1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #include <sys/types.h> 29 #include <sys/stream.h> 30 #include <sys/strsun.h> 31 #include <sys/strsubr.h> 32 #include <sys/stropts.h> 33 #include <sys/strlog.h> 34 #define _SUN_TPI_VERSION 2 35 #include <sys/tihdr.h> 36 #include <sys/timod.h> 37 #include <sys/ddi.h> 38 #include <sys/sunddi.h> 39 #include <sys/suntpi.h> 40 #include <sys/xti_inet.h> 41 #include <sys/cmn_err.h> 42 #include <sys/debug.h> 43 #include <sys/sdt.h> 44 #include <sys/vtrace.h> 45 #include <sys/kmem.h> 46 #include <sys/ethernet.h> 47 #include <sys/cpuvar.h> 48 #include <sys/dlpi.h> 49 #include <sys/multidata.h> 50 #include <sys/multidata_impl.h> 51 #include <sys/pattr.h> 52 #include <sys/policy.h> 53 #include <sys/priv.h> 54 #include <sys/zone.h> 55 #include <sys/sunldi.h> 56 57 #include <sys/errno.h> 58 #include <sys/signal.h> 59 #include <sys/socket.h> 60 #include <sys/socketvar.h> 61 #include <sys/sockio.h> 62 #include <sys/isa_defs.h> 63 #include <sys/md5.h> 64 #include <sys/random.h> 65 #include <sys/uio.h> 66 #include <sys/systm.h> 67 #include <netinet/in.h> 68 #include <netinet/tcp.h> 69 #include <netinet/ip6.h> 70 #include <netinet/icmp6.h> 71 #include <net/if.h> 72 #include <net/route.h> 73 #include <inet/ipsec_impl.h> 74 75 #include <inet/common.h> 76 #include <inet/ip.h> 77 #include <inet/ip_impl.h> 78 #include <inet/ip6.h> 79 #include <inet/ip_ndp.h> 80 #include <inet/proto_set.h> 81 #include <inet/mib2.h> 82 #include <inet/nd.h> 83 #include <inet/optcom.h> 84 #include <inet/snmpcom.h> 85 #include <inet/kstatcom.h> 86 #include <inet/tcp.h> 87 #include <inet/tcp_impl.h> 88 #include <inet/udp_impl.h> 89 #include <net/pfkeyv2.h> 90 #include <inet/ipsec_info.h> 91 #include <inet/ipdrop.h> 92 93 #include <inet/ipclassifier.h> 94 #include <inet/ip_ire.h> 95 #include <inet/ip_ftable.h> 96 #include <inet/ip_if.h> 97 #include <inet/ipp_common.h> 98 #include <inet/ip_netinfo.h> 99 #include <sys/squeue_impl.h> 100 #include <sys/squeue.h> 101 #include <inet/kssl/ksslapi.h> 102 #include <sys/tsol/label.h> 103 #include <sys/tsol/tnet.h> 104 #include <rpc/pmap_prot.h> 105 #include <sys/callo.h> 106 107 /* 108 * TCP Notes: aka FireEngine Phase I (PSARC 2002/433) 109 * 110 * (Read the detailed design doc in PSARC case directory) 111 * 112 * The entire tcp state is contained in tcp_t and conn_t structure 113 * which are allocated in tandem using ipcl_conn_create() and passing 114 * IPCL_CONNTCP as a flag. We use 'conn_ref' and 'conn_lock' to protect 115 * the references on the tcp_t. The tcp_t structure is never compressed 116 * and packets always land on the correct TCP perimeter from the time 117 * eager is created till the time tcp_t dies (as such the old mentat 118 * TCP global queue is not used for detached state and no IPSEC checking 119 * is required). The global queue is still allocated to send out resets 120 * for connection which have no listeners and IP directly calls 121 * tcp_xmit_listeners_reset() which does any policy check. 122 * 123 * Protection and Synchronisation mechanism: 124 * 125 * The tcp data structure does not use any kind of lock for protecting 126 * its state but instead uses 'squeues' for mutual exclusion from various 127 * read and write side threads. To access a tcp member, the thread should 128 * always be behind squeue (via squeue_enter with flags as SQ_FILL, SQ_PROCESS, 129 * or SQ_NODRAIN). Since the squeues allow a direct function call, caller 130 * can pass any tcp function having prototype of edesc_t as argument 131 * (different from traditional STREAMs model where packets come in only 132 * designated entry points). The list of functions that can be directly 133 * called via squeue are listed before the usual function prototype. 134 * 135 * Referencing: 136 * 137 * TCP is MT-Hot and we use a reference based scheme to make sure that the 138 * tcp structure doesn't disappear when its needed. When the application 139 * creates an outgoing connection or accepts an incoming connection, we 140 * start out with 2 references on 'conn_ref'. One for TCP and one for IP. 141 * The IP reference is just a symbolic reference since ip_tcpclose() 142 * looks at tcp structure after tcp_close_output() returns which could 143 * have dropped the last TCP reference. So as long as the connection is 144 * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the 145 * conn_t. The classifier puts its own reference when the connection is 146 * inserted in listen or connected hash. Anytime a thread needs to enter 147 * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr 148 * on write side or by doing a classify on read side and then puts a 149 * reference on the conn before doing squeue_enter/tryenter/fill. For 150 * read side, the classifier itself puts the reference under fanout lock 151 * to make sure that tcp can't disappear before it gets processed. The 152 * squeue will drop this reference automatically so the called function 153 * doesn't have to do a DEC_REF. 154 * 155 * Opening a new connection: 156 * 157 * The outgoing connection open is pretty simple. tcp_open() does the 158 * work in creating the conn/tcp structure and initializing it. The 159 * squeue assignment is done based on the CPU the application 160 * is running on. So for outbound connections, processing is always done 161 * on application CPU which might be different from the incoming CPU 162 * being interrupted by the NIC. An optimal way would be to figure out 163 * the NIC <-> CPU binding at listen time, and assign the outgoing 164 * connection to the squeue attached to the CPU that will be interrupted 165 * for incoming packets (we know the NIC based on the bind IP address). 166 * This might seem like a problem if more data is going out but the 167 * fact is that in most cases the transmit is ACK driven transmit where 168 * the outgoing data normally sits on TCP's xmit queue waiting to be 169 * transmitted. 170 * 171 * Accepting a connection: 172 * 173 * This is a more interesting case because of various races involved in 174 * establishing a eager in its own perimeter. Read the meta comment on 175 * top of tcp_conn_request(). But briefly, the squeue is picked by 176 * ip_tcp_input()/ip_fanout_tcp_v6() based on the interrupted CPU. 177 * 178 * Closing a connection: 179 * 180 * The close is fairly straight forward. tcp_close() calls tcp_close_output() 181 * via squeue to do the close and mark the tcp as detached if the connection 182 * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its 183 * reference but tcp_close() drop IP's reference always. So if tcp was 184 * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP 185 * and 1 because it is in classifier's connected hash. This is the condition 186 * we use to determine that its OK to clean up the tcp outside of squeue 187 * when time wait expires (check the ref under fanout and conn_lock and 188 * if it is 2, remove it from fanout hash and kill it). 189 * 190 * Although close just drops the necessary references and marks the 191 * tcp_detached state, tcp_close needs to know the tcp_detached has been 192 * set (under squeue) before letting the STREAM go away (because a 193 * inbound packet might attempt to go up the STREAM while the close 194 * has happened and tcp_detached is not set). So a special lock and 195 * flag is used along with a condition variable (tcp_closelock, tcp_closed, 196 * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked 197 * tcp_detached. 198 * 199 * Special provisions and fast paths: 200 * 201 * We make special provision for (AF_INET, SOCK_STREAM) sockets which 202 * can't have 'ipv6_recvpktinfo' set and for these type of sockets, IP 203 * will never send a M_CTL to TCP. As such, ip_tcp_input() which handles 204 * all TCP packets from the wire makes a IPCL_IS_TCP4_CONNECTED_NO_POLICY 205 * check to send packets directly to tcp_rput_data via squeue. Everyone 206 * else comes through tcp_input() on the read side. 207 * 208 * We also make special provisions for sockfs by marking tcp_issocket 209 * whenever we have only sockfs on top of TCP. This allows us to skip 210 * putting the tcp in acceptor hash since a sockfs listener can never 211 * become acceptor and also avoid allocating a tcp_t for acceptor STREAM 212 * since eager has already been allocated and the accept now happens 213 * on acceptor STREAM. There is a big blob of comment on top of 214 * tcp_conn_request explaining the new accept. When socket is POP'd, 215 * sockfs sends us an ioctl to mark the fact and we go back to old 216 * behaviour. Once tcp_issocket is unset, its never set for the 217 * life of that connection. 218 * 219 * IPsec notes : 220 * 221 * Since a packet is always executed on the correct TCP perimeter 222 * all IPsec processing is defered to IP including checking new 223 * connections and setting IPSEC policies for new connection. The 224 * only exception is tcp_xmit_listeners_reset() which is called 225 * directly from IP and needs to policy check to see if TH_RST 226 * can be sent out. 227 * 228 * PFHooks notes : 229 * 230 * For mdt case, one meta buffer contains multiple packets. Mblks for every 231 * packet are assembled and passed to the hooks. When packets are blocked, 232 * or boundary of any packet is changed, the mdt processing is stopped, and 233 * packets of the meta buffer are send to the IP path one by one. 234 */ 235 236 /* 237 * Values for squeue switch: 238 * 1: SQ_NODRAIN 239 * 2: SQ_PROCESS 240 * 3: SQ_FILL 241 */ 242 int tcp_squeue_wput = 2; /* /etc/systems */ 243 int tcp_squeue_flag; 244 245 /* 246 * This controls how tiny a write must be before we try to copy it 247 * into the the mblk on the tail of the transmit queue. Not much 248 * speedup is observed for values larger than sixteen. Zero will 249 * disable the optimisation. 250 */ 251 int tcp_tx_pull_len = 16; 252 253 /* 254 * TCP Statistics. 255 * 256 * How TCP statistics work. 257 * 258 * There are two types of statistics invoked by two macros. 259 * 260 * TCP_STAT(name) does non-atomic increment of a named stat counter. It is 261 * supposed to be used in non MT-hot paths of the code. 262 * 263 * TCP_DBGSTAT(name) does atomic increment of a named stat counter. It is 264 * supposed to be used for DEBUG purposes and may be used on a hot path. 265 * 266 * Both TCP_STAT and TCP_DBGSTAT counters are available using kstat 267 * (use "kstat tcp" to get them). 268 * 269 * There is also additional debugging facility that marks tcp_clean_death() 270 * instances and saves them in tcp_t structure. It is triggered by 271 * TCP_TAG_CLEAN_DEATH define. Also, there is a global array of counters for 272 * tcp_clean_death() calls that counts the number of times each tag was hit. It 273 * is triggered by TCP_CLD_COUNTERS define. 274 * 275 * How to add new counters. 276 * 277 * 1) Add a field in the tcp_stat structure describing your counter. 278 * 2) Add a line in the template in tcp_kstat2_init() with the name 279 * of the counter. 280 * 281 * IMPORTANT!! - make sure that both are in sync !! 282 * 3) Use either TCP_STAT or TCP_DBGSTAT with the name. 283 * 284 * Please avoid using private counters which are not kstat-exported. 285 * 286 * TCP_TAG_CLEAN_DEATH set to 1 enables tagging of tcp_clean_death() instances 287 * in tcp_t structure. 288 * 289 * TCP_MAX_CLEAN_DEATH_TAG is the maximum number of possible clean death tags. 290 */ 291 292 #ifndef TCP_DEBUG_COUNTER 293 #ifdef DEBUG 294 #define TCP_DEBUG_COUNTER 1 295 #else 296 #define TCP_DEBUG_COUNTER 0 297 #endif 298 #endif 299 300 #define TCP_CLD_COUNTERS 0 301 302 #define TCP_TAG_CLEAN_DEATH 1 303 #define TCP_MAX_CLEAN_DEATH_TAG 32 304 305 #ifdef lint 306 static int _lint_dummy_; 307 #endif 308 309 #if TCP_CLD_COUNTERS 310 static uint_t tcp_clean_death_stat[TCP_MAX_CLEAN_DEATH_TAG]; 311 #define TCP_CLD_STAT(x) tcp_clean_death_stat[x]++ 312 #elif defined(lint) 313 #define TCP_CLD_STAT(x) ASSERT(_lint_dummy_ == 0); 314 #else 315 #define TCP_CLD_STAT(x) 316 #endif 317 318 #if TCP_DEBUG_COUNTER 319 #define TCP_DBGSTAT(tcps, x) \ 320 atomic_add_64(&((tcps)->tcps_statistics.x.value.ui64), 1) 321 #define TCP_G_DBGSTAT(x) \ 322 atomic_add_64(&(tcp_g_statistics.x.value.ui64), 1) 323 #elif defined(lint) 324 #define TCP_DBGSTAT(tcps, x) ASSERT(_lint_dummy_ == 0); 325 #define TCP_G_DBGSTAT(x) ASSERT(_lint_dummy_ == 0); 326 #else 327 #define TCP_DBGSTAT(tcps, x) 328 #define TCP_G_DBGSTAT(x) 329 #endif 330 331 #define TCP_G_STAT(x) (tcp_g_statistics.x.value.ui64++) 332 333 tcp_g_stat_t tcp_g_statistics; 334 kstat_t *tcp_g_kstat; 335 336 /* 337 * Call either ip_output or ip_output_v6. This replaces putnext() calls on the 338 * tcp write side. 339 */ 340 #define CALL_IP_WPUT(connp, q, mp) { \ 341 ASSERT(((q)->q_flag & QREADR) == 0); \ 342 TCP_DBGSTAT(connp->conn_netstack->netstack_tcp, tcp_ip_output); \ 343 connp->conn_send(connp, (mp), (q), IP_WPUT); \ 344 } 345 346 /* Macros for timestamp comparisons */ 347 #define TSTMP_GEQ(a, b) ((int32_t)((a)-(b)) >= 0) 348 #define TSTMP_LT(a, b) ((int32_t)((a)-(b)) < 0) 349 350 /* 351 * Parameters for TCP Initial Send Sequence number (ISS) generation. When 352 * tcp_strong_iss is set to 1, which is the default, the ISS is calculated 353 * by adding three components: a time component which grows by 1 every 4096 354 * nanoseconds (versus every 4 microseconds suggested by RFC 793, page 27); 355 * a per-connection component which grows by 125000 for every new connection; 356 * and an "extra" component that grows by a random amount centered 357 * approximately on 64000. This causes the the ISS generator to cycle every 358 * 4.89 hours if no TCP connections are made, and faster if connections are 359 * made. 360 * 361 * When tcp_strong_iss is set to 0, ISS is calculated by adding two 362 * components: a time component which grows by 250000 every second; and 363 * a per-connection component which grows by 125000 for every new connections. 364 * 365 * A third method, when tcp_strong_iss is set to 2, for generating ISS is 366 * prescribed by Steve Bellovin. This involves adding time, the 125000 per 367 * connection, and a one-way hash (MD5) of the connection ID <sport, dport, 368 * src, dst>, a "truly" random (per RFC 1750) number, and a console-entered 369 * password. 370 */ 371 #define ISS_INCR 250000 372 #define ISS_NSEC_SHT 12 373 374 static sin_t sin_null; /* Zero address for quick clears */ 375 static sin6_t sin6_null; /* Zero address for quick clears */ 376 377 /* 378 * This implementation follows the 4.3BSD interpretation of the urgent 379 * pointer and not RFC 1122. Switching to RFC 1122 behavior would cause 380 * incompatible changes in protocols like telnet and rlogin. 381 */ 382 #define TCP_OLD_URP_INTERPRETATION 1 383 384 #define TCP_IS_DETACHED_NONEAGER(tcp) \ 385 (TCP_IS_DETACHED(tcp) && \ 386 (!(tcp)->tcp_hard_binding)) 387 388 /* 389 * TCP reassembly macros. We hide starting and ending sequence numbers in 390 * b_next and b_prev of messages on the reassembly queue. The messages are 391 * chained using b_cont. These macros are used in tcp_reass() so we don't 392 * have to see the ugly casts and assignments. 393 */ 394 #define TCP_REASS_SEQ(mp) ((uint32_t)(uintptr_t)((mp)->b_next)) 395 #define TCP_REASS_SET_SEQ(mp, u) ((mp)->b_next = \ 396 (mblk_t *)(uintptr_t)(u)) 397 #define TCP_REASS_END(mp) ((uint32_t)(uintptr_t)((mp)->b_prev)) 398 #define TCP_REASS_SET_END(mp, u) ((mp)->b_prev = \ 399 (mblk_t *)(uintptr_t)(u)) 400 401 /* 402 * Implementation of TCP Timers. 403 * ============================= 404 * 405 * INTERFACE: 406 * 407 * There are two basic functions dealing with tcp timers: 408 * 409 * timeout_id_t tcp_timeout(connp, func, time) 410 * clock_t tcp_timeout_cancel(connp, timeout_id) 411 * TCP_TIMER_RESTART(tcp, intvl) 412 * 413 * tcp_timeout() starts a timer for the 'tcp' instance arranging to call 'func' 414 * after 'time' ticks passed. The function called by timeout() must adhere to 415 * the same restrictions as a driver soft interrupt handler - it must not sleep 416 * or call other functions that might sleep. The value returned is the opaque 417 * non-zero timeout identifier that can be passed to tcp_timeout_cancel() to 418 * cancel the request. The call to tcp_timeout() may fail in which case it 419 * returns zero. This is different from the timeout(9F) function which never 420 * fails. 421 * 422 * The call-back function 'func' always receives 'connp' as its single 423 * argument. It is always executed in the squeue corresponding to the tcp 424 * structure. The tcp structure is guaranteed to be present at the time the 425 * call-back is called. 426 * 427 * NOTE: The call-back function 'func' is never called if tcp is in 428 * the TCPS_CLOSED state. 429 * 430 * tcp_timeout_cancel() attempts to cancel a pending tcp_timeout() 431 * request. locks acquired by the call-back routine should not be held across 432 * the call to tcp_timeout_cancel() or a deadlock may result. 433 * 434 * tcp_timeout_cancel() returns -1 if it can not cancel the timeout request. 435 * Otherwise, it returns an integer value greater than or equal to 0. In 436 * particular, if the call-back function is already placed on the squeue, it can 437 * not be canceled. 438 * 439 * NOTE: both tcp_timeout() and tcp_timeout_cancel() should always be called 440 * within squeue context corresponding to the tcp instance. Since the 441 * call-back is also called via the same squeue, there are no race 442 * conditions described in untimeout(9F) manual page since all calls are 443 * strictly serialized. 444 * 445 * TCP_TIMER_RESTART() is a macro that attempts to cancel a pending timeout 446 * stored in tcp_timer_tid and starts a new one using 447 * MSEC_TO_TICK(intvl). It always uses tcp_timer() function as a call-back 448 * and stores the return value of tcp_timeout() in the tcp->tcp_timer_tid 449 * field. 450 * 451 * NOTE: since the timeout cancellation is not guaranteed, the cancelled 452 * call-back may still be called, so it is possible tcp_timer() will be 453 * called several times. This should not be a problem since tcp_timer() 454 * should always check the tcp instance state. 455 * 456 * 457 * IMPLEMENTATION: 458 * 459 * TCP timers are implemented using three-stage process. The call to 460 * tcp_timeout() uses timeout(9F) function to call tcp_timer_callback() function 461 * when the timer expires. The tcp_timer_callback() arranges the call of the 462 * tcp_timer_handler() function via squeue corresponding to the tcp 463 * instance. The tcp_timer_handler() calls actual requested timeout call-back 464 * and passes tcp instance as an argument to it. Information is passed between 465 * stages using the tcp_timer_t structure which contains the connp pointer, the 466 * tcp call-back to call and the timeout id returned by the timeout(9F). 467 * 468 * The tcp_timer_t structure is not used directly, it is embedded in an mblk_t - 469 * like structure that is used to enter an squeue. The mp->b_rptr of this pseudo 470 * mblk points to the beginning of tcp_timer_t structure. The tcp_timeout() 471 * returns the pointer to this mblk. 472 * 473 * The pseudo mblk is allocated from a special tcp_timer_cache kmem cache. It 474 * looks like a normal mblk without actual dblk attached to it. 475 * 476 * To optimize performance each tcp instance holds a small cache of timer 477 * mblocks. In the current implementation it caches up to two timer mblocks per 478 * tcp instance. The cache is preserved over tcp frees and is only freed when 479 * the whole tcp structure is destroyed by its kmem destructor. Since all tcp 480 * timer processing happens on a corresponding squeue, the cache manipulation 481 * does not require any locks. Experiments show that majority of timer mblocks 482 * allocations are satisfied from the tcp cache and do not involve kmem calls. 483 * 484 * The tcp_timeout() places a refhold on the connp instance which guarantees 485 * that it will be present at the time the call-back function fires. The 486 * tcp_timer_handler() drops the reference after calling the call-back, so the 487 * call-back function does not need to manipulate the references explicitly. 488 */ 489 490 typedef struct tcp_timer_s { 491 conn_t *connp; 492 void (*tcpt_proc)(void *); 493 callout_id_t tcpt_tid; 494 } tcp_timer_t; 495 496 static kmem_cache_t *tcp_timercache; 497 kmem_cache_t *tcp_sack_info_cache; 498 kmem_cache_t *tcp_iphc_cache; 499 500 /* 501 * For scalability, we must not run a timer for every TCP connection 502 * in TIME_WAIT state. To see why, consider (for time wait interval of 503 * 4 minutes): 504 * 1000 connections/sec * 240 seconds/time wait = 240,000 active conn's 505 * 506 * This list is ordered by time, so you need only delete from the head 507 * until you get to entries which aren't old enough to delete yet. 508 * The list consists of only the detached TIME_WAIT connections. 509 * 510 * Note that the timer (tcp_time_wait_expire) is started when the tcp_t 511 * becomes detached TIME_WAIT (either by changing the state and already 512 * being detached or the other way around). This means that the TIME_WAIT 513 * state can be extended (up to doubled) if the connection doesn't become 514 * detached for a long time. 515 * 516 * The list manipulations (including tcp_time_wait_next/prev) 517 * are protected by the tcp_time_wait_lock. The content of the 518 * detached TIME_WAIT connections is protected by the normal perimeters. 519 * 520 * This list is per squeue and squeues are shared across the tcp_stack_t's. 521 * Things on tcp_time_wait_head remain associated with the tcp_stack_t 522 * and conn_netstack. 523 * The tcp_t's that are added to tcp_free_list are disassociated and 524 * have NULL tcp_tcps and conn_netstack pointers. 525 */ 526 typedef struct tcp_squeue_priv_s { 527 kmutex_t tcp_time_wait_lock; 528 callout_id_t tcp_time_wait_tid; 529 tcp_t *tcp_time_wait_head; 530 tcp_t *tcp_time_wait_tail; 531 tcp_t *tcp_free_list; 532 uint_t tcp_free_list_cnt; 533 } tcp_squeue_priv_t; 534 535 /* 536 * TCP_TIME_WAIT_DELAY governs how often the time_wait_collector runs. 537 * Running it every 5 seconds seems to give the best results. 538 */ 539 #define TCP_TIME_WAIT_DELAY drv_usectohz(5000000) 540 541 /* 542 * To prevent memory hog, limit the number of entries in tcp_free_list 543 * to 1% of available memory / number of cpus 544 */ 545 uint_t tcp_free_list_max_cnt = 0; 546 547 #define TCP_XMIT_LOWATER 4096 548 #define TCP_XMIT_HIWATER 49152 549 #define TCP_RECV_LOWATER 2048 550 #define TCP_RECV_HIWATER 49152 551 552 /* 553 * PAWS needs a timer for 24 days. This is the number of ticks in 24 days 554 */ 555 #define PAWS_TIMEOUT ((clock_t)(24*24*60*60*hz)) 556 557 #define TIDUSZ 4096 /* transport interface data unit size */ 558 559 /* 560 * Bind hash list size and has function. It has to be a power of 2 for 561 * hashing. 562 */ 563 #define TCP_BIND_FANOUT_SIZE 512 564 #define TCP_BIND_HASH(lport) (ntohs(lport) & (TCP_BIND_FANOUT_SIZE - 1)) 565 /* 566 * Size of listen and acceptor hash list. It has to be a power of 2 for 567 * hashing. 568 */ 569 #define TCP_FANOUT_SIZE 256 570 571 #ifdef _ILP32 572 #define TCP_ACCEPTOR_HASH(accid) \ 573 (((uint_t)(accid) >> 8) & (TCP_FANOUT_SIZE - 1)) 574 #else 575 #define TCP_ACCEPTOR_HASH(accid) \ 576 ((uint_t)(accid) & (TCP_FANOUT_SIZE - 1)) 577 #endif /* _ILP32 */ 578 579 #define IP_ADDR_CACHE_SIZE 2048 580 #define IP_ADDR_CACHE_HASH(faddr) \ 581 (ntohl(faddr) & (IP_ADDR_CACHE_SIZE -1)) 582 583 /* 584 * TCP options struct returned from tcp_parse_options. 585 */ 586 typedef struct tcp_opt_s { 587 uint32_t tcp_opt_mss; 588 uint32_t tcp_opt_wscale; 589 uint32_t tcp_opt_ts_val; 590 uint32_t tcp_opt_ts_ecr; 591 tcp_t *tcp; 592 } tcp_opt_t; 593 594 /* 595 * TCP option struct passing information b/w lisenter and eager. 596 */ 597 struct tcp_options { 598 uint_t to_flags; 599 ssize_t to_boundif; /* IPV6_BOUND_IF */ 600 }; 601 602 #define TCPOPT_BOUNDIF 0x00000001 /* set IPV6_BOUND_IF */ 603 #define TCPOPT_RECVPKTINFO 0x00000002 /* set IPV6_RECVPKTINFO */ 604 605 /* 606 * RFC1323-recommended phrasing of TSTAMP option, for easier parsing 607 */ 608 609 #ifdef _BIG_ENDIAN 610 #define TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \ 611 (TCPOPT_TSTAMP << 8) | 10) 612 #else 613 #define TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \ 614 (TCPOPT_NOP << 8) | TCPOPT_NOP) 615 #endif 616 617 /* 618 * Flags returned from tcp_parse_options. 619 */ 620 #define TCP_OPT_MSS_PRESENT 1 621 #define TCP_OPT_WSCALE_PRESENT 2 622 #define TCP_OPT_TSTAMP_PRESENT 4 623 #define TCP_OPT_SACK_OK_PRESENT 8 624 #define TCP_OPT_SACK_PRESENT 16 625 626 /* TCP option length */ 627 #define TCPOPT_NOP_LEN 1 628 #define TCPOPT_MAXSEG_LEN 4 629 #define TCPOPT_WS_LEN 3 630 #define TCPOPT_REAL_WS_LEN (TCPOPT_WS_LEN+1) 631 #define TCPOPT_TSTAMP_LEN 10 632 #define TCPOPT_REAL_TS_LEN (TCPOPT_TSTAMP_LEN+2) 633 #define TCPOPT_SACK_OK_LEN 2 634 #define TCPOPT_REAL_SACK_OK_LEN (TCPOPT_SACK_OK_LEN+2) 635 #define TCPOPT_REAL_SACK_LEN 4 636 #define TCPOPT_MAX_SACK_LEN 36 637 #define TCPOPT_HEADER_LEN 2 638 639 /* TCP cwnd burst factor. */ 640 #define TCP_CWND_INFINITE 65535 641 #define TCP_CWND_SS 3 642 #define TCP_CWND_NORMAL 5 643 644 /* Maximum TCP initial cwin (start/restart). */ 645 #define TCP_MAX_INIT_CWND 8 646 647 /* 648 * Initialize cwnd according to RFC 3390. def_max_init_cwnd is 649 * either tcp_slow_start_initial or tcp_slow_start_after idle 650 * depending on the caller. If the upper layer has not used the 651 * TCP_INIT_CWND option to change the initial cwnd, tcp_init_cwnd 652 * should be 0 and we use the formula in RFC 3390 to set tcp_cwnd. 653 * If the upper layer has changed set the tcp_init_cwnd, just use 654 * it to calculate the tcp_cwnd. 655 */ 656 #define SET_TCP_INIT_CWND(tcp, mss, def_max_init_cwnd) \ 657 { \ 658 if ((tcp)->tcp_init_cwnd == 0) { \ 659 (tcp)->tcp_cwnd = MIN(def_max_init_cwnd * (mss), \ 660 MIN(4 * (mss), MAX(2 * (mss), 4380 / (mss) * (mss)))); \ 661 } else { \ 662 (tcp)->tcp_cwnd = (tcp)->tcp_init_cwnd * (mss); \ 663 } \ 664 tcp->tcp_cwnd_cnt = 0; \ 665 } 666 667 /* TCP Timer control structure */ 668 typedef struct tcpt_s { 669 pfv_t tcpt_pfv; /* The routine we are to call */ 670 tcp_t *tcpt_tcp; /* The parameter we are to pass in */ 671 } tcpt_t; 672 673 /* 674 * Functions called directly via squeue having a prototype of edesc_t. 675 */ 676 void tcp_conn_request(void *arg, mblk_t *mp, void *arg2); 677 static void tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2); 678 void tcp_accept_finish(void *arg, mblk_t *mp, void *arg2); 679 static void tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2); 680 static void tcp_wput_proto(void *arg, mblk_t *mp, void *arg2); 681 void tcp_input(void *arg, mblk_t *mp, void *arg2); 682 void tcp_rput_data(void *arg, mblk_t *mp, void *arg2); 683 static void tcp_close_output(void *arg, mblk_t *mp, void *arg2); 684 void tcp_output(void *arg, mblk_t *mp, void *arg2); 685 void tcp_output_urgent(void *arg, mblk_t *mp, void *arg2); 686 static void tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2); 687 static void tcp_timer_handler(void *arg, mblk_t *mp, void *arg2); 688 static void tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2); 689 690 691 /* Prototype for TCP functions */ 692 static void tcp_random_init(void); 693 int tcp_random(void); 694 static void tcp_tli_accept(tcp_t *tcp, mblk_t *mp); 695 static int tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, 696 tcp_t *eager); 697 static int tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp); 698 static in_port_t tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, 699 int reuseaddr, boolean_t quick_connect, boolean_t bind_to_req_port_only, 700 boolean_t user_specified); 701 static void tcp_closei_local(tcp_t *tcp); 702 static void tcp_close_detached(tcp_t *tcp); 703 static boolean_t tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, 704 mblk_t *idmp, mblk_t **defermp); 705 static void tcp_tpi_connect(tcp_t *tcp, mblk_t *mp); 706 static int tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, 707 in_port_t dstport, uint_t srcid, cred_t *cr, pid_t pid); 708 static int tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, 709 in_port_t dstport, uint32_t flowinfo, uint_t srcid, 710 uint32_t scope_id, cred_t *cr, pid_t pid); 711 static int tcp_clean_death(tcp_t *tcp, int err, uint8_t tag); 712 static void tcp_def_q_set(tcp_t *tcp, mblk_t *mp); 713 static void tcp_disconnect(tcp_t *tcp, mblk_t *mp); 714 static char *tcp_display(tcp_t *tcp, char *, char); 715 static boolean_t tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum); 716 static void tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only); 717 static void tcp_eager_unlink(tcp_t *tcp); 718 static void tcp_err_ack(tcp_t *tcp, mblk_t *mp, int tlierr, 719 int unixerr); 720 static void tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, 721 int tlierr, int unixerr); 722 static int tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, 723 cred_t *cr); 724 static int tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, 725 char *value, caddr_t cp, cred_t *cr); 726 static int tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, 727 char *value, caddr_t cp, cred_t *cr); 728 static int tcp_tpistate(tcp_t *tcp); 729 static void tcp_bind_hash_insert(tf_t *tf, tcp_t *tcp, 730 int caller_holds_lock); 731 static void tcp_bind_hash_remove(tcp_t *tcp); 732 static tcp_t *tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *); 733 void tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp); 734 static void tcp_acceptor_hash_remove(tcp_t *tcp); 735 static void tcp_capability_req(tcp_t *tcp, mblk_t *mp); 736 static void tcp_info_req(tcp_t *tcp, mblk_t *mp); 737 static void tcp_addr_req(tcp_t *tcp, mblk_t *mp); 738 static void tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *mp); 739 void tcp_g_q_setup(tcp_stack_t *); 740 void tcp_g_q_create(tcp_stack_t *); 741 void tcp_g_q_destroy(tcp_stack_t *); 742 static int tcp_header_init_ipv4(tcp_t *tcp); 743 static int tcp_header_init_ipv6(tcp_t *tcp); 744 int tcp_init(tcp_t *tcp, queue_t *q); 745 static int tcp_init_values(tcp_t *tcp); 746 static mblk_t *tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic); 747 static void tcp_ip_ire_mark_advice(tcp_t *tcp); 748 static void tcp_ip_notify(tcp_t *tcp); 749 static mblk_t *tcp_ire_mp(mblk_t **mpp); 750 static void tcp_iss_init(tcp_t *tcp); 751 static void tcp_keepalive_killer(void *arg); 752 static int tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt); 753 static void tcp_mss_set(tcp_t *tcp, uint32_t size, boolean_t do_ss); 754 static int tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, 755 int *do_disconnectp, int *t_errorp, int *sys_errorp); 756 static boolean_t tcp_allow_connopt_set(int level, int name); 757 int tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr); 758 int tcp_tpi_opt_get(queue_t *q, int level, int name, uchar_t *ptr); 759 int tcp_tpi_opt_set(queue_t *q, uint_t optset_context, int level, 760 int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp, 761 uchar_t *outvalp, void *thisdg_attrs, cred_t *cr, 762 mblk_t *mblk); 763 static void tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha); 764 static int tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, 765 uchar_t *ptr, uint_t len); 766 static int tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr); 767 static boolean_t tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt, 768 tcp_stack_t *); 769 static int tcp_param_set(queue_t *q, mblk_t *mp, char *value, 770 caddr_t cp, cred_t *cr); 771 static int tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, 772 caddr_t cp, cred_t *cr); 773 static void tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *); 774 static int tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, 775 caddr_t cp, cred_t *cr); 776 static void tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_cnt); 777 static void tcp_update_xmit_tail(tcp_t *tcp, uint32_t snxt); 778 static mblk_t *tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start); 779 static void tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp); 780 static void tcp_reinit(tcp_t *tcp); 781 static void tcp_reinit_values(tcp_t *tcp); 782 783 static uint_t tcp_rwnd_reopen(tcp_t *tcp); 784 static uint_t tcp_rcv_drain(tcp_t *tcp); 785 static void tcp_sack_rxmit(tcp_t *tcp, uint_t *flags); 786 static boolean_t tcp_send_rst_chk(tcp_stack_t *); 787 static void tcp_ss_rexmit(tcp_t *tcp); 788 static mblk_t *tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp); 789 static void tcp_process_options(tcp_t *, tcph_t *); 790 static void tcp_rput_common(tcp_t *tcp, mblk_t *mp); 791 static void tcp_rsrv(queue_t *q); 792 static int tcp_snmp_state(tcp_t *tcp); 793 static void tcp_timer(void *arg); 794 static void tcp_timer_callback(void *); 795 static in_port_t tcp_update_next_port(in_port_t port, const tcp_t *tcp, 796 boolean_t random); 797 static in_port_t tcp_get_next_priv_port(const tcp_t *); 798 static void tcp_wput_sock(queue_t *q, mblk_t *mp); 799 static void tcp_wput_fallback(queue_t *q, mblk_t *mp); 800 void tcp_tpi_accept(queue_t *q, mblk_t *mp); 801 static void tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent); 802 static void tcp_wput_flush(tcp_t *tcp, mblk_t *mp); 803 static void tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp); 804 static int tcp_send(queue_t *q, tcp_t *tcp, const int mss, 805 const int tcp_hdr_len, const int tcp_tcp_hdr_len, 806 const int num_sack_blk, int *usable, uint_t *snxt, 807 int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 808 const int mdt_thres); 809 static int tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, 810 const int tcp_hdr_len, const int tcp_tcp_hdr_len, 811 const int num_sack_blk, int *usable, uint_t *snxt, 812 int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 813 const int mdt_thres); 814 static void tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, 815 int num_sack_blk); 816 static void tcp_wsrv(queue_t *q); 817 static int tcp_xmit_end(tcp_t *tcp); 818 static void tcp_ack_timer(void *arg); 819 static mblk_t *tcp_ack_mp(tcp_t *tcp); 820 static void tcp_xmit_early_reset(char *str, mblk_t *mp, 821 uint32_t seq, uint32_t ack, int ctl, uint_t ip_hdr_len, 822 zoneid_t zoneid, tcp_stack_t *, conn_t *connp); 823 static void tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, 824 uint32_t ack, int ctl); 825 static int setmaxps(queue_t *q, int maxpsz); 826 static void tcp_set_rto(tcp_t *, time_t); 827 static boolean_t tcp_check_policy(tcp_t *, mblk_t *, ipha_t *, ip6_t *, 828 boolean_t, boolean_t); 829 static void tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, 830 boolean_t ipsec_mctl); 831 static int tcp_build_hdrs(tcp_t *); 832 static void tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, 833 uint32_t seg_seq, uint32_t seg_ack, int seg_len, 834 tcph_t *tcph); 835 boolean_t tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp); 836 static mblk_t *tcp_mdt_info_mp(mblk_t *); 837 static void tcp_mdt_update(tcp_t *, ill_mdt_capab_t *, boolean_t); 838 static int tcp_mdt_add_attrs(multidata_t *, const mblk_t *, 839 const boolean_t, const uint32_t, const uint32_t, 840 const uint32_t, const uint32_t, tcp_stack_t *); 841 static void tcp_multisend_data(tcp_t *, ire_t *, const ill_t *, mblk_t *, 842 const uint_t, const uint_t, boolean_t *); 843 static mblk_t *tcp_lso_info_mp(mblk_t *); 844 static void tcp_lso_update(tcp_t *, ill_lso_capab_t *); 845 static void tcp_send_data(tcp_t *, queue_t *, mblk_t *); 846 extern mblk_t *tcp_timermp_alloc(int); 847 extern void tcp_timermp_free(tcp_t *); 848 static void tcp_timer_free(tcp_t *tcp, mblk_t *mp); 849 static void tcp_stop_lingering(tcp_t *tcp); 850 static void tcp_close_linger_timeout(void *arg); 851 static void *tcp_stack_init(netstackid_t stackid, netstack_t *ns); 852 static void tcp_stack_shutdown(netstackid_t stackid, void *arg); 853 static void tcp_stack_fini(netstackid_t stackid, void *arg); 854 static void *tcp_g_kstat_init(tcp_g_stat_t *); 855 static void tcp_g_kstat_fini(kstat_t *); 856 static void *tcp_kstat_init(netstackid_t, tcp_stack_t *); 857 static void tcp_kstat_fini(netstackid_t, kstat_t *); 858 static void *tcp_kstat2_init(netstackid_t, tcp_stat_t *); 859 static void tcp_kstat2_fini(netstackid_t, kstat_t *); 860 static int tcp_kstat_update(kstat_t *kp, int rw); 861 void tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp); 862 static int tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 863 tcph_t *tcph, uint_t ipvers, mblk_t *idmp); 864 static int tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha, 865 tcph_t *tcph, mblk_t *idmp); 866 static int tcp_squeue_switch(int); 867 868 static int tcp_open(queue_t *, dev_t *, int, int, cred_t *, boolean_t); 869 static int tcp_openv4(queue_t *, dev_t *, int, int, cred_t *); 870 static int tcp_openv6(queue_t *, dev_t *, int, int, cred_t *); 871 static int tcp_tpi_close(queue_t *, int); 872 static int tcp_tpi_close_accept(queue_t *); 873 874 static void tcp_squeue_add(squeue_t *); 875 static boolean_t tcp_zcopy_check(tcp_t *); 876 static void tcp_zcopy_notify(tcp_t *); 877 static mblk_t *tcp_zcopy_disable(tcp_t *, mblk_t *); 878 static mblk_t *tcp_zcopy_backoff(tcp_t *, mblk_t *, int); 879 static void tcp_ire_ill_check(tcp_t *, ire_t *, ill_t *, boolean_t); 880 881 extern void tcp_kssl_input(tcp_t *, mblk_t *); 882 883 void tcp_eager_kill(void *arg, mblk_t *mp, void *arg2); 884 void tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2); 885 886 static int tcp_accept(sock_lower_handle_t, sock_lower_handle_t, 887 sock_upper_handle_t, cred_t *); 888 static int tcp_listen(sock_lower_handle_t, int, cred_t *); 889 static int tcp_post_ip_bind(tcp_t *, mblk_t *, int, cred_t *, pid_t); 890 static int tcp_do_listen(conn_t *, struct sockaddr *, socklen_t, int, cred_t *, 891 boolean_t); 892 static int tcp_do_connect(conn_t *, const struct sockaddr *, socklen_t, 893 cred_t *, pid_t); 894 static int tcp_do_bind(conn_t *, struct sockaddr *, socklen_t, cred_t *, 895 boolean_t); 896 static int tcp_do_unbind(conn_t *); 897 static int tcp_bind_check(conn_t *, struct sockaddr *, socklen_t, cred_t *, 898 boolean_t); 899 900 static void tcp_ulp_newconn(conn_t *, conn_t *, mblk_t *); 901 902 /* 903 * Routines related to the TCP_IOC_ABORT_CONN ioctl command. 