1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #pragma ident "%Z%%M% %I% %E% SMI" 29 const char tcp_version[] = "%Z%%M% %I% %E% SMI"; 30 31 32 #include <sys/types.h> 33 #include <sys/stream.h> 34 #include <sys/strsun.h> 35 #include <sys/strsubr.h> 36 #include <sys/stropts.h> 37 #include <sys/strlog.h> 38 #include <sys/strsun.h> 39 #define _SUN_TPI_VERSION 2 40 #include <sys/tihdr.h> 41 #include <sys/timod.h> 42 #include <sys/ddi.h> 43 #include <sys/sunddi.h> 44 #include <sys/suntpi.h> 45 #include <sys/xti_inet.h> 46 #include <sys/cmn_err.h> 47 #include <sys/debug.h> 48 #include <sys/sdt.h> 49 #include <sys/vtrace.h> 50 #include <sys/kmem.h> 51 #include <sys/ethernet.h> 52 #include <sys/cpuvar.h> 53 #include <sys/dlpi.h> 54 #include <sys/multidata.h> 55 #include <sys/multidata_impl.h> 56 #include <sys/pattr.h> 57 #include <sys/policy.h> 58 #include <sys/priv.h> 59 #include <sys/zone.h> 60 61 #include <sys/errno.h> 62 #include <sys/signal.h> 63 #include <sys/socket.h> 64 #include <sys/sockio.h> 65 #include <sys/isa_defs.h> 66 #include <sys/md5.h> 67 #include <sys/random.h> 68 #include <netinet/in.h> 69 #include <netinet/tcp.h> 70 #include <netinet/ip6.h> 71 #include <netinet/icmp6.h> 72 #include <net/if.h> 73 #include <net/route.h> 74 #include <inet/ipsec_impl.h> 75 76 #include <inet/common.h> 77 #include <inet/ip.h> 78 #include <inet/ip_impl.h> 79 #include <inet/ip6.h> 80 #include <inet/ip_ndp.h> 81 #include <inet/mi.h> 82 #include <inet/mib2.h> 83 #include <inet/nd.h> 84 #include <inet/optcom.h> 85 #include <inet/snmpcom.h> 86 #include <inet/kstatcom.h> 87 #include <inet/tcp.h> 88 #include <inet/tcp_impl.h> 89 #include <net/pfkeyv2.h> 90 #include <inet/ipsec_info.h> 91 #include <inet/ipdrop.h> 92 #include <inet/tcp_trace.h> 93 94 #include <inet/ipclassifier.h> 95 #include <inet/ip_ire.h> 96 #include <inet/ip_ftable.h> 97 #include <inet/ip_if.h> 98 #include <inet/ipp_common.h> 99 #include <inet/ip_netinfo.h> 100 #include <sys/squeue.h> 101 #include <inet/kssl/ksslapi.h> 102 #include <sys/tsol/label.h> 103 #include <sys/tsol/tnet.h> 104 #include <sys/sdt.h> 105 #include <rpc/pmap_prot.h> 106 107 /* 108 * TCP Notes: aka FireEngine Phase I (PSARC 2002/433) 109 * 110 * (Read the detailed design doc in PSARC case directory) 111 * 112 * The entire tcp state is contained in tcp_t and conn_t structure 113 * which are allocated in tandem using ipcl_conn_create() and passing 114 * IPCL_CONNTCP as a flag. We use 'conn_ref' and 'conn_lock' to protect 115 * the references on the tcp_t. The tcp_t structure is never compressed 116 * and packets always land on the correct TCP perimeter from the time 117 * eager is created till the time tcp_t dies (as such the old mentat 118 * TCP global queue is not used for detached state and no IPSEC checking 119 * is required). The global queue is still allocated to send out resets 120 * for connection which have no listeners and IP directly calls 121 * tcp_xmit_listeners_reset() which does any policy check. 122 * 123 * Protection and Synchronisation mechanism: 124 * 125 * The tcp data structure does not use any kind of lock for protecting 126 * its state but instead uses 'squeues' for mutual exclusion from various 127 * read and write side threads. To access a tcp member, the thread should 128 * always be behind squeue (via squeue_enter, squeue_enter_nodrain, or 129 * squeue_fill). Since the squeues allow a direct function call, caller 130 * can pass any tcp function having prototype of edesc_t as argument 131 * (different from traditional STREAMs model where packets come in only 132 * designated entry points). The list of functions that can be directly 133 * called via squeue are listed before the usual function prototype. 134 * 135 * Referencing: 136 * 137 * TCP is MT-Hot and we use a reference based scheme to make sure that the 138 * tcp structure doesn't disappear when its needed. When the application 139 * creates an outgoing connection or accepts an incoming connection, we 140 * start out with 2 references on 'conn_ref'. One for TCP and one for IP. 141 * The IP reference is just a symbolic reference since ip_tcpclose() 142 * looks at tcp structure after tcp_close_output() returns which could 143 * have dropped the last TCP reference. So as long as the connection is 144 * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the 145 * conn_t. The classifier puts its own reference when the connection is 146 * inserted in listen or connected hash. Anytime a thread needs to enter 147 * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr 148 * on write side or by doing a classify on read side and then puts a 149 * reference on the conn before doing squeue_enter/tryenter/fill. For 150 * read side, the classifier itself puts the reference under fanout lock 151 * to make sure that tcp can't disappear before it gets processed. The 152 * squeue will drop this reference automatically so the called function 153 * doesn't have to do a DEC_REF. 154 * 155 * Opening a new connection: 156 * 157 * The outgoing connection open is pretty simple. ip_tcpopen() does the 158 * work in creating the conn/tcp structure and initializing it. The 159 * squeue assignment is done based on the CPU the application 160 * is running on. So for outbound connections, processing is always done 161 * on application CPU which might be different from the incoming CPU 162 * being interrupted by the NIC. An optimal way would be to figure out 163 * the NIC <-> CPU binding at listen time, and assign the outgoing 164 * connection to the squeue attached to the CPU that will be interrupted 165 * for incoming packets (we know the NIC based on the bind IP address). 166 * This might seem like a problem if more data is going out but the 167 * fact is that in most cases the transmit is ACK driven transmit where 168 * the outgoing data normally sits on TCP's xmit queue waiting to be 169 * transmitted. 170 * 171 * Accepting a connection: 172 * 173 * This is a more interesting case because of various races involved in 174 * establishing a eager in its own perimeter. Read the meta comment on 175 * top of tcp_conn_request(). But briefly, the squeue is picked by 176 * ip_tcp_input()/ip_fanout_tcp_v6() based on the interrupted CPU. 177 * 178 * Closing a connection: 179 * 180 * The close is fairly straight forward. tcp_close() calls tcp_close_output() 181 * via squeue to do the close and mark the tcp as detached if the connection 182 * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its 183 * reference but tcp_close() drop IP's reference always. So if tcp was 184 * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP 185 * and 1 because it is in classifier's connected hash. This is the condition 186 * we use to determine that its OK to clean up the tcp outside of squeue 187 * when time wait expires (check the ref under fanout and conn_lock and 188 * if it is 2, remove it from fanout hash and kill it). 189 * 190 * Although close just drops the necessary references and marks the 191 * tcp_detached state, tcp_close needs to know the tcp_detached has been 192 * set (under squeue) before letting the STREAM go away (because a 193 * inbound packet might attempt to go up the STREAM while the close 194 * has happened and tcp_detached is not set). So a special lock and 195 * flag is used along with a condition variable (tcp_closelock, tcp_closed, 196 * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked 197 * tcp_detached. 198 * 199 * Special provisions and fast paths: 200 * 201 * We make special provision for (AF_INET, SOCK_STREAM) sockets which 202 * can't have 'ipv6_recvpktinfo' set and for these type of sockets, IP 203 * will never send a M_CTL to TCP. As such, ip_tcp_input() which handles 204 * all TCP packets from the wire makes a IPCL_IS_TCP4_CONNECTED_NO_POLICY 205 * check to send packets directly to tcp_rput_data via squeue. Everyone 206 * else comes through tcp_input() on the read side. 207 * 208 * We also make special provisions for sockfs by marking tcp_issocket 209 * whenever we have only sockfs on top of TCP. This allows us to skip 210 * putting the tcp in acceptor hash since a sockfs listener can never 211 * become acceptor and also avoid allocating a tcp_t for acceptor STREAM 212 * since eager has already been allocated and the accept now happens 213 * on acceptor STREAM. There is a big blob of comment on top of 214 * tcp_conn_request explaining the new accept. When socket is POP'd, 215 * sockfs sends us an ioctl to mark the fact and we go back to old 216 * behaviour. Once tcp_issocket is unset, its never set for the 217 * life of that connection. 218 * 219 * IPsec notes : 220 * 221 * Since a packet is always executed on the correct TCP perimeter 222 * all IPsec processing is defered to IP including checking new 223 * connections and setting IPSEC policies for new connection. The 224 * only exception is tcp_xmit_listeners_reset() which is called 225 * directly from IP and needs to policy check to see if TH_RST 226 * can be sent out. 227 * 228 * PFHooks notes : 229 * 230 * For mdt case, one meta buffer contains multiple packets. Mblks for every 231 * packet are assembled and passed to the hooks. When packets are blocked, 232 * or boundary of any packet is changed, the mdt processing is stopped, and 233 * packets of the meta buffer are send to the IP path one by one. 234 */ 235 236 extern major_t TCP6_MAJ; 237 238 /* 239 * Values for squeue switch: 240 * 1: squeue_enter_nodrain 241 * 2: squeue_enter 242 * 3: squeue_fill 243 */ 244 int tcp_squeue_close = 2; 245 int tcp_squeue_wput = 2; 246 247 squeue_func_t tcp_squeue_close_proc; 248 squeue_func_t tcp_squeue_wput_proc; 249 250 /* 251 * This controls how tiny a write must be before we try to copy it 252 * into the the mblk on the tail of the transmit queue. Not much 253 * speedup is observed for values larger than sixteen. Zero will 254 * disable the optimisation. 255 */ 256 int tcp_tx_pull_len = 16; 257 258 /* 259 * TCP Statistics. 260 * 261 * How TCP statistics work. 262 * 263 * There are two types of statistics invoked by two macros. 264 * 265 * TCP_STAT(name) does non-atomic increment of a named stat counter. It is 266 * supposed to be used in non MT-hot paths of the code. 267 * 268 * TCP_DBGSTAT(name) does atomic increment of a named stat counter. It is 269 * supposed to be used for DEBUG purposes and may be used on a hot path. 270 * 271 * Both TCP_STAT and TCP_DBGSTAT counters are available using kstat 272 * (use "kstat tcp" to get them). 273 * 274 * There is also additional debugging facility that marks tcp_clean_death() 275 * instances and saves them in tcp_t structure. It is triggered by 276 * TCP_TAG_CLEAN_DEATH define. Also, there is a global array of counters for 277 * tcp_clean_death() calls that counts the number of times each tag was hit. It 278 * is triggered by TCP_CLD_COUNTERS define. 279 * 280 * How to add new counters. 281 * 282 * 1) Add a field in the tcp_stat structure describing your counter. 283 * 2) Add a line in tcp_statistics with the name of the counter. 284 * 285 * IMPORTANT!! - make sure that both are in sync !! 286 * 3) Use either TCP_STAT or TCP_DBGSTAT with the name. 287 * 288 * Please avoid using private counters which are not kstat-exported. 289 * 290 * TCP_TAG_CLEAN_DEATH set to 1 enables tagging of tcp_clean_death() instances 291 * in tcp_t structure. 292 * 293 * TCP_MAX_CLEAN_DEATH_TAG is the maximum number of possible clean death tags. 294 */ 295 296 #ifndef TCP_DEBUG_COUNTER 297 #ifdef DEBUG 298 #define TCP_DEBUG_COUNTER 1 299 #else 300 #define TCP_DEBUG_COUNTER 0 301 #endif 302 #endif 303 304 #define TCP_CLD_COUNTERS 0 305 306 #define TCP_TAG_CLEAN_DEATH 1 307 #define TCP_MAX_CLEAN_DEATH_TAG 32 308 309 #ifdef lint 310 static int _lint_dummy_; 311 #endif 312 313 #if TCP_CLD_COUNTERS 314 static uint_t tcp_clean_death_stat[TCP_MAX_CLEAN_DEATH_TAG]; 315 #define TCP_CLD_STAT(x) tcp_clean_death_stat[x]++ 316 #elif defined(lint) 317 #define TCP_CLD_STAT(x) ASSERT(_lint_dummy_ == 0); 318 #else 319 #define TCP_CLD_STAT(x) 320 #endif 321 322 #if TCP_DEBUG_COUNTER 323 #define TCP_DBGSTAT(x) atomic_add_64(&(tcp_statistics.x.value.ui64), 1) 324 #elif defined(lint) 325 #define TCP_DBGSTAT(x) ASSERT(_lint_dummy_ == 0); 326 #else 327 #define TCP_DBGSTAT(x) 328 #endif 329 330 tcp_stat_t tcp_statistics = { 331 { "tcp_time_wait", KSTAT_DATA_UINT64 }, 332 { "tcp_time_wait_syn", KSTAT_DATA_UINT64 }, 333 { "tcp_time_wait_success", KSTAT_DATA_UINT64 }, 334 { "tcp_time_wait_fail", KSTAT_DATA_UINT64 }, 335 { "tcp_reinput_syn", KSTAT_DATA_UINT64 }, 336 { "tcp_ip_output", KSTAT_DATA_UINT64 }, 337 { "tcp_detach_non_time_wait", KSTAT_DATA_UINT64 }, 338 { "tcp_detach_time_wait", KSTAT_DATA_UINT64 }, 339 { "tcp_time_wait_reap", KSTAT_DATA_UINT64 }, 340 { "tcp_clean_death_nondetached", KSTAT_DATA_UINT64 }, 341 { "tcp_reinit_calls", KSTAT_DATA_UINT64 }, 342 { "tcp_eager_err1", KSTAT_DATA_UINT64 }, 343 { "tcp_eager_err2", KSTAT_DATA_UINT64 }, 344 { "tcp_eager_blowoff_calls", KSTAT_DATA_UINT64 }, 345 { "tcp_eager_blowoff_q", KSTAT_DATA_UINT64 }, 346 { "tcp_eager_blowoff_q0", KSTAT_DATA_UINT64 }, 347 { "tcp_not_hard_bound", KSTAT_DATA_UINT64 }, 348 { "tcp_no_listener", KSTAT_DATA_UINT64 }, 349 { "tcp_found_eager", KSTAT_DATA_UINT64 }, 350 { "tcp_wrong_queue", KSTAT_DATA_UINT64 }, 351 { "tcp_found_eager_binding1", KSTAT_DATA_UINT64 }, 352 { "tcp_found_eager_bound1", KSTAT_DATA_UINT64 }, 353 { "tcp_eager_has_listener1", KSTAT_DATA_UINT64 }, 354 { "tcp_open_alloc", KSTAT_DATA_UINT64 }, 355 { "tcp_open_detached_alloc", KSTAT_DATA_UINT64 }, 356 { "tcp_rput_time_wait", KSTAT_DATA_UINT64 }, 357 { "tcp_listendrop", KSTAT_DATA_UINT64 }, 358 { "tcp_listendropq0", KSTAT_DATA_UINT64 }, 359 { "tcp_wrong_rq", KSTAT_DATA_UINT64 }, 360 { "tcp_rsrv_calls", KSTAT_DATA_UINT64 }, 361 { "tcp_eagerfree2", KSTAT_DATA_UINT64 }, 362 { "tcp_eagerfree3", KSTAT_DATA_UINT64 }, 363 { "tcp_eagerfree4", KSTAT_DATA_UINT64 }, 364 { "tcp_eagerfree5", KSTAT_DATA_UINT64 }, 365 { "tcp_timewait_syn_fail", KSTAT_DATA_UINT64 }, 366 { "tcp_listen_badflags", KSTAT_DATA_UINT64 }, 367 { "tcp_timeout_calls", KSTAT_DATA_UINT64 }, 368 { "tcp_timeout_cached_alloc", KSTAT_DATA_UINT64 }, 369 { "tcp_timeout_cancel_reqs", KSTAT_DATA_UINT64 }, 370 { "tcp_timeout_canceled", KSTAT_DATA_UINT64 }, 371 { "tcp_timermp_alloced", KSTAT_DATA_UINT64 }, 372 { "tcp_timermp_freed", KSTAT_DATA_UINT64 }, 373 { "tcp_timermp_allocfail", KSTAT_DATA_UINT64 }, 374 { "tcp_timermp_allocdblfail", KSTAT_DATA_UINT64 }, 375 { "tcp_push_timer_cnt", KSTAT_DATA_UINT64 }, 376 { "tcp_ack_timer_cnt", KSTAT_DATA_UINT64 }, 377 { "tcp_ire_null1", KSTAT_DATA_UINT64 }, 378 { "tcp_ire_null", KSTAT_DATA_UINT64 }, 379 { "tcp_ip_send", KSTAT_DATA_UINT64 }, 380 { "tcp_ip_ire_send", KSTAT_DATA_UINT64 }, 381 { "tcp_wsrv_called", KSTAT_DATA_UINT64 }, 382 { "tcp_flwctl_on", KSTAT_DATA_UINT64 }, 383 { "tcp_timer_fire_early", KSTAT_DATA_UINT64 }, 384 { "tcp_timer_fire_miss", KSTAT_DATA_UINT64 }, 385 { "tcp_freelist_cleanup", KSTAT_DATA_UINT64 }, 386 { "tcp_rput_v6_error", KSTAT_DATA_UINT64 }, 387 { "tcp_out_sw_cksum", KSTAT_DATA_UINT64 }, 388 { "tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 389 { "tcp_zcopy_on", KSTAT_DATA_UINT64 }, 390 { "tcp_zcopy_off", KSTAT_DATA_UINT64 }, 391 { "tcp_zcopy_backoff", KSTAT_DATA_UINT64 }, 392 { "tcp_zcopy_disable", KSTAT_DATA_UINT64 }, 393 { "tcp_mdt_pkt_out", KSTAT_DATA_UINT64 }, 394 { "tcp_mdt_pkt_out_v4", KSTAT_DATA_UINT64 }, 395 { "tcp_mdt_pkt_out_v6", KSTAT_DATA_UINT64 }, 396 { "tcp_mdt_discarded", KSTAT_DATA_UINT64 }, 397 { "tcp_mdt_conn_halted1", KSTAT_DATA_UINT64 }, 398 { "tcp_mdt_conn_halted2", KSTAT_DATA_UINT64 }, 399 { "tcp_mdt_conn_halted3", KSTAT_DATA_UINT64 }, 400 { "tcp_mdt_conn_resumed1", KSTAT_DATA_UINT64 }, 401 { "tcp_mdt_conn_resumed2", KSTAT_DATA_UINT64 }, 402 { "tcp_mdt_legacy_small", KSTAT_DATA_UINT64 }, 403 { "tcp_mdt_legacy_all", KSTAT_DATA_UINT64 }, 404 { "tcp_mdt_legacy_ret", KSTAT_DATA_UINT64 }, 405 { "tcp_mdt_allocfail", KSTAT_DATA_UINT64 }, 406 { "tcp_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 407 { "tcp_mdt_allocd", KSTAT_DATA_UINT64 }, 408 { "tcp_mdt_linked", KSTAT_DATA_UINT64 }, 409 { "tcp_fusion_flowctl", KSTAT_DATA_UINT64 }, 410 { "tcp_fusion_backenabled", KSTAT_DATA_UINT64 }, 411 { "tcp_fusion_urg", KSTAT_DATA_UINT64 }, 412 { "tcp_fusion_putnext", KSTAT_DATA_UINT64 }, 413 { "tcp_fusion_unfusable", KSTAT_DATA_UINT64 }, 414 { "tcp_fusion_aborted", KSTAT_DATA_UINT64 }, 415 { "tcp_fusion_unqualified", KSTAT_DATA_UINT64 }, 416 { "tcp_fusion_rrw_busy", KSTAT_DATA_UINT64 }, 417 { "tcp_fusion_rrw_msgcnt", KSTAT_DATA_UINT64 }, 418 { "tcp_fusion_rrw_plugged", KSTAT_DATA_UINT64 }, 419 { "tcp_in_ack_unsent_drop", KSTAT_DATA_UINT64 }, 420 { "tcp_sock_fallback", KSTAT_DATA_UINT64 }, 421 { "tcp_lso_enabled", KSTAT_DATA_UINT64 }, 422 { "tcp_lso_disabled", KSTAT_DATA_UINT64 }, 423 { "tcp_lso_times", KSTAT_DATA_UINT64 }, 424 { "tcp_lso_pkt_out", KSTAT_DATA_UINT64 }, 425 }; 426 427 static kstat_t *tcp_kstat; 428 429 /* 430 * Call either ip_output or ip_output_v6. This replaces putnext() calls on the 431 * tcp write side. 432 */ 433 #define CALL_IP_WPUT(connp, q, mp) { \ 434 ASSERT(((q)->q_flag & QREADR) == 0); \ 435 TCP_DBGSTAT(tcp_ip_output); \ 436 connp->conn_send(connp, (mp), (q), IP_WPUT); \ 437 } 438 439 /* Macros for timestamp comparisons */ 440 #define TSTMP_GEQ(a, b) ((int32_t)((a)-(b)) >= 0) 441 #define TSTMP_LT(a, b) ((int32_t)((a)-(b)) < 0) 442 443 /* 444 * Parameters for TCP Initial Send Sequence number (ISS) generation. When 445 * tcp_strong_iss is set to 1, which is the default, the ISS is calculated 446 * by adding three components: a time component which grows by 1 every 4096 447 * nanoseconds (versus every 4 microseconds suggested by RFC 793, page 27); 448 * a per-connection component which grows by 125000 for every new connection; 449 * and an "extra" component that grows by a random amount centered 450 * approximately on 64000. This causes the the ISS generator to cycle every 451 * 4.89 hours if no TCP connections are made, and faster if connections are 452 * made. 453 * 454 * When tcp_strong_iss is set to 0, ISS is calculated by adding two 455 * components: a time component which grows by 250000 every second; and 456 * a per-connection component which grows by 125000 for every new connections. 457 * 458 * A third method, when tcp_strong_iss is set to 2, for generating ISS is 459 * prescribed by Steve Bellovin. This involves adding time, the 125000 per 460 * connection, and a one-way hash (MD5) of the connection ID <sport, dport, 461 * src, dst>, a "truly" random (per RFC 1750) number, and a console-entered 462 * password. 463 */ 464 #define ISS_INCR 250000 465 #define ISS_NSEC_SHT 12 466 467 static uint32_t tcp_iss_incr_extra; /* Incremented for each connection */ 468 static kmutex_t tcp_iss_key_lock; 469 static MD5_CTX tcp_iss_key; 470 static sin_t sin_null; /* Zero address for quick clears */ 471 static sin6_t sin6_null; /* Zero address for quick clears */ 472 473 /* Packet dropper for TCP IPsec policy drops. */ 474 static ipdropper_t tcp_dropper; 475 476 /* 477 * This implementation follows the 4.3BSD interpretation of the urgent 478 * pointer and not RFC 1122. Switching to RFC 1122 behavior would cause 479 * incompatible changes in protocols like telnet and rlogin. 480 */ 481 #define TCP_OLD_URP_INTERPRETATION 1 482 483 #define TCP_IS_DETACHED_NONEAGER(tcp) \ 484 (TCP_IS_DETACHED(tcp) && \ 485 (!(tcp)->tcp_hard_binding)) 486 487 /* 488 * TCP reassembly macros. We hide starting and ending sequence numbers in 489 * b_next and b_prev of messages on the reassembly queue. The messages are 490 * chained using b_cont. These macros are used in tcp_reass() so we don't 491 * have to see the ugly casts and assignments. 492 */ 493 #define TCP_REASS_SEQ(mp) ((uint32_t)(uintptr_t)((mp)->b_next)) 494 #define TCP_REASS_SET_SEQ(mp, u) ((mp)->b_next = \ 495 (mblk_t *)(uintptr_t)(u)) 496 #define TCP_REASS_END(mp) ((uint32_t)(uintptr_t)((mp)->b_prev)) 497 #define TCP_REASS_SET_END(mp, u) ((mp)->b_prev = \ 498 (mblk_t *)(uintptr_t)(u)) 499 500 /* 501 * Implementation of TCP Timers. 502 * ============================= 503 * 504 * INTERFACE: 505 * 506 * There are two basic functions dealing with tcp timers: 507 * 508 * timeout_id_t tcp_timeout(connp, func, time) 509 * clock_t tcp_timeout_cancel(connp, timeout_id) 510 * TCP_TIMER_RESTART(tcp, intvl) 511 * 512 * tcp_timeout() starts a timer for the 'tcp' instance arranging to call 'func' 513 * after 'time' ticks passed. The function called by timeout() must adhere to 514 * the same restrictions as a driver soft interrupt handler - it must not sleep 515 * or call other functions that might sleep. The value returned is the opaque 516 * non-zero timeout identifier that can be passed to tcp_timeout_cancel() to 517 * cancel the request. The call to tcp_timeout() may fail in which case it 518 * returns zero. This is different from the timeout(9F) function which never 519 * fails. 520 * 521 * The call-back function 'func' always receives 'connp' as its single 522 * argument. It is always executed in the squeue corresponding to the tcp 523 * structure. The tcp structure is guaranteed to be present at the time the 524 * call-back is called. 525 * 526 * NOTE: The call-back function 'func' is never called if tcp is in 527 * the TCPS_CLOSED state. 528 * 529 * tcp_timeout_cancel() attempts to cancel a pending tcp_timeout() 530 * request. locks acquired by the call-back routine should not be held across 531 * the call to tcp_timeout_cancel() or a deadlock may result. 532 * 533 * tcp_timeout_cancel() returns -1 if it can not cancel the timeout request. 534 * Otherwise, it returns an integer value greater than or equal to 0. In 535 * particular, if the call-back function is already placed on the squeue, it can 536 * not be canceled. 537 * 538 * NOTE: both tcp_timeout() and tcp_timeout_cancel() should always be called 539 * within squeue context corresponding to the tcp instance. Since the 540 * call-back is also called via the same squeue, there are no race 541 * conditions described in untimeout(9F) manual page since all calls are 542 * strictly serialized. 543 * 544 * TCP_TIMER_RESTART() is a macro that attempts to cancel a pending timeout 545 * stored in tcp_timer_tid and starts a new one using 546 * MSEC_TO_TICK(intvl). It always uses tcp_timer() function as a call-back 547 * and stores the return value of tcp_timeout() in the tcp->tcp_timer_tid 548 * field. 549 * 550 * NOTE: since the timeout cancellation is not guaranteed, the cancelled 551 * call-back may still be called, so it is possible tcp_timer() will be 552 * called several times. This should not be a problem since tcp_timer() 553 * should always check the tcp instance state. 554 * 555 * 556 * IMPLEMENTATION: 557 * 558 * TCP timers are implemented using three-stage process. The call to 559 * tcp_timeout() uses timeout(9F) function to call tcp_timer_callback() function 560 * when the timer expires. The tcp_timer_callback() arranges the call of the 561 * tcp_timer_handler() function via squeue corresponding to the tcp 562 * instance. The tcp_timer_handler() calls actual requested timeout call-back 563 * and passes tcp instance as an argument to it. Information is passed between 564 * stages using the tcp_timer_t structure which contains the connp pointer, the 565 * tcp call-back to call and the timeout id returned by the timeout(9F). 566 * 567 * The tcp_timer_t structure is not used directly, it is embedded in an mblk_t - 568 * like structure that is used to enter an squeue. The mp->b_rptr of this pseudo 569 * mblk points to the beginning of tcp_timer_t structure. The tcp_timeout() 570 * returns the pointer to this mblk. 571 * 572 * The pseudo mblk is allocated from a special tcp_timer_cache kmem cache. It 573 * looks like a normal mblk without actual dblk attached to it. 574 * 575 * To optimize performance each tcp instance holds a small cache of timer 576 * mblocks. In the current implementation it caches up to two timer mblocks per 577 * tcp instance. The cache is preserved over tcp frees and is only freed when 578 * the whole tcp structure is destroyed by its kmem destructor. Since all tcp 579 * timer processing happens on a corresponding squeue, the cache manipulation 580 * does not require any locks. Experiments show that majority of timer mblocks 581 * allocations are satisfied from the tcp cache and do not involve kmem calls. 582 * 583 * The tcp_timeout() places a refhold on the connp instance which guarantees 584 * that it will be present at the time the call-back function fires. The 585 * tcp_timer_handler() drops the reference after calling the call-back, so the 586 * call-back function does not need to manipulate the references explicitly. 587 */ 588 589 typedef struct tcp_timer_s { 590 conn_t *connp; 591 void (*tcpt_proc)(void *); 592 timeout_id_t tcpt_tid; 593 } tcp_timer_t; 594 595 static kmem_cache_t *tcp_timercache; 596 kmem_cache_t *tcp_sack_info_cache; 597 kmem_cache_t *tcp_iphc_cache; 598 599 /* 600 * For scalability, we must not run a timer for every TCP connection 601 * in TIME_WAIT state. To see why, consider (for time wait interval of 602 * 4 minutes): 603 * 1000 connections/sec * 240 seconds/time wait = 240,000 active conn's 604 * 605 * This list is ordered by time, so you need only delete from the head 606 * until you get to entries which aren't old enough to delete yet. 607 * The list consists of only the detached TIME_WAIT connections. 608 * 609 * Note that the timer (tcp_time_wait_expire) is started when the tcp_t 610 * becomes detached TIME_WAIT (either by changing the state and already 611 * being detached or the other way around). This means that the TIME_WAIT 612 * state can be extended (up to doubled) if the connection doesn't become 613 * detached for a long time. 614 * 615 * The list manipulations (including tcp_time_wait_next/prev) 616 * are protected by the tcp_time_wait_lock. The content of the 617 * detached TIME_WAIT connections is protected by the normal perimeters. 618 */ 619 620 typedef struct tcp_squeue_priv_s { 621 kmutex_t tcp_time_wait_lock; 622 /* Protects the next 3 globals */ 623 timeout_id_t tcp_time_wait_tid; 624 tcp_t *tcp_time_wait_head; 625 tcp_t *tcp_time_wait_tail; 626 tcp_t *tcp_free_list; 627 uint_t tcp_free_list_cnt; 628 } tcp_squeue_priv_t; 629 630 /* 631 * TCP_TIME_WAIT_DELAY governs how often the time_wait_collector runs. 632 * Running it every 5 seconds seems to give the best results. 633 */ 634 #define TCP_TIME_WAIT_DELAY drv_usectohz(5000000) 635 636 /* 637 * To prevent memory hog, limit the number of entries in tcp_free_list 638 * to 1% of available memory / number of cpus 639 */ 640 uint_t tcp_free_list_max_cnt = 0; 641 642 #define TCP_XMIT_LOWATER 4096 643 #define TCP_XMIT_HIWATER 49152 644 #define TCP_RECV_LOWATER 2048 645 #define TCP_RECV_HIWATER 49152 646 647 /* 648 * PAWS needs a timer for 24 days. This is the number of ticks in 24 days 649 */ 650 #define PAWS_TIMEOUT ((clock_t)(24*24*60*60*hz)) 651 652 #define TIDUSZ 4096 /* transport interface data unit size */ 653 654 /* 655 * Bind hash list size and has function. It has to be a power of 2 for 656 * hashing. 657 */ 658 #define TCP_BIND_FANOUT_SIZE 512 659 #define TCP_BIND_HASH(lport) (ntohs(lport) & (TCP_BIND_FANOUT_SIZE - 1)) 660 /* 661 * Size of listen and acceptor hash list. It has to be a power of 2 for 662 * hashing. 663 */ 664 #define TCP_FANOUT_SIZE 256 665 666 #ifdef _ILP32 667 #define TCP_ACCEPTOR_HASH(accid) \ 668 (((uint_t)(accid) >> 8) & (TCP_FANOUT_SIZE - 1)) 669 #else 670 #define TCP_ACCEPTOR_HASH(accid) \ 671 ((uint_t)(accid) & (TCP_FANOUT_SIZE - 1)) 672 #endif /* _ILP32 */ 673 674 #define IP_ADDR_CACHE_SIZE 2048 675 #define IP_ADDR_CACHE_HASH(faddr) \ 676 (ntohl(faddr) & (IP_ADDR_CACHE_SIZE -1)) 677 678 /* Hash for HSPs uses all 32 bits, since both networks and hosts are in table */ 679 #define TCP_HSP_HASH_SIZE 256 680 681 #define TCP_HSP_HASH(addr) \ 682 (((addr>>24) ^ (addr >>16) ^ \ 683 (addr>>8) ^ (addr)) % TCP_HSP_HASH_SIZE) 684 685 /* 686 * TCP options struct returned from tcp_parse_options. 687 */ 688 typedef struct tcp_opt_s { 689 uint32_t tcp_opt_mss; 690 uint32_t tcp_opt_wscale; 691 uint32_t tcp_opt_ts_val; 692 uint32_t tcp_opt_ts_ecr; 693 tcp_t *tcp; 694 } tcp_opt_t; 695 696 /* 697 * RFC1323-recommended phrasing of TSTAMP option, for easier parsing 698 */ 699 700 #ifdef _BIG_ENDIAN 701 #define TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \ 702 (TCPOPT_TSTAMP << 8) | 10) 703 #else 704 #define TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \ 705 (TCPOPT_NOP << 8) | TCPOPT_NOP) 706 #endif 707 708 /* 709 * Flags returned from tcp_parse_options. 710 */ 711 #define TCP_OPT_MSS_PRESENT 1 712 #define TCP_OPT_WSCALE_PRESENT 2 713 #define TCP_OPT_TSTAMP_PRESENT 4 714 #define TCP_OPT_SACK_OK_PRESENT 8 715 #define TCP_OPT_SACK_PRESENT 16 716 717 /* TCP option length */ 718 #define TCPOPT_NOP_LEN 1 719 #define TCPOPT_MAXSEG_LEN 4 720 #define TCPOPT_WS_LEN 3 721 #define TCPOPT_REAL_WS_LEN (TCPOPT_WS_LEN+1) 722 #define TCPOPT_TSTAMP_LEN 10 723 #define TCPOPT_REAL_TS_LEN (TCPOPT_TSTAMP_LEN+2) 724 #define TCPOPT_SACK_OK_LEN 2 725 #define TCPOPT_REAL_SACK_OK_LEN (TCPOPT_SACK_OK_LEN+2) 726 #define TCPOPT_REAL_SACK_LEN 4 727 #define TCPOPT_MAX_SACK_LEN 36 728 #define TCPOPT_HEADER_LEN 2 729 730 /* TCP cwnd burst factor. */ 731 #define TCP_CWND_INFINITE 65535 732 #define TCP_CWND_SS 3 733 #define TCP_CWND_NORMAL 5 734 735 /* Maximum TCP initial cwin (start/restart). */ 736 #define TCP_MAX_INIT_CWND 8 737 738 /* 739 * Initialize cwnd according to RFC 3390. def_max_init_cwnd is 740 * either tcp_slow_start_initial or tcp_slow_start_after idle 741 * depending on the caller. If the upper layer has not used the 742 * TCP_INIT_CWND option to change the initial cwnd, tcp_init_cwnd 743 * should be 0 and we use the formula in RFC 3390 to set tcp_cwnd. 744 * If the upper layer has changed set the tcp_init_cwnd, just use 745 * it to calculate the tcp_cwnd. 746 */ 747 #define SET_TCP_INIT_CWND(tcp, mss, def_max_init_cwnd) \ 748 { \ 749 if ((tcp)->tcp_init_cwnd == 0) { \ 750 (tcp)->tcp_cwnd = MIN(def_max_init_cwnd * (mss), \ 751 MIN(4 * (mss), MAX(2 * (mss), 4380 / (mss) * (mss)))); \ 752 } else { \ 753 (tcp)->tcp_cwnd = (tcp)->tcp_init_cwnd * (mss); \ 754 } \ 755 tcp->tcp_cwnd_cnt = 0; \ 756 } 757 758 /* TCP Timer control structure */ 759 typedef struct tcpt_s { 760 pfv_t tcpt_pfv; /* The routine we are to call */ 761 tcp_t *tcpt_tcp; /* The parameter we are to pass in */ 762 } tcpt_t; 763 764 /* Host Specific Parameter structure */ 765 typedef struct tcp_hsp { 766 struct tcp_hsp *tcp_hsp_next; 767 in6_addr_t tcp_hsp_addr_v6; 768 in6_addr_t tcp_hsp_subnet_v6; 769 uint_t tcp_hsp_vers; /* IPV4_VERSION | IPV6_VERSION */ 770 int32_t tcp_hsp_sendspace; 771 int32_t tcp_hsp_recvspace; 772 int32_t tcp_hsp_tstamp; 773 } tcp_hsp_t; 774 #define tcp_hsp_addr V4_PART_OF_V6(tcp_hsp_addr_v6) 775 #define tcp_hsp_subnet V4_PART_OF_V6(tcp_hsp_subnet_v6) 776 777 /* 778 * Functions called directly via squeue having a prototype of edesc_t. 779 */ 780 void tcp_conn_request(void *arg, mblk_t *mp, void *arg2); 781 static void tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2); 782 void tcp_accept_finish(void *arg, mblk_t *mp, void *arg2); 783 static void tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2); 784 static void tcp_wput_proto(void *arg, mblk_t *mp, void *arg2); 785 void tcp_input(void *arg, mblk_t *mp, void *arg2); 786 void tcp_rput_data(void *arg, mblk_t *mp, void *arg2); 787 static void tcp_close_output(void *arg, mblk_t *mp, void *arg2); 788 void tcp_output(void *arg, mblk_t *mp, void *arg2); 789 static void tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2); 790 static void tcp_timer_handler(void *arg, mblk_t *mp, void *arg2); 791 static void tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2); 792 793 794 /* Prototype for TCP functions */ 795 static void tcp_random_init(void); 796 int tcp_random(void); 797 static void tcp_accept(tcp_t *tcp, mblk_t *mp); 798 static void tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, 799 tcp_t *eager); 800 static int tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp); 801 static in_port_t tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, 802 int reuseaddr, boolean_t quick_connect, boolean_t bind_to_req_port_only, 803 boolean_t user_specified); 804 static void tcp_closei_local(tcp_t *tcp); 805 static void tcp_close_detached(tcp_t *tcp); 806 static boolean_t tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, 807 mblk_t *idmp, mblk_t **defermp); 808 static void tcp_connect(tcp_t *tcp, mblk_t *mp); 809 static void tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp, 810 in_port_t dstport, uint_t srcid); 811 static void tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp, 812 in_port_t dstport, uint32_t flowinfo, uint_t srcid, 813 uint32_t scope_id); 814 static int tcp_clean_death(tcp_t *tcp, int err, uint8_t tag); 815 static void tcp_def_q_set(tcp_t *tcp, mblk_t *mp); 816 static void tcp_disconnect(tcp_t *tcp, mblk_t *mp); 817 static char *tcp_display(tcp_t *tcp, char *, char); 818 static boolean_t tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum); 819 static void tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only); 820 static void tcp_eager_unlink(tcp_t *tcp); 821 static void tcp_err_ack(tcp_t *tcp, mblk_t *mp, int tlierr, 822 int unixerr); 823 static void tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, 824 int tlierr, int unixerr); 825 static int tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, 826 cred_t *cr); 827 static int tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, 828 char *value, caddr_t cp, cred_t *cr); 829 static int tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, 830 char *value, caddr_t cp, cred_t *cr); 831 static int tcp_tpistate(tcp_t *tcp); 832 static void tcp_bind_hash_insert(tf_t *tf, tcp_t *tcp, 833 int caller_holds_lock); 834 static void tcp_bind_hash_remove(tcp_t *tcp); 835 static tcp_t *tcp_acceptor_hash_lookup(t_uscalar_t id); 836 void tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp); 837 static void tcp_acceptor_hash_remove(tcp_t *tcp); 838 static void tcp_capability_req(tcp_t *tcp, mblk_t *mp); 839 static void tcp_info_req(tcp_t *tcp, mblk_t *mp); 840 static void tcp_addr_req(tcp_t *tcp, mblk_t *mp); 841 static void tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *mp); 842 static int tcp_header_init_ipv4(tcp_t *tcp); 843 static int tcp_header_init_ipv6(tcp_t *tcp); 844 int tcp_init(tcp_t *tcp, queue_t *q); 845 static int tcp_init_values(tcp_t *tcp); 846 static mblk_t *tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic); 847 static mblk_t *tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim, 848 t_scalar_t addr_length); 849 static void tcp_ip_ire_mark_advice(tcp_t *tcp); 850 static void tcp_ip_notify(tcp_t *tcp); 851 static mblk_t *tcp_ire_mp(mblk_t *mp); 852 static void tcp_iss_init(tcp_t *tcp); 853 static void tcp_keepalive_killer(void *arg); 854 static int tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt); 855 static void tcp_mss_set(tcp_t *tcp, uint32_t size); 856 static int tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, 857 int *do_disconnectp, int *t_errorp, int *sys_errorp); 858 static boolean_t tcp_allow_connopt_set(int level, int name); 859 int tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr); 860 int tcp_opt_get(queue_t *q, int level, int name, uchar_t *ptr); 861 int tcp_opt_set(queue_t *q, uint_t optset_context, int level, 862 int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp, 863 uchar_t *outvalp, void *thisdg_attrs, cred_t *cr, 864 mblk_t *mblk); 865 static void tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha); 866 static int tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, 867 uchar_t *ptr, uint_t len); 868 static int tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr); 869 static boolean_t tcp_param_register(tcpparam_t *tcppa, int cnt); 870 static int tcp_param_set(queue_t *q, mblk_t *mp, char *value, 871 caddr_t cp, cred_t *cr); 872 static int tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, 873 caddr_t cp, cred_t *cr); 874 static void tcp_iss_key_init(uint8_t *phrase, int len); 875 static int tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, 876 caddr_t cp, cred_t *cr); 877 static void tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_cnt); 878 static mblk_t *tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start); 879 static void tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp); 880 static void tcp_reinit(tcp_t *tcp); 881 static void tcp_reinit_values(tcp_t *tcp); 882 static void tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval, 883 tcp_t *thisstream, cred_t *cr); 884 885 static uint_t tcp_rcv_drain(queue_t *q, tcp_t *tcp); 886 static void tcp_sack_rxmit(tcp_t *tcp, uint_t *flags); 887 static boolean_t tcp_send_rst_chk(void); 888 static void tcp_ss_rexmit(tcp_t *tcp); 889 static mblk_t *tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp); 890 static void tcp_process_options(tcp_t *, tcph_t *); 891 static void tcp_rput_common(tcp_t *tcp, mblk_t *mp); 892 static void tcp_rsrv(queue_t *q); 893 static int tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd); 894 static int tcp_snmp_state(tcp_t *tcp); 895 static int tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, 896 cred_t *cr); 897 static int tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 898 cred_t *cr); 899 static int tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 900 cred_t *cr); 901 static int tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 902 cred_t *cr); 903 static int tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 904 cred_t *cr); 905 static int tcp_host_param_set(queue_t *q, mblk_t *mp, char *value, 906 caddr_t cp, cred_t *cr); 907 static int tcp_host_param_set_ipv6(queue_t *q, mblk_t *mp, char *value, 908 caddr_t cp, cred_t *cr); 909 static int tcp_host_param_report(queue_t *q, mblk_t *mp, caddr_t cp, 910 cred_t *cr); 911 static void tcp_timer(void *arg); 912 static void tcp_timer_callback(void *); 913 static in_port_t tcp_update_next_port(in_port_t port, const tcp_t *tcp, 914 boolean_t random); 915 static in_port_t tcp_get_next_priv_port(const tcp_t *); 916 static void tcp_wput_sock(queue_t *q, mblk_t *mp); 917 void tcp_wput_accept(queue_t *q, mblk_t *mp); 918 static void tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent); 919 static void tcp_wput_flush(tcp_t *tcp, mblk_t *mp); 920 static void tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp); 921 static int tcp_send(queue_t *q, tcp_t *tcp, const int mss, 922 const int tcp_hdr_len, const int tcp_tcp_hdr_len, 923 const int num_sack_blk, int *usable, uint_t *snxt, 924 int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 925 const int mdt_thres); 926 static int tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, 927 const int tcp_hdr_len, const int tcp_tcp_hdr_len, 928 const int num_sack_blk, int *usable, uint_t *snxt, 929 int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 930 const int mdt_thres); 931 static void tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, 932 int num_sack_blk); 933 static void tcp_wsrv(queue_t *q); 934 static int tcp_xmit_end(tcp_t *tcp); 935 static void tcp_ack_timer(void *arg); 936 static mblk_t *tcp_ack_mp(tcp_t *tcp); 937 static void tcp_xmit_early_reset(char *str, mblk_t *mp, 938 uint32_t seq, uint32_t ack, int ctl, uint_t ip_hdr_len, 939 zoneid_t zoneid); 940 static void tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, 941 uint32_t ack, int ctl); 942 static tcp_hsp_t *tcp_hsp_lookup(ipaddr_t addr); 943 static tcp_hsp_t *tcp_hsp_lookup_ipv6(in6_addr_t *addr); 944 static int setmaxps(queue_t *q, int maxpsz); 945 static void tcp_set_rto(tcp_t *, time_t); 946 static boolean_t tcp_check_policy(tcp_t *, mblk_t *, ipha_t *, ip6_t *, 947 boolean_t, boolean_t); 948 static void tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, 949 boolean_t ipsec_mctl); 950 static mblk_t *tcp_setsockopt_mp(int level, int cmd, 951 char *opt, int optlen); 952 static int tcp_build_hdrs(queue_t *, tcp_t *); 953 static void tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, 954 uint32_t seg_seq, uint32_t seg_ack, int seg_len, 955 tcph_t *tcph); 956 boolean_t tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp); 957 boolean_t tcp_reserved_port_add(int, in_port_t *, in_port_t *); 958 boolean_t tcp_reserved_port_del(in_port_t, in_port_t); 959 boolean_t tcp_reserved_port_check(in_port_t); 960 static tcp_t *tcp_alloc_temp_tcp(in_port_t); 961 static int tcp_reserved_port_list(queue_t *, mblk_t *, caddr_t, cred_t *); 962 static mblk_t *tcp_mdt_info_mp(mblk_t *); 963 static void tcp_mdt_update(tcp_t *, ill_mdt_capab_t *, boolean_t); 964 static int tcp_mdt_add_attrs(multidata_t *, const mblk_t *, 965 const boolean_t, const uint32_t, const uint32_t, 966 const uint32_t, const uint32_t); 967 static void tcp_multisend_data(tcp_t *, ire_t *, const ill_t *, mblk_t *, 968 const uint_t, const uint_t, boolean_t *); 969 static mblk_t *tcp_lso_info_mp(mblk_t *); 970 static void tcp_lso_update(tcp_t *, ill_lso_capab_t *); 971 static void tcp_send_data(tcp_t *, queue_t *, mblk_t *); 972 extern mblk_t *tcp_timermp_alloc(int); 973 extern void tcp_timermp_free(tcp_t *); 974 static void tcp_timer_free(tcp_t *tcp, mblk_t *mp); 975 static void tcp_stop_lingering(tcp_t *tcp); 976 static void tcp_close_linger_timeout(void *arg); 977 void tcp_ddi_init(void); 978 void tcp_ddi_destroy(void); 979 static void tcp_kstat_init(void); 980 static void tcp_kstat_fini(void); 981 static int tcp_kstat_update(kstat_t *kp, int rw); 982 void tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp); 983 static int tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 984 tcph_t *tcph, uint_t ipvers, mblk_t *idmp); 985 static int tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha, 986 tcph_t *tcph, mblk_t *idmp); 987 static squeue_func_t tcp_squeue_switch(int); 988 989 static int tcp_open(queue_t *, dev_t *, int, int, cred_t *); 990 static int tcp_close(queue_t *, int); 991 static int tcpclose_accept(queue_t *); 992 static int tcp_modclose(queue_t *); 993 static void tcp_wput_mod(queue_t *, mblk_t *); 994 995 static void tcp_squeue_add(squeue_t *); 996 static boolean_t tcp_zcopy_check(tcp_t *); 997 static void tcp_zcopy_notify(tcp_t *); 998 static mblk_t *tcp_zcopy_disable(tcp_t *, mblk_t *); 999 static mblk_t *tcp_zcopy_backoff(tcp_t *, mblk_t *, int); 1000 static void tcp_ire_ill_check(tcp_t *, ire_t *, ill_t *, boolean_t); 1001 1002 extern void tcp_kssl_input(tcp_t *, mblk_t *); 1003 1004 void tcp_eager_kill(void *arg, mblk_t *mp, void *arg2); 1005 void tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2); 1006 1007 /* 1008 * Routines related to the TCP_IOC_ABORT_CONN ioctl command. 1009 * 1010 * TCP_IOC_ABORT_CONN is a non-transparent ioctl command used for aborting 1011 * TCP connections. To invoke this ioctl, a tcp_ioc_abort_conn_t structure 1012 * (defined in tcp.h) needs to be filled in and passed into the kernel 1013 * via an I_STR ioctl command (see streamio(7I)). The tcp_ioc_abort_conn_t 1014 * structure contains the four-tuple of a TCP connection and a range of TCP 1015 * states (specified by ac_start and ac_end). The use of wildcard addresses 1016 * and ports is allowed. Connections with a matching four tuple and a state 1017 * within the specified range will be aborted. The valid states for the 1018 * ac_start and ac_end fields are in the range TCPS_SYN_SENT to TCPS_TIME_WAIT, 1019 * inclusive. 1020 * 1021 * An application which has its connection aborted by this ioctl will receive 1022 * an error that is dependent on the connection state at the time of the abort. 1023 * If the connection state is < TCPS_TIME_WAIT, an application should behave as 1024 * though a RST packet has been received. If the connection state is equal to 1025 * TCPS_TIME_WAIT, the 2MSL timeout will immediately be canceled by the kernel 1026 * and all resources associated with the connection will be freed. 1027 */ 1028 static mblk_t *tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *, tcp_t *); 1029 static void tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *); 1030 static void tcp_ioctl_abort_handler(tcp_t *, mblk_t *); 1031 static int tcp_ioctl_abort(tcp_ioc_abort_conn_t *); 1032 static void tcp_ioctl_abort_conn(queue_t *, mblk_t *); 1033 static int tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *, int, int *, 1034 boolean_t); 1035 1036 static struct module_info tcp_rinfo = { 1037 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER 1038 }; 1039 1040 static struct module_info tcp_winfo = { 1041 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16 1042 }; 1043 1044 /* 1045 * Entry points for TCP as a module. It only allows SNMP requests 1046 * to pass through. 1047 */ 1048 struct qinit tcp_mod_rinit = { 1049 (pfi_t)putnext, NULL, tcp_open, ip_snmpmod_close, NULL, &tcp_rinfo, 1050 }; 1051 1052 struct qinit tcp_mod_winit = { 1053 (pfi_t)ip_snmpmod_wput, NULL, tcp_open, ip_snmpmod_close, NULL, 1054 &tcp_rinfo 1055 }; 1056 1057 /* 1058 * Entry points for TCP as a device. The normal case which supports 1059 * the TCP functionality. 1060 */ 1061 struct qinit tcp_rinit = { 1062 NULL, (pfi_t)tcp_rsrv, tcp_open, tcp_close, NULL, &tcp_rinfo 1063 }; 1064 1065 struct qinit tcp_winit = { 1066 (pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 1067 }; 1068 1069 /* Initial entry point for TCP in socket mode. */ 1070 struct qinit tcp_sock_winit = { 1071 (pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 1072 }; 1073 1074 /* 1075 * Entry points for TCP as a acceptor STREAM opened by sockfs when doing 1076 * an accept. Avoid allocating data structures since eager has already 1077 * been created. 1078 */ 1079 struct qinit tcp_acceptor_rinit = { 1080 NULL, (pfi_t)tcp_rsrv, NULL, tcpclose_accept, NULL, &tcp_winfo 1081 }; 1082 1083 struct qinit tcp_acceptor_winit = { 1084 (pfi_t)tcp_wput_accept, NULL, NULL, NULL, NULL, &tcp_winfo 1085 }; 1086 1087 /* 1088 * Entry points for TCP loopback (read side only) 1089 */ 1090 struct qinit tcp_loopback_rinit = { 1091 (pfi_t)0, (pfi_t)tcp_rsrv, tcp_open, tcp_close, (pfi_t)0, 1092 &tcp_rinfo, NULL, tcp_fuse_rrw, tcp_fuse_rinfop, STRUIOT_STANDARD 1093 }; 1094 1095 struct streamtab tcpinfo = { 1096 &tcp_rinit, &tcp_winit 1097 }; 1098 1099 extern squeue_func_t tcp_squeue_wput_proc; 1100 extern squeue_func_t tcp_squeue_timer_proc; 1101 1102 /* Protected by tcp_g_q_lock */ 1103 static queue_t *tcp_g_q; /* Default queue used during detached closes */ 1104 kmutex_t tcp_g_q_lock; 1105 1106 /* Protected by tcp_hsp_lock */ 1107 /* 1108 * XXX The host param mechanism should go away and instead we should use 1109 * the metrics associated with the routes to determine the default sndspace 1110 * and rcvspace. 1111 */ 1112 static tcp_hsp_t **tcp_hsp_hash; /* Hash table for HSPs */ 1113 krwlock_t tcp_hsp_lock; 1114 1115 /* 1116 * Extra privileged ports. In host byte order. 1117 * Protected by tcp_epriv_port_lock. 1118 */ 1119 #define TCP_NUM_EPRIV_PORTS 64 1120 static int tcp_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS; 1121 static uint16_t tcp_g_epriv_ports[TCP_NUM_EPRIV_PORTS] = { 2049, 4045 }; 1122 kmutex_t tcp_epriv_port_lock; 1123 1124 /* 1125 * The smallest anonymous port in the privileged port range which TCP 1126 * looks for free port. Use in the option TCP_ANONPRIVBIND. 1127 */ 1128 static in_port_t tcp_min_anonpriv_port = 512; 1129 1130 /* Only modified during _init and _fini thus no locking is needed. */ 1131 static caddr_t tcp_g_nd; /* Head of 'named dispatch' variable list */ 1132 1133 /* Hint not protected by any lock */ 1134 static uint_t tcp_next_port_to_try; 1135 1136 1137 /* TCP bind hash list - all tcp_t with state >= BOUND. */ 1138 tf_t tcp_bind_fanout[TCP_BIND_FANOUT_SIZE]; 1139 1140 /* TCP queue hash list - all tcp_t in case they will be an acceptor. */ 1141 static tf_t tcp_acceptor_fanout[TCP_FANOUT_SIZE]; 1142 1143 /* 1144 * TCP has a private interface for other kernel modules to reserve a 1145 * port range for them to use. Once reserved, TCP will not use any ports 1146 * in the range. This interface relies on the TCP_EXCLBIND feature. If 1147 * the semantics of TCP_EXCLBIND is changed, implementation of this interface 1148 * has to be verified. 1149 * 1150 * There can be TCP_RESERVED_PORTS_ARRAY_MAX_SIZE port ranges. Each port 1151 * range can cover at most TCP_RESERVED_PORTS_RANGE_MAX ports. A port 1152 * range is [port a, port b] inclusive. And each port range is between 1153 * TCP_LOWESET_RESERVED_PORT and TCP_LARGEST_RESERVED_PORT inclusive. 1154 * 1155 * Note that the default anonymous port range starts from 32768. There is 1156 * no port "collision" between that and the reserved port range. If there 1157 * is port collision (because the default smallest anonymous port is lowered 1158 * or some apps specifically bind to ports in the reserved port range), the 1159 * system may not be able to reserve a port range even there are enough 1160 * unbound ports as a reserved port range contains consecutive ports . 1161 */ 1162 #define TCP_RESERVED_PORTS_ARRAY_MAX_SIZE 5 1163 #define TCP_RESERVED_PORTS_RANGE_MAX 1000 1164 #define TCP_SMALLEST_RESERVED_PORT 10240 1165 #define TCP_LARGEST_RESERVED_PORT 20480 1166 1167 /* Structure to represent those reserved port ranges. */ 1168 typedef struct tcp_rport_s { 1169 in_port_t lo_port; 1170 in_port_t hi_port; 1171 tcp_t **temp_tcp_array; 1172 } tcp_rport_t; 1173 1174 /* The reserved port array. */ 1175 static tcp_rport_t tcp_reserved_port[TCP_RESERVED_PORTS_ARRAY_MAX_SIZE]; 1176 1177 /* Locks to protect the tcp_reserved_ports array. */ 1178 static krwlock_t tcp_reserved_port_lock; 1179 1180 /* The number of ranges in the array. */ 1181 uint32_t tcp_reserved_port_array_size = 0; 1182 1183 /* 1184 * MIB-2 stuff for SNMP 1185 * Note: tcpInErrs {tcp 15} is accumulated in ip.c 1186 */ 1187 mib2_tcp_t tcp_mib; /* SNMP fixed size info */ 1188 kstat_t *tcp_mibkp; /* kstat exporting tcp_mib data */ 1189 1190 boolean_t tcp_icmp_source_quench = B_FALSE; 1191 /* 1192 * Following assumes TPI alignment requirements stay along 32 bit 1193 * boundaries 1194 */ 1195 #define ROUNDUP32(x) \ 1196 (((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1)) 1197 1198 /* Template for response to info request. */ 1199 static struct T_info_ack tcp_g_t_info_ack = { 1200 T_INFO_ACK, /* PRIM_type */ 1201 0, /* TSDU_size */ 1202 T_INFINITE, /* ETSDU_size */ 1203 T_INVALID, /* CDATA_size */ 1204 T_INVALID, /* DDATA_size */ 1205 sizeof (sin_t), /* ADDR_size */ 1206 0, /* OPT_size - not initialized here */ 1207 TIDUSZ, /* TIDU_size */ 1208 T_COTS_ORD, /* SERV_type */ 1209 TCPS_IDLE, /* CURRENT_state */ 1210 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 1211 }; 1212 1213 static struct T_info_ack tcp_g_t_info_ack_v6 = { 1214 T_INFO_ACK, /* PRIM_type */ 1215 0, /* TSDU_size */ 1216 T_INFINITE, /* ETSDU_size */ 1217 T_INVALID, /* CDATA_size */ 1218 T_INVALID, /* DDATA_size */ 1219 sizeof (sin6_t), /* ADDR_size */ 1220 0, /* OPT_size - not initialized here */ 1221 TIDUSZ, /* TIDU_size */ 1222 T_COTS_ORD, /* SERV_type */ 1223 TCPS_IDLE, /* CURRENT_state */ 1224 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 1225 }; 1226 1227 #define MS 1L 1228 #define SECONDS (1000 * MS) 1229 #define MINUTES (60 * SECONDS) 1230 #define HOURS (60 * MINUTES) 1231 #define DAYS (24 * HOURS) 1232 1233 #define PARAM_MAX (~(uint32_t)0) 1234 1235 /* Max size IP datagram is 64k - 1 */ 1236 #define TCP_MSS_MAX_IPV4 (IP_MAXPACKET - (sizeof (ipha_t) + sizeof (tcph_t))) 1237 #define TCP_MSS_MAX_IPV6 (IP_MAXPACKET - (sizeof (ip6_t) + sizeof (tcph_t))) 1238 /* Max of the above */ 1239 #define TCP_MSS_MAX TCP_MSS_MAX_IPV4 1240 1241 /* Largest TCP port number */ 1242 #define TCP_MAX_PORT (64 * 1024 - 1) 1243 1244 /* 1245 * tcp_wroff_xtra is the extra space in front of TCP/IP header for link 1246 * layer header. It has to be a multiple of 4. 1247 */ 1248 static tcpparam_t tcp_wroff_xtra_param = { 0, 256, 32, "tcp_wroff_xtra" }; 1249 #define tcp_wroff_xtra tcp_wroff_xtra_param.tcp_param_val 1250 1251 /* 1252 * All of these are alterable, within the min/max values given, at run time. 1253 * Note that the default value of "tcp_time_wait_interval" is four minutes, 1254 * per the TCP spec. 1255 */ 1256 /* BEGIN CSTYLED */ 1257 tcpparam_t tcp_param_arr[] = { 1258 /*min max value name */ 1259 { 1*SECONDS, 10*MINUTES, 1*MINUTES, "tcp_time_wait_interval"}, 1260 { 1, PARAM_MAX, 128, "tcp_conn_req_max_q" }, 1261 { 0, PARAM_MAX, 1024, "tcp_conn_req_max_q0" }, 1262 { 1, 1024, 1, "tcp_conn_req_min" }, 1263 { 0*MS, 20*SECONDS, 0*MS, "tcp_conn_grace_period" }, 1264 { 128, (1<<30), 1024*1024, "tcp_cwnd_max" }, 1265 { 0, 10, 0, "tcp_debug" }, 1266 { 1024, (32*1024), 1024, "tcp_smallest_nonpriv_port"}, 1267 { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_cinterval"}, 1268 { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_linterval"}, 1269 { 500*MS, PARAM_MAX, 8*MINUTES, "tcp_ip_abort_interval"}, 1270 { 1*SECONDS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_cinterval"}, 1271 { 500*MS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_interval"}, 1272 { 1, 255, 64, "tcp_ipv4_ttl"}, 1273 { 10*SECONDS, 10*DAYS, 2*HOURS, "tcp_keepalive_interval"}, 1274 { 0, 100, 10, "tcp_maxpsz_multiplier" }, 1275 { 1, TCP_MSS_MAX_IPV4, 536, "tcp_mss_def_ipv4"}, 1276 { 1, TCP_MSS_MAX_IPV4, TCP_MSS_MAX_IPV4, "tcp_mss_max_ipv4"}, 1277 { 1, TCP_MSS_MAX, 108, "tcp_mss_min"}, 1278 { 1, (64*1024)-1, (4*1024)-1, "tcp_naglim_def"}, 1279 { 1*MS, 20*SECONDS, 3*SECONDS, "tcp_rexmit_interval_initial"}, 1280 { 1*MS, 2*HOURS, 60*SECONDS, "tcp_rexmit_interval_max"}, 1281 { 1*MS, 2*HOURS, 400*MS, "tcp_rexmit_interval_min"}, 1282 { 1*MS, 1*MINUTES, 100*MS, "tcp_deferred_ack_interval" }, 1283 { 0, 16, 0, "tcp_snd_lowat_fraction" }, 1284 { 0, 128000, 0, "tcp_sth_rcv_hiwat" }, 1285 { 0, 128000, 0, "tcp_sth_rcv_lowat" }, 1286 { 1, 10000, 3, "tcp_dupack_fast_retransmit" }, 1287 { 0, 1, 0, "tcp_ignore_path_mtu" }, 1288 { 1024, TCP_MAX_PORT, 32*1024, "tcp_smallest_anon_port"}, 1289 { 1024, TCP_MAX_PORT, TCP_MAX_PORT, "tcp_largest_anon_port"}, 1290 { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_HIWATER,"tcp_xmit_hiwat"}, 1291 { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_LOWATER,"tcp_xmit_lowat"}, 1292 { TCP_RECV_LOWATER, (1<<30), TCP_RECV_HIWATER,"tcp_recv_hiwat"}, 1293 { 1, 65536, 4, "tcp_recv_hiwat_minmss"}, 1294 { 1*SECONDS, PARAM_MAX, 675*SECONDS, "tcp_fin_wait_2_flush_interval"}, 1295 { 0, TCP_MSS_MAX, 64, "tcp_co_min"}, 1296 { 8192, (1<<30), 1024*1024, "tcp_max_buf"}, 1297 /* 1298 * Question: What default value should I set for tcp_strong_iss? 1299 */ 1300 { 0, 2, 1, "tcp_strong_iss"}, 1301 { 0, 65536, 20, "tcp_rtt_updates"}, 1302 { 0, 1, 1, "tcp_wscale_always"}, 1303 { 0, 1, 0, "tcp_tstamp_always"}, 1304 { 0, 1, 1, "tcp_tstamp_if_wscale"}, 1305 { 0*MS, 2*HOURS, 0*MS, "tcp_rexmit_interval_extra"}, 1306 { 0, 16, 2, "tcp_deferred_acks_max"}, 1307 { 1, 16384, 4, "tcp_slow_start_after_idle"}, 1308 { 1, 4, 4, "tcp_slow_start_initial"}, 1309 { 10*MS, 50*MS, 20*MS, "tcp_co_timer_interval"}, 1310 { 0, 2, 2, "tcp_sack_permitted"}, 1311 { 0, 1, 0, "tcp_trace"}, 1312 { 0, 1, 1, "tcp_compression_enabled"}, 1313 { 0, IPV6_MAX_HOPS, IPV6_DEFAULT_HOPS, "tcp_ipv6_hoplimit"}, 1314 { 1, TCP_MSS_MAX_IPV6, 1220, "tcp_mss_def_ipv6"}, 1315 { 1, TCP_MSS_MAX_IPV6, TCP_MSS_MAX_IPV6, "tcp_mss_max_ipv6"}, 1316 { 0, 1, 0, "tcp_rev_src_routes"}, 1317 { 10*MS, 500*MS, 50*MS, "tcp_local_dack_interval"}, 1318 { 100*MS, 60*SECONDS, 1*SECONDS, "tcp_ndd_get_info_interval"}, 1319 { 0, 16, 8, "tcp_local_dacks_max"}, 1320 { 0, 2, 1, "tcp_ecn_permitted"}, 1321 { 0, 1, 1, "tcp_rst_sent_rate_enabled"}, 1322 { 0, PARAM_MAX, 40, "tcp_rst_sent_rate"}, 1323 { 0, 100*MS, 50*MS, "tcp_push_timer_interval"}, 1324 { 0, 1, 0, "tcp_use_smss_as_mss_opt"}, 1325 { 0, PARAM_MAX, 8*MINUTES, "tcp_keepalive_abort_interval"}, 1326 }; 1327 /* END CSTYLED */ 1328 1329 /* 1330 * tcp_mdt_hdr_{head,tail}_min are the leading and trailing spaces of 1331 * each header fragment in the header buffer. Each parameter value has 1332 * to be a multiple of 4 (32-bit aligned). 1333 */ 1334 static tcpparam_t tcp_mdt_head_param = { 32, 256, 32, "tcp_mdt_hdr_head_min" }; 1335 static tcpparam_t tcp_mdt_tail_param = { 0, 256, 32, "tcp_mdt_hdr_tail_min" }; 1336 #define tcp_mdt_hdr_head_min tcp_mdt_head_param.tcp_param_val 1337 #define tcp_mdt_hdr_tail_min tcp_mdt_tail_param.tcp_param_val 1338 1339 /* 1340 * tcp_mdt_max_pbufs is the upper limit value that tcp uses to figure out 1341 * the maximum number of payload buffers associated per Multidata. 1342 */ 1343 static tcpparam_t tcp_mdt_max_pbufs_param = 1344 { 1, MULTIDATA_MAX_PBUFS, MULTIDATA_MAX_PBUFS, "tcp_mdt_max_pbufs" }; 1345 #define tcp_mdt_max_pbufs tcp_mdt_max_pbufs_param.tcp_param_val 1346 1347 /* Round up the value to the nearest mss. */ 1348 #define MSS_ROUNDUP(value, mss) ((((value) - 1) / (mss) + 1) * (mss)) 1349 1350 /* 1351 * Set ECN capable transport (ECT) code point in IP header. 1352 * 1353 * Note that there are 2 ECT code points '01' and '10', which are called 1354 * ECT(1) and ECT(0) respectively. Here we follow the original ECT code 1355 * point ECT(0) for TCP as described in RFC 2481. 1356 */ 1357 #define SET_ECT(tcp, iph) \ 1358 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1359 /* We need to clear the code point first. */ \ 1360 ((ipha_t *)(iph))->ipha_type_of_service &= 0xFC; \ 1361 ((ipha_t *)(iph))->ipha_type_of_service |= IPH_ECN_ECT0; \ 1362 } else { \ 1363 ((ip6_t *)(iph))->ip6_vcf &= htonl(0xFFCFFFFF); \ 1364 ((ip6_t *)(iph))->ip6_vcf |= htonl(IPH_ECN_ECT0 << 20); \ 1365 } 1366 1367 /* 1368 * The format argument to pass to tcp_display(). 1369 * DISP_PORT_ONLY means that the returned string has only port info. 1370 * DISP_ADDR_AND_PORT means that the returned string also contains the 1371 * remote and local IP address. 1372 */ 1373 #define DISP_PORT_ONLY 1 1374 #define DISP_ADDR_AND_PORT 2 1375 1376 /* 1377 * This controls the rate some ndd info report functions can be used 1378 * by non-privileged users. It stores the last time such info is 1379 * requested. When those report functions are called again, this 1380 * is checked with the current time and compare with the ndd param 1381 * tcp_ndd_get_info_interval. 1382 */ 1383 static clock_t tcp_last_ndd_get_info_time = 0; 1384 #define NDD_TOO_QUICK_MSG \ 1385 "ndd get info rate too high for non-privileged users, try again " \ 1386 "later.\n" 1387 #define NDD_OUT_OF_BUF_MSG "<< Out of buffer >>\n" 1388 1389 #define IS_VMLOANED_MBLK(mp) \ 1390 (((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0) 1391 1392 /* 1393 * These two variables control the rate for TCP to generate RSTs in 1394 * response to segments not belonging to any connections. We limit 1395 * TCP to sent out tcp_rst_sent_rate (ndd param) number of RSTs in 1396 * each 1 second interval. This is to protect TCP against DoS attack. 1397 */ 1398 static clock_t tcp_last_rst_intrvl; 1399 static uint32_t tcp_rst_cnt; 1400 1401 /* The number of RST not sent because of the rate limit. */ 1402 static uint32_t tcp_rst_unsent; 1403 1404 /* Enable or disable b_cont M_MULTIDATA chaining for MDT. */ 1405 boolean_t tcp_mdt_chain = B_TRUE; 1406 1407 /* 1408 * MDT threshold in the form of effective send MSS multiplier; we take 1409 * the MDT path if the amount of unsent data exceeds the threshold value 1410 * (default threshold is 1*SMSS). 1411 */ 1412 uint_t tcp_mdt_smss_threshold = 1; 1413 1414 uint32_t do_tcpzcopy = 1; /* 0: disable, 1: enable, 2: force */ 1415 1416 /* 1417 * Forces all connections to obey the value of the tcp_maxpsz_multiplier 1418 * tunable settable via NDD. Otherwise, the per-connection behavior is 1419 * determined dynamically during tcp_adapt_ire(), which is the default. 1420 */ 1421 boolean_t tcp_static_maxpsz = B_FALSE; 1422 1423 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */ 1424 uint32_t tcp_random_anon_port = 1; 1425 1426 /* 1427 * To reach to an eager in Q0 which can be dropped due to an incoming 1428 * new SYN request when Q0 is full, a new doubly linked list is 1429 * introduced. This list allows to select an eager from Q0 in O(1) time. 1430 * This is needed to avoid spending too much time walking through the 1431 * long list of eagers in Q0 when tcp_drop_q0() is called. Each member of 1432 * this new list has to be a member of Q0. 1433 * This list is headed by listener's tcp_t. When the list is empty, 1434 * both the pointers - tcp_eager_next_drop_q0 and tcp_eager_prev_drop_q0, 1435 * of listener's tcp_t point to listener's tcp_t itself. 1436 * 1437 * Given an eager in Q0 and a listener, MAKE_DROPPABLE() puts the eager 1438 * in the list. MAKE_UNDROPPABLE() takes the eager out of the list. 1439 * These macros do not affect the eager's membership to Q0. 1440 */ 1441 1442 1443 #define MAKE_DROPPABLE(listener, eager) \ 1444 if ((eager)->tcp_eager_next_drop_q0 == NULL) { \ 1445 (listener)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0\ 1446 = (eager); \ 1447 (eager)->tcp_eager_prev_drop_q0 = (listener); \ 1448 (eager)->tcp_eager_next_drop_q0 = \ 1449 (listener)->tcp_eager_next_drop_q0; \ 1450 (listener)->tcp_eager_next_drop_q0 = (eager); \ 1451 } 1452 1453 #define MAKE_UNDROPPABLE(eager) \ 1454 if ((eager)->tcp_eager_next_drop_q0 != NULL) { \ 1455 (eager)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0 \ 1456 = (eager)->tcp_eager_prev_drop_q0; \ 1457 (eager)->tcp_eager_prev_drop_q0->tcp_eager_next_drop_q0 \ 1458 = (eager)->tcp_eager_next_drop_q0; \ 1459 (eager)->tcp_eager_prev_drop_q0 = NULL; \ 1460 (eager)->tcp_eager_next_drop_q0 = NULL; \ 1461 } 1462 1463 /* 1464 * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more 1465 * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent 1466 * data, TCP will not respond with an ACK. RFC 793 requires that 1467 * TCP responds with an ACK for such a bogus ACK. By not following 1468 * the RFC, we prevent TCP from getting into an ACK storm if somehow 1469 * an attacker successfully spoofs an acceptable segment to our 1470 * peer; or when our peer is "confused." 1471 */ 1472 uint32_t tcp_drop_ack_unsent_cnt = 10; 1473 1474 /* 1475 * Hook functions to enable cluster networking 1476 * On non-clustered systems these vectors must always be NULL. 1477 */ 1478 1479 void (*cl_inet_listen)(uint8_t protocol, sa_family_t addr_family, 1480 uint8_t *laddrp, in_port_t lport) = NULL; 1481 void (*cl_inet_unlisten)(uint8_t protocol, sa_family_t addr_family, 1482 uint8_t *laddrp, in_port_t lport) = NULL; 1483 void (*cl_inet_connect)(uint8_t protocol, sa_family_t addr_family, 1484 uint8_t *laddrp, in_port_t lport, 1485 uint8_t *faddrp, in_port_t fport) = NULL; 1486 void (*cl_inet_disconnect)(uint8_t protocol, sa_family_t addr_family, 1487 uint8_t *laddrp, in_port_t lport, 1488 uint8_t *faddrp, in_port_t fport) = NULL; 1489 1490 /* 1491 * The following are defined in ip.c 1492 */ 1493 extern int (*cl_inet_isclusterwide)(uint8_t protocol, sa_family_t addr_family, 1494 uint8_t *laddrp); 1495 extern uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family, 1496 uint8_t *laddrp, uint8_t *faddrp); 1497 1498 #define CL_INET_CONNECT(tcp) { \ 1499 if (cl_inet_connect != NULL) { \ 1500 /* \ 1501 * Running in cluster mode - register active connection \ 1502 * information \ 1503 */ \ 1504 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1505 if ((tcp)->tcp_ipha->ipha_src != 0) { \ 1506 (*cl_inet_connect)(IPPROTO_TCP, AF_INET,\ 1507 (uint8_t *)(&((tcp)->tcp_ipha->ipha_src)),\ 1508 (in_port_t)(tcp)->tcp_lport, \ 1509 (uint8_t *)(&((tcp)->tcp_ipha->ipha_dst)),\ 1510 (in_port_t)(tcp)->tcp_fport); \ 1511 } \ 1512 } else { \ 1513 if (!IN6_IS_ADDR_UNSPECIFIED( \ 1514 &(tcp)->tcp_ip6h->ip6_src)) {\ 1515 (*cl_inet_connect)(IPPROTO_TCP, AF_INET6,\ 1516 (uint8_t *)(&((tcp)->tcp_ip6h->ip6_src)),\ 1517 (in_port_t)(tcp)->tcp_lport, \ 1518 (uint8_t *)(&((tcp)->tcp_ip6h->ip6_dst)),\ 1519 (in_port_t)(tcp)->tcp_fport); \ 1520 } \ 1521 } \ 1522 } \ 1523 } 1524 1525 #define CL_INET_DISCONNECT(tcp) { \ 1526 if (cl_inet_disconnect != NULL) { \ 1527 /* \ 1528 * Running in cluster mode - deregister active \ 1529 * connection information \ 1530 */ \ 1531 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1532 if ((tcp)->tcp_ip_src != 0) { \ 1533 (*cl_inet_disconnect)(IPPROTO_TCP, \ 1534 AF_INET, \ 1535 (uint8_t *)(&((tcp)->tcp_ip_src)),\ 1536 (in_port_t)(tcp)->tcp_lport, \ 1537 (uint8_t *) \ 1538 (&((tcp)->tcp_ipha->ipha_dst)),\ 1539 (in_port_t)(tcp)->tcp_fport); \ 1540 } \ 1541 } else { \ 1542 if (!IN6_IS_ADDR_UNSPECIFIED( \ 1543 &(tcp)->tcp_ip_src_v6)) { \ 1544 (*cl_inet_disconnect)(IPPROTO_TCP, AF_INET6,\ 1545 (uint8_t *)(&((tcp)->tcp_ip_src_v6)),\ 1546 (in_port_t)(tcp)->tcp_lport, \ 1547 (uint8_t *) \ 1548 (&((tcp)->tcp_ip6h->ip6_dst)),\ 1549 (in_port_t)(tcp)->tcp_fport); \ 1550 } \ 1551 } \ 1552 } \ 1553 } 1554 1555 /* 1556 * Cluster networking hook for traversing current connection list. 1557 * This routine is used to extract the current list of live connections 1558 * which must continue to to be dispatched to this node. 1559 */ 1560 int cl_tcp_walk_list(int (*callback)(cl_tcp_info_t *, void *), void *arg); 1561 1562 /* 1563 * Figure out the value of window scale opton. Note that the rwnd is 1564 * ASSUMED to be rounded up to the nearest MSS before the calculation. 1565 * We cannot find the scale value and then do a round up of tcp_rwnd 1566 * because the scale value may not be correct after that. 1567 * 1568 * Set the compiler flag to make this function inline. 1569 */ 1570 static void 1571 tcp_set_ws_value(tcp_t *tcp) 1572 { 1573 int i; 1574 uint32_t rwnd = tcp->tcp_rwnd; 1575 1576 for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT; 1577 i++, rwnd >>= 1) 1578 ; 1579 tcp->tcp_rcv_ws = i; 1580 } 1581 1582 /* 1583 * Remove a connection from the list of detached TIME_WAIT connections. 1584 * It returns B_FALSE if it can't remove the connection from the list 1585 * as the connection has already been removed from the list due to an 1586 * earlier call to tcp_time_wait_remove(); otherwise it returns B_TRUE. 1587 */ 1588 static boolean_t 1589 tcp_time_wait_remove(tcp_t *tcp, tcp_squeue_priv_t *tcp_time_wait) 1590 { 1591 boolean_t locked = B_FALSE; 1592 1593 if (tcp_time_wait == NULL) { 1594 tcp_time_wait = *((tcp_squeue_priv_t **) 1595 squeue_getprivate(tcp->tcp_connp->conn_sqp, SQPRIVATE_TCP)); 1596 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1597 locked = B_TRUE; 1598 } 1599 1600 if (tcp->tcp_time_wait_expire == 0) { 1601 ASSERT(tcp->tcp_time_wait_next == NULL); 1602 ASSERT(tcp->tcp_time_wait_prev == NULL); 1603 if (locked) 1604 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1605 return (B_FALSE); 1606 } 1607 ASSERT(TCP_IS_DETACHED(tcp)); 1608 ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); 1609 1610 if (tcp == tcp_time_wait->tcp_time_wait_head) { 1611 ASSERT(tcp->tcp_time_wait_prev == NULL); 1612 tcp_time_wait->tcp_time_wait_head = tcp->tcp_time_wait_next; 1613 if (tcp_time_wait->tcp_time_wait_head != NULL) { 1614 tcp_time_wait->tcp_time_wait_head->tcp_time_wait_prev = 1615 NULL; 1616 } else { 1617 tcp_time_wait->tcp_time_wait_tail = NULL; 1618 } 1619 } else if (tcp == tcp_time_wait->tcp_time_wait_tail) { 1620 ASSERT(tcp != tcp_time_wait->tcp_time_wait_head); 1621 ASSERT(tcp->tcp_time_wait_next == NULL); 1622 tcp_time_wait->tcp_time_wait_tail = tcp->tcp_time_wait_prev; 1623 ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); 1624 tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = NULL; 1625 } else { 1626 ASSERT(tcp->tcp_time_wait_prev->tcp_time_wait_next == tcp); 1627 ASSERT(tcp->tcp_time_wait_next->tcp_time_wait_prev == tcp); 1628 tcp->tcp_time_wait_prev->tcp_time_wait_next = 1629 tcp->tcp_time_wait_next; 1630 tcp->tcp_time_wait_next->tcp_time_wait_prev = 1631 tcp->tcp_time_wait_prev; 1632 } 1633 tcp->tcp_time_wait_next = NULL; 1634 tcp->tcp_time_wait_prev = NULL; 1635 tcp->tcp_time_wait_expire = 0; 1636 1637 if (locked) 1638 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1639 return (B_TRUE); 1640 } 1641 1642 /* 1643 * Add a connection to the list of detached TIME_WAIT connections 1644 * and set its time to expire. 1645 */ 1646 static void 1647 tcp_time_wait_append(tcp_t *tcp) 1648 { 1649 tcp_squeue_priv_t *tcp_time_wait = 1650 *((tcp_squeue_priv_t **)squeue_getprivate(tcp->tcp_connp->conn_sqp, 1651 SQPRIVATE_TCP)); 1652 1653 tcp_timers_stop(tcp); 1654 1655 /* Freed above */ 1656 ASSERT(tcp->tcp_timer_tid == 0); 1657 ASSERT(tcp->tcp_ack_tid == 0); 1658 1659 /* must have happened at the time of detaching the tcp */ 1660 ASSERT(tcp->tcp_ptpahn == NULL); 1661 ASSERT(tcp->tcp_flow_stopped == 0); 1662 ASSERT(tcp->tcp_time_wait_next == NULL); 1663 ASSERT(tcp->tcp_time_wait_prev == NULL); 1664 ASSERT(tcp->tcp_time_wait_expire == NULL); 1665 ASSERT(tcp->tcp_listener == NULL); 1666 1667 tcp->tcp_time_wait_expire = ddi_get_lbolt(); 1668 /* 1669 * The value computed below in tcp->tcp_time_wait_expire may 1670 * appear negative or wrap around. That is ok since our 1671 * interest is only in the difference between the current lbolt 1672 * value and tcp->tcp_time_wait_expire. But the value should not 1673 * be zero, since it means the tcp is not in the TIME_WAIT list. 1674 * The corresponding comparison in tcp_time_wait_collector() uses 1675 * modular arithmetic. 1676 */ 1677 tcp->tcp_time_wait_expire += 1678 drv_usectohz(tcp_time_wait_interval * 1000); 1679 if (tcp->tcp_time_wait_expire == 0) 1680 tcp->tcp_time_wait_expire = 1; 1681 1682 ASSERT(TCP_IS_DETACHED(tcp)); 1683 ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); 1684 ASSERT(tcp->tcp_time_wait_next == NULL); 1685 ASSERT(tcp->tcp_time_wait_prev == NULL); 1686 TCP_DBGSTAT(tcp_time_wait); 1687 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1688 if (tcp_time_wait->tcp_time_wait_head == NULL) { 1689 ASSERT(tcp_time_wait->tcp_time_wait_tail == NULL); 1690 tcp_time_wait->tcp_time_wait_head = tcp; 1691 } else { 1692 ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); 1693 ASSERT(tcp_time_wait->tcp_time_wait_tail->tcp_state == 1694 TCPS_TIME_WAIT); 1695 tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = tcp; 1696 tcp->tcp_time_wait_prev = tcp_time_wait->tcp_time_wait_tail; 1697 } 1698 tcp_time_wait->tcp_time_wait_tail = tcp; 1699 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1700 } 1701 1702 /* ARGSUSED */ 1703 void 1704 tcp_timewait_output(void *arg, mblk_t *mp, void *arg2) 1705 { 1706 conn_t *connp = (conn_t *)arg; 1707 tcp_t *tcp = connp->conn_tcp; 1708 1709 ASSERT(tcp != NULL); 1710 if (tcp->tcp_state == TCPS_CLOSED) { 1711 return; 1712 } 1713 1714 ASSERT((tcp->tcp_family == AF_INET && 1715 tcp->tcp_ipversion == IPV4_VERSION) || 1716 (tcp->tcp_family == AF_INET6 && 1717 (tcp->tcp_ipversion == IPV4_VERSION || 1718 tcp->tcp_ipversion == IPV6_VERSION))); 1719 ASSERT(!tcp->tcp_listener); 1720 1721 TCP_STAT(tcp_time_wait_reap); 1722 ASSERT(TCP_IS_DETACHED(tcp)); 1723 1724 /* 1725 * Because they have no upstream client to rebind or tcp_close() 1726 * them later, we axe the connection here and now. 1727 */ 1728 tcp_close_detached(tcp); 1729 } 1730 1731 void 1732 tcp_cleanup(tcp_t *tcp) 1733 { 1734 mblk_t *mp; 1735 char *tcp_iphc; 1736 int tcp_iphc_len; 1737 int tcp_hdr_grown; 1738 tcp_sack_info_t *tcp_sack_info; 1739 conn_t *connp = tcp->tcp_connp; 1740 1741 tcp_bind_hash_remove(tcp); 1742 tcp_free(tcp); 1743 1744 /* Release any SSL context */ 1745 if (tcp->tcp_kssl_ent != NULL) { 1746 kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); 1747 tcp->tcp_kssl_ent = NULL; 1748 } 1749 1750 if (tcp->tcp_kssl_ctx != NULL) { 1751 kssl_release_ctx(tcp->tcp_kssl_ctx); 1752 tcp->tcp_kssl_ctx = NULL; 1753 } 1754 tcp->tcp_kssl_pending = B_FALSE; 1755 1756 conn_delete_ire(connp, NULL); 1757 if (connp->conn_flags & IPCL_TCPCONN) { 1758 if (connp->conn_latch != NULL) 1759 IPLATCH_REFRELE(connp->conn_latch); 1760 if (connp->conn_policy != NULL) 1761 IPPH_REFRELE(connp->conn_policy); 1762 } 1763 1764 /* 1765 * Since we will bzero the entire structure, we need to 1766 * remove it and reinsert it in global hash list. We 1767 * know the walkers can't get to this conn because we 1768 * had set CONDEMNED flag earlier and checked reference 1769 * under conn_lock so walker won't pick it and when we 1770 * go the ipcl_globalhash_remove() below, no walker 1771 * can get to it. 1772 */ 1773 ipcl_globalhash_remove(connp); 1774 1775 /* Save some state */ 1776 mp = tcp->tcp_timercache; 1777 1778 tcp_sack_info = tcp->tcp_sack_info; 1779 tcp_iphc = tcp->tcp_iphc; 1780 tcp_iphc_len = tcp->tcp_iphc_len; 1781 tcp_hdr_grown = tcp->tcp_hdr_grown; 1782 1783 if (connp->conn_cred != NULL) 1784 crfree(connp->conn_cred); 1785 if (connp->conn_peercred != NULL) 1786 crfree(connp->conn_peercred); 1787 bzero(connp, sizeof (conn_t)); 1788 bzero(tcp, sizeof (tcp_t)); 1789 1790 /* restore the state */ 1791 tcp->tcp_timercache = mp; 1792 1793 tcp->tcp_sack_info = tcp_sack_info; 1794 tcp->tcp_iphc = tcp_iphc; 1795 tcp->tcp_iphc_len = tcp_iphc_len; 1796 tcp->tcp_hdr_grown = tcp_hdr_grown; 1797 1798 1799 tcp->tcp_connp = connp; 1800 1801 connp->conn_tcp = tcp; 1802 connp->conn_flags = IPCL_TCPCONN; 1803 connp->conn_state_flags = CONN_INCIPIENT; 1804 connp->conn_ulp = IPPROTO_TCP; 1805 connp->conn_ref = 1; 1806 1807 ipcl_globalhash_insert(connp); 1808 } 1809 1810 /* 1811 * Blows away all tcps whose TIME_WAIT has expired. List traversal 1812 * is done forwards from the head. 1813 */ 1814 /* ARGSUSED */ 1815 void 1816 tcp_time_wait_collector(void *arg) 1817 { 1818 tcp_t *tcp; 1819 clock_t now; 1820 mblk_t *mp; 1821 conn_t *connp; 1822 kmutex_t *lock; 1823 boolean_t removed; 1824 1825 squeue_t *sqp = (squeue_t *)arg; 1826 tcp_squeue_priv_t *tcp_time_wait = 1827 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 1828 1829 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1830 tcp_time_wait->tcp_time_wait_tid = 0; 1831 1832 if (tcp_time_wait->tcp_free_list != NULL && 1833 tcp_time_wait->tcp_free_list->tcp_in_free_list == B_TRUE) { 1834 TCP_STAT(tcp_freelist_cleanup); 1835 while ((tcp = tcp_time_wait->tcp_free_list) != NULL) { 1836 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 1837 CONN_DEC_REF(tcp->tcp_connp); 1838 } 1839 tcp_time_wait->tcp_free_list_cnt = 0; 1840 } 1841 1842 /* 1843 * In order to reap time waits reliably, we should use a 1844 * source of time that is not adjustable by the user -- hence 1845 * the call to ddi_get_lbolt(). 1846 */ 1847 now = ddi_get_lbolt(); 1848 while ((tcp = tcp_time_wait->tcp_time_wait_head) != NULL) { 1849 /* 1850 * Compare times using modular arithmetic, since 1851 * lbolt can wrapover. 1852 */ 1853 if ((now - tcp->tcp_time_wait_expire) < 0) { 1854 break; 1855 } 1856 1857 removed = tcp_time_wait_remove(tcp, tcp_time_wait); 1858 ASSERT(removed); 1859 1860 connp = tcp->tcp_connp; 1861 ASSERT(connp->conn_fanout != NULL); 1862 lock = &connp->conn_fanout->connf_lock; 1863 /* 1864 * This is essentially a TW reclaim fast path optimization for 1865 * performance where the timewait collector checks under the 1866 * fanout lock (so that no one else can get access to the 1867 * conn_t) that the refcnt is 2 i.e. one for TCP and one for 1868 * the classifier hash list. If ref count is indeed 2, we can 1869 * just remove the conn under the fanout lock and avoid 1870 * cleaning up the conn under the squeue, provided that 1871 * clustering callbacks are not enabled. If clustering is 1872 * enabled, we need to make the clustering callback before 1873 * setting the CONDEMNED flag and after dropping all locks and 1874 * so we forego this optimization and fall back to the slow 1875 * path. Also please see the comments in tcp_closei_local 1876 * regarding the refcnt logic. 1877 * 1878 * Since we are holding the tcp_time_wait_lock, its better 1879 * not to block on the fanout_lock because other connections 1880 * can't add themselves to time_wait list. So we do a 1881 * tryenter instead of mutex_enter. 1882 */ 1883 if (mutex_tryenter(lock)) { 1884 mutex_enter(&connp->conn_lock); 1885 if ((connp->conn_ref == 2) && 1886 (cl_inet_disconnect == NULL)) { 1887 ipcl_hash_remove_locked(connp, 1888 connp->conn_fanout); 1889 /* 1890 * Set the CONDEMNED flag now itself so that 1891 * the refcnt cannot increase due to any 1892 * walker. But we have still not cleaned up 1893 * conn_ire_cache. This is still ok since 1894 * we are going to clean it up in tcp_cleanup 1895 * immediately and any interface unplumb 1896 * thread will wait till the ire is blown away 1897 */ 1898 connp->conn_state_flags |= CONN_CONDEMNED; 1899 mutex_exit(lock); 1900 mutex_exit(&connp->conn_lock); 1901 if (tcp_time_wait->tcp_free_list_cnt < 1902 tcp_free_list_max_cnt) { 1903 /* Add to head of tcp_free_list */ 1904 mutex_exit( 1905 &tcp_time_wait->tcp_time_wait_lock); 1906 tcp_cleanup(tcp); 1907 mutex_enter( 1908 &tcp_time_wait->tcp_time_wait_lock); 1909 tcp->tcp_time_wait_next = 1910 tcp_time_wait->tcp_free_list; 1911 tcp_time_wait->tcp_free_list = tcp; 1912 tcp_time_wait->tcp_free_list_cnt++; 1913 continue; 1914 } else { 1915 /* Do not add to tcp_free_list */ 1916 mutex_exit( 1917 &tcp_time_wait->tcp_time_wait_lock); 1918 tcp_bind_hash_remove(tcp); 1919 conn_delete_ire(tcp->tcp_connp, NULL); 1920 CONN_DEC_REF(tcp->tcp_connp); 1921 } 1922 } else { 1923 CONN_INC_REF_LOCKED(connp); 1924 mutex_exit(lock); 1925 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1926 mutex_exit(&connp->conn_lock); 1927 /* 1928 * We can reuse the closemp here since conn has 1929 * detached (otherwise we wouldn't even be in 1930 * time_wait list). tcp_closemp_used can safely 1931 * be changed without taking a lock as no other 1932 * thread can concurrently access it at this 1933 * point in the connection lifecycle. We 1934 * increment tcp_closemp_used to record any 1935 * attempt to reuse tcp_closemp while it is 1936 * still in use. 1937 */ 1938 1939 if (tcp->tcp_closemp.b_prev == NULL) 1940 tcp->tcp_closemp_used = 1; 1941 else 1942 tcp->tcp_closemp_used++; 1943 1944 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 1945 mp = &tcp->tcp_closemp; 1946 squeue_fill(connp->conn_sqp, mp, 1947 tcp_timewait_output, connp, 1948 SQTAG_TCP_TIMEWAIT); 1949 } 1950 } else { 1951 mutex_enter(&connp->conn_lock); 1952 CONN_INC_REF_LOCKED(connp); 1953 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1954 mutex_exit(&connp->conn_lock); 1955 /* 1956 * We can reuse the closemp here since conn has 1957 * detached (otherwise we wouldn't even be in 1958 * time_wait list). tcp_closemp_used can safely 1959 * be changed without taking a lock as no other 1960 * thread can concurrently access it at this 1961 * point in the connection lifecycle. We 1962 * increment tcp_closemp_used to record any 1963 * attempt to reuse tcp_closemp while it is 1964 * still in use. 1965 */ 1966 1967 if (tcp->tcp_closemp.b_prev == NULL) 1968 tcp->tcp_closemp_used = 1; 1969 else 1970 tcp->tcp_closemp_used++; 1971 1972 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 1973 mp = &tcp->tcp_closemp; 1974 squeue_fill(connp->conn_sqp, mp, 1975 tcp_timewait_output, connp, 0); 1976 } 1977 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1978 } 1979 1980 if (tcp_time_wait->tcp_free_list != NULL) 1981 tcp_time_wait->tcp_free_list->tcp_in_free_list = B_TRUE; 1982 1983 tcp_time_wait->tcp_time_wait_tid = 1984 timeout(tcp_time_wait_collector, sqp, TCP_TIME_WAIT_DELAY); 1985 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1986 } 1987 1988 /* 1989 * Reply to a clients T_CONN_RES TPI message. This function 1990 * is used only for TLI/XTI listener. Sockfs sends T_CONN_RES 1991 * on the acceptor STREAM and processed in tcp_wput_accept(). 1992 * Read the block comment on top of tcp_conn_request(). 1993 */ 1994 static void 1995 tcp_accept(tcp_t *listener, mblk_t *mp) 1996 { 1997 tcp_t *acceptor; 1998 tcp_t *eager; 1999 tcp_t *tcp; 2000 struct T_conn_res *tcr; 2001 t_uscalar_t acceptor_id; 2002 t_scalar_t seqnum; 2003 mblk_t *opt_mp = NULL; /* T_OPTMGMT_REQ messages */ 2004 mblk_t *ok_mp; 2005 mblk_t *mp1; 2006 2007 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { 2008 tcp_err_ack(listener, mp, TPROTO, 0); 2009 return; 2010 } 2011 tcr = (struct T_conn_res *)mp->b_rptr; 2012 2013 /* 2014 * Under ILP32 the stream head points tcr->ACCEPTOR_id at the 2015 * read side queue of the streams device underneath us i.e. the 2016 * read side queue of 'ip'. Since we can't deference QUEUE_ptr we 2017 * look it up in the queue_hash. Under LP64 it sends down the 2018 * minor_t of the accepting endpoint. 2019 * 2020 * Once the acceptor/eager are modified (in tcp_accept_swap) the 2021 * fanout hash lock is held. 2022 * This prevents any thread from entering the acceptor queue from 2023 * below (since it has not been hard bound yet i.e. any inbound 2024 * packets will arrive on the listener or default tcp queue and 2025 * go through tcp_lookup). 2026 * The CONN_INC_REF will prevent the acceptor from closing. 2027 * 2028 * XXX It is still possible for a tli application to send down data 2029 * on the accepting stream while another thread calls t_accept. 2030 * This should not be a problem for well-behaved applications since 2031 * the T_OK_ACK is sent after the queue swapping is completed. 2032 * 2033 * If the accepting fd is the same as the listening fd, avoid 2034 * queue hash lookup since that will return an eager listener in a 2035 * already established state. 2036 */ 2037 acceptor_id = tcr->ACCEPTOR_id; 2038 mutex_enter(&listener->tcp_eager_lock); 2039 if (listener->tcp_acceptor_id == acceptor_id) { 2040 eager = listener->tcp_eager_next_q; 2041 /* only count how many T_CONN_INDs so don't count q0 */ 2042 if ((listener->tcp_conn_req_cnt_q != 1) || 2043 (eager->tcp_conn_req_seqnum != tcr->SEQ_number)) { 2044 mutex_exit(&listener->tcp_eager_lock); 2045 tcp_err_ack(listener, mp, TBADF, 0); 2046 return; 2047 } 2048 if (listener->tcp_conn_req_cnt_q0 != 0) { 2049 /* Throw away all the eagers on q0. */ 2050 tcp_eager_cleanup(listener, 1); 2051 } 2052 if (listener->tcp_syn_defense) { 2053 listener->tcp_syn_defense = B_FALSE; 2054 if (listener->tcp_ip_addr_cache != NULL) { 2055 kmem_free(listener->tcp_ip_addr_cache, 2056 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 2057 listener->tcp_ip_addr_cache = NULL; 2058 } 2059 } 2060 /* 2061 * Transfer tcp_conn_req_max to the eager so that when 2062 * a disconnect occurs we can revert the endpoint to the 2063 * listen state. 2064 */ 2065 eager->tcp_conn_req_max = listener->tcp_conn_req_max; 2066 ASSERT(listener->tcp_conn_req_cnt_q0 == 0); 2067 /* 2068 * Get a reference on the acceptor just like the 2069 * tcp_acceptor_hash_lookup below. 2070 */ 2071 acceptor = listener; 2072 CONN_INC_REF(acceptor->tcp_connp); 2073 } else { 2074 acceptor = tcp_acceptor_hash_lookup(acceptor_id); 2075 if (acceptor == NULL) { 2076 if (listener->tcp_debug) { 2077 (void) strlog(TCP_MOD_ID, 0, 1, 2078 SL_ERROR|SL_TRACE, 2079 "tcp_accept: did not find acceptor 0x%x\n", 2080 acceptor_id); 2081 } 2082 mutex_exit(&listener->tcp_eager_lock); 2083 tcp_err_ack(listener, mp, TPROVMISMATCH, 0); 2084 return; 2085 } 2086 /* 2087 * Verify acceptor state. The acceptable states for an acceptor 2088 * include TCPS_IDLE and TCPS_BOUND. 2089 */ 2090 switch (acceptor->tcp_state) { 2091 case TCPS_IDLE: 2092 /* FALLTHRU */ 2093 case TCPS_BOUND: 2094 break; 2095 default: 2096 CONN_DEC_REF(acceptor->tcp_connp); 2097 mutex_exit(&listener->tcp_eager_lock); 2098 tcp_err_ack(listener, mp, TOUTSTATE, 0); 2099 return; 2100 } 2101 } 2102 2103 /* The listener must be in TCPS_LISTEN */ 2104 if (listener->tcp_state != TCPS_LISTEN) { 2105 CONN_DEC_REF(acceptor->tcp_connp); 2106 mutex_exit(&listener->tcp_eager_lock); 2107 tcp_err_ack(listener, mp, TOUTSTATE, 0); 2108 return; 2109 } 2110 2111 /* 2112 * Rendezvous with an eager connection request packet hanging off 2113 * 'tcp' that has the 'seqnum' tag. We tagged the detached open 2114 * tcp structure when the connection packet arrived in 2115 * tcp_conn_request(). 2116 */ 2117 seqnum = tcr->SEQ_number; 2118 eager = listener; 2119 do { 2120 eager = eager->tcp_eager_next_q; 2121 if (eager == NULL) { 2122 CONN_DEC_REF(acceptor->tcp_connp); 2123 mutex_exit(&listener->tcp_eager_lock); 2124 tcp_err_ack(listener, mp, TBADSEQ, 0); 2125 return; 2126 } 2127 } while (eager->tcp_conn_req_seqnum != seqnum); 2128 mutex_exit(&listener->tcp_eager_lock); 2129 2130 /* 2131 * At this point, both acceptor and listener have 2 ref 2132 * that they begin with. Acceptor has one additional ref 2133 * we placed in lookup while listener has 3 additional 2134 * ref for being behind the squeue (tcp_accept() is 2135 * done on listener's squeue); being in classifier hash; 2136 * and eager's ref on listener. 2137 */ 2138 ASSERT(listener->tcp_connp->conn_ref >= 5); 2139 ASSERT(acceptor->tcp_connp->conn_ref >= 3); 2140 2141 /* 2142 * The eager at this point is set in its own squeue and 2143 * could easily have been killed (tcp_accept_finish will 2144 * deal with that) because of a TH_RST so we can only 2145 * ASSERT for a single ref. 2146 */ 2147 ASSERT(eager->tcp_connp->conn_ref >= 1); 2148 2149 /* Pre allocate the stroptions mblk also */ 2150 opt_mp = allocb(sizeof (struct stroptions), BPRI_HI); 2151 if (opt_mp == NULL) { 2152 CONN_DEC_REF(acceptor->tcp_connp); 2153 CONN_DEC_REF(eager->tcp_connp); 2154 tcp_err_ack(listener, mp, TSYSERR, ENOMEM); 2155 return; 2156 } 2157 DB_TYPE(opt_mp) = M_SETOPTS; 2158 opt_mp->b_wptr += sizeof (struct stroptions); 2159 2160 /* 2161 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO 2162 * from listener to acceptor. The message is chained on opt_mp 2163 * which will be sent onto eager's squeue. 2164 */ 2165 if (listener->tcp_bound_if != 0) { 2166 /* allocate optmgmt req */ 2167 mp1 = tcp_setsockopt_mp(IPPROTO_IPV6, 2168 IPV6_BOUND_IF, (char *)&listener->tcp_bound_if, 2169 sizeof (int)); 2170 if (mp1 != NULL) 2171 linkb(opt_mp, mp1); 2172 } 2173 if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) { 2174 uint_t on = 1; 2175 2176 /* allocate optmgmt req */ 2177 mp1 = tcp_setsockopt_mp(IPPROTO_IPV6, 2178 IPV6_RECVPKTINFO, (char *)&on, sizeof (on)); 2179 if (mp1 != NULL) 2180 linkb(opt_mp, mp1); 2181 } 2182 2183 /* Re-use mp1 to hold a copy of mp, in case reallocb fails */ 2184 if ((mp1 = copymsg(mp)) == NULL) { 2185 CONN_DEC_REF(acceptor->tcp_connp); 2186 CONN_DEC_REF(eager->tcp_connp); 2187 freemsg(opt_mp); 2188 tcp_err_ack(listener, mp, TSYSERR, ENOMEM); 2189 return; 2190 } 2191 2192 tcr = (struct T_conn_res *)mp1->b_rptr; 2193 2194 /* 2195 * This is an expanded version of mi_tpi_ok_ack_alloc() 2196 * which allocates a larger mblk and appends the new 2197 * local address to the ok_ack. The address is copied by 2198 * soaccept() for getsockname(). 2199 */ 2200 { 2201 int extra; 2202 2203 extra = (eager->tcp_family == AF_INET) ? 2204 sizeof (sin_t) : sizeof (sin6_t); 2205 2206 /* 2207 * Try to re-use mp, if possible. Otherwise, allocate 2208 * an mblk and return it as ok_mp. In any case, mp 2209 * is no longer usable upon return. 2210 */ 2211 if ((ok_mp = mi_tpi_ok_ack_alloc_extra(mp, extra)) == NULL) { 2212 CONN_DEC_REF(acceptor->tcp_connp); 2213 CONN_DEC_REF(eager->tcp_connp); 2214 freemsg(opt_mp); 2215 /* Original mp has been freed by now, so use mp1 */ 2216 tcp_err_ack(listener, mp1, TSYSERR, ENOMEM); 2217 return; 2218 } 2219 2220 mp = NULL; /* We should never use mp after this point */ 2221 2222 switch (extra) { 2223 case sizeof (sin_t): { 2224 sin_t *sin = (sin_t *)ok_mp->b_wptr; 2225 2226 ok_mp->b_wptr += extra; 2227 sin->sin_family = AF_INET; 2228 sin->sin_port = eager->tcp_lport; 2229 sin->sin_addr.s_addr = 2230 eager->tcp_ipha->ipha_src; 2231 break; 2232 } 2233 case sizeof (sin6_t): { 2234 sin6_t *sin6 = (sin6_t *)ok_mp->b_wptr; 2235 2236 ok_mp->b_wptr += extra; 2237 sin6->sin6_family = AF_INET6; 2238 sin6->sin6_port = eager->tcp_lport; 2239 if (eager->tcp_ipversion == IPV4_VERSION) { 2240 sin6->sin6_flowinfo = 0; 2241 IN6_IPADDR_TO_V4MAPPED( 2242 eager->tcp_ipha->ipha_src, 2243 &sin6->sin6_addr); 2244 } else { 2245 ASSERT(eager->tcp_ip6h != NULL); 2246 sin6->sin6_flowinfo = 2247 eager->tcp_ip6h->ip6_vcf & 2248 ~IPV6_VERS_AND_FLOW_MASK; 2249 sin6->sin6_addr = 2250 eager->tcp_ip6h->ip6_src; 2251 } 2252 break; 2253 } 2254 default: 2255 break; 2256 } 2257 ASSERT(ok_mp->b_wptr <= ok_mp->b_datap->db_lim); 2258 } 2259 2260 /* 2261 * If there are no options we know that the T_CONN_RES will 2262 * succeed. However, we can't send the T_OK_ACK upstream until 2263 * the tcp_accept_swap is done since it would be dangerous to 2264 * let the application start using the new fd prior to the swap. 2265 */ 2266 tcp_accept_swap(listener, acceptor, eager); 2267 2268 /* 2269 * tcp_accept_swap unlinks eager from listener but does not drop 2270 * the eager's reference on the listener. 2271 */ 2272 ASSERT(eager->tcp_listener == NULL); 2273 ASSERT(listener->tcp_connp->conn_ref >= 5); 2274 2275 /* 2276 * The eager is now associated with its own queue. Insert in 2277 * the hash so that the connection can be reused for a future 2278 * T_CONN_RES. 2279 */ 2280 tcp_acceptor_hash_insert(acceptor_id, eager); 2281 2282 /* 2283 * We now do the processing of options with T_CONN_RES. 2284 * We delay till now since we wanted to have queue to pass to 2285 * option processing routines that points back to the right 2286 * instance structure which does not happen until after 2287 * tcp_accept_swap(). 2288 * 2289 * Note: 2290 * The sanity of the logic here assumes that whatever options 2291 * are appropriate to inherit from listner=>eager are done 2292 * before this point, and whatever were to be overridden (or not) 2293 * in transfer logic from eager=>acceptor in tcp_accept_swap(). 2294 * [ Warning: acceptor endpoint can have T_OPTMGMT_REQ done to it 2295 * before its ACCEPTOR_id comes down in T_CONN_RES ] 2296 * This may not be true at this point in time but can be fixed 2297 * independently. This option processing code starts with 2298 * the instantiated acceptor instance and the final queue at 2299 * this point. 2300 */ 2301 2302 if (tcr->OPT_length != 0) { 2303 /* Options to process */ 2304 int t_error = 0; 2305 int sys_error = 0; 2306 int do_disconnect = 0; 2307 2308 if (tcp_conprim_opt_process(eager, mp1, 2309 &do_disconnect, &t_error, &sys_error) < 0) { 2310 eager->tcp_accept_error = 1; 2311 if (do_disconnect) { 2312 /* 2313 * An option failed which does not allow 2314 * connection to be accepted. 2315 * 2316 * We allow T_CONN_RES to succeed and 2317 * put a T_DISCON_IND on the eager queue. 2318 */ 2319 ASSERT(t_error == 0 && sys_error == 0); 2320 eager->tcp_send_discon_ind = 1; 2321 } else { 2322 ASSERT(t_error != 0); 2323 freemsg(ok_mp); 2324 /* 2325 * Original mp was either freed or set 2326 * to ok_mp above, so use mp1 instead. 2327 */ 2328 tcp_err_ack(listener, mp1, t_error, sys_error); 2329 goto finish; 2330 } 2331 } 2332 /* 2333 * Most likely success in setting options (except if 2334 * eager->tcp_send_discon_ind set). 2335 * mp1 option buffer represented by OPT_length/offset 2336 * potentially modified and contains results of setting 2337 * options at this point 2338 */ 2339 } 2340 2341 /* We no longer need mp1, since all options processing has passed */ 2342 freemsg(mp1); 2343 2344 putnext(listener->tcp_rq, ok_mp); 2345 2346 mutex_enter(&listener->tcp_eager_lock); 2347 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 2348 tcp_t *tail; 2349 mblk_t *conn_ind; 2350 2351 /* 2352 * This path should not be executed if listener and 2353 * acceptor streams are the same. 2354 */ 2355 ASSERT(listener != acceptor); 2356 2357 tcp = listener->tcp_eager_prev_q0; 2358 /* 2359 * listener->tcp_eager_prev_q0 points to the TAIL of the 2360 * deferred T_conn_ind queue. We need to get to the head of 2361 * the queue in order to send up T_conn_ind the same order as 2362 * how the 3WHS is completed. 2363 */ 2364 while (tcp != listener) { 2365 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0) 2366 break; 2367 else 2368 tcp = tcp->tcp_eager_prev_q0; 2369 } 2370 ASSERT(tcp != listener); 2371 conn_ind = tcp->tcp_conn.tcp_eager_conn_ind; 2372 ASSERT(conn_ind != NULL); 2373 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 2374 2375 /* Move from q0 to q */ 2376 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 2377 listener->tcp_conn_req_cnt_q0--; 2378 listener->tcp_conn_req_cnt_q++; 2379 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 2380 tcp->tcp_eager_prev_q0; 2381 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 2382 tcp->tcp_eager_next_q0; 2383 tcp->tcp_eager_prev_q0 = NULL; 2384 tcp->tcp_eager_next_q0 = NULL; 2385 tcp->tcp_conn_def_q0 = B_FALSE; 2386 2387 /* Make sure the tcp isn't in the list of droppables */ 2388 ASSERT(tcp->tcp_eager_next_drop_q0 == NULL && 2389 tcp->tcp_eager_prev_drop_q0 == NULL); 2390 2391 /* 2392 * Insert at end of the queue because sockfs sends 2393 * down T_CONN_RES in chronological order. Leaving 2394 * the older conn indications at front of the queue 2395 * helps reducing search time. 2396 */ 2397 tail = listener->tcp_eager_last_q; 2398 if (tail != NULL) 2399 tail->tcp_eager_next_q = tcp; 2400 else 2401 listener->tcp_eager_next_q = tcp; 2402 listener->tcp_eager_last_q = tcp; 2403 tcp->tcp_eager_next_q = NULL; 2404 mutex_exit(&listener->tcp_eager_lock); 2405 putnext(tcp->tcp_rq, conn_ind); 2406 } else { 2407 mutex_exit(&listener->tcp_eager_lock); 2408 } 2409 2410 /* 2411 * Done with the acceptor - free it 2412 * 2413 * Note: from this point on, no access to listener should be made 2414 * as listener can be equal to acceptor. 2415 */ 2416 finish: 2417 ASSERT(acceptor->tcp_detached); 2418 acceptor->tcp_rq = tcp_g_q; 2419 acceptor->tcp_wq = WR(tcp_g_q); 2420 (void) tcp_clean_death(acceptor, 0, 2); 2421 CONN_DEC_REF(acceptor->tcp_connp); 2422 2423 /* 2424 * In case we already received a FIN we have to make tcp_rput send 2425 * the ordrel_ind. This will also send up a window update if the window 2426 * has opened up. 2427 * 2428 * In the normal case of a successful connection acceptance 2429 * we give the O_T_BIND_REQ to the read side put procedure as an 2430 * indication that this was just accepted. This tells tcp_rput to 2431 * pass up any data queued in tcp_rcv_list. 2432 * 2433 * In the fringe case where options sent with T_CONN_RES failed and 2434 * we required, we would be indicating a T_DISCON_IND to blow 2435 * away this connection. 2436 */ 2437 2438 /* 2439 * XXX: we currently have a problem if XTI application closes the 2440 * acceptor stream in between. This problem exists in on10-gate also 2441 * and is well know but nothing can be done short of major rewrite 2442 * to fix it. Now it is possible to take care of it by assigning TLI/XTI 2443 * eager same squeue as listener (we can distinguish non socket 2444 * listeners at the time of handling a SYN in tcp_conn_request) 2445 * and do most of the work that tcp_accept_finish does here itself 2446 * and then get behind the acceptor squeue to access the acceptor 2447 * queue. 2448 */ 2449 /* 2450 * We already have a ref on tcp so no need to do one before squeue_fill 2451 */ 2452 squeue_fill(eager->tcp_connp->conn_sqp, opt_mp, 2453 tcp_accept_finish, eager->tcp_connp, SQTAG_TCP_ACCEPT_FINISH); 2454 } 2455 2456 /* 2457 * Swap information between the eager and acceptor for a TLI/XTI client. 2458 * The sockfs accept is done on the acceptor stream and control goes 2459 * through tcp_wput_accept() and tcp_accept()/tcp_accept_swap() is not 2460 * called. In either case, both the eager and listener are in their own 2461 * perimeter (squeue) and the code has to deal with potential race. 2462 * 2463 * See the block comment on top of tcp_accept() and tcp_wput_accept(). 2464 */ 2465 static void 2466 tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, tcp_t *eager) 2467 { 2468 conn_t *econnp, *aconnp; 2469 2470 ASSERT(eager->tcp_rq == listener->tcp_rq); 2471 ASSERT(eager->tcp_detached && !acceptor->tcp_detached); 2472 ASSERT(!eager->tcp_hard_bound); 2473 ASSERT(!TCP_IS_SOCKET(acceptor)); 2474 ASSERT(!TCP_IS_SOCKET(eager)); 2475 ASSERT(!TCP_IS_SOCKET(listener)); 2476 2477 acceptor->tcp_detached = B_TRUE; 2478 /* 2479 * To permit stream re-use by TLI/XTI, the eager needs a copy of 2480 * the acceptor id. 2481 */ 2482 eager->tcp_acceptor_id = acceptor->tcp_acceptor_id; 2483 2484 /* remove eager from listen list... */ 2485 mutex_enter(&listener->tcp_eager_lock); 2486 tcp_eager_unlink(eager); 2487 ASSERT(eager->tcp_eager_next_q == NULL && 2488 eager->tcp_eager_last_q == NULL); 2489 ASSERT(eager->tcp_eager_next_q0 == NULL && 2490 eager->tcp_eager_prev_q0 == NULL); 2491 mutex_exit(&listener->tcp_eager_lock); 2492 eager->tcp_rq = acceptor->tcp_rq; 2493 eager->tcp_wq = acceptor->tcp_wq; 2494 2495 econnp = eager->tcp_connp; 2496 aconnp = acceptor->tcp_connp; 2497 2498 eager->tcp_rq->q_ptr = econnp; 2499 eager->tcp_wq->q_ptr = econnp; 2500 2501 /* 2502 * In the TLI/XTI loopback case, we are inside the listener's squeue, 2503 * which might be a different squeue from our peer TCP instance. 2504 * For TCP Fusion, the peer expects that whenever tcp_detached is 2505 * clear, our TCP queues point to the acceptor's queues. Thus, use 2506 * membar_producer() to ensure that the assignments of tcp_rq/tcp_wq 2507 * above reach global visibility prior to the clearing of tcp_detached. 2508 */ 2509 membar_producer(); 2510 eager->tcp_detached = B_FALSE; 2511 2512 ASSERT(eager->tcp_ack_tid == 0); 2513 2514 econnp->conn_dev = aconnp->conn_dev; 2515 if (eager->tcp_cred != NULL) 2516 crfree(eager->tcp_cred); 2517 eager->tcp_cred = econnp->conn_cred = aconnp->conn_cred; 2518 aconnp->conn_cred = NULL; 2519 2520 econnp->conn_zoneid = aconnp->conn_zoneid; 2521 econnp->conn_allzones = aconnp->conn_allzones; 2522 2523 econnp->conn_mac_exempt = aconnp->conn_mac_exempt; 2524 aconnp->conn_mac_exempt = B_FALSE; 2525 2526 ASSERT(aconnp->conn_peercred == NULL); 2527 2528 /* Do the IPC initialization */ 2529 CONN_INC_REF(econnp); 2530 2531 econnp->conn_multicast_loop = aconnp->conn_multicast_loop; 2532 econnp->conn_af_isv6 = aconnp->conn_af_isv6; 2533 econnp->conn_pkt_isv6 = aconnp->conn_pkt_isv6; 2534 econnp->conn_ulp = aconnp->conn_ulp; 2535 2536 /* Done with old IPC. Drop its ref on its connp */ 2537 CONN_DEC_REF(aconnp); 2538 } 2539 2540 2541 /* 2542 * Adapt to the information, such as rtt and rtt_sd, provided from the 2543 * ire cached in conn_cache_ire. If no ire cached, do a ire lookup. 2544 * 2545 * Checks for multicast and broadcast destination address. 2546 * Returns zero on failure; non-zero if ok. 2547 * 2548 * Note that the MSS calculation here is based on the info given in 2549 * the IRE. We do not do any calculation based on TCP options. They 2550 * will be handled in tcp_rput_other() and tcp_rput_data() when TCP 2551 * knows which options to use. 2552 * 2553 * Note on how TCP gets its parameters for a connection. 2554 * 2555 * When a tcp_t structure is allocated, it gets all the default parameters. 2556 * In tcp_adapt_ire(), it gets those metric parameters, like rtt, rtt_sd, 2557 * spipe, rpipe, ... from the route metrics. Route metric overrides the 2558 * default. But if there is an associated tcp_host_param, it will override 2559 * the metrics. 2560 * 2561 * An incoming SYN with a multicast or broadcast destination address, is dropped 2562 * in 1 of 2 places. 2563 * 2564 * 1. If the packet was received over the wire it is dropped in 2565 * ip_rput_process_broadcast() 2566 * 2567 * 2. If the packet was received through internal IP loopback, i.e. the packet 2568 * was generated and received on the same machine, it is dropped in 2569 * ip_wput_local() 2570 * 2571 * An incoming SYN with a multicast or broadcast source address is always 2572 * dropped in tcp_adapt_ire. The same logic in tcp_adapt_ire also serves to 2573 * reject an attempt to connect to a broadcast or multicast (destination) 2574 * address. 2575 */ 2576 static int 2577 tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp) 2578 { 2579 tcp_hsp_t *hsp; 2580 ire_t *ire; 2581 ire_t *sire = NULL; 2582 iulp_t *ire_uinfo = NULL; 2583 uint32_t mss_max; 2584 uint32_t mss; 2585 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 2586 conn_t *connp = tcp->tcp_connp; 2587 boolean_t ire_cacheable = B_FALSE; 2588 zoneid_t zoneid = connp->conn_zoneid; 2589 int match_flags = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 2590 MATCH_IRE_SECATTR; 2591 ts_label_t *tsl = crgetlabel(CONN_CRED(connp)); 2592 ill_t *ill = NULL; 2593 boolean_t incoming = (ire_mp == NULL); 2594 2595 ASSERT(connp->conn_ire_cache == NULL); 2596 2597 if (tcp->tcp_ipversion == IPV4_VERSION) { 2598 2599 if (CLASSD(tcp->tcp_connp->conn_rem)) { 2600 BUMP_MIB(&ip_mib, ipIfStatsInDiscards); 2601 return (0); 2602 } 2603 /* 2604 * If IP_NEXTHOP is set, then look for an IRE_CACHE 2605 * for the destination with the nexthop as gateway. 2606 * ire_ctable_lookup() is used because this particular 2607 * ire, if it exists, will be marked private. 2608 * If that is not available, use the interface ire 2609 * for the nexthop. 2610 * 2611 * TSol: tcp_update_label will detect label mismatches based 2612 * only on the destination's label, but that would not 2613 * detect label mismatches based on the security attributes 2614 * of routes or next hop gateway. Hence we need to pass the 2615 * label to ire_ftable_lookup below in order to locate the 2616 * right prefix (and/or) ire cache. Similarly we also need 2617 * pass the label to the ire_cache_lookup below to locate 2618 * the right ire that also matches on the label. 2619 */ 2620 if (tcp->tcp_connp->conn_nexthop_set) { 2621 ire = ire_ctable_lookup(tcp->tcp_connp->conn_rem, 2622 tcp->tcp_connp->conn_nexthop_v4, 0, NULL, zoneid, 2623 tsl, MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW); 2624 if (ire == NULL) { 2625 ire = ire_ftable_lookup( 2626 tcp->tcp_connp->conn_nexthop_v4, 2627 0, 0, IRE_INTERFACE, NULL, NULL, zoneid, 0, 2628 tsl, match_flags); 2629 if (ire == NULL) 2630 return (0); 2631 } else { 2632 ire_uinfo = &ire->ire_uinfo; 2633 } 2634 } else { 2635 ire = ire_cache_lookup(tcp->tcp_connp->conn_rem, 2636 zoneid, tsl); 2637 if (ire != NULL) { 2638 ire_cacheable = B_TRUE; 2639 ire_uinfo = (ire_mp != NULL) ? 2640 &((ire_t *)ire_mp->b_rptr)->ire_uinfo: 2641 &ire->ire_uinfo; 2642 2643 } else { 2644 if (ire_mp == NULL) { 2645 ire = ire_ftable_lookup( 2646 tcp->tcp_connp->conn_rem, 2647 0, 0, 0, NULL, &sire, zoneid, 0, 2648 tsl, (MATCH_IRE_RECURSIVE | 2649 MATCH_IRE_DEFAULT)); 2650 if (ire == NULL) 2651 return (0); 2652 ire_uinfo = (sire != NULL) ? 2653 &sire->ire_uinfo : 2654 &ire->ire_uinfo; 2655 } else { 2656 ire = (ire_t *)ire_mp->b_rptr; 2657 ire_uinfo = 2658 &((ire_t *) 2659 ire_mp->b_rptr)->ire_uinfo; 2660 } 2661 } 2662 } 2663 ASSERT(ire != NULL); 2664 2665 if ((ire->ire_src_addr == INADDR_ANY) || 2666 (ire->ire_type & IRE_BROADCAST)) { 2667 /* 2668 * ire->ire_mp is non null when ire_mp passed in is used 2669 * ire->ire_mp is set in ip_bind_insert_ire[_v6](). 2670 */ 2671 if (ire->ire_mp == NULL) 2672 ire_refrele(ire); 2673 if (sire != NULL) 2674 ire_refrele(sire); 2675 return (0); 2676 } 2677 2678 if (tcp->tcp_ipha->ipha_src == INADDR_ANY) { 2679 ipaddr_t src_addr; 2680 2681 /* 2682 * ip_bind_connected() has stored the correct source 2683 * address in conn_src. 2684 */ 2685 src_addr = tcp->tcp_connp->conn_src; 2686 tcp->tcp_ipha->ipha_src = src_addr; 2687 /* 2688 * Copy of the src addr. in tcp_t is needed 2689 * for the lookup funcs. 2690 */ 2691 IN6_IPADDR_TO_V4MAPPED(src_addr, &tcp->tcp_ip_src_v6); 2692 } 2693 /* 2694 * Set the fragment bit so that IP will tell us if the MTU 2695 * should change. IP tells us the latest setting of 2696 * ip_path_mtu_discovery through ire_frag_flag. 2697 */ 2698 if (ip_path_mtu_discovery) { 2699 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 2700 htons(IPH_DF); 2701 } 2702 /* 2703 * If ire_uinfo is NULL, this is the IRE_INTERFACE case 2704 * for IP_NEXTHOP. No cache ire has been found for the 2705 * destination and we are working with the nexthop's 2706 * interface ire. Since we need to forward all packets 2707 * to the nexthop first, we "blindly" set tcp_localnet 2708 * to false, eventhough the destination may also be 2709 * onlink. 