1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #include <sys/types.h> 29 #include <sys/stream.h> 30 #include <sys/strsun.h> 31 #include <sys/strsubr.h> 32 #include <sys/stropts.h> 33 #include <sys/strlog.h> 34 #define _SUN_TPI_VERSION 2 35 #include <sys/tihdr.h> 36 #include <sys/timod.h> 37 #include <sys/ddi.h> 38 #include <sys/sunddi.h> 39 #include <sys/suntpi.h> 40 #include <sys/xti_inet.h> 41 #include <sys/cmn_err.h> 42 #include <sys/debug.h> 43 #include <sys/sdt.h> 44 #include <sys/vtrace.h> 45 #include <sys/kmem.h> 46 #include <sys/ethernet.h> 47 #include <sys/cpuvar.h> 48 #include <sys/dlpi.h> 49 #include <sys/multidata.h> 50 #include <sys/multidata_impl.h> 51 #include <sys/pattr.h> 52 #include <sys/policy.h> 53 #include <sys/priv.h> 54 #include <sys/zone.h> 55 #include <sys/sunldi.h> 56 57 #include <sys/errno.h> 58 #include <sys/signal.h> 59 #include <sys/socket.h> 60 #include <sys/socketvar.h> 61 #include <sys/sockio.h> 62 #include <sys/isa_defs.h> 63 #include <sys/md5.h> 64 #include <sys/random.h> 65 #include <sys/sodirect.h> 66 #include <sys/uio.h> 67 #include <sys/systm.h> 68 #include <netinet/in.h> 69 #include <netinet/tcp.h> 70 #include <netinet/ip6.h> 71 #include <netinet/icmp6.h> 72 #include <net/if.h> 73 #include <net/route.h> 74 #include <inet/ipsec_impl.h> 75 76 #include <inet/common.h> 77 #include <inet/ip.h> 78 #include <inet/ip_impl.h> 79 #include <inet/ip6.h> 80 #include <inet/ip_ndp.h> 81 #include <inet/proto_set.h> 82 #include <inet/mib2.h> 83 #include <inet/nd.h> 84 #include <inet/optcom.h> 85 #include <inet/snmpcom.h> 86 #include <inet/kstatcom.h> 87 #include <inet/tcp.h> 88 #include <inet/tcp_impl.h> 89 #include <inet/udp_impl.h> 90 #include <net/pfkeyv2.h> 91 #include <inet/ipsec_info.h> 92 #include <inet/ipdrop.h> 93 94 #include <inet/ipclassifier.h> 95 #include <inet/ip_ire.h> 96 #include <inet/ip_ftable.h> 97 #include <inet/ip_if.h> 98 #include <inet/ipp_common.h> 99 #include <inet/ip_netinfo.h> 100 #include <sys/squeue_impl.h> 101 #include <sys/squeue.h> 102 #include <inet/kssl/ksslapi.h> 103 #include <sys/tsol/label.h> 104 #include <sys/tsol/tnet.h> 105 #include <rpc/pmap_prot.h> 106 #include <sys/callo.h> 107 108 /* 109 * TCP Notes: aka FireEngine Phase I (PSARC 2002/433) 110 * 111 * (Read the detailed design doc in PSARC case directory) 112 * 113 * The entire tcp state is contained in tcp_t and conn_t structure 114 * which are allocated in tandem using ipcl_conn_create() and passing 115 * IPCL_CONNTCP as a flag. We use 'conn_ref' and 'conn_lock' to protect 116 * the references on the tcp_t. The tcp_t structure is never compressed 117 * and packets always land on the correct TCP perimeter from the time 118 * eager is created till the time tcp_t dies (as such the old mentat 119 * TCP global queue is not used for detached state and no IPSEC checking 120 * is required). The global queue is still allocated to send out resets 121 * for connection which have no listeners and IP directly calls 122 * tcp_xmit_listeners_reset() which does any policy check. 123 * 124 * Protection and Synchronisation mechanism: 125 * 126 * The tcp data structure does not use any kind of lock for protecting 127 * its state but instead uses 'squeues' for mutual exclusion from various 128 * read and write side threads. To access a tcp member, the thread should 129 * always be behind squeue (via squeue_enter with flags as SQ_FILL, SQ_PROCESS, 130 * or SQ_NODRAIN). Since the squeues allow a direct function call, caller 131 * can pass any tcp function having prototype of edesc_t as argument 132 * (different from traditional STREAMs model where packets come in only 133 * designated entry points). The list of functions that can be directly 134 * called via squeue are listed before the usual function prototype. 135 * 136 * Referencing: 137 * 138 * TCP is MT-Hot and we use a reference based scheme to make sure that the 139 * tcp structure doesn't disappear when its needed. When the application 140 * creates an outgoing connection or accepts an incoming connection, we 141 * start out with 2 references on 'conn_ref'. One for TCP and one for IP. 142 * The IP reference is just a symbolic reference since ip_tcpclose() 143 * looks at tcp structure after tcp_close_output() returns which could 144 * have dropped the last TCP reference. So as long as the connection is 145 * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the 146 * conn_t. The classifier puts its own reference when the connection is 147 * inserted in listen or connected hash. Anytime a thread needs to enter 148 * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr 149 * on write side or by doing a classify on read side and then puts a 150 * reference on the conn before doing squeue_enter/tryenter/fill. For 151 * read side, the classifier itself puts the reference under fanout lock 152 * to make sure that tcp can't disappear before it gets processed. The 153 * squeue will drop this reference automatically so the called function 154 * doesn't have to do a DEC_REF. 155 * 156 * Opening a new connection: 157 * 158 * The outgoing connection open is pretty simple. tcp_open() does the 159 * work in creating the conn/tcp structure and initializing it. The 160 * squeue assignment is done based on the CPU the application 161 * is running on. So for outbound connections, processing is always done 162 * on application CPU which might be different from the incoming CPU 163 * being interrupted by the NIC. An optimal way would be to figure out 164 * the NIC <-> CPU binding at listen time, and assign the outgoing 165 * connection to the squeue attached to the CPU that will be interrupted 166 * for incoming packets (we know the NIC based on the bind IP address). 167 * This might seem like a problem if more data is going out but the 168 * fact is that in most cases the transmit is ACK driven transmit where 169 * the outgoing data normally sits on TCP's xmit queue waiting to be 170 * transmitted. 171 * 172 * Accepting a connection: 173 * 174 * This is a more interesting case because of various races involved in 175 * establishing a eager in its own perimeter. Read the meta comment on 176 * top of tcp_conn_request(). But briefly, the squeue is picked by 177 * ip_tcp_input()/ip_fanout_tcp_v6() based on the interrupted CPU. 178 * 179 * Closing a connection: 180 * 181 * The close is fairly straight forward. tcp_close() calls tcp_close_output() 182 * via squeue to do the close and mark the tcp as detached if the connection 183 * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its 184 * reference but tcp_close() drop IP's reference always. So if tcp was 185 * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP 186 * and 1 because it is in classifier's connected hash. This is the condition 187 * we use to determine that its OK to clean up the tcp outside of squeue 188 * when time wait expires (check the ref under fanout and conn_lock and 189 * if it is 2, remove it from fanout hash and kill it). 190 * 191 * Although close just drops the necessary references and marks the 192 * tcp_detached state, tcp_close needs to know the tcp_detached has been 193 * set (under squeue) before letting the STREAM go away (because a 194 * inbound packet might attempt to go up the STREAM while the close 195 * has happened and tcp_detached is not set). So a special lock and 196 * flag is used along with a condition variable (tcp_closelock, tcp_closed, 197 * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked 198 * tcp_detached. 199 * 200 * Special provisions and fast paths: 201 * 202 * We make special provision for (AF_INET, SOCK_STREAM) sockets which 203 * can't have 'ipv6_recvpktinfo' set and for these type of sockets, IP 204 * will never send a M_CTL to TCP. As such, ip_tcp_input() which handles 205 * all TCP packets from the wire makes a IPCL_IS_TCP4_CONNECTED_NO_POLICY 206 * check to send packets directly to tcp_rput_data via squeue. Everyone 207 * else comes through tcp_input() on the read side. 208 * 209 * We also make special provisions for sockfs by marking tcp_issocket 210 * whenever we have only sockfs on top of TCP. This allows us to skip 211 * putting the tcp in acceptor hash since a sockfs listener can never 212 * become acceptor and also avoid allocating a tcp_t for acceptor STREAM 213 * since eager has already been allocated and the accept now happens 214 * on acceptor STREAM. There is a big blob of comment on top of 215 * tcp_conn_request explaining the new accept. When socket is POP'd, 216 * sockfs sends us an ioctl to mark the fact and we go back to old 217 * behaviour. Once tcp_issocket is unset, its never set for the 218 * life of that connection. 219 * 220 * In support of on-board asynchronous DMA hardware (e.g. Intel I/OAT) 221 * two consoldiation private KAPIs are used to enqueue M_DATA mblk_t's 222 * directly to the socket (sodirect) and start an asynchronous copyout 223 * to a user-land receive-side buffer (uioa) when a blocking socket read 224 * (e.g. read, recv, ...) is pending. 225 * 226 * This is accomplished when tcp_issocket is set and tcp_sodirect is not 227 * NULL so points to an sodirect_t and if marked enabled then we enqueue 228 * all mblk_t's directly to the socket. 229 * 230 * Further, if the sodirect_t sod_uioa and if marked enabled (due to a 231 * blocking socket read, e.g. user-land read, recv, ...) then an asynchronous 232 * copyout will be started directly to the user-land uio buffer. Also, as we 233 * have a pending read, TCP's push logic can take into account the number of 234 * bytes to be received and only awake the blocked read()er when the uioa_t 235 * byte count has been satisfied. 236 * 237 * IPsec notes : 238 * 239 * Since a packet is always executed on the correct TCP perimeter 240 * all IPsec processing is defered to IP including checking new 241 * connections and setting IPSEC policies for new connection. The 242 * only exception is tcp_xmit_listeners_reset() which is called 243 * directly from IP and needs to policy check to see if TH_RST 244 * can be sent out. 245 * 246 * PFHooks notes : 247 * 248 * For mdt case, one meta buffer contains multiple packets. Mblks for every 249 * packet are assembled and passed to the hooks. When packets are blocked, 250 * or boundary of any packet is changed, the mdt processing is stopped, and 251 * packets of the meta buffer are send to the IP path one by one. 252 */ 253 254 /* 255 * Values for squeue switch: 256 * 1: SQ_NODRAIN 257 * 2: SQ_PROCESS 258 * 3: SQ_FILL 259 */ 260 int tcp_squeue_wput = 2; /* /etc/systems */ 261 int tcp_squeue_flag; 262 263 /* 264 * Macros for sodirect: 265 * 266 * SOD_PTR_ENTER(tcp, sodp) - for the tcp_t pointer "tcp" set the 267 * sodirect_t pointer "sodp" to the socket/tcp shared sodirect_t 268 * if it exists and is enabled, else to NULL. Note, in the current 269 * sodirect implementation the sod_lockp must not be held across any 270 * STREAMS call (e.g. putnext) else a "recursive mutex_enter" PANIC 271 * will result as sod_lockp is the streamhead stdata.sd_lock. 272 * 273 * SOD_NOT_ENABLED(tcp) - return true if not a sodirect tcp_t or the 274 * sodirect_t isn't enabled, usefull for ASSERT()ing that a recieve 275 * side tcp code path dealing with a tcp_rcv_list or putnext() isn't 276 * being used when sodirect code paths should be. 277 */ 278 279 #define SOD_PTR_ENTER(tcp, sodp) \ 280 (sodp) = (tcp)->tcp_sodirect; \ 281 \ 282 if ((sodp) != NULL) { \ 283 mutex_enter((sodp)->sod_lockp); \ 284 if (!((sodp)->sod_state & SOD_ENABLED)) { \ 285 mutex_exit((sodp)->sod_lockp); \ 286 (sodp) = NULL; \ 287 } \ 288 } 289 290 #define SOD_NOT_ENABLED(tcp) \ 291 ((tcp)->tcp_sodirect == NULL || \ 292 !((tcp)->tcp_sodirect->sod_state & SOD_ENABLED)) 293 294 /* 295 * This controls how tiny a write must be before we try to copy it 296 * into the the mblk on the tail of the transmit queue. Not much 297 * speedup is observed for values larger than sixteen. Zero will 298 * disable the optimisation. 299 */ 300 int tcp_tx_pull_len = 16; 301 302 /* 303 * TCP Statistics. 304 * 305 * How TCP statistics work. 306 * 307 * There are two types of statistics invoked by two macros. 308 * 309 * TCP_STAT(name) does non-atomic increment of a named stat counter. It is 310 * supposed to be used in non MT-hot paths of the code. 311 * 312 * TCP_DBGSTAT(name) does atomic increment of a named stat counter. It is 313 * supposed to be used for DEBUG purposes and may be used on a hot path. 314 * 315 * Both TCP_STAT and TCP_DBGSTAT counters are available using kstat 316 * (use "kstat tcp" to get them). 317 * 318 * There is also additional debugging facility that marks tcp_clean_death() 319 * instances and saves them in tcp_t structure. It is triggered by 320 * TCP_TAG_CLEAN_DEATH define. Also, there is a global array of counters for 321 * tcp_clean_death() calls that counts the number of times each tag was hit. It 322 * is triggered by TCP_CLD_COUNTERS define. 323 * 324 * How to add new counters. 325 * 326 * 1) Add a field in the tcp_stat structure describing your counter. 327 * 2) Add a line in the template in tcp_kstat2_init() with the name 328 * of the counter. 329 * 330 * IMPORTANT!! - make sure that both are in sync !! 331 * 3) Use either TCP_STAT or TCP_DBGSTAT with the name. 332 * 333 * Please avoid using private counters which are not kstat-exported. 334 * 335 * TCP_TAG_CLEAN_DEATH set to 1 enables tagging of tcp_clean_death() instances 336 * in tcp_t structure. 337 * 338 * TCP_MAX_CLEAN_DEATH_TAG is the maximum number of possible clean death tags. 339 */ 340 341 #ifndef TCP_DEBUG_COUNTER 342 #ifdef DEBUG 343 #define TCP_DEBUG_COUNTER 1 344 #else 345 #define TCP_DEBUG_COUNTER 0 346 #endif 347 #endif 348 349 #define TCP_CLD_COUNTERS 0 350 351 #define TCP_TAG_CLEAN_DEATH 1 352 #define TCP_MAX_CLEAN_DEATH_TAG 32 353 354 #ifdef lint 355 static int _lint_dummy_; 356 #endif 357 358 #if TCP_CLD_COUNTERS 359 static uint_t tcp_clean_death_stat[TCP_MAX_CLEAN_DEATH_TAG]; 360 #define TCP_CLD_STAT(x) tcp_clean_death_stat[x]++ 361 #elif defined(lint) 362 #define TCP_CLD_STAT(x) ASSERT(_lint_dummy_ == 0); 363 #else 364 #define TCP_CLD_STAT(x) 365 #endif 366 367 #if TCP_DEBUG_COUNTER 368 #define TCP_DBGSTAT(tcps, x) \ 369 atomic_add_64(&((tcps)->tcps_statistics.x.value.ui64), 1) 370 #define TCP_G_DBGSTAT(x) \ 371 atomic_add_64(&(tcp_g_statistics.x.value.ui64), 1) 372 #elif defined(lint) 373 #define TCP_DBGSTAT(tcps, x) ASSERT(_lint_dummy_ == 0); 374 #define TCP_G_DBGSTAT(x) ASSERT(_lint_dummy_ == 0); 375 #else 376 #define TCP_DBGSTAT(tcps, x) 377 #define TCP_G_DBGSTAT(x) 378 #endif 379 380 #define TCP_G_STAT(x) (tcp_g_statistics.x.value.ui64++) 381 382 tcp_g_stat_t tcp_g_statistics; 383 kstat_t *tcp_g_kstat; 384 385 /* 386 * Call either ip_output or ip_output_v6. This replaces putnext() calls on the 387 * tcp write side. 388 */ 389 #define CALL_IP_WPUT(connp, q, mp) { \ 390 ASSERT(((q)->q_flag & QREADR) == 0); \ 391 TCP_DBGSTAT(connp->conn_netstack->netstack_tcp, tcp_ip_output); \ 392 connp->conn_send(connp, (mp), (q), IP_WPUT); \ 393 } 394 395 /* Macros for timestamp comparisons */ 396 #define TSTMP_GEQ(a, b) ((int32_t)((a)-(b)) >= 0) 397 #define TSTMP_LT(a, b) ((int32_t)((a)-(b)) < 0) 398 399 /* 400 * Parameters for TCP Initial Send Sequence number (ISS) generation. When 401 * tcp_strong_iss is set to 1, which is the default, the ISS is calculated 402 * by adding three components: a time component which grows by 1 every 4096 403 * nanoseconds (versus every 4 microseconds suggested by RFC 793, page 27); 404 * a per-connection component which grows by 125000 for every new connection; 405 * and an "extra" component that grows by a random amount centered 406 * approximately on 64000. This causes the the ISS generator to cycle every 407 * 4.89 hours if no TCP connections are made, and faster if connections are 408 * made. 409 * 410 * When tcp_strong_iss is set to 0, ISS is calculated by adding two 411 * components: a time component which grows by 250000 every second; and 412 * a per-connection component which grows by 125000 for every new connections. 413 * 414 * A third method, when tcp_strong_iss is set to 2, for generating ISS is 415 * prescribed by Steve Bellovin. This involves adding time, the 125000 per 416 * connection, and a one-way hash (MD5) of the connection ID <sport, dport, 417 * src, dst>, a "truly" random (per RFC 1750) number, and a console-entered 418 * password. 419 */ 420 #define ISS_INCR 250000 421 #define ISS_NSEC_SHT 12 422 423 static sin_t sin_null; /* Zero address for quick clears */ 424 static sin6_t sin6_null; /* Zero address for quick clears */ 425 426 /* 427 * This implementation follows the 4.3BSD interpretation of the urgent 428 * pointer and not RFC 1122. Switching to RFC 1122 behavior would cause 429 * incompatible changes in protocols like telnet and rlogin. 430 */ 431 #define TCP_OLD_URP_INTERPRETATION 1 432 433 #define TCP_IS_DETACHED_NONEAGER(tcp) \ 434 (TCP_IS_DETACHED(tcp) && \ 435 (!(tcp)->tcp_hard_binding)) 436 437 /* 438 * TCP reassembly macros. We hide starting and ending sequence numbers in 439 * b_next and b_prev of messages on the reassembly queue. The messages are 440 * chained using b_cont. These macros are used in tcp_reass() so we don't 441 * have to see the ugly casts and assignments. 442 */ 443 #define TCP_REASS_SEQ(mp) ((uint32_t)(uintptr_t)((mp)->b_next)) 444 #define TCP_REASS_SET_SEQ(mp, u) ((mp)->b_next = \ 445 (mblk_t *)(uintptr_t)(u)) 446 #define TCP_REASS_END(mp) ((uint32_t)(uintptr_t)((mp)->b_prev)) 447 #define TCP_REASS_SET_END(mp, u) ((mp)->b_prev = \ 448 (mblk_t *)(uintptr_t)(u)) 449 450 /* 451 * Implementation of TCP Timers. 452 * ============================= 453 * 454 * INTERFACE: 455 * 456 * There are two basic functions dealing with tcp timers: 457 * 458 * timeout_id_t tcp_timeout(connp, func, time) 459 * clock_t tcp_timeout_cancel(connp, timeout_id) 460 * TCP_TIMER_RESTART(tcp, intvl) 461 * 462 * tcp_timeout() starts a timer for the 'tcp' instance arranging to call 'func' 463 * after 'time' ticks passed. The function called by timeout() must adhere to 464 * the same restrictions as a driver soft interrupt handler - it must not sleep 465 * or call other functions that might sleep. The value returned is the opaque 466 * non-zero timeout identifier that can be passed to tcp_timeout_cancel() to 467 * cancel the request. The call to tcp_timeout() may fail in which case it 468 * returns zero. This is different from the timeout(9F) function which never 469 * fails. 470 * 471 * The call-back function 'func' always receives 'connp' as its single 472 * argument. It is always executed in the squeue corresponding to the tcp 473 * structure. The tcp structure is guaranteed to be present at the time the 474 * call-back is called. 475 * 476 * NOTE: The call-back function 'func' is never called if tcp is in 477 * the TCPS_CLOSED state. 478 * 479 * tcp_timeout_cancel() attempts to cancel a pending tcp_timeout() 480 * request. locks acquired by the call-back routine should not be held across 481 * the call to tcp_timeout_cancel() or a deadlock may result. 482 * 483 * tcp_timeout_cancel() returns -1 if it can not cancel the timeout request. 484 * Otherwise, it returns an integer value greater than or equal to 0. In 485 * particular, if the call-back function is already placed on the squeue, it can 486 * not be canceled. 487 * 488 * NOTE: both tcp_timeout() and tcp_timeout_cancel() should always be called 489 * within squeue context corresponding to the tcp instance. Since the 490 * call-back is also called via the same squeue, there are no race 491 * conditions described in untimeout(9F) manual page since all calls are 492 * strictly serialized. 493 * 494 * TCP_TIMER_RESTART() is a macro that attempts to cancel a pending timeout 495 * stored in tcp_timer_tid and starts a new one using 496 * MSEC_TO_TICK(intvl). It always uses tcp_timer() function as a call-back 497 * and stores the return value of tcp_timeout() in the tcp->tcp_timer_tid 498 * field. 499 * 500 * NOTE: since the timeout cancellation is not guaranteed, the cancelled 501 * call-back may still be called, so it is possible tcp_timer() will be 502 * called several times. This should not be a problem since tcp_timer() 503 * should always check the tcp instance state. 504 * 505 * 506 * IMPLEMENTATION: 507 * 508 * TCP timers are implemented using three-stage process. The call to 509 * tcp_timeout() uses timeout(9F) function to call tcp_timer_callback() function 510 * when the timer expires. The tcp_timer_callback() arranges the call of the 511 * tcp_timer_handler() function via squeue corresponding to the tcp 512 * instance. The tcp_timer_handler() calls actual requested timeout call-back 513 * and passes tcp instance as an argument to it. Information is passed between 514 * stages using the tcp_timer_t structure which contains the connp pointer, the 515 * tcp call-back to call and the timeout id returned by the timeout(9F). 516 * 517 * The tcp_timer_t structure is not used directly, it is embedded in an mblk_t - 518 * like structure that is used to enter an squeue. The mp->b_rptr of this pseudo 519 * mblk points to the beginning of tcp_timer_t structure. The tcp_timeout() 520 * returns the pointer to this mblk. 521 * 522 * The pseudo mblk is allocated from a special tcp_timer_cache kmem cache. It 523 * looks like a normal mblk without actual dblk attached to it. 524 * 525 * To optimize performance each tcp instance holds a small cache of timer 526 * mblocks. In the current implementation it caches up to two timer mblocks per 527 * tcp instance. The cache is preserved over tcp frees and is only freed when 528 * the whole tcp structure is destroyed by its kmem destructor. Since all tcp 529 * timer processing happens on a corresponding squeue, the cache manipulation 530 * does not require any locks. Experiments show that majority of timer mblocks 531 * allocations are satisfied from the tcp cache and do not involve kmem calls. 532 * 533 * The tcp_timeout() places a refhold on the connp instance which guarantees 534 * that it will be present at the time the call-back function fires. The 535 * tcp_timer_handler() drops the reference after calling the call-back, so the 536 * call-back function does not need to manipulate the references explicitly. 537 */ 538 539 typedef struct tcp_timer_s { 540 conn_t *connp; 541 void (*tcpt_proc)(void *); 542 callout_id_t tcpt_tid; 543 } tcp_timer_t; 544 545 static kmem_cache_t *tcp_timercache; 546 kmem_cache_t *tcp_sack_info_cache; 547 kmem_cache_t *tcp_iphc_cache; 548 549 /* 550 * For scalability, we must not run a timer for every TCP connection 551 * in TIME_WAIT state. To see why, consider (for time wait interval of 552 * 4 minutes): 553 * 1000 connections/sec * 240 seconds/time wait = 240,000 active conn's 554 * 555 * This list is ordered by time, so you need only delete from the head 556 * until you get to entries which aren't old enough to delete yet. 557 * The list consists of only the detached TIME_WAIT connections. 558 * 559 * Note that the timer (tcp_time_wait_expire) is started when the tcp_t 560 * becomes detached TIME_WAIT (either by changing the state and already 561 * being detached or the other way around). This means that the TIME_WAIT 562 * state can be extended (up to doubled) if the connection doesn't become 563 * detached for a long time. 564 * 565 * The list manipulations (including tcp_time_wait_next/prev) 566 * are protected by the tcp_time_wait_lock. The content of the 567 * detached TIME_WAIT connections is protected by the normal perimeters. 568 * 569 * This list is per squeue and squeues are shared across the tcp_stack_t's. 570 * Things on tcp_time_wait_head remain associated with the tcp_stack_t 571 * and conn_netstack. 572 * The tcp_t's that are added to tcp_free_list are disassociated and 573 * have NULL tcp_tcps and conn_netstack pointers. 574 */ 575 typedef struct tcp_squeue_priv_s { 576 kmutex_t tcp_time_wait_lock; 577 callout_id_t tcp_time_wait_tid; 578 tcp_t *tcp_time_wait_head; 579 tcp_t *tcp_time_wait_tail; 580 tcp_t *tcp_free_list; 581 uint_t tcp_free_list_cnt; 582 } tcp_squeue_priv_t; 583 584 /* 585 * TCP_TIME_WAIT_DELAY governs how often the time_wait_collector runs. 586 * Running it every 5 seconds seems to give the best results. 587 */ 588 #define TCP_TIME_WAIT_DELAY drv_usectohz(5000000) 589 590 /* 591 * To prevent memory hog, limit the number of entries in tcp_free_list 592 * to 1% of available memory / number of cpus 593 */ 594 uint_t tcp_free_list_max_cnt = 0; 595 596 #define TCP_XMIT_LOWATER 4096 597 #define TCP_XMIT_HIWATER 49152 598 #define TCP_RECV_LOWATER 2048 599 #define TCP_RECV_HIWATER 49152 600 601 /* 602 * PAWS needs a timer for 24 days. This is the number of ticks in 24 days 603 */ 604 #define PAWS_TIMEOUT ((clock_t)(24*24*60*60*hz)) 605 606 #define TIDUSZ 4096 /* transport interface data unit size */ 607 608 /* 609 * Bind hash list size and has function. It has to be a power of 2 for 610 * hashing. 611 */ 612 #define TCP_BIND_FANOUT_SIZE 512 613 #define TCP_BIND_HASH(lport) (ntohs(lport) & (TCP_BIND_FANOUT_SIZE - 1)) 614 /* 615 * Size of listen and acceptor hash list. It has to be a power of 2 for 616 * hashing. 617 */ 618 #define TCP_FANOUT_SIZE 256 619 620 #ifdef _ILP32 621 #define TCP_ACCEPTOR_HASH(accid) \ 622 (((uint_t)(accid) >> 8) & (TCP_FANOUT_SIZE - 1)) 623 #else 624 #define TCP_ACCEPTOR_HASH(accid) \ 625 ((uint_t)(accid) & (TCP_FANOUT_SIZE - 1)) 626 #endif /* _ILP32 */ 627 628 #define IP_ADDR_CACHE_SIZE 2048 629 #define IP_ADDR_CACHE_HASH(faddr) \ 630 (ntohl(faddr) & (IP_ADDR_CACHE_SIZE -1)) 631 632 /* 633 * TCP options struct returned from tcp_parse_options. 634 */ 635 typedef struct tcp_opt_s { 636 uint32_t tcp_opt_mss; 637 uint32_t tcp_opt_wscale; 638 uint32_t tcp_opt_ts_val; 639 uint32_t tcp_opt_ts_ecr; 640 tcp_t *tcp; 641 } tcp_opt_t; 642 643 /* 644 * TCP option struct passing information b/w lisenter and eager. 645 */ 646 struct tcp_options { 647 uint_t to_flags; 648 ssize_t to_boundif; /* IPV6_BOUND_IF */ 649 }; 650 651 #define TCPOPT_BOUNDIF 0x00000001 /* set IPV6_BOUND_IF */ 652 #define TCPOPT_RECVPKTINFO 0x00000002 /* set IPV6_RECVPKTINFO */ 653 654 /* 655 * RFC1323-recommended phrasing of TSTAMP option, for easier parsing 656 */ 657 658 #ifdef _BIG_ENDIAN 659 #define TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \ 660 (TCPOPT_TSTAMP << 8) | 10) 661 #else 662 #define TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \ 663 (TCPOPT_NOP << 8) | TCPOPT_NOP) 664 #endif 665 666 /* 667 * Flags returned from tcp_parse_options. 668 */ 669 #define TCP_OPT_MSS_PRESENT 1 670 #define TCP_OPT_WSCALE_PRESENT 2 671 #define TCP_OPT_TSTAMP_PRESENT 4 672 #define TCP_OPT_SACK_OK_PRESENT 8 673 #define TCP_OPT_SACK_PRESENT 16 674 675 /* TCP option length */ 676 #define TCPOPT_NOP_LEN 1 677 #define TCPOPT_MAXSEG_LEN 4 678 #define TCPOPT_WS_LEN 3 679 #define TCPOPT_REAL_WS_LEN (TCPOPT_WS_LEN+1) 680 #define TCPOPT_TSTAMP_LEN 10 681 #define TCPOPT_REAL_TS_LEN (TCPOPT_TSTAMP_LEN+2) 682 #define TCPOPT_SACK_OK_LEN 2 683 #define TCPOPT_REAL_SACK_OK_LEN (TCPOPT_SACK_OK_LEN+2) 684 #define TCPOPT_REAL_SACK_LEN 4 685 #define TCPOPT_MAX_SACK_LEN 36 686 #define TCPOPT_HEADER_LEN 2 687 688 /* TCP cwnd burst factor. */ 689 #define TCP_CWND_INFINITE 65535 690 #define TCP_CWND_SS 3 691 #define TCP_CWND_NORMAL 5 692 693 /* Maximum TCP initial cwin (start/restart). */ 694 #define TCP_MAX_INIT_CWND 8 695 696 /* 697 * Initialize cwnd according to RFC 3390. def_max_init_cwnd is 698 * either tcp_slow_start_initial or tcp_slow_start_after idle 699 * depending on the caller. If the upper layer has not used the 700 * TCP_INIT_CWND option to change the initial cwnd, tcp_init_cwnd 701 * should be 0 and we use the formula in RFC 3390 to set tcp_cwnd. 702 * If the upper layer has changed set the tcp_init_cwnd, just use 703 * it to calculate the tcp_cwnd. 704 */ 705 #define SET_TCP_INIT_CWND(tcp, mss, def_max_init_cwnd) \ 706 { \ 707 if ((tcp)->tcp_init_cwnd == 0) { \ 708 (tcp)->tcp_cwnd = MIN(def_max_init_cwnd * (mss), \ 709 MIN(4 * (mss), MAX(2 * (mss), 4380 / (mss) * (mss)))); \ 710 } else { \ 711 (tcp)->tcp_cwnd = (tcp)->tcp_init_cwnd * (mss); \ 712 } \ 713 tcp->tcp_cwnd_cnt = 0; \ 714 } 715 716 /* TCP Timer control structure */ 717 typedef struct tcpt_s { 718 pfv_t tcpt_pfv; /* The routine we are to call */ 719 tcp_t *tcpt_tcp; /* The parameter we are to pass in */ 720 } tcpt_t; 721 722 /* 723 * Functions called directly via squeue having a prototype of edesc_t. 724 */ 725 void tcp_conn_request(void *arg, mblk_t *mp, void *arg2); 726 static void tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2); 727 void tcp_accept_finish(void *arg, mblk_t *mp, void *arg2); 728 static void tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2); 729 static void tcp_wput_proto(void *arg, mblk_t *mp, void *arg2); 730 void tcp_input(void *arg, mblk_t *mp, void *arg2); 731 void tcp_rput_data(void *arg, mblk_t *mp, void *arg2); 732 static void tcp_close_output(void *arg, mblk_t *mp, void *arg2); 733 void tcp_output(void *arg, mblk_t *mp, void *arg2); 734 void tcp_output_urgent(void *arg, mblk_t *mp, void *arg2); 735 static void tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2); 736 static void tcp_timer_handler(void *arg, mblk_t *mp, void *arg2); 737 static void tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2); 738 739 740 /* Prototype for TCP functions */ 741 static void tcp_random_init(void); 742 int tcp_random(void); 743 static void tcp_tli_accept(tcp_t *tcp, mblk_t *mp); 744 static void tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, 745 tcp_t *eager); 746 static int tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp); 747 static in_port_t tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, 748 int reuseaddr, boolean_t quick_connect, boolean_t bind_to_req_port_only, 749 boolean_t user_specified); 750 static void tcp_closei_local(tcp_t *tcp); 751 static void tcp_close_detached(tcp_t *tcp); 752 static boolean_t tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, 753 mblk_t *idmp, mblk_t **defermp); 754 static void tcp_tpi_connect(tcp_t *tcp, mblk_t *mp); 755 static int tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, 756 in_port_t dstport, uint_t srcid, cred_t *cr, pid_t pid); 757 static int tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, 758 in_port_t dstport, uint32_t flowinfo, uint_t srcid, 759 uint32_t scope_id, cred_t *cr, pid_t pid); 760 static int tcp_clean_death(tcp_t *tcp, int err, uint8_t tag); 761 static void tcp_def_q_set(tcp_t *tcp, mblk_t *mp); 762 static void tcp_disconnect(tcp_t *tcp, mblk_t *mp); 763 static char *tcp_display(tcp_t *tcp, char *, char); 764 static boolean_t tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum); 765 static void tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only); 766 static void tcp_eager_unlink(tcp_t *tcp); 767 static void tcp_err_ack(tcp_t *tcp, mblk_t *mp, int tlierr, 768 int unixerr); 769 static void tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, 770 int tlierr, int unixerr); 771 static int tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, 772 cred_t *cr); 773 static int tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, 774 char *value, caddr_t cp, cred_t *cr); 775 static int tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, 776 char *value, caddr_t cp, cred_t *cr); 777 static int tcp_tpistate(tcp_t *tcp); 778 static void tcp_bind_hash_insert(tf_t *tf, tcp_t *tcp, 779 int caller_holds_lock); 780 static void tcp_bind_hash_remove(tcp_t *tcp); 781 static tcp_t *tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *); 782 void tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp); 783 static void tcp_acceptor_hash_remove(tcp_t *tcp); 784 static void tcp_capability_req(tcp_t *tcp, mblk_t *mp); 785 static void tcp_info_req(tcp_t *tcp, mblk_t *mp); 786 static void tcp_addr_req(tcp_t *tcp, mblk_t *mp); 787 static void tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *mp); 788 void tcp_g_q_setup(tcp_stack_t *); 789 void tcp_g_q_create(tcp_stack_t *); 790 void tcp_g_q_destroy(tcp_stack_t *); 791 static int tcp_header_init_ipv4(tcp_t *tcp); 792 static int tcp_header_init_ipv6(tcp_t *tcp); 793 int tcp_init(tcp_t *tcp, queue_t *q); 794 static int tcp_init_values(tcp_t *tcp); 795 static mblk_t *tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic); 796 static void tcp_ip_ire_mark_advice(tcp_t *tcp); 797 static void tcp_ip_notify(tcp_t *tcp); 798 static mblk_t *tcp_ire_mp(mblk_t **mpp); 799 static void tcp_iss_init(tcp_t *tcp); 800 static void tcp_keepalive_killer(void *arg); 801 static int tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt); 802 static void tcp_mss_set(tcp_t *tcp, uint32_t size, boolean_t do_ss); 803 static int tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, 804 int *do_disconnectp, int *t_errorp, int *sys_errorp); 805 static boolean_t tcp_allow_connopt_set(int level, int name); 806 int tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr); 807 int tcp_tpi_opt_get(queue_t *q, int level, int name, uchar_t *ptr); 808 int tcp_tpi_opt_set(queue_t *q, uint_t optset_context, int level, 809 int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp, 810 uchar_t *outvalp, void *thisdg_attrs, cred_t *cr, 811 mblk_t *mblk); 812 static void tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha); 813 static int tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, 814 uchar_t *ptr, uint_t len); 815 static int tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr); 816 static boolean_t tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt, 817 tcp_stack_t *); 818 static int tcp_param_set(queue_t *q, mblk_t *mp, char *value, 819 caddr_t cp, cred_t *cr); 820 static int tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, 821 caddr_t cp, cred_t *cr); 822 static void tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *); 823 static int tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, 824 caddr_t cp, cred_t *cr); 825 static void tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_cnt); 826 static mblk_t *tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start); 827 static void tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp); 828 static void tcp_reinit(tcp_t *tcp); 829 static void tcp_reinit_values(tcp_t *tcp); 830 831 static uint_t tcp_rwnd_reopen(tcp_t *tcp); 832 static uint_t tcp_rcv_drain(tcp_t *tcp); 833 static void tcp_sack_rxmit(tcp_t *tcp, uint_t *flags); 834 static boolean_t tcp_send_rst_chk(tcp_stack_t *); 835 static void tcp_ss_rexmit(tcp_t *tcp); 836 static mblk_t *tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp); 837 static void tcp_process_options(tcp_t *, tcph_t *); 838 static void tcp_rput_common(tcp_t *tcp, mblk_t *mp); 839 static void tcp_rsrv(queue_t *q); 840 static int tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd); 841 static int tcp_snmp_state(tcp_t *tcp); 842 static void tcp_timer(void *arg); 843 static void tcp_timer_callback(void *); 844 static in_port_t tcp_update_next_port(in_port_t port, const tcp_t *tcp, 845 boolean_t random); 846 static in_port_t tcp_get_next_priv_port(const tcp_t *); 847 static void tcp_wput_sock(queue_t *q, mblk_t *mp); 848 static void tcp_wput_fallback(queue_t *q, mblk_t *mp); 849 void tcp_tpi_accept(queue_t *q, mblk_t *mp); 850 static void tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent); 851 static void tcp_wput_flush(tcp_t *tcp, mblk_t *mp); 852 static void tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp); 853 static int tcp_send(queue_t *q, tcp_t *tcp, const int mss, 854 const int tcp_hdr_len, const int tcp_tcp_hdr_len, 855 const int num_sack_blk, int *usable, uint_t *snxt, 856 int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 857 const int mdt_thres); 858 static int tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, 859 const int tcp_hdr_len, const int tcp_tcp_hdr_len, 860 const int num_sack_blk, int *usable, uint_t *snxt, 861 int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 862 const int mdt_thres); 863 static void tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, 864 int num_sack_blk); 865 static void tcp_wsrv(queue_t *q); 866 static int tcp_xmit_end(tcp_t *tcp); 867 static void tcp_ack_timer(void *arg); 868 static mblk_t *tcp_ack_mp(tcp_t *tcp); 869 static void tcp_xmit_early_reset(char *str, mblk_t *mp, 870 uint32_t seq, uint32_t ack, int ctl, uint_t ip_hdr_len, 871 zoneid_t zoneid, tcp_stack_t *, conn_t *connp); 872 static void tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, 873 uint32_t ack, int ctl); 874 static int setmaxps(queue_t *q, int maxpsz); 875 static void tcp_set_rto(tcp_t *, time_t); 876 static boolean_t tcp_check_policy(tcp_t *, mblk_t *, ipha_t *, ip6_t *, 877 boolean_t, boolean_t); 878 static void tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, 879 boolean_t ipsec_mctl); 880 static int tcp_build_hdrs(tcp_t *); 881 static void tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, 882 uint32_t seg_seq, uint32_t seg_ack, int seg_len, 883 tcph_t *tcph); 884 boolean_t tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp); 885 static mblk_t *tcp_mdt_info_mp(mblk_t *); 886 static void tcp_mdt_update(tcp_t *, ill_mdt_capab_t *, boolean_t); 887 static int tcp_mdt_add_attrs(multidata_t *, const mblk_t *, 888 const boolean_t, const uint32_t, const uint32_t, 889 const uint32_t, const uint32_t, tcp_stack_t *); 890 static void tcp_multisend_data(tcp_t *, ire_t *, const ill_t *, mblk_t *, 891 const uint_t, const uint_t, boolean_t *); 892 static mblk_t *tcp_lso_info_mp(mblk_t *); 893 static void tcp_lso_update(tcp_t *, ill_lso_capab_t *); 894 static void tcp_send_data(tcp_t *, queue_t *, mblk_t *); 895 extern mblk_t *tcp_timermp_alloc(int); 896 extern void tcp_timermp_free(tcp_t *); 897 static void tcp_timer_free(tcp_t *tcp, mblk_t *mp); 898 static void tcp_stop_lingering(tcp_t *tcp); 899 static void tcp_close_linger_timeout(void *arg); 900 static void *tcp_stack_init(netstackid_t stackid, netstack_t *ns); 901 static void tcp_stack_shutdown(netstackid_t stackid, void *arg); 902 static void tcp_stack_fini(netstackid_t stackid, void *arg); 903 static void *tcp_g_kstat_init(tcp_g_stat_t *); 904 static void tcp_g_kstat_fini(kstat_t *); 905 static void *tcp_kstat_init(netstackid_t, tcp_stack_t *); 906 static void tcp_kstat_fini(netstackid_t, kstat_t *); 907 static void *tcp_kstat2_init(netstackid_t, tcp_stat_t *); 908 static void tcp_kstat2_fini(netstackid_t, kstat_t *); 909 static int tcp_kstat_update(kstat_t *kp, int rw); 910 void tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp); 911 static int tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 912 tcph_t *tcph, uint_t ipvers, mblk_t *idmp); 913 static int tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha, 914 tcph_t *tcph, mblk_t *idmp); 915 static int tcp_squeue_switch(int); 916 917 static int tcp_open(queue_t *, dev_t *, int, int, cred_t *, boolean_t); 918 static int tcp_openv4(queue_t *, dev_t *, int, int, cred_t *); 919 static int tcp_openv6(queue_t *, dev_t *, int, int, cred_t *); 920 static int tcp_tpi_close(queue_t *, int); 921 static int tcpclose_accept(queue_t *); 922 923 static void tcp_squeue_add(squeue_t *); 924 static boolean_t tcp_zcopy_check(tcp_t *); 925 static void tcp_zcopy_notify(tcp_t *); 926 static mblk_t *tcp_zcopy_disable(tcp_t *, mblk_t *); 927 static mblk_t *tcp_zcopy_backoff(tcp_t *, mblk_t *, int); 928 static void tcp_ire_ill_check(tcp_t *, ire_t *, ill_t *, boolean_t); 929 930 extern void tcp_kssl_input(tcp_t *, mblk_t *); 931 932 void tcp_eager_kill(void *arg, mblk_t *mp, void *arg2); 933 void tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2); 934 935 static int tcp_accept(sock_lower_handle_t, sock_lower_handle_t, 936 sock_upper_handle_t, cred_t *); 937 static int tcp_listen(sock_lower_handle_t, int, cred_t *); 938 static int tcp_post_ip_bind(tcp_t *, mblk_t *, int, cred_t *, pid_t); 939 static int tcp_do_listen(conn_t *, int, cred_t *); 940 static int tcp_do_connect(conn_t *, const struct sockaddr *, socklen_t, 941 cred_t *, pid_t); 942 static int tcp_do_bind(conn_t *, struct sockaddr *, socklen_t, cred_t *, 943 boolean_t); 944 static int tcp_do_unbind(conn_t *); 945 static int tcp_bind_check(conn_t *, struct sockaddr *, socklen_t, cred_t *, 946 boolean_t); 947 948 static void tcp_ulp_newconn(conn_t *, conn_t *, mblk_t *); 949 950 /* 951 * Routines related to the TCP_IOC_ABORT_CONN ioctl command. 952 * 953 * TCP_IOC_ABORT_CONN is a non-transparent ioctl command used for aborting 954 * TCP connections. To invoke this ioctl, a tcp_ioc_abort_conn_t structure 955 * (defined in tcp.h) needs to be filled in and passed into the kernel 956 * via an I_STR ioctl command (see streamio(7I)). The tcp_ioc_abort_conn_t 957 * structure contains the four-tuple of a TCP connection and a range of TCP 958 * states (specified by ac_start and ac_end). The use of wildcard addresses 959 * and ports is allowed. Connections with a matching four tuple and a state 960 * within the specified range will be aborted. The valid states for the 961 * ac_start and ac_end fields are in the range TCPS_SYN_SENT to TCPS_TIME_WAIT, 962 * inclusive. 963 * 964 * An application which has its connection aborted by this ioctl will receive 965 * an error that is dependent on the connection state at the time of the abort. 966 * If the connection state is < TCPS_TIME_WAIT, an application should behave as 967 * though a RST packet has been received. If the connection state is equal to 968 * TCPS_TIME_WAIT, the 2MSL timeout will immediately be canceled by the kernel 969 * and all resources associated with the connection will be freed. 970 */ 971 static mblk_t *tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *, tcp_t *); 972 static void tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *); 973 static void tcp_ioctl_abort_handler(tcp_t *, mblk_t *); 974 static int tcp_ioctl_abort(tcp_ioc_abort_conn_t *, tcp_stack_t *tcps); 975 static void tcp_ioctl_abort_conn(queue_t *, mblk_t *); 976 static int tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *, int, int *, 977 boolean_t, tcp_stack_t *); 978 979 static struct module_info tcp_rinfo = { 980 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER 981 }; 982 983 static struct module_info tcp_winfo = { 984 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16 985 }; 986 987 /* 988 * Entry points for TCP as a device. The normal case which supports 989 * the TCP functionality. 990 * We have separate open functions for the /dev/tcp and /dev/tcp6 devices. 991 */ 992 struct qinit tcp_rinitv4 = { 993 NULL, (pfi_t)tcp_rsrv, tcp_openv4, tcp_tpi_close, NULL, &tcp_rinfo 994 }; 995 996 struct qinit tcp_rinitv6 = { 997 NULL, (pfi_t)tcp_rsrv, tcp_openv6, tcp_tpi_close, NULL, &tcp_rinfo 998 }; 999 1000 struct qinit tcp_winit = { 1001 (pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 1002 }; 1003 1004 /* Initial entry point for TCP in socket mode. */ 1005 struct qinit tcp_sock_winit = { 1006 (pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 1007 }; 1008 1009 /* TCP entry point during fallback */ 1010 struct qinit tcp_fallback_sock_winit = { 1011 (pfi_t)tcp_wput_fallback, NULL, NULL, NULL, NULL, &tcp_winfo 1012 }; 1013 1014 /* 1015 * Entry points for TCP as a acceptor STREAM opened by sockfs when doing 1016 * an accept. Avoid allocating data structures since eager has already 1017 * been created. 1018 */ 1019 struct qinit tcp_acceptor_rinit = { 1020 NULL, (pfi_t)tcp_rsrv, NULL, tcpclose_accept, NULL, &tcp_winfo 1021 }; 1022 1023 struct qinit tcp_acceptor_winit = { 1024 (pfi_t)tcp_tpi_accept, NULL, NULL, NULL, NULL, &tcp_winfo 1025 }; 1026 1027 /* 1028 * Entry points for TCP loopback (read side only) 1029 * The open routine is only used for reopens, thus no need to 1030 * have a separate one for tcp_openv6. 1031 */ 1032 struct qinit tcp_loopback_rinit = { 1033 (pfi_t)0, (pfi_t)tcp_rsrv, tcp_openv4, tcp_tpi_close, (pfi_t)0, 1034 &tcp_rinfo, NULL, tcp_fuse_rrw, tcp_fuse_rinfop, STRUIOT_STANDARD 1035 }; 1036 1037 /* For AF_INET aka /dev/tcp */ 1038 struct streamtab tcpinfov4 = { 1039 &tcp_rinitv4, &tcp_winit 1040 }; 1041 1042 /* For AF_INET6 aka /dev/tcp6 */ 1043 struct streamtab tcpinfov6 = { 1044 &tcp_rinitv6, &tcp_winit 1045 }; 1046 1047 sock_downcalls_t sock_tcp_downcalls; 1048 1049 /* 1050 * Have to ensure that tcp_g_q_close is not done by an 1051 * interrupt thread. 1052 */ 1053 static taskq_t *tcp_taskq; 1054 1055 /* Setable only in /etc/system. Move to ndd? */ 1056 boolean_t tcp_icmp_source_quench = B_FALSE; 1057 1058 /* 1059 * Following assumes TPI alignment requirements stay along 32 bit 1060 * boundaries 1061 */ 1062 #define ROUNDUP32(x) \ 1063 (((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1)) 1064 1065 /* Template for response to info request. */ 1066 static struct T_info_ack tcp_g_t_info_ack = { 1067 T_INFO_ACK, /* PRIM_type */ 1068 0, /* TSDU_size */ 1069 T_INFINITE, /* ETSDU_size */ 1070 T_INVALID, /* CDATA_size */ 1071 T_INVALID, /* DDATA_size */ 1072 sizeof (sin_t), /* ADDR_size */ 1073 0, /* OPT_size - not initialized here */ 1074 TIDUSZ, /* TIDU_size */ 1075 T_COTS_ORD, /* SERV_type */ 1076 TCPS_IDLE, /* CURRENT_state */ 1077 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 1078 }; 1079 1080 static struct T_info_ack tcp_g_t_info_ack_v6 = { 1081 T_INFO_ACK, /* PRIM_type */ 1082 0, /* TSDU_size */ 1083 T_INFINITE, /* ETSDU_size */ 1084 T_INVALID, /* CDATA_size */ 1085 T_INVALID, /* DDATA_size */ 1086 sizeof (sin6_t), /* ADDR_size */ 1087 0, /* OPT_size - not initialized here */ 1088 TIDUSZ, /* TIDU_size */ 1089 T_COTS_ORD, /* SERV_type */ 1090 TCPS_IDLE, /* CURRENT_state */ 1091 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 1092 }; 1093 1094 #define MS 1L 1095 #define SECONDS (1000 * MS) 1096 #define MINUTES (60 * SECONDS) 1097 #define HOURS (60 * MINUTES) 1098 #define DAYS (24 * HOURS) 1099 1100 #define PARAM_MAX (~(uint32_t)0) 1101 1102 /* Max size IP datagram is 64k - 1 */ 1103 #define TCP_MSS_MAX_IPV4 (IP_MAXPACKET - (sizeof (ipha_t) + sizeof (tcph_t))) 1104 #define TCP_MSS_MAX_IPV6 (IP_MAXPACKET - (sizeof (ip6_t) + sizeof (tcph_t))) 1105 /* Max of the above */ 1106 #define TCP_MSS_MAX TCP_MSS_MAX_IPV4 1107 1108 /* Largest TCP port number */ 1109 #define TCP_MAX_PORT (64 * 1024 - 1) 1110 1111 /* 1112 * tcp_wroff_xtra is the extra space in front of TCP/IP header for link 1113 * layer header. It has to be a multiple of 4. 1114 */ 1115 static tcpparam_t lcl_tcp_wroff_xtra_param = { 0, 256, 32, "tcp_wroff_xtra" }; 1116 #define tcps_wroff_xtra tcps_wroff_xtra_param->tcp_param_val 1117 1118 /* 1119 * All of these are alterable, within the min/max values given, at run time. 1120 * Note that the default value of "tcp_time_wait_interval" is four minutes, 1121 * per the TCP spec. 1122 */ 1123 /* BEGIN CSTYLED */ 1124 static tcpparam_t lcl_tcp_param_arr[] = { 1125 /*min max value name */ 1126 { 1*SECONDS, 10*MINUTES, 1*MINUTES, "tcp_time_wait_interval"}, 1127 { 1, PARAM_MAX, 128, "tcp_conn_req_max_q" }, 1128 { 0, PARAM_MAX, 1024, "tcp_conn_req_max_q0" }, 1129 { 1, 1024, 1, "tcp_conn_req_min" }, 1130 { 0*MS, 20*SECONDS, 0*MS, "tcp_conn_grace_period" }, 1131 { 128, (1<<30), 1024*1024, "tcp_cwnd_max" }, 1132 { 0, 10, 0, "tcp_debug" }, 1133 { 1024, (32*1024), 1024, "tcp_smallest_nonpriv_port"}, 1134 { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_cinterval"}, 1135 { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_linterval"}, 1136 { 500*MS, PARAM_MAX, 8*MINUTES, "tcp_ip_abort_interval"}, 1137 { 1*SECONDS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_cinterval"}, 1138 { 500*MS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_interval"}, 1139 { 1, 255, 64, "tcp_ipv4_ttl"}, 1140 { 10*SECONDS, 10*DAYS, 2*HOURS, "tcp_keepalive_interval"}, 1141 { 0, 100, 10, "tcp_maxpsz_multiplier" }, 1142 { 1, TCP_MSS_MAX_IPV4, 536, "tcp_mss_def_ipv4"}, 1143 { 1, TCP_MSS_MAX_IPV4, TCP_MSS_MAX_IPV4, "tcp_mss_max_ipv4"}, 1144 { 1, TCP_MSS_MAX, 108, "tcp_mss_min"}, 1145 { 1, (64*1024)-1, (4*1024)-1, "tcp_naglim_def"}, 1146 { 1*MS, 20*SECONDS, 3*SECONDS, "tcp_rexmit_interval_initial"}, 1147 { 1*MS, 2*HOURS, 60*SECONDS, "tcp_rexmit_interval_max"}, 1148 { 1*MS, 2*HOURS, 400*MS, "tcp_rexmit_interval_min"}, 1149 { 1*MS, 1*MINUTES, 100*MS, "tcp_deferred_ack_interval" }, 1150 { 0, 16, 0, "tcp_snd_lowat_fraction" }, 1151 { 0, 128000, 0, "tcp_sth_rcv_hiwat" }, 1152 { 0, 128000, 0, "tcp_sth_rcv_lowat" }, 1153 { 1, 10000, 3, "tcp_dupack_fast_retransmit" }, 1154 { 0, 1, 0, "tcp_ignore_path_mtu" }, 1155 { 1024, TCP_MAX_PORT, 32*1024, "tcp_smallest_anon_port"}, 1156 { 1024, TCP_MAX_PORT, TCP_MAX_PORT, "tcp_largest_anon_port"}, 1157 { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_HIWATER,"tcp_xmit_hiwat"}, 1158 { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_LOWATER,"tcp_xmit_lowat"}, 1159 { TCP_RECV_LOWATER, (1<<30), TCP_RECV_HIWATER,"tcp_recv_hiwat"}, 1160 { 1, 65536, 4, "tcp_recv_hiwat_minmss"}, 1161 { 1*SECONDS, PARAM_MAX, 675*SECONDS, "tcp_fin_wait_2_flush_interval"}, 1162 { 8192, (1<<30), 1024*1024, "tcp_max_buf"}, 1163 /* 1164 * Question: What default value should I set for tcp_strong_iss? 1165 */ 1166 { 0, 2, 1, "tcp_strong_iss"}, 1167 { 0, 65536, 20, "tcp_rtt_updates"}, 1168 { 0, 1, 1, "tcp_wscale_always"}, 1169 { 0, 1, 0, "tcp_tstamp_always"}, 1170 { 0, 1, 1, "tcp_tstamp_if_wscale"}, 1171 { 0*MS, 2*HOURS, 0*MS, "tcp_rexmit_interval_extra"}, 1172 { 0, 16, 2, "tcp_deferred_acks_max"}, 1173 { 1, 16384, 4, "tcp_slow_start_after_idle"}, 1174 { 1, 4, 4, "tcp_slow_start_initial"}, 1175 { 0, 2, 2, "tcp_sack_permitted"}, 1176 { 0, 1, 1, "tcp_compression_enabled"}, 1177 { 0, IPV6_MAX_HOPS, IPV6_DEFAULT_HOPS, "tcp_ipv6_hoplimit"}, 1178 { 1, TCP_MSS_MAX_IPV6, 1220, "tcp_mss_def_ipv6"}, 1179 { 1, TCP_MSS_MAX_IPV6, TCP_MSS_MAX_IPV6, "tcp_mss_max_ipv6"}, 1180 { 0, 1, 0, "tcp_rev_src_routes"}, 1181 { 10*MS, 500*MS, 50*MS, "tcp_local_dack_interval"}, 1182 { 0, 16, 8, "tcp_local_dacks_max"}, 1183 { 0, 2, 1, "tcp_ecn_permitted"}, 1184 { 0, 1, 1, "tcp_rst_sent_rate_enabled"}, 1185 { 0, PARAM_MAX, 40, "tcp_rst_sent_rate"}, 1186 { 0, 100*MS, 50*MS, "tcp_push_timer_interval"}, 1187 { 0, 1, 0, "tcp_use_smss_as_mss_opt"}, 1188 { 0, PARAM_MAX, 8*MINUTES, "tcp_keepalive_abort_interval"}, 1189 }; 1190 /* END CSTYLED */ 1191 1192 /* 1193 * tcp_mdt_hdr_{head,tail}_min are the leading and trailing spaces of 1194 * each header fragment in the header buffer. Each parameter value has 1195 * to be a multiple of 4 (32-bit aligned). 1196 */ 1197 static tcpparam_t lcl_tcp_mdt_head_param = 1198 { 32, 256, 32, "tcp_mdt_hdr_head_min" }; 1199 static tcpparam_t lcl_tcp_mdt_tail_param = 1200 { 0, 256, 32, "tcp_mdt_hdr_tail_min" }; 1201 #define tcps_mdt_hdr_head_min tcps_mdt_head_param->tcp_param_val 1202 #define tcps_mdt_hdr_tail_min tcps_mdt_tail_param->tcp_param_val 1203 1204 /* 1205 * tcp_mdt_max_pbufs is the upper limit value that tcp uses to figure out 1206 * the maximum number of payload buffers associated per Multidata. 1207 */ 1208 static tcpparam_t lcl_tcp_mdt_max_pbufs_param = 1209 { 1, MULTIDATA_MAX_PBUFS, MULTIDATA_MAX_PBUFS, "tcp_mdt_max_pbufs" }; 1210 #define tcps_mdt_max_pbufs tcps_mdt_max_pbufs_param->tcp_param_val 1211 1212 /* Round up the value to the nearest mss. */ 1213 #define MSS_ROUNDUP(value, mss) ((((value) - 1) / (mss) + 1) * (mss)) 1214 1215 /* 1216 * Set ECN capable transport (ECT) code point in IP header. 1217 * 1218 * Note that there are 2 ECT code points '01' and '10', which are called 1219 * ECT(1) and ECT(0) respectively. Here we follow the original ECT code 1220 * point ECT(0) for TCP as described in RFC 2481. 1221 */ 1222 #define SET_ECT(tcp, iph) \ 1223 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1224 /* We need to clear the code point first. */ \ 1225 ((ipha_t *)(iph))->ipha_type_of_service &= 0xFC; \ 1226 ((ipha_t *)(iph))->ipha_type_of_service |= IPH_ECN_ECT0; \ 1227 } else { \ 1228 ((ip6_t *)(iph))->ip6_vcf &= htonl(0xFFCFFFFF); \ 1229 ((ip6_t *)(iph))->ip6_vcf |= htonl(IPH_ECN_ECT0 << 20); \ 1230 } 1231 1232 /* 1233 * The format argument to pass to tcp_display(). 1234 * DISP_PORT_ONLY means that the returned string has only port info. 1235 * DISP_ADDR_AND_PORT means that the returned string also contains the 1236 * remote and local IP address. 1237 */ 1238 #define DISP_PORT_ONLY 1 1239 #define DISP_ADDR_AND_PORT 2 1240 1241 #define IS_VMLOANED_MBLK(mp) \ 1242 (((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0) 1243 1244 1245 /* Enable or disable b_cont M_MULTIDATA chaining for MDT. */ 1246 boolean_t tcp_mdt_chain = B_TRUE; 1247 1248 /* 1249 * MDT threshold in the form of effective send MSS multiplier; we take 1250 * the MDT path if the amount of unsent data exceeds the threshold value 1251 * (default threshold is 1*SMSS). 1252 */ 1253 uint_t tcp_mdt_smss_threshold = 1; 1254 1255 uint32_t do_tcpzcopy = 1; /* 0: disable, 1: enable, 2: force */ 1256 1257 /* 1258 * Forces all connections to obey the value of the tcps_maxpsz_multiplier 1259 * tunable settable via NDD. Otherwise, the per-connection behavior is 1260 * determined dynamically during tcp_adapt_ire(), which is the default. 1261 */ 1262 boolean_t tcp_static_maxpsz = B_FALSE; 1263 1264 /* Setable in /etc/system */ 1265 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */ 1266 uint32_t tcp_random_anon_port = 1; 1267 1268 /* 1269 * To reach to an eager in Q0 which can be dropped due to an incoming 1270 * new SYN request when Q0 is full, a new doubly linked list is 1271 * introduced. This list allows to select an eager from Q0 in O(1) time. 1272 * This is needed to avoid spending too much time walking through the 1273 * long list of eagers in Q0 when tcp_drop_q0() is called. Each member of 1274 * this new list has to be a member of Q0. 1275 * This list is headed by listener's tcp_t. When the list is empty, 1276 * both the pointers - tcp_eager_next_drop_q0 and tcp_eager_prev_drop_q0, 1277 * of listener's tcp_t point to listener's tcp_t itself. 1278 * 1279 * Given an eager in Q0 and a listener, MAKE_DROPPABLE() puts the eager 1280 * in the list. MAKE_UNDROPPABLE() takes the eager out of the list. 1281 * These macros do not affect the eager's membership to Q0. 1282 */ 1283 1284 1285 #define MAKE_DROPPABLE(listener, eager) \ 1286 if ((eager)->tcp_eager_next_drop_q0 == NULL) { \ 1287 (listener)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0\ 1288 = (eager); \ 1289 (eager)->tcp_eager_prev_drop_q0 = (listener); \ 1290 (eager)->tcp_eager_next_drop_q0 = \ 1291 (listener)->tcp_eager_next_drop_q0; \ 1292 (listener)->tcp_eager_next_drop_q0 = (eager); \ 1293 } 1294 1295 #define MAKE_UNDROPPABLE(eager) \ 1296 if ((eager)->tcp_eager_next_drop_q0 != NULL) { \ 1297 (eager)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0 \ 1298 = (eager)->tcp_eager_prev_drop_q0; \ 1299 (eager)->tcp_eager_prev_drop_q0->tcp_eager_next_drop_q0 \ 1300 = (eager)->tcp_eager_next_drop_q0; \ 1301 (eager)->tcp_eager_prev_drop_q0 = NULL; \ 1302 (eager)->tcp_eager_next_drop_q0 = NULL; \ 1303 } 1304 1305 /* 1306 * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more 1307 * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent 1308 * data, TCP will not respond with an ACK. RFC 793 requires that 1309 * TCP responds with an ACK for such a bogus ACK. By not following 1310 * the RFC, we prevent TCP from getting into an ACK storm if somehow 1311 * an attacker successfully spoofs an acceptable segment to our 1312 * peer; or when our peer is "confused." 1313 */ 1314 uint32_t tcp_drop_ack_unsent_cnt = 10; 1315 1316 /* 1317 * Hook functions to enable cluster networking 1318 * On non-clustered systems these vectors must always be NULL. 1319 */ 1320 1321 void (*cl_inet_listen)(netstackid_t stack_id, uint8_t protocol, 1322 sa_family_t addr_family, uint8_t *laddrp, 1323 in_port_t lport, void *args) = NULL; 1324 void (*cl_inet_unlisten)(netstackid_t stack_id, uint8_t protocol, 1325 sa_family_t addr_family, uint8_t *laddrp, 1326 in_port_t lport, void *args) = NULL; 1327 1328 int (*cl_inet_connect2)(netstackid_t stack_id, uint8_t protocol, 1329 boolean_t is_outgoing, 1330 sa_family_t addr_family, 1331 uint8_t *laddrp, in_port_t lport, 1332 uint8_t *faddrp, in_port_t fport, 1333 void *args) = NULL; 1334 1335 void (*cl_inet_disconnect)(netstackid_t stack_id, uint8_t protocol, 1336 sa_family_t addr_family, uint8_t *laddrp, 1337 in_port_t lport, uint8_t *faddrp, 1338 in_port_t fport, void *args) = NULL; 1339 1340 /* 1341 * The following are defined in ip.c 1342 */ 1343 extern int (*cl_inet_isclusterwide)(netstackid_t stack_id, uint8_t protocol, 1344 sa_family_t addr_family, uint8_t *laddrp, 1345 void *args); 1346 extern uint32_t (*cl_inet_ipident)(netstackid_t stack_id, uint8_t protocol, 1347 sa_family_t addr_family, uint8_t *laddrp, 1348 uint8_t *faddrp, void *args); 1349 1350 1351 /* 1352 * int CL_INET_CONNECT(conn_t *cp, tcp_t *tcp, boolean_t is_outgoing, int err) 1353 */ 1354 #define CL_INET_CONNECT(connp, tcp, is_outgoing, err) { \ 1355 (err) = 0; \ 1356 if (cl_inet_connect2 != NULL) { \ 1357 /* \ 1358 * Running in cluster mode - register active connection \ 1359 * information \ 1360 */ \ 1361 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1362 if ((tcp)->tcp_ipha->ipha_src != 0) { \ 1363 (err) = (*cl_inet_connect2)( \ 1364 (connp)->conn_netstack->netstack_stackid,\ 1365 IPPROTO_TCP, is_outgoing, AF_INET, \ 1366 (uint8_t *)(&((tcp)->tcp_ipha->ipha_src)),\ 1367 (in_port_t)(tcp)->tcp_lport, \ 1368 (uint8_t *)(&((tcp)->tcp_ipha->ipha_dst)),\ 1369 (in_port_t)(tcp)->tcp_fport, NULL); \ 1370 } \ 1371 } else { \ 1372 if (!IN6_IS_ADDR_UNSPECIFIED( \ 1373 &(tcp)->tcp_ip6h->ip6_src)) { \ 1374 (err) = (*cl_inet_connect2)( \ 1375 (connp)->conn_netstack->netstack_stackid,\ 1376 IPPROTO_TCP, is_outgoing, AF_INET6, \ 1377 (uint8_t *)(&((tcp)->tcp_ip6h->ip6_src)),\ 1378 (in_port_t)(tcp)->tcp_lport, \ 1379 (uint8_t *)(&((tcp)->tcp_ip6h->ip6_dst)),\ 1380 (in_port_t)(tcp)->tcp_fport, NULL); \ 1381 } \ 1382 } \ 1383 } \ 1384 } 1385 1386 #define CL_INET_DISCONNECT(connp, tcp) { \ 1387 if (cl_inet_disconnect != NULL) { \ 1388 /* \ 1389 * Running in cluster mode - deregister active \ 1390 * connection information \ 1391 */ \ 1392 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1393 if ((tcp)->tcp_ip_src != 0) { \ 1394 (*cl_inet_disconnect)( \ 1395 (connp)->conn_netstack->netstack_stackid,\ 1396 IPPROTO_TCP, AF_INET, \ 1397 (uint8_t *)(&((tcp)->tcp_ip_src)), \ 1398 (in_port_t)(tcp)->tcp_lport, \ 1399 (uint8_t *)(&((tcp)->tcp_ipha->ipha_dst)),\ 1400 (in_port_t)(tcp)->tcp_fport, NULL); \ 1401 } \ 1402 } else { \ 1403 if (!IN6_IS_ADDR_UNSPECIFIED( \ 1404 &(tcp)->tcp_ip_src_v6)) { \ 1405 (*cl_inet_disconnect)( \ 1406 (connp)->conn_netstack->netstack_stackid,\ 1407 IPPROTO_TCP, AF_INET6, \ 1408 (uint8_t *)(&((tcp)->tcp_ip_src_v6)),\ 1409 (in_port_t)(tcp)->tcp_lport, \ 1410 (uint8_t *)(&((tcp)->tcp_ip6h->ip6_dst)),\ 1411 (in_port_t)(tcp)->tcp_fport, NULL); \ 1412 } \ 1413 } \ 1414 } \ 1415 } 1416 1417 /* 1418 * Cluster networking hook for traversing current connection list. 1419 * This routine is used to extract the current list of live connections 1420 * which must continue to to be dispatched to this node. 1421 */ 1422 int cl_tcp_walk_list(netstackid_t stack_id, 1423 int (*callback)(cl_tcp_info_t *, void *), void *arg); 1424 1425 static int cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *), 1426 void *arg, tcp_stack_t *tcps); 1427 1428 #define DTRACE_IP_FASTPATH(mp, iph, ill, ipha, ip6h) \ 1429 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, void_ip_t *, \ 1430 iph, __dtrace_ipsr_ill_t *, ill, ipha_t *, ipha, \ 1431 ip6_t *, ip6h, int, 0); 1432 1433 /* 1434 * Figure out the value of window scale opton. Note that the rwnd is 1435 * ASSUMED to be rounded up to the nearest MSS before the calculation. 1436 * We cannot find the scale value and then do a round up of tcp_rwnd 1437 * because the scale value may not be correct after that. 1438 * 1439 * Set the compiler flag to make this function inline. 1440 */ 1441 static void 1442 tcp_set_ws_value(tcp_t *tcp) 1443 { 1444 int i; 1445 uint32_t rwnd = tcp->tcp_rwnd; 1446 1447 for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT; 1448 i++, rwnd >>= 1) 1449 ; 1450 tcp->tcp_rcv_ws = i; 1451 } 1452 1453 /* 1454 * Remove a connection from the list of detached TIME_WAIT connections. 1455 * It returns B_FALSE if it can't remove the connection from the list 1456 * as the connection has already been removed from the list due to an 1457 * earlier call to tcp_time_wait_remove(); otherwise it returns B_TRUE. 1458 */ 1459 static boolean_t 1460 tcp_time_wait_remove(tcp_t *tcp, tcp_squeue_priv_t *tcp_time_wait) 1461 { 1462 boolean_t locked = B_FALSE; 1463 1464 if (tcp_time_wait == NULL) { 1465 tcp_time_wait = *((tcp_squeue_priv_t **) 1466 squeue_getprivate(tcp->tcp_connp->conn_sqp, SQPRIVATE_TCP)); 1467 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1468 locked = B_TRUE; 1469 } else { 1470 ASSERT(MUTEX_HELD(&tcp_time_wait->tcp_time_wait_lock)); 1471 } 1472 1473 if (tcp->tcp_time_wait_expire == 0) { 1474 ASSERT(tcp->tcp_time_wait_next == NULL); 1475 ASSERT(tcp->tcp_time_wait_prev == NULL); 1476 if (locked) 1477 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1478 return (B_FALSE); 1479 } 1480 ASSERT(TCP_IS_DETACHED(tcp)); 1481 ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); 1482 1483 if (tcp == tcp_time_wait->tcp_time_wait_head) { 1484 ASSERT(tcp->tcp_time_wait_prev == NULL); 1485 tcp_time_wait->tcp_time_wait_head = tcp->tcp_time_wait_next; 1486 if (tcp_time_wait->tcp_time_wait_head != NULL) { 1487 tcp_time_wait->tcp_time_wait_head->tcp_time_wait_prev = 1488 NULL; 1489 } else { 1490 tcp_time_wait->tcp_time_wait_tail = NULL; 1491 } 1492 } else if (tcp == tcp_time_wait->tcp_time_wait_tail) { 1493 ASSERT(tcp != tcp_time_wait->tcp_time_wait_head); 1494 ASSERT(tcp->tcp_time_wait_next == NULL); 1495 tcp_time_wait->tcp_time_wait_tail = tcp->tcp_time_wait_prev; 1496 ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); 1497 tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = NULL; 1498 } else { 1499 ASSERT(tcp->tcp_time_wait_prev->tcp_time_wait_next == tcp); 1500 ASSERT(tcp->tcp_time_wait_next->tcp_time_wait_prev == tcp); 1501 tcp->tcp_time_wait_prev->tcp_time_wait_next = 1502 tcp->tcp_time_wait_next; 1503 tcp->tcp_time_wait_next->tcp_time_wait_prev = 1504 tcp->tcp_time_wait_prev; 1505 } 1506 tcp->tcp_time_wait_next = NULL; 1507 tcp->tcp_time_wait_prev = NULL; 1508 tcp->tcp_time_wait_expire = 0; 1509 1510 if (locked) 1511 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1512 return (B_TRUE); 1513 } 1514 1515 /* 1516 * Add a connection to the list of detached TIME_WAIT connections 1517 * and set its time to expire. 1518 */ 1519 static void 1520 tcp_time_wait_append(tcp_t *tcp) 1521 { 1522 tcp_stack_t *tcps = tcp->tcp_tcps; 1523 tcp_squeue_priv_t *tcp_time_wait = 1524 *((tcp_squeue_priv_t **)squeue_getprivate(tcp->tcp_connp->conn_sqp, 1525 SQPRIVATE_TCP)); 1526 1527 tcp_timers_stop(tcp); 1528 1529 /* Freed above */ 1530 ASSERT(tcp->tcp_timer_tid == 0); 1531 ASSERT(tcp->tcp_ack_tid == 0); 1532 1533 /* must have happened at the time of detaching the tcp */ 1534 ASSERT(tcp->tcp_ptpahn == NULL); 1535 ASSERT(tcp->tcp_flow_stopped == 0); 1536 ASSERT(tcp->tcp_time_wait_next == NULL); 1537 ASSERT(tcp->tcp_time_wait_prev == NULL); 1538 ASSERT(tcp->tcp_time_wait_expire == NULL); 1539 ASSERT(tcp->tcp_listener == NULL); 1540 1541 tcp->tcp_time_wait_expire = ddi_get_lbolt(); 1542 /* 1543 * The value computed below in tcp->tcp_time_wait_expire may 1544 * appear negative or wrap around. That is ok since our 1545 * interest is only in the difference between the current lbolt 1546 * value and tcp->tcp_time_wait_expire. But the value should not 1547 * be zero, since it means the tcp is not in the TIME_WAIT list. 1548 * The corresponding comparison in tcp_time_wait_collector() uses 1549 * modular arithmetic. 1550 */ 1551 tcp->tcp_time_wait_expire += 1552 drv_usectohz(tcps->tcps_time_wait_interval * 1000); 1553 if (tcp->tcp_time_wait_expire == 0) 1554 tcp->tcp_time_wait_expire = 1; 1555 1556 ASSERT(TCP_IS_DETACHED(tcp)); 1557 ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); 1558 ASSERT(tcp->tcp_time_wait_next == NULL); 1559 ASSERT(tcp->tcp_time_wait_prev == NULL); 1560 TCP_DBGSTAT(tcps, tcp_time_wait); 1561 1562 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1563 if (tcp_time_wait->tcp_time_wait_head == NULL) { 1564 ASSERT(tcp_time_wait->tcp_time_wait_tail == NULL); 1565 tcp_time_wait->tcp_time_wait_head = tcp; 1566 } else { 1567 ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); 1568 ASSERT(tcp_time_wait->tcp_time_wait_tail->tcp_state == 1569 TCPS_TIME_WAIT); 1570 tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = tcp; 1571 tcp->tcp_time_wait_prev = tcp_time_wait->tcp_time_wait_tail; 1572 } 1573 tcp_time_wait->tcp_time_wait_tail = tcp; 1574 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1575 } 1576 1577 /* ARGSUSED */ 1578 void 1579 tcp_timewait_output(void *arg, mblk_t *mp, void *arg2) 1580 { 1581 conn_t *connp = (conn_t *)arg; 1582 tcp_t *tcp = connp->conn_tcp; 1583 tcp_stack_t *tcps = tcp->tcp_tcps; 1584 1585 ASSERT(tcp != NULL); 1586 if (tcp->tcp_state == TCPS_CLOSED) { 1587 return; 1588 } 1589 1590 ASSERT((tcp->tcp_family == AF_INET && 1591 tcp->tcp_ipversion == IPV4_VERSION) || 1592 (tcp->tcp_family == AF_INET6 && 1593 (tcp->tcp_ipversion == IPV4_VERSION || 1594 tcp->tcp_ipversion == IPV6_VERSION))); 1595 ASSERT(!tcp->tcp_listener); 1596 1597 TCP_STAT(tcps, tcp_time_wait_reap); 1598 ASSERT(TCP_IS_DETACHED(tcp)); 1599 1600 /* 1601 * Because they have no upstream client to rebind or tcp_close() 1602 * them later, we axe the connection here and now. 1603 */ 1604 tcp_close_detached(tcp); 1605 } 1606 1607 /* 1608 * Remove cached/latched IPsec references. 1609 */ 1610 void 1611 tcp_ipsec_cleanup(tcp_t *tcp) 1612 { 1613 conn_t *connp = tcp->tcp_connp; 1614 1615 ASSERT(connp->conn_flags & IPCL_TCPCONN); 1616 1617 if (connp->conn_latch != NULL) { 1618 IPLATCH_REFRELE(connp->conn_latch, 1619 connp->conn_netstack); 1620 connp->conn_latch = NULL; 1621 } 1622 if (connp->conn_policy != NULL) { 1623 IPPH_REFRELE(connp->conn_policy, connp->conn_netstack); 1624 connp->conn_policy = NULL; 1625 } 1626 } 1627 1628 /* 1629 * Cleaup before placing on free list. 1630 * Disassociate from the netstack/tcp_stack_t since the freelist 1631 * is per squeue and not per netstack. 1632 */ 1633 void 1634 tcp_cleanup(tcp_t *tcp) 1635 { 1636 mblk_t *mp; 1637 char *tcp_iphc; 1638 int tcp_iphc_len; 1639 int tcp_hdr_grown; 1640 tcp_sack_info_t *tcp_sack_info; 1641 conn_t *connp = tcp->tcp_connp; 1642 tcp_stack_t *tcps = tcp->tcp_tcps; 1643 netstack_t *ns = tcps->tcps_netstack; 1644 mblk_t *tcp_rsrv_mp; 1645 1646 tcp_bind_hash_remove(tcp); 1647 1648 /* Cleanup that which needs the netstack first */ 1649 tcp_ipsec_cleanup(tcp); 1650 1651 tcp_free(tcp); 1652 1653 /* Release any SSL context */ 1654 if (tcp->tcp_kssl_ent != NULL) { 1655 kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); 1656 tcp->tcp_kssl_ent = NULL; 1657 } 1658 1659 if (tcp->tcp_kssl_ctx != NULL) { 1660 kssl_release_ctx(tcp->tcp_kssl_ctx); 1661 tcp->tcp_kssl_ctx = NULL; 1662 } 1663 tcp->tcp_kssl_pending = B_FALSE; 1664 1665 conn_delete_ire(connp, NULL); 1666 1667 /* 1668 * Since we will bzero the entire structure, we need to 1669 * remove it and reinsert it in global hash list. We 1670 * know the walkers can't get to this conn because we 1671 * had set CONDEMNED flag earlier and checked reference 1672 * under conn_lock so walker won't pick it and when we 1673 * go the ipcl_globalhash_remove() below, no walker 1674 * can get to it. 1675 */ 1676 ipcl_globalhash_remove(connp); 1677 1678 /* 1679 * Now it is safe to decrement the reference counts. 1680 * This might be the last reference on the netstack and TCPS 1681 * in which case it will cause the tcp_g_q_close and 1682 * the freeing of the IP Instance. 1683 */ 1684 connp->conn_netstack = NULL; 1685 netstack_rele(ns); 1686 ASSERT(tcps != NULL); 1687 tcp->tcp_tcps = NULL; 1688 TCPS_REFRELE(tcps); 1689 1690 /* Save some state */ 1691 mp = tcp->tcp_timercache; 1692 1693 tcp_sack_info = tcp->tcp_sack_info; 1694 tcp_iphc = tcp->tcp_iphc; 1695 tcp_iphc_len = tcp->tcp_iphc_len; 1696 tcp_hdr_grown = tcp->tcp_hdr_grown; 1697 tcp_rsrv_mp = tcp->tcp_rsrv_mp; 1698 1699 if (connp->conn_cred != NULL) { 1700 crfree(connp->conn_cred); 1701 connp->conn_cred = NULL; 1702 } 1703 if (connp->conn_peercred != NULL) { 1704 crfree(connp->conn_peercred); 1705 connp->conn_peercred = NULL; 1706 } 1707 ipcl_conn_cleanup(connp); 1708 connp->conn_flags = IPCL_TCPCONN; 1709 bzero(tcp, sizeof (tcp_t)); 1710 1711 /* restore the state */ 1712 tcp->tcp_timercache = mp; 1713 1714 tcp->tcp_sack_info = tcp_sack_info; 1715 tcp->tcp_iphc = tcp_iphc; 1716 tcp->tcp_iphc_len = tcp_iphc_len; 1717 tcp->tcp_hdr_grown = tcp_hdr_grown; 1718 tcp->tcp_rsrv_mp = tcp_rsrv_mp; 1719 1720 tcp->tcp_connp = connp; 1721 1722 ASSERT(connp->conn_tcp == tcp); 1723 ASSERT(connp->conn_flags & IPCL_TCPCONN); 1724 connp->conn_state_flags = CONN_INCIPIENT; 1725 ASSERT(connp->conn_ulp == IPPROTO_TCP); 1726 ASSERT(connp->conn_ref == 1); 1727 } 1728 1729 /* 1730 * Blows away all tcps whose TIME_WAIT has expired. List traversal 1731 * is done forwards from the head. 1732 * This walks all stack instances since 1733 * tcp_time_wait remains global across all stacks. 1734 */ 1735 /* ARGSUSED */ 1736 void 1737 tcp_time_wait_collector(void *arg) 1738 { 1739 tcp_t *tcp; 1740 clock_t now; 1741 mblk_t *mp; 1742 conn_t *connp; 1743 kmutex_t *lock; 1744 boolean_t removed; 1745 1746 squeue_t *sqp = (squeue_t *)arg; 1747 tcp_squeue_priv_t *tcp_time_wait = 1748 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 1749 1750 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1751 tcp_time_wait->tcp_time_wait_tid = 0; 1752 1753 if (tcp_time_wait->tcp_free_list != NULL && 1754 tcp_time_wait->tcp_free_list->tcp_in_free_list == B_TRUE) { 1755 TCP_G_STAT(tcp_freelist_cleanup); 1756 while ((tcp = tcp_time_wait->tcp_free_list) != NULL) { 1757 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 1758 tcp->tcp_time_wait_next = NULL; 1759 tcp_time_wait->tcp_free_list_cnt--; 1760 ASSERT(tcp->tcp_tcps == NULL); 1761 CONN_DEC_REF(tcp->tcp_connp); 1762 } 1763 ASSERT(tcp_time_wait->tcp_free_list_cnt == 0); 1764 } 1765 1766 /* 1767 * In order to reap time waits reliably, we should use a 1768 * source of time that is not adjustable by the user -- hence 1769 * the call to ddi_get_lbolt(). 1770 */ 1771 now = ddi_get_lbolt(); 1772 while ((tcp = tcp_time_wait->tcp_time_wait_head) != NULL) { 1773 /* 1774 * Compare times using modular arithmetic, since 1775 * lbolt can wrapover. 1776 */ 1777 if ((now - tcp->tcp_time_wait_expire) < 0) { 1778 break; 1779 } 1780 1781 removed = tcp_time_wait_remove(tcp, tcp_time_wait); 1782 ASSERT(removed); 1783 1784 connp = tcp->tcp_connp; 1785 ASSERT(connp->conn_fanout != NULL); 1786 lock = &connp->conn_fanout->connf_lock; 1787 /* 1788 * This is essentially a TW reclaim fast path optimization for 1789 * performance where the timewait collector checks under the 1790 * fanout lock (so that no one else can get access to the 1791 * conn_t) that the refcnt is 2 i.e. one for TCP and one for 1792 * the classifier hash list. If ref count is indeed 2, we can 1793 * just remove the conn under the fanout lock and avoid 1794 * cleaning up the conn under the squeue, provided that 1795 * clustering callbacks are not enabled. If clustering is 1796 * enabled, we need to make the clustering callback before 1797 * setting the CONDEMNED flag and after dropping all locks and 1798 * so we forego this optimization and fall back to the slow 1799 * path. Also please see the comments in tcp_closei_local 1800 * regarding the refcnt logic. 1801 * 1802 * Since we are holding the tcp_time_wait_lock, its better 1803 * not to block on the fanout_lock because other connections 1804 * can't add themselves to time_wait list. So we do a 1805 * tryenter instead of mutex_enter. 1806 */ 1807 if (mutex_tryenter(lock)) { 1808 mutex_enter(&connp->conn_lock); 1809 if ((connp->conn_ref == 2) && 1810 (cl_inet_disconnect == NULL)) { 1811 ipcl_hash_remove_locked(connp, 1812 connp->conn_fanout); 1813 /* 1814 * Set the CONDEMNED flag now itself so that 1815 * the refcnt cannot increase due to any 1816 * walker. But we have still not cleaned up 1817 * conn_ire_cache. This is still ok since 1818 * we are going to clean it up in tcp_cleanup 1819 * immediately and any interface unplumb 1820 * thread will wait till the ire is blown away 1821 */ 1822 connp->conn_state_flags |= CONN_CONDEMNED; 1823 mutex_exit(lock); 1824 mutex_exit(&connp->conn_lock); 1825 if (tcp_time_wait->tcp_free_list_cnt < 1826 tcp_free_list_max_cnt) { 1827 /* Add to head of tcp_free_list */ 1828 mutex_exit( 1829 &tcp_time_wait->tcp_time_wait_lock); 1830 tcp_cleanup(tcp); 1831 ASSERT(connp->conn_latch == NULL); 1832 ASSERT(connp->conn_policy == NULL); 1833 ASSERT(tcp->tcp_tcps == NULL); 1834 ASSERT(connp->conn_netstack == NULL); 1835 1836 mutex_enter( 1837 &tcp_time_wait->tcp_time_wait_lock); 1838 tcp->tcp_time_wait_next = 1839 tcp_time_wait->tcp_free_list; 1840 tcp_time_wait->tcp_free_list = tcp; 1841 tcp_time_wait->tcp_free_list_cnt++; 1842 continue; 1843 } else { 1844 /* Do not add to tcp_free_list */ 1845 mutex_exit( 1846 &tcp_time_wait->tcp_time_wait_lock); 1847 tcp_bind_hash_remove(tcp); 1848 conn_delete_ire(tcp->tcp_connp, NULL); 1849 tcp_ipsec_cleanup(tcp); 1850 CONN_DEC_REF(tcp->tcp_connp); 1851 } 1852 } else { 1853 CONN_INC_REF_LOCKED(connp); 1854 mutex_exit(lock); 1855 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1856 mutex_exit(&connp->conn_lock); 1857 /* 1858 * We can reuse the closemp here since conn has 1859 * detached (otherwise we wouldn't even be in 1860 * time_wait list). tcp_closemp_used can safely 1861 * be changed without taking a lock as no other 1862 * thread can concurrently access it at this 1863 * point in the connection lifecycle. 1864 */ 1865 1866 if (tcp->tcp_closemp.b_prev == NULL) 1867 tcp->tcp_closemp_used = B_TRUE; 1868 else 1869 cmn_err(CE_PANIC, 1870 "tcp_timewait_collector: " 1871 "concurrent use of tcp_closemp: " 1872 "connp %p tcp %p\n", (void *)connp, 1873 (void *)tcp); 1874 1875 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 1876 mp = &tcp->tcp_closemp; 1877 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 1878 tcp_timewait_output, connp, 1879 SQ_FILL, SQTAG_TCP_TIMEWAIT); 1880 } 1881 } else { 1882 mutex_enter(&connp->conn_lock); 1883 CONN_INC_REF_LOCKED(connp); 1884 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1885 mutex_exit(&connp->conn_lock); 1886 /* 1887 * We can reuse the closemp here since conn has 1888 * detached (otherwise we wouldn't even be in 1889 * time_wait list). tcp_closemp_used can safely 1890 * be changed without taking a lock as no other 1891 * thread can concurrently access it at this 1892 * point in the connection lifecycle. 1893 */ 1894 1895 if (tcp->tcp_closemp.b_prev == NULL) 1896 tcp->tcp_closemp_used = B_TRUE; 1897 else 1898 cmn_err(CE_PANIC, "tcp_timewait_collector: " 1899 "concurrent use of tcp_closemp: " 1900 "connp %p tcp %p\n", (void *)connp, 1901 (void *)tcp); 1902 1903 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 1904 mp = &tcp->tcp_closemp; 1905 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 1906 tcp_timewait_output, connp, 1907 SQ_FILL, SQTAG_TCP_TIMEWAIT); 1908 } 1909 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1910 } 1911 1912 if (tcp_time_wait->tcp_free_list != NULL) 1913 tcp_time_wait->tcp_free_list->tcp_in_free_list = B_TRUE; 1914 1915 tcp_time_wait->tcp_time_wait_tid = 1916 timeout_generic(CALLOUT_NORMAL, tcp_time_wait_collector, sqp, 1917 TICK_TO_NSEC(TCP_TIME_WAIT_DELAY), CALLOUT_TCP_RESOLUTION, 1918 CALLOUT_FLAG_ROUNDUP); 1919 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1920 } 1921 1922 /* 1923 * Reply to a clients T_CONN_RES TPI message. This function 1924 * is used only for TLI/XTI listener. Sockfs sends T_CONN_RES 1925 * on the acceptor STREAM and processed in tcp_wput_accept(). 1926 * Read the block comment on top of tcp_conn_request(). 1927 */ 1928 static void 1929 tcp_tli_accept(tcp_t *listener, mblk_t *mp) 1930 { 1931 tcp_t *acceptor; 1932 tcp_t *eager; 1933 tcp_t *tcp; 1934 struct T_conn_res *tcr; 1935 t_uscalar_t acceptor_id; 1936 t_scalar_t seqnum; 1937 mblk_t *opt_mp = NULL; /* T_OPTMGMT_REQ messages */ 1938 struct tcp_options *tcpopt; 1939 mblk_t *ok_mp; 1940 mblk_t *mp1; 1941 tcp_stack_t *tcps = listener->tcp_tcps; 1942 1943 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { 1944 tcp_err_ack(listener, mp, TPROTO, 0); 1945 return; 1946 } 1947 tcr = (struct T_conn_res *)mp->b_rptr; 1948 1949 /* 1950 * Under ILP32 the stream head points tcr->ACCEPTOR_id at the 1951 * read side queue of the streams device underneath us i.e. the 1952 * read side queue of 'ip'. Since we can't deference QUEUE_ptr we 1953 * look it up in the queue_hash. Under LP64 it sends down the 1954 * minor_t of the accepting endpoint. 1955 * 1956 * Once the acceptor/eager are modified (in tcp_accept_swap) the 1957 * fanout hash lock is held. 1958 * This prevents any thread from entering the acceptor queue from 1959 * below (since it has not been hard bound yet i.e. any inbound 1960 * packets will arrive on the listener or default tcp queue and 1961 * go through tcp_lookup). 1962 * The CONN_INC_REF will prevent the acceptor from closing. 1963 * 1964 * XXX It is still possible for a tli application to send down data 1965 * on the accepting stream while another thread calls t_accept. 1966 * This should not be a problem for well-behaved applications since 1967 * the T_OK_ACK is sent after the queue swapping is completed. 1968 * 1969 * If the accepting fd is the same as the listening fd, avoid 1970 * queue hash lookup since that will return an eager listener in a 1971 * already established state. 1972 */ 1973 acceptor_id = tcr->ACCEPTOR_id; 1974 mutex_enter(&listener->tcp_eager_lock); 1975 if (listener->tcp_acceptor_id == acceptor_id) { 1976 eager = listener->tcp_eager_next_q; 1977 /* only count how many T_CONN_INDs so don't count q0 */ 1978 if ((listener->tcp_conn_req_cnt_q != 1) || 1979 (eager->tcp_conn_req_seqnum != tcr->SEQ_number)) { 1980 mutex_exit(&listener->tcp_eager_lock); 1981 tcp_err_ack(listener, mp, TBADF, 0); 1982 return; 1983 } 1984 if (listener->tcp_conn_req_cnt_q0 != 0) { 1985 /* Throw away all the eagers on q0. */ 1986 tcp_eager_cleanup(listener, 1); 1987 } 1988 if (listener->tcp_syn_defense) { 1989 listener->tcp_syn_defense = B_FALSE; 1990 if (listener->tcp_ip_addr_cache != NULL) { 1991 kmem_free(listener->tcp_ip_addr_cache, 1992 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 1993 listener->tcp_ip_addr_cache = NULL; 1994 } 1995 } 1996 /* 1997 * Transfer tcp_conn_req_max to the eager so that when 1998 * a disconnect occurs we can revert the endpoint to the 1999 * listen state. 2000 */ 2001 eager->tcp_conn_req_max = listener->tcp_conn_req_max; 2002 ASSERT(listener->tcp_conn_req_cnt_q0 == 0); 2003 /* 2004 * Get a reference on the acceptor just like the 2005 * tcp_acceptor_hash_lookup below. 2006 */ 2007 acceptor = listener; 2008 CONN_INC_REF(acceptor->tcp_connp); 2009 } else { 2010 acceptor = tcp_acceptor_hash_lookup(acceptor_id, tcps); 2011 if (acceptor == NULL) { 2012 if (listener->tcp_debug) { 2013 (void) strlog(TCP_MOD_ID, 0, 1, 2014 SL_ERROR|SL_TRACE, 2015 "tcp_accept: did not find acceptor 0x%x\n", 2016 acceptor_id); 2017 } 2018 mutex_exit(&listener->tcp_eager_lock); 2019 tcp_err_ack(listener, mp, TPROVMISMATCH, 0); 2020 return; 2021 } 2022 /* 2023 * Verify acceptor state. The acceptable states for an acceptor 2024 * include TCPS_IDLE and TCPS_BOUND. 2025 */ 2026 switch (acceptor->tcp_state) { 2027 case TCPS_IDLE: 2028 /* FALLTHRU */ 2029 case TCPS_BOUND: 2030 break; 2031 default: 2032 CONN_DEC_REF(acceptor->tcp_connp); 2033 mutex_exit(&listener->tcp_eager_lock); 2034 tcp_err_ack(listener, mp, TOUTSTATE, 0); 2035 return; 2036 } 2037 } 2038 2039 /* The listener must be in TCPS_LISTEN */ 2040 if (listener->tcp_state != TCPS_LISTEN) { 2041 CONN_DEC_REF(acceptor->tcp_connp); 2042 mutex_exit(&listener->tcp_eager_lock); 2043 tcp_err_ack(listener, mp, TOUTSTATE, 0); 2044 return; 2045 } 2046 2047 /* 2048 * Rendezvous with an eager connection request packet hanging off 2049 * 'tcp' that has the 'seqnum' tag. We tagged the detached open 2050 * tcp structure when the connection packet arrived in 2051 * tcp_conn_request(). 2052 */ 2053 seqnum = tcr->SEQ_number; 2054 eager = listener; 2055 do { 2056 eager = eager->tcp_eager_next_q; 2057 if (eager == NULL) { 2058 CONN_DEC_REF(acceptor->tcp_connp); 2059 mutex_exit(&listener->tcp_eager_lock); 2060 tcp_err_ack(listener, mp, TBADSEQ, 0); 2061 return; 2062 } 2063 } while (eager->tcp_conn_req_seqnum != seqnum); 2064 mutex_exit(&listener->tcp_eager_lock); 2065 2066 /* 2067 * At this point, both acceptor and listener have 2 ref 2068 * that they begin with. Acceptor has one additional ref 2069 * we placed in lookup while listener has 3 additional 2070 * ref for being behind the squeue (tcp_accept() is 2071 * done on listener's squeue); being in classifier hash; 2072 * and eager's ref on listener. 2073 */ 2074 ASSERT(listener->tcp_connp->conn_ref >= 5); 2075 ASSERT(acceptor->tcp_connp->conn_ref >= 3); 2076 2077 /* 2078 * The eager at this point is set in its own squeue and 2079 * could easily have been killed (tcp_accept_finish will 2080 * deal with that) because of a TH_RST so we can only 2081 * ASSERT for a single ref. 2082 */ 2083 ASSERT(eager->tcp_connp->conn_ref >= 1); 2084 2085 /* Pre allocate the stroptions mblk also */ 2086 opt_mp = allocb(MAX(sizeof (struct tcp_options), 2087 sizeof (struct T_conn_res)), BPRI_HI); 2088 if (opt_mp == NULL) { 2089 CONN_DEC_REF(acceptor->tcp_connp); 2090 CONN_DEC_REF(eager->tcp_connp); 2091 tcp_err_ack(listener, mp, TSYSERR, ENOMEM); 2092 return; 2093 } 2094 DB_TYPE(opt_mp) = M_SETOPTS; 2095 opt_mp->b_wptr += sizeof (struct tcp_options); 2096 tcpopt = (struct tcp_options *)opt_mp->b_rptr; 2097 tcpopt->to_flags = 0; 2098 2099 /* 2100 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO 2101 * from listener to acceptor. 2102 */ 2103 if (listener->tcp_bound_if != 0) { 2104 tcpopt->to_flags |= TCPOPT_BOUNDIF; 2105 tcpopt->to_boundif = listener->tcp_bound_if; 2106 } 2107 if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) { 2108 tcpopt->to_flags |= TCPOPT_RECVPKTINFO; 2109 } 2110 2111 /* Re-use mp1 to hold a copy of mp, in case reallocb fails */ 2112 if ((mp1 = copymsg(mp)) == NULL) { 2113 CONN_DEC_REF(acceptor->tcp_connp); 2114 CONN_DEC_REF(eager->tcp_connp); 2115 freemsg(opt_mp); 2116 tcp_err_ack(listener, mp, TSYSERR, ENOMEM); 2117 return; 2118 } 2119 2120 tcr = (struct T_conn_res *)mp1->b_rptr; 2121 2122 /* 2123 * This is an expanded version of mi_tpi_ok_ack_alloc() 2124 * which allocates a larger mblk and appends the new 2125 * local address to the ok_ack. The address is copied by 2126 * soaccept() for getsockname(). 2127 */ 2128 { 2129 int extra; 2130 2131 extra = (eager->tcp_family == AF_INET) ? 2132 sizeof (sin_t) : sizeof (sin6_t); 2133 2134 /* 2135 * Try to re-use mp, if possible. Otherwise, allocate 2136 * an mblk and return it as ok_mp. In any case, mp 2137 * is no longer usable upon return. 2138 */ 2139 if ((ok_mp = mi_tpi_ok_ack_alloc_extra(mp, extra)) == NULL) { 2140 CONN_DEC_REF(acceptor->tcp_connp); 2141 CONN_DEC_REF(eager->tcp_connp); 2142 freemsg(opt_mp); 2143 /* Original mp has been freed by now, so use mp1 */ 2144 tcp_err_ack(listener, mp1, TSYSERR, ENOMEM); 2145 return; 2146 } 2147 2148 mp = NULL; /* We should never use mp after this point */ 2149 2150 switch (extra) { 2151 case sizeof (sin_t): { 2152 sin_t *sin = (sin_t *)ok_mp->b_wptr; 2153 2154 ok_mp->b_wptr += extra; 2155 sin->sin_family = AF_INET; 2156 sin->sin_port = eager->tcp_lport; 2157 sin->sin_addr.s_addr = 2158 eager->tcp_ipha->ipha_src; 2159 break; 2160 } 2161 case sizeof (sin6_t): { 2162 sin6_t *sin6 = (sin6_t *)ok_mp->b_wptr; 2163 2164 ok_mp->b_wptr += extra; 2165 sin6->sin6_family = AF_INET6; 2166 sin6->sin6_port = eager->tcp_lport; 2167 if (eager->tcp_ipversion == IPV4_VERSION) { 2168 sin6->sin6_flowinfo = 0; 2169 IN6_IPADDR_TO_V4MAPPED( 2170 eager->tcp_ipha->ipha_src, 2171 &sin6->sin6_addr); 2172 } else { 2173 ASSERT(eager->tcp_ip6h != NULL); 2174 sin6->sin6_flowinfo = 2175 eager->tcp_ip6h->ip6_vcf & 2176 ~IPV6_VERS_AND_FLOW_MASK; 2177 sin6->sin6_addr = 2178 eager->tcp_ip6h->ip6_src; 2179 } 2180 sin6->sin6_scope_id = 0; 2181 sin6->__sin6_src_id = 0; 2182 break; 2183 } 2184 default: 2185 break; 2186 } 2187 ASSERT(ok_mp->b_wptr <= ok_mp->b_datap->db_lim); 2188 } 2189 2190 /* 2191 * If there are no options we know that the T_CONN_RES will 2192 * succeed. However, we can't send the T_OK_ACK upstream until 2193 * the tcp_accept_swap is done since it would be dangerous to 2194 * let the application start using the new fd prior to the swap. 2195 */ 2196 tcp_accept_swap(listener, acceptor, eager); 2197 2198 /* 2199 * tcp_accept_swap unlinks eager from listener but does not drop 2200 * the eager's reference on the listener. 2201 */ 2202 ASSERT(eager->tcp_listener == NULL); 2203 ASSERT(listener->tcp_connp->conn_ref >= 5); 2204 2205 /* 2206 * The eager is now associated with its own queue. Insert in 2207 * the hash so that the connection can be reused for a future 2208 * T_CONN_RES. 2209 */ 2210 tcp_acceptor_hash_insert(acceptor_id, eager); 2211 2212 /* 2213 * We now do the processing of options with T_CONN_RES. 2214 * We delay till now since we wanted to have queue to pass to 2215 * option processing routines that points back to the right 2216 * instance structure which does not happen until after 2217 * tcp_accept_swap(). 2218 * 2219 * Note: 2220 * The sanity of the logic here assumes that whatever options 2221 * are appropriate to inherit from listner=>eager are done 2222 * before this point, and whatever were to be overridden (or not) 2223 * in transfer logic from eager=>acceptor in tcp_accept_swap(). 2224 * [ Warning: acceptor endpoint can have T_OPTMGMT_REQ done to it 2225 * before its ACCEPTOR_id comes down in T_CONN_RES ] 2226 * This may not be true at this point in time but can be fixed 2227 * independently. This option processing code starts with 2228 * the instantiated acceptor instance and the final queue at 2229 * this point. 2230 */ 2231 2232 if (tcr->OPT_length != 0) { 2233 /* Options to process */ 2234 int t_error = 0; 2235 int sys_error = 0; 2236 int do_disconnect = 0; 2237 2238 if (tcp_conprim_opt_process(eager, mp1, 2239 &do_disconnect, &t_error, &sys_error) < 0) { 2240 eager->tcp_accept_error = 1; 2241 if (do_disconnect) { 2242 /* 2243 * An option failed which does not allow 2244 * connection to be accepted. 2245 * 2246 * We allow T_CONN_RES to succeed and 2247 * put a T_DISCON_IND on the eager queue. 2248 */ 2249 ASSERT(t_error == 0 && sys_error == 0); 2250 eager->tcp_send_discon_ind = 1; 2251 } else { 2252 ASSERT(t_error != 0); 2253 freemsg(ok_mp); 2254 /* 2255 * Original mp was either freed or set 2256 * to ok_mp above, so use mp1 instead. 2257 */ 2258 tcp_err_ack(listener, mp1, t_error, sys_error); 2259 goto finish; 2260 } 2261 } 2262 /* 2263 * Most likely success in setting options (except if 2264 * eager->tcp_send_discon_ind set). 2265 * mp1 option buffer represented by OPT_length/offset 2266 * potentially modified and contains results of setting 2267 * options at this point 2268 */ 2269 } 2270 2271 /* We no longer need mp1, since all options processing has passed */ 2272 freemsg(mp1); 2273 2274 putnext(listener->tcp_rq, ok_mp); 2275 2276 mutex_enter(&listener->tcp_eager_lock); 2277 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 2278 tcp_t *tail; 2279 mblk_t *conn_ind; 2280 2281 /* 2282 * This path should not be executed if listener and 2283 * acceptor streams are the same. 2284 */ 2285 ASSERT(listener != acceptor); 2286 2287 tcp = listener->tcp_eager_prev_q0; 2288 /* 2289 * listener->tcp_eager_prev_q0 points to the TAIL of the 2290 * deferred T_conn_ind queue. We need to get to the head of 2291 * the queue in order to send up T_conn_ind the same order as 2292 * how the 3WHS is completed. 2293 */ 2294 while (tcp != listener) { 2295 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0) 2296 break; 2297 else 2298 tcp = tcp->tcp_eager_prev_q0; 2299 } 2300 ASSERT(tcp != listener); 2301 conn_ind = tcp->tcp_conn.tcp_eager_conn_ind; 2302 ASSERT(conn_ind != NULL); 2303 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 2304 2305 /* Move from q0 to q */ 2306 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 2307 listener->tcp_conn_req_cnt_q0--; 2308 listener->tcp_conn_req_cnt_q++; 2309 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 2310 tcp->tcp_eager_prev_q0; 2311 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 2312 tcp->tcp_eager_next_q0; 2313 tcp->tcp_eager_prev_q0 = NULL; 2314 tcp->tcp_eager_next_q0 = NULL; 2315 tcp->tcp_conn_def_q0 = B_FALSE; 2316 2317 /* Make sure the tcp isn't in the list of droppables */ 2318 ASSERT(tcp->tcp_eager_next_drop_q0 == NULL && 2319 tcp->tcp_eager_prev_drop_q0 == NULL); 2320 2321 /* 2322 * Insert at end of the queue because sockfs sends 2323 * down T_CONN_RES in chronological order. Leaving 2324 * the older conn indications at front of the queue 2325 * helps reducing search time. 2326 */ 2327 tail = listener->tcp_eager_last_q; 2328 if (tail != NULL) 2329 tail->tcp_eager_next_q = tcp; 2330 else 2331 listener->tcp_eager_next_q = tcp; 2332 listener->tcp_eager_last_q = tcp; 2333 tcp->tcp_eager_next_q = NULL; 2334 mutex_exit(&listener->tcp_eager_lock); 2335 putnext(tcp->tcp_rq, conn_ind); 2336 } else { 2337 mutex_exit(&listener->tcp_eager_lock); 2338 } 2339 2340 /* 2341 * Done with the acceptor - free it 2342 * 2343 * Note: from this point on, no access to listener should be made 2344 * as listener can be equal to acceptor. 2345 */ 2346 finish: 2347 ASSERT(acceptor->tcp_detached); 2348 ASSERT(tcps->tcps_g_q != NULL); 2349 ASSERT(!IPCL_IS_NONSTR(acceptor->tcp_connp)); 2350 acceptor->tcp_rq = tcps->tcps_g_q; 2351 acceptor->tcp_wq = WR(tcps->tcps_g_q); 2352 (void) tcp_clean_death(acceptor, 0, 2); 2353 CONN_DEC_REF(acceptor->tcp_connp); 2354 2355 /* 2356 * In case we already received a FIN we have to make tcp_rput send 2357 * the ordrel_ind. This will also send up a window update if the window 2358 * has opened up. 2359 * 2360 * In the normal case of a successful connection acceptance 2361 * we give the O_T_BIND_REQ to the read side put procedure as an 2362 * indication that this was just accepted. This tells tcp_rput to 2363 * pass up any data queued in tcp_rcv_list. 2364 * 2365 * In the fringe case where options sent with T_CONN_RES failed and 2366 * we required, we would be indicating a T_DISCON_IND to blow 2367 * away this connection. 2368 */ 2369 2370 /* 2371 * XXX: we currently have a problem if XTI application closes the 2372 * acceptor stream in between. This problem exists in on10-gate also 2373 * and is well know but nothing can be done short of major rewrite 2374 * to fix it. Now it is possible to take care of it by assigning TLI/XTI 2375 * eager same squeue as listener (we can distinguish non socket 2376 * listeners at the time of handling a SYN in tcp_conn_request) 2377 * and do most of the work that tcp_accept_finish does here itself 2378 * and then get behind the acceptor squeue to access the acceptor 2379 * queue. 2380 */ 2381 /* 2382 * We already have a ref on tcp so no need to do one before squeue_enter 2383 */ 2384 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, opt_mp, tcp_accept_finish, 2385 eager->tcp_connp, SQ_FILL, SQTAG_TCP_ACCEPT_FINISH); 2386 } 2387 2388 /* 2389 * Swap information between the eager and acceptor for a TLI/XTI client. 2390 * The sockfs accept is done on the acceptor stream and control goes 2391 * through tcp_wput_accept() and tcp_accept()/tcp_accept_swap() is not 2392 * called. In either case, both the eager and listener are in their own 2393 * perimeter (squeue) and the code has to deal with potential race. 2394 * 2395 * See the block comment on top of tcp_accept() and tcp_wput_accept(). 2396 */ 2397 static void 2398 tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, tcp_t *eager) 2399 { 2400 conn_t *econnp, *aconnp; 2401 2402 ASSERT(eager->tcp_rq == listener->tcp_rq); 2403 ASSERT(eager->tcp_detached && !acceptor->tcp_detached); 2404 ASSERT(!eager->tcp_hard_bound); 2405 ASSERT(!TCP_IS_SOCKET(acceptor)); 2406 ASSERT(!TCP_IS_SOCKET(eager)); 2407 ASSERT(!TCP_IS_SOCKET(listener)); 2408 2409 acceptor->tcp_detached = B_TRUE; 2410 /* 2411 * To permit stream re-use by TLI/XTI, the eager needs a copy of 2412 * the acceptor id. 2413 */ 2414 eager->tcp_acceptor_id = acceptor->tcp_acceptor_id; 2415 2416 /* remove eager from listen list... */ 2417 mutex_enter(&listener->tcp_eager_lock); 2418 tcp_eager_unlink(eager); 2419 ASSERT(eager->tcp_eager_next_q == NULL && 2420 eager->tcp_eager_last_q == NULL); 2421 ASSERT(eager->tcp_eager_next_q0 == NULL && 2422 eager->tcp_eager_prev_q0 == NULL); 2423 mutex_exit(&listener->tcp_eager_lock); 2424 eager->tcp_rq = acceptor->tcp_rq; 2425 eager->tcp_wq = acceptor->tcp_wq; 2426 2427 econnp = eager->tcp_connp; 2428 aconnp = acceptor->tcp_connp; 2429 2430 eager->tcp_rq->q_ptr = econnp; 2431 eager->tcp_wq->q_ptr = econnp; 2432 2433 /* 2434 * In the TLI/XTI loopback case, we are inside the listener's squeue, 2435 * which might be a different squeue from our peer TCP instance. 2436 * For TCP Fusion, the peer expects that whenever tcp_detached is 2437 * clear, our TCP queues point to the acceptor's queues. Thus, use 2438 * membar_producer() to ensure that the assignments of tcp_rq/tcp_wq 2439 * above reach global visibility prior to the clearing of tcp_detached. 2440 */ 2441 membar_producer(); 2442 eager->tcp_detached = B_FALSE; 2443 2444 ASSERT(eager->tcp_ack_tid == 0); 2445 2446 econnp->conn_dev = aconnp->conn_dev; 2447 econnp->conn_minor_arena = aconnp->conn_minor_arena; 2448 ASSERT(econnp->conn_minor_arena != NULL); 2449 if (eager->tcp_cred != NULL) 2450 crfree(eager->tcp_cred); 2451 eager->tcp_cred = econnp->conn_cred = aconnp->conn_cred; 2452 ASSERT(econnp->conn_netstack == aconnp->conn_netstack); 2453 ASSERT(eager->tcp_tcps == acceptor->tcp_tcps); 2454 2455 aconnp->conn_cred = NULL; 2456 2457 econnp->conn_zoneid = aconnp->conn_zoneid; 2458 econnp->conn_allzones = aconnp->conn_allzones; 2459 2460 econnp->conn_mac_exempt = aconnp->conn_mac_exempt; 2461 aconnp->conn_mac_exempt = B_FALSE; 2462 2463 ASSERT(aconnp->conn_peercred == NULL); 2464 2465 /* Do the IPC initialization */ 2466 CONN_INC_REF(econnp); 2467 2468 econnp->conn_multicast_loop = aconnp->conn_multicast_loop; 2469 econnp->conn_af_isv6 = aconnp->conn_af_isv6; 2470 econnp->conn_pkt_isv6 = aconnp->conn_pkt_isv6; 2471 2472 /* Done with old IPC. Drop its ref on its connp */ 2473 CONN_DEC_REF(aconnp); 2474 } 2475 2476 2477 /* 2478 * Adapt to the information, such as rtt and rtt_sd, provided from the 2479 * ire cached in conn_cache_ire. If no ire cached, do a ire lookup. 2480 * 2481 * Checks for multicast and broadcast destination address. 2482 * Returns zero on failure; non-zero if ok. 2483 * 2484 * Note that the MSS calculation here is based on the info given in 2485 * the IRE. We do not do any calculation based on TCP options. They 2486 * will be handled in tcp_rput_other() and tcp_rput_data() when TCP 2487 * knows which options to use. 2488 * 2489 * Note on how TCP gets its parameters for a connection. 2490 * 2491 * When a tcp_t structure is allocated, it gets all the default parameters. 2492 * In tcp_adapt_ire(), it gets those metric parameters, like rtt, rtt_sd, 2493 * spipe, rpipe, ... from the route metrics. Route metric overrides the 2494 * default. 2495 * 2496 * An incoming SYN with a multicast or broadcast destination address, is dropped 2497 * in 1 of 2 places. 2498 * 2499 * 1. If the packet was received over the wire it is dropped in 2500 * ip_rput_process_broadcast() 2501 * 2502 * 2. If the packet was received through internal IP loopback, i.e. the packet 2503 * was generated and received on the same machine, it is dropped in 2504 * ip_wput_local() 2505 * 2506 * An incoming SYN with a multicast or broadcast source address is always 2507 * dropped in tcp_adapt_ire. The same logic in tcp_adapt_ire also serves to 2508 * reject an attempt to connect to a broadcast or multicast (destination) 2509 * address. 2510 */ 2511 static int 2512 tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp) 2513 { 2514 ire_t *ire; 2515 ire_t *sire = NULL; 2516 iulp_t *ire_uinfo = NULL; 2517 uint32_t mss_max; 2518 uint32_t mss; 2519 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 2520 conn_t *connp = tcp->tcp_connp; 2521 boolean_t ire_cacheable = B_FALSE; 2522 zoneid_t zoneid = connp->conn_zoneid; 2523 int match_flags = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 2524 MATCH_IRE_SECATTR; 2525 ts_label_t *tsl = crgetlabel(CONN_CRED(connp)); 2526 ill_t *ill = NULL; 2527 boolean_t incoming = (ire_mp == NULL); 2528 tcp_stack_t *tcps = tcp->tcp_tcps; 2529 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 2530 2531 ASSERT(connp->conn_ire_cache == NULL); 2532 2533 if (tcp->tcp_ipversion == IPV4_VERSION) { 2534 2535 if (CLASSD(tcp->tcp_connp->conn_rem)) { 2536 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 2537 return (0); 2538 } 2539 /* 2540 * If IP_NEXTHOP is set, then look for an IRE_CACHE 2541 * for the destination with the nexthop as gateway. 2542 * ire_ctable_lookup() is used because this particular 2543 * ire, if it exists, will be marked private. 2544 * If that is not available, use the interface ire 2545 * for the nexthop. 2546 * 2547 * TSol: tcp_update_label will detect label mismatches based 2548 * only on the destination's label, but that would not 2549 * detect label mismatches based on the security attributes 2550 * of routes or next hop gateway. Hence we need to pass the 2551 * label to ire_ftable_lookup below in order to locate the 2552 * right prefix (and/or) ire cache. Similarly we also need 2553 * pass the label to the ire_cache_lookup below to locate 2554 * the right ire that also matches on the label. 2555 */ 2556 if (tcp->tcp_connp->conn_nexthop_set) { 2557 ire = ire_ctable_lookup(tcp->tcp_connp->conn_rem, 2558 tcp->tcp_connp->conn_nexthop_v4, 0, NULL, zoneid, 2559 tsl, MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW, 2560 ipst); 2561 if (ire == NULL) { 2562 ire = ire_ftable_lookup( 2563 tcp->tcp_connp->conn_nexthop_v4, 2564 0, 0, IRE_INTERFACE, NULL, NULL, zoneid, 0, 2565 tsl, match_flags, ipst); 2566 if (ire == NULL) 2567 return (0); 2568 } else { 2569 ire_uinfo = &ire->ire_uinfo; 2570 } 2571 } else { 2572 ire = ire_cache_lookup(tcp->tcp_connp->conn_rem, 2573 zoneid, tsl, ipst); 2574 if (ire != NULL) { 2575 ire_cacheable = B_TRUE; 2576 ire_uinfo = (ire_mp != NULL) ? 2577 &((ire_t *)ire_mp->b_rptr)->ire_uinfo: 2578 &ire->ire_uinfo; 2579 2580 } else { 2581 if (ire_mp == NULL) { 2582 ire = ire_ftable_lookup( 2583 tcp->tcp_connp->conn_rem, 2584 0, 0, 0, NULL, &sire, zoneid, 0, 2585 tsl, (MATCH_IRE_RECURSIVE | 2586 MATCH_IRE_DEFAULT), ipst); 2587 if (ire == NULL) 2588 return (0); 2589 ire_uinfo = (sire != NULL) ? 2590 &sire->ire_uinfo : 2591 &ire->ire_uinfo; 2592 } else { 2593 ire = (ire_t *)ire_mp->b_rptr; 2594 ire_uinfo = 2595 &((ire_t *) 2596 ire_mp->b_rptr)->ire_uinfo; 2597 } 2598 } 2599 } 2600 ASSERT(ire != NULL); 2601 2602 if ((ire->ire_src_addr == INADDR_ANY) || 2603 (ire->ire_type & IRE_BROADCAST)) { 2604 /* 2605 * ire->ire_mp is non null when ire_mp passed in is used 2606 * ire->ire_mp is set in ip_bind_insert_ire[_v6](). 2607 */ 2608 if (ire->ire_mp == NULL) 2609 ire_refrele(ire); 2610 if (sire != NULL) 2611 ire_refrele(sire); 2612 return (0); 2613 } 2614 2615 if (tcp->tcp_ipha->ipha_src == INADDR_ANY) { 2616 ipaddr_t src_addr; 2617 2618 /* 2619 * ip_bind_connected() has stored the correct source 2620 * address in conn_src. 2621 */ 2622 src_addr = tcp->tcp_connp->conn_src; 2623 tcp->tcp_ipha->ipha_src = src_addr; 2624 /* 2625 * Copy of the src addr. in tcp_t is needed 2626 * for the lookup funcs. 2627 */ 2628 IN6_IPADDR_TO_V4MAPPED(src_addr, &tcp->tcp_ip_src_v6); 2629 } 2630 /* 2631 * Set the fragment bit so that IP will tell us if the MTU 2632 * should change. IP tells us the latest setting of 2633 * ip_path_mtu_discovery through ire_frag_flag. 2634 */ 2635 if (ipst->ips_ip_path_mtu_discovery) { 2636 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 2637 htons(IPH_DF); 2638 } 2639 /* 2640 * If ire_uinfo is NULL, this is the IRE_INTERFACE case 2641 * for IP_NEXTHOP. No cache ire has been found for the 2642 * destination and we are working with the nexthop's 2643 * interface ire. Since we need to forward all packets 2644 * to the nexthop first, we "blindly" set tcp_localnet 2645 * to false, eventhough the destination may also be 2646 * onlink. 2647 */ 2648 if (ire_uinfo == NULL) 2649 tcp->tcp_localnet = 0; 2650 else 2651 tcp->tcp_localnet = (ire->ire_gateway_addr == 0); 2652 } else { 2653 /* 2654 * For incoming connection ire_mp = NULL 2655 * For outgoing connection ire_mp != NULL 2656 * Technically we should check conn_incoming_ill 2657 * when ire_mp is NULL and conn_outgoing_ill when 2658 * ire_mp is non-NULL. But this is performance 2659 * critical path and for IPV*_BOUND_IF, outgoing 2660 * and incoming ill are always set to the same value. 2661 */ 2662 ill_t *dst_ill = NULL; 2663 ipif_t *dst_ipif = NULL; 2664 2665 ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill); 2666 2667 if (connp->conn_outgoing_ill != NULL) { 2668 /* Outgoing or incoming path */ 2669 int err; 2670 2671 dst_ill = conn_get_held_ill(connp, 2672 &connp->conn_outgoing_ill, &err); 2673 if (err == ILL_LOOKUP_FAILED || dst_ill == NULL) { 2674 ip1dbg(("tcp_adapt_ire: ill_lookup failed\n")); 2675 return (0); 2676 } 2677 match_flags |= MATCH_IRE_ILL; 2678 dst_ipif = dst_ill->ill_ipif; 2679 } 2680 ire = ire_ctable_lookup_v6(&tcp->tcp_connp->conn_remv6, 2681 0, 0, dst_ipif, zoneid, tsl, match_flags, ipst); 2682 2683 if (ire != NULL) { 2684 ire_cacheable = B_TRUE; 2685 ire_uinfo = (ire_mp != NULL) ? 2686 &((ire_t *)ire_mp->b_rptr)->ire_uinfo: 2687 &ire->ire_uinfo; 2688 } else { 2689 if (ire_mp == NULL) { 2690 ire = ire_ftable_lookup_v6( 2691 &tcp->tcp_connp->conn_remv6, 2692 0, 0, 0, dst_ipif, &sire, zoneid, 2693 0, tsl, match_flags, ipst); 2694 if (ire == NULL) { 2695 if (dst_ill != NULL) 2696 ill_refrele(dst_ill); 2697 return (0); 2698 } 2699 ire_uinfo = (sire != NULL) ? &sire->ire_uinfo : 2700 &ire->ire_uinfo; 2701 } else { 2702 ire = (ire_t *)ire_mp->b_rptr; 2703 ire_uinfo = 2704 &((ire_t *)ire_mp->b_rptr)->ire_uinfo; 2705 } 2706 } 2707 if (dst_ill != NULL) 2708 ill_refrele(dst_ill); 2709 2710 ASSERT(ire != NULL); 2711 ASSERT(ire_uinfo != NULL); 2712 2713 if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6) || 2714 IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) { 2715 /* 2716 * ire->ire_mp is non null when ire_mp passed in is used 2717 * ire->ire_mp is set in ip_bind_insert_ire[_v6](). 2718 */ 2719 if (ire->ire_mp == NULL) 2720 ire_refrele(ire); 2721 if (sire != NULL) 2722 ire_refrele(sire); 2723 return (0); 2724 } 2725 2726 if (IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) { 2727 in6_addr_t src_addr; 2728 2729 /* 2730 * ip_bind_connected_v6() has stored the correct source 2731 * address per IPv6 addr. selection policy in 2732 * conn_src_v6. 2733 */ 2734 src_addr = tcp->tcp_connp->conn_srcv6; 2735 2736 tcp->tcp_ip6h->ip6_src = src_addr; 2737 /* 2738 * Copy of the src addr. in tcp_t is needed 2739 * for the lookup funcs. 2740 */ 2741 tcp->tcp_ip_src_v6 = src_addr; 2742 ASSERT(IN6_ARE_ADDR_EQUAL(&tcp->tcp_ip6h->ip6_src, 2743 &connp->conn_srcv6)); 2744 } 2745 tcp->tcp_localnet = 2746 IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6); 2747 } 2748 2749 /* 2750 * This allows applications to fail quickly when connections are made 2751 * to dead hosts. Hosts can be labeled dead by adding a reject route 2752 * with both the RTF_REJECT and RTF_PRIVATE flags set. 2753 */ 2754 if ((ire->ire_flags & RTF_REJECT) && 2755 (ire->ire_flags & RTF_PRIVATE)) 2756 goto error; 2757 2758 /* 2759 * Make use of the cached rtt and rtt_sd values to calculate the 2760 * initial RTO. Note that they are already initialized in 2761 * tcp_init_values(). 2762 * If ire_uinfo is NULL, i.e., we do not have a cache ire for 2763 * IP_NEXTHOP, but instead are using the interface ire for the 2764 * nexthop, then we do not use the ire_uinfo from that ire to 2765 * do any initializations. 2766 */ 2767 if (ire_uinfo != NULL) { 2768 if (ire_uinfo->iulp_rtt != 0) { 2769 clock_t rto; 2770 2771 tcp->tcp_rtt_sa = ire_uinfo->iulp_rtt; 2772 tcp->tcp_rtt_sd = ire_uinfo->iulp_rtt_sd; 2773 rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 2774 tcps->tcps_rexmit_interval_extra + 2775 (tcp->tcp_rtt_sa >> 5); 2776 2777 if (rto > tcps->tcps_rexmit_interval_max) { 2778 tcp->tcp_rto = tcps->tcps_rexmit_interval_max; 2779 } else if (rto < tcps->tcps_rexmit_interval_min) { 2780 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 2781 } else { 2782 tcp->tcp_rto = rto; 2783 } 2784 } 2785 if (ire_uinfo->iulp_ssthresh != 0) 2786 tcp->tcp_cwnd_ssthresh = ire_uinfo->iulp_ssthresh; 2787 else 2788 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 2789 if (ire_uinfo->iulp_spipe > 0) { 2790 tcp->tcp_xmit_hiwater = MIN(ire_uinfo->iulp_spipe, 2791 tcps->tcps_max_buf); 2792 if (tcps->tcps_snd_lowat_fraction != 0) 2793 tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater / 2794 tcps->tcps_snd_lowat_fraction; 2795 (void) tcp_maxpsz_set(tcp, B_TRUE); 2796 } 2797 /* 2798 * Note that up till now, acceptor always inherits receive 2799 * window from the listener. But if there is a metrics 2800 * associated with a host, we should use that instead of 2801 * inheriting it from listener. Thus we need to pass this 2802 * info back to the caller. 2803 */ 2804 if (ire_uinfo->iulp_rpipe > 0) { 2805 tcp->tcp_rwnd = MIN(ire_uinfo->iulp_rpipe, 2806 tcps->tcps_max_buf); 2807 } 2808 2809 if (ire_uinfo->iulp_rtomax > 0) { 2810 tcp->tcp_second_timer_threshold = 2811 ire_uinfo->iulp_rtomax; 2812 } 2813 2814 /* 2815 * Use the metric option settings, iulp_tstamp_ok and 2816 * iulp_wscale_ok, only for active open. What this means 2817 * is that if the other side uses timestamp or window 2818 * scale option, TCP will also use those options. That 2819 * is for passive open. If the application sets a 2820 * large window, window scale is enabled regardless of 2821 * the value in iulp_wscale_ok. This is the behavior 2822 * since 2.6. So we keep it. 2823 * The only case left in passive open processing is the 2824 * check for SACK. 2825 * For ECN, it should probably be like SACK. But the 2826 * current value is binary, so we treat it like the other 2827 * cases. The metric only controls active open.For passive 2828 * open, the ndd param, tcp_ecn_permitted, controls the 2829 * behavior. 2830 */ 2831 if (!tcp_detached) { 2832 /* 2833 * The if check means that the following can only 2834 * be turned on by the metrics only IRE, but not off. 2835 */ 2836 if (ire_uinfo->iulp_tstamp_ok) 2837 tcp->tcp_snd_ts_ok = B_TRUE; 2838 if (ire_uinfo->iulp_wscale_ok) 2839 tcp->tcp_snd_ws_ok = B_TRUE; 2840 if (ire_uinfo->iulp_sack == 2) 2841 tcp->tcp_snd_sack_ok = B_TRUE; 2842 if (ire_uinfo->iulp_ecn_ok) 2843 tcp->tcp_ecn_ok = B_TRUE; 2844 } else { 2845 /* 2846 * Passive open. 2847 * 2848 * As above, the if check means that SACK can only be 2849 * turned on by the metric only IRE. 2850 */ 2851 if (ire_uinfo->iulp_sack > 0) { 2852 tcp->tcp_snd_sack_ok = B_TRUE; 2853 } 2854 } 2855 } 2856 2857 2858 /* 2859 * XXX: Note that currently, ire_max_frag can be as small as 68 2860 * because of PMTUd. So tcp_mss may go to negative if combined 2861 * length of all those options exceeds 28 bytes. But because 2862 * of the tcp_mss_min check below, we may not have a problem if 2863 * tcp_mss_min is of a reasonable value. The default is 1 so 2864 * the negative problem still exists. And the check defeats PMTUd. 2865 * In fact, if PMTUd finds that the MSS should be smaller than 2866 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min 2867 * value. 2868 * 2869 * We do not deal with that now. All those problems related to 2870 * PMTUd will be fixed later. 2871 */ 2872 ASSERT(ire->ire_max_frag != 0); 2873 mss = tcp->tcp_if_mtu = ire->ire_max_frag; 2874 if (tcp->tcp_ipp_fields & IPPF_USE_MIN_MTU) { 2875 if (tcp->tcp_ipp_use_min_mtu == IPV6_USE_MIN_MTU_NEVER) { 2876 mss = MIN(mss, IPV6_MIN_MTU); 2877 } 2878 } 2879 2880 /* Sanity check for MSS value. */ 2881 if (tcp->tcp_ipversion == IPV4_VERSION) 2882 mss_max = tcps->tcps_mss_max_ipv4; 2883 else 2884 mss_max = tcps->tcps_mss_max_ipv6; 2885 2886 if (tcp->tcp_ipversion == IPV6_VERSION && 2887 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 2888 /* 2889 * After receiving an ICMPv6 "packet too big" message with a 2890 * MTU < 1280, and for multirouted IPv6 packets, the IP layer 2891 * will insert a 8-byte fragment header in every packet; we 2892 * reduce the MSS by that amount here. 2893 */ 2894 mss -= sizeof (ip6_frag_t); 2895 } 2896 2897 if (tcp->tcp_ipsec_overhead == 0) 2898 tcp->tcp_ipsec_overhead = conn_ipsec_length(connp); 2899 2900 mss -= tcp->tcp_ipsec_overhead; 2901 2902 if (mss < tcps->tcps_mss_min) 2903 mss = tcps->tcps_mss_min; 2904 if (mss > mss_max) 2905 mss = mss_max; 2906 2907 /* Note that this is the maximum MSS, excluding all options. */ 2908 tcp->tcp_mss = mss; 2909 2910 /* 2911 * Initialize the ISS here now that we have the full connection ID. 2912 * The RFC 1948 method of initial sequence number generation requires 2913 * knowledge of the full connection ID before setting the ISS. 2914 */ 2915 2916 tcp_iss_init(tcp); 2917 2918 if (ire->ire_type & (IRE_LOOPBACK | IRE_LOCAL)) 2919 tcp->tcp_loopback = B_TRUE; 2920 2921 if (sire != NULL) 2922 IRE_REFRELE(sire); 2923 2924 /* 2925 * If we got an IRE_CACHE and an ILL, go through their properties; 2926 * otherwise, this is deferred until later when we have an IRE_CACHE. 2927 */ 2928 if (tcp->tcp_loopback || 2929 (ire_cacheable && (ill = ire_to_ill(ire)) != NULL)) { 2930 /* 2931 * For incoming, see if this tcp may be MDT-capable. For 2932 * outgoing, this process has been taken care of through 2933 * tcp_rput_other. 2934 */ 2935 tcp_ire_ill_check(tcp, ire, ill, incoming); 2936 tcp->tcp_ire_ill_check_done = B_TRUE; 2937 } 2938 2939 mutex_enter(&connp->conn_lock); 2940 /* 2941 * Make sure that conn is not marked incipient 2942 * for incoming connections. A blind 2943 * removal of incipient flag is cheaper than 2944 * check and removal. 2945 */ 2946 connp->conn_state_flags &= ~CONN_INCIPIENT; 2947 2948 /* 2949 * Must not cache forwarding table routes 2950 * or recache an IRE after the conn_t has 2951 * had conn_ire_cache cleared and is flagged 2952 * unusable, (see the CONN_CACHE_IRE() macro). 