904 * 905 * TCP_IOC_ABORT_CONN is a non-transparent ioctl command used for aborting 906 * TCP connections. To invoke this ioctl, a tcp_ioc_abort_conn_t structure 907 * (defined in tcp.h) needs to be filled in and passed into the kernel 908 * via an I_STR ioctl command (see streamio(7I)). The tcp_ioc_abort_conn_t 909 * structure contains the four-tuple of a TCP connection and a range of TCP 910 * states (specified by ac_start and ac_end). The use of wildcard addresses 911 * and ports is allowed. Connections with a matching four tuple and a state 912 * within the specified range will be aborted. The valid states for the 913 * ac_start and ac_end fields are in the range TCPS_SYN_SENT to TCPS_TIME_WAIT, 914 * inclusive. 915 * 916 * An application which has its connection aborted by this ioctl will receive 917 * an error that is dependent on the connection state at the time of the abort. 918 * If the connection state is < TCPS_TIME_WAIT, an application should behave as 919 * though a RST packet has been received. If the connection state is equal to 920 * TCPS_TIME_WAIT, the 2MSL timeout will immediately be canceled by the kernel 921 * and all resources associated with the connection will be freed. 922 */ 923 static mblk_t *tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *, tcp_t *); 924 static void tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *); 925 static void tcp_ioctl_abort_handler(tcp_t *, mblk_t *); 926 static int tcp_ioctl_abort(tcp_ioc_abort_conn_t *, tcp_stack_t *tcps); 927 static void tcp_ioctl_abort_conn(queue_t *, mblk_t *); 928 static int tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *, int, int *, 929 boolean_t, tcp_stack_t *); 930 931 static struct module_info tcp_rinfo = { 932 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER 933 }; 934 935 static struct module_info tcp_winfo = { 936 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16 937 }; 938 939 /* 940 * Entry points for TCP as a device. The normal case which supports 941 * the TCP functionality. 942 * We have separate open functions for the /dev/tcp and /dev/tcp6 devices. 943 */ 944 struct qinit tcp_rinitv4 = { 945 NULL, (pfi_t)tcp_rsrv, tcp_openv4, tcp_tpi_close, NULL, &tcp_rinfo 946 }; 947 948 struct qinit tcp_rinitv6 = { 949 NULL, (pfi_t)tcp_rsrv, tcp_openv6, tcp_tpi_close, NULL, &tcp_rinfo 950 }; 951 952 struct qinit tcp_winit = { 953 (pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 954 }; 955 956 /* Initial entry point for TCP in socket mode. */ 957 struct qinit tcp_sock_winit = { 958 (pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 959 }; 960 961 /* TCP entry point during fallback */ 962 struct qinit tcp_fallback_sock_winit = { 963 (pfi_t)tcp_wput_fallback, NULL, NULL, NULL, NULL, &tcp_winfo 964 }; 965 966 /* 967 * Entry points for TCP as a acceptor STREAM opened by sockfs when doing 968 * an accept. Avoid allocating data structures since eager has already 969 * been created. 970 */ 971 struct qinit tcp_acceptor_rinit = { 972 NULL, (pfi_t)tcp_rsrv, NULL, tcp_tpi_close_accept, NULL, &tcp_winfo 973 }; 974 975 struct qinit tcp_acceptor_winit = { 976 (pfi_t)tcp_tpi_accept, NULL, NULL, NULL, NULL, &tcp_winfo 977 }; 978 979 /* For AF_INET aka /dev/tcp */ 980 struct streamtab tcpinfov4 = { 981 &tcp_rinitv4, &tcp_winit 982 }; 983 984 /* For AF_INET6 aka /dev/tcp6 */ 985 struct streamtab tcpinfov6 = { 986 &tcp_rinitv6, &tcp_winit 987 }; 988 989 sock_downcalls_t sock_tcp_downcalls; 990 991 /* 992 * Have to ensure that tcp_g_q_close is not done by an 993 * interrupt thread. 994 */ 995 static taskq_t *tcp_taskq; 996 997 /* Setable only in /etc/system. Move to ndd? */ 998 boolean_t tcp_icmp_source_quench = B_FALSE; 999 1000 /* 1001 * Following assumes TPI alignment requirements stay along 32 bit 1002 * boundaries 1003 */ 1004 #define ROUNDUP32(x) \ 1005 (((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1)) 1006 1007 /* Template for response to info request. */ 1008 static struct T_info_ack tcp_g_t_info_ack = { 1009 T_INFO_ACK, /* PRIM_type */ 1010 0, /* TSDU_size */ 1011 T_INFINITE, /* ETSDU_size */ 1012 T_INVALID, /* CDATA_size */ 1013 T_INVALID, /* DDATA_size */ 1014 sizeof (sin_t), /* ADDR_size */ 1015 0, /* OPT_size - not initialized here */ 1016 TIDUSZ, /* TIDU_size */ 1017 T_COTS_ORD, /* SERV_type */ 1018 TCPS_IDLE, /* CURRENT_state */ 1019 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 1020 }; 1021 1022 static struct T_info_ack tcp_g_t_info_ack_v6 = { 1023 T_INFO_ACK, /* PRIM_type */ 1024 0, /* TSDU_size */ 1025 T_INFINITE, /* ETSDU_size */ 1026 T_INVALID, /* CDATA_size */ 1027 T_INVALID, /* DDATA_size */ 1028 sizeof (sin6_t), /* ADDR_size */ 1029 0, /* OPT_size - not initialized here */ 1030 TIDUSZ, /* TIDU_size */ 1031 T_COTS_ORD, /* SERV_type */ 1032 TCPS_IDLE, /* CURRENT_state */ 1033 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 1034 }; 1035 1036 #define MS 1L 1037 #define SECONDS (1000 * MS) 1038 #define MINUTES (60 * SECONDS) 1039 #define HOURS (60 * MINUTES) 1040 #define DAYS (24 * HOURS) 1041 1042 #define PARAM_MAX (~(uint32_t)0) 1043 1044 /* Max size IP datagram is 64k - 1 */ 1045 #define TCP_MSS_MAX_IPV4 (IP_MAXPACKET - (sizeof (ipha_t) + sizeof (tcph_t))) 1046 #define TCP_MSS_MAX_IPV6 (IP_MAXPACKET - (sizeof (ip6_t) + sizeof (tcph_t))) 1047 /* Max of the above */ 1048 #define TCP_MSS_MAX TCP_MSS_MAX_IPV4 1049 1050 /* Largest TCP port number */ 1051 #define TCP_MAX_PORT (64 * 1024 - 1) 1052 1053 /* 1054 * tcp_wroff_xtra is the extra space in front of TCP/IP header for link 1055 * layer header. It has to be a multiple of 4. 1056 */ 1057 static tcpparam_t lcl_tcp_wroff_xtra_param = { 0, 256, 32, "tcp_wroff_xtra" }; 1058 #define tcps_wroff_xtra tcps_wroff_xtra_param->tcp_param_val 1059 1060 /* 1061 * All of these are alterable, within the min/max values given, at run time. 1062 * Note that the default value of "tcp_time_wait_interval" is four minutes, 1063 * per the TCP spec. 1064 */ 1065 /* BEGIN CSTYLED */ 1066 static tcpparam_t lcl_tcp_param_arr[] = { 1067 /*min max value name */ 1068 { 1*SECONDS, 10*MINUTES, 1*MINUTES, "tcp_time_wait_interval"}, 1069 { 1, PARAM_MAX, 128, "tcp_conn_req_max_q" }, 1070 { 0, PARAM_MAX, 1024, "tcp_conn_req_max_q0" }, 1071 { 1, 1024, 1, "tcp_conn_req_min" }, 1072 { 0*MS, 20*SECONDS, 0*MS, "tcp_conn_grace_period" }, 1073 { 128, (1<<30), 1024*1024, "tcp_cwnd_max" }, 1074 { 0, 10, 0, "tcp_debug" }, 1075 { 1024, (32*1024), 1024, "tcp_smallest_nonpriv_port"}, 1076 { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_cinterval"}, 1077 { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_linterval"}, 1078 { 500*MS, PARAM_MAX, 8*MINUTES, "tcp_ip_abort_interval"}, 1079 { 1*SECONDS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_cinterval"}, 1080 { 500*MS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_interval"}, 1081 { 1, 255, 64, "tcp_ipv4_ttl"}, 1082 { 10*SECONDS, 10*DAYS, 2*HOURS, "tcp_keepalive_interval"}, 1083 { 0, 100, 10, "tcp_maxpsz_multiplier" }, 1084 { 1, TCP_MSS_MAX_IPV4, 536, "tcp_mss_def_ipv4"}, 1085 { 1, TCP_MSS_MAX_IPV4, TCP_MSS_MAX_IPV4, "tcp_mss_max_ipv4"}, 1086 { 1, TCP_MSS_MAX, 108, "tcp_mss_min"}, 1087 { 1, (64*1024)-1, (4*1024)-1, "tcp_naglim_def"}, 1088 { 1*MS, 20*SECONDS, 3*SECONDS, "tcp_rexmit_interval_initial"}, 1089 { 1*MS, 2*HOURS, 60*SECONDS, "tcp_rexmit_interval_max"}, 1090 { 1*MS, 2*HOURS, 400*MS, "tcp_rexmit_interval_min"}, 1091 { 1*MS, 1*MINUTES, 100*MS, "tcp_deferred_ack_interval" }, 1092 { 0, 16, 0, "tcp_snd_lowat_fraction" }, 1093 { 0, 128000, 0, "tcp_sth_rcv_hiwat" }, 1094 { 0, 128000, 0, "tcp_sth_rcv_lowat" }, 1095 { 1, 10000, 3, "tcp_dupack_fast_retransmit" }, 1096 { 0, 1, 0, "tcp_ignore_path_mtu" }, 1097 { 1024, TCP_MAX_PORT, 32*1024, "tcp_smallest_anon_port"}, 1098 { 1024, TCP_MAX_PORT, TCP_MAX_PORT, "tcp_largest_anon_port"}, 1099 { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_HIWATER,"tcp_xmit_hiwat"}, 1100 { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_LOWATER,"tcp_xmit_lowat"}, 1101 { TCP_RECV_LOWATER, (1<<30), TCP_RECV_HIWATER,"tcp_recv_hiwat"}, 1102 { 1, 65536, 4, "tcp_recv_hiwat_minmss"}, 1103 { 1*SECONDS, PARAM_MAX, 675*SECONDS, "tcp_fin_wait_2_flush_interval"}, 1104 { 8192, (1<<30), 1024*1024, "tcp_max_buf"}, 1105 /* 1106 * Question: What default value should I set for tcp_strong_iss? 1107 */ 1108 { 0, 2, 1, "tcp_strong_iss"}, 1109 { 0, 65536, 20, "tcp_rtt_updates"}, 1110 { 0, 1, 1, "tcp_wscale_always"}, 1111 { 0, 1, 0, "tcp_tstamp_always"}, 1112 { 0, 1, 1, "tcp_tstamp_if_wscale"}, 1113 { 0*MS, 2*HOURS, 0*MS, "tcp_rexmit_interval_extra"}, 1114 { 0, 16, 2, "tcp_deferred_acks_max"}, 1115 { 1, 16384, 4, "tcp_slow_start_after_idle"}, 1116 { 1, 4, 4, "tcp_slow_start_initial"}, 1117 { 0, 2, 2, "tcp_sack_permitted"}, 1118 { 0, 1, 1, "tcp_compression_enabled"}, 1119 { 0, IPV6_MAX_HOPS, IPV6_DEFAULT_HOPS, "tcp_ipv6_hoplimit"}, 1120 { 1, TCP_MSS_MAX_IPV6, 1220, "tcp_mss_def_ipv6"}, 1121 { 1, TCP_MSS_MAX_IPV6, TCP_MSS_MAX_IPV6, "tcp_mss_max_ipv6"}, 1122 { 0, 1, 0, "tcp_rev_src_routes"}, 1123 { 10*MS, 500*MS, 50*MS, "tcp_local_dack_interval"}, 1124 { 0, 16, 8, "tcp_local_dacks_max"}, 1125 { 0, 2, 1, "tcp_ecn_permitted"}, 1126 { 0, 1, 1, "tcp_rst_sent_rate_enabled"}, 1127 { 0, PARAM_MAX, 40, "tcp_rst_sent_rate"}, 1128 { 0, 100*MS, 50*MS, "tcp_push_timer_interval"}, 1129 { 0, 1, 0, "tcp_use_smss_as_mss_opt"}, 1130 { 0, PARAM_MAX, 8*MINUTES, "tcp_keepalive_abort_interval"}, 1131 }; 1132 /* END CSTYLED */ 1133 1134 /* 1135 * tcp_mdt_hdr_{head,tail}_min are the leading and trailing spaces of 1136 * each header fragment in the header buffer. Each parameter value has 1137 * to be a multiple of 4 (32-bit aligned). 1138 */ 1139 static tcpparam_t lcl_tcp_mdt_head_param = 1140 { 32, 256, 32, "tcp_mdt_hdr_head_min" }; 1141 static tcpparam_t lcl_tcp_mdt_tail_param = 1142 { 0, 256, 32, "tcp_mdt_hdr_tail_min" }; 1143 #define tcps_mdt_hdr_head_min tcps_mdt_head_param->tcp_param_val 1144 #define tcps_mdt_hdr_tail_min tcps_mdt_tail_param->tcp_param_val 1145 1146 /* 1147 * tcp_mdt_max_pbufs is the upper limit value that tcp uses to figure out 1148 * the maximum number of payload buffers associated per Multidata. 1149 */ 1150 static tcpparam_t lcl_tcp_mdt_max_pbufs_param = 1151 { 1, MULTIDATA_MAX_PBUFS, MULTIDATA_MAX_PBUFS, "tcp_mdt_max_pbufs" }; 1152 #define tcps_mdt_max_pbufs tcps_mdt_max_pbufs_param->tcp_param_val 1153 1154 /* Round up the value to the nearest mss. */ 1155 #define MSS_ROUNDUP(value, mss) ((((value) - 1) / (mss) + 1) * (mss)) 1156 1157 /* 1158 * Set ECN capable transport (ECT) code point in IP header. 1159 * 1160 * Note that there are 2 ECT code points '01' and '10', which are called 1161 * ECT(1) and ECT(0) respectively. Here we follow the original ECT code 1162 * point ECT(0) for TCP as described in RFC 2481. 1163 */ 1164 #define SET_ECT(tcp, iph) \ 1165 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1166 /* We need to clear the code point first. */ \ 1167 ((ipha_t *)(iph))->ipha_type_of_service &= 0xFC; \ 1168 ((ipha_t *)(iph))->ipha_type_of_service |= IPH_ECN_ECT0; \ 1169 } else { \ 1170 ((ip6_t *)(iph))->ip6_vcf &= htonl(0xFFCFFFFF); \ 1171 ((ip6_t *)(iph))->ip6_vcf |= htonl(IPH_ECN_ECT0 << 20); \ 1172 } 1173 1174 /* 1175 * The format argument to pass to tcp_display(). 1176 * DISP_PORT_ONLY means that the returned string has only port info. 1177 * DISP_ADDR_AND_PORT means that the returned string also contains the 1178 * remote and local IP address. 1179 */ 1180 #define DISP_PORT_ONLY 1 1181 #define DISP_ADDR_AND_PORT 2 1182 1183 #define IS_VMLOANED_MBLK(mp) \ 1184 (((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0) 1185 1186 1187 /* Enable or disable b_cont M_MULTIDATA chaining for MDT. */ 1188 boolean_t tcp_mdt_chain = B_TRUE; 1189 1190 /* 1191 * MDT threshold in the form of effective send MSS multiplier; we take 1192 * the MDT path if the amount of unsent data exceeds the threshold value 1193 * (default threshold is 1*SMSS). 1194 */ 1195 uint_t tcp_mdt_smss_threshold = 1; 1196 1197 uint32_t do_tcpzcopy = 1; /* 0: disable, 1: enable, 2: force */ 1198 1199 /* 1200 * Forces all connections to obey the value of the tcps_maxpsz_multiplier 1201 * tunable settable via NDD. Otherwise, the per-connection behavior is 1202 * determined dynamically during tcp_adapt_ire(), which is the default. 1203 */ 1204 boolean_t tcp_static_maxpsz = B_FALSE; 1205 1206 /* Setable in /etc/system */ 1207 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */ 1208 uint32_t tcp_random_anon_port = 1; 1209 1210 /* 1211 * To reach to an eager in Q0 which can be dropped due to an incoming 1212 * new SYN request when Q0 is full, a new doubly linked list is 1213 * introduced. This list allows to select an eager from Q0 in O(1) time. 1214 * This is needed to avoid spending too much time walking through the 1215 * long list of eagers in Q0 when tcp_drop_q0() is called. Each member of 1216 * this new list has to be a member of Q0. 1217 * This list is headed by listener's tcp_t. When the list is empty, 1218 * both the pointers - tcp_eager_next_drop_q0 and tcp_eager_prev_drop_q0, 1219 * of listener's tcp_t point to listener's tcp_t itself. 1220 * 1221 * Given an eager in Q0 and a listener, MAKE_DROPPABLE() puts the eager 1222 * in the list. MAKE_UNDROPPABLE() takes the eager out of the list. 1223 * These macros do not affect the eager's membership to Q0. 1224 */ 1225 1226 1227 #define MAKE_DROPPABLE(listener, eager) \ 1228 if ((eager)->tcp_eager_next_drop_q0 == NULL) { \ 1229 (listener)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0\ 1230 = (eager); \ 1231 (eager)->tcp_eager_prev_drop_q0 = (listener); \ 1232 (eager)->tcp_eager_next_drop_q0 = \ 1233 (listener)->tcp_eager_next_drop_q0; \ 1234 (listener)->tcp_eager_next_drop_q0 = (eager); \ 1235 } 1236 1237 #define MAKE_UNDROPPABLE(eager) \ 1238 if ((eager)->tcp_eager_next_drop_q0 != NULL) { \ 1239 (eager)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0 \ 1240 = (eager)->tcp_eager_prev_drop_q0; \ 1241 (eager)->tcp_eager_prev_drop_q0->tcp_eager_next_drop_q0 \ 1242 = (eager)->tcp_eager_next_drop_q0; \ 1243 (eager)->tcp_eager_prev_drop_q0 = NULL; \ 1244 (eager)->tcp_eager_next_drop_q0 = NULL; \ 1245 } 1246 1247 /* 1248 * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more 1249 * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent 1250 * data, TCP will not respond with an ACK. RFC 793 requires that 1251 * TCP responds with an ACK for such a bogus ACK. By not following 1252 * the RFC, we prevent TCP from getting into an ACK storm if somehow 1253 * an attacker successfully spoofs an acceptable segment to our 1254 * peer; or when our peer is "confused." 1255 */ 1256 uint32_t tcp_drop_ack_unsent_cnt = 10; 1257 1258 /* 1259 * Hook functions to enable cluster networking 1260 * On non-clustered systems these vectors must always be NULL. 1261 */ 1262 1263 void (*cl_inet_listen)(netstackid_t stack_id, uint8_t protocol, 1264 sa_family_t addr_family, uint8_t *laddrp, 1265 in_port_t lport, void *args) = NULL; 1266 void (*cl_inet_unlisten)(netstackid_t stack_id, uint8_t protocol, 1267 sa_family_t addr_family, uint8_t *laddrp, 1268 in_port_t lport, void *args) = NULL; 1269 1270 int (*cl_inet_connect2)(netstackid_t stack_id, uint8_t protocol, 1271 boolean_t is_outgoing, 1272 sa_family_t addr_family, 1273 uint8_t *laddrp, in_port_t lport, 1274 uint8_t *faddrp, in_port_t fport, 1275 void *args) = NULL; 1276 1277 void (*cl_inet_disconnect)(netstackid_t stack_id, uint8_t protocol, 1278 sa_family_t addr_family, uint8_t *laddrp, 1279 in_port_t lport, uint8_t *faddrp, 1280 in_port_t fport, void *args) = NULL; 1281 1282 /* 1283 * The following are defined in ip.c 1284 */ 1285 extern int (*cl_inet_isclusterwide)(netstackid_t stack_id, uint8_t protocol, 1286 sa_family_t addr_family, uint8_t *laddrp, 1287 void *args); 1288 extern uint32_t (*cl_inet_ipident)(netstackid_t stack_id, uint8_t protocol, 1289 sa_family_t addr_family, uint8_t *laddrp, 1290 uint8_t *faddrp, void *args); 1291 1292 1293 /* 1294 * int CL_INET_CONNECT(conn_t *cp, tcp_t *tcp, boolean_t is_outgoing, int err) 1295 */ 1296 #define CL_INET_CONNECT(connp, tcp, is_outgoing, err) { \ 1297 (err) = 0; \ 1298 if (cl_inet_connect2 != NULL) { \ 1299 /* \ 1300 * Running in cluster mode - register active connection \ 1301 * information \ 1302 */ \ 1303 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1304 if ((tcp)->tcp_ipha->ipha_src != 0) { \ 1305 (err) = (*cl_inet_connect2)( \ 1306 (connp)->conn_netstack->netstack_stackid,\ 1307 IPPROTO_TCP, is_outgoing, AF_INET, \ 1308 (uint8_t *)(&((tcp)->tcp_ipha->ipha_src)),\ 1309 (in_port_t)(tcp)->tcp_lport, \ 1310 (uint8_t *)(&((tcp)->tcp_ipha->ipha_dst)),\ 1311 (in_port_t)(tcp)->tcp_fport, NULL); \ 1312 } \ 1313 } else { \ 1314 if (!IN6_IS_ADDR_UNSPECIFIED( \ 1315 &(tcp)->tcp_ip6h->ip6_src)) { \ 1316 (err) = (*cl_inet_connect2)( \ 1317 (connp)->conn_netstack->netstack_stackid,\ 1318 IPPROTO_TCP, is_outgoing, AF_INET6, \ 1319 (uint8_t *)(&((tcp)->tcp_ip6h->ip6_src)),\ 1320 (in_port_t)(tcp)->tcp_lport, \ 1321 (uint8_t *)(&((tcp)->tcp_ip6h->ip6_dst)),\ 1322 (in_port_t)(tcp)->tcp_fport, NULL); \ 1323 } \ 1324 } \ 1325 } \ 1326 } 1327 1328 #define CL_INET_DISCONNECT(connp, tcp) { \ 1329 if (cl_inet_disconnect != NULL) { \ 1330 /* \ 1331 * Running in cluster mode - deregister active \ 1332 * connection information \ 1333 */ \ 1334 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1335 if ((tcp)->tcp_ip_src != 0) { \ 1336 (*cl_inet_disconnect)( \ 1337 (connp)->conn_netstack->netstack_stackid,\ 1338 IPPROTO_TCP, AF_INET, \ 1339 (uint8_t *)(&((tcp)->tcp_ip_src)), \ 1340 (in_port_t)(tcp)->tcp_lport, \ 1341 (uint8_t *)(&((tcp)->tcp_ipha->ipha_dst)),\ 1342 (in_port_t)(tcp)->tcp_fport, NULL); \ 1343 } \ 1344 } else { \ 1345 if (!IN6_IS_ADDR_UNSPECIFIED( \ 1346 &(tcp)->tcp_ip_src_v6)) { \ 1347 (*cl_inet_disconnect)( \ 1348 (connp)->conn_netstack->netstack_stackid,\ 1349 IPPROTO_TCP, AF_INET6, \ 1350 (uint8_t *)(&((tcp)->tcp_ip_src_v6)),\ 1351 (in_port_t)(tcp)->tcp_lport, \ 1352 (uint8_t *)(&((tcp)->tcp_ip6h->ip6_dst)),\ 1353 (in_port_t)(tcp)->tcp_fport, NULL); \ 1354 } \ 1355 } \ 1356 } \ 1357 } 1358 1359 /* 1360 * Cluster networking hook for traversing current connection list. 1361 * This routine is used to extract the current list of live connections 1362 * which must continue to to be dispatched to this node. 1363 */ 1364 int cl_tcp_walk_list(netstackid_t stack_id, 1365 int (*callback)(cl_tcp_info_t *, void *), void *arg); 1366 1367 static int cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *), 1368 void *arg, tcp_stack_t *tcps); 1369 1370 #define DTRACE_IP_FASTPATH(mp, iph, ill, ipha, ip6h) \ 1371 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, void_ip_t *, \ 1372 iph, __dtrace_ipsr_ill_t *, ill, ipha_t *, ipha, \ 1373 ip6_t *, ip6h, int, 0); 1374 1375 static void 1376 tcp_set_recv_threshold(tcp_t *tcp, uint32_t new_rcvthresh) 1377 { 1378 uint32_t default_threshold = SOCKET_RECVHIWATER >> 3; 1379 1380 if (IPCL_IS_NONSTR(tcp->tcp_connp)) { 1381 conn_t *connp = tcp->tcp_connp; 1382 struct sock_proto_props sopp; 1383 1384 /* 1385 * only increase rcvthresh upto default_threshold 1386 */ 1387 if (new_rcvthresh > default_threshold) 1388 new_rcvthresh = default_threshold; 1389 1390 sopp.sopp_flags = SOCKOPT_RCVTHRESH; 1391 sopp.sopp_rcvthresh = new_rcvthresh; 1392 1393 (*connp->conn_upcalls->su_set_proto_props) 1394 (connp->conn_upper_handle, &sopp); 1395 } 1396 } 1397 /* 1398 * Figure out the value of window scale opton. Note that the rwnd is 1399 * ASSUMED to be rounded up to the nearest MSS before the calculation. 1400 * We cannot find the scale value and then do a round up of tcp_rwnd 1401 * because the scale value may not be correct after that. 1402 * 1403 * Set the compiler flag to make this function inline. 1404 */ 1405 static void 1406 tcp_set_ws_value(tcp_t *tcp) 1407 { 1408 int i; 1409 uint32_t rwnd = tcp->tcp_rwnd; 1410 1411 for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT; 1412 i++, rwnd >>= 1) 1413 ; 1414 tcp->tcp_rcv_ws = i; 1415 } 1416 1417 /* 1418 * Remove a connection from the list of detached TIME_WAIT connections. 1419 * It returns B_FALSE if it can't remove the connection from the list 1420 * as the connection has already been removed from the list due to an 1421 * earlier call to tcp_time_wait_remove(); otherwise it returns B_TRUE. 1422 */ 1423 static boolean_t 1424 tcp_time_wait_remove(tcp_t *tcp, tcp_squeue_priv_t *tcp_time_wait) 1425 { 1426 boolean_t locked = B_FALSE; 1427 1428 if (tcp_time_wait == NULL) { 1429 tcp_time_wait = *((tcp_squeue_priv_t **) 1430 squeue_getprivate(tcp->tcp_connp->conn_sqp, SQPRIVATE_TCP)); 1431 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1432 locked = B_TRUE; 1433 } else { 1434 ASSERT(MUTEX_HELD(&tcp_time_wait->tcp_time_wait_lock)); 1435 } 1436 1437 if (tcp->tcp_time_wait_expire == 0) { 1438 ASSERT(tcp->tcp_time_wait_next == NULL); 1439 ASSERT(tcp->tcp_time_wait_prev == NULL); 1440 if (locked) 1441 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1442 return (B_FALSE); 1443 } 1444 ASSERT(TCP_IS_DETACHED(tcp)); 1445 ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); 1446 1447 if (tcp == tcp_time_wait->tcp_time_wait_head) { 1448 ASSERT(tcp->tcp_time_wait_prev == NULL); 1449 tcp_time_wait->tcp_time_wait_head = tcp->tcp_time_wait_next; 1450 if (tcp_time_wait->tcp_time_wait_head != NULL) { 1451 tcp_time_wait->tcp_time_wait_head->tcp_time_wait_prev = 1452 NULL; 1453 } else { 1454 tcp_time_wait->tcp_time_wait_tail = NULL; 1455 } 1456 } else if (tcp == tcp_time_wait->tcp_time_wait_tail) { 1457 ASSERT(tcp != tcp_time_wait->tcp_time_wait_head); 1458 ASSERT(tcp->tcp_time_wait_next == NULL); 1459 tcp_time_wait->tcp_time_wait_tail = tcp->tcp_time_wait_prev; 1460 ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); 1461 tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = NULL; 1462 } else { 1463 ASSERT(tcp->tcp_time_wait_prev->tcp_time_wait_next == tcp); 1464 ASSERT(tcp->tcp_time_wait_next->tcp_time_wait_prev == tcp); 1465 tcp->tcp_time_wait_prev->tcp_time_wait_next = 1466 tcp->tcp_time_wait_next; 1467 tcp->tcp_time_wait_next->tcp_time_wait_prev = 1468 tcp->tcp_time_wait_prev; 1469 } 1470 tcp->tcp_time_wait_next = NULL; 1471 tcp->tcp_time_wait_prev = NULL; 1472 tcp->tcp_time_wait_expire = 0; 1473 1474 if (locked) 1475 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1476 return (B_TRUE); 1477 } 1478 1479 /* 1480 * Add a connection to the list of detached TIME_WAIT connections 1481 * and set its time to expire. 1482 */ 1483 static void 1484 tcp_time_wait_append(tcp_t *tcp) 1485 { 1486 tcp_stack_t *tcps = tcp->tcp_tcps; 1487 tcp_squeue_priv_t *tcp_time_wait = 1488 *((tcp_squeue_priv_t **)squeue_getprivate(tcp->tcp_connp->conn_sqp, 1489 SQPRIVATE_TCP)); 1490 1491 tcp_timers_stop(tcp); 1492 1493 /* Freed above */ 1494 ASSERT(tcp->tcp_timer_tid == 0); 1495 ASSERT(tcp->tcp_ack_tid == 0); 1496 1497 /* must have happened at the time of detaching the tcp */ 1498 ASSERT(tcp->tcp_ptpahn == NULL); 1499 ASSERT(tcp->tcp_flow_stopped == 0); 1500 ASSERT(tcp->tcp_time_wait_next == NULL); 1501 ASSERT(tcp->tcp_time_wait_prev == NULL); 1502 ASSERT(tcp->tcp_time_wait_expire == NULL); 1503 ASSERT(tcp->tcp_listener == NULL); 1504 1505 tcp->tcp_time_wait_expire = ddi_get_lbolt(); 1506 /* 1507 * The value computed below in tcp->tcp_time_wait_expire may 1508 * appear negative or wrap around. That is ok since our 1509 * interest is only in the difference between the current lbolt 1510 * value and tcp->tcp_time_wait_expire. But the value should not 1511 * be zero, since it means the tcp is not in the TIME_WAIT list. 1512 * The corresponding comparison in tcp_time_wait_collector() uses 1513 * modular arithmetic. 1514 */ 1515 tcp->tcp_time_wait_expire += 1516 drv_usectohz(tcps->tcps_time_wait_interval * 1000); 1517 if (tcp->tcp_time_wait_expire == 0) 1518 tcp->tcp_time_wait_expire = 1; 1519 1520 ASSERT(TCP_IS_DETACHED(tcp)); 1521 ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); 1522 ASSERT(tcp->tcp_time_wait_next == NULL); 1523 ASSERT(tcp->tcp_time_wait_prev == NULL); 1524 TCP_DBGSTAT(tcps, tcp_time_wait); 1525 1526 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1527 if (tcp_time_wait->tcp_time_wait_head == NULL) { 1528 ASSERT(tcp_time_wait->tcp_time_wait_tail == NULL); 1529 tcp_time_wait->tcp_time_wait_head = tcp; 1530 } else { 1531 ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); 1532 ASSERT(tcp_time_wait->tcp_time_wait_tail->tcp_state == 1533 TCPS_TIME_WAIT); 1534 tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = tcp; 1535 tcp->tcp_time_wait_prev = tcp_time_wait->tcp_time_wait_tail; 1536 } 1537 tcp_time_wait->tcp_time_wait_tail = tcp; 1538 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1539 } 1540 1541 /* ARGSUSED */ 1542 void 1543 tcp_timewait_output(void *arg, mblk_t *mp, void *arg2) 1544 { 1545 conn_t *connp = (conn_t *)arg; 1546 tcp_t *tcp = connp->conn_tcp; 1547 tcp_stack_t *tcps = tcp->tcp_tcps; 1548 1549 ASSERT(tcp != NULL); 1550 if (tcp->tcp_state == TCPS_CLOSED) { 1551 return; 1552 } 1553 1554 ASSERT((tcp->tcp_family == AF_INET && 1555 tcp->tcp_ipversion == IPV4_VERSION) || 1556 (tcp->tcp_family == AF_INET6 && 1557 (tcp->tcp_ipversion == IPV4_VERSION || 1558 tcp->tcp_ipversion == IPV6_VERSION))); 1559 ASSERT(!tcp->tcp_listener); 1560 1561 TCP_STAT(tcps, tcp_time_wait_reap); 1562 ASSERT(TCP_IS_DETACHED(tcp)); 1563 1564 /* 1565 * Because they have no upstream client to rebind or tcp_close() 1566 * them later, we axe the connection here and now. 1567 */ 1568 tcp_close_detached(tcp); 1569 } 1570 1571 /* 1572 * Remove cached/latched IPsec references. 1573 */ 1574 void 1575 tcp_ipsec_cleanup(tcp_t *tcp) 1576 { 1577 conn_t *connp = tcp->tcp_connp; 1578 1579 ASSERT(connp->conn_flags & IPCL_TCPCONN); 1580 1581 if (connp->conn_latch != NULL) { 1582 IPLATCH_REFRELE(connp->conn_latch, 1583 connp->conn_netstack); 1584 connp->conn_latch = NULL; 1585 } 1586 if (connp->conn_policy != NULL) { 1587 IPPH_REFRELE(connp->conn_policy, connp->conn_netstack); 1588 connp->conn_policy = NULL; 1589 } 1590 } 1591 1592 /* 1593 * Cleaup before placing on free list. 1594 * Disassociate from the netstack/tcp_stack_t since the freelist 1595 * is per squeue and not per netstack. 1596 */ 1597 void 1598 tcp_cleanup(tcp_t *tcp) 1599 { 1600 mblk_t *mp; 1601 char *tcp_iphc; 1602 int tcp_iphc_len; 1603 int tcp_hdr_grown; 1604 tcp_sack_info_t *tcp_sack_info; 1605 conn_t *connp = tcp->tcp_connp; 1606 tcp_stack_t *tcps = tcp->tcp_tcps; 1607 netstack_t *ns = tcps->tcps_netstack; 1608 mblk_t *tcp_rsrv_mp; 1609 1610 tcp_bind_hash_remove(tcp); 1611 1612 /* Cleanup that which needs the netstack first */ 1613 tcp_ipsec_cleanup(tcp); 1614 1615 tcp_free(tcp); 1616 1617 /* Release any SSL context */ 1618 if (tcp->tcp_kssl_ent != NULL) { 1619 kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); 1620 tcp->tcp_kssl_ent = NULL; 1621 } 1622 1623 if (tcp->tcp_kssl_ctx != NULL) { 1624 kssl_release_ctx(tcp->tcp_kssl_ctx); 1625 tcp->tcp_kssl_ctx = NULL; 1626 } 1627 tcp->tcp_kssl_pending = B_FALSE; 1628 1629 conn_delete_ire(connp, NULL); 1630 1631 /* 1632 * Since we will bzero the entire structure, we need to 1633 * remove it and reinsert it in global hash list. We 1634 * know the walkers can't get to this conn because we 1635 * had set CONDEMNED flag earlier and checked reference 1636 * under conn_lock so walker won't pick it and when we 1637 * go the ipcl_globalhash_remove() below, no walker 1638 * can get to it. 1639 */ 1640 ipcl_globalhash_remove(connp); 1641 1642 /* 1643 * Now it is safe to decrement the reference counts. 1644 * This might be the last reference on the netstack and TCPS 1645 * in which case it will cause the tcp_g_q_close and 1646 * the freeing of the IP Instance. 1647 */ 1648 connp->conn_netstack = NULL; 1649 netstack_rele(ns); 1650 ASSERT(tcps != NULL); 1651 tcp->tcp_tcps = NULL; 1652 TCPS_REFRELE(tcps); 1653 1654 /* Save some state */ 1655 mp = tcp->tcp_timercache; 1656 1657 tcp_sack_info = tcp->tcp_sack_info; 1658 tcp_iphc = tcp->tcp_iphc; 1659 tcp_iphc_len = tcp->tcp_iphc_len; 1660 tcp_hdr_grown = tcp->tcp_hdr_grown; 1661 tcp_rsrv_mp = tcp->tcp_rsrv_mp; 1662 1663 if (connp->conn_cred != NULL) { 1664 crfree(connp->conn_cred); 1665 connp->conn_cred = NULL; 1666 } 1667 if (connp->conn_effective_cred != NULL) { 1668 crfree(connp->conn_effective_cred); 1669 connp->conn_effective_cred = NULL; 1670 } 1671 ipcl_conn_cleanup(connp); 1672 connp->conn_flags = IPCL_TCPCONN; 1673 bzero(tcp, sizeof (tcp_t)); 1674 1675 /* restore the state */ 1676 tcp->tcp_timercache = mp; 1677 1678 tcp->tcp_sack_info = tcp_sack_info; 1679 tcp->tcp_iphc = tcp_iphc; 1680 tcp->tcp_iphc_len = tcp_iphc_len; 1681 tcp->tcp_hdr_grown = tcp_hdr_grown; 1682 tcp->tcp_rsrv_mp = tcp_rsrv_mp; 1683 1684 tcp->tcp_connp = connp; 1685 1686 ASSERT(connp->conn_tcp == tcp); 1687 ASSERT(connp->conn_flags & IPCL_TCPCONN); 1688 connp->conn_state_flags = CONN_INCIPIENT; 1689 ASSERT(connp->conn_ulp == IPPROTO_TCP); 1690 ASSERT(connp->conn_ref == 1); 1691 } 1692 1693 /* 1694 * Blows away all tcps whose TIME_WAIT has expired. List traversal 1695 * is done forwards from the head. 1696 * This walks all stack instances since 1697 * tcp_time_wait remains global across all stacks. 1698 */ 1699 /* ARGSUSED */ 1700 void 1701 tcp_time_wait_collector(void *arg) 1702 { 1703 tcp_t *tcp; 1704 clock_t now; 1705 mblk_t *mp; 1706 conn_t *connp; 1707 kmutex_t *lock; 1708 boolean_t removed; 1709 1710 squeue_t *sqp = (squeue_t *)arg; 1711 tcp_squeue_priv_t *tcp_time_wait = 1712 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 1713 1714 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1715 tcp_time_wait->tcp_time_wait_tid = 0; 1716 1717 if (tcp_time_wait->tcp_free_list != NULL && 1718 tcp_time_wait->tcp_free_list->tcp_in_free_list == B_TRUE) { 1719 TCP_G_STAT(tcp_freelist_cleanup); 1720 while ((tcp = tcp_time_wait->tcp_free_list) != NULL) { 1721 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 1722 tcp->tcp_time_wait_next = NULL; 1723 tcp_time_wait->tcp_free_list_cnt--; 1724 ASSERT(tcp->tcp_tcps == NULL); 1725 CONN_DEC_REF(tcp->tcp_connp); 1726 } 1727 ASSERT(tcp_time_wait->tcp_free_list_cnt == 0); 1728 } 1729 1730 /* 1731 * In order to reap time waits reliably, we should use a 1732 * source of time that is not adjustable by the user -- hence 1733 * the call to ddi_get_lbolt(). 1734 */ 1735 now = ddi_get_lbolt(); 1736 while ((tcp = tcp_time_wait->tcp_time_wait_head) != NULL) { 1737 /* 1738 * Compare times using modular arithmetic, since 1739 * lbolt can wrapover. 1740 */ 1741 if ((now - tcp->tcp_time_wait_expire) < 0) { 1742 break; 1743 } 1744 1745 removed = tcp_time_wait_remove(tcp, tcp_time_wait); 1746 ASSERT(removed); 1747 1748 connp = tcp->tcp_connp; 1749 ASSERT(connp->conn_fanout != NULL); 1750 lock = &connp->conn_fanout->connf_lock; 1751 /* 1752 * This is essentially a TW reclaim fast path optimization for 1753 * performance where the timewait collector checks under the 1754 * fanout lock (so that no one else can get access to the 1755 * conn_t) that the refcnt is 2 i.e. one for TCP and one for 1756 * the classifier hash list. If ref count is indeed 2, we can 1757 * just remove the conn under the fanout lock and avoid 1758 * cleaning up the conn under the squeue, provided that 1759 * clustering callbacks are not enabled. If clustering is 1760 * enabled, we need to make the clustering callback before 1761 * setting the CONDEMNED flag and after dropping all locks and 1762 * so we forego this optimization and fall back to the slow 1763 * path. Also please see the comments in tcp_closei_local 1764 * regarding the refcnt logic. 1765 * 1766 * Since we are holding the tcp_time_wait_lock, its better 1767 * not to block on the fanout_lock because other connections 1768 * can't add themselves to time_wait list. So we do a 1769 * tryenter instead of mutex_enter. 1770 */ 1771 if (mutex_tryenter(lock)) { 1772 mutex_enter(&connp->conn_lock); 1773 if ((connp->conn_ref == 2) && 1774 (cl_inet_disconnect == NULL)) { 1775 ipcl_hash_remove_locked(connp, 1776 connp->conn_fanout); 1777 /* 1778 * Set the CONDEMNED flag now itself so that 1779 * the refcnt cannot increase due to any 1780 * walker. But we have still not cleaned up 1781 * conn_ire_cache. This is still ok since 1782 * we are going to clean it up in tcp_cleanup 1783 * immediately and any interface unplumb 1784 * thread will wait till the ire is blown away 1785 */ 1786 connp->conn_state_flags |= CONN_CONDEMNED; 1787 mutex_exit(lock); 1788 mutex_exit(&connp->conn_lock); 1789 if (tcp_time_wait->tcp_free_list_cnt < 1790 tcp_free_list_max_cnt) { 1791 /* Add to head of tcp_free_list */ 1792 mutex_exit( 1793 &tcp_time_wait->tcp_time_wait_lock); 1794 tcp_cleanup(tcp); 1795 ASSERT(connp->conn_latch == NULL); 1796 ASSERT(connp->conn_policy == NULL); 1797 ASSERT(tcp->tcp_tcps == NULL); 1798 ASSERT(connp->conn_netstack == NULL); 1799 1800 mutex_enter( 1801 &tcp_time_wait->tcp_time_wait_lock); 1802 tcp->tcp_time_wait_next = 1803 tcp_time_wait->tcp_free_list; 1804 tcp_time_wait->tcp_free_list = tcp; 1805 tcp_time_wait->tcp_free_list_cnt++; 1806 continue; 1807 } else { 1808 /* Do not add to tcp_free_list */ 1809 mutex_exit( 1810 &tcp_time_wait->tcp_time_wait_lock); 1811 tcp_bind_hash_remove(tcp); 1812 conn_delete_ire(tcp->tcp_connp, NULL); 1813 tcp_ipsec_cleanup(tcp); 1814 CONN_DEC_REF(tcp->tcp_connp); 1815 } 1816 } else { 1817 CONN_INC_REF_LOCKED(connp); 1818 mutex_exit(lock); 1819 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1820 mutex_exit(&connp->conn_lock); 1821 /* 1822 * We can reuse the closemp here since conn has 1823 * detached (otherwise we wouldn't even be in 1824 * time_wait list). tcp_closemp_used can safely 1825 * be changed without taking a lock as no other 1826 * thread can concurrently access it at this 1827 * point in the connection lifecycle. 