2710 */ 2711 if (ire_uinfo == NULL) 2712 tcp->tcp_localnet = 0; 2713 else 2714 tcp->tcp_localnet = (ire->ire_gateway_addr == 0); 2715 } else { 2716 /* 2717 * For incoming connection ire_mp = NULL 2718 * For outgoing connection ire_mp != NULL 2719 * Technically we should check conn_incoming_ill 2720 * when ire_mp is NULL and conn_outgoing_ill when 2721 * ire_mp is non-NULL. But this is performance 2722 * critical path and for IPV*_BOUND_IF, outgoing 2723 * and incoming ill are always set to the same value. 2724 */ 2725 ill_t *dst_ill = NULL; 2726 ipif_t *dst_ipif = NULL; 2727 2728 ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill); 2729 2730 if (connp->conn_outgoing_ill != NULL) { 2731 /* Outgoing or incoming path */ 2732 int err; 2733 2734 dst_ill = conn_get_held_ill(connp, 2735 &connp->conn_outgoing_ill, &err); 2736 if (err == ILL_LOOKUP_FAILED || dst_ill == NULL) { 2737 ip1dbg(("tcp_adapt_ire: ill_lookup failed\n")); 2738 return (0); 2739 } 2740 match_flags |= MATCH_IRE_ILL; 2741 dst_ipif = dst_ill->ill_ipif; 2742 } 2743 ire = ire_ctable_lookup_v6(&tcp->tcp_connp->conn_remv6, 2744 0, 0, dst_ipif, zoneid, tsl, match_flags); 2745 2746 if (ire != NULL) { 2747 ire_cacheable = B_TRUE; 2748 ire_uinfo = (ire_mp != NULL) ? 2749 &((ire_t *)ire_mp->b_rptr)->ire_uinfo: 2750 &ire->ire_uinfo; 2751 } else { 2752 if (ire_mp == NULL) { 2753 ire = ire_ftable_lookup_v6( 2754 &tcp->tcp_connp->conn_remv6, 2755 0, 0, 0, dst_ipif, &sire, zoneid, 2756 0, tsl, match_flags); 2757 if (ire == NULL) { 2758 if (dst_ill != NULL) 2759 ill_refrele(dst_ill); 2760 return (0); 2761 } 2762 ire_uinfo = (sire != NULL) ? &sire->ire_uinfo : 2763 &ire->ire_uinfo; 2764 } else { 2765 ire = (ire_t *)ire_mp->b_rptr; 2766 ire_uinfo = 2767 &((ire_t *)ire_mp->b_rptr)->ire_uinfo; 2768 } 2769 } 2770 if (dst_ill != NULL) 2771 ill_refrele(dst_ill); 2772 2773 ASSERT(ire != NULL); 2774 ASSERT(ire_uinfo != NULL); 2775 2776 if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6) || 2777 IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) { 2778 /* 2779 * ire->ire_mp is non null when ire_mp passed in is used 2780 * ire->ire_mp is set in ip_bind_insert_ire[_v6](). 2781 */ 2782 if (ire->ire_mp == NULL) 2783 ire_refrele(ire); 2784 if (sire != NULL) 2785 ire_refrele(sire); 2786 return (0); 2787 } 2788 2789 if (IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) { 2790 in6_addr_t src_addr; 2791 2792 /* 2793 * ip_bind_connected_v6() has stored the correct source 2794 * address per IPv6 addr. selection policy in 2795 * conn_src_v6. 2796 */ 2797 src_addr = tcp->tcp_connp->conn_srcv6; 2798 2799 tcp->tcp_ip6h->ip6_src = src_addr; 2800 /* 2801 * Copy of the src addr. in tcp_t is needed 2802 * for the lookup funcs. 2803 */ 2804 tcp->tcp_ip_src_v6 = src_addr; 2805 ASSERT(IN6_ARE_ADDR_EQUAL(&tcp->tcp_ip6h->ip6_src, 2806 &connp->conn_srcv6)); 2807 } 2808 tcp->tcp_localnet = 2809 IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6); 2810 } 2811 2812 /* 2813 * This allows applications to fail quickly when connections are made 2814 * to dead hosts. Hosts can be labeled dead by adding a reject route 2815 * with both the RTF_REJECT and RTF_PRIVATE flags set. 2816 */ 2817 if ((ire->ire_flags & RTF_REJECT) && 2818 (ire->ire_flags & RTF_PRIVATE)) 2819 goto error; 2820 2821 /* 2822 * Make use of the cached rtt and rtt_sd values to calculate the 2823 * initial RTO. Note that they are already initialized in 2824 * tcp_init_values(). 2825 * If ire_uinfo is NULL, i.e., we do not have a cache ire for 2826 * IP_NEXTHOP, but instead are using the interface ire for the 2827 * nexthop, then we do not use the ire_uinfo from that ire to 2828 * do any initializations. 2829 */ 2830 if (ire_uinfo != NULL) { 2831 if (ire_uinfo->iulp_rtt != 0) { 2832 clock_t rto; 2833 2834 tcp->tcp_rtt_sa = ire_uinfo->iulp_rtt; 2835 tcp->tcp_rtt_sd = ire_uinfo->iulp_rtt_sd; 2836 rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 2837 tcp_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5); 2838 2839 if (rto > tcp_rexmit_interval_max) { 2840 tcp->tcp_rto = tcp_rexmit_interval_max; 2841 } else if (rto < tcp_rexmit_interval_min) { 2842 tcp->tcp_rto = tcp_rexmit_interval_min; 2843 } else { 2844 tcp->tcp_rto = rto; 2845 } 2846 } 2847 if (ire_uinfo->iulp_ssthresh != 0) 2848 tcp->tcp_cwnd_ssthresh = ire_uinfo->iulp_ssthresh; 2849 else 2850 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 2851 if (ire_uinfo->iulp_spipe > 0) { 2852 tcp->tcp_xmit_hiwater = MIN(ire_uinfo->iulp_spipe, 2853 tcp_max_buf); 2854 if (tcp_snd_lowat_fraction != 0) 2855 tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater / 2856 tcp_snd_lowat_fraction; 2857 (void) tcp_maxpsz_set(tcp, B_TRUE); 2858 } 2859 /* 2860 * Note that up till now, acceptor always inherits receive 2861 * window from the listener. But if there is a metrics 2862 * associated with a host, we should use that instead of 2863 * inheriting it from listener. Thus we need to pass this 2864 * info back to the caller. 2865 */ 2866 if (ire_uinfo->iulp_rpipe > 0) { 2867 tcp->tcp_rwnd = MIN(ire_uinfo->iulp_rpipe, tcp_max_buf); 2868 } 2869 2870 if (ire_uinfo->iulp_rtomax > 0) { 2871 tcp->tcp_second_timer_threshold = 2872 ire_uinfo->iulp_rtomax; 2873 } 2874 2875 /* 2876 * Use the metric option settings, iulp_tstamp_ok and 2877 * iulp_wscale_ok, only for active open. What this means 2878 * is that if the other side uses timestamp or window 2879 * scale option, TCP will also use those options. That 2880 * is for passive open. If the application sets a 2881 * large window, window scale is enabled regardless of 2882 * the value in iulp_wscale_ok. This is the behavior 2883 * since 2.6. So we keep it. 2884 * The only case left in passive open processing is the 2885 * check for SACK. 2886 * For ECN, it should probably be like SACK. But the 2887 * current value is binary, so we treat it like the other 2888 * cases. The metric only controls active open.For passive 2889 * open, the ndd param, tcp_ecn_permitted, controls the 2890 * behavior. 2891 */ 2892 if (!tcp_detached) { 2893 /* 2894 * The if check means that the following can only 2895 * be turned on by the metrics only IRE, but not off. 2896 */ 2897 if (ire_uinfo->iulp_tstamp_ok) 2898 tcp->tcp_snd_ts_ok = B_TRUE; 2899 if (ire_uinfo->iulp_wscale_ok) 2900 tcp->tcp_snd_ws_ok = B_TRUE; 2901 if (ire_uinfo->iulp_sack == 2) 2902 tcp->tcp_snd_sack_ok = B_TRUE; 2903 if (ire_uinfo->iulp_ecn_ok) 2904 tcp->tcp_ecn_ok = B_TRUE; 2905 } else { 2906 /* 2907 * Passive open. 2908 * 2909 * As above, the if check means that SACK can only be 2910 * turned on by the metric only IRE. 2911 */ 2912 if (ire_uinfo->iulp_sack > 0) { 2913 tcp->tcp_snd_sack_ok = B_TRUE; 2914 } 2915 } 2916 } 2917 2918 2919 /* 2920 * XXX: Note that currently, ire_max_frag can be as small as 68 2921 * because of PMTUd. So tcp_mss may go to negative if combined 2922 * length of all those options exceeds 28 bytes. But because 2923 * of the tcp_mss_min check below, we may not have a problem if 2924 * tcp_mss_min is of a reasonable value. The default is 1 so 2925 * the negative problem still exists. And the check defeats PMTUd. 2926 * In fact, if PMTUd finds that the MSS should be smaller than 2927 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min 2928 * value. 2929 * 2930 * We do not deal with that now. All those problems related to 2931 * PMTUd will be fixed later. 2932 */ 2933 ASSERT(ire->ire_max_frag != 0); 2934 mss = tcp->tcp_if_mtu = ire->ire_max_frag; 2935 if (tcp->tcp_ipp_fields & IPPF_USE_MIN_MTU) { 2936 if (tcp->tcp_ipp_use_min_mtu == IPV6_USE_MIN_MTU_NEVER) { 2937 mss = MIN(mss, IPV6_MIN_MTU); 2938 } 2939 } 2940 2941 /* Sanity check for MSS value. */ 2942 if (tcp->tcp_ipversion == IPV4_VERSION) 2943 mss_max = tcp_mss_max_ipv4; 2944 else 2945 mss_max = tcp_mss_max_ipv6; 2946 2947 if (tcp->tcp_ipversion == IPV6_VERSION && 2948 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 2949 /* 2950 * After receiving an ICMPv6 "packet too big" message with a 2951 * MTU < 1280, and for multirouted IPv6 packets, the IP layer 2952 * will insert a 8-byte fragment header in every packet; we 2953 * reduce the MSS by that amount here. 2954 */ 2955 mss -= sizeof (ip6_frag_t); 2956 } 2957 2958 if (tcp->tcp_ipsec_overhead == 0) 2959 tcp->tcp_ipsec_overhead = conn_ipsec_length(connp); 2960 2961 mss -= tcp->tcp_ipsec_overhead; 2962 2963 if (mss < tcp_mss_min) 2964 mss = tcp_mss_min; 2965 if (mss > mss_max) 2966 mss = mss_max; 2967 2968 /* Note that this is the maximum MSS, excluding all options. */ 2969 tcp->tcp_mss = mss; 2970 2971 /* 2972 * Initialize the ISS here now that we have the full connection ID. 2973 * The RFC 1948 method of initial sequence number generation requires 2974 * knowledge of the full connection ID before setting the ISS. 2975 */ 2976 2977 tcp_iss_init(tcp); 2978 2979 if (ire->ire_type & (IRE_LOOPBACK | IRE_LOCAL)) 2980 tcp->tcp_loopback = B_TRUE; 2981 2982 if (tcp->tcp_ipversion == IPV4_VERSION) { 2983 hsp = tcp_hsp_lookup(tcp->tcp_remote); 2984 } else { 2985 hsp = tcp_hsp_lookup_ipv6(&tcp->tcp_remote_v6); 2986 } 2987 2988 if (hsp != NULL) { 2989 /* Only modify if we're going to make them bigger */ 2990 if (hsp->tcp_hsp_sendspace > tcp->tcp_xmit_hiwater) { 2991 tcp->tcp_xmit_hiwater = hsp->tcp_hsp_sendspace; 2992 if (tcp_snd_lowat_fraction != 0) 2993 tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater / 2994 tcp_snd_lowat_fraction; 2995 } 2996 2997 if (hsp->tcp_hsp_recvspace > tcp->tcp_rwnd) { 2998 tcp->tcp_rwnd = hsp->tcp_hsp_recvspace; 2999 } 3000 3001 /* Copy timestamp flag only for active open */ 3002 if (!tcp_detached) 3003 tcp->tcp_snd_ts_ok = hsp->tcp_hsp_tstamp; 3004 } 3005 3006 if (sire != NULL) 3007 IRE_REFRELE(sire); 3008 3009 /* 3010 * If we got an IRE_CACHE and an ILL, go through their properties; 3011 * otherwise, this is deferred until later when we have an IRE_CACHE. 3012 */ 3013 if (tcp->tcp_loopback || 3014 (ire_cacheable && (ill = ire_to_ill(ire)) != NULL)) { 3015 /* 3016 * For incoming, see if this tcp may be MDT-capable. For 3017 * outgoing, this process has been taken care of through 3018 * tcp_rput_other. 3019 */ 3020 tcp_ire_ill_check(tcp, ire, ill, incoming); 3021 tcp->tcp_ire_ill_check_done = B_TRUE; 3022 } 3023 3024 mutex_enter(&connp->conn_lock); 3025 /* 3026 * Make sure that conn is not marked incipient 3027 * for incoming connections. A blind 3028 * removal of incipient flag is cheaper than 3029 * check and removal. 3030 */ 3031 connp->conn_state_flags &= ~CONN_INCIPIENT; 3032 3033 /* Must not cache forwarding table routes. */ 3034 if (ire_cacheable) { 3035 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 3036 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 3037 connp->conn_ire_cache = ire; 3038 IRE_UNTRACE_REF(ire); 3039 rw_exit(&ire->ire_bucket->irb_lock); 3040 mutex_exit(&connp->conn_lock); 3041 return (1); 3042 } 3043 rw_exit(&ire->ire_bucket->irb_lock); 3044 } 3045 mutex_exit(&connp->conn_lock); 3046 3047 if (ire->ire_mp == NULL) 3048 ire_refrele(ire); 3049 return (1); 3050 3051 error: 3052 if (ire->ire_mp == NULL) 3053 ire_refrele(ire); 3054 if (sire != NULL) 3055 ire_refrele(sire); 3056 return (0); 3057 } 3058 3059 /* 3060 * tcp_bind is called (holding the writer lock) by tcp_wput_proto to process a 3061 * O_T_BIND_REQ/T_BIND_REQ message. 3062 */ 3063 static void 3064 tcp_bind(tcp_t *tcp, mblk_t *mp) 3065 { 3066 sin_t *sin; 3067 sin6_t *sin6; 3068 mblk_t *mp1; 3069 in_port_t requested_port; 3070 in_port_t allocated_port; 3071 struct T_bind_req *tbr; 3072 boolean_t bind_to_req_port_only; 3073 boolean_t backlog_update = B_FALSE; 3074 boolean_t user_specified; 3075 in6_addr_t v6addr; 3076 ipaddr_t v4addr; 3077 uint_t origipversion; 3078 int err; 3079 queue_t *q = tcp->tcp_wq; 3080 conn_t *connp; 3081 mlp_type_t addrtype, mlptype; 3082 zone_t *zone; 3083 cred_t *cr; 3084 in_port_t mlp_port; 3085 3086 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 3087 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) { 3088 if (tcp->tcp_debug) { 3089 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 3090 "tcp_bind: bad req, len %u", 3091 (uint_t)(mp->b_wptr - mp->b_rptr)); 3092 } 3093 tcp_err_ack(tcp, mp, TPROTO, 0); 3094 return; 3095 } 3096 /* Make sure the largest address fits */ 3097 mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t) + 1, 1); 3098 if (mp1 == NULL) { 3099 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 3100 return; 3101 } 3102 mp = mp1; 3103 tbr = (struct T_bind_req *)mp->b_rptr; 3104 if (tcp->tcp_state >= TCPS_BOUND) { 3105 if ((tcp->tcp_state == TCPS_BOUND || 3106 tcp->tcp_state == TCPS_LISTEN) && 3107 tcp->tcp_conn_req_max != tbr->CONIND_number && 3108 tbr->CONIND_number > 0) { 3109 /* 3110 * Handle listen() increasing CONIND_number. 3111 * This is more "liberal" then what the TPI spec 3112 * requires but is needed to avoid a t_unbind 3113 * when handling listen() since the port number 3114 * might be "stolen" between the unbind and bind. 3115 */ 3116 backlog_update = B_TRUE; 3117 goto do_bind; 3118 } 3119 if (tcp->tcp_debug) { 3120 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 3121 "tcp_bind: bad state, %d", tcp->tcp_state); 3122 } 3123 tcp_err_ack(tcp, mp, TOUTSTATE, 0); 3124 return; 3125 } 3126 origipversion = tcp->tcp_ipversion; 3127 3128 switch (tbr->ADDR_length) { 3129 case 0: /* request for a generic port */ 3130 tbr->ADDR_offset = sizeof (struct T_bind_req); 3131 if (tcp->tcp_family == AF_INET) { 3132 tbr->ADDR_length = sizeof (sin_t); 3133 sin = (sin_t *)&tbr[1]; 3134 *sin = sin_null; 3135 sin->sin_family = AF_INET; 3136 mp->b_wptr = (uchar_t *)&sin[1]; 3137 tcp->tcp_ipversion = IPV4_VERSION; 3138 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &v6addr); 3139 } else { 3140 ASSERT(tcp->tcp_family == AF_INET6); 3141 tbr->ADDR_length = sizeof (sin6_t); 3142 sin6 = (sin6_t *)&tbr[1]; 3143 *sin6 = sin6_null; 3144 sin6->sin6_family = AF_INET6; 3145 mp->b_wptr = (uchar_t *)&sin6[1]; 3146 tcp->tcp_ipversion = IPV6_VERSION; 3147 V6_SET_ZERO(v6addr); 3148 } 3149 requested_port = 0; 3150 break; 3151 3152 case sizeof (sin_t): /* Complete IPv4 address */ 3153 sin = (sin_t *)mi_offset_param(mp, tbr->ADDR_offset, 3154 sizeof (sin_t)); 3155 if (sin == NULL || !OK_32PTR((char *)sin)) { 3156 if (tcp->tcp_debug) { 3157 (void) strlog(TCP_MOD_ID, 0, 1, 3158 SL_ERROR|SL_TRACE, 3159 "tcp_bind: bad address parameter, " 3160 "offset %d, len %d", 3161 tbr->ADDR_offset, tbr->ADDR_length); 3162 } 3163 tcp_err_ack(tcp, mp, TPROTO, 0); 3164 return; 3165 } 3166 /* 3167 * With sockets sockfs will accept bogus sin_family in 3168 * bind() and replace it with the family used in the socket 3169 * call. 3170 */ 3171 if (sin->sin_family != AF_INET || 3172 tcp->tcp_family != AF_INET) { 3173 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 3174 return; 3175 } 3176 requested_port = ntohs(sin->sin_port); 3177 tcp->tcp_ipversion = IPV4_VERSION; 3178 v4addr = sin->sin_addr.s_addr; 3179 IN6_IPADDR_TO_V4MAPPED(v4addr, &v6addr); 3180 break; 3181 3182 case sizeof (sin6_t): /* Complete IPv6 address */ 3183 sin6 = (sin6_t *)mi_offset_param(mp, 3184 tbr->ADDR_offset, sizeof (sin6_t)); 3185 if (sin6 == NULL || !OK_32PTR((char *)sin6)) { 3186 if (tcp->tcp_debug) { 3187 (void) strlog(TCP_MOD_ID, 0, 1, 3188 SL_ERROR|SL_TRACE, 3189 "tcp_bind: bad IPv6 address parameter, " 3190 "offset %d, len %d", tbr->ADDR_offset, 3191 tbr->ADDR_length); 3192 } 3193 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 3194 return; 3195 } 3196 if (sin6->sin6_family != AF_INET6 || 3197 tcp->tcp_family != AF_INET6) { 3198 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 3199 return; 3200 } 3201 requested_port = ntohs(sin6->sin6_port); 3202 tcp->tcp_ipversion = IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr) ? 3203 IPV4_VERSION : IPV6_VERSION; 3204 v6addr = sin6->sin6_addr; 3205 break; 3206 3207 default: 3208 if (tcp->tcp_debug) { 3209 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 3210 "tcp_bind: bad address length, %d", 3211 tbr->ADDR_length); 3212 } 3213 tcp_err_ack(tcp, mp, TBADADDR, 0); 3214 return; 3215 } 3216 tcp->tcp_bound_source_v6 = v6addr; 3217 3218 /* Check for change in ipversion */ 3219 if (origipversion != tcp->tcp_ipversion) { 3220 ASSERT(tcp->tcp_family == AF_INET6); 3221 err = tcp->tcp_ipversion == IPV6_VERSION ? 3222 tcp_header_init_ipv6(tcp) : tcp_header_init_ipv4(tcp); 3223 if (err) { 3224 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 3225 return; 3226 } 3227 } 3228 3229 /* 3230 * Initialize family specific fields. Copy of the src addr. 3231 * in tcp_t is needed for the lookup funcs. 3232 */ 3233 if (tcp->tcp_ipversion == IPV6_VERSION) { 3234 tcp->tcp_ip6h->ip6_src = v6addr; 3235 } else { 3236 IN6_V4MAPPED_TO_IPADDR(&v6addr, tcp->tcp_ipha->ipha_src); 3237 } 3238 tcp->tcp_ip_src_v6 = v6addr; 3239 3240 /* 3241 * For O_T_BIND_REQ: 3242 * Verify that the target port/addr is available, or choose 3243 * another. 3244 * For T_BIND_REQ: 3245 * Verify that the target port/addr is available or fail. 3246 * In both cases when it succeeds the tcp is inserted in the 3247 * bind hash table. This ensures that the operation is atomic 3248 * under the lock on the hash bucket. 3249 */ 3250 bind_to_req_port_only = requested_port != 0 && 3251 tbr->PRIM_type != O_T_BIND_REQ; 3252 /* 3253 * Get a valid port (within the anonymous range and should not 3254 * be a privileged one) to use if the user has not given a port. 3255 * If multiple threads are here, they may all start with 3256 * with the same initial port. But, it should be fine as long as 3257 * tcp_bindi will ensure that no two threads will be assigned 3258 * the same port. 3259 * 3260 * NOTE: XXX If a privileged process asks for an anonymous port, we 3261 * still check for ports only in the range > tcp_smallest_non_priv_port, 3262 * unless TCP_ANONPRIVBIND option is set. 3263 */ 3264 mlptype = mlptSingle; 3265 mlp_port = requested_port; 3266 if (requested_port == 0) { 3267 requested_port = tcp->tcp_anon_priv_bind ? 3268 tcp_get_next_priv_port(tcp) : 3269 tcp_update_next_port(tcp_next_port_to_try, tcp, B_TRUE); 3270 if (requested_port == 0) { 3271 tcp_err_ack(tcp, mp, TNOADDR, 0); 3272 return; 3273 } 3274 user_specified = B_FALSE; 3275 3276 /* 3277 * If the user went through one of the RPC interfaces to create 3278 * this socket and RPC is MLP in this zone, then give him an 3279 * anonymous MLP. 3280 */ 3281 cr = DB_CREDDEF(mp, tcp->tcp_cred); 3282 connp = tcp->tcp_connp; 3283 if (connp->conn_anon_mlp && is_system_labeled()) { 3284 zone = crgetzone(cr); 3285 addrtype = tsol_mlp_addr_type(zone->zone_id, 3286 IPV6_VERSION, &v6addr); 3287 if (addrtype == mlptSingle) { 3288 tcp_err_ack(tcp, mp, TNOADDR, 0); 3289 return; 3290 } 3291 mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP, 3292 PMAPPORT, addrtype); 3293 mlp_port = PMAPPORT; 3294 } 3295 } else { 3296 int i; 3297 boolean_t priv = B_FALSE; 3298 3299 /* 3300 * If the requested_port is in the well-known privileged range, 3301 * verify that the stream was opened by a privileged user. 3302 * Note: No locks are held when inspecting tcp_g_*epriv_ports 3303 * but instead the code relies on: 3304 * - the fact that the address of the array and its size never 3305 * changes 3306 * - the atomic assignment of the elements of the array 3307 */ 3308 cr = DB_CREDDEF(mp, tcp->tcp_cred); 3309 if (requested_port < tcp_smallest_nonpriv_port) { 3310 priv = B_TRUE; 3311 } else { 3312 for (i = 0; i < tcp_g_num_epriv_ports; i++) { 3313 if (requested_port == 3314 tcp_g_epriv_ports[i]) { 3315 priv = B_TRUE; 3316 break; 3317 } 3318 } 3319 } 3320 if (priv) { 3321 if (secpolicy_net_privaddr(cr, requested_port) != 0) { 3322 if (tcp->tcp_debug) { 3323 (void) strlog(TCP_MOD_ID, 0, 1, 3324 SL_ERROR|SL_TRACE, 3325 "tcp_bind: no priv for port %d", 3326 requested_port); 3327 } 3328 tcp_err_ack(tcp, mp, TACCES, 0); 3329 return; 3330 } 3331 } 3332 user_specified = B_TRUE; 3333 3334 connp = tcp->tcp_connp; 3335 if (is_system_labeled()) { 3336 zone = crgetzone(cr); 3337 addrtype = tsol_mlp_addr_type(zone->zone_id, 3338 IPV6_VERSION, &v6addr); 3339 if (addrtype == mlptSingle) { 3340 tcp_err_ack(tcp, mp, TNOADDR, 0); 3341 return; 3342 } 3343 mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP, 3344 requested_port, addrtype); 3345 } 3346 } 3347 3348 if (mlptype != mlptSingle) { 3349 if (secpolicy_net_bindmlp(cr) != 0) { 3350 if (tcp->tcp_debug) { 3351 (void) strlog(TCP_MOD_ID, 0, 1, 3352 SL_ERROR|SL_TRACE, 3353 "tcp_bind: no priv for multilevel port %d", 3354 requested_port); 3355 } 3356 tcp_err_ack(tcp, mp, TACCES, 0); 3357 return; 3358 } 3359 3360 /* 3361 * If we're specifically binding a shared IP address and the 3362 * port is MLP on shared addresses, then check to see if this 3363 * zone actually owns the MLP. Reject if not. 3364 */ 3365 if (mlptype == mlptShared && addrtype == mlptShared) { 3366 zoneid_t mlpzone; 3367 3368 mlpzone = tsol_mlp_findzone(IPPROTO_TCP, 3369 htons(mlp_port)); 3370 if (connp->conn_zoneid != mlpzone) { 3371 if (tcp->tcp_debug) { 3372 (void) strlog(TCP_MOD_ID, 0, 1, 3373 SL_ERROR|SL_TRACE, 3374 "tcp_bind: attempt to bind port " 3375 "%d on shared addr in zone %d " 3376 "(should be %d)", 3377 mlp_port, connp->conn_zoneid, 3378 mlpzone); 3379 } 3380 tcp_err_ack(tcp, mp, TACCES, 0); 3381 return; 3382 } 3383 } 3384 3385 if (!user_specified) { 3386 err = tsol_mlp_anon(zone, mlptype, connp->conn_ulp, 3387 requested_port, B_TRUE); 3388 if (err != 0) { 3389 if (tcp->tcp_debug) { 3390 (void) strlog(TCP_MOD_ID, 0, 1, 3391 SL_ERROR|SL_TRACE, 3392 "tcp_bind: cannot establish anon " 3393 "MLP for port %d", 3394 requested_port); 3395 } 3396 tcp_err_ack(tcp, mp, TSYSERR, err); 3397 return; 3398 } 3399 connp->conn_anon_port = B_TRUE; 3400 } 3401 connp->conn_mlp_type = mlptype; 3402 } 3403 3404 allocated_port = tcp_bindi(tcp, requested_port, &v6addr, 3405 tcp->tcp_reuseaddr, B_FALSE, bind_to_req_port_only, user_specified); 3406 3407 if (allocated_port == 0) { 3408 connp->conn_mlp_type = mlptSingle; 3409 if (connp->conn_anon_port) { 3410 connp->conn_anon_port = B_FALSE; 3411 (void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp, 3412 requested_port, B_FALSE); 3413 } 3414 if (bind_to_req_port_only) { 3415 if (tcp->tcp_debug) { 3416 (void) strlog(TCP_MOD_ID, 0, 1, 3417 SL_ERROR|SL_TRACE, 3418 "tcp_bind: requested addr busy"); 3419 } 3420 tcp_err_ack(tcp, mp, TADDRBUSY, 0); 3421 } else { 3422 /* If we are out of ports, fail the bind. */ 3423 if (tcp->tcp_debug) { 3424 (void) strlog(TCP_MOD_ID, 0, 1, 3425 SL_ERROR|SL_TRACE, 3426 "tcp_bind: out of ports?"); 3427 } 3428 tcp_err_ack(tcp, mp, TNOADDR, 0); 3429 } 3430 return; 3431 } 3432 ASSERT(tcp->tcp_state == TCPS_BOUND); 3433 do_bind: 3434 if (!backlog_update) { 3435 if (tcp->tcp_family == AF_INET) 3436 sin->sin_port = htons(allocated_port); 3437 else 3438 sin6->sin6_port = htons(allocated_port); 3439 } 3440 if (tcp->tcp_family == AF_INET) { 3441 if (tbr->CONIND_number != 0) { 3442 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, 3443 sizeof (sin_t)); 3444 } else { 3445 /* Just verify the local IP address */ 3446 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, IP_ADDR_LEN); 3447 } 3448 } else { 3449 if (tbr->CONIND_number != 0) { 3450 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, 3451 sizeof (sin6_t)); 3452 } else { 3453 /* Just verify the local IP address */ 3454 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, 3455 IPV6_ADDR_LEN); 3456 } 3457 } 3458 if (mp1 == NULL) { 3459 if (connp->conn_anon_port) { 3460 connp->conn_anon_port = B_FALSE; 3461 (void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp, 3462 requested_port, B_FALSE); 3463 } 3464 connp->conn_mlp_type = mlptSingle; 3465 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 3466 return; 3467 } 3468 3469 tbr->PRIM_type = T_BIND_ACK; 3470 mp->b_datap->db_type = M_PCPROTO; 3471 3472 /* Chain in the reply mp for tcp_rput() */ 3473 mp1->b_cont = mp; 3474 mp = mp1; 3475 3476 tcp->tcp_conn_req_max = tbr->CONIND_number; 3477 if (tcp->tcp_conn_req_max) { 3478 if (tcp->tcp_conn_req_max < tcp_conn_req_min) 3479 tcp->tcp_conn_req_max = tcp_conn_req_min; 3480 if (tcp->tcp_conn_req_max > tcp_conn_req_max_q) 3481 tcp->tcp_conn_req_max = tcp_conn_req_max_q; 3482 /* 3483 * If this is a listener, do not reset the eager list 3484 * and other stuffs. Note that we don't check if the 3485 * existing eager list meets the new tcp_conn_req_max 3486 * requirement. 3487 */ 3488 if (tcp->tcp_state != TCPS_LISTEN) { 3489 tcp->tcp_state = TCPS_LISTEN; 3490 /* Initialize the chain. Don't need the eager_lock */ 3491 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 3492 tcp->tcp_eager_next_drop_q0 = tcp; 3493 tcp->tcp_eager_prev_drop_q0 = tcp; 3494 tcp->tcp_second_ctimer_threshold = 3495 tcp_ip_abort_linterval; 3496 } 3497 } 3498 3499 /* 3500 * We can call ip_bind directly which returns a T_BIND_ACK mp. The 3501 * processing continues in tcp_rput_other(). 3502 */ 3503 if (tcp->tcp_family == AF_INET6) { 3504 ASSERT(tcp->tcp_connp->conn_af_isv6); 3505 mp = ip_bind_v6(q, mp, tcp->tcp_connp, &tcp->tcp_sticky_ipp); 3506 } else { 3507 ASSERT(!tcp->tcp_connp->conn_af_isv6); 3508 mp = ip_bind_v4(q, mp, tcp->tcp_connp); 3509 } 3510 /* 3511 * If the bind cannot complete immediately 3512 * IP will arrange to call tcp_rput_other 3513 * when the bind completes. 3514 */ 3515 if (mp != NULL) { 3516 tcp_rput_other(tcp, mp); 3517 } else { 3518 /* 3519 * Bind will be resumed later. Need to ensure 3520 * that conn doesn't disappear when that happens. 3521 * This will be decremented in ip_resume_tcp_bind(). 3522 */ 3523 CONN_INC_REF(tcp->tcp_connp); 3524 } 3525 } 3526 3527 3528 /* 3529 * If the "bind_to_req_port_only" parameter is set, if the requested port 3530 * number is available, return it, If not return 0 3531 * 3532 * If "bind_to_req_port_only" parameter is not set and 3533 * If the requested port number is available, return it. If not, return 3534 * the first anonymous port we happen across. If no anonymous ports are 3535 * available, return 0. addr is the requested local address, if any. 3536 * 3537 * In either case, when succeeding update the tcp_t to record the port number 3538 * and insert it in the bind hash table. 3539 * 3540 * Note that TCP over IPv4 and IPv6 sockets can use the same port number 3541 * without setting SO_REUSEADDR. This is needed so that they 3542 * can be viewed as two independent transport protocols. 3543 */ 3544 static in_port_t 3545 tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, 3546 int reuseaddr, boolean_t quick_connect, 3547 boolean_t bind_to_req_port_only, boolean_t user_specified) 3548 { 3549 /* number of times we have run around the loop */ 3550 int count = 0; 3551 /* maximum number of times to run around the loop */ 3552 int loopmax; 3553 conn_t *connp = tcp->tcp_connp; 3554 zoneid_t zoneid = connp->conn_zoneid; 3555 3556 /* 3557 * Lookup for free addresses is done in a loop and "loopmax" 3558 * influences how long we spin in the loop 3559 */ 3560 if (bind_to_req_port_only) { 3561 /* 3562 * If the requested port is busy, don't bother to look 3563 * for a new one. Setting loop maximum count to 1 has 3564 * that effect. 3565 */ 3566 loopmax = 1; 3567 } else { 3568 /* 3569 * If the requested port is busy, look for a free one 3570 * in the anonymous port range. 3571 * Set loopmax appropriately so that one does not look 3572 * forever in the case all of the anonymous ports are in use. 3573 */ 3574 if (tcp->tcp_anon_priv_bind) { 3575 /* 3576 * loopmax = 3577 * (IPPORT_RESERVED-1) - tcp_min_anonpriv_port + 1 3578 */ 3579 loopmax = IPPORT_RESERVED - tcp_min_anonpriv_port; 3580 } else { 3581 loopmax = (tcp_largest_anon_port - 3582 tcp_smallest_anon_port + 1); 3583 } 3584 } 3585 do { 3586 uint16_t lport; 3587 tf_t *tbf; 3588 tcp_t *ltcp; 3589 conn_t *lconnp; 3590 3591 lport = htons(port); 3592 3593 /* 3594 * Ensure that the tcp_t is not currently in the bind hash. 3595 * Hold the lock on the hash bucket to ensure that 3596 * the duplicate check plus the insertion is an atomic 3597 * operation. 3598 * 3599 * This function does an inline lookup on the bind hash list 3600 * Make sure that we access only members of tcp_t 3601 * and that we don't look at tcp_tcp, since we are not 3602 * doing a CONN_INC_REF. 3603 */ 3604 tcp_bind_hash_remove(tcp); 3605 tbf = &tcp_bind_fanout[TCP_BIND_HASH(lport)]; 3606 mutex_enter(&tbf->tf_lock); 3607 for (ltcp = tbf->tf_tcp; ltcp != NULL; 3608 ltcp = ltcp->tcp_bind_hash) { 3609 boolean_t not_socket; 3610 boolean_t exclbind; 3611 3612 if (lport != ltcp->tcp_lport) 3613 continue; 3614 3615 lconnp = ltcp->tcp_connp; 3616 3617 /* 3618 * On a labeled system, we must treat bindings to ports 3619 * on shared IP addresses by sockets with MAC exemption 3620 * privilege as being in all zones, as there's 3621 * otherwise no way to identify the right receiver. 3622 */ 3623 if (!IPCL_ZONE_MATCH(ltcp->tcp_connp, zoneid) && 3624 !lconnp->conn_mac_exempt && 3625 !connp->conn_mac_exempt) 3626 continue; 3627 3628 /* 3629 * If TCP_EXCLBIND is set for either the bound or 3630 * binding endpoint, the semantics of bind 3631 * is changed according to the following. 3632 * 3633 * spec = specified address (v4 or v6) 3634 * unspec = unspecified address (v4 or v6) 3635 * A = specified addresses are different for endpoints 3636 * 3637 * bound bind to allowed 3638 * ------------------------------------- 3639 * unspec unspec no 3640 * unspec spec no 3641 * spec unspec no 3642 * spec spec yes if A 3643 * 3644 * For labeled systems, SO_MAC_EXEMPT behaves the same 3645 * as TCP_EXCLBIND, except that zoneid is ignored. 3646 * 3647 * Note: 3648 * 3649 * 1. Because of TLI semantics, an endpoint can go 3650 * back from, say TCP_ESTABLISHED to TCPS_LISTEN or 3651 * TCPS_BOUND, depending on whether it is originally 3652 * a listener or not. That is why we need to check 3653 * for states greater than or equal to TCPS_BOUND 3654 * here. 3655 * 3656 * 2. Ideally, we should only check for state equals 3657 * to TCPS_LISTEN. And the following check should be 3658 * added. 3659 * 3660 * if (ltcp->tcp_state == TCPS_LISTEN || 3661 * !reuseaddr || !ltcp->tcp_reuseaddr) { 3662 * ... 3663 * } 3664 * 3665 * The semantics will be changed to this. If the 3666 * endpoint on the list is in state not equal to 3667 * TCPS_LISTEN and both endpoints have SO_REUSEADDR 3668 * set, let the bind succeed. 3669 * 3670 * Because of (1), we cannot do that for TLI 3671 * endpoints. But we can do that for socket endpoints. 3672 * If in future, we can change this going back 3673 * semantics, we can use the above check for TLI also. 3674 */ 3675 not_socket = !(TCP_IS_SOCKET(ltcp) && 3676 TCP_IS_SOCKET(tcp)); 3677 exclbind = ltcp->tcp_exclbind || tcp->tcp_exclbind; 3678 3679 if (lconnp->conn_mac_exempt || connp->conn_mac_exempt || 3680 (exclbind && (not_socket || 3681 ltcp->tcp_state <= TCPS_ESTABLISHED))) { 3682 if (V6_OR_V4_INADDR_ANY( 3683 ltcp->tcp_bound_source_v6) || 3684 V6_OR_V4_INADDR_ANY(*laddr) || 3685 IN6_ARE_ADDR_EQUAL(laddr, 3686 <cp->tcp_bound_source_v6)) { 3687 break; 3688 } 3689 continue; 3690 } 3691 3692 /* 3693 * Check ipversion to allow IPv4 and IPv6 sockets to 3694 * have disjoint port number spaces, if *_EXCLBIND 3695 * is not set and only if the application binds to a 3696 * specific port. We use the same autoassigned port 3697 * number space for IPv4 and IPv6 sockets. 3698 */ 3699 if (tcp->tcp_ipversion != ltcp->tcp_ipversion && 3700 bind_to_req_port_only) 3701 continue; 3702 3703 /* 3704 * Ideally, we should make sure that the source 3705 * address, remote address, and remote port in the 3706 * four tuple for this tcp-connection is unique. 3707 * However, trying to find out the local source 3708 * address would require too much code duplication 3709 * with IP, since IP needs needs to have that code 3710 * to support userland TCP implementations. 3711 */ 3712 if (quick_connect && 3713 (ltcp->tcp_state > TCPS_LISTEN) && 3714 ((tcp->tcp_fport != ltcp->tcp_fport) || 3715 !IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6, 3716 <cp->tcp_remote_v6))) 3717 continue; 3718 3719 if (!reuseaddr) { 3720 /* 3721 * No socket option SO_REUSEADDR. 3722 * If existing port is bound to 3723 * a non-wildcard IP address 3724 * and the requesting stream is 3725 * bound to a distinct 3726 * different IP addresses 3727 * (non-wildcard, also), keep 3728 * going. 3729 */ 3730 if (!V6_OR_V4_INADDR_ANY(*laddr) && 3731 !V6_OR_V4_INADDR_ANY( 3732 ltcp->tcp_bound_source_v6) && 3733 !IN6_ARE_ADDR_EQUAL(laddr, 3734 <cp->tcp_bound_source_v6)) 3735 continue; 3736 if (ltcp->tcp_state >= TCPS_BOUND) { 3737 /* 3738 * This port is being used and 3739 * its state is >= TCPS_BOUND, 3740 * so we can't bind to it. 3741 */ 3742 break; 3743 } 3744 } else { 3745 /* 3746 * socket option SO_REUSEADDR is set on the 3747 * binding tcp_t. 3748 * 3749 * If two streams are bound to 3750 * same IP address or both addr 3751 * and bound source are wildcards 3752 * (INADDR_ANY), we want to stop 3753 * searching. 3754 * We have found a match of IP source 3755 * address and source port, which is 3756 * refused regardless of the 3757 * SO_REUSEADDR setting, so we break. 3758 */ 3759 if (IN6_ARE_ADDR_EQUAL(laddr, 3760 <cp->tcp_bound_source_v6) && 3761 (ltcp->tcp_state == TCPS_LISTEN || 3762 ltcp->tcp_state == TCPS_BOUND)) 3763 break; 3764 } 3765 } 3766 if (ltcp != NULL) { 3767 /* The port number is busy */ 3768 mutex_exit(&tbf->tf_lock); 3769 } else { 3770 /* 3771 * This port is ours. Insert in fanout and mark as 3772 * bound to prevent others from getting the port 3773 * number. 3774 */ 3775 tcp->tcp_state = TCPS_BOUND; 3776 tcp->tcp_lport = htons(port); 3777 *(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport; 3778 3779 ASSERT(&tcp_bind_fanout[TCP_BIND_HASH( 3780 tcp->tcp_lport)] == tbf); 3781 tcp_bind_hash_insert(tbf, tcp, 1); 3782 3783 mutex_exit(&tbf->tf_lock); 3784 3785 /* 3786 * We don't want tcp_next_port_to_try to "inherit" 3787 * a port number supplied by the user in a bind. 3788 */ 3789 if (user_specified) 3790 return (port); 3791 3792 /* 3793 * This is the only place where tcp_next_port_to_try 3794 * is updated. After the update, it may or may not 3795 * be in the valid range. 3796 */ 3797 if (!tcp->tcp_anon_priv_bind) 3798 tcp_next_port_to_try = port + 1; 3799 return (port); 3800 } 3801 3802 if (tcp->tcp_anon_priv_bind) { 3803 port = tcp_get_next_priv_port(tcp); 3804 } else { 3805 if (count == 0 && user_specified) { 3806 /* 3807 * We may have to return an anonymous port. So 3808 * get one to start with. 3809 */ 3810 port = 3811 tcp_update_next_port(tcp_next_port_to_try, 3812 tcp, B_TRUE); 3813 user_specified = B_FALSE; 3814 } else { 3815 port = tcp_update_next_port(port + 1, tcp, 3816 B_FALSE); 3817 } 3818 } 3819 if (port == 0) 3820 break; 3821 3822 /* 3823 * Don't let this loop run forever in the case where 3824 * all of the anonymous ports are in use. 3825 */ 3826 } while (++count < loopmax); 3827 return (0); 3828 } 3829 3830 /* 3831 * tcp_clean_death / tcp_close_detached must not be called more than once 3832 * on a tcp. Thus every function that potentially calls tcp_clean_death 3833 * must check for the tcp state before calling tcp_clean_death. 3834 * Eg. tcp_input, tcp_rput_data, tcp_eager_kill, tcp_clean_death_wrapper, 3835 * tcp_timer_handler, all check for the tcp state. 3836 */ 3837 /* ARGSUSED */ 3838 void 3839 tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2) 3840 { 3841 tcp_t *tcp = ((conn_t *)arg)->conn_tcp; 3842 3843 freemsg(mp); 3844 if (tcp->tcp_state > TCPS_BOUND) 3845 (void) tcp_clean_death(((conn_t *)arg)->conn_tcp, ETIMEDOUT, 5); 3846 } 3847 3848 /* 3849 * We are dying for some reason. Try to do it gracefully. (May be called 3850 * as writer.) 3851 * 3852 * Return -1 if the structure was not cleaned up (if the cleanup had to be 3853 * done by a service procedure). 3854 * TBD - Should the return value distinguish between the tcp_t being 3855 * freed and it being reinitialized? 3856 */ 3857 static int 3858 tcp_clean_death(tcp_t *tcp, int err, uint8_t tag) 3859 { 3860 mblk_t *mp; 3861 queue_t *q; 3862 3863 TCP_CLD_STAT(tag); 3864 3865 #if TCP_TAG_CLEAN_DEATH 3866 tcp->tcp_cleandeathtag = tag; 3867 #endif 3868 3869 if (tcp->tcp_fused) 3870 tcp_unfuse(tcp); 3871 3872 if (tcp->tcp_linger_tid != 0 && 3873 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 3874 tcp_stop_lingering(tcp); 3875 } 3876 3877 ASSERT(tcp != NULL); 3878 ASSERT((tcp->tcp_family == AF_INET && 3879 tcp->tcp_ipversion == IPV4_VERSION) || 3880 (tcp->tcp_family == AF_INET6 && 3881 (tcp->tcp_ipversion == IPV4_VERSION || 3882 tcp->tcp_ipversion == IPV6_VERSION))); 3883 3884 if (TCP_IS_DETACHED(tcp)) { 3885 if (tcp->tcp_hard_binding) { 3886 /* 3887 * Its an eager that we are dealing with. We close the 3888 * eager but in case a conn_ind has already gone to the 3889 * listener, let tcp_accept_finish() send a discon_ind 3890 * to the listener and drop the last reference. If the 3891 * listener doesn't even know about the eager i.e. the 3892 * conn_ind hasn't gone up, blow away the eager and drop 3893 * the last reference as well. If the conn_ind has gone 3894 * up, state should be BOUND. tcp_accept_finish 3895 * will figure out that the connection has received a 3896 * RST and will send a DISCON_IND to the application. 3897 */ 3898 tcp_closei_local(tcp); 3899 if (!tcp->tcp_tconnind_started) { 3900 CONN_DEC_REF(tcp->tcp_connp); 3901 } else { 3902 tcp->tcp_state = TCPS_BOUND; 3903 } 3904 } else { 3905 tcp_close_detached(tcp); 3906 } 3907 return (0); 3908 } 3909 3910 TCP_STAT(tcp_clean_death_nondetached); 3911 3912 /* 3913 * If T_ORDREL_IND has not been sent yet (done when service routine 3914 * is run) postpone cleaning up the endpoint until service routine 3915 * has sent up the T_ORDREL_IND. Avoid clearing out an existing 3916 * client_errno since tcp_close uses the client_errno field. 3917 */ 3918 if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 3919 if (err != 0) 3920 tcp->tcp_client_errno = err; 3921 3922 tcp->tcp_deferred_clean_death = B_TRUE; 3923 return (-1); 3924 } 3925 3926 q = tcp->tcp_rq; 3927 3928 /* Trash all inbound data */ 3929 flushq(q, FLUSHALL); 3930 3931 /* 3932 * If we are at least part way open and there is error 3933 * (err==0 implies no error) 3934 * notify our client by a T_DISCON_IND. 3935 */ 3936 if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) { 3937 if (tcp->tcp_state >= TCPS_ESTABLISHED && 3938 !TCP_IS_SOCKET(tcp)) { 3939 /* 3940 * Send M_FLUSH according to TPI. Because sockets will 3941 * (and must) ignore FLUSHR we do that only for TPI 3942 * endpoints and sockets in STREAMS mode. 3943 */ 3944 (void) putnextctl1(q, M_FLUSH, FLUSHR); 3945 } 3946 if (tcp->tcp_debug) { 3947 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 3948 "tcp_clean_death: discon err %d", err); 3949 } 3950 mp = mi_tpi_discon_ind(NULL, err, 0); 3951 if (mp != NULL) { 3952 putnext(q, mp); 3953 } else { 3954 if (tcp->tcp_debug) { 3955 (void) strlog(TCP_MOD_ID, 0, 1, 3956 SL_ERROR|SL_TRACE, 3957 "tcp_clean_death, sending M_ERROR"); 3958 } 3959 (void) putnextctl1(q, M_ERROR, EPROTO); 3960 } 3961 if (tcp->tcp_state <= TCPS_SYN_RCVD) { 3962 /* SYN_SENT or SYN_RCVD */ 3963 BUMP_MIB(&tcp_mib, tcpAttemptFails); 3964 } else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) { 3965 /* ESTABLISHED or CLOSE_WAIT */ 3966 BUMP_MIB(&tcp_mib, tcpEstabResets); 3967 } 3968 } 3969 3970 tcp_reinit(tcp); 3971 return (-1); 3972 } 3973 3974 /* 3975 * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout 3976 * to expire, stop the wait and finish the close. 3977 */ 3978 static void 3979 tcp_stop_lingering(tcp_t *tcp) 3980 { 3981 clock_t delta = 0; 3982 3983 tcp->tcp_linger_tid = 0; 3984 if (tcp->tcp_state > TCPS_LISTEN) { 3985 tcp_acceptor_hash_remove(tcp); 3986 if (tcp->tcp_flow_stopped) { 3987 tcp_clrqfull(tcp); 3988 } 3989 3990 if (tcp->tcp_timer_tid != 0) { 3991 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 3992 tcp->tcp_timer_tid = 0; 3993 } 3994 /* 3995 * Need to cancel those timers which will not be used when 3996 * TCP is detached. This has to be done before the tcp_wq 3997 * is set to the global queue. 3998 */ 3999 tcp_timers_stop(tcp); 4000 4001 4002 tcp->tcp_detached = B_TRUE; 4003 tcp->tcp_rq = tcp_g_q; 4004 tcp->tcp_wq = WR(tcp_g_q); 4005 4006 if (tcp->tcp_state == TCPS_TIME_WAIT) { 4007 tcp_time_wait_append(tcp); 4008 TCP_DBGSTAT(tcp_detach_time_wait); 4009 goto finish; 4010 } 4011 4012 /* 4013 * If delta is zero the timer event wasn't executed and was 4014 * successfully canceled. In this case we need to restart it 4015 * with the minimal delta possible. 4016 */ 4017 if (delta >= 0) { 4018 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 4019 delta ? delta : 1); 4020 } 4021 } else { 4022 tcp_closei_local(tcp); 4023 CONN_DEC_REF(tcp->tcp_connp); 4024 } 4025 finish: 4026 /* Signal closing thread that it can complete close */ 4027 mutex_enter(&tcp->tcp_closelock); 4028 tcp->tcp_detached = B_TRUE; 4029 tcp->tcp_rq = tcp_g_q; 4030 tcp->tcp_wq = WR(tcp_g_q); 4031 tcp->tcp_closed = 1; 4032 cv_signal(&tcp->tcp_closecv); 4033 mutex_exit(&tcp->tcp_closelock); 4034 } 4035 4036 /* 4037 * Handle lingering timeouts. This function is called when the SO_LINGER timeout 4038 * expires. 4039 */ 4040 static void 4041 tcp_close_linger_timeout(void *arg) 4042 { 4043 conn_t *connp = (conn_t *)arg; 4044 tcp_t *tcp = connp->conn_tcp; 4045 4046 tcp->tcp_client_errno = ETIMEDOUT; 4047 tcp_stop_lingering(tcp); 4048 } 4049 4050 static int 4051 tcp_close(queue_t *q, int flags) 4052 { 4053 conn_t *connp = Q_TO_CONN(q); 4054 tcp_t *tcp = connp->conn_tcp; 4055 mblk_t *mp = &tcp->tcp_closemp; 4056 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 4057 boolean_t linger_interrupted = B_FALSE; 4058 mblk_t *bp; 4059 4060 ASSERT(WR(q)->q_next == NULL); 4061 ASSERT(connp->conn_ref >= 2); 4062 ASSERT((connp->conn_flags & IPCL_TCPMOD) == 0); 4063 4064 /* 4065 * We are being closed as /dev/tcp or /dev/tcp6. 4066 * 4067 * Mark the conn as closing. ill_pending_mp_add will not 4068 * add any mp to the pending mp list, after this conn has 4069 * started closing. Same for sq_pending_mp_add 4070 */ 4071 mutex_enter(&connp->conn_lock); 4072 connp->conn_state_flags |= CONN_CLOSING; 4073 if (connp->conn_oper_pending_ill != NULL) 4074 conn_ioctl_cleanup_reqd = B_TRUE; 4075 CONN_INC_REF_LOCKED(connp); 4076 mutex_exit(&connp->conn_lock); 4077 tcp->tcp_closeflags = (uint8_t)flags; 4078 ASSERT(connp->conn_ref >= 3); 4079 4080 /* 4081 * tcp_closemp_used is used below without any protection of a lock 4082 * as we don't expect any one else to use it concurrently at this 4083 * point otherwise it would be a major defect, though we do 4084 * increment tcp_closemp_used to record any attempt to reuse 4085 * tcp_closemp while it is still in use. This would help debugging. 4086 */ 4087 4088 if (mp->b_prev == NULL) { 4089 tcp->tcp_closemp_used = 1; 4090 } else { 4091 tcp->tcp_closemp_used++; 4092 ASSERT(mp->b_prev == NULL); 4093 } 4094 4095 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 4096 4097 (*tcp_squeue_close_proc)(connp->conn_sqp, mp, 4098 tcp_close_output, connp, SQTAG_IP_TCP_CLOSE); 4099 4100 mutex_enter(&tcp->tcp_closelock); 4101 while (!tcp->tcp_closed) { 4102 if (!cv_wait_sig(&tcp->tcp_closecv, &tcp->tcp_closelock)) { 4103 /* 4104 * We got interrupted. Check if we are lingering, 4105 * if yes, post a message to stop and wait until 4106 * tcp_closed is set. If we aren't lingering, 4107 * just go back around. 4108 */ 4109 if (tcp->tcp_linger && 4110 tcp->tcp_lingertime > 0 && 4111 !linger_interrupted) { 4112 mutex_exit(&tcp->tcp_closelock); 4113 /* Entering squeue, bump ref count. */ 4114 CONN_INC_REF(connp); 4115 bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL); 4116 squeue_enter(connp->conn_sqp, bp, 4117 tcp_linger_interrupted, connp, 4118 SQTAG_IP_TCP_CLOSE); 4119 linger_interrupted = B_TRUE; 4120 mutex_enter(&tcp->tcp_closelock); 4121 } 4122 } 4123 } 4124 mutex_exit(&tcp->tcp_closelock); 4125 4126 /* 4127 * In the case of listener streams that have eagers in the q or q0 4128 * we wait for the eagers to drop their reference to us. tcp_rq and 4129 * tcp_wq of the eagers point to our queues. By waiting for the 4130 * refcnt to drop to 1, we are sure that the eagers have cleaned 4131 * up their queue pointers and also dropped their references to us. 4132 */ 4133 if (tcp->tcp_wait_for_eagers) { 4134 mutex_enter(&connp->conn_lock); 4135 while (connp->conn_ref != 1) { 4136 cv_wait(&connp->conn_cv, &connp->conn_lock); 4137 } 4138 mutex_exit(&connp->conn_lock); 4139 } 4140 /* 4141 * ioctl cleanup. The mp is queued in the 4142 * ill_pending_mp or in the sq_pending_mp. 4143 */ 4144 if (conn_ioctl_cleanup_reqd) 4145 conn_ioctl_cleanup(connp); 4146 4147 qprocsoff(q); 4148 inet_minor_free(ip_minor_arena, connp->conn_dev); 4149 4150 tcp->tcp_cpid = -1; 4151 4152 /* 4153 * Drop IP's reference on the conn. This is the last reference 4154 * on the connp if the state was less than established. If the 4155 * connection has gone into timewait state, then we will have 4156 * one ref for the TCP and one more ref (total of two) for the 4157 * classifier connected hash list (a timewait connections stays 4158 * in connected hash till closed). 4159 * 4160 * We can't assert the references because there might be other 4161 * transient reference places because of some walkers or queued 4162 * packets in squeue for the timewait state. 4163 */ 4164 CONN_DEC_REF(connp); 4165 q->q_ptr = WR(q)->q_ptr = NULL; 4166 return (0); 4167 } 4168 4169 static int 4170 tcpclose_accept(queue_t *q) 4171 { 4172 ASSERT(WR(q)->q_qinfo == &tcp_acceptor_winit); 4173 4174 /* 4175 * We had opened an acceptor STREAM for sockfs which is 4176 * now being closed due to some error. 4177 */ 4178 qprocsoff(q); 4179 inet_minor_free(ip_minor_arena, (dev_t)q->q_ptr); 4180 q->q_ptr = WR(q)->q_ptr = NULL; 4181 return (0); 4182 } 4183 4184 /* 4185 * Called by tcp_close() routine via squeue when lingering is 4186 * interrupted by a signal. 4187 */ 4188 4189 /* ARGSUSED */ 4190 static void 4191 tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2) 4192 { 4193 conn_t *connp = (conn_t *)arg; 4194 tcp_t *tcp = connp->conn_tcp; 4195 4196 freeb(mp); 4197 if (tcp->tcp_linger_tid != 0 && 4198 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 4199 tcp_stop_lingering(tcp); 4200 tcp->tcp_client_errno = EINTR; 4201 } 4202 } 4203 4204 /* 4205 * Called by streams close routine via squeues when our client blows off her 4206 * descriptor, we take this to mean: "close the stream state NOW, close the tcp 4207 * connection politely" When SO_LINGER is set (with a non-zero linger time and 4208 * it is not a nonblocking socket) then this routine sleeps until the FIN is 4209 * acked. 4210 * 4211 * NOTE: tcp_close potentially returns error when lingering. 4212 * However, the stream head currently does not pass these errors 4213 * to the application. 4.4BSD only returns EINTR and EWOULDBLOCK 4214 * errors to the application (from tsleep()) and not errors 4215 * like ECONNRESET caused by receiving a reset packet. 4216 */ 4217 4218 /* ARGSUSED */ 4219 static void 4220 tcp_close_output(void *arg, mblk_t *mp, void *arg2) 4221 { 4222 char *msg; 4223 conn_t *connp = (conn_t *)arg; 4224 tcp_t *tcp = connp->conn_tcp; 4225 clock_t delta = 0; 4226 4227 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 4228 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 4229 4230 /* Cancel any pending timeout */ 4231 if (tcp->tcp_ordrelid != 0) { 4232 if (tcp->tcp_timeout) { 4233 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ordrelid); 4234 } 4235 tcp->tcp_ordrelid = 0; 4236 tcp->tcp_timeout = B_FALSE; 4237 } 4238 4239 mutex_enter(&tcp->tcp_eager_lock); 4240 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 4241 /* Cleanup for listener */ 4242 tcp_eager_cleanup(tcp, 0); 4243 tcp->tcp_wait_for_eagers = 1; 4244 } 4245 mutex_exit(&tcp->tcp_eager_lock); 4246 4247 connp->conn_mdt_ok = B_FALSE; 4248 tcp->tcp_mdt = B_FALSE; 4249 4250 connp->conn_lso_ok = B_FALSE; 4251 tcp->tcp_lso = B_FALSE; 4252 4253 msg = NULL; 4254 switch (tcp->tcp_state) { 4255 case TCPS_CLOSED: 4256 case TCPS_IDLE: 4257 case TCPS_BOUND: 4258 case TCPS_LISTEN: 4259 break; 4260 case TCPS_SYN_SENT: 4261 msg = "tcp_close, during connect"; 4262 break; 4263 case TCPS_SYN_RCVD: 4264 /* 4265 * Close during the connect 3-way handshake 4266 * but here there may or may not be pending data 4267 * already on queue. Process almost same as in 4268 * the ESTABLISHED state. 4269 */ 4270 /* FALLTHRU */ 4271 default: 4272 if (tcp->tcp_fused) 4273 tcp_unfuse(tcp); 4274 4275 /* 4276 * If SO_LINGER has set a zero linger time, abort the 4277 * connection with a reset. 4278 */ 4279 if (tcp->tcp_linger && tcp->tcp_lingertime == 0) { 4280 msg = "tcp_close, zero lingertime"; 4281 break; 4282 } 4283 4284 ASSERT(tcp->tcp_hard_bound || tcp->tcp_hard_binding); 4285 /* 4286 * Abort connection if there is unread data queued. 4287 */ 4288 if (tcp->tcp_rcv_list || tcp->tcp_reass_head) { 4289 msg = "tcp_close, unread data"; 4290 break; 4291 } 4292 /* 4293 * tcp_hard_bound is now cleared thus all packets go through 4294 * tcp_lookup. This fact is used by tcp_detach below. 4295 * 4296 * We have done a qwait() above which could have possibly 4297 * drained more messages in turn causing transition to a 4298 * different state. Check whether we have to do the rest 4299 * of the processing or not. 4300 */ 4301 if (tcp->tcp_state <= TCPS_LISTEN) 4302 break; 4303 4304 /* 4305 * Transmit the FIN before detaching the tcp_t. 4306 * After tcp_detach returns this queue/perimeter 4307 * no longer owns the tcp_t thus others can modify it. 4308 */ 4309 (void) tcp_xmit_end(tcp); 4310 4311 /* 4312 * If lingering on close then wait until the fin is acked, 4313 * the SO_LINGER time passes, or a reset is sent/received. 4314 */ 4315 if (tcp->tcp_linger && tcp->tcp_lingertime > 0 && 4316 !(tcp->tcp_fin_acked) && 4317 tcp->tcp_state >= TCPS_ESTABLISHED) { 4318 if (tcp->tcp_closeflags & (FNDELAY|FNONBLOCK)) { 4319 tcp->tcp_client_errno = EWOULDBLOCK; 4320 } else if (tcp->tcp_client_errno == 0) { 4321 4322 ASSERT(tcp->tcp_linger_tid == 0); 4323 4324 tcp->tcp_linger_tid = TCP_TIMER(tcp, 4325 tcp_close_linger_timeout, 4326 tcp->tcp_lingertime * hz); 4327 4328 /* tcp_close_linger_timeout will finish close */ 4329 if (tcp->tcp_linger_tid == 0) 4330 tcp->tcp_client_errno = ENOSR; 4331 else 4332 return; 4333 } 4334 4335 /* 4336 * Check if we need to detach or just close 4337 * the instance. 4338 */ 4339 if (tcp->tcp_state <= TCPS_LISTEN) 4340 break; 4341 } 4342 4343 /* 4344 * Make sure that no other thread will access the tcp_rq of 4345 * this instance (through lookups etc.) as tcp_rq will go 4346 * away shortly. 4347 */ 4348 tcp_acceptor_hash_remove(tcp); 4349 4350 if (tcp->tcp_flow_stopped) { 4351 tcp_clrqfull(tcp); 4352 } 4353 4354 if (tcp->tcp_timer_tid != 0) { 4355 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 4356 tcp->tcp_timer_tid = 0; 4357 } 4358 /* 4359 * Need to cancel those timers which will not be used when 4360 * TCP is detached. This has to be done before the tcp_wq 4361 * is set to the global queue. 4362 */ 4363 tcp_timers_stop(tcp); 4364 4365 tcp->tcp_detached = B_TRUE; 4366 if (tcp->tcp_state == TCPS_TIME_WAIT) { 4367 tcp_time_wait_append(tcp); 4368 TCP_DBGSTAT(tcp_detach_time_wait); 4369 ASSERT(connp->conn_ref >= 3); 4370 goto finish; 4371 } 4372 4373 /* 4374 * If delta is zero the timer event wasn't executed and was 4375 * successfully canceled. In this case we need to restart it 4376 * with the minimal delta possible. 4377 */ 4378 if (delta >= 0) 4379 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 4380 delta ? delta : 1); 4381 4382 ASSERT(connp->conn_ref >= 3); 4383 goto finish; 4384 } 4385 4386 /* Detach did not complete. Still need to remove q from stream. */ 4387 if (msg) { 4388 if (tcp->tcp_state == TCPS_ESTABLISHED || 4389 tcp->tcp_state == TCPS_CLOSE_WAIT) 4390 BUMP_MIB(&tcp_mib, tcpEstabResets); 4391 if (tcp->tcp_state == TCPS_SYN_SENT || 4392 tcp->tcp_state == TCPS_SYN_RCVD) 4393 BUMP_MIB(&tcp_mib, tcpAttemptFails); 4394 tcp_xmit_ctl(msg, tcp, tcp->tcp_snxt, 0, TH_RST); 4395 } 4396 4397 tcp_closei_local(tcp); 4398 CONN_DEC_REF(connp); 4399 ASSERT(connp->conn_ref >= 2); 4400 4401 finish: 4402 /* 4403 * Although packets are always processed on the correct 4404 * tcp's perimeter and access is serialized via squeue's, 4405 * IP still needs a queue when sending packets in time_wait 4406 * state so use WR(tcp_g_q) till ip_output() can be 4407 * changed to deal with just connp. For read side, we 4408 * could have set tcp_rq to NULL but there are some cases 4409 * in tcp_rput_data() from early days of this code which 4410 * do a putnext without checking if tcp is closed. Those 4411 * need to be identified before both tcp_rq and tcp_wq 4412 * can be set to NULL and tcp_q_q can disappear forever. 4413 */ 4414 mutex_enter(&tcp->tcp_closelock); 4415 /* 4416 * Don't change the queues in the case of a listener that has 4417 * eagers in its q or q0. It could surprise the eagers. 4418 * Instead wait for the eagers outside the squeue. 4419 */ 4420 if (!tcp->tcp_wait_for_eagers) { 4421 tcp->tcp_detached = B_TRUE; 4422 tcp->tcp_rq = tcp_g_q; 4423 tcp->tcp_wq = WR(tcp_g_q); 4424 } 4425 4426 /* Signal tcp_close() to finish closing. */ 4427 tcp->tcp_closed = 1; 4428 cv_signal(&tcp->tcp_closecv); 4429 mutex_exit(&tcp->tcp_closelock); 4430 } 4431 4432 4433 /* 4434 * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp. 4435 * Some stream heads get upset if they see these later on as anything but NULL. 4436 */ 4437 static void 4438 tcp_close_mpp(mblk_t **mpp) 4439 { 4440 mblk_t *mp; 4441 4442 if ((mp = *mpp) != NULL) { 4443 do { 4444 mp->b_next = NULL; 4445 mp->b_prev = NULL; 4446 } while ((mp = mp->b_cont) != NULL); 4447 4448 mp = *mpp; 4449 *mpp = NULL; 4450 freemsg(mp); 4451 } 4452 } 4453 4454 /* Do detached close. */ 4455 static void 4456 tcp_close_detached(tcp_t *tcp) 4457 { 4458 if (tcp->tcp_fused) 4459 tcp_unfuse(tcp); 4460 4461 /* 4462 * Clustering code serializes TCP disconnect callbacks and 4463 * cluster tcp list walks by blocking a TCP disconnect callback 4464 * if a cluster tcp list walk is in progress. This ensures 4465 * accurate accounting of TCPs in the cluster code even though 4466 * the TCP list walk itself is not atomic. 4467 */ 4468 tcp_closei_local(tcp); 4469 CONN_DEC_REF(tcp->tcp_connp); 4470 } 4471 4472 /* 4473 * Stop all TCP timers, and free the timer mblks if requested. 4474 */ 4475 void 4476 tcp_timers_stop(tcp_t *tcp) 4477 { 4478 if (tcp->tcp_timer_tid != 0) { 4479 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 4480 tcp->tcp_timer_tid = 0; 4481 } 4482 if (tcp->tcp_ka_tid != 0) { 4483 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ka_tid); 4484 tcp->tcp_ka_tid = 0; 4485 } 4486 if (tcp->tcp_ack_tid != 0) { 4487 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 4488 tcp->tcp_ack_tid = 0; 4489 } 4490 if (tcp->tcp_push_tid != 0) { 4491 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 4492 tcp->tcp_push_tid = 0; 4493 } 4494 } 4495 4496 /* 4497 * The tcp_t is going away. Remove it from all lists and set it 4498 * to TCPS_CLOSED. The freeing up of memory is deferred until 4499 * tcp_inactive. This is needed since a thread in tcp_rput might have 4500 * done a CONN_INC_REF on this structure before it was removed from the 4501 * hashes. 4502 */ 4503 static void 4504 tcp_closei_local(tcp_t *tcp) 4505 { 4506 ire_t *ire; 4507 conn_t *connp = tcp->tcp_connp; 4508 4509 if (!TCP_IS_SOCKET(tcp)) 4510 tcp_acceptor_hash_remove(tcp); 4511 4512 UPDATE_MIB(&tcp_mib, tcpHCInSegs, tcp->tcp_ibsegs); 4513 tcp->tcp_ibsegs = 0; 4514 UPDATE_MIB(&tcp_mib, tcpHCOutSegs, tcp->tcp_obsegs); 4515 tcp->tcp_obsegs = 0; 4516 4517 /* 4518 * If we are an eager connection hanging off a listener that 4519 * hasn't formally accepted the connection yet, get off his 4520 * list and blow off any data that we have accumulated. 4521 */ 4522 if (tcp->tcp_listener != NULL) { 4523 tcp_t *listener = tcp->tcp_listener; 4524 mutex_enter(&listener->tcp_eager_lock); 4525 /* 4526 * tcp_tconnind_started == B_TRUE means that the 4527 * conn_ind has already gone to listener. At 4528 * this point, eager will be closed but we 4529 * leave it in listeners eager list so that 4530 * if listener decides to close without doing 4531 * accept, we can clean this up. In tcp_wput_accept 4532 * we take care of the case of accept on closed 4533 * eager. 4534 */ 4535 if (!tcp->tcp_tconnind_started) { 4536 tcp_eager_unlink(tcp); 4537 mutex_exit(&listener->tcp_eager_lock); 4538 /* 4539 * We don't want to have any pointers to the 4540 * listener queue, after we have released our 4541 * reference on the listener 4542 */ 4543 tcp->tcp_rq = tcp_g_q; 4544 tcp->tcp_wq = WR(tcp_g_q); 4545 CONN_DEC_REF(listener->tcp_connp); 4546 } else { 4547 mutex_exit(&listener->tcp_eager_lock); 4548 } 4549 } 4550 4551 /* Stop all the timers */ 4552 tcp_timers_stop(tcp); 4553 4554 if (tcp->tcp_state == TCPS_LISTEN) { 4555 if (tcp->tcp_ip_addr_cache) { 4556 kmem_free((void *)tcp->tcp_ip_addr_cache, 4557 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 4558 tcp->tcp_ip_addr_cache = NULL; 4559 } 4560 } 4561 if (tcp->tcp_flow_stopped) 4562 tcp_clrqfull(tcp); 4563 4564 tcp_bind_hash_remove(tcp); 4565 /* 4566 * If the tcp_time_wait_collector (which runs outside the squeue) 4567 * is trying to remove this tcp from the time wait list, we will 4568 * block in tcp_time_wait_remove while trying to acquire the 4569 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also 4570 * requires the ipcl_hash_remove to be ordered after the 4571 * tcp_time_wait_remove for the refcnt checks to work correctly. 4572 */ 4573 if (tcp->tcp_state == TCPS_TIME_WAIT) 4574 (void) tcp_time_wait_remove(tcp, NULL); 4575 CL_INET_DISCONNECT(tcp); 4576 ipcl_hash_remove(connp); 4577 4578 /* 4579 * Delete the cached ire in conn_ire_cache and also mark 4580 * the conn as CONDEMNED 4581 */ 4582 mutex_enter(&connp->conn_lock); 4583 connp->conn_state_flags |= CONN_CONDEMNED; 4584 ire = connp->conn_ire_cache; 4585 connp->conn_ire_cache = NULL; 4586 mutex_exit(&connp->conn_lock); 4587 if (ire != NULL) 4588 IRE_REFRELE_NOTR(ire); 4589 4590 /* Need to cleanup any pending ioctls */ 4591 ASSERT(tcp->tcp_time_wait_next == NULL); 4592 ASSERT(tcp->tcp_time_wait_prev == NULL); 4593 ASSERT(tcp->tcp_time_wait_expire == 0); 4594 tcp->tcp_state = TCPS_CLOSED; 4595 4596 /* Release any SSL context */ 4597 if (tcp->tcp_kssl_ent != NULL) { 4598 kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); 4599 tcp->tcp_kssl_ent = NULL; 4600 } 4601 if (tcp->tcp_kssl_ctx != NULL) { 4602 kssl_release_ctx(tcp->tcp_kssl_ctx); 4603 tcp->tcp_kssl_ctx = NULL; 4604 } 4605 tcp->tcp_kssl_pending = B_FALSE; 4606 } 4607 4608 /* 4609 * tcp is dying (called from ipcl_conn_destroy and error cases). 4610 * Free the tcp_t in either case. 4611 */ 4612 void 4613 tcp_free(tcp_t *tcp) 4614 { 4615 mblk_t *mp; 4616 ip6_pkt_t *ipp; 4617 4618 ASSERT(tcp != NULL); 4619 ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL); 4620 4621 tcp->tcp_rq = NULL; 4622 tcp->tcp_wq = NULL; 4623 4624 tcp_close_mpp(&tcp->tcp_xmit_head); 4625 tcp_close_mpp(&tcp->tcp_reass_head); 4626 if (tcp->tcp_rcv_list != NULL) { 4627 /* Free b_next chain */ 4628 tcp_close_mpp(&tcp->tcp_rcv_list); 4629 } 4630 if ((mp = tcp->tcp_urp_mp) != NULL) { 4631 freemsg(mp); 4632 } 4633 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 4634 freemsg(mp); 4635 } 4636 4637 if (tcp->tcp_fused_sigurg_mp != NULL) { 4638 freeb(tcp->tcp_fused_sigurg_mp); 4639 tcp->tcp_fused_sigurg_mp = NULL; 4640 } 4641 4642 if (tcp->tcp_sack_info != NULL) { 4643 if (tcp->tcp_notsack_list != NULL) { 4644 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 4645 } 4646 bzero(tcp->tcp_sack_info, sizeof (tcp_sack_info_t)); 4647 } 4648 4649 if (tcp->tcp_hopopts != NULL) { 4650 mi_free(tcp->tcp_hopopts); 4651 tcp->tcp_hopopts = NULL; 4652 tcp->tcp_hopoptslen = 0; 4653 } 4654 ASSERT(tcp->tcp_hopoptslen == 0); 4655 if (tcp->tcp_dstopts != NULL) { 4656 mi_free(tcp->tcp_dstopts); 4657 tcp->tcp_dstopts = NULL; 4658 tcp->tcp_dstoptslen = 0; 4659 } 4660 ASSERT(tcp->tcp_dstoptslen == 0); 4661 if (tcp->tcp_rtdstopts != NULL) { 4662 mi_free(tcp->tcp_rtdstopts); 4663 tcp->tcp_rtdstopts = NULL; 4664 tcp->tcp_rtdstoptslen = 0; 4665 } 4666 ASSERT(tcp->tcp_rtdstoptslen == 0); 4667 if (tcp->tcp_rthdr != NULL) { 4668 mi_free(tcp->tcp_rthdr); 4669 tcp->tcp_rthdr = NULL; 4670 tcp->tcp_rthdrlen = 0; 4671 } 4672 ASSERT(tcp->tcp_rthdrlen == 0); 4673 4674 ipp = &tcp->tcp_sticky_ipp; 4675 if (ipp->ipp_fields & (IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 4676 IPPF_RTHDR)) 4677 ip6_pkt_free(ipp); 4678 4679 /* 4680 * Free memory associated with the tcp/ip header template. 4681 */ 4682 4683 if (tcp->tcp_iphc != NULL) 4684 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 4685 4686 /* 4687 * Following is really a blowing away a union. 4688 * It happens to have exactly two members of identical size 4689 * the following code is enough. 4690 */ 4691 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 4692 4693 if (tcp->tcp_tracebuf != NULL) { 4694 kmem_free(tcp->tcp_tracebuf, sizeof (tcptrch_t)); 4695 tcp->tcp_tracebuf = NULL; 4696 } 4697 } 4698 4699 4700 /* 4701 * Put a connection confirmation message upstream built from the 4702 * address information within 'iph' and 'tcph'. Report our success or failure. 4703 */ 4704 static boolean_t 4705 tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, mblk_t *idmp, 4706 mblk_t **defermp) 4707 { 4708 sin_t sin; 4709 sin6_t sin6; 4710 mblk_t *mp; 4711 char *optp = NULL; 4712 int optlen = 0; 4713 cred_t *cr; 4714 4715 if (defermp != NULL) 4716 *defermp = NULL; 4717 4718 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) { 4719 /* 4720 * Return in T_CONN_CON results of option negotiation through 4721 * the T_CONN_REQ. Note: If there is an real end-to-end option 4722 * negotiation, then what is received from remote end needs 4723 * to be taken into account but there is no such thing (yet?) 4724 * in our TCP/IP. 4725 * Note: We do not use mi_offset_param() here as 4726 * tcp_opts_conn_req contents do not directly come from 4727 * an application and are either generated in kernel or 4728 * from user input that was already verified. 4729 */ 4730 mp = tcp->tcp_conn.tcp_opts_conn_req; 4731 optp = (char *)(mp->b_rptr + 4732 ((struct T_conn_req *)mp->b_rptr)->OPT_offset); 4733 optlen = (int) 4734 ((struct T_conn_req *)mp->b_rptr)->OPT_length; 4735 } 4736 4737 if (IPH_HDR_VERSION(iphdr) == IPV4_VERSION) { 4738 ipha_t *ipha = (ipha_t *)iphdr; 4739 4740 /* packet is IPv4 */ 4741 if (tcp->tcp_family == AF_INET) { 4742 sin = sin_null; 4743 sin.sin_addr.s_addr = ipha->ipha_src; 4744 sin.sin_port = *(uint16_t *)tcph->th_lport; 4745 sin.sin_family = AF_INET; 4746 mp = mi_tpi_conn_con(NULL, (char *)&sin, 4747 (int)sizeof (sin_t), optp, optlen); 4748 } else { 4749 sin6 = sin6_null; 4750 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr); 4751 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4752 sin6.sin6_family = AF_INET6; 4753 mp = mi_tpi_conn_con(NULL, (char *)&sin6, 4754 (int)sizeof (sin6_t), optp, optlen); 4755 4756 } 4757 } else { 4758 ip6_t *ip6h = (ip6_t *)iphdr; 4759 4760 ASSERT(IPH_HDR_VERSION(iphdr) == IPV6_VERSION); 4761 ASSERT(tcp->tcp_family == AF_INET6); 4762 sin6 = sin6_null; 4763 sin6.sin6_addr = ip6h->ip6_src; 4764 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4765 sin6.sin6_family = AF_INET6; 4766 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 4767 mp = mi_tpi_conn_con(NULL, (char *)&sin6, 4768 (int)sizeof (sin6_t), optp, optlen); 4769 } 4770 4771 if (!mp) 4772 return (B_FALSE); 4773 4774 if ((cr = DB_CRED(idmp)) != NULL) { 4775 mblk_setcred(mp, cr); 4776 DB_CPID(mp) = DB_CPID(idmp); 4777 } 4778 4779 if (defermp == NULL) 4780 putnext(tcp->tcp_rq, mp); 4781 else 4782 *defermp = mp; 4783 4784 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 4785 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 4786 return (B_TRUE); 4787 } 4788 4789 /* 4790 * Defense for the SYN attack - 4791 * 1. When q0 is full, drop from the tail (tcp_eager_prev_drop_q0) the oldest 4792 * one from the list of droppable eagers. This list is a subset of q0. 4793 * see comments before the definition of MAKE_DROPPABLE(). 4794 * 2. Don't drop a SYN request before its first timeout. This gives every 4795 * request at least til the first timeout to complete its 3-way handshake. 4796 * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many 4797 * requests currently on the queue that has timed out. This will be used 4798 * as an indicator of whether an attack is under way, so that appropriate 4799 * actions can be taken. (It's incremented in tcp_timer() and decremented 4800 * either when eager goes into ESTABLISHED, or gets freed up.) 4801 * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on 4802 * # of timeout drops back to <= q0len/32 => SYN alert off 4803 */ 4804 static boolean_t 4805 tcp_drop_q0(tcp_t *tcp) 4806 { 4807 tcp_t *eager; 4808 mblk_t *mp; 4809 4810 ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock)); 4811 ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0); 4812 4813 /* Pick oldest eager from the list of droppable eagers */ 4814 eager = tcp->tcp_eager_prev_drop_q0; 4815 4816 /* If list is empty. return B_FALSE */ 4817 if (eager == tcp) { 4818 return (B_FALSE); 4819 } 4820 4821 /* If allocated, the mp will be freed in tcp_clean_death_wrapper() */ 4822 if ((mp = allocb(0, BPRI_HI)) == NULL) 4823 return (B_FALSE); 4824 4825 /* 4826 * Take this eager out from the list of droppable eagers since we are 4827 * going to drop it. 4828 */ 4829 MAKE_UNDROPPABLE(eager); 4830 4831 if (tcp->tcp_debug) { 4832 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 4833 "tcp_drop_q0: listen half-open queue (max=%d) overflow" 4834 " (%d pending) on %s, drop one", tcp_conn_req_max_q0, 4835 tcp->tcp_conn_req_cnt_q0, 4836 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 4837 } 4838 4839 BUMP_MIB(&tcp_mib, tcpHalfOpenDrop); 4840 4841 /* Put a reference on the conn as we are enqueueing it in the sqeue */ 4842 CONN_INC_REF(eager->tcp_connp); 4843 4844 /* Mark the IRE created for this SYN request temporary */ 4845 tcp_ip_ire_mark_advice(eager); 4846 squeue_fill(eager->tcp_connp->conn_sqp, mp, 4847 tcp_clean_death_wrapper, eager->tcp_connp, SQTAG_TCP_DROP_Q0); 4848 4849 return (B_TRUE); 4850 } 4851 4852 int 4853 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 4854 tcph_t *tcph, uint_t ipvers, mblk_t *idmp) 4855 { 4856 tcp_t *ltcp = lconnp->conn_tcp; 4857 tcp_t *tcp = connp->conn_tcp; 4858 mblk_t *tpi_mp; 4859 ipha_t *ipha; 4860 ip6_t *ip6h; 4861 sin6_t sin6; 4862 in6_addr_t v6dst; 4863 int err; 4864 int ifindex = 0; 4865 cred_t *cr; 4866 4867 if (ipvers == IPV4_VERSION) { 4868 ipha = (ipha_t *)mp->b_rptr; 4869 4870 connp->conn_send = ip_output; 4871 connp->conn_recv = tcp_input; 4872 4873 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6); 4874 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6); 4875 4876 sin6 = sin6_null; 4877 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr); 4878 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &v6dst); 4879 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4880 sin6.sin6_family = AF_INET6; 4881 sin6.__sin6_src_id = ip_srcid_find_addr(&v6dst, 4882 lconnp->conn_zoneid); 4883 if (tcp->tcp_recvdstaddr) { 4884 sin6_t sin6d; 4885 4886 sin6d = sin6_null; 4887 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, 4888 &sin6d.sin6_addr); 4889 sin6d.sin6_port = *(uint16_t *)tcph->th_fport; 4890 sin6d.sin6_family = AF_INET; 4891 tpi_mp = mi_tpi_extconn_ind(NULL, 4892 (char *)&sin6d, sizeof (sin6_t), 4893 (char *)&tcp, 4894 (t_scalar_t)sizeof (intptr_t), 4895 (char *)&sin6d, sizeof (sin6_t), 4896 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4897 } else { 4898 tpi_mp = mi_tpi_conn_ind(NULL, 4899 (char *)&sin6, sizeof (sin6_t), 4900 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4901 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4902 } 4903 } else { 4904 ip6h = (ip6_t *)mp->b_rptr; 4905 4906 connp->conn_send = ip_output_v6; 4907 connp->conn_recv = tcp_input; 4908 4909 connp->conn_srcv6 = ip6h->ip6_dst; 4910 connp->conn_remv6 = ip6h->ip6_src; 4911 4912 /* db_cksumstuff is set at ip_fanout_tcp_v6 */ 4913 ifindex = (int)DB_CKSUMSTUFF(mp); 4914 DB_CKSUMSTUFF(mp) = 0; 4915 4916 sin6 = sin6_null; 4917 sin6.sin6_addr = ip6h->ip6_src; 4918 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4919 sin6.sin6_family = AF_INET6; 4920 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 4921 sin6.__sin6_src_id = ip_srcid_find_addr(&ip6h->ip6_dst, 4922 lconnp->conn_zoneid); 4923 4924 if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) { 4925 /* Pass up the scope_id of remote addr */ 4926 sin6.sin6_scope_id = ifindex; 4927 } else { 4928 sin6.sin6_scope_id = 0; 4929 } 4930 if (tcp->tcp_recvdstaddr) { 4931 sin6_t sin6d; 4932 4933 sin6d = sin6_null; 4934 sin6.sin6_addr = ip6h->ip6_dst; 4935 sin6d.sin6_port = *(uint16_t *)tcph->th_fport; 4936 sin6d.sin6_family = AF_INET; 4937 tpi_mp = mi_tpi_extconn_ind(NULL, 4938 (char *)&sin6d, sizeof (sin6_t), 4939 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4940 (char *)&sin6d, sizeof (sin6_t), 4941 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4942 } else { 4943 tpi_mp = mi_tpi_conn_ind(NULL, 4944 (char *)&sin6, sizeof (sin6_t), 4945 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4946 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4947 } 4948 } 4949 4950 if (tpi_mp == NULL) 4951 return (ENOMEM); 4952 4953 connp->conn_fport = *(uint16_t *)tcph->th_lport; 4954 connp->conn_lport = *(uint16_t *)tcph->th_fport; 4955 connp->conn_flags |= (IPCL_TCP6|IPCL_EAGER); 4956 connp->conn_fully_bound = B_FALSE; 4957 4958 if (tcp_trace) 4959 tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_NOSLEEP); 4960 4961 /* Inherit information from the "parent" */ 4962 tcp->tcp_ipversion = ltcp->tcp_ipversion; 4963 tcp->tcp_family = ltcp->tcp_family; 4964 tcp->tcp_wq = ltcp->tcp_wq; 4965 tcp->tcp_rq = ltcp->tcp_rq; 4966 tcp->tcp_mss = tcp_mss_def_ipv6; 4967 tcp->tcp_detached = B_TRUE; 4968 if ((err = tcp_init_values(tcp)) != 0) { 4969 freemsg(tpi_mp); 4970 return (err); 4971 } 4972 4973 if (ipvers == IPV4_VERSION) { 4974 if ((err = tcp_header_init_ipv4(tcp)) != 0) { 4975 freemsg(tpi_mp); 4976 return (err); 4977 } 4978 ASSERT(tcp->tcp_ipha != NULL); 4979 } else { 4980 /* ifindex must be already set */ 4981 ASSERT(ifindex != 0); 4982 4983 if (ltcp->tcp_bound_if != 0) { 4984 /* 4985 * Set newtcp's bound_if equal to 4986 * listener's value. If ifindex is 4987 * not the same as ltcp->tcp_bound_if, 4988 * it must be a packet for the ipmp group 4989 * of interfaces 4990 */ 4991 tcp->tcp_bound_if = ltcp->tcp_bound_if; 4992 } else if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) { 4993 tcp->tcp_bound_if = ifindex; 4994 } 4995 4996 tcp->tcp_ipv6_recvancillary = ltcp->tcp_ipv6_recvancillary; 4997 tcp->tcp_recvifindex = 0; 4998 tcp->tcp_recvhops = 0xffffffffU; 4999 ASSERT(tcp->tcp_ip6h != NULL); 5000 } 5001 5002 tcp->tcp_lport = ltcp->tcp_lport; 5003 5004 if (ltcp->tcp_ipversion == tcp->tcp_ipversion) { 5005 if (tcp->tcp_iphc_len != ltcp->tcp_iphc_len) { 5006 /* 5007 * Listener had options of some sort; eager inherits. 5008 * Free up the eager template and allocate one 5009 * of the right size. 5010 */ 5011 if (tcp->tcp_hdr_grown) { 5012 kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len); 5013 } else { 5014 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 5015 kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc); 5016 } 5017 tcp->tcp_iphc = kmem_zalloc(ltcp->tcp_iphc_len, 5018 KM_NOSLEEP); 5019 if (tcp->tcp_iphc == NULL) { 5020 tcp->tcp_iphc_len = 0; 5021 freemsg(tpi_mp); 5022 return (ENOMEM); 5023 } 5024 tcp->tcp_iphc_len = ltcp->tcp_iphc_len; 5025 tcp->tcp_hdr_grown = B_TRUE; 5026 } 5027 tcp->tcp_hdr_len = ltcp->tcp_hdr_len; 5028 tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len; 5029 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 5030 tcp->tcp_ip6_hops = ltcp->tcp_ip6_hops; 5031 tcp->tcp_ip6_vcf = ltcp->tcp_ip6_vcf; 5032 5033 /* 5034 * Copy the IP+TCP header template from listener to eager 5035 */ 5036 bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len); 5037 if (tcp->tcp_ipversion == IPV6_VERSION) { 5038 if (((ip6i_t *)(tcp->tcp_iphc))->ip6i_nxt == 5039 IPPROTO_RAW) { 5040 tcp->tcp_ip6h = 5041 (ip6_t *)(tcp->tcp_iphc + 5042 sizeof (ip6i_t)); 5043 } else { 5044 tcp->tcp_ip6h = 5045 (ip6_t *)(tcp->tcp_iphc); 5046 } 5047 tcp->tcp_ipha = NULL; 5048 } else { 5049 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 5050 tcp->tcp_ip6h = NULL; 5051 } 5052 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + 5053 tcp->tcp_ip_hdr_len); 5054 } else { 5055 /* 5056 * only valid case when ipversion of listener and 5057 * eager differ is when listener is IPv6 and 5058 * eager is IPv4. 5059 * Eager header template has been initialized to the 5060 * maximum v4 header sizes, which includes space for 5061 * TCP and IP options. 5062 */ 5063 ASSERT((ltcp->tcp_ipversion == IPV6_VERSION) && 5064 (tcp->tcp_ipversion == IPV4_VERSION)); 5065 ASSERT(tcp->tcp_iphc_len >= 5066 TCP_MAX_COMBINED_HEADER_LENGTH); 5067 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 5068 /* copy IP header fields individually */ 5069 tcp->tcp_ipha->ipha_ttl = 5070 ltcp->tcp_ip6h->ip6_hops; 5071 bcopy(ltcp->tcp_tcph->th_lport, 5072 tcp->tcp_tcph->th_lport, sizeof (ushort_t)); 5073 } 5074 5075 bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t)); 5076 bcopy(tcp->tcp_tcph->th_fport, &tcp->tcp_fport, 5077 sizeof (in_port_t)); 5078 5079 if (ltcp->tcp_lport == 0) { 5080 tcp->tcp_lport = *(in_port_t *)tcph->th_fport; 5081 bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, 5082 sizeof (in_port_t)); 5083 } 5084 5085 if (tcp->tcp_ipversion == IPV4_VERSION) { 5086 ASSERT(ipha != NULL); 5087 tcp->tcp_ipha->ipha_dst = ipha->ipha_src; 5088 tcp->tcp_ipha->ipha_src = ipha->ipha_dst; 5089 5090 /* Source routing option copyover (reverse it) */ 5091 if (tcp_rev_src_routes) 5092 tcp_opt_reverse(tcp, ipha); 5093 } else { 5094 ASSERT(ip6h != NULL); 5095 tcp->tcp_ip6h->ip6_dst = ip6h->ip6_src; 5096 tcp->tcp_ip6h->ip6_src = ip6h->ip6_dst; 5097 } 5098 5099 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 5100 ASSERT(!tcp->tcp_tconnind_started); 5101 /* 5102 * If the SYN contains a credential, it's a loopback packet; attach 5103 * the credential to the TPI message. 5104 */ 5105 if ((cr = DB_CRED(idmp)) != NULL) { 5106 mblk_setcred(tpi_mp, cr); 5107 DB_CPID(tpi_mp) = DB_CPID(idmp); 5108 } 5109 tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp; 5110 5111 /* Inherit the listener's SSL protection state */ 5112 5113 if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) { 5114 kssl_hold_ent(tcp->tcp_kssl_ent); 5115 tcp->tcp_kssl_pending = B_TRUE; 5116 } 5117 5118 return (0); 5119 } 5120 5121 5122 int 5123 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha, 5124 tcph_t *tcph, mblk_t *idmp) 5125 { 5126 tcp_t *ltcp = lconnp->conn_tcp; 5127 tcp_t *tcp = connp->conn_tcp; 5128 sin_t sin; 5129 mblk_t *tpi_mp = NULL; 5130 int err; 5131 cred_t *cr; 5132 5133 sin = sin_null; 5134 sin.sin_addr.s_addr = ipha->ipha_src; 5135 sin.sin_port = *(uint16_t *)tcph->th_lport; 5136 sin.sin_family = AF_INET; 5137 if (ltcp->tcp_recvdstaddr) { 5138 sin_t sind; 5139 5140 sind = sin_null; 5141 sind.sin_addr.s_addr = ipha->ipha_dst; 5142 sind.sin_port = *(uint16_t *)tcph->th_fport; 5143 sind.sin_family = AF_INET; 5144 tpi_mp = mi_tpi_extconn_ind(NULL, 5145 (char *)&sind, sizeof (sin_t), (char *)&tcp, 5146 (t_scalar_t)sizeof (intptr_t), (char *)&sind, 5147 sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum); 5148 } else { 5149 tpi_mp = mi_tpi_conn_ind(NULL, 5150 (char *)&sin, sizeof (sin_t), 5151 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 5152 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 5153 } 5154 5155 if (tpi_mp == NULL) { 5156 return (ENOMEM); 5157 } 5158 5159 connp->conn_flags |= (IPCL_TCP4|IPCL_EAGER); 5160 connp->conn_send = ip_output; 5161 connp->conn_recv = tcp_input; 5162 connp->conn_fully_bound = B_FALSE; 5163 5164 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6); 5165 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6); 5166 connp->conn_fport = *(uint16_t *)tcph->th_lport; 5167 connp->conn_lport = *(uint16_t *)tcph->th_fport; 5168 5169 if (tcp_trace) { 5170 tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_NOSLEEP); 5171 } 5172 5173 /* Inherit information from the "parent" */ 5174 tcp->tcp_ipversion = ltcp->tcp_ipversion; 5175 tcp->tcp_family = ltcp->tcp_family; 5176 tcp->tcp_wq = ltcp->tcp_wq; 5177 tcp->tcp_rq = ltcp->tcp_rq; 5178 tcp->tcp_mss = tcp_mss_def_ipv4; 5179 tcp->tcp_detached = B_TRUE; 5180 if ((err = tcp_init_values(tcp)) != 0) { 5181 freemsg(tpi_mp); 5182 return (err); 5183 } 5184 5185 /* 5186 * Let's make sure that eager tcp template has enough space to 5187 * copy IPv4 listener's tcp template. Since the conn_t structure is 5188 * preserved and tcp_iphc_len is also preserved, an eager conn_t may 5189 * have a tcp_template of total len TCP_MAX_COMBINED_HEADER_LENGTH or 5190 * more (in case of re-allocation of conn_t with tcp-IPv6 template with 5191 * extension headers or with ip6i_t struct). Note that bcopy() below 5192 * copies listener tcp's hdr_len which cannot be greater than TCP_MAX_ 5193 * COMBINED_HEADER_LENGTH as this listener must be a IPv4 listener. 5194 */ 5195 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 5196 ASSERT(ltcp->tcp_hdr_len <= TCP_MAX_COMBINED_HEADER_LENGTH); 5197 5198 tcp->tcp_hdr_len = ltcp->tcp_hdr_len; 5199 tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len; 5200 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 5201 tcp->tcp_ttl = ltcp->tcp_ttl; 5202 tcp->tcp_tos = ltcp->tcp_tos; 5203 5204 /* Copy the IP+TCP header template from listener to eager */ 5205 bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len); 5206 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 5207 tcp->tcp_ip6h = NULL; 5208 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + 5209 tcp->tcp_ip_hdr_len); 5210 5211 /* Initialize the IP addresses and Ports */ 5212 tcp->tcp_ipha->ipha_dst = ipha->ipha_src; 5213 tcp->tcp_ipha->ipha_src = ipha->ipha_dst; 5214 bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t)); 5215 bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, sizeof (in_port_t)); 5216 5217 /* Source routing option copyover (reverse it) */ 5218 if (tcp_rev_src_routes) 5219 tcp_opt_reverse(tcp, ipha); 5220 5221 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 5222 ASSERT(!tcp->tcp_tconnind_started); 5223 5224 /* 5225 * If the SYN contains a credential, it's a loopback packet; attach 5226 * the credential to the TPI message. 5227 */ 5228 if ((cr = DB_CRED(idmp)) != NULL) { 5229 mblk_setcred(tpi_mp, cr); 5230 DB_CPID(tpi_mp) = DB_CPID(idmp); 5231 } 5232 tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp; 5233 5234 /* Inherit the listener's SSL protection state */ 5235 if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) { 5236 kssl_hold_ent(tcp->tcp_kssl_ent); 5237 tcp->tcp_kssl_pending = B_TRUE; 5238 } 5239 5240 return (0); 5241 } 5242 5243 /* 5244 * sets up conn for ipsec. 5245 * if the first mblk is M_CTL it is consumed and mpp is updated. 5246 * in case of error mpp is freed. 5247 */ 5248 conn_t * 5249 tcp_get_ipsec_conn(tcp_t *tcp, squeue_t *sqp, mblk_t **mpp) 5250 { 5251 conn_t *connp = tcp->tcp_connp; 5252 conn_t *econnp; 5253 squeue_t *new_sqp; 5254 mblk_t *first_mp = *mpp; 5255 mblk_t *mp = *mpp; 5256 boolean_t mctl_present = B_FALSE; 5257 uint_t ipvers; 5258 5259 econnp = tcp_get_conn(sqp); 5260 if (econnp == NULL) { 5261 freemsg(first_mp); 5262 return (NULL); 5263 } 5264 if (DB_TYPE(mp) == M_CTL) { 5265 if (mp->b_cont == NULL || 5266 mp->b_cont->b_datap->db_type != M_DATA) { 5267 freemsg(first_mp); 5268 return (NULL); 5269 } 5270 mp = mp->b_cont; 5271 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) == 0) { 5272 freemsg(first_mp); 5273 return (NULL); 5274 } 5275 5276 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 5277 first_mp->b_datap->db_struioflag &= ~STRUIO_POLICY; 5278 mctl_present = B_TRUE; 5279 } else { 5280 ASSERT(mp->b_datap->db_struioflag & STRUIO_POLICY); 5281 mp->b_datap->db_struioflag &= ~STRUIO_POLICY; 5282 } 5283 5284 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 5285 DB_CKSUMSTART(mp) = 0; 5286 5287 ASSERT(OK_32PTR(mp->b_rptr)); 5288 ipvers = IPH_HDR_VERSION(mp->b_rptr); 5289 if (ipvers == IPV4_VERSION) { 5290 uint16_t *up; 5291 uint32_t ports; 5292 ipha_t *ipha; 5293 5294 ipha = (ipha_t *)mp->b_rptr; 5295 up = (uint16_t *)((uchar_t *)ipha + 5296 IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET); 5297 ports = *(uint32_t *)up; 5298 IPCL_TCP_EAGER_INIT(econnp, IPPROTO_TCP, 5299 ipha->ipha_dst, ipha->ipha_src, ports); 5300 } else { 5301 uint16_t *up; 5302 uint32_t ports; 5303 uint16_t ip_hdr_len; 5304 uint8_t *nexthdrp; 5305 ip6_t *ip6h; 5306 tcph_t *tcph; 5307 5308 ip6h = (ip6_t *)mp->b_rptr; 5309 if (ip6h->ip6_nxt == IPPROTO_TCP) { 5310 ip_hdr_len = IPV6_HDR_LEN; 5311 } else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ip_hdr_len, 5312 &nexthdrp) || *nexthdrp != IPPROTO_TCP) { 5313 CONN_DEC_REF(econnp); 5314 freemsg(first_mp); 5315 return (NULL); 5316 } 5317 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5318 up = (uint16_t *)tcph->th_lport; 5319 ports = *(uint32_t *)up; 5320 IPCL_TCP_EAGER_INIT_V6(econnp, IPPROTO_TCP, 5321 ip6h->ip6_dst, ip6h->ip6_src, ports); 5322 } 5323 5324 /* 5325 * The caller already ensured that there is a sqp present. 5326 */ 5327 econnp->conn_sqp = new_sqp; 5328 5329 if (connp->conn_policy != NULL) { 5330 ipsec_in_t *ii; 5331 ii = (ipsec_in_t *)(first_mp->b_rptr); 5332 ASSERT(ii->ipsec_in_policy == NULL); 5333 IPPH_REFHOLD(connp->conn_policy); 5334 ii->ipsec_in_policy = connp->conn_policy; 5335 5336 first_mp->b_datap->db_type = IPSEC_POLICY_SET; 5337 if (!ip_bind_ipsec_policy_set(econnp, first_mp)) { 5338 CONN_DEC_REF(econnp); 5339 freemsg(first_mp); 5340 return (NULL); 5341 } 5342 } 5343 5344 if (ipsec_conn_cache_policy(econnp, ipvers == IPV4_VERSION) != 0) { 5345 CONN_DEC_REF(econnp); 5346 freemsg(first_mp); 5347 return (NULL); 5348 } 5349 5350 /* 5351 * If we know we have some policy, pass the "IPSEC" 5352 * options size TCP uses this adjust the MSS. 5353 */ 5354 econnp->conn_tcp->tcp_ipsec_overhead = conn_ipsec_length(econnp); 5355 if (mctl_present) { 5356 freeb(first_mp); 5357 *mpp = mp; 5358 } 5359 5360 return (econnp); 5361 } 5362 5363 /* 5364 * tcp_get_conn/tcp_free_conn 5365 * 5366 * tcp_get_conn is used to get a clean tcp connection structure. 5367 * It tries to reuse the connections put on the freelist by the 5368 * time_wait_collector failing which it goes to kmem_cache. This 5369 * way has two benefits compared to just allocating from and 5370 * freeing to kmem_cache. 5371 * 1) The time_wait_collector can free (which includes the cleanup) 5372 * outside the squeue. So when the interrupt comes, we have a clean 5373 * connection sitting in the freelist. Obviously, this buys us 5374 * performance. 5375 * 5376 * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_conn_request 5377 * has multiple disadvantages - tying up the squeue during alloc, and the 5378 * fact that IPSec policy initialization has to happen here which 5379 * requires us sending a M_CTL and checking for it i.e. real ugliness. 5380 * But allocating the conn/tcp in IP land is also not the best since 5381 * we can't check the 'q' and 'q0' which are protected by squeue and 5382 * blindly allocate memory which might have to be freed here if we are 5383 * not allowed to accept the connection. By using the freelist and 5384 * putting the conn/tcp back in freelist, we don't pay a penalty for 5385 * allocating memory without checking 'q/q0' and freeing it if we can't 5386 * accept the connection. 5387 * 5388 * Care should be taken to put the conn back in the same squeue's freelist 5389 * from which it was allocated. Best results are obtained if conn is 5390 * allocated from listener's squeue and freed to the same. Time wait 5391 * collector will free up the freelist is the connection ends up sitting 5392 * there for too long. 5393 */ 5394 void * 5395 tcp_get_conn(void *arg) 5396 { 5397 tcp_t *tcp = NULL; 5398 conn_t *connp = NULL; 5399 squeue_t *sqp = (squeue_t *)arg; 5400 tcp_squeue_priv_t *tcp_time_wait; 5401 5402 tcp_time_wait = 5403 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 5404 5405 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 5406 tcp = tcp_time_wait->tcp_free_list; 5407 ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0)); 5408 if (tcp != NULL) { 5409 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 5410 tcp_time_wait->tcp_free_list_cnt--; 5411 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 5412 tcp->tcp_time_wait_next = NULL; 5413 connp = tcp->tcp_connp; 5414 connp->conn_flags |= IPCL_REUSED; 5415 return ((void *)connp); 5416 } 5417 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 5418 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP)) == NULL) 5419 return (NULL); 5420 return ((void *)connp); 5421 } 5422 5423 /* 5424 * Update the cached label for the given tcp_t. This should be called once per 5425 * connection, and before any packets are sent or tcp_process_options is 5426 * invoked. Returns B_FALSE if the correct label could not be constructed. 5427 */ 5428 static boolean_t 5429 tcp_update_label(tcp_t *tcp, const cred_t *cr) 5430 { 5431 conn_t *connp = tcp->tcp_connp; 5432 5433 if (tcp->tcp_ipversion == IPV4_VERSION) { 5434 uchar_t optbuf[IP_MAX_OPT_LENGTH]; 5435 int added; 5436 5437 if (tsol_compute_label(cr, tcp->tcp_remote, optbuf, 5438 connp->conn_mac_exempt) != 0) 5439 return (B_FALSE); 5440 5441 added = tsol_remove_secopt(tcp->tcp_ipha, tcp->tcp_hdr_len); 5442 if (added == -1) 5443 return (B_FALSE); 5444 tcp->tcp_hdr_len += added; 5445 tcp->tcp_tcph = (tcph_t *)((uchar_t *)tcp->tcp_tcph + added); 5446 tcp->tcp_ip_hdr_len += added; 5447 if ((tcp->tcp_label_len = optbuf[IPOPT_OLEN]) != 0) { 5448 tcp->tcp_label_len = (tcp->tcp_label_len + 3) & ~3; 5449 added = tsol_prepend_option(optbuf, tcp->tcp_ipha, 5450 tcp->tcp_hdr_len); 5451 if (added == -1) 5452 return (B_FALSE); 5453 tcp->tcp_hdr_len += added; 5454 tcp->tcp_tcph = (tcph_t *) 5455 ((uchar_t *)tcp->tcp_tcph + added); 5456 tcp->tcp_ip_hdr_len += added; 5457 } 5458 } else { 5459 uchar_t optbuf[TSOL_MAX_IPV6_OPTION]; 5460 5461 if (tsol_compute_label_v6(cr, &tcp->tcp_remote_v6, optbuf, 5462 connp->conn_mac_exempt) != 0) 5463 return (B_FALSE); 5464 if (tsol_update_sticky(&tcp->tcp_sticky_ipp, 5465 &tcp->tcp_label_len, optbuf) != 0) 5466 return (B_FALSE); 5467 if (tcp_build_hdrs(tcp->tcp_rq, tcp) != 0) 5468 return (B_FALSE); 5469 } 5470 5471 connp->conn_ulp_labeled = 1; 5472 5473 return (B_TRUE); 5474 } 5475 5476 /* BEGIN CSTYLED */ 5477 /* 5478 * 5479 * The sockfs ACCEPT path: 5480 * ======================= 5481 * 5482 * The eager is now established in its own perimeter as soon as SYN is 5483 * received in tcp_conn_request(). When sockfs receives conn_ind, it 5484 * completes the accept processing on the acceptor STREAM. The sending 5485 * of conn_ind part is common for both sockfs listener and a TLI/XTI 5486 * listener but a TLI/XTI listener completes the accept processing 5487 * on the listener perimeter. 5488 * 5489 * Common control flow for 3 way handshake: 5490 * ---------------------------------------- 5491 * 5492 * incoming SYN (listener perimeter) -> tcp_rput_data() 5493 * -> tcp_conn_request() 5494 * 5495 * incoming SYN-ACK-ACK (eager perim) -> tcp_rput_data() 5496 * send T_CONN_IND (listener perim) -> tcp_send_conn_ind() 5497 * 5498 * Sockfs ACCEPT Path: 5499 * ------------------- 5500 * 5501 * open acceptor stream (ip_tcpopen allocates tcp_wput_accept() 5502 * as STREAM entry point) 5503 * 5504 * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_wput_accept() 5505 * 5506 * tcp_wput_accept() extracts the eager and makes the q->q_ptr <-> eager 5507 * association (we are not behind eager's squeue but sockfs is protecting us 5508 * and no one knows about this stream yet. The STREAMS entry point q->q_info 5509 * is changed to point at tcp_wput(). 5510 * 5511 * tcp_wput_accept() sends any deferred eagers via tcp_send_pending() to 5512 * listener (done on listener's perimeter). 5513 * 5514 * tcp_wput_accept() calls tcp_accept_finish() on eagers perimeter to finish 5515 * accept. 5516 * 5517 * TLI/XTI client ACCEPT path: 5518 * --------------------------- 5519 * 5520 * soaccept() sends T_CONN_RES on the listener STREAM. 5521 * 5522 * tcp_accept() -> tcp_accept_swap() complete the processing and send 5523 * the bind_mp to eager perimeter to finish accept (tcp_rput_other()). 5524 * 5525 * Locks: 5526 * ====== 5527 * 5528 * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and 5529 * and listeners->tcp_eager_next_q. 5530 * 5531 * Referencing: 5532 * ============ 5533 * 5534 * 1) We start out in tcp_conn_request by eager placing a ref on 5535 * listener and listener adding eager to listeners->tcp_eager_next_q0. 5536 * 5537 * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before 5538 * doing so we place a ref on the eager. This ref is finally dropped at the 5539 * end of tcp_accept_finish() while unwinding from the squeue, i.e. the 5540 * reference is dropped by the squeue framework. 5541 * 5542 * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish 5543 * 5544 * The reference must be released by the same entity that added the reference 5545 * In the above scheme, the eager is the entity that adds and releases the 5546 * references. Note that tcp_accept_finish executes in the squeue of the eager 5547 * (albeit after it is attached to the acceptor stream). Though 1. executes 5548 * in the listener's squeue, the eager is nascent at this point and the 5549 * reference can be considered to have been added on behalf of the eager. 5550 * 5551 * Eager getting a Reset or listener closing: 5552 * ========================================== 5553 * 5554 * Once the listener and eager are linked, the listener never does the unlink. 5555 * If the listener needs to close, tcp_eager_cleanup() is called which queues 5556 * a message on all eager perimeter. The eager then does the unlink, clears 5557 * any pointers to the listener's queue and drops the reference to the 5558 * listener. The listener waits in tcp_close outside the squeue until its 5559 * refcount has dropped to 1. This ensures that the listener has waited for 5560 * all eagers to clear their association with the listener. 5561 * 5562 * Similarly, if eager decides to go away, it can unlink itself and close. 5563 * When the T_CONN_RES comes down, we check if eager has closed. Note that 5564 * the reference to eager is still valid because of the extra ref we put 5565 * in tcp_send_conn_ind. 5566 * 5567 * Listener can always locate the eager under the protection 5568 * of the listener->tcp_eager_lock, and then do a refhold 5569 * on the eager during the accept processing. 5570 * 5571 * The acceptor stream accesses the eager in the accept processing 5572 * based on the ref placed on eager before sending T_conn_ind. 5573 * The only entity that can negate this refhold is a listener close 5574 * which is mutually exclusive with an active acceptor stream. 5575 * 5576 * Eager's reference on the listener 5577 * =================================== 5578 * 5579 * If the accept happens (even on a closed eager) the eager drops its 5580 * reference on the listener at the start of tcp_accept_finish. If the 5581 * eager is killed due to an incoming RST before the T_conn_ind is sent up, 5582 * the reference is dropped in tcp_closei_local. If the listener closes, 5583 * the reference is dropped in tcp_eager_kill. In all cases the reference 5584 * is dropped while executing in the eager's context (squeue). 5585 */ 5586 /* END CSTYLED */ 5587 5588 /* Process the SYN packet, mp, directed at the listener 'tcp' */ 5589 5590 /* 5591 * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN. 5592 * tcp_rput_data will not see any SYN packets. 5593 */ 5594 /* ARGSUSED */ 5595 void 5596 tcp_conn_request(void *arg, mblk_t *mp, void *arg2) 5597 { 5598 tcph_t *tcph; 5599 uint32_t seg_seq; 5600 tcp_t *eager; 5601 uint_t ipvers; 5602 ipha_t *ipha; 5603 ip6_t *ip6h; 5604 int err; 5605 conn_t *econnp = NULL; 5606 squeue_t *new_sqp; 5607 mblk_t *mp1; 5608 uint_t ip_hdr_len; 5609 conn_t *connp = (conn_t *)arg; 5610 tcp_t *tcp = connp->conn_tcp; 5611 ire_t *ire; 5612 cred_t *credp; 5613 5614 if (tcp->tcp_state != TCPS_LISTEN) 5615 goto error2; 5616 5617 ASSERT((tcp->tcp_connp->conn_flags & IPCL_BOUND) != 0); 5618 5619 mutex_enter(&tcp->tcp_eager_lock); 5620 if (tcp->tcp_conn_req_cnt_q >= tcp->tcp_conn_req_max) { 5621 mutex_exit(&tcp->tcp_eager_lock); 5622 TCP_STAT(tcp_listendrop); 5623 BUMP_MIB(&tcp_mib, tcpListenDrop); 5624 if (tcp->tcp_debug) { 5625 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 5626 "tcp_conn_request: listen backlog (max=%d) " 5627 "overflow (%d pending) on %s", 5628 tcp->tcp_conn_req_max, tcp->tcp_conn_req_cnt_q, 5629 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 5630 } 5631 goto error2; 5632 } 5633 5634 if (tcp->tcp_conn_req_cnt_q0 >= 5635 tcp->tcp_conn_req_max + tcp_conn_req_max_q0) { 5636 /* 5637 * Q0 is full. Drop a pending half-open req from the queue 5638 * to make room for the new SYN req. Also mark the time we 5639 * drop a SYN. 5640 * 5641 * A more aggressive defense against SYN attack will 5642 * be to set the "tcp_syn_defense" flag now. 5643 */ 5644 TCP_STAT(tcp_listendropq0); 5645 tcp->tcp_last_rcv_lbolt = lbolt64; 5646 if (!tcp_drop_q0(tcp)) { 5647 mutex_exit(&tcp->tcp_eager_lock); 5648 BUMP_MIB(&tcp_mib, tcpListenDropQ0); 5649 if (tcp->tcp_debug) { 5650 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 5651 "tcp_conn_request: listen half-open queue " 5652 "(max=%d) full (%d pending) on %s", 5653 tcp_conn_req_max_q0, 5654 tcp->tcp_conn_req_cnt_q0, 5655 tcp_display(tcp, NULL, 5656 DISP_PORT_ONLY)); 5657 } 5658 goto error2; 5659 } 5660 } 5661 mutex_exit(&tcp->tcp_eager_lock); 5662 5663 /* 5664 * IP adds STRUIO_EAGER and ensures that the received packet is 5665 * M_DATA even if conn_ipv6_recvpktinfo is enabled or for ip6 5666 * link local address. If IPSec is enabled, db_struioflag has 5667 * STRUIO_POLICY set (mutually exclusive from STRUIO_EAGER); 5668 * otherwise an error case if neither of them is set. 5669 */ 5670 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 5671 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 5672 DB_CKSUMSTART(mp) = 0; 5673 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 5674 econnp = (conn_t *)tcp_get_conn(arg2); 5675 if (econnp == NULL) 5676 goto error2; 5677 econnp->conn_sqp = new_sqp; 5678 } else if ((mp->b_datap->db_struioflag & STRUIO_POLICY) != 0) { 5679 /* 5680 * mp is updated in tcp_get_ipsec_conn(). 5681 */ 5682 econnp = tcp_get_ipsec_conn(tcp, arg2, &mp); 5683 if (econnp == NULL) { 5684 /* 5685 * mp freed by tcp_get_ipsec_conn. 5686 */ 5687 return; 5688 } 5689 } else { 5690 goto error2; 5691 } 5692 5693 ASSERT(DB_TYPE(mp) == M_DATA); 5694 5695 ipvers = IPH_HDR_VERSION(mp->b_rptr); 5696 ASSERT(ipvers == IPV6_VERSION || ipvers == IPV4_VERSION); 5697 ASSERT(OK_32PTR(mp->b_rptr)); 5698 if (ipvers == IPV4_VERSION) { 5699 ipha = (ipha_t *)mp->b_rptr; 5700 ip_hdr_len = IPH_HDR_LENGTH(ipha); 5701 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5702 } else { 5703 ip6h = (ip6_t *)mp->b_rptr; 5704 ip_hdr_len = ip_hdr_length_v6(mp, ip6h); 5705 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5706 } 5707 5708 if (tcp->tcp_family == AF_INET) { 5709 ASSERT(ipvers == IPV4_VERSION); 5710 err = tcp_conn_create_v4(connp, econnp, ipha, tcph, mp); 5711 } else { 5712 err = tcp_conn_create_v6(connp, econnp, mp, tcph, ipvers, mp); 5713 } 5714 5715 if (err) 5716 goto error3; 5717 5718 eager = econnp->conn_tcp; 5719 5720 /* Inherit various TCP parameters from the listener */ 5721 eager->tcp_naglim = tcp->tcp_naglim; 5722 eager->tcp_first_timer_threshold = 5723 tcp->tcp_first_timer_threshold; 5724 eager->tcp_second_timer_threshold = 5725 tcp->tcp_second_timer_threshold; 5726 5727 eager->tcp_first_ctimer_threshold = 5728 tcp->tcp_first_ctimer_threshold; 5729 eager->tcp_second_ctimer_threshold = 5730 tcp->tcp_second_ctimer_threshold; 5731 5732 /* 5733 * tcp_adapt_ire() may change tcp_rwnd according to the ire metrics. 5734 * If it does not, the eager's receive window will be set to the 5735 * listener's receive window later in this function. 5736 */ 5737 eager->tcp_rwnd = 0; 5738 5739 /* 5740 * Inherit listener's tcp_init_cwnd. Need to do this before 5741 * calling tcp_process_options() where tcp_mss_set() is called 5742 * to set the initial cwnd. 5743 */ 5744 eager->tcp_init_cwnd = tcp->tcp_init_cwnd; 5745 5746 /* 5747 * Zones: tcp_adapt_ire() and tcp_send_data() both need the 5748 * zone id before the accept is completed in tcp_wput_accept(). 5749 */ 5750 econnp->conn_zoneid = connp->conn_zoneid; 5751 econnp->conn_allzones = connp->conn_allzones; 5752 5753 /* Copy nexthop information from listener to eager */ 5754 if (connp->conn_nexthop_set) { 5755 econnp->conn_nexthop_set = connp->conn_nexthop_set; 5756 econnp->conn_nexthop_v4 = connp->conn_nexthop_v4; 5757 } 5758 5759 /* 5760 * TSOL: tsol_input_proc() needs the eager's cred before the 5761 * eager is accepted 5762 */ 5763 econnp->conn_cred = eager->tcp_cred = credp = connp->conn_cred; 5764 crhold(credp); 5765 5766 /* 5767 * If the caller has the process-wide flag set, then default to MAC 5768 * exempt mode. This allows read-down to unlabeled hosts. 5769 */ 5770 if (getpflags(NET_MAC_AWARE, credp) != 0) 5771 econnp->conn_mac_exempt = B_TRUE; 5772 5773 if (is_system_labeled()) { 5774 cred_t *cr; 5775 5776 if (connp->conn_mlp_type != mlptSingle) { 5777 cr = econnp->conn_peercred = DB_CRED(mp); 5778 if (cr != NULL) 5779 crhold(cr); 5780 else 5781 cr = econnp->conn_cred; 5782 DTRACE_PROBE2(mlp_syn_accept, conn_t *, 5783 econnp, cred_t *, cr) 5784 } else { 5785 cr = econnp->conn_cred; 5786 DTRACE_PROBE2(syn_accept, conn_t *, 5787 econnp, cred_t *, cr) 5788 } 5789 5790 if (!tcp_update_label(eager, cr)) { 5791 DTRACE_PROBE3( 5792 tx__ip__log__error__connrequest__tcp, 5793 char *, "eager connp(1) label on SYN mp(2) failed", 5794 conn_t *, econnp, mblk_t *, mp); 5795 goto error3; 5796 } 5797 } 5798 5799 eager->tcp_hard_binding = B_TRUE; 5800 5801 tcp_bind_hash_insert(&tcp_bind_fanout[ 5802 TCP_BIND_HASH(eager->tcp_lport)], eager, 0); 5803 5804 CL_INET_CONNECT(eager); 5805 5806 /* 5807 * No need to check for multicast destination since ip will only pass 5808 * up multicasts to those that have expressed interest 5809 * TODO: what about rejecting broadcasts? 5810 * Also check that source is not a multicast or broadcast address. 5811 */ 5812 eager->tcp_state = TCPS_SYN_RCVD; 5813 5814 5815 /* 5816 * There should be no ire in the mp as we are being called after 5817 * receiving the SYN. 5818 */ 5819 ASSERT(tcp_ire_mp(mp) == NULL); 5820 5821 /* 5822 * Adapt our mss, ttl, ... according to information provided in IRE. 5823 */ 5824 5825 if (tcp_adapt_ire(eager, NULL) == 0) { 5826 /* Undo the bind_hash_insert */ 5827 tcp_bind_hash_remove(eager); 5828 goto error3; 5829 } 5830 5831 /* Process all TCP options. */ 5832 tcp_process_options(eager, tcph); 5833 5834 /* Is the other end ECN capable? */ 5835 if (tcp_ecn_permitted >= 1 && 5836 (tcph->th_flags[0] & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) { 5837 eager->tcp_ecn_ok = B_TRUE; 5838 } 5839 5840 /* 5841 * listener->tcp_rq->q_hiwat should be the default window size or a 5842 * window size changed via SO_RCVBUF option. First round up the 5843 * eager's tcp_rwnd to the nearest MSS. Then find out the window 5844 * scale option value if needed. Call tcp_rwnd_set() to finish the 5845 * setting. 5846 * 5847 * Note if there is a rpipe metric associated with the remote host, 5848 * we should not inherit receive window size from listener. 5849 */ 5850 eager->tcp_rwnd = MSS_ROUNDUP( 5851 (eager->tcp_rwnd == 0 ? tcp->tcp_rq->q_hiwat : 5852 eager->tcp_rwnd), eager->tcp_mss); 5853 if (eager->tcp_snd_ws_ok) 5854 tcp_set_ws_value(eager); 5855 /* 5856 * Note that this is the only place tcp_rwnd_set() is called for 5857 * accepting a connection. We need to call it here instead of 5858 * after the 3-way handshake because we need to tell the other 5859 * side our rwnd in the SYN-ACK segment. 5860 */ 5861 (void) tcp_rwnd_set(eager, eager->tcp_rwnd); 5862 5863 /* 5864 * We eliminate the need for sockfs to send down a T_SVR4_OPTMGMT_REQ 5865 * via soaccept()->soinheritoptions() which essentially applies 5866 * all the listener options to the new STREAM. The options that we 5867 * need to take care of are: 5868 * SO_DEBUG, SO_REUSEADDR, SO_KEEPALIVE, SO_DONTROUTE, SO_BROADCAST, 5869 * SO_USELOOPBACK, SO_OOBINLINE, SO_DGRAM_ERRIND, SO_LINGER, 5870 * SO_SNDBUF, SO_RCVBUF. 5871 * 5872 * SO_RCVBUF: tcp_rwnd_set() above takes care of it. 5873 * SO_SNDBUF: Set the tcp_xmit_hiwater for the eager. When 5874 * tcp_maxpsz_set() gets called later from 5875 * tcp_accept_finish(), the option takes effect. 5876 * 5877 */ 5878 /* Set the TCP options */ 5879 eager->tcp_xmit_hiwater = tcp->tcp_xmit_hiwater; 5880 eager->tcp_dgram_errind = tcp->tcp_dgram_errind; 5881 eager->tcp_oobinline = tcp->tcp_oobinline; 5882 eager->tcp_reuseaddr = tcp->tcp_reuseaddr; 5883 eager->tcp_broadcast = tcp->tcp_broadcast; 5884 eager->tcp_useloopback = tcp->tcp_useloopback; 5885 eager->tcp_dontroute = tcp->tcp_dontroute; 5886 eager->tcp_linger = tcp->tcp_linger; 5887 eager->tcp_lingertime = tcp->tcp_lingertime; 5888 if (tcp->tcp_ka_enabled) 5889 eager->tcp_ka_enabled = 1; 5890 5891 /* Set the IP options */ 5892 econnp->conn_broadcast = connp->conn_broadcast; 5893 econnp->conn_loopback = connp->conn_loopback; 5894 econnp->conn_dontroute = connp->conn_dontroute; 5895 econnp->conn_reuseaddr = connp->conn_reuseaddr; 5896 5897 /* Put a ref on the listener for the eager. */ 5898 CONN_INC_REF(connp); 5899 mutex_enter(&tcp->tcp_eager_lock); 5900 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = eager; 5901 eager->tcp_eager_next_q0 = tcp->tcp_eager_next_q0; 5902 tcp->tcp_eager_next_q0 = eager; 5903 eager->tcp_eager_prev_q0 = tcp; 5904 5905 /* Set tcp_listener before adding it to tcp_conn_fanout */ 5906 eager->tcp_listener = tcp; 5907 eager->tcp_saved_listener = tcp; 5908 5909 /* 5910 * Tag this detached tcp vector for later retrieval 5911 * by our listener client in tcp_accept(). 5912 */ 5913 eager->tcp_conn_req_seqnum = tcp->tcp_conn_req_seqnum; 5914 tcp->tcp_conn_req_cnt_q0++; 5915 if (++tcp->tcp_conn_req_seqnum == -1) { 5916 /* 5917 * -1 is "special" and defined in TPI as something 5918 * that should never be used in T_CONN_IND 5919 */ 5920 ++tcp->tcp_conn_req_seqnum; 5921 } 5922 mutex_exit(&tcp->tcp_eager_lock); 5923 5924 if (tcp->tcp_syn_defense) { 5925 /* Don't drop the SYN that comes from a good IP source */ 5926 ipaddr_t *addr_cache = (ipaddr_t *)(tcp->tcp_ip_addr_cache); 5927 if (addr_cache != NULL && eager->tcp_remote == 5928 addr_cache[IP_ADDR_CACHE_HASH(eager->tcp_remote)]) { 5929 eager->tcp_dontdrop = B_TRUE; 5930 } 5931 } 5932 5933 /* 5934 * We need to insert the eager in its own perimeter but as soon 5935 * as we do that, we expose the eager to the classifier and 5936 * should not touch any field outside the eager's perimeter. 5937 * So do all the work necessary before inserting the eager 5938 * in its own perimeter. Be optimistic that ipcl_conn_insert() 5939 * will succeed but undo everything if it fails. 