24401 	}
24402 	gap = seg_seq - tcp->tcp_rnxt;
24403 	rgap = tcp->tcp_rwnd - (gap + seg_len);
24404 	if (gap < 0) {
24405 		BUMP_MIB(&tcp_mib, tcpInDataDupSegs);
24406 		UPDATE_MIB(&tcp_mib, tcpInDataDupBytes,
24407 		    (seg_len > -gap ? -gap : seg_len));
24408 		seg_len += gap;
24409 		if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) {
24410 			if (flags & TH_RST) {
24411 				goto done;
24412 			}
24413 			if ((flags & TH_FIN) && seg_len == -1) {
24414 				/*
24415 				 * When TCP receives a duplicate FIN in
24416 				 * TIME_WAIT state, restart the 2 MSL timer.
24417 				 * See page 73 in RFC 793. Make sure this TCP
24418 				 * is already on the TIME_WAIT list. If not,
24419 				 * just restart the timer.
24420 				 */
24421 				if (TCP_IS_DETACHED(tcp)) {
24422 					tcp_time_wait_remove(tcp, NULL);
24423 					tcp_time_wait_append(tcp);
24424 					TCP_DBGSTAT(tcp_rput_time_wait);
24425 				} else {
24426 					ASSERT(tcp != NULL);
24427 					TCP_TIMER_RESTART(tcp,
24428 					    tcp_time_wait_interval);
24429 				}
24430 				tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
24431 				    tcp->tcp_rnxt, TH_ACK);
24432 				goto done;
24433 			}
24434 			flags |=  TH_ACK_NEEDED;
24435 			seg_len = 0;
24436 			goto process_ack;
24437 		}
24438 
24439 		/* Fix seg_seq, and chew the gap off the front. */
24440 		seg_seq = tcp->tcp_rnxt;
24441 	}
24442 
24443 	if ((flags & TH_SYN) && gap > 0 && rgap < 0) {
24444 		/*
24445 		 * Make sure that when we accept the connection, pick
24446 		 * an ISS greater than (tcp_snxt + ISS_INCR/2) for the
24447 		 * old connection.
24448 		 *
24449 		 * The next ISS generated is equal to tcp_iss_incr_extra
24450 		 * + ISS_INCR/2 + other components depending on the
24451 		 * value of tcp_strong_iss.  We pre-calculate the new
24452 		 * ISS here and compare with tcp_snxt to determine if
24453 		 * we need to make adjustment to tcp_iss_incr_extra.
24454 		 *
24455 		 * The above calculation is ugly and is a
24456 		 * waste of CPU cycles...
24457 		 */
24458 		uint32_t new_iss = tcp_iss_incr_extra;
24459 		int32_t adj;
24460 
24461 		switch (tcp_strong_iss) {
24462 		case 2: {
24463 			/* Add time and MD5 components. */
24464 			uint32_t answer[4];
24465 			struct {
24466 				uint32_t ports;
24467 				in6_addr_t src;
24468 				in6_addr_t dst;
24469 			} arg;
24470 			MD5_CTX context;
24471 
24472 			mutex_enter(&tcp_iss_key_lock);
24473 			context = tcp_iss_key;
24474 			mutex_exit(&tcp_iss_key_lock);
24475 			arg.ports = tcp->tcp_ports;
24476 			/* We use MAPPED addresses in tcp_iss_init */
24477 			arg.src = tcp->tcp_ip_src_v6;
24478 			if (tcp->tcp_ipversion == IPV4_VERSION) {
24479 				IN6_IPADDR_TO_V4MAPPED(
24480 					tcp->tcp_ipha->ipha_dst,
24481 					    &arg.dst);
24482 			} else {
24483 				arg.dst =
24484 				    tcp->tcp_ip6h->ip6_dst;
24485 			}
24486 			MD5Update(&context, (uchar_t *)&arg,
24487 			    sizeof (arg));
24488 			MD5Final((uchar_t *)answer, &context);
24489 			answer[0] ^= answer[1] ^ answer[2] ^ answer[3];
24490 			new_iss += (gethrtime() >> ISS_NSEC_SHT) + answer[0];
24491 			break;
24492 		}
24493 		case 1:
24494 			/* Add time component and min random (i.e. 1). */
24495 			new_iss += (gethrtime() >> ISS_NSEC_SHT) + 1;
24496 			break;
24497 		default:
24498 			/* Add only time component. */
24499 			new_iss += (uint32_t)gethrestime_sec() * ISS_INCR;
24500 			break;
24501 		}
24502 		if ((adj = (int32_t)(tcp->tcp_snxt - new_iss)) > 0) {
24503 			/*
24504 			 * New ISS not guaranteed to be ISS_INCR/2
24505 			 * ahead of the current tcp_snxt, so add the
24506 			 * difference to tcp_iss_incr_extra.