2953 */ 2954 if (ire_cacheable && CONN_CACHE_IRE(connp)) { 2955 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 2956 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 2957 connp->conn_ire_cache = ire; 2958 IRE_UNTRACE_REF(ire); 2959 rw_exit(&ire->ire_bucket->irb_lock); 2960 mutex_exit(&connp->conn_lock); 2961 return (1); 2962 } 2963 rw_exit(&ire->ire_bucket->irb_lock); 2964 } 2965 mutex_exit(&connp->conn_lock); 2966 2967 if (ire->ire_mp == NULL) 2968 ire_refrele(ire); 2969 return (1); 2970 2971 error: 2972 if (ire->ire_mp == NULL) 2973 ire_refrele(ire); 2974 if (sire != NULL) 2975 ire_refrele(sire); 2976 return (0); 2977 } 2978 2979 static void 2980 tcp_tpi_bind(tcp_t *tcp, mblk_t *mp) 2981 { 2982 int error; 2983 conn_t *connp = tcp->tcp_connp; 2984 struct sockaddr *sa; 2985 mblk_t *mp1; 2986 struct T_bind_req *tbr; 2987 int backlog; 2988 socklen_t len; 2989 sin_t *sin; 2990 sin6_t *sin6; 2991 cred_t *cr; 2992 2993 /* 2994 * All Solaris components should pass a db_credp 2995 * for this TPI message, hence we ASSERT. 2996 * But in case there is some other M_PROTO that looks 2997 * like a TPI message sent by some other kernel 2998 * component, we check and return an error. 2999 */ 3000 cr = msg_getcred(mp, NULL); 3001 ASSERT(cr != NULL); 3002 if (cr == NULL) { 3003 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 3004 return; 3005 } 3006 3007 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 3008 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) { 3009 if (tcp->tcp_debug) { 3010 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 3011 "tcp_tpi_bind: bad req, len %u", 3012 (uint_t)(mp->b_wptr - mp->b_rptr)); 3013 } 3014 tcp_err_ack(tcp, mp, TPROTO, 0); 3015 return; 3016 } 3017 /* Make sure the largest address fits */ 3018 mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t) + 1, 1); 3019 if (mp1 == NULL) { 3020 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 3021 return; 3022 } 3023 mp = mp1; 3024 tbr = (struct T_bind_req *)mp->b_rptr; 3025 3026 backlog = tbr->CONIND_number; 3027 len = tbr->ADDR_length; 3028 3029 switch (len) { 3030 case 0: /* request for a generic port */ 3031 tbr->ADDR_offset = sizeof (struct T_bind_req); 3032 if (tcp->tcp_family == AF_INET) { 3033 tbr->ADDR_length = sizeof (sin_t); 3034 sin = (sin_t *)&tbr[1]; 3035 *sin = sin_null; 3036 sin->sin_family = AF_INET; 3037 sa = (struct sockaddr *)sin; 3038 len = sizeof (sin_t); 3039 mp->b_wptr = (uchar_t *)&sin[1]; 3040 } else { 3041 ASSERT(tcp->tcp_family == AF_INET6); 3042 tbr->ADDR_length = sizeof (sin6_t); 3043 sin6 = (sin6_t *)&tbr[1]; 3044 *sin6 = sin6_null; 3045 sin6->sin6_family = AF_INET6; 3046 sa = (struct sockaddr *)sin6; 3047 len = sizeof (sin6_t); 3048 mp->b_wptr = (uchar_t *)&sin6[1]; 3049 } 3050 break; 3051 3052 case sizeof (sin_t): /* Complete IPv4 address */ 3053 sa = (struct sockaddr *)mi_offset_param(mp, tbr->ADDR_offset, 3054 sizeof (sin_t)); 3055 break; 3056 3057 case sizeof (sin6_t): /* Complete IPv6 address */ 3058 sa = (struct sockaddr *)mi_offset_param(mp, 3059 tbr->ADDR_offset, sizeof (sin6_t)); 3060 break; 3061 3062 default: 3063 if (tcp->tcp_debug) { 3064 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 3065 "tcp_tpi_bind: bad address length, %d", 3066 tbr->ADDR_length); 3067 } 3068 tcp_err_ack(tcp, mp, TBADADDR, 0); 3069 return; 3070 } 3071 3072 error = tcp_bind_check(connp, sa, len, cr, 3073 tbr->PRIM_type != O_T_BIND_REQ); 3074 if (error == 0) { 3075 if (tcp->tcp_family == AF_INET) { 3076 sin = (sin_t *)sa; 3077 sin->sin_port = tcp->tcp_lport; 3078 } else { 3079 sin6 = (sin6_t *)sa; 3080 sin6->sin6_port = tcp->tcp_lport; 3081 } 3082 3083 if (backlog > 0) { 3084 error = tcp_do_listen(connp, backlog, cr); 3085 } 3086 } 3087 done: 3088 if (error > 0) { 3089 tcp_err_ack(tcp, mp, TSYSERR, error); 3090 } else if (error < 0) { 3091 tcp_err_ack(tcp, mp, -error, 0); 3092 } else { 3093 mp->b_datap->db_type = M_PCPROTO; 3094 tbr->PRIM_type = T_BIND_ACK; 3095 putnext(tcp->tcp_rq, mp); 3096 } 3097 } 3098 3099 /* 3100 * If the "bind_to_req_port_only" parameter is set, if the requested port 3101 * number is available, return it, If not return 0 3102 * 3103 * If "bind_to_req_port_only" parameter is not set and 3104 * If the requested port number is available, return it. If not, return 3105 * the first anonymous port we happen across. If no anonymous ports are 3106 * available, return 0. addr is the requested local address, if any. 3107 * 3108 * In either case, when succeeding update the tcp_t to record the port number 3109 * and insert it in the bind hash table. 3110 * 3111 * Note that TCP over IPv4 and IPv6 sockets can use the same port number 3112 * without setting SO_REUSEADDR. This is needed so that they 3113 * can be viewed as two independent transport protocols. 3114 */ 3115 static in_port_t 3116 tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, 3117 int reuseaddr, boolean_t quick_connect, 3118 boolean_t bind_to_req_port_only, boolean_t user_specified) 3119 { 3120 /* number of times we have run around the loop */ 3121 int count = 0; 3122 /* maximum number of times to run around the loop */ 3123 int loopmax; 3124 conn_t *connp = tcp->tcp_connp; 3125 zoneid_t zoneid = connp->conn_zoneid; 3126 tcp_stack_t *tcps = tcp->tcp_tcps; 3127 3128 /* 3129 * Lookup for free addresses is done in a loop and "loopmax" 3130 * influences how long we spin in the loop 3131 */ 3132 if (bind_to_req_port_only) { 3133 /* 3134 * If the requested port is busy, don't bother to look 3135 * for a new one. Setting loop maximum count to 1 has 3136 * that effect. 3137 */ 3138 loopmax = 1; 3139 } else { 3140 /* 3141 * If the requested port is busy, look for a free one 3142 * in the anonymous port range. 3143 * Set loopmax appropriately so that one does not look 3144 * forever in the case all of the anonymous ports are in use. 3145 */ 3146 if (tcp->tcp_anon_priv_bind) { 3147 /* 3148 * loopmax = 3149 * (IPPORT_RESERVED-1) - tcp_min_anonpriv_port + 1 3150 */ 3151 loopmax = IPPORT_RESERVED - 3152 tcps->tcps_min_anonpriv_port; 3153 } else { 3154 loopmax = (tcps->tcps_largest_anon_port - 3155 tcps->tcps_smallest_anon_port + 1); 3156 } 3157 } 3158 do { 3159 uint16_t lport; 3160 tf_t *tbf; 3161 tcp_t *ltcp; 3162 conn_t *lconnp; 3163 3164 lport = htons(port); 3165 3166 /* 3167 * Ensure that the tcp_t is not currently in the bind hash. 3168 * Hold the lock on the hash bucket to ensure that 3169 * the duplicate check plus the insertion is an atomic 3170 * operation. 3171 * 3172 * This function does an inline lookup on the bind hash list 3173 * Make sure that we access only members of tcp_t 3174 * and that we don't look at tcp_tcp, since we are not 3175 * doing a CONN_INC_REF. 3176 */ 3177 tcp_bind_hash_remove(tcp); 3178 tbf = &tcps->tcps_bind_fanout[TCP_BIND_HASH(lport)]; 3179 mutex_enter(&tbf->tf_lock); 3180 for (ltcp = tbf->tf_tcp; ltcp != NULL; 3181 ltcp = ltcp->tcp_bind_hash) { 3182 if (lport == ltcp->tcp_lport) 3183 break; 3184 } 3185 3186 for (; ltcp != NULL; ltcp = ltcp->tcp_bind_hash_port) { 3187 boolean_t not_socket; 3188 boolean_t exclbind; 3189 3190 lconnp = ltcp->tcp_connp; 3191 3192 /* 3193 * On a labeled system, we must treat bindings to ports 3194 * on shared IP addresses by sockets with MAC exemption 3195 * privilege as being in all zones, as there's 3196 * otherwise no way to identify the right receiver. 3197 */ 3198 if (!(IPCL_ZONE_MATCH(ltcp->tcp_connp, zoneid) || 3199 IPCL_ZONE_MATCH(connp, 3200 ltcp->tcp_connp->conn_zoneid)) && 3201 !lconnp->conn_mac_exempt && 3202 !connp->conn_mac_exempt) 3203 continue; 3204 3205 /* 3206 * If TCP_EXCLBIND is set for either the bound or 3207 * binding endpoint, the semantics of bind 3208 * is changed according to the following. 3209 * 3210 * spec = specified address (v4 or v6) 3211 * unspec = unspecified address (v4 or v6) 3212 * A = specified addresses are different for endpoints 3213 * 3214 * bound bind to allowed 3215 * ------------------------------------- 3216 * unspec unspec no 3217 * unspec spec no 3218 * spec unspec no 3219 * spec spec yes if A 3220 * 3221 * For labeled systems, SO_MAC_EXEMPT behaves the same 3222 * as TCP_EXCLBIND, except that zoneid is ignored. 3223 * 3224 * Note: 3225 * 3226 * 1. Because of TLI semantics, an endpoint can go 3227 * back from, say TCP_ESTABLISHED to TCPS_LISTEN or 3228 * TCPS_BOUND, depending on whether it is originally 3229 * a listener or not. That is why we need to check 3230 * for states greater than or equal to TCPS_BOUND 3231 * here. 3232 * 3233 * 2. Ideally, we should only check for state equals 3234 * to TCPS_LISTEN. And the following check should be 3235 * added. 3236 * 3237 * if (ltcp->tcp_state == TCPS_LISTEN || 3238 * !reuseaddr || !ltcp->tcp_reuseaddr) { 3239 * ... 3240 * } 3241 * 3242 * The semantics will be changed to this. If the 3243 * endpoint on the list is in state not equal to 3244 * TCPS_LISTEN and both endpoints have SO_REUSEADDR 3245 * set, let the bind succeed. 3246 * 3247 * Because of (1), we cannot do that for TLI 3248 * endpoints. But we can do that for socket endpoints. 3249 * If in future, we can change this going back 3250 * semantics, we can use the above check for TLI also. 3251 */ 3252 not_socket = !(TCP_IS_SOCKET(ltcp) && 3253 TCP_IS_SOCKET(tcp)); 3254 exclbind = ltcp->tcp_exclbind || tcp->tcp_exclbind; 3255 3256 if (lconnp->conn_mac_exempt || connp->conn_mac_exempt || 3257 (exclbind && (not_socket || 3258 ltcp->tcp_state <= TCPS_ESTABLISHED))) { 3259 if (V6_OR_V4_INADDR_ANY( 3260 ltcp->tcp_bound_source_v6) || 3261 V6_OR_V4_INADDR_ANY(*laddr) || 3262 IN6_ARE_ADDR_EQUAL(laddr, 3263 <cp->tcp_bound_source_v6)) { 3264 break; 3265 } 3266 continue; 3267 } 3268 3269 /* 3270 * Check ipversion to allow IPv4 and IPv6 sockets to 3271 * have disjoint port number spaces, if *_EXCLBIND 3272 * is not set and only if the application binds to a 3273 * specific port. We use the same autoassigned port 3274 * number space for IPv4 and IPv6 sockets. 3275 */ 3276 if (tcp->tcp_ipversion != ltcp->tcp_ipversion && 3277 bind_to_req_port_only) 3278 continue; 3279 3280 /* 3281 * Ideally, we should make sure that the source 3282 * address, remote address, and remote port in the 3283 * four tuple for this tcp-connection is unique. 3284 * However, trying to find out the local source 3285 * address would require too much code duplication 3286 * with IP, since IP needs needs to have that code 3287 * to support userland TCP implementations. 3288 */ 3289 if (quick_connect && 3290 (ltcp->tcp_state > TCPS_LISTEN) && 3291 ((tcp->tcp_fport != ltcp->tcp_fport) || 3292 !IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6, 3293 <cp->tcp_remote_v6))) 3294 continue; 3295 3296 if (!reuseaddr) { 3297 /* 3298 * No socket option SO_REUSEADDR. 3299 * If existing port is bound to 3300 * a non-wildcard IP address 3301 * and the requesting stream is 3302 * bound to a distinct 3303 * different IP addresses 3304 * (non-wildcard, also), keep 3305 * going. 3306 */ 3307 if (!V6_OR_V4_INADDR_ANY(*laddr) && 3308 !V6_OR_V4_INADDR_ANY( 3309 ltcp->tcp_bound_source_v6) && 3310 !IN6_ARE_ADDR_EQUAL(laddr, 3311 <cp->tcp_bound_source_v6)) 3312 continue; 3313 if (ltcp->tcp_state >= TCPS_BOUND) { 3314 /* 3315 * This port is being used and 3316 * its state is >= TCPS_BOUND, 3317 * so we can't bind to it. 3318 */ 3319 break; 3320 } 3321 } else { 3322 /* 3323 * socket option SO_REUSEADDR is set on the 3324 * binding tcp_t. 3325 * 3326 * If two streams are bound to 3327 * same IP address or both addr 3328 * and bound source are wildcards 3329 * (INADDR_ANY), we want to stop 3330 * searching. 3331 * We have found a match of IP source 3332 * address and source port, which is 3333 * refused regardless of the 3334 * SO_REUSEADDR setting, so we break. 3335 */ 3336 if (IN6_ARE_ADDR_EQUAL(laddr, 3337 <cp->tcp_bound_source_v6) && 3338 (ltcp->tcp_state == TCPS_LISTEN || 3339 ltcp->tcp_state == TCPS_BOUND)) 3340 break; 3341 } 3342 } 3343 if (ltcp != NULL) { 3344 /* The port number is busy */ 3345 mutex_exit(&tbf->tf_lock); 3346 } else { 3347 /* 3348 * This port is ours. Insert in fanout and mark as 3349 * bound to prevent others from getting the port 3350 * number. 3351 */ 3352 tcp->tcp_state = TCPS_BOUND; 3353 tcp->tcp_lport = htons(port); 3354 *(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport; 3355 3356 ASSERT(&tcps->tcps_bind_fanout[TCP_BIND_HASH( 3357 tcp->tcp_lport)] == tbf); 3358 tcp_bind_hash_insert(tbf, tcp, 1); 3359 3360 mutex_exit(&tbf->tf_lock); 3361 3362 /* 3363 * We don't want tcp_next_port_to_try to "inherit" 3364 * a port number supplied by the user in a bind. 3365 */ 3366 if (user_specified) 3367 return (port); 3368 3369 /* 3370 * This is the only place where tcp_next_port_to_try 3371 * is updated. After the update, it may or may not 3372 * be in the valid range. 3373 */ 3374 if (!tcp->tcp_anon_priv_bind) 3375 tcps->tcps_next_port_to_try = port + 1; 3376 return (port); 3377 } 3378 3379 if (tcp->tcp_anon_priv_bind) { 3380 port = tcp_get_next_priv_port(tcp); 3381 } else { 3382 if (count == 0 && user_specified) { 3383 /* 3384 * We may have to return an anonymous port. So 3385 * get one to start with. 3386 */ 3387 port = 3388 tcp_update_next_port( 3389 tcps->tcps_next_port_to_try, 3390 tcp, B_TRUE); 3391 user_specified = B_FALSE; 3392 } else { 3393 port = tcp_update_next_port(port + 1, tcp, 3394 B_FALSE); 3395 } 3396 } 3397 if (port == 0) 3398 break; 3399 3400 /* 3401 * Don't let this loop run forever in the case where 3402 * all of the anonymous ports are in use. 3403 */ 3404 } while (++count < loopmax); 3405 return (0); 3406 } 3407 3408 /* 3409 * tcp_clean_death / tcp_close_detached must not be called more than once 3410 * on a tcp. Thus every function that potentially calls tcp_clean_death 3411 * must check for the tcp state before calling tcp_clean_death. 3412 * Eg. tcp_input, tcp_rput_data, tcp_eager_kill, tcp_clean_death_wrapper, 3413 * tcp_timer_handler, all check for the tcp state. 3414 */ 3415 /* ARGSUSED */ 3416 void 3417 tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2) 3418 { 3419 tcp_t *tcp = ((conn_t *)arg)->conn_tcp; 3420 3421 freemsg(mp); 3422 if (tcp->tcp_state > TCPS_BOUND) 3423 (void) tcp_clean_death(((conn_t *)arg)->conn_tcp, 3424 ETIMEDOUT, 5); 3425 } 3426 3427 /* 3428 * We are dying for some reason. Try to do it gracefully. (May be called 3429 * as writer.) 3430 * 3431 * Return -1 if the structure was not cleaned up (if the cleanup had to be 3432 * done by a service procedure). 3433 * TBD - Should the return value distinguish between the tcp_t being 3434 * freed and it being reinitialized? 3435 */ 3436 static int 3437 tcp_clean_death(tcp_t *tcp, int err, uint8_t tag) 3438 { 3439 mblk_t *mp; 3440 queue_t *q; 3441 conn_t *connp = tcp->tcp_connp; 3442 tcp_stack_t *tcps = tcp->tcp_tcps; 3443 sodirect_t *sodp; 3444 3445 TCP_CLD_STAT(tag); 3446 3447 #if TCP_TAG_CLEAN_DEATH 3448 tcp->tcp_cleandeathtag = tag; 3449 #endif 3450 3451 if (tcp->tcp_fused) 3452 tcp_unfuse(tcp); 3453 3454 if (tcp->tcp_linger_tid != 0 && 3455 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 3456 tcp_stop_lingering(tcp); 3457 } 3458 3459 ASSERT(tcp != NULL); 3460 ASSERT((tcp->tcp_family == AF_INET && 3461 tcp->tcp_ipversion == IPV4_VERSION) || 3462 (tcp->tcp_family == AF_INET6 && 3463 (tcp->tcp_ipversion == IPV4_VERSION || 3464 tcp->tcp_ipversion == IPV6_VERSION))); 3465 3466 if (TCP_IS_DETACHED(tcp)) { 3467 if (tcp->tcp_hard_binding) { 3468 /* 3469 * Its an eager that we are dealing with. We close the 3470 * eager but in case a conn_ind has already gone to the 3471 * listener, let tcp_accept_finish() send a discon_ind 3472 * to the listener and drop the last reference. If the 3473 * listener doesn't even know about the eager i.e. the 3474 * conn_ind hasn't gone up, blow away the eager and drop 3475 * the last reference as well. If the conn_ind has gone 3476 * up, state should be BOUND. tcp_accept_finish 3477 * will figure out that the connection has received a 3478 * RST and will send a DISCON_IND to the application. 3479 */ 3480 tcp_closei_local(tcp); 3481 if (!tcp->tcp_tconnind_started) { 3482 CONN_DEC_REF(connp); 3483 } else { 3484 tcp->tcp_state = TCPS_BOUND; 3485 } 3486 } else { 3487 tcp_close_detached(tcp); 3488 } 3489 return (0); 3490 } 3491 3492 TCP_STAT(tcps, tcp_clean_death_nondetached); 3493 3494 /* If sodirect, not anymore */ 3495 SOD_PTR_ENTER(tcp, sodp); 3496 if (sodp != NULL) { 3497 tcp->tcp_sodirect = NULL; 3498 mutex_exit(sodp->sod_lockp); 3499 } 3500 3501 q = tcp->tcp_rq; 3502 3503 /* Trash all inbound data */ 3504 if (!IPCL_IS_NONSTR(connp)) { 3505 ASSERT(q != NULL); 3506 flushq(q, FLUSHALL); 3507 } 3508 3509 /* 3510 * If we are at least part way open and there is error 3511 * (err==0 implies no error) 3512 * notify our client by a T_DISCON_IND. 3513 */ 3514 if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) { 3515 if (tcp->tcp_state >= TCPS_ESTABLISHED && 3516 !TCP_IS_SOCKET(tcp)) { 3517 /* 3518 * Send M_FLUSH according to TPI. Because sockets will 3519 * (and must) ignore FLUSHR we do that only for TPI 3520 * endpoints and sockets in STREAMS mode. 3521 */ 3522 (void) putnextctl1(q, M_FLUSH, FLUSHR); 3523 } 3524 if (tcp->tcp_debug) { 3525 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 3526 "tcp_clean_death: discon err %d", err); 3527 } 3528 if (IPCL_IS_NONSTR(connp)) { 3529 /* Direct socket, use upcall */ 3530 (*connp->conn_upcalls->su_disconnected)( 3531 connp->conn_upper_handle, tcp->tcp_connid, err); 3532 } else { 3533 mp = mi_tpi_discon_ind(NULL, err, 0); 3534 if (mp != NULL) { 3535 putnext(q, mp); 3536 } else { 3537 if (tcp->tcp_debug) { 3538 (void) strlog(TCP_MOD_ID, 0, 1, 3539 SL_ERROR|SL_TRACE, 3540 "tcp_clean_death, sending M_ERROR"); 3541 } 3542 (void) putnextctl1(q, M_ERROR, EPROTO); 3543 } 3544 } 3545 if (tcp->tcp_state <= TCPS_SYN_RCVD) { 3546 /* SYN_SENT or SYN_RCVD */ 3547 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 3548 } else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) { 3549 /* ESTABLISHED or CLOSE_WAIT */ 3550 BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); 3551 } 3552 } 3553 3554 tcp_reinit(tcp); 3555 if (IPCL_IS_NONSTR(connp)) 3556 (void) tcp_do_unbind(connp); 3557 3558 return (-1); 3559 } 3560 3561 /* 3562 * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout 3563 * to expire, stop the wait and finish the close. 3564 */ 3565 static void 3566 tcp_stop_lingering(tcp_t *tcp) 3567 { 3568 clock_t delta = 0; 3569 tcp_stack_t *tcps = tcp->tcp_tcps; 3570 3571 tcp->tcp_linger_tid = 0; 3572 if (tcp->tcp_state > TCPS_LISTEN) { 3573 tcp_acceptor_hash_remove(tcp); 3574 mutex_enter(&tcp->tcp_non_sq_lock); 3575 if (tcp->tcp_flow_stopped) { 3576 tcp_clrqfull(tcp); 3577 } 3578 mutex_exit(&tcp->tcp_non_sq_lock); 3579 3580 if (tcp->tcp_timer_tid != 0) { 3581 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 3582 tcp->tcp_timer_tid = 0; 3583 } 3584 /* 3585 * Need to cancel those timers which will not be used when 3586 * TCP is detached. This has to be done before the tcp_wq 3587 * is set to the global queue. 3588 */ 3589 tcp_timers_stop(tcp); 3590 3591 tcp->tcp_detached = B_TRUE; 3592 ASSERT(tcps->tcps_g_q != NULL); 3593 tcp->tcp_rq = tcps->tcps_g_q; 3594 tcp->tcp_wq = WR(tcps->tcps_g_q); 3595 3596 if (tcp->tcp_state == TCPS_TIME_WAIT) { 3597 tcp_time_wait_append(tcp); 3598 TCP_DBGSTAT(tcps, tcp_detach_time_wait); 3599 goto finish; 3600 } 3601 3602 /* 3603 * If delta is zero the timer event wasn't executed and was 3604 * successfully canceled. In this case we need to restart it 3605 * with the minimal delta possible. 3606 */ 3607 if (delta >= 0) { 3608 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 3609 delta ? delta : 1); 3610 } 3611 } else { 3612 tcp_closei_local(tcp); 3613 CONN_DEC_REF(tcp->tcp_connp); 3614 } 3615 finish: 3616 /* Signal closing thread that it can complete close */ 3617 mutex_enter(&tcp->tcp_closelock); 3618 tcp->tcp_detached = B_TRUE; 3619 ASSERT(tcps->tcps_g_q != NULL); 3620 3621 tcp->tcp_rq = tcps->tcps_g_q; 3622 tcp->tcp_wq = WR(tcps->tcps_g_q); 3623 3624 tcp->tcp_closed = 1; 3625 cv_signal(&tcp->tcp_closecv); 3626 mutex_exit(&tcp->tcp_closelock); 3627 } 3628 3629 /* 3630 * Handle lingering timeouts. This function is called when the SO_LINGER timeout 3631 * expires. 3632 */ 3633 static void 3634 tcp_close_linger_timeout(void *arg) 3635 { 3636 conn_t *connp = (conn_t *)arg; 3637 tcp_t *tcp = connp->conn_tcp; 3638 3639 tcp->tcp_client_errno = ETIMEDOUT; 3640 tcp_stop_lingering(tcp); 3641 } 3642 3643 static void 3644 tcp_close_common(conn_t *connp, int flags) 3645 { 3646 tcp_t *tcp = connp->conn_tcp; 3647 mblk_t *mp = &tcp->tcp_closemp; 3648 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 3649 mblk_t *bp; 3650 3651 ASSERT(connp->conn_ref >= 2); 3652 3653 /* 3654 * Mark the conn as closing. ill_pending_mp_add will not 3655 * add any mp to the pending mp list, after this conn has 3656 * started closing. Same for sq_pending_mp_add 3657 */ 3658 mutex_enter(&connp->conn_lock); 3659 connp->conn_state_flags |= CONN_CLOSING; 3660 if (connp->conn_oper_pending_ill != NULL) 3661 conn_ioctl_cleanup_reqd = B_TRUE; 3662 CONN_INC_REF_LOCKED(connp); 3663 mutex_exit(&connp->conn_lock); 3664 tcp->tcp_closeflags = (uint8_t)flags; 3665 ASSERT(connp->conn_ref >= 3); 3666 3667 /* 3668 * tcp_closemp_used is used below without any protection of a lock 3669 * as we don't expect any one else to use it concurrently at this 3670 * point otherwise it would be a major defect. 3671 */ 3672 3673 if (mp->b_prev == NULL) 3674 tcp->tcp_closemp_used = B_TRUE; 3675 else 3676 cmn_err(CE_PANIC, "tcp_close: concurrent use of tcp_closemp: " 3677 "connp %p tcp %p\n", (void *)connp, (void *)tcp); 3678 3679 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 3680 3681 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_close_output, connp, 3682 tcp_squeue_flag, SQTAG_IP_TCP_CLOSE); 3683 3684 mutex_enter(&tcp->tcp_closelock); 3685 while (!tcp->tcp_closed) { 3686 if (!cv_wait_sig(&tcp->tcp_closecv, &tcp->tcp_closelock)) { 3687 /* 3688 * The cv_wait_sig() was interrupted. We now do the 3689 * following: 3690 * 3691 * 1) If the endpoint was lingering, we allow this 3692 * to be interrupted by cancelling the linger timeout 3693 * and closing normally. 3694 * 3695 * 2) Revert to calling cv_wait() 3696 * 3697 * We revert to using cv_wait() to avoid an 3698 * infinite loop which can occur if the calling 3699 * thread is higher priority than the squeue worker 3700 * thread and is bound to the same cpu. 3701 */ 3702 if (tcp->tcp_linger && tcp->tcp_lingertime > 0) { 3703 mutex_exit(&tcp->tcp_closelock); 3704 /* Entering squeue, bump ref count. */ 3705 CONN_INC_REF(connp); 3706 bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL); 3707 SQUEUE_ENTER_ONE(connp->conn_sqp, bp, 3708 tcp_linger_interrupted, connp, 3709 tcp_squeue_flag, SQTAG_IP_TCP_CLOSE); 3710 mutex_enter(&tcp->tcp_closelock); 3711 } 3712 break; 3713 } 3714 } 3715 while (!tcp->tcp_closed) 3716 cv_wait(&tcp->tcp_closecv, &tcp->tcp_closelock); 3717 mutex_exit(&tcp->tcp_closelock); 3718 3719 /* 3720 * In the case of listener streams that have eagers in the q or q0 3721 * we wait for the eagers to drop their reference to us. tcp_rq and 3722 * tcp_wq of the eagers point to our queues. By waiting for the 3723 * refcnt to drop to 1, we are sure that the eagers have cleaned 3724 * up their queue pointers and also dropped their references to us. 3725 */ 3726 if (tcp->tcp_wait_for_eagers) { 3727 mutex_enter(&connp->conn_lock); 3728 while (connp->conn_ref != 1) { 3729 cv_wait(&connp->conn_cv, &connp->conn_lock); 3730 } 3731 mutex_exit(&connp->conn_lock); 3732 } 3733 /* 3734 * ioctl cleanup. The mp is queued in the 3735 * ill_pending_mp or in the sq_pending_mp. 3736 */ 3737 if (conn_ioctl_cleanup_reqd) 3738 conn_ioctl_cleanup(connp); 3739 3740 tcp->tcp_cpid = -1; 3741 } 3742 3743 static int 3744 tcp_tpi_close(queue_t *q, int flags) 3745 { 3746 conn_t *connp; 3747 3748 ASSERT(WR(q)->q_next == NULL); 3749 3750 if (flags & SO_FALLBACK) { 3751 /* 3752 * stream is being closed while in fallback 3753 * simply free the resources that were allocated 3754 */ 3755 inet_minor_free(WR(q)->q_ptr, (dev_t)(RD(q)->q_ptr)); 3756 qprocsoff(q); 3757 goto done; 3758 } 3759 3760 connp = Q_TO_CONN(q); 3761 /* 3762 * We are being closed as /dev/tcp or /dev/tcp6. 3763 */ 3764 tcp_close_common(connp, flags); 3765 3766 qprocsoff(q); 3767 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 3768 3769 /* 3770 * Drop IP's reference on the conn. This is the last reference 3771 * on the connp if the state was less than established. If the 3772 * connection has gone into timewait state, then we will have 3773 * one ref for the TCP and one more ref (total of two) for the 3774 * classifier connected hash list (a timewait connections stays 3775 * in connected hash till closed). 3776 * 3777 * We can't assert the references because there might be other 3778 * transient reference places because of some walkers or queued 3779 * packets in squeue for the timewait state. 3780 */ 3781 CONN_DEC_REF(connp); 3782 done: 3783 q->q_ptr = WR(q)->q_ptr = NULL; 3784 return (0); 3785 } 3786 3787 static int 3788 tcpclose_accept(queue_t *q) 3789 { 3790 vmem_t *minor_arena; 3791 dev_t conn_dev; 3792 3793 ASSERT(WR(q)->q_qinfo == &tcp_acceptor_winit); 3794 3795 /* 3796 * We had opened an acceptor STREAM for sockfs which is 3797 * now being closed due to some error. 3798 */ 3799 qprocsoff(q); 3800 3801 minor_arena = (vmem_t *)WR(q)->q_ptr; 3802 conn_dev = (dev_t)RD(q)->q_ptr; 3803 ASSERT(minor_arena != NULL); 3804 ASSERT(conn_dev != 0); 3805 inet_minor_free(minor_arena, conn_dev); 3806 q->q_ptr = WR(q)->q_ptr = NULL; 3807 return (0); 3808 } 3809 3810 /* 3811 * Called by tcp_close() routine via squeue when lingering is 3812 * interrupted by a signal. 3813 */ 3814 3815 /* ARGSUSED */ 3816 static void 3817 tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2) 3818 { 3819 conn_t *connp = (conn_t *)arg; 3820 tcp_t *tcp = connp->conn_tcp; 3821 3822 freeb(mp); 3823 if (tcp->tcp_linger_tid != 0 && 3824 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 3825 tcp_stop_lingering(tcp); 3826 tcp->tcp_client_errno = EINTR; 3827 } 3828 } 3829 3830 /* 3831 * Called by streams close routine via squeues when our client blows off her 3832 * descriptor, we take this to mean: "close the stream state NOW, close the tcp 3833 * connection politely" When SO_LINGER is set (with a non-zero linger time and 3834 * it is not a nonblocking socket) then this routine sleeps until the FIN is 3835 * acked. 3836 * 3837 * NOTE: tcp_close potentially returns error when lingering. 3838 * However, the stream head currently does not pass these errors 3839 * to the application. 4.4BSD only returns EINTR and EWOULDBLOCK 3840 * errors to the application (from tsleep()) and not errors 3841 * like ECONNRESET caused by receiving a reset packet. 3842 */ 3843 3844 /* ARGSUSED */ 3845 static void 3846 tcp_close_output(void *arg, mblk_t *mp, void *arg2) 3847 { 3848 char *msg; 3849 conn_t *connp = (conn_t *)arg; 3850 tcp_t *tcp = connp->conn_tcp; 3851 clock_t delta = 0; 3852 tcp_stack_t *tcps = tcp->tcp_tcps; 3853 3854 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 3855 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 3856 3857 mutex_enter(&tcp->tcp_eager_lock); 3858 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 3859 /* Cleanup for listener */ 3860 tcp_eager_cleanup(tcp, 0); 3861 tcp->tcp_wait_for_eagers = 1; 3862 } 3863 mutex_exit(&tcp->tcp_eager_lock); 3864 3865 connp->conn_mdt_ok = B_FALSE; 3866 tcp->tcp_mdt = B_FALSE; 3867 3868 connp->conn_lso_ok = B_FALSE; 3869 tcp->tcp_lso = B_FALSE; 3870 3871 msg = NULL; 3872 switch (tcp->tcp_state) { 3873 case TCPS_CLOSED: 3874 case TCPS_IDLE: 3875 case TCPS_BOUND: 3876 case TCPS_LISTEN: 3877 break; 3878 case TCPS_SYN_SENT: 3879 msg = "tcp_close, during connect"; 3880 break; 3881 case TCPS_SYN_RCVD: 3882 /* 3883 * Close during the connect 3-way handshake 3884 * but here there may or may not be pending data 3885 * already on queue. Process almost same as in 3886 * the ESTABLISHED state. 3887 */ 3888 /* FALLTHRU */ 3889 default: 3890 if (tcp->tcp_sodirect != NULL) { 3891 /* Ok, no more sodirect */ 3892 tcp->tcp_sodirect = NULL; 3893 } 3894 3895 if (tcp->tcp_fused) 3896 tcp_unfuse(tcp); 3897 3898 /* 3899 * If SO_LINGER has set a zero linger time, abort the 3900 * connection with a reset. 3901 */ 3902 if (tcp->tcp_linger && tcp->tcp_lingertime == 0) { 3903 msg = "tcp_close, zero lingertime"; 3904 break; 3905 } 3906 3907 ASSERT(tcp->tcp_hard_bound || tcp->tcp_hard_binding); 3908 /* 3909 * Abort connection if there is unread data queued. 3910 */ 3911 if (tcp->tcp_rcv_list || tcp->tcp_reass_head) { 3912 msg = "tcp_close, unread data"; 3913 break; 3914 } 3915 /* 3916 * tcp_hard_bound is now cleared thus all packets go through 3917 * tcp_lookup. This fact is used by tcp_detach below. 3918 * 3919 * We have done a qwait() above which could have possibly 3920 * drained more messages in turn causing transition to a 3921 * different state. Check whether we have to do the rest 3922 * of the processing or not. 3923 */ 3924 if (tcp->tcp_state <= TCPS_LISTEN) 3925 break; 3926 3927 /* 3928 * Transmit the FIN before detaching the tcp_t. 3929 * After tcp_detach returns this queue/perimeter 3930 * no longer owns the tcp_t thus others can modify it. 3931 */ 3932 (void) tcp_xmit_end(tcp); 3933 3934 /* 3935 * If lingering on close then wait until the fin is acked, 3936 * the SO_LINGER time passes, or a reset is sent/received. 3937 */ 3938 if (tcp->tcp_linger && tcp->tcp_lingertime > 0 && 3939 !(tcp->tcp_fin_acked) && 3940 tcp->tcp_state >= TCPS_ESTABLISHED) { 3941 if (tcp->tcp_closeflags & (FNDELAY|FNONBLOCK)) { 3942 tcp->tcp_client_errno = EWOULDBLOCK; 3943 } else if (tcp->tcp_client_errno == 0) { 3944 3945 ASSERT(tcp->tcp_linger_tid == 0); 3946 3947 tcp->tcp_linger_tid = TCP_TIMER(tcp, 3948 tcp_close_linger_timeout, 3949 tcp->tcp_lingertime * hz); 3950 3951 /* tcp_close_linger_timeout will finish close */ 3952 if (tcp->tcp_linger_tid == 0) 3953 tcp->tcp_client_errno = ENOSR; 3954 else 3955 return; 3956 } 3957 3958 /* 3959 * Check if we need to detach or just close 3960 * the instance. 3961 */ 3962 if (tcp->tcp_state <= TCPS_LISTEN) 3963 break; 3964 } 3965 3966 /* 3967 * Make sure that no other thread will access the tcp_rq of 3968 * this instance (through lookups etc.) as tcp_rq will go 3969 * away shortly. 3970 */ 3971 tcp_acceptor_hash_remove(tcp); 3972 3973 mutex_enter(&tcp->tcp_non_sq_lock); 3974 if (tcp->tcp_flow_stopped) { 3975 tcp_clrqfull(tcp); 3976 } 3977 mutex_exit(&tcp->tcp_non_sq_lock); 3978 3979 if (tcp->tcp_timer_tid != 0) { 3980 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 3981 tcp->tcp_timer_tid = 0; 3982 } 3983 /* 3984 * Need to cancel those timers which will not be used when 3985 * TCP is detached. This has to be done before the tcp_wq 3986 * is set to the global queue. 3987 */ 3988 tcp_timers_stop(tcp); 3989 3990 tcp->tcp_detached = B_TRUE; 3991 if (tcp->tcp_state == TCPS_TIME_WAIT) { 3992 tcp_time_wait_append(tcp); 3993 TCP_DBGSTAT(tcps, tcp_detach_time_wait); 3994 ASSERT(connp->conn_ref >= 3); 3995 goto finish; 3996 } 3997 3998 /* 3999 * If delta is zero the timer event wasn't executed and was 4000 * successfully canceled. In this case we need to restart it 4001 * with the minimal delta possible. 4002 */ 4003 if (delta >= 0) 4004 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 4005 delta ? delta : 1); 4006 4007 ASSERT(connp->conn_ref >= 3); 4008 goto finish; 4009 } 4010 4011 /* Detach did not complete. Still need to remove q from stream. */ 4012 if (msg) { 4013 if (tcp->tcp_state == TCPS_ESTABLISHED || 4014 tcp->tcp_state == TCPS_CLOSE_WAIT) 4015 BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); 4016 if (tcp->tcp_state == TCPS_SYN_SENT || 4017 tcp->tcp_state == TCPS_SYN_RCVD) 4018 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 4019 tcp_xmit_ctl(msg, tcp, tcp->tcp_snxt, 0, TH_RST); 4020 } 4021 4022 tcp_closei_local(tcp); 4023 CONN_DEC_REF(connp); 4024 ASSERT(connp->conn_ref >= 2); 4025 4026 finish: 4027 /* 4028 * Although packets are always processed on the correct 4029 * tcp's perimeter and access is serialized via squeue's, 4030 * IP still needs a queue when sending packets in time_wait 4031 * state so use WR(tcps_g_q) till ip_output() can be 4032 * changed to deal with just connp. For read side, we 4033 * could have set tcp_rq to NULL but there are some cases 4034 * in tcp_rput_data() from early days of this code which 4035 * do a putnext without checking if tcp is closed. Those 4036 * need to be identified before both tcp_rq and tcp_wq 4037 * can be set to NULL and tcps_g_q can disappear forever. 4038 */ 4039 mutex_enter(&tcp->tcp_closelock); 4040 /* 4041 * Don't change the queues in the case of a listener that has 4042 * eagers in its q or q0. It could surprise the eagers. 4043 * Instead wait for the eagers outside the squeue. 4044 */ 4045 if (!tcp->tcp_wait_for_eagers) { 4046 tcp->tcp_detached = B_TRUE; 4047 /* 4048 * When default queue is closing we set tcps_g_q to NULL 4049 * after the close is done. 4050 */ 4051 ASSERT(tcps->tcps_g_q != NULL); 4052 tcp->tcp_rq = tcps->tcps_g_q; 4053 tcp->tcp_wq = WR(tcps->tcps_g_q); 4054 } 4055 4056 /* Signal tcp_close() to finish closing. */ 4057 tcp->tcp_closed = 1; 4058 cv_signal(&tcp->tcp_closecv); 4059 mutex_exit(&tcp->tcp_closelock); 4060 } 4061 4062 4063 /* 4064 * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp. 4065 * Some stream heads get upset if they see these later on as anything but NULL. 4066 */ 4067 static void 4068 tcp_close_mpp(mblk_t **mpp) 4069 { 4070 mblk_t *mp; 4071 4072 if ((mp = *mpp) != NULL) { 4073 do { 4074 mp->b_next = NULL; 4075 mp->b_prev = NULL; 4076 } while ((mp = mp->b_cont) != NULL); 4077 4078 mp = *mpp; 4079 *mpp = NULL; 4080 freemsg(mp); 4081 } 4082 } 4083 4084 /* Do detached close. */ 4085 static void 4086 tcp_close_detached(tcp_t *tcp) 4087 { 4088 if (tcp->tcp_fused) 4089 tcp_unfuse(tcp); 4090 4091 /* 4092 * Clustering code serializes TCP disconnect callbacks and 4093 * cluster tcp list walks by blocking a TCP disconnect callback 4094 * if a cluster tcp list walk is in progress. This ensures 4095 * accurate accounting of TCPs in the cluster code even though 4096 * the TCP list walk itself is not atomic. 4097 */ 4098 tcp_closei_local(tcp); 4099 CONN_DEC_REF(tcp->tcp_connp); 4100 } 4101 4102 /* 4103 * Stop all TCP timers, and free the timer mblks if requested. 4104 */ 4105 void 4106 tcp_timers_stop(tcp_t *tcp) 4107 { 4108 if (tcp->tcp_timer_tid != 0) { 4109 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 4110 tcp->tcp_timer_tid = 0; 4111 } 4112 if (tcp->tcp_ka_tid != 0) { 4113 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ka_tid); 4114 tcp->tcp_ka_tid = 0; 4115 } 4116 if (tcp->tcp_ack_tid != 0) { 4117 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 4118 tcp->tcp_ack_tid = 0; 4119 } 4120 if (tcp->tcp_push_tid != 0) { 4121 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 4122 tcp->tcp_push_tid = 0; 4123 } 4124 } 4125 4126 /* 4127 * The tcp_t is going away. Remove it from all lists and set it 4128 * to TCPS_CLOSED. The freeing up of memory is deferred until 4129 * tcp_inactive. This is needed since a thread in tcp_rput might have 4130 * done a CONN_INC_REF on this structure before it was removed from the 4131 * hashes. 4132 */ 4133 static void 4134 tcp_closei_local(tcp_t *tcp) 4135 { 4136 ire_t *ire; 4137 conn_t *connp = tcp->tcp_connp; 4138 tcp_stack_t *tcps = tcp->tcp_tcps; 4139 4140 if (!TCP_IS_SOCKET(tcp)) 4141 tcp_acceptor_hash_remove(tcp); 4142 4143 UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs); 4144 tcp->tcp_ibsegs = 0; 4145 UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs); 4146 tcp->tcp_obsegs = 0; 4147 4148 /* 4149 * If we are an eager connection hanging off a listener that 4150 * hasn't formally accepted the connection yet, get off his 4151 * list and blow off any data that we have accumulated. 4152 */ 4153 if (tcp->tcp_listener != NULL) { 4154 tcp_t *listener = tcp->tcp_listener; 4155 mutex_enter(&listener->tcp_eager_lock); 4156 /* 4157 * tcp_tconnind_started == B_TRUE means that the 4158 * conn_ind has already gone to listener. At 4159 * this point, eager will be closed but we 4160 * leave it in listeners eager list so that 4161 * if listener decides to close without doing 4162 * accept, we can clean this up. In tcp_wput_accept 4163 * we take care of the case of accept on closed 4164 * eager. 4165 */ 4166 if (!tcp->tcp_tconnind_started) { 4167 tcp_eager_unlink(tcp); 4168 mutex_exit(&listener->tcp_eager_lock); 4169 /* 4170 * We don't want to have any pointers to the 4171 * listener queue, after we have released our 4172 * reference on the listener 4173 */ 4174 ASSERT(tcps->tcps_g_q != NULL); 4175 tcp->tcp_rq = tcps->tcps_g_q; 4176 tcp->tcp_wq = WR(tcps->tcps_g_q); 4177 CONN_DEC_REF(listener->tcp_connp); 4178 } else { 4179 mutex_exit(&listener->tcp_eager_lock); 4180 } 4181 } 4182 4183 /* Stop all the timers */ 4184 tcp_timers_stop(tcp); 4185 4186 if (tcp->tcp_state == TCPS_LISTEN) { 4187 if (tcp->tcp_ip_addr_cache) { 4188 kmem_free((void *)tcp->tcp_ip_addr_cache, 4189 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 4190 tcp->tcp_ip_addr_cache = NULL; 4191 } 4192 } 4193 mutex_enter(&tcp->tcp_non_sq_lock); 4194 if (tcp->tcp_flow_stopped) 4195 tcp_clrqfull(tcp); 4196 mutex_exit(&tcp->tcp_non_sq_lock); 4197 4198 tcp_bind_hash_remove(tcp); 4199 /* 4200 * If the tcp_time_wait_collector (which runs outside the squeue) 4201 * is trying to remove this tcp from the time wait list, we will 4202 * block in tcp_time_wait_remove while trying to acquire the 4203 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also 4204 * requires the ipcl_hash_remove to be ordered after the 4205 * tcp_time_wait_remove for the refcnt checks to work correctly. 4206 */ 4207 if (tcp->tcp_state == TCPS_TIME_WAIT) 4208 (void) tcp_time_wait_remove(tcp, NULL); 4209 CL_INET_DISCONNECT(connp, tcp); 4210 ipcl_hash_remove(connp); 4211 4212 /* 4213 * Delete the cached ire in conn_ire_cache and also mark 4214 * the conn as CONDEMNED 4215 */ 4216 mutex_enter(&connp->conn_lock); 4217 connp->conn_state_flags |= CONN_CONDEMNED; 4218 ire = connp->conn_ire_cache; 4219 connp->conn_ire_cache = NULL; 4220 mutex_exit(&connp->conn_lock); 4221 if (ire != NULL) 4222 IRE_REFRELE_NOTR(ire); 4223 4224 /* Need to cleanup any pending ioctls */ 4225 ASSERT(tcp->tcp_time_wait_next == NULL); 4226 ASSERT(tcp->tcp_time_wait_prev == NULL); 4227 ASSERT(tcp->tcp_time_wait_expire == 0); 4228 tcp->tcp_state = TCPS_CLOSED; 4229 4230 /* Release any SSL context */ 4231 if (tcp->tcp_kssl_ent != NULL) { 4232 kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); 4233 tcp->tcp_kssl_ent = NULL; 4234 } 4235 if (tcp->tcp_kssl_ctx != NULL) { 4236 kssl_release_ctx(tcp->tcp_kssl_ctx); 4237 tcp->tcp_kssl_ctx = NULL; 4238 } 4239 tcp->tcp_kssl_pending = B_FALSE; 4240 4241 tcp_ipsec_cleanup(tcp); 4242 } 4243 4244 /* 4245 * tcp is dying (called from ipcl_conn_destroy and error cases). 4246 * Free the tcp_t in either case. 4247 */ 4248 void 4249 tcp_free(tcp_t *tcp) 4250 { 4251 mblk_t *mp; 4252 ip6_pkt_t *ipp; 4253 4254 ASSERT(tcp != NULL); 4255 ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL); 4256 4257 tcp->tcp_rq = NULL; 4258 tcp->tcp_wq = NULL; 4259 4260 tcp_close_mpp(&tcp->tcp_xmit_head); 4261 tcp_close_mpp(&tcp->tcp_reass_head); 4262 if (tcp->tcp_rcv_list != NULL) { 4263 /* Free b_next chain */ 4264 tcp_close_mpp(&tcp->tcp_rcv_list); 4265 } 4266 if ((mp = tcp->tcp_urp_mp) != NULL) { 4267 freemsg(mp); 4268 } 4269 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 4270 freemsg(mp); 4271 } 4272 4273 if (tcp->tcp_fused_sigurg_mp != NULL) { 4274 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 4275 freeb(tcp->tcp_fused_sigurg_mp); 4276 tcp->tcp_fused_sigurg_mp = NULL; 4277 } 4278 4279 if (tcp->tcp_ordrel_mp != NULL) { 4280 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 4281 freeb(tcp->tcp_ordrel_mp); 4282 tcp->tcp_ordrel_mp = NULL; 4283 } 4284 4285 if (tcp->tcp_sack_info != NULL) { 4286 if (tcp->tcp_notsack_list != NULL) { 4287 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 4288 } 4289 bzero(tcp->tcp_sack_info, sizeof (tcp_sack_info_t)); 4290 } 4291 4292 if (tcp->tcp_hopopts != NULL) { 4293 mi_free(tcp->tcp_hopopts); 4294 tcp->tcp_hopopts = NULL; 4295 tcp->tcp_hopoptslen = 0; 4296 } 4297 ASSERT(tcp->tcp_hopoptslen == 0); 4298 if (tcp->tcp_dstopts != NULL) { 4299 mi_free(tcp->tcp_dstopts); 4300 tcp->tcp_dstopts = NULL; 4301 tcp->tcp_dstoptslen = 0; 4302 } 4303 ASSERT(tcp->tcp_dstoptslen == 0); 4304 if (tcp->tcp_rtdstopts != NULL) { 4305 mi_free(tcp->tcp_rtdstopts); 4306 tcp->tcp_rtdstopts = NULL; 4307 tcp->tcp_rtdstoptslen = 0; 4308 } 4309 ASSERT(tcp->tcp_rtdstoptslen == 0); 4310 if (tcp->tcp_rthdr != NULL) { 4311 mi_free(tcp->tcp_rthdr); 4312 tcp->tcp_rthdr = NULL; 4313 tcp->tcp_rthdrlen = 0; 4314 } 4315 ASSERT(tcp->tcp_rthdrlen == 0); 4316 4317 ipp = &tcp->tcp_sticky_ipp; 4318 if (ipp->ipp_fields & (IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 4319 IPPF_RTHDR)) 4320 ip6_pkt_free(ipp); 4321 4322 /* 4323 * Free memory associated with the tcp/ip header template. 4324 */ 4325 4326 if (tcp->tcp_iphc != NULL) 4327 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 4328 4329 /* 4330 * Following is really a blowing away a union. 4331 * It happens to have exactly two members of identical size 4332 * the following code is enough. 4333 */ 4334 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 4335 } 4336 4337 4338 /* 4339 * Put a connection confirmation message upstream built from the 4340 * address information within 'iph' and 'tcph'. Report our success or failure. 4341 */ 4342 static boolean_t 4343 tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, mblk_t *idmp, 4344 mblk_t **defermp) 4345 { 4346 sin_t sin; 4347 sin6_t sin6; 4348 mblk_t *mp; 4349 char *optp = NULL; 4350 int optlen = 0; 4351 4352 if (defermp != NULL) 4353 *defermp = NULL; 4354 4355 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) { 4356 /* 4357 * Return in T_CONN_CON results of option negotiation through 4358 * the T_CONN_REQ. Note: If there is an real end-to-end option 4359 * negotiation, then what is received from remote end needs 4360 * to be taken into account but there is no such thing (yet?) 4361 * in our TCP/IP. 4362 * Note: We do not use mi_offset_param() here as 4363 * tcp_opts_conn_req contents do not directly come from 4364 * an application and are either generated in kernel or 4365 * from user input that was already verified. 4366 */ 4367 mp = tcp->tcp_conn.tcp_opts_conn_req; 4368 optp = (char *)(mp->b_rptr + 4369 ((struct T_conn_req *)mp->b_rptr)->OPT_offset); 4370 optlen = (int) 4371 ((struct T_conn_req *)mp->b_rptr)->OPT_length; 4372 } 4373 4374 if (IPH_HDR_VERSION(iphdr) == IPV4_VERSION) { 4375 ipha_t *ipha = (ipha_t *)iphdr; 4376 4377 /* packet is IPv4 */ 4378 if (tcp->tcp_family == AF_INET) { 4379 sin = sin_null; 4380 sin.sin_addr.s_addr = ipha->ipha_src; 4381 sin.sin_port = *(uint16_t *)tcph->th_lport; 4382 sin.sin_family = AF_INET; 4383 mp = mi_tpi_conn_con(NULL, (char *)&sin, 4384 (int)sizeof (sin_t), optp, optlen); 4385 } else { 4386 sin6 = sin6_null; 4387 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr); 4388 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4389 sin6.sin6_family = AF_INET6; 4390 mp = mi_tpi_conn_con(NULL, (char *)&sin6, 4391 (int)sizeof (sin6_t), optp, optlen); 4392 4393 } 4394 } else { 4395 ip6_t *ip6h = (ip6_t *)iphdr; 4396 4397 ASSERT(IPH_HDR_VERSION(iphdr) == IPV6_VERSION); 4398 ASSERT(tcp->tcp_family == AF_INET6); 4399 sin6 = sin6_null; 4400 sin6.sin6_addr = ip6h->ip6_src; 4401 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4402 sin6.sin6_family = AF_INET6; 4403 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 4404 mp = mi_tpi_conn_con(NULL, (char *)&sin6, 4405 (int)sizeof (sin6_t), optp, optlen); 4406 } 4407 4408 if (!mp) 4409 return (B_FALSE); 4410 4411 mblk_copycred(mp, idmp); 4412 4413 if (defermp == NULL) { 4414 conn_t *connp = tcp->tcp_connp; 4415 if (IPCL_IS_NONSTR(connp)) { 4416 cred_t *cr; 4417 pid_t cpid; 4418 4419 cr = msg_getcred(mp, &cpid); 4420 (*connp->conn_upcalls->su_connected) 4421 (connp->conn_upper_handle, tcp->tcp_connid, cr, 4422 cpid); 4423 freemsg(mp); 4424 } else { 4425 putnext(tcp->tcp_rq, mp); 4426 } 4427 } else { 4428 *defermp = mp; 4429 } 4430 4431 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 4432 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 4433 return (B_TRUE); 4434 } 4435 4436 /* 4437 * Defense for the SYN attack - 4438 * 1. When q0 is full, drop from the tail (tcp_eager_prev_drop_q0) the oldest 4439 * one from the list of droppable eagers. This list is a subset of q0. 4440 * see comments before the definition of MAKE_DROPPABLE(). 4441 * 2. Don't drop a SYN request before its first timeout. This gives every 4442 * request at least til the first timeout to complete its 3-way handshake. 4443 * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many 4444 * requests currently on the queue that has timed out. This will be used 4445 * as an indicator of whether an attack is under way, so that appropriate 4446 * actions can be taken. (It's incremented in tcp_timer() and decremented 4447 * either when eager goes into ESTABLISHED, or gets freed up.) 4448 * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on 4449 * # of timeout drops back to <= q0len/32 => SYN alert off 4450 */ 4451 static boolean_t 4452 tcp_drop_q0(tcp_t *tcp) 4453 { 4454 tcp_t *eager; 4455 mblk_t *mp; 4456 tcp_stack_t *tcps = tcp->tcp_tcps; 4457 4458 ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock)); 4459 ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0); 4460 4461 /* Pick oldest eager from the list of droppable eagers */ 4462 eager = tcp->tcp_eager_prev_drop_q0; 4463 4464 /* If list is empty. return B_FALSE */ 4465 if (eager == tcp) { 4466 return (B_FALSE); 4467 } 4468 4469 /* If allocated, the mp will be freed in tcp_clean_death_wrapper() */ 4470 if ((mp = allocb(0, BPRI_HI)) == NULL) 4471 return (B_FALSE); 4472 4473 /* 4474 * Take this eager out from the list of droppable eagers since we are 4475 * going to drop it. 4476 */ 4477 MAKE_UNDROPPABLE(eager); 4478 4479 if (tcp->tcp_debug) { 4480 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 4481 "tcp_drop_q0: listen half-open queue (max=%d) overflow" 4482 " (%d pending) on %s, drop one", tcps->tcps_conn_req_max_q0, 4483 tcp->tcp_conn_req_cnt_q0, 4484 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 4485 } 4486 4487 BUMP_MIB(&tcps->tcps_mib, tcpHalfOpenDrop); 4488 4489 /* Put a reference on the conn as we are enqueueing it in the sqeue */ 4490 CONN_INC_REF(eager->tcp_connp); 4491 4492 /* Mark the IRE created for this SYN request temporary */ 4493 tcp_ip_ire_mark_advice(eager); 4494 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, 4495 tcp_clean_death_wrapper, eager->tcp_connp, 4496 SQ_FILL, SQTAG_TCP_DROP_Q0); 4497 4498 return (B_TRUE); 4499 } 4500 4501 int 4502 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 4503 tcph_t *tcph, uint_t ipvers, mblk_t *idmp) 4504 { 4505 tcp_t *ltcp = lconnp->conn_tcp; 4506 tcp_t *tcp = connp->conn_tcp; 4507 mblk_t *tpi_mp; 4508 ipha_t *ipha; 4509 ip6_t *ip6h; 4510 sin6_t sin6; 4511 in6_addr_t v6dst; 4512 int err; 4513 int ifindex = 0; 4514 tcp_stack_t *tcps = tcp->tcp_tcps; 4515 4516 if (ipvers == IPV4_VERSION) { 4517 ipha = (ipha_t *)mp->b_rptr; 4518 4519 connp->conn_send = ip_output; 4520 connp->conn_recv = tcp_input; 4521 4522 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, 4523 &connp->conn_bound_source_v6); 4524 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6); 4525 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6); 4526 4527 sin6 = sin6_null; 4528 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr); 4529 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &v6dst); 4530 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4531 sin6.sin6_family = AF_INET6; 4532 sin6.__sin6_src_id = ip_srcid_find_addr(&v6dst, 4533 lconnp->conn_zoneid, tcps->tcps_netstack); 4534 if (tcp->tcp_recvdstaddr) { 4535 sin6_t sin6d; 4536 4537 sin6d = sin6_null; 4538 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, 4539 &sin6d.sin6_addr); 4540 sin6d.sin6_port = *(uint16_t *)tcph->th_fport; 4541 sin6d.sin6_family = AF_INET; 4542 tpi_mp = mi_tpi_extconn_ind(NULL, 4543 (char *)&sin6d, sizeof (sin6_t), 4544 (char *)&tcp, 4545 (t_scalar_t)sizeof (intptr_t), 4546 (char *)&sin6d, sizeof (sin6_t), 4547 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4548 } else { 4549 tpi_mp = mi_tpi_conn_ind(NULL, 4550 (char *)&sin6, sizeof (sin6_t), 4551 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4552 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4553 } 4554 } else { 4555 ip6h = (ip6_t *)mp->b_rptr; 4556 4557 connp->conn_send = ip_output_v6; 4558 connp->conn_recv = tcp_input; 4559 4560 connp->conn_bound_source_v6 = ip6h->ip6_dst; 4561 connp->conn_srcv6 = ip6h->ip6_dst; 4562 connp->conn_remv6 = ip6h->ip6_src; 4563 4564 /* db_cksumstuff is set at ip_fanout_tcp_v6 */ 4565 ifindex = (int)DB_CKSUMSTUFF(mp); 4566 DB_CKSUMSTUFF(mp) = 0; 4567 4568 sin6 = sin6_null; 4569 sin6.sin6_addr = ip6h->ip6_src; 4570 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4571 sin6.sin6_family = AF_INET6; 4572 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 4573 sin6.__sin6_src_id = ip_srcid_find_addr(&ip6h->ip6_dst, 4574 lconnp->conn_zoneid, tcps->tcps_netstack); 4575 4576 if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) { 4577 /* Pass up the scope_id of remote addr */ 4578 sin6.sin6_scope_id = ifindex; 4579 } else { 4580 sin6.sin6_scope_id = 0; 4581 } 4582 if (tcp->tcp_recvdstaddr) { 4583 sin6_t sin6d; 4584 4585 sin6d = sin6_null; 4586 sin6.sin6_addr = ip6h->ip6_dst; 4587 sin6d.sin6_port = *(uint16_t *)tcph->th_fport; 4588 sin6d.sin6_family = AF_INET; 4589 tpi_mp = mi_tpi_extconn_ind(NULL, 4590 (char *)&sin6d, sizeof (sin6_t), 4591 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4592 (char *)&sin6d, sizeof (sin6_t), 4593 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4594 } else { 4595 tpi_mp = mi_tpi_conn_ind(NULL, 4596 (char *)&sin6, sizeof (sin6_t), 4597 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4598 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4599 } 4600 } 4601 4602 if (tpi_mp == NULL) 4603 return (ENOMEM); 4604 4605 connp->conn_fport = *(uint16_t *)tcph->th_lport; 4606 connp->conn_lport = *(uint16_t *)tcph->th_fport; 4607 connp->conn_flags |= (IPCL_TCP6|IPCL_EAGER); 4608 connp->conn_fully_bound = B_FALSE; 4609 4610 /* Inherit information from the "parent" */ 4611 tcp->tcp_ipversion = ltcp->tcp_ipversion; 4612 tcp->tcp_family = ltcp->tcp_family; 4613 4614 tcp->tcp_wq = ltcp->tcp_wq; 4615 tcp->tcp_rq = ltcp->tcp_rq; 4616 4617 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 4618 tcp->tcp_detached = B_TRUE; 4619 SOCK_CONNID_INIT(tcp->tcp_connid); 4620 if ((err = tcp_init_values(tcp)) != 0) { 4621 freemsg(tpi_mp); 4622 return (err); 4623 } 4624 4625 if (ipvers == IPV4_VERSION) { 4626 if ((err = tcp_header_init_ipv4(tcp)) != 0) { 4627 freemsg(tpi_mp); 4628 return (err); 4629 } 4630 ASSERT(tcp->tcp_ipha != NULL); 4631 } else { 4632 /* ifindex must be already set */ 4633 ASSERT(ifindex != 0); 4634 4635 if (ltcp->tcp_bound_if != 0) 4636 tcp->tcp_bound_if = ltcp->tcp_bound_if; 4637 else if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) 4638 tcp->tcp_bound_if = ifindex; 4639 4640 tcp->tcp_ipv6_recvancillary = ltcp->tcp_ipv6_recvancillary; 4641 tcp->tcp_recvifindex = 0; 4642 tcp->tcp_recvhops = 0xffffffffU; 4643 ASSERT(tcp->tcp_ip6h != NULL); 4644 } 4645 4646 tcp->tcp_lport = ltcp->tcp_lport; 4647 4648 if (ltcp->tcp_ipversion == tcp->tcp_ipversion) { 4649 if (tcp->tcp_iphc_len != ltcp->tcp_iphc_len) { 4650 /* 4651 * Listener had options of some sort; eager inherits. 4652 * Free up the eager template and allocate one 4653 * of the right size. 4654 */ 4655 if (tcp->tcp_hdr_grown) { 4656 kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len); 4657 } else { 4658 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 4659 kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc); 4660 } 4661 tcp->tcp_iphc = kmem_zalloc(ltcp->tcp_iphc_len, 4662 KM_NOSLEEP); 4663 if (tcp->tcp_iphc == NULL) { 4664 tcp->tcp_iphc_len = 0; 4665 freemsg(tpi_mp); 4666 return (ENOMEM); 4667 } 4668 tcp->tcp_iphc_len = ltcp->tcp_iphc_len; 4669 tcp->tcp_hdr_grown = B_TRUE; 4670 } 4671 tcp->tcp_hdr_len = ltcp->tcp_hdr_len; 4672 tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len; 4673 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 4674 tcp->tcp_ip6_hops = ltcp->tcp_ip6_hops; 4675 tcp->tcp_ip6_vcf = ltcp->tcp_ip6_vcf; 4676 4677 /* 4678 * Copy the IP+TCP header template from listener to eager 4679 */ 4680 bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len); 4681 if (tcp->tcp_ipversion == IPV6_VERSION) { 4682 if (((ip6i_t *)(tcp->tcp_iphc))->ip6i_nxt == 4683 IPPROTO_RAW) { 4684 tcp->tcp_ip6h = 4685 (ip6_t *)(tcp->tcp_iphc + 4686 sizeof (ip6i_t)); 4687 } else { 4688 tcp->tcp_ip6h = 4689 (ip6_t *)(tcp->tcp_iphc); 4690 } 4691 tcp->tcp_ipha = NULL; 4692 } else { 4693 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 4694 tcp->tcp_ip6h = NULL; 4695 } 4696 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + 4697 tcp->tcp_ip_hdr_len); 4698 } else { 4699 /* 4700 * only valid case when ipversion of listener and 4701 * eager differ is when listener is IPv6 and 4702 * eager is IPv4. 4703 * Eager header template has been initialized to the 4704 * maximum v4 header sizes, which includes space for 4705 * TCP and IP options. 4706 */ 4707 ASSERT((ltcp->tcp_ipversion == IPV6_VERSION) && 4708 (tcp->tcp_ipversion == IPV4_VERSION)); 4709 ASSERT(tcp->tcp_iphc_len >= 4710 TCP_MAX_COMBINED_HEADER_LENGTH); 4711 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 4712 /* copy IP header fields individually */ 4713 tcp->tcp_ipha->ipha_ttl = 4714 ltcp->tcp_ip6h->ip6_hops; 4715 bcopy(ltcp->tcp_tcph->th_lport, 4716 tcp->tcp_tcph->th_lport, sizeof (ushort_t)); 4717 } 4718 4719 bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t)); 4720 bcopy(tcp->tcp_tcph->th_fport, &tcp->tcp_fport, 4721 sizeof (in_port_t)); 4722 4723 if (ltcp->tcp_lport == 0) { 4724 tcp->tcp_lport = *(in_port_t *)tcph->th_fport; 4725 bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, 4726 sizeof (in_port_t)); 4727 } 4728 4729 if (tcp->tcp_ipversion == IPV4_VERSION) { 4730 ASSERT(ipha != NULL); 4731 tcp->tcp_ipha->ipha_dst = ipha->ipha_src; 4732 tcp->tcp_ipha->ipha_src = ipha->ipha_dst; 4733 4734 /* Source routing option copyover (reverse it) */ 4735 if (tcps->tcps_rev_src_routes) 4736 tcp_opt_reverse(tcp, ipha); 4737 } else { 4738 ASSERT(ip6h != NULL); 4739 tcp->tcp_ip6h->ip6_dst = ip6h->ip6_src; 4740 tcp->tcp_ip6h->ip6_src = ip6h->ip6_dst; 4741 } 4742 4743 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 4744 ASSERT(!tcp->tcp_tconnind_started); 4745 /* 4746 * If the SYN contains a credential, it's a loopback packet; attach 4747 * the credential to the TPI message. 4748 */ 4749 mblk_copycred(tpi_mp, idmp); 4750 4751 tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp; 4752 4753 /* Inherit the listener's SSL protection state */ 4754 4755 if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) { 4756 kssl_hold_ent(tcp->tcp_kssl_ent); 4757 tcp->tcp_kssl_pending = B_TRUE; 4758 } 4759 4760 /* Inherit the listener's non-STREAMS flag */ 4761 if (IPCL_IS_NONSTR(lconnp)) { 4762 connp->conn_flags |= IPCL_NONSTR; 4763 } 4764 4765 return (0); 4766 } 4767 4768 4769 int 4770 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha, 4771 tcph_t *tcph, mblk_t *idmp) 4772 { 4773 tcp_t *ltcp = lconnp->conn_tcp; 4774 tcp_t *tcp = connp->conn_tcp; 4775 sin_t sin; 4776 mblk_t *tpi_mp = NULL; 4777 int err; 4778 tcp_stack_t *tcps = tcp->tcp_tcps; 4779 4780 sin = sin_null; 4781 sin.sin_addr.s_addr = ipha->ipha_src; 4782 sin.sin_port = *(uint16_t *)tcph->th_lport; 4783 sin.sin_family = AF_INET; 4784 if (ltcp->tcp_recvdstaddr) { 4785 sin_t sind; 4786 4787 sind = sin_null; 4788 sind.sin_addr.s_addr = ipha->ipha_dst; 4789 sind.sin_port = *(uint16_t *)tcph->th_fport; 4790 sind.sin_family = AF_INET; 4791 tpi_mp = mi_tpi_extconn_ind(NULL, 4792 (char *)&sind, sizeof (sin_t), (char *)&tcp, 4793 (t_scalar_t)sizeof (intptr_t), (char *)&sind, 4794 sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4795 } else { 4796 tpi_mp = mi_tpi_conn_ind(NULL, 4797 (char *)&sin, sizeof (sin_t), 4798 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4799 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4800 } 4801 4802 if (tpi_mp == NULL) { 4803 return (ENOMEM); 4804 } 4805 4806 connp->conn_flags |= (IPCL_TCP4|IPCL_EAGER); 4807 connp->conn_send = ip_output; 4808 connp->conn_recv = tcp_input; 4809 connp->conn_fully_bound = B_FALSE; 4810 4811 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_bound_source_v6); 4812 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6); 4813 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6); 4814 connp->conn_fport = *(uint16_t *)tcph->th_lport; 4815 connp->conn_lport = *(uint16_t *)tcph->th_fport; 4816 4817 /* Inherit information from the "parent" */ 4818 tcp->tcp_ipversion = ltcp->tcp_ipversion; 4819 tcp->tcp_family = ltcp->tcp_family; 4820 tcp->tcp_wq = ltcp->tcp_wq; 4821 tcp->tcp_rq = ltcp->tcp_rq; 4822 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 4823 tcp->tcp_detached = B_TRUE; 4824 SOCK_CONNID_INIT(tcp->tcp_connid); 4825 if ((err = tcp_init_values(tcp)) != 0) { 4826 freemsg(tpi_mp); 4827 return (err); 4828 } 4829 4830 /* 4831 * Let's make sure that eager tcp template has enough space to 4832 * copy IPv4 listener's tcp template. Since the conn_t structure is 4833 * preserved and tcp_iphc_len is also preserved, an eager conn_t may 4834 * have a tcp_template of total len TCP_MAX_COMBINED_HEADER_LENGTH or 4835 * more (in case of re-allocation of conn_t with tcp-IPv6 template with 4836 * extension headers or with ip6i_t struct). Note that bcopy() below 4837 * copies listener tcp's hdr_len which cannot be greater than TCP_MAX_ 4838 * COMBINED_HEADER_LENGTH as this listener must be a IPv4 listener. 4839 */ 4840 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 4841 ASSERT(ltcp->tcp_hdr_len <= TCP_MAX_COMBINED_HEADER_LENGTH); 4842 4843 tcp->tcp_hdr_len = ltcp->tcp_hdr_len; 4844 tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len; 4845 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 4846 tcp->tcp_ttl = ltcp->tcp_ttl; 4847 tcp->tcp_tos = ltcp->tcp_tos; 4848 4849 /* Copy the IP+TCP header template from listener to eager */ 4850 bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len); 4851 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 4852 tcp->tcp_ip6h = NULL; 4853 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + 4854 tcp->tcp_ip_hdr_len); 4855 4856 /* Initialize the IP addresses and Ports */ 4857 tcp->tcp_ipha->ipha_dst = ipha->ipha_src; 4858 tcp->tcp_ipha->ipha_src = ipha->ipha_dst; 4859 bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t)); 4860 bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, sizeof (in_port_t)); 4861 4862 /* Source routing option copyover (reverse it) */ 4863 if (tcps->tcps_rev_src_routes) 4864 tcp_opt_reverse(tcp, ipha); 4865 4866 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 4867 ASSERT(!tcp->tcp_tconnind_started); 4868 4869 /* 4870 * If the SYN contains a credential, it's a loopback packet; attach 4871 * the credential to the TPI message. 4872 */ 4873 mblk_copycred(tpi_mp, idmp); 4874 4875 tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp; 4876 4877 /* Inherit the listener's SSL protection state */ 4878 if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) { 4879 kssl_hold_ent(tcp->tcp_kssl_ent); 4880 tcp->tcp_kssl_pending = B_TRUE; 4881 } 4882 4883 /* Inherit the listener's non-STREAMS flag */ 4884 if (IPCL_IS_NONSTR(lconnp)) { 4885 connp->conn_flags |= IPCL_NONSTR; 4886 } 4887 4888 return (0); 4889 } 4890 4891 /* 4892 * sets up conn for ipsec. 4893 * if the first mblk is M_CTL it is consumed and mpp is updated. 4894 * in case of error mpp is freed. 4895 */ 4896 conn_t * 4897 tcp_get_ipsec_conn(tcp_t *tcp, squeue_t *sqp, mblk_t **mpp) 4898 { 4899 conn_t *connp = tcp->tcp_connp; 4900 conn_t *econnp; 4901 squeue_t *new_sqp; 4902 mblk_t *first_mp = *mpp; 4903 mblk_t *mp = *mpp; 4904 boolean_t mctl_present = B_FALSE; 4905 uint_t ipvers; 4906 4907 econnp = tcp_get_conn(sqp, tcp->tcp_tcps); 4908 if (econnp == NULL) { 4909 freemsg(first_mp); 4910 return (NULL); 4911 } 4912 if (DB_TYPE(mp) == M_CTL) { 4913 if (mp->b_cont == NULL || 4914 mp->b_cont->b_datap->db_type != M_DATA) { 4915 freemsg(first_mp); 4916 return (NULL); 4917 } 4918 mp = mp->b_cont; 4919 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) == 0) { 4920 freemsg(first_mp); 4921 return (NULL); 4922 } 4923 4924 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 4925 first_mp->b_datap->db_struioflag &= ~STRUIO_POLICY; 4926 mctl_present = B_TRUE; 4927 } else { 4928 ASSERT(mp->b_datap->db_struioflag & STRUIO_POLICY); 4929 mp->b_datap->db_struioflag &= ~STRUIO_POLICY; 4930 } 4931 4932 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 4933 DB_CKSUMSTART(mp) = 0; 4934 4935 ASSERT(OK_32PTR(mp->b_rptr)); 4936 ipvers = IPH_HDR_VERSION(mp->b_rptr); 4937 if (ipvers == IPV4_VERSION) { 4938 uint16_t *up; 4939 uint32_t ports; 4940 ipha_t *ipha; 4941 4942 ipha = (ipha_t *)mp->b_rptr; 4943 up = (uint16_t *)((uchar_t *)ipha + 4944 IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET); 4945 ports = *(uint32_t *)up; 4946 IPCL_TCP_EAGER_INIT(econnp, IPPROTO_TCP, 4947 ipha->ipha_dst, ipha->ipha_src, ports); 4948 } else { 4949 uint16_t *up; 4950 uint32_t ports; 4951 uint16_t ip_hdr_len; 4952 uint8_t *nexthdrp; 4953 ip6_t *ip6h; 4954 tcph_t *tcph; 4955 4956 ip6h = (ip6_t *)mp->b_rptr; 4957 if (ip6h->ip6_nxt == IPPROTO_TCP) { 4958 ip_hdr_len = IPV6_HDR_LEN; 4959 } else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ip_hdr_len, 4960 &nexthdrp) || *nexthdrp != IPPROTO_TCP) { 4961 CONN_DEC_REF(econnp); 4962 freemsg(first_mp); 4963 return (NULL); 4964 } 4965 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 4966 up = (uint16_t *)tcph->th_lport; 4967 ports = *(uint32_t *)up; 4968 IPCL_TCP_EAGER_INIT_V6(econnp, IPPROTO_TCP, 4969 ip6h->ip6_dst, ip6h->ip6_src, ports); 4970 } 4971 4972 /* 4973 * The caller already ensured that there is a sqp present. 4974 */ 4975 econnp->conn_sqp = new_sqp; 4976 econnp->conn_initial_sqp = new_sqp; 4977 4978 if (connp->conn_policy != NULL) { 4979 ipsec_in_t *ii; 4980 ii = (ipsec_in_t *)(first_mp->b_rptr); 4981 ASSERT(ii->ipsec_in_policy == NULL); 4982 IPPH_REFHOLD(connp->conn_policy); 4983 ii->ipsec_in_policy = connp->conn_policy; 4984 4985 first_mp->b_datap->db_type = IPSEC_POLICY_SET; 4986 if (!ip_bind_ipsec_policy_set(econnp, first_mp)) { 4987 CONN_DEC_REF(econnp); 4988 freemsg(first_mp); 4989 return (NULL); 4990 } 4991 } 4992 4993 if (ipsec_conn_cache_policy(econnp, ipvers == IPV4_VERSION) != 0) { 4994 CONN_DEC_REF(econnp); 4995 freemsg(first_mp); 4996 return (NULL); 4997 } 4998 4999 /* 5000 * If we know we have some policy, pass the "IPSEC" 5001 * options size TCP uses this adjust the MSS. 5002 */ 5003 econnp->conn_tcp->tcp_ipsec_overhead = conn_ipsec_length(econnp); 5004 if (mctl_present) { 5005 freeb(first_mp); 5006 *mpp = mp; 5007 } 5008 5009 return (econnp); 5010 } 5011 5012 /* 5013 * tcp_get_conn/tcp_free_conn 5014 * 5015 * tcp_get_conn is used to get a clean tcp connection structure. 5016 * It tries to reuse the connections put on the freelist by the 5017 * time_wait_collector failing which it goes to kmem_cache. This 5018 * way has two benefits compared to just allocating from and 5019 * freeing to kmem_cache. 5020 * 1) The time_wait_collector can free (which includes the cleanup) 5021 * outside the squeue. So when the interrupt comes, we have a clean 5022 * connection sitting in the freelist. Obviously, this buys us 5023 * performance. 5024 * 5025 * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_conn_request 5026 * has multiple disadvantages - tying up the squeue during alloc, and the 5027 * fact that IPSec policy initialization has to happen here which 5028 * requires us sending a M_CTL and checking for it i.e. real ugliness. 5029 * But allocating the conn/tcp in IP land is also not the best since 5030 * we can't check the 'q' and 'q0' which are protected by squeue and 5031 * blindly allocate memory which might have to be freed here if we are 5032 * not allowed to accept the connection. By using the freelist and 5033 * putting the conn/tcp back in freelist, we don't pay a penalty for 5034 * allocating memory without checking 'q/q0' and freeing it if we can't 5035 * accept the connection. 5036 * 5037 * Care should be taken to put the conn back in the same squeue's freelist 5038 * from which it was allocated. Best results are obtained if conn is 5039 * allocated from listener's squeue and freed to the same. Time wait 5040 * collector will free up the freelist is the connection ends up sitting 5041 * there for too long. 5042 */ 5043 void * 5044 tcp_get_conn(void *arg, tcp_stack_t *tcps) 5045 { 5046 tcp_t *tcp = NULL; 5047 conn_t *connp = NULL; 5048 squeue_t *sqp = (squeue_t *)arg; 5049 tcp_squeue_priv_t *tcp_time_wait; 5050 netstack_t *ns; 5051 5052 tcp_time_wait = 5053 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 5054 5055 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 5056 tcp = tcp_time_wait->tcp_free_list; 5057 ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0)); 5058 if (tcp != NULL) { 5059 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 5060 tcp_time_wait->tcp_free_list_cnt--; 5061 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 5062 tcp->tcp_time_wait_next = NULL; 5063 connp = tcp->tcp_connp; 5064 connp->conn_flags |= IPCL_REUSED; 5065 5066 ASSERT(tcp->tcp_tcps == NULL); 5067 ASSERT(connp->conn_netstack == NULL); 5068 ASSERT(tcp->tcp_rsrv_mp != NULL); 5069 ns = tcps->tcps_netstack; 5070 netstack_hold(ns); 5071 connp->conn_netstack = ns; 5072 tcp->tcp_tcps = tcps; 5073 TCPS_REFHOLD(tcps); 5074 ipcl_globalhash_insert(connp); 5075 return ((void *)connp); 5076 } 5077 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 5078 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP, 5079 tcps->tcps_netstack)) == NULL) 5080 return (NULL); 5081 tcp = connp->conn_tcp; 5082 /* 5083 * Pre-allocate the tcp_rsrv_mp. This mblk will not be freed 5084 * until this conn_t/tcp_t is freed at ipcl_conn_destroy(). 5085 */ 5086 if ((tcp->tcp_rsrv_mp = allocb(0, BPRI_HI)) == NULL) { 5087 ipcl_conn_destroy(connp); 5088 return (NULL); 5089 } 5090 mutex_init(&tcp->tcp_rsrv_mp_lock, NULL, MUTEX_DEFAULT, NULL); 5091 tcp->tcp_tcps = tcps; 5092 TCPS_REFHOLD(tcps); 5093 5094 return ((void *)connp); 5095 } 5096 5097 /* 5098 * Update the cached label for the given tcp_t. This should be called once per 5099 * connection, and before any packets are sent or tcp_process_options is 5100 * invoked. Returns B_FALSE if the correct label could not be constructed. 5101 */ 5102 static boolean_t 5103 tcp_update_label(tcp_t *tcp, const cred_t *cr) 5104 { 5105 conn_t *connp = tcp->tcp_connp; 5106 5107 if (tcp->tcp_ipversion == IPV4_VERSION) { 5108 uchar_t optbuf[IP_MAX_OPT_LENGTH]; 5109 int added; 5110 5111 if (tsol_compute_label(cr, tcp->tcp_remote, optbuf, 5112 connp->conn_mac_exempt, 5113 tcp->tcp_tcps->tcps_netstack->netstack_ip) != 0) 5114 return (B_FALSE); 5115 5116 added = tsol_remove_secopt(tcp->tcp_ipha, tcp->tcp_hdr_len); 5117 if (added == -1) 5118 return (B_FALSE); 5119 tcp->tcp_hdr_len += added; 5120 tcp->tcp_tcph = (tcph_t *)((uchar_t *)tcp->tcp_tcph + added); 5121 tcp->tcp_ip_hdr_len += added; 5122 if ((tcp->tcp_label_len = optbuf[IPOPT_OLEN]) != 0) { 5123 tcp->tcp_label_len = (tcp->tcp_label_len + 3) & ~3; 5124 added = tsol_prepend_option(optbuf, tcp->tcp_ipha, 5125 tcp->tcp_hdr_len); 5126 if (added == -1) 5127 return (B_FALSE); 5128 tcp->tcp_hdr_len += added; 5129 tcp->tcp_tcph = (tcph_t *) 5130 ((uchar_t *)tcp->tcp_tcph + added); 5131 tcp->tcp_ip_hdr_len += added; 5132 } 5133 } else { 5134 uchar_t optbuf[TSOL_MAX_IPV6_OPTION]; 5135 5136 if (tsol_compute_label_v6(cr, &tcp->tcp_remote_v6, optbuf, 5137 connp->conn_mac_exempt, 5138 tcp->tcp_tcps->tcps_netstack->netstack_ip) != 0) 5139 return (B_FALSE); 5140 if (tsol_update_sticky(&tcp->tcp_sticky_ipp, 5141 &tcp->tcp_label_len, optbuf) != 0) 5142 return (B_FALSE); 5143 if (tcp_build_hdrs(tcp) != 0) 5144 return (B_FALSE); 5145 } 5146 5147 connp->conn_ulp_labeled = 1; 5148 5149 return (B_TRUE); 5150 } 5151 5152 /* BEGIN CSTYLED */ 5153 /* 5154 * 5155 * The sockfs ACCEPT path: 5156 * ======================= 5157 * 5158 * The eager is now established in its own perimeter as soon as SYN is 5159 * received in tcp_conn_request(). When sockfs receives conn_ind, it 5160 * completes the accept processing on the acceptor STREAM. The sending 5161 * of conn_ind part is common for both sockfs listener and a TLI/XTI 5162 * listener but a TLI/XTI listener completes the accept processing 5163 * on the listener perimeter. 5164 * 5165 * Common control flow for 3 way handshake: 5166 * ---------------------------------------- 5167 * 5168 * incoming SYN (listener perimeter) -> tcp_rput_data() 5169 * -> tcp_conn_request() 5170 * 5171 * incoming SYN-ACK-ACK (eager perim) -> tcp_rput_data() 5172 * send T_CONN_IND (listener perim) -> tcp_send_conn_ind() 5173 * 5174 * Sockfs ACCEPT Path: 5175 * ------------------- 5176 * 5177 * open acceptor stream (tcp_open allocates tcp_wput_accept() 5178 * as STREAM entry point) 5179 * 5180 * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_wput_accept() 5181 * 5182 * tcp_wput_accept() extracts the eager and makes the q->q_ptr <-> eager 5183 * association (we are not behind eager's squeue but sockfs is protecting us 5184 * and no one knows about this stream yet. The STREAMS entry point q->q_info 5185 * is changed to point at tcp_wput(). 5186 * 5187 * tcp_wput_accept() sends any deferred eagers via tcp_send_pending() to 5188 * listener (done on listener's perimeter). 5189 * 5190 * tcp_wput_accept() calls tcp_accept_finish() on eagers perimeter to finish 5191 * accept. 5192 * 5193 * TLI/XTI client ACCEPT path: 5194 * --------------------------- 5195 * 5196 * soaccept() sends T_CONN_RES on the listener STREAM. 5197 * 5198 * tcp_accept() -> tcp_accept_swap() complete the processing and send 5199 * the bind_mp to eager perimeter to finish accept (tcp_rput_other()). 5200 * 5201 * Locks: 5202 * ====== 5203 * 5204 * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and 5205 * and listeners->tcp_eager_next_q. 5206 * 5207 * Referencing: 5208 * ============ 5209 * 5210 * 1) We start out in tcp_conn_request by eager placing a ref on 5211 * listener and listener adding eager to listeners->tcp_eager_next_q0. 5212 * 5213 * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before 5214 * doing so we place a ref on the eager. This ref is finally dropped at the 5215 * end of tcp_accept_finish() while unwinding from the squeue, i.e. the 5216 * reference is dropped by the squeue framework. 5217 * 5218 * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish 5219 * 5220 * The reference must be released by the same entity that added the reference 5221 * In the above scheme, the eager is the entity that adds and releases the 5222 * references. Note that tcp_accept_finish executes in the squeue of the eager 5223 * (albeit after it is attached to the acceptor stream). Though 1. executes 5224 * in the listener's squeue, the eager is nascent at this point and the 5225 * reference can be considered to have been added on behalf of the eager. 5226 * 5227 * Eager getting a Reset or listener closing: 5228 * ========================================== 5229 * 5230 * Once the listener and eager are linked, the listener never does the unlink. 5231 * If the listener needs to close, tcp_eager_cleanup() is called which queues 5232 * a message on all eager perimeter. The eager then does the unlink, clears 5233 * any pointers to the listener's queue and drops the reference to the 5234 * listener. The listener waits in tcp_close outside the squeue until its 5235 * refcount has dropped to 1. This ensures that the listener has waited for 5236 * all eagers to clear their association with the listener. 5237 * 5238 * Similarly, if eager decides to go away, it can unlink itself and close. 5239 * When the T_CONN_RES comes down, we check if eager has closed. Note that 5240 * the reference to eager is still valid because of the extra ref we put 5241 * in tcp_send_conn_ind. 5242 * 5243 * Listener can always locate the eager under the protection 5244 * of the listener->tcp_eager_lock, and then do a refhold 5245 * on the eager during the accept processing. 5246 * 5247 * The acceptor stream accesses the eager in the accept processing 5248 * based on the ref placed on eager before sending T_conn_ind. 5249 * The only entity that can negate this refhold is a listener close 5250 * which is mutually exclusive with an active acceptor stream. 5251 * 5252 * Eager's reference on the listener 5253 * =================================== 5254 * 5255 * If the accept happens (even on a closed eager) the eager drops its 5256 * reference on the listener at the start of tcp_accept_finish. If the 5257 * eager is killed due to an incoming RST before the T_conn_ind is sent up, 5258 * the reference is dropped in tcp_closei_local. If the listener closes, 5259 * the reference is dropped in tcp_eager_kill. In all cases the reference 5260 * is dropped while executing in the eager's context (squeue). 5261 */ 5262 /* END CSTYLED */ 5263 5264 /* Process the SYN packet, mp, directed at the listener 'tcp' */ 5265 5266 /* 5267 * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN. 5268 * tcp_rput_data will not see any SYN packets. 5269 */ 5270 /* ARGSUSED */ 5271 void 5272 tcp_conn_request(void *arg, mblk_t *mp, void *arg2) 5273 { 5274 tcph_t *tcph; 5275 uint32_t seg_seq; 5276 tcp_t *eager; 5277 uint_t ipvers; 5278 ipha_t *ipha; 5279 ip6_t *ip6h; 5280 int err; 5281 conn_t *econnp = NULL; 5282 squeue_t *new_sqp; 5283 mblk_t *mp1; 5284 uint_t ip_hdr_len; 5285 conn_t *connp = (conn_t *)arg; 5286 tcp_t *tcp = connp->conn_tcp; 5287 cred_t *credp; 5288 tcp_stack_t *tcps = tcp->tcp_tcps; 5289 ip_stack_t *ipst; 5290 5291 if (tcp->tcp_state != TCPS_LISTEN) 5292 goto error2; 5293 5294 ASSERT((tcp->tcp_connp->conn_flags & IPCL_BOUND) != 0); 5295 5296 mutex_enter(&tcp->tcp_eager_lock); 5297 if (tcp->tcp_conn_req_cnt_q >= tcp->tcp_conn_req_max) { 5298 mutex_exit(&tcp->tcp_eager_lock); 5299 TCP_STAT(tcps, tcp_listendrop); 5300 BUMP_MIB(&tcps->tcps_mib, tcpListenDrop); 5301 if (tcp->tcp_debug) { 5302 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 5303 "tcp_conn_request: listen backlog (max=%d) " 5304 "overflow (%d pending) on %s", 5305 tcp->tcp_conn_req_max, tcp->tcp_conn_req_cnt_q, 5306 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 5307 } 5308 goto error2; 5309 } 5310 5311 if (tcp->tcp_conn_req_cnt_q0 >= 5312 tcp->tcp_conn_req_max + tcps->tcps_conn_req_max_q0) { 5313 /* 5314 * Q0 is full. Drop a pending half-open req from the queue 5315 * to make room for the new SYN req. Also mark the time we 5316 * drop a SYN. 5317 * 5318 * A more aggressive defense against SYN attack will 5319 * be to set the "tcp_syn_defense" flag now. 5320 */ 5321 TCP_STAT(tcps, tcp_listendropq0); 5322 tcp->tcp_last_rcv_lbolt = lbolt64; 5323 if (!tcp_drop_q0(tcp)) { 5324 mutex_exit(&tcp->tcp_eager_lock); 5325 BUMP_MIB(&tcps->tcps_mib, tcpListenDropQ0); 5326 if (tcp->tcp_debug) { 5327 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 5328 "tcp_conn_request: listen half-open queue " 5329 "(max=%d) full (%d pending) on %s", 5330 tcps->tcps_conn_req_max_q0, 5331 tcp->tcp_conn_req_cnt_q0, 5332 tcp_display(tcp, NULL, 5333 DISP_PORT_ONLY)); 5334 } 5335 goto error2; 5336 } 5337 } 5338 mutex_exit(&tcp->tcp_eager_lock); 5339 5340 /* 5341 * IP adds STRUIO_EAGER and ensures that the received packet is 5342 * M_DATA even if conn_ipv6_recvpktinfo is enabled or for ip6 5343 * link local address. If IPSec is enabled, db_struioflag has 5344 * STRUIO_POLICY set (mutually exclusive from STRUIO_EAGER); 5345 * otherwise an error case if neither of them is set. 5346 */ 5347 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 5348 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 5349 DB_CKSUMSTART(mp) = 0; 5350 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 5351 econnp = (conn_t *)tcp_get_conn(arg2, tcps); 5352 if (econnp == NULL) 5353 goto error2; 5354 ASSERT(econnp->conn_netstack == connp->conn_netstack); 5355 econnp->conn_sqp = new_sqp; 5356 econnp->conn_initial_sqp = new_sqp; 5357 } else if ((mp->b_datap->db_struioflag & STRUIO_POLICY) != 0) { 5358 /* 5359 * mp is updated in tcp_get_ipsec_conn(). 5360 */ 5361 econnp = tcp_get_ipsec_conn(tcp, arg2, &mp); 5362 if (econnp == NULL) { 5363 /* 5364 * mp freed by tcp_get_ipsec_conn. 5365 */ 5366 return; 5367 } 5368 ASSERT(econnp->conn_netstack == connp->conn_netstack); 5369 } else { 5370 goto error2; 5371 } 5372 5373 ASSERT(DB_TYPE(mp) == M_DATA); 5374 5375 ipvers = IPH_HDR_VERSION(mp->b_rptr); 5376 ASSERT(ipvers == IPV6_VERSION || ipvers == IPV4_VERSION); 5377 ASSERT(OK_32PTR(mp->b_rptr)); 5378 if (ipvers == IPV4_VERSION) { 5379 ipha = (ipha_t *)mp->b_rptr; 5380 ip_hdr_len = IPH_HDR_LENGTH(ipha); 5381 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5382 } else { 5383 ip6h = (ip6_t *)mp->b_rptr; 5384 ip_hdr_len = ip_hdr_length_v6(mp, ip6h); 5385 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5386 } 5387 5388 if (tcp->tcp_family == AF_INET) { 5389 ASSERT(ipvers == IPV4_VERSION); 5390 err = tcp_conn_create_v4(connp, econnp, ipha, tcph, mp); 5391 } else { 5392 err = tcp_conn_create_v6(connp, econnp, mp, tcph, ipvers, mp); 5393 } 5394 5395 if (err) 5396 goto error3; 5397 5398 eager = econnp->conn_tcp; 5399 5400 /* 5401 * Pre-allocate the T_ordrel_ind mblk for TPI socket so that at close 5402 * time, we will always have that to send up. Otherwise, we need to do 5403 * special handling in case the allocation fails at that time. 5404 */ 5405 ASSERT(eager->tcp_ordrel_mp == NULL); 5406 if (!IPCL_IS_NONSTR(econnp) && 5407 (eager->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL) 5408 goto error3; 5409 5410 /* Inherit various TCP parameters from the listener */ 5411 eager->tcp_naglim = tcp->tcp_naglim; 5412 eager->tcp_first_timer_threshold = 5413 tcp->tcp_first_timer_threshold; 5414 eager->tcp_second_timer_threshold = 5415 tcp->tcp_second_timer_threshold; 5416 5417 eager->tcp_first_ctimer_threshold = 5418 tcp->tcp_first_ctimer_threshold; 5419 eager->tcp_second_ctimer_threshold = 5420 tcp->tcp_second_ctimer_threshold; 5421 5422 /* 5423 * tcp_adapt_ire() may change tcp_rwnd according to the ire metrics. 5424 * If it does not, the eager's receive window will be set to the 5425 * listener's receive window later in this function. 5426 */ 5427 eager->tcp_rwnd = 0; 5428 5429 /* 5430 * Inherit listener's tcp_init_cwnd. Need to do this before 5431 * calling tcp_process_options() where tcp_mss_set() is called 5432 * to set the initial cwnd. 5433 */ 5434 eager->tcp_init_cwnd = tcp->tcp_init_cwnd; 5435 5436 /* 5437 * Zones: tcp_adapt_ire() and tcp_send_data() both need the 5438 * zone id before the accept is completed in tcp_wput_accept(). 5439 */ 5440 econnp->conn_zoneid = connp->conn_zoneid; 5441 econnp->conn_allzones = connp->conn_allzones; 5442 5443 /* Copy nexthop information from listener to eager */ 5444 if (connp->conn_nexthop_set) { 5445 econnp->conn_nexthop_set = connp->conn_nexthop_set; 5446 econnp->conn_nexthop_v4 = connp->conn_nexthop_v4; 5447 } 5448 5449 /* 5450 * TSOL: tsol_input_proc() needs the eager's cred before the 5451 * eager is accepted 5452 */ 5453 econnp->conn_cred = eager->tcp_cred = credp = connp->conn_cred; 5454 crhold(credp); 5455 5456 /* 5457 * If the caller has the process-wide flag set, then default to MAC 5458 * exempt mode. This allows read-down to unlabeled hosts. 5459 */ 5460 if (getpflags(NET_MAC_AWARE, credp) != 0) 5461 econnp->conn_mac_exempt = B_TRUE; 5462 5463 if (is_system_labeled()) { 5464 cred_t *cr; 5465 5466 if (connp->conn_mlp_type != mlptSingle) { 5467 cr = econnp->conn_peercred = msg_getcred(mp, NULL); 5468 if (cr != NULL) 5469 crhold(cr); 5470 else 5471 cr = econnp->conn_cred; 5472 DTRACE_PROBE2(mlp_syn_accept, conn_t *, 5473 econnp, cred_t *, cr) 5474 } else { 5475 cr = econnp->conn_cred; 5476 DTRACE_PROBE2(syn_accept, conn_t *, 5477 econnp, cred_t *, cr) 5478 } 5479 5480 if (!tcp_update_label(eager, cr)) { 5481 DTRACE_PROBE3( 5482 tx__ip__log__error__connrequest__tcp, 5483 char *, "eager connp(1) label on SYN mp(2) failed", 5484 conn_t *, econnp, mblk_t *, mp); 5485 goto error3; 5486 } 5487 } 5488 5489 eager->tcp_hard_binding = B_TRUE; 5490 5491 tcp_bind_hash_insert(&tcps->tcps_bind_fanout[ 5492 TCP_BIND_HASH(eager->tcp_lport)], eager, 0); 5493 5494 CL_INET_CONNECT(connp, eager, B_FALSE, err); 5495 if (err != 0) { 5496 tcp_bind_hash_remove(eager); 5497 goto error3; 5498 } 5499 5500 /* 5501 * No need to check for multicast destination since ip will only pass 5502 * up multicasts to those that have expressed interest 5503 * TODO: what about rejecting broadcasts? 5504 * Also check that source is not a multicast or broadcast address. 5505 */ 5506 eager->tcp_state = TCPS_SYN_RCVD; 5507 5508 5509 /* 5510 * There should be no ire in the mp as we are being called after 5511 * receiving the SYN. 5512 */ 5513 ASSERT(tcp_ire_mp(&mp) == NULL); 5514 5515 /* 5516 * Adapt our mss, ttl, ... according to information provided in IRE. 5517 */ 5518 5519 if (tcp_adapt_ire(eager, NULL) == 0) { 5520 /* Undo the bind_hash_insert */ 5521 tcp_bind_hash_remove(eager); 5522 goto error3; 5523 } 5524 5525 /* Process all TCP options. */ 5526 tcp_process_options(eager, tcph); 5527 5528 /* Is the other end ECN capable? */ 5529 if (tcps->tcps_ecn_permitted >= 1 && 5530 (tcph->th_flags[0] & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) { 5531 eager->tcp_ecn_ok = B_TRUE; 5532 } 5533 5534 /* 5535 * listener->tcp_rq->q_hiwat should be the default window size or a 5536 * window size changed via SO_RCVBUF option. First round up the 5537 * eager's tcp_rwnd to the nearest MSS. Then find out the window 5538 * scale option value if needed. Call tcp_rwnd_set() to finish the 5539 * setting. 5540 * 5541 * Note if there is a rpipe metric associated with the remote host, 5542 * we should not inherit receive window size from listener. 5543 */ 5544 eager->tcp_rwnd = MSS_ROUNDUP( 5545 (eager->tcp_rwnd == 0 ? tcp->tcp_recv_hiwater: 5546 eager->tcp_rwnd), eager->tcp_mss); 5547 if (eager->tcp_snd_ws_ok) 5548 tcp_set_ws_value(eager); 5549 /* 5550 * Note that this is the only place tcp_rwnd_set() is called for 5551 * accepting a connection. We need to call it here instead of 5552 * after the 3-way handshake because we need to tell the other 5553 * side our rwnd in the SYN-ACK segment. 5554 */ 5555 (void) tcp_rwnd_set(eager, eager->tcp_rwnd); 5556 5557 /* 5558 * We eliminate the need for sockfs to send down a T_SVR4_OPTMGMT_REQ 5559 * via soaccept()->soinheritoptions() which essentially applies 5560 * all the listener options to the new STREAM. The options that we 5561 * need to take care of are: 5562 * SO_DEBUG, SO_REUSEADDR, SO_KEEPALIVE, SO_DONTROUTE, SO_BROADCAST, 5563 * SO_USELOOPBACK, SO_OOBINLINE, SO_DGRAM_ERRIND, SO_LINGER, 5564 * SO_SNDBUF, SO_RCVBUF. 5565 * 5566 * SO_RCVBUF: tcp_rwnd_set() above takes care of it. 5567 * SO_SNDBUF: Set the tcp_xmit_hiwater for the eager. When 5568 * tcp_maxpsz_set() gets called later from 5569 * tcp_accept_finish(), the option takes effect. 5570 * 5571 */ 5572 /* Set the TCP options */ 5573 eager->tcp_recv_hiwater = tcp->tcp_recv_hiwater; 5574 eager->tcp_recv_lowater = tcp->tcp_recv_lowater; 5575 eager->tcp_xmit_hiwater = tcp->tcp_xmit_hiwater; 5576 eager->tcp_dgram_errind = tcp->tcp_dgram_errind; 5577 eager->tcp_oobinline = tcp->tcp_oobinline; 5578 eager->tcp_reuseaddr = tcp->tcp_reuseaddr; 5579 eager->tcp_broadcast = tcp->tcp_broadcast; 5580 eager->tcp_useloopback = tcp->tcp_useloopback; 5581 eager->tcp_dontroute = tcp->tcp_dontroute; 5582 eager->tcp_debug = tcp->tcp_debug; 5583 eager->tcp_linger = tcp->tcp_linger; 5584 eager->tcp_lingertime = tcp->tcp_lingertime; 5585 if (tcp->tcp_ka_enabled) 5586 eager->tcp_ka_enabled = 1; 5587 5588 /* Set the IP options */ 5589 econnp->conn_broadcast = connp->conn_broadcast; 5590 econnp->conn_loopback = connp->conn_loopback; 5591 econnp->conn_dontroute = connp->conn_dontroute; 5592 econnp->conn_reuseaddr = connp->conn_reuseaddr; 5593 5594 /* Put a ref on the listener for the eager. */ 5595 CONN_INC_REF(connp); 5596 mutex_enter(&tcp->tcp_eager_lock); 5597 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = eager; 5598 eager->tcp_eager_next_q0 = tcp->tcp_eager_next_q0; 5599 tcp->tcp_eager_next_q0 = eager; 5600 eager->tcp_eager_prev_q0 = tcp; 5601 5602 /* Set tcp_listener before adding it to tcp_conn_fanout */ 5603 eager->tcp_listener = tcp; 5604 eager->tcp_saved_listener = tcp; 5605 5606 /* 5607 * Tag this detached tcp vector for later retrieval 5608 * by our listener client in tcp_accept(). 5609 */ 5610 eager->tcp_conn_req_seqnum = tcp->tcp_conn_req_seqnum; 5611 tcp->tcp_conn_req_cnt_q0++; 5612 if (++tcp->tcp_conn_req_seqnum == -1) { 5613 /* 5614 * -1 is "special" and defined in TPI as something 5615 * that should never be used in T_CONN_IND 5616 */ 5617 ++tcp->tcp_conn_req_seqnum; 5618 } 5619 mutex_exit(&tcp->tcp_eager_lock); 5620 5621 if (tcp->tcp_syn_defense) { 5622 /* Don't drop the SYN that comes from a good IP source */ 5623 ipaddr_t *addr_cache = (ipaddr_t *)(tcp->tcp_ip_addr_cache); 5624 if (addr_cache != NULL && eager->tcp_remote == 5625 addr_cache[IP_ADDR_CACHE_HASH(eager->tcp_remote)]) { 5626 eager->tcp_dontdrop = B_TRUE; 5627 } 5628 } 5629 5630 /* 5631 * We need to insert the eager in its own perimeter but as soon 5632 * as we do that, we expose the eager to the classifier and 5633 * should not touch any field outside the eager's perimeter. 5634 * So do all the work necessary before inserting the eager 5635 * in its own perimeter. Be optimistic that ipcl_conn_insert() 5636 * will succeed but undo everything if it fails. 5637 */ 5638 seg_seq = ABE32_TO_U32(tcph->th_seq); 5639 eager->tcp_irs = seg_seq; 5640 eager->tcp_rack = seg_seq; 5641 eager->tcp_rnxt = seg_seq + 1; 5642 U32_TO_ABE32(eager->tcp_rnxt, eager->tcp_tcph->th_ack); 5643 BUMP_MIB(&tcps->tcps_mib, tcpPassiveOpens); 5644 eager->tcp_state = TCPS_SYN_RCVD; 5645 mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss, 5646 NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE); 5647 if (mp1 == NULL) { 5648 /* 5649 * Increment the ref count as we are going to 5650 * enqueueing an mp in squeue 5651 */ 5652 CONN_INC_REF(econnp); 5653 goto error; 5654 } 5655 5656 /* 5657 * Note that in theory this should use the current pid 5658 * so that getpeerucred on the client returns the actual listener 5659 * that does accept. But accept() hasn't been called yet. We could use 5660 * the pid of the process that did bind/listen on the server. 5661 * However, with common usage like inetd() the bind/listen can be done 5662 * by a different process than the accept(). 5663 * Hence we do the simple thing of using the open pid here. 5664 * Note that db_credp is set later in tcp_send_data(). 5665 */ 5666 mblk_setcred(mp1, credp, tcp->tcp_cpid); 5667 eager->tcp_cpid = tcp->tcp_cpid; 5668 eager->tcp_open_time = lbolt64; 5669 5670 /* 5671 * We need to start the rto timer. In normal case, we start 5672 * the timer after sending the packet on the wire (or at 5673 * least believing that packet was sent by waiting for 5674 * CALL_IP_WPUT() to return). Since this is the first packet 5675 * being sent on the wire for the eager, our initial tcp_rto 5676 * is at least tcp_rexmit_interval_min which is a fairly 5677 * large value to allow the algorithm to adjust slowly to large 5678 * fluctuations of RTT during first few transmissions. 5679 * 5680 * Starting the timer first and then sending the packet in this 5681 * case shouldn't make much difference since tcp_rexmit_interval_min 5682 * is of the order of several 100ms and starting the timer 5683 * first and then sending the packet will result in difference 5684 * of few micro seconds. 5685 * 5686 * Without this optimization, we are forced to hold the fanout 5687 * lock across the ipcl_bind_insert() and sending the packet 5688 * so that we don't race against an incoming packet (maybe RST) 5689 * for this eager. 5690 * 5691 * It is necessary to acquire an extra reference on the eager 5692 * at this point and hold it until after tcp_send_data() to 5693 * ensure against an eager close race. 5694 */ 5695 5696 CONN_INC_REF(eager->tcp_connp); 5697 5698 TCP_TIMER_RESTART(eager, eager->tcp_rto); 5699 5700 /* 5701 * Insert the eager in its own perimeter now. We are ready to deal 5702 * with any packets on eager. 5703 */ 5704 if (eager->tcp_ipversion == IPV4_VERSION) { 5705 if (ipcl_conn_insert(econnp, IPPROTO_TCP, 0, 0, 0) != 0) { 5706 goto error; 5707 } 5708 } else { 5709 if (ipcl_conn_insert_v6(econnp, IPPROTO_TCP, 0, 0, 0, 0) != 0) { 5710 goto error; 5711 } 5712 } 5713 5714 /* mark conn as fully-bound */ 5715 econnp->conn_fully_bound = B_TRUE; 5716 5717 /* Send the SYN-ACK */ 5718 tcp_send_data(eager, eager->tcp_wq, mp1); 5719 CONN_DEC_REF(eager->tcp_connp); 5720 freemsg(mp); 5721 5722 return; 5723 error: 5724 freemsg(mp1); 5725 eager->tcp_closemp_used = B_TRUE; 5726 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 5727 mp1 = &eager->tcp_closemp; 5728 SQUEUE_ENTER_ONE(econnp->conn_sqp, mp1, tcp_eager_kill, 5729 econnp, SQ_FILL, SQTAG_TCP_CONN_REQ_2); 5730 5731 /* 5732 * If a connection already exists, send the mp to that connections so 5733 * that it can be appropriately dealt with. 5734 */ 5735 ipst = tcps->tcps_netstack->netstack_ip; 5736 5737 if ((econnp = ipcl_classify(mp, connp->conn_zoneid, ipst)) != NULL) { 5738 if (!IPCL_IS_CONNECTED(econnp)) { 5739 /* 5740 * Something bad happened. ipcl_conn_insert() 5741 * failed because a connection already existed 5742 * in connected hash but we can't find it 5743 * anymore (someone blew it away). Just 5744 * free this message and hopefully remote 5745 * will retransmit at which time the SYN can be 5746 * treated as a new connection or dealth with 5747 * a TH_RST if a connection already exists. 5748 */ 5749 CONN_DEC_REF(econnp); 5750 freemsg(mp); 5751 } else { 5752 SQUEUE_ENTER_ONE(econnp->conn_sqp, mp, 5753 tcp_input, econnp, SQ_FILL, SQTAG_TCP_CONN_REQ_1); 5754 } 5755 } else { 5756 /* Nobody wants this packet */ 5757 freemsg(mp); 5758 } 5759 return; 5760 error3: 5761 CONN_DEC_REF(econnp); 5762 error2: 5763 freemsg(mp); 5764 } 5765 5766 /* 5767 * In an ideal case of vertical partition in NUMA architecture, its 5768 * beneficial to have the listener and all the incoming connections 5769 * tied to the same squeue. The other constraint is that incoming 5770 * connections should be tied to the squeue attached to interrupted 5771 * CPU for obvious locality reason so this leaves the listener to 5772 * be tied to the same squeue. Our only problem is that when listener 5773 * is binding, the CPU that will get interrupted by the NIC whose 5774 * IP address the listener is binding to is not even known. So 5775 * the code below allows us to change that binding at the time the 5776 * CPU is interrupted by virtue of incoming connection's squeue. 5777 * 5778 * This is usefull only in case of a listener bound to a specific IP 5779 * address. For other kind of listeners, they get bound the 5780 * very first time and there is no attempt to rebind them. 5781 */ 5782 void 5783 tcp_conn_request_unbound(void *arg, mblk_t *mp, void *arg2) 5784 { 5785 conn_t *connp = (conn_t *)arg; 5786 squeue_t *sqp = (squeue_t *)arg2; 5787 squeue_t *new_sqp; 5788 uint32_t conn_flags; 5789 5790 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 5791 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 5792 } else { 5793 goto done; 5794 } 5795 5796 if (connp->conn_fanout == NULL) 5797 goto done; 5798 5799 if (!(connp->conn_flags & IPCL_FULLY_BOUND)) { 5800 mutex_enter(&connp->conn_fanout->connf_lock); 5801 mutex_enter(&connp->conn_lock); 5802 /* 5803 * No one from read or write side can access us now 5804 * except for already queued packets on this squeue. 5805 * But since we haven't changed the squeue yet, they 5806 * can't execute. If they are processed after we have 5807 * changed the squeue, they are sent back to the 5808 * correct squeue down below. 5809 * But a listner close can race with processing of 5810 * incoming SYN. If incoming SYN processing changes 5811 * the squeue then the listener close which is waiting 5812 * to enter the squeue would operate on the wrong 5813 * squeue. Hence we don't change the squeue here unless 5814 * the refcount is exactly the minimum refcount. The 5815 * minimum refcount of 4 is counted as - 1 each for 5816 * TCP and IP, 1 for being in the classifier hash, and 5817 * 1 for the mblk being processed. 5818 */ 5819 5820 if (connp->conn_ref != 4 || 5821 connp->conn_tcp->tcp_state != TCPS_LISTEN) { 5822 mutex_exit(&connp->conn_lock); 5823 mutex_exit(&connp->conn_fanout->connf_lock); 5824 goto done; 5825 } 5826 if (connp->conn_sqp != new_sqp) { 5827 while (connp->conn_sqp != new_sqp) 5828 (void) casptr(&connp->conn_sqp, sqp, new_sqp); 5829 } 5830 5831 do { 5832 conn_flags = connp->conn_flags; 5833 conn_flags |= IPCL_FULLY_BOUND; 5834 (void) cas32(&connp->conn_flags, connp->conn_flags, 5835 conn_flags); 5836 } while (!(connp->conn_flags & IPCL_FULLY_BOUND)); 5837 5838 mutex_exit(&connp->conn_fanout->connf_lock); 5839 mutex_exit(&connp->conn_lock); 5840 } 5841 5842 done: 5843 if (connp->conn_sqp != sqp) { 5844 CONN_INC_REF(connp); 5845 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp, 5846 SQ_FILL, SQTAG_TCP_CONN_REQ_UNBOUND); 5847 } else { 5848 tcp_conn_request(connp, mp, sqp); 5849 } 5850 } 5851 5852 /* 5853 * Successful connect request processing begins when our client passes 5854 * a T_CONN_REQ message into tcp_wput() and ends when tcp_rput() passes 5855 * our T_OK_ACK reply message upstream. The control flow looks like this: 5856 * upstream -> tcp_wput() -> tcp_wput_proto() -> tcp_tpi_connect() -> IP 5857 * upstream <- tcp_rput() <- IP 5858 * After various error checks are completed, tcp_tpi_connect() lays 5859 * the target address and port into the composite header template, 5860 * preallocates the T_OK_ACK reply message, construct a full 12 byte bind 5861 * request followed by an IRE request, and passes the three mblk message 5862 * down to IP looking like this: 5863 * O_T_BIND_REQ for IP --> IRE req --> T_OK_ACK for our client 5864 * Processing continues in tcp_rput() when we receive the following message: 5865 * T_BIND_ACK from IP --> IRE ack --> T_OK_ACK for our client 5866 * After consuming the first two mblks, tcp_rput() calls tcp_timer(), 5867 * to fire off the connection request, and then passes the T_OK_ACK mblk 5868 * upstream that we filled in below. There are, of course, numerous 5869 * error conditions along the way which truncate the processing described 5870 * above. 5871 */ 5872 static void 5873 tcp_tpi_connect(tcp_t *tcp, mblk_t *mp) 5874 { 5875 sin_t *sin; 5876 queue_t *q = tcp->tcp_wq; 5877 struct T_conn_req *tcr; 5878 struct sockaddr *sa; 5879 socklen_t len; 5880 int error; 5881 cred_t *cr; 5882 pid_t cpid; 5883 5884 /* 5885 * All Solaris components should pass a db_credp 5886 * for this TPI message, hence we ASSERT. 5887 * But in case there is some other M_PROTO that looks 5888 * like a TPI message sent by some other kernel 5889 * component, we check and return an error. 5890 */ 5891 cr = msg_getcred(mp, &cpid); 5892 ASSERT(cr != NULL); 5893 if (cr == NULL) { 5894 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 5895 return; 5896 } 5897 5898 tcr = (struct T_conn_req *)mp->b_rptr; 5899 5900 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 5901 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { 5902 tcp_err_ack(tcp, mp, TPROTO, 0); 5903 return; 5904 } 5905 5906 /* 5907 * Pre-allocate the T_ordrel_ind mblk so that at close time, we 5908 * will always have that to send up. Otherwise, we need to do 5909 * special handling in case the allocation fails at that time. 5910 * If the end point is TPI, the tcp_t can be reused and the 5911 * tcp_ordrel_mp may be allocated already. 5912 */ 5913 if (tcp->tcp_ordrel_mp == NULL) { 5914 if ((tcp->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL) { 5915 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 5916 return; 5917 } 5918 } 5919 5920 /* 5921 * Determine packet type based on type of address passed in 5922 * the request should contain an IPv4 or IPv6 address. 5923 * Make sure that address family matches the type of 5924 * family of the the address passed down 5925 */ 5926 switch (tcr->DEST_length) { 5927 default: 5928 tcp_err_ack(tcp, mp, TBADADDR, 0); 5929 return; 5930 5931 case (sizeof (sin_t) - sizeof (sin->sin_zero)): { 5932 /* 5933 * XXX: The check for valid DEST_length was not there 5934 * in earlier releases and some buggy 5935 * TLI apps (e.g Sybase) got away with not feeding 5936 * in sin_zero part of address. 5937 * We allow that bug to keep those buggy apps humming. 5938 * Test suites require the check on DEST_length. 5939 * We construct a new mblk with valid DEST_length 5940 * free the original so the rest of the code does 5941 * not have to keep track of this special shorter 5942 * length address case. 5943 */ 5944 mblk_t *nmp; 5945 struct T_conn_req *ntcr; 5946 sin_t *nsin; 5947 5948 nmp = allocb(sizeof (struct T_conn_req) + sizeof (sin_t) + 5949 tcr->OPT_length, BPRI_HI); 5950 if (nmp == NULL) { 5951 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 5952 return; 5953 } 5954 ntcr = (struct T_conn_req *)nmp->b_rptr; 5955 bzero(ntcr, sizeof (struct T_conn_req)); /* zero fill */ 5956 ntcr->PRIM_type = T_CONN_REQ; 5957 ntcr->DEST_length = sizeof (sin_t); 5958 ntcr->DEST_offset = sizeof (struct T_conn_req); 5959 5960 nsin = (sin_t *)((uchar_t *)ntcr + ntcr->DEST_offset); 5961 *nsin = sin_null; 5962 /* Get pointer to shorter address to copy from original mp */ 5963 sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset, 5964 tcr->DEST_length); /* extract DEST_length worth of sin_t */ 5965 if (sin == NULL || !OK_32PTR((char *)sin)) { 5966 freemsg(nmp); 5967 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 5968 return; 5969 } 5970 nsin->sin_family = sin->sin_family; 5971 nsin->sin_port = sin->sin_port; 5972 nsin->sin_addr = sin->sin_addr; 5973 /* Note:nsin->sin_zero zero-fill with sin_null assign above */ 5974 nmp->b_wptr = (uchar_t *)&nsin[1]; 5975 if (tcr->OPT_length != 0) { 5976 ntcr->OPT_length = tcr->OPT_length; 5977 ntcr->OPT_offset = nmp->b_wptr - nmp->b_rptr; 5978 bcopy((uchar_t *)tcr + tcr->OPT_offset, 5979 (uchar_t *)ntcr + ntcr->OPT_offset, 5980 tcr->OPT_length); 5981 nmp->b_wptr += tcr->OPT_length; 5982 } 5983 freemsg(mp); /* original mp freed */ 5984 mp = nmp; /* re-initialize original variables */ 5985 tcr = ntcr; 5986 } 5987 /* FALLTHRU */ 5988 5989 case sizeof (sin_t): 5990 sa = (struct sockaddr *)mi_offset_param(mp, tcr->DEST_offset, 5991 sizeof (sin_t)); 5992 len = sizeof (sin_t); 5993 break; 5994 5995 case sizeof (sin6_t): 5996 sa = (struct sockaddr *)mi_offset_param(mp, tcr->DEST_offset, 5997 sizeof (sin6_t)); 5998 len = sizeof (sin6_t); 5999 break; 6000 } 6001 6002 error = proto_verify_ip_addr(tcp->tcp_family, sa, len); 6003 if (error != 0) { 6004 tcp_err_ack(tcp, mp, TSYSERR, error); 6005 return; 6006 } 6007 6008 /* 6009 * TODO: If someone in TCPS_TIME_WAIT has this dst/port we 6010 * should key on their sequence number and cut them loose. 6011 */ 6012 6013 /* 6014 * If options passed in, feed it for verification and handling 6015 */ 6016 if (tcr->OPT_length != 0) { 6017 mblk_t *ok_mp; 6018 mblk_t *discon_mp; 6019 mblk_t *conn_opts_mp; 6020 int t_error, sys_error, do_disconnect; 6021 6022 conn_opts_mp = NULL; 6023 6024 if (tcp_conprim_opt_process(tcp, mp, 6025 &do_disconnect, &t_error, &sys_error) < 0) { 6026 if (do_disconnect) { 6027 ASSERT(t_error == 0 && sys_error == 0); 6028 discon_mp = mi_tpi_discon_ind(NULL, 6029 ECONNREFUSED, 0); 6030 if (!discon_mp) { 6031 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, 6032 TSYSERR, ENOMEM); 6033 return; 6034 } 6035 ok_mp = mi_tpi_ok_ack_alloc(mp); 6036 if (!ok_mp) { 6037 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6038 TSYSERR, ENOMEM); 6039 return; 6040 } 6041 qreply(q, ok_mp); 6042 qreply(q, discon_mp); /* no flush! */ 6043 } else { 6044 ASSERT(t_error != 0); 6045 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, t_error, 6046 sys_error); 6047 } 6048 return; 6049 } 6050 /* 6051 * Success in setting options, the mp option buffer represented 6052 * by OPT_length/offset has been potentially modified and 6053 * contains results of option processing. We copy it in 6054 * another mp to save it for potentially influencing returning 6055 * it in T_CONN_CONN. 6056 */ 6057 if (tcr->OPT_length != 0) { /* there are resulting options */ 6058 conn_opts_mp = copyb(mp); 6059 if (!conn_opts_mp) { 6060 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, 6061 TSYSERR, ENOMEM); 6062 return; 6063 } 6064 ASSERT(tcp->tcp_conn.tcp_opts_conn_req == NULL); 6065 tcp->tcp_conn.tcp_opts_conn_req = conn_opts_mp; 6066 /* 6067 * Note: 6068 * These resulting option negotiation can include any 6069 * end-to-end negotiation options but there no such 6070 * thing (yet?) in our TCP/IP. 6071 */ 6072 } 6073 } 6074 6075 /* call the non-TPI version */ 6076 error = tcp_do_connect(tcp->tcp_connp, sa, len, cr, cpid); 6077 if (error < 0) { 6078 mp = mi_tpi_err_ack_alloc(mp, -error, 0); 6079 } else if (error > 0) { 6080 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 6081 } else { 6082 mp = mi_tpi_ok_ack_alloc(mp); 6083 } 6084 6085 /* 6086 * Note: Code below is the "failure" case 6087 */ 6088 /* return error ack and blow away saved option results if any */ 6089 connect_failed: 6090 if (mp != NULL) 6091 putnext(tcp->tcp_rq, mp); 6092 else { 6093 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6094 TSYSERR, ENOMEM); 6095 } 6096 } 6097 6098 /* 6099 * Handle connect to IPv4 destinations, including connections for AF_INET6 6100 * sockets connecting to IPv4 mapped IPv6 destinations. 6101 */ 6102 static int 6103 tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, in_port_t dstport, 6104 uint_t srcid, cred_t *cr, pid_t pid) 6105 { 6106 tcph_t *tcph; 6107 mblk_t *mp; 6108 ipaddr_t dstaddr = *dstaddrp; 6109 int32_t oldstate; 6110 uint16_t lport; 6111 int error = 0; 6112 tcp_stack_t *tcps = tcp->tcp_tcps; 6113 6114 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 6115 6116 /* Check for attempt to connect to INADDR_ANY */ 6117 if (dstaddr == INADDR_ANY) { 6118 /* 6119 * SunOS 4.x and 4.3 BSD allow an application 6120 * to connect a TCP socket to INADDR_ANY. 6121 * When they do this, the kernel picks the 6122 * address of one interface and uses it 6123 * instead. The kernel usually ends up 6124 * picking the address of the loopback 6125 * interface. This is an undocumented feature. 6126 * However, we provide the same thing here 6127 * in order to have source and binary 6128 * compatibility with SunOS 4.x. 6129 * Update the T_CONN_REQ (sin/sin6) since it is used to 6130 * generate the T_CONN_CON. 6131 */ 6132 dstaddr = htonl(INADDR_LOOPBACK); 6133 *dstaddrp = dstaddr; 6134 } 6135 6136 /* Handle __sin6_src_id if socket not bound to an IP address */ 6137 if (srcid != 0 && tcp->tcp_ipha->ipha_src == INADDR_ANY) { 6138 ip_srcid_find_id(srcid, &tcp->tcp_ip_src_v6, 6139 tcp->tcp_connp->conn_zoneid, tcps->tcps_netstack); 6140 IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_ip_src_v6, 6141 tcp->tcp_ipha->ipha_src); 6142 } 6143 6144 /* 6145 * Don't let an endpoint connect to itself. Note that 6146 * the test here does not catch the case where the 6147 * source IP addr was left unspecified by the user. In 6148 * this case, the source addr is set in tcp_adapt_ire() 6149 * using the reply to the T_BIND message that we send 6150 * down to IP here and the check is repeated in tcp_rput_other. 6151 */ 6152 if (dstaddr == tcp->tcp_ipha->ipha_src && 6153 dstport == tcp->tcp_lport) { 6154 error = -TBADADDR; 6155 goto failed; 6156 } 6157 6158 tcp->tcp_ipha->ipha_dst = dstaddr; 6159 IN6_IPADDR_TO_V4MAPPED(dstaddr, &tcp->tcp_remote_v6); 6160 6161 /* 6162 * Massage a source route if any putting the first hop 6163 * in iph_dst. Compute a starting value for the checksum which 6164 * takes into account that the original iph_dst should be 6165 * included in the checksum but that ip will include the 6166 * first hop in the source route in the tcp checksum. 6167 */ 6168 tcp->tcp_sum = ip_massage_options(tcp->tcp_ipha, tcps->tcps_netstack); 6169 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 6170 tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) + 6171 (tcp->tcp_ipha->ipha_dst & 0xffff)); 6172 if ((int)tcp->tcp_sum < 0) 6173 tcp->tcp_sum--; 6174 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 6175 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 6176 (tcp->tcp_sum >> 16)); 6177 tcph = tcp->tcp_tcph; 6178 *(uint16_t *)tcph->th_fport = dstport; 6179 tcp->tcp_fport = dstport; 6180 6181 oldstate = tcp->tcp_state; 6182 /* 6183 * At this point the remote destination address and remote port fields 6184 * in the tcp-four-tuple have been filled in the tcp structure. Now we 6185 * have to see which state tcp was in so we can take apropriate action. 6186 */ 6187 if (oldstate == TCPS_IDLE) { 6188 /* 6189 * We support a quick connect capability here, allowing 6190 * clients to transition directly from IDLE to SYN_SENT 6191 * tcp_bindi will pick an unused port, insert the connection 6192 * in the bind hash and transition to BOUND state. 6193 */ 6194 lport = tcp_update_next_port(tcps->tcps_next_port_to_try, 6195 tcp, B_TRUE); 6196 lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE, 6197 B_FALSE, B_FALSE); 6198 if (lport == 0) { 6199 error = -TNOADDR; 6200 goto failed; 6201 } 6202 } 6203 tcp->tcp_state = TCPS_SYN_SENT; 6204 6205 mp = allocb(sizeof (ire_t), BPRI_HI); 6206 if (mp == NULL) { 6207 tcp->tcp_state = oldstate; 6208 error = ENOMEM; 6209 goto failed; 6210 } 6211 6212 mp->b_wptr += sizeof (ire_t); 6213 mp->b_datap->db_type = IRE_DB_REQ_TYPE; 6214 tcp->tcp_hard_binding = 1; 6215 6216 /* 6217 * We need to make sure that the conn_recv is set to a non-null 6218 * value before we insert the conn_t into the classifier table. 6219 * This is to avoid a race with an incoming packet which does 6220 * an ipcl_classify(). 6221 */ 6222 tcp->tcp_connp->conn_recv = tcp_input; 6223 6224 if (tcp->tcp_family == AF_INET) { 6225 error = ip_proto_bind_connected_v4(tcp->tcp_connp, &mp, 6226 IPPROTO_TCP, &tcp->tcp_ipha->ipha_src, tcp->tcp_lport, 6227 tcp->tcp_remote, tcp->tcp_fport, B_TRUE, B_TRUE, cr); 6228 } else { 6229 in6_addr_t v6src; 6230 if (tcp->tcp_ipversion == IPV4_VERSION) { 6231 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6src); 6232 } else { 6233 v6src = tcp->tcp_ip6h->ip6_src; 6234 } 6235 error = ip_proto_bind_connected_v6(tcp->tcp_connp, &mp, 6236 IPPROTO_TCP, &v6src, tcp->tcp_lport, &tcp->tcp_remote_v6, 6237 &tcp->tcp_sticky_ipp, tcp->tcp_fport, B_TRUE, B_TRUE, cr); 6238 } 6239 BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens); 6240 tcp->tcp_active_open = 1; 6241 6242 6243 return (tcp_post_ip_bind(tcp, mp, error, cr, pid)); 6244 failed: 6245 /* return error ack and blow away saved option results if any */ 6246 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 6247 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 6248 return (error); 6249 } 6250 6251 /* 6252 * Handle connect to IPv6 destinations. 6253 */ 6254 static int 6255 tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, in_port_t dstport, 6256 uint32_t flowinfo, uint_t srcid, uint32_t scope_id, cred_t *cr, pid_t pid) 6257 { 6258 tcph_t *tcph; 6259 mblk_t *mp; 6260 ip6_rthdr_t *rth; 6261 int32_t oldstate; 6262 uint16_t lport; 6263 tcp_stack_t *tcps = tcp->tcp_tcps; 6264 int error = 0; 6265 conn_t *connp = tcp->tcp_connp; 6266 6267 ASSERT(tcp->tcp_family == AF_INET6); 6268 6269 /* 6270 * If we're here, it means that the destination address is a native 6271 * IPv6 address. Return an error if tcp_ipversion is not IPv6. A 6272 * reason why it might not be IPv6 is if the socket was bound to an 6273 * IPv4-mapped IPv6 address. 6274 */ 6275 if (tcp->tcp_ipversion != IPV6_VERSION) { 6276 return (-TBADADDR); 6277 } 6278 6279 /* 6280 * Interpret a zero destination to mean loopback. 6281 * Update the T_CONN_REQ (sin/sin6) since it is used to 6282 * generate the T_CONN_CON. 6283 */ 6284 if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp)) { 6285 *dstaddrp = ipv6_loopback; 6286 } 6287 6288 /* Handle __sin6_src_id if socket not bound to an IP address */ 6289 if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) { 6290 ip_srcid_find_id(srcid, &tcp->tcp_ip6h->ip6_src, 6291 connp->conn_zoneid, tcps->tcps_netstack); 6292 tcp->tcp_ip_src_v6 = tcp->tcp_ip6h->ip6_src; 6293 } 6294 6295 /* 6296 * Take care of the scope_id now and add ip6i_t 6297 * if ip6i_t is not already allocated through TCP 6298 * sticky options. At this point tcp_ip6h does not 6299 * have dst info, thus use dstaddrp. 6300 */ 6301 if (scope_id != 0 && 6302 IN6_IS_ADDR_LINKSCOPE(dstaddrp)) { 6303 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 6304 ip6i_t *ip6i; 6305 6306 ipp->ipp_ifindex = scope_id; 6307 ip6i = (ip6i_t *)tcp->tcp_iphc; 6308 6309 if ((ipp->ipp_fields & IPPF_HAS_IP6I) && 6310 ip6i != NULL && (ip6i->ip6i_nxt == IPPROTO_RAW)) { 6311 /* Already allocated */ 6312 ip6i->ip6i_flags |= IP6I_IFINDEX; 6313 ip6i->ip6i_ifindex = ipp->ipp_ifindex; 6314 ipp->ipp_fields |= IPPF_SCOPE_ID; 6315 } else { 6316 int reterr; 6317 6318 ipp->ipp_fields |= IPPF_SCOPE_ID; 6319 if (ipp->ipp_fields & IPPF_HAS_IP6I) 6320 ip2dbg(("tcp_connect_v6: SCOPE_ID set\n")); 6321 reterr = tcp_build_hdrs(tcp); 6322 if (reterr != 0) 6323 goto failed; 6324 ip1dbg(("tcp_connect_ipv6: tcp_bld_hdrs returned\n")); 6325 } 6326 } 6327 6328 /* 6329 * Don't let an endpoint connect to itself. Note that 6330 * the test here does not catch the case where the 6331 * source IP addr was left unspecified by the user. In 6332 * this case, the source addr is set in tcp_adapt_ire() 6333 * using the reply to the T_BIND message that we send 6334 * down to IP here and the check is repeated in tcp_rput_other. 6335 */ 6336 if (IN6_ARE_ADDR_EQUAL(dstaddrp, &tcp->tcp_ip6h->ip6_src) && 6337 (dstport == tcp->tcp_lport)) { 6338 error = -TBADADDR; 6339 goto failed; 6340 } 6341 6342 tcp->tcp_ip6h->ip6_dst = *dstaddrp; 6343 tcp->tcp_remote_v6 = *dstaddrp; 6344 tcp->tcp_ip6h->ip6_vcf = 6345 (IPV6_DEFAULT_VERS_AND_FLOW & IPV6_VERS_AND_FLOW_MASK) | 6346 (flowinfo & ~IPV6_VERS_AND_FLOW_MASK); 6347 6348 /* 6349 * Massage a routing header (if present) putting the first hop 6350 * in ip6_dst. Compute a starting value for the checksum which 6351 * takes into account that the original ip6_dst should be 6352 * included in the checksum but that ip will include the 6353 * first hop in the source route in the tcp checksum. 