5940 */ 5941 seg_seq = ABE32_TO_U32(tcph->th_seq); 5942 eager->tcp_irs = seg_seq; 5943 eager->tcp_rack = seg_seq; 5944 eager->tcp_rnxt = seg_seq + 1; 5945 U32_TO_ABE32(eager->tcp_rnxt, eager->tcp_tcph->th_ack); 5946 BUMP_MIB(&tcp_mib, tcpPassiveOpens); 5947 eager->tcp_state = TCPS_SYN_RCVD; 5948 mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss, 5949 NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE); 5950 if (mp1 == NULL) 5951 goto error1; 5952 DB_CPID(mp1) = tcp->tcp_cpid; 5953 eager->tcp_cpid = tcp->tcp_cpid; 5954 eager->tcp_open_time = lbolt64; 5955 5956 /* 5957 * We need to start the rto timer. In normal case, we start 5958 * the timer after sending the packet on the wire (or at 5959 * least believing that packet was sent by waiting for 5960 * CALL_IP_WPUT() to return). Since this is the first packet 5961 * being sent on the wire for the eager, our initial tcp_rto 5962 * is at least tcp_rexmit_interval_min which is a fairly 5963 * large value to allow the algorithm to adjust slowly to large 5964 * fluctuations of RTT during first few transmissions. 5965 * 5966 * Starting the timer first and then sending the packet in this 5967 * case shouldn't make much difference since tcp_rexmit_interval_min 5968 * is of the order of several 100ms and starting the timer 5969 * first and then sending the packet will result in difference 5970 * of few micro seconds. 5971 * 5972 * Without this optimization, we are forced to hold the fanout 5973 * lock across the ipcl_bind_insert() and sending the packet 5974 * so that we don't race against an incoming packet (maybe RST) 5975 * for this eager. 5976 */ 5977 5978 TCP_RECORD_TRACE(eager, mp1, TCP_TRACE_SEND_PKT); 5979 TCP_TIMER_RESTART(eager, eager->tcp_rto); 5980 5981 5982 /* 5983 * Insert the eager in its own perimeter now. We are ready to deal 5984 * with any packets on eager. 5985 */ 5986 if (eager->tcp_ipversion == IPV4_VERSION) { 5987 if (ipcl_conn_insert(econnp, IPPROTO_TCP, 0, 0, 0) != 0) { 5988 goto error; 5989 } 5990 } else { 5991 if (ipcl_conn_insert_v6(econnp, IPPROTO_TCP, 0, 0, 0, 0) != 0) { 5992 goto error; 5993 } 5994 } 5995 5996 /* mark conn as fully-bound */ 5997 econnp->conn_fully_bound = B_TRUE; 5998 5999 /* Send the SYN-ACK */ 6000 tcp_send_data(eager, eager->tcp_wq, mp1); 6001 freemsg(mp); 6002 6003 return; 6004 error: 6005 (void) TCP_TIMER_CANCEL(eager, eager->tcp_timer_tid); 6006 freemsg(mp1); 6007 error1: 6008 /* Undo what we did above */ 6009 mutex_enter(&tcp->tcp_eager_lock); 6010 tcp_eager_unlink(eager); 6011 mutex_exit(&tcp->tcp_eager_lock); 6012 /* Drop eager's reference on the listener */ 6013 CONN_DEC_REF(connp); 6014 6015 /* 6016 * Delete the cached ire in conn_ire_cache and also mark 6017 * the conn as CONDEMNED 6018 */ 6019 mutex_enter(&econnp->conn_lock); 6020 econnp->conn_state_flags |= CONN_CONDEMNED; 6021 ire = econnp->conn_ire_cache; 6022 econnp->conn_ire_cache = NULL; 6023 mutex_exit(&econnp->conn_lock); 6024 if (ire != NULL) 6025 IRE_REFRELE_NOTR(ire); 6026 6027 /* 6028 * tcp_accept_comm inserts the eager to the bind_hash 6029 * we need to remove it from the hash if ipcl_conn_insert 6030 * fails. 6031 */ 6032 tcp_bind_hash_remove(eager); 6033 /* Drop the eager ref placed in tcp_open_detached */ 6034 CONN_DEC_REF(econnp); 6035 6036 /* 6037 * If a connection already exists, send the mp to that connections so 6038 * that it can be appropriately dealt with. 6039 */ 6040 if ((econnp = ipcl_classify(mp, connp->conn_zoneid)) != NULL) { 6041 if (!IPCL_IS_CONNECTED(econnp)) { 6042 /* 6043 * Something bad happened. ipcl_conn_insert() 6044 * failed because a connection already existed 6045 * in connected hash but we can't find it 6046 * anymore (someone blew it away). Just 6047 * free this message and hopefully remote 6048 * will retransmit at which time the SYN can be 6049 * treated as a new connection or dealth with 6050 * a TH_RST if a connection already exists. 6051 */ 6052 CONN_DEC_REF(econnp); 6053 freemsg(mp); 6054 } else { 6055 squeue_fill(econnp->conn_sqp, mp, tcp_input, 6056 econnp, SQTAG_TCP_CONN_REQ); 6057 } 6058 } else { 6059 /* Nobody wants this packet */ 6060 freemsg(mp); 6061 } 6062 return; 6063 error2: 6064 freemsg(mp); 6065 return; 6066 error3: 6067 CONN_DEC_REF(econnp); 6068 freemsg(mp); 6069 } 6070 6071 /* 6072 * In an ideal case of vertical partition in NUMA architecture, its 6073 * beneficial to have the listener and all the incoming connections 6074 * tied to the same squeue. The other constraint is that incoming 6075 * connections should be tied to the squeue attached to interrupted 6076 * CPU for obvious locality reason so this leaves the listener to 6077 * be tied to the same squeue. Our only problem is that when listener 6078 * is binding, the CPU that will get interrupted by the NIC whose 6079 * IP address the listener is binding to is not even known. So 6080 * the code below allows us to change that binding at the time the 6081 * CPU is interrupted by virtue of incoming connection's squeue. 6082 * 6083 * This is usefull only in case of a listener bound to a specific IP 6084 * address. For other kind of listeners, they get bound the 6085 * very first time and there is no attempt to rebind them. 6086 */ 6087 void 6088 tcp_conn_request_unbound(void *arg, mblk_t *mp, void *arg2) 6089 { 6090 conn_t *connp = (conn_t *)arg; 6091 squeue_t *sqp = (squeue_t *)arg2; 6092 squeue_t *new_sqp; 6093 uint32_t conn_flags; 6094 6095 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 6096 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 6097 } else { 6098 goto done; 6099 } 6100 6101 if (connp->conn_fanout == NULL) 6102 goto done; 6103 6104 if (!(connp->conn_flags & IPCL_FULLY_BOUND)) { 6105 mutex_enter(&connp->conn_fanout->connf_lock); 6106 mutex_enter(&connp->conn_lock); 6107 /* 6108 * No one from read or write side can access us now 6109 * except for already queued packets on this squeue. 6110 * But since we haven't changed the squeue yet, they 6111 * can't execute. If they are processed after we have 6112 * changed the squeue, they are sent back to the 6113 * correct squeue down below. 6114 * But a listner close can race with processing of 6115 * incoming SYN. If incoming SYN processing changes 6116 * the squeue then the listener close which is waiting 6117 * to enter the squeue would operate on the wrong 6118 * squeue. Hence we don't change the squeue here unless 6119 * the refcount is exactly the minimum refcount. The 6120 * minimum refcount of 4 is counted as - 1 each for 6121 * TCP and IP, 1 for being in the classifier hash, and 6122 * 1 for the mblk being processed. 6123 */ 6124 6125 if (connp->conn_ref != 4 || 6126 connp->conn_tcp->tcp_state != TCPS_LISTEN) { 6127 mutex_exit(&connp->conn_lock); 6128 mutex_exit(&connp->conn_fanout->connf_lock); 6129 goto done; 6130 } 6131 if (connp->conn_sqp != new_sqp) { 6132 while (connp->conn_sqp != new_sqp) 6133 (void) casptr(&connp->conn_sqp, sqp, new_sqp); 6134 } 6135 6136 do { 6137 conn_flags = connp->conn_flags; 6138 conn_flags |= IPCL_FULLY_BOUND; 6139 (void) cas32(&connp->conn_flags, connp->conn_flags, 6140 conn_flags); 6141 } while (!(connp->conn_flags & IPCL_FULLY_BOUND)); 6142 6143 mutex_exit(&connp->conn_fanout->connf_lock); 6144 mutex_exit(&connp->conn_lock); 6145 } 6146 6147 done: 6148 if (connp->conn_sqp != sqp) { 6149 CONN_INC_REF(connp); 6150 squeue_fill(connp->conn_sqp, mp, 6151 connp->conn_recv, connp, SQTAG_TCP_CONN_REQ_UNBOUND); 6152 } else { 6153 tcp_conn_request(connp, mp, sqp); 6154 } 6155 } 6156 6157 /* 6158 * Successful connect request processing begins when our client passes 6159 * a T_CONN_REQ message into tcp_wput() and ends when tcp_rput() passes 6160 * our T_OK_ACK reply message upstream. The control flow looks like this: 6161 * upstream -> tcp_wput() -> tcp_wput_proto() -> tcp_connect() -> IP 6162 * upstream <- tcp_rput() <- IP 6163 * After various error checks are completed, tcp_connect() lays 6164 * the target address and port into the composite header template, 6165 * preallocates the T_OK_ACK reply message, construct a full 12 byte bind 6166 * request followed by an IRE request, and passes the three mblk message 6167 * down to IP looking like this: 6168 * O_T_BIND_REQ for IP --> IRE req --> T_OK_ACK for our client 6169 * Processing continues in tcp_rput() when we receive the following message: 6170 * T_BIND_ACK from IP --> IRE ack --> T_OK_ACK for our client 6171 * After consuming the first two mblks, tcp_rput() calls tcp_timer(), 6172 * to fire off the connection request, and then passes the T_OK_ACK mblk 6173 * upstream that we filled in below. There are, of course, numerous 6174 * error conditions along the way which truncate the processing described 6175 * above. 6176 */ 6177 static void 6178 tcp_connect(tcp_t *tcp, mblk_t *mp) 6179 { 6180 sin_t *sin; 6181 sin6_t *sin6; 6182 queue_t *q = tcp->tcp_wq; 6183 struct T_conn_req *tcr; 6184 ipaddr_t *dstaddrp; 6185 in_port_t dstport; 6186 uint_t srcid; 6187 6188 tcr = (struct T_conn_req *)mp->b_rptr; 6189 6190 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 6191 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { 6192 tcp_err_ack(tcp, mp, TPROTO, 0); 6193 return; 6194 } 6195 6196 /* 6197 * Determine packet type based on type of address passed in 6198 * the request should contain an IPv4 or IPv6 address. 6199 * Make sure that address family matches the type of 6200 * family of the the address passed down 6201 */ 6202 switch (tcr->DEST_length) { 6203 default: 6204 tcp_err_ack(tcp, mp, TBADADDR, 0); 6205 return; 6206 6207 case (sizeof (sin_t) - sizeof (sin->sin_zero)): { 6208 /* 6209 * XXX: The check for valid DEST_length was not there 6210 * in earlier releases and some buggy 6211 * TLI apps (e.g Sybase) got away with not feeding 6212 * in sin_zero part of address. 6213 * We allow that bug to keep those buggy apps humming. 6214 * Test suites require the check on DEST_length. 6215 * We construct a new mblk with valid DEST_length 6216 * free the original so the rest of the code does 6217 * not have to keep track of this special shorter 6218 * length address case. 6219 */ 6220 mblk_t *nmp; 6221 struct T_conn_req *ntcr; 6222 sin_t *nsin; 6223 6224 nmp = allocb(sizeof (struct T_conn_req) + sizeof (sin_t) + 6225 tcr->OPT_length, BPRI_HI); 6226 if (nmp == NULL) { 6227 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 6228 return; 6229 } 6230 ntcr = (struct T_conn_req *)nmp->b_rptr; 6231 bzero(ntcr, sizeof (struct T_conn_req)); /* zero fill */ 6232 ntcr->PRIM_type = T_CONN_REQ; 6233 ntcr->DEST_length = sizeof (sin_t); 6234 ntcr->DEST_offset = sizeof (struct T_conn_req); 6235 6236 nsin = (sin_t *)((uchar_t *)ntcr + ntcr->DEST_offset); 6237 *nsin = sin_null; 6238 /* Get pointer to shorter address to copy from original mp */ 6239 sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset, 6240 tcr->DEST_length); /* extract DEST_length worth of sin_t */ 6241 if (sin == NULL || !OK_32PTR((char *)sin)) { 6242 freemsg(nmp); 6243 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 6244 return; 6245 } 6246 nsin->sin_family = sin->sin_family; 6247 nsin->sin_port = sin->sin_port; 6248 nsin->sin_addr = sin->sin_addr; 6249 /* Note:nsin->sin_zero zero-fill with sin_null assign above */ 6250 nmp->b_wptr = (uchar_t *)&nsin[1]; 6251 if (tcr->OPT_length != 0) { 6252 ntcr->OPT_length = tcr->OPT_length; 6253 ntcr->OPT_offset = nmp->b_wptr - nmp->b_rptr; 6254 bcopy((uchar_t *)tcr + tcr->OPT_offset, 6255 (uchar_t *)ntcr + ntcr->OPT_offset, 6256 tcr->OPT_length); 6257 nmp->b_wptr += tcr->OPT_length; 6258 } 6259 freemsg(mp); /* original mp freed */ 6260 mp = nmp; /* re-initialize original variables */ 6261 tcr = ntcr; 6262 } 6263 /* FALLTHRU */ 6264 6265 case sizeof (sin_t): 6266 sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset, 6267 sizeof (sin_t)); 6268 if (sin == NULL || !OK_32PTR((char *)sin)) { 6269 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 6270 return; 6271 } 6272 if (tcp->tcp_family != AF_INET || 6273 sin->sin_family != AF_INET) { 6274 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 6275 return; 6276 } 6277 if (sin->sin_port == 0) { 6278 tcp_err_ack(tcp, mp, TBADADDR, 0); 6279 return; 6280 } 6281 if (tcp->tcp_connp && tcp->tcp_connp->conn_ipv6_v6only) { 6282 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 6283 return; 6284 } 6285 6286 break; 6287 6288 case sizeof (sin6_t): 6289 sin6 = (sin6_t *)mi_offset_param(mp, tcr->DEST_offset, 6290 sizeof (sin6_t)); 6291 if (sin6 == NULL || !OK_32PTR((char *)sin6)) { 6292 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 6293 return; 6294 } 6295 if (tcp->tcp_family != AF_INET6 || 6296 sin6->sin6_family != AF_INET6) { 6297 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 6298 return; 6299 } 6300 if (sin6->sin6_port == 0) { 6301 tcp_err_ack(tcp, mp, TBADADDR, 0); 6302 return; 6303 } 6304 break; 6305 } 6306 /* 6307 * TODO: If someone in TCPS_TIME_WAIT has this dst/port we 6308 * should key on their sequence number and cut them loose. 6309 */ 6310 6311 /* 6312 * If options passed in, feed it for verification and handling 6313 */ 6314 if (tcr->OPT_length != 0) { 6315 mblk_t *ok_mp; 6316 mblk_t *discon_mp; 6317 mblk_t *conn_opts_mp; 6318 int t_error, sys_error, do_disconnect; 6319 6320 conn_opts_mp = NULL; 6321 6322 if (tcp_conprim_opt_process(tcp, mp, 6323 &do_disconnect, &t_error, &sys_error) < 0) { 6324 if (do_disconnect) { 6325 ASSERT(t_error == 0 && sys_error == 0); 6326 discon_mp = mi_tpi_discon_ind(NULL, 6327 ECONNREFUSED, 0); 6328 if (!discon_mp) { 6329 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, 6330 TSYSERR, ENOMEM); 6331 return; 6332 } 6333 ok_mp = mi_tpi_ok_ack_alloc(mp); 6334 if (!ok_mp) { 6335 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6336 TSYSERR, ENOMEM); 6337 return; 6338 } 6339 qreply(q, ok_mp); 6340 qreply(q, discon_mp); /* no flush! */ 6341 } else { 6342 ASSERT(t_error != 0); 6343 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, t_error, 6344 sys_error); 6345 } 6346 return; 6347 } 6348 /* 6349 * Success in setting options, the mp option buffer represented 6350 * by OPT_length/offset has been potentially modified and 6351 * contains results of option processing. We copy it in 6352 * another mp to save it for potentially influencing returning 6353 * it in T_CONN_CONN. 6354 */ 6355 if (tcr->OPT_length != 0) { /* there are resulting options */ 6356 conn_opts_mp = copyb(mp); 6357 if (!conn_opts_mp) { 6358 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, 6359 TSYSERR, ENOMEM); 6360 return; 6361 } 6362 ASSERT(tcp->tcp_conn.tcp_opts_conn_req == NULL); 6363 tcp->tcp_conn.tcp_opts_conn_req = conn_opts_mp; 6364 /* 6365 * Note: 6366 * These resulting option negotiation can include any 6367 * end-to-end negotiation options but there no such 6368 * thing (yet?) in our TCP/IP. 6369 */ 6370 } 6371 } 6372 6373 /* 6374 * If we're connecting to an IPv4-mapped IPv6 address, we need to 6375 * make sure that the template IP header in the tcp structure is an 6376 * IPv4 header, and that the tcp_ipversion is IPV4_VERSION. We 6377 * need to this before we call tcp_bindi() so that the port lookup 6378 * code will look for ports in the correct port space (IPv4 and 6379 * IPv6 have separate port spaces). 6380 */ 6381 if (tcp->tcp_family == AF_INET6 && tcp->tcp_ipversion == IPV6_VERSION && 6382 IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 6383 int err = 0; 6384 6385 err = tcp_header_init_ipv4(tcp); 6386 if (err != 0) { 6387 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM); 6388 goto connect_failed; 6389 } 6390 if (tcp->tcp_lport != 0) 6391 *(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport; 6392 } 6393 6394 switch (tcp->tcp_state) { 6395 case TCPS_IDLE: 6396 /* 6397 * We support quick connect, refer to comments in 6398 * tcp_connect_*() 6399 */ 6400 /* FALLTHRU */ 6401 case TCPS_BOUND: 6402 case TCPS_LISTEN: 6403 if (tcp->tcp_family == AF_INET6) { 6404 if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 6405 tcp_connect_ipv6(tcp, mp, 6406 &sin6->sin6_addr, 6407 sin6->sin6_port, sin6->sin6_flowinfo, 6408 sin6->__sin6_src_id, sin6->sin6_scope_id); 6409 return; 6410 } 6411 /* 6412 * Destination adress is mapped IPv6 address. 6413 * Source bound address should be unspecified or 6414 * IPv6 mapped address as well. 6415 */ 6416 if (!IN6_IS_ADDR_UNSPECIFIED( 6417 &tcp->tcp_bound_source_v6) && 6418 !IN6_IS_ADDR_V4MAPPED(&tcp->tcp_bound_source_v6)) { 6419 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, 6420 EADDRNOTAVAIL); 6421 break; 6422 } 6423 dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr)); 6424 dstport = sin6->sin6_port; 6425 srcid = sin6->__sin6_src_id; 6426 } else { 6427 dstaddrp = &sin->sin_addr.s_addr; 6428 dstport = sin->sin_port; 6429 srcid = 0; 6430 } 6431 6432 tcp_connect_ipv4(tcp, mp, dstaddrp, dstport, srcid); 6433 return; 6434 default: 6435 mp = mi_tpi_err_ack_alloc(mp, TOUTSTATE, 0); 6436 break; 6437 } 6438 /* 6439 * Note: Code below is the "failure" case 6440 */ 6441 /* return error ack and blow away saved option results if any */ 6442 connect_failed: 6443 if (mp != NULL) 6444 putnext(tcp->tcp_rq, mp); 6445 else { 6446 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6447 TSYSERR, ENOMEM); 6448 } 6449 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 6450 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 6451 } 6452 6453 /* 6454 * Handle connect to IPv4 destinations, including connections for AF_INET6 6455 * sockets connecting to IPv4 mapped IPv6 destinations. 6456 */ 6457 static void 6458 tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp, in_port_t dstport, 6459 uint_t srcid) 6460 { 6461 tcph_t *tcph; 6462 mblk_t *mp1; 6463 ipaddr_t dstaddr = *dstaddrp; 6464 int32_t oldstate; 6465 uint16_t lport; 6466 6467 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 6468 6469 /* Check for attempt to connect to INADDR_ANY */ 6470 if (dstaddr == INADDR_ANY) { 6471 /* 6472 * SunOS 4.x and 4.3 BSD allow an application 6473 * to connect a TCP socket to INADDR_ANY. 6474 * When they do this, the kernel picks the 6475 * address of one interface and uses it 6476 * instead. The kernel usually ends up 6477 * picking the address of the loopback 6478 * interface. This is an undocumented feature. 6479 * However, we provide the same thing here 6480 * in order to have source and binary 6481 * compatibility with SunOS 4.x. 6482 * Update the T_CONN_REQ (sin/sin6) since it is used to 6483 * generate the T_CONN_CON. 6484 */ 6485 dstaddr = htonl(INADDR_LOOPBACK); 6486 *dstaddrp = dstaddr; 6487 } 6488 6489 /* Handle __sin6_src_id if socket not bound to an IP address */ 6490 if (srcid != 0 && tcp->tcp_ipha->ipha_src == INADDR_ANY) { 6491 ip_srcid_find_id(srcid, &tcp->tcp_ip_src_v6, 6492 tcp->tcp_connp->conn_zoneid); 6493 IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_ip_src_v6, 6494 tcp->tcp_ipha->ipha_src); 6495 } 6496 6497 /* 6498 * Don't let an endpoint connect to itself. Note that 6499 * the test here does not catch the case where the 6500 * source IP addr was left unspecified by the user. In 6501 * this case, the source addr is set in tcp_adapt_ire() 6502 * using the reply to the T_BIND message that we send 6503 * down to IP here and the check is repeated in tcp_rput_other. 6504 */ 6505 if (dstaddr == tcp->tcp_ipha->ipha_src && 6506 dstport == tcp->tcp_lport) { 6507 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 6508 goto failed; 6509 } 6510 6511 tcp->tcp_ipha->ipha_dst = dstaddr; 6512 IN6_IPADDR_TO_V4MAPPED(dstaddr, &tcp->tcp_remote_v6); 6513 6514 /* 6515 * Massage a source route if any putting the first hop 6516 * in iph_dst. Compute a starting value for the checksum which 6517 * takes into account that the original iph_dst should be 6518 * included in the checksum but that ip will include the 6519 * first hop in the source route in the tcp checksum. 6520 */ 6521 tcp->tcp_sum = ip_massage_options(tcp->tcp_ipha); 6522 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 6523 tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) + 6524 (tcp->tcp_ipha->ipha_dst & 0xffff)); 6525 if ((int)tcp->tcp_sum < 0) 6526 tcp->tcp_sum--; 6527 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 6528 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 6529 (tcp->tcp_sum >> 16)); 6530 tcph = tcp->tcp_tcph; 6531 *(uint16_t *)tcph->th_fport = dstport; 6532 tcp->tcp_fport = dstport; 6533 6534 oldstate = tcp->tcp_state; 6535 /* 6536 * At this point the remote destination address and remote port fields 6537 * in the tcp-four-tuple have been filled in the tcp structure. Now we 6538 * have to see which state tcp was in so we can take apropriate action. 6539 */ 6540 if (oldstate == TCPS_IDLE) { 6541 /* 6542 * We support a quick connect capability here, allowing 6543 * clients to transition directly from IDLE to SYN_SENT 6544 * tcp_bindi will pick an unused port, insert the connection 6545 * in the bind hash and transition to BOUND state. 6546 */ 6547 lport = tcp_update_next_port(tcp_next_port_to_try, tcp, B_TRUE); 6548 lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE, 6549 B_FALSE, B_FALSE); 6550 if (lport == 0) { 6551 mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0); 6552 goto failed; 6553 } 6554 } 6555 tcp->tcp_state = TCPS_SYN_SENT; 6556 6557 /* 6558 * TODO: allow data with connect requests 6559 * by unlinking M_DATA trailers here and 6560 * linking them in behind the T_OK_ACK mblk. 6561 * The tcp_rput() bind ack handler would then 6562 * feed them to tcp_wput_data() rather than call 6563 * tcp_timer(). 6564 */ 6565 mp = mi_tpi_ok_ack_alloc(mp); 6566 if (!mp) { 6567 tcp->tcp_state = oldstate; 6568 goto failed; 6569 } 6570 if (tcp->tcp_family == AF_INET) { 6571 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 6572 sizeof (ipa_conn_t)); 6573 } else { 6574 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 6575 sizeof (ipa6_conn_t)); 6576 } 6577 if (mp1) { 6578 /* Hang onto the T_OK_ACK for later. */ 6579 linkb(mp1, mp); 6580 mblk_setcred(mp1, tcp->tcp_cred); 6581 if (tcp->tcp_family == AF_INET) 6582 mp1 = ip_bind_v4(tcp->tcp_wq, mp1, tcp->tcp_connp); 6583 else { 6584 mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp, 6585 &tcp->tcp_sticky_ipp); 6586 } 6587 BUMP_MIB(&tcp_mib, tcpActiveOpens); 6588 tcp->tcp_active_open = 1; 6589 /* 6590 * If the bind cannot complete immediately 6591 * IP will arrange to call tcp_rput_other 6592 * when the bind completes. 6593 */ 6594 if (mp1 != NULL) 6595 tcp_rput_other(tcp, mp1); 6596 return; 6597 } 6598 /* Error case */ 6599 tcp->tcp_state = oldstate; 6600 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM); 6601 6602 failed: 6603 /* return error ack and blow away saved option results if any */ 6604 if (mp != NULL) 6605 putnext(tcp->tcp_rq, mp); 6606 else { 6607 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6608 TSYSERR, ENOMEM); 6609 } 6610 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 6611 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 6612 6613 } 6614 6615 /* 6616 * Handle connect to IPv6 destinations. 6617 */ 6618 static void 6619 tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp, 6620 in_port_t dstport, uint32_t flowinfo, uint_t srcid, uint32_t scope_id) 6621 { 6622 tcph_t *tcph; 6623 mblk_t *mp1; 6624 ip6_rthdr_t *rth; 6625 int32_t oldstate; 6626 uint16_t lport; 6627 6628 ASSERT(tcp->tcp_family == AF_INET6); 6629 6630 /* 6631 * If we're here, it means that the destination address is a native 6632 * IPv6 address. Return an error if tcp_ipversion is not IPv6. A 6633 * reason why it might not be IPv6 is if the socket was bound to an 6634 * IPv4-mapped IPv6 address. 6635 */ 6636 if (tcp->tcp_ipversion != IPV6_VERSION) { 6637 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 6638 goto failed; 6639 } 6640 6641 /* 6642 * Interpret a zero destination to mean loopback. 6643 * Update the T_CONN_REQ (sin/sin6) since it is used to 6644 * generate the T_CONN_CON. 6645 */ 6646 if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp)) { 6647 *dstaddrp = ipv6_loopback; 6648 } 6649 6650 /* Handle __sin6_src_id if socket not bound to an IP address */ 6651 if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) { 6652 ip_srcid_find_id(srcid, &tcp->tcp_ip6h->ip6_src, 6653 tcp->tcp_connp->conn_zoneid); 6654 tcp->tcp_ip_src_v6 = tcp->tcp_ip6h->ip6_src; 6655 } 6656 6657 /* 6658 * Take care of the scope_id now and add ip6i_t 6659 * if ip6i_t is not already allocated through TCP 6660 * sticky options. At this point tcp_ip6h does not 6661 * have dst info, thus use dstaddrp. 6662 */ 6663 if (scope_id != 0 && 6664 IN6_IS_ADDR_LINKSCOPE(dstaddrp)) { 6665 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 6666 ip6i_t *ip6i; 6667 6668 ipp->ipp_ifindex = scope_id; 6669 ip6i = (ip6i_t *)tcp->tcp_iphc; 6670 6671 if ((ipp->ipp_fields & IPPF_HAS_IP6I) && 6672 ip6i != NULL && (ip6i->ip6i_nxt == IPPROTO_RAW)) { 6673 /* Already allocated */ 6674 ip6i->ip6i_flags |= IP6I_IFINDEX; 6675 ip6i->ip6i_ifindex = ipp->ipp_ifindex; 6676 ipp->ipp_fields |= IPPF_SCOPE_ID; 6677 } else { 6678 int reterr; 6679 6680 ipp->ipp_fields |= IPPF_SCOPE_ID; 6681 if (ipp->ipp_fields & IPPF_HAS_IP6I) 6682 ip2dbg(("tcp_connect_v6: SCOPE_ID set\n")); 6683 reterr = tcp_build_hdrs(tcp->tcp_rq, tcp); 6684 if (reterr != 0) 6685 goto failed; 6686 ip1dbg(("tcp_connect_ipv6: tcp_bld_hdrs returned\n")); 6687 } 6688 } 6689 6690 /* 6691 * Don't let an endpoint connect to itself. Note that 6692 * the test here does not catch the case where the 6693 * source IP addr was left unspecified by the user. In 6694 * this case, the source addr is set in tcp_adapt_ire() 6695 * using the reply to the T_BIND message that we send 6696 * down to IP here and the check is repeated in tcp_rput_other. 6697 */ 6698 if (IN6_ARE_ADDR_EQUAL(dstaddrp, &tcp->tcp_ip6h->ip6_src) && 6699 (dstport == tcp->tcp_lport)) { 6700 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 6701 goto failed; 6702 } 6703 6704 tcp->tcp_ip6h->ip6_dst = *dstaddrp; 6705 tcp->tcp_remote_v6 = *dstaddrp; 6706 tcp->tcp_ip6h->ip6_vcf = 6707 (IPV6_DEFAULT_VERS_AND_FLOW & IPV6_VERS_AND_FLOW_MASK) | 6708 (flowinfo & ~IPV6_VERS_AND_FLOW_MASK); 6709 6710 6711 /* 6712 * Massage a routing header (if present) putting the first hop 6713 * in ip6_dst. Compute a starting value for the checksum which 6714 * takes into account that the original ip6_dst should be 6715 * included in the checksum but that ip will include the 6716 * first hop in the source route in the tcp checksum. 6717 */ 6718 rth = ip_find_rthdr_v6(tcp->tcp_ip6h, (uint8_t *)tcp->tcp_tcph); 6719 if (rth != NULL) { 6720 6721 tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, rth); 6722 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 6723 (tcp->tcp_sum >> 16)); 6724 } else { 6725 tcp->tcp_sum = 0; 6726 } 6727 6728 tcph = tcp->tcp_tcph; 6729 *(uint16_t *)tcph->th_fport = dstport; 6730 tcp->tcp_fport = dstport; 6731 6732 oldstate = tcp->tcp_state; 6733 /* 6734 * At this point the remote destination address and remote port fields 6735 * in the tcp-four-tuple have been filled in the tcp structure. Now we 6736 * have to see which state tcp was in so we can take apropriate action. 6737 */ 6738 if (oldstate == TCPS_IDLE) { 6739 /* 6740 * We support a quick connect capability here, allowing 6741 * clients to transition directly from IDLE to SYN_SENT 6742 * tcp_bindi will pick an unused port, insert the connection 6743 * in the bind hash and transition to BOUND state. 6744 */ 6745 lport = tcp_update_next_port(tcp_next_port_to_try, tcp, B_TRUE); 6746 lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE, 6747 B_FALSE, B_FALSE); 6748 if (lport == 0) { 6749 mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0); 6750 goto failed; 6751 } 6752 } 6753 tcp->tcp_state = TCPS_SYN_SENT; 6754 /* 6755 * TODO: allow data with connect requests 6756 * by unlinking M_DATA trailers here and 6757 * linking them in behind the T_OK_ACK mblk. 6758 * The tcp_rput() bind ack handler would then 6759 * feed them to tcp_wput_data() rather than call 6760 * tcp_timer(). 6761 */ 6762 mp = mi_tpi_ok_ack_alloc(mp); 6763 if (!mp) { 6764 tcp->tcp_state = oldstate; 6765 goto failed; 6766 } 6767 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, sizeof (ipa6_conn_t)); 6768 if (mp1) { 6769 /* Hang onto the T_OK_ACK for later. */ 6770 linkb(mp1, mp); 6771 mblk_setcred(mp1, tcp->tcp_cred); 6772 mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp, 6773 &tcp->tcp_sticky_ipp); 6774 BUMP_MIB(&tcp_mib, tcpActiveOpens); 6775 tcp->tcp_active_open = 1; 6776 /* ip_bind_v6() may return ACK or ERROR */ 6777 if (mp1 != NULL) 6778 tcp_rput_other(tcp, mp1); 6779 return; 6780 } 6781 /* Error case */ 6782 tcp->tcp_state = oldstate; 6783 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM); 6784 6785 failed: 6786 /* return error ack and blow away saved option results if any */ 6787 if (mp != NULL) 6788 putnext(tcp->tcp_rq, mp); 6789 else { 6790 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6791 TSYSERR, ENOMEM); 6792 } 6793 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 6794 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 6795 } 6796 6797 /* 6798 * We need a stream q for detached closing tcp connections 6799 * to use. Our client hereby indicates that this q is the 6800 * one to use. 6801 */ 6802 static void 6803 tcp_def_q_set(tcp_t *tcp, mblk_t *mp) 6804 { 6805 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 6806 queue_t *q = tcp->tcp_wq; 6807 6808 mp->b_datap->db_type = M_IOCACK; 6809 iocp->ioc_count = 0; 6810 mutex_enter(&tcp_g_q_lock); 6811 if (tcp_g_q != NULL) { 6812 mutex_exit(&tcp_g_q_lock); 6813 iocp->ioc_error = EALREADY; 6814 } else { 6815 mblk_t *mp1; 6816 6817 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 0); 6818 if (mp1 == NULL) { 6819 mutex_exit(&tcp_g_q_lock); 6820 iocp->ioc_error = ENOMEM; 6821 } else { 6822 tcp_g_q = tcp->tcp_rq; 6823 mutex_exit(&tcp_g_q_lock); 6824 iocp->ioc_error = 0; 6825 iocp->ioc_rval = 0; 6826 /* 6827 * We are passing tcp_sticky_ipp as NULL 6828 * as it is not useful for tcp_default queue 6829 */ 6830 mp1 = ip_bind_v6(q, mp1, tcp->tcp_connp, NULL); 6831 if (mp1 != NULL) 6832 tcp_rput_other(tcp, mp1); 6833 } 6834 } 6835 qreply(q, mp); 6836 } 6837 6838 /* 6839 * Our client hereby directs us to reject the connection request 6840 * that tcp_conn_request() marked with 'seqnum'. Rejection consists 6841 * of sending the appropriate RST, not an ICMP error. 6842 */ 6843 static void 6844 tcp_disconnect(tcp_t *tcp, mblk_t *mp) 6845 { 6846 tcp_t *ltcp = NULL; 6847 t_scalar_t seqnum; 6848 conn_t *connp; 6849 6850 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 6851 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) { 6852 tcp_err_ack(tcp, mp, TPROTO, 0); 6853 return; 6854 } 6855 6856 /* 6857 * Right now, upper modules pass down a T_DISCON_REQ to TCP, 6858 * when the stream is in BOUND state. Do not send a reset, 6859 * since the destination IP address is not valid, and it can 6860 * be the initialized value of all zeros (broadcast address). 6861 * 6862 * If TCP has sent down a bind request to IP and has not 6863 * received the reply, reject the request. Otherwise, TCP 6864 * will be confused. 6865 */ 6866 if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_hard_binding) { 6867 if (tcp->tcp_debug) { 6868 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 6869 "tcp_disconnect: bad state, %d", tcp->tcp_state); 6870 } 6871 tcp_err_ack(tcp, mp, TOUTSTATE, 0); 6872 return; 6873 } 6874 6875 seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number; 6876 6877 if (seqnum == -1 || tcp->tcp_conn_req_max == 0) { 6878 6879 /* 6880 * According to TPI, for non-listeners, ignore seqnum 6881 * and disconnect. 6882 * Following interpretation of -1 seqnum is historical 6883 * and implied TPI ? (TPI only states that for T_CONN_IND, 6884 * a valid seqnum should not be -1). 6885 * 6886 * -1 means disconnect everything 6887 * regardless even on a listener. 6888 */ 6889 6890 int old_state = tcp->tcp_state; 6891 6892 /* 6893 * The connection can't be on the tcp_time_wait_head list 6894 * since it is not detached. 6895 */ 6896 ASSERT(tcp->tcp_time_wait_next == NULL); 6897 ASSERT(tcp->tcp_time_wait_prev == NULL); 6898 ASSERT(tcp->tcp_time_wait_expire == 0); 6899 ltcp = NULL; 6900 /* 6901 * If it used to be a listener, check to make sure no one else 6902 * has taken the port before switching back to LISTEN state. 6903 */ 6904 if (tcp->tcp_ipversion == IPV4_VERSION) { 6905 connp = ipcl_lookup_listener_v4(tcp->tcp_lport, 6906 tcp->tcp_ipha->ipha_src, 6907 tcp->tcp_connp->conn_zoneid); 6908 if (connp != NULL) 6909 ltcp = connp->conn_tcp; 6910 } else { 6911 /* Allow tcp_bound_if listeners? */ 6912 connp = ipcl_lookup_listener_v6(tcp->tcp_lport, 6913 &tcp->tcp_ip6h->ip6_src, 0, 6914 tcp->tcp_connp->conn_zoneid); 6915 if (connp != NULL) 6916 ltcp = connp->conn_tcp; 6917 } 6918 if (tcp->tcp_conn_req_max && ltcp == NULL) { 6919 tcp->tcp_state = TCPS_LISTEN; 6920 } else if (old_state > TCPS_BOUND) { 6921 tcp->tcp_conn_req_max = 0; 6922 tcp->tcp_state = TCPS_BOUND; 6923 } 6924 if (ltcp != NULL) 6925 CONN_DEC_REF(ltcp->tcp_connp); 6926 if (old_state == TCPS_SYN_SENT || old_state == TCPS_SYN_RCVD) { 6927 BUMP_MIB(&tcp_mib, tcpAttemptFails); 6928 } else if (old_state == TCPS_ESTABLISHED || 6929 old_state == TCPS_CLOSE_WAIT) { 6930 BUMP_MIB(&tcp_mib, tcpEstabResets); 6931 } 6932 6933 if (tcp->tcp_fused) 6934 tcp_unfuse(tcp); 6935 6936 mutex_enter(&tcp->tcp_eager_lock); 6937 if ((tcp->tcp_conn_req_cnt_q0 != 0) || 6938 (tcp->tcp_conn_req_cnt_q != 0)) { 6939 tcp_eager_cleanup(tcp, 0); 6940 } 6941 mutex_exit(&tcp->tcp_eager_lock); 6942 6943 tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt, 6944 tcp->tcp_rnxt, TH_RST | TH_ACK); 6945 6946 tcp_reinit(tcp); 6947 6948 if (old_state >= TCPS_ESTABLISHED) { 6949 /* Send M_FLUSH according to TPI */ 6950 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 6951 } 6952 mp = mi_tpi_ok_ack_alloc(mp); 6953 if (mp) 6954 putnext(tcp->tcp_rq, mp); 6955 return; 6956 } else if (!tcp_eager_blowoff(tcp, seqnum)) { 6957 tcp_err_ack(tcp, mp, TBADSEQ, 0); 6958 return; 6959 } 6960 if (tcp->tcp_state >= TCPS_ESTABLISHED) { 6961 /* Send M_FLUSH according to TPI */ 6962 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 6963 } 6964 mp = mi_tpi_ok_ack_alloc(mp); 6965 if (mp) 6966 putnext(tcp->tcp_rq, mp); 6967 } 6968 6969 /* 6970 * Diagnostic routine used to return a string associated with the tcp state. 6971 * Note that if the caller does not supply a buffer, it will use an internal 6972 * static string. This means that if multiple threads call this function at 6973 * the same time, output can be corrupted... Note also that this function 6974 * does not check the size of the supplied buffer. The caller has to make 6975 * sure that it is big enough. 6976 */ 6977 static char * 6978 tcp_display(tcp_t *tcp, char *sup_buf, char format) 6979 { 6980 char buf1[30]; 6981 static char priv_buf[INET6_ADDRSTRLEN * 2 + 80]; 6982 char *buf; 6983 char *cp; 6984 in6_addr_t local, remote; 6985 char local_addrbuf[INET6_ADDRSTRLEN]; 6986 char remote_addrbuf[INET6_ADDRSTRLEN]; 6987 6988 if (sup_buf != NULL) 6989 buf = sup_buf; 6990 else 6991 buf = priv_buf; 6992 6993 if (tcp == NULL) 6994 return ("NULL_TCP"); 6995 switch (tcp->tcp_state) { 6996 case TCPS_CLOSED: 6997 cp = "TCP_CLOSED"; 6998 break; 6999 case TCPS_IDLE: 7000 cp = "TCP_IDLE"; 7001 break; 7002 case TCPS_BOUND: 7003 cp = "TCP_BOUND"; 7004 break; 7005 case TCPS_LISTEN: 7006 cp = "TCP_LISTEN"; 7007 break; 7008 case TCPS_SYN_SENT: 7009 cp = "TCP_SYN_SENT"; 7010 break; 7011 case TCPS_SYN_RCVD: 7012 cp = "TCP_SYN_RCVD"; 7013 break; 7014 case TCPS_ESTABLISHED: 7015 cp = "TCP_ESTABLISHED"; 7016 break; 7017 case TCPS_CLOSE_WAIT: 7018 cp = "TCP_CLOSE_WAIT"; 7019 break; 7020 case TCPS_FIN_WAIT_1: 7021 cp = "TCP_FIN_WAIT_1"; 7022 break; 7023 case TCPS_CLOSING: 7024 cp = "TCP_CLOSING"; 7025 break; 7026 case TCPS_LAST_ACK: 7027 cp = "TCP_LAST_ACK"; 7028 break; 7029 case TCPS_FIN_WAIT_2: 7030 cp = "TCP_FIN_WAIT_2"; 7031 break; 7032 case TCPS_TIME_WAIT: 7033 cp = "TCP_TIME_WAIT"; 7034 break; 7035 default: 7036 (void) mi_sprintf(buf1, "TCPUnkState(%d)", tcp->tcp_state); 7037 cp = buf1; 7038 break; 7039 } 7040 switch (format) { 7041 case DISP_ADDR_AND_PORT: 7042 if (tcp->tcp_ipversion == IPV4_VERSION) { 7043 /* 7044 * Note that we use the remote address in the tcp_b 7045 * structure. This means that it will print out 7046 * the real destination address, not the next hop's 7047 * address if source routing is used. 7048 */ 7049 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ip_src, &local); 7050 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &remote); 7051 7052 } else { 7053 local = tcp->tcp_ip_src_v6; 7054 remote = tcp->tcp_remote_v6; 7055 } 7056 (void) inet_ntop(AF_INET6, &local, local_addrbuf, 7057 sizeof (local_addrbuf)); 7058 (void) inet_ntop(AF_INET6, &remote, remote_addrbuf, 7059 sizeof (remote_addrbuf)); 7060 (void) mi_sprintf(buf, "[%s.%u, %s.%u] %s", 7061 local_addrbuf, ntohs(tcp->tcp_lport), remote_addrbuf, 7062 ntohs(tcp->tcp_fport), cp); 7063 break; 7064 case DISP_PORT_ONLY: 7065 default: 7066 (void) mi_sprintf(buf, "[%u, %u] %s", 7067 ntohs(tcp->tcp_lport), ntohs(tcp->tcp_fport), cp); 7068 break; 7069 } 7070 7071 return (buf); 7072 } 7073 7074 /* 7075 * Called via squeue to get on to eager's perimeter to send a 7076 * TH_RST. The listener wants the eager to disappear either 7077 * by means of tcp_eager_blowoff() or tcp_eager_cleanup() 7078 * being called. 7079 */ 7080 /* ARGSUSED */ 7081 void 7082 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2) 7083 { 7084 conn_t *econnp = (conn_t *)arg; 7085 tcp_t *eager = econnp->conn_tcp; 7086 tcp_t *listener = eager->tcp_listener; 7087 7088 /* 7089 * We could be called because listener is closing. Since 7090 * the eager is using listener's queue's, its not safe. 7091 * Better use the default queue just to send the TH_RST 7092 * out. 7093 */ 7094 eager->tcp_rq = tcp_g_q; 7095 eager->tcp_wq = WR(tcp_g_q); 7096 7097 if (eager->tcp_state > TCPS_LISTEN) { 7098 tcp_xmit_ctl("tcp_eager_kill, can't wait", 7099 eager, eager->tcp_snxt, 0, TH_RST); 7100 } 7101 7102 /* We are here because listener wants this eager gone */ 7103 if (listener != NULL) { 7104 mutex_enter(&listener->tcp_eager_lock); 7105 tcp_eager_unlink(eager); 7106 if (eager->tcp_tconnind_started) { 7107 /* 7108 * The eager has sent a conn_ind up to the 7109 * listener but listener decides to close 7110 * instead. We need to drop the extra ref 7111 * placed on eager in tcp_rput_data() before 7112 * sending the conn_ind to listener. 7113 */ 7114 CONN_DEC_REF(econnp); 7115 } 7116 mutex_exit(&listener->tcp_eager_lock); 7117 CONN_DEC_REF(listener->tcp_connp); 7118 } 7119 7120 if (eager->tcp_state > TCPS_BOUND) 7121 tcp_close_detached(eager); 7122 } 7123 7124 /* 7125 * Reset any eager connection hanging off this listener marked 7126 * with 'seqnum' and then reclaim it's resources. 7127 */ 7128 static boolean_t 7129 tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum) 7130 { 7131 tcp_t *eager; 7132 mblk_t *mp; 7133 7134 TCP_STAT(tcp_eager_blowoff_calls); 7135 eager = listener; 7136 mutex_enter(&listener->tcp_eager_lock); 7137 do { 7138 eager = eager->tcp_eager_next_q; 7139 if (eager == NULL) { 7140 mutex_exit(&listener->tcp_eager_lock); 7141 return (B_FALSE); 7142 } 7143 } while (eager->tcp_conn_req_seqnum != seqnum); 7144 7145 if (eager->tcp_closemp_used > 0) { 7146 mutex_exit(&listener->tcp_eager_lock); 7147 return (B_TRUE); 7148 } 7149 eager->tcp_closemp_used = 1; 7150 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 7151 CONN_INC_REF(eager->tcp_connp); 7152 mutex_exit(&listener->tcp_eager_lock); 7153 mp = &eager->tcp_closemp; 7154 squeue_fill(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill, 7155 eager->tcp_connp, SQTAG_TCP_EAGER_BLOWOFF); 7156 return (B_TRUE); 7157 } 7158 7159 /* 7160 * Reset any eager connection hanging off this listener 7161 * and then reclaim it's resources. 7162 */ 7163 static void 7164 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only) 7165 { 7166 tcp_t *eager; 7167 mblk_t *mp; 7168 7169 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 7170 7171 if (!q0_only) { 7172 /* First cleanup q */ 7173 TCP_STAT(tcp_eager_blowoff_q); 7174 eager = listener->tcp_eager_next_q; 7175 while (eager != NULL) { 7176 if (eager->tcp_closemp_used == 0) { 7177 eager->tcp_closemp_used = 1; 7178 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 7179 CONN_INC_REF(eager->tcp_connp); 7180 mp = &eager->tcp_closemp; 7181 squeue_fill(eager->tcp_connp->conn_sqp, mp, 7182 tcp_eager_kill, eager->tcp_connp, 7183 SQTAG_TCP_EAGER_CLEANUP); 7184 } 7185 eager = eager->tcp_eager_next_q; 7186 } 7187 } 7188 /* Then cleanup q0 */ 7189 TCP_STAT(tcp_eager_blowoff_q0); 7190 eager = listener->tcp_eager_next_q0; 7191 while (eager != listener) { 7192 if (eager->tcp_closemp_used == 0) { 7193 eager->tcp_closemp_used = 1; 7194 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 7195 CONN_INC_REF(eager->tcp_connp); 7196 mp = &eager->tcp_closemp; 7197 squeue_fill(eager->tcp_connp->conn_sqp, mp, 7198 tcp_eager_kill, eager->tcp_connp, 7199 SQTAG_TCP_EAGER_CLEANUP_Q0); 7200 } 7201 eager = eager->tcp_eager_next_q0; 7202 } 7203 } 7204 7205 /* 7206 * If we are an eager connection hanging off a listener that hasn't 7207 * formally accepted the connection yet, get off his list and blow off 7208 * any data that we have accumulated. 7209 */ 7210 static void 7211 tcp_eager_unlink(tcp_t *tcp) 7212 { 7213 tcp_t *listener = tcp->tcp_listener; 7214 7215 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 7216 ASSERT(listener != NULL); 7217 if (tcp->tcp_eager_next_q0 != NULL) { 7218 ASSERT(tcp->tcp_eager_prev_q0 != NULL); 7219 7220 /* Remove the eager tcp from q0 */ 7221 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 7222 tcp->tcp_eager_prev_q0; 7223 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 7224 tcp->tcp_eager_next_q0; 7225 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 7226 listener->tcp_conn_req_cnt_q0--; 7227 7228 tcp->tcp_eager_next_q0 = NULL; 7229 tcp->tcp_eager_prev_q0 = NULL; 7230 7231 /* 7232 * Take the eager out, if it is in the list of droppable 7233 * eagers. 7234 */ 7235 MAKE_UNDROPPABLE(tcp); 7236 7237 if (tcp->tcp_syn_rcvd_timeout != 0) { 7238 /* we have timed out before */ 7239 ASSERT(listener->tcp_syn_rcvd_timeout > 0); 7240 listener->tcp_syn_rcvd_timeout--; 7241 } 7242 } else { 7243 tcp_t **tcpp = &listener->tcp_eager_next_q; 7244 tcp_t *prev = NULL; 7245 7246 for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) { 7247 if (tcpp[0] == tcp) { 7248 if (listener->tcp_eager_last_q == tcp) { 7249 /* 7250 * If we are unlinking the last 7251 * element on the list, adjust 7252 * tail pointer. Set tail pointer 7253 * to nil when list is empty. 7254 */ 7255 ASSERT(tcp->tcp_eager_next_q == NULL); 7256 if (listener->tcp_eager_last_q == 7257 listener->tcp_eager_next_q) { 7258 listener->tcp_eager_last_q = 7259 NULL; 7260 } else { 7261 /* 7262 * We won't get here if there 7263 * is only one eager in the 7264 * list. 7265 */ 7266 ASSERT(prev != NULL); 7267 listener->tcp_eager_last_q = 7268 prev; 7269 } 7270 } 7271 tcpp[0] = tcp->tcp_eager_next_q; 7272 tcp->tcp_eager_next_q = NULL; 7273 tcp->tcp_eager_last_q = NULL; 7274 ASSERT(listener->tcp_conn_req_cnt_q > 0); 7275 listener->tcp_conn_req_cnt_q--; 7276 break; 7277 } 7278 prev = tcpp[0]; 7279 } 7280 } 7281 tcp->tcp_listener = NULL; 7282 } 7283 7284 /* Shorthand to generate and send TPI error acks to our client */ 7285 static void 7286 tcp_err_ack(tcp_t *tcp, mblk_t *mp, int t_error, int sys_error) 7287 { 7288 if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL) 7289 putnext(tcp->tcp_rq, mp); 7290 } 7291 7292 /* Shorthand to generate and send TPI error acks to our client */ 7293 static void 7294 tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, 7295 int t_error, int sys_error) 7296 { 7297 struct T_error_ack *teackp; 7298 7299 if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack), 7300 M_PCPROTO, T_ERROR_ACK)) != NULL) { 7301 teackp = (struct T_error_ack *)mp->b_rptr; 7302 teackp->ERROR_prim = primitive; 7303 teackp->TLI_error = t_error; 7304 teackp->UNIX_error = sys_error; 7305 putnext(tcp->tcp_rq, mp); 7306 } 7307 } 7308 7309 /* 7310 * Note: No locks are held when inspecting tcp_g_*epriv_ports 7311 * but instead the code relies on: 7312 * - the fact that the address of the array and its size never changes 7313 * - the atomic assignment of the elements of the array 7314 */ 7315 /* ARGSUSED */ 7316 static int 7317 tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 7318 { 7319 int i; 7320 7321 for (i = 0; i < tcp_g_num_epriv_ports; i++) { 7322 if (tcp_g_epriv_ports[i] != 0) 7323 (void) mi_mpprintf(mp, "%d ", tcp_g_epriv_ports[i]); 7324 } 7325 return (0); 7326 } 7327 7328 /* 7329 * Hold a lock while changing tcp_g_epriv_ports to prevent multiple 7330 * threads from changing it at the same time. 7331 */ 7332 /* ARGSUSED */ 7333 static int 7334 tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 7335 cred_t *cr) 7336 { 7337 long new_value; 7338 int i; 7339 7340 /* 7341 * Fail the request if the new value does not lie within the 7342 * port number limits. 7343 */ 7344 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 7345 new_value <= 0 || new_value >= 65536) { 7346 return (EINVAL); 7347 } 7348 7349 mutex_enter(&tcp_epriv_port_lock); 7350 /* Check if the value is already in the list */ 7351 for (i = 0; i < tcp_g_num_epriv_ports; i++) { 7352 if (new_value == tcp_g_epriv_ports[i]) { 7353 mutex_exit(&tcp_epriv_port_lock); 7354 return (EEXIST); 7355 } 7356 } 7357 /* Find an empty slot */ 7358 for (i = 0; i < tcp_g_num_epriv_ports; i++) { 7359 if (tcp_g_epriv_ports[i] == 0) 7360 break; 7361 } 7362 if (i == tcp_g_num_epriv_ports) { 7363 mutex_exit(&tcp_epriv_port_lock); 7364 return (EOVERFLOW); 7365 } 7366 /* Set the new value */ 7367 tcp_g_epriv_ports[i] = (uint16_t)new_value; 7368 mutex_exit(&tcp_epriv_port_lock); 7369 return (0); 7370 } 7371 7372 /* 7373 * Hold a lock while changing tcp_g_epriv_ports to prevent multiple 7374 * threads from changing it at the same time. 7375 */ 7376 /* ARGSUSED */ 7377 static int 7378 tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 7379 cred_t *cr) 7380 { 7381 long new_value; 7382 int i; 7383 7384 /* 7385 * Fail the request if the new value does not lie within the 7386 * port number limits. 7387 */ 7388 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value <= 0 || 7389 new_value >= 65536) { 7390 return (EINVAL); 7391 } 7392 7393 mutex_enter(&tcp_epriv_port_lock); 7394 /* Check that the value is already in the list */ 7395 for (i = 0; i < tcp_g_num_epriv_ports; i++) { 7396 if (tcp_g_epriv_ports[i] == new_value) 7397 break; 7398 } 7399 if (i == tcp_g_num_epriv_ports) { 7400 mutex_exit(&tcp_epriv_port_lock); 7401 return (ESRCH); 7402 } 7403 /* Clear the value */ 7404 tcp_g_epriv_ports[i] = 0; 7405 mutex_exit(&tcp_epriv_port_lock); 7406 return (0); 7407 } 7408 7409 /* Return the TPI/TLI equivalent of our current tcp_state */ 7410 static int 7411 tcp_tpistate(tcp_t *tcp) 7412 { 7413 switch (tcp->tcp_state) { 7414 case TCPS_IDLE: 7415 return (TS_UNBND); 7416 case TCPS_LISTEN: 7417 /* 7418 * Return whether there are outstanding T_CONN_IND waiting 7419 * for the matching T_CONN_RES. Therefore don't count q0. 7420 */ 7421 if (tcp->tcp_conn_req_cnt_q > 0) 7422 return (TS_WRES_CIND); 7423 else 7424 return (TS_IDLE); 7425 case TCPS_BOUND: 7426 return (TS_IDLE); 7427 case TCPS_SYN_SENT: 7428 return (TS_WCON_CREQ); 7429 case TCPS_SYN_RCVD: 7430 /* 7431 * Note: assumption: this has to the active open SYN_RCVD. 7432 * The passive instance is detached in SYN_RCVD stage of 7433 * incoming connection processing so we cannot get request 7434 * for T_info_ack on it. 7435 */ 7436 return (TS_WACK_CRES); 7437 case TCPS_ESTABLISHED: 7438 return (TS_DATA_XFER); 7439 case TCPS_CLOSE_WAIT: 7440 return (TS_WREQ_ORDREL); 7441 case TCPS_FIN_WAIT_1: 7442 return (TS_WIND_ORDREL); 7443 case TCPS_FIN_WAIT_2: 7444 return (TS_WIND_ORDREL); 7445 7446 case TCPS_CLOSING: 7447 case TCPS_LAST_ACK: 7448 case TCPS_TIME_WAIT: 7449 case TCPS_CLOSED: 7450 /* 7451 * Following TS_WACK_DREQ7 is a rendition of "not 7452 * yet TS_IDLE" TPI state. There is no best match to any 7453 * TPI state for TCPS_{CLOSING, LAST_ACK, TIME_WAIT} but we 7454 * choose a value chosen that will map to TLI/XTI level 7455 * state of TSTATECHNG (state is process of changing) which 7456 * captures what this dummy state represents. 7457 */ 7458 return (TS_WACK_DREQ7); 7459 default: 7460 cmn_err(CE_WARN, "tcp_tpistate: strange state (%d) %s", 7461 tcp->tcp_state, tcp_display(tcp, NULL, 7462 DISP_PORT_ONLY)); 7463 return (TS_UNBND); 7464 } 7465 } 7466 7467 static void 7468 tcp_copy_info(struct T_info_ack *tia, tcp_t *tcp) 7469 { 7470 if (tcp->tcp_family == AF_INET6) 7471 *tia = tcp_g_t_info_ack_v6; 7472 else 7473 *tia = tcp_g_t_info_ack; 7474 tia->CURRENT_state = tcp_tpistate(tcp); 7475 tia->OPT_size = tcp_max_optsize; 7476 if (tcp->tcp_mss == 0) { 7477 /* Not yet set - tcp_open does not set mss */ 7478 if (tcp->tcp_ipversion == IPV4_VERSION) 7479 tia->TIDU_size = tcp_mss_def_ipv4; 7480 else 7481 tia->TIDU_size = tcp_mss_def_ipv6; 7482 } else { 7483 tia->TIDU_size = tcp->tcp_mss; 7484 } 7485 /* TODO: Default ETSDU is 1. Is that correct for tcp? */ 7486 } 7487 7488 /* 7489 * This routine responds to T_CAPABILITY_REQ messages. It is called by 7490 * tcp_wput. Much of the T_CAPABILITY_ACK information is copied from 7491 * tcp_g_t_info_ack. The current state of the stream is copied from 7492 * tcp_state. 7493 */ 7494 static void 7495 tcp_capability_req(tcp_t *tcp, mblk_t *mp) 7496 { 7497 t_uscalar_t cap_bits1; 7498 struct T_capability_ack *tcap; 7499 7500 if (MBLKL(mp) < sizeof (struct T_capability_req)) { 7501 freemsg(mp); 7502 return; 7503 } 7504 7505 cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1; 7506 7507 mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack), 7508 mp->b_datap->db_type, T_CAPABILITY_ACK); 7509 if (mp == NULL) 7510 return; 7511 7512 tcap = (struct T_capability_ack *)mp->b_rptr; 7513 tcap->CAP_bits1 = 0; 7514 7515 if (cap_bits1 & TC1_INFO) { 7516 tcp_copy_info(&tcap->INFO_ack, tcp); 7517 tcap->CAP_bits1 |= TC1_INFO; 7518 } 7519 7520 if (cap_bits1 & TC1_ACCEPTOR_ID) { 7521 tcap->ACCEPTOR_id = tcp->tcp_acceptor_id; 7522 tcap->CAP_bits1 |= TC1_ACCEPTOR_ID; 7523 } 7524 7525 putnext(tcp->tcp_rq, mp); 7526 } 7527 7528 /* 7529 * This routine responds to T_INFO_REQ messages. It is called by tcp_wput. 7530 * Most of the T_INFO_ACK information is copied from tcp_g_t_info_ack. 7531 * The current state of the stream is copied from tcp_state. 7532 */ 7533 static void 7534 tcp_info_req(tcp_t *tcp, mblk_t *mp) 7535 { 7536 mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO, 7537 T_INFO_ACK); 7538 if (!mp) { 7539 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 7540 return; 7541 } 7542 tcp_copy_info((struct T_info_ack *)mp->b_rptr, tcp); 7543 putnext(tcp->tcp_rq, mp); 7544 } 7545 7546 /* Respond to the TPI addr request */ 7547 static void 7548 tcp_addr_req(tcp_t *tcp, mblk_t *mp) 7549 { 7550 sin_t *sin; 7551 mblk_t *ackmp; 7552 struct T_addr_ack *taa; 7553 7554 /* Make it large enough for worst case */ 7555 ackmp = reallocb(mp, sizeof (struct T_addr_ack) + 7556 2 * sizeof (sin6_t), 1); 7557 if (ackmp == NULL) { 7558 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 7559 return; 7560 } 7561 7562 if (tcp->tcp_ipversion == IPV6_VERSION) { 7563 tcp_addr_req_ipv6(tcp, ackmp); 7564 return; 7565 } 7566 taa = (struct T_addr_ack *)ackmp->b_rptr; 7567 7568 bzero(taa, sizeof (struct T_addr_ack)); 7569 ackmp->b_wptr = (uchar_t *)&taa[1]; 7570 7571 taa->PRIM_type = T_ADDR_ACK; 7572 ackmp->b_datap->db_type = M_PCPROTO; 7573 7574 /* 7575 * Note: Following code assumes 32 bit alignment of basic 7576 * data structures like sin_t and struct T_addr_ack. 7577 */ 7578 if (tcp->tcp_state >= TCPS_BOUND) { 7579 /* 7580 * Fill in local address 7581 */ 7582 taa->LOCADDR_length = sizeof (sin_t); 7583 taa->LOCADDR_offset = sizeof (*taa); 7584 7585 sin = (sin_t *)&taa[1]; 7586 7587 /* Fill zeroes and then intialize non-zero fields */ 7588 *sin = sin_null; 7589 7590 sin->sin_family = AF_INET; 7591 7592 sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src; 7593 sin->sin_port = *(uint16_t *)tcp->tcp_tcph->th_lport; 7594 7595 ackmp->b_wptr = (uchar_t *)&sin[1]; 7596 7597 if (tcp->tcp_state >= TCPS_SYN_RCVD) { 7598 /* 7599 * Fill in Remote address 7600 */ 7601 taa->REMADDR_length = sizeof (sin_t); 7602 taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset + 7603 taa->LOCADDR_length); 7604 7605 sin = (sin_t *)(ackmp->b_rptr + taa->REMADDR_offset); 7606 *sin = sin_null; 7607 sin->sin_family = AF_INET; 7608 sin->sin_addr.s_addr = tcp->tcp_remote; 7609 sin->sin_port = tcp->tcp_fport; 7610 7611 ackmp->b_wptr = (uchar_t *)&sin[1]; 7612 } 7613 } 7614 putnext(tcp->tcp_rq, ackmp); 7615 } 7616 7617 /* Assumes that tcp_addr_req gets enough space and alignment */ 7618 static void 7619 tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *ackmp) 7620 { 7621 sin6_t *sin6; 7622 struct T_addr_ack *taa; 7623 7624 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 7625 ASSERT(OK_32PTR(ackmp->b_rptr)); 7626 ASSERT(ackmp->b_wptr - ackmp->b_rptr >= sizeof (struct T_addr_ack) + 7627 2 * sizeof (sin6_t)); 7628 7629 taa = (struct T_addr_ack *)ackmp->b_rptr; 7630 7631 bzero(taa, sizeof (struct T_addr_ack)); 7632 ackmp->b_wptr = (uchar_t *)&taa[1]; 7633 7634 taa->PRIM_type = T_ADDR_ACK; 7635 ackmp->b_datap->db_type = M_PCPROTO; 7636 7637 /* 7638 * Note: Following code assumes 32 bit alignment of basic 7639 * data structures like sin6_t and struct T_addr_ack. 7640 */ 7641 if (tcp->tcp_state >= TCPS_BOUND) { 7642 /* 7643 * Fill in local address 7644 */ 7645 taa->LOCADDR_length = sizeof (sin6_t); 7646 taa->LOCADDR_offset = sizeof (*taa); 7647 7648 sin6 = (sin6_t *)&taa[1]; 7649 *sin6 = sin6_null; 7650 7651 sin6->sin6_family = AF_INET6; 7652 sin6->sin6_addr = tcp->tcp_ip6h->ip6_src; 7653 sin6->sin6_port = tcp->tcp_lport; 7654 7655 ackmp->b_wptr = (uchar_t *)&sin6[1]; 7656 7657 if (tcp->tcp_state >= TCPS_SYN_RCVD) { 7658 /* 7659 * Fill in Remote address 7660 */ 7661 taa->REMADDR_length = sizeof (sin6_t); 7662 taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset + 7663 taa->LOCADDR_length); 7664 7665 sin6 = (sin6_t *)(ackmp->b_rptr + taa->REMADDR_offset); 7666 *sin6 = sin6_null; 7667 sin6->sin6_family = AF_INET6; 7668 sin6->sin6_flowinfo = 7669 tcp->tcp_ip6h->ip6_vcf & 7670 ~IPV6_VERS_AND_FLOW_MASK; 7671 sin6->sin6_addr = tcp->tcp_remote_v6; 7672 sin6->sin6_port = tcp->tcp_fport; 7673 7674 ackmp->b_wptr = (uchar_t *)&sin6[1]; 7675 } 7676 } 7677 putnext(tcp->tcp_rq, ackmp); 7678 } 7679 7680 /* 7681 * Handle reinitialization of a tcp structure. 7682 * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE. 7683 */ 7684 static void 7685 tcp_reinit(tcp_t *tcp) 7686 { 7687 mblk_t *mp; 7688 int err; 7689 7690 TCP_STAT(tcp_reinit_calls); 7691 7692 /* tcp_reinit should never be called for detached tcp_t's */ 7693 ASSERT(tcp->tcp_listener == NULL); 7694 ASSERT((tcp->tcp_family == AF_INET && 7695 tcp->tcp_ipversion == IPV4_VERSION) || 7696 (tcp->tcp_family == AF_INET6 && 7697 (tcp->tcp_ipversion == IPV4_VERSION || 7698 tcp->tcp_ipversion == IPV6_VERSION))); 7699 7700 /* Cancel outstanding timers */ 7701 tcp_timers_stop(tcp); 7702 7703 /* 7704 * Reset everything in the state vector, after updating global 7705 * MIB data from instance counters. 7706 */ 7707 UPDATE_MIB(&tcp_mib, tcpHCInSegs, tcp->tcp_ibsegs); 7708 tcp->tcp_ibsegs = 0; 7709 UPDATE_MIB(&tcp_mib, tcpHCOutSegs, tcp->tcp_obsegs); 7710 tcp->tcp_obsegs = 0; 7711 7712 tcp_close_mpp(&tcp->tcp_xmit_head); 7713 if (tcp->tcp_snd_zcopy_aware) 7714 tcp_zcopy_notify(tcp); 7715 tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL; 7716 tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0; 7717 if (tcp->tcp_flow_stopped && 7718 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 7719 tcp_clrqfull(tcp); 7720 } 7721 tcp_close_mpp(&tcp->tcp_reass_head); 7722 tcp->tcp_reass_tail = NULL; 7723 if (tcp->tcp_rcv_list != NULL) { 7724 /* Free b_next chain */ 7725 tcp_close_mpp(&tcp->tcp_rcv_list); 7726 tcp->tcp_rcv_last_head = NULL; 7727 tcp->tcp_rcv_last_tail = NULL; 7728 tcp->tcp_rcv_cnt = 0; 7729 } 7730 tcp->tcp_rcv_last_tail = NULL; 7731 7732 if ((mp = tcp->tcp_urp_mp) != NULL) { 7733 freemsg(mp); 7734 tcp->tcp_urp_mp = NULL; 7735 } 7736 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 7737 freemsg(mp); 7738 tcp->tcp_urp_mark_mp = NULL; 7739 } 7740 if (tcp->tcp_fused_sigurg_mp != NULL) { 7741 freeb(tcp->tcp_fused_sigurg_mp); 7742 tcp->tcp_fused_sigurg_mp = NULL; 7743 } 7744 7745 /* 7746 * Following is a union with two members which are 7747 * identical types and size so the following cleanup 7748 * is enough. 7749 */ 7750 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 7751 7752 CL_INET_DISCONNECT(tcp); 7753 7754 /* 7755 * The connection can't be on the tcp_time_wait_head list 7756 * since it is not detached. 7757 */ 7758 ASSERT(tcp->tcp_time_wait_next == NULL); 7759 ASSERT(tcp->tcp_time_wait_prev == NULL); 7760 ASSERT(tcp->tcp_time_wait_expire == 0); 7761 7762 if (tcp->tcp_kssl_pending) { 7763 tcp->tcp_kssl_pending = B_FALSE; 7764 7765 /* Don't reset if the initialized by bind. */ 7766 if (tcp->tcp_kssl_ent != NULL) { 7767 kssl_release_ent(tcp->tcp_kssl_ent, NULL, 7768 KSSL_NO_PROXY); 7769 } 7770 } 7771 if (tcp->tcp_kssl_ctx != NULL) { 7772 kssl_release_ctx(tcp->tcp_kssl_ctx); 7773 tcp->tcp_kssl_ctx = NULL; 7774 } 7775 7776 /* 7777 * Reset/preserve other values 7778 */ 7779 tcp_reinit_values(tcp); 7780 ipcl_hash_remove(tcp->tcp_connp); 7781 conn_delete_ire(tcp->tcp_connp, NULL); 7782 7783 if (tcp->tcp_conn_req_max != 0) { 7784 /* 7785 * This is the case when a TLI program uses the same 7786 * transport end point to accept a connection. This 7787 * makes the TCP both a listener and acceptor. When 7788 * this connection is closed, we need to set the state 7789 * back to TCPS_LISTEN. Make sure that the eager list 7790 * is reinitialized. 7791 * 7792 * Note that this stream is still bound to the four 7793 * tuples of the previous connection in IP. If a new 7794 * SYN with different foreign address comes in, IP will 7795 * not find it and will send it to the global queue. In 7796 * the global queue, TCP will do a tcp_lookup_listener() 7797 * to find this stream. This works because this stream 7798 * is only removed from connected hash. 7799 * 7800 */ 7801 tcp->tcp_state = TCPS_LISTEN; 7802 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 7803 tcp->tcp_eager_next_drop_q0 = tcp; 7804 tcp->tcp_eager_prev_drop_q0 = tcp; 7805 tcp->tcp_connp->conn_recv = tcp_conn_request; 7806 if (tcp->tcp_family == AF_INET6) { 7807 ASSERT(tcp->tcp_connp->conn_af_isv6); 7808 (void) ipcl_bind_insert_v6(tcp->tcp_connp, IPPROTO_TCP, 7809 &tcp->tcp_ip6h->ip6_src, tcp->tcp_lport); 7810 } else { 7811 ASSERT(!tcp->tcp_connp->conn_af_isv6); 7812 (void) ipcl_bind_insert(tcp->tcp_connp, IPPROTO_TCP, 7813 tcp->tcp_ipha->ipha_src, tcp->tcp_lport); 7814 } 7815 } else { 7816 tcp->tcp_state = TCPS_BOUND; 7817 } 7818 7819 /* 7820 * Initialize to default values 7821 * Can't fail since enough header template space already allocated 7822 * at open(). 7823 */ 7824 err = tcp_init_values(tcp); 7825 ASSERT(err == 0); 7826 /* Restore state in tcp_tcph */ 7827 bcopy(&tcp->tcp_lport, tcp->tcp_tcph->th_lport, TCP_PORT_LEN); 7828 if (tcp->tcp_ipversion == IPV4_VERSION) 7829 tcp->tcp_ipha->ipha_src = tcp->tcp_bound_source; 7830 else 7831 tcp->tcp_ip6h->ip6_src = tcp->tcp_bound_source_v6; 7832 /* 7833 * Copy of the src addr. in tcp_t is needed in tcp_t 7834 * since the lookup funcs can only lookup on tcp_t 7835 */ 7836 tcp->tcp_ip_src_v6 = tcp->tcp_bound_source_v6; 7837 7838 ASSERT(tcp->tcp_ptpbhn != NULL); 7839 tcp->tcp_rq->q_hiwat = tcp_recv_hiwat; 7840 tcp->tcp_rwnd = tcp_recv_hiwat; 7841 tcp->tcp_mss = tcp->tcp_ipversion != IPV4_VERSION ? 7842 tcp_mss_def_ipv6 : tcp_mss_def_ipv4; 7843 } 7844 7845 /* 7846 * Force values to zero that need be zero. 7847 * Do not touch values asociated with the BOUND or LISTEN state 7848 * since the connection will end up in that state after the reinit. 7849 * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t 7850 * structure! 7851 */ 7852 static void 7853 tcp_reinit_values(tcp) 7854 tcp_t *tcp; 7855 { 7856 #ifndef lint 7857 #define DONTCARE(x) 7858 #define PRESERVE(x) 7859 #else 7860 #define DONTCARE(x) ((x) = (x)) 7861 #define PRESERVE(x) ((x) = (x)) 7862 #endif /* lint */ 7863 7864 PRESERVE(tcp->tcp_bind_hash); 7865 PRESERVE(tcp->tcp_ptpbhn); 7866 PRESERVE(tcp->tcp_acceptor_hash); 7867 PRESERVE(tcp->tcp_ptpahn); 7868 7869 /* Should be ASSERT NULL on these with new code! */ 7870 ASSERT(tcp->tcp_time_wait_next == NULL); 7871 ASSERT(tcp->tcp_time_wait_prev == NULL); 7872 ASSERT(tcp->tcp_time_wait_expire == 0); 7873 PRESERVE(tcp->tcp_state); 7874 PRESERVE(tcp->tcp_rq); 7875 PRESERVE(tcp->tcp_wq); 7876 7877 ASSERT(tcp->tcp_xmit_head == NULL); 7878 ASSERT(tcp->tcp_xmit_last == NULL); 7879 ASSERT(tcp->tcp_unsent == 0); 7880 ASSERT(tcp->tcp_xmit_tail == NULL); 7881 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 7882 7883 tcp->tcp_snxt = 0; /* Displayed in mib */ 7884 tcp->tcp_suna = 0; /* Displayed in mib */ 7885 tcp->tcp_swnd = 0; 7886 DONTCARE(tcp->tcp_cwnd); /* Init in tcp_mss_set */ 7887 7888 ASSERT(tcp->tcp_ibsegs == 0); 7889 ASSERT(tcp->tcp_obsegs == 0); 7890 7891 if (tcp->tcp_iphc != NULL) { 7892 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 7893 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 7894 } 7895 7896 DONTCARE(tcp->tcp_naglim); /* Init in tcp_init_values */ 7897 DONTCARE(tcp->tcp_hdr_len); /* Init in tcp_init_values */ 7898 DONTCARE(tcp->tcp_ipha); 7899 DONTCARE(tcp->tcp_ip6h); 7900 DONTCARE(tcp->tcp_ip_hdr_len); 7901 DONTCARE(tcp->tcp_tcph); 7902 DONTCARE(tcp->tcp_tcp_hdr_len); /* Init in tcp_init_values */ 7903 tcp->tcp_valid_bits = 0; 7904 7905 DONTCARE(tcp->tcp_xmit_hiwater); /* Init in tcp_init_values */ 7906 DONTCARE(tcp->tcp_timer_backoff); /* Init in tcp_init_values */ 7907 DONTCARE(tcp->tcp_last_recv_time); /* Init in tcp_init_values */ 7908 tcp->tcp_last_rcv_lbolt = 0; 7909 7910 tcp->tcp_init_cwnd = 0; 7911 7912 tcp->tcp_urp_last_valid = 0; 7913 tcp->tcp_hard_binding = 0; 7914 tcp->tcp_hard_bound = 0; 7915 PRESERVE(tcp->tcp_cred); 7916 PRESERVE(tcp->tcp_cpid); 7917 PRESERVE(tcp->tcp_open_time); 7918 PRESERVE(tcp->tcp_exclbind); 7919 7920 tcp->tcp_fin_acked = 0; 7921 tcp->tcp_fin_rcvd = 0; 7922 tcp->tcp_fin_sent = 0; 7923 tcp->tcp_ordrel_done = 0; 7924 7925 tcp->tcp_debug = 0; 7926 tcp->tcp_dontroute = 0; 7927 tcp->tcp_broadcast = 0; 7928 7929 tcp->tcp_useloopback = 0; 7930 tcp->tcp_reuseaddr = 0; 7931 tcp->tcp_oobinline = 0; 7932 tcp->tcp_dgram_errind = 0; 7933 7934 tcp->tcp_detached = 0; 7935 tcp->tcp_bind_pending = 0; 7936 tcp->tcp_unbind_pending = 0; 7937 tcp->tcp_deferred_clean_death = 0; 7938 7939 tcp->tcp_snd_ws_ok = B_FALSE; 7940 tcp->tcp_snd_ts_ok = B_FALSE; 7941 tcp->tcp_linger = 0; 7942 tcp->tcp_ka_enabled = 0; 7943 tcp->tcp_zero_win_probe = 0; 7944 7945 tcp->tcp_loopback = 0; 7946 tcp->tcp_localnet = 0; 7947 tcp->tcp_syn_defense = 0; 7948 tcp->tcp_set_timer = 0; 7949 7950 tcp->tcp_active_open = 0; 7951 ASSERT(tcp->tcp_timeout == B_FALSE); 7952 tcp->tcp_rexmit = B_FALSE; 7953 tcp->tcp_xmit_zc_clean = B_FALSE; 7954 7955 tcp->tcp_snd_sack_ok = B_FALSE; 7956 PRESERVE(tcp->tcp_recvdstaddr); 7957 tcp->tcp_hwcksum = B_FALSE; 7958 7959 tcp->tcp_ire_ill_check_done = B_FALSE; 7960 DONTCARE(tcp->tcp_maxpsz); /* Init in tcp_init_values */ 7961 7962 tcp->tcp_mdt = B_FALSE; 7963 tcp->tcp_mdt_hdr_head = 0; 7964 tcp->tcp_mdt_hdr_tail = 0; 7965 7966 tcp->tcp_conn_def_q0 = 0; 7967 tcp->tcp_ip_forward_progress = B_FALSE; 7968 tcp->tcp_anon_priv_bind = 0; 7969 tcp->tcp_ecn_ok = B_FALSE; 7970 7971 tcp->tcp_cwr = B_FALSE; 7972 tcp->tcp_ecn_echo_on = B_FALSE; 7973 7974 if (tcp->tcp_sack_info != NULL) { 7975 if (tcp->tcp_notsack_list != NULL) { 7976 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 7977 } 7978 kmem_cache_free(tcp_sack_info_cache, tcp->tcp_sack_info); 7979 tcp->tcp_sack_info = NULL; 7980 } 7981 7982 tcp->tcp_rcv_ws = 0; 7983 tcp->tcp_snd_ws = 0; 7984 tcp->tcp_ts_recent = 0; 7985 tcp->tcp_rnxt = 0; /* Displayed in mib */ 7986 DONTCARE(tcp->tcp_rwnd); /* Set in tcp_reinit() */ 7987 tcp->tcp_if_mtu = 0; 7988 7989 ASSERT(tcp->tcp_reass_head == NULL); 7990 ASSERT(tcp->tcp_reass_tail == NULL); 7991 7992 tcp->tcp_cwnd_cnt = 0; 7993 7994 ASSERT(tcp->tcp_rcv_list == NULL); 7995 ASSERT(tcp->tcp_rcv_last_head == NULL); 7996 ASSERT(tcp->tcp_rcv_last_tail == NULL); 7997 ASSERT(tcp->tcp_rcv_cnt == 0); 7998 7999 DONTCARE(tcp->tcp_cwnd_ssthresh); /* Init in tcp_adapt_ire */ 8000 DONTCARE(tcp->tcp_cwnd_max); /* Init in tcp_init_values */ 8001 tcp->tcp_csuna = 0; 8002 8003 tcp->tcp_rto = 0; /* Displayed in MIB */ 8004 DONTCARE(tcp->tcp_rtt_sa); /* Init in tcp_init_values */ 8005 DONTCARE(tcp->tcp_rtt_sd); /* Init in tcp_init_values */ 8006 tcp->tcp_rtt_update = 0; 8007 8008 DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 8009 DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 8010 8011 tcp->tcp_rack = 0; /* Displayed in mib */ 8012 tcp->tcp_rack_cnt = 0; 8013 tcp->tcp_rack_cur_max = 0; 8014 tcp->tcp_rack_abs_max = 0; 8015 8016 tcp->tcp_max_swnd = 0; 8017 8018 ASSERT(tcp->tcp_listener == NULL); 8019 8020 DONTCARE(tcp->tcp_xmit_lowater); /* Init in tcp_init_values */ 8021 8022 DONTCARE(tcp->tcp_irs); /* tcp_valid_bits cleared */ 8023 DONTCARE(tcp->tcp_iss); /* tcp_valid_bits cleared */ 8024 DONTCARE(tcp->tcp_fss); /* tcp_valid_bits cleared */ 8025 DONTCARE(tcp->tcp_urg); /* tcp_valid_bits cleared */ 8026 8027 ASSERT(tcp->tcp_conn_req_cnt_q == 0); 8028 ASSERT(tcp->tcp_conn_req_cnt_q0 == 0); 8029 PRESERVE(tcp->tcp_conn_req_max); 8030 PRESERVE(tcp->tcp_conn_req_seqnum); 8031 8032 DONTCARE(tcp->tcp_ip_hdr_len); /* Init in tcp_init_values */ 8033 DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */ 8034 DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */ 8035 DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */ 8036 DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */ 8037 8038 tcp->tcp_lingertime = 0; 8039 8040 DONTCARE(tcp->tcp_urp_last); /* tcp_urp_last_valid is cleared */ 8041 ASSERT(tcp->tcp_urp_mp == NULL); 8042 ASSERT(tcp->tcp_urp_mark_mp == NULL); 8043 ASSERT(tcp->tcp_fused_sigurg_mp == NULL); 8044 8045 ASSERT(tcp->tcp_eager_next_q == NULL); 8046 ASSERT(tcp->tcp_eager_last_q == NULL); 8047 ASSERT((tcp->tcp_eager_next_q0 == NULL && 8048 tcp->tcp_eager_prev_q0 == NULL) || 8049 tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0); 8050 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 8051 8052 ASSERT((tcp->tcp_eager_next_drop_q0 == NULL && 8053 tcp->tcp_eager_prev_drop_q0 == NULL) || 8054 tcp->tcp_eager_next_drop_q0 == tcp->tcp_eager_prev_drop_q0); 8055 8056 tcp->tcp_client_errno = 0; 8057 8058 DONTCARE(tcp->tcp_sum); /* Init in tcp_init_values */ 8059 8060 tcp->tcp_remote_v6 = ipv6_all_zeros; /* Displayed in MIB */ 8061 8062 PRESERVE(tcp->tcp_bound_source_v6); 8063 tcp->tcp_last_sent_len = 0; 8064 tcp->tcp_dupack_cnt = 0; 8065 8066 tcp->tcp_fport = 0; /* Displayed in MIB */ 8067 PRESERVE(tcp->tcp_lport); 8068 8069 PRESERVE(tcp->tcp_acceptor_lockp); 8070 8071 ASSERT(tcp->tcp_ordrelid == 0); 8072 PRESERVE(tcp->tcp_acceptor_id); 8073 DONTCARE(tcp->tcp_ipsec_overhead); 8074 8075 /* 8076 * If tcp_tracing flag is ON (i.e. We have a trace buffer 8077 * in tcp structure and now tracing), Re-initialize all 8078 * members of tcp_traceinfo. 8079 */ 8080 if (tcp->tcp_tracebuf != NULL) { 8081 bzero(tcp->tcp_tracebuf, sizeof (tcptrch_t)); 8082 } 8083 8084 PRESERVE(tcp->tcp_family); 8085 if (tcp->tcp_family == AF_INET6) { 8086 tcp->tcp_ipversion = IPV6_VERSION; 8087 tcp->tcp_mss = tcp_mss_def_ipv6; 8088 } else { 8089 tcp->tcp_ipversion = IPV4_VERSION; 8090 tcp->tcp_mss = tcp_mss_def_ipv4; 8091 } 8092 8093 tcp->tcp_bound_if = 0; 8094 tcp->tcp_ipv6_recvancillary = 0; 8095 tcp->tcp_recvifindex = 0; 8096 tcp->tcp_recvhops = 0; 8097 tcp->tcp_closed = 0; 8098 tcp->tcp_cleandeathtag = 0; 8099 if (tcp->tcp_hopopts != NULL) { 8100 mi_free(tcp->tcp_hopopts); 8101 tcp->tcp_hopopts = NULL; 8102 tcp->tcp_hopoptslen = 0; 8103 } 8104 ASSERT(tcp->tcp_hopoptslen == 0); 8105 if (tcp->tcp_dstopts != NULL) { 8106 mi_free(tcp->tcp_dstopts); 8107 tcp->tcp_dstopts = NULL; 8108 tcp->tcp_dstoptslen = 0; 8109 } 8110 ASSERT(tcp->tcp_dstoptslen == 0); 8111 if (tcp->tcp_rtdstopts != NULL) { 8112 mi_free(tcp->tcp_rtdstopts); 8113 tcp->tcp_rtdstopts = NULL; 8114 tcp->tcp_rtdstoptslen = 0; 8115 } 8116 ASSERT(tcp->tcp_rtdstoptslen == 0); 8117 if (tcp->tcp_rthdr != NULL) { 8118 mi_free(tcp->tcp_rthdr); 8119 tcp->tcp_rthdr = NULL; 8120 tcp->tcp_rthdrlen = 0; 8121 } 8122 ASSERT(tcp->tcp_rthdrlen == 0); 8123 PRESERVE(tcp->tcp_drop_opt_ack_cnt); 8124 8125 /* Reset fusion-related fields */ 8126 tcp->tcp_fused = B_FALSE; 8127 tcp->tcp_unfusable = B_FALSE; 8128 tcp->tcp_fused_sigurg = B_FALSE; 8129 tcp->tcp_direct_sockfs = B_FALSE; 8130 tcp->tcp_fuse_syncstr_stopped = B_FALSE; 8131 tcp->tcp_fuse_syncstr_plugged = B_FALSE; 8132 tcp->tcp_loopback_peer = NULL; 8133 tcp->tcp_fuse_rcv_hiwater = 0; 8134 tcp->tcp_fuse_rcv_unread_hiwater = 0; 8135 tcp->tcp_fuse_rcv_unread_cnt = 0; 8136 8137 tcp->tcp_lso = B_FALSE; 8138 8139 tcp->tcp_in_ack_unsent = 0; 8140 tcp->tcp_cork = B_FALSE; 8141 tcp->tcp_tconnind_started = B_FALSE; 8142 8143 PRESERVE(tcp->tcp_squeue_bytes); 8144 8145 ASSERT(tcp->tcp_kssl_ctx == NULL); 8146 ASSERT(!tcp->tcp_kssl_pending); 8147 PRESERVE(tcp->tcp_kssl_ent); 8148 8149 tcp->tcp_closemp_used = 0; 8150 8151 #ifdef DEBUG 8152 DONTCARE(tcp->tcmp_stk[0]); 8153 #endif 8154 8155 8156 #undef DONTCARE 8157 #undef PRESERVE 8158 } 8159 8160 /* 8161 * Allocate necessary resources and initialize state vector. 8162 * Guaranteed not to fail so that when an error is returned, 8163 * the caller doesn't need to do any additional cleanup. 8164 */ 8165 int 8166 tcp_init(tcp_t *tcp, queue_t *q) 8167 { 8168 int err; 8169 8170 tcp->tcp_rq = q; 8171 tcp->tcp_wq = WR(q); 8172 tcp->tcp_state = TCPS_IDLE; 8173 if ((err = tcp_init_values(tcp)) != 0) 8174 tcp_timers_stop(tcp); 8175 return (err); 8176 } 8177 8178 static int 8179 tcp_init_values(tcp_t *tcp) 8180 { 8181 int err; 8182 8183 ASSERT((tcp->tcp_family == AF_INET && 8184 tcp->tcp_ipversion == IPV4_VERSION) || 8185 (tcp->tcp_family == AF_INET6 && 8186 (tcp->tcp_ipversion == IPV4_VERSION || 8187 tcp->tcp_ipversion == IPV6_VERSION))); 8188 8189 /* 8190 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO 8191 * will be close to tcp_rexmit_interval_initial. By doing this, we 8192 * allow the algorithm to adjust slowly to large fluctuations of RTT 8193 * during first few transmissions of a connection as seen in slow 8194 * links. 8195 */ 8196 tcp->tcp_rtt_sa = tcp_rexmit_interval_initial << 2; 8197 tcp->tcp_rtt_sd = tcp_rexmit_interval_initial >> 1; 8198 tcp->tcp_rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 8199 tcp_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) + 8200 tcp_conn_grace_period; 8201 if (tcp->tcp_rto < tcp_rexmit_interval_min) 8202 tcp->tcp_rto = tcp_rexmit_interval_min; 8203 tcp->tcp_timer_backoff = 0; 8204 tcp->tcp_ms_we_have_waited = 0; 8205 tcp->tcp_last_recv_time = lbolt; 8206 tcp->tcp_cwnd_max = tcp_cwnd_max_; 8207 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 8208 tcp->tcp_snd_burst = TCP_CWND_INFINITE; 8209 8210 tcp->tcp_maxpsz = tcp_maxpsz_multiplier; 8211 8212 tcp->tcp_first_timer_threshold = tcp_ip_notify_interval; 8213 tcp->tcp_first_ctimer_threshold = tcp_ip_notify_cinterval; 8214 tcp->tcp_second_timer_threshold = tcp_ip_abort_interval; 8215 /* 8216 * Fix it to tcp_ip_abort_linterval later if it turns out to be a 8217 * passive open. 8218 */ 8219 tcp->tcp_second_ctimer_threshold = tcp_ip_abort_cinterval; 8220 8221 tcp->tcp_naglim = tcp_naglim_def; 8222 8223 /* NOTE: ISS is now set in tcp_adapt_ire(). */ 8224 8225 tcp->tcp_mdt_hdr_head = 0; 8226 tcp->tcp_mdt_hdr_tail = 0; 8227 8228 /* Reset fusion-related fields */ 8229 tcp->tcp_fused = B_FALSE; 8230 tcp->tcp_unfusable = B_FALSE; 8231 tcp->tcp_fused_sigurg = B_FALSE; 8232 tcp->tcp_direct_sockfs = B_FALSE; 8233 tcp->tcp_fuse_syncstr_stopped = B_FALSE; 8234 tcp->tcp_fuse_syncstr_plugged = B_FALSE; 8235 tcp->tcp_loopback_peer = NULL; 8236 tcp->tcp_fuse_rcv_hiwater = 0; 8237 tcp->tcp_fuse_rcv_unread_hiwater = 0; 8238 tcp->tcp_fuse_rcv_unread_cnt = 0; 8239 8240 /* Initialize the header template */ 8241 if (tcp->tcp_ipversion == IPV4_VERSION) { 8242 err = tcp_header_init_ipv4(tcp); 8243 } else { 8244 err = tcp_header_init_ipv6(tcp); 8245 } 8246 if (err) 8247 return (err); 8248 8249 /* 8250 * Init the window scale to the max so tcp_rwnd_set() won't pare 8251 * down tcp_rwnd. tcp_adapt_ire() will set the right value later. 8252 */ 8253 tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT; 8254 tcp->tcp_xmit_lowater = tcp_xmit_lowat; 8255 tcp->tcp_xmit_hiwater = tcp_xmit_hiwat; 8256 8257 tcp->tcp_cork = B_FALSE; 8258 /* 8259 * Init the tcp_debug option. This value determines whether TCP 8260 * calls strlog() to print out debug messages. Doing this 8261 * initialization here means that this value is not inherited thru 8262 * tcp_reinit(). 8263 */ 8264 tcp->tcp_debug = tcp_dbg; 8265 8266 tcp->tcp_ka_interval = tcp_keepalive_interval; 8267 tcp->tcp_ka_abort_thres = tcp_keepalive_abort_interval; 8268 8269 return (0); 8270 } 8271 8272 /* 8273 * Initialize the IPv4 header. Loses any record of any IP options. 8274 */ 8275 static int 8276 tcp_header_init_ipv4(tcp_t *tcp) 8277 { 8278 tcph_t *tcph; 8279 uint32_t sum; 8280 conn_t *connp; 8281 8282 /* 8283 * This is a simple initialization. If there's 8284 * already a template, it should never be too small, 8285 * so reuse it. Otherwise, allocate space for the new one. 8286 */ 8287 if (tcp->tcp_iphc == NULL) { 8288 ASSERT(tcp->tcp_iphc_len == 0); 8289 tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH; 8290 tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP); 8291 if (tcp->tcp_iphc == NULL) { 8292 tcp->tcp_iphc_len = 0; 8293 return (ENOMEM); 8294 } 8295 } 8296 8297 /* options are gone; may need a new label */ 8298 connp = tcp->tcp_connp; 8299 connp->conn_mlp_type = mlptSingle; 8300 connp->conn_ulp_labeled = !is_system_labeled(); 8301 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 8302 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 8303 tcp->tcp_ip6h = NULL; 8304 tcp->tcp_ipversion = IPV4_VERSION; 8305 tcp->tcp_hdr_len = sizeof (ipha_t) + sizeof (tcph_t); 8306 tcp->tcp_tcp_hdr_len = sizeof (tcph_t); 8307 tcp->tcp_ip_hdr_len = sizeof (ipha_t); 8308 tcp->tcp_ipha->ipha_length = htons(sizeof (ipha_t) + sizeof (tcph_t)); 8309 tcp->tcp_ipha->ipha_version_and_hdr_length 8310 = (IP_VERSION << 4) | IP_SIMPLE_HDR_LENGTH_IN_WORDS; 8311 tcp->tcp_ipha->ipha_ident = 0; 8312 8313 tcp->tcp_ttl = (uchar_t)tcp_ipv4_ttl; 8314 tcp->tcp_tos = 0; 8315 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0; 8316 tcp->tcp_ipha->ipha_ttl = (uchar_t)tcp_ipv4_ttl; 8317 tcp->tcp_ipha->ipha_protocol = IPPROTO_TCP; 8318 8319 tcph = (tcph_t *)(tcp->tcp_iphc + sizeof (ipha_t)); 8320 tcp->tcp_tcph = tcph; 8321 tcph->th_offset_and_rsrvd[0] = (5 << 4); 8322 /* 8323 * IP wants our header length in the checksum field to 8324 * allow it to perform a single pseudo-header+checksum 8325 * calculation on behalf of TCP. 8326 * Include the adjustment for a source route once IP_OPTIONS is set. 8327 */ 8328 sum = sizeof (tcph_t) + tcp->tcp_sum; 8329 sum = (sum >> 16) + (sum & 0xFFFF); 8330 U16_TO_ABE16(sum, tcph->th_sum); 8331 return (0); 8332 } 8333 8334 /* 8335 * Initialize the IPv6 header. Loses any record of any IPv6 extension headers. 8336 */ 8337 static int 8338 tcp_header_init_ipv6(tcp_t *tcp) 8339 { 8340 tcph_t *tcph; 8341 uint32_t sum; 8342 conn_t *connp; 8343 8344 /* 8345 * This is a simple initialization. If there's 8346 * already a template, it should never be too small, 8347 * so reuse it. Otherwise, allocate space for the new one. 8348 * Ensure that there is enough space to "downgrade" the tcp_t 8349 * to an IPv4 tcp_t. This requires having space for a full load 8350 * of IPv4 options, as well as a full load of TCP options 8351 * (TCP_MAX_COMBINED_HEADER_LENGTH, 120 bytes); this is more space 8352 * than a v6 header and a TCP header with a full load of TCP options 8353 * (IPV6_HDR_LEN is 40 bytes; TCP_MAX_HDR_LENGTH is 60 bytes). 8354 * We want to avoid reallocation in the "downgraded" case when 8355 * processing outbound IPv4 options. 8356 */ 8357 if (tcp->tcp_iphc == NULL) { 8358 ASSERT(tcp->tcp_iphc_len == 0); 8359 tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH; 8360 tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP); 8361 if (tcp->tcp_iphc == NULL) { 8362 tcp->tcp_iphc_len = 0; 8363 return (ENOMEM); 8364 } 8365 } 8366 8367 /* options are gone; may need a new label */ 8368 connp = tcp->tcp_connp; 8369 connp->conn_mlp_type = mlptSingle; 8370 connp->conn_ulp_labeled = !is_system_labeled(); 8371 8372 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 8373 tcp->tcp_ipversion = IPV6_VERSION; 8374 tcp->tcp_hdr_len = IPV6_HDR_LEN + sizeof (tcph_t); 8375 tcp->tcp_tcp_hdr_len = sizeof (tcph_t); 8376 tcp->tcp_ip_hdr_len = IPV6_HDR_LEN; 8377 tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc; 8378 tcp->tcp_ipha = NULL; 8379 8380 /* Initialize the header template */ 8381 8382 tcp->tcp_ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW; 8383 tcp->tcp_ip6h->ip6_plen = ntohs(sizeof (tcph_t)); 8384 tcp->tcp_ip6h->ip6_nxt = IPPROTO_TCP; 8385 tcp->tcp_ip6h->ip6_hops = (uint8_t)tcp_ipv6_hoplimit; 8386 8387 tcph = (tcph_t *)(tcp->tcp_iphc + IPV6_HDR_LEN); 8388 tcp->tcp_tcph = tcph; 8389 tcph->th_offset_and_rsrvd[0] = (5 << 4); 8390 /* 8391 * IP wants our header length in the checksum field to 8392 * allow it to perform a single psuedo-header+checksum 8393 * calculation on behalf of TCP. 8394 * Include the adjustment for a source route when IPV6_RTHDR is set. 8395 */ 8396 sum = sizeof (tcph_t) + tcp->tcp_sum; 8397 sum = (sum >> 16) + (sum & 0xFFFF); 8398 U16_TO_ABE16(sum, tcph->th_sum); 8399 return (0); 8400 } 8401 8402 /* At minimum we need 8 bytes in the TCP header for the lookup */ 8403 #define ICMP_MIN_TCP_HDR 8 8404 8405 /* 8406 * tcp_icmp_error is called by tcp_rput_other to process ICMP error messages 8407 * passed up by IP. The message is always received on the correct tcp_t. 8408 * Assumes that IP has pulled up everything up to and including the ICMP header. 8409 */ 8410 void 8411 tcp_icmp_error(tcp_t *tcp, mblk_t *mp) 8412 { 8413 icmph_t *icmph; 8414 ipha_t *ipha; 8415 int iph_hdr_length; 8416 tcph_t *tcph; 8417 boolean_t ipsec_mctl = B_FALSE; 8418 boolean_t secure; 8419 mblk_t *first_mp = mp; 8420 uint32_t new_mss; 8421 uint32_t ratio; 8422 size_t mp_size = MBLKL(mp); 8423 uint32_t seg_seq; 8424 8425 /* Assume IP provides aligned packets - otherwise toss */ 8426 if (!OK_32PTR(mp->b_rptr)) { 8427 freemsg(mp); 8428 return; 8429 } 8430 8431 /* 8432 * Since ICMP errors are normal data marked with M_CTL when sent 8433 * to TCP or UDP, we have to look for a IPSEC_IN value to identify 8434 * packets starting with an ipsec_info_t, see ipsec_info.h. 8435 */ 8436 if ((mp_size == sizeof (ipsec_info_t)) && 8437 (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == IPSEC_IN)) { 8438 ASSERT(mp->b_cont != NULL); 8439 mp = mp->b_cont; 8440 /* IP should have done this */ 8441 ASSERT(OK_32PTR(mp->b_rptr)); 8442 mp_size = MBLKL(mp); 8443 ipsec_mctl = B_TRUE; 8444 } 8445 8446 /* 8447 * Verify that we have a complete outer IP header. If not, drop it. 8448 */ 8449 if (mp_size < sizeof (ipha_t)) { 8450 noticmpv4: 8451 freemsg(first_mp); 8452 return; 8453 } 8454 8455 ipha = (ipha_t *)mp->b_rptr; 8456 /* 8457 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent 8458 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6. 8459 */ 8460 switch (IPH_HDR_VERSION(ipha)) { 8461 case IPV6_VERSION: 8462 tcp_icmp_error_ipv6(tcp, first_mp, ipsec_mctl); 8463 return; 8464 case IPV4_VERSION: 8465 break; 8466 default: 8467 goto noticmpv4; 8468 } 8469 8470 /* Skip past the outer IP and ICMP headers */ 8471 iph_hdr_length = IPH_HDR_LENGTH(ipha); 8472 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 8473 /* 8474 * If we don't have the correct outer IP header length or if the ULP 8475 * is not IPPROTO_ICMP or if we don't have a complete inner IP header 8476 * send it upstream. 8477 */ 8478 if (iph_hdr_length < sizeof (ipha_t) || 8479 ipha->ipha_protocol != IPPROTO_ICMP || 8480 (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) { 8481 goto noticmpv4; 8482 } 8483 ipha = (ipha_t *)&icmph[1]; 8484 8485 /* Skip past the inner IP and find the ULP header */ 8486 iph_hdr_length = IPH_HDR_LENGTH(ipha); 8487 tcph = (tcph_t *)((char *)ipha + iph_hdr_length); 8488 /* 8489 * If we don't have the correct inner IP header length or if the ULP 8490 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR 8491 * bytes of TCP header, drop it. 8492 */ 8493 if (iph_hdr_length < sizeof (ipha_t) || 8494 ipha->ipha_protocol != IPPROTO_TCP || 8495 (uchar_t *)tcph + ICMP_MIN_TCP_HDR > mp->b_wptr) { 8496 goto noticmpv4; 8497 } 8498 8499 if (TCP_IS_DETACHED_NONEAGER(tcp)) { 8500 if (ipsec_mctl) { 8501 secure = ipsec_in_is_secure(first_mp); 8502 } else { 8503 secure = B_FALSE; 8504 } 8505 if (secure) { 8506 /* 8507 * If we are willing to accept this in clear 8508 * we don't have to verify policy. 8509 */ 8510 if (!ipsec_inbound_accept_clear(mp, ipha, NULL)) { 8511 if (!tcp_check_policy(tcp, first_mp, 8512 ipha, NULL, secure, ipsec_mctl)) { 8513 /* 8514 * tcp_check_policy called 8515 * ip_drop_packet() on failure. 8516 */ 8517 return; 8518 } 8519 } 8520 } 8521 } else if (ipsec_mctl) { 8522 /* 8523 * This is a hard_bound connection. IP has already 8524 * verified policy. We don't have to do it again. 8525 */ 8526 freeb(first_mp); 8527 first_mp = mp; 8528 ipsec_mctl = B_FALSE; 8529 } 8530 8531 seg_seq = ABE32_TO_U32(tcph->th_seq); 8532 /* 8533 * TCP SHOULD check that the TCP sequence number contained in 8534 * payload of the ICMP error message is within the range 8535 * SND.UNA <= SEG.SEQ < SND.NXT. 8536 */ 8537 if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) { 8538 /* 8539 * If the ICMP message is bogus, should we kill the 8540 * connection, or should we just drop the bogus ICMP 8541 * message? It would probably make more sense to just 8542 * drop the message so that if this one managed to get 8543 * in, the real connection should not suffer. 8544 */ 8545 goto noticmpv4; 8546 } 8547 8548 switch (icmph->icmph_type) { 8549 case ICMP_DEST_UNREACHABLE: 8550 switch (icmph->icmph_code) { 8551 case ICMP_FRAGMENTATION_NEEDED: 8552 /* 8553 * Reduce the MSS based on the new MTU. This will 8554 * eliminate any fragmentation locally. 8555 * N.B. There may well be some funny side-effects on 8556 * the local send policy and the remote receive policy. 8557 * Pending further research, we provide 8558 * tcp_ignore_path_mtu just in case this proves 8559 * disastrous somewhere. 8560 * 8561 * After updating the MSS, retransmit part of the 8562 * dropped segment using the new mss by calling 8563 * tcp_wput_data(). Need to adjust all those 8564 * params to make sure tcp_wput_data() work properly. 8565 */ 8566 if (tcp_ignore_path_mtu) 8567 break; 8568 8569 /* 8570 * Decrease the MSS by time stamp options 8571 * IP options and IPSEC options. tcp_hdr_len 8572 * includes time stamp option and IP option 8573 * length. 8574 */ 8575 8576 new_mss = ntohs(icmph->icmph_du_mtu) - 8577 tcp->tcp_hdr_len - tcp->tcp_ipsec_overhead; 8578 8579 /* 8580 * Only update the MSS if the new one is 8581 * smaller than the previous one. This is 8582 * to avoid problems when getting multiple 8583 * ICMP errors for the same MTU. 8584 */ 8585 if (new_mss >= tcp->tcp_mss) 8586 break; 8587 8588 /* 8589 * Stop doing PMTU if new_mss is less than 68 8590 * or less than tcp_mss_min. 8591 * The value 68 comes from rfc 1191. 8592 */ 8593 if (new_mss < MAX(68, tcp_mss_min)) 8594 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 8595 0; 8596 8597 ratio = tcp->tcp_cwnd / tcp->tcp_mss; 8598 ASSERT(ratio >= 1); 8599 tcp_mss_set(tcp, new_mss); 8600 8601 /* 8602 * Make sure we have something to 8603 * send. 8604 */ 8605 if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) && 8606 (tcp->tcp_xmit_head != NULL)) { 8607 /* 8608 * Shrink tcp_cwnd in 8609 * proportion to the old MSS/new MSS. 8610 */ 8611 tcp->tcp_cwnd = ratio * tcp->tcp_mss; 8612 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 8613 (tcp->tcp_unsent == 0)) { 8614 tcp->tcp_rexmit_max = tcp->tcp_fss; 8615 } else { 8616 tcp->tcp_rexmit_max = tcp->tcp_snxt; 8617 } 8618 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 8619 tcp->tcp_rexmit = B_TRUE; 8620 tcp->tcp_dupack_cnt = 0; 8621 tcp->tcp_snd_burst = TCP_CWND_SS; 8622 tcp_ss_rexmit(tcp); 8623 } 8624 break; 8625 case ICMP_PORT_UNREACHABLE: 8626 case ICMP_PROTOCOL_UNREACHABLE: 8627 switch (tcp->tcp_state) { 8628 case TCPS_SYN_SENT: 8629 case TCPS_SYN_RCVD: 8630 /* 8631 * ICMP can snipe away incipient 8632 * TCP connections as long as 8633 * seq number is same as initial 8634 * send seq number. 8635 */ 8636 if (seg_seq == tcp->tcp_iss) { 8637 (void) tcp_clean_death(tcp, 8638 ECONNREFUSED, 6); 8639 } 8640 break; 8641 } 8642 break; 8643 case ICMP_HOST_UNREACHABLE: 8644 case ICMP_NET_UNREACHABLE: 8645 /* Record the error in case we finally time out. */ 8646 if (icmph->icmph_code == ICMP_HOST_UNREACHABLE) 8647 tcp->tcp_client_errno = EHOSTUNREACH; 8648 else 8649 tcp->tcp_client_errno = ENETUNREACH; 8650 if (tcp->tcp_state == TCPS_SYN_RCVD) { 8651 if (tcp->tcp_listener != NULL && 8652 tcp->tcp_listener->tcp_syn_defense) { 8653 /* 8654 * Ditch the half-open connection if we 8655 * suspect a SYN attack is under way. 8656 */ 8657 tcp_ip_ire_mark_advice(tcp); 8658 (void) tcp_clean_death(tcp, 8659 tcp->tcp_client_errno, 7); 8660 } 8661 } 8662 break; 8663 default: 8664 break; 8665 } 8666 break; 8667 case ICMP_SOURCE_QUENCH: { 8668 /* 8669 * use a global boolean to control 8670 * whether TCP should respond to ICMP_SOURCE_QUENCH. 8671 * The default is false. 8672 */ 8673 if (tcp_icmp_source_quench) { 8674 /* 8675 * Reduce the sending rate as if we got a 8676 * retransmit timeout 8677 */ 8678 uint32_t npkt; 8679 8680 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / 8681 tcp->tcp_mss; 8682 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss; 8683 tcp->tcp_cwnd = tcp->tcp_mss; 8684 tcp->tcp_cwnd_cnt = 0; 8685 } 8686 break; 8687 } 8688 } 8689 freemsg(first_mp); 8690 } 8691 8692 /* 8693 * tcp_icmp_error_ipv6 is called by tcp_rput_other to process ICMPv6 8694 * error messages passed up by IP. 8695 * Assumes that IP has pulled up all the extension headers as well 8696 * as the ICMPv6 header. 8697 */ 8698 static void 8699 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, boolean_t ipsec_mctl) 8700 { 8701 icmp6_t *icmp6; 8702 ip6_t *ip6h; 8703 uint16_t iph_hdr_length; 8704 tcpha_t *tcpha; 8705 uint8_t *nexthdrp; 8706 uint32_t new_mss; 8707 uint32_t ratio; 8708 boolean_t secure; 8709 mblk_t *first_mp = mp; 8710 size_t mp_size; 8711 uint32_t seg_seq; 8712 8713 /* 8714 * The caller has determined if this is an IPSEC_IN packet and 8715 * set ipsec_mctl appropriately (see tcp_icmp_error). 8716 */ 8717 if (ipsec_mctl) 8718 mp = mp->b_cont; 8719 8720 mp_size = MBLKL(mp); 8721 8722 /* 8723 * Verify that we have a complete IP header. If not, send it upstream. 8724 */ 8725 if (mp_size < sizeof (ip6_t)) { 8726 noticmpv6: 8727 freemsg(first_mp); 8728 return; 8729 } 8730 8731 /* 8732 * Verify this is an ICMPV6 packet, else send it upstream. 8733 */ 8734 ip6h = (ip6_t *)mp->b_rptr; 8735 if (ip6h->ip6_nxt == IPPROTO_ICMPV6) { 8736 iph_hdr_length = IPV6_HDR_LEN; 8737 } else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, 8738 &nexthdrp) || 8739 *nexthdrp != IPPROTO_ICMPV6) { 8740 goto noticmpv6; 8741 } 8742 icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length]; 8743 ip6h = (ip6_t *)&icmp6[1]; 8744 /* 8745 * Verify if we have a complete ICMP and inner IP header. 8746 */ 8747 if ((uchar_t *)&ip6h[1] > mp->b_wptr) 8748 goto noticmpv6; 8749 8750 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp)) 8751 goto noticmpv6; 8752 tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length); 8753 /* 8754 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't 8755 * have at least ICMP_MIN_TCP_HDR bytes of TCP header drop the 8756 * packet. 8757 */ 8758 if ((*nexthdrp != IPPROTO_TCP) || 8759 ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) { 8760 goto noticmpv6; 8761 } 8762 8763 /* 8764 * ICMP errors come on the right queue or come on 8765 * listener/global queue for detached connections and 8766 * get switched to the right queue. If it comes on the 8767 * right queue, policy check has already been done by IP 8768 * and thus free the first_mp without verifying the policy. 8769 * If it has come for a non-hard bound connection, we need 8770 * to verify policy as IP may not have done it. 8771 */ 8772 if (!tcp->tcp_hard_bound) { 8773 if (ipsec_mctl) { 8774 secure = ipsec_in_is_secure(first_mp); 8775 } else { 8776 secure = B_FALSE; 8777 } 8778 if (secure) { 8779 /* 8780 * If we are willing to accept this in clear 8781 * we don't have to verify policy. 8782 */ 8783 if (!ipsec_inbound_accept_clear(mp, NULL, ip6h)) { 8784 if (!tcp_check_policy(tcp, first_mp, 8785 NULL, ip6h, secure, ipsec_mctl)) { 8786 /* 8787 * tcp_check_policy called 8788 * ip_drop_packet() on failure. 8789 */ 8790 return; 8791 } 8792 } 8793 } 8794 } else if (ipsec_mctl) { 8795 /* 8796 * This is a hard_bound connection. IP has already 8797 * verified policy. We don't have to do it again. 8798 */ 8799 freeb(first_mp); 8800 first_mp = mp; 8801 ipsec_mctl = B_FALSE; 8802 } 8803 8804 seg_seq = ntohl(tcpha->tha_seq); 8805 /* 8806 * TCP SHOULD check that the TCP sequence number contained in 8807 * payload of the ICMP error message is within the range 8808 * SND.UNA <= SEG.SEQ < SND.NXT. 8809 */ 8810 if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) { 8811 /* 8812 * If the ICMP message is bogus, should we kill the 8813 * connection, or should we just drop the bogus ICMP 8814 * message? It would probably make more sense to just 8815 * drop the message so that if this one managed to get 8816 * in, the real connection should not suffer. 8817 */ 8818 goto noticmpv6; 8819 } 8820 8821 switch (icmp6->icmp6_type) { 8822 case ICMP6_PACKET_TOO_BIG: 8823 /* 8824 * Reduce the MSS based on the new MTU. This will 8825 * eliminate any fragmentation locally. 8826 * N.B. There may well be some funny side-effects on 8827 * the local send policy and the remote receive policy. 8828 * Pending further research, we provide 8829 * tcp_ignore_path_mtu just in case this proves 8830 * disastrous somewhere. 8831 * 8832 * After updating the MSS, retransmit part of the 8833 * dropped segment using the new mss by calling 8834 * tcp_wput_data(). Need to adjust all those 8835 * params to make sure tcp_wput_data() work properly. 8836 */ 8837 if (tcp_ignore_path_mtu) 8838 break; 8839 8840 /* 8841 * Decrease the MSS by time stamp options 8842 * IP options and IPSEC options. tcp_hdr_len 8843 * includes time stamp option and IP option 8844 * length. 8845 */ 8846 new_mss = ntohs(icmp6->icmp6_mtu) - tcp->tcp_hdr_len - 8847 tcp->tcp_ipsec_overhead; 8848 8849 /* 8850 * Only update the MSS if the new one is 8851 * smaller than the previous one. This is 8852 * to avoid problems when getting multiple 8853 * ICMP errors for the same MTU. 8854 */ 8855 if (new_mss >= tcp->tcp_mss) 8856 break; 8857 8858 ratio = tcp->tcp_cwnd / tcp->tcp_mss; 8859 ASSERT(ratio >= 1); 8860 tcp_mss_set(tcp, new_mss); 8861 8862 /* 8863 * Make sure we have something to 8864 * send. 8865 */ 8866 if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) && 8867 (tcp->tcp_xmit_head != NULL)) { 8868 /* 8869 * Shrink tcp_cwnd in 8870 * proportion to the old MSS/new MSS. 8871 */ 8872 tcp->tcp_cwnd = ratio * tcp->tcp_mss; 8873 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 8874 (tcp->tcp_unsent == 0)) { 8875 tcp->tcp_rexmit_max = tcp->tcp_fss; 8876 } else { 8877 tcp->tcp_rexmit_max = tcp->tcp_snxt; 8878 } 8879 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 8880 tcp->tcp_rexmit = B_TRUE; 8881 tcp->tcp_dupack_cnt = 0; 8882 tcp->tcp_snd_burst = TCP_CWND_SS; 8883 tcp_ss_rexmit(tcp); 8884 } 8885 break; 8886 8887 case ICMP6_DST_UNREACH: 8888 switch (icmp6->icmp6_code) { 8889 case ICMP6_DST_UNREACH_NOPORT: 8890 if (((tcp->tcp_state == TCPS_SYN_SENT) || 8891 (tcp->tcp_state == TCPS_SYN_RCVD)) && 8892 (seg_seq == tcp->tcp_iss)) { 8893 (void) tcp_clean_death(tcp, 8894 ECONNREFUSED, 8); 8895 } 8896 break; 8897 8898 case ICMP6_DST_UNREACH_ADMIN: 8899 case ICMP6_DST_UNREACH_NOROUTE: 8900 case ICMP6_DST_UNREACH_BEYONDSCOPE: 8901 case ICMP6_DST_UNREACH_ADDR: 8902 /* Record the error in case we finally time out. */ 8903 tcp->tcp_client_errno = EHOSTUNREACH; 8904 if (((tcp->tcp_state == TCPS_SYN_SENT) || 8905 (tcp->tcp_state == TCPS_SYN_RCVD)) && 8906 (seg_seq == tcp->tcp_iss)) { 8907 if (tcp->tcp_listener != NULL && 8908 tcp->tcp_listener->tcp_syn_defense) { 8909 /* 8910 * Ditch the half-open connection if we 8911 * suspect a SYN attack is under way. 8912 */ 8913 tcp_ip_ire_mark_advice(tcp); 8914 (void) tcp_clean_death(tcp, 8915 tcp->tcp_client_errno, 9); 8916 } 8917 } 8918 8919 8920 break; 8921 default: 8922 break; 8923 } 8924 break; 8925 8926 case ICMP6_PARAM_PROB: 8927 /* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */ 8928 if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER && 8929 (uchar_t *)ip6h + icmp6->icmp6_pptr == 8930 (uchar_t *)nexthdrp) { 8931 if (tcp->tcp_state == TCPS_SYN_SENT || 8932 tcp->tcp_state == TCPS_SYN_RCVD) { 8933 (void) tcp_clean_death(tcp, 8934 ECONNREFUSED, 10); 8935 } 8936 break; 8937 } 8938 break; 8939 8940 case ICMP6_TIME_EXCEEDED: 8941 default: 8942 break; 8943 } 8944 freemsg(first_mp); 8945 } 8946 8947 /* 8948 * IP recognizes seven kinds of bind requests: 8949 * 8950 * - A zero-length address binds only to the protocol number. 8951 * 8952 * - A 4-byte address is treated as a request to 8953 * validate that the address is a valid local IPv4 8954 * address, appropriate for an application to bind to. 8955 * IP does the verification, but does not make any note 8956 * of the address at this time. 8957 * 8958 * - A 16-byte address contains is treated as a request 8959 * to validate a local IPv6 address, as the 4-byte 8960 * address case above. 8961 * 8962 * - A 16-byte sockaddr_in to validate the local IPv4 address and also 8963 * use it for the inbound fanout of packets. 8964 * 8965 * - A 24-byte sockaddr_in6 to validate the local IPv6 address and also 8966 * use it for the inbound fanout of packets. 8967 * 8968 * - A 12-byte address (ipa_conn_t) containing complete IPv4 fanout 8969 * information consisting of local and remote addresses 8970 * and ports. In this case, the addresses are both 8971 * validated as appropriate for this operation, and, if 8972 * so, the information is retained for use in the 8973 * inbound fanout. 8974 * 8975 * - A 36-byte address address (ipa6_conn_t) containing complete IPv6 8976 * fanout information, like the 12-byte case above. 8977 * 8978 * IP will also fill in the IRE request mblk with information 8979 * regarding our peer. In all cases, we notify IP of our protocol 8980 * type by appending a single protocol byte to the bind request. 8981 */ 8982 static mblk_t * 8983 tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim, t_scalar_t addr_length) 8984 { 8985 char *cp; 8986 mblk_t *mp; 8987 struct T_bind_req *tbr; 8988 ipa_conn_t *ac; 8989 ipa6_conn_t *ac6; 8990 sin_t *sin; 8991 sin6_t *sin6; 8992 8993 ASSERT(bind_prim == O_T_BIND_REQ || bind_prim == T_BIND_REQ); 8994 ASSERT((tcp->tcp_family == AF_INET && 8995 tcp->tcp_ipversion == IPV4_VERSION) || 8996 (tcp->tcp_family == AF_INET6 && 8997 (tcp->tcp_ipversion == IPV4_VERSION || 8998 tcp->tcp_ipversion == IPV6_VERSION))); 8999 9000 mp = allocb(sizeof (*tbr) + addr_length + 1, BPRI_HI); 9001 if (!mp) 9002 return (mp); 9003 mp->b_datap->db_type = M_PROTO; 9004 tbr = (struct T_bind_req *)mp->b_rptr; 9005 tbr->PRIM_type = bind_prim; 9006 tbr->ADDR_offset = sizeof (*tbr); 9007 tbr->CONIND_number = 0; 9008 tbr->ADDR_length = addr_length; 9009 cp = (char *)&tbr[1]; 9010 switch (addr_length) { 9011 case sizeof (ipa_conn_t): 9012 ASSERT(tcp->tcp_family == AF_INET); 9013 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 9014 9015 mp->b_cont = allocb(sizeof (ire_t), BPRI_HI); 9016 if (mp->b_cont == NULL) { 9017 freemsg(mp); 9018 return (NULL); 9019 } 9020 mp->b_cont->b_wptr += sizeof (ire_t); 9021 mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE; 9022 9023 /* cp known to be 32 bit aligned */ 9024 ac = (ipa_conn_t *)cp; 9025 ac->ac_laddr = tcp->tcp_ipha->ipha_src; 9026 ac->ac_faddr = tcp->tcp_remote; 9027 ac->ac_fport = tcp->tcp_fport; 9028 ac->ac_lport = tcp->tcp_lport; 9029 tcp->tcp_hard_binding = 1; 9030 break; 9031 9032 case sizeof (ipa6_conn_t): 9033 ASSERT(tcp->tcp_family == AF_INET6); 9034 9035 mp->b_cont = allocb(sizeof (ire_t), BPRI_HI); 9036 if (mp->b_cont == NULL) { 9037 freemsg(mp); 9038 return (NULL); 9039 } 9040 mp->b_cont->b_wptr += sizeof (ire_t); 9041 mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE; 9042 9043 /* cp known to be 32 bit aligned */ 9044 ac6 = (ipa6_conn_t *)cp; 9045 if (tcp->tcp_ipversion == IPV4_VERSION) { 9046 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 9047 &ac6->ac6_laddr); 9048 } else { 9049 ac6->ac6_laddr = tcp->tcp_ip6h->ip6_src; 9050 } 9051 ac6->ac6_faddr = tcp->tcp_remote_v6; 9052 ac6->ac6_fport = tcp->tcp_fport; 9053 ac6->ac6_lport = tcp->tcp_lport; 9054 tcp->tcp_hard_binding = 1; 9055 break; 9056 9057 case sizeof (sin_t): 9058 /* 9059 * NOTE: IPV6_ADDR_LEN also has same size. 9060 * Use family to discriminate. 9061 */ 9062 if (tcp->tcp_family == AF_INET) { 9063 sin = (sin_t *)cp; 9064 9065 *sin = sin_null; 9066 sin->sin_family = AF_INET; 9067 sin->sin_addr.s_addr = tcp->tcp_bound_source; 9068 sin->sin_port = tcp->tcp_lport; 9069 break; 9070 } else { 9071 *(in6_addr_t *)cp = tcp->tcp_bound_source_v6; 9072 } 9073 break; 9074 9075 case sizeof (sin6_t): 9076 ASSERT(tcp->tcp_family == AF_INET6); 9077 sin6 = (sin6_t *)cp; 9078 9079 *sin6 = sin6_null; 9080 sin6->sin6_family = AF_INET6; 9081 sin6->sin6_addr = tcp->tcp_bound_source_v6; 9082 sin6->sin6_port = tcp->tcp_lport; 9083 break; 9084 9085 case IP_ADDR_LEN: 9086 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 9087 *(uint32_t *)cp = tcp->tcp_ipha->ipha_src; 9088 break; 9089 9090 } 9091 /* Add protocol number to end */ 9092 cp[addr_length] = (char)IPPROTO_TCP; 9093 mp->b_wptr = (uchar_t *)&cp[addr_length + 1]; 9094 return (mp); 9095 } 9096 9097 /* 9098 * Notify IP that we are having trouble with this connection. IP should 9099 * blow the IRE away and start over. 9100 */ 9101 static void 9102 tcp_ip_notify(tcp_t *tcp) 9103 { 9104 struct iocblk *iocp; 9105 ipid_t *ipid; 9106 mblk_t *mp; 9107 9108 /* IPv6 has NUD thus notification to delete the IRE is not needed */ 9109 if (tcp->tcp_ipversion == IPV6_VERSION) 9110 return; 9111 9112 mp = mkiocb(IP_IOCTL); 9113 if (mp == NULL) 9114 return; 9115 9116 iocp = (struct iocblk *)mp->b_rptr; 9117 iocp->ioc_count = sizeof (ipid_t) + sizeof (tcp->tcp_ipha->ipha_dst); 9118 9119 mp->b_cont = allocb(iocp->ioc_count, BPRI_HI); 9120 if (!mp->b_cont) { 9121 freeb(mp); 9122 return; 9123 } 9124 9125 ipid = (ipid_t *)mp->b_cont->b_rptr; 9126 mp->b_cont->b_wptr += iocp->ioc_count; 9127 bzero(ipid, sizeof (*ipid)); 9128 ipid->ipid_cmd = IP_IOC_IRE_DELETE_NO_REPLY; 9129 ipid->ipid_ire_type = IRE_CACHE; 9130 ipid->ipid_addr_offset = sizeof (ipid_t); 9131 ipid->ipid_addr_length = sizeof (tcp->tcp_ipha->ipha_dst); 9132 /* 9133 * Note: in the case of source routing we want to blow away the 9134 * route to the first source route hop. 9135 */ 9136 bcopy(&tcp->tcp_ipha->ipha_dst, &ipid[1], 9137 sizeof (tcp->tcp_ipha->ipha_dst)); 9138 9139 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 9140 } 9141 9142 /* Unlink and return any mblk that looks like it contains an ire */ 9143 static mblk_t * 9144 tcp_ire_mp(mblk_t *mp) 9145 { 9146 mblk_t *prev_mp; 9147 9148 for (;;) { 9149 prev_mp = mp; 9150 mp = mp->b_cont; 9151 if (mp == NULL) 9152 break; 9153 switch (DB_TYPE(mp)) { 9154 case IRE_DB_TYPE: 9155 case IRE_DB_REQ_TYPE: 9156 if (prev_mp != NULL) 9157 prev_mp->b_cont = mp->b_cont; 9158 mp->b_cont = NULL; 9159 return (mp); 9160 default: 9161 break; 9162 } 9163 } 9164 return (mp); 9165 } 9166 9167 /* 9168 * Timer callback routine for keepalive probe. We do a fake resend of 9169 * last ACKed byte. Then set a timer using RTO. When the timer expires, 9170 * check to see if we have heard anything from the other end for the last 9171 * RTO period. If we have, set the timer to expire for another 9172 * tcp_keepalive_intrvl and check again. If we have not, set a timer using 9173 * RTO << 1 and check again when it expires. Keep exponentially increasing 9174 * the timeout if we have not heard from the other side. If for more than 9175 * (tcp_ka_interval + tcp_ka_abort_thres) we have not heard anything, 9176 * kill the connection unless the keepalive abort threshold is 0. In 9177 * that case, we will probe "forever." 9178 */ 9179 static void 9180 tcp_keepalive_killer(void *arg) 9181 { 9182 mblk_t *mp; 9183 conn_t *connp = (conn_t *)arg; 9184 tcp_t *tcp = connp->conn_tcp; 9185 int32_t firetime; 9186 int32_t idletime; 9187 int32_t ka_intrvl; 9188 9189 tcp->tcp_ka_tid = 0; 9190 9191 if (tcp->tcp_fused) 9192 return; 9193 9194 BUMP_MIB(&tcp_mib, tcpTimKeepalive); 9195 ka_intrvl = tcp->tcp_ka_interval; 9196 9197 /* 9198 * Keepalive probe should only be sent if the application has not 9199 * done a close on the connection. 9200 */ 9201 if (tcp->tcp_state > TCPS_CLOSE_WAIT) { 9202 return; 9203 } 9204 /* Timer fired too early, restart it. */ 9205 if (tcp->tcp_state < TCPS_ESTABLISHED) { 9206 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 9207 MSEC_TO_TICK(ka_intrvl)); 9208 return; 9209 } 9210 9211 idletime = TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time); 9212 /* 9213 * If we have not heard from the other side for a long 9214 * time, kill the connection unless the keepalive abort 9215 * threshold is 0. In that case, we will probe "forever." 9216 */ 9217 if (tcp->tcp_ka_abort_thres != 0 && 9218 idletime > (ka_intrvl + tcp->tcp_ka_abort_thres)) { 9219 BUMP_MIB(&tcp_mib, tcpTimKeepaliveDrop); 9220 (void) tcp_clean_death(tcp, tcp->tcp_client_errno ? 9221 tcp->tcp_client_errno : ETIMEDOUT, 11); 9222 return; 9223 } 9224 9225 if (tcp->tcp_snxt == tcp->tcp_suna && 9226 idletime >= ka_intrvl) { 9227 /* Fake resend of last ACKed byte. */ 9228 mblk_t *mp1 = allocb(1, BPRI_LO); 9229 9230 if (mp1 != NULL) { 9231 *mp1->b_wptr++ = '\0'; 9232 mp = tcp_xmit_mp(tcp, mp1, 1, NULL, NULL, 9233 tcp->tcp_suna - 1, B_FALSE, NULL, B_TRUE); 9234 freeb(mp1); 9235 /* 9236 * if allocation failed, fall through to start the 9237 * timer back. 9238 */ 9239 if (mp != NULL) { 9240 TCP_RECORD_TRACE(tcp, mp, 9241 TCP_TRACE_SEND_PKT); 9242 tcp_send_data(tcp, tcp->tcp_wq, mp); 9243 BUMP_MIB(&tcp_mib, tcpTimKeepaliveProbe); 9244 if (tcp->tcp_ka_last_intrvl != 0) { 9245 /* 9246 * We should probe again at least 9247 * in ka_intrvl, but not more than 9248 * tcp_rexmit_interval_max. 9249 */ 9250 firetime = MIN(ka_intrvl - 1, 9251 tcp->tcp_ka_last_intrvl << 1); 9252 if (firetime > tcp_rexmit_interval_max) 9253 firetime = 9254 tcp_rexmit_interval_max; 9255 } else { 9256 firetime = tcp->tcp_rto; 9257 } 9258 tcp->tcp_ka_tid = TCP_TIMER(tcp, 9259 tcp_keepalive_killer, 9260 MSEC_TO_TICK(firetime)); 9261 tcp->tcp_ka_last_intrvl = firetime; 9262 return; 9263 } 9264 } 9265 } else { 9266 tcp->tcp_ka_last_intrvl = 0; 9267 } 9268 9269 /* firetime can be negative if (mp1 == NULL || mp == NULL) */ 9270 if ((firetime = ka_intrvl - idletime) < 0) { 9271 firetime = ka_intrvl; 9272 } 9273 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 9274 MSEC_TO_TICK(firetime)); 9275 } 9276 9277 int 9278 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk) 9279 { 9280 queue_t *q = tcp->tcp_rq; 9281 int32_t mss = tcp->tcp_mss; 9282 int maxpsz; 9283 9284 if (TCP_IS_DETACHED(tcp)) 9285 return (mss); 9286 9287 if (tcp->tcp_fused) { 9288 maxpsz = tcp_fuse_maxpsz_set(tcp); 9289 mss = INFPSZ; 9290 } else if (tcp->tcp_mdt || tcp->tcp_lso || tcp->tcp_maxpsz == 0) { 9291 /* 9292 * Set the sd_qn_maxpsz according to the socket send buffer 9293 * size, and sd_maxblk to INFPSZ (-1). This will essentially 9294 * instruct the stream head to copyin user data into contiguous 9295 * kernel-allocated buffers without breaking it up into smaller 9296 * chunks. We round up the buffer size to the nearest SMSS. 9297 */ 9298 maxpsz = MSS_ROUNDUP(tcp->tcp_xmit_hiwater, mss); 9299 if (tcp->tcp_kssl_ctx == NULL) 9300 mss = INFPSZ; 9301 else 9302 mss = SSL3_MAX_RECORD_LEN; 9303 } else { 9304 /* 9305 * Set sd_qn_maxpsz to approx half the (receivers) buffer 9306 * (and a multiple of the mss). This instructs the stream 9307 * head to break down larger than SMSS writes into SMSS- 9308 * size mblks, up to tcp_maxpsz_multiplier mblks at a time. 9309 */ 9310 maxpsz = tcp->tcp_maxpsz * mss; 9311 if (maxpsz > tcp->tcp_xmit_hiwater/2) { 9312 maxpsz = tcp->tcp_xmit_hiwater/2; 9313 /* Round up to nearest mss */ 9314 maxpsz = MSS_ROUNDUP(maxpsz, mss); 9315 } 9316 } 9317 (void) setmaxps(q, maxpsz); 9318 tcp->tcp_wq->q_maxpsz = maxpsz; 9319 9320 if (set_maxblk) 9321 (void) mi_set_sth_maxblk(q, mss); 9322 9323 return (mss); 9324 } 9325 9326 /* 9327 * Extract option values from a tcp header. We put any found values into the 9328 * tcpopt struct and return a bitmask saying which options were found. 