1828 */ 1829 1830 if (tcp->tcp_closemp.b_prev == NULL) 1831 tcp->tcp_closemp_used = B_TRUE; 1832 else 1833 cmn_err(CE_PANIC, 1834 "tcp_timewait_collector: " 1835 "concurrent use of tcp_closemp: " 1836 "connp %p tcp %p\n", (void *)connp, 1837 (void *)tcp); 1838 1839 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 1840 mp = &tcp->tcp_closemp; 1841 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 1842 tcp_timewait_output, connp, 1843 SQ_FILL, SQTAG_TCP_TIMEWAIT); 1844 } 1845 } else { 1846 mutex_enter(&connp->conn_lock); 1847 CONN_INC_REF_LOCKED(connp); 1848 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1849 mutex_exit(&connp->conn_lock); 1850 /* 1851 * We can reuse the closemp here since conn has 1852 * detached (otherwise we wouldn't even be in 1853 * time_wait list). tcp_closemp_used can safely 1854 * be changed without taking a lock as no other 1855 * thread can concurrently access it at this 1856 * point in the connection lifecycle. 1857 */ 1858 1859 if (tcp->tcp_closemp.b_prev == NULL) 1860 tcp->tcp_closemp_used = B_TRUE; 1861 else 1862 cmn_err(CE_PANIC, "tcp_timewait_collector: " 1863 "concurrent use of tcp_closemp: " 1864 "connp %p tcp %p\n", (void *)connp, 1865 (void *)tcp); 1866 1867 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 1868 mp = &tcp->tcp_closemp; 1869 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 1870 tcp_timewait_output, connp, 1871 SQ_FILL, SQTAG_TCP_TIMEWAIT); 1872 } 1873 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1874 } 1875 1876 if (tcp_time_wait->tcp_free_list != NULL) 1877 tcp_time_wait->tcp_free_list->tcp_in_free_list = B_TRUE; 1878 1879 tcp_time_wait->tcp_time_wait_tid = 1880 timeout_generic(CALLOUT_NORMAL, tcp_time_wait_collector, sqp, 1881 TICK_TO_NSEC(TCP_TIME_WAIT_DELAY), CALLOUT_TCP_RESOLUTION, 1882 CALLOUT_FLAG_ROUNDUP); 1883 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1884 } 1885 1886 /* 1887 * Reply to a clients T_CONN_RES TPI message. This function 1888 * is used only for TLI/XTI listener. Sockfs sends T_CONN_RES 1889 * on the acceptor STREAM and processed in tcp_wput_accept(). 1890 * Read the block comment on top of tcp_conn_request(). 1891 */ 1892 static void 1893 tcp_tli_accept(tcp_t *listener, mblk_t *mp) 1894 { 1895 tcp_t *acceptor; 1896 tcp_t *eager; 1897 tcp_t *tcp; 1898 struct T_conn_res *tcr; 1899 t_uscalar_t acceptor_id; 1900 t_scalar_t seqnum; 1901 mblk_t *opt_mp = NULL; /* T_OPTMGMT_REQ messages */ 1902 struct tcp_options *tcpopt; 1903 mblk_t *ok_mp; 1904 mblk_t *mp1; 1905 tcp_stack_t *tcps = listener->tcp_tcps; 1906 int error; 1907 1908 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { 1909 tcp_err_ack(listener, mp, TPROTO, 0); 1910 return; 1911 } 1912 tcr = (struct T_conn_res *)mp->b_rptr; 1913 1914 /* 1915 * Under ILP32 the stream head points tcr->ACCEPTOR_id at the 1916 * read side queue of the streams device underneath us i.e. the 1917 * read side queue of 'ip'. Since we can't deference QUEUE_ptr we 1918 * look it up in the queue_hash. Under LP64 it sends down the 1919 * minor_t of the accepting endpoint. 1920 * 1921 * Once the acceptor/eager are modified (in tcp_accept_swap) the 1922 * fanout hash lock is held. 1923 * This prevents any thread from entering the acceptor queue from 1924 * below (since it has not been hard bound yet i.e. any inbound 1925 * packets will arrive on the listener or default tcp queue and 1926 * go through tcp_lookup). 1927 * The CONN_INC_REF will prevent the acceptor from closing. 1928 * 1929 * XXX It is still possible for a tli application to send down data 1930 * on the accepting stream while another thread calls t_accept. 1931 * This should not be a problem for well-behaved applications since 1932 * the T_OK_ACK is sent after the queue swapping is completed. 1933 * 1934 * If the accepting fd is the same as the listening fd, avoid 1935 * queue hash lookup since that will return an eager listener in a 1936 * already established state. 1937 */ 1938 acceptor_id = tcr->ACCEPTOR_id; 1939 mutex_enter(&listener->tcp_eager_lock); 1940 if (listener->tcp_acceptor_id == acceptor_id) { 1941 eager = listener->tcp_eager_next_q; 1942 /* only count how many T_CONN_INDs so don't count q0 */ 1943 if ((listener->tcp_conn_req_cnt_q != 1) || 1944 (eager->tcp_conn_req_seqnum != tcr->SEQ_number)) { 1945 mutex_exit(&listener->tcp_eager_lock); 1946 tcp_err_ack(listener, mp, TBADF, 0); 1947 return; 1948 } 1949 if (listener->tcp_conn_req_cnt_q0 != 0) { 1950 /* Throw away all the eagers on q0. */ 1951 tcp_eager_cleanup(listener, 1); 1952 } 1953 if (listener->tcp_syn_defense) { 1954 listener->tcp_syn_defense = B_FALSE; 1955 if (listener->tcp_ip_addr_cache != NULL) { 1956 kmem_free(listener->tcp_ip_addr_cache, 1957 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 1958 listener->tcp_ip_addr_cache = NULL; 1959 } 1960 } 1961 /* 1962 * Transfer tcp_conn_req_max to the eager so that when 1963 * a disconnect occurs we can revert the endpoint to the 1964 * listen state. 1965 */ 1966 eager->tcp_conn_req_max = listener->tcp_conn_req_max; 1967 ASSERT(listener->tcp_conn_req_cnt_q0 == 0); 1968 /* 1969 * Get a reference on the acceptor just like the 1970 * tcp_acceptor_hash_lookup below. 1971 */ 1972 acceptor = listener; 1973 CONN_INC_REF(acceptor->tcp_connp); 1974 } else { 1975 acceptor = tcp_acceptor_hash_lookup(acceptor_id, tcps); 1976 if (acceptor == NULL) { 1977 if (listener->tcp_debug) { 1978 (void) strlog(TCP_MOD_ID, 0, 1, 1979 SL_ERROR|SL_TRACE, 1980 "tcp_accept: did not find acceptor 0x%x\n", 1981 acceptor_id); 1982 } 1983 mutex_exit(&listener->tcp_eager_lock); 1984 tcp_err_ack(listener, mp, TPROVMISMATCH, 0); 1985 return; 1986 } 1987 /* 1988 * Verify acceptor state. The acceptable states for an acceptor 1989 * include TCPS_IDLE and TCPS_BOUND. 1990 */ 1991 switch (acceptor->tcp_state) { 1992 case TCPS_IDLE: 1993 /* FALLTHRU */ 1994 case TCPS_BOUND: 1995 break; 1996 default: 1997 CONN_DEC_REF(acceptor->tcp_connp); 1998 mutex_exit(&listener->tcp_eager_lock); 1999 tcp_err_ack(listener, mp, TOUTSTATE, 0); 2000 return; 2001 } 2002 } 2003 2004 /* The listener must be in TCPS_LISTEN */ 2005 if (listener->tcp_state != TCPS_LISTEN) { 2006 CONN_DEC_REF(acceptor->tcp_connp); 2007 mutex_exit(&listener->tcp_eager_lock); 2008 tcp_err_ack(listener, mp, TOUTSTATE, 0); 2009 return; 2010 } 2011 2012 /* 2013 * Rendezvous with an eager connection request packet hanging off 2014 * 'tcp' that has the 'seqnum' tag. We tagged the detached open 2015 * tcp structure when the connection packet arrived in 2016 * tcp_conn_request(). 2017 */ 2018 seqnum = tcr->SEQ_number; 2019 eager = listener; 2020 do { 2021 eager = eager->tcp_eager_next_q; 2022 if (eager == NULL) { 2023 CONN_DEC_REF(acceptor->tcp_connp); 2024 mutex_exit(&listener->tcp_eager_lock); 2025 tcp_err_ack(listener, mp, TBADSEQ, 0); 2026 return; 2027 } 2028 } while (eager->tcp_conn_req_seqnum != seqnum); 2029 mutex_exit(&listener->tcp_eager_lock); 2030 2031 /* 2032 * At this point, both acceptor and listener have 2 ref 2033 * that they begin with. Acceptor has one additional ref 2034 * we placed in lookup while listener has 3 additional 2035 * ref for being behind the squeue (tcp_accept() is 2036 * done on listener's squeue); being in classifier hash; 2037 * and eager's ref on listener. 2038 */ 2039 ASSERT(listener->tcp_connp->conn_ref >= 5); 2040 ASSERT(acceptor->tcp_connp->conn_ref >= 3); 2041 2042 /* 2043 * The eager at this point is set in its own squeue and 2044 * could easily have been killed (tcp_accept_finish will 2045 * deal with that) because of a TH_RST so we can only 2046 * ASSERT for a single ref. 2047 */ 2048 ASSERT(eager->tcp_connp->conn_ref >= 1); 2049 2050 /* Pre allocate the stroptions mblk also */ 2051 opt_mp = allocb(MAX(sizeof (struct tcp_options), 2052 sizeof (struct T_conn_res)), BPRI_HI); 2053 if (opt_mp == NULL) { 2054 CONN_DEC_REF(acceptor->tcp_connp); 2055 CONN_DEC_REF(eager->tcp_connp); 2056 tcp_err_ack(listener, mp, TSYSERR, ENOMEM); 2057 return; 2058 } 2059 DB_TYPE(opt_mp) = M_SETOPTS; 2060 opt_mp->b_wptr += sizeof (struct tcp_options); 2061 tcpopt = (struct tcp_options *)opt_mp->b_rptr; 2062 tcpopt->to_flags = 0; 2063 2064 /* 2065 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO 2066 * from listener to acceptor. 2067 */ 2068 if (listener->tcp_bound_if != 0) { 2069 tcpopt->to_flags |= TCPOPT_BOUNDIF; 2070 tcpopt->to_boundif = listener->tcp_bound_if; 2071 } 2072 if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) { 2073 tcpopt->to_flags |= TCPOPT_RECVPKTINFO; 2074 } 2075 2076 /* Re-use mp1 to hold a copy of mp, in case reallocb fails */ 2077 if ((mp1 = copymsg(mp)) == NULL) { 2078 CONN_DEC_REF(acceptor->tcp_connp); 2079 CONN_DEC_REF(eager->tcp_connp); 2080 freemsg(opt_mp); 2081 tcp_err_ack(listener, mp, TSYSERR, ENOMEM); 2082 return; 2083 } 2084 2085 tcr = (struct T_conn_res *)mp1->b_rptr; 2086 2087 /* 2088 * This is an expanded version of mi_tpi_ok_ack_alloc() 2089 * which allocates a larger mblk and appends the new 2090 * local address to the ok_ack. The address is copied by 2091 * soaccept() for getsockname(). 2092 */ 2093 { 2094 int extra; 2095 2096 extra = (eager->tcp_family == AF_INET) ? 2097 sizeof (sin_t) : sizeof (sin6_t); 2098 2099 /* 2100 * Try to re-use mp, if possible. Otherwise, allocate 2101 * an mblk and return it as ok_mp. In any case, mp 2102 * is no longer usable upon return. 2103 */ 2104 if ((ok_mp = mi_tpi_ok_ack_alloc_extra(mp, extra)) == NULL) { 2105 CONN_DEC_REF(acceptor->tcp_connp); 2106 CONN_DEC_REF(eager->tcp_connp); 2107 freemsg(opt_mp); 2108 /* Original mp has been freed by now, so use mp1 */ 2109 tcp_err_ack(listener, mp1, TSYSERR, ENOMEM); 2110 return; 2111 } 2112 2113 mp = NULL; /* We should never use mp after this point */ 2114 2115 switch (extra) { 2116 case sizeof (sin_t): { 2117 sin_t *sin = (sin_t *)ok_mp->b_wptr; 2118 2119 ok_mp->b_wptr += extra; 2120 sin->sin_family = AF_INET; 2121 sin->sin_port = eager->tcp_lport; 2122 sin->sin_addr.s_addr = 2123 eager->tcp_ipha->ipha_src; 2124 break; 2125 } 2126 case sizeof (sin6_t): { 2127 sin6_t *sin6 = (sin6_t *)ok_mp->b_wptr; 2128 2129 ok_mp->b_wptr += extra; 2130 sin6->sin6_family = AF_INET6; 2131 sin6->sin6_port = eager->tcp_lport; 2132 if (eager->tcp_ipversion == IPV4_VERSION) { 2133 sin6->sin6_flowinfo = 0; 2134 IN6_IPADDR_TO_V4MAPPED( 2135 eager->tcp_ipha->ipha_src, 2136 &sin6->sin6_addr); 2137 } else { 2138 ASSERT(eager->tcp_ip6h != NULL); 2139 sin6->sin6_flowinfo = 2140 eager->tcp_ip6h->ip6_vcf & 2141 ~IPV6_VERS_AND_FLOW_MASK; 2142 sin6->sin6_addr = 2143 eager->tcp_ip6h->ip6_src; 2144 } 2145 sin6->sin6_scope_id = 0; 2146 sin6->__sin6_src_id = 0; 2147 break; 2148 } 2149 default: 2150 break; 2151 } 2152 ASSERT(ok_mp->b_wptr <= ok_mp->b_datap->db_lim); 2153 } 2154 2155 /* 2156 * If there are no options we know that the T_CONN_RES will 2157 * succeed. However, we can't send the T_OK_ACK upstream until 2158 * the tcp_accept_swap is done since it would be dangerous to 2159 * let the application start using the new fd prior to the swap. 2160 */ 2161 error = tcp_accept_swap(listener, acceptor, eager); 2162 if (error != 0) { 2163 CONN_DEC_REF(acceptor->tcp_connp); 2164 CONN_DEC_REF(eager->tcp_connp); 2165 freemsg(ok_mp); 2166 /* Original mp has been freed by now, so use mp1 */ 2167 tcp_err_ack(listener, mp1, TSYSERR, error); 2168 return; 2169 } 2170 2171 /* 2172 * tcp_accept_swap unlinks eager from listener but does not drop 2173 * the eager's reference on the listener. 2174 */ 2175 ASSERT(eager->tcp_listener == NULL); 2176 ASSERT(listener->tcp_connp->conn_ref >= 5); 2177 2178 /* 2179 * The eager is now associated with its own queue. Insert in 2180 * the hash so that the connection can be reused for a future 2181 * T_CONN_RES. 2182 */ 2183 tcp_acceptor_hash_insert(acceptor_id, eager); 2184 2185 /* 2186 * We now do the processing of options with T_CONN_RES. 2187 * We delay till now since we wanted to have queue to pass to 2188 * option processing routines that points back to the right 2189 * instance structure which does not happen until after 2190 * tcp_accept_swap(). 2191 * 2192 * Note: 2193 * The sanity of the logic here assumes that whatever options 2194 * are appropriate to inherit from listner=>eager are done 2195 * before this point, and whatever were to be overridden (or not) 2196 * in transfer logic from eager=>acceptor in tcp_accept_swap(). 2197 * [ Warning: acceptor endpoint can have T_OPTMGMT_REQ done to it 2198 * before its ACCEPTOR_id comes down in T_CONN_RES ] 2199 * This may not be true at this point in time but can be fixed 2200 * independently. This option processing code starts with 2201 * the instantiated acceptor instance and the final queue at 2202 * this point. 2203 */ 2204 2205 if (tcr->OPT_length != 0) { 2206 /* Options to process */ 2207 int t_error = 0; 2208 int sys_error = 0; 2209 int do_disconnect = 0; 2210 2211 if (tcp_conprim_opt_process(eager, mp1, 2212 &do_disconnect, &t_error, &sys_error) < 0) { 2213 eager->tcp_accept_error = 1; 2214 if (do_disconnect) { 2215 /* 2216 * An option failed which does not allow 2217 * connection to be accepted. 2218 * 2219 * We allow T_CONN_RES to succeed and 2220 * put a T_DISCON_IND on the eager queue. 2221 */ 2222 ASSERT(t_error == 0 && sys_error == 0); 2223 eager->tcp_send_discon_ind = 1; 2224 } else { 2225 ASSERT(t_error != 0); 2226 freemsg(ok_mp); 2227 /* 2228 * Original mp was either freed or set 2229 * to ok_mp above, so use mp1 instead. 2230 */ 2231 tcp_err_ack(listener, mp1, t_error, sys_error); 2232 goto finish; 2233 } 2234 } 2235 /* 2236 * Most likely success in setting options (except if 2237 * eager->tcp_send_discon_ind set). 2238 * mp1 option buffer represented by OPT_length/offset 2239 * potentially modified and contains results of setting 2240 * options at this point 2241 */ 2242 } 2243 2244 /* We no longer need mp1, since all options processing has passed */ 2245 freemsg(mp1); 2246 2247 putnext(listener->tcp_rq, ok_mp); 2248 2249 mutex_enter(&listener->tcp_eager_lock); 2250 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 2251 tcp_t *tail; 2252 mblk_t *conn_ind; 2253 2254 /* 2255 * This path should not be executed if listener and 2256 * acceptor streams are the same. 2257 */ 2258 ASSERT(listener != acceptor); 2259 2260 tcp = listener->tcp_eager_prev_q0; 2261 /* 2262 * listener->tcp_eager_prev_q0 points to the TAIL of the 2263 * deferred T_conn_ind queue. We need to get to the head of 2264 * the queue in order to send up T_conn_ind the same order as 2265 * how the 3WHS is completed. 2266 */ 2267 while (tcp != listener) { 2268 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0) 2269 break; 2270 else 2271 tcp = tcp->tcp_eager_prev_q0; 2272 } 2273 ASSERT(tcp != listener); 2274 conn_ind = tcp->tcp_conn.tcp_eager_conn_ind; 2275 ASSERT(conn_ind != NULL); 2276 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 2277 2278 /* Move from q0 to q */ 2279 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 2280 listener->tcp_conn_req_cnt_q0--; 2281 listener->tcp_conn_req_cnt_q++; 2282 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 2283 tcp->tcp_eager_prev_q0; 2284 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 2285 tcp->tcp_eager_next_q0; 2286 tcp->tcp_eager_prev_q0 = NULL; 2287 tcp->tcp_eager_next_q0 = NULL; 2288 tcp->tcp_conn_def_q0 = B_FALSE; 2289 2290 /* Make sure the tcp isn't in the list of droppables */ 2291 ASSERT(tcp->tcp_eager_next_drop_q0 == NULL && 2292 tcp->tcp_eager_prev_drop_q0 == NULL); 2293 2294 /* 2295 * Insert at end of the queue because sockfs sends 2296 * down T_CONN_RES in chronological order. Leaving 2297 * the older conn indications at front of the queue 2298 * helps reducing search time. 2299 */ 2300 tail = listener->tcp_eager_last_q; 2301 if (tail != NULL) 2302 tail->tcp_eager_next_q = tcp; 2303 else 2304 listener->tcp_eager_next_q = tcp; 2305 listener->tcp_eager_last_q = tcp; 2306 tcp->tcp_eager_next_q = NULL; 2307 mutex_exit(&listener->tcp_eager_lock); 2308 putnext(tcp->tcp_rq, conn_ind); 2309 } else { 2310 mutex_exit(&listener->tcp_eager_lock); 2311 } 2312 2313 /* 2314 * Done with the acceptor - free it 2315 * 2316 * Note: from this point on, no access to listener should be made 2317 * as listener can be equal to acceptor. 2318 */ 2319 finish: 2320 ASSERT(acceptor->tcp_detached); 2321 ASSERT(tcps->tcps_g_q != NULL); 2322 ASSERT(!IPCL_IS_NONSTR(acceptor->tcp_connp)); 2323 acceptor->tcp_rq = tcps->tcps_g_q; 2324 acceptor->tcp_wq = WR(tcps->tcps_g_q); 2325 (void) tcp_clean_death(acceptor, 0, 2); 2326 CONN_DEC_REF(acceptor->tcp_connp); 2327 2328 /* 2329 * In case we already received a FIN we have to make tcp_rput send 2330 * the ordrel_ind. This will also send up a window update if the window 2331 * has opened up. 2332 * 2333 * In the normal case of a successful connection acceptance 2334 * we give the O_T_BIND_REQ to the read side put procedure as an 2335 * indication that this was just accepted. This tells tcp_rput to 2336 * pass up any data queued in tcp_rcv_list. 2337 * 2338 * In the fringe case where options sent with T_CONN_RES failed and 2339 * we required, we would be indicating a T_DISCON_IND to blow 2340 * away this connection. 2341 */ 2342 2343 /* 2344 * XXX: we currently have a problem if XTI application closes the 2345 * acceptor stream in between. This problem exists in on10-gate also 2346 * and is well know but nothing can be done short of major rewrite 2347 * to fix it. Now it is possible to take care of it by assigning TLI/XTI 2348 * eager same squeue as listener (we can distinguish non socket 2349 * listeners at the time of handling a SYN in tcp_conn_request) 2350 * and do most of the work that tcp_accept_finish does here itself 2351 * and then get behind the acceptor squeue to access the acceptor 2352 * queue. 2353 */ 2354 /* 2355 * We already have a ref on tcp so no need to do one before squeue_enter 2356 */ 2357 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, opt_mp, tcp_accept_finish, 2358 eager->tcp_connp, SQ_FILL, SQTAG_TCP_ACCEPT_FINISH); 2359 } 2360 2361 /* 2362 * Swap information between the eager and acceptor for a TLI/XTI client. 2363 * The sockfs accept is done on the acceptor stream and control goes 2364 * through tcp_wput_accept() and tcp_accept()/tcp_accept_swap() is not 2365 * called. In either case, both the eager and listener are in their own 2366 * perimeter (squeue) and the code has to deal with potential race. 2367 * 2368 * See the block comment on top of tcp_accept() and tcp_wput_accept(). 2369 */ 2370 static int 2371 tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, tcp_t *eager) 2372 { 2373 conn_t *econnp, *aconnp; 2374 cred_t *effective_cred = NULL; 2375 2376 ASSERT(eager->tcp_rq == listener->tcp_rq); 2377 ASSERT(eager->tcp_detached && !acceptor->tcp_detached); 2378 ASSERT(!eager->tcp_hard_bound); 2379 ASSERT(!TCP_IS_SOCKET(acceptor)); 2380 ASSERT(!TCP_IS_SOCKET(eager)); 2381 ASSERT(!TCP_IS_SOCKET(listener)); 2382 2383 econnp = eager->tcp_connp; 2384 aconnp = acceptor->tcp_connp; 2385 2386 /* 2387 * Trusted Extensions may need to use a security label that is 2388 * different from the acceptor's label on MLP and MAC-Exempt 2389 * sockets. If this is the case, the required security label 2390 * already exists in econnp->conn_effective_cred. Use this label 2391 * to generate a new effective cred for the acceptor. 2392 * 2393 * We allow for potential application level retry attempts by 2394 * checking for transient errors before modifying eager. 2395 */ 2396 if (is_system_labeled() && 2397 aconnp->conn_cred != NULL && econnp->conn_effective_cred != NULL) { 2398 effective_cred = copycred_from_tslabel(aconnp->conn_cred, 2399 crgetlabel(econnp->conn_effective_cred), KM_NOSLEEP); 2400 if (effective_cred == NULL) 2401 return (ENOMEM); 2402 } 2403 2404 acceptor->tcp_detached = B_TRUE; 2405 /* 2406 * To permit stream re-use by TLI/XTI, the eager needs a copy of 2407 * the acceptor id. 2408 */ 2409 eager->tcp_acceptor_id = acceptor->tcp_acceptor_id; 2410 2411 /* remove eager from listen list... */ 2412 mutex_enter(&listener->tcp_eager_lock); 2413 tcp_eager_unlink(eager); 2414 ASSERT(eager->tcp_eager_next_q == NULL && 2415 eager->tcp_eager_last_q == NULL); 2416 ASSERT(eager->tcp_eager_next_q0 == NULL && 2417 eager->tcp_eager_prev_q0 == NULL); 2418 mutex_exit(&listener->tcp_eager_lock); 2419 eager->tcp_rq = acceptor->tcp_rq; 2420 eager->tcp_wq = acceptor->tcp_wq; 2421 2422 eager->tcp_rq->q_ptr = econnp; 2423 eager->tcp_wq->q_ptr = econnp; 2424 2425 /* 2426 * In the TLI/XTI loopback case, we are inside the listener's squeue, 2427 * which might be a different squeue from our peer TCP instance. 2428 * For TCP Fusion, the peer expects that whenever tcp_detached is 2429 * clear, our TCP queues point to the acceptor's queues. Thus, use 2430 * membar_producer() to ensure that the assignments of tcp_rq/tcp_wq 2431 * above reach global visibility prior to the clearing of tcp_detached. 2432 */ 2433 membar_producer(); 2434 eager->tcp_detached = B_FALSE; 2435 2436 ASSERT(eager->tcp_ack_tid == 0); 2437 2438 econnp->conn_dev = aconnp->conn_dev; 2439 econnp->conn_minor_arena = aconnp->conn_minor_arena; 2440 2441 ASSERT(econnp->conn_minor_arena != NULL); 2442 if (eager->tcp_cred != NULL) 2443 crfree(eager->tcp_cred); 2444 eager->tcp_cred = econnp->conn_cred = aconnp->conn_cred; 2445 if (econnp->conn_effective_cred != NULL) 2446 crfree(econnp->conn_effective_cred); 2447 econnp->conn_effective_cred = effective_cred; 2448 aconnp->conn_cred = NULL; 2449 ASSERT(aconnp->conn_effective_cred == NULL); 2450 2451 ASSERT(econnp->conn_netstack == aconnp->conn_netstack); 2452 ASSERT(eager->tcp_tcps == acceptor->tcp_tcps); 2453 2454 econnp->conn_zoneid = aconnp->conn_zoneid; 2455 econnp->conn_allzones = aconnp->conn_allzones; 2456 2457 aconnp->conn_mac_mode = CONN_MAC_DEFAULT; 2458 2459 /* Do the IPC initialization */ 2460 CONN_INC_REF(econnp); 2461 2462 econnp->conn_multicast_loop = aconnp->conn_multicast_loop; 2463 econnp->conn_af_isv6 = aconnp->conn_af_isv6; 2464 econnp->conn_pkt_isv6 = aconnp->conn_pkt_isv6; 2465 2466 /* Done with old IPC. Drop its ref on its connp */ 2467 CONN_DEC_REF(aconnp); 2468 return (0); 2469 } 2470 2471 2472 /* 2473 * Adapt to the information, such as rtt and rtt_sd, provided from the 2474 * ire cached in conn_cache_ire. If no ire cached, do a ire lookup. 2475 * 2476 * Checks for multicast and broadcast destination address. 2477 * Returns zero on failure; non-zero if ok. 2478 * 2479 * Note that the MSS calculation here is based on the info given in 2480 * the IRE. We do not do any calculation based on TCP options. They 2481 * will be handled in tcp_rput_other() and tcp_rput_data() when TCP 2482 * knows which options to use. 2483 * 2484 * Note on how TCP gets its parameters for a connection. 2485 * 2486 * When a tcp_t structure is allocated, it gets all the default parameters. 2487 * In tcp_adapt_ire(), it gets those metric parameters, like rtt, rtt_sd, 2488 * spipe, rpipe, ... from the route metrics. Route metric overrides the 2489 * default. 2490 * 2491 * An incoming SYN with a multicast or broadcast destination address, is dropped 2492 * in 1 of 2 places. 2493 * 2494 * 1. If the packet was received over the wire it is dropped in 2495 * ip_rput_process_broadcast() 2496 * 2497 * 2. If the packet was received through internal IP loopback, i.e. the packet 2498 * was generated and received on the same machine, it is dropped in 2499 * ip_wput_local() 2500 * 2501 * An incoming SYN with a multicast or broadcast source address is always 2502 * dropped in tcp_adapt_ire. The same logic in tcp_adapt_ire also serves to 2503 * reject an attempt to connect to a broadcast or multicast (destination) 2504 * address. 2505 */ 2506 static int 2507 tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp) 2508 { 2509 ire_t *ire; 2510 ire_t *sire = NULL; 2511 iulp_t *ire_uinfo = NULL; 2512 uint32_t mss_max; 2513 uint32_t mss; 2514 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 2515 conn_t *connp = tcp->tcp_connp; 2516 boolean_t ire_cacheable = B_FALSE; 2517 zoneid_t zoneid = connp->conn_zoneid; 2518 int match_flags = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 2519 MATCH_IRE_SECATTR; 2520 ts_label_t *tsl = crgetlabel(CONN_CRED(connp)); 2521 ill_t *ill = NULL; 2522 boolean_t incoming = (ire_mp == NULL); 2523 tcp_stack_t *tcps = tcp->tcp_tcps; 2524 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 2525 2526 ASSERT(connp->conn_ire_cache == NULL); 2527 2528 if (tcp->tcp_ipversion == IPV4_VERSION) { 2529 2530 if (CLASSD(tcp->tcp_connp->conn_rem)) { 2531 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 2532 return (0); 2533 } 2534 /* 2535 * If IP_NEXTHOP is set, then look for an IRE_CACHE 2536 * for the destination with the nexthop as gateway. 2537 * ire_ctable_lookup() is used because this particular 2538 * ire, if it exists, will be marked private. 2539 * If that is not available, use the interface ire 2540 * for the nexthop. 2541 * 2542 * TSol: tcp_update_label will detect label mismatches based 2543 * only on the destination's label, but that would not 2544 * detect label mismatches based on the security attributes 2545 * of routes or next hop gateway. Hence we need to pass the 2546 * label to ire_ftable_lookup below in order to locate the 2547 * right prefix (and/or) ire cache. Similarly we also need 2548 * pass the label to the ire_cache_lookup below to locate 2549 * the right ire that also matches on the label. 2550 */ 2551 if (tcp->tcp_connp->conn_nexthop_set) { 2552 ire = ire_ctable_lookup(tcp->tcp_connp->conn_rem, 2553 tcp->tcp_connp->conn_nexthop_v4, 0, NULL, zoneid, 2554 tsl, MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW, 2555 ipst); 2556 if (ire == NULL) { 2557 ire = ire_ftable_lookup( 2558 tcp->tcp_connp->conn_nexthop_v4, 2559 0, 0, IRE_INTERFACE, NULL, NULL, zoneid, 0, 2560 tsl, match_flags, ipst); 2561 if (ire == NULL) 2562 return (0); 2563 } else { 2564 ire_uinfo = &ire->ire_uinfo; 2565 } 2566 } else { 2567 ire = ire_cache_lookup(tcp->tcp_connp->conn_rem, 2568 zoneid, tsl, ipst); 2569 if (ire != NULL) { 2570 ire_cacheable = B_TRUE; 2571 ire_uinfo = (ire_mp != NULL) ? 2572 &((ire_t *)ire_mp->b_rptr)->ire_uinfo: 2573 &ire->ire_uinfo; 2574 2575 } else { 2576 if (ire_mp == NULL) { 2577 ire = ire_ftable_lookup( 2578 tcp->tcp_connp->conn_rem, 2579 0, 0, 0, NULL, &sire, zoneid, 0, 2580 tsl, (MATCH_IRE_RECURSIVE | 2581 MATCH_IRE_DEFAULT), ipst); 2582 if (ire == NULL) 2583 return (0); 2584 ire_uinfo = (sire != NULL) ? 2585 &sire->ire_uinfo : 2586 &ire->ire_uinfo; 2587 } else { 2588 ire = (ire_t *)ire_mp->b_rptr; 2589 ire_uinfo = 2590 &((ire_t *) 2591 ire_mp->b_rptr)->ire_uinfo; 2592 } 2593 } 2594 } 2595 ASSERT(ire != NULL); 2596 2597 if ((ire->ire_src_addr == INADDR_ANY) || 2598 (ire->ire_type & IRE_BROADCAST)) { 2599 /* 2600 * ire->ire_mp is non null when ire_mp passed in is used 2601 * ire->ire_mp is set in ip_bind_insert_ire[_v6](). 2602 */ 2603 if (ire->ire_mp == NULL) 2604 ire_refrele(ire); 2605 if (sire != NULL) 2606 ire_refrele(sire); 2607 return (0); 2608 } 2609 2610 if (tcp->tcp_ipha->ipha_src == INADDR_ANY) { 2611 ipaddr_t src_addr; 2612 2613 /* 2614 * ip_bind_connected() has stored the correct source 2615 * address in conn_src. 2616 */ 2617 src_addr = tcp->tcp_connp->conn_src; 2618 tcp->tcp_ipha->ipha_src = src_addr; 2619 /* 2620 * Copy of the src addr. in tcp_t is needed 2621 * for the lookup funcs. 2622 */ 2623 IN6_IPADDR_TO_V4MAPPED(src_addr, &tcp->tcp_ip_src_v6); 2624 } 2625 /* 2626 * Set the fragment bit so that IP will tell us if the MTU 2627 * should change. IP tells us the latest setting of 2628 * ip_path_mtu_discovery through ire_frag_flag. 2629 */ 2630 if (ipst->ips_ip_path_mtu_discovery) { 2631 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 2632 htons(IPH_DF); 2633 } 2634 /* 2635 * If ire_uinfo is NULL, this is the IRE_INTERFACE case 2636 * for IP_NEXTHOP. No cache ire has been found for the 2637 * destination and we are working with the nexthop's 2638 * interface ire. Since we need to forward all packets 2639 * to the nexthop first, we "blindly" set tcp_localnet 2640 * to false, eventhough the destination may also be 2641 * onlink. 2642 */ 2643 if (ire_uinfo == NULL) 2644 tcp->tcp_localnet = 0; 2645 else 2646 tcp->tcp_localnet = (ire->ire_gateway_addr == 0); 2647 } else { 2648 /* 2649 * For incoming connection ire_mp = NULL 2650 * For outgoing connection ire_mp != NULL 2651 * Technically we should check conn_incoming_ill 2652 * when ire_mp is NULL and conn_outgoing_ill when 2653 * ire_mp is non-NULL. But this is performance 2654 * critical path and for IPV*_BOUND_IF, outgoing 2655 * and incoming ill are always set to the same value. 2656 */ 2657 ill_t *dst_ill = NULL; 2658 ipif_t *dst_ipif = NULL; 2659 2660 ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill); 2661 2662 if (connp->conn_outgoing_ill != NULL) { 2663 /* Outgoing or incoming path */ 2664 int err; 2665 2666 dst_ill = conn_get_held_ill(connp, 2667 &connp->conn_outgoing_ill, &err); 2668 if (err == ILL_LOOKUP_FAILED || dst_ill == NULL) { 2669 ip1dbg(("tcp_adapt_ire: ill_lookup failed\n")); 2670 return (0); 2671 } 2672 match_flags |= MATCH_IRE_ILL; 2673 dst_ipif = dst_ill->ill_ipif; 2674 } 2675 ire = ire_ctable_lookup_v6(&tcp->tcp_connp->conn_remv6, 2676 0, 0, dst_ipif, zoneid, tsl, match_flags, ipst); 2677 2678 if (ire != NULL) { 2679 ire_cacheable = B_TRUE; 2680 ire_uinfo = (ire_mp != NULL) ? 2681 &((ire_t *)ire_mp->b_rptr)->ire_uinfo: 2682 &ire->ire_uinfo; 2683 } else { 2684 if (ire_mp == NULL) { 2685 ire = ire_ftable_lookup_v6( 2686 &tcp->tcp_connp->conn_remv6, 2687 0, 0, 0, dst_ipif, &sire, zoneid, 2688 0, tsl, match_flags, ipst); 2689 if (ire == NULL) { 2690 if (dst_ill != NULL) 2691 ill_refrele(dst_ill); 2692 return (0); 2693 } 2694 ire_uinfo = (sire != NULL) ? &sire->ire_uinfo : 2695 &ire->ire_uinfo; 2696 } else { 2697 ire = (ire_t *)ire_mp->b_rptr; 2698 ire_uinfo = 2699 &((ire_t *)ire_mp->b_rptr)->ire_uinfo; 2700 } 2701 } 2702 if (dst_ill != NULL) 2703 ill_refrele(dst_ill); 2704 2705 ASSERT(ire != NULL); 2706 ASSERT(ire_uinfo != NULL); 2707 2708 if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6) || 2709 IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) { 2710 /* 2711 * ire->ire_mp is non null when ire_mp passed in is used 2712 * ire->ire_mp is set in ip_bind_insert_ire[_v6](). 2713 */ 2714 if (ire->ire_mp == NULL) 2715 ire_refrele(ire); 2716 if (sire != NULL) 2717 ire_refrele(sire); 2718 return (0); 2719 } 2720 2721 if (IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) { 2722 in6_addr_t src_addr; 2723 2724 /* 2725 * ip_bind_connected_v6() has stored the correct source 2726 * address per IPv6 addr. selection policy in 2727 * conn_src_v6. 2728 */ 2729 src_addr = tcp->tcp_connp->conn_srcv6; 2730 2731 tcp->tcp_ip6h->ip6_src = src_addr; 2732 /* 2733 * Copy of the src addr. in tcp_t is needed 2734 * for the lookup funcs. 2735 */ 2736 tcp->tcp_ip_src_v6 = src_addr; 2737 ASSERT(IN6_ARE_ADDR_EQUAL(&tcp->tcp_ip6h->ip6_src, 2738 &connp->conn_srcv6)); 2739 } 2740 tcp->tcp_localnet = 2741 IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6); 2742 } 2743 2744 /* 2745 * This allows applications to fail quickly when connections are made 2746 * to dead hosts. Hosts can be labeled dead by adding a reject route 2747 * with both the RTF_REJECT and RTF_PRIVATE flags set. 2748 */ 2749 if ((ire->ire_flags & RTF_REJECT) && 2750 (ire->ire_flags & RTF_PRIVATE)) 2751 goto error; 2752 2753 /* 2754 * Make use of the cached rtt and rtt_sd values to calculate the 2755 * initial RTO. Note that they are already initialized in 2756 * tcp_init_values(). 2757 * If ire_uinfo is NULL, i.e., we do not have a cache ire for 2758 * IP_NEXTHOP, but instead are using the interface ire for the 2759 * nexthop, then we do not use the ire_uinfo from that ire to 2760 * do any initializations. 2761 */ 2762 if (ire_uinfo != NULL) { 2763 if (ire_uinfo->iulp_rtt != 0) { 2764 clock_t rto; 2765 2766 tcp->tcp_rtt_sa = ire_uinfo->iulp_rtt; 2767 tcp->tcp_rtt_sd = ire_uinfo->iulp_rtt_sd; 2768 rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 2769 tcps->tcps_rexmit_interval_extra + 2770 (tcp->tcp_rtt_sa >> 5); 2771 2772 if (rto > tcps->tcps_rexmit_interval_max) { 2773 tcp->tcp_rto = tcps->tcps_rexmit_interval_max; 2774 } else if (rto < tcps->tcps_rexmit_interval_min) { 2775 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 2776 } else { 2777 tcp->tcp_rto = rto; 2778 } 2779 } 2780 if (ire_uinfo->iulp_ssthresh != 0) 2781 tcp->tcp_cwnd_ssthresh = ire_uinfo->iulp_ssthresh; 2782 else 2783 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 2784 if (ire_uinfo->iulp_spipe > 0) { 2785 tcp->tcp_xmit_hiwater = MIN(ire_uinfo->iulp_spipe, 2786 tcps->tcps_max_buf); 2787 if (tcps->tcps_snd_lowat_fraction != 0) 2788 tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater / 2789 tcps->tcps_snd_lowat_fraction; 2790 (void) tcp_maxpsz_set(tcp, B_TRUE); 2791 } 2792 /* 2793 * Note that up till now, acceptor always inherits receive 2794 * window from the listener. But if there is a metrics 2795 * associated with a host, we should use that instead of 2796 * inheriting it from listener. Thus we need to pass this 2797 * info back to the caller. 2798 */ 2799 if (ire_uinfo->iulp_rpipe > 0) { 2800 tcp->tcp_rwnd = MIN(ire_uinfo->iulp_rpipe, 2801 tcps->tcps_max_buf); 2802 } 2803 2804 if (ire_uinfo->iulp_rtomax > 0) { 2805 tcp->tcp_second_timer_threshold = 2806 ire_uinfo->iulp_rtomax; 2807 } 2808 2809 /* 2810 * Use the metric option settings, iulp_tstamp_ok and 2811 * iulp_wscale_ok, only for active open. What this means 2812 * is that if the other side uses timestamp or window 2813 * scale option, TCP will also use those options. That 2814 * is for passive open. If the application sets a 2815 * large window, window scale is enabled regardless of 2816 * the value in iulp_wscale_ok. This is the behavior 2817 * since 2.6. So we keep it. 2818 * The only case left in passive open processing is the 2819 * check for SACK. 2820 * For ECN, it should probably be like SACK. But the 2821 * current value is binary, so we treat it like the other 2822 * cases. The metric only controls active open.For passive 2823 * open, the ndd param, tcp_ecn_permitted, controls the 2824 * behavior. 2825 */ 2826 if (!tcp_detached) { 2827 /* 2828 * The if check means that the following can only 2829 * be turned on by the metrics only IRE, but not off. 2830 */ 2831 if (ire_uinfo->iulp_tstamp_ok) 2832 tcp->tcp_snd_ts_ok = B_TRUE; 2833 if (ire_uinfo->iulp_wscale_ok) 2834 tcp->tcp_snd_ws_ok = B_TRUE; 2835 if (ire_uinfo->iulp_sack == 2) 2836 tcp->tcp_snd_sack_ok = B_TRUE; 2837 if (ire_uinfo->iulp_ecn_ok) 2838 tcp->tcp_ecn_ok = B_TRUE; 2839 } else { 2840 /* 2841 * Passive open. 2842 * 2843 * As above, the if check means that SACK can only be 2844 * turned on by the metric only IRE. 2845 */ 2846 if (ire_uinfo->iulp_sack > 0) { 2847 tcp->tcp_snd_sack_ok = B_TRUE; 2848 } 2849 } 2850 } 2851 2852 2853 /* 2854 * XXX: Note that currently, ire_max_frag can be as small as 68 2855 * because of PMTUd. So tcp_mss may go to negative if combined 2856 * length of all those options exceeds 28 bytes. But because 2857 * of the tcp_mss_min check below, we may not have a problem if 2858 * tcp_mss_min is of a reasonable value. The default is 1 so 2859 * the negative problem still exists. And the check defeats PMTUd. 