1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #include <sys/types.h> 29 #include <sys/stream.h> 30 #include <sys/strsun.h> 31 #include <sys/strsubr.h> 32 #include <sys/stropts.h> 33 #include <sys/strlog.h> 34 #define _SUN_TPI_VERSION 2 35 #include <sys/tihdr.h> 36 #include <sys/timod.h> 37 #include <sys/ddi.h> 38 #include <sys/sunddi.h> 39 #include <sys/suntpi.h> 40 #include <sys/xti_inet.h> 41 #include <sys/cmn_err.h> 42 #include <sys/debug.h> 43 #include <sys/sdt.h> 44 #include <sys/vtrace.h> 45 #include <sys/kmem.h> 46 #include <sys/ethernet.h> 47 #include <sys/cpuvar.h> 48 #include <sys/dlpi.h> 49 #include <sys/pattr.h> 50 #include <sys/policy.h> 51 #include <sys/priv.h> 52 #include <sys/zone.h> 53 #include <sys/sunldi.h> 54 55 #include <sys/errno.h> 56 #include <sys/signal.h> 57 #include <sys/socket.h> 58 #include <sys/socketvar.h> 59 #include <sys/sockio.h> 60 #include <sys/isa_defs.h> 61 #include <sys/md5.h> 62 #include <sys/random.h> 63 #include <sys/uio.h> 64 #include <sys/systm.h> 65 #include <netinet/in.h> 66 #include <netinet/tcp.h> 67 #include <netinet/ip6.h> 68 #include <netinet/icmp6.h> 69 #include <net/if.h> 70 #include <net/route.h> 71 #include <inet/ipsec_impl.h> 72 73 #include <inet/common.h> 74 #include <inet/ip.h> 75 #include <inet/ip_impl.h> 76 #include <inet/ip6.h> 77 #include <inet/ip_ndp.h> 78 #include <inet/proto_set.h> 79 #include <inet/mib2.h> 80 #include <inet/nd.h> 81 #include <inet/optcom.h> 82 #include <inet/snmpcom.h> 83 #include <inet/kstatcom.h> 84 #include <inet/tcp.h> 85 #include <inet/tcp_impl.h> 86 #include <inet/udp_impl.h> 87 #include <net/pfkeyv2.h> 88 #include <inet/ipdrop.h> 89 90 #include <inet/ipclassifier.h> 91 #include <inet/ip_ire.h> 92 #include <inet/ip_ftable.h> 93 #include <inet/ip_if.h> 94 #include <inet/ipp_common.h> 95 #include <inet/ip_rts.h> 96 #include <inet/ip_netinfo.h> 97 #include <sys/squeue_impl.h> 98 #include <sys/squeue.h> 99 #include <inet/kssl/ksslapi.h> 100 #include <sys/tsol/label.h> 101 #include <sys/tsol/tnet.h> 102 #include <rpc/pmap_prot.h> 103 #include <sys/callo.h> 104 105 #include <sys/clock_impl.h> /* For LBOLT_FASTPATH{,64} */ 106 107 /* 108 * TCP Notes: aka FireEngine Phase I (PSARC 2002/433) 109 * 110 * (Read the detailed design doc in PSARC case directory) 111 * 112 * The entire tcp state is contained in tcp_t and conn_t structure 113 * which are allocated in tandem using ipcl_conn_create() and passing 114 * IPCL_TCPCONN as a flag. We use 'conn_ref' and 'conn_lock' to protect 115 * the references on the tcp_t. The tcp_t structure is never compressed 116 * and packets always land on the correct TCP perimeter from the time 117 * eager is created till the time tcp_t dies (as such the old mentat 118 * TCP global queue is not used for detached state and no IPSEC checking 119 * is required). The global queue is still allocated to send out resets 120 * for connection which have no listeners and IP directly calls 121 * tcp_xmit_listeners_reset() which does any policy check. 122 * 123 * Protection and Synchronisation mechanism: 124 * 125 * The tcp data structure does not use any kind of lock for protecting 126 * its state but instead uses 'squeues' for mutual exclusion from various 127 * read and write side threads. To access a tcp member, the thread should 128 * always be behind squeue (via squeue_enter with flags as SQ_FILL, SQ_PROCESS, 129 * or SQ_NODRAIN). Since the squeues allow a direct function call, caller 130 * can pass any tcp function having prototype of edesc_t as argument 131 * (different from traditional STREAMs model where packets come in only 132 * designated entry points). The list of functions that can be directly 133 * called via squeue are listed before the usual function prototype. 134 * 135 * Referencing: 136 * 137 * TCP is MT-Hot and we use a reference based scheme to make sure that the 138 * tcp structure doesn't disappear when its needed. When the application 139 * creates an outgoing connection or accepts an incoming connection, we 140 * start out with 2 references on 'conn_ref'. One for TCP and one for IP. 141 * The IP reference is just a symbolic reference since ip_tcpclose() 142 * looks at tcp structure after tcp_close_output() returns which could 143 * have dropped the last TCP reference. So as long as the connection is 144 * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the 145 * conn_t. The classifier puts its own reference when the connection is 146 * inserted in listen or connected hash. Anytime a thread needs to enter 147 * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr 148 * on write side or by doing a classify on read side and then puts a 149 * reference on the conn before doing squeue_enter/tryenter/fill. For 150 * read side, the classifier itself puts the reference under fanout lock 151 * to make sure that tcp can't disappear before it gets processed. The 152 * squeue will drop this reference automatically so the called function 153 * doesn't have to do a DEC_REF. 154 * 155 * Opening a new connection: 156 * 157 * The outgoing connection open is pretty simple. tcp_open() does the 158 * work in creating the conn/tcp structure and initializing it. The 159 * squeue assignment is done based on the CPU the application 160 * is running on. So for outbound connections, processing is always done 161 * on application CPU which might be different from the incoming CPU 162 * being interrupted by the NIC. An optimal way would be to figure out 163 * the NIC <-> CPU binding at listen time, and assign the outgoing 164 * connection to the squeue attached to the CPU that will be interrupted 165 * for incoming packets (we know the NIC based on the bind IP address). 166 * This might seem like a problem if more data is going out but the 167 * fact is that in most cases the transmit is ACK driven transmit where 168 * the outgoing data normally sits on TCP's xmit queue waiting to be 169 * transmitted. 170 * 171 * Accepting a connection: 172 * 173 * This is a more interesting case because of various races involved in 174 * establishing a eager in its own perimeter. Read the meta comment on 175 * top of tcp_input_listener(). But briefly, the squeue is picked by 176 * ip_fanout based on the ring or the sender (if loopback). 177 * 178 * Closing a connection: 179 * 180 * The close is fairly straight forward. tcp_close() calls tcp_close_output() 181 * via squeue to do the close and mark the tcp as detached if the connection 182 * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its 183 * reference but tcp_close() drop IP's reference always. So if tcp was 184 * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP 185 * and 1 because it is in classifier's connected hash. This is the condition 186 * we use to determine that its OK to clean up the tcp outside of squeue 187 * when time wait expires (check the ref under fanout and conn_lock and 188 * if it is 2, remove it from fanout hash and kill it). 189 * 190 * Although close just drops the necessary references and marks the 191 * tcp_detached state, tcp_close needs to know the tcp_detached has been 192 * set (under squeue) before letting the STREAM go away (because a 193 * inbound packet might attempt to go up the STREAM while the close 194 * has happened and tcp_detached is not set). So a special lock and 195 * flag is used along with a condition variable (tcp_closelock, tcp_closed, 196 * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked 197 * tcp_detached. 198 * 199 * Special provisions and fast paths: 200 * 201 * We make special provisions for sockfs by marking tcp_issocket 202 * whenever we have only sockfs on top of TCP. This allows us to skip 203 * putting the tcp in acceptor hash since a sockfs listener can never 204 * become acceptor and also avoid allocating a tcp_t for acceptor STREAM 205 * since eager has already been allocated and the accept now happens 206 * on acceptor STREAM. There is a big blob of comment on top of 207 * tcp_input_listener explaining the new accept. When socket is POP'd, 208 * sockfs sends us an ioctl to mark the fact and we go back to old 209 * behaviour. Once tcp_issocket is unset, its never set for the 210 * life of that connection. 211 * 212 * IPsec notes : 213 * 214 * Since a packet is always executed on the correct TCP perimeter 215 * all IPsec processing is defered to IP including checking new 216 * connections and setting IPSEC policies for new connection. The 217 * only exception is tcp_xmit_listeners_reset() which is called 218 * directly from IP and needs to policy check to see if TH_RST 219 * can be sent out. 220 */ 221 222 /* 223 * Values for squeue switch: 224 * 1: SQ_NODRAIN 225 * 2: SQ_PROCESS 226 * 3: SQ_FILL 227 */ 228 int tcp_squeue_wput = 2; /* /etc/systems */ 229 int tcp_squeue_flag; 230 231 /* 232 * This controls how tiny a write must be before we try to copy it 233 * into the mblk on the tail of the transmit queue. Not much 234 * speedup is observed for values larger than sixteen. Zero will 235 * disable the optimisation. 236 */ 237 int tcp_tx_pull_len = 16; 238 239 /* 240 * TCP Statistics. 241 * 242 * How TCP statistics work. 243 * 244 * There are two types of statistics invoked by two macros. 245 * 246 * TCP_STAT(name) does non-atomic increment of a named stat counter. It is 247 * supposed to be used in non MT-hot paths of the code. 248 * 249 * TCP_DBGSTAT(name) does atomic increment of a named stat counter. It is 250 * supposed to be used for DEBUG purposes and may be used on a hot path. 251 * 252 * Both TCP_STAT and TCP_DBGSTAT counters are available using kstat 253 * (use "kstat tcp" to get them). 254 * 255 * There is also additional debugging facility that marks tcp_clean_death() 256 * instances and saves them in tcp_t structure. It is triggered by 257 * TCP_TAG_CLEAN_DEATH define. Also, there is a global array of counters for 258 * tcp_clean_death() calls that counts the number of times each tag was hit. It 259 * is triggered by TCP_CLD_COUNTERS define. 260 * 261 * How to add new counters. 262 * 263 * 1) Add a field in the tcp_stat structure describing your counter. 264 * 2) Add a line in the template in tcp_kstat2_init() with the name 265 * of the counter. 266 * 267 * IMPORTANT!! - make sure that both are in sync !! 268 * 3) Use either TCP_STAT or TCP_DBGSTAT with the name. 269 * 270 * Please avoid using private counters which are not kstat-exported. 271 * 272 * TCP_TAG_CLEAN_DEATH set to 1 enables tagging of tcp_clean_death() instances 273 * in tcp_t structure. 274 * 275 * TCP_MAX_CLEAN_DEATH_TAG is the maximum number of possible clean death tags. 276 */ 277 278 #ifndef TCP_DEBUG_COUNTER 279 #ifdef DEBUG 280 #define TCP_DEBUG_COUNTER 1 281 #else 282 #define TCP_DEBUG_COUNTER 0 283 #endif 284 #endif 285 286 #define TCP_CLD_COUNTERS 0 287 288 #define TCP_TAG_CLEAN_DEATH 1 289 #define TCP_MAX_CLEAN_DEATH_TAG 32 290 291 #ifdef lint 292 static int _lint_dummy_; 293 #endif 294 295 #if TCP_CLD_COUNTERS 296 static uint_t tcp_clean_death_stat[TCP_MAX_CLEAN_DEATH_TAG]; 297 #define TCP_CLD_STAT(x) tcp_clean_death_stat[x]++ 298 #elif defined(lint) 299 #define TCP_CLD_STAT(x) ASSERT(_lint_dummy_ == 0); 300 #else 301 #define TCP_CLD_STAT(x) 302 #endif 303 304 #if TCP_DEBUG_COUNTER 305 #define TCP_DBGSTAT(tcps, x) \ 306 atomic_add_64(&((tcps)->tcps_statistics.x.value.ui64), 1) 307 #define TCP_G_DBGSTAT(x) \ 308 atomic_add_64(&(tcp_g_statistics.x.value.ui64), 1) 309 #elif defined(lint) 310 #define TCP_DBGSTAT(tcps, x) ASSERT(_lint_dummy_ == 0); 311 #define TCP_G_DBGSTAT(x) ASSERT(_lint_dummy_ == 0); 312 #else 313 #define TCP_DBGSTAT(tcps, x) 314 #define TCP_G_DBGSTAT(x) 315 #endif 316 317 #define TCP_G_STAT(x) (tcp_g_statistics.x.value.ui64++) 318 319 tcp_g_stat_t tcp_g_statistics; 320 kstat_t *tcp_g_kstat; 321 322 /* Macros for timestamp comparisons */ 323 #define TSTMP_GEQ(a, b) ((int32_t)((a)-(b)) >= 0) 324 #define TSTMP_LT(a, b) ((int32_t)((a)-(b)) < 0) 325 326 /* 327 * Parameters for TCP Initial Send Sequence number (ISS) generation. When 328 * tcp_strong_iss is set to 1, which is the default, the ISS is calculated 329 * by adding three components: a time component which grows by 1 every 4096 330 * nanoseconds (versus every 4 microseconds suggested by RFC 793, page 27); 331 * a per-connection component which grows by 125000 for every new connection; 332 * and an "extra" component that grows by a random amount centered 333 * approximately on 64000. This causes the ISS generator to cycle every 334 * 4.89 hours if no TCP connections are made, and faster if connections are 335 * made. 336 * 337 * When tcp_strong_iss is set to 0, ISS is calculated by adding two 338 * components: a time component which grows by 250000 every second; and 339 * a per-connection component which grows by 125000 for every new connections. 340 * 341 * A third method, when tcp_strong_iss is set to 2, for generating ISS is 342 * prescribed by Steve Bellovin. This involves adding time, the 125000 per 343 * connection, and a one-way hash (MD5) of the connection ID <sport, dport, 344 * src, dst>, a "truly" random (per RFC 1750) number, and a console-entered 345 * password. 346 */ 347 #define ISS_INCR 250000 348 #define ISS_NSEC_SHT 12 349 350 static sin_t sin_null; /* Zero address for quick clears */ 351 static sin6_t sin6_null; /* Zero address for quick clears */ 352 353 /* 354 * This implementation follows the 4.3BSD interpretation of the urgent 355 * pointer and not RFC 1122. Switching to RFC 1122 behavior would cause 356 * incompatible changes in protocols like telnet and rlogin. 357 */ 358 #define TCP_OLD_URP_INTERPRETATION 1 359 360 /* 361 * Since tcp_listener is not cleared atomically with tcp_detached 362 * being cleared we need this extra bit to tell a detached connection 363 * apart from one that is in the process of being accepted. 364 */ 365 #define TCP_IS_DETACHED_NONEAGER(tcp) \ 366 (TCP_IS_DETACHED(tcp) && \ 367 (!(tcp)->tcp_hard_binding)) 368 369 /* 370 * TCP reassembly macros. We hide starting and ending sequence numbers in 371 * b_next and b_prev of messages on the reassembly queue. The messages are 372 * chained using b_cont. These macros are used in tcp_reass() so we don't 373 * have to see the ugly casts and assignments. 374 */ 375 #define TCP_REASS_SEQ(mp) ((uint32_t)(uintptr_t)((mp)->b_next)) 376 #define TCP_REASS_SET_SEQ(mp, u) ((mp)->b_next = \ 377 (mblk_t *)(uintptr_t)(u)) 378 #define TCP_REASS_END(mp) ((uint32_t)(uintptr_t)((mp)->b_prev)) 379 #define TCP_REASS_SET_END(mp, u) ((mp)->b_prev = \ 380 (mblk_t *)(uintptr_t)(u)) 381 382 /* 383 * Implementation of TCP Timers. 384 * ============================= 385 * 386 * INTERFACE: 387 * 388 * There are two basic functions dealing with tcp timers: 389 * 390 * timeout_id_t tcp_timeout(connp, func, time) 391 * clock_t tcp_timeout_cancel(connp, timeout_id) 392 * TCP_TIMER_RESTART(tcp, intvl) 393 * 394 * tcp_timeout() starts a timer for the 'tcp' instance arranging to call 'func' 395 * after 'time' ticks passed. The function called by timeout() must adhere to 396 * the same restrictions as a driver soft interrupt handler - it must not sleep 397 * or call other functions that might sleep. The value returned is the opaque 398 * non-zero timeout identifier that can be passed to tcp_timeout_cancel() to 399 * cancel the request. The call to tcp_timeout() may fail in which case it 400 * returns zero. This is different from the timeout(9F) function which never 401 * fails. 402 * 403 * The call-back function 'func' always receives 'connp' as its single 404 * argument. It is always executed in the squeue corresponding to the tcp 405 * structure. The tcp structure is guaranteed to be present at the time the 406 * call-back is called. 407 * 408 * NOTE: The call-back function 'func' is never called if tcp is in 409 * the TCPS_CLOSED state. 410 * 411 * tcp_timeout_cancel() attempts to cancel a pending tcp_timeout() 412 * request. locks acquired by the call-back routine should not be held across 413 * the call to tcp_timeout_cancel() or a deadlock may result. 414 * 415 * tcp_timeout_cancel() returns -1 if it can not cancel the timeout request. 416 * Otherwise, it returns an integer value greater than or equal to 0. In 417 * particular, if the call-back function is already placed on the squeue, it can 418 * not be canceled. 419 * 420 * NOTE: both tcp_timeout() and tcp_timeout_cancel() should always be called 421 * within squeue context corresponding to the tcp instance. Since the 422 * call-back is also called via the same squeue, there are no race 423 * conditions described in untimeout(9F) manual page since all calls are 424 * strictly serialized. 425 * 426 * TCP_TIMER_RESTART() is a macro that attempts to cancel a pending timeout 427 * stored in tcp_timer_tid and starts a new one using 428 * MSEC_TO_TICK(intvl). It always uses tcp_timer() function as a call-back 429 * and stores the return value of tcp_timeout() in the tcp->tcp_timer_tid 430 * field. 431 * 432 * NOTE: since the timeout cancellation is not guaranteed, the cancelled 433 * call-back may still be called, so it is possible tcp_timer() will be 434 * called several times. This should not be a problem since tcp_timer() 435 * should always check the tcp instance state. 436 * 437 * 438 * IMPLEMENTATION: 439 * 440 * TCP timers are implemented using three-stage process. The call to 441 * tcp_timeout() uses timeout(9F) function to call tcp_timer_callback() function 442 * when the timer expires. The tcp_timer_callback() arranges the call of the 443 * tcp_timer_handler() function via squeue corresponding to the tcp 444 * instance. The tcp_timer_handler() calls actual requested timeout call-back 445 * and passes tcp instance as an argument to it. Information is passed between 446 * stages using the tcp_timer_t structure which contains the connp pointer, the 447 * tcp call-back to call and the timeout id returned by the timeout(9F). 448 * 449 * The tcp_timer_t structure is not used directly, it is embedded in an mblk_t - 450 * like structure that is used to enter an squeue. The mp->b_rptr of this pseudo 451 * mblk points to the beginning of tcp_timer_t structure. The tcp_timeout() 452 * returns the pointer to this mblk. 453 * 454 * The pseudo mblk is allocated from a special tcp_timer_cache kmem cache. It 455 * looks like a normal mblk without actual dblk attached to it. 456 * 457 * To optimize performance each tcp instance holds a small cache of timer 458 * mblocks. In the current implementation it caches up to two timer mblocks per 459 * tcp instance. The cache is preserved over tcp frees and is only freed when 460 * the whole tcp structure is destroyed by its kmem destructor. Since all tcp 461 * timer processing happens on a corresponding squeue, the cache manipulation 462 * does not require any locks. Experiments show that majority of timer mblocks 463 * allocations are satisfied from the tcp cache and do not involve kmem calls. 464 * 465 * The tcp_timeout() places a refhold on the connp instance which guarantees 466 * that it will be present at the time the call-back function fires. The 467 * tcp_timer_handler() drops the reference after calling the call-back, so the 468 * call-back function does not need to manipulate the references explicitly. 469 */ 470 471 typedef struct tcp_timer_s { 472 conn_t *connp; 473 void (*tcpt_proc)(void *); 474 callout_id_t tcpt_tid; 475 } tcp_timer_t; 476 477 static kmem_cache_t *tcp_timercache; 478 kmem_cache_t *tcp_sack_info_cache; 479 480 /* 481 * For scalability, we must not run a timer for every TCP connection 482 * in TIME_WAIT state. To see why, consider (for time wait interval of 483 * 4 minutes): 484 * 1000 connections/sec * 240 seconds/time wait = 240,000 active conn's 485 * 486 * This list is ordered by time, so you need only delete from the head 487 * until you get to entries which aren't old enough to delete yet. 488 * The list consists of only the detached TIME_WAIT connections. 489 * 490 * Note that the timer (tcp_time_wait_expire) is started when the tcp_t 491 * becomes detached TIME_WAIT (either by changing the state and already 492 * being detached or the other way around). This means that the TIME_WAIT 493 * state can be extended (up to doubled) if the connection doesn't become 494 * detached for a long time. 495 * 496 * The list manipulations (including tcp_time_wait_next/prev) 497 * are protected by the tcp_time_wait_lock. The content of the 498 * detached TIME_WAIT connections is protected by the normal perimeters. 499 * 500 * This list is per squeue and squeues are shared across the tcp_stack_t's. 501 * Things on tcp_time_wait_head remain associated with the tcp_stack_t 502 * and conn_netstack. 503 * The tcp_t's that are added to tcp_free_list are disassociated and 504 * have NULL tcp_tcps and conn_netstack pointers. 505 */ 506 typedef struct tcp_squeue_priv_s { 507 kmutex_t tcp_time_wait_lock; 508 callout_id_t tcp_time_wait_tid; 509 tcp_t *tcp_time_wait_head; 510 tcp_t *tcp_time_wait_tail; 511 tcp_t *tcp_free_list; 512 uint_t tcp_free_list_cnt; 513 } tcp_squeue_priv_t; 514 515 /* 516 * TCP_TIME_WAIT_DELAY governs how often the time_wait_collector runs. 517 * Running it every 5 seconds seems to give the best results. 518 */ 519 #define TCP_TIME_WAIT_DELAY drv_usectohz(5000000) 520 521 /* 522 * To prevent memory hog, limit the number of entries in tcp_free_list 523 * to 1% of available memory / number of cpus 524 */ 525 uint_t tcp_free_list_max_cnt = 0; 526 527 #define TCP_XMIT_LOWATER 4096 528 #define TCP_XMIT_HIWATER 49152 529 #define TCP_RECV_LOWATER 2048 530 #define TCP_RECV_HIWATER 128000 531 532 /* 533 * PAWS needs a timer for 24 days. This is the number of ticks in 24 days 534 */ 535 #define PAWS_TIMEOUT ((clock_t)(24*24*60*60*hz)) 536 537 #define TIDUSZ 4096 /* transport interface data unit size */ 538 539 /* 540 * Bind hash list size and has function. It has to be a power of 2 for 541 * hashing. 542 */ 543 #define TCP_BIND_FANOUT_SIZE 512 544 #define TCP_BIND_HASH(lport) (ntohs(lport) & (TCP_BIND_FANOUT_SIZE - 1)) 545 546 /* 547 * Size of acceptor hash list. It has to be a power of 2 for hashing. 548 */ 549 #define TCP_ACCEPTOR_FANOUT_SIZE 256 550 551 #ifdef _ILP32 552 #define TCP_ACCEPTOR_HASH(accid) \ 553 (((uint_t)(accid) >> 8) & (TCP_ACCEPTOR_FANOUT_SIZE - 1)) 554 #else 555 #define TCP_ACCEPTOR_HASH(accid) \ 556 ((uint_t)(accid) & (TCP_ACCEPTOR_FANOUT_SIZE - 1)) 557 #endif /* _ILP32 */ 558 559 #define IP_ADDR_CACHE_SIZE 2048 560 #define IP_ADDR_CACHE_HASH(faddr) \ 561 (ntohl(faddr) & (IP_ADDR_CACHE_SIZE -1)) 562 563 /* 564 * If there is a limit set on the number of connections allowed per each 565 * listener, the following struct is used to store that counter. This needs 566 * to be separated from the listener since the listener can go away before 567 * all the connections are gone. When the struct is allocated, tlc_cnt is set 568 * to 1. When the listener goes away, tlc_cnt is decremented by one. And 569 * the last connection (or the listener) which decrements tlc_cnt to zero 570 * frees the struct. 571 * 572 * tlc_max is the threshold value tcps_conn_listen_port. It is set when the 573 * tcp_listen_cnt_t is allocated. 574 * 575 * tlc_report_time stores the time when cmn_err() is called to report that the 576 * max has been exceeeded. Report is done at most once every 577 * TCP_TLC_REPORT_INTERVAL mins for a listener. 578 * 579 * tlc_drop stores the number of connection attempt dropped because the 580 * limit has reached. 581 */ 582 typedef struct tcp_listen_cnt_s { 583 uint32_t tlc_max; 584 uint32_t tlc_cnt; 585 int64_t tlc_report_time; 586 uint32_t tlc_drop; 587 } tcp_listen_cnt_t; 588 589 #define TCP_TLC_REPORT_INTERVAL (1 * MINUTES) 590 591 #define TCP_DECR_LISTEN_CNT(tcp) \ 592 { \ 593 ASSERT((tcp)->tcp_listen_cnt->tlc_cnt > 0); \ 594 if (atomic_add_32_nv(&(tcp)->tcp_listen_cnt->tlc_cnt, -1) == 0) \ 595 kmem_free((tcp)->tcp_listen_cnt, sizeof (tcp_listen_cnt_t)); \ 596 (tcp)->tcp_listen_cnt = NULL; \ 597 } 598 599 /* Minimum number of connections per listener. */ 600 uint32_t tcp_min_conn_listener = 2; 601 602 /* 603 * Linked list struct to store listener connection limit configuration per 604 * IP stack. 605 */ 606 typedef struct tcp_listener_s { 607 in_port_t tl_port; 608 uint32_t tl_ratio; 609 list_node_t tl_link; 610 } tcp_listener_t; 611 612 /* 613 * The shift factor applied to tcp_mss to decide if the peer sends us a 614 * valid initial receive window. By default, if the peer receive window 615 * is smaller than 1 MSS (shift factor is 0), it is considered as invalid. 616 */ 617 uint32_t tcp_init_wnd_shft = 0; 618 619 /* 620 * When the system is under memory pressure, stack variable tcps_reclaim is 621 * true, we shorten the connection timeout abort interval to tcp_early_abort 622 * seconds. 623 */ 624 uint32_t tcp_early_abort = 30; 625 626 /* 627 * TCP options struct returned from tcp_parse_options. 628 */ 629 typedef struct tcp_opt_s { 630 uint32_t tcp_opt_mss; 631 uint32_t tcp_opt_wscale; 632 uint32_t tcp_opt_ts_val; 633 uint32_t tcp_opt_ts_ecr; 634 tcp_t *tcp; 635 } tcp_opt_t; 636 637 /* 638 * RFC1323-recommended phrasing of TSTAMP option, for easier parsing 639 */ 640 641 #ifdef _BIG_ENDIAN 642 #define TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \ 643 (TCPOPT_TSTAMP << 8) | 10) 644 #else 645 #define TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \ 646 (TCPOPT_NOP << 8) | TCPOPT_NOP) 647 #endif 648 649 /* 650 * Flags returned from tcp_parse_options. 651 */ 652 #define TCP_OPT_MSS_PRESENT 1 653 #define TCP_OPT_WSCALE_PRESENT 2 654 #define TCP_OPT_TSTAMP_PRESENT 4 655 #define TCP_OPT_SACK_OK_PRESENT 8 656 #define TCP_OPT_SACK_PRESENT 16 657 658 /* TCP option length */ 659 #define TCPOPT_NOP_LEN 1 660 #define TCPOPT_MAXSEG_LEN 4 661 #define TCPOPT_WS_LEN 3 662 #define TCPOPT_REAL_WS_LEN (TCPOPT_WS_LEN+1) 663 #define TCPOPT_TSTAMP_LEN 10 664 #define TCPOPT_REAL_TS_LEN (TCPOPT_TSTAMP_LEN+2) 665 #define TCPOPT_SACK_OK_LEN 2 666 #define TCPOPT_REAL_SACK_OK_LEN (TCPOPT_SACK_OK_LEN+2) 667 #define TCPOPT_REAL_SACK_LEN 4 668 #define TCPOPT_MAX_SACK_LEN 36 669 #define TCPOPT_HEADER_LEN 2 670 671 /* TCP cwnd burst factor. */ 672 #define TCP_CWND_INFINITE 65535 673 #define TCP_CWND_SS 3 674 #define TCP_CWND_NORMAL 5 675 676 /* Maximum TCP initial cwin (start/restart). */ 677 #define TCP_MAX_INIT_CWND 8 678 679 /* 680 * Initialize cwnd according to RFC 3390. def_max_init_cwnd is 681 * either tcp_slow_start_initial or tcp_slow_start_after idle 682 * depending on the caller. If the upper layer has not used the 683 * TCP_INIT_CWND option to change the initial cwnd, tcp_init_cwnd 684 * should be 0 and we use the formula in RFC 3390 to set tcp_cwnd. 685 * If the upper layer has changed set the tcp_init_cwnd, just use 686 * it to calculate the tcp_cwnd. 687 */ 688 #define SET_TCP_INIT_CWND(tcp, mss, def_max_init_cwnd) \ 689 { \ 690 if ((tcp)->tcp_init_cwnd == 0) { \ 691 (tcp)->tcp_cwnd = MIN(def_max_init_cwnd * (mss), \ 692 MIN(4 * (mss), MAX(2 * (mss), 4380 / (mss) * (mss)))); \ 693 } else { \ 694 (tcp)->tcp_cwnd = (tcp)->tcp_init_cwnd * (mss); \ 695 } \ 696 tcp->tcp_cwnd_cnt = 0; \ 697 } 698 699 /* TCP Timer control structure */ 700 typedef struct tcpt_s { 701 pfv_t tcpt_pfv; /* The routine we are to call */ 702 tcp_t *tcpt_tcp; /* The parameter we are to pass in */ 703 } tcpt_t; 704 705 /* 706 * Functions called directly via squeue having a prototype of edesc_t. 707 */ 708 void tcp_input_listener(void *arg, mblk_t *mp, void *arg2, 709 ip_recv_attr_t *ira); 710 static void tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2, 711 ip_recv_attr_t *dummy); 712 void tcp_accept_finish(void *arg, mblk_t *mp, void *arg2, 713 ip_recv_attr_t *dummy); 714 static void tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2, 715 ip_recv_attr_t *dummy); 716 static void tcp_wput_proto(void *arg, mblk_t *mp, void *arg2, 717 ip_recv_attr_t *dummy); 718 void tcp_input_data(void *arg, mblk_t *mp, void *arg2, 719 ip_recv_attr_t *ira); 720 static void tcp_close_output(void *arg, mblk_t *mp, void *arg2, 721 ip_recv_attr_t *dummy); 722 void tcp_output(void *arg, mblk_t *mp, void *arg2, 723 ip_recv_attr_t *dummy); 724 void tcp_output_urgent(void *arg, mblk_t *mp, void *arg2, 725 ip_recv_attr_t *dummy); 726 static void tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2, 727 ip_recv_attr_t *dummy); 728 static void tcp_timer_handler(void *arg, mblk_t *mp, void *arg2, 729 ip_recv_attr_t *dummy); 730 static void tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2, 731 ip_recv_attr_t *dummy); 732 static void tcp_send_synack(void *arg, mblk_t *mp, void *arg2, 733 ip_recv_attr_t *dummy); 734 735 736 /* Prototype for TCP functions */ 737 static void tcp_random_init(void); 738 int tcp_random(void); 739 static void tcp_tli_accept(tcp_t *tcp, mblk_t *mp); 740 static void tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, 741 tcp_t *eager); 742 static int tcp_set_destination(tcp_t *tcp); 743 static in_port_t tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, 744 int reuseaddr, boolean_t quick_connect, boolean_t bind_to_req_port_only, 745 boolean_t user_specified); 746 static void tcp_closei_local(tcp_t *tcp); 747 static void tcp_close_detached(tcp_t *tcp); 748 static boolean_t tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, 749 mblk_t *idmp, mblk_t **defermp, ip_recv_attr_t *ira); 750 static void tcp_tpi_connect(tcp_t *tcp, mblk_t *mp); 751 static int tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, 752 in_port_t dstport, uint_t srcid); 753 static int tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, 754 in_port_t dstport, uint32_t flowinfo, 755 uint_t srcid, uint32_t scope_id); 756 static int tcp_clean_death(tcp_t *tcp, int err, uint8_t tag); 757 static void tcp_disconnect(tcp_t *tcp, mblk_t *mp); 758 static char *tcp_display(tcp_t *tcp, char *, char); 759 static boolean_t tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum); 760 static void tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only); 761 static void tcp_eager_unlink(tcp_t *tcp); 762 static void tcp_err_ack(tcp_t *tcp, mblk_t *mp, int tlierr, 763 int unixerr); 764 static void tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, 765 int tlierr, int unixerr); 766 static int tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, 767 cred_t *cr); 768 static int tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, 769 char *value, caddr_t cp, cred_t *cr); 770 static int tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, 771 char *value, caddr_t cp, cred_t *cr); 772 static int tcp_tpistate(tcp_t *tcp); 773 static void tcp_bind_hash_insert(tf_t *tf, tcp_t *tcp, 774 int caller_holds_lock); 775 static void tcp_bind_hash_remove(tcp_t *tcp); 776 static tcp_t *tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *); 777 void tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp); 778 static void tcp_acceptor_hash_remove(tcp_t *tcp); 779 static void tcp_capability_req(tcp_t *tcp, mblk_t *mp); 780 static void tcp_info_req(tcp_t *tcp, mblk_t *mp); 781 static void tcp_addr_req(tcp_t *tcp, mblk_t *mp); 782 static void tcp_init_values(tcp_t *tcp); 783 static void tcp_ip_notify(tcp_t *tcp); 784 static void tcp_iss_init(tcp_t *tcp); 785 static void tcp_keepalive_killer(void *arg); 786 static int tcp_parse_options(tcpha_t *tcpha, tcp_opt_t *tcpopt); 787 static void tcp_mss_set(tcp_t *tcp, uint32_t size); 788 static int tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, 789 int *do_disconnectp, int *t_errorp, int *sys_errorp); 790 static boolean_t tcp_allow_connopt_set(int level, int name); 791 int tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr); 792 static int tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr); 793 static boolean_t tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt, 794 tcp_stack_t *); 795 static int tcp_param_set(queue_t *q, mblk_t *mp, char *value, 796 caddr_t cp, cred_t *cr); 797 static int tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, 798 caddr_t cp, cred_t *cr); 799 static void tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *); 800 static int tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, 801 caddr_t cp, cred_t *cr); 802 static void tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_cnt); 803 static void tcp_update_xmit_tail(tcp_t *tcp, uint32_t snxt); 804 static mblk_t *tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start); 805 static void tcp_reass_timer(void *arg); 806 static void tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp); 807 static void tcp_reinit(tcp_t *tcp); 808 static void tcp_reinit_values(tcp_t *tcp); 809 810 static uint_t tcp_rwnd_reopen(tcp_t *tcp); 811 static uint_t tcp_rcv_drain(tcp_t *tcp); 812 static void tcp_sack_rxmit(tcp_t *tcp, uint_t *flags); 813 static boolean_t tcp_send_rst_chk(tcp_stack_t *); 814 static void tcp_ss_rexmit(tcp_t *tcp); 815 static mblk_t *tcp_input_add_ancillary(tcp_t *tcp, mblk_t *mp, ip_pkt_t *ipp, 816 ip_recv_attr_t *); 817 static void tcp_process_options(tcp_t *, tcpha_t *); 818 static void tcp_rsrv(queue_t *q); 819 static int tcp_snmp_state(tcp_t *tcp); 820 static void tcp_timer(void *arg); 821 static void tcp_timer_callback(void *); 822 static in_port_t tcp_update_next_port(in_port_t port, const tcp_t *tcp, 823 boolean_t random); 824 static in_port_t tcp_get_next_priv_port(const tcp_t *); 825 static void tcp_wput_sock(queue_t *q, mblk_t *mp); 826 static void tcp_wput_fallback(queue_t *q, mblk_t *mp); 827 void tcp_tpi_accept(queue_t *q, mblk_t *mp); 828 static void tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent); 829 static void tcp_wput_flush(tcp_t *tcp, mblk_t *mp); 830 static void tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp); 831 static int tcp_send(tcp_t *tcp, const int mss, 832 const int total_hdr_len, const int tcp_hdr_len, 833 const int num_sack_blk, int *usable, uint_t *snxt, 834 int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time); 835 static void tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, 836 int num_sack_blk); 837 static void tcp_wsrv(queue_t *q); 838 static int tcp_xmit_end(tcp_t *tcp); 839 static void tcp_ack_timer(void *arg); 840 static mblk_t *tcp_ack_mp(tcp_t *tcp); 841 static void tcp_xmit_early_reset(char *str, mblk_t *mp, 842 uint32_t seq, uint32_t ack, int ctl, ip_recv_attr_t *, 843 ip_stack_t *, conn_t *); 844 static void tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, 845 uint32_t ack, int ctl); 846 static void tcp_set_rto(tcp_t *, time_t); 847 static void tcp_icmp_input(void *, mblk_t *, void *, ip_recv_attr_t *); 848 static void tcp_icmp_error_ipv6(tcp_t *, mblk_t *, ip_recv_attr_t *); 849 static boolean_t tcp_verifyicmp(conn_t *, void *, icmph_t *, icmp6_t *, 850 ip_recv_attr_t *); 851 static int tcp_build_hdrs(tcp_t *); 852 static void tcp_time_wait_append(tcp_t *tcp); 853 static void tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, 854 uint32_t seg_seq, uint32_t seg_ack, int seg_len, tcpha_t *tcpha, 855 ip_recv_attr_t *ira); 856 boolean_t tcp_paws_check(tcp_t *tcp, tcpha_t *tcpha, tcp_opt_t *tcpoptp); 857 static boolean_t tcp_zcopy_check(tcp_t *); 858 static void tcp_zcopy_notify(tcp_t *); 859 static mblk_t *tcp_zcopy_backoff(tcp_t *, mblk_t *, boolean_t); 860 static void tcp_update_lso(tcp_t *tcp, ip_xmit_attr_t *ixa); 861 static void tcp_update_pmtu(tcp_t *tcp, boolean_t decrease_only); 862 static void tcp_update_zcopy(tcp_t *tcp); 863 static void tcp_notify(void *, ip_xmit_attr_t *, ixa_notify_type_t, 864 ixa_notify_arg_t); 865 static void tcp_rexmit_after_error(tcp_t *tcp); 866 static void tcp_send_data(tcp_t *, mblk_t *); 867 extern mblk_t *tcp_timermp_alloc(int); 868 extern void tcp_timermp_free(tcp_t *); 869 static void tcp_timer_free(tcp_t *tcp, mblk_t *mp); 870 static void tcp_stop_lingering(tcp_t *tcp); 871 static void tcp_close_linger_timeout(void *arg); 872 static void *tcp_stack_init(netstackid_t stackid, netstack_t *ns); 873 static void tcp_stack_fini(netstackid_t stackid, void *arg); 874 static void *tcp_g_kstat_init(tcp_g_stat_t *); 875 static void tcp_g_kstat_fini(kstat_t *); 876 static void *tcp_kstat_init(netstackid_t, tcp_stack_t *); 877 static void tcp_kstat_fini(netstackid_t, kstat_t *); 878 static void *tcp_kstat2_init(netstackid_t, tcp_stat_t *); 879 static void tcp_kstat2_fini(netstackid_t, kstat_t *); 880 static int tcp_kstat_update(kstat_t *kp, int rw); 881 static mblk_t *tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 882 ip_recv_attr_t *ira); 883 static mblk_t *tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, mblk_t *mp, 884 ip_recv_attr_t *ira); 885 static int tcp_squeue_switch(int); 886 887 static int tcp_open(queue_t *, dev_t *, int, int, cred_t *, boolean_t); 888 static int tcp_openv4(queue_t *, dev_t *, int, int, cred_t *); 889 static int tcp_openv6(queue_t *, dev_t *, int, int, cred_t *); 890 static int tcp_tpi_close(queue_t *, int); 891 static int tcp_tpi_close_accept(queue_t *); 892 893 static void tcp_squeue_add(squeue_t *); 894 static void tcp_setcred_data(mblk_t *, ip_recv_attr_t *); 895 896 extern void tcp_kssl_input(tcp_t *, mblk_t *, cred_t *); 897 898 void tcp_eager_kill(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy); 899 void tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2, 900 ip_recv_attr_t *dummy); 901 902 static int tcp_accept(sock_lower_handle_t, sock_lower_handle_t, 903 sock_upper_handle_t, cred_t *); 904 static int tcp_listen(sock_lower_handle_t, int, cred_t *); 905 static int tcp_do_listen(conn_t *, struct sockaddr *, socklen_t, int, cred_t *, 906 boolean_t); 907 static int tcp_do_connect(conn_t *, const struct sockaddr *, socklen_t, 908 cred_t *, pid_t); 909 static int tcp_do_bind(conn_t *, struct sockaddr *, socklen_t, cred_t *, 910 boolean_t); 911 static int tcp_do_unbind(conn_t *); 912 static int tcp_bind_check(conn_t *, struct sockaddr *, socklen_t, cred_t *, 913 boolean_t); 914 915 static void tcp_ulp_newconn(conn_t *, conn_t *, mblk_t *); 916 917 static uint32_t tcp_find_listener_conf(tcp_stack_t *, in_port_t); 918 static int tcp_listener_conf_get(queue_t *, mblk_t *, caddr_t, cred_t *); 919 static int tcp_listener_conf_add(queue_t *, mblk_t *, char *, caddr_t, 920 cred_t *); 921 static int tcp_listener_conf_del(queue_t *, mblk_t *, char *, caddr_t, 922 cred_t *); 923 static void tcp_listener_conf_cleanup(tcp_stack_t *); 924 925 /* 926 * Routines related to the TCP_IOC_ABORT_CONN ioctl command. 927 * 928 * TCP_IOC_ABORT_CONN is a non-transparent ioctl command used for aborting 929 * TCP connections. To invoke this ioctl, a tcp_ioc_abort_conn_t structure 930 * (defined in tcp.h) needs to be filled in and passed into the kernel 931 * via an I_STR ioctl command (see streamio(7I)). The tcp_ioc_abort_conn_t 932 * structure contains the four-tuple of a TCP connection and a range of TCP 933 * states (specified by ac_start and ac_end). The use of wildcard addresses 934 * and ports is allowed. Connections with a matching four tuple and a state 935 * within the specified range will be aborted. The valid states for the 936 * ac_start and ac_end fields are in the range TCPS_SYN_SENT to TCPS_TIME_WAIT, 937 * inclusive. 938 * 939 * An application which has its connection aborted by this ioctl will receive 940 * an error that is dependent on the connection state at the time of the abort. 941 * If the connection state is < TCPS_TIME_WAIT, an application should behave as 942 * though a RST packet has been received. If the connection state is equal to 943 * TCPS_TIME_WAIT, the 2MSL timeout will immediately be canceled by the kernel 944 * and all resources associated with the connection will be freed. 945 */ 946 static mblk_t *tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *, tcp_t *); 947 static void tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *); 948 static void tcp_ioctl_abort_handler(void *arg, mblk_t *mp, void *arg2, 949 ip_recv_attr_t *dummy); 950 static int tcp_ioctl_abort(tcp_ioc_abort_conn_t *, tcp_stack_t *tcps); 951 static void tcp_ioctl_abort_conn(queue_t *, mblk_t *); 952 static int tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *, int, int *, 953 boolean_t, tcp_stack_t *); 954 955 static struct module_info tcp_rinfo = { 956 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER 957 }; 958 959 static struct module_info tcp_winfo = { 960 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16 961 }; 962 963 /* 964 * Entry points for TCP as a device. The normal case which supports 965 * the TCP functionality. 966 * We have separate open functions for the /dev/tcp and /dev/tcp6 devices. 967 */ 968 struct qinit tcp_rinitv4 = { 969 NULL, (pfi_t)tcp_rsrv, tcp_openv4, tcp_tpi_close, NULL, &tcp_rinfo 970 }; 971 972 struct qinit tcp_rinitv6 = { 973 NULL, (pfi_t)tcp_rsrv, tcp_openv6, tcp_tpi_close, NULL, &tcp_rinfo 974 }; 975 976 struct qinit tcp_winit = { 977 (pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 978 }; 979 980 /* Initial entry point for TCP in socket mode. */ 981 struct qinit tcp_sock_winit = { 982 (pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 983 }; 984 985 /* TCP entry point during fallback */ 986 struct qinit tcp_fallback_sock_winit = { 987 (pfi_t)tcp_wput_fallback, NULL, NULL, NULL, NULL, &tcp_winfo 988 }; 989 990 /* 991 * Entry points for TCP as a acceptor STREAM opened by sockfs when doing 992 * an accept. Avoid allocating data structures since eager has already 993 * been created. 994 */ 995 struct qinit tcp_acceptor_rinit = { 996 NULL, (pfi_t)tcp_rsrv, NULL, tcp_tpi_close_accept, NULL, &tcp_winfo 997 }; 998 999 struct qinit tcp_acceptor_winit = { 1000 (pfi_t)tcp_tpi_accept, NULL, NULL, NULL, NULL, &tcp_winfo 1001 }; 1002 1003 /* For AF_INET aka /dev/tcp */ 1004 struct streamtab tcpinfov4 = { 1005 &tcp_rinitv4, &tcp_winit 1006 }; 1007 1008 /* For AF_INET6 aka /dev/tcp6 */ 1009 struct streamtab tcpinfov6 = { 1010 &tcp_rinitv6, &tcp_winit 1011 }; 1012 1013 sock_downcalls_t sock_tcp_downcalls; 1014 1015 /* Setable only in /etc/system. Move to ndd? */ 1016 boolean_t tcp_icmp_source_quench = B_FALSE; 1017 1018 /* 1019 * Following assumes TPI alignment requirements stay along 32 bit 1020 * boundaries 1021 */ 1022 #define ROUNDUP32(x) \ 1023 (((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1)) 1024 1025 /* Template for response to info request. */ 1026 static struct T_info_ack tcp_g_t_info_ack = { 1027 T_INFO_ACK, /* PRIM_type */ 1028 0, /* TSDU_size */ 1029 T_INFINITE, /* ETSDU_size */ 1030 T_INVALID, /* CDATA_size */ 1031 T_INVALID, /* DDATA_size */ 1032 sizeof (sin_t), /* ADDR_size */ 1033 0, /* OPT_size - not initialized here */ 1034 TIDUSZ, /* TIDU_size */ 1035 T_COTS_ORD, /* SERV_type */ 1036 TCPS_IDLE, /* CURRENT_state */ 1037 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 1038 }; 1039 1040 static struct T_info_ack tcp_g_t_info_ack_v6 = { 1041 T_INFO_ACK, /* PRIM_type */ 1042 0, /* TSDU_size */ 1043 T_INFINITE, /* ETSDU_size */ 1044 T_INVALID, /* CDATA_size */ 1045 T_INVALID, /* DDATA_size */ 1046 sizeof (sin6_t), /* ADDR_size */ 1047 0, /* OPT_size - not initialized here */ 1048 TIDUSZ, /* TIDU_size */ 1049 T_COTS_ORD, /* SERV_type */ 1050 TCPS_IDLE, /* CURRENT_state */ 1051 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 1052 }; 1053 1054 #define MS 1L 1055 #define SECONDS (1000 * MS) 1056 #define MINUTES (60 * SECONDS) 1057 #define HOURS (60 * MINUTES) 1058 #define DAYS (24 * HOURS) 1059 1060 #define PARAM_MAX (~(uint32_t)0) 1061 1062 /* Max size IP datagram is 64k - 1 */ 1063 #define TCP_MSS_MAX_IPV4 (IP_MAXPACKET - (sizeof (ipha_t) + sizeof (tcpha_t))) 1064 #define TCP_MSS_MAX_IPV6 (IP_MAXPACKET - (sizeof (ip6_t) + sizeof (tcpha_t))) 1065 /* Max of the above */ 1066 #define TCP_MSS_MAX TCP_MSS_MAX_IPV4 1067 1068 /* Largest TCP port number */ 1069 #define TCP_MAX_PORT (64 * 1024 - 1) 1070 1071 /* 1072 * tcp_wroff_xtra is the extra space in front of TCP/IP header for link 1073 * layer header. It has to be a multiple of 4. 1074 */ 1075 static tcpparam_t lcl_tcp_wroff_xtra_param = { 0, 256, 32, "tcp_wroff_xtra" }; 1076 #define tcps_wroff_xtra tcps_wroff_xtra_param->tcp_param_val 1077 1078 #define MB (1024 * 1024) 1079 1080 /* 1081 * All of these are alterable, within the min/max values given, at run time. 1082 * Note that the default value of "tcp_time_wait_interval" is four minutes, 1083 * per the TCP spec. 1084 */ 1085 /* BEGIN CSTYLED */ 1086 static tcpparam_t lcl_tcp_param_arr[] = { 1087 /*min max value name */ 1088 { 1*SECONDS, 10*MINUTES, 1*MINUTES, "tcp_time_wait_interval"}, 1089 { 1, PARAM_MAX, 128, "tcp_conn_req_max_q" }, 1090 { 0, PARAM_MAX, 1024, "tcp_conn_req_max_q0" }, 1091 { 1, 1024, 1, "tcp_conn_req_min" }, 1092 { 0*MS, 20*SECONDS, 0*MS, "tcp_conn_grace_period" }, 1093 { 128, (1<<30), 1*MB, "tcp_cwnd_max" }, 1094 { 0, 10, 0, "tcp_debug" }, 1095 { 1024, (32*1024), 1024, "tcp_smallest_nonpriv_port"}, 1096 { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_cinterval"}, 1097 { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_linterval"}, 1098 { 500*MS, PARAM_MAX, 5*MINUTES, "tcp_ip_abort_interval"}, 1099 { 1*SECONDS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_cinterval"}, 1100 { 500*MS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_interval"}, 1101 { 1, 255, 64, "tcp_ipv4_ttl"}, 1102 { 10*SECONDS, 10*DAYS, 2*HOURS, "tcp_keepalive_interval"}, 1103 { 0, 100, 10, "tcp_maxpsz_multiplier" }, 1104 { 1, TCP_MSS_MAX_IPV4, 536, "tcp_mss_def_ipv4"}, 1105 { 1, TCP_MSS_MAX_IPV4, TCP_MSS_MAX_IPV4, "tcp_mss_max_ipv4"}, 1106 { 1, TCP_MSS_MAX, 108, "tcp_mss_min"}, 1107 { 1, (64*1024)-1, (4*1024)-1, "tcp_naglim_def"}, 1108 { 1*MS, 20*SECONDS, 1*SECONDS, "tcp_rexmit_interval_initial"}, 1109 { 1*MS, 2*HOURS, 60*SECONDS, "tcp_rexmit_interval_max"}, 1110 { 1*MS, 2*HOURS, 400*MS, "tcp_rexmit_interval_min"}, 1111 { 1*MS, 1*MINUTES, 100*MS, "tcp_deferred_ack_interval" }, 1112 { 0, 16, 0, "tcp_snd_lowat_fraction" }, 1113 { 1, 10000, 3, "tcp_dupack_fast_retransmit" }, 1114 { 0, 1, 0, "tcp_ignore_path_mtu" }, 1115 { 1024, TCP_MAX_PORT, 32*1024, "tcp_smallest_anon_port"}, 1116 { 1024, TCP_MAX_PORT, TCP_MAX_PORT, "tcp_largest_anon_port"}, 1117 { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_HIWATER,"tcp_xmit_hiwat"}, 1118 { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_LOWATER,"tcp_xmit_lowat"}, 1119 { TCP_RECV_LOWATER, (1<<30), TCP_RECV_HIWATER,"tcp_recv_hiwat"}, 1120 { 1, 65536, 4, "tcp_recv_hiwat_minmss"}, 1121 { 1*SECONDS, PARAM_MAX, 675*SECONDS, "tcp_fin_wait_2_flush_interval"}, 1122 { 8192, (1<<30), 1*MB, "tcp_max_buf"}, 1123 /* 1124 * Question: What default value should I set for tcp_strong_iss? 1125 */ 1126 { 0, 2, 1, "tcp_strong_iss"}, 1127 { 0, 65536, 20, "tcp_rtt_updates"}, 1128 { 0, 1, 1, "tcp_wscale_always"}, 1129 { 0, 1, 0, "tcp_tstamp_always"}, 1130 { 0, 1, 1, "tcp_tstamp_if_wscale"}, 1131 { 0*MS, 2*HOURS, 0*MS, "tcp_rexmit_interval_extra"}, 1132 { 0, 16, 2, "tcp_deferred_acks_max"}, 1133 { 1, 16384, 4, "tcp_slow_start_after_idle"}, 1134 { 1, 4, 4, "tcp_slow_start_initial"}, 1135 { 0, 2, 2, "tcp_sack_permitted"}, 1136 { 0, IPV6_MAX_HOPS, IPV6_DEFAULT_HOPS, "tcp_ipv6_hoplimit"}, 1137 { 1, TCP_MSS_MAX_IPV6, 1220, "tcp_mss_def_ipv6"}, 1138 { 1, TCP_MSS_MAX_IPV6, TCP_MSS_MAX_IPV6, "tcp_mss_max_ipv6"}, 1139 { 0, 1, 0, "tcp_rev_src_routes"}, 1140 { 10*MS, 500*MS, 50*MS, "tcp_local_dack_interval"}, 1141 { 0, 16, 8, "tcp_local_dacks_max"}, 1142 { 0, 2, 1, "tcp_ecn_permitted"}, 1143 { 0, 1, 1, "tcp_rst_sent_rate_enabled"}, 1144 { 0, PARAM_MAX, 40, "tcp_rst_sent_rate"}, 1145 { 0, 100*MS, 50*MS, "tcp_push_timer_interval"}, 1146 { 0, 1, 0, "tcp_use_smss_as_mss_opt"}, 1147 { 0, PARAM_MAX, 8*MINUTES, "tcp_keepalive_abort_interval"}, 1148 { 0, 1, 0, "tcp_dev_flow_ctl"}, 1149 { 0, PARAM_MAX, 100*SECONDS, "tcp_reass_timeout"} 1150 }; 1151 /* END CSTYLED */ 1152 1153 /* Round up the value to the nearest mss. */ 1154 #define MSS_ROUNDUP(value, mss) ((((value) - 1) / (mss) + 1) * (mss)) 1155 1156 /* 1157 * Set ECN capable transport (ECT) code point in IP header. 1158 * 1159 * Note that there are 2 ECT code points '01' and '10', which are called 1160 * ECT(1) and ECT(0) respectively. Here we follow the original ECT code 1161 * point ECT(0) for TCP as described in RFC 2481. 1162 */ 1163 #define SET_ECT(tcp, iph) \ 1164 if ((tcp)->tcp_connp->conn_ipversion == IPV4_VERSION) { \ 1165 /* We need to clear the code point first. */ \ 1166 ((ipha_t *)(iph))->ipha_type_of_service &= 0xFC; \ 1167 ((ipha_t *)(iph))->ipha_type_of_service |= IPH_ECN_ECT0; \ 1168 } else { \ 1169 ((ip6_t *)(iph))->ip6_vcf &= htonl(0xFFCFFFFF); \ 1170 ((ip6_t *)(iph))->ip6_vcf |= htonl(IPH_ECN_ECT0 << 20); \ 1171 } 1172 1173 /* 1174 * The format argument to pass to tcp_display(). 1175 * DISP_PORT_ONLY means that the returned string has only port info. 1176 * DISP_ADDR_AND_PORT means that the returned string also contains the 1177 * remote and local IP address. 1178 */ 1179 #define DISP_PORT_ONLY 1 1180 #define DISP_ADDR_AND_PORT 2 1181 1182 #define IS_VMLOANED_MBLK(mp) \ 1183 (((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0) 1184 1185 uint32_t do_tcpzcopy = 1; /* 0: disable, 1: enable, 2: force */ 1186 1187 /* 1188 * Forces all connections to obey the value of the tcps_maxpsz_multiplier 1189 * tunable settable via NDD. Otherwise, the per-connection behavior is 1190 * determined dynamically during tcp_set_destination(), which is the default. 1191 */ 1192 boolean_t tcp_static_maxpsz = B_FALSE; 1193 1194 /* Setable in /etc/system */ 1195 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */ 1196 uint32_t tcp_random_anon_port = 1; 1197 1198 /* 1199 * To reach to an eager in Q0 which can be dropped due to an incoming 1200 * new SYN request when Q0 is full, a new doubly linked list is 1201 * introduced. This list allows to select an eager from Q0 in O(1) time. 1202 * This is needed to avoid spending too much time walking through the 1203 * long list of eagers in Q0 when tcp_drop_q0() is called. Each member of 1204 * this new list has to be a member of Q0. 1205 * This list is headed by listener's tcp_t. When the list is empty, 1206 * both the pointers - tcp_eager_next_drop_q0 and tcp_eager_prev_drop_q0, 1207 * of listener's tcp_t point to listener's tcp_t itself. 1208 * 1209 * Given an eager in Q0 and a listener, MAKE_DROPPABLE() puts the eager 1210 * in the list. MAKE_UNDROPPABLE() takes the eager out of the list. 1211 * These macros do not affect the eager's membership to Q0. 1212 */ 1213 1214 1215 #define MAKE_DROPPABLE(listener, eager) \ 1216 if ((eager)->tcp_eager_next_drop_q0 == NULL) { \ 1217 (listener)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0\ 1218 = (eager); \ 1219 (eager)->tcp_eager_prev_drop_q0 = (listener); \ 1220 (eager)->tcp_eager_next_drop_q0 = \ 1221 (listener)->tcp_eager_next_drop_q0; \ 1222 (listener)->tcp_eager_next_drop_q0 = (eager); \ 1223 } 1224 1225 #define MAKE_UNDROPPABLE(eager) \ 1226 if ((eager)->tcp_eager_next_drop_q0 != NULL) { \ 1227 (eager)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0 \ 1228 = (eager)->tcp_eager_prev_drop_q0; \ 1229 (eager)->tcp_eager_prev_drop_q0->tcp_eager_next_drop_q0 \ 1230 = (eager)->tcp_eager_next_drop_q0; \ 1231 (eager)->tcp_eager_prev_drop_q0 = NULL; \ 1232 (eager)->tcp_eager_next_drop_q0 = NULL; \ 1233 } 1234 1235 /* 1236 * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more 1237 * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent 1238 * data, TCP will not respond with an ACK. RFC 793 requires that 1239 * TCP responds with an ACK for such a bogus ACK. By not following 1240 * the RFC, we prevent TCP from getting into an ACK storm if somehow 1241 * an attacker successfully spoofs an acceptable segment to our 1242 * peer; or when our peer is "confused." 1243 */ 1244 uint32_t tcp_drop_ack_unsent_cnt = 10; 1245 1246 /* 1247 * Hook functions to enable cluster networking 1248 * On non-clustered systems these vectors must always be NULL. 1249 */ 1250 1251 void (*cl_inet_listen)(netstackid_t stack_id, uint8_t protocol, 1252 sa_family_t addr_family, uint8_t *laddrp, 1253 in_port_t lport, void *args) = NULL; 1254 void (*cl_inet_unlisten)(netstackid_t stack_id, uint8_t protocol, 1255 sa_family_t addr_family, uint8_t *laddrp, 1256 in_port_t lport, void *args) = NULL; 1257 1258 int (*cl_inet_connect2)(netstackid_t stack_id, uint8_t protocol, 1259 boolean_t is_outgoing, 1260 sa_family_t addr_family, 1261 uint8_t *laddrp, in_port_t lport, 1262 uint8_t *faddrp, in_port_t fport, 1263 void *args) = NULL; 1264 void (*cl_inet_disconnect)(netstackid_t stack_id, uint8_t protocol, 1265 sa_family_t addr_family, uint8_t *laddrp, 1266 in_port_t lport, uint8_t *faddrp, 1267 in_port_t fport, void *args) = NULL; 1268 1269 1270 /* 1271 * int CL_INET_CONNECT(conn_t *cp, tcp_t *tcp, boolean_t is_outgoing, int err) 1272 */ 1273 #define CL_INET_CONNECT(connp, is_outgoing, err) { \ 1274 (err) = 0; \ 1275 if (cl_inet_connect2 != NULL) { \ 1276 /* \ 1277 * Running in cluster mode - register active connection \ 1278 * information \ 1279 */ \ 1280 if ((connp)->conn_ipversion == IPV4_VERSION) { \ 1281 if ((connp)->conn_laddr_v4 != 0) { \ 1282 (err) = (*cl_inet_connect2)( \ 1283 (connp)->conn_netstack->netstack_stackid,\ 1284 IPPROTO_TCP, is_outgoing, AF_INET, \ 1285 (uint8_t *)(&((connp)->conn_laddr_v4)),\ 1286 (in_port_t)(connp)->conn_lport, \ 1287 (uint8_t *)(&((connp)->conn_faddr_v4)),\ 1288 (in_port_t)(connp)->conn_fport, NULL); \ 1289 } \ 1290 } else { \ 1291 if (!IN6_IS_ADDR_UNSPECIFIED( \ 1292 &(connp)->conn_laddr_v6)) { \ 1293 (err) = (*cl_inet_connect2)( \ 1294 (connp)->conn_netstack->netstack_stackid,\ 1295 IPPROTO_TCP, is_outgoing, AF_INET6, \ 1296 (uint8_t *)(&((connp)->conn_laddr_v6)),\ 1297 (in_port_t)(connp)->conn_lport, \ 1298 (uint8_t *)(&((connp)->conn_faddr_v6)), \ 1299 (in_port_t)(connp)->conn_fport, NULL); \ 1300 } \ 1301 } \ 1302 } \ 1303 } 1304 1305 #define CL_INET_DISCONNECT(connp) { \ 1306 if (cl_inet_disconnect != NULL) { \ 1307 /* \ 1308 * Running in cluster mode - deregister active \ 1309 * connection information \ 1310 */ \ 1311 if ((connp)->conn_ipversion == IPV4_VERSION) { \ 1312 if ((connp)->conn_laddr_v4 != 0) { \ 1313 (*cl_inet_disconnect)( \ 1314 (connp)->conn_netstack->netstack_stackid,\ 1315 IPPROTO_TCP, AF_INET, \ 1316 (uint8_t *)(&((connp)->conn_laddr_v4)),\ 1317 (in_port_t)(connp)->conn_lport, \ 1318 (uint8_t *)(&((connp)->conn_faddr_v4)),\ 1319 (in_port_t)(connp)->conn_fport, NULL); \ 1320 } \ 1321 } else { \ 1322 if (!IN6_IS_ADDR_UNSPECIFIED( \ 1323 &(connp)->conn_laddr_v6)) { \ 1324 (*cl_inet_disconnect)( \ 1325 (connp)->conn_netstack->netstack_stackid,\ 1326 IPPROTO_TCP, AF_INET6, \ 1327 (uint8_t *)(&((connp)->conn_laddr_v6)),\ 1328 (in_port_t)(connp)->conn_lport, \ 1329 (uint8_t *)(&((connp)->conn_faddr_v6)), \ 1330 (in_port_t)(connp)->conn_fport, NULL); \ 1331 } \ 1332 } \ 1333 } \ 1334 } 1335 1336 /* 1337 * Steps to do when a tcp_t moves to TIME-WAIT state. 1338 * 1339 * This connection is done, we don't need to account for it. Decrement 1340 * the listener connection counter if needed. 1341 * 1342 * Unconditionally clear the exclusive binding bit so this TIME-WAIT 1343 * connection won't interfere with new ones. 1344 * 1345 * Start the TIME-WAIT timer. If upper layer has not closed the connection, 1346 * the timer is handled within the context of this tcp_t. When the timer 1347 * fires, tcp_clean_death() is called. If upper layer closes the connection 1348 * during this period, tcp_time_wait_append() will be called to add this 1349 * tcp_t to the global TIME-WAIT list. Note that this means that the 1350 * actual wait time in TIME-WAIT state will be longer than the 1351 * tcps_time_wait_interval since the period before upper layer closes the 1352 * connection is not accounted for when tcp_time_wait_append() is called. 1353 * 1354 * If uppser layer has closed the connection, call tcp_time_wait_append() 1355 * directly. 1356 */ 1357 #define SET_TIME_WAIT(tcps, tcp, connp) \ 1358 { \ 1359 (tcp)->tcp_state = TCPS_TIME_WAIT; \ 1360 if ((tcp)->tcp_listen_cnt != NULL) \ 1361 TCP_DECR_LISTEN_CNT(tcp); \ 1362 (connp)->conn_exclbind = 0; \ 1363 if (!TCP_IS_DETACHED(tcp)) { \ 1364 TCP_TIMER_RESTART(tcp, (tcps)->tcps_time_wait_interval); \ 1365 } else { \ 1366 tcp_time_wait_append(tcp); \ 1367 TCP_DBGSTAT(tcps, tcp_rput_time_wait); \ 1368 } \ 1369 } 1370 1371 /* 1372 * Cluster networking hook for traversing current connection list. 1373 * This routine is used to extract the current list of live connections 1374 * which must continue to to be dispatched to this node. 1375 */ 1376 int cl_tcp_walk_list(netstackid_t stack_id, 1377 int (*callback)(cl_tcp_info_t *, void *), void *arg); 1378 1379 static int cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *), 1380 void *arg, tcp_stack_t *tcps); 1381 1382 static void 1383 tcp_set_recv_threshold(tcp_t *tcp, uint32_t new_rcvthresh) 1384 { 1385 uint32_t default_threshold = SOCKET_RECVHIWATER >> 3; 1386 1387 if (IPCL_IS_NONSTR(tcp->tcp_connp)) { 1388 conn_t *connp = tcp->tcp_connp; 1389 struct sock_proto_props sopp; 1390 1391 /* 1392 * only increase rcvthresh upto default_threshold 1393 */ 1394 if (new_rcvthresh > default_threshold) 1395 new_rcvthresh = default_threshold; 1396 1397 sopp.sopp_flags = SOCKOPT_RCVTHRESH; 1398 sopp.sopp_rcvthresh = new_rcvthresh; 1399 1400 (*connp->conn_upcalls->su_set_proto_props) 1401 (connp->conn_upper_handle, &sopp); 1402 } 1403 } 1404 /* 1405 * Figure out the value of window scale opton. Note that the rwnd is 1406 * ASSUMED to be rounded up to the nearest MSS before the calculation. 1407 * We cannot find the scale value and then do a round up of tcp_rwnd 1408 * because the scale value may not be correct after that. 1409 * 1410 * Set the compiler flag to make this function inline. 1411 */ 1412 static void 1413 tcp_set_ws_value(tcp_t *tcp) 1414 { 1415 int i; 1416 uint32_t rwnd = tcp->tcp_rwnd; 1417 1418 for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT; 1419 i++, rwnd >>= 1) 1420 ; 1421 tcp->tcp_rcv_ws = i; 1422 } 1423 1424 /* 1425 * Remove a connection from the list of detached TIME_WAIT connections. 1426 * It returns B_FALSE if it can't remove the connection from the list 1427 * as the connection has already been removed from the list due to an 1428 * earlier call to tcp_time_wait_remove(); otherwise it returns B_TRUE. 1429 */ 1430 static boolean_t 1431 tcp_time_wait_remove(tcp_t *tcp, tcp_squeue_priv_t *tcp_time_wait) 1432 { 1433 boolean_t locked = B_FALSE; 1434 1435 if (tcp_time_wait == NULL) { 1436 tcp_time_wait = *((tcp_squeue_priv_t **) 1437 squeue_getprivate(tcp->tcp_connp->conn_sqp, SQPRIVATE_TCP)); 1438 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1439 locked = B_TRUE; 1440 } else { 1441 ASSERT(MUTEX_HELD(&tcp_time_wait->tcp_time_wait_lock)); 1442 } 1443 1444 if (tcp->tcp_time_wait_expire == 0) { 1445 ASSERT(tcp->tcp_time_wait_next == NULL); 1446 ASSERT(tcp->tcp_time_wait_prev == NULL); 1447 if (locked) 1448 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1449 return (B_FALSE); 1450 } 1451 ASSERT(TCP_IS_DETACHED(tcp)); 1452 ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); 1453 1454 if (tcp == tcp_time_wait->tcp_time_wait_head) { 1455 ASSERT(tcp->tcp_time_wait_prev == NULL); 1456 tcp_time_wait->tcp_time_wait_head = tcp->tcp_time_wait_next; 1457 if (tcp_time_wait->tcp_time_wait_head != NULL) { 1458 tcp_time_wait->tcp_time_wait_head->tcp_time_wait_prev = 1459 NULL; 1460 } else { 1461 tcp_time_wait->tcp_time_wait_tail = NULL; 1462 } 1463 } else if (tcp == tcp_time_wait->tcp_time_wait_tail) { 1464 ASSERT(tcp != tcp_time_wait->tcp_time_wait_head); 1465 ASSERT(tcp->tcp_time_wait_next == NULL); 1466 tcp_time_wait->tcp_time_wait_tail = tcp->tcp_time_wait_prev; 1467 ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); 1468 tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = NULL; 1469 } else { 1470 ASSERT(tcp->tcp_time_wait_prev->tcp_time_wait_next == tcp); 1471 ASSERT(tcp->tcp_time_wait_next->tcp_time_wait_prev == tcp); 1472 tcp->tcp_time_wait_prev->tcp_time_wait_next = 1473 tcp->tcp_time_wait_next; 1474 tcp->tcp_time_wait_next->tcp_time_wait_prev = 1475 tcp->tcp_time_wait_prev; 1476 } 1477 tcp->tcp_time_wait_next = NULL; 1478 tcp->tcp_time_wait_prev = NULL; 1479 tcp->tcp_time_wait_expire = 0; 1480 1481 if (locked) 1482 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1483 return (B_TRUE); 1484 } 1485 1486 /* 1487 * Add a connection to the list of detached TIME_WAIT connections 1488 * and set its time to expire. 1489 */ 1490 static void 1491 tcp_time_wait_append(tcp_t *tcp) 1492 { 1493 tcp_stack_t *tcps = tcp->tcp_tcps; 1494 tcp_squeue_priv_t *tcp_time_wait = 1495 *((tcp_squeue_priv_t **)squeue_getprivate(tcp->tcp_connp->conn_sqp, 1496 SQPRIVATE_TCP)); 1497 1498 tcp_timers_stop(tcp); 1499 1500 /* Freed above */ 1501 ASSERT(tcp->tcp_timer_tid == 0); 1502 ASSERT(tcp->tcp_ack_tid == 0); 1503 1504 /* must have happened at the time of detaching the tcp */ 1505 ASSERT(tcp->tcp_ptpahn == NULL); 1506 ASSERT(tcp->tcp_flow_stopped == 0); 1507 ASSERT(tcp->tcp_time_wait_next == NULL); 1508 ASSERT(tcp->tcp_time_wait_prev == NULL); 1509 ASSERT(tcp->tcp_time_wait_expire == NULL); 1510 ASSERT(tcp->tcp_listener == NULL); 1511 1512 tcp->tcp_time_wait_expire = ddi_get_lbolt(); 1513 /* 1514 * The value computed below in tcp->tcp_time_wait_expire may 1515 * appear negative or wrap around. That is ok since our 1516 * interest is only in the difference between the current lbolt 1517 * value and tcp->tcp_time_wait_expire. But the value should not 1518 * be zero, since it means the tcp is not in the TIME_WAIT list. 1519 * The corresponding comparison in tcp_time_wait_collector() uses 1520 * modular arithmetic. 1521 */ 1522 tcp->tcp_time_wait_expire += 1523 drv_usectohz(tcps->tcps_time_wait_interval * 1000); 1524 if (tcp->tcp_time_wait_expire == 0) 1525 tcp->tcp_time_wait_expire = 1; 1526 1527 ASSERT(TCP_IS_DETACHED(tcp)); 1528 ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); 1529 ASSERT(tcp->tcp_time_wait_next == NULL); 1530 ASSERT(tcp->tcp_time_wait_prev == NULL); 1531 TCP_DBGSTAT(tcps, tcp_time_wait); 1532 1533 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1534 if (tcp_time_wait->tcp_time_wait_head == NULL) { 1535 ASSERT(tcp_time_wait->tcp_time_wait_tail == NULL); 1536 tcp_time_wait->tcp_time_wait_head = tcp; 1537 } else { 1538 ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); 1539 ASSERT(tcp_time_wait->tcp_time_wait_tail->tcp_state == 1540 TCPS_TIME_WAIT); 1541 tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = tcp; 1542 tcp->tcp_time_wait_prev = tcp_time_wait->tcp_time_wait_tail; 1543 } 1544 tcp_time_wait->tcp_time_wait_tail = tcp; 1545 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1546 } 1547 1548 /* ARGSUSED */ 1549 void 1550 tcp_timewait_output(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 1551 { 1552 conn_t *connp = (conn_t *)arg; 1553 tcp_t *tcp = connp->conn_tcp; 1554 tcp_stack_t *tcps = tcp->tcp_tcps; 1555 1556 ASSERT(tcp != NULL); 1557 if (tcp->tcp_state == TCPS_CLOSED) { 1558 return; 1559 } 1560 1561 ASSERT((connp->conn_family == AF_INET && 1562 connp->conn_ipversion == IPV4_VERSION) || 1563 (connp->conn_family == AF_INET6 && 1564 (connp->conn_ipversion == IPV4_VERSION || 1565 connp->conn_ipversion == IPV6_VERSION))); 1566 ASSERT(!tcp->tcp_listener); 1567 1568 TCP_STAT(tcps, tcp_time_wait_reap); 1569 ASSERT(TCP_IS_DETACHED(tcp)); 1570 1571 /* 1572 * Because they have no upstream client to rebind or tcp_close() 1573 * them later, we axe the connection here and now. 1574 */ 1575 tcp_close_detached(tcp); 1576 } 1577 1578 /* 1579 * Remove cached/latched IPsec references. 1580 */ 1581 void 1582 tcp_ipsec_cleanup(tcp_t *tcp) 1583 { 1584 conn_t *connp = tcp->tcp_connp; 1585 1586 ASSERT(connp->conn_flags & IPCL_TCPCONN); 1587 1588 if (connp->conn_latch != NULL) { 1589 IPLATCH_REFRELE(connp->conn_latch); 1590 connp->conn_latch = NULL; 1591 } 1592 if (connp->conn_latch_in_policy != NULL) { 1593 IPPOL_REFRELE(connp->conn_latch_in_policy); 1594 connp->conn_latch_in_policy = NULL; 1595 } 1596 if (connp->conn_latch_in_action != NULL) { 1597 IPACT_REFRELE(connp->conn_latch_in_action); 1598 connp->conn_latch_in_action = NULL; 1599 } 1600 if (connp->conn_policy != NULL) { 1601 IPPH_REFRELE(connp->conn_policy, connp->conn_netstack); 1602 connp->conn_policy = NULL; 1603 } 1604 } 1605 1606 /* 1607 * Cleaup before placing on free list. 1608 * Disassociate from the netstack/tcp_stack_t since the freelist 1609 * is per squeue and not per netstack. 1610 */ 1611 void 1612 tcp_cleanup(tcp_t *tcp) 1613 { 1614 mblk_t *mp; 1615 tcp_sack_info_t *tcp_sack_info; 1616 conn_t *connp = tcp->tcp_connp; 1617 tcp_stack_t *tcps = tcp->tcp_tcps; 1618 netstack_t *ns = tcps->tcps_netstack; 1619 mblk_t *tcp_rsrv_mp; 1620 1621 tcp_bind_hash_remove(tcp); 1622 1623 /* Cleanup that which needs the netstack first */ 1624 tcp_ipsec_cleanup(tcp); 1625 ixa_cleanup(connp->conn_ixa); 1626 1627 if (connp->conn_ht_iphc != NULL) { 1628 kmem_free(connp->conn_ht_iphc, connp->conn_ht_iphc_allocated); 1629 connp->conn_ht_iphc = NULL; 1630 connp->conn_ht_iphc_allocated = 0; 1631 connp->conn_ht_iphc_len = 0; 1632 connp->conn_ht_ulp = NULL; 1633 connp->conn_ht_ulp_len = 0; 1634 tcp->tcp_ipha = NULL; 1635 tcp->tcp_ip6h = NULL; 1636 tcp->tcp_tcpha = NULL; 1637 } 1638 1639 /* We clear any IP_OPTIONS and extension headers */ 1640 ip_pkt_free(&connp->conn_xmit_ipp); 1641 1642 tcp_free(tcp); 1643 1644 /* Release any SSL context */ 1645 if (tcp->tcp_kssl_ent != NULL) { 1646 kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); 1647 tcp->tcp_kssl_ent = NULL; 1648 } 1649 1650 if (tcp->tcp_kssl_ctx != NULL) { 1651 kssl_release_ctx(tcp->tcp_kssl_ctx); 1652 tcp->tcp_kssl_ctx = NULL; 1653 } 1654 tcp->tcp_kssl_pending = B_FALSE; 1655 1656 /* 1657 * Since we will bzero the entire structure, we need to 1658 * remove it and reinsert it in global hash list. We 1659 * know the walkers can't get to this conn because we 1660 * had set CONDEMNED flag earlier and checked reference 1661 * under conn_lock so walker won't pick it and when we 1662 * go the ipcl_globalhash_remove() below, no walker 1663 * can get to it. 1664 */ 1665 ipcl_globalhash_remove(connp); 1666 1667 /* Save some state */ 1668 mp = tcp->tcp_timercache; 1669 1670 tcp_sack_info = tcp->tcp_sack_info; 1671 tcp_rsrv_mp = tcp->tcp_rsrv_mp; 1672 1673 if (connp->conn_cred != NULL) { 1674 crfree(connp->conn_cred); 1675 connp->conn_cred = NULL; 1676 } 1677 ipcl_conn_cleanup(connp); 1678 connp->conn_flags = IPCL_TCPCONN; 1679 1680 /* 1681 * Now it is safe to decrement the reference counts. 1682 * This might be the last reference on the netstack 1683 * in which case it will cause the freeing of the IP Instance. 1684 */ 1685 connp->conn_netstack = NULL; 1686 connp->conn_ixa->ixa_ipst = NULL; 1687 netstack_rele(ns); 1688 ASSERT(tcps != NULL); 1689 tcp->tcp_tcps = NULL; 1690 1691 bzero(tcp, sizeof (tcp_t)); 1692 1693 /* restore the state */ 1694 tcp->tcp_timercache = mp; 1695 1696 tcp->tcp_sack_info = tcp_sack_info; 1697 tcp->tcp_rsrv_mp = tcp_rsrv_mp; 1698 1699 tcp->tcp_connp = connp; 1700 1701 ASSERT(connp->conn_tcp == tcp); 1702 ASSERT(connp->conn_flags & IPCL_TCPCONN); 1703 connp->conn_state_flags = CONN_INCIPIENT; 1704 ASSERT(connp->conn_proto == IPPROTO_TCP); 1705 ASSERT(connp->conn_ref == 1); 1706 } 1707 1708 /* 1709 * Blows away all tcps whose TIME_WAIT has expired. List traversal 1710 * is done forwards from the head. 1711 * This walks all stack instances since 1712 * tcp_time_wait remains global across all stacks. 1713 */ 1714 /* ARGSUSED */ 1715 void 1716 tcp_time_wait_collector(void *arg) 1717 { 1718 tcp_t *tcp; 1719 clock_t now; 1720 mblk_t *mp; 1721 conn_t *connp; 1722 kmutex_t *lock; 1723 boolean_t removed; 1724 1725 squeue_t *sqp = (squeue_t *)arg; 1726 tcp_squeue_priv_t *tcp_time_wait = 1727 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 1728 1729 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1730 tcp_time_wait->tcp_time_wait_tid = 0; 1731 1732 if (tcp_time_wait->tcp_free_list != NULL && 1733 tcp_time_wait->tcp_free_list->tcp_in_free_list == B_TRUE) { 1734 TCP_G_STAT(tcp_freelist_cleanup); 1735 while ((tcp = tcp_time_wait->tcp_free_list) != NULL) { 1736 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 1737 tcp->tcp_time_wait_next = NULL; 1738 tcp_time_wait->tcp_free_list_cnt--; 1739 ASSERT(tcp->tcp_tcps == NULL); 1740 CONN_DEC_REF(tcp->tcp_connp); 1741 } 1742 ASSERT(tcp_time_wait->tcp_free_list_cnt == 0); 1743 } 1744 1745 /* 1746 * In order to reap time waits reliably, we should use a 1747 * source of time that is not adjustable by the user -- hence 1748 * the call to ddi_get_lbolt(). 1749 */ 1750 now = ddi_get_lbolt(); 1751 while ((tcp = tcp_time_wait->tcp_time_wait_head) != NULL) { 1752 /* 1753 * Compare times using modular arithmetic, since 1754 * lbolt can wrapover. 1755 */ 1756 if ((now - tcp->tcp_time_wait_expire) < 0) { 1757 break; 1758 } 1759 1760 removed = tcp_time_wait_remove(tcp, tcp_time_wait); 1761 ASSERT(removed); 1762 1763 connp = tcp->tcp_connp; 1764 ASSERT(connp->conn_fanout != NULL); 1765 lock = &connp->conn_fanout->connf_lock; 1766 /* 1767 * This is essentially a TW reclaim fast path optimization for 1768 * performance where the timewait collector checks under the 1769 * fanout lock (so that no one else can get access to the 1770 * conn_t) that the refcnt is 2 i.e. one for TCP and one for 1771 * the classifier hash list. If ref count is indeed 2, we can 1772 * just remove the conn under the fanout lock and avoid 1773 * cleaning up the conn under the squeue, provided that 1774 * clustering callbacks are not enabled. If clustering is 1775 * enabled, we need to make the clustering callback before 1776 * setting the CONDEMNED flag and after dropping all locks and 1777 * so we forego this optimization and fall back to the slow 1778 * path. Also please see the comments in tcp_closei_local 1779 * regarding the refcnt logic. 1780 * 1781 * Since we are holding the tcp_time_wait_lock, its better 1782 * not to block on the fanout_lock because other connections 1783 * can't add themselves to time_wait list. So we do a 1784 * tryenter instead of mutex_enter. 1785 */ 1786 if (mutex_tryenter(lock)) { 1787 mutex_enter(&connp->conn_lock); 1788 if ((connp->conn_ref == 2) && 1789 (cl_inet_disconnect == NULL)) { 1790 ipcl_hash_remove_locked(connp, 1791 connp->conn_fanout); 1792 /* 1793 * Set the CONDEMNED flag now itself so that 1794 * the refcnt cannot increase due to any 1795 * walker. 1796 */ 1797 connp->conn_state_flags |= CONN_CONDEMNED; 1798 mutex_exit(lock); 1799 mutex_exit(&connp->conn_lock); 1800 if (tcp_time_wait->tcp_free_list_cnt < 1801 tcp_free_list_max_cnt) { 1802 /* Add to head of tcp_free_list */ 1803 mutex_exit( 1804 &tcp_time_wait->tcp_time_wait_lock); 1805 tcp_cleanup(tcp); 1806 ASSERT(connp->conn_latch == NULL); 1807 ASSERT(connp->conn_policy == NULL); 1808 ASSERT(tcp->tcp_tcps == NULL); 1809 ASSERT(connp->conn_netstack == NULL); 1810 1811 mutex_enter( 1812 &tcp_time_wait->tcp_time_wait_lock); 1813 tcp->tcp_time_wait_next = 1814 tcp_time_wait->tcp_free_list; 1815 tcp_time_wait->tcp_free_list = tcp; 1816 tcp_time_wait->tcp_free_list_cnt++; 1817 continue; 1818 } else { 1819 /* Do not add to tcp_free_list */ 1820 mutex_exit( 1821 &tcp_time_wait->tcp_time_wait_lock); 1822 tcp_bind_hash_remove(tcp); 1823 ixa_cleanup(tcp->tcp_connp->conn_ixa); 1824 tcp_ipsec_cleanup(tcp); 1825 CONN_DEC_REF(tcp->tcp_connp); 1826 } 1827 } else { 1828 CONN_INC_REF_LOCKED(connp); 1829 mutex_exit(lock); 1830 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1831 mutex_exit(&connp->conn_lock); 1832 /* 1833 * We can reuse the closemp here since conn has 1834 * detached (otherwise we wouldn't even be in 1835 * time_wait list). tcp_closemp_used can safely 1836 * be changed without taking a lock as no other 1837 * thread can concurrently access it at this 1838 * point in the connection lifecycle. 1839 */ 1840 1841 if (tcp->tcp_closemp.b_prev == NULL) 1842 tcp->tcp_closemp_used = B_TRUE; 1843 else 1844 cmn_err(CE_PANIC, 1845 "tcp_timewait_collector: " 1846 "concurrent use of tcp_closemp: " 1847 "connp %p tcp %p\n", (void *)connp, 1848 (void *)tcp); 1849 1850 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 1851 mp = &tcp->tcp_closemp; 1852 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 1853 tcp_timewait_output, connp, NULL, 1854 SQ_FILL, SQTAG_TCP_TIMEWAIT); 1855 } 1856 } else { 1857 mutex_enter(&connp->conn_lock); 1858 CONN_INC_REF_LOCKED(connp); 1859 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1860 mutex_exit(&connp->conn_lock); 1861 /* 1862 * We can reuse the closemp here since conn has 1863 * detached (otherwise we wouldn't even be in 1864 * time_wait list). tcp_closemp_used can safely 1865 * be changed without taking a lock as no other 1866 * thread can concurrently access it at this 1867 * point in the connection lifecycle. 1868 */ 1869 1870 if (tcp->tcp_closemp.b_prev == NULL) 1871 tcp->tcp_closemp_used = B_TRUE; 1872 else 1873 cmn_err(CE_PANIC, "tcp_timewait_collector: " 1874 "concurrent use of tcp_closemp: " 1875 "connp %p tcp %p\n", (void *)connp, 1876 (void *)tcp); 1877 1878 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 1879 mp = &tcp->tcp_closemp; 1880 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 1881 tcp_timewait_output, connp, NULL, 1882 SQ_FILL, SQTAG_TCP_TIMEWAIT); 1883 } 1884 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1885 } 1886 1887 if (tcp_time_wait->tcp_free_list != NULL) 1888 tcp_time_wait->tcp_free_list->tcp_in_free_list = B_TRUE; 1889 1890 tcp_time_wait->tcp_time_wait_tid = 1891 timeout_generic(CALLOUT_NORMAL, tcp_time_wait_collector, sqp, 1892 TICK_TO_NSEC(TCP_TIME_WAIT_DELAY), CALLOUT_TCP_RESOLUTION, 1893 CALLOUT_FLAG_ROUNDUP); 1894 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1895 } 1896 1897 /* 1898 * Reply to a clients T_CONN_RES TPI message. This function 1899 * is used only for TLI/XTI listener. Sockfs sends T_CONN_RES 1900 * on the acceptor STREAM and processed in tcp_accept_common(). 1901 * Read the block comment on top of tcp_input_listener(). 1902 */ 1903 static void 1904 tcp_tli_accept(tcp_t *listener, mblk_t *mp) 1905 { 1906 tcp_t *acceptor; 1907 tcp_t *eager; 1908 tcp_t *tcp; 1909 struct T_conn_res *tcr; 1910 t_uscalar_t acceptor_id; 1911 t_scalar_t seqnum; 1912 mblk_t *discon_mp = NULL; 1913 mblk_t *ok_mp; 1914 mblk_t *mp1; 1915 tcp_stack_t *tcps = listener->tcp_tcps; 1916 conn_t *econnp; 1917 1918 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { 1919 tcp_err_ack(listener, mp, TPROTO, 0); 1920 return; 1921 } 1922 tcr = (struct T_conn_res *)mp->b_rptr; 1923 1924 /* 1925 * Under ILP32 the stream head points tcr->ACCEPTOR_id at the 1926 * read side queue of the streams device underneath us i.e. the 1927 * read side queue of 'ip'. Since we can't deference QUEUE_ptr we 1928 * look it up in the queue_hash. Under LP64 it sends down the 1929 * minor_t of the accepting endpoint. 1930 * 1931 * Once the acceptor/eager are modified (in tcp_accept_swap) the 1932 * fanout hash lock is held. 1933 * This prevents any thread from entering the acceptor queue from 1934 * below (since it has not been hard bound yet i.e. any inbound 1935 * packets will arrive on the listener conn_t and 1936 * go through the classifier). 1937 * The CONN_INC_REF will prevent the acceptor from closing. 1938 * 1939 * XXX It is still possible for a tli application to send down data 1940 * on the accepting stream while another thread calls t_accept. 1941 * This should not be a problem for well-behaved applications since 1942 * the T_OK_ACK is sent after the queue swapping is completed. 1943 * 1944 * If the accepting fd is the same as the listening fd, avoid 1945 * queue hash lookup since that will return an eager listener in a 1946 * already established state. 1947 */ 1948 acceptor_id = tcr->ACCEPTOR_id; 1949 mutex_enter(&listener->tcp_eager_lock); 1950 if (listener->tcp_acceptor_id == acceptor_id) { 1951 eager = listener->tcp_eager_next_q; 1952 /* only count how many T_CONN_INDs so don't count q0 */ 1953 if ((listener->tcp_conn_req_cnt_q != 1) || 1954 (eager->tcp_conn_req_seqnum != tcr->SEQ_number)) { 1955 mutex_exit(&listener->tcp_eager_lock); 1956 tcp_err_ack(listener, mp, TBADF, 0); 1957 return; 1958 } 1959 if (listener->tcp_conn_req_cnt_q0 != 0) { 1960 /* Throw away all the eagers on q0. */ 1961 tcp_eager_cleanup(listener, 1); 1962 } 1963 if (listener->tcp_syn_defense) { 1964 listener->tcp_syn_defense = B_FALSE; 1965 if (listener->tcp_ip_addr_cache != NULL) { 1966 kmem_free(listener->tcp_ip_addr_cache, 1967 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 1968 listener->tcp_ip_addr_cache = NULL; 1969 } 1970 } 1971 /* 1972 * Transfer tcp_conn_req_max to the eager so that when 1973 * a disconnect occurs we can revert the endpoint to the 1974 * listen state. 1975 */ 1976 eager->tcp_conn_req_max = listener->tcp_conn_req_max; 1977 ASSERT(listener->tcp_conn_req_cnt_q0 == 0); 1978 /* 1979 * Get a reference on the acceptor just like the 1980 * tcp_acceptor_hash_lookup below. 1981 */ 1982 acceptor = listener; 1983 CONN_INC_REF(acceptor->tcp_connp); 1984 } else { 1985 acceptor = tcp_acceptor_hash_lookup(acceptor_id, tcps); 1986 if (acceptor == NULL) { 1987 if (listener->tcp_connp->conn_debug) { 1988 (void) strlog(TCP_MOD_ID, 0, 1, 1989 SL_ERROR|SL_TRACE, 1990 "tcp_accept: did not find acceptor 0x%x\n", 1991 acceptor_id); 1992 } 1993 mutex_exit(&listener->tcp_eager_lock); 1994 tcp_err_ack(listener, mp, TPROVMISMATCH, 0); 1995 return; 1996 } 1997 /* 1998 * Verify acceptor state. The acceptable states for an acceptor 1999 * include TCPS_IDLE and TCPS_BOUND. 2000 */ 2001 switch (acceptor->tcp_state) { 2002 case TCPS_IDLE: 2003 /* FALLTHRU */ 2004 case TCPS_BOUND: 2005 break; 2006 default: 2007 CONN_DEC_REF(acceptor->tcp_connp); 2008 mutex_exit(&listener->tcp_eager_lock); 2009 tcp_err_ack(listener, mp, TOUTSTATE, 0); 2010 return; 2011 } 2012 } 2013 2014 /* The listener must be in TCPS_LISTEN */ 2015 if (listener->tcp_state != TCPS_LISTEN) { 2016 CONN_DEC_REF(acceptor->tcp_connp); 2017 mutex_exit(&listener->tcp_eager_lock); 2018 tcp_err_ack(listener, mp, TOUTSTATE, 0); 2019 return; 2020 } 2021 2022 /* 2023 * Rendezvous with an eager connection request packet hanging off 2024 * 'tcp' that has the 'seqnum' tag. We tagged the detached open 2025 * tcp structure when the connection packet arrived in 2026 * tcp_input_listener(). 2027 */ 2028 seqnum = tcr->SEQ_number; 2029 eager = listener; 2030 do { 2031 eager = eager->tcp_eager_next_q; 2032 if (eager == NULL) { 2033 CONN_DEC_REF(acceptor->tcp_connp); 2034 mutex_exit(&listener->tcp_eager_lock); 2035 tcp_err_ack(listener, mp, TBADSEQ, 0); 2036 return; 2037 } 2038 } while (eager->tcp_conn_req_seqnum != seqnum); 2039 mutex_exit(&listener->tcp_eager_lock); 2040 2041 /* 2042 * At this point, both acceptor and listener have 2 ref 2043 * that they begin with. Acceptor has one additional ref 2044 * we placed in lookup while listener has 3 additional 2045 * ref for being behind the squeue (tcp_accept() is 2046 * done on listener's squeue); being in classifier hash; 2047 * and eager's ref on listener. 2048 */ 2049 ASSERT(listener->tcp_connp->conn_ref >= 5); 2050 ASSERT(acceptor->tcp_connp->conn_ref >= 3); 2051 2052 /* 2053 * The eager at this point is set in its own squeue and 2054 * could easily have been killed (tcp_accept_finish will 2055 * deal with that) because of a TH_RST so we can only 2056 * ASSERT for a single ref. 2057 */ 2058 ASSERT(eager->tcp_connp->conn_ref >= 1); 2059 2060 /* 2061 * Pre allocate the discon_ind mblk also. tcp_accept_finish will 2062 * use it if something failed. 2063 */ 2064 discon_mp = allocb(MAX(sizeof (struct T_discon_ind), 2065 sizeof (struct stroptions)), BPRI_HI); 2066 if (discon_mp == NULL) { 2067 CONN_DEC_REF(acceptor->tcp_connp); 2068 CONN_DEC_REF(eager->tcp_connp); 2069 tcp_err_ack(listener, mp, TSYSERR, ENOMEM); 2070 return; 2071 } 2072 2073 econnp = eager->tcp_connp; 2074 2075 /* Hold a copy of mp, in case reallocb fails */ 2076 if ((mp1 = copymsg(mp)) == NULL) { 2077 CONN_DEC_REF(acceptor->tcp_connp); 2078 CONN_DEC_REF(eager->tcp_connp); 2079 freemsg(discon_mp); 2080 tcp_err_ack(listener, mp, TSYSERR, ENOMEM); 2081 return; 2082 } 2083 2084 tcr = (struct T_conn_res *)mp1->b_rptr; 2085 2086 /* 2087 * This is an expanded version of mi_tpi_ok_ack_alloc() 2088 * which allocates a larger mblk and appends the new 2089 * local address to the ok_ack. The address is copied by 2090 * soaccept() for getsockname(). 2091 */ 2092 { 2093 int extra; 2094 2095 extra = (econnp->conn_family == AF_INET) ? 2096 sizeof (sin_t) : sizeof (sin6_t); 2097 2098 /* 2099 * Try to re-use mp, if possible. Otherwise, allocate 2100 * an mblk and return it as ok_mp. In any case, mp 2101 * is no longer usable upon return. 2102 */ 2103 if ((ok_mp = mi_tpi_ok_ack_alloc_extra(mp, extra)) == NULL) { 2104 CONN_DEC_REF(acceptor->tcp_connp); 2105 CONN_DEC_REF(eager->tcp_connp); 2106 freemsg(discon_mp); 2107 /* Original mp has been freed by now, so use mp1 */ 2108 tcp_err_ack(listener, mp1, TSYSERR, ENOMEM); 2109 return; 2110 } 2111 2112 mp = NULL; /* We should never use mp after this point */ 2113 2114 switch (extra) { 2115 case sizeof (sin_t): { 2116 sin_t *sin = (sin_t *)ok_mp->b_wptr; 2117 2118 ok_mp->b_wptr += extra; 2119 sin->sin_family = AF_INET; 2120 sin->sin_port = econnp->conn_lport; 2121 sin->sin_addr.s_addr = econnp->conn_laddr_v4; 2122 break; 2123 } 2124 case sizeof (sin6_t): { 2125 sin6_t *sin6 = (sin6_t *)ok_mp->b_wptr; 2126 2127 ok_mp->b_wptr += extra; 2128 sin6->sin6_family = AF_INET6; 2129 sin6->sin6_port = econnp->conn_lport; 2130 sin6->sin6_addr = econnp->conn_laddr_v6; 2131 sin6->sin6_flowinfo = econnp->conn_flowinfo; 2132 if (IN6_IS_ADDR_LINKSCOPE(&econnp->conn_laddr_v6) && 2133 (econnp->conn_ixa->ixa_flags & IXAF_SCOPEID_SET)) { 2134 sin6->sin6_scope_id = 2135 econnp->conn_ixa->ixa_scopeid; 2136 } else { 2137 sin6->sin6_scope_id = 0; 2138 } 2139 sin6->__sin6_src_id = 0; 2140 break; 2141 } 2142 default: 2143 break; 2144 } 2145 ASSERT(ok_mp->b_wptr <= ok_mp->b_datap->db_lim); 2146 } 2147 2148 /* 2149 * If there are no options we know that the T_CONN_RES will 2150 * succeed. However, we can't send the T_OK_ACK upstream until 2151 * the tcp_accept_swap is done since it would be dangerous to 2152 * let the application start using the new fd prior to the swap. 2153 */ 2154 tcp_accept_swap(listener, acceptor, eager); 2155 2156 /* 2157 * tcp_accept_swap unlinks eager from listener but does not drop 2158 * the eager's reference on the listener. 2159 */ 2160 ASSERT(eager->tcp_listener == NULL); 2161 ASSERT(listener->tcp_connp->conn_ref >= 5); 2162 2163 /* 2164 * The eager is now associated with its own queue. Insert in 2165 * the hash so that the connection can be reused for a future 2166 * T_CONN_RES. 2167 */ 2168 tcp_acceptor_hash_insert(acceptor_id, eager); 2169 2170 /* 2171 * We now do the processing of options with T_CONN_RES. 2172 * We delay till now since we wanted to have queue to pass to 2173 * option processing routines that points back to the right 2174 * instance structure which does not happen until after 2175 * tcp_accept_swap(). 2176 * 2177 * Note: 2178 * The sanity of the logic here assumes that whatever options 2179 * are appropriate to inherit from listner=>eager are done 2180 * before this point, and whatever were to be overridden (or not) 2181 * in transfer logic from eager=>acceptor in tcp_accept_swap(). 2182 * [ Warning: acceptor endpoint can have T_OPTMGMT_REQ done to it 2183 * before its ACCEPTOR_id comes down in T_CONN_RES ] 2184 * This may not be true at this point in time but can be fixed 2185 * independently. This option processing code starts with 2186 * the instantiated acceptor instance and the final queue at 2187 * this point. 2188 */ 2189 2190 if (tcr->OPT_length != 0) { 2191 /* Options to process */ 2192 int t_error = 0; 2193 int sys_error = 0; 2194 int do_disconnect = 0; 2195 2196 if (tcp_conprim_opt_process(eager, mp1, 2197 &do_disconnect, &t_error, &sys_error) < 0) { 2198 eager->tcp_accept_error = 1; 2199 if (do_disconnect) { 2200 /* 2201 * An option failed which does not allow 2202 * connection to be accepted. 2203 * 2204 * We allow T_CONN_RES to succeed and 2205 * put a T_DISCON_IND on the eager queue. 2206 */ 2207 ASSERT(t_error == 0 && sys_error == 0); 2208 eager->tcp_send_discon_ind = 1; 2209 } else { 2210 ASSERT(t_error != 0); 2211 freemsg(ok_mp); 2212 /* 2213 * Original mp was either freed or set 2214 * to ok_mp above, so use mp1 instead. 2215 */ 2216 tcp_err_ack(listener, mp1, t_error, sys_error); 2217 goto finish; 2218 } 2219 } 2220 /* 2221 * Most likely success in setting options (except if 2222 * eager->tcp_send_discon_ind set). 2223 * mp1 option buffer represented by OPT_length/offset 2224 * potentially modified and contains results of setting 2225 * options at this point 2226 */ 2227 } 2228 2229 /* We no longer need mp1, since all options processing has passed */ 2230 freemsg(mp1); 2231 2232 putnext(listener->tcp_connp->conn_rq, ok_mp); 2233 2234 mutex_enter(&listener->tcp_eager_lock); 2235 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 2236 tcp_t *tail; 2237 mblk_t *conn_ind; 2238 2239 /* 2240 * This path should not be executed if listener and 2241 * acceptor streams are the same. 2242 */ 2243 ASSERT(listener != acceptor); 2244 2245 tcp = listener->tcp_eager_prev_q0; 2246 /* 2247 * listener->tcp_eager_prev_q0 points to the TAIL of the 2248 * deferred T_conn_ind queue. We need to get to the head of 2249 * the queue in order to send up T_conn_ind the same order as 2250 * how the 3WHS is completed. 2251 */ 2252 while (tcp != listener) { 2253 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0) 2254 break; 2255 else 2256 tcp = tcp->tcp_eager_prev_q0; 2257 } 2258 ASSERT(tcp != listener); 2259 conn_ind = tcp->tcp_conn.tcp_eager_conn_ind; 2260 ASSERT(conn_ind != NULL); 2261 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 2262 2263 /* Move from q0 to q */ 2264 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 2265 listener->tcp_conn_req_cnt_q0--; 2266 listener->tcp_conn_req_cnt_q++; 2267 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 2268 tcp->tcp_eager_prev_q0; 2269 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 2270 tcp->tcp_eager_next_q0; 2271 tcp->tcp_eager_prev_q0 = NULL; 2272 tcp->tcp_eager_next_q0 = NULL; 2273 tcp->tcp_conn_def_q0 = B_FALSE; 2274 2275 /* Make sure the tcp isn't in the list of droppables */ 2276 ASSERT(tcp->tcp_eager_next_drop_q0 == NULL && 2277 tcp->tcp_eager_prev_drop_q0 == NULL); 2278 2279 /* 2280 * Insert at end of the queue because sockfs sends 2281 * down T_CONN_RES in chronological order. Leaving 2282 * the older conn indications at front of the queue 2283 * helps reducing search time. 2284 */ 2285 tail = listener->tcp_eager_last_q; 2286 if (tail != NULL) 2287 tail->tcp_eager_next_q = tcp; 2288 else 2289 listener->tcp_eager_next_q = tcp; 2290 listener->tcp_eager_last_q = tcp; 2291 tcp->tcp_eager_next_q = NULL; 2292 mutex_exit(&listener->tcp_eager_lock); 2293 putnext(tcp->tcp_connp->conn_rq, conn_ind); 2294 } else { 2295 mutex_exit(&listener->tcp_eager_lock); 2296 } 2297 2298 /* 2299 * Done with the acceptor - free it 2300 * 2301 * Note: from this point on, no access to listener should be made 2302 * as listener can be equal to acceptor. 2303 */ 2304 finish: 2305 ASSERT(acceptor->tcp_detached); 2306 acceptor->tcp_connp->conn_rq = NULL; 2307 ASSERT(!IPCL_IS_NONSTR(acceptor->tcp_connp)); 2308 acceptor->tcp_connp->conn_wq = NULL; 2309 (void) tcp_clean_death(acceptor, 0, 2); 2310 CONN_DEC_REF(acceptor->tcp_connp); 2311 2312 /* 2313 * We pass discon_mp to tcp_accept_finish to get on the right squeue. 2314 * 2315 * It will update the setting for sockfs/stream head and also take 2316 * care of any data that arrived before accept() wad called. 2317 * In case we already received a FIN then tcp_accept_finish will send up 2318 * the ordrel. It will also send up a window update if the window 2319 * has opened up. 2320 */ 2321 2322 /* 2323 * XXX: we currently have a problem if XTI application closes the 2324 * acceptor stream in between. This problem exists in on10-gate also 2325 * and is well know but nothing can be done short of major rewrite 2326 * to fix it. Now it is possible to take care of it by assigning TLI/XTI 2327 * eager same squeue as listener (we can distinguish non socket 2328 * listeners at the time of handling a SYN in tcp_input_listener) 2329 * and do most of the work that tcp_accept_finish does here itself 2330 * and then get behind the acceptor squeue to access the acceptor 2331 * queue. 2332 */ 2333 /* 2334 * We already have a ref on tcp so no need to do one before squeue_enter 2335 */ 2336 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, discon_mp, 2337 tcp_accept_finish, eager->tcp_connp, NULL, SQ_FILL, 2338 SQTAG_TCP_ACCEPT_FINISH); 2339 } 2340 2341 /* 2342 * Swap information between the eager and acceptor for a TLI/XTI client. 2343 * The sockfs accept is done on the acceptor stream and control goes 2344 * through tcp_tli_accept() and tcp_accept()/tcp_accept_swap() is not 2345 * called. In either case, both the eager and listener are in their own 2346 * perimeter (squeue) and the code has to deal with potential race. 2347 * 2348 * See the block comment on top of tcp_accept() and tcp_tli_accept(). 