9329 */ 9330 static int 9331 tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt) 9332 { 9333 uchar_t *endp; 9334 int len; 9335 uint32_t mss; 9336 uchar_t *up = (uchar_t *)tcph; 9337 int found = 0; 9338 int32_t sack_len; 9339 tcp_seq sack_begin, sack_end; 9340 tcp_t *tcp; 9341 9342 endp = up + TCP_HDR_LENGTH(tcph); 9343 up += TCP_MIN_HEADER_LENGTH; 9344 while (up < endp) { 9345 len = endp - up; 9346 switch (*up) { 9347 case TCPOPT_EOL: 9348 break; 9349 9350 case TCPOPT_NOP: 9351 up++; 9352 continue; 9353 9354 case TCPOPT_MAXSEG: 9355 if (len < TCPOPT_MAXSEG_LEN || 9356 up[1] != TCPOPT_MAXSEG_LEN) 9357 break; 9358 9359 mss = BE16_TO_U16(up+2); 9360 /* Caller must handle tcp_mss_min and tcp_mss_max_* */ 9361 tcpopt->tcp_opt_mss = mss; 9362 found |= TCP_OPT_MSS_PRESENT; 9363 9364 up += TCPOPT_MAXSEG_LEN; 9365 continue; 9366 9367 case TCPOPT_WSCALE: 9368 if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN) 9369 break; 9370 9371 if (up[2] > TCP_MAX_WINSHIFT) 9372 tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT; 9373 else 9374 tcpopt->tcp_opt_wscale = up[2]; 9375 found |= TCP_OPT_WSCALE_PRESENT; 9376 9377 up += TCPOPT_WS_LEN; 9378 continue; 9379 9380 case TCPOPT_SACK_PERMITTED: 9381 if (len < TCPOPT_SACK_OK_LEN || 9382 up[1] != TCPOPT_SACK_OK_LEN) 9383 break; 9384 found |= TCP_OPT_SACK_OK_PRESENT; 9385 up += TCPOPT_SACK_OK_LEN; 9386 continue; 9387 9388 case TCPOPT_SACK: 9389 if (len <= 2 || up[1] <= 2 || len < up[1]) 9390 break; 9391 9392 /* If TCP is not interested in SACK blks... */ 9393 if ((tcp = tcpopt->tcp) == NULL) { 9394 up += up[1]; 9395 continue; 9396 } 9397 sack_len = up[1] - TCPOPT_HEADER_LEN; 9398 up += TCPOPT_HEADER_LEN; 9399 9400 /* 9401 * If the list is empty, allocate one and assume 9402 * nothing is sack'ed. 9403 */ 9404 ASSERT(tcp->tcp_sack_info != NULL); 9405 if (tcp->tcp_notsack_list == NULL) { 9406 tcp_notsack_update(&(tcp->tcp_notsack_list), 9407 tcp->tcp_suna, tcp->tcp_snxt, 9408 &(tcp->tcp_num_notsack_blk), 9409 &(tcp->tcp_cnt_notsack_list)); 9410 9411 /* 9412 * Make sure tcp_notsack_list is not NULL. 9413 * This happens when kmem_alloc(KM_NOSLEEP) 9414 * returns NULL. 9415 */ 9416 if (tcp->tcp_notsack_list == NULL) { 9417 up += sack_len; 9418 continue; 9419 } 9420 tcp->tcp_fack = tcp->tcp_suna; 9421 } 9422 9423 while (sack_len > 0) { 9424 if (up + 8 > endp) { 9425 up = endp; 9426 break; 9427 } 9428 sack_begin = BE32_TO_U32(up); 9429 up += 4; 9430 sack_end = BE32_TO_U32(up); 9431 up += 4; 9432 sack_len -= 8; 9433 /* 9434 * Bounds checking. Make sure the SACK 9435 * info is within tcp_suna and tcp_snxt. 9436 * If this SACK blk is out of bound, ignore 9437 * it but continue to parse the following 9438 * blks. 9439 */ 9440 if (SEQ_LEQ(sack_end, sack_begin) || 9441 SEQ_LT(sack_begin, tcp->tcp_suna) || 9442 SEQ_GT(sack_end, tcp->tcp_snxt)) { 9443 continue; 9444 } 9445 tcp_notsack_insert(&(tcp->tcp_notsack_list), 9446 sack_begin, sack_end, 9447 &(tcp->tcp_num_notsack_blk), 9448 &(tcp->tcp_cnt_notsack_list)); 9449 if (SEQ_GT(sack_end, tcp->tcp_fack)) { 9450 tcp->tcp_fack = sack_end; 9451 } 9452 } 9453 found |= TCP_OPT_SACK_PRESENT; 9454 continue; 9455 9456 case TCPOPT_TSTAMP: 9457 if (len < TCPOPT_TSTAMP_LEN || 9458 up[1] != TCPOPT_TSTAMP_LEN) 9459 break; 9460 9461 tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2); 9462 tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6); 9463 9464 found |= TCP_OPT_TSTAMP_PRESENT; 9465 9466 up += TCPOPT_TSTAMP_LEN; 9467 continue; 9468 9469 default: 9470 if (len <= 1 || len < (int)up[1] || up[1] == 0) 9471 break; 9472 up += up[1]; 9473 continue; 9474 } 9475 break; 9476 } 9477 return (found); 9478 } 9479 9480 /* 9481 * Set the mss associated with a particular tcp based on its current value, 9482 * and a new one passed in. Observe minimums and maximums, and reset 9483 * other state variables that we want to view as multiples of mss. 9484 * 9485 * This function is called in various places mainly because 9486 * 1) Various stuffs, tcp_mss, tcp_cwnd, ... need to be adjusted when the 9487 * other side's SYN/SYN-ACK packet arrives. 9488 * 2) PMTUd may get us a new MSS. 9489 * 3) If the other side stops sending us timestamp option, we need to 9490 * increase the MSS size to use the extra bytes available. 9491 */ 9492 static void 9493 tcp_mss_set(tcp_t *tcp, uint32_t mss) 9494 { 9495 uint32_t mss_max; 9496 9497 if (tcp->tcp_ipversion == IPV4_VERSION) 9498 mss_max = tcp_mss_max_ipv4; 9499 else 9500 mss_max = tcp_mss_max_ipv6; 9501 9502 if (mss < tcp_mss_min) 9503 mss = tcp_mss_min; 9504 if (mss > mss_max) 9505 mss = mss_max; 9506 /* 9507 * Unless naglim has been set by our client to 9508 * a non-mss value, force naglim to track mss. 9509 * This can help to aggregate small writes. 9510 */ 9511 if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim) 9512 tcp->tcp_naglim = mss; 9513 /* 9514 * TCP should be able to buffer at least 4 MSS data for obvious 9515 * performance reason. 9516 */ 9517 if ((mss << 2) > tcp->tcp_xmit_hiwater) 9518 tcp->tcp_xmit_hiwater = mss << 2; 9519 9520 /* 9521 * Check if we need to apply the tcp_init_cwnd here. If 9522 * it is set and the MSS gets bigger (should not happen 9523 * normally), we need to adjust the resulting tcp_cwnd properly. 9524 * The new tcp_cwnd should not get bigger. 9525 */ 9526 if (tcp->tcp_init_cwnd == 0) { 9527 tcp->tcp_cwnd = MIN(tcp_slow_start_initial * mss, 9528 MIN(4 * mss, MAX(2 * mss, 4380 / mss * mss))); 9529 } else { 9530 if (tcp->tcp_mss < mss) { 9531 tcp->tcp_cwnd = MAX(1, 9532 (tcp->tcp_init_cwnd * tcp->tcp_mss / mss)) * mss; 9533 } else { 9534 tcp->tcp_cwnd = tcp->tcp_init_cwnd * mss; 9535 } 9536 } 9537 tcp->tcp_mss = mss; 9538 tcp->tcp_cwnd_cnt = 0; 9539 (void) tcp_maxpsz_set(tcp, B_TRUE); 9540 } 9541 9542 static int 9543 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9544 { 9545 tcp_t *tcp = NULL; 9546 conn_t *connp; 9547 int err; 9548 dev_t conn_dev; 9549 zoneid_t zoneid = getzoneid(); 9550 9551 /* 9552 * Special case for install: miniroot needs to be able to access files 9553 * via NFS as though it were always in the global zone. 9554 */ 9555 if (credp == kcred && nfs_global_client_only != 0) 9556 zoneid = GLOBAL_ZONEID; 9557 9558 if (q->q_ptr != NULL) 9559 return (0); 9560 9561 if (sflag == MODOPEN) { 9562 /* 9563 * This is a special case. The purpose of a modopen 9564 * is to allow just the T_SVR4_OPTMGMT_REQ to pass 9565 * through for MIB browsers. Everything else is failed. 9566 */ 9567 connp = (conn_t *)tcp_get_conn(IP_SQUEUE_GET(lbolt)); 9568 9569 if (connp == NULL) 9570 return (ENOMEM); 9571 9572 connp->conn_flags |= IPCL_TCPMOD; 9573 connp->conn_cred = credp; 9574 connp->conn_zoneid = zoneid; 9575 q->q_ptr = WR(q)->q_ptr = connp; 9576 crhold(credp); 9577 q->q_qinfo = &tcp_mod_rinit; 9578 WR(q)->q_qinfo = &tcp_mod_winit; 9579 qprocson(q); 9580 return (0); 9581 } 9582 9583 if ((conn_dev = inet_minor_alloc(ip_minor_arena)) == 0) 9584 return (EBUSY); 9585 9586 *devp = makedevice(getemajor(*devp), (minor_t)conn_dev); 9587 9588 if (flag & SO_ACCEPTOR) { 9589 q->q_qinfo = &tcp_acceptor_rinit; 9590 q->q_ptr = (void *)conn_dev; 9591 WR(q)->q_qinfo = &tcp_acceptor_winit; 9592 WR(q)->q_ptr = (void *)conn_dev; 9593 qprocson(q); 9594 return (0); 9595 } 9596 9597 connp = (conn_t *)tcp_get_conn(IP_SQUEUE_GET(lbolt)); 9598 if (connp == NULL) { 9599 inet_minor_free(ip_minor_arena, conn_dev); 9600 q->q_ptr = NULL; 9601 return (ENOSR); 9602 } 9603 connp->conn_sqp = IP_SQUEUE_GET(lbolt); 9604 tcp = connp->conn_tcp; 9605 9606 q->q_ptr = WR(q)->q_ptr = connp; 9607 if (getmajor(*devp) == TCP6_MAJ) { 9608 connp->conn_flags |= (IPCL_TCP6|IPCL_ISV6); 9609 connp->conn_send = ip_output_v6; 9610 connp->conn_af_isv6 = B_TRUE; 9611 connp->conn_pkt_isv6 = B_TRUE; 9612 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 9613 tcp->tcp_ipversion = IPV6_VERSION; 9614 tcp->tcp_family = AF_INET6; 9615 tcp->tcp_mss = tcp_mss_def_ipv6; 9616 } else { 9617 connp->conn_flags |= IPCL_TCP4; 9618 connp->conn_send = ip_output; 9619 connp->conn_af_isv6 = B_FALSE; 9620 connp->conn_pkt_isv6 = B_FALSE; 9621 tcp->tcp_ipversion = IPV4_VERSION; 9622 tcp->tcp_family = AF_INET; 9623 tcp->tcp_mss = tcp_mss_def_ipv4; 9624 } 9625 9626 /* 9627 * TCP keeps a copy of cred for cache locality reasons but 9628 * we put a reference only once. If connp->conn_cred 9629 * becomes invalid, tcp_cred should also be set to NULL. 9630 */ 9631 tcp->tcp_cred = connp->conn_cred = credp; 9632 crhold(connp->conn_cred); 9633 tcp->tcp_cpid = curproc->p_pid; 9634 tcp->tcp_open_time = lbolt64; 9635 connp->conn_zoneid = zoneid; 9636 connp->conn_mlp_type = mlptSingle; 9637 connp->conn_ulp_labeled = !is_system_labeled(); 9638 9639 /* 9640 * If the caller has the process-wide flag set, then default to MAC 9641 * exempt mode. This allows read-down to unlabeled hosts. 9642 */ 9643 if (getpflags(NET_MAC_AWARE, credp) != 0) 9644 connp->conn_mac_exempt = B_TRUE; 9645 9646 connp->conn_dev = conn_dev; 9647 9648 ASSERT(q->q_qinfo == &tcp_rinit); 9649 ASSERT(WR(q)->q_qinfo == &tcp_winit); 9650 9651 if (flag & SO_SOCKSTR) { 9652 /* 9653 * No need to insert a socket in tcp acceptor hash. 9654 * If it was a socket acceptor stream, we dealt with 9655 * it above. A socket listener can never accept a 9656 * connection and doesn't need acceptor_id. 9657 */ 9658 connp->conn_flags |= IPCL_SOCKET; 9659 tcp->tcp_issocket = 1; 9660 WR(q)->q_qinfo = &tcp_sock_winit; 9661 } else { 9662 #ifdef _ILP32 9663 tcp->tcp_acceptor_id = (t_uscalar_t)RD(q); 9664 #else 9665 tcp->tcp_acceptor_id = conn_dev; 9666 #endif /* _ILP32 */ 9667 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 9668 } 9669 9670 if (tcp_trace) 9671 tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_SLEEP); 9672 9673 err = tcp_init(tcp, q); 9674 if (err != 0) { 9675 inet_minor_free(ip_minor_arena, connp->conn_dev); 9676 tcp_acceptor_hash_remove(tcp); 9677 CONN_DEC_REF(connp); 9678 q->q_ptr = WR(q)->q_ptr = NULL; 9679 return (err); 9680 } 9681 9682 RD(q)->q_hiwat = tcp_recv_hiwat; 9683 tcp->tcp_rwnd = tcp_recv_hiwat; 9684 9685 /* Non-zero default values */ 9686 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 9687 /* 9688 * Put the ref for TCP. Ref for IP was already put 9689 * by ipcl_conn_create. Also Make the conn_t globally 9690 * visible to walkers 9691 */ 9692 mutex_enter(&connp->conn_lock); 9693 CONN_INC_REF_LOCKED(connp); 9694 ASSERT(connp->conn_ref == 2); 9695 connp->conn_state_flags &= ~CONN_INCIPIENT; 9696 mutex_exit(&connp->conn_lock); 9697 9698 qprocson(q); 9699 return (0); 9700 } 9701 9702 /* 9703 * Some TCP options can be "set" by requesting them in the option 9704 * buffer. This is needed for XTI feature test though we do not 9705 * allow it in general. We interpret that this mechanism is more 9706 * applicable to OSI protocols and need not be allowed in general. 9707 * This routine filters out options for which it is not allowed (most) 9708 * and lets through those (few) for which it is. [ The XTI interface 9709 * test suite specifics will imply that any XTI_GENERIC level XTI_* if 9710 * ever implemented will have to be allowed here ]. 9711 */ 9712 static boolean_t 9713 tcp_allow_connopt_set(int level, int name) 9714 { 9715 9716 switch (level) { 9717 case IPPROTO_TCP: 9718 switch (name) { 9719 case TCP_NODELAY: 9720 return (B_TRUE); 9721 default: 9722 return (B_FALSE); 9723 } 9724 /*NOTREACHED*/ 9725 default: 9726 return (B_FALSE); 9727 } 9728 /*NOTREACHED*/ 9729 } 9730 9731 /* 9732 * This routine gets default values of certain options whose default 9733 * values are maintained by protocol specific code 9734 */ 9735 /* ARGSUSED */ 9736 int 9737 tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 9738 { 9739 int32_t *i1 = (int32_t *)ptr; 9740 9741 switch (level) { 9742 case IPPROTO_TCP: 9743 switch (name) { 9744 case TCP_NOTIFY_THRESHOLD: 9745 *i1 = tcp_ip_notify_interval; 9746 break; 9747 case TCP_ABORT_THRESHOLD: 9748 *i1 = tcp_ip_abort_interval; 9749 break; 9750 case TCP_CONN_NOTIFY_THRESHOLD: 9751 *i1 = tcp_ip_notify_cinterval; 9752 break; 9753 case TCP_CONN_ABORT_THRESHOLD: 9754 *i1 = tcp_ip_abort_cinterval; 9755 break; 9756 default: 9757 return (-1); 9758 } 9759 break; 9760 case IPPROTO_IP: 9761 switch (name) { 9762 case IP_TTL: 9763 *i1 = tcp_ipv4_ttl; 9764 break; 9765 default: 9766 return (-1); 9767 } 9768 break; 9769 case IPPROTO_IPV6: 9770 switch (name) { 9771 case IPV6_UNICAST_HOPS: 9772 *i1 = tcp_ipv6_hoplimit; 9773 break; 9774 default: 9775 return (-1); 9776 } 9777 break; 9778 default: 9779 return (-1); 9780 } 9781 return (sizeof (int)); 9782 } 9783 9784 9785 /* 9786 * TCP routine to get the values of options. 9787 */ 9788 int 9789 tcp_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 9790 { 9791 int *i1 = (int *)ptr; 9792 conn_t *connp = Q_TO_CONN(q); 9793 tcp_t *tcp = connp->conn_tcp; 9794 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 9795 9796 switch (level) { 9797 case SOL_SOCKET: 9798 switch (name) { 9799 case SO_LINGER: { 9800 struct linger *lgr = (struct linger *)ptr; 9801 9802 lgr->l_onoff = tcp->tcp_linger ? SO_LINGER : 0; 9803 lgr->l_linger = tcp->tcp_lingertime; 9804 } 9805 return (sizeof (struct linger)); 9806 case SO_DEBUG: 9807 *i1 = tcp->tcp_debug ? SO_DEBUG : 0; 9808 break; 9809 case SO_KEEPALIVE: 9810 *i1 = tcp->tcp_ka_enabled ? SO_KEEPALIVE : 0; 9811 break; 9812 case SO_DONTROUTE: 9813 *i1 = tcp->tcp_dontroute ? SO_DONTROUTE : 0; 9814 break; 9815 case SO_USELOOPBACK: 9816 *i1 = tcp->tcp_useloopback ? SO_USELOOPBACK : 0; 9817 break; 9818 case SO_BROADCAST: 9819 *i1 = tcp->tcp_broadcast ? SO_BROADCAST : 0; 9820 break; 9821 case SO_REUSEADDR: 9822 *i1 = tcp->tcp_reuseaddr ? SO_REUSEADDR : 0; 9823 break; 9824 case SO_OOBINLINE: 9825 *i1 = tcp->tcp_oobinline ? SO_OOBINLINE : 0; 9826 break; 9827 case SO_DGRAM_ERRIND: 9828 *i1 = tcp->tcp_dgram_errind ? SO_DGRAM_ERRIND : 0; 9829 break; 9830 case SO_TYPE: 9831 *i1 = SOCK_STREAM; 9832 break; 9833 case SO_SNDBUF: 9834 *i1 = tcp->tcp_xmit_hiwater; 9835 break; 9836 case SO_RCVBUF: 9837 *i1 = RD(q)->q_hiwat; 9838 break; 9839 case SO_SND_COPYAVOID: 9840 *i1 = tcp->tcp_snd_zcopy_on ? 9841 SO_SND_COPYAVOID : 0; 9842 break; 9843 case SO_ALLZONES: 9844 *i1 = connp->conn_allzones ? 1 : 0; 9845 break; 9846 case SO_ANON_MLP: 9847 *i1 = connp->conn_anon_mlp; 9848 break; 9849 case SO_MAC_EXEMPT: 9850 *i1 = connp->conn_mac_exempt; 9851 break; 9852 case SO_EXCLBIND: 9853 *i1 = tcp->tcp_exclbind ? SO_EXCLBIND : 0; 9854 break; 9855 case SO_PROTOTYPE: 9856 *i1 = IPPROTO_TCP; 9857 break; 9858 case SO_DOMAIN: 9859 *i1 = tcp->tcp_family; 9860 break; 9861 default: 9862 return (-1); 9863 } 9864 break; 9865 case IPPROTO_TCP: 9866 switch (name) { 9867 case TCP_NODELAY: 9868 *i1 = (tcp->tcp_naglim == 1) ? TCP_NODELAY : 0; 9869 break; 9870 case TCP_MAXSEG: 9871 *i1 = tcp->tcp_mss; 9872 break; 9873 case TCP_NOTIFY_THRESHOLD: 9874 *i1 = (int)tcp->tcp_first_timer_threshold; 9875 break; 9876 case TCP_ABORT_THRESHOLD: 9877 *i1 = tcp->tcp_second_timer_threshold; 9878 break; 9879 case TCP_CONN_NOTIFY_THRESHOLD: 9880 *i1 = tcp->tcp_first_ctimer_threshold; 9881 break; 9882 case TCP_CONN_ABORT_THRESHOLD: 9883 *i1 = tcp->tcp_second_ctimer_threshold; 9884 break; 9885 case TCP_RECVDSTADDR: 9886 *i1 = tcp->tcp_recvdstaddr; 9887 break; 9888 case TCP_ANONPRIVBIND: 9889 *i1 = tcp->tcp_anon_priv_bind; 9890 break; 9891 case TCP_EXCLBIND: 9892 *i1 = tcp->tcp_exclbind ? TCP_EXCLBIND : 0; 9893 break; 9894 case TCP_INIT_CWND: 9895 *i1 = tcp->tcp_init_cwnd; 9896 break; 9897 case TCP_KEEPALIVE_THRESHOLD: 9898 *i1 = tcp->tcp_ka_interval; 9899 break; 9900 case TCP_KEEPALIVE_ABORT_THRESHOLD: 9901 *i1 = tcp->tcp_ka_abort_thres; 9902 break; 9903 case TCP_CORK: 9904 *i1 = tcp->tcp_cork; 9905 break; 9906 default: 9907 return (-1); 9908 } 9909 break; 9910 case IPPROTO_IP: 9911 if (tcp->tcp_family != AF_INET) 9912 return (-1); 9913 switch (name) { 9914 case IP_OPTIONS: 9915 case T_IP_OPTIONS: { 9916 /* 9917 * This is compatible with BSD in that in only return 9918 * the reverse source route with the final destination 9919 * as the last entry. The first 4 bytes of the option 9920 * will contain the final destination. 9921 */ 9922 int opt_len; 9923 9924 opt_len = (char *)tcp->tcp_tcph - (char *)tcp->tcp_ipha; 9925 opt_len -= tcp->tcp_label_len + IP_SIMPLE_HDR_LENGTH; 9926 ASSERT(opt_len >= 0); 9927 /* Caller ensures enough space */ 9928 if (opt_len > 0) { 9929 /* 9930 * TODO: Do we have to handle getsockopt on an 9931 * initiator as well? 9932 */ 9933 return (ip_opt_get_user(tcp->tcp_ipha, ptr)); 9934 } 9935 return (0); 9936 } 9937 case IP_TOS: 9938 case T_IP_TOS: 9939 *i1 = (int)tcp->tcp_ipha->ipha_type_of_service; 9940 break; 9941 case IP_TTL: 9942 *i1 = (int)tcp->tcp_ipha->ipha_ttl; 9943 break; 9944 case IP_NEXTHOP: 9945 /* Handled at IP level */ 9946 return (-EINVAL); 9947 default: 9948 return (-1); 9949 } 9950 break; 9951 case IPPROTO_IPV6: 9952 /* 9953 * IPPROTO_IPV6 options are only supported for sockets 9954 * that are using IPv6 on the wire. 9955 */ 9956 if (tcp->tcp_ipversion != IPV6_VERSION) { 9957 return (-1); 9958 } 9959 switch (name) { 9960 case IPV6_UNICAST_HOPS: 9961 *i1 = (unsigned int) tcp->tcp_ip6h->ip6_hops; 9962 break; /* goto sizeof (int) option return */ 9963 case IPV6_BOUND_IF: 9964 /* Zero if not set */ 9965 *i1 = tcp->tcp_bound_if; 9966 break; /* goto sizeof (int) option return */ 9967 case IPV6_RECVPKTINFO: 9968 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) 9969 *i1 = 1; 9970 else 9971 *i1 = 0; 9972 break; /* goto sizeof (int) option return */ 9973 case IPV6_RECVTCLASS: 9974 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS) 9975 *i1 = 1; 9976 else 9977 *i1 = 0; 9978 break; /* goto sizeof (int) option return */ 9979 case IPV6_RECVHOPLIMIT: 9980 if (tcp->tcp_ipv6_recvancillary & 9981 TCP_IPV6_RECVHOPLIMIT) 9982 *i1 = 1; 9983 else 9984 *i1 = 0; 9985 break; /* goto sizeof (int) option return */ 9986 case IPV6_RECVHOPOPTS: 9987 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) 9988 *i1 = 1; 9989 else 9990 *i1 = 0; 9991 break; /* goto sizeof (int) option return */ 9992 case IPV6_RECVDSTOPTS: 9993 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVDSTOPTS) 9994 *i1 = 1; 9995 else 9996 *i1 = 0; 9997 break; /* goto sizeof (int) option return */ 9998 case _OLD_IPV6_RECVDSTOPTS: 9999 if (tcp->tcp_ipv6_recvancillary & 10000 TCP_OLD_IPV6_RECVDSTOPTS) 10001 *i1 = 1; 10002 else 10003 *i1 = 0; 10004 break; /* goto sizeof (int) option return */ 10005 case IPV6_RECVRTHDR: 10006 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) 10007 *i1 = 1; 10008 else 10009 *i1 = 0; 10010 break; /* goto sizeof (int) option return */ 10011 case IPV6_RECVRTHDRDSTOPTS: 10012 if (tcp->tcp_ipv6_recvancillary & 10013 TCP_IPV6_RECVRTDSTOPTS) 10014 *i1 = 1; 10015 else 10016 *i1 = 0; 10017 break; /* goto sizeof (int) option return */ 10018 case IPV6_PKTINFO: { 10019 /* XXX assumes that caller has room for max size! */ 10020 struct in6_pktinfo *pkti; 10021 10022 pkti = (struct in6_pktinfo *)ptr; 10023 if (ipp->ipp_fields & IPPF_IFINDEX) 10024 pkti->ipi6_ifindex = ipp->ipp_ifindex; 10025 else 10026 pkti->ipi6_ifindex = 0; 10027 if (ipp->ipp_fields & IPPF_ADDR) 10028 pkti->ipi6_addr = ipp->ipp_addr; 10029 else 10030 pkti->ipi6_addr = ipv6_all_zeros; 10031 return (sizeof (struct in6_pktinfo)); 10032 } 10033 case IPV6_TCLASS: 10034 if (ipp->ipp_fields & IPPF_TCLASS) 10035 *i1 = ipp->ipp_tclass; 10036 else 10037 *i1 = IPV6_FLOW_TCLASS( 10038 IPV6_DEFAULT_VERS_AND_FLOW); 10039 break; /* goto sizeof (int) option return */ 10040 case IPV6_NEXTHOP: { 10041 sin6_t *sin6 = (sin6_t *)ptr; 10042 10043 if (!(ipp->ipp_fields & IPPF_NEXTHOP)) 10044 return (0); 10045 *sin6 = sin6_null; 10046 sin6->sin6_family = AF_INET6; 10047 sin6->sin6_addr = ipp->ipp_nexthop; 10048 return (sizeof (sin6_t)); 10049 } 10050 case IPV6_HOPOPTS: 10051 if (!(ipp->ipp_fields & IPPF_HOPOPTS)) 10052 return (0); 10053 if (ipp->ipp_hopoptslen <= tcp->tcp_label_len) 10054 return (0); 10055 bcopy((char *)ipp->ipp_hopopts + tcp->tcp_label_len, 10056 ptr, ipp->ipp_hopoptslen - tcp->tcp_label_len); 10057 if (tcp->tcp_label_len > 0) { 10058 ptr[0] = ((char *)ipp->ipp_hopopts)[0]; 10059 ptr[1] = (ipp->ipp_hopoptslen - 10060 tcp->tcp_label_len + 7) / 8 - 1; 10061 } 10062 return (ipp->ipp_hopoptslen - tcp->tcp_label_len); 10063 case IPV6_RTHDRDSTOPTS: 10064 if (!(ipp->ipp_fields & IPPF_RTDSTOPTS)) 10065 return (0); 10066 bcopy(ipp->ipp_rtdstopts, ptr, ipp->ipp_rtdstoptslen); 10067 return (ipp->ipp_rtdstoptslen); 10068 case IPV6_RTHDR: 10069 if (!(ipp->ipp_fields & IPPF_RTHDR)) 10070 return (0); 10071 bcopy(ipp->ipp_rthdr, ptr, ipp->ipp_rthdrlen); 10072 return (ipp->ipp_rthdrlen); 10073 case IPV6_DSTOPTS: 10074 if (!(ipp->ipp_fields & IPPF_DSTOPTS)) 10075 return (0); 10076 bcopy(ipp->ipp_dstopts, ptr, ipp->ipp_dstoptslen); 10077 return (ipp->ipp_dstoptslen); 10078 case IPV6_SRC_PREFERENCES: 10079 return (ip6_get_src_preferences(connp, 10080 (uint32_t *)ptr)); 10081 case IPV6_PATHMTU: { 10082 struct ip6_mtuinfo *mtuinfo = (struct ip6_mtuinfo *)ptr; 10083 10084 if (tcp->tcp_state < TCPS_ESTABLISHED) 10085 return (-1); 10086 10087 return (ip_fill_mtuinfo(&connp->conn_remv6, 10088 connp->conn_fport, mtuinfo)); 10089 } 10090 default: 10091 return (-1); 10092 } 10093 break; 10094 default: 10095 return (-1); 10096 } 10097 return (sizeof (int)); 10098 } 10099 10100 /* 10101 * We declare as 'int' rather than 'void' to satisfy pfi_t arg requirements. 10102 * Parameters are assumed to be verified by the caller. 10103 */ 10104 /* ARGSUSED */ 10105 int 10106 tcp_opt_set(queue_t *q, uint_t optset_context, int level, int name, 10107 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 10108 void *thisdg_attrs, cred_t *cr, mblk_t *mblk) 10109 { 10110 conn_t *connp = Q_TO_CONN(q); 10111 tcp_t *tcp = connp->conn_tcp; 10112 int *i1 = (int *)invalp; 10113 boolean_t onoff = (*i1 == 0) ? 0 : 1; 10114 boolean_t checkonly; 10115 int reterr; 10116 10117 switch (optset_context) { 10118 case SETFN_OPTCOM_CHECKONLY: 10119 checkonly = B_TRUE; 10120 /* 10121 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 10122 * inlen != 0 implies value supplied and 10123 * we have to "pretend" to set it. 10124 * inlen == 0 implies that there is no 10125 * value part in T_CHECK request and just validation 10126 * done elsewhere should be enough, we just return here. 10127 */ 10128 if (inlen == 0) { 10129 *outlenp = 0; 10130 return (0); 10131 } 10132 break; 10133 case SETFN_OPTCOM_NEGOTIATE: 10134 checkonly = B_FALSE; 10135 break; 10136 case SETFN_UD_NEGOTIATE: /* error on conn-oriented transports ? */ 10137 case SETFN_CONN_NEGOTIATE: 10138 checkonly = B_FALSE; 10139 /* 10140 * Negotiating local and "association-related" options 10141 * from other (T_CONN_REQ, T_CONN_RES,T_UNITDATA_REQ) 10142 * primitives is allowed by XTI, but we choose 10143 * to not implement this style negotiation for Internet 10144 * protocols (We interpret it is a must for OSI world but 10145 * optional for Internet protocols) for all options. 10146 * [ Will do only for the few options that enable test 10147 * suites that our XTI implementation of this feature 10148 * works for transports that do allow it ] 10149 */ 10150 if (!tcp_allow_connopt_set(level, name)) { 10151 *outlenp = 0; 10152 return (EINVAL); 10153 } 10154 break; 10155 default: 10156 /* 10157 * We should never get here 10158 */ 10159 *outlenp = 0; 10160 return (EINVAL); 10161 } 10162 10163 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 10164 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 10165 10166 /* 10167 * For TCP, we should have no ancillary data sent down 10168 * (sendmsg isn't supported for SOCK_STREAM), so thisdg_attrs 10169 * has to be zero. 10170 */ 10171 ASSERT(thisdg_attrs == NULL); 10172 10173 /* 10174 * For fixed length options, no sanity check 10175 * of passed in length is done. It is assumed *_optcom_req() 10176 * routines do the right thing. 10177 */ 10178 10179 switch (level) { 10180 case SOL_SOCKET: 10181 switch (name) { 10182 case SO_LINGER: { 10183 struct linger *lgr = (struct linger *)invalp; 10184 10185 if (!checkonly) { 10186 if (lgr->l_onoff) { 10187 tcp->tcp_linger = 1; 10188 tcp->tcp_lingertime = lgr->l_linger; 10189 } else { 10190 tcp->tcp_linger = 0; 10191 tcp->tcp_lingertime = 0; 10192 } 10193 /* struct copy */ 10194 *(struct linger *)outvalp = *lgr; 10195 } else { 10196 if (!lgr->l_onoff) { 10197 ((struct linger *)outvalp)->l_onoff = 0; 10198 ((struct linger *)outvalp)->l_linger = 0; 10199 } else { 10200 /* struct copy */ 10201 *(struct linger *)outvalp = *lgr; 10202 } 10203 } 10204 *outlenp = sizeof (struct linger); 10205 return (0); 10206 } 10207 case SO_DEBUG: 10208 if (!checkonly) 10209 tcp->tcp_debug = onoff; 10210 break; 10211 case SO_KEEPALIVE: 10212 if (checkonly) { 10213 /* T_CHECK case */ 10214 break; 10215 } 10216 10217 if (!onoff) { 10218 if (tcp->tcp_ka_enabled) { 10219 if (tcp->tcp_ka_tid != 0) { 10220 (void) TCP_TIMER_CANCEL(tcp, 10221 tcp->tcp_ka_tid); 10222 tcp->tcp_ka_tid = 0; 10223 } 10224 tcp->tcp_ka_enabled = 0; 10225 } 10226 break; 10227 } 10228 if (!tcp->tcp_ka_enabled) { 10229 /* Crank up the keepalive timer */ 10230 tcp->tcp_ka_last_intrvl = 0; 10231 tcp->tcp_ka_tid = TCP_TIMER(tcp, 10232 tcp_keepalive_killer, 10233 MSEC_TO_TICK(tcp->tcp_ka_interval)); 10234 tcp->tcp_ka_enabled = 1; 10235 } 10236 break; 10237 case SO_DONTROUTE: 10238 /* 10239 * SO_DONTROUTE, SO_USELOOPBACK, and SO_BROADCAST are 10240 * only of interest to IP. We track them here only so 10241 * that we can report their current value. 10242 */ 10243 if (!checkonly) { 10244 tcp->tcp_dontroute = onoff; 10245 tcp->tcp_connp->conn_dontroute = onoff; 10246 } 10247 break; 10248 case SO_USELOOPBACK: 10249 if (!checkonly) { 10250 tcp->tcp_useloopback = onoff; 10251 tcp->tcp_connp->conn_loopback = onoff; 10252 } 10253 break; 10254 case SO_BROADCAST: 10255 if (!checkonly) { 10256 tcp->tcp_broadcast = onoff; 10257 tcp->tcp_connp->conn_broadcast = onoff; 10258 } 10259 break; 10260 case SO_REUSEADDR: 10261 if (!checkonly) { 10262 tcp->tcp_reuseaddr = onoff; 10263 tcp->tcp_connp->conn_reuseaddr = onoff; 10264 } 10265 break; 10266 case SO_OOBINLINE: 10267 if (!checkonly) 10268 tcp->tcp_oobinline = onoff; 10269 break; 10270 case SO_DGRAM_ERRIND: 10271 if (!checkonly) 10272 tcp->tcp_dgram_errind = onoff; 10273 break; 10274 case SO_SNDBUF: { 10275 tcp_t *peer_tcp; 10276 10277 if (*i1 > tcp_max_buf) { 10278 *outlenp = 0; 10279 return (ENOBUFS); 10280 } 10281 if (checkonly) 10282 break; 10283 10284 tcp->tcp_xmit_hiwater = *i1; 10285 if (tcp_snd_lowat_fraction != 0) 10286 tcp->tcp_xmit_lowater = 10287 tcp->tcp_xmit_hiwater / 10288 tcp_snd_lowat_fraction; 10289 (void) tcp_maxpsz_set(tcp, B_TRUE); 10290 /* 10291 * If we are flow-controlled, recheck the condition. 10292 * There are apps that increase SO_SNDBUF size when 10293 * flow-controlled (EWOULDBLOCK), and expect the flow 10294 * control condition to be lifted right away. 10295 * 10296 * For the fused tcp loopback case, in order to avoid 10297 * a race with the peer's tcp_fuse_rrw() we need to 10298 * hold its fuse_lock while accessing tcp_flow_stopped. 10299 */ 10300 peer_tcp = tcp->tcp_loopback_peer; 10301 ASSERT(!tcp->tcp_fused || peer_tcp != NULL); 10302 if (tcp->tcp_fused) 10303 mutex_enter(&peer_tcp->tcp_fuse_lock); 10304 10305 if (tcp->tcp_flow_stopped && 10306 TCP_UNSENT_BYTES(tcp) < tcp->tcp_xmit_hiwater) { 10307 tcp_clrqfull(tcp); 10308 } 10309 if (tcp->tcp_fused) 10310 mutex_exit(&peer_tcp->tcp_fuse_lock); 10311 break; 10312 } 10313 case SO_RCVBUF: 10314 if (*i1 > tcp_max_buf) { 10315 *outlenp = 0; 10316 return (ENOBUFS); 10317 } 10318 /* Silently ignore zero */ 10319 if (!checkonly && *i1 != 0) { 10320 *i1 = MSS_ROUNDUP(*i1, tcp->tcp_mss); 10321 (void) tcp_rwnd_set(tcp, *i1); 10322 } 10323 /* 10324 * XXX should we return the rwnd here 10325 * and tcp_opt_get ? 10326 */ 10327 break; 10328 case SO_SND_COPYAVOID: 10329 if (!checkonly) { 10330 /* we only allow enable at most once for now */ 10331 if (tcp->tcp_loopback || 10332 (!tcp->tcp_snd_zcopy_aware && 10333 (onoff != 1 || !tcp_zcopy_check(tcp)))) { 10334 *outlenp = 0; 10335 return (EOPNOTSUPP); 10336 } 10337 tcp->tcp_snd_zcopy_aware = 1; 10338 } 10339 break; 10340 case SO_ALLZONES: 10341 /* Handled at the IP level */ 10342 return (-EINVAL); 10343 case SO_ANON_MLP: 10344 if (!checkonly) { 10345 mutex_enter(&connp->conn_lock); 10346 connp->conn_anon_mlp = onoff; 10347 mutex_exit(&connp->conn_lock); 10348 } 10349 break; 10350 case SO_MAC_EXEMPT: 10351 if (secpolicy_net_mac_aware(cr) != 0 || 10352 IPCL_IS_BOUND(connp)) 10353 return (EACCES); 10354 if (!checkonly) { 10355 mutex_enter(&connp->conn_lock); 10356 connp->conn_mac_exempt = onoff; 10357 mutex_exit(&connp->conn_lock); 10358 } 10359 break; 10360 case SO_EXCLBIND: 10361 if (!checkonly) 10362 tcp->tcp_exclbind = onoff; 10363 break; 10364 default: 10365 *outlenp = 0; 10366 return (EINVAL); 10367 } 10368 break; 10369 case IPPROTO_TCP: 10370 switch (name) { 10371 case TCP_NODELAY: 10372 if (!checkonly) 10373 tcp->tcp_naglim = *i1 ? 1 : tcp->tcp_mss; 10374 break; 10375 case TCP_NOTIFY_THRESHOLD: 10376 if (!checkonly) 10377 tcp->tcp_first_timer_threshold = *i1; 10378 break; 10379 case TCP_ABORT_THRESHOLD: 10380 if (!checkonly) 10381 tcp->tcp_second_timer_threshold = *i1; 10382 break; 10383 case TCP_CONN_NOTIFY_THRESHOLD: 10384 if (!checkonly) 10385 tcp->tcp_first_ctimer_threshold = *i1; 10386 break; 10387 case TCP_CONN_ABORT_THRESHOLD: 10388 if (!checkonly) 10389 tcp->tcp_second_ctimer_threshold = *i1; 10390 break; 10391 case TCP_RECVDSTADDR: 10392 if (tcp->tcp_state > TCPS_LISTEN) 10393 return (EOPNOTSUPP); 10394 if (!checkonly) 10395 tcp->tcp_recvdstaddr = onoff; 10396 break; 10397 case TCP_ANONPRIVBIND: 10398 if ((reterr = secpolicy_net_privaddr(cr, 0)) != 0) { 10399 *outlenp = 0; 10400 return (reterr); 10401 } 10402 if (!checkonly) { 10403 tcp->tcp_anon_priv_bind = onoff; 10404 } 10405 break; 10406 case TCP_EXCLBIND: 10407 if (!checkonly) 10408 tcp->tcp_exclbind = onoff; 10409 break; /* goto sizeof (int) option return */ 10410 case TCP_INIT_CWND: { 10411 uint32_t init_cwnd = *((uint32_t *)invalp); 10412 10413 if (checkonly) 10414 break; 10415 10416 /* 10417 * Only allow socket with network configuration 10418 * privilege to set the initial cwnd to be larger 10419 * than allowed by RFC 3390. 10420 */ 10421 if (init_cwnd <= MIN(4, MAX(2, 4380 / tcp->tcp_mss))) { 10422 tcp->tcp_init_cwnd = init_cwnd; 10423 break; 10424 } 10425 if ((reterr = secpolicy_net_config(cr, B_TRUE)) != 0) { 10426 *outlenp = 0; 10427 return (reterr); 10428 } 10429 if (init_cwnd > TCP_MAX_INIT_CWND) { 10430 *outlenp = 0; 10431 return (EINVAL); 10432 } 10433 tcp->tcp_init_cwnd = init_cwnd; 10434 break; 10435 } 10436 case TCP_KEEPALIVE_THRESHOLD: 10437 if (checkonly) 10438 break; 10439 10440 if (*i1 < tcp_keepalive_interval_low || 10441 *i1 > tcp_keepalive_interval_high) { 10442 *outlenp = 0; 10443 return (EINVAL); 10444 } 10445 if (*i1 != tcp->tcp_ka_interval) { 10446 tcp->tcp_ka_interval = *i1; 10447 /* 10448 * Check if we need to restart the 10449 * keepalive timer. 10450 */ 10451 if (tcp->tcp_ka_tid != 0) { 10452 ASSERT(tcp->tcp_ka_enabled); 10453 (void) TCP_TIMER_CANCEL(tcp, 10454 tcp->tcp_ka_tid); 10455 tcp->tcp_ka_last_intrvl = 0; 10456 tcp->tcp_ka_tid = TCP_TIMER(tcp, 10457 tcp_keepalive_killer, 10458 MSEC_TO_TICK(tcp->tcp_ka_interval)); 10459 } 10460 } 10461 break; 10462 case TCP_KEEPALIVE_ABORT_THRESHOLD: 10463 if (!checkonly) { 10464 if (*i1 < tcp_keepalive_abort_interval_low || 10465 *i1 > tcp_keepalive_abort_interval_high) { 10466 *outlenp = 0; 10467 return (EINVAL); 10468 } 10469 tcp->tcp_ka_abort_thres = *i1; 10470 } 10471 break; 10472 case TCP_CORK: 10473 if (!checkonly) { 10474 /* 10475 * if tcp->tcp_cork was set and is now 10476 * being unset, we have to make sure that 10477 * the remaining data gets sent out. Also 10478 * unset tcp->tcp_cork so that tcp_wput_data() 10479 * can send data even if it is less than mss 10480 */ 10481 if (tcp->tcp_cork && onoff == 0 && 10482 tcp->tcp_unsent > 0) { 10483 tcp->tcp_cork = B_FALSE; 10484 tcp_wput_data(tcp, NULL, B_FALSE); 10485 } 10486 tcp->tcp_cork = onoff; 10487 } 10488 break; 10489 default: 10490 *outlenp = 0; 10491 return (EINVAL); 10492 } 10493 break; 10494 case IPPROTO_IP: 10495 if (tcp->tcp_family != AF_INET) { 10496 *outlenp = 0; 10497 return (ENOPROTOOPT); 10498 } 10499 switch (name) { 10500 case IP_OPTIONS: 10501 case T_IP_OPTIONS: 10502 reterr = tcp_opt_set_header(tcp, checkonly, 10503 invalp, inlen); 10504 if (reterr) { 10505 *outlenp = 0; 10506 return (reterr); 10507 } 10508 /* OK return - copy input buffer into output buffer */ 10509 if (invalp != outvalp) { 10510 /* don't trust bcopy for identical src/dst */ 10511 bcopy(invalp, outvalp, inlen); 10512 } 10513 *outlenp = inlen; 10514 return (0); 10515 case IP_TOS: 10516 case T_IP_TOS: 10517 if (!checkonly) { 10518 tcp->tcp_ipha->ipha_type_of_service = 10519 (uchar_t)*i1; 10520 tcp->tcp_tos = (uchar_t)*i1; 10521 } 10522 break; 10523 case IP_TTL: 10524 if (!checkonly) { 10525 tcp->tcp_ipha->ipha_ttl = (uchar_t)*i1; 10526 tcp->tcp_ttl = (uchar_t)*i1; 10527 } 10528 break; 10529 case IP_BOUND_IF: 10530 case IP_NEXTHOP: 10531 /* Handled at the IP level */ 10532 return (-EINVAL); 10533 case IP_SEC_OPT: 10534 /* 10535 * We should not allow policy setting after 10536 * we start listening for connections. 10537 */ 10538 if (tcp->tcp_state == TCPS_LISTEN) { 10539 return (EINVAL); 10540 } else { 10541 /* Handled at the IP level */ 10542 return (-EINVAL); 10543 } 10544 default: 10545 *outlenp = 0; 10546 return (EINVAL); 10547 } 10548 break; 10549 case IPPROTO_IPV6: { 10550 ip6_pkt_t *ipp; 10551 10552 /* 10553 * IPPROTO_IPV6 options are only supported for sockets 10554 * that are using IPv6 on the wire. 10555 */ 10556 if (tcp->tcp_ipversion != IPV6_VERSION) { 10557 *outlenp = 0; 10558 return (ENOPROTOOPT); 10559 } 10560 /* 10561 * Only sticky options; no ancillary data 10562 */ 10563 ASSERT(thisdg_attrs == NULL); 10564 ipp = &tcp->tcp_sticky_ipp; 10565 10566 switch (name) { 10567 case IPV6_UNICAST_HOPS: 10568 /* -1 means use default */ 10569 if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) { 10570 *outlenp = 0; 10571 return (EINVAL); 10572 } 10573 if (!checkonly) { 10574 if (*i1 == -1) { 10575 tcp->tcp_ip6h->ip6_hops = 10576 ipp->ipp_unicast_hops = 10577 (uint8_t)tcp_ipv6_hoplimit; 10578 ipp->ipp_fields &= ~IPPF_UNICAST_HOPS; 10579 /* Pass modified value to IP. */ 10580 *i1 = tcp->tcp_ip6h->ip6_hops; 10581 } else { 10582 tcp->tcp_ip6h->ip6_hops = 10583 ipp->ipp_unicast_hops = 10584 (uint8_t)*i1; 10585 ipp->ipp_fields |= IPPF_UNICAST_HOPS; 10586 } 10587 reterr = tcp_build_hdrs(q, tcp); 10588 if (reterr != 0) 10589 return (reterr); 10590 } 10591 break; 10592 case IPV6_BOUND_IF: 10593 if (!checkonly) { 10594 int error = 0; 10595 10596 tcp->tcp_bound_if = *i1; 10597 error = ip_opt_set_ill(tcp->tcp_connp, *i1, 10598 B_TRUE, checkonly, level, name, mblk); 10599 if (error != 0) { 10600 *outlenp = 0; 10601 return (error); 10602 } 10603 } 10604 break; 10605 /* 10606 * Set boolean switches for ancillary data delivery 10607 */ 10608 case IPV6_RECVPKTINFO: 10609 if (!checkonly) { 10610 if (onoff) 10611 tcp->tcp_ipv6_recvancillary |= 10612 TCP_IPV6_RECVPKTINFO; 10613 else 10614 tcp->tcp_ipv6_recvancillary &= 10615 ~TCP_IPV6_RECVPKTINFO; 10616 /* Force it to be sent up with the next msg */ 10617 tcp->tcp_recvifindex = 0; 10618 } 10619 break; 10620 case IPV6_RECVTCLASS: 10621 if (!checkonly) { 10622 if (onoff) 10623 tcp->tcp_ipv6_recvancillary |= 10624 TCP_IPV6_RECVTCLASS; 10625 else 10626 tcp->tcp_ipv6_recvancillary &= 10627 ~TCP_IPV6_RECVTCLASS; 10628 } 10629 break; 10630 case IPV6_RECVHOPLIMIT: 10631 if (!checkonly) { 10632 if (onoff) 10633 tcp->tcp_ipv6_recvancillary |= 10634 TCP_IPV6_RECVHOPLIMIT; 10635 else 10636 tcp->tcp_ipv6_recvancillary &= 10637 ~TCP_IPV6_RECVHOPLIMIT; 10638 /* Force it to be sent up with the next msg */ 10639 tcp->tcp_recvhops = 0xffffffffU; 10640 } 10641 break; 10642 case IPV6_RECVHOPOPTS: 10643 if (!checkonly) { 10644 if (onoff) 10645 tcp->tcp_ipv6_recvancillary |= 10646 TCP_IPV6_RECVHOPOPTS; 10647 else 10648 tcp->tcp_ipv6_recvancillary &= 10649 ~TCP_IPV6_RECVHOPOPTS; 10650 } 10651 break; 10652 case IPV6_RECVDSTOPTS: 10653 if (!checkonly) { 10654 if (onoff) 10655 tcp->tcp_ipv6_recvancillary |= 10656 TCP_IPV6_RECVDSTOPTS; 10657 else 10658 tcp->tcp_ipv6_recvancillary &= 10659 ~TCP_IPV6_RECVDSTOPTS; 10660 } 10661 break; 10662 case _OLD_IPV6_RECVDSTOPTS: 10663 if (!checkonly) { 10664 if (onoff) 10665 tcp->tcp_ipv6_recvancillary |= 10666 TCP_OLD_IPV6_RECVDSTOPTS; 10667 else 10668 tcp->tcp_ipv6_recvancillary &= 10669 ~TCP_OLD_IPV6_RECVDSTOPTS; 10670 } 10671 break; 10672 case IPV6_RECVRTHDR: 10673 if (!checkonly) { 10674 if (onoff) 10675 tcp->tcp_ipv6_recvancillary |= 10676 TCP_IPV6_RECVRTHDR; 10677 else 10678 tcp->tcp_ipv6_recvancillary &= 10679 ~TCP_IPV6_RECVRTHDR; 10680 } 10681 break; 10682 case IPV6_RECVRTHDRDSTOPTS: 10683 if (!checkonly) { 10684 if (onoff) 10685 tcp->tcp_ipv6_recvancillary |= 10686 TCP_IPV6_RECVRTDSTOPTS; 10687 else 10688 tcp->tcp_ipv6_recvancillary &= 10689 ~TCP_IPV6_RECVRTDSTOPTS; 10690 } 10691 break; 10692 case IPV6_PKTINFO: 10693 if (inlen != 0 && inlen != sizeof (struct in6_pktinfo)) 10694 return (EINVAL); 10695 if (checkonly) 10696 break; 10697 10698 if (inlen == 0) { 10699 ipp->ipp_fields &= ~(IPPF_IFINDEX|IPPF_ADDR); 10700 } else { 10701 struct in6_pktinfo *pkti; 10702 10703 pkti = (struct in6_pktinfo *)invalp; 10704 /* 10705 * RFC 3542 states that ipi6_addr must be 10706 * the unspecified address when setting the 10707 * IPV6_PKTINFO sticky socket option on a 10708 * TCP socket. 10709 */ 10710 if (!IN6_IS_ADDR_UNSPECIFIED(&pkti->ipi6_addr)) 10711 return (EINVAL); 10712 /* 10713 * ip6_set_pktinfo() validates the source 10714 * address and interface index. 10715 */ 10716 reterr = ip6_set_pktinfo(cr, tcp->tcp_connp, 10717 pkti, mblk); 10718 if (reterr != 0) 10719 return (reterr); 10720 ipp->ipp_ifindex = pkti->ipi6_ifindex; 10721 ipp->ipp_addr = pkti->ipi6_addr; 10722 if (ipp->ipp_ifindex != 0) 10723 ipp->ipp_fields |= IPPF_IFINDEX; 10724 else 10725 ipp->ipp_fields &= ~IPPF_IFINDEX; 10726 if (!IN6_IS_ADDR_UNSPECIFIED(&ipp->ipp_addr)) 10727 ipp->ipp_fields |= IPPF_ADDR; 10728 else 10729 ipp->ipp_fields &= ~IPPF_ADDR; 10730 } 10731 reterr = tcp_build_hdrs(q, tcp); 10732 if (reterr != 0) 10733 return (reterr); 10734 break; 10735 case IPV6_TCLASS: 10736 if (inlen != 0 && inlen != sizeof (int)) 10737 return (EINVAL); 10738 if (checkonly) 10739 break; 10740 10741 if (inlen == 0) { 10742 ipp->ipp_fields &= ~IPPF_TCLASS; 10743 } else { 10744 if (*i1 > 255 || *i1 < -1) 10745 return (EINVAL); 10746 if (*i1 == -1) { 10747 ipp->ipp_tclass = 0; 10748 *i1 = 0; 10749 } else { 10750 ipp->ipp_tclass = *i1; 10751 } 10752 ipp->ipp_fields |= IPPF_TCLASS; 10753 } 10754 reterr = tcp_build_hdrs(q, tcp); 10755 if (reterr != 0) 10756 return (reterr); 10757 break; 10758 case IPV6_NEXTHOP: 10759 /* 10760 * IP will verify that the nexthop is reachable 10761 * and fail for sticky options. 10762 */ 10763 if (inlen != 0 && inlen != sizeof (sin6_t)) 10764 return (EINVAL); 10765 if (checkonly) 10766 break; 10767 10768 if (inlen == 0) { 10769 ipp->ipp_fields &= ~IPPF_NEXTHOP; 10770 } else { 10771 sin6_t *sin6 = (sin6_t *)invalp; 10772 10773 if (sin6->sin6_family != AF_INET6) 10774 return (EAFNOSUPPORT); 10775 if (IN6_IS_ADDR_V4MAPPED( 10776 &sin6->sin6_addr)) 10777 return (EADDRNOTAVAIL); 10778 ipp->ipp_nexthop = sin6->sin6_addr; 10779 if (!IN6_IS_ADDR_UNSPECIFIED( 10780 &ipp->ipp_nexthop)) 10781 ipp->ipp_fields |= IPPF_NEXTHOP; 10782 else 10783 ipp->ipp_fields &= ~IPPF_NEXTHOP; 10784 } 10785 reterr = tcp_build_hdrs(q, tcp); 10786 if (reterr != 0) 10787 return (reterr); 10788 break; 10789 case IPV6_HOPOPTS: { 10790 ip6_hbh_t *hopts = (ip6_hbh_t *)invalp; 10791 10792 /* 10793 * Sanity checks - minimum size, size a multiple of 10794 * eight bytes, and matching size passed in. 10795 */ 10796 if (inlen != 0 && 10797 inlen != (8 * (hopts->ip6h_len + 1))) 10798 return (EINVAL); 10799 10800 if (checkonly) 10801 break; 10802 10803 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10804 (uchar_t **)&ipp->ipp_hopopts, 10805 &ipp->ipp_hopoptslen, tcp->tcp_label_len); 10806 if (reterr != 0) 10807 return (reterr); 10808 if (ipp->ipp_hopoptslen == 0) 10809 ipp->ipp_fields &= ~IPPF_HOPOPTS; 10810 else 10811 ipp->ipp_fields |= IPPF_HOPOPTS; 10812 reterr = tcp_build_hdrs(q, tcp); 10813 if (reterr != 0) 10814 return (reterr); 10815 break; 10816 } 10817 case IPV6_RTHDRDSTOPTS: { 10818 ip6_dest_t *dopts = (ip6_dest_t *)invalp; 10819 10820 /* 10821 * Sanity checks - minimum size, size a multiple of 10822 * eight bytes, and matching size passed in. 10823 */ 10824 if (inlen != 0 && 10825 inlen != (8 * (dopts->ip6d_len + 1))) 10826 return (EINVAL); 10827 10828 if (checkonly) 10829 break; 10830 10831 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10832 (uchar_t **)&ipp->ipp_rtdstopts, 10833 &ipp->ipp_rtdstoptslen, 0); 10834 if (reterr != 0) 10835 return (reterr); 10836 if (ipp->ipp_rtdstoptslen == 0) 10837 ipp->ipp_fields &= ~IPPF_RTDSTOPTS; 10838 else 10839 ipp->ipp_fields |= IPPF_RTDSTOPTS; 10840 reterr = tcp_build_hdrs(q, tcp); 10841 if (reterr != 0) 10842 return (reterr); 10843 break; 10844 } 10845 case IPV6_DSTOPTS: { 10846 ip6_dest_t *dopts = (ip6_dest_t *)invalp; 10847 10848 /* 10849 * Sanity checks - minimum size, size a multiple of 10850 * eight bytes, and matching size passed in. 10851 */ 10852 if (inlen != 0 && 10853 inlen != (8 * (dopts->ip6d_len + 1))) 10854 return (EINVAL); 10855 10856 if (checkonly) 10857 break; 10858 10859 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10860 (uchar_t **)&ipp->ipp_dstopts, 10861 &ipp->ipp_dstoptslen, 0); 10862 if (reterr != 0) 10863 return (reterr); 10864 if (ipp->ipp_dstoptslen == 0) 10865 ipp->ipp_fields &= ~IPPF_DSTOPTS; 10866 else 10867 ipp->ipp_fields |= IPPF_DSTOPTS; 10868 reterr = tcp_build_hdrs(q, tcp); 10869 if (reterr != 0) 10870 return (reterr); 10871 break; 10872 } 10873 case IPV6_RTHDR: { 10874 ip6_rthdr_t *rt = (ip6_rthdr_t *)invalp; 10875 10876 /* 10877 * Sanity checks - minimum size, size a multiple of 10878 * eight bytes, and matching size passed in. 10879 */ 10880 if (inlen != 0 && 10881 inlen != (8 * (rt->ip6r_len + 1))) 10882 return (EINVAL); 10883 10884 if (checkonly) 10885 break; 10886 10887 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10888 (uchar_t **)&ipp->ipp_rthdr, 10889 &ipp->ipp_rthdrlen, 0); 10890 if (reterr != 0) 10891 return (reterr); 10892 if (ipp->ipp_rthdrlen == 0) 10893 ipp->ipp_fields &= ~IPPF_RTHDR; 10894 else 10895 ipp->ipp_fields |= IPPF_RTHDR; 10896 reterr = tcp_build_hdrs(q, tcp); 10897 if (reterr != 0) 10898 return (reterr); 10899 break; 10900 } 10901 case IPV6_V6ONLY: 10902 if (!checkonly) 10903 tcp->tcp_connp->conn_ipv6_v6only = onoff; 10904 break; 10905 case IPV6_USE_MIN_MTU: 10906 if (inlen != sizeof (int)) 10907 return (EINVAL); 10908 10909 if (*i1 < -1 || *i1 > 1) 10910 return (EINVAL); 10911 10912 if (checkonly) 10913 break; 10914 10915 ipp->ipp_fields |= IPPF_USE_MIN_MTU; 10916 ipp->ipp_use_min_mtu = *i1; 10917 break; 10918 case IPV6_BOUND_PIF: 10919 /* Handled at the IP level */ 10920 return (-EINVAL); 10921 case IPV6_SEC_OPT: 10922 /* 10923 * We should not allow policy setting after 10924 * we start listening for connections. 10925 */ 10926 if (tcp->tcp_state == TCPS_LISTEN) { 10927 return (EINVAL); 10928 } else { 10929 /* Handled at the IP level */ 10930 return (-EINVAL); 10931 } 10932 case IPV6_SRC_PREFERENCES: 10933 if (inlen != sizeof (uint32_t)) 10934 return (EINVAL); 10935 reterr = ip6_set_src_preferences(tcp->tcp_connp, 10936 *(uint32_t *)invalp); 10937 if (reterr != 0) { 10938 *outlenp = 0; 10939 return (reterr); 10940 } 10941 break; 10942 default: 10943 *outlenp = 0; 10944 return (EINVAL); 10945 } 10946 break; 10947 } /* end IPPROTO_IPV6 */ 10948 default: 10949 *outlenp = 0; 10950 return (EINVAL); 10951 } 10952 /* 10953 * Common case of OK return with outval same as inval 10954 */ 10955 if (invalp != outvalp) { 10956 /* don't trust bcopy for identical src/dst */ 10957 (void) bcopy(invalp, outvalp, inlen); 10958 } 10959 *outlenp = inlen; 10960 return (0); 10961 } 10962 10963 /* 10964 * Update tcp_sticky_hdrs based on tcp_sticky_ipp. 10965 * The headers include ip6i_t (if needed), ip6_t, any sticky extension 10966 * headers, and the maximum size tcp header (to avoid reallocation 10967 * on the fly for additional tcp options). 10968 * Returns failure if can't allocate memory. 10969 */ 10970 static int 10971 tcp_build_hdrs(queue_t *q, tcp_t *tcp) 10972 { 10973 char *hdrs; 10974 uint_t hdrs_len; 10975 ip6i_t *ip6i; 10976 char buf[TCP_MAX_HDR_LENGTH]; 10977 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 10978 in6_addr_t src, dst; 10979 10980 /* 10981 * save the existing tcp header and source/dest IP addresses 10982 */ 10983 bcopy(tcp->tcp_tcph, buf, tcp->tcp_tcp_hdr_len); 10984 src = tcp->tcp_ip6h->ip6_src; 10985 dst = tcp->tcp_ip6h->ip6_dst; 10986 hdrs_len = ip_total_hdrs_len_v6(ipp) + TCP_MAX_HDR_LENGTH; 10987 ASSERT(hdrs_len != 0); 10988 if (hdrs_len > tcp->tcp_iphc_len) { 10989 /* Need to reallocate */ 10990 hdrs = kmem_zalloc(hdrs_len, KM_NOSLEEP); 10991 if (hdrs == NULL) 10992 return (ENOMEM); 10993 if (tcp->tcp_iphc != NULL) { 10994 if (tcp->tcp_hdr_grown) { 10995 kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len); 10996 } else { 10997 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 10998 kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc); 10999 } 11000 tcp->tcp_iphc_len = 0; 11001 } 11002 ASSERT(tcp->tcp_iphc_len == 0); 11003 tcp->tcp_iphc = hdrs; 11004 tcp->tcp_iphc_len = hdrs_len; 11005 tcp->tcp_hdr_grown = B_TRUE; 11006 } 11007 ip_build_hdrs_v6((uchar_t *)tcp->tcp_iphc, 11008 hdrs_len - TCP_MAX_HDR_LENGTH, ipp, IPPROTO_TCP); 11009 11010 /* Set header fields not in ipp */ 11011 if (ipp->ipp_fields & IPPF_HAS_IP6I) { 11012 ip6i = (ip6i_t *)tcp->tcp_iphc; 11013 tcp->tcp_ip6h = (ip6_t *)&ip6i[1]; 11014 } else { 11015 tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc; 11016 } 11017 /* 11018 * tcp->tcp_ip_hdr_len will include ip6i_t if there is one. 11019 * 11020 * tcp->tcp_tcp_hdr_len doesn't change here. 11021 */ 11022 tcp->tcp_ip_hdr_len = hdrs_len - TCP_MAX_HDR_LENGTH; 11023 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + tcp->tcp_ip_hdr_len); 11024 tcp->tcp_hdr_len = tcp->tcp_ip_hdr_len + tcp->tcp_tcp_hdr_len; 11025 11026 bcopy(buf, tcp->tcp_tcph, tcp->tcp_tcp_hdr_len); 11027 11028 tcp->tcp_ip6h->ip6_src = src; 11029 tcp->tcp_ip6h->ip6_dst = dst; 11030 11031 /* 11032 * If the hop limit was not set by ip_build_hdrs_v6(), set it to 11033 * the default value for TCP. 11034 */ 11035 if (!(ipp->ipp_fields & IPPF_UNICAST_HOPS)) 11036 tcp->tcp_ip6h->ip6_hops = tcp_ipv6_hoplimit; 11037 11038 /* 11039 * If we're setting extension headers after a connection 11040 * has been established, and if we have a routing header 11041 * among the extension headers, call ip_massage_options_v6 to 11042 * manipulate the routing header/ip6_dst set the checksum 11043 * difference in the tcp header template. 11044 * (This happens in tcp_connect_ipv6 if the routing header 11045 * is set prior to the connect.) 11046 * Set the tcp_sum to zero first in case we've cleared a 11047 * routing header or don't have one at all. 11048 */ 11049 tcp->tcp_sum = 0; 11050 if ((tcp->tcp_state >= TCPS_SYN_SENT) && 11051 (tcp->tcp_ipp_fields & IPPF_RTHDR)) { 11052 ip6_rthdr_t *rth = ip_find_rthdr_v6(tcp->tcp_ip6h, 11053 (uint8_t *)tcp->tcp_tcph); 11054 if (rth != NULL) { 11055 tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, 11056 rth); 11057 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 11058 (tcp->tcp_sum >> 16)); 11059 } 11060 } 11061 11062 /* Try to get everything in a single mblk */ 11063 (void) mi_set_sth_wroff(RD(q), hdrs_len + tcp_wroff_xtra); 11064 return (0); 11065 } 11066 11067 /* 11068 * Transfer any source route option from ipha to buf/dst in reversed form. 11069 */ 11070 static int 11071 tcp_opt_rev_src_route(ipha_t *ipha, char *buf, uchar_t *dst) 11072 { 11073 ipoptp_t opts; 11074 uchar_t *opt; 11075 uint8_t optval; 11076 uint8_t optlen; 11077 uint32_t len = 0; 11078 11079 for (optval = ipoptp_first(&opts, ipha); 11080 optval != IPOPT_EOL; 11081 optval = ipoptp_next(&opts)) { 11082 opt = opts.ipoptp_cur; 11083 optlen = opts.ipoptp_len; 11084 switch (optval) { 11085 int off1, off2; 11086 case IPOPT_SSRR: 11087 case IPOPT_LSRR: 11088 11089 /* Reverse source route */ 11090 /* 11091 * First entry should be the next to last one in the 11092 * current source route (the last entry is our 11093 * address.) 11094 * The last entry should be the final destination. 11095 */ 11096 buf[IPOPT_OPTVAL] = (uint8_t)optval; 11097 buf[IPOPT_OLEN] = (uint8_t)optlen; 11098 off1 = IPOPT_MINOFF_SR - 1; 11099 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 11100 if (off2 < 0) { 11101 /* No entries in source route */ 11102 break; 11103 } 11104 bcopy(opt + off2, dst, IP_ADDR_LEN); 11105 /* 11106 * Note: use src since ipha has not had its src 11107 * and dst reversed (it is in the state it was 11108 * received. 11109 */ 11110 bcopy(&ipha->ipha_src, buf + off2, 11111 IP_ADDR_LEN); 11112 off2 -= IP_ADDR_LEN; 11113 11114 while (off2 > 0) { 11115 bcopy(opt + off2, buf + off1, 11116 IP_ADDR_LEN); 11117 off1 += IP_ADDR_LEN; 11118 off2 -= IP_ADDR_LEN; 11119 } 11120 buf[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 11121 buf += optlen; 11122 len += optlen; 11123 break; 11124 } 11125 } 11126 done: 11127 /* Pad the resulting options */ 11128 while (len & 0x3) { 11129 *buf++ = IPOPT_EOL; 11130 len++; 11131 } 11132 return (len); 11133 } 11134 11135 11136 /* 11137 * Extract and revert a source route from ipha (if any) 11138 * and then update the relevant fields in both tcp_t and the standard header. 11139 */ 11140 static void 11141 tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha) 11142 { 11143 char buf[TCP_MAX_HDR_LENGTH]; 11144 uint_t tcph_len; 11145 int len; 11146 11147 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION); 11148 len = IPH_HDR_LENGTH(ipha); 11149 if (len == IP_SIMPLE_HDR_LENGTH) 11150 /* Nothing to do */ 11151 return; 11152 if (len > IP_SIMPLE_HDR_LENGTH + TCP_MAX_IP_OPTIONS_LENGTH || 11153 (len & 0x3)) 11154 return; 11155 11156 tcph_len = tcp->tcp_tcp_hdr_len; 11157 bcopy(tcp->tcp_tcph, buf, tcph_len); 11158 tcp->tcp_sum = (tcp->tcp_ipha->ipha_dst >> 16) + 11159 (tcp->tcp_ipha->ipha_dst & 0xffff); 11160 len = tcp_opt_rev_src_route(ipha, (char *)tcp->tcp_ipha + 11161 IP_SIMPLE_HDR_LENGTH, (uchar_t *)&tcp->tcp_ipha->ipha_dst); 11162 len += IP_SIMPLE_HDR_LENGTH; 11163 tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) + 11164 (tcp->tcp_ipha->ipha_dst & 0xffff)); 11165 if ((int)tcp->tcp_sum < 0) 11166 tcp->tcp_sum--; 11167 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 11168 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16)); 11169 tcp->tcp_tcph = (tcph_t *)((char *)tcp->tcp_ipha + len); 11170 bcopy(buf, tcp->tcp_tcph, tcph_len); 11171 tcp->tcp_ip_hdr_len = len; 11172 tcp->tcp_ipha->ipha_version_and_hdr_length = 11173 (IP_VERSION << 4) | (len >> 2); 11174 len += tcph_len; 11175 tcp->tcp_hdr_len = len; 11176 } 11177 11178 /* 11179 * Copy the standard header into its new location, 11180 * lay in the new options and then update the relevant 11181 * fields in both tcp_t and the standard header. 11182 */ 11183 static int 11184 tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, uchar_t *ptr, uint_t len) 11185 { 11186 uint_t tcph_len; 11187 uint8_t *ip_optp; 11188 tcph_t *new_tcph; 11189 11190 if ((len > TCP_MAX_IP_OPTIONS_LENGTH) || (len & 0x3)) 11191 return (EINVAL); 11192 11193 if (len > IP_MAX_OPT_LENGTH - tcp->tcp_label_len) 11194 return (EINVAL); 11195 11196 if (checkonly) { 11197 /* 11198 * do not really set, just pretend to - T_CHECK 11199 */ 11200 return (0); 11201 } 11202 11203 ip_optp = (uint8_t *)tcp->tcp_ipha + IP_SIMPLE_HDR_LENGTH; 11204 if (tcp->tcp_label_len > 0) { 11205 int padlen; 11206 uint8_t opt; 11207 11208 /* convert list termination to no-ops */ 11209 padlen = tcp->tcp_label_len - ip_optp[IPOPT_OLEN]; 11210 ip_optp += ip_optp[IPOPT_OLEN]; 11211 opt = len > 0 ? IPOPT_NOP : IPOPT_EOL; 11212 while (--padlen >= 0) 11213 *ip_optp++ = opt; 11214 } 11215 tcph_len = tcp->tcp_tcp_hdr_len; 11216 new_tcph = (tcph_t *)(ip_optp + len); 11217 ovbcopy(tcp->tcp_tcph, new_tcph, tcph_len); 11218 tcp->tcp_tcph = new_tcph; 11219 bcopy(ptr, ip_optp, len); 11220 11221 len += IP_SIMPLE_HDR_LENGTH + tcp->tcp_label_len; 11222 11223 tcp->tcp_ip_hdr_len = len; 11224 tcp->tcp_ipha->ipha_version_and_hdr_length = 11225 (IP_VERSION << 4) | (len >> 2); 11226 tcp->tcp_hdr_len = len + tcph_len; 11227 if (!TCP_IS_DETACHED(tcp)) { 11228 /* Always allocate room for all options. */ 11229 (void) mi_set_sth_wroff(tcp->tcp_rq, 11230 TCP_MAX_COMBINED_HEADER_LENGTH + tcp_wroff_xtra); 11231 } 11232 return (0); 11233 } 11234 11235 /* Get callback routine passed to nd_load by tcp_param_register */ 11236 /* ARGSUSED */ 11237 static int 11238 tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 11239 { 11240 tcpparam_t *tcppa = (tcpparam_t *)cp; 11241 11242 (void) mi_mpprintf(mp, "%u", tcppa->tcp_param_val); 11243 return (0); 11244 } 11245 11246 /* 11247 * Walk through the param array specified registering each element with the 11248 * named dispatch handler. 11249 */ 11250 static boolean_t 11251 tcp_param_register(tcpparam_t *tcppa, int cnt) 11252 { 11253 for (; cnt-- > 0; tcppa++) { 11254 if (tcppa->tcp_param_name && tcppa->tcp_param_name[0]) { 11255 if (!nd_load(&tcp_g_nd, tcppa->tcp_param_name, 11256 tcp_param_get, tcp_param_set, 11257 (caddr_t)tcppa)) { 11258 nd_free(&tcp_g_nd); 11259 return (B_FALSE); 11260 } 11261 } 11262 } 11263 if (!nd_load(&tcp_g_nd, tcp_wroff_xtra_param.tcp_param_name, 11264 tcp_param_get, tcp_param_set_aligned, 11265 (caddr_t)&tcp_wroff_xtra_param)) { 11266 nd_free(&tcp_g_nd); 11267 return (B_FALSE); 11268 } 11269 if (!nd_load(&tcp_g_nd, tcp_mdt_head_param.tcp_param_name, 11270 tcp_param_get, tcp_param_set_aligned, 11271 (caddr_t)&tcp_mdt_head_param)) { 11272 nd_free(&tcp_g_nd); 11273 return (B_FALSE); 11274 } 11275 if (!nd_load(&tcp_g_nd, tcp_mdt_tail_param.tcp_param_name, 11276 tcp_param_get, tcp_param_set_aligned, 11277 (caddr_t)&tcp_mdt_tail_param)) { 11278 nd_free(&tcp_g_nd); 11279 return (B_FALSE); 11280 } 11281 if (!nd_load(&tcp_g_nd, tcp_mdt_max_pbufs_param.tcp_param_name, 11282 tcp_param_get, tcp_param_set, 11283 (caddr_t)&tcp_mdt_max_pbufs_param)) { 11284 nd_free(&tcp_g_nd); 11285 return (B_FALSE); 11286 } 11287 if (!nd_load(&tcp_g_nd, "tcp_extra_priv_ports", 11288 tcp_extra_priv_ports_get, NULL, NULL)) { 11289 nd_free(&tcp_g_nd); 11290 return (B_FALSE); 11291 } 11292 if (!nd_load(&tcp_g_nd, "tcp_extra_priv_ports_add", 11293 NULL, tcp_extra_priv_ports_add, NULL)) { 11294 nd_free(&tcp_g_nd); 11295 return (B_FALSE); 11296 } 11297 if (!nd_load(&tcp_g_nd, "tcp_extra_priv_ports_del", 11298 NULL, tcp_extra_priv_ports_del, NULL)) { 11299 nd_free(&tcp_g_nd); 11300 return (B_FALSE); 11301 } 11302 if (!nd_load(&tcp_g_nd, "tcp_status", tcp_status_report, NULL, 11303 NULL)) { 11304 nd_free(&tcp_g_nd); 11305 return (B_FALSE); 11306 } 11307 if (!nd_load(&tcp_g_nd, "tcp_bind_hash", tcp_bind_hash_report, 11308 NULL, NULL)) { 11309 nd_free(&tcp_g_nd); 11310 return (B_FALSE); 11311 } 11312 if (!nd_load(&tcp_g_nd, "tcp_listen_hash", tcp_listen_hash_report, 11313 NULL, NULL)) { 11314 nd_free(&tcp_g_nd); 11315 return (B_FALSE); 11316 } 11317 if (!nd_load(&tcp_g_nd, "tcp_conn_hash", tcp_conn_hash_report, 11318 NULL, NULL)) { 11319 nd_free(&tcp_g_nd); 11320 return (B_FALSE); 11321 } 11322 if (!nd_load(&tcp_g_nd, "tcp_acceptor_hash", tcp_acceptor_hash_report, 11323 NULL, NULL)) { 11324 nd_free(&tcp_g_nd); 11325 return (B_FALSE); 11326 } 11327 if (!nd_load(&tcp_g_nd, "tcp_host_param", tcp_host_param_report, 11328 tcp_host_param_set, NULL)) { 11329 nd_free(&tcp_g_nd); 11330 return (B_FALSE); 11331 } 11332 if (!nd_load(&tcp_g_nd, "tcp_host_param_ipv6", tcp_host_param_report, 11333 tcp_host_param_set_ipv6, NULL)) { 11334 nd_free(&tcp_g_nd); 11335 return (B_FALSE); 11336 } 11337 if (!nd_load(&tcp_g_nd, "tcp_1948_phrase", NULL, tcp_1948_phrase_set, 11338 NULL)) { 11339 nd_free(&tcp_g_nd); 11340 return (B_FALSE); 11341 } 11342 if (!nd_load(&tcp_g_nd, "tcp_reserved_port_list", 11343 tcp_reserved_port_list, NULL, NULL)) { 11344 nd_free(&tcp_g_nd); 11345 return (B_FALSE); 11346 } 11347 /* 11348 * Dummy ndd variables - only to convey obsolescence information 11349 * through printing of their name (no get or set routines) 11350 * XXX Remove in future releases ? 11351 */ 11352 if (!nd_load(&tcp_g_nd, 11353 "tcp_close_wait_interval(obsoleted - " 11354 "use tcp_time_wait_interval)", NULL, NULL, NULL)) { 11355 nd_free(&tcp_g_nd); 11356 return (B_FALSE); 11357 } 11358 return (B_TRUE); 11359 } 11360 11361 /* ndd set routine for tcp_wroff_xtra, tcp_mdt_hdr_{head,tail}_min. */ 11362 /* ARGSUSED */ 11363 static int 11364 tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 11365 cred_t *cr) 11366 { 11367 long new_value; 11368 tcpparam_t *tcppa = (tcpparam_t *)cp; 11369 11370 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11371 new_value < tcppa->tcp_param_min || 11372 new_value > tcppa->tcp_param_max) { 11373 return (EINVAL); 11374 } 11375 /* 11376 * Need to make sure new_value is a multiple of 4. If it is not, 11377 * round it up. For future 64 bit requirement, we actually make it 11378 * a multiple of 8. 11379 */ 11380 if (new_value & 0x7) { 11381 new_value = (new_value & ~0x7) + 0x8; 11382 } 11383 tcppa->tcp_param_val = new_value; 11384 return (0); 11385 } 11386 11387 /* Set callback routine passed to nd_load by tcp_param_register */ 11388 /* ARGSUSED */ 11389 static int 11390 tcp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) 11391 { 11392 long new_value; 11393 tcpparam_t *tcppa = (tcpparam_t *)cp; 11394 11395 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11396 new_value < tcppa->tcp_param_min || 11397 new_value > tcppa->tcp_param_max) { 11398 return (EINVAL); 11399 } 11400 tcppa->tcp_param_val = new_value; 11401 return (0); 11402 } 11403 11404 /* 11405 * Add a new piece to the tcp reassembly queue. If the gap at the beginning 11406 * is filled, return as much as we can. The message passed in may be 11407 * multi-part, chained using b_cont. "start" is the starting sequence 11408 * number for this piece. 11409 */ 11410 static mblk_t * 11411 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start) 11412 { 11413 uint32_t end; 11414 mblk_t *mp1; 11415 mblk_t *mp2; 11416 mblk_t *next_mp; 11417 uint32_t u1; 11418 11419 /* Walk through all the new pieces. */ 11420 do { 11421 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 11422 (uintptr_t)INT_MAX); 11423 end = start + (int)(mp->b_wptr - mp->b_rptr); 11424 next_mp = mp->b_cont; 11425 if (start == end) { 11426 /* Empty. Blast it. */ 11427 freeb(mp); 11428 continue; 11429 } 11430 mp->b_cont = NULL; 11431 TCP_REASS_SET_SEQ(mp, start); 11432 TCP_REASS_SET_END(mp, end); 11433 mp1 = tcp->tcp_reass_tail; 11434 if (!mp1) { 11435 tcp->tcp_reass_tail = mp; 11436 tcp->tcp_reass_head = mp; 11437 BUMP_MIB(&tcp_mib, tcpInDataUnorderSegs); 11438 UPDATE_MIB(&tcp_mib, 11439 tcpInDataUnorderBytes, end - start); 11440 continue; 11441 } 11442 /* New stuff completely beyond tail? */ 11443 if (SEQ_GEQ(start, TCP_REASS_END(mp1))) { 11444 /* Link it on end. */ 11445 mp1->b_cont = mp; 11446 tcp->tcp_reass_tail = mp; 11447 BUMP_MIB(&tcp_mib, tcpInDataUnorderSegs); 11448 UPDATE_MIB(&tcp_mib, 11449 tcpInDataUnorderBytes, end - start); 11450 continue; 11451 } 11452 mp1 = tcp->tcp_reass_head; 11453 u1 = TCP_REASS_SEQ(mp1); 11454 /* New stuff at the front? */ 11455 if (SEQ_LT(start, u1)) { 11456 /* Yes... Check for overlap. */ 11457 mp->b_cont = mp1; 11458 tcp->tcp_reass_head = mp; 11459 tcp_reass_elim_overlap(tcp, mp); 11460 continue; 11461 } 11462 /* 11463 * The new piece fits somewhere between the head and tail. 11464 * We find our slot, where mp1 precedes us and mp2 trails. 11465 */ 11466 for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) { 11467 u1 = TCP_REASS_SEQ(mp2); 11468 if (SEQ_LEQ(start, u1)) 11469 break; 11470 } 11471 /* Link ourselves in */ 11472 mp->b_cont = mp2; 11473 mp1->b_cont = mp; 11474 11475 /* Trim overlap with following mblk(s) first */ 11476 tcp_reass_elim_overlap(tcp, mp); 11477 11478 /* Trim overlap with preceding mblk */ 11479 tcp_reass_elim_overlap(tcp, mp1); 11480 11481 } while (start = end, mp = next_mp); 11482 mp1 = tcp->tcp_reass_head; 11483 /* Anything ready to go? */ 11484 if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt) 11485 return (NULL); 11486 /* Eat what we can off the queue */ 11487 for (;;) { 11488 mp = mp1->b_cont; 11489 end = TCP_REASS_END(mp1); 11490 TCP_REASS_SET_SEQ(mp1, 0); 11491 TCP_REASS_SET_END(mp1, 0); 11492 if (!mp) { 11493 tcp->tcp_reass_tail = NULL; 11494 break; 11495 } 11496 if (end != TCP_REASS_SEQ(mp)) { 11497 mp1->b_cont = NULL; 11498 break; 11499 } 11500 mp1 = mp; 11501 } 11502 mp1 = tcp->tcp_reass_head; 11503 tcp->tcp_reass_head = mp; 11504 return (mp1); 11505 } 11506 11507 /* Eliminate any overlap that mp may have over later mblks */ 11508 static void 11509 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp) 11510 { 11511 uint32_t end; 11512 mblk_t *mp1; 11513 uint32_t u1; 11514 11515 end = TCP_REASS_END(mp); 11516 while ((mp1 = mp->b_cont) != NULL) { 11517 u1 = TCP_REASS_SEQ(mp1); 11518 if (!SEQ_GT(end, u1)) 11519 break; 11520 if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) { 11521 mp->b_wptr -= end - u1; 11522 TCP_REASS_SET_END(mp, u1); 11523 BUMP_MIB(&tcp_mib, tcpInDataPartDupSegs); 11524 UPDATE_MIB(&tcp_mib, tcpInDataPartDupBytes, end - u1); 11525 break; 11526 } 11527 mp->b_cont = mp1->b_cont; 11528 TCP_REASS_SET_SEQ(mp1, 0); 11529 TCP_REASS_SET_END(mp1, 0); 11530 freeb(mp1); 11531 BUMP_MIB(&tcp_mib, tcpInDataDupSegs); 11532 UPDATE_MIB(&tcp_mib, tcpInDataDupBytes, end - u1); 11533 } 11534 if (!mp1) 11535 tcp->tcp_reass_tail = mp; 11536 } 11537 11538 /* 11539 * Send up all messages queued on tcp_rcv_list. 11540 */ 11541 static uint_t 11542 tcp_rcv_drain(queue_t *q, tcp_t *tcp) 11543 { 11544 mblk_t *mp; 11545 uint_t ret = 0; 11546 uint_t thwin; 11547 #ifdef DEBUG 11548 uint_t cnt = 0; 11549 #endif 11550 /* Can't drain on an eager connection */ 11551 if (tcp->tcp_listener != NULL) 11552 return (ret); 11553 11554 /* 11555 * Handle two cases here: we are currently fused or we were 11556 * previously fused and have some urgent data to be delivered 11557 * upstream. The latter happens because we either ran out of 11558 * memory or were detached and therefore sending the SIGURG was 11559 * deferred until this point. In either case we pass control 11560 * over to tcp_fuse_rcv_drain() since it may need to complete 11561 * some work. 11562 */ 11563 if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) { 11564 ASSERT(tcp->tcp_fused_sigurg_mp != NULL); 11565 if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL : 11566 &tcp->tcp_fused_sigurg_mp)) 11567 return (ret); 11568 } 11569 11570 while ((mp = tcp->tcp_rcv_list) != NULL) { 11571 tcp->tcp_rcv_list = mp->b_next; 11572 mp->b_next = NULL; 11573 #ifdef DEBUG 11574 cnt += msgdsize(mp); 11575 #endif 11576 /* Does this need SSL processing first? */ 11577 if ((tcp->tcp_kssl_ctx != NULL) && (DB_TYPE(mp) == M_DATA)) { 11578 tcp_kssl_input(tcp, mp); 11579 continue; 11580 } 11581 putnext(q, mp); 11582 } 11583 ASSERT(cnt == tcp->tcp_rcv_cnt); 11584 tcp->tcp_rcv_last_head = NULL; 11585 tcp->tcp_rcv_last_tail = NULL; 11586 tcp->tcp_rcv_cnt = 0; 11587 11588 /* Learn the latest rwnd information that we sent to the other side. */ 11589 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 11590 << tcp->tcp_rcv_ws; 11591 /* This is peer's calculated send window (our receive window). */ 11592 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 11593 /* 11594 * Increase the receive window to max. But we need to do receiver 11595 * SWS avoidance. This means that we need to check the increase of 11596 * of receive window is at least 1 MSS. 11597 */ 11598 if (canputnext(q) && (q->q_hiwat - thwin >= tcp->tcp_mss)) { 11599 /* 11600 * If the window that the other side knows is less than max 11601 * deferred acks segments, send an update immediately. 11602 */ 11603 if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) { 11604 BUMP_MIB(&tcp_mib, tcpOutWinUpdate); 11605 ret = TH_ACK_NEEDED; 11606 } 11607 tcp->tcp_rwnd = q->q_hiwat; 11608 } 11609 /* No need for the push timer now. */ 11610 if (tcp->tcp_push_tid != 0) { 11611 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 11612 tcp->tcp_push_tid = 0; 11613 } 11614 return (ret); 11615 } 11616 11617 /* 11618 * Queue data on tcp_rcv_list which is a b_next chain. 11619 * tcp_rcv_last_head/tail is the last element of this chain. 11620 * Each element of the chain is a b_cont chain. 11621 * 11622 * M_DATA messages are added to the current element. 11623 * Other messages are added as new (b_next) elements. 11624 */ 11625 void 11626 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len) 11627 { 11628 ASSERT(seg_len == msgdsize(mp)); 11629 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL); 11630 11631 if (tcp->tcp_rcv_list == NULL) { 11632 ASSERT(tcp->tcp_rcv_last_head == NULL); 11633 tcp->tcp_rcv_list = mp; 11634 tcp->tcp_rcv_last_head = mp; 11635 } else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) { 11636 tcp->tcp_rcv_last_tail->b_cont = mp; 11637 } else { 11638 tcp->tcp_rcv_last_head->b_next = mp; 11639 tcp->tcp_rcv_last_head = mp; 11640 } 11641 11642 while (mp->b_cont) 11643 mp = mp->b_cont; 11644 11645 tcp->tcp_rcv_last_tail = mp; 11646 tcp->tcp_rcv_cnt += seg_len; 11647 tcp->tcp_rwnd -= seg_len; 11648 } 11649 11650 /* 11651 * DEFAULT TCP ENTRY POINT via squeue on READ side. 11652 * 11653 * This is the default entry function into TCP on the read side. TCP is 11654 * always entered via squeue i.e. using squeue's for mutual exclusion. 11655 * When classifier does a lookup to find the tcp, it also puts a reference 11656 * on the conn structure associated so the tcp is guaranteed to exist 11657 * when we come here. We still need to check the state because it might 11658 * as well has been closed. The squeue processing function i.e. squeue_enter, 11659 * squeue_enter_nodrain, or squeue_drain is responsible for doing the 11660 * CONN_DEC_REF. 11661 * 11662 * Apart from the default entry point, IP also sends packets directly to 11663 * tcp_rput_data for AF_INET fast path and tcp_conn_request for incoming 11664 * connections. 11665 */ 11666 void 11667 tcp_input(void *arg, mblk_t *mp, void *arg2) 11668 { 11669 conn_t *connp = (conn_t *)arg; 11670 tcp_t *tcp = (tcp_t *)connp->conn_tcp; 11671 11672 /* arg2 is the sqp */ 11673 ASSERT(arg2 != NULL); 11674 ASSERT(mp != NULL); 11675 11676 /* 11677 * Don't accept any input on a closed tcp as this TCP logically does 11678 * not exist on the system. Don't proceed further with this TCP. 11679 * For eg. this packet could trigger another close of this tcp 11680 * which would be disastrous for tcp_refcnt. tcp_close_detached / 11681 * tcp_clean_death / tcp_closei_local must be called at most once 11682 * on a TCP. In this case we need to refeed the packet into the 11683 * classifier and figure out where the packet should go. Need to 11684 * preserve the recv_ill somehow. Until we figure that out, for 11685 * now just drop the packet if we can't classify the packet. 11686 */ 11687 if (tcp->tcp_state == TCPS_CLOSED || 11688 tcp->tcp_state == TCPS_BOUND) { 11689 conn_t *new_connp; 11690 11691 new_connp = ipcl_classify(mp, connp->conn_zoneid); 11692 if (new_connp != NULL) { 11693 tcp_reinput(new_connp, mp, arg2); 11694 return; 11695 } 11696 /* We failed to classify. For now just drop the packet */ 11697 freemsg(mp); 11698 return; 11699 } 11700 11701 if (DB_TYPE(mp) == M_DATA) 11702 tcp_rput_data(connp, mp, arg2); 11703 else 11704 tcp_rput_common(tcp, mp); 11705 } 11706 11707 /* 11708 * The read side put procedure. 11709 * The packets passed up by ip are assume to be aligned according to 11710 * OK_32PTR and the IP+TCP headers fitting in the first mblk. 11711 */ 11712 static void 11713 tcp_rput_common(tcp_t *tcp, mblk_t *mp) 11714 { 11715 /* 11716 * tcp_rput_data() does not expect M_CTL except for the case 11717 * where tcp_ipv6_recvancillary is set and we get a IN_PKTINFO 11718 * type. Need to make sure that any other M_CTLs don't make 11719 * it to tcp_rput_data since it is not expecting any and doesn't 11720 * check for it. 11721 */ 11722 if (DB_TYPE(mp) == M_CTL) { 11723 switch (*(uint32_t *)(mp->b_rptr)) { 11724 case TCP_IOC_ABORT_CONN: 11725 /* 11726 * Handle connection abort request. 11727 */ 11728 tcp_ioctl_abort_handler(tcp, mp); 11729 return; 11730 case IPSEC_IN: 11731 /* 11732 * Only secure icmp arrive in TCP and they 11733 * don't go through data path. 11734 */ 11735 tcp_icmp_error(tcp, mp); 11736 return; 11737 case IN_PKTINFO: 11738 /* 11739 * Handle IPV6_RECVPKTINFO socket option on AF_INET6 11740 * sockets that are receiving IPv4 traffic. tcp 11741 */ 11742 ASSERT(tcp->tcp_family == AF_INET6); 11743 ASSERT(tcp->tcp_ipv6_recvancillary & 11744 TCP_IPV6_RECVPKTINFO); 11745 tcp_rput_data(tcp->tcp_connp, mp, 11746 tcp->tcp_connp->conn_sqp); 11747 return; 11748 case MDT_IOC_INFO_UPDATE: 11749 /* 11750 * Handle Multidata information update; the 11751 * following routine will free the message. 11752 */ 11753 if (tcp->tcp_connp->conn_mdt_ok) { 11754 tcp_mdt_update(tcp, 11755 &((ip_mdt_info_t *)mp->b_rptr)->mdt_capab, 11756 B_FALSE); 11757 } 11758 freemsg(mp); 11759 return; 11760 case LSO_IOC_INFO_UPDATE: 11761 /* 11762 * Handle LSO information update; the following 11763 * routine will free the message. 11764 */ 11765 if (tcp->tcp_connp->conn_lso_ok) { 11766 tcp_lso_update(tcp, 11767 &((ip_lso_info_t *)mp->b_rptr)->lso_capab); 11768 } 11769 freemsg(mp); 11770 return; 11771 default: 11772 /* 11773 * tcp_icmp_err() will process the M_CTL packets. 11774 * Non-ICMP packets, if any, will be discarded in 11775 * tcp_icmp_err(). We will process the ICMP packet 11776 * even if we are TCP_IS_DETACHED_NONEAGER as the 11777 * incoming ICMP packet may result in changing 11778 * the tcp_mss, which we would need if we have 11779 * packets to retransmit. 11780 */ 11781 tcp_icmp_error(tcp, mp); 11782 return; 11783 } 11784 } 11785 11786 /* No point processing the message if tcp is already closed */ 11787 if (TCP_IS_DETACHED_NONEAGER(tcp)) { 11788 freemsg(mp); 11789 return; 11790 } 11791 11792 tcp_rput_other(tcp, mp); 11793 } 11794 11795 11796 /* The minimum of smoothed mean deviation in RTO calculation. */ 11797 #define TCP_SD_MIN 400 11798 11799 /* 11800 * Set RTO for this connection. The formula is from Jacobson and Karels' 11801 * "Congestion Avoidance and Control" in SIGCOMM '88. The variable names 11802 * are the same as those in Appendix A.2 of that paper. 11803 * 11804 * m = new measurement 11805 * sa = smoothed RTT average (8 * average estimates). 11806 * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates). 11807 */ 11808 static void 11809 tcp_set_rto(tcp_t *tcp, clock_t rtt) 11810 { 11811 long m = TICK_TO_MSEC(rtt); 11812 clock_t sa = tcp->tcp_rtt_sa; 11813 clock_t sv = tcp->tcp_rtt_sd; 11814 clock_t rto; 11815 11816 BUMP_MIB(&tcp_mib, tcpRttUpdate); 11817 tcp->tcp_rtt_update++; 11818 11819 /* tcp_rtt_sa is not 0 means this is a new sample. */ 11820 if (sa != 0) { 11821 /* 11822 * Update average estimator: 11823 * new rtt = 7/8 old rtt + 1/8 Error 11824 */ 11825 11826 /* m is now Error in estimate. */ 11827 m -= sa >> 3; 11828 if ((sa += m) <= 0) { 11829 /* 11830 * Don't allow the smoothed average to be negative. 11831 * We use 0 to denote reinitialization of the 11832 * variables. 11833 */ 11834 sa = 1; 11835 } 11836 11837 /* 11838 * Update deviation estimator: 11839 * new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev) 11840 */ 11841 if (m < 0) 11842 m = -m; 11843 m -= sv >> 2; 11844 sv += m; 11845 } else { 11846 /* 11847 * This follows BSD's implementation. So the reinitialized 11848 * RTO is 3 * m. We cannot go less than 2 because if the 11849 * link is bandwidth dominated, doubling the window size 11850 * during slow start means doubling the RTT. We want to be 11851 * more conservative when we reinitialize our estimates. 3 11852 * is just a convenient number. 11853 */ 11854 sa = m << 3; 11855 sv = m << 1; 11856 } 11857 if (sv < TCP_SD_MIN) { 11858 /* 11859 * We do not know that if sa captures the delay ACK 11860 * effect as in a long train of segments, a receiver 11861 * does not delay its ACKs. So set the minimum of sv 11862 * to be TCP_SD_MIN, which is default to 400 ms, twice 11863 * of BSD DATO. That means the minimum of mean 11864 * deviation is 100 ms. 11865 * 11866 */ 11867 sv = TCP_SD_MIN; 11868 } 11869 tcp->tcp_rtt_sa = sa; 11870 tcp->tcp_rtt_sd = sv; 11871 /* 11872 * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv) 11873 * 11874 * Add tcp_rexmit_interval extra in case of extreme environment 11875 * where the algorithm fails to work. The default value of 11876 * tcp_rexmit_interval_extra should be 0. 11877 * 11878 * As we use a finer grained clock than BSD and update 11879 * RTO for every ACKs, add in another .25 of RTT to the 11880 * deviation of RTO to accomodate burstiness of 1/4 of 11881 * window size. 11882 */ 11883 rto = (sa >> 3) + sv + tcp_rexmit_interval_extra + (sa >> 5); 11884 11885 if (rto > tcp_rexmit_interval_max) { 11886 tcp->tcp_rto = tcp_rexmit_interval_max; 11887 } else if (rto < tcp_rexmit_interval_min) { 11888 tcp->tcp_rto = tcp_rexmit_interval_min; 11889 } else { 11890 tcp->tcp_rto = rto; 11891 } 11892 11893 /* Now, we can reset tcp_timer_backoff to use the new RTO... */ 11894 tcp->tcp_timer_backoff = 0; 11895 } 11896 11897 /* 11898 * tcp_get_seg_mp() is called to get the pointer to a segment in the 11899 * send queue which starts at the given seq. no. 11900 * 11901 * Parameters: 11902 * tcp_t *tcp: the tcp instance pointer. 11903 * uint32_t seq: the starting seq. no of the requested segment. 11904 * int32_t *off: after the execution, *off will be the offset to 11905 * the returned mblk which points to the requested seq no. 11906 * It is the caller's responsibility to send in a non-null off. 11907 * 11908 * Return: 11909 * A mblk_t pointer pointing to the requested segment in send queue. 11910 */ 11911 static mblk_t * 11912 tcp_get_seg_mp(tcp_t *tcp, uint32_t seq, int32_t *off) 11913 { 11914 int32_t cnt; 11915 mblk_t *mp; 11916 11917 /* Defensive coding. Make sure we don't send incorrect data. */ 11918 if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt)) 11919 return (NULL); 11920 11921 cnt = seq - tcp->tcp_suna; 11922 mp = tcp->tcp_xmit_head; 11923 while (cnt > 0 && mp != NULL) { 11924 cnt -= mp->b_wptr - mp->b_rptr; 11925 if (cnt < 0) { 11926 cnt += mp->b_wptr - mp->b_rptr; 11927 break; 11928 } 11929 mp = mp->b_cont; 11930 } 11931 ASSERT(mp != NULL); 11932 *off = cnt; 11933 return (mp); 11934 } 11935 11936 /* 11937 * This function handles all retransmissions if SACK is enabled for this 11938 * connection. First it calculates how many segments can be retransmitted 11939 * based on tcp_pipe. Then it goes thru the notsack list to find eligible 11940 * segments. A segment is eligible if sack_cnt for that segment is greater 11941 * than or equal tcp_dupack_fast_retransmit. After it has retransmitted 11942 * all eligible segments, it checks to see if TCP can send some new segments 11943 * (fast recovery). If it can, set the appropriate flag for tcp_rput_data(). 11944 * 11945 * Parameters: 11946 * tcp_t *tcp: the tcp structure of the connection. 11947 * uint_t *flags: in return, appropriate value will be set for 11948 * tcp_rput_data(). 11949 */ 11950 static void 11951 tcp_sack_rxmit(tcp_t *tcp, uint_t *flags) 11952 { 11953 notsack_blk_t *notsack_blk; 11954 int32_t usable_swnd; 11955 int32_t mss; 11956 uint32_t seg_len; 11957 mblk_t *xmit_mp; 11958 11959 ASSERT(tcp->tcp_sack_info != NULL); 11960 ASSERT(tcp->tcp_notsack_list != NULL); 11961 ASSERT(tcp->tcp_rexmit == B_FALSE); 11962 11963 /* Defensive coding in case there is a bug... */ 11964 if (tcp->tcp_notsack_list == NULL) { 11965 return; 11966 } 11967 notsack_blk = tcp->tcp_notsack_list; 11968 mss = tcp->tcp_mss; 11969 11970 /* 11971 * Limit the num of outstanding data in the network to be 11972 * tcp_cwnd_ssthresh, which is half of the original congestion wnd. 11973 */ 11974 usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; 11975 11976 /* At least retransmit 1 MSS of data. */ 11977 if (usable_swnd <= 0) { 11978 usable_swnd = mss; 11979 } 11980 11981 /* Make sure no new RTT samples will be taken. */ 11982 tcp->tcp_csuna = tcp->tcp_snxt; 11983 11984 notsack_blk = tcp->tcp_notsack_list; 11985 while (usable_swnd > 0) { 11986 mblk_t *snxt_mp, *tmp_mp; 11987 tcp_seq begin = tcp->tcp_sack_snxt; 11988 tcp_seq end; 11989 int32_t off; 11990 11991 for (; notsack_blk != NULL; notsack_blk = notsack_blk->next) { 11992 if (SEQ_GT(notsack_blk->end, begin) && 11993 (notsack_blk->sack_cnt >= 11994 tcp_dupack_fast_retransmit)) { 11995 end = notsack_blk->end; 11996 if (SEQ_LT(begin, notsack_blk->begin)) { 11997 begin = notsack_blk->begin; 11998 } 11999 break; 12000 } 12001 } 12002 /* 12003 * All holes are filled. Manipulate tcp_cwnd to send more 12004 * if we can. Note that after the SACK recovery, tcp_cwnd is 12005 * set to tcp_cwnd_ssthresh. 12006 */ 12007 if (notsack_blk == NULL) { 12008 usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; 12009 if (usable_swnd <= 0 || tcp->tcp_unsent == 0) { 12010 tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna; 12011 ASSERT(tcp->tcp_cwnd > 0); 12012 return; 12013 } else { 12014 usable_swnd = usable_swnd / mss; 12015 tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna + 12016 MAX(usable_swnd * mss, mss); 12017 *flags |= TH_XMIT_NEEDED; 12018 return; 12019 } 12020 } 12021 12022 /* 12023 * Note that we may send more than usable_swnd allows here 12024 * because of round off, but no more than 1 MSS of data. 12025 */ 12026 seg_len = end - begin; 12027 if (seg_len > mss) 12028 seg_len = mss; 12029 snxt_mp = tcp_get_seg_mp(tcp, begin, &off); 12030 ASSERT(snxt_mp != NULL); 12031 /* This should not happen. Defensive coding again... */ 12032 if (snxt_mp == NULL) { 12033 return; 12034 } 12035 12036 xmit_mp = tcp_xmit_mp(tcp, snxt_mp, seg_len, &off, 12037 &tmp_mp, begin, B_TRUE, &seg_len, B_TRUE); 12038 if (xmit_mp == NULL) 12039 return; 12040 12041 usable_swnd -= seg_len; 12042 tcp->tcp_pipe += seg_len; 12043 tcp->tcp_sack_snxt = begin + seg_len; 12044 TCP_RECORD_TRACE(tcp, xmit_mp, TCP_TRACE_SEND_PKT); 12045 tcp_send_data(tcp, tcp->tcp_wq, xmit_mp); 12046 12047 /* 12048 * Update the send timestamp to avoid false retransmission. 12049 */ 12050 snxt_mp->b_prev = (mblk_t *)lbolt; 12051 12052 BUMP_MIB(&tcp_mib, tcpRetransSegs); 12053 UPDATE_MIB(&tcp_mib, tcpRetransBytes, seg_len); 12054 BUMP_MIB(&tcp_mib, tcpOutSackRetransSegs); 12055 /* 12056 * Update tcp_rexmit_max to extend this SACK recovery phase. 12057 * This happens when new data sent during fast recovery is 12058 * also lost. If TCP retransmits those new data, it needs 12059 * to extend SACK recover phase to avoid starting another 12060 * fast retransmit/recovery unnecessarily. 12061 */ 12062 if (SEQ_GT(tcp->tcp_sack_snxt, tcp->tcp_rexmit_max)) { 12063 tcp->tcp_rexmit_max = tcp->tcp_sack_snxt; 12064 } 12065 } 12066 } 12067 12068 /* 12069 * This function handles policy checking at TCP level for non-hard_bound/ 12070 * detached connections. 12071 */ 12072 static boolean_t 12073 tcp_check_policy(tcp_t *tcp, mblk_t *first_mp, ipha_t *ipha, ip6_t *ip6h, 12074 boolean_t secure, boolean_t mctl_present) 12075 { 12076 ipsec_latch_t *ipl = NULL; 12077 ipsec_action_t *act = NULL; 12078 mblk_t *data_mp; 12079 ipsec_in_t *ii; 12080 const char *reason; 12081 kstat_named_t *counter; 12082 12083 ASSERT(mctl_present || !secure); 12084 12085 ASSERT((ipha == NULL && ip6h != NULL) || 12086 (ip6h == NULL && ipha != NULL)); 12087 12088 /* 12089 * We don't necessarily have an ipsec_in_act action to verify 12090 * policy because of assymetrical policy where we have only 12091 * outbound policy and no inbound policy (possible with global 12092 * policy). 12093 */ 12094 if (!secure) { 12095 if (act == NULL || act->ipa_act.ipa_type == IPSEC_ACT_BYPASS || 12096 act->ipa_act.ipa_type == IPSEC_ACT_CLEAR) 12097 return (B_TRUE); 12098 ipsec_log_policy_failure(IPSEC_POLICY_MISMATCH, 12099 "tcp_check_policy", ipha, ip6h, secure); 12100 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, 12101 &ipdrops_tcp_clear, &tcp_dropper); 12102 return (B_FALSE); 12103 } 12104 12105 /* 12106 * We have a secure packet. 12107 */ 12108 if (act == NULL) { 12109 ipsec_log_policy_failure(IPSEC_POLICY_NOT_NEEDED, 12110 "tcp_check_policy", ipha, ip6h, secure); 12111 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, 12112 &ipdrops_tcp_secure, &tcp_dropper); 12113 return (B_FALSE); 12114 } 12115 12116 /* 12117 * XXX This whole routine is currently incorrect. ipl should 12118 * be set to the latch pointer, but is currently not set, so 12119 * we initialize it to NULL to avoid picking up random garbage. 12120 */ 12121 if (ipl == NULL) 12122 return (B_TRUE); 12123 12124 data_mp = first_mp->b_cont; 12125 12126 ii = (ipsec_in_t *)first_mp->b_rptr; 12127 12128 if (ipsec_check_ipsecin_latch(ii, data_mp, ipl, ipha, ip6h, &reason, 12129 &counter, tcp->tcp_connp)) { 12130 BUMP_MIB(&ip_mib, ipsecInSucceeded); 12131 return (B_TRUE); 12132 } 12133 (void) strlog(TCP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE, 12134 "tcp inbound policy mismatch: %s, packet dropped\n", 12135 reason); 12136 BUMP_MIB(&ip_mib, ipsecInFailed); 12137 12138 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter, &tcp_dropper); 12139 return (B_FALSE); 12140 } 12141 12142 /* 12143 * tcp_ss_rexmit() is called in tcp_rput_data() to do slow start 12144 * retransmission after a timeout. 12145 * 12146 * To limit the number of duplicate segments, we limit the number of segment 12147 * to be sent in one time to tcp_snd_burst, the burst variable. 12148 */ 12149 static void 12150 tcp_ss_rexmit(tcp_t *tcp) 12151 { 12152 uint32_t snxt; 12153 uint32_t smax; 12154 int32_t win; 12155 int32_t mss; 12156 int32_t off; 12157 int32_t burst = tcp->tcp_snd_burst; 12158 mblk_t *snxt_mp; 12159 12160 /* 12161 * Note that tcp_rexmit can be set even though TCP has retransmitted 12162 * all unack'ed segments. 12163 */ 12164 if (SEQ_LT(tcp->tcp_rexmit_nxt, tcp->tcp_rexmit_max)) { 12165 smax = tcp->tcp_rexmit_max; 12166 snxt = tcp->tcp_rexmit_nxt; 12167 if (SEQ_LT(snxt, tcp->tcp_suna)) { 12168 snxt = tcp->tcp_suna; 12169 } 12170 win = MIN(tcp->tcp_cwnd, tcp->tcp_swnd); 12171 win -= snxt - tcp->tcp_suna; 12172 mss = tcp->tcp_mss; 12173 snxt_mp = tcp_get_seg_mp(tcp, snxt, &off); 12174 12175 while (SEQ_LT(snxt, smax) && (win > 0) && 12176 (burst > 0) && (snxt_mp != NULL)) { 12177 mblk_t *xmit_mp; 12178 mblk_t *old_snxt_mp = snxt_mp; 12179 uint32_t cnt = mss; 12180 12181 if (win < cnt) { 12182 cnt = win; 12183 } 12184 if (SEQ_GT(snxt + cnt, smax)) { 12185 cnt = smax - snxt; 12186 } 12187 xmit_mp = tcp_xmit_mp(tcp, snxt_mp, cnt, &off, 12188 &snxt_mp, snxt, B_TRUE, &cnt, B_TRUE); 12189 if (xmit_mp == NULL) 12190 return; 12191 12192 tcp_send_data(tcp, tcp->tcp_wq, xmit_mp); 12193 12194 snxt += cnt; 12195 win -= cnt; 12196 /* 12197 * Update the send timestamp to avoid false 12198 * retransmission. 12199 */ 12200 old_snxt_mp->b_prev = (mblk_t *)lbolt; 12201 BUMP_MIB(&tcp_mib, tcpRetransSegs); 12202 UPDATE_MIB(&tcp_mib, tcpRetransBytes, cnt); 12203 12204 tcp->tcp_rexmit_nxt = snxt; 12205 burst--; 12206 } 12207 /* 12208 * If we have transmitted all we have at the time 12209 * we started the retranmission, we can leave 12210 * the rest of the job to tcp_wput_data(). But we 12211 * need to check the send window first. If the 12212 * win is not 0, go on with tcp_wput_data(). 12213 */ 12214 if (SEQ_LT(snxt, smax) || win == 0) { 12215 return; 12216 } 12217 } 12218 /* Only call tcp_wput_data() if there is data to be sent. */ 12219 if (tcp->tcp_unsent) { 12220 tcp_wput_data(tcp, NULL, B_FALSE); 12221 } 12222 } 12223 12224 /* 12225 * Process all TCP option in SYN segment. Note that this function should 12226 * be called after tcp_adapt_ire() is called so that the necessary info 12227 * from IRE is already set in the tcp structure. 12228 * 12229 * This function sets up the correct tcp_mss value according to the 12230 * MSS option value and our header size. It also sets up the window scale 12231 * and timestamp values, and initialize SACK info blocks. But it does not 12232 * change receive window size after setting the tcp_mss value. The caller 12233 * should do the appropriate change. 12234 */ 12235 void 12236 tcp_process_options(tcp_t *tcp, tcph_t *tcph) 12237 { 12238 int options; 12239 tcp_opt_t tcpopt; 12240 uint32_t mss_max; 12241 char *tmp_tcph; 12242 12243 tcpopt.tcp = NULL; 12244 options = tcp_parse_options(tcph, &tcpopt); 12245 12246 /* 12247 * Process MSS option. Note that MSS option value does not account 12248 * for IP or TCP options. This means that it is equal to MTU - minimum 12249 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for 12250 * IPv6. 12251 */ 12252 if (!(options & TCP_OPT_MSS_PRESENT)) { 12253 if (tcp->tcp_ipversion == IPV4_VERSION) 12254 tcpopt.tcp_opt_mss = tcp_mss_def_ipv4; 12255 else 12256 tcpopt.tcp_opt_mss = tcp_mss_def_ipv6; 12257 } else { 12258 if (tcp->tcp_ipversion == IPV4_VERSION) 12259 mss_max = tcp_mss_max_ipv4; 12260 else 12261 mss_max = tcp_mss_max_ipv6; 12262 if (tcpopt.tcp_opt_mss < tcp_mss_min) 12263 tcpopt.tcp_opt_mss = tcp_mss_min; 12264 else if (tcpopt.tcp_opt_mss > mss_max) 12265 tcpopt.tcp_opt_mss = mss_max; 12266 } 12267 12268 /* Process Window Scale option. */ 12269 if (options & TCP_OPT_WSCALE_PRESENT) { 12270 tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale; 12271 tcp->tcp_snd_ws_ok = B_TRUE; 12272 } else { 12273 tcp->tcp_snd_ws = B_FALSE; 12274 tcp->tcp_snd_ws_ok = B_FALSE; 12275 tcp->tcp_rcv_ws = B_FALSE; 12276 } 12277 12278 /* Process Timestamp option. */ 12279 if ((options & TCP_OPT_TSTAMP_PRESENT) && 12280 (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) { 12281 tmp_tcph = (char *)tcp->tcp_tcph; 12282 12283 tcp->tcp_snd_ts_ok = B_TRUE; 12284 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 12285 tcp->tcp_last_rcv_lbolt = lbolt64; 12286 ASSERT(OK_32PTR(tmp_tcph)); 12287 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 12288 12289 /* Fill in our template header with basic timestamp option. */ 12290 tmp_tcph += tcp->tcp_tcp_hdr_len; 12291 tmp_tcph[0] = TCPOPT_NOP; 12292 tmp_tcph[1] = TCPOPT_NOP; 12293 tmp_tcph[2] = TCPOPT_TSTAMP; 12294 tmp_tcph[3] = TCPOPT_TSTAMP_LEN; 12295 tcp->tcp_hdr_len += TCPOPT_REAL_TS_LEN; 12296 tcp->tcp_tcp_hdr_len += TCPOPT_REAL_TS_LEN; 12297 tcp->tcp_tcph->th_offset_and_rsrvd[0] += (3 << 4); 12298 } else { 12299 tcp->tcp_snd_ts_ok = B_FALSE; 12300 } 12301 12302 /* 12303 * Process SACK options. If SACK is enabled for this connection, 12304 * then allocate the SACK info structure. Note the following ways 12305 * when tcp_snd_sack_ok is set to true. 12306 * 12307 * For active connection: in tcp_adapt_ire() called in 12308 * tcp_rput_other(), or in tcp_rput_other() when tcp_sack_permitted 12309 * is checked. 12310 * 12311 * For passive connection: in tcp_adapt_ire() called in 12312 * tcp_accept_comm(). 12313 * 12314 * That's the reason why the extra TCP_IS_DETACHED() check is there. 12315 * That check makes sure that if we did not send a SACK OK option, 12316 * we will not enable SACK for this connection even though the other 12317 * side sends us SACK OK option. For active connection, the SACK 12318 * info structure has already been allocated. So we need to free 12319 * it if SACK is disabled. 12320 */ 12321 if ((options & TCP_OPT_SACK_OK_PRESENT) && 12322 (tcp->tcp_snd_sack_ok || 12323 (tcp_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) { 12324 /* This should be true only in the passive case. */ 12325 if (tcp->tcp_sack_info == NULL) { 12326 ASSERT(TCP_IS_DETACHED(tcp)); 12327 tcp->tcp_sack_info = 12328 kmem_cache_alloc(tcp_sack_info_cache, KM_NOSLEEP); 12329 } 12330 if (tcp->tcp_sack_info == NULL) { 12331 tcp->tcp_snd_sack_ok = B_FALSE; 12332 } else { 12333 tcp->tcp_snd_sack_ok = B_TRUE; 12334 if (tcp->tcp_snd_ts_ok) { 12335 tcp->tcp_max_sack_blk = 3; 12336 } else { 12337 tcp->tcp_max_sack_blk = 4; 12338 } 12339 } 12340 } else { 12341 /* 12342 * Resetting tcp_snd_sack_ok to B_FALSE so that 12343 * no SACK info will be used for this 12344 * connection. This assumes that SACK usage 12345 * permission is negotiated. This may need 12346 * to be changed once this is clarified. 12347 */ 12348 if (tcp->tcp_sack_info != NULL) { 12349 ASSERT(tcp->tcp_notsack_list == NULL); 12350 kmem_cache_free(tcp_sack_info_cache, 12351 tcp->tcp_sack_info); 12352 tcp->tcp_sack_info = NULL; 12353 } 12354 tcp->tcp_snd_sack_ok = B_FALSE; 12355 } 12356 12357 /* 12358 * Now we know the exact TCP/IP header length, subtract 12359 * that from tcp_mss to get our side's MSS. 12360 */ 12361 tcp->tcp_mss -= tcp->tcp_hdr_len; 12362 /* 12363 * Here we assume that the other side's header size will be equal to 12364 * our header size. We calculate the real MSS accordingly. Need to 12365 * take into additional stuffs IPsec puts in. 12366 * 12367 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header) 12368 */ 12369 tcpopt.tcp_opt_mss -= tcp->tcp_hdr_len + tcp->tcp_ipsec_overhead - 12370 ((tcp->tcp_ipversion == IPV4_VERSION ? 12371 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH); 12372 12373 /* 12374 * Set MSS to the smaller one of both ends of the connection. 12375 * We should not have called tcp_mss_set() before, but our 12376 * side of the MSS should have been set to a proper value 12377 * by tcp_adapt_ire(). tcp_mss_set() will also set up the 12378 * STREAM head parameters properly. 12379 * 12380 * If we have a larger-than-16-bit window but the other side 12381 * didn't want to do window scale, tcp_rwnd_set() will take 12382 * care of that. 12383 */ 12384 tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss)); 12385 } 12386 12387 /* 12388 * Sends the T_CONN_IND to the listener. The caller calls this 12389 * functions via squeue to get inside the listener's perimeter 12390 * once the 3 way hand shake is done a T_CONN_IND needs to be 12391 * sent. As an optimization, the caller can call this directly 12392 * if listener's perimeter is same as eager's. 12393 */ 12394 /* ARGSUSED */ 12395 void 12396 tcp_send_conn_ind(void *arg, mblk_t *mp, void *arg2) 12397 { 12398 conn_t *lconnp = (conn_t *)arg; 12399 tcp_t *listener = lconnp->conn_tcp; 12400 tcp_t *tcp; 12401 struct T_conn_ind *conn_ind; 12402 ipaddr_t *addr_cache; 12403 boolean_t need_send_conn_ind = B_FALSE; 12404 12405 /* retrieve the eager */ 12406 conn_ind = (struct T_conn_ind *)mp->b_rptr; 12407 ASSERT(conn_ind->OPT_offset != 0 && 12408 conn_ind->OPT_length == sizeof (intptr_t)); 12409 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 12410 conn_ind->OPT_length); 12411 12412 /* 12413 * TLI/XTI applications will get confused by 12414 * sending eager as an option since it violates 12415 * the option semantics. So remove the eager as 12416 * option since TLI/XTI app doesn't need it anyway. 12417 */ 12418 if (!TCP_IS_SOCKET(listener)) { 12419 conn_ind->OPT_length = 0; 12420 conn_ind->OPT_offset = 0; 12421 } 12422 if (listener->tcp_state == TCPS_CLOSED || 12423 TCP_IS_DETACHED(listener)) { 12424 /* 12425 * If listener has closed, it would have caused a 12426 * a cleanup/blowoff to happen for the eager. We 12427 * just need to return. 12428 */ 12429 freemsg(mp); 12430 return; 12431 } 12432 12433 12434 /* 12435 * if the conn_req_q is full defer passing up the 12436 * T_CONN_IND until space is availabe after t_accept() 12437 * processing 12438 */ 12439 mutex_enter(&listener->tcp_eager_lock); 12440 12441 /* 12442 * Take the eager out, if it is in the list of droppable eagers 12443 * as we are here because the 3W handshake is over. 12444 */ 12445 MAKE_UNDROPPABLE(tcp); 12446 12447 if (listener->tcp_conn_req_cnt_q < listener->tcp_conn_req_max) { 12448 tcp_t *tail; 12449 12450 /* 12451 * The eager already has an extra ref put in tcp_rput_data 12452 * so that it stays till accept comes back even though it 12453 * might get into TCPS_CLOSED as a result of a TH_RST etc. 12454 */ 12455 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 12456 listener->tcp_conn_req_cnt_q0--; 12457 listener->tcp_conn_req_cnt_q++; 12458 12459 /* Move from SYN_RCVD to ESTABLISHED list */ 12460 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 12461 tcp->tcp_eager_prev_q0; 12462 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 12463 tcp->tcp_eager_next_q0; 12464 tcp->tcp_eager_prev_q0 = NULL; 12465 tcp->tcp_eager_next_q0 = NULL; 12466 12467 /* 12468 * Insert at end of the queue because sockfs 12469 * sends down T_CONN_RES in chronological 12470 * order. Leaving the older conn indications 12471 * at front of the queue helps reducing search 12472 * time. 12473 */ 12474 tail = listener->tcp_eager_last_q; 12475 if (tail != NULL) 12476 tail->tcp_eager_next_q = tcp; 12477 else 12478 listener->tcp_eager_next_q = tcp; 12479 listener->tcp_eager_last_q = tcp; 12480 tcp->tcp_eager_next_q = NULL; 12481 /* 12482 * Delay sending up the T_conn_ind until we are 12483 * done with the eager. Once we have have sent up 12484 * the T_conn_ind, the accept can potentially complete 12485 * any time and release the refhold we have on the eager. 12486 */ 12487 need_send_conn_ind = B_TRUE; 12488 } else { 12489 /* 12490 * Defer connection on q0 and set deferred 12491 * connection bit true 12492 */ 12493 tcp->tcp_conn_def_q0 = B_TRUE; 12494 12495 /* take tcp out of q0 ... */ 12496 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 12497 tcp->tcp_eager_next_q0; 12498 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 12499 tcp->tcp_eager_prev_q0; 12500 12501 /* ... and place it at the end of q0 */ 12502 tcp->tcp_eager_prev_q0 = listener->tcp_eager_prev_q0; 12503 tcp->tcp_eager_next_q0 = listener; 12504 listener->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp; 12505 listener->tcp_eager_prev_q0 = tcp; 12506 tcp->tcp_conn.tcp_eager_conn_ind = mp; 12507 } 12508 12509 /* we have timed out before */ 12510 if (tcp->tcp_syn_rcvd_timeout != 0) { 12511 tcp->tcp_syn_rcvd_timeout = 0; 12512 listener->tcp_syn_rcvd_timeout--; 12513 if (listener->tcp_syn_defense && 12514 listener->tcp_syn_rcvd_timeout <= 12515 (tcp_conn_req_max_q0 >> 5) && 12516 10*MINUTES < TICK_TO_MSEC(lbolt64 - 12517 listener->tcp_last_rcv_lbolt)) { 12518 /* 12519 * Turn off the defense mode if we 12520 * believe the SYN attack is over. 12521 */ 12522 listener->tcp_syn_defense = B_FALSE; 12523 if (listener->tcp_ip_addr_cache) { 12524 kmem_free((void *)listener->tcp_ip_addr_cache, 12525 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 12526 listener->tcp_ip_addr_cache = NULL; 12527 } 12528 } 12529 } 12530 addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache); 12531 if (addr_cache != NULL) { 12532 /* 12533 * We have finished a 3-way handshake with this 12534 * remote host. This proves the IP addr is good. 12535 * Cache it! 12536 */ 12537 addr_cache[IP_ADDR_CACHE_HASH( 12538 tcp->tcp_remote)] = tcp->tcp_remote; 12539 } 12540 mutex_exit(&listener->tcp_eager_lock); 12541 if (need_send_conn_ind) 12542 putnext(listener->tcp_rq, mp); 12543 } 12544 12545 mblk_t * 12546 tcp_find_pktinfo(tcp_t *tcp, mblk_t *mp, uint_t *ipversp, uint_t *ip_hdr_lenp, 12547 uint_t *ifindexp, ip6_pkt_t *ippp) 12548 { 12549 ip_pktinfo_t *pinfo; 12550 ip6_t *ip6h; 12551 uchar_t *rptr; 12552 mblk_t *first_mp = mp; 12553 boolean_t mctl_present = B_FALSE; 12554 uint_t ifindex = 0; 12555 ip6_pkt_t ipp; 12556 uint_t ipvers; 12557 uint_t ip_hdr_len; 12558 12559 rptr = mp->b_rptr; 12560 ASSERT(OK_32PTR(rptr)); 12561 ASSERT(tcp != NULL); 12562 ipp.ipp_fields = 0; 12563 12564 switch DB_TYPE(mp) { 12565 case M_CTL: 12566 mp = mp->b_cont; 12567 if (mp == NULL) { 12568 freemsg(first_mp); 12569 return (NULL); 12570 } 12571 if (DB_TYPE(mp) != M_DATA) { 12572 freemsg(first_mp); 12573 return (NULL); 12574 } 12575 mctl_present = B_TRUE; 12576 break; 12577 case M_DATA: 12578 break; 12579 default: 12580 cmn_err(CE_NOTE, "tcp_find_pktinfo: unknown db_type"); 12581 freemsg(mp); 12582 return (NULL); 12583 } 12584 ipvers = IPH_HDR_VERSION(rptr); 12585 if (ipvers == IPV4_VERSION) { 12586 if (tcp == NULL) { 12587 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12588 goto done; 12589 } 12590 12591 ipp.ipp_fields |= IPPF_HOPLIMIT; 12592 ipp.ipp_hoplimit = ((ipha_t *)rptr)->ipha_ttl; 12593 12594 /* 12595 * If we have IN_PKTINFO in an M_CTL and tcp_ipv6_recvancillary 12596 * has TCP_IPV6_RECVPKTINFO set, pass I/F index along in ipp. 12597 */ 12598 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) && 12599 mctl_present) { 12600 pinfo = (ip_pktinfo_t *)first_mp->b_rptr; 12601 if ((MBLKL(first_mp) == sizeof (ip_pktinfo_t)) && 12602 (pinfo->ip_pkt_ulp_type == IN_PKTINFO) && 12603 (pinfo->ip_pkt_flags & IPF_RECVIF)) { 12604 ipp.ipp_fields |= IPPF_IFINDEX; 12605 ipp.ipp_ifindex = pinfo->ip_pkt_ifindex; 12606 ifindex = pinfo->ip_pkt_ifindex; 12607 } 12608 freeb(first_mp); 12609 mctl_present = B_FALSE; 12610 } 12611 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12612 } else { 12613 ip6h = (ip6_t *)rptr; 12614 12615 ASSERT(ipvers == IPV6_VERSION); 12616 ipp.ipp_fields = IPPF_HOPLIMIT | IPPF_TCLASS; 12617 ipp.ipp_tclass = (ip6h->ip6_flow & 0x0FF00000) >> 20; 12618 ipp.ipp_hoplimit = ip6h->ip6_hops; 12619 12620 if (ip6h->ip6_nxt != IPPROTO_TCP) { 12621 uint8_t nexthdrp; 12622 12623 /* Look for ifindex information */ 12624 if (ip6h->ip6_nxt == IPPROTO_RAW) { 12625 ip6i_t *ip6i = (ip6i_t *)ip6h; 12626 if ((uchar_t *)&ip6i[1] > mp->b_wptr) { 12627 BUMP_MIB(&ip_mib, tcpInErrs); 12628 freemsg(first_mp); 12629 return (NULL); 12630 } 12631 12632 if (ip6i->ip6i_flags & IP6I_IFINDEX) { 12633 ASSERT(ip6i->ip6i_ifindex != 0); 12634 ipp.ipp_fields |= IPPF_IFINDEX; 12635 ipp.ipp_ifindex = ip6i->ip6i_ifindex; 12636 ifindex = ip6i->ip6i_ifindex; 12637 } 12638 rptr = (uchar_t *)&ip6i[1]; 12639 mp->b_rptr = rptr; 12640 if (rptr == mp->b_wptr) { 12641 mblk_t *mp1; 12642 mp1 = mp->b_cont; 12643 freeb(mp); 12644 mp = mp1; 12645 rptr = mp->b_rptr; 12646 } 12647 if (MBLKL(mp) < IPV6_HDR_LEN + 12648 sizeof (tcph_t)) { 12649 BUMP_MIB(&ip_mib, tcpInErrs); 12650 freemsg(first_mp); 12651 return (NULL); 12652 } 12653 ip6h = (ip6_t *)rptr; 12654 } 12655 12656 /* 12657 * Find any potentially interesting extension headers 12658 * as well as the length of the IPv6 + extension 12659 * headers. 12660 */ 12661 ip_hdr_len = ip_find_hdr_v6(mp, ip6h, &ipp, &nexthdrp); 12662 /* Verify if this is a TCP packet */ 12663 if (nexthdrp != IPPROTO_TCP) { 12664 BUMP_MIB(&ip_mib, tcpInErrs); 12665 freemsg(first_mp); 12666 return (NULL); 12667 } 12668 } else { 12669 ip_hdr_len = IPV6_HDR_LEN; 12670 } 12671 } 12672 12673 done: 12674 if (ipversp != NULL) 12675 *ipversp = ipvers; 12676 if (ip_hdr_lenp != NULL) 12677 *ip_hdr_lenp = ip_hdr_len; 12678 if (ippp != NULL) 12679 *ippp = ipp; 12680 if (ifindexp != NULL) 12681 *ifindexp = ifindex; 12682 if (mctl_present) { 12683 freeb(first_mp); 12684 } 12685 return (mp); 12686 } 12687 12688 /* 12689 * Handle M_DATA messages from IP. Its called directly from IP via 12690 * squeue for AF_INET type sockets fast path. No M_CTL are expected 12691 * in this path. 12692 * 12693 * For everything else (including AF_INET6 sockets with 'tcp_ipversion' 12694 * v4 and v6), we are called through tcp_input() and a M_CTL can 12695 * be present for options but tcp_find_pktinfo() deals with it. We 12696 * only expect M_DATA packets after tcp_find_pktinfo() is done. 12697 * 12698 * The first argument is always the connp/tcp to which the mp belongs. 12699 * There are no exceptions to this rule. The caller has already put 12700 * a reference on this connp/tcp and once tcp_rput_data() returns, 12701 * the squeue will do the refrele. 12702 * 12703 * The TH_SYN for the listener directly go to tcp_conn_request via 12704 * squeue. 12705 * 12706 * sqp: NULL = recursive, sqp != NULL means called from squeue 12707 */ 12708 void 12709 tcp_rput_data(void *arg, mblk_t *mp, void *arg2) 12710 { 12711 int32_t bytes_acked; 12712 int32_t gap; 12713 mblk_t *mp1; 12714 uint_t flags; 12715 uint32_t new_swnd = 0; 12716 uchar_t *iphdr; 12717 uchar_t *rptr; 12718 int32_t rgap; 12719 uint32_t seg_ack; 12720 int seg_len; 12721 uint_t ip_hdr_len; 12722 uint32_t seg_seq; 12723 tcph_t *tcph; 12724 int urp; 12725 tcp_opt_t tcpopt; 12726 uint_t ipvers; 12727 ip6_pkt_t ipp; 12728 boolean_t ofo_seg = B_FALSE; /* Out of order segment */ 12729 uint32_t cwnd; 12730 uint32_t add; 12731 int npkt; 12732 int mss; 12733 conn_t *connp = (conn_t *)arg; 12734 squeue_t *sqp = (squeue_t *)arg2; 12735 tcp_t *tcp = connp->conn_tcp; 12736 12737 /* 12738 * RST from fused tcp loopback peer should trigger an unfuse. 12739 */ 12740 if (tcp->tcp_fused) { 12741 TCP_STAT(tcp_fusion_aborted); 12742 tcp_unfuse(tcp); 12743 } 12744 12745 iphdr = mp->b_rptr; 12746 rptr = mp->b_rptr; 12747 ASSERT(OK_32PTR(rptr)); 12748 12749 /* 12750 * An AF_INET socket is not capable of receiving any pktinfo. Do inline 12751 * processing here. For rest call tcp_find_pktinfo to fill up the 12752 * necessary information. 12753 */ 12754 if (IPCL_IS_TCP4(connp)) { 12755 ipvers = IPV4_VERSION; 12756 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12757 } else { 12758 mp = tcp_find_pktinfo(tcp, mp, &ipvers, &ip_hdr_len, 12759 NULL, &ipp); 12760 if (mp == NULL) { 12761 TCP_STAT(tcp_rput_v6_error); 12762 return; 12763 } 12764 iphdr = mp->b_rptr; 12765 rptr = mp->b_rptr; 12766 } 12767 ASSERT(DB_TYPE(mp) == M_DATA); 12768 12769 tcph = (tcph_t *)&rptr[ip_hdr_len]; 12770 seg_seq = ABE32_TO_U32(tcph->th_seq); 12771 seg_ack = ABE32_TO_U32(tcph->th_ack); 12772 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 12773 seg_len = (int)(mp->b_wptr - rptr) - 12774 (ip_hdr_len + TCP_HDR_LENGTH(tcph)); 12775 if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) { 12776 do { 12777 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 12778 (uintptr_t)INT_MAX); 12779 seg_len += (int)(mp1->b_wptr - mp1->b_rptr); 12780 } while ((mp1 = mp1->b_cont) != NULL && 12781 mp1->b_datap->db_type == M_DATA); 12782 } 12783 12784 if (tcp->tcp_state == TCPS_TIME_WAIT) { 12785 tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack, 12786 seg_len, tcph); 12787 return; 12788 } 12789 12790 if (sqp != NULL) { 12791 /* 12792 * This is the correct place to update tcp_last_recv_time. Note 12793 * that it is also updated for tcp structure that belongs to 12794 * global and listener queues which do not really need updating. 12795 * But that should not cause any harm. And it is updated for 12796 * all kinds of incoming segments, not only for data segments. 