2860 * In fact, if PMTUd finds that the MSS should be smaller than 2861 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min 2862 * value. 2863 * 2864 * We do not deal with that now. All those problems related to 2865 * PMTUd will be fixed later. 2866 */ 2867 ASSERT(ire->ire_max_frag != 0); 2868 mss = tcp->tcp_if_mtu = ire->ire_max_frag; 2869 if (tcp->tcp_ipp_fields & IPPF_USE_MIN_MTU) { 2870 if (tcp->tcp_ipp_use_min_mtu == IPV6_USE_MIN_MTU_NEVER) { 2871 mss = MIN(mss, IPV6_MIN_MTU); 2872 } 2873 } 2874 2875 /* Sanity check for MSS value. */ 2876 if (tcp->tcp_ipversion == IPV4_VERSION) 2877 mss_max = tcps->tcps_mss_max_ipv4; 2878 else 2879 mss_max = tcps->tcps_mss_max_ipv6; 2880 2881 if (tcp->tcp_ipversion == IPV6_VERSION && 2882 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 2883 /* 2884 * After receiving an ICMPv6 "packet too big" message with a 2885 * MTU < 1280, and for multirouted IPv6 packets, the IP layer 2886 * will insert a 8-byte fragment header in every packet; we 2887 * reduce the MSS by that amount here. 2888 */ 2889 mss -= sizeof (ip6_frag_t); 2890 } 2891 2892 if (tcp->tcp_ipsec_overhead == 0) 2893 tcp->tcp_ipsec_overhead = conn_ipsec_length(connp); 2894 2895 mss -= tcp->tcp_ipsec_overhead; 2896 2897 if (mss < tcps->tcps_mss_min) 2898 mss = tcps->tcps_mss_min; 2899 if (mss > mss_max) 2900 mss = mss_max; 2901 2902 /* Note that this is the maximum MSS, excluding all options. */ 2903 tcp->tcp_mss = mss; 2904 2905 /* 2906 * Initialize the ISS here now that we have the full connection ID. 2907 * The RFC 1948 method of initial sequence number generation requires 2908 * knowledge of the full connection ID before setting the ISS. 2909 */ 2910 2911 tcp_iss_init(tcp); 2912 2913 if (ire->ire_type & (IRE_LOOPBACK | IRE_LOCAL)) 2914 tcp->tcp_loopback = B_TRUE; 2915 2916 if (sire != NULL) 2917 IRE_REFRELE(sire); 2918 2919 /* 2920 * If we got an IRE_CACHE and an ILL, go through their properties; 2921 * otherwise, this is deferred until later when we have an IRE_CACHE. 2922 */ 2923 if (tcp->tcp_loopback || 2924 (ire_cacheable && (ill = ire_to_ill(ire)) != NULL)) { 2925 /* 2926 * For incoming, see if this tcp may be MDT-capable. For 2927 * outgoing, this process has been taken care of through 2928 * tcp_rput_other. 2929 */ 2930 tcp_ire_ill_check(tcp, ire, ill, incoming); 2931 tcp->tcp_ire_ill_check_done = B_TRUE; 2932 } 2933 2934 mutex_enter(&connp->conn_lock); 2935 /* 2936 * Make sure that conn is not marked incipient 2937 * for incoming connections. A blind 2938 * removal of incipient flag is cheaper than 2939 * check and removal. 2940 */ 2941 connp->conn_state_flags &= ~CONN_INCIPIENT; 2942 2943 /* 2944 * Must not cache forwarding table routes 2945 * or recache an IRE after the conn_t has 2946 * had conn_ire_cache cleared and is flagged 2947 * unusable, (see the CONN_CACHE_IRE() macro). 2948 */ 2949 if (ire_cacheable && CONN_CACHE_IRE(connp)) { 2950 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 2951 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 2952 connp->conn_ire_cache = ire; 2953 IRE_UNTRACE_REF(ire); 2954 rw_exit(&ire->ire_bucket->irb_lock); 2955 mutex_exit(&connp->conn_lock); 2956 return (1); 2957 } 2958 rw_exit(&ire->ire_bucket->irb_lock); 2959 } 2960 mutex_exit(&connp->conn_lock); 2961 2962 if (ire->ire_mp == NULL) 2963 ire_refrele(ire); 2964 return (1); 2965 2966 error: 2967 if (ire->ire_mp == NULL) 2968 ire_refrele(ire); 2969 if (sire != NULL) 2970 ire_refrele(sire); 2971 return (0); 2972 } 2973 2974 static void 2975 tcp_tpi_bind(tcp_t *tcp, mblk_t *mp) 2976 { 2977 int error; 2978 conn_t *connp = tcp->tcp_connp; 2979 struct sockaddr *sa; 2980 mblk_t *mp1; 2981 struct T_bind_req *tbr; 2982 int backlog; 2983 socklen_t len; 2984 sin_t *sin; 2985 sin6_t *sin6; 2986 cred_t *cr; 2987 2988 /* 2989 * All Solaris components should pass a db_credp 2990 * for this TPI message, hence we ASSERT. 2991 * But in case there is some other M_PROTO that looks 2992 * like a TPI message sent by some other kernel 2993 * component, we check and return an error. 2994 */ 2995 cr = msg_getcred(mp, NULL); 2996 ASSERT(cr != NULL); 2997 if (cr == NULL) { 2998 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 2999 return; 3000 } 3001 3002 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 3003 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) { 3004 if (tcp->tcp_debug) { 3005 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 3006 "tcp_tpi_bind: bad req, len %u", 3007 (uint_t)(mp->b_wptr - mp->b_rptr)); 3008 } 3009 tcp_err_ack(tcp, mp, TPROTO, 0); 3010 return; 3011 } 3012 /* Make sure the largest address fits */ 3013 mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t) + 1, 1); 3014 if (mp1 == NULL) { 3015 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 3016 return; 3017 } 3018 mp = mp1; 3019 tbr = (struct T_bind_req *)mp->b_rptr; 3020 3021 backlog = tbr->CONIND_number; 3022 len = tbr->ADDR_length; 3023 3024 switch (len) { 3025 case 0: /* request for a generic port */ 3026 tbr->ADDR_offset = sizeof (struct T_bind_req); 3027 if (tcp->tcp_family == AF_INET) { 3028 tbr->ADDR_length = sizeof (sin_t); 3029 sin = (sin_t *)&tbr[1]; 3030 *sin = sin_null; 3031 sin->sin_family = AF_INET; 3032 sa = (struct sockaddr *)sin; 3033 len = sizeof (sin_t); 3034 mp->b_wptr = (uchar_t *)&sin[1]; 3035 } else { 3036 ASSERT(tcp->tcp_family == AF_INET6); 3037 tbr->ADDR_length = sizeof (sin6_t); 3038 sin6 = (sin6_t *)&tbr[1]; 3039 *sin6 = sin6_null; 3040 sin6->sin6_family = AF_INET6; 3041 sa = (struct sockaddr *)sin6; 3042 len = sizeof (sin6_t); 3043 mp->b_wptr = (uchar_t *)&sin6[1]; 3044 } 3045 break; 3046 3047 case sizeof (sin_t): /* Complete IPv4 address */ 3048 sa = (struct sockaddr *)mi_offset_param(mp, tbr->ADDR_offset, 3049 sizeof (sin_t)); 3050 break; 3051 3052 case sizeof (sin6_t): /* Complete IPv6 address */ 3053 sa = (struct sockaddr *)mi_offset_param(mp, 3054 tbr->ADDR_offset, sizeof (sin6_t)); 3055 break; 3056 3057 default: 3058 if (tcp->tcp_debug) { 3059 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 3060 "tcp_tpi_bind: bad address length, %d", 3061 tbr->ADDR_length); 3062 } 3063 tcp_err_ack(tcp, mp, TBADADDR, 0); 3064 return; 3065 } 3066 3067 if (backlog > 0) { 3068 error = tcp_do_listen(connp, sa, len, backlog, DB_CRED(mp), 3069 tbr->PRIM_type != O_T_BIND_REQ); 3070 } else { 3071 error = tcp_do_bind(connp, sa, len, DB_CRED(mp), 3072 tbr->PRIM_type != O_T_BIND_REQ); 3073 } 3074 done: 3075 if (error > 0) { 3076 tcp_err_ack(tcp, mp, TSYSERR, error); 3077 } else if (error < 0) { 3078 tcp_err_ack(tcp, mp, -error, 0); 3079 } else { 3080 /* 3081 * Update port information as sockfs/tpi needs it for checking 3082 */ 3083 if (tcp->tcp_family == AF_INET) { 3084 sin = (sin_t *)sa; 3085 sin->sin_port = tcp->tcp_lport; 3086 } else { 3087 sin6 = (sin6_t *)sa; 3088 sin6->sin6_port = tcp->tcp_lport; 3089 } 3090 mp->b_datap->db_type = M_PCPROTO; 3091 tbr->PRIM_type = T_BIND_ACK; 3092 putnext(tcp->tcp_rq, mp); 3093 } 3094 } 3095 3096 /* 3097 * If the "bind_to_req_port_only" parameter is set, if the requested port 3098 * number is available, return it, If not return 0 3099 * 3100 * If "bind_to_req_port_only" parameter is not set and 3101 * If the requested port number is available, return it. If not, return 3102 * the first anonymous port we happen across. If no anonymous ports are 3103 * available, return 0. addr is the requested local address, if any. 3104 * 3105 * In either case, when succeeding update the tcp_t to record the port number 3106 * and insert it in the bind hash table. 3107 * 3108 * Note that TCP over IPv4 and IPv6 sockets can use the same port number 3109 * without setting SO_REUSEADDR. This is needed so that they 3110 * can be viewed as two independent transport protocols. 3111 */ 3112 static in_port_t 3113 tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, 3114 int reuseaddr, boolean_t quick_connect, 3115 boolean_t bind_to_req_port_only, boolean_t user_specified) 3116 { 3117 /* number of times we have run around the loop */ 3118 int count = 0; 3119 /* maximum number of times to run around the loop */ 3120 int loopmax; 3121 conn_t *connp = tcp->tcp_connp; 3122 tcp_stack_t *tcps = tcp->tcp_tcps; 3123 3124 /* 3125 * Lookup for free addresses is done in a loop and "loopmax" 3126 * influences how long we spin in the loop 3127 */ 3128 if (bind_to_req_port_only) { 3129 /* 3130 * If the requested port is busy, don't bother to look 3131 * for a new one. Setting loop maximum count to 1 has 3132 * that effect. 3133 */ 3134 loopmax = 1; 3135 } else { 3136 /* 3137 * If the requested port is busy, look for a free one 3138 * in the anonymous port range. 3139 * Set loopmax appropriately so that one does not look 3140 * forever in the case all of the anonymous ports are in use. 3141 */ 3142 if (tcp->tcp_anon_priv_bind) { 3143 /* 3144 * loopmax = 3145 * (IPPORT_RESERVED-1) - tcp_min_anonpriv_port + 1 3146 */ 3147 loopmax = IPPORT_RESERVED - 3148 tcps->tcps_min_anonpriv_port; 3149 } else { 3150 loopmax = (tcps->tcps_largest_anon_port - 3151 tcps->tcps_smallest_anon_port + 1); 3152 } 3153 } 3154 do { 3155 uint16_t lport; 3156 tf_t *tbf; 3157 tcp_t *ltcp; 3158 conn_t *lconnp; 3159 3160 lport = htons(port); 3161 3162 /* 3163 * Ensure that the tcp_t is not currently in the bind hash. 3164 * Hold the lock on the hash bucket to ensure that 3165 * the duplicate check plus the insertion is an atomic 3166 * operation. 3167 * 3168 * This function does an inline lookup on the bind hash list 3169 * Make sure that we access only members of tcp_t 3170 * and that we don't look at tcp_tcp, since we are not 3171 * doing a CONN_INC_REF. 3172 */ 3173 tcp_bind_hash_remove(tcp); 3174 tbf = &tcps->tcps_bind_fanout[TCP_BIND_HASH(lport)]; 3175 mutex_enter(&tbf->tf_lock); 3176 for (ltcp = tbf->tf_tcp; ltcp != NULL; 3177 ltcp = ltcp->tcp_bind_hash) { 3178 if (lport == ltcp->tcp_lport) 3179 break; 3180 } 3181 3182 for (; ltcp != NULL; ltcp = ltcp->tcp_bind_hash_port) { 3183 boolean_t not_socket; 3184 boolean_t exclbind; 3185 3186 lconnp = ltcp->tcp_connp; 3187 3188 /* 3189 * On a labeled system, we must treat bindings to ports 3190 * on shared IP addresses by sockets with MAC exemption 3191 * privilege as being in all zones, as there's 3192 * otherwise no way to identify the right receiver. 3193 */ 3194 if (!IPCL_BIND_ZONE_MATCH(ltcp->tcp_connp, connp)) 3195 continue; 3196 3197 /* 3198 * If TCP_EXCLBIND is set for either the bound or 3199 * binding endpoint, the semantics of bind 3200 * is changed according to the following. 3201 * 3202 * spec = specified address (v4 or v6) 3203 * unspec = unspecified address (v4 or v6) 3204 * A = specified addresses are different for endpoints 3205 * 3206 * bound bind to allowed 3207 * ------------------------------------- 3208 * unspec unspec no 3209 * unspec spec no 3210 * spec unspec no 3211 * spec spec yes if A 3212 * 3213 * For labeled systems, SO_MAC_EXEMPT behaves the same 3214 * as TCP_EXCLBIND, except that zoneid is ignored. 3215 * 3216 * Note: 3217 * 3218 * 1. Because of TLI semantics, an endpoint can go 3219 * back from, say TCP_ESTABLISHED to TCPS_LISTEN or 3220 * TCPS_BOUND, depending on whether it is originally 3221 * a listener or not. That is why we need to check 3222 * for states greater than or equal to TCPS_BOUND 3223 * here. 3224 * 3225 * 2. Ideally, we should only check for state equals 3226 * to TCPS_LISTEN. And the following check should be 3227 * added. 3228 * 3229 * if (ltcp->tcp_state == TCPS_LISTEN || 3230 * !reuseaddr || !ltcp->tcp_reuseaddr) { 3231 * ... 3232 * } 3233 * 3234 * The semantics will be changed to this. If the 3235 * endpoint on the list is in state not equal to 3236 * TCPS_LISTEN and both endpoints have SO_REUSEADDR 3237 * set, let the bind succeed. 3238 * 3239 * Because of (1), we cannot do that for TLI 3240 * endpoints. But we can do that for socket endpoints. 3241 * If in future, we can change this going back 3242 * semantics, we can use the above check for TLI also. 3243 */ 3244 not_socket = !(TCP_IS_SOCKET(ltcp) && 3245 TCP_IS_SOCKET(tcp)); 3246 exclbind = ltcp->tcp_exclbind || tcp->tcp_exclbind; 3247 3248 if ((lconnp->conn_mac_mode != CONN_MAC_DEFAULT) || 3249 (connp->conn_mac_mode != CONN_MAC_DEFAULT) || 3250 (exclbind && (not_socket || 3251 ltcp->tcp_state <= TCPS_ESTABLISHED))) { 3252 if (V6_OR_V4_INADDR_ANY( 3253 ltcp->tcp_bound_source_v6) || 3254 V6_OR_V4_INADDR_ANY(*laddr) || 3255 IN6_ARE_ADDR_EQUAL(laddr, 3256 <cp->tcp_bound_source_v6)) { 3257 break; 3258 } 3259 continue; 3260 } 3261 3262 /* 3263 * Check ipversion to allow IPv4 and IPv6 sockets to 3264 * have disjoint port number spaces, if *_EXCLBIND 3265 * is not set and only if the application binds to a 3266 * specific port. We use the same autoassigned port 3267 * number space for IPv4 and IPv6 sockets. 3268 */ 3269 if (tcp->tcp_ipversion != ltcp->tcp_ipversion && 3270 bind_to_req_port_only) 3271 continue; 3272 3273 /* 3274 * Ideally, we should make sure that the source 3275 * address, remote address, and remote port in the 3276 * four tuple for this tcp-connection is unique. 3277 * However, trying to find out the local source 3278 * address would require too much code duplication 3279 * with IP, since IP needs needs to have that code 3280 * to support userland TCP implementations. 3281 */ 3282 if (quick_connect && 3283 (ltcp->tcp_state > TCPS_LISTEN) && 3284 ((tcp->tcp_fport != ltcp->tcp_fport) || 3285 !IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6, 3286 <cp->tcp_remote_v6))) 3287 continue; 3288 3289 if (!reuseaddr) { 3290 /* 3291 * No socket option SO_REUSEADDR. 3292 * If existing port is bound to 3293 * a non-wildcard IP address 3294 * and the requesting stream is 3295 * bound to a distinct 3296 * different IP addresses 3297 * (non-wildcard, also), keep 3298 * going. 3299 */ 3300 if (!V6_OR_V4_INADDR_ANY(*laddr) && 3301 !V6_OR_V4_INADDR_ANY( 3302 ltcp->tcp_bound_source_v6) && 3303 !IN6_ARE_ADDR_EQUAL(laddr, 3304 <cp->tcp_bound_source_v6)) 3305 continue; 3306 if (ltcp->tcp_state >= TCPS_BOUND) { 3307 /* 3308 * This port is being used and 3309 * its state is >= TCPS_BOUND, 3310 * so we can't bind to it. 3311 */ 3312 break; 3313 } 3314 } else { 3315 /* 3316 * socket option SO_REUSEADDR is set on the 3317 * binding tcp_t. 3318 * 3319 * If two streams are bound to 3320 * same IP address or both addr 3321 * and bound source are wildcards 3322 * (INADDR_ANY), we want to stop 3323 * searching. 3324 * We have found a match of IP source 3325 * address and source port, which is 3326 * refused regardless of the 3327 * SO_REUSEADDR setting, so we break. 3328 */ 3329 if (IN6_ARE_ADDR_EQUAL(laddr, 3330 <cp->tcp_bound_source_v6) && 3331 (ltcp->tcp_state == TCPS_LISTEN || 3332 ltcp->tcp_state == TCPS_BOUND)) 3333 break; 3334 } 3335 } 3336 if (ltcp != NULL) { 3337 /* The port number is busy */ 3338 mutex_exit(&tbf->tf_lock); 3339 } else { 3340 /* 3341 * This port is ours. Insert in fanout and mark as 3342 * bound to prevent others from getting the port 3343 * number. 3344 */ 3345 tcp->tcp_state = TCPS_BOUND; 3346 tcp->tcp_lport = htons(port); 3347 *(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport; 3348 3349 ASSERT(&tcps->tcps_bind_fanout[TCP_BIND_HASH( 3350 tcp->tcp_lport)] == tbf); 3351 tcp_bind_hash_insert(tbf, tcp, 1); 3352 3353 mutex_exit(&tbf->tf_lock); 3354 3355 /* 3356 * We don't want tcp_next_port_to_try to "inherit" 3357 * a port number supplied by the user in a bind. 3358 */ 3359 if (user_specified) 3360 return (port); 3361 3362 /* 3363 * This is the only place where tcp_next_port_to_try 3364 * is updated. After the update, it may or may not 3365 * be in the valid range. 3366 */ 3367 if (!tcp->tcp_anon_priv_bind) 3368 tcps->tcps_next_port_to_try = port + 1; 3369 return (port); 3370 } 3371 3372 if (tcp->tcp_anon_priv_bind) { 3373 port = tcp_get_next_priv_port(tcp); 3374 } else { 3375 if (count == 0 && user_specified) { 3376 /* 3377 * We may have to return an anonymous port. So 3378 * get one to start with. 3379 */ 3380 port = 3381 tcp_update_next_port( 3382 tcps->tcps_next_port_to_try, 3383 tcp, B_TRUE); 3384 user_specified = B_FALSE; 3385 } else { 3386 port = tcp_update_next_port(port + 1, tcp, 3387 B_FALSE); 3388 } 3389 } 3390 if (port == 0) 3391 break; 3392 3393 /* 3394 * Don't let this loop run forever in the case where 3395 * all of the anonymous ports are in use. 3396 */ 3397 } while (++count < loopmax); 3398 return (0); 3399 } 3400 3401 /* 3402 * tcp_clean_death / tcp_close_detached must not be called more than once 3403 * on a tcp. Thus every function that potentially calls tcp_clean_death 3404 * must check for the tcp state before calling tcp_clean_death. 3405 * Eg. tcp_input, tcp_rput_data, tcp_eager_kill, tcp_clean_death_wrapper, 3406 * tcp_timer_handler, all check for the tcp state. 3407 */ 3408 /* ARGSUSED */ 3409 void 3410 tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2) 3411 { 3412 tcp_t *tcp = ((conn_t *)arg)->conn_tcp; 3413 3414 freemsg(mp); 3415 if (tcp->tcp_state > TCPS_BOUND) 3416 (void) tcp_clean_death(((conn_t *)arg)->conn_tcp, 3417 ETIMEDOUT, 5); 3418 } 3419 3420 /* 3421 * We are dying for some reason. Try to do it gracefully. (May be called 3422 * as writer.) 3423 * 3424 * Return -1 if the structure was not cleaned up (if the cleanup had to be 3425 * done by a service procedure). 3426 * TBD - Should the return value distinguish between the tcp_t being 3427 * freed and it being reinitialized? 3428 */ 3429 static int 3430 tcp_clean_death(tcp_t *tcp, int err, uint8_t tag) 3431 { 3432 mblk_t *mp; 3433 queue_t *q; 3434 conn_t *connp = tcp->tcp_connp; 3435 tcp_stack_t *tcps = tcp->tcp_tcps; 3436 3437 TCP_CLD_STAT(tag); 3438 3439 #if TCP_TAG_CLEAN_DEATH 3440 tcp->tcp_cleandeathtag = tag; 3441 #endif 3442 3443 if (tcp->tcp_fused) 3444 tcp_unfuse(tcp); 3445 3446 if (tcp->tcp_linger_tid != 0 && 3447 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 3448 tcp_stop_lingering(tcp); 3449 } 3450 3451 ASSERT(tcp != NULL); 3452 ASSERT((tcp->tcp_family == AF_INET && 3453 tcp->tcp_ipversion == IPV4_VERSION) || 3454 (tcp->tcp_family == AF_INET6 && 3455 (tcp->tcp_ipversion == IPV4_VERSION || 3456 tcp->tcp_ipversion == IPV6_VERSION))); 3457 3458 if (TCP_IS_DETACHED(tcp)) { 3459 if (tcp->tcp_hard_binding) { 3460 /* 3461 * Its an eager that we are dealing with. We close the 3462 * eager but in case a conn_ind has already gone to the 3463 * listener, let tcp_accept_finish() send a discon_ind 3464 * to the listener and drop the last reference. If the 3465 * listener doesn't even know about the eager i.e. the 3466 * conn_ind hasn't gone up, blow away the eager and drop 3467 * the last reference as well. If the conn_ind has gone 3468 * up, state should be BOUND. tcp_accept_finish 3469 * will figure out that the connection has received a 3470 * RST and will send a DISCON_IND to the application. 3471 */ 3472 tcp_closei_local(tcp); 3473 if (!tcp->tcp_tconnind_started) { 3474 CONN_DEC_REF(connp); 3475 } else { 3476 tcp->tcp_state = TCPS_BOUND; 3477 } 3478 } else { 3479 tcp_close_detached(tcp); 3480 } 3481 return (0); 3482 } 3483 3484 TCP_STAT(tcps, tcp_clean_death_nondetached); 3485 3486 q = tcp->tcp_rq; 3487 3488 /* Trash all inbound data */ 3489 if (!IPCL_IS_NONSTR(connp)) { 3490 ASSERT(q != NULL); 3491 flushq(q, FLUSHALL); 3492 } 3493 3494 /* 3495 * If we are at least part way open and there is error 3496 * (err==0 implies no error) 3497 * notify our client by a T_DISCON_IND. 3498 */ 3499 if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) { 3500 if (tcp->tcp_state >= TCPS_ESTABLISHED && 3501 !TCP_IS_SOCKET(tcp)) { 3502 /* 3503 * Send M_FLUSH according to TPI. Because sockets will 3504 * (and must) ignore FLUSHR we do that only for TPI 3505 * endpoints and sockets in STREAMS mode. 3506 */ 3507 (void) putnextctl1(q, M_FLUSH, FLUSHR); 3508 } 3509 if (tcp->tcp_debug) { 3510 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 3511 "tcp_clean_death: discon err %d", err); 3512 } 3513 if (IPCL_IS_NONSTR(connp)) { 3514 /* Direct socket, use upcall */ 3515 (*connp->conn_upcalls->su_disconnected)( 3516 connp->conn_upper_handle, tcp->tcp_connid, err); 3517 } else { 3518 mp = mi_tpi_discon_ind(NULL, err, 0); 3519 if (mp != NULL) { 3520 putnext(q, mp); 3521 } else { 3522 if (tcp->tcp_debug) { 3523 (void) strlog(TCP_MOD_ID, 0, 1, 3524 SL_ERROR|SL_TRACE, 3525 "tcp_clean_death, sending M_ERROR"); 3526 } 3527 (void) putnextctl1(q, M_ERROR, EPROTO); 3528 } 3529 } 3530 if (tcp->tcp_state <= TCPS_SYN_RCVD) { 3531 /* SYN_SENT or SYN_RCVD */ 3532 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 3533 } else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) { 3534 /* ESTABLISHED or CLOSE_WAIT */ 3535 BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); 3536 } 3537 } 3538 3539 tcp_reinit(tcp); 3540 if (IPCL_IS_NONSTR(connp)) 3541 (void) tcp_do_unbind(connp); 3542 3543 return (-1); 3544 } 3545 3546 /* 3547 * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout 3548 * to expire, stop the wait and finish the close. 3549 */ 3550 static void 3551 tcp_stop_lingering(tcp_t *tcp) 3552 { 3553 clock_t delta = 0; 3554 tcp_stack_t *tcps = tcp->tcp_tcps; 3555 3556 tcp->tcp_linger_tid = 0; 3557 if (tcp->tcp_state > TCPS_LISTEN) { 3558 tcp_acceptor_hash_remove(tcp); 3559 mutex_enter(&tcp->tcp_non_sq_lock); 3560 if (tcp->tcp_flow_stopped) { 3561 tcp_clrqfull(tcp); 3562 } 3563 mutex_exit(&tcp->tcp_non_sq_lock); 3564 3565 if (tcp->tcp_timer_tid != 0) { 3566 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 3567 tcp->tcp_timer_tid = 0; 3568 } 3569 /* 3570 * Need to cancel those timers which will not be used when 3571 * TCP is detached. This has to be done before the tcp_wq 3572 * is set to the global queue. 3573 */ 3574 tcp_timers_stop(tcp); 3575 3576 tcp->tcp_detached = B_TRUE; 3577 ASSERT(tcps->tcps_g_q != NULL); 3578 tcp->tcp_rq = tcps->tcps_g_q; 3579 tcp->tcp_wq = WR(tcps->tcps_g_q); 3580 3581 if (tcp->tcp_state == TCPS_TIME_WAIT) { 3582 tcp_time_wait_append(tcp); 3583 TCP_DBGSTAT(tcps, tcp_detach_time_wait); 3584 goto finish; 3585 } 3586 3587 /* 3588 * If delta is zero the timer event wasn't executed and was 3589 * successfully canceled. In this case we need to restart it 3590 * with the minimal delta possible. 3591 */ 3592 if (delta >= 0) { 3593 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 3594 delta ? delta : 1); 3595 } 3596 } else { 3597 tcp_closei_local(tcp); 3598 CONN_DEC_REF(tcp->tcp_connp); 3599 } 3600 finish: 3601 /* Signal closing thread that it can complete close */ 3602 mutex_enter(&tcp->tcp_closelock); 3603 tcp->tcp_detached = B_TRUE; 3604 ASSERT(tcps->tcps_g_q != NULL); 3605 3606 tcp->tcp_rq = tcps->tcps_g_q; 3607 tcp->tcp_wq = WR(tcps->tcps_g_q); 3608 3609 tcp->tcp_closed = 1; 3610 cv_signal(&tcp->tcp_closecv); 3611 mutex_exit(&tcp->tcp_closelock); 3612 } 3613 3614 /* 3615 * Handle lingering timeouts. This function is called when the SO_LINGER timeout 3616 * expires. 3617 */ 3618 static void 3619 tcp_close_linger_timeout(void *arg) 3620 { 3621 conn_t *connp = (conn_t *)arg; 3622 tcp_t *tcp = connp->conn_tcp; 3623 3624 tcp->tcp_client_errno = ETIMEDOUT; 3625 tcp_stop_lingering(tcp); 3626 } 3627 3628 static void 3629 tcp_close_common(conn_t *connp, int flags) 3630 { 3631 tcp_t *tcp = connp->conn_tcp; 3632 mblk_t *mp = &tcp->tcp_closemp; 3633 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 3634 mblk_t *bp; 3635 3636 ASSERT(connp->conn_ref >= 2); 3637 3638 /* 3639 * Mark the conn as closing. ill_pending_mp_add will not 3640 * add any mp to the pending mp list, after this conn has 3641 * started closing. Same for sq_pending_mp_add 3642 */ 3643 mutex_enter(&connp->conn_lock); 3644 connp->conn_state_flags |= CONN_CLOSING; 3645 if (connp->conn_oper_pending_ill != NULL) 3646 conn_ioctl_cleanup_reqd = B_TRUE; 3647 CONN_INC_REF_LOCKED(connp); 3648 mutex_exit(&connp->conn_lock); 3649 tcp->tcp_closeflags = (uint8_t)flags; 3650 ASSERT(connp->conn_ref >= 3); 3651 3652 /* 3653 * tcp_closemp_used is used below without any protection of a lock 3654 * as we don't expect any one else to use it concurrently at this 3655 * point otherwise it would be a major defect. 3656 */ 3657 3658 if (mp->b_prev == NULL) 3659 tcp->tcp_closemp_used = B_TRUE; 3660 else 3661 cmn_err(CE_PANIC, "tcp_close: concurrent use of tcp_closemp: " 3662 "connp %p tcp %p\n", (void *)connp, (void *)tcp); 3663 3664 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 3665 3666 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_close_output, connp, 3667 tcp_squeue_flag, SQTAG_IP_TCP_CLOSE); 3668 3669 mutex_enter(&tcp->tcp_closelock); 3670 while (!tcp->tcp_closed) { 3671 if (!cv_wait_sig(&tcp->tcp_closecv, &tcp->tcp_closelock)) { 3672 /* 3673 * The cv_wait_sig() was interrupted. We now do the 3674 * following: 3675 * 3676 * 1) If the endpoint was lingering, we allow this 3677 * to be interrupted by cancelling the linger timeout 3678 * and closing normally. 3679 * 3680 * 2) Revert to calling cv_wait() 3681 * 3682 * We revert to using cv_wait() to avoid an 3683 * infinite loop which can occur if the calling 3684 * thread is higher priority than the squeue worker 3685 * thread and is bound to the same cpu. 3686 */ 3687 if (tcp->tcp_linger && tcp->tcp_lingertime > 0) { 3688 mutex_exit(&tcp->tcp_closelock); 3689 /* Entering squeue, bump ref count. */ 3690 CONN_INC_REF(connp); 3691 bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL); 3692 SQUEUE_ENTER_ONE(connp->conn_sqp, bp, 3693 tcp_linger_interrupted, connp, 3694 tcp_squeue_flag, SQTAG_IP_TCP_CLOSE); 3695 mutex_enter(&tcp->tcp_closelock); 3696 } 3697 break; 3698 } 3699 } 3700 while (!tcp->tcp_closed) 3701 cv_wait(&tcp->tcp_closecv, &tcp->tcp_closelock); 3702 mutex_exit(&tcp->tcp_closelock); 3703 3704 /* 3705 * In the case of listener streams that have eagers in the q or q0 3706 * we wait for the eagers to drop their reference to us. tcp_rq and 3707 * tcp_wq of the eagers point to our queues. By waiting for the 3708 * refcnt to drop to 1, we are sure that the eagers have cleaned 3709 * up their queue pointers and also dropped their references to us. 3710 */ 3711 if (tcp->tcp_wait_for_eagers) { 3712 mutex_enter(&connp->conn_lock); 3713 while (connp->conn_ref != 1) { 3714 cv_wait(&connp->conn_cv, &connp->conn_lock); 3715 } 3716 mutex_exit(&connp->conn_lock); 3717 } 3718 /* 3719 * ioctl cleanup. The mp is queued in the 3720 * ill_pending_mp or in the sq_pending_mp. 3721 */ 3722 if (conn_ioctl_cleanup_reqd) 3723 conn_ioctl_cleanup(connp); 3724 3725 tcp->tcp_cpid = -1; 3726 } 3727 3728 static int 3729 tcp_tpi_close(queue_t *q, int flags) 3730 { 3731 conn_t *connp; 3732 3733 ASSERT(WR(q)->q_next == NULL); 3734 3735 if (flags & SO_FALLBACK) { 3736 /* 3737 * stream is being closed while in fallback 3738 * simply free the resources that were allocated 3739 */ 3740 inet_minor_free(WR(q)->q_ptr, (dev_t)(RD(q)->q_ptr)); 3741 qprocsoff(q); 3742 goto done; 3743 } 3744 3745 connp = Q_TO_CONN(q); 3746 /* 3747 * We are being closed as /dev/tcp or /dev/tcp6. 3748 */ 3749 tcp_close_common(connp, flags); 3750 3751 qprocsoff(q); 3752 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 3753 3754 /* 3755 * Drop IP's reference on the conn. This is the last reference 3756 * on the connp if the state was less than established. If the 3757 * connection has gone into timewait state, then we will have 3758 * one ref for the TCP and one more ref (total of two) for the 3759 * classifier connected hash list (a timewait connections stays 3760 * in connected hash till closed). 3761 * 3762 * We can't assert the references because there might be other 3763 * transient reference places because of some walkers or queued 3764 * packets in squeue for the timewait state. 3765 */ 3766 CONN_DEC_REF(connp); 3767 done: 3768 q->q_ptr = WR(q)->q_ptr = NULL; 3769 return (0); 3770 } 3771 3772 static int 3773 tcp_tpi_close_accept(queue_t *q) 3774 { 3775 vmem_t *minor_arena; 3776 dev_t conn_dev; 3777 3778 ASSERT(WR(q)->q_qinfo == &tcp_acceptor_winit); 3779 3780 /* 3781 * We had opened an acceptor STREAM for sockfs which is 3782 * now being closed due to some error. 3783 */ 3784 qprocsoff(q); 3785 3786 minor_arena = (vmem_t *)WR(q)->q_ptr; 3787 conn_dev = (dev_t)RD(q)->q_ptr; 3788 ASSERT(minor_arena != NULL); 3789 ASSERT(conn_dev != 0); 3790 inet_minor_free(minor_arena, conn_dev); 3791 q->q_ptr = WR(q)->q_ptr = NULL; 3792 return (0); 3793 } 3794 3795 /* 3796 * Called by tcp_close() routine via squeue when lingering is 3797 * interrupted by a signal. 3798 */ 3799 3800 /* ARGSUSED */ 3801 static void 3802 tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2) 3803 { 3804 conn_t *connp = (conn_t *)arg; 3805 tcp_t *tcp = connp->conn_tcp; 3806 3807 freeb(mp); 3808 if (tcp->tcp_linger_tid != 0 && 3809 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 3810 tcp_stop_lingering(tcp); 3811 tcp->tcp_client_errno = EINTR; 3812 } 3813 } 3814 3815 /* 3816 * Called by streams close routine via squeues when our client blows off her 3817 * descriptor, we take this to mean: "close the stream state NOW, close the tcp 3818 * connection politely" When SO_LINGER is set (with a non-zero linger time and 3819 * it is not a nonblocking socket) then this routine sleeps until the FIN is 3820 * acked. 3821 * 3822 * NOTE: tcp_close potentially returns error when lingering. 3823 * However, the stream head currently does not pass these errors 3824 * to the application. 4.4BSD only returns EINTR and EWOULDBLOCK 3825 * errors to the application (from tsleep()) and not errors 3826 * like ECONNRESET caused by receiving a reset packet. 3827 */ 3828 3829 /* ARGSUSED */ 3830 static void 3831 tcp_close_output(void *arg, mblk_t *mp, void *arg2) 3832 { 3833 char *msg; 3834 conn_t *connp = (conn_t *)arg; 3835 tcp_t *tcp = connp->conn_tcp; 3836 clock_t delta = 0; 3837 tcp_stack_t *tcps = tcp->tcp_tcps; 3838 3839 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 3840 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 3841 3842 mutex_enter(&tcp->tcp_eager_lock); 3843 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 3844 /* Cleanup for listener */ 3845 tcp_eager_cleanup(tcp, 0); 3846 tcp->tcp_wait_for_eagers = 1; 3847 } 3848 mutex_exit(&tcp->tcp_eager_lock); 3849 3850 connp->conn_mdt_ok = B_FALSE; 3851 tcp->tcp_mdt = B_FALSE; 3852 3853 connp->conn_lso_ok = B_FALSE; 3854 tcp->tcp_lso = B_FALSE; 3855 3856 msg = NULL; 3857 switch (tcp->tcp_state) { 3858 case TCPS_CLOSED: 3859 case TCPS_IDLE: 3860 case TCPS_BOUND: 3861 case TCPS_LISTEN: 3862 break; 3863 case TCPS_SYN_SENT: 3864 msg = "tcp_close, during connect"; 3865 break; 3866 case TCPS_SYN_RCVD: 3867 /* 3868 * Close during the connect 3-way handshake 3869 * but here there may or may not be pending data 3870 * already on queue. Process almost same as in 3871 * the ESTABLISHED state. 3872 */ 3873 /* FALLTHRU */ 3874 default: 3875 if (tcp->tcp_fused) 3876 tcp_unfuse(tcp); 3877 3878 /* 3879 * If SO_LINGER has set a zero linger time, abort the 3880 * connection with a reset. 3881 */ 3882 if (tcp->tcp_linger && tcp->tcp_lingertime == 0) { 3883 msg = "tcp_close, zero lingertime"; 3884 break; 3885 } 3886 3887 ASSERT(tcp->tcp_hard_bound || tcp->tcp_hard_binding); 3888 /* 3889 * Abort connection if there is unread data queued. 3890 */ 3891 if (tcp->tcp_rcv_list || tcp->tcp_reass_head) { 3892 msg = "tcp_close, unread data"; 3893 break; 3894 } 3895 /* 3896 * tcp_hard_bound is now cleared thus all packets go through 3897 * tcp_lookup. This fact is used by tcp_detach below. 3898 * 3899 * We have done a qwait() above which could have possibly 3900 * drained more messages in turn causing transition to a 3901 * different state. Check whether we have to do the rest 3902 * of the processing or not. 3903 */ 3904 if (tcp->tcp_state <= TCPS_LISTEN) 3905 break; 3906 3907 /* 3908 * Transmit the FIN before detaching the tcp_t. 3909 * After tcp_detach returns this queue/perimeter 3910 * no longer owns the tcp_t thus others can modify it. 3911 */ 3912 (void) tcp_xmit_end(tcp); 3913 3914 /* 3915 * If lingering on close then wait until the fin is acked, 3916 * the SO_LINGER time passes, or a reset is sent/received. 3917 */ 3918 if (tcp->tcp_linger && tcp->tcp_lingertime > 0 && 3919 !(tcp->tcp_fin_acked) && 3920 tcp->tcp_state >= TCPS_ESTABLISHED) { 3921 if (tcp->tcp_closeflags & (FNDELAY|FNONBLOCK)) { 3922 tcp->tcp_client_errno = EWOULDBLOCK; 3923 } else if (tcp->tcp_client_errno == 0) { 3924 3925 ASSERT(tcp->tcp_linger_tid == 0); 3926 3927 tcp->tcp_linger_tid = TCP_TIMER(tcp, 3928 tcp_close_linger_timeout, 3929 tcp->tcp_lingertime * hz); 3930 3931 /* tcp_close_linger_timeout will finish close */ 3932 if (tcp->tcp_linger_tid == 0) 3933 tcp->tcp_client_errno = ENOSR; 3934 else 3935 return; 3936 } 3937 3938 /* 3939 * Check if we need to detach or just close 3940 * the instance. 3941 */ 3942 if (tcp->tcp_state <= TCPS_LISTEN) 3943 break; 3944 } 3945 3946 /* 3947 * Make sure that no other thread will access the tcp_rq of 3948 * this instance (through lookups etc.) as tcp_rq will go 3949 * away shortly. 3950 */ 3951 tcp_acceptor_hash_remove(tcp); 3952 3953 mutex_enter(&tcp->tcp_non_sq_lock); 3954 if (tcp->tcp_flow_stopped) { 3955 tcp_clrqfull(tcp); 3956 } 3957 mutex_exit(&tcp->tcp_non_sq_lock); 3958 3959 if (tcp->tcp_timer_tid != 0) { 3960 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 3961 tcp->tcp_timer_tid = 0; 3962 } 3963 /* 3964 * Need to cancel those timers which will not be used when 3965 * TCP is detached. This has to be done before the tcp_wq 3966 * is set to the global queue. 3967 */ 3968 tcp_timers_stop(tcp); 3969 3970 tcp->tcp_detached = B_TRUE; 3971 if (tcp->tcp_state == TCPS_TIME_WAIT) { 3972 tcp_time_wait_append(tcp); 3973 TCP_DBGSTAT(tcps, tcp_detach_time_wait); 3974 ASSERT(connp->conn_ref >= 3); 3975 goto finish; 3976 } 3977 3978 /* 3979 * If delta is zero the timer event wasn't executed and was 3980 * successfully canceled. In this case we need to restart it 3981 * with the minimal delta possible. 3982 */ 3983 if (delta >= 0) 3984 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 3985 delta ? delta : 1); 3986 3987 ASSERT(connp->conn_ref >= 3); 3988 goto finish; 3989 } 3990 3991 /* Detach did not complete. Still need to remove q from stream. */ 3992 if (msg) { 3993 if (tcp->tcp_state == TCPS_ESTABLISHED || 3994 tcp->tcp_state == TCPS_CLOSE_WAIT) 3995 BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); 3996 if (tcp->tcp_state == TCPS_SYN_SENT || 3997 tcp->tcp_state == TCPS_SYN_RCVD) 3998 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 3999 tcp_xmit_ctl(msg, tcp, tcp->tcp_snxt, 0, TH_RST); 4000 } 4001 4002 tcp_closei_local(tcp); 4003 CONN_DEC_REF(connp); 4004 ASSERT(connp->conn_ref >= 2); 4005 4006 finish: 4007 /* 4008 * Although packets are always processed on the correct 4009 * tcp's perimeter and access is serialized via squeue's, 4010 * IP still needs a queue when sending packets in time_wait 4011 * state so use WR(tcps_g_q) till ip_output() can be 4012 * changed to deal with just connp. For read side, we 4013 * could have set tcp_rq to NULL but there are some cases 4014 * in tcp_rput_data() from early days of this code which 4015 * do a putnext without checking if tcp is closed. Those 4016 * need to be identified before both tcp_rq and tcp_wq 4017 * can be set to NULL and tcps_g_q can disappear forever. 