2349 */ 2350 static void 2351 tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, tcp_t *eager) 2352 { 2353 conn_t *econnp, *aconnp; 2354 2355 ASSERT(eager->tcp_connp->conn_rq == listener->tcp_connp->conn_rq); 2356 ASSERT(eager->tcp_detached && !acceptor->tcp_detached); 2357 ASSERT(!TCP_IS_SOCKET(acceptor)); 2358 ASSERT(!TCP_IS_SOCKET(eager)); 2359 ASSERT(!TCP_IS_SOCKET(listener)); 2360 2361 /* 2362 * Trusted Extensions may need to use a security label that is 2363 * different from the acceptor's label on MLP and MAC-Exempt 2364 * sockets. If this is the case, the required security label 2365 * already exists in econnp->conn_ixa->ixa_tsl. Since we make the 2366 * acceptor stream refer to econnp we atomatically get that label. 2367 */ 2368 2369 acceptor->tcp_detached = B_TRUE; 2370 /* 2371 * To permit stream re-use by TLI/XTI, the eager needs a copy of 2372 * the acceptor id. 2373 */ 2374 eager->tcp_acceptor_id = acceptor->tcp_acceptor_id; 2375 2376 /* remove eager from listen list... */ 2377 mutex_enter(&listener->tcp_eager_lock); 2378 tcp_eager_unlink(eager); 2379 ASSERT(eager->tcp_eager_next_q == NULL && 2380 eager->tcp_eager_last_q == NULL); 2381 ASSERT(eager->tcp_eager_next_q0 == NULL && 2382 eager->tcp_eager_prev_q0 == NULL); 2383 mutex_exit(&listener->tcp_eager_lock); 2384 2385 econnp = eager->tcp_connp; 2386 aconnp = acceptor->tcp_connp; 2387 econnp->conn_rq = aconnp->conn_rq; 2388 econnp->conn_wq = aconnp->conn_wq; 2389 econnp->conn_rq->q_ptr = econnp; 2390 econnp->conn_wq->q_ptr = econnp; 2391 2392 /* 2393 * In the TLI/XTI loopback case, we are inside the listener's squeue, 2394 * which might be a different squeue from our peer TCP instance. 2395 * For TCP Fusion, the peer expects that whenever tcp_detached is 2396 * clear, our TCP queues point to the acceptor's queues. Thus, use 2397 * membar_producer() to ensure that the assignments of conn_rq/conn_wq 2398 * above reach global visibility prior to the clearing of tcp_detached. 2399 */ 2400 membar_producer(); 2401 eager->tcp_detached = B_FALSE; 2402 2403 ASSERT(eager->tcp_ack_tid == 0); 2404 2405 econnp->conn_dev = aconnp->conn_dev; 2406 econnp->conn_minor_arena = aconnp->conn_minor_arena; 2407 2408 ASSERT(econnp->conn_minor_arena != NULL); 2409 if (econnp->conn_cred != NULL) 2410 crfree(econnp->conn_cred); 2411 econnp->conn_cred = aconnp->conn_cred; 2412 aconnp->conn_cred = NULL; 2413 econnp->conn_cpid = aconnp->conn_cpid; 2414 ASSERT(econnp->conn_netstack == aconnp->conn_netstack); 2415 ASSERT(eager->tcp_tcps == acceptor->tcp_tcps); 2416 2417 econnp->conn_zoneid = aconnp->conn_zoneid; 2418 econnp->conn_allzones = aconnp->conn_allzones; 2419 econnp->conn_ixa->ixa_zoneid = aconnp->conn_ixa->ixa_zoneid; 2420 2421 econnp->conn_mac_mode = aconnp->conn_mac_mode; 2422 econnp->conn_zone_is_global = aconnp->conn_zone_is_global; 2423 aconnp->conn_mac_mode = CONN_MAC_DEFAULT; 2424 2425 /* Do the IPC initialization */ 2426 CONN_INC_REF(econnp); 2427 2428 /* Done with old IPC. Drop its ref on its connp */ 2429 CONN_DEC_REF(aconnp); 2430 } 2431 2432 2433 /* 2434 * Adapt to the information, such as rtt and rtt_sd, provided from the 2435 * DCE and IRE maintained by IP. 2436 * 2437 * Checks for multicast and broadcast destination address. 2438 * Returns zero if ok; an errno on failure. 2439 * 2440 * Note that the MSS calculation here is based on the info given in 2441 * the DCE and IRE. We do not do any calculation based on TCP options. They 2442 * will be handled in tcp_input_data() when TCP knows which options to use. 2443 * 2444 * Note on how TCP gets its parameters for a connection. 2445 * 2446 * When a tcp_t structure is allocated, it gets all the default parameters. 2447 * In tcp_set_destination(), it gets those metric parameters, like rtt, rtt_sd, 2448 * spipe, rpipe, ... from the route metrics. Route metric overrides the 2449 * default. 2450 * 2451 * An incoming SYN with a multicast or broadcast destination address is dropped 2452 * in ip_fanout_v4/v6. 2453 * 2454 * An incoming SYN with a multicast or broadcast source address is always 2455 * dropped in tcp_set_destination, since IPDF_ALLOW_MCBC is not set in 2456 * conn_connect. 2457 * The same logic in tcp_set_destination also serves to 2458 * reject an attempt to connect to a broadcast or multicast (destination) 2459 * address. 2460 */ 2461 static int 2462 tcp_set_destination(tcp_t *tcp) 2463 { 2464 uint32_t mss_max; 2465 uint32_t mss; 2466 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 2467 conn_t *connp = tcp->tcp_connp; 2468 tcp_stack_t *tcps = tcp->tcp_tcps; 2469 iulp_t uinfo; 2470 int error; 2471 uint32_t flags; 2472 2473 flags = IPDF_LSO | IPDF_ZCOPY; 2474 /* 2475 * Make sure we have a dce for the destination to avoid dce_ident 2476 * contention for connected sockets. 2477 */ 2478 flags |= IPDF_UNIQUE_DCE; 2479 2480 if (!tcps->tcps_ignore_path_mtu) 2481 connp->conn_ixa->ixa_flags |= IXAF_PMTU_DISCOVERY; 2482 2483 /* Use conn_lock to satify ASSERT; tcp is already serialized */ 2484 mutex_enter(&connp->conn_lock); 2485 error = conn_connect(connp, &uinfo, flags); 2486 mutex_exit(&connp->conn_lock); 2487 if (error != 0) 2488 return (error); 2489 2490 error = tcp_build_hdrs(tcp); 2491 if (error != 0) 2492 return (error); 2493 2494 tcp->tcp_localnet = uinfo.iulp_localnet; 2495 2496 if (uinfo.iulp_rtt != 0) { 2497 clock_t rto; 2498 2499 tcp->tcp_rtt_sa = uinfo.iulp_rtt; 2500 tcp->tcp_rtt_sd = uinfo.iulp_rtt_sd; 2501 rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 2502 tcps->tcps_rexmit_interval_extra + 2503 (tcp->tcp_rtt_sa >> 5); 2504 2505 if (rto > tcps->tcps_rexmit_interval_max) { 2506 tcp->tcp_rto = tcps->tcps_rexmit_interval_max; 2507 } else if (rto < tcps->tcps_rexmit_interval_min) { 2508 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 2509 } else { 2510 tcp->tcp_rto = rto; 2511 } 2512 } 2513 if (uinfo.iulp_ssthresh != 0) 2514 tcp->tcp_cwnd_ssthresh = uinfo.iulp_ssthresh; 2515 else 2516 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 2517 if (uinfo.iulp_spipe > 0) { 2518 connp->conn_sndbuf = MIN(uinfo.iulp_spipe, 2519 tcps->tcps_max_buf); 2520 if (tcps->tcps_snd_lowat_fraction != 0) { 2521 connp->conn_sndlowat = connp->conn_sndbuf / 2522 tcps->tcps_snd_lowat_fraction; 2523 } 2524 (void) tcp_maxpsz_set(tcp, B_TRUE); 2525 } 2526 /* 2527 * Note that up till now, acceptor always inherits receive 2528 * window from the listener. But if there is a metrics 2529 * associated with a host, we should use that instead of 2530 * inheriting it from listener. Thus we need to pass this 2531 * info back to the caller. 2532 */ 2533 if (uinfo.iulp_rpipe > 0) { 2534 tcp->tcp_rwnd = MIN(uinfo.iulp_rpipe, 2535 tcps->tcps_max_buf); 2536 } 2537 2538 if (uinfo.iulp_rtomax > 0) { 2539 tcp->tcp_second_timer_threshold = 2540 uinfo.iulp_rtomax; 2541 } 2542 2543 /* 2544 * Use the metric option settings, iulp_tstamp_ok and 2545 * iulp_wscale_ok, only for active open. What this means 2546 * is that if the other side uses timestamp or window 2547 * scale option, TCP will also use those options. That 2548 * is for passive open. If the application sets a 2549 * large window, window scale is enabled regardless of 2550 * the value in iulp_wscale_ok. This is the behavior 2551 * since 2.6. So we keep it. 2552 * The only case left in passive open processing is the 2553 * check for SACK. 2554 * For ECN, it should probably be like SACK. But the 2555 * current value is binary, so we treat it like the other 2556 * cases. The metric only controls active open.For passive 2557 * open, the ndd param, tcp_ecn_permitted, controls the 2558 * behavior. 2559 */ 2560 if (!tcp_detached) { 2561 /* 2562 * The if check means that the following can only 2563 * be turned on by the metrics only IRE, but not off. 2564 */ 2565 if (uinfo.iulp_tstamp_ok) 2566 tcp->tcp_snd_ts_ok = B_TRUE; 2567 if (uinfo.iulp_wscale_ok) 2568 tcp->tcp_snd_ws_ok = B_TRUE; 2569 if (uinfo.iulp_sack == 2) 2570 tcp->tcp_snd_sack_ok = B_TRUE; 2571 if (uinfo.iulp_ecn_ok) 2572 tcp->tcp_ecn_ok = B_TRUE; 2573 } else { 2574 /* 2575 * Passive open. 2576 * 2577 * As above, the if check means that SACK can only be 2578 * turned on by the metric only IRE. 2579 */ 2580 if (uinfo.iulp_sack > 0) { 2581 tcp->tcp_snd_sack_ok = B_TRUE; 2582 } 2583 } 2584 2585 /* 2586 * XXX Note that currently, iulp_mtu can be as small as 68 2587 * because of PMTUd. So tcp_mss may go to negative if combined 2588 * length of all those options exceeds 28 bytes. But because 2589 * of the tcp_mss_min check below, we may not have a problem if 2590 * tcp_mss_min is of a reasonable value. The default is 1 so 2591 * the negative problem still exists. And the check defeats PMTUd. 2592 * In fact, if PMTUd finds that the MSS should be smaller than 2593 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min 2594 * value. 2595 * 2596 * We do not deal with that now. All those problems related to 2597 * PMTUd will be fixed later. 2598 */ 2599 ASSERT(uinfo.iulp_mtu != 0); 2600 mss = tcp->tcp_initial_pmtu = uinfo.iulp_mtu; 2601 2602 /* Sanity check for MSS value. */ 2603 if (connp->conn_ipversion == IPV4_VERSION) 2604 mss_max = tcps->tcps_mss_max_ipv4; 2605 else 2606 mss_max = tcps->tcps_mss_max_ipv6; 2607 2608 if (tcp->tcp_ipsec_overhead == 0) 2609 tcp->tcp_ipsec_overhead = conn_ipsec_length(connp); 2610 2611 mss -= tcp->tcp_ipsec_overhead; 2612 2613 if (mss < tcps->tcps_mss_min) 2614 mss = tcps->tcps_mss_min; 2615 if (mss > mss_max) 2616 mss = mss_max; 2617 2618 /* Note that this is the maximum MSS, excluding all options. */ 2619 tcp->tcp_mss = mss; 2620 2621 /* 2622 * Update the tcp connection with LSO capability. 2623 */ 2624 tcp_update_lso(tcp, connp->conn_ixa); 2625 2626 /* 2627 * Initialize the ISS here now that we have the full connection ID. 2628 * The RFC 1948 method of initial sequence number generation requires 2629 * knowledge of the full connection ID before setting the ISS. 2630 */ 2631 tcp_iss_init(tcp); 2632 2633 tcp->tcp_loopback = (uinfo.iulp_loopback | uinfo.iulp_local); 2634 2635 /* 2636 * Make sure that conn is not marked incipient 2637 * for incoming connections. A blind 2638 * removal of incipient flag is cheaper than 2639 * check and removal. 2640 */ 2641 mutex_enter(&connp->conn_lock); 2642 connp->conn_state_flags &= ~CONN_INCIPIENT; 2643 mutex_exit(&connp->conn_lock); 2644 return (0); 2645 } 2646 2647 static void 2648 tcp_tpi_bind(tcp_t *tcp, mblk_t *mp) 2649 { 2650 int error; 2651 conn_t *connp = tcp->tcp_connp; 2652 struct sockaddr *sa; 2653 mblk_t *mp1; 2654 struct T_bind_req *tbr; 2655 int backlog; 2656 socklen_t len; 2657 sin_t *sin; 2658 sin6_t *sin6; 2659 cred_t *cr; 2660 2661 /* 2662 * All Solaris components should pass a db_credp 2663 * for this TPI message, hence we ASSERT. 2664 * But in case there is some other M_PROTO that looks 2665 * like a TPI message sent by some other kernel 2666 * component, we check and return an error. 2667 */ 2668 cr = msg_getcred(mp, NULL); 2669 ASSERT(cr != NULL); 2670 if (cr == NULL) { 2671 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 2672 return; 2673 } 2674 2675 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 2676 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) { 2677 if (connp->conn_debug) { 2678 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 2679 "tcp_tpi_bind: bad req, len %u", 2680 (uint_t)(mp->b_wptr - mp->b_rptr)); 2681 } 2682 tcp_err_ack(tcp, mp, TPROTO, 0); 2683 return; 2684 } 2685 /* Make sure the largest address fits */ 2686 mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t), 1); 2687 if (mp1 == NULL) { 2688 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 2689 return; 2690 } 2691 mp = mp1; 2692 tbr = (struct T_bind_req *)mp->b_rptr; 2693 2694 backlog = tbr->CONIND_number; 2695 len = tbr->ADDR_length; 2696 2697 switch (len) { 2698 case 0: /* request for a generic port */ 2699 tbr->ADDR_offset = sizeof (struct T_bind_req); 2700 if (connp->conn_family == AF_INET) { 2701 tbr->ADDR_length = sizeof (sin_t); 2702 sin = (sin_t *)&tbr[1]; 2703 *sin = sin_null; 2704 sin->sin_family = AF_INET; 2705 sa = (struct sockaddr *)sin; 2706 len = sizeof (sin_t); 2707 mp->b_wptr = (uchar_t *)&sin[1]; 2708 } else { 2709 ASSERT(connp->conn_family == AF_INET6); 2710 tbr->ADDR_length = sizeof (sin6_t); 2711 sin6 = (sin6_t *)&tbr[1]; 2712 *sin6 = sin6_null; 2713 sin6->sin6_family = AF_INET6; 2714 sa = (struct sockaddr *)sin6; 2715 len = sizeof (sin6_t); 2716 mp->b_wptr = (uchar_t *)&sin6[1]; 2717 } 2718 break; 2719 2720 case sizeof (sin_t): /* Complete IPv4 address */ 2721 sa = (struct sockaddr *)mi_offset_param(mp, tbr->ADDR_offset, 2722 sizeof (sin_t)); 2723 break; 2724 2725 case sizeof (sin6_t): /* Complete IPv6 address */ 2726 sa = (struct sockaddr *)mi_offset_param(mp, 2727 tbr->ADDR_offset, sizeof (sin6_t)); 2728 break; 2729 2730 default: 2731 if (connp->conn_debug) { 2732 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 2733 "tcp_tpi_bind: bad address length, %d", 2734 tbr->ADDR_length); 2735 } 2736 tcp_err_ack(tcp, mp, TBADADDR, 0); 2737 return; 2738 } 2739 2740 if (backlog > 0) { 2741 error = tcp_do_listen(connp, sa, len, backlog, DB_CRED(mp), 2742 tbr->PRIM_type != O_T_BIND_REQ); 2743 } else { 2744 error = tcp_do_bind(connp, sa, len, DB_CRED(mp), 2745 tbr->PRIM_type != O_T_BIND_REQ); 2746 } 2747 done: 2748 if (error > 0) { 2749 tcp_err_ack(tcp, mp, TSYSERR, error); 2750 } else if (error < 0) { 2751 tcp_err_ack(tcp, mp, -error, 0); 2752 } else { 2753 /* 2754 * Update port information as sockfs/tpi needs it for checking 2755 */ 2756 if (connp->conn_family == AF_INET) { 2757 sin = (sin_t *)sa; 2758 sin->sin_port = connp->conn_lport; 2759 } else { 2760 sin6 = (sin6_t *)sa; 2761 sin6->sin6_port = connp->conn_lport; 2762 } 2763 mp->b_datap->db_type = M_PCPROTO; 2764 tbr->PRIM_type = T_BIND_ACK; 2765 putnext(connp->conn_rq, mp); 2766 } 2767 } 2768 2769 /* 2770 * If the "bind_to_req_port_only" parameter is set, if the requested port 2771 * number is available, return it, If not return 0 2772 * 2773 * If "bind_to_req_port_only" parameter is not set and 2774 * If the requested port number is available, return it. If not, return 2775 * the first anonymous port we happen across. If no anonymous ports are 2776 * available, return 0. addr is the requested local address, if any. 2777 * 2778 * In either case, when succeeding update the tcp_t to record the port number 2779 * and insert it in the bind hash table. 2780 * 2781 * Note that TCP over IPv4 and IPv6 sockets can use the same port number 2782 * without setting SO_REUSEADDR. This is needed so that they 2783 * can be viewed as two independent transport protocols. 2784 */ 2785 static in_port_t 2786 tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, 2787 int reuseaddr, boolean_t quick_connect, 2788 boolean_t bind_to_req_port_only, boolean_t user_specified) 2789 { 2790 /* number of times we have run around the loop */ 2791 int count = 0; 2792 /* maximum number of times to run around the loop */ 2793 int loopmax; 2794 conn_t *connp = tcp->tcp_connp; 2795 tcp_stack_t *tcps = tcp->tcp_tcps; 2796 2797 /* 2798 * Lookup for free addresses is done in a loop and "loopmax" 2799 * influences how long we spin in the loop 2800 */ 2801 if (bind_to_req_port_only) { 2802 /* 2803 * If the requested port is busy, don't bother to look 2804 * for a new one. Setting loop maximum count to 1 has 2805 * that effect. 2806 */ 2807 loopmax = 1; 2808 } else { 2809 /* 2810 * If the requested port is busy, look for a free one 2811 * in the anonymous port range. 2812 * Set loopmax appropriately so that one does not look 2813 * forever in the case all of the anonymous ports are in use. 2814 */ 2815 if (connp->conn_anon_priv_bind) { 2816 /* 2817 * loopmax = 2818 * (IPPORT_RESERVED-1) - tcp_min_anonpriv_port + 1 2819 */ 2820 loopmax = IPPORT_RESERVED - 2821 tcps->tcps_min_anonpriv_port; 2822 } else { 2823 loopmax = (tcps->tcps_largest_anon_port - 2824 tcps->tcps_smallest_anon_port + 1); 2825 } 2826 } 2827 do { 2828 uint16_t lport; 2829 tf_t *tbf; 2830 tcp_t *ltcp; 2831 conn_t *lconnp; 2832 2833 lport = htons(port); 2834 2835 /* 2836 * Ensure that the tcp_t is not currently in the bind hash. 2837 * Hold the lock on the hash bucket to ensure that 2838 * the duplicate check plus the insertion is an atomic 2839 * operation. 2840 * 2841 * This function does an inline lookup on the bind hash list 2842 * Make sure that we access only members of tcp_t 2843 * and that we don't look at tcp_tcp, since we are not 2844 * doing a CONN_INC_REF. 2845 */ 2846 tcp_bind_hash_remove(tcp); 2847 tbf = &tcps->tcps_bind_fanout[TCP_BIND_HASH(lport)]; 2848 mutex_enter(&tbf->tf_lock); 2849 for (ltcp = tbf->tf_tcp; ltcp != NULL; 2850 ltcp = ltcp->tcp_bind_hash) { 2851 if (lport == ltcp->tcp_connp->conn_lport) 2852 break; 2853 } 2854 2855 for (; ltcp != NULL; ltcp = ltcp->tcp_bind_hash_port) { 2856 boolean_t not_socket; 2857 boolean_t exclbind; 2858 2859 lconnp = ltcp->tcp_connp; 2860 2861 /* 2862 * On a labeled system, we must treat bindings to ports 2863 * on shared IP addresses by sockets with MAC exemption 2864 * privilege as being in all zones, as there's 2865 * otherwise no way to identify the right receiver. 2866 */ 2867 if (!IPCL_BIND_ZONE_MATCH(lconnp, connp)) 2868 continue; 2869 2870 /* 2871 * If TCP_EXCLBIND is set for either the bound or 2872 * binding endpoint, the semantics of bind 2873 * is changed according to the following. 2874 * 2875 * spec = specified address (v4 or v6) 2876 * unspec = unspecified address (v4 or v6) 2877 * A = specified addresses are different for endpoints 2878 * 2879 * bound bind to allowed 2880 * ------------------------------------- 2881 * unspec unspec no 2882 * unspec spec no 2883 * spec unspec no 2884 * spec spec yes if A 2885 * 2886 * For labeled systems, SO_MAC_EXEMPT behaves the same 2887 * as TCP_EXCLBIND, except that zoneid is ignored. 2888 * 2889 * Note: 2890 * 2891 * 1. Because of TLI semantics, an endpoint can go 2892 * back from, say TCP_ESTABLISHED to TCPS_LISTEN or 2893 * TCPS_BOUND, depending on whether it is originally 2894 * a listener or not. That is why we need to check 2895 * for states greater than or equal to TCPS_BOUND 2896 * here. 2897 * 2898 * 2. Ideally, we should only check for state equals 2899 * to TCPS_LISTEN. And the following check should be 2900 * added. 2901 * 2902 * if (ltcp->tcp_state == TCPS_LISTEN || 2903 * !reuseaddr || !lconnp->conn_reuseaddr) { 2904 * ... 2905 * } 2906 * 2907 * The semantics will be changed to this. If the 2908 * endpoint on the list is in state not equal to 2909 * TCPS_LISTEN and both endpoints have SO_REUSEADDR 2910 * set, let the bind succeed. 2911 * 2912 * Because of (1), we cannot do that for TLI 2913 * endpoints. But we can do that for socket endpoints. 2914 * If in future, we can change this going back 2915 * semantics, we can use the above check for TLI also. 2916 */ 2917 not_socket = !(TCP_IS_SOCKET(ltcp) && 2918 TCP_IS_SOCKET(tcp)); 2919 exclbind = lconnp->conn_exclbind || 2920 connp->conn_exclbind; 2921 2922 if ((lconnp->conn_mac_mode != CONN_MAC_DEFAULT) || 2923 (connp->conn_mac_mode != CONN_MAC_DEFAULT) || 2924 (exclbind && (not_socket || 2925 ltcp->tcp_state <= TCPS_ESTABLISHED))) { 2926 if (V6_OR_V4_INADDR_ANY( 2927 lconnp->conn_bound_addr_v6) || 2928 V6_OR_V4_INADDR_ANY(*laddr) || 2929 IN6_ARE_ADDR_EQUAL(laddr, 2930 &lconnp->conn_bound_addr_v6)) { 2931 break; 2932 } 2933 continue; 2934 } 2935 2936 /* 2937 * Check ipversion to allow IPv4 and IPv6 sockets to 2938 * have disjoint port number spaces, if *_EXCLBIND 2939 * is not set and only if the application binds to a 2940 * specific port. We use the same autoassigned port 2941 * number space for IPv4 and IPv6 sockets. 2942 */ 2943 if (connp->conn_ipversion != lconnp->conn_ipversion && 2944 bind_to_req_port_only) 2945 continue; 2946 2947 /* 2948 * Ideally, we should make sure that the source 2949 * address, remote address, and remote port in the 2950 * four tuple for this tcp-connection is unique. 2951 * However, trying to find out the local source 2952 * address would require too much code duplication 2953 * with IP, since IP needs needs to have that code 2954 * to support userland TCP implementations. 2955 */ 2956 if (quick_connect && 2957 (ltcp->tcp_state > TCPS_LISTEN) && 2958 ((connp->conn_fport != lconnp->conn_fport) || 2959 !IN6_ARE_ADDR_EQUAL(&connp->conn_faddr_v6, 2960 &lconnp->conn_faddr_v6))) 2961 continue; 2962 2963 if (!reuseaddr) { 2964 /* 2965 * No socket option SO_REUSEADDR. 2966 * If existing port is bound to 2967 * a non-wildcard IP address 2968 * and the requesting stream is 2969 * bound to a distinct 2970 * different IP addresses 2971 * (non-wildcard, also), keep 2972 * going. 2973 */ 2974 if (!V6_OR_V4_INADDR_ANY(*laddr) && 2975 !V6_OR_V4_INADDR_ANY( 2976 lconnp->conn_bound_addr_v6) && 2977 !IN6_ARE_ADDR_EQUAL(laddr, 2978 &lconnp->conn_bound_addr_v6)) 2979 continue; 2980 if (ltcp->tcp_state >= TCPS_BOUND) { 2981 /* 2982 * This port is being used and 2983 * its state is >= TCPS_BOUND, 2984 * so we can't bind to it. 2985 */ 2986 break; 2987 } 2988 } else { 2989 /* 2990 * socket option SO_REUSEADDR is set on the 2991 * binding tcp_t. 2992 * 2993 * If two streams are bound to 2994 * same IP address or both addr 2995 * and bound source are wildcards 2996 * (INADDR_ANY), we want to stop 2997 * searching. 2998 * We have found a match of IP source 2999 * address and source port, which is 3000 * refused regardless of the 3001 * SO_REUSEADDR setting, so we break. 3002 */ 3003 if (IN6_ARE_ADDR_EQUAL(laddr, 3004 &lconnp->conn_bound_addr_v6) && 3005 (ltcp->tcp_state == TCPS_LISTEN || 3006 ltcp->tcp_state == TCPS_BOUND)) 3007 break; 3008 } 3009 } 3010 if (ltcp != NULL) { 3011 /* The port number is busy */ 3012 mutex_exit(&tbf->tf_lock); 3013 } else { 3014 /* 3015 * This port is ours. Insert in fanout and mark as 3016 * bound to prevent others from getting the port 3017 * number. 3018 */ 3019 tcp->tcp_state = TCPS_BOUND; 3020 connp->conn_lport = htons(port); 3021 3022 ASSERT(&tcps->tcps_bind_fanout[TCP_BIND_HASH( 3023 connp->conn_lport)] == tbf); 3024 tcp_bind_hash_insert(tbf, tcp, 1); 3025 3026 mutex_exit(&tbf->tf_lock); 3027 3028 /* 3029 * We don't want tcp_next_port_to_try to "inherit" 3030 * a port number supplied by the user in a bind. 3031 */ 3032 if (user_specified) 3033 return (port); 3034 3035 /* 3036 * This is the only place where tcp_next_port_to_try 3037 * is updated. After the update, it may or may not 3038 * be in the valid range. 3039 */ 3040 if (!connp->conn_anon_priv_bind) 3041 tcps->tcps_next_port_to_try = port + 1; 3042 return (port); 3043 } 3044 3045 if (connp->conn_anon_priv_bind) { 3046 port = tcp_get_next_priv_port(tcp); 3047 } else { 3048 if (count == 0 && user_specified) { 3049 /* 3050 * We may have to return an anonymous port. So 3051 * get one to start with. 3052 */ 3053 port = 3054 tcp_update_next_port( 3055 tcps->tcps_next_port_to_try, 3056 tcp, B_TRUE); 3057 user_specified = B_FALSE; 3058 } else { 3059 port = tcp_update_next_port(port + 1, tcp, 3060 B_FALSE); 3061 } 3062 } 3063 if (port == 0) 3064 break; 3065 3066 /* 3067 * Don't let this loop run forever in the case where 3068 * all of the anonymous ports are in use. 3069 */ 3070 } while (++count < loopmax); 3071 return (0); 3072 } 3073 3074 /* 3075 * tcp_clean_death / tcp_close_detached must not be called more than once 3076 * on a tcp. Thus every function that potentially calls tcp_clean_death 3077 * must check for the tcp state before calling tcp_clean_death. 3078 * Eg. tcp_input_data, tcp_eager_kill, tcp_clean_death_wrapper, 3079 * tcp_timer_handler, all check for the tcp state. 3080 */ 3081 /* ARGSUSED */ 3082 void 3083 tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2, 3084 ip_recv_attr_t *dummy) 3085 { 3086 tcp_t *tcp = ((conn_t *)arg)->conn_tcp; 3087 3088 freemsg(mp); 3089 if (tcp->tcp_state > TCPS_BOUND) 3090 (void) tcp_clean_death(((conn_t *)arg)->conn_tcp, 3091 ETIMEDOUT, 5); 3092 } 3093 3094 /* 3095 * We are dying for some reason. Try to do it gracefully. (May be called 3096 * as writer.) 3097 * 3098 * Return -1 if the structure was not cleaned up (if the cleanup had to be 3099 * done by a service procedure). 3100 * TBD - Should the return value distinguish between the tcp_t being 3101 * freed and it being reinitialized? 3102 */ 3103 static int 3104 tcp_clean_death(tcp_t *tcp, int err, uint8_t tag) 3105 { 3106 mblk_t *mp; 3107 queue_t *q; 3108 conn_t *connp = tcp->tcp_connp; 3109 tcp_stack_t *tcps = tcp->tcp_tcps; 3110 3111 TCP_CLD_STAT(tag); 3112 3113 #if TCP_TAG_CLEAN_DEATH 3114 tcp->tcp_cleandeathtag = tag; 3115 #endif 3116 3117 if (tcp->tcp_fused) 3118 tcp_unfuse(tcp); 3119 3120 if (tcp->tcp_linger_tid != 0 && 3121 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 3122 tcp_stop_lingering(tcp); 3123 } 3124 3125 ASSERT(tcp != NULL); 3126 ASSERT((connp->conn_family == AF_INET && 3127 connp->conn_ipversion == IPV4_VERSION) || 3128 (connp->conn_family == AF_INET6 && 3129 (connp->conn_ipversion == IPV4_VERSION || 3130 connp->conn_ipversion == IPV6_VERSION))); 3131 3132 if (TCP_IS_DETACHED(tcp)) { 3133 if (tcp->tcp_hard_binding) { 3134 /* 3135 * Its an eager that we are dealing with. We close the 3136 * eager but in case a conn_ind has already gone to the 3137 * listener, let tcp_accept_finish() send a discon_ind 3138 * to the listener and drop the last reference. If the 3139 * listener doesn't even know about the eager i.e. the 3140 * conn_ind hasn't gone up, blow away the eager and drop 3141 * the last reference as well. If the conn_ind has gone 3142 * up, state should be BOUND. tcp_accept_finish 3143 * will figure out that the connection has received a 3144 * RST and will send a DISCON_IND to the application. 3145 */ 3146 tcp_closei_local(tcp); 3147 if (!tcp->tcp_tconnind_started) { 3148 CONN_DEC_REF(connp); 3149 } else { 3150 tcp->tcp_state = TCPS_BOUND; 3151 } 3152 } else { 3153 tcp_close_detached(tcp); 3154 } 3155 return (0); 3156 } 3157 3158 TCP_STAT(tcps, tcp_clean_death_nondetached); 3159 3160 /* 3161 * The connection is dead. Decrement listener connection counter if 3162 * necessary. 3163 */ 3164 if (tcp->tcp_listen_cnt != NULL) 3165 TCP_DECR_LISTEN_CNT(tcp); 3166 3167 q = connp->conn_rq; 3168 3169 /* Trash all inbound data */ 3170 if (!IPCL_IS_NONSTR(connp)) { 3171 ASSERT(q != NULL); 3172 flushq(q, FLUSHALL); 3173 } 3174 3175 /* 3176 * If we are at least part way open and there is error 3177 * (err==0 implies no error) 3178 * notify our client by a T_DISCON_IND. 3179 */ 3180 if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) { 3181 if (tcp->tcp_state >= TCPS_ESTABLISHED && 3182 !TCP_IS_SOCKET(tcp)) { 3183 /* 3184 * Send M_FLUSH according to TPI. Because sockets will 3185 * (and must) ignore FLUSHR we do that only for TPI 3186 * endpoints and sockets in STREAMS mode. 3187 */ 3188 (void) putnextctl1(q, M_FLUSH, FLUSHR); 3189 } 3190 if (connp->conn_debug) { 3191 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 3192 "tcp_clean_death: discon err %d", err); 3193 } 3194 if (IPCL_IS_NONSTR(connp)) { 3195 /* Direct socket, use upcall */ 3196 (*connp->conn_upcalls->su_disconnected)( 3197 connp->conn_upper_handle, tcp->tcp_connid, err); 3198 } else { 3199 mp = mi_tpi_discon_ind(NULL, err, 0); 3200 if (mp != NULL) { 3201 putnext(q, mp); 3202 } else { 3203 if (connp->conn_debug) { 3204 (void) strlog(TCP_MOD_ID, 0, 1, 3205 SL_ERROR|SL_TRACE, 3206 "tcp_clean_death, sending M_ERROR"); 3207 } 3208 (void) putnextctl1(q, M_ERROR, EPROTO); 3209 } 3210 } 3211 if (tcp->tcp_state <= TCPS_SYN_RCVD) { 3212 /* SYN_SENT or SYN_RCVD */ 3213 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 3214 } else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) { 3215 /* ESTABLISHED or CLOSE_WAIT */ 3216 BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); 3217 } 3218 } 3219 3220 tcp_reinit(tcp); 3221 if (IPCL_IS_NONSTR(connp)) 3222 (void) tcp_do_unbind(connp); 3223 3224 return (-1); 3225 } 3226 3227 /* 3228 * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout 3229 * to expire, stop the wait and finish the close. 3230 */ 3231 static void 3232 tcp_stop_lingering(tcp_t *tcp) 3233 { 3234 clock_t delta = 0; 3235 tcp_stack_t *tcps = tcp->tcp_tcps; 3236 conn_t *connp = tcp->tcp_connp; 3237 3238 tcp->tcp_linger_tid = 0; 3239 if (tcp->tcp_state > TCPS_LISTEN) { 3240 tcp_acceptor_hash_remove(tcp); 3241 mutex_enter(&tcp->tcp_non_sq_lock); 3242 if (tcp->tcp_flow_stopped) { 3243 tcp_clrqfull(tcp); 3244 } 3245 mutex_exit(&tcp->tcp_non_sq_lock); 3246 3247 if (tcp->tcp_timer_tid != 0) { 3248 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 3249 tcp->tcp_timer_tid = 0; 3250 } 3251 /* 3252 * Need to cancel those timers which will not be used when 3253 * TCP is detached. This has to be done before the conn_wq 3254 * is cleared. 3255 */ 3256 tcp_timers_stop(tcp); 3257 3258 tcp->tcp_detached = B_TRUE; 3259 connp->conn_rq = NULL; 3260 connp->conn_wq = NULL; 3261 3262 if (tcp->tcp_state == TCPS_TIME_WAIT) { 3263 tcp_time_wait_append(tcp); 3264 TCP_DBGSTAT(tcps, tcp_detach_time_wait); 3265 goto finish; 3266 } 3267 3268 /* 3269 * If delta is zero the timer event wasn't executed and was 3270 * successfully canceled. In this case we need to restart it 3271 * with the minimal delta possible. 3272 */ 3273 if (delta >= 0) { 3274 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 3275 delta ? delta : 1); 3276 } 3277 } else { 3278 tcp_closei_local(tcp); 3279 CONN_DEC_REF(connp); 3280 } 3281 finish: 3282 /* Signal closing thread that it can complete close */ 3283 mutex_enter(&tcp->tcp_closelock); 3284 tcp->tcp_detached = B_TRUE; 3285 connp->conn_rq = NULL; 3286 connp->conn_wq = NULL; 3287 3288 tcp->tcp_closed = 1; 3289 cv_signal(&tcp->tcp_closecv); 3290 mutex_exit(&tcp->tcp_closelock); 3291 } 3292 3293 /* 3294 * Handle lingering timeouts. This function is called when the SO_LINGER timeout 3295 * expires. 3296 */ 3297 static void 3298 tcp_close_linger_timeout(void *arg) 3299 { 3300 conn_t *connp = (conn_t *)arg; 3301 tcp_t *tcp = connp->conn_tcp; 3302 3303 tcp->tcp_client_errno = ETIMEDOUT; 3304 tcp_stop_lingering(tcp); 3305 } 3306 3307 static void 3308 tcp_close_common(conn_t *connp, int flags) 3309 { 3310 tcp_t *tcp = connp->conn_tcp; 3311 mblk_t *mp = &tcp->tcp_closemp; 3312 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 3313 mblk_t *bp; 3314 3315 ASSERT(connp->conn_ref >= 2); 3316 3317 /* 3318 * Mark the conn as closing. ipsq_pending_mp_add will not 3319 * add any mp to the pending mp list, after this conn has 3320 * started closing. 3321 */ 3322 mutex_enter(&connp->conn_lock); 3323 connp->conn_state_flags |= CONN_CLOSING; 3324 if (connp->conn_oper_pending_ill != NULL) 3325 conn_ioctl_cleanup_reqd = B_TRUE; 3326 CONN_INC_REF_LOCKED(connp); 3327 mutex_exit(&connp->conn_lock); 3328 tcp->tcp_closeflags = (uint8_t)flags; 3329 ASSERT(connp->conn_ref >= 3); 3330 3331 /* 3332 * tcp_closemp_used is used below without any protection of a lock 3333 * as we don't expect any one else to use it concurrently at this 3334 * point otherwise it would be a major defect. 3335 */ 3336 3337 if (mp->b_prev == NULL) 3338 tcp->tcp_closemp_used = B_TRUE; 3339 else 3340 cmn_err(CE_PANIC, "tcp_close: concurrent use of tcp_closemp: " 3341 "connp %p tcp %p\n", (void *)connp, (void *)tcp); 3342 3343 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 3344 3345 /* 3346 * Cleanup any queued ioctls here. This must be done before the wq/rq 3347 * are re-written by tcp_close_output(). 3348 */ 3349 if (conn_ioctl_cleanup_reqd) 3350 conn_ioctl_cleanup(connp); 3351 3352 /* 3353 * As CONN_CLOSING is set, no further ioctls should be passed down to 3354 * IP for this conn (see the guards in tcp_ioctl, tcp_wput_ioctl and 3355 * tcp_wput_iocdata). If the ioctl was queued on an ipsq, 3356 * conn_ioctl_cleanup should have found it and removed it. If the ioctl 3357 * was still in flight at the time, we wait for it here. See comments 3358 * for CONN_INC_IOCTLREF in ip.h for details. 3359 */ 3360 mutex_enter(&connp->conn_lock); 3361 while (connp->conn_ioctlref > 0) 3362 cv_wait(&connp->conn_cv, &connp->conn_lock); 3363 ASSERT(connp->conn_ioctlref == 0); 3364 ASSERT(connp->conn_oper_pending_ill == NULL); 3365 mutex_exit(&connp->conn_lock); 3366 3367 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_close_output, connp, 3368 NULL, tcp_squeue_flag, SQTAG_IP_TCP_CLOSE); 3369 3370 mutex_enter(&tcp->tcp_closelock); 3371 while (!tcp->tcp_closed) { 3372 if (!cv_wait_sig(&tcp->tcp_closecv, &tcp->tcp_closelock)) { 3373 /* 3374 * The cv_wait_sig() was interrupted. We now do the 3375 * following: 3376 * 3377 * 1) If the endpoint was lingering, we allow this 3378 * to be interrupted by cancelling the linger timeout 3379 * and closing normally. 3380 * 3381 * 2) Revert to calling cv_wait() 3382 * 3383 * We revert to using cv_wait() to avoid an 3384 * infinite loop which can occur if the calling 3385 * thread is higher priority than the squeue worker 3386 * thread and is bound to the same cpu. 3387 */ 3388 if (connp->conn_linger && connp->conn_lingertime > 0) { 3389 mutex_exit(&tcp->tcp_closelock); 3390 /* Entering squeue, bump ref count. */ 3391 CONN_INC_REF(connp); 3392 bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL); 3393 SQUEUE_ENTER_ONE(connp->conn_sqp, bp, 3394 tcp_linger_interrupted, connp, NULL, 3395 tcp_squeue_flag, SQTAG_IP_TCP_CLOSE); 3396 mutex_enter(&tcp->tcp_closelock); 3397 } 3398 break; 3399 } 3400 } 3401 while (!tcp->tcp_closed) 3402 cv_wait(&tcp->tcp_closecv, &tcp->tcp_closelock); 3403 mutex_exit(&tcp->tcp_closelock); 3404 3405 /* 3406 * In the case of listener streams that have eagers in the q or q0 3407 * we wait for the eagers to drop their reference to us. conn_rq and 3408 * conn_wq of the eagers point to our queues. By waiting for the 3409 * refcnt to drop to 1, we are sure that the eagers have cleaned 3410 * up their queue pointers and also dropped their references to us. 3411 */ 3412 if (tcp->tcp_wait_for_eagers) { 3413 mutex_enter(&connp->conn_lock); 3414 while (connp->conn_ref != 1) { 3415 cv_wait(&connp->conn_cv, &connp->conn_lock); 3416 } 3417 mutex_exit(&connp->conn_lock); 3418 } 3419 3420 connp->conn_cpid = NOPID; 3421 } 3422 3423 static int 3424 tcp_tpi_close(queue_t *q, int flags) 3425 { 3426 conn_t *connp; 3427 3428 ASSERT(WR(q)->q_next == NULL); 3429 3430 if (flags & SO_FALLBACK) { 3431 /* 3432 * stream is being closed while in fallback 3433 * simply free the resources that were allocated 3434 */ 3435 inet_minor_free(WR(q)->q_ptr, (dev_t)(RD(q)->q_ptr)); 3436 qprocsoff(q); 3437 goto done; 3438 } 3439 3440 connp = Q_TO_CONN(q); 3441 /* 3442 * We are being closed as /dev/tcp or /dev/tcp6. 3443 */ 3444 tcp_close_common(connp, flags); 3445 3446 qprocsoff(q); 3447 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 3448 3449 /* 3450 * Drop IP's reference on the conn. This is the last reference 3451 * on the connp if the state was less than established. If the 3452 * connection has gone into timewait state, then we will have 3453 * one ref for the TCP and one more ref (total of two) for the 3454 * classifier connected hash list (a timewait connections stays 3455 * in connected hash till closed). 3456 * 3457 * We can't assert the references because there might be other 3458 * transient reference places because of some walkers or queued 3459 * packets in squeue for the timewait state. 3460 */ 3461 CONN_DEC_REF(connp); 3462 done: 3463 q->q_ptr = WR(q)->q_ptr = NULL; 3464 return (0); 3465 } 3466 3467 static int 3468 tcp_tpi_close_accept(queue_t *q) 3469 { 3470 vmem_t *minor_arena; 3471 dev_t conn_dev; 3472 3473 ASSERT(WR(q)->q_qinfo == &tcp_acceptor_winit); 3474 3475 /* 3476 * We had opened an acceptor STREAM for sockfs which is 3477 * now being closed due to some error. 3478 */ 3479 qprocsoff(q); 3480 3481 minor_arena = (vmem_t *)WR(q)->q_ptr; 3482 conn_dev = (dev_t)RD(q)->q_ptr; 3483 ASSERT(minor_arena != NULL); 3484 ASSERT(conn_dev != 0); 3485 inet_minor_free(minor_arena, conn_dev); 3486 q->q_ptr = WR(q)->q_ptr = NULL; 3487 return (0); 3488 } 3489 3490 /* 3491 * Called by tcp_close() routine via squeue when lingering is 3492 * interrupted by a signal. 3493 */ 3494 3495 /* ARGSUSED */ 3496 static void 3497 tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 3498 { 3499 conn_t *connp = (conn_t *)arg; 3500 tcp_t *tcp = connp->conn_tcp; 3501 3502 freeb(mp); 3503 if (tcp->tcp_linger_tid != 0 && 3504 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 3505 tcp_stop_lingering(tcp); 3506 tcp->tcp_client_errno = EINTR; 3507 } 3508 } 3509 3510 /* 3511 * Called by streams close routine via squeues when our client blows off her 3512 * descriptor, we take this to mean: "close the stream state NOW, close the tcp 3513 * connection politely" When SO_LINGER is set (with a non-zero linger time and 3514 * it is not a nonblocking socket) then this routine sleeps until the FIN is 3515 * acked. 3516 * 3517 * NOTE: tcp_close potentially returns error when lingering. 3518 * However, the stream head currently does not pass these errors 3519 * to the application. 4.4BSD only returns EINTR and EWOULDBLOCK 3520 * errors to the application (from tsleep()) and not errors 3521 * like ECONNRESET caused by receiving a reset packet. 3522 */ 3523 3524 /* ARGSUSED */ 3525 static void 3526 tcp_close_output(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 3527 { 3528 char *msg; 3529 conn_t *connp = (conn_t *)arg; 3530 tcp_t *tcp = connp->conn_tcp; 3531 clock_t delta = 0; 3532 tcp_stack_t *tcps = tcp->tcp_tcps; 3533 3534 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 3535 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 3536 3537 mutex_enter(&tcp->tcp_eager_lock); 3538 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 3539 /* Cleanup for listener */ 3540 tcp_eager_cleanup(tcp, 0); 3541 tcp->tcp_wait_for_eagers = 1; 3542 } 3543 mutex_exit(&tcp->tcp_eager_lock); 3544 3545 tcp->tcp_lso = B_FALSE; 3546 3547 msg = NULL; 3548 switch (tcp->tcp_state) { 3549 case TCPS_CLOSED: 3550 case TCPS_IDLE: 3551 case TCPS_BOUND: 3552 case TCPS_LISTEN: 3553 break; 3554 case TCPS_SYN_SENT: 3555 msg = "tcp_close, during connect"; 3556 break; 3557 case TCPS_SYN_RCVD: 3558 /* 3559 * Close during the connect 3-way handshake 3560 * but here there may or may not be pending data 3561 * already on queue. Process almost same as in 3562 * the ESTABLISHED state. 3563 */ 3564 /* FALLTHRU */ 3565 default: 3566 if (tcp->tcp_fused) 3567 tcp_unfuse(tcp); 3568 3569 /* 3570 * If SO_LINGER has set a zero linger time, abort the 3571 * connection with a reset. 3572 */ 3573 if (connp->conn_linger && connp->conn_lingertime == 0) { 3574 msg = "tcp_close, zero lingertime"; 3575 break; 3576 } 3577 3578 /* 3579 * Abort connection if there is unread data queued. 3580 */ 3581 if (tcp->tcp_rcv_list || tcp->tcp_reass_head) { 3582 msg = "tcp_close, unread data"; 3583 break; 3584 } 3585 /* 3586 * We have done a qwait() above which could have possibly 3587 * drained more messages in turn causing transition to a 3588 * different state. Check whether we have to do the rest 3589 * of the processing or not. 3590 */ 3591 if (tcp->tcp_state <= TCPS_LISTEN) 3592 break; 3593 3594 /* 3595 * Transmit the FIN before detaching the tcp_t. 3596 * After tcp_detach returns this queue/perimeter 3597 * no longer owns the tcp_t thus others can modify it. 3598 */ 3599 (void) tcp_xmit_end(tcp); 3600 3601 /* 3602 * If lingering on close then wait until the fin is acked, 3603 * the SO_LINGER time passes, or a reset is sent/received. 3604 */ 3605 if (connp->conn_linger && connp->conn_lingertime > 0 && 3606 !(tcp->tcp_fin_acked) && 3607 tcp->tcp_state >= TCPS_ESTABLISHED) { 3608 if (tcp->tcp_closeflags & (FNDELAY|FNONBLOCK)) { 3609 tcp->tcp_client_errno = EWOULDBLOCK; 3610 } else if (tcp->tcp_client_errno == 0) { 3611 3612 ASSERT(tcp->tcp_linger_tid == 0); 3613 3614 tcp->tcp_linger_tid = TCP_TIMER(tcp, 3615 tcp_close_linger_timeout, 3616 connp->conn_lingertime * hz); 3617 3618 /* tcp_close_linger_timeout will finish close */ 3619 if (tcp->tcp_linger_tid == 0) 3620 tcp->tcp_client_errno = ENOSR; 3621 else 3622 return; 3623 } 3624 3625 /* 3626 * Check if we need to detach or just close 3627 * the instance. 3628 */ 3629 if (tcp->tcp_state <= TCPS_LISTEN) 3630 break; 3631 } 3632 3633 /* 3634 * Make sure that no other thread will access the conn_rq of 3635 * this instance (through lookups etc.) as conn_rq will go 3636 * away shortly. 3637 */ 3638 tcp_acceptor_hash_remove(tcp); 3639 3640 mutex_enter(&tcp->tcp_non_sq_lock); 3641 if (tcp->tcp_flow_stopped) { 3642 tcp_clrqfull(tcp); 3643 } 3644 mutex_exit(&tcp->tcp_non_sq_lock); 3645 3646 if (tcp->tcp_timer_tid != 0) { 3647 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 3648 tcp->tcp_timer_tid = 0; 3649 } 3650 /* 3651 * Need to cancel those timers which will not be used when 3652 * TCP is detached. This has to be done before the conn_wq 3653 * is set to NULL. 3654 */ 3655 tcp_timers_stop(tcp); 3656 3657 tcp->tcp_detached = B_TRUE; 3658 if (tcp->tcp_state == TCPS_TIME_WAIT) { 3659 tcp_time_wait_append(tcp); 3660 TCP_DBGSTAT(tcps, tcp_detach_time_wait); 3661 ASSERT(connp->conn_ref >= 3); 3662 goto finish; 3663 } 3664 3665 /* 3666 * If delta is zero the timer event wasn't executed and was 3667 * successfully canceled. In this case we need to restart it 3668 * with the minimal delta possible. 3669 */ 3670 if (delta >= 0) 3671 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 3672 delta ? delta : 1); 3673 3674 ASSERT(connp->conn_ref >= 3); 3675 goto finish; 3676 } 3677 3678 /* Detach did not complete. Still need to remove q from stream. */ 3679 if (msg) { 3680 if (tcp->tcp_state == TCPS_ESTABLISHED || 3681 tcp->tcp_state == TCPS_CLOSE_WAIT) 3682 BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); 3683 if (tcp->tcp_state == TCPS_SYN_SENT || 3684 tcp->tcp_state == TCPS_SYN_RCVD) 3685 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 3686 tcp_xmit_ctl(msg, tcp, tcp->tcp_snxt, 0, TH_RST); 3687 } 3688 3689 tcp_closei_local(tcp); 3690 CONN_DEC_REF(connp); 3691 ASSERT(connp->conn_ref >= 2); 3692 3693 finish: 3694 mutex_enter(&tcp->tcp_closelock); 3695 /* 3696 * Don't change the queues in the case of a listener that has 3697 * eagers in its q or q0. It could surprise the eagers. 3698 * Instead wait for the eagers outside the squeue. 3699 */ 3700 if (!tcp->tcp_wait_for_eagers) { 3701 tcp->tcp_detached = B_TRUE; 3702 connp->conn_rq = NULL; 3703 connp->conn_wq = NULL; 3704 } 3705 3706 /* Signal tcp_close() to finish closing. */ 3707 tcp->tcp_closed = 1; 3708 cv_signal(&tcp->tcp_closecv); 3709 mutex_exit(&tcp->tcp_closelock); 3710 } 3711 3712 /* 3713 * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp. 3714 * Some stream heads get upset if they see these later on as anything but NULL. 3715 */ 3716 static void 3717 tcp_close_mpp(mblk_t **mpp) 3718 { 3719 mblk_t *mp; 3720 3721 if ((mp = *mpp) != NULL) { 3722 do { 3723 mp->b_next = NULL; 3724 mp->b_prev = NULL; 3725 } while ((mp = mp->b_cont) != NULL); 3726 3727 mp = *mpp; 3728 *mpp = NULL; 3729 freemsg(mp); 3730 } 3731 } 3732 3733 /* Do detached close. */ 3734 static void 3735 tcp_close_detached(tcp_t *tcp) 3736 { 3737 if (tcp->tcp_fused) 3738 tcp_unfuse(tcp); 3739 3740 /* 3741 * Clustering code serializes TCP disconnect callbacks and 3742 * cluster tcp list walks by blocking a TCP disconnect callback 3743 * if a cluster tcp list walk is in progress. This ensures 3744 * accurate accounting of TCPs in the cluster code even though 3745 * the TCP list walk itself is not atomic. 3746 */ 3747 tcp_closei_local(tcp); 3748 CONN_DEC_REF(tcp->tcp_connp); 3749 } 3750 3751 /* 3752 * Stop all TCP timers, and free the timer mblks if requested. 3753 */ 3754 void 3755 tcp_timers_stop(tcp_t *tcp) 3756 { 3757 if (tcp->tcp_timer_tid != 0) { 3758 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 3759 tcp->tcp_timer_tid = 0; 3760 } 3761 if (tcp->tcp_ka_tid != 0) { 3762 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ka_tid); 3763 tcp->tcp_ka_tid = 0; 3764 } 3765 if (tcp->tcp_ack_tid != 0) { 3766 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 3767 tcp->tcp_ack_tid = 0; 3768 } 3769 if (tcp->tcp_push_tid != 0) { 3770 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 3771 tcp->tcp_push_tid = 0; 3772 } 3773 if (tcp->tcp_reass_tid != 0) { 3774 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_reass_tid); 3775 tcp->tcp_reass_tid = 0; 3776 } 3777 } 3778 3779 /* 3780 * The tcp_t is going away. Remove it from all lists and set it 3781 * to TCPS_CLOSED. The freeing up of memory is deferred until 3782 * tcp_inactive. This is needed since a thread in tcp_rput might have 3783 * done a CONN_INC_REF on this structure before it was removed from the 3784 * hashes. 3785 */ 3786 static void 3787 tcp_closei_local(tcp_t *tcp) 3788 { 3789 conn_t *connp = tcp->tcp_connp; 3790 tcp_stack_t *tcps = tcp->tcp_tcps; 3791 3792 if (!TCP_IS_SOCKET(tcp)) 3793 tcp_acceptor_hash_remove(tcp); 3794 3795 UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs); 3796 tcp->tcp_ibsegs = 0; 3797 UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs); 3798 tcp->tcp_obsegs = 0; 3799 3800 /* 3801 * If we are an eager connection hanging off a listener that 3802 * hasn't formally accepted the connection yet, get off his 3803 * list and blow off any data that we have accumulated. 3804 */ 3805 if (tcp->tcp_listener != NULL) { 3806 tcp_t *listener = tcp->tcp_listener; 3807 mutex_enter(&listener->tcp_eager_lock); 3808 /* 3809 * tcp_tconnind_started == B_TRUE means that the 3810 * conn_ind has already gone to listener. At 3811 * this point, eager will be closed but we 3812 * leave it in listeners eager list so that 3813 * if listener decides to close without doing 3814 * accept, we can clean this up. In tcp_tli_accept 3815 * we take care of the case of accept on closed 3816 * eager. 3817 */ 3818 if (!tcp->tcp_tconnind_started) { 3819 tcp_eager_unlink(tcp); 3820 mutex_exit(&listener->tcp_eager_lock); 3821 /* 3822 * We don't want to have any pointers to the 3823 * listener queue, after we have released our 3824 * reference on the listener 3825 */ 3826 ASSERT(tcp->tcp_detached); 3827 connp->conn_rq = NULL; 3828 connp->conn_wq = NULL; 3829 CONN_DEC_REF(listener->tcp_connp); 3830 } else { 3831 mutex_exit(&listener->tcp_eager_lock); 3832 } 3833 } 3834 3835 /* Stop all the timers */ 3836 tcp_timers_stop(tcp); 3837 3838 if (tcp->tcp_state == TCPS_LISTEN) { 3839 if (tcp->tcp_ip_addr_cache) { 3840 kmem_free((void *)tcp->tcp_ip_addr_cache, 3841 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 3842 tcp->tcp_ip_addr_cache = NULL; 3843 } 3844 } 3845 3846 /* Decrement listerner connection counter if necessary. */ 3847 if (tcp->tcp_listen_cnt != NULL) 3848 TCP_DECR_LISTEN_CNT(tcp); 3849 3850 mutex_enter(&tcp->tcp_non_sq_lock); 3851 if (tcp->tcp_flow_stopped) 3852 tcp_clrqfull(tcp); 3853 mutex_exit(&tcp->tcp_non_sq_lock); 3854 3855 tcp_bind_hash_remove(tcp); 3856 /* 3857 * If the tcp_time_wait_collector (which runs outside the squeue) 3858 * is trying to remove this tcp from the time wait list, we will 3859 * block in tcp_time_wait_remove while trying to acquire the 3860 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also 3861 * requires the ipcl_hash_remove to be ordered after the 3862 * tcp_time_wait_remove for the refcnt checks to work correctly. 3863 */ 3864 if (tcp->tcp_state == TCPS_TIME_WAIT) 3865 (void) tcp_time_wait_remove(tcp, NULL); 3866 CL_INET_DISCONNECT(connp); 3867 ipcl_hash_remove(connp); 3868 ixa_cleanup(connp->conn_ixa); 3869 3870 /* 3871 * Mark the conn as CONDEMNED 3872 */ 3873 mutex_enter(&connp->conn_lock); 3874 connp->conn_state_flags |= CONN_CONDEMNED; 3875 mutex_exit(&connp->conn_lock); 3876 3877 ASSERT(tcp->tcp_time_wait_next == NULL); 3878 ASSERT(tcp->tcp_time_wait_prev == NULL); 3879 ASSERT(tcp->tcp_time_wait_expire == 0); 3880 tcp->tcp_state = TCPS_CLOSED; 3881 3882 /* Release any SSL context */ 3883 if (tcp->tcp_kssl_ent != NULL) { 3884 kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); 3885 tcp->tcp_kssl_ent = NULL; 3886 } 3887 if (tcp->tcp_kssl_ctx != NULL) { 3888 kssl_release_ctx(tcp->tcp_kssl_ctx); 3889 tcp->tcp_kssl_ctx = NULL; 3890 } 3891 tcp->tcp_kssl_pending = B_FALSE; 3892 3893 tcp_ipsec_cleanup(tcp); 3894 } 3895 3896 /* 3897 * tcp is dying (called from ipcl_conn_destroy and error cases). 3898 * Free the tcp_t in either case. 3899 */ 3900 void 3901 tcp_free(tcp_t *tcp) 3902 { 3903 mblk_t *mp; 3904 conn_t *connp = tcp->tcp_connp; 3905 3906 ASSERT(tcp != NULL); 3907 ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL); 3908 3909 connp->conn_rq = NULL; 3910 connp->conn_wq = NULL; 3911 3912 tcp_close_mpp(&tcp->tcp_xmit_head); 3913 tcp_close_mpp(&tcp->tcp_reass_head); 3914 if (tcp->tcp_rcv_list != NULL) { 3915 /* Free b_next chain */ 3916 tcp_close_mpp(&tcp->tcp_rcv_list); 3917 } 3918 if ((mp = tcp->tcp_urp_mp) != NULL) { 3919 freemsg(mp); 3920 } 3921 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 3922 freemsg(mp); 3923 } 3924 3925 if (tcp->tcp_fused_sigurg_mp != NULL) { 3926 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 3927 freeb(tcp->tcp_fused_sigurg_mp); 3928 tcp->tcp_fused_sigurg_mp = NULL; 3929 } 3930 3931 if (tcp->tcp_ordrel_mp != NULL) { 3932 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 3933 freeb(tcp->tcp_ordrel_mp); 3934 tcp->tcp_ordrel_mp = NULL; 3935 } 3936 3937 if (tcp->tcp_sack_info != NULL) { 3938 if (tcp->tcp_notsack_list != NULL) { 3939 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, 3940 tcp); 3941 } 3942 bzero(tcp->tcp_sack_info, sizeof (tcp_sack_info_t)); 3943 } 3944 3945 if (tcp->tcp_hopopts != NULL) { 3946 mi_free(tcp->tcp_hopopts); 3947 tcp->tcp_hopopts = NULL; 3948 tcp->tcp_hopoptslen = 0; 3949 } 3950 ASSERT(tcp->tcp_hopoptslen == 0); 3951 if (tcp->tcp_dstopts != NULL) { 3952 mi_free(tcp->tcp_dstopts); 3953 tcp->tcp_dstopts = NULL; 3954 tcp->tcp_dstoptslen = 0; 3955 } 3956 ASSERT(tcp->tcp_dstoptslen == 0); 3957 if (tcp->tcp_rthdrdstopts != NULL) { 3958 mi_free(tcp->tcp_rthdrdstopts); 3959 tcp->tcp_rthdrdstopts = NULL; 3960 tcp->tcp_rthdrdstoptslen = 0; 3961 } 3962 ASSERT(tcp->tcp_rthdrdstoptslen == 0); 3963 if (tcp->tcp_rthdr != NULL) { 3964 mi_free(tcp->tcp_rthdr); 3965 tcp->tcp_rthdr = NULL; 3966 tcp->tcp_rthdrlen = 0; 3967 } 3968 ASSERT(tcp->tcp_rthdrlen == 0); 3969 3970 /* 3971 * Following is really a blowing away a union. 3972 * It happens to have exactly two members of identical size 3973 * the following code is enough. 3974 */ 3975 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 3976 } 3977 3978 3979 /* 3980 * Put a connection confirmation message upstream built from the 3981 * address/flowid information with the conn and iph. Report our success or 3982 * failure. 3983 */ 3984 static boolean_t 3985 tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, mblk_t *idmp, 3986 mblk_t **defermp, ip_recv_attr_t *ira) 3987 { 3988 sin_t sin; 3989 sin6_t sin6; 3990 mblk_t *mp; 3991 char *optp = NULL; 3992 int optlen = 0; 3993 conn_t *connp = tcp->tcp_connp; 3994 3995 if (defermp != NULL) 3996 *defermp = NULL; 3997 3998 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) { 3999 /* 4000 * Return in T_CONN_CON results of option negotiation through 4001 * the T_CONN_REQ. Note: If there is an real end-to-end option 4002 * negotiation, then what is received from remote end needs 4003 * to be taken into account but there is no such thing (yet?) 4004 * in our TCP/IP. 4005 * Note: We do not use mi_offset_param() here as 4006 * tcp_opts_conn_req contents do not directly come from 4007 * an application and are either generated in kernel or 4008 * from user input that was already verified. 4009 */ 4010 mp = tcp->tcp_conn.tcp_opts_conn_req; 4011 optp = (char *)(mp->b_rptr + 4012 ((struct T_conn_req *)mp->b_rptr)->OPT_offset); 4013 optlen = (int) 4014 ((struct T_conn_req *)mp->b_rptr)->OPT_length; 4015 } 4016 4017 if (IPH_HDR_VERSION(iphdr) == IPV4_VERSION) { 4018 4019 /* packet is IPv4 */ 4020 if (connp->conn_family == AF_INET) { 4021 sin = sin_null; 4022 sin.sin_addr.s_addr = connp->conn_faddr_v4; 4023 sin.sin_port = connp->conn_fport; 4024 sin.sin_family = AF_INET; 4025 mp = mi_tpi_conn_con(NULL, (char *)&sin, 4026 (int)sizeof (sin_t), optp, optlen); 4027 } else { 4028 sin6 = sin6_null; 4029 sin6.sin6_addr = connp->conn_faddr_v6; 4030 sin6.sin6_port = connp->conn_fport; 4031 sin6.sin6_family = AF_INET6; 4032 mp = mi_tpi_conn_con(NULL, (char *)&sin6, 4033 (int)sizeof (sin6_t), optp, optlen); 4034 4035 } 4036 } else { 4037 ip6_t *ip6h = (ip6_t *)iphdr; 4038 4039 ASSERT(IPH_HDR_VERSION(iphdr) == IPV6_VERSION); 4040 ASSERT(connp->conn_family == AF_INET6); 4041 sin6 = sin6_null; 4042 sin6.sin6_addr = connp->conn_faddr_v6; 4043 sin6.sin6_port = connp->conn_fport; 4044 sin6.sin6_family = AF_INET6; 4045 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 4046 mp = mi_tpi_conn_con(NULL, (char *)&sin6, 4047 (int)sizeof (sin6_t), optp, optlen); 4048 } 4049 4050 if (!mp) 4051 return (B_FALSE); 4052 4053 mblk_copycred(mp, idmp); 4054 4055 if (defermp == NULL) { 4056 conn_t *connp = tcp->tcp_connp; 4057 if (IPCL_IS_NONSTR(connp)) { 4058 (*connp->conn_upcalls->su_connected) 4059 (connp->conn_upper_handle, tcp->tcp_connid, 4060 ira->ira_cred, ira->ira_cpid); 4061 freemsg(mp); 4062 } else { 4063 if (ira->ira_cred != NULL) { 4064 /* So that getpeerucred works for TPI sockfs */ 4065 mblk_setcred(mp, ira->ira_cred, ira->ira_cpid); 4066 } 4067 putnext(connp->conn_rq, mp); 4068 } 4069 } else { 4070 *defermp = mp; 4071 } 4072 4073 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 4074 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 4075 return (B_TRUE); 4076 } 4077 4078 /* 4079 * Defense for the SYN attack - 4080 * 1. When q0 is full, drop from the tail (tcp_eager_prev_drop_q0) the oldest 4081 * one from the list of droppable eagers. This list is a subset of q0. 4082 * see comments before the definition of MAKE_DROPPABLE(). 4083 * 2. Don't drop a SYN request before its first timeout. This gives every 4084 * request at least til the first timeout to complete its 3-way handshake. 4085 * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many 4086 * requests currently on the queue that has timed out. This will be used 4087 * as an indicator of whether an attack is under way, so that appropriate 4088 * actions can be taken. (It's incremented in tcp_timer() and decremented 4089 * either when eager goes into ESTABLISHED, or gets freed up.) 4090 * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on 4091 * # of timeout drops back to <= q0len/32 => SYN alert off 4092 */ 4093 static boolean_t 4094 tcp_drop_q0(tcp_t *tcp) 4095 { 4096 tcp_t *eager; 4097 mblk_t *mp; 4098 tcp_stack_t *tcps = tcp->tcp_tcps; 4099 4100 ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock)); 4101 ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0); 4102 4103 /* Pick oldest eager from the list of droppable eagers */ 4104 eager = tcp->tcp_eager_prev_drop_q0; 4105 4106 /* If list is empty. return B_FALSE */ 4107 if (eager == tcp) { 4108 return (B_FALSE); 4109 } 4110 4111 /* If allocated, the mp will be freed in tcp_clean_death_wrapper() */ 4112 if ((mp = allocb(0, BPRI_HI)) == NULL) 4113 return (B_FALSE); 4114 4115 /* 4116 * Take this eager out from the list of droppable eagers since we are 4117 * going to drop it. 4118 */ 4119 MAKE_UNDROPPABLE(eager); 4120 4121 if (tcp->tcp_connp->conn_debug) { 4122 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 4123 "tcp_drop_q0: listen half-open queue (max=%d) overflow" 4124 " (%d pending) on %s, drop one", tcps->tcps_conn_req_max_q0, 4125 tcp->tcp_conn_req_cnt_q0, 4126 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 4127 } 4128 4129 BUMP_MIB(&tcps->tcps_mib, tcpHalfOpenDrop); 4130 4131 /* Put a reference on the conn as we are enqueueing it in the sqeue */ 4132 CONN_INC_REF(eager->tcp_connp); 4133 4134 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, 4135 tcp_clean_death_wrapper, eager->tcp_connp, NULL, 4136 SQ_FILL, SQTAG_TCP_DROP_Q0); 4137 4138 return (B_TRUE); 4139 } 4140 4141 /* 4142 * Handle a SYN on an AF_INET6 socket; can be either IPv4 or IPv6 4143 */ 4144 static mblk_t * 4145 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 4146 ip_recv_attr_t *ira) 4147 { 4148 tcp_t *ltcp = lconnp->conn_tcp; 4149 tcp_t *tcp = connp->conn_tcp; 4150 mblk_t *tpi_mp; 4151 ipha_t *ipha; 4152 ip6_t *ip6h; 4153 sin6_t sin6; 4154 uint_t ifindex = ira->ira_ruifindex; 4155 tcp_stack_t *tcps = tcp->tcp_tcps; 4156 4157 if (ira->ira_flags & IRAF_IS_IPV4) { 4158 ipha = (ipha_t *)mp->b_rptr; 4159 4160 connp->conn_ipversion = IPV4_VERSION; 4161 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_laddr_v6); 4162 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_faddr_v6); 4163 connp->conn_saddr_v6 = connp->conn_laddr_v6; 4164 4165 sin6 = sin6_null; 4166 sin6.sin6_addr = connp->conn_faddr_v6; 4167 sin6.sin6_port = connp->conn_fport; 4168 sin6.sin6_family = AF_INET6; 4169 sin6.__sin6_src_id = ip_srcid_find_addr(&connp->conn_laddr_v6, 4170 IPCL_ZONEID(lconnp), tcps->tcps_netstack); 4171 4172 if (connp->conn_recv_ancillary.crb_recvdstaddr) { 4173 sin6_t sin6d; 4174 4175 sin6d = sin6_null; 4176 sin6d.sin6_addr = connp->conn_laddr_v6; 4177 sin6d.sin6_port = connp->conn_lport; 4178 sin6d.sin6_family = AF_INET; 4179 tpi_mp = mi_tpi_extconn_ind(NULL, 4180 (char *)&sin6d, sizeof (sin6_t), 4181 (char *)&tcp, 4182 (t_scalar_t)sizeof (intptr_t), 4183 (char *)&sin6d, sizeof (sin6_t), 4184 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4185 } else { 4186 tpi_mp = mi_tpi_conn_ind(NULL, 4187 (char *)&sin6, sizeof (sin6_t), 4188 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4189 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4190 } 4191 } else { 4192 ip6h = (ip6_t *)mp->b_rptr; 4193 4194 connp->conn_ipversion = IPV6_VERSION; 4195 connp->conn_laddr_v6 = ip6h->ip6_dst; 4196 connp->conn_faddr_v6 = ip6h->ip6_src; 4197 connp->conn_saddr_v6 = connp->conn_laddr_v6; 4198 4199 sin6 = sin6_null; 4200 sin6.sin6_addr = connp->conn_faddr_v6; 4201 sin6.sin6_port = connp->conn_fport; 4202 sin6.sin6_family = AF_INET6; 4203 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 4204 sin6.__sin6_src_id = ip_srcid_find_addr(&connp->conn_laddr_v6, 4205 IPCL_ZONEID(lconnp), tcps->tcps_netstack); 4206 4207 if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) { 4208 /* Pass up the scope_id of remote addr */ 4209 sin6.sin6_scope_id = ifindex; 4210 } else { 4211 sin6.sin6_scope_id = 0; 4212 } 4213 if (connp->conn_recv_ancillary.crb_recvdstaddr) { 4214 sin6_t sin6d; 4215 4216 sin6d = sin6_null; 4217 sin6.sin6_addr = connp->conn_laddr_v6; 4218 sin6d.sin6_port = connp->conn_lport; 4219 sin6d.sin6_family = AF_INET6; 4220 if (IN6_IS_ADDR_LINKSCOPE(&connp->conn_laddr_v6)) 4221 sin6d.sin6_scope_id = ifindex; 4222 4223 tpi_mp = mi_tpi_extconn_ind(NULL, 4224 (char *)&sin6d, sizeof (sin6_t), 4225 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4226 (char *)&sin6d, sizeof (sin6_t), 4227 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4228 } else { 4229 tpi_mp = mi_tpi_conn_ind(NULL, 4230 (char *)&sin6, sizeof (sin6_t), 4231 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4232 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4233 } 4234 } 4235 4236 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 4237 return (tpi_mp); 4238 } 4239 4240 /* Handle a SYN on an AF_INET socket */ 4241 mblk_t * 4242 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, mblk_t *mp, 4243 ip_recv_attr_t *ira) 4244 { 4245 tcp_t *ltcp = lconnp->conn_tcp; 4246 tcp_t *tcp = connp->conn_tcp; 4247 sin_t sin; 4248 mblk_t *tpi_mp = NULL; 4249 tcp_stack_t *tcps = tcp->tcp_tcps; 4250 ipha_t *ipha; 4251 4252 ASSERT(ira->ira_flags & IRAF_IS_IPV4); 4253 ipha = (ipha_t *)mp->b_rptr; 4254 4255 connp->conn_ipversion = IPV4_VERSION; 4256 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_laddr_v6); 4257 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_faddr_v6); 4258 connp->conn_saddr_v6 = connp->conn_laddr_v6; 4259 4260 sin = sin_null; 4261 sin.sin_addr.s_addr = connp->conn_faddr_v4; 4262 sin.sin_port = connp->conn_fport; 4263 sin.sin_family = AF_INET; 4264 if (lconnp->conn_recv_ancillary.crb_recvdstaddr) { 4265 sin_t sind; 4266 4267 sind = sin_null; 4268 sind.sin_addr.s_addr = connp->conn_laddr_v4; 4269 sind.sin_port = connp->conn_lport; 4270 sind.sin_family = AF_INET; 4271 tpi_mp = mi_tpi_extconn_ind(NULL, 4272 (char *)&sind, sizeof (sin_t), (char *)&tcp, 4273 (t_scalar_t)sizeof (intptr_t), (char *)&sind, 4274 sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4275 } else { 4276 tpi_mp = mi_tpi_conn_ind(NULL, 4277 (char *)&sin, sizeof (sin_t), 4278 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4279 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4280 } 4281 4282 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 4283 return (tpi_mp); 4284 } 4285 4286 /* 4287 * tcp_get_conn/tcp_free_conn 4288 * 4289 * tcp_get_conn is used to get a clean tcp connection structure. 4290 * It tries to reuse the connections put on the freelist by the 4291 * time_wait_collector failing which it goes to kmem_cache. This 4292 * way has two benefits compared to just allocating from and 4293 * freeing to kmem_cache. 4294 * 1) The time_wait_collector can free (which includes the cleanup) 4295 * outside the squeue. So when the interrupt comes, we have a clean 4296 * connection sitting in the freelist. Obviously, this buys us 4297 * performance. 4298 * 4299 * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_input_listener 4300 * has multiple disadvantages - tying up the squeue during alloc. 4301 * But allocating the conn/tcp in IP land is also not the best since 4302 * we can't check the 'q' and 'q0' which are protected by squeue and 4303 * blindly allocate memory which might have to be freed here if we are 4304 * not allowed to accept the connection. By using the freelist and 4305 * putting the conn/tcp back in freelist, we don't pay a penalty for 4306 * allocating memory without checking 'q/q0' and freeing it if we can't 4307 * accept the connection. 4308 * 4309 * Care should be taken to put the conn back in the same squeue's freelist 4310 * from which it was allocated. Best results are obtained if conn is 4311 * allocated from listener's squeue and freed to the same. Time wait 4312 * collector will free up the freelist is the connection ends up sitting 4313 * there for too long. 4314 */ 4315 void * 4316 tcp_get_conn(void *arg, tcp_stack_t *tcps) 4317 { 4318 tcp_t *tcp = NULL; 4319 conn_t *connp = NULL; 4320 squeue_t *sqp = (squeue_t *)arg; 4321 tcp_squeue_priv_t *tcp_time_wait; 4322 netstack_t *ns; 4323 mblk_t *tcp_rsrv_mp = NULL; 4324 4325 tcp_time_wait = 4326 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 4327 4328 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 4329 tcp = tcp_time_wait->tcp_free_list; 4330 ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0)); 4331 if (tcp != NULL) { 4332 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 4333 tcp_time_wait->tcp_free_list_cnt--; 4334 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 4335 tcp->tcp_time_wait_next = NULL; 4336 connp = tcp->tcp_connp; 4337 connp->conn_flags |= IPCL_REUSED; 4338 4339 ASSERT(tcp->tcp_tcps == NULL); 4340 ASSERT(connp->conn_netstack == NULL); 4341 ASSERT(tcp->tcp_rsrv_mp != NULL); 4342 ns = tcps->tcps_netstack; 4343 netstack_hold(ns); 4344 connp->conn_netstack = ns; 4345 connp->conn_ixa->ixa_ipst = ns->netstack_ip; 4346 tcp->tcp_tcps = tcps; 4347 ipcl_globalhash_insert(connp); 4348 4349 connp->conn_ixa->ixa_notify_cookie = tcp; 4350 ASSERT(connp->conn_ixa->ixa_notify == tcp_notify); 4351 connp->conn_recv = tcp_input_data; 4352 ASSERT(connp->conn_recvicmp == tcp_icmp_input); 4353 ASSERT(connp->conn_verifyicmp == tcp_verifyicmp); 4354 return ((void *)connp); 4355 } 4356 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 4357 /* 4358 * Pre-allocate the tcp_rsrv_mp. This mblk will not be freed until 4359 * this conn_t/tcp_t is freed at ipcl_conn_destroy(). 4360 */ 4361 tcp_rsrv_mp = allocb(0, BPRI_HI); 4362 if (tcp_rsrv_mp == NULL) 4363 return (NULL); 4364 4365 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP, 4366 tcps->tcps_netstack)) == NULL) { 4367 freeb(tcp_rsrv_mp); 4368 return (NULL); 4369 } 4370 4371 tcp = connp->conn_tcp; 4372 tcp->tcp_rsrv_mp = tcp_rsrv_mp; 4373 mutex_init(&tcp->tcp_rsrv_mp_lock, NULL, MUTEX_DEFAULT, NULL); 4374 4375 tcp->tcp_tcps = tcps; 4376 4377 connp->conn_recv = tcp_input_data; 4378 connp->conn_recvicmp = tcp_icmp_input; 4379 connp->conn_verifyicmp = tcp_verifyicmp; 4380 4381 /* 4382 * Register tcp_notify to listen to capability changes detected by IP. 4383 * This upcall is made in the context of the call to conn_ip_output 4384 * thus it is inside the squeue. 4385 */ 4386 connp->conn_ixa->ixa_notify = tcp_notify; 4387 connp->conn_ixa->ixa_notify_cookie = tcp; 4388 4389 return ((void *)connp); 4390 } 4391 4392 /* BEGIN CSTYLED */ 4393 /* 4394 * 4395 * The sockfs ACCEPT path: 4396 * ======================= 4397 * 4398 * The eager is now established in its own perimeter as soon as SYN is 4399 * received in tcp_input_listener(). When sockfs receives conn_ind, it 4400 * completes the accept processing on the acceptor STREAM. The sending 4401 * of conn_ind part is common for both sockfs listener and a TLI/XTI 4402 * listener but a TLI/XTI listener completes the accept processing 4403 * on the listener perimeter. 4404 * 4405 * Common control flow for 3 way handshake: 4406 * ---------------------------------------- 4407 * 4408 * incoming SYN (listener perimeter) -> tcp_input_listener() 4409 * 4410 * incoming SYN-ACK-ACK (eager perim) -> tcp_input_data() 4411 * send T_CONN_IND (listener perim) -> tcp_send_conn_ind() 4412 * 4413 * Sockfs ACCEPT Path: 4414 * ------------------- 4415 * 4416 * open acceptor stream (tcp_open allocates tcp_tli_accept() 4417 * as STREAM entry point) 4418 * 4419 * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_tli_accept() 4420 * 4421 * tcp_tli_accept() extracts the eager and makes the q->q_ptr <-> eager 4422 * association (we are not behind eager's squeue but sockfs is protecting us 4423 * and no one knows about this stream yet. The STREAMS entry point q->q_info 4424 * is changed to point at tcp_wput(). 4425 * 4426 * tcp_accept_common() sends any deferred eagers via tcp_send_pending() to 4427 * listener (done on listener's perimeter). 4428 * 4429 * tcp_tli_accept() calls tcp_accept_finish() on eagers perimeter to finish 4430 * accept. 4431 * 4432 * TLI/XTI client ACCEPT path: 4433 * --------------------------- 4434 * 4435 * soaccept() sends T_CONN_RES on the listener STREAM. 4436 * 4437 * tcp_tli_accept() -> tcp_accept_swap() complete the processing and send 4438 * a M_SETOPS mblk to eager perimeter to finish accept (tcp_accept_finish()). 4439 * 4440 * Locks: 4441 * ====== 4442 * 4443 * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and 4444 * and listeners->tcp_eager_next_q. 4445 * 4446 * Referencing: 4447 * ============ 4448 * 4449 * 1) We start out in tcp_input_listener by eager placing a ref on 4450 * listener and listener adding eager to listeners->tcp_eager_next_q0. 4451 * 4452 * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before 4453 * doing so we place a ref on the eager. This ref is finally dropped at the 4454 * end of tcp_accept_finish() while unwinding from the squeue, i.e. the 4455 * reference is dropped by the squeue framework. 4456 * 4457 * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish 4458 * 4459 * The reference must be released by the same entity that added the reference 4460 * In the above scheme, the eager is the entity that adds and releases the 4461 * references. Note that tcp_accept_finish executes in the squeue of the eager 4462 * (albeit after it is attached to the acceptor stream). Though 1. executes 4463 * in the listener's squeue, the eager is nascent at this point and the 4464 * reference can be considered to have been added on behalf of the eager. 4465 * 4466 * Eager getting a Reset or listener closing: 4467 * ========================================== 4468 * 4469 * Once the listener and eager are linked, the listener never does the unlink. 4470 * If the listener needs to close, tcp_eager_cleanup() is called which queues 4471 * a message on all eager perimeter. The eager then does the unlink, clears 4472 * any pointers to the listener's queue and drops the reference to the 4473 * listener. The listener waits in tcp_close outside the squeue until its 4474 * refcount has dropped to 1. This ensures that the listener has waited for 4475 * all eagers to clear their association with the listener. 4476 * 4477 * Similarly, if eager decides to go away, it can unlink itself and close. 4478 * When the T_CONN_RES comes down, we check if eager has closed. Note that 4479 * the reference to eager is still valid because of the extra ref we put 4480 * in tcp_send_conn_ind. 4481 * 4482 * Listener can always locate the eager under the protection 4483 * of the listener->tcp_eager_lock, and then do a refhold 4484 * on the eager during the accept processing. 4485 * 4486 * The acceptor stream accesses the eager in the accept processing 4487 * based on the ref placed on eager before sending T_conn_ind. 4488 * The only entity that can negate this refhold is a listener close 4489 * which is mutually exclusive with an active acceptor stream. 4490 * 4491 * Eager's reference on the listener 4492 * =================================== 4493 * 4494 * If the accept happens (even on a closed eager) the eager drops its 4495 * reference on the listener at the start of tcp_accept_finish. If the 4496 * eager is killed due to an incoming RST before the T_conn_ind is sent up, 4497 * the reference is dropped in tcp_closei_local. If the listener closes, 4498 * the reference is dropped in tcp_eager_kill. In all cases the reference 4499 * is dropped while executing in the eager's context (squeue). 4500 */ 4501 /* END CSTYLED */ 4502 4503 /* Process the SYN packet, mp, directed at the listener 'tcp' */ 4504 4505 /* 4506 * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN. 4507 * tcp_input_data will not see any packets for listeners since the listener 4508 * has conn_recv set to tcp_input_listener. 4509 */ 4510 /* ARGSUSED */ 4511 void 4512 tcp_input_listener(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 4513 { 4514 tcpha_t *tcpha; 4515 uint32_t seg_seq; 4516 tcp_t *eager; 4517 int err; 4518 conn_t *econnp = NULL; 4519 squeue_t *new_sqp; 4520 mblk_t *mp1; 4521 uint_t ip_hdr_len; 4522 conn_t *lconnp = (conn_t *)arg; 4523 tcp_t *listener = lconnp->conn_tcp; 4524 tcp_stack_t *tcps = listener->tcp_tcps; 4525 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 4526 uint_t flags; 4527 mblk_t *tpi_mp; 4528 uint_t ifindex = ira->ira_ruifindex; 4529 boolean_t tlc_set = B_FALSE; 4530 4531 ip_hdr_len = ira->ira_ip_hdr_length; 4532 tcpha = (tcpha_t *)&mp->b_rptr[ip_hdr_len]; 4533 flags = (unsigned int)tcpha->tha_flags & 0xFF; 4534 4535 if (!(flags & TH_SYN)) { 4536 if ((flags & TH_RST) || (flags & TH_URG)) { 4537 freemsg(mp); 4538 return; 4539 } 4540 if (flags & TH_ACK) { 4541 /* Note this executes in listener's squeue */ 4542 tcp_xmit_listeners_reset(mp, ira, ipst, lconnp); 4543 return; 4544 } 4545 4546 freemsg(mp); 4547 return; 4548 } 4549 4550 if (listener->tcp_state != TCPS_LISTEN) 4551 goto error2; 4552 4553 ASSERT(IPCL_IS_BOUND(lconnp)); 4554 4555 mutex_enter(&listener->tcp_eager_lock); 4556 4557 /* 4558 * The system is under memory pressure, so we need to do our part 4559 * to relieve the pressure. So we only accept new request if there 4560 * is nothing waiting to be accepted or waiting to complete the 3-way 4561 * handshake. This means that busy listener will not get too many 4562 * new requests which they cannot handle in time while non-busy 4563 * listener is still functioning properly. 4564 */ 4565 if (tcps->tcps_reclaim && (listener->tcp_conn_req_cnt_q > 0 || 4566 listener->tcp_conn_req_cnt_q0 > 0)) { 4567 mutex_exit(&listener->tcp_eager_lock); 4568 TCP_STAT(tcps, tcp_listen_mem_drop); 4569 goto error2; 4570 } 4571 4572 if (listener->tcp_conn_req_cnt_q >= listener->tcp_conn_req_max) { 4573 mutex_exit(&listener->tcp_eager_lock); 4574 TCP_STAT(tcps, tcp_listendrop); 4575 BUMP_MIB(&tcps->tcps_mib, tcpListenDrop); 4576 if (lconnp->conn_debug) { 4577 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 4578 "tcp_input_listener: listen backlog (max=%d) " 4579 "overflow (%d pending) on %s", 4580 listener->tcp_conn_req_max, 4581 listener->tcp_conn_req_cnt_q, 4582 tcp_display(listener, NULL, DISP_PORT_ONLY)); 4583 } 4584 goto error2; 4585 } 4586 4587 if (listener->tcp_conn_req_cnt_q0 >= 4588 listener->tcp_conn_req_max + tcps->tcps_conn_req_max_q0) { 4589 /* 4590 * Q0 is full. Drop a pending half-open req from the queue 4591 * to make room for the new SYN req. Also mark the time we 4592 * drop a SYN. 4593 * 4594 * A more aggressive defense against SYN attack will 4595 * be to set the "tcp_syn_defense" flag now. 4596 */ 4597 TCP_STAT(tcps, tcp_listendropq0); 4598 listener->tcp_last_rcv_lbolt = ddi_get_lbolt64(); 4599 if (!tcp_drop_q0(listener)) { 4600 mutex_exit(&listener->tcp_eager_lock); 4601 BUMP_MIB(&tcps->tcps_mib, tcpListenDropQ0); 4602 if (lconnp->conn_debug) { 4603 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 4604 "tcp_input_listener: listen half-open " 4605 "queue (max=%d) full (%d pending) on %s", 4606 tcps->tcps_conn_req_max_q0, 4607 listener->tcp_conn_req_cnt_q0, 4608 tcp_display(listener, NULL, 4609 DISP_PORT_ONLY)); 4610 } 4611 goto error2; 4612 } 4613 } 4614 4615 /* 4616 * Enforce the limit set on the number of connections per listener. 4617 * Note that tlc_cnt starts with 1. So need to add 1 to tlc_max 4618 * for comparison. 4619 */ 4620 if (listener->tcp_listen_cnt != NULL) { 4621 tcp_listen_cnt_t *tlc = listener->tcp_listen_cnt; 4622 int64_t now; 4623 4624 if (atomic_add_32_nv(&tlc->tlc_cnt, 1) > tlc->tlc_max + 1) { 4625 mutex_exit(&listener->tcp_eager_lock); 4626 now = ddi_get_lbolt64(); 4627 atomic_add_32(&tlc->tlc_cnt, -1); 4628 TCP_STAT(tcps, tcp_listen_cnt_drop); 4629 tlc->tlc_drop++; 4630 if (now - tlc->tlc_report_time > 4631 MSEC_TO_TICK(TCP_TLC_REPORT_INTERVAL)) { 4632 zcmn_err(lconnp->conn_zoneid, CE_WARN, 4633 "Listener (port %d) connection max (%u) " 4634 "reached: %u attempts dropped total\n", 4635 ntohs(listener->tcp_connp->conn_lport), 4636 tlc->tlc_max, tlc->tlc_drop); 4637 tlc->tlc_report_time = now; 4638 } 4639 goto error2; 4640 } 4641 tlc_set = B_TRUE; 4642 } 4643 4644 mutex_exit(&listener->tcp_eager_lock); 4645 4646 /* 4647 * IP sets ira_sqp to either the senders conn_sqp (for loopback) 4648 * or based on the ring (for packets from GLD). Otherwise it is 4649 * set based on lbolt i.e., a somewhat random number. 4650 */ 4651 ASSERT(ira->ira_sqp != NULL); 4652 new_sqp = ira->ira_sqp; 4653 4654 econnp = (conn_t *)tcp_get_conn(arg2, tcps); 4655 if (econnp == NULL) 4656 goto error2; 4657 4658 ASSERT(econnp->conn_netstack == lconnp->conn_netstack); 4659 econnp->conn_sqp = new_sqp; 4660 econnp->conn_initial_sqp = new_sqp; 4661 econnp->conn_ixa->ixa_sqp = new_sqp; 4662 4663 econnp->conn_fport = tcpha->tha_lport; 4664 econnp->conn_lport = tcpha->tha_fport; 4665 4666 err = conn_inherit_parent(lconnp, econnp); 4667 if (err != 0) 4668 goto error3; 4669 4670 /* We already know the laddr of the new connection is ours */ 4671 econnp->conn_ixa->ixa_src_generation = ipst->ips_src_generation; 4672 4673 ASSERT(OK_32PTR(mp->b_rptr)); 4674 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION || 4675 IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION); 4676 4677 if (lconnp->conn_family == AF_INET) { 4678 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION); 4679 tpi_mp = tcp_conn_create_v4(lconnp, econnp, mp, ira); 4680 } else { 4681 tpi_mp = tcp_conn_create_v6(lconnp, econnp, mp, ira); 4682 } 4683 4684 if (tpi_mp == NULL) 4685 goto error3; 4686 4687 eager = econnp->conn_tcp; 4688 eager->tcp_detached = B_TRUE; 4689 SOCK_CONNID_INIT(eager->tcp_connid); 4690 4691 tcp_init_values(eager); 4692 4693 ASSERT((econnp->conn_ixa->ixa_flags & 4694 (IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE | 4695 IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO)) == 4696 (IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE | 4697 IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO)); 4698 4699 if (!tcps->tcps_dev_flow_ctl) 4700 econnp->conn_ixa->ixa_flags |= IXAF_NO_DEV_FLOW_CTL; 4701 4702 /* Prepare for diffing against previous packets */ 4703 eager->tcp_recvifindex = 0; 4704 eager->tcp_recvhops = 0xffffffffU; 4705 4706 if (!(ira->ira_flags & IRAF_IS_IPV4) && econnp->conn_bound_if == 0) { 4707 if (IN6_IS_ADDR_LINKSCOPE(&econnp->conn_faddr_v6) || 4708 IN6_IS_ADDR_LINKSCOPE(&econnp->conn_laddr_v6)) { 4709 econnp->conn_incoming_ifindex = ifindex; 4710 econnp->conn_ixa->ixa_flags |= IXAF_SCOPEID_SET; 4711 econnp->conn_ixa->ixa_scopeid = ifindex; 4712 } 4713 } 4714 4715 if ((ira->ira_flags & (IRAF_IS_IPV4|IRAF_IPV4_OPTIONS)) == 4716 (IRAF_IS_IPV4|IRAF_IPV4_OPTIONS) && 4717 tcps->tcps_rev_src_routes) { 4718 ipha_t *ipha = (ipha_t *)mp->b_rptr; 4719 ip_pkt_t *ipp = &econnp->conn_xmit_ipp; 4720 4721 /* Source routing option copyover (reverse it) */ 4722 err = ip_find_hdr_v4(ipha, ipp, B_TRUE); 4723 if (err != 0) { 4724 freemsg(tpi_mp); 4725 goto error3; 4726 } 4727 ip_pkt_source_route_reverse_v4(ipp); 4728 } 4729 4730 ASSERT(eager->tcp_conn.tcp_eager_conn_ind == NULL); 4731 ASSERT(!eager->tcp_tconnind_started); 4732 /* 4733 * If the SYN came with a credential, it's a loopback packet or a 4734 * labeled packet; attach the credential to the TPI message. 4735 */ 4736 if (ira->ira_cred != NULL) 4737 mblk_setcred(tpi_mp, ira->ira_cred, ira->ira_cpid); 4738 4739 eager->tcp_conn.tcp_eager_conn_ind = tpi_mp; 4740 4741 /* Inherit the listener's SSL protection state */ 4742 if ((eager->tcp_kssl_ent = listener->tcp_kssl_ent) != NULL) { 4743 kssl_hold_ent(eager->tcp_kssl_ent); 4744 eager->tcp_kssl_pending = B_TRUE; 4745 } 4746 4747 /* Inherit the listener's non-STREAMS flag */ 4748 if (IPCL_IS_NONSTR(lconnp)) { 4749 econnp->conn_flags |= IPCL_NONSTR; 4750 } 4751 4752 ASSERT(eager->tcp_ordrel_mp == NULL); 4753 4754 if (!IPCL_IS_NONSTR(econnp)) { 4755 /* 4756 * Pre-allocate the T_ordrel_ind mblk for TPI socket so that 4757 * at close time, we will always have that to send up. 4758 * Otherwise, we need to do special handling in case the 4759 * allocation fails at that time. 4760 */ 4761 if ((eager->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL) 4762 goto error3; 4763 } 4764 /* 4765 * Now that the IP addresses and ports are setup in econnp we 4766 * can do the IPsec policy work. 4767 */ 4768 if (ira->ira_flags & IRAF_IPSEC_SECURE) { 4769 if (lconnp->conn_policy != NULL) { 4770 /* 4771 * Inherit the policy from the listener; use 4772 * actions from ira 4773 */ 4774 if (!ip_ipsec_policy_inherit(econnp, lconnp, ira)) { 4775 CONN_DEC_REF(econnp); 4776 freemsg(mp); 4777 goto error3; 4778 } 4779 } 4780 } 4781 4782 /* Inherit various TCP parameters from the listener */ 4783 eager->tcp_naglim = listener->tcp_naglim; 4784 eager->tcp_first_timer_threshold = listener->tcp_first_timer_threshold; 4785 eager->tcp_second_timer_threshold = 4786 listener->tcp_second_timer_threshold; 4787 eager->tcp_first_ctimer_threshold = 4788 listener->tcp_first_ctimer_threshold; 4789 eager->tcp_second_ctimer_threshold = 4790 listener->tcp_second_ctimer_threshold; 4791 4792 /* 4793 * tcp_set_destination() may set tcp_rwnd according to the route 4794 * metrics. If it does not, the eager's receive window will be set 4795 * to the listener's receive window later in this function. 4796 */ 4797 eager->tcp_rwnd = 0; 4798 4799 /* 4800 * Inherit listener's tcp_init_cwnd. Need to do this before 4801 * calling tcp_process_options() which set the initial cwnd. 4802 */ 4803 eager->tcp_init_cwnd = listener->tcp_init_cwnd; 4804 4805 if (is_system_labeled()) { 4806 ip_xmit_attr_t *ixa = econnp->conn_ixa; 4807 4808 ASSERT(ira->ira_tsl != NULL); 4809 /* Discard any old label */ 4810 if (ixa->ixa_free_flags & IXA_FREE_TSL) { 4811 ASSERT(ixa->ixa_tsl != NULL); 4812 label_rele(ixa->ixa_tsl); 4813 ixa->ixa_free_flags &= ~IXA_FREE_TSL; 4814 ixa->ixa_tsl = NULL; 4815 } 4816 if ((lconnp->conn_mlp_type != mlptSingle || 4817 lconnp->conn_mac_mode != CONN_MAC_DEFAULT) && 4818 ira->ira_tsl != NULL) { 4819 /* 4820 * If this is an MLP connection or a MAC-Exempt 4821 * connection with an unlabeled node, packets are to be 4822 * exchanged using the security label of the received 4823 * SYN packet instead of the server application's label. 4824 * tsol_check_dest called from ip_set_destination 4825 * might later update TSF_UNLABELED by replacing 4826 * ixa_tsl with a new label. 4827 */ 4828 label_hold(ira->ira_tsl); 4829 ip_xmit_attr_replace_tsl(ixa, ira->ira_tsl); 4830 DTRACE_PROBE2(mlp_syn_accept, conn_t *, 4831 econnp, ts_label_t *, ixa->ixa_tsl) 4832 } else { 4833 ixa->ixa_tsl = crgetlabel(econnp->conn_cred); 4834 DTRACE_PROBE2(syn_accept, conn_t *, 4835 econnp, ts_label_t *, ixa->ixa_tsl) 4836 } 4837 /* 4838 * conn_connect() called from tcp_set_destination will verify 4839 * the destination is allowed to receive packets at the 4840 * security label of the SYN-ACK we are generating. As part of 4841 * that, tsol_check_dest() may create a new effective label for 4842 * this connection. 4843 * Finally conn_connect() will call conn_update_label. 4844 * All that remains for TCP to do is to call 4845 * conn_build_hdr_template which is done as part of 4846 * tcp_set_destination. 4847 */ 4848 } 4849 4850 /* 4851 * Since we will clear tcp_listener before we clear tcp_detached 4852 * in the accept code we need tcp_hard_binding aka tcp_accept_inprogress 4853 * so we can tell a TCP_DETACHED_NONEAGER apart. 4854 */ 4855 eager->tcp_hard_binding = B_TRUE; 4856 4857 tcp_bind_hash_insert(&tcps->tcps_bind_fanout[ 4858 TCP_BIND_HASH(econnp->conn_lport)], eager, 0); 4859 4860 CL_INET_CONNECT(econnp, B_FALSE, err); 4861 if (err != 0) { 4862 tcp_bind_hash_remove(eager); 4863 goto error3; 4864 } 4865 4866 /* 4867 * No need to check for multicast destination since ip will only pass 4868 * up multicasts to those that have expressed interest 4869 * TODO: what about rejecting broadcasts? 4870 * Also check that source is not a multicast or broadcast address. 4871 */ 4872 eager->tcp_state = TCPS_SYN_RCVD; 4873 SOCK_CONNID_BUMP(eager->tcp_connid); 4874 4875 /* 4876 * Adapt our mss, ttl, ... based on the remote address. 4877 */ 4878 4879 if (tcp_set_destination(eager) != 0) { 4880 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 4881 /* Undo the bind_hash_insert */ 4882 tcp_bind_hash_remove(eager); 4883 goto error3; 4884 } 4885 4886 /* Process all TCP options. */ 4887 tcp_process_options(eager, tcpha); 4888 4889 /* Is the other end ECN capable? */ 4890 if (tcps->tcps_ecn_permitted >= 1 && 4891 (tcpha->tha_flags & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) { 4892 eager->tcp_ecn_ok = B_TRUE; 4893 } 4894 4895 /* 4896 * The listener's conn_rcvbuf should be the default window size or a 4897 * window size changed via SO_RCVBUF option. First round up the 4898 * eager's tcp_rwnd to the nearest MSS. Then find out the window 4899 * scale option value if needed. Call tcp_rwnd_set() to finish the 4900 * setting. 4901 * 4902 * Note if there is a rpipe metric associated with the remote host, 4903 * we should not inherit receive window size from listener. 4904 */ 4905 eager->tcp_rwnd = MSS_ROUNDUP( 4906 (eager->tcp_rwnd == 0 ? econnp->conn_rcvbuf : 4907 eager->tcp_rwnd), eager->tcp_mss); 4908 if (eager->tcp_snd_ws_ok) 4909 tcp_set_ws_value(eager); 4910 /* 4911 * Note that this is the only place tcp_rwnd_set() is called for 4912 * accepting a connection. We need to call it here instead of 4913 * after the 3-way handshake because we need to tell the other 4914 * side our rwnd in the SYN-ACK segment. 4915 */ 4916 (void) tcp_rwnd_set(eager, eager->tcp_rwnd); 4917 4918 ASSERT(eager->tcp_connp->conn_rcvbuf != 0 && 4919 eager->tcp_connp->conn_rcvbuf == eager->tcp_rwnd); 4920 4921 ASSERT(econnp->conn_rcvbuf != 0 && 4922 econnp->conn_rcvbuf == eager->tcp_rwnd); 4923 4924 /* Put a ref on the listener for the eager. */ 4925 CONN_INC_REF(lconnp); 4926 mutex_enter(&listener->tcp_eager_lock); 4927 listener->tcp_eager_next_q0->tcp_eager_prev_q0 = eager; 4928 eager->tcp_eager_next_q0 = listener->tcp_eager_next_q0; 4929 listener->tcp_eager_next_q0 = eager; 4930 eager->tcp_eager_prev_q0 = listener; 4931 4932 /* Set tcp_listener before adding it to tcp_conn_fanout */ 4933 eager->tcp_listener = listener; 4934 eager->tcp_saved_listener = listener; 4935 4936 /* 4937 * Set tcp_listen_cnt so that when the connection is done, the counter 4938 * is decremented. 4939 */ 4940 eager->tcp_listen_cnt = listener->tcp_listen_cnt; 4941 4942 /* 4943 * Tag this detached tcp vector for later retrieval 4944 * by our listener client in tcp_accept(). 4945 */ 4946 eager->tcp_conn_req_seqnum = listener->tcp_conn_req_seqnum; 4947 listener->tcp_conn_req_cnt_q0++; 4948 if (++listener->tcp_conn_req_seqnum == -1) { 4949 /* 4950 * -1 is "special" and defined in TPI as something 4951 * that should never be used in T_CONN_IND 4952 */ 4953 ++listener->tcp_conn_req_seqnum; 4954 } 4955 mutex_exit(&listener->tcp_eager_lock); 4956 4957 if (listener->tcp_syn_defense) { 4958 /* Don't drop the SYN that comes from a good IP source */ 4959 ipaddr_t *addr_cache; 4960 4961 addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache); 4962 if (addr_cache != NULL && econnp->conn_faddr_v4 == 4963 addr_cache[IP_ADDR_CACHE_HASH(econnp->conn_faddr_v4)]) { 4964 eager->tcp_dontdrop = B_TRUE; 4965 } 4966 } 4967 4968 /* 4969 * We need to insert the eager in its own perimeter but as soon 4970 * as we do that, we expose the eager to the classifier and 4971 * should not touch any field outside the eager's perimeter. 4972 * So do all the work necessary before inserting the eager 4973 * in its own perimeter. Be optimistic that conn_connect() 4974 * will succeed but undo everything if it fails. 4975 */ 4976 seg_seq = ntohl(tcpha->tha_seq); 4977 eager->tcp_irs = seg_seq; 4978 eager->tcp_rack = seg_seq; 4979 eager->tcp_rnxt = seg_seq + 1; 4980 eager->tcp_tcpha->tha_ack = htonl(eager->tcp_rnxt); 4981 BUMP_MIB(&tcps->tcps_mib, tcpPassiveOpens); 4982 eager->tcp_state = TCPS_SYN_RCVD; 4983 mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss, 4984 NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE); 4985 if (mp1 == NULL) { 4986 /* 4987 * Increment the ref count as we are going to 4988 * enqueueing an mp in squeue 4989 */ 4990 CONN_INC_REF(econnp); 4991 goto error; 4992 } 4993 4994 /* 4995 * We need to start the rto timer. In normal case, we start 4996 * the timer after sending the packet on the wire (or at 4997 * least believing that packet was sent by waiting for 4998 * conn_ip_output() to return). Since this is the first packet 4999 * being sent on the wire for the eager, our initial tcp_rto 5000 * is at least tcp_rexmit_interval_min which is a fairly 5001 * large value to allow the algorithm to adjust slowly to large 5002 * fluctuations of RTT during first few transmissions. 5003 * 5004 * Starting the timer first and then sending the packet in this 5005 * case shouldn't make much difference since tcp_rexmit_interval_min 5006 * is of the order of several 100ms and starting the timer 5007 * first and then sending the packet will result in difference 5008 * of few micro seconds. 5009 * 5010 * Without this optimization, we are forced to hold the fanout 5011 * lock across the ipcl_bind_insert() and sending the packet 5012 * so that we don't race against an incoming packet (maybe RST) 5013 * for this eager. 5014 * 5015 * It is necessary to acquire an extra reference on the eager 5016 * at this point and hold it until after tcp_send_data() to 5017 * ensure against an eager close race. 5018 */ 5019 5020 CONN_INC_REF(econnp); 5021 5022 TCP_TIMER_RESTART(eager, eager->tcp_rto); 5023 5024 /* 5025 * Insert the eager in its own perimeter now. We are ready to deal 5026 * with any packets on eager. 5027 */ 5028 if (ipcl_conn_insert(econnp) != 0) 5029 goto error; 5030 5031 ASSERT(econnp->conn_ixa->ixa_notify_cookie == econnp->conn_tcp); 5032 freemsg(mp); 5033 /* 5034 * Send the SYN-ACK. Use the right squeue so that conn_ixa is 5035 * only used by one thread at a time. 5036 */ 5037 if (econnp->conn_sqp == lconnp->conn_sqp) { 5038 (void) conn_ip_output(mp1, econnp->conn_ixa); 5039 CONN_DEC_REF(econnp); 5040 } else { 5041 SQUEUE_ENTER_ONE(econnp->conn_sqp, mp1, tcp_send_synack, 5042 econnp, NULL, SQ_PROCESS, SQTAG_TCP_SEND_SYNACK); 5043 } 5044 return; 5045 error: 5046 freemsg(mp1); 5047 eager->tcp_closemp_used = B_TRUE; 5048 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 5049 mp1 = &eager->tcp_closemp; 5050 SQUEUE_ENTER_ONE(econnp->conn_sqp, mp1, tcp_eager_kill, 5051 econnp, NULL, SQ_FILL, SQTAG_TCP_CONN_REQ_2); 5052 5053 /* 5054 * If a connection already exists, send the mp to that connections so 5055 * that it can be appropriately dealt with. 5056 */ 5057 ipst = tcps->tcps_netstack->netstack_ip; 5058 5059 if ((econnp = ipcl_classify(mp, ira, ipst)) != NULL) { 5060 if (!IPCL_IS_CONNECTED(econnp)) { 5061 /* 5062 * Something bad happened. ipcl_conn_insert() 5063 * failed because a connection already existed 5064 * in connected hash but we can't find it 5065 * anymore (someone blew it away). Just 5066 * free this message and hopefully remote 5067 * will retransmit at which time the SYN can be 5068 * treated as a new connection or dealth with 5069 * a TH_RST if a connection already exists. 