24507 			 */
24508 			tcp_iss_incr_extra += adj;
24509 		}
24510 		/*
24511 		 * If tcp_clean_death() can not perform the task now,
24512 		 * drop the SYN packet and let the other side re-xmit.
24513 		 * Otherwise pass the SYN packet back in, since the
24514 		 * old tcp state has been cleaned up or freed.
24515 		 */
24516 		if (tcp_clean_death(tcp, 0, 27) == -1)
24517 			goto done;
24518 		/*
24519 		 * We will come back to tcp_rput_data
24520 		 * on the global queue. Packets destined
24521 		 * for the global queue will be checked
24522 		 * with global policy. But the policy for
24523 		 * this packet has already been checked as
24524 		 * this was destined for the detached
24525 		 * connection. We need to bypass policy
24526 		 * check this time by attaching a dummy
24527 		 * ipsec_in with ipsec_in_dont_check set.
24528 		 */
24529 		if ((connp = ipcl_classify(mp, tcp->tcp_connp->conn_zoneid)) !=
24530 		    NULL) {
24531 			TCP_STAT(tcp_time_wait_syn_success);
24532 			tcp_reinput(connp, mp, tcp->tcp_connp->conn_sqp);
24533 			return;
24534 		}
24535 		goto done;
24536 	}
24537 
24538 	/*
24539 	 * rgap is the amount of stuff received out of window.  A negative
24540 	 * value is the amount out of window.
24541 	 */
24542 	if (rgap < 0) {
24543 		BUMP_MIB(&tcp_mib, tcpInDataPastWinSegs);
24544 		UPDATE_MIB(&tcp_mib, tcpInDataPastWinBytes, -rgap);
24545 		/* Fix seg_len and make sure there is something left. */
24546 		seg_len += rgap;
24547 		if (seg_len <= 0) {
24548 			if (flags & TH_RST) {
24549 				goto done;
24550 			}
24551 			flags |=  TH_ACK_NEEDED;
24552 			seg_len = 0;
24553 			goto process_ack;
24554 		}
24555 	}
24556 	/*
24557 	 * Check whether we can update tcp_ts_recent.  This test is
24558 	 * NOT the one in RFC 1323 3.4.  It is from Braden, 1993, "TCP
24559 	 * Extensions for High Performance: An Update", Internet Draft.
24560 	 */
24561 	if (tcp->tcp_snd_ts_ok &&
24562 	    TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) &&
24563 	    SEQ_LEQ(seg_seq, tcp->tcp_rack)) {
24564 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
24565 		tcp->tcp_last_rcv_lbolt = lbolt64;
24566 	}
24567 
24568 	if (seg_seq != tcp->tcp_rnxt && seg_len > 0) {
24569 		/* Always ack out of order packets */
24570 		flags |= TH_ACK_NEEDED;
24571 		seg_len = 0;
24572 	} else if (seg_len > 0) {
24573 		BUMP_MIB(&tcp_mib, tcpInClosed);
24574 		BUMP_MIB(&tcp_mib, tcpInDataInorderSegs);
24575 		UPDATE_MIB(&tcp_mib, tcpInDataInorderBytes, seg_len);
24576 	}
24577 	if (flags & TH_RST) {
24578 		(void) tcp_clean_death(tcp, 0, 28);
24579 		goto done;
24580 	}
24581 	if (flags & TH_SYN) {
24582 		tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1,
24583 		    TH_RST|TH_ACK);
24584 		/*
24585 		 * Do not delete the TCP structure if it is in
24586 		 * TIME_WAIT state.  Refer to RFC 1122, 4.2.2.13.
24587 		 */
24588 		goto done;
24589 	}
24590 process_ack:
24591 	if (flags & TH_ACK) {
24592 		bytes_acked = (int)(seg_ack - tcp->tcp_suna);
24593 		if (bytes_acked <= 0) {
24594 			if (bytes_acked == 0 && seg_len == 0 &&
24595 			    new_swnd == tcp->tcp_swnd)
24596 				BUMP_MIB(&tcp_mib, tcpInDupAck);
24597 		} else {
24598 			/* Acks something not sent */
24599 			flags |= TH_ACK_NEEDED;
24600 		}
24601 	}
24602 	if (flags & TH_ACK_NEEDED) {
24603 		/*
24604 		 * Time to send an ack for some reason.