12797 */ 12798 tcp->tcp_last_recv_time = lbolt; 12799 } 12800 12801 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 12802 12803 BUMP_LOCAL(tcp->tcp_ibsegs); 12804 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_RECV_PKT); 12805 12806 if ((flags & TH_URG) && sqp != NULL) { 12807 /* 12808 * TCP can't handle urgent pointers that arrive before 12809 * the connection has been accept()ed since it can't 12810 * buffer OOB data. Discard segment if this happens. 12811 * 12812 * Nor can it reassemble urgent pointers, so discard 12813 * if it's not the next segment expected. 12814 * 12815 * Otherwise, collapse chain into one mblk (discard if 12816 * that fails). This makes sure the headers, retransmitted 12817 * data, and new data all are in the same mblk. 12818 */ 12819 ASSERT(mp != NULL); 12820 if (tcp->tcp_listener || !pullupmsg(mp, -1)) { 12821 freemsg(mp); 12822 return; 12823 } 12824 /* Update pointers into message */ 12825 iphdr = rptr = mp->b_rptr; 12826 tcph = (tcph_t *)&rptr[ip_hdr_len]; 12827 if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) { 12828 /* 12829 * Since we can't handle any data with this urgent 12830 * pointer that is out of sequence, we expunge 12831 * the data. This allows us to still register 12832 * the urgent mark and generate the M_PCSIG, 12833 * which we can do. 12834 */ 12835 mp->b_wptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph); 12836 seg_len = 0; 12837 } 12838 } 12839 12840 switch (tcp->tcp_state) { 12841 case TCPS_SYN_SENT: 12842 if (flags & TH_ACK) { 12843 /* 12844 * Note that our stack cannot send data before a 12845 * connection is established, therefore the 12846 * following check is valid. Otherwise, it has 12847 * to be changed. 12848 */ 12849 if (SEQ_LEQ(seg_ack, tcp->tcp_iss) || 12850 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 12851 freemsg(mp); 12852 if (flags & TH_RST) 12853 return; 12854 tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq", 12855 tcp, seg_ack, 0, TH_RST); 12856 return; 12857 } 12858 ASSERT(tcp->tcp_suna + 1 == seg_ack); 12859 } 12860 if (flags & TH_RST) { 12861 freemsg(mp); 12862 if (flags & TH_ACK) 12863 (void) tcp_clean_death(tcp, 12864 ECONNREFUSED, 13); 12865 return; 12866 } 12867 if (!(flags & TH_SYN)) { 12868 freemsg(mp); 12869 return; 12870 } 12871 12872 /* Process all TCP options. */ 12873 tcp_process_options(tcp, tcph); 12874 /* 12875 * The following changes our rwnd to be a multiple of the 12876 * MIN(peer MSS, our MSS) for performance reason. 12877 */ 12878 (void) tcp_rwnd_set(tcp, MSS_ROUNDUP(tcp->tcp_rq->q_hiwat, 12879 tcp->tcp_mss)); 12880 12881 /* Is the other end ECN capable? */ 12882 if (tcp->tcp_ecn_ok) { 12883 if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) { 12884 tcp->tcp_ecn_ok = B_FALSE; 12885 } 12886 } 12887 /* 12888 * Clear ECN flags because it may interfere with later 12889 * processing. 12890 */ 12891 flags &= ~(TH_ECE|TH_CWR); 12892 12893 tcp->tcp_irs = seg_seq; 12894 tcp->tcp_rack = seg_seq; 12895 tcp->tcp_rnxt = seg_seq + 1; 12896 U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack); 12897 if (!TCP_IS_DETACHED(tcp)) { 12898 /* Allocate room for SACK options if needed. */ 12899 if (tcp->tcp_snd_sack_ok) { 12900 (void) mi_set_sth_wroff(tcp->tcp_rq, 12901 tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN + 12902 (tcp->tcp_loopback ? 0 : tcp_wroff_xtra)); 12903 } else { 12904 (void) mi_set_sth_wroff(tcp->tcp_rq, 12905 tcp->tcp_hdr_len + 12906 (tcp->tcp_loopback ? 0 : tcp_wroff_xtra)); 12907 } 12908 } 12909 if (flags & TH_ACK) { 12910 /* 12911 * If we can't get the confirmation upstream, pretend 12912 * we didn't even see this one. 12913 * 12914 * XXX: how can we pretend we didn't see it if we 12915 * have updated rnxt et. al. 12916 * 12917 * For loopback we defer sending up the T_CONN_CON 12918 * until after some checks below. 12919 */ 12920 mp1 = NULL; 12921 if (!tcp_conn_con(tcp, iphdr, tcph, mp, 12922 tcp->tcp_loopback ? &mp1 : NULL)) { 12923 freemsg(mp); 12924 return; 12925 } 12926 /* SYN was acked - making progress */ 12927 if (tcp->tcp_ipversion == IPV6_VERSION) 12928 tcp->tcp_ip_forward_progress = B_TRUE; 12929 12930 /* One for the SYN */ 12931 tcp->tcp_suna = tcp->tcp_iss + 1; 12932 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 12933 tcp->tcp_state = TCPS_ESTABLISHED; 12934 12935 /* 12936 * If SYN was retransmitted, need to reset all 12937 * retransmission info. This is because this 12938 * segment will be treated as a dup ACK. 12939 */ 12940 if (tcp->tcp_rexmit) { 12941 tcp->tcp_rexmit = B_FALSE; 12942 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 12943 tcp->tcp_rexmit_max = tcp->tcp_snxt; 12944 tcp->tcp_snd_burst = tcp->tcp_localnet ? 12945 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 12946 tcp->tcp_ms_we_have_waited = 0; 12947 12948 /* 12949 * Set tcp_cwnd back to 1 MSS, per 12950 * recommendation from 12951 * draft-floyd-incr-init-win-01.txt, 12952 * Increasing TCP's Initial Window. 12953 */ 12954 tcp->tcp_cwnd = tcp->tcp_mss; 12955 } 12956 12957 tcp->tcp_swl1 = seg_seq; 12958 tcp->tcp_swl2 = seg_ack; 12959 12960 new_swnd = BE16_TO_U16(tcph->th_win); 12961 tcp->tcp_swnd = new_swnd; 12962 if (new_swnd > tcp->tcp_max_swnd) 12963 tcp->tcp_max_swnd = new_swnd; 12964 12965 /* 12966 * Always send the three-way handshake ack immediately 12967 * in order to make the connection complete as soon as 12968 * possible on the accepting host. 12969 */ 12970 flags |= TH_ACK_NEEDED; 12971 12972 /* 12973 * Special case for loopback. At this point we have 12974 * received SYN-ACK from the remote endpoint. In 12975 * order to ensure that both endpoints reach the 12976 * fused state prior to any data exchange, the final 12977 * ACK needs to be sent before we indicate T_CONN_CON 12978 * to the module upstream. 12979 */ 12980 if (tcp->tcp_loopback) { 12981 mblk_t *ack_mp; 12982 12983 ASSERT(!tcp->tcp_unfusable); 12984 ASSERT(mp1 != NULL); 12985 /* 12986 * For loopback, we always get a pure SYN-ACK 12987 * and only need to send back the final ACK 12988 * with no data (this is because the other 12989 * tcp is ours and we don't do T/TCP). This 12990 * final ACK triggers the passive side to 12991 * perform fusion in ESTABLISHED state. 12992 */ 12993 if ((ack_mp = tcp_ack_mp(tcp)) != NULL) { 12994 if (tcp->tcp_ack_tid != 0) { 12995 (void) TCP_TIMER_CANCEL(tcp, 12996 tcp->tcp_ack_tid); 12997 tcp->tcp_ack_tid = 0; 12998 } 12999 TCP_RECORD_TRACE(tcp, ack_mp, 13000 TCP_TRACE_SEND_PKT); 13001 tcp_send_data(tcp, tcp->tcp_wq, ack_mp); 13002 BUMP_LOCAL(tcp->tcp_obsegs); 13003 BUMP_MIB(&tcp_mib, tcpOutAck); 13004 13005 /* Send up T_CONN_CON */ 13006 putnext(tcp->tcp_rq, mp1); 13007 13008 freemsg(mp); 13009 return; 13010 } 13011 /* 13012 * Forget fusion; we need to handle more 13013 * complex cases below. Send the deferred 13014 * T_CONN_CON message upstream and proceed 13015 * as usual. Mark this tcp as not capable 13016 * of fusion. 13017 */ 13018 TCP_STAT(tcp_fusion_unfusable); 13019 tcp->tcp_unfusable = B_TRUE; 13020 putnext(tcp->tcp_rq, mp1); 13021 } 13022 13023 /* 13024 * Check to see if there is data to be sent. If 13025 * yes, set the transmit flag. Then check to see 13026 * if received data processing needs to be done. 13027 * If not, go straight to xmit_check. This short 13028 * cut is OK as we don't support T/TCP. 13029 */ 13030 if (tcp->tcp_unsent) 13031 flags |= TH_XMIT_NEEDED; 13032 13033 if (seg_len == 0 && !(flags & TH_URG)) { 13034 freemsg(mp); 13035 goto xmit_check; 13036 } 13037 13038 flags &= ~TH_SYN; 13039 seg_seq++; 13040 break; 13041 } 13042 tcp->tcp_state = TCPS_SYN_RCVD; 13043 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss, 13044 NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 13045 if (mp1) { 13046 DB_CPID(mp1) = tcp->tcp_cpid; 13047 TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT); 13048 tcp_send_data(tcp, tcp->tcp_wq, mp1); 13049 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 13050 } 13051 freemsg(mp); 13052 return; 13053 case TCPS_SYN_RCVD: 13054 if (flags & TH_ACK) { 13055 /* 13056 * In this state, a SYN|ACK packet is either bogus 13057 * because the other side must be ACKing our SYN which 13058 * indicates it has seen the ACK for their SYN and 13059 * shouldn't retransmit it or we're crossing SYNs 13060 * on active open. 13061 */ 13062 if ((flags & TH_SYN) && !tcp->tcp_active_open) { 13063 freemsg(mp); 13064 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn", 13065 tcp, seg_ack, 0, TH_RST); 13066 return; 13067 } 13068 /* 13069 * NOTE: RFC 793 pg. 72 says this should be 13070 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt 13071 * but that would mean we have an ack that ignored 13072 * our SYN. 13073 */ 13074 if (SEQ_LEQ(seg_ack, tcp->tcp_suna) || 13075 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 13076 freemsg(mp); 13077 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack", 13078 tcp, seg_ack, 0, TH_RST); 13079 return; 13080 } 13081 } 13082 break; 13083 case TCPS_LISTEN: 13084 /* 13085 * Only a TLI listener can come through this path when a 13086 * acceptor is going back to be a listener and a packet 13087 * for the acceptor hits the classifier. For a socket 13088 * listener, this can never happen because a listener 13089 * can never accept connection on itself and hence a 13090 * socket acceptor can not go back to being a listener. 13091 */ 13092 ASSERT(!TCP_IS_SOCKET(tcp)); 13093 /*FALLTHRU*/ 13094 case TCPS_CLOSED: 13095 case TCPS_BOUND: { 13096 conn_t *new_connp; 13097 13098 new_connp = ipcl_classify(mp, connp->conn_zoneid); 13099 if (new_connp != NULL) { 13100 tcp_reinput(new_connp, mp, connp->conn_sqp); 13101 return; 13102 } 13103 /* We failed to classify. For now just drop the packet */ 13104 freemsg(mp); 13105 return; 13106 } 13107 case TCPS_IDLE: 13108 /* 13109 * Handle the case where the tcp_clean_death() has happened 13110 * on a connection (application hasn't closed yet) but a packet 13111 * was already queued on squeue before tcp_clean_death() 13112 * was processed. Calling tcp_clean_death() twice on same 13113 * connection can result in weird behaviour. 13114 */ 13115 freemsg(mp); 13116 return; 13117 default: 13118 break; 13119 } 13120 13121 /* 13122 * Already on the correct queue/perimeter. 13123 * If this is a detached connection and not an eager 13124 * connection hanging off a listener then new data 13125 * (past the FIN) will cause a reset. 13126 * We do a special check here where it 13127 * is out of the main line, rather than check 13128 * if we are detached every time we see new 13129 * data down below. 13130 */ 13131 if (TCP_IS_DETACHED_NONEAGER(tcp) && 13132 (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) { 13133 BUMP_MIB(&tcp_mib, tcpInClosed); 13134 TCP_RECORD_TRACE(tcp, 13135 mp, TCP_TRACE_RECV_PKT); 13136 13137 freemsg(mp); 13138 /* 13139 * This could be an SSL closure alert. We're detached so just 13140 * acknowledge it this last time. 13141 */ 13142 if (tcp->tcp_kssl_ctx != NULL) { 13143 kssl_release_ctx(tcp->tcp_kssl_ctx); 13144 tcp->tcp_kssl_ctx = NULL; 13145 13146 tcp->tcp_rnxt += seg_len; 13147 U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack); 13148 flags |= TH_ACK_NEEDED; 13149 goto ack_check; 13150 } 13151 13152 tcp_xmit_ctl("new data when detached", tcp, 13153 tcp->tcp_snxt, 0, TH_RST); 13154 (void) tcp_clean_death(tcp, EPROTO, 12); 13155 return; 13156 } 13157 13158 mp->b_rptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph); 13159 urp = BE16_TO_U16(tcph->th_urp) - TCP_OLD_URP_INTERPRETATION; 13160 new_swnd = BE16_TO_U16(tcph->th_win) << 13161 ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws); 13162 mss = tcp->tcp_mss; 13163 13164 if (tcp->tcp_snd_ts_ok) { 13165 if (!tcp_paws_check(tcp, tcph, &tcpopt)) { 13166 /* 13167 * This segment is not acceptable. 13168 * Drop it and send back an ACK. 13169 */ 13170 freemsg(mp); 13171 flags |= TH_ACK_NEEDED; 13172 goto ack_check; 13173 } 13174 } else if (tcp->tcp_snd_sack_ok) { 13175 ASSERT(tcp->tcp_sack_info != NULL); 13176 tcpopt.tcp = tcp; 13177 /* 13178 * SACK info in already updated in tcp_parse_options. Ignore 13179 * all other TCP options... 13180 */ 13181 (void) tcp_parse_options(tcph, &tcpopt); 13182 } 13183 try_again:; 13184 gap = seg_seq - tcp->tcp_rnxt; 13185 rgap = tcp->tcp_rwnd - (gap + seg_len); 13186 /* 13187 * gap is the amount of sequence space between what we expect to see 13188 * and what we got for seg_seq. A positive value for gap means 13189 * something got lost. A negative value means we got some old stuff. 13190 */ 13191 if (gap < 0) { 13192 /* Old stuff present. Is the SYN in there? */ 13193 if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) && 13194 (seg_len != 0)) { 13195 flags &= ~TH_SYN; 13196 seg_seq++; 13197 urp--; 13198 /* Recompute the gaps after noting the SYN. */ 13199 goto try_again; 13200 } 13201 BUMP_MIB(&tcp_mib, tcpInDataDupSegs); 13202 UPDATE_MIB(&tcp_mib, tcpInDataDupBytes, 13203 (seg_len > -gap ? -gap : seg_len)); 13204 /* Remove the old stuff from seg_len. */ 13205 seg_len += gap; 13206 /* 13207 * Anything left? 13208 * Make sure to check for unack'd FIN when rest of data 13209 * has been previously ack'd. 13210 */ 13211 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 13212 /* 13213 * Resets are only valid if they lie within our offered 13214 * window. If the RST bit is set, we just ignore this 13215 * segment. 13216 */ 13217 if (flags & TH_RST) { 13218 freemsg(mp); 13219 return; 13220 } 13221 13222 /* 13223 * The arriving of dup data packets indicate that we 13224 * may have postponed an ack for too long, or the other 13225 * side's RTT estimate is out of shape. Start acking 13226 * more often. 13227 */ 13228 if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) && 13229 tcp->tcp_rack_cnt >= 1 && 13230 tcp->tcp_rack_abs_max > 2) { 13231 tcp->tcp_rack_abs_max--; 13232 } 13233 tcp->tcp_rack_cur_max = 1; 13234 13235 /* 13236 * This segment is "unacceptable". None of its 13237 * sequence space lies within our advertized window. 13238 * 13239 * Adjust seg_len to the original value for tracing. 13240 */ 13241 seg_len -= gap; 13242 if (tcp->tcp_debug) { 13243 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13244 "tcp_rput: unacceptable, gap %d, rgap %d, " 13245 "flags 0x%x, seg_seq %u, seg_ack %u, " 13246 "seg_len %d, rnxt %u, snxt %u, %s", 13247 gap, rgap, flags, seg_seq, seg_ack, 13248 seg_len, tcp->tcp_rnxt, tcp->tcp_snxt, 13249 tcp_display(tcp, NULL, 13250 DISP_ADDR_AND_PORT)); 13251 } 13252 13253 /* 13254 * Arrange to send an ACK in response to the 13255 * unacceptable segment per RFC 793 page 69. There 13256 * is only one small difference between ours and the 13257 * acceptability test in the RFC - we accept ACK-only 13258 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK 13259 * will be generated. 13260 * 13261 * Note that we have to ACK an ACK-only packet at least 13262 * for stacks that send 0-length keep-alives with 13263 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122, 13264 * section 4.2.3.6. As long as we don't ever generate 13265 * an unacceptable packet in response to an incoming 13266 * packet that is unacceptable, it should not cause 13267 * "ACK wars". 13268 */ 13269 flags |= TH_ACK_NEEDED; 13270 13271 /* 13272 * Continue processing this segment in order to use the 13273 * ACK information it contains, but skip all other 13274 * sequence-number processing. Processing the ACK 13275 * information is necessary in order to 13276 * re-synchronize connections that may have lost 13277 * synchronization. 13278 * 13279 * We clear seg_len and flag fields related to 13280 * sequence number processing as they are not 13281 * to be trusted for an unacceptable segment. 13282 */ 13283 seg_len = 0; 13284 flags &= ~(TH_SYN | TH_FIN | TH_URG); 13285 goto process_ack; 13286 } 13287 13288 /* Fix seg_seq, and chew the gap off the front. */ 13289 seg_seq = tcp->tcp_rnxt; 13290 urp += gap; 13291 do { 13292 mblk_t *mp2; 13293 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 13294 (uintptr_t)UINT_MAX); 13295 gap += (uint_t)(mp->b_wptr - mp->b_rptr); 13296 if (gap > 0) { 13297 mp->b_rptr = mp->b_wptr - gap; 13298 break; 13299 } 13300 mp2 = mp; 13301 mp = mp->b_cont; 13302 freeb(mp2); 13303 } while (gap < 0); 13304 /* 13305 * If the urgent data has already been acknowledged, we 13306 * should ignore TH_URG below 13307 */ 13308 if (urp < 0) 13309 flags &= ~TH_URG; 13310 } 13311 /* 13312 * rgap is the amount of stuff received out of window. A negative 13313 * value is the amount out of window. 13314 */ 13315 if (rgap < 0) { 13316 mblk_t *mp2; 13317 13318 if (tcp->tcp_rwnd == 0) { 13319 BUMP_MIB(&tcp_mib, tcpInWinProbe); 13320 } else { 13321 BUMP_MIB(&tcp_mib, tcpInDataPastWinSegs); 13322 UPDATE_MIB(&tcp_mib, tcpInDataPastWinBytes, -rgap); 13323 } 13324 13325 /* 13326 * seg_len does not include the FIN, so if more than 13327 * just the FIN is out of window, we act like we don't 13328 * see it. (If just the FIN is out of window, rgap 13329 * will be zero and we will go ahead and acknowledge 13330 * the FIN.) 13331 */ 13332 flags &= ~TH_FIN; 13333 13334 /* Fix seg_len and make sure there is something left. */ 13335 seg_len += rgap; 13336 if (seg_len <= 0) { 13337 /* 13338 * Resets are only valid if they lie within our offered 13339 * window. If the RST bit is set, we just ignore this 13340 * segment. 13341 */ 13342 if (flags & TH_RST) { 13343 freemsg(mp); 13344 return; 13345 } 13346 13347 /* Per RFC 793, we need to send back an ACK. */ 13348 flags |= TH_ACK_NEEDED; 13349 13350 /* 13351 * Send SIGURG as soon as possible i.e. even 13352 * if the TH_URG was delivered in a window probe 13353 * packet (which will be unacceptable). 13354 * 13355 * We generate a signal if none has been generated 13356 * for this connection or if this is a new urgent 13357 * byte. Also send a zero-length "unmarked" message 13358 * to inform SIOCATMARK that this is not the mark. 13359 * 13360 * tcp_urp_last_valid is cleared when the T_exdata_ind 13361 * is sent up. This plus the check for old data 13362 * (gap >= 0) handles the wraparound of the sequence 13363 * number space without having to always track the 13364 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks 13365 * this max in its rcv_up variable). 13366 * 13367 * This prevents duplicate SIGURGS due to a "late" 13368 * zero-window probe when the T_EXDATA_IND has already 13369 * been sent up. 13370 */ 13371 if ((flags & TH_URG) && 13372 (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq, 13373 tcp->tcp_urp_last))) { 13374 mp1 = allocb(0, BPRI_MED); 13375 if (mp1 == NULL) { 13376 freemsg(mp); 13377 return; 13378 } 13379 if (!TCP_IS_DETACHED(tcp) && 13380 !putnextctl1(tcp->tcp_rq, M_PCSIG, 13381 SIGURG)) { 13382 /* Try again on the rexmit. */ 13383 freemsg(mp1); 13384 freemsg(mp); 13385 return; 13386 } 13387 /* 13388 * If the next byte would be the mark 13389 * then mark with MARKNEXT else mark 13390 * with NOTMARKNEXT. 13391 */ 13392 if (gap == 0 && urp == 0) 13393 mp1->b_flag |= MSGMARKNEXT; 13394 else 13395 mp1->b_flag |= MSGNOTMARKNEXT; 13396 freemsg(tcp->tcp_urp_mark_mp); 13397 tcp->tcp_urp_mark_mp = mp1; 13398 flags |= TH_SEND_URP_MARK; 13399 tcp->tcp_urp_last_valid = B_TRUE; 13400 tcp->tcp_urp_last = urp + seg_seq; 13401 } 13402 /* 13403 * If this is a zero window probe, continue to 13404 * process the ACK part. But we need to set seg_len 13405 * to 0 to avoid data processing. Otherwise just 13406 * drop the segment and send back an ACK. 13407 */ 13408 if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) { 13409 flags &= ~(TH_SYN | TH_URG); 13410 seg_len = 0; 13411 goto process_ack; 13412 } else { 13413 freemsg(mp); 13414 goto ack_check; 13415 } 13416 } 13417 /* Pitch out of window stuff off the end. */ 13418 rgap = seg_len; 13419 mp2 = mp; 13420 do { 13421 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 13422 (uintptr_t)INT_MAX); 13423 rgap -= (int)(mp2->b_wptr - mp2->b_rptr); 13424 if (rgap < 0) { 13425 mp2->b_wptr += rgap; 13426 if ((mp1 = mp2->b_cont) != NULL) { 13427 mp2->b_cont = NULL; 13428 freemsg(mp1); 13429 } 13430 break; 13431 } 13432 } while ((mp2 = mp2->b_cont) != NULL); 13433 } 13434 ok:; 13435 /* 13436 * TCP should check ECN info for segments inside the window only. 13437 * Therefore the check should be done here. 13438 */ 13439 if (tcp->tcp_ecn_ok) { 13440 if (flags & TH_CWR) { 13441 tcp->tcp_ecn_echo_on = B_FALSE; 13442 } 13443 /* 13444 * Note that both ECN_CE and CWR can be set in the 13445 * same segment. In this case, we once again turn 13446 * on ECN_ECHO. 13447 */ 13448 if (tcp->tcp_ipversion == IPV4_VERSION) { 13449 uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service; 13450 13451 if ((tos & IPH_ECN_CE) == IPH_ECN_CE) { 13452 tcp->tcp_ecn_echo_on = B_TRUE; 13453 } 13454 } else { 13455 uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf; 13456 13457 if ((vcf & htonl(IPH_ECN_CE << 20)) == 13458 htonl(IPH_ECN_CE << 20)) { 13459 tcp->tcp_ecn_echo_on = B_TRUE; 13460 } 13461 } 13462 } 13463 13464 /* 13465 * Check whether we can update tcp_ts_recent. This test is 13466 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 13467 * Extensions for High Performance: An Update", Internet Draft. 13468 */ 13469 if (tcp->tcp_snd_ts_ok && 13470 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 13471 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 13472 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 13473 tcp->tcp_last_rcv_lbolt = lbolt64; 13474 } 13475 13476 if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) { 13477 /* 13478 * FIN in an out of order segment. We record this in 13479 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq. 13480 * Clear the FIN so that any check on FIN flag will fail. 13481 * Remember that FIN also counts in the sequence number 13482 * space. So we need to ack out of order FIN only segments. 13483 */ 13484 if (flags & TH_FIN) { 13485 tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID; 13486 tcp->tcp_ofo_fin_seq = seg_seq + seg_len; 13487 flags &= ~TH_FIN; 13488 flags |= TH_ACK_NEEDED; 13489 } 13490 if (seg_len > 0) { 13491 /* Fill in the SACK blk list. */ 13492 if (tcp->tcp_snd_sack_ok) { 13493 ASSERT(tcp->tcp_sack_info != NULL); 13494 tcp_sack_insert(tcp->tcp_sack_list, 13495 seg_seq, seg_seq + seg_len, 13496 &(tcp->tcp_num_sack_blk)); 13497 } 13498 13499 /* 13500 * Attempt reassembly and see if we have something 13501 * ready to go. 13502 */ 13503 mp = tcp_reass(tcp, mp, seg_seq); 13504 /* Always ack out of order packets */ 13505 flags |= TH_ACK_NEEDED | TH_PUSH; 13506 if (mp) { 13507 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 13508 (uintptr_t)INT_MAX); 13509 seg_len = mp->b_cont ? msgdsize(mp) : 13510 (int)(mp->b_wptr - mp->b_rptr); 13511 seg_seq = tcp->tcp_rnxt; 13512 /* 13513 * A gap is filled and the seq num and len 13514 * of the gap match that of a previously 13515 * received FIN, put the FIN flag back in. 13516 */ 13517 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 13518 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 13519 flags |= TH_FIN; 13520 tcp->tcp_valid_bits &= 13521 ~TCP_OFO_FIN_VALID; 13522 } 13523 } else { 13524 /* 13525 * Keep going even with NULL mp. 13526 * There may be a useful ACK or something else 13527 * we don't want to miss. 13528 * 13529 * But TCP should not perform fast retransmit 13530 * because of the ack number. TCP uses 13531 * seg_len == 0 to determine if it is a pure 13532 * ACK. And this is not a pure ACK. 13533 */ 13534 seg_len = 0; 13535 ofo_seg = B_TRUE; 13536 } 13537 } 13538 } else if (seg_len > 0) { 13539 BUMP_MIB(&tcp_mib, tcpInDataInorderSegs); 13540 UPDATE_MIB(&tcp_mib, tcpInDataInorderBytes, seg_len); 13541 /* 13542 * If an out of order FIN was received before, and the seq 13543 * num and len of the new segment match that of the FIN, 13544 * put the FIN flag back in. 13545 */ 13546 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 13547 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 13548 flags |= TH_FIN; 13549 tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID; 13550 } 13551 } 13552 if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) { 13553 if (flags & TH_RST) { 13554 freemsg(mp); 13555 switch (tcp->tcp_state) { 13556 case TCPS_SYN_RCVD: 13557 (void) tcp_clean_death(tcp, ECONNREFUSED, 14); 13558 break; 13559 case TCPS_ESTABLISHED: 13560 case TCPS_FIN_WAIT_1: 13561 case TCPS_FIN_WAIT_2: 13562 case TCPS_CLOSE_WAIT: 13563 (void) tcp_clean_death(tcp, ECONNRESET, 15); 13564 break; 13565 case TCPS_CLOSING: 13566 case TCPS_LAST_ACK: 13567 (void) tcp_clean_death(tcp, 0, 16); 13568 break; 13569 default: 13570 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 13571 (void) tcp_clean_death(tcp, ENXIO, 17); 13572 break; 13573 } 13574 return; 13575 } 13576 if (flags & TH_SYN) { 13577 /* 13578 * See RFC 793, Page 71 13579 * 13580 * The seq number must be in the window as it should 13581 * be "fixed" above. If it is outside window, it should 13582 * be already rejected. Note that we allow seg_seq to be 13583 * rnxt + rwnd because we want to accept 0 window probe. 13584 */ 13585 ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) && 13586 SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd)); 13587 freemsg(mp); 13588 /* 13589 * If the ACK flag is not set, just use our snxt as the 13590 * seq number of the RST segment. 13591 */ 13592 if (!(flags & TH_ACK)) { 13593 seg_ack = tcp->tcp_snxt; 13594 } 13595 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 13596 TH_RST|TH_ACK); 13597 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 13598 (void) tcp_clean_death(tcp, ECONNRESET, 18); 13599 return; 13600 } 13601 /* 13602 * urp could be -1 when the urp field in the packet is 0 13603 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent 13604 * byte was at seg_seq - 1, in which case we ignore the urgent flag. 13605 */ 13606 if (flags & TH_URG && urp >= 0) { 13607 if (!tcp->tcp_urp_last_valid || 13608 SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) { 13609 /* 13610 * If we haven't generated the signal yet for this 13611 * urgent pointer value, do it now. Also, send up a 13612 * zero-length M_DATA indicating whether or not this is 13613 * the mark. The latter is not needed when a 13614 * T_EXDATA_IND is sent up. However, if there are 13615 * allocation failures this code relies on the sender 13616 * retransmitting and the socket code for determining 13617 * the mark should not block waiting for the peer to 13618 * transmit. Thus, for simplicity we always send up the 13619 * mark indication. 13620 */ 13621 mp1 = allocb(0, BPRI_MED); 13622 if (mp1 == NULL) { 13623 freemsg(mp); 13624 return; 13625 } 13626 if (!TCP_IS_DETACHED(tcp) && 13627 !putnextctl1(tcp->tcp_rq, M_PCSIG, SIGURG)) { 13628 /* Try again on the rexmit. */ 13629 freemsg(mp1); 13630 freemsg(mp); 13631 return; 13632 } 13633 /* 13634 * Mark with NOTMARKNEXT for now. 13635 * The code below will change this to MARKNEXT 13636 * if we are at the mark. 13637 * 13638 * If there are allocation failures (e.g. in dupmsg 13639 * below) the next time tcp_rput_data sees the urgent 13640 * segment it will send up the MSG*MARKNEXT message. 13641 */ 13642 mp1->b_flag |= MSGNOTMARKNEXT; 13643 freemsg(tcp->tcp_urp_mark_mp); 13644 tcp->tcp_urp_mark_mp = mp1; 13645 flags |= TH_SEND_URP_MARK; 13646 #ifdef DEBUG 13647 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13648 "tcp_rput: sent M_PCSIG 2 seq %x urp %x " 13649 "last %x, %s", 13650 seg_seq, urp, tcp->tcp_urp_last, 13651 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 13652 #endif /* DEBUG */ 13653 tcp->tcp_urp_last_valid = B_TRUE; 13654 tcp->tcp_urp_last = urp + seg_seq; 13655 } else if (tcp->tcp_urp_mark_mp != NULL) { 13656 /* 13657 * An allocation failure prevented the previous 13658 * tcp_rput_data from sending up the allocated 13659 * MSG*MARKNEXT message - send it up this time 13660 * around. 13661 */ 13662 flags |= TH_SEND_URP_MARK; 13663 } 13664 13665 /* 13666 * If the urgent byte is in this segment, make sure that it is 13667 * all by itself. This makes it much easier to deal with the 13668 * possibility of an allocation failure on the T_exdata_ind. 13669 * Note that seg_len is the number of bytes in the segment, and 13670 * urp is the offset into the segment of the urgent byte. 13671 * urp < seg_len means that the urgent byte is in this segment. 13672 */ 13673 if (urp < seg_len) { 13674 if (seg_len != 1) { 13675 uint32_t tmp_rnxt; 13676 /* 13677 * Break it up and feed it back in. 13678 * Re-attach the IP header. 13679 */ 13680 mp->b_rptr = iphdr; 13681 if (urp > 0) { 13682 /* 13683 * There is stuff before the urgent 13684 * byte. 13685 */ 13686 mp1 = dupmsg(mp); 13687 if (!mp1) { 13688 /* 13689 * Trim from urgent byte on. 13690 * The rest will come back. 13691 */ 13692 (void) adjmsg(mp, 13693 urp - seg_len); 13694 tcp_rput_data(connp, 13695 mp, NULL); 13696 return; 13697 } 13698 (void) adjmsg(mp1, urp - seg_len); 13699 /* Feed this piece back in. */ 13700 tmp_rnxt = tcp->tcp_rnxt; 13701 tcp_rput_data(connp, mp1, NULL); 13702 /* 13703 * If the data passed back in was not 13704 * processed (ie: bad ACK) sending 13705 * the remainder back in will cause a 13706 * loop. In this case, drop the 13707 * packet and let the sender try 13708 * sending a good packet. 13709 */ 13710 if (tmp_rnxt == tcp->tcp_rnxt) { 13711 freemsg(mp); 13712 return; 13713 } 13714 } 13715 if (urp != seg_len - 1) { 13716 uint32_t tmp_rnxt; 13717 /* 13718 * There is stuff after the urgent 13719 * byte. 13720 */ 13721 mp1 = dupmsg(mp); 13722 if (!mp1) { 13723 /* 13724 * Trim everything beyond the 13725 * urgent byte. The rest will 13726 * come back. 13727 */ 13728 (void) adjmsg(mp, 13729 urp + 1 - seg_len); 13730 tcp_rput_data(connp, 13731 mp, NULL); 13732 return; 13733 } 13734 (void) adjmsg(mp1, urp + 1 - seg_len); 13735 tmp_rnxt = tcp->tcp_rnxt; 13736 tcp_rput_data(connp, mp1, NULL); 13737 /* 13738 * If the data passed back in was not 13739 * processed (ie: bad ACK) sending 13740 * the remainder back in will cause a 13741 * loop. In this case, drop the 13742 * packet and let the sender try 13743 * sending a good packet. 13744 */ 13745 if (tmp_rnxt == tcp->tcp_rnxt) { 13746 freemsg(mp); 13747 return; 13748 } 13749 } 13750 tcp_rput_data(connp, mp, NULL); 13751 return; 13752 } 13753 /* 13754 * This segment contains only the urgent byte. We 13755 * have to allocate the T_exdata_ind, if we can. 13756 */ 13757 if (!tcp->tcp_urp_mp) { 13758 struct T_exdata_ind *tei; 13759 mp1 = allocb(sizeof (struct T_exdata_ind), 13760 BPRI_MED); 13761 if (!mp1) { 13762 /* 13763 * Sigh... It'll be back. 13764 * Generate any MSG*MARK message now. 13765 */ 13766 freemsg(mp); 13767 seg_len = 0; 13768 if (flags & TH_SEND_URP_MARK) { 13769 13770 13771 ASSERT(tcp->tcp_urp_mark_mp); 13772 tcp->tcp_urp_mark_mp->b_flag &= 13773 ~MSGNOTMARKNEXT; 13774 tcp->tcp_urp_mark_mp->b_flag |= 13775 MSGMARKNEXT; 13776 } 13777 goto ack_check; 13778 } 13779 mp1->b_datap->db_type = M_PROTO; 13780 tei = (struct T_exdata_ind *)mp1->b_rptr; 13781 tei->PRIM_type = T_EXDATA_IND; 13782 tei->MORE_flag = 0; 13783 mp1->b_wptr = (uchar_t *)&tei[1]; 13784 tcp->tcp_urp_mp = mp1; 13785 #ifdef DEBUG 13786 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13787 "tcp_rput: allocated exdata_ind %s", 13788 tcp_display(tcp, NULL, 13789 DISP_PORT_ONLY)); 13790 #endif /* DEBUG */ 13791 /* 13792 * There is no need to send a separate MSG*MARK 13793 * message since the T_EXDATA_IND will be sent 13794 * now. 13795 */ 13796 flags &= ~TH_SEND_URP_MARK; 13797 freemsg(tcp->tcp_urp_mark_mp); 13798 tcp->tcp_urp_mark_mp = NULL; 13799 } 13800 /* 13801 * Now we are all set. On the next putnext upstream, 13802 * tcp_urp_mp will be non-NULL and will get prepended 13803 * to what has to be this piece containing the urgent 13804 * byte. If for any reason we abort this segment below, 13805 * if it comes back, we will have this ready, or it 13806 * will get blown off in close. 13807 */ 13808 } else if (urp == seg_len) { 13809 /* 13810 * The urgent byte is the next byte after this sequence 13811 * number. If there is data it is marked with 13812 * MSGMARKNEXT and any tcp_urp_mark_mp is discarded 13813 * since it is not needed. Otherwise, if the code 13814 * above just allocated a zero-length tcp_urp_mark_mp 13815 * message, that message is tagged with MSGMARKNEXT. 13816 * Sending up these MSGMARKNEXT messages makes 13817 * SIOCATMARK work correctly even though 13818 * the T_EXDATA_IND will not be sent up until the 13819 * urgent byte arrives. 13820 */ 13821 if (seg_len != 0) { 13822 flags |= TH_MARKNEXT_NEEDED; 13823 freemsg(tcp->tcp_urp_mark_mp); 13824 tcp->tcp_urp_mark_mp = NULL; 13825 flags &= ~TH_SEND_URP_MARK; 13826 } else if (tcp->tcp_urp_mark_mp != NULL) { 13827 flags |= TH_SEND_URP_MARK; 13828 tcp->tcp_urp_mark_mp->b_flag &= 13829 ~MSGNOTMARKNEXT; 13830 tcp->tcp_urp_mark_mp->b_flag |= MSGMARKNEXT; 13831 } 13832 #ifdef DEBUG 13833 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13834 "tcp_rput: AT MARK, len %d, flags 0x%x, %s", 13835 seg_len, flags, 13836 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 13837 #endif /* DEBUG */ 13838 } else { 13839 /* Data left until we hit mark */ 13840 #ifdef DEBUG 13841 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13842 "tcp_rput: URP %d bytes left, %s", 13843 urp - seg_len, tcp_display(tcp, NULL, 13844 DISP_PORT_ONLY)); 13845 #endif /* DEBUG */ 13846 } 13847 } 13848 13849 process_ack: 13850 if (!(flags & TH_ACK)) { 13851 freemsg(mp); 13852 goto xmit_check; 13853 } 13854 } 13855 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 13856 13857 if (tcp->tcp_ipversion == IPV6_VERSION && bytes_acked > 0) 13858 tcp->tcp_ip_forward_progress = B_TRUE; 13859 if (tcp->tcp_state == TCPS_SYN_RCVD) { 13860 if ((tcp->tcp_conn.tcp_eager_conn_ind != NULL) && 13861 ((tcp->tcp_kssl_ent == NULL) || !tcp->tcp_kssl_pending)) { 13862 /* 3-way handshake complete - pass up the T_CONN_IND */ 13863 tcp_t *listener = tcp->tcp_listener; 13864 mblk_t *mp = tcp->tcp_conn.tcp_eager_conn_ind; 13865 13866 tcp->tcp_tconnind_started = B_TRUE; 13867 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 13868 /* 13869 * We are here means eager is fine but it can 13870 * get a TH_RST at any point between now and till 13871 * accept completes and disappear. We need to 13872 * ensure that reference to eager is valid after 13873 * we get out of eager's perimeter. So we do 13874 * an extra refhold. 13875 */ 13876 CONN_INC_REF(connp); 13877 13878 /* 13879 * The listener also exists because of the refhold 13880 * done in tcp_conn_request. Its possible that it 13881 * might have closed. We will check that once we 13882 * get inside listeners context. 13883 */ 13884 CONN_INC_REF(listener->tcp_connp); 13885 if (listener->tcp_connp->conn_sqp == 13886 connp->conn_sqp) { 13887 tcp_send_conn_ind(listener->tcp_connp, mp, 13888 listener->tcp_connp->conn_sqp); 13889 CONN_DEC_REF(listener->tcp_connp); 13890 } else if (!tcp->tcp_loopback) { 13891 squeue_fill(listener->tcp_connp->conn_sqp, mp, 13892 tcp_send_conn_ind, 13893 listener->tcp_connp, SQTAG_TCP_CONN_IND); 13894 } else { 13895 squeue_enter(listener->tcp_connp->conn_sqp, mp, 13896 tcp_send_conn_ind, listener->tcp_connp, 13897 SQTAG_TCP_CONN_IND); 13898 } 13899 } 13900 13901 if (tcp->tcp_active_open) { 13902 /* 13903 * We are seeing the final ack in the three way 13904 * hand shake of a active open'ed connection 13905 * so we must send up a T_CONN_CON 13906 */ 13907 if (!tcp_conn_con(tcp, iphdr, tcph, mp, NULL)) { 13908 freemsg(mp); 13909 return; 13910 } 13911 /* 13912 * Don't fuse the loopback endpoints for 13913 * simultaneous active opens. 13914 */ 13915 if (tcp->tcp_loopback) { 13916 TCP_STAT(tcp_fusion_unfusable); 13917 tcp->tcp_unfusable = B_TRUE; 13918 } 13919 } 13920 13921 tcp->tcp_suna = tcp->tcp_iss + 1; /* One for the SYN */ 13922 bytes_acked--; 13923 /* SYN was acked - making progress */ 13924 if (tcp->tcp_ipversion == IPV6_VERSION) 13925 tcp->tcp_ip_forward_progress = B_TRUE; 13926 13927 /* 13928 * If SYN was retransmitted, need to reset all 13929 * retransmission info as this segment will be 13930 * treated as a dup ACK. 13931 */ 13932 if (tcp->tcp_rexmit) { 13933 tcp->tcp_rexmit = B_FALSE; 13934 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 13935 tcp->tcp_rexmit_max = tcp->tcp_snxt; 13936 tcp->tcp_snd_burst = tcp->tcp_localnet ? 13937 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 13938 tcp->tcp_ms_we_have_waited = 0; 13939 tcp->tcp_cwnd = mss; 13940 } 13941 13942 /* 13943 * We set the send window to zero here. 13944 * This is needed if there is data to be 13945 * processed already on the queue. 13946 * Later (at swnd_update label), the 13947 * "new_swnd > tcp_swnd" condition is satisfied 13948 * the XMIT_NEEDED flag is set in the current 13949 * (SYN_RCVD) state. This ensures tcp_wput_data() is 13950 * called if there is already data on queue in 13951 * this state. 13952 */ 13953 tcp->tcp_swnd = 0; 13954 13955 if (new_swnd > tcp->tcp_max_swnd) 13956 tcp->tcp_max_swnd = new_swnd; 13957 tcp->tcp_swl1 = seg_seq; 13958 tcp->tcp_swl2 = seg_ack; 13959 tcp->tcp_state = TCPS_ESTABLISHED; 13960 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 13961 13962 /* Fuse when both sides are in ESTABLISHED state */ 13963 if (tcp->tcp_loopback && do_tcp_fusion) 13964 tcp_fuse(tcp, iphdr, tcph); 13965 13966 } 13967 /* This code follows 4.4BSD-Lite2 mostly. */ 13968 if (bytes_acked < 0) 13969 goto est; 13970 13971 /* 13972 * If TCP is ECN capable and the congestion experience bit is 13973 * set, reduce tcp_cwnd and tcp_ssthresh. But this should only be 13974 * done once per window (or more loosely, per RTT). 13975 */ 13976 if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max)) 13977 tcp->tcp_cwr = B_FALSE; 13978 if (tcp->tcp_ecn_ok && (flags & TH_ECE)) { 13979 if (!tcp->tcp_cwr) { 13980 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss; 13981 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss; 13982 tcp->tcp_cwnd = npkt * mss; 13983 /* 13984 * If the cwnd is 0, use the timer to clock out 13985 * new segments. This is required by the ECN spec. 13986 */ 13987 if (npkt == 0) { 13988 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 13989 /* 13990 * This makes sure that when the ACK comes 13991 * back, we will increase tcp_cwnd by 1 MSS. 13992 */ 13993 tcp->tcp_cwnd_cnt = 0; 13994 } 13995 tcp->tcp_cwr = B_TRUE; 13996 /* 13997 * This marks the end of the current window of in 13998 * flight data. That is why we don't use 13999 * tcp_suna + tcp_swnd. Only data in flight can 14000 * provide ECN info. 14001 */ 14002 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 14003 tcp->tcp_ecn_cwr_sent = B_FALSE; 14004 } 14005 } 14006 14007 mp1 = tcp->tcp_xmit_head; 14008 if (bytes_acked == 0) { 14009 if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) { 14010 int dupack_cnt; 14011 14012 BUMP_MIB(&tcp_mib, tcpInDupAck); 14013 /* 14014 * Fast retransmit. When we have seen exactly three 14015 * identical ACKs while we have unacked data 14016 * outstanding we take it as a hint that our peer 14017 * dropped something. 14018 * 14019 * If TCP is retransmitting, don't do fast retransmit. 14020 */ 14021 if (mp1 && tcp->tcp_suna != tcp->tcp_snxt && 14022 ! tcp->tcp_rexmit) { 14023 /* Do Limited Transmit */ 14024 if ((dupack_cnt = ++tcp->tcp_dupack_cnt) < 14025 tcp_dupack_fast_retransmit) { 14026 /* 14027 * RFC 3042 14028 * 14029 * What we need to do is temporarily 14030 * increase tcp_cwnd so that new 14031 * data can be sent if it is allowed 14032 * by the receive window (tcp_rwnd). 14033 * tcp_wput_data() will take care of 14034 * the rest. 14035 * 14036 * If the connection is SACK capable, 14037 * only do limited xmit when there 14038 * is SACK info. 14039 * 14040 * Note how tcp_cwnd is incremented. 14041 * The first dup ACK will increase 14042 * it by 1 MSS. The second dup ACK 14043 * will increase it by 2 MSS. This 14044 * means that only 1 new segment will 14045 * be sent for each dup ACK. 14046 */ 14047 if (tcp->tcp_unsent > 0 && 14048 (!tcp->tcp_snd_sack_ok || 14049 (tcp->tcp_snd_sack_ok && 14050 tcp->tcp_notsack_list != NULL))) { 14051 tcp->tcp_cwnd += mss << 14052 (tcp->tcp_dupack_cnt - 1); 14053 flags |= TH_LIMIT_XMIT; 14054 } 14055 } else if (dupack_cnt == 14056 tcp_dupack_fast_retransmit) { 14057 14058 /* 14059 * If we have reduced tcp_ssthresh 14060 * because of ECN, do not reduce it again 14061 * unless it is already one window of data 14062 * away. After one window of data, tcp_cwr 14063 * should then be cleared. Note that 14064 * for non ECN capable connection, tcp_cwr 14065 * should always be false. 14066 * 14067 * Adjust cwnd since the duplicate 14068 * ack indicates that a packet was 14069 * dropped (due to congestion.) 14070 */ 14071 if (!tcp->tcp_cwr) { 14072 npkt = ((tcp->tcp_snxt - 14073 tcp->tcp_suna) >> 1) / mss; 14074 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 14075 mss; 14076 tcp->tcp_cwnd = (npkt + 14077 tcp->tcp_dupack_cnt) * mss; 14078 } 14079 if (tcp->tcp_ecn_ok) { 14080 tcp->tcp_cwr = B_TRUE; 14081 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 14082 tcp->tcp_ecn_cwr_sent = B_FALSE; 14083 } 14084 14085 /* 14086 * We do Hoe's algorithm. Refer to her 14087 * paper "Improving the Start-up Behavior 14088 * of a Congestion Control Scheme for TCP," 14089 * appeared in SIGCOMM'96. 14090 * 14091 * Save highest seq no we have sent so far. 14092 * Be careful about the invisible FIN byte. 14093 */ 14094 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 14095 (tcp->tcp_unsent == 0)) { 14096 tcp->tcp_rexmit_max = tcp->tcp_fss; 14097 } else { 14098 tcp->tcp_rexmit_max = tcp->tcp_snxt; 14099 } 14100 14101 /* 14102 * Do not allow bursty traffic during. 14103 * fast recovery. Refer to Fall and Floyd's 14104 * paper "Simulation-based Comparisons of 14105 * Tahoe, Reno and SACK TCP" (in CCR?) 14106 * This is a best current practise. 14107 */ 14108 tcp->tcp_snd_burst = TCP_CWND_SS; 14109 14110 /* 14111 * For SACK: 14112 * Calculate tcp_pipe, which is the 14113 * estimated number of bytes in 14114 * network. 14115 * 14116 * tcp_fack is the highest sack'ed seq num 14117 * TCP has received. 14118 * 14119 * tcp_pipe is explained in the above quoted 14120 * Fall and Floyd's paper. tcp_fack is 14121 * explained in Mathis and Mahdavi's 14122 * "Forward Acknowledgment: Refining TCP 14123 * Congestion Control" in SIGCOMM '96. 14124 */ 14125 if (tcp->tcp_snd_sack_ok) { 14126 ASSERT(tcp->tcp_sack_info != NULL); 14127 if (tcp->tcp_notsack_list != NULL) { 14128 tcp->tcp_pipe = tcp->tcp_snxt - 14129 tcp->tcp_fack; 14130 tcp->tcp_sack_snxt = seg_ack; 14131 flags |= TH_NEED_SACK_REXMIT; 14132 } else { 14133 /* 14134 * Always initialize tcp_pipe 14135 * even though we don't have 14136 * any SACK info. If later 14137 * we get SACK info and 14138 * tcp_pipe is not initialized, 14139 * funny things will happen. 14140 */ 14141 tcp->tcp_pipe = 14142 tcp->tcp_cwnd_ssthresh; 14143 } 14144 } else { 14145 flags |= TH_REXMIT_NEEDED; 14146 } /* tcp_snd_sack_ok */ 14147 14148 } else { 14149 /* 14150 * Here we perform congestion 14151 * avoidance, but NOT slow start. 14152 * This is known as the Fast 14153 * Recovery Algorithm. 14154 */ 14155 if (tcp->tcp_snd_sack_ok && 14156 tcp->tcp_notsack_list != NULL) { 14157 flags |= TH_NEED_SACK_REXMIT; 14158 tcp->tcp_pipe -= mss; 14159 if (tcp->tcp_pipe < 0) 14160 tcp->tcp_pipe = 0; 14161 } else { 14162 /* 14163 * We know that one more packet has 14164 * left the pipe thus we can update 14165 * cwnd. 14166 */ 14167 cwnd = tcp->tcp_cwnd + mss; 14168 if (cwnd > tcp->tcp_cwnd_max) 14169 cwnd = tcp->tcp_cwnd_max; 14170 tcp->tcp_cwnd = cwnd; 14171 if (tcp->tcp_unsent > 0) 14172 flags |= TH_XMIT_NEEDED; 14173 } 14174 } 14175 } 14176 } else if (tcp->tcp_zero_win_probe) { 14177 /* 14178 * If the window has opened, need to arrange 14179 * to send additional data. 14180 */ 14181 if (new_swnd != 0) { 14182 /* tcp_suna != tcp_snxt */ 14183 /* Packet contains a window update */ 14184 BUMP_MIB(&tcp_mib, tcpInWinUpdate); 14185 tcp->tcp_zero_win_probe = 0; 14186 tcp->tcp_timer_backoff = 0; 14187 tcp->tcp_ms_we_have_waited = 0; 14188 14189 /* 14190 * Transmit starting with tcp_suna since 14191 * the one byte probe is not ack'ed. 14192 * If TCP has sent more than one identical 14193 * probe, tcp_rexmit will be set. That means 14194 * tcp_ss_rexmit() will send out the one 14195 * byte along with new data. Otherwise, 14196 * fake the retransmission. 14197 */ 14198 flags |= TH_XMIT_NEEDED; 14199 if (!tcp->tcp_rexmit) { 14200 tcp->tcp_rexmit = B_TRUE; 14201 tcp->tcp_dupack_cnt = 0; 14202 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 14203 tcp->tcp_rexmit_max = tcp->tcp_suna + 1; 14204 } 14205 } 14206 } 14207 goto swnd_update; 14208 } 14209 14210 /* 14211 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73. 14212 * If the ACK value acks something that we have not yet sent, it might 14213 * be an old duplicate segment. Send an ACK to re-synchronize the 14214 * other side. 14215 * Note: reset in response to unacceptable ACK in SYN_RECEIVE 14216 * state is handled above, so we can always just drop the segment and 14217 * send an ACK here. 14218 * 14219 * Should we send ACKs in response to ACK only segments? 14220 */ 14221 if (SEQ_GT(seg_ack, tcp->tcp_snxt)) { 14222 BUMP_MIB(&tcp_mib, tcpInAckUnsent); 14223 /* drop the received segment */ 14224 freemsg(mp); 14225 14226 /* 14227 * Send back an ACK. If tcp_drop_ack_unsent_cnt is 14228 * greater than 0, check if the number of such 14229 * bogus ACks is greater than that count. If yes, 14230 * don't send back any ACK. This prevents TCP from 14231 * getting into an ACK storm if somehow an attacker 14232 * successfully spoofs an acceptable segment to our 14233 * peer. 14234 */ 14235 if (tcp_drop_ack_unsent_cnt > 0 && 14236 ++tcp->tcp_in_ack_unsent > tcp_drop_ack_unsent_cnt) { 14237 TCP_STAT(tcp_in_ack_unsent_drop); 14238 return; 14239 } 14240 mp = tcp_ack_mp(tcp); 14241 if (mp != NULL) { 14242 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 14243 BUMP_LOCAL(tcp->tcp_obsegs); 14244 BUMP_MIB(&tcp_mib, tcpOutAck); 14245 tcp_send_data(tcp, tcp->tcp_wq, mp); 14246 } 14247 return; 14248 } 14249 14250 /* 14251 * TCP gets a new ACK, update the notsack'ed list to delete those 14252 * blocks that are covered by this ACK. 14253 */ 14254 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 14255 tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack, 14256 &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list)); 14257 } 14258 14259 /* 14260 * If we got an ACK after fast retransmit, check to see 14261 * if it is a partial ACK. If it is not and the congestion 14262 * window was inflated to account for the other side's 14263 * cached packets, retract it. If it is, do Hoe's algorithm. 14264 */ 14265 if (tcp->tcp_dupack_cnt >= tcp_dupack_fast_retransmit) { 14266 ASSERT(tcp->tcp_rexmit == B_FALSE); 14267 if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) { 14268 tcp->tcp_dupack_cnt = 0; 14269 /* 14270 * Restore the orig tcp_cwnd_ssthresh after 14271 * fast retransmit phase. 14272 */ 14273 if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) { 14274 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh; 14275 } 14276 tcp->tcp_rexmit_max = seg_ack; 14277 tcp->tcp_cwnd_cnt = 0; 14278 tcp->tcp_snd_burst = tcp->tcp_localnet ? 14279 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 14280 14281 /* 14282 * Remove all notsack info to avoid confusion with 14283 * the next fast retrasnmit/recovery phase. 14284 */ 14285 if (tcp->tcp_snd_sack_ok && 14286 tcp->tcp_notsack_list != NULL) { 14287 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 14288 } 14289 } else { 14290 if (tcp->tcp_snd_sack_ok && 14291 tcp->tcp_notsack_list != NULL) { 14292 flags |= TH_NEED_SACK_REXMIT; 14293 tcp->tcp_pipe -= mss; 14294 if (tcp->tcp_pipe < 0) 14295 tcp->tcp_pipe = 0; 14296 } else { 14297 /* 14298 * Hoe's algorithm: 14299 * 14300 * Retransmit the unack'ed segment and 14301 * restart fast recovery. Note that we 14302 * need to scale back tcp_cwnd to the 14303 * original value when we started fast 14304 * recovery. This is to prevent overly 14305 * aggressive behaviour in sending new 14306 * segments. 14307 */ 14308 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh + 14309 tcp_dupack_fast_retransmit * mss; 14310 tcp->tcp_cwnd_cnt = tcp->tcp_cwnd; 14311 flags |= TH_REXMIT_NEEDED; 14312 } 14313 } 14314 } else { 14315 tcp->tcp_dupack_cnt = 0; 14316 if (tcp->tcp_rexmit) { 14317 /* 14318 * TCP is retranmitting. If the ACK ack's all 14319 * outstanding data, update tcp_rexmit_max and 14320 * tcp_rexmit_nxt. Otherwise, update tcp_rexmit_nxt 14321 * to the correct value. 14322 * 14323 * Note that SEQ_LEQ() is used. This is to avoid 14324 * unnecessary fast retransmit caused by dup ACKs 14325 * received when TCP does slow start retransmission 14326 * after a time out. During this phase, TCP may 14327 * send out segments which are already received. 14328 * This causes dup ACKs to be sent back. 14329 */ 14330 if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) { 14331 if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) { 14332 tcp->tcp_rexmit_nxt = seg_ack; 14333 } 14334 if (seg_ack != tcp->tcp_rexmit_max) { 14335 flags |= TH_XMIT_NEEDED; 14336 } 14337 } else { 14338 tcp->tcp_rexmit = B_FALSE; 14339 tcp->tcp_xmit_zc_clean = B_FALSE; 14340 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 14341 tcp->tcp_snd_burst = tcp->tcp_localnet ? 14342 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 14343 } 14344 tcp->tcp_ms_we_have_waited = 0; 14345 } 14346 } 14347 14348 BUMP_MIB(&tcp_mib, tcpInAckSegs); 14349 UPDATE_MIB(&tcp_mib, tcpInAckBytes, bytes_acked); 14350 tcp->tcp_suna = seg_ack; 14351 if (tcp->tcp_zero_win_probe != 0) { 14352 tcp->tcp_zero_win_probe = 0; 14353 tcp->tcp_timer_backoff = 0; 14354 } 14355 14356 /* 14357 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed. 14358 * Note that it cannot be the SYN being ack'ed. The code flow 14359 * will not reach here. 14360 */ 14361 if (mp1 == NULL) { 14362 goto fin_acked; 14363 } 14364 14365 /* 14366 * Update the congestion window. 14367 * 14368 * If TCP is not ECN capable or TCP is ECN capable but the 14369 * congestion experience bit is not set, increase the tcp_cwnd as 14370 * usual. 14371 */ 14372 if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) { 14373 cwnd = tcp->tcp_cwnd; 14374 add = mss; 14375 14376 if (cwnd >= tcp->tcp_cwnd_ssthresh) { 14377 /* 14378 * This is to prevent an increase of less than 1 MSS of 14379 * tcp_cwnd. With partial increase, tcp_wput_data() 14380 * may send out tinygrams in order to preserve mblk 14381 * boundaries. 14382 * 14383 * By initializing tcp_cwnd_cnt to new tcp_cwnd and 14384 * decrementing it by 1 MSS for every ACKs, tcp_cwnd is 14385 * increased by 1 MSS for every RTTs. 14386 */ 14387 if (tcp->tcp_cwnd_cnt <= 0) { 14388 tcp->tcp_cwnd_cnt = cwnd + add; 14389 } else { 14390 tcp->tcp_cwnd_cnt -= add; 14391 add = 0; 14392 } 14393 } 14394 tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max); 14395 } 14396 14397 /* See if the latest urgent data has been acknowledged */ 14398 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && 14399 SEQ_GT(seg_ack, tcp->tcp_urg)) 14400 tcp->tcp_valid_bits &= ~TCP_URG_VALID; 14401 14402 /* Can we update the RTT estimates? */ 14403 if (tcp->tcp_snd_ts_ok) { 14404 /* Ignore zero timestamp echo-reply. */ 14405 if (tcpopt.tcp_opt_ts_ecr != 0) { 14406 tcp_set_rto(tcp, (int32_t)lbolt - 14407 (int32_t)tcpopt.tcp_opt_ts_ecr); 14408 } 14409 14410 /* If needed, restart the timer. */ 14411 if (tcp->tcp_set_timer == 1) { 14412 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14413 tcp->tcp_set_timer = 0; 14414 } 14415 /* 14416 * Update tcp_csuna in case the other side stops sending 14417 * us timestamps. 14418 */ 14419 tcp->tcp_csuna = tcp->tcp_snxt; 14420 } else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) { 14421 /* 14422 * An ACK sequence we haven't seen before, so get the RTT 14423 * and update the RTO. But first check if the timestamp is 14424 * valid to use. 14425 */ 14426 if ((mp1->b_next != NULL) && 14427 SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next))) 14428 tcp_set_rto(tcp, (int32_t)lbolt - 14429 (int32_t)(intptr_t)mp1->b_prev); 14430 else 14431 BUMP_MIB(&tcp_mib, tcpRttNoUpdate); 14432 14433 /* Remeber the last sequence to be ACKed */ 14434 tcp->tcp_csuna = seg_ack; 14435 if (tcp->tcp_set_timer == 1) { 14436 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14437 tcp->tcp_set_timer = 0; 14438 } 14439 } else { 14440 BUMP_MIB(&tcp_mib, tcpRttNoUpdate); 14441 } 14442 14443 /* Eat acknowledged bytes off the xmit queue. */ 14444 for (;;) { 14445 mblk_t *mp2; 14446 uchar_t *wptr; 14447 14448 wptr = mp1->b_wptr; 14449 ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX); 14450 bytes_acked -= (int)(wptr - mp1->b_rptr); 14451 if (bytes_acked < 0) { 14452 mp1->b_rptr = wptr + bytes_acked; 14453 /* 14454 * Set a new timestamp if all the bytes timed by the 14455 * old timestamp have been ack'ed. 14456 */ 14457 if (SEQ_GT(seg_ack, 14458 (uint32_t)(uintptr_t)(mp1->b_next))) { 14459 mp1->b_prev = (mblk_t *)(uintptr_t)lbolt; 14460 mp1->b_next = NULL; 14461 } 14462 break; 14463 } 14464 mp1->b_next = NULL; 14465 mp1->b_prev = NULL; 14466 mp2 = mp1; 14467 mp1 = mp1->b_cont; 14468 14469 /* 14470 * This notification is required for some zero-copy 14471 * clients to maintain a copy semantic. After the data 14472 * is ack'ed, client is safe to modify or reuse the buffer. 14473 */ 14474 if (tcp->tcp_snd_zcopy_aware && 14475 (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 14476 tcp_zcopy_notify(tcp); 14477 freeb(mp2); 14478 if (bytes_acked == 0) { 14479 if (mp1 == NULL) { 14480 /* Everything is ack'ed, clear the tail. */ 14481 tcp->tcp_xmit_tail = NULL; 14482 /* 14483 * Cancel the timer unless we are still 14484 * waiting for an ACK for the FIN packet. 14485 */ 14486 if (tcp->tcp_timer_tid != 0 && 14487 tcp->tcp_snxt == tcp->tcp_suna) { 14488 (void) TCP_TIMER_CANCEL(tcp, 14489 tcp->tcp_timer_tid); 14490 tcp->tcp_timer_tid = 0; 14491 } 14492 goto pre_swnd_update; 14493 } 14494 if (mp2 != tcp->tcp_xmit_tail) 14495 break; 14496 tcp->tcp_xmit_tail = mp1; 14497 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 14498 (uintptr_t)INT_MAX); 14499 tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr - 14500 mp1->b_rptr); 14501 break; 14502 } 14503 if (mp1 == NULL) { 14504 /* 14505 * More was acked but there is nothing more 14506 * outstanding. This means that the FIN was 14507 * just acked or that we're talking to a clown. 14508 */ 14509 fin_acked: 14510 ASSERT(tcp->tcp_fin_sent); 14511 tcp->tcp_xmit_tail = NULL; 14512 if (tcp->tcp_fin_sent) { 14513 /* FIN was acked - making progress */ 14514 if (tcp->tcp_ipversion == IPV6_VERSION && 14515 !tcp->tcp_fin_acked) 14516 tcp->tcp_ip_forward_progress = B_TRUE; 14517 tcp->tcp_fin_acked = B_TRUE; 14518 if (tcp->tcp_linger_tid != 0 && 14519 TCP_TIMER_CANCEL(tcp, 14520 tcp->tcp_linger_tid) >= 0) { 14521 tcp_stop_lingering(tcp); 14522 } 14523 } else { 14524 /* 14525 * We should never get here because 14526 * we have already checked that the 14527 * number of bytes ack'ed should be 14528 * smaller than or equal to what we 14529 * have sent so far (it is the 14530 * acceptability check of the ACK). 14531 * We can only get here if the send 14532 * queue is corrupted. 14533 * 14534 * Terminate the connection and 14535 * panic the system. It is better 14536 * for us to panic instead of 14537 * continuing to avoid other disaster. 14538 */ 14539 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 14540 tcp->tcp_rnxt, TH_RST|TH_ACK); 14541 panic("Memory corruption " 14542 "detected for connection %s.", 14543 tcp_display(tcp, NULL, 14544 DISP_ADDR_AND_PORT)); 14545 /*NOTREACHED*/ 14546 } 14547 goto pre_swnd_update; 14548 } 14549 ASSERT(mp2 != tcp->tcp_xmit_tail); 14550 } 14551 if (tcp->tcp_unsent) { 14552 flags |= TH_XMIT_NEEDED; 14553 } 14554 pre_swnd_update: 14555 tcp->tcp_xmit_head = mp1; 14556 swnd_update: 14557 /* 14558 * The following check is different from most other implementations. 14559 * For bi-directional transfer, when segments are dropped, the 14560 * "normal" check will not accept a window update in those 14561 * retransmitted segemnts. Failing to do that, TCP may send out 14562 * segments which are outside receiver's window. As TCP accepts 14563 * the ack in those retransmitted segments, if the window update in 14564 * the same segment is not accepted, TCP will incorrectly calculates 14565 * that it can send more segments. This can create a deadlock 14566 * with the receiver if its window becomes zero. 14567 */ 14568 if (SEQ_LT(tcp->tcp_swl2, seg_ack) || 14569 SEQ_LT(tcp->tcp_swl1, seg_seq) || 14570 (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) { 14571 /* 14572 * The criteria for update is: 14573 * 14574 * 1. the segment acknowledges some data. Or 14575 * 2. the segment is new, i.e. it has a higher seq num. Or 14576 * 3. the segment is not old and the advertised window is 14577 * larger than the previous advertised window. 14578 */ 14579 if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd) 14580 flags |= TH_XMIT_NEEDED; 14581 tcp->tcp_swnd = new_swnd; 14582 if (new_swnd > tcp->tcp_max_swnd) 14583 tcp->tcp_max_swnd = new_swnd; 14584 tcp->tcp_swl1 = seg_seq; 14585 tcp->tcp_swl2 = seg_ack; 14586 } 14587 est: 14588 if (tcp->tcp_state > TCPS_ESTABLISHED) { 14589 14590 switch (tcp->tcp_state) { 14591 case TCPS_FIN_WAIT_1: 14592 if (tcp->tcp_fin_acked) { 14593 tcp->tcp_state = TCPS_FIN_WAIT_2; 14594 /* 14595 * We implement the non-standard BSD/SunOS 14596 * FIN_WAIT_2 flushing algorithm. 14597 * If there is no user attached to this 14598 * TCP endpoint, then this TCP struct 14599 * could hang around forever in FIN_WAIT_2 14600 * state if the peer forgets to send us 14601 * a FIN. To prevent this, we wait only 14602 * 2*MSL (a convenient time value) for 14603 * the FIN to arrive. If it doesn't show up, 14604 * we flush the TCP endpoint. This algorithm, 14605 * though a violation of RFC-793, has worked 14606 * for over 10 years in BSD systems. 14607 * Note: SunOS 4.x waits 675 seconds before 14608 * flushing the FIN_WAIT_2 connection. 14609 */ 14610 TCP_TIMER_RESTART(tcp, 14611 tcp_fin_wait_2_flush_interval); 14612 } 14613 break; 14614 case TCPS_FIN_WAIT_2: 14615 break; /* Shutdown hook? */ 14616 case TCPS_LAST_ACK: 14617 freemsg(mp); 14618 if (tcp->tcp_fin_acked) { 14619 (void) tcp_clean_death(tcp, 0, 19); 14620 return; 14621 } 14622 goto xmit_check; 14623 case TCPS_CLOSING: 14624 if (tcp->tcp_fin_acked) { 14625 tcp->tcp_state = TCPS_TIME_WAIT; 14626 /* 14627 * Unconditionally clear the exclusive binding 14628 * bit so this TIME-WAIT connection won't 14629 * interfere with new ones. 14630 */ 14631 tcp->tcp_exclbind = 0; 14632 if (!TCP_IS_DETACHED(tcp)) { 14633 TCP_TIMER_RESTART(tcp, 14634 tcp_time_wait_interval); 14635 } else { 14636 tcp_time_wait_append(tcp); 14637 TCP_DBGSTAT(tcp_rput_time_wait); 14638 } 14639 } 14640 /*FALLTHRU*/ 14641 case TCPS_CLOSE_WAIT: 14642 freemsg(mp); 14643 goto xmit_check; 14644 default: 14645 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 14646 break; 14647 } 14648 } 14649 if (flags & TH_FIN) { 14650 /* Make sure we ack the fin */ 14651 flags |= TH_ACK_NEEDED; 14652 if (!tcp->tcp_fin_rcvd) { 14653 tcp->tcp_fin_rcvd = B_TRUE; 14654 tcp->tcp_rnxt++; 14655 tcph = tcp->tcp_tcph; 14656 U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack); 14657 14658 /* 14659 * Generate the ordrel_ind at the end unless we 14660 * are an eager guy. 14661 * In the eager case tcp_rsrv will do this when run 14662 * after tcp_accept is done. 14663 */ 14664 if (tcp->tcp_listener == NULL && 14665 !TCP_IS_DETACHED(tcp) && (!tcp->tcp_hard_binding)) 14666 flags |= TH_ORDREL_NEEDED; 14667 switch (tcp->tcp_state) { 14668 case TCPS_SYN_RCVD: 14669 case TCPS_ESTABLISHED: 14670 tcp->tcp_state = TCPS_CLOSE_WAIT; 14671 /* Keepalive? */ 14672 break; 14673 case TCPS_FIN_WAIT_1: 14674 if (!tcp->tcp_fin_acked) { 14675 tcp->tcp_state = TCPS_CLOSING; 14676 break; 14677 } 14678 /* FALLTHRU */ 14679 case TCPS_FIN_WAIT_2: 14680 tcp->tcp_state = TCPS_TIME_WAIT; 14681 /* 14682 * Unconditionally clear the exclusive binding 14683 * bit so this TIME-WAIT connection won't 14684 * interfere with new ones. 14685 */ 14686 tcp->tcp_exclbind = 0; 14687 if (!TCP_IS_DETACHED(tcp)) { 14688 TCP_TIMER_RESTART(tcp, 14689 tcp_time_wait_interval); 14690 } else { 14691 tcp_time_wait_append(tcp); 14692 TCP_DBGSTAT(tcp_rput_time_wait); 14693 } 14694 if (seg_len) { 14695 /* 14696 * implies data piggybacked on FIN. 14697 * break to handle data. 14698 */ 14699 break; 14700 } 14701 freemsg(mp); 14702 goto ack_check; 14703 } 14704 } 14705 } 14706 if (mp == NULL) 14707 goto xmit_check; 14708 if (seg_len == 0) { 14709 freemsg(mp); 14710 goto xmit_check; 14711 } 14712 if (mp->b_rptr == mp->b_wptr) { 14713 /* 14714 * The header has been consumed, so we remove the 14715 * zero-length mblk here. 14716 */ 14717 mp1 = mp; 14718 mp = mp->b_cont; 14719 freeb(mp1); 14720 } 14721 tcph = tcp->tcp_tcph; 14722 tcp->tcp_rack_cnt++; 14723 { 14724 uint32_t cur_max; 14725 14726 cur_max = tcp->tcp_rack_cur_max; 14727 if (tcp->tcp_rack_cnt >= cur_max) { 14728 /* 14729 * We have more unacked data than we should - send 14730 * an ACK now. 14731 */ 14732 flags |= TH_ACK_NEEDED; 14733 cur_max++; 14734 if (cur_max > tcp->tcp_rack_abs_max) 14735 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 14736 else 14737 tcp->tcp_rack_cur_max = cur_max; 14738 } else if (TCP_IS_DETACHED(tcp)) { 14739 /* We don't have an ACK timer for detached TCP. */ 14740 flags |= TH_ACK_NEEDED; 14741 } else if (seg_len < mss) { 14742 /* 14743 * If we get a segment that is less than an mss, and we 14744 * already have unacknowledged data, and the amount 14745 * unacknowledged is not a multiple of mss, then we 14746 * better generate an ACK now. Otherwise, this may be 14747 * the tail piece of a transaction, and we would rather 14748 * wait for the response. 14749 */ 14750 uint32_t udif; 14751 ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <= 14752 (uintptr_t)INT_MAX); 14753 udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack); 14754 if (udif && (udif % mss)) 14755 flags |= TH_ACK_NEEDED; 14756 else 14757 flags |= TH_ACK_TIMER_NEEDED; 14758 } else { 14759 /* Start delayed ack timer */ 14760 flags |= TH_ACK_TIMER_NEEDED; 14761 } 14762 } 14763 tcp->tcp_rnxt += seg_len; 14764 U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack); 14765 14766 /* Update SACK list */ 14767 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 14768 tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt, 14769 &(tcp->tcp_num_sack_blk)); 14770 } 14771 14772 if (tcp->tcp_urp_mp) { 14773 tcp->tcp_urp_mp->b_cont = mp; 14774 mp = tcp->tcp_urp_mp; 14775 tcp->tcp_urp_mp = NULL; 14776 /* Ready for a new signal. */ 14777 tcp->tcp_urp_last_valid = B_FALSE; 14778 #ifdef DEBUG 14779 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14780 "tcp_rput: sending exdata_ind %s", 14781 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 14782 #endif /* DEBUG */ 14783 } 14784 14785 /* 14786 * Check for ancillary data changes compared to last segment. 14787 */ 14788 if (tcp->tcp_ipv6_recvancillary != 0) { 14789 mp = tcp_rput_add_ancillary(tcp, mp, &ipp); 14790 if (mp == NULL) 14791 return; 14792 } 14793 14794 if (tcp->tcp_listener || tcp->tcp_hard_binding) { 14795 /* 14796 * Side queue inbound data until the accept happens. 14797 * tcp_accept/tcp_rput drains this when the accept happens. 14798 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or 14799 * T_EXDATA_IND) it is queued on b_next. 14800 * XXX Make urgent data use this. Requires: 14801 * Removing tcp_listener check for TH_URG 14802 * Making M_PCPROTO and MARK messages skip the eager case 14803 */ 14804 14805 if (tcp->tcp_kssl_pending) { 14806 tcp_kssl_input(tcp, mp); 14807 } else { 14808 tcp_rcv_enqueue(tcp, mp, seg_len); 14809 } 14810 } else { 14811 if (mp->b_datap->db_type != M_DATA || 14812 (flags & TH_MARKNEXT_NEEDED)) { 14813 if (tcp->tcp_rcv_list != NULL) { 14814 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 14815 } 14816 ASSERT(tcp->tcp_rcv_list == NULL || 14817 tcp->tcp_fused_sigurg); 14818 if (flags & TH_MARKNEXT_NEEDED) { 14819 #ifdef DEBUG 14820 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14821 "tcp_rput: sending MSGMARKNEXT %s", 14822 tcp_display(tcp, NULL, 14823 DISP_PORT_ONLY)); 14824 #endif /* DEBUG */ 14825 mp->b_flag |= MSGMARKNEXT; 14826 flags &= ~TH_MARKNEXT_NEEDED; 14827 } 14828 14829 /* Does this need SSL processing first? */ 14830 if ((tcp->tcp_kssl_ctx != NULL) && 14831 (DB_TYPE(mp) == M_DATA)) { 14832 tcp_kssl_input(tcp, mp); 14833 } else { 14834 putnext(tcp->tcp_rq, mp); 14835 if (!canputnext(tcp->tcp_rq)) 14836 tcp->tcp_rwnd -= seg_len; 14837 } 14838 } else if ((flags & (TH_PUSH|TH_FIN)) || 14839 tcp->tcp_rcv_cnt + seg_len >= tcp->tcp_rq->q_hiwat >> 3) { 14840 if (tcp->tcp_rcv_list != NULL) { 14841 /* 14842 * Enqueue the new segment first and then 14843 * call tcp_rcv_drain() to send all data 14844 * up. The other way to do this is to 14845 * send all queued data up and then call 14846 * putnext() to send the new segment up. 14847 * This way can remove the else part later 14848 * on. 14849 * 14850 * We don't this to avoid one more call to 14851 * canputnext() as tcp_rcv_drain() needs to 14852 * call canputnext(). 14853 */ 14854 tcp_rcv_enqueue(tcp, mp, seg_len); 14855 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 14856 } else { 14857 /* Does this need SSL processing first? */ 14858 if ((tcp->tcp_kssl_ctx != NULL) && 14859 (DB_TYPE(mp) == M_DATA)) { 14860 tcp_kssl_input(tcp, mp); 14861 } else { 14862 putnext(tcp->tcp_rq, mp); 14863 if (!canputnext(tcp->tcp_rq)) 14864 tcp->tcp_rwnd -= seg_len; 14865 } 14866 } 14867 } else { 14868 /* 14869 * Enqueue all packets when processing an mblk 14870 * from the co queue and also enqueue normal packets. 14871 */ 14872 tcp_rcv_enqueue(tcp, mp, seg_len); 14873 } 14874 /* 14875 * Make sure the timer is running if we have data waiting 14876 * for a push bit. This provides resiliency against 14877 * implementations that do not correctly generate push bits. 14878 */ 14879 if (tcp->tcp_rcv_list != NULL && tcp->tcp_push_tid == 0) { 14880 /* 14881 * The connection may be closed at this point, so don't 14882 * do anything for a detached tcp. 14883 */ 14884 if (!TCP_IS_DETACHED(tcp)) 14885 tcp->tcp_push_tid = TCP_TIMER(tcp, 14886 tcp_push_timer, 14887 MSEC_TO_TICK(tcp_push_timer_interval)); 14888 } 14889 } 14890 xmit_check: 14891 /* Is there anything left to do? */ 14892 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 14893 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED| 14894 TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED| 14895 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 14896 goto done; 14897 14898 /* Any transmit work to do and a non-zero window? */ 14899 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT| 14900 TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) { 14901 if (flags & TH_REXMIT_NEEDED) { 14902 uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna; 14903 14904 BUMP_MIB(&tcp_mib, tcpOutFastRetrans); 14905 if (snd_size > mss) 14906 snd_size = mss; 14907 if (snd_size > tcp->tcp_swnd) 14908 snd_size = tcp->tcp_swnd; 14909 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size, 14910 NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size, 14911 B_TRUE); 14912 14913 if (mp1 != NULL) { 14914 tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt; 14915 tcp->tcp_csuna = tcp->tcp_snxt; 14916 BUMP_MIB(&tcp_mib, tcpRetransSegs); 14917 UPDATE_MIB(&tcp_mib, tcpRetransBytes, snd_size); 14918 TCP_RECORD_TRACE(tcp, mp1, 14919 TCP_TRACE_SEND_PKT); 14920 tcp_send_data(tcp, tcp->tcp_wq, mp1); 14921 } 14922 } 14923 if (flags & TH_NEED_SACK_REXMIT) { 14924 tcp_sack_rxmit(tcp, &flags); 14925 } 14926 /* 14927 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send 14928 * out new segment. Note that tcp_rexmit should not be 14929 * set, otherwise TH_LIMIT_XMIT should not be set. 14930 */ 14931 if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) { 14932 if (!tcp->tcp_rexmit) { 14933 tcp_wput_data(tcp, NULL, B_FALSE); 14934 } else { 14935 tcp_ss_rexmit(tcp); 14936 } 14937 } 14938 /* 14939 * Adjust tcp_cwnd back to normal value after sending 14940 * new data segments. 14941 */ 14942 if (flags & TH_LIMIT_XMIT) { 14943 tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1); 14944 /* 14945 * This will restart the timer. Restarting the 14946 * timer is used to avoid a timeout before the 14947 * limited transmitted segment's ACK gets back. 14948 */ 14949 if (tcp->tcp_xmit_head != NULL) 14950 tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt; 14951 } 14952 14953 /* Anything more to do? */ 14954 if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED| 14955 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 14956 goto done; 14957 } 14958 ack_check: 14959 if (flags & TH_SEND_URP_MARK) { 14960 ASSERT(tcp->tcp_urp_mark_mp); 14961 /* 14962 * Send up any queued data and then send the mark message 14963 */ 14964 if (tcp->tcp_rcv_list != NULL) { 14965 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 14966 } 14967 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 14968 14969 mp1 = tcp->tcp_urp_mark_mp; 14970 tcp->tcp_urp_mark_mp = NULL; 14971 #ifdef DEBUG 14972 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14973 "tcp_rput: sending zero-length %s %s", 14974 ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" : 14975 "MSGNOTMARKNEXT"), 14976 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 14977 #endif /* DEBUG */ 14978 putnext(tcp->tcp_rq, mp1); 14979 flags &= ~TH_SEND_URP_MARK; 14980 } 14981 if (flags & TH_ACK_NEEDED) { 14982 /* 14983 * Time to send an ack for some reason. 14984 */ 14985 mp1 = tcp_ack_mp(tcp); 14986 14987 if (mp1 != NULL) { 14988 TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT); 14989 tcp_send_data(tcp, tcp->tcp_wq, mp1); 14990 BUMP_LOCAL(tcp->tcp_obsegs); 14991 BUMP_MIB(&tcp_mib, tcpOutAck); 14992 } 14993 if (tcp->tcp_ack_tid != 0) { 14994 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 14995 tcp->tcp_ack_tid = 0; 14996 } 14997 } 14998 if (flags & TH_ACK_TIMER_NEEDED) { 14999 /* 15000 * Arrange for deferred ACK or push wait timeout. 15001 * Start timer if it is not already running. 15002 */ 15003 if (tcp->tcp_ack_tid == 0) { 15004 tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer, 15005 MSEC_TO_TICK(tcp->tcp_localnet ? 15006 (clock_t)tcp_local_dack_interval : 15007 (clock_t)tcp_deferred_ack_interval)); 15008 } 15009 } 15010 if (flags & TH_ORDREL_NEEDED) { 15011 /* 15012 * Send up the ordrel_ind unless we are an eager guy. 15013 * In the eager case tcp_rsrv will do this when run 15014 * after tcp_accept is done. 15015 */ 15016 ASSERT(tcp->tcp_listener == NULL); 15017 if (tcp->tcp_rcv_list != NULL) { 15018 /* 15019 * Push any mblk(s) enqueued from co processing. 15020 */ 15021 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 15022 } 15023 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 15024 if ((mp1 = mi_tpi_ordrel_ind()) != NULL) { 15025 tcp->tcp_ordrel_done = B_TRUE; 15026 putnext(tcp->tcp_rq, mp1); 15027 if (tcp->tcp_deferred_clean_death) { 15028 /* 15029 * tcp_clean_death was deferred 15030 * for T_ORDREL_IND - do it now 15031 */ 15032 (void) tcp_clean_death(tcp, 15033 tcp->tcp_client_errno, 20); 15034 tcp->tcp_deferred_clean_death = B_FALSE; 15035 } 15036 } else { 15037 /* 15038 * Run the orderly release in the 15039 * service routine. 15040 */ 15041 qenable(tcp->tcp_rq); 15042 /* 15043 * Caveat(XXX): The machine may be so 15044 * overloaded that tcp_rsrv() is not scheduled 15045 * until after the endpoint has transitioned 15046 * to TCPS_TIME_WAIT 15047 * and tcp_time_wait_interval expires. Then 15048 * tcp_timer() will blow away state in tcp_t 15049 * and T_ORDREL_IND will never be delivered 15050 * upstream. Unlikely but potentially 15051 * a problem. 15052 */ 15053 } 15054 } 15055 done: 15056 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 15057 } 15058 15059 /* 15060 * This function does PAWS protection check. Returns B_TRUE if the 15061 * segment passes the PAWS test, else returns B_FALSE. 15062 */ 15063 boolean_t 15064 tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp) 15065 { 15066 uint8_t flags; 15067 int options; 15068 uint8_t *up; 15069 15070 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 15071 /* 15072 * If timestamp option is aligned nicely, get values inline, 15073 * otherwise call general routine to parse. Only do that 15074 * if timestamp is the only option. 15075 */ 15076 if (TCP_HDR_LENGTH(tcph) == (uint32_t)TCP_MIN_HEADER_LENGTH + 15077 TCPOPT_REAL_TS_LEN && 15078 OK_32PTR((up = ((uint8_t *)tcph) + 15079 TCP_MIN_HEADER_LENGTH)) && 15080 *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) { 15081 tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4)); 15082 tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8)); 15083 15084 options = TCP_OPT_TSTAMP_PRESENT; 15085 } else { 15086 if (tcp->tcp_snd_sack_ok) { 15087 tcpoptp->tcp = tcp; 15088 } else { 15089 tcpoptp->tcp = NULL; 15090 } 15091 options = tcp_parse_options(tcph, tcpoptp); 15092 } 15093 15094 if (options & TCP_OPT_TSTAMP_PRESENT) { 15095 /* 15096 * Do PAWS per RFC 1323 section 4.2. Accept RST 15097 * regardless of the timestamp, page 18 RFC 1323.bis. 15098 */ 15099 if ((flags & TH_RST) == 0 && 15100 TSTMP_LT(tcpoptp->tcp_opt_ts_val, 15101 tcp->tcp_ts_recent)) { 15102 if (TSTMP_LT(lbolt64, tcp->tcp_last_rcv_lbolt + 15103 PAWS_TIMEOUT)) { 15104 /* This segment is not acceptable. */ 15105 return (B_FALSE); 15106 } else { 15107 /* 15108 * Connection has been idle for 15109 * too long. Reset the timestamp 15110 * and assume the segment is valid. 15111 */ 15112 tcp->tcp_ts_recent = 15113 tcpoptp->tcp_opt_ts_val; 15114 } 15115 } 15116 } else { 15117 /* 15118 * If we don't get a timestamp on every packet, we 15119 * figure we can't really trust 'em, so we stop sending 15120 * and parsing them. 15121 */ 15122 tcp->tcp_snd_ts_ok = B_FALSE; 15123 15124 tcp->tcp_hdr_len -= TCPOPT_REAL_TS_LEN; 15125 tcp->tcp_tcp_hdr_len -= TCPOPT_REAL_TS_LEN; 15126 tcp->tcp_tcph->th_offset_and_rsrvd[0] -= (3 << 4); 15127 tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN); 15128 if (tcp->tcp_snd_sack_ok) { 15129 ASSERT(tcp->tcp_sack_info != NULL); 15130 tcp->tcp_max_sack_blk = 4; 15131 } 15132 } 15133 return (B_TRUE); 15134 } 15135 15136 /* 15137 * Attach ancillary data to a received TCP segments for the 15138 * ancillary pieces requested by the application that are 15139 * different than they were in the previous data segment. 15140 * 15141 * Save the "current" values once memory allocation is ok so that 15142 * when memory allocation fails we can just wait for the next data segment. 15143 */ 15144 static mblk_t * 15145 tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp) 15146 { 15147 struct T_optdata_ind *todi; 15148 int optlen; 15149 uchar_t *optptr; 15150 struct T_opthdr *toh; 15151 uint_t addflag; /* Which pieces to add */ 15152 mblk_t *mp1; 15153 15154 optlen = 0; 15155 addflag = 0; 15156 /* If app asked for pktinfo and the index has changed ... */ 15157 if ((ipp->ipp_fields & IPPF_IFINDEX) && 15158 ipp->ipp_ifindex != tcp->tcp_recvifindex && 15159 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)) { 15160 optlen += sizeof (struct T_opthdr) + 15161 sizeof (struct in6_pktinfo); 15162 addflag |= TCP_IPV6_RECVPKTINFO; 15163 } 15164 /* If app asked for hoplimit and it has changed ... */ 15165 if ((ipp->ipp_fields & IPPF_HOPLIMIT) && 15166 ipp->ipp_hoplimit != tcp->tcp_recvhops && 15167 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPLIMIT)) { 15168 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 15169 addflag |= TCP_IPV6_RECVHOPLIMIT; 15170 } 15171 /* If app asked for tclass and it has changed ... */ 15172 if ((ipp->ipp_fields & IPPF_TCLASS) && 15173 ipp->ipp_tclass != tcp->tcp_recvtclass && 15174 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)) { 15175 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 15176 addflag |= TCP_IPV6_RECVTCLASS; 15177 } 15178 /* 15179 * If app asked for hopbyhop headers and it has changed ... 15180 * For security labels, note that (1) security labels can't change on 15181 * a connected socket at all, (2) we're connected to at most one peer, 15182 * (3) if anything changes, then it must be some other extra option. 15183 */ 15184 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) && 15185 ip_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen, 15186 (ipp->ipp_fields & IPPF_HOPOPTS), 15187 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) { 15188 optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen - 15189 tcp->tcp_label_len; 15190 addflag |= TCP_IPV6_RECVHOPOPTS; 15191 if (!ip_allocbuf((void **)&tcp->tcp_hopopts, 15192 &tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS), 15193 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) 15194 return (mp); 15195 } 15196 /* If app asked for dst headers before routing headers ... */ 15197 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTDSTOPTS) && 15198 ip_cmpbuf(tcp->tcp_rtdstopts, tcp->tcp_rtdstoptslen, 15199 (ipp->ipp_fields & IPPF_RTDSTOPTS), 15200 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) { 15201 optlen += sizeof (struct T_opthdr) + 15202 ipp->ipp_rtdstoptslen; 15203 addflag |= TCP_IPV6_RECVRTDSTOPTS; 15204 if (!ip_allocbuf((void **)&tcp->tcp_rtdstopts, 15205 &tcp->tcp_rtdstoptslen, (ipp->ipp_fields & IPPF_RTDSTOPTS), 15206 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) 15207 return (mp); 15208 } 15209 /* If app asked for routing headers and it has changed ... */ 15210 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) && 15211 ip_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen, 15212 (ipp->ipp_fields & IPPF_RTHDR), 15213 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) { 15214 optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen; 15215 addflag |= TCP_IPV6_RECVRTHDR; 15216 if (!ip_allocbuf((void **)&tcp->tcp_rthdr, 15217 &tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR), 15218 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) 15219 return (mp); 15220 } 15221 /* If app asked for dest headers and it has changed ... */ 15222 if ((tcp->tcp_ipv6_recvancillary & 15223 (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) && 15224 ip_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen, 15225 (ipp->ipp_fields & IPPF_DSTOPTS), 15226 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) { 15227 optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen; 15228 addflag |= TCP_IPV6_RECVDSTOPTS; 15229 if (!ip_allocbuf((void **)&tcp->tcp_dstopts, 15230 &tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS), 15231 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) 15232 return (mp); 15233 } 15234 15235 if (optlen == 0) { 15236 /* Nothing to add */ 15237 return (mp); 15238 } 15239 mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED); 15240 if (mp1 == NULL) { 15241 /* 15242 * Defer sending ancillary data until the next TCP segment 15243 * arrives. 15244 */ 15245 return (mp); 15246 } 15247 mp1->b_cont = mp; 15248 mp = mp1; 15249 mp->b_wptr += sizeof (*todi) + optlen; 15250 mp->b_datap->db_type = M_PROTO; 15251 todi = (struct T_optdata_ind *)mp->b_rptr; 15252 todi->PRIM_type = T_OPTDATA_IND; 15253 todi->DATA_flag = 1; /* MORE data */ 15254 todi->OPT_length = optlen; 15255 todi->OPT_offset = sizeof (*todi); 15256 optptr = (uchar_t *)&todi[1]; 15257 /* 15258 * If app asked for pktinfo and the index has changed ... 15259 * Note that the local address never changes for the connection. 15260 */ 15261 if (addflag & TCP_IPV6_RECVPKTINFO) { 15262 struct in6_pktinfo *pkti; 15263 15264 toh = (struct T_opthdr *)optptr; 15265 toh->level = IPPROTO_IPV6; 15266 toh->name = IPV6_PKTINFO; 15267 toh->len = sizeof (*toh) + sizeof (*pkti); 15268 toh->status = 0; 15269 optptr += sizeof (*toh); 15270 pkti = (struct in6_pktinfo *)optptr; 15271 if (tcp->tcp_ipversion == IPV6_VERSION) 15272 pkti->ipi6_addr = tcp->tcp_ip6h->ip6_src; 15273 else 15274 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 15275 &pkti->ipi6_addr); 15276 pkti->ipi6_ifindex = ipp->ipp_ifindex; 15277 optptr += sizeof (*pkti); 15278 ASSERT(OK_32PTR(optptr)); 15279 /* Save as "last" value */ 15280 tcp->tcp_recvifindex = ipp->ipp_ifindex; 15281 } 15282 /* If app asked for hoplimit and it has changed ... */ 15283 if (addflag & TCP_IPV6_RECVHOPLIMIT) { 15284 toh = (struct T_opthdr *)optptr; 15285 toh->level = IPPROTO_IPV6; 15286 toh->name = IPV6_HOPLIMIT; 15287 toh->len = sizeof (*toh) + sizeof (uint_t); 15288 toh->status = 0; 15289 optptr += sizeof (*toh); 15290 *(uint_t *)optptr = ipp->ipp_hoplimit; 15291 optptr += sizeof (uint_t); 15292 ASSERT(OK_32PTR(optptr)); 15293 /* Save as "last" value */ 15294 tcp->tcp_recvhops = ipp->ipp_hoplimit; 15295 } 15296 /* If app asked for tclass and it has changed ... */ 15297 if (addflag & TCP_IPV6_RECVTCLASS) { 15298 toh = (struct T_opthdr *)optptr; 15299 toh->level = IPPROTO_IPV6; 15300 toh->name = IPV6_TCLASS; 15301 toh->len = sizeof (*toh) + sizeof (uint_t); 15302 toh->status = 0; 15303 optptr += sizeof (*toh); 15304 *(uint_t *)optptr = ipp->ipp_tclass; 15305 optptr += sizeof (uint_t); 15306 ASSERT(OK_32PTR(optptr)); 15307 /* Save as "last" value */ 15308 tcp->tcp_recvtclass = ipp->ipp_tclass; 15309 } 15310 if (addflag & TCP_IPV6_RECVHOPOPTS) { 15311 toh = (struct T_opthdr *)optptr; 15312 toh->level = IPPROTO_IPV6; 15313 toh->name = IPV6_HOPOPTS; 15314 toh->len = sizeof (*toh) + ipp->ipp_hopoptslen - 15315 tcp->tcp_label_len; 15316 toh->status = 0; 15317 optptr += sizeof (*toh); 15318 bcopy((uchar_t *)ipp->ipp_hopopts + tcp->tcp_label_len, optptr, 15319 ipp->ipp_hopoptslen - tcp->tcp_label_len); 15320 optptr += ipp->ipp_hopoptslen - tcp->tcp_label_len; 15321 ASSERT(OK_32PTR(optptr)); 15322 /* Save as last value */ 15323 ip_savebuf((void **)&tcp->tcp_hopopts, &tcp->tcp_hopoptslen, 15324 (ipp->ipp_fields & IPPF_HOPOPTS), 15325 ipp->ipp_hopopts, ipp->ipp_hopoptslen); 15326 } 15327 if (addflag & TCP_IPV6_RECVRTDSTOPTS) { 15328 toh = (struct T_opthdr *)optptr; 15329 toh->level = IPPROTO_IPV6; 15330 toh->name = IPV6_RTHDRDSTOPTS; 15331 toh->len = sizeof (*toh) + ipp->ipp_rtdstoptslen; 15332 toh->status = 0; 15333 optptr += sizeof (*toh); 15334 bcopy(ipp->ipp_rtdstopts, optptr, ipp->ipp_rtdstoptslen); 15335 optptr += ipp->ipp_rtdstoptslen; 15336 ASSERT(OK_32PTR(optptr)); 15337 /* Save as last value */ 15338 ip_savebuf((void **)&tcp->tcp_rtdstopts, 15339 &tcp->tcp_rtdstoptslen, 15340 (ipp->ipp_fields & IPPF_RTDSTOPTS), 15341 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 15342 } 15343 if (addflag & TCP_IPV6_RECVRTHDR) { 15344 toh = (struct T_opthdr *)optptr; 15345 toh->level = IPPROTO_IPV6; 15346 toh->name = IPV6_RTHDR; 15347 toh->len = sizeof (*toh) + ipp->ipp_rthdrlen; 15348 toh->status = 0; 15349 optptr += sizeof (*toh); 15350 bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen); 15351 optptr += ipp->ipp_rthdrlen; 15352 ASSERT(OK_32PTR(optptr)); 15353 /* Save as last value */ 15354 ip_savebuf((void **)&tcp->tcp_rthdr, &tcp->tcp_rthdrlen, 15355 (ipp->ipp_fields & IPPF_RTHDR), 15356 ipp->ipp_rthdr, ipp->ipp_rthdrlen); 15357 } 15358 if (addflag & (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) { 15359 toh = (struct T_opthdr *)optptr; 15360 toh->level = IPPROTO_IPV6; 15361 toh->name = IPV6_DSTOPTS; 15362 toh->len = sizeof (*toh) + ipp->ipp_dstoptslen; 15363 toh->status = 0; 15364 optptr += sizeof (*toh); 15365 bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen); 15366 optptr += ipp->ipp_dstoptslen; 15367 ASSERT(OK_32PTR(optptr)); 15368 /* Save as last value */ 15369 ip_savebuf((void **)&tcp->tcp_dstopts, &tcp->tcp_dstoptslen, 15370 (ipp->ipp_fields & IPPF_DSTOPTS), 15371 ipp->ipp_dstopts, ipp->ipp_dstoptslen); 15372 } 15373 ASSERT(optptr == mp->b_wptr); 15374 return (mp); 15375 } 15376 15377 15378 /* 15379 * Handle a *T_BIND_REQ that has failed either due to a T_ERROR_ACK 15380 * or a "bad" IRE detected by tcp_adapt_ire. 15381 * We can't tell if the failure was due to the laddr or the faddr 15382 * thus we clear out all addresses and ports. 15383 */ 15384 static void 15385 tcp_bind_failed(tcp_t *tcp, mblk_t *mp, int error) 15386 { 15387 queue_t *q = tcp->tcp_rq; 15388 tcph_t *tcph; 15389 struct T_error_ack *tea; 15390 conn_t *connp = tcp->tcp_connp; 15391 15392 15393 ASSERT(mp->b_datap->db_type == M_PCPROTO); 15394 15395 if (mp->b_cont) { 15396 freemsg(mp->b_cont); 15397 mp->b_cont = NULL; 15398 } 15399 tea = (struct T_error_ack *)mp->b_rptr; 15400 switch (tea->PRIM_type) { 15401 case T_BIND_ACK: 15402 /* 15403 * Need to unbind with classifier since we were just told that 15404 * our bind succeeded. 15405 */ 15406 tcp->tcp_hard_bound = B_FALSE; 15407 tcp->tcp_hard_binding = B_FALSE; 15408 15409 ipcl_hash_remove(connp); 15410 /* Reuse the mblk if possible */ 15411 ASSERT(mp->b_datap->db_lim - mp->b_datap->db_base >= 15412 sizeof (*tea)); 15413 mp->b_rptr = mp->b_datap->db_base; 15414 mp->b_wptr = mp->b_rptr + sizeof (*tea); 15415 tea = (struct T_error_ack *)mp->b_rptr; 15416 tea->PRIM_type = T_ERROR_ACK; 15417 tea->TLI_error = TSYSERR; 15418 tea->UNIX_error = error; 15419 if (tcp->tcp_state >= TCPS_SYN_SENT) { 15420 tea->ERROR_prim = T_CONN_REQ; 15421 } else { 15422 tea->ERROR_prim = O_T_BIND_REQ; 15423 } 15424 break; 15425 15426 case T_ERROR_ACK: 15427 if (tcp->tcp_state >= TCPS_SYN_SENT) 15428 tea->ERROR_prim = T_CONN_REQ; 15429 break; 15430 default: 15431 panic("tcp_bind_failed: unexpected TPI type"); 15432 /*NOTREACHED*/ 15433 } 15434 15435 tcp->tcp_state = TCPS_IDLE; 15436 if (tcp->tcp_ipversion == IPV4_VERSION) 15437 tcp->tcp_ipha->ipha_src = 0; 15438 else 15439 V6_SET_ZERO(tcp->tcp_ip6h->ip6_src); 15440 /* 15441 * Copy of the src addr. in tcp_t is needed since 15442 * the lookup funcs. can only look at tcp_t 15443 */ 15444 V6_SET_ZERO(tcp->tcp_ip_src_v6); 15445 15446 tcph = tcp->tcp_tcph; 15447 tcph->th_lport[0] = 0; 15448 tcph->th_lport[1] = 0; 15449 tcp_bind_hash_remove(tcp); 15450 bzero(&connp->u_port, sizeof (connp->u_port)); 15451 /* blow away saved option results if any */ 15452 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 15453 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 15454 15455 conn_delete_ire(tcp->tcp_connp, NULL); 15456 putnext(q, mp); 15457 } 15458 15459 /* 15460 * tcp_rput_other is called by tcp_rput to handle everything other than M_DATA 15461 * messages. 15462 */ 15463 void 15464 tcp_rput_other(tcp_t *tcp, mblk_t *mp) 15465 { 15466 mblk_t *mp1; 15467 uchar_t *rptr = mp->b_rptr; 15468 queue_t *q = tcp->tcp_rq; 15469 struct T_error_ack *tea; 15470 uint32_t mss; 15471 mblk_t *syn_mp; 15472 mblk_t *mdti; 15473 mblk_t *lsoi; 15474 int retval; 15475 mblk_t *ire_mp; 15476 15477 switch (mp->b_datap->db_type) { 15478 case M_PROTO: 15479 case M_PCPROTO: 15480 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 15481 if ((mp->b_wptr - rptr) < sizeof (t_scalar_t)) 15482 break; 15483 tea = (struct T_error_ack *)rptr; 15484 switch (tea->PRIM_type) { 15485 case T_BIND_ACK: 15486 /* 15487 * Adapt Multidata information, if any. The 15488 * following tcp_mdt_update routine will free 15489 * the message. 15490 */ 15491 if ((mdti = tcp_mdt_info_mp(mp)) != NULL) { 15492 tcp_mdt_update(tcp, &((ip_mdt_info_t *)mdti-> 15493 b_rptr)->mdt_capab, B_TRUE); 15494 freemsg(mdti); 15495 } 15496 15497 /* 15498 * Check to update LSO information with tcp, and 15499 * tcp_lso_update routine will free the message. 15500 */ 15501 if ((lsoi = tcp_lso_info_mp(mp)) != NULL) { 15502 tcp_lso_update(tcp, &((ip_lso_info_t *)lsoi-> 15503 b_rptr)->lso_capab); 15504 freemsg(lsoi); 15505 } 15506 15507 /* Get the IRE, if we had requested for it */ 15508 ire_mp = tcp_ire_mp(mp); 15509 15510 if (tcp->tcp_hard_binding) { 15511 tcp->tcp_hard_binding = B_FALSE; 15512 tcp->tcp_hard_bound = B_TRUE; 15513 CL_INET_CONNECT(tcp); 15514 } else { 15515 if (ire_mp != NULL) 15516 freeb(ire_mp); 15517 goto after_syn_sent; 15518 } 15519 15520 retval = tcp_adapt_ire(tcp, ire_mp); 15521 if (ire_mp != NULL) 15522 freeb(ire_mp); 15523 if (retval == 0) { 15524 tcp_bind_failed(tcp, mp, 15525 (int)((tcp->tcp_state >= TCPS_SYN_SENT) ? 15526 ENETUNREACH : EADDRNOTAVAIL)); 15527 return; 15528 } 15529 /* 15530 * Don't let an endpoint connect to itself. 15531 * Also checked in tcp_connect() but that 15532 * check can't handle the case when the 15533 * local IP address is INADDR_ANY. 15534 */ 15535 if (tcp->tcp_ipversion == IPV4_VERSION) { 15536 if ((tcp->tcp_ipha->ipha_dst == 15537 tcp->tcp_ipha->ipha_src) && 15538 (BE16_EQL(tcp->tcp_tcph->th_lport, 15539 tcp->tcp_tcph->th_fport))) { 15540 tcp_bind_failed(tcp, mp, EADDRNOTAVAIL); 15541 return; 15542 } 15543 } else { 15544 if (IN6_ARE_ADDR_EQUAL( 15545 &tcp->tcp_ip6h->ip6_dst, 15546 &tcp->tcp_ip6h->ip6_src) && 15547 (BE16_EQL(tcp->tcp_tcph->th_lport, 15548 tcp->tcp_tcph->th_fport))) { 15549 tcp_bind_failed(tcp, mp, EADDRNOTAVAIL); 15550 return; 15551 } 15552 } 15553 ASSERT(tcp->tcp_state == TCPS_SYN_SENT); 15554 /* 15555 * This should not be possible! Just for 15556 * defensive coding... 15557 */ 15558 if (tcp->tcp_state != TCPS_SYN_SENT) 15559 goto after_syn_sent; 15560 15561 if (is_system_labeled() && 15562 !tcp_update_label(tcp, CONN_CRED(tcp->tcp_connp))) { 15563 tcp_bind_failed(tcp, mp, EHOSTUNREACH); 15564 return; 15565 } 15566 15567 ASSERT(q == tcp->tcp_rq); 15568 /* 15569 * tcp_adapt_ire() does not adjust 15570 * for TCP/IP header length. 15571 */ 15572 mss = tcp->tcp_mss - tcp->tcp_hdr_len; 15573 15574 /* 15575 * Just make sure our rwnd is at 15576 * least tcp_recv_hiwat_mss * MSS 15577 * large, and round up to the nearest 15578 * MSS. 15579 * 15580 * We do the round up here because 15581 * we need to get the interface 15582 * MTU first before we can do the 15583 * round up. 15584 */ 15585 tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss), 15586 tcp_recv_hiwat_minmss * mss); 15587 q->q_hiwat = tcp->tcp_rwnd; 15588 tcp_set_ws_value(tcp); 15589 U32_TO_ABE16((tcp->tcp_rwnd >> tcp->tcp_rcv_ws), 15590 tcp->tcp_tcph->th_win); 15591 if (tcp->tcp_rcv_ws > 0 || tcp_wscale_always) 15592 tcp->tcp_snd_ws_ok = B_TRUE; 15593 15594 /* 15595 * Set tcp_snd_ts_ok to true 15596 * so that tcp_xmit_mp will 15597 * include the timestamp 15598 * option in the SYN segment. 15599 */ 15600 if (tcp_tstamp_always || 15601 (tcp->tcp_rcv_ws && tcp_tstamp_if_wscale)) { 15602 tcp->tcp_snd_ts_ok = B_TRUE; 15603 } 15604 15605 /* 15606 * tcp_snd_sack_ok can be set in 15607 * tcp_adapt_ire() if the sack metric 15608 * is set. So check it here also. 15609 */ 15610 if (tcp_sack_permitted == 2 || 15611 tcp->tcp_snd_sack_ok) { 15612 if (tcp->tcp_sack_info == NULL) { 15613 tcp->tcp_sack_info = 15614 kmem_cache_alloc(tcp_sack_info_cache, 15615 KM_SLEEP); 15616 } 15617 tcp->tcp_snd_sack_ok = B_TRUE; 15618 } 15619 15620 /* 15621 * Should we use ECN? Note that the current 15622 * default value (SunOS 5.9) of tcp_ecn_permitted 15623 * is 1. The reason for doing this is that there 15624 * are equipments out there that will drop ECN 15625 * enabled IP packets. Setting it to 1 avoids 15626 * compatibility problems. 15627 */ 15628 if (tcp_ecn_permitted == 2) 15629 tcp->tcp_ecn_ok = B_TRUE; 15630 15631 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 15632 syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 15633 tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 15634 if (syn_mp) { 15635 cred_t *cr; 15636 pid_t pid; 15637 15638 /* 15639 * Obtain the credential from the 15640 * thread calling connect(); the credential 15641 * lives on in the second mblk which 15642 * originated from T_CONN_REQ and is echoed 15643 * with the T_BIND_ACK from ip. If none 15644 * can be found, default to the creator 15645 * of the socket. 15646 */ 15647 if (mp->b_cont == NULL || 15648 (cr = DB_CRED(mp->b_cont)) == NULL) { 15649 cr = tcp->tcp_cred; 15650 pid = tcp->tcp_cpid; 15651 } else { 15652 pid = DB_CPID(mp->b_cont); 15653 } 15654 15655 TCP_RECORD_TRACE(tcp, syn_mp, 15656 TCP_TRACE_SEND_PKT); 15657 mblk_setcred(syn_mp, cr); 15658 DB_CPID(syn_mp) = pid; 15659 tcp_send_data(tcp, tcp->tcp_wq, syn_mp); 15660 } 15661 after_syn_sent: 15662 /* 15663 * A trailer mblk indicates a waiting client upstream. 15664 * We complete here the processing begun in 15665 * either tcp_bind() or tcp_connect() by passing 15666 * upstream the reply message they supplied. 15667 */ 15668 mp1 = mp; 15669 mp = mp->b_cont; 15670 freeb(mp1); 15671 if (mp) 15672 break; 15673 return; 15674 case T_ERROR_ACK: 15675 if (tcp->tcp_debug) { 15676 (void) strlog(TCP_MOD_ID, 0, 1, 15677 SL_TRACE|SL_ERROR, 15678 "tcp_rput_other: case T_ERROR_ACK, " 15679 "ERROR_prim == %d", 15680 tea->ERROR_prim); 15681 } 15682 switch (tea->ERROR_prim) { 15683 case O_T_BIND_REQ: 15684 case T_BIND_REQ: 15685 tcp_bind_failed(tcp, mp, 15686 (int)((tcp->tcp_state >= TCPS_SYN_SENT) ? 15687 ENETUNREACH : EADDRNOTAVAIL)); 15688 return; 15689 case T_UNBIND_REQ: 15690 tcp->tcp_hard_binding = B_FALSE; 15691 tcp->tcp_hard_bound = B_FALSE; 15692 if (mp->b_cont) { 15693 freemsg(mp->b_cont); 15694 mp->b_cont = NULL; 15695 } 15696 if (tcp->tcp_unbind_pending) 15697 tcp->tcp_unbind_pending = 0; 15698 else { 15699 /* From tcp_ip_unbind() - free */ 15700 freemsg(mp); 15701 return; 15702 } 15703 break; 15704 case T_SVR4_OPTMGMT_REQ: 15705 if (tcp->tcp_drop_opt_ack_cnt > 0) { 15706 /* T_OPTMGMT_REQ generated by TCP */ 15707 printf("T_SVR4_OPTMGMT_REQ failed " 15708 "%d/%d - dropped (cnt %d)\n", 15709 tea->TLI_error, tea->UNIX_error, 15710 tcp->tcp_drop_opt_ack_cnt); 15711 freemsg(mp); 15712 tcp->tcp_drop_opt_ack_cnt--; 15713 return; 15714 } 15715 break; 15716 } 15717 if (tea->ERROR_prim == T_SVR4_OPTMGMT_REQ && 15718 tcp->tcp_drop_opt_ack_cnt > 0) { 15719 printf("T_SVR4_OPTMGMT_REQ failed %d/%d " 15720 "- dropped (cnt %d)\n", 15721 tea->TLI_error, tea->UNIX_error, 15722 tcp->tcp_drop_opt_ack_cnt); 15723 freemsg(mp); 15724 tcp->tcp_drop_opt_ack_cnt--; 15725 return; 15726 } 15727 break; 15728 case T_OPTMGMT_ACK: 15729 if (tcp->tcp_drop_opt_ack_cnt > 0) { 15730 /* T_OPTMGMT_REQ generated by TCP */ 15731 freemsg(mp); 15732 tcp->tcp_drop_opt_ack_cnt--; 15733 return; 15734 } 15735 break; 15736 default: 15737 break; 15738 } 15739 break; 15740 case M_FLUSH: 15741 if (*rptr & FLUSHR) 15742 flushq(q, FLUSHDATA); 15743 break; 15744 default: 15745 /* M_CTL will be directly sent to tcp_icmp_error() */ 15746 ASSERT(DB_TYPE(mp) != M_CTL); 15747 break; 15748 } 15749 /* 15750 * Make sure we set this bit before sending the ACK for 15751 * bind. Otherwise accept could possibly run and free 15752 * this tcp struct. 15753 */ 15754 putnext(q, mp); 15755 } 15756 15757 /* 15758 * Called as the result of a qbufcall or a qtimeout to remedy a failure 15759 * to allocate a T_ordrel_ind in tcp_rsrv(). qenable(q) will make 15760 * tcp_rsrv() try again. 15761 */ 15762 static void 15763 tcp_ordrel_kick(void *arg) 15764 { 15765 conn_t *connp = (conn_t *)arg; 15766 tcp_t *tcp = connp->conn_tcp; 15767 15768 tcp->tcp_ordrelid = 0; 15769 tcp->tcp_timeout = B_FALSE; 15770 if (!TCP_IS_DETACHED(tcp) && tcp->tcp_rq != NULL && 15771 tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 15772 qenable(tcp->tcp_rq); 15773 } 15774 } 15775 15776 /* ARGSUSED */ 15777 static void 15778 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2) 15779 { 15780 conn_t *connp = (conn_t *)arg; 15781 tcp_t *tcp = connp->conn_tcp; 15782 queue_t *q = tcp->tcp_rq; 15783 uint_t thwin; 15784 15785 freeb(mp); 15786 15787 TCP_STAT(tcp_rsrv_calls); 15788 15789 if (TCP_IS_DETACHED(tcp) || q == NULL) { 15790 return; 15791 } 15792 15793 if (tcp->tcp_fused) { 15794 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 15795 15796 ASSERT(tcp->tcp_fused); 15797 ASSERT(peer_tcp != NULL && peer_tcp->tcp_fused); 15798 ASSERT(peer_tcp->tcp_loopback_peer == tcp); 15799 ASSERT(!TCP_IS_DETACHED(tcp)); 15800 ASSERT(tcp->tcp_connp->conn_sqp == 15801 peer_tcp->tcp_connp->conn_sqp); 15802 15803 /* 15804 * Normally we would not get backenabled in synchronous 15805 * streams mode, but in case this happens, we need to plug 15806 * synchronous streams during our drain to prevent a race 15807 * with tcp_fuse_rrw() or tcp_fuse_rinfop(). 15808 */ 15809 TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp); 15810 if (tcp->tcp_rcv_list != NULL) 15811 (void) tcp_rcv_drain(tcp->tcp_rq, tcp); 15812 15813 tcp_clrqfull(peer_tcp); 15814 TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp); 15815 TCP_STAT(tcp_fusion_backenabled); 15816 return; 15817 } 15818 15819 if (canputnext(q)) { 15820 tcp->tcp_rwnd = q->q_hiwat; 15821 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 15822 << tcp->tcp_rcv_ws; 15823 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 15824 /* 15825 * Send back a window update immediately if TCP is above 15826 * ESTABLISHED state and the increase of the rcv window 15827 * that the other side knows is at least 1 MSS after flow 15828 * control is lifted. 15829 */ 15830 if (tcp->tcp_state >= TCPS_ESTABLISHED && 15831 (q->q_hiwat - thwin >= tcp->tcp_mss)) { 15832 tcp_xmit_ctl(NULL, tcp, 15833 (tcp->tcp_swnd == 0) ? tcp->tcp_suna : 15834 tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 15835 BUMP_MIB(&tcp_mib, tcpOutWinUpdate); 15836 } 15837 } 15838 /* Handle a failure to allocate a T_ORDREL_IND here */ 15839 if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 15840 ASSERT(tcp->tcp_listener == NULL); 15841 if (tcp->tcp_rcv_list != NULL) { 15842 (void) tcp_rcv_drain(q, tcp); 15843 } 15844 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 15845 mp = mi_tpi_ordrel_ind(); 15846 if (mp) { 15847 tcp->tcp_ordrel_done = B_TRUE; 15848 putnext(q, mp); 15849 if (tcp->tcp_deferred_clean_death) { 15850 /* 15851 * tcp_clean_death was deferred for 15852 * T_ORDREL_IND - do it now 15853 */ 15854 tcp->tcp_deferred_clean_death = B_FALSE; 15855 (void) tcp_clean_death(tcp, 15856 tcp->tcp_client_errno, 22); 15857 } 15858 } else if (!tcp->tcp_timeout && tcp->tcp_ordrelid == 0) { 15859 /* 15860 * If there isn't already a timer running 15861 * start one. Use a 4 second 15862 * timer as a fallback since it can't fail. 15863 */ 15864 tcp->tcp_timeout = B_TRUE; 15865 tcp->tcp_ordrelid = TCP_TIMER(tcp, tcp_ordrel_kick, 15866 MSEC_TO_TICK(4000)); 15867 } 15868 } 15869 } 15870 15871 /* 15872 * The read side service routine is called mostly when we get back-enabled as a 15873 * result of flow control relief. Since we don't actually queue anything in 15874 * TCP, we have no data to send out of here. What we do is clear the receive 15875 * window, and send out a window update. 15876 * This routine is also called to drive an orderly release message upstream 15877 * if the attempt in tcp_rput failed. 15878 */ 15879 static void 15880 tcp_rsrv(queue_t *q) 15881 { 15882 conn_t *connp = Q_TO_CONN(q); 15883 tcp_t *tcp = connp->conn_tcp; 15884 mblk_t *mp; 15885 15886 /* No code does a putq on the read side */ 15887 ASSERT(q->q_first == NULL); 15888 15889 /* Nothing to do for the default queue */ 15890 if (q == tcp_g_q) { 15891 return; 15892 } 15893 15894 mp = allocb(0, BPRI_HI); 15895 if (mp == NULL) { 15896 /* 15897 * We are under memory pressure. Return for now and we 15898 * we will be called again later. 15899 */ 15900 if (!tcp->tcp_timeout && tcp->tcp_ordrelid == 0) { 15901 /* 15902 * If there isn't already a timer running 15903 * start one. Use a 4 second 15904 * timer as a fallback since it can't fail. 15905 */ 15906 tcp->tcp_timeout = B_TRUE; 15907 tcp->tcp_ordrelid = TCP_TIMER(tcp, tcp_ordrel_kick, 15908 MSEC_TO_TICK(4000)); 15909 } 15910 return; 15911 } 15912 CONN_INC_REF(connp); 15913 squeue_enter(connp->conn_sqp, mp, tcp_rsrv_input, connp, 15914 SQTAG_TCP_RSRV); 15915 } 15916 15917 /* 15918 * tcp_rwnd_set() is called to adjust the receive window to a desired value. 15919 * We do not allow the receive window to shrink. After setting rwnd, 15920 * set the flow control hiwat of the stream. 15921 * 15922 * This function is called in 2 cases: 15923 * 15924 * 1) Before data transfer begins, in tcp_accept_comm() for accepting a 15925 * connection (passive open) and in tcp_rput_data() for active connect. 15926 * This is called after tcp_mss_set() when the desired MSS value is known. 15927 * This makes sure that our window size is a mutiple of the other side's 15928 * MSS. 15929 * 2) Handling SO_RCVBUF option. 15930 * 15931 * It is ASSUMED that the requested size is a multiple of the current MSS. 15932 * 15933 * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the 15934 * user requests so. 15935 */ 15936 static int 15937 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd) 15938 { 15939 uint32_t mss = tcp->tcp_mss; 15940 uint32_t old_max_rwnd; 15941 uint32_t max_transmittable_rwnd; 15942 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 15943 15944 if (tcp->tcp_fused) { 15945 size_t sth_hiwat; 15946 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 15947 15948 ASSERT(peer_tcp != NULL); 15949 /* 15950 * Record the stream head's high water mark for 15951 * this endpoint; this is used for flow-control 15952 * purposes in tcp_fuse_output(). 15953 */ 15954 sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd); 15955 if (!tcp_detached) 15956 (void) mi_set_sth_hiwat(tcp->tcp_rq, sth_hiwat); 15957 15958 /* 15959 * In the fusion case, the maxpsz stream head value of 15960 * our peer is set according to its send buffer size 15961 * and our receive buffer size; since the latter may 15962 * have changed we need to update the peer's maxpsz. 15963 */ 15964 (void) tcp_maxpsz_set(peer_tcp, B_TRUE); 15965 return (rwnd); 15966 } 15967 15968 if (tcp_detached) 15969 old_max_rwnd = tcp->tcp_rwnd; 15970 else 15971 old_max_rwnd = tcp->tcp_rq->q_hiwat; 15972 15973 /* 15974 * Insist on a receive window that is at least 15975 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid 15976 * funny TCP interactions of Nagle algorithm, SWS avoidance 15977 * and delayed acknowledgement. 15978 */ 15979 rwnd = MAX(rwnd, tcp_recv_hiwat_minmss * mss); 15980 15981 /* 15982 * If window size info has already been exchanged, TCP should not 15983 * shrink the window. Shrinking window is doable if done carefully. 15984 * We may add that support later. But so far there is not a real 15985 * need to do that. 15986 */ 15987 if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) { 15988 /* MSS may have changed, do a round up again. */ 15989 rwnd = MSS_ROUNDUP(old_max_rwnd, mss); 15990 } 15991 15992 /* 15993 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check 15994 * can be applied even before the window scale option is decided. 15995 */ 15996 max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws; 15997 if (rwnd > max_transmittable_rwnd) { 15998 rwnd = max_transmittable_rwnd - 15999 (max_transmittable_rwnd % mss); 16000 if (rwnd < mss) 16001 rwnd = max_transmittable_rwnd; 16002 /* 16003 * If we're over the limit we may have to back down tcp_rwnd. 16004 * The increment below won't work for us. So we set all three 16005 * here and the increment below will have no effect. 16006 */ 16007 tcp->tcp_rwnd = old_max_rwnd = rwnd; 16008 } 16009 if (tcp->tcp_localnet) { 16010 tcp->tcp_rack_abs_max = 16011 MIN(tcp_local_dacks_max, rwnd / mss / 2); 16012 } else { 16013 /* 16014 * For a remote host on a different subnet (through a router), 16015 * we ack every other packet to be conforming to RFC1122. 16016 * tcp_deferred_acks_max is default to 2. 16017 */ 16018 tcp->tcp_rack_abs_max = 16019 MIN(tcp_deferred_acks_max, rwnd / mss / 2); 16020 } 16021 if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max) 16022 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 16023 else 16024 tcp->tcp_rack_cur_max = 0; 16025 /* 16026 * Increment the current rwnd by the amount the maximum grew (we 16027 * can not overwrite it since we might be in the middle of a 16028 * connection.) 