6354 */ 6355 rth = ip_find_rthdr_v6(tcp->tcp_ip6h, (uint8_t *)tcp->tcp_tcph); 6356 if (rth != NULL) { 6357 tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, rth, 6358 tcps->tcps_netstack); 6359 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 6360 (tcp->tcp_sum >> 16)); 6361 } else { 6362 tcp->tcp_sum = 0; 6363 } 6364 6365 tcph = tcp->tcp_tcph; 6366 *(uint16_t *)tcph->th_fport = dstport; 6367 tcp->tcp_fport = dstport; 6368 6369 oldstate = tcp->tcp_state; 6370 /* 6371 * At this point the remote destination address and remote port fields 6372 * in the tcp-four-tuple have been filled in the tcp structure. Now we 6373 * have to see which state tcp was in so we can take apropriate action. 6374 */ 6375 if (oldstate == TCPS_IDLE) { 6376 /* 6377 * We support a quick connect capability here, allowing 6378 * clients to transition directly from IDLE to SYN_SENT 6379 * tcp_bindi will pick an unused port, insert the connection 6380 * in the bind hash and transition to BOUND state. 6381 */ 6382 lport = tcp_update_next_port(tcps->tcps_next_port_to_try, 6383 tcp, B_TRUE); 6384 lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE, 6385 B_FALSE, B_FALSE); 6386 if (lport == 0) { 6387 error = -TNOADDR; 6388 goto failed; 6389 } 6390 } 6391 tcp->tcp_state = TCPS_SYN_SENT; 6392 6393 mp = allocb(sizeof (ire_t), BPRI_HI); 6394 if (mp != NULL) { 6395 in6_addr_t v6src; 6396 6397 mp->b_wptr += sizeof (ire_t); 6398 mp->b_datap->db_type = IRE_DB_REQ_TYPE; 6399 6400 tcp->tcp_hard_binding = 1; 6401 6402 /* 6403 * We need to make sure that the conn_recv is set to a non-null 6404 * value before we insert the conn_t into the classifier table. 6405 * This is to avoid a race with an incoming packet which does 6406 * an ipcl_classify(). 6407 */ 6408 tcp->tcp_connp->conn_recv = tcp_input; 6409 6410 if (tcp->tcp_ipversion == IPV4_VERSION) { 6411 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6src); 6412 } else { 6413 v6src = tcp->tcp_ip6h->ip6_src; 6414 } 6415 error = ip_proto_bind_connected_v6(connp, &mp, IPPROTO_TCP, 6416 &v6src, tcp->tcp_lport, &tcp->tcp_remote_v6, 6417 &tcp->tcp_sticky_ipp, tcp->tcp_fport, B_TRUE, B_TRUE, cr); 6418 BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens); 6419 tcp->tcp_active_open = 1; 6420 6421 return (tcp_post_ip_bind(tcp, mp, error, cr, pid)); 6422 } 6423 /* Error case */ 6424 tcp->tcp_state = oldstate; 6425 error = ENOMEM; 6426 6427 failed: 6428 /* return error ack and blow away saved option results if any */ 6429 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 6430 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 6431 return (error); 6432 } 6433 6434 /* 6435 * We need a stream q for detached closing tcp connections 6436 * to use. Our client hereby indicates that this q is the 6437 * one to use. 6438 */ 6439 static void 6440 tcp_def_q_set(tcp_t *tcp, mblk_t *mp) 6441 { 6442 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 6443 queue_t *q = tcp->tcp_wq; 6444 tcp_stack_t *tcps = tcp->tcp_tcps; 6445 6446 #ifdef NS_DEBUG 6447 (void) printf("TCP_IOC_DEFAULT_Q for stack %d\n", 6448 tcps->tcps_netstack->netstack_stackid); 6449 #endif 6450 mp->b_datap->db_type = M_IOCACK; 6451 iocp->ioc_count = 0; 6452 mutex_enter(&tcps->tcps_g_q_lock); 6453 if (tcps->tcps_g_q != NULL) { 6454 mutex_exit(&tcps->tcps_g_q_lock); 6455 iocp->ioc_error = EALREADY; 6456 } else { 6457 int error = 0; 6458 conn_t *connp = tcp->tcp_connp; 6459 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 6460 6461 tcps->tcps_g_q = tcp->tcp_rq; 6462 mutex_exit(&tcps->tcps_g_q_lock); 6463 iocp->ioc_error = 0; 6464 iocp->ioc_rval = 0; 6465 /* 6466 * We are passing tcp_sticky_ipp as NULL 6467 * as it is not useful for tcp_default queue 6468 * 6469 * Set conn_recv just in case. 6470 */ 6471 tcp->tcp_connp->conn_recv = tcp_conn_request; 6472 6473 ASSERT(connp->conn_af_isv6); 6474 connp->conn_ulp = IPPROTO_TCP; 6475 6476 if (ipst->ips_ipcl_proto_fanout_v6[IPPROTO_TCP].connf_head != 6477 NULL || connp->conn_mac_exempt) { 6478 error = -TBADADDR; 6479 } else { 6480 connp->conn_srcv6 = ipv6_all_zeros; 6481 ipcl_proto_insert_v6(connp, IPPROTO_TCP); 6482 } 6483 6484 (void) tcp_post_ip_bind(tcp, NULL, error, NULL, 0); 6485 } 6486 qreply(q, mp); 6487 } 6488 6489 static int 6490 tcp_disconnect_common(tcp_t *tcp, t_scalar_t seqnum) 6491 { 6492 tcp_t *ltcp = NULL; 6493 conn_t *connp; 6494 tcp_stack_t *tcps = tcp->tcp_tcps; 6495 6496 /* 6497 * Right now, upper modules pass down a T_DISCON_REQ to TCP, 6498 * when the stream is in BOUND state. Do not send a reset, 6499 * since the destination IP address is not valid, and it can 6500 * be the initialized value of all zeros (broadcast address). 6501 * 6502 * XXX There won't be any pending bind request to IP. 6503 */ 6504 if (tcp->tcp_state <= TCPS_BOUND) { 6505 if (tcp->tcp_debug) { 6506 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 6507 "tcp_disconnect: bad state, %d", tcp->tcp_state); 6508 } 6509 return (TOUTSTATE); 6510 } 6511 6512 6513 if (seqnum == -1 || tcp->tcp_conn_req_max == 0) { 6514 6515 /* 6516 * According to TPI, for non-listeners, ignore seqnum 6517 * and disconnect. 6518 * Following interpretation of -1 seqnum is historical 6519 * and implied TPI ? (TPI only states that for T_CONN_IND, 6520 * a valid seqnum should not be -1). 6521 * 6522 * -1 means disconnect everything 6523 * regardless even on a listener. 6524 */ 6525 6526 int old_state = tcp->tcp_state; 6527 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 6528 6529 /* 6530 * The connection can't be on the tcp_time_wait_head list 6531 * since it is not detached. 6532 */ 6533 ASSERT(tcp->tcp_time_wait_next == NULL); 6534 ASSERT(tcp->tcp_time_wait_prev == NULL); 6535 ASSERT(tcp->tcp_time_wait_expire == 0); 6536 ltcp = NULL; 6537 /* 6538 * If it used to be a listener, check to make sure no one else 6539 * has taken the port before switching back to LISTEN state. 6540 */ 6541 if (tcp->tcp_ipversion == IPV4_VERSION) { 6542 connp = ipcl_lookup_listener_v4(tcp->tcp_lport, 6543 tcp->tcp_ipha->ipha_src, 6544 tcp->tcp_connp->conn_zoneid, ipst); 6545 if (connp != NULL) 6546 ltcp = connp->conn_tcp; 6547 } else { 6548 /* Allow tcp_bound_if listeners? */ 6549 connp = ipcl_lookup_listener_v6(tcp->tcp_lport, 6550 &tcp->tcp_ip6h->ip6_src, 0, 6551 tcp->tcp_connp->conn_zoneid, ipst); 6552 if (connp != NULL) 6553 ltcp = connp->conn_tcp; 6554 } 6555 if (tcp->tcp_conn_req_max && ltcp == NULL) { 6556 tcp->tcp_state = TCPS_LISTEN; 6557 } else if (old_state > TCPS_BOUND) { 6558 tcp->tcp_conn_req_max = 0; 6559 tcp->tcp_state = TCPS_BOUND; 6560 } 6561 if (ltcp != NULL) 6562 CONN_DEC_REF(ltcp->tcp_connp); 6563 if (old_state == TCPS_SYN_SENT || old_state == TCPS_SYN_RCVD) { 6564 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 6565 } else if (old_state == TCPS_ESTABLISHED || 6566 old_state == TCPS_CLOSE_WAIT) { 6567 BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); 6568 } 6569 6570 if (tcp->tcp_fused) 6571 tcp_unfuse(tcp); 6572 6573 mutex_enter(&tcp->tcp_eager_lock); 6574 if ((tcp->tcp_conn_req_cnt_q0 != 0) || 6575 (tcp->tcp_conn_req_cnt_q != 0)) { 6576 tcp_eager_cleanup(tcp, 0); 6577 } 6578 mutex_exit(&tcp->tcp_eager_lock); 6579 6580 tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt, 6581 tcp->tcp_rnxt, TH_RST | TH_ACK); 6582 6583 tcp_reinit(tcp); 6584 6585 return (0); 6586 } else if (!tcp_eager_blowoff(tcp, seqnum)) { 6587 return (TBADSEQ); 6588 } 6589 return (0); 6590 } 6591 6592 /* 6593 * Our client hereby directs us to reject the connection request 6594 * that tcp_conn_request() marked with 'seqnum'. Rejection consists 6595 * of sending the appropriate RST, not an ICMP error. 6596 */ 6597 static void 6598 tcp_disconnect(tcp_t *tcp, mblk_t *mp) 6599 { 6600 t_scalar_t seqnum; 6601 int error; 6602 6603 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 6604 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) { 6605 tcp_err_ack(tcp, mp, TPROTO, 0); 6606 return; 6607 } 6608 seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number; 6609 error = tcp_disconnect_common(tcp, seqnum); 6610 if (error != 0) 6611 tcp_err_ack(tcp, mp, error, 0); 6612 else { 6613 if (tcp->tcp_state >= TCPS_ESTABLISHED) { 6614 /* Send M_FLUSH according to TPI */ 6615 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 6616 } 6617 mp = mi_tpi_ok_ack_alloc(mp); 6618 if (mp) 6619 putnext(tcp->tcp_rq, mp); 6620 } 6621 } 6622 6623 /* 6624 * Diagnostic routine used to return a string associated with the tcp state. 6625 * Note that if the caller does not supply a buffer, it will use an internal 6626 * static string. This means that if multiple threads call this function at 6627 * the same time, output can be corrupted... Note also that this function 6628 * does not check the size of the supplied buffer. The caller has to make 6629 * sure that it is big enough. 6630 */ 6631 static char * 6632 tcp_display(tcp_t *tcp, char *sup_buf, char format) 6633 { 6634 char buf1[30]; 6635 static char priv_buf[INET6_ADDRSTRLEN * 2 + 80]; 6636 char *buf; 6637 char *cp; 6638 in6_addr_t local, remote; 6639 char local_addrbuf[INET6_ADDRSTRLEN]; 6640 char remote_addrbuf[INET6_ADDRSTRLEN]; 6641 6642 if (sup_buf != NULL) 6643 buf = sup_buf; 6644 else 6645 buf = priv_buf; 6646 6647 if (tcp == NULL) 6648 return ("NULL_TCP"); 6649 switch (tcp->tcp_state) { 6650 case TCPS_CLOSED: 6651 cp = "TCP_CLOSED"; 6652 break; 6653 case TCPS_IDLE: 6654 cp = "TCP_IDLE"; 6655 break; 6656 case TCPS_BOUND: 6657 cp = "TCP_BOUND"; 6658 break; 6659 case TCPS_LISTEN: 6660 cp = "TCP_LISTEN"; 6661 break; 6662 case TCPS_SYN_SENT: 6663 cp = "TCP_SYN_SENT"; 6664 break; 6665 case TCPS_SYN_RCVD: 6666 cp = "TCP_SYN_RCVD"; 6667 break; 6668 case TCPS_ESTABLISHED: 6669 cp = "TCP_ESTABLISHED"; 6670 break; 6671 case TCPS_CLOSE_WAIT: 6672 cp = "TCP_CLOSE_WAIT"; 6673 break; 6674 case TCPS_FIN_WAIT_1: 6675 cp = "TCP_FIN_WAIT_1"; 6676 break; 6677 case TCPS_CLOSING: 6678 cp = "TCP_CLOSING"; 6679 break; 6680 case TCPS_LAST_ACK: 6681 cp = "TCP_LAST_ACK"; 6682 break; 6683 case TCPS_FIN_WAIT_2: 6684 cp = "TCP_FIN_WAIT_2"; 6685 break; 6686 case TCPS_TIME_WAIT: 6687 cp = "TCP_TIME_WAIT"; 6688 break; 6689 default: 6690 (void) mi_sprintf(buf1, "TCPUnkState(%d)", tcp->tcp_state); 6691 cp = buf1; 6692 break; 6693 } 6694 switch (format) { 6695 case DISP_ADDR_AND_PORT: 6696 if (tcp->tcp_ipversion == IPV4_VERSION) { 6697 /* 6698 * Note that we use the remote address in the tcp_b 6699 * structure. This means that it will print out 6700 * the real destination address, not the next hop's 6701 * address if source routing is used. 6702 */ 6703 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ip_src, &local); 6704 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &remote); 6705 6706 } else { 6707 local = tcp->tcp_ip_src_v6; 6708 remote = tcp->tcp_remote_v6; 6709 } 6710 (void) inet_ntop(AF_INET6, &local, local_addrbuf, 6711 sizeof (local_addrbuf)); 6712 (void) inet_ntop(AF_INET6, &remote, remote_addrbuf, 6713 sizeof (remote_addrbuf)); 6714 (void) mi_sprintf(buf, "[%s.%u, %s.%u] %s", 6715 local_addrbuf, ntohs(tcp->tcp_lport), remote_addrbuf, 6716 ntohs(tcp->tcp_fport), cp); 6717 break; 6718 case DISP_PORT_ONLY: 6719 default: 6720 (void) mi_sprintf(buf, "[%u, %u] %s", 6721 ntohs(tcp->tcp_lport), ntohs(tcp->tcp_fport), cp); 6722 break; 6723 } 6724 6725 return (buf); 6726 } 6727 6728 /* 6729 * Called via squeue to get on to eager's perimeter. It sends a 6730 * TH_RST if eager is in the fanout table. The listener wants the 6731 * eager to disappear either by means of tcp_eager_blowoff() or 6732 * tcp_eager_cleanup() being called. tcp_eager_kill() can also be 6733 * called (via squeue) if the eager cannot be inserted in the 6734 * fanout table in tcp_conn_request(). 6735 */ 6736 /* ARGSUSED */ 6737 void 6738 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2) 6739 { 6740 conn_t *econnp = (conn_t *)arg; 6741 tcp_t *eager = econnp->conn_tcp; 6742 tcp_t *listener = eager->tcp_listener; 6743 tcp_stack_t *tcps = eager->tcp_tcps; 6744 6745 /* 6746 * We could be called because listener is closing. Since 6747 * the eager is using listener's queue's, its not safe. 6748 * Better use the default queue just to send the TH_RST 6749 * out. 6750 */ 6751 ASSERT(tcps->tcps_g_q != NULL); 6752 eager->tcp_rq = tcps->tcps_g_q; 6753 eager->tcp_wq = WR(tcps->tcps_g_q); 6754 6755 /* 6756 * An eager's conn_fanout will be NULL if it's a duplicate 6757 * for an existing 4-tuples in the conn fanout table. 6758 * We don't want to send an RST out in such case. 6759 */ 6760 if (econnp->conn_fanout != NULL && eager->tcp_state > TCPS_LISTEN) { 6761 tcp_xmit_ctl("tcp_eager_kill, can't wait", 6762 eager, eager->tcp_snxt, 0, TH_RST); 6763 } 6764 6765 /* We are here because listener wants this eager gone */ 6766 if (listener != NULL) { 6767 mutex_enter(&listener->tcp_eager_lock); 6768 tcp_eager_unlink(eager); 6769 if (eager->tcp_tconnind_started) { 6770 /* 6771 * The eager has sent a conn_ind up to the 6772 * listener but listener decides to close 6773 * instead. We need to drop the extra ref 6774 * placed on eager in tcp_rput_data() before 6775 * sending the conn_ind to listener. 6776 */ 6777 CONN_DEC_REF(econnp); 6778 } 6779 mutex_exit(&listener->tcp_eager_lock); 6780 CONN_DEC_REF(listener->tcp_connp); 6781 } 6782 6783 if (eager->tcp_state > TCPS_BOUND) 6784 tcp_close_detached(eager); 6785 } 6786 6787 /* 6788 * Reset any eager connection hanging off this listener marked 6789 * with 'seqnum' and then reclaim it's resources. 6790 */ 6791 static boolean_t 6792 tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum) 6793 { 6794 tcp_t *eager; 6795 mblk_t *mp; 6796 tcp_stack_t *tcps = listener->tcp_tcps; 6797 6798 TCP_STAT(tcps, tcp_eager_blowoff_calls); 6799 eager = listener; 6800 mutex_enter(&listener->tcp_eager_lock); 6801 do { 6802 eager = eager->tcp_eager_next_q; 6803 if (eager == NULL) { 6804 mutex_exit(&listener->tcp_eager_lock); 6805 return (B_FALSE); 6806 } 6807 } while (eager->tcp_conn_req_seqnum != seqnum); 6808 6809 if (eager->tcp_closemp_used) { 6810 mutex_exit(&listener->tcp_eager_lock); 6811 return (B_TRUE); 6812 } 6813 eager->tcp_closemp_used = B_TRUE; 6814 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 6815 CONN_INC_REF(eager->tcp_connp); 6816 mutex_exit(&listener->tcp_eager_lock); 6817 mp = &eager->tcp_closemp; 6818 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill, 6819 eager->tcp_connp, SQ_FILL, SQTAG_TCP_EAGER_BLOWOFF); 6820 return (B_TRUE); 6821 } 6822 6823 /* 6824 * Reset any eager connection hanging off this listener 6825 * and then reclaim it's resources. 6826 */ 6827 static void 6828 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only) 6829 { 6830 tcp_t *eager; 6831 mblk_t *mp; 6832 tcp_stack_t *tcps = listener->tcp_tcps; 6833 6834 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 6835 6836 if (!q0_only) { 6837 /* First cleanup q */ 6838 TCP_STAT(tcps, tcp_eager_blowoff_q); 6839 eager = listener->tcp_eager_next_q; 6840 while (eager != NULL) { 6841 if (!eager->tcp_closemp_used) { 6842 eager->tcp_closemp_used = B_TRUE; 6843 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 6844 CONN_INC_REF(eager->tcp_connp); 6845 mp = &eager->tcp_closemp; 6846 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, 6847 tcp_eager_kill, eager->tcp_connp, 6848 SQ_FILL, SQTAG_TCP_EAGER_CLEANUP); 6849 } 6850 eager = eager->tcp_eager_next_q; 6851 } 6852 } 6853 /* Then cleanup q0 */ 6854 TCP_STAT(tcps, tcp_eager_blowoff_q0); 6855 eager = listener->tcp_eager_next_q0; 6856 while (eager != listener) { 6857 if (!eager->tcp_closemp_used) { 6858 eager->tcp_closemp_used = B_TRUE; 6859 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 6860 CONN_INC_REF(eager->tcp_connp); 6861 mp = &eager->tcp_closemp; 6862 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, 6863 tcp_eager_kill, eager->tcp_connp, SQ_FILL, 6864 SQTAG_TCP_EAGER_CLEANUP_Q0); 6865 } 6866 eager = eager->tcp_eager_next_q0; 6867 } 6868 } 6869 6870 /* 6871 * If we are an eager connection hanging off a listener that hasn't 6872 * formally accepted the connection yet, get off his list and blow off 6873 * any data that we have accumulated. 6874 */ 6875 static void 6876 tcp_eager_unlink(tcp_t *tcp) 6877 { 6878 tcp_t *listener = tcp->tcp_listener; 6879 6880 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 6881 ASSERT(listener != NULL); 6882 if (tcp->tcp_eager_next_q0 != NULL) { 6883 ASSERT(tcp->tcp_eager_prev_q0 != NULL); 6884 6885 /* Remove the eager tcp from q0 */ 6886 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 6887 tcp->tcp_eager_prev_q0; 6888 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 6889 tcp->tcp_eager_next_q0; 6890 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 6891 listener->tcp_conn_req_cnt_q0--; 6892 6893 tcp->tcp_eager_next_q0 = NULL; 6894 tcp->tcp_eager_prev_q0 = NULL; 6895 6896 /* 6897 * Take the eager out, if it is in the list of droppable 6898 * eagers. 6899 */ 6900 MAKE_UNDROPPABLE(tcp); 6901 6902 if (tcp->tcp_syn_rcvd_timeout != 0) { 6903 /* we have timed out before */ 6904 ASSERT(listener->tcp_syn_rcvd_timeout > 0); 6905 listener->tcp_syn_rcvd_timeout--; 6906 } 6907 } else { 6908 tcp_t **tcpp = &listener->tcp_eager_next_q; 6909 tcp_t *prev = NULL; 6910 6911 for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) { 6912 if (tcpp[0] == tcp) { 6913 if (listener->tcp_eager_last_q == tcp) { 6914 /* 6915 * If we are unlinking the last 6916 * element on the list, adjust 6917 * tail pointer. Set tail pointer 6918 * to nil when list is empty. 6919 */ 6920 ASSERT(tcp->tcp_eager_next_q == NULL); 6921 if (listener->tcp_eager_last_q == 6922 listener->tcp_eager_next_q) { 6923 listener->tcp_eager_last_q = 6924 NULL; 6925 } else { 6926 /* 6927 * We won't get here if there 6928 * is only one eager in the 6929 * list. 6930 */ 6931 ASSERT(prev != NULL); 6932 listener->tcp_eager_last_q = 6933 prev; 6934 } 6935 } 6936 tcpp[0] = tcp->tcp_eager_next_q; 6937 tcp->tcp_eager_next_q = NULL; 6938 tcp->tcp_eager_last_q = NULL; 6939 ASSERT(listener->tcp_conn_req_cnt_q > 0); 6940 listener->tcp_conn_req_cnt_q--; 6941 break; 6942 } 6943 prev = tcpp[0]; 6944 } 6945 } 6946 tcp->tcp_listener = NULL; 6947 } 6948 6949 /* Shorthand to generate and send TPI error acks to our client */ 6950 static void 6951 tcp_err_ack(tcp_t *tcp, mblk_t *mp, int t_error, int sys_error) 6952 { 6953 if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL) 6954 putnext(tcp->tcp_rq, mp); 6955 } 6956 6957 /* Shorthand to generate and send TPI error acks to our client */ 6958 static void 6959 tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, 6960 int t_error, int sys_error) 6961 { 6962 struct T_error_ack *teackp; 6963 6964 if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack), 6965 M_PCPROTO, T_ERROR_ACK)) != NULL) { 6966 teackp = (struct T_error_ack *)mp->b_rptr; 6967 teackp->ERROR_prim = primitive; 6968 teackp->TLI_error = t_error; 6969 teackp->UNIX_error = sys_error; 6970 putnext(tcp->tcp_rq, mp); 6971 } 6972 } 6973 6974 /* 6975 * Note: No locks are held when inspecting tcp_g_*epriv_ports 6976 * but instead the code relies on: 6977 * - the fact that the address of the array and its size never changes 6978 * - the atomic assignment of the elements of the array 6979 */ 6980 /* ARGSUSED */ 6981 static int 6982 tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 6983 { 6984 int i; 6985 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 6986 6987 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 6988 if (tcps->tcps_g_epriv_ports[i] != 0) 6989 (void) mi_mpprintf(mp, "%d ", 6990 tcps->tcps_g_epriv_ports[i]); 6991 } 6992 return (0); 6993 } 6994 6995 /* 6996 * Hold a lock while changing tcp_g_epriv_ports to prevent multiple 6997 * threads from changing it at the same time. 6998 */ 6999 /* ARGSUSED */ 7000 static int 7001 tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 7002 cred_t *cr) 7003 { 7004 long new_value; 7005 int i; 7006 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 7007 7008 /* 7009 * Fail the request if the new value does not lie within the 7010 * port number limits. 7011 */ 7012 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 7013 new_value <= 0 || new_value >= 65536) { 7014 return (EINVAL); 7015 } 7016 7017 mutex_enter(&tcps->tcps_epriv_port_lock); 7018 /* Check if the value is already in the list */ 7019 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 7020 if (new_value == tcps->tcps_g_epriv_ports[i]) { 7021 mutex_exit(&tcps->tcps_epriv_port_lock); 7022 return (EEXIST); 7023 } 7024 } 7025 /* Find an empty slot */ 7026 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 7027 if (tcps->tcps_g_epriv_ports[i] == 0) 7028 break; 7029 } 7030 if (i == tcps->tcps_g_num_epriv_ports) { 7031 mutex_exit(&tcps->tcps_epriv_port_lock); 7032 return (EOVERFLOW); 7033 } 7034 /* Set the new value */ 7035 tcps->tcps_g_epriv_ports[i] = (uint16_t)new_value; 7036 mutex_exit(&tcps->tcps_epriv_port_lock); 7037 return (0); 7038 } 7039 7040 /* 7041 * Hold a lock while changing tcp_g_epriv_ports to prevent multiple 7042 * threads from changing it at the same time. 7043 */ 7044 /* ARGSUSED */ 7045 static int 7046 tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 7047 cred_t *cr) 7048 { 7049 long new_value; 7050 int i; 7051 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 7052 7053 /* 7054 * Fail the request if the new value does not lie within the 7055 * port number limits. 7056 */ 7057 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value <= 0 || 7058 new_value >= 65536) { 7059 return (EINVAL); 7060 } 7061 7062 mutex_enter(&tcps->tcps_epriv_port_lock); 7063 /* Check that the value is already in the list */ 7064 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 7065 if (tcps->tcps_g_epriv_ports[i] == new_value) 7066 break; 7067 } 7068 if (i == tcps->tcps_g_num_epriv_ports) { 7069 mutex_exit(&tcps->tcps_epriv_port_lock); 7070 return (ESRCH); 7071 } 7072 /* Clear the value */ 7073 tcps->tcps_g_epriv_ports[i] = 0; 7074 mutex_exit(&tcps->tcps_epriv_port_lock); 7075 return (0); 7076 } 7077 7078 /* Return the TPI/TLI equivalent of our current tcp_state */ 7079 static int 7080 tcp_tpistate(tcp_t *tcp) 7081 { 7082 switch (tcp->tcp_state) { 7083 case TCPS_IDLE: 7084 return (TS_UNBND); 7085 case TCPS_LISTEN: 7086 /* 7087 * Return whether there are outstanding T_CONN_IND waiting 7088 * for the matching T_CONN_RES. Therefore don't count q0. 7089 */ 7090 if (tcp->tcp_conn_req_cnt_q > 0) 7091 return (TS_WRES_CIND); 7092 else 7093 return (TS_IDLE); 7094 case TCPS_BOUND: 7095 return (TS_IDLE); 7096 case TCPS_SYN_SENT: 7097 return (TS_WCON_CREQ); 7098 case TCPS_SYN_RCVD: 7099 /* 7100 * Note: assumption: this has to the active open SYN_RCVD. 7101 * The passive instance is detached in SYN_RCVD stage of 7102 * incoming connection processing so we cannot get request 7103 * for T_info_ack on it. 7104 */ 7105 return (TS_WACK_CRES); 7106 case TCPS_ESTABLISHED: 7107 return (TS_DATA_XFER); 7108 case TCPS_CLOSE_WAIT: 7109 return (TS_WREQ_ORDREL); 7110 case TCPS_FIN_WAIT_1: 7111 return (TS_WIND_ORDREL); 7112 case TCPS_FIN_WAIT_2: 7113 return (TS_WIND_ORDREL); 7114 7115 case TCPS_CLOSING: 7116 case TCPS_LAST_ACK: 7117 case TCPS_TIME_WAIT: 7118 case TCPS_CLOSED: 7119 /* 7120 * Following TS_WACK_DREQ7 is a rendition of "not 7121 * yet TS_IDLE" TPI state. There is no best match to any 7122 * TPI state for TCPS_{CLOSING, LAST_ACK, TIME_WAIT} but we 7123 * choose a value chosen that will map to TLI/XTI level 7124 * state of TSTATECHNG (state is process of changing) which 7125 * captures what this dummy state represents. 7126 */ 7127 return (TS_WACK_DREQ7); 7128 default: 7129 cmn_err(CE_WARN, "tcp_tpistate: strange state (%d) %s", 7130 tcp->tcp_state, tcp_display(tcp, NULL, 7131 DISP_PORT_ONLY)); 7132 return (TS_UNBND); 7133 } 7134 } 7135 7136 static void 7137 tcp_copy_info(struct T_info_ack *tia, tcp_t *tcp) 7138 { 7139 tcp_stack_t *tcps = tcp->tcp_tcps; 7140 7141 if (tcp->tcp_family == AF_INET6) 7142 *tia = tcp_g_t_info_ack_v6; 7143 else 7144 *tia = tcp_g_t_info_ack; 7145 tia->CURRENT_state = tcp_tpistate(tcp); 7146 tia->OPT_size = tcp_max_optsize; 7147 if (tcp->tcp_mss == 0) { 7148 /* Not yet set - tcp_open does not set mss */ 7149 if (tcp->tcp_ipversion == IPV4_VERSION) 7150 tia->TIDU_size = tcps->tcps_mss_def_ipv4; 7151 else 7152 tia->TIDU_size = tcps->tcps_mss_def_ipv6; 7153 } else { 7154 tia->TIDU_size = tcp->tcp_mss; 7155 } 7156 /* TODO: Default ETSDU is 1. Is that correct for tcp? */ 7157 } 7158 7159 static void 7160 tcp_do_capability_ack(tcp_t *tcp, struct T_capability_ack *tcap, 7161 t_uscalar_t cap_bits1) 7162 { 7163 tcap->CAP_bits1 = 0; 7164 7165 if (cap_bits1 & TC1_INFO) { 7166 tcp_copy_info(&tcap->INFO_ack, tcp); 7167 tcap->CAP_bits1 |= TC1_INFO; 7168 } 7169 7170 if (cap_bits1 & TC1_ACCEPTOR_ID) { 7171 tcap->ACCEPTOR_id = tcp->tcp_acceptor_id; 7172 tcap->CAP_bits1 |= TC1_ACCEPTOR_ID; 7173 } 7174 7175 } 7176 7177 /* 7178 * This routine responds to T_CAPABILITY_REQ messages. It is called by 7179 * tcp_wput. Much of the T_CAPABILITY_ACK information is copied from 7180 * tcp_g_t_info_ack. The current state of the stream is copied from 7181 * tcp_state. 7182 */ 7183 static void 7184 tcp_capability_req(tcp_t *tcp, mblk_t *mp) 7185 { 7186 t_uscalar_t cap_bits1; 7187 struct T_capability_ack *tcap; 7188 7189 if (MBLKL(mp) < sizeof (struct T_capability_req)) { 7190 freemsg(mp); 7191 return; 7192 } 7193 7194 cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1; 7195 7196 mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack), 7197 mp->b_datap->db_type, T_CAPABILITY_ACK); 7198 if (mp == NULL) 7199 return; 7200 7201 tcap = (struct T_capability_ack *)mp->b_rptr; 7202 tcp_do_capability_ack(tcp, tcap, cap_bits1); 7203 7204 putnext(tcp->tcp_rq, mp); 7205 } 7206 7207 /* 7208 * This routine responds to T_INFO_REQ messages. It is called by tcp_wput. 7209 * Most of the T_INFO_ACK information is copied from tcp_g_t_info_ack. 7210 * The current state of the stream is copied from tcp_state. 7211 */ 7212 static void 7213 tcp_info_req(tcp_t *tcp, mblk_t *mp) 7214 { 7215 mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO, 7216 T_INFO_ACK); 7217 if (!mp) { 7218 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 7219 return; 7220 } 7221 tcp_copy_info((struct T_info_ack *)mp->b_rptr, tcp); 7222 putnext(tcp->tcp_rq, mp); 7223 } 7224 7225 /* Respond to the TPI addr request */ 7226 static void 7227 tcp_addr_req(tcp_t *tcp, mblk_t *mp) 7228 { 7229 sin_t *sin; 7230 mblk_t *ackmp; 7231 struct T_addr_ack *taa; 7232 7233 /* Make it large enough for worst case */ 7234 ackmp = reallocb(mp, sizeof (struct T_addr_ack) + 7235 2 * sizeof (sin6_t), 1); 7236 if (ackmp == NULL) { 7237 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 7238 return; 7239 } 7240 7241 if (tcp->tcp_ipversion == IPV6_VERSION) { 7242 tcp_addr_req_ipv6(tcp, ackmp); 7243 return; 7244 } 7245 taa = (struct T_addr_ack *)ackmp->b_rptr; 7246 7247 bzero(taa, sizeof (struct T_addr_ack)); 7248 ackmp->b_wptr = (uchar_t *)&taa[1]; 7249 7250 taa->PRIM_type = T_ADDR_ACK; 7251 ackmp->b_datap->db_type = M_PCPROTO; 7252 7253 /* 7254 * Note: Following code assumes 32 bit alignment of basic 7255 * data structures like sin_t and struct T_addr_ack. 7256 */ 7257 if (tcp->tcp_state >= TCPS_BOUND) { 7258 /* 7259 * Fill in local address 7260 */ 7261 taa->LOCADDR_length = sizeof (sin_t); 7262 taa->LOCADDR_offset = sizeof (*taa); 7263 7264 sin = (sin_t *)&taa[1]; 7265 7266 /* Fill zeroes and then intialize non-zero fields */ 7267 *sin = sin_null; 7268 7269 sin->sin_family = AF_INET; 7270 7271 sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src; 7272 sin->sin_port = *(uint16_t *)tcp->tcp_tcph->th_lport; 7273 7274 ackmp->b_wptr = (uchar_t *)&sin[1]; 7275 7276 if (tcp->tcp_state >= TCPS_SYN_RCVD) { 7277 /* 7278 * Fill in Remote address 7279 */ 7280 taa->REMADDR_length = sizeof (sin_t); 7281 taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset + 7282 taa->LOCADDR_length); 7283 7284 sin = (sin_t *)(ackmp->b_rptr + taa->REMADDR_offset); 7285 *sin = sin_null; 7286 sin->sin_family = AF_INET; 7287 sin->sin_addr.s_addr = tcp->tcp_remote; 7288 sin->sin_port = tcp->tcp_fport; 7289 7290 ackmp->b_wptr = (uchar_t *)&sin[1]; 7291 } 7292 } 7293 putnext(tcp->tcp_rq, ackmp); 7294 } 7295 7296 /* Assumes that tcp_addr_req gets enough space and alignment */ 7297 static void 7298 tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *ackmp) 7299 { 7300 sin6_t *sin6; 7301 struct T_addr_ack *taa; 7302 7303 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 7304 ASSERT(OK_32PTR(ackmp->b_rptr)); 7305 ASSERT(ackmp->b_wptr - ackmp->b_rptr >= sizeof (struct T_addr_ack) + 7306 2 * sizeof (sin6_t)); 7307 7308 taa = (struct T_addr_ack *)ackmp->b_rptr; 7309 7310 bzero(taa, sizeof (struct T_addr_ack)); 7311 ackmp->b_wptr = (uchar_t *)&taa[1]; 7312 7313 taa->PRIM_type = T_ADDR_ACK; 7314 ackmp->b_datap->db_type = M_PCPROTO; 7315 7316 /* 7317 * Note: Following code assumes 32 bit alignment of basic 7318 * data structures like sin6_t and struct T_addr_ack. 7319 */ 7320 if (tcp->tcp_state >= TCPS_BOUND) { 7321 /* 7322 * Fill in local address 7323 */ 7324 taa->LOCADDR_length = sizeof (sin6_t); 7325 taa->LOCADDR_offset = sizeof (*taa); 7326 7327 sin6 = (sin6_t *)&taa[1]; 7328 *sin6 = sin6_null; 7329 7330 sin6->sin6_family = AF_INET6; 7331 sin6->sin6_addr = tcp->tcp_ip6h->ip6_src; 7332 sin6->sin6_port = tcp->tcp_lport; 7333 7334 ackmp->b_wptr = (uchar_t *)&sin6[1]; 7335 7336 if (tcp->tcp_state >= TCPS_SYN_RCVD) { 7337 /* 7338 * Fill in Remote address 7339 */ 7340 taa->REMADDR_length = sizeof (sin6_t); 7341 taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset + 7342 taa->LOCADDR_length); 7343 7344 sin6 = (sin6_t *)(ackmp->b_rptr + taa->REMADDR_offset); 7345 *sin6 = sin6_null; 7346 sin6->sin6_family = AF_INET6; 7347 sin6->sin6_flowinfo = 7348 tcp->tcp_ip6h->ip6_vcf & 7349 ~IPV6_VERS_AND_FLOW_MASK; 7350 sin6->sin6_addr = tcp->tcp_remote_v6; 7351 sin6->sin6_port = tcp->tcp_fport; 7352 7353 ackmp->b_wptr = (uchar_t *)&sin6[1]; 7354 } 7355 } 7356 putnext(tcp->tcp_rq, ackmp); 7357 } 7358 7359 /* 7360 * Handle reinitialization of a tcp structure. 7361 * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE. 7362 */ 7363 static void 7364 tcp_reinit(tcp_t *tcp) 7365 { 7366 mblk_t *mp; 7367 int err; 7368 tcp_stack_t *tcps = tcp->tcp_tcps; 7369 7370 TCP_STAT(tcps, tcp_reinit_calls); 7371 7372 /* tcp_reinit should never be called for detached tcp_t's */ 7373 ASSERT(tcp->tcp_listener == NULL); 7374 ASSERT((tcp->tcp_family == AF_INET && 7375 tcp->tcp_ipversion == IPV4_VERSION) || 7376 (tcp->tcp_family == AF_INET6 && 7377 (tcp->tcp_ipversion == IPV4_VERSION || 7378 tcp->tcp_ipversion == IPV6_VERSION))); 7379 7380 /* Cancel outstanding timers */ 7381 tcp_timers_stop(tcp); 7382 7383 /* 7384 * Reset everything in the state vector, after updating global 7385 * MIB data from instance counters. 7386 */ 7387 UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs); 7388 tcp->tcp_ibsegs = 0; 7389 UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs); 7390 tcp->tcp_obsegs = 0; 7391 7392 tcp_close_mpp(&tcp->tcp_xmit_head); 7393 if (tcp->tcp_snd_zcopy_aware) 7394 tcp_zcopy_notify(tcp); 7395 tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL; 7396 tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0; 7397 mutex_enter(&tcp->tcp_non_sq_lock); 7398 if (tcp->tcp_flow_stopped && 7399 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 7400 tcp_clrqfull(tcp); 7401 } 7402 mutex_exit(&tcp->tcp_non_sq_lock); 7403 tcp_close_mpp(&tcp->tcp_reass_head); 7404 tcp->tcp_reass_tail = NULL; 7405 if (tcp->tcp_rcv_list != NULL) { 7406 /* Free b_next chain */ 7407 tcp_close_mpp(&tcp->tcp_rcv_list); 7408 tcp->tcp_rcv_last_head = NULL; 7409 tcp->tcp_rcv_last_tail = NULL; 7410 tcp->tcp_rcv_cnt = 0; 7411 } 7412 tcp->tcp_rcv_last_tail = NULL; 7413 7414 if ((mp = tcp->tcp_urp_mp) != NULL) { 7415 freemsg(mp); 7416 tcp->tcp_urp_mp = NULL; 7417 } 7418 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 7419 freemsg(mp); 7420 tcp->tcp_urp_mark_mp = NULL; 7421 } 7422 if (tcp->tcp_fused_sigurg_mp != NULL) { 7423 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 7424 freeb(tcp->tcp_fused_sigurg_mp); 7425 tcp->tcp_fused_sigurg_mp = NULL; 7426 } 7427 if (tcp->tcp_ordrel_mp != NULL) { 7428 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 7429 freeb(tcp->tcp_ordrel_mp); 7430 tcp->tcp_ordrel_mp = NULL; 7431 } 7432 7433 /* 7434 * Following is a union with two members which are 7435 * identical types and size so the following cleanup 7436 * is enough. 7437 */ 7438 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 7439 7440 CL_INET_DISCONNECT(tcp->tcp_connp, tcp); 7441 7442 /* 7443 * The connection can't be on the tcp_time_wait_head list 7444 * since it is not detached. 7445 */ 7446 ASSERT(tcp->tcp_time_wait_next == NULL); 7447 ASSERT(tcp->tcp_time_wait_prev == NULL); 7448 ASSERT(tcp->tcp_time_wait_expire == 0); 7449 7450 if (tcp->tcp_kssl_pending) { 7451 tcp->tcp_kssl_pending = B_FALSE; 7452 7453 /* Don't reset if the initialized by bind. */ 7454 if (tcp->tcp_kssl_ent != NULL) { 7455 kssl_release_ent(tcp->tcp_kssl_ent, NULL, 7456 KSSL_NO_PROXY); 7457 } 7458 } 7459 if (tcp->tcp_kssl_ctx != NULL) { 7460 kssl_release_ctx(tcp->tcp_kssl_ctx); 7461 tcp->tcp_kssl_ctx = NULL; 7462 } 7463 7464 /* 7465 * Reset/preserve other values 7466 */ 7467 tcp_reinit_values(tcp); 7468 ipcl_hash_remove(tcp->tcp_connp); 7469 conn_delete_ire(tcp->tcp_connp, NULL); 7470 tcp_ipsec_cleanup(tcp); 7471 7472 if (tcp->tcp_conn_req_max != 0) { 7473 /* 7474 * This is the case when a TLI program uses the same 7475 * transport end point to accept a connection. This 7476 * makes the TCP both a listener and acceptor. When 7477 * this connection is closed, we need to set the state 7478 * back to TCPS_LISTEN. Make sure that the eager list 7479 * is reinitialized. 7480 * 7481 * Note that this stream is still bound to the four 7482 * tuples of the previous connection in IP. If a new 7483 * SYN with different foreign address comes in, IP will 7484 * not find it and will send it to the global queue. In 7485 * the global queue, TCP will do a tcp_lookup_listener() 7486 * to find this stream. This works because this stream 7487 * is only removed from connected hash. 7488 * 7489 */ 7490 tcp->tcp_state = TCPS_LISTEN; 7491 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 7492 tcp->tcp_eager_next_drop_q0 = tcp; 7493 tcp->tcp_eager_prev_drop_q0 = tcp; 7494 tcp->tcp_connp->conn_recv = tcp_conn_request; 7495 if (tcp->tcp_family == AF_INET6) { 7496 ASSERT(tcp->tcp_connp->conn_af_isv6); 7497 (void) ipcl_bind_insert_v6(tcp->tcp_connp, IPPROTO_TCP, 7498 &tcp->tcp_ip6h->ip6_src, tcp->tcp_lport); 7499 } else { 7500 ASSERT(!tcp->tcp_connp->conn_af_isv6); 7501 (void) ipcl_bind_insert(tcp->tcp_connp, IPPROTO_TCP, 7502 tcp->tcp_ipha->ipha_src, tcp->tcp_lport); 7503 } 7504 } else { 7505 tcp->tcp_state = TCPS_BOUND; 7506 } 7507 7508 /* 7509 * Initialize to default values 7510 * Can't fail since enough header template space already allocated 7511 * at open(). 7512 */ 7513 err = tcp_init_values(tcp); 7514 ASSERT(err == 0); 7515 /* Restore state in tcp_tcph */ 7516 bcopy(&tcp->tcp_lport, tcp->tcp_tcph->th_lport, TCP_PORT_LEN); 7517 if (tcp->tcp_ipversion == IPV4_VERSION) 7518 tcp->tcp_ipha->ipha_src = tcp->tcp_bound_source; 7519 else 7520 tcp->tcp_ip6h->ip6_src = tcp->tcp_bound_source_v6; 7521 /* 7522 * Copy of the src addr. in tcp_t is needed in tcp_t 7523 * since the lookup funcs can only lookup on tcp_t 7524 */ 7525 tcp->tcp_ip_src_v6 = tcp->tcp_bound_source_v6; 7526 7527 ASSERT(tcp->tcp_ptpbhn != NULL); 7528 if (!IPCL_IS_NONSTR(tcp->tcp_connp)) 7529 tcp->tcp_rq->q_hiwat = tcps->tcps_recv_hiwat; 7530 tcp->tcp_recv_hiwater = tcps->tcps_recv_hiwat; 7531 tcp->tcp_recv_lowater = tcp_rinfo.mi_lowat; 7532 tcp->tcp_rwnd = tcps->tcps_recv_hiwat; 7533 tcp->tcp_mss = tcp->tcp_ipversion != IPV4_VERSION ? 7534 tcps->tcps_mss_def_ipv6 : tcps->tcps_mss_def_ipv4; 7535 } 7536 7537 /* 7538 * Force values to zero that need be zero. 7539 * Do not touch values asociated with the BOUND or LISTEN state 7540 * since the connection will end up in that state after the reinit. 7541 * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t 7542 * structure! 7543 */ 7544 static void 7545 tcp_reinit_values(tcp) 7546 tcp_t *tcp; 7547 { 7548 tcp_stack_t *tcps = tcp->tcp_tcps; 7549 7550 #ifndef lint 7551 #define DONTCARE(x) 7552 #define PRESERVE(x) 7553 #else 7554 #define DONTCARE(x) ((x) = (x)) 7555 #define PRESERVE(x) ((x) = (x)) 7556 #endif /* lint */ 7557 7558 PRESERVE(tcp->tcp_bind_hash_port); 7559 PRESERVE(tcp->tcp_bind_hash); 7560 PRESERVE(tcp->tcp_ptpbhn); 7561 PRESERVE(tcp->tcp_acceptor_hash); 7562 PRESERVE(tcp->tcp_ptpahn); 7563 7564 /* Should be ASSERT NULL on these with new code! */ 7565 ASSERT(tcp->tcp_time_wait_next == NULL); 7566 ASSERT(tcp->tcp_time_wait_prev == NULL); 7567 ASSERT(tcp->tcp_time_wait_expire == 0); 7568 PRESERVE(tcp->tcp_state); 7569 PRESERVE(tcp->tcp_rq); 7570 PRESERVE(tcp->tcp_wq); 7571 7572 ASSERT(tcp->tcp_xmit_head == NULL); 7573 ASSERT(tcp->tcp_xmit_last == NULL); 7574 ASSERT(tcp->tcp_unsent == 0); 7575 ASSERT(tcp->tcp_xmit_tail == NULL); 7576 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 7577 7578 tcp->tcp_snxt = 0; /* Displayed in mib */ 7579 tcp->tcp_suna = 0; /* Displayed in mib */ 7580 tcp->tcp_swnd = 0; 7581 DONTCARE(tcp->tcp_cwnd); /* Init in tcp_mss_set */ 7582 7583 ASSERT(tcp->tcp_ibsegs == 0); 7584 ASSERT(tcp->tcp_obsegs == 0); 7585 7586 if (tcp->tcp_iphc != NULL) { 7587 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 7588 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 7589 } 7590 7591 DONTCARE(tcp->tcp_naglim); /* Init in tcp_init_values */ 7592 DONTCARE(tcp->tcp_hdr_len); /* Init in tcp_init_values */ 7593 DONTCARE(tcp->tcp_ipha); 7594 DONTCARE(tcp->tcp_ip6h); 7595 DONTCARE(tcp->tcp_ip_hdr_len); 7596 DONTCARE(tcp->tcp_tcph); 7597 DONTCARE(tcp->tcp_tcp_hdr_len); /* Init in tcp_init_values */ 7598 tcp->tcp_valid_bits = 0; 7599 7600 DONTCARE(tcp->tcp_xmit_hiwater); /* Init in tcp_init_values */ 7601 DONTCARE(tcp->tcp_timer_backoff); /* Init in tcp_init_values */ 7602 DONTCARE(tcp->tcp_last_recv_time); /* Init in tcp_init_values */ 7603 tcp->tcp_last_rcv_lbolt = 0; 7604 7605 tcp->tcp_init_cwnd = 0; 7606 7607 tcp->tcp_urp_last_valid = 0; 7608 tcp->tcp_hard_binding = 0; 7609 tcp->tcp_hard_bound = 0; 7610 PRESERVE(tcp->tcp_cred); 7611 PRESERVE(tcp->tcp_cpid); 7612 PRESERVE(tcp->tcp_open_time); 7613 PRESERVE(tcp->tcp_exclbind); 7614 7615 tcp->tcp_fin_acked = 0; 7616 tcp->tcp_fin_rcvd = 0; 7617 tcp->tcp_fin_sent = 0; 7618 tcp->tcp_ordrel_done = 0; 7619 7620 tcp->tcp_debug = 0; 7621 tcp->tcp_dontroute = 0; 7622 tcp->tcp_broadcast = 0; 7623 7624 tcp->tcp_useloopback = 0; 7625 tcp->tcp_reuseaddr = 0; 7626 tcp->tcp_oobinline = 0; 7627 tcp->tcp_dgram_errind = 0; 7628 7629 tcp->tcp_detached = 0; 7630 tcp->tcp_bind_pending = 0; 7631 tcp->tcp_unbind_pending = 0; 7632 7633 tcp->tcp_snd_ws_ok = B_FALSE; 7634 tcp->tcp_snd_ts_ok = B_FALSE; 7635 tcp->tcp_linger = 0; 7636 tcp->tcp_ka_enabled = 0; 7637 tcp->tcp_zero_win_probe = 0; 7638 7639 tcp->tcp_loopback = 0; 7640 tcp->tcp_refuse = 0; 7641 tcp->tcp_localnet = 0; 7642 tcp->tcp_syn_defense = 0; 7643 tcp->tcp_set_timer = 0; 7644 7645 tcp->tcp_active_open = 0; 7646 tcp->tcp_rexmit = B_FALSE; 7647 tcp->tcp_xmit_zc_clean = B_FALSE; 7648 7649 tcp->tcp_snd_sack_ok = B_FALSE; 7650 PRESERVE(tcp->tcp_recvdstaddr); 7651 tcp->tcp_hwcksum = B_FALSE; 7652 7653 tcp->tcp_ire_ill_check_done = B_FALSE; 7654 DONTCARE(tcp->tcp_maxpsz); /* Init in tcp_init_values */ 7655 7656 tcp->tcp_mdt = B_FALSE; 7657 tcp->tcp_mdt_hdr_head = 0; 7658 tcp->tcp_mdt_hdr_tail = 0; 7659 7660 tcp->tcp_conn_def_q0 = 0; 7661 tcp->tcp_ip_forward_progress = B_FALSE; 7662 tcp->tcp_anon_priv_bind = 0; 7663 tcp->tcp_ecn_ok = B_FALSE; 7664 7665 tcp->tcp_cwr = B_FALSE; 7666 tcp->tcp_ecn_echo_on = B_FALSE; 7667 7668 if (tcp->tcp_sack_info != NULL) { 7669 if (tcp->tcp_notsack_list != NULL) { 7670 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 7671 } 7672 kmem_cache_free(tcp_sack_info_cache, tcp->tcp_sack_info); 7673 tcp->tcp_sack_info = NULL; 7674 } 7675 7676 tcp->tcp_rcv_ws = 0; 7677 tcp->tcp_snd_ws = 0; 7678 tcp->tcp_ts_recent = 0; 7679 tcp->tcp_rnxt = 0; /* Displayed in mib */ 7680 DONTCARE(tcp->tcp_rwnd); /* Set in tcp_reinit() */ 7681 tcp->tcp_if_mtu = 0; 7682 7683 ASSERT(tcp->tcp_reass_head == NULL); 7684 ASSERT(tcp->tcp_reass_tail == NULL); 7685 7686 tcp->tcp_cwnd_cnt = 0; 7687 7688 ASSERT(tcp->tcp_rcv_list == NULL); 7689 ASSERT(tcp->tcp_rcv_last_head == NULL); 7690 ASSERT(tcp->tcp_rcv_last_tail == NULL); 7691 ASSERT(tcp->tcp_rcv_cnt == 0); 7692 7693 DONTCARE(tcp->tcp_cwnd_ssthresh); /* Init in tcp_adapt_ire */ 7694 DONTCARE(tcp->tcp_cwnd_max); /* Init in tcp_init_values */ 7695 tcp->tcp_csuna = 0; 7696 7697 tcp->tcp_rto = 0; /* Displayed in MIB */ 7698 DONTCARE(tcp->tcp_rtt_sa); /* Init in tcp_init_values */ 7699 DONTCARE(tcp->tcp_rtt_sd); /* Init in tcp_init_values */ 7700 tcp->tcp_rtt_update = 0; 7701 7702 DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 7703 DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 7704 7705 tcp->tcp_rack = 0; /* Displayed in mib */ 7706 tcp->tcp_rack_cnt = 0; 7707 tcp->tcp_rack_cur_max = 0; 7708 tcp->tcp_rack_abs_max = 0; 7709 7710 tcp->tcp_max_swnd = 0; 7711 7712 ASSERT(tcp->tcp_listener == NULL); 7713 7714 DONTCARE(tcp->tcp_xmit_lowater); /* Init in tcp_init_values */ 7715 7716 DONTCARE(tcp->tcp_irs); /* tcp_valid_bits cleared */ 7717 DONTCARE(tcp->tcp_iss); /* tcp_valid_bits cleared */ 7718 DONTCARE(tcp->tcp_fss); /* tcp_valid_bits cleared */ 7719 DONTCARE(tcp->tcp_urg); /* tcp_valid_bits cleared */ 7720 7721 ASSERT(tcp->tcp_conn_req_cnt_q == 0); 7722 ASSERT(tcp->tcp_conn_req_cnt_q0 == 0); 7723 PRESERVE(tcp->tcp_conn_req_max); 7724 PRESERVE(tcp->tcp_conn_req_seqnum); 7725 7726 DONTCARE(tcp->tcp_ip_hdr_len); /* Init in tcp_init_values */ 7727 DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */ 7728 DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */ 7729 DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */ 7730 DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */ 7731 7732 tcp->tcp_lingertime = 0; 7733 7734 DONTCARE(tcp->tcp_urp_last); /* tcp_urp_last_valid is cleared */ 7735 ASSERT(tcp->tcp_urp_mp == NULL); 7736 ASSERT(tcp->tcp_urp_mark_mp == NULL); 7737 ASSERT(tcp->tcp_fused_sigurg_mp == NULL); 7738 7739 ASSERT(tcp->tcp_eager_next_q == NULL); 7740 ASSERT(tcp->tcp_eager_last_q == NULL); 7741 ASSERT((tcp->tcp_eager_next_q0 == NULL && 7742 tcp->tcp_eager_prev_q0 == NULL) || 7743 tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0); 7744 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 7745 7746 ASSERT((tcp->tcp_eager_next_drop_q0 == NULL && 7747 tcp->tcp_eager_prev_drop_q0 == NULL) || 7748 tcp->tcp_eager_next_drop_q0 == tcp->tcp_eager_prev_drop_q0); 7749 7750 tcp->tcp_client_errno = 0; 7751 7752 DONTCARE(tcp->tcp_sum); /* Init in tcp_init_values */ 7753 7754 tcp->tcp_remote_v6 = ipv6_all_zeros; /* Displayed in MIB */ 7755 7756 PRESERVE(tcp->tcp_bound_source_v6); 7757 tcp->tcp_last_sent_len = 0; 7758 tcp->tcp_dupack_cnt = 0; 7759 7760 tcp->tcp_fport = 0; /* Displayed in MIB */ 7761 PRESERVE(tcp->tcp_lport); 7762 7763 PRESERVE(tcp->tcp_acceptor_lockp); 7764 7765 ASSERT(tcp->tcp_ordrel_mp == NULL); 7766 PRESERVE(tcp->tcp_acceptor_id); 7767 DONTCARE(tcp->tcp_ipsec_overhead); 7768 7769 PRESERVE(tcp->tcp_family); 7770 if (tcp->tcp_family == AF_INET6) { 7771 tcp->tcp_ipversion = IPV6_VERSION; 7772 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 7773 } else { 7774 tcp->tcp_ipversion = IPV4_VERSION; 7775 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 7776 } 7777 7778 tcp->tcp_bound_if = 0; 7779 tcp->tcp_ipv6_recvancillary = 0; 7780 tcp->tcp_recvifindex = 0; 7781 tcp->tcp_recvhops = 0; 7782 tcp->tcp_closed = 0; 7783 tcp->tcp_cleandeathtag = 0; 7784 if (tcp->tcp_hopopts != NULL) { 7785 mi_free(tcp->tcp_hopopts); 7786 tcp->tcp_hopopts = NULL; 7787 tcp->tcp_hopoptslen = 0; 7788 } 7789 ASSERT(tcp->tcp_hopoptslen == 0); 7790 if (tcp->tcp_dstopts != NULL) { 7791 mi_free(tcp->tcp_dstopts); 7792 tcp->tcp_dstopts = NULL; 7793 tcp->tcp_dstoptslen = 0; 7794 } 7795 ASSERT(tcp->tcp_dstoptslen == 0); 7796 if (tcp->tcp_rtdstopts != NULL) { 7797 mi_free(tcp->tcp_rtdstopts); 7798 tcp->tcp_rtdstopts = NULL; 7799 tcp->tcp_rtdstoptslen = 0; 7800 } 7801 ASSERT(tcp->tcp_rtdstoptslen == 0); 7802 if (tcp->tcp_rthdr != NULL) { 7803 mi_free(tcp->tcp_rthdr); 7804 tcp->tcp_rthdr = NULL; 7805 tcp->tcp_rthdrlen = 0; 7806 } 7807 ASSERT(tcp->tcp_rthdrlen == 0); 7808 PRESERVE(tcp->tcp_drop_opt_ack_cnt); 7809 7810 /* Reset fusion-related fields */ 7811 tcp->tcp_fused = B_FALSE; 7812 tcp->tcp_unfusable = B_FALSE; 7813 tcp->tcp_fused_sigurg = B_FALSE; 7814 tcp->tcp_direct_sockfs = B_FALSE; 7815 tcp->tcp_fuse_syncstr_stopped = B_FALSE; 7816 tcp->tcp_fuse_syncstr_plugged = B_FALSE; 7817 tcp->tcp_loopback_peer = NULL; 7818 tcp->tcp_fuse_rcv_hiwater = 0; 7819 tcp->tcp_fuse_rcv_unread_hiwater = 0; 7820 tcp->tcp_fuse_rcv_unread_cnt = 0; 7821 7822 tcp->tcp_lso = B_FALSE; 7823 7824 tcp->tcp_in_ack_unsent = 0; 7825 tcp->tcp_cork = B_FALSE; 7826 tcp->tcp_tconnind_started = B_FALSE; 7827 7828 PRESERVE(tcp->tcp_squeue_bytes); 7829 7830 ASSERT(tcp->tcp_kssl_ctx == NULL); 7831 ASSERT(!tcp->tcp_kssl_pending); 7832 PRESERVE(tcp->tcp_kssl_ent); 7833 7834 /* Sodirect */ 7835 tcp->tcp_sodirect = NULL; 7836 7837 tcp->tcp_closemp_used = B_FALSE; 7838 7839 PRESERVE(tcp->tcp_rsrv_mp); 7840 PRESERVE(tcp->tcp_rsrv_mp_lock); 7841 7842 #ifdef DEBUG 7843 DONTCARE(tcp->tcmp_stk[0]); 7844 #endif 7845 7846 PRESERVE(tcp->tcp_connid); 7847 7848 7849 #undef DONTCARE 7850 #undef PRESERVE 7851 } 7852 7853 /* 7854 * Allocate necessary resources and initialize state vector. 7855 * Guaranteed not to fail so that when an error is returned, 7856 * the caller doesn't need to do any additional cleanup. 7857 */ 7858 int 7859 tcp_init(tcp_t *tcp, queue_t *q) 7860 { 7861 int err; 7862 7863 tcp->tcp_rq = q; 7864 tcp->tcp_wq = WR(q); 7865 tcp->tcp_state = TCPS_IDLE; 7866 if ((err = tcp_init_values(tcp)) != 0) 7867 tcp_timers_stop(tcp); 7868 return (err); 7869 } 7870 7871 static int 7872 tcp_init_values(tcp_t *tcp) 7873 { 7874 int err; 7875 tcp_stack_t *tcps = tcp->tcp_tcps; 7876 7877 ASSERT((tcp->tcp_family == AF_INET && 7878 tcp->tcp_ipversion == IPV4_VERSION) || 7879 (tcp->tcp_family == AF_INET6 && 7880 (tcp->tcp_ipversion == IPV4_VERSION || 7881 tcp->tcp_ipversion == IPV6_VERSION))); 7882 7883 /* 7884 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO 7885 * will be close to tcp_rexmit_interval_initial. By doing this, we 7886 * allow the algorithm to adjust slowly to large fluctuations of RTT 7887 * during first few transmissions of a connection as seen in slow 7888 * links. 7889 */ 7890 tcp->tcp_rtt_sa = tcps->tcps_rexmit_interval_initial << 2; 7891 tcp->tcp_rtt_sd = tcps->tcps_rexmit_interval_initial >> 1; 7892 tcp->tcp_rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 7893 tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) + 7894 tcps->tcps_conn_grace_period; 7895 if (tcp->tcp_rto < tcps->tcps_rexmit_interval_min) 7896 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 7897 tcp->tcp_timer_backoff = 0; 7898 tcp->tcp_ms_we_have_waited = 0; 7899 tcp->tcp_last_recv_time = lbolt; 7900 tcp->tcp_cwnd_max = tcps->tcps_cwnd_max_; 7901 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 7902 tcp->tcp_snd_burst = TCP_CWND_INFINITE; 7903 7904 tcp->tcp_maxpsz = tcps->tcps_maxpsz_multiplier; 7905 7906 tcp->tcp_first_timer_threshold = tcps->tcps_ip_notify_interval; 7907 tcp->tcp_first_ctimer_threshold = tcps->tcps_ip_notify_cinterval; 7908 tcp->tcp_second_timer_threshold = tcps->tcps_ip_abort_interval; 7909 /* 7910 * Fix it to tcp_ip_abort_linterval later if it turns out to be a 7911 * passive open. 7912 */ 7913 tcp->tcp_second_ctimer_threshold = tcps->tcps_ip_abort_cinterval; 7914 7915 tcp->tcp_naglim = tcps->tcps_naglim_def; 7916 7917 /* NOTE: ISS is now set in tcp_adapt_ire(). */ 7918 7919 tcp->tcp_mdt_hdr_head = 0; 7920 tcp->tcp_mdt_hdr_tail = 0; 7921 7922 /* Reset fusion-related fields */ 7923 tcp->tcp_fused = B_FALSE; 7924 tcp->tcp_unfusable = B_FALSE; 7925 tcp->tcp_fused_sigurg = B_FALSE; 7926 tcp->tcp_direct_sockfs = B_FALSE; 7927 tcp->tcp_fuse_syncstr_stopped = B_FALSE; 7928 tcp->tcp_fuse_syncstr_plugged = B_FALSE; 7929 tcp->tcp_loopback_peer = NULL; 7930 tcp->tcp_fuse_rcv_hiwater = 0; 7931 tcp->tcp_fuse_rcv_unread_hiwater = 0; 7932 tcp->tcp_fuse_rcv_unread_cnt = 0; 7933 7934 /* Sodirect */ 7935 tcp->tcp_sodirect = NULL; 7936 7937 /* Initialize the header template */ 7938 if (tcp->tcp_ipversion == IPV4_VERSION) { 7939 err = tcp_header_init_ipv4(tcp); 7940 } else { 7941 err = tcp_header_init_ipv6(tcp); 7942 } 7943 if (err) 7944 return (err); 7945 7946 /* 7947 * Init the window scale to the max so tcp_rwnd_set() won't pare 7948 * down tcp_rwnd. tcp_adapt_ire() will set the right value later. 7949 */ 7950 tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT; 7951 tcp->tcp_xmit_lowater = tcps->tcps_xmit_lowat; 7952 tcp->tcp_xmit_hiwater = tcps->tcps_xmit_hiwat; 7953 7954 tcp->tcp_cork = B_FALSE; 7955 /* 7956 * Init the tcp_debug option. This value determines whether TCP 7957 * calls strlog() to print out debug messages. Doing this 7958 * initialization here means that this value is not inherited thru 7959 * tcp_reinit(). 7960 */ 7961 tcp->tcp_debug = tcps->tcps_dbg; 7962 7963 tcp->tcp_ka_interval = tcps->tcps_keepalive_interval; 7964 tcp->tcp_ka_abort_thres = tcps->tcps_keepalive_abort_interval; 7965 7966 return (0); 7967 } 7968 7969 /* 7970 * Initialize the IPv4 header. Loses any record of any IP options. 7971 */ 7972 static int 7973 tcp_header_init_ipv4(tcp_t *tcp) 7974 { 7975 tcph_t *tcph; 7976 uint32_t sum; 7977 conn_t *connp; 7978 tcp_stack_t *tcps = tcp->tcp_tcps; 7979 7980 /* 7981 * This is a simple initialization. If there's 7982 * already a template, it should never be too small, 7983 * so reuse it. Otherwise, allocate space for the new one. 7984 */ 7985 if (tcp->tcp_iphc == NULL) { 7986 ASSERT(tcp->tcp_iphc_len == 0); 7987 tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH; 7988 tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP); 7989 if (tcp->tcp_iphc == NULL) { 7990 tcp->tcp_iphc_len = 0; 7991 return (ENOMEM); 7992 } 7993 } 7994 7995 /* options are gone; may need a new label */ 7996 connp = tcp->tcp_connp; 7997 connp->conn_mlp_type = mlptSingle; 7998 connp->conn_ulp_labeled = !is_system_labeled(); 7999 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 8000 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 8001 tcp->tcp_ip6h = NULL; 8002 tcp->tcp_ipversion = IPV4_VERSION; 8003 tcp->tcp_hdr_len = sizeof (ipha_t) + sizeof (tcph_t); 8004 tcp->tcp_tcp_hdr_len = sizeof (tcph_t); 8005 tcp->tcp_ip_hdr_len = sizeof (ipha_t); 8006 tcp->tcp_ipha->ipha_length = htons(sizeof (ipha_t) + sizeof (tcph_t)); 8007 tcp->tcp_ipha->ipha_version_and_hdr_length 8008 = (IP_VERSION << 4) | IP_SIMPLE_HDR_LENGTH_IN_WORDS; 8009 tcp->tcp_ipha->ipha_ident = 0; 8010 8011 tcp->tcp_ttl = (uchar_t)tcps->tcps_ipv4_ttl; 8012 tcp->tcp_tos = 0; 8013 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0; 8014 tcp->tcp_ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl; 8015 tcp->tcp_ipha->ipha_protocol = IPPROTO_TCP; 8016 8017 tcph = (tcph_t *)(tcp->tcp_iphc + sizeof (ipha_t)); 8018 tcp->tcp_tcph = tcph; 8019 tcph->th_offset_and_rsrvd[0] = (5 << 4); 8020 /* 8021 * IP wants our header length in the checksum field to 8022 * allow it to perform a single pseudo-header+checksum 8023 * calculation on behalf of TCP. 8024 * Include the adjustment for a source route once IP_OPTIONS is set. 8025 */ 8026 sum = sizeof (tcph_t) + tcp->tcp_sum; 8027 sum = (sum >> 16) + (sum & 0xFFFF); 8028 U16_TO_ABE16(sum, tcph->th_sum); 8029 return (0); 8030 } 8031 8032 /* 8033 * Initialize the IPv6 header. Loses any record of any IPv6 extension headers. 8034 */ 8035 static int 8036 tcp_header_init_ipv6(tcp_t *tcp) 8037 { 8038 tcph_t *tcph; 8039 uint32_t sum; 8040 conn_t *connp; 8041 tcp_stack_t *tcps = tcp->tcp_tcps; 8042 8043 /* 8044 * This is a simple initialization. If there's 8045 * already a template, it should never be too small, 8046 * so reuse it. Otherwise, allocate space for the new one. 8047 * Ensure that there is enough space to "downgrade" the tcp_t 8048 * to an IPv4 tcp_t. This requires having space for a full load 8049 * of IPv4 options, as well as a full load of TCP options 8050 * (TCP_MAX_COMBINED_HEADER_LENGTH, 120 bytes); this is more space 8051 * than a v6 header and a TCP header with a full load of TCP options 8052 * (IPV6_HDR_LEN is 40 bytes; TCP_MAX_HDR_LENGTH is 60 bytes). 8053 * We want to avoid reallocation in the "downgraded" case when 8054 * processing outbound IPv4 options. 8055 */ 8056 if (tcp->tcp_iphc == NULL) { 8057 ASSERT(tcp->tcp_iphc_len == 0); 8058 tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH; 8059 tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP); 8060 if (tcp->tcp_iphc == NULL) { 8061 tcp->tcp_iphc_len = 0; 8062 return (ENOMEM); 8063 } 8064 } 8065 8066 /* options are gone; may need a new label */ 8067 connp = tcp->tcp_connp; 8068 connp->conn_mlp_type = mlptSingle; 8069 connp->conn_ulp_labeled = !is_system_labeled(); 8070 8071 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 8072 tcp->tcp_ipversion = IPV6_VERSION; 8073 tcp->tcp_hdr_len = IPV6_HDR_LEN + sizeof (tcph_t); 8074 tcp->tcp_tcp_hdr_len = sizeof (tcph_t); 8075 tcp->tcp_ip_hdr_len = IPV6_HDR_LEN; 8076 tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc; 8077 tcp->tcp_ipha = NULL; 8078 8079 /* Initialize the header template */ 8080 8081 tcp->tcp_ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW; 8082 tcp->tcp_ip6h->ip6_plen = ntohs(sizeof (tcph_t)); 8083 tcp->tcp_ip6h->ip6_nxt = IPPROTO_TCP; 8084 tcp->tcp_ip6h->ip6_hops = (uint8_t)tcps->tcps_ipv6_hoplimit; 8085 8086 tcph = (tcph_t *)(tcp->tcp_iphc + IPV6_HDR_LEN); 8087 tcp->tcp_tcph = tcph; 8088 tcph->th_offset_and_rsrvd[0] = (5 << 4); 8089 /* 8090 * IP wants our header length in the checksum field to 8091 * allow it to perform a single psuedo-header+checksum 8092 * calculation on behalf of TCP. 8093 * Include the adjustment for a source route when IPV6_RTHDR is set. 8094 */ 8095 sum = sizeof (tcph_t) + tcp->tcp_sum; 8096 sum = (sum >> 16) + (sum & 0xFFFF); 8097 U16_TO_ABE16(sum, tcph->th_sum); 8098 return (0); 8099 } 8100 8101 /* At minimum we need 8 bytes in the TCP header for the lookup */ 8102 #define ICMP_MIN_TCP_HDR 8 8103 8104 /* 8105 * tcp_icmp_error is called by tcp_rput_other to process ICMP error messages 8106 * passed up by IP. The message is always received on the correct tcp_t. 8107 * Assumes that IP has pulled up everything up to and including the ICMP header. 8108 */ 8109 void 8110 tcp_icmp_error(tcp_t *tcp, mblk_t *mp) 8111 { 8112 icmph_t *icmph; 8113 ipha_t *ipha; 8114 int iph_hdr_length; 8115 tcph_t *tcph; 8116 boolean_t ipsec_mctl = B_FALSE; 8117 boolean_t secure; 8118 mblk_t *first_mp = mp; 8119 int32_t new_mss; 8120 uint32_t ratio; 8121 size_t mp_size = MBLKL(mp); 8122 uint32_t seg_seq; 8123 tcp_stack_t *tcps = tcp->tcp_tcps; 8124 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 8125 8126 /* Assume IP provides aligned packets - otherwise toss */ 8127 if (!OK_32PTR(mp->b_rptr)) { 8128 freemsg(mp); 8129 return; 8130 } 8131 8132 /* 8133 * Since ICMP errors are normal data marked with M_CTL when sent 8134 * to TCP or UDP, we have to look for a IPSEC_IN value to identify 8135 * packets starting with an ipsec_info_t, see ipsec_info.h. 8136 */ 8137 if ((mp_size == sizeof (ipsec_info_t)) && 8138 (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == IPSEC_IN)) { 8139 ASSERT(mp->b_cont != NULL); 8140 mp = mp->b_cont; 8141 /* IP should have done this */ 8142 ASSERT(OK_32PTR(mp->b_rptr)); 8143 mp_size = MBLKL(mp); 8144 ipsec_mctl = B_TRUE; 8145 } 8146 8147 /* 8148 * Verify that we have a complete outer IP header. If not, drop it. 8149 */ 8150 if (mp_size < sizeof (ipha_t)) { 8151 noticmpv4: 8152 freemsg(first_mp); 8153 return; 8154 } 8155 8156 ipha = (ipha_t *)mp->b_rptr; 8157 /* 8158 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent 8159 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6. 8160 */ 8161 switch (IPH_HDR_VERSION(ipha)) { 8162 case IPV6_VERSION: 8163 tcp_icmp_error_ipv6(tcp, first_mp, ipsec_mctl); 8164 return; 8165 case IPV4_VERSION: 8166 break; 8167 default: 8168 goto noticmpv4; 8169 } 8170 8171 /* Skip past the outer IP and ICMP headers */ 8172 iph_hdr_length = IPH_HDR_LENGTH(ipha); 8173 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 8174 /* 8175 * If we don't have the correct outer IP header length or if the ULP 8176 * is not IPPROTO_ICMP or if we don't have a complete inner IP header 8177 * send it upstream. 8178 */ 8179 if (iph_hdr_length < sizeof (ipha_t) || 8180 ipha->ipha_protocol != IPPROTO_ICMP || 8181 (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) { 8182 goto noticmpv4; 8183 } 8184 ipha = (ipha_t *)&icmph[1]; 8185 8186 /* Skip past the inner IP and find the ULP header */ 8187 iph_hdr_length = IPH_HDR_LENGTH(ipha); 8188 tcph = (tcph_t *)((char *)ipha + iph_hdr_length); 8189 /* 8190 * If we don't have the correct inner IP header length or if the ULP 8191 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR 8192 * bytes of TCP header, drop it. 8193 */ 8194 if (iph_hdr_length < sizeof (ipha_t) || 8195 ipha->ipha_protocol != IPPROTO_TCP || 8196 (uchar_t *)tcph + ICMP_MIN_TCP_HDR > mp->b_wptr) { 8197 goto noticmpv4; 8198 } 8199 8200 if (TCP_IS_DETACHED_NONEAGER(tcp)) { 8201 if (ipsec_mctl) { 8202 secure = ipsec_in_is_secure(first_mp); 8203 } else { 8204 secure = B_FALSE; 8205 } 8206 if (secure) { 8207 /* 8208 * If we are willing to accept this in clear 8209 * we don't have to verify policy. 8210 */ 8211 if (!ipsec_inbound_accept_clear(mp, ipha, NULL)) { 8212 if (!tcp_check_policy(tcp, first_mp, 8213 ipha, NULL, secure, ipsec_mctl)) { 8214 /* 8215 * tcp_check_policy called 8216 * ip_drop_packet() on failure. 8217 */ 8218 return; 8219 } 8220 } 8221 } 8222 } else if (ipsec_mctl) { 8223 /* 8224 * This is a hard_bound connection. IP has already 8225 * verified policy. We don't have to do it again. 8226 */ 8227 freeb(first_mp); 8228 first_mp = mp; 8229 ipsec_mctl = B_FALSE; 8230 } 8231 8232 seg_seq = ABE32_TO_U32(tcph->th_seq); 8233 /* 8234 * TCP SHOULD check that the TCP sequence number contained in 8235 * payload of the ICMP error message is within the range 8236 * SND.UNA <= SEG.SEQ < SND.NXT. 8237 */ 8238 if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) { 8239 /* 8240 * The ICMP message is bogus, just drop it. But if this is 8241 * an ICMP too big message, IP has already changed 8242 * the ire_max_frag to the bogus value. We need to change 8243 * it back. 8244 */ 8245 if (icmph->icmph_type == ICMP_DEST_UNREACHABLE && 8246 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 8247 conn_t *connp = tcp->tcp_connp; 8248 ire_t *ire; 8249 int flag; 8250 8251 if (tcp->tcp_ipversion == IPV4_VERSION) { 8252 flag = tcp->tcp_ipha-> 8253 ipha_fragment_offset_and_flags; 8254 } else { 8255 flag = 0; 8256 } 8257 mutex_enter(&connp->conn_lock); 8258 if ((ire = connp->conn_ire_cache) != NULL) { 8259 mutex_enter(&ire->ire_lock); 8260 mutex_exit(&connp->conn_lock); 8261 ire->ire_max_frag = tcp->tcp_if_mtu; 8262 ire->ire_frag_flag |= flag; 8263 mutex_exit(&ire->ire_lock); 8264 } else { 8265 mutex_exit(&connp->conn_lock); 8266 } 8267 } 8268 goto noticmpv4; 8269 } 8270 8271 switch (icmph->icmph_type) { 8272 case ICMP_DEST_UNREACHABLE: 8273 switch (icmph->icmph_code) { 8274 case ICMP_FRAGMENTATION_NEEDED: 8275 /* 8276 * Reduce the MSS based on the new MTU. This will 8277 * eliminate any fragmentation locally. 8278 * N.B. There may well be some funny side-effects on 8279 * the local send policy and the remote receive policy. 8280 * Pending further research, we provide 8281 * tcp_ignore_path_mtu just in case this proves 8282 * disastrous somewhere. 8283 * 8284 * After updating the MSS, retransmit part of the 8285 * dropped segment using the new mss by calling 8286 * tcp_wput_data(). Need to adjust all those 8287 * params to make sure tcp_wput_data() work properly. 8288 */ 8289 if (tcps->tcps_ignore_path_mtu || 8290 tcp->tcp_ipha->ipha_fragment_offset_and_flags == 0) 8291 break; 8292 8293 /* 8294 * Decrease the MSS by time stamp options 8295 * IP options and IPSEC options. tcp_hdr_len 8296 * includes time stamp option and IP option 8297 * length. Note that new_mss may be negative 8298 * if tcp_ipsec_overhead is large and the 8299 * icmph_du_mtu is the minimum value, which is 68. 8300 */ 8301 new_mss = ntohs(icmph->icmph_du_mtu) - 8302 tcp->tcp_hdr_len - tcp->tcp_ipsec_overhead; 8303 8304 DTRACE_PROBE2(tcp__pmtu__change, tcp_t *, tcp, int, 8305 new_mss); 8306 8307 /* 8308 * Only update the MSS if the new one is 8309 * smaller than the previous one. This is 8310 * to avoid problems when getting multiple 8311 * ICMP errors for the same MTU. 8312 */ 8313 if (new_mss >= tcp->tcp_mss) 8314 break; 8315 8316 /* 8317 * Note that we are using the template header's DF 8318 * bit in the fast path sending. So we need to compare 8319 * the new mss with both tcps_mss_min and ip_pmtu_min. 8320 * And stop doing IPv4 PMTUd if new_mss is less than 8321 * MAX(tcps_mss_min, ip_pmtu_min). 8322 */ 8323 if (new_mss < tcps->tcps_mss_min || 8324 new_mss < ipst->ips_ip_pmtu_min) { 8325 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 8326 0; 8327 } 8328 8329 ratio = tcp->tcp_cwnd / tcp->tcp_mss; 8330 ASSERT(ratio >= 1); 8331 tcp_mss_set(tcp, new_mss, B_TRUE); 8332 8333 /* 8334 * Make sure we have something to 8335 * send. 8336 */ 8337 if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) && 8338 (tcp->tcp_xmit_head != NULL)) { 8339 /* 8340 * Shrink tcp_cwnd in 8341 * proportion to the old MSS/new MSS. 8342 */ 8343 tcp->tcp_cwnd = ratio * tcp->tcp_mss; 8344 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 8345 (tcp->tcp_unsent == 0)) { 8346 tcp->tcp_rexmit_max = tcp->tcp_fss; 8347 } else { 8348 tcp->tcp_rexmit_max = tcp->tcp_snxt; 8349 } 8350 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 8351 tcp->tcp_rexmit = B_TRUE; 8352 tcp->tcp_dupack_cnt = 0; 8353 tcp->tcp_snd_burst = TCP_CWND_SS; 8354 tcp_ss_rexmit(tcp); 8355 } 8356 break; 8357 case ICMP_PORT_UNREACHABLE: 8358 case ICMP_PROTOCOL_UNREACHABLE: 8359 switch (tcp->tcp_state) { 8360 case TCPS_SYN_SENT: 8361 case TCPS_SYN_RCVD: 8362 /* 8363 * ICMP can snipe away incipient 8364 * TCP connections as long as 8365 * seq number is same as initial 8366 * send seq number. 8367 */ 8368 if (seg_seq == tcp->tcp_iss) { 8369 (void) tcp_clean_death(tcp, 8370 ECONNREFUSED, 6); 8371 } 8372 break; 8373 } 8374 break; 8375 case ICMP_HOST_UNREACHABLE: 8376 case ICMP_NET_UNREACHABLE: 8377 /* Record the error in case we finally time out. */ 8378 if (icmph->icmph_code == ICMP_HOST_UNREACHABLE) 8379 tcp->tcp_client_errno = EHOSTUNREACH; 8380 else 8381 tcp->tcp_client_errno = ENETUNREACH; 8382 if (tcp->tcp_state == TCPS_SYN_RCVD) { 8383 if (tcp->tcp_listener != NULL && 8384 tcp->tcp_listener->tcp_syn_defense) { 8385 /* 8386 * Ditch the half-open connection if we 8387 * suspect a SYN attack is under way. 8388 */ 8389 tcp_ip_ire_mark_advice(tcp); 8390 (void) tcp_clean_death(tcp, 8391 tcp->tcp_client_errno, 7); 8392 } 8393 } 8394 break; 8395 default: 8396 break; 8397 } 8398 break; 8399 case ICMP_SOURCE_QUENCH: { 8400 /* 8401 * use a global boolean to control 8402 * whether TCP should respond to ICMP_SOURCE_QUENCH. 8403 * The default is false. 8404 */ 8405 if (tcp_icmp_source_quench) { 8406 /* 8407 * Reduce the sending rate as if we got a 8408 * retransmit timeout 8409 */ 8410 uint32_t npkt; 8411 8412 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / 8413 tcp->tcp_mss; 8414 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss; 8415 tcp->tcp_cwnd = tcp->tcp_mss; 8416 tcp->tcp_cwnd_cnt = 0; 8417 } 8418 break; 8419 } 8420 } 8421 freemsg(first_mp); 8422 } 8423 8424 /* 8425 * tcp_icmp_error_ipv6 is called by tcp_rput_other to process ICMPv6 8426 * error messages passed up by IP. 8427 * Assumes that IP has pulled up all the extension headers as well 8428 * as the ICMPv6 header. 8429 */ 8430 static void 8431 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, boolean_t ipsec_mctl) 8432 { 8433 icmp6_t *icmp6; 8434 ip6_t *ip6h; 8435 uint16_t iph_hdr_length; 8436 tcpha_t *tcpha; 8437 uint8_t *nexthdrp; 8438 uint32_t new_mss; 8439 uint32_t ratio; 8440 boolean_t secure; 8441 mblk_t *first_mp = mp; 8442 size_t mp_size; 8443 uint32_t seg_seq; 8444 tcp_stack_t *tcps = tcp->tcp_tcps; 8445 8446 /* 8447 * The caller has determined if this is an IPSEC_IN packet and 8448 * set ipsec_mctl appropriately (see tcp_icmp_error). 8449 */ 8450 if (ipsec_mctl) 8451 mp = mp->b_cont; 8452 8453 mp_size = MBLKL(mp); 8454 8455 /* 8456 * Verify that we have a complete IP header. If not, send it upstream. 8457 */ 8458 if (mp_size < sizeof (ip6_t)) { 8459 noticmpv6: 8460 freemsg(first_mp); 8461 return; 8462 } 8463 8464 /* 8465 * Verify this is an ICMPV6 packet, else send it upstream. 8466 */ 8467 ip6h = (ip6_t *)mp->b_rptr; 8468 if (ip6h->ip6_nxt == IPPROTO_ICMPV6) { 8469 iph_hdr_length = IPV6_HDR_LEN; 8470 } else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, 8471 &nexthdrp) || 8472 *nexthdrp != IPPROTO_ICMPV6) { 8473 goto noticmpv6; 8474 } 8475 icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length]; 8476 ip6h = (ip6_t *)&icmp6[1]; 8477 /* 8478 * Verify if we have a complete ICMP and inner IP header. 8479 */ 8480 if ((uchar_t *)&ip6h[1] > mp->b_wptr) 8481 goto noticmpv6; 8482 8483 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp)) 8484 goto noticmpv6; 8485 tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length); 8486 /* 8487 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't 8488 * have at least ICMP_MIN_TCP_HDR bytes of TCP header drop the 8489 * packet. 8490 */ 8491 if ((*nexthdrp != IPPROTO_TCP) || 8492 ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) { 8493 goto noticmpv6; 8494 } 8495 8496 /* 8497 * ICMP errors come on the right queue or come on 8498 * listener/global queue for detached connections and 8499 * get switched to the right queue. If it comes on the 8500 * right queue, policy check has already been done by IP 8501 * and thus free the first_mp without verifying the policy. 8502 * If it has come for a non-hard bound connection, we need 8503 * to verify policy as IP may not have done it. 8504 */ 8505 if (!tcp->tcp_hard_bound) { 8506 if (ipsec_mctl) { 8507 secure = ipsec_in_is_secure(first_mp); 8508 } else { 8509 secure = B_FALSE; 8510 } 8511 if (secure) { 8512 /* 8513 * If we are willing to accept this in clear 8514 * we don't have to verify policy. 8515 */ 8516 if (!ipsec_inbound_accept_clear(mp, NULL, ip6h)) { 8517 if (!tcp_check_policy(tcp, first_mp, 8518 NULL, ip6h, secure, ipsec_mctl)) { 8519 /* 8520 * tcp_check_policy called 8521 * ip_drop_packet() on failure. 8522 */ 8523 return; 8524 } 8525 } 8526 } 8527 } else if (ipsec_mctl) { 8528 /* 8529 * This is a hard_bound connection. IP has already 8530 * verified policy. We don't have to do it again. 8531 */ 8532 freeb(first_mp); 8533 first_mp = mp; 8534 ipsec_mctl = B_FALSE; 8535 } 8536 8537 seg_seq = ntohl(tcpha->tha_seq); 8538 /* 8539 * TCP SHOULD check that the TCP sequence number contained in 8540 * payload of the ICMP error message is within the range 8541 * SND.UNA <= SEG.SEQ < SND.NXT. 8542 */ 8543 if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) { 8544 /* 8545 * If the ICMP message is bogus, should we kill the 8546 * connection, or should we just drop the bogus ICMP 8547 * message? It would probably make more sense to just 8548 * drop the message so that if this one managed to get 8549 * in, the real connection should not suffer. 8550 */ 8551 goto noticmpv6; 8552 } 8553 8554 switch (icmp6->icmp6_type) { 8555 case ICMP6_PACKET_TOO_BIG: 8556 /* 8557 * Reduce the MSS based on the new MTU. This will 8558 * eliminate any fragmentation locally. 8559 * N.B. There may well be some funny side-effects on 8560 * the local send policy and the remote receive policy. 8561 * Pending further research, we provide 8562 * tcp_ignore_path_mtu just in case this proves 8563 * disastrous somewhere. 8564 * 8565 * After updating the MSS, retransmit part of the 8566 * dropped segment using the new mss by calling 8567 * tcp_wput_data(). Need to adjust all those 8568 * params to make sure tcp_wput_data() work properly. 8569 */ 8570 if (tcps->tcps_ignore_path_mtu) 8571 break; 8572 8573 /* 8574 * Decrease the MSS by time stamp options 8575 * IP options and IPSEC options. tcp_hdr_len 8576 * includes time stamp option and IP option 8577 * length. 8578 */ 8579 new_mss = ntohs(icmp6->icmp6_mtu) - tcp->tcp_hdr_len - 8580 tcp->tcp_ipsec_overhead; 8581 8582 /* 8583 * Only update the MSS if the new one is 8584 * smaller than the previous one. This is 8585 * to avoid problems when getting multiple 8586 * ICMP errors for the same MTU. 8587 */ 8588 if (new_mss >= tcp->tcp_mss) 8589 break; 8590 8591 ratio = tcp->tcp_cwnd / tcp->tcp_mss; 8592 ASSERT(ratio >= 1); 8593 tcp_mss_set(tcp, new_mss, B_TRUE); 8594 8595 /* 8596 * Make sure we have something to 8597 * send. 8598 */ 8599 if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) && 8600 (tcp->tcp_xmit_head != NULL)) { 8601 /* 8602 * Shrink tcp_cwnd in 8603 * proportion to the old MSS/new MSS. 8604 */ 8605 tcp->tcp_cwnd = ratio * tcp->tcp_mss; 8606 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 8607 (tcp->tcp_unsent == 0)) { 8608 tcp->tcp_rexmit_max = tcp->tcp_fss; 8609 } else { 8610 tcp->tcp_rexmit_max = tcp->tcp_snxt; 8611 } 8612 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 8613 tcp->tcp_rexmit = B_TRUE; 8614 tcp->tcp_dupack_cnt = 0; 8615 tcp->tcp_snd_burst = TCP_CWND_SS; 8616 tcp_ss_rexmit(tcp); 8617 } 8618 break; 8619 8620 case ICMP6_DST_UNREACH: 8621 switch (icmp6->icmp6_code) { 8622 case ICMP6_DST_UNREACH_NOPORT: 8623 if (((tcp->tcp_state == TCPS_SYN_SENT) || 8624 (tcp->tcp_state == TCPS_SYN_RCVD)) && 8625 (seg_seq == tcp->tcp_iss)) { 8626 (void) tcp_clean_death(tcp, 8627 ECONNREFUSED, 8); 8628 } 8629 break; 8630 8631 case ICMP6_DST_UNREACH_ADMIN: 8632 case ICMP6_DST_UNREACH_NOROUTE: 8633 case ICMP6_DST_UNREACH_BEYONDSCOPE: 8634 case ICMP6_DST_UNREACH_ADDR: 8635 /* Record the error in case we finally time out. */ 8636 tcp->tcp_client_errno = EHOSTUNREACH; 8637 if (((tcp->tcp_state == TCPS_SYN_SENT) || 8638 (tcp->tcp_state == TCPS_SYN_RCVD)) && 8639 (seg_seq == tcp->tcp_iss)) { 8640 if (tcp->tcp_listener != NULL && 8641 tcp->tcp_listener->tcp_syn_defense) { 8642 /* 8643 * Ditch the half-open connection if we 8644 * suspect a SYN attack is under way. 8645 */ 8646 tcp_ip_ire_mark_advice(tcp); 8647 (void) tcp_clean_death(tcp, 8648 tcp->tcp_client_errno, 9); 8649 } 8650 } 8651 8652 8653 break; 8654 default: 8655 break; 8656 } 8657 break; 8658 8659 case ICMP6_PARAM_PROB: 8660 /* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */ 8661 if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER && 8662 (uchar_t *)ip6h + icmp6->icmp6_pptr == 8663 (uchar_t *)nexthdrp) { 8664 if (tcp->tcp_state == TCPS_SYN_SENT || 8665 tcp->tcp_state == TCPS_SYN_RCVD) { 8666 (void) tcp_clean_death(tcp, 8667 ECONNREFUSED, 10); 8668 } 8669 break; 8670 } 8671 break; 8672 8673 case ICMP6_TIME_EXCEEDED: 8674 default: 8675 break; 8676 } 8677 freemsg(first_mp); 8678 } 8679 8680 /* 8681 * Notify IP that we are having trouble with this connection. IP should 8682 * blow the IRE away and start over. 8683 */ 8684 static void 8685 tcp_ip_notify(tcp_t *tcp) 8686 { 8687 struct iocblk *iocp; 8688 ipid_t *ipid; 8689 mblk_t *mp; 8690 8691 /* IPv6 has NUD thus notification to delete the IRE is not needed */ 8692 if (tcp->tcp_ipversion == IPV6_VERSION) 8693 return; 8694 8695 mp = mkiocb(IP_IOCTL); 8696 if (mp == NULL) 8697 return; 8698 8699 iocp = (struct iocblk *)mp->b_rptr; 8700 iocp->ioc_count = sizeof (ipid_t) + sizeof (tcp->tcp_ipha->ipha_dst); 8701 8702 mp->b_cont = allocb(iocp->ioc_count, BPRI_HI); 8703 if (!mp->b_cont) { 8704 freeb(mp); 8705 return; 8706 } 8707 8708 ipid = (ipid_t *)mp->b_cont->b_rptr; 8709 mp->b_cont->b_wptr += iocp->ioc_count; 8710 bzero(ipid, sizeof (*ipid)); 8711 ipid->ipid_cmd = IP_IOC_IRE_DELETE_NO_REPLY; 8712 ipid->ipid_ire_type = IRE_CACHE; 8713 ipid->ipid_addr_offset = sizeof (ipid_t); 8714 ipid->ipid_addr_length = sizeof (tcp->tcp_ipha->ipha_dst); 8715 /* 8716 * Note: in the case of source routing we want to blow away the 8717 * route to the first source route hop. 8718 */ 8719 bcopy(&tcp->tcp_ipha->ipha_dst, &ipid[1], 8720 sizeof (tcp->tcp_ipha->ipha_dst)); 8721 8722 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 8723 } 8724 8725 /* Unlink and return any mblk that looks like it contains an ire */ 8726 static mblk_t * 8727 tcp_ire_mp(mblk_t **mpp) 8728 { 8729 mblk_t *mp = *mpp; 8730 mblk_t *prev_mp = NULL; 8731 8732 for (;;) { 8733 switch (DB_TYPE(mp)) { 8734 case IRE_DB_TYPE: 8735 case IRE_DB_REQ_TYPE: 8736 if (mp == *mpp) { 8737 *mpp = mp->b_cont; 8738 } else { 8739 prev_mp->b_cont = mp->b_cont; 8740 } 8741 mp->b_cont = NULL; 8742 return (mp); 8743 default: 8744 break; 8745 } 8746 prev_mp = mp; 8747 mp = mp->b_cont; 8748 if (mp == NULL) 8749 break; 8750 } 8751 return (mp); 8752 } 8753 8754 /* 8755 * Timer callback routine for keepalive probe. We do a fake resend of 8756 * last ACKed byte. Then set a timer using RTO. When the timer expires, 8757 * check to see if we have heard anything from the other end for the last 8758 * RTO period. If we have, set the timer to expire for another 8759 * tcp_keepalive_intrvl and check again. If we have not, set a timer using 8760 * RTO << 1 and check again when it expires. Keep exponentially increasing 8761 * the timeout if we have not heard from the other side. If for more than 8762 * (tcp_ka_interval + tcp_ka_abort_thres) we have not heard anything, 8763 * kill the connection unless the keepalive abort threshold is 0. In 8764 * that case, we will probe "forever." 8765 */ 8766 static void 8767 tcp_keepalive_killer(void *arg) 8768 { 8769 mblk_t *mp; 8770 conn_t *connp = (conn_t *)arg; 8771 tcp_t *tcp = connp->conn_tcp; 8772 int32_t firetime; 8773 int32_t idletime; 8774 int32_t ka_intrvl; 8775 tcp_stack_t *tcps = tcp->tcp_tcps; 8776 8777 tcp->tcp_ka_tid = 0; 8778 8779 if (tcp->tcp_fused) 8780 return; 8781 8782 BUMP_MIB(&tcps->tcps_mib, tcpTimKeepalive); 8783 ka_intrvl = tcp->tcp_ka_interval; 8784 8785 /* 8786 * Keepalive probe should only be sent if the application has not 8787 * done a close on the connection. 8788 */ 8789 if (tcp->tcp_state > TCPS_CLOSE_WAIT) { 8790 return; 8791 } 8792 /* Timer fired too early, restart it. */ 8793 if (tcp->tcp_state < TCPS_ESTABLISHED) { 8794 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 8795 MSEC_TO_TICK(ka_intrvl)); 8796 return; 8797 } 8798 8799 idletime = TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time); 8800 /* 8801 * If we have not heard from the other side for a long 8802 * time, kill the connection unless the keepalive abort 8803 * threshold is 0. In that case, we will probe "forever." 8804 */ 8805 if (tcp->tcp_ka_abort_thres != 0 && 8806 idletime > (ka_intrvl + tcp->tcp_ka_abort_thres)) { 8807 BUMP_MIB(&tcps->tcps_mib, tcpTimKeepaliveDrop); 8808 (void) tcp_clean_death(tcp, tcp->tcp_client_errno ? 8809 tcp->tcp_client_errno : ETIMEDOUT, 11); 8810 return; 8811 } 8812 8813 if (tcp->tcp_snxt == tcp->tcp_suna && 8814 idletime >= ka_intrvl) { 8815 /* Fake resend of last ACKed byte. */ 8816 mblk_t *mp1 = allocb(1, BPRI_LO); 8817 8818 if (mp1 != NULL) { 8819 *mp1->b_wptr++ = '\0'; 8820 mp = tcp_xmit_mp(tcp, mp1, 1, NULL, NULL, 8821 tcp->tcp_suna - 1, B_FALSE, NULL, B_TRUE); 8822 freeb(mp1); 8823 /* 8824 * if allocation failed, fall through to start the 8825 * timer back. 8826 */ 8827 if (mp != NULL) { 8828 tcp_send_data(tcp, tcp->tcp_wq, mp); 8829 BUMP_MIB(&tcps->tcps_mib, 8830 tcpTimKeepaliveProbe); 8831 if (tcp->tcp_ka_last_intrvl != 0) { 8832 int max; 8833 /* 8834 * We should probe again at least 8835 * in ka_intrvl, but not more than 8836 * tcp_rexmit_interval_max. 8837 */ 8838 max = tcps->tcps_rexmit_interval_max; 8839 firetime = MIN(ka_intrvl - 1, 8840 tcp->tcp_ka_last_intrvl << 1); 8841 if (firetime > max) 8842 firetime = max; 8843 } else { 8844 firetime = tcp->tcp_rto; 8845 } 8846 tcp->tcp_ka_tid = TCP_TIMER(tcp, 8847 tcp_keepalive_killer, 8848 MSEC_TO_TICK(firetime)); 8849 tcp->tcp_ka_last_intrvl = firetime; 8850 return; 8851 } 8852 } 8853 } else { 8854 tcp->tcp_ka_last_intrvl = 0; 8855 } 8856 8857 /* firetime can be negative if (mp1 == NULL || mp == NULL) */ 8858 if ((firetime = ka_intrvl - idletime) < 0) { 8859 firetime = ka_intrvl; 8860 } 8861 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 8862 MSEC_TO_TICK(firetime)); 8863 } 8864 8865 int 8866 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk) 8867 { 8868 queue_t *q = tcp->tcp_rq; 8869 int32_t mss = tcp->tcp_mss; 8870 int maxpsz; 8871 conn_t *connp = tcp->tcp_connp; 8872 8873 if (TCP_IS_DETACHED(tcp)) 8874 return (mss); 8875 if (tcp->tcp_fused) { 8876 maxpsz = tcp_fuse_maxpsz_set(tcp); 8877 mss = INFPSZ; 8878 } else if (tcp->tcp_mdt || tcp->tcp_lso || tcp->tcp_maxpsz == 0) { 8879 /* 8880 * Set the sd_qn_maxpsz according to the socket send buffer 8881 * size, and sd_maxblk to INFPSZ (-1). This will essentially 8882 * instruct the stream head to copyin user data into contiguous 8883 * kernel-allocated buffers without breaking it up into smaller 8884 * chunks. We round up the buffer size to the nearest SMSS. 8885 */ 8886 maxpsz = MSS_ROUNDUP(tcp->tcp_xmit_hiwater, mss); 8887 if (tcp->tcp_kssl_ctx == NULL) 8888 mss = INFPSZ; 8889 else 8890 mss = SSL3_MAX_RECORD_LEN; 8891 } else { 8892 /* 8893 * Set sd_qn_maxpsz to approx half the (receivers) buffer 8894 * (and a multiple of the mss). This instructs the stream 8895 * head to break down larger than SMSS writes into SMSS- 8896 * size mblks, up to tcp_maxpsz_multiplier mblks at a time. 8897 */ 8898 /* XXX tune this with ndd tcp_maxpsz_multiplier */ 8899 maxpsz = tcp->tcp_maxpsz * mss; 8900 if (maxpsz > tcp->tcp_xmit_hiwater/2) { 8901 maxpsz = tcp->tcp_xmit_hiwater/2; 8902 /* Round up to nearest mss */ 8903 maxpsz = MSS_ROUNDUP(maxpsz, mss); 8904 } 8905 } 8906 8907 (void) proto_set_maxpsz(q, connp, maxpsz); 8908 if (!(IPCL_IS_NONSTR(connp))) { 8909 /* XXX do it in set_maxpsz()? */ 8910 tcp->tcp_wq->q_maxpsz = maxpsz; 8911 } 8912 8913 if (set_maxblk) 8914 (void) proto_set_tx_maxblk(q, connp, mss); 8915 return (mss); 8916 } 8917 8918 /* 8919 * Extract option values from a tcp header. We put any found values into the 8920 * tcpopt struct and return a bitmask saying which options were found. 8921 */ 8922 static int 8923 tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt) 8924 { 8925 uchar_t *endp; 8926 int len; 8927 uint32_t mss; 8928 uchar_t *up = (uchar_t *)tcph; 8929 int found = 0; 8930 int32_t sack_len; 8931 tcp_seq sack_begin, sack_end; 8932 tcp_t *tcp; 8933 8934 endp = up + TCP_HDR_LENGTH(tcph); 8935 up += TCP_MIN_HEADER_LENGTH; 8936 while (up < endp) { 8937 len = endp - up; 8938 switch (*up) { 8939 case TCPOPT_EOL: 8940 break; 8941 8942 case TCPOPT_NOP: 8943 up++; 8944 continue; 8945 8946 case TCPOPT_MAXSEG: 8947 if (len < TCPOPT_MAXSEG_LEN || 8948 up[1] != TCPOPT_MAXSEG_LEN) 8949 break; 8950 8951 mss = BE16_TO_U16(up+2); 8952 /* Caller must handle tcp_mss_min and tcp_mss_max_* */ 8953 tcpopt->tcp_opt_mss = mss; 8954 found |= TCP_OPT_MSS_PRESENT; 8955 8956 up += TCPOPT_MAXSEG_LEN; 8957 continue; 8958 8959 case TCPOPT_WSCALE: 8960 if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN) 8961 break; 8962 8963 if (up[2] > TCP_MAX_WINSHIFT) 8964 tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT; 8965 else 8966 tcpopt->tcp_opt_wscale = up[2]; 8967 found |= TCP_OPT_WSCALE_PRESENT; 8968 8969 up += TCPOPT_WS_LEN; 8970 continue; 8971 8972 case TCPOPT_SACK_PERMITTED: 8973 if (len < TCPOPT_SACK_OK_LEN || 8974 up[1] != TCPOPT_SACK_OK_LEN) 8975 break; 8976 found |= TCP_OPT_SACK_OK_PRESENT; 8977 up += TCPOPT_SACK_OK_LEN; 8978 continue; 8979 8980 case TCPOPT_SACK: 8981 if (len <= 2 || up[1] <= 2 || len < up[1]) 8982 break; 8983 8984 /* If TCP is not interested in SACK blks... */ 8985 if ((tcp = tcpopt->tcp) == NULL) { 8986 up += up[1]; 8987 continue; 8988 } 8989 sack_len = up[1] - TCPOPT_HEADER_LEN; 8990 up += TCPOPT_HEADER_LEN; 8991 8992 /* 8993 * If the list is empty, allocate one and assume 8994 * nothing is sack'ed. 8995 */ 8996 ASSERT(tcp->tcp_sack_info != NULL); 8997 if (tcp->tcp_notsack_list == NULL) { 8998 tcp_notsack_update(&(tcp->tcp_notsack_list), 8999 tcp->tcp_suna, tcp->tcp_snxt, 9000 &(tcp->tcp_num_notsack_blk), 9001 &(tcp->tcp_cnt_notsack_list)); 9002 9003 /* 9004 * Make sure tcp_notsack_list is not NULL. 9005 * This happens when kmem_alloc(KM_NOSLEEP) 9006 * returns NULL. 9007 */ 9008 if (tcp->tcp_notsack_list == NULL) { 9009 up += sack_len; 9010 continue; 9011 } 9012 tcp->tcp_fack = tcp->tcp_suna; 9013 } 9014 9015 while (sack_len > 0) { 9016 if (up + 8 > endp) { 9017 up = endp; 9018 break; 9019 } 9020 sack_begin = BE32_TO_U32(up); 9021 up += 4; 9022 sack_end = BE32_TO_U32(up); 9023 up += 4; 9024 sack_len -= 8; 9025 /* 9026 * Bounds checking. Make sure the SACK 9027 * info is within tcp_suna and tcp_snxt. 9028 * If this SACK blk is out of bound, ignore 9029 * it but continue to parse the following 9030 * blks. 9031 */ 9032 if (SEQ_LEQ(sack_end, sack_begin) || 9033 SEQ_LT(sack_begin, tcp->tcp_suna) || 9034 SEQ_GT(sack_end, tcp->tcp_snxt)) { 9035 continue; 9036 } 9037 tcp_notsack_insert(&(tcp->tcp_notsack_list), 9038 sack_begin, sack_end, 9039 &(tcp->tcp_num_notsack_blk), 9040 &(tcp->tcp_cnt_notsack_list)); 9041 if (SEQ_GT(sack_end, tcp->tcp_fack)) { 9042 tcp->tcp_fack = sack_end; 9043 } 9044 } 9045 found |= TCP_OPT_SACK_PRESENT; 9046 continue; 9047 9048 case TCPOPT_TSTAMP: 9049 if (len < TCPOPT_TSTAMP_LEN || 9050 up[1] != TCPOPT_TSTAMP_LEN) 9051 break; 9052 9053 tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2); 9054 tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6); 9055 9056 found |= TCP_OPT_TSTAMP_PRESENT; 9057 9058 up += TCPOPT_TSTAMP_LEN; 9059 continue; 9060 9061 default: 9062 if (len <= 1 || len < (int)up[1] || up[1] == 0) 9063 break; 9064 up += up[1]; 9065 continue; 9066 } 9067 break; 9068 } 9069 return (found); 9070 } 9071 9072 /* 9073 * Set the mss associated with a particular tcp based on its current value, 9074 * and a new one passed in. Observe minimums and maximums, and reset 9075 * other state variables that we want to view as multiples of mss. 9076 * 9077 * This function is called mainly because values like tcp_mss, tcp_cwnd, 9078 * highwater marks etc. need to be initialized or adjusted. 9079 * 1) From tcp_process_options() when the other side's SYN/SYN-ACK 9080 * packet arrives. 9081 * 2) We need to set a new MSS when ICMP_FRAGMENTATION_NEEDED or 9082 * ICMP6_PACKET_TOO_BIG arrives. 9083 * 3) From tcp_paws_check() if the other side stops sending the timestamp, 9084 * to increase the MSS to use the extra bytes available. 9085 * 9086 * Callers except tcp_paws_check() ensure that they only reduce mss. 9087 */ 9088 static void 9089 tcp_mss_set(tcp_t *tcp, uint32_t mss, boolean_t do_ss) 9090 { 9091 uint32_t mss_max; 9092 tcp_stack_t *tcps = tcp->tcp_tcps; 9093 9094 if (tcp->tcp_ipversion == IPV4_VERSION) 9095 mss_max = tcps->tcps_mss_max_ipv4; 9096 else 9097 mss_max = tcps->tcps_mss_max_ipv6; 9098 9099 if (mss < tcps->tcps_mss_min) 9100 mss = tcps->tcps_mss_min; 9101 if (mss > mss_max) 9102 mss = mss_max; 9103 /* 9104 * Unless naglim has been set by our client to 9105 * a non-mss value, force naglim to track mss. 9106 * This can help to aggregate small writes. 9107 */ 9108 if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim) 9109 tcp->tcp_naglim = mss; 9110 /* 9111 * TCP should be able to buffer at least 4 MSS data for obvious 9112 * performance reason. 9113 */ 9114 if ((mss << 2) > tcp->tcp_xmit_hiwater) 9115 tcp->tcp_xmit_hiwater = mss << 2; 9116 9117 if (do_ss) { 9118 /* 9119 * Either the tcp_cwnd is as yet uninitialized, or mss is 9120 * changing due to a reduction in MTU, presumably as a 9121 * result of a new path component, reset cwnd to its 9122 * "initial" value, as a multiple of the new mss. 9123 */ 9124 SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_initial); 9125 } else { 9126 /* 9127 * Called by tcp_paws_check(), the mss increased 9128 * marginally to allow use of space previously taken 9129 * by the timestamp option. It would be inappropriate 9130 * to apply slow start or tcp_init_cwnd values to 9131 * tcp_cwnd, simply adjust to a multiple of the new mss. 9132 */ 9133 tcp->tcp_cwnd = (tcp->tcp_cwnd / tcp->tcp_mss) * mss; 9134 tcp->tcp_cwnd_cnt = 0; 9135 } 9136 tcp->tcp_mss = mss; 9137 (void) tcp_maxpsz_set(tcp, B_TRUE); 9138 } 9139 9140 /* For /dev/tcp aka AF_INET open */ 9141 static int 9142 tcp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9143 { 9144 return (tcp_open(q, devp, flag, sflag, credp, B_FALSE)); 9145 } 9146 9147 /* For /dev/tcp6 aka AF_INET6 open */ 9148 static int 9149 tcp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9150 { 9151 return (tcp_open(q, devp, flag, sflag, credp, B_TRUE)); 9152 } 9153 9154 static conn_t * 9155 tcp_create_common(queue_t *q, cred_t *credp, boolean_t isv6, 9156 boolean_t issocket, int *errorp) 9157 { 9158 tcp_t *tcp = NULL; 9159 conn_t *connp; 9160 int err; 9161 zoneid_t zoneid; 9162 tcp_stack_t *tcps; 9163 squeue_t *sqp; 9164 9165 ASSERT(errorp != NULL); 9166 /* 9167 * Find the proper zoneid and netstack. 9168 */ 9169 /* 9170 * Special case for install: miniroot needs to be able to 9171 * access files via NFS as though it were always in the 9172 * global zone. 9173 */ 9174 if (credp == kcred && nfs_global_client_only != 0) { 9175 zoneid = GLOBAL_ZONEID; 9176 tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)-> 9177 netstack_tcp; 9178 ASSERT(tcps != NULL); 9179 } else { 9180 netstack_t *ns; 9181 9182 ns = netstack_find_by_cred(credp); 9183 ASSERT(ns != NULL); 9184 tcps = ns->netstack_tcp; 9185 ASSERT(tcps != NULL); 9186 9187 /* 9188 * For exclusive stacks we set the zoneid to zero 9189 * to make TCP operate as if in the global zone. 9190 */ 9191 if (tcps->tcps_netstack->netstack_stackid != 9192 GLOBAL_NETSTACKID) 9193 zoneid = GLOBAL_ZONEID; 9194 else 9195 zoneid = crgetzoneid(credp); 9196 } 9197 /* 9198 * For stackid zero this is done from strplumb.c, but 9199 * non-zero stackids are handled here. 9200 */ 9201 if (tcps->tcps_g_q == NULL && 9202 tcps->tcps_netstack->netstack_stackid != 9203 GLOBAL_NETSTACKID) { 9204 tcp_g_q_setup(tcps); 9205 } 9206 9207 sqp = IP_SQUEUE_GET((uint_t)gethrtime()); 9208 connp = (conn_t *)tcp_get_conn(sqp, tcps); 9209 /* 9210 * Both tcp_get_conn and netstack_find_by_cred incremented refcnt, 9211 * so we drop it by one. 9212 */ 9213 netstack_rele(tcps->tcps_netstack); 9214 if (connp == NULL) { 9215 *errorp = ENOSR; 9216 return (NULL); 9217 } 9218 connp->conn_sqp = sqp; 9219 connp->conn_initial_sqp = connp->conn_sqp; 9220 tcp = connp->conn_tcp; 9221 9222 if (isv6) { 9223 connp->conn_flags |= (IPCL_TCP6|IPCL_ISV6); 9224 connp->conn_send = ip_output_v6; 9225 connp->conn_af_isv6 = B_TRUE; 9226 connp->conn_pkt_isv6 = B_TRUE; 9227 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 9228 tcp->tcp_ipversion = IPV6_VERSION; 9229 tcp->tcp_family = AF_INET6; 9230 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 9231 } else { 9232 connp->conn_flags |= IPCL_TCP4; 9233 connp->conn_send = ip_output; 9234 connp->conn_af_isv6 = B_FALSE; 9235 connp->conn_pkt_isv6 = B_FALSE; 9236 tcp->tcp_ipversion = IPV4_VERSION; 9237 tcp->tcp_family = AF_INET; 9238 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 9239 } 9240 9241 /* 9242 * TCP keeps a copy of cred for cache locality reasons but 9243 * we put a reference only once. If connp->conn_cred 9244 * becomes invalid, tcp_cred should also be set to NULL. 9245 */ 9246 tcp->tcp_cred = connp->conn_cred = credp; 9247 crhold(connp->conn_cred); 9248 tcp->tcp_cpid = curproc->p_pid; 9249 tcp->tcp_open_time = lbolt64; 9250 connp->conn_zoneid = zoneid; 9251 connp->conn_mlp_type = mlptSingle; 9252 connp->conn_ulp_labeled = !is_system_labeled(); 9253 ASSERT(connp->conn_netstack == tcps->tcps_netstack); 9254 ASSERT(tcp->tcp_tcps == tcps); 9255 9256 /* 9257 * If the caller has the process-wide flag set, then default to MAC 9258 * exempt mode. This allows read-down to unlabeled hosts. 9259 */ 9260 if (getpflags(NET_MAC_AWARE, credp) != 0) 9261 connp->conn_mac_exempt = B_TRUE; 9262 9263 connp->conn_dev = NULL; 9264 if (issocket) { 9265 connp->conn_flags |= IPCL_SOCKET; 9266 tcp->tcp_issocket = 1; 9267 } 9268 9269 tcp->tcp_recv_hiwater = tcps->tcps_recv_hiwat; 9270 tcp->tcp_rwnd = tcps->tcps_recv_hiwat; 9271 tcp->tcp_recv_lowater = tcp_rinfo.mi_lowat; 9272 9273 /* Non-zero default values */ 9274 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 9275 9276 if (q == NULL) { 9277 /* 9278 * Create a helper stream for non-STREAMS socket. 9279 */ 9280 err = ip_create_helper_stream(connp, tcps->tcps_ldi_ident); 9281 if (err != 0) { 9282 ip1dbg(("tcp_create_common: create of IP helper stream " 9283 "failed\n")); 9284 CONN_DEC_REF(connp); 9285 *errorp = err; 9286 return (NULL); 9287 } 9288 q = connp->conn_rq; 9289 } else { 9290 RD(q)->q_hiwat = tcps->tcps_recv_hiwat; 9291 } 9292 9293 SOCK_CONNID_INIT(tcp->tcp_connid); 9294 err = tcp_init(tcp, q); 9295 if (err != 0) { 9296 CONN_DEC_REF(connp); 9297 *errorp = err; 9298 return (NULL); 9299 } 9300 9301 return (connp); 9302 } 9303 9304 static int 9305 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 9306 boolean_t isv6) 9307 { 9308 tcp_t *tcp = NULL; 9309 conn_t *connp = NULL; 9310 int err; 9311 vmem_t *minor_arena = NULL; 9312 dev_t conn_dev; 9313 boolean_t issocket; 9314 9315 if (q->q_ptr != NULL) 9316 return (0); 9317 9318 if (sflag == MODOPEN) 9319 return (EINVAL); 9320 9321 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 9322 ((conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 9323 minor_arena = ip_minor_arena_la; 9324 } else { 9325 /* 9326 * Either minor numbers in the large arena were exhausted 9327 * or a non socket application is doing the open. 9328 * Try to allocate from the small arena. 9329 */ 9330 if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0) { 9331 return (EBUSY); 9332 } 9333 minor_arena = ip_minor_arena_sa; 9334 } 9335 9336 ASSERT(minor_arena != NULL); 9337 9338 *devp = makedevice(getmajor(*devp), (minor_t)conn_dev); 9339 9340 if (flag & SO_FALLBACK) { 9341 /* 9342 * Non streams socket needs a stream to fallback to 9343 */ 9344 RD(q)->q_ptr = (void *)conn_dev; 9345 WR(q)->q_qinfo = &tcp_fallback_sock_winit; 9346 WR(q)->q_ptr = (void *)minor_arena; 9347 qprocson(q); 9348 return (0); 9349 } else if (flag & SO_ACCEPTOR) { 9350 q->q_qinfo = &tcp_acceptor_rinit; 9351 /* 9352 * the conn_dev and minor_arena will be subsequently used by 9353 * tcp_wput_accept() and tcpclose_accept() to figure out the 9354 * minor device number for this connection from the q_ptr. 9355 */ 9356 RD(q)->q_ptr = (void *)conn_dev; 9357 WR(q)->q_qinfo = &tcp_acceptor_winit; 9358 WR(q)->q_ptr = (void *)minor_arena; 9359 qprocson(q); 9360 return (0); 9361 } 9362 9363 issocket = flag & SO_SOCKSTR; 9364 connp = tcp_create_common(q, credp, isv6, issocket, &err); 9365 9366 if (connp == NULL) { 9367 inet_minor_free(minor_arena, conn_dev); 9368 q->q_ptr = WR(q)->q_ptr = NULL; 9369 return (err); 9370 } 9371 9372 q->q_ptr = WR(q)->q_ptr = connp; 9373 9374 connp->conn_dev = conn_dev; 9375 connp->conn_minor_arena = minor_arena; 9376 9377 ASSERT(q->q_qinfo == &tcp_rinitv4 || q->q_qinfo == &tcp_rinitv6); 9378 ASSERT(WR(q)->q_qinfo == &tcp_winit); 9379 9380 if (issocket) { 9381 WR(q)->q_qinfo = &tcp_sock_winit; 9382 } else { 9383 tcp = connp->conn_tcp; 9384 #ifdef _ILP32 9385 tcp->tcp_acceptor_id = (t_uscalar_t)RD(q); 9386 #else 9387 tcp->tcp_acceptor_id = conn_dev; 9388 #endif /* _ILP32 */ 9389 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 9390 } 9391 9392 /* 9393 * Put the ref for TCP. Ref for IP was already put 9394 * by ipcl_conn_create. Also Make the conn_t globally 9395 * visible to walkers 9396 */ 9397 mutex_enter(&connp->conn_lock); 9398 CONN_INC_REF_LOCKED(connp); 9399 ASSERT(connp->conn_ref == 2); 9400 connp->conn_state_flags &= ~CONN_INCIPIENT; 9401 mutex_exit(&connp->conn_lock); 9402 9403 qprocson(q); 9404 return (0); 9405 } 9406 9407 /* 9408 * Some TCP options can be "set" by requesting them in the option 9409 * buffer. This is needed for XTI feature test though we do not 9410 * allow it in general. We interpret that this mechanism is more 9411 * applicable to OSI protocols and need not be allowed in general. 9412 * This routine filters out options for which it is not allowed (most) 9413 * and lets through those (few) for which it is. [ The XTI interface 9414 * test suite specifics will imply that any XTI_GENERIC level XTI_* if 9415 * ever implemented will have to be allowed here ]. 9416 */ 9417 static boolean_t 9418 tcp_allow_connopt_set(int level, int name) 9419 { 9420 9421 switch (level) { 9422 case IPPROTO_TCP: 9423 switch (name) { 9424 case TCP_NODELAY: 9425 return (B_TRUE); 9426 default: 9427 return (B_FALSE); 9428 } 9429 /*NOTREACHED*/ 9430 default: 9431 return (B_FALSE); 9432 } 9433 /*NOTREACHED*/ 9434 } 9435 9436 /* 9437 * this routine gets default values of certain options whose default 9438 * values are maintained by protocol specific code 9439 */ 9440 /* ARGSUSED */ 9441 int 9442 tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 9443 { 9444 int32_t *i1 = (int32_t *)ptr; 9445 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 9446 9447 switch (level) { 9448 case IPPROTO_TCP: 9449 switch (name) { 9450 case TCP_NOTIFY_THRESHOLD: 9451 *i1 = tcps->tcps_ip_notify_interval; 9452 break; 9453 case TCP_ABORT_THRESHOLD: 9454 *i1 = tcps->tcps_ip_abort_interval; 9455 break; 9456 case TCP_CONN_NOTIFY_THRESHOLD: 9457 *i1 = tcps->tcps_ip_notify_cinterval; 9458 break; 9459 case TCP_CONN_ABORT_THRESHOLD: 9460 *i1 = tcps->tcps_ip_abort_cinterval; 9461 break; 9462 default: 9463 return (-1); 9464 } 9465 break; 9466 case IPPROTO_IP: 9467 switch (name) { 9468 case IP_TTL: 9469 *i1 = tcps->tcps_ipv4_ttl; 9470 break; 9471 default: 9472 return (-1); 9473 } 9474 break; 9475 case IPPROTO_IPV6: 9476 switch (name) { 9477 case IPV6_UNICAST_HOPS: 9478 *i1 = tcps->tcps_ipv6_hoplimit; 9479 break; 9480 default: 9481 return (-1); 9482 } 9483 break; 9484 default: 9485 return (-1); 9486 } 9487 return (sizeof (int)); 9488 } 9489 9490 static int 9491 tcp_opt_get(conn_t *connp, int level, int name, uchar_t *ptr) 9492 { 9493 int *i1 = (int *)ptr; 9494 tcp_t *tcp = connp->conn_tcp; 9495 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 9496 9497 switch (level) { 9498 case SOL_SOCKET: 9499 switch (name) { 9500 case SO_LINGER: { 9501 struct linger *lgr = (struct linger *)ptr; 9502 9503 lgr->l_onoff = tcp->tcp_linger ? SO_LINGER : 0; 9504 lgr->l_linger = tcp->tcp_lingertime; 9505 } 9506 return (sizeof (struct linger)); 9507 case SO_DEBUG: 9508 *i1 = tcp->tcp_debug ? SO_DEBUG : 0; 9509 break; 9510 case SO_KEEPALIVE: 9511 *i1 = tcp->tcp_ka_enabled ? SO_KEEPALIVE : 0; 9512 break; 9513 case SO_DONTROUTE: 9514 *i1 = tcp->tcp_dontroute ? SO_DONTROUTE : 0; 9515 break; 9516 case SO_USELOOPBACK: 9517 *i1 = tcp->tcp_useloopback ? SO_USELOOPBACK : 0; 9518 break; 9519 case SO_BROADCAST: 9520 *i1 = tcp->tcp_broadcast ? SO_BROADCAST : 0; 9521 break; 9522 case SO_REUSEADDR: 9523 *i1 = tcp->tcp_reuseaddr ? SO_REUSEADDR : 0; 9524 break; 9525 case SO_OOBINLINE: 9526 *i1 = tcp->tcp_oobinline ? SO_OOBINLINE : 0; 9527 break; 9528 case SO_DGRAM_ERRIND: 9529 *i1 = tcp->tcp_dgram_errind ? SO_DGRAM_ERRIND : 0; 9530 break; 9531 case SO_TYPE: 9532 *i1 = SOCK_STREAM; 9533 break; 9534 case SO_SNDBUF: 9535 *i1 = tcp->tcp_xmit_hiwater; 9536 break; 9537 case SO_RCVBUF: 9538 *i1 = tcp->tcp_recv_hiwater; 9539 break; 9540 case SO_SND_COPYAVOID: 9541 *i1 = tcp->tcp_snd_zcopy_on ? 9542 SO_SND_COPYAVOID : 0; 9543 break; 9544 case SO_ALLZONES: 9545 *i1 = connp->conn_allzones ? 1 : 0; 9546 break; 9547 case SO_ANON_MLP: 9548 *i1 = connp->conn_anon_mlp; 9549 break; 9550 case SO_MAC_EXEMPT: 9551 *i1 = connp->conn_mac_exempt; 9552 break; 9553 case SO_EXCLBIND: 9554 *i1 = tcp->tcp_exclbind ? SO_EXCLBIND : 0; 9555 break; 9556 case SO_PROTOTYPE: 9557 *i1 = IPPROTO_TCP; 9558 break; 9559 case SO_DOMAIN: 9560 *i1 = tcp->tcp_family; 9561 break; 9562 case SO_ACCEPTCONN: 9563 *i1 = (tcp->tcp_state == TCPS_LISTEN); 9564 default: 9565 return (-1); 9566 } 9567 break; 9568 case IPPROTO_TCP: 9569 switch (name) { 9570 case TCP_NODELAY: 9571 *i1 = (tcp->tcp_naglim == 1) ? TCP_NODELAY : 0; 9572 break; 9573 case TCP_MAXSEG: 9574 *i1 = tcp->tcp_mss; 9575 break; 9576 case TCP_NOTIFY_THRESHOLD: 9577 *i1 = (int)tcp->tcp_first_timer_threshold; 9578 break; 9579 case TCP_ABORT_THRESHOLD: 9580 *i1 = tcp->tcp_second_timer_threshold; 9581 break; 9582 case TCP_CONN_NOTIFY_THRESHOLD: 9583 *i1 = tcp->tcp_first_ctimer_threshold; 9584 break; 9585 case TCP_CONN_ABORT_THRESHOLD: 9586 *i1 = tcp->tcp_second_ctimer_threshold; 9587 break; 9588 case TCP_RECVDSTADDR: 9589 *i1 = tcp->tcp_recvdstaddr; 9590 break; 9591 case TCP_ANONPRIVBIND: 9592 *i1 = tcp->tcp_anon_priv_bind; 9593 break; 9594 case TCP_EXCLBIND: 9595 *i1 = tcp->tcp_exclbind ? TCP_EXCLBIND : 0; 9596 break; 9597 case TCP_INIT_CWND: 9598 *i1 = tcp->tcp_init_cwnd; 9599 break; 9600 case TCP_KEEPALIVE_THRESHOLD: 9601 *i1 = tcp->tcp_ka_interval; 9602 break; 9603 case TCP_KEEPALIVE_ABORT_THRESHOLD: 9604 *i1 = tcp->tcp_ka_abort_thres; 9605 break; 9606 case TCP_CORK: 9607 *i1 = tcp->tcp_cork; 9608 break; 9609 default: 9610 return (-1); 9611 } 9612 break; 9613 case IPPROTO_IP: 9614 if (tcp->tcp_family != AF_INET) 9615 return (-1); 9616 switch (name) { 9617 case IP_OPTIONS: 9618 case T_IP_OPTIONS: { 9619 /* 9620 * This is compatible with BSD in that in only return 9621 * the reverse source route with the final destination 9622 * as the last entry. The first 4 bytes of the option 9623 * will contain the final destination. 9624 */ 9625 int opt_len; 9626 9627 opt_len = (char *)tcp->tcp_tcph - (char *)tcp->tcp_ipha; 9628 opt_len -= tcp->tcp_label_len + IP_SIMPLE_HDR_LENGTH; 9629 ASSERT(opt_len >= 0); 9630 /* Caller ensures enough space */ 9631 if (opt_len > 0) { 9632 /* 9633 * TODO: Do we have to handle getsockopt on an 9634 * initiator as well? 9635 */ 9636 return (ip_opt_get_user(tcp->tcp_ipha, ptr)); 9637 } 9638 return (0); 9639 } 9640 case IP_TOS: 9641 case T_IP_TOS: 9642 *i1 = (int)tcp->tcp_ipha->ipha_type_of_service; 9643 break; 9644 case IP_TTL: 9645 *i1 = (int)tcp->tcp_ipha->ipha_ttl; 9646 break; 9647 case IP_NEXTHOP: 9648 /* Handled at IP level */ 9649 return (-EINVAL); 9650 default: 9651 return (-1); 9652 } 9653 break; 9654 case IPPROTO_IPV6: 9655 /* 9656 * IPPROTO_IPV6 options are only supported for sockets 9657 * that are using IPv6 on the wire. 9658 */ 9659 if (tcp->tcp_ipversion != IPV6_VERSION) { 9660 return (-1); 9661 } 9662 switch (name) { 9663 case IPV6_UNICAST_HOPS: 9664 *i1 = (unsigned int) tcp->tcp_ip6h->ip6_hops; 9665 break; /* goto sizeof (int) option return */ 9666 case IPV6_BOUND_IF: 9667 /* Zero if not set */ 9668 *i1 = tcp->tcp_bound_if; 9669 break; /* goto sizeof (int) option return */ 9670 case IPV6_RECVPKTINFO: 9671 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) 9672 *i1 = 1; 9673 else 9674 *i1 = 0; 9675 break; /* goto sizeof (int) option return */ 9676 case IPV6_RECVTCLASS: 9677 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS) 9678 *i1 = 1; 9679 else 9680 *i1 = 0; 9681 break; /* goto sizeof (int) option return */ 9682 case IPV6_RECVHOPLIMIT: 9683 if (tcp->tcp_ipv6_recvancillary & 9684 TCP_IPV6_RECVHOPLIMIT) 9685 *i1 = 1; 9686 else 9687 *i1 = 0; 9688 break; /* goto sizeof (int) option return */ 9689 case IPV6_RECVHOPOPTS: 9690 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) 9691 *i1 = 1; 9692 else 9693 *i1 = 0; 9694 break; /* goto sizeof (int) option return */ 9695 case IPV6_RECVDSTOPTS: 9696 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVDSTOPTS) 9697 *i1 = 1; 9698 else 9699 *i1 = 0; 9700 break; /* goto sizeof (int) option return */ 9701 case _OLD_IPV6_RECVDSTOPTS: 9702 if (tcp->tcp_ipv6_recvancillary & 9703 TCP_OLD_IPV6_RECVDSTOPTS) 9704 *i1 = 1; 9705 else 9706 *i1 = 0; 9707 break; /* goto sizeof (int) option return */ 9708 case IPV6_RECVRTHDR: 9709 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) 9710 *i1 = 1; 9711 else 9712 *i1 = 0; 9713 break; /* goto sizeof (int) option return */ 9714 case IPV6_RECVRTHDRDSTOPTS: 9715 if (tcp->tcp_ipv6_recvancillary & 9716 TCP_IPV6_RECVRTDSTOPTS) 9717 *i1 = 1; 9718 else 9719 *i1 = 0; 9720 break; /* goto sizeof (int) option return */ 9721 case IPV6_PKTINFO: { 9722 /* XXX assumes that caller has room for max size! */ 9723 struct in6_pktinfo *pkti; 9724 9725 pkti = (struct in6_pktinfo *)ptr; 9726 if (ipp->ipp_fields & IPPF_IFINDEX) 9727 pkti->ipi6_ifindex = ipp->ipp_ifindex; 9728 else 9729 pkti->ipi6_ifindex = 0; 9730 if (ipp->ipp_fields & IPPF_ADDR) 9731 pkti->ipi6_addr = ipp->ipp_addr; 9732 else 9733 pkti->ipi6_addr = ipv6_all_zeros; 9734 return (sizeof (struct in6_pktinfo)); 9735 } 9736 case IPV6_TCLASS: 9737 if (ipp->ipp_fields & IPPF_TCLASS) 9738 *i1 = ipp->ipp_tclass; 9739 else 9740 *i1 = IPV6_FLOW_TCLASS( 9741 IPV6_DEFAULT_VERS_AND_FLOW); 9742 break; /* goto sizeof (int) option return */ 9743 case IPV6_NEXTHOP: { 9744 sin6_t *sin6 = (sin6_t *)ptr; 9745 9746 if (!(ipp->ipp_fields & IPPF_NEXTHOP)) 9747 return (0); 9748 *sin6 = sin6_null; 9749 sin6->sin6_family = AF_INET6; 9750 sin6->sin6_addr = ipp->ipp_nexthop; 9751 return (sizeof (sin6_t)); 9752 } 9753 case IPV6_HOPOPTS: 9754 if (!(ipp->ipp_fields & IPPF_HOPOPTS)) 9755 return (0); 9756 if (ipp->ipp_hopoptslen <= tcp->tcp_label_len) 9757 return (0); 9758 bcopy((char *)ipp->ipp_hopopts + tcp->tcp_label_len, 9759 ptr, ipp->ipp_hopoptslen - tcp->tcp_label_len); 9760 if (tcp->tcp_label_len > 0) { 9761 ptr[0] = ((char *)ipp->ipp_hopopts)[0]; 9762 ptr[1] = (ipp->ipp_hopoptslen - 9763 tcp->tcp_label_len + 7) / 8 - 1; 9764 } 9765 return (ipp->ipp_hopoptslen - tcp->tcp_label_len); 9766 case IPV6_RTHDRDSTOPTS: 9767 if (!(ipp->ipp_fields & IPPF_RTDSTOPTS)) 9768 return (0); 9769 bcopy(ipp->ipp_rtdstopts, ptr, ipp->ipp_rtdstoptslen); 9770 return (ipp->ipp_rtdstoptslen); 9771 case IPV6_RTHDR: 9772 if (!(ipp->ipp_fields & IPPF_RTHDR)) 9773 return (0); 9774 bcopy(ipp->ipp_rthdr, ptr, ipp->ipp_rthdrlen); 9775 return (ipp->ipp_rthdrlen); 9776 case IPV6_DSTOPTS: 9777 if (!(ipp->ipp_fields & IPPF_DSTOPTS)) 9778 return (0); 9779 bcopy(ipp->ipp_dstopts, ptr, ipp->ipp_dstoptslen); 9780 return (ipp->ipp_dstoptslen); 9781 case IPV6_SRC_PREFERENCES: 9782 return (ip6_get_src_preferences(connp, 9783 (uint32_t *)ptr)); 9784 case IPV6_PATHMTU: { 9785 struct ip6_mtuinfo *mtuinfo = (struct ip6_mtuinfo *)ptr; 9786 9787 if (tcp->tcp_state < TCPS_ESTABLISHED) 9788 return (-1); 9789 9790 return (ip_fill_mtuinfo(&connp->conn_remv6, 9791 connp->conn_fport, mtuinfo, 9792 connp->conn_netstack)); 9793 } 9794 default: 9795 return (-1); 9796 } 9797 break; 9798 default: 9799 return (-1); 9800 } 9801 return (sizeof (int)); 9802 } 9803 9804 /* 9805 * TCP routine to get the values of options. 9806 */ 9807 int 9808 tcp_tpi_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 9809 { 9810 return (tcp_opt_get(Q_TO_CONN(q), level, name, ptr)); 9811 } 9812 9813 /* returns UNIX error, the optlen is a value-result arg */ 9814 int 9815 tcp_getsockopt(sock_lower_handle_t proto_handle, int level, int option_name, 9816 void *optvalp, socklen_t *optlen, cred_t *cr) 9817 { 9818 conn_t *connp = (conn_t *)proto_handle; 9819 squeue_t *sqp = connp->conn_sqp; 9820 int error; 9821 t_uscalar_t max_optbuf_len; 9822 void *optvalp_buf; 9823 int len; 9824 9825 ASSERT(connp->conn_upper_handle != NULL); 9826 9827 error = proto_opt_check(level, option_name, *optlen, &max_optbuf_len, 9828 tcp_opt_obj.odb_opt_des_arr, 9829 tcp_opt_obj.odb_opt_arr_cnt, 9830 tcp_opt_obj.odb_topmost_tpiprovider, 9831 B_FALSE, B_TRUE, cr); 9832 if (error != 0) { 9833 if (error < 0) { 9834 error = proto_tlitosyserr(-error); 9835 } 9836 return (error); 9837 } 9838 9839 optvalp_buf = kmem_alloc(max_optbuf_len, KM_SLEEP); 9840 9841 error = squeue_synch_enter(sqp, connp, 0); 9842 if (error == ENOMEM) { 9843 return (ENOMEM); 9844 } 9845 9846 len = tcp_opt_get(connp, level, option_name, optvalp_buf); 9847 squeue_synch_exit(sqp, connp); 9848 9849 if (len < 0) { 9850 /* 9851 * Pass on to IP 9852 */ 9853 kmem_free(optvalp_buf, max_optbuf_len); 9854 return (ip_get_options(connp, level, option_name, 9855 optvalp, optlen, cr)); 9856 } else { 9857 /* 9858 * update optlen and copy option value 9859 */ 9860 t_uscalar_t size = MIN(len, *optlen); 9861 bcopy(optvalp_buf, optvalp, size); 9862 bcopy(&size, optlen, sizeof (size)); 9863 9864 kmem_free(optvalp_buf, max_optbuf_len); 9865 return (0); 9866 } 9867 } 9868 9869 /* 9870 * We declare as 'int' rather than 'void' to satisfy pfi_t arg requirements. 9871 * Parameters are assumed to be verified by the caller. 9872 */ 9873 /* ARGSUSED */ 9874 int 9875 tcp_opt_set(conn_t *connp, uint_t optset_context, int level, int name, 9876 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 9877 void *thisdg_attrs, cred_t *cr, mblk_t *mblk) 9878 { 9879 tcp_t *tcp = connp->conn_tcp; 9880 int *i1 = (int *)invalp; 9881 boolean_t onoff = (*i1 == 0) ? 0 : 1; 9882 boolean_t checkonly; 9883 int reterr; 9884 tcp_stack_t *tcps = tcp->tcp_tcps; 9885 9886 switch (optset_context) { 9887 case SETFN_OPTCOM_CHECKONLY: 9888 checkonly = B_TRUE; 9889 /* 9890 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 9891 * inlen != 0 implies value supplied and 9892 * we have to "pretend" to set it. 9893 * inlen == 0 implies that there is no 9894 * value part in T_CHECK request and just validation 9895 * done elsewhere should be enough, we just return here. 9896 */ 9897 if (inlen == 0) { 9898 *outlenp = 0; 9899 return (0); 9900 } 9901 break; 9902 case SETFN_OPTCOM_NEGOTIATE: 9903 checkonly = B_FALSE; 9904 break; 9905 case SETFN_UD_NEGOTIATE: /* error on conn-oriented transports ? */ 9906 case SETFN_CONN_NEGOTIATE: 9907 checkonly = B_FALSE; 9908 /* 9909 * Negotiating local and "association-related" options 9910 * from other (T_CONN_REQ, T_CONN_RES,T_UNITDATA_REQ) 9911 * primitives is allowed by XTI, but we choose 9912 * to not implement this style negotiation for Internet 9913 * protocols (We interpret it is a must for OSI world but 9914 * optional for Internet protocols) for all options. 9915 * [ Will do only for the few options that enable test 9916 * suites that our XTI implementation of this feature 9917 * works for transports that do allow it ] 9918 */ 9919 if (!tcp_allow_connopt_set(level, name)) { 9920 *outlenp = 0; 9921 return (EINVAL); 9922 } 9923 break; 9924 default: 9925 /* 9926 * We should never get here 9927 */ 9928 *outlenp = 0; 9929 return (EINVAL); 9930 } 9931 9932 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 9933 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 9934 9935 /* 9936 * For TCP, we should have no ancillary data sent down 9937 * (sendmsg isn't supported for SOCK_STREAM), so thisdg_attrs 9938 * has to be zero. 9939 */ 9940 ASSERT(thisdg_attrs == NULL); 9941 9942 /* 9943 * For fixed length options, no sanity check 9944 * of passed in length is done. It is assumed *_optcom_req() 9945 * routines do the right thing. 9946 */ 9947 switch (level) { 9948 case SOL_SOCKET: 9949 switch (name) { 9950 case SO_LINGER: { 9951 struct linger *lgr = (struct linger *)invalp; 9952 9953 if (!checkonly) { 9954 if (lgr->l_onoff) { 9955 tcp->tcp_linger = 1; 9956 tcp->tcp_lingertime = lgr->l_linger; 9957 } else { 9958 tcp->tcp_linger = 0; 9959 tcp->tcp_lingertime = 0; 9960 } 9961 /* struct copy */ 9962 *(struct linger *)outvalp = *lgr; 9963 } else { 9964 if (!lgr->l_onoff) { 9965 ((struct linger *) 9966 outvalp)->l_onoff = 0; 9967 ((struct linger *) 9968 outvalp)->l_linger = 0; 9969 } else { 9970 /* struct copy */ 9971 *(struct linger *)outvalp = *lgr; 9972 } 9973 } 9974 *outlenp = sizeof (struct linger); 9975 return (0); 9976 } 9977 case SO_DEBUG: 9978 if (!checkonly) 9979 tcp->tcp_debug = onoff; 9980 break; 9981 case SO_KEEPALIVE: 9982 if (checkonly) { 9983 /* check only case */ 9984 break; 9985 } 9986 9987 if (!onoff) { 9988 if (tcp->tcp_ka_enabled) { 9989 if (tcp->tcp_ka_tid != 0) { 9990 (void) TCP_TIMER_CANCEL(tcp, 9991 tcp->tcp_ka_tid); 9992 tcp->tcp_ka_tid = 0; 9993 } 9994 tcp->tcp_ka_enabled = 0; 9995 } 9996 break; 9997 } 9998 if (!tcp->tcp_ka_enabled) { 9999 /* Crank up the keepalive timer */ 10000 tcp->tcp_ka_last_intrvl = 0; 10001 tcp->tcp_ka_tid = TCP_TIMER(tcp, 10002 tcp_keepalive_killer, 10003 MSEC_TO_TICK(tcp->tcp_ka_interval)); 10004 tcp->tcp_ka_enabled = 1; 10005 } 10006 break; 10007 case SO_DONTROUTE: 10008 /* 10009 * SO_DONTROUTE, SO_USELOOPBACK, and SO_BROADCAST are 10010 * only of interest to IP. We track them here only so 10011 * that we can report their current value. 10012 */ 10013 if (!checkonly) { 10014 tcp->tcp_dontroute = onoff; 10015 tcp->tcp_connp->conn_dontroute = onoff; 10016 } 10017 break; 10018 case SO_USELOOPBACK: 10019 if (!checkonly) { 10020 tcp->tcp_useloopback = onoff; 10021 tcp->tcp_connp->conn_loopback = onoff; 10022 } 10023 break; 10024 case SO_BROADCAST: 10025 if (!checkonly) { 10026 tcp->tcp_broadcast = onoff; 10027 tcp->tcp_connp->conn_broadcast = onoff; 10028 } 10029 break; 10030 case SO_REUSEADDR: 10031 if (!checkonly) { 10032 tcp->tcp_reuseaddr = onoff; 10033 tcp->tcp_connp->conn_reuseaddr = onoff; 10034 } 10035 break; 10036 case SO_OOBINLINE: 10037 if (!checkonly) { 10038 tcp->tcp_oobinline = onoff; 10039 if (IPCL_IS_NONSTR(tcp->tcp_connp)) 10040 proto_set_rx_oob_opt(connp, onoff); 10041 } 10042 break; 10043 case SO_DGRAM_ERRIND: 10044 if (!checkonly) 10045 tcp->tcp_dgram_errind = onoff; 10046 break; 10047 case SO_SNDBUF: { 10048 if (*i1 > tcps->tcps_max_buf) { 10049 *outlenp = 0; 10050 return (ENOBUFS); 10051 } 10052 if (checkonly) 10053 break; 10054 10055 tcp->tcp_xmit_hiwater = *i1; 10056 if (tcps->tcps_snd_lowat_fraction != 0) 10057 tcp->tcp_xmit_lowater = 10058 tcp->tcp_xmit_hiwater / 10059 tcps->tcps_snd_lowat_fraction; 10060 (void) tcp_maxpsz_set(tcp, B_TRUE); 10061 /* 10062 * If we are flow-controlled, recheck the condition. 10063 * There are apps that increase SO_SNDBUF size when 10064 * flow-controlled (EWOULDBLOCK), and expect the flow 10065 * control condition to be lifted right away. 10066 */ 10067 mutex_enter(&tcp->tcp_non_sq_lock); 10068 if (tcp->tcp_flow_stopped && 10069 TCP_UNSENT_BYTES(tcp) < tcp->tcp_xmit_hiwater) { 10070 tcp_clrqfull(tcp); 10071 } 10072 mutex_exit(&tcp->tcp_non_sq_lock); 10073 break; 10074 } 10075 case SO_RCVBUF: 10076 if (*i1 > tcps->tcps_max_buf) { 10077 *outlenp = 0; 10078 return (ENOBUFS); 10079 } 10080 /* Silently ignore zero */ 10081 if (!checkonly && *i1 != 0) { 10082 *i1 = MSS_ROUNDUP(*i1, tcp->tcp_mss); 10083 (void) tcp_rwnd_set(tcp, *i1); 10084 } 10085 /* 10086 * XXX should we return the rwnd here 10087 * and tcp_opt_get ? 