24605 		 */
24606 		tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
24607 		    tcp->tcp_rnxt, TH_ACK);
24608 	}
24609 done:
24610 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
24611 		DB_CKSUMSTART(mp) = 0;
24612 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
24613 		TCP_STAT(tcp_time_wait_syn_fail);
24614 	}
24615 	freemsg(mp);
24616 }
24617 
24618 /*
24619  * Allocate a T_SVR4_OPTMGMT_REQ.
24620  * The caller needs to increment tcp_drop_opt_ack_cnt when sending these so
24621  * that tcp_rput_other can drop the acks.
24622  */
24623 static mblk_t *
24624 tcp_setsockopt_mp(int level, int cmd, char *opt, int optlen)
24625 {
24626 	mblk_t *mp;
24627 	struct T_optmgmt_req *tor;
24628 	struct opthdr *oh;
24629 	uint_t size;
24630 	char *optptr;
24631 
24632 	size = sizeof (*tor) + sizeof (*oh) + optlen;
24633 	mp = allocb(size, BPRI_MED);
24634 	if (mp == NULL)
24635 		return (NULL);
24636 
24637 	mp->b_wptr += size;
24638 	mp->b_datap->db_type = M_PROTO;
24639 	tor = (struct T_optmgmt_req *)mp->b_rptr;
24640 	tor->PRIM_type = T_SVR4_OPTMGMT_REQ;
24641 	tor->MGMT_flags = T_NEGOTIATE;
24642 	tor->OPT_length = sizeof (*oh) + optlen;
24643 	tor->OPT_offset = (t_scalar_t)sizeof (*tor);
24644 
24645 	oh = (struct opthdr *)&tor[1];
24646 	oh->level = level;
24647 	oh->name = cmd;
24648 	oh->len = optlen;
24649 	if (optlen != 0) {
24650 		optptr = (char *)&oh[1];
24651 		bcopy(opt, optptr, optlen);
24652 	}
24653 	return (mp);
24654 }
24655 
24656 /*
24657  * TCP Timers Implementation.
24658  */
24659 timeout_id_t
24660 tcp_timeout(conn_t *connp, void (*f)(void *), clock_t tim)
24661 {
24662 	mblk_t *mp;
24663 	tcp_timer_t *tcpt;
24664 	tcp_t *tcp = connp->conn_tcp;
24665 
24666 	ASSERT(connp->conn_sqp != NULL);
24667 
24668 	TCP_DBGSTAT(tcp_timeout_calls);
24669 
24670 	if (tcp->tcp_timercache == NULL) {
24671 		mp = tcp_timermp_alloc(KM_NOSLEEP | KM_PANIC);
24672 	} else {
24673 		TCP_DBGSTAT(tcp_timeout_cached_alloc);
24674 		mp = tcp->tcp_timercache;
24675 		tcp->tcp_timercache = mp->b_next;
24676 		mp->b_next = NULL;
24677 		ASSERT(mp->b_wptr == NULL);
24678 	}
24679 
24680 	CONN_INC_REF(connp);
24681 	tcpt = (tcp_timer_t *)mp->b_rptr;
24682 	tcpt->connp = connp;
24683 	tcpt->tcpt_proc = f;
24684 	tcpt->tcpt_tid = timeout(tcp_timer_callback, mp, tim);
24685 	return ((timeout_id_t)mp);
24686 }
24687 
24688 static void
24689 tcp_timer_callback(void *arg)
24690 {
24691 	mblk_t *mp = (mblk_t *)arg;
24692 	tcp_timer_t *tcpt;
24693 	conn_t	*connp;
24694 
24695 	tcpt = (tcp_timer_t *)mp->b_rptr;
24696 	connp = tcpt->connp;
24697 	squeue_fill(connp->conn_sqp, mp,
24698 	    tcp_timer_handler, connp, SQTAG_TCP_TIMER);
24699 }
24700 
24701 static void
24702 tcp_timer_handler(void *arg, mblk_t *mp, void *arg2)
24703 {
24704 	tcp_timer_t *tcpt;
24705 	conn_t *connp = (conn_t *)arg;
24706 	tcp_t *tcp = connp->conn_tcp;
24707 
24708 	tcpt = (tcp_timer_t *)mp->b_rptr;
24709 	ASSERT(connp == tcpt->connp);
24710 	ASSERT((squeue_t *)arg2 == connp->conn_sqp);
24711 
24712 	/*
24713 	 * If the TCP has reached the closed state, don't proceed any
24714 	 * further. This TCP logically does not exist on the system.