4018 */ 4019 mutex_enter(&tcp->tcp_closelock); 4020 /* 4021 * Don't change the queues in the case of a listener that has 4022 * eagers in its q or q0. It could surprise the eagers. 4023 * Instead wait for the eagers outside the squeue. 4024 */ 4025 if (!tcp->tcp_wait_for_eagers) { 4026 tcp->tcp_detached = B_TRUE; 4027 /* 4028 * When default queue is closing we set tcps_g_q to NULL 4029 * after the close is done. 4030 */ 4031 ASSERT(tcps->tcps_g_q != NULL); 4032 tcp->tcp_rq = tcps->tcps_g_q; 4033 tcp->tcp_wq = WR(tcps->tcps_g_q); 4034 } 4035 4036 /* Signal tcp_close() to finish closing. */ 4037 tcp->tcp_closed = 1; 4038 cv_signal(&tcp->tcp_closecv); 4039 mutex_exit(&tcp->tcp_closelock); 4040 } 4041 4042 /* 4043 * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp. 4044 * Some stream heads get upset if they see these later on as anything but NULL. 4045 */ 4046 static void 4047 tcp_close_mpp(mblk_t **mpp) 4048 { 4049 mblk_t *mp; 4050 4051 if ((mp = *mpp) != NULL) { 4052 do { 4053 mp->b_next = NULL; 4054 mp->b_prev = NULL; 4055 } while ((mp = mp->b_cont) != NULL); 4056 4057 mp = *mpp; 4058 *mpp = NULL; 4059 freemsg(mp); 4060 } 4061 } 4062 4063 /* Do detached close. */ 4064 static void 4065 tcp_close_detached(tcp_t *tcp) 4066 { 4067 if (tcp->tcp_fused) 4068 tcp_unfuse(tcp); 4069 4070 /* 4071 * Clustering code serializes TCP disconnect callbacks and 4072 * cluster tcp list walks by blocking a TCP disconnect callback 4073 * if a cluster tcp list walk is in progress. This ensures 4074 * accurate accounting of TCPs in the cluster code even though 4075 * the TCP list walk itself is not atomic. 4076 */ 4077 tcp_closei_local(tcp); 4078 CONN_DEC_REF(tcp->tcp_connp); 4079 } 4080 4081 /* 4082 * Stop all TCP timers, and free the timer mblks if requested. 4083 */ 4084 void 4085 tcp_timers_stop(tcp_t *tcp) 4086 { 4087 if (tcp->tcp_timer_tid != 0) { 4088 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 4089 tcp->tcp_timer_tid = 0; 4090 } 4091 if (tcp->tcp_ka_tid != 0) { 4092 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ka_tid); 4093 tcp->tcp_ka_tid = 0; 4094 } 4095 if (tcp->tcp_ack_tid != 0) { 4096 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 4097 tcp->tcp_ack_tid = 0; 4098 } 4099 if (tcp->tcp_push_tid != 0) { 4100 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 4101 tcp->tcp_push_tid = 0; 4102 } 4103 } 4104 4105 /* 4106 * The tcp_t is going away. Remove it from all lists and set it 4107 * to TCPS_CLOSED. The freeing up of memory is deferred until 4108 * tcp_inactive. This is needed since a thread in tcp_rput might have 4109 * done a CONN_INC_REF on this structure before it was removed from the 4110 * hashes. 4111 */ 4112 static void 4113 tcp_closei_local(tcp_t *tcp) 4114 { 4115 ire_t *ire; 4116 conn_t *connp = tcp->tcp_connp; 4117 tcp_stack_t *tcps = tcp->tcp_tcps; 4118 4119 if (!TCP_IS_SOCKET(tcp)) 4120 tcp_acceptor_hash_remove(tcp); 4121 4122 UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs); 4123 tcp->tcp_ibsegs = 0; 4124 UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs); 4125 tcp->tcp_obsegs = 0; 4126 4127 /* 4128 * If we are an eager connection hanging off a listener that 4129 * hasn't formally accepted the connection yet, get off his 4130 * list and blow off any data that we have accumulated. 4131 */ 4132 if (tcp->tcp_listener != NULL) { 4133 tcp_t *listener = tcp->tcp_listener; 4134 mutex_enter(&listener->tcp_eager_lock); 4135 /* 4136 * tcp_tconnind_started == B_TRUE means that the 4137 * conn_ind has already gone to listener. At 4138 * this point, eager will be closed but we 4139 * leave it in listeners eager list so that 4140 * if listener decides to close without doing 4141 * accept, we can clean this up. In tcp_wput_accept 4142 * we take care of the case of accept on closed 4143 * eager. 4144 */ 4145 if (!tcp->tcp_tconnind_started) { 4146 tcp_eager_unlink(tcp); 4147 mutex_exit(&listener->tcp_eager_lock); 4148 /* 4149 * We don't want to have any pointers to the 4150 * listener queue, after we have released our 4151 * reference on the listener 4152 */ 4153 ASSERT(tcps->tcps_g_q != NULL); 4154 tcp->tcp_rq = tcps->tcps_g_q; 4155 tcp->tcp_wq = WR(tcps->tcps_g_q); 4156 CONN_DEC_REF(listener->tcp_connp); 4157 } else { 4158 mutex_exit(&listener->tcp_eager_lock); 4159 } 4160 } 4161 4162 /* Stop all the timers */ 4163 tcp_timers_stop(tcp); 4164 4165 if (tcp->tcp_state == TCPS_LISTEN) { 4166 if (tcp->tcp_ip_addr_cache) { 4167 kmem_free((void *)tcp->tcp_ip_addr_cache, 4168 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 4169 tcp->tcp_ip_addr_cache = NULL; 4170 } 4171 } 4172 mutex_enter(&tcp->tcp_non_sq_lock); 4173 if (tcp->tcp_flow_stopped) 4174 tcp_clrqfull(tcp); 4175 mutex_exit(&tcp->tcp_non_sq_lock); 4176 4177 tcp_bind_hash_remove(tcp); 4178 /* 4179 * If the tcp_time_wait_collector (which runs outside the squeue) 4180 * is trying to remove this tcp from the time wait list, we will 4181 * block in tcp_time_wait_remove while trying to acquire the 4182 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also 4183 * requires the ipcl_hash_remove to be ordered after the 4184 * tcp_time_wait_remove for the refcnt checks to work correctly. 4185 */ 4186 if (tcp->tcp_state == TCPS_TIME_WAIT) 4187 (void) tcp_time_wait_remove(tcp, NULL); 4188 CL_INET_DISCONNECT(connp, tcp); 4189 ipcl_hash_remove(connp); 4190 4191 /* 4192 * Delete the cached ire in conn_ire_cache and also mark 4193 * the conn as CONDEMNED 4194 */ 4195 mutex_enter(&connp->conn_lock); 4196 connp->conn_state_flags |= CONN_CONDEMNED; 4197 ire = connp->conn_ire_cache; 4198 connp->conn_ire_cache = NULL; 4199 mutex_exit(&connp->conn_lock); 4200 if (ire != NULL) 4201 IRE_REFRELE_NOTR(ire); 4202 4203 /* Need to cleanup any pending ioctls */ 4204 ASSERT(tcp->tcp_time_wait_next == NULL); 4205 ASSERT(tcp->tcp_time_wait_prev == NULL); 4206 ASSERT(tcp->tcp_time_wait_expire == 0); 4207 tcp->tcp_state = TCPS_CLOSED; 4208 4209 /* Release any SSL context */ 4210 if (tcp->tcp_kssl_ent != NULL) { 4211 kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); 4212 tcp->tcp_kssl_ent = NULL; 4213 } 4214 if (tcp->tcp_kssl_ctx != NULL) { 4215 kssl_release_ctx(tcp->tcp_kssl_ctx); 4216 tcp->tcp_kssl_ctx = NULL; 4217 } 4218 tcp->tcp_kssl_pending = B_FALSE; 4219 4220 tcp_ipsec_cleanup(tcp); 4221 } 4222 4223 /* 4224 * tcp is dying (called from ipcl_conn_destroy and error cases). 4225 * Free the tcp_t in either case. 4226 */ 4227 void 4228 tcp_free(tcp_t *tcp) 4229 { 4230 mblk_t *mp; 4231 ip6_pkt_t *ipp; 4232 4233 ASSERT(tcp != NULL); 4234 ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL); 4235 4236 tcp->tcp_rq = NULL; 4237 tcp->tcp_wq = NULL; 4238 4239 tcp_close_mpp(&tcp->tcp_xmit_head); 4240 tcp_close_mpp(&tcp->tcp_reass_head); 4241 if (tcp->tcp_rcv_list != NULL) { 4242 /* Free b_next chain */ 4243 tcp_close_mpp(&tcp->tcp_rcv_list); 4244 } 4245 if ((mp = tcp->tcp_urp_mp) != NULL) { 4246 freemsg(mp); 4247 } 4248 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 4249 freemsg(mp); 4250 } 4251 4252 if (tcp->tcp_fused_sigurg_mp != NULL) { 4253 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 4254 freeb(tcp->tcp_fused_sigurg_mp); 4255 tcp->tcp_fused_sigurg_mp = NULL; 4256 } 4257 4258 if (tcp->tcp_ordrel_mp != NULL) { 4259 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 4260 freeb(tcp->tcp_ordrel_mp); 4261 tcp->tcp_ordrel_mp = NULL; 4262 } 4263 4264 if (tcp->tcp_sack_info != NULL) { 4265 if (tcp->tcp_notsack_list != NULL) { 4266 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, 4267 tcp); 4268 } 4269 bzero(tcp->tcp_sack_info, sizeof (tcp_sack_info_t)); 4270 } 4271 4272 if (tcp->tcp_hopopts != NULL) { 4273 mi_free(tcp->tcp_hopopts); 4274 tcp->tcp_hopopts = NULL; 4275 tcp->tcp_hopoptslen = 0; 4276 } 4277 ASSERT(tcp->tcp_hopoptslen == 0); 4278 if (tcp->tcp_dstopts != NULL) { 4279 mi_free(tcp->tcp_dstopts); 4280 tcp->tcp_dstopts = NULL; 4281 tcp->tcp_dstoptslen = 0; 4282 } 4283 ASSERT(tcp->tcp_dstoptslen == 0); 4284 if (tcp->tcp_rtdstopts != NULL) { 4285 mi_free(tcp->tcp_rtdstopts); 4286 tcp->tcp_rtdstopts = NULL; 4287 tcp->tcp_rtdstoptslen = 0; 4288 } 4289 ASSERT(tcp->tcp_rtdstoptslen == 0); 4290 if (tcp->tcp_rthdr != NULL) { 4291 mi_free(tcp->tcp_rthdr); 4292 tcp->tcp_rthdr = NULL; 4293 tcp->tcp_rthdrlen = 0; 4294 } 4295 ASSERT(tcp->tcp_rthdrlen == 0); 4296 4297 ipp = &tcp->tcp_sticky_ipp; 4298 if (ipp->ipp_fields & (IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 4299 IPPF_RTHDR)) 4300 ip6_pkt_free(ipp); 4301 4302 /* 4303 * Free memory associated with the tcp/ip header template. 4304 */ 4305 4306 if (tcp->tcp_iphc != NULL) 4307 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 4308 4309 /* 4310 * Following is really a blowing away a union. 4311 * It happens to have exactly two members of identical size 4312 * the following code is enough. 4313 */ 4314 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 4315 } 4316 4317 4318 /* 4319 * Put a connection confirmation message upstream built from the 4320 * address information within 'iph' and 'tcph'. Report our success or failure. 4321 */ 4322 static boolean_t 4323 tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, mblk_t *idmp, 4324 mblk_t **defermp) 4325 { 4326 sin_t sin; 4327 sin6_t sin6; 4328 mblk_t *mp; 4329 char *optp = NULL; 4330 int optlen = 0; 4331 4332 if (defermp != NULL) 4333 *defermp = NULL; 4334 4335 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) { 4336 /* 4337 * Return in T_CONN_CON results of option negotiation through 4338 * the T_CONN_REQ. Note: If there is an real end-to-end option 4339 * negotiation, then what is received from remote end needs 4340 * to be taken into account but there is no such thing (yet?) 4341 * in our TCP/IP. 4342 * Note: We do not use mi_offset_param() here as 4343 * tcp_opts_conn_req contents do not directly come from 4344 * an application and are either generated in kernel or 4345 * from user input that was already verified. 4346 */ 4347 mp = tcp->tcp_conn.tcp_opts_conn_req; 4348 optp = (char *)(mp->b_rptr + 4349 ((struct T_conn_req *)mp->b_rptr)->OPT_offset); 4350 optlen = (int) 4351 ((struct T_conn_req *)mp->b_rptr)->OPT_length; 4352 } 4353 4354 if (IPH_HDR_VERSION(iphdr) == IPV4_VERSION) { 4355 ipha_t *ipha = (ipha_t *)iphdr; 4356 4357 /* packet is IPv4 */ 4358 if (tcp->tcp_family == AF_INET) { 4359 sin = sin_null; 4360 sin.sin_addr.s_addr = ipha->ipha_src; 4361 sin.sin_port = *(uint16_t *)tcph->th_lport; 4362 sin.sin_family = AF_INET; 4363 mp = mi_tpi_conn_con(NULL, (char *)&sin, 4364 (int)sizeof (sin_t), optp, optlen); 4365 } else { 4366 sin6 = sin6_null; 4367 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr); 4368 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4369 sin6.sin6_family = AF_INET6; 4370 mp = mi_tpi_conn_con(NULL, (char *)&sin6, 4371 (int)sizeof (sin6_t), optp, optlen); 4372 4373 } 4374 } else { 4375 ip6_t *ip6h = (ip6_t *)iphdr; 4376 4377 ASSERT(IPH_HDR_VERSION(iphdr) == IPV6_VERSION); 4378 ASSERT(tcp->tcp_family == AF_INET6); 4379 sin6 = sin6_null; 4380 sin6.sin6_addr = ip6h->ip6_src; 4381 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4382 sin6.sin6_family = AF_INET6; 4383 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 4384 mp = mi_tpi_conn_con(NULL, (char *)&sin6, 4385 (int)sizeof (sin6_t), optp, optlen); 4386 } 4387 4388 if (!mp) 4389 return (B_FALSE); 4390 4391 mblk_copycred(mp, idmp); 4392 4393 if (defermp == NULL) { 4394 conn_t *connp = tcp->tcp_connp; 4395 if (IPCL_IS_NONSTR(connp)) { 4396 cred_t *cr; 4397 pid_t cpid; 4398 4399 cr = msg_getcred(mp, &cpid); 4400 (*connp->conn_upcalls->su_connected) 4401 (connp->conn_upper_handle, tcp->tcp_connid, cr, 4402 cpid); 4403 freemsg(mp); 4404 } else { 4405 putnext(tcp->tcp_rq, mp); 4406 } 4407 } else { 4408 *defermp = mp; 4409 } 4410 4411 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 4412 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 4413 return (B_TRUE); 4414 } 4415 4416 /* 4417 * Defense for the SYN attack - 4418 * 1. When q0 is full, drop from the tail (tcp_eager_prev_drop_q0) the oldest 4419 * one from the list of droppable eagers. This list is a subset of q0. 4420 * see comments before the definition of MAKE_DROPPABLE(). 4421 * 2. Don't drop a SYN request before its first timeout. This gives every 4422 * request at least til the first timeout to complete its 3-way handshake. 4423 * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many 4424 * requests currently on the queue that has timed out. This will be used 4425 * as an indicator of whether an attack is under way, so that appropriate 4426 * actions can be taken. (It's incremented in tcp_timer() and decremented 4427 * either when eager goes into ESTABLISHED, or gets freed up.) 4428 * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on 4429 * # of timeout drops back to <= q0len/32 => SYN alert off 4430 */ 4431 static boolean_t 4432 tcp_drop_q0(tcp_t *tcp) 4433 { 4434 tcp_t *eager; 4435 mblk_t *mp; 4436 tcp_stack_t *tcps = tcp->tcp_tcps; 4437 4438 ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock)); 4439 ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0); 4440 4441 /* Pick oldest eager from the list of droppable eagers */ 4442 eager = tcp->tcp_eager_prev_drop_q0; 4443 4444 /* If list is empty. return B_FALSE */ 4445 if (eager == tcp) { 4446 return (B_FALSE); 4447 } 4448 4449 /* If allocated, the mp will be freed in tcp_clean_death_wrapper() */ 4450 if ((mp = allocb(0, BPRI_HI)) == NULL) 4451 return (B_FALSE); 4452 4453 /* 4454 * Take this eager out from the list of droppable eagers since we are 4455 * going to drop it. 4456 */ 4457 MAKE_UNDROPPABLE(eager); 4458 4459 if (tcp->tcp_debug) { 4460 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 4461 "tcp_drop_q0: listen half-open queue (max=%d) overflow" 4462 " (%d pending) on %s, drop one", tcps->tcps_conn_req_max_q0, 4463 tcp->tcp_conn_req_cnt_q0, 4464 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 4465 } 4466 4467 BUMP_MIB(&tcps->tcps_mib, tcpHalfOpenDrop); 4468 4469 /* Put a reference on the conn as we are enqueueing it in the sqeue */ 4470 CONN_INC_REF(eager->tcp_connp); 4471 4472 /* Mark the IRE created for this SYN request temporary */ 4473 tcp_ip_ire_mark_advice(eager); 4474 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, 4475 tcp_clean_death_wrapper, eager->tcp_connp, 4476 SQ_FILL, SQTAG_TCP_DROP_Q0); 4477 4478 return (B_TRUE); 4479 } 4480 4481 int 4482 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 4483 tcph_t *tcph, uint_t ipvers, mblk_t *idmp) 4484 { 4485 tcp_t *ltcp = lconnp->conn_tcp; 4486 tcp_t *tcp = connp->conn_tcp; 4487 mblk_t *tpi_mp; 4488 ipha_t *ipha; 4489 ip6_t *ip6h; 4490 sin6_t sin6; 4491 in6_addr_t v6dst; 4492 int err; 4493 int ifindex = 0; 4494 tcp_stack_t *tcps = tcp->tcp_tcps; 4495 4496 if (ipvers == IPV4_VERSION) { 4497 ipha = (ipha_t *)mp->b_rptr; 4498 4499 connp->conn_send = ip_output; 4500 connp->conn_recv = tcp_input; 4501 4502 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, 4503 &connp->conn_bound_source_v6); 4504 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6); 4505 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6); 4506 4507 sin6 = sin6_null; 4508 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr); 4509 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &v6dst); 4510 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4511 sin6.sin6_family = AF_INET6; 4512 sin6.__sin6_src_id = ip_srcid_find_addr(&v6dst, 4513 lconnp->conn_zoneid, tcps->tcps_netstack); 4514 if (tcp->tcp_recvdstaddr) { 4515 sin6_t sin6d; 4516 4517 sin6d = sin6_null; 4518 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, 4519 &sin6d.sin6_addr); 4520 sin6d.sin6_port = *(uint16_t *)tcph->th_fport; 4521 sin6d.sin6_family = AF_INET; 4522 tpi_mp = mi_tpi_extconn_ind(NULL, 4523 (char *)&sin6d, sizeof (sin6_t), 4524 (char *)&tcp, 4525 (t_scalar_t)sizeof (intptr_t), 4526 (char *)&sin6d, sizeof (sin6_t), 4527 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4528 } else { 4529 tpi_mp = mi_tpi_conn_ind(NULL, 4530 (char *)&sin6, sizeof (sin6_t), 4531 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4532 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4533 } 4534 } else { 4535 ip6h = (ip6_t *)mp->b_rptr; 4536 4537 connp->conn_send = ip_output_v6; 4538 connp->conn_recv = tcp_input; 4539 4540 connp->conn_bound_source_v6 = ip6h->ip6_dst; 4541 connp->conn_srcv6 = ip6h->ip6_dst; 4542 connp->conn_remv6 = ip6h->ip6_src; 4543 4544 /* db_cksumstuff is set at ip_fanout_tcp_v6 */ 4545 ifindex = (int)DB_CKSUMSTUFF(mp); 4546 DB_CKSUMSTUFF(mp) = 0; 4547 4548 sin6 = sin6_null; 4549 sin6.sin6_addr = ip6h->ip6_src; 4550 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4551 sin6.sin6_family = AF_INET6; 4552 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 4553 sin6.__sin6_src_id = ip_srcid_find_addr(&ip6h->ip6_dst, 4554 lconnp->conn_zoneid, tcps->tcps_netstack); 4555 4556 if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) { 4557 /* Pass up the scope_id of remote addr */ 4558 sin6.sin6_scope_id = ifindex; 4559 } else { 4560 sin6.sin6_scope_id = 0; 4561 } 4562 if (tcp->tcp_recvdstaddr) { 4563 sin6_t sin6d; 4564 4565 sin6d = sin6_null; 4566 sin6.sin6_addr = ip6h->ip6_dst; 4567 sin6d.sin6_port = *(uint16_t *)tcph->th_fport; 4568 sin6d.sin6_family = AF_INET; 4569 tpi_mp = mi_tpi_extconn_ind(NULL, 4570 (char *)&sin6d, sizeof (sin6_t), 4571 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4572 (char *)&sin6d, sizeof (sin6_t), 4573 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4574 } else { 4575 tpi_mp = mi_tpi_conn_ind(NULL, 4576 (char *)&sin6, sizeof (sin6_t), 4577 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4578 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4579 } 4580 } 4581 4582 if (tpi_mp == NULL) 4583 return (ENOMEM); 4584 4585 connp->conn_fport = *(uint16_t *)tcph->th_lport; 4586 connp->conn_lport = *(uint16_t *)tcph->th_fport; 4587 connp->conn_flags |= (IPCL_TCP6|IPCL_EAGER); 4588 connp->conn_fully_bound = B_FALSE; 4589 4590 /* Inherit information from the "parent" */ 4591 tcp->tcp_ipversion = ltcp->tcp_ipversion; 4592 tcp->tcp_family = ltcp->tcp_family; 4593 4594 tcp->tcp_wq = ltcp->tcp_wq; 4595 tcp->tcp_rq = ltcp->tcp_rq; 4596 4597 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 4598 tcp->tcp_detached = B_TRUE; 4599 SOCK_CONNID_INIT(tcp->tcp_connid); 4600 if ((err = tcp_init_values(tcp)) != 0) { 4601 freemsg(tpi_mp); 4602 return (err); 4603 } 4604 4605 if (ipvers == IPV4_VERSION) { 4606 if ((err = tcp_header_init_ipv4(tcp)) != 0) { 4607 freemsg(tpi_mp); 4608 return (err); 4609 } 4610 ASSERT(tcp->tcp_ipha != NULL); 4611 } else { 4612 /* ifindex must be already set */ 4613 ASSERT(ifindex != 0); 4614 4615 if (ltcp->tcp_bound_if != 0) 4616 tcp->tcp_bound_if = ltcp->tcp_bound_if; 4617 else if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) 4618 tcp->tcp_bound_if = ifindex; 4619 4620 tcp->tcp_ipv6_recvancillary = ltcp->tcp_ipv6_recvancillary; 4621 tcp->tcp_recvifindex = 0; 4622 tcp->tcp_recvhops = 0xffffffffU; 4623 ASSERT(tcp->tcp_ip6h != NULL); 4624 } 4625 4626 tcp->tcp_lport = ltcp->tcp_lport; 4627 4628 if (ltcp->tcp_ipversion == tcp->tcp_ipversion) { 4629 if (tcp->tcp_iphc_len != ltcp->tcp_iphc_len) { 4630 /* 4631 * Listener had options of some sort; eager inherits. 4632 * Free up the eager template and allocate one 4633 * of the right size. 4634 */ 4635 if (tcp->tcp_hdr_grown) { 4636 kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len); 4637 } else { 4638 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 4639 kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc); 4640 } 4641 tcp->tcp_iphc = kmem_zalloc(ltcp->tcp_iphc_len, 4642 KM_NOSLEEP); 4643 if (tcp->tcp_iphc == NULL) { 4644 tcp->tcp_iphc_len = 0; 4645 freemsg(tpi_mp); 4646 return (ENOMEM); 4647 } 4648 tcp->tcp_iphc_len = ltcp->tcp_iphc_len; 4649 tcp->tcp_hdr_grown = B_TRUE; 4650 } 4651 tcp->tcp_hdr_len = ltcp->tcp_hdr_len; 4652 tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len; 4653 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 4654 tcp->tcp_ip6_hops = ltcp->tcp_ip6_hops; 4655 tcp->tcp_ip6_vcf = ltcp->tcp_ip6_vcf; 4656 4657 /* 4658 * Copy the IP+TCP header template from listener to eager 4659 */ 4660 bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len); 4661 if (tcp->tcp_ipversion == IPV6_VERSION) { 4662 if (((ip6i_t *)(tcp->tcp_iphc))->ip6i_nxt == 4663 IPPROTO_RAW) { 4664 tcp->tcp_ip6h = 4665 (ip6_t *)(tcp->tcp_iphc + 4666 sizeof (ip6i_t)); 4667 } else { 4668 tcp->tcp_ip6h = 4669 (ip6_t *)(tcp->tcp_iphc); 4670 } 4671 tcp->tcp_ipha = NULL; 4672 } else { 4673 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 4674 tcp->tcp_ip6h = NULL; 4675 } 4676 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + 4677 tcp->tcp_ip_hdr_len); 4678 } else { 4679 /* 4680 * only valid case when ipversion of listener and 4681 * eager differ is when listener is IPv6 and 4682 * eager is IPv4. 4683 * Eager header template has been initialized to the 4684 * maximum v4 header sizes, which includes space for 4685 * TCP and IP options. 4686 */ 4687 ASSERT((ltcp->tcp_ipversion == IPV6_VERSION) && 4688 (tcp->tcp_ipversion == IPV4_VERSION)); 4689 ASSERT(tcp->tcp_iphc_len >= 4690 TCP_MAX_COMBINED_HEADER_LENGTH); 4691 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 4692 /* copy IP header fields individually */ 4693 tcp->tcp_ipha->ipha_ttl = 4694 ltcp->tcp_ip6h->ip6_hops; 4695 bcopy(ltcp->tcp_tcph->th_lport, 4696 tcp->tcp_tcph->th_lport, sizeof (ushort_t)); 4697 } 4698 4699 bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t)); 4700 bcopy(tcp->tcp_tcph->th_fport, &tcp->tcp_fport, 4701 sizeof (in_port_t)); 4702 4703 if (ltcp->tcp_lport == 0) { 4704 tcp->tcp_lport = *(in_port_t *)tcph->th_fport; 4705 bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, 4706 sizeof (in_port_t)); 4707 } 4708 4709 if (tcp->tcp_ipversion == IPV4_VERSION) { 4710 ASSERT(ipha != NULL); 4711 tcp->tcp_ipha->ipha_dst = ipha->ipha_src; 4712 tcp->tcp_ipha->ipha_src = ipha->ipha_dst; 4713 4714 /* Source routing option copyover (reverse it) */ 4715 if (tcps->tcps_rev_src_routes) 4716 tcp_opt_reverse(tcp, ipha); 4717 } else { 4718 ASSERT(ip6h != NULL); 4719 tcp->tcp_ip6h->ip6_dst = ip6h->ip6_src; 4720 tcp->tcp_ip6h->ip6_src = ip6h->ip6_dst; 4721 } 4722 4723 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 4724 ASSERT(!tcp->tcp_tconnind_started); 4725 /* 4726 * If the SYN contains a credential, it's a loopback packet; attach 4727 * the credential to the TPI message. 4728 */ 4729 mblk_copycred(tpi_mp, idmp); 4730 4731 tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp; 4732 4733 /* Inherit the listener's SSL protection state */ 4734 4735 if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) { 4736 kssl_hold_ent(tcp->tcp_kssl_ent); 4737 tcp->tcp_kssl_pending = B_TRUE; 4738 } 4739 4740 /* Inherit the listener's non-STREAMS flag */ 4741 if (IPCL_IS_NONSTR(lconnp)) { 4742 connp->conn_flags |= IPCL_NONSTR; 4743 } 4744 4745 return (0); 4746 } 4747 4748 4749 int 4750 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha, 4751 tcph_t *tcph, mblk_t *idmp) 4752 { 4753 tcp_t *ltcp = lconnp->conn_tcp; 4754 tcp_t *tcp = connp->conn_tcp; 4755 sin_t sin; 4756 mblk_t *tpi_mp = NULL; 4757 int err; 4758 tcp_stack_t *tcps = tcp->tcp_tcps; 4759 4760 sin = sin_null; 4761 sin.sin_addr.s_addr = ipha->ipha_src; 4762 sin.sin_port = *(uint16_t *)tcph->th_lport; 4763 sin.sin_family = AF_INET; 4764 if (ltcp->tcp_recvdstaddr) { 4765 sin_t sind; 4766 4767 sind = sin_null; 4768 sind.sin_addr.s_addr = ipha->ipha_dst; 4769 sind.sin_port = *(uint16_t *)tcph->th_fport; 4770 sind.sin_family = AF_INET; 4771 tpi_mp = mi_tpi_extconn_ind(NULL, 4772 (char *)&sind, sizeof (sin_t), (char *)&tcp, 4773 (t_scalar_t)sizeof (intptr_t), (char *)&sind, 4774 sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4775 } else { 4776 tpi_mp = mi_tpi_conn_ind(NULL, 4777 (char *)&sin, sizeof (sin_t), 4778 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4779 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4780 } 4781 4782 if (tpi_mp == NULL) { 4783 return (ENOMEM); 4784 } 4785 4786 connp->conn_flags |= (IPCL_TCP4|IPCL_EAGER); 4787 connp->conn_send = ip_output; 4788 connp->conn_recv = tcp_input; 4789 connp->conn_fully_bound = B_FALSE; 4790 4791 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_bound_source_v6); 4792 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6); 4793 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6); 4794 connp->conn_fport = *(uint16_t *)tcph->th_lport; 4795 connp->conn_lport = *(uint16_t *)tcph->th_fport; 4796 4797 /* Inherit information from the "parent" */ 4798 tcp->tcp_ipversion = ltcp->tcp_ipversion; 4799 tcp->tcp_family = ltcp->tcp_family; 4800 tcp->tcp_wq = ltcp->tcp_wq; 4801 tcp->tcp_rq = ltcp->tcp_rq; 4802 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 4803 tcp->tcp_detached = B_TRUE; 4804 SOCK_CONNID_INIT(tcp->tcp_connid); 4805 if ((err = tcp_init_values(tcp)) != 0) { 4806 freemsg(tpi_mp); 4807 return (err); 4808 } 4809 4810 /* 4811 * Let's make sure that eager tcp template has enough space to 4812 * copy IPv4 listener's tcp template. Since the conn_t structure is 4813 * preserved and tcp_iphc_len is also preserved, an eager conn_t may 4814 * have a tcp_template of total len TCP_MAX_COMBINED_HEADER_LENGTH or 4815 * more (in case of re-allocation of conn_t with tcp-IPv6 template with 4816 * extension headers or with ip6i_t struct). Note that bcopy() below 4817 * copies listener tcp's hdr_len which cannot be greater than TCP_MAX_ 4818 * COMBINED_HEADER_LENGTH as this listener must be a IPv4 listener. 4819 */ 4820 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 4821 ASSERT(ltcp->tcp_hdr_len <= TCP_MAX_COMBINED_HEADER_LENGTH); 4822 4823 tcp->tcp_hdr_len = ltcp->tcp_hdr_len; 4824 tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len; 4825 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 4826 tcp->tcp_ttl = ltcp->tcp_ttl; 4827 tcp->tcp_tos = ltcp->tcp_tos; 4828 4829 /* Copy the IP+TCP header template from listener to eager */ 4830 bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len); 4831 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 4832 tcp->tcp_ip6h = NULL; 4833 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + 4834 tcp->tcp_ip_hdr_len); 4835 4836 /* Initialize the IP addresses and Ports */ 4837 tcp->tcp_ipha->ipha_dst = ipha->ipha_src; 4838 tcp->tcp_ipha->ipha_src = ipha->ipha_dst; 4839 bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t)); 4840 bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, sizeof (in_port_t)); 4841 4842 /* Source routing option copyover (reverse it) */ 4843 if (tcps->tcps_rev_src_routes) 4844 tcp_opt_reverse(tcp, ipha); 4845 4846 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 4847 ASSERT(!tcp->tcp_tconnind_started); 4848 4849 /* 4850 * If the SYN contains a credential, it's a loopback packet; attach 4851 * the credential to the TPI message. 4852 */ 4853 mblk_copycred(tpi_mp, idmp); 4854 4855 tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp; 4856 4857 /* Inherit the listener's SSL protection state */ 4858 if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) { 4859 kssl_hold_ent(tcp->tcp_kssl_ent); 4860 tcp->tcp_kssl_pending = B_TRUE; 4861 } 4862 4863 /* Inherit the listener's non-STREAMS flag */ 4864 if (IPCL_IS_NONSTR(lconnp)) { 4865 connp->conn_flags |= IPCL_NONSTR; 4866 } 4867 4868 return (0); 4869 } 4870 4871 /* 4872 * sets up conn for ipsec. 4873 * if the first mblk is M_CTL it is consumed and mpp is updated. 4874 * in case of error mpp is freed. 4875 */ 4876 conn_t * 4877 tcp_get_ipsec_conn(tcp_t *tcp, squeue_t *sqp, mblk_t **mpp) 4878 { 4879 conn_t *connp = tcp->tcp_connp; 4880 conn_t *econnp; 4881 squeue_t *new_sqp; 4882 mblk_t *first_mp = *mpp; 4883 mblk_t *mp = *mpp; 4884 boolean_t mctl_present = B_FALSE; 4885 uint_t ipvers; 4886 4887 econnp = tcp_get_conn(sqp, tcp->tcp_tcps); 4888 if (econnp == NULL) { 4889 freemsg(first_mp); 4890 return (NULL); 4891 } 4892 if (DB_TYPE(mp) == M_CTL) { 4893 if (mp->b_cont == NULL || 4894 mp->b_cont->b_datap->db_type != M_DATA) { 4895 freemsg(first_mp); 4896 return (NULL); 4897 } 4898 mp = mp->b_cont; 4899 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) == 0) { 4900 freemsg(first_mp); 4901 return (NULL); 4902 } 4903 4904 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 4905 first_mp->b_datap->db_struioflag &= ~STRUIO_POLICY; 4906 mctl_present = B_TRUE; 4907 } else { 4908 ASSERT(mp->b_datap->db_struioflag & STRUIO_POLICY); 4909 mp->b_datap->db_struioflag &= ~STRUIO_POLICY; 4910 } 4911 4912 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 4913 DB_CKSUMSTART(mp) = 0; 4914 4915 ASSERT(OK_32PTR(mp->b_rptr)); 4916 ipvers = IPH_HDR_VERSION(mp->b_rptr); 4917 if (ipvers == IPV4_VERSION) { 4918 uint16_t *up; 4919 uint32_t ports; 4920 ipha_t *ipha; 4921 4922 ipha = (ipha_t *)mp->b_rptr; 4923 up = (uint16_t *)((uchar_t *)ipha + 4924 IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET); 4925 ports = *(uint32_t *)up; 4926 IPCL_TCP_EAGER_INIT(econnp, IPPROTO_TCP, 4927 ipha->ipha_dst, ipha->ipha_src, ports); 4928 } else { 4929 uint16_t *up; 4930 uint32_t ports; 4931 uint16_t ip_hdr_len; 4932 uint8_t *nexthdrp; 4933 ip6_t *ip6h; 4934 tcph_t *tcph; 4935 4936 ip6h = (ip6_t *)mp->b_rptr; 4937 if (ip6h->ip6_nxt == IPPROTO_TCP) { 4938 ip_hdr_len = IPV6_HDR_LEN; 4939 } else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ip_hdr_len, 4940 &nexthdrp) || *nexthdrp != IPPROTO_TCP) { 4941 CONN_DEC_REF(econnp); 4942 freemsg(first_mp); 4943 return (NULL); 4944 } 4945 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 4946 up = (uint16_t *)tcph->th_lport; 4947 ports = *(uint32_t *)up; 4948 IPCL_TCP_EAGER_INIT_V6(econnp, IPPROTO_TCP, 4949 ip6h->ip6_dst, ip6h->ip6_src, ports); 4950 } 4951 4952 /* 4953 * The caller already ensured that there is a sqp present. 4954 */ 4955 econnp->conn_sqp = new_sqp; 4956 econnp->conn_initial_sqp = new_sqp; 4957 4958 if (connp->conn_policy != NULL) { 4959 ipsec_in_t *ii; 4960 ii = (ipsec_in_t *)(first_mp->b_rptr); 4961 ASSERT(ii->ipsec_in_policy == NULL); 4962 IPPH_REFHOLD(connp->conn_policy); 4963 ii->ipsec_in_policy = connp->conn_policy; 4964 4965 first_mp->b_datap->db_type = IPSEC_POLICY_SET; 4966 if (!ip_bind_ipsec_policy_set(econnp, first_mp)) { 4967 CONN_DEC_REF(econnp); 4968 freemsg(first_mp); 4969 return (NULL); 4970 } 4971 } 4972 4973 if (ipsec_conn_cache_policy(econnp, ipvers == IPV4_VERSION) != 0) { 4974 CONN_DEC_REF(econnp); 4975 freemsg(first_mp); 4976 return (NULL); 4977 } 4978 4979 /* 4980 * If we know we have some policy, pass the "IPSEC" 4981 * options size TCP uses this adjust the MSS. 4982 */ 4983 econnp->conn_tcp->tcp_ipsec_overhead = conn_ipsec_length(econnp); 4984 if (mctl_present) { 4985 freeb(first_mp); 4986 *mpp = mp; 4987 } 4988 4989 return (econnp); 4990 } 4991 4992 /* 4993 * tcp_get_conn/tcp_free_conn 4994 * 4995 * tcp_get_conn is used to get a clean tcp connection structure. 4996 * It tries to reuse the connections put on the freelist by the 4997 * time_wait_collector failing which it goes to kmem_cache. This 4998 * way has two benefits compared to just allocating from and 4999 * freeing to kmem_cache. 5000 * 1) The time_wait_collector can free (which includes the cleanup) 5001 * outside the squeue. So when the interrupt comes, we have a clean 5002 * connection sitting in the freelist. Obviously, this buys us 5003 * performance. 5004 * 5005 * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_conn_request 5006 * has multiple disadvantages - tying up the squeue during alloc, and the 5007 * fact that IPSec policy initialization has to happen here which 5008 * requires us sending a M_CTL and checking for it i.e. real ugliness. 5009 * But allocating the conn/tcp in IP land is also not the best since 5010 * we can't check the 'q' and 'q0' which are protected by squeue and 5011 * blindly allocate memory which might have to be freed here if we are 5012 * not allowed to accept the connection. By using the freelist and 5013 * putting the conn/tcp back in freelist, we don't pay a penalty for 5014 * allocating memory without checking 'q/q0' and freeing it if we can't 5015 * accept the connection. 5016 * 5017 * Care should be taken to put the conn back in the same squeue's freelist 5018 * from which it was allocated. Best results are obtained if conn is 5019 * allocated from listener's squeue and freed to the same. Time wait 5020 * collector will free up the freelist is the connection ends up sitting 5021 * there for too long. 5022 */ 5023 void * 5024 tcp_get_conn(void *arg, tcp_stack_t *tcps) 5025 { 5026 tcp_t *tcp = NULL; 5027 conn_t *connp = NULL; 5028 squeue_t *sqp = (squeue_t *)arg; 5029 tcp_squeue_priv_t *tcp_time_wait; 5030 netstack_t *ns; 5031 mblk_t *tcp_rsrv_mp = NULL; 5032 5033 tcp_time_wait = 5034 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 5035 5036 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 5037 tcp = tcp_time_wait->tcp_free_list; 5038 ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0)); 5039 if (tcp != NULL) { 5040 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 5041 tcp_time_wait->tcp_free_list_cnt--; 5042 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 5043 tcp->tcp_time_wait_next = NULL; 5044 connp = tcp->tcp_connp; 5045 connp->conn_flags |= IPCL_REUSED; 5046 5047 ASSERT(tcp->tcp_tcps == NULL); 5048 ASSERT(connp->conn_netstack == NULL); 5049 ASSERT(tcp->tcp_rsrv_mp != NULL); 5050 ns = tcps->tcps_netstack; 5051 netstack_hold(ns); 5052 connp->conn_netstack = ns; 5053 tcp->tcp_tcps = tcps; 5054 TCPS_REFHOLD(tcps); 5055 ipcl_globalhash_insert(connp); 5056 return ((void *)connp); 5057 } 5058 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 5059 /* 5060 * Pre-allocate the tcp_rsrv_mp. This mblk will not be freed until 5061 * this conn_t/tcp_t is freed at ipcl_conn_destroy(). 5062 */ 5063 tcp_rsrv_mp = allocb(0, BPRI_HI); 5064 if (tcp_rsrv_mp == NULL) 5065 return (NULL); 5066 5067 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP, 5068 tcps->tcps_netstack)) == NULL) { 5069 freeb(tcp_rsrv_mp); 5070 return (NULL); 5071 } 5072 5073 tcp = connp->conn_tcp; 5074 tcp->tcp_rsrv_mp = tcp_rsrv_mp; 5075 mutex_init(&tcp->tcp_rsrv_mp_lock, NULL, MUTEX_DEFAULT, NULL); 5076 5077 tcp->tcp_tcps = tcps; 5078 TCPS_REFHOLD(tcps); 5079 5080 return ((void *)connp); 5081 } 5082 5083 /* 5084 * Update the cached label for the given tcp_t. This should be called once per 5085 * connection, and before any packets are sent or tcp_process_options is 5086 * invoked. Returns B_FALSE if the correct label could not be constructed. 5087 */ 5088 static boolean_t 5089 tcp_update_label(tcp_t *tcp, const cred_t *cr) 5090 { 5091 conn_t *connp = tcp->tcp_connp; 5092 5093 if (tcp->tcp_ipversion == IPV4_VERSION) { 5094 uchar_t optbuf[IP_MAX_OPT_LENGTH]; 5095 int added; 5096 5097 if (tsol_compute_label(cr, tcp->tcp_remote, optbuf, 5098 tcp->tcp_tcps->tcps_netstack->netstack_ip) != 0) 5099 return (B_FALSE); 5100 5101 added = tsol_remove_secopt(tcp->tcp_ipha, tcp->tcp_hdr_len); 5102 if (added == -1) 5103 return (B_FALSE); 5104 tcp->tcp_hdr_len += added; 5105 tcp->tcp_tcph = (tcph_t *)((uchar_t *)tcp->tcp_tcph + added); 5106 tcp->tcp_ip_hdr_len += added; 5107 if ((tcp->tcp_label_len = optbuf[IPOPT_OLEN]) != 0) { 5108 tcp->tcp_label_len = (tcp->tcp_label_len + 3) & ~3; 5109 added = tsol_prepend_option(optbuf, tcp->tcp_ipha, 5110 tcp->tcp_hdr_len); 5111 if (added == -1) 5112 return (B_FALSE); 5113 tcp->tcp_hdr_len += added; 5114 tcp->tcp_tcph = (tcph_t *) 5115 ((uchar_t *)tcp->tcp_tcph + added); 5116 tcp->tcp_ip_hdr_len += added; 5117 } 5118 } else { 5119 uchar_t optbuf[TSOL_MAX_IPV6_OPTION]; 5120 5121 if (tsol_compute_label_v6(cr, &tcp->tcp_remote_v6, optbuf, 5122 tcp->tcp_tcps->tcps_netstack->netstack_ip) != 0) 5123 return (B_FALSE); 5124 if (tsol_update_sticky(&tcp->tcp_sticky_ipp, 5125 &tcp->tcp_label_len, optbuf) != 0) 5126 return (B_FALSE); 5127 if (tcp_build_hdrs(tcp) != 0) 5128 return (B_FALSE); 5129 } 5130 5131 connp->conn_ulp_labeled = 1; 5132 5133 return (B_TRUE); 5134 } 5135 5136 /* BEGIN CSTYLED */ 5137 /* 5138 * 5139 * The sockfs ACCEPT path: 5140 * ======================= 5141 * 5142 * The eager is now established in its own perimeter as soon as SYN is 5143 * received in tcp_conn_request(). When sockfs receives conn_ind, it 5144 * completes the accept processing on the acceptor STREAM. The sending 5145 * of conn_ind part is common for both sockfs listener and a TLI/XTI 5146 * listener but a TLI/XTI listener completes the accept processing 5147 * on the listener perimeter. 