5070 */ 5071 CONN_DEC_REF(econnp); 5072 freemsg(mp); 5073 } else { 5074 SQUEUE_ENTER_ONE(econnp->conn_sqp, mp, tcp_input_data, 5075 econnp, ira, SQ_FILL, SQTAG_TCP_CONN_REQ_1); 5076 } 5077 } else { 5078 /* Nobody wants this packet */ 5079 freemsg(mp); 5080 } 5081 return; 5082 error3: 5083 CONN_DEC_REF(econnp); 5084 error2: 5085 freemsg(mp); 5086 if (tlc_set) 5087 atomic_add_32(&listener->tcp_listen_cnt->tlc_cnt, -1); 5088 } 5089 5090 /* ARGSUSED2 */ 5091 void 5092 tcp_send_synack(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 5093 { 5094 conn_t *econnp = (conn_t *)arg; 5095 tcp_t *tcp = econnp->conn_tcp; 5096 5097 /* Guard against a RST having blown it away while on the squeue */ 5098 if (tcp->tcp_state == TCPS_CLOSED) { 5099 freemsg(mp); 5100 return; 5101 } 5102 5103 (void) conn_ip_output(mp, econnp->conn_ixa); 5104 } 5105 5106 /* 5107 * In an ideal case of vertical partition in NUMA architecture, its 5108 * beneficial to have the listener and all the incoming connections 5109 * tied to the same squeue. The other constraint is that incoming 5110 * connections should be tied to the squeue attached to interrupted 5111 * CPU for obvious locality reason so this leaves the listener to 5112 * be tied to the same squeue. Our only problem is that when listener 5113 * is binding, the CPU that will get interrupted by the NIC whose 5114 * IP address the listener is binding to is not even known. So 5115 * the code below allows us to change that binding at the time the 5116 * CPU is interrupted by virtue of incoming connection's squeue. 5117 * 5118 * This is usefull only in case of a listener bound to a specific IP 5119 * address. For other kind of listeners, they get bound the 5120 * very first time and there is no attempt to rebind them. 5121 */ 5122 void 5123 tcp_input_listener_unbound(void *arg, mblk_t *mp, void *arg2, 5124 ip_recv_attr_t *ira) 5125 { 5126 conn_t *connp = (conn_t *)arg; 5127 squeue_t *sqp = (squeue_t *)arg2; 5128 squeue_t *new_sqp; 5129 uint32_t conn_flags; 5130 5131 /* 5132 * IP sets ira_sqp to either the senders conn_sqp (for loopback) 5133 * or based on the ring (for packets from GLD). Otherwise it is 5134 * set based on lbolt i.e., a somewhat random number. 5135 */ 5136 ASSERT(ira->ira_sqp != NULL); 5137 new_sqp = ira->ira_sqp; 5138 5139 if (connp->conn_fanout == NULL) 5140 goto done; 5141 5142 if (!(connp->conn_flags & IPCL_FULLY_BOUND)) { 5143 mutex_enter(&connp->conn_fanout->connf_lock); 5144 mutex_enter(&connp->conn_lock); 5145 /* 5146 * No one from read or write side can access us now 5147 * except for already queued packets on this squeue. 5148 * But since we haven't changed the squeue yet, they 5149 * can't execute. If they are processed after we have 5150 * changed the squeue, they are sent back to the 5151 * correct squeue down below. 5152 * But a listner close can race with processing of 5153 * incoming SYN. If incoming SYN processing changes 5154 * the squeue then the listener close which is waiting 5155 * to enter the squeue would operate on the wrong 5156 * squeue. Hence we don't change the squeue here unless 5157 * the refcount is exactly the minimum refcount. The 5158 * minimum refcount of 4 is counted as - 1 each for 5159 * TCP and IP, 1 for being in the classifier hash, and 5160 * 1 for the mblk being processed. 5161 */ 5162 5163 if (connp->conn_ref != 4 || 5164 connp->conn_tcp->tcp_state != TCPS_LISTEN) { 5165 mutex_exit(&connp->conn_lock); 5166 mutex_exit(&connp->conn_fanout->connf_lock); 5167 goto done; 5168 } 5169 if (connp->conn_sqp != new_sqp) { 5170 while (connp->conn_sqp != new_sqp) 5171 (void) casptr(&connp->conn_sqp, sqp, new_sqp); 5172 /* No special MT issues for outbound ixa_sqp hint */ 5173 connp->conn_ixa->ixa_sqp = new_sqp; 5174 } 5175 5176 do { 5177 conn_flags = connp->conn_flags; 5178 conn_flags |= IPCL_FULLY_BOUND; 5179 (void) cas32(&connp->conn_flags, connp->conn_flags, 5180 conn_flags); 5181 } while (!(connp->conn_flags & IPCL_FULLY_BOUND)); 5182 5183 mutex_exit(&connp->conn_fanout->connf_lock); 5184 mutex_exit(&connp->conn_lock); 5185 5186 /* 5187 * Assume we have picked a good squeue for the listener. Make 5188 * subsequent SYNs not try to change the squeue. 5189 */ 5190 connp->conn_recv = tcp_input_listener; 5191 } 5192 5193 done: 5194 if (connp->conn_sqp != sqp) { 5195 CONN_INC_REF(connp); 5196 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp, 5197 ira, SQ_FILL, SQTAG_TCP_CONN_REQ_UNBOUND); 5198 } else { 5199 tcp_input_listener(connp, mp, sqp, ira); 5200 } 5201 } 5202 5203 /* 5204 * Successful connect request processing begins when our client passes 5205 * a T_CONN_REQ message into tcp_wput(), which performs function calls into 5206 * IP and the passes a T_OK_ACK (or T_ERROR_ACK upstream). 5207 * 5208 * After various error checks are completed, tcp_tpi_connect() lays 5209 * the target address and port into the composite header template. 5210 * Then we ask IP for information, including a source address if we didn't 5211 * already have one. Finally we prepare to send the SYN packet, and then 5212 * send up the T_OK_ACK reply message. 5213 */ 5214 static void 5215 tcp_tpi_connect(tcp_t *tcp, mblk_t *mp) 5216 { 5217 sin_t *sin; 5218 struct T_conn_req *tcr; 5219 struct sockaddr *sa; 5220 socklen_t len; 5221 int error; 5222 cred_t *cr; 5223 pid_t cpid; 5224 conn_t *connp = tcp->tcp_connp; 5225 queue_t *q = connp->conn_wq; 5226 5227 /* 5228 * All Solaris components should pass a db_credp 5229 * for this TPI message, hence we ASSERT. 5230 * But in case there is some other M_PROTO that looks 5231 * like a TPI message sent by some other kernel 5232 * component, we check and return an error. 5233 */ 5234 cr = msg_getcred(mp, &cpid); 5235 ASSERT(cr != NULL); 5236 if (cr == NULL) { 5237 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 5238 return; 5239 } 5240 5241 tcr = (struct T_conn_req *)mp->b_rptr; 5242 5243 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 5244 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { 5245 tcp_err_ack(tcp, mp, TPROTO, 0); 5246 return; 5247 } 5248 5249 /* 5250 * Pre-allocate the T_ordrel_ind mblk so that at close time, we 5251 * will always have that to send up. Otherwise, we need to do 5252 * special handling in case the allocation fails at that time. 5253 * If the end point is TPI, the tcp_t can be reused and the 5254 * tcp_ordrel_mp may be allocated already. 5255 */ 5256 if (tcp->tcp_ordrel_mp == NULL) { 5257 if ((tcp->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL) { 5258 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 5259 return; 5260 } 5261 } 5262 5263 /* 5264 * Determine packet type based on type of address passed in 5265 * the request should contain an IPv4 or IPv6 address. 5266 * Make sure that address family matches the type of 5267 * family of the address passed down. 5268 */ 5269 switch (tcr->DEST_length) { 5270 default: 5271 tcp_err_ack(tcp, mp, TBADADDR, 0); 5272 return; 5273 5274 case (sizeof (sin_t) - sizeof (sin->sin_zero)): { 5275 /* 5276 * XXX: The check for valid DEST_length was not there 5277 * in earlier releases and some buggy 5278 * TLI apps (e.g Sybase) got away with not feeding 5279 * in sin_zero part of address. 5280 * We allow that bug to keep those buggy apps humming. 5281 * Test suites require the check on DEST_length. 5282 * We construct a new mblk with valid DEST_length 5283 * free the original so the rest of the code does 5284 * not have to keep track of this special shorter 5285 * length address case. 5286 */ 5287 mblk_t *nmp; 5288 struct T_conn_req *ntcr; 5289 sin_t *nsin; 5290 5291 nmp = allocb(sizeof (struct T_conn_req) + sizeof (sin_t) + 5292 tcr->OPT_length, BPRI_HI); 5293 if (nmp == NULL) { 5294 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 5295 return; 5296 } 5297 ntcr = (struct T_conn_req *)nmp->b_rptr; 5298 bzero(ntcr, sizeof (struct T_conn_req)); /* zero fill */ 5299 ntcr->PRIM_type = T_CONN_REQ; 5300 ntcr->DEST_length = sizeof (sin_t); 5301 ntcr->DEST_offset = sizeof (struct T_conn_req); 5302 5303 nsin = (sin_t *)((uchar_t *)ntcr + ntcr->DEST_offset); 5304 *nsin = sin_null; 5305 /* Get pointer to shorter address to copy from original mp */ 5306 sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset, 5307 tcr->DEST_length); /* extract DEST_length worth of sin_t */ 5308 if (sin == NULL || !OK_32PTR((char *)sin)) { 5309 freemsg(nmp); 5310 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 5311 return; 5312 } 5313 nsin->sin_family = sin->sin_family; 5314 nsin->sin_port = sin->sin_port; 5315 nsin->sin_addr = sin->sin_addr; 5316 /* Note:nsin->sin_zero zero-fill with sin_null assign above */ 5317 nmp->b_wptr = (uchar_t *)&nsin[1]; 5318 if (tcr->OPT_length != 0) { 5319 ntcr->OPT_length = tcr->OPT_length; 5320 ntcr->OPT_offset = nmp->b_wptr - nmp->b_rptr; 5321 bcopy((uchar_t *)tcr + tcr->OPT_offset, 5322 (uchar_t *)ntcr + ntcr->OPT_offset, 5323 tcr->OPT_length); 5324 nmp->b_wptr += tcr->OPT_length; 5325 } 5326 freemsg(mp); /* original mp freed */ 5327 mp = nmp; /* re-initialize original variables */ 5328 tcr = ntcr; 5329 } 5330 /* FALLTHRU */ 5331 5332 case sizeof (sin_t): 5333 sa = (struct sockaddr *)mi_offset_param(mp, tcr->DEST_offset, 5334 sizeof (sin_t)); 5335 len = sizeof (sin_t); 5336 break; 5337 5338 case sizeof (sin6_t): 5339 sa = (struct sockaddr *)mi_offset_param(mp, tcr->DEST_offset, 5340 sizeof (sin6_t)); 5341 len = sizeof (sin6_t); 5342 break; 5343 } 5344 5345 error = proto_verify_ip_addr(connp->conn_family, sa, len); 5346 if (error != 0) { 5347 tcp_err_ack(tcp, mp, TSYSERR, error); 5348 return; 5349 } 5350 5351 /* 5352 * TODO: If someone in TCPS_TIME_WAIT has this dst/port we 5353 * should key on their sequence number and cut them loose. 5354 */ 5355 5356 /* 5357 * If options passed in, feed it for verification and handling 5358 */ 5359 if (tcr->OPT_length != 0) { 5360 mblk_t *ok_mp; 5361 mblk_t *discon_mp; 5362 mblk_t *conn_opts_mp; 5363 int t_error, sys_error, do_disconnect; 5364 5365 conn_opts_mp = NULL; 5366 5367 if (tcp_conprim_opt_process(tcp, mp, 5368 &do_disconnect, &t_error, &sys_error) < 0) { 5369 if (do_disconnect) { 5370 ASSERT(t_error == 0 && sys_error == 0); 5371 discon_mp = mi_tpi_discon_ind(NULL, 5372 ECONNREFUSED, 0); 5373 if (!discon_mp) { 5374 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, 5375 TSYSERR, ENOMEM); 5376 return; 5377 } 5378 ok_mp = mi_tpi_ok_ack_alloc(mp); 5379 if (!ok_mp) { 5380 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 5381 TSYSERR, ENOMEM); 5382 return; 5383 } 5384 qreply(q, ok_mp); 5385 qreply(q, discon_mp); /* no flush! */ 5386 } else { 5387 ASSERT(t_error != 0); 5388 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, t_error, 5389 sys_error); 5390 } 5391 return; 5392 } 5393 /* 5394 * Success in setting options, the mp option buffer represented 5395 * by OPT_length/offset has been potentially modified and 5396 * contains results of option processing. We copy it in 5397 * another mp to save it for potentially influencing returning 5398 * it in T_CONN_CONN. 5399 */ 5400 if (tcr->OPT_length != 0) { /* there are resulting options */ 5401 conn_opts_mp = copyb(mp); 5402 if (!conn_opts_mp) { 5403 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, 5404 TSYSERR, ENOMEM); 5405 return; 5406 } 5407 ASSERT(tcp->tcp_conn.tcp_opts_conn_req == NULL); 5408 tcp->tcp_conn.tcp_opts_conn_req = conn_opts_mp; 5409 /* 5410 * Note: 5411 * These resulting option negotiation can include any 5412 * end-to-end negotiation options but there no such 5413 * thing (yet?) in our TCP/IP. 5414 */ 5415 } 5416 } 5417 5418 /* call the non-TPI version */ 5419 error = tcp_do_connect(tcp->tcp_connp, sa, len, cr, cpid); 5420 if (error < 0) { 5421 mp = mi_tpi_err_ack_alloc(mp, -error, 0); 5422 } else if (error > 0) { 5423 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 5424 } else { 5425 mp = mi_tpi_ok_ack_alloc(mp); 5426 } 5427 5428 /* 5429 * Note: Code below is the "failure" case 5430 */ 5431 /* return error ack and blow away saved option results if any */ 5432 connect_failed: 5433 if (mp != NULL) 5434 putnext(connp->conn_rq, mp); 5435 else { 5436 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 5437 TSYSERR, ENOMEM); 5438 } 5439 } 5440 5441 /* 5442 * Handle connect to IPv4 destinations, including connections for AF_INET6 5443 * sockets connecting to IPv4 mapped IPv6 destinations. 5444 * Returns zero if OK, a positive errno, or a negative TLI error. 5445 */ 5446 static int 5447 tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, in_port_t dstport, 5448 uint_t srcid) 5449 { 5450 ipaddr_t dstaddr = *dstaddrp; 5451 uint16_t lport; 5452 conn_t *connp = tcp->tcp_connp; 5453 tcp_stack_t *tcps = tcp->tcp_tcps; 5454 int error; 5455 5456 ASSERT(connp->conn_ipversion == IPV4_VERSION); 5457 5458 /* Check for attempt to connect to INADDR_ANY */ 5459 if (dstaddr == INADDR_ANY) { 5460 /* 5461 * SunOS 4.x and 4.3 BSD allow an application 5462 * to connect a TCP socket to INADDR_ANY. 5463 * When they do this, the kernel picks the 5464 * address of one interface and uses it 5465 * instead. The kernel usually ends up 5466 * picking the address of the loopback 5467 * interface. This is an undocumented feature. 5468 * However, we provide the same thing here 5469 * in order to have source and binary 5470 * compatibility with SunOS 4.x. 5471 * Update the T_CONN_REQ (sin/sin6) since it is used to 5472 * generate the T_CONN_CON. 5473 */ 5474 dstaddr = htonl(INADDR_LOOPBACK); 5475 *dstaddrp = dstaddr; 5476 } 5477 5478 /* Handle __sin6_src_id if socket not bound to an IP address */ 5479 if (srcid != 0 && connp->conn_laddr_v4 == INADDR_ANY) { 5480 ip_srcid_find_id(srcid, &connp->conn_laddr_v6, 5481 IPCL_ZONEID(connp), tcps->tcps_netstack); 5482 connp->conn_saddr_v6 = connp->conn_laddr_v6; 5483 } 5484 5485 IN6_IPADDR_TO_V4MAPPED(dstaddr, &connp->conn_faddr_v6); 5486 connp->conn_fport = dstport; 5487 5488 /* 5489 * At this point the remote destination address and remote port fields 5490 * in the tcp-four-tuple have been filled in the tcp structure. Now we 5491 * have to see which state tcp was in so we can take appropriate action. 5492 */ 5493 if (tcp->tcp_state == TCPS_IDLE) { 5494 /* 5495 * We support a quick connect capability here, allowing 5496 * clients to transition directly from IDLE to SYN_SENT 5497 * tcp_bindi will pick an unused port, insert the connection 5498 * in the bind hash and transition to BOUND state. 5499 */ 5500 lport = tcp_update_next_port(tcps->tcps_next_port_to_try, 5501 tcp, B_TRUE); 5502 lport = tcp_bindi(tcp, lport, &connp->conn_laddr_v6, 0, B_TRUE, 5503 B_FALSE, B_FALSE); 5504 if (lport == 0) 5505 return (-TNOADDR); 5506 } 5507 5508 /* 5509 * Lookup the route to determine a source address and the uinfo. 5510 * Setup TCP parameters based on the metrics/DCE. 5511 */ 5512 error = tcp_set_destination(tcp); 5513 if (error != 0) 5514 return (error); 5515 5516 /* 5517 * Don't let an endpoint connect to itself. 5518 */ 5519 if (connp->conn_faddr_v4 == connp->conn_laddr_v4 && 5520 connp->conn_fport == connp->conn_lport) 5521 return (-TBADADDR); 5522 5523 tcp->tcp_state = TCPS_SYN_SENT; 5524 5525 return (ipcl_conn_insert_v4(connp)); 5526 } 5527 5528 /* 5529 * Handle connect to IPv6 destinations. 5530 * Returns zero if OK, a positive errno, or a negative TLI error. 5531 */ 5532 static int 5533 tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, in_port_t dstport, 5534 uint32_t flowinfo, uint_t srcid, uint32_t scope_id) 5535 { 5536 uint16_t lport; 5537 conn_t *connp = tcp->tcp_connp; 5538 tcp_stack_t *tcps = tcp->tcp_tcps; 5539 int error; 5540 5541 ASSERT(connp->conn_family == AF_INET6); 5542 5543 /* 5544 * If we're here, it means that the destination address is a native 5545 * IPv6 address. Return an error if conn_ipversion is not IPv6. A 5546 * reason why it might not be IPv6 is if the socket was bound to an 5547 * IPv4-mapped IPv6 address. 5548 */ 5549 if (connp->conn_ipversion != IPV6_VERSION) 5550 return (-TBADADDR); 5551 5552 /* 5553 * Interpret a zero destination to mean loopback. 5554 * Update the T_CONN_REQ (sin/sin6) since it is used to 5555 * generate the T_CONN_CON. 5556 */ 5557 if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp)) 5558 *dstaddrp = ipv6_loopback; 5559 5560 /* Handle __sin6_src_id if socket not bound to an IP address */ 5561 if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&connp->conn_laddr_v6)) { 5562 ip_srcid_find_id(srcid, &connp->conn_laddr_v6, 5563 IPCL_ZONEID(connp), tcps->tcps_netstack); 5564 connp->conn_saddr_v6 = connp->conn_laddr_v6; 5565 } 5566 5567 /* 5568 * Take care of the scope_id now. 5569 */ 5570 if (scope_id != 0 && IN6_IS_ADDR_LINKSCOPE(dstaddrp)) { 5571 connp->conn_ixa->ixa_flags |= IXAF_SCOPEID_SET; 5572 connp->conn_ixa->ixa_scopeid = scope_id; 5573 } else { 5574 connp->conn_ixa->ixa_flags &= ~IXAF_SCOPEID_SET; 5575 } 5576 5577 connp->conn_flowinfo = flowinfo; 5578 connp->conn_faddr_v6 = *dstaddrp; 5579 connp->conn_fport = dstport; 5580 5581 /* 5582 * At this point the remote destination address and remote port fields 5583 * in the tcp-four-tuple have been filled in the tcp structure. Now we 5584 * have to see which state tcp was in so we can take appropriate action. 5585 */ 5586 if (tcp->tcp_state == TCPS_IDLE) { 5587 /* 5588 * We support a quick connect capability here, allowing 5589 * clients to transition directly from IDLE to SYN_SENT 5590 * tcp_bindi will pick an unused port, insert the connection 5591 * in the bind hash and transition to BOUND state. 5592 */ 5593 lport = tcp_update_next_port(tcps->tcps_next_port_to_try, 5594 tcp, B_TRUE); 5595 lport = tcp_bindi(tcp, lport, &connp->conn_laddr_v6, 0, B_TRUE, 5596 B_FALSE, B_FALSE); 5597 if (lport == 0) 5598 return (-TNOADDR); 5599 } 5600 5601 /* 5602 * Lookup the route to determine a source address and the uinfo. 5603 * Setup TCP parameters based on the metrics/DCE. 5604 */ 5605 error = tcp_set_destination(tcp); 5606 if (error != 0) 5607 return (error); 5608 5609 /* 5610 * Don't let an endpoint connect to itself. 5611 */ 5612 if (IN6_ARE_ADDR_EQUAL(&connp->conn_faddr_v6, &connp->conn_laddr_v6) && 5613 connp->conn_fport == connp->conn_lport) 5614 return (-TBADADDR); 5615 5616 tcp->tcp_state = TCPS_SYN_SENT; 5617 5618 return (ipcl_conn_insert_v6(connp)); 5619 } 5620 5621 /* 5622 * Disconnect 5623 * Note that unlike other functions this returns a positive tli error 5624 * when it fails; it never returns an errno. 5625 */ 5626 static int 5627 tcp_disconnect_common(tcp_t *tcp, t_scalar_t seqnum) 5628 { 5629 conn_t *lconnp; 5630 tcp_stack_t *tcps = tcp->tcp_tcps; 5631 conn_t *connp = tcp->tcp_connp; 5632 5633 /* 5634 * Right now, upper modules pass down a T_DISCON_REQ to TCP, 5635 * when the stream is in BOUND state. Do not send a reset, 5636 * since the destination IP address is not valid, and it can 5637 * be the initialized value of all zeros (broadcast address). 5638 */ 5639 if (tcp->tcp_state <= TCPS_BOUND) { 5640 if (connp->conn_debug) { 5641 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 5642 "tcp_disconnect: bad state, %d", tcp->tcp_state); 5643 } 5644 return (TOUTSTATE); 5645 } 5646 5647 5648 if (seqnum == -1 || tcp->tcp_conn_req_max == 0) { 5649 5650 /* 5651 * According to TPI, for non-listeners, ignore seqnum 5652 * and disconnect. 5653 * Following interpretation of -1 seqnum is historical 5654 * and implied TPI ? (TPI only states that for T_CONN_IND, 5655 * a valid seqnum should not be -1). 5656 * 5657 * -1 means disconnect everything 5658 * regardless even on a listener. 5659 */ 5660 5661 int old_state = tcp->tcp_state; 5662 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 5663 5664 /* 5665 * The connection can't be on the tcp_time_wait_head list 5666 * since it is not detached. 5667 */ 5668 ASSERT(tcp->tcp_time_wait_next == NULL); 5669 ASSERT(tcp->tcp_time_wait_prev == NULL); 5670 ASSERT(tcp->tcp_time_wait_expire == 0); 5671 /* 5672 * If it used to be a listener, check to make sure no one else 5673 * has taken the port before switching back to LISTEN state. 5674 */ 5675 if (connp->conn_ipversion == IPV4_VERSION) { 5676 lconnp = ipcl_lookup_listener_v4(connp->conn_lport, 5677 connp->conn_laddr_v4, IPCL_ZONEID(connp), ipst); 5678 } else { 5679 uint_t ifindex = 0; 5680 5681 if (connp->conn_ixa->ixa_flags & IXAF_SCOPEID_SET) 5682 ifindex = connp->conn_ixa->ixa_scopeid; 5683 5684 /* Allow conn_bound_if listeners? */ 5685 lconnp = ipcl_lookup_listener_v6(connp->conn_lport, 5686 &connp->conn_laddr_v6, ifindex, IPCL_ZONEID(connp), 5687 ipst); 5688 } 5689 if (tcp->tcp_conn_req_max && lconnp == NULL) { 5690 tcp->tcp_state = TCPS_LISTEN; 5691 } else if (old_state > TCPS_BOUND) { 5692 tcp->tcp_conn_req_max = 0; 5693 tcp->tcp_state = TCPS_BOUND; 5694 5695 /* 5696 * If this end point is not going to become a listener, 5697 * decrement the listener connection count if 5698 * necessary. Note that we do not do this if it is 5699 * going to be a listner (the above if case) since 5700 * then it may remove the counter struct. 5701 */ 5702 if (tcp->tcp_listen_cnt != NULL) 5703 TCP_DECR_LISTEN_CNT(tcp); 5704 } 5705 if (lconnp != NULL) 5706 CONN_DEC_REF(lconnp); 5707 if (old_state == TCPS_SYN_SENT || old_state == TCPS_SYN_RCVD) { 5708 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 5709 } else if (old_state == TCPS_ESTABLISHED || 5710 old_state == TCPS_CLOSE_WAIT) { 5711 BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); 5712 } 5713 5714 if (tcp->tcp_fused) 5715 tcp_unfuse(tcp); 5716 5717 mutex_enter(&tcp->tcp_eager_lock); 5718 if ((tcp->tcp_conn_req_cnt_q0 != 0) || 5719 (tcp->tcp_conn_req_cnt_q != 0)) { 5720 tcp_eager_cleanup(tcp, 0); 5721 } 5722 mutex_exit(&tcp->tcp_eager_lock); 5723 5724 tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt, 5725 tcp->tcp_rnxt, TH_RST | TH_ACK); 5726 5727 tcp_reinit(tcp); 5728 5729 return (0); 5730 } else if (!tcp_eager_blowoff(tcp, seqnum)) { 5731 return (TBADSEQ); 5732 } 5733 return (0); 5734 } 5735 5736 /* 5737 * Our client hereby directs us to reject the connection request 5738 * that tcp_input_listener() marked with 'seqnum'. Rejection consists 5739 * of sending the appropriate RST, not an ICMP error. 5740 */ 5741 static void 5742 tcp_disconnect(tcp_t *tcp, mblk_t *mp) 5743 { 5744 t_scalar_t seqnum; 5745 int error; 5746 conn_t *connp = tcp->tcp_connp; 5747 5748 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 5749 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) { 5750 tcp_err_ack(tcp, mp, TPROTO, 0); 5751 return; 5752 } 5753 seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number; 5754 error = tcp_disconnect_common(tcp, seqnum); 5755 if (error != 0) 5756 tcp_err_ack(tcp, mp, error, 0); 5757 else { 5758 if (tcp->tcp_state >= TCPS_ESTABLISHED) { 5759 /* Send M_FLUSH according to TPI */ 5760 (void) putnextctl1(connp->conn_rq, M_FLUSH, FLUSHRW); 5761 } 5762 mp = mi_tpi_ok_ack_alloc(mp); 5763 if (mp != NULL) 5764 putnext(connp->conn_rq, mp); 5765 } 5766 } 5767 5768 /* 5769 * Diagnostic routine used to return a string associated with the tcp state. 5770 * Note that if the caller does not supply a buffer, it will use an internal 5771 * static string. This means that if multiple threads call this function at 5772 * the same time, output can be corrupted... Note also that this function 5773 * does not check the size of the supplied buffer. The caller has to make 5774 * sure that it is big enough. 5775 */ 5776 static char * 5777 tcp_display(tcp_t *tcp, char *sup_buf, char format) 5778 { 5779 char buf1[30]; 5780 static char priv_buf[INET6_ADDRSTRLEN * 2 + 80]; 5781 char *buf; 5782 char *cp; 5783 in6_addr_t local, remote; 5784 char local_addrbuf[INET6_ADDRSTRLEN]; 5785 char remote_addrbuf[INET6_ADDRSTRLEN]; 5786 conn_t *connp; 5787 5788 if (sup_buf != NULL) 5789 buf = sup_buf; 5790 else 5791 buf = priv_buf; 5792 5793 if (tcp == NULL) 5794 return ("NULL_TCP"); 5795 5796 connp = tcp->tcp_connp; 5797 switch (tcp->tcp_state) { 5798 case TCPS_CLOSED: 5799 cp = "TCP_CLOSED"; 5800 break; 5801 case TCPS_IDLE: 5802 cp = "TCP_IDLE"; 5803 break; 5804 case TCPS_BOUND: 5805 cp = "TCP_BOUND"; 5806 break; 5807 case TCPS_LISTEN: 5808 cp = "TCP_LISTEN"; 5809 break; 5810 case TCPS_SYN_SENT: 5811 cp = "TCP_SYN_SENT"; 5812 break; 5813 case TCPS_SYN_RCVD: 5814 cp = "TCP_SYN_RCVD"; 5815 break; 5816 case TCPS_ESTABLISHED: 5817 cp = "TCP_ESTABLISHED"; 5818 break; 5819 case TCPS_CLOSE_WAIT: 5820 cp = "TCP_CLOSE_WAIT"; 5821 break; 5822 case TCPS_FIN_WAIT_1: 5823 cp = "TCP_FIN_WAIT_1"; 5824 break; 5825 case TCPS_CLOSING: 5826 cp = "TCP_CLOSING"; 5827 break; 5828 case TCPS_LAST_ACK: 5829 cp = "TCP_LAST_ACK"; 5830 break; 5831 case TCPS_FIN_WAIT_2: 5832 cp = "TCP_FIN_WAIT_2"; 5833 break; 5834 case TCPS_TIME_WAIT: 5835 cp = "TCP_TIME_WAIT"; 5836 break; 5837 default: 5838 (void) mi_sprintf(buf1, "TCPUnkState(%d)", tcp->tcp_state); 5839 cp = buf1; 5840 break; 5841 } 5842 switch (format) { 5843 case DISP_ADDR_AND_PORT: 5844 if (connp->conn_ipversion == IPV4_VERSION) { 5845 /* 5846 * Note that we use the remote address in the tcp_b 5847 * structure. This means that it will print out 5848 * the real destination address, not the next hop's 5849 * address if source routing is used. 5850 */ 5851 IN6_IPADDR_TO_V4MAPPED(connp->conn_laddr_v4, &local); 5852 IN6_IPADDR_TO_V4MAPPED(connp->conn_faddr_v4, &remote); 5853 5854 } else { 5855 local = connp->conn_laddr_v6; 5856 remote = connp->conn_faddr_v6; 5857 } 5858 (void) inet_ntop(AF_INET6, &local, local_addrbuf, 5859 sizeof (local_addrbuf)); 5860 (void) inet_ntop(AF_INET6, &remote, remote_addrbuf, 5861 sizeof (remote_addrbuf)); 5862 (void) mi_sprintf(buf, "[%s.%u, %s.%u] %s", 5863 local_addrbuf, ntohs(connp->conn_lport), remote_addrbuf, 5864 ntohs(connp->conn_fport), cp); 5865 break; 5866 case DISP_PORT_ONLY: 5867 default: 5868 (void) mi_sprintf(buf, "[%u, %u] %s", 5869 ntohs(connp->conn_lport), ntohs(connp->conn_fport), cp); 5870 break; 5871 } 5872 5873 return (buf); 5874 } 5875 5876 /* 5877 * Called via squeue to get on to eager's perimeter. It sends a 5878 * TH_RST if eager is in the fanout table. The listener wants the 5879 * eager to disappear either by means of tcp_eager_blowoff() or 5880 * tcp_eager_cleanup() being called. tcp_eager_kill() can also be 5881 * called (via squeue) if the eager cannot be inserted in the 5882 * fanout table in tcp_input_listener(). 5883 */ 5884 /* ARGSUSED */ 5885 void 5886 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 5887 { 5888 conn_t *econnp = (conn_t *)arg; 5889 tcp_t *eager = econnp->conn_tcp; 5890 tcp_t *listener = eager->tcp_listener; 5891 5892 /* 5893 * We could be called because listener is closing. Since 5894 * the eager was using listener's queue's, we avoid 5895 * using the listeners queues from now on. 5896 */ 5897 ASSERT(eager->tcp_detached); 5898 econnp->conn_rq = NULL; 5899 econnp->conn_wq = NULL; 5900 5901 /* 5902 * An eager's conn_fanout will be NULL if it's a duplicate 5903 * for an existing 4-tuples in the conn fanout table. 5904 * We don't want to send an RST out in such case. 5905 */ 5906 if (econnp->conn_fanout != NULL && eager->tcp_state > TCPS_LISTEN) { 5907 tcp_xmit_ctl("tcp_eager_kill, can't wait", 5908 eager, eager->tcp_snxt, 0, TH_RST); 5909 } 5910 5911 /* We are here because listener wants this eager gone */ 5912 if (listener != NULL) { 5913 mutex_enter(&listener->tcp_eager_lock); 5914 tcp_eager_unlink(eager); 5915 if (eager->tcp_tconnind_started) { 5916 /* 5917 * The eager has sent a conn_ind up to the 5918 * listener but listener decides to close 5919 * instead. We need to drop the extra ref 5920 * placed on eager in tcp_input_data() before 5921 * sending the conn_ind to listener. 5922 */ 5923 CONN_DEC_REF(econnp); 5924 } 5925 mutex_exit(&listener->tcp_eager_lock); 5926 CONN_DEC_REF(listener->tcp_connp); 5927 } 5928 5929 if (eager->tcp_state != TCPS_CLOSED) 5930 tcp_close_detached(eager); 5931 } 5932 5933 /* 5934 * Reset any eager connection hanging off this listener marked 5935 * with 'seqnum' and then reclaim it's resources. 5936 */ 5937 static boolean_t 5938 tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum) 5939 { 5940 tcp_t *eager; 5941 mblk_t *mp; 5942 tcp_stack_t *tcps = listener->tcp_tcps; 5943 5944 TCP_STAT(tcps, tcp_eager_blowoff_calls); 5945 eager = listener; 5946 mutex_enter(&listener->tcp_eager_lock); 5947 do { 5948 eager = eager->tcp_eager_next_q; 5949 if (eager == NULL) { 5950 mutex_exit(&listener->tcp_eager_lock); 5951 return (B_FALSE); 5952 } 5953 } while (eager->tcp_conn_req_seqnum != seqnum); 5954 5955 if (eager->tcp_closemp_used) { 5956 mutex_exit(&listener->tcp_eager_lock); 5957 return (B_TRUE); 5958 } 5959 eager->tcp_closemp_used = B_TRUE; 5960 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 5961 CONN_INC_REF(eager->tcp_connp); 5962 mutex_exit(&listener->tcp_eager_lock); 5963 mp = &eager->tcp_closemp; 5964 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill, 5965 eager->tcp_connp, NULL, SQ_FILL, SQTAG_TCP_EAGER_BLOWOFF); 5966 return (B_TRUE); 5967 } 5968 5969 /* 5970 * Reset any eager connection hanging off this listener 5971 * and then reclaim it's resources. 5972 */ 5973 static void 5974 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only) 5975 { 5976 tcp_t *eager; 5977 mblk_t *mp; 5978 tcp_stack_t *tcps = listener->tcp_tcps; 5979 5980 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 5981 5982 if (!q0_only) { 5983 /* First cleanup q */ 5984 TCP_STAT(tcps, tcp_eager_blowoff_q); 5985 eager = listener->tcp_eager_next_q; 5986 while (eager != NULL) { 5987 if (!eager->tcp_closemp_used) { 5988 eager->tcp_closemp_used = B_TRUE; 5989 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 5990 CONN_INC_REF(eager->tcp_connp); 5991 mp = &eager->tcp_closemp; 5992 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, 5993 tcp_eager_kill, eager->tcp_connp, NULL, 5994 SQ_FILL, SQTAG_TCP_EAGER_CLEANUP); 5995 } 5996 eager = eager->tcp_eager_next_q; 5997 } 5998 } 5999 /* Then cleanup q0 */ 6000 TCP_STAT(tcps, tcp_eager_blowoff_q0); 6001 eager = listener->tcp_eager_next_q0; 6002 while (eager != listener) { 6003 if (!eager->tcp_closemp_used) { 6004 eager->tcp_closemp_used = B_TRUE; 6005 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 6006 CONN_INC_REF(eager->tcp_connp); 6007 mp = &eager->tcp_closemp; 6008 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, 6009 tcp_eager_kill, eager->tcp_connp, NULL, SQ_FILL, 6010 SQTAG_TCP_EAGER_CLEANUP_Q0); 6011 } 6012 eager = eager->tcp_eager_next_q0; 6013 } 6014 } 6015 6016 /* 6017 * If we are an eager connection hanging off a listener that hasn't 6018 * formally accepted the connection yet, get off his list and blow off 6019 * any data that we have accumulated. 6020 */ 6021 static void 6022 tcp_eager_unlink(tcp_t *tcp) 6023 { 6024 tcp_t *listener = tcp->tcp_listener; 6025 6026 ASSERT(listener != NULL); 6027 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 6028 if (tcp->tcp_eager_next_q0 != NULL) { 6029 ASSERT(tcp->tcp_eager_prev_q0 != NULL); 6030 6031 /* Remove the eager tcp from q0 */ 6032 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 6033 tcp->tcp_eager_prev_q0; 6034 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 6035 tcp->tcp_eager_next_q0; 6036 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 6037 listener->tcp_conn_req_cnt_q0--; 6038 6039 tcp->tcp_eager_next_q0 = NULL; 6040 tcp->tcp_eager_prev_q0 = NULL; 6041 6042 /* 6043 * Take the eager out, if it is in the list of droppable 6044 * eagers. 6045 */ 6046 MAKE_UNDROPPABLE(tcp); 6047 6048 if (tcp->tcp_syn_rcvd_timeout != 0) { 6049 /* we have timed out before */ 6050 ASSERT(listener->tcp_syn_rcvd_timeout > 0); 6051 listener->tcp_syn_rcvd_timeout--; 6052 } 6053 } else { 6054 tcp_t **tcpp = &listener->tcp_eager_next_q; 6055 tcp_t *prev = NULL; 6056 6057 for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) { 6058 if (tcpp[0] == tcp) { 6059 if (listener->tcp_eager_last_q == tcp) { 6060 /* 6061 * If we are unlinking the last 6062 * element on the list, adjust 6063 * tail pointer. Set tail pointer 6064 * to nil when list is empty. 6065 */ 6066 ASSERT(tcp->tcp_eager_next_q == NULL); 6067 if (listener->tcp_eager_last_q == 6068 listener->tcp_eager_next_q) { 6069 listener->tcp_eager_last_q = 6070 NULL; 6071 } else { 6072 /* 6073 * We won't get here if there 6074 * is only one eager in the 6075 * list. 6076 */ 6077 ASSERT(prev != NULL); 6078 listener->tcp_eager_last_q = 6079 prev; 6080 } 6081 } 6082 tcpp[0] = tcp->tcp_eager_next_q; 6083 tcp->tcp_eager_next_q = NULL; 6084 tcp->tcp_eager_last_q = NULL; 6085 ASSERT(listener->tcp_conn_req_cnt_q > 0); 6086 listener->tcp_conn_req_cnt_q--; 6087 break; 6088 } 6089 prev = tcpp[0]; 6090 } 6091 } 6092 tcp->tcp_listener = NULL; 6093 } 6094 6095 /* Shorthand to generate and send TPI error acks to our client */ 6096 static void 6097 tcp_err_ack(tcp_t *tcp, mblk_t *mp, int t_error, int sys_error) 6098 { 6099 if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL) 6100 putnext(tcp->tcp_connp->conn_rq, mp); 6101 } 6102 6103 /* Shorthand to generate and send TPI error acks to our client */ 6104 static void 6105 tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, 6106 int t_error, int sys_error) 6107 { 6108 struct T_error_ack *teackp; 6109 6110 if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack), 6111 M_PCPROTO, T_ERROR_ACK)) != NULL) { 6112 teackp = (struct T_error_ack *)mp->b_rptr; 6113 teackp->ERROR_prim = primitive; 6114 teackp->TLI_error = t_error; 6115 teackp->UNIX_error = sys_error; 6116 putnext(tcp->tcp_connp->conn_rq, mp); 6117 } 6118 } 6119 6120 /* 6121 * Note: No locks are held when inspecting tcp_g_*epriv_ports 6122 * but instead the code relies on: 6123 * - the fact that the address of the array and its size never changes 6124 * - the atomic assignment of the elements of the array 6125 */ 6126 /* ARGSUSED */ 6127 static int 6128 tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 6129 { 6130 int i; 6131 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 6132 6133 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 6134 if (tcps->tcps_g_epriv_ports[i] != 0) 6135 (void) mi_mpprintf(mp, "%d ", 6136 tcps->tcps_g_epriv_ports[i]); 6137 } 6138 return (0); 6139 } 6140 6141 /* 6142 * Hold a lock while changing tcp_g_epriv_ports to prevent multiple 6143 * threads from changing it at the same time. 6144 */ 6145 /* ARGSUSED */ 6146 static int 6147 tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 6148 cred_t *cr) 6149 { 6150 long new_value; 6151 int i; 6152 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 6153 6154 /* 6155 * Fail the request if the new value does not lie within the 6156 * port number limits. 6157 */ 6158 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 6159 new_value <= 0 || new_value >= 65536) { 6160 return (EINVAL); 6161 } 6162 6163 mutex_enter(&tcps->tcps_epriv_port_lock); 6164 /* Check if the value is already in the list */ 6165 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 6166 if (new_value == tcps->tcps_g_epriv_ports[i]) { 6167 mutex_exit(&tcps->tcps_epriv_port_lock); 6168 return (EEXIST); 6169 } 6170 } 6171 /* Find an empty slot */ 6172 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 6173 if (tcps->tcps_g_epriv_ports[i] == 0) 6174 break; 6175 } 6176 if (i == tcps->tcps_g_num_epriv_ports) { 6177 mutex_exit(&tcps->tcps_epriv_port_lock); 6178 return (EOVERFLOW); 6179 } 6180 /* Set the new value */ 6181 tcps->tcps_g_epriv_ports[i] = (uint16_t)new_value; 6182 mutex_exit(&tcps->tcps_epriv_port_lock); 6183 return (0); 6184 } 6185 6186 /* 6187 * Hold a lock while changing tcp_g_epriv_ports to prevent multiple 6188 * threads from changing it at the same time. 6189 */ 6190 /* ARGSUSED */ 6191 static int 6192 tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 6193 cred_t *cr) 6194 { 6195 long new_value; 6196 int i; 6197 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 6198 6199 /* 6200 * Fail the request if the new value does not lie within the 6201 * port number limits. 6202 */ 6203 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value <= 0 || 6204 new_value >= 65536) { 6205 return (EINVAL); 6206 } 6207 6208 mutex_enter(&tcps->tcps_epriv_port_lock); 6209 /* Check that the value is already in the list */ 6210 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 6211 if (tcps->tcps_g_epriv_ports[i] == new_value) 6212 break; 6213 } 6214 if (i == tcps->tcps_g_num_epriv_ports) { 6215 mutex_exit(&tcps->tcps_epriv_port_lock); 6216 return (ESRCH); 6217 } 6218 /* Clear the value */ 6219 tcps->tcps_g_epriv_ports[i] = 0; 6220 mutex_exit(&tcps->tcps_epriv_port_lock); 6221 return (0); 6222 } 6223 6224 /* Return the TPI/TLI equivalent of our current tcp_state */ 6225 static int 6226 tcp_tpistate(tcp_t *tcp) 6227 { 6228 switch (tcp->tcp_state) { 6229 case TCPS_IDLE: 6230 return (TS_UNBND); 6231 case TCPS_LISTEN: 6232 /* 6233 * Return whether there are outstanding T_CONN_IND waiting 6234 * for the matching T_CONN_RES. Therefore don't count q0. 6235 */ 6236 if (tcp->tcp_conn_req_cnt_q > 0) 6237 return (TS_WRES_CIND); 6238 else 6239 return (TS_IDLE); 6240 case TCPS_BOUND: 6241 return (TS_IDLE); 6242 case TCPS_SYN_SENT: 6243 return (TS_WCON_CREQ); 6244 case TCPS_SYN_RCVD: 6245 /* 6246 * Note: assumption: this has to the active open SYN_RCVD. 6247 * The passive instance is detached in SYN_RCVD stage of 6248 * incoming connection processing so we cannot get request 6249 * for T_info_ack on it. 6250 */ 6251 return (TS_WACK_CRES); 6252 case TCPS_ESTABLISHED: 6253 return (TS_DATA_XFER); 6254 case TCPS_CLOSE_WAIT: 6255 return (TS_WREQ_ORDREL); 6256 case TCPS_FIN_WAIT_1: 6257 return (TS_WIND_ORDREL); 6258 case TCPS_FIN_WAIT_2: 6259 return (TS_WIND_ORDREL); 6260 6261 case TCPS_CLOSING: 6262 case TCPS_LAST_ACK: 6263 case TCPS_TIME_WAIT: 6264 case TCPS_CLOSED: 6265 /* 6266 * Following TS_WACK_DREQ7 is a rendition of "not 6267 * yet TS_IDLE" TPI state. There is no best match to any 6268 * TPI state for TCPS_{CLOSING, LAST_ACK, TIME_WAIT} but we 6269 * choose a value chosen that will map to TLI/XTI level 6270 * state of TSTATECHNG (state is process of changing) which 6271 * captures what this dummy state represents. 6272 */ 6273 return (TS_WACK_DREQ7); 6274 default: 6275 cmn_err(CE_WARN, "tcp_tpistate: strange state (%d) %s", 6276 tcp->tcp_state, tcp_display(tcp, NULL, 6277 DISP_PORT_ONLY)); 6278 return (TS_UNBND); 6279 } 6280 } 6281 6282 static void 6283 tcp_copy_info(struct T_info_ack *tia, tcp_t *tcp) 6284 { 6285 tcp_stack_t *tcps = tcp->tcp_tcps; 6286 conn_t *connp = tcp->tcp_connp; 6287 6288 if (connp->conn_family == AF_INET6) 6289 *tia = tcp_g_t_info_ack_v6; 6290 else 6291 *tia = tcp_g_t_info_ack; 6292 tia->CURRENT_state = tcp_tpistate(tcp); 6293 tia->OPT_size = tcp_max_optsize; 6294 if (tcp->tcp_mss == 0) { 6295 /* Not yet set - tcp_open does not set mss */ 6296 if (connp->conn_ipversion == IPV4_VERSION) 6297 tia->TIDU_size = tcps->tcps_mss_def_ipv4; 6298 else 6299 tia->TIDU_size = tcps->tcps_mss_def_ipv6; 6300 } else { 6301 tia->TIDU_size = tcp->tcp_mss; 6302 } 6303 /* TODO: Default ETSDU is 1. Is that correct for tcp? */ 6304 } 6305 6306 static void 6307 tcp_do_capability_ack(tcp_t *tcp, struct T_capability_ack *tcap, 6308 t_uscalar_t cap_bits1) 6309 { 6310 tcap->CAP_bits1 = 0; 6311 6312 if (cap_bits1 & TC1_INFO) { 6313 tcp_copy_info(&tcap->INFO_ack, tcp); 6314 tcap->CAP_bits1 |= TC1_INFO; 6315 } 6316 6317 if (cap_bits1 & TC1_ACCEPTOR_ID) { 6318 tcap->ACCEPTOR_id = tcp->tcp_acceptor_id; 6319 tcap->CAP_bits1 |= TC1_ACCEPTOR_ID; 6320 } 6321 6322 } 6323 6324 /* 6325 * This routine responds to T_CAPABILITY_REQ messages. It is called by 6326 * tcp_wput. Much of the T_CAPABILITY_ACK information is copied from 6327 * tcp_g_t_info_ack. The current state of the stream is copied from 6328 * tcp_state. 6329 */ 6330 static void 6331 tcp_capability_req(tcp_t *tcp, mblk_t *mp) 6332 { 6333 t_uscalar_t cap_bits1; 6334 struct T_capability_ack *tcap; 6335 6336 if (MBLKL(mp) < sizeof (struct T_capability_req)) { 6337 freemsg(mp); 6338 return; 6339 } 6340 6341 cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1; 6342 6343 mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack), 6344 mp->b_datap->db_type, T_CAPABILITY_ACK); 6345 if (mp == NULL) 6346 return; 6347 6348 tcap = (struct T_capability_ack *)mp->b_rptr; 6349 tcp_do_capability_ack(tcp, tcap, cap_bits1); 6350 6351 putnext(tcp->tcp_connp->conn_rq, mp); 6352 } 6353 6354 /* 6355 * This routine responds to T_INFO_REQ messages. It is called by tcp_wput. 6356 * Most of the T_INFO_ACK information is copied from tcp_g_t_info_ack. 6357 * The current state of the stream is copied from tcp_state. 6358 */ 6359 static void 6360 tcp_info_req(tcp_t *tcp, mblk_t *mp) 6361 { 6362 mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO, 6363 T_INFO_ACK); 6364 if (!mp) { 6365 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 6366 return; 6367 } 6368 tcp_copy_info((struct T_info_ack *)mp->b_rptr, tcp); 6369 putnext(tcp->tcp_connp->conn_rq, mp); 6370 } 6371 6372 /* Respond to the TPI addr request */ 6373 static void 6374 tcp_addr_req(tcp_t *tcp, mblk_t *mp) 6375 { 6376 struct sockaddr *sa; 6377 mblk_t *ackmp; 6378 struct T_addr_ack *taa; 6379 conn_t *connp = tcp->tcp_connp; 6380 uint_t addrlen; 6381 6382 /* Make it large enough for worst case */ 6383 ackmp = reallocb(mp, sizeof (struct T_addr_ack) + 6384 2 * sizeof (sin6_t), 1); 6385 if (ackmp == NULL) { 6386 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 6387 return; 6388 } 6389 6390 taa = (struct T_addr_ack *)ackmp->b_rptr; 6391 6392 bzero(taa, sizeof (struct T_addr_ack)); 6393 ackmp->b_wptr = (uchar_t *)&taa[1]; 6394 6395 taa->PRIM_type = T_ADDR_ACK; 6396 ackmp->b_datap->db_type = M_PCPROTO; 6397 6398 if (connp->conn_family == AF_INET) 6399 addrlen = sizeof (sin_t); 6400 else 6401 addrlen = sizeof (sin6_t); 6402 6403 /* 6404 * Note: Following code assumes 32 bit alignment of basic 6405 * data structures like sin_t and struct T_addr_ack. 6406 */ 6407 if (tcp->tcp_state >= TCPS_BOUND) { 6408 /* 6409 * Fill in local address first 6410 */ 6411 taa->LOCADDR_offset = sizeof (*taa); 6412 taa->LOCADDR_length = addrlen; 6413 sa = (struct sockaddr *)&taa[1]; 6414 (void) conn_getsockname(connp, sa, &addrlen); 6415 ackmp->b_wptr += addrlen; 6416 } 6417 if (tcp->tcp_state >= TCPS_SYN_RCVD) { 6418 /* 6419 * Fill in Remote address 6420 */ 6421 taa->REMADDR_length = addrlen; 6422 /* assumed 32-bit alignment */ 6423 taa->REMADDR_offset = taa->LOCADDR_offset + taa->LOCADDR_length; 6424 sa = (struct sockaddr *)(ackmp->b_rptr + taa->REMADDR_offset); 6425 (void) conn_getpeername(connp, sa, &addrlen); 6426 ackmp->b_wptr += addrlen; 6427 } 6428 ASSERT(ackmp->b_wptr <= ackmp->b_datap->db_lim); 6429 putnext(tcp->tcp_connp->conn_rq, ackmp); 6430 } 6431 6432 /* 6433 * Handle reinitialization of a tcp structure. 6434 * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE. 6435 */ 6436 static void 6437 tcp_reinit(tcp_t *tcp) 6438 { 6439 mblk_t *mp; 6440 tcp_stack_t *tcps = tcp->tcp_tcps; 6441 conn_t *connp = tcp->tcp_connp; 6442 6443 TCP_STAT(tcps, tcp_reinit_calls); 6444 6445 /* tcp_reinit should never be called for detached tcp_t's */ 6446 ASSERT(tcp->tcp_listener == NULL); 6447 ASSERT((connp->conn_family == AF_INET && 6448 connp->conn_ipversion == IPV4_VERSION) || 6449 (connp->conn_family == AF_INET6 && 6450 (connp->conn_ipversion == IPV4_VERSION || 6451 connp->conn_ipversion == IPV6_VERSION))); 6452 6453 /* Cancel outstanding timers */ 6454 tcp_timers_stop(tcp); 6455 6456 /* 6457 * Reset everything in the state vector, after updating global 6458 * MIB data from instance counters. 6459 */ 6460 UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs); 6461 tcp->tcp_ibsegs = 0; 6462 UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs); 6463 tcp->tcp_obsegs = 0; 6464 6465 tcp_close_mpp(&tcp->tcp_xmit_head); 6466 if (tcp->tcp_snd_zcopy_aware) 6467 tcp_zcopy_notify(tcp); 6468 tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL; 6469 tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0; 6470 mutex_enter(&tcp->tcp_non_sq_lock); 6471 if (tcp->tcp_flow_stopped && 6472 TCP_UNSENT_BYTES(tcp) <= connp->conn_sndlowat) { 6473 tcp_clrqfull(tcp); 6474 } 6475 mutex_exit(&tcp->tcp_non_sq_lock); 6476 tcp_close_mpp(&tcp->tcp_reass_head); 6477 tcp->tcp_reass_tail = NULL; 6478 if (tcp->tcp_rcv_list != NULL) { 6479 /* Free b_next chain */ 6480 tcp_close_mpp(&tcp->tcp_rcv_list); 6481 tcp->tcp_rcv_last_head = NULL; 6482 tcp->tcp_rcv_last_tail = NULL; 6483 tcp->tcp_rcv_cnt = 0; 6484 } 6485 tcp->tcp_rcv_last_tail = NULL; 6486 6487 if ((mp = tcp->tcp_urp_mp) != NULL) { 6488 freemsg(mp); 6489 tcp->tcp_urp_mp = NULL; 6490 } 6491 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 6492 freemsg(mp); 6493 tcp->tcp_urp_mark_mp = NULL; 6494 } 6495 if (tcp->tcp_fused_sigurg_mp != NULL) { 6496 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 6497 freeb(tcp->tcp_fused_sigurg_mp); 6498 tcp->tcp_fused_sigurg_mp = NULL; 6499 } 6500 if (tcp->tcp_ordrel_mp != NULL) { 6501 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 6502 freeb(tcp->tcp_ordrel_mp); 6503 tcp->tcp_ordrel_mp = NULL; 6504 } 6505 6506 /* 6507 * Following is a union with two members which are 6508 * identical types and size so the following cleanup 6509 * is enough. 6510 */ 6511 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 6512 6513 CL_INET_DISCONNECT(connp); 6514 6515 /* 6516 * The connection can't be on the tcp_time_wait_head list 6517 * since it is not detached. 6518 */ 6519 ASSERT(tcp->tcp_time_wait_next == NULL); 6520 ASSERT(tcp->tcp_time_wait_prev == NULL); 6521 ASSERT(tcp->tcp_time_wait_expire == 0); 6522 6523 if (tcp->tcp_kssl_pending) { 6524 tcp->tcp_kssl_pending = B_FALSE; 6525 6526 /* Don't reset if the initialized by bind. */ 6527 if (tcp->tcp_kssl_ent != NULL) { 6528 kssl_release_ent(tcp->tcp_kssl_ent, NULL, 6529 KSSL_NO_PROXY); 6530 } 6531 } 6532 if (tcp->tcp_kssl_ctx != NULL) { 6533 kssl_release_ctx(tcp->tcp_kssl_ctx); 6534 tcp->tcp_kssl_ctx = NULL; 6535 } 6536 6537 /* 6538 * Reset/preserve other values 6539 */ 6540 tcp_reinit_values(tcp); 6541 ipcl_hash_remove(connp); 6542 ixa_cleanup(connp->conn_ixa); 6543 tcp_ipsec_cleanup(tcp); 6544 6545 connp->conn_laddr_v6 = connp->conn_bound_addr_v6; 6546 connp->conn_saddr_v6 = connp->conn_bound_addr_v6; 6547 6548 if (tcp->tcp_conn_req_max != 0) { 6549 /* 6550 * This is the case when a TLI program uses the same 6551 * transport end point to accept a connection. This 6552 * makes the TCP both a listener and acceptor. When 6553 * this connection is closed, we need to set the state 6554 * back to TCPS_LISTEN. Make sure that the eager list 6555 * is reinitialized. 6556 * 6557 * Note that this stream is still bound to the four 6558 * tuples of the previous connection in IP. If a new 6559 * SYN with different foreign address comes in, IP will 6560 * not find it and will send it to the global queue. In 6561 * the global queue, TCP will do a tcp_lookup_listener() 6562 * to find this stream. This works because this stream 6563 * is only removed from connected hash. 6564 * 6565 */ 6566 tcp->tcp_state = TCPS_LISTEN; 6567 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 6568 tcp->tcp_eager_next_drop_q0 = tcp; 6569 tcp->tcp_eager_prev_drop_q0 = tcp; 6570 /* 6571 * Initially set conn_recv to tcp_input_listener_unbound to try 6572 * to pick a good squeue for the listener when the first SYN 6573 * arrives. tcp_input_listener_unbound sets it to 6574 * tcp_input_listener on that first SYN. 6575 */ 6576 connp->conn_recv = tcp_input_listener_unbound; 6577 6578 connp->conn_proto = IPPROTO_TCP; 6579 connp->conn_faddr_v6 = ipv6_all_zeros; 6580 connp->conn_fport = 0; 6581 6582 (void) ipcl_bind_insert(connp); 6583 } else { 6584 tcp->tcp_state = TCPS_BOUND; 6585 } 6586 6587 /* 6588 * Initialize to default values 6589 */ 6590 tcp_init_values(tcp); 6591 6592 ASSERT(tcp->tcp_ptpbhn != NULL); 6593 tcp->tcp_rwnd = connp->conn_rcvbuf; 6594 tcp->tcp_mss = connp->conn_ipversion != IPV4_VERSION ? 6595 tcps->tcps_mss_def_ipv6 : tcps->tcps_mss_def_ipv4; 6596 } 6597 6598 /* 6599 * Force values to zero that need be zero. 6600 * Do not touch values asociated with the BOUND or LISTEN state 6601 * since the connection will end up in that state after the reinit. 6602 * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t 6603 * structure! 6604 */ 6605 static void 6606 tcp_reinit_values(tcp) 6607 tcp_t *tcp; 6608 { 6609 tcp_stack_t *tcps = tcp->tcp_tcps; 6610 conn_t *connp = tcp->tcp_connp; 6611 6612 #ifndef lint 6613 #define DONTCARE(x) 6614 #define PRESERVE(x) 6615 #else 6616 #define DONTCARE(x) ((x) = (x)) 6617 #define PRESERVE(x) ((x) = (x)) 6618 #endif /* lint */ 6619 6620 PRESERVE(tcp->tcp_bind_hash_port); 6621 PRESERVE(tcp->tcp_bind_hash); 6622 PRESERVE(tcp->tcp_ptpbhn); 6623 PRESERVE(tcp->tcp_acceptor_hash); 6624 PRESERVE(tcp->tcp_ptpahn); 6625 6626 /* Should be ASSERT NULL on these with new code! */ 6627 ASSERT(tcp->tcp_time_wait_next == NULL); 6628 ASSERT(tcp->tcp_time_wait_prev == NULL); 6629 ASSERT(tcp->tcp_time_wait_expire == 0); 6630 PRESERVE(tcp->tcp_state); 6631 PRESERVE(connp->conn_rq); 6632 PRESERVE(connp->conn_wq); 6633 6634 ASSERT(tcp->tcp_xmit_head == NULL); 6635 ASSERT(tcp->tcp_xmit_last == NULL); 6636 ASSERT(tcp->tcp_unsent == 0); 6637 ASSERT(tcp->tcp_xmit_tail == NULL); 6638 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 6639 6640 tcp->tcp_snxt = 0; /* Displayed in mib */ 6641 tcp->tcp_suna = 0; /* Displayed in mib */ 6642 tcp->tcp_swnd = 0; 6643 DONTCARE(tcp->tcp_cwnd); /* Init in tcp_process_options */ 6644 6645 ASSERT(tcp->tcp_ibsegs == 0); 6646 ASSERT(tcp->tcp_obsegs == 0); 6647 6648 if (connp->conn_ht_iphc != NULL) { 6649 kmem_free(connp->conn_ht_iphc, connp->conn_ht_iphc_allocated); 6650 connp->conn_ht_iphc = NULL; 6651 connp->conn_ht_iphc_allocated = 0; 6652 connp->conn_ht_iphc_len = 0; 6653 connp->conn_ht_ulp = NULL; 6654 connp->conn_ht_ulp_len = 0; 6655 tcp->tcp_ipha = NULL; 6656 tcp->tcp_ip6h = NULL; 6657 tcp->tcp_tcpha = NULL; 6658 } 6659 6660 /* We clear any IP_OPTIONS and extension headers */ 6661 ip_pkt_free(&connp->conn_xmit_ipp); 6662 6663 DONTCARE(tcp->tcp_naglim); /* Init in tcp_init_values */ 6664 DONTCARE(tcp->tcp_ipha); 6665 DONTCARE(tcp->tcp_ip6h); 6666 DONTCARE(tcp->tcp_tcpha); 6667 tcp->tcp_valid_bits = 0; 6668 6669 DONTCARE(tcp->tcp_timer_backoff); /* Init in tcp_init_values */ 6670 DONTCARE(tcp->tcp_last_recv_time); /* Init in tcp_init_values */ 6671 tcp->tcp_last_rcv_lbolt = 0; 6672 6673 tcp->tcp_init_cwnd = 0; 6674 6675 tcp->tcp_urp_last_valid = 0; 6676 tcp->tcp_hard_binding = 0; 6677 6678 tcp->tcp_fin_acked = 0; 6679 tcp->tcp_fin_rcvd = 0; 6680 tcp->tcp_fin_sent = 0; 6681 tcp->tcp_ordrel_done = 0; 6682 6683 tcp->tcp_detached = 0; 6684 6685 tcp->tcp_snd_ws_ok = B_FALSE; 6686 tcp->tcp_snd_ts_ok = B_FALSE; 6687 tcp->tcp_zero_win_probe = 0; 6688 6689 tcp->tcp_loopback = 0; 6690 tcp->tcp_localnet = 0; 6691 tcp->tcp_syn_defense = 0; 6692 tcp->tcp_set_timer = 0; 6693 6694 tcp->tcp_active_open = 0; 6695 tcp->tcp_rexmit = B_FALSE; 6696 tcp->tcp_xmit_zc_clean = B_FALSE; 6697 6698 tcp->tcp_snd_sack_ok = B_FALSE; 6699 tcp->tcp_hwcksum = B_FALSE; 6700 6701 DONTCARE(tcp->tcp_maxpsz_multiplier); /* Init in tcp_init_values */ 6702 6703 tcp->tcp_conn_def_q0 = 0; 6704 tcp->tcp_ip_forward_progress = B_FALSE; 6705 tcp->tcp_ecn_ok = B_FALSE; 6706 6707 tcp->tcp_cwr = B_FALSE; 6708 tcp->tcp_ecn_echo_on = B_FALSE; 6709 tcp->tcp_is_wnd_shrnk = B_FALSE; 6710 6711 if (tcp->tcp_sack_info != NULL) { 6712 if (tcp->tcp_notsack_list != NULL) { 6713 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, 6714 tcp); 6715 } 6716 kmem_cache_free(tcp_sack_info_cache, tcp->tcp_sack_info); 6717 tcp->tcp_sack_info = NULL; 6718 } 6719 6720 tcp->tcp_rcv_ws = 0; 6721 tcp->tcp_snd_ws = 0; 6722 tcp->tcp_ts_recent = 0; 6723 tcp->tcp_rnxt = 0; /* Displayed in mib */ 6724 DONTCARE(tcp->tcp_rwnd); /* Set in tcp_reinit() */ 6725 tcp->tcp_initial_pmtu = 0; 6726 6727 ASSERT(tcp->tcp_reass_head == NULL); 6728 ASSERT(tcp->tcp_reass_tail == NULL); 6729 6730 tcp->tcp_cwnd_cnt = 0; 6731 6732 ASSERT(tcp->tcp_rcv_list == NULL); 6733 ASSERT(tcp->tcp_rcv_last_head == NULL); 6734 ASSERT(tcp->tcp_rcv_last_tail == NULL); 6735 ASSERT(tcp->tcp_rcv_cnt == 0); 6736 6737 DONTCARE(tcp->tcp_cwnd_ssthresh); /* Init in tcp_set_destination */ 6738 DONTCARE(tcp->tcp_cwnd_max); /* Init in tcp_init_values */ 6739 tcp->tcp_csuna = 0; 6740 6741 tcp->tcp_rto = 0; /* Displayed in MIB */ 6742 DONTCARE(tcp->tcp_rtt_sa); /* Init in tcp_init_values */ 6743 DONTCARE(tcp->tcp_rtt_sd); /* Init in tcp_init_values */ 6744 tcp->tcp_rtt_update = 0; 6745 6746 DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 6747 DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 6748 6749 tcp->tcp_rack = 0; /* Displayed in mib */ 6750 tcp->tcp_rack_cnt = 0; 6751 tcp->tcp_rack_cur_max = 0; 6752 tcp->tcp_rack_abs_max = 0; 6753 6754 tcp->tcp_max_swnd = 0; 6755 6756 ASSERT(tcp->tcp_listener == NULL); 6757 6758 DONTCARE(tcp->tcp_irs); /* tcp_valid_bits cleared */ 6759 DONTCARE(tcp->tcp_iss); /* tcp_valid_bits cleared */ 6760 DONTCARE(tcp->tcp_fss); /* tcp_valid_bits cleared */ 6761 DONTCARE(tcp->tcp_urg); /* tcp_valid_bits cleared */ 6762 6763 ASSERT(tcp->tcp_conn_req_cnt_q == 0); 6764 ASSERT(tcp->tcp_conn_req_cnt_q0 == 0); 6765 PRESERVE(tcp->tcp_conn_req_max); 6766 PRESERVE(tcp->tcp_conn_req_seqnum); 6767 6768 DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */ 6769 DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */ 6770 DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */ 6771 DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */ 6772 6773 DONTCARE(tcp->tcp_urp_last); /* tcp_urp_last_valid is cleared */ 6774 ASSERT(tcp->tcp_urp_mp == NULL); 6775 ASSERT(tcp->tcp_urp_mark_mp == NULL); 6776 ASSERT(tcp->tcp_fused_sigurg_mp == NULL); 6777 6778 ASSERT(tcp->tcp_eager_next_q == NULL); 6779 ASSERT(tcp->tcp_eager_last_q == NULL); 6780 ASSERT((tcp->tcp_eager_next_q0 == NULL && 6781 tcp->tcp_eager_prev_q0 == NULL) || 6782 tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0); 6783 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 6784 6785 ASSERT((tcp->tcp_eager_next_drop_q0 == NULL && 6786 tcp->tcp_eager_prev_drop_q0 == NULL) || 6787 tcp->tcp_eager_next_drop_q0 == tcp->tcp_eager_prev_drop_q0); 6788 6789 tcp->tcp_client_errno = 0; 6790 6791 DONTCARE(connp->conn_sum); /* Init in tcp_init_values */ 6792 6793 connp->conn_faddr_v6 = ipv6_all_zeros; /* Displayed in MIB */ 6794 6795 PRESERVE(connp->conn_bound_addr_v6); 6796 tcp->tcp_last_sent_len = 0; 6797 tcp->tcp_dupack_cnt = 0; 6798 6799 connp->conn_fport = 0; /* Displayed in MIB */ 6800 PRESERVE(connp->conn_lport); 6801 6802 PRESERVE(tcp->tcp_acceptor_lockp); 6803 6804 ASSERT(tcp->tcp_ordrel_mp == NULL); 6805 PRESERVE(tcp->tcp_acceptor_id); 6806 DONTCARE(tcp->tcp_ipsec_overhead); 6807 6808 PRESERVE(connp->conn_family); 6809 /* Remove any remnants of mapped address binding */ 6810 if (connp->conn_family == AF_INET6) { 6811 connp->conn_ipversion = IPV6_VERSION; 6812 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 6813 } else { 6814 connp->conn_ipversion = IPV4_VERSION; 6815 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 6816 } 6817 6818 connp->conn_bound_if = 0; 6819 connp->conn_recv_ancillary.crb_all = 0; 6820 tcp->tcp_recvifindex = 0; 6821 tcp->tcp_recvhops = 0; 6822 tcp->tcp_closed = 0; 6823 tcp->tcp_cleandeathtag = 0; 6824 if (tcp->tcp_hopopts != NULL) { 6825 mi_free(tcp->tcp_hopopts); 6826 tcp->tcp_hopopts = NULL; 6827 tcp->tcp_hopoptslen = 0; 6828 } 6829 ASSERT(tcp->tcp_hopoptslen == 0); 6830 if (tcp->tcp_dstopts != NULL) { 6831 mi_free(tcp->tcp_dstopts); 6832 tcp->tcp_dstopts = NULL; 6833 tcp->tcp_dstoptslen = 0; 6834 } 6835 ASSERT(tcp->tcp_dstoptslen == 0); 6836 if (tcp->tcp_rthdrdstopts != NULL) { 6837 mi_free(tcp->tcp_rthdrdstopts); 6838 tcp->tcp_rthdrdstopts = NULL; 6839 tcp->tcp_rthdrdstoptslen = 0; 6840 } 6841 ASSERT(tcp->tcp_rthdrdstoptslen == 0); 6842 if (tcp->tcp_rthdr != NULL) { 6843 mi_free(tcp->tcp_rthdr); 6844 tcp->tcp_rthdr = NULL; 6845 tcp->tcp_rthdrlen = 0; 6846 } 6847 ASSERT(tcp->tcp_rthdrlen == 0); 6848 6849 /* Reset fusion-related fields */ 6850 tcp->tcp_fused = B_FALSE; 6851 tcp->tcp_unfusable = B_FALSE; 6852 tcp->tcp_fused_sigurg = B_FALSE; 6853 tcp->tcp_loopback_peer = NULL; 6854 6855 tcp->tcp_lso = B_FALSE; 6856 6857 tcp->tcp_in_ack_unsent = 0; 6858 tcp->tcp_cork = B_FALSE; 6859 tcp->tcp_tconnind_started = B_FALSE; 6860 6861 PRESERVE(tcp->tcp_squeue_bytes); 6862 6863 ASSERT(tcp->tcp_kssl_ctx == NULL); 6864 ASSERT(!tcp->tcp_kssl_pending); 6865 PRESERVE(tcp->tcp_kssl_ent); 6866 6867 tcp->tcp_closemp_used = B_FALSE; 6868 6869 PRESERVE(tcp->tcp_rsrv_mp); 6870 PRESERVE(tcp->tcp_rsrv_mp_lock); 6871 6872 #ifdef DEBUG 6873 DONTCARE(tcp->tcmp_stk[0]); 6874 #endif 6875 6876 PRESERVE(tcp->tcp_connid); 6877 6878 ASSERT(tcp->tcp_listen_cnt == NULL); 6879 ASSERT(tcp->tcp_reass_tid == 0); 6880 6881 #undef DONTCARE 6882 #undef PRESERVE 6883 } 6884 6885 static void 6886 tcp_init_values(tcp_t *tcp) 6887 { 6888 tcp_stack_t *tcps = tcp->tcp_tcps; 6889 conn_t *connp = tcp->tcp_connp; 6890 6891 ASSERT((connp->conn_family == AF_INET && 6892 connp->conn_ipversion == IPV4_VERSION) || 6893 (connp->conn_family == AF_INET6 && 6894 (connp->conn_ipversion == IPV4_VERSION || 6895 connp->conn_ipversion == IPV6_VERSION))); 6896 6897 /* 6898 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO 6899 * will be close to tcp_rexmit_interval_initial. By doing this, we 6900 * allow the algorithm to adjust slowly to large fluctuations of RTT 6901 * during first few transmissions of a connection as seen in slow 6902 * links. 6903 */ 6904 tcp->tcp_rtt_sa = tcps->tcps_rexmit_interval_initial << 2; 6905 tcp->tcp_rtt_sd = tcps->tcps_rexmit_interval_initial >> 1; 6906 tcp->tcp_rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 6907 tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) + 6908 tcps->tcps_conn_grace_period; 6909 if (tcp->tcp_rto < tcps->tcps_rexmit_interval_min) 6910 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 6911 tcp->tcp_timer_backoff = 0; 6912 tcp->tcp_ms_we_have_waited = 0; 6913 tcp->tcp_last_recv_time = ddi_get_lbolt(); 6914 tcp->tcp_cwnd_max = tcps->tcps_cwnd_max_; 6915 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 6916 tcp->tcp_snd_burst = TCP_CWND_INFINITE; 6917 6918 tcp->tcp_maxpsz_multiplier = tcps->tcps_maxpsz_multiplier; 6919 6920 tcp->tcp_first_timer_threshold = tcps->tcps_ip_notify_interval; 6921 tcp->tcp_first_ctimer_threshold = tcps->tcps_ip_notify_cinterval; 6922 tcp->tcp_second_timer_threshold = tcps->tcps_ip_abort_interval; 6923 /* 6924 * Fix it to tcp_ip_abort_linterval later if it turns out to be a 6925 * passive open. 6926 */ 6927 tcp->tcp_second_ctimer_threshold = tcps->tcps_ip_abort_cinterval; 6928 6929 tcp->tcp_naglim = tcps->tcps_naglim_def; 6930 6931 /* NOTE: ISS is now set in tcp_set_destination(). */ 6932 6933 /* Reset fusion-related fields */ 6934 tcp->tcp_fused = B_FALSE; 6935 tcp->tcp_unfusable = B_FALSE; 6936 tcp->tcp_fused_sigurg = B_FALSE; 6937 tcp->tcp_loopback_peer = NULL; 6938 6939 /* We rebuild the header template on the next connect/conn_request */ 6940 6941 connp->conn_mlp_type = mlptSingle; 6942 6943 /* 6944 * Init the window scale to the max so tcp_rwnd_set() won't pare 6945 * down tcp_rwnd. tcp_set_destination() will set the right value later. 6946 */ 6947 tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT; 6948 tcp->tcp_rwnd = connp->conn_rcvbuf; 6949 6950 tcp->tcp_cork = B_FALSE; 6951 /* 6952 * Init the tcp_debug option if it wasn't already set. This value 6953 * determines whether TCP 6954 * calls strlog() to print out debug messages. Doing this 6955 * initialization here means that this value is not inherited thru 6956 * tcp_reinit(). 6957 */ 6958 if (!connp->conn_debug) 6959 connp->conn_debug = tcps->tcps_dbg; 6960 6961 tcp->tcp_ka_interval = tcps->tcps_keepalive_interval; 6962 tcp->tcp_ka_abort_thres = tcps->tcps_keepalive_abort_interval; 6963 } 6964 6965 /* At minimum we need 8 bytes in the TCP header for the lookup */ 6966 #define ICMP_MIN_TCP_HDR 8 6967 6968 /* 6969 * tcp_icmp_input is called as conn_recvicmp to process ICMP error messages 6970 * passed up by IP. The message is always received on the correct tcp_t. 6971 * Assumes that IP has pulled up everything up to and including the ICMP header. 6972 */ 6973 /* ARGSUSED2 */ 6974 static void 6975 tcp_icmp_input(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 6976 { 6977 conn_t *connp = (conn_t *)arg1; 6978 icmph_t *icmph; 6979 ipha_t *ipha; 6980 int iph_hdr_length; 6981 tcpha_t *tcpha; 6982 uint32_t seg_seq; 6983 tcp_t *tcp = connp->conn_tcp; 6984 6985 /* Assume IP provides aligned packets */ 6986 ASSERT(OK_32PTR(mp->b_rptr)); 6987 ASSERT((MBLKL(mp) >= sizeof (ipha_t))); 6988 6989 /* 6990 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent 6991 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6. 6992 */ 6993 if (!(ira->ira_flags & IRAF_IS_IPV4)) { 6994 tcp_icmp_error_ipv6(tcp, mp, ira); 6995 return; 6996 } 6997 6998 /* Skip past the outer IP and ICMP headers */ 6999 iph_hdr_length = ira->ira_ip_hdr_length; 7000 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 7001 /* 7002 * If we don't have the correct outer IP header length 7003 * or if we don't have a complete inner IP header 7004 * drop it. 7005 */ 7006 if (iph_hdr_length < sizeof (ipha_t) || 7007 (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) { 7008 noticmpv4: 7009 freemsg(mp); 7010 return; 7011 } 7012 ipha = (ipha_t *)&icmph[1]; 7013 7014 /* Skip past the inner IP and find the ULP header */ 7015 iph_hdr_length = IPH_HDR_LENGTH(ipha); 7016 tcpha = (tcpha_t *)((char *)ipha + iph_hdr_length); 7017 /* 7018 * If we don't have the correct inner IP header length or if the ULP 7019 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR 7020 * bytes of TCP header, drop it. 7021 */ 7022 if (iph_hdr_length < sizeof (ipha_t) || 7023 ipha->ipha_protocol != IPPROTO_TCP || 7024 (uchar_t *)tcpha + ICMP_MIN_TCP_HDR > mp->b_wptr) { 7025 goto noticmpv4; 7026 } 7027 7028 seg_seq = ntohl(tcpha->tha_seq); 7029 switch (icmph->icmph_type) { 7030 case ICMP_DEST_UNREACHABLE: 7031 switch (icmph->icmph_code) { 7032 case ICMP_FRAGMENTATION_NEEDED: 7033 /* 7034 * Update Path MTU, then try to send something out. 7035 */ 7036 tcp_update_pmtu(tcp, B_TRUE); 7037 tcp_rexmit_after_error(tcp); 7038 break; 7039 case ICMP_PORT_UNREACHABLE: 7040 case ICMP_PROTOCOL_UNREACHABLE: 7041 switch (tcp->tcp_state) { 7042 case TCPS_SYN_SENT: 7043 case TCPS_SYN_RCVD: 7044 /* 7045 * ICMP can snipe away incipient 7046 * TCP connections as long as 7047 * seq number is same as initial 7048 * send seq number. 7049 */ 7050 if (seg_seq == tcp->tcp_iss) { 7051 (void) tcp_clean_death(tcp, 7052 ECONNREFUSED, 6); 7053 } 7054 break; 7055 } 7056 break; 7057 case ICMP_HOST_UNREACHABLE: 7058 case ICMP_NET_UNREACHABLE: 7059 /* Record the error in case we finally time out. */ 7060 if (icmph->icmph_code == ICMP_HOST_UNREACHABLE) 7061 tcp->tcp_client_errno = EHOSTUNREACH; 7062 else 7063 tcp->tcp_client_errno = ENETUNREACH; 7064 if (tcp->tcp_state == TCPS_SYN_RCVD) { 7065 if (tcp->tcp_listener != NULL && 7066 tcp->tcp_listener->tcp_syn_defense) { 7067 /* 7068 * Ditch the half-open connection if we 7069 * suspect a SYN attack is under way. 7070 */ 7071 (void) tcp_clean_death(tcp, 7072 tcp->tcp_client_errno, 7); 7073 } 7074 } 7075 break; 7076 default: 7077 break; 7078 } 7079 break; 7080 case ICMP_SOURCE_QUENCH: { 7081 /* 7082 * use a global boolean to control 7083 * whether TCP should respond to ICMP_SOURCE_QUENCH. 7084 * The default is false. 7085 */ 7086 if (tcp_icmp_source_quench) { 7087 /* 7088 * Reduce the sending rate as if we got a 7089 * retransmit timeout 7090 */ 7091 uint32_t npkt; 7092 7093 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / 7094 tcp->tcp_mss; 7095 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss; 7096 tcp->tcp_cwnd = tcp->tcp_mss; 7097 tcp->tcp_cwnd_cnt = 0; 7098 } 7099 break; 7100 } 7101 } 7102 freemsg(mp); 7103 } 7104 7105 /* 7106 * CALLED OUTSIDE OF SQUEUE! It can not follow any pointers that tcp might 7107 * change. But it can refer to fields like tcp_suna and tcp_snxt. 7108 * 7109 * Function tcp_verifyicmp is called as conn_verifyicmp to verify the ICMP 7110 * error messages received by IP. The message is always received on the correct 7111 * tcp_t. 7112 */ 7113 /* ARGSUSED */ 7114 static boolean_t 7115 tcp_verifyicmp(conn_t *connp, void *arg2, icmph_t *icmph, icmp6_t *icmp6, 7116 ip_recv_attr_t *ira) 7117 { 7118 tcpha_t *tcpha = (tcpha_t *)arg2; 7119 uint32_t seq = ntohl(tcpha->tha_seq); 7120 tcp_t *tcp = connp->conn_tcp; 7121 7122 /* 7123 * TCP sequence number contained in payload of the ICMP error message 7124 * should be within the range SND.UNA <= SEG.SEQ < SND.NXT. Otherwise, 7125 * the message is either a stale ICMP error, or an attack from the 7126 * network. Fail the verification. 7127 */ 7128 if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt)) 7129 return (B_FALSE); 7130 7131 /* For "too big" we also check the ignore flag */ 7132 if (ira->ira_flags & IRAF_IS_IPV4) { 7133 ASSERT(icmph != NULL); 7134 if (icmph->icmph_type == ICMP_DEST_UNREACHABLE && 7135 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED && 7136 tcp->tcp_tcps->tcps_ignore_path_mtu) 7137 return (B_FALSE); 7138 } else { 7139 ASSERT(icmp6 != NULL); 7140 if (icmp6->icmp6_type == ICMP6_PACKET_TOO_BIG && 7141 tcp->tcp_tcps->tcps_ignore_path_mtu) 7142 return (B_FALSE); 7143 } 7144 return (B_TRUE); 7145 } 7146 7147 /* 7148 * Update the TCP connection according to change of PMTU. 7149 * 7150 * Path MTU might have changed by either increase or decrease, so need to 7151 * adjust the MSS based on the value of ixa_pmtu. No need to handle tiny 7152 * or negative MSS, since tcp_mss_set() will do it. 7153 */ 7154 static void 7155 tcp_update_pmtu(tcp_t *tcp, boolean_t decrease_only) 7156 { 7157 uint32_t pmtu; 7158 int32_t mss; 7159 conn_t *connp = tcp->tcp_connp; 7160 ip_xmit_attr_t *ixa = connp->conn_ixa; 7161 iaflags_t ixaflags; 7162 7163 if (tcp->tcp_tcps->tcps_ignore_path_mtu) 7164 return; 7165 7166 if (tcp->tcp_state < TCPS_ESTABLISHED) 7167 return; 7168 7169 /* 7170 * Always call ip_get_pmtu() to make sure that IP has updated 7171 * ixa_flags properly. 7172 */ 7173 pmtu = ip_get_pmtu(ixa); 7174 ixaflags = ixa->ixa_flags; 7175 7176 /* 7177 * Calculate the MSS by decreasing the PMTU by conn_ht_iphc_len and 7178 * IPsec overhead if applied. Make sure to use the most recent 7179 * IPsec information. 7180 */ 7181 mss = pmtu - connp->conn_ht_iphc_len - conn_ipsec_length(connp); 7182 7183 /* 7184 * Nothing to change, so just return. 7185 */ 7186 if (mss == tcp->tcp_mss) 7187 return; 7188 7189 /* 7190 * Currently, for ICMP errors, only PMTU decrease is handled. 7191 */ 7192 if (mss > tcp->tcp_mss && decrease_only) 7193 return; 7194 7195 DTRACE_PROBE2(tcp_update_pmtu, int32_t, tcp->tcp_mss, uint32_t, mss); 7196 7197 /* 7198 * Update ixa_fragsize and ixa_pmtu. 7199 */ 7200 ixa->ixa_fragsize = ixa->ixa_pmtu = pmtu; 7201 7202 /* 7203 * Adjust MSS and all relevant variables. 7204 */ 7205 tcp_mss_set(tcp, mss); 7206 7207 /* 7208 * If the PMTU is below the min size maintained by IP, then ip_get_pmtu 7209 * has set IXAF_PMTU_TOO_SMALL and cleared IXAF_PMTU_IPV4_DF. Since TCP 7210 * has a (potentially different) min size we do the same. Make sure to 7211 * clear IXAF_DONTFRAG, which is used by IP to decide whether to 7212 * fragment the packet. 7213 * 7214 * LSO over IPv6 can not be fragmented. So need to disable LSO 7215 * when IPv6 fragmentation is needed. 7216 */ 7217 if (mss < tcp->tcp_tcps->tcps_mss_min) 7218 ixaflags |= IXAF_PMTU_TOO_SMALL; 7219 7220 if (ixaflags & IXAF_PMTU_TOO_SMALL) 7221 ixaflags &= ~(IXAF_DONTFRAG | IXAF_PMTU_IPV4_DF); 7222 7223 if ((connp->conn_ipversion == IPV4_VERSION) && 7224 !(ixaflags & IXAF_PMTU_IPV4_DF)) { 7225 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0; 7226 } 7227 ixa->ixa_flags = ixaflags; 7228 } 7229 7230 /* 7231 * Do slow start retransmission after ICMP errors of PMTU changes. 7232 */ 7233 static void 7234 tcp_rexmit_after_error(tcp_t *tcp) 7235 { 7236 /* 7237 * All sent data has been acknowledged or no data left to send, just 7238 * to return. 7239 */ 7240 if (!SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) || 7241 (tcp->tcp_xmit_head == NULL)) 7242 return; 7243 7244 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && (tcp->tcp_unsent == 0)) 7245 tcp->tcp_rexmit_max = tcp->tcp_fss; 7246 else 7247 tcp->tcp_rexmit_max = tcp->tcp_snxt; 7248 7249 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 7250 tcp->tcp_rexmit = B_TRUE; 7251 tcp->tcp_dupack_cnt = 0; 7252 tcp->tcp_snd_burst = TCP_CWND_SS; 7253 tcp_ss_rexmit(tcp); 7254 } 7255 7256 /* 7257 * tcp_icmp_error_ipv6 is called from tcp_icmp_input to process ICMPv6 7258 * error messages passed up by IP. 7259 * Assumes that IP has pulled up all the extension headers as well 7260 * as the ICMPv6 header. 7261 */ 7262 static void 7263 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, ip_recv_attr_t *ira) 7264 { 7265 icmp6_t *icmp6; 7266 ip6_t *ip6h; 7267 uint16_t iph_hdr_length = ira->ira_ip_hdr_length; 7268 tcpha_t *tcpha; 7269 uint8_t *nexthdrp; 7270 uint32_t seg_seq; 7271 7272 /* 7273 * Verify that we have a complete IP header. 7274 */ 7275 ASSERT((MBLKL(mp) >= sizeof (ip6_t))); 7276 7277 icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length]; 7278 ip6h = (ip6_t *)&icmp6[1]; 7279 /* 7280 * Verify if we have a complete ICMP and inner IP header. 7281 */ 7282 if ((uchar_t *)&ip6h[1] > mp->b_wptr) { 7283 noticmpv6: 7284 freemsg(mp); 7285 return; 7286 } 7287 7288 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp)) 7289 goto noticmpv6; 7290 tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length); 7291 /* 7292 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't 7293 * have at least ICMP_MIN_TCP_HDR bytes of TCP header drop the 7294 * packet. 7295 */ 7296 if ((*nexthdrp != IPPROTO_TCP) || 7297 ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) { 7298 goto noticmpv6; 7299 } 7300 7301 seg_seq = ntohl(tcpha->tha_seq); 7302 switch (icmp6->icmp6_type) { 7303 case ICMP6_PACKET_TOO_BIG: 7304 /* 7305 * Update Path MTU, then try to send something out. 7306 */ 7307 tcp_update_pmtu(tcp, B_TRUE); 7308 tcp_rexmit_after_error(tcp); 7309 break; 7310 case ICMP6_DST_UNREACH: 7311 switch (icmp6->icmp6_code) { 7312 case ICMP6_DST_UNREACH_NOPORT: 7313 if (((tcp->tcp_state == TCPS_SYN_SENT) || 7314 (tcp->tcp_state == TCPS_SYN_RCVD)) && 7315 (seg_seq == tcp->tcp_iss)) { 7316 (void) tcp_clean_death(tcp, 7317 ECONNREFUSED, 8); 7318 } 7319 break; 7320 case ICMP6_DST_UNREACH_ADMIN: 7321 case ICMP6_DST_UNREACH_NOROUTE: 7322 case ICMP6_DST_UNREACH_BEYONDSCOPE: 7323 case ICMP6_DST_UNREACH_ADDR: 7324 /* Record the error in case we finally time out. */ 7325 tcp->tcp_client_errno = EHOSTUNREACH; 7326 if (((tcp->tcp_state == TCPS_SYN_SENT) || 7327 (tcp->tcp_state == TCPS_SYN_RCVD)) && 7328 (seg_seq == tcp->tcp_iss)) { 7329 if (tcp->tcp_listener != NULL && 7330 tcp->tcp_listener->tcp_syn_defense) { 7331 /* 7332 * Ditch the half-open connection if we 7333 * suspect a SYN attack is under way. 7334 */ 7335 (void) tcp_clean_death(tcp, 7336 tcp->tcp_client_errno, 9); 7337 } 7338 } 7339 7340 7341 break; 7342 default: 7343 break; 7344 } 7345 break; 7346 case ICMP6_PARAM_PROB: 7347 /* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */ 7348 if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER && 7349 (uchar_t *)ip6h + icmp6->icmp6_pptr == 7350 (uchar_t *)nexthdrp) { 7351 if (tcp->tcp_state == TCPS_SYN_SENT || 7352 tcp->tcp_state == TCPS_SYN_RCVD) { 7353 (void) tcp_clean_death(tcp, 7354 ECONNREFUSED, 10); 7355 } 7356 break; 7357 } 7358 break; 7359 7360 case ICMP6_TIME_EXCEEDED: 7361 default: 7362 break; 7363 } 7364 freemsg(mp); 7365 } 7366 7367 /* 7368 * Notify IP that we are having trouble with this connection. IP should 7369 * make note so it can potentially use a different IRE. 7370 */ 7371 static void 7372 tcp_ip_notify(tcp_t *tcp) 7373 { 7374 conn_t *connp = tcp->tcp_connp; 7375 ire_t *ire; 7376 7377 /* 7378 * Note: in the case of source routing we want to blow away the 7379 * route to the first source route hop. 7380 */ 7381 ire = connp->conn_ixa->ixa_ire; 7382 if (ire != NULL && !(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) { 7383 if (ire->ire_ipversion == IPV4_VERSION) { 7384 /* 7385 * As per RFC 1122, we send an RTM_LOSING to inform 7386 * routing protocols. 7387 */ 7388 ip_rts_change(RTM_LOSING, ire->ire_addr, 7389 ire->ire_gateway_addr, ire->ire_mask, 7390 connp->conn_laddr_v4, 0, 0, 0, 7391 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_IFA), 7392 ire->ire_ipst); 7393 } 7394 (void) ire_no_good(ire); 7395 } 7396 } 7397 7398 #pragma inline(tcp_send_data) 7399 7400 /* 7401 * Timer callback routine for keepalive probe. We do a fake resend of 7402 * last ACKed byte. Then set a timer using RTO. When the timer expires, 7403 * check to see if we have heard anything from the other end for the last 7404 * RTO period. If we have, set the timer to expire for another 7405 * tcp_keepalive_intrvl and check again. If we have not, set a timer using 7406 * RTO << 1 and check again when it expires. Keep exponentially increasing 7407 * the timeout if we have not heard from the other side. If for more than 7408 * (tcp_ka_interval + tcp_ka_abort_thres) we have not heard anything, 7409 * kill the connection unless the keepalive abort threshold is 0. In 7410 * that case, we will probe "forever." 7411 */ 7412 static void 7413 tcp_keepalive_killer(void *arg) 7414 { 7415 mblk_t *mp; 7416 conn_t *connp = (conn_t *)arg; 7417 tcp_t *tcp = connp->conn_tcp; 7418 int32_t firetime; 7419 int32_t idletime; 7420 int32_t ka_intrvl; 7421 tcp_stack_t *tcps = tcp->tcp_tcps; 7422 7423 tcp->tcp_ka_tid = 0; 7424 7425 if (tcp->tcp_fused) 7426 return; 7427 7428 BUMP_MIB(&tcps->tcps_mib, tcpTimKeepalive); 7429 ka_intrvl = tcp->tcp_ka_interval; 7430 7431 /* 7432 * Keepalive probe should only be sent if the application has not 7433 * done a close on the connection. 7434 */ 7435 if (tcp->tcp_state > TCPS_CLOSE_WAIT) { 7436 return; 7437 } 7438 /* Timer fired too early, restart it. */ 7439 if (tcp->tcp_state < TCPS_ESTABLISHED) { 7440 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 7441 MSEC_TO_TICK(ka_intrvl)); 7442 return; 7443 } 7444 7445 idletime = TICK_TO_MSEC(ddi_get_lbolt() - tcp->tcp_last_recv_time); 7446 /* 7447 * If we have not heard from the other side for a long 7448 * time, kill the connection unless the keepalive abort 7449 * threshold is 0. In that case, we will probe "forever." 7450 */ 7451 if (tcp->tcp_ka_abort_thres != 0 && 7452 idletime > (ka_intrvl + tcp->tcp_ka_abort_thres)) { 7453 BUMP_MIB(&tcps->tcps_mib, tcpTimKeepaliveDrop); 7454 (void) tcp_clean_death(tcp, tcp->tcp_client_errno ? 7455 tcp->tcp_client_errno : ETIMEDOUT, 11); 7456 return; 7457 } 7458 7459 if (tcp->tcp_snxt == tcp->tcp_suna && 7460 idletime >= ka_intrvl) { 7461 /* Fake resend of last ACKed byte. */ 7462 mblk_t *mp1 = allocb(1, BPRI_LO); 7463 7464 if (mp1 != NULL) { 7465 *mp1->b_wptr++ = '\0'; 7466 mp = tcp_xmit_mp(tcp, mp1, 1, NULL, NULL, 7467 tcp->tcp_suna - 1, B_FALSE, NULL, B_TRUE); 7468 freeb(mp1); 7469 /* 7470 * if allocation failed, fall through to start the 7471 * timer back. 7472 */ 7473 if (mp != NULL) { 7474 tcp_send_data(tcp, mp); 7475 BUMP_MIB(&tcps->tcps_mib, 7476 tcpTimKeepaliveProbe); 7477 if (tcp->tcp_ka_last_intrvl != 0) { 7478 int max; 7479 /* 7480 * We should probe again at least 7481 * in ka_intrvl, but not more than 7482 * tcp_rexmit_interval_max. 7483 */ 7484 max = tcps->tcps_rexmit_interval_max; 7485 firetime = MIN(ka_intrvl - 1, 7486 tcp->tcp_ka_last_intrvl << 1); 7487 if (firetime > max) 7488 firetime = max; 7489 } else { 7490 firetime = tcp->tcp_rto; 7491 } 7492 tcp->tcp_ka_tid = TCP_TIMER(tcp, 7493 tcp_keepalive_killer, 7494 MSEC_TO_TICK(firetime)); 7495 tcp->tcp_ka_last_intrvl = firetime; 7496 return; 7497 } 7498 } 7499 } else { 7500 tcp->tcp_ka_last_intrvl = 0; 7501 } 7502 7503 /* firetime can be negative if (mp1 == NULL || mp == NULL) */ 7504 if ((firetime = ka_intrvl - idletime) < 0) { 7505 firetime = ka_intrvl; 7506 } 7507 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 7508 MSEC_TO_TICK(firetime)); 7509 } 7510 7511 int 7512 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk) 7513 { 7514 conn_t *connp = tcp->tcp_connp; 7515 queue_t *q = connp->conn_rq; 7516 int32_t mss = tcp->tcp_mss; 7517 int maxpsz; 7518 7519 if (TCP_IS_DETACHED(tcp)) 7520 return (mss); 7521 if (tcp->tcp_fused) { 7522 maxpsz = tcp_fuse_maxpsz(tcp); 7523 mss = INFPSZ; 7524 } else if (tcp->tcp_maxpsz_multiplier == 0) { 7525 /* 7526 * Set the sd_qn_maxpsz according to the socket send buffer 7527 * size, and sd_maxblk to INFPSZ (-1). This will essentially 7528 * instruct the stream head to copyin user data into contiguous 7529 * kernel-allocated buffers without breaking it up into smaller 7530 * chunks. We round up the buffer size to the nearest SMSS. 7531 */ 7532 maxpsz = MSS_ROUNDUP(connp->conn_sndbuf, mss); 7533 if (tcp->tcp_kssl_ctx == NULL) 7534 mss = INFPSZ; 7535 else 7536 mss = SSL3_MAX_RECORD_LEN; 7537 } else { 7538 /* 7539 * Set sd_qn_maxpsz to approx half the (receivers) buffer 7540 * (and a multiple of the mss). This instructs the stream 7541 * head to break down larger than SMSS writes into SMSS- 7542 * size mblks, up to tcp_maxpsz_multiplier mblks at a time. 7543 */ 7544 maxpsz = tcp->tcp_maxpsz_multiplier * mss; 7545 if (maxpsz > connp->conn_sndbuf / 2) { 7546 maxpsz = connp->conn_sndbuf / 2; 7547 /* Round up to nearest mss */ 7548 maxpsz = MSS_ROUNDUP(maxpsz, mss); 7549 } 7550 } 7551 7552 (void) proto_set_maxpsz(q, connp, maxpsz); 7553 if (!(IPCL_IS_NONSTR(connp))) 7554 connp->conn_wq->q_maxpsz = maxpsz; 7555 if (set_maxblk) 7556 (void) proto_set_tx_maxblk(q, connp, mss); 7557 return (mss); 7558 } 7559 7560 /* 7561 * Extract option values from a tcp header. We put any found values into the 7562 * tcpopt struct and return a bitmask saying which options were found. 7563 */ 7564 static int 7565 tcp_parse_options(tcpha_t *tcpha, tcp_opt_t *tcpopt) 7566 { 7567 uchar_t *endp; 7568 int len; 7569 uint32_t mss; 7570 uchar_t *up = (uchar_t *)tcpha; 7571 int found = 0; 7572 int32_t sack_len; 7573 tcp_seq sack_begin, sack_end; 7574 tcp_t *tcp; 7575 7576 endp = up + TCP_HDR_LENGTH(tcpha); 7577 up += TCP_MIN_HEADER_LENGTH; 7578 while (up < endp) { 7579 len = endp - up; 7580 switch (*up) { 7581 case TCPOPT_EOL: 7582 break; 7583 7584 case TCPOPT_NOP: 7585 up++; 7586 continue; 7587 7588 case TCPOPT_MAXSEG: 7589 if (len < TCPOPT_MAXSEG_LEN || 7590 up[1] != TCPOPT_MAXSEG_LEN) 7591 break; 7592 7593 mss = BE16_TO_U16(up+2); 7594 /* Caller must handle tcp_mss_min and tcp_mss_max_* */ 7595 tcpopt->tcp_opt_mss = mss; 7596 found |= TCP_OPT_MSS_PRESENT; 7597 7598 up += TCPOPT_MAXSEG_LEN; 7599 continue; 7600 7601 case TCPOPT_WSCALE: 7602 if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN) 7603 break; 7604 7605 if (up[2] > TCP_MAX_WINSHIFT) 7606 tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT; 7607 else 7608 tcpopt->tcp_opt_wscale = up[2]; 7609 found |= TCP_OPT_WSCALE_PRESENT; 7610 7611 up += TCPOPT_WS_LEN; 7612 continue; 7613 7614 case TCPOPT_SACK_PERMITTED: 7615 if (len < TCPOPT_SACK_OK_LEN || 7616 up[1] != TCPOPT_SACK_OK_LEN) 7617 break; 7618 found |= TCP_OPT_SACK_OK_PRESENT; 7619 up += TCPOPT_SACK_OK_LEN; 7620 continue; 7621 7622 case TCPOPT_SACK: 7623 if (len <= 2 || up[1] <= 2 || len < up[1]) 7624 break; 7625 7626 /* If TCP is not interested in SACK blks... */ 7627 if ((tcp = tcpopt->tcp) == NULL) { 7628 up += up[1]; 7629 continue; 7630 } 7631 sack_len = up[1] - TCPOPT_HEADER_LEN; 7632 up += TCPOPT_HEADER_LEN; 7633 7634 /* 7635 * If the list is empty, allocate one and assume 7636 * nothing is sack'ed. 7637 */ 7638 ASSERT(tcp->tcp_sack_info != NULL); 7639 if (tcp->tcp_notsack_list == NULL) { 7640 tcp_notsack_update(&(tcp->tcp_notsack_list), 7641 tcp->tcp_suna, tcp->tcp_snxt, 7642 &(tcp->tcp_num_notsack_blk), 7643 &(tcp->tcp_cnt_notsack_list)); 7644 7645 /* 7646 * Make sure tcp_notsack_list is not NULL. 7647 * This happens when kmem_alloc(KM_NOSLEEP) 7648 * returns NULL. 7649 */ 7650 if (tcp->tcp_notsack_list == NULL) { 7651 up += sack_len; 7652 continue; 7653 } 7654 tcp->tcp_fack = tcp->tcp_suna; 7655 } 7656 7657 while (sack_len > 0) { 7658 if (up + 8 > endp) { 7659 up = endp; 7660 break; 7661 } 7662 sack_begin = BE32_TO_U32(up); 7663 up += 4; 7664 sack_end = BE32_TO_U32(up); 7665 up += 4; 7666 sack_len -= 8; 7667 /* 7668 * Bounds checking. Make sure the SACK 7669 * info is within tcp_suna and tcp_snxt. 7670 * If this SACK blk is out of bound, ignore 7671 * it but continue to parse the following 7672 * blks. 7673 */ 7674 if (SEQ_LEQ(sack_end, sack_begin) || 7675 SEQ_LT(sack_begin, tcp->tcp_suna) || 7676 SEQ_GT(sack_end, tcp->tcp_snxt)) { 7677 continue; 7678 } 7679 tcp_notsack_insert(&(tcp->tcp_notsack_list), 7680 sack_begin, sack_end, 7681 &(tcp->tcp_num_notsack_blk), 7682 &(tcp->tcp_cnt_notsack_list)); 7683 if (SEQ_GT(sack_end, tcp->tcp_fack)) { 7684 tcp->tcp_fack = sack_end; 7685 } 7686 } 7687 found |= TCP_OPT_SACK_PRESENT; 7688 continue; 7689 7690 case TCPOPT_TSTAMP: 7691 if (len < TCPOPT_TSTAMP_LEN || 7692 up[1] != TCPOPT_TSTAMP_LEN) 7693 break; 7694 7695 tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2); 7696 tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6); 7697 7698 found |= TCP_OPT_TSTAMP_PRESENT; 7699 7700 up += TCPOPT_TSTAMP_LEN; 7701 continue; 7702 7703 default: 7704 if (len <= 1 || len < (int)up[1] || up[1] == 0) 7705 break; 7706 up += up[1]; 7707 continue; 7708 } 7709 break; 7710 } 7711 return (found); 7712 } 7713 7714 /* 7715 * Set the MSS associated with a particular tcp based on its current value, 7716 * and a new one passed in. Observe minimums and maximums, and reset other 7717 * state variables that we want to view as multiples of MSS. 7718 * 7719 * The value of MSS could be either increased or descreased. 7720 */ 7721 static void 7722 tcp_mss_set(tcp_t *tcp, uint32_t mss) 7723 { 7724 uint32_t mss_max; 7725 tcp_stack_t *tcps = tcp->tcp_tcps; 7726 conn_t *connp = tcp->tcp_connp; 7727 7728 if (connp->conn_ipversion == IPV4_VERSION) 7729 mss_max = tcps->tcps_mss_max_ipv4; 7730 else 7731 mss_max = tcps->tcps_mss_max_ipv6; 7732 7733 if (mss < tcps->tcps_mss_min) 7734 mss = tcps->tcps_mss_min; 7735 if (mss > mss_max) 7736 mss = mss_max; 7737 /* 7738 * Unless naglim has been set by our client to 7739 * a non-mss value, force naglim to track mss. 7740 * This can help to aggregate small writes. 7741 */ 7742 if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim) 7743 tcp->tcp_naglim = mss; 7744 /* 7745 * TCP should be able to buffer at least 4 MSS data for obvious 7746 * performance reason. 7747 */ 7748 if ((mss << 2) > connp->conn_sndbuf) 7749 connp->conn_sndbuf = mss << 2; 7750 7751 /* 7752 * Set the send lowater to at least twice of MSS. 7753 */ 7754 if ((mss << 1) > connp->conn_sndlowat) 7755 connp->conn_sndlowat = mss << 1; 7756 7757 /* 7758 * Update tcp_cwnd according to the new value of MSS. Keep the 7759 * previous ratio to preserve the transmit rate. 7760 */ 7761 tcp->tcp_cwnd = (tcp->tcp_cwnd / tcp->tcp_mss) * mss; 7762 tcp->tcp_cwnd_cnt = 0; 7763 7764 tcp->tcp_mss = mss; 7765 (void) tcp_maxpsz_set(tcp, B_TRUE); 7766 } 7767 7768 /* For /dev/tcp aka AF_INET open */ 7769 static int 7770 tcp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 7771 { 7772 return (tcp_open(q, devp, flag, sflag, credp, B_FALSE)); 7773 } 7774 7775 /* For /dev/tcp6 aka AF_INET6 open */ 7776 static int 7777 tcp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 7778 { 7779 return (tcp_open(q, devp, flag, sflag, credp, B_TRUE)); 7780 } 7781 7782 static conn_t * 7783 tcp_create_common(cred_t *credp, boolean_t isv6, boolean_t issocket, 7784 int *errorp) 7785 { 7786 tcp_t *tcp = NULL; 7787 conn_t *connp; 7788 zoneid_t zoneid; 7789 tcp_stack_t *tcps; 7790 squeue_t *sqp; 7791 7792 ASSERT(errorp != NULL); 7793 /* 7794 * Find the proper zoneid and netstack. 7795 */ 7796 /* 7797 * Special case for install: miniroot needs to be able to 7798 * access files via NFS as though it were always in the 7799 * global zone. 7800 */ 7801 if (credp == kcred && nfs_global_client_only != 0) { 7802 zoneid = GLOBAL_ZONEID; 7803 tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)-> 7804 netstack_tcp; 7805 ASSERT(tcps != NULL); 7806 } else { 7807 netstack_t *ns; 7808 7809 ns = netstack_find_by_cred(credp); 7810 ASSERT(ns != NULL); 7811 tcps = ns->netstack_tcp; 7812 ASSERT(tcps != NULL); 7813 7814 /* 7815 * For exclusive stacks we set the zoneid to zero 7816 * to make TCP operate as if in the global zone. 7817 */ 7818 if (tcps->tcps_netstack->netstack_stackid != 7819 GLOBAL_NETSTACKID) 7820 zoneid = GLOBAL_ZONEID; 7821 else 7822 zoneid = crgetzoneid(credp); 7823 } 7824 7825 sqp = IP_SQUEUE_GET((uint_t)gethrtime()); 7826 connp = (conn_t *)tcp_get_conn(sqp, tcps); 7827 /* 7828 * Both tcp_get_conn and netstack_find_by_cred incremented refcnt, 7829 * so we drop it by one. 7830 */ 7831 netstack_rele(tcps->tcps_netstack); 7832 if (connp == NULL) { 7833 *errorp = ENOSR; 7834 return (NULL); 7835 } 7836 ASSERT(connp->conn_ixa->ixa_protocol == connp->conn_proto); 7837 7838 connp->conn_sqp = sqp; 7839 connp->conn_initial_sqp = connp->conn_sqp; 7840 connp->conn_ixa->ixa_sqp = connp->conn_sqp; 7841 tcp = connp->conn_tcp; 7842 7843 /* 7844 * Besides asking IP to set the checksum for us, have conn_ip_output 7845 * to do the following checks when necessary: 7846 * 7847 * IXAF_VERIFY_SOURCE: drop packets when our outer source goes invalid 7848 * IXAF_VERIFY_PMTU: verify PMTU changes 7849 * IXAF_VERIFY_LSO: verify LSO capability changes 7850 */ 7851 connp->conn_ixa->ixa_flags |= IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE | 7852 IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO; 7853 7854 if (!tcps->tcps_dev_flow_ctl) 7855 connp->conn_ixa->ixa_flags |= IXAF_NO_DEV_FLOW_CTL; 7856 7857 if (isv6) { 7858 connp->conn_ixa->ixa_src_preferences = IPV6_PREFER_SRC_DEFAULT; 7859 connp->conn_ipversion = IPV6_VERSION; 7860 connp->conn_family = AF_INET6; 7861 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 7862 connp->conn_default_ttl = tcps->tcps_ipv6_hoplimit; 7863 } else { 7864 connp->conn_ipversion = IPV4_VERSION; 7865 connp->conn_family = AF_INET; 7866 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 7867 connp->conn_default_ttl = tcps->tcps_ipv4_ttl; 7868 } 7869 connp->conn_xmit_ipp.ipp_unicast_hops = connp->conn_default_ttl; 7870 7871 crhold(credp); 7872 connp->conn_cred = credp; 7873 connp->conn_cpid = curproc->p_pid; 7874 connp->conn_open_time = ddi_get_lbolt64(); 7875 7876 connp->conn_zoneid = zoneid; 7877 /* conn_allzones can not be set this early, hence no IPCL_ZONEID */ 7878 connp->conn_ixa->ixa_zoneid = zoneid; 7879 connp->conn_mlp_type = mlptSingle; 7880 ASSERT(connp->conn_netstack == tcps->tcps_netstack); 7881 ASSERT(tcp->tcp_tcps == tcps); 7882 7883 /* 7884 * If the caller has the process-wide flag set, then default to MAC 7885 * exempt mode. This allows read-down to unlabeled hosts. 7886 */ 7887 if (getpflags(NET_MAC_AWARE, credp) != 0) 7888 connp->conn_mac_mode = CONN_MAC_AWARE; 7889 7890 connp->conn_zone_is_global = (crgetzoneid(credp) == GLOBAL_ZONEID); 7891 7892 if (issocket) { 7893 tcp->tcp_issocket = 1; 7894 } 7895 7896 connp->conn_rcvbuf = tcps->tcps_recv_hiwat; 7897 connp->conn_sndbuf = tcps->tcps_xmit_hiwat; 7898 connp->conn_sndlowat = tcps->tcps_xmit_lowat; 7899 connp->conn_so_type = SOCK_STREAM; 7900 connp->conn_wroff = connp->conn_ht_iphc_allocated + 7901 tcps->tcps_wroff_xtra; 7902 7903 SOCK_CONNID_INIT(tcp->tcp_connid); 7904 tcp->tcp_state = TCPS_IDLE; 7905 tcp_init_values(tcp); 7906 return (connp); 7907 } 7908 7909 static int 7910 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 7911 boolean_t isv6) 7912 { 7913 tcp_t *tcp = NULL; 7914 conn_t *connp = NULL; 7915 int err; 7916 vmem_t *minor_arena = NULL; 7917 dev_t conn_dev; 7918 boolean_t issocket; 7919 7920 if (q->q_ptr != NULL) 7921 return (0); 7922 7923 if (sflag == MODOPEN) 7924 return (EINVAL); 7925 7926 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 7927 ((conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 7928 minor_arena = ip_minor_arena_la; 7929 } else { 7930 /* 7931 * Either minor numbers in the large arena were exhausted 7932 * or a non socket application is doing the open. 7933 * Try to allocate from the small arena. 7934 */ 7935 if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0) { 7936 return (EBUSY); 7937 } 7938 minor_arena = ip_minor_arena_sa; 7939 } 7940 7941 ASSERT(minor_arena != NULL); 7942 7943 *devp = makedevice(getmajor(*devp), (minor_t)conn_dev); 7944 7945 if (flag & SO_FALLBACK) { 7946 /* 7947 * Non streams socket needs a stream to fallback to 7948 */ 7949 RD(q)->q_ptr = (void *)conn_dev; 7950 WR(q)->q_qinfo = &tcp_fallback_sock_winit; 7951 WR(q)->q_ptr = (void *)minor_arena; 7952 qprocson(q); 7953 return (0); 7954 } else if (flag & SO_ACCEPTOR) { 7955 q->q_qinfo = &tcp_acceptor_rinit; 7956 /* 7957 * the conn_dev and minor_arena will be subsequently used by 7958 * tcp_tli_accept() and tcp_tpi_close_accept() to figure out 7959 * the minor device number for this connection from the q_ptr. 7960 */ 7961 RD(q)->q_ptr = (void *)conn_dev; 7962 WR(q)->q_qinfo = &tcp_acceptor_winit; 7963 WR(q)->q_ptr = (void *)minor_arena; 7964 qprocson(q); 7965 return (0); 7966 } 7967 7968 issocket = flag & SO_SOCKSTR; 7969 connp = tcp_create_common(credp, isv6, issocket, &err); 7970 7971 if (connp == NULL) { 7972 inet_minor_free(minor_arena, conn_dev); 7973 q->q_ptr = WR(q)->q_ptr = NULL; 7974 return (err); 7975 } 7976 7977 connp->conn_rq = q; 7978 connp->conn_wq = WR(q); 7979 q->q_ptr = WR(q)->q_ptr = connp; 7980 7981 connp->conn_dev = conn_dev; 7982 connp->conn_minor_arena = minor_arena; 7983 7984 ASSERT(q->q_qinfo == &tcp_rinitv4 || q->q_qinfo == &tcp_rinitv6); 7985 ASSERT(WR(q)->q_qinfo == &tcp_winit); 7986 7987 tcp = connp->conn_tcp; 7988 7989 if (issocket) { 7990 WR(q)->q_qinfo = &tcp_sock_winit; 7991 } else { 7992 #ifdef _ILP32 7993 tcp->tcp_acceptor_id = (t_uscalar_t)RD(q); 7994 #else 7995 tcp->tcp_acceptor_id = conn_dev; 7996 #endif /* _ILP32 */ 7997 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 7998 } 7999 8000 /* 8001 * Put the ref for TCP. Ref for IP was already put 8002 * by ipcl_conn_create. Also Make the conn_t globally 8003 * visible to walkers 8004 */ 8005 mutex_enter(&connp->conn_lock); 8006 CONN_INC_REF_LOCKED(connp); 8007 ASSERT(connp->conn_ref == 2); 8008 connp->conn_state_flags &= ~CONN_INCIPIENT; 8009 mutex_exit(&connp->conn_lock); 8010 8011 qprocson(q); 8012 return (0); 8013 } 8014 8015 /* 8016 * Some TCP options can be "set" by requesting them in the option 8017 * buffer. This is needed for XTI feature test though we do not 8018 * allow it in general. We interpret that this mechanism is more 8019 * applicable to OSI protocols and need not be allowed in general. 