24715 	 * tcpt_proc could for example access queues, that have already
24716 	 * been qprocoff'ed off. Also see comments at the start of tcp_input
24717 	 */
24718 	if (tcp->tcp_state != TCPS_CLOSED) {
24719 		(*tcpt->tcpt_proc)(connp);
24720 	} else {
24721 		tcp->tcp_timer_tid = 0;
24722 	}
24723 	tcp_timer_free(connp->conn_tcp, mp);
24724 }
24725 
24726 /*
24727  * There is potential race with untimeout and the handler firing at the same
24728  * time. The mblock may be freed by the handler while we are trying to use
24729  * it. But since both should execute on the same squeue, this race should not
24730  * occur.
24731  */
24732 clock_t
24733 tcp_timeout_cancel(conn_t *connp, timeout_id_t id)
24734 {
24735 	mblk_t	*mp = (mblk_t *)id;
24736 	tcp_timer_t *tcpt;
24737 	clock_t delta;
24738 
24739 	TCP_DBGSTAT(tcp_timeout_cancel_reqs);
24740 
24741 	if (mp == NULL)
24742 		return (-1);
24743 
24744 	tcpt = (tcp_timer_t *)mp->b_rptr;
24745 	ASSERT(tcpt->connp == connp);
24746 
24747 	delta = untimeout(tcpt->tcpt_tid);
24748 
24749 	if (delta >= 0) {
24750 		TCP_DBGSTAT(tcp_timeout_canceled);
24751 		tcp_timer_free(connp->conn_tcp, mp);
24752 		CONN_DEC_REF(connp);
24753 	}
24754 
24755 	return (delta);
24756 }
24757 
24758 /*
24759  * Allocate space for the timer event. The allocation looks like mblk, but it is
24760  * not a proper mblk. To avoid confusion we set b_wptr to NULL.
24761  *
24762  * Dealing with failures: If we can't allocate from the timer cache we try
24763  * allocating from dblock caches using allocb_tryhard(). In this case b_wptr
24764  * points to b_rptr.
24765  * If we can't allocate anything using allocb_tryhard(), we perform a last
24766  * attempt and use kmem_alloc_tryhard(). In this case we set b_wptr to -1 and
24767  * save the actual allocation size in b_datap.
24768  */
24769 mblk_t *
24770 tcp_timermp_alloc(int kmflags)
24771 {
24772 	mblk_t *mp = (mblk_t *)kmem_cache_alloc(tcp_timercache,
24773 	    kmflags & ~KM_PANIC);
24774 
24775 	if (mp != NULL) {
24776 		mp->b_next = mp->b_prev = NULL;
24777 		mp->b_rptr = (uchar_t *)(&mp[1]);
24778 		mp->b_wptr = NULL;
24779 		mp->b_datap = NULL;
24780 		mp->b_queue = NULL;
24781 	} else if (kmflags & KM_PANIC) {
24782 		/*
24783 		 * Failed to allocate memory for the timer. Try allocating from
24784 		 * dblock caches.
24785 		 */
24786 		TCP_STAT(tcp_timermp_allocfail);
24787 		mp = allocb_tryhard(sizeof (tcp_timer_t));
24788 		if (mp == NULL) {
24789 			size_t size = 0;
24790 			/*
24791 			 * Memory is really low. Try tryhard allocation.
24792 			 */
24793 			TCP_STAT(tcp_timermp_allocdblfail);
24794 			mp = kmem_alloc_tryhard(sizeof (mblk_t) +
24795 			    sizeof (tcp_timer_t), &size, kmflags);
24796 			mp->b_rptr = (uchar_t *)(&mp[1]);
24797 			mp->b_next = mp->b_prev = NULL;
24798 			mp->b_wptr = (uchar_t *)-1;
24799 			mp->b_datap = (dblk_t *)size;
24800 			mp->b_queue = NULL;
24801 		}
24802 		ASSERT(mp->b_wptr != NULL);
24803 	}
24804 	TCP_DBGSTAT(tcp_timermp_alloced);
24805 
24806 	return (mp);
24807 }
24808 
24809 /*
24810  * Free per-tcp timer cache.
24811  * It can only contain entries from tcp_timercache.
24812  */
24813 void
24814 tcp_timermp_free(tcp_t *tcp)
24815 {
24816 	mblk_t *mp;
24817 
24818 	while ((mp = tcp->tcp_timercache) != NULL) {
24819 		ASSERT(mp->b_wptr == NULL);
24820 		tcp->tcp_timercache = tcp->tcp_timercache->b_next;
24821 		kmem_cache_free(tcp_timercache, mp);
24822 	}
24823 }
24824 
24825 /*
24826  * Free timer event. Put it on the per-tcp timer cache if there is not too many
24827  * events there already (currently at most two events are cached).
24828  * If the event is not allocated from the timer cache, free it right away.