5148 * 5149 * Common control flow for 3 way handshake: 5150 * ---------------------------------------- 5151 * 5152 * incoming SYN (listener perimeter) -> tcp_rput_data() 5153 * -> tcp_conn_request() 5154 * 5155 * incoming SYN-ACK-ACK (eager perim) -> tcp_rput_data() 5156 * send T_CONN_IND (listener perim) -> tcp_send_conn_ind() 5157 * 5158 * Sockfs ACCEPT Path: 5159 * ------------------- 5160 * 5161 * open acceptor stream (tcp_open allocates tcp_wput_accept() 5162 * as STREAM entry point) 5163 * 5164 * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_wput_accept() 5165 * 5166 * tcp_wput_accept() extracts the eager and makes the q->q_ptr <-> eager 5167 * association (we are not behind eager's squeue but sockfs is protecting us 5168 * and no one knows about this stream yet. The STREAMS entry point q->q_info 5169 * is changed to point at tcp_wput(). 5170 * 5171 * tcp_wput_accept() sends any deferred eagers via tcp_send_pending() to 5172 * listener (done on listener's perimeter). 5173 * 5174 * tcp_wput_accept() calls tcp_accept_finish() on eagers perimeter to finish 5175 * accept. 5176 * 5177 * TLI/XTI client ACCEPT path: 5178 * --------------------------- 5179 * 5180 * soaccept() sends T_CONN_RES on the listener STREAM. 5181 * 5182 * tcp_accept() -> tcp_accept_swap() complete the processing and send 5183 * the bind_mp to eager perimeter to finish accept (tcp_rput_other()). 5184 * 5185 * Locks: 5186 * ====== 5187 * 5188 * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and 5189 * and listeners->tcp_eager_next_q. 5190 * 5191 * Referencing: 5192 * ============ 5193 * 5194 * 1) We start out in tcp_conn_request by eager placing a ref on 5195 * listener and listener adding eager to listeners->tcp_eager_next_q0. 5196 * 5197 * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before 5198 * doing so we place a ref on the eager. This ref is finally dropped at the 5199 * end of tcp_accept_finish() while unwinding from the squeue, i.e. the 5200 * reference is dropped by the squeue framework. 5201 * 5202 * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish 5203 * 5204 * The reference must be released by the same entity that added the reference 5205 * In the above scheme, the eager is the entity that adds and releases the 5206 * references. Note that tcp_accept_finish executes in the squeue of the eager 5207 * (albeit after it is attached to the acceptor stream). Though 1. executes 5208 * in the listener's squeue, the eager is nascent at this point and the 5209 * reference can be considered to have been added on behalf of the eager. 5210 * 5211 * Eager getting a Reset or listener closing: 5212 * ========================================== 5213 * 5214 * Once the listener and eager are linked, the listener never does the unlink. 5215 * If the listener needs to close, tcp_eager_cleanup() is called which queues 5216 * a message on all eager perimeter. The eager then does the unlink, clears 5217 * any pointers to the listener's queue and drops the reference to the 5218 * listener. The listener waits in tcp_close outside the squeue until its 5219 * refcount has dropped to 1. This ensures that the listener has waited for 5220 * all eagers to clear their association with the listener. 5221 * 5222 * Similarly, if eager decides to go away, it can unlink itself and close. 5223 * When the T_CONN_RES comes down, we check if eager has closed. Note that 5224 * the reference to eager is still valid because of the extra ref we put 5225 * in tcp_send_conn_ind. 5226 * 5227 * Listener can always locate the eager under the protection 5228 * of the listener->tcp_eager_lock, and then do a refhold 5229 * on the eager during the accept processing. 5230 * 5231 * The acceptor stream accesses the eager in the accept processing 5232 * based on the ref placed on eager before sending T_conn_ind. 5233 * The only entity that can negate this refhold is a listener close 5234 * which is mutually exclusive with an active acceptor stream. 5235 * 5236 * Eager's reference on the listener 5237 * =================================== 5238 * 5239 * If the accept happens (even on a closed eager) the eager drops its 5240 * reference on the listener at the start of tcp_accept_finish. If the 5241 * eager is killed due to an incoming RST before the T_conn_ind is sent up, 5242 * the reference is dropped in tcp_closei_local. If the listener closes, 5243 * the reference is dropped in tcp_eager_kill. In all cases the reference 5244 * is dropped while executing in the eager's context (squeue). 5245 */ 5246 /* END CSTYLED */ 5247 5248 /* Process the SYN packet, mp, directed at the listener 'tcp' */ 5249 5250 /* 5251 * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN. 5252 * tcp_rput_data will not see any SYN packets. 5253 */ 5254 /* ARGSUSED */ 5255 void 5256 tcp_conn_request(void *arg, mblk_t *mp, void *arg2) 5257 { 5258 tcph_t *tcph; 5259 uint32_t seg_seq; 5260 tcp_t *eager; 5261 uint_t ipvers; 5262 ipha_t *ipha; 5263 ip6_t *ip6h; 5264 int err; 5265 conn_t *econnp = NULL; 5266 squeue_t *new_sqp; 5267 mblk_t *mp1; 5268 uint_t ip_hdr_len; 5269 conn_t *connp = (conn_t *)arg; 5270 tcp_t *tcp = connp->conn_tcp; 5271 cred_t *credp; 5272 tcp_stack_t *tcps = tcp->tcp_tcps; 5273 ip_stack_t *ipst; 5274 5275 if (tcp->tcp_state != TCPS_LISTEN) 5276 goto error2; 5277 5278 ASSERT((tcp->tcp_connp->conn_flags & IPCL_BOUND) != 0); 5279 5280 mutex_enter(&tcp->tcp_eager_lock); 5281 if (tcp->tcp_conn_req_cnt_q >= tcp->tcp_conn_req_max) { 5282 mutex_exit(&tcp->tcp_eager_lock); 5283 TCP_STAT(tcps, tcp_listendrop); 5284 BUMP_MIB(&tcps->tcps_mib, tcpListenDrop); 5285 if (tcp->tcp_debug) { 5286 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 5287 "tcp_conn_request: listen backlog (max=%d) " 5288 "overflow (%d pending) on %s", 5289 tcp->tcp_conn_req_max, tcp->tcp_conn_req_cnt_q, 5290 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 5291 } 5292 goto error2; 5293 } 5294 5295 if (tcp->tcp_conn_req_cnt_q0 >= 5296 tcp->tcp_conn_req_max + tcps->tcps_conn_req_max_q0) { 5297 /* 5298 * Q0 is full. Drop a pending half-open req from the queue 5299 * to make room for the new SYN req. Also mark the time we 5300 * drop a SYN. 5301 * 5302 * A more aggressive defense against SYN attack will 5303 * be to set the "tcp_syn_defense" flag now. 5304 */ 5305 TCP_STAT(tcps, tcp_listendropq0); 5306 tcp->tcp_last_rcv_lbolt = lbolt64; 5307 if (!tcp_drop_q0(tcp)) { 5308 mutex_exit(&tcp->tcp_eager_lock); 5309 BUMP_MIB(&tcps->tcps_mib, tcpListenDropQ0); 5310 if (tcp->tcp_debug) { 5311 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 5312 "tcp_conn_request: listen half-open queue " 5313 "(max=%d) full (%d pending) on %s", 5314 tcps->tcps_conn_req_max_q0, 5315 tcp->tcp_conn_req_cnt_q0, 5316 tcp_display(tcp, NULL, 5317 DISP_PORT_ONLY)); 5318 } 5319 goto error2; 5320 } 5321 } 5322 mutex_exit(&tcp->tcp_eager_lock); 5323 5324 /* 5325 * IP adds STRUIO_EAGER and ensures that the received packet is 5326 * M_DATA even if conn_ipv6_recvpktinfo is enabled or for ip6 5327 * link local address. If IPSec is enabled, db_struioflag has 5328 * STRUIO_POLICY set (mutually exclusive from STRUIO_EAGER); 5329 * otherwise an error case if neither of them is set. 5330 */ 5331 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 5332 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 5333 DB_CKSUMSTART(mp) = 0; 5334 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 5335 econnp = (conn_t *)tcp_get_conn(arg2, tcps); 5336 if (econnp == NULL) 5337 goto error2; 5338 ASSERT(econnp->conn_netstack == connp->conn_netstack); 5339 econnp->conn_sqp = new_sqp; 5340 econnp->conn_initial_sqp = new_sqp; 5341 } else if ((mp->b_datap->db_struioflag & STRUIO_POLICY) != 0) { 5342 /* 5343 * mp is updated in tcp_get_ipsec_conn(). 5344 */ 5345 econnp = tcp_get_ipsec_conn(tcp, arg2, &mp); 5346 if (econnp == NULL) { 5347 /* 5348 * mp freed by tcp_get_ipsec_conn. 5349 */ 5350 return; 5351 } 5352 ASSERT(econnp->conn_netstack == connp->conn_netstack); 5353 } else { 5354 goto error2; 5355 } 5356 5357 ASSERT(DB_TYPE(mp) == M_DATA); 5358 5359 ipvers = IPH_HDR_VERSION(mp->b_rptr); 5360 ASSERT(ipvers == IPV6_VERSION || ipvers == IPV4_VERSION); 5361 ASSERT(OK_32PTR(mp->b_rptr)); 5362 if (ipvers == IPV4_VERSION) { 5363 ipha = (ipha_t *)mp->b_rptr; 5364 ip_hdr_len = IPH_HDR_LENGTH(ipha); 5365 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5366 } else { 5367 ip6h = (ip6_t *)mp->b_rptr; 5368 ip_hdr_len = ip_hdr_length_v6(mp, ip6h); 5369 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5370 } 5371 5372 if (tcp->tcp_family == AF_INET) { 5373 ASSERT(ipvers == IPV4_VERSION); 5374 err = tcp_conn_create_v4(connp, econnp, ipha, tcph, mp); 5375 } else { 5376 err = tcp_conn_create_v6(connp, econnp, mp, tcph, ipvers, mp); 5377 } 5378 5379 if (err) 5380 goto error3; 5381 5382 eager = econnp->conn_tcp; 5383 ASSERT(eager->tcp_ordrel_mp == NULL); 5384 5385 if (!IPCL_IS_NONSTR(econnp)) { 5386 /* 5387 * Pre-allocate the T_ordrel_ind mblk for TPI socket so that 5388 * at close time, we will always have that to send up. 5389 * Otherwise, we need to do special handling in case the 5390 * allocation fails at that time. 5391 */ 5392 if ((eager->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL) 5393 goto error3; 5394 } 5395 /* Inherit various TCP parameters from the listener */ 5396 eager->tcp_naglim = tcp->tcp_naglim; 5397 eager->tcp_first_timer_threshold = tcp->tcp_first_timer_threshold; 5398 eager->tcp_second_timer_threshold = tcp->tcp_second_timer_threshold; 5399 5400 eager->tcp_first_ctimer_threshold = tcp->tcp_first_ctimer_threshold; 5401 eager->tcp_second_ctimer_threshold = tcp->tcp_second_ctimer_threshold; 5402 5403 /* 5404 * tcp_adapt_ire() may change tcp_rwnd according to the ire metrics. 5405 * If it does not, the eager's receive window will be set to the 5406 * listener's receive window later in this function. 5407 */ 5408 eager->tcp_rwnd = 0; 5409 5410 /* 5411 * Inherit listener's tcp_init_cwnd. Need to do this before 5412 * calling tcp_process_options() where tcp_mss_set() is called 5413 * to set the initial cwnd. 5414 */ 5415 eager->tcp_init_cwnd = tcp->tcp_init_cwnd; 5416 5417 /* 5418 * Zones: tcp_adapt_ire() and tcp_send_data() both need the 5419 * zone id before the accept is completed in tcp_wput_accept(). 5420 */ 5421 econnp->conn_zoneid = connp->conn_zoneid; 5422 econnp->conn_allzones = connp->conn_allzones; 5423 5424 /* Copy nexthop information from listener to eager */ 5425 if (connp->conn_nexthop_set) { 5426 econnp->conn_nexthop_set = connp->conn_nexthop_set; 5427 econnp->conn_nexthop_v4 = connp->conn_nexthop_v4; 5428 } 5429 5430 /* 5431 * TSOL: tsol_input_proc() needs the eager's cred before the 5432 * eager is accepted 5433 */ 5434 econnp->conn_cred = eager->tcp_cred = credp = connp->conn_cred; 5435 crhold(credp); 5436 5437 ASSERT(econnp->conn_effective_cred == NULL); 5438 if (is_system_labeled()) { 5439 cred_t *cr; 5440 ts_label_t *tsl; 5441 5442 /* 5443 * If this is an MLP connection or a MAC-Exempt connection 5444 * with an unlabeled node, packets are to be 5445 * exchanged using the security label of the received 5446 * SYN packet instead of the server application's label. 5447 */ 5448 if ((cr = msg_getcred(mp, NULL)) != NULL && 5449 (tsl = crgetlabel(cr)) != NULL && 5450 (connp->conn_mlp_type != mlptSingle || 5451 (connp->conn_mac_mode != CONN_MAC_AWARE && 5452 (tsl->tsl_flags & TSLF_UNLABELED)))) { 5453 if ((econnp->conn_effective_cred = 5454 copycred_from_tslabel(econnp->conn_cred, 5455 tsl, KM_NOSLEEP)) != NULL) { 5456 DTRACE_PROBE2( 5457 syn_accept_peerlabel, 5458 conn_t *, econnp, cred_t *, 5459 econnp->conn_effective_cred); 5460 } else { 5461 DTRACE_PROBE3( 5462 tx__ip__log__error__set__eagercred__tcp, 5463 char *, 5464 "SYN mp(1) label on eager connp(2) failed", 5465 mblk_t *, mp, conn_t *, econnp); 5466 goto error3; 5467 } 5468 } else { 5469 DTRACE_PROBE2(syn_accept, conn_t *, 5470 econnp, cred_t *, econnp->conn_cred) 5471 } 5472 5473 /* 5474 * Verify the destination is allowed to receive packets 5475 * at the security label of the SYN-ACK we are generating. 5476 * tsol_check_dest() may create a new effective cred for 5477 * this connection with a modified label or label flags. 5478 */ 5479 if (IN6_IS_ADDR_V4MAPPED(&econnp->conn_remv6)) { 5480 uint32_t dst; 5481 IN6_V4MAPPED_TO_IPADDR(&econnp->conn_remv6, dst); 5482 err = tsol_check_dest(CONN_CRED(econnp), &dst, 5483 IPV4_VERSION, B_FALSE, &cr); 5484 } else { 5485 err = tsol_check_dest(CONN_CRED(econnp), 5486 &econnp->conn_remv6, IPV6_VERSION, 5487 B_FALSE, &cr); 5488 } 5489 if (err != 0) 5490 goto error3; 5491 if (cr != NULL) { 5492 if (econnp->conn_effective_cred != NULL) 5493 crfree(econnp->conn_effective_cred); 5494 econnp->conn_effective_cred = cr; 5495 } 5496 5497 /* 5498 * Generate the security label to be used in the text of 5499 * this connection's outgoing packets. 5500 */ 5501 if (!tcp_update_label(eager, CONN_CRED(econnp))) { 5502 DTRACE_PROBE3( 5503 tx__ip__log__error__connrequest__tcp, 5504 char *, "eager connp(1) label on SYN mp(2) failed", 5505 conn_t *, econnp, mblk_t *, mp); 5506 goto error3; 5507 } 5508 } 5509 5510 eager->tcp_hard_binding = B_TRUE; 5511 5512 tcp_bind_hash_insert(&tcps->tcps_bind_fanout[ 5513 TCP_BIND_HASH(eager->tcp_lport)], eager, 0); 5514 5515 CL_INET_CONNECT(connp, eager, B_FALSE, err); 5516 if (err != 0) { 5517 tcp_bind_hash_remove(eager); 5518 goto error3; 5519 } 5520 5521 /* 5522 * No need to check for multicast destination since ip will only pass 5523 * up multicasts to those that have expressed interest 5524 * TODO: what about rejecting broadcasts? 5525 * Also check that source is not a multicast or broadcast address. 5526 */ 5527 eager->tcp_state = TCPS_SYN_RCVD; 5528 SOCK_CONNID_BUMP(eager->tcp_connid); 5529 5530 /* 5531 * There should be no ire in the mp as we are being called after 5532 * receiving the SYN. 5533 */ 5534 ASSERT(tcp_ire_mp(&mp) == NULL); 5535 5536 /* 5537 * Adapt our mss, ttl, ... according to information provided in IRE. 5538 */ 5539 5540 if (tcp_adapt_ire(eager, NULL) == 0) { 5541 /* Undo the bind_hash_insert */ 5542 tcp_bind_hash_remove(eager); 5543 goto error3; 5544 } 5545 5546 /* Process all TCP options. */ 5547 tcp_process_options(eager, tcph); 5548 5549 /* Is the other end ECN capable? */ 5550 if (tcps->tcps_ecn_permitted >= 1 && 5551 (tcph->th_flags[0] & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) { 5552 eager->tcp_ecn_ok = B_TRUE; 5553 } 5554 5555 /* 5556 * listeners tcp_recv_hiwater should be the default window size or a 5557 * window size changed via SO_RCVBUF option. First round up the 5558 * eager's tcp_rwnd to the nearest MSS. Then find out the window 5559 * scale option value if needed. Call tcp_rwnd_set() to finish the 5560 * setting. 5561 * 5562 * Note if there is a rpipe metric associated with the remote host, 5563 * we should not inherit receive window size from listener. 5564 */ 5565 eager->tcp_rwnd = MSS_ROUNDUP( 5566 (eager->tcp_rwnd == 0 ? tcp->tcp_recv_hiwater: 5567 eager->tcp_rwnd), eager->tcp_mss); 5568 if (eager->tcp_snd_ws_ok) 5569 tcp_set_ws_value(eager); 5570 /* 5571 * Note that this is the only place tcp_rwnd_set() is called for 5572 * accepting a connection. We need to call it here instead of 5573 * after the 3-way handshake because we need to tell the other 5574 * side our rwnd in the SYN-ACK segment. 5575 */ 5576 (void) tcp_rwnd_set(eager, eager->tcp_rwnd); 5577 5578 /* 5579 * We eliminate the need for sockfs to send down a T_SVR4_OPTMGMT_REQ 5580 * via soaccept()->soinheritoptions() which essentially applies 5581 * all the listener options to the new STREAM. The options that we 5582 * need to take care of are: 5583 * SO_DEBUG, SO_REUSEADDR, SO_KEEPALIVE, SO_DONTROUTE, SO_BROADCAST, 5584 * SO_USELOOPBACK, SO_OOBINLINE, SO_DGRAM_ERRIND, SO_LINGER, 5585 * SO_SNDBUF, SO_RCVBUF. 5586 * 5587 * SO_RCVBUF: tcp_rwnd_set() above takes care of it. 5588 * SO_SNDBUF: Set the tcp_xmit_hiwater for the eager. When 5589 * tcp_maxpsz_set() gets called later from 5590 * tcp_accept_finish(), the option takes effect. 5591 * 5592 */ 5593 /* Set the TCP options */ 5594 eager->tcp_recv_lowater = tcp->tcp_recv_lowater; 5595 eager->tcp_xmit_hiwater = tcp->tcp_xmit_hiwater; 5596 eager->tcp_dgram_errind = tcp->tcp_dgram_errind; 5597 eager->tcp_oobinline = tcp->tcp_oobinline; 5598 eager->tcp_reuseaddr = tcp->tcp_reuseaddr; 5599 eager->tcp_broadcast = tcp->tcp_broadcast; 5600 eager->tcp_useloopback = tcp->tcp_useloopback; 5601 eager->tcp_dontroute = tcp->tcp_dontroute; 5602 eager->tcp_debug = tcp->tcp_debug; 5603 eager->tcp_linger = tcp->tcp_linger; 5604 eager->tcp_lingertime = tcp->tcp_lingertime; 5605 if (tcp->tcp_ka_enabled) 5606 eager->tcp_ka_enabled = 1; 5607 5608 ASSERT(eager->tcp_recv_hiwater != 0 && 5609 eager->tcp_recv_hiwater == eager->tcp_rwnd); 5610 5611 /* Set the IP options */ 5612 econnp->conn_broadcast = connp->conn_broadcast; 5613 econnp->conn_loopback = connp->conn_loopback; 5614 econnp->conn_dontroute = connp->conn_dontroute; 5615 econnp->conn_reuseaddr = connp->conn_reuseaddr; 5616 5617 /* Put a ref on the listener for the eager. */ 5618 CONN_INC_REF(connp); 5619 mutex_enter(&tcp->tcp_eager_lock); 5620 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = eager; 5621 eager->tcp_eager_next_q0 = tcp->tcp_eager_next_q0; 5622 tcp->tcp_eager_next_q0 = eager; 5623 eager->tcp_eager_prev_q0 = tcp; 5624 5625 /* Set tcp_listener before adding it to tcp_conn_fanout */ 5626 eager->tcp_listener = tcp; 5627 eager->tcp_saved_listener = tcp; 5628 5629 /* 5630 * Tag this detached tcp vector for later retrieval 5631 * by our listener client in tcp_accept(). 5632 */ 5633 eager->tcp_conn_req_seqnum = tcp->tcp_conn_req_seqnum; 5634 tcp->tcp_conn_req_cnt_q0++; 5635 if (++tcp->tcp_conn_req_seqnum == -1) { 5636 /* 5637 * -1 is "special" and defined in TPI as something 5638 * that should never be used in T_CONN_IND 5639 */ 5640 ++tcp->tcp_conn_req_seqnum; 5641 } 5642 mutex_exit(&tcp->tcp_eager_lock); 5643 5644 if (tcp->tcp_syn_defense) { 5645 /* Don't drop the SYN that comes from a good IP source */ 5646 ipaddr_t *addr_cache = (ipaddr_t *)(tcp->tcp_ip_addr_cache); 5647 if (addr_cache != NULL && eager->tcp_remote == 5648 addr_cache[IP_ADDR_CACHE_HASH(eager->tcp_remote)]) { 5649 eager->tcp_dontdrop = B_TRUE; 5650 } 5651 } 5652 5653 /* 5654 * We need to insert the eager in its own perimeter but as soon 5655 * as we do that, we expose the eager to the classifier and 5656 * should not touch any field outside the eager's perimeter. 5657 * So do all the work necessary before inserting the eager 5658 * in its own perimeter. Be optimistic that ipcl_conn_insert() 5659 * will succeed but undo everything if it fails. 5660 */ 5661 seg_seq = ABE32_TO_U32(tcph->th_seq); 5662 eager->tcp_irs = seg_seq; 5663 eager->tcp_rack = seg_seq; 5664 eager->tcp_rnxt = seg_seq + 1; 5665 U32_TO_ABE32(eager->tcp_rnxt, eager->tcp_tcph->th_ack); 5666 BUMP_MIB(&tcps->tcps_mib, tcpPassiveOpens); 5667 eager->tcp_state = TCPS_SYN_RCVD; 5668 mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss, 5669 NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE); 5670 if (mp1 == NULL) { 5671 /* 5672 * Increment the ref count as we are going to 5673 * enqueueing an mp in squeue 5674 */ 5675 CONN_INC_REF(econnp); 5676 goto error; 5677 } 5678 5679 /* 5680 * Note that in theory this should use the current pid 5681 * so that getpeerucred on the client returns the actual listener 5682 * that does accept. But accept() hasn't been called yet. We could use 5683 * the pid of the process that did bind/listen on the server. 5684 * However, with common usage like inetd() the bind/listen can be done 5685 * by a different process than the accept(). 5686 * Hence we do the simple thing of using the open pid here. 5687 * Note that db_credp is set later in tcp_send_data(). 5688 */ 5689 mblk_setcred(mp1, credp, tcp->tcp_cpid); 5690 eager->tcp_cpid = tcp->tcp_cpid; 5691 eager->tcp_open_time = lbolt64; 5692 5693 /* 5694 * We need to start the rto timer. In normal case, we start 5695 * the timer after sending the packet on the wire (or at 5696 * least believing that packet was sent by waiting for 5697 * CALL_IP_WPUT() to return). Since this is the first packet 5698 * being sent on the wire for the eager, our initial tcp_rto 5699 * is at least tcp_rexmit_interval_min which is a fairly 5700 * large value to allow the algorithm to adjust slowly to large 5701 * fluctuations of RTT during first few transmissions. 5702 * 5703 * Starting the timer first and then sending the packet in this 5704 * case shouldn't make much difference since tcp_rexmit_interval_min 5705 * is of the order of several 100ms and starting the timer 5706 * first and then sending the packet will result in difference 5707 * of few micro seconds. 5708 * 5709 * Without this optimization, we are forced to hold the fanout 5710 * lock across the ipcl_bind_insert() and sending the packet 5711 * so that we don't race against an incoming packet (maybe RST) 5712 * for this eager. 5713 * 5714 * It is necessary to acquire an extra reference on the eager 5715 * at this point and hold it until after tcp_send_data() to 5716 * ensure against an eager close race. 5717 */ 5718 5719 CONN_INC_REF(eager->tcp_connp); 5720 5721 TCP_TIMER_RESTART(eager, eager->tcp_rto); 5722 5723 /* 5724 * Insert the eager in its own perimeter now. We are ready to deal 5725 * with any packets on eager. 5726 */ 5727 if (eager->tcp_ipversion == IPV4_VERSION) { 5728 if (ipcl_conn_insert(econnp, IPPROTO_TCP, 0, 0, 0) != 0) { 5729 goto error; 5730 } 5731 } else { 5732 if (ipcl_conn_insert_v6(econnp, IPPROTO_TCP, 0, 0, 0, 0) != 0) { 5733 goto error; 5734 } 5735 } 5736 5737 /* mark conn as fully-bound */ 5738 econnp->conn_fully_bound = B_TRUE; 5739 5740 /* Send the SYN-ACK */ 5741 tcp_send_data(eager, eager->tcp_wq, mp1); 5742 CONN_DEC_REF(eager->tcp_connp); 5743 freemsg(mp); 5744 5745 return; 5746 error: 5747 freemsg(mp1); 5748 eager->tcp_closemp_used = B_TRUE; 5749 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 5750 mp1 = &eager->tcp_closemp; 5751 SQUEUE_ENTER_ONE(econnp->conn_sqp, mp1, tcp_eager_kill, 5752 econnp, SQ_FILL, SQTAG_TCP_CONN_REQ_2); 5753 5754 /* 5755 * If a connection already exists, send the mp to that connections so 5756 * that it can be appropriately dealt with. 5757 */ 5758 ipst = tcps->tcps_netstack->netstack_ip; 5759 5760 if ((econnp = ipcl_classify(mp, connp->conn_zoneid, ipst)) != NULL) { 5761 if (!IPCL_IS_CONNECTED(econnp)) { 5762 /* 5763 * Something bad happened. ipcl_conn_insert() 5764 * failed because a connection already existed 5765 * in connected hash but we can't find it 5766 * anymore (someone blew it away). Just 5767 * free this message and hopefully remote 5768 * will retransmit at which time the SYN can be 5769 * treated as a new connection or dealth with 5770 * a TH_RST if a connection already exists. 5771 */ 5772 CONN_DEC_REF(econnp); 5773 freemsg(mp); 5774 } else { 5775 SQUEUE_ENTER_ONE(econnp->conn_sqp, mp, 5776 tcp_input, econnp, SQ_FILL, SQTAG_TCP_CONN_REQ_1); 5777 } 5778 } else { 5779 /* Nobody wants this packet */ 5780 freemsg(mp); 5781 } 5782 return; 5783 error3: 5784 CONN_DEC_REF(econnp); 5785 error2: 5786 freemsg(mp); 5787 } 5788 5789 /* 5790 * In an ideal case of vertical partition in NUMA architecture, its 5791 * beneficial to have the listener and all the incoming connections 5792 * tied to the same squeue. The other constraint is that incoming 5793 * connections should be tied to the squeue attached to interrupted 5794 * CPU for obvious locality reason so this leaves the listener to 5795 * be tied to the same squeue. Our only problem is that when listener 5796 * is binding, the CPU that will get interrupted by the NIC whose 5797 * IP address the listener is binding to is not even known. So 5798 * the code below allows us to change that binding at the time the 5799 * CPU is interrupted by virtue of incoming connection's squeue. 5800 * 5801 * This is usefull only in case of a listener bound to a specific IP 5802 * address. For other kind of listeners, they get bound the 5803 * very first time and there is no attempt to rebind them. 5804 */ 5805 void 5806 tcp_conn_request_unbound(void *arg, mblk_t *mp, void *arg2) 5807 { 5808 conn_t *connp = (conn_t *)arg; 5809 squeue_t *sqp = (squeue_t *)arg2; 5810 squeue_t *new_sqp; 5811 uint32_t conn_flags; 5812 5813 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 5814 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 5815 } else { 5816 goto done; 5817 } 5818 5819 if (connp->conn_fanout == NULL) 5820 goto done; 5821 5822 if (!(connp->conn_flags & IPCL_FULLY_BOUND)) { 5823 mutex_enter(&connp->conn_fanout->connf_lock); 5824 mutex_enter(&connp->conn_lock); 5825 /* 5826 * No one from read or write side can access us now 5827 * except for already queued packets on this squeue. 5828 * But since we haven't changed the squeue yet, they 5829 * can't execute. If they are processed after we have 5830 * changed the squeue, they are sent back to the 5831 * correct squeue down below. 5832 * But a listner close can race with processing of 5833 * incoming SYN. If incoming SYN processing changes 5834 * the squeue then the listener close which is waiting 5835 * to enter the squeue would operate on the wrong 5836 * squeue. Hence we don't change the squeue here unless 5837 * the refcount is exactly the minimum refcount. The 5838 * minimum refcount of 4 is counted as - 1 each for 5839 * TCP and IP, 1 for being in the classifier hash, and 5840 * 1 for the mblk being processed. 5841 */ 5842 5843 if (connp->conn_ref != 4 || 5844 connp->conn_tcp->tcp_state != TCPS_LISTEN) { 5845 mutex_exit(&connp->conn_lock); 5846 mutex_exit(&connp->conn_fanout->connf_lock); 5847 goto done; 5848 } 5849 if (connp->conn_sqp != new_sqp) { 5850 while (connp->conn_sqp != new_sqp) 5851 (void) casptr(&connp->conn_sqp, sqp, new_sqp); 5852 } 5853 5854 do { 5855 conn_flags = connp->conn_flags; 5856 conn_flags |= IPCL_FULLY_BOUND; 5857 (void) cas32(&connp->conn_flags, connp->conn_flags, 5858 conn_flags); 5859 } while (!(connp->conn_flags & IPCL_FULLY_BOUND)); 5860 5861 mutex_exit(&connp->conn_fanout->connf_lock); 5862 mutex_exit(&connp->conn_lock); 5863 } 5864 5865 done: 5866 if (connp->conn_sqp != sqp) { 5867 CONN_INC_REF(connp); 5868 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp, 5869 SQ_FILL, SQTAG_TCP_CONN_REQ_UNBOUND); 5870 } else { 5871 tcp_conn_request(connp, mp, sqp); 5872 } 5873 } 5874 5875 /* 5876 * Successful connect request processing begins when our client passes 5877 * a T_CONN_REQ message into tcp_wput() and ends when tcp_rput() passes 5878 * our T_OK_ACK reply message upstream. The control flow looks like this: 5879 * upstream -> tcp_wput() -> tcp_wput_proto() -> tcp_tpi_connect() -> IP 5880 * upstream <- tcp_rput() <- IP 5881 * After various error checks are completed, tcp_tpi_connect() lays 5882 * the target address and port into the composite header template, 5883 * preallocates the T_OK_ACK reply message, construct a full 12 byte bind 5884 * request followed by an IRE request, and passes the three mblk message 5885 * down to IP looking like this: 5886 * O_T_BIND_REQ for IP --> IRE req --> T_OK_ACK for our client 5887 * Processing continues in tcp_rput() when we receive the following message: 5888 * T_BIND_ACK from IP --> IRE ack --> T_OK_ACK for our client 5889 * After consuming the first two mblks, tcp_rput() calls tcp_timer(), 5890 * to fire off the connection request, and then passes the T_OK_ACK mblk 5891 * upstream that we filled in below. There are, of course, numerous 5892 * error conditions along the way which truncate the processing described 5893 * above. 5894 */ 5895 static void 5896 tcp_tpi_connect(tcp_t *tcp, mblk_t *mp) 5897 { 5898 sin_t *sin; 5899 queue_t *q = tcp->tcp_wq; 5900 struct T_conn_req *tcr; 5901 struct sockaddr *sa; 5902 socklen_t len; 5903 int error; 5904 cred_t *cr; 5905 pid_t cpid; 5906 5907 /* 5908 * All Solaris components should pass a db_credp 5909 * for this TPI message, hence we ASSERT. 5910 * But in case there is some other M_PROTO that looks 5911 * like a TPI message sent by some other kernel 5912 * component, we check and return an error. 5913 */ 5914 cr = msg_getcred(mp, &cpid); 5915 ASSERT(cr != NULL); 5916 if (cr == NULL) { 5917 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 5918 return; 5919 } 5920 5921 tcr = (struct T_conn_req *)mp->b_rptr; 5922 5923 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 5924 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { 5925 tcp_err_ack(tcp, mp, TPROTO, 0); 5926 return; 5927 } 5928 5929 /* 5930 * Pre-allocate the T_ordrel_ind mblk so that at close time, we 5931 * will always have that to send up. Otherwise, we need to do 5932 * special handling in case the allocation fails at that time. 5933 * If the end point is TPI, the tcp_t can be reused and the 5934 * tcp_ordrel_mp may be allocated already. 5935 */ 5936 if (tcp->tcp_ordrel_mp == NULL) { 5937 if ((tcp->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL) { 5938 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 5939 return; 5940 } 5941 } 5942 5943 /* 5944 * Determine packet type based on type of address passed in 5945 * the request should contain an IPv4 or IPv6 address. 5946 * Make sure that address family matches the type of 5947 * family of the the address passed down 5948 */ 5949 switch (tcr->DEST_length) { 5950 default: 5951 tcp_err_ack(tcp, mp, TBADADDR, 0); 5952 return; 5953 5954 case (sizeof (sin_t) - sizeof (sin->sin_zero)): { 5955 /* 5956 * XXX: The check for valid DEST_length was not there 5957 * in earlier releases and some buggy 5958 * TLI apps (e.g Sybase) got away with not feeding 5959 * in sin_zero part of address. 5960 * We allow that bug to keep those buggy apps humming. 5961 * Test suites require the check on DEST_length. 5962 * We construct a new mblk with valid DEST_length 5963 * free the original so the rest of the code does 5964 * not have to keep track of this special shorter 5965 * length address case. 5966 */ 5967 mblk_t *nmp; 5968 struct T_conn_req *ntcr; 5969 sin_t *nsin; 5970 5971 nmp = allocb(sizeof (struct T_conn_req) + sizeof (sin_t) + 5972 tcr->OPT_length, BPRI_HI); 5973 if (nmp == NULL) { 5974 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 5975 return; 5976 } 5977 ntcr = (struct T_conn_req *)nmp->b_rptr; 5978 bzero(ntcr, sizeof (struct T_conn_req)); /* zero fill */ 5979 ntcr->PRIM_type = T_CONN_REQ; 5980 ntcr->DEST_length = sizeof (sin_t); 5981 ntcr->DEST_offset = sizeof (struct T_conn_req); 5982 5983 nsin = (sin_t *)((uchar_t *)ntcr + ntcr->DEST_offset); 5984 *nsin = sin_null; 5985 /* Get pointer to shorter address to copy from original mp */ 5986 sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset, 5987 tcr->DEST_length); /* extract DEST_length worth of sin_t */ 5988 if (sin == NULL || !OK_32PTR((char *)sin)) { 5989 freemsg(nmp); 5990 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 5991 return; 5992 } 5993 nsin->sin_family = sin->sin_family; 5994 nsin->sin_port = sin->sin_port; 5995 nsin->sin_addr = sin->sin_addr; 5996 /* Note:nsin->sin_zero zero-fill with sin_null assign above */ 5997 nmp->b_wptr = (uchar_t *)&nsin[1]; 5998 if (tcr->OPT_length != 0) { 5999 ntcr->OPT_length = tcr->OPT_length; 6000 ntcr->OPT_offset = nmp->b_wptr - nmp->b_rptr; 6001 bcopy((uchar_t *)tcr + tcr->OPT_offset, 6002 (uchar_t *)ntcr + ntcr->OPT_offset, 6003 tcr->OPT_length); 6004 nmp->b_wptr += tcr->OPT_length; 6005 } 6006 freemsg(mp); /* original mp freed */ 6007 mp = nmp; /* re-initialize original variables */ 6008 tcr = ntcr; 6009 } 6010 /* FALLTHRU */ 6011 6012 case sizeof (sin_t): 6013 sa = (struct sockaddr *)mi_offset_param(mp, tcr->DEST_offset, 6014 sizeof (sin_t)); 6015 len = sizeof (sin_t); 6016 break; 6017 6018 case sizeof (sin6_t): 6019 sa = (struct sockaddr *)mi_offset_param(mp, tcr->DEST_offset, 6020 sizeof (sin6_t)); 6021 len = sizeof (sin6_t); 6022 break; 6023 } 6024 6025 error = proto_verify_ip_addr(tcp->tcp_family, sa, len); 6026 if (error != 0) { 6027 tcp_err_ack(tcp, mp, TSYSERR, error); 6028 return; 6029 } 6030 6031 /* 6032 * TODO: If someone in TCPS_TIME_WAIT has this dst/port we 6033 * should key on their sequence number and cut them loose. 6034 */ 6035 6036 /* 6037 * If options passed in, feed it for verification and handling 6038 */ 6039 if (tcr->OPT_length != 0) { 6040 mblk_t *ok_mp; 6041 mblk_t *discon_mp; 6042 mblk_t *conn_opts_mp; 6043 int t_error, sys_error, do_disconnect; 6044 6045 conn_opts_mp = NULL; 6046 6047 if (tcp_conprim_opt_process(tcp, mp, 6048 &do_disconnect, &t_error, &sys_error) < 0) { 6049 if (do_disconnect) { 6050 ASSERT(t_error == 0 && sys_error == 0); 6051 discon_mp = mi_tpi_discon_ind(NULL, 6052 ECONNREFUSED, 0); 6053 if (!discon_mp) { 6054 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, 6055 TSYSERR, ENOMEM); 6056 return; 6057 } 6058 ok_mp = mi_tpi_ok_ack_alloc(mp); 6059 if (!ok_mp) { 6060 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6061 TSYSERR, ENOMEM); 6062 return; 6063 } 6064 qreply(q, ok_mp); 6065 qreply(q, discon_mp); /* no flush! */ 6066 } else { 6067 ASSERT(t_error != 0); 6068 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, t_error, 6069 sys_error); 6070 } 6071 return; 6072 } 6073 /* 6074 * Success in setting options, the mp option buffer represented 6075 * by OPT_length/offset has been potentially modified and 6076 * contains results of option processing. We copy it in 6077 * another mp to save it for potentially influencing returning 6078 * it in T_CONN_CONN. 6079 */ 6080 if (tcr->OPT_length != 0) { /* there are resulting options */ 6081 conn_opts_mp = copyb(mp); 6082 if (!conn_opts_mp) { 6083 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, 6084 TSYSERR, ENOMEM); 6085 return; 6086 } 6087 ASSERT(tcp->tcp_conn.tcp_opts_conn_req == NULL); 6088 tcp->tcp_conn.tcp_opts_conn_req = conn_opts_mp; 6089 /* 6090 * Note: 6091 * These resulting option negotiation can include any 6092 * end-to-end negotiation options but there no such 6093 * thing (yet?) in our TCP/IP. 6094 */ 6095 } 6096 } 6097 6098 /* call the non-TPI version */ 6099 error = tcp_do_connect(tcp->tcp_connp, sa, len, cr, cpid); 6100 if (error < 0) { 6101 mp = mi_tpi_err_ack_alloc(mp, -error, 0); 6102 } else if (error > 0) { 6103 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 6104 } else { 6105 mp = mi_tpi_ok_ack_alloc(mp); 6106 } 6107 6108 /* 6109 * Note: Code below is the "failure" case 6110 */ 6111 /* return error ack and blow away saved option results if any */ 6112 connect_failed: 6113 if (mp != NULL) 6114 putnext(tcp->tcp_rq, mp); 6115 else { 6116 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6117 TSYSERR, ENOMEM); 6118 } 6119 } 6120 6121 /* 6122 * Handle connect to IPv4 destinations, including connections for AF_INET6 6123 * sockets connecting to IPv4 mapped IPv6 destinations. 