8020 * This routine filters out options for which it is not allowed (most) 8021 * and lets through those (few) for which it is. [ The XTI interface 8022 * test suite specifics will imply that any XTI_GENERIC level XTI_* if 8023 * ever implemented will have to be allowed here ]. 8024 */ 8025 static boolean_t 8026 tcp_allow_connopt_set(int level, int name) 8027 { 8028 8029 switch (level) { 8030 case IPPROTO_TCP: 8031 switch (name) { 8032 case TCP_NODELAY: 8033 return (B_TRUE); 8034 default: 8035 return (B_FALSE); 8036 } 8037 /*NOTREACHED*/ 8038 default: 8039 return (B_FALSE); 8040 } 8041 /*NOTREACHED*/ 8042 } 8043 8044 /* 8045 * This routine gets default values of certain options whose default 8046 * values are maintained by protocol specific code 8047 */ 8048 /* ARGSUSED */ 8049 int 8050 tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 8051 { 8052 int32_t *i1 = (int32_t *)ptr; 8053 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 8054 8055 switch (level) { 8056 case IPPROTO_TCP: 8057 switch (name) { 8058 case TCP_NOTIFY_THRESHOLD: 8059 *i1 = tcps->tcps_ip_notify_interval; 8060 break; 8061 case TCP_ABORT_THRESHOLD: 8062 *i1 = tcps->tcps_ip_abort_interval; 8063 break; 8064 case TCP_CONN_NOTIFY_THRESHOLD: 8065 *i1 = tcps->tcps_ip_notify_cinterval; 8066 break; 8067 case TCP_CONN_ABORT_THRESHOLD: 8068 *i1 = tcps->tcps_ip_abort_cinterval; 8069 break; 8070 default: 8071 return (-1); 8072 } 8073 break; 8074 case IPPROTO_IP: 8075 switch (name) { 8076 case IP_TTL: 8077 *i1 = tcps->tcps_ipv4_ttl; 8078 break; 8079 default: 8080 return (-1); 8081 } 8082 break; 8083 case IPPROTO_IPV6: 8084 switch (name) { 8085 case IPV6_UNICAST_HOPS: 8086 *i1 = tcps->tcps_ipv6_hoplimit; 8087 break; 8088 default: 8089 return (-1); 8090 } 8091 break; 8092 default: 8093 return (-1); 8094 } 8095 return (sizeof (int)); 8096 } 8097 8098 /* 8099 * TCP routine to get the values of options. 8100 */ 8101 static int 8102 tcp_opt_get(conn_t *connp, int level, int name, uchar_t *ptr) 8103 { 8104 int *i1 = (int *)ptr; 8105 tcp_t *tcp = connp->conn_tcp; 8106 conn_opt_arg_t coas; 8107 int retval; 8108 8109 coas.coa_connp = connp; 8110 coas.coa_ixa = connp->conn_ixa; 8111 coas.coa_ipp = &connp->conn_xmit_ipp; 8112 coas.coa_ancillary = B_FALSE; 8113 coas.coa_changed = 0; 8114 8115 switch (level) { 8116 case SOL_SOCKET: 8117 switch (name) { 8118 case SO_SND_COPYAVOID: 8119 *i1 = tcp->tcp_snd_zcopy_on ? 8120 SO_SND_COPYAVOID : 0; 8121 return (sizeof (int)); 8122 case SO_ACCEPTCONN: 8123 *i1 = (tcp->tcp_state == TCPS_LISTEN); 8124 return (sizeof (int)); 8125 } 8126 break; 8127 case IPPROTO_TCP: 8128 switch (name) { 8129 case TCP_NODELAY: 8130 *i1 = (tcp->tcp_naglim == 1) ? TCP_NODELAY : 0; 8131 return (sizeof (int)); 8132 case TCP_MAXSEG: 8133 *i1 = tcp->tcp_mss; 8134 return (sizeof (int)); 8135 case TCP_NOTIFY_THRESHOLD: 8136 *i1 = (int)tcp->tcp_first_timer_threshold; 8137 return (sizeof (int)); 8138 case TCP_ABORT_THRESHOLD: 8139 *i1 = tcp->tcp_second_timer_threshold; 8140 return (sizeof (int)); 8141 case TCP_CONN_NOTIFY_THRESHOLD: 8142 *i1 = tcp->tcp_first_ctimer_threshold; 8143 return (sizeof (int)); 8144 case TCP_CONN_ABORT_THRESHOLD: 8145 *i1 = tcp->tcp_second_ctimer_threshold; 8146 return (sizeof (int)); 8147 case TCP_INIT_CWND: 8148 *i1 = tcp->tcp_init_cwnd; 8149 return (sizeof (int)); 8150 case TCP_KEEPALIVE_THRESHOLD: 8151 *i1 = tcp->tcp_ka_interval; 8152 return (sizeof (int)); 8153 case TCP_KEEPALIVE_ABORT_THRESHOLD: 8154 *i1 = tcp->tcp_ka_abort_thres; 8155 return (sizeof (int)); 8156 case TCP_CORK: 8157 *i1 = tcp->tcp_cork; 8158 return (sizeof (int)); 8159 } 8160 break; 8161 case IPPROTO_IP: 8162 if (connp->conn_family != AF_INET) 8163 return (-1); 8164 switch (name) { 8165 case IP_OPTIONS: 8166 case T_IP_OPTIONS: 8167 /* Caller ensures enough space */ 8168 return (ip_opt_get_user(connp, ptr)); 8169 default: 8170 break; 8171 } 8172 break; 8173 8174 case IPPROTO_IPV6: 8175 /* 8176 * IPPROTO_IPV6 options are only supported for sockets 8177 * that are using IPv6 on the wire. 8178 */ 8179 if (connp->conn_ipversion != IPV6_VERSION) { 8180 return (-1); 8181 } 8182 switch (name) { 8183 case IPV6_PATHMTU: 8184 if (tcp->tcp_state < TCPS_ESTABLISHED) 8185 return (-1); 8186 break; 8187 } 8188 break; 8189 } 8190 mutex_enter(&connp->conn_lock); 8191 retval = conn_opt_get(&coas, level, name, ptr); 8192 mutex_exit(&connp->conn_lock); 8193 return (retval); 8194 } 8195 8196 /* 8197 * TCP routine to get the values of options. 8198 */ 8199 int 8200 tcp_tpi_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 8201 { 8202 return (tcp_opt_get(Q_TO_CONN(q), level, name, ptr)); 8203 } 8204 8205 /* returns UNIX error, the optlen is a value-result arg */ 8206 int 8207 tcp_getsockopt(sock_lower_handle_t proto_handle, int level, int option_name, 8208 void *optvalp, socklen_t *optlen, cred_t *cr) 8209 { 8210 conn_t *connp = (conn_t *)proto_handle; 8211 squeue_t *sqp = connp->conn_sqp; 8212 int error; 8213 t_uscalar_t max_optbuf_len; 8214 void *optvalp_buf; 8215 int len; 8216 8217 ASSERT(connp->conn_upper_handle != NULL); 8218 8219 error = proto_opt_check(level, option_name, *optlen, &max_optbuf_len, 8220 tcp_opt_obj.odb_opt_des_arr, 8221 tcp_opt_obj.odb_opt_arr_cnt, 8222 B_FALSE, B_TRUE, cr); 8223 if (error != 0) { 8224 if (error < 0) { 8225 error = proto_tlitosyserr(-error); 8226 } 8227 return (error); 8228 } 8229 8230 optvalp_buf = kmem_alloc(max_optbuf_len, KM_SLEEP); 8231 8232 error = squeue_synch_enter(sqp, connp, NULL); 8233 if (error == ENOMEM) { 8234 kmem_free(optvalp_buf, max_optbuf_len); 8235 return (ENOMEM); 8236 } 8237 8238 len = tcp_opt_get(connp, level, option_name, optvalp_buf); 8239 squeue_synch_exit(sqp, connp); 8240 8241 if (len == -1) { 8242 kmem_free(optvalp_buf, max_optbuf_len); 8243 return (EINVAL); 8244 } 8245 8246 /* 8247 * update optlen and copy option value 8248 */ 8249 t_uscalar_t size = MIN(len, *optlen); 8250 8251 bcopy(optvalp_buf, optvalp, size); 8252 bcopy(&size, optlen, sizeof (size)); 8253 8254 kmem_free(optvalp_buf, max_optbuf_len); 8255 return (0); 8256 } 8257 8258 /* 8259 * We declare as 'int' rather than 'void' to satisfy pfi_t arg requirements. 8260 * Parameters are assumed to be verified by the caller. 8261 */ 8262 /* ARGSUSED */ 8263 int 8264 tcp_opt_set(conn_t *connp, uint_t optset_context, int level, int name, 8265 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 8266 void *thisdg_attrs, cred_t *cr) 8267 { 8268 tcp_t *tcp = connp->conn_tcp; 8269 int *i1 = (int *)invalp; 8270 boolean_t onoff = (*i1 == 0) ? 0 : 1; 8271 boolean_t checkonly; 8272 int reterr; 8273 tcp_stack_t *tcps = tcp->tcp_tcps; 8274 conn_opt_arg_t coas; 8275 8276 coas.coa_connp = connp; 8277 coas.coa_ixa = connp->conn_ixa; 8278 coas.coa_ipp = &connp->conn_xmit_ipp; 8279 coas.coa_ancillary = B_FALSE; 8280 coas.coa_changed = 0; 8281 8282 switch (optset_context) { 8283 case SETFN_OPTCOM_CHECKONLY: 8284 checkonly = B_TRUE; 8285 /* 8286 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 8287 * inlen != 0 implies value supplied and 8288 * we have to "pretend" to set it. 8289 * inlen == 0 implies that there is no 8290 * value part in T_CHECK request and just validation 8291 * done elsewhere should be enough, we just return here. 8292 */ 8293 if (inlen == 0) { 8294 *outlenp = 0; 8295 return (0); 8296 } 8297 break; 8298 case SETFN_OPTCOM_NEGOTIATE: 8299 checkonly = B_FALSE; 8300 break; 8301 case SETFN_UD_NEGOTIATE: /* error on conn-oriented transports ? */ 8302 case SETFN_CONN_NEGOTIATE: 8303 checkonly = B_FALSE; 8304 /* 8305 * Negotiating local and "association-related" options 8306 * from other (T_CONN_REQ, T_CONN_RES,T_UNITDATA_REQ) 8307 * primitives is allowed by XTI, but we choose 8308 * to not implement this style negotiation for Internet 8309 * protocols (We interpret it is a must for OSI world but 8310 * optional for Internet protocols) for all options. 8311 * [ Will do only for the few options that enable test 8312 * suites that our XTI implementation of this feature 8313 * works for transports that do allow it ] 8314 */ 8315 if (!tcp_allow_connopt_set(level, name)) { 8316 *outlenp = 0; 8317 return (EINVAL); 8318 } 8319 break; 8320 default: 8321 /* 8322 * We should never get here 8323 */ 8324 *outlenp = 0; 8325 return (EINVAL); 8326 } 8327 8328 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 8329 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 8330 8331 /* 8332 * For TCP, we should have no ancillary data sent down 8333 * (sendmsg isn't supported for SOCK_STREAM), so thisdg_attrs 8334 * has to be zero. 8335 */ 8336 ASSERT(thisdg_attrs == NULL); 8337 8338 /* 8339 * For fixed length options, no sanity check 8340 * of passed in length is done. It is assumed *_optcom_req() 8341 * routines do the right thing. 8342 */ 8343 switch (level) { 8344 case SOL_SOCKET: 8345 switch (name) { 8346 case SO_KEEPALIVE: 8347 if (checkonly) { 8348 /* check only case */ 8349 break; 8350 } 8351 8352 if (!onoff) { 8353 if (connp->conn_keepalive) { 8354 if (tcp->tcp_ka_tid != 0) { 8355 (void) TCP_TIMER_CANCEL(tcp, 8356 tcp->tcp_ka_tid); 8357 tcp->tcp_ka_tid = 0; 8358 } 8359 connp->conn_keepalive = 0; 8360 } 8361 break; 8362 } 8363 if (!connp->conn_keepalive) { 8364 /* Crank up the keepalive timer */ 8365 tcp->tcp_ka_last_intrvl = 0; 8366 tcp->tcp_ka_tid = TCP_TIMER(tcp, 8367 tcp_keepalive_killer, 8368 MSEC_TO_TICK(tcp->tcp_ka_interval)); 8369 connp->conn_keepalive = 1; 8370 } 8371 break; 8372 case SO_SNDBUF: { 8373 if (*i1 > tcps->tcps_max_buf) { 8374 *outlenp = 0; 8375 return (ENOBUFS); 8376 } 8377 if (checkonly) 8378 break; 8379 8380 connp->conn_sndbuf = *i1; 8381 if (tcps->tcps_snd_lowat_fraction != 0) { 8382 connp->conn_sndlowat = connp->conn_sndbuf / 8383 tcps->tcps_snd_lowat_fraction; 8384 } 8385 (void) tcp_maxpsz_set(tcp, B_TRUE); 8386 /* 8387 * If we are flow-controlled, recheck the condition. 8388 * There are apps that increase SO_SNDBUF size when 8389 * flow-controlled (EWOULDBLOCK), and expect the flow 8390 * control condition to be lifted right away. 8391 */ 8392 mutex_enter(&tcp->tcp_non_sq_lock); 8393 if (tcp->tcp_flow_stopped && 8394 TCP_UNSENT_BYTES(tcp) < connp->conn_sndbuf) { 8395 tcp_clrqfull(tcp); 8396 } 8397 mutex_exit(&tcp->tcp_non_sq_lock); 8398 *outlenp = inlen; 8399 return (0); 8400 } 8401 case SO_RCVBUF: 8402 if (*i1 > tcps->tcps_max_buf) { 8403 *outlenp = 0; 8404 return (ENOBUFS); 8405 } 8406 /* Silently ignore zero */ 8407 if (!checkonly && *i1 != 0) { 8408 *i1 = MSS_ROUNDUP(*i1, tcp->tcp_mss); 8409 (void) tcp_rwnd_set(tcp, *i1); 8410 } 8411 /* 8412 * XXX should we return the rwnd here 8413 * and tcp_opt_get ? 8414 */ 8415 *outlenp = inlen; 8416 return (0); 8417 case SO_SND_COPYAVOID: 8418 if (!checkonly) { 8419 if (tcp->tcp_loopback || 8420 (tcp->tcp_kssl_ctx != NULL) || 8421 (onoff != 1) || !tcp_zcopy_check(tcp)) { 8422 *outlenp = 0; 8423 return (EOPNOTSUPP); 8424 } 8425 tcp->tcp_snd_zcopy_aware = 1; 8426 } 8427 *outlenp = inlen; 8428 return (0); 8429 } 8430 break; 8431 case IPPROTO_TCP: 8432 switch (name) { 8433 case TCP_NODELAY: 8434 if (!checkonly) 8435 tcp->tcp_naglim = *i1 ? 1 : tcp->tcp_mss; 8436 break; 8437 case TCP_NOTIFY_THRESHOLD: 8438 if (!checkonly) 8439 tcp->tcp_first_timer_threshold = *i1; 8440 break; 8441 case TCP_ABORT_THRESHOLD: 8442 if (!checkonly) 8443 tcp->tcp_second_timer_threshold = *i1; 8444 break; 8445 case TCP_CONN_NOTIFY_THRESHOLD: 8446 if (!checkonly) 8447 tcp->tcp_first_ctimer_threshold = *i1; 8448 break; 8449 case TCP_CONN_ABORT_THRESHOLD: 8450 if (!checkonly) 8451 tcp->tcp_second_ctimer_threshold = *i1; 8452 break; 8453 case TCP_RECVDSTADDR: 8454 if (tcp->tcp_state > TCPS_LISTEN) { 8455 *outlenp = 0; 8456 return (EOPNOTSUPP); 8457 } 8458 /* Setting done in conn_opt_set */ 8459 break; 8460 case TCP_INIT_CWND: { 8461 uint32_t init_cwnd = *((uint32_t *)invalp); 8462 8463 if (checkonly) 8464 break; 8465 8466 /* 8467 * Only allow socket with network configuration 8468 * privilege to set the initial cwnd to be larger 8469 * than allowed by RFC 3390. 8470 */ 8471 if (init_cwnd <= MIN(4, MAX(2, 4380 / tcp->tcp_mss))) { 8472 tcp->tcp_init_cwnd = init_cwnd; 8473 break; 8474 } 8475 if ((reterr = secpolicy_ip_config(cr, B_TRUE)) != 0) { 8476 *outlenp = 0; 8477 return (reterr); 8478 } 8479 if (init_cwnd > TCP_MAX_INIT_CWND) { 8480 *outlenp = 0; 8481 return (EINVAL); 8482 } 8483 tcp->tcp_init_cwnd = init_cwnd; 8484 break; 8485 } 8486 case TCP_KEEPALIVE_THRESHOLD: 8487 if (checkonly) 8488 break; 8489 8490 if (*i1 < tcps->tcps_keepalive_interval_low || 8491 *i1 > tcps->tcps_keepalive_interval_high) { 8492 *outlenp = 0; 8493 return (EINVAL); 8494 } 8495 if (*i1 != tcp->tcp_ka_interval) { 8496 tcp->tcp_ka_interval = *i1; 8497 /* 8498 * Check if we need to restart the 8499 * keepalive timer. 8500 */ 8501 if (tcp->tcp_ka_tid != 0) { 8502 ASSERT(connp->conn_keepalive); 8503 (void) TCP_TIMER_CANCEL(tcp, 8504 tcp->tcp_ka_tid); 8505 tcp->tcp_ka_last_intrvl = 0; 8506 tcp->tcp_ka_tid = TCP_TIMER(tcp, 8507 tcp_keepalive_killer, 8508 MSEC_TO_TICK(tcp->tcp_ka_interval)); 8509 } 8510 } 8511 break; 8512 case TCP_KEEPALIVE_ABORT_THRESHOLD: 8513 if (!checkonly) { 8514 if (*i1 < 8515 tcps->tcps_keepalive_abort_interval_low || 8516 *i1 > 8517 tcps->tcps_keepalive_abort_interval_high) { 8518 *outlenp = 0; 8519 return (EINVAL); 8520 } 8521 tcp->tcp_ka_abort_thres = *i1; 8522 } 8523 break; 8524 case TCP_CORK: 8525 if (!checkonly) { 8526 /* 8527 * if tcp->tcp_cork was set and is now 8528 * being unset, we have to make sure that 8529 * the remaining data gets sent out. Also 8530 * unset tcp->tcp_cork so that tcp_wput_data() 8531 * can send data even if it is less than mss 8532 */ 8533 if (tcp->tcp_cork && onoff == 0 && 8534 tcp->tcp_unsent > 0) { 8535 tcp->tcp_cork = B_FALSE; 8536 tcp_wput_data(tcp, NULL, B_FALSE); 8537 } 8538 tcp->tcp_cork = onoff; 8539 } 8540 break; 8541 default: 8542 break; 8543 } 8544 break; 8545 case IPPROTO_IP: 8546 if (connp->conn_family != AF_INET) { 8547 *outlenp = 0; 8548 return (EINVAL); 8549 } 8550 switch (name) { 8551 case IP_SEC_OPT: 8552 /* 8553 * We should not allow policy setting after 8554 * we start listening for connections. 8555 */ 8556 if (tcp->tcp_state == TCPS_LISTEN) { 8557 return (EINVAL); 8558 } 8559 break; 8560 } 8561 break; 8562 case IPPROTO_IPV6: 8563 /* 8564 * IPPROTO_IPV6 options are only supported for sockets 8565 * that are using IPv6 on the wire. 8566 */ 8567 if (connp->conn_ipversion != IPV6_VERSION) { 8568 *outlenp = 0; 8569 return (EINVAL); 8570 } 8571 8572 switch (name) { 8573 case IPV6_RECVPKTINFO: 8574 if (!checkonly) { 8575 /* Force it to be sent up with the next msg */ 8576 tcp->tcp_recvifindex = 0; 8577 } 8578 break; 8579 case IPV6_RECVTCLASS: 8580 if (!checkonly) { 8581 /* Force it to be sent up with the next msg */ 8582 tcp->tcp_recvtclass = 0xffffffffU; 8583 } 8584 break; 8585 case IPV6_RECVHOPLIMIT: 8586 if (!checkonly) { 8587 /* Force it to be sent up with the next msg */ 8588 tcp->tcp_recvhops = 0xffffffffU; 8589 } 8590 break; 8591 case IPV6_PKTINFO: 8592 /* This is an extra check for TCP */ 8593 if (inlen == sizeof (struct in6_pktinfo)) { 8594 struct in6_pktinfo *pkti; 8595 8596 pkti = (struct in6_pktinfo *)invalp; 8597 /* 8598 * RFC 3542 states that ipi6_addr must be 8599 * the unspecified address when setting the 8600 * IPV6_PKTINFO sticky socket option on a 8601 * TCP socket. 8602 */ 8603 if (!IN6_IS_ADDR_UNSPECIFIED(&pkti->ipi6_addr)) 8604 return (EINVAL); 8605 } 8606 break; 8607 case IPV6_SEC_OPT: 8608 /* 8609 * We should not allow policy setting after 8610 * we start listening for connections. 8611 */ 8612 if (tcp->tcp_state == TCPS_LISTEN) { 8613 return (EINVAL); 8614 } 8615 break; 8616 } 8617 break; 8618 } 8619 reterr = conn_opt_set(&coas, level, name, inlen, invalp, 8620 checkonly, cr); 8621 if (reterr != 0) { 8622 *outlenp = 0; 8623 return (reterr); 8624 } 8625 8626 /* 8627 * Common case of OK return with outval same as inval 8628 */ 8629 if (invalp != outvalp) { 8630 /* don't trust bcopy for identical src/dst */ 8631 (void) bcopy(invalp, outvalp, inlen); 8632 } 8633 *outlenp = inlen; 8634 8635 if (coas.coa_changed & COA_HEADER_CHANGED) { 8636 /* If we are connected we rebuilt the headers */ 8637 if (!IN6_IS_ADDR_UNSPECIFIED(&connp->conn_faddr_v6) && 8638 !IN6_IS_ADDR_V4MAPPED_ANY(&connp->conn_faddr_v6)) { 8639 reterr = tcp_build_hdrs(tcp); 8640 if (reterr != 0) 8641 return (reterr); 8642 } 8643 } 8644 if (coas.coa_changed & COA_ROUTE_CHANGED) { 8645 in6_addr_t nexthop; 8646 8647 /* 8648 * If we are connected we re-cache the information. 8649 * We ignore errors to preserve BSD behavior. 8650 * Note that we don't redo IPsec policy lookup here 8651 * since the final destination (or source) didn't change. 8652 */ 8653 ip_attr_nexthop(&connp->conn_xmit_ipp, connp->conn_ixa, 8654 &connp->conn_faddr_v6, &nexthop); 8655 8656 if (!IN6_IS_ADDR_UNSPECIFIED(&connp->conn_faddr_v6) && 8657 !IN6_IS_ADDR_V4MAPPED_ANY(&connp->conn_faddr_v6)) { 8658 (void) ip_attr_connect(connp, connp->conn_ixa, 8659 &connp->conn_laddr_v6, &connp->conn_faddr_v6, 8660 &nexthop, connp->conn_fport, NULL, NULL, 8661 IPDF_VERIFY_DST); 8662 } 8663 } 8664 if ((coas.coa_changed & COA_SNDBUF_CHANGED) && !IPCL_IS_NONSTR(connp)) { 8665 connp->conn_wq->q_hiwat = connp->conn_sndbuf; 8666 } 8667 if (coas.coa_changed & COA_WROFF_CHANGED) { 8668 connp->conn_wroff = connp->conn_ht_iphc_allocated + 8669 tcps->tcps_wroff_xtra; 8670 (void) proto_set_tx_wroff(connp->conn_rq, connp, 8671 connp->conn_wroff); 8672 } 8673 if (coas.coa_changed & COA_OOBINLINE_CHANGED) { 8674 if (IPCL_IS_NONSTR(connp)) 8675 proto_set_rx_oob_opt(connp, onoff); 8676 } 8677 return (0); 8678 } 8679 8680 /* ARGSUSED */ 8681 int 8682 tcp_tpi_opt_set(queue_t *q, uint_t optset_context, int level, int name, 8683 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 8684 void *thisdg_attrs, cred_t *cr) 8685 { 8686 conn_t *connp = Q_TO_CONN(q); 8687 8688 return (tcp_opt_set(connp, optset_context, level, name, inlen, invalp, 8689 outlenp, outvalp, thisdg_attrs, cr)); 8690 } 8691 8692 int 8693 tcp_setsockopt(sock_lower_handle_t proto_handle, int level, int option_name, 8694 const void *optvalp, socklen_t optlen, cred_t *cr) 8695 { 8696 conn_t *connp = (conn_t *)proto_handle; 8697 squeue_t *sqp = connp->conn_sqp; 8698 int error; 8699 8700 ASSERT(connp->conn_upper_handle != NULL); 8701 /* 8702 * Entering the squeue synchronously can result in a context switch, 8703 * which can cause a rather sever performance degradation. So we try to 8704 * handle whatever options we can without entering the squeue. 8705 */ 8706 if (level == IPPROTO_TCP) { 8707 switch (option_name) { 8708 case TCP_NODELAY: 8709 if (optlen != sizeof (int32_t)) 8710 return (EINVAL); 8711 mutex_enter(&connp->conn_tcp->tcp_non_sq_lock); 8712 connp->conn_tcp->tcp_naglim = *(int *)optvalp ? 1 : 8713 connp->conn_tcp->tcp_mss; 8714 mutex_exit(&connp->conn_tcp->tcp_non_sq_lock); 8715 return (0); 8716 default: 8717 break; 8718 } 8719 } 8720 8721 error = squeue_synch_enter(sqp, connp, NULL); 8722 if (error == ENOMEM) { 8723 return (ENOMEM); 8724 } 8725 8726 error = proto_opt_check(level, option_name, optlen, NULL, 8727 tcp_opt_obj.odb_opt_des_arr, 8728 tcp_opt_obj.odb_opt_arr_cnt, 8729 B_TRUE, B_FALSE, cr); 8730 8731 if (error != 0) { 8732 if (error < 0) { 8733 error = proto_tlitosyserr(-error); 8734 } 8735 squeue_synch_exit(sqp, connp); 8736 return (error); 8737 } 8738 8739 error = tcp_opt_set(connp, SETFN_OPTCOM_NEGOTIATE, level, option_name, 8740 optlen, (uchar_t *)optvalp, (uint_t *)&optlen, (uchar_t *)optvalp, 8741 NULL, cr); 8742 squeue_synch_exit(sqp, connp); 8743 8744 ASSERT(error >= 0); 8745 8746 return (error); 8747 } 8748 8749 /* 8750 * Build/update the tcp header template (in conn_ht_iphc) based on 8751 * conn_xmit_ipp. The headers include ip6_t, any extension 8752 * headers, and the maximum size tcp header (to avoid reallocation 8753 * on the fly for additional tcp options). 8754 * 8755 * Assumes the caller has already set conn_{faddr,laddr,fport,lport,flowinfo}. 8756 * Returns failure if can't allocate memory. 8757 */ 8758 static int 8759 tcp_build_hdrs(tcp_t *tcp) 8760 { 8761 tcp_stack_t *tcps = tcp->tcp_tcps; 8762 conn_t *connp = tcp->tcp_connp; 8763 char buf[TCP_MAX_HDR_LENGTH]; 8764 uint_t buflen; 8765 uint_t ulplen = TCP_MIN_HEADER_LENGTH; 8766 uint_t extralen = TCP_MAX_TCP_OPTIONS_LENGTH; 8767 tcpha_t *tcpha; 8768 uint32_t cksum; 8769 int error; 8770 8771 /* 8772 * We might be called after the connection is set up, and we might 8773 * have TS options already in the TCP header. Thus we save any 8774 * existing tcp header. 8775 */ 8776 buflen = connp->conn_ht_ulp_len; 8777 if (buflen != 0) { 8778 bcopy(connp->conn_ht_ulp, buf, buflen); 8779 extralen -= buflen - ulplen; 8780 ulplen = buflen; 8781 } 8782 8783 /* Grab lock to satisfy ASSERT; TCP is serialized using squeue */ 8784 mutex_enter(&connp->conn_lock); 8785 error = conn_build_hdr_template(connp, ulplen, extralen, 8786 &connp->conn_laddr_v6, &connp->conn_faddr_v6, connp->conn_flowinfo); 8787 mutex_exit(&connp->conn_lock); 8788 if (error != 0) 8789 return (error); 8790 8791 /* 8792 * Any routing header/option has been massaged. The checksum difference 8793 * is stored in conn_sum for later use. 8794 */ 8795 tcpha = (tcpha_t *)connp->conn_ht_ulp; 8796 tcp->tcp_tcpha = tcpha; 8797 8798 /* restore any old tcp header */ 8799 if (buflen != 0) { 8800 bcopy(buf, connp->conn_ht_ulp, buflen); 8801 } else { 8802 tcpha->tha_sum = 0; 8803 tcpha->tha_offset_and_reserved = (5 << 4); 8804 tcpha->tha_lport = connp->conn_lport; 8805 tcpha->tha_fport = connp->conn_fport; 8806 } 8807 8808 /* 8809 * IP wants our header length in the checksum field to 8810 * allow it to perform a single pseudo-header+checksum 8811 * calculation on behalf of TCP. 8812 * Include the adjustment for a source route once IP_OPTIONS is set. 8813 */ 8814 cksum = sizeof (tcpha_t) + connp->conn_sum; 8815 cksum = (cksum >> 16) + (cksum & 0xFFFF); 8816 ASSERT(cksum < 0x10000); 8817 tcpha->tha_sum = htons(cksum); 8818 8819 if (connp->conn_ipversion == IPV4_VERSION) 8820 tcp->tcp_ipha = (ipha_t *)connp->conn_ht_iphc; 8821 else 8822 tcp->tcp_ip6h = (ip6_t *)connp->conn_ht_iphc; 8823 8824 if (connp->conn_ht_iphc_allocated + tcps->tcps_wroff_xtra > 8825 connp->conn_wroff) { 8826 connp->conn_wroff = connp->conn_ht_iphc_allocated + 8827 tcps->tcps_wroff_xtra; 8828 (void) proto_set_tx_wroff(connp->conn_rq, connp, 8829 connp->conn_wroff); 8830 } 8831 return (0); 8832 } 8833 8834 /* Get callback routine passed to nd_load by tcp_param_register */ 8835 /* ARGSUSED */ 8836 static int 8837 tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 8838 { 8839 tcpparam_t *tcppa = (tcpparam_t *)cp; 8840 8841 (void) mi_mpprintf(mp, "%u", tcppa->tcp_param_val); 8842 return (0); 8843 } 8844 8845 /* 8846 * Walk through the param array specified registering each element with the 8847 * named dispatch handler. 8848 */ 8849 static boolean_t 8850 tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt, tcp_stack_t *tcps) 8851 { 8852 for (; cnt-- > 0; tcppa++) { 8853 if (tcppa->tcp_param_name && tcppa->tcp_param_name[0]) { 8854 if (!nd_load(ndp, tcppa->tcp_param_name, 8855 tcp_param_get, tcp_param_set, 8856 (caddr_t)tcppa)) { 8857 nd_free(ndp); 8858 return (B_FALSE); 8859 } 8860 } 8861 } 8862 tcps->tcps_wroff_xtra_param = kmem_zalloc(sizeof (tcpparam_t), 8863 KM_SLEEP); 8864 bcopy(&lcl_tcp_wroff_xtra_param, tcps->tcps_wroff_xtra_param, 8865 sizeof (tcpparam_t)); 8866 if (!nd_load(ndp, tcps->tcps_wroff_xtra_param->tcp_param_name, 8867 tcp_param_get, tcp_param_set_aligned, 8868 (caddr_t)tcps->tcps_wroff_xtra_param)) { 8869 nd_free(ndp); 8870 return (B_FALSE); 8871 } 8872 if (!nd_load(ndp, "tcp_extra_priv_ports", 8873 tcp_extra_priv_ports_get, NULL, NULL)) { 8874 nd_free(ndp); 8875 return (B_FALSE); 8876 } 8877 if (!nd_load(ndp, "tcp_extra_priv_ports_add", 8878 NULL, tcp_extra_priv_ports_add, NULL)) { 8879 nd_free(ndp); 8880 return (B_FALSE); 8881 } 8882 if (!nd_load(ndp, "tcp_extra_priv_ports_del", 8883 NULL, tcp_extra_priv_ports_del, NULL)) { 8884 nd_free(ndp); 8885 return (B_FALSE); 8886 } 8887 if (!nd_load(ndp, "tcp_1948_phrase", NULL, 8888 tcp_1948_phrase_set, NULL)) { 8889 nd_free(ndp); 8890 return (B_FALSE); 8891 } 8892 8893 8894 if (!nd_load(ndp, "tcp_listener_limit_conf", 8895 tcp_listener_conf_get, NULL, NULL)) { 8896 nd_free(ndp); 8897 return (B_FALSE); 8898 } 8899 if (!nd_load(ndp, "tcp_listener_limit_conf_add", 8900 NULL, tcp_listener_conf_add, NULL)) { 8901 nd_free(ndp); 8902 return (B_FALSE); 8903 } 8904 if (!nd_load(ndp, "tcp_listener_limit_conf_del", 8905 NULL, tcp_listener_conf_del, NULL)) { 8906 nd_free(ndp); 8907 return (B_FALSE); 8908 } 8909 8910 /* 8911 * Dummy ndd variables - only to convey obsolescence information 8912 * through printing of their name (no get or set routines) 8913 * XXX Remove in future releases ? 8914 */ 8915 if (!nd_load(ndp, 8916 "tcp_close_wait_interval(obsoleted - " 8917 "use tcp_time_wait_interval)", NULL, NULL, NULL)) { 8918 nd_free(ndp); 8919 return (B_FALSE); 8920 } 8921 return (B_TRUE); 8922 } 8923 8924 /* ndd set routine for tcp_wroff_xtra. */ 8925 /* ARGSUSED */ 8926 static int 8927 tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 8928 cred_t *cr) 8929 { 8930 long new_value; 8931 tcpparam_t *tcppa = (tcpparam_t *)cp; 8932 8933 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 8934 new_value < tcppa->tcp_param_min || 8935 new_value > tcppa->tcp_param_max) { 8936 return (EINVAL); 8937 } 8938 /* 8939 * Need to make sure new_value is a multiple of 4. If it is not, 8940 * round it up. For future 64 bit requirement, we actually make it 8941 * a multiple of 8. 8942 */ 8943 if (new_value & 0x7) { 8944 new_value = (new_value & ~0x7) + 0x8; 8945 } 8946 tcppa->tcp_param_val = new_value; 8947 return (0); 8948 } 8949 8950 /* Set callback routine passed to nd_load by tcp_param_register */ 8951 /* ARGSUSED */ 8952 static int 8953 tcp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) 8954 { 8955 long new_value; 8956 tcpparam_t *tcppa = (tcpparam_t *)cp; 8957 8958 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 8959 new_value < tcppa->tcp_param_min || 8960 new_value > tcppa->tcp_param_max) { 8961 return (EINVAL); 8962 } 8963 tcppa->tcp_param_val = new_value; 8964 return (0); 8965 } 8966 8967 static void 8968 tcp_reass_timer(void *arg) 8969 { 8970 conn_t *connp = (conn_t *)arg; 8971 tcp_t *tcp = connp->conn_tcp; 8972 8973 tcp->tcp_reass_tid = 0; 8974 if (tcp->tcp_reass_head == NULL) 8975 return; 8976 ASSERT(tcp->tcp_reass_tail != NULL); 8977 tcp_sack_remove(tcp->tcp_sack_list, TCP_REASS_END(tcp->tcp_reass_tail), 8978 &tcp->tcp_num_sack_blk); 8979 tcp_close_mpp(&tcp->tcp_reass_head); 8980 tcp->tcp_reass_tail = NULL; 8981 } 8982 8983 /* 8984 * Add a new piece to the tcp reassembly queue. If the gap at the beginning 8985 * is filled, return as much as we can. The message passed in may be 8986 * multi-part, chained using b_cont. "start" is the starting sequence 8987 * number for this piece. 8988 */ 8989 static mblk_t * 8990 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start) 8991 { 8992 uint32_t end; 8993 mblk_t *mp1; 8994 mblk_t *mp2; 8995 mblk_t *next_mp; 8996 uint32_t u1; 8997 tcp_stack_t *tcps = tcp->tcp_tcps; 8998 8999 9000 /* Walk through all the new pieces. */ 9001 do { 9002 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 9003 (uintptr_t)INT_MAX); 9004 end = start + (int)(mp->b_wptr - mp->b_rptr); 9005 next_mp = mp->b_cont; 9006 if (start == end) { 9007 /* Empty. Blast it. */ 9008 freeb(mp); 9009 continue; 9010 } 9011 mp->b_cont = NULL; 9012 TCP_REASS_SET_SEQ(mp, start); 9013 TCP_REASS_SET_END(mp, end); 9014 mp1 = tcp->tcp_reass_tail; 9015 if (!mp1) { 9016 tcp->tcp_reass_tail = mp; 9017 tcp->tcp_reass_head = mp; 9018 BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs); 9019 UPDATE_MIB(&tcps->tcps_mib, 9020 tcpInDataUnorderBytes, end - start); 9021 continue; 9022 } 9023 /* New stuff completely beyond tail? */ 9024 if (SEQ_GEQ(start, TCP_REASS_END(mp1))) { 9025 /* Link it on end. */ 9026 mp1->b_cont = mp; 9027 tcp->tcp_reass_tail = mp; 9028 BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs); 9029 UPDATE_MIB(&tcps->tcps_mib, 9030 tcpInDataUnorderBytes, end - start); 9031 continue; 9032 } 9033 mp1 = tcp->tcp_reass_head; 9034 u1 = TCP_REASS_SEQ(mp1); 9035 /* New stuff at the front? */ 9036 if (SEQ_LT(start, u1)) { 9037 /* Yes... Check for overlap. */ 9038 mp->b_cont = mp1; 9039 tcp->tcp_reass_head = mp; 9040 tcp_reass_elim_overlap(tcp, mp); 9041 continue; 9042 } 9043 /* 9044 * The new piece fits somewhere between the head and tail. 9045 * We find our slot, where mp1 precedes us and mp2 trails. 9046 */ 9047 for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) { 9048 u1 = TCP_REASS_SEQ(mp2); 9049 if (SEQ_LEQ(start, u1)) 9050 break; 9051 } 9052 /* Link ourselves in */ 9053 mp->b_cont = mp2; 9054 mp1->b_cont = mp; 9055 9056 /* Trim overlap with following mblk(s) first */ 9057 tcp_reass_elim_overlap(tcp, mp); 9058 9059 /* Trim overlap with preceding mblk */ 9060 tcp_reass_elim_overlap(tcp, mp1); 9061 9062 } while (start = end, mp = next_mp); 9063 mp1 = tcp->tcp_reass_head; 9064 /* Anything ready to go? */ 9065 if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt) 9066 return (NULL); 9067 /* Eat what we can off the queue */ 9068 for (;;) { 9069 mp = mp1->b_cont; 9070 end = TCP_REASS_END(mp1); 9071 TCP_REASS_SET_SEQ(mp1, 0); 9072 TCP_REASS_SET_END(mp1, 0); 9073 if (!mp) { 9074 tcp->tcp_reass_tail = NULL; 9075 break; 9076 } 9077 if (end != TCP_REASS_SEQ(mp)) { 9078 mp1->b_cont = NULL; 9079 break; 9080 } 9081 mp1 = mp; 9082 } 9083 mp1 = tcp->tcp_reass_head; 9084 tcp->tcp_reass_head = mp; 9085 return (mp1); 9086 } 9087 9088 /* Eliminate any overlap that mp may have over later mblks */ 9089 static void 9090 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp) 9091 { 9092 uint32_t end; 9093 mblk_t *mp1; 9094 uint32_t u1; 9095 tcp_stack_t *tcps = tcp->tcp_tcps; 9096 9097 end = TCP_REASS_END(mp); 9098 while ((mp1 = mp->b_cont) != NULL) { 9099 u1 = TCP_REASS_SEQ(mp1); 9100 if (!SEQ_GT(end, u1)) 9101 break; 9102 if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) { 9103 mp->b_wptr -= end - u1; 9104 TCP_REASS_SET_END(mp, u1); 9105 BUMP_MIB(&tcps->tcps_mib, tcpInDataPartDupSegs); 9106 UPDATE_MIB(&tcps->tcps_mib, 9107 tcpInDataPartDupBytes, end - u1); 9108 break; 9109 } 9110 mp->b_cont = mp1->b_cont; 9111 TCP_REASS_SET_SEQ(mp1, 0); 9112 TCP_REASS_SET_END(mp1, 0); 9113 freeb(mp1); 9114 BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); 9115 UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, end - u1); 9116 } 9117 if (!mp1) 9118 tcp->tcp_reass_tail = mp; 9119 } 9120 9121 static uint_t 9122 tcp_rwnd_reopen(tcp_t *tcp) 9123 { 9124 uint_t ret = 0; 9125 uint_t thwin; 9126 conn_t *connp = tcp->tcp_connp; 9127 9128 /* Learn the latest rwnd information that we sent to the other side. */ 9129 thwin = ((uint_t)ntohs(tcp->tcp_tcpha->tha_win)) 9130 << tcp->tcp_rcv_ws; 9131 /* This is peer's calculated send window (our receive window). */ 9132 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 9133 /* 9134 * Increase the receive window to max. But we need to do receiver 9135 * SWS avoidance. This means that we need to check the increase of 9136 * of receive window is at least 1 MSS. 9137 */ 9138 if (connp->conn_rcvbuf - thwin >= tcp->tcp_mss) { 9139 /* 9140 * If the window that the other side knows is less than max 9141 * deferred acks segments, send an update immediately. 9142 */ 9143 if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) { 9144 BUMP_MIB(&tcp->tcp_tcps->tcps_mib, tcpOutWinUpdate); 9145 ret = TH_ACK_NEEDED; 9146 } 9147 tcp->tcp_rwnd = connp->conn_rcvbuf; 9148 } 9149 return (ret); 9150 } 9151 9152 /* 9153 * Send up all messages queued on tcp_rcv_list. 9154 */ 9155 static uint_t 9156 tcp_rcv_drain(tcp_t *tcp) 9157 { 9158 mblk_t *mp; 9159 uint_t ret = 0; 9160 #ifdef DEBUG 9161 uint_t cnt = 0; 9162 #endif 9163 queue_t *q = tcp->tcp_connp->conn_rq; 9164 9165 /* Can't drain on an eager connection */ 9166 if (tcp->tcp_listener != NULL) 9167 return (ret); 9168 9169 /* Can't be a non-STREAMS connection */ 9170 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 9171 9172 /* No need for the push timer now. */ 9173 if (tcp->tcp_push_tid != 0) { 9174 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 9175 tcp->tcp_push_tid = 0; 9176 } 9177 9178 /* 9179 * Handle two cases here: we are currently fused or we were 9180 * previously fused and have some urgent data to be delivered 9181 * upstream. The latter happens because we either ran out of 9182 * memory or were detached and therefore sending the SIGURG was 9183 * deferred until this point. In either case we pass control 9184 * over to tcp_fuse_rcv_drain() since it may need to complete 9185 * some work. 9186 */ 9187 if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) { 9188 ASSERT(IPCL_IS_NONSTR(tcp->tcp_connp) || 9189 tcp->tcp_fused_sigurg_mp != NULL); 9190 if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL : 9191 &tcp->tcp_fused_sigurg_mp)) 9192 return (ret); 9193 } 9194 9195 while ((mp = tcp->tcp_rcv_list) != NULL) { 9196 tcp->tcp_rcv_list = mp->b_next; 9197 mp->b_next = NULL; 9198 #ifdef DEBUG 9199 cnt += msgdsize(mp); 9200 #endif 9201 /* Does this need SSL processing first? */ 9202 if ((tcp->tcp_kssl_ctx != NULL) && (DB_TYPE(mp) == M_DATA)) { 9203 DTRACE_PROBE1(kssl_mblk__ksslinput_rcvdrain, 9204 mblk_t *, mp); 9205 tcp_kssl_input(tcp, mp, NULL); 9206 continue; 9207 } 9208 putnext(q, mp); 9209 } 9210 #ifdef DEBUG 9211 ASSERT(cnt == tcp->tcp_rcv_cnt); 9212 #endif 9213 tcp->tcp_rcv_last_head = NULL; 9214 tcp->tcp_rcv_last_tail = NULL; 9215 tcp->tcp_rcv_cnt = 0; 9216 9217 if (canputnext(q)) 9218 return (tcp_rwnd_reopen(tcp)); 9219 9220 return (ret); 9221 } 9222 9223 /* 9224 * Queue data on tcp_rcv_list which is a b_next chain. 9225 * tcp_rcv_last_head/tail is the last element of this chain. 9226 * Each element of the chain is a b_cont chain. 9227 * 9228 * M_DATA messages are added to the current element. 9229 * Other messages are added as new (b_next) elements. 9230 */ 9231 void 9232 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len, cred_t *cr) 9233 { 9234 ASSERT(seg_len == msgdsize(mp)); 9235 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL); 9236 9237 if (is_system_labeled()) { 9238 ASSERT(cr != NULL || msg_getcred(mp, NULL) != NULL); 9239 /* 9240 * Provide for protocols above TCP such as RPC. NOPID leaves 9241 * db_cpid unchanged. 9242 * The cred could have already been set. 9243 */ 9244 if (cr != NULL) 9245 mblk_setcred(mp, cr, NOPID); 9246 } 9247 9248 if (tcp->tcp_rcv_list == NULL) { 9249 ASSERT(tcp->tcp_rcv_last_head == NULL); 9250 tcp->tcp_rcv_list = mp; 9251 tcp->tcp_rcv_last_head = mp; 9252 } else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) { 9253 tcp->tcp_rcv_last_tail->b_cont = mp; 9254 } else { 9255 tcp->tcp_rcv_last_head->b_next = mp; 9256 tcp->tcp_rcv_last_head = mp; 9257 } 9258 9259 while (mp->b_cont) 9260 mp = mp->b_cont; 9261 9262 tcp->tcp_rcv_last_tail = mp; 9263 tcp->tcp_rcv_cnt += seg_len; 9264 tcp->tcp_rwnd -= seg_len; 9265 } 9266 9267 /* The minimum of smoothed mean deviation in RTO calculation. */ 9268 #define TCP_SD_MIN 400 9269 9270 /* 9271 * Set RTO for this connection. The formula is from Jacobson and Karels' 9272 * "Congestion Avoidance and Control" in SIGCOMM '88. The variable names 9273 * are the same as those in Appendix A.2 of that paper. 9274 * 9275 * m = new measurement 9276 * sa = smoothed RTT average (8 * average estimates). 9277 * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates). 9278 */ 9279 static void 9280 tcp_set_rto(tcp_t *tcp, clock_t rtt) 9281 { 9282 long m = TICK_TO_MSEC(rtt); 9283 clock_t sa = tcp->tcp_rtt_sa; 9284 clock_t sv = tcp->tcp_rtt_sd; 9285 clock_t rto; 9286 tcp_stack_t *tcps = tcp->tcp_tcps; 9287 9288 BUMP_MIB(&tcps->tcps_mib, tcpRttUpdate); 9289 tcp->tcp_rtt_update++; 9290 9291 /* tcp_rtt_sa is not 0 means this is a new sample. */ 9292 if (sa != 0) { 9293 /* 9294 * Update average estimator: 9295 * new rtt = 7/8 old rtt + 1/8 Error 9296 */ 9297 9298 /* m is now Error in estimate. */ 9299 m -= sa >> 3; 9300 if ((sa += m) <= 0) { 9301 /* 9302 * Don't allow the smoothed average to be negative. 9303 * We use 0 to denote reinitialization of the 9304 * variables. 9305 */ 9306 sa = 1; 9307 } 9308 9309 /* 9310 * Update deviation estimator: 9311 * new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev) 9312 */ 9313 if (m < 0) 9314 m = -m; 9315 m -= sv >> 2; 9316 sv += m; 9317 } else { 9318 /* 9319 * This follows BSD's implementation. So the reinitialized 9320 * RTO is 3 * m. We cannot go less than 2 because if the 9321 * link is bandwidth dominated, doubling the window size 9322 * during slow start means doubling the RTT. We want to be 9323 * more conservative when we reinitialize our estimates. 3 9324 * is just a convenient number. 9325 */ 9326 sa = m << 3; 9327 sv = m << 1; 9328 } 9329 if (sv < TCP_SD_MIN) { 9330 /* 9331 * We do not know that if sa captures the delay ACK 9332 * effect as in a long train of segments, a receiver 9333 * does not delay its ACKs. So set the minimum of sv 9334 * to be TCP_SD_MIN, which is default to 400 ms, twice 9335 * of BSD DATO. That means the minimum of mean 9336 * deviation is 100 ms. 9337 * 9338 */ 9339 sv = TCP_SD_MIN; 9340 } 9341 tcp->tcp_rtt_sa = sa; 9342 tcp->tcp_rtt_sd = sv; 9343 /* 9344 * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv) 9345 * 9346 * Add tcp_rexmit_interval extra in case of extreme environment 9347 * where the algorithm fails to work. The default value of 9348 * tcp_rexmit_interval_extra should be 0. 9349 * 9350 * As we use a finer grained clock than BSD and update 9351 * RTO for every ACKs, add in another .25 of RTT to the 9352 * deviation of RTO to accomodate burstiness of 1/4 of 9353 * window size. 9354 */ 9355 rto = (sa >> 3) + sv + tcps->tcps_rexmit_interval_extra + (sa >> 5); 9356 9357 if (rto > tcps->tcps_rexmit_interval_max) { 9358 tcp->tcp_rto = tcps->tcps_rexmit_interval_max; 9359 } else if (rto < tcps->tcps_rexmit_interval_min) { 9360 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 9361 } else { 9362 tcp->tcp_rto = rto; 9363 } 9364 9365 /* Now, we can reset tcp_timer_backoff to use the new RTO... */ 9366 tcp->tcp_timer_backoff = 0; 9367 } 9368 9369 /* 9370 * tcp_get_seg_mp() is called to get the pointer to a segment in the 9371 * send queue which starts at the given sequence number. If the given 9372 * sequence number is equal to last valid sequence number (tcp_snxt), the 9373 * returned mblk is the last valid mblk, and off is set to the length of 9374 * that mblk. 9375 * 9376 * send queue which starts at the given seq. no. 9377 * 9378 * Parameters: 9379 * tcp_t *tcp: the tcp instance pointer. 9380 * uint32_t seq: the starting seq. no of the requested segment. 9381 * int32_t *off: after the execution, *off will be the offset to 9382 * the returned mblk which points to the requested seq no. 9383 * It is the caller's responsibility to send in a non-null off. 9384 * 9385 * Return: 9386 * A mblk_t pointer pointing to the requested segment in send queue. 9387 */ 9388 static mblk_t * 9389 tcp_get_seg_mp(tcp_t *tcp, uint32_t seq, int32_t *off) 9390 { 9391 int32_t cnt; 9392 mblk_t *mp; 9393 9394 /* Defensive coding. Make sure we don't send incorrect data. */ 9395 if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GT(seq, tcp->tcp_snxt)) 9396 return (NULL); 9397 9398 cnt = seq - tcp->tcp_suna; 9399 mp = tcp->tcp_xmit_head; 9400 while (cnt > 0 && mp != NULL) { 9401 cnt -= mp->b_wptr - mp->b_rptr; 9402 if (cnt <= 0) { 9403 cnt += mp->b_wptr - mp->b_rptr; 9404 break; 9405 } 9406 mp = mp->b_cont; 9407 } 9408 ASSERT(mp != NULL); 9409 *off = cnt; 9410 return (mp); 9411 } 9412 9413 /* 9414 * This function handles all retransmissions if SACK is enabled for this 9415 * connection. First it calculates how many segments can be retransmitted 9416 * based on tcp_pipe. Then it goes thru the notsack list to find eligible 9417 * segments. A segment is eligible if sack_cnt for that segment is greater 9418 * than or equal tcp_dupack_fast_retransmit. After it has retransmitted 9419 * all eligible segments, it checks to see if TCP can send some new segments 9420 * (fast recovery). If it can, set the appropriate flag for tcp_input_data(). 9421 * 9422 * Parameters: 9423 * tcp_t *tcp: the tcp structure of the connection. 9424 * uint_t *flags: in return, appropriate value will be set for 9425 * tcp_input_data(). 9426 */ 9427 static void 9428 tcp_sack_rxmit(tcp_t *tcp, uint_t *flags) 9429 { 9430 notsack_blk_t *notsack_blk; 9431 int32_t usable_swnd; 9432 int32_t mss; 9433 uint32_t seg_len; 9434 mblk_t *xmit_mp; 9435 tcp_stack_t *tcps = tcp->tcp_tcps; 9436 9437 ASSERT(tcp->tcp_sack_info != NULL); 9438 ASSERT(tcp->tcp_notsack_list != NULL); 9439 ASSERT(tcp->tcp_rexmit == B_FALSE); 9440 9441 /* Defensive coding in case there is a bug... */ 9442 if (tcp->tcp_notsack_list == NULL) { 9443 return; 9444 } 9445 notsack_blk = tcp->tcp_notsack_list; 9446 mss = tcp->tcp_mss; 9447 9448 /* 9449 * Limit the num of outstanding data in the network to be 9450 * tcp_cwnd_ssthresh, which is half of the original congestion wnd. 9451 */ 9452 usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; 9453 9454 /* At least retransmit 1 MSS of data. */ 9455 if (usable_swnd <= 0) { 9456 usable_swnd = mss; 9457 } 9458 9459 /* Make sure no new RTT samples will be taken. */ 9460 tcp->tcp_csuna = tcp->tcp_snxt; 9461 9462 notsack_blk = tcp->tcp_notsack_list; 9463 while (usable_swnd > 0) { 9464 mblk_t *snxt_mp, *tmp_mp; 9465 tcp_seq begin = tcp->tcp_sack_snxt; 9466 tcp_seq end; 9467 int32_t off; 9468 9469 for (; notsack_blk != NULL; notsack_blk = notsack_blk->next) { 9470 if (SEQ_GT(notsack_blk->end, begin) && 9471 (notsack_blk->sack_cnt >= 9472 tcps->tcps_dupack_fast_retransmit)) { 9473 end = notsack_blk->end; 9474 if (SEQ_LT(begin, notsack_blk->begin)) { 9475 begin = notsack_blk->begin; 9476 } 9477 break; 9478 } 9479 } 9480 /* 9481 * All holes are filled. Manipulate tcp_cwnd to send more 9482 * if we can. Note that after the SACK recovery, tcp_cwnd is 9483 * set to tcp_cwnd_ssthresh. 9484 */ 9485 if (notsack_blk == NULL) { 9486 usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; 9487 if (usable_swnd <= 0 || tcp->tcp_unsent == 0) { 9488 tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna; 9489 ASSERT(tcp->tcp_cwnd > 0); 9490 return; 9491 } else { 9492 usable_swnd = usable_swnd / mss; 9493 tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna + 9494 MAX(usable_swnd * mss, mss); 9495 *flags |= TH_XMIT_NEEDED; 9496 return; 9497 } 9498 } 9499 9500 /* 9501 * Note that we may send more than usable_swnd allows here 9502 * because of round off, but no more than 1 MSS of data. 9503 */ 9504 seg_len = end - begin; 9505 if (seg_len > mss) 9506 seg_len = mss; 9507 snxt_mp = tcp_get_seg_mp(tcp, begin, &off); 9508 ASSERT(snxt_mp != NULL); 9509 /* This should not happen. Defensive coding again... */ 9510 if (snxt_mp == NULL) { 9511 return; 9512 } 9513 9514 xmit_mp = tcp_xmit_mp(tcp, snxt_mp, seg_len, &off, 9515 &tmp_mp, begin, B_TRUE, &seg_len, B_TRUE); 9516 if (xmit_mp == NULL) 9517 return; 9518 9519 usable_swnd -= seg_len; 9520 tcp->tcp_pipe += seg_len; 9521 tcp->tcp_sack_snxt = begin + seg_len; 9522 9523 tcp_send_data(tcp, xmit_mp); 9524 9525 /* 9526 * Update the send timestamp to avoid false retransmission. 9527 */ 9528 snxt_mp->b_prev = (mblk_t *)ddi_get_lbolt(); 9529 9530 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 9531 UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, seg_len); 9532 BUMP_MIB(&tcps->tcps_mib, tcpOutSackRetransSegs); 9533 /* 9534 * Update tcp_rexmit_max to extend this SACK recovery phase. 9535 * This happens when new data sent during fast recovery is 9536 * also lost. If TCP retransmits those new data, it needs 9537 * to extend SACK recover phase to avoid starting another 9538 * fast retransmit/recovery unnecessarily. 9539 */ 9540 if (SEQ_GT(tcp->tcp_sack_snxt, tcp->tcp_rexmit_max)) { 9541 tcp->tcp_rexmit_max = tcp->tcp_sack_snxt; 9542 } 9543 } 9544 } 9545 9546 /* 9547 * tcp_ss_rexmit() is called to do slow start retransmission after a timeout 9548 * or ICMP errors. 9549 * 9550 * To limit the number of duplicate segments, we limit the number of segment 9551 * to be sent in one time to tcp_snd_burst, the burst variable. 9552 */ 9553 static void 9554 tcp_ss_rexmit(tcp_t *tcp) 9555 { 9556 uint32_t snxt; 9557 uint32_t smax; 9558 int32_t win; 9559 int32_t mss; 9560 int32_t off; 9561 int32_t burst = tcp->tcp_snd_burst; 9562 mblk_t *snxt_mp; 9563 tcp_stack_t *tcps = tcp->tcp_tcps; 9564 9565 /* 9566 * Note that tcp_rexmit can be set even though TCP has retransmitted 9567 * all unack'ed segments. 9568 */ 9569 if (SEQ_LT(tcp->tcp_rexmit_nxt, tcp->tcp_rexmit_max)) { 9570 smax = tcp->tcp_rexmit_max; 9571 snxt = tcp->tcp_rexmit_nxt; 9572 if (SEQ_LT(snxt, tcp->tcp_suna)) { 9573 snxt = tcp->tcp_suna; 9574 } 9575 win = MIN(tcp->tcp_cwnd, tcp->tcp_swnd); 9576 win -= snxt - tcp->tcp_suna; 9577 mss = tcp->tcp_mss; 9578 snxt_mp = tcp_get_seg_mp(tcp, snxt, &off); 9579 9580 while (SEQ_LT(snxt, smax) && (win > 0) && 9581 (burst > 0) && (snxt_mp != NULL)) { 9582 mblk_t *xmit_mp; 9583 mblk_t *old_snxt_mp = snxt_mp; 9584 uint32_t cnt = mss; 9585 9586 if (win < cnt) { 9587 cnt = win; 9588 } 9589 if (SEQ_GT(snxt + cnt, smax)) { 9590 cnt = smax - snxt; 9591 } 9592 xmit_mp = tcp_xmit_mp(tcp, snxt_mp, cnt, &off, 9593 &snxt_mp, snxt, B_TRUE, &cnt, B_TRUE); 9594 if (xmit_mp == NULL) 9595 return; 9596 9597 tcp_send_data(tcp, xmit_mp); 9598 9599 snxt += cnt; 9600 win -= cnt; 9601 /* 9602 * Update the send timestamp to avoid false 9603 * retransmission. 9604 */ 9605 old_snxt_mp->b_prev = (mblk_t *)ddi_get_lbolt(); 9606 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 9607 UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, cnt); 9608 9609 tcp->tcp_rexmit_nxt = snxt; 9610 burst--; 9611 } 9612 /* 9613 * If we have transmitted all we have at the time 9614 * we started the retranmission, we can leave 9615 * the rest of the job to tcp_wput_data(). But we 9616 * need to check the send window first. If the 9617 * win is not 0, go on with tcp_wput_data(). 9618 */ 9619 if (SEQ_LT(snxt, smax) || win == 0) { 9620 return; 9621 } 9622 } 9623 /* Only call tcp_wput_data() if there is data to be sent. */ 9624 if (tcp->tcp_unsent) { 9625 tcp_wput_data(tcp, NULL, B_FALSE); 9626 } 9627 } 9628 9629 /* 9630 * Process all TCP option in SYN segment. Note that this function should 9631 * be called after tcp_set_destination() is called so that the necessary info 9632 * from IRE is already set in the tcp structure. 9633 * 9634 * This function sets up the correct tcp_mss value according to the 9635 * MSS option value and our header size. It also sets up the window scale 9636 * and timestamp values, and initialize SACK info blocks. But it does not 9637 * change receive window size after setting the tcp_mss value. The caller 9638 * should do the appropriate change. 9639 */ 9640 void 9641 tcp_process_options(tcp_t *tcp, tcpha_t *tcpha) 9642 { 9643 int options; 9644 tcp_opt_t tcpopt; 9645 uint32_t mss_max; 9646 char *tmp_tcph; 9647 tcp_stack_t *tcps = tcp->tcp_tcps; 9648 conn_t *connp = tcp->tcp_connp; 9649 9650 tcpopt.tcp = NULL; 9651 options = tcp_parse_options(tcpha, &tcpopt); 9652 9653 /* 9654 * Process MSS option. Note that MSS option value does not account 9655 * for IP or TCP options. This means that it is equal to MTU - minimum 9656 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for 9657 * IPv6. 9658 */ 9659 if (!(options & TCP_OPT_MSS_PRESENT)) { 9660 if (connp->conn_ipversion == IPV4_VERSION) 9661 tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv4; 9662 else 9663 tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv6; 9664 } else { 9665 if (connp->conn_ipversion == IPV4_VERSION) 9666 mss_max = tcps->tcps_mss_max_ipv4; 9667 else 9668 mss_max = tcps->tcps_mss_max_ipv6; 9669 if (tcpopt.tcp_opt_mss < tcps->tcps_mss_min) 9670 tcpopt.tcp_opt_mss = tcps->tcps_mss_min; 9671 else if (tcpopt.tcp_opt_mss > mss_max) 9672 tcpopt.tcp_opt_mss = mss_max; 9673 } 9674 9675 /* Process Window Scale option. */ 9676 if (options & TCP_OPT_WSCALE_PRESENT) { 9677 tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale; 9678 tcp->tcp_snd_ws_ok = B_TRUE; 9679 } else { 9680 tcp->tcp_snd_ws = B_FALSE; 9681 tcp->tcp_snd_ws_ok = B_FALSE; 9682 tcp->tcp_rcv_ws = B_FALSE; 9683 } 9684 9685 /* Process Timestamp option. */ 9686 if ((options & TCP_OPT_TSTAMP_PRESENT) && 9687 (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) { 9688 tmp_tcph = (char *)tcp->tcp_tcpha; 9689 9690 tcp->tcp_snd_ts_ok = B_TRUE; 9691 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 9692 tcp->tcp_last_rcv_lbolt = ddi_get_lbolt64(); 9693 ASSERT(OK_32PTR(tmp_tcph)); 9694 ASSERT(connp->conn_ht_ulp_len == TCP_MIN_HEADER_LENGTH); 9695 9696 /* Fill in our template header with basic timestamp option. */ 9697 tmp_tcph += connp->conn_ht_ulp_len; 9698 tmp_tcph[0] = TCPOPT_NOP; 9699 tmp_tcph[1] = TCPOPT_NOP; 9700 tmp_tcph[2] = TCPOPT_TSTAMP; 9701 tmp_tcph[3] = TCPOPT_TSTAMP_LEN; 9702 connp->conn_ht_iphc_len += TCPOPT_REAL_TS_LEN; 9703 connp->conn_ht_ulp_len += TCPOPT_REAL_TS_LEN; 9704 tcp->tcp_tcpha->tha_offset_and_reserved += (3 << 4); 9705 } else { 9706 tcp->tcp_snd_ts_ok = B_FALSE; 9707 } 9708 9709 /* 9710 * Process SACK options. If SACK is enabled for this connection, 9711 * then allocate the SACK info structure. Note the following ways 9712 * when tcp_snd_sack_ok is set to true. 9713 * 9714 * For active connection: in tcp_set_destination() called in 9715 * tcp_connect(). 9716 * 9717 * For passive connection: in tcp_set_destination() called in 9718 * tcp_input_listener(). 9719 * 9720 * That's the reason why the extra TCP_IS_DETACHED() check is there. 9721 * That check makes sure that if we did not send a SACK OK option, 9722 * we will not enable SACK for this connection even though the other 9723 * side sends us SACK OK option. For active connection, the SACK 9724 * info structure has already been allocated. So we need to free 9725 * it if SACK is disabled. 9726 */ 9727 if ((options & TCP_OPT_SACK_OK_PRESENT) && 9728 (tcp->tcp_snd_sack_ok || 9729 (tcps->tcps_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) { 9730 /* This should be true only in the passive case. */ 9731 if (tcp->tcp_sack_info == NULL) { 9732 ASSERT(TCP_IS_DETACHED(tcp)); 9733 tcp->tcp_sack_info = 9734 kmem_cache_alloc(tcp_sack_info_cache, KM_NOSLEEP); 9735 } 9736 if (tcp->tcp_sack_info == NULL) { 9737 tcp->tcp_snd_sack_ok = B_FALSE; 9738 } else { 9739 tcp->tcp_snd_sack_ok = B_TRUE; 9740 if (tcp->tcp_snd_ts_ok) { 9741 tcp->tcp_max_sack_blk = 3; 9742 } else { 9743 tcp->tcp_max_sack_blk = 4; 9744 } 9745 } 9746 } else { 9747 /* 9748 * Resetting tcp_snd_sack_ok to B_FALSE so that 9749 * no SACK info will be used for this 9750 * connection. This assumes that SACK usage 9751 * permission is negotiated. This may need 9752 * to be changed once this is clarified. 9753 */ 9754 if (tcp->tcp_sack_info != NULL) { 9755 ASSERT(tcp->tcp_notsack_list == NULL); 9756 kmem_cache_free(tcp_sack_info_cache, 9757 tcp->tcp_sack_info); 9758 tcp->tcp_sack_info = NULL; 9759 } 9760 tcp->tcp_snd_sack_ok = B_FALSE; 9761 } 9762 9763 /* 9764 * Now we know the exact TCP/IP header length, subtract 9765 * that from tcp_mss to get our side's MSS. 9766 */ 9767 tcp->tcp_mss -= connp->conn_ht_iphc_len; 9768 9769 /* 9770 * Here we assume that the other side's header size will be equal to 9771 * our header size. We calculate the real MSS accordingly. Need to 9772 * take into additional stuffs IPsec puts in. 9773 * 9774 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header) 9775 */ 9776 tcpopt.tcp_opt_mss -= connp->conn_ht_iphc_len + 9777 tcp->tcp_ipsec_overhead - 9778 ((connp->conn_ipversion == IPV4_VERSION ? 9779 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH); 9780 9781 /* 9782 * Set MSS to the smaller one of both ends of the connection. 9783 * We should not have called tcp_mss_set() before, but our 9784 * side of the MSS should have been set to a proper value 9785 * by tcp_set_destination(). tcp_mss_set() will also set up the 9786 * STREAM head parameters properly. 9787 * 9788 * If we have a larger-than-16-bit window but the other side 9789 * didn't want to do window scale, tcp_rwnd_set() will take 9790 * care of that. 9791 */ 9792 tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss)); 9793 9794 /* 9795 * Initialize tcp_cwnd value. After tcp_mss_set(), tcp_mss has been 9796 * updated properly. 9797 */ 9798 SET_TCP_INIT_CWND(tcp, tcp->tcp_mss, tcps->tcps_slow_start_initial); 9799 } 9800 9801 /* 9802 * Sends the T_CONN_IND to the listener. The caller calls this 9803 * functions via squeue to get inside the listener's perimeter 9804 * once the 3 way hand shake is done a T_CONN_IND needs to be 9805 * sent. As an optimization, the caller can call this directly 9806 * if listener's perimeter is same as eager's. 9807 */ 9808 /* ARGSUSED */ 9809 void 9810 tcp_send_conn_ind(void *arg, mblk_t *mp, void *arg2) 9811 { 9812 conn_t *lconnp = (conn_t *)arg; 9813 tcp_t *listener = lconnp->conn_tcp; 9814 tcp_t *tcp; 9815 struct T_conn_ind *conn_ind; 9816 ipaddr_t *addr_cache; 9817 boolean_t need_send_conn_ind = B_FALSE; 9818 tcp_stack_t *tcps = listener->tcp_tcps; 9819 9820 /* retrieve the eager */ 9821 conn_ind = (struct T_conn_ind *)mp->b_rptr; 9822 ASSERT(conn_ind->OPT_offset != 0 && 9823 conn_ind->OPT_length == sizeof (intptr_t)); 9824 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 9825 conn_ind->OPT_length); 9826 9827 /* 9828 * TLI/XTI applications will get confused by 9829 * sending eager as an option since it violates 9830 * the option semantics. So remove the eager as 9831 * option since TLI/XTI app doesn't need it anyway. 9832 */ 9833 if (!TCP_IS_SOCKET(listener)) { 9834 conn_ind->OPT_length = 0; 9835 conn_ind->OPT_offset = 0; 9836 } 9837 if (listener->tcp_state != TCPS_LISTEN) { 9838 /* 9839 * If listener has closed, it would have caused a 9840 * a cleanup/blowoff to happen for the eager. We 9841 * just need to return. 9842 */ 9843 freemsg(mp); 9844 return; 9845 } 9846 9847 9848 /* 9849 * if the conn_req_q is full defer passing up the 9850 * T_CONN_IND until space is availabe after t_accept() 9851 * processing 9852 */ 9853 mutex_enter(&listener->tcp_eager_lock); 9854 9855 /* 9856 * Take the eager out, if it is in the list of droppable eagers 9857 * as we are here because the 3W handshake is over. 9858 */ 9859 MAKE_UNDROPPABLE(tcp); 9860 9861 if (listener->tcp_conn_req_cnt_q < listener->tcp_conn_req_max) { 9862 tcp_t *tail; 9863 9864 /* 9865 * The eager already has an extra ref put in tcp_input_data 9866 * so that it stays till accept comes back even though it 9867 * might get into TCPS_CLOSED as a result of a TH_RST etc. 9868 */ 9869 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 9870 listener->tcp_conn_req_cnt_q0--; 9871 listener->tcp_conn_req_cnt_q++; 9872 9873 /* Move from SYN_RCVD to ESTABLISHED list */ 9874 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 9875 tcp->tcp_eager_prev_q0; 9876 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 9877 tcp->tcp_eager_next_q0; 9878 tcp->tcp_eager_prev_q0 = NULL; 9879 tcp->tcp_eager_next_q0 = NULL; 9880 9881 /* 9882 * Insert at end of the queue because sockfs 9883 * sends down T_CONN_RES in chronological 9884 * order. Leaving the older conn indications 9885 * at front of the queue helps reducing search 9886 * time. 9887 */ 9888 tail = listener->tcp_eager_last_q; 9889 if (tail != NULL) 9890 tail->tcp_eager_next_q = tcp; 9891 else 9892 listener->tcp_eager_next_q = tcp; 9893 listener->tcp_eager_last_q = tcp; 9894 tcp->tcp_eager_next_q = NULL; 9895 /* 9896 * Delay sending up the T_conn_ind until we are 9897 * done with the eager. Once we have have sent up 9898 * the T_conn_ind, the accept can potentially complete 9899 * any time and release the refhold we have on the eager. 9900 */ 9901 need_send_conn_ind = B_TRUE; 9902 } else { 9903 /* 9904 * Defer connection on q0 and set deferred 9905 * connection bit true 9906 */ 9907 tcp->tcp_conn_def_q0 = B_TRUE; 9908 9909 /* take tcp out of q0 ... */ 9910 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 9911 tcp->tcp_eager_next_q0; 9912 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 9913 tcp->tcp_eager_prev_q0; 9914 9915 /* ... and place it at the end of q0 */ 9916 tcp->tcp_eager_prev_q0 = listener->tcp_eager_prev_q0; 9917 tcp->tcp_eager_next_q0 = listener; 9918 listener->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp; 9919 listener->tcp_eager_prev_q0 = tcp; 9920 tcp->tcp_conn.tcp_eager_conn_ind = mp; 9921 } 9922 9923 /* we have timed out before */ 9924 if (tcp->tcp_syn_rcvd_timeout != 0) { 9925 tcp->tcp_syn_rcvd_timeout = 0; 9926 listener->tcp_syn_rcvd_timeout--; 9927 if (listener->tcp_syn_defense && 9928 listener->tcp_syn_rcvd_timeout <= 9929 (tcps->tcps_conn_req_max_q0 >> 5) && 9930 10*MINUTES < TICK_TO_MSEC(ddi_get_lbolt64() - 9931 listener->tcp_last_rcv_lbolt)) { 9932 /* 9933 * Turn off the defense mode if we 9934 * believe the SYN attack is over. 9935 */ 9936 listener->tcp_syn_defense = B_FALSE; 9937 if (listener->tcp_ip_addr_cache) { 9938 kmem_free((void *)listener->tcp_ip_addr_cache, 9939 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 9940 listener->tcp_ip_addr_cache = NULL; 9941 } 9942 } 9943 } 9944 addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache); 9945 if (addr_cache != NULL) { 9946 /* 9947 * We have finished a 3-way handshake with this 9948 * remote host. This proves the IP addr is good. 9949 * Cache it! 9950 */ 9951 addr_cache[IP_ADDR_CACHE_HASH(tcp->tcp_connp->conn_faddr_v4)] = 9952 tcp->tcp_connp->conn_faddr_v4; 9953 } 9954 mutex_exit(&listener->tcp_eager_lock); 9955 if (need_send_conn_ind) 9956 tcp_ulp_newconn(lconnp, tcp->tcp_connp, mp); 9957 } 9958 9959 /* 9960 * Send the newconn notification to ulp. The eager is blown off if the 9961 * notification fails. 9962 */ 9963 static void 9964 tcp_ulp_newconn(conn_t *lconnp, conn_t *econnp, mblk_t *mp) 9965 { 9966 if (IPCL_IS_NONSTR(lconnp)) { 9967 cred_t *cr; 9968 pid_t cpid = NOPID; 9969 9970 ASSERT(econnp->conn_tcp->tcp_listener == lconnp->conn_tcp); 9971 ASSERT(econnp->conn_tcp->tcp_saved_listener == 9972 lconnp->conn_tcp); 9973 9974 cr = msg_getcred(mp, &cpid); 9975 9976 /* Keep the message around in case of a fallback to TPI */ 9977 econnp->conn_tcp->tcp_conn.tcp_eager_conn_ind = mp; 9978 /* 9979 * Notify the ULP about the newconn. It is guaranteed that no 9980 * tcp_accept() call will be made for the eager if the 9981 * notification fails, so it's safe to blow it off in that 9982 * case. 9983 * 9984 * The upper handle will be assigned when tcp_accept() is 9985 * called. 9986 */ 9987 if ((*lconnp->conn_upcalls->su_newconn) 9988 (lconnp->conn_upper_handle, 9989 (sock_lower_handle_t)econnp, 9990 &sock_tcp_downcalls, cr, cpid, 9991 &econnp->conn_upcalls) == NULL) { 9992 /* Failed to allocate a socket */ 9993 BUMP_MIB(&lconnp->conn_tcp->tcp_tcps->tcps_mib, 9994 tcpEstabResets); 9995 (void) tcp_eager_blowoff(lconnp->conn_tcp, 9996 econnp->conn_tcp->tcp_conn_req_seqnum); 9997 } 9998 } else { 9999 putnext(lconnp->conn_rq, mp); 10000 } 10001 } 10002 10003 /* 10004 * Handle a packet that has been reclassified by TCP. 10005 * This function drops the ref on connp that the caller had. 10006 */ 10007 static void 10008 tcp_reinput(conn_t *connp, mblk_t *mp, ip_recv_attr_t *ira, ip_stack_t *ipst) 10009 { 10010 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 10011 10012 if (connp->conn_incoming_ifindex != 0 && 10013 connp->conn_incoming_ifindex != ira->ira_ruifindex) { 10014 freemsg(mp); 10015 CONN_DEC_REF(connp); 10016 return; 10017 } 10018 10019 if (CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss) || 10020 (ira->ira_flags & IRAF_IPSEC_SECURE)) { 10021 ip6_t *ip6h; 10022 ipha_t *ipha; 10023 10024 if (ira->ira_flags & IRAF_IS_IPV4) { 10025 ipha = (ipha_t *)mp->b_rptr; 10026 ip6h = NULL; 10027 } else { 10028 ipha = NULL; 10029 ip6h = (ip6_t *)mp->b_rptr; 10030 } 10031 mp = ipsec_check_inbound_policy(mp, connp, ipha, ip6h, ira); 10032 if (mp == NULL) { 10033 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 10034 /* Note that mp is NULL */ 10035 ip_drop_input("ipIfStatsInDiscards", mp, NULL); 10036 CONN_DEC_REF(connp); 10037 return; 10038 } 10039 } 10040 10041 if (IPCL_IS_TCP(connp)) { 10042 /* 10043 * do not drain, certain use cases can blow 10044 * the stack 10045 */ 10046 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 10047 connp->conn_recv, connp, ira, 10048 SQ_NODRAIN, SQTAG_IP_TCP_INPUT); 10049 } else { 10050 /* Not TCP; must be SOCK_RAW, IPPROTO_TCP */ 10051 (connp->conn_recv)(connp, mp, NULL, 10052 ira); 10053 CONN_DEC_REF(connp); 10054 } 10055 10056 } 10057 10058 boolean_t tcp_outbound_squeue_switch = B_FALSE; 10059 10060 /* 10061 * Handle M_DATA messages from IP. Its called directly from IP via 10062 * squeue for received IP packets. 10063 * 10064 * The first argument is always the connp/tcp to which the mp belongs. 10065 * There are no exceptions to this rule. The caller has already put 10066 * a reference on this connp/tcp and once tcp_input_data() returns, 10067 * the squeue will do the refrele. 10068 * 10069 * The TH_SYN for the listener directly go to tcp_input_listener via 10070 * squeue. ICMP errors go directly to tcp_icmp_input(). 10071 * 10072 * sqp: NULL = recursive, sqp != NULL means called from squeue 10073 */ 10074 void 10075 tcp_input_data(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 10076 { 10077 int32_t bytes_acked; 10078 int32_t gap; 10079 mblk_t *mp1; 10080 uint_t flags; 10081 uint32_t new_swnd = 0; 10082 uchar_t *iphdr; 10083 uchar_t *rptr; 10084 int32_t rgap; 10085 uint32_t seg_ack; 10086 int seg_len; 10087 uint_t ip_hdr_len; 10088 uint32_t seg_seq; 10089 tcpha_t *tcpha; 10090 int urp; 10091 tcp_opt_t tcpopt; 10092 ip_pkt_t ipp; 10093 boolean_t ofo_seg = B_FALSE; /* Out of order segment */ 10094 uint32_t cwnd; 10095 uint32_t add; 10096 int npkt; 10097 int mss; 10098 conn_t *connp = (conn_t *)arg; 10099 squeue_t *sqp = (squeue_t *)arg2; 10100 tcp_t *tcp = connp->conn_tcp; 10101 tcp_stack_t *tcps = tcp->tcp_tcps; 10102 10103 /* 10104 * RST from fused tcp loopback peer should trigger an unfuse. 10105 */ 10106 if (tcp->tcp_fused) { 10107 TCP_STAT(tcps, tcp_fusion_aborted); 10108 tcp_unfuse(tcp); 10109 } 10110 10111 iphdr = mp->b_rptr; 10112 rptr = mp->b_rptr; 10113 ASSERT(OK_32PTR(rptr)); 10114 10115 ip_hdr_len = ira->ira_ip_hdr_length; 10116 if (connp->conn_recv_ancillary.crb_all != 0) { 10117 /* 10118 * Record packet information in the ip_pkt_t 10119 */ 10120 ipp.ipp_fields = 0; 10121 if (ira->ira_flags & IRAF_IS_IPV4) { 10122 (void) ip_find_hdr_v4((ipha_t *)rptr, &ipp, 10123 B_FALSE); 10124 } else { 10125 uint8_t nexthdrp; 10126 10127 /* 10128 * IPv6 packets can only be received by applications 10129 * that are prepared to receive IPv6 addresses. 10130 * The IP fanout must ensure this. 10131 */ 10132 ASSERT(connp->conn_family == AF_INET6); 10133 10134 (void) ip_find_hdr_v6(mp, (ip6_t *)rptr, B_TRUE, &ipp, 10135 &nexthdrp); 10136 ASSERT(nexthdrp == IPPROTO_TCP); 10137 10138 /* Could have caused a pullup? */ 10139 iphdr = mp->b_rptr; 10140 rptr = mp->b_rptr; 10141 } 10142 } 10143 ASSERT(DB_TYPE(mp) == M_DATA); 10144 ASSERT(mp->b_next == NULL); 10145 10146 tcpha = (tcpha_t *)&rptr[ip_hdr_len]; 10147 seg_seq = ntohl(tcpha->tha_seq); 10148 seg_ack = ntohl(tcpha->tha_ack); 10149 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 10150 seg_len = (int)(mp->b_wptr - rptr) - 10151 (ip_hdr_len + TCP_HDR_LENGTH(tcpha)); 10152 if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) { 10153 do { 10154 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 10155 (uintptr_t)INT_MAX); 10156 seg_len += (int)(mp1->b_wptr - mp1->b_rptr); 10157 } while ((mp1 = mp1->b_cont) != NULL && 10158 mp1->b_datap->db_type == M_DATA); 10159 } 10160 10161 if (tcp->tcp_state == TCPS_TIME_WAIT) { 10162 tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack, 10163 seg_len, tcpha, ira); 10164 return; 10165 } 10166 10167 if (sqp != NULL) { 10168 /* 10169 * This is the correct place to update tcp_last_recv_time. Note 10170 * that it is also updated for tcp structure that belongs to 10171 * global and listener queues which do not really need updating. 10172 * But that should not cause any harm. And it is updated for 10173 * all kinds of incoming segments, not only for data segments. 10174 */ 10175 tcp->tcp_last_recv_time = LBOLT_FASTPATH; 10176 } 10177 10178 flags = (unsigned int)tcpha->tha_flags & 0xFF; 10179 10180 BUMP_LOCAL(tcp->tcp_ibsegs); 10181 DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp); 10182 10183 if ((flags & TH_URG) && sqp != NULL) { 10184 /* 10185 * TCP can't handle urgent pointers that arrive before 10186 * the connection has been accept()ed since it can't 10187 * buffer OOB data. Discard segment if this happens. 10188 * 10189 * We can't just rely on a non-null tcp_listener to indicate 10190 * that the accept() has completed since unlinking of the 10191 * eager and completion of the accept are not atomic. 10192 * tcp_detached, when it is not set (B_FALSE) indicates 10193 * that the accept() has completed. 10194 * 10195 * Nor can it reassemble urgent pointers, so discard 10196 * if it's not the next segment expected. 10197 * 10198 * Otherwise, collapse chain into one mblk (discard if 10199 * that fails). This makes sure the headers, retransmitted 10200 * data, and new data all are in the same mblk. 10201 */ 10202 ASSERT(mp != NULL); 10203 if (tcp->tcp_detached || !pullupmsg(mp, -1)) { 10204 freemsg(mp); 10205 return; 10206 } 10207 /* Update pointers into message */ 10208 iphdr = rptr = mp->b_rptr; 10209 tcpha = (tcpha_t *)&rptr[ip_hdr_len]; 10210 if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) { 10211 /* 10212 * Since we can't handle any data with this urgent 10213 * pointer that is out of sequence, we expunge 10214 * the data. This allows us to still register 10215 * the urgent mark and generate the M_PCSIG, 10216 * which we can do. 10217 */ 10218 mp->b_wptr = (uchar_t *)tcpha + TCP_HDR_LENGTH(tcpha); 10219 seg_len = 0; 10220 } 10221 } 10222 10223 switch (tcp->tcp_state) { 10224 case TCPS_SYN_SENT: 10225 if (connp->conn_final_sqp == NULL && 10226 tcp_outbound_squeue_switch && sqp != NULL) { 10227 ASSERT(connp->conn_initial_sqp == connp->conn_sqp); 10228 connp->conn_final_sqp = sqp; 10229 if (connp->conn_final_sqp != connp->conn_sqp) { 10230 DTRACE_PROBE1(conn__final__sqp__switch, 10231 conn_t *, connp); 10232 CONN_INC_REF(connp); 10233 SQUEUE_SWITCH(connp, connp->conn_final_sqp); 10234 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 10235 tcp_input_data, connp, ira, ip_squeue_flag, 10236 SQTAG_CONNECT_FINISH); 10237 return; 10238 } 10239 DTRACE_PROBE1(conn__final__sqp__same, conn_t *, connp); 10240 } 10241 if (flags & TH_ACK) { 10242 /* 10243 * Note that our stack cannot send data before a 10244 * connection is established, therefore the 10245 * following check is valid. Otherwise, it has 10246 * to be changed. 10247 */ 10248 if (SEQ_LEQ(seg_ack, tcp->tcp_iss) || 10249 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 10250 freemsg(mp); 10251 if (flags & TH_RST) 10252 return; 10253 tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq", 10254 tcp, seg_ack, 0, TH_RST); 10255 return; 10256 } 10257 ASSERT(tcp->tcp_suna + 1 == seg_ack); 10258 } 10259 if (flags & TH_RST) { 10260 freemsg(mp); 10261 if (flags & TH_ACK) 10262 (void) tcp_clean_death(tcp, 10263 ECONNREFUSED, 13); 10264 return; 10265 } 10266 if (!(flags & TH_SYN)) { 10267 freemsg(mp); 10268 return; 10269 } 10270 10271 /* Process all TCP options. */ 10272 tcp_process_options(tcp, tcpha); 10273 /* 10274 * The following changes our rwnd to be a multiple of the 10275 * MIN(peer MSS, our MSS) for performance reason. 10276 */ 10277 (void) tcp_rwnd_set(tcp, MSS_ROUNDUP(connp->conn_rcvbuf, 10278 tcp->tcp_mss)); 10279 10280 /* Is the other end ECN capable? */ 10281 if (tcp->tcp_ecn_ok) { 10282 if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) { 10283 tcp->tcp_ecn_ok = B_FALSE; 10284 } 10285 } 10286 /* 10287 * Clear ECN flags because it may interfere with later 10288 * processing. 10289 */ 10290 flags &= ~(TH_ECE|TH_CWR); 10291 10292 tcp->tcp_irs = seg_seq; 10293 tcp->tcp_rack = seg_seq; 10294 tcp->tcp_rnxt = seg_seq + 1; 10295 tcp->tcp_tcpha->tha_ack = htonl(tcp->tcp_rnxt); 10296 if (!TCP_IS_DETACHED(tcp)) { 10297 /* Allocate room for SACK options if needed. */ 10298 connp->conn_wroff = connp->conn_ht_iphc_len; 10299 if (tcp->tcp_snd_sack_ok) 10300 connp->conn_wroff += TCPOPT_MAX_SACK_LEN; 10301 if (!tcp->tcp_loopback) 10302 connp->conn_wroff += tcps->tcps_wroff_xtra; 10303 10304 (void) proto_set_tx_wroff(connp->conn_rq, connp, 10305 connp->conn_wroff); 10306 } 10307 if (flags & TH_ACK) { 10308 /* 10309 * If we can't get the confirmation upstream, pretend 10310 * we didn't even see this one. 10311 * 10312 * XXX: how can we pretend we didn't see it if we 10313 * have updated rnxt et. al. 10314 * 10315 * For loopback we defer sending up the T_CONN_CON 10316 * until after some checks below. 10317 */ 10318 mp1 = NULL; 10319 /* 10320 * tcp_sendmsg() checks tcp_state without entering 10321 * the squeue so tcp_state should be updated before 10322 * sending up connection confirmation 10323 */ 10324 tcp->tcp_state = TCPS_ESTABLISHED; 10325 if (!tcp_conn_con(tcp, iphdr, mp, 10326 tcp->tcp_loopback ? &mp1 : NULL, ira)) { 10327 tcp->tcp_state = TCPS_SYN_SENT; 10328 freemsg(mp); 10329 return; 10330 } 10331 /* SYN was acked - making progress */ 10332 tcp->tcp_ip_forward_progress = B_TRUE; 10333 10334 /* One for the SYN */ 10335 tcp->tcp_suna = tcp->tcp_iss + 1; 10336 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 10337 10338 /* 10339 * If SYN was retransmitted, need to reset all 10340 * retransmission info. This is because this 10341 * segment will be treated as a dup ACK. 10342 */ 10343 if (tcp->tcp_rexmit) { 10344 tcp->tcp_rexmit = B_FALSE; 10345 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 10346 tcp->tcp_rexmit_max = tcp->tcp_snxt; 10347 tcp->tcp_snd_burst = tcp->tcp_localnet ? 10348 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 10349 tcp->tcp_ms_we_have_waited = 0; 10350 10351 /* 10352 * Set tcp_cwnd back to 1 MSS, per 10353 * recommendation from 10354 * draft-floyd-incr-init-win-01.txt, 10355 * Increasing TCP's Initial Window. 10356 */ 10357 tcp->tcp_cwnd = tcp->tcp_mss; 10358 } 10359 10360 tcp->tcp_swl1 = seg_seq; 10361 tcp->tcp_swl2 = seg_ack; 10362 10363 new_swnd = ntohs(tcpha->tha_win); 10364 tcp->tcp_swnd = new_swnd; 10365 if (new_swnd > tcp->tcp_max_swnd) 10366 tcp->tcp_max_swnd = new_swnd; 10367 10368 /* 10369 * Always send the three-way handshake ack immediately 10370 * in order to make the connection complete as soon as 10371 * possible on the accepting host. 10372 */ 10373 flags |= TH_ACK_NEEDED; 10374 10375 /* 10376 * Special case for loopback. At this point we have 10377 * received SYN-ACK from the remote endpoint. In 10378 * order to ensure that both endpoints reach the 10379 * fused state prior to any data exchange, the final 10380 * ACK needs to be sent before we indicate T_CONN_CON 10381 * to the module upstream. 10382 */ 10383 if (tcp->tcp_loopback) { 10384 mblk_t *ack_mp; 10385 10386 ASSERT(!tcp->tcp_unfusable); 10387 ASSERT(mp1 != NULL); 10388 /* 10389 * For loopback, we always get a pure SYN-ACK 10390 * and only need to send back the final ACK 10391 * with no data (this is because the other 10392 * tcp is ours and we don't do T/TCP). This 10393 * final ACK triggers the passive side to 10394 * perform fusion in ESTABLISHED state. 10395 */ 10396 if ((ack_mp = tcp_ack_mp(tcp)) != NULL) { 10397 if (tcp->tcp_ack_tid != 0) { 10398 (void) TCP_TIMER_CANCEL(tcp, 10399 tcp->tcp_ack_tid); 10400 tcp->tcp_ack_tid = 0; 10401 } 10402 tcp_send_data(tcp, ack_mp); 10403 BUMP_LOCAL(tcp->tcp_obsegs); 10404 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 10405 10406 if (!IPCL_IS_NONSTR(connp)) { 10407 /* Send up T_CONN_CON */ 10408 if (ira->ira_cred != NULL) { 10409 mblk_setcred(mp1, 10410 ira->ira_cred, 10411 ira->ira_cpid); 10412 } 10413 putnext(connp->conn_rq, mp1); 10414 } else { 10415 (*connp->conn_upcalls-> 10416 su_connected) 10417 (connp->conn_upper_handle, 10418 tcp->tcp_connid, 10419 ira->ira_cred, 10420 ira->ira_cpid); 10421 freemsg(mp1); 10422 } 10423 10424 freemsg(mp); 10425 return; 10426 } 10427 /* 10428 * Forget fusion; we need to handle more 10429 * complex cases below. Send the deferred 10430 * T_CONN_CON message upstream and proceed 10431 * as usual. Mark this tcp as not capable 10432 * of fusion. 10433 */ 10434 TCP_STAT(tcps, tcp_fusion_unfusable); 10435 tcp->tcp_unfusable = B_TRUE; 10436 if (!IPCL_IS_NONSTR(connp)) { 10437 if (ira->ira_cred != NULL) { 10438 mblk_setcred(mp1, ira->ira_cred, 10439 ira->ira_cpid); 10440 } 10441 putnext(connp->conn_rq, mp1); 10442 } else { 10443 (*connp->conn_upcalls->su_connected) 10444 (connp->conn_upper_handle, 10445 tcp->tcp_connid, ira->ira_cred, 10446 ira->ira_cpid); 10447 freemsg(mp1); 10448 } 10449 } 10450 10451 /* 10452 * Check to see if there is data to be sent. If 10453 * yes, set the transmit flag. Then check to see 10454 * if received data processing needs to be done. 10455 * If not, go straight to xmit_check. This short 10456 * cut is OK as we don't support T/TCP. 10457 */ 10458 if (tcp->tcp_unsent) 10459 flags |= TH_XMIT_NEEDED; 10460 10461 if (seg_len == 0 && !(flags & TH_URG)) { 10462 freemsg(mp); 10463 goto xmit_check; 10464 } 10465 10466 flags &= ~TH_SYN; 10467 seg_seq++; 10468 break; 10469 } 10470 tcp->tcp_state = TCPS_SYN_RCVD; 10471 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss, 10472 NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 10473 if (mp1 != NULL) { 10474 tcp_send_data(tcp, mp1); 10475 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 10476 } 10477 freemsg(mp); 10478 return; 10479 case TCPS_SYN_RCVD: 10480 if (flags & TH_ACK) { 10481 /* 10482 * In this state, a SYN|ACK packet is either bogus 10483 * because the other side must be ACKing our SYN which 10484 * indicates it has seen the ACK for their SYN and 10485 * shouldn't retransmit it or we're crossing SYNs 10486 * on active open. 10487 */ 10488 if ((flags & TH_SYN) && !tcp->tcp_active_open) { 10489 freemsg(mp); 10490 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn", 10491 tcp, seg_ack, 0, TH_RST); 10492 return; 10493 } 10494 /* 10495 * NOTE: RFC 793 pg. 72 says this should be 10496 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt 10497 * but that would mean we have an ack that ignored 10498 * our SYN. 10499 */ 10500 if (SEQ_LEQ(seg_ack, tcp->tcp_suna) || 10501 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 10502 freemsg(mp); 10503 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack", 10504 tcp, seg_ack, 0, TH_RST); 10505 return; 10506 } 10507 /* 10508 * No sane TCP stack will send such a small window 10509 * without receiving any data. Just drop this invalid 10510 * ACK. We also shorten the abort timeout in case 10511 * this is an attack. 10512 */ 10513 if ((ntohs(tcpha->tha_win) << tcp->tcp_snd_ws) < 10514 (tcp->tcp_mss >> tcp_init_wnd_shft)) { 10515 freemsg(mp); 10516 TCP_STAT(tcps, tcp_zwin_ack_syn); 10517 tcp->tcp_second_ctimer_threshold = 10518 tcp_early_abort * SECONDS; 10519 return; 10520 } 10521 } 10522 break; 10523 case TCPS_LISTEN: 10524 /* 10525 * Only a TLI listener can come through this path when a 10526 * acceptor is going back to be a listener and a packet 10527 * for the acceptor hits the classifier. For a socket 10528 * listener, this can never happen because a listener 10529 * can never accept connection on itself and hence a 10530 * socket acceptor can not go back to being a listener. 10531 */ 10532 ASSERT(!TCP_IS_SOCKET(tcp)); 10533 /*FALLTHRU*/ 10534 case TCPS_CLOSED: 10535 case TCPS_BOUND: { 10536 conn_t *new_connp; 10537 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 10538 10539 /* 10540 * Don't accept any input on a closed tcp as this TCP logically 10541 * does not exist on the system. Don't proceed further with 10542 * this TCP. For instance, this packet could trigger another 10543 * close of this tcp which would be disastrous for tcp_refcnt. 10544 * tcp_close_detached / tcp_clean_death / tcp_closei_local must 10545 * be called at most once on a TCP. In this case we need to 10546 * refeed the packet into the classifier and figure out where 10547 * the packet should go. 10548 */ 10549 new_connp = ipcl_classify(mp, ira, ipst); 10550 if (new_connp != NULL) { 10551 /* Drops ref on new_connp */ 10552 tcp_reinput(new_connp, mp, ira, ipst); 10553 return; 10554 } 10555 /* We failed to classify. For now just drop the packet */ 10556 freemsg(mp); 10557 return; 10558 } 10559 case TCPS_IDLE: 10560 /* 10561 * Handle the case where the tcp_clean_death() has happened 10562 * on a connection (application hasn't closed yet) but a packet 10563 * was already queued on squeue before tcp_clean_death() 10564 * was processed. Calling tcp_clean_death() twice on same 10565 * connection can result in weird behaviour. 10566 */ 10567 freemsg(mp); 10568 return; 10569 default: 10570 break; 10571 } 10572 10573 /* 10574 * Already on the correct queue/perimeter. 10575 * If this is a detached connection and not an eager 10576 * connection hanging off a listener then new data 10577 * (past the FIN) will cause a reset. 10578 * We do a special check here where it 10579 * is out of the main line, rather than check 10580 * if we are detached every time we see new 10581 * data down below. 10582 */ 10583 if (TCP_IS_DETACHED_NONEAGER(tcp) && 10584 (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) { 10585 BUMP_MIB(&tcps->tcps_mib, tcpInClosed); 10586 DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp); 10587 10588 freemsg(mp); 10589 /* 10590 * This could be an SSL closure alert. We're detached so just 10591 * acknowledge it this last time. 10592 */ 10593 if (tcp->tcp_kssl_ctx != NULL) { 10594 kssl_release_ctx(tcp->tcp_kssl_ctx); 10595 tcp->tcp_kssl_ctx = NULL; 10596 10597 tcp->tcp_rnxt += seg_len; 10598 tcp->tcp_tcpha->tha_ack = htonl(tcp->tcp_rnxt); 10599 flags |= TH_ACK_NEEDED; 10600 goto ack_check; 10601 } 10602 10603 tcp_xmit_ctl("new data when detached", tcp, 10604 tcp->tcp_snxt, 0, TH_RST); 10605 (void) tcp_clean_death(tcp, EPROTO, 12); 10606 return; 10607 } 10608 10609 mp->b_rptr = (uchar_t *)tcpha + TCP_HDR_LENGTH(tcpha); 10610 urp = ntohs(tcpha->tha_urp) - TCP_OLD_URP_INTERPRETATION; 10611 new_swnd = ntohs(tcpha->tha_win) << 10612 ((tcpha->tha_flags & TH_SYN) ? 0 : tcp->tcp_snd_ws); 10613 10614 if (tcp->tcp_snd_ts_ok) { 10615 if (!tcp_paws_check(tcp, tcpha, &tcpopt)) { 10616 /* 10617 * This segment is not acceptable. 10618 * Drop it and send back an ACK. 10619 */ 10620 freemsg(mp); 10621 flags |= TH_ACK_NEEDED; 10622 goto ack_check; 10623 } 10624 } else if (tcp->tcp_snd_sack_ok) { 10625 ASSERT(tcp->tcp_sack_info != NULL); 10626 tcpopt.tcp = tcp; 10627 /* 10628 * SACK info in already updated in tcp_parse_options. Ignore 10629 * all other TCP options... 10630 */ 10631 (void) tcp_parse_options(tcpha, &tcpopt); 10632 } 10633 try_again:; 10634 mss = tcp->tcp_mss; 10635 gap = seg_seq - tcp->tcp_rnxt; 10636 rgap = tcp->tcp_rwnd - (gap + seg_len); 10637 /* 10638 * gap is the amount of sequence space between what we expect to see 10639 * and what we got for seg_seq. A positive value for gap means 10640 * something got lost. A negative value means we got some old stuff. 10641 */ 10642 if (gap < 0) { 10643 /* Old stuff present. Is the SYN in there? */ 10644 if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) && 10645 (seg_len != 0)) { 10646 flags &= ~TH_SYN; 10647 seg_seq++; 10648 urp--; 10649 /* Recompute the gaps after noting the SYN. */ 10650 goto try_again; 10651 } 10652 BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); 10653 UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, 10654 (seg_len > -gap ? -gap : seg_len)); 10655 /* Remove the old stuff from seg_len. */ 10656 seg_len += gap; 10657 /* 10658 * Anything left? 10659 * Make sure to check for unack'd FIN when rest of data 10660 * has been previously ack'd. 10661 */ 10662 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 10663 /* 10664 * Resets are only valid if they lie within our offered 10665 * window. If the RST bit is set, we just ignore this 10666 * segment. 10667 */ 10668 if (flags & TH_RST) { 10669 freemsg(mp); 10670 return; 10671 } 10672 10673 /* 10674 * The arriving of dup data packets indicate that we 10675 * may have postponed an ack for too long, or the other 10676 * side's RTT estimate is out of shape. Start acking 10677 * more often. 10678 */ 10679 if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) && 10680 tcp->tcp_rack_cnt >= 1 && 10681 tcp->tcp_rack_abs_max > 2) { 10682 tcp->tcp_rack_abs_max--; 10683 } 10684 tcp->tcp_rack_cur_max = 1; 10685 10686 /* 10687 * This segment is "unacceptable". None of its 10688 * sequence space lies within our advertized window. 10689 * 10690 * Adjust seg_len to the original value for tracing. 10691 */ 10692 seg_len -= gap; 10693 if (connp->conn_debug) { 10694 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 10695 "tcp_rput: unacceptable, gap %d, rgap %d, " 10696 "flags 0x%x, seg_seq %u, seg_ack %u, " 10697 "seg_len %d, rnxt %u, snxt %u, %s", 10698 gap, rgap, flags, seg_seq, seg_ack, 10699 seg_len, tcp->tcp_rnxt, tcp->tcp_snxt, 10700 tcp_display(tcp, NULL, 10701 DISP_ADDR_AND_PORT)); 10702 } 10703 10704 /* 10705 * Arrange to send an ACK in response to the 10706 * unacceptable segment per RFC 793 page 69. There 10707 * is only one small difference between ours and the 10708 * acceptability test in the RFC - we accept ACK-only 10709 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK 10710 * will be generated. 10711 * 10712 * Note that we have to ACK an ACK-only packet at least 10713 * for stacks that send 0-length keep-alives with 10714 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122, 10715 * section 4.2.3.6. As long as we don't ever generate 10716 * an unacceptable packet in response to an incoming 10717 * packet that is unacceptable, it should not cause 10718 * "ACK wars". 10719 */ 10720 flags |= TH_ACK_NEEDED; 10721 10722 /* 10723 * Continue processing this segment in order to use the 10724 * ACK information it contains, but skip all other 10725 * sequence-number processing. Processing the ACK 10726 * information is necessary in order to 10727 * re-synchronize connections that may have lost 10728 * synchronization. 10729 * 10730 * We clear seg_len and flag fields related to 10731 * sequence number processing as they are not 10732 * to be trusted for an unacceptable segment. 10733 */ 10734 seg_len = 0; 10735 flags &= ~(TH_SYN | TH_FIN | TH_URG); 10736 goto process_ack; 10737 } 10738 10739 /* Fix seg_seq, and chew the gap off the front. */ 10740 seg_seq = tcp->tcp_rnxt; 10741 urp += gap; 10742 do { 10743 mblk_t *mp2; 10744 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 10745 (uintptr_t)UINT_MAX); 10746 gap += (uint_t)(mp->b_wptr - mp->b_rptr); 10747 if (gap > 0) { 10748 mp->b_rptr = mp->b_wptr - gap; 10749 break; 10750 } 10751 mp2 = mp; 10752 mp = mp->b_cont; 10753 freeb(mp2); 10754 } while (gap < 0); 10755 /* 10756 * If the urgent data has already been acknowledged, we 10757 * should ignore TH_URG below 10758 */ 10759 if (urp < 0) 10760 flags &= ~TH_URG; 10761 } 10762 /* 10763 * rgap is the amount of stuff received out of window. A negative 10764 * value is the amount out of window. 10765 */ 10766 if (rgap < 0) { 10767 mblk_t *mp2; 10768 10769 if (tcp->tcp_rwnd == 0) { 10770 BUMP_MIB(&tcps->tcps_mib, tcpInWinProbe); 10771 } else { 10772 BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs); 10773 UPDATE_MIB(&tcps->tcps_mib, 10774 tcpInDataPastWinBytes, -rgap); 10775 } 10776 10777 /* 10778 * seg_len does not include the FIN, so if more than 10779 * just the FIN is out of window, we act like we don't 10780 * see it. (If just the FIN is out of window, rgap 10781 * will be zero and we will go ahead and acknowledge 10782 * the FIN.) 10783 */ 10784 flags &= ~TH_FIN; 10785 10786 /* Fix seg_len and make sure there is something left. */ 10787 seg_len += rgap; 10788 if (seg_len <= 0) { 10789 /* 10790 * Resets are only valid if they lie within our offered 10791 * window. If the RST bit is set, we just ignore this 10792 * segment. 10793 */ 10794 if (flags & TH_RST) { 10795 freemsg(mp); 10796 return; 10797 } 10798 10799 /* Per RFC 793, we need to send back an ACK. */ 10800 flags |= TH_ACK_NEEDED; 10801 10802 /* 10803 * Send SIGURG as soon as possible i.e. even 10804 * if the TH_URG was delivered in a window probe 10805 * packet (which will be unacceptable). 10806 * 10807 * We generate a signal if none has been generated 10808 * for this connection or if this is a new urgent 10809 * byte. Also send a zero-length "unmarked" message 10810 * to inform SIOCATMARK that this is not the mark. 10811 * 10812 * tcp_urp_last_valid is cleared when the T_exdata_ind 10813 * is sent up. This plus the check for old data 10814 * (gap >= 0) handles the wraparound of the sequence 10815 * number space without having to always track the 10816 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks 10817 * this max in its rcv_up variable). 10818 * 10819 * This prevents duplicate SIGURGS due to a "late" 10820 * zero-window probe when the T_EXDATA_IND has already 10821 * been sent up. 10822 */ 10823 if ((flags & TH_URG) && 10824 (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq, 10825 tcp->tcp_urp_last))) { 10826 if (IPCL_IS_NONSTR(connp)) { 10827 if (!TCP_IS_DETACHED(tcp)) { 10828 (*connp->conn_upcalls-> 10829 su_signal_oob) 10830 (connp->conn_upper_handle, 10831 urp); 10832 } 10833 } else { 10834 mp1 = allocb(0, BPRI_MED); 10835 if (mp1 == NULL) { 10836 freemsg(mp); 10837 return; 10838 } 10839 if (!TCP_IS_DETACHED(tcp) && 10840 !putnextctl1(connp->conn_rq, 10841 M_PCSIG, SIGURG)) { 10842 /* Try again on the rexmit. */ 10843 freemsg(mp1); 10844 freemsg(mp); 10845 return; 10846 } 10847 /* 10848 * If the next byte would be the mark 10849 * then mark with MARKNEXT else mark 10850 * with NOTMARKNEXT. 10851 */ 10852 if (gap == 0 && urp == 0) 10853 mp1->b_flag |= MSGMARKNEXT; 10854 else 10855 mp1->b_flag |= MSGNOTMARKNEXT; 10856 freemsg(tcp->tcp_urp_mark_mp); 10857 tcp->tcp_urp_mark_mp = mp1; 10858 flags |= TH_SEND_URP_MARK; 10859 } 10860 tcp->tcp_urp_last_valid = B_TRUE; 10861 tcp->tcp_urp_last = urp + seg_seq; 10862 } 10863 /* 10864 * If this is a zero window probe, continue to 10865 * process the ACK part. But we need to set seg_len 10866 * to 0 to avoid data processing. Otherwise just 10867 * drop the segment and send back an ACK. 10868 */ 10869 if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) { 10870 flags &= ~(TH_SYN | TH_URG); 10871 seg_len = 0; 10872 goto process_ack; 10873 } else { 10874 freemsg(mp); 10875 goto ack_check; 10876 } 10877 } 10878 /* Pitch out of window stuff off the end. */ 10879 rgap = seg_len; 10880 mp2 = mp; 10881 do { 10882 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 10883 (uintptr_t)INT_MAX); 10884 rgap -= (int)(mp2->b_wptr - mp2->b_rptr); 10885 if (rgap < 0) { 10886 mp2->b_wptr += rgap; 10887 if ((mp1 = mp2->b_cont) != NULL) { 10888 mp2->b_cont = NULL; 10889 freemsg(mp1); 10890 } 10891 break; 10892 } 10893 } while ((mp2 = mp2->b_cont) != NULL); 10894 } 10895 ok:; 10896 /* 10897 * TCP should check ECN info for segments inside the window only. 10898 * Therefore the check should be done here. 10899 */ 10900 if (tcp->tcp_ecn_ok) { 10901 if (flags & TH_CWR) { 10902 tcp->tcp_ecn_echo_on = B_FALSE; 10903 } 10904 /* 10905 * Note that both ECN_CE and CWR can be set in the 10906 * same segment. In this case, we once again turn 10907 * on ECN_ECHO. 10908 */ 10909 if (connp->conn_ipversion == IPV4_VERSION) { 10910 uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service; 10911 10912 if ((tos & IPH_ECN_CE) == IPH_ECN_CE) { 10913 tcp->tcp_ecn_echo_on = B_TRUE; 10914 } 10915 } else { 10916 uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf; 10917 10918 if ((vcf & htonl(IPH_ECN_CE << 20)) == 10919 htonl(IPH_ECN_CE << 20)) { 10920 tcp->tcp_ecn_echo_on = B_TRUE; 10921 } 10922 } 10923 } 10924 10925 /* 10926 * Check whether we can update tcp_ts_recent. This test is 10927 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 10928 * Extensions for High Performance: An Update", Internet Draft. 