10088 */ 10089 break; 10090 case SO_SND_COPYAVOID: 10091 if (!checkonly) { 10092 /* we only allow enable at most once for now */ 10093 if (tcp->tcp_loopback || 10094 (tcp->tcp_kssl_ctx != NULL) || 10095 (!tcp->tcp_snd_zcopy_aware && 10096 (onoff != 1 || !tcp_zcopy_check(tcp)))) { 10097 *outlenp = 0; 10098 return (EOPNOTSUPP); 10099 } 10100 tcp->tcp_snd_zcopy_aware = 1; 10101 } 10102 break; 10103 case SO_RCVTIMEO: 10104 case SO_SNDTIMEO: 10105 /* 10106 * Pass these two options in order for third part 10107 * protocol usage. Here just return directly. 10108 */ 10109 return (0); 10110 case SO_ALLZONES: 10111 /* Pass option along to IP level for handling */ 10112 return (-EINVAL); 10113 case SO_ANON_MLP: 10114 /* Pass option along to IP level for handling */ 10115 return (-EINVAL); 10116 case SO_MAC_EXEMPT: 10117 /* Pass option along to IP level for handling */ 10118 return (-EINVAL); 10119 case SO_EXCLBIND: 10120 if (!checkonly) 10121 tcp->tcp_exclbind = onoff; 10122 break; 10123 default: 10124 *outlenp = 0; 10125 return (EINVAL); 10126 } 10127 break; 10128 case IPPROTO_TCP: 10129 switch (name) { 10130 case TCP_NODELAY: 10131 if (!checkonly) 10132 tcp->tcp_naglim = *i1 ? 1 : tcp->tcp_mss; 10133 break; 10134 case TCP_NOTIFY_THRESHOLD: 10135 if (!checkonly) 10136 tcp->tcp_first_timer_threshold = *i1; 10137 break; 10138 case TCP_ABORT_THRESHOLD: 10139 if (!checkonly) 10140 tcp->tcp_second_timer_threshold = *i1; 10141 break; 10142 case TCP_CONN_NOTIFY_THRESHOLD: 10143 if (!checkonly) 10144 tcp->tcp_first_ctimer_threshold = *i1; 10145 break; 10146 case TCP_CONN_ABORT_THRESHOLD: 10147 if (!checkonly) 10148 tcp->tcp_second_ctimer_threshold = *i1; 10149 break; 10150 case TCP_RECVDSTADDR: 10151 if (tcp->tcp_state > TCPS_LISTEN) 10152 return (EOPNOTSUPP); 10153 if (!checkonly) 10154 tcp->tcp_recvdstaddr = onoff; 10155 break; 10156 case TCP_ANONPRIVBIND: 10157 if ((reterr = secpolicy_net_privaddr(cr, 0, 10158 IPPROTO_TCP)) != 0) { 10159 *outlenp = 0; 10160 return (reterr); 10161 } 10162 if (!checkonly) { 10163 tcp->tcp_anon_priv_bind = onoff; 10164 } 10165 break; 10166 case TCP_EXCLBIND: 10167 if (!checkonly) 10168 tcp->tcp_exclbind = onoff; 10169 break; /* goto sizeof (int) option return */ 10170 case TCP_INIT_CWND: { 10171 uint32_t init_cwnd = *((uint32_t *)invalp); 10172 10173 if (checkonly) 10174 break; 10175 10176 /* 10177 * Only allow socket with network configuration 10178 * privilege to set the initial cwnd to be larger 10179 * than allowed by RFC 3390. 10180 */ 10181 if (init_cwnd <= MIN(4, MAX(2, 4380 / tcp->tcp_mss))) { 10182 tcp->tcp_init_cwnd = init_cwnd; 10183 break; 10184 } 10185 if ((reterr = secpolicy_ip_config(cr, B_TRUE)) != 0) { 10186 *outlenp = 0; 10187 return (reterr); 10188 } 10189 if (init_cwnd > TCP_MAX_INIT_CWND) { 10190 *outlenp = 0; 10191 return (EINVAL); 10192 } 10193 tcp->tcp_init_cwnd = init_cwnd; 10194 break; 10195 } 10196 case TCP_KEEPALIVE_THRESHOLD: 10197 if (checkonly) 10198 break; 10199 10200 if (*i1 < tcps->tcps_keepalive_interval_low || 10201 *i1 > tcps->tcps_keepalive_interval_high) { 10202 *outlenp = 0; 10203 return (EINVAL); 10204 } 10205 if (*i1 != tcp->tcp_ka_interval) { 10206 tcp->tcp_ka_interval = *i1; 10207 /* 10208 * Check if we need to restart the 10209 * keepalive timer. 10210 */ 10211 if (tcp->tcp_ka_tid != 0) { 10212 ASSERT(tcp->tcp_ka_enabled); 10213 (void) TCP_TIMER_CANCEL(tcp, 10214 tcp->tcp_ka_tid); 10215 tcp->tcp_ka_last_intrvl = 0; 10216 tcp->tcp_ka_tid = TCP_TIMER(tcp, 10217 tcp_keepalive_killer, 10218 MSEC_TO_TICK(tcp->tcp_ka_interval)); 10219 } 10220 } 10221 break; 10222 case TCP_KEEPALIVE_ABORT_THRESHOLD: 10223 if (!checkonly) { 10224 if (*i1 < 10225 tcps->tcps_keepalive_abort_interval_low || 10226 *i1 > 10227 tcps->tcps_keepalive_abort_interval_high) { 10228 *outlenp = 0; 10229 return (EINVAL); 10230 } 10231 tcp->tcp_ka_abort_thres = *i1; 10232 } 10233 break; 10234 case TCP_CORK: 10235 if (!checkonly) { 10236 /* 10237 * if tcp->tcp_cork was set and is now 10238 * being unset, we have to make sure that 10239 * the remaining data gets sent out. Also 10240 * unset tcp->tcp_cork so that tcp_wput_data() 10241 * can send data even if it is less than mss 10242 */ 10243 if (tcp->tcp_cork && onoff == 0 && 10244 tcp->tcp_unsent > 0) { 10245 tcp->tcp_cork = B_FALSE; 10246 tcp_wput_data(tcp, NULL, B_FALSE); 10247 } 10248 tcp->tcp_cork = onoff; 10249 } 10250 break; 10251 default: 10252 *outlenp = 0; 10253 return (EINVAL); 10254 } 10255 break; 10256 case IPPROTO_IP: 10257 if (tcp->tcp_family != AF_INET) { 10258 *outlenp = 0; 10259 return (ENOPROTOOPT); 10260 } 10261 switch (name) { 10262 case IP_OPTIONS: 10263 case T_IP_OPTIONS: 10264 reterr = tcp_opt_set_header(tcp, checkonly, 10265 invalp, inlen); 10266 if (reterr) { 10267 *outlenp = 0; 10268 return (reterr); 10269 } 10270 /* OK return - copy input buffer into output buffer */ 10271 if (invalp != outvalp) { 10272 /* don't trust bcopy for identical src/dst */ 10273 bcopy(invalp, outvalp, inlen); 10274 } 10275 *outlenp = inlen; 10276 return (0); 10277 case IP_TOS: 10278 case T_IP_TOS: 10279 if (!checkonly) { 10280 tcp->tcp_ipha->ipha_type_of_service = 10281 (uchar_t)*i1; 10282 tcp->tcp_tos = (uchar_t)*i1; 10283 } 10284 break; 10285 case IP_TTL: 10286 if (!checkonly) { 10287 tcp->tcp_ipha->ipha_ttl = (uchar_t)*i1; 10288 tcp->tcp_ttl = (uchar_t)*i1; 10289 } 10290 break; 10291 case IP_BOUND_IF: 10292 case IP_NEXTHOP: 10293 /* Handled at the IP level */ 10294 return (-EINVAL); 10295 case IP_SEC_OPT: 10296 /* 10297 * We should not allow policy setting after 10298 * we start listening for connections. 10299 */ 10300 if (tcp->tcp_state == TCPS_LISTEN) { 10301 return (EINVAL); 10302 } else { 10303 /* Handled at the IP level */ 10304 return (-EINVAL); 10305 } 10306 default: 10307 *outlenp = 0; 10308 return (EINVAL); 10309 } 10310 break; 10311 case IPPROTO_IPV6: { 10312 ip6_pkt_t *ipp; 10313 10314 /* 10315 * IPPROTO_IPV6 options are only supported for sockets 10316 * that are using IPv6 on the wire. 10317 */ 10318 if (tcp->tcp_ipversion != IPV6_VERSION) { 10319 *outlenp = 0; 10320 return (ENOPROTOOPT); 10321 } 10322 /* 10323 * Only sticky options; no ancillary data 10324 */ 10325 ipp = &tcp->tcp_sticky_ipp; 10326 10327 switch (name) { 10328 case IPV6_UNICAST_HOPS: 10329 /* -1 means use default */ 10330 if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) { 10331 *outlenp = 0; 10332 return (EINVAL); 10333 } 10334 if (!checkonly) { 10335 if (*i1 == -1) { 10336 tcp->tcp_ip6h->ip6_hops = 10337 ipp->ipp_unicast_hops = 10338 (uint8_t)tcps->tcps_ipv6_hoplimit; 10339 ipp->ipp_fields &= ~IPPF_UNICAST_HOPS; 10340 /* Pass modified value to IP. */ 10341 *i1 = tcp->tcp_ip6h->ip6_hops; 10342 } else { 10343 tcp->tcp_ip6h->ip6_hops = 10344 ipp->ipp_unicast_hops = 10345 (uint8_t)*i1; 10346 ipp->ipp_fields |= IPPF_UNICAST_HOPS; 10347 } 10348 reterr = tcp_build_hdrs(tcp); 10349 if (reterr != 0) 10350 return (reterr); 10351 } 10352 break; 10353 case IPV6_BOUND_IF: 10354 if (!checkonly) { 10355 tcp->tcp_bound_if = *i1; 10356 PASS_OPT_TO_IP(connp); 10357 } 10358 break; 10359 /* 10360 * Set boolean switches for ancillary data delivery 10361 */ 10362 case IPV6_RECVPKTINFO: 10363 if (!checkonly) { 10364 if (onoff) 10365 tcp->tcp_ipv6_recvancillary |= 10366 TCP_IPV6_RECVPKTINFO; 10367 else 10368 tcp->tcp_ipv6_recvancillary &= 10369 ~TCP_IPV6_RECVPKTINFO; 10370 /* Force it to be sent up with the next msg */ 10371 tcp->tcp_recvifindex = 0; 10372 PASS_OPT_TO_IP(connp); 10373 } 10374 break; 10375 case IPV6_RECVTCLASS: 10376 if (!checkonly) { 10377 if (onoff) 10378 tcp->tcp_ipv6_recvancillary |= 10379 TCP_IPV6_RECVTCLASS; 10380 else 10381 tcp->tcp_ipv6_recvancillary &= 10382 ~TCP_IPV6_RECVTCLASS; 10383 PASS_OPT_TO_IP(connp); 10384 } 10385 break; 10386 case IPV6_RECVHOPLIMIT: 10387 if (!checkonly) { 10388 if (onoff) 10389 tcp->tcp_ipv6_recvancillary |= 10390 TCP_IPV6_RECVHOPLIMIT; 10391 else 10392 tcp->tcp_ipv6_recvancillary &= 10393 ~TCP_IPV6_RECVHOPLIMIT; 10394 /* Force it to be sent up with the next msg */ 10395 tcp->tcp_recvhops = 0xffffffffU; 10396 PASS_OPT_TO_IP(connp); 10397 } 10398 break; 10399 case IPV6_RECVHOPOPTS: 10400 if (!checkonly) { 10401 if (onoff) 10402 tcp->tcp_ipv6_recvancillary |= 10403 TCP_IPV6_RECVHOPOPTS; 10404 else 10405 tcp->tcp_ipv6_recvancillary &= 10406 ~TCP_IPV6_RECVHOPOPTS; 10407 PASS_OPT_TO_IP(connp); 10408 } 10409 break; 10410 case IPV6_RECVDSTOPTS: 10411 if (!checkonly) { 10412 if (onoff) 10413 tcp->tcp_ipv6_recvancillary |= 10414 TCP_IPV6_RECVDSTOPTS; 10415 else 10416 tcp->tcp_ipv6_recvancillary &= 10417 ~TCP_IPV6_RECVDSTOPTS; 10418 PASS_OPT_TO_IP(connp); 10419 } 10420 break; 10421 case _OLD_IPV6_RECVDSTOPTS: 10422 if (!checkonly) { 10423 if (onoff) 10424 tcp->tcp_ipv6_recvancillary |= 10425 TCP_OLD_IPV6_RECVDSTOPTS; 10426 else 10427 tcp->tcp_ipv6_recvancillary &= 10428 ~TCP_OLD_IPV6_RECVDSTOPTS; 10429 } 10430 break; 10431 case IPV6_RECVRTHDR: 10432 if (!checkonly) { 10433 if (onoff) 10434 tcp->tcp_ipv6_recvancillary |= 10435 TCP_IPV6_RECVRTHDR; 10436 else 10437 tcp->tcp_ipv6_recvancillary &= 10438 ~TCP_IPV6_RECVRTHDR; 10439 PASS_OPT_TO_IP(connp); 10440 } 10441 break; 10442 case IPV6_RECVRTHDRDSTOPTS: 10443 if (!checkonly) { 10444 if (onoff) 10445 tcp->tcp_ipv6_recvancillary |= 10446 TCP_IPV6_RECVRTDSTOPTS; 10447 else 10448 tcp->tcp_ipv6_recvancillary &= 10449 ~TCP_IPV6_RECVRTDSTOPTS; 10450 PASS_OPT_TO_IP(connp); 10451 } 10452 break; 10453 case IPV6_PKTINFO: 10454 if (inlen != 0 && inlen != sizeof (struct in6_pktinfo)) 10455 return (EINVAL); 10456 if (checkonly) 10457 break; 10458 10459 if (inlen == 0) { 10460 ipp->ipp_fields &= ~(IPPF_IFINDEX|IPPF_ADDR); 10461 } else { 10462 struct in6_pktinfo *pkti; 10463 10464 pkti = (struct in6_pktinfo *)invalp; 10465 /* 10466 * RFC 3542 states that ipi6_addr must be 10467 * the unspecified address when setting the 10468 * IPV6_PKTINFO sticky socket option on a 10469 * TCP socket. 10470 */ 10471 if (!IN6_IS_ADDR_UNSPECIFIED(&pkti->ipi6_addr)) 10472 return (EINVAL); 10473 /* 10474 * IP will validate the source address and 10475 * interface index. 10476 */ 10477 if (IPCL_IS_NONSTR(tcp->tcp_connp)) { 10478 reterr = ip_set_options(tcp->tcp_connp, 10479 level, name, invalp, inlen, cr); 10480 } else { 10481 reterr = ip6_set_pktinfo(cr, 10482 tcp->tcp_connp, pkti); 10483 } 10484 if (reterr != 0) 10485 return (reterr); 10486 ipp->ipp_ifindex = pkti->ipi6_ifindex; 10487 ipp->ipp_addr = pkti->ipi6_addr; 10488 if (ipp->ipp_ifindex != 0) 10489 ipp->ipp_fields |= IPPF_IFINDEX; 10490 else 10491 ipp->ipp_fields &= ~IPPF_IFINDEX; 10492 if (!IN6_IS_ADDR_UNSPECIFIED(&ipp->ipp_addr)) 10493 ipp->ipp_fields |= IPPF_ADDR; 10494 else 10495 ipp->ipp_fields &= ~IPPF_ADDR; 10496 } 10497 reterr = tcp_build_hdrs(tcp); 10498 if (reterr != 0) 10499 return (reterr); 10500 break; 10501 case IPV6_TCLASS: 10502 if (inlen != 0 && inlen != sizeof (int)) 10503 return (EINVAL); 10504 if (checkonly) 10505 break; 10506 10507 if (inlen == 0) { 10508 ipp->ipp_fields &= ~IPPF_TCLASS; 10509 } else { 10510 if (*i1 > 255 || *i1 < -1) 10511 return (EINVAL); 10512 if (*i1 == -1) { 10513 ipp->ipp_tclass = 0; 10514 *i1 = 0; 10515 } else { 10516 ipp->ipp_tclass = *i1; 10517 } 10518 ipp->ipp_fields |= IPPF_TCLASS; 10519 } 10520 reterr = tcp_build_hdrs(tcp); 10521 if (reterr != 0) 10522 return (reterr); 10523 break; 10524 case IPV6_NEXTHOP: 10525 /* 10526 * IP will verify that the nexthop is reachable 10527 * and fail for sticky options. 10528 */ 10529 if (inlen != 0 && inlen != sizeof (sin6_t)) 10530 return (EINVAL); 10531 if (checkonly) 10532 break; 10533 10534 if (inlen == 0) { 10535 ipp->ipp_fields &= ~IPPF_NEXTHOP; 10536 } else { 10537 sin6_t *sin6 = (sin6_t *)invalp; 10538 10539 if (sin6->sin6_family != AF_INET6) 10540 return (EAFNOSUPPORT); 10541 if (IN6_IS_ADDR_V4MAPPED( 10542 &sin6->sin6_addr)) 10543 return (EADDRNOTAVAIL); 10544 ipp->ipp_nexthop = sin6->sin6_addr; 10545 if (!IN6_IS_ADDR_UNSPECIFIED( 10546 &ipp->ipp_nexthop)) 10547 ipp->ipp_fields |= IPPF_NEXTHOP; 10548 else 10549 ipp->ipp_fields &= ~IPPF_NEXTHOP; 10550 } 10551 reterr = tcp_build_hdrs(tcp); 10552 if (reterr != 0) 10553 return (reterr); 10554 PASS_OPT_TO_IP(connp); 10555 break; 10556 case IPV6_HOPOPTS: { 10557 ip6_hbh_t *hopts = (ip6_hbh_t *)invalp; 10558 10559 /* 10560 * Sanity checks - minimum size, size a multiple of 10561 * eight bytes, and matching size passed in. 10562 */ 10563 if (inlen != 0 && 10564 inlen != (8 * (hopts->ip6h_len + 1))) 10565 return (EINVAL); 10566 10567 if (checkonly) 10568 break; 10569 10570 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10571 (uchar_t **)&ipp->ipp_hopopts, 10572 &ipp->ipp_hopoptslen, tcp->tcp_label_len); 10573 if (reterr != 0) 10574 return (reterr); 10575 if (ipp->ipp_hopoptslen == 0) 10576 ipp->ipp_fields &= ~IPPF_HOPOPTS; 10577 else 10578 ipp->ipp_fields |= IPPF_HOPOPTS; 10579 reterr = tcp_build_hdrs(tcp); 10580 if (reterr != 0) 10581 return (reterr); 10582 break; 10583 } 10584 case IPV6_RTHDRDSTOPTS: { 10585 ip6_dest_t *dopts = (ip6_dest_t *)invalp; 10586 10587 /* 10588 * Sanity checks - minimum size, size a multiple of 10589 * eight bytes, and matching size passed in. 10590 */ 10591 if (inlen != 0 && 10592 inlen != (8 * (dopts->ip6d_len + 1))) 10593 return (EINVAL); 10594 10595 if (checkonly) 10596 break; 10597 10598 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10599 (uchar_t **)&ipp->ipp_rtdstopts, 10600 &ipp->ipp_rtdstoptslen, 0); 10601 if (reterr != 0) 10602 return (reterr); 10603 if (ipp->ipp_rtdstoptslen == 0) 10604 ipp->ipp_fields &= ~IPPF_RTDSTOPTS; 10605 else 10606 ipp->ipp_fields |= IPPF_RTDSTOPTS; 10607 reterr = tcp_build_hdrs(tcp); 10608 if (reterr != 0) 10609 return (reterr); 10610 break; 10611 } 10612 case IPV6_DSTOPTS: { 10613 ip6_dest_t *dopts = (ip6_dest_t *)invalp; 10614 10615 /* 10616 * Sanity checks - minimum size, size a multiple of 10617 * eight bytes, and matching size passed in. 10618 */ 10619 if (inlen != 0 && 10620 inlen != (8 * (dopts->ip6d_len + 1))) 10621 return (EINVAL); 10622 10623 if (checkonly) 10624 break; 10625 10626 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10627 (uchar_t **)&ipp->ipp_dstopts, 10628 &ipp->ipp_dstoptslen, 0); 10629 if (reterr != 0) 10630 return (reterr); 10631 if (ipp->ipp_dstoptslen == 0) 10632 ipp->ipp_fields &= ~IPPF_DSTOPTS; 10633 else 10634 ipp->ipp_fields |= IPPF_DSTOPTS; 10635 reterr = tcp_build_hdrs(tcp); 10636 if (reterr != 0) 10637 return (reterr); 10638 break; 10639 } 10640 case IPV6_RTHDR: { 10641 ip6_rthdr_t *rt = (ip6_rthdr_t *)invalp; 10642 10643 /* 10644 * Sanity checks - minimum size, size a multiple of 10645 * eight bytes, and matching size passed in. 10646 */ 10647 if (inlen != 0 && 10648 inlen != (8 * (rt->ip6r_len + 1))) 10649 return (EINVAL); 10650 10651 if (checkonly) 10652 break; 10653 10654 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10655 (uchar_t **)&ipp->ipp_rthdr, 10656 &ipp->ipp_rthdrlen, 0); 10657 if (reterr != 0) 10658 return (reterr); 10659 if (ipp->ipp_rthdrlen == 0) 10660 ipp->ipp_fields &= ~IPPF_RTHDR; 10661 else 10662 ipp->ipp_fields |= IPPF_RTHDR; 10663 reterr = tcp_build_hdrs(tcp); 10664 if (reterr != 0) 10665 return (reterr); 10666 break; 10667 } 10668 case IPV6_V6ONLY: 10669 if (!checkonly) { 10670 tcp->tcp_connp->conn_ipv6_v6only = onoff; 10671 } 10672 break; 10673 case IPV6_USE_MIN_MTU: 10674 if (inlen != sizeof (int)) 10675 return (EINVAL); 10676 10677 if (*i1 < -1 || *i1 > 1) 10678 return (EINVAL); 10679 10680 if (checkonly) 10681 break; 10682 10683 ipp->ipp_fields |= IPPF_USE_MIN_MTU; 10684 ipp->ipp_use_min_mtu = *i1; 10685 break; 10686 case IPV6_SEC_OPT: 10687 /* 10688 * We should not allow policy setting after 10689 * we start listening for connections. 10690 */ 10691 if (tcp->tcp_state == TCPS_LISTEN) { 10692 return (EINVAL); 10693 } else { 10694 /* Handled at the IP level */ 10695 return (-EINVAL); 10696 } 10697 case IPV6_SRC_PREFERENCES: 10698 if (inlen != sizeof (uint32_t)) 10699 return (EINVAL); 10700 reterr = ip6_set_src_preferences(tcp->tcp_connp, 10701 *(uint32_t *)invalp); 10702 if (reterr != 0) { 10703 *outlenp = 0; 10704 return (reterr); 10705 } 10706 break; 10707 default: 10708 *outlenp = 0; 10709 return (EINVAL); 10710 } 10711 break; 10712 } /* end IPPROTO_IPV6 */ 10713 default: 10714 *outlenp = 0; 10715 return (EINVAL); 10716 } 10717 /* 10718 * Common case of OK return with outval same as inval 10719 */ 10720 if (invalp != outvalp) { 10721 /* don't trust bcopy for identical src/dst */ 10722 (void) bcopy(invalp, outvalp, inlen); 10723 } 10724 *outlenp = inlen; 10725 return (0); 10726 } 10727 10728 /* ARGSUSED */ 10729 int 10730 tcp_tpi_opt_set(queue_t *q, uint_t optset_context, int level, int name, 10731 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 10732 void *thisdg_attrs, cred_t *cr, mblk_t *mblk) 10733 { 10734 conn_t *connp = Q_TO_CONN(q); 10735 10736 return (tcp_opt_set(connp, optset_context, level, name, inlen, invalp, 10737 outlenp, outvalp, thisdg_attrs, cr, mblk)); 10738 } 10739 10740 int 10741 tcp_setsockopt(sock_lower_handle_t proto_handle, int level, int option_name, 10742 const void *optvalp, socklen_t optlen, cred_t *cr) 10743 { 10744 conn_t *connp = (conn_t *)proto_handle; 10745 squeue_t *sqp = connp->conn_sqp; 10746 int error; 10747 10748 ASSERT(connp->conn_upper_handle != NULL); 10749 /* 10750 * Entering the squeue synchronously can result in a context switch, 10751 * which can cause a rather sever performance degradation. So we try to 10752 * handle whatever options we can without entering the squeue. 10753 */ 10754 if (level == IPPROTO_TCP) { 10755 switch (option_name) { 10756 case TCP_NODELAY: 10757 if (optlen != sizeof (int32_t)) 10758 return (EINVAL); 10759 mutex_enter(&connp->conn_tcp->tcp_non_sq_lock); 10760 connp->conn_tcp->tcp_naglim = *(int *)optvalp ? 1 : 10761 connp->conn_tcp->tcp_mss; 10762 mutex_exit(&connp->conn_tcp->tcp_non_sq_lock); 10763 return (0); 10764 default: 10765 break; 10766 } 10767 } 10768 10769 error = squeue_synch_enter(sqp, connp, 0); 10770 if (error == ENOMEM) { 10771 return (ENOMEM); 10772 } 10773 10774 error = proto_opt_check(level, option_name, optlen, NULL, 10775 tcp_opt_obj.odb_opt_des_arr, 10776 tcp_opt_obj.odb_opt_arr_cnt, 10777 tcp_opt_obj.odb_topmost_tpiprovider, 10778 B_TRUE, B_FALSE, cr); 10779 10780 if (error != 0) { 10781 if (error < 0) { 10782 error = proto_tlitosyserr(-error); 10783 } 10784 squeue_synch_exit(sqp, connp); 10785 return (error); 10786 } 10787 10788 error = tcp_opt_set(connp, SETFN_OPTCOM_NEGOTIATE, level, option_name, 10789 optlen, (uchar_t *)optvalp, (uint_t *)&optlen, (uchar_t *)optvalp, 10790 NULL, cr, NULL); 10791 squeue_synch_exit(sqp, connp); 10792 10793 if (error < 0) { 10794 /* 10795 * Pass on to ip 10796 */ 10797 error = ip_set_options(connp, level, option_name, optvalp, 10798 optlen, cr); 10799 } 10800 return (error); 10801 } 10802 10803 /* 10804 * Update tcp_sticky_hdrs based on tcp_sticky_ipp. 10805 * The headers include ip6i_t (if needed), ip6_t, any sticky extension 10806 * headers, and the maximum size tcp header (to avoid reallocation 10807 * on the fly for additional tcp options). 10808 * Returns failure if can't allocate memory. 10809 */ 10810 static int 10811 tcp_build_hdrs(tcp_t *tcp) 10812 { 10813 char *hdrs; 10814 uint_t hdrs_len; 10815 ip6i_t *ip6i; 10816 char buf[TCP_MAX_HDR_LENGTH]; 10817 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 10818 in6_addr_t src, dst; 10819 tcp_stack_t *tcps = tcp->tcp_tcps; 10820 conn_t *connp = tcp->tcp_connp; 10821 10822 /* 10823 * save the existing tcp header and source/dest IP addresses 10824 */ 10825 bcopy(tcp->tcp_tcph, buf, tcp->tcp_tcp_hdr_len); 10826 src = tcp->tcp_ip6h->ip6_src; 10827 dst = tcp->tcp_ip6h->ip6_dst; 10828 hdrs_len = ip_total_hdrs_len_v6(ipp) + TCP_MAX_HDR_LENGTH; 10829 ASSERT(hdrs_len != 0); 10830 if (hdrs_len > tcp->tcp_iphc_len) { 10831 /* Need to reallocate */ 10832 hdrs = kmem_zalloc(hdrs_len, KM_NOSLEEP); 10833 if (hdrs == NULL) 10834 return (ENOMEM); 10835 if (tcp->tcp_iphc != NULL) { 10836 if (tcp->tcp_hdr_grown) { 10837 kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len); 10838 } else { 10839 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 10840 kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc); 10841 } 10842 tcp->tcp_iphc_len = 0; 10843 } 10844 ASSERT(tcp->tcp_iphc_len == 0); 10845 tcp->tcp_iphc = hdrs; 10846 tcp->tcp_iphc_len = hdrs_len; 10847 tcp->tcp_hdr_grown = B_TRUE; 10848 } 10849 ip_build_hdrs_v6((uchar_t *)tcp->tcp_iphc, 10850 hdrs_len - TCP_MAX_HDR_LENGTH, ipp, IPPROTO_TCP); 10851 10852 /* Set header fields not in ipp */ 10853 if (ipp->ipp_fields & IPPF_HAS_IP6I) { 10854 ip6i = (ip6i_t *)tcp->tcp_iphc; 10855 tcp->tcp_ip6h = (ip6_t *)&ip6i[1]; 10856 } else { 10857 tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc; 10858 } 10859 /* 10860 * tcp->tcp_ip_hdr_len will include ip6i_t if there is one. 10861 * 10862 * tcp->tcp_tcp_hdr_len doesn't change here. 10863 */ 10864 tcp->tcp_ip_hdr_len = hdrs_len - TCP_MAX_HDR_LENGTH; 10865 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + tcp->tcp_ip_hdr_len); 10866 tcp->tcp_hdr_len = tcp->tcp_ip_hdr_len + tcp->tcp_tcp_hdr_len; 10867 10868 bcopy(buf, tcp->tcp_tcph, tcp->tcp_tcp_hdr_len); 10869 10870 tcp->tcp_ip6h->ip6_src = src; 10871 tcp->tcp_ip6h->ip6_dst = dst; 10872 10873 /* 10874 * If the hop limit was not set by ip_build_hdrs_v6(), set it to 10875 * the default value for TCP. 10876 */ 10877 if (!(ipp->ipp_fields & IPPF_UNICAST_HOPS)) 10878 tcp->tcp_ip6h->ip6_hops = tcps->tcps_ipv6_hoplimit; 10879 10880 /* 10881 * If we're setting extension headers after a connection 10882 * has been established, and if we have a routing header 10883 * among the extension headers, call ip_massage_options_v6 to 10884 * manipulate the routing header/ip6_dst set the checksum 10885 * difference in the tcp header template. 10886 * (This happens in tcp_connect_ipv6 if the routing header 10887 * is set prior to the connect.) 10888 * Set the tcp_sum to zero first in case we've cleared a 10889 * routing header or don't have one at all. 10890 */ 10891 tcp->tcp_sum = 0; 10892 if ((tcp->tcp_state >= TCPS_SYN_SENT) && 10893 (tcp->tcp_ipp_fields & IPPF_RTHDR)) { 10894 ip6_rthdr_t *rth = ip_find_rthdr_v6(tcp->tcp_ip6h, 10895 (uint8_t *)tcp->tcp_tcph); 10896 if (rth != NULL) { 10897 tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, 10898 rth, tcps->tcps_netstack); 10899 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 10900 (tcp->tcp_sum >> 16)); 10901 } 10902 } 10903 10904 /* Try to get everything in a single mblk */ 10905 (void) proto_set_tx_wroff(tcp->tcp_rq, connp, 10906 hdrs_len + tcps->tcps_wroff_xtra); 10907 return (0); 10908 } 10909 10910 /* 10911 * Transfer any source route option from ipha to buf/dst in reversed form. 10912 */ 10913 static int 10914 tcp_opt_rev_src_route(ipha_t *ipha, char *buf, uchar_t *dst) 10915 { 10916 ipoptp_t opts; 10917 uchar_t *opt; 10918 uint8_t optval; 10919 uint8_t optlen; 10920 uint32_t len = 0; 10921 10922 for (optval = ipoptp_first(&opts, ipha); 10923 optval != IPOPT_EOL; 10924 optval = ipoptp_next(&opts)) { 10925 opt = opts.ipoptp_cur; 10926 optlen = opts.ipoptp_len; 10927 switch (optval) { 10928 int off1, off2; 10929 case IPOPT_SSRR: 10930 case IPOPT_LSRR: 10931 10932 /* Reverse source route */ 10933 /* 10934 * First entry should be the next to last one in the 10935 * current source route (the last entry is our 10936 * address.) 10937 * The last entry should be the final destination. 10938 */ 10939 buf[IPOPT_OPTVAL] = (uint8_t)optval; 10940 buf[IPOPT_OLEN] = (uint8_t)optlen; 10941 off1 = IPOPT_MINOFF_SR - 1; 10942 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 10943 if (off2 < 0) { 10944 /* No entries in source route */ 10945 break; 10946 } 10947 bcopy(opt + off2, dst, IP_ADDR_LEN); 10948 /* 10949 * Note: use src since ipha has not had its src 10950 * and dst reversed (it is in the state it was 10951 * received. 10952 */ 10953 bcopy(&ipha->ipha_src, buf + off2, 10954 IP_ADDR_LEN); 10955 off2 -= IP_ADDR_LEN; 10956 10957 while (off2 > 0) { 10958 bcopy(opt + off2, buf + off1, 10959 IP_ADDR_LEN); 10960 off1 += IP_ADDR_LEN; 10961 off2 -= IP_ADDR_LEN; 10962 } 10963 buf[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 10964 buf += optlen; 10965 len += optlen; 10966 break; 10967 } 10968 } 10969 done: 10970 /* Pad the resulting options */ 10971 while (len & 0x3) { 10972 *buf++ = IPOPT_EOL; 10973 len++; 10974 } 10975 return (len); 10976 } 10977 10978 10979 /* 10980 * Extract and revert a source route from ipha (if any) 10981 * and then update the relevant fields in both tcp_t and the standard header. 10982 */ 10983 static void 10984 tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha) 10985 { 10986 char buf[TCP_MAX_HDR_LENGTH]; 10987 uint_t tcph_len; 10988 int len; 10989 10990 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION); 10991 len = IPH_HDR_LENGTH(ipha); 10992 if (len == IP_SIMPLE_HDR_LENGTH) 10993 /* Nothing to do */ 10994 return; 10995 if (len > IP_SIMPLE_HDR_LENGTH + TCP_MAX_IP_OPTIONS_LENGTH || 10996 (len & 0x3)) 10997 return; 10998 10999 tcph_len = tcp->tcp_tcp_hdr_len; 11000 bcopy(tcp->tcp_tcph, buf, tcph_len); 11001 tcp->tcp_sum = (tcp->tcp_ipha->ipha_dst >> 16) + 11002 (tcp->tcp_ipha->ipha_dst & 0xffff); 11003 len = tcp_opt_rev_src_route(ipha, (char *)tcp->tcp_ipha + 11004 IP_SIMPLE_HDR_LENGTH, (uchar_t *)&tcp->tcp_ipha->ipha_dst); 11005 len += IP_SIMPLE_HDR_LENGTH; 11006 tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) + 11007 (tcp->tcp_ipha->ipha_dst & 0xffff)); 11008 if ((int)tcp->tcp_sum < 0) 11009 tcp->tcp_sum--; 11010 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 11011 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16)); 11012 tcp->tcp_tcph = (tcph_t *)((char *)tcp->tcp_ipha + len); 11013 bcopy(buf, tcp->tcp_tcph, tcph_len); 11014 tcp->tcp_ip_hdr_len = len; 11015 tcp->tcp_ipha->ipha_version_and_hdr_length = 11016 (IP_VERSION << 4) | (len >> 2); 11017 len += tcph_len; 11018 tcp->tcp_hdr_len = len; 11019 } 11020 11021 /* 11022 * Copy the standard header into its new location, 11023 * lay in the new options and then update the relevant 11024 * fields in both tcp_t and the standard header. 11025 */ 11026 static int 11027 tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, uchar_t *ptr, uint_t len) 11028 { 11029 uint_t tcph_len; 11030 uint8_t *ip_optp; 11031 tcph_t *new_tcph; 11032 tcp_stack_t *tcps = tcp->tcp_tcps; 11033 conn_t *connp = tcp->tcp_connp; 11034 11035 if ((len > TCP_MAX_IP_OPTIONS_LENGTH) || (len & 0x3)) 11036 return (EINVAL); 11037 11038 if (len > IP_MAX_OPT_LENGTH - tcp->tcp_label_len) 11039 return (EINVAL); 11040 11041 if (checkonly) { 11042 /* 11043 * do not really set, just pretend to - T_CHECK 11044 */ 11045 return (0); 11046 } 11047 11048 ip_optp = (uint8_t *)tcp->tcp_ipha + IP_SIMPLE_HDR_LENGTH; 11049 if (tcp->tcp_label_len > 0) { 11050 int padlen; 11051 uint8_t opt; 11052 11053 /* convert list termination to no-ops */ 11054 padlen = tcp->tcp_label_len - ip_optp[IPOPT_OLEN]; 11055 ip_optp += ip_optp[IPOPT_OLEN]; 11056 opt = len > 0 ? IPOPT_NOP : IPOPT_EOL; 11057 while (--padlen >= 0) 11058 *ip_optp++ = opt; 11059 } 11060 tcph_len = tcp->tcp_tcp_hdr_len; 11061 new_tcph = (tcph_t *)(ip_optp + len); 11062 ovbcopy(tcp->tcp_tcph, new_tcph, tcph_len); 11063 tcp->tcp_tcph = new_tcph; 11064 bcopy(ptr, ip_optp, len); 11065 11066 len += IP_SIMPLE_HDR_LENGTH + tcp->tcp_label_len; 11067 11068 tcp->tcp_ip_hdr_len = len; 11069 tcp->tcp_ipha->ipha_version_and_hdr_length = 11070 (IP_VERSION << 4) | (len >> 2); 11071 tcp->tcp_hdr_len = len + tcph_len; 11072 if (!TCP_IS_DETACHED(tcp)) { 11073 /* Always allocate room for all options. */ 11074 (void) proto_set_tx_wroff(tcp->tcp_rq, connp, 11075 TCP_MAX_COMBINED_HEADER_LENGTH + tcps->tcps_wroff_xtra); 11076 } 11077 return (0); 11078 } 11079 11080 /* Get callback routine passed to nd_load by tcp_param_register */ 11081 /* ARGSUSED */ 11082 static int 11083 tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 11084 { 11085 tcpparam_t *tcppa = (tcpparam_t *)cp; 11086 11087 (void) mi_mpprintf(mp, "%u", tcppa->tcp_param_val); 11088 return (0); 11089 } 11090 11091 /* 11092 * Walk through the param array specified registering each element with the 11093 * named dispatch handler. 11094 */ 11095 static boolean_t 11096 tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt, tcp_stack_t *tcps) 11097 { 11098 for (; cnt-- > 0; tcppa++) { 11099 if (tcppa->tcp_param_name && tcppa->tcp_param_name[0]) { 11100 if (!nd_load(ndp, tcppa->tcp_param_name, 11101 tcp_param_get, tcp_param_set, 11102 (caddr_t)tcppa)) { 11103 nd_free(ndp); 11104 return (B_FALSE); 11105 } 11106 } 11107 } 11108 tcps->tcps_wroff_xtra_param = kmem_zalloc(sizeof (tcpparam_t), 11109 KM_SLEEP); 11110 bcopy(&lcl_tcp_wroff_xtra_param, tcps->tcps_wroff_xtra_param, 11111 sizeof (tcpparam_t)); 11112 if (!nd_load(ndp, tcps->tcps_wroff_xtra_param->tcp_param_name, 11113 tcp_param_get, tcp_param_set_aligned, 11114 (caddr_t)tcps->tcps_wroff_xtra_param)) { 11115 nd_free(ndp); 11116 return (B_FALSE); 11117 } 11118 tcps->tcps_mdt_head_param = kmem_zalloc(sizeof (tcpparam_t), 11119 KM_SLEEP); 11120 bcopy(&lcl_tcp_mdt_head_param, tcps->tcps_mdt_head_param, 11121 sizeof (tcpparam_t)); 11122 if (!nd_load(ndp, tcps->tcps_mdt_head_param->tcp_param_name, 11123 tcp_param_get, tcp_param_set_aligned, 11124 (caddr_t)tcps->tcps_mdt_head_param)) { 11125 nd_free(ndp); 11126 return (B_FALSE); 11127 } 11128 tcps->tcps_mdt_tail_param = kmem_zalloc(sizeof (tcpparam_t), 11129 KM_SLEEP); 11130 bcopy(&lcl_tcp_mdt_tail_param, tcps->tcps_mdt_tail_param, 11131 sizeof (tcpparam_t)); 11132 if (!nd_load(ndp, tcps->tcps_mdt_tail_param->tcp_param_name, 11133 tcp_param_get, tcp_param_set_aligned, 11134 (caddr_t)tcps->tcps_mdt_tail_param)) { 11135 nd_free(ndp); 11136 return (B_FALSE); 11137 } 11138 tcps->tcps_mdt_max_pbufs_param = kmem_zalloc(sizeof (tcpparam_t), 11139 KM_SLEEP); 11140 bcopy(&lcl_tcp_mdt_max_pbufs_param, tcps->tcps_mdt_max_pbufs_param, 11141 sizeof (tcpparam_t)); 11142 if (!nd_load(ndp, tcps->tcps_mdt_max_pbufs_param->tcp_param_name, 11143 tcp_param_get, tcp_param_set_aligned, 11144 (caddr_t)tcps->tcps_mdt_max_pbufs_param)) { 11145 nd_free(ndp); 11146 return (B_FALSE); 11147 } 11148 if (!nd_load(ndp, "tcp_extra_priv_ports", 11149 tcp_extra_priv_ports_get, NULL, NULL)) { 11150 nd_free(ndp); 11151 return (B_FALSE); 11152 } 11153 if (!nd_load(ndp, "tcp_extra_priv_ports_add", 11154 NULL, tcp_extra_priv_ports_add, NULL)) { 11155 nd_free(ndp); 11156 return (B_FALSE); 11157 } 11158 if (!nd_load(ndp, "tcp_extra_priv_ports_del", 11159 NULL, tcp_extra_priv_ports_del, NULL)) { 11160 nd_free(ndp); 11161 return (B_FALSE); 11162 } 11163 if (!nd_load(ndp, "tcp_1948_phrase", NULL, 11164 tcp_1948_phrase_set, NULL)) { 11165 nd_free(ndp); 11166 return (B_FALSE); 11167 } 11168 /* 11169 * Dummy ndd variables - only to convey obsolescence information 11170 * through printing of their name (no get or set routines) 11171 * XXX Remove in future releases ? 11172 */ 11173 if (!nd_load(ndp, 11174 "tcp_close_wait_interval(obsoleted - " 11175 "use tcp_time_wait_interval)", NULL, NULL, NULL)) { 11176 nd_free(ndp); 11177 return (B_FALSE); 11178 } 11179 return (B_TRUE); 11180 } 11181 11182 /* ndd set routine for tcp_wroff_xtra, tcp_mdt_hdr_{head,tail}_min. */ 11183 /* ARGSUSED */ 11184 static int 11185 tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 11186 cred_t *cr) 11187 { 11188 long new_value; 11189 tcpparam_t *tcppa = (tcpparam_t *)cp; 11190 11191 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11192 new_value < tcppa->tcp_param_min || 11193 new_value > tcppa->tcp_param_max) { 11194 return (EINVAL); 11195 } 11196 /* 11197 * Need to make sure new_value is a multiple of 4. If it is not, 11198 * round it up. For future 64 bit requirement, we actually make it 11199 * a multiple of 8. 11200 */ 11201 if (new_value & 0x7) { 11202 new_value = (new_value & ~0x7) + 0x8; 11203 } 11204 tcppa->tcp_param_val = new_value; 11205 return (0); 11206 } 11207 11208 /* Set callback routine passed to nd_load by tcp_param_register */ 11209 /* ARGSUSED */ 11210 static int 11211 tcp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) 11212 { 11213 long new_value; 11214 tcpparam_t *tcppa = (tcpparam_t *)cp; 11215 11216 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11217 new_value < tcppa->tcp_param_min || 11218 new_value > tcppa->tcp_param_max) { 11219 return (EINVAL); 11220 } 11221 tcppa->tcp_param_val = new_value; 11222 return (0); 11223 } 11224 11225 /* 11226 * Add a new piece to the tcp reassembly queue. If the gap at the beginning 11227 * is filled, return as much as we can. The message passed in may be 11228 * multi-part, chained using b_cont. "start" is the starting sequence 11229 * number for this piece. 11230 */ 11231 static mblk_t * 11232 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start) 11233 { 11234 uint32_t end; 11235 mblk_t *mp1; 11236 mblk_t *mp2; 11237 mblk_t *next_mp; 11238 uint32_t u1; 11239 tcp_stack_t *tcps = tcp->tcp_tcps; 11240 11241 /* Walk through all the new pieces. */ 11242 do { 11243 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 11244 (uintptr_t)INT_MAX); 11245 end = start + (int)(mp->b_wptr - mp->b_rptr); 11246 next_mp = mp->b_cont; 11247 if (start == end) { 11248 /* Empty. Blast it. */ 11249 freeb(mp); 11250 continue; 11251 } 11252 mp->b_cont = NULL; 11253 TCP_REASS_SET_SEQ(mp, start); 11254 TCP_REASS_SET_END(mp, end); 11255 mp1 = tcp->tcp_reass_tail; 11256 if (!mp1) { 11257 tcp->tcp_reass_tail = mp; 11258 tcp->tcp_reass_head = mp; 11259 BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs); 11260 UPDATE_MIB(&tcps->tcps_mib, 11261 tcpInDataUnorderBytes, end - start); 11262 continue; 11263 } 11264 /* New stuff completely beyond tail? */ 11265 if (SEQ_GEQ(start, TCP_REASS_END(mp1))) { 11266 /* Link it on end. */ 11267 mp1->b_cont = mp; 11268 tcp->tcp_reass_tail = mp; 11269 BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs); 11270 UPDATE_MIB(&tcps->tcps_mib, 11271 tcpInDataUnorderBytes, end - start); 11272 continue; 11273 } 11274 mp1 = tcp->tcp_reass_head; 11275 u1 = TCP_REASS_SEQ(mp1); 11276 /* New stuff at the front? */ 11277 if (SEQ_LT(start, u1)) { 11278 /* Yes... Check for overlap. */ 11279 mp->b_cont = mp1; 11280 tcp->tcp_reass_head = mp; 11281 tcp_reass_elim_overlap(tcp, mp); 11282 continue; 11283 } 11284 /* 11285 * The new piece fits somewhere between the head and tail. 11286 * We find our slot, where mp1 precedes us and mp2 trails. 11287 */ 11288 for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) { 11289 u1 = TCP_REASS_SEQ(mp2); 11290 if (SEQ_LEQ(start, u1)) 11291 break; 11292 } 11293 /* Link ourselves in */ 11294 mp->b_cont = mp2; 11295 mp1->b_cont = mp; 11296 11297 /* Trim overlap with following mblk(s) first */ 11298 tcp_reass_elim_overlap(tcp, mp); 11299 11300 /* Trim overlap with preceding mblk */ 11301 tcp_reass_elim_overlap(tcp, mp1); 11302 11303 } while (start = end, mp = next_mp); 11304 mp1 = tcp->tcp_reass_head; 11305 /* Anything ready to go? */ 11306 if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt) 11307 return (NULL); 11308 /* Eat what we can off the queue */ 11309 for (;;) { 11310 mp = mp1->b_cont; 11311 end = TCP_REASS_END(mp1); 11312 TCP_REASS_SET_SEQ(mp1, 0); 11313 TCP_REASS_SET_END(mp1, 0); 11314 if (!mp) { 11315 tcp->tcp_reass_tail = NULL; 11316 break; 11317 } 11318 if (end != TCP_REASS_SEQ(mp)) { 11319 mp1->b_cont = NULL; 11320 break; 11321 } 11322 mp1 = mp; 11323 } 11324 mp1 = tcp->tcp_reass_head; 11325 tcp->tcp_reass_head = mp; 11326 return (mp1); 11327 } 11328 11329 /* Eliminate any overlap that mp may have over later mblks */ 11330 static void 11331 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp) 11332 { 11333 uint32_t end; 11334 mblk_t *mp1; 11335 uint32_t u1; 11336 tcp_stack_t *tcps = tcp->tcp_tcps; 11337 11338 end = TCP_REASS_END(mp); 11339 while ((mp1 = mp->b_cont) != NULL) { 11340 u1 = TCP_REASS_SEQ(mp1); 11341 if (!SEQ_GT(end, u1)) 11342 break; 11343 if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) { 11344 mp->b_wptr -= end - u1; 11345 TCP_REASS_SET_END(mp, u1); 11346 BUMP_MIB(&tcps->tcps_mib, tcpInDataPartDupSegs); 11347 UPDATE_MIB(&tcps->tcps_mib, 11348 tcpInDataPartDupBytes, end - u1); 11349 break; 11350 } 11351 mp->b_cont = mp1->b_cont; 11352 TCP_REASS_SET_SEQ(mp1, 0); 11353 TCP_REASS_SET_END(mp1, 0); 11354 freeb(mp1); 11355 BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); 11356 UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, end - u1); 11357 } 11358 if (!mp1) 11359 tcp->tcp_reass_tail = mp; 11360 } 11361 11362 static uint_t 11363 tcp_rwnd_reopen(tcp_t *tcp) 11364 { 11365 uint_t ret = 0; 11366 uint_t thwin; 11367 11368 /* Learn the latest rwnd information that we sent to the other side. */ 11369 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 11370 << tcp->tcp_rcv_ws; 11371 /* This is peer's calculated send window (our receive window). */ 11372 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 11373 /* 11374 * Increase the receive window to max. But we need to do receiver 11375 * SWS avoidance. This means that we need to check the increase of 11376 * of receive window is at least 1 MSS. 11377 */ 11378 if (tcp->tcp_recv_hiwater - thwin >= tcp->tcp_mss) { 11379 /* 11380 * If the window that the other side knows is less than max 11381 * deferred acks segments, send an update immediately. 11382 */ 11383 if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) { 11384 BUMP_MIB(&tcp->tcp_tcps->tcps_mib, tcpOutWinUpdate); 11385 ret = TH_ACK_NEEDED; 11386 } 11387 tcp->tcp_rwnd = tcp->tcp_recv_hiwater; 11388 } 11389 return (ret); 11390 } 11391 11392 /* 11393 * Send up all messages queued on tcp_rcv_list. 11394 */ 11395 static uint_t 11396 tcp_rcv_drain(tcp_t *tcp) 11397 { 11398 mblk_t *mp; 11399 uint_t ret = 0; 11400 #ifdef DEBUG 11401 uint_t cnt = 0; 11402 #endif 11403 queue_t *q = tcp->tcp_rq; 11404 11405 /* Can't drain on an eager connection */ 11406 if (tcp->tcp_listener != NULL) 11407 return (ret); 11408 11409 /* Can't be a non-STREAMS connection or sodirect enabled */ 11410 ASSERT((!IPCL_IS_NONSTR(tcp->tcp_connp)) && SOD_NOT_ENABLED(tcp)); 11411 11412 /* No need for the push timer now. */ 11413 if (tcp->tcp_push_tid != 0) { 11414 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 11415 tcp->tcp_push_tid = 0; 11416 } 11417 11418 /* 11419 * Handle two cases here: we are currently fused or we were 11420 * previously fused and have some urgent data to be delivered 11421 * upstream. The latter happens because we either ran out of 11422 * memory or were detached and therefore sending the SIGURG was 11423 * deferred until this point. In either case we pass control 11424 * over to tcp_fuse_rcv_drain() since it may need to complete 11425 * some work. 11426 */ 11427 if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) { 11428 ASSERT(IPCL_IS_NONSTR(tcp->tcp_connp) || 11429 tcp->tcp_fused_sigurg_mp != NULL); 11430 if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL : 11431 &tcp->tcp_fused_sigurg_mp)) 11432 return (ret); 11433 } 11434 11435 while ((mp = tcp->tcp_rcv_list) != NULL) { 11436 tcp->tcp_rcv_list = mp->b_next; 11437 mp->b_next = NULL; 11438 #ifdef DEBUG 11439 cnt += msgdsize(mp); 11440 #endif 11441 /* Does this need SSL processing first? */ 11442 if ((tcp->tcp_kssl_ctx != NULL) && (DB_TYPE(mp) == M_DATA)) { 11443 DTRACE_PROBE1(kssl_mblk__ksslinput_rcvdrain, 11444 mblk_t *, mp); 11445 tcp_kssl_input(tcp, mp); 11446 continue; 11447 } 11448 putnext(q, mp); 11449 } 11450 #ifdef DEBUG 11451 ASSERT(cnt == tcp->tcp_rcv_cnt); 11452 #endif 11453 tcp->tcp_rcv_last_head = NULL; 11454 tcp->tcp_rcv_last_tail = NULL; 11455 tcp->tcp_rcv_cnt = 0; 11456 11457 if (canputnext(q)) 11458 return (tcp_rwnd_reopen(tcp)); 11459 11460 return (ret); 11461 } 11462 11463 /* 11464 * Queue data on tcp_rcv_list which is a b_next chain. 11465 * tcp_rcv_last_head/tail is the last element of this chain. 11466 * Each element of the chain is a b_cont chain. 11467 * 11468 * M_DATA messages are added to the current element. 11469 * Other messages are added as new (b_next) elements. 11470 */ 11471 void 11472 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len) 11473 { 11474 ASSERT(seg_len == msgdsize(mp)); 11475 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL); 11476 11477 if (tcp->tcp_rcv_list == NULL) { 11478 ASSERT(tcp->tcp_rcv_last_head == NULL); 11479 tcp->tcp_rcv_list = mp; 11480 tcp->tcp_rcv_last_head = mp; 11481 } else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) { 11482 tcp->tcp_rcv_last_tail->b_cont = mp; 11483 } else { 11484 tcp->tcp_rcv_last_head->b_next = mp; 11485 tcp->tcp_rcv_last_head = mp; 11486 } 11487 11488 while (mp->b_cont) 11489 mp = mp->b_cont; 11490 11491 tcp->tcp_rcv_last_tail = mp; 11492 tcp->tcp_rcv_cnt += seg_len; 11493 tcp->tcp_rwnd -= seg_len; 11494 } 11495 11496 /* 11497 * The tcp_rcv_sod_XXX() functions enqueue data directly to the socket 11498 * above, in addition when uioa is enabled schedule an asynchronous uio 11499 * prior to enqueuing. They implement the combinhed semantics of the 11500 * tcp_rcv_XXX() functions, tcp_rcv_list push logic, and STREAMS putnext() 11501 * canputnext(), i.e. flow-control with backenable. 11502 * 11503 * tcp_sod_wakeup() is called where tcp_rcv_drain() would be called in the 11504 * non sodirect connection but as there are no tcp_tcv_list mblk_t's we deal 11505 * with the rcv_wnd and push timer and call the sodirect wakeup function. 11506 * 11507 * Must be called with sodp->sod_lockp held and will return with the lock 11508 * released. 11509 */ 11510 static uint_t 11511 tcp_rcv_sod_wakeup(tcp_t *tcp, sodirect_t *sodp) 11512 { 11513 queue_t *q = tcp->tcp_rq; 11514 uint_t thwin; 11515 tcp_stack_t *tcps = tcp->tcp_tcps; 11516 uint_t ret = 0; 11517 11518 /* Can't be an eager connection */ 11519 ASSERT(tcp->tcp_listener == NULL); 11520 11521 /* Caller must have lock held */ 11522 ASSERT(MUTEX_HELD(sodp->sod_lockp)); 11523 11524 /* Sodirect mode so must not be a tcp_rcv_list */ 11525 ASSERT(tcp->tcp_rcv_list == NULL); 11526 11527 if (SOD_QFULL(sodp)) { 11528 /* Q is full, mark Q for need backenable */ 11529 SOD_QSETBE(sodp); 11530 } 11531 /* Last advertised rwnd, i.e. rwnd last sent in a packet */ 11532 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 11533 << tcp->tcp_rcv_ws; 11534 /* This is peer's calculated send window (our available rwnd). */ 11535 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 11536 /* 11537 * Increase the receive window to max. But we need to do receiver 11538 * SWS avoidance. This means that we need to check the increase of 11539 * of receive window is at least 1 MSS. 11540 */ 11541 if (!SOD_QFULL(sodp) && (q->q_hiwat - thwin >= tcp->tcp_mss)) { 11542 /* 11543 * If the window that the other side knows is less than max 11544 * deferred acks segments, send an update immediately. 11545 */ 11546 if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) { 11547 BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate); 11548 ret = TH_ACK_NEEDED; 11549 } 11550 tcp->tcp_rwnd = q->q_hiwat; 11551 } 11552 11553 if (!SOD_QEMPTY(sodp)) { 11554 /* Wakeup to socket */ 11555 sodp->sod_state &= SOD_WAKE_CLR; 11556 sodp->sod_state |= SOD_WAKE_DONE; 11557 (sodp->sod_wakeup)(sodp); 11558 /* wakeup() does the mutex_ext() */ 11559 } else { 11560 /* Q is empty, no need to wake */ 11561 sodp->sod_state &= SOD_WAKE_CLR; 11562 sodp->sod_state |= SOD_WAKE_NOT; 11563 mutex_exit(sodp->sod_lockp); 11564 } 11565 11566 /* No need for the push timer now. */ 11567 if (tcp->tcp_push_tid != 0) { 11568 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 11569 tcp->tcp_push_tid = 0; 11570 } 11571 11572 return (ret); 11573 } 11574 11575 /* 11576 * Called where tcp_rcv_enqueue()/putnext(RD(q)) would be. For M_DATA 11577 * mblk_t's if uioa enabled then start a uioa asynchronous copy directly 11578 * to the user-land buffer and flag the mblk_t as such. 11579 * 11580 * Also, handle tcp_rwnd. 11581 */ 11582 uint_t 11583 tcp_rcv_sod_enqueue(tcp_t *tcp, sodirect_t *sodp, mblk_t *mp, uint_t seg_len) 11584 { 11585 uioa_t *uioap = &sodp->sod_uioa; 11586 boolean_t qfull; 11587 uint_t thwin; 11588 11589 /* Can't be an eager connection */ 11590 ASSERT(tcp->tcp_listener == NULL); 11591 11592 /* Caller must have lock held */ 11593 ASSERT(MUTEX_HELD(sodp->sod_lockp)); 11594 11595 /* Sodirect mode so must not be a tcp_rcv_list */ 11596 ASSERT(tcp->tcp_rcv_list == NULL); 11597 11598 /* Passed in segment length must be equal to mblk_t chain data size */ 11599 ASSERT(seg_len == msgdsize(mp)); 11600 11601 if (DB_TYPE(mp) != M_DATA) { 11602 /* Only process M_DATA mblk_t's */ 11603 goto enq; 11604 } 11605 if (uioap->uioa_state & UIOA_ENABLED) { 11606 /* Uioa is enabled */ 11607 mblk_t *mp1 = mp; 11608 mblk_t *lmp = NULL; 11609 11610 if (seg_len > uioap->uio_resid) { 11611 /* 11612 * There isn't enough uio space for the mblk_t chain 11613 * so disable uioa such that this and any additional 11614 * mblk_t data is handled by the socket and schedule 11615 * the socket for wakeup to finish this uioa. 11616 */ 11617 uioap->uioa_state &= UIOA_CLR; 11618 uioap->uioa_state |= UIOA_FINI; 11619 if (sodp->sod_state & SOD_WAKE_NOT) { 11620 sodp->sod_state &= SOD_WAKE_CLR; 11621 sodp->sod_state |= SOD_WAKE_NEED; 11622 } 11623 goto enq; 11624 } 11625 do { 11626 uint32_t len = MBLKL(mp1); 11627 11628 if (!uioamove(mp1->b_rptr, len, UIO_READ, uioap)) { 11629 /* Scheduled, mark dblk_t as such */ 11630 DB_FLAGS(mp1) |= DBLK_UIOA; 11631 } else { 11632 /* Error, turn off async processing */ 11633 uioap->uioa_state &= UIOA_CLR; 11634 uioap->uioa_state |= UIOA_FINI; 11635 break; 11636 } 11637 lmp = mp1; 11638 } while ((mp1 = mp1->b_cont) != NULL); 11639 11640 if (mp1 != NULL || uioap->uio_resid == 0) { 11641 /* 11642 * Not all mblk_t(s) uioamoved (error) or all uio 11643 * space has been consumed so schedule the socket 11644 * for wakeup to finish this uio. 11645 */ 11646 sodp->sod_state &= SOD_WAKE_CLR; 11647 sodp->sod_state |= SOD_WAKE_NEED; 11648 11649 /* Break the mblk chain if neccessary. */ 11650 if (mp1 != NULL && lmp != NULL) { 11651 mp->b_next = mp1; 11652 lmp->b_cont = NULL; 11653 } 11654 } 11655 } else if (uioap->uioa_state & UIOA_FINI) { 11656 /* 11657 * Post UIO_ENABLED waiting for socket to finish processing 11658 * so just enqueue and update tcp_rwnd. 11659 */ 11660 if (SOD_QFULL(sodp)) 11661 tcp->tcp_rwnd -= seg_len; 11662 } else if (sodp->sod_want > 0) { 11663 /* 11664 * Uioa isn't enabled but sodirect has a pending read(). 11665 */ 11666 if (SOD_QCNT(sodp) + seg_len >= sodp->sod_want) { 11667 if (sodp->sod_state & SOD_WAKE_NOT) { 11668 /* Schedule socket for wakeup */ 11669 sodp->sod_state &= SOD_WAKE_CLR; 11670 sodp->sod_state |= SOD_WAKE_NEED; 11671 } 11672 tcp->tcp_rwnd -= seg_len; 11673 } 11674 } else if (SOD_QCNT(sodp) + seg_len >= tcp->tcp_rq->q_hiwat >> 3) { 11675 /* 11676 * No pending sodirect read() so used the default 11677 * TCP push logic to guess that a push is needed. 11678 */ 11679 if (sodp->sod_state & SOD_WAKE_NOT) { 11680 /* Schedule socket for wakeup */ 11681 sodp->sod_state &= SOD_WAKE_CLR; 11682 sodp->sod_state |= SOD_WAKE_NEED; 11683 } 11684 tcp->tcp_rwnd -= seg_len; 11685 } else { 11686 /* Just update tcp_rwnd */ 11687 tcp->tcp_rwnd -= seg_len; 11688 } 11689 enq: 11690 qfull = SOD_QFULL(sodp); 11691 11692 (sodp->sod_enqueue)(sodp, mp); 11693 11694 if (! qfull && SOD_QFULL(sodp)) { 11695 /* Wasn't QFULL, now QFULL, need back-enable */ 11696 SOD_QSETBE(sodp); 11697 } 11698 11699 /* 11700 * Check to see if remote avail swnd < mss due to delayed ACK, 11701 * first get advertised rwnd. 11702 */ 11703 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)); 11704 /* Minus delayed ACK count */ 11705 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 11706 if (thwin < tcp->tcp_mss) { 11707 /* Remote avail swnd < mss, need ACK now */ 11708 return (TH_ACK_NEEDED); 11709 } 11710 11711 return (0); 11712 } 11713 11714 /* 11715 * DEFAULT TCP ENTRY POINT via squeue on READ side. 11716 * 11717 * This is the default entry function into TCP on the read side. TCP is 11718 * always entered via squeue i.e. using squeue's for mutual exclusion. 11719 * When classifier does a lookup to find the tcp, it also puts a reference 11720 * on the conn structure associated so the tcp is guaranteed to exist 11721 * when we come here. We still need to check the state because it might 11722 * as well has been closed. The squeue processing function i.e. squeue_enter, 11723 * is responsible for doing the CONN_DEC_REF. 11724 * 11725 * Apart from the default entry point, IP also sends packets directly to 11726 * tcp_rput_data for AF_INET fast path and tcp_conn_request for incoming 11727 * connections. 11728 */ 11729 boolean_t tcp_outbound_squeue_switch = B_FALSE; 11730 void 11731 tcp_input(void *arg, mblk_t *mp, void *arg2) 11732 { 11733 conn_t *connp = (conn_t *)arg; 11734 tcp_t *tcp = (tcp_t *)connp->conn_tcp; 11735 11736 /* arg2 is the sqp */ 11737 ASSERT(arg2 != NULL); 11738 ASSERT(mp != NULL); 11739 11740 /* 11741 * Don't accept any input on a closed tcp as this TCP logically does 11742 * not exist on the system. Don't proceed further with this TCP. 11743 * For eg. this packet could trigger another close of this tcp 11744 * which would be disastrous for tcp_refcnt. tcp_close_detached / 11745 * tcp_clean_death / tcp_closei_local must be called at most once 11746 * on a TCP. In this case we need to refeed the packet into the 11747 * classifier and figure out where the packet should go. Need to 11748 * preserve the recv_ill somehow. Until we figure that out, for 11749 * now just drop the packet if we can't classify the packet. 11750 */ 11751 if (tcp->tcp_state == TCPS_CLOSED || 11752 tcp->tcp_state == TCPS_BOUND) { 11753 conn_t *new_connp; 11754 ip_stack_t *ipst = tcp->tcp_tcps->tcps_netstack->netstack_ip; 11755 11756 new_connp = ipcl_classify(mp, connp->conn_zoneid, ipst); 11757 if (new_connp != NULL) { 11758 tcp_reinput(new_connp, mp, arg2); 11759 return; 11760 } 11761 /* We failed to classify. For now just drop the packet */ 11762 freemsg(mp); 11763 return; 11764 } 11765 11766 if (DB_TYPE(mp) != M_DATA) { 11767 tcp_rput_common(tcp, mp); 11768 return; 11769 } 11770 11771 if (mp->b_datap->db_struioflag & STRUIO_CONNECT) { 11772 squeue_t *final_sqp; 11773 11774 mp->b_datap->db_struioflag &= ~STRUIO_CONNECT; 11775 final_sqp = (squeue_t *)DB_CKSUMSTART(mp); 11776 DB_CKSUMSTART(mp) = 0; 11777 if (tcp->tcp_state == TCPS_SYN_SENT && 11778 connp->conn_final_sqp == NULL && 11779 tcp_outbound_squeue_switch) { 11780 ASSERT(connp->conn_initial_sqp == connp->conn_sqp); 11781 connp->conn_final_sqp = final_sqp; 11782 if (connp->conn_final_sqp != connp->conn_sqp) { 11783 CONN_INC_REF(connp); 11784 SQUEUE_SWITCH(connp, connp->conn_final_sqp); 11785 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 11786 tcp_rput_data, connp, ip_squeue_flag, 11787 SQTAG_CONNECT_FINISH); 11788 return; 11789 } 11790 } 11791 } 11792 tcp_rput_data(connp, mp, arg2); 11793 } 11794 11795 /* 11796 * The read side put procedure. 11797 * The packets passed up by ip are assume to be aligned according to 11798 * OK_32PTR and the IP+TCP headers fitting in the first mblk. 11799 */ 11800 static void 11801 tcp_rput_common(tcp_t *tcp, mblk_t *mp) 11802 { 11803 /* 11804 * tcp_rput_data() does not expect M_CTL except for the case 11805 * where tcp_ipv6_recvancillary is set and we get a IN_PKTINFO 11806 * type. Need to make sure that any other M_CTLs don't make 11807 * it to tcp_rput_data since it is not expecting any and doesn't 11808 * check for it. 11809 */ 11810 if (DB_TYPE(mp) == M_CTL) { 11811 switch (*(uint32_t *)(mp->b_rptr)) { 11812 case TCP_IOC_ABORT_CONN: 11813 /* 11814 * Handle connection abort request. 11815 */ 11816 tcp_ioctl_abort_handler(tcp, mp); 11817 return; 11818 case IPSEC_IN: 11819 /* 11820 * Only secure icmp arrive in TCP and they 11821 * don't go through data path. 11822 */ 11823 tcp_icmp_error(tcp, mp); 11824 return; 11825 case IN_PKTINFO: 11826 /* 11827 * Handle IPV6_RECVPKTINFO socket option on AF_INET6 11828 * sockets that are receiving IPv4 traffic. tcp 11829 */ 11830 ASSERT(tcp->tcp_family == AF_INET6); 11831 ASSERT(tcp->tcp_ipv6_recvancillary & 11832 TCP_IPV6_RECVPKTINFO); 11833 tcp_rput_data(tcp->tcp_connp, mp, 11834 tcp->tcp_connp->conn_sqp); 11835 return; 11836 case MDT_IOC_INFO_UPDATE: 11837 /* 11838 * Handle Multidata information update; the 11839 * following routine will free the message. 11840 */ 11841 if (tcp->tcp_connp->conn_mdt_ok) { 11842 tcp_mdt_update(tcp, 11843 &((ip_mdt_info_t *)mp->b_rptr)->mdt_capab, 11844 B_FALSE); 11845 } 11846 freemsg(mp); 11847 return; 11848 case LSO_IOC_INFO_UPDATE: 11849 /* 11850 * Handle LSO information update; the following 11851 * routine will free the message. 11852 */ 11853 if (tcp->tcp_connp->conn_lso_ok) { 11854 tcp_lso_update(tcp, 11855 &((ip_lso_info_t *)mp->b_rptr)->lso_capab); 11856 } 11857 freemsg(mp); 11858 return; 11859 default: 11860 /* 11861 * tcp_icmp_err() will process the M_CTL packets. 11862 * Non-ICMP packets, if any, will be discarded in 11863 * tcp_icmp_err(). We will process the ICMP packet 11864 * even if we are TCP_IS_DETACHED_NONEAGER as the 11865 * incoming ICMP packet may result in changing 11866 * the tcp_mss, which we would need if we have 11867 * packets to retransmit. 11868 */ 11869 tcp_icmp_error(tcp, mp); 11870 return; 11871 } 11872 } 11873 11874 /* No point processing the message if tcp is already closed */ 11875 if (TCP_IS_DETACHED_NONEAGER(tcp)) { 11876 freemsg(mp); 11877 return; 11878 } 11879 11880 tcp_rput_other(tcp, mp); 11881 } 11882 11883 11884 /* The minimum of smoothed mean deviation in RTO calculation. */ 11885 #define TCP_SD_MIN 400 11886 11887 /* 11888 * Set RTO for this connection. The formula is from Jacobson and Karels' 11889 * "Congestion Avoidance and Control" in SIGCOMM '88. The variable names 11890 * are the same as those in Appendix A.2 of that paper. 11891 * 11892 * m = new measurement 11893 * sa = smoothed RTT average (8 * average estimates). 11894 * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates). 11895 */ 11896 static void 11897 tcp_set_rto(tcp_t *tcp, clock_t rtt) 11898 { 11899 long m = TICK_TO_MSEC(rtt); 11900 clock_t sa = tcp->tcp_rtt_sa; 11901 clock_t sv = tcp->tcp_rtt_sd; 11902 clock_t rto; 11903 tcp_stack_t *tcps = tcp->tcp_tcps; 11904 11905 BUMP_MIB(&tcps->tcps_mib, tcpRttUpdate); 11906 tcp->tcp_rtt_update++; 11907 11908 /* tcp_rtt_sa is not 0 means this is a new sample. */ 11909 if (sa != 0) { 11910 /* 11911 * Update average estimator: 11912 * new rtt = 7/8 old rtt + 1/8 Error 11913 */ 11914 11915 /* m is now Error in estimate. */ 11916 m -= sa >> 3; 11917 if ((sa += m) <= 0) { 11918 /* 11919 * Don't allow the smoothed average to be negative. 11920 * We use 0 to denote reinitialization of the 11921 * variables. 11922 */ 11923 sa = 1; 11924 } 11925 11926 /* 11927 * Update deviation estimator: 11928 * new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev) 11929 */ 11930 if (m < 0) 11931 m = -m; 11932 m -= sv >> 2; 11933 sv += m; 11934 } else { 11935 /* 11936 * This follows BSD's implementation. So the reinitialized 11937 * RTO is 3 * m. We cannot go less than 2 because if the 11938 * link is bandwidth dominated, doubling the window size 11939 * during slow start means doubling the RTT. We want to be 11940 * more conservative when we reinitialize our estimates. 3 11941 * is just a convenient number. 11942 */ 11943 sa = m << 3; 11944 sv = m << 1; 11945 } 11946 if (sv < TCP_SD_MIN) { 11947 /* 11948 * We do not know that if sa captures the delay ACK 11949 * effect as in a long train of segments, a receiver 11950 * does not delay its ACKs. So set the minimum of sv 11951 * to be TCP_SD_MIN, which is default to 400 ms, twice 11952 * of BSD DATO. That means the minimum of mean 11953 * deviation is 100 ms. 11954 * 11955 */ 11956 sv = TCP_SD_MIN; 11957 } 11958 tcp->tcp_rtt_sa = sa; 11959 tcp->tcp_rtt_sd = sv; 11960 /* 11961 * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv) 11962 * 11963 * Add tcp_rexmit_interval extra in case of extreme environment 11964 * where the algorithm fails to work. The default value of 11965 * tcp_rexmit_interval_extra should be 0. 11966 * 11967 * As we use a finer grained clock than BSD and update 11968 * RTO for every ACKs, add in another .25 of RTT to the 11969 * deviation of RTO to accomodate burstiness of 1/4 of 11970 * window size. 11971 */ 11972 rto = (sa >> 3) + sv + tcps->tcps_rexmit_interval_extra + (sa >> 5); 11973 11974 if (rto > tcps->tcps_rexmit_interval_max) { 11975 tcp->tcp_rto = tcps->tcps_rexmit_interval_max; 11976 } else if (rto < tcps->tcps_rexmit_interval_min) { 11977 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 11978 } else { 11979 tcp->tcp_rto = rto; 11980 } 11981 11982 /* Now, we can reset tcp_timer_backoff to use the new RTO... */ 11983 tcp->tcp_timer_backoff = 0; 11984 } 11985 11986 /* 11987 * tcp_get_seg_mp() is called to get the pointer to a segment in the 11988 * send queue which starts at the given seq. no. 11989 * 11990 * Parameters: 11991 * tcp_t *tcp: the tcp instance pointer. 11992 * uint32_t seq: the starting seq. no of the requested segment. 11993 * int32_t *off: after the execution, *off will be the offset to 11994 * the returned mblk which points to the requested seq no. 11995 * It is the caller's responsibility to send in a non-null off. 11996 * 11997 * Return: 11998 * A mblk_t pointer pointing to the requested segment in send queue. 11999 */ 12000 static mblk_t * 12001 tcp_get_seg_mp(tcp_t *tcp, uint32_t seq, int32_t *off) 12002 { 12003 int32_t cnt; 12004 mblk_t *mp; 12005 12006 /* Defensive coding. Make sure we don't send incorrect data. */ 12007 if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt)) 12008 return (NULL); 12009 12010 cnt = seq - tcp->tcp_suna; 12011 mp = tcp->tcp_xmit_head; 12012 while (cnt > 0 && mp != NULL) { 12013 cnt -= mp->b_wptr - mp->b_rptr; 12014 if (cnt < 0) { 12015 cnt += mp->b_wptr - mp->b_rptr; 12016 break; 12017 } 12018 mp = mp->b_cont; 12019 } 12020 ASSERT(mp != NULL); 12021 *off = cnt; 12022 return (mp); 12023 } 12024 12025 /* 12026 * This function handles all retransmissions if SACK is enabled for this 12027 * connection. First it calculates how many segments can be retransmitted 12028 * based on tcp_pipe. Then it goes thru the notsack list to find eligible 12029 * segments. A segment is eligible if sack_cnt for that segment is greater 12030 * than or equal tcp_dupack_fast_retransmit. After it has retransmitted 12031 * all eligible segments, it checks to see if TCP can send some new segments 12032 * (fast recovery). If it can, set the appropriate flag for tcp_rput_data(). 12033 * 12034 * Parameters: 12035 * tcp_t *tcp: the tcp structure of the connection. 12036 * uint_t *flags: in return, appropriate value will be set for 12037 * tcp_rput_data(). 12038 */ 12039 static void 12040 tcp_sack_rxmit(tcp_t *tcp, uint_t *flags) 12041 { 12042 notsack_blk_t *notsack_blk; 12043 int32_t usable_swnd; 12044 int32_t mss; 12045 uint32_t seg_len; 12046 mblk_t *xmit_mp; 12047 tcp_stack_t *tcps = tcp->tcp_tcps; 12048 12049 ASSERT(tcp->tcp_sack_info != NULL); 12050 ASSERT(tcp->tcp_notsack_list != NULL); 12051 ASSERT(tcp->tcp_rexmit == B_FALSE); 12052 12053 /* Defensive coding in case there is a bug... */ 12054 if (tcp->tcp_notsack_list == NULL) { 12055 return; 12056 } 12057 notsack_blk = tcp->tcp_notsack_list; 12058 mss = tcp->tcp_mss; 12059 12060 /* 12061 * Limit the num of outstanding data in the network to be 12062 * tcp_cwnd_ssthresh, which is half of the original congestion wnd. 12063 */ 12064 usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; 12065 12066 /* At least retransmit 1 MSS of data. */ 12067 if (usable_swnd <= 0) { 12068 usable_swnd = mss; 12069 } 12070 12071 /* Make sure no new RTT samples will be taken. */ 12072 tcp->tcp_csuna = tcp->tcp_snxt; 12073 12074 notsack_blk = tcp->tcp_notsack_list; 12075 while (usable_swnd > 0) { 12076 mblk_t *snxt_mp, *tmp_mp; 12077 tcp_seq begin = tcp->tcp_sack_snxt; 12078 tcp_seq end; 12079 int32_t off; 12080 12081 for (; notsack_blk != NULL; notsack_blk = notsack_blk->next) { 12082 if (SEQ_GT(notsack_blk->end, begin) && 12083 (notsack_blk->sack_cnt >= 12084 tcps->tcps_dupack_fast_retransmit)) { 12085 end = notsack_blk->end; 12086 if (SEQ_LT(begin, notsack_blk->begin)) { 12087 begin = notsack_blk->begin; 12088 } 12089 break; 12090 } 12091 } 12092 /* 12093 * All holes are filled. Manipulate tcp_cwnd to send more 12094 * if we can. Note that after the SACK recovery, tcp_cwnd is 12095 * set to tcp_cwnd_ssthresh. 12096 */ 12097 if (notsack_blk == NULL) { 12098 usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; 12099 if (usable_swnd <= 0 || tcp->tcp_unsent == 0) { 12100 tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna; 12101 ASSERT(tcp->tcp_cwnd > 0); 12102 return; 12103 } else { 12104 usable_swnd = usable_swnd / mss; 12105 tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna + 12106 MAX(usable_swnd * mss, mss); 12107 *flags |= TH_XMIT_NEEDED; 12108 return; 12109 } 12110 } 12111 12112 /* 12113 * Note that we may send more than usable_swnd allows here 12114 * because of round off, but no more than 1 MSS of data. 12115 */ 12116 seg_len = end - begin; 12117 if (seg_len > mss) 12118 seg_len = mss; 12119 snxt_mp = tcp_get_seg_mp(tcp, begin, &off); 12120 ASSERT(snxt_mp != NULL); 12121 /* This should not happen. Defensive coding again... */ 12122 if (snxt_mp == NULL) { 12123 return; 12124 } 12125 12126 xmit_mp = tcp_xmit_mp(tcp, snxt_mp, seg_len, &off, 12127 &tmp_mp, begin, B_TRUE, &seg_len, B_TRUE); 12128 if (xmit_mp == NULL) 12129 return; 12130 12131 usable_swnd -= seg_len; 12132 tcp->tcp_pipe += seg_len; 12133 tcp->tcp_sack_snxt = begin + seg_len; 12134 12135 tcp_send_data(tcp, tcp->tcp_wq, xmit_mp); 12136 12137 /* 12138 * Update the send timestamp to avoid false retransmission. 12139 */ 12140 snxt_mp->b_prev = (mblk_t *)lbolt; 12141 12142 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 12143 UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, seg_len); 12144 BUMP_MIB(&tcps->tcps_mib, tcpOutSackRetransSegs); 12145 /* 12146 * Update tcp_rexmit_max to extend this SACK recovery phase. 12147 * This happens when new data sent during fast recovery is 12148 * also lost. If TCP retransmits those new data, it needs 12149 * to extend SACK recover phase to avoid starting another 12150 * fast retransmit/recovery unnecessarily. 12151 */ 12152 if (SEQ_GT(tcp->tcp_sack_snxt, tcp->tcp_rexmit_max)) { 12153 tcp->tcp_rexmit_max = tcp->tcp_sack_snxt; 12154 } 12155 } 12156 } 12157 12158 /* 12159 * This function handles policy checking at TCP level for non-hard_bound/ 12160 * detached connections. 12161 */ 12162 static boolean_t 12163 tcp_check_policy(tcp_t *tcp, mblk_t *first_mp, ipha_t *ipha, ip6_t *ip6h, 12164 boolean_t secure, boolean_t mctl_present) 12165 { 12166 ipsec_latch_t *ipl = NULL; 12167 ipsec_action_t *act = NULL; 12168 mblk_t *data_mp; 12169 ipsec_in_t *ii; 12170 const char *reason; 12171 kstat_named_t *counter; 12172 tcp_stack_t *tcps = tcp->tcp_tcps; 12173 ipsec_stack_t *ipss; 12174 ip_stack_t *ipst; 12175 12176 ASSERT(mctl_present || !secure); 12177 12178 ASSERT((ipha == NULL && ip6h != NULL) || 12179 (ip6h == NULL && ipha != NULL)); 12180 12181 /* 12182 * We don't necessarily have an ipsec_in_act action to verify 12183 * policy because of assymetrical policy where we have only 12184 * outbound policy and no inbound policy (possible with global 12185 * policy). 12186 */ 12187 if (!secure) { 12188 if (act == NULL || act->ipa_act.ipa_type == IPSEC_ACT_BYPASS || 12189 act->ipa_act.ipa_type == IPSEC_ACT_CLEAR) 12190 return (B_TRUE); 12191 ipsec_log_policy_failure(IPSEC_POLICY_MISMATCH, 12192 "tcp_check_policy", ipha, ip6h, secure, 12193 tcps->tcps_netstack); 12194 ipss = tcps->tcps_netstack->netstack_ipsec; 12195 12196 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, 12197 DROPPER(ipss, ipds_tcp_clear), 12198 &tcps->tcps_dropper); 12199 return (B_FALSE); 12200 } 12201 12202 /* 12203 * We have a secure packet. 12204 */ 12205 if (act == NULL) { 12206 ipsec_log_policy_failure(IPSEC_POLICY_NOT_NEEDED, 12207 "tcp_check_policy", ipha, ip6h, secure, 12208 tcps->tcps_netstack); 12209 ipss = tcps->tcps_netstack->netstack_ipsec; 12210 12211 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, 12212 DROPPER(ipss, ipds_tcp_secure), 12213 &tcps->tcps_dropper); 12214 return (B_FALSE); 12215 } 12216 12217 /* 12218 * XXX This whole routine is currently incorrect. ipl should 12219 * be set to the latch pointer, but is currently not set, so 12220 * we initialize it to NULL to avoid picking up random garbage. 12221 */ 12222 if (ipl == NULL) 12223 return (B_TRUE); 12224 12225 data_mp = first_mp->b_cont; 12226 12227 ii = (ipsec_in_t *)first_mp->b_rptr; 12228 12229 ipst = tcps->tcps_netstack->netstack_ip; 12230 12231 if (ipsec_check_ipsecin_latch(ii, data_mp, ipl, ipha, ip6h, &reason, 12232 &counter, tcp->tcp_connp)) { 12233 BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded); 12234 return (B_TRUE); 12235 } 12236 (void) strlog(TCP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE, 12237 "tcp inbound policy mismatch: %s, packet dropped\n", 12238 reason); 12239 BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed); 12240 12241 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter, 12242 &tcps->tcps_dropper); 12243 return (B_FALSE); 12244 } 12245 12246 /* 12247 * tcp_ss_rexmit() is called in tcp_rput_data() to do slow start 12248 * retransmission after a timeout. 12249 * 12250 * To limit the number of duplicate segments, we limit the number of segment 12251 * to be sent in one time to tcp_snd_burst, the burst variable. 12252 */ 12253 static void 12254 tcp_ss_rexmit(tcp_t *tcp) 12255 { 12256 uint32_t snxt; 12257 uint32_t smax; 12258 int32_t win; 12259 int32_t mss; 12260 int32_t off; 12261 int32_t burst = tcp->tcp_snd_burst; 12262 mblk_t *snxt_mp; 12263 tcp_stack_t *tcps = tcp->tcp_tcps; 12264 12265 /* 12266 * Note that tcp_rexmit can be set even though TCP has retransmitted 12267 * all unack'ed segments. 12268 */ 12269 if (SEQ_LT(tcp->tcp_rexmit_nxt, tcp->tcp_rexmit_max)) { 12270 smax = tcp->tcp_rexmit_max; 12271 snxt = tcp->tcp_rexmit_nxt; 12272 if (SEQ_LT(snxt, tcp->tcp_suna)) { 12273 snxt = tcp->tcp_suna; 12274 } 12275 win = MIN(tcp->tcp_cwnd, tcp->tcp_swnd); 12276 win -= snxt - tcp->tcp_suna; 12277 mss = tcp->tcp_mss; 12278 snxt_mp = tcp_get_seg_mp(tcp, snxt, &off); 12279 12280 while (SEQ_LT(snxt, smax) && (win > 0) && 12281 (burst > 0) && (snxt_mp != NULL)) { 12282 mblk_t *xmit_mp; 12283 mblk_t *old_snxt_mp = snxt_mp; 12284 uint32_t cnt = mss; 12285 12286 if (win < cnt) { 12287 cnt = win; 12288 } 12289 if (SEQ_GT(snxt + cnt, smax)) { 12290 cnt = smax - snxt; 12291 } 12292 xmit_mp = tcp_xmit_mp(tcp, snxt_mp, cnt, &off, 12293 &snxt_mp, snxt, B_TRUE, &cnt, B_TRUE); 12294 if (xmit_mp == NULL) 12295 return; 12296 12297 tcp_send_data(tcp, tcp->tcp_wq, xmit_mp); 12298 12299 snxt += cnt; 12300 win -= cnt; 12301 /* 12302 * Update the send timestamp to avoid false 12303 * retransmission. 12304 */ 12305 old_snxt_mp->b_prev = (mblk_t *)lbolt; 12306 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 12307 UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, cnt); 12308 12309 tcp->tcp_rexmit_nxt = snxt; 12310 burst--; 12311 } 12312 /* 12313 * If we have transmitted all we have at the time 12314 * we started the retranmission, we can leave 12315 * the rest of the job to tcp_wput_data(). But we 12316 * need to check the send window first. If the 12317 * win is not 0, go on with tcp_wput_data(). 12318 */ 12319 if (SEQ_LT(snxt, smax) || win == 0) { 12320 return; 12321 } 12322 } 12323 /* Only call tcp_wput_data() if there is data to be sent. */ 12324 if (tcp->tcp_unsent) { 12325 tcp_wput_data(tcp, NULL, B_FALSE); 12326 } 12327 } 12328 12329 /* 12330 * Process all TCP option in SYN segment. Note that this function should 12331 * be called after tcp_adapt_ire() is called so that the necessary info 12332 * from IRE is already set in the tcp structure. 12333 * 12334 * This function sets up the correct tcp_mss value according to the 12335 * MSS option value and our header size. It also sets up the window scale 12336 * and timestamp values, and initialize SACK info blocks. But it does not 12337 * change receive window size after setting the tcp_mss value. The caller 12338 * should do the appropriate change. 12339 */ 12340 void 12341 tcp_process_options(tcp_t *tcp, tcph_t *tcph) 12342 { 12343 int options; 12344 tcp_opt_t tcpopt; 12345 uint32_t mss_max; 12346 char *tmp_tcph; 12347 tcp_stack_t *tcps = tcp->tcp_tcps; 12348 12349 tcpopt.tcp = NULL; 12350 options = tcp_parse_options(tcph, &tcpopt); 12351 12352 /* 12353 * Process MSS option. Note that MSS option value does not account 12354 * for IP or TCP options. This means that it is equal to MTU - minimum 12355 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for 12356 * IPv6. 12357 */ 12358 if (!(options & TCP_OPT_MSS_PRESENT)) { 12359 if (tcp->tcp_ipversion == IPV4_VERSION) 12360 tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv4; 12361 else 12362 tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv6; 12363 } else { 12364 if (tcp->tcp_ipversion == IPV4_VERSION) 12365 mss_max = tcps->tcps_mss_max_ipv4; 12366 else 12367 mss_max = tcps->tcps_mss_max_ipv6; 12368 if (tcpopt.tcp_opt_mss < tcps->tcps_mss_min) 12369 tcpopt.tcp_opt_mss = tcps->tcps_mss_min; 12370 else if (tcpopt.tcp_opt_mss > mss_max) 12371 tcpopt.tcp_opt_mss = mss_max; 12372 } 12373 12374 /* Process Window Scale option. */ 12375 if (options & TCP_OPT_WSCALE_PRESENT) { 12376 tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale; 12377 tcp->tcp_snd_ws_ok = B_TRUE; 12378 } else { 12379 tcp->tcp_snd_ws = B_FALSE; 12380 tcp->tcp_snd_ws_ok = B_FALSE; 12381 tcp->tcp_rcv_ws = B_FALSE; 12382 } 12383 12384 /* Process Timestamp option. */ 12385 if ((options & TCP_OPT_TSTAMP_PRESENT) && 12386 (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) { 12387 tmp_tcph = (char *)tcp->tcp_tcph; 12388 12389 tcp->tcp_snd_ts_ok = B_TRUE; 12390 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 12391 tcp->tcp_last_rcv_lbolt = lbolt64; 12392 ASSERT(OK_32PTR(tmp_tcph)); 12393 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 12394 12395 /* Fill in our template header with basic timestamp option. */ 12396 tmp_tcph += tcp->tcp_tcp_hdr_len; 12397 tmp_tcph[0] = TCPOPT_NOP; 12398 tmp_tcph[1] = TCPOPT_NOP; 12399 tmp_tcph[2] = TCPOPT_TSTAMP; 12400 tmp_tcph[3] = TCPOPT_TSTAMP_LEN; 12401 tcp->tcp_hdr_len += TCPOPT_REAL_TS_LEN; 12402 tcp->tcp_tcp_hdr_len += TCPOPT_REAL_TS_LEN; 12403 tcp->tcp_tcph->th_offset_and_rsrvd[0] += (3 << 4); 12404 } else { 12405 tcp->tcp_snd_ts_ok = B_FALSE; 12406 } 12407 12408 /* 12409 * Process SACK options. If SACK is enabled for this connection, 12410 * then allocate the SACK info structure. Note the following ways 12411 * when tcp_snd_sack_ok is set to true. 12412 * 12413 * For active connection: in tcp_adapt_ire() called in 12414 * tcp_rput_other(), or in tcp_rput_other() when tcp_sack_permitted 12415 * is checked. 12416 * 12417 * For passive connection: in tcp_adapt_ire() called in 12418 * tcp_accept_comm(). 12419 * 12420 * That's the reason why the extra TCP_IS_DETACHED() check is there. 12421 * That check makes sure that if we did not send a SACK OK option, 12422 * we will not enable SACK for this connection even though the other 12423 * side sends us SACK OK option. For active connection, the SACK 12424 * info structure has already been allocated. So we need to free 12425 * it if SACK is disabled. 12426 */ 12427 if ((options & TCP_OPT_SACK_OK_PRESENT) && 12428 (tcp->tcp_snd_sack_ok || 12429 (tcps->tcps_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) { 12430 /* This should be true only in the passive case. */ 12431 if (tcp->tcp_sack_info == NULL) { 12432 ASSERT(TCP_IS_DETACHED(tcp)); 12433 tcp->tcp_sack_info = 12434 kmem_cache_alloc(tcp_sack_info_cache, KM_NOSLEEP); 12435 } 12436 if (tcp->tcp_sack_info == NULL) { 12437 tcp->tcp_snd_sack_ok = B_FALSE; 12438 } else { 12439 tcp->tcp_snd_sack_ok = B_TRUE; 12440 if (tcp->tcp_snd_ts_ok) { 12441 tcp->tcp_max_sack_blk = 3; 12442 } else { 12443 tcp->tcp_max_sack_blk = 4; 12444 } 12445 } 12446 } else { 12447 /* 12448 * Resetting tcp_snd_sack_ok to B_FALSE so that 12449 * no SACK info will be used for this 12450 * connection. This assumes that SACK usage 12451 * permission is negotiated. This may need 12452 * to be changed once this is clarified. 12453 */ 12454 if (tcp->tcp_sack_info != NULL) { 12455 ASSERT(tcp->tcp_notsack_list == NULL); 12456 kmem_cache_free(tcp_sack_info_cache, 12457 tcp->tcp_sack_info); 12458 tcp->tcp_sack_info = NULL; 12459 } 12460 tcp->tcp_snd_sack_ok = B_FALSE; 12461 } 12462 12463 /* 12464 * Now we know the exact TCP/IP header length, subtract 12465 * that from tcp_mss to get our side's MSS. 12466 */ 12467 tcp->tcp_mss -= tcp->tcp_hdr_len; 12468 /* 12469 * Here we assume that the other side's header size will be equal to 12470 * our header size. We calculate the real MSS accordingly. Need to 12471 * take into additional stuffs IPsec puts in. 12472 * 12473 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header) 12474 */ 12475 tcpopt.tcp_opt_mss -= tcp->tcp_hdr_len + tcp->tcp_ipsec_overhead - 12476 ((tcp->tcp_ipversion == IPV4_VERSION ? 12477 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH); 12478 12479 /* 12480 * Set MSS to the smaller one of both ends of the connection. 12481 * We should not have called tcp_mss_set() before, but our 12482 * side of the MSS should have been set to a proper value 12483 * by tcp_adapt_ire(). tcp_mss_set() will also set up the 12484 * STREAM head parameters properly. 12485 * 12486 * If we have a larger-than-16-bit window but the other side 12487 * didn't want to do window scale, tcp_rwnd_set() will take 12488 * care of that. 12489 */ 12490 tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss), B_TRUE); 12491 } 12492 12493 /* 12494 * Sends the T_CONN_IND to the listener. The caller calls this 12495 * functions via squeue to get inside the listener's perimeter 12496 * once the 3 way hand shake is done a T_CONN_IND needs to be 12497 * sent. As an optimization, the caller can call this directly 12498 * if listener's perimeter is same as eager's. 12499 */ 12500 /* ARGSUSED */ 12501 void 12502 tcp_send_conn_ind(void *arg, mblk_t *mp, void *arg2) 12503 { 12504 conn_t *lconnp = (conn_t *)arg; 12505 tcp_t *listener = lconnp->conn_tcp; 12506 tcp_t *tcp; 12507 struct T_conn_ind *conn_ind; 12508 ipaddr_t *addr_cache; 12509 boolean_t need_send_conn_ind = B_FALSE; 12510 tcp_stack_t *tcps = listener->tcp_tcps; 12511 12512 /* retrieve the eager */ 12513 conn_ind = (struct T_conn_ind *)mp->b_rptr; 12514 ASSERT(conn_ind->OPT_offset != 0 && 12515 conn_ind->OPT_length == sizeof (intptr_t)); 12516 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 12517 conn_ind->OPT_length); 12518 12519 /* 12520 * TLI/XTI applications will get confused by 12521 * sending eager as an option since it violates 12522 * the option semantics. So remove the eager as 12523 * option since TLI/XTI app doesn't need it anyway. 12524 */ 12525 if (!TCP_IS_SOCKET(listener)) { 12526 conn_ind->OPT_length = 0; 12527 conn_ind->OPT_offset = 0; 12528 } 12529 if (listener->tcp_state == TCPS_CLOSED || 12530 TCP_IS_DETACHED(listener)) { 12531 /* 12532 * If listener has closed, it would have caused a 12533 * a cleanup/blowoff to happen for the eager. We 12534 * just need to return. 12535 */ 12536 freemsg(mp); 12537 return; 12538 } 12539 12540 12541 /* 12542 * if the conn_req_q is full defer passing up the 12543 * T_CONN_IND until space is availabe after t_accept() 12544 * processing 12545 */ 12546 mutex_enter(&listener->tcp_eager_lock); 12547 12548 /* 12549 * Take the eager out, if it is in the list of droppable eagers 12550 * as we are here because the 3W handshake is over. 12551 */ 12552 MAKE_UNDROPPABLE(tcp); 12553 12554 if (listener->tcp_conn_req_cnt_q < listener->tcp_conn_req_max) { 12555 tcp_t *tail; 12556 12557 /* 12558 * The eager already has an extra ref put in tcp_rput_data 12559 * so that it stays till accept comes back even though it 12560 * might get into TCPS_CLOSED as a result of a TH_RST etc. 12561 */ 12562 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 12563 listener->tcp_conn_req_cnt_q0--; 12564 listener->tcp_conn_req_cnt_q++; 12565 12566 /* Move from SYN_RCVD to ESTABLISHED list */ 12567 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 12568 tcp->tcp_eager_prev_q0; 12569 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 12570 tcp->tcp_eager_next_q0; 12571 tcp->tcp_eager_prev_q0 = NULL; 12572 tcp->tcp_eager_next_q0 = NULL; 12573 12574 /* 12575 * Insert at end of the queue because sockfs 12576 * sends down T_CONN_RES in chronological 12577 * order. Leaving the older conn indications 12578 * at front of the queue helps reducing search 12579 * time. 12580 */ 12581 tail = listener->tcp_eager_last_q; 12582 if (tail != NULL) 12583 tail->tcp_eager_next_q = tcp; 12584 else 12585 listener->tcp_eager_next_q = tcp; 12586 listener->tcp_eager_last_q = tcp; 12587 tcp->tcp_eager_next_q = NULL; 12588 /* 12589 * Delay sending up the T_conn_ind until we are 12590 * done with the eager. Once we have have sent up 12591 * the T_conn_ind, the accept can potentially complete 12592 * any time and release the refhold we have on the eager. 12593 */ 12594 need_send_conn_ind = B_TRUE; 12595 } else { 12596 /* 12597 * Defer connection on q0 and set deferred 12598 * connection bit true 12599 */ 12600 tcp->tcp_conn_def_q0 = B_TRUE; 12601 12602 /* take tcp out of q0 ... */ 12603 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 12604 tcp->tcp_eager_next_q0; 12605 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 12606 tcp->tcp_eager_prev_q0; 12607 12608 /* ... and place it at the end of q0 */ 12609 tcp->tcp_eager_prev_q0 = listener->tcp_eager_prev_q0; 12610 tcp->tcp_eager_next_q0 = listener; 12611 listener->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp; 12612 listener->tcp_eager_prev_q0 = tcp; 12613 tcp->tcp_conn.tcp_eager_conn_ind = mp; 12614 } 12615 12616 /* we have timed out before */ 12617 if (tcp->tcp_syn_rcvd_timeout != 0) { 12618 tcp->tcp_syn_rcvd_timeout = 0; 12619 listener->tcp_syn_rcvd_timeout--; 12620 if (listener->tcp_syn_defense && 12621 listener->tcp_syn_rcvd_timeout <= 12622 (tcps->tcps_conn_req_max_q0 >> 5) && 12623 10*MINUTES < TICK_TO_MSEC(lbolt64 - 12624 listener->tcp_last_rcv_lbolt)) { 12625 /* 12626 * Turn off the defense mode if we 12627 * believe the SYN attack is over. 12628 */ 12629 listener->tcp_syn_defense = B_FALSE; 12630 if (listener->tcp_ip_addr_cache) { 12631 kmem_free((void *)listener->tcp_ip_addr_cache, 12632 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 12633 listener->tcp_ip_addr_cache = NULL; 12634 } 12635 } 12636 } 12637 addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache); 12638 if (addr_cache != NULL) { 12639 /* 12640 * We have finished a 3-way handshake with this 12641 * remote host. This proves the IP addr is good. 12642 * Cache it! 12643 */ 12644 addr_cache[IP_ADDR_CACHE_HASH( 12645 tcp->tcp_remote)] = tcp->tcp_remote; 12646 } 12647 mutex_exit(&listener->tcp_eager_lock); 12648 if (need_send_conn_ind) 12649 tcp_ulp_newconn(lconnp, tcp->tcp_connp, mp); 12650 } 12651 12652 /* 12653 * Send the newconn notification to ulp. The eager is blown off if the 12654 * notification fails. 12655 */ 12656 static void 12657 tcp_ulp_newconn(conn_t *lconnp, conn_t *econnp, mblk_t *mp) 12658 { 12659 if (IPCL_IS_NONSTR(lconnp)) { 12660 cred_t *cr; 12661 pid_t cpid; 12662 12663 cr = msg_getcred(mp, &cpid); 12664 12665 ASSERT(econnp->conn_tcp->tcp_listener == lconnp->conn_tcp); 12666 ASSERT(econnp->conn_tcp->tcp_saved_listener == 12667 lconnp->conn_tcp); 12668 12669 /* Keep the message around in case of a fallback to TPI */ 12670 econnp->conn_tcp->tcp_conn.tcp_eager_conn_ind = mp; 12671 12672 /* 12673 * Notify the ULP about the newconn. It is guaranteed that no 12674 * tcp_accept() call will be made for the eager if the 12675 * notification fails, so it's safe to blow it off in that 12676 * case. 12677 * 12678 * The upper handle will be assigned when tcp_accept() is 12679 * called. 12680 */ 12681 if ((*lconnp->conn_upcalls->su_newconn) 12682 (lconnp->conn_upper_handle, 12683 (sock_lower_handle_t)econnp, 12684 &sock_tcp_downcalls, cr, cpid, 12685 &econnp->conn_upcalls) == NULL) { 12686 /* Failed to allocate a socket */ 12687 BUMP_MIB(&lconnp->conn_tcp->tcp_tcps->tcps_mib, 12688 tcpEstabResets); 12689 (void) tcp_eager_blowoff(lconnp->conn_tcp, 12690 econnp->conn_tcp->tcp_conn_req_seqnum); 12691 } 12692 } else { 12693 putnext(lconnp->conn_tcp->tcp_rq, mp); 12694 } 12695 } 12696 12697 mblk_t * 12698 tcp_find_pktinfo(tcp_t *tcp, mblk_t *mp, uint_t *ipversp, uint_t *ip_hdr_lenp, 12699 uint_t *ifindexp, ip6_pkt_t *ippp) 12700 { 12701 ip_pktinfo_t *pinfo; 12702 ip6_t *ip6h; 12703 uchar_t *rptr; 12704 mblk_t *first_mp = mp; 12705 boolean_t mctl_present = B_FALSE; 12706 uint_t ifindex = 0; 12707 ip6_pkt_t ipp; 12708 uint_t ipvers; 12709 uint_t ip_hdr_len; 12710 tcp_stack_t *tcps = tcp->tcp_tcps; 12711 12712 rptr = mp->b_rptr; 12713 ASSERT(OK_32PTR(rptr)); 12714 ASSERT(tcp != NULL); 12715 ipp.ipp_fields = 0; 12716 12717 switch DB_TYPE(mp) { 12718 case M_CTL: 12719 mp = mp->b_cont; 12720 if (mp == NULL) { 12721 freemsg(first_mp); 12722 return (NULL); 12723 } 12724 if (DB_TYPE(mp) != M_DATA) { 12725 freemsg(first_mp); 12726 return (NULL); 12727 } 12728 mctl_present = B_TRUE; 12729 break; 12730 case M_DATA: 12731 break; 12732 default: 12733 cmn_err(CE_NOTE, "tcp_find_pktinfo: unknown db_type"); 12734 freemsg(mp); 12735 return (NULL); 12736 } 12737 ipvers = IPH_HDR_VERSION(rptr); 12738 if (ipvers == IPV4_VERSION) { 12739 if (tcp == NULL) { 12740 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12741 goto done; 12742 } 12743 12744 ipp.ipp_fields |= IPPF_HOPLIMIT; 12745 ipp.ipp_hoplimit = ((ipha_t *)rptr)->ipha_ttl; 12746 12747 /* 12748 * If we have IN_PKTINFO in an M_CTL and tcp_ipv6_recvancillary 12749 * has TCP_IPV6_RECVPKTINFO set, pass I/F index along in ipp. 12750 */ 12751 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) && 12752 mctl_present) { 12753 pinfo = (ip_pktinfo_t *)first_mp->b_rptr; 12754 if ((MBLKL(first_mp) == sizeof (ip_pktinfo_t)) && 12755 (pinfo->ip_pkt_ulp_type == IN_PKTINFO) && 12756 (pinfo->ip_pkt_flags & IPF_RECVIF)) { 12757 ipp.ipp_fields |= IPPF_IFINDEX; 12758 ipp.ipp_ifindex = pinfo->ip_pkt_ifindex; 12759 ifindex = pinfo->ip_pkt_ifindex; 12760 } 12761 freeb(first_mp); 12762 mctl_present = B_FALSE; 12763 } 12764 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12765 } else { 12766 ip6h = (ip6_t *)rptr; 12767 12768 ASSERT(ipvers == IPV6_VERSION); 12769 ipp.ipp_fields = IPPF_HOPLIMIT | IPPF_TCLASS; 12770 ipp.ipp_tclass = (ip6h->ip6_flow & 0x0FF00000) >> 20; 12771 ipp.ipp_hoplimit = ip6h->ip6_hops; 12772 12773 if (ip6h->ip6_nxt != IPPROTO_TCP) { 12774 uint8_t nexthdrp; 12775 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 12776 12777 /* Look for ifindex information */ 12778 if (ip6h->ip6_nxt == IPPROTO_RAW) { 12779 ip6i_t *ip6i = (ip6i_t *)ip6h; 12780 if ((uchar_t *)&ip6i[1] > mp->b_wptr) { 12781 BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs); 12782 freemsg(first_mp); 12783 return (NULL); 12784 } 12785 12786 if (ip6i->ip6i_flags & IP6I_IFINDEX) { 12787 ASSERT(ip6i->ip6i_ifindex != 0); 12788 ipp.ipp_fields |= IPPF_IFINDEX; 12789 ipp.ipp_ifindex = ip6i->ip6i_ifindex; 12790 ifindex = ip6i->ip6i_ifindex; 12791 } 12792 rptr = (uchar_t *)&ip6i[1]; 12793 mp->b_rptr = rptr; 12794 if (rptr == mp->b_wptr) { 12795 mblk_t *mp1; 12796 mp1 = mp->b_cont; 12797 freeb(mp); 12798 mp = mp1; 12799 rptr = mp->b_rptr; 12800 } 12801 if (MBLKL(mp) < IPV6_HDR_LEN + 12802 sizeof (tcph_t)) { 12803 BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs); 12804 freemsg(first_mp); 12805 return (NULL); 12806 } 12807 ip6h = (ip6_t *)rptr; 12808 } 12809 12810 /* 12811 * Find any potentially interesting extension headers 12812 * as well as the length of the IPv6 + extension 12813 * headers. 12814 */ 12815 ip_hdr_len = ip_find_hdr_v6(mp, ip6h, &ipp, &nexthdrp); 12816 /* Verify if this is a TCP packet */ 12817 if (nexthdrp != IPPROTO_TCP) { 12818 BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs); 12819 freemsg(first_mp); 12820 return (NULL); 12821 } 12822 } else { 12823 ip_hdr_len = IPV6_HDR_LEN; 12824 } 12825 } 12826 12827 done: 12828 if (ipversp != NULL) 12829 *ipversp = ipvers; 12830 if (ip_hdr_lenp != NULL) 12831 *ip_hdr_lenp = ip_hdr_len; 12832 if (ippp != NULL) 12833 *ippp = ipp; 12834 if (ifindexp != NULL) 12835 *ifindexp = ifindex; 12836 if (mctl_present) { 12837 freeb(first_mp); 12838 } 12839 return (mp); 12840 } 12841 12842 /* 12843 * Handle M_DATA messages from IP. Its called directly from IP via 12844 * squeue for AF_INET type sockets fast path. No M_CTL are expected 12845 * in this path. 12846 * 12847 * For everything else (including AF_INET6 sockets with 'tcp_ipversion' 12848 * v4 and v6), we are called through tcp_input() and a M_CTL can 12849 * be present for options but tcp_find_pktinfo() deals with it. We 12850 * only expect M_DATA packets after tcp_find_pktinfo() is done. 12851 * 12852 * The first argument is always the connp/tcp to which the mp belongs. 12853 * There are no exceptions to this rule. The caller has already put 12854 * a reference on this connp/tcp and once tcp_rput_data() returns, 12855 * the squeue will do the refrele. 12856 * 12857 * The TH_SYN for the listener directly go to tcp_conn_request via 12858 * squeue. 12859 * 12860 * sqp: NULL = recursive, sqp != NULL means called from squeue 12861 */ 12862 void 12863 tcp_rput_data(void *arg, mblk_t *mp, void *arg2) 12864 { 12865 int32_t bytes_acked; 12866 int32_t gap; 12867 mblk_t *mp1; 12868 uint_t flags; 12869 uint32_t new_swnd = 0; 12870 uchar_t *iphdr; 12871 uchar_t *rptr; 12872 int32_t rgap; 12873 uint32_t seg_ack; 12874 int seg_len; 12875 uint_t ip_hdr_len; 12876 uint32_t seg_seq; 12877 tcph_t *tcph; 12878 int urp; 12879 tcp_opt_t tcpopt; 12880 uint_t ipvers; 12881 ip6_pkt_t ipp; 12882 boolean_t ofo_seg = B_FALSE; /* Out of order segment */ 12883 uint32_t cwnd; 12884 uint32_t add; 12885 int npkt; 12886 int mss; 12887 conn_t *connp = (conn_t *)arg; 12888 squeue_t *sqp = (squeue_t *)arg2; 12889 tcp_t *tcp = connp->conn_tcp; 12890 tcp_stack_t *tcps = tcp->tcp_tcps; 12891 12892 /* 12893 * RST from fused tcp loopback peer should trigger an unfuse. 12894 */ 12895 if (tcp->tcp_fused) { 12896 TCP_STAT(tcps, tcp_fusion_aborted); 12897 tcp_unfuse(tcp); 12898 } 12899 12900 iphdr = mp->b_rptr; 12901 rptr = mp->b_rptr; 12902 ASSERT(OK_32PTR(rptr)); 12903 12904 /* 12905 * An AF_INET socket is not capable of receiving any pktinfo. Do inline 12906 * processing here. For rest call tcp_find_pktinfo to fill up the 12907 * necessary information. 12908 */ 12909 if (IPCL_IS_TCP4(connp)) { 12910 ipvers = IPV4_VERSION; 12911 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12912 } else { 12913 mp = tcp_find_pktinfo(tcp, mp, &ipvers, &ip_hdr_len, 12914 NULL, &ipp); 12915 if (mp == NULL) { 12916 TCP_STAT(tcps, tcp_rput_v6_error); 12917 return; 12918 } 12919 iphdr = mp->b_rptr; 12920 rptr = mp->b_rptr; 12921 } 12922 ASSERT(DB_TYPE(mp) == M_DATA); 12923 ASSERT(mp->b_next == NULL); 12924 12925 tcph = (tcph_t *)&rptr[ip_hdr_len]; 12926 seg_seq = ABE32_TO_U32(tcph->th_seq); 12927 seg_ack = ABE32_TO_U32(tcph->th_ack); 12928 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 12929 seg_len = (int)(mp->b_wptr - rptr) - 12930 (ip_hdr_len + TCP_HDR_LENGTH(tcph)); 12931 if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) { 12932 do { 12933 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 12934 (uintptr_t)INT_MAX); 12935 seg_len += (int)(mp1->b_wptr - mp1->b_rptr); 12936 } while ((mp1 = mp1->b_cont) != NULL && 12937 mp1->b_datap->db_type == M_DATA); 12938 } 12939 12940 if (tcp->tcp_state == TCPS_TIME_WAIT) { 12941 tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack, 12942 seg_len, tcph); 12943 return; 12944 } 12945 12946 if (sqp != NULL) { 12947 /* 12948 * This is the correct place to update tcp_last_recv_time. Note 12949 * that it is also updated for tcp structure that belongs to 12950 * global and listener queues which do not really need updating. 12951 * But that should not cause any harm. And it is updated for 12952 * all kinds of incoming segments, not only for data segments. 12953 */ 12954 tcp->tcp_last_recv_time = lbolt; 12955 } 12956 12957 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 12958 12959 BUMP_LOCAL(tcp->tcp_ibsegs); 12960 DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp); 12961 12962 if ((flags & TH_URG) && sqp != NULL) { 12963 /* 12964 * TCP can't handle urgent pointers that arrive before 12965 * the connection has been accept()ed since it can't 12966 * buffer OOB data. Discard segment if this happens. 12967 * 12968 * We can't just rely on a non-null tcp_listener to indicate 12969 * that the accept() has completed since unlinking of the 12970 * eager and completion of the accept are not atomic. 12971 * tcp_detached, when it is not set (B_FALSE) indicates 12972 * that the accept() has completed. 12973 * 12974 * Nor can it reassemble urgent pointers, so discard 12975 * if it's not the next segment expected. 12976 * 12977 * Otherwise, collapse chain into one mblk (discard if 12978 * that fails). This makes sure the headers, retransmitted 12979 * data, and new data all are in the same mblk. 12980 */ 12981 ASSERT(mp != NULL); 12982 if (tcp->tcp_detached || !pullupmsg(mp, -1)) { 12983 freemsg(mp); 12984 return; 12985 } 12986 /* Update pointers into message */ 12987 iphdr = rptr = mp->b_rptr; 12988 tcph = (tcph_t *)&rptr[ip_hdr_len]; 12989 if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) { 12990 /* 12991 * Since we can't handle any data with this urgent 12992 * pointer that is out of sequence, we expunge 12993 * the data. This allows us to still register 12994 * the urgent mark and generate the M_PCSIG, 12995 * which we can do. 12996 */ 12997 mp->b_wptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph); 12998 seg_len = 0; 12999 } 13000 } 13001 13002 switch (tcp->tcp_state) { 13003 case TCPS_SYN_SENT: 13004 if (flags & TH_ACK) { 13005 /* 13006 * Note that our stack cannot send data before a 13007 * connection is established, therefore the 13008 * following check is valid. Otherwise, it has 13009 * to be changed. 13010 */ 13011 if (SEQ_LEQ(seg_ack, tcp->tcp_iss) || 13012 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 13013 freemsg(mp); 13014 if (flags & TH_RST) 13015 return; 13016 tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq", 13017 tcp, seg_ack, 0, TH_RST); 13018 return; 13019 } 13020 ASSERT(tcp->tcp_suna + 1 == seg_ack); 13021 } 13022 if (flags & TH_RST) { 13023 freemsg(mp); 13024 if (flags & TH_ACK) 13025 (void) tcp_clean_death(tcp, 13026 ECONNREFUSED, 13); 13027 return; 13028 } 13029 if (!(flags & TH_SYN)) { 13030 freemsg(mp); 13031 return; 13032 } 13033 13034 /* Process all TCP options. */ 13035 tcp_process_options(tcp, tcph); 13036 /* 13037 * The following changes our rwnd to be a multiple of the 13038 * MIN(peer MSS, our MSS) for performance reason. 13039 */ 13040 (void) tcp_rwnd_set(tcp, 13041 MSS_ROUNDUP(tcp->tcp_recv_hiwater, tcp->tcp_mss)); 13042 13043 /* Is the other end ECN capable? */ 13044 if (tcp->tcp_ecn_ok) { 13045 if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) { 13046 tcp->tcp_ecn_ok = B_FALSE; 13047 } 13048 } 13049 /* 13050 * Clear ECN flags because it may interfere with later 13051 * processing. 13052 */ 13053 flags &= ~(TH_ECE|TH_CWR); 13054 13055 tcp->tcp_irs = seg_seq; 13056 tcp->tcp_rack = seg_seq; 13057 tcp->tcp_rnxt = seg_seq + 1; 13058 U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack); 13059 if (!TCP_IS_DETACHED(tcp)) { 13060 /* Allocate room for SACK options if needed. */ 13061 if (tcp->tcp_snd_sack_ok) { 13062 (void) proto_set_tx_wroff(tcp->tcp_rq, connp, 13063 tcp->tcp_hdr_len + 13064 TCPOPT_MAX_SACK_LEN + 13065 (tcp->tcp_loopback ? 0 : 13066 tcps->tcps_wroff_xtra)); 13067 } else { 13068 (void) proto_set_tx_wroff(tcp->tcp_rq, connp, 13069 tcp->tcp_hdr_len + 13070 (tcp->tcp_loopback ? 0 : 13071 tcps->tcps_wroff_xtra)); 13072 } 13073 } 13074 if (flags & TH_ACK) { 13075 /* 13076 * If we can't get the confirmation upstream, pretend 13077 * we didn't even see this one. 13078 * 13079 * XXX: how can we pretend we didn't see it if we 13080 * have updated rnxt et. al. 13081 * 13082 * For loopback we defer sending up the T_CONN_CON 13083 * until after some checks below. 13084 */ 13085 mp1 = NULL; 13086 if (!tcp_conn_con(tcp, iphdr, tcph, mp, 13087 tcp->tcp_loopback ? &mp1 : NULL)) { 13088 freemsg(mp); 13089 return; 13090 } 13091 /* SYN was acked - making progress */ 13092 if (tcp->tcp_ipversion == IPV6_VERSION) 13093 tcp->tcp_ip_forward_progress = B_TRUE; 13094 13095 /* One for the SYN */ 13096 tcp->tcp_suna = tcp->tcp_iss + 1; 13097 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 13098 tcp->tcp_state = TCPS_ESTABLISHED; 13099 13100 /* 13101 * If SYN was retransmitted, need to reset all 13102 * retransmission info. This is because this 13103 * segment will be treated as a dup ACK. 13104 */ 13105 if (tcp->tcp_rexmit) { 13106 tcp->tcp_rexmit = B_FALSE; 13107 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 13108 tcp->tcp_rexmit_max = tcp->tcp_snxt; 13109 tcp->tcp_snd_burst = tcp->tcp_localnet ? 13110 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 13111 tcp->tcp_ms_we_have_waited = 0; 13112 13113 /* 13114 * Set tcp_cwnd back to 1 MSS, per 13115 * recommendation from 13116 * draft-floyd-incr-init-win-01.txt, 13117 * Increasing TCP's Initial Window. 13118 */ 13119 tcp->tcp_cwnd = tcp->tcp_mss; 13120 } 13121 13122 tcp->tcp_swl1 = seg_seq; 13123 tcp->tcp_swl2 = seg_ack; 13124 13125 new_swnd = BE16_TO_U16(tcph->th_win); 13126 tcp->tcp_swnd = new_swnd; 13127 if (new_swnd > tcp->tcp_max_swnd) 13128 tcp->tcp_max_swnd = new_swnd; 13129 13130 /* 13131 * Always send the three-way handshake ack immediately 13132 * in order to make the connection complete as soon as 13133 * possible on the accepting host. 13134 */ 13135 flags |= TH_ACK_NEEDED; 13136 13137 /* 13138 * Special case for loopback. At this point we have 13139 * received SYN-ACK from the remote endpoint. In 13140 * order to ensure that both endpoints reach the 13141 * fused state prior to any data exchange, the final 13142 * ACK needs to be sent before we indicate T_CONN_CON 13143 * to the module upstream. 13144 */ 13145 if (tcp->tcp_loopback) { 13146 mblk_t *ack_mp; 13147 13148 ASSERT(!tcp->tcp_unfusable); 13149 ASSERT(mp1 != NULL); 13150 /* 13151 * For loopback, we always get a pure SYN-ACK 13152 * and only need to send back the final ACK 13153 * with no data (this is because the other 13154 * tcp is ours and we don't do T/TCP). This 13155 * final ACK triggers the passive side to 13156 * perform fusion in ESTABLISHED state. 13157 */ 13158 if ((ack_mp = tcp_ack_mp(tcp)) != NULL) { 13159 if (tcp->tcp_ack_tid != 0) { 13160 (void) TCP_TIMER_CANCEL(tcp, 13161 tcp->tcp_ack_tid); 13162 tcp->tcp_ack_tid = 0; 13163 } 13164 tcp_send_data(tcp, tcp->tcp_wq, ack_mp); 13165 BUMP_LOCAL(tcp->tcp_obsegs); 13166 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 13167 13168 if (!IPCL_IS_NONSTR(connp)) { 13169 /* Send up T_CONN_CON */ 13170 putnext(tcp->tcp_rq, mp1); 13171 } else { 13172 cred_t *cr; 13173 pid_t cpid; 13174 13175 cr = msg_getcred(mp1, &cpid); 13176 (*connp->conn_upcalls-> 13177 su_connected) 13178 (connp->conn_upper_handle, 13179 tcp->tcp_connid, cr, cpid); 13180 freemsg(mp1); 13181 } 13182 13183 freemsg(mp); 13184 return; 13185 } 13186 /* 13187 * Forget fusion; we need to handle more 13188 * complex cases below. Send the deferred 13189 * T_CONN_CON message upstream and proceed 13190 * as usual. Mark this tcp as not capable 13191 * of fusion. 13192 */ 13193 TCP_STAT(tcps, tcp_fusion_unfusable); 13194 tcp->tcp_unfusable = B_TRUE; 13195 if (!IPCL_IS_NONSTR(connp)) { 13196 putnext(tcp->tcp_rq, mp1); 13197 } else { 13198 cred_t *cr; 13199 pid_t cpid; 13200 13201 cr = msg_getcred(mp1, &cpid); 13202 (*connp->conn_upcalls->su_connected) 13203 (connp->conn_upper_handle, 13204 tcp->tcp_connid, cr, cpid); 13205 freemsg(mp1); 13206 } 13207 } 13208 13209 /* 13210 * Check to see if there is data to be sent. If 13211 * yes, set the transmit flag. Then check to see 13212 * if received data processing needs to be done. 13213 * If not, go straight to xmit_check. This short 13214 * cut is OK as we don't support T/TCP. 13215 */ 13216 if (tcp->tcp_unsent) 13217 flags |= TH_XMIT_NEEDED; 13218 13219 if (seg_len == 0 && !(flags & TH_URG)) { 13220 freemsg(mp); 13221 goto xmit_check; 13222 } 13223 13224 flags &= ~TH_SYN; 13225 seg_seq++; 13226 break; 13227 } 13228 tcp->tcp_state = TCPS_SYN_RCVD; 13229 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss, 13230 NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 13231 if (mp1) { 13232 /* 13233 * See comment in tcp_conn_request() for why we use 13234 * the open() time pid here. 13235 */ 13236 DB_CPID(mp1) = tcp->tcp_cpid; 13237 tcp_send_data(tcp, tcp->tcp_wq, mp1); 13238 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 13239 } 13240 freemsg(mp); 13241 return; 13242 case TCPS_SYN_RCVD: 13243 if (flags & TH_ACK) { 13244 /* 13245 * In this state, a SYN|ACK packet is either bogus 13246 * because the other side must be ACKing our SYN which 13247 * indicates it has seen the ACK for their SYN and 13248 * shouldn't retransmit it or we're crossing SYNs 13249 * on active open. 13250 */ 13251 if ((flags & TH_SYN) && !tcp->tcp_active_open) { 13252 freemsg(mp); 13253 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn", 13254 tcp, seg_ack, 0, TH_RST); 13255 return; 13256 } 13257 /* 13258 * NOTE: RFC 793 pg. 72 says this should be 13259 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt 13260 * but that would mean we have an ack that ignored 13261 * our SYN. 13262 */ 13263 if (SEQ_LEQ(seg_ack, tcp->tcp_suna) || 13264 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 13265 freemsg(mp); 13266 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack", 13267 tcp, seg_ack, 0, TH_RST); 13268 return; 13269 } 13270 } 13271 break; 13272 case TCPS_LISTEN: 13273 /* 13274 * Only a TLI listener can come through this path when a 13275 * acceptor is going back to be a listener and a packet 13276 * for the acceptor hits the classifier. For a socket 13277 * listener, this can never happen because a listener 13278 * can never accept connection on itself and hence a 13279 * socket acceptor can not go back to being a listener. 13280 */ 13281 ASSERT(!TCP_IS_SOCKET(tcp)); 13282 /*FALLTHRU*/ 13283 case TCPS_CLOSED: 13284 case TCPS_BOUND: { 13285 conn_t *new_connp; 13286 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 13287 13288 new_connp = ipcl_classify(mp, connp->conn_zoneid, ipst); 13289 if (new_connp != NULL) { 13290 tcp_reinput(new_connp, mp, connp->conn_sqp); 13291 return; 13292 } 13293 /* We failed to classify. For now just drop the packet */ 13294 freemsg(mp); 13295 return; 13296 } 13297 case TCPS_IDLE: 13298 /* 13299 * Handle the case where the tcp_clean_death() has happened 13300 * on a connection (application hasn't closed yet) but a packet 13301 * was already queued on squeue before tcp_clean_death() 13302 * was processed. Calling tcp_clean_death() twice on same 13303 * connection can result in weird behaviour. 13304 */ 13305 freemsg(mp); 13306 return; 13307 default: 13308 break; 13309 } 13310 13311 /* 13312 * Already on the correct queue/perimeter. 13313 * If this is a detached connection and not an eager 13314 * connection hanging off a listener then new data 13315 * (past the FIN) will cause a reset. 13316 * We do a special check here where it 13317 * is out of the main line, rather than check 13318 * if we are detached every time we see new 13319 * data down below. 13320 */ 13321 if (TCP_IS_DETACHED_NONEAGER(tcp) && 13322 (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) { 13323 BUMP_MIB(&tcps->tcps_mib, tcpInClosed); 13324 DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp); 13325 13326 freemsg(mp); 13327 /* 13328 * This could be an SSL closure alert. We're detached so just 13329 * acknowledge it this last time. 13330 */ 13331 if (tcp->tcp_kssl_ctx != NULL) { 13332 kssl_release_ctx(tcp->tcp_kssl_ctx); 13333 tcp->tcp_kssl_ctx = NULL; 13334 13335 tcp->tcp_rnxt += seg_len; 13336 U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack); 13337 flags |= TH_ACK_NEEDED; 13338 goto ack_check; 13339 } 13340 13341 tcp_xmit_ctl("new data when detached", tcp, 13342 tcp->tcp_snxt, 0, TH_RST); 13343 (void) tcp_clean_death(tcp, EPROTO, 12); 13344 return; 13345 } 13346 13347 mp->b_rptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph); 13348 urp = BE16_TO_U16(tcph->th_urp) - TCP_OLD_URP_INTERPRETATION; 13349 new_swnd = BE16_TO_U16(tcph->th_win) << 13350 ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws); 13351 13352 if (tcp->tcp_snd_ts_ok) { 13353 if (!tcp_paws_check(tcp, tcph, &tcpopt)) { 13354 /* 13355 * This segment is not acceptable. 13356 * Drop it and send back an ACK. 13357 */ 13358 freemsg(mp); 13359 flags |= TH_ACK_NEEDED; 13360 goto ack_check; 13361 } 13362 } else if (tcp->tcp_snd_sack_ok) { 13363 ASSERT(tcp->tcp_sack_info != NULL); 13364 tcpopt.tcp = tcp; 13365 /* 13366 * SACK info in already updated in tcp_parse_options. Ignore 13367 * all other TCP options... 13368 */ 13369 (void) tcp_parse_options(tcph, &tcpopt); 13370 } 13371 try_again:; 13372 mss = tcp->tcp_mss; 13373 gap = seg_seq - tcp->tcp_rnxt; 13374 rgap = tcp->tcp_rwnd - (gap + seg_len); 13375 /* 13376 * gap is the amount of sequence space between what we expect to see 13377 * and what we got for seg_seq. A positive value for gap means 13378 * something got lost. A negative value means we got some old stuff. 13379 */ 13380 if (gap < 0) { 13381 /* Old stuff present. Is the SYN in there? */ 13382 if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) && 13383 (seg_len != 0)) { 13384 flags &= ~TH_SYN; 13385 seg_seq++; 13386 urp--; 13387 /* Recompute the gaps after noting the SYN. */ 13388 goto try_again; 13389 } 13390 BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); 13391 UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, 13392 (seg_len > -gap ? -gap : seg_len)); 13393 /* Remove the old stuff from seg_len. */ 13394 seg_len += gap; 13395 /* 13396 * Anything left? 13397 * Make sure to check for unack'd FIN when rest of data 13398 * has been previously ack'd. 13399 */ 13400 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 13401 /* 13402 * Resets are only valid if they lie within our offered 13403 * window. If the RST bit is set, we just ignore this 13404 * segment. 13405 */ 13406 if (flags & TH_RST) { 13407 freemsg(mp); 13408 return; 13409 } 13410 13411 /* 13412 * The arriving of dup data packets indicate that we 13413 * may have postponed an ack for too long, or the other 13414 * side's RTT estimate is out of shape. Start acking 13415 * more often. 13416 */ 13417 if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) && 13418 tcp->tcp_rack_cnt >= 1 && 13419 tcp->tcp_rack_abs_max > 2) { 13420 tcp->tcp_rack_abs_max--; 13421 } 13422 tcp->tcp_rack_cur_max = 1; 13423 13424 /* 13425 * This segment is "unacceptable". None of its 13426 * sequence space lies within our advertized window. 13427 * 13428 * Adjust seg_len to the original value for tracing. 13429 */ 13430 seg_len -= gap; 13431 if (tcp->tcp_debug) { 13432 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13433 "tcp_rput: unacceptable, gap %d, rgap %d, " 13434 "flags 0x%x, seg_seq %u, seg_ack %u, " 13435 "seg_len %d, rnxt %u, snxt %u, %s", 13436 gap, rgap, flags, seg_seq, seg_ack, 13437 seg_len, tcp->tcp_rnxt, tcp->tcp_snxt, 13438 tcp_display(tcp, NULL, 13439 DISP_ADDR_AND_PORT)); 13440 } 13441 13442 /* 13443 * Arrange to send an ACK in response to the 13444 * unacceptable segment per RFC 793 page 69. There 13445 * is only one small difference between ours and the 13446 * acceptability test in the RFC - we accept ACK-only 13447 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK 13448 * will be generated. 13449 * 13450 * Note that we have to ACK an ACK-only packet at least 13451 * for stacks that send 0-length keep-alives with 13452 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122, 13453 * section 4.2.3.6. As long as we don't ever generate 13454 * an unacceptable packet in response to an incoming 13455 * packet that is unacceptable, it should not cause 13456 * "ACK wars". 13457 */ 13458 flags |= TH_ACK_NEEDED; 13459 13460 /* 13461 * Continue processing this segment in order to use the 13462 * ACK information it contains, but skip all other 13463 * sequence-number processing. Processing the ACK 13464 * information is necessary in order to 13465 * re-synchronize connections that may have lost 13466 * synchronization. 13467 * 13468 * We clear seg_len and flag fields related to 13469 * sequence number processing as they are not 13470 * to be trusted for an unacceptable segment. 13471 */ 13472 seg_len = 0; 13473 flags &= ~(TH_SYN | TH_FIN | TH_URG); 13474 goto process_ack; 13475 } 13476 13477 /* Fix seg_seq, and chew the gap off the front. */ 13478 seg_seq = tcp->tcp_rnxt; 13479 urp += gap; 13480 do { 13481 mblk_t *mp2; 13482 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 13483 (uintptr_t)UINT_MAX); 13484 gap += (uint_t)(mp->b_wptr - mp->b_rptr); 13485 if (gap > 0) { 13486 mp->b_rptr = mp->b_wptr - gap; 13487 break; 13488 } 13489 mp2 = mp; 13490 mp = mp->b_cont; 13491 freeb(mp2); 13492 } while (gap < 0); 13493 /* 13494 * If the urgent data has already been acknowledged, we 13495 * should ignore TH_URG below 13496 */ 13497 if (urp < 0) 13498 flags &= ~TH_URG; 13499 } 13500 /* 13501 * rgap is the amount of stuff received out of window. A negative 13502 * value is the amount out of window. 13503 */ 13504 if (rgap < 0) { 13505 mblk_t *mp2; 13506 13507 if (tcp->tcp_rwnd == 0) { 13508 BUMP_MIB(&tcps->tcps_mib, tcpInWinProbe); 13509 } else { 13510 BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs); 13511 UPDATE_MIB(&tcps->tcps_mib, 13512 tcpInDataPastWinBytes, -rgap); 13513 } 13514 13515 /* 13516 * seg_len does not include the FIN, so if more than 13517 * just the FIN is out of window, we act like we don't 13518 * see it. (If just the FIN is out of window, rgap 13519 * will be zero and we will go ahead and acknowledge 13520 * the FIN.) 13521 */ 13522 flags &= ~TH_FIN; 13523 13524 /* Fix seg_len and make sure there is something left. */ 13525 seg_len += rgap; 13526 if (seg_len <= 0) { 13527 /* 13528 * Resets are only valid if they lie within our offered 13529 * window. If the RST bit is set, we just ignore this 13530 * segment. 13531 */ 13532 if (flags & TH_RST) { 13533 freemsg(mp); 13534 return; 13535 } 13536 13537 /* Per RFC 793, we need to send back an ACK. */ 13538 flags |= TH_ACK_NEEDED; 13539 13540 /* 13541 * Send SIGURG as soon as possible i.e. even 13542 * if the TH_URG was delivered in a window probe 13543 * packet (which will be unacceptable). 13544 * 13545 * We generate a signal if none has been generated 13546 * for this connection or if this is a new urgent 13547 * byte. Also send a zero-length "unmarked" message 13548 * to inform SIOCATMARK that this is not the mark. 13549 * 13550 * tcp_urp_last_valid is cleared when the T_exdata_ind 13551 * is sent up. This plus the check for old data 13552 * (gap >= 0) handles the wraparound of the sequence 13553 * number space without having to always track the 13554 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks 13555 * this max in its rcv_up variable). 13556 * 13557 * This prevents duplicate SIGURGS due to a "late" 13558 * zero-window probe when the T_EXDATA_IND has already 13559 * been sent up. 13560 */ 13561 if ((flags & TH_URG) && 13562 (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq, 13563 tcp->tcp_urp_last))) { 13564 if (IPCL_IS_NONSTR(connp)) { 13565 if (!TCP_IS_DETACHED(tcp)) { 13566 (*connp->conn_upcalls-> 13567 su_signal_oob) 13568 (connp->conn_upper_handle, 13569 urp); 13570 } 13571 } else { 13572 mp1 = allocb(0, BPRI_MED); 13573 if (mp1 == NULL) { 13574 freemsg(mp); 13575 return; 13576 } 13577 if (!TCP_IS_DETACHED(tcp) && 13578 !putnextctl1(tcp->tcp_rq, 13579 M_PCSIG, SIGURG)) { 13580 /* Try again on the rexmit. */ 13581 freemsg(mp1); 13582 freemsg(mp); 13583 return; 13584 } 13585 /* 13586 * If the next byte would be the mark 13587 * then mark with MARKNEXT else mark 13588 * with NOTMARKNEXT. 13589 */ 13590 if (gap == 0 && urp == 0) 13591 mp1->b_flag |= MSGMARKNEXT; 13592 else 13593 mp1->b_flag |= MSGNOTMARKNEXT; 13594 freemsg(tcp->tcp_urp_mark_mp); 13595 tcp->tcp_urp_mark_mp = mp1; 13596 flags |= TH_SEND_URP_MARK; 13597 } 13598 tcp->tcp_urp_last_valid = B_TRUE; 13599 tcp->tcp_urp_last = urp + seg_seq; 13600 } 13601 /* 13602 * If this is a zero window probe, continue to 13603 * process the ACK part. But we need to set seg_len 13604 * to 0 to avoid data processing. Otherwise just 13605 * drop the segment and send back an ACK. 13606 */ 13607 if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) { 13608 flags &= ~(TH_SYN | TH_URG); 13609 seg_len = 0; 13610 goto process_ack; 13611 } else { 13612 freemsg(mp); 13613 goto ack_check; 13614 } 13615 } 13616 /* Pitch out of window stuff off the end. */ 13617 rgap = seg_len; 13618 mp2 = mp; 13619 do { 13620 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 13621 (uintptr_t)INT_MAX); 13622 rgap -= (int)(mp2->b_wptr - mp2->b_rptr); 13623 if (rgap < 0) { 13624 mp2->b_wptr += rgap; 13625 if ((mp1 = mp2->b_cont) != NULL) { 13626 mp2->b_cont = NULL; 13627 freemsg(mp1); 13628 } 13629 break; 13630 } 13631 } while ((mp2 = mp2->b_cont) != NULL); 13632 } 13633 ok:; 13634 /* 13635 * TCP should check ECN info for segments inside the window only. 13636 * Therefore the check should be done here. 13637 */ 13638 if (tcp->tcp_ecn_ok) { 13639 if (flags & TH_CWR) { 13640 tcp->tcp_ecn_echo_on = B_FALSE; 13641 } 13642 /* 13643 * Note that both ECN_CE and CWR can be set in the 13644 * same segment. In this case, we once again turn 13645 * on ECN_ECHO. 13646 */ 13647 if (tcp->tcp_ipversion == IPV4_VERSION) { 13648 uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service; 13649 13650 if ((tos & IPH_ECN_CE) == IPH_ECN_CE) { 13651 tcp->tcp_ecn_echo_on = B_TRUE; 13652 } 13653 } else { 13654 uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf; 13655 13656 if ((vcf & htonl(IPH_ECN_CE << 20)) == 13657 htonl(IPH_ECN_CE << 20)) { 13658 tcp->tcp_ecn_echo_on = B_TRUE; 13659 } 13660 } 13661 } 13662 13663 /* 13664 * Check whether we can update tcp_ts_recent. This test is 13665 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 13666 * Extensions for High Performance: An Update", Internet Draft. 