6124 */ 6125 static int 6126 tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, in_port_t dstport, 6127 uint_t srcid, cred_t *cr, pid_t pid) 6128 { 6129 tcph_t *tcph; 6130 mblk_t *mp; 6131 ipaddr_t dstaddr = *dstaddrp; 6132 int32_t oldstate; 6133 uint16_t lport; 6134 int error = 0; 6135 tcp_stack_t *tcps = tcp->tcp_tcps; 6136 6137 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 6138 6139 /* Check for attempt to connect to INADDR_ANY */ 6140 if (dstaddr == INADDR_ANY) { 6141 /* 6142 * SunOS 4.x and 4.3 BSD allow an application 6143 * to connect a TCP socket to INADDR_ANY. 6144 * When they do this, the kernel picks the 6145 * address of one interface and uses it 6146 * instead. The kernel usually ends up 6147 * picking the address of the loopback 6148 * interface. This is an undocumented feature. 6149 * However, we provide the same thing here 6150 * in order to have source and binary 6151 * compatibility with SunOS 4.x. 6152 * Update the T_CONN_REQ (sin/sin6) since it is used to 6153 * generate the T_CONN_CON. 6154 */ 6155 dstaddr = htonl(INADDR_LOOPBACK); 6156 *dstaddrp = dstaddr; 6157 } 6158 6159 /* Handle __sin6_src_id if socket not bound to an IP address */ 6160 if (srcid != 0 && tcp->tcp_ipha->ipha_src == INADDR_ANY) { 6161 ip_srcid_find_id(srcid, &tcp->tcp_ip_src_v6, 6162 tcp->tcp_connp->conn_zoneid, tcps->tcps_netstack); 6163 IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_ip_src_v6, 6164 tcp->tcp_ipha->ipha_src); 6165 } 6166 6167 /* 6168 * Don't let an endpoint connect to itself. Note that 6169 * the test here does not catch the case where the 6170 * source IP addr was left unspecified by the user. In 6171 * this case, the source addr is set in tcp_adapt_ire() 6172 * using the reply to the T_BIND message that we send 6173 * down to IP here and the check is repeated in tcp_rput_other. 6174 */ 6175 if (dstaddr == tcp->tcp_ipha->ipha_src && 6176 dstport == tcp->tcp_lport) { 6177 error = -TBADADDR; 6178 goto failed; 6179 } 6180 6181 /* 6182 * Verify the destination is allowed to receive packets 6183 * at the security label of the connection we are initiating. 6184 * tsol_check_dest() may create a new effective cred for this 6185 * connection with a modified label or label flags. 6186 */ 6187 if (is_system_labeled()) { 6188 ASSERT(tcp->tcp_connp->conn_effective_cred == NULL); 6189 if ((error = tsol_check_dest(CONN_CRED(tcp->tcp_connp), 6190 &dstaddr, IPV4_VERSION, tcp->tcp_connp->conn_mac_mode, 6191 &tcp->tcp_connp->conn_effective_cred)) != 0) { 6192 if (error != EHOSTUNREACH) 6193 error = -TSYSERR; 6194 goto failed; 6195 } 6196 } 6197 6198 tcp->tcp_ipha->ipha_dst = dstaddr; 6199 IN6_IPADDR_TO_V4MAPPED(dstaddr, &tcp->tcp_remote_v6); 6200 6201 /* 6202 * Massage a source route if any putting the first hop 6203 * in iph_dst. Compute a starting value for the checksum which 6204 * takes into account that the original iph_dst should be 6205 * included in the checksum but that ip will include the 6206 * first hop in the source route in the tcp checksum. 6207 */ 6208 tcp->tcp_sum = ip_massage_options(tcp->tcp_ipha, tcps->tcps_netstack); 6209 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 6210 tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) + 6211 (tcp->tcp_ipha->ipha_dst & 0xffff)); 6212 if ((int)tcp->tcp_sum < 0) 6213 tcp->tcp_sum--; 6214 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 6215 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 6216 (tcp->tcp_sum >> 16)); 6217 tcph = tcp->tcp_tcph; 6218 *(uint16_t *)tcph->th_fport = dstport; 6219 tcp->tcp_fport = dstport; 6220 6221 oldstate = tcp->tcp_state; 6222 /* 6223 * At this point the remote destination address and remote port fields 6224 * in the tcp-four-tuple have been filled in the tcp structure. Now we 6225 * have to see which state tcp was in so we can take apropriate action. 6226 */ 6227 if (oldstate == TCPS_IDLE) { 6228 /* 6229 * We support a quick connect capability here, allowing 6230 * clients to transition directly from IDLE to SYN_SENT 6231 * tcp_bindi will pick an unused port, insert the connection 6232 * in the bind hash and transition to BOUND state. 6233 */ 6234 lport = tcp_update_next_port(tcps->tcps_next_port_to_try, 6235 tcp, B_TRUE); 6236 lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE, 6237 B_FALSE, B_FALSE); 6238 if (lport == 0) { 6239 error = -TNOADDR; 6240 goto failed; 6241 } 6242 } 6243 tcp->tcp_state = TCPS_SYN_SENT; 6244 6245 mp = allocb(sizeof (ire_t), BPRI_HI); 6246 if (mp == NULL) { 6247 tcp->tcp_state = oldstate; 6248 error = ENOMEM; 6249 goto failed; 6250 } 6251 6252 mp->b_wptr += sizeof (ire_t); 6253 mp->b_datap->db_type = IRE_DB_REQ_TYPE; 6254 tcp->tcp_hard_binding = 1; 6255 6256 /* 6257 * We need to make sure that the conn_recv is set to a non-null 6258 * value before we insert the conn_t into the classifier table. 6259 * This is to avoid a race with an incoming packet which does 6260 * an ipcl_classify(). 6261 */ 6262 tcp->tcp_connp->conn_recv = tcp_input; 6263 6264 if (tcp->tcp_family == AF_INET) { 6265 error = ip_proto_bind_connected_v4(tcp->tcp_connp, &mp, 6266 IPPROTO_TCP, &tcp->tcp_ipha->ipha_src, tcp->tcp_lport, 6267 tcp->tcp_remote, tcp->tcp_fport, B_TRUE, B_TRUE, cr); 6268 } else { 6269 in6_addr_t v6src; 6270 if (tcp->tcp_ipversion == IPV4_VERSION) { 6271 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6src); 6272 } else { 6273 v6src = tcp->tcp_ip6h->ip6_src; 6274 } 6275 error = ip_proto_bind_connected_v6(tcp->tcp_connp, &mp, 6276 IPPROTO_TCP, &v6src, tcp->tcp_lport, &tcp->tcp_remote_v6, 6277 &tcp->tcp_sticky_ipp, tcp->tcp_fport, B_TRUE, B_TRUE, cr); 6278 } 6279 BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens); 6280 tcp->tcp_active_open = 1; 6281 6282 6283 return (tcp_post_ip_bind(tcp, mp, error, cr, pid)); 6284 failed: 6285 /* return error ack and blow away saved option results if any */ 6286 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 6287 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 6288 return (error); 6289 } 6290 6291 /* 6292 * Handle connect to IPv6 destinations. 6293 */ 6294 static int 6295 tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, in_port_t dstport, 6296 uint32_t flowinfo, uint_t srcid, uint32_t scope_id, cred_t *cr, pid_t pid) 6297 { 6298 tcph_t *tcph; 6299 mblk_t *mp; 6300 ip6_rthdr_t *rth; 6301 int32_t oldstate; 6302 uint16_t lport; 6303 tcp_stack_t *tcps = tcp->tcp_tcps; 6304 int error = 0; 6305 conn_t *connp = tcp->tcp_connp; 6306 6307 ASSERT(tcp->tcp_family == AF_INET6); 6308 6309 /* 6310 * If we're here, it means that the destination address is a native 6311 * IPv6 address. Return an error if tcp_ipversion is not IPv6. A 6312 * reason why it might not be IPv6 is if the socket was bound to an 6313 * IPv4-mapped IPv6 address. 6314 */ 6315 if (tcp->tcp_ipversion != IPV6_VERSION) { 6316 return (-TBADADDR); 6317 } 6318 6319 /* 6320 * Interpret a zero destination to mean loopback. 6321 * Update the T_CONN_REQ (sin/sin6) since it is used to 6322 * generate the T_CONN_CON. 6323 */ 6324 if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp)) { 6325 *dstaddrp = ipv6_loopback; 6326 } 6327 6328 /* Handle __sin6_src_id if socket not bound to an IP address */ 6329 if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) { 6330 ip_srcid_find_id(srcid, &tcp->tcp_ip6h->ip6_src, 6331 connp->conn_zoneid, tcps->tcps_netstack); 6332 tcp->tcp_ip_src_v6 = tcp->tcp_ip6h->ip6_src; 6333 } 6334 6335 /* 6336 * Take care of the scope_id now and add ip6i_t 6337 * if ip6i_t is not already allocated through TCP 6338 * sticky options. At this point tcp_ip6h does not 6339 * have dst info, thus use dstaddrp. 6340 */ 6341 if (scope_id != 0 && 6342 IN6_IS_ADDR_LINKSCOPE(dstaddrp)) { 6343 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 6344 ip6i_t *ip6i; 6345 6346 ipp->ipp_ifindex = scope_id; 6347 ip6i = (ip6i_t *)tcp->tcp_iphc; 6348 6349 if ((ipp->ipp_fields & IPPF_HAS_IP6I) && 6350 ip6i != NULL && (ip6i->ip6i_nxt == IPPROTO_RAW)) { 6351 /* Already allocated */ 6352 ip6i->ip6i_flags |= IP6I_IFINDEX; 6353 ip6i->ip6i_ifindex = ipp->ipp_ifindex; 6354 ipp->ipp_fields |= IPPF_SCOPE_ID; 6355 } else { 6356 int reterr; 6357 6358 ipp->ipp_fields |= IPPF_SCOPE_ID; 6359 if (ipp->ipp_fields & IPPF_HAS_IP6I) 6360 ip2dbg(("tcp_connect_v6: SCOPE_ID set\n")); 6361 reterr = tcp_build_hdrs(tcp); 6362 if (reterr != 0) 6363 goto failed; 6364 ip1dbg(("tcp_connect_ipv6: tcp_bld_hdrs returned\n")); 6365 } 6366 } 6367 6368 /* 6369 * Don't let an endpoint connect to itself. Note that 6370 * the test here does not catch the case where the 6371 * source IP addr was left unspecified by the user. In 6372 * this case, the source addr is set in tcp_adapt_ire() 6373 * using the reply to the T_BIND message that we send 6374 * down to IP here and the check is repeated in tcp_rput_other. 6375 */ 6376 if (IN6_ARE_ADDR_EQUAL(dstaddrp, &tcp->tcp_ip6h->ip6_src) && 6377 (dstport == tcp->tcp_lport)) { 6378 error = -TBADADDR; 6379 goto failed; 6380 } 6381 6382 /* 6383 * Verify the destination is allowed to receive packets 6384 * at the security label of the connection we are initiating. 6385 * check_dest may create a new effective cred for this 6386 * connection with a modified label or label flags. 6387 */ 6388 if (is_system_labeled()) { 6389 ASSERT(tcp->tcp_connp->conn_effective_cred == NULL); 6390 if ((error = tsol_check_dest(CONN_CRED(tcp->tcp_connp), 6391 dstaddrp, IPV6_VERSION, tcp->tcp_connp->conn_mac_mode, 6392 &tcp->tcp_connp->conn_effective_cred)) != 0) { 6393 if (error != EHOSTUNREACH) 6394 error = -TSYSERR; 6395 goto failed; 6396 } 6397 } 6398 6399 tcp->tcp_ip6h->ip6_dst = *dstaddrp; 6400 tcp->tcp_remote_v6 = *dstaddrp; 6401 tcp->tcp_ip6h->ip6_vcf = 6402 (IPV6_DEFAULT_VERS_AND_FLOW & IPV6_VERS_AND_FLOW_MASK) | 6403 (flowinfo & ~IPV6_VERS_AND_FLOW_MASK); 6404 6405 /* 6406 * Massage a routing header (if present) putting the first hop 6407 * in ip6_dst. Compute a starting value for the checksum which 6408 * takes into account that the original ip6_dst should be 6409 * included in the checksum but that ip will include the 6410 * first hop in the source route in the tcp checksum. 6411 */ 6412 rth = ip_find_rthdr_v6(tcp->tcp_ip6h, (uint8_t *)tcp->tcp_tcph); 6413 if (rth != NULL) { 6414 tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, rth, 6415 tcps->tcps_netstack); 6416 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 6417 (tcp->tcp_sum >> 16)); 6418 } else { 6419 tcp->tcp_sum = 0; 6420 } 6421 6422 tcph = tcp->tcp_tcph; 6423 *(uint16_t *)tcph->th_fport = dstport; 6424 tcp->tcp_fport = dstport; 6425 6426 oldstate = tcp->tcp_state; 6427 /* 6428 * At this point the remote destination address and remote port fields 6429 * in the tcp-four-tuple have been filled in the tcp structure. Now we 6430 * have to see which state tcp was in so we can take apropriate action. 6431 */ 6432 if (oldstate == TCPS_IDLE) { 6433 /* 6434 * We support a quick connect capability here, allowing 6435 * clients to transition directly from IDLE to SYN_SENT 6436 * tcp_bindi will pick an unused port, insert the connection 6437 * in the bind hash and transition to BOUND state. 6438 */ 6439 lport = tcp_update_next_port(tcps->tcps_next_port_to_try, 6440 tcp, B_TRUE); 6441 lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE, 6442 B_FALSE, B_FALSE); 6443 if (lport == 0) { 6444 error = -TNOADDR; 6445 goto failed; 6446 } 6447 } 6448 tcp->tcp_state = TCPS_SYN_SENT; 6449 6450 mp = allocb(sizeof (ire_t), BPRI_HI); 6451 if (mp != NULL) { 6452 in6_addr_t v6src; 6453 6454 mp->b_wptr += sizeof (ire_t); 6455 mp->b_datap->db_type = IRE_DB_REQ_TYPE; 6456 6457 tcp->tcp_hard_binding = 1; 6458 6459 /* 6460 * We need to make sure that the conn_recv is set to a non-null 6461 * value before we insert the conn_t into the classifier table. 6462 * This is to avoid a race with an incoming packet which does 6463 * an ipcl_classify(). 6464 */ 6465 tcp->tcp_connp->conn_recv = tcp_input; 6466 6467 if (tcp->tcp_ipversion == IPV4_VERSION) { 6468 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6src); 6469 } else { 6470 v6src = tcp->tcp_ip6h->ip6_src; 6471 } 6472 error = ip_proto_bind_connected_v6(connp, &mp, IPPROTO_TCP, 6473 &v6src, tcp->tcp_lport, &tcp->tcp_remote_v6, 6474 &tcp->tcp_sticky_ipp, tcp->tcp_fport, B_TRUE, B_TRUE, cr); 6475 BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens); 6476 tcp->tcp_active_open = 1; 6477 6478 return (tcp_post_ip_bind(tcp, mp, error, cr, pid)); 6479 } 6480 /* Error case */ 6481 tcp->tcp_state = oldstate; 6482 error = ENOMEM; 6483 6484 failed: 6485 /* return error ack and blow away saved option results if any */ 6486 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 6487 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 6488 return (error); 6489 } 6490 6491 /* 6492 * We need a stream q for detached closing tcp connections 6493 * to use. Our client hereby indicates that this q is the 6494 * one to use. 6495 */ 6496 static void 6497 tcp_def_q_set(tcp_t *tcp, mblk_t *mp) 6498 { 6499 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 6500 queue_t *q = tcp->tcp_wq; 6501 tcp_stack_t *tcps = tcp->tcp_tcps; 6502 6503 #ifdef NS_DEBUG 6504 (void) printf("TCP_IOC_DEFAULT_Q for stack %d\n", 6505 tcps->tcps_netstack->netstack_stackid); 6506 #endif 6507 mp->b_datap->db_type = M_IOCACK; 6508 iocp->ioc_count = 0; 6509 mutex_enter(&tcps->tcps_g_q_lock); 6510 if (tcps->tcps_g_q != NULL) { 6511 mutex_exit(&tcps->tcps_g_q_lock); 6512 iocp->ioc_error = EALREADY; 6513 } else { 6514 int error = 0; 6515 conn_t *connp = tcp->tcp_connp; 6516 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 6517 6518 tcps->tcps_g_q = tcp->tcp_rq; 6519 mutex_exit(&tcps->tcps_g_q_lock); 6520 iocp->ioc_error = 0; 6521 iocp->ioc_rval = 0; 6522 /* 6523 * We are passing tcp_sticky_ipp as NULL 6524 * as it is not useful for tcp_default queue 6525 * 6526 * Set conn_recv just in case. 6527 */ 6528 tcp->tcp_connp->conn_recv = tcp_conn_request; 6529 6530 ASSERT(connp->conn_af_isv6); 6531 connp->conn_ulp = IPPROTO_TCP; 6532 6533 if (ipst->ips_ipcl_proto_fanout_v6[IPPROTO_TCP].connf_head != 6534 NULL || (connp->conn_mac_mode != CONN_MAC_DEFAULT)) { 6535 error = -TBADADDR; 6536 } else { 6537 connp->conn_srcv6 = ipv6_all_zeros; 6538 ipcl_proto_insert_v6(connp, IPPROTO_TCP); 6539 } 6540 6541 (void) tcp_post_ip_bind(tcp, NULL, error, NULL, 0); 6542 } 6543 qreply(q, mp); 6544 } 6545 6546 static int 6547 tcp_disconnect_common(tcp_t *tcp, t_scalar_t seqnum) 6548 { 6549 tcp_t *ltcp = NULL; 6550 conn_t *connp; 6551 tcp_stack_t *tcps = tcp->tcp_tcps; 6552 6553 /* 6554 * Right now, upper modules pass down a T_DISCON_REQ to TCP, 6555 * when the stream is in BOUND state. Do not send a reset, 6556 * since the destination IP address is not valid, and it can 6557 * be the initialized value of all zeros (broadcast address). 6558 * 6559 * XXX There won't be any pending bind request to IP. 6560 */ 6561 if (tcp->tcp_state <= TCPS_BOUND) { 6562 if (tcp->tcp_debug) { 6563 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 6564 "tcp_disconnect: bad state, %d", tcp->tcp_state); 6565 } 6566 return (TOUTSTATE); 6567 } 6568 6569 6570 if (seqnum == -1 || tcp->tcp_conn_req_max == 0) { 6571 6572 /* 6573 * According to TPI, for non-listeners, ignore seqnum 6574 * and disconnect. 6575 * Following interpretation of -1 seqnum is historical 6576 * and implied TPI ? (TPI only states that for T_CONN_IND, 6577 * a valid seqnum should not be -1). 6578 * 6579 * -1 means disconnect everything 6580 * regardless even on a listener. 6581 */ 6582 6583 int old_state = tcp->tcp_state; 6584 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 6585 6586 /* 6587 * The connection can't be on the tcp_time_wait_head list 6588 * since it is not detached. 6589 */ 6590 ASSERT(tcp->tcp_time_wait_next == NULL); 6591 ASSERT(tcp->tcp_time_wait_prev == NULL); 6592 ASSERT(tcp->tcp_time_wait_expire == 0); 6593 ltcp = NULL; 6594 /* 6595 * If it used to be a listener, check to make sure no one else 6596 * has taken the port before switching back to LISTEN state. 6597 */ 6598 if (tcp->tcp_ipversion == IPV4_VERSION) { 6599 connp = ipcl_lookup_listener_v4(tcp->tcp_lport, 6600 tcp->tcp_ipha->ipha_src, 6601 tcp->tcp_connp->conn_zoneid, ipst); 6602 if (connp != NULL) 6603 ltcp = connp->conn_tcp; 6604 } else { 6605 /* Allow tcp_bound_if listeners? */ 6606 connp = ipcl_lookup_listener_v6(tcp->tcp_lport, 6607 &tcp->tcp_ip6h->ip6_src, 0, 6608 tcp->tcp_connp->conn_zoneid, ipst); 6609 if (connp != NULL) 6610 ltcp = connp->conn_tcp; 6611 } 6612 if (tcp->tcp_conn_req_max && ltcp == NULL) { 6613 tcp->tcp_state = TCPS_LISTEN; 6614 } else if (old_state > TCPS_BOUND) { 6615 tcp->tcp_conn_req_max = 0; 6616 tcp->tcp_state = TCPS_BOUND; 6617 } 6618 if (ltcp != NULL) 6619 CONN_DEC_REF(ltcp->tcp_connp); 6620 if (old_state == TCPS_SYN_SENT || old_state == TCPS_SYN_RCVD) { 6621 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 6622 } else if (old_state == TCPS_ESTABLISHED || 6623 old_state == TCPS_CLOSE_WAIT) { 6624 BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); 6625 } 6626 6627 if (tcp->tcp_fused) 6628 tcp_unfuse(tcp); 6629 6630 mutex_enter(&tcp->tcp_eager_lock); 6631 if ((tcp->tcp_conn_req_cnt_q0 != 0) || 6632 (tcp->tcp_conn_req_cnt_q != 0)) { 6633 tcp_eager_cleanup(tcp, 0); 6634 } 6635 mutex_exit(&tcp->tcp_eager_lock); 6636 6637 tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt, 6638 tcp->tcp_rnxt, TH_RST | TH_ACK); 6639 6640 tcp_reinit(tcp); 6641 6642 return (0); 6643 } else if (!tcp_eager_blowoff(tcp, seqnum)) { 6644 return (TBADSEQ); 6645 } 6646 return (0); 6647 } 6648 6649 /* 6650 * Our client hereby directs us to reject the connection request 6651 * that tcp_conn_request() marked with 'seqnum'. Rejection consists 6652 * of sending the appropriate RST, not an ICMP error. 6653 */ 6654 static void 6655 tcp_disconnect(tcp_t *tcp, mblk_t *mp) 6656 { 6657 t_scalar_t seqnum; 6658 int error; 6659 6660 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 6661 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) { 6662 tcp_err_ack(tcp, mp, TPROTO, 0); 6663 return; 6664 } 6665 seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number; 6666 error = tcp_disconnect_common(tcp, seqnum); 6667 if (error != 0) 6668 tcp_err_ack(tcp, mp, error, 0); 6669 else { 6670 if (tcp->tcp_state >= TCPS_ESTABLISHED) { 6671 /* Send M_FLUSH according to TPI */ 6672 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 6673 } 6674 mp = mi_tpi_ok_ack_alloc(mp); 6675 if (mp) 6676 putnext(tcp->tcp_rq, mp); 6677 } 6678 } 6679 6680 /* 6681 * Diagnostic routine used to return a string associated with the tcp state. 6682 * Note that if the caller does not supply a buffer, it will use an internal 6683 * static string. This means that if multiple threads call this function at 6684 * the same time, output can be corrupted... Note also that this function 6685 * does not check the size of the supplied buffer. The caller has to make 6686 * sure that it is big enough. 6687 */ 6688 static char * 6689 tcp_display(tcp_t *tcp, char *sup_buf, char format) 6690 { 6691 char buf1[30]; 6692 static char priv_buf[INET6_ADDRSTRLEN * 2 + 80]; 6693 char *buf; 6694 char *cp; 6695 in6_addr_t local, remote; 6696 char local_addrbuf[INET6_ADDRSTRLEN]; 6697 char remote_addrbuf[INET6_ADDRSTRLEN]; 6698 6699 if (sup_buf != NULL) 6700 buf = sup_buf; 6701 else 6702 buf = priv_buf; 6703 6704 if (tcp == NULL) 6705 return ("NULL_TCP"); 6706 switch (tcp->tcp_state) { 6707 case TCPS_CLOSED: 6708 cp = "TCP_CLOSED"; 6709 break; 6710 case TCPS_IDLE: 6711 cp = "TCP_IDLE"; 6712 break; 6713 case TCPS_BOUND: 6714 cp = "TCP_BOUND"; 6715 break; 6716 case TCPS_LISTEN: 6717 cp = "TCP_LISTEN"; 6718 break; 6719 case TCPS_SYN_SENT: 6720 cp = "TCP_SYN_SENT"; 6721 break; 6722 case TCPS_SYN_RCVD: 6723 cp = "TCP_SYN_RCVD"; 6724 break; 6725 case TCPS_ESTABLISHED: 6726 cp = "TCP_ESTABLISHED"; 6727 break; 6728 case TCPS_CLOSE_WAIT: 6729 cp = "TCP_CLOSE_WAIT"; 6730 break; 6731 case TCPS_FIN_WAIT_1: 6732 cp = "TCP_FIN_WAIT_1"; 6733 break; 6734 case TCPS_CLOSING: 6735 cp = "TCP_CLOSING"; 6736 break; 6737 case TCPS_LAST_ACK: 6738 cp = "TCP_LAST_ACK"; 6739 break; 6740 case TCPS_FIN_WAIT_2: 6741 cp = "TCP_FIN_WAIT_2"; 6742 break; 6743 case TCPS_TIME_WAIT: 6744 cp = "TCP_TIME_WAIT"; 6745 break; 6746 default: 6747 (void) mi_sprintf(buf1, "TCPUnkState(%d)", tcp->tcp_state); 6748 cp = buf1; 6749 break; 6750 } 6751 switch (format) { 6752 case DISP_ADDR_AND_PORT: 6753 if (tcp->tcp_ipversion == IPV4_VERSION) { 6754 /* 6755 * Note that we use the remote address in the tcp_b 6756 * structure. This means that it will print out 6757 * the real destination address, not the next hop's 6758 * address if source routing is used. 6759 */ 6760 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ip_src, &local); 6761 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &remote); 6762 6763 } else { 6764 local = tcp->tcp_ip_src_v6; 6765 remote = tcp->tcp_remote_v6; 6766 } 6767 (void) inet_ntop(AF_INET6, &local, local_addrbuf, 6768 sizeof (local_addrbuf)); 6769 (void) inet_ntop(AF_INET6, &remote, remote_addrbuf, 6770 sizeof (remote_addrbuf)); 6771 (void) mi_sprintf(buf, "[%s.%u, %s.%u] %s", 6772 local_addrbuf, ntohs(tcp->tcp_lport), remote_addrbuf, 6773 ntohs(tcp->tcp_fport), cp); 6774 break; 6775 case DISP_PORT_ONLY: 6776 default: 6777 (void) mi_sprintf(buf, "[%u, %u] %s", 6778 ntohs(tcp->tcp_lport), ntohs(tcp->tcp_fport), cp); 6779 break; 6780 } 6781 6782 return (buf); 6783 } 6784 6785 /* 6786 * Called via squeue to get on to eager's perimeter. It sends a 6787 * TH_RST if eager is in the fanout table. The listener wants the 6788 * eager to disappear either by means of tcp_eager_blowoff() or 6789 * tcp_eager_cleanup() being called. tcp_eager_kill() can also be 6790 * called (via squeue) if the eager cannot be inserted in the 6791 * fanout table in tcp_conn_request(). 6792 */ 6793 /* ARGSUSED */ 6794 void 6795 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2) 6796 { 6797 conn_t *econnp = (conn_t *)arg; 6798 tcp_t *eager = econnp->conn_tcp; 6799 tcp_t *listener = eager->tcp_listener; 6800 tcp_stack_t *tcps = eager->tcp_tcps; 6801 6802 /* 6803 * We could be called because listener is closing. Since 6804 * the eager is using listener's queue's, its not safe. 6805 * Better use the default queue just to send the TH_RST 6806 * out. 6807 */ 6808 ASSERT(tcps->tcps_g_q != NULL); 6809 eager->tcp_rq = tcps->tcps_g_q; 6810 eager->tcp_wq = WR(tcps->tcps_g_q); 6811 6812 /* 6813 * An eager's conn_fanout will be NULL if it's a duplicate 6814 * for an existing 4-tuples in the conn fanout table. 6815 * We don't want to send an RST out in such case. 6816 */ 6817 if (econnp->conn_fanout != NULL && eager->tcp_state > TCPS_LISTEN) { 6818 tcp_xmit_ctl("tcp_eager_kill, can't wait", 6819 eager, eager->tcp_snxt, 0, TH_RST); 6820 } 6821 6822 /* We are here because listener wants this eager gone */ 6823 if (listener != NULL) { 6824 mutex_enter(&listener->tcp_eager_lock); 6825 tcp_eager_unlink(eager); 6826 if (eager->tcp_tconnind_started) { 6827 /* 6828 * The eager has sent a conn_ind up to the 6829 * listener but listener decides to close 6830 * instead. We need to drop the extra ref 6831 * placed on eager in tcp_rput_data() before 6832 * sending the conn_ind to listener. 6833 */ 6834 CONN_DEC_REF(econnp); 6835 } 6836 mutex_exit(&listener->tcp_eager_lock); 6837 CONN_DEC_REF(listener->tcp_connp); 6838 } 6839 6840 if (eager->tcp_state != TCPS_CLOSED) 6841 tcp_close_detached(eager); 6842 } 6843 6844 /* 6845 * Reset any eager connection hanging off this listener marked 6846 * with 'seqnum' and then reclaim it's resources. 6847 */ 6848 static boolean_t 6849 tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum) 6850 { 6851 tcp_t *eager; 6852 mblk_t *mp; 6853 tcp_stack_t *tcps = listener->tcp_tcps; 6854 6855 TCP_STAT(tcps, tcp_eager_blowoff_calls); 6856 eager = listener; 6857 mutex_enter(&listener->tcp_eager_lock); 6858 do { 6859 eager = eager->tcp_eager_next_q; 6860 if (eager == NULL) { 6861 mutex_exit(&listener->tcp_eager_lock); 6862 return (B_FALSE); 6863 } 6864 } while (eager->tcp_conn_req_seqnum != seqnum); 6865 6866 if (eager->tcp_closemp_used) { 6867 mutex_exit(&listener->tcp_eager_lock); 6868 return (B_TRUE); 6869 } 6870 eager->tcp_closemp_used = B_TRUE; 6871 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 6872 CONN_INC_REF(eager->tcp_connp); 6873 mutex_exit(&listener->tcp_eager_lock); 6874 mp = &eager->tcp_closemp; 6875 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill, 6876 eager->tcp_connp, SQ_FILL, SQTAG_TCP_EAGER_BLOWOFF); 6877 return (B_TRUE); 6878 } 6879 6880 /* 6881 * Reset any eager connection hanging off this listener 6882 * and then reclaim it's resources. 6883 */ 6884 static void 6885 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only) 6886 { 6887 tcp_t *eager; 6888 mblk_t *mp; 6889 tcp_stack_t *tcps = listener->tcp_tcps; 6890 6891 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 6892 6893 if (!q0_only) { 6894 /* First cleanup q */ 6895 TCP_STAT(tcps, tcp_eager_blowoff_q); 6896 eager = listener->tcp_eager_next_q; 6897 while (eager != NULL) { 6898 if (!eager->tcp_closemp_used) { 6899 eager->tcp_closemp_used = B_TRUE; 6900 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 6901 CONN_INC_REF(eager->tcp_connp); 6902 mp = &eager->tcp_closemp; 6903 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, 6904 tcp_eager_kill, eager->tcp_connp, 6905 SQ_FILL, SQTAG_TCP_EAGER_CLEANUP); 6906 } 6907 eager = eager->tcp_eager_next_q; 6908 } 6909 } 6910 /* Then cleanup q0 */ 6911 TCP_STAT(tcps, tcp_eager_blowoff_q0); 6912 eager = listener->tcp_eager_next_q0; 6913 while (eager != listener) { 6914 if (!eager->tcp_closemp_used) { 6915 eager->tcp_closemp_used = B_TRUE; 6916 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 6917 CONN_INC_REF(eager->tcp_connp); 6918 mp = &eager->tcp_closemp; 6919 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, 6920 tcp_eager_kill, eager->tcp_connp, SQ_FILL, 6921 SQTAG_TCP_EAGER_CLEANUP_Q0); 6922 } 6923 eager = eager->tcp_eager_next_q0; 6924 } 6925 } 6926 6927 /* 6928 * If we are an eager connection hanging off a listener that hasn't 6929 * formally accepted the connection yet, get off his list and blow off 6930 * any data that we have accumulated. 6931 */ 6932 static void 6933 tcp_eager_unlink(tcp_t *tcp) 6934 { 6935 tcp_t *listener = tcp->tcp_listener; 6936 6937 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 6938 ASSERT(listener != NULL); 6939 if (tcp->tcp_eager_next_q0 != NULL) { 6940 ASSERT(tcp->tcp_eager_prev_q0 != NULL); 6941 6942 /* Remove the eager tcp from q0 */ 6943 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 6944 tcp->tcp_eager_prev_q0; 6945 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 6946 tcp->tcp_eager_next_q0; 6947 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 6948 listener->tcp_conn_req_cnt_q0--; 6949 6950 tcp->tcp_eager_next_q0 = NULL; 6951 tcp->tcp_eager_prev_q0 = NULL; 6952 6953 /* 6954 * Take the eager out, if it is in the list of droppable 6955 * eagers. 6956 */ 6957 MAKE_UNDROPPABLE(tcp); 6958 6959 if (tcp->tcp_syn_rcvd_timeout != 0) { 6960 /* we have timed out before */ 6961 ASSERT(listener->tcp_syn_rcvd_timeout > 0); 6962 listener->tcp_syn_rcvd_timeout--; 6963 } 6964 } else { 6965 tcp_t **tcpp = &listener->tcp_eager_next_q; 6966 tcp_t *prev = NULL; 6967 6968 for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) { 6969 if (tcpp[0] == tcp) { 6970 if (listener->tcp_eager_last_q == tcp) { 6971 /* 6972 * If we are unlinking the last 6973 * element on the list, adjust 6974 * tail pointer. Set tail pointer 6975 * to nil when list is empty. 6976 */ 6977 ASSERT(tcp->tcp_eager_next_q == NULL); 6978 if (listener->tcp_eager_last_q == 6979 listener->tcp_eager_next_q) { 6980 listener->tcp_eager_last_q = 6981 NULL; 6982 } else { 6983 /* 6984 * We won't get here if there 6985 * is only one eager in the 6986 * list. 6987 */ 6988 ASSERT(prev != NULL); 6989 listener->tcp_eager_last_q = 6990 prev; 6991 } 6992 } 6993 tcpp[0] = tcp->tcp_eager_next_q; 6994 tcp->tcp_eager_next_q = NULL; 6995 tcp->tcp_eager_last_q = NULL; 6996 ASSERT(listener->tcp_conn_req_cnt_q > 0); 6997 listener->tcp_conn_req_cnt_q--; 6998 break; 6999 } 7000 prev = tcpp[0]; 7001 } 7002 } 7003 tcp->tcp_listener = NULL; 7004 } 7005 7006 /* Shorthand to generate and send TPI error acks to our client */ 7007 static void 7008 tcp_err_ack(tcp_t *tcp, mblk_t *mp, int t_error, int sys_error) 7009 { 7010 if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL) 7011 putnext(tcp->tcp_rq, mp); 7012 } 7013 7014 /* Shorthand to generate and send TPI error acks to our client */ 7015 static void 7016 tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, 7017 int t_error, int sys_error) 7018 { 7019 struct T_error_ack *teackp; 7020 7021 if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack), 7022 M_PCPROTO, T_ERROR_ACK)) != NULL) { 7023 teackp = (struct T_error_ack *)mp->b_rptr; 7024 teackp->ERROR_prim = primitive; 7025 teackp->TLI_error = t_error; 7026 teackp->UNIX_error = sys_error; 7027 putnext(tcp->tcp_rq, mp); 7028 } 7029 } 7030 7031 /* 7032 * Note: No locks are held when inspecting tcp_g_*epriv_ports 7033 * but instead the code relies on: 7034 * - the fact that the address of the array and its size never changes 7035 * - the atomic assignment of the elements of the array 7036 */ 7037 /* ARGSUSED */ 7038 static int 7039 tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 7040 { 7041 int i; 7042 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 7043 7044 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 7045 if (tcps->tcps_g_epriv_ports[i] != 0) 7046 (void) mi_mpprintf(mp, "%d ", 7047 tcps->tcps_g_epriv_ports[i]); 7048 } 7049 return (0); 7050 } 7051 7052 /* 7053 * Hold a lock while changing tcp_g_epriv_ports to prevent multiple 7054 * threads from changing it at the same time. 7055 */ 7056 /* ARGSUSED */ 7057 static int 7058 tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 7059 cred_t *cr) 7060 { 7061 long new_value; 7062 int i; 7063 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 7064 7065 /* 7066 * Fail the request if the new value does not lie within the 7067 * port number limits. 7068 */ 7069 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 7070 new_value <= 0 || new_value >= 65536) { 7071 return (EINVAL); 7072 } 7073 7074 mutex_enter(&tcps->tcps_epriv_port_lock); 7075 /* Check if the value is already in the list */ 7076 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 7077 if (new_value == tcps->tcps_g_epriv_ports[i]) { 7078 mutex_exit(&tcps->tcps_epriv_port_lock); 7079 return (EEXIST); 7080 } 7081 } 7082 /* Find an empty slot */ 7083 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 7084 if (tcps->tcps_g_epriv_ports[i] == 0) 7085 break; 7086 } 7087 if (i == tcps->tcps_g_num_epriv_ports) { 7088 mutex_exit(&tcps->tcps_epriv_port_lock); 7089 return (EOVERFLOW); 7090 } 7091 /* Set the new value */ 7092 tcps->tcps_g_epriv_ports[i] = (uint16_t)new_value; 7093 mutex_exit(&tcps->tcps_epriv_port_lock); 7094 return (0); 7095 } 7096 7097 /* 7098 * Hold a lock while changing tcp_g_epriv_ports to prevent multiple 7099 * threads from changing it at the same time. 7100 */ 7101 /* ARGSUSED */ 7102 static int 7103 tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 7104 cred_t *cr) 7105 { 7106 long new_value; 7107 int i; 7108 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 7109 7110 /* 7111 * Fail the request if the new value does not lie within the 7112 * port number limits. 7113 */ 7114 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value <= 0 || 7115 new_value >= 65536) { 7116 return (EINVAL); 7117 } 7118 7119 mutex_enter(&tcps->tcps_epriv_port_lock); 7120 /* Check that the value is already in the list */ 7121 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 7122 if (tcps->tcps_g_epriv_ports[i] == new_value) 7123 break; 7124 } 7125 if (i == tcps->tcps_g_num_epriv_ports) { 7126 mutex_exit(&tcps->tcps_epriv_port_lock); 7127 return (ESRCH); 7128 } 7129 /* Clear the value */ 7130 tcps->tcps_g_epriv_ports[i] = 0; 7131 mutex_exit(&tcps->tcps_epriv_port_lock); 7132 return (0); 7133 } 7134 7135 /* Return the TPI/TLI equivalent of our current tcp_state */ 7136 static int 7137 tcp_tpistate(tcp_t *tcp) 7138 { 7139 switch (tcp->tcp_state) { 7140 case TCPS_IDLE: 7141 return (TS_UNBND); 7142 case TCPS_LISTEN: 7143 /* 7144 * Return whether there are outstanding T_CONN_IND waiting 7145 * for the matching T_CONN_RES. Therefore don't count q0. 7146 */ 7147 if (tcp->tcp_conn_req_cnt_q > 0) 7148 return (TS_WRES_CIND); 7149 else 7150 return (TS_IDLE); 7151 case TCPS_BOUND: 7152 return (TS_IDLE); 7153 case TCPS_SYN_SENT: 7154 return (TS_WCON_CREQ); 7155 case TCPS_SYN_RCVD: 7156 /* 7157 * Note: assumption: this has to the active open SYN_RCVD. 7158 * The passive instance is detached in SYN_RCVD stage of 7159 * incoming connection processing so we cannot get request 7160 * for T_info_ack on it. 7161 */ 7162 return (TS_WACK_CRES); 7163 case TCPS_ESTABLISHED: 7164 return (TS_DATA_XFER); 7165 case TCPS_CLOSE_WAIT: 7166 return (TS_WREQ_ORDREL); 7167 case TCPS_FIN_WAIT_1: 7168 return (TS_WIND_ORDREL); 7169 case TCPS_FIN_WAIT_2: 7170 return (TS_WIND_ORDREL); 7171 7172 case TCPS_CLOSING: 7173 case TCPS_LAST_ACK: 7174 case TCPS_TIME_WAIT: 7175 case TCPS_CLOSED: 7176 /* 7177 * Following TS_WACK_DREQ7 is a rendition of "not 7178 * yet TS_IDLE" TPI state. There is no best match to any 7179 * TPI state for TCPS_{CLOSING, LAST_ACK, TIME_WAIT} but we 7180 * choose a value chosen that will map to TLI/XTI level 7181 * state of TSTATECHNG (state is process of changing) which 7182 * captures what this dummy state represents. 7183 */ 7184 return (TS_WACK_DREQ7); 7185 default: 7186 cmn_err(CE_WARN, "tcp_tpistate: strange state (%d) %s", 7187 tcp->tcp_state, tcp_display(tcp, NULL, 7188 DISP_PORT_ONLY)); 7189 return (TS_UNBND); 7190 } 7191 } 7192 7193 static void 7194 tcp_copy_info(struct T_info_ack *tia, tcp_t *tcp) 7195 { 7196 tcp_stack_t *tcps = tcp->tcp_tcps; 7197 7198 if (tcp->tcp_family == AF_INET6) 7199 *tia = tcp_g_t_info_ack_v6; 7200 else 7201 *tia = tcp_g_t_info_ack; 7202 tia->CURRENT_state = tcp_tpistate(tcp); 7203 tia->OPT_size = tcp_max_optsize; 7204 if (tcp->tcp_mss == 0) { 7205 /* Not yet set - tcp_open does not set mss */ 7206 if (tcp->tcp_ipversion == IPV4_VERSION) 7207 tia->TIDU_size = tcps->tcps_mss_def_ipv4; 7208 else 7209 tia->TIDU_size = tcps->tcps_mss_def_ipv6; 7210 } else { 7211 tia->TIDU_size = tcp->tcp_mss; 7212 } 7213 /* TODO: Default ETSDU is 1. Is that correct for tcp? */ 7214 } 7215 7216 static void 7217 tcp_do_capability_ack(tcp_t *tcp, struct T_capability_ack *tcap, 7218 t_uscalar_t cap_bits1) 7219 { 7220 tcap->CAP_bits1 = 0; 7221 7222 if (cap_bits1 & TC1_INFO) { 7223 tcp_copy_info(&tcap->INFO_ack, tcp); 7224 tcap->CAP_bits1 |= TC1_INFO; 7225 } 7226 7227 if (cap_bits1 & TC1_ACCEPTOR_ID) { 7228 tcap->ACCEPTOR_id = tcp->tcp_acceptor_id; 7229 tcap->CAP_bits1 |= TC1_ACCEPTOR_ID; 7230 } 7231 7232 } 7233 7234 /* 7235 * This routine responds to T_CAPABILITY_REQ messages. It is called by 7236 * tcp_wput. Much of the T_CAPABILITY_ACK information is copied from 7237 * tcp_g_t_info_ack. The current state of the stream is copied from 7238 * tcp_state. 