10929 */ 10930 if (tcp->tcp_snd_ts_ok && 10931 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 10932 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 10933 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 10934 tcp->tcp_last_rcv_lbolt = LBOLT_FASTPATH64; 10935 } 10936 10937 if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) { 10938 /* 10939 * FIN in an out of order segment. We record this in 10940 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq. 10941 * Clear the FIN so that any check on FIN flag will fail. 10942 * Remember that FIN also counts in the sequence number 10943 * space. So we need to ack out of order FIN only segments. 10944 */ 10945 if (flags & TH_FIN) { 10946 tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID; 10947 tcp->tcp_ofo_fin_seq = seg_seq + seg_len; 10948 flags &= ~TH_FIN; 10949 flags |= TH_ACK_NEEDED; 10950 } 10951 if (seg_len > 0) { 10952 /* Fill in the SACK blk list. */ 10953 if (tcp->tcp_snd_sack_ok) { 10954 ASSERT(tcp->tcp_sack_info != NULL); 10955 tcp_sack_insert(tcp->tcp_sack_list, 10956 seg_seq, seg_seq + seg_len, 10957 &(tcp->tcp_num_sack_blk)); 10958 } 10959 10960 /* 10961 * Attempt reassembly and see if we have something 10962 * ready to go. 10963 */ 10964 mp = tcp_reass(tcp, mp, seg_seq); 10965 /* Always ack out of order packets */ 10966 flags |= TH_ACK_NEEDED | TH_PUSH; 10967 if (mp) { 10968 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 10969 (uintptr_t)INT_MAX); 10970 seg_len = mp->b_cont ? msgdsize(mp) : 10971 (int)(mp->b_wptr - mp->b_rptr); 10972 seg_seq = tcp->tcp_rnxt; 10973 /* 10974 * A gap is filled and the seq num and len 10975 * of the gap match that of a previously 10976 * received FIN, put the FIN flag back in. 10977 */ 10978 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 10979 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 10980 flags |= TH_FIN; 10981 tcp->tcp_valid_bits &= 10982 ~TCP_OFO_FIN_VALID; 10983 } 10984 if (tcp->tcp_reass_tid != 0) { 10985 (void) TCP_TIMER_CANCEL(tcp, 10986 tcp->tcp_reass_tid); 10987 /* 10988 * Restart the timer if there is still 10989 * data in the reassembly queue. 10990 */ 10991 if (tcp->tcp_reass_head != NULL) { 10992 tcp->tcp_reass_tid = TCP_TIMER( 10993 tcp, tcp_reass_timer, 10994 MSEC_TO_TICK( 10995 tcps->tcps_reass_timeout)); 10996 } else { 10997 tcp->tcp_reass_tid = 0; 10998 } 10999 } 11000 } else { 11001 /* 11002 * Keep going even with NULL mp. 11003 * There may be a useful ACK or something else 11004 * we don't want to miss. 11005 * 11006 * But TCP should not perform fast retransmit 11007 * because of the ack number. TCP uses 11008 * seg_len == 0 to determine if it is a pure 11009 * ACK. And this is not a pure ACK. 11010 */ 11011 seg_len = 0; 11012 ofo_seg = B_TRUE; 11013 11014 if (tcps->tcps_reass_timeout != 0 && 11015 tcp->tcp_reass_tid == 0) { 11016 tcp->tcp_reass_tid = TCP_TIMER(tcp, 11017 tcp_reass_timer, MSEC_TO_TICK( 11018 tcps->tcps_reass_timeout)); 11019 } 11020 } 11021 } 11022 } else if (seg_len > 0) { 11023 BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs); 11024 UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len); 11025 /* 11026 * If an out of order FIN was received before, and the seq 11027 * num and len of the new segment match that of the FIN, 11028 * put the FIN flag back in. 11029 */ 11030 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 11031 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 11032 flags |= TH_FIN; 11033 tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID; 11034 } 11035 } 11036 if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) { 11037 if (flags & TH_RST) { 11038 freemsg(mp); 11039 switch (tcp->tcp_state) { 11040 case TCPS_SYN_RCVD: 11041 (void) tcp_clean_death(tcp, ECONNREFUSED, 14); 11042 break; 11043 case TCPS_ESTABLISHED: 11044 case TCPS_FIN_WAIT_1: 11045 case TCPS_FIN_WAIT_2: 11046 case TCPS_CLOSE_WAIT: 11047 (void) tcp_clean_death(tcp, ECONNRESET, 15); 11048 break; 11049 case TCPS_CLOSING: 11050 case TCPS_LAST_ACK: 11051 (void) tcp_clean_death(tcp, 0, 16); 11052 break; 11053 default: 11054 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 11055 (void) tcp_clean_death(tcp, ENXIO, 17); 11056 break; 11057 } 11058 return; 11059 } 11060 if (flags & TH_SYN) { 11061 /* 11062 * See RFC 793, Page 71 11063 * 11064 * The seq number must be in the window as it should 11065 * be "fixed" above. If it is outside window, it should 11066 * be already rejected. Note that we allow seg_seq to be 11067 * rnxt + rwnd because we want to accept 0 window probe. 11068 */ 11069 ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) && 11070 SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd)); 11071 freemsg(mp); 11072 /* 11073 * If the ACK flag is not set, just use our snxt as the 11074 * seq number of the RST segment. 11075 */ 11076 if (!(flags & TH_ACK)) { 11077 seg_ack = tcp->tcp_snxt; 11078 } 11079 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 11080 TH_RST|TH_ACK); 11081 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 11082 (void) tcp_clean_death(tcp, ECONNRESET, 18); 11083 return; 11084 } 11085 /* 11086 * urp could be -1 when the urp field in the packet is 0 11087 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent 11088 * byte was at seg_seq - 1, in which case we ignore the urgent flag. 11089 */ 11090 if (flags & TH_URG && urp >= 0) { 11091 if (!tcp->tcp_urp_last_valid || 11092 SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) { 11093 /* 11094 * Non-STREAMS sockets handle the urgent data a litte 11095 * differently from STREAMS based sockets. There is no 11096 * need to mark any mblks with the MSG{NOT,}MARKNEXT 11097 * flags to keep SIOCATMARK happy. Instead a 11098 * su_signal_oob upcall is made to update the mark. 11099 * Neither is a T_EXDATA_IND mblk needed to be 11100 * prepended to the urgent data. The urgent data is 11101 * delivered using the su_recv upcall, where we set 11102 * the MSG_OOB flag to indicate that it is urg data. 11103 * 11104 * Neither TH_SEND_URP_MARK nor TH_MARKNEXT_NEEDED 11105 * are used by non-STREAMS sockets. 11106 */ 11107 if (IPCL_IS_NONSTR(connp)) { 11108 if (!TCP_IS_DETACHED(tcp)) { 11109 (*connp->conn_upcalls->su_signal_oob) 11110 (connp->conn_upper_handle, urp); 11111 } 11112 } else { 11113 /* 11114 * If we haven't generated the signal yet for 11115 * this urgent pointer value, do it now. Also, 11116 * send up a zero-length M_DATA indicating 11117 * whether or not this is the mark. The latter 11118 * is not needed when a T_EXDATA_IND is sent up. 11119 * However, if there are allocation failures 11120 * this code relies on the sender retransmitting 11121 * and the socket code for determining the mark 11122 * should not block waiting for the peer to 11123 * transmit. Thus, for simplicity we always 11124 * send up the mark indication. 11125 */ 11126 mp1 = allocb(0, BPRI_MED); 11127 if (mp1 == NULL) { 11128 freemsg(mp); 11129 return; 11130 } 11131 if (!TCP_IS_DETACHED(tcp) && 11132 !putnextctl1(connp->conn_rq, M_PCSIG, 11133 SIGURG)) { 11134 /* Try again on the rexmit. */ 11135 freemsg(mp1); 11136 freemsg(mp); 11137 return; 11138 } 11139 /* 11140 * Mark with NOTMARKNEXT for now. 11141 * The code below will change this to MARKNEXT 11142 * if we are at the mark. 11143 * 11144 * If there are allocation failures (e.g. in 11145 * dupmsg below) the next time tcp_input_data 11146 * sees the urgent segment it will send up the 11147 * MSGMARKNEXT message. 11148 */ 11149 mp1->b_flag |= MSGNOTMARKNEXT; 11150 freemsg(tcp->tcp_urp_mark_mp); 11151 tcp->tcp_urp_mark_mp = mp1; 11152 flags |= TH_SEND_URP_MARK; 11153 #ifdef DEBUG 11154 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 11155 "tcp_rput: sent M_PCSIG 2 seq %x urp %x " 11156 "last %x, %s", 11157 seg_seq, urp, tcp->tcp_urp_last, 11158 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 11159 #endif /* DEBUG */ 11160 } 11161 tcp->tcp_urp_last_valid = B_TRUE; 11162 tcp->tcp_urp_last = urp + seg_seq; 11163 } else if (tcp->tcp_urp_mark_mp != NULL) { 11164 /* 11165 * An allocation failure prevented the previous 11166 * tcp_input_data from sending up the allocated 11167 * MSG*MARKNEXT message - send it up this time 11168 * around. 11169 */ 11170 flags |= TH_SEND_URP_MARK; 11171 } 11172 11173 /* 11174 * If the urgent byte is in this segment, make sure that it is 11175 * all by itself. This makes it much easier to deal with the 11176 * possibility of an allocation failure on the T_exdata_ind. 11177 * Note that seg_len is the number of bytes in the segment, and 11178 * urp is the offset into the segment of the urgent byte. 11179 * urp < seg_len means that the urgent byte is in this segment. 11180 */ 11181 if (urp < seg_len) { 11182 if (seg_len != 1) { 11183 uint32_t tmp_rnxt; 11184 /* 11185 * Break it up and feed it back in. 11186 * Re-attach the IP header. 11187 */ 11188 mp->b_rptr = iphdr; 11189 if (urp > 0) { 11190 /* 11191 * There is stuff before the urgent 11192 * byte. 11193 */ 11194 mp1 = dupmsg(mp); 11195 if (!mp1) { 11196 /* 11197 * Trim from urgent byte on. 11198 * The rest will come back. 11199 */ 11200 (void) adjmsg(mp, 11201 urp - seg_len); 11202 tcp_input_data(connp, 11203 mp, NULL, ira); 11204 return; 11205 } 11206 (void) adjmsg(mp1, urp - seg_len); 11207 /* Feed this piece back in. */ 11208 tmp_rnxt = tcp->tcp_rnxt; 11209 tcp_input_data(connp, mp1, NULL, ira); 11210 /* 11211 * If the data passed back in was not 11212 * processed (ie: bad ACK) sending 11213 * the remainder back in will cause a 11214 * loop. In this case, drop the 11215 * packet and let the sender try 11216 * sending a good packet. 11217 */ 11218 if (tmp_rnxt == tcp->tcp_rnxt) { 11219 freemsg(mp); 11220 return; 11221 } 11222 } 11223 if (urp != seg_len - 1) { 11224 uint32_t tmp_rnxt; 11225 /* 11226 * There is stuff after the urgent 11227 * byte. 11228 */ 11229 mp1 = dupmsg(mp); 11230 if (!mp1) { 11231 /* 11232 * Trim everything beyond the 11233 * urgent byte. The rest will 11234 * come back. 11235 */ 11236 (void) adjmsg(mp, 11237 urp + 1 - seg_len); 11238 tcp_input_data(connp, 11239 mp, NULL, ira); 11240 return; 11241 } 11242 (void) adjmsg(mp1, urp + 1 - seg_len); 11243 tmp_rnxt = tcp->tcp_rnxt; 11244 tcp_input_data(connp, mp1, NULL, ira); 11245 /* 11246 * If the data passed back in was not 11247 * processed (ie: bad ACK) sending 11248 * the remainder back in will cause a 11249 * loop. In this case, drop the 11250 * packet and let the sender try 11251 * sending a good packet. 11252 */ 11253 if (tmp_rnxt == tcp->tcp_rnxt) { 11254 freemsg(mp); 11255 return; 11256 } 11257 } 11258 tcp_input_data(connp, mp, NULL, ira); 11259 return; 11260 } 11261 /* 11262 * This segment contains only the urgent byte. We 11263 * have to allocate the T_exdata_ind, if we can. 11264 */ 11265 if (IPCL_IS_NONSTR(connp)) { 11266 int error; 11267 11268 (*connp->conn_upcalls->su_recv) 11269 (connp->conn_upper_handle, mp, seg_len, 11270 MSG_OOB, &error, NULL); 11271 /* 11272 * We should never be in middle of a 11273 * fallback, the squeue guarantees that. 11274 */ 11275 ASSERT(error != EOPNOTSUPP); 11276 mp = NULL; 11277 goto update_ack; 11278 } else if (!tcp->tcp_urp_mp) { 11279 struct T_exdata_ind *tei; 11280 mp1 = allocb(sizeof (struct T_exdata_ind), 11281 BPRI_MED); 11282 if (!mp1) { 11283 /* 11284 * Sigh... It'll be back. 11285 * Generate any MSG*MARK message now. 11286 */ 11287 freemsg(mp); 11288 seg_len = 0; 11289 if (flags & TH_SEND_URP_MARK) { 11290 11291 11292 ASSERT(tcp->tcp_urp_mark_mp); 11293 tcp->tcp_urp_mark_mp->b_flag &= 11294 ~MSGNOTMARKNEXT; 11295 tcp->tcp_urp_mark_mp->b_flag |= 11296 MSGMARKNEXT; 11297 } 11298 goto ack_check; 11299 } 11300 mp1->b_datap->db_type = M_PROTO; 11301 tei = (struct T_exdata_ind *)mp1->b_rptr; 11302 tei->PRIM_type = T_EXDATA_IND; 11303 tei->MORE_flag = 0; 11304 mp1->b_wptr = (uchar_t *)&tei[1]; 11305 tcp->tcp_urp_mp = mp1; 11306 #ifdef DEBUG 11307 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 11308 "tcp_rput: allocated exdata_ind %s", 11309 tcp_display(tcp, NULL, 11310 DISP_PORT_ONLY)); 11311 #endif /* DEBUG */ 11312 /* 11313 * There is no need to send a separate MSG*MARK 11314 * message since the T_EXDATA_IND will be sent 11315 * now. 11316 */ 11317 flags &= ~TH_SEND_URP_MARK; 11318 freemsg(tcp->tcp_urp_mark_mp); 11319 tcp->tcp_urp_mark_mp = NULL; 11320 } 11321 /* 11322 * Now we are all set. On the next putnext upstream, 11323 * tcp_urp_mp will be non-NULL and will get prepended 11324 * to what has to be this piece containing the urgent 11325 * byte. If for any reason we abort this segment below, 11326 * if it comes back, we will have this ready, or it 11327 * will get blown off in close. 11328 */ 11329 } else if (urp == seg_len) { 11330 /* 11331 * The urgent byte is the next byte after this sequence 11332 * number. If this endpoint is non-STREAMS, then there 11333 * is nothing to do here since the socket has already 11334 * been notified about the urg pointer by the 11335 * su_signal_oob call above. 11336 * 11337 * In case of STREAMS, some more work might be needed. 11338 * If there is data it is marked with MSGMARKNEXT and 11339 * and any tcp_urp_mark_mp is discarded since it is not 11340 * needed. Otherwise, if the code above just allocated 11341 * a zero-length tcp_urp_mark_mp message, that message 11342 * is tagged with MSGMARKNEXT. Sending up these 11343 * MSGMARKNEXT messages makes SIOCATMARK work correctly 11344 * even though the T_EXDATA_IND will not be sent up 11345 * until the urgent byte arrives. 11346 */ 11347 if (!IPCL_IS_NONSTR(tcp->tcp_connp)) { 11348 if (seg_len != 0) { 11349 flags |= TH_MARKNEXT_NEEDED; 11350 freemsg(tcp->tcp_urp_mark_mp); 11351 tcp->tcp_urp_mark_mp = NULL; 11352 flags &= ~TH_SEND_URP_MARK; 11353 } else if (tcp->tcp_urp_mark_mp != NULL) { 11354 flags |= TH_SEND_URP_MARK; 11355 tcp->tcp_urp_mark_mp->b_flag &= 11356 ~MSGNOTMARKNEXT; 11357 tcp->tcp_urp_mark_mp->b_flag |= 11358 MSGMARKNEXT; 11359 } 11360 } 11361 #ifdef DEBUG 11362 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 11363 "tcp_rput: AT MARK, len %d, flags 0x%x, %s", 11364 seg_len, flags, 11365 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 11366 #endif /* DEBUG */ 11367 } 11368 #ifdef DEBUG 11369 else { 11370 /* Data left until we hit mark */ 11371 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 11372 "tcp_rput: URP %d bytes left, %s", 11373 urp - seg_len, tcp_display(tcp, NULL, 11374 DISP_PORT_ONLY)); 11375 } 11376 #endif /* DEBUG */ 11377 } 11378 11379 process_ack: 11380 if (!(flags & TH_ACK)) { 11381 freemsg(mp); 11382 goto xmit_check; 11383 } 11384 } 11385 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 11386 11387 if (bytes_acked > 0) 11388 tcp->tcp_ip_forward_progress = B_TRUE; 11389 if (tcp->tcp_state == TCPS_SYN_RCVD) { 11390 if ((tcp->tcp_conn.tcp_eager_conn_ind != NULL) && 11391 ((tcp->tcp_kssl_ent == NULL) || !tcp->tcp_kssl_pending)) { 11392 /* 3-way handshake complete - pass up the T_CONN_IND */ 11393 tcp_t *listener = tcp->tcp_listener; 11394 mblk_t *mp = tcp->tcp_conn.tcp_eager_conn_ind; 11395 11396 tcp->tcp_tconnind_started = B_TRUE; 11397 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 11398 /* 11399 * We are here means eager is fine but it can 11400 * get a TH_RST at any point between now and till 11401 * accept completes and disappear. We need to 11402 * ensure that reference to eager is valid after 11403 * we get out of eager's perimeter. So we do 11404 * an extra refhold. 11405 */ 11406 CONN_INC_REF(connp); 11407 11408 /* 11409 * The listener also exists because of the refhold 11410 * done in tcp_input_listener. Its possible that it 11411 * might have closed. We will check that once we 11412 * get inside listeners context. 11413 */ 11414 CONN_INC_REF(listener->tcp_connp); 11415 if (listener->tcp_connp->conn_sqp == 11416 connp->conn_sqp) { 11417 /* 11418 * We optimize by not calling an SQUEUE_ENTER 11419 * on the listener since we know that the 11420 * listener and eager squeues are the same. 11421 * We are able to make this check safely only 11422 * because neither the eager nor the listener 11423 * can change its squeue. Only an active connect 11424 * can change its squeue 11425 */ 11426 tcp_send_conn_ind(listener->tcp_connp, mp, 11427 listener->tcp_connp->conn_sqp); 11428 CONN_DEC_REF(listener->tcp_connp); 11429 } else if (!tcp->tcp_loopback) { 11430 SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, 11431 mp, tcp_send_conn_ind, 11432 listener->tcp_connp, NULL, SQ_FILL, 11433 SQTAG_TCP_CONN_IND); 11434 } else { 11435 SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, 11436 mp, tcp_send_conn_ind, 11437 listener->tcp_connp, NULL, SQ_PROCESS, 11438 SQTAG_TCP_CONN_IND); 11439 } 11440 } 11441 11442 /* 11443 * We are seeing the final ack in the three way 11444 * hand shake of a active open'ed connection 11445 * so we must send up a T_CONN_CON 11446 * 11447 * tcp_sendmsg() checks tcp_state without entering 11448 * the squeue so tcp_state should be updated before 11449 * sending up connection confirmation. 11450 */ 11451 tcp->tcp_state = TCPS_ESTABLISHED; 11452 if (tcp->tcp_active_open) { 11453 if (!tcp_conn_con(tcp, iphdr, mp, NULL, ira)) { 11454 freemsg(mp); 11455 tcp->tcp_state = TCPS_SYN_RCVD; 11456 return; 11457 } 11458 /* 11459 * Don't fuse the loopback endpoints for 11460 * simultaneous active opens. 11461 */ 11462 if (tcp->tcp_loopback) { 11463 TCP_STAT(tcps, tcp_fusion_unfusable); 11464 tcp->tcp_unfusable = B_TRUE; 11465 } 11466 } 11467 11468 tcp->tcp_suna = tcp->tcp_iss + 1; /* One for the SYN */ 11469 bytes_acked--; 11470 /* SYN was acked - making progress */ 11471 tcp->tcp_ip_forward_progress = B_TRUE; 11472 11473 /* 11474 * If SYN was retransmitted, need to reset all 11475 * retransmission info as this segment will be 11476 * treated as a dup ACK. 11477 */ 11478 if (tcp->tcp_rexmit) { 11479 tcp->tcp_rexmit = B_FALSE; 11480 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 11481 tcp->tcp_rexmit_max = tcp->tcp_snxt; 11482 tcp->tcp_snd_burst = tcp->tcp_localnet ? 11483 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 11484 tcp->tcp_ms_we_have_waited = 0; 11485 tcp->tcp_cwnd = mss; 11486 } 11487 11488 /* 11489 * We set the send window to zero here. 11490 * This is needed if there is data to be 11491 * processed already on the queue. 11492 * Later (at swnd_update label), the 11493 * "new_swnd > tcp_swnd" condition is satisfied 11494 * the XMIT_NEEDED flag is set in the current 11495 * (SYN_RCVD) state. This ensures tcp_wput_data() is 11496 * called if there is already data on queue in 11497 * this state. 11498 */ 11499 tcp->tcp_swnd = 0; 11500 11501 if (new_swnd > tcp->tcp_max_swnd) 11502 tcp->tcp_max_swnd = new_swnd; 11503 tcp->tcp_swl1 = seg_seq; 11504 tcp->tcp_swl2 = seg_ack; 11505 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 11506 11507 /* Fuse when both sides are in ESTABLISHED state */ 11508 if (tcp->tcp_loopback && do_tcp_fusion) 11509 tcp_fuse(tcp, iphdr, tcpha); 11510 11511 } 11512 /* This code follows 4.4BSD-Lite2 mostly. */ 11513 if (bytes_acked < 0) 11514 goto est; 11515 11516 /* 11517 * If TCP is ECN capable and the congestion experience bit is 11518 * set, reduce tcp_cwnd and tcp_ssthresh. But this should only be 11519 * done once per window (or more loosely, per RTT). 11520 */ 11521 if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max)) 11522 tcp->tcp_cwr = B_FALSE; 11523 if (tcp->tcp_ecn_ok && (flags & TH_ECE)) { 11524 if (!tcp->tcp_cwr) { 11525 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss; 11526 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss; 11527 tcp->tcp_cwnd = npkt * mss; 11528 /* 11529 * If the cwnd is 0, use the timer to clock out 11530 * new segments. This is required by the ECN spec. 11531 */ 11532 if (npkt == 0) { 11533 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 11534 /* 11535 * This makes sure that when the ACK comes 11536 * back, we will increase tcp_cwnd by 1 MSS. 11537 */ 11538 tcp->tcp_cwnd_cnt = 0; 11539 } 11540 tcp->tcp_cwr = B_TRUE; 11541 /* 11542 * This marks the end of the current window of in 11543 * flight data. That is why we don't use 11544 * tcp_suna + tcp_swnd. Only data in flight can 11545 * provide ECN info. 11546 */ 11547 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 11548 tcp->tcp_ecn_cwr_sent = B_FALSE; 11549 } 11550 } 11551 11552 mp1 = tcp->tcp_xmit_head; 11553 if (bytes_acked == 0) { 11554 if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) { 11555 int dupack_cnt; 11556 11557 BUMP_MIB(&tcps->tcps_mib, tcpInDupAck); 11558 /* 11559 * Fast retransmit. When we have seen exactly three 11560 * identical ACKs while we have unacked data 11561 * outstanding we take it as a hint that our peer 11562 * dropped something. 11563 * 11564 * If TCP is retransmitting, don't do fast retransmit. 11565 */ 11566 if (mp1 && tcp->tcp_suna != tcp->tcp_snxt && 11567 ! tcp->tcp_rexmit) { 11568 /* Do Limited Transmit */ 11569 if ((dupack_cnt = ++tcp->tcp_dupack_cnt) < 11570 tcps->tcps_dupack_fast_retransmit) { 11571 /* 11572 * RFC 3042 11573 * 11574 * What we need to do is temporarily 11575 * increase tcp_cwnd so that new 11576 * data can be sent if it is allowed 11577 * by the receive window (tcp_rwnd). 11578 * tcp_wput_data() will take care of 11579 * the rest. 11580 * 11581 * If the connection is SACK capable, 11582 * only do limited xmit when there 11583 * is SACK info. 11584 * 11585 * Note how tcp_cwnd is incremented. 11586 * The first dup ACK will increase 11587 * it by 1 MSS. The second dup ACK 11588 * will increase it by 2 MSS. This 11589 * means that only 1 new segment will 11590 * be sent for each dup ACK. 11591 */ 11592 if (tcp->tcp_unsent > 0 && 11593 (!tcp->tcp_snd_sack_ok || 11594 (tcp->tcp_snd_sack_ok && 11595 tcp->tcp_notsack_list != NULL))) { 11596 tcp->tcp_cwnd += mss << 11597 (tcp->tcp_dupack_cnt - 1); 11598 flags |= TH_LIMIT_XMIT; 11599 } 11600 } else if (dupack_cnt == 11601 tcps->tcps_dupack_fast_retransmit) { 11602 11603 /* 11604 * If we have reduced tcp_ssthresh 11605 * because of ECN, do not reduce it again 11606 * unless it is already one window of data 11607 * away. After one window of data, tcp_cwr 11608 * should then be cleared. Note that 11609 * for non ECN capable connection, tcp_cwr 11610 * should always be false. 11611 * 11612 * Adjust cwnd since the duplicate 11613 * ack indicates that a packet was 11614 * dropped (due to congestion.) 11615 */ 11616 if (!tcp->tcp_cwr) { 11617 npkt = ((tcp->tcp_snxt - 11618 tcp->tcp_suna) >> 1) / mss; 11619 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 11620 mss; 11621 tcp->tcp_cwnd = (npkt + 11622 tcp->tcp_dupack_cnt) * mss; 11623 } 11624 if (tcp->tcp_ecn_ok) { 11625 tcp->tcp_cwr = B_TRUE; 11626 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 11627 tcp->tcp_ecn_cwr_sent = B_FALSE; 11628 } 11629 11630 /* 11631 * We do Hoe's algorithm. Refer to her 11632 * paper "Improving the Start-up Behavior 11633 * of a Congestion Control Scheme for TCP," 11634 * appeared in SIGCOMM'96. 11635 * 11636 * Save highest seq no we have sent so far. 11637 * Be careful about the invisible FIN byte. 11638 */ 11639 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 11640 (tcp->tcp_unsent == 0)) { 11641 tcp->tcp_rexmit_max = tcp->tcp_fss; 11642 } else { 11643 tcp->tcp_rexmit_max = tcp->tcp_snxt; 11644 } 11645 11646 /* 11647 * Do not allow bursty traffic during. 11648 * fast recovery. Refer to Fall and Floyd's 11649 * paper "Simulation-based Comparisons of 11650 * Tahoe, Reno and SACK TCP" (in CCR?) 11651 * This is a best current practise. 11652 */ 11653 tcp->tcp_snd_burst = TCP_CWND_SS; 11654 11655 /* 11656 * For SACK: 11657 * Calculate tcp_pipe, which is the 11658 * estimated number of bytes in 11659 * network. 11660 * 11661 * tcp_fack is the highest sack'ed seq num 11662 * TCP has received. 11663 * 11664 * tcp_pipe is explained in the above quoted 11665 * Fall and Floyd's paper. tcp_fack is 11666 * explained in Mathis and Mahdavi's 11667 * "Forward Acknowledgment: Refining TCP 11668 * Congestion Control" in SIGCOMM '96. 11669 */ 11670 if (tcp->tcp_snd_sack_ok) { 11671 ASSERT(tcp->tcp_sack_info != NULL); 11672 if (tcp->tcp_notsack_list != NULL) { 11673 tcp->tcp_pipe = tcp->tcp_snxt - 11674 tcp->tcp_fack; 11675 tcp->tcp_sack_snxt = seg_ack; 11676 flags |= TH_NEED_SACK_REXMIT; 11677 } else { 11678 /* 11679 * Always initialize tcp_pipe 11680 * even though we don't have 11681 * any SACK info. If later 11682 * we get SACK info and 11683 * tcp_pipe is not initialized, 11684 * funny things will happen. 11685 */ 11686 tcp->tcp_pipe = 11687 tcp->tcp_cwnd_ssthresh; 11688 } 11689 } else { 11690 flags |= TH_REXMIT_NEEDED; 11691 } /* tcp_snd_sack_ok */ 11692 11693 } else { 11694 /* 11695 * Here we perform congestion 11696 * avoidance, but NOT slow start. 11697 * This is known as the Fast 11698 * Recovery Algorithm. 11699 */ 11700 if (tcp->tcp_snd_sack_ok && 11701 tcp->tcp_notsack_list != NULL) { 11702 flags |= TH_NEED_SACK_REXMIT; 11703 tcp->tcp_pipe -= mss; 11704 if (tcp->tcp_pipe < 0) 11705 tcp->tcp_pipe = 0; 11706 } else { 11707 /* 11708 * We know that one more packet has 11709 * left the pipe thus we can update 11710 * cwnd. 11711 */ 11712 cwnd = tcp->tcp_cwnd + mss; 11713 if (cwnd > tcp->tcp_cwnd_max) 11714 cwnd = tcp->tcp_cwnd_max; 11715 tcp->tcp_cwnd = cwnd; 11716 if (tcp->tcp_unsent > 0) 11717 flags |= TH_XMIT_NEEDED; 11718 } 11719 } 11720 } 11721 } else if (tcp->tcp_zero_win_probe) { 11722 /* 11723 * If the window has opened, need to arrange 11724 * to send additional data. 11725 */ 11726 if (new_swnd != 0) { 11727 /* tcp_suna != tcp_snxt */ 11728 /* Packet contains a window update */ 11729 BUMP_MIB(&tcps->tcps_mib, tcpInWinUpdate); 11730 tcp->tcp_zero_win_probe = 0; 11731 tcp->tcp_timer_backoff = 0; 11732 tcp->tcp_ms_we_have_waited = 0; 11733 11734 /* 11735 * Transmit starting with tcp_suna since 11736 * the one byte probe is not ack'ed. 11737 * If TCP has sent more than one identical 11738 * probe, tcp_rexmit will be set. That means 11739 * tcp_ss_rexmit() will send out the one 11740 * byte along with new data. Otherwise, 11741 * fake the retransmission. 11742 */ 11743 flags |= TH_XMIT_NEEDED; 11744 if (!tcp->tcp_rexmit) { 11745 tcp->tcp_rexmit = B_TRUE; 11746 tcp->tcp_dupack_cnt = 0; 11747 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 11748 tcp->tcp_rexmit_max = tcp->tcp_suna + 1; 11749 } 11750 } 11751 } 11752 goto swnd_update; 11753 } 11754 11755 /* 11756 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73. 11757 * If the ACK value acks something that we have not yet sent, it might 11758 * be an old duplicate segment. Send an ACK to re-synchronize the 11759 * other side. 11760 * Note: reset in response to unacceptable ACK in SYN_RECEIVE 11761 * state is handled above, so we can always just drop the segment and 11762 * send an ACK here. 11763 * 11764 * In the case where the peer shrinks the window, we see the new window 11765 * update, but all the data sent previously is queued up by the peer. 11766 * To account for this, in tcp_process_shrunk_swnd(), the sequence 11767 * number, which was already sent, and within window, is recorded. 11768 * tcp_snxt is then updated. 11769 * 11770 * If the window has previously shrunk, and an ACK for data not yet 11771 * sent, according to tcp_snxt is recieved, it may still be valid. If 11772 * the ACK is for data within the window at the time the window was 11773 * shrunk, then the ACK is acceptable. In this case tcp_snxt is set to 11774 * the sequence number ACK'ed. 11775 * 11776 * If the ACK covers all the data sent at the time the window was 11777 * shrunk, we can now set tcp_is_wnd_shrnk to B_FALSE. 11778 * 11779 * Should we send ACKs in response to ACK only segments? 11780 */ 11781 11782 if (SEQ_GT(seg_ack, tcp->tcp_snxt)) { 11783 if ((tcp->tcp_is_wnd_shrnk) && 11784 (SEQ_LEQ(seg_ack, tcp->tcp_snxt_shrunk))) { 11785 uint32_t data_acked_ahead_snxt; 11786 11787 data_acked_ahead_snxt = seg_ack - tcp->tcp_snxt; 11788 tcp_update_xmit_tail(tcp, seg_ack); 11789 tcp->tcp_unsent -= data_acked_ahead_snxt; 11790 } else { 11791 BUMP_MIB(&tcps->tcps_mib, tcpInAckUnsent); 11792 /* drop the received segment */ 11793 freemsg(mp); 11794 11795 /* 11796 * Send back an ACK. If tcp_drop_ack_unsent_cnt is 11797 * greater than 0, check if the number of such 11798 * bogus ACks is greater than that count. If yes, 11799 * don't send back any ACK. This prevents TCP from 11800 * getting into an ACK storm if somehow an attacker 11801 * successfully spoofs an acceptable segment to our 11802 * peer. If this continues (count > 2 X threshold), 11803 * we should abort this connection. 11804 */ 11805 if (tcp_drop_ack_unsent_cnt > 0 && 11806 ++tcp->tcp_in_ack_unsent > 11807 tcp_drop_ack_unsent_cnt) { 11808 TCP_STAT(tcps, tcp_in_ack_unsent_drop); 11809 if (tcp->tcp_in_ack_unsent > 2 * 11810 tcp_drop_ack_unsent_cnt) { 11811 (void) tcp_clean_death(tcp, EPROTO, 20); 11812 } 11813 return; 11814 } 11815 mp = tcp_ack_mp(tcp); 11816 if (mp != NULL) { 11817 BUMP_LOCAL(tcp->tcp_obsegs); 11818 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 11819 tcp_send_data(tcp, mp); 11820 } 11821 return; 11822 } 11823 } else if (tcp->tcp_is_wnd_shrnk && SEQ_GEQ(seg_ack, 11824 tcp->tcp_snxt_shrunk)) { 11825 tcp->tcp_is_wnd_shrnk = B_FALSE; 11826 } 11827 11828 /* 11829 * TCP gets a new ACK, update the notsack'ed list to delete those 11830 * blocks that are covered by this ACK. 11831 */ 11832 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 11833 tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack, 11834 &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list)); 11835 } 11836 11837 /* 11838 * If we got an ACK after fast retransmit, check to see 11839 * if it is a partial ACK. If it is not and the congestion 11840 * window was inflated to account for the other side's 11841 * cached packets, retract it. If it is, do Hoe's algorithm. 11842 */ 11843 if (tcp->tcp_dupack_cnt >= tcps->tcps_dupack_fast_retransmit) { 11844 ASSERT(tcp->tcp_rexmit == B_FALSE); 11845 if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) { 11846 tcp->tcp_dupack_cnt = 0; 11847 /* 11848 * Restore the orig tcp_cwnd_ssthresh after 11849 * fast retransmit phase. 11850 */ 11851 if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) { 11852 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh; 11853 } 11854 tcp->tcp_rexmit_max = seg_ack; 11855 tcp->tcp_cwnd_cnt = 0; 11856 tcp->tcp_snd_burst = tcp->tcp_localnet ? 11857 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 11858 11859 /* 11860 * Remove all notsack info to avoid confusion with 11861 * the next fast retrasnmit/recovery phase. 11862 */ 11863 if (tcp->tcp_snd_sack_ok && 11864 tcp->tcp_notsack_list != NULL) { 11865 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, 11866 tcp); 11867 } 11868 } else { 11869 if (tcp->tcp_snd_sack_ok && 11870 tcp->tcp_notsack_list != NULL) { 11871 flags |= TH_NEED_SACK_REXMIT; 11872 tcp->tcp_pipe -= mss; 11873 if (tcp->tcp_pipe < 0) 11874 tcp->tcp_pipe = 0; 11875 } else { 11876 /* 11877 * Hoe's algorithm: 11878 * 11879 * Retransmit the unack'ed segment and 11880 * restart fast recovery. Note that we 11881 * need to scale back tcp_cwnd to the 11882 * original value when we started fast 11883 * recovery. This is to prevent overly 11884 * aggressive behaviour in sending new 11885 * segments. 11886 */ 11887 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh + 11888 tcps->tcps_dupack_fast_retransmit * mss; 11889 tcp->tcp_cwnd_cnt = tcp->tcp_cwnd; 11890 flags |= TH_REXMIT_NEEDED; 11891 } 11892 } 11893 } else { 11894 tcp->tcp_dupack_cnt = 0; 11895 if (tcp->tcp_rexmit) { 11896 /* 11897 * TCP is retranmitting. If the ACK ack's all 11898 * outstanding data, update tcp_rexmit_max and 11899 * tcp_rexmit_nxt. Otherwise, update tcp_rexmit_nxt 11900 * to the correct value. 11901 * 11902 * Note that SEQ_LEQ() is used. This is to avoid 11903 * unnecessary fast retransmit caused by dup ACKs 11904 * received when TCP does slow start retransmission 11905 * after a time out. During this phase, TCP may 11906 * send out segments which are already received. 11907 * This causes dup ACKs to be sent back. 11908 */ 11909 if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) { 11910 if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) { 11911 tcp->tcp_rexmit_nxt = seg_ack; 11912 } 11913 if (seg_ack != tcp->tcp_rexmit_max) { 11914 flags |= TH_XMIT_NEEDED; 11915 } 11916 } else { 11917 tcp->tcp_rexmit = B_FALSE; 11918 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 11919 tcp->tcp_snd_burst = tcp->tcp_localnet ? 11920 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 11921 } 11922 tcp->tcp_ms_we_have_waited = 0; 11923 } 11924 } 11925 11926 BUMP_MIB(&tcps->tcps_mib, tcpInAckSegs); 11927 UPDATE_MIB(&tcps->tcps_mib, tcpInAckBytes, bytes_acked); 11928 tcp->tcp_suna = seg_ack; 11929 if (tcp->tcp_zero_win_probe != 0) { 11930 tcp->tcp_zero_win_probe = 0; 11931 tcp->tcp_timer_backoff = 0; 11932 } 11933 11934 /* 11935 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed. 11936 * Note that it cannot be the SYN being ack'ed. The code flow 11937 * will not reach here. 11938 */ 11939 if (mp1 == NULL) { 11940 goto fin_acked; 11941 } 11942 11943 /* 11944 * Update the congestion window. 11945 * 11946 * If TCP is not ECN capable or TCP is ECN capable but the 11947 * congestion experience bit is not set, increase the tcp_cwnd as 11948 * usual. 11949 */ 11950 if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) { 11951 cwnd = tcp->tcp_cwnd; 11952 add = mss; 11953 11954 if (cwnd >= tcp->tcp_cwnd_ssthresh) { 11955 /* 11956 * This is to prevent an increase of less than 1 MSS of 11957 * tcp_cwnd. With partial increase, tcp_wput_data() 11958 * may send out tinygrams in order to preserve mblk 11959 * boundaries. 11960 * 11961 * By initializing tcp_cwnd_cnt to new tcp_cwnd and 11962 * decrementing it by 1 MSS for every ACKs, tcp_cwnd is 11963 * increased by 1 MSS for every RTTs. 11964 */ 11965 if (tcp->tcp_cwnd_cnt <= 0) { 11966 tcp->tcp_cwnd_cnt = cwnd + add; 11967 } else { 11968 tcp->tcp_cwnd_cnt -= add; 11969 add = 0; 11970 } 11971 } 11972 tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max); 11973 } 11974 11975 /* See if the latest urgent data has been acknowledged */ 11976 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && 11977 SEQ_GT(seg_ack, tcp->tcp_urg)) 11978 tcp->tcp_valid_bits &= ~TCP_URG_VALID; 11979 11980 /* Can we update the RTT estimates? */ 11981 if (tcp->tcp_snd_ts_ok) { 11982 /* Ignore zero timestamp echo-reply. */ 11983 if (tcpopt.tcp_opt_ts_ecr != 0) { 11984 tcp_set_rto(tcp, (int32_t)LBOLT_FASTPATH - 11985 (int32_t)tcpopt.tcp_opt_ts_ecr); 11986 } 11987 11988 /* If needed, restart the timer. */ 11989 if (tcp->tcp_set_timer == 1) { 11990 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 11991 tcp->tcp_set_timer = 0; 11992 } 11993 /* 11994 * Update tcp_csuna in case the other side stops sending 11995 * us timestamps. 11996 */ 11997 tcp->tcp_csuna = tcp->tcp_snxt; 11998 } else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) { 11999 /* 12000 * An ACK sequence we haven't seen before, so get the RTT 12001 * and update the RTO. But first check if the timestamp is 12002 * valid to use. 12003 */ 12004 if ((mp1->b_next != NULL) && 12005 SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next))) 12006 tcp_set_rto(tcp, (int32_t)LBOLT_FASTPATH - 12007 (int32_t)(intptr_t)mp1->b_prev); 12008 else 12009 BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate); 12010 12011 /* Remeber the last sequence to be ACKed */ 12012 tcp->tcp_csuna = seg_ack; 12013 if (tcp->tcp_set_timer == 1) { 12014 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 12015 tcp->tcp_set_timer = 0; 12016 } 12017 } else { 12018 BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate); 12019 } 12020 12021 /* Eat acknowledged bytes off the xmit queue. */ 12022 for (;;) { 12023 mblk_t *mp2; 12024 uchar_t *wptr; 12025 12026 wptr = mp1->b_wptr; 12027 ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX); 12028 bytes_acked -= (int)(wptr - mp1->b_rptr); 12029 if (bytes_acked < 0) { 12030 mp1->b_rptr = wptr + bytes_acked; 12031 /* 12032 * Set a new timestamp if all the bytes timed by the 12033 * old timestamp have been ack'ed. 12034 */ 12035 if (SEQ_GT(seg_ack, 12036 (uint32_t)(uintptr_t)(mp1->b_next))) { 12037 mp1->b_prev = 12038 (mblk_t *)(uintptr_t)LBOLT_FASTPATH; 12039 mp1->b_next = NULL; 12040 } 12041 break; 12042 } 12043 mp1->b_next = NULL; 12044 mp1->b_prev = NULL; 12045 mp2 = mp1; 12046 mp1 = mp1->b_cont; 12047 12048 /* 12049 * This notification is required for some zero-copy 12050 * clients to maintain a copy semantic. After the data 12051 * is ack'ed, client is safe to modify or reuse the buffer. 12052 */ 12053 if (tcp->tcp_snd_zcopy_aware && 12054 (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 12055 tcp_zcopy_notify(tcp); 12056 freeb(mp2); 12057 if (bytes_acked == 0) { 12058 if (mp1 == NULL) { 12059 /* Everything is ack'ed, clear the tail. */ 12060 tcp->tcp_xmit_tail = NULL; 12061 /* 12062 * Cancel the timer unless we are still 12063 * waiting for an ACK for the FIN packet. 12064 */ 12065 if (tcp->tcp_timer_tid != 0 && 12066 tcp->tcp_snxt == tcp->tcp_suna) { 12067 (void) TCP_TIMER_CANCEL(tcp, 12068 tcp->tcp_timer_tid); 12069 tcp->tcp_timer_tid = 0; 12070 } 12071 goto pre_swnd_update; 12072 } 12073 if (mp2 != tcp->tcp_xmit_tail) 12074 break; 12075 tcp->tcp_xmit_tail = mp1; 12076 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 12077 (uintptr_t)INT_MAX); 12078 tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr - 12079 mp1->b_rptr); 12080 break; 12081 } 12082 if (mp1 == NULL) { 12083 /* 12084 * More was acked but there is nothing more 12085 * outstanding. This means that the FIN was 12086 * just acked or that we're talking to a clown. 12087 */ 12088 fin_acked: 12089 ASSERT(tcp->tcp_fin_sent); 12090 tcp->tcp_xmit_tail = NULL; 12091 if (tcp->tcp_fin_sent) { 12092 /* FIN was acked - making progress */ 12093 if (!tcp->tcp_fin_acked) 12094 tcp->tcp_ip_forward_progress = B_TRUE; 12095 tcp->tcp_fin_acked = B_TRUE; 12096 if (tcp->tcp_linger_tid != 0 && 12097 TCP_TIMER_CANCEL(tcp, 12098 tcp->tcp_linger_tid) >= 0) { 12099 tcp_stop_lingering(tcp); 12100 freemsg(mp); 12101 mp = NULL; 12102 } 12103 } else { 12104 /* 12105 * We should never get here because 12106 * we have already checked that the 12107 * number of bytes ack'ed should be 12108 * smaller than or equal to what we 12109 * have sent so far (it is the 12110 * acceptability check of the ACK). 12111 * We can only get here if the send 12112 * queue is corrupted. 12113 * 12114 * Terminate the connection and 12115 * panic the system. It is better 12116 * for us to panic instead of 12117 * continuing to avoid other disaster. 12118 */ 12119 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 12120 tcp->tcp_rnxt, TH_RST|TH_ACK); 12121 panic("Memory corruption " 12122 "detected for connection %s.", 12123 tcp_display(tcp, NULL, 12124 DISP_ADDR_AND_PORT)); 12125 /*NOTREACHED*/ 12126 } 12127 goto pre_swnd_update; 12128 } 12129 ASSERT(mp2 != tcp->tcp_xmit_tail); 12130 } 12131 if (tcp->tcp_unsent) { 12132 flags |= TH_XMIT_NEEDED; 12133 } 12134 pre_swnd_update: 12135 tcp->tcp_xmit_head = mp1; 12136 swnd_update: 12137 /* 12138 * The following check is different from most other implementations. 12139 * For bi-directional transfer, when segments are dropped, the 12140 * "normal" check will not accept a window update in those 12141 * retransmitted segemnts. Failing to do that, TCP may send out 12142 * segments which are outside receiver's window. As TCP accepts 12143 * the ack in those retransmitted segments, if the window update in 12144 * the same segment is not accepted, TCP will incorrectly calculates 12145 * that it can send more segments. This can create a deadlock 12146 * with the receiver if its window becomes zero. 12147 */ 12148 if (SEQ_LT(tcp->tcp_swl2, seg_ack) || 12149 SEQ_LT(tcp->tcp_swl1, seg_seq) || 12150 (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) { 12151 /* 12152 * The criteria for update is: 12153 * 12154 * 1. the segment acknowledges some data. Or 12155 * 2. the segment is new, i.e. it has a higher seq num. Or 12156 * 3. the segment is not old and the advertised window is 12157 * larger than the previous advertised window. 12158 */ 12159 if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd) 12160 flags |= TH_XMIT_NEEDED; 12161 tcp->tcp_swnd = new_swnd; 12162 if (new_swnd > tcp->tcp_max_swnd) 12163 tcp->tcp_max_swnd = new_swnd; 12164 tcp->tcp_swl1 = seg_seq; 12165 tcp->tcp_swl2 = seg_ack; 12166 } 12167 est: 12168 if (tcp->tcp_state > TCPS_ESTABLISHED) { 12169 12170 switch (tcp->tcp_state) { 12171 case TCPS_FIN_WAIT_1: 12172 if (tcp->tcp_fin_acked) { 12173 tcp->tcp_state = TCPS_FIN_WAIT_2; 12174 /* 12175 * We implement the non-standard BSD/SunOS 12176 * FIN_WAIT_2 flushing algorithm. 12177 * If there is no user attached to this 12178 * TCP endpoint, then this TCP struct 12179 * could hang around forever in FIN_WAIT_2 12180 * state if the peer forgets to send us 12181 * a FIN. To prevent this, we wait only 12182 * 2*MSL (a convenient time value) for 12183 * the FIN to arrive. If it doesn't show up, 12184 * we flush the TCP endpoint. This algorithm, 12185 * though a violation of RFC-793, has worked 12186 * for over 10 years in BSD systems. 12187 * Note: SunOS 4.x waits 675 seconds before 12188 * flushing the FIN_WAIT_2 connection. 12189 */ 12190 TCP_TIMER_RESTART(tcp, 12191 tcps->tcps_fin_wait_2_flush_interval); 12192 } 12193 break; 12194 case TCPS_FIN_WAIT_2: 12195 break; /* Shutdown hook? */ 12196 case TCPS_LAST_ACK: 12197 freemsg(mp); 12198 if (tcp->tcp_fin_acked) { 12199 (void) tcp_clean_death(tcp, 0, 19); 12200 return; 12201 } 12202 goto xmit_check; 12203 case TCPS_CLOSING: 12204 if (tcp->tcp_fin_acked) 12205 SET_TIME_WAIT(tcps, tcp, connp); 12206 /*FALLTHRU*/ 12207 case TCPS_CLOSE_WAIT: 12208 freemsg(mp); 12209 goto xmit_check; 12210 default: 12211 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 12212 break; 12213 } 12214 } 12215 if (flags & TH_FIN) { 12216 /* Make sure we ack the fin */ 12217 flags |= TH_ACK_NEEDED; 12218 if (!tcp->tcp_fin_rcvd) { 12219 tcp->tcp_fin_rcvd = B_TRUE; 12220 tcp->tcp_rnxt++; 12221 tcpha = tcp->tcp_tcpha; 12222 tcpha->tha_ack = htonl(tcp->tcp_rnxt); 12223 12224 /* 12225 * Generate the ordrel_ind at the end unless we 12226 * are an eager guy. 12227 * In the eager case tcp_rsrv will do this when run 12228 * after tcp_accept is done. 12229 */ 12230 if (tcp->tcp_listener == NULL && 12231 !TCP_IS_DETACHED(tcp) && !tcp->tcp_hard_binding) 12232 flags |= TH_ORDREL_NEEDED; 12233 switch (tcp->tcp_state) { 12234 case TCPS_SYN_RCVD: 12235 case TCPS_ESTABLISHED: 12236 tcp->tcp_state = TCPS_CLOSE_WAIT; 12237 /* Keepalive? */ 12238 break; 12239 case TCPS_FIN_WAIT_1: 12240 if (!tcp->tcp_fin_acked) { 12241 tcp->tcp_state = TCPS_CLOSING; 12242 break; 12243 } 12244 /* FALLTHRU */ 12245 case TCPS_FIN_WAIT_2: 12246 SET_TIME_WAIT(tcps, tcp, connp); 12247 if (seg_len) { 12248 /* 12249 * implies data piggybacked on FIN. 12250 * break to handle data. 12251 */ 12252 break; 12253 } 12254 freemsg(mp); 12255 goto ack_check; 12256 } 12257 } 12258 } 12259 if (mp == NULL) 12260 goto xmit_check; 12261 if (seg_len == 0) { 12262 freemsg(mp); 12263 goto xmit_check; 12264 } 12265 if (mp->b_rptr == mp->b_wptr) { 12266 /* 12267 * The header has been consumed, so we remove the 12268 * zero-length mblk here. 12269 */ 12270 mp1 = mp; 12271 mp = mp->b_cont; 12272 freeb(mp1); 12273 } 12274 update_ack: 12275 tcpha = tcp->tcp_tcpha; 12276 tcp->tcp_rack_cnt++; 12277 { 12278 uint32_t cur_max; 12279 12280 cur_max = tcp->tcp_rack_cur_max; 12281 if (tcp->tcp_rack_cnt >= cur_max) { 12282 /* 12283 * We have more unacked data than we should - send 12284 * an ACK now. 12285 */ 12286 flags |= TH_ACK_NEEDED; 12287 cur_max++; 12288 if (cur_max > tcp->tcp_rack_abs_max) 12289 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 12290 else 12291 tcp->tcp_rack_cur_max = cur_max; 12292 } else if (TCP_IS_DETACHED(tcp)) { 12293 /* We don't have an ACK timer for detached TCP. */ 12294 flags |= TH_ACK_NEEDED; 12295 } else if (seg_len < mss) { 12296 /* 12297 * If we get a segment that is less than an mss, and we 12298 * already have unacknowledged data, and the amount 12299 * unacknowledged is not a multiple of mss, then we 12300 * better generate an ACK now. Otherwise, this may be 12301 * the tail piece of a transaction, and we would rather 12302 * wait for the response. 12303 */ 12304 uint32_t udif; 12305 ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <= 12306 (uintptr_t)INT_MAX); 12307 udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack); 12308 if (udif && (udif % mss)) 12309 flags |= TH_ACK_NEEDED; 12310 else 12311 flags |= TH_ACK_TIMER_NEEDED; 12312 } else { 12313 /* Start delayed ack timer */ 12314 flags |= TH_ACK_TIMER_NEEDED; 12315 } 12316 } 12317 tcp->tcp_rnxt += seg_len; 12318 tcpha->tha_ack = htonl(tcp->tcp_rnxt); 12319 12320 if (mp == NULL) 12321 goto xmit_check; 12322 12323 /* Update SACK list */ 12324 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 12325 tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt, 12326 &(tcp->tcp_num_sack_blk)); 12327 } 12328 12329 if (tcp->tcp_urp_mp) { 12330 tcp->tcp_urp_mp->b_cont = mp; 12331 mp = tcp->tcp_urp_mp; 12332 tcp->tcp_urp_mp = NULL; 12333 /* Ready for a new signal. */ 12334 tcp->tcp_urp_last_valid = B_FALSE; 12335 #ifdef DEBUG 12336 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 12337 "tcp_rput: sending exdata_ind %s", 12338 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 12339 #endif /* DEBUG */ 12340 } 12341 12342 /* 12343 * Check for ancillary data changes compared to last segment. 12344 */ 12345 if (connp->conn_recv_ancillary.crb_all != 0) { 12346 mp = tcp_input_add_ancillary(tcp, mp, &ipp, ira); 12347 if (mp == NULL) 12348 return; 12349 } 12350 12351 if (tcp->tcp_listener != NULL || tcp->tcp_hard_binding) { 12352 /* 12353 * Side queue inbound data until the accept happens. 12354 * tcp_accept/tcp_rput drains this when the accept happens. 12355 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or 12356 * T_EXDATA_IND) it is queued on b_next. 12357 * XXX Make urgent data use this. Requires: 12358 * Removing tcp_listener check for TH_URG 12359 * Making M_PCPROTO and MARK messages skip the eager case 12360 */ 12361 12362 if (tcp->tcp_kssl_pending) { 12363 DTRACE_PROBE1(kssl_mblk__ksslinput_pending, 12364 mblk_t *, mp); 12365 tcp_kssl_input(tcp, mp, ira->ira_cred); 12366 } else { 12367 tcp_rcv_enqueue(tcp, mp, seg_len, ira->ira_cred); 12368 } 12369 } else if (IPCL_IS_NONSTR(connp)) { 12370 /* 12371 * Non-STREAMS socket 12372 * 12373 * Note that no KSSL processing is done here, because 12374 * KSSL is not supported for non-STREAMS sockets. 12375 */ 12376 boolean_t push = flags & (TH_PUSH|TH_FIN); 12377 int error; 12378 12379 if ((*connp->conn_upcalls->su_recv)( 12380 connp->conn_upper_handle, 12381 mp, seg_len, 0, &error, &push) <= 0) { 12382 /* 12383 * We should never be in middle of a 12384 * fallback, the squeue guarantees that. 12385 */ 12386 ASSERT(error != EOPNOTSUPP); 12387 if (error == ENOSPC) 12388 tcp->tcp_rwnd -= seg_len; 12389 } else if (push) { 12390 /* PUSH bit set and sockfs is not flow controlled */ 12391 flags |= tcp_rwnd_reopen(tcp); 12392 } 12393 } else { 12394 /* STREAMS socket */ 12395 if (mp->b_datap->db_type != M_DATA || 12396 (flags & TH_MARKNEXT_NEEDED)) { 12397 if (tcp->tcp_rcv_list != NULL) { 12398 flags |= tcp_rcv_drain(tcp); 12399 } 12400 ASSERT(tcp->tcp_rcv_list == NULL || 12401 tcp->tcp_fused_sigurg); 12402 12403 if (flags & TH_MARKNEXT_NEEDED) { 12404 #ifdef DEBUG 12405 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 12406 "tcp_rput: sending MSGMARKNEXT %s", 12407 tcp_display(tcp, NULL, 12408 DISP_PORT_ONLY)); 12409 #endif /* DEBUG */ 12410 mp->b_flag |= MSGMARKNEXT; 12411 flags &= ~TH_MARKNEXT_NEEDED; 12412 } 12413 12414 /* Does this need SSL processing first? */ 12415 if ((tcp->tcp_kssl_ctx != NULL) && 12416 (DB_TYPE(mp) == M_DATA)) { 12417 DTRACE_PROBE1(kssl_mblk__ksslinput_data1, 12418 mblk_t *, mp); 12419 tcp_kssl_input(tcp, mp, ira->ira_cred); 12420 } else { 12421 if (is_system_labeled()) 12422 tcp_setcred_data(mp, ira); 12423 12424 putnext(connp->conn_rq, mp); 12425 if (!canputnext(connp->conn_rq)) 12426 tcp->tcp_rwnd -= seg_len; 12427 } 12428 } else if ((tcp->tcp_kssl_ctx != NULL) && 12429 (DB_TYPE(mp) == M_DATA)) { 12430 /* Does this need SSL processing first? */ 12431 DTRACE_PROBE1(kssl_mblk__ksslinput_data2, mblk_t *, mp); 12432 tcp_kssl_input(tcp, mp, ira->ira_cred); 12433 } else if ((flags & (TH_PUSH|TH_FIN)) || 12434 tcp->tcp_rcv_cnt + seg_len >= connp->conn_rcvbuf >> 3) { 12435 if (tcp->tcp_rcv_list != NULL) { 12436 /* 12437 * Enqueue the new segment first and then 12438 * call tcp_rcv_drain() to send all data 12439 * up. The other way to do this is to 12440 * send all queued data up and then call 12441 * putnext() to send the new segment up. 12442 * This way can remove the else part later 12443 * on. 12444 * 12445 * We don't do this to avoid one more call to 12446 * canputnext() as tcp_rcv_drain() needs to 12447 * call canputnext(). 12448 */ 12449 tcp_rcv_enqueue(tcp, mp, seg_len, 12450 ira->ira_cred); 12451 flags |= tcp_rcv_drain(tcp); 12452 } else { 12453 if (is_system_labeled()) 12454 tcp_setcred_data(mp, ira); 12455 12456 putnext(connp->conn_rq, mp); 12457 if (!canputnext(connp->conn_rq)) 12458 tcp->tcp_rwnd -= seg_len; 12459 } 12460 } else { 12461 /* 12462 * Enqueue all packets when processing an mblk 12463 * from the co queue and also enqueue normal packets. 12464 */ 12465 tcp_rcv_enqueue(tcp, mp, seg_len, ira->ira_cred); 12466 } 12467 /* 12468 * Make sure the timer is running if we have data waiting 12469 * for a push bit. This provides resiliency against 12470 * implementations that do not correctly generate push bits. 12471 */ 12472 if (tcp->tcp_rcv_list != NULL && tcp->tcp_push_tid == 0) { 12473 /* 12474 * The connection may be closed at this point, so don't 12475 * do anything for a detached tcp. 12476 */ 12477 if (!TCP_IS_DETACHED(tcp)) 12478 tcp->tcp_push_tid = TCP_TIMER(tcp, 12479 tcp_push_timer, 12480 MSEC_TO_TICK( 12481 tcps->tcps_push_timer_interval)); 12482 } 12483 } 12484 12485 xmit_check: 12486 /* Is there anything left to do? */ 12487 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 12488 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED| 12489 TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED| 12490 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 12491 goto done; 12492 12493 /* Any transmit work to do and a non-zero window? */ 12494 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT| 12495 TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) { 12496 if (flags & TH_REXMIT_NEEDED) { 12497 uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna; 12498 12499 BUMP_MIB(&tcps->tcps_mib, tcpOutFastRetrans); 12500 if (snd_size > mss) 12501 snd_size = mss; 12502 if (snd_size > tcp->tcp_swnd) 12503 snd_size = tcp->tcp_swnd; 12504 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size, 12505 NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size, 12506 B_TRUE); 12507 12508 if (mp1 != NULL) { 12509 tcp->tcp_xmit_head->b_prev = 12510 (mblk_t *)LBOLT_FASTPATH; 12511 tcp->tcp_csuna = tcp->tcp_snxt; 12512 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 12513 UPDATE_MIB(&tcps->tcps_mib, 12514 tcpRetransBytes, snd_size); 12515 tcp_send_data(tcp, mp1); 12516 } 12517 } 12518 if (flags & TH_NEED_SACK_REXMIT) { 12519 tcp_sack_rxmit(tcp, &flags); 12520 } 12521 /* 12522 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send 12523 * out new segment. Note that tcp_rexmit should not be 12524 * set, otherwise TH_LIMIT_XMIT should not be set. 12525 */ 12526 if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) { 12527 if (!tcp->tcp_rexmit) { 12528 tcp_wput_data(tcp, NULL, B_FALSE); 12529 } else { 12530 tcp_ss_rexmit(tcp); 12531 } 12532 } 12533 /* 12534 * Adjust tcp_cwnd back to normal value after sending 12535 * new data segments. 12536 */ 12537 if (flags & TH_LIMIT_XMIT) { 12538 tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1); 12539 /* 12540 * This will restart the timer. Restarting the 12541 * timer is used to avoid a timeout before the 12542 * limited transmitted segment's ACK gets back. 12543 */ 12544 if (tcp->tcp_xmit_head != NULL) 12545 tcp->tcp_xmit_head->b_prev = 12546 (mblk_t *)LBOLT_FASTPATH; 12547 } 12548 12549 /* Anything more to do? */ 12550 if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED| 12551 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 12552 goto done; 12553 } 12554 ack_check: 12555 if (flags & TH_SEND_URP_MARK) { 12556 ASSERT(tcp->tcp_urp_mark_mp); 12557 ASSERT(!IPCL_IS_NONSTR(connp)); 12558 /* 12559 * Send up any queued data and then send the mark message 12560 */ 12561 if (tcp->tcp_rcv_list != NULL) { 12562 flags |= tcp_rcv_drain(tcp); 12563 12564 } 12565 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 12566 mp1 = tcp->tcp_urp_mark_mp; 12567 tcp->tcp_urp_mark_mp = NULL; 12568 if (is_system_labeled()) 12569 tcp_setcred_data(mp1, ira); 12570 12571 putnext(connp->conn_rq, mp1); 12572 #ifdef DEBUG 12573 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 12574 "tcp_rput: sending zero-length %s %s", 12575 ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" : 12576 "MSGNOTMARKNEXT"), 12577 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 12578 #endif /* DEBUG */ 12579 flags &= ~TH_SEND_URP_MARK; 12580 } 12581 if (flags & TH_ACK_NEEDED) { 12582 /* 12583 * Time to send an ack for some reason. 12584 */ 12585 mp1 = tcp_ack_mp(tcp); 12586 12587 if (mp1 != NULL) { 12588 tcp_send_data(tcp, mp1); 12589 BUMP_LOCAL(tcp->tcp_obsegs); 12590 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 12591 } 12592 if (tcp->tcp_ack_tid != 0) { 12593 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 12594 tcp->tcp_ack_tid = 0; 12595 } 12596 } 12597 if (flags & TH_ACK_TIMER_NEEDED) { 12598 /* 12599 * Arrange for deferred ACK or push wait timeout. 12600 * Start timer if it is not already running. 12601 */ 12602 if (tcp->tcp_ack_tid == 0) { 12603 tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer, 12604 MSEC_TO_TICK(tcp->tcp_localnet ? 12605 (clock_t)tcps->tcps_local_dack_interval : 12606 (clock_t)tcps->tcps_deferred_ack_interval)); 12607 } 12608 } 12609 if (flags & TH_ORDREL_NEEDED) { 12610 /* 12611 * Send up the ordrel_ind unless we are an eager guy. 12612 * In the eager case tcp_rsrv will do this when run 12613 * after tcp_accept is done. 12614 */ 12615 ASSERT(tcp->tcp_listener == NULL); 12616 ASSERT(!tcp->tcp_detached); 12617 12618 if (IPCL_IS_NONSTR(connp)) { 12619 ASSERT(tcp->tcp_ordrel_mp == NULL); 12620 tcp->tcp_ordrel_done = B_TRUE; 12621 (*connp->conn_upcalls->su_opctl) 12622 (connp->conn_upper_handle, SOCK_OPCTL_SHUT_RECV, 0); 12623 goto done; 12624 } 12625 12626 if (tcp->tcp_rcv_list != NULL) { 12627 /* 12628 * Push any mblk(s) enqueued from co processing. 12629 */ 12630 flags |= tcp_rcv_drain(tcp); 12631 } 12632 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 12633 12634 mp1 = tcp->tcp_ordrel_mp; 12635 tcp->tcp_ordrel_mp = NULL; 12636 tcp->tcp_ordrel_done = B_TRUE; 12637 putnext(connp->conn_rq, mp1); 12638 } 12639 done: 12640 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 12641 } 12642 12643 /* 12644 * This routine adjusts next-to-send sequence number variables, in the 12645 * case where the reciever has shrunk it's window. 12646 */ 12647 static void 12648 tcp_update_xmit_tail(tcp_t *tcp, uint32_t snxt) 12649 { 12650 mblk_t *xmit_tail; 12651 int32_t offset; 12652 12653 tcp->tcp_snxt = snxt; 12654 12655 /* Get the mblk, and the offset in it, as per the shrunk window */ 12656 xmit_tail = tcp_get_seg_mp(tcp, snxt, &offset); 12657 ASSERT(xmit_tail != NULL); 12658 tcp->tcp_xmit_tail = xmit_tail; 12659 tcp->tcp_xmit_tail_unsent = xmit_tail->b_wptr - 12660 xmit_tail->b_rptr - offset; 12661 } 12662 12663 /* 12664 * This function does PAWS protection check. Returns B_TRUE if the 12665 * segment passes the PAWS test, else returns B_FALSE. 12666 */ 12667 boolean_t 12668 tcp_paws_check(tcp_t *tcp, tcpha_t *tcpha, tcp_opt_t *tcpoptp) 12669 { 12670 uint8_t flags; 12671 int options; 12672 uint8_t *up; 12673 conn_t *connp = tcp->tcp_connp; 12674 12675 flags = (unsigned int)tcpha->tha_flags & 0xFF; 12676 /* 12677 * If timestamp option is aligned nicely, get values inline, 12678 * otherwise call general routine to parse. Only do that 12679 * if timestamp is the only option. 12680 */ 12681 if (TCP_HDR_LENGTH(tcpha) == (uint32_t)TCP_MIN_HEADER_LENGTH + 12682 TCPOPT_REAL_TS_LEN && 12683 OK_32PTR((up = ((uint8_t *)tcpha) + 12684 TCP_MIN_HEADER_LENGTH)) && 12685 *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) { 12686 tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4)); 12687 tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8)); 12688 12689 options = TCP_OPT_TSTAMP_PRESENT; 12690 } else { 12691 if (tcp->tcp_snd_sack_ok) { 12692 tcpoptp->tcp = tcp; 12693 } else { 12694 tcpoptp->tcp = NULL; 12695 } 12696 options = tcp_parse_options(tcpha, tcpoptp); 12697 } 12698 12699 if (options & TCP_OPT_TSTAMP_PRESENT) { 12700 /* 12701 * Do PAWS per RFC 1323 section 4.2. Accept RST 12702 * regardless of the timestamp, page 18 RFC 1323.bis. 12703 */ 12704 if ((flags & TH_RST) == 0 && 12705 TSTMP_LT(tcpoptp->tcp_opt_ts_val, 12706 tcp->tcp_ts_recent)) { 12707 if (TSTMP_LT(LBOLT_FASTPATH64, 12708 tcp->tcp_last_rcv_lbolt + PAWS_TIMEOUT)) { 12709 /* This segment is not acceptable. */ 12710 return (B_FALSE); 12711 } else { 12712 /* 12713 * Connection has been idle for 12714 * too long. Reset the timestamp 12715 * and assume the segment is valid. 12716 */ 12717 tcp->tcp_ts_recent = 12718 tcpoptp->tcp_opt_ts_val; 12719 } 12720 } 12721 } else { 12722 /* 12723 * If we don't get a timestamp on every packet, we 12724 * figure we can't really trust 'em, so we stop sending 12725 * and parsing them. 12726 */ 12727 tcp->tcp_snd_ts_ok = B_FALSE; 12728 12729 connp->conn_ht_iphc_len -= TCPOPT_REAL_TS_LEN; 12730 connp->conn_ht_ulp_len -= TCPOPT_REAL_TS_LEN; 12731 tcp->tcp_tcpha->tha_offset_and_reserved -= (3 << 4); 12732 /* 12733 * Adjust the tcp_mss and tcp_cwnd accordingly. We avoid 12734 * doing a slow start here so as to not to lose on the 12735 * transfer rate built up so far. 12736 */ 12737 tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN); 12738 if (tcp->tcp_snd_sack_ok) { 12739 ASSERT(tcp->tcp_sack_info != NULL); 12740 tcp->tcp_max_sack_blk = 4; 12741 } 12742 } 12743 return (B_TRUE); 12744 } 12745 12746 /* 12747 * Attach ancillary data to a received TCP segments for the 12748 * ancillary pieces requested by the application that are 12749 * different than they were in the previous data segment. 12750 * 12751 * Save the "current" values once memory allocation is ok so that 12752 * when memory allocation fails we can just wait for the next data segment. 12753 */ 12754 static mblk_t * 12755 tcp_input_add_ancillary(tcp_t *tcp, mblk_t *mp, ip_pkt_t *ipp, 12756 ip_recv_attr_t *ira) 12757 { 12758 struct T_optdata_ind *todi; 12759 int optlen; 12760 uchar_t *optptr; 12761 struct T_opthdr *toh; 12762 crb_t addflag; /* Which pieces to add */ 12763 mblk_t *mp1; 12764 conn_t *connp = tcp->tcp_connp; 12765 12766 optlen = 0; 12767 addflag.crb_all = 0; 12768 /* If app asked for pktinfo and the index has changed ... */ 12769 if (connp->conn_recv_ancillary.crb_ip_recvpktinfo && 12770 ira->ira_ruifindex != tcp->tcp_recvifindex) { 12771 optlen += sizeof (struct T_opthdr) + 12772 sizeof (struct in6_pktinfo); 12773 addflag.crb_ip_recvpktinfo = 1; 12774 } 12775 /* If app asked for hoplimit and it has changed ... */ 12776 if (connp->conn_recv_ancillary.crb_ipv6_recvhoplimit && 12777 ipp->ipp_hoplimit != tcp->tcp_recvhops) { 12778 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 12779 addflag.crb_ipv6_recvhoplimit = 1; 12780 } 12781 /* If app asked for tclass and it has changed ... */ 12782 if (connp->conn_recv_ancillary.crb_ipv6_recvtclass && 12783 ipp->ipp_tclass != tcp->tcp_recvtclass) { 12784 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 12785 addflag.crb_ipv6_recvtclass = 1; 12786 } 12787 /* 12788 * If app asked for hopbyhop headers and it has changed ... 12789 * For security labels, note that (1) security labels can't change on 12790 * a connected socket at all, (2) we're connected to at most one peer, 12791 * (3) if anything changes, then it must be some other extra option. 12792 */ 12793 if (connp->conn_recv_ancillary.crb_ipv6_recvhopopts && 12794 ip_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen, 12795 (ipp->ipp_fields & IPPF_HOPOPTS), 12796 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) { 12797 optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen; 12798 addflag.crb_ipv6_recvhopopts = 1; 12799 if (!ip_allocbuf((void **)&tcp->tcp_hopopts, 12800 &tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS), 12801 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) 12802 return (mp); 12803 } 12804 /* If app asked for dst headers before routing headers ... */ 12805 if (connp->conn_recv_ancillary.crb_ipv6_recvrthdrdstopts && 12806 ip_cmpbuf(tcp->tcp_rthdrdstopts, tcp->tcp_rthdrdstoptslen, 12807 (ipp->ipp_fields & IPPF_RTHDRDSTOPTS), 12808 ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen)) { 12809 optlen += sizeof (struct T_opthdr) + 12810 ipp->ipp_rthdrdstoptslen; 12811 addflag.crb_ipv6_recvrthdrdstopts = 1; 12812 if (!ip_allocbuf((void **)&tcp->tcp_rthdrdstopts, 12813 &tcp->tcp_rthdrdstoptslen, 12814 (ipp->ipp_fields & IPPF_RTHDRDSTOPTS), 12815 ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen)) 12816 return (mp); 12817 } 12818 /* If app asked for routing headers and it has changed ... */ 12819 if (connp->conn_recv_ancillary.crb_ipv6_recvrthdr && 12820 ip_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen, 12821 (ipp->ipp_fields & IPPF_RTHDR), 12822 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) { 12823 optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen; 12824 addflag.crb_ipv6_recvrthdr = 1; 12825 if (!ip_allocbuf((void **)&tcp->tcp_rthdr, 12826 &tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR), 12827 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) 12828 return (mp); 12829 } 12830 /* If app asked for dest headers and it has changed ... */ 12831 if ((connp->conn_recv_ancillary.crb_ipv6_recvdstopts || 12832 connp->conn_recv_ancillary.crb_old_ipv6_recvdstopts) && 12833 ip_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen, 12834 (ipp->ipp_fields & IPPF_DSTOPTS), 12835 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) { 12836 optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen; 12837 addflag.crb_ipv6_recvdstopts = 1; 12838 if (!ip_allocbuf((void **)&tcp->tcp_dstopts, 12839 &tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS), 12840 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) 12841 return (mp); 12842 } 12843 12844 if (optlen == 0) { 12845 /* Nothing to add */ 12846 return (mp); 12847 } 12848 mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED); 12849 if (mp1 == NULL) { 12850 /* 12851 * Defer sending ancillary data until the next TCP segment 12852 * arrives. 12853 */ 12854 return (mp); 12855 } 12856 mp1->b_cont = mp; 12857 mp = mp1; 12858 mp->b_wptr += sizeof (*todi) + optlen; 12859 mp->b_datap->db_type = M_PROTO; 12860 todi = (struct T_optdata_ind *)mp->b_rptr; 12861 todi->PRIM_type = T_OPTDATA_IND; 12862 todi->DATA_flag = 1; /* MORE data */ 12863 todi->OPT_length = optlen; 12864 todi->OPT_offset = sizeof (*todi); 12865 optptr = (uchar_t *)&todi[1]; 12866 /* 12867 * If app asked for pktinfo and the index has changed ... 12868 * Note that the local address never changes for the connection. 12869 */ 12870 if (addflag.crb_ip_recvpktinfo) { 12871 struct in6_pktinfo *pkti; 12872 uint_t ifindex; 12873 12874 ifindex = ira->ira_ruifindex; 12875 toh = (struct T_opthdr *)optptr; 12876 toh->level = IPPROTO_IPV6; 12877 toh->name = IPV6_PKTINFO; 12878 toh->len = sizeof (*toh) + sizeof (*pkti); 12879 toh->status = 0; 12880 optptr += sizeof (*toh); 12881 pkti = (struct in6_pktinfo *)optptr; 12882 pkti->ipi6_addr = connp->conn_laddr_v6; 12883 pkti->ipi6_ifindex = ifindex; 12884 optptr += sizeof (*pkti); 12885 ASSERT(OK_32PTR(optptr)); 12886 /* Save as "last" value */ 12887 tcp->tcp_recvifindex = ifindex; 12888 } 12889 /* If app asked for hoplimit and it has changed ... */ 12890 if (addflag.crb_ipv6_recvhoplimit) { 12891 toh = (struct T_opthdr *)optptr; 12892 toh->level = IPPROTO_IPV6; 12893 toh->name = IPV6_HOPLIMIT; 12894 toh->len = sizeof (*toh) + sizeof (uint_t); 12895 toh->status = 0; 12896 optptr += sizeof (*toh); 12897 *(uint_t *)optptr = ipp->ipp_hoplimit; 12898 optptr += sizeof (uint_t); 12899 ASSERT(OK_32PTR(optptr)); 12900 /* Save as "last" value */ 12901 tcp->tcp_recvhops = ipp->ipp_hoplimit; 12902 } 12903 /* If app asked for tclass and it has changed ... */ 12904 if (addflag.crb_ipv6_recvtclass) { 12905 toh = (struct T_opthdr *)optptr; 12906 toh->level = IPPROTO_IPV6; 12907 toh->name = IPV6_TCLASS; 12908 toh->len = sizeof (*toh) + sizeof (uint_t); 12909 toh->status = 0; 12910 optptr += sizeof (*toh); 12911 *(uint_t *)optptr = ipp->ipp_tclass; 12912 optptr += sizeof (uint_t); 12913 ASSERT(OK_32PTR(optptr)); 12914 /* Save as "last" value */ 12915 tcp->tcp_recvtclass = ipp->ipp_tclass; 12916 } 12917 if (addflag.crb_ipv6_recvhopopts) { 12918 toh = (struct T_opthdr *)optptr; 12919 toh->level = IPPROTO_IPV6; 12920 toh->name = IPV6_HOPOPTS; 12921 toh->len = sizeof (*toh) + ipp->ipp_hopoptslen; 12922 toh->status = 0; 12923 optptr += sizeof (*toh); 12924 bcopy((uchar_t *)ipp->ipp_hopopts, optptr, ipp->ipp_hopoptslen); 12925 optptr += ipp->ipp_hopoptslen; 12926 ASSERT(OK_32PTR(optptr)); 12927 /* Save as last value */ 12928 ip_savebuf((void **)&tcp->tcp_hopopts, &tcp->tcp_hopoptslen, 12929 (ipp->ipp_fields & IPPF_HOPOPTS), 12930 ipp->ipp_hopopts, ipp->ipp_hopoptslen); 12931 } 12932 if (addflag.crb_ipv6_recvrthdrdstopts) { 12933 toh = (struct T_opthdr *)optptr; 12934 toh->level = IPPROTO_IPV6; 12935 toh->name = IPV6_RTHDRDSTOPTS; 12936 toh->len = sizeof (*toh) + ipp->ipp_rthdrdstoptslen; 12937 toh->status = 0; 12938 optptr += sizeof (*toh); 12939 bcopy(ipp->ipp_rthdrdstopts, optptr, ipp->ipp_rthdrdstoptslen); 12940 optptr += ipp->ipp_rthdrdstoptslen; 12941 ASSERT(OK_32PTR(optptr)); 12942 /* Save as last value */ 12943 ip_savebuf((void **)&tcp->tcp_rthdrdstopts, 12944 &tcp->tcp_rthdrdstoptslen, 12945 (ipp->ipp_fields & IPPF_RTHDRDSTOPTS), 12946 ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen); 12947 } 12948 if (addflag.crb_ipv6_recvrthdr) { 12949 toh = (struct T_opthdr *)optptr; 12950 toh->level = IPPROTO_IPV6; 12951 toh->name = IPV6_RTHDR; 12952 toh->len = sizeof (*toh) + ipp->ipp_rthdrlen; 12953 toh->status = 0; 12954 optptr += sizeof (*toh); 12955 bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen); 12956 optptr += ipp->ipp_rthdrlen; 12957 ASSERT(OK_32PTR(optptr)); 12958 /* Save as last value */ 12959 ip_savebuf((void **)&tcp->tcp_rthdr, &tcp->tcp_rthdrlen, 12960 (ipp->ipp_fields & IPPF_RTHDR), 12961 ipp->ipp_rthdr, ipp->ipp_rthdrlen); 12962 } 12963 if (addflag.crb_ipv6_recvdstopts) { 12964 toh = (struct T_opthdr *)optptr; 12965 toh->level = IPPROTO_IPV6; 12966 toh->name = IPV6_DSTOPTS; 12967 toh->len = sizeof (*toh) + ipp->ipp_dstoptslen; 12968 toh->status = 0; 12969 optptr += sizeof (*toh); 12970 bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen); 12971 optptr += ipp->ipp_dstoptslen; 12972 ASSERT(OK_32PTR(optptr)); 12973 /* Save as last value */ 12974 ip_savebuf((void **)&tcp->tcp_dstopts, &tcp->tcp_dstoptslen, 12975 (ipp->ipp_fields & IPPF_DSTOPTS), 12976 ipp->ipp_dstopts, ipp->ipp_dstoptslen); 12977 } 12978 ASSERT(optptr == mp->b_wptr); 12979 return (mp); 12980 } 12981 12982 /* ARGSUSED */ 12983 static void 12984 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 12985 { 12986 conn_t *connp = (conn_t *)arg; 12987 tcp_t *tcp = connp->conn_tcp; 12988 queue_t *q = connp->conn_rq; 12989 tcp_stack_t *tcps = tcp->tcp_tcps; 12990 12991 ASSERT(!IPCL_IS_NONSTR(connp)); 12992 mutex_enter(&tcp->tcp_rsrv_mp_lock); 12993 tcp->tcp_rsrv_mp = mp; 12994 mutex_exit(&tcp->tcp_rsrv_mp_lock); 12995 12996 TCP_STAT(tcps, tcp_rsrv_calls); 12997 12998 if (TCP_IS_DETACHED(tcp) || q == NULL) { 12999 return; 13000 } 13001 13002 if (tcp->tcp_fused) { 13003 tcp_fuse_backenable(tcp); 13004 return; 13005 } 13006 13007 if (canputnext(q)) { 13008 /* Not flow-controlled, open rwnd */ 13009 tcp->tcp_rwnd = connp->conn_rcvbuf; 13010 13011 /* 13012 * Send back a window update immediately if TCP is above 13013 * ESTABLISHED state and the increase of the rcv window 13014 * that the other side knows is at least 1 MSS after flow 13015 * control is lifted. 13016 */ 13017 if (tcp->tcp_state >= TCPS_ESTABLISHED && 13018 tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) { 13019 tcp_xmit_ctl(NULL, tcp, 13020 (tcp->tcp_swnd == 0) ? tcp->tcp_suna : 13021 tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 13022 } 13023 } 13024 } 13025 13026 /* 13027 * The read side service routine is called mostly when we get back-enabled as a 13028 * result of flow control relief. Since we don't actually queue anything in 13029 * TCP, we have no data to send out of here. What we do is clear the receive 13030 * window, and send out a window update. 13031 */ 13032 static void 13033 tcp_rsrv(queue_t *q) 13034 { 13035 conn_t *connp = Q_TO_CONN(q); 13036 tcp_t *tcp = connp->conn_tcp; 13037 mblk_t *mp; 13038 13039 /* No code does a putq on the read side */ 13040 ASSERT(q->q_first == NULL); 13041 13042 /* 13043 * If tcp->tcp_rsrv_mp == NULL, it means that tcp_rsrv() has already 13044 * been run. So just return. 13045 */ 13046 mutex_enter(&tcp->tcp_rsrv_mp_lock); 13047 if ((mp = tcp->tcp_rsrv_mp) == NULL) { 13048 mutex_exit(&tcp->tcp_rsrv_mp_lock); 13049 return; 13050 } 13051 tcp->tcp_rsrv_mp = NULL; 13052 mutex_exit(&tcp->tcp_rsrv_mp_lock); 13053 13054 CONN_INC_REF(connp); 13055 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_rsrv_input, connp, 13056 NULL, SQ_PROCESS, SQTAG_TCP_RSRV); 13057 } 13058 13059 /* 13060 * tcp_rwnd_set() is called to adjust the receive window to a desired value. 13061 * We do not allow the receive window to shrink. After setting rwnd, 13062 * set the flow control hiwat of the stream. 13063 * 13064 * This function is called in 2 cases: 13065 * 13066 * 1) Before data transfer begins, in tcp_input_listener() for accepting a 13067 * connection (passive open) and in tcp_input_data() for active connect. 13068 * This is called after tcp_mss_set() when the desired MSS value is known. 13069 * This makes sure that our window size is a mutiple of the other side's 13070 * MSS. 13071 * 2) Handling SO_RCVBUF option. 13072 * 13073 * It is ASSUMED that the requested size is a multiple of the current MSS. 13074 * 13075 * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the 13076 * user requests so. 13077 */ 13078 int 13079 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd) 13080 { 13081 uint32_t mss = tcp->tcp_mss; 13082 uint32_t old_max_rwnd; 13083 uint32_t max_transmittable_rwnd; 13084 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 13085 tcp_stack_t *tcps = tcp->tcp_tcps; 13086 conn_t *connp = tcp->tcp_connp; 13087 13088 /* 13089 * Insist on a receive window that is at least 13090 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid 13091 * funny TCP interactions of Nagle algorithm, SWS avoidance 13092 * and delayed acknowledgement. 13093 */ 13094 rwnd = MAX(rwnd, tcps->tcps_recv_hiwat_minmss * mss); 13095 13096 if (tcp->tcp_fused) { 13097 size_t sth_hiwat; 13098 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 13099 13100 ASSERT(peer_tcp != NULL); 13101 sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd); 13102 if (!tcp_detached) { 13103 (void) proto_set_rx_hiwat(connp->conn_rq, connp, 13104 sth_hiwat); 13105 tcp_set_recv_threshold(tcp, sth_hiwat >> 3); 13106 } 13107 13108 /* Caller could have changed tcp_rwnd; update tha_win */ 13109 if (tcp->tcp_tcpha != NULL) { 13110 tcp->tcp_tcpha->tha_win = 13111 htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 13112 } 13113 if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max) 13114 tcp->tcp_cwnd_max = rwnd; 13115 13116 /* 13117 * In the fusion case, the maxpsz stream head value of 13118 * our peer is set according to its send buffer size 13119 * and our receive buffer size; since the latter may 13120 * have changed we need to update the peer's maxpsz. 13121 */ 13122 (void) tcp_maxpsz_set(peer_tcp, B_TRUE); 13123 return (sth_hiwat); 13124 } 13125 13126 if (tcp_detached) 13127 old_max_rwnd = tcp->tcp_rwnd; 13128 else 13129 old_max_rwnd = connp->conn_rcvbuf; 13130 13131 13132 /* 13133 * If window size info has already been exchanged, TCP should not 13134 * shrink the window. Shrinking window is doable if done carefully. 13135 * We may add that support later. But so far there is not a real 13136 * need to do that. 13137 */ 13138 if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) { 13139 /* MSS may have changed, do a round up again. */ 13140 rwnd = MSS_ROUNDUP(old_max_rwnd, mss); 13141 } 13142 13143 /* 13144 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check 13145 * can be applied even before the window scale option is decided. 13146 */ 13147 max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws; 13148 if (rwnd > max_transmittable_rwnd) { 13149 rwnd = max_transmittable_rwnd - 13150 (max_transmittable_rwnd % mss); 13151 if (rwnd < mss) 13152 rwnd = max_transmittable_rwnd; 13153 /* 13154 * If we're over the limit we may have to back down tcp_rwnd. 13155 * The increment below won't work for us. So we set all three 13156 * here and the increment below will have no effect. 13157 */ 13158 tcp->tcp_rwnd = old_max_rwnd = rwnd; 13159 } 13160 if (tcp->tcp_localnet) { 13161 tcp->tcp_rack_abs_max = 13162 MIN(tcps->tcps_local_dacks_max, rwnd / mss / 2); 13163 } else { 13164 /* 13165 * For a remote host on a different subnet (through a router), 13166 * we ack every other packet to be conforming to RFC1122. 13167 * tcp_deferred_acks_max is default to 2. 13168 */ 13169 tcp->tcp_rack_abs_max = 13170 MIN(tcps->tcps_deferred_acks_max, rwnd / mss / 2); 13171 } 13172 if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max) 13173 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 13174 else 13175 tcp->tcp_rack_cur_max = 0; 13176 /* 13177 * Increment the current rwnd by the amount the maximum grew (we 13178 * can not overwrite it since we might be in the middle of a 13179 * connection.) 13180 */ 13181 tcp->tcp_rwnd += rwnd - old_max_rwnd; 13182 connp->conn_rcvbuf = rwnd; 13183 13184 /* Are we already connected? */ 13185 if (tcp->tcp_tcpha != NULL) { 13186 tcp->tcp_tcpha->tha_win = 13187 htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 13188 } 13189 13190 if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max) 13191 tcp->tcp_cwnd_max = rwnd; 13192 13193 if (tcp_detached) 13194 return (rwnd); 13195 13196 tcp_set_recv_threshold(tcp, rwnd >> 3); 13197 13198 (void) proto_set_rx_hiwat(connp->conn_rq, connp, rwnd); 13199 return (rwnd); 13200 } 13201 13202 /* 13203 * Return SNMP stuff in buffer in mpdata. 13204 */ 13205 mblk_t * 13206 tcp_snmp_get(queue_t *q, mblk_t *mpctl) 13207 { 13208 mblk_t *mpdata; 13209 mblk_t *mp_conn_ctl = NULL; 13210 mblk_t *mp_conn_tail; 13211 mblk_t *mp_attr_ctl = NULL; 13212 mblk_t *mp_attr_tail; 13213 mblk_t *mp6_conn_ctl = NULL; 13214 mblk_t *mp6_conn_tail; 13215 mblk_t *mp6_attr_ctl = NULL; 13216 mblk_t *mp6_attr_tail; 13217 struct opthdr *optp; 13218 mib2_tcpConnEntry_t tce; 13219 mib2_tcp6ConnEntry_t tce6; 13220 mib2_transportMLPEntry_t mlp; 13221 connf_t *connfp; 13222 int i; 13223 boolean_t ispriv; 13224 zoneid_t zoneid; 13225 int v4_conn_idx; 13226 int v6_conn_idx; 13227 conn_t *connp = Q_TO_CONN(q); 13228 tcp_stack_t *tcps; 13229 ip_stack_t *ipst; 13230 mblk_t *mp2ctl; 13231 13232 /* 13233 * make a copy of the original message 13234 */ 13235 mp2ctl = copymsg(mpctl); 13236 13237 if (mpctl == NULL || 13238 (mpdata = mpctl->b_cont) == NULL || 13239 (mp_conn_ctl = copymsg(mpctl)) == NULL || 13240 (mp_attr_ctl = copymsg(mpctl)) == NULL || 13241 (mp6_conn_ctl = copymsg(mpctl)) == NULL || 13242 (mp6_attr_ctl = copymsg(mpctl)) == NULL) { 13243 freemsg(mp_conn_ctl); 13244 freemsg(mp_attr_ctl); 13245 freemsg(mp6_conn_ctl); 13246 freemsg(mp6_attr_ctl); 13247 freemsg(mpctl); 13248 freemsg(mp2ctl); 13249 return (NULL); 13250 } 13251 13252 ipst = connp->conn_netstack->netstack_ip; 13253 tcps = connp->conn_netstack->netstack_tcp; 13254 13255 /* build table of connections -- need count in fixed part */ 13256 SET_MIB(tcps->tcps_mib.tcpRtoAlgorithm, 4); /* vanj */ 13257 SET_MIB(tcps->tcps_mib.tcpRtoMin, tcps->tcps_rexmit_interval_min); 13258 SET_MIB(tcps->tcps_mib.tcpRtoMax, tcps->tcps_rexmit_interval_max); 13259 SET_MIB(tcps->tcps_mib.tcpMaxConn, -1); 13260 SET_MIB(tcps->tcps_mib.tcpCurrEstab, 0); 13261 13262 ispriv = 13263 secpolicy_ip_config((Q_TO_CONN(q))->conn_cred, B_TRUE) == 0; 13264 zoneid = Q_TO_CONN(q)->conn_zoneid; 13265 13266 v4_conn_idx = v6_conn_idx = 0; 13267 mp_conn_tail = mp_attr_tail = mp6_conn_tail = mp6_attr_tail = NULL; 13268 13269 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 13270 ipst = tcps->tcps_netstack->netstack_ip; 13271 13272 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 13273 13274 connp = NULL; 13275 13276 while ((connp = 13277 ipcl_get_next_conn(connfp, connp, IPCL_TCPCONN)) != NULL) { 13278 tcp_t *tcp; 13279 boolean_t needattr; 13280 13281 if (connp->conn_zoneid != zoneid) 13282 continue; /* not in this zone */ 13283 13284 tcp = connp->conn_tcp; 13285 UPDATE_MIB(&tcps->tcps_mib, 13286 tcpHCInSegs, tcp->tcp_ibsegs); 13287 tcp->tcp_ibsegs = 0; 13288 UPDATE_MIB(&tcps->tcps_mib, 13289 tcpHCOutSegs, tcp->tcp_obsegs); 13290 tcp->tcp_obsegs = 0; 13291 13292 tce6.tcp6ConnState = tce.tcpConnState = 13293 tcp_snmp_state(tcp); 13294 if (tce.tcpConnState == MIB2_TCP_established || 13295 tce.tcpConnState == MIB2_TCP_closeWait) 13296 BUMP_MIB(&tcps->tcps_mib, tcpCurrEstab); 13297 13298 needattr = B_FALSE; 13299 bzero(&mlp, sizeof (mlp)); 13300 if (connp->conn_mlp_type != mlptSingle) { 13301 if (connp->conn_mlp_type == mlptShared || 13302 connp->conn_mlp_type == mlptBoth) 13303 mlp.tme_flags |= MIB2_TMEF_SHARED; 13304 if (connp->conn_mlp_type == mlptPrivate || 13305 connp->conn_mlp_type == mlptBoth) 13306 mlp.tme_flags |= MIB2_TMEF_PRIVATE; 13307 needattr = B_TRUE; 13308 } 13309 if (connp->conn_anon_mlp) { 13310 mlp.tme_flags |= MIB2_TMEF_ANONMLP; 13311 needattr = B_TRUE; 13312 } 13313 switch (connp->conn_mac_mode) { 13314 case CONN_MAC_DEFAULT: 13315 break; 13316 case CONN_MAC_AWARE: 13317 mlp.tme_flags |= MIB2_TMEF_MACEXEMPT; 13318 needattr = B_TRUE; 13319 break; 13320 case CONN_MAC_IMPLICIT: 13321 mlp.tme_flags |= MIB2_TMEF_MACIMPLICIT; 13322 needattr = B_TRUE; 13323 break; 13324 } 13325 if (connp->conn_ixa->ixa_tsl != NULL) { 13326 ts_label_t *tsl; 13327 13328 tsl = connp->conn_ixa->ixa_tsl; 13329 mlp.tme_flags |= MIB2_TMEF_IS_LABELED; 13330 mlp.tme_doi = label2doi(tsl); 13331 mlp.tme_label = *label2bslabel(tsl); 13332 needattr = B_TRUE; 13333 } 13334 13335 /* Create a message to report on IPv6 entries */ 13336 if (connp->conn_ipversion == IPV6_VERSION) { 13337 tce6.tcp6ConnLocalAddress = connp->conn_laddr_v6; 13338 tce6.tcp6ConnRemAddress = connp->conn_faddr_v6; 13339 tce6.tcp6ConnLocalPort = ntohs(connp->conn_lport); 13340 tce6.tcp6ConnRemPort = ntohs(connp->conn_fport); 13341 if (connp->conn_ixa->ixa_flags & IXAF_SCOPEID_SET) { 13342 tce6.tcp6ConnIfIndex = 13343 connp->conn_ixa->ixa_scopeid; 13344 } else { 13345 tce6.tcp6ConnIfIndex = connp->conn_bound_if; 13346 } 13347 /* Don't want just anybody seeing these... */ 13348 if (ispriv) { 13349 tce6.tcp6ConnEntryInfo.ce_snxt = 13350 tcp->tcp_snxt; 13351 tce6.tcp6ConnEntryInfo.ce_suna = 13352 tcp->tcp_suna; 13353 tce6.tcp6ConnEntryInfo.ce_rnxt = 13354 tcp->tcp_rnxt; 13355 tce6.tcp6ConnEntryInfo.ce_rack = 13356 tcp->tcp_rack; 13357 } else { 13358 /* 13359 * Netstat, unfortunately, uses this to 13360 * get send/receive queue sizes. How to fix? 13361 * Why not compute the difference only? 13362 */ 13363 tce6.tcp6ConnEntryInfo.ce_snxt = 13364 tcp->tcp_snxt - tcp->tcp_suna; 13365 tce6.tcp6ConnEntryInfo.ce_suna = 0; 13366 tce6.tcp6ConnEntryInfo.ce_rnxt = 13367 tcp->tcp_rnxt - tcp->tcp_rack; 13368 tce6.tcp6ConnEntryInfo.ce_rack = 0; 13369 } 13370 13371 tce6.tcp6ConnEntryInfo.ce_swnd = tcp->tcp_swnd; 13372 tce6.tcp6ConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; 13373 tce6.tcp6ConnEntryInfo.ce_rto = tcp->tcp_rto; 13374 tce6.tcp6ConnEntryInfo.ce_mss = tcp->tcp_mss; 13375 tce6.tcp6ConnEntryInfo.ce_state = tcp->tcp_state; 13376 13377 tce6.tcp6ConnCreationProcess = 13378 (connp->conn_cpid < 0) ? MIB2_UNKNOWN_PROCESS : 13379 connp->conn_cpid; 13380 tce6.tcp6ConnCreationTime = connp->conn_open_time; 13381 13382 (void) snmp_append_data2(mp6_conn_ctl->b_cont, 13383 &mp6_conn_tail, (char *)&tce6, sizeof (tce6)); 13384 13385 mlp.tme_connidx = v6_conn_idx++; 13386 if (needattr) 13387 (void) snmp_append_data2(mp6_attr_ctl->b_cont, 13388 &mp6_attr_tail, (char *)&mlp, sizeof (mlp)); 13389 } 13390 /* 13391 * Create an IPv4 table entry for IPv4 entries and also 13392 * for IPv6 entries which are bound to in6addr_any 13393 * but don't have IPV6_V6ONLY set. 13394 * (i.e. anything an IPv4 peer could connect to) 13395 */ 13396 if (connp->conn_ipversion == IPV4_VERSION || 13397 (tcp->tcp_state <= TCPS_LISTEN && 13398 !connp->conn_ipv6_v6only && 13399 IN6_IS_ADDR_UNSPECIFIED(&connp->conn_laddr_v6))) { 13400 if (connp->conn_ipversion == IPV6_VERSION) { 13401 tce.tcpConnRemAddress = INADDR_ANY; 13402 tce.tcpConnLocalAddress = INADDR_ANY; 13403 } else { 13404 tce.tcpConnRemAddress = 13405 connp->conn_faddr_v4; 13406 tce.tcpConnLocalAddress = 13407 connp->conn_laddr_v4; 13408 } 13409 tce.tcpConnLocalPort = ntohs(connp->conn_lport); 13410 tce.tcpConnRemPort = ntohs(connp->conn_fport); 13411 /* Don't want just anybody seeing these... */ 13412 if (ispriv) { 13413 tce.tcpConnEntryInfo.ce_snxt = 13414 tcp->tcp_snxt; 13415 tce.tcpConnEntryInfo.ce_suna = 13416 tcp->tcp_suna; 13417 tce.tcpConnEntryInfo.ce_rnxt = 13418 tcp->tcp_rnxt; 13419 tce.tcpConnEntryInfo.ce_rack = 13420 tcp->tcp_rack; 13421 } else { 13422 /* 13423 * Netstat, unfortunately, uses this to 13424 * get send/receive queue sizes. How 13425 * to fix? 13426 * Why not compute the difference only? 13427 */ 13428 tce.tcpConnEntryInfo.ce_snxt = 13429 tcp->tcp_snxt - tcp->tcp_suna; 13430 tce.tcpConnEntryInfo.ce_suna = 0; 13431 tce.tcpConnEntryInfo.ce_rnxt = 13432 tcp->tcp_rnxt - tcp->tcp_rack; 13433 tce.tcpConnEntryInfo.ce_rack = 0; 13434 } 13435 13436 tce.tcpConnEntryInfo.ce_swnd = tcp->tcp_swnd; 13437 tce.tcpConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; 13438 tce.tcpConnEntryInfo.ce_rto = tcp->tcp_rto; 13439 tce.tcpConnEntryInfo.ce_mss = tcp->tcp_mss; 13440 tce.tcpConnEntryInfo.ce_state = 13441 tcp->tcp_state; 13442 13443 tce.tcpConnCreationProcess = 13444 (connp->conn_cpid < 0) ? 13445 MIB2_UNKNOWN_PROCESS : 13446 connp->conn_cpid; 13447 tce.tcpConnCreationTime = connp->conn_open_time; 13448 13449 (void) snmp_append_data2(mp_conn_ctl->b_cont, 13450 &mp_conn_tail, (char *)&tce, sizeof (tce)); 13451 13452 mlp.tme_connidx = v4_conn_idx++; 13453 if (needattr) 13454 (void) snmp_append_data2( 13455 mp_attr_ctl->b_cont, 13456 &mp_attr_tail, (char *)&mlp, 13457 sizeof (mlp)); 13458 } 13459 } 13460 } 13461 13462 /* fixed length structure for IPv4 and IPv6 counters */ 13463 SET_MIB(tcps->tcps_mib.tcpConnTableSize, sizeof (mib2_tcpConnEntry_t)); 13464 SET_MIB(tcps->tcps_mib.tcp6ConnTableSize, 13465 sizeof (mib2_tcp6ConnEntry_t)); 13466 /* synchronize 32- and 64-bit counters */ 13467 SYNC32_MIB(&tcps->tcps_mib, tcpInSegs, tcpHCInSegs); 13468 SYNC32_MIB(&tcps->tcps_mib, tcpOutSegs, tcpHCOutSegs); 13469 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 13470 optp->level = MIB2_TCP; 13471 optp->name = 0; 13472 (void) snmp_append_data(mpdata, (char *)&tcps->tcps_mib, 13473 sizeof (tcps->tcps_mib)); 13474 optp->len = msgdsize(mpdata); 13475 qreply(q, mpctl); 13476 13477 /* table of connections... */ 13478 optp = (struct opthdr *)&mp_conn_ctl->b_rptr[ 13479 sizeof (struct T_optmgmt_ack)]; 13480 optp->level = MIB2_TCP; 13481 optp->name = MIB2_TCP_CONN; 13482 optp->len = msgdsize(mp_conn_ctl->b_cont); 13483 qreply(q, mp_conn_ctl); 13484 13485 /* table of MLP attributes... */ 13486 optp = (struct opthdr *)&mp_attr_ctl->b_rptr[ 13487 sizeof (struct T_optmgmt_ack)]; 13488 optp->level = MIB2_TCP; 13489 optp->name = EXPER_XPORT_MLP; 13490 optp->len = msgdsize(mp_attr_ctl->b_cont); 13491 if (optp->len == 0) 13492 freemsg(mp_attr_ctl); 13493 else 13494 qreply(q, mp_attr_ctl); 13495 13496 /* table of IPv6 connections... */ 13497 optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[ 13498 sizeof (struct T_optmgmt_ack)]; 13499 optp->level = MIB2_TCP6; 13500 optp->name = MIB2_TCP6_CONN; 13501 optp->len = msgdsize(mp6_conn_ctl->b_cont); 13502 qreply(q, mp6_conn_ctl); 13503 13504 /* table of IPv6 MLP attributes... */ 13505 optp = (struct opthdr *)&mp6_attr_ctl->b_rptr[ 13506 sizeof (struct T_optmgmt_ack)]; 13507 optp->level = MIB2_TCP6; 13508 optp->name = EXPER_XPORT_MLP; 13509 optp->len = msgdsize(mp6_attr_ctl->b_cont); 13510 if (optp->len == 0) 13511 freemsg(mp6_attr_ctl); 13512 else 13513 qreply(q, mp6_attr_ctl); 13514 return (mp2ctl); 13515 } 13516 13517 /* Return 0 if invalid set request, 1 otherwise, including non-tcp requests */ 13518 /* ARGSUSED */ 13519 int 13520 tcp_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 13521 { 13522 mib2_tcpConnEntry_t *tce = (mib2_tcpConnEntry_t *)ptr; 13523 13524 switch (level) { 13525 case MIB2_TCP: 13526 switch (name) { 13527 case 13: 13528 if (tce->tcpConnState != MIB2_TCP_deleteTCB) 13529 return (0); 13530 /* TODO: delete entry defined by tce */ 13531 return (1); 13532 default: 13533 return (0); 13534 } 13535 default: 13536 return (1); 13537 } 13538 } 13539 13540 /* Translate TCP state to MIB2 TCP state. */ 13541 static int 13542 tcp_snmp_state(tcp_t *tcp) 13543 { 13544 if (tcp == NULL) 13545 return (0); 13546 13547 switch (tcp->tcp_state) { 13548 case TCPS_CLOSED: 13549 case TCPS_IDLE: /* RFC1213 doesn't have analogue for IDLE & BOUND */ 13550 case TCPS_BOUND: 13551 return (MIB2_TCP_closed); 13552 case TCPS_LISTEN: 13553 return (MIB2_TCP_listen); 13554 case TCPS_SYN_SENT: 13555 return (MIB2_TCP_synSent); 13556 case TCPS_SYN_RCVD: 13557 return (MIB2_TCP_synReceived); 13558 case TCPS_ESTABLISHED: 13559 return (MIB2_TCP_established); 13560 case TCPS_CLOSE_WAIT: 13561 return (MIB2_TCP_closeWait); 13562 case TCPS_FIN_WAIT_1: 13563 return (MIB2_TCP_finWait1); 13564 case TCPS_CLOSING: 13565 return (MIB2_TCP_closing); 13566 case TCPS_LAST_ACK: 13567 return (MIB2_TCP_lastAck); 13568 case TCPS_FIN_WAIT_2: 13569 return (MIB2_TCP_finWait2); 13570 case TCPS_TIME_WAIT: 13571 return (MIB2_TCP_timeWait); 13572 default: 13573 return (0); 13574 } 13575 } 13576 13577 /* 13578 * tcp_timer is the timer service routine. It handles the retransmission, 13579 * FIN_WAIT_2 flush, and zero window probe timeout events. It figures out 13580 * from the state of the tcp instance what kind of action needs to be done 13581 * at the time it is called. 13582 */ 13583 static void 13584 tcp_timer(void *arg) 13585 { 13586 mblk_t *mp; 13587 clock_t first_threshold; 13588 clock_t second_threshold; 13589 clock_t ms; 13590 uint32_t mss; 13591 conn_t *connp = (conn_t *)arg; 13592 tcp_t *tcp = connp->conn_tcp; 13593 tcp_stack_t *tcps = tcp->tcp_tcps; 13594 13595 tcp->tcp_timer_tid = 0; 13596 13597 if (tcp->tcp_fused) 13598 return; 13599 13600 first_threshold = tcp->tcp_first_timer_threshold; 13601 second_threshold = tcp->tcp_second_timer_threshold; 13602 switch (tcp->tcp_state) { 13603 case TCPS_IDLE: 13604 case TCPS_BOUND: 13605 case TCPS_LISTEN: 13606 return; 13607 case TCPS_SYN_RCVD: { 13608 tcp_t *listener = tcp->tcp_listener; 13609 13610 if (tcp->tcp_syn_rcvd_timeout == 0 && (listener != NULL)) { 13611 /* it's our first timeout */ 13612 tcp->tcp_syn_rcvd_timeout = 1; 13613 mutex_enter(&listener->tcp_eager_lock); 13614 listener->tcp_syn_rcvd_timeout++; 13615 if (!tcp->tcp_dontdrop && !tcp->tcp_closemp_used) { 13616 /* 13617 * Make this eager available for drop if we 13618 * need to drop one to accomodate a new 13619 * incoming SYN request. 