13667 */ 13668 if (tcp->tcp_snd_ts_ok && 13669 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 13670 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 13671 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 13672 tcp->tcp_last_rcv_lbolt = lbolt64; 13673 } 13674 13675 if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) { 13676 /* 13677 * FIN in an out of order segment. We record this in 13678 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq. 13679 * Clear the FIN so that any check on FIN flag will fail. 13680 * Remember that FIN also counts in the sequence number 13681 * space. So we need to ack out of order FIN only segments. 13682 */ 13683 if (flags & TH_FIN) { 13684 tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID; 13685 tcp->tcp_ofo_fin_seq = seg_seq + seg_len; 13686 flags &= ~TH_FIN; 13687 flags |= TH_ACK_NEEDED; 13688 } 13689 if (seg_len > 0) { 13690 /* Fill in the SACK blk list. */ 13691 if (tcp->tcp_snd_sack_ok) { 13692 ASSERT(tcp->tcp_sack_info != NULL); 13693 tcp_sack_insert(tcp->tcp_sack_list, 13694 seg_seq, seg_seq + seg_len, 13695 &(tcp->tcp_num_sack_blk)); 13696 } 13697 13698 /* 13699 * Attempt reassembly and see if we have something 13700 * ready to go. 13701 */ 13702 mp = tcp_reass(tcp, mp, seg_seq); 13703 /* Always ack out of order packets */ 13704 flags |= TH_ACK_NEEDED | TH_PUSH; 13705 if (mp) { 13706 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 13707 (uintptr_t)INT_MAX); 13708 seg_len = mp->b_cont ? msgdsize(mp) : 13709 (int)(mp->b_wptr - mp->b_rptr); 13710 seg_seq = tcp->tcp_rnxt; 13711 /* 13712 * A gap is filled and the seq num and len 13713 * of the gap match that of a previously 13714 * received FIN, put the FIN flag back in. 13715 */ 13716 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 13717 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 13718 flags |= TH_FIN; 13719 tcp->tcp_valid_bits &= 13720 ~TCP_OFO_FIN_VALID; 13721 } 13722 } else { 13723 /* 13724 * Keep going even with NULL mp. 13725 * There may be a useful ACK or something else 13726 * we don't want to miss. 13727 * 13728 * But TCP should not perform fast retransmit 13729 * because of the ack number. TCP uses 13730 * seg_len == 0 to determine if it is a pure 13731 * ACK. And this is not a pure ACK. 13732 */ 13733 seg_len = 0; 13734 ofo_seg = B_TRUE; 13735 } 13736 } 13737 } else if (seg_len > 0) { 13738 BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs); 13739 UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len); 13740 /* 13741 * If an out of order FIN was received before, and the seq 13742 * num and len of the new segment match that of the FIN, 13743 * put the FIN flag back in. 13744 */ 13745 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 13746 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 13747 flags |= TH_FIN; 13748 tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID; 13749 } 13750 } 13751 if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) { 13752 if (flags & TH_RST) { 13753 freemsg(mp); 13754 switch (tcp->tcp_state) { 13755 case TCPS_SYN_RCVD: 13756 (void) tcp_clean_death(tcp, ECONNREFUSED, 14); 13757 break; 13758 case TCPS_ESTABLISHED: 13759 case TCPS_FIN_WAIT_1: 13760 case TCPS_FIN_WAIT_2: 13761 case TCPS_CLOSE_WAIT: 13762 (void) tcp_clean_death(tcp, ECONNRESET, 15); 13763 break; 13764 case TCPS_CLOSING: 13765 case TCPS_LAST_ACK: 13766 (void) tcp_clean_death(tcp, 0, 16); 13767 break; 13768 default: 13769 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 13770 (void) tcp_clean_death(tcp, ENXIO, 17); 13771 break; 13772 } 13773 return; 13774 } 13775 if (flags & TH_SYN) { 13776 /* 13777 * See RFC 793, Page 71 13778 * 13779 * The seq number must be in the window as it should 13780 * be "fixed" above. If it is outside window, it should 13781 * be already rejected. Note that we allow seg_seq to be 13782 * rnxt + rwnd because we want to accept 0 window probe. 13783 */ 13784 ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) && 13785 SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd)); 13786 freemsg(mp); 13787 /* 13788 * If the ACK flag is not set, just use our snxt as the 13789 * seq number of the RST segment. 13790 */ 13791 if (!(flags & TH_ACK)) { 13792 seg_ack = tcp->tcp_snxt; 13793 } 13794 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 13795 TH_RST|TH_ACK); 13796 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 13797 (void) tcp_clean_death(tcp, ECONNRESET, 18); 13798 return; 13799 } 13800 /* 13801 * urp could be -1 when the urp field in the packet is 0 13802 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent 13803 * byte was at seg_seq - 1, in which case we ignore the urgent flag. 13804 */ 13805 if (flags & TH_URG && urp >= 0) { 13806 if (!tcp->tcp_urp_last_valid || 13807 SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) { 13808 if (IPCL_IS_NONSTR(connp)) { 13809 if (!TCP_IS_DETACHED(tcp)) { 13810 (*connp->conn_upcalls->su_signal_oob) 13811 (connp->conn_upper_handle, urp); 13812 } 13813 } else { 13814 /* 13815 * If we haven't generated the signal yet for 13816 * this urgent pointer value, do it now. Also, 13817 * send up a zero-length M_DATA indicating 13818 * whether or not this is the mark. The latter 13819 * is not needed when a T_EXDATA_IND is sent up. 13820 * However, if there are allocation failures 13821 * this code relies on the sender retransmitting 13822 * and the socket code for determining the mark 13823 * should not block waiting for the peer to 13824 * transmit. Thus, for simplicity we always 13825 * send up the mark indication. 13826 */ 13827 mp1 = allocb(0, BPRI_MED); 13828 if (mp1 == NULL) { 13829 freemsg(mp); 13830 return; 13831 } 13832 if (!TCP_IS_DETACHED(tcp) && 13833 !putnextctl1(tcp->tcp_rq, M_PCSIG, 13834 SIGURG)) { 13835 /* Try again on the rexmit. */ 13836 freemsg(mp1); 13837 freemsg(mp); 13838 return; 13839 } 13840 /* 13841 * Mark with NOTMARKNEXT for now. 13842 * The code below will change this to MARKNEXT 13843 * if we are at the mark. 13844 * 13845 * If there are allocation failures (e.g. in 13846 * dupmsg below) the next time tcp_rput_data 13847 * sees the urgent segment it will send up the 13848 * MSGMARKNEXT message. 13849 */ 13850 mp1->b_flag |= MSGNOTMARKNEXT; 13851 freemsg(tcp->tcp_urp_mark_mp); 13852 tcp->tcp_urp_mark_mp = mp1; 13853 flags |= TH_SEND_URP_MARK; 13854 #ifdef DEBUG 13855 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13856 "tcp_rput: sent M_PCSIG 2 seq %x urp %x " 13857 "last %x, %s", 13858 seg_seq, urp, tcp->tcp_urp_last, 13859 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 13860 #endif /* DEBUG */ 13861 } 13862 tcp->tcp_urp_last_valid = B_TRUE; 13863 tcp->tcp_urp_last = urp + seg_seq; 13864 } else if (tcp->tcp_urp_mark_mp != NULL) { 13865 /* 13866 * An allocation failure prevented the previous 13867 * tcp_rput_data from sending up the allocated 13868 * MSG*MARKNEXT message - send it up this time 13869 * around. 13870 */ 13871 flags |= TH_SEND_URP_MARK; 13872 } 13873 13874 /* 13875 * If the urgent byte is in this segment, make sure that it is 13876 * all by itself. This makes it much easier to deal with the 13877 * possibility of an allocation failure on the T_exdata_ind. 13878 * Note that seg_len is the number of bytes in the segment, and 13879 * urp is the offset into the segment of the urgent byte. 13880 * urp < seg_len means that the urgent byte is in this segment. 13881 */ 13882 if (urp < seg_len) { 13883 if (seg_len != 1) { 13884 uint32_t tmp_rnxt; 13885 /* 13886 * Break it up and feed it back in. 13887 * Re-attach the IP header. 13888 */ 13889 mp->b_rptr = iphdr; 13890 if (urp > 0) { 13891 /* 13892 * There is stuff before the urgent 13893 * byte. 13894 */ 13895 mp1 = dupmsg(mp); 13896 if (!mp1) { 13897 /* 13898 * Trim from urgent byte on. 13899 * The rest will come back. 13900 */ 13901 (void) adjmsg(mp, 13902 urp - seg_len); 13903 tcp_rput_data(connp, 13904 mp, NULL); 13905 return; 13906 } 13907 (void) adjmsg(mp1, urp - seg_len); 13908 /* Feed this piece back in. */ 13909 tmp_rnxt = tcp->tcp_rnxt; 13910 tcp_rput_data(connp, mp1, NULL); 13911 /* 13912 * If the data passed back in was not 13913 * processed (ie: bad ACK) sending 13914 * the remainder back in will cause a 13915 * loop. In this case, drop the 13916 * packet and let the sender try 13917 * sending a good packet. 13918 */ 13919 if (tmp_rnxt == tcp->tcp_rnxt) { 13920 freemsg(mp); 13921 return; 13922 } 13923 } 13924 if (urp != seg_len - 1) { 13925 uint32_t tmp_rnxt; 13926 /* 13927 * There is stuff after the urgent 13928 * byte. 13929 */ 13930 mp1 = dupmsg(mp); 13931 if (!mp1) { 13932 /* 13933 * Trim everything beyond the 13934 * urgent byte. The rest will 13935 * come back. 13936 */ 13937 (void) adjmsg(mp, 13938 urp + 1 - seg_len); 13939 tcp_rput_data(connp, 13940 mp, NULL); 13941 return; 13942 } 13943 (void) adjmsg(mp1, urp + 1 - seg_len); 13944 tmp_rnxt = tcp->tcp_rnxt; 13945 tcp_rput_data(connp, mp1, NULL); 13946 /* 13947 * If the data passed back in was not 13948 * processed (ie: bad ACK) sending 13949 * the remainder back in will cause a 13950 * loop. In this case, drop the 13951 * packet and let the sender try 13952 * sending a good packet. 13953 */ 13954 if (tmp_rnxt == tcp->tcp_rnxt) { 13955 freemsg(mp); 13956 return; 13957 } 13958 } 13959 tcp_rput_data(connp, mp, NULL); 13960 return; 13961 } 13962 /* 13963 * This segment contains only the urgent byte. We 13964 * have to allocate the T_exdata_ind, if we can. 13965 */ 13966 if (IPCL_IS_NONSTR(connp)) { 13967 int error; 13968 13969 (*connp->conn_upcalls->su_recv) 13970 (connp->conn_upper_handle, mp, seg_len, 13971 MSG_OOB, &error, NULL); 13972 /* 13973 * We should never be in middle of a 13974 * fallback, the squeue guarantees that. 13975 */ 13976 ASSERT(error != EOPNOTSUPP); 13977 mp = NULL; 13978 goto update_ack; 13979 } else if (!tcp->tcp_urp_mp) { 13980 struct T_exdata_ind *tei; 13981 mp1 = allocb(sizeof (struct T_exdata_ind), 13982 BPRI_MED); 13983 if (!mp1) { 13984 /* 13985 * Sigh... It'll be back. 13986 * Generate any MSG*MARK message now. 13987 */ 13988 freemsg(mp); 13989 seg_len = 0; 13990 if (flags & TH_SEND_URP_MARK) { 13991 13992 13993 ASSERT(tcp->tcp_urp_mark_mp); 13994 tcp->tcp_urp_mark_mp->b_flag &= 13995 ~MSGNOTMARKNEXT; 13996 tcp->tcp_urp_mark_mp->b_flag |= 13997 MSGMARKNEXT; 13998 } 13999 goto ack_check; 14000 } 14001 mp1->b_datap->db_type = M_PROTO; 14002 tei = (struct T_exdata_ind *)mp1->b_rptr; 14003 tei->PRIM_type = T_EXDATA_IND; 14004 tei->MORE_flag = 0; 14005 mp1->b_wptr = (uchar_t *)&tei[1]; 14006 tcp->tcp_urp_mp = mp1; 14007 #ifdef DEBUG 14008 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14009 "tcp_rput: allocated exdata_ind %s", 14010 tcp_display(tcp, NULL, 14011 DISP_PORT_ONLY)); 14012 #endif /* DEBUG */ 14013 /* 14014 * There is no need to send a separate MSG*MARK 14015 * message since the T_EXDATA_IND will be sent 14016 * now. 14017 */ 14018 flags &= ~TH_SEND_URP_MARK; 14019 freemsg(tcp->tcp_urp_mark_mp); 14020 tcp->tcp_urp_mark_mp = NULL; 14021 } 14022 /* 14023 * Now we are all set. On the next putnext upstream, 14024 * tcp_urp_mp will be non-NULL and will get prepended 14025 * to what has to be this piece containing the urgent 14026 * byte. If for any reason we abort this segment below, 14027 * if it comes back, we will have this ready, or it 14028 * will get blown off in close. 14029 */ 14030 } else if (urp == seg_len) { 14031 /* 14032 * The urgent byte is the next byte after this sequence 14033 * number. If there is data it is marked with 14034 * MSGMARKNEXT and any tcp_urp_mark_mp is discarded 14035 * since it is not needed. Otherwise, if the code 14036 * above just allocated a zero-length tcp_urp_mark_mp 14037 * message, that message is tagged with MSGMARKNEXT. 14038 * Sending up these MSGMARKNEXT messages makes 14039 * SIOCATMARK work correctly even though 14040 * the T_EXDATA_IND will not be sent up until the 14041 * urgent byte arrives. 14042 */ 14043 if (seg_len != 0) { 14044 flags |= TH_MARKNEXT_NEEDED; 14045 freemsg(tcp->tcp_urp_mark_mp); 14046 tcp->tcp_urp_mark_mp = NULL; 14047 flags &= ~TH_SEND_URP_MARK; 14048 } else if (tcp->tcp_urp_mark_mp != NULL) { 14049 flags |= TH_SEND_URP_MARK; 14050 tcp->tcp_urp_mark_mp->b_flag &= 14051 ~MSGNOTMARKNEXT; 14052 tcp->tcp_urp_mark_mp->b_flag |= MSGMARKNEXT; 14053 } 14054 #ifdef DEBUG 14055 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14056 "tcp_rput: AT MARK, len %d, flags 0x%x, %s", 14057 seg_len, flags, 14058 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 14059 #endif /* DEBUG */ 14060 } 14061 #ifdef DEBUG 14062 else { 14063 /* Data left until we hit mark */ 14064 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14065 "tcp_rput: URP %d bytes left, %s", 14066 urp - seg_len, tcp_display(tcp, NULL, 14067 DISP_PORT_ONLY)); 14068 } 14069 #endif /* DEBUG */ 14070 } 14071 14072 process_ack: 14073 if (!(flags & TH_ACK)) { 14074 freemsg(mp); 14075 goto xmit_check; 14076 } 14077 } 14078 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 14079 14080 if (tcp->tcp_ipversion == IPV6_VERSION && bytes_acked > 0) 14081 tcp->tcp_ip_forward_progress = B_TRUE; 14082 if (tcp->tcp_state == TCPS_SYN_RCVD) { 14083 if ((tcp->tcp_conn.tcp_eager_conn_ind != NULL) && 14084 ((tcp->tcp_kssl_ent == NULL) || !tcp->tcp_kssl_pending)) { 14085 /* 3-way handshake complete - pass up the T_CONN_IND */ 14086 tcp_t *listener = tcp->tcp_listener; 14087 mblk_t *mp = tcp->tcp_conn.tcp_eager_conn_ind; 14088 14089 tcp->tcp_tconnind_started = B_TRUE; 14090 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 14091 /* 14092 * We are here means eager is fine but it can 14093 * get a TH_RST at any point between now and till 14094 * accept completes and disappear. We need to 14095 * ensure that reference to eager is valid after 14096 * we get out of eager's perimeter. So we do 14097 * an extra refhold. 14098 */ 14099 CONN_INC_REF(connp); 14100 14101 /* 14102 * The listener also exists because of the refhold 14103 * done in tcp_conn_request. Its possible that it 14104 * might have closed. We will check that once we 14105 * get inside listeners context. 14106 */ 14107 CONN_INC_REF(listener->tcp_connp); 14108 if (listener->tcp_connp->conn_sqp == 14109 connp->conn_sqp) { 14110 /* 14111 * We optimize by not calling an SQUEUE_ENTER 14112 * on the listener since we know that the 14113 * listener and eager squeues are the same. 14114 * We are able to make this check safely only 14115 * because neither the eager nor the listener 14116 * can change its squeue. Only an active connect 14117 * can change its squeue 14118 */ 14119 tcp_send_conn_ind(listener->tcp_connp, mp, 14120 listener->tcp_connp->conn_sqp); 14121 CONN_DEC_REF(listener->tcp_connp); 14122 } else if (!tcp->tcp_loopback) { 14123 SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, 14124 mp, tcp_send_conn_ind, 14125 listener->tcp_connp, SQ_FILL, 14126 SQTAG_TCP_CONN_IND); 14127 } else { 14128 SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, 14129 mp, tcp_send_conn_ind, 14130 listener->tcp_connp, SQ_PROCESS, 14131 SQTAG_TCP_CONN_IND); 14132 } 14133 } 14134 14135 if (tcp->tcp_active_open) { 14136 /* 14137 * We are seeing the final ack in the three way 14138 * hand shake of a active open'ed connection 14139 * so we must send up a T_CONN_CON 14140 */ 14141 if (!tcp_conn_con(tcp, iphdr, tcph, mp, NULL)) { 14142 freemsg(mp); 14143 return; 14144 } 14145 /* 14146 * Don't fuse the loopback endpoints for 14147 * simultaneous active opens. 14148 */ 14149 if (tcp->tcp_loopback) { 14150 TCP_STAT(tcps, tcp_fusion_unfusable); 14151 tcp->tcp_unfusable = B_TRUE; 14152 } 14153 } 14154 14155 tcp->tcp_suna = tcp->tcp_iss + 1; /* One for the SYN */ 14156 bytes_acked--; 14157 /* SYN was acked - making progress */ 14158 if (tcp->tcp_ipversion == IPV6_VERSION) 14159 tcp->tcp_ip_forward_progress = B_TRUE; 14160 14161 /* 14162 * If SYN was retransmitted, need to reset all 14163 * retransmission info as this segment will be 14164 * treated as a dup ACK. 14165 */ 14166 if (tcp->tcp_rexmit) { 14167 tcp->tcp_rexmit = B_FALSE; 14168 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 14169 tcp->tcp_rexmit_max = tcp->tcp_snxt; 14170 tcp->tcp_snd_burst = tcp->tcp_localnet ? 14171 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 14172 tcp->tcp_ms_we_have_waited = 0; 14173 tcp->tcp_cwnd = mss; 14174 } 14175 14176 /* 14177 * We set the send window to zero here. 14178 * This is needed if there is data to be 14179 * processed already on the queue. 14180 * Later (at swnd_update label), the 14181 * "new_swnd > tcp_swnd" condition is satisfied 14182 * the XMIT_NEEDED flag is set in the current 14183 * (SYN_RCVD) state. This ensures tcp_wput_data() is 14184 * called if there is already data on queue in 14185 * this state. 14186 */ 14187 tcp->tcp_swnd = 0; 14188 14189 if (new_swnd > tcp->tcp_max_swnd) 14190 tcp->tcp_max_swnd = new_swnd; 14191 tcp->tcp_swl1 = seg_seq; 14192 tcp->tcp_swl2 = seg_ack; 14193 tcp->tcp_state = TCPS_ESTABLISHED; 14194 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 14195 14196 /* Fuse when both sides are in ESTABLISHED state */ 14197 if (tcp->tcp_loopback && do_tcp_fusion) 14198 tcp_fuse(tcp, iphdr, tcph); 14199 14200 } 14201 /* This code follows 4.4BSD-Lite2 mostly. */ 14202 if (bytes_acked < 0) 14203 goto est; 14204 14205 /* 14206 * If TCP is ECN capable and the congestion experience bit is 14207 * set, reduce tcp_cwnd and tcp_ssthresh. But this should only be 14208 * done once per window (or more loosely, per RTT). 14209 */ 14210 if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max)) 14211 tcp->tcp_cwr = B_FALSE; 14212 if (tcp->tcp_ecn_ok && (flags & TH_ECE)) { 14213 if (!tcp->tcp_cwr) { 14214 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss; 14215 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss; 14216 tcp->tcp_cwnd = npkt * mss; 14217 /* 14218 * If the cwnd is 0, use the timer to clock out 14219 * new segments. This is required by the ECN spec. 14220 */ 14221 if (npkt == 0) { 14222 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14223 /* 14224 * This makes sure that when the ACK comes 14225 * back, we will increase tcp_cwnd by 1 MSS. 14226 */ 14227 tcp->tcp_cwnd_cnt = 0; 14228 } 14229 tcp->tcp_cwr = B_TRUE; 14230 /* 14231 * This marks the end of the current window of in 14232 * flight data. That is why we don't use 14233 * tcp_suna + tcp_swnd. Only data in flight can 14234 * provide ECN info. 14235 */ 14236 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 14237 tcp->tcp_ecn_cwr_sent = B_FALSE; 14238 } 14239 } 14240 14241 mp1 = tcp->tcp_xmit_head; 14242 if (bytes_acked == 0) { 14243 if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) { 14244 int dupack_cnt; 14245 14246 BUMP_MIB(&tcps->tcps_mib, tcpInDupAck); 14247 /* 14248 * Fast retransmit. When we have seen exactly three 14249 * identical ACKs while we have unacked data 14250 * outstanding we take it as a hint that our peer 14251 * dropped something. 14252 * 14253 * If TCP is retransmitting, don't do fast retransmit. 14254 */ 14255 if (mp1 && tcp->tcp_suna != tcp->tcp_snxt && 14256 ! tcp->tcp_rexmit) { 14257 /* Do Limited Transmit */ 14258 if ((dupack_cnt = ++tcp->tcp_dupack_cnt) < 14259 tcps->tcps_dupack_fast_retransmit) { 14260 /* 14261 * RFC 3042 14262 * 14263 * What we need to do is temporarily 14264 * increase tcp_cwnd so that new 14265 * data can be sent if it is allowed 14266 * by the receive window (tcp_rwnd). 14267 * tcp_wput_data() will take care of 14268 * the rest. 14269 * 14270 * If the connection is SACK capable, 14271 * only do limited xmit when there 14272 * is SACK info. 14273 * 14274 * Note how tcp_cwnd is incremented. 14275 * The first dup ACK will increase 14276 * it by 1 MSS. The second dup ACK 14277 * will increase it by 2 MSS. This 14278 * means that only 1 new segment will 14279 * be sent for each dup ACK. 14280 */ 14281 if (tcp->tcp_unsent > 0 && 14282 (!tcp->tcp_snd_sack_ok || 14283 (tcp->tcp_snd_sack_ok && 14284 tcp->tcp_notsack_list != NULL))) { 14285 tcp->tcp_cwnd += mss << 14286 (tcp->tcp_dupack_cnt - 1); 14287 flags |= TH_LIMIT_XMIT; 14288 } 14289 } else if (dupack_cnt == 14290 tcps->tcps_dupack_fast_retransmit) { 14291 14292 /* 14293 * If we have reduced tcp_ssthresh 14294 * because of ECN, do not reduce it again 14295 * unless it is already one window of data 14296 * away. After one window of data, tcp_cwr 14297 * should then be cleared. Note that 14298 * for non ECN capable connection, tcp_cwr 14299 * should always be false. 14300 * 14301 * Adjust cwnd since the duplicate 14302 * ack indicates that a packet was 14303 * dropped (due to congestion.) 14304 */ 14305 if (!tcp->tcp_cwr) { 14306 npkt = ((tcp->tcp_snxt - 14307 tcp->tcp_suna) >> 1) / mss; 14308 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 14309 mss; 14310 tcp->tcp_cwnd = (npkt + 14311 tcp->tcp_dupack_cnt) * mss; 14312 } 14313 if (tcp->tcp_ecn_ok) { 14314 tcp->tcp_cwr = B_TRUE; 14315 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 14316 tcp->tcp_ecn_cwr_sent = B_FALSE; 14317 } 14318 14319 /* 14320 * We do Hoe's algorithm. Refer to her 14321 * paper "Improving the Start-up Behavior 14322 * of a Congestion Control Scheme for TCP," 14323 * appeared in SIGCOMM'96. 14324 * 14325 * Save highest seq no we have sent so far. 14326 * Be careful about the invisible FIN byte. 14327 */ 14328 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 14329 (tcp->tcp_unsent == 0)) { 14330 tcp->tcp_rexmit_max = tcp->tcp_fss; 14331 } else { 14332 tcp->tcp_rexmit_max = tcp->tcp_snxt; 14333 } 14334 14335 /* 14336 * Do not allow bursty traffic during. 14337 * fast recovery. Refer to Fall and Floyd's 14338 * paper "Simulation-based Comparisons of 14339 * Tahoe, Reno and SACK TCP" (in CCR?) 14340 * This is a best current practise. 14341 */ 14342 tcp->tcp_snd_burst = TCP_CWND_SS; 14343 14344 /* 14345 * For SACK: 14346 * Calculate tcp_pipe, which is the 14347 * estimated number of bytes in 14348 * network. 14349 * 14350 * tcp_fack is the highest sack'ed seq num 14351 * TCP has received. 14352 * 14353 * tcp_pipe is explained in the above quoted 14354 * Fall and Floyd's paper. tcp_fack is 14355 * explained in Mathis and Mahdavi's 14356 * "Forward Acknowledgment: Refining TCP 14357 * Congestion Control" in SIGCOMM '96. 14358 */ 14359 if (tcp->tcp_snd_sack_ok) { 14360 ASSERT(tcp->tcp_sack_info != NULL); 14361 if (tcp->tcp_notsack_list != NULL) { 14362 tcp->tcp_pipe = tcp->tcp_snxt - 14363 tcp->tcp_fack; 14364 tcp->tcp_sack_snxt = seg_ack; 14365 flags |= TH_NEED_SACK_REXMIT; 14366 } else { 14367 /* 14368 * Always initialize tcp_pipe 14369 * even though we don't have 14370 * any SACK info. If later 14371 * we get SACK info and 14372 * tcp_pipe is not initialized, 14373 * funny things will happen. 14374 */ 14375 tcp->tcp_pipe = 14376 tcp->tcp_cwnd_ssthresh; 14377 } 14378 } else { 14379 flags |= TH_REXMIT_NEEDED; 14380 } /* tcp_snd_sack_ok */ 14381 14382 } else { 14383 /* 14384 * Here we perform congestion 14385 * avoidance, but NOT slow start. 14386 * This is known as the Fast 14387 * Recovery Algorithm. 14388 */ 14389 if (tcp->tcp_snd_sack_ok && 14390 tcp->tcp_notsack_list != NULL) { 14391 flags |= TH_NEED_SACK_REXMIT; 14392 tcp->tcp_pipe -= mss; 14393 if (tcp->tcp_pipe < 0) 14394 tcp->tcp_pipe = 0; 14395 } else { 14396 /* 14397 * We know that one more packet has 14398 * left the pipe thus we can update 14399 * cwnd. 14400 */ 14401 cwnd = tcp->tcp_cwnd + mss; 14402 if (cwnd > tcp->tcp_cwnd_max) 14403 cwnd = tcp->tcp_cwnd_max; 14404 tcp->tcp_cwnd = cwnd; 14405 if (tcp->tcp_unsent > 0) 14406 flags |= TH_XMIT_NEEDED; 14407 } 14408 } 14409 } 14410 } else if (tcp->tcp_zero_win_probe) { 14411 /* 14412 * If the window has opened, need to arrange 14413 * to send additional data. 14414 */ 14415 if (new_swnd != 0) { 14416 /* tcp_suna != tcp_snxt */ 14417 /* Packet contains a window update */ 14418 BUMP_MIB(&tcps->tcps_mib, tcpInWinUpdate); 14419 tcp->tcp_zero_win_probe = 0; 14420 tcp->tcp_timer_backoff = 0; 14421 tcp->tcp_ms_we_have_waited = 0; 14422 14423 /* 14424 * Transmit starting with tcp_suna since 14425 * the one byte probe is not ack'ed. 14426 * If TCP has sent more than one identical 14427 * probe, tcp_rexmit will be set. That means 14428 * tcp_ss_rexmit() will send out the one 14429 * byte along with new data. Otherwise, 14430 * fake the retransmission. 14431 */ 14432 flags |= TH_XMIT_NEEDED; 14433 if (!tcp->tcp_rexmit) { 14434 tcp->tcp_rexmit = B_TRUE; 14435 tcp->tcp_dupack_cnt = 0; 14436 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 14437 tcp->tcp_rexmit_max = tcp->tcp_suna + 1; 14438 } 14439 } 14440 } 14441 goto swnd_update; 14442 } 14443 14444 /* 14445 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73. 14446 * If the ACK value acks something that we have not yet sent, it might 14447 * be an old duplicate segment. Send an ACK to re-synchronize the 14448 * other side. 14449 * Note: reset in response to unacceptable ACK in SYN_RECEIVE 14450 * state is handled above, so we can always just drop the segment and 14451 * send an ACK here. 14452 * 14453 * Should we send ACKs in response to ACK only segments? 14454 */ 14455 if (SEQ_GT(seg_ack, tcp->tcp_snxt)) { 14456 BUMP_MIB(&tcps->tcps_mib, tcpInAckUnsent); 14457 /* drop the received segment */ 14458 freemsg(mp); 14459 14460 /* 14461 * Send back an ACK. If tcp_drop_ack_unsent_cnt is 14462 * greater than 0, check if the number of such 14463 * bogus ACks is greater than that count. If yes, 14464 * don't send back any ACK. This prevents TCP from 14465 * getting into an ACK storm if somehow an attacker 14466 * successfully spoofs an acceptable segment to our 14467 * peer. 14468 */ 14469 if (tcp_drop_ack_unsent_cnt > 0 && 14470 ++tcp->tcp_in_ack_unsent > tcp_drop_ack_unsent_cnt) { 14471 TCP_STAT(tcps, tcp_in_ack_unsent_drop); 14472 return; 14473 } 14474 mp = tcp_ack_mp(tcp); 14475 if (mp != NULL) { 14476 BUMP_LOCAL(tcp->tcp_obsegs); 14477 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 14478 tcp_send_data(tcp, tcp->tcp_wq, mp); 14479 } 14480 return; 14481 } 14482 14483 /* 14484 * TCP gets a new ACK, update the notsack'ed list to delete those 14485 * blocks that are covered by this ACK. 14486 */ 14487 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 14488 tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack, 14489 &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list)); 14490 } 14491 14492 /* 14493 * If we got an ACK after fast retransmit, check to see 14494 * if it is a partial ACK. If it is not and the congestion 14495 * window was inflated to account for the other side's 14496 * cached packets, retract it. If it is, do Hoe's algorithm. 14497 */ 14498 if (tcp->tcp_dupack_cnt >= tcps->tcps_dupack_fast_retransmit) { 14499 ASSERT(tcp->tcp_rexmit == B_FALSE); 14500 if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) { 14501 tcp->tcp_dupack_cnt = 0; 14502 /* 14503 * Restore the orig tcp_cwnd_ssthresh after 14504 * fast retransmit phase. 14505 */ 14506 if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) { 14507 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh; 14508 } 14509 tcp->tcp_rexmit_max = seg_ack; 14510 tcp->tcp_cwnd_cnt = 0; 14511 tcp->tcp_snd_burst = tcp->tcp_localnet ? 14512 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 14513 14514 /* 14515 * Remove all notsack info to avoid confusion with 14516 * the next fast retrasnmit/recovery phase. 14517 */ 14518 if (tcp->tcp_snd_sack_ok && 14519 tcp->tcp_notsack_list != NULL) { 14520 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 14521 } 14522 } else { 14523 if (tcp->tcp_snd_sack_ok && 14524 tcp->tcp_notsack_list != NULL) { 14525 flags |= TH_NEED_SACK_REXMIT; 14526 tcp->tcp_pipe -= mss; 14527 if (tcp->tcp_pipe < 0) 14528 tcp->tcp_pipe = 0; 14529 } else { 14530 /* 14531 * Hoe's algorithm: 14532 * 14533 * Retransmit the unack'ed segment and 14534 * restart fast recovery. Note that we 14535 * need to scale back tcp_cwnd to the 14536 * original value when we started fast 14537 * recovery. This is to prevent overly 14538 * aggressive behaviour in sending new 14539 * segments. 14540 */ 14541 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh + 14542 tcps->tcps_dupack_fast_retransmit * mss; 14543 tcp->tcp_cwnd_cnt = tcp->tcp_cwnd; 14544 flags |= TH_REXMIT_NEEDED; 14545 } 14546 } 14547 } else { 14548 tcp->tcp_dupack_cnt = 0; 14549 if (tcp->tcp_rexmit) { 14550 /* 14551 * TCP is retranmitting. If the ACK ack's all 14552 * outstanding data, update tcp_rexmit_max and 14553 * tcp_rexmit_nxt. Otherwise, update tcp_rexmit_nxt 14554 * to the correct value. 14555 * 14556 * Note that SEQ_LEQ() is used. This is to avoid 14557 * unnecessary fast retransmit caused by dup ACKs 14558 * received when TCP does slow start retransmission 14559 * after a time out. During this phase, TCP may 14560 * send out segments which are already received. 14561 * This causes dup ACKs to be sent back. 14562 */ 14563 if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) { 14564 if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) { 14565 tcp->tcp_rexmit_nxt = seg_ack; 14566 } 14567 if (seg_ack != tcp->tcp_rexmit_max) { 14568 flags |= TH_XMIT_NEEDED; 14569 } 14570 } else { 14571 tcp->tcp_rexmit = B_FALSE; 14572 tcp->tcp_xmit_zc_clean = B_FALSE; 14573 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 14574 tcp->tcp_snd_burst = tcp->tcp_localnet ? 14575 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 14576 } 14577 tcp->tcp_ms_we_have_waited = 0; 14578 } 14579 } 14580 14581 BUMP_MIB(&tcps->tcps_mib, tcpInAckSegs); 14582 UPDATE_MIB(&tcps->tcps_mib, tcpInAckBytes, bytes_acked); 14583 tcp->tcp_suna = seg_ack; 14584 if (tcp->tcp_zero_win_probe != 0) { 14585 tcp->tcp_zero_win_probe = 0; 14586 tcp->tcp_timer_backoff = 0; 14587 } 14588 14589 /* 14590 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed. 14591 * Note that it cannot be the SYN being ack'ed. The code flow 14592 * will not reach here. 14593 */ 14594 if (mp1 == NULL) { 14595 goto fin_acked; 14596 } 14597 14598 /* 14599 * Update the congestion window. 14600 * 14601 * If TCP is not ECN capable or TCP is ECN capable but the 14602 * congestion experience bit is not set, increase the tcp_cwnd as 14603 * usual. 14604 */ 14605 if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) { 14606 cwnd = tcp->tcp_cwnd; 14607 add = mss; 14608 14609 if (cwnd >= tcp->tcp_cwnd_ssthresh) { 14610 /* 14611 * This is to prevent an increase of less than 1 MSS of 14612 * tcp_cwnd. With partial increase, tcp_wput_data() 14613 * may send out tinygrams in order to preserve mblk 14614 * boundaries. 14615 * 14616 * By initializing tcp_cwnd_cnt to new tcp_cwnd and 14617 * decrementing it by 1 MSS for every ACKs, tcp_cwnd is 14618 * increased by 1 MSS for every RTTs. 14619 */ 14620 if (tcp->tcp_cwnd_cnt <= 0) { 14621 tcp->tcp_cwnd_cnt = cwnd + add; 14622 } else { 14623 tcp->tcp_cwnd_cnt -= add; 14624 add = 0; 14625 } 14626 } 14627 tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max); 14628 } 14629 14630 /* See if the latest urgent data has been acknowledged */ 14631 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && 14632 SEQ_GT(seg_ack, tcp->tcp_urg)) 14633 tcp->tcp_valid_bits &= ~TCP_URG_VALID; 14634 14635 /* Can we update the RTT estimates? */ 14636 if (tcp->tcp_snd_ts_ok) { 14637 /* Ignore zero timestamp echo-reply. */ 14638 if (tcpopt.tcp_opt_ts_ecr != 0) { 14639 tcp_set_rto(tcp, (int32_t)lbolt - 14640 (int32_t)tcpopt.tcp_opt_ts_ecr); 14641 } 14642 14643 /* If needed, restart the timer. */ 14644 if (tcp->tcp_set_timer == 1) { 14645 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14646 tcp->tcp_set_timer = 0; 14647 } 14648 /* 14649 * Update tcp_csuna in case the other side stops sending 14650 * us timestamps. 14651 */ 14652 tcp->tcp_csuna = tcp->tcp_snxt; 14653 } else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) { 14654 /* 14655 * An ACK sequence we haven't seen before, so get the RTT 14656 * and update the RTO. But first check if the timestamp is 14657 * valid to use. 14658 */ 14659 if ((mp1->b_next != NULL) && 14660 SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next))) 14661 tcp_set_rto(tcp, (int32_t)lbolt - 14662 (int32_t)(intptr_t)mp1->b_prev); 14663 else 14664 BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate); 14665 14666 /* Remeber the last sequence to be ACKed */ 14667 tcp->tcp_csuna = seg_ack; 14668 if (tcp->tcp_set_timer == 1) { 14669 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14670 tcp->tcp_set_timer = 0; 14671 } 14672 } else { 14673 BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate); 14674 } 14675 14676 /* Eat acknowledged bytes off the xmit queue. */ 14677 for (;;) { 14678 mblk_t *mp2; 14679 uchar_t *wptr; 14680 14681 wptr = mp1->b_wptr; 14682 ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX); 14683 bytes_acked -= (int)(wptr - mp1->b_rptr); 14684 if (bytes_acked < 0) { 14685 mp1->b_rptr = wptr + bytes_acked; 14686 /* 14687 * Set a new timestamp if all the bytes timed by the 14688 * old timestamp have been ack'ed. 14689 */ 14690 if (SEQ_GT(seg_ack, 14691 (uint32_t)(uintptr_t)(mp1->b_next))) { 14692 mp1->b_prev = (mblk_t *)(uintptr_t)lbolt; 14693 mp1->b_next = NULL; 14694 } 14695 break; 14696 } 14697 mp1->b_next = NULL; 14698 mp1->b_prev = NULL; 14699 mp2 = mp1; 14700 mp1 = mp1->b_cont; 14701 14702 /* 14703 * This notification is required for some zero-copy 14704 * clients to maintain a copy semantic. After the data 14705 * is ack'ed, client is safe to modify or reuse the buffer. 14706 */ 14707 if (tcp->tcp_snd_zcopy_aware && 14708 (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 14709 tcp_zcopy_notify(tcp); 14710 freeb(mp2); 14711 if (bytes_acked == 0) { 14712 if (mp1 == NULL) { 14713 /* Everything is ack'ed, clear the tail. */ 14714 tcp->tcp_xmit_tail = NULL; 14715 /* 14716 * Cancel the timer unless we are still 14717 * waiting for an ACK for the FIN packet. 14718 */ 14719 if (tcp->tcp_timer_tid != 0 && 14720 tcp->tcp_snxt == tcp->tcp_suna) { 14721 (void) TCP_TIMER_CANCEL(tcp, 14722 tcp->tcp_timer_tid); 14723 tcp->tcp_timer_tid = 0; 14724 } 14725 goto pre_swnd_update; 14726 } 14727 if (mp2 != tcp->tcp_xmit_tail) 14728 break; 14729 tcp->tcp_xmit_tail = mp1; 14730 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 14731 (uintptr_t)INT_MAX); 14732 tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr - 14733 mp1->b_rptr); 14734 break; 14735 } 14736 if (mp1 == NULL) { 14737 /* 14738 * More was acked but there is nothing more 14739 * outstanding. This means that the FIN was 14740 * just acked or that we're talking to a clown. 14741 */ 14742 fin_acked: 14743 ASSERT(tcp->tcp_fin_sent); 14744 tcp->tcp_xmit_tail = NULL; 14745 if (tcp->tcp_fin_sent) { 14746 /* FIN was acked - making progress */ 14747 if (tcp->tcp_ipversion == IPV6_VERSION && 14748 !tcp->tcp_fin_acked) 14749 tcp->tcp_ip_forward_progress = B_TRUE; 14750 tcp->tcp_fin_acked = B_TRUE; 14751 if (tcp->tcp_linger_tid != 0 && 14752 TCP_TIMER_CANCEL(tcp, 14753 tcp->tcp_linger_tid) >= 0) { 14754 tcp_stop_lingering(tcp); 14755 freemsg(mp); 14756 mp = NULL; 14757 } 14758 } else { 14759 /* 14760 * We should never get here because 14761 * we have already checked that the 14762 * number of bytes ack'ed should be 14763 * smaller than or equal to what we 14764 * have sent so far (it is the 14765 * acceptability check of the ACK). 14766 * We can only get here if the send 14767 * queue is corrupted. 14768 * 14769 * Terminate the connection and 14770 * panic the system. It is better 14771 * for us to panic instead of 14772 * continuing to avoid other disaster. 14773 */ 14774 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 14775 tcp->tcp_rnxt, TH_RST|TH_ACK); 14776 panic("Memory corruption " 14777 "detected for connection %s.", 14778 tcp_display(tcp, NULL, 14779 DISP_ADDR_AND_PORT)); 14780 /*NOTREACHED*/ 14781 } 14782 goto pre_swnd_update; 14783 } 14784 ASSERT(mp2 != tcp->tcp_xmit_tail); 14785 } 14786 if (tcp->tcp_unsent) { 14787 flags |= TH_XMIT_NEEDED; 14788 } 14789 pre_swnd_update: 14790 tcp->tcp_xmit_head = mp1; 14791 swnd_update: 14792 /* 14793 * The following check is different from most other implementations. 14794 * For bi-directional transfer, when segments are dropped, the 14795 * "normal" check will not accept a window update in those 14796 * retransmitted segemnts. Failing to do that, TCP may send out 14797 * segments which are outside receiver's window. As TCP accepts 14798 * the ack in those retransmitted segments, if the window update in 14799 * the same segment is not accepted, TCP will incorrectly calculates 14800 * that it can send more segments. This can create a deadlock 14801 * with the receiver if its window becomes zero. 14802 */ 14803 if (SEQ_LT(tcp->tcp_swl2, seg_ack) || 14804 SEQ_LT(tcp->tcp_swl1, seg_seq) || 14805 (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) { 14806 /* 14807 * The criteria for update is: 14808 * 14809 * 1. the segment acknowledges some data. Or 14810 * 2. the segment is new, i.e. it has a higher seq num. Or 14811 * 3. the segment is not old and the advertised window is 14812 * larger than the previous advertised window. 14813 */ 14814 if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd) 14815 flags |= TH_XMIT_NEEDED; 14816 tcp->tcp_swnd = new_swnd; 14817 if (new_swnd > tcp->tcp_max_swnd) 14818 tcp->tcp_max_swnd = new_swnd; 14819 tcp->tcp_swl1 = seg_seq; 14820 tcp->tcp_swl2 = seg_ack; 14821 } 14822 est: 14823 if (tcp->tcp_state > TCPS_ESTABLISHED) { 14824 14825 switch (tcp->tcp_state) { 14826 case TCPS_FIN_WAIT_1: 14827 if (tcp->tcp_fin_acked) { 14828 tcp->tcp_state = TCPS_FIN_WAIT_2; 14829 /* 14830 * We implement the non-standard BSD/SunOS 14831 * FIN_WAIT_2 flushing algorithm. 14832 * If there is no user attached to this 14833 * TCP endpoint, then this TCP struct 14834 * could hang around forever in FIN_WAIT_2 14835 * state if the peer forgets to send us 14836 * a FIN. To prevent this, we wait only 14837 * 2*MSL (a convenient time value) for 14838 * the FIN to arrive. If it doesn't show up, 14839 * we flush the TCP endpoint. This algorithm, 14840 * though a violation of RFC-793, has worked 14841 * for over 10 years in BSD systems. 14842 * Note: SunOS 4.x waits 675 seconds before 14843 * flushing the FIN_WAIT_2 connection. 14844 */ 14845 TCP_TIMER_RESTART(tcp, 14846 tcps->tcps_fin_wait_2_flush_interval); 14847 } 14848 break; 14849 case TCPS_FIN_WAIT_2: 14850 break; /* Shutdown hook? */ 14851 case TCPS_LAST_ACK: 14852 freemsg(mp); 14853 if (tcp->tcp_fin_acked) { 14854 (void) tcp_clean_death(tcp, 0, 19); 14855 return; 14856 } 14857 goto xmit_check; 14858 case TCPS_CLOSING: 14859 if (tcp->tcp_fin_acked) { 14860 tcp->tcp_state = TCPS_TIME_WAIT; 14861 /* 14862 * Unconditionally clear the exclusive binding 14863 * bit so this TIME-WAIT connection won't 14864 * interfere with new ones. 14865 */ 14866 tcp->tcp_exclbind = 0; 14867 if (!TCP_IS_DETACHED(tcp)) { 14868 TCP_TIMER_RESTART(tcp, 14869 tcps->tcps_time_wait_interval); 14870 } else { 14871 tcp_time_wait_append(tcp); 14872 TCP_DBGSTAT(tcps, tcp_rput_time_wait); 14873 } 14874 } 14875 /*FALLTHRU*/ 14876 case TCPS_CLOSE_WAIT: 14877 freemsg(mp); 14878 goto xmit_check; 14879 default: 14880 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 14881 break; 14882 } 14883 } 14884 if (flags & TH_FIN) { 14885 /* Make sure we ack the fin */ 14886 flags |= TH_ACK_NEEDED; 14887 if (!tcp->tcp_fin_rcvd) { 14888 tcp->tcp_fin_rcvd = B_TRUE; 14889 tcp->tcp_rnxt++; 14890 tcph = tcp->tcp_tcph; 14891 U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack); 14892 14893 /* 14894 * Generate the ordrel_ind at the end unless we 14895 * are an eager guy. 14896 * In the eager case tcp_rsrv will do this when run 14897 * after tcp_accept is done. 14898 */ 14899 if (tcp->tcp_listener == NULL && 14900 !TCP_IS_DETACHED(tcp) && (!tcp->tcp_hard_binding)) 14901 flags |= TH_ORDREL_NEEDED; 14902 switch (tcp->tcp_state) { 14903 case TCPS_SYN_RCVD: 14904 case TCPS_ESTABLISHED: 14905 tcp->tcp_state = TCPS_CLOSE_WAIT; 14906 /* Keepalive? */ 14907 break; 14908 case TCPS_FIN_WAIT_1: 14909 if (!tcp->tcp_fin_acked) { 14910 tcp->tcp_state = TCPS_CLOSING; 14911 break; 14912 } 14913 /* FALLTHRU */ 14914 case TCPS_FIN_WAIT_2: 14915 tcp->tcp_state = TCPS_TIME_WAIT; 14916 /* 14917 * Unconditionally clear the exclusive binding 14918 * bit so this TIME-WAIT connection won't 14919 * interfere with new ones. 14920 */ 14921 tcp->tcp_exclbind = 0; 14922 if (!TCP_IS_DETACHED(tcp)) { 14923 TCP_TIMER_RESTART(tcp, 14924 tcps->tcps_time_wait_interval); 14925 } else { 14926 tcp_time_wait_append(tcp); 14927 TCP_DBGSTAT(tcps, tcp_rput_time_wait); 14928 } 14929 if (seg_len) { 14930 /* 14931 * implies data piggybacked on FIN. 14932 * break to handle data. 14933 */ 14934 break; 14935 } 14936 freemsg(mp); 14937 goto ack_check; 14938 } 14939 } 14940 } 14941 if (mp == NULL) 14942 goto xmit_check; 14943 if (seg_len == 0) { 14944 freemsg(mp); 14945 goto xmit_check; 14946 } 14947 if (mp->b_rptr == mp->b_wptr) { 14948 /* 14949 * The header has been consumed, so we remove the 14950 * zero-length mblk here. 14951 */ 14952 mp1 = mp; 14953 mp = mp->b_cont; 14954 freeb(mp1); 14955 } 14956 update_ack: 14957 tcph = tcp->tcp_tcph; 14958 tcp->tcp_rack_cnt++; 14959 { 14960 uint32_t cur_max; 14961 14962 cur_max = tcp->tcp_rack_cur_max; 14963 if (tcp->tcp_rack_cnt >= cur_max) { 14964 /* 14965 * We have more unacked data than we should - send 14966 * an ACK now. 14967 */ 14968 flags |= TH_ACK_NEEDED; 14969 cur_max++; 14970 if (cur_max > tcp->tcp_rack_abs_max) 14971 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 14972 else 14973 tcp->tcp_rack_cur_max = cur_max; 14974 } else if (TCP_IS_DETACHED(tcp)) { 14975 /* We don't have an ACK timer for detached TCP. */ 14976 flags |= TH_ACK_NEEDED; 14977 } else if (seg_len < mss) { 14978 /* 14979 * If we get a segment that is less than an mss, and we 14980 * already have unacknowledged data, and the amount 14981 * unacknowledged is not a multiple of mss, then we 14982 * better generate an ACK now. Otherwise, this may be 14983 * the tail piece of a transaction, and we would rather 14984 * wait for the response. 14985 */ 14986 uint32_t udif; 14987 ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <= 14988 (uintptr_t)INT_MAX); 14989 udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack); 14990 if (udif && (udif % mss)) 14991 flags |= TH_ACK_NEEDED; 14992 else 14993 flags |= TH_ACK_TIMER_NEEDED; 14994 } else { 14995 /* Start delayed ack timer */ 14996 flags |= TH_ACK_TIMER_NEEDED; 14997 } 14998 } 14999 tcp->tcp_rnxt += seg_len; 15000 U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack); 15001 15002 if (mp == NULL) 15003 goto xmit_check; 15004 15005 /* Update SACK list */ 15006 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 15007 tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt, 15008 &(tcp->tcp_num_sack_blk)); 15009 } 15010 15011 if (tcp->tcp_urp_mp) { 15012 tcp->tcp_urp_mp->b_cont = mp; 15013 mp = tcp->tcp_urp_mp; 15014 tcp->tcp_urp_mp = NULL; 15015 /* Ready for a new signal. */ 15016 tcp->tcp_urp_last_valid = B_FALSE; 15017 #ifdef DEBUG 15018 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 15019 "tcp_rput: sending exdata_ind %s", 15020 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 15021 #endif /* DEBUG */ 15022 } 15023 15024 /* 15025 * Check for ancillary data changes compared to last segment. 15026 */ 15027 if (tcp->tcp_ipv6_recvancillary != 0) { 15028 mp = tcp_rput_add_ancillary(tcp, mp, &ipp); 15029 ASSERT(mp != NULL); 15030 } 15031 15032 if (tcp->tcp_listener || tcp->tcp_hard_binding) { 15033 /* 15034 * Side queue inbound data until the accept happens. 15035 * tcp_accept/tcp_rput drains this when the accept happens. 15036 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or 15037 * T_EXDATA_IND) it is queued on b_next. 15038 * XXX Make urgent data use this. Requires: 15039 * Removing tcp_listener check for TH_URG 15040 * Making M_PCPROTO and MARK messages skip the eager case 15041 */ 15042 15043 if (tcp->tcp_kssl_pending) { 15044 DTRACE_PROBE1(kssl_mblk__ksslinput_pending, 15045 mblk_t *, mp); 15046 tcp_kssl_input(tcp, mp); 15047 } else { 15048 tcp_rcv_enqueue(tcp, mp, seg_len); 15049 } 15050 } else { 15051 sodirect_t *sodp = tcp->tcp_sodirect; 15052 15053 /* 15054 * If an sodirect connection and an enabled sodirect_t then 15055 * sodp will be set to point to the tcp_t/sonode_t shared 15056 * sodirect_t and the sodirect_t's lock will be held. 15057 */ 15058 if (sodp != NULL) { 15059 mutex_enter(sodp->sod_lockp); 15060 if (!(sodp->sod_state & SOD_ENABLED) || 15061 (tcp->tcp_kssl_ctx != NULL && 15062 DB_TYPE(mp) == M_DATA)) { 15063 mutex_exit(sodp->sod_lockp); 15064 sodp = NULL; 15065 } else { 15066 mutex_exit(sodp->sod_lockp); 15067 } 15068 } 15069 if (mp->b_datap->db_type != M_DATA || 15070 (flags & TH_MARKNEXT_NEEDED)) { 15071 if (IPCL_IS_NONSTR(connp)) { 15072 int error; 15073 15074 if ((*connp->conn_upcalls->su_recv) 15075 (connp->conn_upper_handle, mp, 15076 seg_len, 0, &error, NULL) <= 0) { 15077 /* 15078 * We should never be in middle of a 15079 * fallback, the squeue guarantees that. 15080 */ 15081 ASSERT(error != EOPNOTSUPP); 15082 if (error == ENOSPC) 15083 tcp->tcp_rwnd -= seg_len; 15084 } 15085 } else if (sodp != NULL) { 15086 mutex_enter(sodp->sod_lockp); 15087 SOD_UIOAFINI(sodp); 15088 if (!SOD_QEMPTY(sodp) && 15089 (sodp->sod_state & SOD_WAKE_NOT)) { 15090 flags |= tcp_rcv_sod_wakeup(tcp, sodp); 15091 /* sod_wakeup() did the mutex_exit() */ 15092 } else { 15093 mutex_exit(sodp->sod_lockp); 15094 } 15095 } else if (tcp->tcp_rcv_list != NULL) { 15096 flags |= tcp_rcv_drain(tcp); 15097 } 15098 ASSERT(tcp->tcp_rcv_list == NULL || 15099 tcp->tcp_fused_sigurg); 15100 15101 if (flags & TH_MARKNEXT_NEEDED) { 15102 #ifdef DEBUG 15103 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 15104 "tcp_rput: sending MSGMARKNEXT %s", 15105 tcp_display(tcp, NULL, 15106 DISP_PORT_ONLY)); 15107 #endif /* DEBUG */ 15108 mp->b_flag |= MSGMARKNEXT; 15109 flags &= ~TH_MARKNEXT_NEEDED; 15110 } 15111 15112 /* Does this need SSL processing first? */ 15113 if ((tcp->tcp_kssl_ctx != NULL) && 15114 (DB_TYPE(mp) == M_DATA)) { 15115 DTRACE_PROBE1(kssl_mblk__ksslinput_data1, 15116 mblk_t *, mp); 15117 tcp_kssl_input(tcp, mp); 15118 } else if (!IPCL_IS_NONSTR(connp)) { 15119 /* Already handled non-STREAMS case. */ 15120 putnext(tcp->tcp_rq, mp); 15121 if (!canputnext(tcp->tcp_rq)) 15122 tcp->tcp_rwnd -= seg_len; 15123 } 15124 } else if ((tcp->tcp_kssl_ctx != NULL) && 15125 (DB_TYPE(mp) == M_DATA)) { 15126 /* Does this need SSL processing first? */ 15127 DTRACE_PROBE1(kssl_mblk__ksslinput_data2, mblk_t *, mp); 15128 tcp_kssl_input(tcp, mp); 15129 } else if (IPCL_IS_NONSTR(connp)) { 15130 /* Non-STREAMS socket */ 15131 boolean_t push = flags & (TH_PUSH|TH_FIN); 15132 int error; 15133 15134 if ((*connp->conn_upcalls->su_recv)( 15135 connp->conn_upper_handle, 15136 mp, seg_len, 0, &error, &push) <= 0) { 15137 /* 15138 * We should never be in middle of a 15139 * fallback, the squeue guarantees that. 15140 */ 15141 ASSERT(error != EOPNOTSUPP); 15142 if (error == ENOSPC) 15143 tcp->tcp_rwnd -= seg_len; 15144 } else if (push) { 15145 /* 15146 * PUSH bit set and sockfs is not 15147 * flow controlled 15148 */ 15149 flags |= tcp_rwnd_reopen(tcp); 15150 } 15151 } else if (sodp != NULL) { 15152 /* 15153 * Sodirect so all mblk_t's are queued on the 15154 * socket directly, check for wakeup of blocked 15155 * reader (if any), and last if flow-controled. 15156 */ 15157 mutex_enter(sodp->sod_lockp); 15158 flags |= tcp_rcv_sod_enqueue(tcp, sodp, mp, seg_len); 15159 if ((sodp->sod_state & SOD_WAKE_NEED) || 15160 (flags & (TH_PUSH|TH_FIN))) { 15161 flags |= tcp_rcv_sod_wakeup(tcp, sodp); 15162 /* sod_wakeup() did the mutex_exit() */ 15163 } else { 15164 if (SOD_QFULL(sodp)) { 15165 /* Q is full, need backenable */ 15166 SOD_QSETBE(sodp); 15167 } 15168 mutex_exit(sodp->sod_lockp); 15169 } 15170 } else if ((flags & (TH_PUSH|TH_FIN)) || 15171 tcp->tcp_rcv_cnt + seg_len >= tcp->tcp_recv_hiwater >> 3) { 15172 if (tcp->tcp_rcv_list != NULL) { 15173 /* 15174 * Enqueue the new segment first and then 15175 * call tcp_rcv_drain() to send all data 15176 * up. The other way to do this is to 15177 * send all queued data up and then call 15178 * putnext() to send the new segment up. 15179 * This way can remove the else part later 15180 * on. 15181 * 15182 * We don't do this to avoid one more call to 15183 * canputnext() as tcp_rcv_drain() needs to 15184 * call canputnext(). 15185 */ 15186 tcp_rcv_enqueue(tcp, mp, seg_len); 15187 flags |= tcp_rcv_drain(tcp); 15188 } else { 15189 putnext(tcp->tcp_rq, mp); 15190 if (!canputnext(tcp->tcp_rq)) 15191 tcp->tcp_rwnd -= seg_len; 15192 } 15193 } else { 15194 /* 15195 * Enqueue all packets when processing an mblk 15196 * from the co queue and also enqueue normal packets. 15197 * For packets which belong to SSL stream do SSL 15198 * processing first. 15199 */ 15200 tcp_rcv_enqueue(tcp, mp, seg_len); 15201 } 15202 /* 15203 * Make sure the timer is running if we have data waiting 15204 * for a push bit. This provides resiliency against 15205 * implementations that do not correctly generate push bits. 15206 * 15207 * Note, for sodirect if Q isn't empty and there's not a 15208 * pending wakeup then we need a timer. Also note that sodp 15209 * is assumed to be still valid after exit()ing the sod_lockp 15210 * above and while the SOD state can change it can only change 15211 * such that the Q is empty now even though data was added 15212 * above. 15213 */ 15214 if (!IPCL_IS_NONSTR(connp) && 15215 ((sodp != NULL && !SOD_QEMPTY(sodp) && 15216 (sodp->sod_state & SOD_WAKE_NOT)) || 15217 (sodp == NULL && tcp->tcp_rcv_list != NULL)) && 15218 tcp->tcp_push_tid == 0) { 15219 /* 15220 * The connection may be closed at this point, so don't 15221 * do anything for a detached tcp. 15222 */ 15223 if (!TCP_IS_DETACHED(tcp)) 15224 tcp->tcp_push_tid = TCP_TIMER(tcp, 15225 tcp_push_timer, 15226 MSEC_TO_TICK( 15227 tcps->tcps_push_timer_interval)); 15228 } 15229 } 15230 15231 xmit_check: 15232 /* Is there anything left to do? */ 15233 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 15234 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED| 15235 TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED| 15236 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 15237 goto done; 15238 15239 /* Any transmit work to do and a non-zero window? */ 15240 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT| 15241 TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) { 15242 if (flags & TH_REXMIT_NEEDED) { 15243 uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna; 15244 15245 BUMP_MIB(&tcps->tcps_mib, tcpOutFastRetrans); 15246 if (snd_size > mss) 15247 snd_size = mss; 15248 if (snd_size > tcp->tcp_swnd) 15249 snd_size = tcp->tcp_swnd; 15250 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size, 15251 NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size, 15252 B_TRUE); 15253 15254 if (mp1 != NULL) { 15255 tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt; 15256 tcp->tcp_csuna = tcp->tcp_snxt; 15257 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 15258 UPDATE_MIB(&tcps->tcps_mib, 15259 tcpRetransBytes, snd_size); 15260 tcp_send_data(tcp, tcp->tcp_wq, mp1); 15261 } 15262 } 15263 if (flags & TH_NEED_SACK_REXMIT) { 15264 tcp_sack_rxmit(tcp, &flags); 15265 } 15266 /* 15267 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send 15268 * out new segment. Note that tcp_rexmit should not be 15269 * set, otherwise TH_LIMIT_XMIT should not be set. 15270 */ 15271 if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) { 15272 if (!tcp->tcp_rexmit) { 15273 tcp_wput_data(tcp, NULL, B_FALSE); 15274 } else { 15275 tcp_ss_rexmit(tcp); 15276 } 15277 } 15278 /* 15279 * Adjust tcp_cwnd back to normal value after sending 15280 * new data segments. 15281 */ 15282 if (flags & TH_LIMIT_XMIT) { 15283 tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1); 15284 /* 15285 * This will restart the timer. Restarting the 15286 * timer is used to avoid a timeout before the 15287 * limited transmitted segment's ACK gets back. 15288 */ 15289 if (tcp->tcp_xmit_head != NULL) 15290 tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt; 15291 } 15292 15293 /* Anything more to do? */ 15294 if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED| 15295 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 15296 goto done; 15297 } 15298 ack_check: 15299 if (flags & TH_SEND_URP_MARK) { 15300 ASSERT(tcp->tcp_urp_mark_mp); 15301 ASSERT(!IPCL_IS_NONSTR(connp)); 15302 /* 15303 * Send up any queued data and then send the mark message 15304 */ 15305 sodirect_t *sodp; 15306 15307 SOD_PTR_ENTER(tcp, sodp); 15308 15309 mp1 = tcp->tcp_urp_mark_mp; 15310 tcp->tcp_urp_mark_mp = NULL; 15311 if (sodp != NULL) { 15312 if (sodp->sod_uioa.uioa_state & UIOA_ENABLED) { 15313 sodp->sod_uioa.uioa_state &= UIOA_CLR; 15314 sodp->sod_uioa.uioa_state |= UIOA_FINI; 15315 } 15316 ASSERT(tcp->tcp_rcv_list == NULL); 15317 15318 flags |= tcp_rcv_sod_wakeup(tcp, sodp); 15319 /* sod_wakeup() does the mutex_exit() */ 15320 } else if (tcp->tcp_rcv_list != NULL) { 15321 flags |= tcp_rcv_drain(tcp); 15322 15323 ASSERT(tcp->tcp_rcv_list == NULL || 15324 tcp->tcp_fused_sigurg); 15325 15326 } 15327 putnext(tcp->tcp_rq, mp1); 15328 #ifdef DEBUG 15329 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 15330 "tcp_rput: sending zero-length %s %s", 15331 ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" : 15332 "MSGNOTMARKNEXT"), 15333 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 15334 #endif /* DEBUG */ 15335 flags &= ~TH_SEND_URP_MARK; 15336 } 15337 if (flags & TH_ACK_NEEDED) { 15338 /* 15339 * Time to send an ack for some reason. 15340 */ 15341 mp1 = tcp_ack_mp(tcp); 15342 15343 if (mp1 != NULL) { 15344 tcp_send_data(tcp, tcp->tcp_wq, mp1); 15345 BUMP_LOCAL(tcp->tcp_obsegs); 15346 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 15347 } 15348 if (tcp->tcp_ack_tid != 0) { 15349 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 15350 tcp->tcp_ack_tid = 0; 15351 } 15352 } 15353 if (flags & TH_ACK_TIMER_NEEDED) { 15354 /* 15355 * Arrange for deferred ACK or push wait timeout. 15356 * Start timer if it is not already running. 15357 */ 15358 if (tcp->tcp_ack_tid == 0) { 15359 tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer, 15360 MSEC_TO_TICK(tcp->tcp_localnet ? 15361 (clock_t)tcps->tcps_local_dack_interval : 15362 (clock_t)tcps->tcps_deferred_ack_interval)); 15363 } 15364 } 15365 if (flags & TH_ORDREL_NEEDED) { 15366 /* 15367 * Send up the ordrel_ind unless we are an eager guy. 15368 * In the eager case tcp_rsrv will do this when run 15369 * after tcp_accept is done. 15370 */ 15371 sodirect_t *sodp; 15372 15373 ASSERT(tcp->tcp_listener == NULL); 15374 15375 if (IPCL_IS_NONSTR(connp)) { 15376 ASSERT(tcp->tcp_ordrel_mp == NULL); 15377 tcp->tcp_ordrel_done = B_TRUE; 15378 (*connp->conn_upcalls->su_opctl) 15379 (connp->conn_upper_handle, SOCK_OPCTL_SHUT_RECV, 0); 15380 goto done; 15381 } 15382 15383 SOD_PTR_ENTER(tcp, sodp); 15384 if (sodp != NULL) { 15385 if (sodp->sod_uioa.uioa_state & UIOA_ENABLED) { 15386 sodp->sod_uioa.uioa_state &= UIOA_CLR; 15387 sodp->sod_uioa.uioa_state |= UIOA_FINI; 15388 } 15389 /* No more sodirect */ 15390 tcp->tcp_sodirect = NULL; 15391 if (!SOD_QEMPTY(sodp)) { 15392 /* Mblk(s) to process, notify */ 15393 flags |= tcp_rcv_sod_wakeup(tcp, sodp); 15394 /* sod_wakeup() does the mutex_exit() */ 15395 } else { 15396 /* Nothing to process */ 15397 mutex_exit(sodp->sod_lockp); 15398 } 15399 } else if (tcp->tcp_rcv_list != NULL) { 15400 /* 15401 * Push any mblk(s) enqueued from co processing. 15402 */ 15403 flags |= tcp_rcv_drain(tcp); 15404 15405 ASSERT(tcp->tcp_rcv_list == NULL || 15406 tcp->tcp_fused_sigurg); 15407 } 15408 15409 mp1 = tcp->tcp_ordrel_mp; 15410 tcp->tcp_ordrel_mp = NULL; 15411 tcp->tcp_ordrel_done = B_TRUE; 15412 putnext(tcp->tcp_rq, mp1); 15413 } 15414 done: 15415 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 15416 } 15417 15418 /* 15419 * This function does PAWS protection check. Returns B_TRUE if the 15420 * segment passes the PAWS test, else returns B_FALSE. 15421 */ 15422 boolean_t 15423 tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp) 15424 { 15425 uint8_t flags; 15426 int options; 15427 uint8_t *up; 15428 15429 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 15430 /* 15431 * If timestamp option is aligned nicely, get values inline, 15432 * otherwise call general routine to parse. Only do that 15433 * if timestamp is the only option. 15434 */ 15435 if (TCP_HDR_LENGTH(tcph) == (uint32_t)TCP_MIN_HEADER_LENGTH + 15436 TCPOPT_REAL_TS_LEN && 15437 OK_32PTR((up = ((uint8_t *)tcph) + 15438 TCP_MIN_HEADER_LENGTH)) && 15439 *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) { 15440 tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4)); 15441 tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8)); 15442 15443 options = TCP_OPT_TSTAMP_PRESENT; 15444 } else { 15445 if (tcp->tcp_snd_sack_ok) { 15446 tcpoptp->tcp = tcp; 15447 } else { 15448 tcpoptp->tcp = NULL; 15449 } 15450 options = tcp_parse_options(tcph, tcpoptp); 15451 } 15452 15453 if (options & TCP_OPT_TSTAMP_PRESENT) { 15454 /* 15455 * Do PAWS per RFC 1323 section 4.2. Accept RST 15456 * regardless of the timestamp, page 18 RFC 1323.bis. 15457 */ 15458 if ((flags & TH_RST) == 0 && 15459 TSTMP_LT(tcpoptp->tcp_opt_ts_val, 15460 tcp->tcp_ts_recent)) { 15461 if (TSTMP_LT(lbolt64, tcp->tcp_last_rcv_lbolt + 15462 PAWS_TIMEOUT)) { 15463 /* This segment is not acceptable. */ 15464 return (B_FALSE); 15465 } else { 15466 /* 15467 * Connection has been idle for 15468 * too long. Reset the timestamp 15469 * and assume the segment is valid. 15470 */ 15471 tcp->tcp_ts_recent = 15472 tcpoptp->tcp_opt_ts_val; 15473 } 15474 } 15475 } else { 15476 /* 15477 * If we don't get a timestamp on every packet, we 15478 * figure we can't really trust 'em, so we stop sending 15479 * and parsing them. 15480 */ 15481 tcp->tcp_snd_ts_ok = B_FALSE; 15482 15483 tcp->tcp_hdr_len -= TCPOPT_REAL_TS_LEN; 15484 tcp->tcp_tcp_hdr_len -= TCPOPT_REAL_TS_LEN; 15485 tcp->tcp_tcph->th_offset_and_rsrvd[0] -= (3 << 4); 15486 /* 15487 * Adjust the tcp_mss accordingly. We also need to 15488 * adjust tcp_cwnd here in accordance with the new mss. 15489 * But we avoid doing a slow start here so as to not 15490 * to lose on the transfer rate built up so far. 15491 */ 15492 tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN, B_FALSE); 15493 if (tcp->tcp_snd_sack_ok) { 15494 ASSERT(tcp->tcp_sack_info != NULL); 15495 tcp->tcp_max_sack_blk = 4; 15496 } 15497 } 15498 return (B_TRUE); 15499 } 15500 15501 /* 15502 * Attach ancillary data to a received TCP segments for the 15503 * ancillary pieces requested by the application that are 15504 * different than they were in the previous data segment. 15505 * 15506 * Save the "current" values once memory allocation is ok so that 15507 * when memory allocation fails we can just wait for the next data segment. 15508 */ 15509 static mblk_t * 15510 tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp) 15511 { 15512 struct T_optdata_ind *todi; 15513 int optlen; 15514 uchar_t *optptr; 15515 struct T_opthdr *toh; 15516 uint_t addflag; /* Which pieces to add */ 15517 mblk_t *mp1; 15518 15519 optlen = 0; 15520 addflag = 0; 15521 /* If app asked for pktinfo and the index has changed ... */ 15522 if ((ipp->ipp_fields & IPPF_IFINDEX) && 15523 ipp->ipp_ifindex != tcp->tcp_recvifindex && 15524 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)) { 15525 optlen += sizeof (struct T_opthdr) + 15526 sizeof (struct in6_pktinfo); 15527 addflag |= TCP_IPV6_RECVPKTINFO; 15528 } 15529 /* If app asked for hoplimit and it has changed ... */ 15530 if ((ipp->ipp_fields & IPPF_HOPLIMIT) && 15531 ipp->ipp_hoplimit != tcp->tcp_recvhops && 15532 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPLIMIT)) { 15533 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 15534 addflag |= TCP_IPV6_RECVHOPLIMIT; 15535 } 15536 /* If app asked for tclass and it has changed ... */ 15537 if ((ipp->ipp_fields & IPPF_TCLASS) && 15538 ipp->ipp_tclass != tcp->tcp_recvtclass && 15539 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)) { 15540 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 15541 addflag |= TCP_IPV6_RECVTCLASS; 15542 } 15543 /* 15544 * If app asked for hopbyhop headers and it has changed ... 15545 * For security labels, note that (1) security labels can't change on 15546 * a connected socket at all, (2) we're connected to at most one peer, 15547 * (3) if anything changes, then it must be some other extra option. 15548 */ 15549 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) && 15550 ip_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen, 15551 (ipp->ipp_fields & IPPF_HOPOPTS), 15552 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) { 15553 optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen - 15554 tcp->tcp_label_len; 15555 addflag |= TCP_IPV6_RECVHOPOPTS; 15556 if (!ip_allocbuf((void **)&tcp->tcp_hopopts, 15557 &tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS), 15558 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) 15559 return (mp); 15560 } 15561 /* If app asked for dst headers before routing headers ... */ 15562 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTDSTOPTS) && 15563 ip_cmpbuf(tcp->tcp_rtdstopts, tcp->tcp_rtdstoptslen, 15564 (ipp->ipp_fields & IPPF_RTDSTOPTS), 15565 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) { 15566 optlen += sizeof (struct T_opthdr) + 15567 ipp->ipp_rtdstoptslen; 15568 addflag |= TCP_IPV6_RECVRTDSTOPTS; 15569 if (!ip_allocbuf((void **)&tcp->tcp_rtdstopts, 15570 &tcp->tcp_rtdstoptslen, (ipp->ipp_fields & IPPF_RTDSTOPTS), 15571 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) 15572 return (mp); 15573 } 15574 /* If app asked for routing headers and it has changed ... */ 15575 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) && 15576 ip_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen, 15577 (ipp->ipp_fields & IPPF_RTHDR), 15578 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) { 15579 optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen; 15580 addflag |= TCP_IPV6_RECVRTHDR; 15581 if (!ip_allocbuf((void **)&tcp->tcp_rthdr, 15582 &tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR), 15583 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) 15584 return (mp); 15585 } 15586 /* If app asked for dest headers and it has changed ... */ 15587 if ((tcp->tcp_ipv6_recvancillary & 15588 (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) && 15589 ip_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen, 15590 (ipp->ipp_fields & IPPF_DSTOPTS), 15591 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) { 15592 optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen; 15593 addflag |= TCP_IPV6_RECVDSTOPTS; 15594 if (!ip_allocbuf((void **)&tcp->tcp_dstopts, 15595 &tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS), 15596 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) 15597 return (mp); 15598 } 15599 15600 if (optlen == 0) { 15601 /* Nothing to add */ 15602 return (mp); 15603 } 15604 mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED); 15605 if (mp1 == NULL) { 15606 /* 15607 * Defer sending ancillary data until the next TCP segment 15608 * arrives. 15609 */ 15610 return (mp); 15611 } 15612 mp1->b_cont = mp; 15613 mp = mp1; 15614 mp->b_wptr += sizeof (*todi) + optlen; 15615 mp->b_datap->db_type = M_PROTO; 15616 todi = (struct T_optdata_ind *)mp->b_rptr; 15617 todi->PRIM_type = T_OPTDATA_IND; 15618 todi->DATA_flag = 1; /* MORE data */ 15619 todi->OPT_length = optlen; 15620 todi->OPT_offset = sizeof (*todi); 15621 optptr = (uchar_t *)&todi[1]; 15622 /* 15623 * If app asked for pktinfo and the index has changed ... 15624 * Note that the local address never changes for the connection. 15625 */ 15626 if (addflag & TCP_IPV6_RECVPKTINFO) { 15627 struct in6_pktinfo *pkti; 15628 15629 toh = (struct T_opthdr *)optptr; 15630 toh->level = IPPROTO_IPV6; 15631 toh->name = IPV6_PKTINFO; 15632 toh->len = sizeof (*toh) + sizeof (*pkti); 15633 toh->status = 0; 15634 optptr += sizeof (*toh); 15635 pkti = (struct in6_pktinfo *)optptr; 15636 if (tcp->tcp_ipversion == IPV6_VERSION) 15637 pkti->ipi6_addr = tcp->tcp_ip6h->ip6_src; 15638 else 15639 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 15640 &pkti->ipi6_addr); 15641 pkti->ipi6_ifindex = ipp->ipp_ifindex; 15642 optptr += sizeof (*pkti); 15643 ASSERT(OK_32PTR(optptr)); 15644 /* Save as "last" value */ 15645 tcp->tcp_recvifindex = ipp->ipp_ifindex; 15646 } 15647 /* If app asked for hoplimit and it has changed ... */ 15648 if (addflag & TCP_IPV6_RECVHOPLIMIT) { 15649 toh = (struct T_opthdr *)optptr; 15650 toh->level = IPPROTO_IPV6; 15651 toh->name = IPV6_HOPLIMIT; 15652 toh->len = sizeof (*toh) + sizeof (uint_t); 15653 toh->status = 0; 15654 optptr += sizeof (*toh); 15655 *(uint_t *)optptr = ipp->ipp_hoplimit; 15656 optptr += sizeof (uint_t); 15657 ASSERT(OK_32PTR(optptr)); 15658 /* Save as "last" value */ 15659 tcp->tcp_recvhops = ipp->ipp_hoplimit; 15660 } 15661 /* If app asked for tclass and it has changed ... */ 15662 if (addflag & TCP_IPV6_RECVTCLASS) { 15663 toh = (struct T_opthdr *)optptr; 15664 toh->level = IPPROTO_IPV6; 15665 toh->name = IPV6_TCLASS; 15666 toh->len = sizeof (*toh) + sizeof (uint_t); 15667 toh->status = 0; 15668 optptr += sizeof (*toh); 15669 *(uint_t *)optptr = ipp->ipp_tclass; 15670 optptr += sizeof (uint_t); 15671 ASSERT(OK_32PTR(optptr)); 15672 /* Save as "last" value */ 15673 tcp->tcp_recvtclass = ipp->ipp_tclass; 15674 } 15675 if (addflag & TCP_IPV6_RECVHOPOPTS) { 15676 toh = (struct T_opthdr *)optptr; 15677 toh->level = IPPROTO_IPV6; 15678 toh->name = IPV6_HOPOPTS; 15679 toh->len = sizeof (*toh) + ipp->ipp_hopoptslen - 15680 tcp->tcp_label_len; 15681 toh->status = 0; 15682 optptr += sizeof (*toh); 15683 bcopy((uchar_t *)ipp->ipp_hopopts + tcp->tcp_label_len, optptr, 15684 ipp->ipp_hopoptslen - tcp->tcp_label_len); 15685 optptr += ipp->ipp_hopoptslen - tcp->tcp_label_len; 15686 ASSERT(OK_32PTR(optptr)); 15687 /* Save as last value */ 15688 ip_savebuf((void **)&tcp->tcp_hopopts, &tcp->tcp_hopoptslen, 15689 (ipp->ipp_fields & IPPF_HOPOPTS), 15690 ipp->ipp_hopopts, ipp->ipp_hopoptslen); 15691 } 15692 if (addflag & TCP_IPV6_RECVRTDSTOPTS) { 15693 toh = (struct T_opthdr *)optptr; 15694 toh->level = IPPROTO_IPV6; 15695 toh->name = IPV6_RTHDRDSTOPTS; 15696 toh->len = sizeof (*toh) + ipp->ipp_rtdstoptslen; 15697 toh->status = 0; 15698 optptr += sizeof (*toh); 15699 bcopy(ipp->ipp_rtdstopts, optptr, ipp->ipp_rtdstoptslen); 15700 optptr += ipp->ipp_rtdstoptslen; 15701 ASSERT(OK_32PTR(optptr)); 15702 /* Save as last value */ 15703 ip_savebuf((void **)&tcp->tcp_rtdstopts, 15704 &tcp->tcp_rtdstoptslen, 15705 (ipp->ipp_fields & IPPF_RTDSTOPTS), 15706 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 15707 } 15708 if (addflag & TCP_IPV6_RECVRTHDR) { 15709 toh = (struct T_opthdr *)optptr; 15710 toh->level = IPPROTO_IPV6; 15711 toh->name = IPV6_RTHDR; 15712 toh->len = sizeof (*toh) + ipp->ipp_rthdrlen; 15713 toh->status = 0; 15714 optptr += sizeof (*toh); 15715 bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen); 15716 optptr += ipp->ipp_rthdrlen; 15717 ASSERT(OK_32PTR(optptr)); 15718 /* Save as last value */ 15719 ip_savebuf((void **)&tcp->tcp_rthdr, &tcp->tcp_rthdrlen, 15720 (ipp->ipp_fields & IPPF_RTHDR), 15721 ipp->ipp_rthdr, ipp->ipp_rthdrlen); 15722 } 15723 if (addflag & (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) { 15724 toh = (struct T_opthdr *)optptr; 15725 toh->level = IPPROTO_IPV6; 15726 toh->name = IPV6_DSTOPTS; 15727 toh->len = sizeof (*toh) + ipp->ipp_dstoptslen; 15728 toh->status = 0; 15729 optptr += sizeof (*toh); 15730 bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen); 15731 optptr += ipp->ipp_dstoptslen; 15732 ASSERT(OK_32PTR(optptr)); 15733 /* Save as last value */ 15734 ip_savebuf((void **)&tcp->tcp_dstopts, &tcp->tcp_dstoptslen, 15735 (ipp->ipp_fields & IPPF_DSTOPTS), 15736 ipp->ipp_dstopts, ipp->ipp_dstoptslen); 15737 } 15738 ASSERT(optptr == mp->b_wptr); 15739 return (mp); 15740 } 15741 15742 /* 15743 * tcp_rput_other is called by tcp_rput to handle everything other than M_DATA 15744 * messages. 15745 */ 15746 void 15747 tcp_rput_other(tcp_t *tcp, mblk_t *mp) 15748 { 15749 uchar_t *rptr = mp->b_rptr; 15750 queue_t *q = tcp->tcp_rq; 15751 struct T_error_ack *tea; 15752 15753 switch (mp->b_datap->db_type) { 15754 case M_PROTO: 15755 case M_PCPROTO: 15756 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 15757 if ((mp->b_wptr - rptr) < sizeof (t_scalar_t)) 15758 break; 15759 tea = (struct T_error_ack *)rptr; 15760 ASSERT(tea->PRIM_type != T_BIND_ACK); 15761 ASSERT(tea->ERROR_prim != O_T_BIND_REQ && 15762 tea->ERROR_prim != T_BIND_REQ); 15763 switch (tea->PRIM_type) { 15764 case T_ERROR_ACK: 15765 if (tcp->tcp_debug) { 15766 (void) strlog(TCP_MOD_ID, 0, 1, 15767 SL_TRACE|SL_ERROR, 15768 "tcp_rput_other: case T_ERROR_ACK, " 15769 "ERROR_prim == %d", 15770 tea->ERROR_prim); 15771 } 15772 switch (tea->ERROR_prim) { 15773 case T_SVR4_OPTMGMT_REQ: 15774 if (tcp->tcp_drop_opt_ack_cnt > 0) { 15775 /* T_OPTMGMT_REQ generated by TCP */ 15776 printf("T_SVR4_OPTMGMT_REQ failed " 15777 "%d/%d - dropped (cnt %d)\n", 15778 tea->TLI_error, tea->UNIX_error, 15779 tcp->tcp_drop_opt_ack_cnt); 15780 freemsg(mp); 15781 tcp->tcp_drop_opt_ack_cnt--; 15782 return; 15783 } 15784 break; 15785 } 15786 if (tea->ERROR_prim == T_SVR4_OPTMGMT_REQ && 15787 tcp->tcp_drop_opt_ack_cnt > 0) { 15788 printf("T_SVR4_OPTMGMT_REQ failed %d/%d " 15789 "- dropped (cnt %d)\n", 15790 tea->TLI_error, tea->UNIX_error, 15791 tcp->tcp_drop_opt_ack_cnt); 15792 freemsg(mp); 15793 tcp->tcp_drop_opt_ack_cnt--; 15794 return; 15795 } 15796 break; 15797 case T_OPTMGMT_ACK: 15798 if (tcp->tcp_drop_opt_ack_cnt > 0) { 15799 /* T_OPTMGMT_REQ generated by TCP */ 15800 freemsg(mp); 15801 tcp->tcp_drop_opt_ack_cnt--; 15802 return; 15803 } 15804 break; 15805 default: 15806 ASSERT(tea->ERROR_prim != T_UNBIND_REQ); 15807 break; 15808 } 15809 break; 15810 case M_FLUSH: 15811 if (*rptr & FLUSHR) 15812 flushq(q, FLUSHDATA); 15813 break; 15814 default: 15815 /* M_CTL will be directly sent to tcp_icmp_error() */ 15816 ASSERT(DB_TYPE(mp) != M_CTL); 15817 break; 15818 } 15819 /* 15820 * Make sure we set this bit before sending the ACK for 15821 * bind. Otherwise accept could possibly run and free 15822 * this tcp struct. 15823 */ 15824 ASSERT(q != NULL); 15825 putnext(q, mp); 15826 } 15827 15828 /* ARGSUSED */ 15829 static void 15830 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2) 15831 { 15832 conn_t *connp = (conn_t *)arg; 15833 tcp_t *tcp = connp->conn_tcp; 15834 queue_t *q = tcp->tcp_rq; 15835 uint_t thwin; 15836 tcp_stack_t *tcps = tcp->tcp_tcps; 15837 sodirect_t *sodp; 15838 boolean_t fc; 15839 15840 mutex_enter(&tcp->tcp_rsrv_mp_lock); 15841 tcp->tcp_rsrv_mp = mp; 15842 mutex_exit(&tcp->tcp_rsrv_mp_lock); 15843 15844 TCP_STAT(tcps, tcp_rsrv_calls); 15845 15846 if (TCP_IS_DETACHED(tcp) || q == NULL) { 15847 return; 15848 } 15849 15850 if (tcp->tcp_fused) { 15851 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 15852 15853 ASSERT(tcp->tcp_fused); 15854 ASSERT(peer_tcp != NULL && peer_tcp->tcp_fused); 15855 ASSERT(peer_tcp->tcp_loopback_peer == tcp); 15856 ASSERT(!TCP_IS_DETACHED(tcp)); 15857 ASSERT(tcp->tcp_connp->conn_sqp == 15858 peer_tcp->tcp_connp->conn_sqp); 15859 15860 /* 15861 * Normally we would not get backenabled in synchronous 15862 * streams mode, but in case this happens, we need to plug 15863 * synchronous streams during our drain to prevent a race 15864 * with tcp_fuse_rrw() or tcp_fuse_rinfop(). 15865 */ 15866 TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp); 15867 if (tcp->tcp_rcv_list != NULL) 15868 (void) tcp_rcv_drain(tcp); 15869 15870 if (peer_tcp > tcp) { 15871 mutex_enter(&peer_tcp->tcp_non_sq_lock); 15872 mutex_enter(&tcp->tcp_non_sq_lock); 15873 } else { 15874 mutex_enter(&tcp->tcp_non_sq_lock); 15875 mutex_enter(&peer_tcp->tcp_non_sq_lock); 15876 } 15877 15878 if (peer_tcp->tcp_flow_stopped && 15879 (TCP_UNSENT_BYTES(peer_tcp) <= 15880 peer_tcp->tcp_xmit_lowater)) { 15881 tcp_clrqfull(peer_tcp); 15882 } 15883 mutex_exit(&peer_tcp->tcp_non_sq_lock); 15884 mutex_exit(&tcp->tcp_non_sq_lock); 15885 15886 TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp); 15887 TCP_STAT(tcps, tcp_fusion_backenabled); 15888 return; 15889 } 15890 15891 SOD_PTR_ENTER(tcp, sodp); 15892 if (sodp != NULL) { 15893 /* An sodirect connection */ 15894 if (SOD_QFULL(sodp)) { 15895 /* Flow-controlled, need another back-enable */ 15896 fc = B_TRUE; 15897 SOD_QSETBE(sodp); 15898 } else { 15899 /* Not flow-controlled */ 15900 fc = B_FALSE; 15901 } 15902 mutex_exit(sodp->sod_lockp); 15903 } else if (canputnext(q)) { 15904 /* STREAMS, not flow-controlled */ 15905 fc = B_FALSE; 15906 } else { 15907 /* STREAMS, flow-controlled */ 15908 fc = B_TRUE; 15909 } 15910 if (!fc) { 15911 /* Not flow-controlled, open rwnd */ 15912 tcp->tcp_rwnd = q->q_hiwat; 15913 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 15914 << tcp->tcp_rcv_ws; 15915 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 15916 /* 15917 * Send back a window update immediately if TCP is above 15918 * ESTABLISHED state and the increase of the rcv window 15919 * that the other side knows is at least 1 MSS after flow 15920 * control is lifted. 15921 */ 15922 if (tcp->tcp_state >= TCPS_ESTABLISHED && 15923 (q->q_hiwat - thwin >= tcp->tcp_mss)) { 15924 tcp_xmit_ctl(NULL, tcp, 15925 (tcp->tcp_swnd == 0) ? tcp->tcp_suna : 15926 tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 15927 BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate); 15928 } 15929 } 15930 } 15931 15932 /* 15933 * The read side service routine is called mostly when we get back-enabled as a 15934 * result of flow control relief. Since we don't actually queue anything in 15935 * TCP, we have no data to send out of here. What we do is clear the receive 15936 * window, and send out a window update. 15937 */ 15938 static void 15939 tcp_rsrv(queue_t *q) 15940 { 15941 conn_t *connp = Q_TO_CONN(q); 15942 tcp_t *tcp = connp->conn_tcp; 15943 mblk_t *mp; 15944 tcp_stack_t *tcps = tcp->tcp_tcps; 15945 15946 /* No code does a putq on the read side */ 15947 ASSERT(q->q_first == NULL); 15948 15949 /* Nothing to do for the default queue */ 15950 if (q == tcps->tcps_g_q) { 15951 return; 15952 } 15953 15954 /* 15955 * If tcp->tcp_rsrv_mp == NULL, it means that tcp_rsrv() has already 15956 * been run. So just return. 15957 */ 15958 mutex_enter(&tcp->tcp_rsrv_mp_lock); 15959 if ((mp = tcp->tcp_rsrv_mp) == NULL) { 15960 mutex_exit(&tcp->tcp_rsrv_mp_lock); 15961 return; 15962 } 15963 tcp->tcp_rsrv_mp = NULL; 15964 mutex_exit(&tcp->tcp_rsrv_mp_lock); 15965 15966 CONN_INC_REF(connp); 15967 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_rsrv_input, connp, 15968 SQ_PROCESS, SQTAG_TCP_RSRV); 15969 } 15970 15971 /* 15972 * tcp_rwnd_set() is called to adjust the receive window to a desired value. 15973 * We do not allow the receive window to shrink. After setting rwnd, 15974 * set the flow control hiwat of the stream. 15975 * 15976 * This function is called in 2 cases: 15977 * 15978 * 1) Before data transfer begins, in tcp_accept_comm() for accepting a 15979 * connection (passive open) and in tcp_rput_data() for active connect. 15980 * This is called after tcp_mss_set() when the desired MSS value is known. 15981 * This makes sure that our window size is a mutiple of the other side's 15982 * MSS. 15983 * 2) Handling SO_RCVBUF option. 15984 * 15985 * It is ASSUMED that the requested size is a multiple of the current MSS. 15986 * 15987 * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the 15988 * user requests so. 15989 */ 15990 static int 15991 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd) 15992 { 15993 uint32_t mss = tcp->tcp_mss; 15994 uint32_t old_max_rwnd; 15995 uint32_t max_transmittable_rwnd; 15996 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 15997 tcp_stack_t *tcps = tcp->tcp_tcps; 15998 15999 if (tcp->tcp_fused) { 16000 size_t sth_hiwat; 16001 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 16002 16003 ASSERT(peer_tcp != NULL); 16004 /* 16005 * Record the stream head's high water mark for 16006 * this endpoint; this is used for flow-control 16007 * purposes in tcp_fuse_output(). 16008 */ 16009 sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd); 16010 if (!tcp_detached) { 16011 (void) proto_set_rx_hiwat(tcp->tcp_rq, tcp->tcp_connp, 16012 sth_hiwat); 16013 if (IPCL_IS_NONSTR(tcp->tcp_connp)) { 16014 conn_t *connp = tcp->tcp_connp; 16015 struct sock_proto_props sopp; 16016 16017 sopp.sopp_flags = SOCKOPT_RCVTHRESH; 16018 sopp.sopp_rcvthresh = sth_hiwat >> 3; 16019 16020 (*connp->conn_upcalls->su_set_proto_props) 16021 (connp->conn_upper_handle, &sopp); 16022 } 16023 } 16024 16025 /* 16026 * In the fusion case, the maxpsz stream head value of 16027 * our peer is set according to its send buffer size 16028 * and our receive buffer size; since the latter may 16029 * have changed we need to update the peer's maxpsz. 16030 */ 16031 (void) tcp_maxpsz_set(peer_tcp, B_TRUE); 16032 return (rwnd); 16033 } 16034 16035 if (tcp_detached) { 16036 old_max_rwnd = tcp->tcp_rwnd; 16037 } else { 16038 old_max_rwnd = tcp->tcp_recv_hiwater; 16039 } 16040 16041 /* 16042 * Insist on a receive window that is at least 16043 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid 16044 * funny TCP interactions of Nagle algorithm, SWS avoidance 16045 * and delayed acknowledgement. 16046 */ 16047 rwnd = MAX(rwnd, tcps->tcps_recv_hiwat_minmss * mss); 16048 16049 /* 16050 * If window size info has already been exchanged, TCP should not 16051 * shrink the window. Shrinking window is doable if done carefully. 16052 * We may add that support later. But so far there is not a real 16053 * need to do that. 16054 */ 16055 if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) { 16056 /* MSS may have changed, do a round up again. */ 16057 rwnd = MSS_ROUNDUP(old_max_rwnd, mss); 16058 } 16059 16060 /* 16061 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check 16062 * can be applied even before the window scale option is decided. 16063 */ 16064 max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws; 16065 if (rwnd > max_transmittable_rwnd) { 16066 rwnd = max_transmittable_rwnd - 16067 (max_transmittable_rwnd % mss); 16068 if (rwnd < mss) 16069 rwnd = max_transmittable_rwnd; 16070 /* 16071 * If we're over the limit we may have to back down tcp_rwnd. 16072 * The increment below won't work for us. So we set all three 16073 * here and the increment below will have no effect. 16074 */ 16075 tcp->tcp_rwnd = old_max_rwnd = rwnd; 16076 } 16077 if (tcp->tcp_localnet) { 16078 tcp->tcp_rack_abs_max = 16079 MIN(tcps->tcps_local_dacks_max, rwnd / mss / 2); 16080 } else { 16081 /* 16082 * For a remote host on a different subnet (through a router), 16083 * we ack every other packet to be conforming to RFC1122. 16084 * tcp_deferred_acks_max is default to 2. 16085 */ 16086 tcp->tcp_rack_abs_max = 16087 MIN(tcps->tcps_deferred_acks_max, rwnd / mss / 2); 16088 } 16089 if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max) 16090 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 16091 else 16092 tcp->tcp_rack_cur_max = 0; 16093 /* 16094 * Increment the current rwnd by the amount the maximum grew (we 16095 * can not overwrite it since we might be in the middle of a 16096 * connection.) 16097 */ 16098 tcp->tcp_rwnd += rwnd - old_max_rwnd; 16099 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, tcp->tcp_tcph->th_win); 16100 if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max) 16101 tcp->tcp_cwnd_max = rwnd; 16102 16103 if (tcp_detached) 16104 return (rwnd); 16105 /* 16106 * We set the maximum receive window into rq->q_hiwat if it is 16107 * a STREAMS socket. 16108 * This is not actually used for flow control. 16109 */ 16110 if (!IPCL_IS_NONSTR(tcp->tcp_connp)) 16111 tcp->tcp_rq->q_hiwat = rwnd; 16112 tcp->tcp_recv_hiwater = rwnd; 16113 /* 16114 * Set the STREAM head high water mark. This doesn't have to be 16115 * here, since we are simply using default values, but we would 16116 * prefer to choose these values algorithmically, with a likely 16117 * relationship to rwnd. 16118 */ 16119 (void) proto_set_rx_hiwat(tcp->tcp_rq, tcp->tcp_connp, 16120 MAX(rwnd, tcps->tcps_sth_rcv_hiwat)); 16121 return (rwnd); 16122 } 16123 16124 /* 16125 * Return SNMP stuff in buffer in mpdata. 16126 */ 16127 mblk_t * 16128 tcp_snmp_get(queue_t *q, mblk_t *mpctl) 16129 { 16130 mblk_t *mpdata; 16131 mblk_t *mp_conn_ctl = NULL; 16132 mblk_t *mp_conn_tail; 16133 mblk_t *mp_attr_ctl = NULL; 16134 mblk_t *mp_attr_tail; 16135 mblk_t *mp6_conn_ctl = NULL; 16136 mblk_t *mp6_conn_tail; 16137 mblk_t *mp6_attr_ctl = NULL; 16138 mblk_t *mp6_attr_tail; 16139 struct opthdr *optp; 16140 mib2_tcpConnEntry_t tce; 16141 mib2_tcp6ConnEntry_t tce6; 16142 mib2_transportMLPEntry_t mlp; 16143 connf_t *connfp; 16144 int i; 16145 boolean_t ispriv; 16146 zoneid_t zoneid; 16147 int v4_conn_idx; 16148 int v6_conn_idx; 16149 conn_t *connp = Q_TO_CONN(q); 16150 tcp_stack_t *tcps; 16151 ip_stack_t *ipst; 16152 mblk_t *mp2ctl; 16153 16154 /* 16155 * make a copy of the original message 16156 */ 16157 mp2ctl = copymsg(mpctl); 16158 16159 if (mpctl == NULL || 16160 (mpdata = mpctl->b_cont) == NULL || 16161 (mp_conn_ctl = copymsg(mpctl)) == NULL || 16162 (mp_attr_ctl = copymsg(mpctl)) == NULL || 16163 (mp6_conn_ctl = copymsg(mpctl)) == NULL || 16164 (mp6_attr_ctl = copymsg(mpctl)) == NULL) { 16165 freemsg(mp_conn_ctl); 16166 freemsg(mp_attr_ctl); 16167 freemsg(mp6_conn_ctl); 16168 freemsg(mp6_attr_ctl); 16169 freemsg(mpctl); 16170 freemsg(mp2ctl); 16171 return (NULL); 16172 } 16173 16174 ipst = connp->conn_netstack->netstack_ip; 16175 tcps = connp->conn_netstack->netstack_tcp; 16176 16177 /* build table of connections -- need count in fixed part */ 16178 SET_MIB(tcps->tcps_mib.tcpRtoAlgorithm, 4); /* vanj */ 16179 SET_MIB(tcps->tcps_mib.tcpRtoMin, tcps->tcps_rexmit_interval_min); 16180 SET_MIB(tcps->tcps_mib.tcpRtoMax, tcps->tcps_rexmit_interval_max); 16181 SET_MIB(tcps->tcps_mib.tcpMaxConn, -1); 16182 SET_MIB(tcps->tcps_mib.tcpCurrEstab, 0); 16183 16184 ispriv = 16185 secpolicy_ip_config((Q_TO_CONN(q))->conn_cred, B_TRUE) == 0; 16186 zoneid = Q_TO_CONN(q)->conn_zoneid; 16187 16188 v4_conn_idx = v6_conn_idx = 0; 16189 mp_conn_tail = mp_attr_tail = mp6_conn_tail = mp6_attr_tail = NULL; 16190 16191 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 16192 ipst = tcps->tcps_netstack->netstack_ip; 16193 16194 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 16195 16196 connp = NULL; 16197 16198 while ((connp = 16199 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 16200 tcp_t *tcp; 16201 boolean_t needattr; 16202 16203 if (connp->conn_zoneid != zoneid) 16204 continue; /* not in this zone */ 16205 16206 tcp = connp->conn_tcp; 16207 UPDATE_MIB(&tcps->tcps_mib, 16208 tcpHCInSegs, tcp->tcp_ibsegs); 16209 tcp->tcp_ibsegs = 0; 16210 UPDATE_MIB(&tcps->tcps_mib, 16211 tcpHCOutSegs, tcp->tcp_obsegs); 16212 tcp->tcp_obsegs = 0; 16213 16214 tce6.tcp6ConnState = tce.tcpConnState = 16215 tcp_snmp_state(tcp); 16216 if (tce.tcpConnState == MIB2_TCP_established || 16217 tce.tcpConnState == MIB2_TCP_closeWait) 16218 BUMP_MIB(&tcps->tcps_mib, tcpCurrEstab); 16219 16220 needattr = B_FALSE; 16221 bzero(&mlp, sizeof (mlp)); 16222 if (connp->conn_mlp_type != mlptSingle) { 16223 if (connp->conn_mlp_type == mlptShared || 16224 connp->conn_mlp_type == mlptBoth) 16225 mlp.tme_flags |= MIB2_TMEF_SHARED; 16226 if (connp->conn_mlp_type == mlptPrivate || 16227 connp->conn_mlp_type == mlptBoth) 16228 mlp.tme_flags |= MIB2_TMEF_PRIVATE; 16229 needattr = B_TRUE; 16230 } 16231 if (connp->conn_peercred != NULL) { 16232 ts_label_t *tsl; 16233 16234 tsl = crgetlabel(connp->conn_peercred); 16235 mlp.tme_doi = label2doi(tsl); 16236 mlp.tme_label = *label2bslabel(tsl); 16237 needattr = B_TRUE; 16238 } 16239 16240 /* Create a message to report on IPv6 entries */ 16241 if (tcp->tcp_ipversion == IPV6_VERSION) { 16242 tce6.tcp6ConnLocalAddress = tcp->tcp_ip_src_v6; 16243 tce6.tcp6ConnRemAddress = tcp->tcp_remote_v6; 16244 tce6.tcp6ConnLocalPort = ntohs(tcp->tcp_lport); 16245 tce6.tcp6ConnRemPort = ntohs(tcp->tcp_fport); 16246 tce6.tcp6ConnIfIndex = tcp->tcp_bound_if; 16247 /* Don't want just anybody seeing these... */ 16248 if (ispriv) { 16249 tce6.tcp6ConnEntryInfo.ce_snxt = 16250 tcp->tcp_snxt; 16251 tce6.tcp6ConnEntryInfo.ce_suna = 16252 tcp->tcp_suna; 16253 tce6.tcp6ConnEntryInfo.ce_rnxt = 16254 tcp->tcp_rnxt; 16255 tce6.tcp6ConnEntryInfo.ce_rack = 16256 tcp->tcp_rack; 16257 } else { 16258 /* 16259 * Netstat, unfortunately, uses this to 16260 * get send/receive queue sizes. How to fix? 16261 * Why not compute the difference only? 16262 */ 16263 tce6.tcp6ConnEntryInfo.ce_snxt = 16264 tcp->tcp_snxt - tcp->tcp_suna; 16265 tce6.tcp6ConnEntryInfo.ce_suna = 0; 16266 tce6.tcp6ConnEntryInfo.ce_rnxt = 16267 tcp->tcp_rnxt - tcp->tcp_rack; 16268 tce6.tcp6ConnEntryInfo.ce_rack = 0; 16269 } 16270 16271 tce6.tcp6ConnEntryInfo.ce_swnd = tcp->tcp_swnd; 16272 tce6.tcp6ConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; 16273 tce6.tcp6ConnEntryInfo.ce_rto = tcp->tcp_rto; 16274 tce6.tcp6ConnEntryInfo.ce_mss = tcp->tcp_mss; 16275 tce6.tcp6ConnEntryInfo.ce_state = tcp->tcp_state; 16276 16277 tce6.tcp6ConnCreationProcess = 16278 (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS : 16279 tcp->tcp_cpid; 16280 tce6.tcp6ConnCreationTime = tcp->tcp_open_time; 16281 16282 (void) snmp_append_data2(mp6_conn_ctl->b_cont, 16283 &mp6_conn_tail, (char *)&tce6, sizeof (tce6)); 16284 16285 mlp.tme_connidx = v6_conn_idx++; 16286 if (needattr) 16287 (void) snmp_append_data2(mp6_attr_ctl->b_cont, 16288 &mp6_attr_tail, (char *)&mlp, sizeof (mlp)); 16289 } 16290 /* 16291 * Create an IPv4 table entry for IPv4 entries and also 16292 * for IPv6 entries which are bound to in6addr_any 16293 * but don't have IPV6_V6ONLY set. 16294 * (i.e. anything an IPv4 peer could connect to) 16295 */ 16296 if (tcp->tcp_ipversion == IPV4_VERSION || 16297 (tcp->tcp_state <= TCPS_LISTEN && 16298 !tcp->tcp_connp->conn_ipv6_v6only && 16299 IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip_src_v6))) { 16300 if (tcp->tcp_ipversion == IPV6_VERSION) { 16301 tce.tcpConnRemAddress = INADDR_ANY; 16302 tce.tcpConnLocalAddress = INADDR_ANY; 16303 } else { 16304 tce.tcpConnRemAddress = 16305 tcp->tcp_remote; 16306 tce.tcpConnLocalAddress = 16307 tcp->tcp_ip_src; 16308 } 16309 tce.tcpConnLocalPort = ntohs(tcp->tcp_lport); 16310 tce.tcpConnRemPort = ntohs(tcp->tcp_fport); 16311 /* Don't want just anybody seeing these... */ 16312 if (ispriv) { 16313 tce.tcpConnEntryInfo.ce_snxt = 16314 tcp->tcp_snxt; 16315 tce.tcpConnEntryInfo.ce_suna = 16316 tcp->tcp_suna; 16317 tce.tcpConnEntryInfo.ce_rnxt = 16318 tcp->tcp_rnxt; 16319 tce.tcpConnEntryInfo.ce_rack = 16320 tcp->tcp_rack; 16321 } else { 16322 /* 16323 * Netstat, unfortunately, uses this to 16324 * get send/receive queue sizes. How 16325 * to fix? 16326 * Why not compute the difference only? 16327 */ 16328 tce.tcpConnEntryInfo.ce_snxt = 16329 tcp->tcp_snxt - tcp->tcp_suna; 16330 tce.tcpConnEntryInfo.ce_suna = 0; 16331 tce.tcpConnEntryInfo.ce_rnxt = 16332 tcp->tcp_rnxt - tcp->tcp_rack; 16333 tce.tcpConnEntryInfo.ce_rack = 0; 16334 } 16335 16336 tce.tcpConnEntryInfo.ce_swnd = tcp->tcp_swnd; 16337 tce.tcpConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; 16338 tce.tcpConnEntryInfo.ce_rto = tcp->tcp_rto; 16339 tce.tcpConnEntryInfo.ce_mss = tcp->tcp_mss; 16340 tce.tcpConnEntryInfo.ce_state = 16341 tcp->tcp_state; 16342 16343 tce.tcpConnCreationProcess = 16344 (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS : 16345 tcp->tcp_cpid; 16346 tce.tcpConnCreationTime = tcp->tcp_open_time; 16347 16348 (void) snmp_append_data2(mp_conn_ctl->b_cont, 16349 &mp_conn_tail, (char *)&tce, sizeof (tce)); 16350 16351 mlp.tme_connidx = v4_conn_idx++; 16352 if (needattr) 16353 (void) snmp_append_data2( 16354 mp_attr_ctl->b_cont, 16355 &mp_attr_tail, (char *)&mlp, 16356 sizeof (mlp)); 16357 } 16358 } 16359 } 16360 16361 /* fixed length structure for IPv4 and IPv6 counters */ 16362 SET_MIB(tcps->tcps_mib.tcpConnTableSize, sizeof (mib2_tcpConnEntry_t)); 16363 SET_MIB(tcps->tcps_mib.tcp6ConnTableSize, 16364 sizeof (mib2_tcp6ConnEntry_t)); 16365 /* synchronize 32- and 64-bit counters */ 16366 SYNC32_MIB(&tcps->tcps_mib, tcpInSegs, tcpHCInSegs); 16367 SYNC32_MIB(&tcps->tcps_mib, tcpOutSegs, tcpHCOutSegs); 16368 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16369 optp->level = MIB2_TCP; 16370 optp->name = 0; 16371 (void) snmp_append_data(mpdata, (char *)&tcps->tcps_mib, 16372 sizeof (tcps->tcps_mib)); 16373 optp->len = msgdsize(mpdata); 16374 qreply(q, mpctl); 16375 16376 /* table of connections... */ 16377 optp = (struct opthdr *)&mp_conn_ctl->b_rptr[ 16378 sizeof (struct T_optmgmt_ack)]; 16379 optp->level = MIB2_TCP; 16380 optp->name = MIB2_TCP_CONN; 16381 optp->len = msgdsize(mp_conn_ctl->b_cont); 16382 qreply(q, mp_conn_ctl); 16383 16384 /* table of MLP attributes... */ 16385 optp = (struct opthdr *)&mp_attr_ctl->b_rptr[ 16386 sizeof (struct T_optmgmt_ack)]; 16387 optp->level = MIB2_TCP; 16388 optp->name = EXPER_XPORT_MLP; 16389 optp->len = msgdsize(mp_attr_ctl->b_cont); 16390 if (optp->len == 0) 16391 freemsg(mp_attr_ctl); 16392 else 16393 qreply(q, mp_attr_ctl); 16394 16395 /* table of IPv6 connections... */ 16396 optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[ 16397 sizeof (struct T_optmgmt_ack)]; 16398 optp->level = MIB2_TCP6; 16399 optp->name = MIB2_TCP6_CONN; 16400 optp->len = msgdsize(mp6_conn_ctl->b_cont); 16401 qreply(q, mp6_conn_ctl); 16402 16403 /* table of IPv6 MLP attributes... */ 16404 optp = (struct opthdr *)&mp6_attr_ctl->b_rptr[ 16405 sizeof (struct T_optmgmt_ack)]; 16406 optp->level = MIB2_TCP6; 16407 optp->name = EXPER_XPORT_MLP; 16408 optp->len = msgdsize(mp6_attr_ctl->b_cont); 16409 if (optp->len == 0) 16410 freemsg(mp6_attr_ctl); 16411 else 16412 qreply(q, mp6_attr_ctl); 16413 return (mp2ctl); 16414 } 16415 16416 /* Return 0 if invalid set request, 1 otherwise, including non-tcp requests */ 16417 /* ARGSUSED */ 16418 int 16419 tcp_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 16420 { 16421 mib2_tcpConnEntry_t *tce = (mib2_tcpConnEntry_t *)ptr; 16422 16423 switch (level) { 16424 case MIB2_TCP: 16425 switch (name) { 16426 case 13: 16427 if (tce->tcpConnState != MIB2_TCP_deleteTCB) 16428 return (0); 16429 /* TODO: delete entry defined by tce */ 16430 return (1); 16431 default: 16432 return (0); 16433 } 16434 default: 16435 return (1); 16436 } 16437 } 16438 16439 /* Translate TCP state to MIB2 TCP state. */ 16440 static int 16441 tcp_snmp_state(tcp_t *tcp) 16442 { 16443 if (tcp == NULL) 16444 return (0); 16445 16446 switch (tcp->tcp_state) { 16447 case TCPS_CLOSED: 16448 case TCPS_IDLE: /* RFC1213 doesn't have analogue for IDLE & BOUND */ 16449 case TCPS_BOUND: 16450 return (MIB2_TCP_closed); 16451 case TCPS_LISTEN: 16452 return (MIB2_TCP_listen); 16453 case TCPS_SYN_SENT: 16454 return (MIB2_TCP_synSent); 16455 case TCPS_SYN_RCVD: 16456 return (MIB2_TCP_synReceived); 16457 case TCPS_ESTABLISHED: 16458 return (MIB2_TCP_established); 16459 case TCPS_CLOSE_WAIT: 16460 return (MIB2_TCP_closeWait); 16461 case TCPS_FIN_WAIT_1: 16462 return (MIB2_TCP_finWait1); 16463 case TCPS_CLOSING: 16464 return (MIB2_TCP_closing); 16465 case TCPS_LAST_ACK: 16466 return (MIB2_TCP_lastAck); 16467 case TCPS_FIN_WAIT_2: 16468 return (MIB2_TCP_finWait2); 16469 case TCPS_TIME_WAIT: 16470 return (MIB2_TCP_timeWait); 16471 default: 16472 return (0); 16473 } 16474 } 16475 16476 /* 16477 * tcp_timer is the timer service routine. It handles the retransmission, 16478 * FIN_WAIT_2 flush, and zero window probe timeout events. It figures out 16479 * from the state of the tcp instance what kind of action needs to be done 16480 * at the time it is called. 16481 */ 16482 static void 16483 tcp_timer(void *arg) 16484 { 16485 mblk_t *mp; 16486 clock_t first_threshold; 16487 clock_t second_threshold; 16488 clock_t ms; 16489 uint32_t mss; 16490 conn_t *connp = (conn_t *)arg; 16491 tcp_t *tcp = connp->conn_tcp; 16492 tcp_stack_t *tcps = tcp->tcp_tcps; 16493 16494 tcp->tcp_timer_tid = 0; 16495 16496 if (tcp->tcp_fused) 16497 return; 16498 16499 first_threshold = tcp->tcp_first_timer_threshold; 16500 second_threshold = tcp->tcp_second_timer_threshold; 16501 switch (tcp->tcp_state) { 16502 case TCPS_IDLE: 16503 case TCPS_BOUND: 16504 case TCPS_LISTEN: 16505 return; 16506 case TCPS_SYN_RCVD: { 16507 tcp_t *listener = tcp->tcp_listener; 16508 16509 if (tcp->tcp_syn_rcvd_timeout == 0 && (listener != NULL)) { 16510 ASSERT(tcp->tcp_rq == listener->tcp_rq); 16511 /* it's our first timeout */ 16512 tcp->tcp_syn_rcvd_timeout = 1; 16513 mutex_enter(&listener->tcp_eager_lock); 16514 listener->tcp_syn_rcvd_timeout++; 16515 if (!tcp->tcp_dontdrop && !tcp->tcp_closemp_used) { 16516 /* 16517 * Make this eager available for drop if we 16518 * need to drop one to accomodate a new 16519 * incoming SYN request. 16520 */ 16521 MAKE_DROPPABLE(listener, tcp); 16522 } 16523 if (!listener->tcp_syn_defense && 16524 (listener->tcp_syn_rcvd_timeout > 16525 (tcps->tcps_conn_req_max_q0 >> 2)) && 16526 (tcps->tcps_conn_req_max_q0 > 200)) { 16527 /* We may be under attack. Put on a defense. */ 16528 listener->tcp_syn_defense = B_TRUE; 16529 cmn_err(CE_WARN, "High TCP connect timeout " 16530 "rate! System (port %d) may be under a " 16531 "SYN flood attack!", 16532 BE16_TO_U16(listener->tcp_tcph->th_lport)); 16533 16534 listener->tcp_ip_addr_cache = kmem_zalloc( 16535 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t), 16536 KM_NOSLEEP); 16537 } 16538 mutex_exit(&listener->tcp_eager_lock); 16539 } else if (listener != NULL) { 16540 mutex_enter(&listener->tcp_eager_lock); 16541 tcp->tcp_syn_rcvd_timeout++; 16542 if (tcp->tcp_syn_rcvd_timeout > 1 && 16543 !tcp->tcp_closemp_used) { 16544 /* 16545 * This is our second timeout. Put the tcp in 16546 * the list of droppable eagers to allow it to 16547 * be dropped, if needed. We don't check 16548 * whether tcp_dontdrop is set or not to 16549 * protect ourselve from a SYN attack where a 16550 * remote host can spoof itself as one of the 16551 * good IP source and continue to hold 16552 * resources too long. 16553 */ 16554 MAKE_DROPPABLE(listener, tcp); 16555 } 16556 mutex_exit(&listener->tcp_eager_lock); 16557 } 16558 } 16559 /* FALLTHRU */ 16560 case TCPS_SYN_SENT: 16561 first_threshold = tcp->tcp_first_ctimer_threshold; 16562 second_threshold = tcp->tcp_second_ctimer_threshold; 16563 break; 16564 case TCPS_ESTABLISHED: 16565 case TCPS_FIN_WAIT_1: 16566 case TCPS_CLOSING: 16567 case TCPS_CLOSE_WAIT: 16568 case TCPS_LAST_ACK: 16569 /* If we have data to rexmit */ 16570 if (tcp->tcp_suna != tcp->tcp_snxt) { 16571 clock_t time_to_wait; 16572 16573 BUMP_MIB(&tcps->tcps_mib, tcpTimRetrans); 16574 if (!tcp->tcp_xmit_head) 16575 break; 16576 time_to_wait = lbolt - 16577 (clock_t)tcp->tcp_xmit_head->b_prev; 16578 time_to_wait = tcp->tcp_rto - 16579 TICK_TO_MSEC(time_to_wait); 16580 /* 16581 * If the timer fires too early, 1 clock tick earlier, 16582 * restart the timer. 16583 */ 16584 if (time_to_wait > msec_per_tick) { 16585 TCP_STAT(tcps, tcp_timer_fire_early); 16586 TCP_TIMER_RESTART(tcp, time_to_wait); 16587 return; 16588 } 16589 /* 16590 * When we probe zero windows, we force the swnd open. 16591 * If our peer acks with a closed window swnd will be 16592 * set to zero by tcp_rput(). As long as we are 16593 * receiving acks tcp_rput will 16594 * reset 'tcp_ms_we_have_waited' so as not to trip the 16595 * first and second interval actions. NOTE: the timer 16596 * interval is allowed to continue its exponential 16597 * backoff. 16598 */ 16599 if (tcp->tcp_swnd == 0 || tcp->tcp_zero_win_probe) { 16600 if (tcp->tcp_debug) { 16601 (void) strlog(TCP_MOD_ID, 0, 1, 16602 SL_TRACE, "tcp_timer: zero win"); 16603 } 16604 } else { 16605 /* 16606 * After retransmission, we need to do 16607 * slow start. Set the ssthresh to one 16608 * half of current effective window and 16609 * cwnd to one MSS. Also reset 16610 * tcp_cwnd_cnt. 16611 * 16612 * Note that if tcp_ssthresh is reduced because 16613 * of ECN, do not reduce it again unless it is 16614 * already one window of data away (tcp_cwr 16615 * should then be cleared) or this is a 16616 * timeout for a retransmitted segment. 16617 */ 16618 uint32_t npkt; 16619 16620 if (!tcp->tcp_cwr || tcp->tcp_rexmit) { 16621 npkt = ((tcp->tcp_timer_backoff ? 16622 tcp->tcp_cwnd_ssthresh : 16623 tcp->tcp_snxt - 16624 tcp->tcp_suna) >> 1) / tcp->tcp_mss; 16625 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 16626 tcp->tcp_mss; 16627 } 16628 tcp->tcp_cwnd = tcp->tcp_mss; 16629 tcp->tcp_cwnd_cnt = 0; 16630 if (tcp->tcp_ecn_ok) { 16631 tcp->tcp_cwr = B_TRUE; 16632 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 16633 tcp->tcp_ecn_cwr_sent = B_FALSE; 16634 } 16635 } 16636 break; 16637 } 16638 /* 16639 * We have something to send yet we cannot send. The 16640 * reason can be: 16641 * 16642 * 1. Zero send window: we need to do zero window probe. 16643 * 2. Zero cwnd: because of ECN, we need to "clock out 16644 * segments. 16645 * 3. SWS avoidance: receiver may have shrunk window, 16646 * reset our knowledge. 16647 * 16648 * Note that condition 2 can happen with either 1 or 16649 * 3. But 1 and 3 are exclusive. 16650 */ 16651 if (tcp->tcp_unsent != 0) { 16652 if (tcp->tcp_cwnd == 0) { 16653 /* 16654 * Set tcp_cwnd to 1 MSS so that a 16655 * new segment can be sent out. We 16656 * are "clocking out" new data when 16657 * the network is really congested. 16658 */ 16659 ASSERT(tcp->tcp_ecn_ok); 16660 tcp->tcp_cwnd = tcp->tcp_mss; 16661 } 16662 if (tcp->tcp_swnd == 0) { 16663 /* Extend window for zero window probe */ 16664 tcp->tcp_swnd++; 16665 tcp->tcp_zero_win_probe = B_TRUE; 16666 BUMP_MIB(&tcps->tcps_mib, tcpOutWinProbe); 16667 } else { 16668 /* 16669 * Handle timeout from sender SWS avoidance. 16670 * Reset our knowledge of the max send window 16671 * since the receiver might have reduced its 16672 * receive buffer. Avoid setting tcp_max_swnd 16673 * to one since that will essentially disable 16674 * the SWS checks. 16675 * 16676 * Note that since we don't have a SWS 16677 * state variable, if the timeout is set 16678 * for ECN but not for SWS, this 16679 * code will also be executed. This is 16680 * fine as tcp_max_swnd is updated 16681 * constantly and it will not affect 16682 * anything. 16683 */ 16684 tcp->tcp_max_swnd = MAX(tcp->tcp_swnd, 2); 16685 } 16686 tcp_wput_data(tcp, NULL, B_FALSE); 16687 return; 16688 } 16689 /* Is there a FIN that needs to be to re retransmitted? */ 16690 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 16691 !tcp->tcp_fin_acked) 16692 break; 16693 /* Nothing to do, return without restarting timer. */ 16694 TCP_STAT(tcps, tcp_timer_fire_miss); 16695 return; 16696 case TCPS_FIN_WAIT_2: 16697 /* 16698 * User closed the TCP endpoint and peer ACK'ed our FIN. 16699 * We waited some time for for peer's FIN, but it hasn't 16700 * arrived. We flush the connection now to avoid 16701 * case where the peer has rebooted. 16702 */ 16703 if (TCP_IS_DETACHED(tcp)) { 16704 (void) tcp_clean_death(tcp, 0, 23); 16705 } else { 16706 TCP_TIMER_RESTART(tcp, 16707 tcps->tcps_fin_wait_2_flush_interval); 16708 } 16709 return; 16710 case TCPS_TIME_WAIT: 16711 (void) tcp_clean_death(tcp, 0, 24); 16712 return; 16713 default: 16714 if (tcp->tcp_debug) { 16715 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 16716 "tcp_timer: strange state (%d) %s", 16717 tcp->tcp_state, tcp_display(tcp, NULL, 16718 DISP_PORT_ONLY)); 16719 } 16720 return; 16721 } 16722 if ((ms = tcp->tcp_ms_we_have_waited) > second_threshold) { 16723 /* 16724 * For zero window probe, we need to send indefinitely, 16725 * unless we have not heard from the other side for some 16726 * time... 16727 */ 16728 if ((tcp->tcp_zero_win_probe == 0) || 16729 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) > 16730 second_threshold)) { 16731 BUMP_MIB(&tcps->tcps_mib, tcpTimRetransDrop); 16732 /* 16733 * If TCP is in SYN_RCVD state, send back a 16734 * RST|ACK as BSD does. Note that tcp_zero_win_probe 16735 * should be zero in TCPS_SYN_RCVD state. 16736 */ 16737 if (tcp->tcp_state == TCPS_SYN_RCVD) { 16738 tcp_xmit_ctl("tcp_timer: RST sent on timeout " 16739 "in SYN_RCVD", 16740 tcp, tcp->tcp_snxt, 16741 tcp->tcp_rnxt, TH_RST | TH_ACK); 16742 } 16743 (void) tcp_clean_death(tcp, 16744 tcp->tcp_client_errno ? 16745 tcp->tcp_client_errno : ETIMEDOUT, 25); 16746 return; 16747 } else { 16748 /* 16749 * Set tcp_ms_we_have_waited to second_threshold 16750 * so that in next timeout, we will do the above 16751 * check (lbolt - tcp_last_recv_time). This is 16752 * also to avoid overflow. 16753 * 16754 * We don't need to decrement tcp_timer_backoff 16755 * to avoid overflow because it will be decremented 16756 * later if new timeout value is greater than 16757 * tcp_rexmit_interval_max. In the case when 16758 * tcp_rexmit_interval_max is greater than 16759 * second_threshold, it means that we will wait 16760 * longer than second_threshold to send the next 16761 * window probe. 16762 */ 16763 tcp->tcp_ms_we_have_waited = second_threshold; 16764 } 16765 } else if (ms > first_threshold) { 16766 if (tcp->tcp_snd_zcopy_aware && (!tcp->tcp_xmit_zc_clean) && 16767 tcp->tcp_xmit_head != NULL) { 16768 tcp->tcp_xmit_head = 16769 tcp_zcopy_backoff(tcp, tcp->tcp_xmit_head, 1); 16770 } 16771 /* 16772 * We have been retransmitting for too long... The RTT 16773 * we calculated is probably incorrect. Reinitialize it. 16774 * Need to compensate for 0 tcp_rtt_sa. Reset 16775 * tcp_rtt_update so that we won't accidentally cache a 16776 * bad value. But only do this if this is not a zero 16777 * window probe. 16778 */ 16779 if (tcp->tcp_rtt_sa != 0 && tcp->tcp_zero_win_probe == 0) { 16780 tcp->tcp_rtt_sd += (tcp->tcp_rtt_sa >> 3) + 16781 (tcp->tcp_rtt_sa >> 5); 16782 tcp->tcp_rtt_sa = 0; 16783 tcp_ip_notify(tcp); 16784 tcp->tcp_rtt_update = 0; 16785 } 16786 } 16787 tcp->tcp_timer_backoff++; 16788 if ((ms = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 16789 tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5)) < 16790 tcps->tcps_rexmit_interval_min) { 16791 /* 16792 * This means the original RTO is tcp_rexmit_interval_min. 16793 * So we will use tcp_rexmit_interval_min as the RTO value 16794 * and do the backoff. 16795 */ 16796 ms = tcps->tcps_rexmit_interval_min << tcp->tcp_timer_backoff; 16797 } else { 16798 ms <<= tcp->tcp_timer_backoff; 16799 } 16800 if (ms > tcps->tcps_rexmit_interval_max) { 16801 ms = tcps->tcps_rexmit_interval_max; 16802 /* 16803 * ms is at max, decrement tcp_timer_backoff to avoid 16804 * overflow. 16805 */ 16806 tcp->tcp_timer_backoff--; 16807 } 16808 tcp->tcp_ms_we_have_waited += ms; 16809 if (tcp->tcp_zero_win_probe == 0) { 16810 tcp->tcp_rto = ms; 16811 } 16812 TCP_TIMER_RESTART(tcp, ms); 16813 /* 16814 * This is after a timeout and tcp_rto is backed off. Set 16815 * tcp_set_timer to 1 so that next time RTO is updated, we will 16816 * restart the timer with a correct value. 16817 */ 16818 tcp->tcp_set_timer = 1; 16819 mss = tcp->tcp_snxt - tcp->tcp_suna; 16820 if (mss > tcp->tcp_mss) 16821 mss = tcp->tcp_mss; 16822 if (mss > tcp->tcp_swnd && tcp->tcp_swnd != 0) 16823 mss = tcp->tcp_swnd; 16824 16825 if ((mp = tcp->tcp_xmit_head) != NULL) 16826 mp->b_prev = (mblk_t *)lbolt; 16827 mp = tcp_xmit_mp(tcp, mp, mss, NULL, NULL, tcp->tcp_suna, B_TRUE, &mss, 16828 B_TRUE); 16829 16830 /* 16831 * When slow start after retransmission begins, start with 16832 * this seq no. tcp_rexmit_max marks the end of special slow 16833 * start phase. tcp_snd_burst controls how many segments 16834 * can be sent because of an ack. 16835 */ 16836 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 16837 tcp->tcp_snd_burst = TCP_CWND_SS; 16838 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 16839 (tcp->tcp_unsent == 0)) { 16840 tcp->tcp_rexmit_max = tcp->tcp_fss; 16841 } else { 16842 tcp->tcp_rexmit_max = tcp->tcp_snxt; 16843 } 16844 tcp->tcp_rexmit = B_TRUE; 16845 tcp->tcp_dupack_cnt = 0; 16846 16847 /* 16848 * Remove all rexmit SACK blk to start from fresh. 16849 */ 16850 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 16851 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 16852 tcp->tcp_num_notsack_blk = 0; 16853 tcp->tcp_cnt_notsack_list = 0; 16854 } 16855 if (mp == NULL) { 16856 return; 16857 } 16858 /* 16859 * Attach credentials to retransmitted initial SYNs. 16860 * In theory we should use the credentials from the connect() 16861 * call to ensure that getpeerucred() on the peer will be correct. 16862 * But we assume that SYN's are not dropped for loopback connections. 16863 */ 16864 if (tcp->tcp_state == TCPS_SYN_SENT) { 16865 mblk_setcred(mp, tcp->tcp_cred, tcp->tcp_cpid); 16866 } 16867 16868 tcp->tcp_csuna = tcp->tcp_snxt; 16869 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 16870 UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, mss); 16871 tcp_send_data(tcp, tcp->tcp_wq, mp); 16872 16873 } 16874 16875 static int 16876 tcp_do_unbind(conn_t *connp) 16877 { 16878 tcp_t *tcp = connp->conn_tcp; 16879 int error = 0; 16880 16881 switch (tcp->tcp_state) { 16882 case TCPS_BOUND: 16883 case TCPS_LISTEN: 16884 break; 16885 default: 16886 return (-TOUTSTATE); 16887 } 16888 16889 /* 16890 * Need to clean up all the eagers since after the unbind, segments 16891 * will no longer be delivered to this listener stream. 16892 */ 16893 mutex_enter(&tcp->tcp_eager_lock); 16894 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 16895 tcp_eager_cleanup(tcp, 0); 16896 } 16897 mutex_exit(&tcp->tcp_eager_lock); 16898 16899 if (tcp->tcp_ipversion == IPV4_VERSION) { 16900 tcp->tcp_ipha->ipha_src = 0; 16901 } else { 16902 V6_SET_ZERO(tcp->tcp_ip6h->ip6_src); 16903 } 16904 V6_SET_ZERO(tcp->tcp_ip_src_v6); 16905 bzero(tcp->tcp_tcph->th_lport, sizeof (tcp->tcp_tcph->th_lport)); 16906 tcp_bind_hash_remove(tcp); 16907 tcp->tcp_state = TCPS_IDLE; 16908 tcp->tcp_mdt = B_FALSE; 16909 16910 connp = tcp->tcp_connp; 16911 connp->conn_mdt_ok = B_FALSE; 16912 ipcl_hash_remove(connp); 16913 bzero(&connp->conn_ports, sizeof (connp->conn_ports)); 16914 16915 return (error); 16916 } 16917 16918 /* tcp_unbind is called by tcp_wput_proto to handle T_UNBIND_REQ messages. */ 16919 static void 16920 tcp_tpi_unbind(tcp_t *tcp, mblk_t *mp) 16921 { 16922 int error = tcp_do_unbind(tcp->tcp_connp); 16923 16924 if (error > 0) { 16925 tcp_err_ack(tcp, mp, TSYSERR, error); 16926 } else if (error < 0) { 16927 tcp_err_ack(tcp, mp, -error, 0); 16928 } else { 16929 /* Send M_FLUSH according to TPI */ 16930 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 16931 16932 mp = mi_tpi_ok_ack_alloc(mp); 16933 putnext(tcp->tcp_rq, mp); 16934 } 16935 } 16936 16937 /* 16938 * Don't let port fall into the privileged range. 16939 * Since the extra privileged ports can be arbitrary we also 16940 * ensure that we exclude those from consideration. 16941 * tcp_g_epriv_ports is not sorted thus we loop over it until 16942 * there are no changes. 16943 * 16944 * Note: No locks are held when inspecting tcp_g_*epriv_ports 16945 * but instead the code relies on: 16946 * - the fact that the address of the array and its size never changes 16947 * - the atomic assignment of the elements of the array 16948 * 16949 * Returns 0 if there are no more ports available. 16950 * 16951 * TS note: skip multilevel ports. 16952 */ 16953 static in_port_t 16954 tcp_update_next_port(in_port_t port, const tcp_t *tcp, boolean_t random) 16955 { 16956 int i; 16957 boolean_t restart = B_FALSE; 16958 tcp_stack_t *tcps = tcp->tcp_tcps; 16959 16960 if (random && tcp_random_anon_port != 0) { 16961 (void) random_get_pseudo_bytes((uint8_t *)&port, 16962 sizeof (in_port_t)); 16963 /* 16964 * Unless changed by a sys admin, the smallest anon port 16965 * is 32768 and the largest anon port is 65535. It is 16966 * very likely (50%) for the random port to be smaller 16967 * than the smallest anon port. When that happens, 16968 * add port % (anon port range) to the smallest anon 16969 * port to get the random port. It should fall into the 16970 * valid anon port range. 16971 */ 16972 if (port < tcps->tcps_smallest_anon_port) { 16973 port = tcps->tcps_smallest_anon_port + 16974 port % (tcps->tcps_largest_anon_port - 16975 tcps->tcps_smallest_anon_port); 16976 } 16977 } 16978 16979 retry: 16980 if (port < tcps->tcps_smallest_anon_port) 16981 port = (in_port_t)tcps->tcps_smallest_anon_port; 16982 16983 if (port > tcps->tcps_largest_anon_port) { 16984 if (restart) 16985 return (0); 16986 restart = B_TRUE; 16987 port = (in_port_t)tcps->tcps_smallest_anon_port; 16988 } 16989 16990 if (port < tcps->tcps_smallest_nonpriv_port) 16991 port = (in_port_t)tcps->tcps_smallest_nonpriv_port; 16992 16993 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 16994 if (port == tcps->tcps_g_epriv_ports[i]) { 16995 port++; 16996 /* 16997 * Make sure whether the port is in the 16998 * valid range. 16999 */ 17000 goto retry; 17001 } 17002 } 17003 if (is_system_labeled() && 17004 (i = tsol_next_port(crgetzone(tcp->tcp_cred), port, 17005 IPPROTO_TCP, B_TRUE)) != 0) { 17006 port = i; 17007 goto retry; 17008 } 17009 return (port); 17010 } 17011 17012 /* 17013 * Return the next anonymous port in the privileged port range for 17014 * bind checking. It starts at IPPORT_RESERVED - 1 and goes 17015 * downwards. This is the same behavior as documented in the userland 17016 * library call rresvport(3N). 17017 * 17018 * TS note: skip multilevel ports. 17019 */ 17020 static in_port_t 17021 tcp_get_next_priv_port(const tcp_t *tcp) 17022 { 17023 static in_port_t next_priv_port = IPPORT_RESERVED - 1; 17024 in_port_t nextport; 17025 boolean_t restart = B_FALSE; 17026 tcp_stack_t *tcps = tcp->tcp_tcps; 17027 retry: 17028 if (next_priv_port < tcps->tcps_min_anonpriv_port || 17029 next_priv_port >= IPPORT_RESERVED) { 17030 next_priv_port = IPPORT_RESERVED - 1; 17031 if (restart) 17032 return (0); 17033 restart = B_TRUE; 17034 } 17035 if (is_system_labeled() && 17036 (nextport = tsol_next_port(crgetzone(tcp->tcp_cred), 17037 next_priv_port, IPPROTO_TCP, B_FALSE)) != 0) { 17038 next_priv_port = nextport; 17039 goto retry; 17040 } 17041 return (next_priv_port--); 17042 } 17043 17044 /* The write side r/w procedure. */ 17045 17046 #if CCS_STATS 17047 struct { 17048 struct { 17049 int64_t count, bytes; 17050 } tot, hit; 17051 } wrw_stats; 17052 #endif 17053 17054 /* 17055 * Call by tcp_wput() to handle all non data, except M_PROTO and M_PCPROTO, 17056 * messages. 17057 */ 17058 /* ARGSUSED */ 17059 static void 17060 tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2) 17061 { 17062 conn_t *connp = (conn_t *)arg; 17063 tcp_t *tcp = connp->conn_tcp; 17064 queue_t *q = tcp->tcp_wq; 17065 17066 ASSERT(DB_TYPE(mp) != M_IOCTL); 17067 /* 17068 * TCP is D_MP and qprocsoff() is done towards the end of the tcp_close. 