24829  */
24830 static void
24831 tcp_timer_free(tcp_t *tcp, mblk_t *mp)
24832 {
24833 	mblk_t *mp1 = tcp->tcp_timercache;
24834 
24835 	if (mp->b_wptr != NULL) {
24836 		/*
24837 		 * This allocation is not from a timer cache, free it right
24838 		 * away.
24839 		 */
24840 		if (mp->b_wptr != (uchar_t *)-1)
24841 			freeb(mp);
24842 		else
24843 			kmem_free(mp, (size_t)mp->b_datap);
24844 	} else if (mp1 == NULL || mp1->b_next == NULL) {
24845 		/* Cache this timer block for future allocations */
24846 		mp->b_rptr = (uchar_t *)(&mp[1]);
24847 		mp->b_next = mp1;
24848 		tcp->tcp_timercache = mp;
24849 	} else {
24850 		kmem_cache_free(tcp_timercache, mp);
24851 		TCP_DBGSTAT(tcp_timermp_freed);
24852 	}
24853 }
24854 
24855 /*
24856  * End of TCP Timers implementation.
24857  */
24858 
24859 /*
24860  * tcp_{set,clr}qfull() functions are used to either set or clear QFULL
24861  * on the specified backing STREAMS q. Note, the caller may make the
24862  * decision to call based on the tcp_t.tcp_flow_stopped value which
24863  * when check outside the q's lock is only an advisory check ...
24864  */
24865 
24866 void
24867 tcp_setqfull(tcp_t *tcp)
24868 {
24869 	queue_t *q = tcp->tcp_wq;
24870 
24871 	if (!(q->q_flag & QFULL)) {
24872 		mutex_enter(QLOCK(q));
24873 		if (!(q->q_flag & QFULL)) {
24874 			/* still need to set QFULL */
24875 			q->q_flag |= QFULL;
24876 			tcp->tcp_flow_stopped = B_TRUE;
24877 			mutex_exit(QLOCK(q));
24878 			TCP_STAT(tcp_flwctl_on);
24879 		} else {
24880 			mutex_exit(QLOCK(q));
24881 		}
24882 	}
24883 }
24884 
24885 void
24886 tcp_clrqfull(tcp_t *tcp)
24887 {
24888 	queue_t *q = tcp->tcp_wq;
24889 
24890 	if (q->q_flag & QFULL) {
24891 		mutex_enter(QLOCK(q));
24892 		if (q->q_flag & QFULL) {
24893 			q->q_flag &= ~QFULL;
24894 			tcp->tcp_flow_stopped = B_FALSE;
24895 			mutex_exit(QLOCK(q));
24896 			if (q->q_flag & QWANTW)
24897 				qbackenable(q, 0);
24898 		} else {
24899 			mutex_exit(QLOCK(q));
24900 		}
24901 	}
24902 }
24903 
24904 /*
24905  * TCP Kstats implementation
24906  */
24907 static void
24908 tcp_kstat_init(void)
24909 {
24910 	tcp_named_kstat_t template = {
24911 		{ "rtoAlgorithm",	KSTAT_DATA_INT32, 0 },
24912 		{ "rtoMin",		KSTAT_DATA_INT32, 0 },
24913 		{ "rtoMax",		KSTAT_DATA_INT32, 0 },
24914 		{ "maxConn",		KSTAT_DATA_INT32, 0 },
24915 		{ "activeOpens",	KSTAT_DATA_UINT32, 0 },
24916 		{ "passiveOpens",	KSTAT_DATA_UINT32, 0 },
24917 		{ "attemptFails",	KSTAT_DATA_UINT32, 0 },
24918 		{ "estabResets",	KSTAT_DATA_UINT32, 0 },
24919 		{ "currEstab",		KSTAT_DATA_UINT32, 0 },
24920 		{ "inSegs",		KSTAT_DATA_UINT32, 0 },
24921 		{ "outSegs",		KSTAT_DATA_UINT32, 0 },
24922 		{ "retransSegs",	KSTAT_DATA_UINT32, 0 },
24923 		{ "connTableSize",	KSTAT_DATA_INT32, 0 },
24924 		{ "outRsts",		KSTAT_DATA_UINT32, 0 },
24925 		{ "outDataSegs",	KSTAT_DATA_UINT32, 0 },
24926 		{ "outDataBytes",	KSTAT_DATA_UINT32, 0 },
24927 		{ "retransBytes",	KSTAT_DATA_UINT32, 0 },