16029 */ 16030 tcp->tcp_rwnd += rwnd - old_max_rwnd; 16031 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, tcp->tcp_tcph->th_win); 16032 if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max) 16033 tcp->tcp_cwnd_max = rwnd; 16034 16035 if (tcp_detached) 16036 return (rwnd); 16037 /* 16038 * We set the maximum receive window into rq->q_hiwat. 16039 * This is not actually used for flow control. 16040 */ 16041 tcp->tcp_rq->q_hiwat = rwnd; 16042 /* 16043 * Set the Stream head high water mark. This doesn't have to be 16044 * here, since we are simply using default values, but we would 16045 * prefer to choose these values algorithmically, with a likely 16046 * relationship to rwnd. 16047 */ 16048 (void) mi_set_sth_hiwat(tcp->tcp_rq, MAX(rwnd, tcp_sth_rcv_hiwat)); 16049 return (rwnd); 16050 } 16051 16052 /* 16053 * Return SNMP stuff in buffer in mpdata. 16054 */ 16055 int 16056 tcp_snmp_get(queue_t *q, mblk_t *mpctl) 16057 { 16058 mblk_t *mpdata; 16059 mblk_t *mp_conn_ctl = NULL; 16060 mblk_t *mp_conn_tail; 16061 mblk_t *mp_attr_ctl = NULL; 16062 mblk_t *mp_attr_tail; 16063 mblk_t *mp6_conn_ctl = NULL; 16064 mblk_t *mp6_conn_tail; 16065 mblk_t *mp6_attr_ctl = NULL; 16066 mblk_t *mp6_attr_tail; 16067 struct opthdr *optp; 16068 mib2_tcpConnEntry_t tce; 16069 mib2_tcp6ConnEntry_t tce6; 16070 mib2_transportMLPEntry_t mlp; 16071 connf_t *connfp; 16072 conn_t *connp; 16073 int i; 16074 boolean_t ispriv; 16075 zoneid_t zoneid; 16076 int v4_conn_idx; 16077 int v6_conn_idx; 16078 16079 if (mpctl == NULL || 16080 (mpdata = mpctl->b_cont) == NULL || 16081 (mp_conn_ctl = copymsg(mpctl)) == NULL || 16082 (mp_attr_ctl = copymsg(mpctl)) == NULL || 16083 (mp6_conn_ctl = copymsg(mpctl)) == NULL || 16084 (mp6_attr_ctl = copymsg(mpctl)) == NULL) { 16085 freemsg(mp_conn_ctl); 16086 freemsg(mp_attr_ctl); 16087 freemsg(mp6_conn_ctl); 16088 freemsg(mp6_attr_ctl); 16089 return (0); 16090 } 16091 16092 /* build table of connections -- need count in fixed part */ 16093 SET_MIB(tcp_mib.tcpRtoAlgorithm, 4); /* vanj */ 16094 SET_MIB(tcp_mib.tcpRtoMin, tcp_rexmit_interval_min); 16095 SET_MIB(tcp_mib.tcpRtoMax, tcp_rexmit_interval_max); 16096 SET_MIB(tcp_mib.tcpMaxConn, -1); 16097 SET_MIB(tcp_mib.tcpCurrEstab, 0); 16098 16099 ispriv = 16100 secpolicy_net_config((Q_TO_CONN(q))->conn_cred, B_TRUE) == 0; 16101 zoneid = Q_TO_CONN(q)->conn_zoneid; 16102 16103 v4_conn_idx = v6_conn_idx = 0; 16104 mp_conn_tail = mp_attr_tail = mp6_conn_tail = mp6_attr_tail = NULL; 16105 16106 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 16107 16108 connfp = &ipcl_globalhash_fanout[i]; 16109 16110 connp = NULL; 16111 16112 while ((connp = 16113 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 16114 tcp_t *tcp; 16115 boolean_t needattr; 16116 16117 if (connp->conn_zoneid != zoneid) 16118 continue; /* not in this zone */ 16119 16120 tcp = connp->conn_tcp; 16121 UPDATE_MIB(&tcp_mib, tcpHCInSegs, tcp->tcp_ibsegs); 16122 tcp->tcp_ibsegs = 0; 16123 UPDATE_MIB(&tcp_mib, tcpHCOutSegs, tcp->tcp_obsegs); 16124 tcp->tcp_obsegs = 0; 16125 16126 tce6.tcp6ConnState = tce.tcpConnState = 16127 tcp_snmp_state(tcp); 16128 if (tce.tcpConnState == MIB2_TCP_established || 16129 tce.tcpConnState == MIB2_TCP_closeWait) 16130 BUMP_MIB(&tcp_mib, tcpCurrEstab); 16131 16132 needattr = B_FALSE; 16133 bzero(&mlp, sizeof (mlp)); 16134 if (connp->conn_mlp_type != mlptSingle) { 16135 if (connp->conn_mlp_type == mlptShared || 16136 connp->conn_mlp_type == mlptBoth) 16137 mlp.tme_flags |= MIB2_TMEF_SHARED; 16138 if (connp->conn_mlp_type == mlptPrivate || 16139 connp->conn_mlp_type == mlptBoth) 16140 mlp.tme_flags |= MIB2_TMEF_PRIVATE; 16141 needattr = B_TRUE; 16142 } 16143 if (connp->conn_peercred != NULL) { 16144 ts_label_t *tsl; 16145 16146 tsl = crgetlabel(connp->conn_peercred); 16147 mlp.tme_doi = label2doi(tsl); 16148 mlp.tme_label = *label2bslabel(tsl); 16149 needattr = B_TRUE; 16150 } 16151 16152 /* Create a message to report on IPv6 entries */ 16153 if (tcp->tcp_ipversion == IPV6_VERSION) { 16154 tce6.tcp6ConnLocalAddress = tcp->tcp_ip_src_v6; 16155 tce6.tcp6ConnRemAddress = tcp->tcp_remote_v6; 16156 tce6.tcp6ConnLocalPort = ntohs(tcp->tcp_lport); 16157 tce6.tcp6ConnRemPort = ntohs(tcp->tcp_fport); 16158 tce6.tcp6ConnIfIndex = tcp->tcp_bound_if; 16159 /* Don't want just anybody seeing these... */ 16160 if (ispriv) { 16161 tce6.tcp6ConnEntryInfo.ce_snxt = 16162 tcp->tcp_snxt; 16163 tce6.tcp6ConnEntryInfo.ce_suna = 16164 tcp->tcp_suna; 16165 tce6.tcp6ConnEntryInfo.ce_rnxt = 16166 tcp->tcp_rnxt; 16167 tce6.tcp6ConnEntryInfo.ce_rack = 16168 tcp->tcp_rack; 16169 } else { 16170 /* 16171 * Netstat, unfortunately, uses this to 16172 * get send/receive queue sizes. How to fix? 16173 * Why not compute the difference only? 16174 */ 16175 tce6.tcp6ConnEntryInfo.ce_snxt = 16176 tcp->tcp_snxt - tcp->tcp_suna; 16177 tce6.tcp6ConnEntryInfo.ce_suna = 0; 16178 tce6.tcp6ConnEntryInfo.ce_rnxt = 16179 tcp->tcp_rnxt - tcp->tcp_rack; 16180 tce6.tcp6ConnEntryInfo.ce_rack = 0; 16181 } 16182 16183 tce6.tcp6ConnEntryInfo.ce_swnd = tcp->tcp_swnd; 16184 tce6.tcp6ConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; 16185 tce6.tcp6ConnEntryInfo.ce_rto = tcp->tcp_rto; 16186 tce6.tcp6ConnEntryInfo.ce_mss = tcp->tcp_mss; 16187 tce6.tcp6ConnEntryInfo.ce_state = tcp->tcp_state; 16188 16189 tce6.tcp6ConnCreationProcess = 16190 (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS : 16191 tcp->tcp_cpid; 16192 tce6.tcp6ConnCreationTime = tcp->tcp_open_time; 16193 16194 (void) snmp_append_data2(mp6_conn_ctl->b_cont, 16195 &mp6_conn_tail, (char *)&tce6, sizeof (tce6)); 16196 16197 mlp.tme_connidx = v6_conn_idx++; 16198 if (needattr) 16199 (void) snmp_append_data2(mp6_attr_ctl->b_cont, 16200 &mp6_attr_tail, (char *)&mlp, sizeof (mlp)); 16201 } 16202 /* 16203 * Create an IPv4 table entry for IPv4 entries and also 16204 * for IPv6 entries which are bound to in6addr_any 16205 * but don't have IPV6_V6ONLY set. 16206 * (i.e. anything an IPv4 peer could connect to) 16207 */ 16208 if (tcp->tcp_ipversion == IPV4_VERSION || 16209 (tcp->tcp_state <= TCPS_LISTEN && 16210 !tcp->tcp_connp->conn_ipv6_v6only && 16211 IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip_src_v6))) { 16212 if (tcp->tcp_ipversion == IPV6_VERSION) { 16213 tce.tcpConnRemAddress = INADDR_ANY; 16214 tce.tcpConnLocalAddress = INADDR_ANY; 16215 } else { 16216 tce.tcpConnRemAddress = 16217 tcp->tcp_remote; 16218 tce.tcpConnLocalAddress = 16219 tcp->tcp_ip_src; 16220 } 16221 tce.tcpConnLocalPort = ntohs(tcp->tcp_lport); 16222 tce.tcpConnRemPort = ntohs(tcp->tcp_fport); 16223 /* Don't want just anybody seeing these... */ 16224 if (ispriv) { 16225 tce.tcpConnEntryInfo.ce_snxt = 16226 tcp->tcp_snxt; 16227 tce.tcpConnEntryInfo.ce_suna = 16228 tcp->tcp_suna; 16229 tce.tcpConnEntryInfo.ce_rnxt = 16230 tcp->tcp_rnxt; 16231 tce.tcpConnEntryInfo.ce_rack = 16232 tcp->tcp_rack; 16233 } else { 16234 /* 16235 * Netstat, unfortunately, uses this to 16236 * get send/receive queue sizes. How 16237 * to fix? 16238 * Why not compute the difference only? 16239 */ 16240 tce.tcpConnEntryInfo.ce_snxt = 16241 tcp->tcp_snxt - tcp->tcp_suna; 16242 tce.tcpConnEntryInfo.ce_suna = 0; 16243 tce.tcpConnEntryInfo.ce_rnxt = 16244 tcp->tcp_rnxt - tcp->tcp_rack; 16245 tce.tcpConnEntryInfo.ce_rack = 0; 16246 } 16247 16248 tce.tcpConnEntryInfo.ce_swnd = tcp->tcp_swnd; 16249 tce.tcpConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; 16250 tce.tcpConnEntryInfo.ce_rto = tcp->tcp_rto; 16251 tce.tcpConnEntryInfo.ce_mss = tcp->tcp_mss; 16252 tce.tcpConnEntryInfo.ce_state = 16253 tcp->tcp_state; 16254 16255 tce.tcpConnCreationProcess = 16256 (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS : 16257 tcp->tcp_cpid; 16258 tce.tcpConnCreationTime = tcp->tcp_open_time; 16259 16260 (void) snmp_append_data2(mp_conn_ctl->b_cont, 16261 &mp_conn_tail, (char *)&tce, sizeof (tce)); 16262 16263 mlp.tme_connidx = v4_conn_idx++; 16264 if (needattr) 16265 (void) snmp_append_data2( 16266 mp_attr_ctl->b_cont, 16267 &mp_attr_tail, (char *)&mlp, 16268 sizeof (mlp)); 16269 } 16270 } 16271 } 16272 16273 /* fixed length structure for IPv4 and IPv6 counters */ 16274 SET_MIB(tcp_mib.tcpConnTableSize, sizeof (mib2_tcpConnEntry_t)); 16275 SET_MIB(tcp_mib.tcp6ConnTableSize, sizeof (mib2_tcp6ConnEntry_t)); 16276 /* synchronize 32- and 64-bit counters */ 16277 SYNC32_MIB(&tcp_mib, tcpInSegs, tcpHCInSegs); 16278 SYNC32_MIB(&tcp_mib, tcpOutSegs, tcpHCOutSegs); 16279 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16280 optp->level = MIB2_TCP; 16281 optp->name = 0; 16282 (void) snmp_append_data(mpdata, (char *)&tcp_mib, sizeof (tcp_mib)); 16283 optp->len = msgdsize(mpdata); 16284 qreply(q, mpctl); 16285 16286 /* table of connections... */ 16287 optp = (struct opthdr *)&mp_conn_ctl->b_rptr[ 16288 sizeof (struct T_optmgmt_ack)]; 16289 optp->level = MIB2_TCP; 16290 optp->name = MIB2_TCP_CONN; 16291 optp->len = msgdsize(mp_conn_ctl->b_cont); 16292 qreply(q, mp_conn_ctl); 16293 16294 /* table of MLP attributes... */ 16295 optp = (struct opthdr *)&mp_attr_ctl->b_rptr[ 16296 sizeof (struct T_optmgmt_ack)]; 16297 optp->level = MIB2_TCP; 16298 optp->name = EXPER_XPORT_MLP; 16299 optp->len = msgdsize(mp_attr_ctl->b_cont); 16300 if (optp->len == 0) 16301 freemsg(mp_attr_ctl); 16302 else 16303 qreply(q, mp_attr_ctl); 16304 16305 /* table of IPv6 connections... */ 16306 optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[ 16307 sizeof (struct T_optmgmt_ack)]; 16308 optp->level = MIB2_TCP6; 16309 optp->name = MIB2_TCP6_CONN; 16310 optp->len = msgdsize(mp6_conn_ctl->b_cont); 16311 qreply(q, mp6_conn_ctl); 16312 16313 /* table of IPv6 MLP attributes... */ 16314 optp = (struct opthdr *)&mp6_attr_ctl->b_rptr[ 16315 sizeof (struct T_optmgmt_ack)]; 16316 optp->level = MIB2_TCP6; 16317 optp->name = EXPER_XPORT_MLP; 16318 optp->len = msgdsize(mp6_attr_ctl->b_cont); 16319 if (optp->len == 0) 16320 freemsg(mp6_attr_ctl); 16321 else 16322 qreply(q, mp6_attr_ctl); 16323 return (1); 16324 } 16325 16326 /* Return 0 if invalid set request, 1 otherwise, including non-tcp requests */ 16327 /* ARGSUSED */ 16328 int 16329 tcp_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 16330 { 16331 mib2_tcpConnEntry_t *tce = (mib2_tcpConnEntry_t *)ptr; 16332 16333 switch (level) { 16334 case MIB2_TCP: 16335 switch (name) { 16336 case 13: 16337 if (tce->tcpConnState != MIB2_TCP_deleteTCB) 16338 return (0); 16339 /* TODO: delete entry defined by tce */ 16340 return (1); 16341 default: 16342 return (0); 16343 } 16344 default: 16345 return (1); 16346 } 16347 } 16348 16349 /* Translate TCP state to MIB2 TCP state. */ 16350 static int 16351 tcp_snmp_state(tcp_t *tcp) 16352 { 16353 if (tcp == NULL) 16354 return (0); 16355 16356 switch (tcp->tcp_state) { 16357 case TCPS_CLOSED: 16358 case TCPS_IDLE: /* RFC1213 doesn't have analogue for IDLE & BOUND */ 16359 case TCPS_BOUND: 16360 return (MIB2_TCP_closed); 16361 case TCPS_LISTEN: 16362 return (MIB2_TCP_listen); 16363 case TCPS_SYN_SENT: 16364 return (MIB2_TCP_synSent); 16365 case TCPS_SYN_RCVD: 16366 return (MIB2_TCP_synReceived); 16367 case TCPS_ESTABLISHED: 16368 return (MIB2_TCP_established); 16369 case TCPS_CLOSE_WAIT: 16370 return (MIB2_TCP_closeWait); 16371 case TCPS_FIN_WAIT_1: 16372 return (MIB2_TCP_finWait1); 16373 case TCPS_CLOSING: 16374 return (MIB2_TCP_closing); 16375 case TCPS_LAST_ACK: 16376 return (MIB2_TCP_lastAck); 16377 case TCPS_FIN_WAIT_2: 16378 return (MIB2_TCP_finWait2); 16379 case TCPS_TIME_WAIT: 16380 return (MIB2_TCP_timeWait); 16381 default: 16382 return (0); 16383 } 16384 } 16385 16386 static char tcp_report_header[] = 16387 "TCP " MI_COL_HDRPAD_STR 16388 "zone dest snxt suna " 16389 "swnd rnxt rack rwnd rto mss w sw rw t " 16390 "recent [lport,fport] state"; 16391 16392 /* 16393 * TCP status report triggered via the Named Dispatch mechanism. 16394 */ 16395 /* ARGSUSED */ 16396 static void 16397 tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval, tcp_t *thisstream, 16398 cred_t *cr) 16399 { 16400 char hash[10], addrbuf[INET6_ADDRSTRLEN]; 16401 boolean_t ispriv = secpolicy_net_config(cr, B_TRUE) == 0; 16402 char cflag; 16403 in6_addr_t v6dst; 16404 char buf[80]; 16405 uint_t print_len, buf_len; 16406 16407 buf_len = mp->b_datap->db_lim - mp->b_wptr; 16408 if (buf_len <= 0) 16409 return; 16410 16411 if (hashval >= 0) 16412 (void) sprintf(hash, "%03d ", hashval); 16413 else 16414 hash[0] = '\0'; 16415 16416 /* 16417 * Note that we use the remote address in the tcp_b structure. 16418 * This means that it will print out the real destination address, 16419 * not the next hop's address if source routing is used. This 16420 * avoid the confusion on the output because user may not 16421 * know that source routing is used for a connection. 16422 */ 16423 if (tcp->tcp_ipversion == IPV4_VERSION) { 16424 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &v6dst); 16425 } else { 16426 v6dst = tcp->tcp_remote_v6; 16427 } 16428 (void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf)); 16429 /* 16430 * the ispriv checks are so that normal users cannot determine 16431 * sequence number information using NDD. 16432 */ 16433 16434 if (TCP_IS_DETACHED(tcp)) 16435 cflag = '*'; 16436 else 16437 cflag = ' '; 16438 print_len = snprintf((char *)mp->b_wptr, buf_len, 16439 "%s " MI_COL_PTRFMT_STR "%d %s %08x %08x %010d %08x %08x " 16440 "%010d %05ld %05d %1d %02d %02d %1d %08x %s%c\n", 16441 hash, 16442 (void *)tcp, 16443 tcp->tcp_connp->conn_zoneid, 16444 addrbuf, 16445 (ispriv) ? tcp->tcp_snxt : 0, 16446 (ispriv) ? tcp->tcp_suna : 0, 16447 tcp->tcp_swnd, 16448 (ispriv) ? tcp->tcp_rnxt : 0, 16449 (ispriv) ? tcp->tcp_rack : 0, 16450 tcp->tcp_rwnd, 16451 tcp->tcp_rto, 16452 tcp->tcp_mss, 16453 tcp->tcp_snd_ws_ok, 16454 tcp->tcp_snd_ws, 16455 tcp->tcp_rcv_ws, 16456 tcp->tcp_snd_ts_ok, 16457 tcp->tcp_ts_recent, 16458 tcp_display(tcp, buf, DISP_PORT_ONLY), cflag); 16459 if (print_len < buf_len) { 16460 ((mblk_t *)mp)->b_wptr += print_len; 16461 } else { 16462 ((mblk_t *)mp)->b_wptr += buf_len; 16463 } 16464 } 16465 16466 /* 16467 * TCP status report (for listeners only) triggered via the Named Dispatch 16468 * mechanism. 16469 */ 16470 /* ARGSUSED */ 16471 static void 16472 tcp_report_listener(mblk_t *mp, tcp_t *tcp, int hashval) 16473 { 16474 char addrbuf[INET6_ADDRSTRLEN]; 16475 in6_addr_t v6dst; 16476 uint_t print_len, buf_len; 16477 16478 buf_len = mp->b_datap->db_lim - mp->b_wptr; 16479 if (buf_len <= 0) 16480 return; 16481 16482 if (tcp->tcp_ipversion == IPV4_VERSION) { 16483 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6dst); 16484 (void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf)); 16485 } else { 16486 (void) inet_ntop(AF_INET6, &tcp->tcp_ip6h->ip6_src, 16487 addrbuf, sizeof (addrbuf)); 16488 } 16489 print_len = snprintf((char *)mp->b_wptr, buf_len, 16490 "%03d " 16491 MI_COL_PTRFMT_STR 16492 "%d %s %05u %08u %d/%d/%d%c\n", 16493 hashval, (void *)tcp, 16494 tcp->tcp_connp->conn_zoneid, 16495 addrbuf, 16496 (uint_t)BE16_TO_U16(tcp->tcp_tcph->th_lport), 16497 tcp->tcp_conn_req_seqnum, 16498 tcp->tcp_conn_req_cnt_q0, tcp->tcp_conn_req_cnt_q, 16499 tcp->tcp_conn_req_max, 16500 tcp->tcp_syn_defense ? '*' : ' '); 16501 if (print_len < buf_len) { 16502 ((mblk_t *)mp)->b_wptr += print_len; 16503 } else { 16504 ((mblk_t *)mp)->b_wptr += buf_len; 16505 } 16506 } 16507 16508 /* TCP status report triggered via the Named Dispatch mechanism. */ 16509 /* ARGSUSED */ 16510 static int 16511 tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16512 { 16513 tcp_t *tcp; 16514 int i; 16515 conn_t *connp; 16516 connf_t *connfp; 16517 zoneid_t zoneid; 16518 16519 /* 16520 * Because of the ndd constraint, at most we can have 64K buffer 16521 * to put in all TCP info. So to be more efficient, just 16522 * allocate a 64K buffer here, assuming we need that large buffer. 16523 * This may be a problem as any user can read tcp_status. Therefore 16524 * we limit the rate of doing this using tcp_ndd_get_info_interval. 16525 * This should be OK as normal users should not do this too often. 16526 */ 16527 if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) { 16528 if (ddi_get_lbolt() - tcp_last_ndd_get_info_time < 16529 drv_usectohz(tcp_ndd_get_info_interval * 1000)) { 16530 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16531 return (0); 16532 } 16533 } 16534 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16535 /* The following may work even if we cannot get a large buf. */ 16536 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16537 return (0); 16538 } 16539 16540 (void) mi_mpprintf(mp, "%s", tcp_report_header); 16541 16542 zoneid = Q_TO_CONN(q)->conn_zoneid; 16543 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 16544 16545 connfp = &ipcl_globalhash_fanout[i]; 16546 16547 connp = NULL; 16548 16549 while ((connp = 16550 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 16551 tcp = connp->conn_tcp; 16552 if (zoneid != GLOBAL_ZONEID && 16553 zoneid != connp->conn_zoneid) 16554 continue; 16555 tcp_report_item(mp->b_cont, tcp, -1, tcp, 16556 cr); 16557 } 16558 16559 } 16560 16561 tcp_last_ndd_get_info_time = ddi_get_lbolt(); 16562 return (0); 16563 } 16564 16565 /* TCP status report triggered via the Named Dispatch mechanism. */ 16566 /* ARGSUSED */ 16567 static int 16568 tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16569 { 16570 tf_t *tbf; 16571 tcp_t *tcp; 16572 int i; 16573 zoneid_t zoneid; 16574 16575 /* Refer to comments in tcp_status_report(). */ 16576 if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) { 16577 if (ddi_get_lbolt() - tcp_last_ndd_get_info_time < 16578 drv_usectohz(tcp_ndd_get_info_interval * 1000)) { 16579 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16580 return (0); 16581 } 16582 } 16583 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16584 /* The following may work even if we cannot get a large buf. */ 16585 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16586 return (0); 16587 } 16588 16589 (void) mi_mpprintf(mp, " %s", tcp_report_header); 16590 16591 zoneid = Q_TO_CONN(q)->conn_zoneid; 16592 16593 for (i = 0; i < A_CNT(tcp_bind_fanout); i++) { 16594 tbf = &tcp_bind_fanout[i]; 16595 mutex_enter(&tbf->tf_lock); 16596 for (tcp = tbf->tf_tcp; tcp != NULL; 16597 tcp = tcp->tcp_bind_hash) { 16598 if (zoneid != GLOBAL_ZONEID && 16599 zoneid != tcp->tcp_connp->conn_zoneid) 16600 continue; 16601 CONN_INC_REF(tcp->tcp_connp); 16602 tcp_report_item(mp->b_cont, tcp, i, 16603 Q_TO_TCP(q), cr); 16604 CONN_DEC_REF(tcp->tcp_connp); 16605 } 16606 mutex_exit(&tbf->tf_lock); 16607 } 16608 tcp_last_ndd_get_info_time = ddi_get_lbolt(); 16609 return (0); 16610 } 16611 16612 /* TCP status report triggered via the Named Dispatch mechanism. */ 16613 /* ARGSUSED */ 16614 static int 16615 tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16616 { 16617 connf_t *connfp; 16618 conn_t *connp; 16619 tcp_t *tcp; 16620 int i; 16621 zoneid_t zoneid; 16622 16623 /* Refer to comments in tcp_status_report(). */ 16624 if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) { 16625 if (ddi_get_lbolt() - tcp_last_ndd_get_info_time < 16626 drv_usectohz(tcp_ndd_get_info_interval * 1000)) { 16627 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16628 return (0); 16629 } 16630 } 16631 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16632 /* The following may work even if we cannot get a large buf. */ 16633 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16634 return (0); 16635 } 16636 16637 (void) mi_mpprintf(mp, 16638 " TCP " MI_COL_HDRPAD_STR 16639 "zone IP addr port seqnum backlog (q0/q/max)"); 16640 16641 zoneid = Q_TO_CONN(q)->conn_zoneid; 16642 16643 for (i = 0; i < ipcl_bind_fanout_size; i++) { 16644 connfp = &ipcl_bind_fanout[i]; 16645 connp = NULL; 16646 while ((connp = 16647 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 16648 tcp = connp->conn_tcp; 16649 if (zoneid != GLOBAL_ZONEID && 16650 zoneid != connp->conn_zoneid) 16651 continue; 16652 tcp_report_listener(mp->b_cont, tcp, i); 16653 } 16654 } 16655 16656 tcp_last_ndd_get_info_time = ddi_get_lbolt(); 16657 return (0); 16658 } 16659 16660 /* TCP status report triggered via the Named Dispatch mechanism. */ 16661 /* ARGSUSED */ 16662 static int 16663 tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16664 { 16665 connf_t *connfp; 16666 conn_t *connp; 16667 tcp_t *tcp; 16668 int i; 16669 zoneid_t zoneid; 16670 16671 /* Refer to comments in tcp_status_report(). */ 16672 if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) { 16673 if (ddi_get_lbolt() - tcp_last_ndd_get_info_time < 16674 drv_usectohz(tcp_ndd_get_info_interval * 1000)) { 16675 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16676 return (0); 16677 } 16678 } 16679 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16680 /* The following may work even if we cannot get a large buf. */ 16681 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16682 return (0); 16683 } 16684 16685 (void) mi_mpprintf(mp, "tcp_conn_hash_size = %d", 16686 ipcl_conn_fanout_size); 16687 (void) mi_mpprintf(mp, " %s", tcp_report_header); 16688 16689 zoneid = Q_TO_CONN(q)->conn_zoneid; 16690 16691 for (i = 0; i < ipcl_conn_fanout_size; i++) { 16692 connfp = &ipcl_conn_fanout[i]; 16693 connp = NULL; 16694 while ((connp = 16695 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 16696 tcp = connp->conn_tcp; 16697 if (zoneid != GLOBAL_ZONEID && 16698 zoneid != connp->conn_zoneid) 16699 continue; 16700 tcp_report_item(mp->b_cont, tcp, i, 16701 Q_TO_TCP(q), cr); 16702 } 16703 } 16704 16705 tcp_last_ndd_get_info_time = ddi_get_lbolt(); 16706 return (0); 16707 } 16708 16709 /* TCP status report triggered via the Named Dispatch mechanism. */ 16710 /* ARGSUSED */ 16711 static int 16712 tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16713 { 16714 tf_t *tf; 16715 tcp_t *tcp; 16716 int i; 16717 zoneid_t zoneid; 16718 16719 /* Refer to comments in tcp_status_report(). */ 16720 if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) { 16721 if (ddi_get_lbolt() - tcp_last_ndd_get_info_time < 16722 drv_usectohz(tcp_ndd_get_info_interval * 1000)) { 16723 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16724 return (0); 16725 } 16726 } 16727 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16728 /* The following may work even if we cannot get a large buf. */ 16729 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16730 return (0); 16731 } 16732 16733 (void) mi_mpprintf(mp, " %s", tcp_report_header); 16734 16735 zoneid = Q_TO_CONN(q)->conn_zoneid; 16736 16737 for (i = 0; i < A_CNT(tcp_acceptor_fanout); i++) { 16738 tf = &tcp_acceptor_fanout[i]; 16739 mutex_enter(&tf->tf_lock); 16740 for (tcp = tf->tf_tcp; tcp != NULL; 16741 tcp = tcp->tcp_acceptor_hash) { 16742 if (zoneid != GLOBAL_ZONEID && 16743 zoneid != tcp->tcp_connp->conn_zoneid) 16744 continue; 16745 tcp_report_item(mp->b_cont, tcp, i, 16746 Q_TO_TCP(q), cr); 16747 } 16748 mutex_exit(&tf->tf_lock); 16749 } 16750 tcp_last_ndd_get_info_time = ddi_get_lbolt(); 16751 return (0); 16752 } 16753 16754 /* 16755 * tcp_timer is the timer service routine. It handles the retransmission, 16756 * FIN_WAIT_2 flush, and zero window probe timeout events. It figures out 16757 * from the state of the tcp instance what kind of action needs to be done 16758 * at the time it is called. 16759 */ 16760 static void 16761 tcp_timer(void *arg) 16762 { 16763 mblk_t *mp; 16764 clock_t first_threshold; 16765 clock_t second_threshold; 16766 clock_t ms; 16767 uint32_t mss; 16768 conn_t *connp = (conn_t *)arg; 16769 tcp_t *tcp = connp->conn_tcp; 16770 16771 tcp->tcp_timer_tid = 0; 16772 16773 if (tcp->tcp_fused) 16774 return; 16775 16776 first_threshold = tcp->tcp_first_timer_threshold; 16777 second_threshold = tcp->tcp_second_timer_threshold; 16778 switch (tcp->tcp_state) { 16779 case TCPS_IDLE: 16780 case TCPS_BOUND: 16781 case TCPS_LISTEN: 16782 return; 16783 case TCPS_SYN_RCVD: { 16784 tcp_t *listener = tcp->tcp_listener; 16785 16786 if (tcp->tcp_syn_rcvd_timeout == 0 && (listener != NULL)) { 16787 ASSERT(tcp->tcp_rq == listener->tcp_rq); 16788 /* it's our first timeout */ 16789 tcp->tcp_syn_rcvd_timeout = 1; 16790 mutex_enter(&listener->tcp_eager_lock); 16791 listener->tcp_syn_rcvd_timeout++; 16792 if (!tcp->tcp_dontdrop && tcp->tcp_closemp_used == 0) { 16793 /* 16794 * Make this eager available for drop if we 16795 * need to drop one to accomodate a new 16796 * incoming SYN request. 16797 */ 16798 MAKE_DROPPABLE(listener, tcp); 16799 } 16800 if (!listener->tcp_syn_defense && 16801 (listener->tcp_syn_rcvd_timeout > 16802 (tcp_conn_req_max_q0 >> 2)) && 16803 (tcp_conn_req_max_q0 > 200)) { 16804 /* We may be under attack. Put on a defense. */ 16805 listener->tcp_syn_defense = B_TRUE; 16806 cmn_err(CE_WARN, "High TCP connect timeout " 16807 "rate! System (port %d) may be under a " 16808 "SYN flood attack!", 16809 BE16_TO_U16(listener->tcp_tcph->th_lport)); 16810 16811 listener->tcp_ip_addr_cache = kmem_zalloc( 16812 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t), 16813 KM_NOSLEEP); 16814 } 16815 mutex_exit(&listener->tcp_eager_lock); 16816 } else if (listener != NULL) { 16817 mutex_enter(&listener->tcp_eager_lock); 16818 tcp->tcp_syn_rcvd_timeout++; 16819 if (tcp->tcp_syn_rcvd_timeout > 1 && 16820 tcp->tcp_closemp_used == 0) { 16821 /* 16822 * This is our second timeout. Put the tcp in 16823 * the list of droppable eagers to allow it to 16824 * be dropped, if needed. We don't check 16825 * whether tcp_dontdrop is set or not to 16826 * protect ourselve from a SYN attack where a 16827 * remote host can spoof itself as one of the 16828 * good IP source and continue to hold 16829 * resources too long. 16830 */ 16831 MAKE_DROPPABLE(listener, tcp); 16832 } 16833 mutex_exit(&listener->tcp_eager_lock); 16834 } 16835 } 16836 /* FALLTHRU */ 16837 case TCPS_SYN_SENT: 16838 first_threshold = tcp->tcp_first_ctimer_threshold; 16839 second_threshold = tcp->tcp_second_ctimer_threshold; 16840 break; 16841 case TCPS_ESTABLISHED: 16842 case TCPS_FIN_WAIT_1: 16843 case TCPS_CLOSING: 16844 case TCPS_CLOSE_WAIT: 16845 case TCPS_LAST_ACK: 16846 /* If we have data to rexmit */ 16847 if (tcp->tcp_suna != tcp->tcp_snxt) { 16848 clock_t time_to_wait; 16849 16850 BUMP_MIB(&tcp_mib, tcpTimRetrans); 16851 if (!tcp->tcp_xmit_head) 16852 break; 16853 time_to_wait = lbolt - 16854 (clock_t)tcp->tcp_xmit_head->b_prev; 16855 time_to_wait = tcp->tcp_rto - 16856 TICK_TO_MSEC(time_to_wait); 16857 /* 16858 * If the timer fires too early, 1 clock tick earlier, 16859 * restart the timer. 16860 */ 16861 if (time_to_wait > msec_per_tick) { 16862 TCP_STAT(tcp_timer_fire_early); 16863 TCP_TIMER_RESTART(tcp, time_to_wait); 16864 return; 16865 } 16866 /* 16867 * When we probe zero windows, we force the swnd open. 16868 * If our peer acks with a closed window swnd will be 16869 * set to zero by tcp_rput(). As long as we are 16870 * receiving acks tcp_rput will 16871 * reset 'tcp_ms_we_have_waited' so as not to trip the 16872 * first and second interval actions. NOTE: the timer 16873 * interval is allowed to continue its exponential 16874 * backoff. 16875 */ 16876 if (tcp->tcp_swnd == 0 || tcp->tcp_zero_win_probe) { 16877 if (tcp->tcp_debug) { 16878 (void) strlog(TCP_MOD_ID, 0, 1, 16879 SL_TRACE, "tcp_timer: zero win"); 16880 } 16881 } else { 16882 /* 16883 * After retransmission, we need to do 16884 * slow start. Set the ssthresh to one 16885 * half of current effective window and 16886 * cwnd to one MSS. Also reset 16887 * tcp_cwnd_cnt. 16888 * 16889 * Note that if tcp_ssthresh is reduced because 16890 * of ECN, do not reduce it again unless it is 16891 * already one window of data away (tcp_cwr 16892 * should then be cleared) or this is a 16893 * timeout for a retransmitted segment. 16894 */ 16895 uint32_t npkt; 16896 16897 if (!tcp->tcp_cwr || tcp->tcp_rexmit) { 16898 npkt = ((tcp->tcp_timer_backoff ? 16899 tcp->tcp_cwnd_ssthresh : 16900 tcp->tcp_snxt - 16901 tcp->tcp_suna) >> 1) / tcp->tcp_mss; 16902 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 16903 tcp->tcp_mss; 16904 } 16905 tcp->tcp_cwnd = tcp->tcp_mss; 16906 tcp->tcp_cwnd_cnt = 0; 16907 if (tcp->tcp_ecn_ok) { 16908 tcp->tcp_cwr = B_TRUE; 16909 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 16910 tcp->tcp_ecn_cwr_sent = B_FALSE; 16911 } 16912 } 16913 break; 16914 } 16915 /* 16916 * We have something to send yet we cannot send. The 16917 * reason can be: 16918 * 16919 * 1. Zero send window: we need to do zero window probe. 16920 * 2. Zero cwnd: because of ECN, we need to "clock out 16921 * segments. 16922 * 3. SWS avoidance: receiver may have shrunk window, 16923 * reset our knowledge. 16924 * 16925 * Note that condition 2 can happen with either 1 or 16926 * 3. But 1 and 3 are exclusive. 16927 */ 16928 if (tcp->tcp_unsent != 0) { 16929 if (tcp->tcp_cwnd == 0) { 16930 /* 16931 * Set tcp_cwnd to 1 MSS so that a 16932 * new segment can be sent out. We 16933 * are "clocking out" new data when 16934 * the network is really congested. 16935 */ 16936 ASSERT(tcp->tcp_ecn_ok); 16937 tcp->tcp_cwnd = tcp->tcp_mss; 16938 } 16939 if (tcp->tcp_swnd == 0) { 16940 /* Extend window for zero window probe */ 16941 tcp->tcp_swnd++; 16942 tcp->tcp_zero_win_probe = B_TRUE; 16943 BUMP_MIB(&tcp_mib, tcpOutWinProbe); 16944 } else { 16945 /* 16946 * Handle timeout from sender SWS avoidance. 16947 * Reset our knowledge of the max send window 16948 * since the receiver might have reduced its 16949 * receive buffer. Avoid setting tcp_max_swnd 16950 * to one since that will essentially disable 16951 * the SWS checks. 16952 * 16953 * Note that since we don't have a SWS 16954 * state variable, if the timeout is set 16955 * for ECN but not for SWS, this 16956 * code will also be executed. This is 16957 * fine as tcp_max_swnd is updated 16958 * constantly and it will not affect 16959 * anything. 16960 */ 16961 tcp->tcp_max_swnd = MAX(tcp->tcp_swnd, 2); 16962 } 16963 tcp_wput_data(tcp, NULL, B_FALSE); 16964 return; 16965 } 16966 /* Is there a FIN that needs to be to re retransmitted? */ 16967 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 16968 !tcp->tcp_fin_acked) 16969 break; 16970 /* Nothing to do, return without restarting timer. */ 16971 TCP_STAT(tcp_timer_fire_miss); 16972 return; 16973 case TCPS_FIN_WAIT_2: 16974 /* 16975 * User closed the TCP endpoint and peer ACK'ed our FIN. 16976 * We waited some time for for peer's FIN, but it hasn't 16977 * arrived. We flush the connection now to avoid 16978 * case where the peer has rebooted. 16979 */ 16980 if (TCP_IS_DETACHED(tcp)) { 16981 (void) tcp_clean_death(tcp, 0, 23); 16982 } else { 16983 TCP_TIMER_RESTART(tcp, tcp_fin_wait_2_flush_interval); 16984 } 16985 return; 16986 case TCPS_TIME_WAIT: 16987 (void) tcp_clean_death(tcp, 0, 24); 16988 return; 16989 default: 16990 if (tcp->tcp_debug) { 16991 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 16992 "tcp_timer: strange state (%d) %s", 16993 tcp->tcp_state, tcp_display(tcp, NULL, 16994 DISP_PORT_ONLY)); 16995 } 16996 return; 16997 } 16998 if ((ms = tcp->tcp_ms_we_have_waited) > second_threshold) { 16999 /* 17000 * For zero window probe, we need to send indefinitely, 17001 * unless we have not heard from the other side for some 17002 * time... 17003 */ 17004 if ((tcp->tcp_zero_win_probe == 0) || 17005 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) > 17006 second_threshold)) { 17007 BUMP_MIB(&tcp_mib, tcpTimRetransDrop); 17008 /* 17009 * If TCP is in SYN_RCVD state, send back a 17010 * RST|ACK as BSD does. Note that tcp_zero_win_probe 17011 * should be zero in TCPS_SYN_RCVD state. 17012 */ 17013 if (tcp->tcp_state == TCPS_SYN_RCVD) { 17014 tcp_xmit_ctl("tcp_timer: RST sent on timeout " 17015 "in SYN_RCVD", 17016 tcp, tcp->tcp_snxt, 17017 tcp->tcp_rnxt, TH_RST | TH_ACK); 17018 } 17019 (void) tcp_clean_death(tcp, 17020 tcp->tcp_client_errno ? 17021 tcp->tcp_client_errno : ETIMEDOUT, 25); 17022 return; 17023 } else { 17024 /* 17025 * Set tcp_ms_we_have_waited to second_threshold 17026 * so that in next timeout, we will do the above 17027 * check (lbolt - tcp_last_recv_time). This is 17028 * also to avoid overflow. 17029 * 17030 * We don't need to decrement tcp_timer_backoff 17031 * to avoid overflow because it will be decremented 17032 * later if new timeout value is greater than 17033 * tcp_rexmit_interval_max. In the case when 17034 * tcp_rexmit_interval_max is greater than 17035 * second_threshold, it means that we will wait 17036 * longer than second_threshold to send the next 17037 * window probe. 17038 */ 17039 tcp->tcp_ms_we_have_waited = second_threshold; 17040 } 17041 } else if (ms > first_threshold) { 17042 if (tcp->tcp_snd_zcopy_aware && (!tcp->tcp_xmit_zc_clean) && 17043 tcp->tcp_xmit_head != NULL) { 17044 tcp->tcp_xmit_head = 17045 tcp_zcopy_backoff(tcp, tcp->tcp_xmit_head, 1); 17046 } 17047 /* 17048 * We have been retransmitting for too long... The RTT 17049 * we calculated is probably incorrect. Reinitialize it. 17050 * Need to compensate for 0 tcp_rtt_sa. Reset 17051 * tcp_rtt_update so that we won't accidentally cache a 17052 * bad value. But only do this if this is not a zero 17053 * window probe. 17054 */ 17055 if (tcp->tcp_rtt_sa != 0 && tcp->tcp_zero_win_probe == 0) { 17056 tcp->tcp_rtt_sd += (tcp->tcp_rtt_sa >> 3) + 17057 (tcp->tcp_rtt_sa >> 5); 17058 tcp->tcp_rtt_sa = 0; 17059 tcp_ip_notify(tcp); 17060 tcp->tcp_rtt_update = 0; 17061 } 17062 } 17063 tcp->tcp_timer_backoff++; 17064 if ((ms = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 17065 tcp_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5)) < 17066 tcp_rexmit_interval_min) { 17067 /* 17068 * This means the original RTO is tcp_rexmit_interval_min. 17069 * So we will use tcp_rexmit_interval_min as the RTO value 17070 * and do the backoff. 17071 */ 17072 ms = tcp_rexmit_interval_min << tcp->tcp_timer_backoff; 17073 } else { 17074 ms <<= tcp->tcp_timer_backoff; 17075 } 17076 if (ms > tcp_rexmit_interval_max) { 17077 ms = tcp_rexmit_interval_max; 17078 /* 17079 * ms is at max, decrement tcp_timer_backoff to avoid 17080 * overflow. 17081 */ 17082 tcp->tcp_timer_backoff--; 17083 } 17084 tcp->tcp_ms_we_have_waited += ms; 17085 if (tcp->tcp_zero_win_probe == 0) { 17086 tcp->tcp_rto = ms; 17087 } 17088 TCP_TIMER_RESTART(tcp, ms); 17089 /* 17090 * This is after a timeout and tcp_rto is backed off. Set 17091 * tcp_set_timer to 1 so that next time RTO is updated, we will 17092 * restart the timer with a correct value. 17093 */ 17094 tcp->tcp_set_timer = 1; 17095 mss = tcp->tcp_snxt - tcp->tcp_suna; 17096 if (mss > tcp->tcp_mss) 17097 mss = tcp->tcp_mss; 17098 if (mss > tcp->tcp_swnd && tcp->tcp_swnd != 0) 17099 mss = tcp->tcp_swnd; 17100 17101 if ((mp = tcp->tcp_xmit_head) != NULL) 17102 mp->b_prev = (mblk_t *)lbolt; 17103 mp = tcp_xmit_mp(tcp, mp, mss, NULL, NULL, tcp->tcp_suna, B_TRUE, &mss, 17104 B_TRUE); 17105 17106 /* 17107 * When slow start after retransmission begins, start with 17108 * this seq no. tcp_rexmit_max marks the end of special slow 17109 * start phase. tcp_snd_burst controls how many segments 17110 * can be sent because of an ack. 17111 */ 17112 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 17113 tcp->tcp_snd_burst = TCP_CWND_SS; 17114 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 17115 (tcp->tcp_unsent == 0)) { 17116 tcp->tcp_rexmit_max = tcp->tcp_fss; 17117 } else { 17118 tcp->tcp_rexmit_max = tcp->tcp_snxt; 17119 } 17120 tcp->tcp_rexmit = B_TRUE; 17121 tcp->tcp_dupack_cnt = 0; 17122 17123 /* 17124 * Remove all rexmit SACK blk to start from fresh. 17125 */ 17126 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 17127 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 17128 tcp->tcp_num_notsack_blk = 0; 17129 tcp->tcp_cnt_notsack_list = 0; 17130 } 17131 if (mp == NULL) { 17132 return; 17133 } 17134 /* Attach credentials to retransmitted initial SYNs. */ 17135 if (tcp->tcp_state == TCPS_SYN_SENT) { 17136 mblk_setcred(mp, tcp->tcp_cred); 17137 DB_CPID(mp) = tcp->tcp_cpid; 17138 } 17139 17140 tcp->tcp_csuna = tcp->tcp_snxt; 17141 BUMP_MIB(&tcp_mib, tcpRetransSegs); 17142 UPDATE_MIB(&tcp_mib, tcpRetransBytes, mss); 17143 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 17144 tcp_send_data(tcp, tcp->tcp_wq, mp); 17145 17146 } 17147 17148 /* tcp_unbind is called by tcp_wput_proto to handle T_UNBIND_REQ messages. */ 17149 static void 17150 tcp_unbind(tcp_t *tcp, mblk_t *mp) 17151 { 17152 conn_t *connp; 17153 17154 switch (tcp->tcp_state) { 17155 case TCPS_BOUND: 17156 case TCPS_LISTEN: 17157 break; 17158 default: 17159 tcp_err_ack(tcp, mp, TOUTSTATE, 0); 17160 return; 17161 } 17162 17163 /* 17164 * Need to clean up all the eagers since after the unbind, segments 17165 * will no longer be delivered to this listener stream. 17166 */ 17167 mutex_enter(&tcp->tcp_eager_lock); 17168 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 17169 tcp_eager_cleanup(tcp, 0); 17170 } 17171 mutex_exit(&tcp->tcp_eager_lock); 17172 17173 if (tcp->tcp_ipversion == IPV4_VERSION) { 17174 tcp->tcp_ipha->ipha_src = 0; 17175 } else { 17176 V6_SET_ZERO(tcp->tcp_ip6h->ip6_src); 17177 } 17178 V6_SET_ZERO(tcp->tcp_ip_src_v6); 17179 bzero(tcp->tcp_tcph->th_lport, sizeof (tcp->tcp_tcph->th_lport)); 17180 tcp_bind_hash_remove(tcp); 17181 tcp->tcp_state = TCPS_IDLE; 17182 tcp->tcp_mdt = B_FALSE; 17183 /* Send M_FLUSH according to TPI */ 17184 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 17185 connp = tcp->tcp_connp; 17186 connp->conn_mdt_ok = B_FALSE; 17187 ipcl_hash_remove(connp); 17188 bzero(&connp->conn_ports, sizeof (connp->conn_ports)); 17189 mp = mi_tpi_ok_ack_alloc(mp); 17190 putnext(tcp->tcp_rq, mp); 17191 } 17192 17193 /* 17194 * Don't let port fall into the privileged range. 17195 * Since the extra privileged ports can be arbitrary we also 17196 * ensure that we exclude those from consideration. 17197 * tcp_g_epriv_ports is not sorted thus we loop over it until 17198 * there are no changes. 17199 * 17200 * Note: No locks are held when inspecting tcp_g_*epriv_ports 17201 * but instead the code relies on: 17202 * - the fact that the address of the array and its size never changes 17203 * - the atomic assignment of the elements of the array 17204 * 17205 * Returns 0 if there are no more ports available. 17206 * 17207 * TS note: skip multilevel ports. 17208 */ 17209 static in_port_t 17210 tcp_update_next_port(in_port_t port, const tcp_t *tcp, boolean_t random) 17211 { 17212 int i; 17213 boolean_t restart = B_FALSE; 17214 17215 if (random && tcp_random_anon_port != 0) { 17216 (void) random_get_pseudo_bytes((uint8_t *)&port, 17217 sizeof (in_port_t)); 17218 /* 17219 * Unless changed by a sys admin, the smallest anon port 17220 * is 32768 and the largest anon port is 65535. It is 17221 * very likely (50%) for the random port to be smaller 17222 * than the smallest anon port. When that happens, 17223 * add port % (anon port range) to the smallest anon 17224 * port to get the random port. It should fall into the 17225 * valid anon port range. 17226 */ 17227 if (port < tcp_smallest_anon_port) { 17228 port = tcp_smallest_anon_port + 17229 port % (tcp_largest_anon_port - 17230 tcp_smallest_anon_port); 17231 } 17232 } 17233 17234 retry: 17235 if (port < tcp_smallest_anon_port) 17236 port = (in_port_t)tcp_smallest_anon_port; 17237 17238 if (port > tcp_largest_anon_port) { 17239 if (restart) 17240 return (0); 17241 restart = B_TRUE; 17242 port = (in_port_t)tcp_smallest_anon_port; 17243 } 17244 17245 if (port < tcp_smallest_nonpriv_port) 17246 port = (in_port_t)tcp_smallest_nonpriv_port; 17247 17248 for (i = 0; i < tcp_g_num_epriv_ports; i++) { 17249 if (port == tcp_g_epriv_ports[i]) { 17250 port++; 17251 /* 17252 * Make sure whether the port is in the 17253 * valid range. 17254 */ 17255 goto retry; 17256 } 17257 } 17258 if (is_system_labeled() && 17259 (i = tsol_next_port(crgetzone(tcp->tcp_cred), port, 17260 IPPROTO_TCP, B_TRUE)) != 0) { 17261 port = i; 17262 goto retry; 17263 } 17264 return (port); 17265 } 17266 17267 /* 17268 * Return the next anonymous port in the privileged port range for 17269 * bind checking. It starts at IPPORT_RESERVED - 1 and goes 17270 * downwards. This is the same behavior as documented in the userland 17271 * library call rresvport(3N). 17272 * 17273 * TS note: skip multilevel ports. 17274 */ 17275 static in_port_t 17276 tcp_get_next_priv_port(const tcp_t *tcp) 17277 { 17278 static in_port_t next_priv_port = IPPORT_RESERVED - 1; 17279 in_port_t nextport; 17280 boolean_t restart = B_FALSE; 17281 17282 retry: 17283 if (next_priv_port < tcp_min_anonpriv_port || 17284 next_priv_port >= IPPORT_RESERVED) { 17285 next_priv_port = IPPORT_RESERVED - 1; 17286 if (restart) 17287 return (0); 17288 restart = B_TRUE; 17289 } 17290 if (is_system_labeled() && 17291 (nextport = tsol_next_port(crgetzone(tcp->tcp_cred), 17292 next_priv_port, IPPROTO_TCP, B_FALSE)) != 0) { 17293 next_priv_port = nextport; 17294 goto retry; 17295 } 17296 return (next_priv_port--); 17297 } 17298 17299 /* The write side r/w procedure. */ 17300 17301 #if CCS_STATS 17302 struct { 17303 struct { 17304 int64_t count, bytes; 17305 } tot, hit; 17306 } wrw_stats; 17307 #endif 17308 17309 /* 17310 * Call by tcp_wput() to handle all non data, except M_PROTO and M_PCPROTO, 17311 * messages. 17312 */ 17313 /* ARGSUSED */ 17314 static void 17315 tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2) 17316 { 17317 conn_t *connp = (conn_t *)arg; 17318 tcp_t *tcp = connp->conn_tcp; 17319 queue_t *q = tcp->tcp_wq; 17320 17321 ASSERT(DB_TYPE(mp) != M_IOCTL); 17322 /* 17323 * TCP is D_MP and qprocsoff() is done towards the end of the tcp_close. 17324 * Once the close starts, streamhead and sockfs will not let any data 17325 * packets come down (close ensures that there are no threads using the 17326 * queue and no new threads will come down) but since qprocsoff() 17327 * hasn't happened yet, a M_FLUSH or some non data message might 17328 * get reflected back (in response to our own FLUSHRW) and get 17329 * processed after tcp_close() is done. The conn would still be valid 17330 * because a ref would have added but we need to check the state 17331 * before actually processing the packet. 17332 */ 17333 if (TCP_IS_DETACHED(tcp) || (tcp->tcp_state == TCPS_CLOSED)) { 17334 freemsg(mp); 17335 return; 17336 } 17337 17338 switch (DB_TYPE(mp)) { 17339 case M_IOCDATA: 17340 tcp_wput_iocdata(tcp, mp); 17341 break; 17342 case M_FLUSH: 17343 tcp_wput_flush(tcp, mp); 17344 break; 17345 default: 17346 CALL_IP_WPUT(connp, q, mp); 17347 break; 17348 } 17349 } 17350 17351 /* 17352 * The TCP fast path write put procedure. 17353 * NOTE: the logic of the fast path is duplicated from tcp_wput_data() 17354 */ 17355 /* ARGSUSED */ 17356 void 17357 tcp_output(void *arg, mblk_t *mp, void *arg2) 17358 { 17359 int len; 17360 int hdrlen; 17361 int plen; 17362 mblk_t *mp1; 17363 uchar_t *rptr; 17364 uint32_t snxt; 17365 tcph_t *tcph; 17366 struct datab *db; 17367 uint32_t suna; 17368 uint32_t mss; 17369 ipaddr_t *dst; 17370 ipaddr_t *src; 17371 uint32_t sum; 17372 int usable; 17373 conn_t *connp = (conn_t *)arg; 17374 tcp_t *tcp = connp->conn_tcp; 17375 uint32_t msize; 17376 17377 /* 17378 * Try and ASSERT the minimum possible references on the 17379 * conn early enough. Since we are executing on write side, 17380 * the connection is obviously not detached and that means 17381 * there is a ref each for TCP and IP. Since we are behind 17382 * the squeue, the minimum references needed are 3. If the 17383 * conn is in classifier hash list, there should be an 17384 * extra ref for that (we check both the possibilities). 17385 */ 17386 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 17387 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 17388 17389 ASSERT(DB_TYPE(mp) == M_DATA); 17390 msize = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp); 17391 17392 mutex_enter(&connp->conn_lock); 17393 tcp->tcp_squeue_bytes -= msize; 17394 mutex_exit(&connp->conn_lock); 17395 17396 /* Bypass tcp protocol for fused tcp loopback */ 17397 if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize)) 17398 return; 17399 17400 mss = tcp->tcp_mss; 17401 if (tcp->tcp_xmit_zc_clean) 17402 mp = tcp_zcopy_backoff(tcp, mp, 0); 17403 17404 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 17405 len = (int)(mp->b_wptr - mp->b_rptr); 17406 17407 /* 17408 * Criteria for fast path: 17409 * 17410 * 1. no unsent data 17411 * 2. single mblk in request 17412 * 3. connection established 17413 * 4. data in mblk 17414 * 5. len <= mss 17415 * 6. no tcp_valid bits 17416 */ 17417 if ((tcp->tcp_unsent != 0) || 17418 (tcp->tcp_cork) || 17419 (mp->b_cont != NULL) || 17420 (tcp->tcp_state != TCPS_ESTABLISHED) || 17421 (len == 0) || 17422 (len > mss) || 17423 (tcp->tcp_valid_bits != 0)) { 17424 tcp_wput_data(tcp, mp, B_FALSE); 17425 return; 17426 } 17427 17428 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 17429 ASSERT(tcp->tcp_fin_sent == 0); 17430 17431 /* queue new packet onto retransmission queue */ 17432 if (tcp->tcp_xmit_head == NULL) { 17433 tcp->tcp_xmit_head = mp; 17434 } else { 17435 tcp->tcp_xmit_last->b_cont = mp; 17436 } 17437 tcp->tcp_xmit_last = mp; 17438 tcp->tcp_xmit_tail = mp; 17439 17440 /* find out how much we can send */ 17441 /* BEGIN CSTYLED */ 17442 /* 17443 * un-acked usable 17444 * |--------------|-----------------| 17445 * tcp_suna tcp_snxt tcp_suna+tcp_swnd 17446 */ 17447 /* END CSTYLED */ 17448 17449 /* start sending from tcp_snxt */ 17450 snxt = tcp->tcp_snxt; 17451 17452 /* 17453 * Check to see if this connection has been idled for some 17454 * time and no ACK is expected. If it is, we need to slow 17455 * start again to get back the connection's "self-clock" as 17456 * described in VJ's paper. 17457 * 17458 * Refer to the comment in tcp_mss_set() for the calculation 17459 * of tcp_cwnd after idle. 17460 */ 17461 if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && 17462 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) { 17463 SET_TCP_INIT_CWND(tcp, mss, tcp_slow_start_after_idle); 17464 } 17465 17466 usable = tcp->tcp_swnd; /* tcp window size */ 17467 if (usable > tcp->tcp_cwnd) 17468 usable = tcp->tcp_cwnd; /* congestion window smaller */ 17469 usable -= snxt; /* subtract stuff already sent */ 17470 suna = tcp->tcp_suna; 17471 usable += suna; 17472 /* usable can be < 0 if the congestion window is smaller */ 17473 if (len > usable) { 17474 /* Can't send complete M_DATA in one shot */ 17475 goto slow; 17476 } 17477 17478 if (tcp->tcp_flow_stopped && 17479 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 17480 tcp_clrqfull(tcp); 17481 } 17482 17483 /* 17484 * determine if anything to send (Nagle). 17485 * 17486 * 1. len < tcp_mss (i.e. small) 17487 * 2. unacknowledged data present 17488 * 3. len < nagle limit 17489 * 4. last packet sent < nagle limit (previous packet sent) 17490 */ 17491 if ((len < mss) && (snxt != suna) && 17492 (len < (int)tcp->tcp_naglim) && 17493 (tcp->tcp_last_sent_len < tcp->tcp_naglim)) { 17494 /* 17495 * This was the first unsent packet and normally 17496 * mss < xmit_hiwater so there is no need to worry 17497 * about flow control. The next packet will go 17498 * through the flow control check in tcp_wput_data(). 17499 */ 17500 /* leftover work from above */ 17501 tcp->tcp_unsent = len; 17502 tcp->tcp_xmit_tail_unsent = len; 17503 17504 return; 17505 } 17506 17507 /* len <= tcp->tcp_mss && len == unsent so no silly window */ 17508 17509 if (snxt == suna) { 17510 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 17511 } 17512 17513 /* we have always sent something */ 17514 tcp->tcp_rack_cnt = 0; 17515 17516 tcp->tcp_snxt = snxt + len; 17517 tcp->tcp_rack = tcp->tcp_rnxt; 17518 17519 if ((mp1 = dupb(mp)) == 0) 17520 goto no_memory; 17521 mp->b_prev = (mblk_t *)(uintptr_t)lbolt; 17522 mp->b_next = (mblk_t *)(uintptr_t)snxt; 17523 17524 /* adjust tcp header information */ 17525 tcph = tcp->tcp_tcph; 17526 tcph->th_flags[0] = (TH_ACK|TH_PUSH); 17527 17528 sum = len + tcp->tcp_tcp_hdr_len + tcp->tcp_sum; 17529 sum = (sum >> 16) + (sum & 0xFFFF); 17530 U16_TO_ABE16(sum, tcph->th_sum); 17531 17532 U32_TO_ABE32(snxt, tcph->th_seq); 17533 17534 BUMP_MIB(&tcp_mib, tcpOutDataSegs); 17535 UPDATE_MIB(&tcp_mib, tcpOutDataBytes, len); 17536 BUMP_LOCAL(tcp->tcp_obsegs); 17537 17538 /* Update the latest receive window size in TCP header. */ 17539 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 17540 tcph->th_win); 17541 17542 tcp->tcp_last_sent_len = (ushort_t)len; 17543 17544 plen = len + tcp->tcp_hdr_len; 17545 17546 if (tcp->tcp_ipversion == IPV4_VERSION) { 17547 tcp->tcp_ipha->ipha_length = htons(plen); 17548 } else { 17549 tcp->tcp_ip6h->ip6_plen = htons(plen - 17550 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 17551 } 17552 17553 /* see if we need to allocate a mblk for the headers */ 17554 hdrlen = tcp->tcp_hdr_len; 17555 rptr = mp1->b_rptr - hdrlen; 17556 db = mp1->b_datap; 17557 if ((db->db_ref != 2) || rptr < db->db_base || 17558 (!OK_32PTR(rptr))) { 17559 /* NOTE: we assume allocb returns an OK_32PTR */ 17560 mp = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 17561 tcp_wroff_xtra, BPRI_MED); 17562 if (!mp) { 17563 freemsg(mp1); 17564 goto no_memory; 17565 } 17566 mp->b_cont = mp1; 17567 mp1 = mp; 17568 /* Leave room for Link Level header */ 17569 /* hdrlen = tcp->tcp_hdr_len; */ 17570 rptr = &mp1->b_rptr[tcp_wroff_xtra]; 17571 mp1->b_wptr = &rptr[hdrlen]; 17572 } 17573 mp1->b_rptr = rptr; 17574 17575 /* Fill in the timestamp option. */ 17576 if (tcp->tcp_snd_ts_ok) { 17577 U32_TO_BE32((uint32_t)lbolt, 17578 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 17579 U32_TO_BE32(tcp->tcp_ts_recent, 17580 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 17581 } else { 17582 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 17583 } 17584 17585 /* copy header into outgoing packet */ 17586 dst = (ipaddr_t *)rptr; 17587 src = (ipaddr_t *)tcp->tcp_iphc; 17588 dst[0] = src[0]; 17589 dst[1] = src[1]; 17590 dst[2] = src[2]; 17591 dst[3] = src[3]; 17592 dst[4] = src[4]; 17593 dst[5] = src[5]; 17594 dst[6] = src[6]; 17595 dst[7] = src[7]; 17596 dst[8] = src[8]; 17597 dst[9] = src[9]; 17598 if (hdrlen -= 40) { 17599 hdrlen >>= 2; 17600 dst += 10; 17601 src += 10; 17602 do { 17603 *dst++ = *src++; 17604 } while (--hdrlen); 17605 } 17606 17607 /* 17608 * Set the ECN info in the TCP header. Note that this 17609 * is not the template header. 17610 */ 17611 if (tcp->tcp_ecn_ok) { 17612 SET_ECT(tcp, rptr); 17613 17614 tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 17615 if (tcp->tcp_ecn_echo_on) 17616 tcph->th_flags[0] |= TH_ECE; 17617 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 17618 tcph->th_flags[0] |= TH_CWR; 17619 tcp->tcp_ecn_cwr_sent = B_TRUE; 17620 } 17621 } 17622 17623 if (tcp->tcp_ip_forward_progress) { 17624 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 17625 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 17626 tcp->tcp_ip_forward_progress = B_FALSE; 17627 } 17628 TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT); 17629 tcp_send_data(tcp, tcp->tcp_wq, mp1); 17630 return; 17631 17632 /* 17633 * If we ran out of memory, we pretend to have sent the packet 17634 * and that it was lost on the wire. 17635 */ 17636 no_memory: 17637 return; 17638 17639 slow: 17640 /* leftover work from above */ 17641 tcp->tcp_unsent = len; 17642 tcp->tcp_xmit_tail_unsent = len; 17643 tcp_wput_data(tcp, NULL, B_FALSE); 17644 } 17645 17646 /* 17647 * The function called through squeue to get behind eager's perimeter to 17648 * finish the accept processing. 17649 */ 17650 /* ARGSUSED */ 17651 void 17652 tcp_accept_finish(void *arg, mblk_t *mp, void *arg2) 17653 { 17654 conn_t *connp = (conn_t *)arg; 17655 tcp_t *tcp = connp->conn_tcp; 17656 queue_t *q = tcp->tcp_rq; 17657 mblk_t *mp1; 17658 mblk_t *stropt_mp = mp; 17659 struct stroptions *stropt; 17660 uint_t thwin; 17661 17662 /* 17663 * Drop the eager's ref on the listener, that was placed when 17664 * this eager began life in tcp_conn_request. 17665 */ 17666 CONN_DEC_REF(tcp->tcp_saved_listener->tcp_connp); 17667 17668 if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_accept_error) { 17669 /* 17670 * Someone blewoff the eager before we could finish 17671 * the accept. 17672 * 17673 * The only reason eager exists it because we put in 17674 * a ref on it when conn ind went up. We need to send 17675 * a disconnect indication up while the last reference 17676 * on the eager will be dropped by the squeue when we 17677 * return. 17678 */ 17679 ASSERT(tcp->tcp_listener == NULL); 17680 if (tcp->tcp_issocket || tcp->tcp_send_discon_ind) { 17681 struct T_discon_ind *tdi; 17682 17683 (void) putnextctl1(q, M_FLUSH, FLUSHRW); 17684 /* 17685 * Let us reuse the incoming mblk to avoid memory 17686 * allocation failure problems. We know that the 17687 * size of the incoming mblk i.e. stroptions is greater 17688 * than sizeof T_discon_ind. So the reallocb below 17689 * can't fail. 17690 */ 17691 freemsg(mp->b_cont); 17692 mp->b_cont = NULL; 17693 ASSERT(DB_REF(mp) == 1); 17694 mp = reallocb(mp, sizeof (struct T_discon_ind), 17695 B_FALSE); 17696 ASSERT(mp != NULL); 17697 DB_TYPE(mp) = M_PROTO; 17698 ((union T_primitives *)mp->b_rptr)->type = T_DISCON_IND; 17699 tdi = (struct T_discon_ind *)mp->b_rptr; 17700 if (tcp->tcp_issocket) { 17701 tdi->DISCON_reason = ECONNREFUSED; 17702 tdi->SEQ_number = 0; 17703 } else { 17704 tdi->DISCON_reason = ENOPROTOOPT; 17705 tdi->SEQ_number = 17706 tcp->tcp_conn_req_seqnum; 17707 } 17708 mp->b_wptr = mp->b_rptr + sizeof (struct T_discon_ind); 17709 putnext(q, mp); 17710 } else { 17711 freemsg(mp); 17712 } 17713 if (tcp->tcp_hard_binding) { 17714 tcp->tcp_hard_binding = B_FALSE; 17715 tcp->tcp_hard_bound = B_TRUE; 17716 } 17717 tcp->tcp_detached = B_FALSE; 17718 return; 17719 } 17720 17721 mp1 = stropt_mp->b_cont; 17722 stropt_mp->b_cont = NULL; 17723 ASSERT(DB_TYPE(stropt_mp) == M_SETOPTS); 17724 stropt = (struct stroptions *)stropt_mp->b_rptr; 17725 17726 while (mp1 != NULL) { 17727 mp = mp1; 17728 mp1 = mp1->b_cont; 17729 mp->b_cont = NULL; 17730 tcp->tcp_drop_opt_ack_cnt++; 17731 CALL_IP_WPUT(connp, tcp->tcp_wq, mp); 17732 } 17733 mp = NULL; 17734 17735 /* 17736 * For a loopback connection with tcp_direct_sockfs on, note that 17737 * we don't have to protect tcp_rcv_list yet because synchronous 17738 * streams has not yet been enabled and tcp_fuse_rrw() cannot 17739 * possibly race with us. 17740 */ 17741 17742 /* 17743 * Set the max window size (tcp_rq->q_hiwat) of the acceptor 17744 * properly. This is the first time we know of the acceptor' 17745 * queue. So we do it here. 17746 */ 17747 if (tcp->tcp_rcv_list == NULL) { 17748 /* 17749 * Recv queue is empty, tcp_rwnd should not have changed. 17750 * That means it should be equal to the listener's tcp_rwnd. 17751 */ 17752 tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd; 17753 } else { 17754 #ifdef DEBUG 17755 uint_t cnt = 0; 17756 17757 mp1 = tcp->tcp_rcv_list; 17758 while ((mp = mp1) != NULL) { 17759 mp1 = mp->b_next; 17760 cnt += msgdsize(mp); 17761 } 17762 ASSERT(cnt != 0 && tcp->tcp_rcv_cnt == cnt); 17763 #endif 17764 /* There is some data, add them back to get the max. */ 17765 tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd + tcp->tcp_rcv_cnt; 17766 } 17767 17768 stropt->so_flags = SO_HIWAT; 17769 stropt->so_hiwat = MAX(q->q_hiwat, tcp_sth_rcv_hiwat); 17770 17771 stropt->so_flags |= SO_MAXBLK; 17772 stropt->so_maxblk = tcp_maxpsz_set(tcp, B_FALSE); 17773 17774 /* 17775 * This is the first time we run on the correct 17776 * queue after tcp_accept. So fix all the q parameters 17777 * here. 17778 */ 17779 /* Allocate room for SACK options if needed. */ 17780 stropt->so_flags |= SO_WROFF; 17781 if (tcp->tcp_fused) { 17782 ASSERT(tcp->tcp_loopback); 17783 ASSERT(tcp->tcp_loopback_peer != NULL); 17784 /* 17785 * For fused tcp loopback, set the stream head's write 17786 * offset value to zero since we won't be needing any room 17787 * for TCP/IP headers. This would also improve performance 17788 * since it would reduce the amount of work done by kmem. 17789 * Non-fused tcp loopback case is handled separately below. 17790 */ 17791 stropt->so_wroff = 0; 17792 /* 17793 * Record the stream head's high water mark for this endpoint; 17794 * this is used for flow-control purposes in tcp_fuse_output(). 17795 */ 17796 stropt->so_hiwat = tcp_fuse_set_rcv_hiwat(tcp, q->q_hiwat); 17797 /* 17798 * Update the peer's transmit parameters according to 17799 * our recently calculated high water mark value. 17800 */ 17801 (void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE); 17802 } else if (tcp->tcp_snd_sack_ok) { 17803 stropt->so_wroff = tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN + 17804 (tcp->tcp_loopback ? 0 : tcp_wroff_xtra); 17805 } else { 17806 stropt->so_wroff = tcp->tcp_hdr_len + (tcp->tcp_loopback ? 0 : 17807 tcp_wroff_xtra); 17808 } 17809 17810 /* 17811 * If this is endpoint is handling SSL, then reserve extra 17812 * offset and space at the end. 17813 * Also have the stream head allocate SSL3_MAX_RECORD_LEN packets, 17814 * overriding the previous setting. The extra cost of signing and 17815 * encrypting multiple MSS-size records (12 of them with Ethernet), 17816 * instead of a single contiguous one by the stream head 17817 * largely outweighs the statistical reduction of ACKs, when 17818 * applicable. The peer will also save on decyption and verification 17819 * costs. 17820 */ 17821 if (tcp->tcp_kssl_ctx != NULL) { 17822 stropt->so_wroff += SSL3_WROFFSET; 17823 17824 stropt->so_flags |= SO_TAIL; 17825 stropt->so_tail = SSL3_MAX_TAIL_LEN; 17826 17827 stropt->so_maxblk = SSL3_MAX_RECORD_LEN; 17828 } 17829 17830 /* Send the options up */ 17831 putnext(q, stropt_mp); 17832 17833 /* 17834 * Pass up any data and/or a fin that has been received. 17835 * 17836 * Adjust receive window in case it had decreased 17837 * (because there is data <=> tcp_rcv_list != NULL) 17838 * while the connection was detached. Note that 17839 * in case the eager was flow-controlled, w/o this 17840 * code, the rwnd may never open up again! 17841 */ 17842 if (tcp->tcp_rcv_list != NULL) { 17843 /* We drain directly in case of fused tcp loopback */ 17844 if (!tcp->tcp_fused && canputnext(q)) { 17845 tcp->tcp_rwnd = q->q_hiwat; 17846 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 17847 << tcp->tcp_rcv_ws; 17848 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 17849 if (tcp->tcp_state >= TCPS_ESTABLISHED && 17850 (q->q_hiwat - thwin >= tcp->tcp_mss)) { 17851 tcp_xmit_ctl(NULL, 17852 tcp, (tcp->tcp_swnd == 0) ? 17853 tcp->tcp_suna : tcp->tcp_snxt, 17854 tcp->tcp_rnxt, TH_ACK); 17855 BUMP_MIB(&tcp_mib, tcpOutWinUpdate); 17856 } 17857 17858 } 17859 (void) tcp_rcv_drain(q, tcp); 17860 17861 /* 17862 * For fused tcp loopback, back-enable peer endpoint 17863 * if it's currently flow-controlled. 17864 */ 17865 if (tcp->tcp_fused && 17866 tcp->tcp_loopback_peer->tcp_flow_stopped) { 17867 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 17868 17869 ASSERT(peer_tcp != NULL); 17870 ASSERT(peer_tcp->tcp_fused); 17871 17872 tcp_clrqfull(peer_tcp); 17873 TCP_STAT(tcp_fusion_backenabled); 17874 } 17875 } 17876 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 17877 if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 17878 mp = mi_tpi_ordrel_ind(); 17879 if (mp) { 17880 tcp->tcp_ordrel_done = B_TRUE; 17881 putnext(q, mp); 17882 if (tcp->tcp_deferred_clean_death) { 17883 /* 17884 * tcp_clean_death was deferred 17885 * for T_ORDREL_IND - do it now 17886 */ 17887 (void) tcp_clean_death(tcp, 17888 tcp->tcp_client_errno, 21); 17889 tcp->tcp_deferred_clean_death = B_FALSE; 17890 } 17891 } else { 17892 /* 17893 * Run the orderly release in the 17894 * service routine. 17895 */ 17896 qenable(q); 17897 } 17898 } 17899 if (tcp->tcp_hard_binding) { 17900 tcp->tcp_hard_binding = B_FALSE; 17901 tcp->tcp_hard_bound = B_TRUE; 17902 } 17903 17904 tcp->tcp_detached = B_FALSE; 17905 17906 /* We can enable synchronous streams now */ 17907 if (tcp->tcp_fused) { 17908 tcp_fuse_syncstr_enable_pair(tcp); 17909 } 17910 17911 if (tcp->tcp_ka_enabled) { 17912 tcp->tcp_ka_last_intrvl = 0; 17913 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 17914 MSEC_TO_TICK(tcp->tcp_ka_interval)); 17915 } 17916 17917 /* 17918 * At this point, eager is fully established and will 17919 * have the following references - 17920 * 17921 * 2 references for connection to exist (1 for TCP and 1 for IP). 17922 * 1 reference for the squeue which will be dropped by the squeue as 17923 * soon as this function returns. 17924 * There will be 1 additonal reference for being in classifier 17925 * hash list provided something bad hasn't happened. 17926 */ 17927 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 17928 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 17929 } 17930 17931 /* 17932 * The function called through squeue to get behind listener's perimeter to 17933 * send a deffered conn_ind. 17934 */ 17935 /* ARGSUSED */ 17936 void 17937 tcp_send_pending(void *arg, mblk_t *mp, void *arg2) 17938 { 17939 conn_t *connp = (conn_t *)arg; 17940 tcp_t *listener = connp->conn_tcp; 17941 17942 if (listener->tcp_state == TCPS_CLOSED || 17943 TCP_IS_DETACHED(listener)) { 17944 /* 17945 * If listener has closed, it would have caused a 17946 * a cleanup/blowoff to happen for the eager. 17947 */ 17948 tcp_t *tcp; 17949 struct T_conn_ind *conn_ind; 17950 17951 conn_ind = (struct T_conn_ind *)mp->b_rptr; 17952 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 17953 conn_ind->OPT_length); 17954 /* 17955 * We need to drop the ref on eager that was put 17956 * tcp_rput_data() before trying to send the conn_ind 17957 * to listener. The conn_ind was deferred in tcp_send_conn_ind 17958 * and tcp_wput_accept() is sending this deferred conn_ind but 17959 * listener is closed so we drop the ref. 17960 */ 17961 CONN_DEC_REF(tcp->tcp_connp); 17962 freemsg(mp); 17963 return; 17964 } 17965 putnext(listener->tcp_rq, mp); 17966 } 17967 17968 17969 /* 17970 * This is the STREAMS entry point for T_CONN_RES coming down on 17971 * Acceptor STREAM when sockfs listener does accept processing. 17972 * Read the block comment on top pf tcp_conn_request(). 17973 */ 17974 void 17975 tcp_wput_accept(queue_t *q, mblk_t *mp) 17976 { 17977 queue_t *rq = RD(q); 17978 struct T_conn_res *conn_res; 17979 tcp_t *eager; 17980 tcp_t *listener; 17981 struct T_ok_ack *ok; 17982 t_scalar_t PRIM_type; 17983 mblk_t *opt_mp; 17984 conn_t *econnp; 17985 17986 ASSERT(DB_TYPE(mp) == M_PROTO); 17987 17988 conn_res = (struct T_conn_res *)mp->b_rptr; 17989 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 17990 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_res)) { 17991 mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); 17992 if (mp != NULL) 17993 putnext(rq, mp); 17994 return; 17995 } 17996 switch (conn_res->PRIM_type) { 17997 case O_T_CONN_RES: 17998 case T_CONN_RES: 17999 /* 18000 * We pass up an err ack if allocb fails. This will 18001 * cause sockfs to issue a T_DISCON_REQ which will cause 18002 * tcp_eager_blowoff to be called. sockfs will then call 18003 * rq->q_qinfo->qi_qclose to cleanup the acceptor stream. 18004 * we need to do the allocb up here because we have to 18005 * make sure rq->q_qinfo->qi_qclose still points to the 18006 * correct function (tcpclose_accept) in case allocb 18007 * fails. 18008 */ 18009 opt_mp = allocb(sizeof (struct stroptions), BPRI_HI); 18010 if (opt_mp == NULL) { 18011 mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); 18012 if (mp != NULL) 18013 putnext(rq, mp); 18014 return; 18015 } 18016 18017 bcopy(mp->b_rptr + conn_res->OPT_offset, 18018 &eager, conn_res->OPT_length); 18019 PRIM_type = conn_res->PRIM_type; 18020 mp->b_datap->db_type = M_PCPROTO; 18021 mp->b_wptr = mp->b_rptr + sizeof (struct T_ok_ack); 18022 ok = (struct T_ok_ack *)mp->b_rptr; 18023 ok->PRIM_type = T_OK_ACK; 18024 ok->CORRECT_prim = PRIM_type; 18025 econnp = eager->tcp_connp; 18026 econnp->conn_dev = (dev_t)q->q_ptr; 18027 eager->tcp_rq = rq; 18028 eager->tcp_wq = q; 18029 rq->q_ptr = econnp; 18030 rq->q_qinfo = &tcp_rinit; 18031 q->q_ptr = econnp; 18032 q->q_qinfo = &tcp_winit; 18033 listener = eager->tcp_listener; 18034 eager->tcp_issocket = B_TRUE; 18035 18036 econnp->conn_zoneid = listener->tcp_connp->conn_zoneid; 18037 econnp->conn_allzones = listener->tcp_connp->conn_allzones; 18038 18039 /* Put the ref for IP */ 18040 CONN_INC_REF(econnp); 18041 18042 /* 18043 * We should have minimum of 3 references on the conn 18044 * at this point. One each for TCP and IP and one for 18045 * the T_conn_ind that was sent up when the 3-way handshake 18046 * completed. In the normal case we would also have another 18047 * reference (making a total of 4) for the conn being in the 18048 * classifier hash list. However the eager could have received 18049 * an RST subsequently and tcp_closei_local could have removed 18050 * the eager from the classifier hash list, hence we can't 18051 * assert that reference. 18052 */ 18053 ASSERT(econnp->conn_ref >= 3); 18054 18055 /* 18056 * Send the new local address also up to sockfs. There 18057 * should already be enough space in the mp that came 18058 * down from soaccept(). 18059 */ 18060 if (eager->tcp_family == AF_INET) { 18061 sin_t *sin; 18062 18063 ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= 18064 (sizeof (struct T_ok_ack) + sizeof (sin_t))); 18065 sin = (sin_t *)mp->b_wptr; 18066 mp->b_wptr += sizeof (sin_t); 18067 sin->sin_family = AF_INET; 18068 sin->sin_port = eager->tcp_lport; 18069 sin->sin_addr.s_addr = eager->tcp_ipha->ipha_src; 18070 } else { 18071 sin6_t *sin6; 18072 18073 ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= 18074 sizeof (struct T_ok_ack) + sizeof (sin6_t)); 18075 sin6 = (sin6_t *)mp->b_wptr; 18076 mp->b_wptr += sizeof (sin6_t); 18077 sin6->sin6_family = AF_INET6; 18078 sin6->sin6_port = eager->tcp_lport; 18079 if (eager->tcp_ipversion == IPV4_VERSION) { 18080 sin6->sin6_flowinfo = 0; 18081 IN6_IPADDR_TO_V4MAPPED( 18082 eager->tcp_ipha->ipha_src, 18083 &sin6->sin6_addr); 18084 } else { 18085 ASSERT(eager->tcp_ip6h != NULL); 18086 sin6->sin6_flowinfo = 18087 eager->tcp_ip6h->ip6_vcf & 18088 ~IPV6_VERS_AND_FLOW_MASK; 18089 sin6->sin6_addr = eager->tcp_ip6h->ip6_src; 18090 } 18091 sin6->sin6_scope_id = 0; 18092 sin6->__sin6_src_id = 0; 18093 } 18094 18095 putnext(rq, mp); 18096 18097 opt_mp->b_datap->db_type = M_SETOPTS; 18098 opt_mp->b_wptr += sizeof (struct stroptions); 18099 18100 /* 18101 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO 18102 * from listener to acceptor. The message is chained on the 18103 * bind_mp which tcp_rput_other will send down to IP. 18104 */ 18105 if (listener->tcp_bound_if != 0) { 18106 /* allocate optmgmt req */ 18107 mp = tcp_setsockopt_mp(IPPROTO_IPV6, 18108 IPV6_BOUND_IF, (char *)&listener->tcp_bound_if, 18109 sizeof (int)); 18110 if (mp != NULL) 18111 linkb(opt_mp, mp); 18112 } 18113 if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) { 18114 uint_t on = 1; 18115 18116 /* allocate optmgmt req */ 18117 mp = tcp_setsockopt_mp(IPPROTO_IPV6, 18118 IPV6_RECVPKTINFO, (char *)&on, sizeof (on)); 18119 if (mp != NULL) 18120 linkb(opt_mp, mp); 18121 } 18122 18123 18124 mutex_enter(&listener->tcp_eager_lock); 18125 18126 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 18127 18128 tcp_t *tail; 18129 tcp_t *tcp; 18130 mblk_t *mp1; 18131 18132 tcp = listener->tcp_eager_prev_q0; 18133 /* 18134 * listener->tcp_eager_prev_q0 points to the TAIL of the 18135 * deferred T_conn_ind queue. We need to get to the head 18136 * of the queue in order to send up T_conn_ind the same 18137 * order as how the 3WHS is completed. 18138 */ 18139 while (tcp != listener) { 18140 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0 && 18141 !tcp->tcp_kssl_pending) 18142 break; 18143 else 18144 tcp = tcp->tcp_eager_prev_q0; 18145 } 18146 /* None of the pending eagers can be sent up now */ 18147 if (tcp == listener) 18148 goto no_more_eagers; 18149 18150 mp1 = tcp->tcp_conn.tcp_eager_conn_ind; 18151 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 18152 /* Move from q0 to q */ 18153 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 18154 listener->tcp_conn_req_cnt_q0--; 18155 listener->tcp_conn_req_cnt_q++; 18156 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 18157 tcp->tcp_eager_prev_q0; 18158 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 18159 tcp->tcp_eager_next_q0; 18160 tcp->tcp_eager_prev_q0 = NULL; 18161 tcp->tcp_eager_next_q0 = NULL; 18162 tcp->tcp_conn_def_q0 = B_FALSE; 18163 18164 /* Make sure the tcp isn't in the list of droppables */ 18165 ASSERT(tcp->tcp_eager_next_drop_q0 == NULL && 18166 tcp->tcp_eager_prev_drop_q0 == NULL); 18167 18168 /* 18169 * Insert at end of the queue because sockfs sends 18170 * down T_CONN_RES in chronological order. Leaving 18171 * the older conn indications at front of the queue 18172 * helps reducing search time. 18173 */ 18174 tail = listener->tcp_eager_last_q; 18175 if (tail != NULL) { 18176 tail->tcp_eager_next_q = tcp; 18177 } else { 18178 listener->tcp_eager_next_q = tcp; 18179 } 18180 listener->tcp_eager_last_q = tcp; 18181 tcp->tcp_eager_next_q = NULL; 18182 18183 /* Need to get inside the listener perimeter */ 18184 CONN_INC_REF(listener->tcp_connp); 18185 squeue_fill(listener->tcp_connp->conn_sqp, mp1, 18186 tcp_send_pending, listener->tcp_connp, 18187 SQTAG_TCP_SEND_PENDING); 18188 } 18189 no_more_eagers: 18190 tcp_eager_unlink(eager); 18191 mutex_exit(&listener->tcp_eager_lock); 18192 18193 /* 18194 * At this point, the eager is detached from the listener 18195 * but we still have an extra refs on eager (apart from the 18196 * usual tcp references). The ref was placed in tcp_rput_data 18197 * before sending the conn_ind in tcp_send_conn_ind. 18198 * The ref will be dropped in tcp_accept_finish(). 18199 */ 18200 squeue_enter_nodrain(econnp->conn_sqp, opt_mp, 18201 tcp_accept_finish, econnp, SQTAG_TCP_ACCEPT_FINISH_Q0); 18202 return; 18203 default: 18204 mp = mi_tpi_err_ack_alloc(mp, TNOTSUPPORT, 0); 18205 if (mp != NULL) 18206 putnext(rq, mp); 18207 return; 18208 } 18209 } 18210 18211 void 18212 tcp_wput(queue_t *q, mblk_t *mp) 18213 { 18214 conn_t *connp = Q_TO_CONN(q); 18215 tcp_t *tcp; 18216 void (*output_proc)(); 18217 t_scalar_t type; 18218 uchar_t *rptr; 18219 struct iocblk *iocp; 18220 uint32_t msize; 18221 18222 ASSERT(connp->conn_ref >= 2); 18223 18224 switch (DB_TYPE(mp)) { 18225 case M_DATA: 18226 tcp = connp->conn_tcp; 18227 ASSERT(tcp != NULL); 18228 18229 msize = msgdsize(mp); 18230 18231 mutex_enter(&connp->conn_lock); 18232 CONN_INC_REF_LOCKED(connp); 18233 18234 tcp->tcp_squeue_bytes += msize; 18235 if (TCP_UNSENT_BYTES(tcp) > tcp->tcp_xmit_hiwater) { 18236 mutex_exit(&connp->conn_lock); 18237 tcp_setqfull(tcp); 18238 } else 18239 mutex_exit(&connp->conn_lock); 18240 18241 (*tcp_squeue_wput_proc)(connp->conn_sqp, mp, 18242 tcp_output, connp, SQTAG_TCP_OUTPUT); 18243 return; 18244 case M_PROTO: 18245 case M_PCPROTO: 18246 /* 18247 * if it is a snmp message, don't get behind the squeue 18248 */ 18249 tcp = connp->conn_tcp; 18250 rptr = mp->b_rptr; 18251 if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { 18252 type = ((union T_primitives *)rptr)->type; 18253 } else { 18254 if (tcp->tcp_debug) { 18255 (void) strlog(TCP_MOD_ID, 0, 1, 18256 SL_ERROR|SL_TRACE, 18257 "tcp_wput_proto, dropping one..."); 18258 } 18259 freemsg(mp); 18260 return; 18261 } 18262 if (type == T_SVR4_OPTMGMT_REQ) { 18263 cred_t *cr = DB_CREDDEF(mp, tcp->tcp_cred); 18264 if (snmpcom_req(q, mp, tcp_snmp_set, tcp_snmp_get, 18265 cr)) { 18266 /* 18267 * This was a SNMP request 18268 */ 18269 return; 18270 } else { 18271 output_proc = tcp_wput_proto; 18272 } 18273 } else { 18274 output_proc = tcp_wput_proto; 18275 } 18276 break; 18277 case M_IOCTL: 18278 /* 18279 * Most ioctls can be processed right away without going via 18280 * squeues - process them right here. Those that do require 18281 * squeue (currently TCP_IOC_DEFAULT_Q and _SIOCSOCKFALLBACK) 18282 * are processed by tcp_wput_ioctl(). 18283 */ 18284 iocp = (struct iocblk *)mp->b_rptr; 18285 tcp = connp->conn_tcp; 18286 18287 switch (iocp->ioc_cmd) { 18288 case TCP_IOC_ABORT_CONN: 18289 tcp_ioctl_abort_conn(q, mp); 18290 return; 18291 case TI_GETPEERNAME: 18292 if (tcp->tcp_state < TCPS_SYN_RCVD) { 18293 iocp->ioc_error = ENOTCONN; 18294 iocp->ioc_count = 0; 18295 mp->b_datap->db_type = M_IOCACK; 18296 qreply(q, mp); 18297 return; 18298 } 18299 /* FALLTHRU */ 18300 case TI_GETMYNAME: 18301 mi_copyin(q, mp, NULL, 18302 SIZEOF_STRUCT(strbuf, iocp->ioc_flag)); 18303 return; 18304 case ND_SET: 18305 /* nd_getset does the necessary checks */ 18306 case ND_GET: 18307 if (!nd_getset(q, tcp_g_nd, mp)) { 18308 CALL_IP_WPUT(connp, q, mp); 18309 return; 18310 } 18311 qreply(q, mp); 18312 return; 18313 case TCP_IOC_DEFAULT_Q: 18314 /* 18315 * Wants to be the default wq. Check the credentials 18316 * first, the rest is executed via squeue. 18317 */ 18318 if (secpolicy_net_config(iocp->ioc_cr, B_FALSE) != 0) { 18319 iocp->ioc_error = EPERM; 18320 iocp->ioc_count = 0; 18321 mp->b_datap->db_type = M_IOCACK; 18322 qreply(q, mp); 18323 return; 18324 } 18325 output_proc = tcp_wput_ioctl; 18326 break; 18327 default: 18328 output_proc = tcp_wput_ioctl; 18329 break; 18330 } 18331 break; 18332 default: 18333 output_proc = tcp_wput_nondata; 18334 break; 18335 } 18336 18337 CONN_INC_REF(connp); 18338 (*tcp_squeue_wput_proc)(connp->conn_sqp, mp, 18339 output_proc, connp, SQTAG_TCP_WPUT_OTHER); 18340 } 18341 18342 /* 18343 * Initial STREAMS write side put() procedure for sockets. It tries to 18344 * handle the T_CAPABILITY_REQ which sockfs sends down while setting 18345 * up the socket without using the squeue. Non T_CAPABILITY_REQ messages 18346 * are handled by tcp_wput() as usual. 18347 * 18348 * All further messages will also be handled by tcp_wput() because we cannot 18349 * be sure that the above short cut is safe later. 18350 */ 18351 static void 18352 tcp_wput_sock(queue_t *wq, mblk_t *mp) 18353 { 18354 conn_t *connp = Q_TO_CONN(wq); 18355 tcp_t *tcp = connp->conn_tcp; 18356 struct T_capability_req *car = (struct T_capability_req *)mp->b_rptr; 18357 18358 ASSERT(wq->q_qinfo == &tcp_sock_winit); 18359 wq->q_qinfo = &tcp_winit; 18360 18361 ASSERT(IPCL_IS_TCP(connp)); 18362 ASSERT(TCP_IS_SOCKET(tcp)); 18363 18364 if (DB_TYPE(mp) == M_PCPROTO && 18365 MBLKL(mp) == sizeof (struct T_capability_req) && 18366 car->PRIM_type == T_CAPABILITY_REQ) { 18367 tcp_capability_req(tcp, mp); 18368 return; 18369 } 18370 18371 tcp_wput(wq, mp); 18372 } 18373 18374 static boolean_t 18375 tcp_zcopy_check(tcp_t *tcp) 18376 { 18377 conn_t *connp = tcp->tcp_connp; 18378 ire_t *ire; 18379 boolean_t zc_enabled = B_FALSE; 18380 18381 if (do_tcpzcopy == 2) 18382 zc_enabled = B_TRUE; 18383 else if (tcp->tcp_ipversion == IPV4_VERSION && 18384 IPCL_IS_CONNECTED(connp) && 18385 (connp->conn_flags & IPCL_CHECK_POLICY) == 0 && 18386 connp->conn_dontroute == 0 && 18387 !connp->conn_nexthop_set && 18388 connp->conn_xmit_if_ill == NULL && 18389 connp->conn_nofailover_ill == NULL && 18390 do_tcpzcopy == 1) { 18391 /* 18392 * the checks above closely resemble the fast path checks 18393 * in tcp_send_data(). 18394 */ 18395 mutex_enter(&connp->conn_lock); 18396 ire = connp->conn_ire_cache; 18397 ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT)); 18398 if (ire != NULL && !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18399 IRE_REFHOLD(ire); 18400 if (ire->ire_stq != NULL) { 18401 ill_t *ill = (ill_t *)ire->ire_stq->q_ptr; 18402 18403 zc_enabled = ill && (ill->ill_capabilities & 18404 ILL_CAPAB_ZEROCOPY) && 18405 (ill->ill_zerocopy_capab-> 18406 ill_zerocopy_flags != 0); 18407 } 18408 IRE_REFRELE(ire); 18409 } 18410 mutex_exit(&connp->conn_lock); 18411 } 18412 tcp->tcp_snd_zcopy_on = zc_enabled; 18413 if (!TCP_IS_DETACHED(tcp)) { 18414 if (zc_enabled) { 18415 (void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMSAFE); 18416 TCP_STAT(tcp_zcopy_on); 18417 } else { 18418 (void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE); 18419 TCP_STAT(tcp_zcopy_off); 18420 } 18421 } 18422 return (zc_enabled); 18423 } 18424 18425 static mblk_t * 18426 tcp_zcopy_disable(tcp_t *tcp, mblk_t *bp) 18427 { 18428 if (do_tcpzcopy == 2) 18429 return (bp); 18430 else if (tcp->tcp_snd_zcopy_on) { 18431 tcp->tcp_snd_zcopy_on = B_FALSE; 18432 if (!TCP_IS_DETACHED(tcp)) { 18433 (void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE); 18434 TCP_STAT(tcp_zcopy_disable); 18435 } 18436 } 18437 return (tcp_zcopy_backoff(tcp, bp, 0)); 18438 } 18439 18440 /* 18441 * Backoff from a zero-copy mblk by copying data to a new mblk and freeing 18442 * the original desballoca'ed segmapped mblk. 18443 */ 18444 static mblk_t * 18445 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, int fix_xmitlist) 18446 { 18447 mblk_t *head, *tail, *nbp; 18448 if (IS_VMLOANED_MBLK(bp)) { 18449 TCP_STAT(tcp_zcopy_backoff); 18450 if ((head = copyb(bp)) == NULL) { 18451 /* fail to backoff; leave it for the next backoff */ 18452 tcp->tcp_xmit_zc_clean = B_FALSE; 18453 return (bp); 18454 } 18455 if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 18456 if (fix_xmitlist) 18457 tcp_zcopy_notify(tcp); 18458 else 18459 head->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; 18460 } 18461 nbp = bp->b_cont; 18462 if (fix_xmitlist) { 18463 head->b_prev = bp->b_prev; 18464 head->b_next = bp->b_next; 18465 if (tcp->tcp_xmit_tail == bp) 18466 tcp->tcp_xmit_tail = head; 18467 } 18468 bp->b_next = NULL; 18469 bp->b_prev = NULL; 18470 freeb(bp); 18471 } else { 18472 head = bp; 18473 nbp = bp->b_cont; 18474 } 18475 tail = head; 18476 while (nbp) { 18477 if (IS_VMLOANED_MBLK(nbp)) { 18478 TCP_STAT(tcp_zcopy_backoff); 18479 if ((tail->b_cont = copyb(nbp)) == NULL) { 18480 tcp->tcp_xmit_zc_clean = B_FALSE; 18481 tail->b_cont = nbp; 18482 return (head); 18483 } 18484 tail = tail->b_cont; 18485 if (nbp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 18486 if (fix_xmitlist) 18487 tcp_zcopy_notify(tcp); 18488 else 18489 tail->b_datap->db_struioflag |= 18490 STRUIO_ZCNOTIFY; 18491 } 18492 bp = nbp; 18493 nbp = nbp->b_cont; 18494 if (fix_xmitlist) { 18495 tail->b_prev = bp->b_prev; 18496 tail->b_next = bp->b_next; 18497 if (tcp->tcp_xmit_tail == bp) 18498 tcp->tcp_xmit_tail = tail; 18499 } 18500 bp->b_next = NULL; 18501 bp->b_prev = NULL; 18502 freeb(bp); 18503 } else { 18504 tail->b_cont = nbp; 18505 tail = nbp; 18506 nbp = nbp->b_cont; 18507 } 18508 } 18509 if (fix_xmitlist) { 18510 tcp->tcp_xmit_last = tail; 18511 tcp->tcp_xmit_zc_clean = B_TRUE; 18512 } 18513 return (head); 18514 } 18515 18516 static void 18517 tcp_zcopy_notify(tcp_t *tcp) 18518 { 18519 struct stdata *stp; 18520 18521 if (tcp->tcp_detached) 18522 return; 18523 stp = STREAM(tcp->tcp_rq); 18524 mutex_enter(&stp->sd_lock); 18525 stp->sd_flag |= STZCNOTIFY; 18526 cv_broadcast(&stp->sd_zcopy_wait); 18527 mutex_exit(&stp->sd_lock); 18528 } 18529 18530 static boolean_t 18531 tcp_send_find_ire(tcp_t *tcp, ipaddr_t *dst, ire_t **irep) 18532 { 18533 ire_t *ire; 18534 conn_t *connp = tcp->tcp_connp; 18535 18536 18537 mutex_enter(&connp->conn_lock); 18538 ire = connp->conn_ire_cache; 18539 ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT)); 18540 18541 if ((ire != NULL) && 18542 (((dst != NULL) && (ire->ire_addr == *dst)) || ((dst == NULL) && 18543 IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, &tcp->tcp_ip6h->ip6_dst))) && 18544 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18545 IRE_REFHOLD(ire); 18546 mutex_exit(&connp->conn_lock); 18547 } else { 18548 boolean_t cached = B_FALSE; 18549 ts_label_t *tsl; 18550 18551 /* force a recheck later on */ 18552 tcp->tcp_ire_ill_check_done = B_FALSE; 18553 18554 TCP_DBGSTAT(tcp_ire_null1); 18555 connp->conn_ire_cache = NULL; 18556 mutex_exit(&connp->conn_lock); 18557 18558 if (ire != NULL) 18559 IRE_REFRELE_NOTR(ire); 18560 18561 tsl = crgetlabel(CONN_CRED(connp)); 18562 ire = (dst ? ire_cache_lookup(*dst, connp->conn_zoneid, tsl) : 18563 ire_cache_lookup_v6(&tcp->tcp_ip6h->ip6_dst, 18564 connp->conn_zoneid, tsl)); 18565 18566 if (ire == NULL) { 18567 TCP_STAT(tcp_ire_null); 18568 return (B_FALSE); 18569 } 18570 18571 IRE_REFHOLD_NOTR(ire); 18572 /* 18573 * Since we are inside the squeue, there cannot be another 18574 * thread in TCP trying to set the conn_ire_cache now. The 18575 * check for IRE_MARK_CONDEMNED ensures that an interface 18576 * unplumb thread has not yet started cleaning up the conns. 18577 * Hence we don't need to grab the conn lock. 18578 */ 18579 if (!(connp->conn_state_flags & CONN_CLOSING)) { 18580 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 18581 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18582 connp->conn_ire_cache = ire; 18583 cached = B_TRUE; 18584 } 18585 rw_exit(&ire->ire_bucket->irb_lock); 18586 } 18587 18588 /* 18589 * We can continue to use the ire but since it was 18590 * not cached, we should drop the extra reference. 18591 */ 18592 if (!cached) 18593 IRE_REFRELE_NOTR(ire); 18594 18595 /* 18596 * Rampart note: no need to select a new label here, since 18597 * labels are not allowed to change during the life of a TCP 18598 * connection. 18599 */ 18600 } 18601 18602 *irep = ire; 18603 18604 return (B_TRUE); 18605 } 18606 18607 /* 18608 * Called from tcp_send() or tcp_send_data() to find workable IRE. 18609 * 18610 * 0 = success; 18611 * 1 = failed to find ire and ill. 18612 */ 18613 static boolean_t 18614 tcp_send_find_ire_ill(tcp_t *tcp, mblk_t *mp, ire_t **irep, ill_t **illp) 18615 { 18616 ipha_t *ipha; 18617 ipaddr_t dst; 18618 ire_t *ire; 18619 ill_t *ill; 18620 conn_t *connp = tcp->tcp_connp; 18621 mblk_t *ire_fp_mp; 18622 18623 if (mp != NULL) 18624 ipha = (ipha_t *)mp->b_rptr; 18625 else 18626 ipha = tcp->tcp_ipha; 18627 dst = ipha->ipha_dst; 18628 18629 if (!tcp_send_find_ire(tcp, &dst, &ire)) 18630 return (B_FALSE); 18631 18632 if ((ire->ire_flags & RTF_MULTIRT) || 18633 (ire->ire_stq == NULL) || 18634 (ire->ire_nce == NULL) || 18635 ((ire_fp_mp = ire->ire_nce->nce_fp_mp) == NULL) || 18636 ((mp != NULL) && (ire->ire_max_frag < ntohs(ipha->ipha_length) || 18637 MBLKL(ire_fp_mp) > MBLKHEAD(mp)))) { 18638 TCP_STAT(tcp_ip_ire_send); 18639 IRE_REFRELE(ire); 18640 return (B_FALSE); 18641 } 18642 18643 ill = ire_to_ill(ire); 18644 if (connp->conn_outgoing_ill != NULL) { 18645 ill_t *conn_outgoing_ill = NULL; 18646 /* 18647 * Choose a good ill in the group to send the packets on. 18648 */ 18649 ire = conn_set_outgoing_ill(connp, ire, &conn_outgoing_ill); 18650 ill = ire_to_ill(ire); 18651 } 18652 ASSERT(ill != NULL); 18653 18654 if (!tcp->tcp_ire_ill_check_done) { 18655 tcp_ire_ill_check(tcp, ire, ill, B_TRUE); 18656 tcp->tcp_ire_ill_check_done = B_TRUE; 18657 } 18658 18659 *irep = ire; 18660 *illp = ill; 18661 18662 return (B_TRUE); 18663 } 18664 18665 static void 18666 tcp_send_data(tcp_t *tcp, queue_t *q, mblk_t *mp) 18667 { 18668 ipha_t *ipha; 18669 ipaddr_t src; 18670 ipaddr_t dst; 18671 uint32_t cksum; 18672 ire_t *ire; 18673 uint16_t *up; 18674 ill_t *ill; 18675 conn_t *connp = tcp->tcp_connp; 18676 uint32_t hcksum_txflags = 0; 18677 mblk_t *ire_fp_mp; 18678 uint_t ire_fp_mp_len; 18679 18680 ASSERT(DB_TYPE(mp) == M_DATA); 18681 18682 if (DB_CRED(mp) == NULL) 18683 mblk_setcred(mp, CONN_CRED(connp)); 18684 18685 ipha = (ipha_t *)mp->b_rptr; 18686 src = ipha->ipha_src; 18687 dst = ipha->ipha_dst; 18688 18689 /* 18690 * Drop off fast path for IPv6 and also if options are present or 18691 * we need to resolve a TS label. 18692 */ 18693 if (tcp->tcp_ipversion != IPV4_VERSION || 18694 !IPCL_IS_CONNECTED(connp) || 18695 !CONN_IS_LSO_MD_FASTPATH(connp) || 18696 (connp->conn_flags & IPCL_CHECK_POLICY) != 0 || 18697 !connp->conn_ulp_labeled || 18698 ipha->ipha_ident == IP_HDR_INCLUDED || 18699 ipha->ipha_version_and_hdr_length != IP_SIMPLE_HDR_VERSION || 18700 IPP_ENABLED(IPP_LOCAL_OUT)) { 18701 if (tcp->tcp_snd_zcopy_aware) 18702 mp = tcp_zcopy_disable(tcp, mp); 18703 TCP_STAT(tcp_ip_send); 18704 CALL_IP_WPUT(connp, q, mp); 18705 return; 18706 } 18707 18708 if (!tcp_send_find_ire_ill(tcp, mp, &ire, &ill)) { 18709 if (tcp->tcp_snd_zcopy_aware) 18710 mp = tcp_zcopy_backoff(tcp, mp, 0); 18711 CALL_IP_WPUT(connp, q, mp); 18712 return; 18713 } 18714 ire_fp_mp = ire->ire_nce->nce_fp_mp; 18715 ire_fp_mp_len = MBLKL(ire_fp_mp); 18716 18717 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 18718 ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 18719 #ifndef _BIG_ENDIAN 18720 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 18721 #endif 18722 18723 /* 18724 * Check to see if we need to re-enable LSO/MDT for this connection 18725 * because it was previously disabled due to changes in the ill; 18726 * note that by doing it here, this re-enabling only applies when 18727 * the packet is not dispatched through CALL_IP_WPUT(). 18728 * 18729 * That means for IPv4, it is worth re-enabling LSO/MDT for the fastpath 18730 * case, since that's how we ended up here. For IPv6, we do the 18731 * re-enabling work in ip_xmit_v6(), albeit indirectly via squeue. 18732 */ 18733 if (connp->conn_lso_ok && !tcp->tcp_lso && ILL_LSO_TCP_USABLE(ill)) { 18734 /* 18735 * Restore LSO for this connection, so that next time around 18736 * it is eligible to go through tcp_lsosend() path again. 18737 */ 18738 TCP_STAT(tcp_lso_enabled); 18739 tcp->tcp_lso = B_TRUE; 18740 ip1dbg(("tcp_send_data: reenabling LSO for connp %p on " 18741 "interface %s\n", (void *)connp, ill->ill_name)); 18742 } else if (connp->conn_mdt_ok && !tcp->tcp_mdt && ILL_MDT_USABLE(ill)) { 18743 /* 18744 * Restore MDT for this connection, so that next time around 18745 * it is eligible to go through tcp_multisend() path again. 18746 */ 18747 TCP_STAT(tcp_mdt_conn_resumed1); 18748 tcp->tcp_mdt = B_TRUE; 18749 ip1dbg(("tcp_send_data: reenabling MDT for connp %p on " 18750 "interface %s\n", (void *)connp, ill->ill_name)); 18751 } 18752 18753 if (tcp->tcp_snd_zcopy_aware) { 18754 if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 || 18755 (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0)) 18756 mp = tcp_zcopy_disable(tcp, mp); 18757 /* 18758 * we shouldn't need to reset ipha as the mp containing 18759 * ipha should never be a zero-copy mp. 18760 */ 18761 } 18762 18763 if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) { 18764 ASSERT(ill->ill_hcksum_capab != NULL); 18765 hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags; 18766 } 18767 18768 /* pseudo-header checksum (do it in parts for IP header checksum) */ 18769 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 18770 18771 ASSERT(ipha->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION); 18772 up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH); 18773 18774 IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up, 18775 IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum); 18776 18777 /* Software checksum? */ 18778 if (DB_CKSUMFLAGS(mp) == 0) { 18779 TCP_STAT(tcp_out_sw_cksum); 18780 TCP_STAT_UPDATE(tcp_out_sw_cksum_bytes, 18781 ntohs(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH); 18782 } 18783 18784 ipha->ipha_fragment_offset_and_flags |= 18785 (uint32_t)htons(ire->ire_frag_flag); 18786 18787 /* Calculate IP header checksum if hardware isn't capable */ 18788 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 18789 IP_HDR_CKSUM(ipha, cksum, ((uint32_t *)ipha)[0], 18790 ((uint16_t *)ipha)[4]); 18791 } 18792 18793 ASSERT(DB_TYPE(ire_fp_mp) == M_DATA); 18794 mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len; 18795 bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len); 18796 18797 UPDATE_OB_PKT_COUNT(ire); 18798 ire->ire_last_used_time = lbolt; 18799 18800 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 18801 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 18802 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 18803 ntohs(ipha->ipha_length)); 18804 18805 if (ILL_DLS_CAPABLE(ill)) { 18806 /* 18807 * Send the packet directly to DLD, where it may be queued 18808 * depending on the availability of transmit resources at 18809 * the media layer. 18810 */ 18811 IP_DLS_ILL_TX(ill, ipha, mp); 18812 } else { 18813 ill_t *out_ill = (ill_t *)ire->ire_stq->q_ptr; 18814 DTRACE_PROBE4(ip4__physical__out__start, 18815 ill_t *, NULL, ill_t *, out_ill, 18816 ipha_t *, ipha, mblk_t *, mp); 18817 FW_HOOKS(ip4_physical_out_event, ipv4firewall_physical_out, 18818 NULL, out_ill, ipha, mp, mp); 18819 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 18820 if (mp != NULL) 18821 putnext(ire->ire_stq, mp); 18822 } 18823 IRE_REFRELE(ire); 18824 } 18825 18826 /* 18827 * This handles the case when the receiver has shrunk its win. Per RFC 1122 18828 * if the receiver shrinks the window, i.e. moves the right window to the 18829 * left, the we should not send new data, but should retransmit normally the 18830 * old unacked data between suna and suna + swnd. We might has sent data 18831 * that is now outside the new window, pretend that we didn't send it. 18832 */ 18833 static void 18834 tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_count) 18835 { 18836 uint32_t snxt = tcp->tcp_snxt; 18837 mblk_t *xmit_tail; 18838 int32_t offset; 18839 18840 ASSERT(shrunk_count > 0); 18841 18842 /* Pretend we didn't send the data outside the window */ 18843 snxt -= shrunk_count; 18844 18845 /* Get the mblk and the offset in it per the shrunk window */ 18846 xmit_tail = tcp_get_seg_mp(tcp, snxt, &offset); 18847 18848 ASSERT(xmit_tail != NULL); 18849 18850 /* Reset all the values per the now shrunk window */ 18851 tcp->tcp_snxt = snxt; 18852 tcp->tcp_xmit_tail = xmit_tail; 18853 tcp->tcp_xmit_tail_unsent = xmit_tail->b_wptr - xmit_tail->b_rptr - 18854 offset; 18855 tcp->tcp_unsent += shrunk_count; 18856 18857 if (tcp->tcp_suna == tcp->tcp_snxt && tcp->tcp_swnd == 0) 18858 /* 18859 * Make sure the timer is running so that we will probe a zero 18860 * window. 18861 */ 18862 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 18863 } 18864 18865 18866 /* 18867 * The TCP normal data output path. 18868 * NOTE: the logic of the fast path is duplicated from this function. 18869 */ 18870 static void 18871 tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent) 18872 { 18873 int len; 18874 mblk_t *local_time; 18875 mblk_t *mp1; 18876 uint32_t snxt; 18877 int tail_unsent; 18878 int tcpstate; 18879 int usable = 0; 18880 mblk_t *xmit_tail; 18881 queue_t *q = tcp->tcp_wq; 18882 int32_t mss; 18883 int32_t num_sack_blk = 0; 18884 int32_t tcp_hdr_len; 18885 int32_t tcp_tcp_hdr_len; 18886 int mdt_thres; 18887 int rc; 18888 18889 tcpstate = tcp->tcp_state; 18890 if (mp == NULL) { 18891 /* 18892 * tcp_wput_data() with NULL mp should only be called when 18893 * there is unsent data. 18894 */ 18895 ASSERT(tcp->tcp_unsent > 0); 18896 /* Really tacky... but we need this for detached closes. */ 18897 len = tcp->tcp_unsent; 18898 goto data_null; 18899 } 18900 18901 #if CCS_STATS 18902 wrw_stats.tot.count++; 18903 wrw_stats.tot.bytes += msgdsize(mp); 18904 #endif 18905 ASSERT(mp->b_datap->db_type == M_DATA); 18906 /* 18907 * Don't allow data after T_ORDREL_REQ or T_DISCON_REQ, 18908 * or before a connection attempt has begun. 18909 */ 18910 if (tcpstate < TCPS_SYN_SENT || tcpstate > TCPS_CLOSE_WAIT || 18911 (tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { 18912 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { 18913 #ifdef DEBUG 18914 cmn_err(CE_WARN, 18915 "tcp_wput_data: data after ordrel, %s", 18916 tcp_display(tcp, NULL, 18917 DISP_ADDR_AND_PORT)); 18918 #else 18919 if (tcp->tcp_debug) { 18920 (void) strlog(TCP_MOD_ID, 0, 1, 18921 SL_TRACE|SL_ERROR, 18922 "tcp_wput_data: data after ordrel, %s\n", 18923 tcp_display(tcp, NULL, 18924 DISP_ADDR_AND_PORT)); 18925 } 18926 #endif /* DEBUG */ 18927 } 18928 if (tcp->tcp_snd_zcopy_aware && 18929 (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) != 0) 18930 tcp_zcopy_notify(tcp); 18931 freemsg(mp); 18932 if (tcp->tcp_flow_stopped && 18933 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 18934 tcp_clrqfull(tcp); 18935 } 18936 return; 18937 } 18938 18939 /* Strip empties */ 18940 for (;;) { 18941 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 18942 (uintptr_t)INT_MAX); 18943 len = (int)(mp->b_wptr - mp->b_rptr); 18944 if (len > 0) 18945 break; 18946 mp1 = mp; 18947 mp = mp->b_cont; 18948 freeb(mp1); 18949 if (!mp) { 18950 return; 18951 } 18952 } 18953 18954 /* If we are the first on the list ... */ 18955 if (tcp->tcp_xmit_head == NULL) { 18956 tcp->tcp_xmit_head = mp; 18957 tcp->tcp_xmit_tail = mp; 18958 tcp->tcp_xmit_tail_unsent = len; 18959 } else { 18960 /* If tiny tx and room in txq tail, pullup to save mblks. */ 18961 struct datab *dp; 18962 18963 mp1 = tcp->tcp_xmit_last; 18964 if (len < tcp_tx_pull_len && 18965 (dp = mp1->b_datap)->db_ref == 1 && 18966 dp->db_lim - mp1->b_wptr >= len) { 18967 ASSERT(len > 0); 18968 ASSERT(!mp1->b_cont); 18969 if (len == 1) { 18970 *mp1->b_wptr++ = *mp->b_rptr; 18971 } else { 18972 bcopy(mp->b_rptr, mp1->b_wptr, len); 18973 mp1->b_wptr += len; 18974 } 18975 if (mp1 == tcp->tcp_xmit_tail) 18976 tcp->tcp_xmit_tail_unsent += len; 18977 mp1->b_cont = mp->b_cont; 18978 if (tcp->tcp_snd_zcopy_aware && 18979 (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 18980 mp1->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; 18981 freeb(mp); 18982 mp = mp1; 18983 } else { 18984 tcp->tcp_xmit_last->b_cont = mp; 18985 } 18986 len += tcp->tcp_unsent; 18987 } 18988 18989 /* Tack on however many more positive length mblks we have */ 18990 if ((mp1 = mp->b_cont) != NULL) { 18991 do { 18992 int tlen; 18993 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 18994 (uintptr_t)INT_MAX); 18995 tlen = (int)(mp1->b_wptr - mp1->b_rptr); 18996 if (tlen <= 0) { 18997 mp->b_cont = mp1->b_cont; 18998 freeb(mp1); 18999 } else { 19000 len += tlen; 19001 mp = mp1; 19002 } 19003 } while ((mp1 = mp->b_cont) != NULL); 19004 } 19005 tcp->tcp_xmit_last = mp; 19006 tcp->tcp_unsent = len; 19007 19008 if (urgent) 19009 usable = 1; 19010 19011 data_null: 19012 snxt = tcp->tcp_snxt; 19013 xmit_tail = tcp->tcp_xmit_tail; 19014 tail_unsent = tcp->tcp_xmit_tail_unsent; 19015 19016 /* 19017 * Note that tcp_mss has been adjusted to take into account the 19018 * timestamp option if applicable. Because SACK options do not 19019 * appear in every TCP segments and they are of variable lengths, 19020 * they cannot be included in tcp_mss. Thus we need to calculate 19021 * the actual segment length when we need to send a segment which 19022 * includes SACK options. 19023 */ 19024 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 19025 int32_t opt_len; 19026 19027 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 19028 tcp->tcp_num_sack_blk); 19029 opt_len = num_sack_blk * sizeof (sack_blk_t) + TCPOPT_NOP_LEN * 19030 2 + TCPOPT_HEADER_LEN; 19031 mss = tcp->tcp_mss - opt_len; 19032 tcp_hdr_len = tcp->tcp_hdr_len + opt_len; 19033 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + opt_len; 19034 } else { 19035 mss = tcp->tcp_mss; 19036 tcp_hdr_len = tcp->tcp_hdr_len; 19037 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len; 19038 } 19039 19040 if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && 19041 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) { 19042 SET_TCP_INIT_CWND(tcp, mss, tcp_slow_start_after_idle); 19043 } 19044 if (tcpstate == TCPS_SYN_RCVD) { 19045 /* 19046 * The three-way connection establishment handshake is not 19047 * complete yet. We want to queue the data for transmission 19048 * after entering ESTABLISHED state (RFC793). A jump to 19049 * "done" label effectively leaves data on the queue. 19050 */ 19051 goto done; 19052 } else { 19053 int usable_r; 19054 19055 /* 19056 * In the special case when cwnd is zero, which can only 19057 * happen if the connection is ECN capable, return now. 19058 * New segments is sent using tcp_timer(). The timer 19059 * is set in tcp_rput_data(). 19060 */ 19061 if (tcp->tcp_cwnd == 0) { 19062 /* 19063 * Note that tcp_cwnd is 0 before 3-way handshake is 19064 * finished. 19065 */ 19066 ASSERT(tcp->tcp_ecn_ok || 19067 tcp->tcp_state < TCPS_ESTABLISHED); 19068 return; 19069 } 19070 19071 /* NOTE: trouble if xmitting while SYN not acked? */ 19072 usable_r = snxt - tcp->tcp_suna; 19073 usable_r = tcp->tcp_swnd - usable_r; 19074 19075 /* 19076 * Check if the receiver has shrunk the window. If 19077 * tcp_wput_data() with NULL mp is called, tcp_fin_sent 19078 * cannot be set as there is unsent data, so FIN cannot 19079 * be sent out. Otherwise, we need to take into account 19080 * of FIN as it consumes an "invisible" sequence number. 19081 */ 19082 ASSERT(tcp->tcp_fin_sent == 0); 19083 if (usable_r < 0) { 19084 /* 19085 * The receiver has shrunk the window and we have sent 19086 * -usable_r date beyond the window, re-adjust. 19087 * 19088 * If TCP window scaling is enabled, there can be 19089 * round down error as the advertised receive window 19090 * is actually right shifted n bits. This means that 19091 * the lower n bits info is wiped out. It will look 19092 * like the window is shrunk. Do a check here to 19093 * see if the shrunk amount is actually within the 19094 * error in window calculation. If it is, just 19095 * return. Note that this check is inside the 19096 * shrunk window check. This makes sure that even 19097 * though tcp_process_shrunk_swnd() is not called, 19098 * we will stop further processing. 19099 */ 19100 if ((-usable_r >> tcp->tcp_snd_ws) > 0) { 19101 tcp_process_shrunk_swnd(tcp, -usable_r); 19102 } 19103 return; 19104 } 19105 19106 /* usable = MIN(swnd, cwnd) - unacked_bytes */ 19107 if (tcp->tcp_swnd > tcp->tcp_cwnd) 19108 usable_r -= tcp->tcp_swnd - tcp->tcp_cwnd; 19109 19110 /* usable = MIN(usable, unsent) */ 19111 if (usable_r > len) 19112 usable_r = len; 19113 19114 /* usable = MAX(usable, {1 for urgent, 0 for data}) */ 19115 if (usable_r > 0) { 19116 usable = usable_r; 19117 } else { 19118 /* Bypass all other unnecessary processing. */ 19119 goto done; 19120 } 19121 } 19122 19123 local_time = (mblk_t *)lbolt; 19124 19125 /* 19126 * "Our" Nagle Algorithm. This is not the same as in the old 19127 * BSD. This is more in line with the true intent of Nagle. 19128 * 19129 * The conditions are: 19130 * 1. The amount of unsent data (or amount of data which can be 19131 * sent, whichever is smaller) is less than Nagle limit. 19132 * 2. The last sent size is also less than Nagle limit. 19133 * 3. There is unack'ed data. 19134 * 4. Urgent pointer is not set. Send urgent data ignoring the 19135 * Nagle algorithm. This reduces the probability that urgent 19136 * bytes get "merged" together. 19137 * 5. The app has not closed the connection. This eliminates the 19138 * wait time of the receiving side waiting for the last piece of 19139 * (small) data. 19140 * 19141 * If all are satisified, exit without sending anything. Note 19142 * that Nagle limit can be smaller than 1 MSS. Nagle limit is 19143 * the smaller of 1 MSS and global tcp_naglim_def (default to be 19144 * 4095). 19145 */ 19146 if (usable < (int)tcp->tcp_naglim && 19147 tcp->tcp_naglim > tcp->tcp_last_sent_len && 19148 snxt != tcp->tcp_suna && 19149 !(tcp->tcp_valid_bits & TCP_URG_VALID) && 19150 !(tcp->tcp_valid_bits & TCP_FSS_VALID)) { 19151 goto done; 19152 } 19153 19154 if (tcp->tcp_cork) { 19155 /* 19156 * if the tcp->tcp_cork option is set, then we have to force 19157 * TCP not to send partial segment (smaller than MSS bytes). 19158 * We are calculating the usable now based on full mss and 19159 * will save the rest of remaining data for later. 19160 */ 19161 if (usable < mss) 19162 goto done; 19163 usable = (usable / mss) * mss; 19164 } 19165 19166 /* Update the latest receive window size in TCP header. */ 19167 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 19168 tcp->tcp_tcph->th_win); 19169 19170 /* 19171 * Determine if it's worthwhile to attempt LSO or MDT, based on: 19172 * 19173 * 1. Simple TCP/IP{v4,v6} (no options). 19174 * 2. IPSEC/IPQoS processing is not needed for the TCP connection. 19175 * 3. If the TCP connection is in ESTABLISHED state. 19176 * 4. The TCP is not detached. 19177 * 19178 * If any of the above conditions have changed during the 19179 * connection, stop using LSO/MDT and restore the stream head 19180 * parameters accordingly. 19181 */ 19182 if ((tcp->tcp_lso || tcp->tcp_mdt) && 19183 ((tcp->tcp_ipversion == IPV4_VERSION && 19184 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 19185 (tcp->tcp_ipversion == IPV6_VERSION && 19186 tcp->tcp_ip_hdr_len != IPV6_HDR_LEN) || 19187 tcp->tcp_state != TCPS_ESTABLISHED || 19188 TCP_IS_DETACHED(tcp) || !CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp) || 19189 CONN_IPSEC_OUT_ENCAPSULATED(tcp->tcp_connp) || 19190 IPP_ENABLED(IPP_LOCAL_OUT))) { 19191 if (tcp->tcp_lso) { 19192 tcp->tcp_connp->conn_lso_ok = B_FALSE; 19193 tcp->tcp_lso = B_FALSE; 19194 } else { 19195 tcp->tcp_connp->conn_mdt_ok = B_FALSE; 19196 tcp->tcp_mdt = B_FALSE; 19197 } 19198 19199 /* Anything other than detached is considered pathological */ 19200 if (!TCP_IS_DETACHED(tcp)) { 19201 if (tcp->tcp_lso) 19202 TCP_STAT(tcp_lso_disabled); 19203 else 19204 TCP_STAT(tcp_mdt_conn_halted1); 19205 (void) tcp_maxpsz_set(tcp, B_TRUE); 19206 } 19207 } 19208 19209 /* Use MDT if sendable amount is greater than the threshold */ 19210 if (tcp->tcp_mdt && 19211 (mdt_thres = mss << tcp_mdt_smss_threshold, usable > mdt_thres) && 19212 (tail_unsent > mdt_thres || (xmit_tail->b_cont != NULL && 19213 MBLKL(xmit_tail->b_cont) > mdt_thres)) && 19214 (tcp->tcp_valid_bits == 0 || 19215 tcp->tcp_valid_bits == TCP_FSS_VALID)) { 19216 ASSERT(tcp->tcp_connp->conn_mdt_ok); 19217 rc = tcp_multisend(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len, 19218 num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail, 19219 local_time, mdt_thres); 19220 } else { 19221 rc = tcp_send(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len, 19222 num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail, 19223 local_time, INT_MAX); 19224 } 19225 19226 /* Pretend that all we were trying to send really got sent */ 19227 if (rc < 0 && tail_unsent < 0) { 19228 do { 19229 xmit_tail = xmit_tail->b_cont; 19230 xmit_tail->b_prev = local_time; 19231 ASSERT((uintptr_t)(xmit_tail->b_wptr - 19232 xmit_tail->b_rptr) <= (uintptr_t)INT_MAX); 19233 tail_unsent += (int)(xmit_tail->b_wptr - 19234 xmit_tail->b_rptr); 19235 } while (tail_unsent < 0); 19236 } 19237 done:; 19238 tcp->tcp_xmit_tail = xmit_tail; 19239 tcp->tcp_xmit_tail_unsent = tail_unsent; 19240 len = tcp->tcp_snxt - snxt; 19241 if (len) { 19242 /* 19243 * If new data was sent, need to update the notsack 19244 * list, which is, afterall, data blocks that have 19245 * not been sack'ed by the receiver. New data is 19246 * not sack'ed. 19247 */ 19248 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 19249 /* len is a negative value. */ 19250 tcp->tcp_pipe -= len; 19251 tcp_notsack_update(&(tcp->tcp_notsack_list), 19252 tcp->tcp_snxt, snxt, 19253 &(tcp->tcp_num_notsack_blk), 19254 &(tcp->tcp_cnt_notsack_list)); 19255 } 19256 tcp->tcp_snxt = snxt + tcp->tcp_fin_sent; 19257 tcp->tcp_rack = tcp->tcp_rnxt; 19258 tcp->tcp_rack_cnt = 0; 19259 if ((snxt + len) == tcp->tcp_suna) { 19260 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 19261 } 19262 } else if (snxt == tcp->tcp_suna && tcp->tcp_swnd == 0) { 19263 /* 19264 * Didn't send anything. Make sure the timer is running 19265 * so that we will probe a zero window. 