17069 * Once the close starts, streamhead and sockfs will not let any data 17070 * packets come down (close ensures that there are no threads using the 17071 * queue and no new threads will come down) but since qprocsoff() 17072 * hasn't happened yet, a M_FLUSH or some non data message might 17073 * get reflected back (in response to our own FLUSHRW) and get 17074 * processed after tcp_close() is done. The conn would still be valid 17075 * because a ref would have added but we need to check the state 17076 * before actually processing the packet. 17077 */ 17078 if (TCP_IS_DETACHED(tcp) || (tcp->tcp_state == TCPS_CLOSED)) { 17079 freemsg(mp); 17080 return; 17081 } 17082 17083 switch (DB_TYPE(mp)) { 17084 case M_IOCDATA: 17085 tcp_wput_iocdata(tcp, mp); 17086 break; 17087 case M_FLUSH: 17088 tcp_wput_flush(tcp, mp); 17089 break; 17090 default: 17091 CALL_IP_WPUT(connp, q, mp); 17092 break; 17093 } 17094 } 17095 17096 /* 17097 * The TCP fast path write put procedure. 17098 * NOTE: the logic of the fast path is duplicated from tcp_wput_data() 17099 */ 17100 /* ARGSUSED */ 17101 void 17102 tcp_output(void *arg, mblk_t *mp, void *arg2) 17103 { 17104 int len; 17105 int hdrlen; 17106 int plen; 17107 mblk_t *mp1; 17108 uchar_t *rptr; 17109 uint32_t snxt; 17110 tcph_t *tcph; 17111 struct datab *db; 17112 uint32_t suna; 17113 uint32_t mss; 17114 ipaddr_t *dst; 17115 ipaddr_t *src; 17116 uint32_t sum; 17117 int usable; 17118 conn_t *connp = (conn_t *)arg; 17119 tcp_t *tcp = connp->conn_tcp; 17120 uint32_t msize; 17121 tcp_stack_t *tcps = tcp->tcp_tcps; 17122 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 17123 17124 /* 17125 * Try and ASSERT the minimum possible references on the 17126 * conn early enough. Since we are executing on write side, 17127 * the connection is obviously not detached and that means 17128 * there is a ref each for TCP and IP. Since we are behind 17129 * the squeue, the minimum references needed are 3. If the 17130 * conn is in classifier hash list, there should be an 17131 * extra ref for that (we check both the possibilities). 17132 */ 17133 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 17134 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 17135 17136 ASSERT(DB_TYPE(mp) == M_DATA); 17137 msize = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp); 17138 17139 mutex_enter(&tcp->tcp_non_sq_lock); 17140 tcp->tcp_squeue_bytes -= msize; 17141 mutex_exit(&tcp->tcp_non_sq_lock); 17142 17143 /* Check to see if this connection wants to be re-fused. */ 17144 if (tcp->tcp_refuse && !ipst->ips_ipobs_enabled) { 17145 if (tcp->tcp_ipversion == IPV4_VERSION) { 17146 tcp_fuse(tcp, (uchar_t *)&tcp->tcp_saved_ipha, 17147 &tcp->tcp_saved_tcph); 17148 } else { 17149 tcp_fuse(tcp, (uchar_t *)&tcp->tcp_saved_ip6h, 17150 &tcp->tcp_saved_tcph); 17151 } 17152 } 17153 /* Bypass tcp protocol for fused tcp loopback */ 17154 if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize)) 17155 return; 17156 17157 mss = tcp->tcp_mss; 17158 if (tcp->tcp_xmit_zc_clean) 17159 mp = tcp_zcopy_backoff(tcp, mp, 0); 17160 17161 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 17162 len = (int)(mp->b_wptr - mp->b_rptr); 17163 17164 /* 17165 * Criteria for fast path: 17166 * 17167 * 1. no unsent data 17168 * 2. single mblk in request 17169 * 3. connection established 17170 * 4. data in mblk 17171 * 5. len <= mss 17172 * 6. no tcp_valid bits 17173 */ 17174 if ((tcp->tcp_unsent != 0) || 17175 (tcp->tcp_cork) || 17176 (mp->b_cont != NULL) || 17177 (tcp->tcp_state != TCPS_ESTABLISHED) || 17178 (len == 0) || 17179 (len > mss) || 17180 (tcp->tcp_valid_bits != 0)) { 17181 tcp_wput_data(tcp, mp, B_FALSE); 17182 return; 17183 } 17184 17185 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 17186 ASSERT(tcp->tcp_fin_sent == 0); 17187 17188 /* queue new packet onto retransmission queue */ 17189 if (tcp->tcp_xmit_head == NULL) { 17190 tcp->tcp_xmit_head = mp; 17191 } else { 17192 tcp->tcp_xmit_last->b_cont = mp; 17193 } 17194 tcp->tcp_xmit_last = mp; 17195 tcp->tcp_xmit_tail = mp; 17196 17197 /* find out how much we can send */ 17198 /* BEGIN CSTYLED */ 17199 /* 17200 * un-acked usable 17201 * |--------------|-----------------| 17202 * tcp_suna tcp_snxt tcp_suna+tcp_swnd 17203 */ 17204 /* END CSTYLED */ 17205 17206 /* start sending from tcp_snxt */ 17207 snxt = tcp->tcp_snxt; 17208 17209 /* 17210 * Check to see if this connection has been idled for some 17211 * time and no ACK is expected. If it is, we need to slow 17212 * start again to get back the connection's "self-clock" as 17213 * described in VJ's paper. 17214 * 17215 * Refer to the comment in tcp_mss_set() for the calculation 17216 * of tcp_cwnd after idle. 17217 */ 17218 if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && 17219 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) { 17220 SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle); 17221 } 17222 17223 usable = tcp->tcp_swnd; /* tcp window size */ 17224 if (usable > tcp->tcp_cwnd) 17225 usable = tcp->tcp_cwnd; /* congestion window smaller */ 17226 usable -= snxt; /* subtract stuff already sent */ 17227 suna = tcp->tcp_suna; 17228 usable += suna; 17229 /* usable can be < 0 if the congestion window is smaller */ 17230 if (len > usable) { 17231 /* Can't send complete M_DATA in one shot */ 17232 goto slow; 17233 } 17234 17235 mutex_enter(&tcp->tcp_non_sq_lock); 17236 if (tcp->tcp_flow_stopped && 17237 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 17238 tcp_clrqfull(tcp); 17239 } 17240 mutex_exit(&tcp->tcp_non_sq_lock); 17241 17242 /* 17243 * determine if anything to send (Nagle). 17244 * 17245 * 1. len < tcp_mss (i.e. small) 17246 * 2. unacknowledged data present 17247 * 3. len < nagle limit 17248 * 4. last packet sent < nagle limit (previous packet sent) 17249 */ 17250 if ((len < mss) && (snxt != suna) && 17251 (len < (int)tcp->tcp_naglim) && 17252 (tcp->tcp_last_sent_len < tcp->tcp_naglim)) { 17253 /* 17254 * This was the first unsent packet and normally 17255 * mss < xmit_hiwater so there is no need to worry 17256 * about flow control. The next packet will go 17257 * through the flow control check in tcp_wput_data(). 17258 */ 17259 /* leftover work from above */ 17260 tcp->tcp_unsent = len; 17261 tcp->tcp_xmit_tail_unsent = len; 17262 17263 return; 17264 } 17265 17266 /* len <= tcp->tcp_mss && len == unsent so no silly window */ 17267 17268 if (snxt == suna) { 17269 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 17270 } 17271 17272 /* we have always sent something */ 17273 tcp->tcp_rack_cnt = 0; 17274 17275 tcp->tcp_snxt = snxt + len; 17276 tcp->tcp_rack = tcp->tcp_rnxt; 17277 17278 if ((mp1 = dupb(mp)) == 0) 17279 goto no_memory; 17280 mp->b_prev = (mblk_t *)(uintptr_t)lbolt; 17281 mp->b_next = (mblk_t *)(uintptr_t)snxt; 17282 17283 /* adjust tcp header information */ 17284 tcph = tcp->tcp_tcph; 17285 tcph->th_flags[0] = (TH_ACK|TH_PUSH); 17286 17287 sum = len + tcp->tcp_tcp_hdr_len + tcp->tcp_sum; 17288 sum = (sum >> 16) + (sum & 0xFFFF); 17289 U16_TO_ABE16(sum, tcph->th_sum); 17290 17291 U32_TO_ABE32(snxt, tcph->th_seq); 17292 17293 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 17294 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); 17295 BUMP_LOCAL(tcp->tcp_obsegs); 17296 17297 /* Update the latest receive window size in TCP header. */ 17298 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 17299 tcph->th_win); 17300 17301 tcp->tcp_last_sent_len = (ushort_t)len; 17302 17303 plen = len + tcp->tcp_hdr_len; 17304 17305 if (tcp->tcp_ipversion == IPV4_VERSION) { 17306 tcp->tcp_ipha->ipha_length = htons(plen); 17307 } else { 17308 tcp->tcp_ip6h->ip6_plen = htons(plen - 17309 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 17310 } 17311 17312 /* see if we need to allocate a mblk for the headers */ 17313 hdrlen = tcp->tcp_hdr_len; 17314 rptr = mp1->b_rptr - hdrlen; 17315 db = mp1->b_datap; 17316 if ((db->db_ref != 2) || rptr < db->db_base || 17317 (!OK_32PTR(rptr))) { 17318 /* NOTE: we assume allocb returns an OK_32PTR */ 17319 mp = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 17320 tcps->tcps_wroff_xtra, BPRI_MED); 17321 if (!mp) { 17322 freemsg(mp1); 17323 goto no_memory; 17324 } 17325 mp->b_cont = mp1; 17326 mp1 = mp; 17327 /* Leave room for Link Level header */ 17328 /* hdrlen = tcp->tcp_hdr_len; */ 17329 rptr = &mp1->b_rptr[tcps->tcps_wroff_xtra]; 17330 mp1->b_wptr = &rptr[hdrlen]; 17331 } 17332 mp1->b_rptr = rptr; 17333 17334 /* Fill in the timestamp option. */ 17335 if (tcp->tcp_snd_ts_ok) { 17336 U32_TO_BE32((uint32_t)lbolt, 17337 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 17338 U32_TO_BE32(tcp->tcp_ts_recent, 17339 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 17340 } else { 17341 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 17342 } 17343 17344 /* copy header into outgoing packet */ 17345 dst = (ipaddr_t *)rptr; 17346 src = (ipaddr_t *)tcp->tcp_iphc; 17347 dst[0] = src[0]; 17348 dst[1] = src[1]; 17349 dst[2] = src[2]; 17350 dst[3] = src[3]; 17351 dst[4] = src[4]; 17352 dst[5] = src[5]; 17353 dst[6] = src[6]; 17354 dst[7] = src[7]; 17355 dst[8] = src[8]; 17356 dst[9] = src[9]; 17357 if (hdrlen -= 40) { 17358 hdrlen >>= 2; 17359 dst += 10; 17360 src += 10; 17361 do { 17362 *dst++ = *src++; 17363 } while (--hdrlen); 17364 } 17365 17366 /* 17367 * Set the ECN info in the TCP header. Note that this 17368 * is not the template header. 17369 */ 17370 if (tcp->tcp_ecn_ok) { 17371 SET_ECT(tcp, rptr); 17372 17373 tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 17374 if (tcp->tcp_ecn_echo_on) 17375 tcph->th_flags[0] |= TH_ECE; 17376 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 17377 tcph->th_flags[0] |= TH_CWR; 17378 tcp->tcp_ecn_cwr_sent = B_TRUE; 17379 } 17380 } 17381 17382 if (tcp->tcp_ip_forward_progress) { 17383 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 17384 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 17385 tcp->tcp_ip_forward_progress = B_FALSE; 17386 } 17387 tcp_send_data(tcp, tcp->tcp_wq, mp1); 17388 return; 17389 17390 /* 17391 * If we ran out of memory, we pretend to have sent the packet 17392 * and that it was lost on the wire. 17393 */ 17394 no_memory: 17395 return; 17396 17397 slow: 17398 /* leftover work from above */ 17399 tcp->tcp_unsent = len; 17400 tcp->tcp_xmit_tail_unsent = len; 17401 tcp_wput_data(tcp, NULL, B_FALSE); 17402 } 17403 17404 /* ARGSUSED */ 17405 void 17406 tcp_accept_finish(void *arg, mblk_t *mp, void *arg2) 17407 { 17408 conn_t *connp = (conn_t *)arg; 17409 tcp_t *tcp = connp->conn_tcp; 17410 queue_t *q = tcp->tcp_rq; 17411 struct tcp_options *tcpopt; 17412 tcp_stack_t *tcps = tcp->tcp_tcps; 17413 17414 /* socket options */ 17415 uint_t sopp_flags; 17416 ssize_t sopp_rxhiwat; 17417 ssize_t sopp_maxblk; 17418 ushort_t sopp_wroff; 17419 ushort_t sopp_tail; 17420 ushort_t sopp_copyopt; 17421 17422 tcpopt = (struct tcp_options *)mp->b_rptr; 17423 17424 /* 17425 * Drop the eager's ref on the listener, that was placed when 17426 * this eager began life in tcp_conn_request. 17427 */ 17428 CONN_DEC_REF(tcp->tcp_saved_listener->tcp_connp); 17429 if (IPCL_IS_NONSTR(connp)) { 17430 /* Safe to free conn_ind message */ 17431 freemsg(tcp->tcp_conn.tcp_eager_conn_ind); 17432 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 17433 } 17434 17435 tcp->tcp_detached = B_FALSE; 17436 17437 if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_accept_error) { 17438 /* 17439 * Someone blewoff the eager before we could finish 17440 * the accept. 17441 * 17442 * The only reason eager exists it because we put in 17443 * a ref on it when conn ind went up. We need to send 17444 * a disconnect indication up while the last reference 17445 * on the eager will be dropped by the squeue when we 17446 * return. 17447 */ 17448 ASSERT(tcp->tcp_listener == NULL); 17449 if (tcp->tcp_issocket || tcp->tcp_send_discon_ind) { 17450 if (IPCL_IS_NONSTR(connp)) { 17451 ASSERT(tcp->tcp_issocket); 17452 (*connp->conn_upcalls->su_disconnected)( 17453 connp->conn_upper_handle, tcp->tcp_connid, 17454 ECONNREFUSED); 17455 freemsg(mp); 17456 } else { 17457 struct T_discon_ind *tdi; 17458 17459 (void) putnextctl1(q, M_FLUSH, FLUSHRW); 17460 /* 17461 * Let us reuse the incoming mblk to avoid 17462 * memory allocation failure problems. We know 17463 * that the size of the incoming mblk i.e. 17464 * stroptions is greater than sizeof 17465 * T_discon_ind. So the reallocb below can't 17466 * fail. 17467 */ 17468 freemsg(mp->b_cont); 17469 mp->b_cont = NULL; 17470 ASSERT(DB_REF(mp) == 1); 17471 mp = reallocb(mp, sizeof (struct T_discon_ind), 17472 B_FALSE); 17473 ASSERT(mp != NULL); 17474 DB_TYPE(mp) = M_PROTO; 17475 ((union T_primitives *)mp->b_rptr)->type = 17476 T_DISCON_IND; 17477 tdi = (struct T_discon_ind *)mp->b_rptr; 17478 if (tcp->tcp_issocket) { 17479 tdi->DISCON_reason = ECONNREFUSED; 17480 tdi->SEQ_number = 0; 17481 } else { 17482 tdi->DISCON_reason = ENOPROTOOPT; 17483 tdi->SEQ_number = 17484 tcp->tcp_conn_req_seqnum; 17485 } 17486 mp->b_wptr = mp->b_rptr + 17487 sizeof (struct T_discon_ind); 17488 putnext(q, mp); 17489 return; 17490 } 17491 } 17492 if (tcp->tcp_hard_binding) { 17493 tcp->tcp_hard_binding = B_FALSE; 17494 tcp->tcp_hard_bound = B_TRUE; 17495 } 17496 return; 17497 } 17498 17499 if (tcpopt->to_flags & TCPOPT_BOUNDIF) { 17500 int boundif = tcpopt->to_boundif; 17501 uint_t len = sizeof (int); 17502 17503 (void) tcp_opt_set(connp, SETFN_OPTCOM_NEGOTIATE, IPPROTO_IPV6, 17504 IPV6_BOUND_IF, len, (uchar_t *)&boundif, &len, 17505 (uchar_t *)&boundif, NULL, tcp->tcp_cred, NULL); 17506 } 17507 if (tcpopt->to_flags & TCPOPT_RECVPKTINFO) { 17508 uint_t on = 1; 17509 uint_t len = sizeof (uint_t); 17510 (void) tcp_opt_set(connp, SETFN_OPTCOM_NEGOTIATE, IPPROTO_IPV6, 17511 IPV6_RECVPKTINFO, len, (uchar_t *)&on, &len, 17512 (uchar_t *)&on, NULL, tcp->tcp_cred, NULL); 17513 } 17514 17515 /* 17516 * For a loopback connection with tcp_direct_sockfs on, note that 17517 * we don't have to protect tcp_rcv_list yet because synchronous 17518 * streams has not yet been enabled and tcp_fuse_rrw() cannot 17519 * possibly race with us. 17520 */ 17521 17522 /* 17523 * Set the max window size (tcp_rq->q_hiwat) of the acceptor 17524 * properly. This is the first time we know of the acceptor' 17525 * queue. So we do it here. 17526 * 17527 * XXX 17528 */ 17529 if (tcp->tcp_rcv_list == NULL) { 17530 /* 17531 * Recv queue is empty, tcp_rwnd should not have changed. 17532 * That means it should be equal to the listener's tcp_rwnd. 17533 */ 17534 if (!IPCL_IS_NONSTR(connp)) 17535 tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd; 17536 tcp->tcp_recv_hiwater = tcp->tcp_rwnd; 17537 } else { 17538 #ifdef DEBUG 17539 mblk_t *tmp; 17540 mblk_t *mp1; 17541 uint_t cnt = 0; 17542 17543 mp1 = tcp->tcp_rcv_list; 17544 while ((tmp = mp1) != NULL) { 17545 mp1 = tmp->b_next; 17546 cnt += msgdsize(tmp); 17547 } 17548 ASSERT(cnt != 0 && tcp->tcp_rcv_cnt == cnt); 17549 #endif 17550 /* There is some data, add them back to get the max. */ 17551 if (!IPCL_IS_NONSTR(connp)) 17552 tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd + tcp->tcp_rcv_cnt; 17553 tcp->tcp_recv_hiwater = tcp->tcp_rwnd + tcp->tcp_rcv_cnt; 17554 } 17555 /* 17556 * This is the first time we run on the correct 17557 * queue after tcp_accept. So fix all the q parameters 17558 * here. 17559 */ 17560 sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_MAXBLK | SOCKOPT_WROFF; 17561 sopp_maxblk = tcp_maxpsz_set(tcp, B_FALSE); 17562 17563 /* 17564 * Record the stream head's high water mark for this endpoint; 17565 * this is used for flow-control purposes. 17566 */ 17567 sopp_rxhiwat = tcp->tcp_fused ? 17568 tcp_fuse_set_rcv_hiwat(tcp, tcp->tcp_recv_hiwater) : 17569 MAX(tcp->tcp_recv_hiwater, tcps->tcps_sth_rcv_hiwat); 17570 17571 /* 17572 * Determine what write offset value to use depending on SACK and 17573 * whether the endpoint is fused or not. 17574 */ 17575 if (tcp->tcp_fused) { 17576 ASSERT(tcp->tcp_loopback); 17577 ASSERT(tcp->tcp_loopback_peer != NULL); 17578 /* 17579 * For fused tcp loopback, set the stream head's write 17580 * offset value to zero since we won't be needing any room 17581 * for TCP/IP headers. This would also improve performance 17582 * since it would reduce the amount of work done by kmem. 17583 * Non-fused tcp loopback case is handled separately below. 17584 */ 17585 sopp_wroff = 0; 17586 /* 17587 * Update the peer's transmit parameters according to 17588 * our recently calculated high water mark value. 17589 */ 17590 (void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE); 17591 } else if (tcp->tcp_snd_sack_ok) { 17592 sopp_wroff = tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN + 17593 (tcp->tcp_loopback ? 0 : tcps->tcps_wroff_xtra); 17594 } else { 17595 sopp_wroff = tcp->tcp_hdr_len + (tcp->tcp_loopback ? 0 : 17596 tcps->tcps_wroff_xtra); 17597 } 17598 17599 /* 17600 * If this is endpoint is handling SSL, then reserve extra 17601 * offset and space at the end. 17602 * Also have the stream head allocate SSL3_MAX_RECORD_LEN packets, 17603 * overriding the previous setting. The extra cost of signing and 17604 * encrypting multiple MSS-size records (12 of them with Ethernet), 17605 * instead of a single contiguous one by the stream head 17606 * largely outweighs the statistical reduction of ACKs, when 17607 * applicable. The peer will also save on decryption and verification 17608 * costs. 17609 */ 17610 if (tcp->tcp_kssl_ctx != NULL) { 17611 sopp_wroff += SSL3_WROFFSET; 17612 17613 sopp_flags |= SOCKOPT_TAIL; 17614 sopp_tail = SSL3_MAX_TAIL_LEN; 17615 17616 sopp_flags |= SOCKOPT_ZCOPY; 17617 sopp_copyopt = ZCVMUNSAFE; 17618 17619 sopp_maxblk = SSL3_MAX_RECORD_LEN; 17620 } 17621 17622 /* Send the options up */ 17623 if (IPCL_IS_NONSTR(connp)) { 17624 struct sock_proto_props sopp; 17625 17626 sopp.sopp_flags = sopp_flags; 17627 sopp.sopp_wroff = sopp_wroff; 17628 sopp.sopp_maxblk = sopp_maxblk; 17629 sopp.sopp_rxhiwat = sopp_rxhiwat; 17630 if (sopp_flags & SOCKOPT_TAIL) { 17631 ASSERT(tcp->tcp_kssl_ctx != NULL); 17632 ASSERT(sopp_flags & SOCKOPT_ZCOPY); 17633 sopp.sopp_tail = sopp_tail; 17634 sopp.sopp_zcopyflag = sopp_copyopt; 17635 } 17636 (*connp->conn_upcalls->su_set_proto_props) 17637 (connp->conn_upper_handle, &sopp); 17638 } else { 17639 struct stroptions *stropt; 17640 mblk_t *stropt_mp = allocb(sizeof (struct stroptions), BPRI_HI); 17641 if (stropt_mp == NULL) { 17642 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 17643 return; 17644 } 17645 DB_TYPE(stropt_mp) = M_SETOPTS; 17646 stropt = (struct stroptions *)stropt_mp->b_rptr; 17647 stropt_mp->b_wptr += sizeof (struct stroptions); 17648 stropt = (struct stroptions *)stropt_mp->b_rptr; 17649 stropt->so_flags |= SO_HIWAT | SO_WROFF | SO_MAXBLK; 17650 stropt->so_hiwat = sopp_rxhiwat; 17651 stropt->so_wroff = sopp_wroff; 17652 stropt->so_maxblk = sopp_maxblk; 17653 17654 if (sopp_flags & SOCKOPT_TAIL) { 17655 ASSERT(tcp->tcp_kssl_ctx != NULL); 17656 17657 stropt->so_flags |= SO_TAIL | SO_COPYOPT; 17658 stropt->so_tail = sopp_tail; 17659 stropt->so_copyopt = sopp_copyopt; 17660 } 17661 17662 /* Send the options up */ 17663 putnext(q, stropt_mp); 17664 } 17665 17666 freemsg(mp); 17667 /* 17668 * Pass up any data and/or a fin that has been received. 17669 * 17670 * Adjust receive window in case it had decreased 17671 * (because there is data <=> tcp_rcv_list != NULL) 17672 * while the connection was detached. Note that 17673 * in case the eager was flow-controlled, w/o this 17674 * code, the rwnd may never open up again! 17675 */ 17676 if (tcp->tcp_rcv_list != NULL) { 17677 if (IPCL_IS_NONSTR(connp)) { 17678 mblk_t *mp; 17679 int space_left; 17680 int error; 17681 boolean_t push = B_TRUE; 17682 17683 if (!tcp->tcp_fused && (*connp->conn_upcalls->su_recv) 17684 (connp->conn_upper_handle, NULL, 0, 0, &error, 17685 &push) >= 0) { 17686 tcp->tcp_rwnd = tcp->tcp_recv_hiwater; 17687 if (tcp->tcp_state >= TCPS_ESTABLISHED && 17688 tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) { 17689 tcp_xmit_ctl(NULL, 17690 tcp, (tcp->tcp_swnd == 0) ? 17691 tcp->tcp_suna : tcp->tcp_snxt, 17692 tcp->tcp_rnxt, TH_ACK); 17693 } 17694 } 17695 while ((mp = tcp->tcp_rcv_list) != NULL) { 17696 push = B_TRUE; 17697 tcp->tcp_rcv_list = mp->b_next; 17698 mp->b_next = NULL; 17699 space_left = (*connp->conn_upcalls->su_recv) 17700 (connp->conn_upper_handle, mp, msgdsize(mp), 17701 0, &error, &push); 17702 if (space_left < 0) { 17703 /* 17704 * We should never be in middle of a 17705 * fallback, the squeue guarantees that. 17706 */ 17707 ASSERT(error != EOPNOTSUPP); 17708 } 17709 } 17710 tcp->tcp_rcv_last_head = NULL; 17711 tcp->tcp_rcv_last_tail = NULL; 17712 tcp->tcp_rcv_cnt = 0; 17713 } else { 17714 /* We drain directly in case of fused tcp loopback */ 17715 sodirect_t *sodp; 17716 17717 if (!tcp->tcp_fused && canputnext(q)) { 17718 tcp->tcp_rwnd = q->q_hiwat; 17719 if (tcp->tcp_state >= TCPS_ESTABLISHED && 17720 tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) { 17721 tcp_xmit_ctl(NULL, 17722 tcp, (tcp->tcp_swnd == 0) ? 17723 tcp->tcp_suna : tcp->tcp_snxt, 17724 tcp->tcp_rnxt, TH_ACK); 17725 } 17726 } 17727 17728 SOD_PTR_ENTER(tcp, sodp); 17729 if (sodp != NULL) { 17730 /* Sodirect, move from rcv_list */ 17731 ASSERT(!tcp->tcp_fused); 17732 while ((mp = tcp->tcp_rcv_list) != NULL) { 17733 tcp->tcp_rcv_list = mp->b_next; 17734 mp->b_next = NULL; 17735 (void) tcp_rcv_sod_enqueue(tcp, sodp, 17736 mp, msgdsize(mp)); 17737 } 17738 tcp->tcp_rcv_last_head = NULL; 17739 tcp->tcp_rcv_last_tail = NULL; 17740 tcp->tcp_rcv_cnt = 0; 17741 (void) tcp_rcv_sod_wakeup(tcp, sodp); 17742 /* sod_wakeup() did the mutex_exit() */ 17743 } else { 17744 /* Not sodirect, drain */ 17745 (void) tcp_rcv_drain(tcp); 17746 } 17747 } 17748 17749 /* 17750 * For fused tcp loopback, back-enable peer endpoint 17751 * if it's currently flow-controlled. 17752 */ 17753 if (tcp->tcp_fused) { 17754 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 17755 17756 ASSERT(peer_tcp != NULL); 17757 ASSERT(peer_tcp->tcp_fused); 17758 /* 17759 * In order to change the peer's tcp_flow_stopped, 17760 * we need to take locks for both end points. The 17761 * highest address is taken first. 17762 */ 17763 if (peer_tcp > tcp) { 17764 mutex_enter(&peer_tcp->tcp_non_sq_lock); 17765 mutex_enter(&tcp->tcp_non_sq_lock); 17766 } else { 17767 mutex_enter(&tcp->tcp_non_sq_lock); 17768 mutex_enter(&peer_tcp->tcp_non_sq_lock); 17769 } 17770 if (peer_tcp->tcp_flow_stopped) { 17771 tcp_clrqfull(peer_tcp); 17772 TCP_STAT(tcps, tcp_fusion_backenabled); 17773 } 17774 mutex_exit(&peer_tcp->tcp_non_sq_lock); 17775 mutex_exit(&tcp->tcp_non_sq_lock); 17776 } 17777 } 17778 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 17779 if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 17780 tcp->tcp_ordrel_done = B_TRUE; 17781 if (IPCL_IS_NONSTR(connp)) { 17782 ASSERT(tcp->tcp_ordrel_mp == NULL); 17783 (*connp->conn_upcalls->su_opctl)( 17784 connp->conn_upper_handle, 17785 SOCK_OPCTL_SHUT_RECV, 0); 17786 } else { 17787 mp = tcp->tcp_ordrel_mp; 17788 tcp->tcp_ordrel_mp = NULL; 17789 putnext(q, mp); 17790 } 17791 } 17792 if (tcp->tcp_hard_binding) { 17793 tcp->tcp_hard_binding = B_FALSE; 17794 tcp->tcp_hard_bound = B_TRUE; 17795 } 17796 17797 /* We can enable synchronous streams for STREAMS tcp endpoint now */ 17798 if (tcp->tcp_fused && !IPCL_IS_NONSTR(connp) && 17799 tcp->tcp_loopback_peer != NULL && 17800 !IPCL_IS_NONSTR(tcp->tcp_loopback_peer->tcp_connp)) { 17801 tcp_fuse_syncstr_enable_pair(tcp); 17802 } 17803 17804 if (tcp->tcp_ka_enabled) { 17805 tcp->tcp_ka_last_intrvl = 0; 17806 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 17807 MSEC_TO_TICK(tcp->tcp_ka_interval)); 17808 } 17809 17810 /* 17811 * At this point, eager is fully established and will 17812 * have the following references - 17813 * 17814 * 2 references for connection to exist (1 for TCP and 1 for IP). 17815 * 1 reference for the squeue which will be dropped by the squeue as 17816 * soon as this function returns. 17817 * There will be 1 additonal reference for being in classifier 17818 * hash list provided something bad hasn't happened. 17819 */ 17820 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 17821 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 17822 } 17823 17824 /* 17825 * The function called through squeue to get behind listener's perimeter to 17826 * send a deffered conn_ind. 17827 */ 17828 /* ARGSUSED */ 17829 void 17830 tcp_send_pending(void *arg, mblk_t *mp, void *arg2) 17831 { 17832 conn_t *connp = (conn_t *)arg; 17833 tcp_t *listener = connp->conn_tcp; 17834 struct T_conn_ind *conn_ind; 17835 tcp_t *tcp; 17836 17837 conn_ind = (struct T_conn_ind *)mp->b_rptr; 17838 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 17839 conn_ind->OPT_length); 17840 17841 if (listener->tcp_state == TCPS_CLOSED || 17842 TCP_IS_DETACHED(listener)) { 17843 /* 17844 * If listener has closed, it would have caused a 17845 * a cleanup/blowoff to happen for the eager. 17846 * 17847 * We need to drop the ref on eager that was put 17848 * tcp_rput_data() before trying to send the conn_ind 17849 * to listener. The conn_ind was deferred in tcp_send_conn_ind 17850 * and tcp_wput_accept() is sending this deferred conn_ind but 17851 * listener is closed so we drop the ref. 17852 */ 17853 CONN_DEC_REF(tcp->tcp_connp); 17854 freemsg(mp); 17855 return; 17856 } 17857 17858 tcp_ulp_newconn(connp, tcp->tcp_connp, mp); 17859 } 17860 17861 /* ARGSUSED */ 17862 static int 17863 tcp_accept_common(conn_t *lconnp, conn_t *econnp, cred_t *cr) 17864 { 17865 tcp_t *listener, *eager; 17866 mblk_t *opt_mp; 17867 struct tcp_options *tcpopt; 17868 17869 listener = lconnp->conn_tcp; 17870 ASSERT(listener->tcp_state == TCPS_LISTEN); 17871 eager = econnp->conn_tcp; 17872 ASSERT(eager->tcp_listener != NULL); 17873 17874 ASSERT(eager->tcp_rq != NULL); 17875 17876 /* If tcp_fused and sodirect enabled disable it */ 17877 if (eager->tcp_fused && eager->tcp_sodirect != NULL) { 17878 /* Fused, disable sodirect */ 17879 mutex_enter(eager->tcp_sodirect->sod_lockp); 17880 SOD_DISABLE(eager->tcp_sodirect); 17881 mutex_exit(eager->tcp_sodirect->sod_lockp); 17882 eager->tcp_sodirect = NULL; 17883 } 17884 17885 opt_mp = allocb(sizeof (struct tcp_options), BPRI_HI); 17886 if (opt_mp == NULL) { 17887 return (-TPROTO); 17888 } 17889 bzero((char *)opt_mp->b_rptr, sizeof (struct tcp_options)); 17890 eager->tcp_issocket = B_TRUE; 17891 17892 econnp->conn_zoneid = listener->tcp_connp->conn_zoneid; 17893 econnp->conn_allzones = listener->tcp_connp->conn_allzones; 17894 ASSERT(econnp->conn_netstack == 17895 listener->tcp_connp->conn_netstack); 17896 ASSERT(eager->tcp_tcps == listener->tcp_tcps); 17897 17898 /* Put the ref for IP */ 17899 CONN_INC_REF(econnp); 17900 17901 /* 17902 * We should have minimum of 3 references on the conn 17903 * at this point. One each for TCP and IP and one for 17904 * the T_conn_ind that was sent up when the 3-way handshake 17905 * completed. In the normal case we would also have another 17906 * reference (making a total of 4) for the conn being in the 17907 * classifier hash list. However the eager could have received 17908 * an RST subsequently and tcp_closei_local could have removed 17909 * the eager from the classifier hash list, hence we can't 17910 * assert that reference. 17911 */ 17912 ASSERT(econnp->conn_ref >= 3); 17913 17914 opt_mp->b_datap->db_type = M_SETOPTS; 17915 opt_mp->b_wptr += sizeof (struct tcp_options); 17916 17917 /* 17918 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO 17919 * from listener to acceptor. 17920 */ 17921 tcpopt = (struct tcp_options *)opt_mp->b_rptr; 17922 tcpopt->to_flags = 0; 17923 17924 if (listener->tcp_bound_if != 0) { 17925 tcpopt->to_flags |= TCPOPT_BOUNDIF; 17926 tcpopt->to_boundif = listener->tcp_bound_if; 17927 } 17928 if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) { 17929 tcpopt->to_flags |= TCPOPT_RECVPKTINFO; 17930 } 17931 17932 mutex_enter(&listener->tcp_eager_lock); 17933 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 17934 17935 tcp_t *tail; 17936 tcp_t *tcp; 17937 mblk_t *mp1; 17938 17939 tcp = listener->tcp_eager_prev_q0; 17940 /* 17941 * listener->tcp_eager_prev_q0 points to the TAIL of the 17942 * deferred T_conn_ind queue. We need to get to the head 17943 * of the queue in order to send up T_conn_ind the same 17944 * order as how the 3WHS is completed. 17945 */ 17946 while (tcp != listener) { 17947 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0 && 17948 !tcp->tcp_kssl_pending) 17949 break; 17950 else 17951 tcp = tcp->tcp_eager_prev_q0; 17952 } 17953 /* None of the pending eagers can be sent up now */ 17954 if (tcp == listener) 17955 goto no_more_eagers; 17956 17957 mp1 = tcp->tcp_conn.tcp_eager_conn_ind; 17958 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 17959 /* Move from q0 to q */ 17960 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 17961 listener->tcp_conn_req_cnt_q0--; 17962 listener->tcp_conn_req_cnt_q++; 17963 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 17964 tcp->tcp_eager_prev_q0; 17965 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 17966 tcp->tcp_eager_next_q0; 17967 tcp->tcp_eager_prev_q0 = NULL; 17968 tcp->tcp_eager_next_q0 = NULL; 17969 tcp->tcp_conn_def_q0 = B_FALSE; 17970 17971 /* Make sure the tcp isn't in the list of droppables */ 17972 ASSERT(tcp->tcp_eager_next_drop_q0 == NULL && 17973 tcp->tcp_eager_prev_drop_q0 == NULL); 17974 17975 /* 17976 * Insert at end of the queue because sockfs sends 17977 * down T_CONN_RES in chronological order. Leaving 17978 * the older conn indications at front of the queue 17979 * helps reducing search time. 17980 */ 17981 tail = listener->tcp_eager_last_q; 17982 if (tail != NULL) { 17983 tail->tcp_eager_next_q = tcp; 17984 } else { 17985 listener->tcp_eager_next_q = tcp; 17986 } 17987 listener->tcp_eager_last_q = tcp; 17988 tcp->tcp_eager_next_q = NULL; 17989 17990 /* Need to get inside the listener perimeter */ 17991 CONN_INC_REF(listener->tcp_connp); 17992 SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, mp1, 17993 tcp_send_pending, listener->tcp_connp, SQ_FILL, 17994 SQTAG_TCP_SEND_PENDING); 17995 } 17996 no_more_eagers: 17997 tcp_eager_unlink(eager); 17998 mutex_exit(&listener->tcp_eager_lock); 17999 18000 /* 18001 * At this point, the eager is detached from the listener 18002 * but we still have an extra refs on eager (apart from the 18003 * usual tcp references). The ref was placed in tcp_rput_data 18004 * before sending the conn_ind in tcp_send_conn_ind. 18005 * The ref will be dropped in tcp_accept_finish(). 18006 */ 18007 SQUEUE_ENTER_ONE(econnp->conn_sqp, opt_mp, tcp_accept_finish, 18008 econnp, SQ_NODRAIN, SQTAG_TCP_ACCEPT_FINISH_Q0); 18009 return (0); 18010 } 18011 18012 int 18013 tcp_accept(sock_lower_handle_t lproto_handle, 18014 sock_lower_handle_t eproto_handle, sock_upper_handle_t sock_handle, 18015 cred_t *cr) 18016 { 18017 conn_t *lconnp, *econnp; 18018 tcp_t *listener, *eager; 18019 tcp_stack_t *tcps; 18020 18021 lconnp = (conn_t *)lproto_handle; 18022 listener = lconnp->conn_tcp; 18023 ASSERT(listener->tcp_state == TCPS_LISTEN); 18024 econnp = (conn_t *)eproto_handle; 18025 eager = econnp->conn_tcp; 18026 ASSERT(eager->tcp_listener != NULL); 18027 tcps = eager->tcp_tcps; 18028 18029 /* 18030 * It is OK to manipulate these fields outside the eager's squeue 18031 * because they will not start being used until tcp_accept_finish 18032 * has been called. 18033 */ 18034 ASSERT(lconnp->conn_upper_handle != NULL); 18035 ASSERT(econnp->conn_upper_handle == NULL); 18036 econnp->conn_upper_handle = sock_handle; 18037 econnp->conn_upcalls = lconnp->conn_upcalls; 18038 ASSERT(IPCL_IS_NONSTR(econnp)); 18039 /* 18040 * Create helper stream if it is a non-TPI TCP connection. 18041 */ 18042 if (ip_create_helper_stream(econnp, tcps->tcps_ldi_ident)) { 18043 ip1dbg(("tcp_accept: create of IP helper stream" 18044 " failed\n")); 18045 return (EPROTO); 18046 } 18047 eager->tcp_rq = econnp->conn_rq; 18048 eager->tcp_wq = econnp->conn_wq; 18049 18050 ASSERT(eager->tcp_rq != NULL); 18051 18052 eager->tcp_sodirect = SOD_SOTOSODP(sock_handle); 18053 return (tcp_accept_common(lconnp, econnp, cr)); 18054 } 18055 18056 18057 /* 18058 * This is the STREAMS entry point for T_CONN_RES coming down on 18059 * Acceptor STREAM when sockfs listener does accept processing. 18060 * Read the block comment on top of tcp_conn_request(). 18061 */ 18062 void 18063 tcp_tpi_accept(queue_t *q, mblk_t *mp) 18064 { 18065 queue_t *rq = RD(q); 18066 struct T_conn_res *conn_res; 18067 tcp_t *eager; 18068 tcp_t *listener; 18069 struct T_ok_ack *ok; 18070 t_scalar_t PRIM_type; 18071 conn_t *econnp; 18072 cred_t *cr; 18073 18074 ASSERT(DB_TYPE(mp) == M_PROTO); 18075 18076 /* 18077 * All Solaris components should pass a db_credp 18078 * for this TPI message, hence we ASSERT. 18079 * But in case there is some other M_PROTO that looks 18080 * like a TPI message sent by some other kernel 18081 * component, we check and return an error. 18082 */ 18083 cr = msg_getcred(mp, NULL); 18084 ASSERT(cr != NULL); 18085 if (cr == NULL) { 18086 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL); 18087 if (mp != NULL) 18088 putnext(rq, mp); 18089 return; 18090 } 18091 conn_res = (struct T_conn_res *)mp->b_rptr; 18092 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 18093 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_res)) { 18094 mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); 18095 if (mp != NULL) 18096 putnext(rq, mp); 18097 return; 18098 } 18099 switch (conn_res->PRIM_type) { 18100 case O_T_CONN_RES: 18101 case T_CONN_RES: 18102 /* 18103 * We pass up an err ack if allocb fails. This will 18104 * cause sockfs to issue a T_DISCON_REQ which will cause 18105 * tcp_eager_blowoff to be called. sockfs will then call 18106 * rq->q_qinfo->qi_qclose to cleanup the acceptor stream. 18107 * we need to do the allocb up here because we have to 18108 * make sure rq->q_qinfo->qi_qclose still points to the 18109 * correct function (tcpclose_accept) in case allocb 18110 * fails. 18111 */ 18112 bcopy(mp->b_rptr + conn_res->OPT_offset, 18113 &eager, conn_res->OPT_length); 18114 PRIM_type = conn_res->PRIM_type; 18115 mp->b_datap->db_type = M_PCPROTO; 18116 mp->b_wptr = mp->b_rptr + sizeof (struct T_ok_ack); 18117 ok = (struct T_ok_ack *)mp->b_rptr; 18118 ok->PRIM_type = T_OK_ACK; 18119 ok->CORRECT_prim = PRIM_type; 18120 econnp = eager->tcp_connp; 18121 econnp->conn_dev = (dev_t)RD(q)->q_ptr; 18122 econnp->conn_minor_arena = (vmem_t *)(WR(q)->q_ptr); 18123 eager->tcp_rq = rq; 18124 eager->tcp_wq = q; 18125 rq->q_ptr = econnp; 18126 rq->q_qinfo = &tcp_rinitv4; /* No open - same as rinitv6 */ 18127 q->q_ptr = econnp; 18128 q->q_qinfo = &tcp_winit; 18129 listener = eager->tcp_listener; 18130 18131 /* 18132 * TCP is _D_SODIRECT and sockfs is directly above so 18133 * save shared sodirect_t pointer (if any). 18134 */ 18135 eager->tcp_sodirect = SOD_QTOSODP(eager->tcp_rq); 18136 if (tcp_accept_common(listener->tcp_connp, 18137 econnp, cr) < 0) { 18138 mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); 18139 if (mp != NULL) 18140 putnext(rq, mp); 18141 return; 18142 } 18143 18144 /* 18145 * Send the new local address also up to sockfs. There 18146 * should already be enough space in the mp that came 18147 * down from soaccept(). 18148 */ 18149 if (eager->tcp_family == AF_INET) { 18150 sin_t *sin; 18151 18152 ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= 18153 (sizeof (struct T_ok_ack) + sizeof (sin_t))); 18154 sin = (sin_t *)mp->b_wptr; 18155 mp->b_wptr += sizeof (sin_t); 18156 sin->sin_family = AF_INET; 18157 sin->sin_port = eager->tcp_lport; 18158 sin->sin_addr.s_addr = eager->tcp_ipha->ipha_src; 18159 } else { 18160 sin6_t *sin6; 18161 18162 ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= 18163 sizeof (struct T_ok_ack) + sizeof (sin6_t)); 18164 sin6 = (sin6_t *)mp->b_wptr; 18165 mp->b_wptr += sizeof (sin6_t); 18166 sin6->sin6_family = AF_INET6; 18167 sin6->sin6_port = eager->tcp_lport; 18168 if (eager->tcp_ipversion == IPV4_VERSION) { 18169 sin6->sin6_flowinfo = 0; 18170 IN6_IPADDR_TO_V4MAPPED( 18171 eager->tcp_ipha->ipha_src, 18172 &sin6->sin6_addr); 18173 } else { 18174 ASSERT(eager->tcp_ip6h != NULL); 18175 sin6->sin6_flowinfo = 18176 eager->tcp_ip6h->ip6_vcf & 18177 ~IPV6_VERS_AND_FLOW_MASK; 18178 sin6->sin6_addr = eager->tcp_ip6h->ip6_src; 18179 } 18180 sin6->sin6_scope_id = 0; 18181 sin6->__sin6_src_id = 0; 18182 } 18183 18184 putnext(rq, mp); 18185 return; 18186 default: 18187 mp = mi_tpi_err_ack_alloc(mp, TNOTSUPPORT, 0); 18188 if (mp != NULL) 18189 putnext(rq, mp); 18190 return; 18191 } 18192 } 18193 18194 static int 18195 tcp_do_getsockname(tcp_t *tcp, struct sockaddr *sa, uint_t *salenp) 18196 { 18197 sin_t *sin = (sin_t *)sa; 18198 sin6_t *sin6 = (sin6_t *)sa; 18199 18200 switch (tcp->tcp_family) { 18201 case AF_INET: 18202 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 18203 18204 if (*salenp < sizeof (sin_t)) 18205 return (EINVAL); 18206 18207 *sin = sin_null; 18208 sin->sin_family = AF_INET; 18209 if (tcp->tcp_state >= TCPS_BOUND) { 18210 sin->sin_port = tcp->tcp_lport; 18211 sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src; 18212 } 18213 *salenp = sizeof (sin_t); 18214 break; 18215 18216 case AF_INET6: 18217 if (*salenp < sizeof (sin6_t)) 18218 return (EINVAL); 18219 18220 *sin6 = sin6_null; 18221 sin6->sin6_family = AF_INET6; 18222 if (tcp->tcp_state >= TCPS_BOUND) { 18223 sin6->sin6_port = tcp->tcp_lport; 18224 if (tcp->tcp_ipversion == IPV4_VERSION) { 18225 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 18226 &sin6->sin6_addr); 18227 } else { 18228 sin6->sin6_addr = tcp->tcp_ip6h->ip6_src; 18229 } 18230 } 18231 *salenp = sizeof (sin6_t); 18232 break; 18233 } 18234 18235 return (0); 18236 } 18237 18238 static int 18239 tcp_do_getpeername(tcp_t *tcp, struct sockaddr *sa, uint_t *salenp) 18240 { 18241 sin_t *sin = (sin_t *)sa; 18242 sin6_t *sin6 = (sin6_t *)sa; 18243 18244 if (tcp->tcp_state < TCPS_SYN_RCVD) 18245 return (ENOTCONN); 18246 18247 switch (tcp->tcp_family) { 18248 case AF_INET: 18249 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 18250 18251 if (*salenp < sizeof (sin_t)) 18252 return (EINVAL); 18253 18254 *sin = sin_null; 18255 sin->sin_family = AF_INET; 18256 sin->sin_port = tcp->tcp_fport; 18257 IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_remote_v6, 18258 sin->sin_addr.s_addr); 18259 *salenp = sizeof (sin_t); 18260 break; 18261 18262 case AF_INET6: 18263 if (*salenp < sizeof (sin6_t)) 18264 return (EINVAL); 18265 18266 *sin6 = sin6_null; 18267 sin6->sin6_family = AF_INET6; 18268 sin6->sin6_port = tcp->tcp_fport; 18269 sin6->sin6_addr = tcp->tcp_remote_v6; 18270 if (tcp->tcp_ipversion == IPV6_VERSION) { 18271 sin6->sin6_flowinfo = tcp->tcp_ip6h->ip6_vcf & 18272 ~IPV6_VERS_AND_FLOW_MASK; 18273 } 18274 *salenp = sizeof (sin6_t); 18275 break; 18276 } 18277 18278 return (0); 18279 } 18280 18281 /* 18282 * Handle special out-of-band ioctl requests (see PSARC/2008/265). 18283 */ 18284 static void 18285 tcp_wput_cmdblk(queue_t *q, mblk_t *mp) 18286 { 18287 void *data; 18288 mblk_t *datamp = mp->b_cont; 18289 tcp_t *tcp = Q_TO_TCP(q); 18290 cmdblk_t *cmdp = (cmdblk_t *)mp->b_rptr; 18291 18292 if (datamp == NULL || MBLKL(datamp) < cmdp->cb_len) { 18293 cmdp->cb_error = EPROTO; 18294 qreply(q, mp); 18295 return; 18296 } 18297 18298 data = datamp->b_rptr; 18299 18300 switch (cmdp->cb_cmd) { 18301 case TI_GETPEERNAME: 18302 cmdp->cb_error = tcp_do_getpeername(tcp, data, &cmdp->cb_len); 18303 break; 18304 case TI_GETMYNAME: 18305 cmdp->cb_error = tcp_do_getsockname(tcp, data, &cmdp->cb_len); 18306 break; 18307 default: 18308 cmdp->cb_error = EINVAL; 18309 break; 18310 } 18311 18312 qreply(q, mp); 18313 } 18314 18315 void 18316 tcp_wput(queue_t *q, mblk_t *mp) 18317 { 18318 conn_t *connp = Q_TO_CONN(q); 18319 tcp_t *tcp; 18320 void (*output_proc)(); 18321 t_scalar_t type; 18322 uchar_t *rptr; 18323 struct iocblk *iocp; 18324 size_t size; 18325 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 18326 18327 ASSERT(connp->conn_ref >= 2); 18328 18329 switch (DB_TYPE(mp)) { 18330 case M_DATA: 18331 tcp = connp->conn_tcp; 18332 ASSERT(tcp != NULL); 18333 18334 size = msgdsize(mp); 18335 18336 mutex_enter(&tcp->tcp_non_sq_lock); 18337 tcp->tcp_squeue_bytes += size; 18338 if (TCP_UNSENT_BYTES(tcp) > tcp->tcp_xmit_hiwater) { 18339 tcp_setqfull(tcp); 18340 } 18341 mutex_exit(&tcp->tcp_non_sq_lock); 18342 18343 CONN_INC_REF(connp); 18344 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_output, connp, 18345 tcp_squeue_flag, SQTAG_TCP_OUTPUT); 18346 return; 18347 18348 case M_CMD: 18349 tcp_wput_cmdblk(q, mp); 18350 return; 18351 18352 case M_PROTO: 18353 case M_PCPROTO: 18354 /* 18355 * if it is a snmp message, don't get behind the squeue 18356 */ 18357 tcp = connp->conn_tcp; 18358 rptr = mp->b_rptr; 18359 if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { 18360 type = ((union T_primitives *)rptr)->type; 18361 } else { 18362 if (tcp->tcp_debug) { 18363 (void) strlog(TCP_MOD_ID, 0, 1, 18364 SL_ERROR|SL_TRACE, 18365 "tcp_wput_proto, dropping one..."); 18366 } 18367 freemsg(mp); 18368 return; 18369 } 18370 if (type == T_SVR4_OPTMGMT_REQ) { 18371 /* 18372 * All Solaris components should pass a db_credp 18373 * for this TPI message, hence we ASSERT. 18374 * But in case there is some other M_PROTO that looks 18375 * like a TPI message sent by some other kernel 18376 * component, we check and return an error. 18377 */ 18378 cred_t *cr = msg_getcred(mp, NULL); 18379 18380 ASSERT(cr != NULL); 18381 if (cr == NULL) { 18382 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 18383 return; 18384 } 18385 if (snmpcom_req(q, mp, tcp_snmp_set, ip_snmp_get, 18386 cr)) { 18387 /* 18388 * This was a SNMP request 18389 */ 18390 return; 18391 } else { 18392 output_proc = tcp_wput_proto; 18393 } 18394 } else { 18395 output_proc = tcp_wput_proto; 18396 } 18397 break; 18398 case M_IOCTL: 18399 /* 18400 * Most ioctls can be processed right away without going via 18401 * squeues - process them right here. Those that do require 18402 * squeue (currently TCP_IOC_DEFAULT_Q and _SIOCSOCKFALLBACK) 18403 * are processed by tcp_wput_ioctl(). 18404 */ 18405 iocp = (struct iocblk *)mp->b_rptr; 18406 tcp = connp->conn_tcp; 18407 18408 switch (iocp->ioc_cmd) { 18409 case TCP_IOC_ABORT_CONN: 18410 tcp_ioctl_abort_conn(q, mp); 18411 return; 18412 case TI_GETPEERNAME: 18413 case TI_GETMYNAME: 18414 mi_copyin(q, mp, NULL, 18415 SIZEOF_STRUCT(strbuf, iocp->ioc_flag)); 18416 return; 18417 case ND_SET: 18418 /* nd_getset does the necessary checks */ 18419 case ND_GET: 18420 if (!nd_getset(q, tcps->tcps_g_nd, mp)) { 18421 CALL_IP_WPUT(connp, q, mp); 18422 return; 18423 } 18424 qreply(q, mp); 18425 return; 18426 case TCP_IOC_DEFAULT_Q: 18427 /* 18428 * Wants to be the default wq. Check the credentials 18429 * first, the rest is executed via squeue. 18430 */ 18431 if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) { 18432 iocp->ioc_error = EPERM; 18433 iocp->ioc_count = 0; 18434 mp->b_datap->db_type = M_IOCACK; 18435 qreply(q, mp); 18436 return; 18437 } 18438 output_proc = tcp_wput_ioctl; 18439 break; 18440 default: 18441 output_proc = tcp_wput_ioctl; 18442 break; 18443 } 18444 break; 18445 default: 18446 output_proc = tcp_wput_nondata; 18447 break; 18448 } 18449 18450 CONN_INC_REF(connp); 18451 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, output_proc, connp, 18452 tcp_squeue_flag, SQTAG_TCP_WPUT_OTHER); 18453 } 18454 18455 /* 18456 * Initial STREAMS write side put() procedure for sockets. It tries to 18457 * handle the T_CAPABILITY_REQ which sockfs sends down while setting 18458 * up the socket without using the squeue. Non T_CAPABILITY_REQ messages 18459 * are handled by tcp_wput() as usual. 18460 * 18461 * All further messages will also be handled by tcp_wput() because we cannot 18462 * be sure that the above short cut is safe later. 18463 */ 18464 static void 18465 tcp_wput_sock(queue_t *wq, mblk_t *mp) 18466 { 18467 conn_t *connp = Q_TO_CONN(wq); 18468 tcp_t *tcp = connp->conn_tcp; 18469 struct T_capability_req *car = (struct T_capability_req *)mp->b_rptr; 18470 18471 ASSERT(wq->q_qinfo == &tcp_sock_winit); 18472 wq->q_qinfo = &tcp_winit; 18473 18474 ASSERT(IPCL_IS_TCP(connp)); 18475 ASSERT(TCP_IS_SOCKET(tcp)); 18476 18477 if (DB_TYPE(mp) == M_PCPROTO && 18478 MBLKL(mp) == sizeof (struct T_capability_req) && 18479 car->PRIM_type == T_CAPABILITY_REQ) { 18480 tcp_capability_req(tcp, mp); 18481 return; 18482 } 18483 18484 tcp_wput(wq, mp); 18485 } 18486 18487 /* ARGSUSED */ 18488 static void 18489 tcp_wput_fallback(queue_t *wq, mblk_t *mp) 18490 { 18491 #ifdef DEBUG 18492 cmn_err(CE_CONT, "tcp_wput_fallback: Message during fallback \n"); 18493 #endif 18494 freemsg(mp); 18495 } 18496 18497 static boolean_t 18498 tcp_zcopy_check(tcp_t *tcp) 18499 { 18500 conn_t *connp = tcp->tcp_connp; 18501 ire_t *ire; 18502 boolean_t zc_enabled = B_FALSE; 18503 tcp_stack_t *tcps = tcp->tcp_tcps; 18504 18505 if (do_tcpzcopy == 2) 18506 zc_enabled = B_TRUE; 18507 else if (tcp->tcp_ipversion == IPV4_VERSION && 18508 IPCL_IS_CONNECTED(connp) && 18509 (connp->conn_flags & IPCL_CHECK_POLICY) == 0 && 18510 connp->conn_dontroute == 0 && 18511 !connp->conn_nexthop_set && 18512 connp->conn_outgoing_ill == NULL && 18513 do_tcpzcopy == 1) { 18514 /* 18515 * the checks above closely resemble the fast path checks 18516 * in tcp_send_data(). 18517 */ 18518 mutex_enter(&connp->conn_lock); 18519 ire = connp->conn_ire_cache; 18520 ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT)); 18521 if (ire != NULL && !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18522 IRE_REFHOLD(ire); 18523 if (ire->ire_stq != NULL) { 18524 ill_t *ill = (ill_t *)ire->ire_stq->q_ptr; 18525 18526 zc_enabled = ill && (ill->ill_capabilities & 18527 ILL_CAPAB_ZEROCOPY) && 18528 (ill->ill_zerocopy_capab-> 18529 ill_zerocopy_flags != 0); 18530 } 18531 IRE_REFRELE(ire); 18532 } 18533 mutex_exit(&connp->conn_lock); 18534 } 18535 tcp->tcp_snd_zcopy_on = zc_enabled; 18536 if (!TCP_IS_DETACHED(tcp)) { 18537 if (zc_enabled) { 18538 (void) proto_set_tx_copyopt(tcp->tcp_rq, connp, 18539 ZCVMSAFE); 18540 TCP_STAT(tcps, tcp_zcopy_on); 18541 } else { 18542 (void) proto_set_tx_copyopt(tcp->tcp_rq, connp, 18543 ZCVMUNSAFE); 18544 TCP_STAT(tcps, tcp_zcopy_off); 18545 } 18546 } 18547 return (zc_enabled); 18548 } 18549 18550 static mblk_t * 18551 tcp_zcopy_disable(tcp_t *tcp, mblk_t *bp) 18552 { 18553 tcp_stack_t *tcps = tcp->tcp_tcps; 18554 18555 if (do_tcpzcopy == 2) 18556 return (bp); 18557 else if (tcp->tcp_snd_zcopy_on) { 18558 tcp->tcp_snd_zcopy_on = B_FALSE; 18559 if (!TCP_IS_DETACHED(tcp)) { 18560 (void) proto_set_tx_copyopt(tcp->tcp_rq, tcp->tcp_connp, 18561 ZCVMUNSAFE); 18562 TCP_STAT(tcps, tcp_zcopy_disable); 18563 } 18564 } 18565 return (tcp_zcopy_backoff(tcp, bp, 0)); 18566 } 18567 18568 /* 18569 * Backoff from a zero-copy mblk by copying data to a new mblk and freeing 18570 * the original desballoca'ed segmapped mblk. 18571 */ 18572 static mblk_t * 18573 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, int fix_xmitlist) 18574 { 18575 mblk_t *head, *tail, *nbp; 18576 tcp_stack_t *tcps = tcp->tcp_tcps; 18577 18578 if (IS_VMLOANED_MBLK(bp)) { 18579 TCP_STAT(tcps, tcp_zcopy_backoff); 18580 if ((head = copyb(bp)) == NULL) { 18581 /* fail to backoff; leave it for the next backoff */ 18582 tcp->tcp_xmit_zc_clean = B_FALSE; 18583 return (bp); 18584 } 18585 if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 18586 if (fix_xmitlist) 18587 tcp_zcopy_notify(tcp); 18588 else 18589 head->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; 18590 } 18591 nbp = bp->b_cont; 18592 if (fix_xmitlist) { 18593 head->b_prev = bp->b_prev; 18594 head->b_next = bp->b_next; 18595 if (tcp->tcp_xmit_tail == bp) 18596 tcp->tcp_xmit_tail = head; 18597 } 18598 bp->b_next = NULL; 18599 bp->b_prev = NULL; 18600 freeb(bp); 18601 } else { 18602 head = bp; 18603 nbp = bp->b_cont; 18604 } 18605 tail = head; 18606 while (nbp) { 18607 if (IS_VMLOANED_MBLK(nbp)) { 18608 TCP_STAT(tcps, tcp_zcopy_backoff); 18609 if ((tail->b_cont = copyb(nbp)) == NULL) { 18610 tcp->tcp_xmit_zc_clean = B_FALSE; 18611 tail->b_cont = nbp; 18612 return (head); 18613 } 18614 tail = tail->b_cont; 18615 if (nbp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 18616 if (fix_xmitlist) 18617 tcp_zcopy_notify(tcp); 18618 else 18619 tail->b_datap->db_struioflag |= 18620 STRUIO_ZCNOTIFY; 18621 } 18622 bp = nbp; 18623 nbp = nbp->b_cont; 18624 if (fix_xmitlist) { 18625 tail->b_prev = bp->b_prev; 18626 tail->b_next = bp->b_next; 18627 if (tcp->tcp_xmit_tail == bp) 18628 tcp->tcp_xmit_tail = tail; 18629 } 18630 bp->b_next = NULL; 18631 bp->b_prev = NULL; 18632 freeb(bp); 18633 } else { 18634 tail->b_cont = nbp; 18635 tail = nbp; 18636 nbp = nbp->b_cont; 18637 } 18638 } 18639 if (fix_xmitlist) { 18640 tcp->tcp_xmit_last = tail; 18641 tcp->tcp_xmit_zc_clean = B_TRUE; 18642 } 18643 return (head); 18644 } 18645 18646 static void 18647 tcp_zcopy_notify(tcp_t *tcp) 18648 { 18649 struct stdata *stp; 18650 conn_t *connp; 18651 18652 if (tcp->tcp_detached) 18653 return; 18654 connp = tcp->tcp_connp; 18655 if (IPCL_IS_NONSTR(connp)) { 18656 (*connp->conn_upcalls->su_zcopy_notify) 18657 (connp->conn_upper_handle); 18658 return; 18659 } 18660 stp = STREAM(tcp->tcp_rq); 18661 mutex_enter(&stp->sd_lock); 18662 stp->sd_flag |= STZCNOTIFY; 18663 cv_broadcast(&stp->sd_zcopy_wait); 18664 mutex_exit(&stp->sd_lock); 18665 } 18666 18667 static boolean_t 18668 tcp_send_find_ire(tcp_t *tcp, ipaddr_t *dst, ire_t **irep) 18669 { 18670 ire_t *ire; 18671 conn_t *connp = tcp->tcp_connp; 18672 tcp_stack_t *tcps = tcp->tcp_tcps; 18673 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 18674 18675 mutex_enter(&connp->conn_lock); 18676 ire = connp->conn_ire_cache; 18677 ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT)); 18678 18679 if ((ire != NULL) && 18680 (((dst != NULL) && (ire->ire_addr == *dst)) || ((dst == NULL) && 18681 IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, &tcp->tcp_ip6h->ip6_dst))) && 18682 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18683 IRE_REFHOLD(ire); 18684 mutex_exit(&connp->conn_lock); 18685 } else { 18686 boolean_t cached = B_FALSE; 18687 ts_label_t *tsl; 18688 18689 /* force a recheck later on */ 18690 tcp->tcp_ire_ill_check_done = B_FALSE; 18691 18692 TCP_DBGSTAT(tcps, tcp_ire_null1); 18693 connp->conn_ire_cache = NULL; 18694 mutex_exit(&connp->conn_lock); 18695 18696 if (ire != NULL) 18697 IRE_REFRELE_NOTR(ire); 18698 18699 tsl = crgetlabel(CONN_CRED(connp)); 18700 ire = (dst ? 18701 ire_cache_lookup(*dst, connp->conn_zoneid, tsl, ipst) : 18702 ire_cache_lookup_v6(&tcp->tcp_ip6h->ip6_dst, 18703 connp->conn_zoneid, tsl, ipst)); 18704 18705 if (ire == NULL) { 18706 TCP_STAT(tcps, tcp_ire_null); 18707 return (B_FALSE); 18708 } 18709 18710 IRE_REFHOLD_NOTR(ire); 18711 18712 mutex_enter(&connp->conn_lock); 18713 if (CONN_CACHE_IRE(connp)) { 18714 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 18715 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18716 TCP_CHECK_IREINFO(tcp, ire); 18717 connp->conn_ire_cache = ire; 18718 cached = B_TRUE; 18719 } 18720 rw_exit(&ire->ire_bucket->irb_lock); 18721 } 18722 mutex_exit(&connp->conn_lock); 18723 18724 /* 18725 * We can continue to use the ire but since it was 18726 * not cached, we should drop the extra reference. 18727 */ 18728 if (!cached) 18729 IRE_REFRELE_NOTR(ire); 18730 18731 /* 18732 * Rampart note: no need to select a new label here, since 18733 * labels are not allowed to change during the life of a TCP 18734 * connection. 18735 */ 18736 } 18737 18738 *irep = ire; 18739 18740 return (B_TRUE); 18741 } 18742 18743 /* 18744 * Called from tcp_send() or tcp_send_data() to find workable IRE. 18745 * 18746 * 0 = success; 18747 * 1 = failed to find ire and ill. 18748 */ 18749 static boolean_t 18750 tcp_send_find_ire_ill(tcp_t *tcp, mblk_t *mp, ire_t **irep, ill_t **illp) 18751 { 18752 ipha_t *ipha; 18753 ipaddr_t dst; 18754 ire_t *ire; 18755 ill_t *ill; 18756 mblk_t *ire_fp_mp; 18757 tcp_stack_t *tcps = tcp->tcp_tcps; 18758 18759 if (mp != NULL) 18760 ipha = (ipha_t *)mp->b_rptr; 18761 else 18762 ipha = tcp->tcp_ipha; 18763 dst = ipha->ipha_dst; 18764 18765 if (!tcp_send_find_ire(tcp, &dst, &ire)) 18766 return (B_FALSE); 18767 18768 if ((ire->ire_flags & RTF_MULTIRT) || 18769 (ire->ire_stq == NULL) || 18770 (ire->ire_nce == NULL) || 18771 ((ire_fp_mp = ire->ire_nce->nce_fp_mp) == NULL) || 18772 ((mp != NULL) && (ire->ire_max_frag < ntohs(ipha->ipha_length) || 18773 MBLKL(ire_fp_mp) > MBLKHEAD(mp)))) { 18774 TCP_STAT(tcps, tcp_ip_ire_send); 18775 IRE_REFRELE(ire); 18776 return (B_FALSE); 18777 } 18778 18779 ill = ire_to_ill(ire); 18780 ASSERT(ill != NULL); 18781 18782 if (!tcp->tcp_ire_ill_check_done) { 18783 tcp_ire_ill_check(tcp, ire, ill, B_TRUE); 18784 tcp->tcp_ire_ill_check_done = B_TRUE; 18785 } 18786 18787 *irep = ire; 18788 *illp = ill; 18789 18790 return (B_TRUE); 18791 } 18792 18793 static void 18794 tcp_send_data(tcp_t *tcp, queue_t *q, mblk_t *mp) 18795 { 18796 ipha_t *ipha; 18797 ipaddr_t src; 18798 ipaddr_t dst; 18799 uint32_t cksum; 18800 ire_t *ire; 18801 uint16_t *up; 18802 ill_t *ill; 18803 conn_t *connp = tcp->tcp_connp; 18804 uint32_t hcksum_txflags = 0; 18805 mblk_t *ire_fp_mp; 18806 uint_t ire_fp_mp_len; 18807 tcp_stack_t *tcps = tcp->tcp_tcps; 18808 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 18809 cred_t *cr; 18810 pid_t cpid; 18811 18812 ASSERT(DB_TYPE(mp) == M_DATA); 18813 18814 /* 18815 * Here we need to handle the overloading of the cred_t for 18816 * both getpeerucred and TX. 18817 * If this is a SYN then the caller already set db_credp so 18818 * that getpeerucred will work. But if TX is in use we might have 18819 * a conn_peercred which is different, and we need to use that cred 18820 * to make TX use the correct label and label dependent route. 18821 */ 18822 if (is_system_labeled()) { 18823 cr = msg_getcred(mp, &cpid); 18824 if (cr == NULL || connp->conn_peercred != NULL) 18825 mblk_setcred(mp, CONN_CRED(connp), cpid); 18826 } 18827 18828 ipha = (ipha_t *)mp->b_rptr; 18829 src = ipha->ipha_src; 18830 dst = ipha->ipha_dst; 18831 18832 ASSERT(q != NULL); 18833 DTRACE_PROBE2(tcp__trace__send, mblk_t *, mp, tcp_t *, tcp); 18834 18835 /* 18836 * Drop off fast path for IPv6 and also if options are present or 18837 * we need to resolve a TS label. 18838 */ 18839 if (tcp->tcp_ipversion != IPV4_VERSION || 18840 !IPCL_IS_CONNECTED(connp) || 18841 !CONN_IS_LSO_MD_FASTPATH(connp) || 18842 (connp->conn_flags & IPCL_CHECK_POLICY) != 0 || 18843 !connp->conn_ulp_labeled || 18844 ipha->ipha_ident == IP_HDR_INCLUDED || 18845 ipha->ipha_version_and_hdr_length != IP_SIMPLE_HDR_VERSION || 18846 IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 18847 if (tcp->tcp_snd_zcopy_aware) 18848 mp = tcp_zcopy_disable(tcp, mp); 18849 TCP_STAT(tcps, tcp_ip_send); 18850 CALL_IP_WPUT(connp, q, mp); 18851 return; 18852 } 18853 18854 if (!tcp_send_find_ire_ill(tcp, mp, &ire, &ill)) { 18855 if (tcp->tcp_snd_zcopy_aware) 18856 mp = tcp_zcopy_backoff(tcp, mp, 0); 18857 CALL_IP_WPUT(connp, q, mp); 18858 return; 18859 } 18860 ire_fp_mp = ire->ire_nce->nce_fp_mp; 18861 ire_fp_mp_len = MBLKL(ire_fp_mp); 18862 18863 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 18864 ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 18865 #ifndef _BIG_ENDIAN 18866 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 18867 #endif 18868 18869 /* 18870 * Check to see if we need to re-enable LSO/MDT for this connection 18871 * because it was previously disabled due to changes in the ill; 18872 * note that by doing it here, this re-enabling only applies when 18873 * the packet is not dispatched through CALL_IP_WPUT(). 18874 * 18875 * That means for IPv4, it is worth re-enabling LSO/MDT for the fastpath 18876 * case, since that's how we ended up here. For IPv6, we do the 18877 * re-enabling work in ip_xmit_v6(), albeit indirectly via squeue. 18878 */ 18879 if (connp->conn_lso_ok && !tcp->tcp_lso && ILL_LSO_TCP_USABLE(ill)) { 18880 /* 18881 * Restore LSO for this connection, so that next time around 18882 * it is eligible to go through tcp_lsosend() path again. 18883 */ 18884 TCP_STAT(tcps, tcp_lso_enabled); 18885 tcp->tcp_lso = B_TRUE; 18886 ip1dbg(("tcp_send_data: reenabling LSO for connp %p on " 18887 "interface %s\n", (void *)connp, ill->ill_name)); 18888 } else if (connp->conn_mdt_ok && !tcp->tcp_mdt && ILL_MDT_USABLE(ill)) { 18889 /* 18890 * Restore MDT for this connection, so that next time around 18891 * it is eligible to go through tcp_multisend() path again. 18892 */ 18893 TCP_STAT(tcps, tcp_mdt_conn_resumed1); 18894 tcp->tcp_mdt = B_TRUE; 18895 ip1dbg(("tcp_send_data: reenabling MDT for connp %p on " 18896 "interface %s\n", (void *)connp, ill->ill_name)); 18897 } 18898 18899 if (tcp->tcp_snd_zcopy_aware) { 18900 if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 || 18901 (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0)) 18902 mp = tcp_zcopy_disable(tcp, mp); 18903 /* 18904 * we shouldn't need to reset ipha as the mp containing 18905 * ipha should never be a zero-copy mp. 18906 */ 18907 } 18908 18909 if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) { 18910 ASSERT(ill->ill_hcksum_capab != NULL); 18911 hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags; 18912 } 18913 18914 /* pseudo-header checksum (do it in parts for IP header checksum) */ 18915 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 18916 18917 ASSERT(ipha->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION); 18918 up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH); 18919 18920 IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up, 18921 IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum); 18922 18923 /* Software checksum? */ 18924 if (DB_CKSUMFLAGS(mp) == 0) { 18925 TCP_STAT(tcps, tcp_out_sw_cksum); 18926 TCP_STAT_UPDATE(tcps, tcp_out_sw_cksum_bytes, 18927 ntohs(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH); 18928 } 18929 18930 /* Calculate IP header checksum if hardware isn't capable */ 18931 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 18932 IP_HDR_CKSUM(ipha, cksum, ((uint32_t *)ipha)[0], 18933 ((uint16_t *)ipha)[4]); 18934 } 18935 18936 ASSERT(DB_TYPE(ire_fp_mp) == M_DATA); 18937 mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len; 18938 bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len); 18939 18940 UPDATE_OB_PKT_COUNT(ire); 18941 ire->ire_last_used_time = lbolt; 18942 18943 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 18944 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 18945 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 18946 ntohs(ipha->ipha_length)); 18947 18948 DTRACE_PROBE4(ip4__physical__out__start, 18949 ill_t *, NULL, ill_t *, ill, ipha_t *, ipha, mblk_t *, mp); 18950 FW_HOOKS(ipst->ips_ip4_physical_out_event, 18951 ipst->ips_ipv4firewall_physical_out, 18952 NULL, ill, ipha, mp, mp, 0, ipst); 18953 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 18954 DTRACE_IP_FASTPATH(mp, ipha, ill, ipha, NULL); 18955 18956 if (mp != NULL) { 18957 if (ipst->ips_ipobs_enabled) { 18958 zoneid_t szone; 18959 18960 szone = ip_get_zoneid_v4(ipha->ipha_src, mp, 18961 ipst, ALL_ZONES); 18962 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, 18963 ALL_ZONES, ill, IPV4_VERSION, ire_fp_mp_len, ipst); 18964 } 18965 18966 ILL_SEND_TX(ill, ire, connp, mp, 0, NULL); 18967 } 18968 18969 IRE_REFRELE(ire); 18970 } 18971 18972 /* 18973 * This handles the case when the receiver has shrunk its win. Per RFC 1122 18974 * if the receiver shrinks the window, i.e. moves the right window to the 18975 * left, the we should not send new data, but should retransmit normally the 18976 * old unacked data between suna and suna + swnd. We might has sent data 18977 * that is now outside the new window, pretend that we didn't send it. 18978 */ 18979 static void 18980 tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_count) 18981 { 18982 uint32_t snxt = tcp->tcp_snxt; 18983 mblk_t *xmit_tail; 18984 int32_t offset; 18985 18986 ASSERT(shrunk_count > 0); 18987 18988 /* Pretend we didn't send the data outside the window */ 18989 snxt -= shrunk_count; 18990 18991 /* Get the mblk and the offset in it per the shrunk window */ 18992 xmit_tail = tcp_get_seg_mp(tcp, snxt, &offset); 18993 18994 ASSERT(xmit_tail != NULL); 18995 18996 /* Reset all the values per the now shrunk window */ 18997 tcp->tcp_snxt = snxt; 18998 tcp->tcp_xmit_tail = xmit_tail; 18999 tcp->tcp_xmit_tail_unsent = xmit_tail->b_wptr - xmit_tail->b_rptr - 19000 offset; 19001 tcp->tcp_unsent += shrunk_count; 19002 19003 if (tcp->tcp_suna == tcp->tcp_snxt && tcp->tcp_swnd == 0) 19004 /* 19005 * Make sure the timer is running so that we will probe a zero 19006 * window. 19007 */ 19008 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 19009 } 19010 19011 19012 /* 19013 * The TCP normal data output path. 19014 * NOTE: the logic of the fast path is duplicated from this function. 19015 */ 19016 static void 19017 tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent) 19018 { 19019 int len; 19020 mblk_t *local_time; 19021 mblk_t *mp1; 19022 uint32_t snxt; 19023 int tail_unsent; 19024 int tcpstate; 19025 int usable = 0; 19026 mblk_t *xmit_tail; 19027 queue_t *q = tcp->tcp_wq; 19028 int32_t mss; 19029 int32_t num_sack_blk = 0; 19030 int32_t tcp_hdr_len; 19031 int32_t tcp_tcp_hdr_len; 19032 int mdt_thres; 19033 int rc; 19034 tcp_stack_t *tcps = tcp->tcp_tcps; 19035 ip_stack_t *ipst; 19036 19037 tcpstate = tcp->tcp_state; 19038 if (mp == NULL) { 19039 /* 19040 * tcp_wput_data() with NULL mp should only be called when 19041 * there is unsent data. 19042 */ 19043 ASSERT(tcp->tcp_unsent > 0); 19044 /* Really tacky... but we need this for detached closes. */ 19045 len = tcp->tcp_unsent; 19046 goto data_null; 19047 } 19048 19049 #if CCS_STATS 19050 wrw_stats.tot.count++; 19051 wrw_stats.tot.bytes += msgdsize(mp); 19052 #endif 19053 ASSERT(mp->b_datap->db_type == M_DATA); 19054 /* 19055 * Don't allow data after T_ORDREL_REQ or T_DISCON_REQ, 19056 * or before a connection attempt has begun. 19057 */ 19058 if (tcpstate < TCPS_SYN_SENT || tcpstate > TCPS_CLOSE_WAIT || 19059 (tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { 19060 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { 19061 #ifdef DEBUG 19062 cmn_err(CE_WARN, 19063 "tcp_wput_data: data after ordrel, %s", 19064 tcp_display(tcp, NULL, 19065 DISP_ADDR_AND_PORT)); 19066 #else 19067 if (tcp->tcp_debug) { 19068 (void) strlog(TCP_MOD_ID, 0, 1, 19069 SL_TRACE|SL_ERROR, 19070 "tcp_wput_data: data after ordrel, %s\n", 19071 tcp_display(tcp, NULL, 19072 DISP_ADDR_AND_PORT)); 19073 } 19074 #endif /* DEBUG */ 19075 } 19076 if (tcp->tcp_snd_zcopy_aware && 19077 (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) != 0) 19078 tcp_zcopy_notify(tcp); 19079 freemsg(mp); 19080 mutex_enter(&tcp->tcp_non_sq_lock); 19081 if (tcp->tcp_flow_stopped && 19082 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 19083 tcp_clrqfull(tcp); 19084 } 19085 mutex_exit(&tcp->tcp_non_sq_lock); 19086 return; 19087 } 19088 19089 /* Strip empties */ 19090 for (;;) { 19091 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 19092 (uintptr_t)INT_MAX); 19093 len = (int)(mp->b_wptr - mp->b_rptr); 19094 if (len > 0) 19095 break; 19096 mp1 = mp; 19097 mp = mp->b_cont; 19098 freeb(mp1); 19099 if (!mp) { 19100 return; 19101 } 19102 } 19103 19104 /* If we are the first on the list ... */ 19105 if (tcp->tcp_xmit_head == NULL) { 19106 tcp->tcp_xmit_head = mp; 19107 tcp->tcp_xmit_tail = mp; 19108 tcp->tcp_xmit_tail_unsent = len; 19109 } else { 19110 /* If tiny tx and room in txq tail, pullup to save mblks. */ 19111 struct datab *dp; 19112 19113 mp1 = tcp->tcp_xmit_last; 19114 if (len < tcp_tx_pull_len && 19115 (dp = mp1->b_datap)->db_ref == 1 && 19116 dp->db_lim - mp1->b_wptr >= len) { 19117 ASSERT(len > 0); 19118 ASSERT(!mp1->b_cont); 19119 if (len == 1) { 19120 *mp1->b_wptr++ = *mp->b_rptr; 19121 } else { 19122 bcopy(mp->b_rptr, mp1->b_wptr, len); 19123 mp1->b_wptr += len; 19124 } 19125 if (mp1 == tcp->tcp_xmit_tail) 19126 tcp->tcp_xmit_tail_unsent += len; 19127 mp1->b_cont = mp->b_cont; 19128 if (tcp->tcp_snd_zcopy_aware && 19129 (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 19130 mp1->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; 19131 freeb(mp); 19132 mp = mp1; 19133 } else { 19134 tcp->tcp_xmit_last->b_cont = mp; 19135 } 19136 len += tcp->tcp_unsent; 19137 } 19138 19139 /* Tack on however many more positive length mblks we have */ 19140 if ((mp1 = mp->b_cont) != NULL) { 19141 do { 19142 int tlen; 19143 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 19144 (uintptr_t)INT_MAX); 19145 tlen = (int)(mp1->b_wptr - mp1->b_rptr); 19146 if (tlen <= 0) { 19147 mp->b_cont = mp1->b_cont; 19148 freeb(mp1); 19149 } else { 19150 len += tlen; 19151 mp = mp1; 19152 } 19153 } while ((mp1 = mp->b_cont) != NULL); 19154 } 19155 tcp->tcp_xmit_last = mp; 19156 tcp->tcp_unsent = len; 19157 19158 if (urgent) 19159 usable = 1; 19160 19161 data_null: 19162 snxt = tcp->tcp_snxt; 19163 xmit_tail = tcp->tcp_xmit_tail; 19164 tail_unsent = tcp->tcp_xmit_tail_unsent; 19165 19166 /* 19167 * Note that tcp_mss has been adjusted to take into account the 19168 * timestamp option if applicable. Because SACK options do not 19169 * appear in every TCP segments and they are of variable lengths, 19170 * they cannot be included in tcp_mss. Thus we need to calculate 19171 * the actual segment length when we need to send a segment which 19172 * includes SACK options. 19173 */ 19174 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 19175 int32_t opt_len; 19176 19177 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 19178 tcp->tcp_num_sack_blk); 19179 opt_len = num_sack_blk * sizeof (sack_blk_t) + TCPOPT_NOP_LEN * 19180 2 + TCPOPT_HEADER_LEN; 19181 mss = tcp->tcp_mss - opt_len; 19182 tcp_hdr_len = tcp->tcp_hdr_len + opt_len; 19183 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + opt_len; 19184 } else { 19185 mss = tcp->tcp_mss; 19186 tcp_hdr_len = tcp->tcp_hdr_len; 19187 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len; 19188 } 19189 19190 if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && 19191 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) { 19192 SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle); 19193 } 19194 if (tcpstate == TCPS_SYN_RCVD) { 19195 /* 19196 * The three-way connection establishment handshake is not 19197 * complete yet. We want to queue the data for transmission 19198 * after entering ESTABLISHED state (RFC793). A jump to 19199 * "done" label effectively leaves data on the queue. 19200 */ 19201 goto done; 19202 } else { 19203 int usable_r; 19204 19205 /* 19206 * In the special case when cwnd is zero, which can only 19207 * happen if the connection is ECN capable, return now. 19208 * New segments is sent using tcp_timer(). The timer 19209 * is set in tcp_rput_data(). 19210 */ 19211 if (tcp->tcp_cwnd == 0) { 19212 /* 19213 * Note that tcp_cwnd is 0 before 3-way handshake is 19214 * finished. 19215 */ 19216 ASSERT(tcp->tcp_ecn_ok || 19217 tcp->tcp_state < TCPS_ESTABLISHED); 19218 return; 19219 } 19220 19221 /* NOTE: trouble if xmitting while SYN not acked? */ 19222 usable_r = snxt - tcp->tcp_suna; 19223 usable_r = tcp->tcp_swnd - usable_r; 19224 19225 /* 19226 * Check if the receiver has shrunk the window. If 19227 * tcp_wput_data() with NULL mp is called, tcp_fin_sent 19228 * cannot be set as there is unsent data, so FIN cannot 19229 * be sent out. Otherwise, we need to take into account 19230 * of FIN as it consumes an "invisible" sequence number. 19231 */ 19232 ASSERT(tcp->tcp_fin_sent == 0); 19233 if (usable_r < 0) { 19234 /* 19235 * The receiver has shrunk the window and we have sent 19236 * -usable_r date beyond the window, re-adjust. 19237 * 19238 * If TCP window scaling is enabled, there can be 19239 * round down error as the advertised receive window 19240 * is actually right shifted n bits. This means that 19241 * the lower n bits info is wiped out. It will look 19242 * like the window is shrunk. Do a check here to 19243 * see if the shrunk amount is actually within the 19244 * error in window calculation. If it is, just 19245 * return. Note that this check is inside the 19246 * shrunk window check. This makes sure that even 19247 * though tcp_process_shrunk_swnd() is not called, 19248 * we will stop further processing. 19249 */ 19250 if ((-usable_r >> tcp->tcp_snd_ws) > 0) { 19251 tcp_process_shrunk_swnd(tcp, -usable_r); 19252 } 19253 return; 19254 } 19255 19256 /* usable = MIN(swnd, cwnd) - unacked_bytes */ 19257 if (tcp->tcp_swnd > tcp->tcp_cwnd) 19258 usable_r -= tcp->tcp_swnd - tcp->tcp_cwnd; 19259 19260 /* usable = MIN(usable, unsent) */ 19261 if (usable_r > len) 19262 usable_r = len; 19263 19264 /* usable = MAX(usable, {1 for urgent, 0 for data}) */ 19265 if (usable_r > 0) { 19266 usable = usable_r; 19267 } else { 19268 /* Bypass all other unnecessary processing. */ 19269 goto done; 19270 } 19271 } 19272 19273 local_time = (mblk_t *)lbolt; 19274 19275 /* 19276 * "Our" Nagle Algorithm. This is not the same as in the old 19277 * BSD. This is more in line with the true intent of Nagle. 19278 * 19279 * The conditions are: 19280 * 1. The amount of unsent data (or amount of data which can be 19281 * sent, whichever is smaller) is less than Nagle limit. 19282 * 2. The last sent size is also less than Nagle limit. 19283 * 3. There is unack'ed data. 19284 * 4. Urgent pointer is not set. Send urgent data ignoring the 19285 * Nagle algorithm. This reduces the probability that urgent 19286 * bytes get "merged" together. 19287 * 5. The app has not closed the connection. This eliminates the 19288 * wait time of the receiving side waiting for the last piece of 19289 * (small) data. 19290 * 19291 * If all are satisified, exit without sending anything. Note 19292 * that Nagle limit can be smaller than 1 MSS. Nagle limit is 19293 * the smaller of 1 MSS and global tcp_naglim_def (default to be 19294 * 4095). 19295 */ 19296 if (usable < (int)tcp->tcp_naglim && 19297 tcp->tcp_naglim > tcp->tcp_last_sent_len && 19298 snxt != tcp->tcp_suna && 19299 !(tcp->tcp_valid_bits & TCP_URG_VALID) && 19300 !(tcp->tcp_valid_bits & TCP_FSS_VALID)) { 19301 goto done; 19302 } 19303 19304 if (tcp->tcp_cork) { 19305 /* 19306 * if the tcp->tcp_cork option is set, then we have to force 19307 * TCP not to send partial segment (smaller than MSS bytes). 19308 * We are calculating the usable now based on full mss and 19309 * will save the rest of remaining data for later. 19310 */ 19311 if (usable < mss) 19312 goto done; 19313 usable = (usable / mss) * mss; 19314 } 19315 19316 /* Update the latest receive window size in TCP header. */ 19317 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 19318 tcp->tcp_tcph->th_win); 19319 19320 /* 19321 * Determine if it's worthwhile to attempt LSO or MDT, based on: 19322 * 19323 * 1. Simple TCP/IP{v4,v6} (no options). 19324 * 2. IPSEC/IPQoS processing is not needed for the TCP connection. 19325 * 3. If the TCP connection is in ESTABLISHED state. 19326 * 4. The TCP is not detached. 19327 * 19328 * If any of the above conditions have changed during the 19329 * connection, stop using LSO/MDT and restore the stream head 19330 * parameters accordingly. 19331 */ 19332 ipst = tcps->tcps_netstack->netstack_ip; 19333 19334 if ((tcp->tcp_lso || tcp->tcp_mdt) && 19335 ((tcp->tcp_ipversion == IPV4_VERSION && 19336 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 19337 (tcp->tcp_ipversion == IPV6_VERSION && 19338 tcp->tcp_ip_hdr_len != IPV6_HDR_LEN) || 19339 tcp->tcp_state != TCPS_ESTABLISHED || 19340 TCP_IS_DETACHED(tcp) || !CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp) || 19341 CONN_IPSEC_OUT_ENCAPSULATED(tcp->tcp_connp) || 19342 IPP_ENABLED(IPP_LOCAL_OUT, ipst))) { 19343 if (tcp->tcp_lso) { 19344 tcp->tcp_connp->conn_lso_ok = B_FALSE; 19345 tcp->tcp_lso = B_FALSE; 19346 } else { 19347 tcp->tcp_connp->conn_mdt_ok = B_FALSE; 19348 tcp->tcp_mdt = B_FALSE; 19349 } 19350 19351 /* Anything other than detached is considered pathological */ 19352 if (!TCP_IS_DETACHED(tcp)) { 19353 if (tcp->tcp_lso) 19354 TCP_STAT(tcps, tcp_lso_disabled); 19355 else 19356 TCP_STAT(tcps, tcp_mdt_conn_halted1); 19357 (void) tcp_maxpsz_set(tcp, B_TRUE); 19358 } 19359 } 19360 19361 /* Use MDT if sendable amount is greater than the threshold */ 19362 if (tcp->tcp_mdt && 19363 (mdt_thres = mss << tcp_mdt_smss_threshold, usable > mdt_thres) && 19364 (tail_unsent > mdt_thres || (xmit_tail->b_cont != NULL && 19365 MBLKL(xmit_tail->b_cont) > mdt_thres)) && 19366 (tcp->tcp_valid_bits == 0 || 19367 tcp->tcp_valid_bits == TCP_FSS_VALID)) { 19368 ASSERT(tcp->tcp_connp->conn_mdt_ok); 19369 rc = tcp_multisend(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len, 19370 num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail, 19371 local_time, mdt_thres); 19372 } else { 19373 rc = tcp_send(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len, 19374 num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail, 19375 local_time, INT_MAX); 19376 } 19377 19378 /* Pretend that all we were trying to send really got sent */ 19379 if (rc < 0 && tail_unsent < 0) { 19380 do { 19381 xmit_tail = xmit_tail->b_cont; 19382 xmit_tail->b_prev = local_time; 19383 ASSERT((uintptr_t)(xmit_tail->b_wptr - 19384 xmit_tail->b_rptr) <= (uintptr_t)INT_MAX); 19385 tail_unsent += (int)(xmit_tail->b_wptr - 19386 xmit_tail->b_rptr); 19387 } while (tail_unsent < 0); 19388 } 19389 done:; 19390 tcp->tcp_xmit_tail = xmit_tail; 19391 tcp->tcp_xmit_tail_unsent = tail_unsent; 19392 len = tcp->tcp_snxt - snxt; 19393 if (len) { 19394 /* 19395 * If new data was sent, need to update the notsack 19396 * list, which is, afterall, data blocks that have 19397 * not been sack'ed by the receiver. New data is 19398 * not sack'ed. 19399 */ 19400 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 19401 /* len is a negative value. */ 19402 tcp->tcp_pipe -= len; 19403 tcp_notsack_update(&(tcp->tcp_notsack_list), 19404 tcp->tcp_snxt, snxt, 19405 &(tcp->tcp_num_notsack_blk), 19406 &(tcp->tcp_cnt_notsack_list)); 19407 } 19408 tcp->tcp_snxt = snxt + tcp->tcp_fin_sent; 19409 tcp->tcp_rack = tcp->tcp_rnxt; 19410 tcp->tcp_rack_cnt = 0; 19411 if ((snxt + len) == tcp->tcp_suna) { 19412 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 19413 } 19414 } else if (snxt == tcp->tcp_suna && tcp->tcp_swnd == 0) { 19415 /* 19416 * Didn't send anything. Make sure the timer is running 19417 * so that we will probe a zero window. 19418 */ 19419 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 19420 } 19421 /* Note that len is the amount we just sent but with a negative sign */ 19422 tcp->tcp_unsent += len; 19423 mutex_enter(&tcp->tcp_non_sq_lock); 19424 if (tcp->tcp_flow_stopped) { 19425 if (TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 19426 tcp_clrqfull(tcp); 19427 } 19428 } else if (TCP_UNSENT_BYTES(tcp) >= tcp->tcp_xmit_hiwater) { 19429 tcp_setqfull(tcp); 19430 } 19431 mutex_exit(&tcp->tcp_non_sq_lock); 19432 } 19433 19434 /* 19435 * tcp_fill_header is called by tcp_send() and tcp_multisend() to fill the 19436 * outgoing TCP header with the template header, as well as other 19437 * options such as time-stamp, ECN and/or SACK. 19438 */ 19439 static void 19440 tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, int num_sack_blk) 19441 { 19442 tcph_t *tcp_tmpl, *tcp_h; 19443 uint32_t *dst, *src; 19444 int hdrlen; 19445 19446 ASSERT(OK_32PTR(rptr)); 19447 19448 /* Template header */ 19449 tcp_tmpl = tcp->tcp_tcph; 19450 19451 /* Header of outgoing packet */ 19452 tcp_h = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 19453 19454 /* dst and src are opaque 32-bit fields, used for copying */ 19455 dst = (uint32_t *)rptr; 19456 src = (uint32_t *)tcp->tcp_iphc; 19457 hdrlen = tcp->tcp_hdr_len; 19458 19459 /* Fill time-stamp option if needed */ 19460 if (tcp->tcp_snd_ts_ok) { 19461 U32_TO_BE32((uint32_t)now, 19462 (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 4); 19463 U32_TO_BE32(tcp->tcp_ts_recent, 19464 (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 8); 19465 } else { 19466 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 19467 } 19468 19469 /* 19470 * Copy the template header; is this really more efficient than 19471 * calling bcopy()? For simple IPv4/TCP, it may be the case, 19472 * but perhaps not for other scenarios. 19473 */ 19474 dst[0] = src[0]; 19475 dst[1] = src[1]; 19476 dst[2] = src[2]; 19477 dst[3] = src[3]; 19478 dst[4] = src[4]; 19479 dst[5] = src[5]; 19480 dst[6] = src[6]; 19481 dst[7] = src[7]; 19482 dst[8] = src[8]; 19483 dst[9] = src[9]; 19484 if (hdrlen -= 40) { 19485 hdrlen >>= 2; 19486 dst += 10; 19487 src += 10; 19488 do { 19489 *dst++ = *src++; 19490 } while (--hdrlen); 19491 } 19492 19493 /* 19494 * Set the ECN info in the TCP header if it is not a zero 19495 * window probe. Zero window probe is only sent in 19496 * tcp_wput_data() and tcp_timer(). 19497 */ 19498 if (tcp->tcp_ecn_ok && !tcp->tcp_zero_win_probe) { 19499 SET_ECT(tcp, rptr); 19500 19501 if (tcp->tcp_ecn_echo_on) 19502 tcp_h->th_flags[0] |= TH_ECE; 19503 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 19504 tcp_h->th_flags[0] |= TH_CWR; 19505 tcp->tcp_ecn_cwr_sent = B_TRUE; 19506 } 19507 } 19508 19509 /* Fill in SACK options */ 19510 if (num_sack_blk > 0) { 19511 uchar_t *wptr = rptr + tcp->tcp_hdr_len; 19512 sack_blk_t *tmp; 19513 int32_t i; 19514 19515 wptr[0] = TCPOPT_NOP; 19516 wptr[1] = TCPOPT_NOP; 19517 wptr[2] = TCPOPT_SACK; 19518 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 19519 sizeof (sack_blk_t); 19520 wptr += TCPOPT_REAL_SACK_LEN; 19521 19522 tmp = tcp->tcp_sack_list; 19523 for (i = 0; i < num_sack_blk; i++) { 19524 U32_TO_BE32(tmp[i].begin, wptr); 19525 wptr += sizeof (tcp_seq); 19526 U32_TO_BE32(tmp[i].end, wptr); 19527 wptr += sizeof (tcp_seq); 19528 } 19529 tcp_h->th_offset_and_rsrvd[0] += 19530 ((num_sack_blk * 2 + 1) << 4); 19531 } 19532 } 19533 19534 /* 19535 * tcp_mdt_add_attrs() is called by tcp_multisend() in order to attach 19536 * the destination address and SAP attribute, and if necessary, the 19537 * hardware checksum offload attribute to a Multidata message. 19538 */ 19539 static int 19540 tcp_mdt_add_attrs(multidata_t *mmd, const mblk_t *dlmp, const boolean_t hwcksum, 19541 const uint32_t start, const uint32_t stuff, const uint32_t end, 19542 const uint32_t flags, tcp_stack_t *tcps) 19543 { 19544 /* Add global destination address & SAP attribute */ 19545 if (dlmp == NULL || !ip_md_addr_attr(mmd, NULL, dlmp)) { 19546 ip1dbg(("tcp_mdt_add_attrs: can't add global physical " 19547 "destination address+SAP\n")); 19548 19549 if (dlmp != NULL) 19550 TCP_STAT(tcps, tcp_mdt_allocfail); 19551 return (-1); 19552 } 19553 19554 /* Add global hwcksum attribute */ 19555 if (hwcksum && 19556 !ip_md_hcksum_attr(mmd, NULL, start, stuff, end, flags)) { 19557 ip1dbg(("tcp_mdt_add_attrs: can't add global hardware " 19558 "checksum attribute\n")); 19559 19560 TCP_STAT(tcps, tcp_mdt_allocfail); 19561 return (-1); 19562 } 19563 19564 return (0); 19565 } 19566 19567 /* 19568 * Smaller and private version of pdescinfo_t used specifically for TCP, 19569 * which allows for only two payload spans per packet. 19570 */ 19571 typedef struct tcp_pdescinfo_s PDESCINFO_STRUCT(2) tcp_pdescinfo_t; 19572 19573 /* 19574 * tcp_multisend() is called by tcp_wput_data() for Multidata Transmit 19575 * scheme, and returns one the following: 19576 * 19577 * -1 = failed allocation. 19578 * 0 = success; burst count reached, or usable send window is too small, 19579 * and that we'd rather wait until later before sending again. 19580 */ 19581 static int 19582 tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len, 19583 const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable, 19584 uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 19585 const int mdt_thres) 19586 { 19587 mblk_t *md_mp_head, *md_mp, *md_pbuf, *md_pbuf_nxt, *md_hbuf; 19588 multidata_t *mmd; 19589 uint_t obsegs, obbytes, hdr_frag_sz; 19590 uint_t cur_hdr_off, cur_pld_off, base_pld_off, first_snxt; 19591 int num_burst_seg, max_pld; 19592 pdesc_t *pkt; 19593 tcp_pdescinfo_t tcp_pkt_info; 19594 pdescinfo_t *pkt_info; 19595 int pbuf_idx, pbuf_idx_nxt; 19596 int seg_len, len, spill, af; 19597 boolean_t add_buffer, zcopy, clusterwide; 19598 boolean_t rconfirm = B_FALSE; 19599 boolean_t done = B_FALSE; 19600 uint32_t cksum; 19601 uint32_t hwcksum_flags; 19602 ire_t *ire = NULL; 19603 ill_t *ill; 19604 ipha_t *ipha; 19605 ip6_t *ip6h; 19606 ipaddr_t src, dst; 19607 ill_zerocopy_capab_t *zc_cap = NULL; 19608 uint16_t *up; 19609 int err; 19610 conn_t *connp; 19611 tcp_stack_t *tcps = tcp->tcp_tcps; 19612 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 19613 int usable_mmd, tail_unsent_mmd; 19614 uint_t snxt_mmd, obsegs_mmd, obbytes_mmd; 19615 mblk_t *xmit_tail_mmd; 19616 netstackid_t stack_id; 19617 19618 #ifdef _BIG_ENDIAN 19619 #define IPVER(ip6h) ((((uint32_t *)ip6h)[0] >> 28) & 0x7) 19620 #else 19621 #define IPVER(ip6h) ((((uint32_t *)ip6h)[0] >> 4) & 0x7) 19622 #endif 19623 19624 #define PREP_NEW_MULTIDATA() { \ 19625 mmd = NULL; \ 19626 md_mp = md_hbuf = NULL; \ 19627 cur_hdr_off = 0; \ 19628 max_pld = tcp->tcp_mdt_max_pld; \ 19629 pbuf_idx = pbuf_idx_nxt = -1; \ 19630 add_buffer = B_TRUE; \ 19631 zcopy = B_FALSE; \ 19632 } 19633 19634 #define PREP_NEW_PBUF() { \ 19635 md_pbuf = md_pbuf_nxt = NULL; \ 19636 pbuf_idx = pbuf_idx_nxt = -1; \ 19637 cur_pld_off = 0; \ 19638 first_snxt = *snxt; \ 19639 ASSERT(*tail_unsent > 0); \ 19640 base_pld_off = MBLKL(*xmit_tail) - *tail_unsent; \ 19641 } 19642 19643 ASSERT(mdt_thres >= mss); 19644 ASSERT(*usable > 0 && *usable > mdt_thres); 19645 ASSERT(tcp->tcp_state == TCPS_ESTABLISHED); 19646 ASSERT(!TCP_IS_DETACHED(tcp)); 19647 ASSERT(tcp->tcp_valid_bits == 0 || 19648 tcp->tcp_valid_bits == TCP_FSS_VALID); 19649 ASSERT((tcp->tcp_ipversion == IPV4_VERSION && 19650 tcp->tcp_ip_hdr_len == IP_SIMPLE_HDR_LENGTH) || 19651 (tcp->tcp_ipversion == IPV6_VERSION && 19652 tcp->tcp_ip_hdr_len == IPV6_HDR_LEN)); 19653 19654 connp = tcp->tcp_connp; 19655 ASSERT(connp != NULL); 19656 ASSERT(CONN_IS_LSO_MD_FASTPATH(connp)); 19657 ASSERT(!CONN_IPSEC_OUT_ENCAPSULATED(connp)); 19658 19659 stack_id = connp->conn_netstack->netstack_stackid; 19660 19661 usable_mmd = tail_unsent_mmd = 0; 19662 snxt_mmd = obsegs_mmd = obbytes_mmd = 0; 19663 xmit_tail_mmd = NULL; 19664 /* 19665 * Note that tcp will only declare at most 2 payload spans per 19666 * packet, which is much lower than the maximum allowable number 19667 * of packet spans per Multidata. For this reason, we use the 19668 * privately declared and smaller descriptor info structure, in 19669 * order to save some stack space. 19670 */ 19671 pkt_info = (pdescinfo_t *)&tcp_pkt_info; 19672 19673 af = (tcp->tcp_ipversion == IPV4_VERSION) ? AF_INET : AF_INET6; 19674 if (af == AF_INET) { 19675 dst = tcp->tcp_ipha->ipha_dst; 19676 src = tcp->tcp_ipha->ipha_src; 19677 ASSERT(!CLASSD(dst)); 19678 } 19679 ASSERT(af == AF_INET || 19680 !IN6_IS_ADDR_MULTICAST(&tcp->tcp_ip6h->ip6_dst)); 19681 19682 obsegs = obbytes = 0; 19683 num_burst_seg = tcp->tcp_snd_burst; 19684 md_mp_head = NULL; 19685 PREP_NEW_MULTIDATA(); 19686 19687 /* 19688 * Before we go on further, make sure there is an IRE that we can 19689 * use, and that the ILL supports MDT. Otherwise, there's no point 19690 * in proceeding any further, and we should just hand everything 19691 * off to the legacy path. 19692 */ 19693 if (!tcp_send_find_ire(tcp, (af == AF_INET) ? &dst : NULL, &ire)) 19694 goto legacy_send_no_md; 19695 19696 ASSERT(ire != NULL); 19697 ASSERT(af != AF_INET || ire->ire_ipversion == IPV4_VERSION); 19698 ASSERT(af == AF_INET || !IN6_IS_ADDR_V4MAPPED(&(ire->ire_addr_v6))); 19699 ASSERT(af == AF_INET || ire->ire_nce != NULL); 19700 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 19701 /* 19702 * If we do support loopback for MDT (which requires modifications 19703 * to the receiving paths), the following assertions should go away, 19704 * and we would be sending the Multidata to loopback conn later on. 19705 */ 19706 ASSERT(!IRE_IS_LOCAL(ire)); 19707 ASSERT(ire->ire_stq != NULL); 19708 19709 ill = ire_to_ill(ire); 19710 ASSERT(ill != NULL); 19711 ASSERT(!ILL_MDT_CAPABLE(ill) || ill->ill_mdt_capab != NULL); 19712 19713 if (!tcp->tcp_ire_ill_check_done) { 19714 tcp_ire_ill_check(tcp, ire, ill, B_TRUE); 19715 tcp->tcp_ire_ill_check_done = B_TRUE; 19716 } 19717 19718 /* 19719 * If the underlying interface conditions have changed, or if the 19720 * new interface does not support MDT, go back to legacy path. 19721 */ 19722 if (!ILL_MDT_USABLE(ill) || (ire->ire_flags & RTF_MULTIRT) != 0) { 19723 /* don't go through this path anymore for this connection */ 19724 TCP_STAT(tcps, tcp_mdt_conn_halted2); 19725 tcp->tcp_mdt = B_FALSE; 19726 ip1dbg(("tcp_multisend: disabling MDT for connp %p on " 19727 "interface %s\n", (void *)connp, ill->ill_name)); 19728 /* IRE will be released prior to returning */ 19729 goto legacy_send_no_md; 19730 } 19731 19732 if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) 19733 zc_cap = ill->ill_zerocopy_capab; 19734 19735 /* 19736 * Check if we can take tcp fast-path. Note that "incomplete" 19737 * ire's (where the link-layer for next hop is not resolved 19738 * or where the fast-path header in nce_fp_mp is not available 19739 * yet) are sent down the legacy (slow) path. 19740 * NOTE: We should fix ip_xmit_v4 to handle M_MULTIDATA 19741 */ 19742 if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) { 19743 /* IRE will be released prior to returning */ 19744 goto legacy_send_no_md; 19745 } 19746 19747 /* go to legacy path if interface doesn't support zerocopy */ 19748 if (tcp->tcp_snd_zcopy_aware && do_tcpzcopy != 2 && 19749 (zc_cap == NULL || zc_cap->ill_zerocopy_flags == 0)) { 19750 /* IRE will be released prior to returning */ 19751 goto legacy_send_no_md; 19752 } 19753 19754 /* does the interface support hardware checksum offload? */ 19755 hwcksum_flags = 0; 19756 if (ILL_HCKSUM_CAPABLE(ill) && 19757 (ill->ill_hcksum_capab->ill_hcksum_txflags & 19758 (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6 | HCKSUM_INET_PARTIAL | 19759 HCKSUM_IPHDRCKSUM)) && dohwcksum) { 19760 if (ill->ill_hcksum_capab->ill_hcksum_txflags & 19761 HCKSUM_IPHDRCKSUM) 19762 hwcksum_flags = HCK_IPV4_HDRCKSUM; 19763 19764 if (ill->ill_hcksum_capab->ill_hcksum_txflags & 19765 (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6)) 19766 hwcksum_flags |= HCK_FULLCKSUM; 19767 else if (ill->ill_hcksum_capab->ill_hcksum_txflags & 19768 HCKSUM_INET_PARTIAL) 19769 hwcksum_flags |= HCK_PARTIALCKSUM; 19770 } 19771 19772 /* 19773 * Each header fragment consists of the leading extra space, 19774 * followed by the TCP/IP header, and the trailing extra space. 19775 * We make sure that each header fragment begins on a 32-bit 19776 * aligned memory address (tcp_mdt_hdr_head is already 32-bit 19777 * aligned in tcp_mdt_update). 19778 */ 19779 hdr_frag_sz = roundup((tcp->tcp_mdt_hdr_head + tcp_hdr_len + 19780 tcp->tcp_mdt_hdr_tail), 4); 19781 19782 /* are we starting from the beginning of data block? */ 19783 if (*tail_unsent == 0) { 19784 *xmit_tail = (*xmit_tail)->b_cont; 19785 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= (uintptr_t)INT_MAX); 19786 *tail_unsent = (int)MBLKL(*xmit_tail); 19787 } 19788 19789 /* 19790 * Here we create one or more Multidata messages, each made up of 19791 * one header buffer and up to N payload buffers. This entire 19792 * operation is done within two loops: 19793 * 19794 * The outer loop mostly deals with creating the Multidata message, 19795 * as well as the header buffer that gets added to it. It also 19796 * links the Multidata messages together such that all of them can 19797 * be sent down to the lower layer in a single putnext call; this 19798 * linking behavior depends on the tcp_mdt_chain tunable. 19799 * 19800 * The inner loop takes an existing Multidata message, and adds 19801 * one or more (up to tcp_mdt_max_pld) payload buffers to it. It 19802 * packetizes those buffers by filling up the corresponding header 19803 * buffer fragments with the proper IP and TCP headers, and by 19804 * describing the layout of each packet in the packet descriptors 19805 * that get added to the Multidata. 19806 */ 19807 do { 19808 /* 19809 * If usable send window is too small, or data blocks in 19810 * transmit list are smaller than our threshold (i.e. app 19811 * performs large writes followed by small ones), we hand 19812 * off the control over to the legacy path. Note that we'll 19813 * get back the control once it encounters a large block. 19814 */ 19815 if (*usable < mss || (*tail_unsent <= mdt_thres && 19816 (*xmit_tail)->b_cont != NULL && 19817 MBLKL((*xmit_tail)->b_cont) <= mdt_thres)) { 19818 /* send down what we've got so far */ 19819 if (md_mp_head != NULL) { 19820 tcp_multisend_data(tcp, ire, ill, md_mp_head, 19821 obsegs, obbytes, &rconfirm); 19822 } 19823 /* 19824 * Pass control over to tcp_send(), but tell it to 19825 * return to us once a large-size transmission is 19826 * possible. 19827 */ 19828 TCP_STAT(tcps, tcp_mdt_legacy_small); 19829 if ((err = tcp_send(q, tcp, mss, tcp_hdr_len, 19830 tcp_tcp_hdr_len, num_sack_blk, usable, snxt, 19831 tail_unsent, xmit_tail, local_time, 19832 mdt_thres)) <= 0) { 19833 /* burst count reached, or alloc failed */ 19834 IRE_REFRELE(ire); 19835 return (err); 19836 } 19837 19838 /* tcp_send() may have sent everything, so check */ 19839 if (*usable <= 0) { 19840 IRE_REFRELE(ire); 19841 return (0); 19842 } 19843 19844 TCP_STAT(tcps, tcp_mdt_legacy_ret); 19845 /* 19846 * We may have delivered the Multidata, so make sure 19847 * to re-initialize before the next round. 19848 */ 19849 md_mp_head = NULL; 19850 obsegs = obbytes = 0; 19851 num_burst_seg = tcp->tcp_snd_burst; 19852 PREP_NEW_MULTIDATA(); 19853 19854 /* are we starting from the beginning of data block? */ 19855 if (*tail_unsent == 0) { 19856 *xmit_tail = (*xmit_tail)->b_cont; 19857 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 19858 (uintptr_t)INT_MAX); 19859 *tail_unsent = (int)MBLKL(*xmit_tail); 19860 } 19861 } 19862 /* 19863 * Record current values for parameters we may need to pass 19864 * to tcp_send() or tcp_multisend_data(). We checkpoint at 19865 * each iteration of the outer loop (each multidata message 19866 * creation). If we have a failure in the inner loop, we send 19867 * any complete multidata messages we have before reverting 19868 * to using the traditional non-md path. 19869 */ 19870 snxt_mmd = *snxt; 19871 usable_mmd = *usable; 19872 xmit_tail_mmd = *xmit_tail; 19873 tail_unsent_mmd = *tail_unsent; 19874 obsegs_mmd = obsegs; 19875 obbytes_mmd = obbytes; 19876 19877 /* 19878 * max_pld limits the number of mblks in tcp's transmit 19879 * queue that can be added to a Multidata message. Once 19880 * this counter reaches zero, no more additional mblks 19881 * can be added to it. What happens afterwards depends 19882 * on whether or not we are set to chain the Multidata 19883 * messages. If we are to link them together, reset 19884 * max_pld to its original value (tcp_mdt_max_pld) and 19885 * prepare to create a new Multidata message which will 19886 * get linked to md_mp_head. Else, leave it alone and 19887 * let the inner loop break on its own. 19888 */ 19889 if (tcp_mdt_chain && max_pld == 0) 19890 PREP_NEW_MULTIDATA(); 19891 19892 /* adding a payload buffer; re-initialize values */ 19893 if (add_buffer) 19894 PREP_NEW_PBUF(); 19895 19896 /* 19897 * If we don't have a Multidata, either because we just 19898 * (re)entered this outer loop, or after we branched off 19899 * to tcp_send above, setup the Multidata and header 19900 * buffer to be used. 19901 */ 19902 if (md_mp == NULL) { 19903 int md_hbuflen; 19904 uint32_t start, stuff; 19905 19906 /* 19907 * Calculate Multidata header buffer size large enough 19908 * to hold all of the headers that can possibly be 19909 * sent at this moment. We'd rather over-estimate 19910 * the size than running out of space; this is okay 19911 * since this buffer is small anyway. 19912 */ 19913 md_hbuflen = (howmany(*usable, mss) + 1) * hdr_frag_sz; 19914 19915 /* 19916 * Start and stuff offset for partial hardware 19917 * checksum offload; these are currently for IPv4. 19918 * For full checksum offload, they are set to zero. 19919 */ 19920 if ((hwcksum_flags & HCK_PARTIALCKSUM)) { 19921 if (af == AF_INET) { 19922 start = IP_SIMPLE_HDR_LENGTH; 19923 stuff = IP_SIMPLE_HDR_LENGTH + 19924 TCP_CHECKSUM_OFFSET; 19925 } else { 19926 start = IPV6_HDR_LEN; 19927 stuff = IPV6_HDR_LEN + 19928 TCP_CHECKSUM_OFFSET; 19929 } 19930 } else { 19931 start = stuff = 0; 19932 } 19933 19934 /* 19935 * Create the header buffer, Multidata, as well as 19936 * any necessary attributes (destination address, 19937 * SAP and hardware checksum offload) that should 19938 * be associated with the Multidata message. 19939 */ 19940 ASSERT(cur_hdr_off == 0); 19941 if ((md_hbuf = allocb(md_hbuflen, BPRI_HI)) == NULL || 19942 ((md_hbuf->b_wptr += md_hbuflen), 19943 (mmd = mmd_alloc(md_hbuf, &md_mp, 19944 KM_NOSLEEP)) == NULL) || (tcp_mdt_add_attrs(mmd, 19945 /* fastpath mblk */ 19946 ire->ire_nce->nce_res_mp, 19947 /* hardware checksum enabled */ 19948 (hwcksum_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)), 19949 /* hardware checksum offsets */ 19950 start, stuff, 0, 19951 /* hardware checksum flag */ 19952 hwcksum_flags, tcps) != 0)) { 19953 legacy_send: 19954 /* 19955 * We arrive here from a failure within the 19956 * inner (packetizer) loop or we fail one of 19957 * the conditionals above. We restore the 19958 * previously checkpointed values for: 19959 * xmit_tail 19960 * usable 19961 * tail_unsent 19962 * snxt 19963 * obbytes 19964 * obsegs 19965 * We should then be able to dispatch any 19966 * complete multidata before reverting to the 19967 * traditional path with consistent parameters 19968 * (the inner loop updates these as it 19969 * iterates). 19970 */ 19971 *xmit_tail = xmit_tail_mmd; 19972 *usable = usable_mmd; 19973 *tail_unsent = tail_unsent_mmd; 19974 *snxt = snxt_mmd; 19975 obbytes = obbytes_mmd; 19976 obsegs = obsegs_mmd; 19977 if (md_mp != NULL) { 19978 /* Unlink message from the chain */ 19979 if (md_mp_head != NULL) { 19980 err = (intptr_t)rmvb(md_mp_head, 19981 md_mp); 19982 /* 19983 * We can't assert that rmvb 19984 * did not return -1, since we 19985 * may get here before linkb 19986 * happens. We do, however, 19987 * check if we just removed the 19988 * only element in the list. 19989 */ 19990 if (err == 0) 19991 md_mp_head = NULL; 19992 } 19993 /* md_hbuf gets freed automatically */ 19994 TCP_STAT(tcps, tcp_mdt_discarded); 19995 freeb(md_mp); 19996 } else { 19997 /* Either allocb or mmd_alloc failed */ 19998 TCP_STAT(tcps, tcp_mdt_allocfail); 19999 if (md_hbuf != NULL) 20000 freeb(md_hbuf); 20001 } 20002 20003 /* send down what we've got so far */ 20004 if (md_mp_head != NULL) { 20005 tcp_multisend_data(tcp, ire, ill, 20006 md_mp_head, obsegs, obbytes, 20007 &rconfirm); 20008 } 20009 legacy_send_no_md: 20010 if (ire != NULL) 20011 IRE_REFRELE(ire); 20012 /* 20013 * Too bad; let the legacy path handle this. 20014 * We specify INT_MAX for the threshold, since 20015 * we gave up with the Multidata processings 20016 * and let the old path have it all. 20017 */ 20018 TCP_STAT(tcps, tcp_mdt_legacy_all); 20019 return (tcp_send(q, tcp, mss, tcp_hdr_len, 20020 tcp_tcp_hdr_len, num_sack_blk, usable, 20021 snxt, tail_unsent, xmit_tail, local_time, 20022 INT_MAX)); 20023 } 20024 20025 /* link to any existing ones, if applicable */ 20026 TCP_STAT(tcps, tcp_mdt_allocd); 20027 if (md_mp_head == NULL) { 20028 md_mp_head = md_mp; 20029 } else if (tcp_mdt_chain) { 20030 TCP_STAT(tcps, tcp_mdt_linked); 20031 linkb(md_mp_head, md_mp); 20032 } 20033 } 20034 20035 ASSERT(md_mp_head != NULL); 20036 ASSERT(tcp_mdt_chain || md_mp_head->b_cont == NULL); 20037 ASSERT(md_mp != NULL && mmd != NULL); 20038 ASSERT(md_hbuf != NULL); 20039 20040 /* 20041 * Packetize the transmittable portion of the data block; 20042 * each data block is essentially added to the Multidata 20043 * as a payload buffer. We also deal with adding more 20044 * than one payload buffers, which happens when the remaining 20045 * packetized portion of the current payload buffer is less 20046 * than MSS, while the next data block in transmit queue 20047 * has enough data to make up for one. This "spillover" 20048 * case essentially creates a split-packet, where portions 20049 * of the packet's payload fragments may span across two 20050 * virtually discontiguous address blocks. 20051 */ 20052 seg_len = mss; 20053 do { 20054 len = seg_len; 20055 20056 /* one must remain NULL for DTRACE_IP_FASTPATH */ 20057 ipha = NULL; 20058 ip6h = NULL; 20059 20060 ASSERT(len > 0); 20061 ASSERT(max_pld >= 0); 20062 ASSERT(!add_buffer || cur_pld_off == 0); 20063 20064 /* 20065 * First time around for this payload buffer; note 20066 * in the case of a spillover, the following has 20067 * been done prior to adding the split-packet 20068 * descriptor to Multidata, and we don't want to 20069 * repeat the process. 20070 */ 20071 if (add_buffer) { 20072 ASSERT(mmd != NULL); 20073 ASSERT(md_pbuf == NULL); 20074 ASSERT(md_pbuf_nxt == NULL); 20075 ASSERT(pbuf_idx == -1 && pbuf_idx_nxt == -1); 20076 20077 /* 20078 * Have we reached the limit? We'd get to 20079 * this case when we're not chaining the 20080 * Multidata messages together, and since 20081 * we're done, terminate this loop. 20082 */ 20083 if (max_pld == 0) 20084 break; /* done */ 20085 20086 if ((md_pbuf = dupb(*xmit_tail)) == NULL) { 20087 TCP_STAT(tcps, tcp_mdt_allocfail); 20088 goto legacy_send; /* out_of_mem */ 20089 } 20090 20091 if (IS_VMLOANED_MBLK(md_pbuf) && !zcopy && 20092 zc_cap != NULL) { 20093 if (!ip_md_zcopy_attr(mmd, NULL, 20094 zc_cap->ill_zerocopy_flags)) { 20095 freeb(md_pbuf); 20096 TCP_STAT(tcps, 20097 tcp_mdt_allocfail); 20098 /* out_of_mem */ 20099 goto legacy_send; 20100 } 20101 zcopy = B_TRUE; 20102 } 20103 20104 md_pbuf->b_rptr += base_pld_off; 20105 20106 /* 20107 * Add a payload buffer to the Multidata; this 20108 * operation must not fail, or otherwise our 20109 * logic in this routine is broken. There 20110 * is no memory allocation done by the 20111 * routine, so any returned failure simply 20112 * tells us that we've done something wrong. 20113 * 20114 * A failure tells us that either we're adding 20115 * the same payload buffer more than once, or 20116 * we're trying to add more buffers than 20117 * allowed (max_pld calculation is wrong). 20118 * None of the above cases should happen, and 20119 * we panic because either there's horrible 20120 * heap corruption, and/or programming mistake. 20121 */ 20122 pbuf_idx = mmd_addpldbuf(mmd, md_pbuf); 20123 if (pbuf_idx < 0) { 20124 cmn_err(CE_PANIC, "tcp_multisend: " 20125 "payload buffer logic error " 20126 "detected for tcp %p mmd %p " 20127 "pbuf %p (%d)\n", 20128 (void *)tcp, (void *)mmd, 20129 (void *)md_pbuf, pbuf_idx); 20130 } 20131 20132 ASSERT(max_pld > 0); 20133 --max_pld; 20134 add_buffer = B_FALSE; 20135 } 20136 20137 ASSERT(md_mp_head != NULL); 20138 ASSERT(md_pbuf != NULL); 20139 ASSERT(md_pbuf_nxt == NULL); 20140 ASSERT(pbuf_idx != -1); 20141 ASSERT(pbuf_idx_nxt == -1); 20142 ASSERT(*usable > 0); 20143 20144 /* 20145 * We spillover to the next payload buffer only 20146 * if all of the following is true: 20147 * 20148 * 1. There is not enough data on the current 20149 * payload buffer to make up `len', 20150 * 2. We are allowed to send `len', 20151 * 3. The next payload buffer length is large 20152 * enough to accomodate `spill'. 20153 */ 20154 if ((spill = len - *tail_unsent) > 0 && 20155 *usable >= len && 20156 MBLKL((*xmit_tail)->b_cont) >= spill && 20157 max_pld > 0) { 20158 md_pbuf_nxt = dupb((*xmit_tail)->b_cont); 20159 if (md_pbuf_nxt == NULL) { 20160 TCP_STAT(tcps, tcp_mdt_allocfail); 20161 goto legacy_send; /* out_of_mem */ 20162 } 20163 20164 if (IS_VMLOANED_MBLK(md_pbuf_nxt) && !zcopy && 20165 zc_cap != NULL) { 20166 if (!ip_md_zcopy_attr(mmd, NULL, 20167 zc_cap->ill_zerocopy_flags)) { 20168 freeb(md_pbuf_nxt); 20169 TCP_STAT(tcps, 20170 tcp_mdt_allocfail); 20171 /* out_of_mem */ 20172 goto legacy_send; 20173 } 20174 zcopy = B_TRUE; 20175 } 20176 20177 /* 20178 * See comments above on the first call to 20179 * mmd_addpldbuf for explanation on the panic. 20180 */ 20181 pbuf_idx_nxt = mmd_addpldbuf(mmd, md_pbuf_nxt); 20182 if (pbuf_idx_nxt < 0) { 20183 panic("tcp_multisend: " 20184 "next payload buffer logic error " 20185 "detected for tcp %p mmd %p " 20186 "pbuf %p (%d)\n", 20187 (void *)tcp, (void *)mmd, 20188 (void *)md_pbuf_nxt, pbuf_idx_nxt); 20189 } 20190 20191 ASSERT(max_pld > 0); 20192 --max_pld; 20193 } else if (spill > 0) { 20194 /* 20195 * If there's a spillover, but the following 20196 * xmit_tail couldn't give us enough octets 20197 * to reach "len", then stop the current 20198 * Multidata creation and let the legacy 20199 * tcp_send() path take over. We don't want 20200 * to send the tiny segment as part of this 20201 * Multidata for performance reasons; instead, 20202 * we let the legacy path deal with grouping 20203 * it with the subsequent small mblks. 20204 */ 20205 if (*usable >= len && 20206 MBLKL((*xmit_tail)->b_cont) < spill) { 20207 max_pld = 0; 20208 break; /* done */ 20209 } 20210 20211 /* 20212 * We can't spillover, and we are near 20213 * the end of the current payload buffer, 20214 * so send what's left. 20215 */ 20216 ASSERT(*tail_unsent > 0); 20217 len = *tail_unsent; 20218 } 20219 20220 /* tail_unsent is negated if there is a spillover */ 20221 *tail_unsent -= len; 20222 *usable -= len; 20223 ASSERT(*usable >= 0); 20224 20225 if (*usable < mss) 20226 seg_len = *usable; 20227 /* 20228 * Sender SWS avoidance; see comments in tcp_send(); 20229 * everything else is the same, except that we only 20230 * do this here if there is no more data to be sent 20231 * following the current xmit_tail. We don't check 20232 * for 1-byte urgent data because we shouldn't get 20233 * here if TCP_URG_VALID is set. 20234 */ 20235 if (*usable > 0 && *usable < mss && 20236 ((md_pbuf_nxt == NULL && 20237 (*xmit_tail)->b_cont == NULL) || 20238 (md_pbuf_nxt != NULL && 20239 (*xmit_tail)->b_cont->b_cont == NULL)) && 20240 seg_len < (tcp->tcp_max_swnd >> 1) && 20241 (tcp->tcp_unsent - 20242 ((*snxt + len) - tcp->tcp_snxt)) > seg_len && 20243 !tcp->tcp_zero_win_probe) { 20244 if ((*snxt + len) == tcp->tcp_snxt && 20245 (*snxt + len) == tcp->tcp_suna) { 20246 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 20247 } 20248 done = B_TRUE; 20249 } 20250 20251 /* 20252 * Prime pump for IP's checksumming on our behalf; 20253 * include the adjustment for a source route if any. 20254 * Do this only for software/partial hardware checksum 20255 * offload, as this field gets zeroed out later for 20256 * the full hardware checksum offload case. 20257 */ 20258 if (!(hwcksum_flags & HCK_FULLCKSUM)) { 20259 cksum = len + tcp_tcp_hdr_len + tcp->tcp_sum; 20260 cksum = (cksum >> 16) + (cksum & 0xFFFF); 20261 U16_TO_ABE16(cksum, tcp->tcp_tcph->th_sum); 20262 } 20263 20264 U32_TO_ABE32(*snxt, tcp->tcp_tcph->th_seq); 20265 *snxt += len; 20266 20267 tcp->tcp_tcph->th_flags[0] = TH_ACK; 20268 /* 20269 * We set the PUSH bit only if TCP has no more buffered 20270 * data to be transmitted (or if sender SWS avoidance 20271 * takes place), as opposed to setting it for every 20272 * last packet in the burst. 20273 */ 20274 if (done || 20275 (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) == 0) 20276 tcp->tcp_tcph->th_flags[0] |= TH_PUSH; 20277 20278 /* 20279 * Set FIN bit if this is our last segment; snxt 20280 * already includes its length, and it will not 20281 * be adjusted after this point. 20282 */ 20283 if (tcp->tcp_valid_bits == TCP_FSS_VALID && 20284 *snxt == tcp->tcp_fss) { 20285 if (!tcp->tcp_fin_acked) { 20286 tcp->tcp_tcph->th_flags[0] |= TH_FIN; 20287 BUMP_MIB(&tcps->tcps_mib, 20288 tcpOutControl); 20289 } 20290 if (!tcp->tcp_fin_sent) { 20291 tcp->tcp_fin_sent = B_TRUE; 20292 /* 20293 * tcp state must be ESTABLISHED 20294 * in order for us to get here in 20295 * the first place. 20296 */ 20297 tcp->tcp_state = TCPS_FIN_WAIT_1; 20298 20299 /* 20300 * Upon returning from this routine, 20301 * tcp_wput_data() will set tcp_snxt 20302 * to be equal to snxt + tcp_fin_sent. 20303 * This is essentially the same as 20304 * setting it to tcp_fss + 1. 20305 */ 20306 } 20307 } 20308 20309 tcp->tcp_last_sent_len = (ushort_t)len; 20310 20311 len += tcp_hdr_len; 20312 if (tcp->tcp_ipversion == IPV4_VERSION) 20313 tcp->tcp_ipha->ipha_length = htons(len); 20314 else 20315 tcp->tcp_ip6h->ip6_plen = htons(len - 20316 ((char *)&tcp->tcp_ip6h[1] - 20317 tcp->tcp_iphc)); 20318 20319 pkt_info->flags = (PDESC_HBUF_REF | PDESC_PBUF_REF); 20320 20321 /* setup header fragment */ 20322 PDESC_HDR_ADD(pkt_info, 20323 md_hbuf->b_rptr + cur_hdr_off, /* base */ 20324 tcp->tcp_mdt_hdr_head, /* head room */ 20325 tcp_hdr_len, /* len */ 20326 tcp->tcp_mdt_hdr_tail); /* tail room */ 20327 20328 ASSERT(pkt_info->hdr_lim - pkt_info->hdr_base == 20329 hdr_frag_sz); 20330 ASSERT(MBLKIN(md_hbuf, 20331 (pkt_info->hdr_base - md_hbuf->b_rptr), 20332 PDESC_HDRSIZE(pkt_info))); 20333 20334 /* setup first payload fragment */ 20335 PDESC_PLD_INIT(pkt_info); 20336 PDESC_PLD_SPAN_ADD(pkt_info, 20337 pbuf_idx, /* index */ 20338 md_pbuf->b_rptr + cur_pld_off, /* start */ 20339 tcp->tcp_last_sent_len); /* len */ 20340 20341 /* create a split-packet in case of a spillover */ 20342 if (md_pbuf_nxt != NULL) { 20343 ASSERT(spill > 0); 20344 ASSERT(pbuf_idx_nxt > pbuf_idx); 20345 ASSERT(!add_buffer); 20346 20347 md_pbuf = md_pbuf_nxt; 20348 md_pbuf_nxt = NULL; 20349 pbuf_idx = pbuf_idx_nxt; 20350 pbuf_idx_nxt = -1; 20351 cur_pld_off = spill; 20352 20353 /* trim out first payload fragment */ 20354 PDESC_PLD_SPAN_TRIM(pkt_info, 0, spill); 20355 20356 /* setup second payload fragment */ 20357 PDESC_PLD_SPAN_ADD(pkt_info, 20358 pbuf_idx, /* index */ 20359 md_pbuf->b_rptr, /* start */ 20360 spill); /* len */ 20361 20362 if ((*xmit_tail)->b_next == NULL) { 20363 /* 20364 * Store the lbolt used for RTT 20365 * estimation. We can only record one 20366 * timestamp per mblk so we do it when 20367 * we reach the end of the payload 20368 * buffer. Also we only take a new 20369 * timestamp sample when the previous 20370 * timed data from the same mblk has 20371 * been ack'ed. 20372 */ 20373 (*xmit_tail)->b_prev = local_time; 20374 (*xmit_tail)->b_next = 20375 (mblk_t *)(uintptr_t)first_snxt; 20376 } 20377 20378 first_snxt = *snxt - spill; 20379 20380 /* 20381 * Advance xmit_tail; usable could be 0 by 20382 * the time we got here, but we made sure 20383 * above that we would only spillover to 20384 * the next data block if usable includes 20385 * the spilled-over amount prior to the 20386 * subtraction. Therefore, we are sure 20387 * that xmit_tail->b_cont can't be NULL. 20388 */ 20389 ASSERT((*xmit_tail)->b_cont != NULL); 20390 *xmit_tail = (*xmit_tail)->b_cont; 20391 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 20392 (uintptr_t)INT_MAX); 20393 *tail_unsent = (int)MBLKL(*xmit_tail) - spill; 20394 } else { 20395 cur_pld_off += tcp->tcp_last_sent_len; 20396 } 20397 20398 /* 20399 * Fill in the header using the template header, and 20400 * add options such as time-stamp, ECN and/or SACK, 20401 * as needed. 20402 */ 20403 tcp_fill_header(tcp, pkt_info->hdr_rptr, 20404 (clock_t)local_time, num_sack_blk); 20405 20406 /* take care of some IP header businesses */ 20407 if (af == AF_INET) { 20408 ipha = (ipha_t *)pkt_info->hdr_rptr; 20409 20410 ASSERT(OK_32PTR((uchar_t *)ipha)); 20411 ASSERT(PDESC_HDRL(pkt_info) >= 20412 IP_SIMPLE_HDR_LENGTH); 20413 ASSERT(ipha->ipha_version_and_hdr_length == 20414 IP_SIMPLE_HDR_VERSION); 20415 20416 /* 20417 * Assign ident value for current packet; see 20418 * related comments in ip_wput_ire() about the 20419 * contract private interface with clustering 20420 * group. 20421 */ 20422 clusterwide = B_FALSE; 20423 if (cl_inet_ipident != NULL) { 20424 ASSERT(cl_inet_isclusterwide != NULL); 20425 if ((*cl_inet_isclusterwide)(stack_id, 20426 IPPROTO_IP, AF_INET, 20427 (uint8_t *)(uintptr_t)src, NULL)) { 20428 ipha->ipha_ident = 20429 (*cl_inet_ipident)(stack_id, 20430 IPPROTO_IP, AF_INET, 20431 (uint8_t *)(uintptr_t)src, 20432 (uint8_t *)(uintptr_t)dst, 20433 NULL); 20434 clusterwide = B_TRUE; 20435 } 20436 } 20437 20438 if (!clusterwide) { 20439 ipha->ipha_ident = (uint16_t) 20440 atomic_add_32_nv( 20441 &ire->ire_ident, 1); 20442 } 20443 #ifndef _BIG_ENDIAN 20444 ipha->ipha_ident = (ipha->ipha_ident << 8) | 20445 (ipha->ipha_ident >> 8); 20446 #endif 20447 } else { 20448 ip6h = (ip6_t *)pkt_info->hdr_rptr; 20449 20450 ASSERT(OK_32PTR((uchar_t *)ip6h)); 20451 ASSERT(IPVER(ip6h) == IPV6_VERSION); 20452 ASSERT(ip6h->ip6_nxt == IPPROTO_TCP); 20453 ASSERT(PDESC_HDRL(pkt_info) >= 20454 (IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET + 20455 TCP_CHECKSUM_SIZE)); 20456 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 20457 20458 if (tcp->tcp_ip_forward_progress) { 20459 rconfirm = B_TRUE; 20460 tcp->tcp_ip_forward_progress = B_FALSE; 20461 } 20462 } 20463 20464 /* at least one payload span, and at most two */ 20465 ASSERT(pkt_info->pld_cnt > 0 && pkt_info->pld_cnt < 3); 20466 20467 /* add the packet descriptor to Multidata */ 20468 if ((pkt = mmd_addpdesc(mmd, pkt_info, &err, 20469 KM_NOSLEEP)) == NULL) { 20470 /* 20471 * Any failure other than ENOMEM indicates 20472 * that we have passed in invalid pkt_info 20473 * or parameters to mmd_addpdesc, which must 20474 * not happen. 20475 * 20476 * EINVAL is a result of failure on boundary 20477 * checks against the pkt_info contents. It 20478 * should not happen, and we panic because 20479 * either there's horrible heap corruption, 20480 * and/or programming mistake. 