13620 */ 13621 MAKE_DROPPABLE(listener, tcp); 13622 } 13623 if (!listener->tcp_syn_defense && 13624 (listener->tcp_syn_rcvd_timeout > 13625 (tcps->tcps_conn_req_max_q0 >> 2)) && 13626 (tcps->tcps_conn_req_max_q0 > 200)) { 13627 /* We may be under attack. Put on a defense. */ 13628 listener->tcp_syn_defense = B_TRUE; 13629 cmn_err(CE_WARN, "High TCP connect timeout " 13630 "rate! System (port %d) may be under a " 13631 "SYN flood attack!", 13632 ntohs(listener->tcp_connp->conn_lport)); 13633 13634 listener->tcp_ip_addr_cache = kmem_zalloc( 13635 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t), 13636 KM_NOSLEEP); 13637 } 13638 mutex_exit(&listener->tcp_eager_lock); 13639 } else if (listener != NULL) { 13640 mutex_enter(&listener->tcp_eager_lock); 13641 tcp->tcp_syn_rcvd_timeout++; 13642 if (tcp->tcp_syn_rcvd_timeout > 1 && 13643 !tcp->tcp_closemp_used) { 13644 /* 13645 * This is our second timeout. Put the tcp in 13646 * the list of droppable eagers to allow it to 13647 * be dropped, if needed. We don't check 13648 * whether tcp_dontdrop is set or not to 13649 * protect ourselve from a SYN attack where a 13650 * remote host can spoof itself as one of the 13651 * good IP source and continue to hold 13652 * resources too long. 13653 */ 13654 MAKE_DROPPABLE(listener, tcp); 13655 } 13656 mutex_exit(&listener->tcp_eager_lock); 13657 } 13658 } 13659 /* FALLTHRU */ 13660 case TCPS_SYN_SENT: 13661 first_threshold = tcp->tcp_first_ctimer_threshold; 13662 second_threshold = tcp->tcp_second_ctimer_threshold; 13663 break; 13664 case TCPS_ESTABLISHED: 13665 case TCPS_FIN_WAIT_1: 13666 case TCPS_CLOSING: 13667 case TCPS_CLOSE_WAIT: 13668 case TCPS_LAST_ACK: 13669 /* If we have data to rexmit */ 13670 if (tcp->tcp_suna != tcp->tcp_snxt) { 13671 clock_t time_to_wait; 13672 13673 BUMP_MIB(&tcps->tcps_mib, tcpTimRetrans); 13674 if (!tcp->tcp_xmit_head) 13675 break; 13676 time_to_wait = ddi_get_lbolt() - 13677 (clock_t)tcp->tcp_xmit_head->b_prev; 13678 time_to_wait = tcp->tcp_rto - 13679 TICK_TO_MSEC(time_to_wait); 13680 /* 13681 * If the timer fires too early, 1 clock tick earlier, 13682 * restart the timer. 13683 */ 13684 if (time_to_wait > msec_per_tick) { 13685 TCP_STAT(tcps, tcp_timer_fire_early); 13686 TCP_TIMER_RESTART(tcp, time_to_wait); 13687 return; 13688 } 13689 /* 13690 * When we probe zero windows, we force the swnd open. 13691 * If our peer acks with a closed window swnd will be 13692 * set to zero by tcp_rput(). As long as we are 13693 * receiving acks tcp_rput will 13694 * reset 'tcp_ms_we_have_waited' so as not to trip the 13695 * first and second interval actions. NOTE: the timer 13696 * interval is allowed to continue its exponential 13697 * backoff. 13698 */ 13699 if (tcp->tcp_swnd == 0 || tcp->tcp_zero_win_probe) { 13700 if (connp->conn_debug) { 13701 (void) strlog(TCP_MOD_ID, 0, 1, 13702 SL_TRACE, "tcp_timer: zero win"); 13703 } 13704 } else { 13705 /* 13706 * After retransmission, we need to do 13707 * slow start. Set the ssthresh to one 13708 * half of current effective window and 13709 * cwnd to one MSS. Also reset 13710 * tcp_cwnd_cnt. 13711 * 13712 * Note that if tcp_ssthresh is reduced because 13713 * of ECN, do not reduce it again unless it is 13714 * already one window of data away (tcp_cwr 13715 * should then be cleared) or this is a 13716 * timeout for a retransmitted segment. 13717 */ 13718 uint32_t npkt; 13719 13720 if (!tcp->tcp_cwr || tcp->tcp_rexmit) { 13721 npkt = ((tcp->tcp_timer_backoff ? 13722 tcp->tcp_cwnd_ssthresh : 13723 tcp->tcp_snxt - 13724 tcp->tcp_suna) >> 1) / tcp->tcp_mss; 13725 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 13726 tcp->tcp_mss; 13727 } 13728 tcp->tcp_cwnd = tcp->tcp_mss; 13729 tcp->tcp_cwnd_cnt = 0; 13730 if (tcp->tcp_ecn_ok) { 13731 tcp->tcp_cwr = B_TRUE; 13732 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 13733 tcp->tcp_ecn_cwr_sent = B_FALSE; 13734 } 13735 } 13736 break; 13737 } 13738 /* 13739 * We have something to send yet we cannot send. The 13740 * reason can be: 13741 * 13742 * 1. Zero send window: we need to do zero window probe. 13743 * 2. Zero cwnd: because of ECN, we need to "clock out 13744 * segments. 13745 * 3. SWS avoidance: receiver may have shrunk window, 13746 * reset our knowledge. 13747 * 13748 * Note that condition 2 can happen with either 1 or 13749 * 3. But 1 and 3 are exclusive. 13750 */ 13751 if (tcp->tcp_unsent != 0) { 13752 /* 13753 * Should not hold the zero-copy messages for too long. 13754 */ 13755 if (tcp->tcp_snd_zcopy_aware && !tcp->tcp_xmit_zc_clean) 13756 tcp->tcp_xmit_head = tcp_zcopy_backoff(tcp, 13757 tcp->tcp_xmit_head, B_TRUE); 13758 13759 if (tcp->tcp_cwnd == 0) { 13760 /* 13761 * Set tcp_cwnd to 1 MSS so that a 13762 * new segment can be sent out. We 13763 * are "clocking out" new data when 13764 * the network is really congested. 13765 */ 13766 ASSERT(tcp->tcp_ecn_ok); 13767 tcp->tcp_cwnd = tcp->tcp_mss; 13768 } 13769 if (tcp->tcp_swnd == 0) { 13770 /* Extend window for zero window probe */ 13771 tcp->tcp_swnd++; 13772 tcp->tcp_zero_win_probe = B_TRUE; 13773 BUMP_MIB(&tcps->tcps_mib, tcpOutWinProbe); 13774 } else { 13775 /* 13776 * Handle timeout from sender SWS avoidance. 13777 * Reset our knowledge of the max send window 13778 * since the receiver might have reduced its 13779 * receive buffer. Avoid setting tcp_max_swnd 13780 * to one since that will essentially disable 13781 * the SWS checks. 13782 * 13783 * Note that since we don't have a SWS 13784 * state variable, if the timeout is set 13785 * for ECN but not for SWS, this 13786 * code will also be executed. This is 13787 * fine as tcp_max_swnd is updated 13788 * constantly and it will not affect 13789 * anything. 13790 */ 13791 tcp->tcp_max_swnd = MAX(tcp->tcp_swnd, 2); 13792 } 13793 tcp_wput_data(tcp, NULL, B_FALSE); 13794 return; 13795 } 13796 /* Is there a FIN that needs to be to re retransmitted? */ 13797 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 13798 !tcp->tcp_fin_acked) 13799 break; 13800 /* Nothing to do, return without restarting timer. */ 13801 TCP_STAT(tcps, tcp_timer_fire_miss); 13802 return; 13803 case TCPS_FIN_WAIT_2: 13804 /* 13805 * User closed the TCP endpoint and peer ACK'ed our FIN. 13806 * We waited some time for for peer's FIN, but it hasn't 13807 * arrived. We flush the connection now to avoid 13808 * case where the peer has rebooted. 13809 */ 13810 if (TCP_IS_DETACHED(tcp)) { 13811 (void) tcp_clean_death(tcp, 0, 23); 13812 } else { 13813 TCP_TIMER_RESTART(tcp, 13814 tcps->tcps_fin_wait_2_flush_interval); 13815 } 13816 return; 13817 case TCPS_TIME_WAIT: 13818 (void) tcp_clean_death(tcp, 0, 24); 13819 return; 13820 default: 13821 if (connp->conn_debug) { 13822 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 13823 "tcp_timer: strange state (%d) %s", 13824 tcp->tcp_state, tcp_display(tcp, NULL, 13825 DISP_PORT_ONLY)); 13826 } 13827 return; 13828 } 13829 13830 /* 13831 * If the system is under memory pressure or the max number of 13832 * connections have been established for the listener, be more 13833 * aggressive in aborting connections. 13834 */ 13835 if (tcps->tcps_reclaim || (tcp->tcp_listen_cnt != NULL && 13836 tcp->tcp_listen_cnt->tlc_cnt > tcp->tcp_listen_cnt->tlc_max)) { 13837 second_threshold = tcp_early_abort * SECONDS; 13838 } 13839 13840 if ((ms = tcp->tcp_ms_we_have_waited) > second_threshold) { 13841 /* 13842 * Should not hold the zero-copy messages for too long. 13843 */ 13844 if (tcp->tcp_snd_zcopy_aware && !tcp->tcp_xmit_zc_clean) 13845 tcp->tcp_xmit_head = tcp_zcopy_backoff(tcp, 13846 tcp->tcp_xmit_head, B_TRUE); 13847 13848 /* 13849 * For zero window probe, we need to send indefinitely, 13850 * unless we have not heard from the other side for some 13851 * time... 13852 */ 13853 if ((tcp->tcp_zero_win_probe == 0) || 13854 (TICK_TO_MSEC(ddi_get_lbolt() - tcp->tcp_last_recv_time) > 13855 second_threshold)) { 13856 BUMP_MIB(&tcps->tcps_mib, tcpTimRetransDrop); 13857 /* 13858 * If TCP is in SYN_RCVD state, send back a 13859 * RST|ACK as BSD does. Note that tcp_zero_win_probe 13860 * should be zero in TCPS_SYN_RCVD state. 13861 */ 13862 if (tcp->tcp_state == TCPS_SYN_RCVD) { 13863 tcp_xmit_ctl("tcp_timer: RST sent on timeout " 13864 "in SYN_RCVD", 13865 tcp, tcp->tcp_snxt, 13866 tcp->tcp_rnxt, TH_RST | TH_ACK); 13867 } 13868 (void) tcp_clean_death(tcp, 13869 tcp->tcp_client_errno ? 13870 tcp->tcp_client_errno : ETIMEDOUT, 25); 13871 return; 13872 } else { 13873 /* 13874 * If the system is under memory pressure, we also 13875 * abort connection in zero window probing. 13876 */ 13877 if (tcps->tcps_reclaim) { 13878 (void) tcp_clean_death(tcp, 13879 tcp->tcp_client_errno ? 13880 tcp->tcp_client_errno : ETIMEDOUT, 25); 13881 return; 13882 } 13883 /* 13884 * Set tcp_ms_we_have_waited to second_threshold 13885 * so that in next timeout, we will do the above 13886 * check (ddi_get_lbolt() - tcp_last_recv_time). 13887 * This is also to avoid overflow. 13888 * 13889 * We don't need to decrement tcp_timer_backoff 13890 * to avoid overflow because it will be decremented 13891 * later if new timeout value is greater than 13892 * tcp_rexmit_interval_max. In the case when 13893 * tcp_rexmit_interval_max is greater than 13894 * second_threshold, it means that we will wait 13895 * longer than second_threshold to send the next 13896 * window probe. 13897 */ 13898 tcp->tcp_ms_we_have_waited = second_threshold; 13899 } 13900 } else if (ms > first_threshold) { 13901 /* 13902 * Should not hold the zero-copy messages for too long. 13903 */ 13904 if (tcp->tcp_snd_zcopy_aware && !tcp->tcp_xmit_zc_clean) 13905 tcp->tcp_xmit_head = tcp_zcopy_backoff(tcp, 13906 tcp->tcp_xmit_head, B_TRUE); 13907 13908 /* 13909 * We have been retransmitting for too long... The RTT 13910 * we calculated is probably incorrect. Reinitialize it. 13911 * Need to compensate for 0 tcp_rtt_sa. Reset 13912 * tcp_rtt_update so that we won't accidentally cache a 13913 * bad value. But only do this if this is not a zero 13914 * window probe. 13915 */ 13916 if (tcp->tcp_rtt_sa != 0 && tcp->tcp_zero_win_probe == 0) { 13917 tcp->tcp_rtt_sd += (tcp->tcp_rtt_sa >> 3) + 13918 (tcp->tcp_rtt_sa >> 5); 13919 tcp->tcp_rtt_sa = 0; 13920 tcp_ip_notify(tcp); 13921 tcp->tcp_rtt_update = 0; 13922 } 13923 } 13924 tcp->tcp_timer_backoff++; 13925 if ((ms = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 13926 tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5)) < 13927 tcps->tcps_rexmit_interval_min) { 13928 /* 13929 * This means the original RTO is tcp_rexmit_interval_min. 13930 * So we will use tcp_rexmit_interval_min as the RTO value 13931 * and do the backoff. 13932 */ 13933 ms = tcps->tcps_rexmit_interval_min << tcp->tcp_timer_backoff; 13934 } else { 13935 ms <<= tcp->tcp_timer_backoff; 13936 } 13937 if (ms > tcps->tcps_rexmit_interval_max) { 13938 ms = tcps->tcps_rexmit_interval_max; 13939 /* 13940 * ms is at max, decrement tcp_timer_backoff to avoid 13941 * overflow. 13942 */ 13943 tcp->tcp_timer_backoff--; 13944 } 13945 tcp->tcp_ms_we_have_waited += ms; 13946 if (tcp->tcp_zero_win_probe == 0) { 13947 tcp->tcp_rto = ms; 13948 } 13949 TCP_TIMER_RESTART(tcp, ms); 13950 /* 13951 * This is after a timeout and tcp_rto is backed off. Set 13952 * tcp_set_timer to 1 so that next time RTO is updated, we will 13953 * restart the timer with a correct value. 13954 */ 13955 tcp->tcp_set_timer = 1; 13956 mss = tcp->tcp_snxt - tcp->tcp_suna; 13957 if (mss > tcp->tcp_mss) 13958 mss = tcp->tcp_mss; 13959 if (mss > tcp->tcp_swnd && tcp->tcp_swnd != 0) 13960 mss = tcp->tcp_swnd; 13961 13962 if ((mp = tcp->tcp_xmit_head) != NULL) 13963 mp->b_prev = (mblk_t *)ddi_get_lbolt(); 13964 mp = tcp_xmit_mp(tcp, mp, mss, NULL, NULL, tcp->tcp_suna, B_TRUE, &mss, 13965 B_TRUE); 13966 13967 /* 13968 * When slow start after retransmission begins, start with 13969 * this seq no. tcp_rexmit_max marks the end of special slow 13970 * start phase. tcp_snd_burst controls how many segments 13971 * can be sent because of an ack. 13972 */ 13973 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 13974 tcp->tcp_snd_burst = TCP_CWND_SS; 13975 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 13976 (tcp->tcp_unsent == 0)) { 13977 tcp->tcp_rexmit_max = tcp->tcp_fss; 13978 } else { 13979 tcp->tcp_rexmit_max = tcp->tcp_snxt; 13980 } 13981 tcp->tcp_rexmit = B_TRUE; 13982 tcp->tcp_dupack_cnt = 0; 13983 13984 /* 13985 * Remove all rexmit SACK blk to start from fresh. 13986 */ 13987 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) 13988 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp); 13989 if (mp == NULL) { 13990 return; 13991 } 13992 13993 tcp->tcp_csuna = tcp->tcp_snxt; 13994 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 13995 UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, mss); 13996 tcp_send_data(tcp, mp); 13997 13998 } 13999 14000 static int 14001 tcp_do_unbind(conn_t *connp) 14002 { 14003 tcp_t *tcp = connp->conn_tcp; 14004 14005 switch (tcp->tcp_state) { 14006 case TCPS_BOUND: 14007 case TCPS_LISTEN: 14008 break; 14009 default: 14010 return (-TOUTSTATE); 14011 } 14012 14013 /* 14014 * Need to clean up all the eagers since after the unbind, segments 14015 * will no longer be delivered to this listener stream. 14016 */ 14017 mutex_enter(&tcp->tcp_eager_lock); 14018 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 14019 tcp_eager_cleanup(tcp, 0); 14020 } 14021 mutex_exit(&tcp->tcp_eager_lock); 14022 14023 /* Clean up the listener connection counter if necessary. */ 14024 if (tcp->tcp_listen_cnt != NULL) 14025 TCP_DECR_LISTEN_CNT(tcp); 14026 connp->conn_laddr_v6 = ipv6_all_zeros; 14027 connp->conn_saddr_v6 = ipv6_all_zeros; 14028 tcp_bind_hash_remove(tcp); 14029 tcp->tcp_state = TCPS_IDLE; 14030 14031 ip_unbind(connp); 14032 bzero(&connp->conn_ports, sizeof (connp->conn_ports)); 14033 14034 return (0); 14035 } 14036 14037 /* tcp_unbind is called by tcp_wput_proto to handle T_UNBIND_REQ messages. */ 14038 static void 14039 tcp_tpi_unbind(tcp_t *tcp, mblk_t *mp) 14040 { 14041 conn_t *connp = tcp->tcp_connp; 14042 int error; 14043 14044 error = tcp_do_unbind(connp); 14045 if (error > 0) { 14046 tcp_err_ack(tcp, mp, TSYSERR, error); 14047 } else if (error < 0) { 14048 tcp_err_ack(tcp, mp, -error, 0); 14049 } else { 14050 /* Send M_FLUSH according to TPI */ 14051 (void) putnextctl1(connp->conn_rq, M_FLUSH, FLUSHRW); 14052 14053 mp = mi_tpi_ok_ack_alloc(mp); 14054 if (mp != NULL) 14055 putnext(connp->conn_rq, mp); 14056 } 14057 } 14058 14059 /* 14060 * Don't let port fall into the privileged range. 14061 * Since the extra privileged ports can be arbitrary we also 14062 * ensure that we exclude those from consideration. 14063 * tcp_g_epriv_ports is not sorted thus we loop over it until 14064 * there are no changes. 14065 * 14066 * Note: No locks are held when inspecting tcp_g_*epriv_ports 14067 * but instead the code relies on: 14068 * - the fact that the address of the array and its size never changes 14069 * - the atomic assignment of the elements of the array 14070 * 14071 * Returns 0 if there are no more ports available. 14072 * 14073 * TS note: skip multilevel ports. 14074 */ 14075 static in_port_t 14076 tcp_update_next_port(in_port_t port, const tcp_t *tcp, boolean_t random) 14077 { 14078 int i; 14079 boolean_t restart = B_FALSE; 14080 tcp_stack_t *tcps = tcp->tcp_tcps; 14081 14082 if (random && tcp_random_anon_port != 0) { 14083 (void) random_get_pseudo_bytes((uint8_t *)&port, 14084 sizeof (in_port_t)); 14085 /* 14086 * Unless changed by a sys admin, the smallest anon port 14087 * is 32768 and the largest anon port is 65535. It is 14088 * very likely (50%) for the random port to be smaller 14089 * than the smallest anon port. When that happens, 14090 * add port % (anon port range) to the smallest anon 14091 * port to get the random port. It should fall into the 14092 * valid anon port range. 14093 */ 14094 if (port < tcps->tcps_smallest_anon_port) { 14095 port = tcps->tcps_smallest_anon_port + 14096 port % (tcps->tcps_largest_anon_port - 14097 tcps->tcps_smallest_anon_port); 14098 } 14099 } 14100 14101 retry: 14102 if (port < tcps->tcps_smallest_anon_port) 14103 port = (in_port_t)tcps->tcps_smallest_anon_port; 14104 14105 if (port > tcps->tcps_largest_anon_port) { 14106 if (restart) 14107 return (0); 14108 restart = B_TRUE; 14109 port = (in_port_t)tcps->tcps_smallest_anon_port; 14110 } 14111 14112 if (port < tcps->tcps_smallest_nonpriv_port) 14113 port = (in_port_t)tcps->tcps_smallest_nonpriv_port; 14114 14115 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 14116 if (port == tcps->tcps_g_epriv_ports[i]) { 14117 port++; 14118 /* 14119 * Make sure whether the port is in the 14120 * valid range. 14121 */ 14122 goto retry; 14123 } 14124 } 14125 if (is_system_labeled() && 14126 (i = tsol_next_port(crgetzone(tcp->tcp_connp->conn_cred), port, 14127 IPPROTO_TCP, B_TRUE)) != 0) { 14128 port = i; 14129 goto retry; 14130 } 14131 return (port); 14132 } 14133 14134 /* 14135 * Return the next anonymous port in the privileged port range for 14136 * bind checking. It starts at IPPORT_RESERVED - 1 and goes 14137 * downwards. This is the same behavior as documented in the userland 14138 * library call rresvport(3N). 14139 * 14140 * TS note: skip multilevel ports. 14141 */ 14142 static in_port_t 14143 tcp_get_next_priv_port(const tcp_t *tcp) 14144 { 14145 static in_port_t next_priv_port = IPPORT_RESERVED - 1; 14146 in_port_t nextport; 14147 boolean_t restart = B_FALSE; 14148 tcp_stack_t *tcps = tcp->tcp_tcps; 14149 retry: 14150 if (next_priv_port < tcps->tcps_min_anonpriv_port || 14151 next_priv_port >= IPPORT_RESERVED) { 14152 next_priv_port = IPPORT_RESERVED - 1; 14153 if (restart) 14154 return (0); 14155 restart = B_TRUE; 14156 } 14157 if (is_system_labeled() && 14158 (nextport = tsol_next_port(crgetzone(tcp->tcp_connp->conn_cred), 14159 next_priv_port, IPPROTO_TCP, B_FALSE)) != 0) { 14160 next_priv_port = nextport; 14161 goto retry; 14162 } 14163 return (next_priv_port--); 14164 } 14165 14166 /* The write side r/w procedure. */ 14167 14168 #if CCS_STATS 14169 struct { 14170 struct { 14171 int64_t count, bytes; 14172 } tot, hit; 14173 } wrw_stats; 14174 #endif 14175 14176 /* 14177 * Call by tcp_wput() to handle all non data, except M_PROTO and M_PCPROTO, 14178 * messages. 14179 */ 14180 /* ARGSUSED */ 14181 static void 14182 tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 14183 { 14184 conn_t *connp = (conn_t *)arg; 14185 tcp_t *tcp = connp->conn_tcp; 14186 14187 ASSERT(DB_TYPE(mp) != M_IOCTL); 14188 /* 14189 * TCP is D_MP and qprocsoff() is done towards the end of the tcp_close. 14190 * Once the close starts, streamhead and sockfs will not let any data 14191 * packets come down (close ensures that there are no threads using the 14192 * queue and no new threads will come down) but since qprocsoff() 14193 * hasn't happened yet, a M_FLUSH or some non data message might 14194 * get reflected back (in response to our own FLUSHRW) and get 14195 * processed after tcp_close() is done. The conn would still be valid 14196 * because a ref would have added but we need to check the state 14197 * before actually processing the packet. 14198 */ 14199 if (TCP_IS_DETACHED(tcp) || (tcp->tcp_state == TCPS_CLOSED)) { 14200 freemsg(mp); 14201 return; 14202 } 14203 14204 switch (DB_TYPE(mp)) { 14205 case M_IOCDATA: 14206 tcp_wput_iocdata(tcp, mp); 14207 break; 14208 case M_FLUSH: 14209 tcp_wput_flush(tcp, mp); 14210 break; 14211 default: 14212 ip_wput_nondata(connp->conn_wq, mp); 14213 break; 14214 } 14215 } 14216 14217 /* 14218 * The TCP fast path write put procedure. 14219 * NOTE: the logic of the fast path is duplicated from tcp_wput_data() 14220 */ 14221 /* ARGSUSED */ 14222 void 14223 tcp_output(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 14224 { 14225 int len; 14226 int hdrlen; 14227 int plen; 14228 mblk_t *mp1; 14229 uchar_t *rptr; 14230 uint32_t snxt; 14231 tcpha_t *tcpha; 14232 struct datab *db; 14233 uint32_t suna; 14234 uint32_t mss; 14235 ipaddr_t *dst; 14236 ipaddr_t *src; 14237 uint32_t sum; 14238 int usable; 14239 conn_t *connp = (conn_t *)arg; 14240 tcp_t *tcp = connp->conn_tcp; 14241 uint32_t msize; 14242 tcp_stack_t *tcps = tcp->tcp_tcps; 14243 ip_xmit_attr_t *ixa; 14244 clock_t now; 14245 14246 /* 14247 * Try and ASSERT the minimum possible references on the 14248 * conn early enough. Since we are executing on write side, 14249 * the connection is obviously not detached and that means 14250 * there is a ref each for TCP and IP. Since we are behind 14251 * the squeue, the minimum references needed are 3. If the 14252 * conn is in classifier hash list, there should be an 14253 * extra ref for that (we check both the possibilities). 14254 */ 14255 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 14256 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 14257 14258 ASSERT(DB_TYPE(mp) == M_DATA); 14259 msize = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp); 14260 14261 mutex_enter(&tcp->tcp_non_sq_lock); 14262 tcp->tcp_squeue_bytes -= msize; 14263 mutex_exit(&tcp->tcp_non_sq_lock); 14264 14265 /* Bypass tcp protocol for fused tcp loopback */ 14266 if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize)) 14267 return; 14268 14269 mss = tcp->tcp_mss; 14270 /* 14271 * If ZEROCOPY has turned off, try not to send any zero-copy message 14272 * down. Do backoff, now. 14273 */ 14274 if (tcp->tcp_snd_zcopy_aware && !tcp->tcp_snd_zcopy_on) 14275 mp = tcp_zcopy_backoff(tcp, mp, B_FALSE); 14276 14277 14278 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 14279 len = (int)(mp->b_wptr - mp->b_rptr); 14280 14281 /* 14282 * Criteria for fast path: 14283 * 14284 * 1. no unsent data 14285 * 2. single mblk in request 14286 * 3. connection established 14287 * 4. data in mblk 14288 * 5. len <= mss 14289 * 6. no tcp_valid bits 14290 */ 14291 if ((tcp->tcp_unsent != 0) || 14292 (tcp->tcp_cork) || 14293 (mp->b_cont != NULL) || 14294 (tcp->tcp_state != TCPS_ESTABLISHED) || 14295 (len == 0) || 14296 (len > mss) || 14297 (tcp->tcp_valid_bits != 0)) { 14298 tcp_wput_data(tcp, mp, B_FALSE); 14299 return; 14300 } 14301 14302 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 14303 ASSERT(tcp->tcp_fin_sent == 0); 14304 14305 /* queue new packet onto retransmission queue */ 14306 if (tcp->tcp_xmit_head == NULL) { 14307 tcp->tcp_xmit_head = mp; 14308 } else { 14309 tcp->tcp_xmit_last->b_cont = mp; 14310 } 14311 tcp->tcp_xmit_last = mp; 14312 tcp->tcp_xmit_tail = mp; 14313 14314 /* find out how much we can send */ 14315 /* BEGIN CSTYLED */ 14316 /* 14317 * un-acked usable 14318 * |--------------|-----------------| 14319 * tcp_suna tcp_snxt tcp_suna+tcp_swnd 14320 */ 14321 /* END CSTYLED */ 14322 14323 /* start sending from tcp_snxt */ 14324 snxt = tcp->tcp_snxt; 14325 14326 /* 14327 * Check to see if this connection has been idled for some 14328 * time and no ACK is expected. If it is, we need to slow 14329 * start again to get back the connection's "self-clock" as 14330 * described in VJ's paper. 14331 * 14332 * Reinitialize tcp_cwnd after idle. 14333 */ 14334 now = LBOLT_FASTPATH; 14335 if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && 14336 (TICK_TO_MSEC(now - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) { 14337 SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle); 14338 } 14339 14340 usable = tcp->tcp_swnd; /* tcp window size */ 14341 if (usable > tcp->tcp_cwnd) 14342 usable = tcp->tcp_cwnd; /* congestion window smaller */ 14343 usable -= snxt; /* subtract stuff already sent */ 14344 suna = tcp->tcp_suna; 14345 usable += suna; 14346 /* usable can be < 0 if the congestion window is smaller */ 14347 if (len > usable) { 14348 /* Can't send complete M_DATA in one shot */ 14349 goto slow; 14350 } 14351 14352 mutex_enter(&tcp->tcp_non_sq_lock); 14353 if (tcp->tcp_flow_stopped && 14354 TCP_UNSENT_BYTES(tcp) <= connp->conn_sndlowat) { 14355 tcp_clrqfull(tcp); 14356 } 14357 mutex_exit(&tcp->tcp_non_sq_lock); 14358 14359 /* 14360 * determine if anything to send (Nagle). 14361 * 14362 * 1. len < tcp_mss (i.e. small) 14363 * 2. unacknowledged data present 14364 * 3. len < nagle limit 14365 * 4. last packet sent < nagle limit (previous packet sent) 14366 */ 14367 if ((len < mss) && (snxt != suna) && 14368 (len < (int)tcp->tcp_naglim) && 14369 (tcp->tcp_last_sent_len < tcp->tcp_naglim)) { 14370 /* 14371 * This was the first unsent packet and normally 14372 * mss < xmit_hiwater so there is no need to worry 14373 * about flow control. The next packet will go 14374 * through the flow control check in tcp_wput_data(). 14375 */ 14376 /* leftover work from above */ 14377 tcp->tcp_unsent = len; 14378 tcp->tcp_xmit_tail_unsent = len; 14379 14380 return; 14381 } 14382 14383 /* len <= tcp->tcp_mss && len == unsent so no silly window */ 14384 14385 if (snxt == suna) { 14386 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14387 } 14388 14389 /* we have always sent something */ 14390 tcp->tcp_rack_cnt = 0; 14391 14392 tcp->tcp_snxt = snxt + len; 14393 tcp->tcp_rack = tcp->tcp_rnxt; 14394 14395 if ((mp1 = dupb(mp)) == 0) 14396 goto no_memory; 14397 mp->b_prev = (mblk_t *)(uintptr_t)now; 14398 mp->b_next = (mblk_t *)(uintptr_t)snxt; 14399 14400 /* adjust tcp header information */ 14401 tcpha = tcp->tcp_tcpha; 14402 tcpha->tha_flags = (TH_ACK|TH_PUSH); 14403 14404 sum = len + connp->conn_ht_ulp_len + connp->conn_sum; 14405 sum = (sum >> 16) + (sum & 0xFFFF); 14406 tcpha->tha_sum = htons(sum); 14407 14408 tcpha->tha_seq = htonl(snxt); 14409 14410 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 14411 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); 14412 BUMP_LOCAL(tcp->tcp_obsegs); 14413 14414 /* Update the latest receive window size in TCP header. */ 14415 tcpha->tha_win = htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 14416 14417 tcp->tcp_last_sent_len = (ushort_t)len; 14418 14419 plen = len + connp->conn_ht_iphc_len; 14420 14421 ixa = connp->conn_ixa; 14422 ixa->ixa_pktlen = plen; 14423 14424 if (ixa->ixa_flags & IXAF_IS_IPV4) { 14425 tcp->tcp_ipha->ipha_length = htons(plen); 14426 } else { 14427 tcp->tcp_ip6h->ip6_plen = htons(plen - IPV6_HDR_LEN); 14428 } 14429 14430 /* see if we need to allocate a mblk for the headers */ 14431 hdrlen = connp->conn_ht_iphc_len; 14432 rptr = mp1->b_rptr - hdrlen; 14433 db = mp1->b_datap; 14434 if ((db->db_ref != 2) || rptr < db->db_base || 14435 (!OK_32PTR(rptr))) { 14436 /* NOTE: we assume allocb returns an OK_32PTR */ 14437 mp = allocb(hdrlen + tcps->tcps_wroff_xtra, BPRI_MED); 14438 if (!mp) { 14439 freemsg(mp1); 14440 goto no_memory; 14441 } 14442 mp->b_cont = mp1; 14443 mp1 = mp; 14444 /* Leave room for Link Level header */ 14445 rptr = &mp1->b_rptr[tcps->tcps_wroff_xtra]; 14446 mp1->b_wptr = &rptr[hdrlen]; 14447 } 14448 mp1->b_rptr = rptr; 14449 14450 /* Fill in the timestamp option. */ 14451 if (tcp->tcp_snd_ts_ok) { 14452 uint32_t llbolt = (uint32_t)LBOLT_FASTPATH; 14453 14454 U32_TO_BE32(llbolt, 14455 (char *)tcpha + TCP_MIN_HEADER_LENGTH+4); 14456 U32_TO_BE32(tcp->tcp_ts_recent, 14457 (char *)tcpha + TCP_MIN_HEADER_LENGTH+8); 14458 } else { 14459 ASSERT(connp->conn_ht_ulp_len == TCP_MIN_HEADER_LENGTH); 14460 } 14461 14462 /* copy header into outgoing packet */ 14463 dst = (ipaddr_t *)rptr; 14464 src = (ipaddr_t *)connp->conn_ht_iphc; 14465 dst[0] = src[0]; 14466 dst[1] = src[1]; 14467 dst[2] = src[2]; 14468 dst[3] = src[3]; 14469 dst[4] = src[4]; 14470 dst[5] = src[5]; 14471 dst[6] = src[6]; 14472 dst[7] = src[7]; 14473 dst[8] = src[8]; 14474 dst[9] = src[9]; 14475 if (hdrlen -= 40) { 14476 hdrlen >>= 2; 14477 dst += 10; 14478 src += 10; 14479 do { 14480 *dst++ = *src++; 14481 } while (--hdrlen); 14482 } 14483 14484 /* 14485 * Set the ECN info in the TCP header. Note that this 14486 * is not the template header. 14487 */ 14488 if (tcp->tcp_ecn_ok) { 14489 SET_ECT(tcp, rptr); 14490 14491 tcpha = (tcpha_t *)(rptr + ixa->ixa_ip_hdr_length); 14492 if (tcp->tcp_ecn_echo_on) 14493 tcpha->tha_flags |= TH_ECE; 14494 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 14495 tcpha->tha_flags |= TH_CWR; 14496 tcp->tcp_ecn_cwr_sent = B_TRUE; 14497 } 14498 } 14499 14500 if (tcp->tcp_ip_forward_progress) { 14501 tcp->tcp_ip_forward_progress = B_FALSE; 14502 connp->conn_ixa->ixa_flags |= IXAF_REACH_CONF; 14503 } else { 14504 connp->conn_ixa->ixa_flags &= ~IXAF_REACH_CONF; 14505 } 14506 tcp_send_data(tcp, mp1); 14507 return; 14508 14509 /* 14510 * If we ran out of memory, we pretend to have sent the packet 14511 * and that it was lost on the wire. 14512 */ 14513 no_memory: 14514 return; 14515 14516 slow: 14517 /* leftover work from above */ 14518 tcp->tcp_unsent = len; 14519 tcp->tcp_xmit_tail_unsent = len; 14520 tcp_wput_data(tcp, NULL, B_FALSE); 14521 } 14522 14523 /* 14524 * This runs at the tail end of accept processing on the squeue of the 14525 * new connection. 14526 */ 14527 /* ARGSUSED */ 14528 void 14529 tcp_accept_finish(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 14530 { 14531 conn_t *connp = (conn_t *)arg; 14532 tcp_t *tcp = connp->conn_tcp; 14533 queue_t *q = connp->conn_rq; 14534 tcp_stack_t *tcps = tcp->tcp_tcps; 14535 /* socket options */ 14536 struct sock_proto_props sopp; 14537 14538 /* We should just receive a single mblk that fits a T_discon_ind */ 14539 ASSERT(mp->b_cont == NULL); 14540 14541 /* 14542 * Drop the eager's ref on the listener, that was placed when 14543 * this eager began life in tcp_input_listener. 14544 */ 14545 CONN_DEC_REF(tcp->tcp_saved_listener->tcp_connp); 14546 if (IPCL_IS_NONSTR(connp)) { 14547 /* Safe to free conn_ind message */ 14548 freemsg(tcp->tcp_conn.tcp_eager_conn_ind); 14549 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 14550 } 14551 14552 tcp->tcp_detached = B_FALSE; 14553 14554 if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_accept_error) { 14555 /* 14556 * Someone blewoff the eager before we could finish 14557 * the accept. 14558 * 14559 * The only reason eager exists it because we put in 14560 * a ref on it when conn ind went up. We need to send 14561 * a disconnect indication up while the last reference 14562 * on the eager will be dropped by the squeue when we 14563 * return. 14564 */ 14565 ASSERT(tcp->tcp_listener == NULL); 14566 if (tcp->tcp_issocket || tcp->tcp_send_discon_ind) { 14567 if (IPCL_IS_NONSTR(connp)) { 14568 ASSERT(tcp->tcp_issocket); 14569 (*connp->conn_upcalls->su_disconnected)( 14570 connp->conn_upper_handle, tcp->tcp_connid, 14571 ECONNREFUSED); 14572 freemsg(mp); 14573 } else { 14574 struct T_discon_ind *tdi; 14575 14576 (void) putnextctl1(q, M_FLUSH, FLUSHRW); 14577 /* 14578 * Let us reuse the incoming mblk to avoid 14579 * memory allocation failure problems. We know 14580 * that the size of the incoming mblk i.e. 14581 * stroptions is greater than sizeof 14582 * T_discon_ind. 14583 */ 14584 ASSERT(DB_REF(mp) == 1); 14585 ASSERT(MBLKSIZE(mp) >= 14586 sizeof (struct T_discon_ind)); 14587 14588 DB_TYPE(mp) = M_PROTO; 14589 ((union T_primitives *)mp->b_rptr)->type = 14590 T_DISCON_IND; 14591 tdi = (struct T_discon_ind *)mp->b_rptr; 14592 if (tcp->tcp_issocket) { 14593 tdi->DISCON_reason = ECONNREFUSED; 14594 tdi->SEQ_number = 0; 14595 } else { 14596 tdi->DISCON_reason = ENOPROTOOPT; 14597 tdi->SEQ_number = 14598 tcp->tcp_conn_req_seqnum; 14599 } 14600 mp->b_wptr = mp->b_rptr + 14601 sizeof (struct T_discon_ind); 14602 putnext(q, mp); 14603 } 14604 } 14605 tcp->tcp_hard_binding = B_FALSE; 14606 return; 14607 } 14608 14609 /* 14610 * This is the first time we run on the correct 14611 * queue after tcp_accept. So fix all the q parameters 14612 * here. 14613 */ 14614 sopp.sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_MAXBLK | SOCKOPT_WROFF; 14615 sopp.sopp_maxblk = tcp_maxpsz_set(tcp, B_FALSE); 14616 14617 sopp.sopp_rxhiwat = tcp->tcp_fused ? 14618 tcp_fuse_set_rcv_hiwat(tcp, connp->conn_rcvbuf) : 14619 connp->conn_rcvbuf; 14620 14621 /* 14622 * Determine what write offset value to use depending on SACK and 14623 * whether the endpoint is fused or not. 14624 */ 14625 if (tcp->tcp_fused) { 14626 ASSERT(tcp->tcp_loopback); 14627 ASSERT(tcp->tcp_loopback_peer != NULL); 14628 /* 14629 * For fused tcp loopback, set the stream head's write 14630 * offset value to zero since we won't be needing any room 14631 * for TCP/IP headers. This would also improve performance 14632 * since it would reduce the amount of work done by kmem. 14633 * Non-fused tcp loopback case is handled separately below. 14634 */ 14635 sopp.sopp_wroff = 0; 14636 /* 14637 * Update the peer's transmit parameters according to 14638 * our recently calculated high water mark value. 14639 */ 14640 (void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE); 14641 } else if (tcp->tcp_snd_sack_ok) { 14642 sopp.sopp_wroff = connp->conn_ht_iphc_allocated + 14643 (tcp->tcp_loopback ? 0 : tcps->tcps_wroff_xtra); 14644 } else { 14645 sopp.sopp_wroff = connp->conn_ht_iphc_len + 14646 (tcp->tcp_loopback ? 0 : tcps->tcps_wroff_xtra); 14647 } 14648 14649 /* 14650 * If this is endpoint is handling SSL, then reserve extra 14651 * offset and space at the end. 14652 * Also have the stream head allocate SSL3_MAX_RECORD_LEN packets, 14653 * overriding the previous setting. The extra cost of signing and 14654 * encrypting multiple MSS-size records (12 of them with Ethernet), 14655 * instead of a single contiguous one by the stream head 14656 * largely outweighs the statistical reduction of ACKs, when 14657 * applicable. The peer will also save on decryption and verification 14658 * costs. 14659 */ 14660 if (tcp->tcp_kssl_ctx != NULL) { 14661 sopp.sopp_wroff += SSL3_WROFFSET; 14662 14663 sopp.sopp_flags |= SOCKOPT_TAIL; 14664 sopp.sopp_tail = SSL3_MAX_TAIL_LEN; 14665 14666 sopp.sopp_flags |= SOCKOPT_ZCOPY; 14667 sopp.sopp_zcopyflag = ZCVMUNSAFE; 14668 14669 sopp.sopp_maxblk = SSL3_MAX_RECORD_LEN; 14670 } 14671 14672 /* Send the options up */ 14673 if (IPCL_IS_NONSTR(connp)) { 14674 if (sopp.sopp_flags & SOCKOPT_TAIL) { 14675 ASSERT(tcp->tcp_kssl_ctx != NULL); 14676 ASSERT(sopp.sopp_flags & SOCKOPT_ZCOPY); 14677 } 14678 if (tcp->tcp_loopback) { 14679 sopp.sopp_flags |= SOCKOPT_LOOPBACK; 14680 sopp.sopp_loopback = B_TRUE; 14681 } 14682 (*connp->conn_upcalls->su_set_proto_props) 14683 (connp->conn_upper_handle, &sopp); 14684 freemsg(mp); 14685 } else { 14686 /* 14687 * Let us reuse the incoming mblk to avoid 14688 * memory allocation failure problems. We know 14689 * that the size of the incoming mblk is at least 14690 * stroptions 14691 */ 14692 struct stroptions *stropt; 14693 14694 ASSERT(DB_REF(mp) == 1); 14695 ASSERT(MBLKSIZE(mp) >= sizeof (struct stroptions)); 14696 14697 DB_TYPE(mp) = M_SETOPTS; 14698 stropt = (struct stroptions *)mp->b_rptr; 14699 mp->b_wptr = mp->b_rptr + sizeof (struct stroptions); 14700 stropt = (struct stroptions *)mp->b_rptr; 14701 stropt->so_flags = SO_HIWAT | SO_WROFF | SO_MAXBLK; 14702 stropt->so_hiwat = sopp.sopp_rxhiwat; 14703 stropt->so_wroff = sopp.sopp_wroff; 14704 stropt->so_maxblk = sopp.sopp_maxblk; 14705 14706 if (sopp.sopp_flags & SOCKOPT_TAIL) { 14707 ASSERT(tcp->tcp_kssl_ctx != NULL); 14708 14709 stropt->so_flags |= SO_TAIL | SO_COPYOPT; 14710 stropt->so_tail = sopp.sopp_tail; 14711 stropt->so_copyopt = sopp.sopp_zcopyflag; 14712 } 14713 14714 /* Send the options up */ 14715 putnext(q, mp); 14716 } 14717 14718 /* 14719 * Pass up any data and/or a fin that has been received. 14720 * 14721 * Adjust receive window in case it had decreased 14722 * (because there is data <=> tcp_rcv_list != NULL) 14723 * while the connection was detached. Note that 14724 * in case the eager was flow-controlled, w/o this 14725 * code, the rwnd may never open up again! 14726 */ 14727 if (tcp->tcp_rcv_list != NULL) { 14728 if (IPCL_IS_NONSTR(connp)) { 14729 mblk_t *mp; 14730 int space_left; 14731 int error; 14732 boolean_t push = B_TRUE; 14733 14734 if (!tcp->tcp_fused && (*connp->conn_upcalls->su_recv) 14735 (connp->conn_upper_handle, NULL, 0, 0, &error, 14736 &push) >= 0) { 14737 tcp->tcp_rwnd = connp->conn_rcvbuf; 14738 if (tcp->tcp_state >= TCPS_ESTABLISHED && 14739 tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) { 14740 tcp_xmit_ctl(NULL, 14741 tcp, (tcp->tcp_swnd == 0) ? 14742 tcp->tcp_suna : tcp->tcp_snxt, 14743 tcp->tcp_rnxt, TH_ACK); 14744 } 14745 } 14746 while ((mp = tcp->tcp_rcv_list) != NULL) { 14747 push = B_TRUE; 14748 tcp->tcp_rcv_list = mp->b_next; 14749 mp->b_next = NULL; 14750 space_left = (*connp->conn_upcalls->su_recv) 14751 (connp->conn_upper_handle, mp, msgdsize(mp), 14752 0, &error, &push); 14753 if (space_left < 0) { 14754 /* 14755 * We should never be in middle of a 14756 * fallback, the squeue guarantees that. 14757 */ 14758 ASSERT(error != EOPNOTSUPP); 14759 } 14760 } 14761 tcp->tcp_rcv_last_head = NULL; 14762 tcp->tcp_rcv_last_tail = NULL; 14763 tcp->tcp_rcv_cnt = 0; 14764 } else { 14765 /* We drain directly in case of fused tcp loopback */ 14766 14767 if (!tcp->tcp_fused && canputnext(q)) { 14768 tcp->tcp_rwnd = connp->conn_rcvbuf; 14769 if (tcp->tcp_state >= TCPS_ESTABLISHED && 14770 tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) { 14771 tcp_xmit_ctl(NULL, 14772 tcp, (tcp->tcp_swnd == 0) ? 14773 tcp->tcp_suna : tcp->tcp_snxt, 14774 tcp->tcp_rnxt, TH_ACK); 14775 } 14776 } 14777 14778 (void) tcp_rcv_drain(tcp); 14779 } 14780 14781 /* 14782 * For fused tcp loopback, back-enable peer endpoint 14783 * if it's currently flow-controlled. 14784 */ 14785 if (tcp->tcp_fused) { 14786 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 14787 14788 ASSERT(peer_tcp != NULL); 14789 ASSERT(peer_tcp->tcp_fused); 14790 14791 mutex_enter(&peer_tcp->tcp_non_sq_lock); 14792 if (peer_tcp->tcp_flow_stopped) { 14793 tcp_clrqfull(peer_tcp); 14794 TCP_STAT(tcps, tcp_fusion_backenabled); 14795 } 14796 mutex_exit(&peer_tcp->tcp_non_sq_lock); 14797 } 14798 } 14799 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 14800 if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 14801 tcp->tcp_ordrel_done = B_TRUE; 14802 if (IPCL_IS_NONSTR(connp)) { 14803 ASSERT(tcp->tcp_ordrel_mp == NULL); 14804 (*connp->conn_upcalls->su_opctl)( 14805 connp->conn_upper_handle, 14806 SOCK_OPCTL_SHUT_RECV, 0); 14807 } else { 14808 mp = tcp->tcp_ordrel_mp; 14809 tcp->tcp_ordrel_mp = NULL; 14810 putnext(q, mp); 14811 } 14812 } 14813 tcp->tcp_hard_binding = B_FALSE; 14814 14815 if (connp->conn_keepalive) { 14816 tcp->tcp_ka_last_intrvl = 0; 14817 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 14818 MSEC_TO_TICK(tcp->tcp_ka_interval)); 14819 } 14820 14821 /* 14822 * At this point, eager is fully established and will 14823 * have the following references - 14824 * 14825 * 2 references for connection to exist (1 for TCP and 1 for IP). 14826 * 1 reference for the squeue which will be dropped by the squeue as 14827 * soon as this function returns. 14828 * There will be 1 additonal reference for being in classifier 14829 * hash list provided something bad hasn't happened. 14830 */ 14831 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 14832 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 14833 } 14834 14835 /* 14836 * The function called through squeue to get behind listener's perimeter to 14837 * send a deferred conn_ind. 14838 */ 14839 /* ARGSUSED */ 14840 void 14841 tcp_send_pending(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 14842 { 14843 conn_t *lconnp = (conn_t *)arg; 14844 tcp_t *listener = lconnp->conn_tcp; 14845 struct T_conn_ind *conn_ind; 14846 tcp_t *tcp; 14847 14848 conn_ind = (struct T_conn_ind *)mp->b_rptr; 14849 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 14850 conn_ind->OPT_length); 14851 14852 if (listener->tcp_state != TCPS_LISTEN) { 14853 /* 14854 * If listener has closed, it would have caused a 14855 * a cleanup/blowoff to happen for the eager, so 14856 * we don't need to do anything more. 14857 */ 14858 freemsg(mp); 14859 return; 14860 } 14861 14862 tcp_ulp_newconn(lconnp, tcp->tcp_connp, mp); 14863 } 14864 14865 /* 14866 * Common to TPI and sockfs accept code. 14867 */ 14868 /* ARGSUSED2 */ 14869 static int 14870 tcp_accept_common(conn_t *lconnp, conn_t *econnp, cred_t *cr) 14871 { 14872 tcp_t *listener, *eager; 14873 mblk_t *discon_mp; 14874 14875 listener = lconnp->conn_tcp; 14876 ASSERT(listener->tcp_state == TCPS_LISTEN); 14877 eager = econnp->conn_tcp; 14878 ASSERT(eager->tcp_listener != NULL); 14879 14880 /* 14881 * Pre allocate the discon_ind mblk also. tcp_accept_finish will 14882 * use it if something failed. 14883 */ 14884 discon_mp = allocb(MAX(sizeof (struct T_discon_ind), 14885 sizeof (struct stroptions)), BPRI_HI); 14886 14887 if (discon_mp == NULL) { 14888 return (-TPROTO); 14889 } 14890 eager->tcp_issocket = B_TRUE; 14891 14892 econnp->conn_zoneid = listener->tcp_connp->conn_zoneid; 14893 econnp->conn_allzones = listener->tcp_connp->conn_allzones; 14894 ASSERT(econnp->conn_netstack == 14895 listener->tcp_connp->conn_netstack); 14896 ASSERT(eager->tcp_tcps == listener->tcp_tcps); 14897 14898 /* Put the ref for IP */ 14899 CONN_INC_REF(econnp); 14900 14901 /* 14902 * We should have minimum of 3 references on the conn 14903 * at this point. One each for TCP and IP and one for 14904 * the T_conn_ind that was sent up when the 3-way handshake 14905 * completed. In the normal case we would also have another 14906 * reference (making a total of 4) for the conn being in the 14907 * classifier hash list. However the eager could have received 14908 * an RST subsequently and tcp_closei_local could have removed 14909 * the eager from the classifier hash list, hence we can't 14910 * assert that reference. 14911 */ 14912 ASSERT(econnp->conn_ref >= 3); 14913 14914 mutex_enter(&listener->tcp_eager_lock); 14915 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 14916 14917 tcp_t *tail; 14918 tcp_t *tcp; 14919 mblk_t *mp1; 14920 14921 tcp = listener->tcp_eager_prev_q0; 14922 /* 14923 * listener->tcp_eager_prev_q0 points to the TAIL of the 14924 * deferred T_conn_ind queue. We need to get to the head 14925 * of the queue in order to send up T_conn_ind the same 14926 * order as how the 3WHS is completed. 14927 */ 14928 while (tcp != listener) { 14929 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0 && 14930 !tcp->tcp_kssl_pending) 14931 break; 14932 else 14933 tcp = tcp->tcp_eager_prev_q0; 14934 } 14935 /* None of the pending eagers can be sent up now */ 14936 if (tcp == listener) 14937 goto no_more_eagers; 14938 14939 mp1 = tcp->tcp_conn.tcp_eager_conn_ind; 14940 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 14941 /* Move from q0 to q */ 14942 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 14943 listener->tcp_conn_req_cnt_q0--; 14944 listener->tcp_conn_req_cnt_q++; 14945 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 14946 tcp->tcp_eager_prev_q0; 14947 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 14948 tcp->tcp_eager_next_q0; 14949 tcp->tcp_eager_prev_q0 = NULL; 14950 tcp->tcp_eager_next_q0 = NULL; 14951 tcp->tcp_conn_def_q0 = B_FALSE; 14952 14953 /* Make sure the tcp isn't in the list of droppables */ 14954 ASSERT(tcp->tcp_eager_next_drop_q0 == NULL && 14955 tcp->tcp_eager_prev_drop_q0 == NULL); 14956 14957 /* 14958 * Insert at end of the queue because sockfs sends 14959 * down T_CONN_RES in chronological order. Leaving 14960 * the older conn indications at front of the queue 14961 * helps reducing search time. 14962 */ 14963 tail = listener->tcp_eager_last_q; 14964 if (tail != NULL) { 14965 tail->tcp_eager_next_q = tcp; 14966 } else { 14967 listener->tcp_eager_next_q = tcp; 14968 } 14969 listener->tcp_eager_last_q = tcp; 14970 tcp->tcp_eager_next_q = NULL; 14971 14972 /* Need to get inside the listener perimeter */ 14973 CONN_INC_REF(listener->tcp_connp); 14974 SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, mp1, 14975 tcp_send_pending, listener->tcp_connp, NULL, SQ_FILL, 14976 SQTAG_TCP_SEND_PENDING); 14977 } 14978 no_more_eagers: 14979 tcp_eager_unlink(eager); 14980 mutex_exit(&listener->tcp_eager_lock); 14981 14982 /* 14983 * At this point, the eager is detached from the listener 14984 * but we still have an extra refs on eager (apart from the 14985 * usual tcp references). The ref was placed in tcp_input_data 14986 * before sending the conn_ind in tcp_send_conn_ind. 14987 * The ref will be dropped in tcp_accept_finish(). 14988 */ 14989 SQUEUE_ENTER_ONE(econnp->conn_sqp, discon_mp, tcp_accept_finish, 14990 econnp, NULL, SQ_NODRAIN, SQTAG_TCP_ACCEPT_FINISH_Q0); 14991 return (0); 14992 } 14993 14994 int 14995 tcp_accept(sock_lower_handle_t lproto_handle, 14996 sock_lower_handle_t eproto_handle, sock_upper_handle_t sock_handle, 14997 cred_t *cr) 14998 { 14999 conn_t *lconnp, *econnp; 15000 tcp_t *listener, *eager; 15001 15002 lconnp = (conn_t *)lproto_handle; 15003 listener = lconnp->conn_tcp; 15004 ASSERT(listener->tcp_state == TCPS_LISTEN); 15005 econnp = (conn_t *)eproto_handle; 15006 eager = econnp->conn_tcp; 15007 ASSERT(eager->tcp_listener != NULL); 15008 15009 /* 15010 * It is OK to manipulate these fields outside the eager's squeue 15011 * because they will not start being used until tcp_accept_finish 15012 * has been called. 15013 */ 15014 ASSERT(lconnp->conn_upper_handle != NULL); 15015 ASSERT(econnp->conn_upper_handle == NULL); 15016 econnp->conn_upper_handle = sock_handle; 15017 econnp->conn_upcalls = lconnp->conn_upcalls; 15018 ASSERT(IPCL_IS_NONSTR(econnp)); 15019 return (tcp_accept_common(lconnp, econnp, cr)); 15020 } 15021 15022 15023 /* 15024 * This is the STREAMS entry point for T_CONN_RES coming down on 15025 * Acceptor STREAM when sockfs listener does accept processing. 15026 * Read the block comment on top of tcp_input_listener(). 15027 */ 15028 void 15029 tcp_tpi_accept(queue_t *q, mblk_t *mp) 15030 { 15031 queue_t *rq = RD(q); 15032 struct T_conn_res *conn_res; 15033 tcp_t *eager; 15034 tcp_t *listener; 15035 struct T_ok_ack *ok; 15036 t_scalar_t PRIM_type; 15037 conn_t *econnp; 15038 cred_t *cr; 15039 15040 ASSERT(DB_TYPE(mp) == M_PROTO); 15041 15042 /* 15043 * All Solaris components should pass a db_credp 15044 * for this TPI message, hence we ASSERT. 15045 * But in case there is some other M_PROTO that looks 15046 * like a TPI message sent by some other kernel 15047 * component, we check and return an error. 15048 */ 15049 cr = msg_getcred(mp, NULL); 15050 ASSERT(cr != NULL); 15051 if (cr == NULL) { 15052 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL); 15053 if (mp != NULL) 15054 putnext(rq, mp); 15055 return; 15056 } 15057 conn_res = (struct T_conn_res *)mp->b_rptr; 15058 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 15059 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_res)) { 15060 mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); 15061 if (mp != NULL) 15062 putnext(rq, mp); 15063 return; 15064 } 15065 switch (conn_res->PRIM_type) { 15066 case O_T_CONN_RES: 15067 case T_CONN_RES: 15068 /* 15069 * We pass up an err ack if allocb fails. This will 15070 * cause sockfs to issue a T_DISCON_REQ which will cause 15071 * tcp_eager_blowoff to be called. sockfs will then call 15072 * rq->q_qinfo->qi_qclose to cleanup the acceptor stream. 15073 * we need to do the allocb up here because we have to 15074 * make sure rq->q_qinfo->qi_qclose still points to the 15075 * correct function (tcp_tpi_close_accept) in case allocb 15076 * fails. 15077 */ 15078 bcopy(mp->b_rptr + conn_res->OPT_offset, 15079 &eager, conn_res->OPT_length); 15080 PRIM_type = conn_res->PRIM_type; 15081 mp->b_datap->db_type = M_PCPROTO; 15082 mp->b_wptr = mp->b_rptr + sizeof (struct T_ok_ack); 15083 ok = (struct T_ok_ack *)mp->b_rptr; 15084 ok->PRIM_type = T_OK_ACK; 15085 ok->CORRECT_prim = PRIM_type; 15086 econnp = eager->tcp_connp; 15087 econnp->conn_dev = (dev_t)RD(q)->q_ptr; 15088 econnp->conn_minor_arena = (vmem_t *)(WR(q)->q_ptr); 15089 econnp->conn_rq = rq; 15090 econnp->conn_wq = q; 15091 rq->q_ptr = econnp; 15092 rq->q_qinfo = &tcp_rinitv4; /* No open - same as rinitv6 */ 15093 q->q_ptr = econnp; 15094 q->q_qinfo = &tcp_winit; 15095 listener = eager->tcp_listener; 15096 15097 if (tcp_accept_common(listener->tcp_connp, 15098 econnp, cr) < 0) { 15099 mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); 15100 if (mp != NULL) 15101 putnext(rq, mp); 15102 return; 15103 } 15104 15105 /* 15106 * Send the new local address also up to sockfs. There 15107 * should already be enough space in the mp that came 15108 * down from soaccept(). 15109 */ 15110 if (econnp->conn_family == AF_INET) { 15111 sin_t *sin; 15112 15113 ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= 15114 (sizeof (struct T_ok_ack) + sizeof (sin_t))); 15115 sin = (sin_t *)mp->b_wptr; 15116 mp->b_wptr += sizeof (sin_t); 15117 sin->sin_family = AF_INET; 15118 sin->sin_port = econnp->conn_lport; 15119 sin->sin_addr.s_addr = econnp->conn_laddr_v4; 15120 } else { 15121 sin6_t *sin6; 15122 15123 ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= 15124 sizeof (struct T_ok_ack) + sizeof (sin6_t)); 15125 sin6 = (sin6_t *)mp->b_wptr; 15126 mp->b_wptr += sizeof (sin6_t); 15127 sin6->sin6_family = AF_INET6; 15128 sin6->sin6_port = econnp->conn_lport; 15129 sin6->sin6_addr = econnp->conn_laddr_v6; 15130 if (econnp->conn_ipversion == IPV4_VERSION) 15131 sin6->sin6_flowinfo = 0; 15132 else 15133 sin6->sin6_flowinfo = econnp->conn_flowinfo; 15134 if (IN6_IS_ADDR_LINKSCOPE(&econnp->conn_laddr_v6) && 15135 (econnp->conn_ixa->ixa_flags & IXAF_SCOPEID_SET)) { 15136 sin6->sin6_scope_id = 15137 econnp->conn_ixa->ixa_scopeid; 15138 } else { 15139 sin6->sin6_scope_id = 0; 15140 } 15141 sin6->__sin6_src_id = 0; 15142 } 15143 15144 putnext(rq, mp); 15145 return; 15146 default: 15147 mp = mi_tpi_err_ack_alloc(mp, TNOTSUPPORT, 0); 15148 if (mp != NULL) 15149 putnext(rq, mp); 15150 return; 15151 } 15152 } 15153 15154 /* 15155 * Handle special out-of-band ioctl requests (see PSARC/2008/265). 15156 */ 15157 static void 15158 tcp_wput_cmdblk(queue_t *q, mblk_t *mp) 15159 { 15160 void *data; 15161 mblk_t *datamp = mp->b_cont; 15162 conn_t *connp = Q_TO_CONN(q); 15163 tcp_t *tcp = connp->conn_tcp; 15164 cmdblk_t *cmdp = (cmdblk_t *)mp->b_rptr; 15165 15166 if (datamp == NULL || MBLKL(datamp) < cmdp->cb_len) { 15167 cmdp->cb_error = EPROTO; 15168 qreply(q, mp); 15169 return; 15170 } 15171 15172 data = datamp->b_rptr; 15173 15174 switch (cmdp->cb_cmd) { 15175 case TI_GETPEERNAME: 15176 if (tcp->tcp_state < TCPS_SYN_RCVD) 15177 cmdp->cb_error = ENOTCONN; 15178 else 15179 cmdp->cb_error = conn_getpeername(connp, data, 15180 &cmdp->cb_len); 15181 break; 15182 case TI_GETMYNAME: 15183 cmdp->cb_error = conn_getsockname(connp, data, &cmdp->cb_len); 15184 break; 15185 default: 15186 cmdp->cb_error = EINVAL; 15187 break; 15188 } 15189 15190 qreply(q, mp); 15191 } 15192 15193 void 15194 tcp_wput(queue_t *q, mblk_t *mp) 15195 { 15196 conn_t *connp = Q_TO_CONN(q); 15197 tcp_t *tcp; 15198 void (*output_proc)(); 15199 t_scalar_t type; 15200 uchar_t *rptr; 15201 struct iocblk *iocp; 15202 size_t size; 15203 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 15204 15205 ASSERT(connp->conn_ref >= 2); 15206 15207 switch (DB_TYPE(mp)) { 15208 case M_DATA: 15209 tcp = connp->conn_tcp; 15210 ASSERT(tcp != NULL); 15211 15212 size = msgdsize(mp); 15213 15214 mutex_enter(&tcp->tcp_non_sq_lock); 15215 tcp->tcp_squeue_bytes += size; 15216 if (TCP_UNSENT_BYTES(tcp) > connp->conn_sndbuf) { 15217 tcp_setqfull(tcp); 15218 } 15219 mutex_exit(&tcp->tcp_non_sq_lock); 15220 15221 CONN_INC_REF(connp); 15222 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_output, connp, 15223 NULL, tcp_squeue_flag, SQTAG_TCP_OUTPUT); 15224 return; 15225 15226 case M_CMD: 15227 tcp_wput_cmdblk(q, mp); 15228 return; 15229 15230 case M_PROTO: 15231 case M_PCPROTO: 15232 /* 15233 * if it is a snmp message, don't get behind the squeue 15234 */ 15235 tcp = connp->conn_tcp; 15236 rptr = mp->b_rptr; 15237 if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { 15238 type = ((union T_primitives *)rptr)->type; 15239 } else { 15240 if (connp->conn_debug) { 15241 (void) strlog(TCP_MOD_ID, 0, 1, 15242 SL_ERROR|SL_TRACE, 15243 "tcp_wput_proto, dropping one..."); 15244 } 15245 freemsg(mp); 15246 return; 15247 } 15248 if (type == T_SVR4_OPTMGMT_REQ) { 15249 /* 15250 * All Solaris components should pass a db_credp 15251 * for this TPI message, hence we ASSERT. 15252 * But in case there is some other M_PROTO that looks 15253 * like a TPI message sent by some other kernel 15254 * component, we check and return an error. 15255 */ 15256 cred_t *cr = msg_getcred(mp, NULL); 15257 15258 ASSERT(cr != NULL); 15259 if (cr == NULL) { 15260 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 15261 return; 15262 } 15263 if (snmpcom_req(q, mp, tcp_snmp_set, ip_snmp_get, 15264 cr)) { 15265 /* 15266 * This was a SNMP request 15267 */ 15268 return; 15269 } else { 15270 output_proc = tcp_wput_proto; 15271 } 15272 } else { 15273 output_proc = tcp_wput_proto; 15274 } 15275 break; 15276 case M_IOCTL: 15277 /* 15278 * Most ioctls can be processed right away without going via 15279 * squeues - process them right here. Those that do require 15280 * squeue (currently _SIOCSOCKFALLBACK) 15281 * are processed by tcp_wput_ioctl(). 15282 */ 15283 iocp = (struct iocblk *)mp->b_rptr; 15284 tcp = connp->conn_tcp; 15285 15286 switch (iocp->ioc_cmd) { 15287 case TCP_IOC_ABORT_CONN: 15288 tcp_ioctl_abort_conn(q, mp); 15289 return; 15290 case TI_GETPEERNAME: 15291 case TI_GETMYNAME: 15292 mi_copyin(q, mp, NULL, 15293 SIZEOF_STRUCT(strbuf, iocp->ioc_flag)); 15294 return; 15295 case ND_SET: 15296 /* nd_getset does the necessary checks */ 15297 case ND_GET: 15298 if (nd_getset(q, tcps->tcps_g_nd, mp)) { 15299 qreply(q, mp); 15300 return; 15301 } 15302 CONN_INC_IOCTLREF(connp); 15303 ip_wput_nondata(q, mp); 15304 CONN_DEC_IOCTLREF(connp); 15305 return; 15306 15307 default: 15308 output_proc = tcp_wput_ioctl; 15309 break; 15310 } 15311 break; 15312 default: 15313 output_proc = tcp_wput_nondata; 15314 break; 15315 } 15316 15317 CONN_INC_REF(connp); 15318 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, output_proc, connp, 15319 NULL, tcp_squeue_flag, SQTAG_TCP_WPUT_OTHER); 15320 } 15321 15322 /* 15323 * Initial STREAMS write side put() procedure for sockets. It tries to 15324 * handle the T_CAPABILITY_REQ which sockfs sends down while setting 15325 * up the socket without using the squeue. Non T_CAPABILITY_REQ messages 15326 * are handled by tcp_wput() as usual. 15327 * 15328 * All further messages will also be handled by tcp_wput() because we cannot 15329 * be sure that the above short cut is safe later. 15330 */ 15331 static void 15332 tcp_wput_sock(queue_t *wq, mblk_t *mp) 15333 { 15334 conn_t *connp = Q_TO_CONN(wq); 15335 tcp_t *tcp = connp->conn_tcp; 15336 struct T_capability_req *car = (struct T_capability_req *)mp->b_rptr; 15337 15338 ASSERT(wq->q_qinfo == &tcp_sock_winit); 15339 wq->q_qinfo = &tcp_winit; 15340 15341 ASSERT(IPCL_IS_TCP(connp)); 15342 ASSERT(TCP_IS_SOCKET(tcp)); 15343 15344 if (DB_TYPE(mp) == M_PCPROTO && 15345 MBLKL(mp) == sizeof (struct T_capability_req) && 15346 car->PRIM_type == T_CAPABILITY_REQ) { 15347 tcp_capability_req(tcp, mp); 15348 return; 15349 } 15350 15351 tcp_wput(wq, mp); 15352 } 15353 15354 /* ARGSUSED */ 15355 static void 15356 tcp_wput_fallback(queue_t *wq, mblk_t *mp) 15357 { 15358 #ifdef DEBUG 15359 cmn_err(CE_CONT, "tcp_wput_fallback: Message during fallback \n"); 15360 #endif 15361 freemsg(mp); 15362 } 15363 15364 /* 15365 * Check the usability of ZEROCOPY. It's instead checking the flag set by IP. 15366 */ 15367 static boolean_t 15368 tcp_zcopy_check(tcp_t *tcp) 15369 { 15370 conn_t *connp = tcp->tcp_connp; 15371 ip_xmit_attr_t *ixa = connp->conn_ixa; 15372 boolean_t zc_enabled = B_FALSE; 15373 tcp_stack_t *tcps = tcp->tcp_tcps; 15374 15375 if (do_tcpzcopy == 2) 15376 zc_enabled = B_TRUE; 15377 else if ((do_tcpzcopy == 1) && (ixa->ixa_flags & IXAF_ZCOPY_CAPAB)) 15378 zc_enabled = B_TRUE; 15379 15380 tcp->tcp_snd_zcopy_on = zc_enabled; 15381 if (!TCP_IS_DETACHED(tcp)) { 15382 if (zc_enabled) { 15383 ixa->ixa_flags |= IXAF_VERIFY_ZCOPY; 15384 (void) proto_set_tx_copyopt(connp->conn_rq, connp, 15385 ZCVMSAFE); 15386 TCP_STAT(tcps, tcp_zcopy_on); 15387 } else { 15388 ixa->ixa_flags &= ~IXAF_VERIFY_ZCOPY; 15389 (void) proto_set_tx_copyopt(connp->conn_rq, connp, 15390 ZCVMUNSAFE); 15391 TCP_STAT(tcps, tcp_zcopy_off); 15392 } 15393 } 15394 return (zc_enabled); 15395 } 15396 15397 /* 15398 * Backoff from a zero-copy message by copying data to a new allocated 15399 * message and freeing the original desballoca'ed segmapped message. 15400 * 15401 * This function is called by following two callers: 15402 * 1. tcp_timer: fix_xmitlist is set to B_TRUE, because it's safe to free 15403 * the origial desballoca'ed message and notify sockfs. This is in re- 15404 * transmit state. 15405 * 2. tcp_output: fix_xmitlist is set to B_FALSE. Flag STRUIO_ZCNOTIFY need 15406 * to be copied to new message. 15407 */ 15408 static mblk_t * 15409 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, boolean_t fix_xmitlist) 15410 { 15411 mblk_t *nbp; 15412 mblk_t *head = NULL; 15413 mblk_t *tail = NULL; 15414 tcp_stack_t *tcps = tcp->tcp_tcps; 15415 15416 ASSERT(bp != NULL); 15417 while (bp != NULL) { 15418 if (IS_VMLOANED_MBLK(bp)) { 15419 TCP_STAT(tcps, tcp_zcopy_backoff); 15420 if ((nbp = copyb(bp)) == NULL) { 15421 tcp->tcp_xmit_zc_clean = B_FALSE; 15422 if (tail != NULL) 15423 tail->b_cont = bp; 15424 return ((head == NULL) ? bp : head); 15425 } 15426 15427 if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 15428 if (fix_xmitlist) 15429 tcp_zcopy_notify(tcp); 15430 else 15431 nbp->b_datap->db_struioflag |= 15432 STRUIO_ZCNOTIFY; 15433 } 15434 nbp->b_cont = bp->b_cont; 15435 15436 /* 15437 * Copy saved information and adjust tcp_xmit_tail 15438 * if needed. 15439 */ 15440 if (fix_xmitlist) { 15441 nbp->b_prev = bp->b_prev; 15442 nbp->b_next = bp->b_next; 15443 15444 if (tcp->tcp_xmit_tail == bp) 15445 tcp->tcp_xmit_tail = nbp; 15446 } 15447 15448 /* Free the original message. */ 15449 bp->b_prev = NULL; 15450 bp->b_next = NULL; 15451 freeb(bp); 15452 15453 bp = nbp; 15454 } 15455 15456 if (head == NULL) { 15457 head = bp; 15458 } 15459 if (tail == NULL) { 15460 tail = bp; 15461 } else { 15462 tail->b_cont = bp; 15463 tail = bp; 15464 } 15465 15466 /* Move forward. */ 15467 bp = bp->b_cont; 15468 } 15469 15470 if (fix_xmitlist) { 15471 tcp->tcp_xmit_last = tail; 15472 tcp->tcp_xmit_zc_clean = B_TRUE; 15473 } 15474 15475 return (head); 15476 } 15477 15478 static void 15479 tcp_zcopy_notify(tcp_t *tcp) 15480 { 15481 struct stdata *stp; 15482 conn_t *connp; 15483 15484 if (tcp->tcp_detached) 15485 return; 15486 connp = tcp->tcp_connp; 15487 if (IPCL_IS_NONSTR(connp)) { 15488 (*connp->conn_upcalls->su_zcopy_notify) 15489 (connp->conn_upper_handle); 15490 return; 15491 } 15492 stp = STREAM(connp->conn_rq); 15493 mutex_enter(&stp->sd_lock); 15494 stp->sd_flag |= STZCNOTIFY; 15495 cv_broadcast(&stp->sd_zcopy_wait); 15496 mutex_exit(&stp->sd_lock); 15497 } 15498 15499 /* 15500 * Update the TCP connection according to change of LSO capability. 15501 */ 15502 static void 15503 tcp_update_lso(tcp_t *tcp, ip_xmit_attr_t *ixa) 15504 { 15505 /* 15506 * We check against IPv4 header length to preserve the old behavior 15507 * of only enabling LSO when there are no IP options. 15508 * But this restriction might not be necessary at all. Before removing 15509 * it, need to verify how LSO is handled for source routing case, with 15510 * which IP does software checksum. 15511 * 15512 * For IPv6, whenever any extension header is needed, LSO is supressed. 15513 */ 15514 if (ixa->ixa_ip_hdr_length != ((ixa->ixa_flags & IXAF_IS_IPV4) ? 15515 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN)) 15516 return; 15517 15518 /* 15519 * Either the LSO capability newly became usable, or it has changed. 15520 */ 15521 if (ixa->ixa_flags & IXAF_LSO_CAPAB) { 15522 ill_lso_capab_t *lsoc = &ixa->ixa_lso_capab; 15523 15524 ASSERT(lsoc->ill_lso_max > 0); 15525 tcp->tcp_lso_max = MIN(TCP_MAX_LSO_LENGTH, lsoc->ill_lso_max); 15526 15527 DTRACE_PROBE3(tcp_update_lso, boolean_t, tcp->tcp_lso, 15528 boolean_t, B_TRUE, uint32_t, tcp->tcp_lso_max); 15529 15530 /* 15531 * If LSO to be enabled, notify the STREAM header with larger 15532 * data block. 15533 */ 15534 if (!tcp->tcp_lso) 15535 tcp->tcp_maxpsz_multiplier = 0; 15536 15537 tcp->tcp_lso = B_TRUE; 15538 TCP_STAT(tcp->tcp_tcps, tcp_lso_enabled); 15539 } else { /* LSO capability is not usable any more. */ 15540 DTRACE_PROBE3(tcp_update_lso, boolean_t, tcp->tcp_lso, 15541 boolean_t, B_FALSE, uint32_t, tcp->tcp_lso_max); 15542 15543 /* 15544 * If LSO to be disabled, notify the STREAM header with smaller 15545 * data block. And need to restore fragsize to PMTU. 15546 */ 15547 if (tcp->tcp_lso) { 15548 tcp->tcp_maxpsz_multiplier = 15549 tcp->tcp_tcps->tcps_maxpsz_multiplier; 15550 ixa->ixa_fragsize = ixa->ixa_pmtu; 15551 tcp->tcp_lso = B_FALSE; 15552 TCP_STAT(tcp->tcp_tcps, tcp_lso_disabled); 15553 } 15554 } 15555 15556 (void) tcp_maxpsz_set(tcp, B_TRUE); 15557 } 15558 15559 /* 15560 * Update the TCP connection according to change of ZEROCOPY capability. 15561 */ 15562 static void 15563 tcp_update_zcopy(tcp_t *tcp) 15564 { 15565 conn_t *connp = tcp->tcp_connp; 15566 tcp_stack_t *tcps = tcp->tcp_tcps; 15567 15568 if (tcp->tcp_snd_zcopy_on) { 15569 tcp->tcp_snd_zcopy_on = B_FALSE; 15570 if (!TCP_IS_DETACHED(tcp)) { 15571 (void) proto_set_tx_copyopt(connp->conn_rq, connp, 15572 ZCVMUNSAFE); 15573 TCP_STAT(tcps, tcp_zcopy_off); 15574 } 15575 } else { 15576 tcp->tcp_snd_zcopy_on = B_TRUE; 15577 if (!TCP_IS_DETACHED(tcp)) { 15578 (void) proto_set_tx_copyopt(connp->conn_rq, connp, 15579 ZCVMSAFE); 15580 TCP_STAT(tcps, tcp_zcopy_on); 15581 } 15582 } 15583 } 15584 15585 /* 15586 * Notify function registered with ip_xmit_attr_t. It's called in the squeue 15587 * so it's safe to update the TCP connection. 15588 */ 15589 /* ARGSUSED1 */ 15590 static void 15591 tcp_notify(void *arg, ip_xmit_attr_t *ixa, ixa_notify_type_t ntype, 15592 ixa_notify_arg_t narg) 15593 { 15594 tcp_t *tcp = (tcp_t *)arg; 15595 conn_t *connp = tcp->tcp_connp; 15596 15597 switch (ntype) { 15598 case IXAN_LSO: 15599 tcp_update_lso(tcp, connp->conn_ixa); 15600 break; 15601 case IXAN_PMTU: 15602 tcp_update_pmtu(tcp, B_FALSE); 15603 break; 15604 case IXAN_ZCOPY: 15605 tcp_update_zcopy(tcp); 15606 break; 15607 default: 15608 break; 15609 } 15610 } 15611 15612 static void 15613 tcp_send_data(tcp_t *tcp, mblk_t *mp) 15614 { 15615 conn_t *connp = tcp->tcp_connp; 15616 15617 /* 15618 * Check here to avoid sending zero-copy message down to IP when 15619 * ZEROCOPY capability has turned off. We only need to deal with 15620 * the race condition between sockfs and the notification here. 15621 * Since we have tried to backoff the tcp_xmit_head when turning 15622 * zero-copy off and new messages in tcp_output(), we simply drop 15623 * the dup'ed packet here and let tcp retransmit, if tcp_xmit_zc_clean 15624 * is not true. 15625 */ 15626 if (tcp->tcp_snd_zcopy_aware && !tcp->tcp_snd_zcopy_on && 15627 !tcp->tcp_xmit_zc_clean) { 15628 ip_drop_output("TCP ZC was disabled but not clean", mp, NULL); 15629 freemsg(mp); 15630 return; 15631 } 15632 15633 ASSERT(connp->conn_ixa->ixa_notify_cookie == connp->conn_tcp); 15634 (void) conn_ip_output(mp, connp->conn_ixa); 15635 } 15636 15637 /* 15638 * This handles the case when the receiver has shrunk its win. Per RFC 1122 15639 * if the receiver shrinks the window, i.e. moves the right window to the 15640 * left, the we should not send new data, but should retransmit normally the 15641 * old unacked data between suna and suna + swnd. We might has sent data 15642 * that is now outside the new window, pretend that we didn't send it. 15643 */ 15644 static void 15645 tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_count) 15646 { 15647 uint32_t snxt = tcp->tcp_snxt; 15648 15649 ASSERT(shrunk_count > 0); 15650 15651 if (!tcp->tcp_is_wnd_shrnk) { 15652 tcp->tcp_snxt_shrunk = snxt; 15653 tcp->tcp_is_wnd_shrnk = B_TRUE; 15654 } else if (SEQ_GT(snxt, tcp->tcp_snxt_shrunk)) { 15655 tcp->tcp_snxt_shrunk = snxt; 15656 } 15657 15658 /* Pretend we didn't send the data outside the window */ 15659 snxt -= shrunk_count; 15660 15661 /* Reset all the values per the now shrunk window */ 15662 tcp_update_xmit_tail(tcp, snxt); 15663 tcp->tcp_unsent += shrunk_count; 15664 15665 /* 15666 * If the SACK option is set, delete the entire list of 15667 * notsack'ed blocks. 15668 */ 15669 if (tcp->tcp_sack_info != NULL) { 15670 if (tcp->tcp_notsack_list != NULL) 15671 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp); 15672 } 15673 15674 if (tcp->tcp_suna == tcp->tcp_snxt && tcp->tcp_swnd == 0) 15675 /* 15676 * Make sure the timer is running so that we will probe a zero 15677 * window. 15678 */ 15679 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 15680 } 15681 15682 15683 /* 15684 * The TCP normal data output path. 15685 * NOTE: the logic of the fast path is duplicated from this function. 15686 */ 15687 static void 15688 tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent) 15689 { 15690 int len; 15691 mblk_t *local_time; 15692 mblk_t *mp1; 15693 uint32_t snxt; 15694 int tail_unsent; 15695 int tcpstate; 15696 int usable = 0; 15697 mblk_t *xmit_tail; 15698 int32_t mss; 15699 int32_t num_sack_blk = 0; 15700 int32_t total_hdr_len; 15701 int32_t tcp_hdr_len; 15702 int rc; 15703 tcp_stack_t *tcps = tcp->tcp_tcps; 15704 conn_t *connp = tcp->tcp_connp; 15705 clock_t now = LBOLT_FASTPATH; 15706 15707 tcpstate = tcp->tcp_state; 15708 if (mp == NULL) { 15709 /* 15710 * tcp_wput_data() with NULL mp should only be called when 15711 * there is unsent data. 15712 */ 15713 ASSERT(tcp->tcp_unsent > 0); 15714 /* Really tacky... but we need this for detached closes. */ 15715 len = tcp->tcp_unsent; 15716 goto data_null; 15717 } 15718 15719 #if CCS_STATS 15720 wrw_stats.tot.count++; 15721 wrw_stats.tot.bytes += msgdsize(mp); 15722 #endif 15723 ASSERT(mp->b_datap->db_type == M_DATA); 15724 /* 15725 * Don't allow data after T_ORDREL_REQ or T_DISCON_REQ, 15726 * or before a connection attempt has begun. 15727 */ 15728 if (tcpstate < TCPS_SYN_SENT || tcpstate > TCPS_CLOSE_WAIT || 15729 (tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { 15730 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { 15731 #ifdef DEBUG 15732 cmn_err(CE_WARN, 15733 "tcp_wput_data: data after ordrel, %s", 15734 tcp_display(tcp, NULL, 15735 DISP_ADDR_AND_PORT)); 15736 #else 15737 if (connp->conn_debug) { 15738 (void) strlog(TCP_MOD_ID, 0, 1, 15739 SL_TRACE|SL_ERROR, 15740 "tcp_wput_data: data after ordrel, %s\n", 15741 tcp_display(tcp, NULL, 15742 DISP_ADDR_AND_PORT)); 15743 } 15744 #endif /* DEBUG */ 15745 } 15746 if (tcp->tcp_snd_zcopy_aware && 15747 (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 15748 tcp_zcopy_notify(tcp); 15749 freemsg(mp); 15750 mutex_enter(&tcp->tcp_non_sq_lock); 15751 if (tcp->tcp_flow_stopped && 15752 TCP_UNSENT_BYTES(tcp) <= connp->conn_sndlowat) { 15753 tcp_clrqfull(tcp); 15754 } 15755 mutex_exit(&tcp->tcp_non_sq_lock); 15756 return; 15757 } 15758 15759 /* Strip empties */ 15760 for (;;) { 15761 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 15762 (uintptr_t)INT_MAX); 15763 len = (int)(mp->b_wptr - mp->b_rptr); 15764 if (len > 0) 15765 break; 15766 mp1 = mp; 15767 mp = mp->b_cont; 15768 freeb(mp1); 15769 if (!mp) { 15770 return; 15771 } 15772 } 15773 15774 /* If we are the first on the list ... */ 15775 if (tcp->tcp_xmit_head == NULL) { 15776 tcp->tcp_xmit_head = mp; 15777 tcp->tcp_xmit_tail = mp; 15778 tcp->tcp_xmit_tail_unsent = len; 15779 } else { 15780 /* If tiny tx and room in txq tail, pullup to save mblks. */ 15781 struct datab *dp; 15782 15783 mp1 = tcp->tcp_xmit_last; 15784 if (len < tcp_tx_pull_len && 15785 (dp = mp1->b_datap)->db_ref == 1 && 15786 dp->db_lim - mp1->b_wptr >= len) { 15787 ASSERT(len > 0); 15788 ASSERT(!mp1->b_cont); 15789 if (len == 1) { 15790 *mp1->b_wptr++ = *mp->b_rptr; 15791 } else { 15792 bcopy(mp->b_rptr, mp1->b_wptr, len); 15793 mp1->b_wptr += len; 15794 } 15795 if (mp1 == tcp->tcp_xmit_tail) 15796 tcp->tcp_xmit_tail_unsent += len; 15797 mp1->b_cont = mp->b_cont; 15798 if (tcp->tcp_snd_zcopy_aware && 15799 (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 15800 mp1->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; 15801 freeb(mp); 15802 mp = mp1; 15803 } else { 15804 tcp->tcp_xmit_last->b_cont = mp; 15805 } 15806 len += tcp->tcp_unsent; 15807 } 15808 15809 /* Tack on however many more positive length mblks we have */ 15810 if ((mp1 = mp->b_cont) != NULL) { 15811 do { 15812 int tlen; 15813 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 15814 (uintptr_t)INT_MAX); 15815 tlen = (int)(mp1->b_wptr - mp1->b_rptr); 15816 if (tlen <= 0) { 15817 mp->b_cont = mp1->b_cont; 15818 freeb(mp1); 15819 } else { 15820 len += tlen; 15821 mp = mp1; 15822 } 15823 } while ((mp1 = mp->b_cont) != NULL); 15824 } 15825 tcp->tcp_xmit_last = mp; 15826 tcp->tcp_unsent = len; 15827 15828 if (urgent) 15829 usable = 1; 15830 15831 data_null: 15832 snxt = tcp->tcp_snxt; 15833 xmit_tail = tcp->tcp_xmit_tail; 15834 tail_unsent = tcp->tcp_xmit_tail_unsent; 15835 15836 /* 15837 * Note that tcp_mss has been adjusted to take into account the 15838 * timestamp option if applicable. Because SACK options do not 15839 * appear in every TCP segments and they are of variable lengths, 15840 * they cannot be included in tcp_mss. Thus we need to calculate 15841 * the actual segment length when we need to send a segment which 15842 * includes SACK options. 15843 */ 15844 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 15845 int32_t opt_len; 15846 15847 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 15848 tcp->tcp_num_sack_blk); 15849 opt_len = num_sack_blk * sizeof (sack_blk_t) + TCPOPT_NOP_LEN * 15850 2 + TCPOPT_HEADER_LEN; 15851 mss = tcp->tcp_mss - opt_len; 15852 total_hdr_len = connp->conn_ht_iphc_len + opt_len; 15853 tcp_hdr_len = connp->conn_ht_ulp_len + opt_len; 15854 } else { 15855 mss = tcp->tcp_mss; 15856 total_hdr_len = connp->conn_ht_iphc_len; 15857 tcp_hdr_len = connp->conn_ht_ulp_len; 15858 } 15859 15860 if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && 15861 (TICK_TO_MSEC(now - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) { 15862 SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle); 15863 } 15864 if (tcpstate == TCPS_SYN_RCVD) { 15865 /* 15866 * The three-way connection establishment handshake is not 15867 * complete yet. We want to queue the data for transmission 15868 * after entering ESTABLISHED state (RFC793). A jump to 15869 * "done" label effectively leaves data on the queue. 15870 */ 15871 goto done; 15872 } else { 15873 int usable_r; 15874 15875 /* 15876 * In the special case when cwnd is zero, which can only 15877 * happen if the connection is ECN capable, return now. 15878 * New segments is sent using tcp_timer(). The timer 15879 * is set in tcp_input_data(). 15880 */ 15881 if (tcp->tcp_cwnd == 0) { 15882 /* 15883 * Note that tcp_cwnd is 0 before 3-way handshake is 15884 * finished. 15885 */ 15886 ASSERT(tcp->tcp_ecn_ok || 15887 tcp->tcp_state < TCPS_ESTABLISHED); 15888 return; 15889 } 15890 15891 /* NOTE: trouble if xmitting while SYN not acked? */ 15892 usable_r = snxt - tcp->tcp_suna; 15893 usable_r = tcp->tcp_swnd - usable_r; 15894 15895 /* 15896 * Check if the receiver has shrunk the window. If 15897 * tcp_wput_data() with NULL mp is called, tcp_fin_sent 15898 * cannot be set as there is unsent data, so FIN cannot 15899 * be sent out. Otherwise, we need to take into account 15900 * of FIN as it consumes an "invisible" sequence number. 15901 */ 15902 ASSERT(tcp->tcp_fin_sent == 0); 15903 if (usable_r < 0) { 15904 /* 15905 * The receiver has shrunk the window and we have sent 15906 * -usable_r date beyond the window, re-adjust. 15907 * 15908 * If TCP window scaling is enabled, there can be 15909 * round down error as the advertised receive window 15910 * is actually right shifted n bits. This means that 15911 * the lower n bits info is wiped out. It will look 15912 * like the window is shrunk. Do a check here to 15913 * see if the shrunk amount is actually within the 15914 * error in window calculation. If it is, just 15915 * return. Note that this check is inside the 15916 * shrunk window check. This makes sure that even 15917 * though tcp_process_shrunk_swnd() is not called, 15918 * we will stop further processing. 15919 */ 15920 if ((-usable_r >> tcp->tcp_snd_ws) > 0) { 15921 tcp_process_shrunk_swnd(tcp, -usable_r); 15922 } 15923 return; 15924 } 15925 15926 /* usable = MIN(swnd, cwnd) - unacked_bytes */ 15927 if (tcp->tcp_swnd > tcp->tcp_cwnd) 15928 usable_r -= tcp->tcp_swnd - tcp->tcp_cwnd; 15929 15930 /* usable = MIN(usable, unsent) */ 15931 if (usable_r > len) 15932 usable_r = len; 15933 15934 /* usable = MAX(usable, {1 for urgent, 0 for data}) */ 15935 if (usable_r > 0) { 15936 usable = usable_r; 15937 } else { 15938 /* Bypass all other unnecessary processing. */ 15939 goto done; 15940 } 15941 } 15942 15943 local_time = (mblk_t *)now; 15944 15945 /* 15946 * "Our" Nagle Algorithm. This is not the same as in the old 15947 * BSD. This is more in line with the true intent of Nagle. 15948 * 15949 * The conditions are: 15950 * 1. The amount of unsent data (or amount of data which can be 15951 * sent, whichever is smaller) is less than Nagle limit. 15952 * 2. The last sent size is also less than Nagle limit. 15953 * 3. There is unack'ed data. 15954 * 4. Urgent pointer is not set. Send urgent data ignoring the 15955 * Nagle algorithm. This reduces the probability that urgent 15956 * bytes get "merged" together. 15957 * 5. The app has not closed the connection. This eliminates the 15958 * wait time of the receiving side waiting for the last piece of 15959 * (small) data. 15960 * 15961 * If all are satisified, exit without sending anything. Note 15962 * that Nagle limit can be smaller than 1 MSS. Nagle limit is 15963 * the smaller of 1 MSS and global tcp_naglim_def (default to be 15964 * 4095). 15965 */ 15966 if (usable < (int)tcp->tcp_naglim && 15967 tcp->tcp_naglim > tcp->tcp_last_sent_len && 15968 snxt != tcp->tcp_suna && 15969 !(tcp->tcp_valid_bits & TCP_URG_VALID) && 15970 !(tcp->tcp_valid_bits & TCP_FSS_VALID)) { 15971 goto done; 15972 } 15973 15974 /* 15975 * If tcp_zero_win_probe is not set and the tcp->tcp_cork option 15976 * is set, then we have to force TCP not to send partial segment 15977 * (smaller than MSS bytes). We are calculating the usable now 15978 * based on full mss and will save the rest of remaining data for 15979 * later. When tcp_zero_win_probe is set, TCP needs to send out 15980 * something to do zero window probe. 15981 */ 15982 if (tcp->tcp_cork && !tcp->tcp_zero_win_probe) { 15983 if (usable < mss) 15984 goto done; 15985 usable = (usable / mss) * mss; 15986 } 15987 15988 /* Update the latest receive window size in TCP header. */ 15989 tcp->tcp_tcpha->tha_win = htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 15990 15991 /* Send the packet. */ 15992 rc = tcp_send(tcp, mss, total_hdr_len, tcp_hdr_len, 15993 num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail, 15994 local_time); 15995 15996 /* Pretend that all we were trying to send really got sent */ 15997 if (rc < 0 && tail_unsent < 0) { 15998 do { 15999 xmit_tail = xmit_tail->b_cont; 16000 xmit_tail->b_prev = local_time; 16001 ASSERT((uintptr_t)(xmit_tail->b_wptr - 16002 xmit_tail->b_rptr) <= (uintptr_t)INT_MAX); 16003 tail_unsent += (int)(xmit_tail->b_wptr - 16004 xmit_tail->b_rptr); 16005 } while (tail_unsent < 0); 16006 } 16007 done:; 16008 tcp->tcp_xmit_tail = xmit_tail; 16009 tcp->tcp_xmit_tail_unsent = tail_unsent; 16010 len = tcp->tcp_snxt - snxt; 16011 if (len) { 16012 /* 16013 * If new data was sent, need to update the notsack 16014 * list, which is, afterall, data blocks that have 16015 * not been sack'ed by the receiver. New data is 16016 * not sack'ed. 16017 */ 16018 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 16019 /* len is a negative value. */ 16020 tcp->tcp_pipe -= len; 16021 tcp_notsack_update(&(tcp->tcp_notsack_list), 16022 tcp->tcp_snxt, snxt, 16023 &(tcp->tcp_num_notsack_blk), 16024 &(tcp->tcp_cnt_notsack_list)); 16025 } 16026 tcp->tcp_snxt = snxt + tcp->tcp_fin_sent; 16027 tcp->tcp_rack = tcp->tcp_rnxt; 16028 tcp->tcp_rack_cnt = 0; 16029 if ((snxt + len) == tcp->tcp_suna) { 16030 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 16031 } 16032 } else if (snxt == tcp->tcp_suna && tcp->tcp_swnd == 0) { 16033 /* 16034 * Didn't send anything. Make sure the timer is running 16035 * so that we will probe a zero window. 16036 */ 16037 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 16038 } 16039 /* Note that len is the amount we just sent but with a negative sign */ 16040 tcp->tcp_unsent += len; 16041 mutex_enter(&tcp->tcp_non_sq_lock); 16042 if (tcp->tcp_flow_stopped) { 16043 if (TCP_UNSENT_BYTES(tcp) <= connp->conn_sndlowat) { 16044 tcp_clrqfull(tcp); 16045 } 16046 } else if (TCP_UNSENT_BYTES(tcp) >= connp->conn_sndbuf) { 16047 if (!(tcp->tcp_detached)) 16048 tcp_setqfull(tcp); 16049 } 16050 mutex_exit(&tcp->tcp_non_sq_lock); 16051 } 16052 16053 /* 16054 * tcp_fill_header is called by tcp_send() to fill the outgoing TCP header 16055 * with the template header, as well as other options such as time-stamp, 16056 * ECN and/or SACK. 16057 */ 16058 static void 16059 tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, int num_sack_blk) 16060 { 16061 tcpha_t *tcp_tmpl, *tcpha; 16062 uint32_t *dst, *src; 16063 int hdrlen; 16064 conn_t *connp = tcp->tcp_connp; 16065 16066 ASSERT(OK_32PTR(rptr)); 16067 16068 /* Template header */ 16069 tcp_tmpl = tcp->tcp_tcpha; 16070 16071 /* Header of outgoing packet */ 16072 tcpha = (tcpha_t *)(rptr + connp->conn_ixa->ixa_ip_hdr_length); 16073 16074 /* dst and src are opaque 32-bit fields, used for copying */ 16075 dst = (uint32_t *)rptr; 16076 src = (uint32_t *)connp->conn_ht_iphc; 16077 hdrlen = connp->conn_ht_iphc_len; 16078 16079 /* Fill time-stamp option if needed */ 16080 if (tcp->tcp_snd_ts_ok) { 16081 U32_TO_BE32((uint32_t)now, 16082 (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 4); 16083 U32_TO_BE32(tcp->tcp_ts_recent, 16084 (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 8); 16085 } else { 16086 ASSERT(connp->conn_ht_ulp_len == TCP_MIN_HEADER_LENGTH); 16087 } 16088 16089 /* 16090 * Copy the template header; is this really more efficient than 16091 * calling bcopy()? For simple IPv4/TCP, it may be the case, 16092 * but perhaps not for other scenarios. 16093 */ 16094 dst[0] = src[0]; 16095 dst[1] = src[1]; 16096 dst[2] = src[2]; 16097 dst[3] = src[3]; 16098 dst[4] = src[4]; 16099 dst[5] = src[5]; 16100 dst[6] = src[6]; 16101 dst[7] = src[7]; 16102 dst[8] = src[8]; 16103 dst[9] = src[9]; 16104 if (hdrlen -= 40) { 16105 hdrlen >>= 2; 16106 dst += 10; 16107 src += 10; 16108 do { 16109 *dst++ = *src++; 16110 } while (--hdrlen); 16111 } 16112 16113 /* 16114 * Set the ECN info in the TCP header if it is not a zero 16115 * window probe. Zero window probe is only sent in 16116 * tcp_wput_data() and tcp_timer(). 16117 */ 16118 if (tcp->tcp_ecn_ok && !tcp->tcp_zero_win_probe) { 16119 SET_ECT(tcp, rptr); 16120 16121 if (tcp->tcp_ecn_echo_on) 16122 tcpha->tha_flags |= TH_ECE; 16123 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 16124 tcpha->tha_flags |= TH_CWR; 16125 tcp->tcp_ecn_cwr_sent = B_TRUE; 16126 } 16127 } 16128 16129 /* Fill in SACK options */ 16130 if (num_sack_blk > 0) { 16131 uchar_t *wptr = rptr + connp->conn_ht_iphc_len; 16132 sack_blk_t *tmp; 16133 int32_t i; 16134 16135 wptr[0] = TCPOPT_NOP; 16136 wptr[1] = TCPOPT_NOP; 16137 wptr[2] = TCPOPT_SACK; 16138 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 16139 sizeof (sack_blk_t); 16140 wptr += TCPOPT_REAL_SACK_LEN; 16141 16142 tmp = tcp->tcp_sack_list; 16143 for (i = 0; i < num_sack_blk; i++) { 16144 U32_TO_BE32(tmp[i].begin, wptr); 16145 wptr += sizeof (tcp_seq); 16146 U32_TO_BE32(tmp[i].end, wptr); 16147 wptr += sizeof (tcp_seq); 16148 } 16149 tcpha->tha_offset_and_reserved += 16150 ((num_sack_blk * 2 + 1) << 4); 16151 } 16152 } 16153 16154 /* 16155 * tcp_send() is called by tcp_wput_data() and returns one of the following: 16156 * 16157 * -1 = failed allocation. 16158 * 0 = success; burst count reached, or usable send window is too small, 16159 * and that we'd rather wait until later before sending again. 16160 */ 16161 static int 16162 tcp_send(tcp_t *tcp, const int mss, const int total_hdr_len, 16163 const int tcp_hdr_len, const int num_sack_blk, int *usable, 16164 uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time) 16165 { 16166 int num_burst_seg = tcp->tcp_snd_burst; 16167 int num_lso_seg = 1; 16168 uint_t lso_usable; 16169 boolean_t do_lso_send = B_FALSE; 16170 tcp_stack_t *tcps = tcp->tcp_tcps; 16171 conn_t *connp = tcp->tcp_connp; 16172 ip_xmit_attr_t *ixa = connp->conn_ixa; 16173 16174 /* 16175 * Check LSO possibility. The value of tcp->tcp_lso indicates whether 16176 * the underlying connection is LSO capable. Will check whether having 16177 * enough available data to initiate LSO transmission in the for(){} 16178 * loops. 16179 */ 16180 if (tcp->tcp_lso && (tcp->tcp_valid_bits & ~TCP_FSS_VALID) == 0) 16181 do_lso_send = B_TRUE; 16182 16183 for (;;) { 16184 struct datab *db; 16185 tcpha_t *tcpha; 16186 uint32_t sum; 16187 mblk_t *mp, *mp1; 16188 uchar_t *rptr; 16189 int len; 16190 16191 /* 16192 * Burst count reached, return successfully. 16193 */ 16194 if (num_burst_seg == 0) 16195 break; 16196 16197 /* 16198 * Calculate the maximum payload length we can send at one 16199 * time. 16200 */ 16201 if (do_lso_send) { 16202 /* 16203 * Check whether be able to to do LSO for the current 16204 * available data. 16205 */ 16206 if (num_burst_seg >= 2 && (*usable - 1) / mss >= 1) { 16207 lso_usable = MIN(tcp->tcp_lso_max, *usable); 16208 lso_usable = MIN(lso_usable, 16209 num_burst_seg * mss); 16210 16211 num_lso_seg = lso_usable / mss; 16212 if (lso_usable % mss) { 16213 num_lso_seg++; 16214 tcp->tcp_last_sent_len = (ushort_t) 16215 (lso_usable % mss); 16216 } else { 16217 tcp->tcp_last_sent_len = (ushort_t)mss; 16218 } 16219 } else { 16220 do_lso_send = B_FALSE; 16221 num_lso_seg = 1; 16222 lso_usable = mss; 16223 } 16224 } 16225 16226 ASSERT(num_lso_seg <= IP_MAXPACKET / mss + 1); 16227 #ifdef DEBUG 16228 DTRACE_PROBE2(tcp_send_lso, int, num_lso_seg, boolean_t, 16229 do_lso_send); 16230 #endif 16231 /* 16232 * Adjust num_burst_seg here. 16233 */ 16234 num_burst_seg -= num_lso_seg; 16235 16236 len = mss; 16237 if (len > *usable) { 16238 ASSERT(do_lso_send == B_FALSE); 16239 16240 len = *usable; 16241 if (len <= 0) { 16242 /* Terminate the loop */ 16243 break; /* success; too small */ 16244 } 16245 /* 16246 * Sender silly-window avoidance. 16247 * Ignore this if we are going to send a 16248 * zero window probe out. 16249 * 16250 * TODO: force data into microscopic window? 16251 * ==> (!pushed || (unsent > usable)) 16252 */ 16253 if (len < (tcp->tcp_max_swnd >> 1) && 16254 (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) > len && 16255 !((tcp->tcp_valid_bits & TCP_URG_VALID) && 16256 len == 1) && (! tcp->tcp_zero_win_probe)) { 16257 /* 16258 * If the retransmit timer is not running 16259 * we start it so that we will retransmit 16260 * in the case when the receiver has 16261 * decremented the window. 16262 */ 16263 if (*snxt == tcp->tcp_snxt && 16264 *snxt == tcp->tcp_suna) { 16265 /* 16266 * We are not supposed to send 16267 * anything. So let's wait a little 16268 * bit longer before breaking SWS 16269 * avoidance. 16270 * 16271 * What should the value be? 16272 * Suggestion: MAX(init rexmit time, 16273 * tcp->tcp_rto) 16274 */ 16275 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 16276 } 16277 break; /* success; too small */ 16278 } 16279 } 16280 16281 tcpha = tcp->tcp_tcpha; 16282 16283 /* 16284 * The reason to adjust len here is that we need to set flags 16285 * and calculate checksum. 16286 */ 16287 if (do_lso_send) 16288 len = lso_usable; 16289 16290 *usable -= len; /* Approximate - can be adjusted later */ 16291 if (*usable > 0) 16292 tcpha->tha_flags = TH_ACK; 16293 else 16294 tcpha->tha_flags = (TH_ACK | TH_PUSH); 16295 16296 /* 16297 * Prime pump for IP's checksumming on our behalf. 16298 * Include the adjustment for a source route if any. 16299 * In case of LSO, the partial pseudo-header checksum should 16300 * exclusive TCP length, so zero tha_sum before IP calculate 16301 * pseudo-header checksum for partial checksum offload. 16302 */ 16303 if (do_lso_send) { 16304 sum = 0; 16305 } else { 16306 sum = len + tcp_hdr_len + connp->conn_sum; 16307 sum = (sum >> 16) + (sum & 0xFFFF); 16308 } 16309 tcpha->tha_sum = htons(sum); 16310 tcpha->tha_seq = htonl(*snxt); 16311 16312 /* 16313 * Branch off to tcp_xmit_mp() if any of the VALID bits is 16314 * set. For the case when TCP_FSS_VALID is the only valid 16315 * bit (normal active close), branch off only when we think 16316 * that the FIN flag needs to be set. Note for this case, 16317 * that (snxt + len) may not reflect the actual seg_len, 16318 * as len may be further reduced in tcp_xmit_mp(). If len 16319 * gets modified, we will end up here again. 16320 */ 16321 if (tcp->tcp_valid_bits != 0 && 16322 (tcp->tcp_valid_bits != TCP_FSS_VALID || 16323 ((*snxt + len) == tcp->tcp_fss))) { 16324 uchar_t *prev_rptr; 16325 uint32_t prev_snxt = tcp->tcp_snxt; 16326 16327 if (*tail_unsent == 0) { 16328 ASSERT((*xmit_tail)->b_cont != NULL); 16329 *xmit_tail = (*xmit_tail)->b_cont; 16330 prev_rptr = (*xmit_tail)->b_rptr; 16331 *tail_unsent = (int)((*xmit_tail)->b_wptr - 16332 (*xmit_tail)->b_rptr); 16333 } else { 16334 prev_rptr = (*xmit_tail)->b_rptr; 16335 (*xmit_tail)->b_rptr = (*xmit_tail)->b_wptr - 16336 *tail_unsent; 16337 } 16338 mp = tcp_xmit_mp(tcp, *xmit_tail, len, NULL, NULL, 16339 *snxt, B_FALSE, (uint32_t *)&len, B_FALSE); 16340 /* Restore tcp_snxt so we get amount sent right. */ 16341 tcp->tcp_snxt = prev_snxt; 16342 if (prev_rptr == (*xmit_tail)->b_rptr) { 16343 /* 16344 * If the previous timestamp is still in use, 16345 * don't stomp on it. 16346 */ 16347 if ((*xmit_tail)->b_next == NULL) { 16348 (*xmit_tail)->b_prev = local_time; 16349 (*xmit_tail)->b_next = 16350 (mblk_t *)(uintptr_t)(*snxt); 16351 } 16352 } else 16353 (*xmit_tail)->b_rptr = prev_rptr; 16354 16355 if (mp == NULL) { 16356 return (-1); 16357 } 16358 mp1 = mp->b_cont; 16359 16360 if (len <= mss) /* LSO is unusable (!do_lso_send) */ 16361 tcp->tcp_last_sent_len = (ushort_t)len; 16362 while (mp1->b_cont) { 16363 *xmit_tail = (*xmit_tail)->b_cont; 16364 (*xmit_tail)->b_prev = local_time; 16365 (*xmit_tail)->b_next = 16366 (mblk_t *)(uintptr_t)(*snxt); 16367 mp1 = mp1->b_cont; 16368 } 16369 *snxt += len; 16370 *tail_unsent = (*xmit_tail)->b_wptr - mp1->b_wptr; 16371 BUMP_LOCAL(tcp->tcp_obsegs); 16372 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 16373 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); 16374 tcp_send_data(tcp, mp); 16375 continue; 16376 } 16377 16378 *snxt += len; /* Adjust later if we don't send all of len */ 16379 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 16380 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); 16381 16382 if (*tail_unsent) { 16383 /* Are the bytes above us in flight? */ 16384 rptr = (*xmit_tail)->b_wptr - *tail_unsent; 16385 if (rptr != (*xmit_tail)->b_rptr) { 16386 *tail_unsent -= len; 16387 if (len <= mss) /* LSO is unusable */ 16388 tcp->tcp_last_sent_len = (ushort_t)len; 16389 len += total_hdr_len; 16390 ixa->ixa_pktlen = len; 16391 16392 if (ixa->ixa_flags & IXAF_IS_IPV4) { 16393 tcp->tcp_ipha->ipha_length = htons(len); 16394 } else { 16395 tcp->tcp_ip6h->ip6_plen = 16396 htons(len - IPV6_HDR_LEN); 16397 } 16398 16399 mp = dupb(*xmit_tail); 16400 if (mp == NULL) { 16401 return (-1); /* out_of_mem */ 16402 } 16403 mp->b_rptr = rptr; 16404 /* 16405 * If the old timestamp is no longer in use, 16406 * sample a new timestamp now. 16407 */ 16408 if ((*xmit_tail)->b_next == NULL) { 16409 (*xmit_tail)->b_prev = local_time; 16410 (*xmit_tail)->b_next = 16411 (mblk_t *)(uintptr_t)(*snxt-len); 16412 } 16413 goto must_alloc; 16414 } 16415 } else { 16416 *xmit_tail = (*xmit_tail)->b_cont; 16417 ASSERT((uintptr_t)((*xmit_tail)->b_wptr - 16418 (*xmit_tail)->b_rptr) <= (uintptr_t)INT_MAX); 16419 *tail_unsent = (int)((*xmit_tail)->b_wptr - 16420 (*xmit_tail)->b_rptr); 16421 } 16422 16423 (*xmit_tail)->b_prev = local_time; 16424 (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)(*snxt - len); 16425 16426 *tail_unsent -= len; 16427 if (len <= mss) /* LSO is unusable (!do_lso_send) */ 16428 tcp->tcp_last_sent_len = (ushort_t)len; 16429 16430 len += total_hdr_len; 16431 ixa->ixa_pktlen = len; 16432 16433 if (ixa->ixa_flags & IXAF_IS_IPV4) { 16434 tcp->tcp_ipha->ipha_length = htons(len); 16435 } else { 16436 tcp->tcp_ip6h->ip6_plen = htons(len - IPV6_HDR_LEN); 16437 } 16438 16439 mp = dupb(*xmit_tail); 16440 if (mp == NULL) { 16441 return (-1); /* out_of_mem */ 16442 } 16443 16444 len = total_hdr_len; 16445 /* 16446 * There are four reasons to allocate a new hdr mblk: 16447 * 1) The bytes above us are in use by another packet 16448 * 2) We don't have good alignment 16449 * 3) The mblk is being shared 16450 * 4) We don't have enough room for a header 16451 */ 16452 rptr = mp->b_rptr - len; 16453 if (!OK_32PTR(rptr) || 16454 ((db = mp->b_datap), db->db_ref != 2) || 16455 rptr < db->db_base) { 16456 /* NOTE: we assume allocb returns an OK_32PTR */ 16457 16458 must_alloc:; 16459 mp1 = allocb(connp->conn_ht_iphc_allocated + 16460 tcps->tcps_wroff_xtra, BPRI_MED); 16461 if (mp1 == NULL) { 16462 freemsg(mp); 16463 return (-1); /* out_of_mem */ 16464 } 16465 mp1->b_cont = mp; 16466 mp = mp1; 16467 /* Leave room for Link Level header */ 16468 len = total_hdr_len; 16469 rptr = &mp->b_rptr[tcps->tcps_wroff_xtra]; 16470 mp->b_wptr = &rptr[len]; 16471 } 16472 16473 /* 16474 * Fill in the header using the template header, and add 16475 * options such as time-stamp, ECN and/or SACK, as needed. 16476 */ 16477 tcp_fill_header(tcp, rptr, (clock_t)local_time, num_sack_blk); 16478 16479 mp->b_rptr = rptr; 16480 16481 if (*tail_unsent) { 16482 int spill = *tail_unsent; 16483 16484 mp1 = mp->b_cont; 16485 if (mp1 == NULL) 16486 mp1 = mp; 16487 16488 /* 16489 * If we're a little short, tack on more mblks until 16490 * there is no more spillover. 