19266 */ 19267 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 19268 } 19269 /* Note that len is the amount we just sent but with a negative sign */ 19270 tcp->tcp_unsent += len; 19271 if (tcp->tcp_flow_stopped) { 19272 if (TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 19273 tcp_clrqfull(tcp); 19274 } 19275 } else if (TCP_UNSENT_BYTES(tcp) >= tcp->tcp_xmit_hiwater) { 19276 tcp_setqfull(tcp); 19277 } 19278 } 19279 19280 /* 19281 * tcp_fill_header is called by tcp_send() and tcp_multisend() to fill the 19282 * outgoing TCP header with the template header, as well as other 19283 * options such as time-stamp, ECN and/or SACK. 19284 */ 19285 static void 19286 tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, int num_sack_blk) 19287 { 19288 tcph_t *tcp_tmpl, *tcp_h; 19289 uint32_t *dst, *src; 19290 int hdrlen; 19291 19292 ASSERT(OK_32PTR(rptr)); 19293 19294 /* Template header */ 19295 tcp_tmpl = tcp->tcp_tcph; 19296 19297 /* Header of outgoing packet */ 19298 tcp_h = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 19299 19300 /* dst and src are opaque 32-bit fields, used for copying */ 19301 dst = (uint32_t *)rptr; 19302 src = (uint32_t *)tcp->tcp_iphc; 19303 hdrlen = tcp->tcp_hdr_len; 19304 19305 /* Fill time-stamp option if needed */ 19306 if (tcp->tcp_snd_ts_ok) { 19307 U32_TO_BE32((uint32_t)now, 19308 (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 4); 19309 U32_TO_BE32(tcp->tcp_ts_recent, 19310 (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 8); 19311 } else { 19312 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 19313 } 19314 19315 /* 19316 * Copy the template header; is this really more efficient than 19317 * calling bcopy()? For simple IPv4/TCP, it may be the case, 19318 * but perhaps not for other scenarios. 19319 */ 19320 dst[0] = src[0]; 19321 dst[1] = src[1]; 19322 dst[2] = src[2]; 19323 dst[3] = src[3]; 19324 dst[4] = src[4]; 19325 dst[5] = src[5]; 19326 dst[6] = src[6]; 19327 dst[7] = src[7]; 19328 dst[8] = src[8]; 19329 dst[9] = src[9]; 19330 if (hdrlen -= 40) { 19331 hdrlen >>= 2; 19332 dst += 10; 19333 src += 10; 19334 do { 19335 *dst++ = *src++; 19336 } while (--hdrlen); 19337 } 19338 19339 /* 19340 * Set the ECN info in the TCP header if it is not a zero 19341 * window probe. Zero window probe is only sent in 19342 * tcp_wput_data() and tcp_timer(). 19343 */ 19344 if (tcp->tcp_ecn_ok && !tcp->tcp_zero_win_probe) { 19345 SET_ECT(tcp, rptr); 19346 19347 if (tcp->tcp_ecn_echo_on) 19348 tcp_h->th_flags[0] |= TH_ECE; 19349 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 19350 tcp_h->th_flags[0] |= TH_CWR; 19351 tcp->tcp_ecn_cwr_sent = B_TRUE; 19352 } 19353 } 19354 19355 /* Fill in SACK options */ 19356 if (num_sack_blk > 0) { 19357 uchar_t *wptr = rptr + tcp->tcp_hdr_len; 19358 sack_blk_t *tmp; 19359 int32_t i; 19360 19361 wptr[0] = TCPOPT_NOP; 19362 wptr[1] = TCPOPT_NOP; 19363 wptr[2] = TCPOPT_SACK; 19364 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 19365 sizeof (sack_blk_t); 19366 wptr += TCPOPT_REAL_SACK_LEN; 19367 19368 tmp = tcp->tcp_sack_list; 19369 for (i = 0; i < num_sack_blk; i++) { 19370 U32_TO_BE32(tmp[i].begin, wptr); 19371 wptr += sizeof (tcp_seq); 19372 U32_TO_BE32(tmp[i].end, wptr); 19373 wptr += sizeof (tcp_seq); 19374 } 19375 tcp_h->th_offset_and_rsrvd[0] += 19376 ((num_sack_blk * 2 + 1) << 4); 19377 } 19378 } 19379 19380 /* 19381 * tcp_mdt_add_attrs() is called by tcp_multisend() in order to attach 19382 * the destination address and SAP attribute, and if necessary, the 19383 * hardware checksum offload attribute to a Multidata message. 19384 */ 19385 static int 19386 tcp_mdt_add_attrs(multidata_t *mmd, const mblk_t *dlmp, const boolean_t hwcksum, 19387 const uint32_t start, const uint32_t stuff, const uint32_t end, 19388 const uint32_t flags) 19389 { 19390 /* Add global destination address & SAP attribute */ 19391 if (dlmp == NULL || !ip_md_addr_attr(mmd, NULL, dlmp)) { 19392 ip1dbg(("tcp_mdt_add_attrs: can't add global physical " 19393 "destination address+SAP\n")); 19394 19395 if (dlmp != NULL) 19396 TCP_STAT(tcp_mdt_allocfail); 19397 return (-1); 19398 } 19399 19400 /* Add global hwcksum attribute */ 19401 if (hwcksum && 19402 !ip_md_hcksum_attr(mmd, NULL, start, stuff, end, flags)) { 19403 ip1dbg(("tcp_mdt_add_attrs: can't add global hardware " 19404 "checksum attribute\n")); 19405 19406 TCP_STAT(tcp_mdt_allocfail); 19407 return (-1); 19408 } 19409 19410 return (0); 19411 } 19412 19413 /* 19414 * Smaller and private version of pdescinfo_t used specifically for TCP, 19415 * which allows for only two payload spans per packet. 19416 */ 19417 typedef struct tcp_pdescinfo_s PDESCINFO_STRUCT(2) tcp_pdescinfo_t; 19418 19419 /* 19420 * tcp_multisend() is called by tcp_wput_data() for Multidata Transmit 19421 * scheme, and returns one the following: 19422 * 19423 * -1 = failed allocation. 19424 * 0 = success; burst count reached, or usable send window is too small, 19425 * and that we'd rather wait until later before sending again. 19426 */ 19427 static int 19428 tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len, 19429 const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable, 19430 uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 19431 const int mdt_thres) 19432 { 19433 mblk_t *md_mp_head, *md_mp, *md_pbuf, *md_pbuf_nxt, *md_hbuf; 19434 multidata_t *mmd; 19435 uint_t obsegs, obbytes, hdr_frag_sz; 19436 uint_t cur_hdr_off, cur_pld_off, base_pld_off, first_snxt; 19437 int num_burst_seg, max_pld; 19438 pdesc_t *pkt; 19439 tcp_pdescinfo_t tcp_pkt_info; 19440 pdescinfo_t *pkt_info; 19441 int pbuf_idx, pbuf_idx_nxt; 19442 int seg_len, len, spill, af; 19443 boolean_t add_buffer, zcopy, clusterwide; 19444 boolean_t buf_trunked = B_FALSE; 19445 boolean_t rconfirm = B_FALSE; 19446 boolean_t done = B_FALSE; 19447 uint32_t cksum; 19448 uint32_t hwcksum_flags; 19449 ire_t *ire = NULL; 19450 ill_t *ill; 19451 ipha_t *ipha; 19452 ip6_t *ip6h; 19453 ipaddr_t src, dst; 19454 ill_zerocopy_capab_t *zc_cap = NULL; 19455 uint16_t *up; 19456 int err; 19457 conn_t *connp; 19458 mblk_t *mp, *mp1, *fw_mp_head = NULL; 19459 uchar_t *pld_start; 19460 19461 #ifdef _BIG_ENDIAN 19462 #define IPVER(ip6h) ((((uint32_t *)ip6h)[0] >> 28) & 0x7) 19463 #else 19464 #define IPVER(ip6h) ((((uint32_t *)ip6h)[0] >> 4) & 0x7) 19465 #endif 19466 19467 #define PREP_NEW_MULTIDATA() { \ 19468 mmd = NULL; \ 19469 md_mp = md_hbuf = NULL; \ 19470 cur_hdr_off = 0; \ 19471 max_pld = tcp->tcp_mdt_max_pld; \ 19472 pbuf_idx = pbuf_idx_nxt = -1; \ 19473 add_buffer = B_TRUE; \ 19474 zcopy = B_FALSE; \ 19475 } 19476 19477 #define PREP_NEW_PBUF() { \ 19478 md_pbuf = md_pbuf_nxt = NULL; \ 19479 pbuf_idx = pbuf_idx_nxt = -1; \ 19480 cur_pld_off = 0; \ 19481 first_snxt = *snxt; \ 19482 ASSERT(*tail_unsent > 0); \ 19483 base_pld_off = MBLKL(*xmit_tail) - *tail_unsent; \ 19484 } 19485 19486 ASSERT(mdt_thres >= mss); 19487 ASSERT(*usable > 0 && *usable > mdt_thres); 19488 ASSERT(tcp->tcp_state == TCPS_ESTABLISHED); 19489 ASSERT(!TCP_IS_DETACHED(tcp)); 19490 ASSERT(tcp->tcp_valid_bits == 0 || 19491 tcp->tcp_valid_bits == TCP_FSS_VALID); 19492 ASSERT((tcp->tcp_ipversion == IPV4_VERSION && 19493 tcp->tcp_ip_hdr_len == IP_SIMPLE_HDR_LENGTH) || 19494 (tcp->tcp_ipversion == IPV6_VERSION && 19495 tcp->tcp_ip_hdr_len == IPV6_HDR_LEN)); 19496 19497 connp = tcp->tcp_connp; 19498 ASSERT(connp != NULL); 19499 ASSERT(CONN_IS_LSO_MD_FASTPATH(connp)); 19500 ASSERT(!CONN_IPSEC_OUT_ENCAPSULATED(connp)); 19501 19502 /* 19503 * Note that tcp will only declare at most 2 payload spans per 19504 * packet, which is much lower than the maximum allowable number 19505 * of packet spans per Multidata. For this reason, we use the 19506 * privately declared and smaller descriptor info structure, in 19507 * order to save some stack space. 19508 */ 19509 pkt_info = (pdescinfo_t *)&tcp_pkt_info; 19510 19511 af = (tcp->tcp_ipversion == IPV4_VERSION) ? AF_INET : AF_INET6; 19512 if (af == AF_INET) { 19513 dst = tcp->tcp_ipha->ipha_dst; 19514 src = tcp->tcp_ipha->ipha_src; 19515 ASSERT(!CLASSD(dst)); 19516 } 19517 ASSERT(af == AF_INET || 19518 !IN6_IS_ADDR_MULTICAST(&tcp->tcp_ip6h->ip6_dst)); 19519 19520 obsegs = obbytes = 0; 19521 num_burst_seg = tcp->tcp_snd_burst; 19522 md_mp_head = NULL; 19523 PREP_NEW_MULTIDATA(); 19524 19525 /* 19526 * Before we go on further, make sure there is an IRE that we can 19527 * use, and that the ILL supports MDT. Otherwise, there's no point 19528 * in proceeding any further, and we should just hand everything 19529 * off to the legacy path. 19530 */ 19531 if (!tcp_send_find_ire(tcp, (af == AF_INET) ? &dst : NULL, &ire)) 19532 goto legacy_send_no_md; 19533 19534 ASSERT(ire != NULL); 19535 ASSERT(af != AF_INET || ire->ire_ipversion == IPV4_VERSION); 19536 ASSERT(af == AF_INET || !IN6_IS_ADDR_V4MAPPED(&(ire->ire_addr_v6))); 19537 ASSERT(af == AF_INET || ire->ire_nce != NULL); 19538 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 19539 /* 19540 * If we do support loopback for MDT (which requires modifications 19541 * to the receiving paths), the following assertions should go away, 19542 * and we would be sending the Multidata to loopback conn later on. 19543 */ 19544 ASSERT(!IRE_IS_LOCAL(ire)); 19545 ASSERT(ire->ire_stq != NULL); 19546 19547 ill = ire_to_ill(ire); 19548 ASSERT(ill != NULL); 19549 ASSERT(!ILL_MDT_CAPABLE(ill) || ill->ill_mdt_capab != NULL); 19550 19551 if (!tcp->tcp_ire_ill_check_done) { 19552 tcp_ire_ill_check(tcp, ire, ill, B_TRUE); 19553 tcp->tcp_ire_ill_check_done = B_TRUE; 19554 } 19555 19556 /* 19557 * If the underlying interface conditions have changed, or if the 19558 * new interface does not support MDT, go back to legacy path. 19559 */ 19560 if (!ILL_MDT_USABLE(ill) || (ire->ire_flags & RTF_MULTIRT) != 0) { 19561 /* don't go through this path anymore for this connection */ 19562 TCP_STAT(tcp_mdt_conn_halted2); 19563 tcp->tcp_mdt = B_FALSE; 19564 ip1dbg(("tcp_multisend: disabling MDT for connp %p on " 19565 "interface %s\n", (void *)connp, ill->ill_name)); 19566 /* IRE will be released prior to returning */ 19567 goto legacy_send_no_md; 19568 } 19569 19570 if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) 19571 zc_cap = ill->ill_zerocopy_capab; 19572 19573 /* 19574 * Check if we can take tcp fast-path. Note that "incomplete" 19575 * ire's (where the link-layer for next hop is not resolved 19576 * or where the fast-path header in nce_fp_mp is not available 19577 * yet) are sent down the legacy (slow) path. 19578 * NOTE: We should fix ip_xmit_v4 to handle M_MULTIDATA 19579 */ 19580 if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) { 19581 /* IRE will be released prior to returning */ 19582 goto legacy_send_no_md; 19583 } 19584 19585 /* go to legacy path if interface doesn't support zerocopy */ 19586 if (tcp->tcp_snd_zcopy_aware && do_tcpzcopy != 2 && 19587 (zc_cap == NULL || zc_cap->ill_zerocopy_flags == 0)) { 19588 /* IRE will be released prior to returning */ 19589 goto legacy_send_no_md; 19590 } 19591 19592 /* does the interface support hardware checksum offload? */ 19593 hwcksum_flags = 0; 19594 if (ILL_HCKSUM_CAPABLE(ill) && 19595 (ill->ill_hcksum_capab->ill_hcksum_txflags & 19596 (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6 | HCKSUM_INET_PARTIAL | 19597 HCKSUM_IPHDRCKSUM)) && dohwcksum) { 19598 if (ill->ill_hcksum_capab->ill_hcksum_txflags & 19599 HCKSUM_IPHDRCKSUM) 19600 hwcksum_flags = HCK_IPV4_HDRCKSUM; 19601 19602 if (ill->ill_hcksum_capab->ill_hcksum_txflags & 19603 (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6)) 19604 hwcksum_flags |= HCK_FULLCKSUM; 19605 else if (ill->ill_hcksum_capab->ill_hcksum_txflags & 19606 HCKSUM_INET_PARTIAL) 19607 hwcksum_flags |= HCK_PARTIALCKSUM; 19608 } 19609 19610 /* 19611 * Each header fragment consists of the leading extra space, 19612 * followed by the TCP/IP header, and the trailing extra space. 19613 * We make sure that each header fragment begins on a 32-bit 19614 * aligned memory address (tcp_mdt_hdr_head is already 32-bit 19615 * aligned in tcp_mdt_update). 19616 */ 19617 hdr_frag_sz = roundup((tcp->tcp_mdt_hdr_head + tcp_hdr_len + 19618 tcp->tcp_mdt_hdr_tail), 4); 19619 19620 /* are we starting from the beginning of data block? */ 19621 if (*tail_unsent == 0) { 19622 *xmit_tail = (*xmit_tail)->b_cont; 19623 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= (uintptr_t)INT_MAX); 19624 *tail_unsent = (int)MBLKL(*xmit_tail); 19625 } 19626 19627 /* 19628 * Here we create one or more Multidata messages, each made up of 19629 * one header buffer and up to N payload buffers. This entire 19630 * operation is done within two loops: 19631 * 19632 * The outer loop mostly deals with creating the Multidata message, 19633 * as well as the header buffer that gets added to it. It also 19634 * links the Multidata messages together such that all of them can 19635 * be sent down to the lower layer in a single putnext call; this 19636 * linking behavior depends on the tcp_mdt_chain tunable. 19637 * 19638 * The inner loop takes an existing Multidata message, and adds 19639 * one or more (up to tcp_mdt_max_pld) payload buffers to it. It 19640 * packetizes those buffers by filling up the corresponding header 19641 * buffer fragments with the proper IP and TCP headers, and by 19642 * describing the layout of each packet in the packet descriptors 19643 * that get added to the Multidata. 19644 */ 19645 do { 19646 /* 19647 * If usable send window is too small, or data blocks in 19648 * transmit list are smaller than our threshold (i.e. app 19649 * performs large writes followed by small ones), we hand 19650 * off the control over to the legacy path. Note that we'll 19651 * get back the control once it encounters a large block. 19652 */ 19653 if (*usable < mss || (*tail_unsent <= mdt_thres && 19654 (*xmit_tail)->b_cont != NULL && 19655 MBLKL((*xmit_tail)->b_cont) <= mdt_thres)) { 19656 /* send down what we've got so far */ 19657 if (md_mp_head != NULL) { 19658 tcp_multisend_data(tcp, ire, ill, md_mp_head, 19659 obsegs, obbytes, &rconfirm); 19660 } 19661 /* 19662 * Pass control over to tcp_send(), but tell it to 19663 * return to us once a large-size transmission is 19664 * possible. 19665 */ 19666 TCP_STAT(tcp_mdt_legacy_small); 19667 if ((err = tcp_send(q, tcp, mss, tcp_hdr_len, 19668 tcp_tcp_hdr_len, num_sack_blk, usable, snxt, 19669 tail_unsent, xmit_tail, local_time, 19670 mdt_thres)) <= 0) { 19671 /* burst count reached, or alloc failed */ 19672 IRE_REFRELE(ire); 19673 return (err); 19674 } 19675 19676 /* tcp_send() may have sent everything, so check */ 19677 if (*usable <= 0) { 19678 IRE_REFRELE(ire); 19679 return (0); 19680 } 19681 19682 TCP_STAT(tcp_mdt_legacy_ret); 19683 /* 19684 * We may have delivered the Multidata, so make sure 19685 * to re-initialize before the next round. 19686 */ 19687 md_mp_head = NULL; 19688 obsegs = obbytes = 0; 19689 num_burst_seg = tcp->tcp_snd_burst; 19690 PREP_NEW_MULTIDATA(); 19691 19692 /* are we starting from the beginning of data block? */ 19693 if (*tail_unsent == 0) { 19694 *xmit_tail = (*xmit_tail)->b_cont; 19695 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 19696 (uintptr_t)INT_MAX); 19697 *tail_unsent = (int)MBLKL(*xmit_tail); 19698 } 19699 } 19700 19701 /* 19702 * max_pld limits the number of mblks in tcp's transmit 19703 * queue that can be added to a Multidata message. Once 19704 * this counter reaches zero, no more additional mblks 19705 * can be added to it. What happens afterwards depends 19706 * on whether or not we are set to chain the Multidata 19707 * messages. If we are to link them together, reset 19708 * max_pld to its original value (tcp_mdt_max_pld) and 19709 * prepare to create a new Multidata message which will 19710 * get linked to md_mp_head. Else, leave it alone and 19711 * let the inner loop break on its own. 19712 */ 19713 if (tcp_mdt_chain && max_pld == 0) 19714 PREP_NEW_MULTIDATA(); 19715 19716 /* adding a payload buffer; re-initialize values */ 19717 if (add_buffer) 19718 PREP_NEW_PBUF(); 19719 19720 /* 19721 * If we don't have a Multidata, either because we just 19722 * (re)entered this outer loop, or after we branched off 19723 * to tcp_send above, setup the Multidata and header 19724 * buffer to be used. 19725 */ 19726 if (md_mp == NULL) { 19727 int md_hbuflen; 19728 uint32_t start, stuff; 19729 19730 /* 19731 * Calculate Multidata header buffer size large enough 19732 * to hold all of the headers that can possibly be 19733 * sent at this moment. We'd rather over-estimate 19734 * the size than running out of space; this is okay 19735 * since this buffer is small anyway. 19736 */ 19737 md_hbuflen = (howmany(*usable, mss) + 1) * hdr_frag_sz; 19738 19739 /* 19740 * Start and stuff offset for partial hardware 19741 * checksum offload; these are currently for IPv4. 19742 * For full checksum offload, they are set to zero. 19743 */ 19744 if ((hwcksum_flags & HCK_PARTIALCKSUM)) { 19745 if (af == AF_INET) { 19746 start = IP_SIMPLE_HDR_LENGTH; 19747 stuff = IP_SIMPLE_HDR_LENGTH + 19748 TCP_CHECKSUM_OFFSET; 19749 } else { 19750 start = IPV6_HDR_LEN; 19751 stuff = IPV6_HDR_LEN + 19752 TCP_CHECKSUM_OFFSET; 19753 } 19754 } else { 19755 start = stuff = 0; 19756 } 19757 19758 /* 19759 * Create the header buffer, Multidata, as well as 19760 * any necessary attributes (destination address, 19761 * SAP and hardware checksum offload) that should 19762 * be associated with the Multidata message. 19763 */ 19764 ASSERT(cur_hdr_off == 0); 19765 if ((md_hbuf = allocb(md_hbuflen, BPRI_HI)) == NULL || 19766 ((md_hbuf->b_wptr += md_hbuflen), 19767 (mmd = mmd_alloc(md_hbuf, &md_mp, 19768 KM_NOSLEEP)) == NULL) || (tcp_mdt_add_attrs(mmd, 19769 /* fastpath mblk */ 19770 ire->ire_nce->nce_res_mp, 19771 /* hardware checksum enabled */ 19772 (hwcksum_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)), 19773 /* hardware checksum offsets */ 19774 start, stuff, 0, 19775 /* hardware checksum flag */ 19776 hwcksum_flags) != 0)) { 19777 legacy_send: 19778 if (md_mp != NULL) { 19779 /* Unlink message from the chain */ 19780 if (md_mp_head != NULL) { 19781 err = (intptr_t)rmvb(md_mp_head, 19782 md_mp); 19783 /* 19784 * We can't assert that rmvb 19785 * did not return -1, since we 19786 * may get here before linkb 19787 * happens. We do, however, 19788 * check if we just removed the 19789 * only element in the list. 19790 */ 19791 if (err == 0) 19792 md_mp_head = NULL; 19793 } 19794 /* md_hbuf gets freed automatically */ 19795 TCP_STAT(tcp_mdt_discarded); 19796 freeb(md_mp); 19797 } else { 19798 /* Either allocb or mmd_alloc failed */ 19799 TCP_STAT(tcp_mdt_allocfail); 19800 if (md_hbuf != NULL) 19801 freeb(md_hbuf); 19802 } 19803 19804 /* send down what we've got so far */ 19805 if (md_mp_head != NULL) { 19806 tcp_multisend_data(tcp, ire, ill, 19807 md_mp_head, obsegs, obbytes, 19808 &rconfirm); 19809 } 19810 legacy_send_no_md: 19811 if (ire != NULL) 19812 IRE_REFRELE(ire); 19813 /* 19814 * Too bad; let the legacy path handle this. 19815 * We specify INT_MAX for the threshold, since 19816 * we gave up with the Multidata processings 19817 * and let the old path have it all. 19818 */ 19819 TCP_STAT(tcp_mdt_legacy_all); 19820 return (tcp_send(q, tcp, mss, tcp_hdr_len, 19821 tcp_tcp_hdr_len, num_sack_blk, usable, 19822 snxt, tail_unsent, xmit_tail, local_time, 19823 INT_MAX)); 19824 } 19825 19826 /* link to any existing ones, if applicable */ 19827 TCP_STAT(tcp_mdt_allocd); 19828 if (md_mp_head == NULL) { 19829 md_mp_head = md_mp; 19830 } else if (tcp_mdt_chain) { 19831 TCP_STAT(tcp_mdt_linked); 19832 linkb(md_mp_head, md_mp); 19833 } 19834 } 19835 19836 ASSERT(md_mp_head != NULL); 19837 ASSERT(tcp_mdt_chain || md_mp_head->b_cont == NULL); 19838 ASSERT(md_mp != NULL && mmd != NULL); 19839 ASSERT(md_hbuf != NULL); 19840 19841 /* 19842 * Packetize the transmittable portion of the data block; 19843 * each data block is essentially added to the Multidata 19844 * as a payload buffer. We also deal with adding more 19845 * than one payload buffers, which happens when the remaining 19846 * packetized portion of the current payload buffer is less 19847 * than MSS, while the next data block in transmit queue 19848 * has enough data to make up for one. This "spillover" 19849 * case essentially creates a split-packet, where portions 19850 * of the packet's payload fragments may span across two 19851 * virtually discontiguous address blocks. 19852 */ 19853 seg_len = mss; 19854 do { 19855 len = seg_len; 19856 19857 ASSERT(len > 0); 19858 ASSERT(max_pld >= 0); 19859 ASSERT(!add_buffer || cur_pld_off == 0); 19860 19861 /* 19862 * First time around for this payload buffer; note 19863 * in the case of a spillover, the following has 19864 * been done prior to adding the split-packet 19865 * descriptor to Multidata, and we don't want to 19866 * repeat the process. 19867 */ 19868 if (add_buffer) { 19869 ASSERT(mmd != NULL); 19870 ASSERT(md_pbuf == NULL); 19871 ASSERT(md_pbuf_nxt == NULL); 19872 ASSERT(pbuf_idx == -1 && pbuf_idx_nxt == -1); 19873 19874 /* 19875 * Have we reached the limit? We'd get to 19876 * this case when we're not chaining the 19877 * Multidata messages together, and since 19878 * we're done, terminate this loop. 19879 */ 19880 if (max_pld == 0) 19881 break; /* done */ 19882 19883 if ((md_pbuf = dupb(*xmit_tail)) == NULL) { 19884 TCP_STAT(tcp_mdt_allocfail); 19885 goto legacy_send; /* out_of_mem */ 19886 } 19887 19888 if (IS_VMLOANED_MBLK(md_pbuf) && !zcopy && 19889 zc_cap != NULL) { 19890 if (!ip_md_zcopy_attr(mmd, NULL, 19891 zc_cap->ill_zerocopy_flags)) { 19892 freeb(md_pbuf); 19893 TCP_STAT(tcp_mdt_allocfail); 19894 /* out_of_mem */ 19895 goto legacy_send; 19896 } 19897 zcopy = B_TRUE; 19898 } 19899 19900 md_pbuf->b_rptr += base_pld_off; 19901 19902 /* 19903 * Add a payload buffer to the Multidata; this 19904 * operation must not fail, or otherwise our 19905 * logic in this routine is broken. There 19906 * is no memory allocation done by the 19907 * routine, so any returned failure simply 19908 * tells us that we've done something wrong. 19909 * 19910 * A failure tells us that either we're adding 19911 * the same payload buffer more than once, or 19912 * we're trying to add more buffers than 19913 * allowed (max_pld calculation is wrong). 19914 * None of the above cases should happen, and 19915 * we panic because either there's horrible 19916 * heap corruption, and/or programming mistake. 19917 */ 19918 pbuf_idx = mmd_addpldbuf(mmd, md_pbuf); 19919 if (pbuf_idx < 0) { 19920 cmn_err(CE_PANIC, "tcp_multisend: " 19921 "payload buffer logic error " 19922 "detected for tcp %p mmd %p " 19923 "pbuf %p (%d)\n", 19924 (void *)tcp, (void *)mmd, 19925 (void *)md_pbuf, pbuf_idx); 19926 } 19927 19928 ASSERT(max_pld > 0); 19929 --max_pld; 19930 add_buffer = B_FALSE; 19931 } 19932 19933 ASSERT(md_mp_head != NULL); 19934 ASSERT(md_pbuf != NULL); 19935 ASSERT(md_pbuf_nxt == NULL); 19936 ASSERT(pbuf_idx != -1); 19937 ASSERT(pbuf_idx_nxt == -1); 19938 ASSERT(*usable > 0); 19939 19940 /* 19941 * We spillover to the next payload buffer only 19942 * if all of the following is true: 19943 * 19944 * 1. There is not enough data on the current 19945 * payload buffer to make up `len', 19946 * 2. We are allowed to send `len', 19947 * 3. The next payload buffer length is large 19948 * enough to accomodate `spill'. 19949 */ 19950 if ((spill = len - *tail_unsent) > 0 && 19951 *usable >= len && 19952 MBLKL((*xmit_tail)->b_cont) >= spill && 19953 max_pld > 0) { 19954 md_pbuf_nxt = dupb((*xmit_tail)->b_cont); 19955 if (md_pbuf_nxt == NULL) { 19956 TCP_STAT(tcp_mdt_allocfail); 19957 goto legacy_send; /* out_of_mem */ 19958 } 19959 19960 if (IS_VMLOANED_MBLK(md_pbuf_nxt) && !zcopy && 19961 zc_cap != NULL) { 19962 if (!ip_md_zcopy_attr(mmd, NULL, 19963 zc_cap->ill_zerocopy_flags)) { 19964 freeb(md_pbuf_nxt); 19965 TCP_STAT(tcp_mdt_allocfail); 19966 /* out_of_mem */ 19967 goto legacy_send; 19968 } 19969 zcopy = B_TRUE; 19970 } 19971 19972 /* 19973 * See comments above on the first call to 19974 * mmd_addpldbuf for explanation on the panic. 19975 */ 19976 pbuf_idx_nxt = mmd_addpldbuf(mmd, md_pbuf_nxt); 19977 if (pbuf_idx_nxt < 0) { 19978 panic("tcp_multisend: " 19979 "next payload buffer logic error " 19980 "detected for tcp %p mmd %p " 19981 "pbuf %p (%d)\n", 19982 (void *)tcp, (void *)mmd, 19983 (void *)md_pbuf_nxt, pbuf_idx_nxt); 19984 } 19985 19986 ASSERT(max_pld > 0); 19987 --max_pld; 19988 } else if (spill > 0) { 19989 /* 19990 * If there's a spillover, but the following 19991 * xmit_tail couldn't give us enough octets 19992 * to reach "len", then stop the current 19993 * Multidata creation and let the legacy 19994 * tcp_send() path take over. We don't want 19995 * to send the tiny segment as part of this 19996 * Multidata for performance reasons; instead, 19997 * we let the legacy path deal with grouping 19998 * it with the subsequent small mblks. 19999 */ 20000 if (*usable >= len && 20001 MBLKL((*xmit_tail)->b_cont) < spill) { 20002 max_pld = 0; 20003 break; /* done */ 20004 } 20005 20006 /* 20007 * We can't spillover, and we are near 20008 * the end of the current payload buffer, 20009 * so send what's left. 20010 */ 20011 ASSERT(*tail_unsent > 0); 20012 len = *tail_unsent; 20013 } 20014 20015 /* tail_unsent is negated if there is a spillover */ 20016 *tail_unsent -= len; 20017 *usable -= len; 20018 ASSERT(*usable >= 0); 20019 20020 if (*usable < mss) 20021 seg_len = *usable; 20022 /* 20023 * Sender SWS avoidance; see comments in tcp_send(); 20024 * everything else is the same, except that we only 20025 * do this here if there is no more data to be sent 20026 * following the current xmit_tail. We don't check 20027 * for 1-byte urgent data because we shouldn't get 20028 * here if TCP_URG_VALID is set. 20029 */ 20030 if (*usable > 0 && *usable < mss && 20031 ((md_pbuf_nxt == NULL && 20032 (*xmit_tail)->b_cont == NULL) || 20033 (md_pbuf_nxt != NULL && 20034 (*xmit_tail)->b_cont->b_cont == NULL)) && 20035 seg_len < (tcp->tcp_max_swnd >> 1) && 20036 (tcp->tcp_unsent - 20037 ((*snxt + len) - tcp->tcp_snxt)) > seg_len && 20038 !tcp->tcp_zero_win_probe) { 20039 if ((*snxt + len) == tcp->tcp_snxt && 20040 (*snxt + len) == tcp->tcp_suna) { 20041 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 20042 } 20043 done = B_TRUE; 20044 } 20045 20046 /* 20047 * Prime pump for IP's checksumming on our behalf; 20048 * include the adjustment for a source route if any. 20049 * Do this only for software/partial hardware checksum 20050 * offload, as this field gets zeroed out later for 20051 * the full hardware checksum offload case. 20052 */ 20053 if (!(hwcksum_flags & HCK_FULLCKSUM)) { 20054 cksum = len + tcp_tcp_hdr_len + tcp->tcp_sum; 20055 cksum = (cksum >> 16) + (cksum & 0xFFFF); 20056 U16_TO_ABE16(cksum, tcp->tcp_tcph->th_sum); 20057 } 20058 20059 U32_TO_ABE32(*snxt, tcp->tcp_tcph->th_seq); 20060 *snxt += len; 20061 20062 tcp->tcp_tcph->th_flags[0] = TH_ACK; 20063 /* 20064 * We set the PUSH bit only if TCP has no more buffered 20065 * data to be transmitted (or if sender SWS avoidance 20066 * takes place), as opposed to setting it for every 20067 * last packet in the burst. 20068 */ 20069 if (done || 20070 (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) == 0) 20071 tcp->tcp_tcph->th_flags[0] |= TH_PUSH; 20072 20073 /* 20074 * Set FIN bit if this is our last segment; snxt 20075 * already includes its length, and it will not 20076 * be adjusted after this point. 20077 */ 20078 if (tcp->tcp_valid_bits == TCP_FSS_VALID && 20079 *snxt == tcp->tcp_fss) { 20080 if (!tcp->tcp_fin_acked) { 20081 tcp->tcp_tcph->th_flags[0] |= TH_FIN; 20082 BUMP_MIB(&tcp_mib, tcpOutControl); 20083 } 20084 if (!tcp->tcp_fin_sent) { 20085 tcp->tcp_fin_sent = B_TRUE; 20086 /* 20087 * tcp state must be ESTABLISHED 20088 * in order for us to get here in 20089 * the first place. 20090 */ 20091 tcp->tcp_state = TCPS_FIN_WAIT_1; 20092 20093 /* 20094 * Upon returning from this routine, 20095 * tcp_wput_data() will set tcp_snxt 20096 * to be equal to snxt + tcp_fin_sent. 20097 * This is essentially the same as 20098 * setting it to tcp_fss + 1. 20099 */ 20100 } 20101 } 20102 20103 tcp->tcp_last_sent_len = (ushort_t)len; 20104 20105 len += tcp_hdr_len; 20106 if (tcp->tcp_ipversion == IPV4_VERSION) 20107 tcp->tcp_ipha->ipha_length = htons(len); 20108 else 20109 tcp->tcp_ip6h->ip6_plen = htons(len - 20110 ((char *)&tcp->tcp_ip6h[1] - 20111 tcp->tcp_iphc)); 20112 20113 pkt_info->flags = (PDESC_HBUF_REF | PDESC_PBUF_REF); 20114 20115 /* setup header fragment */ 20116 PDESC_HDR_ADD(pkt_info, 20117 md_hbuf->b_rptr + cur_hdr_off, /* base */ 20118 tcp->tcp_mdt_hdr_head, /* head room */ 20119 tcp_hdr_len, /* len */ 20120 tcp->tcp_mdt_hdr_tail); /* tail room */ 20121 20122 ASSERT(pkt_info->hdr_lim - pkt_info->hdr_base == 20123 hdr_frag_sz); 20124 ASSERT(MBLKIN(md_hbuf, 20125 (pkt_info->hdr_base - md_hbuf->b_rptr), 20126 PDESC_HDRSIZE(pkt_info))); 20127 20128 /* setup first payload fragment */ 20129 PDESC_PLD_INIT(pkt_info); 20130 PDESC_PLD_SPAN_ADD(pkt_info, 20131 pbuf_idx, /* index */ 20132 md_pbuf->b_rptr + cur_pld_off, /* start */ 20133 tcp->tcp_last_sent_len); /* len */ 20134 20135 /* create a split-packet in case of a spillover */ 20136 if (md_pbuf_nxt != NULL) { 20137 ASSERT(spill > 0); 20138 ASSERT(pbuf_idx_nxt > pbuf_idx); 20139 ASSERT(!add_buffer); 20140 20141 md_pbuf = md_pbuf_nxt; 20142 md_pbuf_nxt = NULL; 20143 pbuf_idx = pbuf_idx_nxt; 20144 pbuf_idx_nxt = -1; 20145 cur_pld_off = spill; 20146 20147 /* trim out first payload fragment */ 20148 PDESC_PLD_SPAN_TRIM(pkt_info, 0, spill); 20149 20150 /* setup second payload fragment */ 20151 PDESC_PLD_SPAN_ADD(pkt_info, 20152 pbuf_idx, /* index */ 20153 md_pbuf->b_rptr, /* start */ 20154 spill); /* len */ 20155 20156 if ((*xmit_tail)->b_next == NULL) { 20157 /* 20158 * Store the lbolt used for RTT 20159 * estimation. We can only record one 20160 * timestamp per mblk so we do it when 20161 * we reach the end of the payload 20162 * buffer. Also we only take a new 20163 * timestamp sample when the previous 20164 * timed data from the same mblk has 20165 * been ack'ed. 20166 */ 20167 (*xmit_tail)->b_prev = local_time; 20168 (*xmit_tail)->b_next = 20169 (mblk_t *)(uintptr_t)first_snxt; 20170 } 20171 20172 first_snxt = *snxt - spill; 20173 20174 /* 20175 * Advance xmit_tail; usable could be 0 by 20176 * the time we got here, but we made sure 20177 * above that we would only spillover to 20178 * the next data block if usable includes 20179 * the spilled-over amount prior to the 20180 * subtraction. Therefore, we are sure 20181 * that xmit_tail->b_cont can't be NULL. 20182 */ 20183 ASSERT((*xmit_tail)->b_cont != NULL); 20184 *xmit_tail = (*xmit_tail)->b_cont; 20185 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 20186 (uintptr_t)INT_MAX); 20187 *tail_unsent = (int)MBLKL(*xmit_tail) - spill; 20188 } else { 20189 cur_pld_off += tcp->tcp_last_sent_len; 20190 } 20191 20192 /* 20193 * Fill in the header using the template header, and 20194 * add options such as time-stamp, ECN and/or SACK, 20195 * as needed. 20196 */ 20197 tcp_fill_header(tcp, pkt_info->hdr_rptr, 20198 (clock_t)local_time, num_sack_blk); 20199 20200 /* take care of some IP header businesses */ 20201 if (af == AF_INET) { 20202 ipha = (ipha_t *)pkt_info->hdr_rptr; 20203 20204 ASSERT(OK_32PTR((uchar_t *)ipha)); 20205 ASSERT(PDESC_HDRL(pkt_info) >= 20206 IP_SIMPLE_HDR_LENGTH); 20207 ASSERT(ipha->ipha_version_and_hdr_length == 20208 IP_SIMPLE_HDR_VERSION); 20209 20210 /* 20211 * Assign ident value for current packet; see 20212 * related comments in ip_wput_ire() about the 20213 * contract private interface with clustering 20214 * group. 20215 */ 20216 clusterwide = B_FALSE; 20217 if (cl_inet_ipident != NULL) { 20218 ASSERT(cl_inet_isclusterwide != NULL); 20219 if ((*cl_inet_isclusterwide)(IPPROTO_IP, 20220 AF_INET, 20221 (uint8_t *)(uintptr_t)src)) { 20222 ipha->ipha_ident = 20223 (*cl_inet_ipident) 20224 (IPPROTO_IP, AF_INET, 20225 (uint8_t *)(uintptr_t)src, 20226 (uint8_t *)(uintptr_t)dst); 20227 clusterwide = B_TRUE; 20228 } 20229 } 20230 20231 if (!clusterwide) { 20232 ipha->ipha_ident = (uint16_t) 20233 atomic_add_32_nv( 20234 &ire->ire_ident, 1); 20235 } 20236 #ifndef _BIG_ENDIAN 20237 ipha->ipha_ident = (ipha->ipha_ident << 8) | 20238 (ipha->ipha_ident >> 8); 20239 #endif 20240 } else { 20241 ip6h = (ip6_t *)pkt_info->hdr_rptr; 20242 20243 ASSERT(OK_32PTR((uchar_t *)ip6h)); 20244 ASSERT(IPVER(ip6h) == IPV6_VERSION); 20245 ASSERT(ip6h->ip6_nxt == IPPROTO_TCP); 20246 ASSERT(PDESC_HDRL(pkt_info) >= 20247 (IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET + 20248 TCP_CHECKSUM_SIZE)); 20249 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 20250 20251 if (tcp->tcp_ip_forward_progress) { 20252 rconfirm = B_TRUE; 20253 tcp->tcp_ip_forward_progress = B_FALSE; 20254 } 20255 } 20256 20257 /* at least one payload span, and at most two */ 20258 ASSERT(pkt_info->pld_cnt > 0 && pkt_info->pld_cnt < 3); 20259 20260 /* add the packet descriptor to Multidata */ 20261 if ((pkt = mmd_addpdesc(mmd, pkt_info, &err, 20262 KM_NOSLEEP)) == NULL) { 20263 /* 20264 * Any failure other than ENOMEM indicates 20265 * that we have passed in invalid pkt_info 20266 * or parameters to mmd_addpdesc, which must 20267 * not happen. 20268 * 20269 * EINVAL is a result of failure on boundary 20270 * checks against the pkt_info contents. It 20271 * should not happen, and we panic because 20272 * either there's horrible heap corruption, 20273 * and/or programming mistake. 20274 */ 20275 if (err != ENOMEM) { 20276 cmn_err(CE_PANIC, "tcp_multisend: " 20277 "pdesc logic error detected for " 20278 "tcp %p mmd %p pinfo %p (%d)\n", 20279 (void *)tcp, (void *)mmd, 20280 (void *)pkt_info, err); 20281 } 20282 TCP_STAT(tcp_mdt_addpdescfail); 20283 goto legacy_send; /* out_of_mem */ 20284 } 20285 ASSERT(pkt != NULL); 20286 20287 /* calculate IP header and TCP checksums */ 20288 if (af == AF_INET) { 20289 /* calculate pseudo-header checksum */ 20290 cksum = (dst >> 16) + (dst & 0xFFFF) + 20291 (src >> 16) + (src & 0xFFFF); 20292 20293 /* offset for TCP header checksum */ 20294 up = IPH_TCPH_CHECKSUMP(ipha, 20295 IP_SIMPLE_HDR_LENGTH); 20296 } else { 20297 up = (uint16_t *)&ip6h->ip6_src; 20298 20299 /* calculate pseudo-header checksum */ 20300 cksum = up[0] + up[1] + up[2] + up[3] + 20301 up[4] + up[5] + up[6] + up[7] + 20302 up[8] + up[9] + up[10] + up[11] + 20303 up[12] + up[13] + up[14] + up[15]; 20304 20305 /* Fold the initial sum */ 20306 cksum = (cksum & 0xffff) + (cksum >> 16); 20307 20308 up = (uint16_t *)(((uchar_t *)ip6h) + 20309 IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET); 20310 } 20311 20312 if (hwcksum_flags & HCK_FULLCKSUM) { 20313 /* clear checksum field for hardware */ 20314 *up = 0; 20315 } else if (hwcksum_flags & HCK_PARTIALCKSUM) { 20316 uint32_t sum; 20317 20318 /* pseudo-header checksumming */ 20319 sum = *up + cksum + IP_TCP_CSUM_COMP; 20320 sum = (sum & 0xFFFF) + (sum >> 16); 20321 *up = (sum & 0xFFFF) + (sum >> 16); 20322 } else { 20323 /* software checksumming */ 20324 TCP_STAT(tcp_out_sw_cksum); 20325 TCP_STAT_UPDATE(tcp_out_sw_cksum_bytes, 20326 tcp->tcp_hdr_len + tcp->tcp_last_sent_len); 20327 *up = IP_MD_CSUM(pkt, tcp->tcp_ip_hdr_len, 20328 cksum + IP_TCP_CSUM_COMP); 20329 if (*up == 0) 20330 *up = 0xFFFF; 20331 } 20332 20333 /* IPv4 header checksum */ 20334 if (af == AF_INET) { 20335 ipha->ipha_fragment_offset_and_flags |= 20336 (uint32_t)htons(ire->ire_frag_flag); 20337 20338 if (hwcksum_flags & HCK_IPV4_HDRCKSUM) { 20339 ipha->ipha_hdr_checksum = 0; 20340 } else { 20341 IP_HDR_CKSUM(ipha, cksum, 20342 ((uint32_t *)ipha)[0], 20343 ((uint16_t *)ipha)[4]); 20344 } 20345 } 20346 20347 if (af == AF_INET && HOOKS4_INTERESTED_PHYSICAL_OUT|| 20348 af == AF_INET6 && HOOKS6_INTERESTED_PHYSICAL_OUT) { 20349 /* build header(IP/TCP) mblk for this segment */ 20350 if ((mp = dupb(md_hbuf)) == NULL) 20351 goto legacy_send; 20352 20353 mp->b_rptr = pkt_info->hdr_rptr; 20354 mp->b_wptr = pkt_info->hdr_wptr; 20355 20356 /* build payload mblk for this segment */ 20357 if ((mp1 = dupb(*xmit_tail)) == NULL) { 20358 freemsg(mp); 20359 goto legacy_send; 20360 } 20361 mp1->b_wptr = md_pbuf->b_rptr + cur_pld_off; 20362 mp1->b_rptr = mp1->b_wptr - 20363 tcp->tcp_last_sent_len; 20364 linkb(mp, mp1); 20365 20366 pld_start = mp1->b_rptr; 20367 20368 if (af == AF_INET) { 20369 DTRACE_PROBE4( 20370 ip4__physical__out__start, 20371 ill_t *, NULL, 20372 ill_t *, ill, 20373 ipha_t *, ipha, 20374 mblk_t *, mp); 20375 FW_HOOKS(ip4_physical_out_event, 20376 ipv4firewall_physical_out, 20377 NULL, ill, ipha, mp, mp); 20378 DTRACE_PROBE1( 20379 ip4__physical__out__end, 20380 mblk_t *, mp); 20381 } else { 20382 DTRACE_PROBE4( 20383 ip6__physical__out_start, 20384 ill_t *, NULL, 20385 ill_t *, ill, 20386 ip6_t *, ip6h, 20387 mblk_t *, mp); 20388 FW_HOOKS6(ip6_physical_out_event, 20389 ipv6firewall_physical_out, 20390 NULL, ill, ip6h, mp, mp); 20391 DTRACE_PROBE1( 20392 ip6__physical__out__end, 20393 mblk_t *, mp); 20394 } 20395 20396 if (buf_trunked && mp != NULL) { 20397 /* 20398 * Need to pass it to normal path. 20399 */ 20400 CALL_IP_WPUT(tcp->tcp_connp, q, mp); 20401 } else if (mp == NULL || 20402 mp->b_rptr != pkt_info->hdr_rptr || 20403 mp->b_wptr != pkt_info->hdr_wptr || 20404 (mp1 = mp->b_cont) == NULL || 20405 mp1->b_rptr != pld_start || 20406 mp1->b_wptr != pld_start + 20407 tcp->tcp_last_sent_len || 20408 mp1->b_cont != NULL) { 20409 /* 20410 * Need to pass all packets of this 20411 * buffer to normal path, either when 20412 * packet is blocked, or when boundary 20413 * of header buffer or payload buffer 20414 * has been changed by FW_HOOKS[6]. 20415 */ 20416 buf_trunked = B_TRUE; 20417 if (md_mp_head != NULL) { 20418 err = (intptr_t)rmvb(md_mp_head, 20419 md_mp); 20420 if (err == 0) 20421 md_mp_head = NULL; 20422 } 20423 20424 /* send down what we've got so far */ 20425 if (md_mp_head != NULL) { 20426 tcp_multisend_data(tcp, ire, 20427 ill, md_mp_head, obsegs, 20428 obbytes, &rconfirm); 20429 } 20430 md_mp_head = NULL; 20431 20432 if (mp != NULL) 20433 CALL_IP_WPUT(tcp->tcp_connp, 20434 q, mp); 20435 20436 mp1 = fw_mp_head; 20437 do { 20438 mp = mp1; 20439 mp1 = mp1->b_next; 20440 mp->b_next = NULL; 20441 mp->b_prev = NULL; 20442 CALL_IP_WPUT(tcp->tcp_connp, 20443 q, mp); 20444 } while (mp1 != NULL); 20445 20446 fw_mp_head = NULL; 20447 } else { 20448 if (fw_mp_head == NULL) 20449 fw_mp_head = mp; 20450 else 20451 fw_mp_head->b_prev->b_next = mp; 20452 fw_mp_head->b_prev = mp; 20453 } 20454 } 20455 20456 /* advance header offset */ 20457 cur_hdr_off += hdr_frag_sz; 20458 20459 obbytes += tcp->tcp_last_sent_len; 20460 ++obsegs; 20461 } while (!done && *usable > 0 && --num_burst_seg > 0 && 20462 *tail_unsent > 0); 20463 20464 if ((*xmit_tail)->b_next == NULL) { 20465 /* 20466 * Store the lbolt used for RTT estimation. We can only 20467 * record one timestamp per mblk so we do it when we 20468 * reach the end of the payload buffer. Also we only 20469 * take a new timestamp sample when the previous timed 20470 * data from the same mblk has been ack'ed. 20471 */ 20472 (*xmit_tail)->b_prev = local_time; 20473 (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)first_snxt; 20474 } 20475 20476 ASSERT(*tail_unsent >= 0); 20477 if (*tail_unsent > 0) { 20478 /* 20479 * We got here because we broke out of the above 20480 * loop due to of one of the following cases: 20481 * 20482 * 1. len < adjusted MSS (i.e. small), 20483 * 2. Sender SWS avoidance, 20484 * 3. max_pld is zero. 20485 * 20486 * We are done for this Multidata, so trim our 20487 * last payload buffer (if any) accordingly. 20488 */ 20489 if (md_pbuf != NULL) 20490 md_pbuf->b_wptr -= *tail_unsent; 20491 } else if (*usable > 0) { 20492 *xmit_tail = (*xmit_tail)->b_cont; 20493 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 20494 (uintptr_t)INT_MAX); 20495 *tail_unsent = (int)MBLKL(*xmit_tail); 20496 add_buffer = B_TRUE; 20497 } 20498 20499 while (fw_mp_head) { 20500 mp = fw_mp_head; 20501 fw_mp_head = fw_mp_head->b_next; 20502 mp->b_prev = mp->b_next = NULL; 20503 freemsg(mp); 20504 } 20505 if (buf_trunked) { 20506 TCP_STAT(tcp_mdt_discarded); 20507 freeb(md_mp); 20508 buf_trunked = B_FALSE; 20509 } 20510 } while (!done && *usable > 0 && num_burst_seg > 0 && 20511 (tcp_mdt_chain || max_pld > 0)); 20512 20513 if (md_mp_head != NULL) { 20514 /* send everything down */ 20515 tcp_multisend_data(tcp, ire, ill, md_mp_head, obsegs, obbytes, 20516 &rconfirm); 20517 } 20518 20519 #undef PREP_NEW_MULTIDATA 20520 #undef PREP_NEW_PBUF 20521 #undef IPVER 20522 20523 IRE_REFRELE(ire); 20524 return (0); 20525 } 20526 20527 /* 20528 * A wrapper function for sending one or more Multidata messages down to 20529 * the module below ip; this routine does not release the reference of the 20530 * IRE (caller does that). This routine is analogous to tcp_send_data(). 20531 */ 20532 static void 20533 tcp_multisend_data(tcp_t *tcp, ire_t *ire, const ill_t *ill, mblk_t *md_mp_head, 20534 const uint_t obsegs, const uint_t obbytes, boolean_t *rconfirm) 20535 { 20536 uint64_t delta; 20537 nce_t *nce; 20538 20539 ASSERT(ire != NULL && ill != NULL); 20540 ASSERT(ire->ire_stq != NULL); 20541 ASSERT(md_mp_head != NULL); 20542 ASSERT(rconfirm != NULL); 20543 20544 /* adjust MIBs and IRE timestamp */ 20545 TCP_RECORD_TRACE(tcp, md_mp_head, TCP_TRACE_SEND_PKT); 20546 tcp->tcp_obsegs += obsegs; 20547 UPDATE_MIB(&tcp_mib, tcpOutDataSegs, obsegs); 20548 UPDATE_MIB(&tcp_mib, tcpOutDataBytes, obbytes); 20549 TCP_STAT_UPDATE(tcp_mdt_pkt_out, obsegs); 20550 20551 if (tcp->tcp_ipversion == IPV4_VERSION) { 20552 TCP_STAT_UPDATE(tcp_mdt_pkt_out_v4, obsegs); 20553 } else { 20554 TCP_STAT_UPDATE(tcp_mdt_pkt_out_v6, obsegs); 20555 } 20556 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests, obsegs); 20557 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, obsegs); 20558 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, obbytes); 20559 20560 ire->ire_ob_pkt_count += obsegs; 20561 if (ire->ire_ipif != NULL) 20562 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, obsegs); 20563 ire->ire_last_used_time = lbolt; 20564 20565 /* send it down */ 20566 putnext(ire->ire_stq, md_mp_head); 20567 20568 /* we're done for TCP/IPv4 */ 20569 if (tcp->tcp_ipversion == IPV4_VERSION) 20570 return; 20571 20572 nce = ire->ire_nce; 20573 20574 ASSERT(nce != NULL); 20575 ASSERT(!(nce->nce_flags & (NCE_F_NONUD|NCE_F_PERMANENT))); 20576 ASSERT(nce->nce_state != ND_INCOMPLETE); 20577 20578 /* reachability confirmation? */ 20579 if (*rconfirm) { 20580 nce->nce_last = TICK_TO_MSEC(lbolt64); 20581 if (nce->nce_state != ND_REACHABLE) { 20582 mutex_enter(&nce->nce_lock); 20583 nce->nce_state = ND_REACHABLE; 20584 nce->nce_pcnt = ND_MAX_UNICAST_SOLICIT; 20585 mutex_exit(&nce->nce_lock); 20586 (void) untimeout(nce->nce_timeout_id); 20587 if (ip_debug > 2) { 20588 /* ip1dbg */ 20589 pr_addr_dbg("tcp_multisend_data: state " 20590 "for %s changed to REACHABLE\n", 20591 AF_INET6, &ire->ire_addr_v6); 20592 } 20593 } 20594 /* reset transport reachability confirmation */ 20595 *rconfirm = B_FALSE; 20596 } 20597 20598 delta = TICK_TO_MSEC(lbolt64) - nce->nce_last; 20599 ip1dbg(("tcp_multisend_data: delta = %" PRId64 20600 " ill_reachable_time = %d \n", delta, ill->ill_reachable_time)); 20601 20602 if (delta > (uint64_t)ill->ill_reachable_time) { 20603 mutex_enter(&nce->nce_lock); 20604 switch (nce->nce_state) { 20605 case ND_REACHABLE: 20606 case ND_STALE: 20607 /* 20608 * ND_REACHABLE is identical to ND_STALE in this 20609 * specific case. If reachable time has expired for 20610 * this neighbor (delta is greater than reachable 20611 * time), conceptually, the neighbor cache is no 20612 * longer in REACHABLE state, but already in STALE 20613 * state. So the correct transition here is to 20614 * ND_DELAY. 20615 */ 20616 nce->nce_state = ND_DELAY; 20617 mutex_exit(&nce->nce_lock); 20618 NDP_RESTART_TIMER(nce, delay_first_probe_time); 20619 if (ip_debug > 3) { 20620 /* ip2dbg */ 20621 pr_addr_dbg("tcp_multisend_data: state " 20622 "for %s changed to DELAY\n", 20623 AF_INET6, &ire->ire_addr_v6); 20624 } 20625 break; 20626 case ND_DELAY: 20627 case ND_PROBE: 20628 mutex_exit(&nce->nce_lock); 20629 /* Timers have already started */ 20630 break; 20631 case ND_UNREACHABLE: 20632 /* 20633 * ndp timer has detected that this nce is 20634 * unreachable and initiated deleting this nce 20635 * and all its associated IREs. This is a race 20636 * where we found the ire before it was deleted 20637 * and have just sent out a packet using this 20638 * unreachable nce. 20639 */ 20640 mutex_exit(&nce->nce_lock); 20641 break; 20642 default: 20643 ASSERT(0); 20644 } 20645 } 20646 } 20647 20648 /* 20649 * Derived from tcp_send_data(). 20650 */ 20651 static void 20652 tcp_lsosend_data(tcp_t *tcp, mblk_t *mp, ire_t *ire, ill_t *ill, const int mss, 20653 int num_lso_seg) 20654 { 20655 ipha_t *ipha; 20656 mblk_t *ire_fp_mp; 20657 uint_t ire_fp_mp_len; 20658 uint32_t hcksum_txflags = 0; 20659 ipaddr_t src; 20660 ipaddr_t dst; 20661 uint32_t cksum; 20662 uint16_t *up; 20663 20664 ASSERT(DB_TYPE(mp) == M_DATA); 20665 ASSERT(tcp->tcp_state == TCPS_ESTABLISHED); 20666 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 20667 ASSERT(tcp->tcp_connp != NULL); 20668 ASSERT(CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp)); 20669 20670 ipha = (ipha_t *)mp->b_rptr; 20671 src = ipha->ipha_src; 20672 dst = ipha->ipha_dst; 20673 20674 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 20675 ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 20676 num_lso_seg); 20677 #ifndef _BIG_ENDIAN 20678 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 20679 #endif 20680 if (tcp->tcp_snd_zcopy_aware) { 20681 if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 || 20682 (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0)) 20683 mp = tcp_zcopy_disable(tcp, mp); 20684 } 20685 20686 if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) { 20687 ASSERT(ill->ill_hcksum_capab != NULL); 20688 hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags; 20689 } 20690 20691 /* 20692 * Since the TCP checksum should be recalculated by h/w, we can just 20693 * zero the checksum field for HCK_FULLCKSUM, or calculate partial 20694 * pseudo-header checksum for HCK_PARTIALCKSUM. 20695 * The partial pseudo-header excludes TCP length, that was calculated 20696 * in tcp_send(), so to zero *up before further processing. 20697 */ 20698 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 20699 20700 up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH); 20701 *up = 0; 20702 20703 IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up, 20704 IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum); 20705 20706 /* 20707 * Append LSO flag to DB_LSOFLAGS(mp) and set the mss to DB_LSOMSS(mp). 20708 */ 20709 DB_LSOFLAGS(mp) |= HW_LSO; 20710 DB_LSOMSS(mp) = mss; 20711 20712 ipha->ipha_fragment_offset_and_flags |= 20713 (uint32_t)htons(ire->ire_frag_flag); 20714 20715 ire_fp_mp = ire->ire_nce->nce_fp_mp; 20716 ire_fp_mp_len = MBLKL(ire_fp_mp); 20717 ASSERT(DB_TYPE(ire_fp_mp) == M_DATA); 20718 mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len; 20719 bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len); 20720 20721 UPDATE_OB_PKT_COUNT(ire); 20722 ire->ire_last_used_time = lbolt; 20723 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 20724 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 20725 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 20726 ntohs(ipha->ipha_length)); 20727 20728 if (ILL_DLS_CAPABLE(ill)) { 20729 /* 20730 * Send the packet directly to DLD, where it may be queued 20731 * depending on the availability of transmit resources at 20732 * the media layer. 20733 */ 20734 IP_DLS_ILL_TX(ill, ipha, mp); 20735 } else { 20736 ill_t *out_ill = (ill_t *)ire->ire_stq->q_ptr; 20737 DTRACE_PROBE4(ip4__physical__out__start, 20738 ill_t *, NULL, ill_t *, out_ill, 20739 ipha_t *, ipha, mblk_t *, mp); 20740 FW_HOOKS(ip4_physical_out_event, ipv4firewall_physical_out, 20741 NULL, out_ill, ipha, mp, mp); 20742 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 20743 if (mp != NULL) 20744 putnext(ire->ire_stq, mp); 20745 } 20746 } 20747 20748 /* 20749 * tcp_send() is called by tcp_wput_data() for non-Multidata transmission 20750 * scheme, and returns one of the following: 20751 * 20752 * -1 = failed allocation. 20753 * 0 = success; burst count reached, or usable send window is too small, 20754 * and that we'd rather wait until later before sending again. 20755 * 1 = success; we are called from tcp_multisend(), and both usable send 20756 * window and tail_unsent are greater than the MDT threshold, and thus 20757 * Multidata Transmit should be used instead. 20758 */ 20759 static int 20760 tcp_send(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len, 20761 const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable, 20762 uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 20763 const int mdt_thres) 20764 { 20765 int num_burst_seg = tcp->tcp_snd_burst; 20766 ire_t *ire = NULL; 20767 ill_t *ill = NULL; 20768 mblk_t *ire_fp_mp = NULL; 20769 uint_t ire_fp_mp_len = 0; 20770 int num_lso_seg = 1; 20771 uint_t lso_usable; 20772 boolean_t do_lso_send = B_FALSE; 20773 20774 /* 20775 * Check LSO capability before any further work. And the similar check 20776 * need to be done in for(;;) loop. 20777 * LSO will be deployed when therer is more than one mss of available 20778 * data and a burst transmission is allowed. 20779 */ 20780 if (tcp->tcp_lso && 20781 (tcp->tcp_valid_bits == 0 || 20782 tcp->tcp_valid_bits == TCP_FSS_VALID) && 20783 num_burst_seg >= 2 && (*usable - 1) / mss >= 1) { 20784 /* 20785 * Try to find usable IRE/ILL and do basic check to the ILL. 20786 */ 20787 if (tcp_send_find_ire_ill(tcp, NULL, &ire, &ill)) { 20788 /* 20789 * Enable LSO with this transmission. 20790 * Since IRE has been hold in 20791 * tcp_send_find_ire_ill(), IRE_REFRELE(ire) 20792 * should be called before return. 20793 */ 20794 do_lso_send = B_TRUE; 20795 ire_fp_mp = ire->ire_nce->nce_fp_mp; 20796 ire_fp_mp_len = MBLKL(ire_fp_mp); 20797 /* Round up to multiple of 4 */ 20798 ire_fp_mp_len = ((ire_fp_mp_len + 3) / 4) * 4; 20799 } else { 20800 do_lso_send = B_FALSE; 20801 ill = NULL; 20802 } 20803 } 20804 20805 for (;;) { 20806 struct datab *db; 20807 tcph_t *tcph; 20808 uint32_t sum; 20809 mblk_t *mp, *mp1; 20810 uchar_t *rptr; 20811 int len; 20812 20813 /* 20814 * If we're called by tcp_multisend(), and the amount of 20815 * sendable data as well as the size of current xmit_tail 20816 * is beyond the MDT threshold, return to the caller and 20817 * let the large data transmit be done using MDT. 20818 */ 20819 if (*usable > 0 && *usable > mdt_thres && 20820 (*tail_unsent > mdt_thres || (*tail_unsent == 0 && 20821 MBLKL((*xmit_tail)->b_cont) > mdt_thres))) { 20822 ASSERT(tcp->tcp_mdt); 20823 return (1); /* success; do large send */ 20824 } 20825 20826 if (num_burst_seg == 0) 20827 break; /* success; burst count reached */ 20828 20829 /* 20830 * Calculate the maximum payload length we can send in *one* 20831 * time. 20832 */ 20833 if (do_lso_send) { 20834 /* 20835 * Check whether need to do LSO any more. 20836 */ 20837 if (num_burst_seg >= 2 && (*usable - 1) / mss >= 1) { 20838 lso_usable = MIN(tcp->tcp_lso_max, *usable); 20839 lso_usable = MIN(lso_usable, 20840 num_burst_seg * mss); 20841 20842 num_lso_seg = lso_usable / mss; 20843 if (lso_usable % mss) { 20844 num_lso_seg++; 20845 tcp->tcp_last_sent_len = (ushort_t) 20846 (lso_usable % mss); 20847 } else { 20848 tcp->tcp_last_sent_len = (ushort_t)mss; 20849 } 20850 } else { 20851 do_lso_send = B_FALSE; 20852 num_lso_seg = 1; 20853 lso_usable = mss; 20854 } 20855 } 20856 20857 ASSERT(num_lso_seg <= IP_MAXPACKET / mss + 1); 20858 20859 /* 20860 * Adjust num_burst_seg here. 20861 */ 20862 num_burst_seg -= num_lso_seg; 20863 20864 len = mss; 20865 if (len > *usable) { 20866 ASSERT(do_lso_send == B_FALSE); 20867 20868 len = *usable; 20869 if (len <= 0) { 20870 /* Terminate the loop */ 20871 break; /* success; too small */ 20872 } 20873 /* 20874 * Sender silly-window avoidance. 20875 * Ignore this if we are going to send a 20876 * zero window probe out. 20877 * 20878 * TODO: force data into microscopic window? 20879 * ==> (!pushed || (unsent > usable)) 20880 */ 20881 if (len < (tcp->tcp_max_swnd >> 1) && 20882 (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) > len && 20883 !((tcp->tcp_valid_bits & TCP_URG_VALID) && 20884 len == 1) && (! tcp->tcp_zero_win_probe)) { 20885 /* 20886 * If the retransmit timer is not running 20887 * we start it so that we will retransmit 20888 * in the case when the the receiver has 20889 * decremented the window. 20890 */ 20891 if (*snxt == tcp->tcp_snxt && 20892 *snxt == tcp->tcp_suna) { 20893 /* 20894 * We are not supposed to send 20895 * anything. So let's wait a little 20896 * bit longer before breaking SWS 20897 * avoidance. 20898 * 20899 * What should the value be? 20900 * Suggestion: MAX(init rexmit time, 20901 * tcp->tcp_rto) 20902 */ 20903 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 20904 } 20905 break; /* success; too small */ 20906 } 20907 } 20908 20909 tcph = tcp->tcp_tcph; 20910 20911 /* 20912 * The reason to adjust len here is that we need to set flags 20913 * and calculate checksum. 20914 */ 20915 if (do_lso_send) 20916 len = lso_usable; 20917 20918 *usable -= len; /* Approximate - can be adjusted later */ 20919 if (*usable > 0) 20920 tcph->th_flags[0] = TH_ACK; 20921 else 20922 tcph->th_flags[0] = (TH_ACK | TH_PUSH); 20923 20924 /* 20925 * Prime pump for IP's checksumming on our behalf 20926 * Include the adjustment for a source route if any. 20927 */ 20928 sum = len + tcp_tcp_hdr_len + tcp->tcp_sum; 20929 sum = (sum >> 16) + (sum & 0xFFFF); 20930 U16_TO_ABE16(sum, tcph->th_sum); 20931 20932 U32_TO_ABE32(*snxt, tcph->th_seq); 20933 20934 /* 20935 * Branch off to tcp_xmit_mp() if any of the VALID bits is 20936 * set. For the case when TCP_FSS_VALID is the only valid 20937 * bit (normal active close), branch off only when we think 20938 * that the FIN flag needs to be set. Note for this case, 20939 * that (snxt + len) may not reflect the actual seg_len, 20940 * as len may be further reduced in tcp_xmit_mp(). If len 20941 * gets modified, we will end up here again. 20942 */ 20943 if (tcp->tcp_valid_bits != 0 && 20944 (tcp->tcp_valid_bits != TCP_FSS_VALID || 20945 ((*snxt + len) == tcp->tcp_fss))) { 20946 uchar_t *prev_rptr; 20947 uint32_t prev_snxt = tcp->tcp_snxt; 20948 20949 if (*tail_unsent == 0) { 20950 ASSERT((*xmit_tail)->b_cont != NULL); 20951 *xmit_tail = (*xmit_tail)->b_cont; 20952 prev_rptr = (*xmit_tail)->b_rptr; 20953 *tail_unsent = (int)((*xmit_tail)->b_wptr - 20954 (*xmit_tail)->b_rptr); 20955 } else { 20956 prev_rptr = (*xmit_tail)->b_rptr; 20957 (*xmit_tail)->b_rptr = (*xmit_tail)->b_wptr - 20958 *tail_unsent; 20959 } 20960 mp = tcp_xmit_mp(tcp, *xmit_tail, len, NULL, NULL, 20961 *snxt, B_FALSE, (uint32_t *)&len, B_FALSE); 20962 /* Restore tcp_snxt so we get amount sent right. */ 20963 tcp->tcp_snxt = prev_snxt; 20964 if (prev_rptr == (*xmit_tail)->b_rptr) { 20965 /* 20966 * If the previous timestamp is still in use, 20967 * don't stomp on it. 20968 */ 20969 if ((*xmit_tail)->b_next == NULL) { 20970 (*xmit_tail)->b_prev = local_time; 20971 (*xmit_tail)->b_next = 20972 (mblk_t *)(uintptr_t)(*snxt); 20973 } 20974 } else 20975 (*xmit_tail)->b_rptr = prev_rptr; 20976 20977 if (mp == NULL) { 20978 if (ire != NULL) 20979 IRE_REFRELE(ire); 20980 return (-1); 20981 } 20982 mp1 = mp->b_cont; 20983 20984 if (len <= mss) /* LSO is unusable (!do_lso_send) */ 20985 tcp->tcp_last_sent_len = (ushort_t)len; 20986 while (mp1->b_cont) { 20987 *xmit_tail = (*xmit_tail)->b_cont; 20988 (*xmit_tail)->b_prev = local_time; 20989 (*xmit_tail)->b_next = 20990 (mblk_t *)(uintptr_t)(*snxt); 20991 mp1 = mp1->b_cont; 20992 } 20993 *snxt += len; 20994 *tail_unsent = (*xmit_tail)->b_wptr - mp1->b_wptr; 20995 BUMP_LOCAL(tcp->tcp_obsegs); 20996 BUMP_MIB(&tcp_mib, tcpOutDataSegs); 20997 UPDATE_MIB(&tcp_mib, tcpOutDataBytes, len); 20998 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 20999 tcp_send_data(tcp, q, mp); 21000 continue; 21001 } 21002 21003 *snxt += len; /* Adjust later if we don't send all of len */ 21004 BUMP_MIB(&tcp_mib, tcpOutDataSegs); 21005 UPDATE_MIB(&tcp_mib, tcpOutDataBytes, len); 21006 21007 if (*tail_unsent) { 21008 /* Are the bytes above us in flight? */ 21009 rptr = (*xmit_tail)->b_wptr - *tail_unsent; 21010 if (rptr != (*xmit_tail)->b_rptr) { 21011 *tail_unsent -= len; 21012 if (len <= mss) /* LSO is unusable */ 21013 tcp->tcp_last_sent_len = (ushort_t)len; 21014 len += tcp_hdr_len; 21015 if (tcp->tcp_ipversion == IPV4_VERSION) 21016 tcp->tcp_ipha->ipha_length = htons(len); 21017 else 21018 tcp->tcp_ip6h->ip6_plen = 21019 htons(len - 21020 ((char *)&tcp->tcp_ip6h[1] - 21021 tcp->tcp_iphc)); 21022 mp = dupb(*xmit_tail); 21023 if (mp == NULL) { 21024 if (ire != NULL) 21025 IRE_REFRELE(ire); 21026 return (-1); /* out_of_mem */ 21027 } 21028 mp->b_rptr = rptr; 21029 /* 21030 * If the old timestamp is no longer in use, 21031 * sample a new timestamp now. 21032 */ 21033 if ((*xmit_tail)->b_next == NULL) { 21034 (*xmit_tail)->b_prev = local_time; 21035 (*xmit_tail)->b_next = 21036 (mblk_t *)(uintptr_t)(*snxt-len); 21037 } 21038 goto must_alloc; 21039 } 21040 } else { 21041 *xmit_tail = (*xmit_tail)->b_cont; 21042 ASSERT((uintptr_t)((*xmit_tail)->b_wptr - 21043 (*xmit_tail)->b_rptr) <= (uintptr_t)INT_MAX); 21044 *tail_unsent = (int)((*xmit_tail)->b_wptr - 21045 (*xmit_tail)->b_rptr); 21046 } 21047 21048 (*xmit_tail)->b_prev = local_time; 21049 (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)(*snxt - len); 21050 21051 *tail_unsent -= len; 21052 if (len <= mss) /* LSO is unusable (!do_lso_send) */ 21053 tcp->tcp_last_sent_len = (ushort_t)len; 21054 21055 len += tcp_hdr_len; 21056 if (tcp->tcp_ipversion == IPV4_VERSION) 21057 tcp->tcp_ipha->ipha_length = htons(len); 21058 else 21059 tcp->tcp_ip6h->ip6_plen = htons(len - 21060 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 21061 21062 mp = dupb(*xmit_tail); 21063 if (mp == NULL) { 21064 if (ire != NULL) 21065 IRE_REFRELE(ire); 21066 return (-1); /* out_of_mem */ 21067 } 21068 21069 len = tcp_hdr_len; 21070 /* 21071 * There are four reasons to allocate a new hdr mblk: 21072 * 1) The bytes above us are in use by another packet 21073 * 2) We don't have good alignment 21074 * 3) The mblk is being shared 21075 * 4) We don't have enough room for a header 21076 */ 21077 rptr = mp->b_rptr - len; 21078 if (!OK_32PTR(rptr) || 21079 ((db = mp->b_datap), db->db_ref != 2) || 21080 rptr < db->db_base + ire_fp_mp_len) { 21081 /* NOTE: we assume allocb returns an OK_32PTR */ 21082 21083 must_alloc:; 21084 mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 21085 tcp_wroff_xtra + ire_fp_mp_len, BPRI_MED); 21086 if (mp1 == NULL) { 21087 freemsg(mp); 21088 if (ire != NULL) 21089 IRE_REFRELE(ire); 21090 return (-1); /* out_of_mem */ 21091 } 21092 mp1->b_cont = mp; 21093 mp = mp1; 21094 /* Leave room for Link Level header */ 21095 len = tcp_hdr_len; 21096 rptr = &mp->b_rptr[tcp_wroff_xtra + ire_fp_mp_len]; 21097 mp->b_wptr = &rptr[len]; 21098 } 21099 21100 /* 21101 * Fill in the header using the template header, and add 21102 * options such as time-stamp, ECN and/or SACK, as needed. 21103 */ 21104 tcp_fill_header(tcp, rptr, (clock_t)local_time, num_sack_blk); 21105 21106 mp->b_rptr = rptr; 21107 21108 if (*tail_unsent) { 21109 int spill = *tail_unsent; 21110 21111 mp1 = mp->b_cont; 21112 if (mp1 == NULL) 21113 mp1 = mp; 21114 21115 /* 21116 * If we're a little short, tack on more mblks until 21117 * there is no more spillover. 21118 */ 21119 while (spill < 0) { 21120 mblk_t *nmp; 21121 int nmpsz; 21122 21123 nmp = (*xmit_tail)->b_cont; 21124 nmpsz = MBLKL(nmp); 21125 21126 /* 21127 * Excess data in mblk; can we split it? 21128 * If MDT is enabled for the connection, 21129 * keep on splitting as this is a transient 21130 * send path. 21131 */ 21132 if (!do_lso_send && !tcp->tcp_mdt && 21133 (spill + nmpsz > 0)) { 21134 /* 21135 * Don't split if stream head was 21136 * told to break up larger writes 21137 * into smaller ones. 21138 */ 21139 if (tcp->tcp_maxpsz > 0) 21140 break; 21141 21142 /* 21143 * Next mblk is less than SMSS/2 21144 * rounded up to nearest 64-byte; 21145 * let it get sent as part of the 21146 * next segment. 21147 */ 21148 if (tcp->tcp_localnet && 21149 !tcp->tcp_cork && 21150 (nmpsz < roundup((mss >> 1), 64))) 21151 break; 21152 } 21153 21154 *xmit_tail = nmp; 21155 ASSERT((uintptr_t)nmpsz <= (uintptr_t)INT_MAX); 21156 /* Stash for rtt use later */ 21157 (*xmit_tail)->b_prev = local_time; 21158 (*xmit_tail)->b_next = 21159 (mblk_t *)(uintptr_t)(*snxt - len); 21160 mp1->b_cont = dupb(*xmit_tail); 21161 mp1 = mp1->b_cont; 21162 21163 spill += nmpsz; 21164 if (mp1 == NULL) { 21165 *tail_unsent = spill; 21166 freemsg(mp); 21167 if (ire != NULL) 21168 IRE_REFRELE(ire); 21169 return (-1); /* out_of_mem */ 21170 } 21171 } 21172 21173 /* Trim back any surplus on the last mblk */ 21174 if (spill >= 0) { 21175 mp1->b_wptr -= spill; 21176 *tail_unsent = spill; 21177 } else { 21178 /* 21179 * We did not send everything we could in 21180 * order to remain within the b_cont limit. 21181 */ 21182 *usable -= spill; 21183 *snxt += spill; 21184 tcp->tcp_last_sent_len += spill; 21185 UPDATE_MIB(&tcp_mib, tcpOutDataBytes, spill); 21186 /* 21187 * Adjust the checksum 21188 */ 21189 tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 21190 sum += spill; 21191 sum = (sum >> 16) + (sum & 0xFFFF); 21192 U16_TO_ABE16(sum, tcph->th_sum); 21193 if (tcp->tcp_ipversion == IPV4_VERSION) { 21194 sum = ntohs( 21195 ((ipha_t *)rptr)->ipha_length) + 21196 spill; 21197 ((ipha_t *)rptr)->ipha_length = 21198 htons(sum); 21199 } else { 21200 sum = ntohs( 21201 ((ip6_t *)rptr)->ip6_plen) + 21202 spill; 21203 ((ip6_t *)rptr)->ip6_plen = 21204 htons(sum); 21205 } 21206 *tail_unsent = 0; 21207 } 21208 } 21209 if (tcp->tcp_ip_forward_progress) { 21210 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 21211 *(uint32_t *)mp->b_rptr |= IP_FORWARD_PROG; 21212 tcp->tcp_ip_forward_progress = B_FALSE; 21213 } 21214 21215 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 21216 if (do_lso_send) { 21217 tcp_lsosend_data(tcp, mp, ire, ill, mss, 21218 num_lso_seg); 21219 tcp->tcp_obsegs += num_lso_seg; 21220 21221 TCP_STAT(tcp_lso_times); 21222 TCP_STAT_UPDATE(tcp_lso_pkt_out, num_lso_seg); 21223 } else { 21224 tcp_send_data(tcp, q, mp); 21225 BUMP_LOCAL(tcp->tcp_obsegs); 21226 } 21227 } 21228 21229 if (ire != NULL) 21230 IRE_REFRELE(ire); 21231 return (0); 21232 } 21233 21234 /* Unlink and return any mblk that looks like it contains a MDT info */ 21235 static mblk_t * 21236 tcp_mdt_info_mp(mblk_t *mp) 21237 { 21238 mblk_t *prev_mp; 21239 21240 for (;;) { 21241 prev_mp = mp; 21242 /* no more to process? */ 21243 if ((mp = mp->b_cont) == NULL) 21244 break; 21245 21246 switch (DB_TYPE(mp)) { 21247 case M_CTL: 21248 if (*(uint32_t *)mp->b_rptr != MDT_IOC_INFO_UPDATE) 21249 continue; 21250 ASSERT(prev_mp != NULL); 21251 prev_mp->b_cont = mp->b_cont; 21252 mp->b_cont = NULL; 21253 return (mp); 21254 default: 21255 break; 21256 } 21257 } 21258 return (mp); 21259 } 21260 21261 /* MDT info update routine, called when IP notifies us about MDT */ 21262 static void 21263 tcp_mdt_update(tcp_t *tcp, ill_mdt_capab_t *mdt_capab, boolean_t first) 21264 { 21265 boolean_t prev_state; 21266 21267 /* 21268 * IP is telling us to abort MDT on this connection? We know 21269 * this because the capability is only turned off when IP 21270 * encounters some pathological cases, e.g. link-layer change 21271 * where the new driver doesn't support MDT, or in situation 21272 * where MDT usage on the link-layer has been switched off. 21273 * IP would not have sent us the initial MDT_IOC_INFO_UPDATE 21274 * if the link-layer doesn't support MDT, and if it does, it 21275 * will indicate that the feature is to be turned on. 21276 */ 21277 prev_state = tcp->tcp_mdt; 21278 tcp->tcp_mdt = (mdt_capab->ill_mdt_on != 0); 21279 if (!tcp->tcp_mdt && !first) { 21280 TCP_STAT(tcp_mdt_conn_halted3); 21281 ip1dbg(("tcp_mdt_update: disabling MDT for connp %p\n", 21282 (void *)tcp->tcp_connp)); 21283 } 21284 21285 /* 21286 * We currently only support MDT on simple TCP/{IPv4,IPv6}, 21287 * so disable MDT otherwise. The checks are done here 21288 * and in tcp_wput_data(). 21289 */ 21290 if (tcp->tcp_mdt && 21291 (tcp->tcp_ipversion == IPV4_VERSION && 21292 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 21293 (tcp->tcp_ipversion == IPV6_VERSION && 21294 tcp->tcp_ip_hdr_len != IPV6_HDR_LEN)) 21295 tcp->tcp_mdt = B_FALSE; 21296 21297 if (tcp->tcp_mdt) { 21298 if (mdt_capab->ill_mdt_version != MDT_VERSION_2) { 21299 cmn_err(CE_NOTE, "tcp_mdt_update: unknown MDT " 21300 "version (%d), expected version is %d", 21301 mdt_capab->ill_mdt_version, MDT_VERSION_2); 21302 tcp->tcp_mdt = B_FALSE; 21303 return; 21304 } 21305 21306 /* 21307 * We need the driver to be able to handle at least three 21308 * spans per packet in order for tcp MDT to be utilized. 21309 * The first is for the header portion, while the rest are 21310 * needed to handle a packet that straddles across two 21311 * virtually non-contiguous buffers; a typical tcp packet 21312 * therefore consists of only two spans. Note that we take 21313 * a zero as "don't care". 21314 */ 21315 if (mdt_capab->ill_mdt_span_limit > 0 && 21316 mdt_capab->ill_mdt_span_limit < 3) { 21317 tcp->tcp_mdt = B_FALSE; 21318 return; 21319 } 21320 21321 /* a zero means driver wants default value */ 21322 tcp->tcp_mdt_max_pld = MIN(mdt_capab->ill_mdt_max_pld, 21323 tcp_mdt_max_pbufs); 21324 if (tcp->tcp_mdt_max_pld == 0) 21325 tcp->tcp_mdt_max_pld = tcp_mdt_max_pbufs; 21326 21327 /* ensure 32-bit alignment */ 21328 tcp->tcp_mdt_hdr_head = roundup(MAX(tcp_mdt_hdr_head_min, 21329 mdt_capab->ill_mdt_hdr_head), 4); 21330 tcp->tcp_mdt_hdr_tail = roundup(MAX(tcp_mdt_hdr_tail_min, 21331 mdt_capab->ill_mdt_hdr_tail), 4); 21332 21333 if (!first && !prev_state) { 21334 TCP_STAT(tcp_mdt_conn_resumed2); 21335 ip1dbg(("tcp_mdt_update: reenabling MDT for connp %p\n", 21336 (void *)tcp->tcp_connp)); 21337 } 21338 } 21339 } 21340 21341 /* Unlink and return any mblk that looks like it contains a LSO info */ 21342 static mblk_t * 21343 tcp_lso_info_mp(mblk_t *mp) 21344 { 21345 mblk_t *prev_mp; 21346 21347 for (;;) { 21348 prev_mp = mp; 21349 /* no more to process? */ 21350 if ((mp = mp->b_cont) == NULL) 21351 break; 21352 21353 switch (DB_TYPE(mp)) { 21354 case M_CTL: 21355 if (*(uint32_t *)mp->b_rptr != LSO_IOC_INFO_UPDATE) 21356 continue; 21357 ASSERT(prev_mp != NULL); 21358 prev_mp->b_cont = mp->b_cont; 21359 mp->b_cont = NULL; 21360 return (mp); 21361 default: 21362 break; 21363 } 21364 } 21365 21366 return (mp); 21367 } 21368 21369 /* LSO info update routine, called when IP notifies us about LSO */ 21370 static void 21371 tcp_lso_update(tcp_t *tcp, ill_lso_capab_t *lso_capab) 21372 { 21373 /* 21374 * IP is telling us to abort LSO on this connection? We know 21375 * this because the capability is only turned off when IP 21376 * encounters some pathological cases, e.g. link-layer change 21377 * where the new NIC/driver doesn't support LSO, or in situation 21378 * where LSO usage on the link-layer has been switched off. 21379 * IP would not have sent us the initial LSO_IOC_INFO_UPDATE 21380 * if the link-layer doesn't support LSO, and if it does, it 21381 * will indicate that the feature is to be turned on. 21382 */ 21383 tcp->tcp_lso = (lso_capab->ill_lso_on != 0); 21384 TCP_STAT(tcp_lso_enabled); 21385 21386 /* 21387 * We currently only support LSO on simple TCP/IPv4, 21388 * so disable LSO otherwise. The checks are done here 21389 * and in tcp_wput_data(). 21390 */ 21391 if (tcp->tcp_lso && 21392 (tcp->tcp_ipversion == IPV4_VERSION && 21393 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 21394 (tcp->tcp_ipversion == IPV6_VERSION)) { 21395 tcp->tcp_lso = B_FALSE; 21396 TCP_STAT(tcp_lso_disabled); 21397 } else { 21398 tcp->tcp_lso_max = MIN(TCP_MAX_LSO_LENGTH, 21399 lso_capab->ill_lso_max); 21400 } 21401 } 21402 21403 static void 21404 tcp_ire_ill_check(tcp_t *tcp, ire_t *ire, ill_t *ill, boolean_t check_lso_mdt) 21405 { 21406 conn_t *connp = tcp->tcp_connp; 21407 21408 ASSERT(ire != NULL); 21409 21410 /* 21411 * We may be in the fastpath here, and although we essentially do 21412 * similar checks as in ip_bind_connected{_v6}/ip_xxinfo_return, 21413 * we try to keep things as brief as possible. After all, these 21414 * are only best-effort checks, and we do more thorough ones prior 21415 * to calling tcp_send()/tcp_multisend(). 21416 */ 21417 if ((ip_lso_outbound || ip_multidata_outbound) && check_lso_mdt && 21418 !(ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK)) && 21419 ill != NULL && !CONN_IPSEC_OUT_ENCAPSULATED(connp) && 21420 !(ire->ire_flags & RTF_MULTIRT) && 21421 !IPP_ENABLED(IPP_LOCAL_OUT) && 21422 CONN_IS_LSO_MD_FASTPATH(connp)) { 21423 if (ip_lso_outbound && ILL_LSO_CAPABLE(ill)) { 21424 /* Cache the result */ 21425 connp->conn_lso_ok = B_TRUE; 21426 21427 ASSERT(ill->ill_lso_capab != NULL); 21428 if (!ill->ill_lso_capab->ill_lso_on) { 21429 ill->ill_lso_capab->ill_lso_on = 1; 21430 ip1dbg(("tcp_ire_ill_check: connp %p enables " 21431 "LSO for interface %s\n", (void *)connp, 21432 ill->ill_name)); 21433 } 21434 tcp_lso_update(tcp, ill->ill_lso_capab); 21435 } else if (ip_multidata_outbound && ILL_MDT_CAPABLE(ill)) { 21436 /* Cache the result */ 21437 connp->conn_mdt_ok = B_TRUE; 21438 21439 ASSERT(ill->ill_mdt_capab != NULL); 21440 if (!ill->ill_mdt_capab->ill_mdt_on) { 21441 ill->ill_mdt_capab->ill_mdt_on = 1; 21442 ip1dbg(("tcp_ire_ill_check: connp %p enables " 21443 "MDT for interface %s\n", (void *)connp, 21444 ill->ill_name)); 21445 } 21446 tcp_mdt_update(tcp, ill->ill_mdt_capab, B_TRUE); 21447 } 21448 } 21449 21450 /* 21451 * The goal is to reduce the number of generated tcp segments by 21452 * setting the maxpsz multiplier to 0; this will have an affect on 21453 * tcp_maxpsz_set(). With this behavior, tcp will pack more data 21454 * into each packet, up to SMSS bytes. Doing this reduces the number 21455 * of outbound segments and incoming ACKs, thus allowing for better 21456 * network and system performance. In contrast the legacy behavior 21457 * may result in sending less than SMSS size, because the last mblk 21458 * for some packets may have more data than needed to make up SMSS, 21459 * and the legacy code refused to "split" it. 21460 * 21461 * We apply the new behavior on following situations: 21462 * 21463 * 1) Loopback connections, 21464 * 2) Connections in which the remote peer is not on local subnet, 21465 * 3) Local subnet connections over the bge interface (see below). 21466 * 21467 * Ideally, we would like this behavior to apply for interfaces other 21468 * than bge. However, doing so would negatively impact drivers which 21469 * perform dynamic mapping and unmapping of DMA resources, which are 21470 * increased by setting the maxpsz multiplier to 0 (more mblks per 21471 * packet will be generated by tcp). The bge driver does not suffer 21472 * from this, as it copies the mblks into pre-mapped buffers, and 21473 * therefore does not require more I/O resources than before. 21474 * 21475 * Otherwise, this behavior is present on all network interfaces when 21476 * the destination endpoint is non-local, since reducing the number 21477 * of packets in general is good for the network. 21478 * 21479 * TODO We need to remove this hard-coded conditional for bge once 21480 * a better "self-tuning" mechanism, or a way to comprehend 21481 * the driver transmit strategy is devised. Until the solution 21482 * is found and well understood, we live with this hack. 21483 */ 21484 if (!tcp_static_maxpsz && 21485 (tcp->tcp_loopback || !tcp->tcp_localnet || 21486 (ill->ill_name_length > 3 && bcmp(ill->ill_name, "bge", 3) == 0))) { 21487 /* override the default value */ 21488 tcp->tcp_maxpsz = 0; 21489 21490 ip3dbg(("tcp_ire_ill_check: connp %p tcp_maxpsz %d on " 21491 "interface %s\n", (void *)connp, tcp->tcp_maxpsz, 21492 ill != NULL ? ill->ill_name : ipif_loopback_name)); 21493 } 21494 21495 /* set the stream head parameters accordingly */ 21496 (void) tcp_maxpsz_set(tcp, B_TRUE); 21497 } 21498 21499 /* tcp_wput_flush is called by tcp_wput_nondata to handle M_FLUSH messages. */ 21500 static void 21501 tcp_wput_flush(tcp_t *tcp, mblk_t *mp) 21502 { 21503 uchar_t fval = *mp->b_rptr; 21504 mblk_t *tail; 21505 queue_t *q = tcp->tcp_wq; 21506 21507 /* TODO: How should flush interact with urgent data? */ 21508 if ((fval & FLUSHW) && tcp->tcp_xmit_head && 21509 !(tcp->tcp_valid_bits & TCP_URG_VALID)) { 21510 /* 21511 * Flush only data that has not yet been put on the wire. If 21512 * we flush data that we have already transmitted, life, as we 21513 * know it, may come to an end. 21514 */ 21515 tail = tcp->tcp_xmit_tail; 21516 tail->b_wptr -= tcp->tcp_xmit_tail_unsent; 21517 tcp->tcp_xmit_tail_unsent = 0; 21518 tcp->tcp_unsent = 0; 21519 if (tail->b_wptr != tail->b_rptr) 21520 tail = tail->b_cont; 21521 if (tail) { 21522 mblk_t **excess = &tcp->tcp_xmit_head; 21523 for (;;) { 21524 mblk_t *mp1 = *excess; 21525 if (mp1 == tail) 21526 break; 21527 tcp->tcp_xmit_tail = mp1; 21528 tcp->tcp_xmit_last = mp1; 21529 excess = &mp1->b_cont; 21530 } 21531 *excess = NULL; 21532 tcp_close_mpp(&tail); 21533 if (tcp->tcp_snd_zcopy_aware) 21534 tcp_zcopy_notify(tcp); 21535 } 21536 /* 21537 * We have no unsent data, so unsent must be less than 21538 * tcp_xmit_lowater, so re-enable flow. 21539 */ 21540 if (tcp->tcp_flow_stopped) { 21541 tcp_clrqfull(tcp); 21542 } 21543 } 21544 /* 21545 * TODO: you can't just flush these, you have to increase rwnd for one 21546 * thing. For another, how should urgent data interact? 21547 */ 21548 if (fval & FLUSHR) { 21549 *mp->b_rptr = fval & ~FLUSHW; 21550 /* XXX */ 21551 qreply(q, mp); 21552 return; 21553 } 21554 freemsg(mp); 21555 } 21556 21557 /* 21558 * tcp_wput_iocdata is called by tcp_wput_nondata to handle all M_IOCDATA 21559 * messages. 21560 */ 21561 static void 21562 tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp) 21563 { 21564 mblk_t *mp1; 21565 STRUCT_HANDLE(strbuf, sb); 21566 uint16_t port; 21567 queue_t *q = tcp->tcp_wq; 21568 in6_addr_t v6addr; 21569 ipaddr_t v4addr; 21570 uint32_t flowinfo = 0; 21571 int addrlen; 21572 21573 /* Make sure it is one of ours. */ 21574 switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) { 21575 case TI_GETMYNAME: 21576 case TI_GETPEERNAME: 21577 break; 21578 default: 21579 CALL_IP_WPUT(tcp->tcp_connp, q, mp); 21580 return; 21581 } 21582 switch (mi_copy_state(q, mp, &mp1)) { 21583 case -1: 21584 return; 21585 case MI_COPY_CASE(MI_COPY_IN, 1): 21586 break; 21587 case MI_COPY_CASE(MI_COPY_OUT, 1): 21588 /* Copy out the strbuf. */ 21589 mi_copyout(q, mp); 21590 return; 21591 case MI_COPY_CASE(MI_COPY_OUT, 2): 21592 /* All done. */ 21593 mi_copy_done(q, mp, 0); 21594 return; 21595 default: 21596 mi_copy_done(q, mp, EPROTO); 21597 return; 21598 } 21599 /* Check alignment of the strbuf */ 21600 if (!OK_32PTR(mp1->b_rptr)) { 21601 mi_copy_done(q, mp, EINVAL); 21602 return; 21603 } 21604 21605 STRUCT_SET_HANDLE(sb, ((struct iocblk *)mp->b_rptr)->ioc_flag, 21606 (void *)mp1->b_rptr); 21607 addrlen = tcp->tcp_family == AF_INET ? sizeof (sin_t) : sizeof (sin6_t); 21608 21609 if (STRUCT_FGET(sb, maxlen) < addrlen) { 21610 mi_copy_done(q, mp, EINVAL); 21611 return; 21612 } 21613 switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) { 21614 case TI_GETMYNAME: 21615 if (tcp->tcp_family == AF_INET) { 21616 if (tcp->tcp_ipversion == IPV4_VERSION) { 21617 v4addr = tcp->tcp_ipha->ipha_src; 21618 } else { 21619 /* can't return an address in this case */ 21620 v4addr = 0; 21621 } 21622 } else { 21623 /* tcp->tcp_family == AF_INET6 */ 21624 if (tcp->tcp_ipversion == IPV4_VERSION) { 21625 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 21626 &v6addr); 21627 } else { 21628 v6addr = tcp->tcp_ip6h->ip6_src; 21629 } 21630 } 21631 port = tcp->tcp_lport; 21632 break; 21633 case TI_GETPEERNAME: 21634 if (tcp->tcp_family == AF_INET) { 21635 if (tcp->tcp_ipversion == IPV4_VERSION) { 21636 IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_remote_v6, 21637 v4addr); 21638 } else { 21639 /* can't return an address in this case */ 21640 v4addr = 0; 21641 } 21642 } else { 21643 /* tcp->tcp_family == AF_INET6) */ 21644 v6addr = tcp->tcp_remote_v6; 21645 if (tcp->tcp_ipversion == IPV6_VERSION) { 21646 /* 21647 * No flowinfo if tcp->tcp_ipversion is v4. 21648 * 21649 * flowinfo was already initialized to zero 21650 * where it was declared above, so only 21651 * set it if ipversion is v6. 21652 */ 21653 flowinfo = tcp->tcp_ip6h->ip6_vcf & 21654 ~IPV6_VERS_AND_FLOW_MASK; 21655 } 21656 } 21657 port = tcp->tcp_fport; 21658 break; 21659 default: 21660 mi_copy_done(q, mp, EPROTO); 21661 return; 21662 } 21663 mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE); 21664 if (!mp1) 21665 return; 21666 21667 if (tcp->tcp_family == AF_INET) { 21668 sin_t *sin; 21669 21670 STRUCT_FSET(sb, len, (int)sizeof (sin_t)); 21671 sin = (sin_t *)mp1->b_rptr; 21672 mp1->b_wptr = (uchar_t *)&sin[1]; 21673 *sin = sin_null; 21674 sin->sin_family = AF_INET; 21675 sin->sin_addr.s_addr = v4addr; 21676 sin->sin_port = port; 21677 } else { 21678 /* tcp->tcp_family == AF_INET6 */ 21679 sin6_t *sin6; 21680 21681 STRUCT_FSET(sb, len, (int)sizeof (sin6_t)); 21682 sin6 = (sin6_t *)mp1->b_rptr; 21683 mp1->b_wptr = (uchar_t *)&sin6[1]; 21684 *sin6 = sin6_null; 21685 sin6->sin6_family = AF_INET6; 21686 sin6->sin6_flowinfo = flowinfo; 21687 sin6->sin6_addr = v6addr; 21688 sin6->sin6_port = port; 21689 } 21690 /* Copy out the address */ 21691 mi_copyout(q, mp); 21692 } 21693 21694 /* 21695 * tcp_wput_ioctl is called by tcp_wput_nondata() to handle all M_IOCTL 21696 * messages. 21697 */ 21698 /* ARGSUSED */ 21699 static void 21700 tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2) 21701 { 21702 conn_t *connp = (conn_t *)arg; 21703 tcp_t *tcp = connp->conn_tcp; 21704 queue_t *q = tcp->tcp_wq; 21705 struct iocblk *iocp; 21706 21707 ASSERT(DB_TYPE(mp) == M_IOCTL); 21708 /* 21709 * Try and ASSERT the minimum possible references on the 21710 * conn early enough. Since we are executing on write side, 21711 * the connection is obviously not detached and that means 21712 * there is a ref each for TCP and IP. Since we are behind 21713 * the squeue, the minimum references needed are 3. If the 21714 * conn is in classifier hash list, there should be an 21715 * extra ref for that (we check both the possibilities). 21716 */ 21717 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 21718 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 21719 21720 iocp = (struct iocblk *)mp->b_rptr; 21721 switch (iocp->ioc_cmd) { 21722 case TCP_IOC_DEFAULT_Q: 21723 /* Wants to be the default wq. */ 21724 if (secpolicy_net_config(iocp->ioc_cr, B_FALSE) != 0) { 21725 iocp->ioc_error = EPERM; 21726 iocp->ioc_count = 0; 21727 mp->b_datap->db_type = M_IOCACK; 21728 qreply(q, mp); 21729 return; 21730 } 21731 tcp_def_q_set(tcp, mp); 21732 return; 21733 case _SIOCSOCKFALLBACK: 21734 /* 21735 * Either sockmod is about to be popped and the socket 21736 * would now be treated as a plain stream, or a module 21737 * is about to be pushed so we could no longer use read- 21738 * side synchronous streams for fused loopback tcp. 21739 * Drain any queued data and disable direct sockfs 21740 * interface from now on. 21741 */ 21742 if (!tcp->tcp_issocket) { 21743 DB_TYPE(mp) = M_IOCNAK; 21744 iocp->ioc_error = EINVAL; 21745 } else { 21746 #ifdef _ILP32 21747 tcp->tcp_acceptor_id = (t_uscalar_t)RD(q); 21748 #else 21749 tcp->tcp_acceptor_id = tcp->tcp_connp->conn_dev; 21750 #endif 21751 /* 21752 * Insert this socket into the acceptor hash. 21753 * We might need it for T_CONN_RES message 21754 */ 21755 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 21756 21757 if (tcp->tcp_fused) { 21758 /* 21759 * This is a fused loopback tcp; disable 21760 * read-side synchronous streams interface 21761 * and drain any queued data. It is okay 21762 * to do this for non-synchronous streams 21763 * fused tcp as well. 21764 */ 21765 tcp_fuse_disable_pair(tcp, B_FALSE); 21766 } 21767 tcp->tcp_issocket = B_FALSE; 21768 TCP_STAT(tcp_sock_fallback); 21769 21770 DB_TYPE(mp) = M_IOCACK; 21771 iocp->ioc_error = 0; 21772 } 21773 iocp->ioc_count = 0; 21774 iocp->ioc_rval = 0; 21775 qreply(q, mp); 21776 return; 21777 } 21778 CALL_IP_WPUT(connp, q, mp); 21779 } 21780 21781 /* 21782 * This routine is called by tcp_wput() to handle all TPI requests. 21783 */ 21784 /* ARGSUSED */ 21785 static void 21786 tcp_wput_proto(void *arg, mblk_t *mp, void *arg2) 21787 { 21788 conn_t *connp = (conn_t *)arg; 21789 tcp_t *tcp = connp->conn_tcp; 21790 union T_primitives *tprim = (union T_primitives *)mp->b_rptr; 21791 uchar_t *rptr; 21792 t_scalar_t type; 21793 int len; 21794 cred_t *cr = DB_CREDDEF(mp, tcp->tcp_cred); 21795 21796 /* 21797 * Try and ASSERT the minimum possible references on the 21798 * conn early enough. Since we are executing on write side, 21799 * the connection is obviously not detached and that means 21800 * there is a ref each for TCP and IP. Since we are behind 21801 * the squeue, the minimum references needed are 3. If the 21802 * conn is in classifier hash list, there should be an 21803 * extra ref for that (we check both the possibilities). 21804 */ 21805 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 21806 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 21807 21808 rptr = mp->b_rptr; 21809 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 21810 if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { 21811 type = ((union T_primitives *)rptr)->type; 21812 if (type == T_EXDATA_REQ) { 21813 uint32_t msize = msgdsize(mp->b_cont); 21814 21815 len = msize - 1; 21816 if (len < 0) { 21817 freemsg(mp); 21818 return; 21819 } 21820 /* 21821 * Try to force urgent data out on the wire. 21822 * Even if we have unsent data this will 21823 * at least send the urgent flag. 21824 * XXX does not handle more flag correctly. 21825 */ 21826 len += tcp->tcp_unsent; 21827 len += tcp->tcp_snxt; 21828 tcp->tcp_urg = len; 21829 tcp->tcp_valid_bits |= TCP_URG_VALID; 21830 21831 /* Bypass tcp protocol for fused tcp loopback */ 21832 if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize)) 21833 return; 21834 } else if (type != T_DATA_REQ) { 21835 goto non_urgent_data; 21836 } 21837 /* TODO: options, flags, ... from user */ 21838 /* Set length to zero for reclamation below */ 21839 tcp_wput_data(tcp, mp->b_cont, B_TRUE); 21840 freeb(mp); 21841 return; 21842 } else { 21843 if (tcp->tcp_debug) { 21844 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 21845 "tcp_wput_proto, dropping one..."); 21846 } 21847 freemsg(mp); 21848 return; 21849 } 21850 21851 non_urgent_data: 21852 21853 switch ((int)tprim->type) { 21854 case T_SSL_PROXY_BIND_REQ: /* an SSL proxy endpoint bind request */ 21855 /* 21856 * save the kssl_ent_t from the next block, and convert this 21857 * back to a normal bind_req. 21858 */ 21859 if (mp->b_cont != NULL) { 21860 ASSERT(MBLKL(mp->b_cont) >= sizeof (kssl_ent_t)); 21861 21862 if (tcp->tcp_kssl_ent != NULL) { 21863 kssl_release_ent(tcp->tcp_kssl_ent, NULL, 21864 KSSL_NO_PROXY); 21865 tcp->tcp_kssl_ent = NULL; 21866 } 21867 bcopy(mp->b_cont->b_rptr, &tcp->tcp_kssl_ent, 21868 sizeof (kssl_ent_t)); 21869 kssl_hold_ent(tcp->tcp_kssl_ent); 21870 freemsg(mp->b_cont); 21871 mp->b_cont = NULL; 21872 } 21873 tprim->type = T_BIND_REQ; 21874 21875 /* FALLTHROUGH */ 21876 case O_T_BIND_REQ: /* bind request */ 21877 case T_BIND_REQ: /* new semantics bind request */ 21878 tcp_bind(tcp, mp); 21879 break; 21880 case T_UNBIND_REQ: /* unbind request */ 21881 tcp_unbind(tcp, mp); 21882 break; 21883 case O_T_CONN_RES: /* old connection response XXX */ 21884 case T_CONN_RES: /* connection response */ 21885 tcp_accept(tcp, mp); 21886 break; 21887 case T_CONN_REQ: /* connection request */ 21888 tcp_connect(tcp, mp); 21889 break; 21890 case T_DISCON_REQ: /* disconnect request */ 21891 tcp_disconnect(tcp, mp); 21892 break; 21893 case T_CAPABILITY_REQ: 21894 tcp_capability_req(tcp, mp); /* capability request */ 21895 break; 21896 case T_INFO_REQ: /* information request */ 21897 tcp_info_req(tcp, mp); 21898 break; 21899 case T_SVR4_OPTMGMT_REQ: /* manage options req */ 21900 /* Only IP is allowed to return meaningful value */ 21901 (void) svr4_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj); 21902 break; 21903 case T_OPTMGMT_REQ: 21904 /* 21905 * Note: no support for snmpcom_req() through new 21906 * T_OPTMGMT_REQ. See comments in ip.c 21907 */ 21908 /* Only IP is allowed to return meaningful value */ 21909 (void) tpi_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj); 21910 break; 21911 21912 case T_UNITDATA_REQ: /* unitdata request */ 21913 tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); 21914 break; 21915 case T_ORDREL_REQ: /* orderly release req */ 21916 freemsg(mp); 21917 21918 if (tcp->tcp_fused) 21919 tcp_unfuse(tcp); 21920 21921 if (tcp_xmit_end(tcp) != 0) { 21922 /* 21923 * We were crossing FINs and got a reset from 21924 * the other side. Just ignore it. 21925 */ 21926 if (tcp->tcp_debug) { 21927 (void) strlog(TCP_MOD_ID, 0, 1, 21928 SL_ERROR|SL_TRACE, 21929 "tcp_wput_proto, T_ORDREL_REQ out of " 21930 "state %s", 21931 tcp_display(tcp, NULL, 21932 DISP_ADDR_AND_PORT)); 21933 } 21934 } 21935 break; 21936 case T_ADDR_REQ: 21937 tcp_addr_req(tcp, mp); 21938 break; 21939 default: 21940 if (tcp->tcp_debug) { 21941 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 21942 "tcp_wput_proto, bogus TPI msg, type %d", 21943 tprim->type); 21944 } 21945 /* 21946 * We used to M_ERROR. Sending TNOTSUPPORT gives the user 21947 * to recover. 21948 */ 21949 tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); 21950 break; 21951 } 21952 } 21953 21954 /* 21955 * The TCP write service routine should never be called... 21956 */ 21957 /* ARGSUSED */ 21958 static void 21959 tcp_wsrv(queue_t *q) 21960 { 21961 TCP_STAT(tcp_wsrv_called); 21962 } 21963 21964 /* Non overlapping byte exchanger */ 21965 static void 21966 tcp_xchg(uchar_t *a, uchar_t *b, int len) 21967 { 21968 uchar_t uch; 21969 21970 while (len-- > 0) { 21971 uch = a[len]; 21972 a[len] = b[len]; 21973 b[len] = uch; 21974 } 21975 } 21976 21977 /* 21978 * Send out a control packet on the tcp connection specified. This routine 21979 * is typically called where we need a simple ACK or RST generated. 21980 */ 21981 static void 21982 tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, uint32_t ack, int ctl) 21983 { 21984 uchar_t *rptr; 21985 tcph_t *tcph; 21986 ipha_t *ipha = NULL; 21987 ip6_t *ip6h = NULL; 21988 uint32_t sum; 21989 int tcp_hdr_len; 21990 int tcp_ip_hdr_len; 21991 mblk_t *mp; 21992 21993 /* 21994 * Save sum for use in source route later. 21995 */ 21996 ASSERT(tcp != NULL); 21997 sum = tcp->tcp_tcp_hdr_len + tcp->tcp_sum; 21998 tcp_hdr_len = tcp->tcp_hdr_len; 21999 tcp_ip_hdr_len = tcp->tcp_ip_hdr_len; 22000 22001 /* If a text string is passed in with the request, pass it to strlog. */ 22002 if (str != NULL && tcp->tcp_debug) { 22003 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 22004 "tcp_xmit_ctl: '%s', seq 0x%x, ack 0x%x, ctl 0x%x", 22005 str, seq, ack, ctl); 22006 } 22007 mp = allocb(tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcp_wroff_xtra, 22008 BPRI_MED); 22009 if (mp == NULL) { 22010 return; 22011 } 22012 rptr = &mp->b_rptr[tcp_wroff_xtra]; 22013 mp->b_rptr = rptr; 22014 mp->b_wptr = &rptr[tcp_hdr_len]; 22015 bcopy(tcp->tcp_iphc, rptr, tcp_hdr_len); 22016 22017 if (tcp->tcp_ipversion == IPV4_VERSION) { 22018 ipha = (ipha_t *)rptr; 22019 ipha->ipha_length = htons(tcp_hdr_len); 22020 } else { 22021 ip6h = (ip6_t *)rptr; 22022 ASSERT(tcp != NULL); 22023 ip6h->ip6_plen = htons(tcp->tcp_hdr_len - 22024 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 22025 } 22026 tcph = (tcph_t *)&rptr[tcp_ip_hdr_len]; 22027 tcph->th_flags[0] = (uint8_t)ctl; 22028 if (ctl & TH_RST) { 22029 BUMP_MIB(&tcp_mib, tcpOutRsts); 22030 BUMP_MIB(&tcp_mib, tcpOutControl); 22031 /* 22032 * Don't send TSopt w/ TH_RST packets per RFC 1323. 22033 */ 22034 if (tcp->tcp_snd_ts_ok && 22035 tcp->tcp_state > TCPS_SYN_SENT) { 22036 mp->b_wptr = &rptr[tcp_hdr_len - TCPOPT_REAL_TS_LEN]; 22037 *(mp->b_wptr) = TCPOPT_EOL; 22038 if (tcp->tcp_ipversion == IPV4_VERSION) { 22039 ipha->ipha_length = htons(tcp_hdr_len - 22040 TCPOPT_REAL_TS_LEN); 22041 } else { 22042 ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) - 22043 TCPOPT_REAL_TS_LEN); 22044 } 22045 tcph->th_offset_and_rsrvd[0] -= (3 << 4); 22046 sum -= TCPOPT_REAL_TS_LEN; 22047 } 22048 } 22049 if (ctl & TH_ACK) { 22050 if (tcp->tcp_snd_ts_ok) { 22051 U32_TO_BE32(lbolt, 22052 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 22053 U32_TO_BE32(tcp->tcp_ts_recent, 22054 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 22055 } 22056 22057 /* Update the latest receive window size in TCP header. */ 22058 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 22059 tcph->th_win); 22060 tcp->tcp_rack = ack; 22061 tcp->tcp_rack_cnt = 0; 22062 BUMP_MIB(&tcp_mib, tcpOutAck); 22063 } 22064 BUMP_LOCAL(tcp->tcp_obsegs); 22065 U32_TO_BE32(seq, tcph->th_seq); 22066 U32_TO_BE32(ack, tcph->th_ack); 22067 /* 22068 * Include the adjustment for a source route if any. 22069 */ 22070 sum = (sum >> 16) + (sum & 0xFFFF); 22071 U16_TO_BE16(sum, tcph->th_sum); 22072 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 22073 tcp_send_data(tcp, tcp->tcp_wq, mp); 22074 } 22075 22076 /* 22077 * If this routine returns B_TRUE, TCP can generate a RST in response 22078 * to a segment. If it returns B_FALSE, TCP should not respond. 22079 */ 22080 static boolean_t 22081 tcp_send_rst_chk(void) 22082 { 22083 clock_t now; 22084 22085 /* 22086 * TCP needs to protect itself from generating too many RSTs. 22087 * This can be a DoS attack by sending us random segments 22088 * soliciting RSTs. 22089 * 22090 * What we do here is to have a limit of tcp_rst_sent_rate RSTs 22091 * in each 1 second interval. In this way, TCP still generate 22092 * RSTs in normal cases but when under attack, the impact is 22093 * limited. 22094 */ 22095 if (tcp_rst_sent_rate_enabled != 0) { 22096 now = lbolt; 22097 /* lbolt can wrap around. */ 22098 if ((tcp_last_rst_intrvl > now) || 22099 (TICK_TO_MSEC(now - tcp_last_rst_intrvl) > 1*SECONDS)) { 22100 tcp_last_rst_intrvl = now; 22101 tcp_rst_cnt = 1; 22102 } else if (++tcp_rst_cnt > tcp_rst_sent_rate) { 22103 return (B_FALSE); 22104 } 22105 } 22106 return (B_TRUE); 22107 } 22108 22109 /* 22110 * Send down the advice IP ioctl to tell IP to mark an IRE temporary. 22111 */ 22112 static void 22113 tcp_ip_ire_mark_advice(tcp_t *tcp) 22114 { 22115 mblk_t *mp; 22116 ipic_t *ipic; 22117 22118 if (tcp->tcp_ipversion == IPV4_VERSION) { 22119 mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN, 22120 &ipic); 22121 } else { 22122 mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN, 22123 &ipic); 22124 } 22125 if (mp == NULL) 22126 return; 22127 ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY; 22128 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 22129 } 22130 22131 /* 22132 * Return an IP advice ioctl mblk and set ipic to be the pointer 22133 * to the advice structure. 22134 */ 22135 static mblk_t * 22136 tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic) 22137 { 22138 struct iocblk *ioc; 22139 mblk_t *mp, *mp1; 22140 22141 mp = allocb(sizeof (ipic_t) + addr_len, BPRI_HI); 22142 if (mp == NULL) 22143 return (NULL); 22144 bzero(mp->b_rptr, sizeof (ipic_t) + addr_len); 22145 *ipic = (ipic_t *)mp->b_rptr; 22146 (*ipic)->ipic_cmd = IP_IOC_IRE_ADVISE_NO_REPLY; 22147 (*ipic)->ipic_addr_offset = sizeof (ipic_t); 22148 22149 bcopy(addr, *ipic + 1, addr_len); 22150 22151 (*ipic)->ipic_addr_length = addr_len; 22152 mp->b_wptr = &mp->b_rptr[sizeof (ipic_t) + addr_len]; 22153 22154 mp1 = mkiocb(IP_IOCTL); 22155 if (mp1 == NULL) { 22156 freemsg(mp); 22157 return (NULL); 22158 } 22159 mp1->b_cont = mp; 22160 ioc = (struct iocblk *)mp1->b_rptr; 22161 ioc->ioc_count = sizeof (ipic_t) + addr_len; 22162 22163 return (mp1); 22164 } 22165 22166 /* 22167 * Generate a reset based on an inbound packet for which there is no active 22168 * tcp state that we can find. 22169 * 22170 * IPSEC NOTE : Try to send the reply with the same protection as it came 22171 * in. We still have the ipsec_mp that the packet was attached to. Thus 22172 * the packet will go out at the same level of protection as it came in by 22173 * converting the IPSEC_IN to IPSEC_OUT. 22174 */ 22175 static void 22176 tcp_xmit_early_reset(char *str, mblk_t *mp, uint32_t seq, 22177 uint32_t ack, int ctl, uint_t ip_hdr_len, zoneid_t zoneid) 22178 { 22179 ipha_t *ipha = NULL; 22180 ip6_t *ip6h = NULL; 22181 ushort_t len; 22182 tcph_t *tcph; 22183 int i; 22184 mblk_t *ipsec_mp; 22185 boolean_t mctl_present; 22186 ipic_t *ipic; 22187 ipaddr_t v4addr; 22188 in6_addr_t v6addr; 22189 int addr_len; 22190 void *addr; 22191 queue_t *q = tcp_g_q; 22192 tcp_t *tcp = Q_TO_TCP(q); 22193 cred_t *cr; 22194 mblk_t *nmp; 22195 22196 if (!tcp_send_rst_chk()) { 22197 tcp_rst_unsent++; 22198 freemsg(mp); 22199 return; 22200 } 22201 22202 if (mp->b_datap->db_type == M_CTL) { 22203 ipsec_mp = mp; 22204 mp = mp->b_cont; 22205 mctl_present = B_TRUE; 22206 } else { 22207 ipsec_mp = mp; 22208 mctl_present = B_FALSE; 22209 } 22210 22211 if (str && q && tcp_dbg) { 22212 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 22213 "tcp_xmit_early_reset: '%s', seq 0x%x, ack 0x%x, " 22214 "flags 0x%x", 22215 str, seq, ack, ctl); 22216 } 22217 if (mp->b_datap->db_ref != 1) { 22218 mblk_t *mp1 = copyb(mp); 22219 freemsg(mp); 22220 mp = mp1; 22221 if (!mp) { 22222 if (mctl_present) 22223 freeb(ipsec_mp); 22224 return; 22225 } else { 22226 if (mctl_present) { 22227 ipsec_mp->b_cont = mp; 22228 } else { 22229 ipsec_mp = mp; 22230 } 22231 } 22232 } else if (mp->b_cont) { 22233 freemsg(mp->b_cont); 22234 mp->b_cont = NULL; 22235 } 22236 /* 22237 * We skip reversing source route here. 22238 * (for now we replace all IP options with EOL) 22239 */ 22240 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 22241 ipha = (ipha_t *)mp->b_rptr; 22242 for (i = IP_SIMPLE_HDR_LENGTH; i < (int)ip_hdr_len; i++) 22243 mp->b_rptr[i] = IPOPT_EOL; 22244 /* 22245 * Make sure that src address isn't flagrantly invalid. 22246 * Not all broadcast address checking for the src address 22247 * is possible, since we don't know the netmask of the src 22248 * addr. No check for destination address is done, since 22249 * IP will not pass up a packet with a broadcast dest 22250 * address to TCP. Similar checks are done below for IPv6. 22251 */ 22252 if (ipha->ipha_src == 0 || ipha->ipha_src == INADDR_BROADCAST || 22253 CLASSD(ipha->ipha_src)) { 22254 freemsg(ipsec_mp); 22255 BUMP_MIB(&ip_mib, ipIfStatsInDiscards); 22256 return; 22257 } 22258 } else { 22259 ip6h = (ip6_t *)mp->b_rptr; 22260 22261 if (IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src) || 22262 IN6_IS_ADDR_MULTICAST(&ip6h->ip6_src)) { 22263 freemsg(ipsec_mp); 22264 BUMP_MIB(&ip6_mib, ipIfStatsInDiscards); 22265 return; 22266 } 22267 22268 /* Remove any extension headers assuming partial overlay */ 22269 if (ip_hdr_len > IPV6_HDR_LEN) { 22270 uint8_t *to; 22271 22272 to = mp->b_rptr + ip_hdr_len - IPV6_HDR_LEN; 22273 ovbcopy(ip6h, to, IPV6_HDR_LEN); 22274 mp->b_rptr += ip_hdr_len - IPV6_HDR_LEN; 22275 ip_hdr_len = IPV6_HDR_LEN; 22276 ip6h = (ip6_t *)mp->b_rptr; 22277 ip6h->ip6_nxt = IPPROTO_TCP; 22278 } 22279 } 22280 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 22281 if (tcph->th_flags[0] & TH_RST) { 22282 freemsg(ipsec_mp); 22283 return; 22284 } 22285 tcph->th_offset_and_rsrvd[0] = (5 << 4); 22286 len = ip_hdr_len + sizeof (tcph_t); 22287 mp->b_wptr = &mp->b_rptr[len]; 22288 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 22289 ipha->ipha_length = htons(len); 22290 /* Swap addresses */ 22291 v4addr = ipha->ipha_src; 22292 ipha->ipha_src = ipha->ipha_dst; 22293 ipha->ipha_dst = v4addr; 22294 ipha->ipha_ident = 0; 22295 ipha->ipha_ttl = (uchar_t)tcp_ipv4_ttl; 22296 addr_len = IP_ADDR_LEN; 22297 addr = &v4addr; 22298 } else { 22299 /* No ip6i_t in this case */ 22300 ip6h->ip6_plen = htons(len - IPV6_HDR_LEN); 22301 /* Swap addresses */ 22302 v6addr = ip6h->ip6_src; 22303 ip6h->ip6_src = ip6h->ip6_dst; 22304 ip6h->ip6_dst = v6addr; 22305 ip6h->ip6_hops = (uchar_t)tcp_ipv6_hoplimit; 22306 addr_len = IPV6_ADDR_LEN; 22307 addr = &v6addr; 22308 } 22309 tcp_xchg(tcph->th_fport, tcph->th_lport, 2); 22310 U32_TO_BE32(ack, tcph->th_ack); 22311 U32_TO_BE32(seq, tcph->th_seq); 22312 U16_TO_BE16(0, tcph->th_win); 22313 U16_TO_BE16(sizeof (tcph_t), tcph->th_sum); 22314 tcph->th_flags[0] = (uint8_t)ctl; 22315 if (ctl & TH_RST) { 22316 BUMP_MIB(&tcp_mib, tcpOutRsts); 22317 BUMP_MIB(&tcp_mib, tcpOutControl); 22318 } 22319 22320 /* IP trusts us to set up labels when required. */ 22321 if (is_system_labeled() && (cr = DB_CRED(mp)) != NULL && 22322 crgetlabel(cr) != NULL) { 22323 int err, adjust; 22324 22325 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) 22326 err = tsol_check_label(cr, &mp, &adjust, 22327 tcp->tcp_connp->conn_mac_exempt); 22328 else 22329 err = tsol_check_label_v6(cr, &mp, &adjust, 22330 tcp->tcp_connp->conn_mac_exempt); 22331 if (mctl_present) 22332 ipsec_mp->b_cont = mp; 22333 else 22334 ipsec_mp = mp; 22335 if (err != 0) { 22336 freemsg(ipsec_mp); 22337 return; 22338 } 22339 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 22340 ipha = (ipha_t *)mp->b_rptr; 22341 adjust += ntohs(ipha->ipha_length); 22342 ipha->ipha_length = htons(adjust); 22343 } else { 22344 ip6h = (ip6_t *)mp->b_rptr; 22345 } 22346 } 22347 22348 if (mctl_present) { 22349 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 22350 22351 ASSERT(ii->ipsec_in_type == IPSEC_IN); 22352 if (!ipsec_in_to_out(ipsec_mp, ipha, ip6h)) { 22353 return; 22354 } 22355 } 22356 if (zoneid == ALL_ZONES) 22357 zoneid = GLOBAL_ZONEID; 22358 22359 /* Add the zoneid so ip_output routes it properly */ 22360 if ((nmp = ip_prepend_zoneid(ipsec_mp, zoneid)) == NULL) { 22361 freemsg(ipsec_mp); 22362 return; 22363 } 22364 ipsec_mp = nmp; 22365 22366 /* 22367 * NOTE: one might consider tracing a TCP packet here, but 22368 * this function has no active TCP state and no tcp structure 22369 * that has a trace buffer. If we traced here, we would have 22370 * to keep a local trace buffer in tcp_record_trace(). 22371 * 22372 * TSol note: The mblk that contains the incoming packet was 22373 * reused by tcp_xmit_listener_reset, so it already contains 22374 * the right credentials and we don't need to call mblk_setcred. 22375 * Also the conn's cred is not right since it is associated 22376 * with tcp_g_q. 22377 */ 22378 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, ipsec_mp); 22379 22380 /* 22381 * Tell IP to mark the IRE used for this destination temporary. 22382 * This way, we can limit our exposure to DoS attack because IP 22383 * creates an IRE for each destination. If there are too many, 22384 * the time to do any routing lookup will be extremely long. And 22385 * the lookup can be in interrupt context. 22386 * 22387 * Note that in normal circumstances, this marking should not 22388 * affect anything. It would be nice if only 1 message is 22389 * needed to inform IP that the IRE created for this RST should 22390 * not be added to the cache table. But there is currently 22391 * not such communication mechanism between TCP and IP. So 22392 * the best we can do now is to send the advice ioctl to IP 22393 * to mark the IRE temporary. 22394 */ 22395 if ((mp = tcp_ip_advise_mblk(addr, addr_len, &ipic)) != NULL) { 22396 ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY; 22397 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 22398 } 22399 } 22400 22401 /* 22402 * Initiate closedown sequence on an active connection. (May be called as 22403 * writer.) Return value zero for OK return, non-zero for error return. 22404 */ 22405 static int 22406 tcp_xmit_end(tcp_t *tcp) 22407 { 22408 ipic_t *ipic; 22409 mblk_t *mp; 22410 22411 if (tcp->tcp_state < TCPS_SYN_RCVD || 22412 tcp->tcp_state > TCPS_CLOSE_WAIT) { 22413 /* 22414 * Invalid state, only states TCPS_SYN_RCVD, 22415 * TCPS_ESTABLISHED and TCPS_CLOSE_WAIT are valid 22416 */ 22417 return (-1); 22418 } 22419 22420 tcp->tcp_fss = tcp->tcp_snxt + tcp->tcp_unsent; 22421 tcp->tcp_valid_bits |= TCP_FSS_VALID; 22422 /* 22423 * If there is nothing more unsent, send the FIN now. 22424 * Otherwise, it will go out with the last segment. 22425 */ 22426 if (tcp->tcp_unsent == 0) { 22427 mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 22428 tcp->tcp_fss, B_FALSE, NULL, B_FALSE); 22429 22430 if (mp) { 22431 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 22432 tcp_send_data(tcp, tcp->tcp_wq, mp); 22433 } else { 22434 /* 22435 * Couldn't allocate msg. Pretend we got it out. 22436 * Wait for rexmit timeout. 22437 */ 22438 tcp->tcp_snxt = tcp->tcp_fss + 1; 22439 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 22440 } 22441 22442 /* 22443 * If needed, update tcp_rexmit_snxt as tcp_snxt is 22444 * changed. 22445 */ 22446 if (tcp->tcp_rexmit && tcp->tcp_rexmit_nxt == tcp->tcp_fss) { 22447 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 22448 } 22449 } else { 22450 /* 22451 * If tcp->tcp_cork is set, then the data will not get sent, 22452 * so we have to check that and unset it first. 22453 */ 22454 if (tcp->tcp_cork) 22455 tcp->tcp_cork = B_FALSE; 22456 tcp_wput_data(tcp, NULL, B_FALSE); 22457 } 22458 22459 /* 22460 * If TCP does not get enough samples of RTT or tcp_rtt_updates 22461 * is 0, don't update the cache. 22462 */ 22463 if (tcp_rtt_updates == 0 || tcp->tcp_rtt_update < tcp_rtt_updates) 22464 return (0); 22465 22466 /* 22467 * NOTE: should not update if source routes i.e. if tcp_remote if 22468 * different from the destination. 22469 */ 22470 if (tcp->tcp_ipversion == IPV4_VERSION) { 22471 if (tcp->tcp_remote != tcp->tcp_ipha->ipha_dst) { 22472 return (0); 22473 } 22474 mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN, 22475 &ipic); 22476 } else { 22477 if (!(IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6, 22478 &tcp->tcp_ip6h->ip6_dst))) { 22479 return (0); 22480 } 22481 mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN, 22482 &ipic); 22483 } 22484 22485 /* Record route attributes in the IRE for use by future connections. */ 22486 if (mp == NULL) 22487 return (0); 22488 22489 /* 22490 * We do not have a good algorithm to update ssthresh at this time. 22491 * So don't do any update. 22492 */ 22493 ipic->ipic_rtt = tcp->tcp_rtt_sa; 22494 ipic->ipic_rtt_sd = tcp->tcp_rtt_sd; 22495 22496 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 22497 return (0); 22498 } 22499 22500 /* 22501 * Generate a "no listener here" RST in response to an "unknown" segment. 22502 * Note that we are reusing the incoming mp to construct the outgoing 22503 * RST. 22504 */ 22505 void 22506 tcp_xmit_listeners_reset(mblk_t *mp, uint_t ip_hdr_len, zoneid_t zoneid) 22507 { 22508 uchar_t *rptr; 22509 uint32_t seg_len; 22510 tcph_t *tcph; 22511 uint32_t seg_seq; 22512 uint32_t seg_ack; 22513 uint_t flags; 22514 mblk_t *ipsec_mp; 22515 ipha_t *ipha; 22516 ip6_t *ip6h; 22517 boolean_t mctl_present = B_FALSE; 22518 boolean_t check = B_TRUE; 22519 boolean_t policy_present; 22520 22521 TCP_STAT(tcp_no_listener); 22522 22523 ipsec_mp = mp; 22524 22525 if (mp->b_datap->db_type == M_CTL) { 22526 ipsec_in_t *ii; 22527 22528 mctl_present = B_TRUE; 22529 mp = mp->b_cont; 22530 22531 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 22532 ASSERT(ii->ipsec_in_type == IPSEC_IN); 22533 if (ii->ipsec_in_dont_check) { 22534 check = B_FALSE; 22535 if (!ii->ipsec_in_secure) { 22536 freeb(ipsec_mp); 22537 mctl_present = B_FALSE; 22538 ipsec_mp = mp; 22539 } 22540 } 22541 } 22542 22543 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 22544 policy_present = ipsec_inbound_v4_policy_present; 22545 ipha = (ipha_t *)mp->b_rptr; 22546 ip6h = NULL; 22547 } else { 22548 policy_present = ipsec_inbound_v6_policy_present; 22549 ipha = NULL; 22550 ip6h = (ip6_t *)mp->b_rptr; 22551 } 22552 22553 if (check && policy_present) { 22554 /* 22555 * The conn_t parameter is NULL because we already know 22556 * nobody's home. 22557 */ 22558 ipsec_mp = ipsec_check_global_policy( 22559 ipsec_mp, (conn_t *)NULL, ipha, ip6h, mctl_present); 22560 if (ipsec_mp == NULL) 22561 return; 22562 } 22563 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 22564 DTRACE_PROBE2( 22565 tx__ip__log__error__nolistener__tcp, 22566 char *, "Could not reply with RST to mp(1)", 22567 mblk_t *, mp); 22568 ip2dbg(("tcp_xmit_listeners_reset: not permitted to reply\n")); 22569 freemsg(ipsec_mp); 22570 return; 22571 } 22572 22573 rptr = mp->b_rptr; 22574 22575 tcph = (tcph_t *)&rptr[ip_hdr_len]; 22576 seg_seq = BE32_TO_U32(tcph->th_seq); 22577 seg_ack = BE32_TO_U32(tcph->th_ack); 22578 flags = tcph->th_flags[0]; 22579 22580 seg_len = msgdsize(mp) - (TCP_HDR_LENGTH(tcph) + ip_hdr_len); 22581 if (flags & TH_RST) { 22582 freemsg(ipsec_mp); 22583 } else if (flags & TH_ACK) { 22584 tcp_xmit_early_reset("no tcp, reset", 22585 ipsec_mp, seg_ack, 0, TH_RST, ip_hdr_len, zoneid); 22586 } else { 22587 if (flags & TH_SYN) { 22588 seg_len++; 22589 } else { 22590 /* 22591 * Here we violate the RFC. Note that a normal 22592 * TCP will never send a segment without the ACK 22593 * flag, except for RST or SYN segment. This 22594 * segment is neither. Just drop it on the 22595 * floor. 