20481 */ 20482 if (err != ENOMEM) { 20483 cmn_err(CE_PANIC, "tcp_multisend: " 20484 "pdesc logic error detected for " 20485 "tcp %p mmd %p pinfo %p (%d)\n", 20486 (void *)tcp, (void *)mmd, 20487 (void *)pkt_info, err); 20488 } 20489 TCP_STAT(tcps, tcp_mdt_addpdescfail); 20490 goto legacy_send; /* out_of_mem */ 20491 } 20492 ASSERT(pkt != NULL); 20493 20494 /* calculate IP header and TCP checksums */ 20495 if (af == AF_INET) { 20496 /* calculate pseudo-header checksum */ 20497 cksum = (dst >> 16) + (dst & 0xFFFF) + 20498 (src >> 16) + (src & 0xFFFF); 20499 20500 /* offset for TCP header checksum */ 20501 up = IPH_TCPH_CHECKSUMP(ipha, 20502 IP_SIMPLE_HDR_LENGTH); 20503 } else { 20504 up = (uint16_t *)&ip6h->ip6_src; 20505 20506 /* calculate pseudo-header checksum */ 20507 cksum = up[0] + up[1] + up[2] + up[3] + 20508 up[4] + up[5] + up[6] + up[7] + 20509 up[8] + up[9] + up[10] + up[11] + 20510 up[12] + up[13] + up[14] + up[15]; 20511 20512 /* Fold the initial sum */ 20513 cksum = (cksum & 0xffff) + (cksum >> 16); 20514 20515 up = (uint16_t *)(((uchar_t *)ip6h) + 20516 IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET); 20517 } 20518 20519 if (hwcksum_flags & HCK_FULLCKSUM) { 20520 /* clear checksum field for hardware */ 20521 *up = 0; 20522 } else if (hwcksum_flags & HCK_PARTIALCKSUM) { 20523 uint32_t sum; 20524 20525 /* pseudo-header checksumming */ 20526 sum = *up + cksum + IP_TCP_CSUM_COMP; 20527 sum = (sum & 0xFFFF) + (sum >> 16); 20528 *up = (sum & 0xFFFF) + (sum >> 16); 20529 } else { 20530 /* software checksumming */ 20531 TCP_STAT(tcps, tcp_out_sw_cksum); 20532 TCP_STAT_UPDATE(tcps, tcp_out_sw_cksum_bytes, 20533 tcp->tcp_hdr_len + tcp->tcp_last_sent_len); 20534 *up = IP_MD_CSUM(pkt, tcp->tcp_ip_hdr_len, 20535 cksum + IP_TCP_CSUM_COMP); 20536 if (*up == 0) 20537 *up = 0xFFFF; 20538 } 20539 20540 /* IPv4 header checksum */ 20541 if (af == AF_INET) { 20542 if (hwcksum_flags & HCK_IPV4_HDRCKSUM) { 20543 ipha->ipha_hdr_checksum = 0; 20544 } else { 20545 IP_HDR_CKSUM(ipha, cksum, 20546 ((uint32_t *)ipha)[0], 20547 ((uint16_t *)ipha)[4]); 20548 } 20549 } 20550 20551 if (af == AF_INET && 20552 HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) || 20553 af == AF_INET6 && 20554 HOOKS6_INTERESTED_PHYSICAL_OUT(ipst)) { 20555 mblk_t *mp, *mp1; 20556 uchar_t *hdr_rptr, *hdr_wptr; 20557 uchar_t *pld_rptr, *pld_wptr; 20558 20559 /* 20560 * We reconstruct a pseudo packet for the hooks 20561 * framework using mmd_transform_link(). 20562 * If it is a split packet we pullup the 20563 * payload. FW_HOOKS expects a pkt comprising 20564 * of two mblks: a header and the payload. 20565 */ 20566 if ((mp = mmd_transform_link(pkt)) == NULL) { 20567 TCP_STAT(tcps, tcp_mdt_allocfail); 20568 goto legacy_send; 20569 } 20570 20571 if (pkt_info->pld_cnt > 1) { 20572 /* split payload, more than one pld */ 20573 if ((mp1 = msgpullup(mp->b_cont, -1)) == 20574 NULL) { 20575 freemsg(mp); 20576 TCP_STAT(tcps, 20577 tcp_mdt_allocfail); 20578 goto legacy_send; 20579 } 20580 freemsg(mp->b_cont); 20581 mp->b_cont = mp1; 20582 } else { 20583 mp1 = mp->b_cont; 20584 } 20585 ASSERT(mp1 != NULL && mp1->b_cont == NULL); 20586 20587 /* 20588 * Remember the message offsets. This is so we 20589 * can detect changes when we return from the 20590 * FW_HOOKS callbacks. 20591 */ 20592 hdr_rptr = mp->b_rptr; 20593 hdr_wptr = mp->b_wptr; 20594 pld_rptr = mp->b_cont->b_rptr; 20595 pld_wptr = mp->b_cont->b_wptr; 20596 20597 if (af == AF_INET) { 20598 DTRACE_PROBE4( 20599 ip4__physical__out__start, 20600 ill_t *, NULL, 20601 ill_t *, ill, 20602 ipha_t *, ipha, 20603 mblk_t *, mp); 20604 FW_HOOKS( 20605 ipst->ips_ip4_physical_out_event, 20606 ipst->ips_ipv4firewall_physical_out, 20607 NULL, ill, ipha, mp, mp, 0, ipst); 20608 DTRACE_PROBE1( 20609 ip4__physical__out__end, 20610 mblk_t *, mp); 20611 } else { 20612 DTRACE_PROBE4( 20613 ip6__physical__out_start, 20614 ill_t *, NULL, 20615 ill_t *, ill, 20616 ip6_t *, ip6h, 20617 mblk_t *, mp); 20618 FW_HOOKS6( 20619 ipst->ips_ip6_physical_out_event, 20620 ipst->ips_ipv6firewall_physical_out, 20621 NULL, ill, ip6h, mp, mp, 0, ipst); 20622 DTRACE_PROBE1( 20623 ip6__physical__out__end, 20624 mblk_t *, mp); 20625 } 20626 20627 if (mp == NULL || 20628 (mp1 = mp->b_cont) == NULL || 20629 mp->b_rptr != hdr_rptr || 20630 mp->b_wptr != hdr_wptr || 20631 mp1->b_rptr != pld_rptr || 20632 mp1->b_wptr != pld_wptr || 20633 mp1->b_cont != NULL) { 20634 /* 20635 * We abandon multidata processing and 20636 * return to the normal path, either 20637 * when a packet is blocked, or when 20638 * the boundaries of header buffer or 20639 * payload buffer have been changed by 20640 * FW_HOOKS[6]. 20641 */ 20642 if (mp != NULL) 20643 freemsg(mp); 20644 goto legacy_send; 20645 } 20646 /* Finished with the pseudo packet */ 20647 freemsg(mp); 20648 } 20649 DTRACE_IP_FASTPATH(md_hbuf, pkt_info->hdr_rptr, 20650 ill, ipha, ip6h); 20651 /* advance header offset */ 20652 cur_hdr_off += hdr_frag_sz; 20653 20654 obbytes += tcp->tcp_last_sent_len; 20655 ++obsegs; 20656 } while (!done && *usable > 0 && --num_burst_seg > 0 && 20657 *tail_unsent > 0); 20658 20659 if ((*xmit_tail)->b_next == NULL) { 20660 /* 20661 * Store the lbolt used for RTT estimation. We can only 20662 * record one timestamp per mblk so we do it when we 20663 * reach the end of the payload buffer. Also we only 20664 * take a new timestamp sample when the previous timed 20665 * data from the same mblk has been ack'ed. 20666 */ 20667 (*xmit_tail)->b_prev = local_time; 20668 (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)first_snxt; 20669 } 20670 20671 ASSERT(*tail_unsent >= 0); 20672 if (*tail_unsent > 0) { 20673 /* 20674 * We got here because we broke out of the above 20675 * loop due to of one of the following cases: 20676 * 20677 * 1. len < adjusted MSS (i.e. small), 20678 * 2. Sender SWS avoidance, 20679 * 3. max_pld is zero. 20680 * 20681 * We are done for this Multidata, so trim our 20682 * last payload buffer (if any) accordingly. 20683 */ 20684 if (md_pbuf != NULL) 20685 md_pbuf->b_wptr -= *tail_unsent; 20686 } else if (*usable > 0) { 20687 *xmit_tail = (*xmit_tail)->b_cont; 20688 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 20689 (uintptr_t)INT_MAX); 20690 *tail_unsent = (int)MBLKL(*xmit_tail); 20691 add_buffer = B_TRUE; 20692 } 20693 } while (!done && *usable > 0 && num_burst_seg > 0 && 20694 (tcp_mdt_chain || max_pld > 0)); 20695 20696 if (md_mp_head != NULL) { 20697 /* send everything down */ 20698 tcp_multisend_data(tcp, ire, ill, md_mp_head, obsegs, obbytes, 20699 &rconfirm); 20700 } 20701 20702 #undef PREP_NEW_MULTIDATA 20703 #undef PREP_NEW_PBUF 20704 #undef IPVER 20705 20706 IRE_REFRELE(ire); 20707 return (0); 20708 } 20709 20710 /* 20711 * A wrapper function for sending one or more Multidata messages down to 20712 * the module below ip; this routine does not release the reference of the 20713 * IRE (caller does that). This routine is analogous to tcp_send_data(). 20714 */ 20715 static void 20716 tcp_multisend_data(tcp_t *tcp, ire_t *ire, const ill_t *ill, mblk_t *md_mp_head, 20717 const uint_t obsegs, const uint_t obbytes, boolean_t *rconfirm) 20718 { 20719 uint64_t delta; 20720 nce_t *nce; 20721 tcp_stack_t *tcps = tcp->tcp_tcps; 20722 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 20723 20724 ASSERT(ire != NULL && ill != NULL); 20725 ASSERT(ire->ire_stq != NULL); 20726 ASSERT(md_mp_head != NULL); 20727 ASSERT(rconfirm != NULL); 20728 20729 /* adjust MIBs and IRE timestamp */ 20730 DTRACE_PROBE2(tcp__trace__send, mblk_t *, md_mp_head, tcp_t *, tcp); 20731 tcp->tcp_obsegs += obsegs; 20732 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataSegs, obsegs); 20733 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, obbytes); 20734 TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out, obsegs); 20735 20736 if (tcp->tcp_ipversion == IPV4_VERSION) { 20737 TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out_v4, obsegs); 20738 } else { 20739 TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out_v6, obsegs); 20740 } 20741 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests, obsegs); 20742 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, obsegs); 20743 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, obbytes); 20744 20745 ire->ire_ob_pkt_count += obsegs; 20746 if (ire->ire_ipif != NULL) 20747 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, obsegs); 20748 ire->ire_last_used_time = lbolt; 20749 20750 if (ipst->ips_ipobs_enabled) { 20751 multidata_t *dlmdp = mmd_getmultidata(md_mp_head); 20752 pdesc_t *dl_pkt; 20753 pdescinfo_t pinfo; 20754 mblk_t *nmp; 20755 zoneid_t szone = tcp->tcp_connp->conn_zoneid; 20756 20757 for (dl_pkt = mmd_getfirstpdesc(dlmdp, &pinfo); 20758 (dl_pkt != NULL); 20759 dl_pkt = mmd_getnextpdesc(dl_pkt, &pinfo)) { 20760 if ((nmp = mmd_transform_link(dl_pkt)) == NULL) 20761 continue; 20762 ipobs_hook(nmp, IPOBS_HOOK_OUTBOUND, szone, 20763 ALL_ZONES, ill, tcp->tcp_ipversion, 0, ipst); 20764 freemsg(nmp); 20765 } 20766 } 20767 20768 /* send it down */ 20769 putnext(ire->ire_stq, md_mp_head); 20770 20771 /* we're done for TCP/IPv4 */ 20772 if (tcp->tcp_ipversion == IPV4_VERSION) 20773 return; 20774 20775 nce = ire->ire_nce; 20776 20777 ASSERT(nce != NULL); 20778 ASSERT(!(nce->nce_flags & (NCE_F_NONUD|NCE_F_PERMANENT))); 20779 ASSERT(nce->nce_state != ND_INCOMPLETE); 20780 20781 /* reachability confirmation? */ 20782 if (*rconfirm) { 20783 nce->nce_last = TICK_TO_MSEC(lbolt64); 20784 if (nce->nce_state != ND_REACHABLE) { 20785 mutex_enter(&nce->nce_lock); 20786 nce->nce_state = ND_REACHABLE; 20787 nce->nce_pcnt = ND_MAX_UNICAST_SOLICIT; 20788 mutex_exit(&nce->nce_lock); 20789 (void) untimeout(nce->nce_timeout_id); 20790 if (ip_debug > 2) { 20791 /* ip1dbg */ 20792 pr_addr_dbg("tcp_multisend_data: state " 20793 "for %s changed to REACHABLE\n", 20794 AF_INET6, &ire->ire_addr_v6); 20795 } 20796 } 20797 /* reset transport reachability confirmation */ 20798 *rconfirm = B_FALSE; 20799 } 20800 20801 delta = TICK_TO_MSEC(lbolt64) - nce->nce_last; 20802 ip1dbg(("tcp_multisend_data: delta = %" PRId64 20803 " ill_reachable_time = %d \n", delta, ill->ill_reachable_time)); 20804 20805 if (delta > (uint64_t)ill->ill_reachable_time) { 20806 mutex_enter(&nce->nce_lock); 20807 switch (nce->nce_state) { 20808 case ND_REACHABLE: 20809 case ND_STALE: 20810 /* 20811 * ND_REACHABLE is identical to ND_STALE in this 20812 * specific case. If reachable time has expired for 20813 * this neighbor (delta is greater than reachable 20814 * time), conceptually, the neighbor cache is no 20815 * longer in REACHABLE state, but already in STALE 20816 * state. So the correct transition here is to 20817 * ND_DELAY. 20818 */ 20819 nce->nce_state = ND_DELAY; 20820 mutex_exit(&nce->nce_lock); 20821 NDP_RESTART_TIMER(nce, 20822 ipst->ips_delay_first_probe_time); 20823 if (ip_debug > 3) { 20824 /* ip2dbg */ 20825 pr_addr_dbg("tcp_multisend_data: state " 20826 "for %s changed to DELAY\n", 20827 AF_INET6, &ire->ire_addr_v6); 20828 } 20829 break; 20830 case ND_DELAY: 20831 case ND_PROBE: 20832 mutex_exit(&nce->nce_lock); 20833 /* Timers have already started */ 20834 break; 20835 case ND_UNREACHABLE: 20836 /* 20837 * ndp timer has detected that this nce is 20838 * unreachable and initiated deleting this nce 20839 * and all its associated IREs. This is a race 20840 * where we found the ire before it was deleted 20841 * and have just sent out a packet using this 20842 * unreachable nce. 20843 */ 20844 mutex_exit(&nce->nce_lock); 20845 break; 20846 default: 20847 ASSERT(0); 20848 } 20849 } 20850 } 20851 20852 /* 20853 * Derived from tcp_send_data(). 20854 */ 20855 static void 20856 tcp_lsosend_data(tcp_t *tcp, mblk_t *mp, ire_t *ire, ill_t *ill, const int mss, 20857 int num_lso_seg) 20858 { 20859 ipha_t *ipha; 20860 mblk_t *ire_fp_mp; 20861 uint_t ire_fp_mp_len; 20862 uint32_t hcksum_txflags = 0; 20863 ipaddr_t src; 20864 ipaddr_t dst; 20865 uint32_t cksum; 20866 uint16_t *up; 20867 tcp_stack_t *tcps = tcp->tcp_tcps; 20868 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 20869 20870 ASSERT(DB_TYPE(mp) == M_DATA); 20871 ASSERT(tcp->tcp_state == TCPS_ESTABLISHED); 20872 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 20873 ASSERT(tcp->tcp_connp != NULL); 20874 ASSERT(CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp)); 20875 20876 ipha = (ipha_t *)mp->b_rptr; 20877 src = ipha->ipha_src; 20878 dst = ipha->ipha_dst; 20879 20880 DTRACE_PROBE2(tcp__trace__send, mblk_t *, mp, tcp_t *, tcp); 20881 20882 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 20883 ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 20884 num_lso_seg); 20885 #ifndef _BIG_ENDIAN 20886 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 20887 #endif 20888 if (tcp->tcp_snd_zcopy_aware) { 20889 if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 || 20890 (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0)) 20891 mp = tcp_zcopy_disable(tcp, mp); 20892 } 20893 20894 if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) { 20895 ASSERT(ill->ill_hcksum_capab != NULL); 20896 hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags; 20897 } 20898 20899 /* 20900 * Since the TCP checksum should be recalculated by h/w, we can just 20901 * zero the checksum field for HCK_FULLCKSUM, or calculate partial 20902 * pseudo-header checksum for HCK_PARTIALCKSUM. 20903 * The partial pseudo-header excludes TCP length, that was calculated 20904 * in tcp_send(), so to zero *up before further processing. 20905 */ 20906 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 20907 20908 up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH); 20909 *up = 0; 20910 20911 IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up, 20912 IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum); 20913 20914 /* 20915 * Append LSO flags and mss to the mp. 20916 */ 20917 lso_info_set(mp, mss, HW_LSO); 20918 20919 ipha->ipha_fragment_offset_and_flags |= 20920 (uint32_t)htons(ire->ire_frag_flag); 20921 20922 ire_fp_mp = ire->ire_nce->nce_fp_mp; 20923 ire_fp_mp_len = MBLKL(ire_fp_mp); 20924 ASSERT(DB_TYPE(ire_fp_mp) == M_DATA); 20925 mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len; 20926 bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len); 20927 20928 UPDATE_OB_PKT_COUNT(ire); 20929 ire->ire_last_used_time = lbolt; 20930 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 20931 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 20932 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 20933 ntohs(ipha->ipha_length)); 20934 20935 DTRACE_PROBE4(ip4__physical__out__start, 20936 ill_t *, NULL, ill_t *, ill, ipha_t *, ipha, mblk_t *, mp); 20937 FW_HOOKS(ipst->ips_ip4_physical_out_event, 20938 ipst->ips_ipv4firewall_physical_out, NULL, 20939 ill, ipha, mp, mp, 0, ipst); 20940 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 20941 DTRACE_IP_FASTPATH(mp, ipha, ill, ipha, NULL); 20942 20943 if (mp != NULL) { 20944 if (ipst->ips_ipobs_enabled) { 20945 zoneid_t szone; 20946 20947 szone = ip_get_zoneid_v4(ipha->ipha_src, mp, 20948 ipst, ALL_ZONES); 20949 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, 20950 ALL_ZONES, ill, IPV4_VERSION, ire_fp_mp_len, ipst); 20951 } 20952 20953 ILL_SEND_TX(ill, ire, tcp->tcp_connp, mp, 0, NULL); 20954 } 20955 } 20956 20957 /* 20958 * tcp_send() is called by tcp_wput_data() for non-Multidata transmission 20959 * scheme, and returns one of the following: 20960 * 20961 * -1 = failed allocation. 20962 * 0 = success; burst count reached, or usable send window is too small, 20963 * and that we'd rather wait until later before sending again. 20964 * 1 = success; we are called from tcp_multisend(), and both usable send 20965 * window and tail_unsent are greater than the MDT threshold, and thus 20966 * Multidata Transmit should be used instead. 20967 */ 20968 static int 20969 tcp_send(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len, 20970 const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable, 20971 uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 20972 const int mdt_thres) 20973 { 20974 int num_burst_seg = tcp->tcp_snd_burst; 20975 ire_t *ire = NULL; 20976 ill_t *ill = NULL; 20977 mblk_t *ire_fp_mp = NULL; 20978 uint_t ire_fp_mp_len = 0; 20979 int num_lso_seg = 1; 20980 uint_t lso_usable; 20981 boolean_t do_lso_send = B_FALSE; 20982 tcp_stack_t *tcps = tcp->tcp_tcps; 20983 20984 /* 20985 * Check LSO capability before any further work. And the similar check 20986 * need to be done in for(;;) loop. 20987 * LSO will be deployed when therer is more than one mss of available 20988 * data and a burst transmission is allowed. 20989 */ 20990 if (tcp->tcp_lso && 20991 (tcp->tcp_valid_bits == 0 || 20992 tcp->tcp_valid_bits == TCP_FSS_VALID) && 20993 num_burst_seg >= 2 && (*usable - 1) / mss >= 1) { 20994 /* 20995 * Try to find usable IRE/ILL and do basic check to the ILL. 20996 * Double check LSO usability before going further, since the 20997 * underlying interface could have been changed. In case of any 20998 * change of LSO capability, set tcp_ire_ill_check_done to 20999 * B_FALSE to force to check the ILL with the next send. 21000 */ 21001 if (tcp_send_find_ire_ill(tcp, NULL, &ire, &ill) && 21002 tcp->tcp_lso && ILL_LSO_TCP_USABLE(ill)) { 21003 /* 21004 * Enable LSO with this transmission. 21005 * Since IRE has been hold in tcp_send_find_ire_ill(), 21006 * IRE_REFRELE(ire) should be called before return. 21007 */ 21008 do_lso_send = B_TRUE; 21009 ire_fp_mp = ire->ire_nce->nce_fp_mp; 21010 ire_fp_mp_len = MBLKL(ire_fp_mp); 21011 /* Round up to multiple of 4 */ 21012 ire_fp_mp_len = ((ire_fp_mp_len + 3) / 4) * 4; 21013 } else { 21014 tcp->tcp_lso = B_FALSE; 21015 tcp->tcp_ire_ill_check_done = B_FALSE; 21016 do_lso_send = B_FALSE; 21017 ill = NULL; 21018 } 21019 } 21020 21021 for (;;) { 21022 struct datab *db; 21023 tcph_t *tcph; 21024 uint32_t sum; 21025 mblk_t *mp, *mp1; 21026 uchar_t *rptr; 21027 int len; 21028 21029 /* 21030 * If we're called by tcp_multisend(), and the amount of 21031 * sendable data as well as the size of current xmit_tail 21032 * is beyond the MDT threshold, return to the caller and 21033 * let the large data transmit be done using MDT. 21034 */ 21035 if (*usable > 0 && *usable > mdt_thres && 21036 (*tail_unsent > mdt_thres || (*tail_unsent == 0 && 21037 MBLKL((*xmit_tail)->b_cont) > mdt_thres))) { 21038 ASSERT(tcp->tcp_mdt); 21039 return (1); /* success; do large send */ 21040 } 21041 21042 if (num_burst_seg == 0) 21043 break; /* success; burst count reached */ 21044 21045 /* 21046 * Calculate the maximum payload length we can send in *one* 21047 * time. 21048 */ 21049 if (do_lso_send) { 21050 /* 21051 * Check whether need to do LSO any more. 21052 */ 21053 if (num_burst_seg >= 2 && (*usable - 1) / mss >= 1) { 21054 lso_usable = MIN(tcp->tcp_lso_max, *usable); 21055 lso_usable = MIN(lso_usable, 21056 num_burst_seg * mss); 21057 21058 num_lso_seg = lso_usable / mss; 21059 if (lso_usable % mss) { 21060 num_lso_seg++; 21061 tcp->tcp_last_sent_len = (ushort_t) 21062 (lso_usable % mss); 21063 } else { 21064 tcp->tcp_last_sent_len = (ushort_t)mss; 21065 } 21066 } else { 21067 do_lso_send = B_FALSE; 21068 num_lso_seg = 1; 21069 lso_usable = mss; 21070 } 21071 } 21072 21073 ASSERT(num_lso_seg <= IP_MAXPACKET / mss + 1); 21074 21075 /* 21076 * Adjust num_burst_seg here. 21077 */ 21078 num_burst_seg -= num_lso_seg; 21079 21080 len = mss; 21081 if (len > *usable) { 21082 ASSERT(do_lso_send == B_FALSE); 21083 21084 len = *usable; 21085 if (len <= 0) { 21086 /* Terminate the loop */ 21087 break; /* success; too small */ 21088 } 21089 /* 21090 * Sender silly-window avoidance. 21091 * Ignore this if we are going to send a 21092 * zero window probe out. 21093 * 21094 * TODO: force data into microscopic window? 21095 * ==> (!pushed || (unsent > usable)) 21096 */ 21097 if (len < (tcp->tcp_max_swnd >> 1) && 21098 (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) > len && 21099 !((tcp->tcp_valid_bits & TCP_URG_VALID) && 21100 len == 1) && (! tcp->tcp_zero_win_probe)) { 21101 /* 21102 * If the retransmit timer is not running 21103 * we start it so that we will retransmit 21104 * in the case when the the receiver has 21105 * decremented the window. 21106 */ 21107 if (*snxt == tcp->tcp_snxt && 21108 *snxt == tcp->tcp_suna) { 21109 /* 21110 * We are not supposed to send 21111 * anything. So let's wait a little 21112 * bit longer before breaking SWS 21113 * avoidance. 21114 * 21115 * What should the value be? 21116 * Suggestion: MAX(init rexmit time, 21117 * tcp->tcp_rto) 21118 */ 21119 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 21120 } 21121 break; /* success; too small */ 21122 } 21123 } 21124 21125 tcph = tcp->tcp_tcph; 21126 21127 /* 21128 * The reason to adjust len here is that we need to set flags 21129 * and calculate checksum. 21130 */ 21131 if (do_lso_send) 21132 len = lso_usable; 21133 21134 *usable -= len; /* Approximate - can be adjusted later */ 21135 if (*usable > 0) 21136 tcph->th_flags[0] = TH_ACK; 21137 else 21138 tcph->th_flags[0] = (TH_ACK | TH_PUSH); 21139 21140 /* 21141 * Prime pump for IP's checksumming on our behalf 21142 * Include the adjustment for a source route if any. 21143 */ 21144 sum = len + tcp_tcp_hdr_len + tcp->tcp_sum; 21145 sum = (sum >> 16) + (sum & 0xFFFF); 21146 U16_TO_ABE16(sum, tcph->th_sum); 21147 21148 U32_TO_ABE32(*snxt, tcph->th_seq); 21149 21150 /* 21151 * Branch off to tcp_xmit_mp() if any of the VALID bits is 21152 * set. For the case when TCP_FSS_VALID is the only valid 21153 * bit (normal active close), branch off only when we think 21154 * that the FIN flag needs to be set. Note for this case, 21155 * that (snxt + len) may not reflect the actual seg_len, 21156 * as len may be further reduced in tcp_xmit_mp(). If len 21157 * gets modified, we will end up here again. 21158 */ 21159 if (tcp->tcp_valid_bits != 0 && 21160 (tcp->tcp_valid_bits != TCP_FSS_VALID || 21161 ((*snxt + len) == tcp->tcp_fss))) { 21162 uchar_t *prev_rptr; 21163 uint32_t prev_snxt = tcp->tcp_snxt; 21164 21165 if (*tail_unsent == 0) { 21166 ASSERT((*xmit_tail)->b_cont != NULL); 21167 *xmit_tail = (*xmit_tail)->b_cont; 21168 prev_rptr = (*xmit_tail)->b_rptr; 21169 *tail_unsent = (int)((*xmit_tail)->b_wptr - 21170 (*xmit_tail)->b_rptr); 21171 } else { 21172 prev_rptr = (*xmit_tail)->b_rptr; 21173 (*xmit_tail)->b_rptr = (*xmit_tail)->b_wptr - 21174 *tail_unsent; 21175 } 21176 mp = tcp_xmit_mp(tcp, *xmit_tail, len, NULL, NULL, 21177 *snxt, B_FALSE, (uint32_t *)&len, B_FALSE); 21178 /* Restore tcp_snxt so we get amount sent right. */ 21179 tcp->tcp_snxt = prev_snxt; 21180 if (prev_rptr == (*xmit_tail)->b_rptr) { 21181 /* 21182 * If the previous timestamp is still in use, 21183 * don't stomp on it. 21184 */ 21185 if ((*xmit_tail)->b_next == NULL) { 21186 (*xmit_tail)->b_prev = local_time; 21187 (*xmit_tail)->b_next = 21188 (mblk_t *)(uintptr_t)(*snxt); 21189 } 21190 } else 21191 (*xmit_tail)->b_rptr = prev_rptr; 21192 21193 if (mp == NULL) { 21194 if (ire != NULL) 21195 IRE_REFRELE(ire); 21196 return (-1); 21197 } 21198 mp1 = mp->b_cont; 21199 21200 if (len <= mss) /* LSO is unusable (!do_lso_send) */ 21201 tcp->tcp_last_sent_len = (ushort_t)len; 21202 while (mp1->b_cont) { 21203 *xmit_tail = (*xmit_tail)->b_cont; 21204 (*xmit_tail)->b_prev = local_time; 21205 (*xmit_tail)->b_next = 21206 (mblk_t *)(uintptr_t)(*snxt); 21207 mp1 = mp1->b_cont; 21208 } 21209 *snxt += len; 21210 *tail_unsent = (*xmit_tail)->b_wptr - mp1->b_wptr; 21211 BUMP_LOCAL(tcp->tcp_obsegs); 21212 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 21213 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); 21214 tcp_send_data(tcp, q, mp); 21215 continue; 21216 } 21217 21218 *snxt += len; /* Adjust later if we don't send all of len */ 21219 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 21220 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); 21221 21222 if (*tail_unsent) { 21223 /* Are the bytes above us in flight? */ 21224 rptr = (*xmit_tail)->b_wptr - *tail_unsent; 21225 if (rptr != (*xmit_tail)->b_rptr) { 21226 *tail_unsent -= len; 21227 if (len <= mss) /* LSO is unusable */ 21228 tcp->tcp_last_sent_len = (ushort_t)len; 21229 len += tcp_hdr_len; 21230 if (tcp->tcp_ipversion == IPV4_VERSION) 21231 tcp->tcp_ipha->ipha_length = htons(len); 21232 else 21233 tcp->tcp_ip6h->ip6_plen = 21234 htons(len - 21235 ((char *)&tcp->tcp_ip6h[1] - 21236 tcp->tcp_iphc)); 21237 mp = dupb(*xmit_tail); 21238 if (mp == NULL) { 21239 if (ire != NULL) 21240 IRE_REFRELE(ire); 21241 return (-1); /* out_of_mem */ 21242 } 21243 mp->b_rptr = rptr; 21244 /* 21245 * If the old timestamp is no longer in use, 21246 * sample a new timestamp now. 21247 */ 21248 if ((*xmit_tail)->b_next == NULL) { 21249 (*xmit_tail)->b_prev = local_time; 21250 (*xmit_tail)->b_next = 21251 (mblk_t *)(uintptr_t)(*snxt-len); 21252 } 21253 goto must_alloc; 21254 } 21255 } else { 21256 *xmit_tail = (*xmit_tail)->b_cont; 21257 ASSERT((uintptr_t)((*xmit_tail)->b_wptr - 21258 (*xmit_tail)->b_rptr) <= (uintptr_t)INT_MAX); 21259 *tail_unsent = (int)((*xmit_tail)->b_wptr - 21260 (*xmit_tail)->b_rptr); 21261 } 21262 21263 (*xmit_tail)->b_prev = local_time; 21264 (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)(*snxt - len); 21265 21266 *tail_unsent -= len; 21267 if (len <= mss) /* LSO is unusable (!do_lso_send) */ 21268 tcp->tcp_last_sent_len = (ushort_t)len; 21269 21270 len += tcp_hdr_len; 21271 if (tcp->tcp_ipversion == IPV4_VERSION) 21272 tcp->tcp_ipha->ipha_length = htons(len); 21273 else 21274 tcp->tcp_ip6h->ip6_plen = htons(len - 21275 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 21276 21277 mp = dupb(*xmit_tail); 21278 if (mp == NULL) { 21279 if (ire != NULL) 21280 IRE_REFRELE(ire); 21281 return (-1); /* out_of_mem */ 21282 } 21283 21284 len = tcp_hdr_len; 21285 /* 21286 * There are four reasons to allocate a new hdr mblk: 21287 * 1) The bytes above us are in use by another packet 21288 * 2) We don't have good alignment 21289 * 3) The mblk is being shared 21290 * 4) We don't have enough room for a header 21291 */ 21292 rptr = mp->b_rptr - len; 21293 if (!OK_32PTR(rptr) || 21294 ((db = mp->b_datap), db->db_ref != 2) || 21295 rptr < db->db_base + ire_fp_mp_len) { 21296 /* NOTE: we assume allocb returns an OK_32PTR */ 21297 21298 must_alloc:; 21299 mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 21300 tcps->tcps_wroff_xtra + ire_fp_mp_len, BPRI_MED); 21301 if (mp1 == NULL) { 21302 freemsg(mp); 21303 if (ire != NULL) 21304 IRE_REFRELE(ire); 21305 return (-1); /* out_of_mem */ 21306 } 21307 mp1->b_cont = mp; 21308 mp = mp1; 21309 /* Leave room for Link Level header */ 21310 len = tcp_hdr_len; 21311 rptr = 21312 &mp->b_rptr[tcps->tcps_wroff_xtra + ire_fp_mp_len]; 21313 mp->b_wptr = &rptr[len]; 21314 } 21315 21316 /* 21317 * Fill in the header using the template header, and add 21318 * options such as time-stamp, ECN and/or SACK, as needed. 21319 */ 21320 tcp_fill_header(tcp, rptr, (clock_t)local_time, num_sack_blk); 21321 21322 mp->b_rptr = rptr; 21323 21324 if (*tail_unsent) { 21325 int spill = *tail_unsent; 21326 21327 mp1 = mp->b_cont; 21328 if (mp1 == NULL) 21329 mp1 = mp; 21330 21331 /* 21332 * If we're a little short, tack on more mblks until 21333 * there is no more spillover. 21334 */ 21335 while (spill < 0) { 21336 mblk_t *nmp; 21337 int nmpsz; 21338 21339 nmp = (*xmit_tail)->b_cont; 21340 nmpsz = MBLKL(nmp); 21341 21342 /* 21343 * Excess data in mblk; can we split it? 21344 * If MDT is enabled for the connection, 21345 * keep on splitting as this is a transient 21346 * send path. 21347 */ 21348 if (!do_lso_send && !tcp->tcp_mdt && 21349 (spill + nmpsz > 0)) { 21350 /* 21351 * Don't split if stream head was 21352 * told to break up larger writes 21353 * into smaller ones. 21354 */ 21355 if (tcp->tcp_maxpsz > 0) 21356 break; 21357 21358 /* 21359 * Next mblk is less than SMSS/2 21360 * rounded up to nearest 64-byte; 21361 * let it get sent as part of the 21362 * next segment. 21363 */ 21364 if (tcp->tcp_localnet && 21365 !tcp->tcp_cork && 21366 (nmpsz < roundup((mss >> 1), 64))) 21367 break; 21368 } 21369 21370 *xmit_tail = nmp; 21371 ASSERT((uintptr_t)nmpsz <= (uintptr_t)INT_MAX); 21372 /* Stash for rtt use later */ 21373 (*xmit_tail)->b_prev = local_time; 21374 (*xmit_tail)->b_next = 21375 (mblk_t *)(uintptr_t)(*snxt - len); 21376 mp1->b_cont = dupb(*xmit_tail); 21377 mp1 = mp1->b_cont; 21378 21379 spill += nmpsz; 21380 if (mp1 == NULL) { 21381 *tail_unsent = spill; 21382 freemsg(mp); 21383 if (ire != NULL) 21384 IRE_REFRELE(ire); 21385 return (-1); /* out_of_mem */ 21386 } 21387 } 21388 21389 /* Trim back any surplus on the last mblk */ 21390 if (spill >= 0) { 21391 mp1->b_wptr -= spill; 21392 *tail_unsent = spill; 21393 } else { 21394 /* 21395 * We did not send everything we could in 21396 * order to remain within the b_cont limit. 21397 */ 21398 *usable -= spill; 21399 *snxt += spill; 21400 tcp->tcp_last_sent_len += spill; 21401 UPDATE_MIB(&tcps->tcps_mib, 21402 tcpOutDataBytes, spill); 21403 /* 21404 * Adjust the checksum 21405 */ 21406 tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 21407 sum += spill; 21408 sum = (sum >> 16) + (sum & 0xFFFF); 21409 U16_TO_ABE16(sum, tcph->th_sum); 21410 if (tcp->tcp_ipversion == IPV4_VERSION) { 21411 sum = ntohs( 21412 ((ipha_t *)rptr)->ipha_length) + 21413 spill; 21414 ((ipha_t *)rptr)->ipha_length = 21415 htons(sum); 21416 } else { 21417 sum = ntohs( 21418 ((ip6_t *)rptr)->ip6_plen) + 21419 spill; 21420 ((ip6_t *)rptr)->ip6_plen = 21421 htons(sum); 21422 } 21423 *tail_unsent = 0; 21424 } 21425 } 21426 if (tcp->tcp_ip_forward_progress) { 21427 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 21428 *(uint32_t *)mp->b_rptr |= IP_FORWARD_PROG; 21429 tcp->tcp_ip_forward_progress = B_FALSE; 21430 } 21431 21432 if (do_lso_send) { 21433 tcp_lsosend_data(tcp, mp, ire, ill, mss, 21434 num_lso_seg); 21435 tcp->tcp_obsegs += num_lso_seg; 21436 21437 TCP_STAT(tcps, tcp_lso_times); 21438 TCP_STAT_UPDATE(tcps, tcp_lso_pkt_out, num_lso_seg); 21439 } else { 21440 tcp_send_data(tcp, q, mp); 21441 BUMP_LOCAL(tcp->tcp_obsegs); 21442 } 21443 } 21444 21445 if (ire != NULL) 21446 IRE_REFRELE(ire); 21447 return (0); 21448 } 21449 21450 /* Unlink and return any mblk that looks like it contains a MDT info */ 21451 static mblk_t * 21452 tcp_mdt_info_mp(mblk_t *mp) 21453 { 21454 mblk_t *prev_mp; 21455 21456 for (;;) { 21457 prev_mp = mp; 21458 /* no more to process? */ 21459 if ((mp = mp->b_cont) == NULL) 21460 break; 21461 21462 switch (DB_TYPE(mp)) { 21463 case M_CTL: 21464 if (*(uint32_t *)mp->b_rptr != MDT_IOC_INFO_UPDATE) 21465 continue; 21466 ASSERT(prev_mp != NULL); 21467 prev_mp->b_cont = mp->b_cont; 21468 mp->b_cont = NULL; 21469 return (mp); 21470 default: 21471 break; 21472 } 21473 } 21474 return (mp); 21475 } 21476 21477 /* MDT info update routine, called when IP notifies us about MDT */ 21478 static void 21479 tcp_mdt_update(tcp_t *tcp, ill_mdt_capab_t *mdt_capab, boolean_t first) 21480 { 21481 boolean_t prev_state; 21482 tcp_stack_t *tcps = tcp->tcp_tcps; 21483 21484 /* 21485 * IP is telling us to abort MDT on this connection? We know 21486 * this because the capability is only turned off when IP 21487 * encounters some pathological cases, e.g. link-layer change 21488 * where the new driver doesn't support MDT, or in situation 21489 * where MDT usage on the link-layer has been switched off. 21490 * IP would not have sent us the initial MDT_IOC_INFO_UPDATE 21491 * if the link-layer doesn't support MDT, and if it does, it 21492 * will indicate that the feature is to be turned on. 21493 */ 21494 prev_state = tcp->tcp_mdt; 21495 tcp->tcp_mdt = (mdt_capab->ill_mdt_on != 0); 21496 if (!tcp->tcp_mdt && !first) { 21497 TCP_STAT(tcps, tcp_mdt_conn_halted3); 21498 ip1dbg(("tcp_mdt_update: disabling MDT for connp %p\n", 21499 (void *)tcp->tcp_connp)); 21500 } 21501 21502 /* 21503 * We currently only support MDT on simple TCP/{IPv4,IPv6}, 21504 * so disable MDT otherwise. The checks are done here 21505 * and in tcp_wput_data(). 21506 */ 21507 if (tcp->tcp_mdt && 21508 (tcp->tcp_ipversion == IPV4_VERSION && 21509 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 21510 (tcp->tcp_ipversion == IPV6_VERSION && 21511 tcp->tcp_ip_hdr_len != IPV6_HDR_LEN)) 21512 tcp->tcp_mdt = B_FALSE; 21513 21514 if (tcp->tcp_mdt) { 21515 if (mdt_capab->ill_mdt_version != MDT_VERSION_2) { 21516 cmn_err(CE_NOTE, "tcp_mdt_update: unknown MDT " 21517 "version (%d), expected version is %d", 21518 mdt_capab->ill_mdt_version, MDT_VERSION_2); 21519 tcp->tcp_mdt = B_FALSE; 21520 return; 21521 } 21522 21523 /* 21524 * We need the driver to be able to handle at least three 21525 * spans per packet in order for tcp MDT to be utilized. 21526 * The first is for the header portion, while the rest are 21527 * needed to handle a packet that straddles across two 21528 * virtually non-contiguous buffers; a typical tcp packet 21529 * therefore consists of only two spans. Note that we take 21530 * a zero as "don't care". 21531 */ 21532 if (mdt_capab->ill_mdt_span_limit > 0 && 21533 mdt_capab->ill_mdt_span_limit < 3) { 21534 tcp->tcp_mdt = B_FALSE; 21535 return; 21536 } 21537 21538 /* a zero means driver wants default value */ 21539 tcp->tcp_mdt_max_pld = MIN(mdt_capab->ill_mdt_max_pld, 21540 tcps->tcps_mdt_max_pbufs); 21541 if (tcp->tcp_mdt_max_pld == 0) 21542 tcp->tcp_mdt_max_pld = tcps->tcps_mdt_max_pbufs; 21543 21544 /* ensure 32-bit alignment */ 21545 tcp->tcp_mdt_hdr_head = roundup(MAX(tcps->tcps_mdt_hdr_head_min, 21546 mdt_capab->ill_mdt_hdr_head), 4); 21547 tcp->tcp_mdt_hdr_tail = roundup(MAX(tcps->tcps_mdt_hdr_tail_min, 21548 mdt_capab->ill_mdt_hdr_tail), 4); 21549 21550 if (!first && !prev_state) { 21551 TCP_STAT(tcps, tcp_mdt_conn_resumed2); 21552 ip1dbg(("tcp_mdt_update: reenabling MDT for connp %p\n", 21553 (void *)tcp->tcp_connp)); 21554 } 21555 } 21556 } 21557 21558 /* Unlink and return any mblk that looks like it contains a LSO info */ 21559 static mblk_t * 21560 tcp_lso_info_mp(mblk_t *mp) 21561 { 21562 mblk_t *prev_mp; 21563 21564 for (;;) { 21565 prev_mp = mp; 21566 /* no more to process? */ 21567 if ((mp = mp->b_cont) == NULL) 21568 break; 21569 21570 switch (DB_TYPE(mp)) { 21571 case M_CTL: 21572 if (*(uint32_t *)mp->b_rptr != LSO_IOC_INFO_UPDATE) 21573 continue; 21574 ASSERT(prev_mp != NULL); 21575 prev_mp->b_cont = mp->b_cont; 21576 mp->b_cont = NULL; 21577 return (mp); 21578 default: 21579 break; 21580 } 21581 } 21582 21583 return (mp); 21584 } 21585 21586 /* LSO info update routine, called when IP notifies us about LSO */ 21587 static void 21588 tcp_lso_update(tcp_t *tcp, ill_lso_capab_t *lso_capab) 21589 { 21590 tcp_stack_t *tcps = tcp->tcp_tcps; 21591 21592 /* 21593 * IP is telling us to abort LSO on this connection? We know 21594 * this because the capability is only turned off when IP 21595 * encounters some pathological cases, e.g. link-layer change 21596 * where the new NIC/driver doesn't support LSO, or in situation 21597 * where LSO usage on the link-layer has been switched off. 21598 * IP would not have sent us the initial LSO_IOC_INFO_UPDATE 21599 * if the link-layer doesn't support LSO, and if it does, it 21600 * will indicate that the feature is to be turned on. 21601 */ 21602 tcp->tcp_lso = (lso_capab->ill_lso_on != 0); 21603 TCP_STAT(tcps, tcp_lso_enabled); 21604 21605 /* 21606 * We currently only support LSO on simple TCP/IPv4, 21607 * so disable LSO otherwise. The checks are done here 21608 * and in tcp_wput_data(). 21609 */ 21610 if (tcp->tcp_lso && 21611 (tcp->tcp_ipversion == IPV4_VERSION && 21612 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 21613 (tcp->tcp_ipversion == IPV6_VERSION)) { 21614 tcp->tcp_lso = B_FALSE; 21615 TCP_STAT(tcps, tcp_lso_disabled); 21616 } else { 21617 tcp->tcp_lso_max = MIN(TCP_MAX_LSO_LENGTH, 21618 lso_capab->ill_lso_max); 21619 } 21620 } 21621 21622 static void 21623 tcp_ire_ill_check(tcp_t *tcp, ire_t *ire, ill_t *ill, boolean_t check_lso_mdt) 21624 { 21625 conn_t *connp = tcp->tcp_connp; 21626 tcp_stack_t *tcps = tcp->tcp_tcps; 21627 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 21628 21629 ASSERT(ire != NULL); 21630 21631 /* 21632 * We may be in the fastpath here, and although we essentially do 21633 * similar checks as in ip_bind_connected{_v6}/ip_xxinfo_return, 21634 * we try to keep things as brief as possible. After all, these 21635 * are only best-effort checks, and we do more thorough ones prior 21636 * to calling tcp_send()/tcp_multisend(). 21637 */ 21638 if ((ipst->ips_ip_lso_outbound || ipst->ips_ip_multidata_outbound) && 21639 check_lso_mdt && !(ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK)) && 21640 ill != NULL && !CONN_IPSEC_OUT_ENCAPSULATED(connp) && 21641 !(ire->ire_flags & RTF_MULTIRT) && 21642 !IPP_ENABLED(IPP_LOCAL_OUT, ipst) && 21643 CONN_IS_LSO_MD_FASTPATH(connp)) { 21644 if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) { 21645 /* Cache the result */ 21646 connp->conn_lso_ok = B_TRUE; 21647 21648 ASSERT(ill->ill_lso_capab != NULL); 21649 if (!ill->ill_lso_capab->ill_lso_on) { 21650 ill->ill_lso_capab->ill_lso_on = 1; 21651 ip1dbg(("tcp_ire_ill_check: connp %p enables " 21652 "LSO for interface %s\n", (void *)connp, 21653 ill->ill_name)); 21654 } 21655 tcp_lso_update(tcp, ill->ill_lso_capab); 21656 } else if (ipst->ips_ip_multidata_outbound && 21657 ILL_MDT_CAPABLE(ill)) { 21658 /* Cache the result */ 21659 connp->conn_mdt_ok = B_TRUE; 21660 21661 ASSERT(ill->ill_mdt_capab != NULL); 21662 if (!ill->ill_mdt_capab->ill_mdt_on) { 21663 ill->ill_mdt_capab->ill_mdt_on = 1; 21664 ip1dbg(("tcp_ire_ill_check: connp %p enables " 21665 "MDT for interface %s\n", (void *)connp, 21666 ill->ill_name)); 21667 } 21668 tcp_mdt_update(tcp, ill->ill_mdt_capab, B_TRUE); 21669 } 21670 } 21671 21672 /* 21673 * The goal is to reduce the number of generated tcp segments by 21674 * setting the maxpsz multiplier to 0; this will have an affect on 21675 * tcp_maxpsz_set(). With this behavior, tcp will pack more data 21676 * into each packet, up to SMSS bytes. Doing this reduces the number 21677 * of outbound segments and incoming ACKs, thus allowing for better 21678 * network and system performance. In contrast the legacy behavior 21679 * may result in sending less than SMSS size, because the last mblk 21680 * for some packets may have more data than needed to make up SMSS, 21681 * and the legacy code refused to "split" it. 21682 * 21683 * We apply the new behavior on following situations: 21684 * 21685 * 1) Loopback connections, 21686 * 2) Connections in which the remote peer is not on local subnet, 21687 * 3) Local subnet connections over the bge interface (see below). 21688 * 21689 * Ideally, we would like this behavior to apply for interfaces other 21690 * than bge. However, doing so would negatively impact drivers which 21691 * perform dynamic mapping and unmapping of DMA resources, which are 21692 * increased by setting the maxpsz multiplier to 0 (more mblks per 21693 * packet will be generated by tcp). The bge driver does not suffer 21694 * from this, as it copies the mblks into pre-mapped buffers, and 21695 * therefore does not require more I/O resources than before. 21696 * 21697 * Otherwise, this behavior is present on all network interfaces when 21698 * the destination endpoint is non-local, since reducing the number 21699 * of packets in general is good for the network. 21700 * 21701 * TODO We need to remove this hard-coded conditional for bge once 21702 * a better "self-tuning" mechanism, or a way to comprehend 21703 * the driver transmit strategy is devised. Until the solution 21704 * is found and well understood, we live with this hack. 21705 */ 21706 if (!tcp_static_maxpsz && 21707 (tcp->tcp_loopback || !tcp->tcp_localnet || 21708 (ill->ill_name_length > 3 && bcmp(ill->ill_name, "bge", 3) == 0))) { 21709 /* override the default value */ 21710 tcp->tcp_maxpsz = 0; 21711 21712 ip3dbg(("tcp_ire_ill_check: connp %p tcp_maxpsz %d on " 21713 "interface %s\n", (void *)connp, tcp->tcp_maxpsz, 21714 ill != NULL ? ill->ill_name : ipif_loopback_name)); 21715 } 21716 21717 /* set the stream head parameters accordingly */ 21718 (void) tcp_maxpsz_set(tcp, B_TRUE); 21719 } 21720 21721 /* tcp_wput_flush is called by tcp_wput_nondata to handle M_FLUSH messages. */ 21722 static void 21723 tcp_wput_flush(tcp_t *tcp, mblk_t *mp) 21724 { 21725 uchar_t fval = *mp->b_rptr; 21726 mblk_t *tail; 21727 queue_t *q = tcp->tcp_wq; 21728 21729 /* TODO: How should flush interact with urgent data? */ 21730 if ((fval & FLUSHW) && tcp->tcp_xmit_head && 21731 !(tcp->tcp_valid_bits & TCP_URG_VALID)) { 21732 /* 21733 * Flush only data that has not yet been put on the wire. If 21734 * we flush data that we have already transmitted, life, as we 21735 * know it, may come to an end. 21736 */ 21737 tail = tcp->tcp_xmit_tail; 21738 tail->b_wptr -= tcp->tcp_xmit_tail_unsent; 21739 tcp->tcp_xmit_tail_unsent = 0; 21740 tcp->tcp_unsent = 0; 21741 if (tail->b_wptr != tail->b_rptr) 21742 tail = tail->b_cont; 21743 if (tail) { 21744 mblk_t **excess = &tcp->tcp_xmit_head; 21745 for (;;) { 21746 mblk_t *mp1 = *excess; 21747 if (mp1 == tail) 21748 break; 21749 tcp->tcp_xmit_tail = mp1; 21750 tcp->tcp_xmit_last = mp1; 21751 excess = &mp1->b_cont; 21752 } 21753 *excess = NULL; 21754 tcp_close_mpp(&tail); 21755 if (tcp->tcp_snd_zcopy_aware) 21756 tcp_zcopy_notify(tcp); 21757 } 21758 /* 21759 * We have no unsent data, so unsent must be less than 21760 * tcp_xmit_lowater, so re-enable flow. 21761 */ 21762 mutex_enter(&tcp->tcp_non_sq_lock); 21763 if (tcp->tcp_flow_stopped) { 21764 tcp_clrqfull(tcp); 21765 } 21766 mutex_exit(&tcp->tcp_non_sq_lock); 21767 } 21768 /* 21769 * TODO: you can't just flush these, you have to increase rwnd for one 21770 * thing. For another, how should urgent data interact? 21771 */ 21772 if (fval & FLUSHR) { 21773 *mp->b_rptr = fval & ~FLUSHW; 21774 /* XXX */ 21775 qreply(q, mp); 21776 return; 21777 } 21778 freemsg(mp); 21779 } 21780 21781 /* 21782 * tcp_wput_iocdata is called by tcp_wput_nondata to handle all M_IOCDATA 21783 * messages. 21784 */ 21785 static void 21786 tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp) 21787 { 21788 mblk_t *mp1; 21789 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 21790 STRUCT_HANDLE(strbuf, sb); 21791 queue_t *q = tcp->tcp_wq; 21792 int error; 21793 uint_t addrlen; 21794 21795 /* Make sure it is one of ours. */ 21796 switch (iocp->ioc_cmd) { 21797 case TI_GETMYNAME: 21798 case TI_GETPEERNAME: 21799 break; 21800 default: 21801 CALL_IP_WPUT(tcp->tcp_connp, q, mp); 21802 return; 21803 } 21804 switch (mi_copy_state(q, mp, &mp1)) { 21805 case -1: 21806 return; 21807 case MI_COPY_CASE(MI_COPY_IN, 1): 21808 break; 21809 case MI_COPY_CASE(MI_COPY_OUT, 1): 21810 /* Copy out the strbuf. */ 21811 mi_copyout(q, mp); 21812 return; 21813 case MI_COPY_CASE(MI_COPY_OUT, 2): 21814 /* All done. */ 21815 mi_copy_done(q, mp, 0); 21816 return; 21817 default: 21818 mi_copy_done(q, mp, EPROTO); 21819 return; 21820 } 21821 /* Check alignment of the strbuf */ 21822 if (!OK_32PTR(mp1->b_rptr)) { 21823 mi_copy_done(q, mp, EINVAL); 21824 return; 21825 } 21826 21827 STRUCT_SET_HANDLE(sb, iocp->ioc_flag, (void *)mp1->b_rptr); 21828 addrlen = tcp->tcp_family == AF_INET ? sizeof (sin_t) : sizeof (sin6_t); 21829 if (STRUCT_FGET(sb, maxlen) < addrlen) { 21830 mi_copy_done(q, mp, EINVAL); 21831 return; 21832 } 21833 21834 mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE); 21835 if (mp1 == NULL) 21836 return; 21837 21838 switch (iocp->ioc_cmd) { 21839 case TI_GETMYNAME: 21840 error = tcp_do_getsockname(tcp, (void *)mp1->b_rptr, &addrlen); 21841 break; 21842 case TI_GETPEERNAME: 21843 error = tcp_do_getpeername(tcp, (void *)mp1->b_rptr, &addrlen); 21844 break; 21845 } 21846 21847 if (error != 0) { 21848 mi_copy_done(q, mp, error); 21849 } else { 21850 mp1->b_wptr += addrlen; 21851 STRUCT_FSET(sb, len, addrlen); 21852 21853 /* Copy out the address */ 21854 mi_copyout(q, mp); 21855 } 21856 } 21857 21858 static void 21859 tcp_disable_direct_sockfs(tcp_t *tcp) 21860 { 21861 #ifdef _ILP32 21862 tcp->tcp_acceptor_id = (t_uscalar_t)tcp->tcp_rq; 21863 #else 21864 tcp->tcp_acceptor_id = tcp->tcp_connp->conn_dev; 21865 #endif 21866 /* 21867 * Insert this socket into the acceptor hash. 21868 * We might need it for T_CONN_RES message 21869 */ 21870 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 21871 21872 if (tcp->tcp_fused) { 21873 /* 21874 * This is a fused loopback tcp; disable 21875 * read-side synchronous streams interface 21876 * and drain any queued data. It is okay 21877 * to do this for non-synchronous streams 21878 * fused tcp as well. 21879 */ 21880 tcp_fuse_disable_pair(tcp, B_FALSE); 21881 } 21882 tcp->tcp_issocket = B_FALSE; 21883 tcp->tcp_sodirect = NULL; 21884 TCP_STAT(tcp->tcp_tcps, tcp_sock_fallback); 21885 } 21886 21887 /* 21888 * tcp_wput_ioctl is called by tcp_wput_nondata() to handle all M_IOCTL 21889 * messages. 21890 */ 21891 /* ARGSUSED */ 21892 static void 21893 tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2) 21894 { 21895 conn_t *connp = (conn_t *)arg; 21896 tcp_t *tcp = connp->conn_tcp; 21897 queue_t *q = tcp->tcp_wq; 21898 struct iocblk *iocp; 21899 21900 ASSERT(DB_TYPE(mp) == M_IOCTL); 21901 /* 21902 * Try and ASSERT the minimum possible references on the 21903 * conn early enough. Since we are executing on write side, 21904 * the connection is obviously not detached and that means 21905 * there is a ref each for TCP and IP. Since we are behind 21906 * the squeue, the minimum references needed are 3. If the 21907 * conn is in classifier hash list, there should be an 21908 * extra ref for that (we check both the possibilities). 21909 */ 21910 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 21911 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 21912 21913 iocp = (struct iocblk *)mp->b_rptr; 21914 switch (iocp->ioc_cmd) { 21915 case TCP_IOC_DEFAULT_Q: 21916 /* Wants to be the default wq. */ 21917 if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) { 21918 iocp->ioc_error = EPERM; 21919 iocp->ioc_count = 0; 21920 mp->b_datap->db_type = M_IOCACK; 21921 qreply(q, mp); 21922 return; 21923 } 21924 tcp_def_q_set(tcp, mp); 21925 return; 21926 case _SIOCSOCKFALLBACK: 21927 /* 21928 * Either sockmod is about to be popped and the socket 21929 * would now be treated as a plain stream, or a module 21930 * is about to be pushed so we could no longer use read- 21931 * side synchronous streams for fused loopback tcp. 21932 * Drain any queued data and disable direct sockfs 21933 * interface from now on. 21934 */ 21935 if (!tcp->tcp_issocket) { 21936 DB_TYPE(mp) = M_IOCNAK; 21937 iocp->ioc_error = EINVAL; 21938 } else { 21939 tcp_disable_direct_sockfs(tcp); 21940 DB_TYPE(mp) = M_IOCACK; 21941 iocp->ioc_error = 0; 21942 } 21943 iocp->ioc_count = 0; 21944 iocp->ioc_rval = 0; 21945 qreply(q, mp); 21946 return; 21947 } 21948 CALL_IP_WPUT(connp, q, mp); 21949 } 21950 21951 /* 21952 * This routine is called by tcp_wput() to handle all TPI requests. 21953 */ 21954 /* ARGSUSED */ 21955 static void 21956 tcp_wput_proto(void *arg, mblk_t *mp, void *arg2) 21957 { 21958 conn_t *connp = (conn_t *)arg; 21959 tcp_t *tcp = connp->conn_tcp; 21960 union T_primitives *tprim = (union T_primitives *)mp->b_rptr; 21961 uchar_t *rptr; 21962 t_scalar_t type; 21963 cred_t *cr; 21964 21965 /* 21966 * Try and ASSERT the minimum possible references on the 21967 * conn early enough. Since we are executing on write side, 21968 * the connection is obviously not detached and that means 21969 * there is a ref each for TCP and IP. Since we are behind 21970 * the squeue, the minimum references needed are 3. If the 21971 * conn is in classifier hash list, there should be an 21972 * extra ref for that (we check both the possibilities). 21973 */ 21974 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 21975 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 21976 21977 rptr = mp->b_rptr; 21978 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 21979 if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { 21980 type = ((union T_primitives *)rptr)->type; 21981 if (type == T_EXDATA_REQ) { 21982 tcp_output_urgent(connp, mp->b_cont, arg2); 21983 freeb(mp); 21984 } else if (type != T_DATA_REQ) { 21985 goto non_urgent_data; 21986 } else { 21987 /* TODO: options, flags, ... from user */ 21988 /* Set length to zero for reclamation below */ 21989 tcp_wput_data(tcp, mp->b_cont, B_TRUE); 21990 freeb(mp); 21991 } 21992 return; 21993 } else { 21994 if (tcp->tcp_debug) { 21995 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 21996 "tcp_wput_proto, dropping one..."); 21997 } 21998 freemsg(mp); 21999 return; 22000 } 22001 22002 non_urgent_data: 22003 22004 switch ((int)tprim->type) { 22005 case T_SSL_PROXY_BIND_REQ: /* an SSL proxy endpoint bind request */ 22006 /* 22007 * save the kssl_ent_t from the next block, and convert this 22008 * back to a normal bind_req. 22009 */ 22010 if (mp->b_cont != NULL) { 22011 ASSERT(MBLKL(mp->b_cont) >= sizeof (kssl_ent_t)); 22012 22013 if (tcp->tcp_kssl_ent != NULL) { 22014 kssl_release_ent(tcp->tcp_kssl_ent, NULL, 22015 KSSL_NO_PROXY); 22016 tcp->tcp_kssl_ent = NULL; 22017 } 22018 bcopy(mp->b_cont->b_rptr, &tcp->tcp_kssl_ent, 22019 sizeof (kssl_ent_t)); 22020 kssl_hold_ent(tcp->tcp_kssl_ent); 22021 freemsg(mp->b_cont); 22022 mp->b_cont = NULL; 22023 } 22024 tprim->type = T_BIND_REQ; 22025 22026 /* FALLTHROUGH */ 22027 case O_T_BIND_REQ: /* bind request */ 22028 case T_BIND_REQ: /* new semantics bind request */ 22029 tcp_tpi_bind(tcp, mp); 22030 break; 22031 case T_UNBIND_REQ: /* unbind request */ 22032 tcp_tpi_unbind(tcp, mp); 22033 break; 22034 case O_T_CONN_RES: /* old connection response XXX */ 22035 case T_CONN_RES: /* connection response */ 22036 tcp_tli_accept(tcp, mp); 22037 break; 22038 case T_CONN_REQ: /* connection request */ 22039 tcp_tpi_connect(tcp, mp); 22040 break; 22041 case T_DISCON_REQ: /* disconnect request */ 22042 tcp_disconnect(tcp, mp); 22043 break; 22044 case T_CAPABILITY_REQ: 22045 tcp_capability_req(tcp, mp); /* capability request */ 22046 break; 22047 case T_INFO_REQ: /* information request */ 22048 tcp_info_req(tcp, mp); 22049 break; 22050 case T_SVR4_OPTMGMT_REQ: /* manage options req */ 22051 case T_OPTMGMT_REQ: 22052 /* 22053 * Note: no support for snmpcom_req() through new 22054 * T_OPTMGMT_REQ. See comments in ip.c 22055 */ 22056 22057 /* 22058 * All Solaris components should pass a db_credp 22059 * for this TPI message, hence we ASSERT. 22060 * But in case there is some other M_PROTO that looks 22061 * like a TPI message sent by some other kernel 22062 * component, we check and return an error. 22063 */ 22064 cr = msg_getcred(mp, NULL); 22065 ASSERT(cr != NULL); 22066 if (cr == NULL) { 22067 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 22068 return; 22069 } 22070 /* 22071 * If EINPROGRESS is returned, the request has been queued 22072 * for subsequent processing by ip_restart_optmgmt(), which 22073 * will do the CONN_DEC_REF(). 22074 */ 22075 CONN_INC_REF(connp); 22076 if ((int)tprim->type == T_SVR4_OPTMGMT_REQ) { 22077 if (svr4_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj, 22078 B_TRUE) != EINPROGRESS) { 22079 CONN_DEC_REF(connp); 22080 } 22081 } else { 22082 if (tpi_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj, 22083 B_TRUE) != EINPROGRESS) { 22084 CONN_DEC_REF(connp); 22085 } 22086 } 22087 break; 22088 22089 case T_UNITDATA_REQ: /* unitdata request */ 22090 tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); 22091 break; 22092 case T_ORDREL_REQ: /* orderly release req */ 22093 freemsg(mp); 22094 22095 if (tcp->tcp_fused) 22096 tcp_unfuse(tcp); 22097 22098 if (tcp_xmit_end(tcp) != 0) { 22099 /* 22100 * We were crossing FINs and got a reset from 22101 * the other side. Just ignore it. 22102 */ 22103 if (tcp->tcp_debug) { 22104 (void) strlog(TCP_MOD_ID, 0, 1, 22105 SL_ERROR|SL_TRACE, 22106 "tcp_wput_proto, T_ORDREL_REQ out of " 22107 "state %s", 22108 tcp_display(tcp, NULL, 22109 DISP_ADDR_AND_PORT)); 22110 } 22111 } 22112 break; 22113 case T_ADDR_REQ: 22114 tcp_addr_req(tcp, mp); 22115 break; 22116 default: 22117 if (tcp->tcp_debug) { 22118 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 22119 "tcp_wput_proto, bogus TPI msg, type %d", 22120 tprim->type); 22121 } 22122 /* 22123 * We used to M_ERROR. Sending TNOTSUPPORT gives the user 22124 * to recover. 22125 */ 22126 tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); 22127 break; 22128 } 22129 } 22130 22131 /* 22132 * The TCP write service routine should never be called... 22133 */ 22134 /* ARGSUSED */ 22135 static void 22136 tcp_wsrv(queue_t *q) 22137 { 22138 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 22139 22140 TCP_STAT(tcps, tcp_wsrv_called); 22141 } 22142 22143 /* Non overlapping byte exchanger */ 22144 static void 22145 tcp_xchg(uchar_t *a, uchar_t *b, int len) 22146 { 22147 uchar_t uch; 22148 22149 while (len-- > 0) { 22150 uch = a[len]; 22151 a[len] = b[len]; 22152 b[len] = uch; 22153 } 22154 } 22155 22156 /* 22157 * Send out a control packet on the tcp connection specified. This routine 22158 * is typically called where we need a simple ACK or RST generated. 22159 */ 22160 static void 22161 tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, uint32_t ack, int ctl) 22162 { 22163 uchar_t *rptr; 22164 tcph_t *tcph; 22165 ipha_t *ipha = NULL; 22166 ip6_t *ip6h = NULL; 22167 uint32_t sum; 22168 int tcp_hdr_len; 22169 int tcp_ip_hdr_len; 22170 mblk_t *mp; 22171 tcp_stack_t *tcps = tcp->tcp_tcps; 22172 22173 /* 22174 * Save sum for use in source route later. 22175 */ 22176 ASSERT(tcp != NULL); 22177 sum = tcp->tcp_tcp_hdr_len + tcp->tcp_sum; 22178 tcp_hdr_len = tcp->tcp_hdr_len; 22179 tcp_ip_hdr_len = tcp->tcp_ip_hdr_len; 22180 22181 /* If a text string is passed in with the request, pass it to strlog. */ 22182 if (str != NULL && tcp->tcp_debug) { 22183 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 22184 "tcp_xmit_ctl: '%s', seq 0x%x, ack 0x%x, ctl 0x%x", 22185 str, seq, ack, ctl); 22186 } 22187 mp = allocb(tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcps->tcps_wroff_xtra, 22188 BPRI_MED); 22189 if (mp == NULL) { 22190 return; 22191 } 22192 rptr = &mp->b_rptr[tcps->tcps_wroff_xtra]; 22193 mp->b_rptr = rptr; 22194 mp->b_wptr = &rptr[tcp_hdr_len]; 22195 bcopy(tcp->tcp_iphc, rptr, tcp_hdr_len); 22196 22197 if (tcp->tcp_ipversion == IPV4_VERSION) { 22198 ipha = (ipha_t *)rptr; 22199 ipha->ipha_length = htons(tcp_hdr_len); 22200 } else { 22201 ip6h = (ip6_t *)rptr; 22202 ASSERT(tcp != NULL); 22203 ip6h->ip6_plen = htons(tcp->tcp_hdr_len - 22204 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 22205 } 22206 tcph = (tcph_t *)&rptr[tcp_ip_hdr_len]; 22207 tcph->th_flags[0] = (uint8_t)ctl; 22208 if (ctl & TH_RST) { 22209 BUMP_MIB(&tcps->tcps_mib, tcpOutRsts); 22210 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 22211 /* 22212 * Don't send TSopt w/ TH_RST packets per RFC 1323. 22213 */ 22214 if (tcp->tcp_snd_ts_ok && 22215 tcp->tcp_state > TCPS_SYN_SENT) { 22216 mp->b_wptr = &rptr[tcp_hdr_len - TCPOPT_REAL_TS_LEN]; 22217 *(mp->b_wptr) = TCPOPT_EOL; 22218 if (tcp->tcp_ipversion == IPV4_VERSION) { 22219 ipha->ipha_length = htons(tcp_hdr_len - 22220 TCPOPT_REAL_TS_LEN); 22221 } else { 22222 ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) - 22223 TCPOPT_REAL_TS_LEN); 22224 } 22225 tcph->th_offset_and_rsrvd[0] -= (3 << 4); 22226 sum -= TCPOPT_REAL_TS_LEN; 22227 } 22228 } 22229 if (ctl & TH_ACK) { 22230 if (tcp->tcp_snd_ts_ok) { 22231 U32_TO_BE32(lbolt, 22232 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 22233 U32_TO_BE32(tcp->tcp_ts_recent, 22234 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 22235 } 22236 22237 /* Update the latest receive window size in TCP header. */ 22238 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 22239 tcph->th_win); 22240 tcp->tcp_rack = ack; 22241 tcp->tcp_rack_cnt = 0; 22242 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 22243 } 22244 BUMP_LOCAL(tcp->tcp_obsegs); 22245 U32_TO_BE32(seq, tcph->th_seq); 22246 U32_TO_BE32(ack, tcph->th_ack); 22247 /* 22248 * Include the adjustment for a source route if any. 22249 */ 22250 sum = (sum >> 16) + (sum & 0xFFFF); 22251 U16_TO_BE16(sum, tcph->th_sum); 22252 tcp_send_data(tcp, tcp->tcp_wq, mp); 22253 } 22254 22255 /* 22256 * If this routine returns B_TRUE, TCP can generate a RST in response 22257 * to a segment. If it returns B_FALSE, TCP should not respond. 22258 */ 22259 static boolean_t 22260 tcp_send_rst_chk(tcp_stack_t *tcps) 22261 { 22262 clock_t now; 22263 22264 /* 22265 * TCP needs to protect itself from generating too many RSTs. 22266 * This can be a DoS attack by sending us random segments 22267 * soliciting RSTs. 22268 * 22269 * What we do here is to have a limit of tcp_rst_sent_rate RSTs 22270 * in each 1 second interval. In this way, TCP still generate 22271 * RSTs in normal cases but when under attack, the impact is 22272 * limited. 22273 */ 22274 if (tcps->tcps_rst_sent_rate_enabled != 0) { 22275 now = lbolt; 22276 /* lbolt can wrap around. */ 22277 if ((tcps->tcps_last_rst_intrvl > now) || 22278 (TICK_TO_MSEC(now - tcps->tcps_last_rst_intrvl) > 22279 1*SECONDS)) { 22280 tcps->tcps_last_rst_intrvl = now; 22281 tcps->tcps_rst_cnt = 1; 22282 } else if (++tcps->tcps_rst_cnt > tcps->tcps_rst_sent_rate) { 22283 return (B_FALSE); 22284 } 22285 } 22286 return (B_TRUE); 22287 } 22288 22289 /* 22290 * Send down the advice IP ioctl to tell IP to mark an IRE temporary. 22291 */ 22292 static void 22293 tcp_ip_ire_mark_advice(tcp_t *tcp) 22294 { 22295 mblk_t *mp; 22296 ipic_t *ipic; 22297 22298 if (tcp->tcp_ipversion == IPV4_VERSION) { 22299 mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN, 22300 &ipic); 22301 } else { 22302 mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN, 22303 &ipic); 22304 } 22305 if (mp == NULL) 22306 return; 22307 ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY; 22308 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 22309 } 22310 22311 /* 22312 * Return an IP advice ioctl mblk and set ipic to be the pointer 22313 * to the advice structure. 22314 */ 22315 static mblk_t * 22316 tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic) 22317 { 22318 struct iocblk *ioc; 22319 mblk_t *mp, *mp1; 22320 22321 mp = allocb(sizeof (ipic_t) + addr_len, BPRI_HI); 22322 if (mp == NULL) 22323 return (NULL); 22324 bzero(mp->b_rptr, sizeof (ipic_t) + addr_len); 22325 *ipic = (ipic_t *)mp->b_rptr; 22326 (*ipic)->ipic_cmd = IP_IOC_IRE_ADVISE_NO_REPLY; 22327 (*ipic)->ipic_addr_offset = sizeof (ipic_t); 22328 22329 bcopy(addr, *ipic + 1, addr_len); 22330 22331 (*ipic)->ipic_addr_length = addr_len; 22332 mp->b_wptr = &mp->b_rptr[sizeof (ipic_t) + addr_len]; 22333 22334 mp1 = mkiocb(IP_IOCTL); 22335 if (mp1 == NULL) { 22336 freemsg(mp); 22337 return (NULL); 22338 } 22339 mp1->b_cont = mp; 22340 ioc = (struct iocblk *)mp1->b_rptr; 22341 ioc->ioc_count = sizeof (ipic_t) + addr_len; 22342 22343 return (mp1); 22344 } 22345 22346 /* 22347 * Generate a reset based on an inbound packet, connp is set by caller 22348 * when RST is in response to an unexpected inbound packet for which 22349 * there is active tcp state in the system. 22350 * 22351 * IPSEC NOTE : Try to send the reply with the same protection as it came 22352 * in. We still have the ipsec_mp that the packet was attached to. Thus 22353 * the packet will go out at the same level of protection as it came in by 22354 * converting the IPSEC_IN to IPSEC_OUT. 22355 */ 22356 static void 22357 tcp_xmit_early_reset(char *str, mblk_t *mp, uint32_t seq, 22358 uint32_t ack, int ctl, uint_t ip_hdr_len, zoneid_t zoneid, 22359 tcp_stack_t *tcps, conn_t *connp) 22360 { 22361 ipha_t *ipha = NULL; 22362 ip6_t *ip6h = NULL; 22363 ushort_t len; 22364 tcph_t *tcph; 22365 int i; 22366 mblk_t *ipsec_mp; 22367 boolean_t mctl_present; 22368 ipic_t *ipic; 22369 ipaddr_t v4addr; 22370 in6_addr_t v6addr; 22371 int addr_len; 22372 void *addr; 22373 queue_t *q = tcps->tcps_g_q; 22374 tcp_t *tcp; 22375 cred_t *cr; 22376 mblk_t *nmp; 22377 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 22378 22379 if (tcps->tcps_g_q == NULL) { 22380 /* 22381 * For non-zero stackids the default queue isn't created 22382 * until the first open, thus there can be a need to send 22383 * a reset before then. But we can't do that, hence we just 22384 * drop the packet. Later during boot, when the default queue 22385 * has been setup, a retransmitted packet from the peer 22386 * will result in a reset. 22387 */ 22388 ASSERT(tcps->tcps_netstack->netstack_stackid != 22389 GLOBAL_NETSTACKID); 22390 freemsg(mp); 22391 return; 22392 } 22393 22394 if (connp != NULL) 22395 tcp = connp->conn_tcp; 22396 else 22397 tcp = Q_TO_TCP(q); 22398 22399 if (!tcp_send_rst_chk(tcps)) { 22400 tcps->tcps_rst_unsent++; 22401 freemsg(mp); 22402 return; 22403 } 22404 22405 if (mp->b_datap->db_type == M_CTL) { 22406 ipsec_mp = mp; 22407 mp = mp->b_cont; 22408 mctl_present = B_TRUE; 22409 } else { 22410 ipsec_mp = mp; 22411 mctl_present = B_FALSE; 22412 } 22413 22414 if (str && q && tcps->tcps_dbg) { 22415 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 22416 "tcp_xmit_early_reset: '%s', seq 0x%x, ack 0x%x, " 22417 "flags 0x%x", 22418 str, seq, ack, ctl); 22419 } 22420 if (mp->b_datap->db_ref != 1) { 22421 mblk_t *mp1 = copyb(mp); 22422 freemsg(mp); 22423 mp = mp1; 22424 if (!mp) { 22425 if (mctl_present) 22426 freeb(ipsec_mp); 22427 return; 22428 } else { 22429 if (mctl_present) { 22430 ipsec_mp->b_cont = mp; 22431 } else { 22432 ipsec_mp = mp; 22433 } 22434 } 22435 } else if (mp->b_cont) { 22436 freemsg(mp->b_cont); 22437 mp->b_cont = NULL; 22438 } 22439 /* 22440 * We skip reversing source route here. 22441 * (for now we replace all IP options with EOL) 22442 */ 22443 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 22444 ipha = (ipha_t *)mp->b_rptr; 22445 for (i = IP_SIMPLE_HDR_LENGTH; i < (int)ip_hdr_len; i++) 22446 mp->b_rptr[i] = IPOPT_EOL; 22447 /* 22448 * Make sure that src address isn't flagrantly invalid. 22449 * Not all broadcast address checking for the src address 22450 * is possible, since we don't know the netmask of the src 22451 * addr. No check for destination address is done, since 22452 * IP will not pass up a packet with a broadcast dest 22453 * address to TCP. Similar checks are done below for IPv6. 22454 */ 22455 if (ipha->ipha_src == 0 || ipha->ipha_src == INADDR_BROADCAST || 22456 CLASSD(ipha->ipha_src)) { 22457 freemsg(ipsec_mp); 22458 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 22459 return; 22460 } 22461 } else { 22462 ip6h = (ip6_t *)mp->b_rptr; 22463 22464 if (IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src) || 22465 IN6_IS_ADDR_MULTICAST(&ip6h->ip6_src)) { 22466 freemsg(ipsec_mp); 22467 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsInDiscards); 22468 return; 22469 } 22470 22471 /* Remove any extension headers assuming partial overlay */ 22472 if (ip_hdr_len > IPV6_HDR_LEN) { 22473 uint8_t *to; 22474 22475 to = mp->b_rptr + ip_hdr_len - IPV6_HDR_LEN; 22476 ovbcopy(ip6h, to, IPV6_HDR_LEN); 22477 mp->b_rptr += ip_hdr_len - IPV6_HDR_LEN; 22478 ip_hdr_len = IPV6_HDR_LEN; 22479 ip6h = (ip6_t *)mp->b_rptr; 22480 ip6h->ip6_nxt = IPPROTO_TCP; 22481 } 22482 } 22483 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 22484 if (tcph->th_flags[0] & TH_RST) { 22485 freemsg(ipsec_mp); 22486 return; 22487 } 22488 tcph->th_offset_and_rsrvd[0] = (5 << 4); 22489 len = ip_hdr_len + sizeof (tcph_t); 22490 mp->b_wptr = &mp->b_rptr[len]; 22491 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 22492 ipha->ipha_length = htons(len); 22493 /* Swap addresses */ 22494 v4addr = ipha->ipha_src; 22495 ipha->ipha_src = ipha->ipha_dst; 22496 ipha->ipha_dst = v4addr; 22497 ipha->ipha_ident = 0; 22498 ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl; 22499 addr_len = IP_ADDR_LEN; 22500 addr = &v4addr; 22501 } else { 22502 /* No ip6i_t in this case */ 22503 ip6h->ip6_plen = htons(len - IPV6_HDR_LEN); 22504 /* Swap addresses */ 22505 v6addr = ip6h->ip6_src; 22506 ip6h->ip6_src = ip6h->ip6_dst; 22507 ip6h->ip6_dst = v6addr; 22508 ip6h->ip6_hops = (uchar_t)tcps->tcps_ipv6_hoplimit; 22509 addr_len = IPV6_ADDR_LEN; 22510 addr = &v6addr; 22511 } 22512 tcp_xchg(tcph->th_fport, tcph->th_lport, 2); 22513 U32_TO_BE32(ack, tcph->th_ack); 22514 U32_TO_BE32(seq, tcph->th_seq); 22515 U16_TO_BE16(0, tcph->th_win); 22516 U16_TO_BE16(sizeof (tcph_t), tcph->th_sum); 22517 tcph->th_flags[0] = (uint8_t)ctl; 22518 if (ctl & TH_RST) { 22519 BUMP_MIB(&tcps->tcps_mib, tcpOutRsts); 22520 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 22521 } 22522 22523 /* IP trusts us to set up labels when required. */ 22524 if (is_system_labeled() && (cr = msg_getcred(mp, NULL)) != NULL && 22525 crgetlabel(cr) != NULL) { 22526 int err; 22527 22528 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) 22529 err = tsol_check_label(cr, &mp, 22530 tcp->tcp_connp->conn_mac_exempt, 22531 tcps->tcps_netstack->netstack_ip); 22532 else 22533 err = tsol_check_label_v6(cr, &mp, 22534 tcp->tcp_connp->conn_mac_exempt, 22535 tcps->tcps_netstack->netstack_ip); 22536 if (mctl_present) 22537 ipsec_mp->b_cont = mp; 22538 else 22539 ipsec_mp = mp; 22540 if (err != 0) { 22541 freemsg(ipsec_mp); 22542 return; 22543 } 22544 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 22545 ipha = (ipha_t *)mp->b_rptr; 22546 } else { 22547 ip6h = (ip6_t *)mp->b_rptr; 22548 } 22549 } 22550 22551 if (mctl_present) { 22552 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 22553 22554 ASSERT(ii->ipsec_in_type == IPSEC_IN); 22555 if (!ipsec_in_to_out(ipsec_mp, ipha, ip6h)) { 22556 return; 22557 } 22558 } 22559 if (zoneid == ALL_ZONES) 22560 zoneid = GLOBAL_ZONEID; 22561 22562 /* Add the zoneid so ip_output routes it properly */ 22563 if ((nmp = ip_prepend_zoneid(ipsec_mp, zoneid, ipst)) == NULL) { 22564 freemsg(ipsec_mp); 22565 return; 22566 } 22567 ipsec_mp = nmp; 22568 22569 /* 22570 * NOTE: one might consider tracing a TCP packet here, but 22571 * this function has no active TCP state and no tcp structure 22572 * that has a trace buffer. If we traced here, we would have 22573 * to keep a local trace buffer in tcp_record_trace(). 22574 * 22575 * TSol note: The mblk that contains the incoming packet was 22576 * reused by tcp_xmit_listener_reset, so it already contains 22577 * the right credentials and we don't need to call mblk_setcred. 22578 * Also the conn's cred is not right since it is associated 22579 * with tcps_g_q. 22580 */ 22581 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, ipsec_mp); 22582 22583 /* 22584 * Tell IP to mark the IRE used for this destination temporary. 22585 * This way, we can limit our exposure to DoS attack because IP 22586 * creates an IRE for each destination. If there are too many, 22587 * the time to do any routing lookup will be extremely long. And 22588 * the lookup can be in interrupt context. 22589 * 22590 * Note that in normal circumstances, this marking should not 22591 * affect anything. It would be nice if only 1 message is 22592 * needed to inform IP that the IRE created for this RST should 22593 * not be added to the cache table. But there is currently 22594 * not such communication mechanism between TCP and IP. So 22595 * the best we can do now is to send the advice ioctl to IP 22596 * to mark the IRE temporary. 22597 */ 22598 if ((mp = tcp_ip_advise_mblk(addr, addr_len, &ipic)) != NULL) { 22599 ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY; 22600 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 22601 } 22602 } 22603 22604 /* 22605 * Initiate closedown sequence on an active connection. (May be called as 22606 * writer.) Return value zero for OK return, non-zero for error return. 22607 */ 22608 static int 22609 tcp_xmit_end(tcp_t *tcp) 22610 { 22611 ipic_t *ipic; 22612 mblk_t *mp; 22613 tcp_stack_t *tcps = tcp->tcp_tcps; 22614 22615 if (tcp->tcp_state < TCPS_SYN_RCVD || 22616 tcp->tcp_state > TCPS_CLOSE_WAIT) { 22617 /* 22618 * Invalid state, only states TCPS_SYN_RCVD, 22619 * TCPS_ESTABLISHED and TCPS_CLOSE_WAIT are valid 22620 */ 22621 return (-1); 22622 } 22623 22624 tcp->tcp_fss = tcp->tcp_snxt + tcp->tcp_unsent; 22625 tcp->tcp_valid_bits |= TCP_FSS_VALID; 22626 /* 22627 * If there is nothing more unsent, send the FIN now. 22628 * Otherwise, it will go out with the last segment. 22629 */ 22630 if (tcp->tcp_unsent == 0) { 22631 mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 22632 tcp->tcp_fss, B_FALSE, NULL, B_FALSE); 22633 22634 if (mp) { 22635 tcp_send_data(tcp, tcp->tcp_wq, mp); 22636 } else { 22637 /* 22638 * Couldn't allocate msg. Pretend we got it out. 22639 * Wait for rexmit timeout. 22640 */ 22641 tcp->tcp_snxt = tcp->tcp_fss + 1; 22642 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 22643 } 22644 22645 /* 22646 * If needed, update tcp_rexmit_snxt as tcp_snxt is 22647 * changed. 22648 */ 22649 if (tcp->tcp_rexmit && tcp->tcp_rexmit_nxt == tcp->tcp_fss) { 22650 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 22651 } 22652 } else { 22653 /* 22654 * If tcp->tcp_cork is set, then the data will not get sent, 22655 * so we have to check that and unset it first. 22656 */ 22657 if (tcp->tcp_cork) 22658 tcp->tcp_cork = B_FALSE; 22659 tcp_wput_data(tcp, NULL, B_FALSE); 22660 } 22661 22662 /* 22663 * If TCP does not get enough samples of RTT or tcp_rtt_updates 22664 * is 0, don't update the cache. 22665 */ 22666 if (tcps->tcps_rtt_updates == 0 || 22667 tcp->tcp_rtt_update < tcps->tcps_rtt_updates) 22668 return (0); 22669 22670 /* 22671 * NOTE: should not update if source routes i.e. if tcp_remote if 22672 * different from the destination. 22673 */ 22674 if (tcp->tcp_ipversion == IPV4_VERSION) { 22675 if (tcp->tcp_remote != tcp->tcp_ipha->ipha_dst) { 22676 return (0); 22677 } 22678 mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN, 22679 &ipic); 22680 } else { 22681 if (!(IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6, 22682 &tcp->tcp_ip6h->ip6_dst))) { 22683 return (0); 22684 } 22685 mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN, 22686 &ipic); 22687 } 22688 22689 /* Record route attributes in the IRE for use by future connections. */ 22690 if (mp == NULL) 22691 return (0); 22692 22693 /* 22694 * We do not have a good algorithm to update ssthresh at this time. 22695 * So don't do any update. 22696 */ 22697 ipic->ipic_rtt = tcp->tcp_rtt_sa; 22698 ipic->ipic_rtt_sd = tcp->tcp_rtt_sd; 22699 22700 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 22701 22702 return (0); 22703 } 22704 22705 /* ARGSUSED */ 22706 void 22707 tcp_xmit_reset(void *arg, mblk_t *mp, void *arg2) 22708 { 22709 conn_t *connp = (conn_t *)arg; 22710 mblk_t *mp1; 22711 tcp_t *tcp = connp->conn_tcp; 22712 tcp_xmit_reset_event_t *eventp; 22713 22714 ASSERT(mp->b_datap->db_type == M_PROTO && 22715 MBLKL(mp) == sizeof (tcp_xmit_reset_event_t)); 22716 22717 if (tcp->tcp_state != TCPS_LISTEN) { 22718 freemsg(mp); 22719 return; 22720 } 22721 22722 mp1 = mp->b_cont; 22723 mp->b_cont = NULL; 22724 eventp = (tcp_xmit_reset_event_t *)mp->b_rptr; 22725 ASSERT(eventp->tcp_xre_tcps->tcps_netstack == 22726 connp->conn_netstack); 22727 22728 tcp_xmit_listeners_reset(mp1, eventp->tcp_xre_iphdrlen, 22729 eventp->tcp_xre_zoneid, eventp->tcp_xre_tcps, connp); 22730 freemsg(mp); 22731 } 22732 22733 /* 22734 * Generate a "no listener here" RST in response to an "unknown" segment. 22735 * connp is set by caller when RST is in response to an unexpected 22736 * inbound packet for which there is active tcp state in the system. 22737 * Note that we are reusing the incoming mp to construct the outgoing RST. 22738 */ 22739 void 22740 tcp_xmit_listeners_reset(mblk_t *mp, uint_t ip_hdr_len, zoneid_t zoneid, 22741 tcp_stack_t *tcps, conn_t *connp) 22742 { 22743 uchar_t *rptr; 22744 uint32_t seg_len; 22745 tcph_t *tcph; 22746 uint32_t seg_seq; 22747 uint32_t seg_ack; 22748 uint_t flags; 22749 mblk_t *ipsec_mp; 22750 ipha_t *ipha; 22751 ip6_t *ip6h; 22752 boolean_t mctl_present = B_FALSE; 22753 boolean_t check = B_TRUE; 22754 boolean_t policy_present; 22755 ipsec_stack_t *ipss = tcps->tcps_netstack->netstack_ipsec; 22756 22757 TCP_STAT(tcps, tcp_no_listener); 22758 22759 ipsec_mp = mp; 22760 22761 if (mp->b_datap->db_type == M_CTL) { 22762 ipsec_in_t *ii; 22763 22764 mctl_present = B_TRUE; 22765 mp = mp->b_cont; 22766 22767 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 22768 ASSERT(ii->ipsec_in_type == IPSEC_IN); 22769 if (ii->ipsec_in_dont_check) { 22770 check = B_FALSE; 22771 if (!ii->ipsec_in_secure) { 22772 freeb(ipsec_mp); 22773 mctl_present = B_FALSE; 22774 ipsec_mp = mp; 22775 } 22776 } 22777 } 22778 22779 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 22780 policy_present = ipss->ipsec_inbound_v4_policy_present; 22781 ipha = (ipha_t *)mp->b_rptr; 22782 ip6h = NULL; 22783 } else { 22784 policy_present = ipss->ipsec_inbound_v6_policy_present; 22785 ipha = NULL; 22786 ip6h = (ip6_t *)mp->b_rptr; 22787 } 22788 22789 if (check && policy_present) { 22790 /* 22791 * The conn_t parameter is NULL because we already know 22792 * nobody's home. 22793 */ 22794 ipsec_mp = ipsec_check_global_policy( 22795 ipsec_mp, (conn_t *)NULL, ipha, ip6h, mctl_present, 22796 tcps->tcps_netstack); 22797 if (ipsec_mp == NULL) 22798 return; 22799 } 22800 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 22801 DTRACE_PROBE2( 22802 tx__ip__log__error__nolistener__tcp, 22803 char *, "Could not reply with RST to mp(1)", 22804 mblk_t *, mp); 22805 ip2dbg(("tcp_xmit_listeners_reset: not permitted to reply\n")); 22806 freemsg(ipsec_mp); 22807 return; 22808 } 22809 22810 rptr = mp->b_rptr; 22811 22812 tcph = (tcph_t *)&rptr[ip_hdr_len]; 22813 seg_seq = BE32_TO_U32(tcph->th_seq); 22814 seg_ack = BE32_TO_U32(tcph->th_ack); 22815 flags = tcph->th_flags[0]; 22816 22817 seg_len = msgdsize(mp) - (TCP_HDR_LENGTH(tcph) + ip_hdr_len); 22818 if (flags & TH_RST) { 22819 freemsg(ipsec_mp); 22820 } else if (flags & TH_ACK) { 22821 tcp_xmit_early_reset("no tcp, reset", 22822 ipsec_mp, seg_ack, 0, TH_RST, ip_hdr_len, zoneid, tcps, 22823 connp); 22824 } else { 22825 if (flags & TH_SYN) { 22826 seg_len++; 22827 } else { 22828 /* 22829 * Here we violate the RFC. Note that a normal 22830 * TCP will never send a segment without the ACK 22831 * flag, except for RST or SYN segment. This 22832 * segment is neither. Just drop it on the 22833 * floor. 22834 */ 22835 freemsg(ipsec_mp); 22836 tcps->tcps_rst_unsent++; 22837 return; 22838 } 22839 22840 tcp_xmit_early_reset("no tcp, reset/ack", 22841 ipsec_mp, 0, seg_seq + seg_len, 22842 TH_RST | TH_ACK, ip_hdr_len, zoneid, tcps, connp); 22843 } 22844 } 22845 22846 /* 22847 * tcp_xmit_mp is called to return a pointer to an mblk chain complete with 22848 * ip and tcp header ready to pass down to IP. If the mp passed in is 22849 * non-NULL, then up to max_to_send bytes of data will be dup'ed off that 22850 * mblk. (If sendall is not set the dup'ing will stop at an mblk boundary 22851 * otherwise it will dup partial mblks.) 22852 * Otherwise, an appropriate ACK packet will be generated. This 22853 * routine is not usually called to send new data for the first time. It 22854 * is mostly called out of the timer for retransmits, and to generate ACKs. 22855 * 22856 * If offset is not NULL, the returned mblk chain's first mblk's b_rptr will 22857 * be adjusted by *offset. And after dupb(), the offset and the ending mblk 22858 * of the original mblk chain will be returned in *offset and *end_mp. 22859 */ 22860 mblk_t * 22861 tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, int32_t *offset, 22862 mblk_t **end_mp, uint32_t seq, boolean_t sendall, uint32_t *seg_len, 22863 boolean_t rexmit) 22864 { 22865 int data_length; 22866 int32_t off = 0; 22867 uint_t flags; 22868 mblk_t *mp1; 22869 mblk_t *mp2; 22870 uchar_t *rptr; 22871 tcph_t *tcph; 22872 int32_t num_sack_blk = 0; 22873 int32_t sack_opt_len = 0; 22874 tcp_stack_t *tcps = tcp->tcp_tcps; 22875 22876 /* Allocate for our maximum TCP header + link-level */ 22877 mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 22878 tcps->tcps_wroff_xtra, BPRI_MED); 22879 if (!mp1) 22880 return (NULL); 22881 data_length = 0; 22882 22883 /* 22884 * Note that tcp_mss has been adjusted to take into account the 22885 * timestamp option if applicable. Because SACK options do not 22886 * appear in every TCP segments and they are of variable lengths, 22887 * they cannot be included in tcp_mss. Thus we need to calculate 22888 * the actual segment length when we need to send a segment which 22889 * includes SACK options. 22890 */ 22891 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 22892 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 22893 tcp->tcp_num_sack_blk); 22894 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 22895 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 22896 if (max_to_send + sack_opt_len > tcp->tcp_mss) 22897 max_to_send -= sack_opt_len; 22898 } 22899 22900 if (offset != NULL) { 22901 off = *offset; 22902 /* We use offset as an indicator that end_mp is not NULL. */ 22903 *end_mp = NULL; 22904 } 22905 for (mp2 = mp1; mp && data_length != max_to_send; mp = mp->b_cont) { 22906 /* This could be faster with cooperation from downstream */ 22907 if (mp2 != mp1 && !sendall && 22908 data_length + (int)(mp->b_wptr - mp->b_rptr) > 22909 max_to_send) 22910 /* 22911 * Don't send the next mblk since the whole mblk 22912 * does not fit. 22913 */ 22914 break; 22915 mp2->b_cont = dupb(mp); 22916 mp2 = mp2->b_cont; 22917 if (!mp2) { 22918 freemsg(mp1); 22919 return (NULL); 22920 } 22921 mp2->b_rptr += off; 22922 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 22923 (uintptr_t)INT_MAX); 22924 22925 data_length += (int)(mp2->b_wptr - mp2->b_rptr); 22926 if (data_length > max_to_send) { 22927 mp2->b_wptr -= data_length - max_to_send; 22928 data_length = max_to_send; 22929 off = mp2->b_wptr - mp->b_rptr; 22930 break; 22931 } else { 22932 off = 0; 22933 } 22934 } 22935 if (offset != NULL) { 22936 *offset = off; 22937 *end_mp = mp; 22938 } 22939 if (seg_len != NULL) { 22940 *seg_len = data_length; 22941 } 22942 22943 /* Update the latest receive window size in TCP header. */ 22944 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 22945 tcp->tcp_tcph->th_win); 22946 22947 rptr = mp1->b_rptr + tcps->tcps_wroff_xtra; 22948 mp1->b_rptr = rptr; 22949 mp1->b_wptr = rptr + tcp->tcp_hdr_len + sack_opt_len; 22950 bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len); 22951 tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len]; 22952 U32_TO_ABE32(seq, tcph->th_seq); 22953 22954 /* 22955 * Use tcp_unsent to determine if the PUSH bit should be used assumes 22956 * that this function was called from tcp_wput_data. Thus, when called 22957 * to retransmit data the setting of the PUSH bit may appear some 22958 * what random in that it might get set when it should not. This 22959 * should not pose any performance issues. 22960 */ 22961 if (data_length != 0 && (tcp->tcp_unsent == 0 || 22962 tcp->tcp_unsent == data_length)) { 22963 flags = TH_ACK | TH_PUSH; 22964 } else { 22965 flags = TH_ACK; 22966 } 22967 22968 if (tcp->tcp_ecn_ok) { 22969 if (tcp->tcp_ecn_echo_on) 22970 flags |= TH_ECE; 22971 22972 /* 22973 * Only set ECT bit and ECN_CWR if a segment contains new data. 22974 * There is no TCP flow control for non-data segments, and 22975 * only data segment is transmitted reliably. 22976 */ 22977 if (data_length > 0 && !rexmit) { 22978 SET_ECT(tcp, rptr); 22979 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 22980 flags |= TH_CWR; 22981 tcp->tcp_ecn_cwr_sent = B_TRUE; 22982 } 22983 } 22984 } 22985 22986 if (tcp->tcp_valid_bits) { 22987 uint32_t u1; 22988 22989 if ((tcp->tcp_valid_bits & TCP_ISS_VALID) && 22990 seq == tcp->tcp_iss) { 22991 uchar_t *wptr; 22992 22993 /* 22994 * If TCP_ISS_VALID and the seq number is tcp_iss, 22995 * TCP can only be in SYN-SENT, SYN-RCVD or 22996 * FIN-WAIT-1 state. It can be FIN-WAIT-1 if 22997 * our SYN is not ack'ed but the app closes this 22998 * TCP connection. 22999 */ 23000 ASSERT(tcp->tcp_state == TCPS_SYN_SENT || 23001 tcp->tcp_state == TCPS_SYN_RCVD || 23002 tcp->tcp_state == TCPS_FIN_WAIT_1); 23003 23004 /* 23005 * Tack on the MSS option. It is always needed 23006 * for both active and passive open. 23007 * 23008 * MSS option value should be interface MTU - MIN 23009 * TCP/IP header according to RFC 793 as it means 23010 * the maximum segment size TCP can receive. But 23011 * to get around some broken middle boxes/end hosts 23012 * out there, we allow the option value to be the 23013 * same as the MSS option size on the peer side. 23014 * In this way, the other side will not send 23015 * anything larger than they can receive. 23016 * 23017 * Note that for SYN_SENT state, the ndd param 23018 * tcp_use_smss_as_mss_opt has no effect as we 23019 * don't know the peer's MSS option value. So 23020 * the only case we need to take care of is in 23021 * SYN_RCVD state, which is done later. 23022 */ 23023 wptr = mp1->b_wptr; 23024 wptr[0] = TCPOPT_MAXSEG; 23025 wptr[1] = TCPOPT_MAXSEG_LEN; 23026 wptr += 2; 23027 u1 = tcp->tcp_if_mtu - 23028 (tcp->tcp_ipversion == IPV4_VERSION ? 23029 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) - 23030 TCP_MIN_HEADER_LENGTH; 23031 U16_TO_BE16(u1, wptr); 23032 mp1->b_wptr = wptr + 2; 23033 /* Update the offset to cover the additional word */ 23034 tcph->th_offset_and_rsrvd[0] += (1 << 4); 23035 23036 /* 23037 * Note that the following way of filling in 23038 * TCP options are not optimal. Some NOPs can 23039 * be saved. But there is no need at this time 23040 * to optimize it. When it is needed, we will 23041 * do it. 23042 */ 23043 switch (tcp->tcp_state) { 23044 case TCPS_SYN_SENT: 23045 flags = TH_SYN; 23046 23047 if (tcp->tcp_snd_ts_ok) { 23048 uint32_t llbolt = (uint32_t)lbolt; 23049 23050 wptr = mp1->b_wptr; 23051 wptr[0] = TCPOPT_NOP; 23052 wptr[1] = TCPOPT_NOP; 23053 wptr[2] = TCPOPT_TSTAMP; 23054 wptr[3] = TCPOPT_TSTAMP_LEN; 23055 wptr += 4; 23056 U32_TO_BE32(llbolt, wptr); 23057 wptr += 4; 23058 ASSERT(tcp->tcp_ts_recent == 0); 23059 U32_TO_BE32(0L, wptr); 23060 mp1->b_wptr += TCPOPT_REAL_TS_LEN; 23061 tcph->th_offset_and_rsrvd[0] += 23062 (3 << 4); 23063 } 23064 23065 /* 23066 * Set up all the bits to tell other side 23067 * we are ECN capable. 23068 */ 23069 if (tcp->tcp_ecn_ok) { 23070 flags |= (TH_ECE | TH_CWR); 23071 } 23072 break; 23073 case TCPS_SYN_RCVD: 23074 flags |= TH_SYN; 23075 23076 /* 23077 * Reset the MSS option value to be SMSS 23078 * We should probably add back the bytes 23079 * for timestamp option and IPsec. We 23080 * don't do that as this is a workaround 23081 * for broken middle boxes/end hosts, it 23082 * is better for us to be more cautious. 23083 * They may not take these things into 23084 * account in their SMSS calculation. Thus 23085 * the peer's calculated SMSS may be smaller 23086 * than what it can be. This should be OK. 23087 */ 23088 if (tcps->tcps_use_smss_as_mss_opt) { 23089 u1 = tcp->tcp_mss; 23090 U16_TO_BE16(u1, wptr); 23091 } 23092 23093 /* 23094 * If the other side is ECN capable, reply 23095 * that we are also ECN capable. 23096 */ 23097 if (tcp->tcp_ecn_ok) 23098 flags |= TH_ECE; 23099 break; 23100 default: 23101 /* 23102 * The above ASSERT() makes sure that this 23103 * must be FIN-WAIT-1 state. Our SYN has 23104 * not been ack'ed so retransmit it. 23105 */ 23106 flags |= TH_SYN; 23107 break; 23108 } 23109 23110 if (tcp->tcp_snd_ws_ok) { 23111 wptr = mp1->b_wptr; 23112 wptr[0] = TCPOPT_NOP; 23113 wptr[1] = TCPOPT_WSCALE; 23114 wptr[2] = TCPOPT_WS_LEN; 23115 wptr[3] = (uchar_t)tcp->tcp_rcv_ws; 23116 mp1->b_wptr += TCPOPT_REAL_WS_LEN; 23117 tcph->th_offset_and_rsrvd[0] += (1 << 4); 23118 } 23119 23120 if (tcp->tcp_snd_sack_ok) { 23121 wptr = mp1->b_wptr; 23122 wptr[0] = TCPOPT_NOP; 23123 wptr[1] = TCPOPT_NOP; 23124 wptr[2] = TCPOPT_SACK_PERMITTED; 23125 wptr[3] = TCPOPT_SACK_OK_LEN; 23126 mp1->b_wptr += TCPOPT_REAL_SACK_OK_LEN; 23127 tcph->th_offset_and_rsrvd[0] += (1 << 4); 23128 } 23129 23130 /* allocb() of adequate mblk assures space */ 23131 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 23132 (uintptr_t)INT_MAX); 23133 u1 = (int)(mp1->b_wptr - mp1->b_rptr); 23134 /* 23135 * Get IP set to checksum on our behalf 23136 * Include the adjustment for a source route if any. 23137 */ 23138 u1 += tcp->tcp_sum; 23139 u1 = (u1 >> 16) + (u1 & 0xFFFF); 23140 U16_TO_BE16(u1, tcph->th_sum); 23141 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 23142 } 23143 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 23144 (seq + data_length) == tcp->tcp_fss) { 23145 if (!tcp->tcp_fin_acked) { 23146 flags |= TH_FIN; 23147 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 23148 } 23149 if (!tcp->tcp_fin_sent) { 23150 tcp->tcp_fin_sent = B_TRUE; 23151 switch (tcp->tcp_state) { 23152 case TCPS_SYN_RCVD: 23153 case TCPS_ESTABLISHED: 23154 tcp->tcp_state = TCPS_FIN_WAIT_1; 23155 break; 23156 case TCPS_CLOSE_WAIT: 23157 tcp->tcp_state = TCPS_LAST_ACK; 23158 break; 23159 } 23160 if (tcp->tcp_suna == tcp->tcp_snxt) 23161 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 23162 tcp->tcp_snxt = tcp->tcp_fss + 1; 23163 } 23164 } 23165 /* 23166 * Note the trick here. u1 is unsigned. When tcp_urg 23167 * is smaller than seq, u1 will become a very huge value. 23168 * So the comparison will fail. Also note that tcp_urp 23169 * should be positive, see RFC 793 page 17. 23170 */ 23171 u1 = tcp->tcp_urg - seq + TCP_OLD_URP_INTERPRETATION; 23172 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && u1 != 0 && 23173 u1 < (uint32_t)(64 * 1024)) { 23174 flags |= TH_URG; 23175 BUMP_MIB(&tcps->tcps_mib, tcpOutUrg); 23176 U32_TO_ABE16(u1, tcph->th_urp); 23177 } 23178 } 23179 tcph->th_flags[0] = (uchar_t)flags; 23180 tcp->tcp_rack = tcp->tcp_rnxt; 23181 tcp->tcp_rack_cnt = 0; 23182 23183 if (tcp->tcp_snd_ts_ok) { 23184 if (tcp->tcp_state != TCPS_SYN_SENT) { 23185 uint32_t llbolt = (uint32_t)lbolt; 23186 23187 U32_TO_BE32(llbolt, 23188 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 23189 U32_TO_BE32(tcp->tcp_ts_recent, 23190 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 23191 } 23192 } 23193 23194 if (num_sack_blk > 0) { 23195 uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len; 23196 sack_blk_t *tmp; 23197 int32_t i; 23198 23199 wptr[0] = TCPOPT_NOP; 23200 wptr[1] = TCPOPT_NOP; 23201 wptr[2] = TCPOPT_SACK; 23202 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 23203 sizeof (sack_blk_t); 23204 wptr += TCPOPT_REAL_SACK_LEN; 23205 23206 tmp = tcp->tcp_sack_list; 23207 for (i = 0; i < num_sack_blk; i++) { 23208 U32_TO_BE32(tmp[i].begin, wptr); 23209 wptr += sizeof (tcp_seq); 23210 U32_TO_BE32(tmp[i].end, wptr); 23211 wptr += sizeof (tcp_seq); 23212 } 23213 tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) << 4); 23214 } 23215 ASSERT((uintptr_t)(mp1->b_wptr - rptr) <= (uintptr_t)INT_MAX); 23216 data_length += (int)(mp1->b_wptr - rptr); 23217 if (tcp->tcp_ipversion == IPV4_VERSION) { 23218 ((ipha_t *)rptr)->ipha_length = htons(data_length); 23219 } else { 23220 ip6_t *ip6 = (ip6_t *)(rptr + 23221 (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ? 23222 sizeof (ip6i_t) : 0)); 23223 23224 ip6->ip6_plen = htons(data_length - 23225 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 23226 } 23227 23228 /* 23229 * Prime pump for IP 23230 * Include the adjustment for a source route if any. 23231 */ 23232 data_length -= tcp->tcp_ip_hdr_len; 23233 data_length += tcp->tcp_sum; 23234 data_length = (data_length >> 16) + (data_length & 0xFFFF); 23235 U16_TO_ABE16(data_length, tcph->th_sum); 23236 if (tcp->tcp_ip_forward_progress) { 23237 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 23238 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 23239 tcp->tcp_ip_forward_progress = B_FALSE; 23240 } 23241 return (mp1); 23242 } 23243 23244 /* This function handles the push timeout. */ 23245 void 23246 tcp_push_timer(void *arg) 23247 { 23248 conn_t *connp = (conn_t *)arg; 23249 tcp_t *tcp = connp->conn_tcp; 23250 uint_t flags; 23251 sodirect_t *sodp; 23252 23253 TCP_DBGSTAT(tcp->tcp_tcps, tcp_push_timer_cnt); 23254 23255 ASSERT(tcp->tcp_listener == NULL); 23256 23257 ASSERT(!IPCL_IS_NONSTR(connp)); 23258 23259 /* 23260 * We need to plug synchronous streams during our drain to prevent 23261 * a race with tcp_fuse_rrw() or tcp_fusion_rinfop(). 23262 */ 23263 TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp); 23264 tcp->tcp_push_tid = 0; 23265 23266 SOD_PTR_ENTER(tcp, sodp); 23267 if (sodp != NULL) { 23268 flags = tcp_rcv_sod_wakeup(tcp, sodp); 23269 /* sod_wakeup() does the mutex_exit() */ 23270 } else if (tcp->tcp_rcv_list != NULL) { 23271 flags = tcp_rcv_drain(tcp); 23272 } 23273 if (flags == TH_ACK_NEEDED) 23274 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 23275 23276 TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp); 23277 } 23278 23279 /* 23280 * This function handles delayed ACK timeout. 23281 */ 23282 static void 23283 tcp_ack_timer(void *arg) 23284 { 23285 conn_t *connp = (conn_t *)arg; 23286 tcp_t *tcp = connp->conn_tcp; 23287 mblk_t *mp; 23288 tcp_stack_t *tcps = tcp->tcp_tcps; 23289 23290 TCP_DBGSTAT(tcps, tcp_ack_timer_cnt); 23291 23292 tcp->tcp_ack_tid = 0; 23293 23294 if (tcp->tcp_fused) 23295 return; 23296 23297 /* 23298 * Do not send ACK if there is no outstanding unack'ed data. 23299 */ 23300 if (tcp->tcp_rnxt == tcp->tcp_rack) { 23301 return; 23302 } 23303 23304 if ((tcp->tcp_rnxt - tcp->tcp_rack) > tcp->tcp_mss) { 23305 /* 23306 * Make sure we don't allow deferred ACKs to result in 23307 * timer-based ACKing. If we have held off an ACK 23308 * when there was more than an mss here, and the timer 23309 * goes off, we have to worry about the possibility 23310 * that the sender isn't doing slow-start, or is out 23311 * of step with us for some other reason. We fall 23312 * permanently back in the direction of 23313 * ACK-every-other-packet as suggested in RFC 1122. 23314 */ 23315 if (tcp->tcp_rack_abs_max > 2) 23316 tcp->tcp_rack_abs_max--; 23317 tcp->tcp_rack_cur_max = 2; 23318 } 23319 mp = tcp_ack_mp(tcp); 23320 23321 if (mp != NULL) { 23322 BUMP_LOCAL(tcp->tcp_obsegs); 23323 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 23324 BUMP_MIB(&tcps->tcps_mib, tcpOutAckDelayed); 23325 tcp_send_data(tcp, tcp->tcp_wq, mp); 23326 } 23327 } 23328 23329 23330 /* Generate an ACK-only (no data) segment for a TCP endpoint */ 23331 static mblk_t * 23332 tcp_ack_mp(tcp_t *tcp) 23333 { 23334 uint32_t seq_no; 23335 tcp_stack_t *tcps = tcp->tcp_tcps; 23336 23337 /* 23338 * There are a few cases to be considered while setting the sequence no. 23339 * Essentially, we can come here while processing an unacceptable pkt 23340 * in the TCPS_SYN_RCVD state, in which case we set the sequence number 23341 * to snxt (per RFC 793), note the swnd wouldn't have been set yet. 23342 * If we are here for a zero window probe, stick with suna. In all 23343 * other cases, we check if suna + swnd encompasses snxt and set 23344 * the sequence number to snxt, if so. If snxt falls outside the 23345 * window (the receiver probably shrunk its window), we will go with 23346 * suna + swnd, otherwise the sequence no will be unacceptable to the 23347 * receiver. 23348 */ 23349 if (tcp->tcp_zero_win_probe) { 23350 seq_no = tcp->tcp_suna; 23351 } else if (tcp->tcp_state == TCPS_SYN_RCVD) { 23352 ASSERT(tcp->tcp_swnd == 0); 23353 seq_no = tcp->tcp_snxt; 23354 } else { 23355 seq_no = SEQ_GT(tcp->tcp_snxt, 23356 (tcp->tcp_suna + tcp->tcp_swnd)) ? 23357 (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt; 23358 } 23359 23360 if (tcp->tcp_valid_bits) { 23361 /* 23362 * For the complex case where we have to send some 23363 * controls (FIN or SYN), let tcp_xmit_mp do it. 23364 */ 23365 return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE, 23366 NULL, B_FALSE)); 23367 } else { 23368 /* Generate a simple ACK */ 23369 int data_length; 23370 uchar_t *rptr; 23371 tcph_t *tcph; 23372 mblk_t *mp1; 23373 int32_t tcp_hdr_len; 23374 int32_t tcp_tcp_hdr_len; 23375 int32_t num_sack_blk = 0; 23376 int32_t sack_opt_len; 23377 23378 /* 23379 * Allocate space for TCP + IP headers 23380 * and link-level header 23381 */ 23382 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 23383 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 23384 tcp->tcp_num_sack_blk); 23385 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 23386 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 23387 tcp_hdr_len = tcp->tcp_hdr_len + sack_opt_len; 23388 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + sack_opt_len; 23389 } else { 23390 tcp_hdr_len = tcp->tcp_hdr_len; 23391 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len; 23392 } 23393 mp1 = allocb(tcp_hdr_len + tcps->tcps_wroff_xtra, BPRI_MED); 23394 if (!mp1) 23395 return (NULL); 23396 23397 /* Update the latest receive window size in TCP header. */ 23398 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 23399 tcp->tcp_tcph->th_win); 23400 /* copy in prototype TCP + IP header */ 23401 rptr = mp1->b_rptr + tcps->tcps_wroff_xtra; 23402 mp1->b_rptr = rptr; 23403 mp1->b_wptr = rptr + tcp_hdr_len; 23404 bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len); 23405 23406 tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len]; 23407 23408 /* Set the TCP sequence number. */ 23409 U32_TO_ABE32(seq_no, tcph->th_seq); 23410 23411 /* Set up the TCP flag field. */ 23412 tcph->th_flags[0] = (uchar_t)TH_ACK; 23413 if (tcp->tcp_ecn_echo_on) 23414 tcph->th_flags[0] |= TH_ECE; 23415 23416 tcp->tcp_rack = tcp->tcp_rnxt; 23417 tcp->tcp_rack_cnt = 0; 23418 23419 /* fill in timestamp option if in use */ 23420 if (tcp->tcp_snd_ts_ok) { 23421 uint32_t llbolt = (uint32_t)lbolt; 23422 23423 U32_TO_BE32(llbolt, 23424 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 23425 U32_TO_BE32(tcp->tcp_ts_recent, 23426 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 23427 } 23428 23429 /* Fill in SACK options */ 23430 if (num_sack_blk > 0) { 23431 uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len; 23432 sack_blk_t *tmp; 23433 int32_t i; 23434 23435 wptr[0] = TCPOPT_NOP; 23436 wptr[1] = TCPOPT_NOP; 23437 wptr[2] = TCPOPT_SACK; 23438 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 23439 sizeof (sack_blk_t); 23440 wptr += TCPOPT_REAL_SACK_LEN; 23441 23442 tmp = tcp->tcp_sack_list; 23443 for (i = 0; i < num_sack_blk; i++) { 23444 U32_TO_BE32(tmp[i].begin, wptr); 23445 wptr += sizeof (tcp_seq); 23446 U32_TO_BE32(tmp[i].end, wptr); 23447 wptr += sizeof (tcp_seq); 23448 } 23449 tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) 23450 << 4); 23451 } 23452 23453 if (tcp->tcp_ipversion == IPV4_VERSION) { 23454 ((ipha_t *)rptr)->ipha_length = htons(tcp_hdr_len); 23455 } else { 23456 /* Check for ip6i_t header in sticky hdrs */ 23457 ip6_t *ip6 = (ip6_t *)(rptr + 23458 (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ? 23459 sizeof (ip6i_t) : 0)); 23460 23461 ip6->ip6_plen = htons(tcp_hdr_len - 23462 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 23463 } 23464 23465 /* 23466 * Prime pump for checksum calculation in IP. Include the 23467 * adjustment for a source route if any. 23468 */ 23469 data_length = tcp_tcp_hdr_len + tcp->tcp_sum; 23470 data_length = (data_length >> 16) + (data_length & 0xFFFF); 23471 U16_TO_ABE16(data_length, tcph->th_sum); 23472 23473 if (tcp->tcp_ip_forward_progress) { 23474 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 23475 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 23476 tcp->tcp_ip_forward_progress = B_FALSE; 23477 } 23478 return (mp1); 23479 } 23480 } 23481 23482 /* 23483 * Hash list insertion routine for tcp_t structures. Each hash bucket 23484 * contains a list of tcp_t entries, and each entry is bound to a unique 23485 * port. If there are multiple tcp_t's that are bound to the same port, then 23486 * one of them will be linked into the hash bucket list, and the rest will 23487 * hang off of that one entry. For each port, entries bound to a specific IP 23488 * address will be inserted before those those bound to INADDR_ANY. 23489 */ 23490 static void 23491 tcp_bind_hash_insert(tf_t *tbf, tcp_t *tcp, int caller_holds_lock) 23492 { 23493 tcp_t **tcpp; 23494 tcp_t *tcpnext; 23495 tcp_t *tcphash; 23496 23497 if (tcp->tcp_ptpbhn != NULL) { 23498 ASSERT(!caller_holds_lock); 23499 tcp_bind_hash_remove(tcp); 23500 } 23501 tcpp = &tbf->tf_tcp; 23502 if (!caller_holds_lock) { 23503 mutex_enter(&tbf->tf_lock); 23504 } else { 23505 ASSERT(MUTEX_HELD(&tbf->tf_lock)); 23506 } 23507 tcphash = tcpp[0]; 23508 tcpnext = NULL; 23509 if (tcphash != NULL) { 23510 /* Look for an entry using the same port */ 23511 while ((tcphash = tcpp[0]) != NULL && 23512 tcp->tcp_lport != tcphash->tcp_lport) 23513 tcpp = &(tcphash->tcp_bind_hash); 23514 23515 /* The port was not found, just add to the end */ 23516 if (tcphash == NULL) 23517 goto insert; 23518 23519 /* 23520 * OK, there already exists an entry bound to the 23521 * same port. 23522 * 23523 * If the new tcp bound to the INADDR_ANY address 23524 * and the first one in the list is not bound to 23525 * INADDR_ANY we skip all entries until we find the 23526 * first one bound to INADDR_ANY. 23527 * This makes sure that applications binding to a 23528 * specific address get preference over those binding to 23529 * INADDR_ANY. 23530 */ 23531 tcpnext = tcphash; 23532 tcphash = NULL; 23533 if (V6_OR_V4_INADDR_ANY(tcp->tcp_bound_source_v6) && 23534 !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) { 23535 while ((tcpnext = tcpp[0]) != NULL && 23536 !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) 23537 tcpp = &(tcpnext->tcp_bind_hash_port); 23538 23539 if (tcpnext) { 23540 tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash_port; 23541 tcphash = tcpnext->tcp_bind_hash; 23542 if (tcphash != NULL) { 23543 tcphash->tcp_ptpbhn = 23544 &(tcp->tcp_bind_hash); 23545 tcpnext->tcp_bind_hash = NULL; 23546 } 23547 } 23548 } else { 23549 tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash_port; 23550 tcphash = tcpnext->tcp_bind_hash; 23551 if (tcphash != NULL) { 23552 tcphash->tcp_ptpbhn = 23553 &(tcp->tcp_bind_hash); 23554 tcpnext->tcp_bind_hash = NULL; 23555 } 23556 } 23557 } 23558 insert: 23559 tcp->tcp_bind_hash_port = tcpnext; 23560 tcp->tcp_bind_hash = tcphash; 23561 tcp->tcp_ptpbhn = tcpp; 23562 tcpp[0] = tcp; 23563 if (!caller_holds_lock) 23564 mutex_exit(&tbf->tf_lock); 23565 } 23566 23567 /* 23568 * Hash list removal routine for tcp_t structures. 23569 */ 23570 static void 23571 tcp_bind_hash_remove(tcp_t *tcp) 23572 { 23573 tcp_t *tcpnext; 23574 kmutex_t *lockp; 23575 tcp_stack_t *tcps = tcp->tcp_tcps; 23576 23577 if (tcp->tcp_ptpbhn == NULL) 23578 return; 23579 23580 /* 23581 * Extract the lock pointer in case there are concurrent 23582 * hash_remove's for this instance. 23583 */ 23584 ASSERT(tcp->tcp_lport != 0); 23585 lockp = &tcps->tcps_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)].tf_lock; 23586 23587 ASSERT(lockp != NULL); 23588 mutex_enter(lockp); 23589 if (tcp->tcp_ptpbhn) { 23590 tcpnext = tcp->tcp_bind_hash_port; 23591 if (tcpnext != NULL) { 23592 tcp->tcp_bind_hash_port = NULL; 23593 tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn; 23594 tcpnext->tcp_bind_hash = tcp->tcp_bind_hash; 23595 if (tcpnext->tcp_bind_hash != NULL) { 23596 tcpnext->tcp_bind_hash->tcp_ptpbhn = 23597 &(tcpnext->tcp_bind_hash); 23598 tcp->tcp_bind_hash = NULL; 23599 } 23600 } else if ((tcpnext = tcp->tcp_bind_hash) != NULL) { 23601 tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn; 23602 tcp->tcp_bind_hash = NULL; 23603 } 23604 *tcp->tcp_ptpbhn = tcpnext; 23605 tcp->tcp_ptpbhn = NULL; 23606 } 23607 mutex_exit(lockp); 23608 } 23609 23610 23611 /* 23612 * Hash list lookup routine for tcp_t structures. 23613 * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF. 23614 */ 23615 static tcp_t * 23616 tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *tcps) 23617 { 23618 tf_t *tf; 23619 tcp_t *tcp; 23620 23621 tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 23622 mutex_enter(&tf->tf_lock); 23623 for (tcp = tf->tf_tcp; tcp != NULL; 23624 tcp = tcp->tcp_acceptor_hash) { 23625 if (tcp->tcp_acceptor_id == id) { 23626 CONN_INC_REF(tcp->tcp_connp); 23627 mutex_exit(&tf->tf_lock); 23628 return (tcp); 23629 } 23630 } 23631 mutex_exit(&tf->tf_lock); 23632 return (NULL); 23633 } 23634 23635 23636 /* 23637 * Hash list insertion routine for tcp_t structures. 23638 */ 23639 void 23640 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp) 23641 { 23642 tf_t *tf; 23643 tcp_t **tcpp; 23644 tcp_t *tcpnext; 23645 tcp_stack_t *tcps = tcp->tcp_tcps; 23646 23647 tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 23648 23649 if (tcp->tcp_ptpahn != NULL) 23650 tcp_acceptor_hash_remove(tcp); 23651 tcpp = &tf->tf_tcp; 23652 mutex_enter(&tf->tf_lock); 23653 tcpnext = tcpp[0]; 23654 if (tcpnext) 23655 tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash; 23656 tcp->tcp_acceptor_hash = tcpnext; 23657 tcp->tcp_ptpahn = tcpp; 23658 tcpp[0] = tcp; 23659 tcp->tcp_acceptor_lockp = &tf->tf_lock; /* For tcp_*_hash_remove */ 23660 mutex_exit(&tf->tf_lock); 23661 } 23662 23663 /* 23664 * Hash list removal routine for tcp_t structures. 23665 */ 23666 static void 23667 tcp_acceptor_hash_remove(tcp_t *tcp) 23668 { 23669 tcp_t *tcpnext; 23670 kmutex_t *lockp; 23671 23672 /* 23673 * Extract the lock pointer in case there are concurrent 23674 * hash_remove's for this instance. 23675 */ 23676 lockp = tcp->tcp_acceptor_lockp; 23677 23678 if (tcp->tcp_ptpahn == NULL) 23679 return; 23680 23681 ASSERT(lockp != NULL); 23682 mutex_enter(lockp); 23683 if (tcp->tcp_ptpahn) { 23684 tcpnext = tcp->tcp_acceptor_hash; 23685 if (tcpnext) { 23686 tcpnext->tcp_ptpahn = tcp->tcp_ptpahn; 23687 tcp->tcp_acceptor_hash = NULL; 23688 } 23689 *tcp->tcp_ptpahn = tcpnext; 23690 tcp->tcp_ptpahn = NULL; 23691 } 23692 mutex_exit(lockp); 23693 tcp->tcp_acceptor_lockp = NULL; 23694 } 23695 23696 /* 23697 * Type three generator adapted from the random() function in 4.4 BSD: 23698 */ 23699 23700 /* 23701 * Copyright (c) 1983, 1993 23702 * The Regents of the University of California. All rights reserved. 23703 * 23704 * Redistribution and use in source and binary forms, with or without 23705 * modification, are permitted provided that the following conditions 23706 * are met: 23707 * 1. Redistributions of source code must retain the above copyright 23708 * notice, this list of conditions and the following disclaimer. 23709 * 2. Redistributions in binary form must reproduce the above copyright 23710 * notice, this list of conditions and the following disclaimer in the 23711 * documentation and/or other materials provided with the distribution. 23712 * 3. All advertising materials mentioning features or use of this software 23713 * must display the following acknowledgement: 23714 * This product includes software developed by the University of 23715 * California, Berkeley and its contributors. 23716 * 4. Neither the name of the University nor the names of its contributors 23717 * may be used to endorse or promote products derived from this software 23718 * without specific prior written permission. 23719 * 23720 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23721 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23722 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23723 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23724 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23725 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23726 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23727 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23728 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23729 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 23730 * SUCH DAMAGE. 23731 */ 23732 23733 /* Type 3 -- x**31 + x**3 + 1 */ 23734 #define DEG_3 31 23735 #define SEP_3 3 23736 23737 23738 /* Protected by tcp_random_lock */ 23739 static int tcp_randtbl[DEG_3 + 1]; 23740 23741 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1]; 23742 static int *tcp_random_rptr = &tcp_randtbl[1]; 23743 23744 static int *tcp_random_state = &tcp_randtbl[1]; 23745 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1]; 23746 23747 kmutex_t tcp_random_lock; 23748 23749 void 23750 tcp_random_init(void) 23751 { 23752 int i; 23753 hrtime_t hrt; 23754 time_t wallclock; 23755 uint64_t result; 23756 23757 /* 23758 * Use high-res timer and current time for seed. Gethrtime() returns 23759 * a longlong, which may contain resolution down to nanoseconds. 23760 * The current time will either be a 32-bit or a 64-bit quantity. 23761 * XOR the two together in a 64-bit result variable. 23762 * Convert the result to a 32-bit value by multiplying the high-order 23763 * 32-bits by the low-order 32-bits. 23764 */ 23765 23766 hrt = gethrtime(); 23767 (void) drv_getparm(TIME, &wallclock); 23768 result = (uint64_t)wallclock ^ (uint64_t)hrt; 23769 mutex_enter(&tcp_random_lock); 23770 tcp_random_state[0] = ((result >> 32) & 0xffffffff) * 23771 (result & 0xffffffff); 23772 23773 for (i = 1; i < DEG_3; i++) 23774 tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1] 23775 + 12345; 23776 tcp_random_fptr = &tcp_random_state[SEP_3]; 23777 tcp_random_rptr = &tcp_random_state[0]; 23778 mutex_exit(&tcp_random_lock); 23779 for (i = 0; i < 10 * DEG_3; i++) 23780 (void) tcp_random(); 23781 } 23782 23783 /* 23784 * tcp_random: Return a random number in the range [1 - (128K + 1)]. 23785 * This range is selected to be approximately centered on TCP_ISS / 2, 23786 * and easy to compute. We get this value by generating a 32-bit random 23787 * number, selecting out the high-order 17 bits, and then adding one so 23788 * that we never return zero. 23789 */ 23790 int 23791 tcp_random(void) 23792 { 23793 int i; 23794 23795 mutex_enter(&tcp_random_lock); 23796 *tcp_random_fptr += *tcp_random_rptr; 23797 23798 /* 23799 * The high-order bits are more random than the low-order bits, 23800 * so we select out the high-order 17 bits and add one so that 23801 * we never return zero. 23802 */ 23803 i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1; 23804 if (++tcp_random_fptr >= tcp_random_end_ptr) { 23805 tcp_random_fptr = tcp_random_state; 23806 ++tcp_random_rptr; 23807 } else if (++tcp_random_rptr >= tcp_random_end_ptr) 23808 tcp_random_rptr = tcp_random_state; 23809 23810 mutex_exit(&tcp_random_lock); 23811 return (i); 23812 } 23813 23814 static int 23815 tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, int *do_disconnectp, 23816 int *t_errorp, int *sys_errorp) 23817 { 23818 int error; 23819 int is_absreq_failure; 23820 t_scalar_t *opt_lenp; 23821 t_scalar_t opt_offset; 23822 int prim_type; 23823 struct T_conn_req *tcreqp; 23824 struct T_conn_res *tcresp; 23825 cred_t *cr; 23826 23827 /* 23828 * All Solaris components should pass a db_credp 23829 * for this TPI message, hence we ASSERT. 23830 * But in case there is some other M_PROTO that looks 23831 * like a TPI message sent by some other kernel 23832 * component, we check and return an error. 23833 */ 23834 cr = msg_getcred(mp, NULL); 23835 ASSERT(cr != NULL); 23836 if (cr == NULL) 23837 return (-1); 23838 23839 prim_type = ((union T_primitives *)mp->b_rptr)->type; 23840 ASSERT(prim_type == T_CONN_REQ || prim_type == O_T_CONN_RES || 23841 prim_type == T_CONN_RES); 23842 23843 switch (prim_type) { 23844 case T_CONN_REQ: 23845 tcreqp = (struct T_conn_req *)mp->b_rptr; 23846 opt_offset = tcreqp->OPT_offset; 23847 opt_lenp = (t_scalar_t *)&tcreqp->OPT_length; 23848 break; 23849 case O_T_CONN_RES: 23850 case T_CONN_RES: 23851 tcresp = (struct T_conn_res *)mp->b_rptr; 23852 opt_offset = tcresp->OPT_offset; 23853 opt_lenp = (t_scalar_t *)&tcresp->OPT_length; 23854 break; 23855 } 23856 23857 *t_errorp = 0; 23858 *sys_errorp = 0; 23859 *do_disconnectp = 0; 23860 23861 error = tpi_optcom_buf(tcp->tcp_wq, mp, opt_lenp, 23862 opt_offset, cr, &tcp_opt_obj, 23863 NULL, &is_absreq_failure); 23864 23865 switch (error) { 23866 case 0: /* no error */ 23867 ASSERT(is_absreq_failure == 0); 23868 return (0); 23869 case ENOPROTOOPT: 23870 *t_errorp = TBADOPT; 23871 break; 23872 case EACCES: 23873 *t_errorp = TACCES; 23874 break; 23875 default: 23876 *t_errorp = TSYSERR; *sys_errorp = error; 23877 break; 23878 } 23879 if (is_absreq_failure != 0) { 23880 /* 23881 * The connection request should get the local ack 23882 * T_OK_ACK and then a T_DISCON_IND. 23883 */ 23884 *do_disconnectp = 1; 23885 } 23886 return (-1); 23887 } 23888 23889 /* 23890 * Split this function out so that if the secret changes, I'm okay. 23891 * 23892 * Initialize the tcp_iss_cookie and tcp_iss_key. 23893 */ 23894 23895 #define PASSWD_SIZE 16 /* MUST be multiple of 4 */ 23896 23897 static void 23898 tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *tcps) 23899 { 23900 struct { 23901 int32_t current_time; 23902 uint32_t randnum; 23903 uint16_t pad; 23904 uint8_t ether[6]; 23905 uint8_t passwd[PASSWD_SIZE]; 23906 } tcp_iss_cookie; 23907 time_t t; 23908 23909 /* 23910 * Start with the current absolute time. 23911 */ 23912 (void) drv_getparm(TIME, &t); 23913 tcp_iss_cookie.current_time = t; 23914 23915 /* 23916 * XXX - Need a more random number per RFC 1750, not this crap. 23917 * OTOH, if what follows is pretty random, then I'm in better shape. 23918 */ 23919 tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random()); 23920 tcp_iss_cookie.pad = 0x365c; /* Picked from HMAC pad values. */ 23921 23922 /* 23923 * The cpu_type_info is pretty non-random. Ugggh. It does serve 23924 * as a good template. 23925 */ 23926 bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd, 23927 min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info))); 23928 23929 /* 23930 * The pass-phrase. Normally this is supplied by user-called NDD. 23931 */ 23932 bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len)); 23933 23934 /* 23935 * See 4010593 if this section becomes a problem again, 23936 * but the local ethernet address is useful here. 23937 */ 23938 (void) localetheraddr(NULL, 23939 (struct ether_addr *)&tcp_iss_cookie.ether); 23940 23941 /* 23942 * Hash 'em all together. The MD5Final is called per-connection. 23943 */ 23944 mutex_enter(&tcps->tcps_iss_key_lock); 23945 MD5Init(&tcps->tcps_iss_key); 23946 MD5Update(&tcps->tcps_iss_key, (uchar_t *)&tcp_iss_cookie, 23947 sizeof (tcp_iss_cookie)); 23948 mutex_exit(&tcps->tcps_iss_key_lock); 23949 } 23950 23951 /* 23952 * Set the RFC 1948 pass phrase 23953 */ 23954 /* ARGSUSED */ 23955 static int 23956 tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 23957 cred_t *cr) 23958 { 23959 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 23960 23961 /* 23962 * Basically, value contains a new pass phrase. Pass it along! 23963 */ 23964 tcp_iss_key_init((uint8_t *)value, strlen(value), tcps); 23965 return (0); 23966 } 23967 23968 /* ARGSUSED */ 23969 static int 23970 tcp_sack_info_constructor(void *buf, void *cdrarg, int kmflags) 23971 { 23972 bzero(buf, sizeof (tcp_sack_info_t)); 23973 return (0); 23974 } 23975 23976 /* ARGSUSED */ 23977 static int 23978 tcp_iphc_constructor(void *buf, void *cdrarg, int kmflags) 23979 { 23980 bzero(buf, TCP_MAX_COMBINED_HEADER_LENGTH); 23981 return (0); 23982 } 23983 23984 /* 23985 * Make sure we wait until the default queue is setup, yet allow 23986 * tcp_g_q_create() to open a TCP stream. 23987 * We need to allow tcp_g_q_create() do do an open 23988 * of tcp, hence we compare curhread. 23989 * All others have to wait until the tcps_g_q has been 23990 * setup. 