24928 		{ "outAck",		KSTAT_DATA_UINT32, 0 },
24929 		{ "outAckDelayed",	KSTAT_DATA_UINT32, 0 },
24930 		{ "outUrg",		KSTAT_DATA_UINT32, 0 },
24931 		{ "outWinUpdate",	KSTAT_DATA_UINT32, 0 },
24932 		{ "outWinProbe",	KSTAT_DATA_UINT32, 0 },
24933 		{ "outControl",		KSTAT_DATA_UINT32, 0 },
24934 		{ "outFastRetrans",	KSTAT_DATA_UINT32, 0 },
24935 		{ "inAckSegs",		KSTAT_DATA_UINT32, 0 },
24936 		{ "inAckBytes",		KSTAT_DATA_UINT32, 0 },
24937 		{ "inDupAck",		KSTAT_DATA_UINT32, 0 },
24938 		{ "inAckUnsent",	KSTAT_DATA_UINT32, 0 },
24939 		{ "inDataInorderSegs",	KSTAT_DATA_UINT32, 0 },
24940 		{ "inDataInorderBytes",	KSTAT_DATA_UINT32, 0 },
24941 		{ "inDataUnorderSegs",	KSTAT_DATA_UINT32, 0 },
24942 		{ "inDataUnorderBytes",	KSTAT_DATA_UINT32, 0 },
24943 		{ "inDataDupSegs",	KSTAT_DATA_UINT32, 0 },
24944 		{ "inDataDupBytes",	KSTAT_DATA_UINT32, 0 },
24945 		{ "inDataPartDupSegs",	KSTAT_DATA_UINT32, 0 },
24946 		{ "inDataPartDupBytes",	KSTAT_DATA_UINT32, 0 },
24947 		{ "inDataPastWinSegs",	KSTAT_DATA_UINT32, 0 },
24948 		{ "inDataPastWinBytes",	KSTAT_DATA_UINT32, 0 },
24949 		{ "inWinProbe",		KSTAT_DATA_UINT32, 0 },
24950 		{ "inWinUpdate",	KSTAT_DATA_UINT32, 0 },
24951 		{ "inClosed",		KSTAT_DATA_UINT32, 0 },
24952 		{ "rttUpdate",		KSTAT_DATA_UINT32, 0 },
24953 		{ "rttNoUpdate",	KSTAT_DATA_UINT32, 0 },
24954 		{ "timRetrans",		KSTAT_DATA_UINT32, 0 },
24955 		{ "timRetransDrop",	KSTAT_DATA_UINT32, 0 },
24956 		{ "timKeepalive",	KSTAT_DATA_UINT32, 0 },
24957 		{ "timKeepaliveProbe",	KSTAT_DATA_UINT32, 0 },
24958 		{ "timKeepaliveDrop",	KSTAT_DATA_UINT32, 0 },
24959 		{ "listenDrop",		KSTAT_DATA_UINT32, 0 },
24960 		{ "listenDropQ0",	KSTAT_DATA_UINT32, 0 },
24961 		{ "halfOpenDrop",	KSTAT_DATA_UINT32, 0 },
24962 		{ "outSackRetransSegs",	KSTAT_DATA_UINT32, 0 },
24963 		{ "connTableSize6",	KSTAT_DATA_INT32, 0 }
24964 	};
24965 
24966 	tcp_mibkp = kstat_create(TCP_MOD_NAME, 0, TCP_MOD_NAME,
24967 	    "mib2", KSTAT_TYPE_NAMED, NUM_OF_FIELDS(tcp_named_kstat_t), 0);
24968 
24969 	if (tcp_mibkp == NULL)
24970 		return;
24971 
24972 	template.rtoAlgorithm.value.ui32 = 4;
24973 	template.rtoMin.value.ui32 = tcp_rexmit_interval_min;
24974 	template.rtoMax.value.ui32 = tcp_rexmit_interval_max;
24975 	template.maxConn.value.i32 = -1;
24976 
24977 	bcopy(&template, tcp_mibkp->ks_data, sizeof (template));
24978 
24979 	tcp_mibkp->ks_update = tcp_kstat_update;
24980 
24981 	kstat_install(tcp_mibkp);
24982 }
24983 
24984 static void
24985 tcp_kstat_fini(void)
24986 {
24987 
24988 	if (tcp_mibkp != NULL) {
24989 		kstat_delete(tcp_mibkp);
24990 		tcp_mibkp = NULL;
24991 	}
24992 }
24993 
24994 static int
24995 tcp_kstat_update(kstat_t *kp, int rw)
24996 {
24997 	tcp_named_kstat_t	*tcpkp;
24998 	tcp_t			*tcp;
24999 	connf_t			*connfp;
25000 	conn_t			*connp;
25001 	int 			i;
25002 
25003 	if (!kp || !kp->ks_data)
25004 		return (EIO);
25005 
25006 	if (rw == KSTAT_WRITE)
25007 		return (EACCES);
25008 
25009 	tcpkp = (tcp_named_kstat_t *)kp->ks_data;
25010 