22596 */ 22597 freemsg(ipsec_mp); 22598 tcp_rst_unsent++; 22599 return; 22600 } 22601 22602 tcp_xmit_early_reset("no tcp, reset/ack", 22603 ipsec_mp, 0, seg_seq + seg_len, 22604 TH_RST | TH_ACK, ip_hdr_len, zoneid); 22605 } 22606 } 22607 22608 /* 22609 * tcp_xmit_mp is called to return a pointer to an mblk chain complete with 22610 * ip and tcp header ready to pass down to IP. If the mp passed in is 22611 * non-NULL, then up to max_to_send bytes of data will be dup'ed off that 22612 * mblk. (If sendall is not set the dup'ing will stop at an mblk boundary 22613 * otherwise it will dup partial mblks.) 22614 * Otherwise, an appropriate ACK packet will be generated. This 22615 * routine is not usually called to send new data for the first time. It 22616 * is mostly called out of the timer for retransmits, and to generate ACKs. 22617 * 22618 * If offset is not NULL, the returned mblk chain's first mblk's b_rptr will 22619 * be adjusted by *offset. And after dupb(), the offset and the ending mblk 22620 * of the original mblk chain will be returned in *offset and *end_mp. 22621 */ 22622 mblk_t * 22623 tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, int32_t *offset, 22624 mblk_t **end_mp, uint32_t seq, boolean_t sendall, uint32_t *seg_len, 22625 boolean_t rexmit) 22626 { 22627 int data_length; 22628 int32_t off = 0; 22629 uint_t flags; 22630 mblk_t *mp1; 22631 mblk_t *mp2; 22632 uchar_t *rptr; 22633 tcph_t *tcph; 22634 int32_t num_sack_blk = 0; 22635 int32_t sack_opt_len = 0; 22636 22637 /* Allocate for our maximum TCP header + link-level */ 22638 mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcp_wroff_xtra, 22639 BPRI_MED); 22640 if (!mp1) 22641 return (NULL); 22642 data_length = 0; 22643 22644 /* 22645 * Note that tcp_mss has been adjusted to take into account the 22646 * timestamp option if applicable. Because SACK options do not 22647 * appear in every TCP segments and they are of variable lengths, 22648 * they cannot be included in tcp_mss. Thus we need to calculate 22649 * the actual segment length when we need to send a segment which 22650 * includes SACK options. 22651 */ 22652 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 22653 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 22654 tcp->tcp_num_sack_blk); 22655 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 22656 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 22657 if (max_to_send + sack_opt_len > tcp->tcp_mss) 22658 max_to_send -= sack_opt_len; 22659 } 22660 22661 if (offset != NULL) { 22662 off = *offset; 22663 /* We use offset as an indicator that end_mp is not NULL. */ 22664 *end_mp = NULL; 22665 } 22666 for (mp2 = mp1; mp && data_length != max_to_send; mp = mp->b_cont) { 22667 /* This could be faster with cooperation from downstream */ 22668 if (mp2 != mp1 && !sendall && 22669 data_length + (int)(mp->b_wptr - mp->b_rptr) > 22670 max_to_send) 22671 /* 22672 * Don't send the next mblk since the whole mblk 22673 * does not fit. 22674 */ 22675 break; 22676 mp2->b_cont = dupb(mp); 22677 mp2 = mp2->b_cont; 22678 if (!mp2) { 22679 freemsg(mp1); 22680 return (NULL); 22681 } 22682 mp2->b_rptr += off; 22683 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 22684 (uintptr_t)INT_MAX); 22685 22686 data_length += (int)(mp2->b_wptr - mp2->b_rptr); 22687 if (data_length > max_to_send) { 22688 mp2->b_wptr -= data_length - max_to_send; 22689 data_length = max_to_send; 22690 off = mp2->b_wptr - mp->b_rptr; 22691 break; 22692 } else { 22693 off = 0; 22694 } 22695 } 22696 if (offset != NULL) { 22697 *offset = off; 22698 *end_mp = mp; 22699 } 22700 if (seg_len != NULL) { 22701 *seg_len = data_length; 22702 } 22703 22704 /* Update the latest receive window size in TCP header. */ 22705 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 22706 tcp->tcp_tcph->th_win); 22707 22708 rptr = mp1->b_rptr + tcp_wroff_xtra; 22709 mp1->b_rptr = rptr; 22710 mp1->b_wptr = rptr + tcp->tcp_hdr_len + sack_opt_len; 22711 bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len); 22712 tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len]; 22713 U32_TO_ABE32(seq, tcph->th_seq); 22714 22715 /* 22716 * Use tcp_unsent to determine if the PUSH bit should be used assumes 22717 * that this function was called from tcp_wput_data. Thus, when called 22718 * to retransmit data the setting of the PUSH bit may appear some 22719 * what random in that it might get set when it should not. This 22720 * should not pose any performance issues. 22721 */ 22722 if (data_length != 0 && (tcp->tcp_unsent == 0 || 22723 tcp->tcp_unsent == data_length)) { 22724 flags = TH_ACK | TH_PUSH; 22725 } else { 22726 flags = TH_ACK; 22727 } 22728 22729 if (tcp->tcp_ecn_ok) { 22730 if (tcp->tcp_ecn_echo_on) 22731 flags |= TH_ECE; 22732 22733 /* 22734 * Only set ECT bit and ECN_CWR if a segment contains new data. 22735 * There is no TCP flow control for non-data segments, and 22736 * only data segment is transmitted reliably. 22737 */ 22738 if (data_length > 0 && !rexmit) { 22739 SET_ECT(tcp, rptr); 22740 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 22741 flags |= TH_CWR; 22742 tcp->tcp_ecn_cwr_sent = B_TRUE; 22743 } 22744 } 22745 } 22746 22747 if (tcp->tcp_valid_bits) { 22748 uint32_t u1; 22749 22750 if ((tcp->tcp_valid_bits & TCP_ISS_VALID) && 22751 seq == tcp->tcp_iss) { 22752 uchar_t *wptr; 22753 22754 /* 22755 * If TCP_ISS_VALID and the seq number is tcp_iss, 22756 * TCP can only be in SYN-SENT, SYN-RCVD or 22757 * FIN-WAIT-1 state. It can be FIN-WAIT-1 if 22758 * our SYN is not ack'ed but the app closes this 22759 * TCP connection. 22760 */ 22761 ASSERT(tcp->tcp_state == TCPS_SYN_SENT || 22762 tcp->tcp_state == TCPS_SYN_RCVD || 22763 tcp->tcp_state == TCPS_FIN_WAIT_1); 22764 22765 /* 22766 * Tack on the MSS option. It is always needed 22767 * for both active and passive open. 22768 * 22769 * MSS option value should be interface MTU - MIN 22770 * TCP/IP header according to RFC 793 as it means 22771 * the maximum segment size TCP can receive. But 22772 * to get around some broken middle boxes/end hosts 22773 * out there, we allow the option value to be the 22774 * same as the MSS option size on the peer side. 22775 * In this way, the other side will not send 22776 * anything larger than they can receive. 22777 * 22778 * Note that for SYN_SENT state, the ndd param 22779 * tcp_use_smss_as_mss_opt has no effect as we 22780 * don't know the peer's MSS option value. So 22781 * the only case we need to take care of is in 22782 * SYN_RCVD state, which is done later. 22783 */ 22784 wptr = mp1->b_wptr; 22785 wptr[0] = TCPOPT_MAXSEG; 22786 wptr[1] = TCPOPT_MAXSEG_LEN; 22787 wptr += 2; 22788 u1 = tcp->tcp_if_mtu - 22789 (tcp->tcp_ipversion == IPV4_VERSION ? 22790 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) - 22791 TCP_MIN_HEADER_LENGTH; 22792 U16_TO_BE16(u1, wptr); 22793 mp1->b_wptr = wptr + 2; 22794 /* Update the offset to cover the additional word */ 22795 tcph->th_offset_and_rsrvd[0] += (1 << 4); 22796 22797 /* 22798 * Note that the following way of filling in 22799 * TCP options are not optimal. Some NOPs can 22800 * be saved. But there is no need at this time 22801 * to optimize it. When it is needed, we will 22802 * do it. 22803 */ 22804 switch (tcp->tcp_state) { 22805 case TCPS_SYN_SENT: 22806 flags = TH_SYN; 22807 22808 if (tcp->tcp_snd_ts_ok) { 22809 uint32_t llbolt = (uint32_t)lbolt; 22810 22811 wptr = mp1->b_wptr; 22812 wptr[0] = TCPOPT_NOP; 22813 wptr[1] = TCPOPT_NOP; 22814 wptr[2] = TCPOPT_TSTAMP; 22815 wptr[3] = TCPOPT_TSTAMP_LEN; 22816 wptr += 4; 22817 U32_TO_BE32(llbolt, wptr); 22818 wptr += 4; 22819 ASSERT(tcp->tcp_ts_recent == 0); 22820 U32_TO_BE32(0L, wptr); 22821 mp1->b_wptr += TCPOPT_REAL_TS_LEN; 22822 tcph->th_offset_and_rsrvd[0] += 22823 (3 << 4); 22824 } 22825 22826 /* 22827 * Set up all the bits to tell other side 22828 * we are ECN capable. 22829 */ 22830 if (tcp->tcp_ecn_ok) { 22831 flags |= (TH_ECE | TH_CWR); 22832 } 22833 break; 22834 case TCPS_SYN_RCVD: 22835 flags |= TH_SYN; 22836 22837 /* 22838 * Reset the MSS option value to be SMSS 22839 * We should probably add back the bytes 22840 * for timestamp option and IPsec. We 22841 * don't do that as this is a workaround 22842 * for broken middle boxes/end hosts, it 22843 * is better for us to be more cautious. 22844 * They may not take these things into 22845 * account in their SMSS calculation. Thus 22846 * the peer's calculated SMSS may be smaller 22847 * than what it can be. This should be OK. 22848 */ 22849 if (tcp_use_smss_as_mss_opt) { 22850 u1 = tcp->tcp_mss; 22851 U16_TO_BE16(u1, wptr); 22852 } 22853 22854 /* 22855 * If the other side is ECN capable, reply 22856 * that we are also ECN capable. 22857 */ 22858 if (tcp->tcp_ecn_ok) 22859 flags |= TH_ECE; 22860 break; 22861 default: 22862 /* 22863 * The above ASSERT() makes sure that this 22864 * must be FIN-WAIT-1 state. Our SYN has 22865 * not been ack'ed so retransmit it. 22866 */ 22867 flags |= TH_SYN; 22868 break; 22869 } 22870 22871 if (tcp->tcp_snd_ws_ok) { 22872 wptr = mp1->b_wptr; 22873 wptr[0] = TCPOPT_NOP; 22874 wptr[1] = TCPOPT_WSCALE; 22875 wptr[2] = TCPOPT_WS_LEN; 22876 wptr[3] = (uchar_t)tcp->tcp_rcv_ws; 22877 mp1->b_wptr += TCPOPT_REAL_WS_LEN; 22878 tcph->th_offset_and_rsrvd[0] += (1 << 4); 22879 } 22880 22881 if (tcp->tcp_snd_sack_ok) { 22882 wptr = mp1->b_wptr; 22883 wptr[0] = TCPOPT_NOP; 22884 wptr[1] = TCPOPT_NOP; 22885 wptr[2] = TCPOPT_SACK_PERMITTED; 22886 wptr[3] = TCPOPT_SACK_OK_LEN; 22887 mp1->b_wptr += TCPOPT_REAL_SACK_OK_LEN; 22888 tcph->th_offset_and_rsrvd[0] += (1 << 4); 22889 } 22890 22891 /* allocb() of adequate mblk assures space */ 22892 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 22893 (uintptr_t)INT_MAX); 22894 u1 = (int)(mp1->b_wptr - mp1->b_rptr); 22895 /* 22896 * Get IP set to checksum on our behalf 22897 * Include the adjustment for a source route if any. 22898 */ 22899 u1 += tcp->tcp_sum; 22900 u1 = (u1 >> 16) + (u1 & 0xFFFF); 22901 U16_TO_BE16(u1, tcph->th_sum); 22902 BUMP_MIB(&tcp_mib, tcpOutControl); 22903 } 22904 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 22905 (seq + data_length) == tcp->tcp_fss) { 22906 if (!tcp->tcp_fin_acked) { 22907 flags |= TH_FIN; 22908 BUMP_MIB(&tcp_mib, tcpOutControl); 22909 } 22910 if (!tcp->tcp_fin_sent) { 22911 tcp->tcp_fin_sent = B_TRUE; 22912 switch (tcp->tcp_state) { 22913 case TCPS_SYN_RCVD: 22914 case TCPS_ESTABLISHED: 22915 tcp->tcp_state = TCPS_FIN_WAIT_1; 22916 break; 22917 case TCPS_CLOSE_WAIT: 22918 tcp->tcp_state = TCPS_LAST_ACK; 22919 break; 22920 } 22921 if (tcp->tcp_suna == tcp->tcp_snxt) 22922 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 22923 tcp->tcp_snxt = tcp->tcp_fss + 1; 22924 } 22925 } 22926 /* 22927 * Note the trick here. u1 is unsigned. When tcp_urg 22928 * is smaller than seq, u1 will become a very huge value. 22929 * So the comparison will fail. Also note that tcp_urp 22930 * should be positive, see RFC 793 page 17. 22931 */ 22932 u1 = tcp->tcp_urg - seq + TCP_OLD_URP_INTERPRETATION; 22933 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && u1 != 0 && 22934 u1 < (uint32_t)(64 * 1024)) { 22935 flags |= TH_URG; 22936 BUMP_MIB(&tcp_mib, tcpOutUrg); 22937 U32_TO_ABE16(u1, tcph->th_urp); 22938 } 22939 } 22940 tcph->th_flags[0] = (uchar_t)flags; 22941 tcp->tcp_rack = tcp->tcp_rnxt; 22942 tcp->tcp_rack_cnt = 0; 22943 22944 if (tcp->tcp_snd_ts_ok) { 22945 if (tcp->tcp_state != TCPS_SYN_SENT) { 22946 uint32_t llbolt = (uint32_t)lbolt; 22947 22948 U32_TO_BE32(llbolt, 22949 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 22950 U32_TO_BE32(tcp->tcp_ts_recent, 22951 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 22952 } 22953 } 22954 22955 if (num_sack_blk > 0) { 22956 uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len; 22957 sack_blk_t *tmp; 22958 int32_t i; 22959 22960 wptr[0] = TCPOPT_NOP; 22961 wptr[1] = TCPOPT_NOP; 22962 wptr[2] = TCPOPT_SACK; 22963 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 22964 sizeof (sack_blk_t); 22965 wptr += TCPOPT_REAL_SACK_LEN; 22966 22967 tmp = tcp->tcp_sack_list; 22968 for (i = 0; i < num_sack_blk; i++) { 22969 U32_TO_BE32(tmp[i].begin, wptr); 22970 wptr += sizeof (tcp_seq); 22971 U32_TO_BE32(tmp[i].end, wptr); 22972 wptr += sizeof (tcp_seq); 22973 } 22974 tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) << 4); 22975 } 22976 ASSERT((uintptr_t)(mp1->b_wptr - rptr) <= (uintptr_t)INT_MAX); 22977 data_length += (int)(mp1->b_wptr - rptr); 22978 if (tcp->tcp_ipversion == IPV4_VERSION) { 22979 ((ipha_t *)rptr)->ipha_length = htons(data_length); 22980 } else { 22981 ip6_t *ip6 = (ip6_t *)(rptr + 22982 (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ? 22983 sizeof (ip6i_t) : 0)); 22984 22985 ip6->ip6_plen = htons(data_length - 22986 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 22987 } 22988 22989 /* 22990 * Prime pump for IP 22991 * Include the adjustment for a source route if any. 22992 */ 22993 data_length -= tcp->tcp_ip_hdr_len; 22994 data_length += tcp->tcp_sum; 22995 data_length = (data_length >> 16) + (data_length & 0xFFFF); 22996 U16_TO_ABE16(data_length, tcph->th_sum); 22997 if (tcp->tcp_ip_forward_progress) { 22998 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 22999 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 23000 tcp->tcp_ip_forward_progress = B_FALSE; 23001 } 23002 return (mp1); 23003 } 23004 23005 /* This function handles the push timeout. */ 23006 void 23007 tcp_push_timer(void *arg) 23008 { 23009 conn_t *connp = (conn_t *)arg; 23010 tcp_t *tcp = connp->conn_tcp; 23011 23012 TCP_DBGSTAT(tcp_push_timer_cnt); 23013 23014 ASSERT(tcp->tcp_listener == NULL); 23015 23016 /* 23017 * We need to plug synchronous streams during our drain to prevent 23018 * a race with tcp_fuse_rrw() or tcp_fusion_rinfop(). 23019 */ 23020 TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp); 23021 tcp->tcp_push_tid = 0; 23022 if ((tcp->tcp_rcv_list != NULL) && 23023 (tcp_rcv_drain(tcp->tcp_rq, tcp) == TH_ACK_NEEDED)) 23024 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 23025 TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp); 23026 } 23027 23028 /* 23029 * This function handles delayed ACK timeout. 23030 */ 23031 static void 23032 tcp_ack_timer(void *arg) 23033 { 23034 conn_t *connp = (conn_t *)arg; 23035 tcp_t *tcp = connp->conn_tcp; 23036 mblk_t *mp; 23037 23038 TCP_DBGSTAT(tcp_ack_timer_cnt); 23039 23040 tcp->tcp_ack_tid = 0; 23041 23042 if (tcp->tcp_fused) 23043 return; 23044 23045 /* 23046 * Do not send ACK if there is no outstanding unack'ed data. 23047 */ 23048 if (tcp->tcp_rnxt == tcp->tcp_rack) { 23049 return; 23050 } 23051 23052 if ((tcp->tcp_rnxt - tcp->tcp_rack) > tcp->tcp_mss) { 23053 /* 23054 * Make sure we don't allow deferred ACKs to result in 23055 * timer-based ACKing. If we have held off an ACK 23056 * when there was more than an mss here, and the timer 23057 * goes off, we have to worry about the possibility 23058 * that the sender isn't doing slow-start, or is out 23059 * of step with us for some other reason. We fall 23060 * permanently back in the direction of 23061 * ACK-every-other-packet as suggested in RFC 1122. 23062 */ 23063 if (tcp->tcp_rack_abs_max > 2) 23064 tcp->tcp_rack_abs_max--; 23065 tcp->tcp_rack_cur_max = 2; 23066 } 23067 mp = tcp_ack_mp(tcp); 23068 23069 if (mp != NULL) { 23070 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 23071 BUMP_LOCAL(tcp->tcp_obsegs); 23072 BUMP_MIB(&tcp_mib, tcpOutAck); 23073 BUMP_MIB(&tcp_mib, tcpOutAckDelayed); 23074 tcp_send_data(tcp, tcp->tcp_wq, mp); 23075 } 23076 } 23077 23078 23079 /* Generate an ACK-only (no data) segment for a TCP endpoint */ 23080 static mblk_t * 23081 tcp_ack_mp(tcp_t *tcp) 23082 { 23083 uint32_t seq_no; 23084 23085 /* 23086 * There are a few cases to be considered while setting the sequence no. 23087 * Essentially, we can come here while processing an unacceptable pkt 23088 * in the TCPS_SYN_RCVD state, in which case we set the sequence number 23089 * to snxt (per RFC 793), note the swnd wouldn't have been set yet. 23090 * If we are here for a zero window probe, stick with suna. In all 23091 * other cases, we check if suna + swnd encompasses snxt and set 23092 * the sequence number to snxt, if so. If snxt falls outside the 23093 * window (the receiver probably shrunk its window), we will go with 23094 * suna + swnd, otherwise the sequence no will be unacceptable to the 23095 * receiver. 23096 */ 23097 if (tcp->tcp_zero_win_probe) { 23098 seq_no = tcp->tcp_suna; 23099 } else if (tcp->tcp_state == TCPS_SYN_RCVD) { 23100 ASSERT(tcp->tcp_swnd == 0); 23101 seq_no = tcp->tcp_snxt; 23102 } else { 23103 seq_no = SEQ_GT(tcp->tcp_snxt, 23104 (tcp->tcp_suna + tcp->tcp_swnd)) ? 23105 (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt; 23106 } 23107 23108 if (tcp->tcp_valid_bits) { 23109 /* 23110 * For the complex case where we have to send some 23111 * controls (FIN or SYN), let tcp_xmit_mp do it. 23112 */ 23113 return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE, 23114 NULL, B_FALSE)); 23115 } else { 23116 /* Generate a simple ACK */ 23117 int data_length; 23118 uchar_t *rptr; 23119 tcph_t *tcph; 23120 mblk_t *mp1; 23121 int32_t tcp_hdr_len; 23122 int32_t tcp_tcp_hdr_len; 23123 int32_t num_sack_blk = 0; 23124 int32_t sack_opt_len; 23125 23126 /* 23127 * Allocate space for TCP + IP headers 23128 * and link-level header 23129 */ 23130 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 23131 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 23132 tcp->tcp_num_sack_blk); 23133 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 23134 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 23135 tcp_hdr_len = tcp->tcp_hdr_len + sack_opt_len; 23136 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + sack_opt_len; 23137 } else { 23138 tcp_hdr_len = tcp->tcp_hdr_len; 23139 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len; 23140 } 23141 mp1 = allocb(tcp_hdr_len + tcp_wroff_xtra, BPRI_MED); 23142 if (!mp1) 23143 return (NULL); 23144 23145 /* Update the latest receive window size in TCP header. */ 23146 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 23147 tcp->tcp_tcph->th_win); 23148 /* copy in prototype TCP + IP header */ 23149 rptr = mp1->b_rptr + tcp_wroff_xtra; 23150 mp1->b_rptr = rptr; 23151 mp1->b_wptr = rptr + tcp_hdr_len; 23152 bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len); 23153 23154 tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len]; 23155 23156 /* Set the TCP sequence number. */ 23157 U32_TO_ABE32(seq_no, tcph->th_seq); 23158 23159 /* Set up the TCP flag field. */ 23160 tcph->th_flags[0] = (uchar_t)TH_ACK; 23161 if (tcp->tcp_ecn_echo_on) 23162 tcph->th_flags[0] |= TH_ECE; 23163 23164 tcp->tcp_rack = tcp->tcp_rnxt; 23165 tcp->tcp_rack_cnt = 0; 23166 23167 /* fill in timestamp option if in use */ 23168 if (tcp->tcp_snd_ts_ok) { 23169 uint32_t llbolt = (uint32_t)lbolt; 23170 23171 U32_TO_BE32(llbolt, 23172 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 23173 U32_TO_BE32(tcp->tcp_ts_recent, 23174 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 23175 } 23176 23177 /* Fill in SACK options */ 23178 if (num_sack_blk > 0) { 23179 uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len; 23180 sack_blk_t *tmp; 23181 int32_t i; 23182 23183 wptr[0] = TCPOPT_NOP; 23184 wptr[1] = TCPOPT_NOP; 23185 wptr[2] = TCPOPT_SACK; 23186 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 23187 sizeof (sack_blk_t); 23188 wptr += TCPOPT_REAL_SACK_LEN; 23189 23190 tmp = tcp->tcp_sack_list; 23191 for (i = 0; i < num_sack_blk; i++) { 23192 U32_TO_BE32(tmp[i].begin, wptr); 23193 wptr += sizeof (tcp_seq); 23194 U32_TO_BE32(tmp[i].end, wptr); 23195 wptr += sizeof (tcp_seq); 23196 } 23197 tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) 23198 << 4); 23199 } 23200 23201 if (tcp->tcp_ipversion == IPV4_VERSION) { 23202 ((ipha_t *)rptr)->ipha_length = htons(tcp_hdr_len); 23203 } else { 23204 /* Check for ip6i_t header in sticky hdrs */ 23205 ip6_t *ip6 = (ip6_t *)(rptr + 23206 (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ? 23207 sizeof (ip6i_t) : 0)); 23208 23209 ip6->ip6_plen = htons(tcp_hdr_len - 23210 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 23211 } 23212 23213 /* 23214 * Prime pump for checksum calculation in IP. Include the 23215 * adjustment for a source route if any. 23216 */ 23217 data_length = tcp_tcp_hdr_len + tcp->tcp_sum; 23218 data_length = (data_length >> 16) + (data_length & 0xFFFF); 23219 U16_TO_ABE16(data_length, tcph->th_sum); 23220 23221 if (tcp->tcp_ip_forward_progress) { 23222 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 23223 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 23224 tcp->tcp_ip_forward_progress = B_FALSE; 23225 } 23226 return (mp1); 23227 } 23228 } 23229 23230 /* 23231 * To create a temporary tcp structure for inserting into bind hash list. 23232 * The parameter is assumed to be in network byte order, ready for use. 23233 */ 23234 /* ARGSUSED */ 23235 static tcp_t * 23236 tcp_alloc_temp_tcp(in_port_t port) 23237 { 23238 conn_t *connp; 23239 tcp_t *tcp; 23240 23241 connp = ipcl_conn_create(IPCL_TCPCONN, KM_SLEEP); 23242 if (connp == NULL) 23243 return (NULL); 23244 23245 tcp = connp->conn_tcp; 23246 23247 /* 23248 * Only initialize the necessary info in those structures. Note 23249 * that since INADDR_ANY is all 0, we do not need to set 23250 * tcp_bound_source to INADDR_ANY here. 23251 */ 23252 tcp->tcp_state = TCPS_BOUND; 23253 tcp->tcp_lport = port; 23254 tcp->tcp_exclbind = 1; 23255 tcp->tcp_reserved_port = 1; 23256 23257 /* Just for place holding... */ 23258 tcp->tcp_ipversion = IPV4_VERSION; 23259 23260 return (tcp); 23261 } 23262 23263 /* 23264 * To remove a port range specified by lo_port and hi_port from the 23265 * reserved port ranges. This is one of the three public functions of 23266 * the reserved port interface. Note that a port range has to be removed 23267 * as a whole. Ports in a range cannot be removed individually. 23268 * 23269 * Params: 23270 * in_port_t lo_port: the beginning port of the reserved port range to 23271 * be deleted. 23272 * in_port_t hi_port: the ending port of the reserved port range to 23273 * be deleted. 23274 * 23275 * Return: 23276 * B_TRUE if the deletion is successful, B_FALSE otherwise. 23277 */ 23278 boolean_t 23279 tcp_reserved_port_del(in_port_t lo_port, in_port_t hi_port) 23280 { 23281 int i, j; 23282 int size; 23283 tcp_t **temp_tcp_array; 23284 tcp_t *tcp; 23285 23286 rw_enter(&tcp_reserved_port_lock, RW_WRITER); 23287 23288 /* First make sure that the port ranage is indeed reserved. */ 23289 for (i = 0; i < tcp_reserved_port_array_size; i++) { 23290 if (tcp_reserved_port[i].lo_port == lo_port) { 23291 hi_port = tcp_reserved_port[i].hi_port; 23292 temp_tcp_array = tcp_reserved_port[i].temp_tcp_array; 23293 break; 23294 } 23295 } 23296 if (i == tcp_reserved_port_array_size) { 23297 rw_exit(&tcp_reserved_port_lock); 23298 return (B_FALSE); 23299 } 23300 23301 /* 23302 * Remove the range from the array. This simple loop is possible 23303 * because port ranges are inserted in ascending order. 23304 */ 23305 for (j = i; j < tcp_reserved_port_array_size - 1; j++) { 23306 tcp_reserved_port[j].lo_port = tcp_reserved_port[j+1].lo_port; 23307 tcp_reserved_port[j].hi_port = tcp_reserved_port[j+1].hi_port; 23308 tcp_reserved_port[j].temp_tcp_array = 23309 tcp_reserved_port[j+1].temp_tcp_array; 23310 } 23311 23312 /* Remove all the temporary tcp structures. */ 23313 size = hi_port - lo_port + 1; 23314 while (size > 0) { 23315 tcp = temp_tcp_array[size - 1]; 23316 ASSERT(tcp != NULL); 23317 tcp_bind_hash_remove(tcp); 23318 CONN_DEC_REF(tcp->tcp_connp); 23319 size--; 23320 } 23321 kmem_free(temp_tcp_array, (hi_port - lo_port + 1) * sizeof (tcp_t *)); 23322 tcp_reserved_port_array_size--; 23323 rw_exit(&tcp_reserved_port_lock); 23324 return (B_TRUE); 23325 } 23326 23327 /* 23328 * Macro to remove temporary tcp structure from the bind hash list. The 23329 * first parameter is the list of tcp to be removed. The second parameter 23330 * is the number of tcps in the array. 23331 */ 23332 #define TCP_TMP_TCP_REMOVE(tcp_array, num) \ 23333 { \ 23334 while ((num) > 0) { \ 23335 tcp_t *tcp = (tcp_array)[(num) - 1]; \ 23336 tf_t *tbf; \ 23337 tcp_t *tcpnext; \ 23338 tbf = &tcp_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)]; \ 23339 mutex_enter(&tbf->tf_lock); \ 23340 tcpnext = tcp->tcp_bind_hash; \ 23341 if (tcpnext) { \ 23342 tcpnext->tcp_ptpbhn = \ 23343 tcp->tcp_ptpbhn; \ 23344 } \ 23345 *tcp->tcp_ptpbhn = tcpnext; \ 23346 mutex_exit(&tbf->tf_lock); \ 23347 kmem_free(tcp, sizeof (tcp_t)); \ 23348 (tcp_array)[(num) - 1] = NULL; \ 23349 (num)--; \ 23350 } \ 23351 } 23352 23353 /* 23354 * The public interface for other modules to call to reserve a port range 23355 * in TCP. The caller passes in how large a port range it wants. TCP 23356 * will try to find a range and return it via lo_port and hi_port. This is 23357 * used by NCA's nca_conn_init. 23358 * NCA can only be used in the global zone so this only affects the global 23359 * zone's ports. 23360 * 23361 * Params: 23362 * int size: the size of the port range to be reserved. 23363 * in_port_t *lo_port (referenced): returns the beginning port of the 23364 * reserved port range added. 23365 * in_port_t *hi_port (referenced): returns the ending port of the 23366 * reserved port range added. 23367 * 23368 * Return: 23369 * B_TRUE if the port reservation is successful, B_FALSE otherwise. 23370 */ 23371 boolean_t 23372 tcp_reserved_port_add(int size, in_port_t *lo_port, in_port_t *hi_port) 23373 { 23374 tcp_t *tcp; 23375 tcp_t *tmp_tcp; 23376 tcp_t **temp_tcp_array; 23377 tf_t *tbf; 23378 in_port_t net_port; 23379 in_port_t port; 23380 int32_t cur_size; 23381 int i, j; 23382 boolean_t used; 23383 tcp_rport_t tmp_ports[TCP_RESERVED_PORTS_ARRAY_MAX_SIZE]; 23384 zoneid_t zoneid = GLOBAL_ZONEID; 23385 23386 /* Sanity check. */ 23387 if (size <= 0 || size > TCP_RESERVED_PORTS_RANGE_MAX) { 23388 return (B_FALSE); 23389 } 23390 23391 rw_enter(&tcp_reserved_port_lock, RW_WRITER); 23392 if (tcp_reserved_port_array_size == TCP_RESERVED_PORTS_ARRAY_MAX_SIZE) { 23393 rw_exit(&tcp_reserved_port_lock); 23394 return (B_FALSE); 23395 } 23396 23397 /* 23398 * Find the starting port to try. Since the port ranges are ordered 23399 * in the reserved port array, we can do a simple search here. 23400 */ 23401 *lo_port = TCP_SMALLEST_RESERVED_PORT; 23402 *hi_port = TCP_LARGEST_RESERVED_PORT; 23403 for (i = 0; i < tcp_reserved_port_array_size; 23404 *lo_port = tcp_reserved_port[i].hi_port + 1, i++) { 23405 if (tcp_reserved_port[i].lo_port - *lo_port >= size) { 23406 *hi_port = tcp_reserved_port[i].lo_port - 1; 23407 break; 23408 } 23409 } 23410 /* No available port range. */ 23411 if (i == tcp_reserved_port_array_size && *hi_port - *lo_port < size) { 23412 rw_exit(&tcp_reserved_port_lock); 23413 return (B_FALSE); 23414 } 23415 23416 temp_tcp_array = kmem_zalloc(size * sizeof (tcp_t *), KM_NOSLEEP); 23417 if (temp_tcp_array == NULL) { 23418 rw_exit(&tcp_reserved_port_lock); 23419 return (B_FALSE); 23420 } 23421 23422 /* Go thru the port range to see if some ports are already bound. */ 23423 for (port = *lo_port, cur_size = 0; 23424 cur_size < size && port <= *hi_port; 23425 cur_size++, port++) { 23426 used = B_FALSE; 23427 net_port = htons(port); 23428 tbf = &tcp_bind_fanout[TCP_BIND_HASH(net_port)]; 23429 mutex_enter(&tbf->tf_lock); 23430 for (tcp = tbf->tf_tcp; tcp != NULL; 23431 tcp = tcp->tcp_bind_hash) { 23432 if (IPCL_ZONE_MATCH(tcp->tcp_connp, zoneid) && 23433 net_port == tcp->tcp_lport) { 23434 /* 23435 * A port is already bound. Search again 23436 * starting from port + 1. Release all 23437 * temporary tcps. 23438 */ 23439 mutex_exit(&tbf->tf_lock); 23440 TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size); 23441 *lo_port = port + 1; 23442 cur_size = -1; 23443 used = B_TRUE; 23444 break; 23445 } 23446 } 23447 if (!used) { 23448 if ((tmp_tcp = tcp_alloc_temp_tcp(net_port)) == NULL) { 23449 /* 23450 * Allocation failure. Just fail the request. 23451 * Need to remove all those temporary tcp 23452 * structures. 23453 */ 23454 mutex_exit(&tbf->tf_lock); 23455 TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size); 23456 rw_exit(&tcp_reserved_port_lock); 23457 kmem_free(temp_tcp_array, 23458 (hi_port - lo_port + 1) * 23459 sizeof (tcp_t *)); 23460 return (B_FALSE); 23461 } 23462 temp_tcp_array[cur_size] = tmp_tcp; 23463 tcp_bind_hash_insert(tbf, tmp_tcp, B_TRUE); 23464 mutex_exit(&tbf->tf_lock); 23465 } 23466 } 23467 23468 /* 23469 * The current range is not large enough. We can actually do another 23470 * search if this search is done between 2 reserved port ranges. But 23471 * for first release, we just stop here and return saying that no port 23472 * range is available. 23473 */ 23474 if (cur_size < size) { 23475 TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size); 23476 rw_exit(&tcp_reserved_port_lock); 23477 kmem_free(temp_tcp_array, size * sizeof (tcp_t *)); 23478 return (B_FALSE); 23479 } 23480 *hi_port = port - 1; 23481 23482 /* 23483 * Insert range into array in ascending order. Since this function 23484 * must not be called often, we choose to use the simplest method. 23485 * The above array should not consume excessive stack space as 23486 * the size must be very small. If in future releases, we find 23487 * that we should provide more reserved port ranges, this function 23488 * has to be modified to be more efficient. 23489 */ 23490 if (tcp_reserved_port_array_size == 0) { 23491 tcp_reserved_port[0].lo_port = *lo_port; 23492 tcp_reserved_port[0].hi_port = *hi_port; 23493 tcp_reserved_port[0].temp_tcp_array = temp_tcp_array; 23494 } else { 23495 for (i = 0, j = 0; i < tcp_reserved_port_array_size; i++, j++) { 23496 if (*lo_port < tcp_reserved_port[i].lo_port && i == j) { 23497 tmp_ports[j].lo_port = *lo_port; 23498 tmp_ports[j].hi_port = *hi_port; 23499 tmp_ports[j].temp_tcp_array = temp_tcp_array; 23500 j++; 23501 } 23502 tmp_ports[j].lo_port = tcp_reserved_port[i].lo_port; 23503 tmp_ports[j].hi_port = tcp_reserved_port[i].hi_port; 23504 tmp_ports[j].temp_tcp_array = 23505 tcp_reserved_port[i].temp_tcp_array; 23506 } 23507 if (j == i) { 23508 tmp_ports[j].lo_port = *lo_port; 23509 tmp_ports[j].hi_port = *hi_port; 23510 tmp_ports[j].temp_tcp_array = temp_tcp_array; 23511 } 23512 bcopy(tmp_ports, tcp_reserved_port, sizeof (tmp_ports)); 23513 } 23514 tcp_reserved_port_array_size++; 23515 rw_exit(&tcp_reserved_port_lock); 23516 return (B_TRUE); 23517 } 23518 23519 /* 23520 * Check to see if a port is in any reserved port range. 23521 * 23522 * Params: 23523 * in_port_t port: the port to be verified. 23524 * 23525 * Return: 23526 * B_TRUE is the port is inside a reserved port range, B_FALSE otherwise. 23527 */ 23528 boolean_t 23529 tcp_reserved_port_check(in_port_t port) 23530 { 23531 int i; 23532 23533 rw_enter(&tcp_reserved_port_lock, RW_READER); 23534 for (i = 0; i < tcp_reserved_port_array_size; i++) { 23535 if (port >= tcp_reserved_port[i].lo_port || 23536 port <= tcp_reserved_port[i].hi_port) { 23537 rw_exit(&tcp_reserved_port_lock); 23538 return (B_TRUE); 23539 } 23540 } 23541 rw_exit(&tcp_reserved_port_lock); 23542 return (B_FALSE); 23543 } 23544 23545 /* 23546 * To list all reserved port ranges. This is the function to handle 23547 * ndd tcp_reserved_port_list. 23548 */ 23549 /* ARGSUSED */ 23550 static int 23551 tcp_reserved_port_list(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 23552 { 23553 int i; 23554 23555 rw_enter(&tcp_reserved_port_lock, RW_READER); 23556 if (tcp_reserved_port_array_size > 0) 23557 (void) mi_mpprintf(mp, "The following ports are reserved:"); 23558 else 23559 (void) mi_mpprintf(mp, "No port is reserved."); 23560 for (i = 0; i < tcp_reserved_port_array_size; i++) { 23561 (void) mi_mpprintf(mp, "%d-%d", 23562 tcp_reserved_port[i].lo_port, tcp_reserved_port[i].hi_port); 23563 } 23564 rw_exit(&tcp_reserved_port_lock); 23565 return (0); 23566 } 23567 23568 /* 23569 * Hash list insertion routine for tcp_t structures. 23570 * Inserts entries with the ones bound to a specific IP address first 23571 * followed by those bound to INADDR_ANY. 23572 */ 23573 static void 23574 tcp_bind_hash_insert(tf_t *tbf, tcp_t *tcp, int caller_holds_lock) 23575 { 23576 tcp_t **tcpp; 23577 tcp_t *tcpnext; 23578 23579 if (tcp->tcp_ptpbhn != NULL) { 23580 ASSERT(!caller_holds_lock); 23581 tcp_bind_hash_remove(tcp); 23582 } 23583 tcpp = &tbf->tf_tcp; 23584 if (!caller_holds_lock) { 23585 mutex_enter(&tbf->tf_lock); 23586 } else { 23587 ASSERT(MUTEX_HELD(&tbf->tf_lock)); 23588 } 23589 tcpnext = tcpp[0]; 23590 if (tcpnext) { 23591 /* 23592 * If the new tcp bound to the INADDR_ANY address 23593 * and the first one in the list is not bound to 23594 * INADDR_ANY we skip all entries until we find the 23595 * first one bound to INADDR_ANY. 23596 * This makes sure that applications binding to a 23597 * specific address get preference over those binding to 23598 * INADDR_ANY. 23599 */ 23600 if (V6_OR_V4_INADDR_ANY(tcp->tcp_bound_source_v6) && 23601 !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) { 23602 while ((tcpnext = tcpp[0]) != NULL && 23603 !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) 23604 tcpp = &(tcpnext->tcp_bind_hash); 23605 if (tcpnext) 23606 tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash; 23607 } else 23608 tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash; 23609 } 23610 tcp->tcp_bind_hash = tcpnext; 23611 tcp->tcp_ptpbhn = tcpp; 23612 tcpp[0] = tcp; 23613 if (!caller_holds_lock) 23614 mutex_exit(&tbf->tf_lock); 23615 } 23616 23617 /* 23618 * Hash list removal routine for tcp_t structures. 23619 */ 23620 static void 23621 tcp_bind_hash_remove(tcp_t *tcp) 23622 { 23623 tcp_t *tcpnext; 23624 kmutex_t *lockp; 23625 23626 if (tcp->tcp_ptpbhn == NULL) 23627 return; 23628 23629 /* 23630 * Extract the lock pointer in case there are concurrent 23631 * hash_remove's for this instance. 23632 */ 23633 ASSERT(tcp->tcp_lport != 0); 23634 lockp = &tcp_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)].tf_lock; 23635 23636 ASSERT(lockp != NULL); 23637 mutex_enter(lockp); 23638 if (tcp->tcp_ptpbhn) { 23639 tcpnext = tcp->tcp_bind_hash; 23640 if (tcpnext) { 23641 tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn; 23642 tcp->tcp_bind_hash = NULL; 23643 } 23644 *tcp->tcp_ptpbhn = tcpnext; 23645 tcp->tcp_ptpbhn = NULL; 23646 } 23647 mutex_exit(lockp); 23648 } 23649 23650 23651 /* 23652 * Hash list lookup routine for tcp_t structures. 23653 * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF. 23654 */ 23655 static tcp_t * 23656 tcp_acceptor_hash_lookup(t_uscalar_t id) 23657 { 23658 tf_t *tf; 23659 tcp_t *tcp; 23660 23661 tf = &tcp_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 23662 mutex_enter(&tf->tf_lock); 23663 for (tcp = tf->tf_tcp; tcp != NULL; 23664 tcp = tcp->tcp_acceptor_hash) { 23665 if (tcp->tcp_acceptor_id == id) { 23666 CONN_INC_REF(tcp->tcp_connp); 23667 mutex_exit(&tf->tf_lock); 23668 return (tcp); 23669 } 23670 } 23671 mutex_exit(&tf->tf_lock); 23672 return (NULL); 23673 } 23674 23675 23676 /* 23677 * Hash list insertion routine for tcp_t structures. 23678 */ 23679 void 23680 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp) 23681 { 23682 tf_t *tf; 23683 tcp_t **tcpp; 23684 tcp_t *tcpnext; 23685 23686 tf = &tcp_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 23687 23688 if (tcp->tcp_ptpahn != NULL) 23689 tcp_acceptor_hash_remove(tcp); 23690 tcpp = &tf->tf_tcp; 23691 mutex_enter(&tf->tf_lock); 23692 tcpnext = tcpp[0]; 23693 if (tcpnext) 23694 tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash; 23695 tcp->tcp_acceptor_hash = tcpnext; 23696 tcp->tcp_ptpahn = tcpp; 23697 tcpp[0] = tcp; 23698 tcp->tcp_acceptor_lockp = &tf->tf_lock; /* For tcp_*_hash_remove */ 23699 mutex_exit(&tf->tf_lock); 23700 } 23701 23702 /* 23703 * Hash list removal routine for tcp_t structures. 23704 */ 23705 static void 23706 tcp_acceptor_hash_remove(tcp_t *tcp) 23707 { 23708 tcp_t *tcpnext; 23709 kmutex_t *lockp; 23710 23711 /* 23712 * Extract the lock pointer in case there are concurrent 23713 * hash_remove's for this instance. 23714 */ 23715 lockp = tcp->tcp_acceptor_lockp; 23716 23717 if (tcp->tcp_ptpahn == NULL) 23718 return; 23719 23720 ASSERT(lockp != NULL); 23721 mutex_enter(lockp); 23722 if (tcp->tcp_ptpahn) { 23723 tcpnext = tcp->tcp_acceptor_hash; 23724 if (tcpnext) { 23725 tcpnext->tcp_ptpahn = tcp->tcp_ptpahn; 23726 tcp->tcp_acceptor_hash = NULL; 23727 } 23728 *tcp->tcp_ptpahn = tcpnext; 23729 tcp->tcp_ptpahn = NULL; 23730 } 23731 mutex_exit(lockp); 23732 tcp->tcp_acceptor_lockp = NULL; 23733 } 23734 23735 /* ARGSUSED */ 23736 static int 23737 tcp_host_param_setvalue(queue_t *q, mblk_t *mp, char *value, caddr_t cp, int af) 23738 { 23739 int error = 0; 23740 int retval; 23741 char *end; 23742 23743 tcp_hsp_t *hsp; 23744 tcp_hsp_t *hspprev; 23745 23746 ipaddr_t addr = 0; /* Address we're looking for */ 23747 in6_addr_t v6addr; /* Address we're looking for */ 23748 uint32_t hash; /* Hash of that address */ 23749 23750 /* 23751 * If the following variables are still zero after parsing the input 23752 * string, the user didn't specify them and we don't change them in 23753 * the HSP. 23754 */ 23755 23756 ipaddr_t mask = 0; /* Subnet mask */ 23757 in6_addr_t v6mask; 23758 long sendspace = 0; /* Send buffer size */ 23759 long recvspace = 0; /* Receive buffer size */ 23760 long timestamp = 0; /* Originate TCP TSTAMP option, 1 = yes */ 23761 boolean_t delete = B_FALSE; /* User asked to delete this HSP */ 23762 23763 rw_enter(&tcp_hsp_lock, RW_WRITER); 23764 23765 /* Parse and validate address */ 23766 if (af == AF_INET) { 23767 retval = inet_pton(af, value, &addr); 23768 if (retval == 1) 23769 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 23770 } else if (af == AF_INET6) { 23771 retval = inet_pton(af, value, &v6addr); 23772 } else { 23773 error = EINVAL; 23774 goto done; 23775 } 23776 if (retval == 0) { 23777 error = EINVAL; 23778 goto done; 23779 } 23780 23781 while ((*value) && *value != ' ') 23782 value++; 23783 23784 /* Parse individual keywords, set variables if found */ 23785 while (*value) { 23786 /* Skip leading blanks */ 23787 23788 while (*value == ' ' || *value == '\t') 23789 value++; 23790 23791 /* If at end of string, we're done */ 23792 23793 if (!*value) 23794 break; 23795 23796 /* We have a word, figure out what it is */ 23797 23798 if (strncmp("mask", value, 4) == 0) { 23799 value += 4; 23800 while (*value == ' ' || *value == '\t') 23801 value++; 23802 /* Parse subnet mask */ 23803 if (af == AF_INET) { 23804 retval = inet_pton(af, value, &mask); 23805 if (retval == 1) { 23806 V4MASK_TO_V6(mask, v6mask); 23807 } 23808 } else if (af == AF_INET6) { 23809 retval = inet_pton(af, value, &v6mask); 23810 } 23811 if (retval != 1) { 23812 error = EINVAL; 23813 goto done; 23814 } 23815 while ((*value) && *value != ' ') 23816 value++; 23817 } else if (strncmp("sendspace", value, 9) == 0) { 23818 value += 9; 23819 23820 if (ddi_strtol(value, &end, 0, &sendspace) != 0 || 23821 sendspace < TCP_XMIT_HIWATER || 23822 sendspace >= (1L<<30)) { 23823 error = EINVAL; 23824 goto done; 23825 } 23826 value = end; 23827 } else if (strncmp("recvspace", value, 9) == 0) { 23828 value += 9; 23829 23830 if (ddi_strtol(value, &end, 0, &recvspace) != 0 || 23831 recvspace < TCP_RECV_HIWATER || 23832 recvspace >= (1L<<30)) { 23833 error = EINVAL; 23834 goto done; 23835 } 23836 value = end; 23837 } else if (strncmp("timestamp", value, 9) == 0) { 23838 value += 9; 23839 23840 if (ddi_strtol(value, &end, 0, ×tamp) != 0 || 23841 timestamp < 0 || timestamp > 1) { 23842 error = EINVAL; 23843 goto done; 23844 } 23845 23846 /* 23847 * We increment timestamp so we know it's been set; 23848 * this is undone when we put it in the HSP 23849 */ 23850 timestamp++; 23851 value = end; 23852 } else if (strncmp("delete", value, 6) == 0) { 23853 value += 6; 23854 delete = B_TRUE; 23855 } else { 23856 error = EINVAL; 23857 goto done; 23858 } 23859 } 23860 23861 /* Hash address for lookup */ 23862 23863 hash = TCP_HSP_HASH(addr); 23864 23865 if (delete) { 23866 /* 23867 * Note that deletes don't return an error if the thing 23868 * we're trying to delete isn't there. 23869 */ 23870 if (tcp_hsp_hash == NULL) 23871 goto done; 23872 hsp = tcp_hsp_hash[hash]; 23873 23874 if (hsp) { 23875 if (IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, 23876 &v6addr)) { 23877 tcp_hsp_hash[hash] = hsp->tcp_hsp_next; 23878 mi_free((char *)hsp); 23879 } else { 23880 hspprev = hsp; 23881 while ((hsp = hsp->tcp_hsp_next) != NULL) { 23882 if (IN6_ARE_ADDR_EQUAL( 23883 &hsp->tcp_hsp_addr_v6, &v6addr)) { 23884 hspprev->tcp_hsp_next = 23885 hsp->tcp_hsp_next; 23886 mi_free((char *)hsp); 23887 break; 23888 } 23889 hspprev = hsp; 23890 } 23891 } 23892 } 23893 } else { 23894 /* 23895 * We're adding/modifying an HSP. If we haven't already done 23896 * so, allocate the hash table. 23897 */ 23898 23899 if (!tcp_hsp_hash) { 23900 tcp_hsp_hash = (tcp_hsp_t **) 23901 mi_zalloc(sizeof (tcp_hsp_t *) * TCP_HSP_HASH_SIZE); 23902 if (!tcp_hsp_hash) { 23903 error = EINVAL; 23904 goto done; 23905 } 23906 } 23907 23908 /* Get head of hash chain */ 23909 23910 hsp = tcp_hsp_hash[hash]; 23911 23912 /* Try to find pre-existing hsp on hash chain */ 23913 /* Doesn't handle CIDR prefixes. */ 23914 while (hsp) { 23915 if (IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, &v6addr)) 23916 break; 23917 hsp = hsp->tcp_hsp_next; 23918 } 23919 23920 /* 23921 * If we didn't, create one with default values and put it 23922 * at head of hash chain 23923 */ 23924 23925 if (!hsp) { 23926 hsp = (tcp_hsp_t *)mi_zalloc(sizeof (tcp_hsp_t)); 23927 if (!hsp) { 23928 error = EINVAL; 23929 goto done; 23930 } 23931 hsp->tcp_hsp_next = tcp_hsp_hash[hash]; 23932 tcp_hsp_hash[hash] = hsp; 23933 } 23934 23935 /* Set values that the user asked us to change */ 23936 23937 hsp->tcp_hsp_addr_v6 = v6addr; 23938 if (IN6_IS_ADDR_V4MAPPED(&v6addr)) 23939 hsp->tcp_hsp_vers = IPV4_VERSION; 23940 else 23941 hsp->tcp_hsp_vers = IPV6_VERSION; 23942 hsp->tcp_hsp_subnet_v6 = v6mask; 23943 if (sendspace > 0) 23944 hsp->tcp_hsp_sendspace = sendspace; 23945 if (recvspace > 0) 23946 hsp->tcp_hsp_recvspace = recvspace; 23947 if (timestamp > 0) 23948 hsp->tcp_hsp_tstamp = timestamp - 1; 23949 } 23950 23951 done: 23952 rw_exit(&tcp_hsp_lock); 23953 return (error); 23954 } 23955 23956 /* Set callback routine passed to nd_load by tcp_param_register. */ 23957 /* ARGSUSED */ 23958 static int 23959 tcp_host_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) 23960 { 23961 return (tcp_host_param_setvalue(q, mp, value, cp, AF_INET)); 23962 } 23963 /* ARGSUSED */ 23964 static int 23965 tcp_host_param_set_ipv6(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 23966 cred_t *cr) 23967 { 23968 return (tcp_host_param_setvalue(q, mp, value, cp, AF_INET6)); 23969 } 23970 23971 /* TCP host parameters report triggered via the Named Dispatch mechanism. */ 23972 /* ARGSUSED */ 23973 static int 23974 tcp_host_param_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 23975 { 23976 tcp_hsp_t *hsp; 23977 int i; 23978 char addrbuf[INET6_ADDRSTRLEN], subnetbuf[INET6_ADDRSTRLEN]; 23979 23980 rw_enter(&tcp_hsp_lock, RW_READER); 23981 (void) mi_mpprintf(mp, 23982 "Hash HSP " MI_COL_HDRPAD_STR 23983 "Address Subnet Mask Send Receive TStamp"); 23984 if (tcp_hsp_hash) { 23985 for (i = 0; i < TCP_HSP_HASH_SIZE; i++) { 23986 hsp = tcp_hsp_hash[i]; 23987 while (hsp) { 23988 if (hsp->tcp_hsp_vers == IPV4_VERSION) { 23989 (void) inet_ntop(AF_INET, 23990 &hsp->tcp_hsp_addr, 23991 addrbuf, sizeof (addrbuf)); 23992 (void) inet_ntop(AF_INET, 23993 &hsp->tcp_hsp_subnet, 23994 subnetbuf, sizeof (subnetbuf)); 23995 } else { 23996 (void) inet_ntop(AF_INET6, 23997 &hsp->tcp_hsp_addr_v6, 23998 addrbuf, sizeof (addrbuf)); 23999 (void) inet_ntop(AF_INET6, 24000 &hsp->tcp_hsp_subnet_v6, 24001 subnetbuf, sizeof (subnetbuf)); 24002 } 24003 (void) mi_mpprintf(mp, 24004 " %03d " MI_COL_PTRFMT_STR 24005 "%s %s %010d %010d %d", 24006 i, 24007 (void *)hsp, 24008 addrbuf, 24009 subnetbuf, 24010 hsp->tcp_hsp_sendspace, 24011 hsp->tcp_hsp_recvspace, 24012 hsp->tcp_hsp_tstamp); 24013 24014 hsp = hsp->tcp_hsp_next; 24015 } 24016 } 24017 } 24018 rw_exit(&tcp_hsp_lock); 24019 return (0); 24020 } 24021 24022 24023 /* Data for fast netmask macro used by tcp_hsp_lookup */ 24024 24025 static ipaddr_t netmasks[] = { 24026 IN_CLASSA_NET, IN_CLASSA_NET, IN_CLASSB_NET, 24027 IN_CLASSC_NET | IN_CLASSD_NET /* Class C,D,E */ 24028 }; 24029 24030 #define netmask(addr) (netmasks[(ipaddr_t)(addr) >> 30]) 24031 24032 /* 24033 * XXX This routine should go away and instead we should use the metrics 24034 * associated with the routes to determine the default sndspace and rcvspace. 24035 */ 24036 static tcp_hsp_t * 24037 tcp_hsp_lookup(ipaddr_t addr) 24038 { 24039 tcp_hsp_t *hsp = NULL; 24040 24041 /* Quick check without acquiring the lock. */ 24042 if (tcp_hsp_hash == NULL) 24043 return (NULL); 24044 24045 rw_enter(&tcp_hsp_lock, RW_READER); 24046 24047 /* This routine finds the best-matching HSP for address addr. */ 24048 24049 if (tcp_hsp_hash) { 24050 int i; 24051 ipaddr_t srchaddr; 24052 tcp_hsp_t *hsp_net; 24053 24054 /* We do three passes: host, network, and subnet. */ 24055 24056 srchaddr = addr; 24057 24058 for (i = 1; i <= 3; i++) { 24059 /* Look for exact match on srchaddr */ 24060 24061 hsp = tcp_hsp_hash[TCP_HSP_HASH(srchaddr)]; 24062 while (hsp) { 24063 if (hsp->tcp_hsp_vers == IPV4_VERSION && 24064 hsp->tcp_hsp_addr == srchaddr) 24065 break; 24066 hsp = hsp->tcp_hsp_next; 24067 } 24068 ASSERT(hsp == NULL || 24069 hsp->tcp_hsp_vers == IPV4_VERSION); 24070 24071 /* 24072 * If this is the first pass: 24073 * If we found a match, great, return it. 24074 * If not, search for the network on the second pass. 24075 */ 24076 24077 if (i == 1) 24078 if (hsp) 24079 break; 24080 else 24081 { 24082 srchaddr = addr & netmask(addr); 24083 continue; 24084 } 24085 24086 /* 24087 * If this is the second pass: 24088 * If we found a match, but there's a subnet mask, 24089 * save the match but try again using the subnet 24090 * mask on the third pass. 24091 * Otherwise, return whatever we found. 24092 */ 24093 24094 if (i == 2) { 24095 if (hsp && hsp->tcp_hsp_subnet) { 24096 hsp_net = hsp; 24097 srchaddr = addr & hsp->tcp_hsp_subnet; 24098 continue; 24099 } else { 24100 break; 24101 } 24102 } 24103 24104 /* 24105 * This must be the third pass. If we didn't find 24106 * anything, return the saved network HSP instead. 24107 */ 24108 24109 if (!hsp) 24110 hsp = hsp_net; 24111 } 24112 } 24113 24114 rw_exit(&tcp_hsp_lock); 24115 return (hsp); 24116 } 24117 24118 /* 24119 * XXX Equally broken as the IPv4 routine. Doesn't handle longest 24120 * match lookup. 24121 */ 24122 static tcp_hsp_t * 24123 tcp_hsp_lookup_ipv6(in6_addr_t *v6addr) 24124 { 24125 tcp_hsp_t *hsp = NULL; 24126 24127 /* Quick check without acquiring the lock. */ 24128 if (tcp_hsp_hash == NULL) 24129 return (NULL); 24130 24131 rw_enter(&tcp_hsp_lock, RW_READER); 24132 24133 /* This routine finds the best-matching HSP for address addr. */ 24134 24135 if (tcp_hsp_hash) { 24136 int i; 24137 in6_addr_t v6srchaddr; 24138 tcp_hsp_t *hsp_net; 24139 24140 /* We do three passes: host, network, and subnet. */ 24141 24142 v6srchaddr = *v6addr; 24143 24144 for (i = 1; i <= 3; i++) { 24145 /* Look for exact match on srchaddr */ 24146 24147 hsp = tcp_hsp_hash[TCP_HSP_HASH( 24148 V4_PART_OF_V6(v6srchaddr))]; 24149 while (hsp) { 24150 if (hsp->tcp_hsp_vers == IPV6_VERSION && 24151 IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, 24152 &v6srchaddr)) 24153 break; 24154 hsp = hsp->tcp_hsp_next; 24155 } 24156 24157 /* 24158 * If this is the first pass: 24159 * If we found a match, great, return it. 24160 * If not, search for the network on the second pass. 24161 */ 24162 24163 if (i == 1) 24164 if (hsp) 24165 break; 24166 else { 24167 /* Assume a 64 bit mask */ 24168 v6srchaddr.s6_addr32[0] = 24169 v6addr->s6_addr32[0]; 24170 v6srchaddr.s6_addr32[1] = 24171 v6addr->s6_addr32[1]; 24172 v6srchaddr.s6_addr32[2] = 0; 24173 v6srchaddr.s6_addr32[3] = 0; 24174 continue; 24175 } 24176 24177 /* 24178 * If this is the second pass: 24179 * If we found a match, but there's a subnet mask, 24180 * save the match but try again using the subnet 24181 * mask on the third pass. 24182 * Otherwise, return whatever we found. 24183 */ 24184 24185 if (i == 2) { 24186 ASSERT(hsp == NULL || 24187 hsp->tcp_hsp_vers == IPV6_VERSION); 24188 if (hsp && 24189 !IN6_IS_ADDR_UNSPECIFIED( 24190 &hsp->tcp_hsp_subnet_v6)) { 24191 hsp_net = hsp; 24192 V6_MASK_COPY(*v6addr, 24193 hsp->tcp_hsp_subnet_v6, v6srchaddr); 24194 continue; 24195 } else { 24196 break; 24197 } 24198 } 24199 24200 /* 24201 * This must be the third pass. If we didn't find 24202 * anything, return the saved network HSP instead. 24203 */ 24204 24205 if (!hsp) 24206 hsp = hsp_net; 24207 } 24208 } 24209 24210 rw_exit(&tcp_hsp_lock); 24211 return (hsp); 24212 } 24213 24214 /* 24215 * Type three generator adapted from the random() function in 4.4 BSD: 24216 */ 24217 24218 /* 24219 * Copyright (c) 1983, 1993 24220 * The Regents of the University of California. All rights reserved. 24221 * 24222 * Redistribution and use in source and binary forms, with or without 24223 * modification, are permitted provided that the following conditions 24224 * are met: 24225 * 1. Redistributions of source code must retain the above copyright 24226 * notice, this list of conditions and the following disclaimer. 24227 * 2. Redistributions in binary form must reproduce the above copyright 24228 * notice, this list of conditions and the following disclaimer in the 24229 * documentation and/or other materials provided with the distribution. 24230 * 3. All advertising materials mentioning features or use of this software 24231 * must display the following acknowledgement: 24232 * This product includes software developed by the University of 24233 * California, Berkeley and its contributors. 24234 * 4. Neither the name of the University nor the names of its contributors 24235 * may be used to endorse or promote products derived from this software 24236 * without specific prior written permission. 24237 * 24238 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 24239 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24240 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24241 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24242 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24243 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24244 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24245 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24246 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24247 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24248 * SUCH DAMAGE. 24249 */ 24250 24251 /* Type 3 -- x**31 + x**3 + 1 */ 24252 #define DEG_3 31 24253 #define SEP_3 3 24254 24255 24256 /* Protected by tcp_random_lock */ 24257 static int tcp_randtbl[DEG_3 + 1]; 24258 24259 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1]; 24260 static int *tcp_random_rptr = &tcp_randtbl[1]; 24261 24262 static int *tcp_random_state = &tcp_randtbl[1]; 24263 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1]; 24264 24265 kmutex_t tcp_random_lock; 24266 24267 void 24268 tcp_random_init(void) 24269 { 24270 int i; 24271 hrtime_t hrt; 24272 time_t wallclock; 24273 uint64_t result; 24274 24275 /* 24276 * Use high-res timer and current time for seed. Gethrtime() returns 24277 * a longlong, which may contain resolution down to nanoseconds. 24278 * The current time will either be a 32-bit or a 64-bit quantity. 24279 * XOR the two together in a 64-bit result variable. 24280 * Convert the result to a 32-bit value by multiplying the high-order 24281 * 32-bits by the low-order 32-bits. 24282 */ 24283 24284 hrt = gethrtime(); 24285 (void) drv_getparm(TIME, &wallclock); 24286 result = (uint64_t)wallclock ^ (uint64_t)hrt; 24287 mutex_enter(&tcp_random_lock); 24288 tcp_random_state[0] = ((result >> 32) & 0xffffffff) * 24289 (result & 0xffffffff); 24290 24291 for (i = 1; i < DEG_3; i++) 24292 tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1] 24293 + 12345; 24294 tcp_random_fptr = &tcp_random_state[SEP_3]; 24295 tcp_random_rptr = &tcp_random_state[0]; 24296 mutex_exit(&tcp_random_lock); 24297 for (i = 0; i < 10 * DEG_3; i++) 24298 (void) tcp_random(); 24299 } 24300 24301 /* 24302 * tcp_random: Return a random number in the range [1 - (128K + 1)]. 24303 * This range is selected to be approximately centered on TCP_ISS / 2, 24304 * and easy to compute. We get this value by generating a 32-bit random 24305 * number, selecting out the high-order 17 bits, and then adding one so 24306 * that we never return zero. 24307 */ 24308 int 24309 tcp_random(void) 24310 { 24311 int i; 24312 24313 mutex_enter(&tcp_random_lock); 24314 *tcp_random_fptr += *tcp_random_rptr; 24315 24316 /* 24317 * The high-order bits are more random than the low-order bits, 24318 * so we select out the high-order 17 bits and add one so that 24319 * we never return zero. 24320 */ 24321 i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1; 24322 if (++tcp_random_fptr >= tcp_random_end_ptr) { 24323 tcp_random_fptr = tcp_random_state; 24324 ++tcp_random_rptr; 24325 } else if (++tcp_random_rptr >= tcp_random_end_ptr) 24326 tcp_random_rptr = tcp_random_state; 24327 24328 mutex_exit(&tcp_random_lock); 24329 return (i); 24330 } 24331 24332 /* 24333 * XXX This will go away when TPI is extended to send 24334 * info reqs to sockfs/timod ..... 24335 * Given a queue, set the max packet size for the write 24336 * side of the queue below stream head. This value is 24337 * cached on the stream head. 24338 * Returns 1 on success, 0 otherwise. 24339 */ 24340 static int 24341 setmaxps(queue_t *q, int maxpsz) 24342 { 24343 struct stdata *stp; 24344 queue_t *wq; 24345 stp = STREAM(q); 24346 24347 /* 24348 * At this point change of a queue parameter is not allowed 24349 * when a multiplexor is sitting on top. 24350 */ 24351 if (stp->sd_flag & STPLEX) 24352 return (0); 24353 24354 claimstr(stp->sd_wrq); 24355 wq = stp->sd_wrq->q_next; 24356 ASSERT(wq != NULL); 24357 (void) strqset(wq, QMAXPSZ, 0, maxpsz); 24358 releasestr(stp->sd_wrq); 24359 return (1); 24360 } 24361 24362 static int 24363 tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, int *do_disconnectp, 24364 int *t_errorp, int *sys_errorp) 24365 { 24366 int error; 24367 int is_absreq_failure; 24368 t_scalar_t *opt_lenp; 24369 t_scalar_t opt_offset; 24370 int prim_type; 24371 struct T_conn_req *tcreqp; 24372 struct T_conn_res *tcresp; 24373 cred_t *cr; 24374 24375 cr = DB_CREDDEF(mp, tcp->tcp_cred); 24376 24377 prim_type = ((union T_primitives *)mp->b_rptr)->type; 24378 ASSERT(prim_type == T_CONN_REQ || prim_type == O_T_CONN_RES || 24379 prim_type == T_CONN_RES); 24380 24381 switch (prim_type) { 24382 case T_CONN_REQ: 24383 tcreqp = (struct T_conn_req *)mp->b_rptr; 24384 opt_offset = tcreqp->OPT_offset; 24385 opt_lenp = (t_scalar_t *)&tcreqp->OPT_length; 24386 break; 24387 case O_T_CONN_RES: 24388 case T_CONN_RES: 24389 tcresp = (struct T_conn_res *)mp->b_rptr; 24390 opt_offset = tcresp->OPT_offset; 24391 opt_lenp = (t_scalar_t *)&tcresp->OPT_length; 24392 break; 24393 } 24394 24395 *t_errorp = 0; 24396 *sys_errorp = 0; 24397 *do_disconnectp = 0; 24398 24399 error = tpi_optcom_buf(tcp->tcp_wq, mp, opt_lenp, 24400 opt_offset, cr, &tcp_opt_obj, 24401 NULL, &is_absreq_failure); 24402 24403 switch (error) { 24404 case 0: /* no error */ 24405 ASSERT(is_absreq_failure == 0); 24406 return (0); 24407 case ENOPROTOOPT: 24408 *t_errorp = TBADOPT; 24409 break; 24410 case EACCES: 24411 *t_errorp = TACCES; 24412 break; 24413 default: 24414 *t_errorp = TSYSERR; *sys_errorp = error; 24415 break; 24416 } 24417 if (is_absreq_failure != 0) { 24418 /* 24419 * The connection request should get the local ack 24420 * T_OK_ACK and then a T_DISCON_IND. 24421 */ 24422 *do_disconnectp = 1; 24423 } 24424 return (-1); 24425 } 24426 24427 /* 24428 * Split this function out so that if the secret changes, I'm okay. 24429 * 24430 * Initialize the tcp_iss_cookie and tcp_iss_key. 24431 */ 24432 24433 #define PASSWD_SIZE 16 /* MUST be multiple of 4 */ 24434 24435 static void 24436 tcp_iss_key_init(uint8_t *phrase, int len) 24437 { 24438 struct { 24439 int32_t current_time; 24440 uint32_t randnum; 24441 uint16_t pad; 24442 uint8_t ether[6]; 24443 uint8_t passwd[PASSWD_SIZE]; 24444 } tcp_iss_cookie; 24445 time_t t; 24446 24447 /* 24448 * Start with the current absolute time. 24449 */ 24450 (void) drv_getparm(TIME, &t); 24451 tcp_iss_cookie.current_time = t; 24452 24453 /* 24454 * XXX - Need a more random number per RFC 1750, not this crap. 24455 * OTOH, if what follows is pretty random, then I'm in better shape. 24456 */ 24457 tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random()); 24458 tcp_iss_cookie.pad = 0x365c; /* Picked from HMAC pad values. */ 24459 24460 /* 24461 * The cpu_type_info is pretty non-random. Ugggh. It does serve 24462 * as a good template. 24463 */ 24464 bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd, 24465 min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info))); 24466 24467 /* 24468 * The pass-phrase. Normally this is supplied by user-called NDD. 24469 */ 24470 bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len)); 24471 24472 /* 24473 * See 4010593 if this section becomes a problem again, 24474 * but the local ethernet address is useful here. 24475 */ 24476 (void) localetheraddr(NULL, 24477 (struct ether_addr *)&tcp_iss_cookie.ether); 24478 24479 /* 24480 * Hash 'em all together. The MD5Final is called per-connection. 24481 */ 24482 mutex_enter(&tcp_iss_key_lock); 24483 MD5Init(&tcp_iss_key); 24484 MD5Update(&tcp_iss_key, (uchar_t *)&tcp_iss_cookie, 24485 sizeof (tcp_iss_cookie)); 24486 mutex_exit(&tcp_iss_key_lock); 24487 } 24488 24489 /* 24490 * Set the RFC 1948 pass phrase 24491 */ 24492 /* ARGSUSED */ 24493 static int 24494 tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 24495 cred_t *cr) 24496 { 24497 /* 24498 * Basically, value contains a new pass phrase. Pass it along! 24499 */ 24500 tcp_iss_key_init((uint8_t *)value, strlen(value)); 24501 return (0); 24502 } 24503 24504 /* ARGSUSED */ 24505 static int 24506 tcp_sack_info_constructor(void *buf, void *cdrarg, int kmflags) 24507 { 24508 bzero(buf, sizeof (tcp_sack_info_t)); 24509 return (0); 24510 } 24511 24512 /* ARGSUSED */ 24513 static int 24514 tcp_iphc_constructor(void *buf, void *cdrarg, int kmflags) 24515 { 24516 bzero(buf, TCP_MAX_COMBINED_HEADER_LENGTH); 24517 return (0); 24518 } 24519 24520 void 24521 tcp_ddi_init(void) 24522 { 24523 int i; 24524 24525 /* Initialize locks */ 24526 rw_init(&tcp_hsp_lock, NULL, RW_DEFAULT, NULL); 24527 mutex_init(&tcp_g_q_lock, NULL, MUTEX_DEFAULT, NULL); 24528 mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL); 24529 mutex_init(&tcp_iss_key_lock, NULL, MUTEX_DEFAULT, NULL); 24530 mutex_init(&tcp_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL); 24531 rw_init(&tcp_reserved_port_lock, NULL, RW_DEFAULT, NULL); 24532 24533 for (i = 0; i < A_CNT(tcp_bind_fanout); i++) { 24534 mutex_init(&tcp_bind_fanout[i].tf_lock, NULL, 24535 MUTEX_DEFAULT, NULL); 24536 } 24537 24538 for (i = 0; i < A_CNT(tcp_acceptor_fanout); i++) { 24539 mutex_init(&tcp_acceptor_fanout[i].tf_lock, NULL, 24540 MUTEX_DEFAULT, NULL); 24541 } 24542 24543 /* TCP's IPsec code calls the packet dropper. */ 24544 ip_drop_register(&tcp_dropper, "TCP IPsec policy enforcement"); 24545 24546 if (!tcp_g_nd) { 24547 if (!tcp_param_register(tcp_param_arr, A_CNT(tcp_param_arr))) { 24548 nd_free(&tcp_g_nd); 24549 } 24550 } 24551 24552 /* 24553 * Note: To really walk the device tree you need the devinfo 24554 * pointer to your device which is only available after probe/attach. 24555 * The following is safe only because it uses ddi_root_node() 24556 */ 24557 tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr, 24558 tcp_opt_obj.odb_opt_arr_cnt); 24559 24560 tcp_timercache = kmem_cache_create("tcp_timercache", 24561 sizeof (tcp_timer_t) + sizeof (mblk_t), 0, 24562 NULL, NULL, NULL, NULL, NULL, 0); 24563 24564 tcp_sack_info_cache = kmem_cache_create("tcp_sack_info_cache", 24565 sizeof (tcp_sack_info_t), 0, 24566 tcp_sack_info_constructor, NULL, NULL, NULL, NULL, 0); 24567 24568 tcp_iphc_cache = kmem_cache_create("tcp_iphc_cache", 24569 TCP_MAX_COMBINED_HEADER_LENGTH, 0, 24570 tcp_iphc_constructor, NULL, NULL, NULL, NULL, 0); 24571 24572 tcp_squeue_wput_proc = tcp_squeue_switch(tcp_squeue_wput); 24573 tcp_squeue_close_proc = tcp_squeue_switch(tcp_squeue_close); 24574 24575 ip_squeue_init(tcp_squeue_add); 24576 24577 /* Initialize the random number generator */ 24578 tcp_random_init(); 24579 24580 /* 24581 * Initialize RFC 1948 secret values. This will probably be reset once 24582 * by the boot scripts. 24583 * 24584 * Use NULL name, as the name is caught by the new lockstats. 24585 * 24586 * Initialize with some random, non-guessable string, like the global 24587 * T_INFO_ACK. 24588 */ 24589 24590 tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack, 24591 sizeof (tcp_g_t_info_ack)); 24592 24593 if ((tcp_kstat = kstat_create(TCP_MOD_NAME, 0, "tcpstat", 24594 "net", KSTAT_TYPE_NAMED, 24595 sizeof (tcp_statistics) / sizeof (kstat_named_t), 24596 KSTAT_FLAG_VIRTUAL)) != NULL) { 24597 tcp_kstat->ks_data = &tcp_statistics; 24598 kstat_install(tcp_kstat); 24599 } 24600 24601 tcp_kstat_init(); 24602 } 24603 24604 void 24605 tcp_ddi_destroy(void) 24606 { 24607 int i; 24608 24609 nd_free(&tcp_g_nd); 24610 24611 for (i = 0; i < A_CNT(tcp_bind_fanout); i++) { 24612 mutex_destroy(&tcp_bind_fanout[i].tf_lock); 24613 } 24614 24615 for (i = 0; i < A_CNT(tcp_acceptor_fanout); i++) { 24616 mutex_destroy(&tcp_acceptor_fanout[i].tf_lock); 24617 } 24618 24619 mutex_destroy(&tcp_iss_key_lock); 24620 rw_destroy(&tcp_hsp_lock); 24621 mutex_destroy(&tcp_g_q_lock); 24622 mutex_destroy(&tcp_random_lock); 24623 mutex_destroy(&tcp_epriv_port_lock); 24624 rw_destroy(&tcp_reserved_port_lock); 24625 24626 ip_drop_unregister(&tcp_dropper); 24627 24628 kmem_cache_destroy(tcp_timercache); 24629 kmem_cache_destroy(tcp_sack_info_cache); 24630 kmem_cache_destroy(tcp_iphc_cache); 24631 24632 tcp_kstat_fini(); 24633 } 24634 24635 /* 24636 * Generate ISS, taking into account NDD changes may happen halfway through. 24637 * (If the iss is not zero, set it.) 24638 */ 24639 24640 static void 24641 tcp_iss_init(tcp_t *tcp) 24642 { 24643 MD5_CTX context; 24644 struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg; 24645 uint32_t answer[4]; 24646 24647 tcp_iss_incr_extra += (ISS_INCR >> 1); 24648 tcp->tcp_iss = tcp_iss_incr_extra; 24649 switch (tcp_strong_iss) { 24650 case 2: 24651 mutex_enter(&tcp_iss_key_lock); 24652 context = tcp_iss_key; 24653 mutex_exit(&tcp_iss_key_lock); 24654 arg.ports = tcp->tcp_ports; 24655 if (tcp->tcp_ipversion == IPV4_VERSION) { 24656 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 24657 &arg.src); 24658 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_dst, 24659 &arg.dst); 24660 } else { 24661 arg.src = tcp->tcp_ip6h->ip6_src; 24662 arg.dst = tcp->tcp_ip6h->ip6_dst; 24663 } 24664 MD5Update(&context, (uchar_t *)&arg, sizeof (arg)); 24665 MD5Final((uchar_t *)answer, &context); 24666 tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3]; 24667 /* 24668 * Now that we've hashed into a unique per-connection sequence 24669 * space, add a random increment per strong_iss == 1. So I 24670 * guess we'll have to... 24671 */ 24672 /* FALLTHRU */ 24673 case 1: 24674 tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random(); 24675 break; 24676 default: 24677 tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 24678 break; 24679 } 24680 tcp->tcp_valid_bits = TCP_ISS_VALID; 24681 tcp->tcp_fss = tcp->tcp_iss - 1; 24682 tcp->tcp_suna = tcp->tcp_iss; 24683 tcp->tcp_snxt = tcp->tcp_iss + 1; 24684 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 24685 tcp->tcp_csuna = tcp->tcp_snxt; 24686 } 24687 24688 /* 24689 * Exported routine for extracting active tcp connection status. 24690 * 24691 * This is used by the Solaris Cluster Networking software to 24692 * gather a list of connections that need to be forwarded to 24693 * specific nodes in the cluster when configuration changes occur. 24694 * 24695 * The callback is invoked for each tcp_t structure. Returning 24696 * non-zero from the callback routine terminates the search. 24697 */ 24698 int 24699 cl_tcp_walk_list(int (*callback)(cl_tcp_info_t *, void *), void *arg) 24700 { 24701 tcp_t *tcp; 24702 cl_tcp_info_t cl_tcpi; 24703 connf_t *connfp; 24704 conn_t *connp; 24705 int i; 24706 24707 ASSERT(callback != NULL); 24708 24709 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 24710 24711 connfp = &ipcl_globalhash_fanout[i]; 24712 connp = NULL; 24713 24714 while ((connp = 24715 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 24716 24717 tcp = connp->conn_tcp; 24718 cl_tcpi.cl_tcpi_version = CL_TCPI_V1; 24719 cl_tcpi.cl_tcpi_ipversion = tcp->tcp_ipversion; 24720 cl_tcpi.cl_tcpi_state = tcp->tcp_state; 24721 cl_tcpi.cl_tcpi_lport = tcp->tcp_lport; 24722 cl_tcpi.cl_tcpi_fport = tcp->tcp_fport; 24723 /* 24724 * The macros tcp_laddr and tcp_faddr give the IPv4 24725 * addresses. They are copied implicitly below as 24726 * mapped addresses. 24727 */ 24728 cl_tcpi.cl_tcpi_laddr_v6 = tcp->tcp_ip_src_v6; 24729 if (tcp->tcp_ipversion == IPV4_VERSION) { 24730 cl_tcpi.cl_tcpi_faddr = 24731 tcp->tcp_ipha->ipha_dst; 24732 } else { 24733 cl_tcpi.cl_tcpi_faddr_v6 = 24734 tcp->tcp_ip6h->ip6_dst; 24735 } 24736 24737 /* 24738 * If the callback returns non-zero 24739 * we terminate the traversal. 24740 */ 24741 if ((*callback)(&cl_tcpi, arg) != 0) { 24742 CONN_DEC_REF(tcp->tcp_connp); 24743 return (1); 24744 } 24745 } 24746 } 24747 24748 return (0); 24749 } 24750 24751 /* 24752 * Macros used for accessing the different types of sockaddr 24753 * structures inside a tcp_ioc_abort_conn_t. 24754 */ 24755 #define TCP_AC_V4LADDR(acp) ((sin_t *)&(acp)->ac_local) 24756 #define TCP_AC_V4RADDR(acp) ((sin_t *)&(acp)->ac_remote) 24757 #define TCP_AC_V4LOCAL(acp) (TCP_AC_V4LADDR(acp)->sin_addr.s_addr) 24758 #define TCP_AC_V4REMOTE(acp) (TCP_AC_V4RADDR(acp)->sin_addr.s_addr) 24759 #define TCP_AC_V4LPORT(acp) (TCP_AC_V4LADDR(acp)->sin_port) 24760 #define TCP_AC_V4RPORT(acp) (TCP_AC_V4RADDR(acp)->sin_port) 24761 #define TCP_AC_V6LADDR(acp) ((sin6_t *)&(acp)->ac_local) 24762 #define TCP_AC_V6RADDR(acp) ((sin6_t *)&(acp)->ac_remote) 24763 #define TCP_AC_V6LOCAL(acp) (TCP_AC_V6LADDR(acp)->sin6_addr) 24764 #define TCP_AC_V6REMOTE(acp) (TCP_AC_V6RADDR(acp)->sin6_addr) 24765 #define TCP_AC_V6LPORT(acp) (TCP_AC_V6LADDR(acp)->sin6_port) 24766 #define TCP_AC_V6RPORT(acp) (TCP_AC_V6RADDR(acp)->sin6_port) 24767 24768 /* 24769 * Return the correct error code to mimic the behavior 24770 * of a connection reset. 24771 */ 24772 #define TCP_AC_GET_ERRCODE(state, err) { \ 24773 switch ((state)) { \ 24774 case TCPS_SYN_SENT: \ 24775 case TCPS_SYN_RCVD: \ 24776 (err) = ECONNREFUSED; \ 24777 break; \ 24778 case TCPS_ESTABLISHED: \ 24779 case TCPS_FIN_WAIT_1: \ 24780 case TCPS_FIN_WAIT_2: \ 24781 case TCPS_CLOSE_WAIT: \ 24782 (err) = ECONNRESET; \ 24783 break; \ 24784 case TCPS_CLOSING: \ 24785 case TCPS_LAST_ACK: \ 24786 case TCPS_TIME_WAIT: \ 24787 (err) = 0; \ 24788 break; \ 24789 default: \ 24790 (err) = ENXIO; \ 24791 } \ 24792 } 24793 24794 /* 24795 * Check if a tcp structure matches the info in acp. 24796 */ 24797 #define TCP_AC_ADDR_MATCH(acp, tcp) \ 24798 (((acp)->ac_local.ss_family == AF_INET) ? \ 24799 ((TCP_AC_V4LOCAL((acp)) == INADDR_ANY || \ 24800 TCP_AC_V4LOCAL((acp)) == (tcp)->tcp_ip_src) && \ 24801 (TCP_AC_V4REMOTE((acp)) == INADDR_ANY || \ 24802 TCP_AC_V4REMOTE((acp)) == (tcp)->tcp_remote) && \ 24803 (TCP_AC_V4LPORT((acp)) == 0 || \ 24804 TCP_AC_V4LPORT((acp)) == (tcp)->tcp_lport) && \ 24805 (TCP_AC_V4RPORT((acp)) == 0 || \ 24806 TCP_AC_V4RPORT((acp)) == (tcp)->tcp_fport) && \ 24807 (acp)->ac_start <= (tcp)->tcp_state && \ 24808 (acp)->ac_end >= (tcp)->tcp_state) : \ 24809 ((IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL((acp))) || \ 24810 IN6_ARE_ADDR_EQUAL(&TCP_AC_V6LOCAL((acp)), \ 24811 &(tcp)->tcp_ip_src_v6)) && \ 24812 (IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE((acp))) || \ 24813 IN6_ARE_ADDR_EQUAL(&TCP_AC_V6REMOTE((acp)), \ 24814 &(tcp)->tcp_remote_v6)) && \ 24815 (TCP_AC_V6LPORT((acp)) == 0 || \ 24816 TCP_AC_V6LPORT((acp)) == (tcp)->tcp_lport) && \ 24817 (TCP_AC_V6RPORT((acp)) == 0 || \ 24818 TCP_AC_V6RPORT((acp)) == (tcp)->tcp_fport) && \ 24819 (acp)->ac_start <= (tcp)->tcp_state && \ 24820 (acp)->ac_end >= (tcp)->tcp_state)) 24821 24822 #define TCP_AC_MATCH(acp, tcp) \ 24823 (((acp)->ac_zoneid == ALL_ZONES || \ 24824 (acp)->ac_zoneid == tcp->tcp_connp->conn_zoneid) ? \ 24825 TCP_AC_ADDR_MATCH(acp, tcp) : 0) 24826 24827 /* 24828 * Build a message containing a tcp_ioc_abort_conn_t structure 24829 * which is filled in with information from acp and tp. 24830 */ 24831 static mblk_t * 24832 tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *acp, tcp_t *tp) 24833 { 24834 mblk_t *mp; 24835 tcp_ioc_abort_conn_t *tacp; 24836 24837 mp = allocb(sizeof (uint32_t) + sizeof (*acp), BPRI_LO); 24838 if (mp == NULL) 24839 return (NULL); 24840 24841 mp->b_datap->db_type = M_CTL; 24842 24843 *((uint32_t *)mp->b_rptr) = TCP_IOC_ABORT_CONN; 24844 tacp = (tcp_ioc_abort_conn_t *)((uchar_t *)mp->b_rptr + 24845 sizeof (uint32_t)); 24846 24847 tacp->ac_start = acp->ac_start; 24848 tacp->ac_end = acp->ac_end; 24849 tacp->ac_zoneid = acp->ac_zoneid; 24850 24851 if (acp->ac_local.ss_family == AF_INET) { 24852 tacp->ac_local.ss_family = AF_INET; 24853 tacp->ac_remote.ss_family = AF_INET; 24854 TCP_AC_V4LOCAL(tacp) = tp->tcp_ip_src; 24855 TCP_AC_V4REMOTE(tacp) = tp->tcp_remote; 24856 TCP_AC_V4LPORT(tacp) = tp->tcp_lport; 24857 TCP_AC_V4RPORT(tacp) = tp->tcp_fport; 24858 } else { 24859 tacp->ac_local.ss_family = AF_INET6; 24860 tacp->ac_remote.ss_family = AF_INET6; 24861 TCP_AC_V6LOCAL(tacp) = tp->tcp_ip_src_v6; 24862 TCP_AC_V6REMOTE(tacp) = tp->tcp_remote_v6; 24863 TCP_AC_V6LPORT(tacp) = tp->tcp_lport; 24864 TCP_AC_V6RPORT(tacp) = tp->tcp_fport; 24865 } 24866 mp->b_wptr = (uchar_t *)mp->b_rptr + sizeof (uint32_t) + sizeof (*acp); 24867 return (mp); 24868 } 24869 24870 /* 24871 * Print a tcp_ioc_abort_conn_t structure. 24872 */ 24873 static void 24874 tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *acp) 24875 { 24876 char lbuf[128]; 24877 char rbuf[128]; 24878 sa_family_t af; 24879 in_port_t lport, rport; 24880 ushort_t logflags; 24881 24882 af = acp->ac_local.ss_family; 24883 24884 if (af == AF_INET) { 24885 (void) inet_ntop(af, (const void *)&TCP_AC_V4LOCAL(acp), 24886 lbuf, 128); 24887 (void) inet_ntop(af, (const void *)&TCP_AC_V4REMOTE(acp), 24888 rbuf, 128); 24889 lport = ntohs(TCP_AC_V4LPORT(acp)); 24890 rport = ntohs(TCP_AC_V4RPORT(acp)); 24891 } else { 24892 (void) inet_ntop(af, (const void *)&TCP_AC_V6LOCAL(acp), 24893 lbuf, 128); 24894 (void) inet_ntop(af, (const void *)&TCP_AC_V6REMOTE(acp), 24895 rbuf, 128); 24896 lport = ntohs(TCP_AC_V6LPORT(acp)); 24897 rport = ntohs(TCP_AC_V6RPORT(acp)); 24898 } 24899 24900 logflags = SL_TRACE | SL_NOTE; 24901 /* 24902 * Don't print this message to the console if the operation was done 24903 * to a non-global zone. 24904 */ 24905 if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) 24906 logflags |= SL_CONSOLE; 24907 (void) strlog(TCP_MOD_ID, 0, 1, logflags, 24908 "TCP_IOC_ABORT_CONN: local = %s:%d, remote = %s:%d, " 24909 "start = %d, end = %d\n", lbuf, lport, rbuf, rport, 24910 acp->ac_start, acp->ac_end); 24911 } 24912 24913 /* 24914 * Called inside tcp_rput when a message built using 24915 * tcp_ioctl_abort_build_msg is put into a queue. 24916 * Note that when we get here there is no wildcard in acp any more. 24917 */ 24918 static void 24919 tcp_ioctl_abort_handler(tcp_t *tcp, mblk_t *mp) 24920 { 24921 tcp_ioc_abort_conn_t *acp; 24922 24923 acp = (tcp_ioc_abort_conn_t *)(mp->b_rptr + sizeof (uint32_t)); 24924 if (tcp->tcp_state <= acp->ac_end) { 24925 /* 24926 * If we get here, we are already on the correct 24927 * squeue. This ioctl follows the following path 24928 * tcp_wput -> tcp_wput_ioctl -> tcp_ioctl_abort_conn 24929 * ->tcp_ioctl_abort->squeue_fill (if on a 24930 * different squeue) 24931 */ 24932 int errcode; 24933 24934 TCP_AC_GET_ERRCODE(tcp->tcp_state, errcode); 24935 (void) tcp_clean_death(tcp, errcode, 26); 24936 } 24937 freemsg(mp); 24938 } 24939 24940 /* 24941 * Abort all matching connections on a hash chain. 24942 */ 24943 static int 24944 tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *acp, int index, int *count, 24945 boolean_t exact) 24946 { 24947 int nmatch, err = 0; 24948 tcp_t *tcp; 24949 MBLKP mp, last, listhead = NULL; 24950 conn_t *tconnp; 24951 connf_t *connfp = &ipcl_conn_fanout[index]; 24952 24953 startover: 24954 nmatch = 0; 24955 24956 mutex_enter(&connfp->connf_lock); 24957 for (tconnp = connfp->connf_head; tconnp != NULL; 24958 tconnp = tconnp->conn_next) { 24959 tcp = tconnp->conn_tcp; 24960 if (TCP_AC_MATCH(acp, tcp)) { 24961 CONN_INC_REF(tcp->tcp_connp); 24962 mp = tcp_ioctl_abort_build_msg(acp, tcp); 24963 if (mp == NULL) { 24964 err = ENOMEM; 24965 CONN_DEC_REF(tcp->tcp_connp); 24966 break; 24967 } 24968 mp->b_prev = (mblk_t *)tcp; 24969 24970 if (listhead == NULL) { 24971 listhead = mp; 24972 last = mp; 24973 } else { 24974 last->b_next = mp; 24975 last = mp; 24976 } 24977 nmatch++; 24978 if (exact) 24979 break; 24980 } 24981 24982 /* Avoid holding lock for too long. */ 24983 if (nmatch >= 500) 24984 break; 24985 } 24986 mutex_exit(&connfp->connf_lock); 24987 24988 /* Pass mp into the correct tcp */ 24989 while ((mp = listhead) != NULL) { 24990 listhead = listhead->b_next; 24991 tcp = (tcp_t *)mp->b_prev; 24992 mp->b_next = mp->b_prev = NULL; 24993 squeue_fill(tcp->tcp_connp->conn_sqp, mp, 24994 tcp_input, tcp->tcp_connp, SQTAG_TCP_ABORT_BUCKET); 24995 } 24996 24997 *count += nmatch; 24998 if (nmatch >= 500 && err == 0) 24999 goto startover; 25000 return (err); 25001 } 25002 25003 /* 25004 * Abort all connections that matches the attributes specified in acp. 25005 */ 25006 static int 25007 tcp_ioctl_abort(tcp_ioc_abort_conn_t *acp) 25008 { 25009 sa_family_t af; 25010 uint32_t ports; 25011 uint16_t *pports; 25012 int err = 0, count = 0; 25013 boolean_t exact = B_FALSE; /* set when there is no wildcard */ 25014 int index = -1; 25015 ushort_t logflags; 25016 25017 af = acp->ac_local.ss_family; 25018 25019 if (af == AF_INET) { 25020 if (TCP_AC_V4REMOTE(acp) != INADDR_ANY && 25021 TCP_AC_V4LPORT(acp) != 0 && TCP_AC_V4RPORT(acp) != 0) { 25022 pports = (uint16_t *)&ports; 25023 pports[1] = TCP_AC_V4LPORT(acp); 25024 pports[0] = TCP_AC_V4RPORT(acp); 25025 exact = (TCP_AC_V4LOCAL(acp) != INADDR_ANY); 25026 } 25027 } else { 25028 if (!IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE(acp)) && 25029 TCP_AC_V6LPORT(acp) != 0 && TCP_AC_V6RPORT(acp) != 0) { 25030 pports = (uint16_t *)&ports; 25031 pports[1] = TCP_AC_V6LPORT(acp); 25032 pports[0] = TCP_AC_V6RPORT(acp); 25033 exact = !IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL(acp)); 25034 } 25035 } 25036 25037 /* 25038 * For cases where remote addr, local port, and remote port are non- 25039 * wildcards, tcp_ioctl_abort_bucket will only be called once. 25040 */ 25041 if (index != -1) { 25042 err = tcp_ioctl_abort_bucket(acp, index, 25043 &count, exact); 25044 } else { 25045 /* 25046 * loop through all entries for wildcard case 25047 */ 25048 for (index = 0; index < ipcl_conn_fanout_size; index++) { 25049 err = tcp_ioctl_abort_bucket(acp, index, 25050 &count, exact); 25051 if (err != 0) 25052 break; 25053 } 25054 } 25055 25056 logflags = SL_TRACE | SL_NOTE; 25057 /* 25058 * Don't print this message to the console if the operation was done 25059 * to a non-global zone. 25060 */ 25061 if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) 25062 logflags |= SL_CONSOLE; 25063 (void) strlog(TCP_MOD_ID, 0, 1, logflags, "TCP_IOC_ABORT_CONN: " 25064 "aborted %d connection%c\n", count, ((count > 1) ? 's' : ' ')); 25065 if (err == 0 && count == 0) 25066 err = ENOENT; 25067 return (err); 25068 } 25069 25070 /* 25071 * Process the TCP_IOC_ABORT_CONN ioctl request. 25072 */ 25073 static void 25074 tcp_ioctl_abort_conn(queue_t *q, mblk_t *mp) 25075 { 25076 int err; 25077 IOCP iocp; 25078 MBLKP mp1; 25079 sa_family_t laf, raf; 25080 tcp_ioc_abort_conn_t *acp; 25081 zone_t *zptr; 25082 zoneid_t zoneid = Q_TO_CONN(q)->conn_zoneid; 25083 25084 iocp = (IOCP)mp->b_rptr; 25085 25086 if ((mp1 = mp->b_cont) == NULL || 25087 iocp->ioc_count != sizeof (tcp_ioc_abort_conn_t)) { 25088 err = EINVAL; 25089 goto out; 25090 } 25091 25092 /* check permissions */ 25093 if (secpolicy_net_config(iocp->ioc_cr, B_FALSE) != 0) { 25094 err = EPERM; 25095 goto out; 25096 } 25097 25098 if (mp1->b_cont != NULL) { 25099 freemsg(mp1->b_cont); 25100 mp1->b_cont = NULL; 25101 } 25102 25103 acp = (tcp_ioc_abort_conn_t *)mp1->b_rptr; 25104 laf = acp->ac_local.ss_family; 25105 raf = acp->ac_remote.ss_family; 25106 25107 /* check that a zone with the supplied zoneid exists */ 25108 if (acp->ac_zoneid != GLOBAL_ZONEID && acp->ac_zoneid != ALL_ZONES) { 25109 zptr = zone_find_by_id(zoneid); 25110 if (zptr != NULL) { 25111 zone_rele(zptr); 25112 } else { 25113 err = EINVAL; 25114 goto out; 25115 } 25116 } 25117 25118 if (acp->ac_start < TCPS_SYN_SENT || acp->ac_end > TCPS_TIME_WAIT || 25119 acp->ac_start > acp->ac_end || laf != raf || 25120 (laf != AF_INET && laf != AF_INET6)) { 25121 err = EINVAL; 25122 goto out; 25123 } 25124 25125 tcp_ioctl_abort_dump(acp); 25126 err = tcp_ioctl_abort(acp); 25127 25128 out: 25129 if (mp1 != NULL) { 25130 freemsg(mp1); 25131 mp->b_cont = NULL; 25132 } 25133 25134 if (err != 0) 25135 miocnak(q, mp, 0, err); 25136 else 25137 miocack(q, mp, 0, 0); 25138 } 25139 25140 /* 25141 * tcp_time_wait_processing() handles processing of incoming packets when 25142 * the tcp is in the TIME_WAIT state. 25143 * A TIME_WAIT tcp that has an associated open TCP stream is never put 25144 * on the time wait list. 25145 */ 25146 void 25147 tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, uint32_t seg_seq, 25148 uint32_t seg_ack, int seg_len, tcph_t *tcph) 25149 { 25150 int32_t bytes_acked; 25151 int32_t gap; 25152 int32_t rgap; 25153 tcp_opt_t tcpopt; 25154 uint_t flags; 25155 uint32_t new_swnd = 0; 25156 conn_t *connp; 25157 25158 BUMP_LOCAL(tcp->tcp_ibsegs); 25159 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_RECV_PKT); 25160 25161 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 25162 new_swnd = BE16_TO_U16(tcph->th_win) << 25163 ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws); 25164 if (tcp->tcp_snd_ts_ok) { 25165 if (!tcp_paws_check(tcp, tcph, &tcpopt)) { 25166 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 25167 tcp->tcp_rnxt, TH_ACK); 25168 goto done; 25169 } 25170 } 25171 gap = seg_seq - tcp->tcp_rnxt; 25172 rgap = tcp->tcp_rwnd - (gap + seg_len); 25173 if (gap < 0) { 25174 BUMP_MIB(&tcp_mib, tcpInDataDupSegs); 25175 UPDATE_MIB(&tcp_mib, tcpInDataDupBytes, 25176 (seg_len > -gap ? -gap : seg_len)); 25177 seg_len += gap; 25178 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 25179 if (flags & TH_RST) { 25180 goto done; 25181 } 25182 if ((flags & TH_FIN) && seg_len == -1) { 25183 /* 25184 * When TCP receives a duplicate FIN in 25185 * TIME_WAIT state, restart the 2 MSL timer. 25186 * See page 73 in RFC 793. Make sure this TCP 25187 * is already on the TIME_WAIT list. If not, 25188 * just restart the timer. 25189 */ 25190 if (TCP_IS_DETACHED(tcp)) { 25191 if (tcp_time_wait_remove(tcp, NULL) == 25192 B_TRUE) { 25193 tcp_time_wait_append(tcp); 25194 TCP_DBGSTAT(tcp_rput_time_wait); 25195 } 25196 } else { 25197 ASSERT(tcp != NULL); 25198 TCP_TIMER_RESTART(tcp, 25199 tcp_time_wait_interval); 25200 } 25201 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 25202 tcp->tcp_rnxt, TH_ACK); 25203 goto done; 25204 } 25205 flags |= TH_ACK_NEEDED; 25206 seg_len = 0; 25207 goto process_ack; 25208 } 25209 25210 /* Fix seg_seq, and chew the gap off the front. */ 25211 seg_seq = tcp->tcp_rnxt; 25212 } 25213 25214 if ((flags & TH_SYN) && gap > 0 && rgap < 0) { 25215 /* 25216 * Make sure that when we accept the connection, pick 25217 * an ISS greater than (tcp_snxt + ISS_INCR/2) for the 25218 * old connection. 25219 * 25220 * The next ISS generated is equal to tcp_iss_incr_extra 25221 * + ISS_INCR/2 + other components depending on the 25222 * value of tcp_strong_iss. We pre-calculate the new 25223 * ISS here and compare with tcp_snxt to determine if 25224 * we need to make adjustment to tcp_iss_incr_extra. 25225 * 25226 * The above calculation is ugly and is a 25227 * waste of CPU cycles... 25228 */ 25229 uint32_t new_iss = tcp_iss_incr_extra; 25230 int32_t adj; 25231 25232 switch (tcp_strong_iss) { 25233 case 2: { 25234 /* Add time and MD5 components. */ 25235 uint32_t answer[4]; 25236 struct { 25237 uint32_t ports; 25238 in6_addr_t src; 25239 in6_addr_t dst; 25240 } arg; 25241 MD5_CTX context; 25242 25243 mutex_enter(&tcp_iss_key_lock); 25244 context = tcp_iss_key; 25245 mutex_exit(&tcp_iss_key_lock); 25246 arg.ports = tcp->tcp_ports; 25247 /* We use MAPPED addresses in tcp_iss_init */ 25248 arg.src = tcp->tcp_ip_src_v6; 25249 if (tcp->tcp_ipversion == IPV4_VERSION) { 25250 IN6_IPADDR_TO_V4MAPPED( 25251 tcp->tcp_ipha->ipha_dst, 25252 &arg.dst); 25253 } else { 25254 arg.dst = 25255 tcp->tcp_ip6h->ip6_dst; 25256 } 25257 MD5Update(&context, (uchar_t *)&arg, 25258 sizeof (arg)); 25259 MD5Final((uchar_t *)answer, &context); 25260 answer[0] ^= answer[1] ^ answer[2] ^ answer[3]; 25261 new_iss += (gethrtime() >> ISS_NSEC_SHT) + answer[0]; 25262 break; 25263 } 25264 case 1: 25265 /* Add time component and min random (i.e. 1). */ 25266 new_iss += (gethrtime() >> ISS_NSEC_SHT) + 1; 25267 break; 25268 default: 25269 /* Add only time component. */ 25270 new_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 25271 break; 25272 } 25273 if ((adj = (int32_t)(tcp->tcp_snxt - new_iss)) > 0) { 25274 /* 25275 * New ISS not guaranteed to be ISS_INCR/2 25276 * ahead of the current tcp_snxt, so add the 25277 * difference to tcp_iss_incr_extra. 25278 */ 25279 tcp_iss_incr_extra += adj; 25280 } 25281 /* 25282 * If tcp_clean_death() can not perform the task now, 25283 * drop the SYN packet and let the other side re-xmit. 25284 * Otherwise pass the SYN packet back in, since the 25285 * old tcp state has been cleaned up or freed. 25286 */ 25287 if (tcp_clean_death(tcp, 0, 27) == -1) 25288 goto done; 25289 /* 25290 * We will come back to tcp_rput_data 25291 * on the global queue. Packets destined 25292 * for the global queue will be checked 25293 * with global policy. But the policy for 25294 * this packet has already been checked as 25295 * this was destined for the detached 25296 * connection. We need to bypass policy 25297 * check this time by attaching a dummy 25298 * ipsec_in with ipsec_in_dont_check set. 25299 */ 25300 if ((connp = ipcl_classify(mp, tcp->tcp_connp->conn_zoneid)) != 25301 NULL) { 25302 TCP_STAT(tcp_time_wait_syn_success); 25303 tcp_reinput(connp, mp, tcp->tcp_connp->conn_sqp); 25304 return; 25305 } 25306 goto done; 25307 } 25308 25309 /* 25310 * rgap is the amount of stuff received out of window. A negative 25311 * value is the amount out of window. 25312 */ 25313 if (rgap < 0) { 25314 BUMP_MIB(&tcp_mib, tcpInDataPastWinSegs); 25315 UPDATE_MIB(&tcp_mib, tcpInDataPastWinBytes, -rgap); 25316 /* Fix seg_len and make sure there is something left. */ 25317 seg_len += rgap; 25318 if (seg_len <= 0) { 25319 if (flags & TH_RST) { 25320 goto done; 25321 } 25322 flags |= TH_ACK_NEEDED; 25323 seg_len = 0; 25324 goto process_ack; 25325 } 25326 } 25327 /* 25328 * Check whether we can update tcp_ts_recent. This test is 25329 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 25330 * Extensions for High Performance: An Update", Internet Draft. 25331 */ 25332 if (tcp->tcp_snd_ts_ok && 25333 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 25334 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 25335 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 25336 tcp->tcp_last_rcv_lbolt = lbolt64; 25337 } 25338 25339 if (seg_seq != tcp->tcp_rnxt && seg_len > 0) { 25340 /* Always ack out of order packets */ 25341 flags |= TH_ACK_NEEDED; 25342 seg_len = 0; 25343 } else if (seg_len > 0) { 25344 BUMP_MIB(&tcp_mib, tcpInClosed); 25345 BUMP_MIB(&tcp_mib, tcpInDataInorderSegs); 25346 UPDATE_MIB(&tcp_mib, tcpInDataInorderBytes, seg_len); 25347 } 25348 if (flags & TH_RST) { 25349 (void) tcp_clean_death(tcp, 0, 28); 25350 goto done; 25351 } 25352 if (flags & TH_SYN) { 25353 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 25354 TH_RST|TH_ACK); 25355 /* 25356 * Do not delete the TCP structure if it is in 25357 * TIME_WAIT state. Refer to RFC 1122, 4.2.2.13. 25358 */ 25359 goto done; 25360 } 25361 process_ack: 25362 if (flags & TH_ACK) { 25363 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 25364 if (bytes_acked <= 0) { 25365 if (bytes_acked == 0 && seg_len == 0 && 25366 new_swnd == tcp->tcp_swnd) 25367 BUMP_MIB(&tcp_mib, tcpInDupAck); 25368 } else { 25369 /* Acks something not sent */ 25370 flags |= TH_ACK_NEEDED; 25371 } 25372 } 25373 if (flags & TH_ACK_NEEDED) { 25374 /* 25375 * Time to send an ack for some reason. 25376 */ 25377 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 25378 tcp->tcp_rnxt, TH_ACK); 25379 } 25380 done: 25381 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 25382 DB_CKSUMSTART(mp) = 0; 25383 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 25384 TCP_STAT(tcp_time_wait_syn_fail); 25385 } 25386 freemsg(mp); 25387 } 25388 25389 /* 25390 * Allocate a T_SVR4_OPTMGMT_REQ. 25391 * The caller needs to increment tcp_drop_opt_ack_cnt when sending these so 25392 * that tcp_rput_other can drop the acks. 25393 */ 25394 static mblk_t * 25395 tcp_setsockopt_mp(int level, int cmd, char *opt, int optlen) 25396 { 25397 mblk_t *mp; 25398 struct T_optmgmt_req *tor; 25399 struct opthdr *oh; 25400 uint_t size; 25401 char *optptr; 25402 25403 size = sizeof (*tor) + sizeof (*oh) + optlen; 25404 mp = allocb(size, BPRI_MED); 25405 if (mp == NULL) 25406 return (NULL); 25407 25408 mp->b_wptr += size; 25409 mp->b_datap->db_type = M_PROTO; 25410 tor = (struct T_optmgmt_req *)mp->b_rptr; 25411 tor->PRIM_type = T_SVR4_OPTMGMT_REQ; 25412 tor->MGMT_flags = T_NEGOTIATE; 25413 tor->OPT_length = sizeof (*oh) + optlen; 25414 tor->OPT_offset = (t_scalar_t)sizeof (*tor); 25415 25416 oh = (struct opthdr *)&tor[1]; 25417 oh->level = level; 25418 oh->name = cmd; 25419 oh->len = optlen; 25420 if (optlen != 0) { 25421 optptr = (char *)&oh[1]; 25422 bcopy(opt, optptr, optlen); 25423 } 25424 return (mp); 25425 } 25426 25427 /* 25428 * TCP Timers Implementation. 25429 */ 25430 timeout_id_t 25431 tcp_timeout(conn_t *connp, void (*f)(void *), clock_t tim) 25432 { 25433 mblk_t *mp; 25434 tcp_timer_t *tcpt; 25435 tcp_t *tcp = connp->conn_tcp; 25436 25437 ASSERT(connp->conn_sqp != NULL); 25438 25439 TCP_DBGSTAT(tcp_timeout_calls); 25440 25441 if (tcp->tcp_timercache == NULL) { 25442 mp = tcp_timermp_alloc(KM_NOSLEEP | KM_PANIC); 25443 } else { 25444 TCP_DBGSTAT(tcp_timeout_cached_alloc); 25445 mp = tcp->tcp_timercache; 25446 tcp->tcp_timercache = mp->b_next; 25447 mp->b_next = NULL; 25448 ASSERT(mp->b_wptr == NULL); 25449 } 25450 25451 CONN_INC_REF(connp); 25452 tcpt = (tcp_timer_t *)mp->b_rptr; 25453 tcpt->connp = connp; 25454 tcpt->tcpt_proc = f; 25455 tcpt->tcpt_tid = timeout(tcp_timer_callback, mp, tim); 25456 return ((timeout_id_t)mp); 25457 } 25458 25459 static void 25460 tcp_timer_callback(void *arg) 25461 { 25462 mblk_t *mp = (mblk_t *)arg; 25463 tcp_timer_t *tcpt; 25464 conn_t *connp; 25465 25466 tcpt = (tcp_timer_t *)mp->b_rptr; 25467 connp = tcpt->connp; 25468 squeue_fill(connp->conn_sqp, mp, 25469 tcp_timer_handler, connp, SQTAG_TCP_TIMER); 25470 } 25471 25472 static void 25473 tcp_timer_handler(void *arg, mblk_t *mp, void *arg2) 25474 { 25475 tcp_timer_t *tcpt; 25476 conn_t *connp = (conn_t *)arg; 25477 tcp_t *tcp = connp->conn_tcp; 25478 25479 tcpt = (tcp_timer_t *)mp->b_rptr; 25480 ASSERT(connp == tcpt->connp); 25481 ASSERT((squeue_t *)arg2 == connp->conn_sqp); 25482 25483 /* 25484 * If the TCP has reached the closed state, don't proceed any 25485 * further. This TCP logically does not exist on the system. 25486 * tcpt_proc could for example access queues, that have already 25487 * been qprocoff'ed off. Also see comments at the start of tcp_input 25488 */ 25489 if (tcp->tcp_state != TCPS_CLOSED) { 25490 (*tcpt->tcpt_proc)(connp); 25491 } else { 25492 tcp->tcp_timer_tid = 0; 25493 } 25494 tcp_timer_free(connp->conn_tcp, mp); 25495 } 25496 25497 /* 25498 * There is potential race with untimeout and the handler firing at the same 25499 * time. The mblock may be freed by the handler while we are trying to use 25500 * it. But since both should execute on the same squeue, this race should not 25501 * occur. 25502 */ 25503 clock_t 25504 tcp_timeout_cancel(conn_t *connp, timeout_id_t id) 25505 { 25506 mblk_t *mp = (mblk_t *)id; 25507 tcp_timer_t *tcpt; 25508 clock_t delta; 25509 25510 TCP_DBGSTAT(tcp_timeout_cancel_reqs); 25511 25512 if (mp == NULL) 25513 return (-1); 25514 25515 tcpt = (tcp_timer_t *)mp->b_rptr; 25516 ASSERT(tcpt->connp == connp); 25517 25518 delta = untimeout(tcpt->tcpt_tid); 25519 25520 if (delta >= 0) { 25521 TCP_DBGSTAT(tcp_timeout_canceled); 25522 tcp_timer_free(connp->conn_tcp, mp); 25523 CONN_DEC_REF(connp); 25524 } 25525 25526 return (delta); 25527 } 25528 25529 /* 25530 * Allocate space for the timer event. The allocation looks like mblk, but it is 25531 * not a proper mblk. To avoid confusion we set b_wptr to NULL. 25532 * 25533 * Dealing with failures: If we can't allocate from the timer cache we try 25534 * allocating from dblock caches using allocb_tryhard(). In this case b_wptr 25535 * points to b_rptr. 25536 * If we can't allocate anything using allocb_tryhard(), we perform a last 25537 * attempt and use kmem_alloc_tryhard(). In this case we set b_wptr to -1 and 25538 * save the actual allocation size in b_datap. 25539 */ 25540 mblk_t * 25541 tcp_timermp_alloc(int kmflags) 25542 { 25543 mblk_t *mp = (mblk_t *)kmem_cache_alloc(tcp_timercache, 25544 kmflags & ~KM_PANIC); 25545 25546 if (mp != NULL) { 25547 mp->b_next = mp->b_prev = NULL; 25548 mp->b_rptr = (uchar_t *)(&mp[1]); 25549 mp->b_wptr = NULL; 25550 mp->b_datap = NULL; 25551 mp->b_queue = NULL; 25552 } else if (kmflags & KM_PANIC) { 25553 /* 25554 * Failed to allocate memory for the timer. Try allocating from 25555 * dblock caches. 25556 */ 25557 TCP_STAT(tcp_timermp_allocfail); 25558 mp = allocb_tryhard(sizeof (tcp_timer_t)); 25559 if (mp == NULL) { 25560 size_t size = 0; 25561 /* 25562 * Memory is really low. Try tryhard allocation. 25563 */ 25564 TCP_STAT(tcp_timermp_allocdblfail); 25565 mp = kmem_alloc_tryhard(sizeof (mblk_t) + 25566 sizeof (tcp_timer_t), &size, kmflags); 25567 mp->b_rptr = (uchar_t *)(&mp[1]); 25568 mp->b_next = mp->b_prev = NULL; 25569 mp->b_wptr = (uchar_t *)-1; 25570 mp->b_datap = (dblk_t *)size; 25571 mp->b_queue = NULL; 25572 } 25573 ASSERT(mp->b_wptr != NULL); 25574 } 25575 TCP_DBGSTAT(tcp_timermp_alloced); 25576 25577 return (mp); 25578 } 25579 25580 /* 25581 * Free per-tcp timer cache. 25582 * It can only contain entries from tcp_timercache. 25583 */ 25584 void 25585 tcp_timermp_free(tcp_t *tcp) 25586 { 25587 mblk_t *mp; 25588 25589 while ((mp = tcp->tcp_timercache) != NULL) { 25590 ASSERT(mp->b_wptr == NULL); 25591 tcp->tcp_timercache = tcp->tcp_timercache->b_next; 25592 kmem_cache_free(tcp_timercache, mp); 25593 } 25594 } 25595 25596 /* 25597 * Free timer event. Put it on the per-tcp timer cache if there is not too many 25598 * events there already (currently at most two events are cached). 25599 * If the event is not allocated from the timer cache, free it right away. 25600 */ 25601 static void 25602 tcp_timer_free(tcp_t *tcp, mblk_t *mp) 25603 { 25604 mblk_t *mp1 = tcp->tcp_timercache; 25605 25606 if (mp->b_wptr != NULL) { 25607 /* 25608 * This allocation is not from a timer cache, free it right 25609 * away. 25610 */ 25611 if (mp->b_wptr != (uchar_t *)-1) 25612 freeb(mp); 25613 else 25614 kmem_free(mp, (size_t)mp->b_datap); 25615 } else if (mp1 == NULL || mp1->b_next == NULL) { 25616 /* Cache this timer block for future allocations */ 25617 mp->b_rptr = (uchar_t *)(&mp[1]); 25618 mp->b_next = mp1; 25619 tcp->tcp_timercache = mp; 25620 } else { 25621 kmem_cache_free(tcp_timercache, mp); 25622 TCP_DBGSTAT(tcp_timermp_freed); 25623 } 25624 } 25625 25626 /* 25627 * End of TCP Timers implementation. 25628 */ 25629 25630 /* 25631 * tcp_{set,clr}qfull() functions are used to either set or clear QFULL 25632 * on the specified backing STREAMS q. Note, the caller may make the 25633 * decision to call based on the tcp_t.tcp_flow_stopped value which 25634 * when check outside the q's lock is only an advisory check ... 25635 */ 25636 25637 void 25638 tcp_setqfull(tcp_t *tcp) 25639 { 25640 queue_t *q = tcp->tcp_wq; 25641 25642 if (!(q->q_flag & QFULL)) { 25643 mutex_enter(QLOCK(q)); 25644 if (!(q->q_flag & QFULL)) { 25645 /* still need to set QFULL */ 25646 q->q_flag |= QFULL; 25647 tcp->tcp_flow_stopped = B_TRUE; 25648 mutex_exit(QLOCK(q)); 25649 TCP_STAT(tcp_flwctl_on); 25650 } else { 25651 mutex_exit(QLOCK(q)); 25652 } 25653 } 25654 } 25655 25656 void 25657 tcp_clrqfull(tcp_t *tcp) 25658 { 25659 queue_t *q = tcp->tcp_wq; 25660 25661 if (q->q_flag & QFULL) { 25662 mutex_enter(QLOCK(q)); 25663 if (q->q_flag & QFULL) { 25664 q->q_flag &= ~QFULL; 25665 tcp->tcp_flow_stopped = B_FALSE; 25666 mutex_exit(QLOCK(q)); 25667 if (q->q_flag & QWANTW) 25668 qbackenable(q, 0); 25669 } else { 25670 mutex_exit(QLOCK(q)); 25671 } 25672 } 25673 } 25674 25675 /* 25676 * TCP Kstats implementation 25677 */ 25678 static void 25679 tcp_kstat_init(void) 25680 { 25681 tcp_named_kstat_t template = { 25682 { "rtoAlgorithm", KSTAT_DATA_INT32, 0 }, 25683 { "rtoMin", KSTAT_DATA_INT32, 0 }, 25684 { "rtoMax", KSTAT_DATA_INT32, 0 }, 25685 { "maxConn", KSTAT_DATA_INT32, 0 }, 25686 { "activeOpens", KSTAT_DATA_UINT32, 0 }, 25687 { "passiveOpens", KSTAT_DATA_UINT32, 0 }, 25688 { "attemptFails", KSTAT_DATA_UINT32, 0 }, 25689 { "estabResets", KSTAT_DATA_UINT32, 0 }, 25690 { "currEstab", KSTAT_DATA_UINT32, 0 }, 25691 { "inSegs", KSTAT_DATA_UINT64, 0 }, 25692 { "outSegs", KSTAT_DATA_UINT64, 0 }, 25693 { "retransSegs", KSTAT_DATA_UINT32, 0 }, 25694 { "connTableSize", KSTAT_DATA_INT32, 0 }, 25695 { "outRsts", KSTAT_DATA_UINT32, 0 }, 25696 { "outDataSegs", KSTAT_DATA_UINT32, 0 }, 25697 { "outDataBytes", KSTAT_DATA_UINT32, 0 }, 25698 { "retransBytes", KSTAT_DATA_UINT32, 0 }, 25699 { "outAck", KSTAT_DATA_UINT32, 0 }, 25700 { "outAckDelayed", KSTAT_DATA_UINT32, 0 }, 25701 { "outUrg", KSTAT_DATA_UINT32, 0 }, 25702 { "outWinUpdate", KSTAT_DATA_UINT32, 0 }, 25703 { "outWinProbe", KSTAT_DATA_UINT32, 0 }, 25704 { "outControl", KSTAT_DATA_UINT32, 0 }, 25705 { "outFastRetrans", KSTAT_DATA_UINT32, 0 }, 25706 { "inAckSegs", KSTAT_DATA_UINT32, 0 }, 25707 { "inAckBytes", KSTAT_DATA_UINT32, 0 }, 25708 { "inDupAck", KSTAT_DATA_UINT32, 0 }, 25709 { "inAckUnsent", KSTAT_DATA_UINT32, 0 }, 25710 { "inDataInorderSegs", KSTAT_DATA_UINT32, 0 }, 25711 { "inDataInorderBytes", KSTAT_DATA_UINT32, 0 }, 25712 { "inDataUnorderSegs", KSTAT_DATA_UINT32, 0 }, 25713 { "inDataUnorderBytes", KSTAT_DATA_UINT32, 0 }, 25714 { "inDataDupSegs", KSTAT_DATA_UINT32, 0 }, 25715 { "inDataDupBytes", KSTAT_DATA_UINT32, 0 }, 25716 { "inDataPartDupSegs", KSTAT_DATA_UINT32, 0 }, 25717 { "inDataPartDupBytes", KSTAT_DATA_UINT32, 0 }, 25718 { "inDataPastWinSegs", KSTAT_DATA_UINT32, 0 }, 25719 { "inDataPastWinBytes", KSTAT_DATA_UINT32, 0 }, 25720 { "inWinProbe", KSTAT_DATA_UINT32, 0 }, 25721 { "inWinUpdate", KSTAT_DATA_UINT32, 0 }, 25722 { "inClosed", KSTAT_DATA_UINT32, 0 }, 25723 { "rttUpdate", KSTAT_DATA_UINT32, 0 }, 25724 { "rttNoUpdate", KSTAT_DATA_UINT32, 0 }, 25725 { "timRetrans", KSTAT_DATA_UINT32, 0 }, 25726 { "timRetransDrop", KSTAT_DATA_UINT32, 0 }, 25727 { "timKeepalive", KSTAT_DATA_UINT32, 0 }, 25728 { "timKeepaliveProbe", KSTAT_DATA_UINT32, 0 }, 25729 { "timKeepaliveDrop", KSTAT_DATA_UINT32, 0 }, 25730 { "listenDrop", KSTAT_DATA_UINT32, 0 }, 25731 { "listenDropQ0", KSTAT_DATA_UINT32, 0 }, 25732 { "halfOpenDrop", KSTAT_DATA_UINT32, 0 }, 25733 { "outSackRetransSegs", KSTAT_DATA_UINT32, 0 }, 25734 { "connTableSize6", KSTAT_DATA_INT32, 0 } 25735 }; 25736 25737 tcp_mibkp = kstat_create(TCP_MOD_NAME, 0, TCP_MOD_NAME, 25738 "mib2", KSTAT_TYPE_NAMED, NUM_OF_FIELDS(tcp_named_kstat_t), 0); 25739 25740 if (tcp_mibkp == NULL) 25741 return; 25742 25743 template.rtoAlgorithm.value.ui32 = 4; 25744 template.rtoMin.value.ui32 = tcp_rexmit_interval_min; 25745 template.rtoMax.value.ui32 = tcp_rexmit_interval_max; 25746 template.maxConn.value.i32 = -1; 25747 25748 bcopy(&template, tcp_mibkp->ks_data, sizeof (template)); 25749 25750 tcp_mibkp->ks_update = tcp_kstat_update; 25751 25752 kstat_install(tcp_mibkp); 25753 } 25754 25755 static void 25756 tcp_kstat_fini(void) 25757 { 25758 25759 if (tcp_mibkp != NULL) { 25760 kstat_delete(tcp_mibkp); 25761 tcp_mibkp = NULL; 25762 } 25763 } 25764 25765 static int 25766 tcp_kstat_update(kstat_t *kp, int rw) 25767 { 25768 tcp_named_kstat_t *tcpkp; 25769 tcp_t *tcp; 25770 connf_t *connfp; 25771 conn_t *connp; 25772 int i; 25773 25774 if (!kp || !kp->ks_data) 25775 return (EIO); 25776 25777 if (rw == KSTAT_WRITE) 25778 return (EACCES); 25779 25780 tcpkp = (tcp_named_kstat_t *)kp->ks_data; 25781 25782 tcpkp->currEstab.value.ui32 = 0; 25783 25784 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 25785 connfp = &ipcl_globalhash_fanout[i]; 25786 connp = NULL; 25787 while ((connp = 25788 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 25789 tcp = connp->conn_tcp; 25790 switch (tcp_snmp_state(tcp)) { 25791 case MIB2_TCP_established: 25792 case MIB2_TCP_closeWait: 25793 tcpkp->currEstab.value.ui32++; 25794 break; 25795 } 25796 } 25797 } 25798 25799 tcpkp->activeOpens.value.ui32 = tcp_mib.tcpActiveOpens; 25800 tcpkp->passiveOpens.value.ui32 = tcp_mib.tcpPassiveOpens; 25801 tcpkp->attemptFails.value.ui32 = tcp_mib.tcpAttemptFails; 25802 tcpkp->estabResets.value.ui32 = tcp_mib.tcpEstabResets; 25803 tcpkp->inSegs.value.ui64 = tcp_mib.tcpHCInSegs; 25804 tcpkp->outSegs.value.ui64 = tcp_mib.tcpHCOutSegs; 25805 tcpkp->retransSegs.value.ui32 = tcp_mib.tcpRetransSegs; 25806 tcpkp->connTableSize.value.i32 = tcp_mib.tcpConnTableSize; 25807 tcpkp->outRsts.value.ui32 = tcp_mib.tcpOutRsts; 25808 tcpkp->outDataSegs.value.ui32 = tcp_mib.tcpOutDataSegs; 25809 tcpkp->outDataBytes.value.ui32 = tcp_mib.tcpOutDataBytes; 25810 tcpkp->retransBytes.value.ui32 = tcp_mib.tcpRetransBytes; 25811 tcpkp->outAck.value.ui32 = tcp_mib.tcpOutAck; 25812 tcpkp->outAckDelayed.value.ui32 = tcp_mib.tcpOutAckDelayed; 25813 tcpkp->outUrg.value.ui32 = tcp_mib.tcpOutUrg; 25814 tcpkp->outWinUpdate.value.ui32 = tcp_mib.tcpOutWinUpdate; 25815 tcpkp->outWinProbe.value.ui32 = tcp_mib.tcpOutWinProbe; 25816 tcpkp->outControl.value.ui32 = tcp_mib.tcpOutControl; 25817 tcpkp->outFastRetrans.value.ui32 = tcp_mib.tcpOutFastRetrans; 25818 tcpkp->inAckSegs.value.ui32 = tcp_mib.tcpInAckSegs; 25819 tcpkp->inAckBytes.value.ui32 = tcp_mib.tcpInAckBytes; 25820 tcpkp->inDupAck.value.ui32 = tcp_mib.tcpInDupAck; 25821 tcpkp->inAckUnsent.value.ui32 = tcp_mib.tcpInAckUnsent; 25822 tcpkp->inDataInorderSegs.value.ui32 = tcp_mib.tcpInDataInorderSegs; 25823 tcpkp->inDataInorderBytes.value.ui32 = tcp_mib.tcpInDataInorderBytes; 25824 tcpkp->inDataUnorderSegs.value.ui32 = tcp_mib.tcpInDataUnorderSegs; 25825 tcpkp->inDataUnorderBytes.value.ui32 = tcp_mib.tcpInDataUnorderBytes; 25826 tcpkp->inDataDupSegs.value.ui32 = tcp_mib.tcpInDataDupSegs; 25827 tcpkp->inDataDupBytes.value.ui32 = tcp_mib.tcpInDataDupBytes; 25828 tcpkp->inDataPartDupSegs.value.ui32 = tcp_mib.tcpInDataPartDupSegs; 25829 tcpkp->inDataPartDupBytes.value.ui32 = tcp_mib.tcpInDataPartDupBytes; 25830 tcpkp->inDataPastWinSegs.value.ui32 = tcp_mib.tcpInDataPastWinSegs; 25831 tcpkp->inDataPastWinBytes.value.ui32 = tcp_mib.tcpInDataPastWinBytes; 25832 tcpkp->inWinProbe.value.ui32 = tcp_mib.tcpInWinProbe; 25833 tcpkp->inWinUpdate.value.ui32 = tcp_mib.tcpInWinUpdate; 25834 tcpkp->inClosed.value.ui32 = tcp_mib.tcpInClosed; 25835 tcpkp->rttNoUpdate.value.ui32 = tcp_mib.tcpRttNoUpdate; 25836 tcpkp->rttUpdate.value.ui32 = tcp_mib.tcpRttUpdate; 25837 tcpkp->timRetrans.value.ui32 = tcp_mib.tcpTimRetrans; 25838 tcpkp->timRetransDrop.value.ui32 = tcp_mib.tcpTimRetransDrop; 25839 tcpkp->timKeepalive.value.ui32 = tcp_mib.tcpTimKeepalive; 25840 tcpkp->timKeepaliveProbe.value.ui32 = tcp_mib.tcpTimKeepaliveProbe; 25841 tcpkp->timKeepaliveDrop.value.ui32 = tcp_mib.tcpTimKeepaliveDrop; 25842 tcpkp->listenDrop.value.ui32 = tcp_mib.tcpListenDrop; 25843 tcpkp->listenDropQ0.value.ui32 = tcp_mib.tcpListenDropQ0; 25844 tcpkp->halfOpenDrop.value.ui32 = tcp_mib.tcpHalfOpenDrop; 25845 tcpkp->outSackRetransSegs.value.ui32 = tcp_mib.tcpOutSackRetransSegs; 25846 tcpkp->connTableSize6.value.i32 = tcp_mib.tcp6ConnTableSize; 25847 25848 return (0); 25849 } 25850 25851 void 25852 tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp) 25853 { 25854 uint16_t hdr_len; 25855 ipha_t *ipha; 25856 uint8_t *nexthdrp; 25857 tcph_t *tcph; 25858 25859 /* Already has an eager */ 25860 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 25861 TCP_STAT(tcp_reinput_syn); 25862 squeue_enter(connp->conn_sqp, mp, connp->conn_recv, 25863 connp, SQTAG_TCP_REINPUT_EAGER); 25864 return; 25865 } 25866 25867 switch (IPH_HDR_VERSION(mp->b_rptr)) { 25868 case IPV4_VERSION: 25869 ipha = (ipha_t *)mp->b_rptr; 25870 hdr_len = IPH_HDR_LENGTH(ipha); 25871 break; 25872 case IPV6_VERSION: 25873 if (!ip_hdr_length_nexthdr_v6(mp, (ip6_t *)mp->b_rptr, 25874 &hdr_len, &nexthdrp)) { 25875 CONN_DEC_REF(connp); 25876 freemsg(mp); 25877 return; 25878 } 25879 break; 25880 } 25881 25882 tcph = (tcph_t *)&mp->b_rptr[hdr_len]; 25883 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 25884 mp->b_datap->db_struioflag |= STRUIO_EAGER; 25885 DB_CKSUMSTART(mp) = (intptr_t)sqp; 25886 } 25887 25888 squeue_fill(connp->conn_sqp, mp, connp->conn_recv, connp, 25889 SQTAG_TCP_REINPUT); 25890 } 25891 25892 static squeue_func_t 25893 tcp_squeue_switch(int val) 25894 { 25895 squeue_func_t rval = squeue_fill; 25896 25897 switch (val) { 25898 case 1: 25899 rval = squeue_enter_nodrain; 25900 break; 25901 case 2: 25902 rval = squeue_enter; 25903 break; 25904 default: 25905 break; 25906 } 25907 return (rval); 25908 } 25909 25910 static void 25911 tcp_squeue_add(squeue_t *sqp) 25912 { 25913 tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc( 25914 sizeof (tcp_squeue_priv_t), KM_SLEEP); 25915 25916 *squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait; 25917 tcp_time_wait->tcp_time_wait_tid = timeout(tcp_time_wait_collector, 25918 sqp, TCP_TIME_WAIT_DELAY); 25919 if (tcp_free_list_max_cnt == 0) { 25920 int tcp_ncpus = ((boot_max_ncpus == -1) ? 25921 max_ncpus : boot_max_ncpus); 25922 25923 /* 25924 * Limit number of entries to 1% of availble memory / tcp_ncpus 25925 */ 25926 tcp_free_list_max_cnt = (freemem * PAGESIZE) / 25927 (tcp_ncpus * sizeof (tcp_t) * 100); 25928 } 25929 tcp_time_wait->tcp_free_list_cnt = 0; 25930 } 25931