23991 */ 23992 void 23993 tcp_g_q_setup(tcp_stack_t *tcps) 23994 { 23995 mutex_enter(&tcps->tcps_g_q_lock); 23996 if (tcps->tcps_g_q != NULL) { 23997 mutex_exit(&tcps->tcps_g_q_lock); 23998 return; 23999 } 24000 if (tcps->tcps_g_q_creator == NULL) { 24001 /* This thread will set it up */ 24002 tcps->tcps_g_q_creator = curthread; 24003 mutex_exit(&tcps->tcps_g_q_lock); 24004 tcp_g_q_create(tcps); 24005 mutex_enter(&tcps->tcps_g_q_lock); 24006 ASSERT(tcps->tcps_g_q_creator == curthread); 24007 tcps->tcps_g_q_creator = NULL; 24008 cv_signal(&tcps->tcps_g_q_cv); 24009 ASSERT(tcps->tcps_g_q != NULL); 24010 mutex_exit(&tcps->tcps_g_q_lock); 24011 return; 24012 } 24013 /* Everybody but the creator has to wait */ 24014 if (tcps->tcps_g_q_creator != curthread) { 24015 while (tcps->tcps_g_q == NULL) 24016 cv_wait(&tcps->tcps_g_q_cv, &tcps->tcps_g_q_lock); 24017 } 24018 mutex_exit(&tcps->tcps_g_q_lock); 24019 } 24020 24021 #define IP "ip" 24022 24023 #define TCP6DEV "/devices/pseudo/tcp6@0:tcp6" 24024 24025 /* 24026 * Create a default tcp queue here instead of in strplumb 24027 */ 24028 void 24029 tcp_g_q_create(tcp_stack_t *tcps) 24030 { 24031 int error; 24032 ldi_handle_t lh = NULL; 24033 ldi_ident_t li = NULL; 24034 int rval; 24035 cred_t *cr; 24036 major_t IP_MAJ; 24037 24038 #ifdef NS_DEBUG 24039 (void) printf("tcp_g_q_create()\n"); 24040 #endif 24041 24042 IP_MAJ = ddi_name_to_major(IP); 24043 24044 ASSERT(tcps->tcps_g_q_creator == curthread); 24045 24046 error = ldi_ident_from_major(IP_MAJ, &li); 24047 if (error) { 24048 #ifdef DEBUG 24049 printf("tcp_g_q_create: lyr ident get failed error %d\n", 24050 error); 24051 #endif 24052 return; 24053 } 24054 24055 cr = zone_get_kcred(netstackid_to_zoneid( 24056 tcps->tcps_netstack->netstack_stackid)); 24057 ASSERT(cr != NULL); 24058 /* 24059 * We set the tcp default queue to IPv6 because IPv4 falls 24060 * back to IPv6 when it can't find a client, but 24061 * IPv6 does not fall back to IPv4. 24062 */ 24063 error = ldi_open_by_name(TCP6DEV, FREAD|FWRITE, cr, &lh, li); 24064 if (error) { 24065 #ifdef DEBUG 24066 printf("tcp_g_q_create: open of TCP6DEV failed error %d\n", 24067 error); 24068 #endif 24069 goto out; 24070 } 24071 24072 /* 24073 * This ioctl causes the tcp framework to cache a pointer to 24074 * this stream, so we don't want to close the stream after 24075 * this operation. 24076 * Use the kernel credentials that are for the zone we're in. 24077 */ 24078 error = ldi_ioctl(lh, TCP_IOC_DEFAULT_Q, 24079 (intptr_t)0, FKIOCTL, cr, &rval); 24080 if (error) { 24081 #ifdef DEBUG 24082 printf("tcp_g_q_create: ioctl TCP_IOC_DEFAULT_Q failed " 24083 "error %d\n", error); 24084 #endif 24085 goto out; 24086 } 24087 tcps->tcps_g_q_lh = lh; /* For tcp_g_q_close */ 24088 lh = NULL; 24089 out: 24090 /* Close layered handles */ 24091 if (li) 24092 ldi_ident_release(li); 24093 /* Keep cred around until _inactive needs it */ 24094 tcps->tcps_g_q_cr = cr; 24095 } 24096 24097 /* 24098 * We keep tcp_g_q set until all other tcp_t's in the zone 24099 * has gone away, and then when tcp_g_q_inactive() is called 24100 * we clear it. 24101 */ 24102 void 24103 tcp_g_q_destroy(tcp_stack_t *tcps) 24104 { 24105 #ifdef NS_DEBUG 24106 (void) printf("tcp_g_q_destroy()for stack %d\n", 24107 tcps->tcps_netstack->netstack_stackid); 24108 #endif 24109 24110 if (tcps->tcps_g_q == NULL) { 24111 return; /* Nothing to cleanup */ 24112 } 24113 /* 24114 * Drop reference corresponding to the default queue. 24115 * This reference was added from tcp_open when the default queue 24116 * was created, hence we compensate for this extra drop in 24117 * tcp_g_q_close. If the refcnt drops to zero here it means 24118 * the default queue was the last one to be open, in which 24119 * case, then tcp_g_q_inactive will be 24120 * called as a result of the refrele. 24121 */ 24122 TCPS_REFRELE(tcps); 24123 } 24124 24125 /* 24126 * Called when last tcp_t drops reference count using TCPS_REFRELE. 24127 * Run by tcp_q_q_inactive using a taskq. 24128 */ 24129 static void 24130 tcp_g_q_close(void *arg) 24131 { 24132 tcp_stack_t *tcps = arg; 24133 int error; 24134 ldi_handle_t lh = NULL; 24135 ldi_ident_t li = NULL; 24136 cred_t *cr; 24137 major_t IP_MAJ; 24138 24139 IP_MAJ = ddi_name_to_major(IP); 24140 24141 #ifdef NS_DEBUG 24142 (void) printf("tcp_g_q_inactive() for stack %d refcnt %d\n", 24143 tcps->tcps_netstack->netstack_stackid, 24144 tcps->tcps_netstack->netstack_refcnt); 24145 #endif 24146 lh = tcps->tcps_g_q_lh; 24147 if (lh == NULL) 24148 return; /* Nothing to cleanup */ 24149 24150 ASSERT(tcps->tcps_refcnt == 1); 24151 ASSERT(tcps->tcps_g_q != NULL); 24152 24153 error = ldi_ident_from_major(IP_MAJ, &li); 24154 if (error) { 24155 #ifdef DEBUG 24156 printf("tcp_g_q_inactive: lyr ident get failed error %d\n", 24157 error); 24158 #endif 24159 return; 24160 } 24161 24162 cr = tcps->tcps_g_q_cr; 24163 tcps->tcps_g_q_cr = NULL; 24164 ASSERT(cr != NULL); 24165 24166 /* 24167 * Make sure we can break the recursion when tcp_close decrements 24168 * the reference count causing g_q_inactive to be called again. 24169 */ 24170 tcps->tcps_g_q_lh = NULL; 24171 24172 /* close the default queue */ 24173 (void) ldi_close(lh, FREAD|FWRITE, cr); 24174 /* 24175 * At this point in time tcps and the rest of netstack_t might 24176 * have been deleted. 24177 */ 24178 tcps = NULL; 24179 24180 /* Close layered handles */ 24181 ldi_ident_release(li); 24182 crfree(cr); 24183 } 24184 24185 /* 24186 * Called when last tcp_t drops reference count using TCPS_REFRELE. 24187 * 24188 * Have to ensure that the ldi routines are not used by an 24189 * interrupt thread by using a taskq. 24190 */ 24191 void 24192 tcp_g_q_inactive(tcp_stack_t *tcps) 24193 { 24194 if (tcps->tcps_g_q_lh == NULL) 24195 return; /* Nothing to cleanup */ 24196 24197 ASSERT(tcps->tcps_refcnt == 0); 24198 TCPS_REFHOLD(tcps); /* Compensate for what g_q_destroy did */ 24199 24200 if (servicing_interrupt()) { 24201 (void) taskq_dispatch(tcp_taskq, tcp_g_q_close, 24202 (void *) tcps, TQ_SLEEP); 24203 } else { 24204 tcp_g_q_close(tcps); 24205 } 24206 } 24207 24208 /* 24209 * Called by IP when IP is loaded into the kernel 24210 */ 24211 void 24212 tcp_ddi_g_init(void) 24213 { 24214 tcp_timercache = kmem_cache_create("tcp_timercache", 24215 sizeof (tcp_timer_t) + sizeof (mblk_t), 0, 24216 NULL, NULL, NULL, NULL, NULL, 0); 24217 24218 tcp_sack_info_cache = kmem_cache_create("tcp_sack_info_cache", 24219 sizeof (tcp_sack_info_t), 0, 24220 tcp_sack_info_constructor, NULL, NULL, NULL, NULL, 0); 24221 24222 tcp_iphc_cache = kmem_cache_create("tcp_iphc_cache", 24223 TCP_MAX_COMBINED_HEADER_LENGTH, 0, 24224 tcp_iphc_constructor, NULL, NULL, NULL, NULL, 0); 24225 24226 mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL); 24227 24228 /* Initialize the random number generator */ 24229 tcp_random_init(); 24230 24231 /* A single callback independently of how many netstacks we have */ 24232 ip_squeue_init(tcp_squeue_add); 24233 24234 tcp_g_kstat = tcp_g_kstat_init(&tcp_g_statistics); 24235 24236 tcp_taskq = taskq_create("tcp_taskq", 1, minclsyspri, 1, 1, 24237 TASKQ_PREPOPULATE); 24238 24239 tcp_squeue_flag = tcp_squeue_switch(tcp_squeue_wput); 24240 24241 /* 24242 * We want to be informed each time a stack is created or 24243 * destroyed in the kernel, so we can maintain the 24244 * set of tcp_stack_t's. 24245 */ 24246 netstack_register(NS_TCP, tcp_stack_init, tcp_stack_shutdown, 24247 tcp_stack_fini); 24248 } 24249 24250 24251 #define INET_NAME "ip" 24252 24253 /* 24254 * Initialize the TCP stack instance. 24255 */ 24256 static void * 24257 tcp_stack_init(netstackid_t stackid, netstack_t *ns) 24258 { 24259 tcp_stack_t *tcps; 24260 tcpparam_t *pa; 24261 int i; 24262 int error = 0; 24263 major_t major; 24264 24265 tcps = (tcp_stack_t *)kmem_zalloc(sizeof (*tcps), KM_SLEEP); 24266 tcps->tcps_netstack = ns; 24267 24268 /* Initialize locks */ 24269 mutex_init(&tcps->tcps_g_q_lock, NULL, MUTEX_DEFAULT, NULL); 24270 cv_init(&tcps->tcps_g_q_cv, NULL, CV_DEFAULT, NULL); 24271 mutex_init(&tcps->tcps_iss_key_lock, NULL, MUTEX_DEFAULT, NULL); 24272 mutex_init(&tcps->tcps_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL); 24273 24274 tcps->tcps_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS; 24275 tcps->tcps_g_epriv_ports[0] = 2049; 24276 tcps->tcps_g_epriv_ports[1] = 4045; 24277 tcps->tcps_min_anonpriv_port = 512; 24278 24279 tcps->tcps_bind_fanout = kmem_zalloc(sizeof (tf_t) * 24280 TCP_BIND_FANOUT_SIZE, KM_SLEEP); 24281 tcps->tcps_acceptor_fanout = kmem_zalloc(sizeof (tf_t) * 24282 TCP_FANOUT_SIZE, KM_SLEEP); 24283 24284 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 24285 mutex_init(&tcps->tcps_bind_fanout[i].tf_lock, NULL, 24286 MUTEX_DEFAULT, NULL); 24287 } 24288 24289 for (i = 0; i < TCP_FANOUT_SIZE; i++) { 24290 mutex_init(&tcps->tcps_acceptor_fanout[i].tf_lock, NULL, 24291 MUTEX_DEFAULT, NULL); 24292 } 24293 24294 /* TCP's IPsec code calls the packet dropper. */ 24295 ip_drop_register(&tcps->tcps_dropper, "TCP IPsec policy enforcement"); 24296 24297 pa = (tcpparam_t *)kmem_alloc(sizeof (lcl_tcp_param_arr), KM_SLEEP); 24298 tcps->tcps_params = pa; 24299 bcopy(lcl_tcp_param_arr, tcps->tcps_params, sizeof (lcl_tcp_param_arr)); 24300 24301 (void) tcp_param_register(&tcps->tcps_g_nd, tcps->tcps_params, 24302 A_CNT(lcl_tcp_param_arr), tcps); 24303 24304 /* 24305 * Note: To really walk the device tree you need the devinfo 24306 * pointer to your device which is only available after probe/attach. 24307 * The following is safe only because it uses ddi_root_node() 24308 */ 24309 tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr, 24310 tcp_opt_obj.odb_opt_arr_cnt); 24311 24312 /* 24313 * Initialize RFC 1948 secret values. This will probably be reset once 24314 * by the boot scripts. 24315 * 24316 * Use NULL name, as the name is caught by the new lockstats. 24317 * 24318 * Initialize with some random, non-guessable string, like the global 24319 * T_INFO_ACK. 24320 */ 24321 24322 tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack, 24323 sizeof (tcp_g_t_info_ack), tcps); 24324 24325 tcps->tcps_kstat = tcp_kstat2_init(stackid, &tcps->tcps_statistics); 24326 tcps->tcps_mibkp = tcp_kstat_init(stackid, tcps); 24327 24328 major = mod_name_to_major(INET_NAME); 24329 error = ldi_ident_from_major(major, &tcps->tcps_ldi_ident); 24330 ASSERT(error == 0); 24331 return (tcps); 24332 } 24333 24334 /* 24335 * Called when the IP module is about to be unloaded. 24336 */ 24337 void 24338 tcp_ddi_g_destroy(void) 24339 { 24340 tcp_g_kstat_fini(tcp_g_kstat); 24341 tcp_g_kstat = NULL; 24342 bzero(&tcp_g_statistics, sizeof (tcp_g_statistics)); 24343 24344 mutex_destroy(&tcp_random_lock); 24345 24346 kmem_cache_destroy(tcp_timercache); 24347 kmem_cache_destroy(tcp_sack_info_cache); 24348 kmem_cache_destroy(tcp_iphc_cache); 24349 24350 netstack_unregister(NS_TCP); 24351 taskq_destroy(tcp_taskq); 24352 } 24353 24354 /* 24355 * Shut down the TCP stack instance. 24356 */ 24357 /* ARGSUSED */ 24358 static void 24359 tcp_stack_shutdown(netstackid_t stackid, void *arg) 24360 { 24361 tcp_stack_t *tcps = (tcp_stack_t *)arg; 24362 24363 tcp_g_q_destroy(tcps); 24364 } 24365 24366 /* 24367 * Free the TCP stack instance. 24368 */ 24369 static void 24370 tcp_stack_fini(netstackid_t stackid, void *arg) 24371 { 24372 tcp_stack_t *tcps = (tcp_stack_t *)arg; 24373 int i; 24374 24375 nd_free(&tcps->tcps_g_nd); 24376 kmem_free(tcps->tcps_params, sizeof (lcl_tcp_param_arr)); 24377 tcps->tcps_params = NULL; 24378 kmem_free(tcps->tcps_wroff_xtra_param, sizeof (tcpparam_t)); 24379 tcps->tcps_wroff_xtra_param = NULL; 24380 kmem_free(tcps->tcps_mdt_head_param, sizeof (tcpparam_t)); 24381 tcps->tcps_mdt_head_param = NULL; 24382 kmem_free(tcps->tcps_mdt_tail_param, sizeof (tcpparam_t)); 24383 tcps->tcps_mdt_tail_param = NULL; 24384 kmem_free(tcps->tcps_mdt_max_pbufs_param, sizeof (tcpparam_t)); 24385 tcps->tcps_mdt_max_pbufs_param = NULL; 24386 24387 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 24388 ASSERT(tcps->tcps_bind_fanout[i].tf_tcp == NULL); 24389 mutex_destroy(&tcps->tcps_bind_fanout[i].tf_lock); 24390 } 24391 24392 for (i = 0; i < TCP_FANOUT_SIZE; i++) { 24393 ASSERT(tcps->tcps_acceptor_fanout[i].tf_tcp == NULL); 24394 mutex_destroy(&tcps->tcps_acceptor_fanout[i].tf_lock); 24395 } 24396 24397 kmem_free(tcps->tcps_bind_fanout, sizeof (tf_t) * TCP_BIND_FANOUT_SIZE); 24398 tcps->tcps_bind_fanout = NULL; 24399 24400 kmem_free(tcps->tcps_acceptor_fanout, sizeof (tf_t) * TCP_FANOUT_SIZE); 24401 tcps->tcps_acceptor_fanout = NULL; 24402 24403 mutex_destroy(&tcps->tcps_iss_key_lock); 24404 mutex_destroy(&tcps->tcps_g_q_lock); 24405 cv_destroy(&tcps->tcps_g_q_cv); 24406 mutex_destroy(&tcps->tcps_epriv_port_lock); 24407 24408 ip_drop_unregister(&tcps->tcps_dropper); 24409 24410 tcp_kstat2_fini(stackid, tcps->tcps_kstat); 24411 tcps->tcps_kstat = NULL; 24412 bzero(&tcps->tcps_statistics, sizeof (tcps->tcps_statistics)); 24413 24414 tcp_kstat_fini(stackid, tcps->tcps_mibkp); 24415 tcps->tcps_mibkp = NULL; 24416 24417 ldi_ident_release(tcps->tcps_ldi_ident); 24418 kmem_free(tcps, sizeof (*tcps)); 24419 } 24420 24421 /* 24422 * Generate ISS, taking into account NDD changes may happen halfway through. 24423 * (If the iss is not zero, set it.) 24424 */ 24425 24426 static void 24427 tcp_iss_init(tcp_t *tcp) 24428 { 24429 MD5_CTX context; 24430 struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg; 24431 uint32_t answer[4]; 24432 tcp_stack_t *tcps = tcp->tcp_tcps; 24433 24434 tcps->tcps_iss_incr_extra += (ISS_INCR >> 1); 24435 tcp->tcp_iss = tcps->tcps_iss_incr_extra; 24436 switch (tcps->tcps_strong_iss) { 24437 case 2: 24438 mutex_enter(&tcps->tcps_iss_key_lock); 24439 context = tcps->tcps_iss_key; 24440 mutex_exit(&tcps->tcps_iss_key_lock); 24441 arg.ports = tcp->tcp_ports; 24442 if (tcp->tcp_ipversion == IPV4_VERSION) { 24443 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 24444 &arg.src); 24445 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_dst, 24446 &arg.dst); 24447 } else { 24448 arg.src = tcp->tcp_ip6h->ip6_src; 24449 arg.dst = tcp->tcp_ip6h->ip6_dst; 24450 } 24451 MD5Update(&context, (uchar_t *)&arg, sizeof (arg)); 24452 MD5Final((uchar_t *)answer, &context); 24453 tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3]; 24454 /* 24455 * Now that we've hashed into a unique per-connection sequence 24456 * space, add a random increment per strong_iss == 1. So I 24457 * guess we'll have to... 24458 */ 24459 /* FALLTHRU */ 24460 case 1: 24461 tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random(); 24462 break; 24463 default: 24464 tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 24465 break; 24466 } 24467 tcp->tcp_valid_bits = TCP_ISS_VALID; 24468 tcp->tcp_fss = tcp->tcp_iss - 1; 24469 tcp->tcp_suna = tcp->tcp_iss; 24470 tcp->tcp_snxt = tcp->tcp_iss + 1; 24471 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 24472 tcp->tcp_csuna = tcp->tcp_snxt; 24473 } 24474 24475 /* 24476 * Exported routine for extracting active tcp connection status. 24477 * 24478 * This is used by the Solaris Cluster Networking software to 24479 * gather a list of connections that need to be forwarded to 24480 * specific nodes in the cluster when configuration changes occur. 24481 * 24482 * The callback is invoked for each tcp_t structure from all netstacks, 24483 * if 'stack_id' is less than 0. Otherwise, only for tcp_t structures 24484 * from the netstack with the specified stack_id. Returning 24485 * non-zero from the callback routine terminates the search. 24486 */ 24487 int 24488 cl_tcp_walk_list(netstackid_t stack_id, 24489 int (*cl_callback)(cl_tcp_info_t *, void *), void *arg) 24490 { 24491 netstack_handle_t nh; 24492 netstack_t *ns; 24493 int ret = 0; 24494 24495 if (stack_id >= 0) { 24496 if ((ns = netstack_find_by_stackid(stack_id)) == NULL) 24497 return (EINVAL); 24498 24499 ret = cl_tcp_walk_list_stack(cl_callback, arg, 24500 ns->netstack_tcp); 24501 netstack_rele(ns); 24502 return (ret); 24503 } 24504 24505 netstack_next_init(&nh); 24506 while ((ns = netstack_next(&nh)) != NULL) { 24507 ret = cl_tcp_walk_list_stack(cl_callback, arg, 24508 ns->netstack_tcp); 24509 netstack_rele(ns); 24510 } 24511 netstack_next_fini(&nh); 24512 return (ret); 24513 } 24514 24515 static int 24516 cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *), void *arg, 24517 tcp_stack_t *tcps) 24518 { 24519 tcp_t *tcp; 24520 cl_tcp_info_t cl_tcpi; 24521 connf_t *connfp; 24522 conn_t *connp; 24523 int i; 24524 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 24525 24526 ASSERT(callback != NULL); 24527 24528 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 24529 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 24530 connp = NULL; 24531 24532 while ((connp = 24533 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 24534 24535 tcp = connp->conn_tcp; 24536 cl_tcpi.cl_tcpi_version = CL_TCPI_V1; 24537 cl_tcpi.cl_tcpi_ipversion = tcp->tcp_ipversion; 24538 cl_tcpi.cl_tcpi_state = tcp->tcp_state; 24539 cl_tcpi.cl_tcpi_lport = tcp->tcp_lport; 24540 cl_tcpi.cl_tcpi_fport = tcp->tcp_fport; 24541 /* 24542 * The macros tcp_laddr and tcp_faddr give the IPv4 24543 * addresses. They are copied implicitly below as 24544 * mapped addresses. 24545 */ 24546 cl_tcpi.cl_tcpi_laddr_v6 = tcp->tcp_ip_src_v6; 24547 if (tcp->tcp_ipversion == IPV4_VERSION) { 24548 cl_tcpi.cl_tcpi_faddr = 24549 tcp->tcp_ipha->ipha_dst; 24550 } else { 24551 cl_tcpi.cl_tcpi_faddr_v6 = 24552 tcp->tcp_ip6h->ip6_dst; 24553 } 24554 24555 /* 24556 * If the callback returns non-zero 24557 * we terminate the traversal. 24558 */ 24559 if ((*callback)(&cl_tcpi, arg) != 0) { 24560 CONN_DEC_REF(tcp->tcp_connp); 24561 return (1); 24562 } 24563 } 24564 } 24565 24566 return (0); 24567 } 24568 24569 /* 24570 * Macros used for accessing the different types of sockaddr 24571 * structures inside a tcp_ioc_abort_conn_t. 24572 */ 24573 #define TCP_AC_V4LADDR(acp) ((sin_t *)&(acp)->ac_local) 24574 #define TCP_AC_V4RADDR(acp) ((sin_t *)&(acp)->ac_remote) 24575 #define TCP_AC_V4LOCAL(acp) (TCP_AC_V4LADDR(acp)->sin_addr.s_addr) 24576 #define TCP_AC_V4REMOTE(acp) (TCP_AC_V4RADDR(acp)->sin_addr.s_addr) 24577 #define TCP_AC_V4LPORT(acp) (TCP_AC_V4LADDR(acp)->sin_port) 24578 #define TCP_AC_V4RPORT(acp) (TCP_AC_V4RADDR(acp)->sin_port) 24579 #define TCP_AC_V6LADDR(acp) ((sin6_t *)&(acp)->ac_local) 24580 #define TCP_AC_V6RADDR(acp) ((sin6_t *)&(acp)->ac_remote) 24581 #define TCP_AC_V6LOCAL(acp) (TCP_AC_V6LADDR(acp)->sin6_addr) 24582 #define TCP_AC_V6REMOTE(acp) (TCP_AC_V6RADDR(acp)->sin6_addr) 24583 #define TCP_AC_V6LPORT(acp) (TCP_AC_V6LADDR(acp)->sin6_port) 24584 #define TCP_AC_V6RPORT(acp) (TCP_AC_V6RADDR(acp)->sin6_port) 24585 24586 /* 24587 * Return the correct error code to mimic the behavior 24588 * of a connection reset. 24589 */ 24590 #define TCP_AC_GET_ERRCODE(state, err) { \ 24591 switch ((state)) { \ 24592 case TCPS_SYN_SENT: \ 24593 case TCPS_SYN_RCVD: \ 24594 (err) = ECONNREFUSED; \ 24595 break; \ 24596 case TCPS_ESTABLISHED: \ 24597 case TCPS_FIN_WAIT_1: \ 24598 case TCPS_FIN_WAIT_2: \ 24599 case TCPS_CLOSE_WAIT: \ 24600 (err) = ECONNRESET; \ 24601 break; \ 24602 case TCPS_CLOSING: \ 24603 case TCPS_LAST_ACK: \ 24604 case TCPS_TIME_WAIT: \ 24605 (err) = 0; \ 24606 break; \ 24607 default: \ 24608 (err) = ENXIO; \ 24609 } \ 24610 } 24611 24612 /* 24613 * Check if a tcp structure matches the info in acp. 24614 */ 24615 #define TCP_AC_ADDR_MATCH(acp, tcp) \ 24616 (((acp)->ac_local.ss_family == AF_INET) ? \ 24617 ((TCP_AC_V4LOCAL((acp)) == INADDR_ANY || \ 24618 TCP_AC_V4LOCAL((acp)) == (tcp)->tcp_ip_src) && \ 24619 (TCP_AC_V4REMOTE((acp)) == INADDR_ANY || \ 24620 TCP_AC_V4REMOTE((acp)) == (tcp)->tcp_remote) && \ 24621 (TCP_AC_V4LPORT((acp)) == 0 || \ 24622 TCP_AC_V4LPORT((acp)) == (tcp)->tcp_lport) && \ 24623 (TCP_AC_V4RPORT((acp)) == 0 || \ 24624 TCP_AC_V4RPORT((acp)) == (tcp)->tcp_fport) && \ 24625 (acp)->ac_start <= (tcp)->tcp_state && \ 24626 (acp)->ac_end >= (tcp)->tcp_state) : \ 24627 ((IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL((acp))) || \ 24628 IN6_ARE_ADDR_EQUAL(&TCP_AC_V6LOCAL((acp)), \ 24629 &(tcp)->tcp_ip_src_v6)) && \ 24630 (IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE((acp))) || \ 24631 IN6_ARE_ADDR_EQUAL(&TCP_AC_V6REMOTE((acp)), \ 24632 &(tcp)->tcp_remote_v6)) && \ 24633 (TCP_AC_V6LPORT((acp)) == 0 || \ 24634 TCP_AC_V6LPORT((acp)) == (tcp)->tcp_lport) && \ 24635 (TCP_AC_V6RPORT((acp)) == 0 || \ 24636 TCP_AC_V6RPORT((acp)) == (tcp)->tcp_fport) && \ 24637 (acp)->ac_start <= (tcp)->tcp_state && \ 24638 (acp)->ac_end >= (tcp)->tcp_state)) 24639 24640 #define TCP_AC_MATCH(acp, tcp) \ 24641 (((acp)->ac_zoneid == ALL_ZONES || \ 24642 (acp)->ac_zoneid == tcp->tcp_connp->conn_zoneid) ? \ 24643 TCP_AC_ADDR_MATCH(acp, tcp) : 0) 24644 24645 /* 24646 * Build a message containing a tcp_ioc_abort_conn_t structure 24647 * which is filled in with information from acp and tp. 24648 */ 24649 static mblk_t * 24650 tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *acp, tcp_t *tp) 24651 { 24652 mblk_t *mp; 24653 tcp_ioc_abort_conn_t *tacp; 24654 24655 mp = allocb(sizeof (uint32_t) + sizeof (*acp), BPRI_LO); 24656 if (mp == NULL) 24657 return (NULL); 24658 24659 mp->b_datap->db_type = M_CTL; 24660 24661 *((uint32_t *)mp->b_rptr) = TCP_IOC_ABORT_CONN; 24662 tacp = (tcp_ioc_abort_conn_t *)((uchar_t *)mp->b_rptr + 24663 sizeof (uint32_t)); 24664 24665 tacp->ac_start = acp->ac_start; 24666 tacp->ac_end = acp->ac_end; 24667 tacp->ac_zoneid = acp->ac_zoneid; 24668 24669 if (acp->ac_local.ss_family == AF_INET) { 24670 tacp->ac_local.ss_family = AF_INET; 24671 tacp->ac_remote.ss_family = AF_INET; 24672 TCP_AC_V4LOCAL(tacp) = tp->tcp_ip_src; 24673 TCP_AC_V4REMOTE(tacp) = tp->tcp_remote; 24674 TCP_AC_V4LPORT(tacp) = tp->tcp_lport; 24675 TCP_AC_V4RPORT(tacp) = tp->tcp_fport; 24676 } else { 24677 tacp->ac_local.ss_family = AF_INET6; 24678 tacp->ac_remote.ss_family = AF_INET6; 24679 TCP_AC_V6LOCAL(tacp) = tp->tcp_ip_src_v6; 24680 TCP_AC_V6REMOTE(tacp) = tp->tcp_remote_v6; 24681 TCP_AC_V6LPORT(tacp) = tp->tcp_lport; 24682 TCP_AC_V6RPORT(tacp) = tp->tcp_fport; 24683 } 24684 mp->b_wptr = (uchar_t *)mp->b_rptr + sizeof (uint32_t) + sizeof (*acp); 24685 return (mp); 24686 } 24687 24688 /* 24689 * Print a tcp_ioc_abort_conn_t structure. 24690 */ 24691 static void 24692 tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *acp) 24693 { 24694 char lbuf[128]; 24695 char rbuf[128]; 24696 sa_family_t af; 24697 in_port_t lport, rport; 24698 ushort_t logflags; 24699 24700 af = acp->ac_local.ss_family; 24701 24702 if (af == AF_INET) { 24703 (void) inet_ntop(af, (const void *)&TCP_AC_V4LOCAL(acp), 24704 lbuf, 128); 24705 (void) inet_ntop(af, (const void *)&TCP_AC_V4REMOTE(acp), 24706 rbuf, 128); 24707 lport = ntohs(TCP_AC_V4LPORT(acp)); 24708 rport = ntohs(TCP_AC_V4RPORT(acp)); 24709 } else { 24710 (void) inet_ntop(af, (const void *)&TCP_AC_V6LOCAL(acp), 24711 lbuf, 128); 24712 (void) inet_ntop(af, (const void *)&TCP_AC_V6REMOTE(acp), 24713 rbuf, 128); 24714 lport = ntohs(TCP_AC_V6LPORT(acp)); 24715 rport = ntohs(TCP_AC_V6RPORT(acp)); 24716 } 24717 24718 logflags = SL_TRACE | SL_NOTE; 24719 /* 24720 * Don't print this message to the console if the operation was done 24721 * to a non-global zone. 24722 */ 24723 if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) 24724 logflags |= SL_CONSOLE; 24725 (void) strlog(TCP_MOD_ID, 0, 1, logflags, 24726 "TCP_IOC_ABORT_CONN: local = %s:%d, remote = %s:%d, " 24727 "start = %d, end = %d\n", lbuf, lport, rbuf, rport, 24728 acp->ac_start, acp->ac_end); 24729 } 24730 24731 /* 24732 * Called inside tcp_rput when a message built using 24733 * tcp_ioctl_abort_build_msg is put into a queue. 24734 * Note that when we get here there is no wildcard in acp any more. 24735 */ 24736 static void 24737 tcp_ioctl_abort_handler(tcp_t *tcp, mblk_t *mp) 24738 { 24739 tcp_ioc_abort_conn_t *acp; 24740 24741 acp = (tcp_ioc_abort_conn_t *)(mp->b_rptr + sizeof (uint32_t)); 24742 if (tcp->tcp_state <= acp->ac_end) { 24743 /* 24744 * If we get here, we are already on the correct 24745 * squeue. This ioctl follows the following path 24746 * tcp_wput -> tcp_wput_ioctl -> tcp_ioctl_abort_conn 24747 * ->tcp_ioctl_abort->squeue_enter (if on a 24748 * different squeue) 24749 */ 24750 int errcode; 24751 24752 TCP_AC_GET_ERRCODE(tcp->tcp_state, errcode); 24753 (void) tcp_clean_death(tcp, errcode, 26); 24754 } 24755 freemsg(mp); 24756 } 24757 24758 /* 24759 * Abort all matching connections on a hash chain. 24760 */ 24761 static int 24762 tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *acp, int index, int *count, 24763 boolean_t exact, tcp_stack_t *tcps) 24764 { 24765 int nmatch, err = 0; 24766 tcp_t *tcp; 24767 MBLKP mp, last, listhead = NULL; 24768 conn_t *tconnp; 24769 connf_t *connfp; 24770 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 24771 24772 connfp = &ipst->ips_ipcl_conn_fanout[index]; 24773 24774 startover: 24775 nmatch = 0; 24776 24777 mutex_enter(&connfp->connf_lock); 24778 for (tconnp = connfp->connf_head; tconnp != NULL; 24779 tconnp = tconnp->conn_next) { 24780 tcp = tconnp->conn_tcp; 24781 if (TCP_AC_MATCH(acp, tcp)) { 24782 CONN_INC_REF(tcp->tcp_connp); 24783 mp = tcp_ioctl_abort_build_msg(acp, tcp); 24784 if (mp == NULL) { 24785 err = ENOMEM; 24786 CONN_DEC_REF(tcp->tcp_connp); 24787 break; 24788 } 24789 mp->b_prev = (mblk_t *)tcp; 24790 24791 if (listhead == NULL) { 24792 listhead = mp; 24793 last = mp; 24794 } else { 24795 last->b_next = mp; 24796 last = mp; 24797 } 24798 nmatch++; 24799 if (exact) 24800 break; 24801 } 24802 24803 /* Avoid holding lock for too long. */ 24804 if (nmatch >= 500) 24805 break; 24806 } 24807 mutex_exit(&connfp->connf_lock); 24808 24809 /* Pass mp into the correct tcp */ 24810 while ((mp = listhead) != NULL) { 24811 listhead = listhead->b_next; 24812 tcp = (tcp_t *)mp->b_prev; 24813 mp->b_next = mp->b_prev = NULL; 24814 SQUEUE_ENTER_ONE(tcp->tcp_connp->conn_sqp, mp, tcp_input, 24815 tcp->tcp_connp, SQ_FILL, SQTAG_TCP_ABORT_BUCKET); 24816 } 24817 24818 *count += nmatch; 24819 if (nmatch >= 500 && err == 0) 24820 goto startover; 24821 return (err); 24822 } 24823 24824 /* 24825 * Abort all connections that matches the attributes specified in acp. 24826 */ 24827 static int 24828 tcp_ioctl_abort(tcp_ioc_abort_conn_t *acp, tcp_stack_t *tcps) 24829 { 24830 sa_family_t af; 24831 uint32_t ports; 24832 uint16_t *pports; 24833 int err = 0, count = 0; 24834 boolean_t exact = B_FALSE; /* set when there is no wildcard */ 24835 int index = -1; 24836 ushort_t logflags; 24837 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 24838 24839 af = acp->ac_local.ss_family; 24840 24841 if (af == AF_INET) { 24842 if (TCP_AC_V4REMOTE(acp) != INADDR_ANY && 24843 TCP_AC_V4LPORT(acp) != 0 && TCP_AC_V4RPORT(acp) != 0) { 24844 pports = (uint16_t *)&ports; 24845 pports[1] = TCP_AC_V4LPORT(acp); 24846 pports[0] = TCP_AC_V4RPORT(acp); 24847 exact = (TCP_AC_V4LOCAL(acp) != INADDR_ANY); 24848 } 24849 } else { 24850 if (!IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE(acp)) && 24851 TCP_AC_V6LPORT(acp) != 0 && TCP_AC_V6RPORT(acp) != 0) { 24852 pports = (uint16_t *)&ports; 24853 pports[1] = TCP_AC_V6LPORT(acp); 24854 pports[0] = TCP_AC_V6RPORT(acp); 24855 exact = !IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL(acp)); 24856 } 24857 } 24858 24859 /* 24860 * For cases where remote addr, local port, and remote port are non- 24861 * wildcards, tcp_ioctl_abort_bucket will only be called once. 24862 */ 24863 if (index != -1) { 24864 err = tcp_ioctl_abort_bucket(acp, index, 24865 &count, exact, tcps); 24866 } else { 24867 /* 24868 * loop through all entries for wildcard case 24869 */ 24870 for (index = 0; 24871 index < ipst->ips_ipcl_conn_fanout_size; 24872 index++) { 24873 err = tcp_ioctl_abort_bucket(acp, index, 24874 &count, exact, tcps); 24875 if (err != 0) 24876 break; 24877 } 24878 } 24879 24880 logflags = SL_TRACE | SL_NOTE; 24881 /* 24882 * Don't print this message to the console if the operation was done 24883 * to a non-global zone. 24884 */ 24885 if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) 24886 logflags |= SL_CONSOLE; 24887 (void) strlog(TCP_MOD_ID, 0, 1, logflags, "TCP_IOC_ABORT_CONN: " 24888 "aborted %d connection%c\n", count, ((count > 1) ? 's' : ' ')); 24889 if (err == 0 && count == 0) 24890 err = ENOENT; 24891 return (err); 24892 } 24893 24894 /* 24895 * Process the TCP_IOC_ABORT_CONN ioctl request. 24896 */ 24897 static void 24898 tcp_ioctl_abort_conn(queue_t *q, mblk_t *mp) 24899 { 24900 int err; 24901 IOCP iocp; 24902 MBLKP mp1; 24903 sa_family_t laf, raf; 24904 tcp_ioc_abort_conn_t *acp; 24905 zone_t *zptr; 24906 conn_t *connp = Q_TO_CONN(q); 24907 zoneid_t zoneid = connp->conn_zoneid; 24908 tcp_t *tcp = connp->conn_tcp; 24909 tcp_stack_t *tcps = tcp->tcp_tcps; 24910 24911 iocp = (IOCP)mp->b_rptr; 24912 24913 if ((mp1 = mp->b_cont) == NULL || 24914 iocp->ioc_count != sizeof (tcp_ioc_abort_conn_t)) { 24915 err = EINVAL; 24916 goto out; 24917 } 24918 24919 /* check permissions */ 24920 if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) { 24921 err = EPERM; 24922 goto out; 24923 } 24924 24925 if (mp1->b_cont != NULL) { 24926 freemsg(mp1->b_cont); 24927 mp1->b_cont = NULL; 24928 } 24929 24930 acp = (tcp_ioc_abort_conn_t *)mp1->b_rptr; 24931 laf = acp->ac_local.ss_family; 24932 raf = acp->ac_remote.ss_family; 24933 24934 /* check that a zone with the supplied zoneid exists */ 24935 if (acp->ac_zoneid != GLOBAL_ZONEID && acp->ac_zoneid != ALL_ZONES) { 24936 zptr = zone_find_by_id(zoneid); 24937 if (zptr != NULL) { 24938 zone_rele(zptr); 24939 } else { 24940 err = EINVAL; 24941 goto out; 24942 } 24943 } 24944 24945 /* 24946 * For exclusive stacks we set the zoneid to zero 24947 * to make TCP operate as if in the global zone. 24948 */ 24949 if (tcps->tcps_netstack->netstack_stackid != GLOBAL_NETSTACKID) 24950 acp->ac_zoneid = GLOBAL_ZONEID; 24951 24952 if (acp->ac_start < TCPS_SYN_SENT || acp->ac_end > TCPS_TIME_WAIT || 24953 acp->ac_start > acp->ac_end || laf != raf || 24954 (laf != AF_INET && laf != AF_INET6)) { 24955 err = EINVAL; 24956 goto out; 24957 } 24958 24959 tcp_ioctl_abort_dump(acp); 24960 err = tcp_ioctl_abort(acp, tcps); 24961 24962 out: 24963 if (mp1 != NULL) { 24964 freemsg(mp1); 24965 mp->b_cont = NULL; 24966 } 24967 24968 if (err != 0) 24969 miocnak(q, mp, 0, err); 24970 else 24971 miocack(q, mp, 0, 0); 24972 } 24973 24974 /* 24975 * tcp_time_wait_processing() handles processing of incoming packets when 24976 * the tcp is in the TIME_WAIT state. 24977 * A TIME_WAIT tcp that has an associated open TCP stream is never put 24978 * on the time wait list. 24979 */ 24980 void 24981 tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, uint32_t seg_seq, 24982 uint32_t seg_ack, int seg_len, tcph_t *tcph) 24983 { 24984 int32_t bytes_acked; 24985 int32_t gap; 24986 int32_t rgap; 24987 tcp_opt_t tcpopt; 24988 uint_t flags; 24989 uint32_t new_swnd = 0; 24990 conn_t *connp; 24991 tcp_stack_t *tcps = tcp->tcp_tcps; 24992 24993 BUMP_LOCAL(tcp->tcp_ibsegs); 24994 DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp); 24995 24996 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 24997 new_swnd = BE16_TO_U16(tcph->th_win) << 24998 ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws); 24999 if (tcp->tcp_snd_ts_ok) { 25000 if (!tcp_paws_check(tcp, tcph, &tcpopt)) { 25001 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 25002 tcp->tcp_rnxt, TH_ACK); 25003 goto done; 25004 } 25005 } 25006 gap = seg_seq - tcp->tcp_rnxt; 25007 rgap = tcp->tcp_rwnd - (gap + seg_len); 25008 if (gap < 0) { 25009 BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); 25010 UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, 25011 (seg_len > -gap ? -gap : seg_len)); 25012 seg_len += gap; 25013 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 25014 if (flags & TH_RST) { 25015 goto done; 25016 } 25017 if ((flags & TH_FIN) && seg_len == -1) { 25018 /* 25019 * When TCP receives a duplicate FIN in 25020 * TIME_WAIT state, restart the 2 MSL timer. 25021 * See page 73 in RFC 793. Make sure this TCP 25022 * is already on the TIME_WAIT list. If not, 25023 * just restart the timer. 25024 */ 25025 if (TCP_IS_DETACHED(tcp)) { 25026 if (tcp_time_wait_remove(tcp, NULL) == 25027 B_TRUE) { 25028 tcp_time_wait_append(tcp); 25029 TCP_DBGSTAT(tcps, 25030 tcp_rput_time_wait); 25031 } 25032 } else { 25033 ASSERT(tcp != NULL); 25034 TCP_TIMER_RESTART(tcp, 25035 tcps->tcps_time_wait_interval); 25036 } 25037 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 25038 tcp->tcp_rnxt, TH_ACK); 25039 goto done; 25040 } 25041 flags |= TH_ACK_NEEDED; 25042 seg_len = 0; 25043 goto process_ack; 25044 } 25045 25046 /* Fix seg_seq, and chew the gap off the front. */ 25047 seg_seq = tcp->tcp_rnxt; 25048 } 25049 25050 if ((flags & TH_SYN) && gap > 0 && rgap < 0) { 25051 /* 25052 * Make sure that when we accept the connection, pick 25053 * an ISS greater than (tcp_snxt + ISS_INCR/2) for the 25054 * old connection. 25055 * 25056 * The next ISS generated is equal to tcp_iss_incr_extra 25057 * + ISS_INCR/2 + other components depending on the 25058 * value of tcp_strong_iss. We pre-calculate the new 25059 * ISS here and compare with tcp_snxt to determine if 25060 * we need to make adjustment to tcp_iss_incr_extra. 25061 * 25062 * The above calculation is ugly and is a 25063 * waste of CPU cycles... 25064 */ 25065 uint32_t new_iss = tcps->tcps_iss_incr_extra; 25066 int32_t adj; 25067 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 25068 25069 switch (tcps->tcps_strong_iss) { 25070 case 2: { 25071 /* Add time and MD5 components. */ 25072 uint32_t answer[4]; 25073 struct { 25074 uint32_t ports; 25075 in6_addr_t src; 25076 in6_addr_t dst; 25077 } arg; 25078 MD5_CTX context; 25079 25080 mutex_enter(&tcps->tcps_iss_key_lock); 25081 context = tcps->tcps_iss_key; 25082 mutex_exit(&tcps->tcps_iss_key_lock); 25083 arg.ports = tcp->tcp_ports; 25084 /* We use MAPPED addresses in tcp_iss_init */ 25085 arg.src = tcp->tcp_ip_src_v6; 25086 if (tcp->tcp_ipversion == IPV4_VERSION) { 25087 IN6_IPADDR_TO_V4MAPPED( 25088 tcp->tcp_ipha->ipha_dst, 25089 &arg.dst); 25090 } else { 25091 arg.dst = 25092 tcp->tcp_ip6h->ip6_dst; 25093 } 25094 MD5Update(&context, (uchar_t *)&arg, 25095 sizeof (arg)); 25096 MD5Final((uchar_t *)answer, &context); 25097 answer[0] ^= answer[1] ^ answer[2] ^ answer[3]; 25098 new_iss += (gethrtime() >> ISS_NSEC_SHT) + answer[0]; 25099 break; 25100 } 25101 case 1: 25102 /* Add time component and min random (i.e. 1). */ 25103 new_iss += (gethrtime() >> ISS_NSEC_SHT) + 1; 25104 break; 25105 default: 25106 /* Add only time component. */ 25107 new_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 25108 break; 25109 } 25110 if ((adj = (int32_t)(tcp->tcp_snxt - new_iss)) > 0) { 25111 /* 25112 * New ISS not guaranteed to be ISS_INCR/2 25113 * ahead of the current tcp_snxt, so add the 25114 * difference to tcp_iss_incr_extra. 25115 */ 25116 tcps->tcps_iss_incr_extra += adj; 25117 } 25118 /* 25119 * If tcp_clean_death() can not perform the task now, 25120 * drop the SYN packet and let the other side re-xmit. 25121 * Otherwise pass the SYN packet back in, since the 25122 * old tcp state has been cleaned up or freed. 25123 */ 25124 if (tcp_clean_death(tcp, 0, 27) == -1) 25125 goto done; 25126 /* 25127 * We will come back to tcp_rput_data 25128 * on the global queue. Packets destined 25129 * for the global queue will be checked 25130 * with global policy. But the policy for 25131 * this packet has already been checked as 25132 * this was destined for the detached 25133 * connection. We need to bypass policy 25134 * check this time by attaching a dummy 25135 * ipsec_in with ipsec_in_dont_check set. 25136 */ 25137 connp = ipcl_classify(mp, tcp->tcp_connp->conn_zoneid, ipst); 25138 if (connp != NULL) { 25139 TCP_STAT(tcps, tcp_time_wait_syn_success); 25140 tcp_reinput(connp, mp, tcp->tcp_connp->conn_sqp); 25141 return; 25142 } 25143 goto done; 25144 } 25145 25146 /* 25147 * rgap is the amount of stuff received out of window. A negative 25148 * value is the amount out of window. 25149 */ 25150 if (rgap < 0) { 25151 BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs); 25152 UPDATE_MIB(&tcps->tcps_mib, tcpInDataPastWinBytes, -rgap); 25153 /* Fix seg_len and make sure there is something left. */ 25154 seg_len += rgap; 25155 if (seg_len <= 0) { 25156 if (flags & TH_RST) { 25157 goto done; 25158 } 25159 flags |= TH_ACK_NEEDED; 25160 seg_len = 0; 25161 goto process_ack; 25162 } 25163 } 25164 /* 25165 * Check whether we can update tcp_ts_recent. This test is 25166 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 25167 * Extensions for High Performance: An Update", Internet Draft. 25168 */ 25169 if (tcp->tcp_snd_ts_ok && 25170 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 25171 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 25172 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 25173 tcp->tcp_last_rcv_lbolt = lbolt64; 25174 } 25175 25176 if (seg_seq != tcp->tcp_rnxt && seg_len > 0) { 25177 /* Always ack out of order packets */ 25178 flags |= TH_ACK_NEEDED; 25179 seg_len = 0; 25180 } else if (seg_len > 0) { 25181 BUMP_MIB(&tcps->tcps_mib, tcpInClosed); 25182 BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs); 25183 UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len); 25184 } 25185 if (flags & TH_RST) { 25186 (void) tcp_clean_death(tcp, 0, 28); 25187 goto done; 25188 } 25189 if (flags & TH_SYN) { 25190 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 25191 TH_RST|TH_ACK); 25192 /* 25193 * Do not delete the TCP structure if it is in 25194 * TIME_WAIT state. Refer to RFC 1122, 4.2.2.13. 25195 */ 25196 goto done; 25197 } 25198 process_ack: 25199 if (flags & TH_ACK) { 25200 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 25201 if (bytes_acked <= 0) { 25202 if (bytes_acked == 0 && seg_len == 0 && 25203 new_swnd == tcp->tcp_swnd) 25204 BUMP_MIB(&tcps->tcps_mib, tcpInDupAck); 25205 } else { 25206 /* Acks something not sent */ 25207 flags |= TH_ACK_NEEDED; 25208 } 25209 } 25210 if (flags & TH_ACK_NEEDED) { 25211 /* 25212 * Time to send an ack for some reason. 25213 */ 25214 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 25215 tcp->tcp_rnxt, TH_ACK); 25216 } 25217 done: 25218 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 25219 DB_CKSUMSTART(mp) = 0; 25220 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 25221 TCP_STAT(tcps, tcp_time_wait_syn_fail); 25222 } 25223 freemsg(mp); 25224 } 25225 25226 /* 25227 * TCP Timers Implementation. 25228 */ 25229 timeout_id_t 25230 tcp_timeout(conn_t *connp, void (*f)(void *), clock_t tim) 25231 { 25232 mblk_t *mp; 25233 tcp_timer_t *tcpt; 25234 tcp_t *tcp = connp->conn_tcp; 25235 25236 ASSERT(connp->conn_sqp != NULL); 25237 25238 TCP_DBGSTAT(tcp->tcp_tcps, tcp_timeout_calls); 25239 25240 if (tcp->tcp_timercache == NULL) { 25241 mp = tcp_timermp_alloc(KM_NOSLEEP | KM_PANIC); 25242 } else { 25243 TCP_DBGSTAT(tcp->tcp_tcps, tcp_timeout_cached_alloc); 25244 mp = tcp->tcp_timercache; 25245 tcp->tcp_timercache = mp->b_next; 25246 mp->b_next = NULL; 25247 ASSERT(mp->b_wptr == NULL); 25248 } 25249 25250 CONN_INC_REF(connp); 25251 tcpt = (tcp_timer_t *)mp->b_rptr; 25252 tcpt->connp = connp; 25253 tcpt->tcpt_proc = f; 25254 /* 25255 * TCP timers are normal timeouts. Plus, they do not require more than 25256 * a 10 millisecond resolution. By choosing a coarser resolution and by 25257 * rounding up the expiration to the next resolution boundary, we can 25258 * batch timers in the callout subsystem to make TCP timers more 25259 * efficient. The roundup also protects short timers from expiring too 25260 * early before they have a chance to be cancelled. 25261 */ 25262 tcpt->tcpt_tid = timeout_generic(CALLOUT_NORMAL, tcp_timer_callback, mp, 25263 TICK_TO_NSEC(tim), CALLOUT_TCP_RESOLUTION, CALLOUT_FLAG_ROUNDUP); 25264 25265 return ((timeout_id_t)mp); 25266 } 25267 25268 static void 25269 tcp_timer_callback(void *arg) 25270 { 25271 mblk_t *mp = (mblk_t *)arg; 25272 tcp_timer_t *tcpt; 25273 conn_t *connp; 25274 25275 tcpt = (tcp_timer_t *)mp->b_rptr; 25276 connp = tcpt->connp; 25277 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_timer_handler, connp, 25278 SQ_FILL, SQTAG_TCP_TIMER); 25279 } 25280 25281 static void 25282 tcp_timer_handler(void *arg, mblk_t *mp, void *arg2) 25283 { 25284 tcp_timer_t *tcpt; 25285 conn_t *connp = (conn_t *)arg; 25286 tcp_t *tcp = connp->conn_tcp; 25287 25288 tcpt = (tcp_timer_t *)mp->b_rptr; 25289 ASSERT(connp == tcpt->connp); 25290 ASSERT((squeue_t *)arg2 == connp->conn_sqp); 25291 25292 /* 25293 * If the TCP has reached the closed state, don't proceed any 25294 * further. This TCP logically does not exist on the system. 25295 * tcpt_proc could for example access queues, that have already 25296 * been qprocoff'ed off. Also see comments at the start of tcp_input 25297 */ 25298 if (tcp->tcp_state != TCPS_CLOSED) { 25299 (*tcpt->tcpt_proc)(connp); 25300 } else { 25301 tcp->tcp_timer_tid = 0; 25302 } 25303 tcp_timer_free(connp->conn_tcp, mp); 25304 } 25305 25306 /* 25307 * There is potential race with untimeout and the handler firing at the same 25308 * time. The mblock may be freed by the handler while we are trying to use 25309 * it. But since both should execute on the same squeue, this race should not 25310 * occur. 25311 */ 25312 clock_t 25313 tcp_timeout_cancel(conn_t *connp, timeout_id_t id) 25314 { 25315 mblk_t *mp = (mblk_t *)id; 25316 tcp_timer_t *tcpt; 25317 clock_t delta; 25318 25319 TCP_DBGSTAT(connp->conn_tcp->tcp_tcps, tcp_timeout_cancel_reqs); 25320 25321 if (mp == NULL) 25322 return (-1); 25323 25324 tcpt = (tcp_timer_t *)mp->b_rptr; 25325 ASSERT(tcpt->connp == connp); 25326 25327 delta = untimeout_default(tcpt->tcpt_tid, 0); 25328 25329 if (delta >= 0) { 25330 TCP_DBGSTAT(connp->conn_tcp->tcp_tcps, tcp_timeout_canceled); 25331 tcp_timer_free(connp->conn_tcp, mp); 25332 CONN_DEC_REF(connp); 25333 } 25334 25335 return (delta); 25336 } 25337 25338 /* 25339 * Allocate space for the timer event. The allocation looks like mblk, but it is 25340 * not a proper mblk. To avoid confusion we set b_wptr to NULL. 25341 * 25342 * Dealing with failures: If we can't allocate from the timer cache we try 25343 * allocating from dblock caches using allocb_tryhard(). In this case b_wptr 25344 * points to b_rptr. 25345 * If we can't allocate anything using allocb_tryhard(), we perform a last 25346 * attempt and use kmem_alloc_tryhard(). In this case we set b_wptr to -1 and 25347 * save the actual allocation size in b_datap. 25348 */ 25349 mblk_t * 25350 tcp_timermp_alloc(int kmflags) 25351 { 25352 mblk_t *mp = (mblk_t *)kmem_cache_alloc(tcp_timercache, 25353 kmflags & ~KM_PANIC); 25354 25355 if (mp != NULL) { 25356 mp->b_next = mp->b_prev = NULL; 25357 mp->b_rptr = (uchar_t *)(&mp[1]); 25358 mp->b_wptr = NULL; 25359 mp->b_datap = NULL; 25360 mp->b_queue = NULL; 25361 mp->b_cont = NULL; 25362 } else if (kmflags & KM_PANIC) { 25363 /* 25364 * Failed to allocate memory for the timer. Try allocating from 25365 * dblock caches. 25366 */ 25367 /* ipclassifier calls this from a constructor - hence no tcps */ 25368 TCP_G_STAT(tcp_timermp_allocfail); 25369 mp = allocb_tryhard(sizeof (tcp_timer_t)); 25370 if (mp == NULL) { 25371 size_t size = 0; 25372 /* 25373 * Memory is really low. Try tryhard allocation. 25374 * 25375 * ipclassifier calls this from a constructor - 25376 * hence no tcps 25377 */ 25378 TCP_G_STAT(tcp_timermp_allocdblfail); 25379 mp = kmem_alloc_tryhard(sizeof (mblk_t) + 25380 sizeof (tcp_timer_t), &size, kmflags); 25381 mp->b_rptr = (uchar_t *)(&mp[1]); 25382 mp->b_next = mp->b_prev = NULL; 25383 mp->b_wptr = (uchar_t *)-1; 25384 mp->b_datap = (dblk_t *)size; 25385 mp->b_queue = NULL; 25386 mp->b_cont = NULL; 25387 } 25388 ASSERT(mp->b_wptr != NULL); 25389 } 25390 /* ipclassifier calls this from a constructor - hence no tcps */ 25391 TCP_G_DBGSTAT(tcp_timermp_alloced); 25392 25393 return (mp); 25394 } 25395 25396 /* 25397 * Free per-tcp timer cache. 25398 * It can only contain entries from tcp_timercache. 25399 */ 25400 void 25401 tcp_timermp_free(tcp_t *tcp) 25402 { 25403 mblk_t *mp; 25404 25405 while ((mp = tcp->tcp_timercache) != NULL) { 25406 ASSERT(mp->b_wptr == NULL); 25407 tcp->tcp_timercache = tcp->tcp_timercache->b_next; 25408 kmem_cache_free(tcp_timercache, mp); 25409 } 25410 } 25411 25412 /* 25413 * Free timer event. Put it on the per-tcp timer cache if there is not too many 25414 * events there already (currently at most two events are cached). 25415 * If the event is not allocated from the timer cache, free it right away. 25416 */ 25417 static void 25418 tcp_timer_free(tcp_t *tcp, mblk_t *mp) 25419 { 25420 mblk_t *mp1 = tcp->tcp_timercache; 25421 25422 if (mp->b_wptr != NULL) { 25423 /* 25424 * This allocation is not from a timer cache, free it right 25425 * away. 25426 */ 25427 if (mp->b_wptr != (uchar_t *)-1) 25428 freeb(mp); 25429 else 25430 kmem_free(mp, (size_t)mp->b_datap); 25431 } else if (mp1 == NULL || mp1->b_next == NULL) { 25432 /* Cache this timer block for future allocations */ 25433 mp->b_rptr = (uchar_t *)(&mp[1]); 25434 mp->b_next = mp1; 25435 tcp->tcp_timercache = mp; 25436 } else { 25437 kmem_cache_free(tcp_timercache, mp); 25438 TCP_DBGSTAT(tcp->tcp_tcps, tcp_timermp_freed); 25439 } 25440 } 25441 25442 /* 25443 * End of TCP Timers implementation. 25444 */ 25445 25446 /* 25447 * tcp_{set,clr}qfull() functions are used to either set or clear QFULL 25448 * on the specified backing STREAMS q. Note, the caller may make the 25449 * decision to call based on the tcp_t.tcp_flow_stopped value which 25450 * when check outside the q's lock is only an advisory check ... 25451 */ 25452 void 25453 tcp_setqfull(tcp_t *tcp) 25454 { 25455 tcp_stack_t *tcps = tcp->tcp_tcps; 25456 conn_t *connp = tcp->tcp_connp; 25457 25458 if (tcp->tcp_closed) 25459 return; 25460 25461 if (IPCL_IS_NONSTR(connp)) { 25462 (*connp->conn_upcalls->su_txq_full) 25463 (tcp->tcp_connp->conn_upper_handle, B_TRUE); 25464 tcp->tcp_flow_stopped = B_TRUE; 25465 } else { 25466 queue_t *q = tcp->tcp_wq; 25467 25468 if (!(q->q_flag & QFULL)) { 25469 mutex_enter(QLOCK(q)); 25470 if (!(q->q_flag & QFULL)) { 25471 /* still need to set QFULL */ 25472 q->q_flag |= QFULL; 25473 tcp->tcp_flow_stopped = B_TRUE; 25474 mutex_exit(QLOCK(q)); 25475 TCP_STAT(tcps, tcp_flwctl_on); 25476 } else { 25477 mutex_exit(QLOCK(q)); 25478 } 25479 } 25480 } 25481 } 25482 25483 void 25484 tcp_clrqfull(tcp_t *tcp) 25485 { 25486 conn_t *connp = tcp->tcp_connp; 25487 25488 if (tcp->tcp_closed) 25489 return; 25490 25491 if (IPCL_IS_NONSTR(connp)) { 25492 (*connp->conn_upcalls->su_txq_full) 25493 (tcp->tcp_connp->conn_upper_handle, B_FALSE); 25494 tcp->tcp_flow_stopped = B_FALSE; 25495 } else { 25496 queue_t *q = tcp->tcp_wq; 25497 25498 if (q->q_flag & QFULL) { 25499 mutex_enter(QLOCK(q)); 25500 if (q->q_flag & QFULL) { 25501 q->q_flag &= ~QFULL; 25502 tcp->tcp_flow_stopped = B_FALSE; 25503 mutex_exit(QLOCK(q)); 25504 if (q->q_flag & QWANTW) 25505 qbackenable(q, 0); 25506 } else { 25507 mutex_exit(QLOCK(q)); 25508 } 25509 } 25510 } 25511 } 25512 25513 /* 25514 * kstats related to squeues i.e. not per IP instance 25515 */ 25516 static void * 25517 tcp_g_kstat_init(tcp_g_stat_t *tcp_g_statp) 25518 { 25519 kstat_t *ksp; 25520 25521 tcp_g_stat_t template = { 25522 { "tcp_timermp_alloced", KSTAT_DATA_UINT64 }, 25523 { "tcp_timermp_allocfail", KSTAT_DATA_UINT64 }, 25524 { "tcp_timermp_allocdblfail", KSTAT_DATA_UINT64 }, 25525 { "tcp_freelist_cleanup", KSTAT_DATA_UINT64 }, 25526 }; 25527 25528 ksp = kstat_create(TCP_MOD_NAME, 0, "tcpstat_g", "net", 25529 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 25530 KSTAT_FLAG_VIRTUAL); 25531 25532 if (ksp == NULL) 25533 return (NULL); 25534 25535 bcopy(&template, tcp_g_statp, sizeof (template)); 25536 ksp->ks_data = (void *)tcp_g_statp; 25537 25538 kstat_install(ksp); 25539 return (ksp); 25540 } 25541 25542 static void 25543 tcp_g_kstat_fini(kstat_t *ksp) 25544 { 25545 if (ksp != NULL) { 25546 kstat_delete(ksp); 25547 } 25548 } 25549 25550 25551 static void * 25552 tcp_kstat2_init(netstackid_t stackid, tcp_stat_t *tcps_statisticsp) 25553 { 25554 kstat_t *ksp; 25555 25556 tcp_stat_t template = { 25557 { "tcp_time_wait", KSTAT_DATA_UINT64 }, 25558 { "tcp_time_wait_syn", KSTAT_DATA_UINT64 }, 25559 { "tcp_time_wait_success", KSTAT_DATA_UINT64 }, 25560 { "tcp_time_wait_fail", KSTAT_DATA_UINT64 }, 25561 { "tcp_reinput_syn", KSTAT_DATA_UINT64 }, 25562 { "tcp_ip_output", KSTAT_DATA_UINT64 }, 25563 { "tcp_detach_non_time_wait", KSTAT_DATA_UINT64 }, 25564 { "tcp_detach_time_wait", KSTAT_DATA_UINT64 }, 25565 { "tcp_time_wait_reap", KSTAT_DATA_UINT64 }, 25566 { "tcp_clean_death_nondetached", KSTAT_DATA_UINT64 }, 25567 { "tcp_reinit_calls", KSTAT_DATA_UINT64 }, 25568 { "tcp_eager_err1", KSTAT_DATA_UINT64 }, 25569 { "tcp_eager_err2", KSTAT_DATA_UINT64 }, 25570 { "tcp_eager_blowoff_calls", KSTAT_DATA_UINT64 }, 25571 { "tcp_eager_blowoff_q", KSTAT_DATA_UINT64 }, 25572 { "tcp_eager_blowoff_q0", KSTAT_DATA_UINT64 }, 25573 { "tcp_not_hard_bound", KSTAT_DATA_UINT64 }, 25574 { "tcp_no_listener", KSTAT_DATA_UINT64 }, 25575 { "tcp_found_eager", KSTAT_DATA_UINT64 }, 25576 { "tcp_wrong_queue", KSTAT_DATA_UINT64 }, 25577 { "tcp_found_eager_binding1", KSTAT_DATA_UINT64 }, 25578 { "tcp_found_eager_bound1", KSTAT_DATA_UINT64 }, 25579 { "tcp_eager_has_listener1", KSTAT_DATA_UINT64 }, 25580 { "tcp_open_alloc", KSTAT_DATA_UINT64 }, 25581 { "tcp_open_detached_alloc", KSTAT_DATA_UINT64 }, 25582 { "tcp_rput_time_wait", KSTAT_DATA_UINT64 }, 25583 { "tcp_listendrop", KSTAT_DATA_UINT64 }, 25584 { "tcp_listendropq0", KSTAT_DATA_UINT64 }, 25585 { "tcp_wrong_rq", KSTAT_DATA_UINT64 }, 25586 { "tcp_rsrv_calls", KSTAT_DATA_UINT64 }, 25587 { "tcp_eagerfree2", KSTAT_DATA_UINT64 }, 25588 { "tcp_eagerfree3", KSTAT_DATA_UINT64 }, 25589 { "tcp_eagerfree4", KSTAT_DATA_UINT64 }, 25590 { "tcp_eagerfree5", KSTAT_DATA_UINT64 }, 25591 { "tcp_timewait_syn_fail", KSTAT_DATA_UINT64 }, 25592 { "tcp_listen_badflags", KSTAT_DATA_UINT64 }, 25593 { "tcp_timeout_calls", KSTAT_DATA_UINT64 }, 25594 { "tcp_timeout_cached_alloc", KSTAT_DATA_UINT64 }, 25595 { "tcp_timeout_cancel_reqs", KSTAT_DATA_UINT64 }, 25596 { "tcp_timeout_canceled", KSTAT_DATA_UINT64 }, 25597 { "tcp_timermp_freed", KSTAT_DATA_UINT64 }, 25598 { "tcp_push_timer_cnt", KSTAT_DATA_UINT64 }, 25599 { "tcp_ack_timer_cnt", KSTAT_DATA_UINT64 }, 25600 { "tcp_ire_null1", KSTAT_DATA_UINT64 }, 25601 { "tcp_ire_null", KSTAT_DATA_UINT64 }, 25602 { "tcp_ip_send", KSTAT_DATA_UINT64 }, 25603 { "tcp_ip_ire_send", KSTAT_DATA_UINT64 }, 25604 { "tcp_wsrv_called", KSTAT_DATA_UINT64 }, 25605 { "tcp_flwctl_on", KSTAT_DATA_UINT64 }, 25606 { "tcp_timer_fire_early", KSTAT_DATA_UINT64 }, 25607 { "tcp_timer_fire_miss", KSTAT_DATA_UINT64 }, 25608 { "tcp_rput_v6_error", KSTAT_DATA_UINT64 }, 25609 { "tcp_out_sw_cksum", KSTAT_DATA_UINT64 }, 25610 { "tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 25611 { "tcp_zcopy_on", KSTAT_DATA_UINT64 }, 25612 { "tcp_zcopy_off", KSTAT_DATA_UINT64 }, 25613 { "tcp_zcopy_backoff", KSTAT_DATA_UINT64 }, 25614 { "tcp_zcopy_disable", KSTAT_DATA_UINT64 }, 25615 { "tcp_mdt_pkt_out", KSTAT_DATA_UINT64 }, 25616 { "tcp_mdt_pkt_out_v4", KSTAT_DATA_UINT64 }, 25617 { "tcp_mdt_pkt_out_v6", KSTAT_DATA_UINT64 }, 25618 { "tcp_mdt_discarded", KSTAT_DATA_UINT64 }, 25619 { "tcp_mdt_conn_halted1", KSTAT_DATA_UINT64 }, 25620 { "tcp_mdt_conn_halted2", KSTAT_DATA_UINT64 }, 25621 { "tcp_mdt_conn_halted3", KSTAT_DATA_UINT64 }, 25622 { "tcp_mdt_conn_resumed1", KSTAT_DATA_UINT64 }, 25623 { "tcp_mdt_conn_resumed2", KSTAT_DATA_UINT64 }, 25624 { "tcp_mdt_legacy_small", KSTAT_DATA_UINT64 }, 25625 { "tcp_mdt_legacy_all", KSTAT_DATA_UINT64 }, 25626 { "tcp_mdt_legacy_ret", KSTAT_DATA_UINT64 }, 25627 { "tcp_mdt_allocfail", KSTAT_DATA_UINT64 }, 25628 { "tcp_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 25629 { "tcp_mdt_allocd", KSTAT_DATA_UINT64 }, 25630 { "tcp_mdt_linked", KSTAT_DATA_UINT64 }, 25631 { "tcp_fusion_flowctl", KSTAT_DATA_UINT64 }, 25632 { "tcp_fusion_backenabled", KSTAT_DATA_UINT64 }, 25633 { "tcp_fusion_urg", KSTAT_DATA_UINT64 }, 25634 { "tcp_fusion_putnext", KSTAT_DATA_UINT64 }, 25635 { "tcp_fusion_unfusable", KSTAT_DATA_UINT64 }, 25636 { "tcp_fusion_aborted", KSTAT_DATA_UINT64 }, 25637 { "tcp_fusion_unqualified", KSTAT_DATA_UINT64 }, 25638 { "tcp_fusion_rrw_busy", KSTAT_DATA_UINT64 }, 25639 { "tcp_fusion_rrw_msgcnt", KSTAT_DATA_UINT64 }, 25640 { "tcp_fusion_rrw_plugged", KSTAT_DATA_UINT64 }, 25641 { "tcp_in_ack_unsent_drop", KSTAT_DATA_UINT64 }, 25642 { "tcp_sock_fallback", KSTAT_DATA_UINT64 }, 25643 { "tcp_lso_enabled", KSTAT_DATA_UINT64 }, 25644 { "tcp_lso_disabled", KSTAT_DATA_UINT64 }, 25645 { "tcp_lso_times", KSTAT_DATA_UINT64 }, 25646 { "tcp_lso_pkt_out", KSTAT_DATA_UINT64 }, 25647 }; 25648 25649 ksp = kstat_create_netstack(TCP_MOD_NAME, 0, "tcpstat", "net", 25650 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 25651 KSTAT_FLAG_VIRTUAL, stackid); 25652 25653 if (ksp == NULL) 25654 return (NULL); 25655 25656 bcopy(&template, tcps_statisticsp, sizeof (template)); 25657 ksp->ks_data = (void *)tcps_statisticsp; 25658 ksp->ks_private = (void *)(uintptr_t)stackid; 25659 25660 kstat_install(ksp); 25661 return (ksp); 25662 } 25663 25664 static void 25665 tcp_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 25666 { 25667 if (ksp != NULL) { 25668 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 25669 kstat_delete_netstack(ksp, stackid); 25670 } 25671 } 25672 25673 /* 25674 * TCP Kstats implementation 25675 */ 25676 static void * 25677 tcp_kstat_init(netstackid_t stackid, tcp_stack_t *tcps) 25678 { 25679 kstat_t *ksp; 25680 25681 tcp_named_kstat_t template = { 25682 { "rtoAlgorithm", KSTAT_DATA_INT32, 0 }, 25683 { "rtoMin", KSTAT_DATA_INT32, 0 }, 25684 { "rtoMax", KSTAT_DATA_INT32, 0 }, 25685 { "maxConn", KSTAT_DATA_INT32, 0 }, 25686 { "activeOpens", KSTAT_DATA_UINT32, 0 }, 25687 { "passiveOpens", KSTAT_DATA_UINT32, 0 }, 25688 { "attemptFails", KSTAT_DATA_UINT32, 0 }, 25689 { "estabResets", KSTAT_DATA_UINT32, 0 }, 25690 { "currEstab", KSTAT_DATA_UINT32, 0 }, 25691 { "inSegs", KSTAT_DATA_UINT64, 0 }, 25692 { "outSegs", KSTAT_DATA_UINT64, 0 }, 25693 { "retransSegs", KSTAT_DATA_UINT32, 0 }, 25694 { "connTableSize", KSTAT_DATA_INT32, 0 }, 25695 { "outRsts", KSTAT_DATA_UINT32, 0 }, 25696 { "outDataSegs", KSTAT_DATA_UINT32, 0 }, 25697 { "outDataBytes", KSTAT_DATA_UINT32, 0 }, 25698 { "retransBytes", KSTAT_DATA_UINT32, 0 }, 25699 { "outAck", KSTAT_DATA_UINT32, 0 }, 25700 { "outAckDelayed", KSTAT_DATA_UINT32, 0 }, 25701 { "outUrg", KSTAT_DATA_UINT32, 0 }, 25702 { "outWinUpdate", KSTAT_DATA_UINT32, 0 }, 25703 { "outWinProbe", KSTAT_DATA_UINT32, 0 }, 25704 { "outControl", KSTAT_DATA_UINT32, 0 }, 25705 { "outFastRetrans", KSTAT_DATA_UINT32, 0 }, 25706 { "inAckSegs", KSTAT_DATA_UINT32, 0 }, 25707 { "inAckBytes", KSTAT_DATA_UINT32, 0 }, 25708 { "inDupAck", KSTAT_DATA_UINT32, 0 }, 25709 { "inAckUnsent", KSTAT_DATA_UINT32, 0 }, 25710 { "inDataInorderSegs", KSTAT_DATA_UINT32, 0 }, 25711 { "inDataInorderBytes", KSTAT_DATA_UINT32, 0 }, 25712 { "inDataUnorderSegs", KSTAT_DATA_UINT32, 0 }, 25713 { "inDataUnorderBytes", KSTAT_DATA_UINT32, 0 }, 25714 { "inDataDupSegs", KSTAT_DATA_UINT32, 0 }, 25715 { "inDataDupBytes", KSTAT_DATA_UINT32, 0 }, 25716 { "inDataPartDupSegs", KSTAT_DATA_UINT32, 0 }, 25717 { "inDataPartDupBytes", KSTAT_DATA_UINT32, 0 }, 25718 { "inDataPastWinSegs", KSTAT_DATA_UINT32, 0 }, 25719 { "inDataPastWinBytes", KSTAT_DATA_UINT32, 0 }, 25720 { "inWinProbe", KSTAT_DATA_UINT32, 0 }, 25721 { "inWinUpdate", KSTAT_DATA_UINT32, 0 }, 25722 { "inClosed", KSTAT_DATA_UINT32, 0 }, 25723 { "rttUpdate", KSTAT_DATA_UINT32, 0 }, 25724 { "rttNoUpdate", KSTAT_DATA_UINT32, 0 }, 25725 { "timRetrans", KSTAT_DATA_UINT32, 0 }, 25726 { "timRetransDrop", KSTAT_DATA_UINT32, 0 }, 25727 { "timKeepalive", KSTAT_DATA_UINT32, 0 }, 25728 { "timKeepaliveProbe", KSTAT_DATA_UINT32, 0 }, 25729 { "timKeepaliveDrop", KSTAT_DATA_UINT32, 0 }, 25730 { "listenDrop", KSTAT_DATA_UINT32, 0 }, 25731 { "listenDropQ0", KSTAT_DATA_UINT32, 0 }, 25732 { "halfOpenDrop", KSTAT_DATA_UINT32, 0 }, 25733 { "outSackRetransSegs", KSTAT_DATA_UINT32, 0 }, 25734 { "connTableSize6", KSTAT_DATA_INT32, 0 } 25735 }; 25736 25737 ksp = kstat_create_netstack(TCP_MOD_NAME, 0, TCP_MOD_NAME, "mib2", 25738 KSTAT_TYPE_NAMED, NUM_OF_FIELDS(tcp_named_kstat_t), 0, stackid); 25739 25740 if (ksp == NULL) 25741 return (NULL); 25742 25743 template.rtoAlgorithm.value.ui32 = 4; 25744 template.rtoMin.value.ui32 = tcps->tcps_rexmit_interval_min; 25745 template.rtoMax.value.ui32 = tcps->tcps_rexmit_interval_max; 25746 template.maxConn.value.i32 = -1; 25747 25748 bcopy(&template, ksp->ks_data, sizeof (template)); 25749 ksp->ks_update = tcp_kstat_update; 25750 ksp->ks_private = (void *)(uintptr_t)stackid; 25751 25752 kstat_install(ksp); 25753 return (ksp); 25754 } 25755 25756 static void 25757 tcp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 25758 { 25759 if (ksp != NULL) { 25760 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 25761 kstat_delete_netstack(ksp, stackid); 25762 } 25763 } 25764 25765 static int 25766 tcp_kstat_update(kstat_t *kp, int rw) 25767 { 25768 tcp_named_kstat_t *tcpkp; 25769 tcp_t *tcp; 25770 connf_t *connfp; 25771 conn_t *connp; 25772 int i; 25773 netstackid_t stackid = (netstackid_t)(uintptr_t)kp->ks_private; 25774 netstack_t *ns; 25775 tcp_stack_t *tcps; 25776 ip_stack_t *ipst; 25777 25778 if ((kp == NULL) || (kp->ks_data == NULL)) 25779 return (EIO); 25780 25781 if (rw == KSTAT_WRITE) 25782 return (EACCES); 25783 25784 ns = netstack_find_by_stackid(stackid); 25785 if (ns == NULL) 25786 return (-1); 25787 tcps = ns->netstack_tcp; 25788 if (tcps == NULL) { 25789 netstack_rele(ns); 25790 return (-1); 25791 } 25792 25793 tcpkp = (tcp_named_kstat_t *)kp->ks_data; 25794 25795 tcpkp->currEstab.value.ui32 = 0; 25796 25797 ipst = ns->netstack_ip; 25798 25799 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 25800 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 25801 connp = NULL; 25802 while ((connp = 25803 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 25804 tcp = connp->conn_tcp; 25805 switch (tcp_snmp_state(tcp)) { 25806 case MIB2_TCP_established: 25807 case MIB2_TCP_closeWait: 25808 tcpkp->currEstab.value.ui32++; 25809 break; 25810 } 25811 } 25812 } 25813 25814 tcpkp->activeOpens.value.ui32 = tcps->tcps_mib.tcpActiveOpens; 25815 tcpkp->passiveOpens.value.ui32 = tcps->tcps_mib.tcpPassiveOpens; 25816 tcpkp->attemptFails.value.ui32 = tcps->tcps_mib.tcpAttemptFails; 25817 tcpkp->estabResets.value.ui32 = tcps->tcps_mib.tcpEstabResets; 25818 tcpkp->inSegs.value.ui64 = tcps->tcps_mib.tcpHCInSegs; 25819 tcpkp->outSegs.value.ui64 = tcps->tcps_mib.tcpHCOutSegs; 25820 tcpkp->retransSegs.value.ui32 = tcps->tcps_mib.tcpRetransSegs; 25821 tcpkp->connTableSize.value.i32 = tcps->tcps_mib.tcpConnTableSize; 25822 tcpkp->outRsts.value.ui32 = tcps->tcps_mib.tcpOutRsts; 25823 tcpkp->outDataSegs.value.ui32 = tcps->tcps_mib.tcpOutDataSegs; 25824 tcpkp->outDataBytes.value.ui32 = tcps->tcps_mib.tcpOutDataBytes; 25825 tcpkp->retransBytes.value.ui32 = tcps->tcps_mib.tcpRetransBytes; 25826 tcpkp->outAck.value.ui32 = tcps->tcps_mib.tcpOutAck; 25827 tcpkp->outAckDelayed.value.ui32 = tcps->tcps_mib.tcpOutAckDelayed; 25828 tcpkp->outUrg.value.ui32 = tcps->tcps_mib.tcpOutUrg; 25829 tcpkp->outWinUpdate.value.ui32 = tcps->tcps_mib.tcpOutWinUpdate; 25830 tcpkp->outWinProbe.value.ui32 = tcps->tcps_mib.tcpOutWinProbe; 25831 tcpkp->outControl.value.ui32 = tcps->tcps_mib.tcpOutControl; 25832 tcpkp->outFastRetrans.value.ui32 = tcps->tcps_mib.tcpOutFastRetrans; 25833 tcpkp->inAckSegs.value.ui32 = tcps->tcps_mib.tcpInAckSegs; 25834 tcpkp->inAckBytes.value.ui32 = tcps->tcps_mib.tcpInAckBytes; 25835 tcpkp->inDupAck.value.ui32 = tcps->tcps_mib.tcpInDupAck; 25836 tcpkp->inAckUnsent.value.ui32 = tcps->tcps_mib.tcpInAckUnsent; 25837 tcpkp->inDataInorderSegs.value.ui32 = 25838 tcps->tcps_mib.tcpInDataInorderSegs; 25839 tcpkp->inDataInorderBytes.value.ui32 = 25840 tcps->tcps_mib.tcpInDataInorderBytes; 25841 tcpkp->inDataUnorderSegs.value.ui32 = 25842 tcps->tcps_mib.tcpInDataUnorderSegs; 25843 tcpkp->inDataUnorderBytes.value.ui32 = 25844 tcps->tcps_mib.tcpInDataUnorderBytes; 25845 tcpkp->inDataDupSegs.value.ui32 = tcps->tcps_mib.tcpInDataDupSegs; 25846 tcpkp->inDataDupBytes.value.ui32 = tcps->tcps_mib.tcpInDataDupBytes; 25847 tcpkp->inDataPartDupSegs.value.ui32 = 25848 tcps->tcps_mib.tcpInDataPartDupSegs; 25849 tcpkp->inDataPartDupBytes.value.ui32 = 25850 tcps->tcps_mib.tcpInDataPartDupBytes; 25851 tcpkp->inDataPastWinSegs.value.ui32 = 25852 tcps->tcps_mib.tcpInDataPastWinSegs; 25853 tcpkp->inDataPastWinBytes.value.ui32 = 25854 tcps->tcps_mib.tcpInDataPastWinBytes; 25855 tcpkp->inWinProbe.value.ui32 = tcps->tcps_mib.tcpInWinProbe; 25856 tcpkp->inWinUpdate.value.ui32 = tcps->tcps_mib.tcpInWinUpdate; 25857 tcpkp->inClosed.value.ui32 = tcps->tcps_mib.tcpInClosed; 25858 tcpkp->rttNoUpdate.value.ui32 = tcps->tcps_mib.tcpRttNoUpdate; 25859 tcpkp->rttUpdate.value.ui32 = tcps->tcps_mib.tcpRttUpdate; 25860 tcpkp->timRetrans.value.ui32 = tcps->tcps_mib.tcpTimRetrans; 25861 tcpkp->timRetransDrop.value.ui32 = tcps->tcps_mib.tcpTimRetransDrop; 25862 tcpkp->timKeepalive.value.ui32 = tcps->tcps_mib.tcpTimKeepalive; 25863 tcpkp->timKeepaliveProbe.value.ui32 = 25864 tcps->tcps_mib.tcpTimKeepaliveProbe; 25865 tcpkp->timKeepaliveDrop.value.ui32 = 25866 tcps->tcps_mib.tcpTimKeepaliveDrop; 25867 tcpkp->listenDrop.value.ui32 = tcps->tcps_mib.tcpListenDrop; 25868 tcpkp->listenDropQ0.value.ui32 = tcps->tcps_mib.tcpListenDropQ0; 25869 tcpkp->halfOpenDrop.value.ui32 = tcps->tcps_mib.tcpHalfOpenDrop; 25870 tcpkp->outSackRetransSegs.value.ui32 = 25871 tcps->tcps_mib.tcpOutSackRetransSegs; 25872 tcpkp->connTableSize6.value.i32 = tcps->tcps_mib.tcp6ConnTableSize; 25873 25874 netstack_rele(ns); 25875 return (0); 25876 } 25877 25878 void 25879 tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp) 25880 { 25881 uint16_t hdr_len; 25882 ipha_t *ipha; 25883 uint8_t *nexthdrp; 25884 tcph_t *tcph; 25885 tcp_stack_t *tcps = connp->conn_tcp->tcp_tcps; 25886 25887 /* Already has an eager */ 25888 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 25889 TCP_STAT(tcps, tcp_reinput_syn); 25890 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp, 25891 SQ_PROCESS, SQTAG_TCP_REINPUT_EAGER); 25892 return; 25893 } 25894 25895 switch (IPH_HDR_VERSION(mp->b_rptr)) { 25896 case IPV4_VERSION: 25897 ipha = (ipha_t *)mp->b_rptr; 25898 hdr_len = IPH_HDR_LENGTH(ipha); 25899 break; 25900 case IPV6_VERSION: 25901 if (!ip_hdr_length_nexthdr_v6(mp, (ip6_t *)mp->b_rptr, 25902 &hdr_len, &nexthdrp)) { 25903 CONN_DEC_REF(connp); 25904 freemsg(mp); 25905 return; 25906 } 25907 break; 25908 } 25909 25910 tcph = (tcph_t *)&mp->b_rptr[hdr_len]; 25911 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 25912 mp->b_datap->db_struioflag |= STRUIO_EAGER; 25913 DB_CKSUMSTART(mp) = (intptr_t)sqp; 25914 } 25915 25916 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp, 25917 SQ_FILL, SQTAG_TCP_REINPUT); 25918 } 25919 25920 static int 25921 tcp_squeue_switch(int val) 25922 { 25923 int rval = SQ_FILL; 25924 25925 switch (val) { 25926 case 1: 25927 rval = SQ_NODRAIN; 25928 break; 25929 case 2: 25930 rval = SQ_PROCESS; 25931 break; 25932 default: 25933 break; 25934 } 25935 return (rval); 25936 } 25937 25938 /* 25939 * This is called once for each squeue - globally for all stack 25940 * instances. 25941 */ 25942 static void 25943 tcp_squeue_add(squeue_t *sqp) 25944 { 25945 tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc( 25946 sizeof (tcp_squeue_priv_t), KM_SLEEP); 25947 25948 *squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait; 25949 tcp_time_wait->tcp_time_wait_tid = 25950 timeout_generic(CALLOUT_NORMAL, tcp_time_wait_collector, sqp, 25951 TICK_TO_NSEC(TCP_TIME_WAIT_DELAY), CALLOUT_TCP_RESOLUTION, 25952 CALLOUT_FLAG_ROUNDUP); 25953 if (tcp_free_list_max_cnt == 0) { 25954 int tcp_ncpus = ((boot_max_ncpus == -1) ? 25955 max_ncpus : boot_max_ncpus); 25956 25957 /* 25958 * Limit number of entries to 1% of availble memory / tcp_ncpus 25959 */ 25960 tcp_free_list_max_cnt = (freemem * PAGESIZE) / 25961 (tcp_ncpus * sizeof (tcp_t) * 100); 25962 } 25963 tcp_time_wait->tcp_free_list_cnt = 0; 25964 } 25965 25966 static int 25967 tcp_post_ip_bind(tcp_t *tcp, mblk_t *mp, int error, cred_t *cr, pid_t pid) 25968 { 25969 mblk_t *ire_mp = NULL; 25970 mblk_t *syn_mp; 25971 mblk_t *mdti; 25972 mblk_t *lsoi; 25973 int retval; 25974 tcph_t *tcph; 25975 uint32_t mss; 25976 queue_t *q = tcp->tcp_rq; 25977 conn_t *connp = tcp->tcp_connp; 25978 tcp_stack_t *tcps = tcp->tcp_tcps; 25979 25980 if (error == 0) { 25981 /* 25982 * Adapt Multidata information, if any. The 25983 * following tcp_mdt_update routine will free 25984 * the message. 25985 */ 25986 if (mp != NULL && ((mdti = tcp_mdt_info_mp(mp)) != NULL)) { 25987 tcp_mdt_update(tcp, &((ip_mdt_info_t *)mdti-> 25988 b_rptr)->mdt_capab, B_TRUE); 25989 freemsg(mdti); 25990 } 25991 25992 /* 25993 * Check to update LSO information with tcp, and 25994 * tcp_lso_update routine will free the message. 25995 */ 25996 if (mp != NULL && ((lsoi = tcp_lso_info_mp(mp)) != NULL)) { 25997 tcp_lso_update(tcp, &((ip_lso_info_t *)lsoi-> 25998 b_rptr)->lso_capab); 25999 freemsg(lsoi); 26000 } 26001 26002 /* Get the IRE, if we had requested for it */ 26003 if (mp != NULL) 26004 ire_mp = tcp_ire_mp(&mp); 26005 26006 if (tcp->tcp_hard_binding) { 26007 tcp->tcp_hard_binding = B_FALSE; 26008 tcp->tcp_hard_bound = B_TRUE; 26009 CL_INET_CONNECT(tcp->tcp_connp, tcp, B_TRUE, retval); 26010 if (retval != 0) { 26011 error = EADDRINUSE; 26012 goto bind_failed; 26013 } 26014 } else { 26015 if (ire_mp != NULL) 26016 freeb(ire_mp); 26017 goto after_syn_sent; 26018 } 26019 26020 retval = tcp_adapt_ire(tcp, ire_mp); 26021 if (ire_mp != NULL) 26022 freeb(ire_mp); 26023 if (retval == 0) { 26024 error = (int)((tcp->tcp_state >= TCPS_SYN_SENT) ? 26025 ENETUNREACH : EADDRNOTAVAIL); 26026 goto ipcl_rm; 26027 } 26028 /* 26029 * Don't let an endpoint connect to itself. 26030 * Also checked in tcp_connect() but that 26031 * check can't handle the case when the 26032 * local IP address is INADDR_ANY. 26033 */ 26034 if (tcp->tcp_ipversion == IPV4_VERSION) { 26035 if ((tcp->tcp_ipha->ipha_dst == 26036 tcp->tcp_ipha->ipha_src) && 26037 (BE16_EQL(tcp->tcp_tcph->th_lport, 26038 tcp->tcp_tcph->th_fport))) { 26039 error = EADDRNOTAVAIL; 26040 goto ipcl_rm; 26041 } 26042 } else { 26043 if (IN6_ARE_ADDR_EQUAL( 26044 &tcp->tcp_ip6h->ip6_dst, 26045 &tcp->tcp_ip6h->ip6_src) && 26046 (BE16_EQL(tcp->tcp_tcph->th_lport, 26047 tcp->tcp_tcph->th_fport))) { 26048 error = EADDRNOTAVAIL; 26049 goto ipcl_rm; 26050 } 26051 } 26052 ASSERT(tcp->tcp_state == TCPS_SYN_SENT); 26053 /* 26054 * This should not be possible! Just for 26055 * defensive coding... 26056 */ 26057 if (tcp->tcp_state != TCPS_SYN_SENT) 26058 goto after_syn_sent; 26059 26060 if (is_system_labeled() && 26061 !tcp_update_label(tcp, CONN_CRED(tcp->tcp_connp))) { 26062 error = EHOSTUNREACH; 26063 goto ipcl_rm; 26064 } 26065 26066 /* 26067 * tcp_adapt_ire() does not adjust 26068 * for TCP/IP header length. 26069 */ 26070 mss = tcp->tcp_mss - tcp->tcp_hdr_len; 26071 26072 /* 26073 * Just make sure our rwnd is at 26074 * least tcp_recv_hiwat_mss * MSS 26075 * large, and round up to the nearest 26076 * MSS. 26077 * 26078 * We do the round up here because 26079 * we need to get the interface 26080 * MTU first before we can do the 26081 * round up. 26082 */ 26083 tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss), 26084 tcps->tcps_recv_hiwat_minmss * mss); 26085 if (!IPCL_IS_NONSTR(connp)) 26086 q->q_hiwat = tcp->tcp_rwnd; 26087 tcp->tcp_recv_hiwater = tcp->tcp_rwnd; 26088 tcp_set_ws_value(tcp); 26089 U32_TO_ABE16((tcp->tcp_rwnd >> tcp->tcp_rcv_ws), 26090 tcp->tcp_tcph->th_win); 26091 if (tcp->tcp_rcv_ws > 0 || tcps->tcps_wscale_always) 26092 tcp->tcp_snd_ws_ok = B_TRUE; 26093 26094 /* 26095 * Set tcp_snd_ts_ok to true 26096 * so that tcp_xmit_mp will 26097 * include the timestamp 26098 * option in the SYN segment. 26099 */ 26100 if (tcps->tcps_tstamp_always || 26101 (tcp->tcp_rcv_ws && tcps->tcps_tstamp_if_wscale)) { 26102 tcp->tcp_snd_ts_ok = B_TRUE; 26103 } 26104 26105 /* 26106 * tcp_snd_sack_ok can be set in 26107 * tcp_adapt_ire() if the sack metric 26108 * is set. So check it here also. 26109 */ 26110 if (tcps->tcps_sack_permitted == 2 || 26111 tcp->tcp_snd_sack_ok) { 26112 if (tcp->tcp_sack_info == NULL) { 26113 tcp->tcp_sack_info = 26114 kmem_cache_alloc(tcp_sack_info_cache, 26115 KM_SLEEP); 26116 } 26117 tcp->tcp_snd_sack_ok = B_TRUE; 26118 } 26119 26120 /* 26121 * Should we use ECN? Note that the current 26122 * default value (SunOS 5.9) of tcp_ecn_permitted 26123 * is 1. The reason for doing this is that there 26124 * are equipments out there that will drop ECN 26125 * enabled IP packets. Setting it to 1 avoids 26126 * compatibility problems. 26127 */ 26128 if (tcps->tcps_ecn_permitted == 2) 26129 tcp->tcp_ecn_ok = B_TRUE; 26130 26131 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 26132 syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 26133 tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 26134 if (syn_mp) { 26135 if (cr == NULL) { 26136 cr = tcp->tcp_cred; 26137 pid = tcp->tcp_cpid; 26138 } 26139 mblk_setcred(syn_mp, cr, pid); 26140 tcp_send_data(tcp, tcp->tcp_wq, syn_mp); 26141 } 26142 after_syn_sent: 26143 if (mp != NULL) { 26144 ASSERT(mp->b_cont == NULL); 26145 freeb(mp); 26146 } 26147 return (error); 26148 } else { 26149 /* error */ 26150 if (tcp->tcp_debug) { 26151 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 26152 "tcp_post_ip_bind: error == %d", error); 26153 } 26154 if (mp != NULL) { 26155 freeb(mp); 26156 } 26157 } 26158 26159 ipcl_rm: 26160 /* 26161 * Need to unbind with classifier since we were just 26162 * told that our bind succeeded. a.k.a error == 0 at the entry. 26163 */ 26164 tcp->tcp_hard_bound = B_FALSE; 26165 tcp->tcp_hard_binding = B_FALSE; 26166 26167 ipcl_hash_remove(connp); 26168 26169 bind_failed: 26170 tcp->tcp_state = TCPS_IDLE; 26171 if (tcp->tcp_ipversion == IPV4_VERSION) 26172 tcp->tcp_ipha->ipha_src = 0; 26173 else 26174 V6_SET_ZERO(tcp->tcp_ip6h->ip6_src); 26175 /* 26176 * Copy of the src addr. in tcp_t is needed since 26177 * the lookup funcs. can only look at tcp_t 26178 */ 26179 V6_SET_ZERO(tcp->tcp_ip_src_v6); 26180 26181 tcph = tcp->tcp_tcph; 26182 tcph->th_lport[0] = 0; 26183 tcph->th_lport[1] = 0; 26184 tcp_bind_hash_remove(tcp); 26185 bzero(&connp->u_port, sizeof (connp->u_port)); 26186 /* blow away saved option results if any */ 26187 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 26188 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 26189 26190 conn_delete_ire(tcp->tcp_connp, NULL); 26191 26192 return (error); 26193 } 26194 26195 static int 26196 tcp_bind_select_lport(tcp_t *tcp, in_port_t *requested_port_ptr, 26197 boolean_t bind_to_req_port_only, cred_t *cr) 26198 { 26199 in_port_t mlp_port; 26200 mlp_type_t addrtype, mlptype; 26201 boolean_t user_specified; 26202 in_port_t allocated_port; 26203 in_port_t requested_port = *requested_port_ptr; 26204 conn_t *connp; 26205 zone_t *zone; 26206 tcp_stack_t *tcps = tcp->tcp_tcps; 26207 in6_addr_t v6addr = tcp->tcp_ip_src_v6; 26208 26209 /* 26210 * XXX It's up to the caller to specify bind_to_req_port_only or not. 26211 */ 26212 if (cr == NULL) 26213 cr = tcp->tcp_cred; 26214 /* 26215 * Get a valid port (within the anonymous range and should not 26216 * be a privileged one) to use if the user has not given a port. 26217 * If multiple threads are here, they may all start with 26218 * with the same initial port. But, it should be fine as long as 26219 * tcp_bindi will ensure that no two threads will be assigned 26220 * the same port. 26221 * 26222 * NOTE: XXX If a privileged process asks for an anonymous port, we 26223 * still check for ports only in the range > tcp_smallest_non_priv_port, 26224 * unless TCP_ANONPRIVBIND option is set. 26225 */ 26226 mlptype = mlptSingle; 26227 mlp_port = requested_port; 26228 if (requested_port == 0) { 26229 requested_port = tcp->tcp_anon_priv_bind ? 26230 tcp_get_next_priv_port(tcp) : 26231 tcp_update_next_port(tcps->tcps_next_port_to_try, 26232 tcp, B_TRUE); 26233 if (requested_port == 0) { 26234 return (-TNOADDR); 26235 } 26236 user_specified = B_FALSE; 26237 26238 /* 26239 * If the user went through one of the RPC interfaces to create 26240 * this socket and RPC is MLP in this zone, then give him an 26241 * anonymous MLP. 26242 */ 26243 connp = tcp->tcp_connp; 26244 if (connp->conn_anon_mlp && is_system_labeled()) { 26245 zone = crgetzone(cr); 26246 addrtype = tsol_mlp_addr_type(zone->zone_id, 26247 IPV6_VERSION, &v6addr, 26248 tcps->tcps_netstack->netstack_ip); 26249 if (addrtype == mlptSingle) { 26250 return (-TNOADDR); 26251 } 26252 mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP, 26253 PMAPPORT, addrtype); 26254 mlp_port = PMAPPORT; 26255 } 26256 } else { 26257 int i; 26258 boolean_t priv = B_FALSE; 26259 26260 /* 26261 * If the requested_port is in the well-known privileged range, 26262 * verify that the stream was opened by a privileged user. 26263 * Note: No locks are held when inspecting tcp_g_*epriv_ports 26264 * but instead the code relies on: 26265 * - the fact that the address of the array and its size never 26266 * changes 26267 * - the atomic assignment of the elements of the array 26268 */ 26269 if (requested_port < tcps->tcps_smallest_nonpriv_port) { 26270 priv = B_TRUE; 26271 } else { 26272 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 26273 if (requested_port == 26274 tcps->tcps_g_epriv_ports[i]) { 26275 priv = B_TRUE; 26276 break; 26277 } 26278 } 26279 } 26280 if (priv) { 26281 if (secpolicy_net_privaddr(cr, requested_port, 26282 IPPROTO_TCP) != 0) { 26283 if (tcp->tcp_debug) { 26284 (void) strlog(TCP_MOD_ID, 0, 1, 26285 SL_ERROR|SL_TRACE, 26286 "tcp_bind: no priv for port %d", 26287 requested_port); 26288 } 26289 return (-TACCES); 26290 } 26291 } 26292 user_specified = B_TRUE; 26293 26294 connp = tcp->tcp_connp; 26295 if (is_system_labeled()) { 26296 zone = crgetzone(cr); 26297 addrtype = tsol_mlp_addr_type(zone->zone_id, 26298 IPV6_VERSION, &v6addr, 26299 tcps->tcps_netstack->netstack_ip); 26300 if (addrtype == mlptSingle) { 26301 return (-TNOADDR); 26302 } 26303 mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP, 26304 requested_port, addrtype); 26305 } 26306 } 26307 26308 if (mlptype != mlptSingle) { 26309 if (secpolicy_net_bindmlp(cr) != 0) { 26310 if (tcp->tcp_debug) { 26311 (void) strlog(TCP_MOD_ID, 0, 1, 26312 SL_ERROR|SL_TRACE, 26313 "tcp_bind: no priv for multilevel port %d", 26314 requested_port); 26315 } 26316 return (-TACCES); 26317 } 26318 26319 /* 26320 * If we're specifically binding a shared IP address and the 26321 * port is MLP on shared addresses, then check to see if this 26322 * zone actually owns the MLP. Reject if not. 26323 */ 26324 if (mlptype == mlptShared && addrtype == mlptShared) { 26325 /* 26326 * No need to handle exclusive-stack zones since 26327 * ALL_ZONES only applies to the shared stack. 26328 */ 26329 zoneid_t mlpzone; 26330 26331 mlpzone = tsol_mlp_findzone(IPPROTO_TCP, 26332 htons(mlp_port)); 26333 if (connp->conn_zoneid != mlpzone) { 26334 if (tcp->tcp_debug) { 26335 (void) strlog(TCP_MOD_ID, 0, 1, 26336 SL_ERROR|SL_TRACE, 26337 "tcp_bind: attempt to bind port " 26338 "%d on shared addr in zone %d " 26339 "(should be %d)", 26340 mlp_port, connp->conn_zoneid, 26341 mlpzone); 26342 } 26343 return (-TACCES); 26344 } 26345 } 26346 26347 if (!user_specified) { 26348 int err; 26349 err = tsol_mlp_anon(zone, mlptype, connp->conn_ulp, 26350 requested_port, B_TRUE); 26351 if (err != 0) { 26352 if (tcp->tcp_debug) { 26353 (void) strlog(TCP_MOD_ID, 0, 1, 26354 SL_ERROR|SL_TRACE, 26355 "tcp_bind: cannot establish anon " 26356 "MLP for port %d", 26357 requested_port); 26358 } 26359 return (err); 26360 } 26361 connp->conn_anon_port = B_TRUE; 26362 } 26363 connp->conn_mlp_type = mlptype; 26364 } 26365 26366 allocated_port = tcp_bindi(tcp, requested_port, &v6addr, 26367 tcp->tcp_reuseaddr, B_FALSE, bind_to_req_port_only, user_specified); 26368 26369 if (allocated_port == 0) { 26370 connp->conn_mlp_type = mlptSingle; 26371 if (connp->conn_anon_port) { 26372 connp->conn_anon_port = B_FALSE; 26373 (void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp, 26374 requested_port, B_FALSE); 26375 } 26376 if (bind_to_req_port_only) { 26377 if (tcp->tcp_debug) { 26378 (void) strlog(TCP_MOD_ID, 0, 1, 26379 SL_ERROR|SL_TRACE, 26380 "tcp_bind: requested addr busy"); 26381 } 26382 return (-TADDRBUSY); 26383 } else { 26384 /* If we are out of ports, fail the bind. */ 26385 if (tcp->tcp_debug) { 26386 (void) strlog(TCP_MOD_ID, 0, 1, 26387 SL_ERROR|SL_TRACE, 26388 "tcp_bind: out of ports?"); 26389 } 26390 return (-TNOADDR); 26391 } 26392 } 26393 26394 /* Pass the allocated port back */ 26395 *requested_port_ptr = allocated_port; 26396 return (0); 26397 } 26398 26399 static int 26400 tcp_bind_check(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr, 26401 boolean_t bind_to_req_port_only) 26402 { 26403 tcp_t *tcp = connp->conn_tcp; 26404 sin_t *sin; 26405 sin6_t *sin6; 26406 sin6_t sin6addr; 26407 in_port_t requested_port; 26408 ipaddr_t v4addr; 26409 in6_addr_t v6addr; 26410 uint_t origipversion; 26411 int error = 0; 26412 26413 ASSERT((uintptr_t)len <= (uintptr_t)INT_MAX); 26414 26415 if (tcp->tcp_state == TCPS_BOUND) { 26416 return (0); 26417 } else if (tcp->tcp_state > TCPS_BOUND) { 26418 if (tcp->tcp_debug) { 26419 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 26420 "tcp_bind: bad state, %d", tcp->tcp_state); 26421 } 26422 return (-TOUTSTATE); 26423 } 26424 origipversion = tcp->tcp_ipversion; 26425 26426 if (sa != NULL && !OK_32PTR((char *)sa)) { 26427 if (tcp->tcp_debug) { 26428 (void) strlog(TCP_MOD_ID, 0, 1, 26429 SL_ERROR|SL_TRACE, 26430 "tcp_bind: bad address parameter, " 26431 "address %p, len %d", 26432 (void *)sa, len); 26433 } 26434 return (-TPROTO); 26435 } 26436 26437 switch (len) { 26438 case 0: /* request for a generic port */ 26439 if (tcp->tcp_family == AF_INET) { 26440 sin = (sin_t *)&sin6addr; 26441 *sin = sin_null; 26442 sin->sin_family = AF_INET; 26443 tcp->tcp_ipversion = IPV4_VERSION; 26444 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &v6addr); 26445 } else { 26446 ASSERT(tcp->tcp_family == AF_INET6); 26447 sin6 = (sin6_t *)&sin6addr; 26448 *sin6 = sin6_null; 26449 sin6->sin6_family = AF_INET6; 26450 tcp->tcp_ipversion = IPV6_VERSION; 26451 V6_SET_ZERO(v6addr); 26452 } 26453 requested_port = 0; 26454 break; 26455 26456 case sizeof (sin_t): /* Complete IPv4 address */ 26457 sin = (sin_t *)sa; 26458 /* 26459 * With sockets sockfs will accept bogus sin_family in 26460 * bind() and replace it with the family used in the socket 26461 * call. 26462 */ 26463 if (sin->sin_family != AF_INET || 26464 tcp->tcp_family != AF_INET) { 26465 return (EAFNOSUPPORT); 26466 } 26467 requested_port = ntohs(sin->sin_port); 26468 tcp->tcp_ipversion = IPV4_VERSION; 26469 v4addr = sin->sin_addr.s_addr; 26470 IN6_IPADDR_TO_V4MAPPED(v4addr, &v6addr); 26471 break; 26472 26473 case sizeof (sin6_t): /* Complete IPv6 address */ 26474 sin6 = (sin6_t *)sa; 26475 if (sin6->sin6_family != AF_INET6 || 26476 tcp->tcp_family != AF_INET6) { 26477 return (EAFNOSUPPORT); 26478 } 26479 requested_port = ntohs(sin6->sin6_port); 26480 tcp->tcp_ipversion = IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr) ? 26481 IPV4_VERSION : IPV6_VERSION; 26482 v6addr = sin6->sin6_addr; 26483 break; 26484 26485 default: 26486 if (tcp->tcp_debug) { 26487 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 26488 "tcp_bind: bad address length, %d", len); 26489 } 26490 return (EAFNOSUPPORT); 26491 /* return (-TBADADDR); */ 26492 } 26493 26494 tcp->tcp_bound_source_v6 = v6addr; 26495 26496 /* Check for change in ipversion */ 26497 if (origipversion != tcp->tcp_ipversion) { 26498 ASSERT(tcp->tcp_family == AF_INET6); 26499 error = tcp->tcp_ipversion == IPV6_VERSION ? 26500 tcp_header_init_ipv6(tcp) : tcp_header_init_ipv4(tcp); 26501 if (error) { 26502 return (ENOMEM); 26503 } 26504 } 26505 26506 /* 26507 * Initialize family specific fields. Copy of the src addr. 26508 * in tcp_t is needed for the lookup funcs. 26509 */ 26510 if (tcp->tcp_ipversion == IPV6_VERSION) { 26511 tcp->tcp_ip6h->ip6_src = v6addr; 26512 } else { 26513 IN6_V4MAPPED_TO_IPADDR(&v6addr, tcp->tcp_ipha->ipha_src); 26514 } 26515 tcp->tcp_ip_src_v6 = v6addr; 26516 26517 bind_to_req_port_only = requested_port != 0 && bind_to_req_port_only; 26518 26519 error = tcp_bind_select_lport(tcp, &requested_port, 26520 bind_to_req_port_only, cr); 26521 26522 return (error); 26523 } 26524 26525 /* 26526 * Return unix error is tli error is TSYSERR, otherwise return a negative 26527 * tli error. 26528 */ 26529 int 26530 tcp_do_bind(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr, 26531 boolean_t bind_to_req_port_only) 26532 { 26533 int error; 26534 tcp_t *tcp = connp->conn_tcp; 26535 26536 if (tcp->tcp_state >= TCPS_BOUND) { 26537 if (tcp->tcp_debug) { 26538 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 26539 "tcp_bind: bad state, %d", tcp->tcp_state); 26540 } 26541 return (-TOUTSTATE); 26542 } 26543 26544 error = tcp_bind_check(connp, sa, len, cr, bind_to_req_port_only); 26545 if (error != 0) 26546 return (error); 26547 26548 ASSERT(tcp->tcp_state == TCPS_BOUND); 26549 26550 tcp->tcp_conn_req_max = 0; 26551 26552 /* 26553 * We need to make sure that the conn_recv is set to a non-null 26554 * value before we insert the conn into the classifier table. 26555 * This is to avoid a race with an incoming packet which does an 26556 * ipcl_classify(). 26557 */ 26558 connp->conn_recv = tcp_conn_request; 26559 26560 if (tcp->tcp_family == AF_INET6) { 26561 ASSERT(tcp->tcp_connp->conn_af_isv6); 26562 error = ip_proto_bind_laddr_v6(connp, NULL, IPPROTO_TCP, 26563 &tcp->tcp_bound_source_v6, 0, B_FALSE); 26564 } else { 26565 ASSERT(!tcp->tcp_connp->conn_af_isv6); 26566 error = ip_proto_bind_laddr_v4(connp, NULL, IPPROTO_TCP, 26567 tcp->tcp_ipha->ipha_src, 0, B_FALSE); 26568 } 26569 return (tcp_post_ip_bind(tcp, NULL, error, NULL, 0)); 26570 } 26571 26572 int 26573 tcp_bind(sock_lower_handle_t proto_handle, struct sockaddr *sa, 26574 socklen_t len, cred_t *cr) 26575 { 26576 int error; 26577 conn_t *connp = (conn_t *)proto_handle; 26578 squeue_t *sqp = connp->conn_sqp; 26579 26580 /* All Solaris components should pass a cred for this operation. */ 26581 ASSERT(cr != NULL); 26582 26583 ASSERT(sqp != NULL); 26584 ASSERT(connp->conn_upper_handle != NULL); 26585 26586 error = squeue_synch_enter(sqp, connp, 0); 26587 if (error != 0) { 26588 /* failed to enter */ 26589 return (ENOSR); 26590 } 26591 26592 /* binding to a NULL address really means unbind */ 26593 if (sa == NULL) { 26594 if (connp->conn_tcp->tcp_state < TCPS_LISTEN) 26595 error = tcp_do_unbind(connp); 26596 else 26597 error = EINVAL; 26598 } else { 26599 error = tcp_do_bind(connp, sa, len, cr, B_TRUE); 26600 } 26601 26602 squeue_synch_exit(sqp, connp); 26603 26604 if (error < 0) { 26605 if (error == -TOUTSTATE) 26606 error = EINVAL; 26607 else 26608 error = proto_tlitosyserr(-error); 26609 } 26610 26611 return (error); 26612 } 26613 26614 /* 26615 * If the return value from this function is positive, it's a UNIX error. 26616 * Otherwise, if it's negative, then the absolute value is a TLI error. 26617 * the TPI routine tcp_tpi_connect() is a wrapper function for this. 26618 */ 26619 int 26620 tcp_do_connect(conn_t *connp, const struct sockaddr *sa, socklen_t len, 26621 cred_t *cr, pid_t pid) 26622 { 26623 tcp_t *tcp = connp->conn_tcp; 26624 sin_t *sin = (sin_t *)sa; 26625 sin6_t *sin6 = (sin6_t *)sa; 26626 ipaddr_t *dstaddrp; 26627 in_port_t dstport; 26628 uint_t srcid; 26629 int error = 0; 26630 26631 switch (len) { 26632 default: 26633 /* 26634 * Should never happen 26635 */ 26636 return (EINVAL); 26637 26638 case sizeof (sin_t): 26639 sin = (sin_t *)sa; 26640 if (sin->sin_port == 0) { 26641 return (-TBADADDR); 26642 } 26643 if (tcp->tcp_connp && tcp->tcp_connp->conn_ipv6_v6only) { 26644 return (EAFNOSUPPORT); 26645 } 26646 break; 26647 26648 case sizeof (sin6_t): 26649 sin6 = (sin6_t *)sa; 26650 if (sin6->sin6_port == 0) { 26651 return (-TBADADDR); 26652 } 26653 break; 26654 } 26655 /* 26656 * If we're connecting to an IPv4-mapped IPv6 address, we need to 26657 * make sure that the template IP header in the tcp structure is an 26658 * IPv4 header, and that the tcp_ipversion is IPV4_VERSION. We 26659 * need to this before we call tcp_bindi() so that the port lookup 26660 * code will look for ports in the correct port space (IPv4 and 26661 * IPv6 have separate port spaces). 26662 */ 26663 if (tcp->tcp_family == AF_INET6 && tcp->tcp_ipversion == IPV6_VERSION && 26664 IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 26665 int err = 0; 26666 26667 err = tcp_header_init_ipv4(tcp); 26668 if (err != 0) { 26669 error = ENOMEM; 26670 goto connect_failed; 26671 } 26672 if (tcp->tcp_lport != 0) 26673 *(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport; 26674 } 26675 26676 switch (tcp->tcp_state) { 26677 case TCPS_LISTEN: 26678 /* 26679 * Listening sockets are not allowed to issue connect(). 26680 */ 26681 if (IPCL_IS_NONSTR(connp)) 26682 return (EOPNOTSUPP); 26683 /* FALLTHRU */ 26684 case TCPS_IDLE: 26685 /* 26686 * We support quick connect, refer to comments in 26687 * tcp_connect_*() 26688 */ 26689 /* FALLTHRU */ 26690 case TCPS_BOUND: 26691 /* 26692 * We must bump the generation before the operation start. 26693 * This is done to ensure that any upcall made later on sends 26694 * up the right generation to the socket. 26695 */ 26696 SOCK_CONNID_BUMP(tcp->tcp_connid); 26697 26698 if (tcp->tcp_family == AF_INET6) { 26699 if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 26700 return (tcp_connect_ipv6(tcp, 26701 &sin6->sin6_addr, 26702 sin6->sin6_port, sin6->sin6_flowinfo, 26703 sin6->__sin6_src_id, sin6->sin6_scope_id, 26704 cr, pid)); 26705 } 26706 /* 26707 * Destination adress is mapped IPv6 address. 26708 * Source bound address should be unspecified or 26709 * IPv6 mapped address as well. 26710 */ 26711 if (!IN6_IS_ADDR_UNSPECIFIED( 26712 &tcp->tcp_bound_source_v6) && 26713 !IN6_IS_ADDR_V4MAPPED(&tcp->tcp_bound_source_v6)) { 26714 return (EADDRNOTAVAIL); 26715 } 26716 dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr)); 26717 dstport = sin6->sin6_port; 26718 srcid = sin6->__sin6_src_id; 26719 } else { 26720 dstaddrp = &sin->sin_addr.s_addr; 26721 dstport = sin->sin_port; 26722 srcid = 0; 26723 } 26724 26725 error = tcp_connect_ipv4(tcp, dstaddrp, dstport, srcid, cr, 26726 pid); 26727 break; 26728 default: 26729 return (-TOUTSTATE); 26730 } 26731 /* 26732 * Note: Code below is the "failure" case 26733 */ 26734 connect_failed: 26735 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 26736 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 26737 return (error); 26738 } 26739 26740 int 26741 tcp_connect(sock_lower_handle_t proto_handle, const struct sockaddr *sa, 26742 socklen_t len, sock_connid_t *id, cred_t *cr) 26743 { 26744 conn_t *connp = (conn_t *)proto_handle; 26745 tcp_t *tcp = connp->conn_tcp; 26746 squeue_t *sqp = connp->conn_sqp; 26747 int error; 26748 26749 ASSERT(connp->conn_upper_handle != NULL); 26750 26751 /* All Solaris components should pass a cred for this operation. */ 26752 ASSERT(cr != NULL); 26753 26754 error = proto_verify_ip_addr(tcp->tcp_family, sa, len); 26755 if (error != 0) { 26756 return (error); 26757 } 26758 26759 error = squeue_synch_enter(sqp, connp, 0); 26760 if (error != 0) { 26761 /* failed to enter */ 26762 return (ENOSR); 26763 } 26764 26765 /* 26766 * TCP supports quick connect, so no need to do an implicit bind 26767 */ 26768 error = tcp_do_connect(connp, sa, len, cr, curproc->p_pid); 26769 if (error == 0) { 26770 *id = connp->conn_tcp->tcp_connid; 26771 } else if (error < 0) { 26772 if (error == -TOUTSTATE) { 26773 switch (connp->conn_tcp->tcp_state) { 26774 case TCPS_SYN_SENT: 26775 error = EALREADY; 26776 break; 26777 case TCPS_ESTABLISHED: 26778 error = EISCONN; 26779 break; 26780 case TCPS_LISTEN: 26781 error = EOPNOTSUPP; 26782 break; 26783 default: 26784 error = EINVAL; 26785 break; 26786 } 26787 } else { 26788 error = proto_tlitosyserr(-error); 26789 } 26790 } 26791 done: 26792 squeue_synch_exit(sqp, connp); 26793 26794 return ((error == 0) ? EINPROGRESS : error); 26795 } 26796 26797 /* ARGSUSED */ 26798 sock_lower_handle_t 26799 tcp_create(int family, int type, int proto, sock_downcalls_t **sock_downcalls, 26800 uint_t *smodep, int *errorp, int flags, cred_t *credp) 26801 { 26802 conn_t *connp; 26803 boolean_t isv6 = family == AF_INET6; 26804 if (type != SOCK_STREAM || (family != AF_INET && family != AF_INET6) || 26805 (proto != 0 && proto != IPPROTO_TCP)) { 26806 *errorp = EPROTONOSUPPORT; 26807 return (NULL); 26808 } 26809 26810 connp = tcp_create_common(NULL, credp, isv6, B_TRUE, errorp); 26811 if (connp == NULL) { 26812 return (NULL); 26813 } 26814 26815 /* 26816 * Put the ref for TCP. Ref for IP was already put 26817 * by ipcl_conn_create. Also Make the conn_t globally 26818 * visible to walkers 26819 */ 26820 mutex_enter(&connp->conn_lock); 26821 CONN_INC_REF_LOCKED(connp); 26822 ASSERT(connp->conn_ref == 2); 26823 connp->conn_state_flags &= ~CONN_INCIPIENT; 26824 26825 connp->conn_flags |= IPCL_NONSTR; 26826 mutex_exit(&connp->conn_lock); 26827 26828 ASSERT(errorp != NULL); 26829 *errorp = 0; 26830 *sock_downcalls = &sock_tcp_downcalls; 26831 *smodep = SM_CONNREQUIRED | SM_EXDATA | SM_ACCEPTSUPP | 26832 SM_SENDFILESUPP; 26833 26834 return ((sock_lower_handle_t)connp); 26835 } 26836 26837 /* ARGSUSED */ 26838 void 26839 tcp_activate(sock_lower_handle_t proto_handle, sock_upper_handle_t sock_handle, 26840 sock_upcalls_t *sock_upcalls, int flags, cred_t *cr) 26841 { 26842 conn_t *connp = (conn_t *)proto_handle; 26843 struct sock_proto_props sopp; 26844 26845 ASSERT(connp->conn_upper_handle == NULL); 26846 26847 /* All Solaris components should pass a cred for this operation. */ 26848 ASSERT(cr != NULL); 26849 26850 sopp.sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_RCVLOWAT | 26851 SOCKOPT_MAXPSZ | SOCKOPT_MAXBLK | SOCKOPT_RCVTIMER | 26852 SOCKOPT_RCVTHRESH | SOCKOPT_MAXADDRLEN | SOCKOPT_MINPSZ; 26853 26854 sopp.sopp_rxhiwat = SOCKET_RECVHIWATER; 26855 sopp.sopp_rxlowat = SOCKET_RECVLOWATER; 26856 sopp.sopp_maxpsz = INFPSZ; 26857 sopp.sopp_maxblk = INFPSZ; 26858 sopp.sopp_rcvtimer = SOCKET_TIMER_INTERVAL; 26859 sopp.sopp_rcvthresh = SOCKET_RECVHIWATER >> 3; 26860 sopp.sopp_maxaddrlen = sizeof (sin6_t); 26861 sopp.sopp_minpsz = (tcp_rinfo.mi_minpsz == 1) ? 0 : 26862 tcp_rinfo.mi_minpsz; 26863 26864 connp->conn_upcalls = sock_upcalls; 26865 connp->conn_upper_handle = sock_handle; 26866 26867 (*sock_upcalls->su_set_proto_props)(sock_handle, &sopp); 26868 } 26869 26870 /* ARGSUSED */ 26871 int 26872 tcp_close(sock_lower_handle_t proto_handle, int flags, cred_t *cr) 26873 { 26874 conn_t *connp = (conn_t *)proto_handle; 26875 26876 ASSERT(connp->conn_upper_handle != NULL); 26877 26878 /* All Solaris components should pass a cred for this operation. */ 26879 ASSERT(cr != NULL); 26880 26881 tcp_close_common(connp, flags); 26882 26883 ip_free_helper_stream(connp); 26884 26885 /* 26886 * Drop IP's reference on the conn. This is the last reference 26887 * on the connp if the state was less than established. If the 26888 * connection has gone into timewait state, then we will have 26889 * one ref for the TCP and one more ref (total of two) for the 26890 * classifier connected hash list (a timewait connections stays 26891 * in connected hash till closed). 26892 * 26893 * We can't assert the references because there might be other 26894 * transient reference places because of some walkers or queued 26895 * packets in squeue for the timewait state. 26896 */ 26897 CONN_DEC_REF(connp); 26898 return (0); 26899 } 26900 26901 /* ARGSUSED */ 26902 int 26903 tcp_sendmsg(sock_lower_handle_t proto_handle, mblk_t *mp, struct nmsghdr *msg, 26904 cred_t *cr) 26905 { 26906 tcp_t *tcp; 26907 uint32_t msize; 26908 conn_t *connp = (conn_t *)proto_handle; 26909 int32_t tcpstate; 26910 26911 /* All Solaris components should pass a cred for this operation. */ 26912 ASSERT(cr != NULL); 26913 26914 ASSERT(connp->conn_ref >= 2); 26915 ASSERT(connp->conn_upper_handle != NULL); 26916 26917 if (msg->msg_controllen != 0) { 26918 return (EOPNOTSUPP); 26919 26920 } 26921 switch (DB_TYPE(mp)) { 26922 case M_DATA: 26923 tcp = connp->conn_tcp; 26924 ASSERT(tcp != NULL); 26925 26926 tcpstate = tcp->tcp_state; 26927 if (tcpstate < TCPS_ESTABLISHED) { 26928 freemsg(mp); 26929 return (ENOTCONN); 26930 } else if (tcpstate > TCPS_CLOSE_WAIT) { 26931 freemsg(mp); 26932 return (EPIPE); 26933 } 26934 26935 msize = msgdsize(mp); 26936 26937 mutex_enter(&tcp->tcp_non_sq_lock); 26938 tcp->tcp_squeue_bytes += msize; 26939 /* 26940 * Squeue Flow Control 26941 */ 26942 if (TCP_UNSENT_BYTES(tcp) > tcp->tcp_xmit_hiwater) { 26943 tcp_setqfull(tcp); 26944 } 26945 mutex_exit(&tcp->tcp_non_sq_lock); 26946 26947 /* 26948 * The application may pass in an address in the msghdr, but 26949 * we ignore the address on connection-oriented sockets. 26950 * Just like BSD this code does not generate an error for 26951 * TCP (a CONNREQUIRED socket) when sending to an address 26952 * passed in with sendto/sendmsg. Instead the data is 26953 * delivered on the connection as if no address had been 26954 * supplied. 26955 */ 26956 CONN_INC_REF(connp); 26957 26958 if (msg != NULL && msg->msg_flags & MSG_OOB) { 26959 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 26960 tcp_output_urgent, connp, tcp_squeue_flag, 26961 SQTAG_TCP_OUTPUT); 26962 } else { 26963 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_output, 26964 connp, tcp_squeue_flag, SQTAG_TCP_OUTPUT); 26965 } 26966 26967 return (0); 26968 26969 default: 26970 ASSERT(0); 26971 } 26972 26973 freemsg(mp); 26974 return (0); 26975 } 26976 26977 /* ARGSUSED */ 26978 void 26979 tcp_output_urgent(void *arg, mblk_t *mp, void *arg2) 26980 { 26981 int len; 26982 uint32_t msize; 26983 conn_t *connp = (conn_t *)arg; 26984 tcp_t *tcp = connp->conn_tcp; 26985 26986 msize = msgdsize(mp); 26987 26988 len = msize - 1; 26989 if (len < 0) { 26990 freemsg(mp); 26991 return; 26992 } 26993 26994 /* 26995 * Try to force urgent data out on the wire. 26996 * Even if we have unsent data this will 26997 * at least send the urgent flag. 26998 * XXX does not handle more flag correctly. 26999 */ 27000 len += tcp->tcp_unsent; 27001 len += tcp->tcp_snxt; 27002 tcp->tcp_urg = len; 27003 tcp->tcp_valid_bits |= TCP_URG_VALID; 27004 27005 /* Bypass tcp protocol for fused tcp loopback */ 27006 if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize)) 27007 return; 27008 tcp_wput_data(tcp, mp, B_TRUE); 27009 } 27010 27011 /* ARGSUSED */ 27012 int 27013 tcp_getpeername(sock_lower_handle_t proto_handle, struct sockaddr *addr, 27014 socklen_t *addrlenp, cred_t *cr) 27015 { 27016 conn_t *connp = (conn_t *)proto_handle; 27017 tcp_t *tcp = connp->conn_tcp; 27018 27019 ASSERT(connp->conn_upper_handle != NULL); 27020 /* All Solaris components should pass a cred for this operation. */ 27021 ASSERT(cr != NULL); 27022 27023 ASSERT(tcp != NULL); 27024 27025 return (tcp_do_getpeername(tcp, addr, addrlenp)); 27026 } 27027 27028 /* ARGSUSED */ 27029 int 27030 tcp_getsockname(sock_lower_handle_t proto_handle, struct sockaddr *addr, 27031 socklen_t *addrlenp, cred_t *cr) 27032 { 27033 conn_t *connp = (conn_t *)proto_handle; 27034 tcp_t *tcp = connp->conn_tcp; 27035 27036 /* All Solaris components should pass a cred for this operation. */ 27037 ASSERT(cr != NULL); 27038 27039 ASSERT(connp->conn_upper_handle != NULL); 27040 27041 return (tcp_do_getsockname(tcp, addr, addrlenp)); 27042 } 27043 27044 /* 27045 * tcp_fallback 27046 * 27047 * A direct socket is falling back to using STREAMS. The queue 27048 * that is being passed down was created using tcp_open() with 27049 * the SO_FALLBACK flag set. As a result, the queue is not 27050 * associated with a conn, and the q_ptrs instead contain the 27051 * dev and minor area that should be used. 27052 * 27053 * The 'direct_sockfs' flag indicates whether the FireEngine 27054 * optimizations should be used. The common case would be that 27055 * optimizations are enabled, and they might be subsequently 27056 * disabled using the _SIOCSOCKFALLBACK ioctl. 27057 */ 27058 27059 /* 27060 * An active connection is falling back to TPI. Gather all the information 27061 * required by the STREAM head and TPI sonode and send it up. 27062 */ 27063 void 27064 tcp_fallback_noneager(tcp_t *tcp, mblk_t *stropt_mp, queue_t *q, 27065 boolean_t direct_sockfs, so_proto_quiesced_cb_t quiesced_cb) 27066 { 27067 conn_t *connp = tcp->tcp_connp; 27068 struct stroptions *stropt; 27069 struct T_capability_ack tca; 27070 struct sockaddr_in6 laddr, faddr; 27071 socklen_t laddrlen, faddrlen; 27072 short opts; 27073 int error; 27074 mblk_t *mp; 27075 27076 /* Disable I/OAT during fallback */ 27077 tcp->tcp_sodirect = NULL; 27078 27079 connp->conn_dev = (dev_t)RD(q)->q_ptr; 27080 connp->conn_minor_arena = WR(q)->q_ptr; 27081 27082 RD(q)->q_ptr = WR(q)->q_ptr = connp; 27083 27084 connp->conn_tcp->tcp_rq = connp->conn_rq = RD(q); 27085 connp->conn_tcp->tcp_wq = connp->conn_wq = WR(q); 27086 27087 WR(q)->q_qinfo = &tcp_sock_winit; 27088 27089 if (!direct_sockfs) 27090 tcp_disable_direct_sockfs(tcp); 27091 27092 /* 27093 * free the helper stream 27094 */ 27095 ip_free_helper_stream(connp); 27096 27097 /* 27098 * Notify the STREAM head about options 27099 */ 27100 DB_TYPE(stropt_mp) = M_SETOPTS; 27101 stropt = (struct stroptions *)stropt_mp->b_rptr; 27102 stropt_mp->b_wptr += sizeof (struct stroptions); 27103 stropt = (struct stroptions *)stropt_mp->b_rptr; 27104 stropt->so_flags |= SO_HIWAT | SO_WROFF | SO_MAXBLK; 27105 27106 stropt->so_wroff = tcp->tcp_hdr_len + (tcp->tcp_loopback ? 0 : 27107 tcp->tcp_tcps->tcps_wroff_xtra); 27108 if (tcp->tcp_snd_sack_ok) 27109 stropt->so_wroff += TCPOPT_MAX_SACK_LEN; 27110 stropt->so_hiwat = tcp->tcp_fused ? 27111 tcp_fuse_set_rcv_hiwat(tcp, tcp->tcp_recv_hiwater) : 27112 MAX(tcp->tcp_recv_hiwater, tcp->tcp_tcps->tcps_sth_rcv_hiwat); 27113 stropt->so_maxblk = tcp_maxpsz_set(tcp, B_FALSE); 27114 27115 putnext(RD(q), stropt_mp); 27116 27117 /* 27118 * Collect the information needed to sync with the sonode 27119 */ 27120 tcp_do_capability_ack(tcp, &tca, TC1_INFO|TC1_ACCEPTOR_ID); 27121 27122 laddrlen = faddrlen = sizeof (sin6_t); 27123 (void) tcp_do_getsockname(tcp, (struct sockaddr *)&laddr, &laddrlen); 27124 error = tcp_do_getpeername(tcp, (struct sockaddr *)&faddr, &faddrlen); 27125 if (error != 0) 27126 faddrlen = 0; 27127 27128 opts = 0; 27129 if (tcp->tcp_oobinline) 27130 opts |= SO_OOBINLINE; 27131 if (tcp->tcp_dontroute) 27132 opts |= SO_DONTROUTE; 27133 27134 /* 27135 * Notify the socket that the protocol is now quiescent, 27136 * and it's therefore safe move data from the socket 27137 * to the stream head. 27138 */ 27139 (*quiesced_cb)(connp->conn_upper_handle, q, &tca, 27140 (struct sockaddr *)&laddr, laddrlen, 27141 (struct sockaddr *)&faddr, faddrlen, opts); 27142 27143 while ((mp = tcp->tcp_rcv_list) != NULL) { 27144 tcp->tcp_rcv_list = mp->b_next; 27145 mp->b_next = NULL; 27146 putnext(q, mp); 27147 } 27148 tcp->tcp_rcv_last_head = NULL; 27149 tcp->tcp_rcv_last_tail = NULL; 27150 tcp->tcp_rcv_cnt = 0; 27151 } 27152 27153 /* 27154 * An eager is falling back to TPI. All we have to do is send 27155 * up a T_CONN_IND. 27156 */ 27157 void 27158 tcp_fallback_eager(tcp_t *eager, boolean_t direct_sockfs) 27159 { 27160 tcp_t *listener = eager->tcp_listener; 27161 mblk_t *mp = eager->tcp_conn.tcp_eager_conn_ind; 27162 27163 ASSERT(listener != NULL); 27164 ASSERT(mp != NULL); 27165 27166 eager->tcp_conn.tcp_eager_conn_ind = NULL; 27167 27168 /* 27169 * TLI/XTI applications will get confused by 27170 * sending eager as an option since it violates 27171 * the option semantics. So remove the eager as 27172 * option since TLI/XTI app doesn't need it anyway. 27173 */ 27174 if (!direct_sockfs) { 27175 struct T_conn_ind *conn_ind; 27176 27177 conn_ind = (struct T_conn_ind *)mp->b_rptr; 27178 conn_ind->OPT_length = 0; 27179 conn_ind->OPT_offset = 0; 27180 } 27181 27182 /* 27183 * Sockfs guarantees that the listener will not be closed 27184 * during fallback. So we can safely use the listener's queue. 27185 */ 27186 putnext(listener->tcp_rq, mp); 27187 } 27188 27189 int 27190 tcp_fallback(sock_lower_handle_t proto_handle, queue_t *q, 27191 boolean_t direct_sockfs, so_proto_quiesced_cb_t quiesced_cb) 27192 { 27193 tcp_t *tcp; 27194 conn_t *connp = (conn_t *)proto_handle; 27195 int error; 27196 mblk_t *stropt_mp; 27197 mblk_t *ordrel_mp; 27198 mblk_t *fused_sigurp_mp; 27199 27200 tcp = connp->conn_tcp; 27201 27202 stropt_mp = allocb_wait(sizeof (struct stroptions), BPRI_HI, STR_NOSIG, 27203 NULL); 27204 27205 /* Pre-allocate the T_ordrel_ind mblk. */ 27206 ASSERT(tcp->tcp_ordrel_mp == NULL); 27207 ordrel_mp = allocb_wait(sizeof (struct T_ordrel_ind), BPRI_HI, 27208 STR_NOSIG, NULL); 27209 ordrel_mp->b_datap->db_type = M_PROTO; 27210 ((struct T_ordrel_ind *)ordrel_mp->b_rptr)->PRIM_type = T_ORDREL_IND; 27211 ordrel_mp->b_wptr += sizeof (struct T_ordrel_ind); 27212 27213 /* Pre-allocate the M_PCSIG used by fusion */ 27214 fused_sigurp_mp = allocb_wait(1, BPRI_HI, STR_NOSIG, NULL); 27215 27216 /* 27217 * Enter the squeue so that no new packets can come in 27218 */ 27219 error = squeue_synch_enter(connp->conn_sqp, connp, 0); 27220 if (error != 0) { 27221 /* failed to enter, free all the pre-allocated messages. */ 27222 freeb(stropt_mp); 27223 freeb(ordrel_mp); 27224 freeb(fused_sigurp_mp); 27225 /* 27226 * We cannot process the eager, so at least send out a 27227 * RST so the peer can reconnect. 27228 */ 27229 if (tcp->tcp_listener != NULL) { 27230 (void) tcp_eager_blowoff(tcp->tcp_listener, 27231 tcp->tcp_conn_req_seqnum); 27232 } 27233 return (ENOMEM); 27234 } 27235 27236 /* 27237 * No longer a direct socket 27238 */ 27239 connp->conn_flags &= ~IPCL_NONSTR; 27240 27241 tcp->tcp_ordrel_mp = ordrel_mp; 27242 27243 if (tcp->tcp_fused) { 27244 ASSERT(tcp->tcp_fused_sigurg_mp == NULL); 27245 tcp->tcp_fused_sigurg_mp = fused_sigurp_mp; 27246 } else { 27247 freeb(fused_sigurp_mp); 27248 } 27249 27250 if (tcp->tcp_listener != NULL) { 27251 /* The eager will deal with opts when accept() is called */ 27252 freeb(stropt_mp); 27253 tcp_fallback_eager(tcp, direct_sockfs); 27254 } else { 27255 tcp_fallback_noneager(tcp, stropt_mp, q, direct_sockfs, 27256 quiesced_cb); 27257 } 27258 27259 /* 27260 * There should be atleast two ref's (IP + TCP) 27261 */ 27262 ASSERT(connp->conn_ref >= 2); 27263 squeue_synch_exit(connp->conn_sqp, connp); 27264 27265 return (0); 27266 } 27267 27268 /* ARGSUSED */ 27269 static void 27270 tcp_shutdown_output(void *arg, mblk_t *mp, void *arg2) 27271 { 27272 conn_t *connp = (conn_t *)arg; 27273 tcp_t *tcp = connp->conn_tcp; 27274 27275 freemsg(mp); 27276 27277 if (tcp->tcp_fused) 27278 tcp_unfuse(tcp); 27279 27280 if (tcp_xmit_end(tcp) != 0) { 27281 /* 27282 * We were crossing FINs and got a reset from 27283 * the other side. Just ignore it. 27284 */ 27285 if (tcp->tcp_debug) { 27286 (void) strlog(TCP_MOD_ID, 0, 1, 27287 SL_ERROR|SL_TRACE, 27288 "tcp_shutdown_output() out of state %s", 27289 tcp_display(tcp, NULL, DISP_ADDR_AND_PORT)); 27290 } 27291 } 27292 } 27293 27294 /* ARGSUSED */ 27295 int 27296 tcp_shutdown(sock_lower_handle_t proto_handle, int how, cred_t *cr) 27297 { 27298 conn_t *connp = (conn_t *)proto_handle; 27299 tcp_t *tcp = connp->conn_tcp; 27300 27301 ASSERT(connp->conn_upper_handle != NULL); 27302 27303 /* All Solaris components should pass a cred for this operation. */ 27304 ASSERT(cr != NULL); 27305 27306 /* 27307 * X/Open requires that we check the connected state. 27308 */ 27309 if (tcp->tcp_state < TCPS_SYN_SENT) 27310 return (ENOTCONN); 27311 27312 /* shutdown the send side */ 27313 if (how != SHUT_RD) { 27314 mblk_t *bp; 27315 27316 bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL); 27317 CONN_INC_REF(connp); 27318 SQUEUE_ENTER_ONE(connp->conn_sqp, bp, tcp_shutdown_output, 27319 connp, SQ_NODRAIN, SQTAG_TCP_SHUTDOWN_OUTPUT); 27320 27321 (*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle, 27322 SOCK_OPCTL_SHUT_SEND, 0); 27323 } 27324 27325 /* shutdown the recv side */ 27326 if (how != SHUT_WR) 27327 (*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle, 27328 SOCK_OPCTL_SHUT_RECV, 0); 27329 27330 return (0); 27331 } 27332 27333 /* 27334 * SOP_LISTEN() calls into tcp_listen(). 27335 */ 27336 /* ARGSUSED */ 27337 int 27338 tcp_listen(sock_lower_handle_t proto_handle, int backlog, cred_t *cr) 27339 { 27340 conn_t *connp = (conn_t *)proto_handle; 27341 int error; 27342 squeue_t *sqp = connp->conn_sqp; 27343 27344 ASSERT(connp->conn_upper_handle != NULL); 27345 27346 /* All Solaris components should pass a cred for this operation. */ 27347 ASSERT(cr != NULL); 27348 27349 error = squeue_synch_enter(sqp, connp, 0); 27350 if (error != 0) { 27351 /* failed to enter */ 27352 return (ENOBUFS); 27353 } 27354 27355 error = tcp_do_listen(connp, backlog, cr); 27356 if (error == 0) { 27357 (*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle, 27358 SOCK_OPCTL_ENAB_ACCEPT, (uintptr_t)backlog); 27359 } else if (error < 0) { 27360 if (error == -TOUTSTATE) 27361 error = EINVAL; 27362 else 27363 error = proto_tlitosyserr(-error); 27364 } 27365 squeue_synch_exit(sqp, connp); 27366 return (error); 27367 } 27368 27369 static int 27370 tcp_do_listen(conn_t *connp, int backlog, cred_t *cr) 27371 { 27372 tcp_t *tcp = connp->conn_tcp; 27373 sin_t *sin; 27374 sin6_t *sin6; 27375 int error = 0; 27376 tcp_stack_t *tcps = tcp->tcp_tcps; 27377 27378 /* All Solaris components should pass a cred for this operation. */ 27379 ASSERT(cr != NULL); 27380 27381 if (tcp->tcp_state >= TCPS_BOUND) { 27382 if ((tcp->tcp_state == TCPS_BOUND || 27383 tcp->tcp_state == TCPS_LISTEN) && backlog > 0) { 27384 /* 27385 * Handle listen() increasing backlog. 27386 * This is more "liberal" then what the TPI spec 27387 * requires but is needed to avoid a t_unbind 27388 * when handling listen() since the port number 27389 * might be "stolen" between the unbind and bind. 27390 */ 27391 goto do_listen; 27392 } 27393 if (tcp->tcp_debug) { 27394 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 27395 "tcp_listen: bad state, %d", tcp->tcp_state); 27396 } 27397 return (-TOUTSTATE); 27398 } else { 27399 int32_t len; 27400 sin6_t addr; 27401 27402 /* Do an implicit bind: Request for a generic port. */ 27403 if (tcp->tcp_family == AF_INET) { 27404 len = sizeof (sin_t); 27405 sin = (sin_t *)&addr; 27406 *sin = sin_null; 27407 sin->sin_family = AF_INET; 27408 tcp->tcp_ipversion = IPV4_VERSION; 27409 } else { 27410 ASSERT(tcp->tcp_family == AF_INET6); 27411 len = sizeof (sin6_t); 27412 sin6 = (sin6_t *)&addr; 27413 *sin6 = sin6_null; 27414 sin6->sin6_family = AF_INET6; 27415 tcp->tcp_ipversion = IPV6_VERSION; 27416 } 27417 27418 error = tcp_bind_check(connp, (struct sockaddr *)&addr, len, 27419 cr, B_FALSE); 27420 if (error) 27421 return (error); 27422 /* Fall through and do the fanout insertion */ 27423 } 27424 27425 do_listen: 27426 ASSERT(tcp->tcp_state == TCPS_BOUND || tcp->tcp_state == TCPS_LISTEN); 27427 tcp->tcp_conn_req_max = backlog; 27428 if (tcp->tcp_conn_req_max) { 27429 if (tcp->tcp_conn_req_max < tcps->tcps_conn_req_min) 27430 tcp->tcp_conn_req_max = tcps->tcps_conn_req_min; 27431 if (tcp->tcp_conn_req_max > tcps->tcps_conn_req_max_q) 27432 tcp->tcp_conn_req_max = tcps->tcps_conn_req_max_q; 27433 /* 27434 * If this is a listener, do not reset the eager list 27435 * and other stuffs. Note that we don't check if the 27436 * existing eager list meets the new tcp_conn_req_max 27437 * requirement. 27438 */ 27439 if (tcp->tcp_state != TCPS_LISTEN) { 27440 tcp->tcp_state = TCPS_LISTEN; 27441 /* Initialize the chain. Don't need the eager_lock */ 27442 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 27443 tcp->tcp_eager_next_drop_q0 = tcp; 27444 tcp->tcp_eager_prev_drop_q0 = tcp; 27445 tcp->tcp_second_ctimer_threshold = 27446 tcps->tcps_ip_abort_linterval; 27447 } 27448 } 27449 27450 /* 27451 * We can call ip_bind directly, the processing continues 27452 * in tcp_post_ip_bind(). 27453 * 27454 * We need to make sure that the conn_recv is set to a non-null 27455 * value before we insert the conn into the classifier table. 27456 * This is to avoid a race with an incoming packet which does an 27457 * ipcl_classify(). 27458 */ 27459 connp->conn_recv = tcp_conn_request; 27460 if (tcp->tcp_family == AF_INET) { 27461 error = ip_proto_bind_laddr_v4(connp, NULL, 27462 IPPROTO_TCP, tcp->tcp_bound_source, tcp->tcp_lport, B_TRUE); 27463 } else { 27464 error = ip_proto_bind_laddr_v6(connp, NULL, IPPROTO_TCP, 27465 &tcp->tcp_bound_source_v6, tcp->tcp_lport, B_TRUE); 27466 } 27467 return (tcp_post_ip_bind(tcp, NULL, error, NULL, 0)); 27468 } 27469 27470 void 27471 tcp_clr_flowctrl(sock_lower_handle_t proto_handle) 27472 { 27473 conn_t *connp = (conn_t *)proto_handle; 27474 tcp_t *tcp = connp->conn_tcp; 27475 tcp_stack_t *tcps = tcp->tcp_tcps; 27476 uint_t thwin; 27477 27478 ASSERT(connp->conn_upper_handle != NULL); 27479 27480 (void) squeue_synch_enter(connp->conn_sqp, connp, 0); 27481 27482 /* Flow control condition has been removed. */ 27483 tcp->tcp_rwnd = tcp->tcp_recv_hiwater; 27484 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 27485 << tcp->tcp_rcv_ws; 27486 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 27487 /* 27488 * Send back a window update immediately if TCP is above 27489 * ESTABLISHED state and the increase of the rcv window 27490 * that the other side knows is at least 1 MSS after flow 27491 * control is lifted. 27492 */ 27493 if (tcp->tcp_state >= TCPS_ESTABLISHED && 27494 (tcp->tcp_recv_hiwater - thwin >= tcp->tcp_mss)) { 27495 tcp_xmit_ctl(NULL, tcp, 27496 (tcp->tcp_swnd == 0) ? tcp->tcp_suna : 27497 tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 27498 BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate); 27499 } 27500 27501 squeue_synch_exit(connp->conn_sqp, connp); 27502 } 27503 27504 /* ARGSUSED */ 27505 int 27506 tcp_ioctl(sock_lower_handle_t proto_handle, int cmd, intptr_t arg, 27507 int mode, int32_t *rvalp, cred_t *cr) 27508 { 27509 conn_t *connp = (conn_t *)proto_handle; 27510 int error; 27511 27512 ASSERT(connp->conn_upper_handle != NULL); 27513 27514 /* All Solaris components should pass a cred for this operation. */ 27515 ASSERT(cr != NULL); 27516 27517 switch (cmd) { 27518 case ND_SET: 27519 case ND_GET: 27520 case TCP_IOC_DEFAULT_Q: 27521 case _SIOCSOCKFALLBACK: 27522 case TCP_IOC_ABORT_CONN: 27523 case TI_GETPEERNAME: 27524 case TI_GETMYNAME: 27525 ip1dbg(("tcp_ioctl: cmd 0x%x on non sreams socket", 27526 cmd)); 27527 error = EINVAL; 27528 break; 27529 default: 27530 /* 27531 * Pass on to IP using helper stream 27532 */ 27533 error = ldi_ioctl(connp->conn_helper_info->iphs_handle, 27534 cmd, arg, mode, cr, rvalp); 27535 break; 27536 } 27537 return (error); 27538 } 27539 27540 sock_downcalls_t sock_tcp_downcalls = { 27541 tcp_activate, 27542 tcp_accept, 27543 tcp_bind, 27544 tcp_listen, 27545 tcp_connect, 27546 tcp_getpeername, 27547 tcp_getsockname, 27548 tcp_getsockopt, 27549 tcp_setsockopt, 27550 tcp_sendmsg, 27551 NULL, 27552 NULL, 27553 NULL, 27554 tcp_shutdown, 27555 tcp_clr_flowctrl, 27556 tcp_ioctl, 27557 tcp_close, 27558 }; 27559