25011 	tcpkp->currEstab.value.ui32 = 0;
25012 
25013 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
25014 		connfp = &ipcl_globalhash_fanout[i];
25015 		connp = NULL;
25016 		while ((connp =
25017 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
25018 			tcp = connp->conn_tcp;
25019 			switch (tcp_snmp_state(tcp)) {
25020 			case MIB2_TCP_established:
25021 			case MIB2_TCP_closeWait:
25022 				tcpkp->currEstab.value.ui32++;
25023 				break;
25024 			}
25025 		}
25026 	}
25027 
25028 	tcpkp->activeOpens.value.ui32 = tcp_mib.tcpActiveOpens;
25029 	tcpkp->passiveOpens.value.ui32 = tcp_mib.tcpPassiveOpens;
25030 	tcpkp->attemptFails.value.ui32 = tcp_mib.tcpAttemptFails;
25031 	tcpkp->estabResets.value.ui32 = tcp_mib.tcpEstabResets;
25032 	tcpkp->inSegs.value.ui32 = tcp_mib.tcpInSegs;
25033 	tcpkp->outSegs.value.ui32 = tcp_mib.tcpOutSegs;
25034 	tcpkp->retransSegs.value.ui32 =	tcp_mib.tcpRetransSegs;
25035 	tcpkp->connTableSize.value.i32 = tcp_mib.tcpConnTableSize;
25036 	tcpkp->outRsts.value.ui32 = tcp_mib.tcpOutRsts;
25037 	tcpkp->outDataSegs.value.ui32 = tcp_mib.tcpOutDataSegs;
25038 	tcpkp->outDataBytes.value.ui32 = tcp_mib.tcpOutDataBytes;
25039 	tcpkp->retransBytes.value.ui32 = tcp_mib.tcpRetransBytes;
25040 	tcpkp->outAck.value.ui32 = tcp_mib.tcpOutAck;
25041 	tcpkp->outAckDelayed.value.ui32 = tcp_mib.tcpOutAckDelayed;
25042 	tcpkp->outUrg.value.ui32 = tcp_mib.tcpOutUrg;
25043 	tcpkp->outWinUpdate.value.ui32 = tcp_mib.tcpOutWinUpdate;
25044 	tcpkp->outWinProbe.value.ui32 = tcp_mib.tcpOutWinProbe;
25045 	tcpkp->outControl.value.ui32 = tcp_mib.tcpOutControl;
25046 	tcpkp->outFastRetrans.value.ui32 = tcp_mib.tcpOutFastRetrans;
25047 	tcpkp->inAckSegs.value.ui32 = tcp_mib.tcpInAckSegs;
25048 	tcpkp->inAckBytes.value.ui32 = tcp_mib.tcpInAckBytes;
25049 	tcpkp->inDupAck.value.ui32 = tcp_mib.tcpInDupAck;
25050 	tcpkp->inAckUnsent.value.ui32 = tcp_mib.tcpInAckUnsent;
25051 	tcpkp->inDataInorderSegs.value.ui32 = tcp_mib.tcpInDataInorderSegs;
25052 	tcpkp->inDataInorderBytes.value.ui32 = tcp_mib.tcpInDataInorderBytes;
25053 	tcpkp->inDataUnorderSegs.value.ui32 = tcp_mib.tcpInDataUnorderSegs;
25054 	tcpkp->inDataUnorderBytes.value.ui32 = tcp_mib.tcpInDataUnorderBytes;
25055 	tcpkp->inDataDupSegs.value.ui32 = tcp_mib.tcpInDataDupSegs;
25056 	tcpkp->inDataDupBytes.value.ui32 = tcp_mib.tcpInDataDupBytes;
25057 	tcpkp->inDataPartDupSegs.value.ui32 = tcp_mib.tcpInDataPartDupSegs;
25058 	tcpkp->inDataPartDupBytes.value.ui32 = tcp_mib.tcpInDataPartDupBytes;
25059 	tcpkp->inDataPastWinSegs.value.ui32 = tcp_mib.tcpInDataPastWinSegs;
25060 	tcpkp->inDataPastWinBytes.value.ui32 = tcp_mib.tcpInDataPastWinBytes;
25061 	tcpkp->inWinProbe.value.ui32 = tcp_mib.tcpInWinProbe;
25062 	tcpkp->inWinUpdate.value.ui32 = tcp_mib.tcpInWinUpdate;
25063 	tcpkp->inClosed.value.ui32 = tcp_mib.tcpInClosed;
25064 	tcpkp->rttNoUpdate.value.ui32 = tcp_mib.tcpRttNoUpdate;
25065 	tcpkp->rttUpdate.value.ui32 = tcp_mib.tcpRttUpdate;