16491 */ 16492 while (spill < 0) { 16493 mblk_t *nmp; 16494 int nmpsz; 16495 16496 nmp = (*xmit_tail)->b_cont; 16497 nmpsz = MBLKL(nmp); 16498 16499 /* 16500 * Excess data in mblk; can we split it? 16501 * If LSO is enabled for the connection, 16502 * keep on splitting as this is a transient 16503 * send path. 16504 */ 16505 if (!do_lso_send && (spill + nmpsz > 0)) { 16506 /* 16507 * Don't split if stream head was 16508 * told to break up larger writes 16509 * into smaller ones. 16510 */ 16511 if (tcp->tcp_maxpsz_multiplier > 0) 16512 break; 16513 16514 /* 16515 * Next mblk is less than SMSS/2 16516 * rounded up to nearest 64-byte; 16517 * let it get sent as part of the 16518 * next segment. 16519 */ 16520 if (tcp->tcp_localnet && 16521 !tcp->tcp_cork && 16522 (nmpsz < roundup((mss >> 1), 64))) 16523 break; 16524 } 16525 16526 *xmit_tail = nmp; 16527 ASSERT((uintptr_t)nmpsz <= (uintptr_t)INT_MAX); 16528 /* Stash for rtt use later */ 16529 (*xmit_tail)->b_prev = local_time; 16530 (*xmit_tail)->b_next = 16531 (mblk_t *)(uintptr_t)(*snxt - len); 16532 mp1->b_cont = dupb(*xmit_tail); 16533 mp1 = mp1->b_cont; 16534 16535 spill += nmpsz; 16536 if (mp1 == NULL) { 16537 *tail_unsent = spill; 16538 freemsg(mp); 16539 return (-1); /* out_of_mem */ 16540 } 16541 } 16542 16543 /* Trim back any surplus on the last mblk */ 16544 if (spill >= 0) { 16545 mp1->b_wptr -= spill; 16546 *tail_unsent = spill; 16547 } else { 16548 /* 16549 * We did not send everything we could in 16550 * order to remain within the b_cont limit. 16551 */ 16552 *usable -= spill; 16553 *snxt += spill; 16554 tcp->tcp_last_sent_len += spill; 16555 UPDATE_MIB(&tcps->tcps_mib, 16556 tcpOutDataBytes, spill); 16557 /* 16558 * Adjust the checksum 16559 */ 16560 tcpha = (tcpha_t *)(rptr + 16561 ixa->ixa_ip_hdr_length); 16562 sum += spill; 16563 sum = (sum >> 16) + (sum & 0xFFFF); 16564 tcpha->tha_sum = htons(sum); 16565 if (connp->conn_ipversion == IPV4_VERSION) { 16566 sum = ntohs( 16567 ((ipha_t *)rptr)->ipha_length) + 16568 spill; 16569 ((ipha_t *)rptr)->ipha_length = 16570 htons(sum); 16571 } else { 16572 sum = ntohs( 16573 ((ip6_t *)rptr)->ip6_plen) + 16574 spill; 16575 ((ip6_t *)rptr)->ip6_plen = 16576 htons(sum); 16577 } 16578 ixa->ixa_pktlen += spill; 16579 *tail_unsent = 0; 16580 } 16581 } 16582 if (tcp->tcp_ip_forward_progress) { 16583 tcp->tcp_ip_forward_progress = B_FALSE; 16584 ixa->ixa_flags |= IXAF_REACH_CONF; 16585 } else { 16586 ixa->ixa_flags &= ~IXAF_REACH_CONF; 16587 } 16588 16589 /* 16590 * Append LSO information, both flags and mss, to the mp. 16591 */ 16592 if (do_lso_send) { 16593 lso_info_set(mp, mss, HW_LSO); 16594 ixa->ixa_fragsize = IP_MAXPACKET; 16595 ixa->ixa_extra_ident = num_lso_seg - 1; 16596 16597 DTRACE_PROBE2(tcp_send_lso, int, num_lso_seg, 16598 boolean_t, B_TRUE); 16599 16600 tcp_send_data(tcp, mp); 16601 16602 /* 16603 * Restore values of ixa_fragsize and ixa_extra_ident. 16604 */ 16605 ixa->ixa_fragsize = ixa->ixa_pmtu; 16606 ixa->ixa_extra_ident = 0; 16607 tcp->tcp_obsegs += num_lso_seg; 16608 TCP_STAT(tcps, tcp_lso_times); 16609 TCP_STAT_UPDATE(tcps, tcp_lso_pkt_out, num_lso_seg); 16610 } else { 16611 tcp_send_data(tcp, mp); 16612 BUMP_LOCAL(tcp->tcp_obsegs); 16613 } 16614 } 16615 16616 return (0); 16617 } 16618 16619 /* tcp_wput_flush is called by tcp_wput_nondata to handle M_FLUSH messages. */ 16620 static void 16621 tcp_wput_flush(tcp_t *tcp, mblk_t *mp) 16622 { 16623 uchar_t fval = *mp->b_rptr; 16624 mblk_t *tail; 16625 conn_t *connp = tcp->tcp_connp; 16626 queue_t *q = connp->conn_wq; 16627 16628 /* TODO: How should flush interact with urgent data? */ 16629 if ((fval & FLUSHW) && tcp->tcp_xmit_head && 16630 !(tcp->tcp_valid_bits & TCP_URG_VALID)) { 16631 /* 16632 * Flush only data that has not yet been put on the wire. If 16633 * we flush data that we have already transmitted, life, as we 16634 * know it, may come to an end. 16635 */ 16636 tail = tcp->tcp_xmit_tail; 16637 tail->b_wptr -= tcp->tcp_xmit_tail_unsent; 16638 tcp->tcp_xmit_tail_unsent = 0; 16639 tcp->tcp_unsent = 0; 16640 if (tail->b_wptr != tail->b_rptr) 16641 tail = tail->b_cont; 16642 if (tail) { 16643 mblk_t **excess = &tcp->tcp_xmit_head; 16644 for (;;) { 16645 mblk_t *mp1 = *excess; 16646 if (mp1 == tail) 16647 break; 16648 tcp->tcp_xmit_tail = mp1; 16649 tcp->tcp_xmit_last = mp1; 16650 excess = &mp1->b_cont; 16651 } 16652 *excess = NULL; 16653 tcp_close_mpp(&tail); 16654 if (tcp->tcp_snd_zcopy_aware) 16655 tcp_zcopy_notify(tcp); 16656 } 16657 /* 16658 * We have no unsent data, so unsent must be less than 16659 * conn_sndlowat, so re-enable flow. 16660 */ 16661 mutex_enter(&tcp->tcp_non_sq_lock); 16662 if (tcp->tcp_flow_stopped) { 16663 tcp_clrqfull(tcp); 16664 } 16665 mutex_exit(&tcp->tcp_non_sq_lock); 16666 } 16667 /* 16668 * TODO: you can't just flush these, you have to increase rwnd for one 16669 * thing. For another, how should urgent data interact? 16670 */ 16671 if (fval & FLUSHR) { 16672 *mp->b_rptr = fval & ~FLUSHW; 16673 /* XXX */ 16674 qreply(q, mp); 16675 return; 16676 } 16677 freemsg(mp); 16678 } 16679 16680 /* 16681 * tcp_wput_iocdata is called by tcp_wput_nondata to handle all M_IOCDATA 16682 * messages. 16683 */ 16684 static void 16685 tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp) 16686 { 16687 mblk_t *mp1; 16688 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 16689 STRUCT_HANDLE(strbuf, sb); 16690 uint_t addrlen; 16691 conn_t *connp = tcp->tcp_connp; 16692 queue_t *q = connp->conn_wq; 16693 16694 /* Make sure it is one of ours. */ 16695 switch (iocp->ioc_cmd) { 16696 case TI_GETMYNAME: 16697 case TI_GETPEERNAME: 16698 break; 16699 default: 16700 /* 16701 * If the conn is closing, then error the ioctl here. Otherwise 16702 * use the CONN_IOCTLREF_* macros to hold off tcp_close until 16703 * we're done here. We also need to decrement the ioctlref which 16704 * was bumped in either tcp_ioctl or tcp_wput_ioctl. 16705 */ 16706 mutex_enter(&connp->conn_lock); 16707 if (connp->conn_state_flags & CONN_CLOSING) { 16708 mutex_exit(&connp->conn_lock); 16709 iocp = (struct iocblk *)mp->b_rptr; 16710 iocp->ioc_error = EINVAL; 16711 mp->b_datap->db_type = M_IOCNAK; 16712 iocp->ioc_count = 0; 16713 qreply(q, mp); 16714 return; 16715 } 16716 16717 CONN_INC_IOCTLREF_LOCKED(connp); 16718 ip_wput_nondata(q, mp); 16719 CONN_DEC_IOCTLREF(connp); 16720 return; 16721 } 16722 switch (mi_copy_state(q, mp, &mp1)) { 16723 case -1: 16724 return; 16725 case MI_COPY_CASE(MI_COPY_IN, 1): 16726 break; 16727 case MI_COPY_CASE(MI_COPY_OUT, 1): 16728 /* Copy out the strbuf. */ 16729 mi_copyout(q, mp); 16730 return; 16731 case MI_COPY_CASE(MI_COPY_OUT, 2): 16732 /* All done. */ 16733 mi_copy_done(q, mp, 0); 16734 return; 16735 default: 16736 mi_copy_done(q, mp, EPROTO); 16737 return; 16738 } 16739 /* Check alignment of the strbuf */ 16740 if (!OK_32PTR(mp1->b_rptr)) { 16741 mi_copy_done(q, mp, EINVAL); 16742 return; 16743 } 16744 16745 STRUCT_SET_HANDLE(sb, iocp->ioc_flag, (void *)mp1->b_rptr); 16746 16747 if (connp->conn_family == AF_INET) 16748 addrlen = sizeof (sin_t); 16749 else 16750 addrlen = sizeof (sin6_t); 16751 16752 if (STRUCT_FGET(sb, maxlen) < addrlen) { 16753 mi_copy_done(q, mp, EINVAL); 16754 return; 16755 } 16756 16757 switch (iocp->ioc_cmd) { 16758 case TI_GETMYNAME: 16759 break; 16760 case TI_GETPEERNAME: 16761 if (tcp->tcp_state < TCPS_SYN_RCVD) { 16762 mi_copy_done(q, mp, ENOTCONN); 16763 return; 16764 } 16765 break; 16766 } 16767 mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE); 16768 if (!mp1) 16769 return; 16770 16771 STRUCT_FSET(sb, len, addrlen); 16772 switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) { 16773 case TI_GETMYNAME: 16774 (void) conn_getsockname(connp, (struct sockaddr *)mp1->b_wptr, 16775 &addrlen); 16776 break; 16777 case TI_GETPEERNAME: 16778 (void) conn_getpeername(connp, (struct sockaddr *)mp1->b_wptr, 16779 &addrlen); 16780 break; 16781 } 16782 mp1->b_wptr += addrlen; 16783 /* Copy out the address */ 16784 mi_copyout(q, mp); 16785 } 16786 16787 static void 16788 tcp_use_pure_tpi(tcp_t *tcp) 16789 { 16790 conn_t *connp = tcp->tcp_connp; 16791 16792 #ifdef _ILP32 16793 tcp->tcp_acceptor_id = (t_uscalar_t)connp->conn_rq; 16794 #else 16795 tcp->tcp_acceptor_id = connp->conn_dev; 16796 #endif 16797 /* 16798 * Insert this socket into the acceptor hash. 16799 * We might need it for T_CONN_RES message 16800 */ 16801 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 16802 16803 tcp->tcp_issocket = B_FALSE; 16804 TCP_STAT(tcp->tcp_tcps, tcp_sock_fallback); 16805 } 16806 16807 /* 16808 * tcp_wput_ioctl is called by tcp_wput_nondata() to handle all M_IOCTL 16809 * messages. 16810 */ 16811 /* ARGSUSED */ 16812 static void 16813 tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 16814 { 16815 conn_t *connp = (conn_t *)arg; 16816 tcp_t *tcp = connp->conn_tcp; 16817 queue_t *q = connp->conn_wq; 16818 struct iocblk *iocp; 16819 16820 ASSERT(DB_TYPE(mp) == M_IOCTL); 16821 /* 16822 * Try and ASSERT the minimum possible references on the 16823 * conn early enough. Since we are executing on write side, 16824 * the connection is obviously not detached and that means 16825 * there is a ref each for TCP and IP. Since we are behind 16826 * the squeue, the minimum references needed are 3. If the 16827 * conn is in classifier hash list, there should be an 16828 * extra ref for that (we check both the possibilities). 16829 */ 16830 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 16831 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 16832 16833 iocp = (struct iocblk *)mp->b_rptr; 16834 switch (iocp->ioc_cmd) { 16835 case _SIOCSOCKFALLBACK: 16836 /* 16837 * Either sockmod is about to be popped and the socket 16838 * would now be treated as a plain stream, or a module 16839 * is about to be pushed so we could no longer use read- 16840 * side synchronous streams for fused loopback tcp. 16841 * Drain any queued data and disable direct sockfs 16842 * interface from now on. 16843 */ 16844 if (!tcp->tcp_issocket) { 16845 DB_TYPE(mp) = M_IOCNAK; 16846 iocp->ioc_error = EINVAL; 16847 } else { 16848 tcp_use_pure_tpi(tcp); 16849 DB_TYPE(mp) = M_IOCACK; 16850 iocp->ioc_error = 0; 16851 } 16852 iocp->ioc_count = 0; 16853 iocp->ioc_rval = 0; 16854 qreply(q, mp); 16855 return; 16856 } 16857 16858 /* 16859 * If the conn is closing, then error the ioctl here. Otherwise bump the 16860 * conn_ioctlref to hold off tcp_close until we're done here. 16861 */ 16862 mutex_enter(&(connp)->conn_lock); 16863 if ((connp)->conn_state_flags & CONN_CLOSING) { 16864 mutex_exit(&(connp)->conn_lock); 16865 iocp->ioc_error = EINVAL; 16866 mp->b_datap->db_type = M_IOCNAK; 16867 iocp->ioc_count = 0; 16868 qreply(q, mp); 16869 return; 16870 } 16871 16872 CONN_INC_IOCTLREF_LOCKED(connp); 16873 ip_wput_nondata(q, mp); 16874 CONN_DEC_IOCTLREF(connp); 16875 } 16876 16877 /* 16878 * This routine is called by tcp_wput() to handle all TPI requests. 16879 */ 16880 /* ARGSUSED */ 16881 static void 16882 tcp_wput_proto(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 16883 { 16884 conn_t *connp = (conn_t *)arg; 16885 tcp_t *tcp = connp->conn_tcp; 16886 union T_primitives *tprim = (union T_primitives *)mp->b_rptr; 16887 uchar_t *rptr; 16888 t_scalar_t type; 16889 cred_t *cr; 16890 16891 /* 16892 * Try and ASSERT the minimum possible references on the 16893 * conn early enough. Since we are executing on write side, 16894 * the connection is obviously not detached and that means 16895 * there is a ref each for TCP and IP. Since we are behind 16896 * the squeue, the minimum references needed are 3. If the 16897 * conn is in classifier hash list, there should be an 16898 * extra ref for that (we check both the possibilities). 16899 */ 16900 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 16901 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 16902 16903 rptr = mp->b_rptr; 16904 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 16905 if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { 16906 type = ((union T_primitives *)rptr)->type; 16907 if (type == T_EXDATA_REQ) { 16908 tcp_output_urgent(connp, mp, arg2, NULL); 16909 } else if (type != T_DATA_REQ) { 16910 goto non_urgent_data; 16911 } else { 16912 /* TODO: options, flags, ... from user */ 16913 /* Set length to zero for reclamation below */ 16914 tcp_wput_data(tcp, mp->b_cont, B_TRUE); 16915 freeb(mp); 16916 } 16917 return; 16918 } else { 16919 if (connp->conn_debug) { 16920 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 16921 "tcp_wput_proto, dropping one..."); 16922 } 16923 freemsg(mp); 16924 return; 16925 } 16926 16927 non_urgent_data: 16928 16929 switch ((int)tprim->type) { 16930 case T_SSL_PROXY_BIND_REQ: /* an SSL proxy endpoint bind request */ 16931 /* 16932 * save the kssl_ent_t from the next block, and convert this 16933 * back to a normal bind_req. 16934 */ 16935 if (mp->b_cont != NULL) { 16936 ASSERT(MBLKL(mp->b_cont) >= sizeof (kssl_ent_t)); 16937 16938 if (tcp->tcp_kssl_ent != NULL) { 16939 kssl_release_ent(tcp->tcp_kssl_ent, NULL, 16940 KSSL_NO_PROXY); 16941 tcp->tcp_kssl_ent = NULL; 16942 } 16943 bcopy(mp->b_cont->b_rptr, &tcp->tcp_kssl_ent, 16944 sizeof (kssl_ent_t)); 16945 kssl_hold_ent(tcp->tcp_kssl_ent); 16946 freemsg(mp->b_cont); 16947 mp->b_cont = NULL; 16948 } 16949 tprim->type = T_BIND_REQ; 16950 16951 /* FALLTHROUGH */ 16952 case O_T_BIND_REQ: /* bind request */ 16953 case T_BIND_REQ: /* new semantics bind request */ 16954 tcp_tpi_bind(tcp, mp); 16955 break; 16956 case T_UNBIND_REQ: /* unbind request */ 16957 tcp_tpi_unbind(tcp, mp); 16958 break; 16959 case O_T_CONN_RES: /* old connection response XXX */ 16960 case T_CONN_RES: /* connection response */ 16961 tcp_tli_accept(tcp, mp); 16962 break; 16963 case T_CONN_REQ: /* connection request */ 16964 tcp_tpi_connect(tcp, mp); 16965 break; 16966 case T_DISCON_REQ: /* disconnect request */ 16967 tcp_disconnect(tcp, mp); 16968 break; 16969 case T_CAPABILITY_REQ: 16970 tcp_capability_req(tcp, mp); /* capability request */ 16971 break; 16972 case T_INFO_REQ: /* information request */ 16973 tcp_info_req(tcp, mp); 16974 break; 16975 case T_SVR4_OPTMGMT_REQ: /* manage options req */ 16976 case T_OPTMGMT_REQ: 16977 /* 16978 * Note: no support for snmpcom_req() through new 16979 * T_OPTMGMT_REQ. See comments in ip.c 16980 */ 16981 16982 /* 16983 * All Solaris components should pass a db_credp 16984 * for this TPI message, hence we ASSERT. 16985 * But in case there is some other M_PROTO that looks 16986 * like a TPI message sent by some other kernel 16987 * component, we check and return an error. 16988 */ 16989 cr = msg_getcred(mp, NULL); 16990 ASSERT(cr != NULL); 16991 if (cr == NULL) { 16992 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 16993 return; 16994 } 16995 /* 16996 * If EINPROGRESS is returned, the request has been queued 16997 * for subsequent processing by ip_restart_optmgmt(), which 16998 * will do the CONN_DEC_REF(). 16999 */ 17000 if ((int)tprim->type == T_SVR4_OPTMGMT_REQ) { 17001 svr4_optcom_req(connp->conn_wq, mp, cr, &tcp_opt_obj); 17002 } else { 17003 tpi_optcom_req(connp->conn_wq, mp, cr, &tcp_opt_obj); 17004 } 17005 break; 17006 17007 case T_UNITDATA_REQ: /* unitdata request */ 17008 tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); 17009 break; 17010 case T_ORDREL_REQ: /* orderly release req */ 17011 freemsg(mp); 17012 17013 if (tcp->tcp_fused) 17014 tcp_unfuse(tcp); 17015 17016 if (tcp_xmit_end(tcp) != 0) { 17017 /* 17018 * We were crossing FINs and got a reset from 17019 * the other side. Just ignore it. 17020 */ 17021 if (connp->conn_debug) { 17022 (void) strlog(TCP_MOD_ID, 0, 1, 17023 SL_ERROR|SL_TRACE, 17024 "tcp_wput_proto, T_ORDREL_REQ out of " 17025 "state %s", 17026 tcp_display(tcp, NULL, 17027 DISP_ADDR_AND_PORT)); 17028 } 17029 } 17030 break; 17031 case T_ADDR_REQ: 17032 tcp_addr_req(tcp, mp); 17033 break; 17034 default: 17035 if (connp->conn_debug) { 17036 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 17037 "tcp_wput_proto, bogus TPI msg, type %d", 17038 tprim->type); 17039 } 17040 /* 17041 * We used to M_ERROR. Sending TNOTSUPPORT gives the user 17042 * to recover. 17043 */ 17044 tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); 17045 break; 17046 } 17047 } 17048 17049 /* 17050 * The TCP write service routine should never be called... 17051 */ 17052 /* ARGSUSED */ 17053 static void 17054 tcp_wsrv(queue_t *q) 17055 { 17056 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 17057 17058 TCP_STAT(tcps, tcp_wsrv_called); 17059 } 17060 17061 /* 17062 * Send out a control packet on the tcp connection specified. This routine 17063 * is typically called where we need a simple ACK or RST generated. 17064 */ 17065 static void 17066 tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, uint32_t ack, int ctl) 17067 { 17068 uchar_t *rptr; 17069 tcpha_t *tcpha; 17070 ipha_t *ipha = NULL; 17071 ip6_t *ip6h = NULL; 17072 uint32_t sum; 17073 int total_hdr_len; 17074 int ip_hdr_len; 17075 mblk_t *mp; 17076 tcp_stack_t *tcps = tcp->tcp_tcps; 17077 conn_t *connp = tcp->tcp_connp; 17078 ip_xmit_attr_t *ixa = connp->conn_ixa; 17079 17080 /* 17081 * Save sum for use in source route later. 17082 */ 17083 sum = connp->conn_ht_ulp_len + connp->conn_sum; 17084 total_hdr_len = connp->conn_ht_iphc_len; 17085 ip_hdr_len = ixa->ixa_ip_hdr_length; 17086 17087 /* If a text string is passed in with the request, pass it to strlog. */ 17088 if (str != NULL && connp->conn_debug) { 17089 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 17090 "tcp_xmit_ctl: '%s', seq 0x%x, ack 0x%x, ctl 0x%x", 17091 str, seq, ack, ctl); 17092 } 17093 mp = allocb(connp->conn_ht_iphc_allocated + tcps->tcps_wroff_xtra, 17094 BPRI_MED); 17095 if (mp == NULL) { 17096 return; 17097 } 17098 rptr = &mp->b_rptr[tcps->tcps_wroff_xtra]; 17099 mp->b_rptr = rptr; 17100 mp->b_wptr = &rptr[total_hdr_len]; 17101 bcopy(connp->conn_ht_iphc, rptr, total_hdr_len); 17102 17103 ixa->ixa_pktlen = total_hdr_len; 17104 17105 if (ixa->ixa_flags & IXAF_IS_IPV4) { 17106 ipha = (ipha_t *)rptr; 17107 ipha->ipha_length = htons(total_hdr_len); 17108 } else { 17109 ip6h = (ip6_t *)rptr; 17110 ip6h->ip6_plen = htons(total_hdr_len - IPV6_HDR_LEN); 17111 } 17112 tcpha = (tcpha_t *)&rptr[ip_hdr_len]; 17113 tcpha->tha_flags = (uint8_t)ctl; 17114 if (ctl & TH_RST) { 17115 BUMP_MIB(&tcps->tcps_mib, tcpOutRsts); 17116 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 17117 /* 17118 * Don't send TSopt w/ TH_RST packets per RFC 1323. 17119 */ 17120 if (tcp->tcp_snd_ts_ok && 17121 tcp->tcp_state > TCPS_SYN_SENT) { 17122 mp->b_wptr = &rptr[total_hdr_len - TCPOPT_REAL_TS_LEN]; 17123 *(mp->b_wptr) = TCPOPT_EOL; 17124 17125 ixa->ixa_pktlen = total_hdr_len - TCPOPT_REAL_TS_LEN; 17126 17127 if (connp->conn_ipversion == IPV4_VERSION) { 17128 ipha->ipha_length = htons(total_hdr_len - 17129 TCPOPT_REAL_TS_LEN); 17130 } else { 17131 ip6h->ip6_plen = htons(total_hdr_len - 17132 IPV6_HDR_LEN - TCPOPT_REAL_TS_LEN); 17133 } 17134 tcpha->tha_offset_and_reserved -= (3 << 4); 17135 sum -= TCPOPT_REAL_TS_LEN; 17136 } 17137 } 17138 if (ctl & TH_ACK) { 17139 if (tcp->tcp_snd_ts_ok) { 17140 uint32_t llbolt = (uint32_t)LBOLT_FASTPATH; 17141 17142 U32_TO_BE32(llbolt, 17143 (char *)tcpha + TCP_MIN_HEADER_LENGTH+4); 17144 U32_TO_BE32(tcp->tcp_ts_recent, 17145 (char *)tcpha + TCP_MIN_HEADER_LENGTH+8); 17146 } 17147 17148 /* Update the latest receive window size in TCP header. */ 17149 tcpha->tha_win = htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 17150 /* Track what we sent to the peer */ 17151 tcp->tcp_tcpha->tha_win = tcpha->tha_win; 17152 tcp->tcp_rack = ack; 17153 tcp->tcp_rack_cnt = 0; 17154 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 17155 } 17156 BUMP_LOCAL(tcp->tcp_obsegs); 17157 tcpha->tha_seq = htonl(seq); 17158 tcpha->tha_ack = htonl(ack); 17159 /* 17160 * Include the adjustment for a source route if any. 17161 */ 17162 sum = (sum >> 16) + (sum & 0xFFFF); 17163 tcpha->tha_sum = htons(sum); 17164 tcp_send_data(tcp, mp); 17165 } 17166 17167 /* 17168 * If this routine returns B_TRUE, TCP can generate a RST in response 17169 * to a segment. If it returns B_FALSE, TCP should not respond. 17170 */ 17171 static boolean_t 17172 tcp_send_rst_chk(tcp_stack_t *tcps) 17173 { 17174 int64_t now; 17175 17176 /* 17177 * TCP needs to protect itself from generating too many RSTs. 17178 * This can be a DoS attack by sending us random segments 17179 * soliciting RSTs. 17180 * 17181 * What we do here is to have a limit of tcp_rst_sent_rate RSTs 17182 * in each 1 second interval. In this way, TCP still generate 17183 * RSTs in normal cases but when under attack, the impact is 17184 * limited. 17185 */ 17186 if (tcps->tcps_rst_sent_rate_enabled != 0) { 17187 now = ddi_get_lbolt64(); 17188 if (TICK_TO_MSEC(now - tcps->tcps_last_rst_intrvl) > 17189 1*SECONDS) { 17190 tcps->tcps_last_rst_intrvl = now; 17191 tcps->tcps_rst_cnt = 1; 17192 } else if (++tcps->tcps_rst_cnt > tcps->tcps_rst_sent_rate) { 17193 return (B_FALSE); 17194 } 17195 } 17196 return (B_TRUE); 17197 } 17198 17199 /* 17200 * Generate a reset based on an inbound packet, connp is set by caller 17201 * when RST is in response to an unexpected inbound packet for which 17202 * there is active tcp state in the system. 17203 * 17204 * IPSEC NOTE : Try to send the reply with the same protection as it came 17205 * in. We have the ip_recv_attr_t which is reversed to form the ip_xmit_attr_t. 17206 * That way the packet will go out at the same level of protection as it 17207 * came in with. 17208 */ 17209 static void 17210 tcp_xmit_early_reset(char *str, mblk_t *mp, uint32_t seq, uint32_t ack, int ctl, 17211 ip_recv_attr_t *ira, ip_stack_t *ipst, conn_t *connp) 17212 { 17213 ipha_t *ipha = NULL; 17214 ip6_t *ip6h = NULL; 17215 ushort_t len; 17216 tcpha_t *tcpha; 17217 int i; 17218 ipaddr_t v4addr; 17219 in6_addr_t v6addr; 17220 netstack_t *ns = ipst->ips_netstack; 17221 tcp_stack_t *tcps = ns->netstack_tcp; 17222 ip_xmit_attr_t ixas, *ixa; 17223 uint_t ip_hdr_len = ira->ira_ip_hdr_length; 17224 boolean_t need_refrele = B_FALSE; /* ixa_refrele(ixa) */ 17225 ushort_t port; 17226 17227 if (!tcp_send_rst_chk(tcps)) { 17228 TCP_STAT(tcps, tcp_rst_unsent); 17229 freemsg(mp); 17230 return; 17231 } 17232 17233 /* 17234 * If connp != NULL we use conn_ixa to keep IP_NEXTHOP and other 17235 * options from the listener. In that case the caller must ensure that 17236 * we are running on the listener = connp squeue. 17237 * 17238 * We get a safe copy of conn_ixa so we don't need to restore anything 17239 * we or ip_output_simple might change in the ixa. 17240 */ 17241 if (connp != NULL) { 17242 ASSERT(connp->conn_on_sqp); 17243 17244 ixa = conn_get_ixa_exclusive(connp); 17245 if (ixa == NULL) { 17246 TCP_STAT(tcps, tcp_rst_unsent); 17247 freemsg(mp); 17248 return; 17249 } 17250 need_refrele = B_TRUE; 17251 } else { 17252 bzero(&ixas, sizeof (ixas)); 17253 ixa = &ixas; 17254 /* 17255 * IXAF_VERIFY_SOURCE is overkill since we know the 17256 * packet was for us. 17257 */ 17258 ixa->ixa_flags |= IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE; 17259 ixa->ixa_protocol = IPPROTO_TCP; 17260 ixa->ixa_zoneid = ira->ira_zoneid; 17261 ixa->ixa_ifindex = 0; 17262 ixa->ixa_ipst = ipst; 17263 ixa->ixa_cred = kcred; 17264 ixa->ixa_cpid = NOPID; 17265 } 17266 17267 if (str && tcps->tcps_dbg) { 17268 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 17269 "tcp_xmit_early_reset: '%s', seq 0x%x, ack 0x%x, " 17270 "flags 0x%x", 17271 str, seq, ack, ctl); 17272 } 17273 if (mp->b_datap->db_ref != 1) { 17274 mblk_t *mp1 = copyb(mp); 17275 freemsg(mp); 17276 mp = mp1; 17277 if (mp == NULL) 17278 goto done; 17279 } else if (mp->b_cont) { 17280 freemsg(mp->b_cont); 17281 mp->b_cont = NULL; 17282 DB_CKSUMFLAGS(mp) = 0; 17283 } 17284 /* 17285 * We skip reversing source route here. 17286 * (for now we replace all IP options with EOL) 17287 */ 17288 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 17289 ipha = (ipha_t *)mp->b_rptr; 17290 for (i = IP_SIMPLE_HDR_LENGTH; i < (int)ip_hdr_len; i++) 17291 mp->b_rptr[i] = IPOPT_EOL; 17292 /* 17293 * Make sure that src address isn't flagrantly invalid. 17294 * Not all broadcast address checking for the src address 17295 * is possible, since we don't know the netmask of the src 17296 * addr. No check for destination address is done, since 17297 * IP will not pass up a packet with a broadcast dest 17298 * address to TCP. Similar checks are done below for IPv6. 17299 */ 17300 if (ipha->ipha_src == 0 || ipha->ipha_src == INADDR_BROADCAST || 17301 CLASSD(ipha->ipha_src)) { 17302 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 17303 ip_drop_input("ipIfStatsInDiscards", mp, NULL); 17304 freemsg(mp); 17305 goto done; 17306 } 17307 } else { 17308 ip6h = (ip6_t *)mp->b_rptr; 17309 17310 if (IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src) || 17311 IN6_IS_ADDR_MULTICAST(&ip6h->ip6_src)) { 17312 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsInDiscards); 17313 ip_drop_input("ipIfStatsInDiscards", mp, NULL); 17314 freemsg(mp); 17315 goto done; 17316 } 17317 17318 /* Remove any extension headers assuming partial overlay */ 17319 if (ip_hdr_len > IPV6_HDR_LEN) { 17320 uint8_t *to; 17321 17322 to = mp->b_rptr + ip_hdr_len - IPV6_HDR_LEN; 17323 ovbcopy(ip6h, to, IPV6_HDR_LEN); 17324 mp->b_rptr += ip_hdr_len - IPV6_HDR_LEN; 17325 ip_hdr_len = IPV6_HDR_LEN; 17326 ip6h = (ip6_t *)mp->b_rptr; 17327 ip6h->ip6_nxt = IPPROTO_TCP; 17328 } 17329 } 17330 tcpha = (tcpha_t *)&mp->b_rptr[ip_hdr_len]; 17331 if (tcpha->tha_flags & TH_RST) { 17332 freemsg(mp); 17333 goto done; 17334 } 17335 tcpha->tha_offset_and_reserved = (5 << 4); 17336 len = ip_hdr_len + sizeof (tcpha_t); 17337 mp->b_wptr = &mp->b_rptr[len]; 17338 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 17339 ipha->ipha_length = htons(len); 17340 /* Swap addresses */ 17341 v4addr = ipha->ipha_src; 17342 ipha->ipha_src = ipha->ipha_dst; 17343 ipha->ipha_dst = v4addr; 17344 ipha->ipha_ident = 0; 17345 ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl; 17346 ixa->ixa_flags |= IXAF_IS_IPV4; 17347 ixa->ixa_ip_hdr_length = ip_hdr_len; 17348 } else { 17349 ip6h->ip6_plen = htons(len - IPV6_HDR_LEN); 17350 /* Swap addresses */ 17351 v6addr = ip6h->ip6_src; 17352 ip6h->ip6_src = ip6h->ip6_dst; 17353 ip6h->ip6_dst = v6addr; 17354 ip6h->ip6_hops = (uchar_t)tcps->tcps_ipv6_hoplimit; 17355 ixa->ixa_flags &= ~IXAF_IS_IPV4; 17356 17357 if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_dst)) { 17358 ixa->ixa_flags |= IXAF_SCOPEID_SET; 17359 ixa->ixa_scopeid = ira->ira_ruifindex; 17360 } 17361 ixa->ixa_ip_hdr_length = IPV6_HDR_LEN; 17362 } 17363 ixa->ixa_pktlen = len; 17364 17365 /* Swap the ports */ 17366 port = tcpha->tha_fport; 17367 tcpha->tha_fport = tcpha->tha_lport; 17368 tcpha->tha_lport = port; 17369 17370 tcpha->tha_ack = htonl(ack); 17371 tcpha->tha_seq = htonl(seq); 17372 tcpha->tha_win = 0; 17373 tcpha->tha_sum = htons(sizeof (tcpha_t)); 17374 tcpha->tha_flags = (uint8_t)ctl; 17375 if (ctl & TH_RST) { 17376 BUMP_MIB(&tcps->tcps_mib, tcpOutRsts); 17377 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 17378 } 17379 17380 /* Discard any old label */ 17381 if (ixa->ixa_free_flags & IXA_FREE_TSL) { 17382 ASSERT(ixa->ixa_tsl != NULL); 17383 label_rele(ixa->ixa_tsl); 17384 ixa->ixa_free_flags &= ~IXA_FREE_TSL; 17385 } 17386 ixa->ixa_tsl = ira->ira_tsl; /* Behave as a multi-level responder */ 17387 17388 if (ira->ira_flags & IRAF_IPSEC_SECURE) { 17389 /* 17390 * Apply IPsec based on how IPsec was applied to 17391 * the packet that caused the RST. 17392 */ 17393 if (!ipsec_in_to_out(ira, ixa, mp, ipha, ip6h)) { 17394 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 17395 /* Note: mp already consumed and ip_drop_packet done */ 17396 goto done; 17397 } 17398 } else { 17399 /* 17400 * This is in clear. The RST message we are building 17401 * here should go out in clear, independent of our policy. 17402 */ 17403 ixa->ixa_flags |= IXAF_NO_IPSEC; 17404 } 17405 17406 /* 17407 * NOTE: one might consider tracing a TCP packet here, but 17408 * this function has no active TCP state and no tcp structure 17409 * that has a trace buffer. If we traced here, we would have 17410 * to keep a local trace buffer in tcp_record_trace(). 17411 */ 17412 17413 (void) ip_output_simple(mp, ixa); 17414 done: 17415 ixa_cleanup(ixa); 17416 if (need_refrele) { 17417 ASSERT(ixa != &ixas); 17418 ixa_refrele(ixa); 17419 } 17420 } 17421 17422 /* 17423 * Initiate closedown sequence on an active connection. (May be called as 17424 * writer.) Return value zero for OK return, non-zero for error return. 17425 */ 17426 static int 17427 tcp_xmit_end(tcp_t *tcp) 17428 { 17429 mblk_t *mp; 17430 tcp_stack_t *tcps = tcp->tcp_tcps; 17431 iulp_t uinfo; 17432 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 17433 conn_t *connp = tcp->tcp_connp; 17434 17435 if (tcp->tcp_state < TCPS_SYN_RCVD || 17436 tcp->tcp_state > TCPS_CLOSE_WAIT) { 17437 /* 17438 * Invalid state, only states TCPS_SYN_RCVD, 17439 * TCPS_ESTABLISHED and TCPS_CLOSE_WAIT are valid 17440 */ 17441 return (-1); 17442 } 17443 17444 tcp->tcp_fss = tcp->tcp_snxt + tcp->tcp_unsent; 17445 tcp->tcp_valid_bits |= TCP_FSS_VALID; 17446 /* 17447 * If there is nothing more unsent, send the FIN now. 17448 * Otherwise, it will go out with the last segment. 17449 */ 17450 if (tcp->tcp_unsent == 0) { 17451 mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 17452 tcp->tcp_fss, B_FALSE, NULL, B_FALSE); 17453 17454 if (mp) { 17455 tcp_send_data(tcp, mp); 17456 } else { 17457 /* 17458 * Couldn't allocate msg. Pretend we got it out. 17459 * Wait for rexmit timeout. 17460 */ 17461 tcp->tcp_snxt = tcp->tcp_fss + 1; 17462 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 17463 } 17464 17465 /* 17466 * If needed, update tcp_rexmit_snxt as tcp_snxt is 17467 * changed. 17468 */ 17469 if (tcp->tcp_rexmit && tcp->tcp_rexmit_nxt == tcp->tcp_fss) { 17470 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 17471 } 17472 } else { 17473 /* 17474 * If tcp->tcp_cork is set, then the data will not get sent, 17475 * so we have to check that and unset it first. 17476 */ 17477 if (tcp->tcp_cork) 17478 tcp->tcp_cork = B_FALSE; 17479 tcp_wput_data(tcp, NULL, B_FALSE); 17480 } 17481 17482 /* 17483 * If TCP does not get enough samples of RTT or tcp_rtt_updates 17484 * is 0, don't update the cache. 17485 */ 17486 if (tcps->tcps_rtt_updates == 0 || 17487 tcp->tcp_rtt_update < tcps->tcps_rtt_updates) 17488 return (0); 17489 17490 /* 17491 * We do not have a good algorithm to update ssthresh at this time. 17492 * So don't do any update. 17493 */ 17494 bzero(&uinfo, sizeof (uinfo)); 17495 uinfo.iulp_rtt = tcp->tcp_rtt_sa; 17496 uinfo.iulp_rtt_sd = tcp->tcp_rtt_sd; 17497 17498 /* 17499 * Note that uinfo is kept for conn_faddr in the DCE. Could update even 17500 * if source routed but we don't. 17501 */ 17502 if (connp->conn_ipversion == IPV4_VERSION) { 17503 if (connp->conn_faddr_v4 != tcp->tcp_ipha->ipha_dst) { 17504 return (0); 17505 } 17506 (void) dce_update_uinfo_v4(connp->conn_faddr_v4, &uinfo, ipst); 17507 } else { 17508 uint_t ifindex; 17509 17510 if (!(IN6_ARE_ADDR_EQUAL(&connp->conn_faddr_v6, 17511 &tcp->tcp_ip6h->ip6_dst))) { 17512 return (0); 17513 } 17514 ifindex = 0; 17515 if (IN6_IS_ADDR_LINKSCOPE(&connp->conn_faddr_v6)) { 17516 ip_xmit_attr_t *ixa = connp->conn_ixa; 17517 17518 /* 17519 * If we are going to create a DCE we'd better have 17520 * an ifindex 17521 */ 17522 if (ixa->ixa_nce != NULL) { 17523 ifindex = ixa->ixa_nce->nce_common->ncec_ill-> 17524 ill_phyint->phyint_ifindex; 17525 } else { 17526 return (0); 17527 } 17528 } 17529 17530 (void) dce_update_uinfo(&connp->conn_faddr_v6, ifindex, &uinfo, 17531 ipst); 17532 } 17533 return (0); 17534 } 17535 17536 /* 17537 * Generate a "no listener here" RST in response to an "unknown" segment. 17538 * connp is set by caller when RST is in response to an unexpected 17539 * inbound packet for which there is active tcp state in the system. 17540 * Note that we are reusing the incoming mp to construct the outgoing RST. 17541 */ 17542 void 17543 tcp_xmit_listeners_reset(mblk_t *mp, ip_recv_attr_t *ira, ip_stack_t *ipst, 17544 conn_t *connp) 17545 { 17546 uchar_t *rptr; 17547 uint32_t seg_len; 17548 tcpha_t *tcpha; 17549 uint32_t seg_seq; 17550 uint32_t seg_ack; 17551 uint_t flags; 17552 ipha_t *ipha; 17553 ip6_t *ip6h; 17554 boolean_t policy_present; 17555 netstack_t *ns = ipst->ips_netstack; 17556 tcp_stack_t *tcps = ns->netstack_tcp; 17557 ipsec_stack_t *ipss = tcps->tcps_netstack->netstack_ipsec; 17558 uint_t ip_hdr_len = ira->ira_ip_hdr_length; 17559 17560 TCP_STAT(tcps, tcp_no_listener); 17561 17562 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 17563 policy_present = ipss->ipsec_inbound_v4_policy_present; 17564 ipha = (ipha_t *)mp->b_rptr; 17565 ip6h = NULL; 17566 } else { 17567 policy_present = ipss->ipsec_inbound_v6_policy_present; 17568 ipha = NULL; 17569 ip6h = (ip6_t *)mp->b_rptr; 17570 } 17571 17572 if (policy_present) { 17573 /* 17574 * The conn_t parameter is NULL because we already know 17575 * nobody's home. 17576 */ 17577 mp = ipsec_check_global_policy(mp, (conn_t *)NULL, ipha, ip6h, 17578 ira, ns); 17579 if (mp == NULL) 17580 return; 17581 } 17582 if (is_system_labeled() && !tsol_can_reply_error(mp, ira)) { 17583 DTRACE_PROBE2( 17584 tx__ip__log__error__nolistener__tcp, 17585 char *, "Could not reply with RST to mp(1)", 17586 mblk_t *, mp); 17587 ip2dbg(("tcp_xmit_listeners_reset: not permitted to reply\n")); 17588 freemsg(mp); 17589 return; 17590 } 17591 17592 rptr = mp->b_rptr; 17593 17594 tcpha = (tcpha_t *)&rptr[ip_hdr_len]; 17595 seg_seq = ntohl(tcpha->tha_seq); 17596 seg_ack = ntohl(tcpha->tha_ack); 17597 flags = tcpha->tha_flags; 17598 17599 seg_len = msgdsize(mp) - (TCP_HDR_LENGTH(tcpha) + ip_hdr_len); 17600 if (flags & TH_RST) { 17601 freemsg(mp); 17602 } else if (flags & TH_ACK) { 17603 tcp_xmit_early_reset("no tcp, reset", mp, seg_ack, 0, TH_RST, 17604 ira, ipst, connp); 17605 } else { 17606 if (flags & TH_SYN) { 17607 seg_len++; 17608 } else { 17609 /* 17610 * Here we violate the RFC. Note that a normal 17611 * TCP will never send a segment without the ACK 17612 * flag, except for RST or SYN segment. This 17613 * segment is neither. Just drop it on the 17614 * floor. 17615 */ 17616 freemsg(mp); 17617 TCP_STAT(tcps, tcp_rst_unsent); 17618 return; 17619 } 17620 17621 tcp_xmit_early_reset("no tcp, reset/ack", mp, 0, 17622 seg_seq + seg_len, TH_RST | TH_ACK, ira, ipst, connp); 17623 } 17624 } 17625 17626 /* 17627 * tcp_xmit_mp is called to return a pointer to an mblk chain complete with 17628 * ip and tcp header ready to pass down to IP. If the mp passed in is 17629 * non-NULL, then up to max_to_send bytes of data will be dup'ed off that 17630 * mblk. (If sendall is not set the dup'ing will stop at an mblk boundary 17631 * otherwise it will dup partial mblks.) 17632 * Otherwise, an appropriate ACK packet will be generated. This 17633 * routine is not usually called to send new data for the first time. It 17634 * is mostly called out of the timer for retransmits, and to generate ACKs. 17635 * 17636 * If offset is not NULL, the returned mblk chain's first mblk's b_rptr will 17637 * be adjusted by *offset. And after dupb(), the offset and the ending mblk 17638 * of the original mblk chain will be returned in *offset and *end_mp. 17639 */ 17640 mblk_t * 17641 tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, int32_t *offset, 17642 mblk_t **end_mp, uint32_t seq, boolean_t sendall, uint32_t *seg_len, 17643 boolean_t rexmit) 17644 { 17645 int data_length; 17646 int32_t off = 0; 17647 uint_t flags; 17648 mblk_t *mp1; 17649 mblk_t *mp2; 17650 uchar_t *rptr; 17651 tcpha_t *tcpha; 17652 int32_t num_sack_blk = 0; 17653 int32_t sack_opt_len = 0; 17654 tcp_stack_t *tcps = tcp->tcp_tcps; 17655 conn_t *connp = tcp->tcp_connp; 17656 ip_xmit_attr_t *ixa = connp->conn_ixa; 17657 17658 /* Allocate for our maximum TCP header + link-level */ 17659 mp1 = allocb(connp->conn_ht_iphc_allocated + tcps->tcps_wroff_xtra, 17660 BPRI_MED); 17661 if (!mp1) 17662 return (NULL); 17663 data_length = 0; 17664 17665 /* 17666 * Note that tcp_mss has been adjusted to take into account the 17667 * timestamp option if applicable. Because SACK options do not 17668 * appear in every TCP segments and they are of variable lengths, 17669 * they cannot be included in tcp_mss. Thus we need to calculate 17670 * the actual segment length when we need to send a segment which 17671 * includes SACK options. 17672 */ 17673 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 17674 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 17675 tcp->tcp_num_sack_blk); 17676 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 17677 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 17678 if (max_to_send + sack_opt_len > tcp->tcp_mss) 17679 max_to_send -= sack_opt_len; 17680 } 17681 17682 if (offset != NULL) { 17683 off = *offset; 17684 /* We use offset as an indicator that end_mp is not NULL. */ 17685 *end_mp = NULL; 17686 } 17687 for (mp2 = mp1; mp && data_length != max_to_send; mp = mp->b_cont) { 17688 /* This could be faster with cooperation from downstream */ 17689 if (mp2 != mp1 && !sendall && 17690 data_length + (int)(mp->b_wptr - mp->b_rptr) > 17691 max_to_send) 17692 /* 17693 * Don't send the next mblk since the whole mblk 17694 * does not fit. 17695 */ 17696 break; 17697 mp2->b_cont = dupb(mp); 17698 mp2 = mp2->b_cont; 17699 if (!mp2) { 17700 freemsg(mp1); 17701 return (NULL); 17702 } 17703 mp2->b_rptr += off; 17704 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 17705 (uintptr_t)INT_MAX); 17706 17707 data_length += (int)(mp2->b_wptr - mp2->b_rptr); 17708 if (data_length > max_to_send) { 17709 mp2->b_wptr -= data_length - max_to_send; 17710 data_length = max_to_send; 17711 off = mp2->b_wptr - mp->b_rptr; 17712 break; 17713 } else { 17714 off = 0; 17715 } 17716 } 17717 if (offset != NULL) { 17718 *offset = off; 17719 *end_mp = mp; 17720 } 17721 if (seg_len != NULL) { 17722 *seg_len = data_length; 17723 } 17724 17725 /* Update the latest receive window size in TCP header. */ 17726 tcp->tcp_tcpha->tha_win = htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 17727 17728 rptr = mp1->b_rptr + tcps->tcps_wroff_xtra; 17729 mp1->b_rptr = rptr; 17730 mp1->b_wptr = rptr + connp->conn_ht_iphc_len + sack_opt_len; 17731 bcopy(connp->conn_ht_iphc, rptr, connp->conn_ht_iphc_len); 17732 tcpha = (tcpha_t *)&rptr[ixa->ixa_ip_hdr_length]; 17733 tcpha->tha_seq = htonl(seq); 17734 17735 /* 17736 * Use tcp_unsent to determine if the PUSH bit should be used assumes 17737 * that this function was called from tcp_wput_data. Thus, when called 17738 * to retransmit data the setting of the PUSH bit may appear some 17739 * what random in that it might get set when it should not. This 17740 * should not pose any performance issues. 17741 */ 17742 if (data_length != 0 && (tcp->tcp_unsent == 0 || 17743 tcp->tcp_unsent == data_length)) { 17744 flags = TH_ACK | TH_PUSH; 17745 } else { 17746 flags = TH_ACK; 17747 } 17748 17749 if (tcp->tcp_ecn_ok) { 17750 if (tcp->tcp_ecn_echo_on) 17751 flags |= TH_ECE; 17752 17753 /* 17754 * Only set ECT bit and ECN_CWR if a segment contains new data. 17755 * There is no TCP flow control for non-data segments, and 17756 * only data segment is transmitted reliably. 17757 */ 17758 if (data_length > 0 && !rexmit) { 17759 SET_ECT(tcp, rptr); 17760 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 17761 flags |= TH_CWR; 17762 tcp->tcp_ecn_cwr_sent = B_TRUE; 17763 } 17764 } 17765 } 17766 17767 if (tcp->tcp_valid_bits) { 17768 uint32_t u1; 17769 17770 if ((tcp->tcp_valid_bits & TCP_ISS_VALID) && 17771 seq == tcp->tcp_iss) { 17772 uchar_t *wptr; 17773 17774 /* 17775 * If TCP_ISS_VALID and the seq number is tcp_iss, 17776 * TCP can only be in SYN-SENT, SYN-RCVD or 17777 * FIN-WAIT-1 state. It can be FIN-WAIT-1 if 17778 * our SYN is not ack'ed but the app closes this 17779 * TCP connection. 17780 */ 17781 ASSERT(tcp->tcp_state == TCPS_SYN_SENT || 17782 tcp->tcp_state == TCPS_SYN_RCVD || 17783 tcp->tcp_state == TCPS_FIN_WAIT_1); 17784 17785 /* 17786 * Tack on the MSS option. It is always needed 17787 * for both active and passive open. 17788 * 17789 * MSS option value should be interface MTU - MIN 17790 * TCP/IP header according to RFC 793 as it means 17791 * the maximum segment size TCP can receive. But 17792 * to get around some broken middle boxes/end hosts 17793 * out there, we allow the option value to be the 17794 * same as the MSS option size on the peer side. 17795 * In this way, the other side will not send 17796 * anything larger than they can receive. 17797 * 17798 * Note that for SYN_SENT state, the ndd param 17799 * tcp_use_smss_as_mss_opt has no effect as we 17800 * don't know the peer's MSS option value. So 17801 * the only case we need to take care of is in 17802 * SYN_RCVD state, which is done later. 17803 */ 17804 wptr = mp1->b_wptr; 17805 wptr[0] = TCPOPT_MAXSEG; 17806 wptr[1] = TCPOPT_MAXSEG_LEN; 17807 wptr += 2; 17808 u1 = tcp->tcp_initial_pmtu - 17809 (connp->conn_ipversion == IPV4_VERSION ? 17810 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) - 17811 TCP_MIN_HEADER_LENGTH; 17812 U16_TO_BE16(u1, wptr); 17813 mp1->b_wptr = wptr + 2; 17814 /* Update the offset to cover the additional word */ 17815 tcpha->tha_offset_and_reserved += (1 << 4); 17816 17817 /* 17818 * Note that the following way of filling in 17819 * TCP options are not optimal. Some NOPs can 17820 * be saved. But there is no need at this time 17821 * to optimize it. When it is needed, we will 17822 * do it. 17823 */ 17824 switch (tcp->tcp_state) { 17825 case TCPS_SYN_SENT: 17826 flags = TH_SYN; 17827 17828 if (tcp->tcp_snd_ts_ok) { 17829 uint32_t llbolt = 17830 (uint32_t)LBOLT_FASTPATH; 17831 17832 wptr = mp1->b_wptr; 17833 wptr[0] = TCPOPT_NOP; 17834 wptr[1] = TCPOPT_NOP; 17835 wptr[2] = TCPOPT_TSTAMP; 17836 wptr[3] = TCPOPT_TSTAMP_LEN; 17837 wptr += 4; 17838 U32_TO_BE32(llbolt, wptr); 17839 wptr += 4; 17840 ASSERT(tcp->tcp_ts_recent == 0); 17841 U32_TO_BE32(0L, wptr); 17842 mp1->b_wptr += TCPOPT_REAL_TS_LEN; 17843 tcpha->tha_offset_and_reserved += 17844 (3 << 4); 17845 } 17846 17847 /* 17848 * Set up all the bits to tell other side 17849 * we are ECN capable. 17850 */ 17851 if (tcp->tcp_ecn_ok) { 17852 flags |= (TH_ECE | TH_CWR); 17853 } 17854 break; 17855 case TCPS_SYN_RCVD: 17856 flags |= TH_SYN; 17857 17858 /* 17859 * Reset the MSS option value to be SMSS 17860 * We should probably add back the bytes 17861 * for timestamp option and IPsec. We 17862 * don't do that as this is a workaround 17863 * for broken middle boxes/end hosts, it 17864 * is better for us to be more cautious. 17865 * They may not take these things into 17866 * account in their SMSS calculation. Thus 17867 * the peer's calculated SMSS may be smaller 17868 * than what it can be. This should be OK. 17869 */ 17870 if (tcps->tcps_use_smss_as_mss_opt) { 17871 u1 = tcp->tcp_mss; 17872 U16_TO_BE16(u1, wptr); 17873 } 17874 17875 /* 17876 * If the other side is ECN capable, reply 17877 * that we are also ECN capable. 17878 */ 17879 if (tcp->tcp_ecn_ok) 17880 flags |= TH_ECE; 17881 break; 17882 default: 17883 /* 17884 * The above ASSERT() makes sure that this 17885 * must be FIN-WAIT-1 state. Our SYN has 17886 * not been ack'ed so retransmit it. 17887 */ 17888 flags |= TH_SYN; 17889 break; 17890 } 17891 17892 if (tcp->tcp_snd_ws_ok) { 17893 wptr = mp1->b_wptr; 17894 wptr[0] = TCPOPT_NOP; 17895 wptr[1] = TCPOPT_WSCALE; 17896 wptr[2] = TCPOPT_WS_LEN; 17897 wptr[3] = (uchar_t)tcp->tcp_rcv_ws; 17898 mp1->b_wptr += TCPOPT_REAL_WS_LEN; 17899 tcpha->tha_offset_and_reserved += (1 << 4); 17900 } 17901 17902 if (tcp->tcp_snd_sack_ok) { 17903 wptr = mp1->b_wptr; 17904 wptr[0] = TCPOPT_NOP; 17905 wptr[1] = TCPOPT_NOP; 17906 wptr[2] = TCPOPT_SACK_PERMITTED; 17907 wptr[3] = TCPOPT_SACK_OK_LEN; 17908 mp1->b_wptr += TCPOPT_REAL_SACK_OK_LEN; 17909 tcpha->tha_offset_and_reserved += (1 << 4); 17910 } 17911 17912 /* allocb() of adequate mblk assures space */ 17913 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 17914 (uintptr_t)INT_MAX); 17915 u1 = (int)(mp1->b_wptr - mp1->b_rptr); 17916 /* 17917 * Get IP set to checksum on our behalf 17918 * Include the adjustment for a source route if any. 17919 */ 17920 u1 += connp->conn_sum; 17921 u1 = (u1 >> 16) + (u1 & 0xFFFF); 17922 tcpha->tha_sum = htons(u1); 17923 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 17924 } 17925 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 17926 (seq + data_length) == tcp->tcp_fss) { 17927 if (!tcp->tcp_fin_acked) { 17928 flags |= TH_FIN; 17929 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 17930 } 17931 if (!tcp->tcp_fin_sent) { 17932 tcp->tcp_fin_sent = B_TRUE; 17933 switch (tcp->tcp_state) { 17934 case TCPS_SYN_RCVD: 17935 case TCPS_ESTABLISHED: 17936 tcp->tcp_state = TCPS_FIN_WAIT_1; 17937 break; 17938 case TCPS_CLOSE_WAIT: 17939 tcp->tcp_state = TCPS_LAST_ACK; 17940 break; 17941 } 17942 if (tcp->tcp_suna == tcp->tcp_snxt) 17943 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 17944 tcp->tcp_snxt = tcp->tcp_fss + 1; 17945 } 17946 } 17947 /* 17948 * Note the trick here. u1 is unsigned. When tcp_urg 17949 * is smaller than seq, u1 will become a very huge value. 17950 * So the comparison will fail. Also note that tcp_urp 17951 * should be positive, see RFC 793 page 17. 17952 */ 17953 u1 = tcp->tcp_urg - seq + TCP_OLD_URP_INTERPRETATION; 17954 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && u1 != 0 && 17955 u1 < (uint32_t)(64 * 1024)) { 17956 flags |= TH_URG; 17957 BUMP_MIB(&tcps->tcps_mib, tcpOutUrg); 17958 tcpha->tha_urp = htons(u1); 17959 } 17960 } 17961 tcpha->tha_flags = (uchar_t)flags; 17962 tcp->tcp_rack = tcp->tcp_rnxt; 17963 tcp->tcp_rack_cnt = 0; 17964 17965 if (tcp->tcp_snd_ts_ok) { 17966 if (tcp->tcp_state != TCPS_SYN_SENT) { 17967 uint32_t llbolt = (uint32_t)LBOLT_FASTPATH; 17968 17969 U32_TO_BE32(llbolt, 17970 (char *)tcpha + TCP_MIN_HEADER_LENGTH+4); 17971 U32_TO_BE32(tcp->tcp_ts_recent, 17972 (char *)tcpha + TCP_MIN_HEADER_LENGTH+8); 17973 } 17974 } 17975 17976 if (num_sack_blk > 0) { 17977 uchar_t *wptr = (uchar_t *)tcpha + connp->conn_ht_ulp_len; 17978 sack_blk_t *tmp; 17979 int32_t i; 17980 17981 wptr[0] = TCPOPT_NOP; 17982 wptr[1] = TCPOPT_NOP; 17983 wptr[2] = TCPOPT_SACK; 17984 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 17985 sizeof (sack_blk_t); 17986 wptr += TCPOPT_REAL_SACK_LEN; 17987 17988 tmp = tcp->tcp_sack_list; 17989 for (i = 0; i < num_sack_blk; i++) { 17990 U32_TO_BE32(tmp[i].begin, wptr); 17991 wptr += sizeof (tcp_seq); 17992 U32_TO_BE32(tmp[i].end, wptr); 17993 wptr += sizeof (tcp_seq); 17994 } 17995 tcpha->tha_offset_and_reserved += ((num_sack_blk * 2 + 1) << 4); 17996 } 17997 ASSERT((uintptr_t)(mp1->b_wptr - rptr) <= (uintptr_t)INT_MAX); 17998 data_length += (int)(mp1->b_wptr - rptr); 17999 18000 ixa->ixa_pktlen = data_length; 18001 18002 if (ixa->ixa_flags & IXAF_IS_IPV4) { 18003 ((ipha_t *)rptr)->ipha_length = htons(data_length); 18004 } else { 18005 ip6_t *ip6 = (ip6_t *)rptr; 18006 18007 ip6->ip6_plen = htons(data_length - IPV6_HDR_LEN); 18008 } 18009 18010 /* 18011 * Prime pump for IP 18012 * Include the adjustment for a source route if any. 18013 */ 18014 data_length -= ixa->ixa_ip_hdr_length; 18015 data_length += connp->conn_sum; 18016 data_length = (data_length >> 16) + (data_length & 0xFFFF); 18017 tcpha->tha_sum = htons(data_length); 18018 if (tcp->tcp_ip_forward_progress) { 18019 tcp->tcp_ip_forward_progress = B_FALSE; 18020 connp->conn_ixa->ixa_flags |= IXAF_REACH_CONF; 18021 } else { 18022 connp->conn_ixa->ixa_flags &= ~IXAF_REACH_CONF; 18023 } 18024 return (mp1); 18025 } 18026 18027 /* This function handles the push timeout. */ 18028 void 18029 tcp_push_timer(void *arg) 18030 { 18031 conn_t *connp = (conn_t *)arg; 18032 tcp_t *tcp = connp->conn_tcp; 18033 18034 TCP_DBGSTAT(tcp->tcp_tcps, tcp_push_timer_cnt); 18035 18036 ASSERT(tcp->tcp_listener == NULL); 18037 18038 ASSERT(!IPCL_IS_NONSTR(connp)); 18039 18040 tcp->tcp_push_tid = 0; 18041 18042 if (tcp->tcp_rcv_list != NULL && 18043 tcp_rcv_drain(tcp) == TH_ACK_NEEDED) 18044 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 18045 } 18046 18047 /* 18048 * This function handles delayed ACK timeout. 18049 */ 18050 static void 18051 tcp_ack_timer(void *arg) 18052 { 18053 conn_t *connp = (conn_t *)arg; 18054 tcp_t *tcp = connp->conn_tcp; 18055 mblk_t *mp; 18056 tcp_stack_t *tcps = tcp->tcp_tcps; 18057 18058 TCP_DBGSTAT(tcps, tcp_ack_timer_cnt); 18059 18060 tcp->tcp_ack_tid = 0; 18061 18062 if (tcp->tcp_fused) 18063 return; 18064 18065 /* 18066 * Do not send ACK if there is no outstanding unack'ed data. 18067 */ 18068 if (tcp->tcp_rnxt == tcp->tcp_rack) { 18069 return; 18070 } 18071 18072 if ((tcp->tcp_rnxt - tcp->tcp_rack) > tcp->tcp_mss) { 18073 /* 18074 * Make sure we don't allow deferred ACKs to result in 18075 * timer-based ACKing. If we have held off an ACK 18076 * when there was more than an mss here, and the timer 18077 * goes off, we have to worry about the possibility 18078 * that the sender isn't doing slow-start, or is out 18079 * of step with us for some other reason. We fall 18080 * permanently back in the direction of 18081 * ACK-every-other-packet as suggested in RFC 1122. 18082 */ 18083 if (tcp->tcp_rack_abs_max > 2) 18084 tcp->tcp_rack_abs_max--; 18085 tcp->tcp_rack_cur_max = 2; 18086 } 18087 mp = tcp_ack_mp(tcp); 18088 18089 if (mp != NULL) { 18090 BUMP_LOCAL(tcp->tcp_obsegs); 18091 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 18092 BUMP_MIB(&tcps->tcps_mib, tcpOutAckDelayed); 18093 tcp_send_data(tcp, mp); 18094 } 18095 } 18096 18097 18098 /* Generate an ACK-only (no data) segment for a TCP endpoint */ 18099 static mblk_t * 18100 tcp_ack_mp(tcp_t *tcp) 18101 { 18102 uint32_t seq_no; 18103 tcp_stack_t *tcps = tcp->tcp_tcps; 18104 conn_t *connp = tcp->tcp_connp; 18105 18106 /* 18107 * There are a few cases to be considered while setting the sequence no. 18108 * Essentially, we can come here while processing an unacceptable pkt 18109 * in the TCPS_SYN_RCVD state, in which case we set the sequence number 18110 * to snxt (per RFC 793), note the swnd wouldn't have been set yet. 18111 * If we are here for a zero window probe, stick with suna. In all 18112 * other cases, we check if suna + swnd encompasses snxt and set 18113 * the sequence number to snxt, if so. If snxt falls outside the 18114 * window (the receiver probably shrunk its window), we will go with 18115 * suna + swnd, otherwise the sequence no will be unacceptable to the 18116 * receiver. 18117 */ 18118 if (tcp->tcp_zero_win_probe) { 18119 seq_no = tcp->tcp_suna; 18120 } else if (tcp->tcp_state == TCPS_SYN_RCVD) { 18121 ASSERT(tcp->tcp_swnd == 0); 18122 seq_no = tcp->tcp_snxt; 18123 } else { 18124 seq_no = SEQ_GT(tcp->tcp_snxt, 18125 (tcp->tcp_suna + tcp->tcp_swnd)) ? 18126 (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt; 18127 } 18128 18129 if (tcp->tcp_valid_bits) { 18130 /* 18131 * For the complex case where we have to send some 18132 * controls (FIN or SYN), let tcp_xmit_mp do it. 18133 */ 18134 return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE, 18135 NULL, B_FALSE)); 18136 } else { 18137 /* Generate a simple ACK */ 18138 int data_length; 18139 uchar_t *rptr; 18140 tcpha_t *tcpha; 18141 mblk_t *mp1; 18142 int32_t total_hdr_len; 18143 int32_t tcp_hdr_len; 18144 int32_t num_sack_blk = 0; 18145 int32_t sack_opt_len; 18146 ip_xmit_attr_t *ixa = connp->conn_ixa; 18147 18148 /* 18149 * Allocate space for TCP + IP headers 18150 * and link-level header 18151 */ 18152 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 18153 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 18154 tcp->tcp_num_sack_blk); 18155 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 18156 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 18157 total_hdr_len = connp->conn_ht_iphc_len + sack_opt_len; 18158 tcp_hdr_len = connp->conn_ht_ulp_len + sack_opt_len; 18159 } else { 18160 total_hdr_len = connp->conn_ht_iphc_len; 18161 tcp_hdr_len = connp->conn_ht_ulp_len; 18162 } 18163 mp1 = allocb(total_hdr_len + tcps->tcps_wroff_xtra, BPRI_MED); 18164 if (!mp1) 18165 return (NULL); 18166 18167 /* Update the latest receive window size in TCP header. */ 18168 tcp->tcp_tcpha->tha_win = 18169 htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 18170 /* copy in prototype TCP + IP header */ 18171 rptr = mp1->b_rptr + tcps->tcps_wroff_xtra; 18172 mp1->b_rptr = rptr; 18173 mp1->b_wptr = rptr + total_hdr_len; 18174 bcopy(connp->conn_ht_iphc, rptr, connp->conn_ht_iphc_len); 18175 18176 tcpha = (tcpha_t *)&rptr[ixa->ixa_ip_hdr_length]; 18177 18178 /* Set the TCP sequence number. */ 18179 tcpha->tha_seq = htonl(seq_no); 18180 18181 /* Set up the TCP flag field. */ 18182 tcpha->tha_flags = (uchar_t)TH_ACK; 18183 if (tcp->tcp_ecn_echo_on) 18184 tcpha->tha_flags |= TH_ECE; 18185 18186 tcp->tcp_rack = tcp->tcp_rnxt; 18187 tcp->tcp_rack_cnt = 0; 18188 18189 /* fill in timestamp option if in use */ 18190 if (tcp->tcp_snd_ts_ok) { 18191 uint32_t llbolt = (uint32_t)LBOLT_FASTPATH; 18192 18193 U32_TO_BE32(llbolt, 18194 (char *)tcpha + TCP_MIN_HEADER_LENGTH+4); 18195 U32_TO_BE32(tcp->tcp_ts_recent, 18196 (char *)tcpha + TCP_MIN_HEADER_LENGTH+8); 18197 } 18198 18199 /* Fill in SACK options */ 18200 if (num_sack_blk > 0) { 18201 uchar_t *wptr = (uchar_t *)tcpha + 18202 connp->conn_ht_ulp_len; 18203 sack_blk_t *tmp; 18204 int32_t i; 18205 18206 wptr[0] = TCPOPT_NOP; 18207 wptr[1] = TCPOPT_NOP; 18208 wptr[2] = TCPOPT_SACK; 18209 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 18210 sizeof (sack_blk_t); 18211 wptr += TCPOPT_REAL_SACK_LEN; 18212 18213 tmp = tcp->tcp_sack_list; 18214 for (i = 0; i < num_sack_blk; i++) { 18215 U32_TO_BE32(tmp[i].begin, wptr); 18216 wptr += sizeof (tcp_seq); 18217 U32_TO_BE32(tmp[i].end, wptr); 18218 wptr += sizeof (tcp_seq); 18219 } 18220 tcpha->tha_offset_and_reserved += 18221 ((num_sack_blk * 2 + 1) << 4); 18222 } 18223 18224 ixa->ixa_pktlen = total_hdr_len; 18225 18226 if (ixa->ixa_flags & IXAF_IS_IPV4) { 18227 ((ipha_t *)rptr)->ipha_length = htons(total_hdr_len); 18228 } else { 18229 ip6_t *ip6 = (ip6_t *)rptr; 18230 18231 ip6->ip6_plen = htons(total_hdr_len - IPV6_HDR_LEN); 18232 } 18233 18234 /* 18235 * Prime pump for checksum calculation in IP. Include the 18236 * adjustment for a source route if any. 18237 */ 18238 data_length = tcp_hdr_len + connp->conn_sum; 18239 data_length = (data_length >> 16) + (data_length & 0xFFFF); 18240 tcpha->tha_sum = htons(data_length); 18241 18242 if (tcp->tcp_ip_forward_progress) { 18243 tcp->tcp_ip_forward_progress = B_FALSE; 18244 connp->conn_ixa->ixa_flags |= IXAF_REACH_CONF; 18245 } else { 18246 connp->conn_ixa->ixa_flags &= ~IXAF_REACH_CONF; 18247 } 18248 return (mp1); 18249 } 18250 } 18251 18252 /* 18253 * Hash list insertion routine for tcp_t structures. Each hash bucket 18254 * contains a list of tcp_t entries, and each entry is bound to a unique 18255 * port. If there are multiple tcp_t's that are bound to the same port, then 18256 * one of them will be linked into the hash bucket list, and the rest will 18257 * hang off of that one entry. For each port, entries bound to a specific IP 18258 * address will be inserted before those those bound to INADDR_ANY. 18259 */ 18260 static void 18261 tcp_bind_hash_insert(tf_t *tbf, tcp_t *tcp, int caller_holds_lock) 18262 { 18263 tcp_t **tcpp; 18264 tcp_t *tcpnext; 18265 tcp_t *tcphash; 18266 conn_t *connp = tcp->tcp_connp; 18267 conn_t *connext; 18268 18269 if (tcp->tcp_ptpbhn != NULL) { 18270 ASSERT(!caller_holds_lock); 18271 tcp_bind_hash_remove(tcp); 18272 } 18273 tcpp = &tbf->tf_tcp; 18274 if (!caller_holds_lock) { 18275 mutex_enter(&tbf->tf_lock); 18276 } else { 18277 ASSERT(MUTEX_HELD(&tbf->tf_lock)); 18278 } 18279 tcphash = tcpp[0]; 18280 tcpnext = NULL; 18281 if (tcphash != NULL) { 18282 /* Look for an entry using the same port */ 18283 while ((tcphash = tcpp[0]) != NULL && 18284 connp->conn_lport != tcphash->tcp_connp->conn_lport) 18285 tcpp = &(tcphash->tcp_bind_hash); 18286 18287 /* The port was not found, just add to the end */ 18288 if (tcphash == NULL) 18289 goto insert; 18290 18291 /* 18292 * OK, there already exists an entry bound to the 18293 * same port. 18294 * 18295 * If the new tcp bound to the INADDR_ANY address 18296 * and the first one in the list is not bound to 18297 * INADDR_ANY we skip all entries until we find the 18298 * first one bound to INADDR_ANY. 18299 * This makes sure that applications binding to a 18300 * specific address get preference over those binding to 18301 * INADDR_ANY. 18302 */ 18303 tcpnext = tcphash; 18304 connext = tcpnext->tcp_connp; 18305 tcphash = NULL; 18306 if (V6_OR_V4_INADDR_ANY(connp->conn_bound_addr_v6) && 18307 !V6_OR_V4_INADDR_ANY(connext->conn_bound_addr_v6)) { 18308 while ((tcpnext = tcpp[0]) != NULL) { 18309 connext = tcpnext->tcp_connp; 18310 if (!V6_OR_V4_INADDR_ANY( 18311 connext->conn_bound_addr_v6)) 18312 tcpp = &(tcpnext->tcp_bind_hash_port); 18313 else 18314 break; 18315 } 18316 if (tcpnext != NULL) { 18317 tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash_port; 18318 tcphash = tcpnext->tcp_bind_hash; 18319 if (tcphash != NULL) { 18320 tcphash->tcp_ptpbhn = 18321 &(tcp->tcp_bind_hash); 18322 tcpnext->tcp_bind_hash = NULL; 18323 } 18324 } 18325 } else { 18326 tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash_port; 18327 tcphash = tcpnext->tcp_bind_hash; 18328 if (tcphash != NULL) { 18329 tcphash->tcp_ptpbhn = 18330 &(tcp->tcp_bind_hash); 18331 tcpnext->tcp_bind_hash = NULL; 18332 } 18333 } 18334 } 18335 insert: 18336 tcp->tcp_bind_hash_port = tcpnext; 18337 tcp->tcp_bind_hash = tcphash; 18338 tcp->tcp_ptpbhn = tcpp; 18339 tcpp[0] = tcp; 18340 if (!caller_holds_lock) 18341 mutex_exit(&tbf->tf_lock); 18342 } 18343 18344 /* 18345 * Hash list removal routine for tcp_t structures. 18346 */ 18347 static void 18348 tcp_bind_hash_remove(tcp_t *tcp) 18349 { 18350 tcp_t *tcpnext; 18351 kmutex_t *lockp; 18352 tcp_stack_t *tcps = tcp->tcp_tcps; 18353 conn_t *connp = tcp->tcp_connp; 18354 18355 if (tcp->tcp_ptpbhn == NULL) 18356 return; 18357 18358 /* 18359 * Extract the lock pointer in case there are concurrent 18360 * hash_remove's for this instance. 18361 */ 18362 ASSERT(connp->conn_lport != 0); 18363 lockp = &tcps->tcps_bind_fanout[TCP_BIND_HASH( 18364 connp->conn_lport)].tf_lock; 18365 18366 ASSERT(lockp != NULL); 18367 mutex_enter(lockp); 18368 if (tcp->tcp_ptpbhn) { 18369 tcpnext = tcp->tcp_bind_hash_port; 18370 if (tcpnext != NULL) { 18371 tcp->tcp_bind_hash_port = NULL; 18372 tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn; 18373 tcpnext->tcp_bind_hash = tcp->tcp_bind_hash; 18374 if (tcpnext->tcp_bind_hash != NULL) { 18375 tcpnext->tcp_bind_hash->tcp_ptpbhn = 18376 &(tcpnext->tcp_bind_hash); 18377 tcp->tcp_bind_hash = NULL; 18378 } 18379 } else if ((tcpnext = tcp->tcp_bind_hash) != NULL) { 18380 tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn; 18381 tcp->tcp_bind_hash = NULL; 18382 } 18383 *tcp->tcp_ptpbhn = tcpnext; 18384 tcp->tcp_ptpbhn = NULL; 18385 } 18386 mutex_exit(lockp); 18387 } 18388 18389 18390 /* 18391 * Hash list lookup routine for tcp_t structures. 18392 * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF. 18393 */ 18394 static tcp_t * 18395 tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *tcps) 18396 { 18397 tf_t *tf; 18398 tcp_t *tcp; 18399 18400 tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 18401 mutex_enter(&tf->tf_lock); 18402 for (tcp = tf->tf_tcp; tcp != NULL; 18403 tcp = tcp->tcp_acceptor_hash) { 18404 if (tcp->tcp_acceptor_id == id) { 18405 CONN_INC_REF(tcp->tcp_connp); 18406 mutex_exit(&tf->tf_lock); 18407 return (tcp); 18408 } 18409 } 18410 mutex_exit(&tf->tf_lock); 18411 return (NULL); 18412 } 18413 18414 18415 /* 18416 * Hash list insertion routine for tcp_t structures. 18417 */ 18418 void 18419 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp) 18420 { 18421 tf_t *tf; 18422 tcp_t **tcpp; 18423 tcp_t *tcpnext; 18424 tcp_stack_t *tcps = tcp->tcp_tcps; 18425 18426 tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 18427 18428 if (tcp->tcp_ptpahn != NULL) 18429 tcp_acceptor_hash_remove(tcp); 18430 tcpp = &tf->tf_tcp; 18431 mutex_enter(&tf->tf_lock); 18432 tcpnext = tcpp[0]; 18433 if (tcpnext) 18434 tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash; 18435 tcp->tcp_acceptor_hash = tcpnext; 18436 tcp->tcp_ptpahn = tcpp; 18437 tcpp[0] = tcp; 18438 tcp->tcp_acceptor_lockp = &tf->tf_lock; /* For tcp_*_hash_remove */ 18439 mutex_exit(&tf->tf_lock); 18440 } 18441 18442 /* 18443 * Hash list removal routine for tcp_t structures. 18444 */ 18445 static void 18446 tcp_acceptor_hash_remove(tcp_t *tcp) 18447 { 18448 tcp_t *tcpnext; 18449 kmutex_t *lockp; 18450 18451 /* 18452 * Extract the lock pointer in case there are concurrent 18453 * hash_remove's for this instance. 18454 */ 18455 lockp = tcp->tcp_acceptor_lockp; 18456 18457 if (tcp->tcp_ptpahn == NULL) 18458 return; 18459 18460 ASSERT(lockp != NULL); 18461 mutex_enter(lockp); 18462 if (tcp->tcp_ptpahn) { 18463 tcpnext = tcp->tcp_acceptor_hash; 18464 if (tcpnext) { 18465 tcpnext->tcp_ptpahn = tcp->tcp_ptpahn; 18466 tcp->tcp_acceptor_hash = NULL; 18467 } 18468 *tcp->tcp_ptpahn = tcpnext; 18469 tcp->tcp_ptpahn = NULL; 18470 } 18471 mutex_exit(lockp); 18472 tcp->tcp_acceptor_lockp = NULL; 18473 } 18474 18475 /* 18476 * Type three generator adapted from the random() function in 4.4 BSD: 18477 */ 18478 18479 /* 18480 * Copyright (c) 1983, 1993 18481 * The Regents of the University of California. All rights reserved. 18482 * 18483 * Redistribution and use in source and binary forms, with or without 18484 * modification, are permitted provided that the following conditions 18485 * are met: 18486 * 1. Redistributions of source code must retain the above copyright 18487 * notice, this list of conditions and the following disclaimer. 18488 * 2. Redistributions in binary form must reproduce the above copyright 18489 * notice, this list of conditions and the following disclaimer in the 18490 * documentation and/or other materials provided with the distribution. 18491 * 3. All advertising materials mentioning features or use of this software 18492 * must display the following acknowledgement: 18493 * This product includes software developed by the University of 18494 * California, Berkeley and its contributors. 18495 * 4. Neither the name of the University nor the names of its contributors 18496 * may be used to endorse or promote products derived from this software 18497 * without specific prior written permission. 18498 * 18499 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18500 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18501 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18502 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 18503 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 18504 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 18505 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 18506 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 18507 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 18508 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 18509 * SUCH DAMAGE. 18510 */ 18511 18512 /* Type 3 -- x**31 + x**3 + 1 */ 18513 #define DEG_3 31 18514 #define SEP_3 3 18515 18516 18517 /* Protected by tcp_random_lock */ 18518 static int tcp_randtbl[DEG_3 + 1]; 18519 18520 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1]; 18521 static int *tcp_random_rptr = &tcp_randtbl[1]; 18522 18523 static int *tcp_random_state = &tcp_randtbl[1]; 18524 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1]; 18525 18526 kmutex_t tcp_random_lock; 18527 18528 void 18529 tcp_random_init(void) 18530 { 18531 int i; 18532 hrtime_t hrt; 18533 time_t wallclock; 18534 uint64_t result; 18535 18536 /* 18537 * Use high-res timer and current time for seed. Gethrtime() returns 18538 * a longlong, which may contain resolution down to nanoseconds. 18539 * The current time will either be a 32-bit or a 64-bit quantity. 18540 * XOR the two together in a 64-bit result variable. 18541 * Convert the result to a 32-bit value by multiplying the high-order 18542 * 32-bits by the low-order 32-bits. 18543 */ 18544 18545 hrt = gethrtime(); 18546 (void) drv_getparm(TIME, &wallclock); 18547 result = (uint64_t)wallclock ^ (uint64_t)hrt; 18548 mutex_enter(&tcp_random_lock); 18549 tcp_random_state[0] = ((result >> 32) & 0xffffffff) * 18550 (result & 0xffffffff); 18551 18552 for (i = 1; i < DEG_3; i++) 18553 tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1] 18554 + 12345; 18555 tcp_random_fptr = &tcp_random_state[SEP_3]; 18556 tcp_random_rptr = &tcp_random_state[0]; 18557 mutex_exit(&tcp_random_lock); 18558 for (i = 0; i < 10 * DEG_3; i++) 18559 (void) tcp_random(); 18560 } 18561 18562 /* 18563 * tcp_random: Return a random number in the range [1 - (128K + 1)]. 18564 * This range is selected to be approximately centered on TCP_ISS / 2, 18565 * and easy to compute. We get this value by generating a 32-bit random 18566 * number, selecting out the high-order 17 bits, and then adding one so 18567 * that we never return zero. 18568 */ 18569 int 18570 tcp_random(void) 18571 { 18572 int i; 18573 18574 mutex_enter(&tcp_random_lock); 18575 *tcp_random_fptr += *tcp_random_rptr; 18576 18577 /* 18578 * The high-order bits are more random than the low-order bits, 18579 * so we select out the high-order 17 bits and add one so that 18580 * we never return zero. 18581 */ 18582 i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1; 18583 if (++tcp_random_fptr >= tcp_random_end_ptr) { 18584 tcp_random_fptr = tcp_random_state; 18585 ++tcp_random_rptr; 18586 } else if (++tcp_random_rptr >= tcp_random_end_ptr) 18587 tcp_random_rptr = tcp_random_state; 18588 18589 mutex_exit(&tcp_random_lock); 18590 return (i); 18591 } 18592 18593 static int 18594 tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, int *do_disconnectp, 18595 int *t_errorp, int *sys_errorp) 18596 { 18597 int error; 18598 int is_absreq_failure; 18599 t_scalar_t *opt_lenp; 18600 t_scalar_t opt_offset; 18601 int prim_type; 18602 struct T_conn_req *tcreqp; 18603 struct T_conn_res *tcresp; 18604 cred_t *cr; 18605 18606 /* 18607 * All Solaris components should pass a db_credp 18608 * for this TPI message, hence we ASSERT. 18609 * But in case there is some other M_PROTO that looks 18610 * like a TPI message sent by some other kernel 18611 * component, we check and return an error. 18612 */ 18613 cr = msg_getcred(mp, NULL); 18614 ASSERT(cr != NULL); 18615 if (cr == NULL) 18616 return (-1); 18617 18618 prim_type = ((union T_primitives *)mp->b_rptr)->type; 18619 ASSERT(prim_type == T_CONN_REQ || prim_type == O_T_CONN_RES || 18620 prim_type == T_CONN_RES); 18621 18622 switch (prim_type) { 18623 case T_CONN_REQ: 18624 tcreqp = (struct T_conn_req *)mp->b_rptr; 18625 opt_offset = tcreqp->OPT_offset; 18626 opt_lenp = (t_scalar_t *)&tcreqp->OPT_length; 18627 break; 18628 case O_T_CONN_RES: 18629 case T_CONN_RES: 18630 tcresp = (struct T_conn_res *)mp->b_rptr; 18631 opt_offset = tcresp->OPT_offset; 18632 opt_lenp = (t_scalar_t *)&tcresp->OPT_length; 18633 break; 18634 } 18635 18636 *t_errorp = 0; 18637 *sys_errorp = 0; 18638 *do_disconnectp = 0; 18639 18640 error = tpi_optcom_buf(tcp->tcp_connp->conn_wq, mp, opt_lenp, 18641 opt_offset, cr, &tcp_opt_obj, 18642 NULL, &is_absreq_failure); 18643 18644 switch (error) { 18645 case 0: /* no error */ 18646 ASSERT(is_absreq_failure == 0); 18647 return (0); 18648 case ENOPROTOOPT: 18649 *t_errorp = TBADOPT; 18650 break; 18651 case EACCES: 18652 *t_errorp = TACCES; 18653 break; 18654 default: 18655 *t_errorp = TSYSERR; *sys_errorp = error; 18656 break; 18657 } 18658 if (is_absreq_failure != 0) { 18659 /* 18660 * The connection request should get the local ack 18661 * T_OK_ACK and then a T_DISCON_IND. 18662 */ 18663 *do_disconnectp = 1; 18664 } 18665 return (-1); 18666 } 18667 18668 /* 18669 * Split this function out so that if the secret changes, I'm okay. 18670 * 18671 * Initialize the tcp_iss_cookie and tcp_iss_key. 18672 */ 18673 18674 #define PASSWD_SIZE 16 /* MUST be multiple of 4 */ 18675 18676 static void 18677 tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *tcps) 18678 { 18679 struct { 18680 int32_t current_time; 18681 uint32_t randnum; 18682 uint16_t pad; 18683 uint8_t ether[6]; 18684 uint8_t passwd[PASSWD_SIZE]; 18685 } tcp_iss_cookie; 18686 time_t t; 18687 18688 /* 18689 * Start with the current absolute time. 18690 */ 18691 (void) drv_getparm(TIME, &t); 18692 tcp_iss_cookie.current_time = t; 18693 18694 /* 18695 * XXX - Need a more random number per RFC 1750, not this crap. 18696 * OTOH, if what follows is pretty random, then I'm in better shape. 18697 */ 18698 tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random()); 18699 tcp_iss_cookie.pad = 0x365c; /* Picked from HMAC pad values. */ 18700 18701 /* 18702 * The cpu_type_info is pretty non-random. Ugggh. It does serve 18703 * as a good template. 18704 */ 18705 bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd, 18706 min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info))); 18707 18708 /* 18709 * The pass-phrase. Normally this is supplied by user-called NDD. 18710 */ 18711 bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len)); 18712 18713 /* 18714 * See 4010593 if this section becomes a problem again, 18715 * but the local ethernet address is useful here. 18716 */ 18717 (void) localetheraddr(NULL, 18718 (struct ether_addr *)&tcp_iss_cookie.ether); 18719 18720 /* 18721 * Hash 'em all together. The MD5Final is called per-connection. 18722 */ 18723 mutex_enter(&tcps->tcps_iss_key_lock); 18724 MD5Init(&tcps->tcps_iss_key); 18725 MD5Update(&tcps->tcps_iss_key, (uchar_t *)&tcp_iss_cookie, 18726 sizeof (tcp_iss_cookie)); 18727 mutex_exit(&tcps->tcps_iss_key_lock); 18728 } 18729 18730 /* 18731 * Set the RFC 1948 pass phrase 18732 */ 18733 /* ARGSUSED */ 18734 static int 18735 tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 18736 cred_t *cr) 18737 { 18738 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 18739 18740 /* 18741 * Basically, value contains a new pass phrase. Pass it along! 18742 */ 18743 tcp_iss_key_init((uint8_t *)value, strlen(value), tcps); 18744 return (0); 18745 } 18746 18747 /* ARGSUSED */ 18748 static int 18749 tcp_sack_info_constructor(void *buf, void *cdrarg, int kmflags) 18750 { 18751 bzero(buf, sizeof (tcp_sack_info_t)); 18752 return (0); 18753 } 18754 18755 /* 18756 * Called by IP when IP is loaded into the kernel 18757 */ 18758 void 18759 tcp_ddi_g_init(void) 18760 { 18761 tcp_timercache = kmem_cache_create("tcp_timercache", 18762 sizeof (tcp_timer_t) + sizeof (mblk_t), 0, 18763 NULL, NULL, NULL, NULL, NULL, 0); 18764 18765 tcp_sack_info_cache = kmem_cache_create("tcp_sack_info_cache", 18766 sizeof (tcp_sack_info_t), 0, 18767 tcp_sack_info_constructor, NULL, NULL, NULL, NULL, 0); 18768 18769 mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL); 18770 18771 /* Initialize the random number generator */ 18772 tcp_random_init(); 18773 18774 /* A single callback independently of how many netstacks we have */ 18775 ip_squeue_init(tcp_squeue_add); 18776 18777 tcp_g_kstat = tcp_g_kstat_init(&tcp_g_statistics); 18778 18779 tcp_squeue_flag = tcp_squeue_switch(tcp_squeue_wput); 18780 18781 /* 18782 * We want to be informed each time a stack is created or 18783 * destroyed in the kernel, so we can maintain the 18784 * set of tcp_stack_t's. 18785 */ 18786 netstack_register(NS_TCP, tcp_stack_init, NULL, tcp_stack_fini); 18787 } 18788 18789 18790 #define INET_NAME "ip" 18791 18792 /* 18793 * Initialize the TCP stack instance. 18794 */ 18795 static void * 18796 tcp_stack_init(netstackid_t stackid, netstack_t *ns) 18797 { 18798 tcp_stack_t *tcps; 18799 tcpparam_t *pa; 18800 int i; 18801 int error = 0; 18802 major_t major; 18803 18804 tcps = (tcp_stack_t *)kmem_zalloc(sizeof (*tcps), KM_SLEEP); 18805 tcps->tcps_netstack = ns; 18806 18807 /* Initialize locks */ 18808 mutex_init(&tcps->tcps_iss_key_lock, NULL, MUTEX_DEFAULT, NULL); 18809 mutex_init(&tcps->tcps_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL); 18810 18811 tcps->tcps_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS; 18812 tcps->tcps_g_epriv_ports[0] = 2049; 18813 tcps->tcps_g_epriv_ports[1] = 4045; 18814 tcps->tcps_min_anonpriv_port = 512; 18815 18816 tcps->tcps_bind_fanout = kmem_zalloc(sizeof (tf_t) * 18817 TCP_BIND_FANOUT_SIZE, KM_SLEEP); 18818 tcps->tcps_acceptor_fanout = kmem_zalloc(sizeof (tf_t) * 18819 TCP_ACCEPTOR_FANOUT_SIZE, KM_SLEEP); 18820 18821 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 18822 mutex_init(&tcps->tcps_bind_fanout[i].tf_lock, NULL, 18823 MUTEX_DEFAULT, NULL); 18824 } 18825 18826 for (i = 0; i < TCP_ACCEPTOR_FANOUT_SIZE; i++) { 18827 mutex_init(&tcps->tcps_acceptor_fanout[i].tf_lock, NULL, 18828 MUTEX_DEFAULT, NULL); 18829 } 18830 18831 /* TCP's IPsec code calls the packet dropper. */ 18832 ip_drop_register(&tcps->tcps_dropper, "TCP IPsec policy enforcement"); 18833 18834 pa = (tcpparam_t *)kmem_alloc(sizeof (lcl_tcp_param_arr), KM_SLEEP); 18835 tcps->tcps_params = pa; 18836 bcopy(lcl_tcp_param_arr, tcps->tcps_params, sizeof (lcl_tcp_param_arr)); 18837 18838 (void) tcp_param_register(&tcps->tcps_g_nd, tcps->tcps_params, 18839 A_CNT(lcl_tcp_param_arr), tcps); 18840 18841 /* 18842 * Note: To really walk the device tree you need the devinfo 18843 * pointer to your device which is only available after probe/attach. 18844 * The following is safe only because it uses ddi_root_node() 18845 */ 18846 tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr, 18847 tcp_opt_obj.odb_opt_arr_cnt); 18848 18849 /* 18850 * Initialize RFC 1948 secret values. This will probably be reset once 18851 * by the boot scripts. 18852 * 18853 * Use NULL name, as the name is caught by the new lockstats. 18854 * 18855 * Initialize with some random, non-guessable string, like the global 18856 * T_INFO_ACK. 18857 */ 18858 18859 tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack, 18860 sizeof (tcp_g_t_info_ack), tcps); 18861 18862 tcps->tcps_kstat = tcp_kstat2_init(stackid, &tcps->tcps_statistics); 18863 tcps->tcps_mibkp = tcp_kstat_init(stackid, tcps); 18864 18865 major = mod_name_to_major(INET_NAME); 18866 error = ldi_ident_from_major(major, &tcps->tcps_ldi_ident); 18867 ASSERT(error == 0); 18868 tcps->tcps_ixa_cleanup_mp = allocb_wait(0, BPRI_MED, STR_NOSIG, NULL); 18869 ASSERT(tcps->tcps_ixa_cleanup_mp != NULL); 18870 cv_init(&tcps->tcps_ixa_cleanup_cv, NULL, CV_DEFAULT, NULL); 18871 mutex_init(&tcps->tcps_ixa_cleanup_lock, NULL, MUTEX_DEFAULT, NULL); 18872 18873 mutex_init(&tcps->tcps_reclaim_lock, NULL, MUTEX_DEFAULT, NULL); 18874 tcps->tcps_reclaim = B_FALSE; 18875 tcps->tcps_reclaim_tid = 0; 18876 tcps->tcps_reclaim_period = tcps->tcps_rexmit_interval_max * 3; 18877 18878 mutex_init(&tcps->tcps_listener_conf_lock, NULL, MUTEX_DEFAULT, NULL); 18879 list_create(&tcps->tcps_listener_conf, sizeof (tcp_listener_t), 18880 offsetof(tcp_listener_t, tl_link)); 18881 18882 return (tcps); 18883 } 18884 18885 /* 18886 * Called when the IP module is about to be unloaded. 18887 */ 18888 void 18889 tcp_ddi_g_destroy(void) 18890 { 18891 tcp_g_kstat_fini(tcp_g_kstat); 18892 tcp_g_kstat = NULL; 18893 bzero(&tcp_g_statistics, sizeof (tcp_g_statistics)); 18894 18895 mutex_destroy(&tcp_random_lock); 18896 18897 kmem_cache_destroy(tcp_timercache); 18898 kmem_cache_destroy(tcp_sack_info_cache); 18899 18900 netstack_unregister(NS_TCP); 18901 } 18902 18903 /* 18904 * Free the TCP stack instance. 18905 */ 18906 static void 18907 tcp_stack_fini(netstackid_t stackid, void *arg) 18908 { 18909 tcp_stack_t *tcps = (tcp_stack_t *)arg; 18910 int i; 18911 18912 freeb(tcps->tcps_ixa_cleanup_mp); 18913 tcps->tcps_ixa_cleanup_mp = NULL; 18914 cv_destroy(&tcps->tcps_ixa_cleanup_cv); 18915 mutex_destroy(&tcps->tcps_ixa_cleanup_lock); 18916 18917 if (tcps->tcps_reclaim_tid != 0) 18918 (void) untimeout(tcps->tcps_reclaim_tid); 18919 mutex_destroy(&tcps->tcps_reclaim_lock); 18920 18921 tcp_listener_conf_cleanup(tcps); 18922 18923 nd_free(&tcps->tcps_g_nd); 18924 kmem_free(tcps->tcps_params, sizeof (lcl_tcp_param_arr)); 18925 tcps->tcps_params = NULL; 18926 kmem_free(tcps->tcps_wroff_xtra_param, sizeof (tcpparam_t)); 18927 tcps->tcps_wroff_xtra_param = NULL; 18928 18929 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 18930 ASSERT(tcps->tcps_bind_fanout[i].tf_tcp == NULL); 18931 mutex_destroy(&tcps->tcps_bind_fanout[i].tf_lock); 18932 } 18933 18934 for (i = 0; i < TCP_ACCEPTOR_FANOUT_SIZE; i++) { 18935 ASSERT(tcps->tcps_acceptor_fanout[i].tf_tcp == NULL); 18936 mutex_destroy(&tcps->tcps_acceptor_fanout[i].tf_lock); 18937 } 18938 18939 kmem_free(tcps->tcps_bind_fanout, sizeof (tf_t) * TCP_BIND_FANOUT_SIZE); 18940 tcps->tcps_bind_fanout = NULL; 18941 18942 kmem_free(tcps->tcps_acceptor_fanout, sizeof (tf_t) * 18943 TCP_ACCEPTOR_FANOUT_SIZE); 18944 tcps->tcps_acceptor_fanout = NULL; 18945 18946 mutex_destroy(&tcps->tcps_iss_key_lock); 18947 mutex_destroy(&tcps->tcps_epriv_port_lock); 18948 18949 ip_drop_unregister(&tcps->tcps_dropper); 18950 18951 tcp_kstat2_fini(stackid, tcps->tcps_kstat); 18952 tcps->tcps_kstat = NULL; 18953 bzero(&tcps->tcps_statistics, sizeof (tcps->tcps_statistics)); 18954 18955 tcp_kstat_fini(stackid, tcps->tcps_mibkp); 18956 tcps->tcps_mibkp = NULL; 18957 18958 ldi_ident_release(tcps->tcps_ldi_ident); 18959 kmem_free(tcps, sizeof (*tcps)); 18960 } 18961 18962 /* 18963 * Generate ISS, taking into account NDD changes may happen halfway through. 18964 * (If the iss is not zero, set it.) 18965 */ 18966 18967 static void 18968 tcp_iss_init(tcp_t *tcp) 18969 { 18970 MD5_CTX context; 18971 struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg; 18972 uint32_t answer[4]; 18973 tcp_stack_t *tcps = tcp->tcp_tcps; 18974 conn_t *connp = tcp->tcp_connp; 18975 18976 tcps->tcps_iss_incr_extra += (ISS_INCR >> 1); 18977 tcp->tcp_iss = tcps->tcps_iss_incr_extra; 18978 switch (tcps->tcps_strong_iss) { 18979 case 2: 18980 mutex_enter(&tcps->tcps_iss_key_lock); 18981 context = tcps->tcps_iss_key; 18982 mutex_exit(&tcps->tcps_iss_key_lock); 18983 arg.ports = connp->conn_ports; 18984 arg.src = connp->conn_laddr_v6; 18985 arg.dst = connp->conn_faddr_v6; 18986 MD5Update(&context, (uchar_t *)&arg, sizeof (arg)); 18987 MD5Final((uchar_t *)answer, &context); 18988 tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3]; 18989 /* 18990 * Now that we've hashed into a unique per-connection sequence 18991 * space, add a random increment per strong_iss == 1. So I 18992 * guess we'll have to... 18993 */ 18994 /* FALLTHRU */ 18995 case 1: 18996 tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random(); 18997 break; 18998 default: 18999 tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 19000 break; 19001 } 19002 tcp->tcp_valid_bits = TCP_ISS_VALID; 19003 tcp->tcp_fss = tcp->tcp_iss - 1; 19004 tcp->tcp_suna = tcp->tcp_iss; 19005 tcp->tcp_snxt = tcp->tcp_iss + 1; 19006 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 19007 tcp->tcp_csuna = tcp->tcp_snxt; 19008 } 19009 19010 /* 19011 * Exported routine for extracting active tcp connection status. 19012 * 19013 * This is used by the Solaris Cluster Networking software to 19014 * gather a list of connections that need to be forwarded to 19015 * specific nodes in the cluster when configuration changes occur. 19016 * 19017 * The callback is invoked for each tcp_t structure from all netstacks, 19018 * if 'stack_id' is less than 0. Otherwise, only for tcp_t structures 19019 * from the netstack with the specified stack_id. Returning 19020 * non-zero from the callback routine terminates the search. 19021 */ 19022 int 19023 cl_tcp_walk_list(netstackid_t stack_id, 19024 int (*cl_callback)(cl_tcp_info_t *, void *), void *arg) 19025 { 19026 netstack_handle_t nh; 19027 netstack_t *ns; 19028 int ret = 0; 19029 19030 if (stack_id >= 0) { 19031 if ((ns = netstack_find_by_stackid(stack_id)) == NULL) 19032 return (EINVAL); 19033 19034 ret = cl_tcp_walk_list_stack(cl_callback, arg, 19035 ns->netstack_tcp); 19036 netstack_rele(ns); 19037 return (ret); 19038 } 19039 19040 netstack_next_init(&nh); 19041 while ((ns = netstack_next(&nh)) != NULL) { 19042 ret = cl_tcp_walk_list_stack(cl_callback, arg, 19043 ns->netstack_tcp); 19044 netstack_rele(ns); 19045 } 19046 netstack_next_fini(&nh); 19047 return (ret); 19048 } 19049 19050 static int 19051 cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *), void *arg, 19052 tcp_stack_t *tcps) 19053 { 19054 tcp_t *tcp; 19055 cl_tcp_info_t cl_tcpi; 19056 connf_t *connfp; 19057 conn_t *connp; 19058 int i; 19059 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 19060 19061 ASSERT(callback != NULL); 19062 19063 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 19064 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 19065 connp = NULL; 19066 19067 while ((connp = 19068 ipcl_get_next_conn(connfp, connp, IPCL_TCPCONN)) != NULL) { 19069 19070 tcp = connp->conn_tcp; 19071 cl_tcpi.cl_tcpi_version = CL_TCPI_V1; 19072 cl_tcpi.cl_tcpi_ipversion = connp->conn_ipversion; 19073 cl_tcpi.cl_tcpi_state = tcp->tcp_state; 19074 cl_tcpi.cl_tcpi_lport = connp->conn_lport; 19075 cl_tcpi.cl_tcpi_fport = connp->conn_fport; 19076 cl_tcpi.cl_tcpi_laddr_v6 = connp->conn_laddr_v6; 19077 cl_tcpi.cl_tcpi_faddr_v6 = connp->conn_faddr_v6; 19078 19079 /* 19080 * If the callback returns non-zero 19081 * we terminate the traversal. 19082 */ 19083 if ((*callback)(&cl_tcpi, arg) != 0) { 19084 CONN_DEC_REF(tcp->tcp_connp); 19085 return (1); 19086 } 19087 } 19088 } 19089 19090 return (0); 19091 } 19092 19093 /* 19094 * Macros used for accessing the different types of sockaddr 19095 * structures inside a tcp_ioc_abort_conn_t. 19096 */ 19097 #define TCP_AC_V4LADDR(acp) ((sin_t *)&(acp)->ac_local) 19098 #define TCP_AC_V4RADDR(acp) ((sin_t *)&(acp)->ac_remote) 19099 #define TCP_AC_V4LOCAL(acp) (TCP_AC_V4LADDR(acp)->sin_addr.s_addr) 19100 #define TCP_AC_V4REMOTE(acp) (TCP_AC_V4RADDR(acp)->sin_addr.s_addr) 19101 #define TCP_AC_V4LPORT(acp) (TCP_AC_V4LADDR(acp)->sin_port) 19102 #define TCP_AC_V4RPORT(acp) (TCP_AC_V4RADDR(acp)->sin_port) 19103 #define TCP_AC_V6LADDR(acp) ((sin6_t *)&(acp)->ac_local) 19104 #define TCP_AC_V6RADDR(acp) ((sin6_t *)&(acp)->ac_remote) 19105 #define TCP_AC_V6LOCAL(acp) (TCP_AC_V6LADDR(acp)->sin6_addr) 19106 #define TCP_AC_V6REMOTE(acp) (TCP_AC_V6RADDR(acp)->sin6_addr) 19107 #define TCP_AC_V6LPORT(acp) (TCP_AC_V6LADDR(acp)->sin6_port) 19108 #define TCP_AC_V6RPORT(acp) (TCP_AC_V6RADDR(acp)->sin6_port) 19109 19110 /* 19111 * Return the correct error code to mimic the behavior 19112 * of a connection reset. 19113 */ 19114 #define TCP_AC_GET_ERRCODE(state, err) { \ 19115 switch ((state)) { \ 19116 case TCPS_SYN_SENT: \ 19117 case TCPS_SYN_RCVD: \ 19118 (err) = ECONNREFUSED; \ 19119 break; \ 19120 case TCPS_ESTABLISHED: \ 19121 case TCPS_FIN_WAIT_1: \ 19122 case TCPS_FIN_WAIT_2: \ 19123 case TCPS_CLOSE_WAIT: \ 19124 (err) = ECONNRESET; \ 19125 break; \ 19126 case TCPS_CLOSING: \ 19127 case TCPS_LAST_ACK: \ 19128 case TCPS_TIME_WAIT: \ 19129 (err) = 0; \ 19130 break; \ 19131 default: \ 19132 (err) = ENXIO; \ 19133 } \ 19134 } 19135 19136 /* 19137 * Check if a tcp structure matches the info in acp. 19138 */ 19139 #define TCP_AC_ADDR_MATCH(acp, connp, tcp) \ 19140 (((acp)->ac_local.ss_family == AF_INET) ? \ 19141 ((TCP_AC_V4LOCAL((acp)) == INADDR_ANY || \ 19142 TCP_AC_V4LOCAL((acp)) == (connp)->conn_laddr_v4) && \ 19143 (TCP_AC_V4REMOTE((acp)) == INADDR_ANY || \ 19144 TCP_AC_V4REMOTE((acp)) == (connp)->conn_faddr_v4) && \ 19145 (TCP_AC_V4LPORT((acp)) == 0 || \ 19146 TCP_AC_V4LPORT((acp)) == (connp)->conn_lport) && \ 19147 (TCP_AC_V4RPORT((acp)) == 0 || \ 19148 TCP_AC_V4RPORT((acp)) == (connp)->conn_fport) && \ 19149 (acp)->ac_start <= (tcp)->tcp_state && \ 19150 (acp)->ac_end >= (tcp)->tcp_state) : \ 19151 ((IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL((acp))) || \ 19152 IN6_ARE_ADDR_EQUAL(&TCP_AC_V6LOCAL((acp)), \ 19153 &(connp)->conn_laddr_v6)) && \ 19154 (IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE((acp))) || \ 19155 IN6_ARE_ADDR_EQUAL(&TCP_AC_V6REMOTE((acp)), \ 19156 &(connp)->conn_faddr_v6)) && \ 19157 (TCP_AC_V6LPORT((acp)) == 0 || \ 19158 TCP_AC_V6LPORT((acp)) == (connp)->conn_lport) && \ 19159 (TCP_AC_V6RPORT((acp)) == 0 || \ 19160 TCP_AC_V6RPORT((acp)) == (connp)->conn_fport) && \ 19161 (acp)->ac_start <= (tcp)->tcp_state && \ 19162 (acp)->ac_end >= (tcp)->tcp_state)) 19163 19164 #define TCP_AC_MATCH(acp, connp, tcp) \ 19165 (((acp)->ac_zoneid == ALL_ZONES || \ 19166 (acp)->ac_zoneid == (connp)->conn_zoneid) ? \ 19167 TCP_AC_ADDR_MATCH(acp, connp, tcp) : 0) 19168 19169 /* 19170 * Build a message containing a tcp_ioc_abort_conn_t structure 19171 * which is filled in with information from acp and tp. 19172 */ 19173 static mblk_t * 19174 tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *acp, tcp_t *tp) 19175 { 19176 mblk_t *mp; 19177 tcp_ioc_abort_conn_t *tacp; 19178 19179 mp = allocb(sizeof (uint32_t) + sizeof (*acp), BPRI_LO); 19180 if (mp == NULL) 19181 return (NULL); 19182 19183 *((uint32_t *)mp->b_rptr) = TCP_IOC_ABORT_CONN; 19184 tacp = (tcp_ioc_abort_conn_t *)((uchar_t *)mp->b_rptr + 19185 sizeof (uint32_t)); 19186 19187 tacp->ac_start = acp->ac_start; 19188 tacp->ac_end = acp->ac_end; 19189 tacp->ac_zoneid = acp->ac_zoneid; 19190 19191 if (acp->ac_local.ss_family == AF_INET) { 19192 tacp->ac_local.ss_family = AF_INET; 19193 tacp->ac_remote.ss_family = AF_INET; 19194 TCP_AC_V4LOCAL(tacp) = tp->tcp_connp->conn_laddr_v4; 19195 TCP_AC_V4REMOTE(tacp) = tp->tcp_connp->conn_faddr_v4; 19196 TCP_AC_V4LPORT(tacp) = tp->tcp_connp->conn_lport; 19197 TCP_AC_V4RPORT(tacp) = tp->tcp_connp->conn_fport; 19198 } else { 19199 tacp->ac_local.ss_family = AF_INET6; 19200 tacp->ac_remote.ss_family = AF_INET6; 19201 TCP_AC_V6LOCAL(tacp) = tp->tcp_connp->conn_laddr_v6; 19202 TCP_AC_V6REMOTE(tacp) = tp->tcp_connp->conn_faddr_v6; 19203 TCP_AC_V6LPORT(tacp) = tp->tcp_connp->conn_lport; 19204 TCP_AC_V6RPORT(tacp) = tp->tcp_connp->conn_fport; 19205 } 19206 mp->b_wptr = (uchar_t *)mp->b_rptr + sizeof (uint32_t) + sizeof (*acp); 19207 return (mp); 19208 } 19209 19210 /* 19211 * Print a tcp_ioc_abort_conn_t structure. 19212 */ 19213 static void 19214 tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *acp) 19215 { 19216 char lbuf[128]; 19217 char rbuf[128]; 19218 sa_family_t af; 19219 in_port_t lport, rport; 19220 ushort_t logflags; 19221 19222 af = acp->ac_local.ss_family; 19223 19224 if (af == AF_INET) { 19225 (void) inet_ntop(af, (const void *)&TCP_AC_V4LOCAL(acp), 19226 lbuf, 128); 19227 (void) inet_ntop(af, (const void *)&TCP_AC_V4REMOTE(acp), 19228 rbuf, 128); 19229 lport = ntohs(TCP_AC_V4LPORT(acp)); 19230 rport = ntohs(TCP_AC_V4RPORT(acp)); 19231 } else { 19232 (void) inet_ntop(af, (const void *)&TCP_AC_V6LOCAL(acp), 19233 lbuf, 128); 19234 (void) inet_ntop(af, (const void *)&TCP_AC_V6REMOTE(acp), 19235 rbuf, 128); 19236 lport = ntohs(TCP_AC_V6LPORT(acp)); 19237 rport = ntohs(TCP_AC_V6RPORT(acp)); 19238 } 19239 19240 logflags = SL_TRACE | SL_NOTE; 19241 /* 19242 * Don't print this message to the console if the operation was done 19243 * to a non-global zone. 19244 */ 19245 if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) 19246 logflags |= SL_CONSOLE; 19247 (void) strlog(TCP_MOD_ID, 0, 1, logflags, 19248 "TCP_IOC_ABORT_CONN: local = %s:%d, remote = %s:%d, " 19249 "start = %d, end = %d\n", lbuf, lport, rbuf, rport, 19250 acp->ac_start, acp->ac_end); 19251 } 19252 19253 /* 19254 * Called using SQ_FILL when a message built using 19255 * tcp_ioctl_abort_build_msg is put into a queue. 19256 * Note that when we get here there is no wildcard in acp any more. 19257 */ 19258 /* ARGSUSED2 */ 19259 static void 19260 tcp_ioctl_abort_handler(void *arg, mblk_t *mp, void *arg2, 19261 ip_recv_attr_t *dummy) 19262 { 19263 conn_t *connp = (conn_t *)arg; 19264 tcp_t *tcp = connp->conn_tcp; 19265 tcp_ioc_abort_conn_t *acp; 19266 19267 /* 19268 * Don't accept any input on a closed tcp as this TCP logically does 19269 * not exist on the system. Don't proceed further with this TCP. 19270 * For eg. this packet could trigger another close of this tcp 19271 * which would be disastrous for tcp_refcnt. tcp_close_detached / 19272 * tcp_clean_death / tcp_closei_local must be called at most once 19273 * on a TCP. 19274 */ 19275 if (tcp->tcp_state == TCPS_CLOSED || 19276 tcp->tcp_state == TCPS_BOUND) { 19277 freemsg(mp); 19278 return; 19279 } 19280 19281 acp = (tcp_ioc_abort_conn_t *)(mp->b_rptr + sizeof (uint32_t)); 19282 if (tcp->tcp_state <= acp->ac_end) { 19283 /* 19284 * If we get here, we are already on the correct 19285 * squeue. This ioctl follows the following path 19286 * tcp_wput -> tcp_wput_ioctl -> tcp_ioctl_abort_conn 19287 * ->tcp_ioctl_abort->squeue_enter (if on a 19288 * different squeue) 19289 */ 19290 int errcode; 19291 19292 TCP_AC_GET_ERRCODE(tcp->tcp_state, errcode); 19293 (void) tcp_clean_death(tcp, errcode, 26); 19294 } 19295 freemsg(mp); 19296 } 19297 19298 /* 19299 * Abort all matching connections on a hash chain. 