25066 	tcpkp->timRetrans.value.ui32 = tcp_mib.tcpTimRetrans;
25067 	tcpkp->timRetransDrop.value.ui32 = tcp_mib.tcpTimRetransDrop;
25068 	tcpkp->timKeepalive.value.ui32 = tcp_mib.tcpTimKeepalive;
25069 	tcpkp->timKeepaliveProbe.value.ui32 = tcp_mib.tcpTimKeepaliveProbe;
25070 	tcpkp->timKeepaliveDrop.value.ui32 = tcp_mib.tcpTimKeepaliveDrop;
25071 	tcpkp->listenDrop.value.ui32 = tcp_mib.tcpListenDrop;
25072 	tcpkp->listenDropQ0.value.ui32 = tcp_mib.tcpListenDropQ0;
25073 	tcpkp->halfOpenDrop.value.ui32 = tcp_mib.tcpHalfOpenDrop;
25074 	tcpkp->outSackRetransSegs.value.ui32 = tcp_mib.tcpOutSackRetransSegs;
25075 	tcpkp->connTableSize6.value.i32 = tcp_mib.tcp6ConnTableSize;
25076 
25077 	return (0);
25078 }
25079 
25080 void
25081 tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp)
25082 {
25083 	uint16_t	hdr_len;
25084 	ipha_t		*ipha;
25085 	uint8_t		*nexthdrp;
25086 	tcph_t		*tcph;
25087 
25088 	/* Already has an eager */
25089 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
25090 		TCP_STAT(tcp_reinput_syn);
25091 		squeue_enter(connp->conn_sqp, mp, connp->conn_recv,
25092 		    connp, SQTAG_TCP_REINPUT_EAGER);
25093 		return;
25094 	}
25095 
25096 	switch (IPH_HDR_VERSION(mp->b_rptr)) {
25097 	case IPV4_VERSION:
25098 		ipha = (ipha_t *)mp->b_rptr;
25099 		hdr_len = IPH_HDR_LENGTH(ipha);
25100 		break;
25101 	case IPV6_VERSION:
25102 		if (!ip_hdr_length_nexthdr_v6(mp, (ip6_t *)mp->b_rptr,
25103 		    &hdr_len, &nexthdrp)) {
25104 			CONN_DEC_REF(connp);
25105 			freemsg(mp);
25106 			return;
25107 		}
25108 		break;
25109 	}
25110 
25111 	tcph = (tcph_t *)&mp->b_rptr[hdr_len];
25112 	if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) {
25113 		mp->b_datap->db_struioflag |= STRUIO_EAGER;
25114 		DB_CKSUMSTART(mp) = (intptr_t)sqp;
25115 	}
25116 
25117 	squeue_fill(connp->conn_sqp, mp, connp->conn_recv, connp,
25118 	    SQTAG_TCP_REINPUT);
25119 }
25120 
25121 static squeue_func_t
25122 tcp_squeue_switch(int val)
25123 {
25124 	squeue_func_t rval = squeue_fill;
25125 
25126 	switch (val) {
25127 	case 1:
25128 		rval = squeue_enter_nodrain;
25129 		break;
25130 	case 2:
25131 		rval = squeue_enter;
25132 		break;
25133 	default:
25134 		break;
25135 	}
25136 	return (rval);
25137 }
25138 
25139 static void
25140 tcp_squeue_add(squeue_t *sqp)
25141 {
25142 	tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc(
25143 		sizeof (tcp_squeue_priv_t), KM_SLEEP);
25144 
25145 	*squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait;
25146 	tcp_time_wait->tcp_time_wait_tid = timeout(tcp_time_wait_collector,
25147 	    sqp, TCP_TIME_WAIT_DELAY);
25148 	if (tcp_free_list_max_cnt == 0) {
25149 		int tcp_ncpus = ((boot_max_ncpus == -1) ?
25150 			max_ncpus : boot_max_ncpus);
25151 
25152 		/*
25153 		 * Limit number of entries to 1% of availble memory / tcp_ncpus
25154 		 */
25155 		tcp_free_list_max_cnt = (freemem * PAGESIZE) /
25156 			(tcp_ncpus * sizeof (tcp_t) * 100);
25157 	}
25158 	tcp_time_wait->tcp_free_list_cnt = 0;
25159 }
25160