19300 */ 19301 static int 19302 tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *acp, int index, int *count, 19303 boolean_t exact, tcp_stack_t *tcps) 19304 { 19305 int nmatch, err = 0; 19306 tcp_t *tcp; 19307 MBLKP mp, last, listhead = NULL; 19308 conn_t *tconnp; 19309 connf_t *connfp; 19310 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 19311 19312 connfp = &ipst->ips_ipcl_conn_fanout[index]; 19313 19314 startover: 19315 nmatch = 0; 19316 19317 mutex_enter(&connfp->connf_lock); 19318 for (tconnp = connfp->connf_head; tconnp != NULL; 19319 tconnp = tconnp->conn_next) { 19320 tcp = tconnp->conn_tcp; 19321 /* 19322 * We are missing a check on sin6_scope_id for linklocals here, 19323 * but current usage is just for aborting based on zoneid 19324 * for shared-IP zones. 19325 */ 19326 if (TCP_AC_MATCH(acp, tconnp, tcp)) { 19327 CONN_INC_REF(tconnp); 19328 mp = tcp_ioctl_abort_build_msg(acp, tcp); 19329 if (mp == NULL) { 19330 err = ENOMEM; 19331 CONN_DEC_REF(tconnp); 19332 break; 19333 } 19334 mp->b_prev = (mblk_t *)tcp; 19335 19336 if (listhead == NULL) { 19337 listhead = mp; 19338 last = mp; 19339 } else { 19340 last->b_next = mp; 19341 last = mp; 19342 } 19343 nmatch++; 19344 if (exact) 19345 break; 19346 } 19347 19348 /* Avoid holding lock for too long. */ 19349 if (nmatch >= 500) 19350 break; 19351 } 19352 mutex_exit(&connfp->connf_lock); 19353 19354 /* Pass mp into the correct tcp */ 19355 while ((mp = listhead) != NULL) { 19356 listhead = listhead->b_next; 19357 tcp = (tcp_t *)mp->b_prev; 19358 mp->b_next = mp->b_prev = NULL; 19359 SQUEUE_ENTER_ONE(tcp->tcp_connp->conn_sqp, mp, 19360 tcp_ioctl_abort_handler, tcp->tcp_connp, NULL, 19361 SQ_FILL, SQTAG_TCP_ABORT_BUCKET); 19362 } 19363 19364 *count += nmatch; 19365 if (nmatch >= 500 && err == 0) 19366 goto startover; 19367 return (err); 19368 } 19369 19370 /* 19371 * Abort all connections that matches the attributes specified in acp. 19372 */ 19373 static int 19374 tcp_ioctl_abort(tcp_ioc_abort_conn_t *acp, tcp_stack_t *tcps) 19375 { 19376 sa_family_t af; 19377 uint32_t ports; 19378 uint16_t *pports; 19379 int err = 0, count = 0; 19380 boolean_t exact = B_FALSE; /* set when there is no wildcard */ 19381 int index = -1; 19382 ushort_t logflags; 19383 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 19384 19385 af = acp->ac_local.ss_family; 19386 19387 if (af == AF_INET) { 19388 if (TCP_AC_V4REMOTE(acp) != INADDR_ANY && 19389 TCP_AC_V4LPORT(acp) != 0 && TCP_AC_V4RPORT(acp) != 0) { 19390 pports = (uint16_t *)&ports; 19391 pports[1] = TCP_AC_V4LPORT(acp); 19392 pports[0] = TCP_AC_V4RPORT(acp); 19393 exact = (TCP_AC_V4LOCAL(acp) != INADDR_ANY); 19394 } 19395 } else { 19396 if (!IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE(acp)) && 19397 TCP_AC_V6LPORT(acp) != 0 && TCP_AC_V6RPORT(acp) != 0) { 19398 pports = (uint16_t *)&ports; 19399 pports[1] = TCP_AC_V6LPORT(acp); 19400 pports[0] = TCP_AC_V6RPORT(acp); 19401 exact = !IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL(acp)); 19402 } 19403 } 19404 19405 /* 19406 * For cases where remote addr, local port, and remote port are non- 19407 * wildcards, tcp_ioctl_abort_bucket will only be called once. 19408 */ 19409 if (index != -1) { 19410 err = tcp_ioctl_abort_bucket(acp, index, 19411 &count, exact, tcps); 19412 } else { 19413 /* 19414 * loop through all entries for wildcard case 19415 */ 19416 for (index = 0; 19417 index < ipst->ips_ipcl_conn_fanout_size; 19418 index++) { 19419 err = tcp_ioctl_abort_bucket(acp, index, 19420 &count, exact, tcps); 19421 if (err != 0) 19422 break; 19423 } 19424 } 19425 19426 logflags = SL_TRACE | SL_NOTE; 19427 /* 19428 * Don't print this message to the console if the operation was done 19429 * to a non-global zone. 19430 */ 19431 if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) 19432 logflags |= SL_CONSOLE; 19433 (void) strlog(TCP_MOD_ID, 0, 1, logflags, "TCP_IOC_ABORT_CONN: " 19434 "aborted %d connection%c\n", count, ((count > 1) ? 's' : ' ')); 19435 if (err == 0 && count == 0) 19436 err = ENOENT; 19437 return (err); 19438 } 19439 19440 /* 19441 * Process the TCP_IOC_ABORT_CONN ioctl request. 19442 */ 19443 static void 19444 tcp_ioctl_abort_conn(queue_t *q, mblk_t *mp) 19445 { 19446 int err; 19447 IOCP iocp; 19448 MBLKP mp1; 19449 sa_family_t laf, raf; 19450 tcp_ioc_abort_conn_t *acp; 19451 zone_t *zptr; 19452 conn_t *connp = Q_TO_CONN(q); 19453 zoneid_t zoneid = connp->conn_zoneid; 19454 tcp_t *tcp = connp->conn_tcp; 19455 tcp_stack_t *tcps = tcp->tcp_tcps; 19456 19457 iocp = (IOCP)mp->b_rptr; 19458 19459 if ((mp1 = mp->b_cont) == NULL || 19460 iocp->ioc_count != sizeof (tcp_ioc_abort_conn_t)) { 19461 err = EINVAL; 19462 goto out; 19463 } 19464 19465 /* check permissions */ 19466 if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) { 19467 err = EPERM; 19468 goto out; 19469 } 19470 19471 if (mp1->b_cont != NULL) { 19472 freemsg(mp1->b_cont); 19473 mp1->b_cont = NULL; 19474 } 19475 19476 acp = (tcp_ioc_abort_conn_t *)mp1->b_rptr; 19477 laf = acp->ac_local.ss_family; 19478 raf = acp->ac_remote.ss_family; 19479 19480 /* check that a zone with the supplied zoneid exists */ 19481 if (acp->ac_zoneid != GLOBAL_ZONEID && acp->ac_zoneid != ALL_ZONES) { 19482 zptr = zone_find_by_id(zoneid); 19483 if (zptr != NULL) { 19484 zone_rele(zptr); 19485 } else { 19486 err = EINVAL; 19487 goto out; 19488 } 19489 } 19490 19491 /* 19492 * For exclusive stacks we set the zoneid to zero 19493 * to make TCP operate as if in the global zone. 19494 */ 19495 if (tcps->tcps_netstack->netstack_stackid != GLOBAL_NETSTACKID) 19496 acp->ac_zoneid = GLOBAL_ZONEID; 19497 19498 if (acp->ac_start < TCPS_SYN_SENT || acp->ac_end > TCPS_TIME_WAIT || 19499 acp->ac_start > acp->ac_end || laf != raf || 19500 (laf != AF_INET && laf != AF_INET6)) { 19501 err = EINVAL; 19502 goto out; 19503 } 19504 19505 tcp_ioctl_abort_dump(acp); 19506 err = tcp_ioctl_abort(acp, tcps); 19507 19508 out: 19509 if (mp1 != NULL) { 19510 freemsg(mp1); 19511 mp->b_cont = NULL; 19512 } 19513 19514 if (err != 0) 19515 miocnak(q, mp, 0, err); 19516 else 19517 miocack(q, mp, 0, 0); 19518 } 19519 19520 /* 19521 * tcp_time_wait_processing() handles processing of incoming packets when 19522 * the tcp is in the TIME_WAIT state. 19523 * A TIME_WAIT tcp that has an associated open TCP stream is never put 19524 * on the time wait list. 19525 */ 19526 void 19527 tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, uint32_t seg_seq, 19528 uint32_t seg_ack, int seg_len, tcpha_t *tcpha, ip_recv_attr_t *ira) 19529 { 19530 int32_t bytes_acked; 19531 int32_t gap; 19532 int32_t rgap; 19533 tcp_opt_t tcpopt; 19534 uint_t flags; 19535 uint32_t new_swnd = 0; 19536 conn_t *nconnp; 19537 conn_t *connp = tcp->tcp_connp; 19538 tcp_stack_t *tcps = tcp->tcp_tcps; 19539 19540 BUMP_LOCAL(tcp->tcp_ibsegs); 19541 DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp); 19542 19543 flags = (unsigned int)tcpha->tha_flags & 0xFF; 19544 new_swnd = ntohs(tcpha->tha_win) << 19545 ((tcpha->tha_flags & TH_SYN) ? 0 : tcp->tcp_snd_ws); 19546 if (tcp->tcp_snd_ts_ok) { 19547 if (!tcp_paws_check(tcp, tcpha, &tcpopt)) { 19548 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 19549 tcp->tcp_rnxt, TH_ACK); 19550 goto done; 19551 } 19552 } 19553 gap = seg_seq - tcp->tcp_rnxt; 19554 rgap = tcp->tcp_rwnd - (gap + seg_len); 19555 if (gap < 0) { 19556 BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); 19557 UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, 19558 (seg_len > -gap ? -gap : seg_len)); 19559 seg_len += gap; 19560 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 19561 if (flags & TH_RST) { 19562 goto done; 19563 } 19564 if ((flags & TH_FIN) && seg_len == -1) { 19565 /* 19566 * When TCP receives a duplicate FIN in 19567 * TIME_WAIT state, restart the 2 MSL timer. 19568 * See page 73 in RFC 793. Make sure this TCP 19569 * is already on the TIME_WAIT list. If not, 19570 * just restart the timer. 19571 */ 19572 if (TCP_IS_DETACHED(tcp)) { 19573 if (tcp_time_wait_remove(tcp, NULL) == 19574 B_TRUE) { 19575 tcp_time_wait_append(tcp); 19576 TCP_DBGSTAT(tcps, 19577 tcp_rput_time_wait); 19578 } 19579 } else { 19580 ASSERT(tcp != NULL); 19581 TCP_TIMER_RESTART(tcp, 19582 tcps->tcps_time_wait_interval); 19583 } 19584 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 19585 tcp->tcp_rnxt, TH_ACK); 19586 goto done; 19587 } 19588 flags |= TH_ACK_NEEDED; 19589 seg_len = 0; 19590 goto process_ack; 19591 } 19592 19593 /* Fix seg_seq, and chew the gap off the front. */ 19594 seg_seq = tcp->tcp_rnxt; 19595 } 19596 19597 if ((flags & TH_SYN) && gap > 0 && rgap < 0) { 19598 /* 19599 * Make sure that when we accept the connection, pick 19600 * an ISS greater than (tcp_snxt + ISS_INCR/2) for the 19601 * old connection. 19602 * 19603 * The next ISS generated is equal to tcp_iss_incr_extra 19604 * + ISS_INCR/2 + other components depending on the 19605 * value of tcp_strong_iss. We pre-calculate the new 19606 * ISS here and compare with tcp_snxt to determine if 19607 * we need to make adjustment to tcp_iss_incr_extra. 19608 * 19609 * The above calculation is ugly and is a 19610 * waste of CPU cycles... 19611 */ 19612 uint32_t new_iss = tcps->tcps_iss_incr_extra; 19613 int32_t adj; 19614 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 19615 19616 switch (tcps->tcps_strong_iss) { 19617 case 2: { 19618 /* Add time and MD5 components. */ 19619 uint32_t answer[4]; 19620 struct { 19621 uint32_t ports; 19622 in6_addr_t src; 19623 in6_addr_t dst; 19624 } arg; 19625 MD5_CTX context; 19626 19627 mutex_enter(&tcps->tcps_iss_key_lock); 19628 context = tcps->tcps_iss_key; 19629 mutex_exit(&tcps->tcps_iss_key_lock); 19630 arg.ports = connp->conn_ports; 19631 /* We use MAPPED addresses in tcp_iss_init */ 19632 arg.src = connp->conn_laddr_v6; 19633 arg.dst = connp->conn_faddr_v6; 19634 MD5Update(&context, (uchar_t *)&arg, 19635 sizeof (arg)); 19636 MD5Final((uchar_t *)answer, &context); 19637 answer[0] ^= answer[1] ^ answer[2] ^ answer[3]; 19638 new_iss += (gethrtime() >> ISS_NSEC_SHT) + answer[0]; 19639 break; 19640 } 19641 case 1: 19642 /* Add time component and min random (i.e. 1). */ 19643 new_iss += (gethrtime() >> ISS_NSEC_SHT) + 1; 19644 break; 19645 default: 19646 /* Add only time component. */ 19647 new_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 19648 break; 19649 } 19650 if ((adj = (int32_t)(tcp->tcp_snxt - new_iss)) > 0) { 19651 /* 19652 * New ISS not guaranteed to be ISS_INCR/2 19653 * ahead of the current tcp_snxt, so add the 19654 * difference to tcp_iss_incr_extra. 19655 */ 19656 tcps->tcps_iss_incr_extra += adj; 19657 } 19658 /* 19659 * If tcp_clean_death() can not perform the task now, 19660 * drop the SYN packet and let the other side re-xmit. 19661 * Otherwise pass the SYN packet back in, since the 19662 * old tcp state has been cleaned up or freed. 19663 */ 19664 if (tcp_clean_death(tcp, 0, 27) == -1) 19665 goto done; 19666 nconnp = ipcl_classify(mp, ira, ipst); 19667 if (nconnp != NULL) { 19668 TCP_STAT(tcps, tcp_time_wait_syn_success); 19669 /* Drops ref on nconnp */ 19670 tcp_reinput(nconnp, mp, ira, ipst); 19671 return; 19672 } 19673 goto done; 19674 } 19675 19676 /* 19677 * rgap is the amount of stuff received out of window. A negative 19678 * value is the amount out of window. 19679 */ 19680 if (rgap < 0) { 19681 BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs); 19682 UPDATE_MIB(&tcps->tcps_mib, tcpInDataPastWinBytes, -rgap); 19683 /* Fix seg_len and make sure there is something left. */ 19684 seg_len += rgap; 19685 if (seg_len <= 0) { 19686 if (flags & TH_RST) { 19687 goto done; 19688 } 19689 flags |= TH_ACK_NEEDED; 19690 seg_len = 0; 19691 goto process_ack; 19692 } 19693 } 19694 /* 19695 * Check whether we can update tcp_ts_recent. This test is 19696 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 19697 * Extensions for High Performance: An Update", Internet Draft. 19698 */ 19699 if (tcp->tcp_snd_ts_ok && 19700 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 19701 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 19702 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 19703 tcp->tcp_last_rcv_lbolt = ddi_get_lbolt64(); 19704 } 19705 19706 if (seg_seq != tcp->tcp_rnxt && seg_len > 0) { 19707 /* Always ack out of order packets */ 19708 flags |= TH_ACK_NEEDED; 19709 seg_len = 0; 19710 } else if (seg_len > 0) { 19711 BUMP_MIB(&tcps->tcps_mib, tcpInClosed); 19712 BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs); 19713 UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len); 19714 } 19715 if (flags & TH_RST) { 19716 (void) tcp_clean_death(tcp, 0, 28); 19717 goto done; 19718 } 19719 if (flags & TH_SYN) { 19720 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 19721 TH_RST|TH_ACK); 19722 /* 19723 * Do not delete the TCP structure if it is in 19724 * TIME_WAIT state. Refer to RFC 1122, 4.2.2.13. 19725 */ 19726 goto done; 19727 } 19728 process_ack: 19729 if (flags & TH_ACK) { 19730 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 19731 if (bytes_acked <= 0) { 19732 if (bytes_acked == 0 && seg_len == 0 && 19733 new_swnd == tcp->tcp_swnd) 19734 BUMP_MIB(&tcps->tcps_mib, tcpInDupAck); 19735 } else { 19736 /* Acks something not sent */ 19737 flags |= TH_ACK_NEEDED; 19738 } 19739 } 19740 if (flags & TH_ACK_NEEDED) { 19741 /* 19742 * Time to send an ack for some reason. 19743 */ 19744 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 19745 tcp->tcp_rnxt, TH_ACK); 19746 } 19747 done: 19748 freemsg(mp); 19749 } 19750 19751 /* 19752 * TCP Timers Implementation. 19753 */ 19754 timeout_id_t 19755 tcp_timeout(conn_t *connp, void (*f)(void *), clock_t tim) 19756 { 19757 mblk_t *mp; 19758 tcp_timer_t *tcpt; 19759 tcp_t *tcp = connp->conn_tcp; 19760 19761 ASSERT(connp->conn_sqp != NULL); 19762 19763 TCP_DBGSTAT(tcp->tcp_tcps, tcp_timeout_calls); 19764 19765 if (tcp->tcp_timercache == NULL) { 19766 mp = tcp_timermp_alloc(KM_NOSLEEP | KM_PANIC); 19767 } else { 19768 TCP_DBGSTAT(tcp->tcp_tcps, tcp_timeout_cached_alloc); 19769 mp = tcp->tcp_timercache; 19770 tcp->tcp_timercache = mp->b_next; 19771 mp->b_next = NULL; 19772 ASSERT(mp->b_wptr == NULL); 19773 } 19774 19775 CONN_INC_REF(connp); 19776 tcpt = (tcp_timer_t *)mp->b_rptr; 19777 tcpt->connp = connp; 19778 tcpt->tcpt_proc = f; 19779 /* 19780 * TCP timers are normal timeouts. Plus, they do not require more than 19781 * a 10 millisecond resolution. By choosing a coarser resolution and by 19782 * rounding up the expiration to the next resolution boundary, we can 19783 * batch timers in the callout subsystem to make TCP timers more 19784 * efficient. The roundup also protects short timers from expiring too 19785 * early before they have a chance to be cancelled. 19786 */ 19787 tcpt->tcpt_tid = timeout_generic(CALLOUT_NORMAL, tcp_timer_callback, mp, 19788 TICK_TO_NSEC(tim), CALLOUT_TCP_RESOLUTION, CALLOUT_FLAG_ROUNDUP); 19789 19790 return ((timeout_id_t)mp); 19791 } 19792 19793 static void 19794 tcp_timer_callback(void *arg) 19795 { 19796 mblk_t *mp = (mblk_t *)arg; 19797 tcp_timer_t *tcpt; 19798 conn_t *connp; 19799 19800 tcpt = (tcp_timer_t *)mp->b_rptr; 19801 connp = tcpt->connp; 19802 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_timer_handler, connp, 19803 NULL, SQ_FILL, SQTAG_TCP_TIMER); 19804 } 19805 19806 /* ARGSUSED */ 19807 static void 19808 tcp_timer_handler(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 19809 { 19810 tcp_timer_t *tcpt; 19811 conn_t *connp = (conn_t *)arg; 19812 tcp_t *tcp = connp->conn_tcp; 19813 19814 tcpt = (tcp_timer_t *)mp->b_rptr; 19815 ASSERT(connp == tcpt->connp); 19816 ASSERT((squeue_t *)arg2 == connp->conn_sqp); 19817 19818 /* 19819 * If the TCP has reached the closed state, don't proceed any 19820 * further. This TCP logically does not exist on the system. 19821 * tcpt_proc could for example access queues, that have already 19822 * been qprocoff'ed off. 19823 */ 19824 if (tcp->tcp_state != TCPS_CLOSED) { 19825 (*tcpt->tcpt_proc)(connp); 19826 } else { 19827 tcp->tcp_timer_tid = 0; 19828 } 19829 tcp_timer_free(connp->conn_tcp, mp); 19830 } 19831 19832 /* 19833 * There is potential race with untimeout and the handler firing at the same 19834 * time. The mblock may be freed by the handler while we are trying to use 19835 * it. But since both should execute on the same squeue, this race should not 19836 * occur. 19837 */ 19838 clock_t 19839 tcp_timeout_cancel(conn_t *connp, timeout_id_t id) 19840 { 19841 mblk_t *mp = (mblk_t *)id; 19842 tcp_timer_t *tcpt; 19843 clock_t delta; 19844 19845 TCP_DBGSTAT(connp->conn_tcp->tcp_tcps, tcp_timeout_cancel_reqs); 19846 19847 if (mp == NULL) 19848 return (-1); 19849 19850 tcpt = (tcp_timer_t *)mp->b_rptr; 19851 ASSERT(tcpt->connp == connp); 19852 19853 delta = untimeout_default(tcpt->tcpt_tid, 0); 19854 19855 if (delta >= 0) { 19856 TCP_DBGSTAT(connp->conn_tcp->tcp_tcps, tcp_timeout_canceled); 19857 tcp_timer_free(connp->conn_tcp, mp); 19858 CONN_DEC_REF(connp); 19859 } 19860 19861 return (delta); 19862 } 19863 19864 /* 19865 * Allocate space for the timer event. The allocation looks like mblk, but it is 19866 * not a proper mblk. To avoid confusion we set b_wptr to NULL. 19867 * 19868 * Dealing with failures: If we can't allocate from the timer cache we try 19869 * allocating from dblock caches using allocb_tryhard(). In this case b_wptr 19870 * points to b_rptr. 19871 * If we can't allocate anything using allocb_tryhard(), we perform a last 19872 * attempt and use kmem_alloc_tryhard(). In this case we set b_wptr to -1 and 19873 * save the actual allocation size in b_datap. 19874 */ 19875 mblk_t * 19876 tcp_timermp_alloc(int kmflags) 19877 { 19878 mblk_t *mp = (mblk_t *)kmem_cache_alloc(tcp_timercache, 19879 kmflags & ~KM_PANIC); 19880 19881 if (mp != NULL) { 19882 mp->b_next = mp->b_prev = NULL; 19883 mp->b_rptr = (uchar_t *)(&mp[1]); 19884 mp->b_wptr = NULL; 19885 mp->b_datap = NULL; 19886 mp->b_queue = NULL; 19887 mp->b_cont = NULL; 19888 } else if (kmflags & KM_PANIC) { 19889 /* 19890 * Failed to allocate memory for the timer. Try allocating from 19891 * dblock caches. 19892 */ 19893 /* ipclassifier calls this from a constructor - hence no tcps */ 19894 TCP_G_STAT(tcp_timermp_allocfail); 19895 mp = allocb_tryhard(sizeof (tcp_timer_t)); 19896 if (mp == NULL) { 19897 size_t size = 0; 19898 /* 19899 * Memory is really low. Try tryhard allocation. 19900 * 19901 * ipclassifier calls this from a constructor - 19902 * hence no tcps 19903 */ 19904 TCP_G_STAT(tcp_timermp_allocdblfail); 19905 mp = kmem_alloc_tryhard(sizeof (mblk_t) + 19906 sizeof (tcp_timer_t), &size, kmflags); 19907 mp->b_rptr = (uchar_t *)(&mp[1]); 19908 mp->b_next = mp->b_prev = NULL; 19909 mp->b_wptr = (uchar_t *)-1; 19910 mp->b_datap = (dblk_t *)size; 19911 mp->b_queue = NULL; 19912 mp->b_cont = NULL; 19913 } 19914 ASSERT(mp->b_wptr != NULL); 19915 } 19916 /* ipclassifier calls this from a constructor - hence no tcps */ 19917 TCP_G_DBGSTAT(tcp_timermp_alloced); 19918 19919 return (mp); 19920 } 19921 19922 /* 19923 * Free per-tcp timer cache. 19924 * It can only contain entries from tcp_timercache. 19925 */ 19926 void 19927 tcp_timermp_free(tcp_t *tcp) 19928 { 19929 mblk_t *mp; 19930 19931 while ((mp = tcp->tcp_timercache) != NULL) { 19932 ASSERT(mp->b_wptr == NULL); 19933 tcp->tcp_timercache = tcp->tcp_timercache->b_next; 19934 kmem_cache_free(tcp_timercache, mp); 19935 } 19936 } 19937 19938 /* 19939 * Free timer event. Put it on the per-tcp timer cache if there is not too many 19940 * events there already (currently at most two events are cached). 19941 * If the event is not allocated from the timer cache, free it right away. 19942 */ 19943 static void 19944 tcp_timer_free(tcp_t *tcp, mblk_t *mp) 19945 { 19946 mblk_t *mp1 = tcp->tcp_timercache; 19947 19948 if (mp->b_wptr != NULL) { 19949 /* 19950 * This allocation is not from a timer cache, free it right 19951 * away. 19952 */ 19953 if (mp->b_wptr != (uchar_t *)-1) 19954 freeb(mp); 19955 else 19956 kmem_free(mp, (size_t)mp->b_datap); 19957 } else if (mp1 == NULL || mp1->b_next == NULL) { 19958 /* Cache this timer block for future allocations */ 19959 mp->b_rptr = (uchar_t *)(&mp[1]); 19960 mp->b_next = mp1; 19961 tcp->tcp_timercache = mp; 19962 } else { 19963 kmem_cache_free(tcp_timercache, mp); 19964 TCP_DBGSTAT(tcp->tcp_tcps, tcp_timermp_freed); 19965 } 19966 } 19967 19968 /* 19969 * End of TCP Timers implementation. 19970 */ 19971 19972 /* 19973 * tcp_{set,clr}qfull() functions are used to either set or clear QFULL 19974 * on the specified backing STREAMS q. Note, the caller may make the 19975 * decision to call based on the tcp_t.tcp_flow_stopped value which 19976 * when check outside the q's lock is only an advisory check ... 19977 */ 19978 void 19979 tcp_setqfull(tcp_t *tcp) 19980 { 19981 tcp_stack_t *tcps = tcp->tcp_tcps; 19982 conn_t *connp = tcp->tcp_connp; 19983 19984 if (tcp->tcp_closed) 19985 return; 19986 19987 conn_setqfull(connp, &tcp->tcp_flow_stopped); 19988 if (tcp->tcp_flow_stopped) 19989 TCP_STAT(tcps, tcp_flwctl_on); 19990 } 19991 19992 void 19993 tcp_clrqfull(tcp_t *tcp) 19994 { 19995 conn_t *connp = tcp->tcp_connp; 19996 19997 if (tcp->tcp_closed) 19998 return; 19999 conn_clrqfull(connp, &tcp->tcp_flow_stopped); 20000 } 20001 20002 /* 20003 * kstats related to squeues i.e. not per IP instance 20004 */ 20005 static void * 20006 tcp_g_kstat_init(tcp_g_stat_t *tcp_g_statp) 20007 { 20008 kstat_t *ksp; 20009 20010 tcp_g_stat_t template = { 20011 { "tcp_timermp_alloced", KSTAT_DATA_UINT64 }, 20012 { "tcp_timermp_allocfail", KSTAT_DATA_UINT64 }, 20013 { "tcp_timermp_allocdblfail", KSTAT_DATA_UINT64 }, 20014 { "tcp_freelist_cleanup", KSTAT_DATA_UINT64 }, 20015 }; 20016 20017 ksp = kstat_create(TCP_MOD_NAME, 0, "tcpstat_g", "net", 20018 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 20019 KSTAT_FLAG_VIRTUAL); 20020 20021 if (ksp == NULL) 20022 return (NULL); 20023 20024 bcopy(&template, tcp_g_statp, sizeof (template)); 20025 ksp->ks_data = (void *)tcp_g_statp; 20026 20027 kstat_install(ksp); 20028 return (ksp); 20029 } 20030 20031 static void 20032 tcp_g_kstat_fini(kstat_t *ksp) 20033 { 20034 if (ksp != NULL) { 20035 kstat_delete(ksp); 20036 } 20037 } 20038 20039 20040 static void * 20041 tcp_kstat2_init(netstackid_t stackid, tcp_stat_t *tcps_statisticsp) 20042 { 20043 kstat_t *ksp; 20044 20045 tcp_stat_t template = { 20046 { "tcp_time_wait", KSTAT_DATA_UINT64 }, 20047 { "tcp_time_wait_syn", KSTAT_DATA_UINT64 }, 20048 { "tcp_time_wait_syn_success", KSTAT_DATA_UINT64 }, 20049 { "tcp_detach_non_time_wait", KSTAT_DATA_UINT64 }, 20050 { "tcp_detach_time_wait", KSTAT_DATA_UINT64 }, 20051 { "tcp_time_wait_reap", KSTAT_DATA_UINT64 }, 20052 { "tcp_clean_death_nondetached", KSTAT_DATA_UINT64 }, 20053 { "tcp_reinit_calls", KSTAT_DATA_UINT64 }, 20054 { "tcp_eager_err1", KSTAT_DATA_UINT64 }, 20055 { "tcp_eager_err2", KSTAT_DATA_UINT64 }, 20056 { "tcp_eager_blowoff_calls", KSTAT_DATA_UINT64 }, 20057 { "tcp_eager_blowoff_q", KSTAT_DATA_UINT64 }, 20058 { "tcp_eager_blowoff_q0", KSTAT_DATA_UINT64 }, 20059 { "tcp_not_hard_bound", KSTAT_DATA_UINT64 }, 20060 { "tcp_no_listener", KSTAT_DATA_UINT64 }, 20061 { "tcp_found_eager", KSTAT_DATA_UINT64 }, 20062 { "tcp_wrong_queue", KSTAT_DATA_UINT64 }, 20063 { "tcp_found_eager_binding1", KSTAT_DATA_UINT64 }, 20064 { "tcp_found_eager_bound1", KSTAT_DATA_UINT64 }, 20065 { "tcp_eager_has_listener1", KSTAT_DATA_UINT64 }, 20066 { "tcp_open_alloc", KSTAT_DATA_UINT64 }, 20067 { "tcp_open_detached_alloc", KSTAT_DATA_UINT64 }, 20068 { "tcp_rput_time_wait", KSTAT_DATA_UINT64 }, 20069 { "tcp_listendrop", KSTAT_DATA_UINT64 }, 20070 { "tcp_listendropq0", KSTAT_DATA_UINT64 }, 20071 { "tcp_wrong_rq", KSTAT_DATA_UINT64 }, 20072 { "tcp_rsrv_calls", KSTAT_DATA_UINT64 }, 20073 { "tcp_eagerfree2", KSTAT_DATA_UINT64 }, 20074 { "tcp_eagerfree3", KSTAT_DATA_UINT64 }, 20075 { "tcp_eagerfree4", KSTAT_DATA_UINT64 }, 20076 { "tcp_eagerfree5", KSTAT_DATA_UINT64 }, 20077 { "tcp_timewait_syn_fail", KSTAT_DATA_UINT64 }, 20078 { "tcp_listen_badflags", KSTAT_DATA_UINT64 }, 20079 { "tcp_timeout_calls", KSTAT_DATA_UINT64 }, 20080 { "tcp_timeout_cached_alloc", KSTAT_DATA_UINT64 }, 20081 { "tcp_timeout_cancel_reqs", KSTAT_DATA_UINT64 }, 20082 { "tcp_timeout_canceled", KSTAT_DATA_UINT64 }, 20083 { "tcp_timermp_freed", KSTAT_DATA_UINT64 }, 20084 { "tcp_push_timer_cnt", KSTAT_DATA_UINT64 }, 20085 { "tcp_ack_timer_cnt", KSTAT_DATA_UINT64 }, 20086 { "tcp_wsrv_called", KSTAT_DATA_UINT64 }, 20087 { "tcp_flwctl_on", KSTAT_DATA_UINT64 }, 20088 { "tcp_timer_fire_early", KSTAT_DATA_UINT64 }, 20089 { "tcp_timer_fire_miss", KSTAT_DATA_UINT64 }, 20090 { "tcp_rput_v6_error", KSTAT_DATA_UINT64 }, 20091 { "tcp_zcopy_on", KSTAT_DATA_UINT64 }, 20092 { "tcp_zcopy_off", KSTAT_DATA_UINT64 }, 20093 { "tcp_zcopy_backoff", KSTAT_DATA_UINT64 }, 20094 { "tcp_fusion_flowctl", KSTAT_DATA_UINT64 }, 20095 { "tcp_fusion_backenabled", KSTAT_DATA_UINT64 }, 20096 { "tcp_fusion_urg", KSTAT_DATA_UINT64 }, 20097 { "tcp_fusion_putnext", KSTAT_DATA_UINT64 }, 20098 { "tcp_fusion_unfusable", KSTAT_DATA_UINT64 }, 20099 { "tcp_fusion_aborted", KSTAT_DATA_UINT64 }, 20100 { "tcp_fusion_unqualified", KSTAT_DATA_UINT64 }, 20101 { "tcp_fusion_rrw_busy", KSTAT_DATA_UINT64 }, 20102 { "tcp_fusion_rrw_msgcnt", KSTAT_DATA_UINT64 }, 20103 { "tcp_fusion_rrw_plugged", KSTAT_DATA_UINT64 }, 20104 { "tcp_in_ack_unsent_drop", KSTAT_DATA_UINT64 }, 20105 { "tcp_sock_fallback", KSTAT_DATA_UINT64 }, 20106 { "tcp_lso_enabled", KSTAT_DATA_UINT64 }, 20107 { "tcp_lso_disabled", KSTAT_DATA_UINT64 }, 20108 { "tcp_lso_times", KSTAT_DATA_UINT64 }, 20109 { "tcp_lso_pkt_out", KSTAT_DATA_UINT64 }, 20110 { "tcp_listen_cnt_drop", KSTAT_DATA_UINT64 }, 20111 { "tcp_listen_mem_drop", KSTAT_DATA_UINT64 }, 20112 { "tcp_zwin_ack_syn", KSTAT_DATA_UINT64 }, 20113 { "tcp_rst_unsent", KSTAT_DATA_UINT64 } 20114 }; 20115 20116 ksp = kstat_create_netstack(TCP_MOD_NAME, 0, "tcpstat", "net", 20117 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 20118 KSTAT_FLAG_VIRTUAL, stackid); 20119 20120 if (ksp == NULL) 20121 return (NULL); 20122 20123 bcopy(&template, tcps_statisticsp, sizeof (template)); 20124 ksp->ks_data = (void *)tcps_statisticsp; 20125 ksp->ks_private = (void *)(uintptr_t)stackid; 20126 20127 kstat_install(ksp); 20128 return (ksp); 20129 } 20130 20131 static void 20132 tcp_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 20133 { 20134 if (ksp != NULL) { 20135 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 20136 kstat_delete_netstack(ksp, stackid); 20137 } 20138 } 20139 20140 /* 20141 * TCP Kstats implementation 20142 */ 20143 static void * 20144 tcp_kstat_init(netstackid_t stackid, tcp_stack_t *tcps) 20145 { 20146 kstat_t *ksp; 20147 20148 tcp_named_kstat_t template = { 20149 { "rtoAlgorithm", KSTAT_DATA_INT32, 0 }, 20150 { "rtoMin", KSTAT_DATA_INT32, 0 }, 20151 { "rtoMax", KSTAT_DATA_INT32, 0 }, 20152 { "maxConn", KSTAT_DATA_INT32, 0 }, 20153 { "activeOpens", KSTAT_DATA_UINT32, 0 }, 20154 { "passiveOpens", KSTAT_DATA_UINT32, 0 }, 20155 { "attemptFails", KSTAT_DATA_UINT32, 0 }, 20156 { "estabResets", KSTAT_DATA_UINT32, 0 }, 20157 { "currEstab", KSTAT_DATA_UINT32, 0 }, 20158 { "inSegs", KSTAT_DATA_UINT64, 0 }, 20159 { "outSegs", KSTAT_DATA_UINT64, 0 }, 20160 { "retransSegs", KSTAT_DATA_UINT32, 0 }, 20161 { "connTableSize", KSTAT_DATA_INT32, 0 }, 20162 { "outRsts", KSTAT_DATA_UINT32, 0 }, 20163 { "outDataSegs", KSTAT_DATA_UINT32, 0 }, 20164 { "outDataBytes", KSTAT_DATA_UINT32, 0 }, 20165 { "retransBytes", KSTAT_DATA_UINT32, 0 }, 20166 { "outAck", KSTAT_DATA_UINT32, 0 }, 20167 { "outAckDelayed", KSTAT_DATA_UINT32, 0 }, 20168 { "outUrg", KSTAT_DATA_UINT32, 0 }, 20169 { "outWinUpdate", KSTAT_DATA_UINT32, 0 }, 20170 { "outWinProbe", KSTAT_DATA_UINT32, 0 }, 20171 { "outControl", KSTAT_DATA_UINT32, 0 }, 20172 { "outFastRetrans", KSTAT_DATA_UINT32, 0 }, 20173 { "inAckSegs", KSTAT_DATA_UINT32, 0 }, 20174 { "inAckBytes", KSTAT_DATA_UINT32, 0 }, 20175 { "inDupAck", KSTAT_DATA_UINT32, 0 }, 20176 { "inAckUnsent", KSTAT_DATA_UINT32, 0 }, 20177 { "inDataInorderSegs", KSTAT_DATA_UINT32, 0 }, 20178 { "inDataInorderBytes", KSTAT_DATA_UINT32, 0 }, 20179 { "inDataUnorderSegs", KSTAT_DATA_UINT32, 0 }, 20180 { "inDataUnorderBytes", KSTAT_DATA_UINT32, 0 }, 20181 { "inDataDupSegs", KSTAT_DATA_UINT32, 0 }, 20182 { "inDataDupBytes", KSTAT_DATA_UINT32, 0 }, 20183 { "inDataPartDupSegs", KSTAT_DATA_UINT32, 0 }, 20184 { "inDataPartDupBytes", KSTAT_DATA_UINT32, 0 }, 20185 { "inDataPastWinSegs", KSTAT_DATA_UINT32, 0 }, 20186 { "inDataPastWinBytes", KSTAT_DATA_UINT32, 0 }, 20187 { "inWinProbe", KSTAT_DATA_UINT32, 0 }, 20188 { "inWinUpdate", KSTAT_DATA_UINT32, 0 }, 20189 { "inClosed", KSTAT_DATA_UINT32, 0 }, 20190 { "rttUpdate", KSTAT_DATA_UINT32, 0 }, 20191 { "rttNoUpdate", KSTAT_DATA_UINT32, 0 }, 20192 { "timRetrans", KSTAT_DATA_UINT32, 0 }, 20193 { "timRetransDrop", KSTAT_DATA_UINT32, 0 }, 20194 { "timKeepalive", KSTAT_DATA_UINT32, 0 }, 20195 { "timKeepaliveProbe", KSTAT_DATA_UINT32, 0 }, 20196 { "timKeepaliveDrop", KSTAT_DATA_UINT32, 0 }, 20197 { "listenDrop", KSTAT_DATA_UINT32, 0 }, 20198 { "listenDropQ0", KSTAT_DATA_UINT32, 0 }, 20199 { "halfOpenDrop", KSTAT_DATA_UINT32, 0 }, 20200 { "outSackRetransSegs", KSTAT_DATA_UINT32, 0 }, 20201 { "connTableSize6", KSTAT_DATA_INT32, 0 } 20202 }; 20203 20204 ksp = kstat_create_netstack(TCP_MOD_NAME, 0, TCP_MOD_NAME, "mib2", 20205 KSTAT_TYPE_NAMED, NUM_OF_FIELDS(tcp_named_kstat_t), 0, stackid); 20206 20207 if (ksp == NULL) 20208 return (NULL); 20209 20210 template.rtoAlgorithm.value.ui32 = 4; 20211 template.rtoMin.value.ui32 = tcps->tcps_rexmit_interval_min; 20212 template.rtoMax.value.ui32 = tcps->tcps_rexmit_interval_max; 20213 template.maxConn.value.i32 = -1; 20214 20215 bcopy(&template, ksp->ks_data, sizeof (template)); 20216 ksp->ks_update = tcp_kstat_update; 20217 ksp->ks_private = (void *)(uintptr_t)stackid; 20218 20219 kstat_install(ksp); 20220 return (ksp); 20221 } 20222 20223 static void 20224 tcp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 20225 { 20226 if (ksp != NULL) { 20227 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 20228 kstat_delete_netstack(ksp, stackid); 20229 } 20230 } 20231 20232 static int 20233 tcp_kstat_update(kstat_t *kp, int rw) 20234 { 20235 tcp_named_kstat_t *tcpkp; 20236 tcp_t *tcp; 20237 connf_t *connfp; 20238 conn_t *connp; 20239 int i; 20240 netstackid_t stackid = (netstackid_t)(uintptr_t)kp->ks_private; 20241 netstack_t *ns; 20242 tcp_stack_t *tcps; 20243 ip_stack_t *ipst; 20244 20245 if ((kp == NULL) || (kp->ks_data == NULL)) 20246 return (EIO); 20247 20248 if (rw == KSTAT_WRITE) 20249 return (EACCES); 20250 20251 ns = netstack_find_by_stackid(stackid); 20252 if (ns == NULL) 20253 return (-1); 20254 tcps = ns->netstack_tcp; 20255 if (tcps == NULL) { 20256 netstack_rele(ns); 20257 return (-1); 20258 } 20259 20260 tcpkp = (tcp_named_kstat_t *)kp->ks_data; 20261 20262 tcpkp->currEstab.value.ui32 = 0; 20263 20264 ipst = ns->netstack_ip; 20265 20266 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 20267 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 20268 connp = NULL; 20269 while ((connp = 20270 ipcl_get_next_conn(connfp, connp, IPCL_TCPCONN)) != NULL) { 20271 tcp = connp->conn_tcp; 20272 switch (tcp_snmp_state(tcp)) { 20273 case MIB2_TCP_established: 20274 case MIB2_TCP_closeWait: 20275 tcpkp->currEstab.value.ui32++; 20276 break; 20277 } 20278 } 20279 } 20280 20281 tcpkp->activeOpens.value.ui32 = tcps->tcps_mib.tcpActiveOpens; 20282 tcpkp->passiveOpens.value.ui32 = tcps->tcps_mib.tcpPassiveOpens; 20283 tcpkp->attemptFails.value.ui32 = tcps->tcps_mib.tcpAttemptFails; 20284 tcpkp->estabResets.value.ui32 = tcps->tcps_mib.tcpEstabResets; 20285 tcpkp->inSegs.value.ui64 = tcps->tcps_mib.tcpHCInSegs; 20286 tcpkp->outSegs.value.ui64 = tcps->tcps_mib.tcpHCOutSegs; 20287 tcpkp->retransSegs.value.ui32 = tcps->tcps_mib.tcpRetransSegs; 20288 tcpkp->connTableSize.value.i32 = tcps->tcps_mib.tcpConnTableSize; 20289 tcpkp->outRsts.value.ui32 = tcps->tcps_mib.tcpOutRsts; 20290 tcpkp->outDataSegs.value.ui32 = tcps->tcps_mib.tcpOutDataSegs; 20291 tcpkp->outDataBytes.value.ui32 = tcps->tcps_mib.tcpOutDataBytes; 20292 tcpkp->retransBytes.value.ui32 = tcps->tcps_mib.tcpRetransBytes; 20293 tcpkp->outAck.value.ui32 = tcps->tcps_mib.tcpOutAck; 20294 tcpkp->outAckDelayed.value.ui32 = tcps->tcps_mib.tcpOutAckDelayed; 20295 tcpkp->outUrg.value.ui32 = tcps->tcps_mib.tcpOutUrg; 20296 tcpkp->outWinUpdate.value.ui32 = tcps->tcps_mib.tcpOutWinUpdate; 20297 tcpkp->outWinProbe.value.ui32 = tcps->tcps_mib.tcpOutWinProbe; 20298 tcpkp->outControl.value.ui32 = tcps->tcps_mib.tcpOutControl; 20299 tcpkp->outFastRetrans.value.ui32 = tcps->tcps_mib.tcpOutFastRetrans; 20300 tcpkp->inAckSegs.value.ui32 = tcps->tcps_mib.tcpInAckSegs; 20301 tcpkp->inAckBytes.value.ui32 = tcps->tcps_mib.tcpInAckBytes; 20302 tcpkp->inDupAck.value.ui32 = tcps->tcps_mib.tcpInDupAck; 20303 tcpkp->inAckUnsent.value.ui32 = tcps->tcps_mib.tcpInAckUnsent; 20304 tcpkp->inDataInorderSegs.value.ui32 = 20305 tcps->tcps_mib.tcpInDataInorderSegs; 20306 tcpkp->inDataInorderBytes.value.ui32 = 20307 tcps->tcps_mib.tcpInDataInorderBytes; 20308 tcpkp->inDataUnorderSegs.value.ui32 = 20309 tcps->tcps_mib.tcpInDataUnorderSegs; 20310 tcpkp->inDataUnorderBytes.value.ui32 = 20311 tcps->tcps_mib.tcpInDataUnorderBytes; 20312 tcpkp->inDataDupSegs.value.ui32 = tcps->tcps_mib.tcpInDataDupSegs; 20313 tcpkp->inDataDupBytes.value.ui32 = tcps->tcps_mib.tcpInDataDupBytes; 20314 tcpkp->inDataPartDupSegs.value.ui32 = 20315 tcps->tcps_mib.tcpInDataPartDupSegs; 20316 tcpkp->inDataPartDupBytes.value.ui32 = 20317 tcps->tcps_mib.tcpInDataPartDupBytes; 20318 tcpkp->inDataPastWinSegs.value.ui32 = 20319 tcps->tcps_mib.tcpInDataPastWinSegs; 20320 tcpkp->inDataPastWinBytes.value.ui32 = 20321 tcps->tcps_mib.tcpInDataPastWinBytes; 20322 tcpkp->inWinProbe.value.ui32 = tcps->tcps_mib.tcpInWinProbe; 20323 tcpkp->inWinUpdate.value.ui32 = tcps->tcps_mib.tcpInWinUpdate; 20324 tcpkp->inClosed.value.ui32 = tcps->tcps_mib.tcpInClosed; 20325 tcpkp->rttNoUpdate.value.ui32 = tcps->tcps_mib.tcpRttNoUpdate; 20326 tcpkp->rttUpdate.value.ui32 = tcps->tcps_mib.tcpRttUpdate; 20327 tcpkp->timRetrans.value.ui32 = tcps->tcps_mib.tcpTimRetrans; 20328 tcpkp->timRetransDrop.value.ui32 = tcps->tcps_mib.tcpTimRetransDrop; 20329 tcpkp->timKeepalive.value.ui32 = tcps->tcps_mib.tcpTimKeepalive; 20330 tcpkp->timKeepaliveProbe.value.ui32 = 20331 tcps->tcps_mib.tcpTimKeepaliveProbe; 20332 tcpkp->timKeepaliveDrop.value.ui32 = 20333 tcps->tcps_mib.tcpTimKeepaliveDrop; 20334 tcpkp->listenDrop.value.ui32 = tcps->tcps_mib.tcpListenDrop; 20335 tcpkp->listenDropQ0.value.ui32 = tcps->tcps_mib.tcpListenDropQ0; 20336 tcpkp->halfOpenDrop.value.ui32 = tcps->tcps_mib.tcpHalfOpenDrop; 20337 tcpkp->outSackRetransSegs.value.ui32 = 20338 tcps->tcps_mib.tcpOutSackRetransSegs; 20339 tcpkp->connTableSize6.value.i32 = tcps->tcps_mib.tcp6ConnTableSize; 20340 20341 netstack_rele(ns); 20342 return (0); 20343 } 20344 20345 static int 20346 tcp_squeue_switch(int val) 20347 { 20348 int rval = SQ_FILL; 20349 20350 switch (val) { 20351 case 1: 20352 rval = SQ_NODRAIN; 20353 break; 20354 case 2: 20355 rval = SQ_PROCESS; 20356 break; 20357 default: 20358 break; 20359 } 20360 return (rval); 20361 } 20362 20363 /* 20364 * This is called once for each squeue - globally for all stack 20365 * instances. 20366 */ 20367 static void 20368 tcp_squeue_add(squeue_t *sqp) 20369 { 20370 tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc( 20371 sizeof (tcp_squeue_priv_t), KM_SLEEP); 20372 20373 *squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait; 20374 tcp_time_wait->tcp_time_wait_tid = 20375 timeout_generic(CALLOUT_NORMAL, tcp_time_wait_collector, sqp, 20376 TICK_TO_NSEC(TCP_TIME_WAIT_DELAY), CALLOUT_TCP_RESOLUTION, 20377 CALLOUT_FLAG_ROUNDUP); 20378 if (tcp_free_list_max_cnt == 0) { 20379 int tcp_ncpus = ((boot_max_ncpus == -1) ? 20380 max_ncpus : boot_max_ncpus); 20381 20382 /* 20383 * Limit number of entries to 1% of availble memory / tcp_ncpus 20384 */ 20385 tcp_free_list_max_cnt = (freemem * PAGESIZE) / 20386 (tcp_ncpus * sizeof (tcp_t) * 100); 20387 } 20388 tcp_time_wait->tcp_free_list_cnt = 0; 20389 } 20390 20391 /* 20392 * On a labeled system we have some protocols above TCP, such as RPC, which 20393 * appear to assume that every mblk in a chain has a db_credp. 20394 */ 20395 static void 20396 tcp_setcred_data(mblk_t *mp, ip_recv_attr_t *ira) 20397 { 20398 ASSERT(is_system_labeled()); 20399 ASSERT(ira->ira_cred != NULL); 20400 20401 while (mp != NULL) { 20402 mblk_setcred(mp, ira->ira_cred, NOPID); 20403 mp = mp->b_cont; 20404 } 20405 } 20406 20407 static int 20408 tcp_bind_select_lport(tcp_t *tcp, in_port_t *requested_port_ptr, 20409 boolean_t bind_to_req_port_only, cred_t *cr) 20410 { 20411 in_port_t mlp_port; 20412 mlp_type_t addrtype, mlptype; 20413 boolean_t user_specified; 20414 in_port_t allocated_port; 20415 in_port_t requested_port = *requested_port_ptr; 20416 conn_t *connp = tcp->tcp_connp; 20417 zone_t *zone; 20418 tcp_stack_t *tcps = tcp->tcp_tcps; 20419 in6_addr_t v6addr = connp->conn_laddr_v6; 20420 20421 /* 20422 * XXX It's up to the caller to specify bind_to_req_port_only or not. 20423 */ 20424 ASSERT(cr != NULL); 20425 20426 /* 20427 * Get a valid port (within the anonymous range and should not 20428 * be a privileged one) to use if the user has not given a port. 20429 * If multiple threads are here, they may all start with 20430 * with the same initial port. But, it should be fine as long as 20431 * tcp_bindi will ensure that no two threads will be assigned 20432 * the same port. 20433 * 20434 * NOTE: XXX If a privileged process asks for an anonymous port, we 20435 * still check for ports only in the range > tcp_smallest_non_priv_port, 20436 * unless TCP_ANONPRIVBIND option is set. 20437 */ 20438 mlptype = mlptSingle; 20439 mlp_port = requested_port; 20440 if (requested_port == 0) { 20441 requested_port = connp->conn_anon_priv_bind ? 20442 tcp_get_next_priv_port(tcp) : 20443 tcp_update_next_port(tcps->tcps_next_port_to_try, 20444 tcp, B_TRUE); 20445 if (requested_port == 0) { 20446 return (-TNOADDR); 20447 } 20448 user_specified = B_FALSE; 20449 20450 /* 20451 * If the user went through one of the RPC interfaces to create 20452 * this socket and RPC is MLP in this zone, then give him an 20453 * anonymous MLP. 20454 */ 20455 if (connp->conn_anon_mlp && is_system_labeled()) { 20456 zone = crgetzone(cr); 20457 addrtype = tsol_mlp_addr_type( 20458 connp->conn_allzones ? ALL_ZONES : zone->zone_id, 20459 IPV6_VERSION, &v6addr, 20460 tcps->tcps_netstack->netstack_ip); 20461 if (addrtype == mlptSingle) { 20462 return (-TNOADDR); 20463 } 20464 mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP, 20465 PMAPPORT, addrtype); 20466 mlp_port = PMAPPORT; 20467 } 20468 } else { 20469 int i; 20470 boolean_t priv = B_FALSE; 20471 20472 /* 20473 * If the requested_port is in the well-known privileged range, 20474 * verify that the stream was opened by a privileged user. 20475 * Note: No locks are held when inspecting tcp_g_*epriv_ports 20476 * but instead the code relies on: 20477 * - the fact that the address of the array and its size never 20478 * changes 20479 * - the atomic assignment of the elements of the array 20480 */ 20481 if (requested_port < tcps->tcps_smallest_nonpriv_port) { 20482 priv = B_TRUE; 20483 } else { 20484 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 20485 if (requested_port == 20486 tcps->tcps_g_epriv_ports[i]) { 20487 priv = B_TRUE; 20488 break; 20489 } 20490 } 20491 } 20492 if (priv) { 20493 if (secpolicy_net_privaddr(cr, requested_port, 20494 IPPROTO_TCP) != 0) { 20495 if (connp->conn_debug) { 20496 (void) strlog(TCP_MOD_ID, 0, 1, 20497 SL_ERROR|SL_TRACE, 20498 "tcp_bind: no priv for port %d", 20499 requested_port); 20500 } 20501 return (-TACCES); 20502 } 20503 } 20504 user_specified = B_TRUE; 20505 20506 connp = tcp->tcp_connp; 20507 if (is_system_labeled()) { 20508 zone = crgetzone(cr); 20509 addrtype = tsol_mlp_addr_type( 20510 connp->conn_allzones ? ALL_ZONES : zone->zone_id, 20511 IPV6_VERSION, &v6addr, 20512 tcps->tcps_netstack->netstack_ip); 20513 if (addrtype == mlptSingle) { 20514 return (-TNOADDR); 20515 } 20516 mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP, 20517 requested_port, addrtype); 20518 } 20519 } 20520 20521 if (mlptype != mlptSingle) { 20522 if (secpolicy_net_bindmlp(cr) != 0) { 20523 if (connp->conn_debug) { 20524 (void) strlog(TCP_MOD_ID, 0, 1, 20525 SL_ERROR|SL_TRACE, 20526 "tcp_bind: no priv for multilevel port %d", 20527 requested_port); 20528 } 20529 return (-TACCES); 20530 } 20531 20532 /* 20533 * If we're specifically binding a shared IP address and the 20534 * port is MLP on shared addresses, then check to see if this 20535 * zone actually owns the MLP. Reject if not. 20536 */ 20537 if (mlptype == mlptShared && addrtype == mlptShared) { 20538 /* 20539 * No need to handle exclusive-stack zones since 20540 * ALL_ZONES only applies to the shared stack. 20541 */ 20542 zoneid_t mlpzone; 20543 20544 mlpzone = tsol_mlp_findzone(IPPROTO_TCP, 20545 htons(mlp_port)); 20546 if (connp->conn_zoneid != mlpzone) { 20547 if (connp->conn_debug) { 20548 (void) strlog(TCP_MOD_ID, 0, 1, 20549 SL_ERROR|SL_TRACE, 20550 "tcp_bind: attempt to bind port " 20551 "%d on shared addr in zone %d " 20552 "(should be %d)", 20553 mlp_port, connp->conn_zoneid, 20554 mlpzone); 20555 } 20556 return (-TACCES); 20557 } 20558 } 20559 20560 if (!user_specified) { 20561 int err; 20562 err = tsol_mlp_anon(zone, mlptype, connp->conn_proto, 20563 requested_port, B_TRUE); 20564 if (err != 0) { 20565 if (connp->conn_debug) { 20566 (void) strlog(TCP_MOD_ID, 0, 1, 20567 SL_ERROR|SL_TRACE, 20568 "tcp_bind: cannot establish anon " 20569 "MLP for port %d", 20570 requested_port); 20571 } 20572 return (err); 20573 } 20574 connp->conn_anon_port = B_TRUE; 20575 } 20576 connp->conn_mlp_type = mlptype; 20577 } 20578 20579 allocated_port = tcp_bindi(tcp, requested_port, &v6addr, 20580 connp->conn_reuseaddr, B_FALSE, bind_to_req_port_only, 20581 user_specified); 20582 20583 if (allocated_port == 0) { 20584 connp->conn_mlp_type = mlptSingle; 20585 if (connp->conn_anon_port) { 20586 connp->conn_anon_port = B_FALSE; 20587 (void) tsol_mlp_anon(zone, mlptype, connp->conn_proto, 20588 requested_port, B_FALSE); 20589 } 20590 if (bind_to_req_port_only) { 20591 if (connp->conn_debug) { 20592 (void) strlog(TCP_MOD_ID, 0, 1, 20593 SL_ERROR|SL_TRACE, 20594 "tcp_bind: requested addr busy"); 20595 } 20596 return (-TADDRBUSY); 20597 } else { 20598 /* If we are out of ports, fail the bind. */ 20599 if (connp->conn_debug) { 20600 (void) strlog(TCP_MOD_ID, 0, 1, 20601 SL_ERROR|SL_TRACE, 20602 "tcp_bind: out of ports?"); 20603 } 20604 return (-TNOADDR); 20605 } 20606 } 20607 20608 /* Pass the allocated port back */ 20609 *requested_port_ptr = allocated_port; 20610 return (0); 20611 } 20612 20613 /* 20614 * Check the address and check/pick a local port number. 20615 */ 20616 static int 20617 tcp_bind_check(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr, 20618 boolean_t bind_to_req_port_only) 20619 { 20620 tcp_t *tcp = connp->conn_tcp; 20621 sin_t *sin; 20622 sin6_t *sin6; 20623 in_port_t requested_port; 20624 ipaddr_t v4addr; 20625 in6_addr_t v6addr; 20626 ip_laddr_t laddr_type = IPVL_UNICAST_UP; /* INADDR_ANY */ 20627 zoneid_t zoneid = IPCL_ZONEID(connp); 20628 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 20629 uint_t scopeid = 0; 20630 int error = 0; 20631 ip_xmit_attr_t *ixa = connp->conn_ixa; 20632 20633 ASSERT((uintptr_t)len <= (uintptr_t)INT_MAX); 20634 20635 if (tcp->tcp_state == TCPS_BOUND) { 20636 return (0); 20637 } else if (tcp->tcp_state > TCPS_BOUND) { 20638 if (connp->conn_debug) { 20639 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 20640 "tcp_bind: bad state, %d", tcp->tcp_state); 20641 } 20642 return (-TOUTSTATE); 20643 } 20644 20645 ASSERT(sa != NULL && len != 0); 20646 20647 if (!OK_32PTR((char *)sa)) { 20648 if (connp->conn_debug) { 20649 (void) strlog(TCP_MOD_ID, 0, 1, 20650 SL_ERROR|SL_TRACE, 20651 "tcp_bind: bad address parameter, " 20652 "address %p, len %d", 20653 (void *)sa, len); 20654 } 20655 return (-TPROTO); 20656 } 20657 20658 error = proto_verify_ip_addr(connp->conn_family, sa, len); 20659 if (error != 0) { 20660 return (error); 20661 } 20662 20663 switch (len) { 20664 case sizeof (sin_t): /* Complete IPv4 address */ 20665 sin = (sin_t *)sa; 20666 requested_port = ntohs(sin->sin_port); 20667 v4addr = sin->sin_addr.s_addr; 20668 IN6_IPADDR_TO_V4MAPPED(v4addr, &v6addr); 20669 if (v4addr != INADDR_ANY) { 20670 laddr_type = ip_laddr_verify_v4(v4addr, zoneid, ipst, 20671 B_FALSE); 20672 } 20673 break; 20674 20675 case sizeof (sin6_t): /* Complete IPv6 address */ 20676 sin6 = (sin6_t *)sa; 20677 v6addr = sin6->sin6_addr; 20678 requested_port = ntohs(sin6->sin6_port); 20679 if (IN6_IS_ADDR_V4MAPPED(&v6addr)) { 20680 if (connp->conn_ipv6_v6only) 20681 return (EADDRNOTAVAIL); 20682 20683 IN6_V4MAPPED_TO_IPADDR(&v6addr, v4addr); 20684 if (v4addr != INADDR_ANY) { 20685 laddr_type = ip_laddr_verify_v4(v4addr, 20686 zoneid, ipst, B_FALSE); 20687 } 20688 } else { 20689 if (!IN6_IS_ADDR_UNSPECIFIED(&v6addr)) { 20690 if (IN6_IS_ADDR_LINKSCOPE(&v6addr)) 20691 scopeid = sin6->sin6_scope_id; 20692 laddr_type = ip_laddr_verify_v6(&v6addr, 20693 zoneid, ipst, B_FALSE, scopeid); 20694 } 20695 } 20696 break; 20697 20698 default: 20699 if (connp->conn_debug) { 20700 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 20701 "tcp_bind: bad address length, %d", len); 20702 } 20703 return (EAFNOSUPPORT); 20704 /* return (-TBADADDR); */ 20705 } 20706 20707 /* Is the local address a valid unicast address? */ 20708 if (laddr_type == IPVL_BAD) 20709 return (EADDRNOTAVAIL); 20710 20711 connp->conn_bound_addr_v6 = v6addr; 20712 if (scopeid != 0) { 20713 ixa->ixa_flags |= IXAF_SCOPEID_SET; 20714 ixa->ixa_scopeid = scopeid; 20715 connp->conn_incoming_ifindex = scopeid; 20716 } else { 20717 ixa->ixa_flags &= ~IXAF_SCOPEID_SET; 20718 connp->conn_incoming_ifindex = connp->conn_bound_if; 20719 } 20720 20721 connp->conn_laddr_v6 = v6addr; 20722 connp->conn_saddr_v6 = v6addr; 20723 20724 bind_to_req_port_only = requested_port != 0 && bind_to_req_port_only; 20725 20726 error = tcp_bind_select_lport(tcp, &requested_port, 20727 bind_to_req_port_only, cr); 20728 if (error != 0) { 20729 connp->conn_laddr_v6 = ipv6_all_zeros; 20730 connp->conn_saddr_v6 = ipv6_all_zeros; 20731 connp->conn_bound_addr_v6 = ipv6_all_zeros; 20732 } 20733 return (error); 20734 } 20735 20736 /* 20737 * Return unix error is tli error is TSYSERR, otherwise return a negative 20738 * tli error. 20739 */ 20740 int 20741 tcp_do_bind(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr, 20742 boolean_t bind_to_req_port_only) 20743 { 20744 int error; 20745 tcp_t *tcp = connp->conn_tcp; 20746 20747 if (tcp->tcp_state >= TCPS_BOUND) { 20748 if (connp->conn_debug) { 20749 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 20750 "tcp_bind: bad state, %d", tcp->tcp_state); 20751 } 20752 return (-TOUTSTATE); 20753 } 20754 20755 error = tcp_bind_check(connp, sa, len, cr, bind_to_req_port_only); 20756 if (error != 0) 20757 return (error); 20758 20759 ASSERT(tcp->tcp_state == TCPS_BOUND); 20760 tcp->tcp_conn_req_max = 0; 20761 return (0); 20762 } 20763 20764 int 20765 tcp_bind(sock_lower_handle_t proto_handle, struct sockaddr *sa, 20766 socklen_t len, cred_t *cr) 20767 { 20768 int error; 20769 conn_t *connp = (conn_t *)proto_handle; 20770 squeue_t *sqp = connp->conn_sqp; 20771 20772 /* All Solaris components should pass a cred for this operation. */ 20773 ASSERT(cr != NULL); 20774 20775 ASSERT(sqp != NULL); 20776 ASSERT(connp->conn_upper_handle != NULL); 20777 20778 error = squeue_synch_enter(sqp, connp, NULL); 20779 if (error != 0) { 20780 /* failed to enter */ 20781 return (ENOSR); 20782 } 20783 20784 /* binding to a NULL address really means unbind */ 20785 if (sa == NULL) { 20786 if (connp->conn_tcp->tcp_state < TCPS_LISTEN) 20787 error = tcp_do_unbind(connp); 20788 else 20789 error = EINVAL; 20790 } else { 20791 error = tcp_do_bind(connp, sa, len, cr, B_TRUE); 20792 } 20793 20794 squeue_synch_exit(sqp, connp); 20795 20796 if (error < 0) { 20797 if (error == -TOUTSTATE) 20798 error = EINVAL; 20799 else 20800 error = proto_tlitosyserr(-error); 20801 } 20802 20803 return (error); 20804 } 20805 20806 /* 20807 * If the return value from this function is positive, it's a UNIX error. 20808 * Otherwise, if it's negative, then the absolute value is a TLI error. 20809 * the TPI routine tcp_tpi_connect() is a wrapper function for this. 20810 */ 20811 int 20812 tcp_do_connect(conn_t *connp, const struct sockaddr *sa, socklen_t len, 20813 cred_t *cr, pid_t pid) 20814 { 20815 tcp_t *tcp = connp->conn_tcp; 20816 sin_t *sin = (sin_t *)sa; 20817 sin6_t *sin6 = (sin6_t *)sa; 20818 ipaddr_t *dstaddrp; 20819 in_port_t dstport; 20820 uint_t srcid; 20821 int error; 20822 uint32_t mss; 20823 mblk_t *syn_mp; 20824 tcp_stack_t *tcps = tcp->tcp_tcps; 20825 int32_t oldstate; 20826 ip_xmit_attr_t *ixa = connp->conn_ixa; 20827 20828 oldstate = tcp->tcp_state; 20829 20830 switch (len) { 20831 default: 20832 /* 20833 * Should never happen 20834 */ 20835 return (EINVAL); 20836 20837 case sizeof (sin_t): 20838 sin = (sin_t *)sa; 20839 if (sin->sin_port == 0) { 20840 return (-TBADADDR); 20841 } 20842 if (connp->conn_ipv6_v6only) { 20843 return (EAFNOSUPPORT); 20844 } 20845 break; 20846 20847 case sizeof (sin6_t): 20848 sin6 = (sin6_t *)sa; 20849 if (sin6->sin6_port == 0) { 20850 return (-TBADADDR); 20851 } 20852 break; 20853 } 20854 /* 20855 * If we're connecting to an IPv4-mapped IPv6 address, we need to 20856 * make sure that the conn_ipversion is IPV4_VERSION. We 20857 * need to this before we call tcp_bindi() so that the port lookup 20858 * code will look for ports in the correct port space (IPv4 and 20859 * IPv6 have separate port spaces). 20860 */ 20861 if (connp->conn_family == AF_INET6 && 20862 connp->conn_ipversion == IPV6_VERSION && 20863 IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 20864 if (connp->conn_ipv6_v6only) 20865 return (EADDRNOTAVAIL); 20866 20867 connp->conn_ipversion = IPV4_VERSION; 20868 } 20869 20870 switch (tcp->tcp_state) { 20871 case TCPS_LISTEN: 20872 /* 20873 * Listening sockets are not allowed to issue connect(). 20874 */ 20875 if (IPCL_IS_NONSTR(connp)) 20876 return (EOPNOTSUPP); 20877 /* FALLTHRU */ 20878 case TCPS_IDLE: 20879 /* 20880 * We support quick connect, refer to comments in 20881 * tcp_connect_*() 20882 */ 20883 /* FALLTHRU */ 20884 case TCPS_BOUND: 20885 break; 20886 default: 20887 return (-TOUTSTATE); 20888 } 20889 20890 /* 20891 * We update our cred/cpid based on the caller of connect 20892 */ 20893 if (connp->conn_cred != cr) { 20894 crhold(cr); 20895 crfree(connp->conn_cred); 20896 connp->conn_cred = cr; 20897 } 20898 connp->conn_cpid = pid; 20899 20900 /* Cache things in the ixa without any refhold */ 20901 ixa->ixa_cred = cr; 20902 ixa->ixa_cpid = pid; 20903 if (is_system_labeled()) { 20904 /* We need to restart with a label based on the cred */ 20905 ip_xmit_attr_restore_tsl(ixa, ixa->ixa_cred); 20906 } 20907 20908 if (connp->conn_family == AF_INET6) { 20909 if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 20910 error = tcp_connect_ipv6(tcp, &sin6->sin6_addr, 20911 sin6->sin6_port, sin6->sin6_flowinfo, 20912 sin6->__sin6_src_id, sin6->sin6_scope_id); 20913 } else { 20914 /* 20915 * Destination adress is mapped IPv6 address. 20916 * Source bound address should be unspecified or 20917 * IPv6 mapped address as well. 20918 */ 20919 if (!IN6_IS_ADDR_UNSPECIFIED( 20920 &connp->conn_bound_addr_v6) && 20921 !IN6_IS_ADDR_V4MAPPED(&connp->conn_bound_addr_v6)) { 20922 return (EADDRNOTAVAIL); 20923 } 20924 dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr)); 20925 dstport = sin6->sin6_port; 20926 srcid = sin6->__sin6_src_id; 20927 error = tcp_connect_ipv4(tcp, dstaddrp, dstport, 20928 srcid); 20929 } 20930 } else { 20931 dstaddrp = &sin->sin_addr.s_addr; 20932 dstport = sin->sin_port; 20933 srcid = 0; 20934 error = tcp_connect_ipv4(tcp, dstaddrp, dstport, srcid); 20935 } 20936 20937 if (error != 0) 20938 goto connect_failed; 20939 20940 CL_INET_CONNECT(connp, B_TRUE, error); 20941 if (error != 0) 20942 goto connect_failed; 20943 20944 /* connect succeeded */ 20945 BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens); 20946 tcp->tcp_active_open = 1; 20947 20948 /* 20949 * tcp_set_destination() does not adjust for TCP/IP header length. 20950 */ 20951 mss = tcp->tcp_mss - connp->conn_ht_iphc_len; 20952 20953 /* 20954 * Just make sure our rwnd is at least rcvbuf * MSS large, and round up 20955 * to the nearest MSS. 20956 * 20957 * We do the round up here because we need to get the interface MTU 20958 * first before we can do the round up. 20959 */ 20960 tcp->tcp_rwnd = connp->conn_rcvbuf; 20961 tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss), 20962 tcps->tcps_recv_hiwat_minmss * mss); 20963 connp->conn_rcvbuf = tcp->tcp_rwnd; 20964 tcp_set_ws_value(tcp); 20965 tcp->tcp_tcpha->tha_win = htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 20966 if (tcp->tcp_rcv_ws > 0 || tcps->tcps_wscale_always) 20967 tcp->tcp_snd_ws_ok = B_TRUE; 20968 20969 /* 20970 * Set tcp_snd_ts_ok to true 20971 * so that tcp_xmit_mp will 20972 * include the timestamp 20973 * option in the SYN segment. 20974 */ 20975 if (tcps->tcps_tstamp_always || 20976 (tcp->tcp_rcv_ws && tcps->tcps_tstamp_if_wscale)) { 20977 tcp->tcp_snd_ts_ok = B_TRUE; 20978 } 20979 20980 /* 20981 * tcp_snd_sack_ok can be set in 20982 * tcp_set_destination() if the sack metric 20983 * is set. So check it here also. 20984 */ 20985 if (tcps->tcps_sack_permitted == 2 || 20986 tcp->tcp_snd_sack_ok) { 20987 if (tcp->tcp_sack_info == NULL) { 20988 tcp->tcp_sack_info = kmem_cache_alloc( 20989 tcp_sack_info_cache, KM_SLEEP); 20990 } 20991 tcp->tcp_snd_sack_ok = B_TRUE; 20992 } 20993 20994 /* 20995 * Should we use ECN? Note that the current 20996 * default value (SunOS 5.9) of tcp_ecn_permitted 20997 * is 1. The reason for doing this is that there 20998 * are equipments out there that will drop ECN 20999 * enabled IP packets. Setting it to 1 avoids 21000 * compatibility problems. 21001 */ 21002 if (tcps->tcps_ecn_permitted == 2) 21003 tcp->tcp_ecn_ok = B_TRUE; 21004 21005 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 21006 syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 21007 tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 21008 if (syn_mp != NULL) { 21009 /* 21010 * We must bump the generation before sending the syn 21011 * to ensure that we use the right generation in case 21012 * this thread issues a "connected" up call. 21013 */ 21014 SOCK_CONNID_BUMP(tcp->tcp_connid); 21015 tcp_send_data(tcp, syn_mp); 21016 } 21017 21018 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 21019 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 21020 return (0); 21021 21022 connect_failed: 21023 connp->conn_faddr_v6 = ipv6_all_zeros; 21024 connp->conn_fport = 0; 21025 tcp->tcp_state = oldstate; 21026 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 21027 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 21028 return (error); 21029 } 21030 21031 int 21032 tcp_connect(sock_lower_handle_t proto_handle, const struct sockaddr *sa, 21033 socklen_t len, sock_connid_t *id, cred_t *cr) 21034 { 21035 conn_t *connp = (conn_t *)proto_handle; 21036 squeue_t *sqp = connp->conn_sqp; 21037 int error; 21038 21039 ASSERT(connp->conn_upper_handle != NULL); 21040 21041 /* All Solaris components should pass a cred for this operation. */ 21042 ASSERT(cr != NULL); 21043 21044 error = proto_verify_ip_addr(connp->conn_family, sa, len); 21045 if (error != 0) { 21046 return (error); 21047 } 21048 21049 error = squeue_synch_enter(sqp, connp, NULL); 21050 if (error != 0) { 21051 /* failed to enter */ 21052 return (ENOSR); 21053 } 21054 21055 /* 21056 * TCP supports quick connect, so no need to do an implicit bind 21057 */ 21058 error = tcp_do_connect(connp, sa, len, cr, curproc->p_pid); 21059 if (error == 0) { 21060 *id = connp->conn_tcp->tcp_connid; 21061 } else if (error < 0) { 21062 if (error == -TOUTSTATE) { 21063 switch (connp->conn_tcp->tcp_state) { 21064 case TCPS_SYN_SENT: 21065 error = EALREADY; 21066 break; 21067 case TCPS_ESTABLISHED: 21068 error = EISCONN; 21069 break; 21070 case TCPS_LISTEN: 21071 error = EOPNOTSUPP; 21072 break; 21073 default: 21074 error = EINVAL; 21075 break; 21076 } 21077 } else { 21078 error = proto_tlitosyserr(-error); 21079 } 21080 } 21081 21082 if (connp->conn_tcp->tcp_loopback) { 21083 struct sock_proto_props sopp; 21084 21085 sopp.sopp_flags = SOCKOPT_LOOPBACK; 21086 sopp.sopp_loopback = B_TRUE; 21087 21088 (*connp->conn_upcalls->su_set_proto_props)( 21089 connp->conn_upper_handle, &sopp); 21090 } 21091 done: 21092 squeue_synch_exit(sqp, connp); 21093 21094 return ((error == 0) ? EINPROGRESS : error); 21095 } 21096 21097 /* ARGSUSED */ 21098 sock_lower_handle_t 21099 tcp_create(int family, int type, int proto, sock_downcalls_t **sock_downcalls, 21100 uint_t *smodep, int *errorp, int flags, cred_t *credp) 21101 { 21102 conn_t *connp; 21103 boolean_t isv6 = family == AF_INET6; 21104 if (type != SOCK_STREAM || (family != AF_INET && family != AF_INET6) || 21105 (proto != 0 && proto != IPPROTO_TCP)) { 21106 *errorp = EPROTONOSUPPORT; 21107 return (NULL); 21108 } 21109 21110 connp = tcp_create_common(credp, isv6, B_TRUE, errorp); 21111 if (connp == NULL) { 21112 return (NULL); 21113 } 21114 21115 /* 21116 * Put the ref for TCP. Ref for IP was already put 21117 * by ipcl_conn_create. Also Make the conn_t globally 21118 * visible to walkers 21119 */ 21120 mutex_enter(&connp->conn_lock); 21121 CONN_INC_REF_LOCKED(connp); 21122 ASSERT(connp->conn_ref == 2); 21123 connp->conn_state_flags &= ~CONN_INCIPIENT; 21124 21125 connp->conn_flags |= IPCL_NONSTR; 21126 mutex_exit(&connp->conn_lock); 21127 21128 ASSERT(errorp != NULL); 21129 *errorp = 0; 21130 *sock_downcalls = &sock_tcp_downcalls; 21131 *smodep = SM_CONNREQUIRED | SM_EXDATA | SM_ACCEPTSUPP | 21132 SM_SENDFILESUPP; 21133 21134 return ((sock_lower_handle_t)connp); 21135 } 21136 21137 /* ARGSUSED */ 21138 void 21139 tcp_activate(sock_lower_handle_t proto_handle, sock_upper_handle_t sock_handle, 21140 sock_upcalls_t *sock_upcalls, int flags, cred_t *cr) 21141 { 21142 conn_t *connp = (conn_t *)proto_handle; 21143 struct sock_proto_props sopp; 21144 21145 ASSERT(connp->conn_upper_handle == NULL); 21146 21147 /* All Solaris components should pass a cred for this operation. */ 21148 ASSERT(cr != NULL); 21149 21150 sopp.sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_RCVLOWAT | 21151 SOCKOPT_MAXPSZ | SOCKOPT_MAXBLK | SOCKOPT_RCVTIMER | 21152 SOCKOPT_RCVTHRESH | SOCKOPT_MAXADDRLEN | SOCKOPT_MINPSZ; 21153 21154 sopp.sopp_rxhiwat = SOCKET_RECVHIWATER; 21155 sopp.sopp_rxlowat = SOCKET_RECVLOWATER; 21156 sopp.sopp_maxpsz = INFPSZ; 21157 sopp.sopp_maxblk = INFPSZ; 21158 sopp.sopp_rcvtimer = SOCKET_TIMER_INTERVAL; 21159 sopp.sopp_rcvthresh = SOCKET_RECVHIWATER >> 3; 21160 sopp.sopp_maxaddrlen = sizeof (sin6_t); 21161 sopp.sopp_minpsz = (tcp_rinfo.mi_minpsz == 1) ? 0 : 21162 tcp_rinfo.mi_minpsz; 21163 21164 connp->conn_upcalls = sock_upcalls; 21165 connp->conn_upper_handle = sock_handle; 21166 21167 ASSERT(connp->conn_rcvbuf != 0 && 21168 connp->conn_rcvbuf == connp->conn_tcp->tcp_rwnd); 21169 (*sock_upcalls->su_set_proto_props)(sock_handle, &sopp); 21170 } 21171 21172 /* ARGSUSED */ 21173 int 21174 tcp_close(sock_lower_handle_t proto_handle, int flags, cred_t *cr) 21175 { 21176 conn_t *connp = (conn_t *)proto_handle; 21177 21178 ASSERT(connp->conn_upper_handle != NULL); 21179 21180 /* All Solaris components should pass a cred for this operation. */ 21181 ASSERT(cr != NULL); 21182 21183 tcp_close_common(connp, flags); 21184 21185 ip_free_helper_stream(connp); 21186 21187 /* 21188 * Drop IP's reference on the conn. This is the last reference 21189 * on the connp if the state was less than established. If the 21190 * connection has gone into timewait state, then we will have 21191 * one ref for the TCP and one more ref (total of two) for the 21192 * classifier connected hash list (a timewait connections stays 21193 * in connected hash till closed). 21194 * 21195 * We can't assert the references because there might be other 21196 * transient reference places because of some walkers or queued 21197 * packets in squeue for the timewait state. 21198 */ 21199 CONN_DEC_REF(connp); 21200 return (0); 21201 } 21202 21203 /* ARGSUSED */ 21204 int 21205 tcp_sendmsg(sock_lower_handle_t proto_handle, mblk_t *mp, struct nmsghdr *msg, 21206 cred_t *cr) 21207 { 21208 tcp_t *tcp; 21209 uint32_t msize; 21210 conn_t *connp = (conn_t *)proto_handle; 21211 int32_t tcpstate; 21212 21213 /* All Solaris components should pass a cred for this operation. */ 21214 ASSERT(cr != NULL); 21215 21216 ASSERT(connp->conn_ref >= 2); 21217 ASSERT(connp->conn_upper_handle != NULL); 21218 21219 if (msg->msg_controllen != 0) { 21220 freemsg(mp); 21221 return (EOPNOTSUPP); 21222 } 21223 21224 switch (DB_TYPE(mp)) { 21225 case M_DATA: 21226 tcp = connp->conn_tcp; 21227 ASSERT(tcp != NULL); 21228 21229 tcpstate = tcp->tcp_state; 21230 if (tcpstate < TCPS_ESTABLISHED) { 21231 freemsg(mp); 21232 /* 21233 * We return ENOTCONN if the endpoint is trying to 21234 * connect or has never been connected, and EPIPE if it 21235 * has been disconnected. The connection id helps us 21236 * distinguish between the last two cases. 21237 */ 21238 return ((tcpstate == TCPS_SYN_SENT) ? ENOTCONN : 21239 ((tcp->tcp_connid > 0) ? EPIPE : ENOTCONN)); 21240 } else if (tcpstate > TCPS_CLOSE_WAIT) { 21241 freemsg(mp); 21242 return (EPIPE); 21243 } 21244 21245 msize = msgdsize(mp); 21246 21247 mutex_enter(&tcp->tcp_non_sq_lock); 21248 tcp->tcp_squeue_bytes += msize; 21249 /* 21250 * Squeue Flow Control 21251 */ 21252 if (TCP_UNSENT_BYTES(tcp) > connp->conn_sndbuf) { 21253 tcp_setqfull(tcp); 21254 } 21255 mutex_exit(&tcp->tcp_non_sq_lock); 21256 21257 /* 21258 * The application may pass in an address in the msghdr, but 21259 * we ignore the address on connection-oriented sockets. 21260 * Just like BSD this code does not generate an error for 21261 * TCP (a CONNREQUIRED socket) when sending to an address 21262 * passed in with sendto/sendmsg. Instead the data is 21263 * delivered on the connection as if no address had been 21264 * supplied. 21265 */ 21266 CONN_INC_REF(connp); 21267 21268 if (msg->msg_flags & MSG_OOB) { 21269 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_output_urgent, 21270 connp, NULL, tcp_squeue_flag, SQTAG_TCP_OUTPUT); 21271 } else { 21272 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_output, 21273 connp, NULL, tcp_squeue_flag, SQTAG_TCP_OUTPUT); 21274 } 21275 21276 return (0); 21277 21278 default: 21279 ASSERT(0); 21280 } 21281 21282 freemsg(mp); 21283 return (0); 21284 } 21285 21286 /* ARGSUSED2 */ 21287 void 21288 tcp_output_urgent(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 21289 { 21290 int len; 21291 uint32_t msize; 21292 conn_t *connp = (conn_t *)arg; 21293 tcp_t *tcp = connp->conn_tcp; 21294 21295 msize = msgdsize(mp); 21296 21297 len = msize - 1; 21298 if (len < 0) { 21299 freemsg(mp); 21300 return; 21301 } 21302 21303 /* 21304 * Try to force urgent data out on the wire. Even if we have unsent 21305 * data this will at least send the urgent flag. 21306 * XXX does not handle more flag correctly. 21307 */ 21308 len += tcp->tcp_unsent; 21309 len += tcp->tcp_snxt; 21310 tcp->tcp_urg = len; 21311 tcp->tcp_valid_bits |= TCP_URG_VALID; 21312 21313 /* Bypass tcp protocol for fused tcp loopback */ 21314 if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize)) 21315 return; 21316 21317 /* Strip off the T_EXDATA_REQ if the data is from TPI */ 21318 if (DB_TYPE(mp) != M_DATA) { 21319 mblk_t *mp1 = mp; 21320 ASSERT(!IPCL_IS_NONSTR(connp)); 21321 mp = mp->b_cont; 21322 freeb(mp1); 21323 } 21324 tcp_wput_data(tcp, mp, B_TRUE); 21325 } 21326 21327 /* ARGSUSED3 */ 21328 int 21329 tcp_getpeername(sock_lower_handle_t proto_handle, struct sockaddr *addr, 21330 socklen_t *addrlenp, cred_t *cr) 21331 { 21332 conn_t *connp = (conn_t *)proto_handle; 21333 tcp_t *tcp = connp->conn_tcp; 21334 21335 ASSERT(connp->conn_upper_handle != NULL); 21336 /* All Solaris components should pass a cred for this operation. */ 21337 ASSERT(cr != NULL); 21338 21339 ASSERT(tcp != NULL); 21340 if (tcp->tcp_state < TCPS_SYN_RCVD) 21341 return (ENOTCONN); 21342 21343 return (conn_getpeername(connp, addr, addrlenp)); 21344 } 21345 21346 /* ARGSUSED3 */ 21347 int 21348 tcp_getsockname(sock_lower_handle_t proto_handle, struct sockaddr *addr, 21349 socklen_t *addrlenp, cred_t *cr) 21350 { 21351 conn_t *connp = (conn_t *)proto_handle; 21352 21353 /* All Solaris components should pass a cred for this operation. */ 21354 ASSERT(cr != NULL); 21355 21356 ASSERT(connp->conn_upper_handle != NULL); 21357 return (conn_getsockname(connp, addr, addrlenp)); 21358 } 21359 21360 /* 21361 * tcp_fallback 21362 * 21363 * A direct socket is falling back to using STREAMS. The queue 21364 * that is being passed down was created using tcp_open() with 21365 * the SO_FALLBACK flag set. As a result, the queue is not 21366 * associated with a conn, and the q_ptrs instead contain the 21367 * dev and minor area that should be used. 21368 * 21369 * The 'issocket' flag indicates whether the FireEngine 21370 * optimizations should be used. The common case would be that 21371 * optimizations are enabled, and they might be subsequently 21372 * disabled using the _SIOCSOCKFALLBACK ioctl. 21373 */ 21374 21375 /* 21376 * An active connection is falling back to TPI. Gather all the information 21377 * required by the STREAM head and TPI sonode and send it up. 21378 */ 21379 void 21380 tcp_fallback_noneager(tcp_t *tcp, mblk_t *stropt_mp, queue_t *q, 21381 boolean_t issocket, so_proto_quiesced_cb_t quiesced_cb) 21382 { 21383 conn_t *connp = tcp->tcp_connp; 21384 struct stroptions *stropt; 21385 struct T_capability_ack tca; 21386 struct sockaddr_in6 laddr, faddr; 21387 socklen_t laddrlen, faddrlen; 21388 short opts; 21389 int error; 21390 mblk_t *mp; 21391 21392 connp->conn_dev = (dev_t)RD(q)->q_ptr; 21393 connp->conn_minor_arena = WR(q)->q_ptr; 21394 21395 RD(q)->q_ptr = WR(q)->q_ptr = connp; 21396 21397 connp->conn_rq = RD(q); 21398 connp->conn_wq = WR(q); 21399 21400 WR(q)->q_qinfo = &tcp_sock_winit; 21401 21402 if (!issocket) 21403 tcp_use_pure_tpi(tcp); 21404 21405 /* 21406 * free the helper stream 21407 */ 21408 ip_free_helper_stream(connp); 21409 21410 /* 21411 * Notify the STREAM head about options 21412 */ 21413 DB_TYPE(stropt_mp) = M_SETOPTS; 21414 stropt = (struct stroptions *)stropt_mp->b_rptr; 21415 stropt_mp->b_wptr += sizeof (struct stroptions); 21416 stropt->so_flags = SO_HIWAT | SO_WROFF | SO_MAXBLK; 21417 21418 stropt->so_wroff = connp->conn_ht_iphc_len + (tcp->tcp_loopback ? 0 : 21419 tcp->tcp_tcps->tcps_wroff_xtra); 21420 if (tcp->tcp_snd_sack_ok) 21421 stropt->so_wroff += TCPOPT_MAX_SACK_LEN; 21422 stropt->so_hiwat = connp->conn_rcvbuf; 21423 stropt->so_maxblk = tcp_maxpsz_set(tcp, B_FALSE); 21424 21425 putnext(RD(q), stropt_mp); 21426 21427 /* 21428 * Collect the information needed to sync with the sonode 21429 */ 21430 tcp_do_capability_ack(tcp, &tca, TC1_INFO|TC1_ACCEPTOR_ID); 21431 21432 laddrlen = faddrlen = sizeof (sin6_t); 21433 (void) tcp_getsockname((sock_lower_handle_t)connp, 21434 (struct sockaddr *)&laddr, &laddrlen, CRED()); 21435 error = tcp_getpeername((sock_lower_handle_t)connp, 21436 (struct sockaddr *)&faddr, &faddrlen, CRED()); 21437 if (error != 0) 21438 faddrlen = 0; 21439 21440 opts = 0; 21441 if (connp->conn_oobinline) 21442 opts |= SO_OOBINLINE; 21443 if (connp->conn_ixa->ixa_flags & IXAF_DONTROUTE) 21444 opts |= SO_DONTROUTE; 21445 21446 /* 21447 * Notify the socket that the protocol is now quiescent, 21448 * and it's therefore safe move data from the socket 21449 * to the stream head. 21450 */ 21451 (*quiesced_cb)(connp->conn_upper_handle, q, &tca, 21452 (struct sockaddr *)&laddr, laddrlen, 21453 (struct sockaddr *)&faddr, faddrlen, opts); 21454 21455 while ((mp = tcp->tcp_rcv_list) != NULL) { 21456 tcp->tcp_rcv_list = mp->b_next; 21457 mp->b_next = NULL; 21458 /* We never do fallback for kernel RPC */ 21459 putnext(q, mp); 21460 } 21461 tcp->tcp_rcv_last_head = NULL; 21462 tcp->tcp_rcv_last_tail = NULL; 21463 tcp->tcp_rcv_cnt = 0; 21464 } 21465 21466 /* 21467 * An eager is falling back to TPI. All we have to do is send 21468 * up a T_CONN_IND. 21469 */ 21470 void 21471 tcp_fallback_eager(tcp_t *eager, boolean_t direct_sockfs) 21472 { 21473 tcp_t *listener = eager->tcp_listener; 21474 mblk_t *mp = eager->tcp_conn.tcp_eager_conn_ind; 21475 21476 ASSERT(listener != NULL); 21477 ASSERT(mp != NULL); 21478 21479 eager->tcp_conn.tcp_eager_conn_ind = NULL; 21480 21481 /* 21482 * TLI/XTI applications will get confused by 21483 * sending eager as an option since it violates 21484 * the option semantics. So remove the eager as 21485 * option since TLI/XTI app doesn't need it anyway. 21486 */ 21487 if (!direct_sockfs) { 21488 struct T_conn_ind *conn_ind; 21489 21490 conn_ind = (struct T_conn_ind *)mp->b_rptr; 21491 conn_ind->OPT_length = 0; 21492 conn_ind->OPT_offset = 0; 21493 } 21494 21495 /* 21496 * Sockfs guarantees that the listener will not be closed 21497 * during fallback. So we can safely use the listener's queue. 21498 */ 21499 putnext(listener->tcp_connp->conn_rq, mp); 21500 } 21501 21502 int 21503 tcp_fallback(sock_lower_handle_t proto_handle, queue_t *q, 21504 boolean_t direct_sockfs, so_proto_quiesced_cb_t quiesced_cb) 21505 { 21506 tcp_t *tcp; 21507 conn_t *connp = (conn_t *)proto_handle; 21508 int error; 21509 mblk_t *stropt_mp; 21510 mblk_t *ordrel_mp; 21511 21512 tcp = connp->conn_tcp; 21513 21514 stropt_mp = allocb_wait(sizeof (struct stroptions), BPRI_HI, STR_NOSIG, 21515 NULL); 21516 21517 /* Pre-allocate the T_ordrel_ind mblk. */ 21518 ASSERT(tcp->tcp_ordrel_mp == NULL); 21519 ordrel_mp = allocb_wait(sizeof (struct T_ordrel_ind), BPRI_HI, 21520 STR_NOSIG, NULL); 21521 ordrel_mp->b_datap->db_type = M_PROTO; 21522 ((struct T_ordrel_ind *)ordrel_mp->b_rptr)->PRIM_type = T_ORDREL_IND; 21523 ordrel_mp->b_wptr += sizeof (struct T_ordrel_ind); 21524 21525 /* 21526 * Enter the squeue so that no new packets can come in 21527 */ 21528 error = squeue_synch_enter(connp->conn_sqp, connp, NULL); 21529 if (error != 0) { 21530 /* failed to enter, free all the pre-allocated messages. */ 21531 freeb(stropt_mp); 21532 freeb(ordrel_mp); 21533 /* 21534 * We cannot process the eager, so at least send out a 21535 * RST so the peer can reconnect. 21536 */ 21537 if (tcp->tcp_listener != NULL) { 21538 (void) tcp_eager_blowoff(tcp->tcp_listener, 21539 tcp->tcp_conn_req_seqnum); 21540 } 21541 return (ENOMEM); 21542 } 21543 21544 /* 21545 * Both endpoints must be of the same type (either STREAMS or 21546 * non-STREAMS) for fusion to be enabled. So if we are fused, 21547 * we have to unfuse. 21548 */ 21549 if (tcp->tcp_fused) 21550 tcp_unfuse(tcp); 21551 21552 /* 21553 * No longer a direct socket 21554 */ 21555 connp->conn_flags &= ~IPCL_NONSTR; 21556 tcp->tcp_ordrel_mp = ordrel_mp; 21557 21558 if (tcp->tcp_listener != NULL) { 21559 /* The eager will deal with opts when accept() is called */ 21560 freeb(stropt_mp); 21561 tcp_fallback_eager(tcp, direct_sockfs); 21562 } else { 21563 tcp_fallback_noneager(tcp, stropt_mp, q, direct_sockfs, 21564 quiesced_cb); 21565 } 21566 21567 /* 21568 * There should be atleast two ref's (IP + TCP) 21569 */ 21570 ASSERT(connp->conn_ref >= 2); 21571 squeue_synch_exit(connp->conn_sqp, connp); 21572 21573 return (0); 21574 } 21575 21576 /* ARGSUSED */ 21577 static void 21578 tcp_shutdown_output(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 21579 { 21580 conn_t *connp = (conn_t *)arg; 21581 tcp_t *tcp = connp->conn_tcp; 21582 21583 freemsg(mp); 21584 21585 if (tcp->tcp_fused) 21586 tcp_unfuse(tcp); 21587 21588 if (tcp_xmit_end(tcp) != 0) { 21589 /* 21590 * We were crossing FINs and got a reset from 21591 * the other side. Just ignore it. 21592 */ 21593 if (connp->conn_debug) { 21594 (void) strlog(TCP_MOD_ID, 0, 1, 21595 SL_ERROR|SL_TRACE, 21596 "tcp_shutdown_output() out of state %s", 21597 tcp_display(tcp, NULL, DISP_ADDR_AND_PORT)); 21598 } 21599 } 21600 } 21601 21602 /* ARGSUSED */ 21603 int 21604 tcp_shutdown(sock_lower_handle_t proto_handle, int how, cred_t *cr) 21605 { 21606 conn_t *connp = (conn_t *)proto_handle; 21607 tcp_t *tcp = connp->conn_tcp; 21608 21609 ASSERT(connp->conn_upper_handle != NULL); 21610 21611 /* All Solaris components should pass a cred for this operation. */ 21612 ASSERT(cr != NULL); 21613 21614 /* 21615 * X/Open requires that we check the connected state. 21616 */ 21617 if (tcp->tcp_state < TCPS_SYN_SENT) 21618 return (ENOTCONN); 21619 21620 /* shutdown the send side */ 21621 if (how != SHUT_RD) { 21622 mblk_t *bp; 21623 21624 bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL); 21625 CONN_INC_REF(connp); 21626 SQUEUE_ENTER_ONE(connp->conn_sqp, bp, tcp_shutdown_output, 21627 connp, NULL, SQ_NODRAIN, SQTAG_TCP_SHUTDOWN_OUTPUT); 21628 21629 (*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle, 21630 SOCK_OPCTL_SHUT_SEND, 0); 21631 } 21632 21633 /* shutdown the recv side */ 21634 if (how != SHUT_WR) 21635 (*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle, 21636 SOCK_OPCTL_SHUT_RECV, 0); 21637 21638 return (0); 21639 } 21640 21641 /* 21642 * SOP_LISTEN() calls into tcp_listen(). 21643 */ 21644 /* ARGSUSED */ 21645 int 21646 tcp_listen(sock_lower_handle_t proto_handle, int backlog, cred_t *cr) 21647 { 21648 conn_t *connp = (conn_t *)proto_handle; 21649 int error; 21650 squeue_t *sqp = connp->conn_sqp; 21651 21652 ASSERT(connp->conn_upper_handle != NULL); 21653 21654 /* All Solaris components should pass a cred for this operation. */ 21655 ASSERT(cr != NULL); 21656 21657 error = squeue_synch_enter(sqp, connp, NULL); 21658 if (error != 0) { 21659 /* failed to enter */ 21660 return (ENOBUFS); 21661 } 21662 21663 error = tcp_do_listen(connp, NULL, 0, backlog, cr, FALSE); 21664 if (error == 0) { 21665 (*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle, 21666 SOCK_OPCTL_ENAB_ACCEPT, (uintptr_t)backlog); 21667 } else if (error < 0) { 21668 if (error == -TOUTSTATE) 21669 error = EINVAL; 21670 else 21671 error = proto_tlitosyserr(-error); 21672 } 21673 squeue_synch_exit(sqp, connp); 21674 return (error); 21675 } 21676 21677 static int 21678 tcp_do_listen(conn_t *connp, struct sockaddr *sa, socklen_t len, 21679 int backlog, cred_t *cr, boolean_t bind_to_req_port_only) 21680 { 21681 tcp_t *tcp = connp->conn_tcp; 21682 int error = 0; 21683 tcp_stack_t *tcps = tcp->tcp_tcps; 21684 21685 /* All Solaris components should pass a cred for this operation. */ 21686 ASSERT(cr != NULL); 21687 21688 if (tcp->tcp_state >= TCPS_BOUND) { 21689 if ((tcp->tcp_state == TCPS_BOUND || 21690 tcp->tcp_state == TCPS_LISTEN) && backlog > 0) { 21691 /* 21692 * Handle listen() increasing backlog. 21693 * This is more "liberal" then what the TPI spec 21694 * requires but is needed to avoid a t_unbind 21695 * when handling listen() since the port number 21696 * might be "stolen" between the unbind and bind. 21697 */ 21698 goto do_listen; 21699 } 21700 if (connp->conn_debug) { 21701 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 21702 "tcp_listen: bad state, %d", tcp->tcp_state); 21703 } 21704 return (-TOUTSTATE); 21705 } else { 21706 if (sa == NULL) { 21707 sin6_t addr; 21708 sin_t *sin; 21709 sin6_t *sin6; 21710 21711 ASSERT(IPCL_IS_NONSTR(connp)); 21712 /* Do an implicit bind: Request for a generic port. */ 21713 if (connp->conn_family == AF_INET) { 21714 len = sizeof (sin_t); 21715 sin = (sin_t *)&addr; 21716 *sin = sin_null; 21717 sin->sin_family = AF_INET; 21718 } else { 21719 ASSERT(connp->conn_family == AF_INET6); 21720 len = sizeof (sin6_t); 21721 sin6 = (sin6_t *)&addr; 21722 *sin6 = sin6_null; 21723 sin6->sin6_family = AF_INET6; 21724 } 21725 sa = (struct sockaddr *)&addr; 21726 } 21727 21728 error = tcp_bind_check(connp, sa, len, cr, 21729 bind_to_req_port_only); 21730 if (error) 21731 return (error); 21732 /* Fall through and do the fanout insertion */ 21733 } 21734 21735 do_listen: 21736 ASSERT(tcp->tcp_state == TCPS_BOUND || tcp->tcp_state == TCPS_LISTEN); 21737 tcp->tcp_conn_req_max = backlog; 21738 if (tcp->tcp_conn_req_max) { 21739 if (tcp->tcp_conn_req_max < tcps->tcps_conn_req_min) 21740 tcp->tcp_conn_req_max = tcps->tcps_conn_req_min; 21741 if (tcp->tcp_conn_req_max > tcps->tcps_conn_req_max_q) 21742 tcp->tcp_conn_req_max = tcps->tcps_conn_req_max_q; 21743 /* 21744 * If this is a listener, do not reset the eager list 21745 * and other stuffs. Note that we don't check if the 21746 * existing eager list meets the new tcp_conn_req_max 21747 * requirement. 21748 */ 21749 if (tcp->tcp_state != TCPS_LISTEN) { 21750 tcp->tcp_state = TCPS_LISTEN; 21751 /* Initialize the chain. Don't need the eager_lock */ 21752 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 21753 tcp->tcp_eager_next_drop_q0 = tcp; 21754 tcp->tcp_eager_prev_drop_q0 = tcp; 21755 tcp->tcp_second_ctimer_threshold = 21756 tcps->tcps_ip_abort_linterval; 21757 } 21758 } 21759 21760 /* 21761 * We need to make sure that the conn_recv is set to a non-null 21762 * value before we insert the conn into the classifier table. 21763 * This is to avoid a race with an incoming packet which does an 21764 * ipcl_classify(). 21765 * We initially set it to tcp_input_listener_unbound to try to 21766 * pick a good squeue for the listener when the first SYN arrives. 21767 * tcp_input_listener_unbound sets it to tcp_input_listener on that 21768 * first SYN. 21769 */ 21770 connp->conn_recv = tcp_input_listener_unbound; 21771 21772 /* Insert the listener in the classifier table */ 21773 error = ip_laddr_fanout_insert(connp); 21774 if (error != 0) { 21775 /* Undo the bind - release the port number */ 21776 tcp->tcp_state = TCPS_IDLE; 21777 connp->conn_bound_addr_v6 = ipv6_all_zeros; 21778 21779 connp->conn_laddr_v6 = ipv6_all_zeros; 21780 connp->conn_saddr_v6 = ipv6_all_zeros; 21781 connp->conn_ports = 0; 21782 21783 if (connp->conn_anon_port) { 21784 zone_t *zone; 21785 21786 zone = crgetzone(cr); 21787 connp->conn_anon_port = B_FALSE; 21788 (void) tsol_mlp_anon(zone, connp->conn_mlp_type, 21789 connp->conn_proto, connp->conn_lport, B_FALSE); 21790 } 21791 connp->conn_mlp_type = mlptSingle; 21792 21793 tcp_bind_hash_remove(tcp); 21794 return (error); 21795 } else { 21796 /* 21797 * If there is a connection limit, allocate and initialize 21798 * the counter struct. Note that since listen can be called 21799 * multiple times, the struct may have been allready allocated. 21800 */ 21801 if (!list_is_empty(&tcps->tcps_listener_conf) && 21802 tcp->tcp_listen_cnt == NULL) { 21803 tcp_listen_cnt_t *tlc; 21804 uint32_t ratio; 21805 21806 ratio = tcp_find_listener_conf(tcps, 21807 ntohs(connp->conn_lport)); 21808 if (ratio != 0) { 21809 uint32_t mem_ratio, tot_buf; 21810 21811 tlc = kmem_alloc(sizeof (tcp_listen_cnt_t), 21812 KM_SLEEP); 21813 /* 21814 * Calculate the connection limit based on 21815 * the configured ratio and maxusers. Maxusers 21816 * are calculated based on memory size, 21817 * ~ 1 user per MB. Note that the conn_rcvbuf 21818 * and conn_sndbuf may change after a 21819 * connection is accepted. So what we have 21820 * is only an approximation. 21821 */ 21822 if ((tot_buf = connp->conn_rcvbuf + 21823 connp->conn_sndbuf) < MB) { 21824 mem_ratio = MB / tot_buf; 21825 tlc->tlc_max = maxusers / ratio * 21826 mem_ratio; 21827 } else { 21828 mem_ratio = tot_buf / MB; 21829 tlc->tlc_max = maxusers / ratio / 21830 mem_ratio; 21831 } 21832 /* At least we should allow two connections! */ 21833 if (tlc->tlc_max <= tcp_min_conn_listener) 21834 tlc->tlc_max = tcp_min_conn_listener; 21835 tlc->tlc_cnt = 1; 21836 tlc->tlc_drop = 0; 21837 tcp->tcp_listen_cnt = tlc; 21838 } 21839 } 21840 } 21841 return (error); 21842 } 21843 21844 void 21845 tcp_clr_flowctrl(sock_lower_handle_t proto_handle) 21846 { 21847 conn_t *connp = (conn_t *)proto_handle; 21848 tcp_t *tcp = connp->conn_tcp; 21849 mblk_t *mp; 21850 int error; 21851 21852 ASSERT(connp->conn_upper_handle != NULL); 21853 21854 /* 21855 * If tcp->tcp_rsrv_mp == NULL, it means that tcp_clr_flowctrl() 21856 * is currently running. 21857 */ 21858 mutex_enter(&tcp->tcp_rsrv_mp_lock); 21859 if ((mp = tcp->tcp_rsrv_mp) == NULL) { 21860 mutex_exit(&tcp->tcp_rsrv_mp_lock); 21861 return; 21862 } 21863 tcp->tcp_rsrv_mp = NULL; 21864 mutex_exit(&tcp->tcp_rsrv_mp_lock); 21865 21866 error = squeue_synch_enter(connp->conn_sqp, connp, mp); 21867 ASSERT(error == 0); 21868 21869 mutex_enter(&tcp->tcp_rsrv_mp_lock); 21870 tcp->tcp_rsrv_mp = mp; 21871 mutex_exit(&tcp->tcp_rsrv_mp_lock); 21872 21873 if (tcp->tcp_fused) { 21874 tcp_fuse_backenable(tcp); 21875 } else { 21876 tcp->tcp_rwnd = connp->conn_rcvbuf; 21877 /* 21878 * Send back a window update immediately if TCP is above 21879 * ESTABLISHED state and the increase of the rcv window 21880 * that the other side knows is at least 1 MSS after flow 21881 * control is lifted. 21882 */ 21883 if (tcp->tcp_state >= TCPS_ESTABLISHED && 21884 tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) { 21885 tcp_xmit_ctl(NULL, tcp, 21886 (tcp->tcp_swnd == 0) ? tcp->tcp_suna : 21887 tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 21888 } 21889 } 21890 21891 squeue_synch_exit(connp->conn_sqp, connp); 21892 } 21893 21894 /* ARGSUSED */ 21895 int 21896 tcp_ioctl(sock_lower_handle_t proto_handle, int cmd, intptr_t arg, 21897 int mode, int32_t *rvalp, cred_t *cr) 21898 { 21899 conn_t *connp = (conn_t *)proto_handle; 21900 int error; 21901 21902 ASSERT(connp->conn_upper_handle != NULL); 21903 21904 /* All Solaris components should pass a cred for this operation. */ 21905 ASSERT(cr != NULL); 21906 21907 /* 21908 * If we don't have a helper stream then create one. 21909 * ip_create_helper_stream takes care of locking the conn_t, 21910 * so this check for NULL is just a performance optimization. 21911 */ 21912 if (connp->conn_helper_info == NULL) { 21913 tcp_stack_t *tcps = connp->conn_tcp->tcp_tcps; 21914 21915 /* 21916 * Create a helper stream for non-STREAMS socket. 21917 */ 21918 error = ip_create_helper_stream(connp, tcps->tcps_ldi_ident); 21919 if (error != 0) { 21920 ip0dbg(("tcp_ioctl: create of IP helper stream " 21921 "failed %d\n", error)); 21922 return (error); 21923 } 21924 } 21925 21926 switch (cmd) { 21927 case ND_SET: 21928 case ND_GET: 21929 case _SIOCSOCKFALLBACK: 21930 case TCP_IOC_ABORT_CONN: 21931 case TI_GETPEERNAME: 21932 case TI_GETMYNAME: 21933 ip1dbg(("tcp_ioctl: cmd 0x%x on non streams socket", 21934 cmd)); 21935 error = EINVAL; 21936 break; 21937 default: 21938 /* 21939 * If the conn is not closing, pass on to IP using 21940 * helper stream. Bump the ioctlref to prevent tcp_close 21941 * from closing the rq/wq out from underneath the ioctl 21942 * if it ends up queued or aborted/interrupted. 21943 */ 21944 mutex_enter(&connp->conn_lock); 21945 if (connp->conn_state_flags & (CONN_CLOSING)) { 21946 mutex_exit(&connp->conn_lock); 21947 error = EINVAL; 21948 break; 21949 } 21950 CONN_INC_IOCTLREF_LOCKED(connp); 21951 error = ldi_ioctl(connp->conn_helper_info->iphs_handle, 21952 cmd, arg, mode, cr, rvalp); 21953 CONN_DEC_IOCTLREF(connp); 21954 break; 21955 } 21956 return (error); 21957 } 21958 21959 sock_downcalls_t sock_tcp_downcalls = { 21960 tcp_activate, 21961 tcp_accept, 21962 tcp_bind, 21963 tcp_listen, 21964 tcp_connect, 21965 tcp_getpeername, 21966 tcp_getsockname, 21967 tcp_getsockopt, 21968 tcp_setsockopt, 21969 tcp_sendmsg, 21970 NULL, 21971 NULL, 21972 NULL, 21973 tcp_shutdown, 21974 tcp_clr_flowctrl, 21975 tcp_ioctl, 21976 tcp_close, 21977 }; 21978 21979 /* 21980 * Timeout function to reset the TCP stack variable tcps_reclaim to false. 21981 */ 21982 static void 21983 tcp_reclaim_timer(void *arg) 21984 { 21985 tcp_stack_t *tcps = (tcp_stack_t *)arg; 21986 21987 mutex_enter(&tcps->tcps_reclaim_lock); 21988 tcps->tcps_reclaim = B_FALSE; 21989 tcps->tcps_reclaim_tid = 0; 21990 mutex_exit(&tcps->tcps_reclaim_lock); 21991 /* Only need to print this once. */ 21992 if (tcps->tcps_netstack->netstack_stackid == GLOBAL_ZONEID) 21993 cmn_err(CE_WARN, "TCP defensive mode off\n"); 21994 } 21995 21996 /* 21997 * Kmem reclaim call back function. When the system is under memory 21998 * pressure, we set the TCP stack variable tcps_reclaim to true. This 21999 * variable is reset to false after tcps_reclaim_period msecs. During this 22000 * period, TCP will be more aggressive in aborting connections not making 22001 * progress, meaning retransmitting for some time (tcp_early_abort seconds). 22002 * TCP will also not accept new connection request for those listeners whose 22003 * q or q0 is not empty. 22004 */ 22005 /* ARGSUSED */ 22006 void 22007 tcp_conn_reclaim(void *arg) 22008 { 22009 netstack_handle_t nh; 22010 netstack_t *ns; 22011 tcp_stack_t *tcps; 22012 boolean_t new = B_FALSE; 22013 22014 netstack_next_init(&nh); 22015 while ((ns = netstack_next(&nh)) != NULL) { 22016 tcps = ns->netstack_tcp; 22017 mutex_enter(&tcps->tcps_reclaim_lock); 22018 if (!tcps->tcps_reclaim) { 22019 tcps->tcps_reclaim = B_TRUE; 22020 tcps->tcps_reclaim_tid = timeout(tcp_reclaim_timer, 22021 tcps, MSEC_TO_TICK(tcps->tcps_reclaim_period)); 22022 new = B_TRUE; 22023 } 22024 mutex_exit(&tcps->tcps_reclaim_lock); 22025 netstack_rele(ns); 22026 } 22027 netstack_next_fini(&nh); 22028 if (new) 22029 cmn_err(CE_WARN, "Memory pressure: TCP defensive mode on\n"); 22030 } 22031 22032 /* 22033 * Given a tcp_stack_t and a port (in host byte order), find a listener 22034 * configuration for that port and return the ratio. 22035 */ 22036 static uint32_t 22037 tcp_find_listener_conf(tcp_stack_t *tcps, in_port_t port) 22038 { 22039 tcp_listener_t *tl; 22040 uint32_t ratio = 0; 22041 22042 mutex_enter(&tcps->tcps_listener_conf_lock); 22043 for (tl = list_head(&tcps->tcps_listener_conf); tl != NULL; 22044 tl = list_next(&tcps->tcps_listener_conf, tl)) { 22045 if (tl->tl_port == port) { 22046 ratio = tl->tl_ratio; 22047 break; 22048 } 22049 } 22050 mutex_exit(&tcps->tcps_listener_conf_lock); 22051 return (ratio); 22052 } 22053 22054 /* 22055 * Ndd param helper routine to return the current list of listener limit 22056 * configuration. 22057 */ 22058 /* ARGSUSED */ 22059 static int 22060 tcp_listener_conf_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 22061 { 22062 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 22063 tcp_listener_t *tl; 22064 22065 mutex_enter(&tcps->tcps_listener_conf_lock); 22066 for (tl = list_head(&tcps->tcps_listener_conf); tl != NULL; 22067 tl = list_next(&tcps->tcps_listener_conf, tl)) { 22068 (void) mi_mpprintf(mp, "%d:%d ", tl->tl_port, tl->tl_ratio); 22069 } 22070 mutex_exit(&tcps->tcps_listener_conf_lock); 22071 return (0); 22072 } 22073 22074 /* 22075 * Ndd param helper routine to add a new listener limit configuration. 22076 */ 22077 /* ARGSUSED */ 22078 static int 22079 tcp_listener_conf_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 22080 cred_t *cr) 22081 { 22082 tcp_listener_t *new_tl; 22083 tcp_listener_t *tl; 22084 long lport; 22085 long ratio; 22086 char *colon; 22087 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 22088 22089 if (ddi_strtol(value, &colon, 10, &lport) != 0 || lport <= 0 || 22090 lport > USHRT_MAX || *colon != ':') { 22091 return (EINVAL); 22092 } 22093 if (ddi_strtol(colon + 1, NULL, 10, &ratio) != 0 || ratio <= 0) 22094 return (EINVAL); 22095 22096 mutex_enter(&tcps->tcps_listener_conf_lock); 22097 for (tl = list_head(&tcps->tcps_listener_conf); tl != NULL; 22098 tl = list_next(&tcps->tcps_listener_conf, tl)) { 22099 /* There is an existing entry, so update its ratio value. */ 22100 if (tl->tl_port == lport) { 22101 tl->tl_ratio = ratio; 22102 mutex_exit(&tcps->tcps_listener_conf_lock); 22103 return (0); 22104 } 22105 } 22106 22107 if ((new_tl = kmem_alloc(sizeof (tcp_listener_t), KM_NOSLEEP)) == 22108 NULL) { 22109 mutex_exit(&tcps->tcps_listener_conf_lock); 22110 return (ENOMEM); 22111 } 22112 22113 new_tl->tl_port = lport; 22114 new_tl->tl_ratio = ratio; 22115 list_insert_tail(&tcps->tcps_listener_conf, new_tl); 22116 mutex_exit(&tcps->tcps_listener_conf_lock); 22117 return (0); 22118 } 22119 22120 /* 22121 * Ndd param helper routine to remove a listener limit configuration. 22122 */ 22123 /* ARGSUSED */ 22124 static int 22125 tcp_listener_conf_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 22126 cred_t *cr) 22127 { 22128 tcp_listener_t *tl; 22129 long lport; 22130 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 22131 22132 if (ddi_strtol(value, NULL, 10, &lport) != 0 || lport <= 0 || 22133 lport > USHRT_MAX) { 22134 return (EINVAL); 22135 } 22136 mutex_enter(&tcps->tcps_listener_conf_lock); 22137 for (tl = list_head(&tcps->tcps_listener_conf); tl != NULL; 22138 tl = list_next(&tcps->tcps_listener_conf, tl)) { 22139 if (tl->tl_port == lport) { 22140 list_remove(&tcps->tcps_listener_conf, tl); 22141 mutex_exit(&tcps->tcps_listener_conf_lock); 22142 kmem_free(tl, sizeof (tcp_listener_t)); 22143 return (0); 22144 } 22145 } 22146 mutex_exit(&tcps->tcps_listener_conf_lock); 22147 return (ESRCH); 22148 } 22149 22150 /* 22151 * To remove all listener limit configuration in a tcp_stack_t. 22152 */ 22153 static void 22154 tcp_listener_conf_cleanup(tcp_stack_t *tcps) 22155 { 22156 tcp_listener_t *tl; 22157 22158 mutex_enter(&tcps->tcps_listener_conf_lock); 22159 while ((tl = list_head(&tcps->tcps_listener_conf)) != NULL) { 22160 list_remove(&tcps->tcps_listener_conf, tl); 22161 kmem_free(tl, sizeof (tcp_listener_t)); 22162 } 22163 mutex_destroy(&tcps->tcps_listener_conf_lock); 22164 list_destroy(&tcps->tcps_listener_conf); 22165 } 22166