7239 */ 7240 static void 7241 tcp_capability_req(tcp_t *tcp, mblk_t *mp) 7242 { 7243 t_uscalar_t cap_bits1; 7244 struct T_capability_ack *tcap; 7245 7246 if (MBLKL(mp) < sizeof (struct T_capability_req)) { 7247 freemsg(mp); 7248 return; 7249 } 7250 7251 cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1; 7252 7253 mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack), 7254 mp->b_datap->db_type, T_CAPABILITY_ACK); 7255 if (mp == NULL) 7256 return; 7257 7258 tcap = (struct T_capability_ack *)mp->b_rptr; 7259 tcp_do_capability_ack(tcp, tcap, cap_bits1); 7260 7261 putnext(tcp->tcp_rq, mp); 7262 } 7263 7264 /* 7265 * This routine responds to T_INFO_REQ messages. It is called by tcp_wput. 7266 * Most of the T_INFO_ACK information is copied from tcp_g_t_info_ack. 7267 * The current state of the stream is copied from tcp_state. 7268 */ 7269 static void 7270 tcp_info_req(tcp_t *tcp, mblk_t *mp) 7271 { 7272 mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO, 7273 T_INFO_ACK); 7274 if (!mp) { 7275 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 7276 return; 7277 } 7278 tcp_copy_info((struct T_info_ack *)mp->b_rptr, tcp); 7279 putnext(tcp->tcp_rq, mp); 7280 } 7281 7282 /* Respond to the TPI addr request */ 7283 static void 7284 tcp_addr_req(tcp_t *tcp, mblk_t *mp) 7285 { 7286 sin_t *sin; 7287 mblk_t *ackmp; 7288 struct T_addr_ack *taa; 7289 7290 /* Make it large enough for worst case */ 7291 ackmp = reallocb(mp, sizeof (struct T_addr_ack) + 7292 2 * sizeof (sin6_t), 1); 7293 if (ackmp == NULL) { 7294 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 7295 return; 7296 } 7297 7298 if (tcp->tcp_ipversion == IPV6_VERSION) { 7299 tcp_addr_req_ipv6(tcp, ackmp); 7300 return; 7301 } 7302 taa = (struct T_addr_ack *)ackmp->b_rptr; 7303 7304 bzero(taa, sizeof (struct T_addr_ack)); 7305 ackmp->b_wptr = (uchar_t *)&taa[1]; 7306 7307 taa->PRIM_type = T_ADDR_ACK; 7308 ackmp->b_datap->db_type = M_PCPROTO; 7309 7310 /* 7311 * Note: Following code assumes 32 bit alignment of basic 7312 * data structures like sin_t and struct T_addr_ack. 7313 */ 7314 if (tcp->tcp_state >= TCPS_BOUND) { 7315 /* 7316 * Fill in local address 7317 */ 7318 taa->LOCADDR_length = sizeof (sin_t); 7319 taa->LOCADDR_offset = sizeof (*taa); 7320 7321 sin = (sin_t *)&taa[1]; 7322 7323 /* Fill zeroes and then intialize non-zero fields */ 7324 *sin = sin_null; 7325 7326 sin->sin_family = AF_INET; 7327 7328 sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src; 7329 sin->sin_port = *(uint16_t *)tcp->tcp_tcph->th_lport; 7330 7331 ackmp->b_wptr = (uchar_t *)&sin[1]; 7332 7333 if (tcp->tcp_state >= TCPS_SYN_RCVD) { 7334 /* 7335 * Fill in Remote address 7336 */ 7337 taa->REMADDR_length = sizeof (sin_t); 7338 taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset + 7339 taa->LOCADDR_length); 7340 7341 sin = (sin_t *)(ackmp->b_rptr + taa->REMADDR_offset); 7342 *sin = sin_null; 7343 sin->sin_family = AF_INET; 7344 sin->sin_addr.s_addr = tcp->tcp_remote; 7345 sin->sin_port = tcp->tcp_fport; 7346 7347 ackmp->b_wptr = (uchar_t *)&sin[1]; 7348 } 7349 } 7350 putnext(tcp->tcp_rq, ackmp); 7351 } 7352 7353 /* Assumes that tcp_addr_req gets enough space and alignment */ 7354 static void 7355 tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *ackmp) 7356 { 7357 sin6_t *sin6; 7358 struct T_addr_ack *taa; 7359 7360 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 7361 ASSERT(OK_32PTR(ackmp->b_rptr)); 7362 ASSERT(ackmp->b_wptr - ackmp->b_rptr >= sizeof (struct T_addr_ack) + 7363 2 * sizeof (sin6_t)); 7364 7365 taa = (struct T_addr_ack *)ackmp->b_rptr; 7366 7367 bzero(taa, sizeof (struct T_addr_ack)); 7368 ackmp->b_wptr = (uchar_t *)&taa[1]; 7369 7370 taa->PRIM_type = T_ADDR_ACK; 7371 ackmp->b_datap->db_type = M_PCPROTO; 7372 7373 /* 7374 * Note: Following code assumes 32 bit alignment of basic 7375 * data structures like sin6_t and struct T_addr_ack. 7376 */ 7377 if (tcp->tcp_state >= TCPS_BOUND) { 7378 /* 7379 * Fill in local address 7380 */ 7381 taa->LOCADDR_length = sizeof (sin6_t); 7382 taa->LOCADDR_offset = sizeof (*taa); 7383 7384 sin6 = (sin6_t *)&taa[1]; 7385 *sin6 = sin6_null; 7386 7387 sin6->sin6_family = AF_INET6; 7388 sin6->sin6_addr = tcp->tcp_ip6h->ip6_src; 7389 sin6->sin6_port = tcp->tcp_lport; 7390 7391 ackmp->b_wptr = (uchar_t *)&sin6[1]; 7392 7393 if (tcp->tcp_state >= TCPS_SYN_RCVD) { 7394 /* 7395 * Fill in Remote address 7396 */ 7397 taa->REMADDR_length = sizeof (sin6_t); 7398 taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset + 7399 taa->LOCADDR_length); 7400 7401 sin6 = (sin6_t *)(ackmp->b_rptr + taa->REMADDR_offset); 7402 *sin6 = sin6_null; 7403 sin6->sin6_family = AF_INET6; 7404 sin6->sin6_flowinfo = 7405 tcp->tcp_ip6h->ip6_vcf & 7406 ~IPV6_VERS_AND_FLOW_MASK; 7407 sin6->sin6_addr = tcp->tcp_remote_v6; 7408 sin6->sin6_port = tcp->tcp_fport; 7409 7410 ackmp->b_wptr = (uchar_t *)&sin6[1]; 7411 } 7412 } 7413 putnext(tcp->tcp_rq, ackmp); 7414 } 7415 7416 /* 7417 * Handle reinitialization of a tcp structure. 7418 * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE. 7419 */ 7420 static void 7421 tcp_reinit(tcp_t *tcp) 7422 { 7423 mblk_t *mp; 7424 int err; 7425 tcp_stack_t *tcps = tcp->tcp_tcps; 7426 7427 TCP_STAT(tcps, tcp_reinit_calls); 7428 7429 /* tcp_reinit should never be called for detached tcp_t's */ 7430 ASSERT(tcp->tcp_listener == NULL); 7431 ASSERT((tcp->tcp_family == AF_INET && 7432 tcp->tcp_ipversion == IPV4_VERSION) || 7433 (tcp->tcp_family == AF_INET6 && 7434 (tcp->tcp_ipversion == IPV4_VERSION || 7435 tcp->tcp_ipversion == IPV6_VERSION))); 7436 7437 /* Cancel outstanding timers */ 7438 tcp_timers_stop(tcp); 7439 7440 /* 7441 * Reset everything in the state vector, after updating global 7442 * MIB data from instance counters. 7443 */ 7444 UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs); 7445 tcp->tcp_ibsegs = 0; 7446 UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs); 7447 tcp->tcp_obsegs = 0; 7448 7449 tcp_close_mpp(&tcp->tcp_xmit_head); 7450 if (tcp->tcp_snd_zcopy_aware) 7451 tcp_zcopy_notify(tcp); 7452 tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL; 7453 tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0; 7454 mutex_enter(&tcp->tcp_non_sq_lock); 7455 if (tcp->tcp_flow_stopped && 7456 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 7457 tcp_clrqfull(tcp); 7458 } 7459 mutex_exit(&tcp->tcp_non_sq_lock); 7460 tcp_close_mpp(&tcp->tcp_reass_head); 7461 tcp->tcp_reass_tail = NULL; 7462 if (tcp->tcp_rcv_list != NULL) { 7463 /* Free b_next chain */ 7464 tcp_close_mpp(&tcp->tcp_rcv_list); 7465 tcp->tcp_rcv_last_head = NULL; 7466 tcp->tcp_rcv_last_tail = NULL; 7467 tcp->tcp_rcv_cnt = 0; 7468 } 7469 tcp->tcp_rcv_last_tail = NULL; 7470 7471 if ((mp = tcp->tcp_urp_mp) != NULL) { 7472 freemsg(mp); 7473 tcp->tcp_urp_mp = NULL; 7474 } 7475 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 7476 freemsg(mp); 7477 tcp->tcp_urp_mark_mp = NULL; 7478 } 7479 if (tcp->tcp_fused_sigurg_mp != NULL) { 7480 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 7481 freeb(tcp->tcp_fused_sigurg_mp); 7482 tcp->tcp_fused_sigurg_mp = NULL; 7483 } 7484 if (tcp->tcp_ordrel_mp != NULL) { 7485 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 7486 freeb(tcp->tcp_ordrel_mp); 7487 tcp->tcp_ordrel_mp = NULL; 7488 } 7489 7490 /* 7491 * Following is a union with two members which are 7492 * identical types and size so the following cleanup 7493 * is enough. 7494 */ 7495 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 7496 7497 CL_INET_DISCONNECT(tcp->tcp_connp, tcp); 7498 7499 /* 7500 * The connection can't be on the tcp_time_wait_head list 7501 * since it is not detached. 7502 */ 7503 ASSERT(tcp->tcp_time_wait_next == NULL); 7504 ASSERT(tcp->tcp_time_wait_prev == NULL); 7505 ASSERT(tcp->tcp_time_wait_expire == 0); 7506 7507 if (tcp->tcp_kssl_pending) { 7508 tcp->tcp_kssl_pending = B_FALSE; 7509 7510 /* Don't reset if the initialized by bind. */ 7511 if (tcp->tcp_kssl_ent != NULL) { 7512 kssl_release_ent(tcp->tcp_kssl_ent, NULL, 7513 KSSL_NO_PROXY); 7514 } 7515 } 7516 if (tcp->tcp_kssl_ctx != NULL) { 7517 kssl_release_ctx(tcp->tcp_kssl_ctx); 7518 tcp->tcp_kssl_ctx = NULL; 7519 } 7520 7521 /* 7522 * Reset/preserve other values 7523 */ 7524 tcp_reinit_values(tcp); 7525 ipcl_hash_remove(tcp->tcp_connp); 7526 conn_delete_ire(tcp->tcp_connp, NULL); 7527 tcp_ipsec_cleanup(tcp); 7528 7529 if (tcp->tcp_connp->conn_effective_cred != NULL) { 7530 crfree(tcp->tcp_connp->conn_effective_cred); 7531 tcp->tcp_connp->conn_effective_cred = NULL; 7532 } 7533 7534 if (tcp->tcp_conn_req_max != 0) { 7535 /* 7536 * This is the case when a TLI program uses the same 7537 * transport end point to accept a connection. This 7538 * makes the TCP both a listener and acceptor. When 7539 * this connection is closed, we need to set the state 7540 * back to TCPS_LISTEN. Make sure that the eager list 7541 * is reinitialized. 7542 * 7543 * Note that this stream is still bound to the four 7544 * tuples of the previous connection in IP. If a new 7545 * SYN with different foreign address comes in, IP will 7546 * not find it and will send it to the global queue. In 7547 * the global queue, TCP will do a tcp_lookup_listener() 7548 * to find this stream. This works because this stream 7549 * is only removed from connected hash. 7550 * 7551 */ 7552 tcp->tcp_state = TCPS_LISTEN; 7553 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 7554 tcp->tcp_eager_next_drop_q0 = tcp; 7555 tcp->tcp_eager_prev_drop_q0 = tcp; 7556 tcp->tcp_connp->conn_recv = tcp_conn_request; 7557 if (tcp->tcp_family == AF_INET6) { 7558 ASSERT(tcp->tcp_connp->conn_af_isv6); 7559 (void) ipcl_bind_insert_v6(tcp->tcp_connp, IPPROTO_TCP, 7560 &tcp->tcp_ip6h->ip6_src, tcp->tcp_lport); 7561 } else { 7562 ASSERT(!tcp->tcp_connp->conn_af_isv6); 7563 (void) ipcl_bind_insert(tcp->tcp_connp, IPPROTO_TCP, 7564 tcp->tcp_ipha->ipha_src, tcp->tcp_lport); 7565 } 7566 } else { 7567 tcp->tcp_state = TCPS_BOUND; 7568 } 7569 7570 /* 7571 * Initialize to default values 7572 * Can't fail since enough header template space already allocated 7573 * at open(). 7574 */ 7575 err = tcp_init_values(tcp); 7576 ASSERT(err == 0); 7577 /* Restore state in tcp_tcph */ 7578 bcopy(&tcp->tcp_lport, tcp->tcp_tcph->th_lport, TCP_PORT_LEN); 7579 if (tcp->tcp_ipversion == IPV4_VERSION) 7580 tcp->tcp_ipha->ipha_src = tcp->tcp_bound_source; 7581 else 7582 tcp->tcp_ip6h->ip6_src = tcp->tcp_bound_source_v6; 7583 /* 7584 * Copy of the src addr. in tcp_t is needed in tcp_t 7585 * since the lookup funcs can only lookup on tcp_t 7586 */ 7587 tcp->tcp_ip_src_v6 = tcp->tcp_bound_source_v6; 7588 7589 ASSERT(tcp->tcp_ptpbhn != NULL); 7590 tcp->tcp_recv_hiwater = tcps->tcps_recv_hiwat; 7591 tcp->tcp_recv_lowater = tcp_rinfo.mi_lowat; 7592 tcp->tcp_rwnd = tcps->tcps_recv_hiwat; 7593 tcp->tcp_mss = tcp->tcp_ipversion != IPV4_VERSION ? 7594 tcps->tcps_mss_def_ipv6 : tcps->tcps_mss_def_ipv4; 7595 } 7596 7597 /* 7598 * Force values to zero that need be zero. 7599 * Do not touch values asociated with the BOUND or LISTEN state 7600 * since the connection will end up in that state after the reinit. 7601 * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t 7602 * structure! 7603 */ 7604 static void 7605 tcp_reinit_values(tcp) 7606 tcp_t *tcp; 7607 { 7608 tcp_stack_t *tcps = tcp->tcp_tcps; 7609 7610 #ifndef lint 7611 #define DONTCARE(x) 7612 #define PRESERVE(x) 7613 #else 7614 #define DONTCARE(x) ((x) = (x)) 7615 #define PRESERVE(x) ((x) = (x)) 7616 #endif /* lint */ 7617 7618 PRESERVE(tcp->tcp_bind_hash_port); 7619 PRESERVE(tcp->tcp_bind_hash); 7620 PRESERVE(tcp->tcp_ptpbhn); 7621 PRESERVE(tcp->tcp_acceptor_hash); 7622 PRESERVE(tcp->tcp_ptpahn); 7623 7624 /* Should be ASSERT NULL on these with new code! */ 7625 ASSERT(tcp->tcp_time_wait_next == NULL); 7626 ASSERT(tcp->tcp_time_wait_prev == NULL); 7627 ASSERT(tcp->tcp_time_wait_expire == 0); 7628 PRESERVE(tcp->tcp_state); 7629 PRESERVE(tcp->tcp_rq); 7630 PRESERVE(tcp->tcp_wq); 7631 7632 ASSERT(tcp->tcp_xmit_head == NULL); 7633 ASSERT(tcp->tcp_xmit_last == NULL); 7634 ASSERT(tcp->tcp_unsent == 0); 7635 ASSERT(tcp->tcp_xmit_tail == NULL); 7636 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 7637 7638 tcp->tcp_snxt = 0; /* Displayed in mib */ 7639 tcp->tcp_suna = 0; /* Displayed in mib */ 7640 tcp->tcp_swnd = 0; 7641 DONTCARE(tcp->tcp_cwnd); /* Init in tcp_mss_set */ 7642 7643 ASSERT(tcp->tcp_ibsegs == 0); 7644 ASSERT(tcp->tcp_obsegs == 0); 7645 7646 if (tcp->tcp_iphc != NULL) { 7647 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 7648 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 7649 } 7650 7651 DONTCARE(tcp->tcp_naglim); /* Init in tcp_init_values */ 7652 DONTCARE(tcp->tcp_hdr_len); /* Init in tcp_init_values */ 7653 DONTCARE(tcp->tcp_ipha); 7654 DONTCARE(tcp->tcp_ip6h); 7655 DONTCARE(tcp->tcp_ip_hdr_len); 7656 DONTCARE(tcp->tcp_tcph); 7657 DONTCARE(tcp->tcp_tcp_hdr_len); /* Init in tcp_init_values */ 7658 tcp->tcp_valid_bits = 0; 7659 7660 DONTCARE(tcp->tcp_xmit_hiwater); /* Init in tcp_init_values */ 7661 DONTCARE(tcp->tcp_timer_backoff); /* Init in tcp_init_values */ 7662 DONTCARE(tcp->tcp_last_recv_time); /* Init in tcp_init_values */ 7663 tcp->tcp_last_rcv_lbolt = 0; 7664 7665 tcp->tcp_init_cwnd = 0; 7666 7667 tcp->tcp_urp_last_valid = 0; 7668 tcp->tcp_hard_binding = 0; 7669 tcp->tcp_hard_bound = 0; 7670 PRESERVE(tcp->tcp_cred); 7671 PRESERVE(tcp->tcp_cpid); 7672 PRESERVE(tcp->tcp_open_time); 7673 PRESERVE(tcp->tcp_exclbind); 7674 7675 tcp->tcp_fin_acked = 0; 7676 tcp->tcp_fin_rcvd = 0; 7677 tcp->tcp_fin_sent = 0; 7678 tcp->tcp_ordrel_done = 0; 7679 7680 tcp->tcp_debug = 0; 7681 tcp->tcp_dontroute = 0; 7682 tcp->tcp_broadcast = 0; 7683 7684 tcp->tcp_useloopback = 0; 7685 tcp->tcp_reuseaddr = 0; 7686 tcp->tcp_oobinline = 0; 7687 tcp->tcp_dgram_errind = 0; 7688 7689 tcp->tcp_detached = 0; 7690 tcp->tcp_bind_pending = 0; 7691 tcp->tcp_unbind_pending = 0; 7692 7693 tcp->tcp_snd_ws_ok = B_FALSE; 7694 tcp->tcp_snd_ts_ok = B_FALSE; 7695 tcp->tcp_linger = 0; 7696 tcp->tcp_ka_enabled = 0; 7697 tcp->tcp_zero_win_probe = 0; 7698 7699 tcp->tcp_loopback = 0; 7700 tcp->tcp_refuse = 0; 7701 tcp->tcp_localnet = 0; 7702 tcp->tcp_syn_defense = 0; 7703 tcp->tcp_set_timer = 0; 7704 7705 tcp->tcp_active_open = 0; 7706 tcp->tcp_rexmit = B_FALSE; 7707 tcp->tcp_xmit_zc_clean = B_FALSE; 7708 7709 tcp->tcp_snd_sack_ok = B_FALSE; 7710 PRESERVE(tcp->tcp_recvdstaddr); 7711 tcp->tcp_hwcksum = B_FALSE; 7712 7713 tcp->tcp_ire_ill_check_done = B_FALSE; 7714 DONTCARE(tcp->tcp_maxpsz); /* Init in tcp_init_values */ 7715 7716 tcp->tcp_mdt = B_FALSE; 7717 tcp->tcp_mdt_hdr_head = 0; 7718 tcp->tcp_mdt_hdr_tail = 0; 7719 7720 tcp->tcp_conn_def_q0 = 0; 7721 tcp->tcp_ip_forward_progress = B_FALSE; 7722 tcp->tcp_anon_priv_bind = 0; 7723 tcp->tcp_ecn_ok = B_FALSE; 7724 7725 tcp->tcp_cwr = B_FALSE; 7726 tcp->tcp_ecn_echo_on = B_FALSE; 7727 tcp->tcp_is_wnd_shrnk = B_FALSE; 7728 7729 if (tcp->tcp_sack_info != NULL) { 7730 if (tcp->tcp_notsack_list != NULL) { 7731 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, 7732 tcp); 7733 } 7734 kmem_cache_free(tcp_sack_info_cache, tcp->tcp_sack_info); 7735 tcp->tcp_sack_info = NULL; 7736 } 7737 7738 tcp->tcp_rcv_ws = 0; 7739 tcp->tcp_snd_ws = 0; 7740 tcp->tcp_ts_recent = 0; 7741 tcp->tcp_rnxt = 0; /* Displayed in mib */ 7742 DONTCARE(tcp->tcp_rwnd); /* Set in tcp_reinit() */ 7743 tcp->tcp_if_mtu = 0; 7744 7745 ASSERT(tcp->tcp_reass_head == NULL); 7746 ASSERT(tcp->tcp_reass_tail == NULL); 7747 7748 tcp->tcp_cwnd_cnt = 0; 7749 7750 ASSERT(tcp->tcp_rcv_list == NULL); 7751 ASSERT(tcp->tcp_rcv_last_head == NULL); 7752 ASSERT(tcp->tcp_rcv_last_tail == NULL); 7753 ASSERT(tcp->tcp_rcv_cnt == 0); 7754 7755 DONTCARE(tcp->tcp_cwnd_ssthresh); /* Init in tcp_adapt_ire */ 7756 DONTCARE(tcp->tcp_cwnd_max); /* Init in tcp_init_values */ 7757 tcp->tcp_csuna = 0; 7758 7759 tcp->tcp_rto = 0; /* Displayed in MIB */ 7760 DONTCARE(tcp->tcp_rtt_sa); /* Init in tcp_init_values */ 7761 DONTCARE(tcp->tcp_rtt_sd); /* Init in tcp_init_values */ 7762 tcp->tcp_rtt_update = 0; 7763 7764 DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 7765 DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 7766 7767 tcp->tcp_rack = 0; /* Displayed in mib */ 7768 tcp->tcp_rack_cnt = 0; 7769 tcp->tcp_rack_cur_max = 0; 7770 tcp->tcp_rack_abs_max = 0; 7771 7772 tcp->tcp_max_swnd = 0; 7773 7774 ASSERT(tcp->tcp_listener == NULL); 7775 7776 DONTCARE(tcp->tcp_xmit_lowater); /* Init in tcp_init_values */ 7777 7778 DONTCARE(tcp->tcp_irs); /* tcp_valid_bits cleared */ 7779 DONTCARE(tcp->tcp_iss); /* tcp_valid_bits cleared */ 7780 DONTCARE(tcp->tcp_fss); /* tcp_valid_bits cleared */ 7781 DONTCARE(tcp->tcp_urg); /* tcp_valid_bits cleared */ 7782 7783 ASSERT(tcp->tcp_conn_req_cnt_q == 0); 7784 ASSERT(tcp->tcp_conn_req_cnt_q0 == 0); 7785 PRESERVE(tcp->tcp_conn_req_max); 7786 PRESERVE(tcp->tcp_conn_req_seqnum); 7787 7788 DONTCARE(tcp->tcp_ip_hdr_len); /* Init in tcp_init_values */ 7789 DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */ 7790 DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */ 7791 DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */ 7792 DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */ 7793 7794 tcp->tcp_lingertime = 0; 7795 7796 DONTCARE(tcp->tcp_urp_last); /* tcp_urp_last_valid is cleared */ 7797 ASSERT(tcp->tcp_urp_mp == NULL); 7798 ASSERT(tcp->tcp_urp_mark_mp == NULL); 7799 ASSERT(tcp->tcp_fused_sigurg_mp == NULL); 7800 7801 ASSERT(tcp->tcp_eager_next_q == NULL); 7802 ASSERT(tcp->tcp_eager_last_q == NULL); 7803 ASSERT((tcp->tcp_eager_next_q0 == NULL && 7804 tcp->tcp_eager_prev_q0 == NULL) || 7805 tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0); 7806 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 7807 7808 ASSERT((tcp->tcp_eager_next_drop_q0 == NULL && 7809 tcp->tcp_eager_prev_drop_q0 == NULL) || 7810 tcp->tcp_eager_next_drop_q0 == tcp->tcp_eager_prev_drop_q0); 7811 7812 tcp->tcp_client_errno = 0; 7813 7814 DONTCARE(tcp->tcp_sum); /* Init in tcp_init_values */ 7815 7816 tcp->tcp_remote_v6 = ipv6_all_zeros; /* Displayed in MIB */ 7817 7818 PRESERVE(tcp->tcp_bound_source_v6); 7819 tcp->tcp_last_sent_len = 0; 7820 tcp->tcp_dupack_cnt = 0; 7821 7822 tcp->tcp_fport = 0; /* Displayed in MIB */ 7823 PRESERVE(tcp->tcp_lport); 7824 7825 PRESERVE(tcp->tcp_acceptor_lockp); 7826 7827 ASSERT(tcp->tcp_ordrel_mp == NULL); 7828 PRESERVE(tcp->tcp_acceptor_id); 7829 DONTCARE(tcp->tcp_ipsec_overhead); 7830 7831 PRESERVE(tcp->tcp_family); 7832 if (tcp->tcp_family == AF_INET6) { 7833 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 7834 } else { 7835 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 7836 } 7837 PRESERVE(tcp->tcp_ipversion); /* Init in tcp_init_values */ 7838 7839 tcp->tcp_bound_if = 0; 7840 tcp->tcp_ipv6_recvancillary = 0; 7841 tcp->tcp_recvifindex = 0; 7842 tcp->tcp_recvhops = 0; 7843 tcp->tcp_closed = 0; 7844 tcp->tcp_cleandeathtag = 0; 7845 if (tcp->tcp_hopopts != NULL) { 7846 mi_free(tcp->tcp_hopopts); 7847 tcp->tcp_hopopts = NULL; 7848 tcp->tcp_hopoptslen = 0; 7849 } 7850 ASSERT(tcp->tcp_hopoptslen == 0); 7851 if (tcp->tcp_dstopts != NULL) { 7852 mi_free(tcp->tcp_dstopts); 7853 tcp->tcp_dstopts = NULL; 7854 tcp->tcp_dstoptslen = 0; 7855 } 7856 ASSERT(tcp->tcp_dstoptslen == 0); 7857 if (tcp->tcp_rtdstopts != NULL) { 7858 mi_free(tcp->tcp_rtdstopts); 7859 tcp->tcp_rtdstopts = NULL; 7860 tcp->tcp_rtdstoptslen = 0; 7861 } 7862 ASSERT(tcp->tcp_rtdstoptslen == 0); 7863 if (tcp->tcp_rthdr != NULL) { 7864 mi_free(tcp->tcp_rthdr); 7865 tcp->tcp_rthdr = NULL; 7866 tcp->tcp_rthdrlen = 0; 7867 } 7868 ASSERT(tcp->tcp_rthdrlen == 0); 7869 PRESERVE(tcp->tcp_drop_opt_ack_cnt); 7870 7871 /* Reset fusion-related fields */ 7872 tcp->tcp_fused = B_FALSE; 7873 tcp->tcp_unfusable = B_FALSE; 7874 tcp->tcp_fused_sigurg = B_FALSE; 7875 tcp->tcp_loopback_peer = NULL; 7876 7877 tcp->tcp_lso = B_FALSE; 7878 7879 tcp->tcp_in_ack_unsent = 0; 7880 tcp->tcp_cork = B_FALSE; 7881 tcp->tcp_tconnind_started = B_FALSE; 7882 7883 PRESERVE(tcp->tcp_squeue_bytes); 7884 7885 ASSERT(tcp->tcp_kssl_ctx == NULL); 7886 ASSERT(!tcp->tcp_kssl_pending); 7887 PRESERVE(tcp->tcp_kssl_ent); 7888 7889 tcp->tcp_closemp_used = B_FALSE; 7890 7891 PRESERVE(tcp->tcp_rsrv_mp); 7892 PRESERVE(tcp->tcp_rsrv_mp_lock); 7893 7894 #ifdef DEBUG 7895 DONTCARE(tcp->tcmp_stk[0]); 7896 #endif 7897 7898 PRESERVE(tcp->tcp_connid); 7899 7900 7901 #undef DONTCARE 7902 #undef PRESERVE 7903 } 7904 7905 /* 7906 * Allocate necessary resources and initialize state vector. 7907 * Guaranteed not to fail so that when an error is returned, 7908 * the caller doesn't need to do any additional cleanup. 7909 */ 7910 int 7911 tcp_init(tcp_t *tcp, queue_t *q) 7912 { 7913 int err; 7914 7915 tcp->tcp_rq = q; 7916 tcp->tcp_wq = WR(q); 7917 tcp->tcp_state = TCPS_IDLE; 7918 if ((err = tcp_init_values(tcp)) != 0) 7919 tcp_timers_stop(tcp); 7920 return (err); 7921 } 7922 7923 static int 7924 tcp_init_values(tcp_t *tcp) 7925 { 7926 int err; 7927 tcp_stack_t *tcps = tcp->tcp_tcps; 7928 7929 ASSERT((tcp->tcp_family == AF_INET && 7930 tcp->tcp_ipversion == IPV4_VERSION) || 7931 (tcp->tcp_family == AF_INET6 && 7932 (tcp->tcp_ipversion == IPV4_VERSION || 7933 tcp->tcp_ipversion == IPV6_VERSION))); 7934 7935 /* 7936 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO 7937 * will be close to tcp_rexmit_interval_initial. By doing this, we 7938 * allow the algorithm to adjust slowly to large fluctuations of RTT 7939 * during first few transmissions of a connection as seen in slow 7940 * links. 7941 */ 7942 tcp->tcp_rtt_sa = tcps->tcps_rexmit_interval_initial << 2; 7943 tcp->tcp_rtt_sd = tcps->tcps_rexmit_interval_initial >> 1; 7944 tcp->tcp_rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 7945 tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) + 7946 tcps->tcps_conn_grace_period; 7947 if (tcp->tcp_rto < tcps->tcps_rexmit_interval_min) 7948 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 7949 tcp->tcp_timer_backoff = 0; 7950 tcp->tcp_ms_we_have_waited = 0; 7951 tcp->tcp_last_recv_time = lbolt; 7952 tcp->tcp_cwnd_max = tcps->tcps_cwnd_max_; 7953 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 7954 tcp->tcp_snd_burst = TCP_CWND_INFINITE; 7955 7956 tcp->tcp_maxpsz = tcps->tcps_maxpsz_multiplier; 7957 7958 tcp->tcp_first_timer_threshold = tcps->tcps_ip_notify_interval; 7959 tcp->tcp_first_ctimer_threshold = tcps->tcps_ip_notify_cinterval; 7960 tcp->tcp_second_timer_threshold = tcps->tcps_ip_abort_interval; 7961 /* 7962 * Fix it to tcp_ip_abort_linterval later if it turns out to be a 7963 * passive open. 7964 */ 7965 tcp->tcp_second_ctimer_threshold = tcps->tcps_ip_abort_cinterval; 7966 7967 tcp->tcp_naglim = tcps->tcps_naglim_def; 7968 7969 /* NOTE: ISS is now set in tcp_adapt_ire(). */ 7970 7971 tcp->tcp_mdt_hdr_head = 0; 7972 tcp->tcp_mdt_hdr_tail = 0; 7973 7974 /* Reset fusion-related fields */ 7975 tcp->tcp_fused = B_FALSE; 7976 tcp->tcp_unfusable = B_FALSE; 7977 tcp->tcp_fused_sigurg = B_FALSE; 7978 tcp->tcp_loopback_peer = NULL; 7979 7980 /* Initialize the header template */ 7981 if (tcp->tcp_family == AF_INET) { 7982 err = tcp_header_init_ipv4(tcp); 7983 } else { 7984 err = tcp_header_init_ipv6(tcp); 7985 } 7986 if (err) 7987 return (err); 7988 7989 /* 7990 * Init the window scale to the max so tcp_rwnd_set() won't pare 7991 * down tcp_rwnd. tcp_adapt_ire() will set the right value later. 7992 */ 7993 tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT; 7994 tcp->tcp_xmit_lowater = tcps->tcps_xmit_lowat; 7995 tcp->tcp_xmit_hiwater = tcps->tcps_xmit_hiwat; 7996 tcp->tcp_recv_hiwater = tcps->tcps_recv_hiwat; 7997 tcp->tcp_rwnd = tcps->tcps_recv_hiwat; 7998 tcp->tcp_recv_lowater = tcp_rinfo.mi_lowat; 7999 8000 tcp->tcp_cork = B_FALSE; 8001 /* 8002 * Init the tcp_debug option. This value determines whether TCP 8003 * calls strlog() to print out debug messages. Doing this 8004 * initialization here means that this value is not inherited thru 8005 * tcp_reinit(). 8006 */ 8007 tcp->tcp_debug = tcps->tcps_dbg; 8008 8009 tcp->tcp_ka_interval = tcps->tcps_keepalive_interval; 8010 tcp->tcp_ka_abort_thres = tcps->tcps_keepalive_abort_interval; 8011 8012 return (0); 8013 } 8014 8015 /* 8016 * Initialize the IPv4 header. Loses any record of any IP options. 8017 */ 8018 static int 8019 tcp_header_init_ipv4(tcp_t *tcp) 8020 { 8021 tcph_t *tcph; 8022 uint32_t sum; 8023 conn_t *connp; 8024 tcp_stack_t *tcps = tcp->tcp_tcps; 8025 8026 /* 8027 * This is a simple initialization. If there's 8028 * already a template, it should never be too small, 8029 * so reuse it. Otherwise, allocate space for the new one. 8030 */ 8031 if (tcp->tcp_iphc == NULL) { 8032 ASSERT(tcp->tcp_iphc_len == 0); 8033 tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH; 8034 tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP); 8035 if (tcp->tcp_iphc == NULL) { 8036 tcp->tcp_iphc_len = 0; 8037 return (ENOMEM); 8038 } 8039 } 8040 8041 /* options are gone; may need a new label */ 8042 connp = tcp->tcp_connp; 8043 connp->conn_mlp_type = mlptSingle; 8044 connp->conn_ulp_labeled = !is_system_labeled(); 8045 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 8046 8047 /* 8048 * tcp_do_get{sock,peer}name constructs the sockaddr from the 8049 * ip header, and decides which header to use based on ip version. 8050 * That operation happens outside the squeue, so we hold the lock 8051 * here to ensure that the ip version and header remain consistent. 8052 */ 8053 mutex_enter(&connp->conn_lock); 8054 tcp->tcp_ipversion = IPV4_VERSION; 8055 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 8056 tcp->tcp_ip6h = NULL; 8057 mutex_exit(&connp->conn_lock); 8058 8059 tcp->tcp_hdr_len = sizeof (ipha_t) + sizeof (tcph_t); 8060 tcp->tcp_tcp_hdr_len = sizeof (tcph_t); 8061 tcp->tcp_ip_hdr_len = sizeof (ipha_t); 8062 tcp->tcp_ipha->ipha_length = htons(sizeof (ipha_t) + sizeof (tcph_t)); 8063 tcp->tcp_ipha->ipha_version_and_hdr_length 8064 = (IP_VERSION << 4) | IP_SIMPLE_HDR_LENGTH_IN_WORDS; 8065 tcp->tcp_ipha->ipha_ident = 0; 8066 8067 tcp->tcp_ttl = (uchar_t)tcps->tcps_ipv4_ttl; 8068 tcp->tcp_tos = 0; 8069 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0; 8070 tcp->tcp_ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl; 8071 tcp->tcp_ipha->ipha_protocol = IPPROTO_TCP; 8072 8073 tcph = (tcph_t *)(tcp->tcp_iphc + sizeof (ipha_t)); 8074 tcp->tcp_tcph = tcph; 8075 tcph->th_offset_and_rsrvd[0] = (5 << 4); 8076 /* 8077 * IP wants our header length in the checksum field to 8078 * allow it to perform a single pseudo-header+checksum 8079 * calculation on behalf of TCP. 8080 * Include the adjustment for a source route once IP_OPTIONS is set. 8081 */ 8082 sum = sizeof (tcph_t) + tcp->tcp_sum; 8083 sum = (sum >> 16) + (sum & 0xFFFF); 8084 U16_TO_ABE16(sum, tcph->th_sum); 8085 return (0); 8086 } 8087 8088 /* 8089 * Initialize the IPv6 header. Loses any record of any IPv6 extension headers. 8090 */ 8091 static int 8092 tcp_header_init_ipv6(tcp_t *tcp) 8093 { 8094 tcph_t *tcph; 8095 uint32_t sum; 8096 conn_t *connp; 8097 tcp_stack_t *tcps = tcp->tcp_tcps; 8098 8099 /* 8100 * This is a simple initialization. If there's 8101 * already a template, it should never be too small, 8102 * so reuse it. Otherwise, allocate space for the new one. 8103 * Ensure that there is enough space to "downgrade" the tcp_t 8104 * to an IPv4 tcp_t. This requires having space for a full load 8105 * of IPv4 options, as well as a full load of TCP options 8106 * (TCP_MAX_COMBINED_HEADER_LENGTH, 120 bytes); this is more space 8107 * than a v6 header and a TCP header with a full load of TCP options 8108 * (IPV6_HDR_LEN is 40 bytes; TCP_MAX_HDR_LENGTH is 60 bytes). 8109 * We want to avoid reallocation in the "downgraded" case when 8110 * processing outbound IPv4 options. 8111 */ 8112 if (tcp->tcp_iphc == NULL) { 8113 ASSERT(tcp->tcp_iphc_len == 0); 8114 tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH; 8115 tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP); 8116 if (tcp->tcp_iphc == NULL) { 8117 tcp->tcp_iphc_len = 0; 8118 return (ENOMEM); 8119 } 8120 } 8121 8122 /* options are gone; may need a new label */ 8123 connp = tcp->tcp_connp; 8124 connp->conn_mlp_type = mlptSingle; 8125 connp->conn_ulp_labeled = !is_system_labeled(); 8126 8127 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 8128 tcp->tcp_hdr_len = IPV6_HDR_LEN + sizeof (tcph_t); 8129 tcp->tcp_tcp_hdr_len = sizeof (tcph_t); 8130 tcp->tcp_ip_hdr_len = IPV6_HDR_LEN; 8131 8132 /* 8133 * tcp_do_get{sock,peer}name constructs the sockaddr from the 8134 * ip header, and decides which header to use based on ip version. 8135 * That operation happens outside the squeue, so we hold the lock 8136 * here to ensure that the ip version and header remain consistent. 8137 */ 8138 mutex_enter(&connp->conn_lock); 8139 tcp->tcp_ipversion = IPV6_VERSION; 8140 tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc; 8141 tcp->tcp_ipha = NULL; 8142 mutex_exit(&connp->conn_lock); 8143 8144 /* Initialize the header template */ 8145 8146 tcp->tcp_ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW; 8147 tcp->tcp_ip6h->ip6_plen = ntohs(sizeof (tcph_t)); 8148 tcp->tcp_ip6h->ip6_nxt = IPPROTO_TCP; 8149 tcp->tcp_ip6h->ip6_hops = (uint8_t)tcps->tcps_ipv6_hoplimit; 8150 8151 tcph = (tcph_t *)(tcp->tcp_iphc + IPV6_HDR_LEN); 8152 tcp->tcp_tcph = tcph; 8153 tcph->th_offset_and_rsrvd[0] = (5 << 4); 8154 /* 8155 * IP wants our header length in the checksum field to 8156 * allow it to perform a single psuedo-header+checksum 8157 * calculation on behalf of TCP. 8158 * Include the adjustment for a source route when IPV6_RTHDR is set. 8159 */ 8160 sum = sizeof (tcph_t) + tcp->tcp_sum; 8161 sum = (sum >> 16) + (sum & 0xFFFF); 8162 U16_TO_ABE16(sum, tcph->th_sum); 8163 return (0); 8164 } 8165 8166 /* At minimum we need 8 bytes in the TCP header for the lookup */ 8167 #define ICMP_MIN_TCP_HDR 8 8168 8169 /* 8170 * tcp_icmp_error is called by tcp_rput_other to process ICMP error messages 8171 * passed up by IP. The message is always received on the correct tcp_t. 8172 * Assumes that IP has pulled up everything up to and including the ICMP header. 8173 */ 8174 void 8175 tcp_icmp_error(tcp_t *tcp, mblk_t *mp) 8176 { 8177 icmph_t *icmph; 8178 ipha_t *ipha; 8179 int iph_hdr_length; 8180 tcph_t *tcph; 8181 boolean_t ipsec_mctl = B_FALSE; 8182 boolean_t secure; 8183 mblk_t *first_mp = mp; 8184 int32_t new_mss; 8185 uint32_t ratio; 8186 size_t mp_size = MBLKL(mp); 8187 uint32_t seg_seq; 8188 tcp_stack_t *tcps = tcp->tcp_tcps; 8189 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 8190 8191 /* Assume IP provides aligned packets - otherwise toss */ 8192 if (!OK_32PTR(mp->b_rptr)) { 8193 freemsg(mp); 8194 return; 8195 } 8196 8197 /* 8198 * Since ICMP errors are normal data marked with M_CTL when sent 8199 * to TCP or UDP, we have to look for a IPSEC_IN value to identify 8200 * packets starting with an ipsec_info_t, see ipsec_info.h. 8201 */ 8202 if ((mp_size == sizeof (ipsec_info_t)) && 8203 (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == IPSEC_IN)) { 8204 ASSERT(mp->b_cont != NULL); 8205 mp = mp->b_cont; 8206 /* IP should have done this */ 8207 ASSERT(OK_32PTR(mp->b_rptr)); 8208 mp_size = MBLKL(mp); 8209 ipsec_mctl = B_TRUE; 8210 } 8211 8212 /* 8213 * Verify that we have a complete outer IP header. If not, drop it. 8214 */ 8215 if (mp_size < sizeof (ipha_t)) { 8216 noticmpv4: 8217 freemsg(first_mp); 8218 return; 8219 } 8220 8221 ipha = (ipha_t *)mp->b_rptr; 8222 /* 8223 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent 8224 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6. 8225 */ 8226 switch (IPH_HDR_VERSION(ipha)) { 8227 case IPV6_VERSION: 8228 tcp_icmp_error_ipv6(tcp, first_mp, ipsec_mctl); 8229 return; 8230 case IPV4_VERSION: 8231 break; 8232 default: 8233 goto noticmpv4; 8234 } 8235 8236 /* Skip past the outer IP and ICMP headers */ 8237 iph_hdr_length = IPH_HDR_LENGTH(ipha); 8238 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 8239 /* 8240 * If we don't have the correct outer IP header length or if the ULP 8241 * is not IPPROTO_ICMP or if we don't have a complete inner IP header 8242 * send it upstream. 8243 */ 8244 if (iph_hdr_length < sizeof (ipha_t) || 8245 ipha->ipha_protocol != IPPROTO_ICMP || 8246 (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) { 8247 goto noticmpv4; 8248 } 8249 ipha = (ipha_t *)&icmph[1]; 8250 8251 /* Skip past the inner IP and find the ULP header */ 8252 iph_hdr_length = IPH_HDR_LENGTH(ipha); 8253 tcph = (tcph_t *)((char *)ipha + iph_hdr_length); 8254 /* 8255 * If we don't have the correct inner IP header length or if the ULP 8256 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR 8257 * bytes of TCP header, drop it. 8258 */ 8259 if (iph_hdr_length < sizeof (ipha_t) || 8260 ipha->ipha_protocol != IPPROTO_TCP || 8261 (uchar_t *)tcph + ICMP_MIN_TCP_HDR > mp->b_wptr) { 8262 goto noticmpv4; 8263 } 8264 8265 if (TCP_IS_DETACHED_NONEAGER(tcp)) { 8266 if (ipsec_mctl) { 8267 secure = ipsec_in_is_secure(first_mp); 8268 } else { 8269 secure = B_FALSE; 8270 } 8271 if (secure) { 8272 /* 8273 * If we are willing to accept this in clear 8274 * we don't have to verify policy. 8275 */ 8276 if (!ipsec_inbound_accept_clear(mp, ipha, NULL)) { 8277 if (!tcp_check_policy(tcp, first_mp, 8278 ipha, NULL, secure, ipsec_mctl)) { 8279 /* 8280 * tcp_check_policy called 8281 * ip_drop_packet() on failure. 8282 */ 8283 return; 8284 } 8285 } 8286 } 8287 } else if (ipsec_mctl) { 8288 /* 8289 * This is a hard_bound connection. IP has already 8290 * verified policy. We don't have to do it again. 8291 */ 8292 freeb(first_mp); 8293 first_mp = mp; 8294 ipsec_mctl = B_FALSE; 8295 } 8296 8297 seg_seq = ABE32_TO_U32(tcph->th_seq); 8298 /* 8299 * TCP SHOULD check that the TCP sequence number contained in 8300 * payload of the ICMP error message is within the range 8301 * SND.UNA <= SEG.SEQ < SND.NXT. 8302 */ 8303 if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) { 8304 /* 8305 * The ICMP message is bogus, just drop it. But if this is 8306 * an ICMP too big message, IP has already changed 8307 * the ire_max_frag to the bogus value. We need to change 8308 * it back. 8309 */ 8310 if (icmph->icmph_type == ICMP_DEST_UNREACHABLE && 8311 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 8312 conn_t *connp = tcp->tcp_connp; 8313 ire_t *ire; 8314 int flag; 8315 8316 if (tcp->tcp_ipversion == IPV4_VERSION) { 8317 flag = tcp->tcp_ipha-> 8318 ipha_fragment_offset_and_flags; 8319 } else { 8320 flag = 0; 8321 } 8322 mutex_enter(&connp->conn_lock); 8323 if ((ire = connp->conn_ire_cache) != NULL) { 8324 mutex_enter(&ire->ire_lock); 8325 mutex_exit(&connp->conn_lock); 8326 ire->ire_max_frag = tcp->tcp_if_mtu; 8327 ire->ire_frag_flag |= flag; 8328 mutex_exit(&ire->ire_lock); 8329 } else { 8330 mutex_exit(&connp->conn_lock); 8331 } 8332 } 8333 goto noticmpv4; 8334 } 8335 8336 switch (icmph->icmph_type) { 8337 case ICMP_DEST_UNREACHABLE: 8338 switch (icmph->icmph_code) { 8339 case ICMP_FRAGMENTATION_NEEDED: 8340 /* 8341 * Reduce the MSS based on the new MTU. This will 8342 * eliminate any fragmentation locally. 8343 * N.B. There may well be some funny side-effects on 8344 * the local send policy and the remote receive policy. 8345 * Pending further research, we provide 8346 * tcp_ignore_path_mtu just in case this proves 8347 * disastrous somewhere. 8348 * 8349 * After updating the MSS, retransmit part of the 8350 * dropped segment using the new mss by calling 8351 * tcp_wput_data(). Need to adjust all those 8352 * params to make sure tcp_wput_data() work properly. 8353 */ 8354 if (tcps->tcps_ignore_path_mtu || 8355 tcp->tcp_ipha->ipha_fragment_offset_and_flags == 0) 8356 break; 8357 8358 /* 8359 * Decrease the MSS by time stamp options 8360 * IP options and IPSEC options. tcp_hdr_len 8361 * includes time stamp option and IP option 8362 * length. Note that new_mss may be negative 8363 * if tcp_ipsec_overhead is large and the 8364 * icmph_du_mtu is the minimum value, which is 68. 8365 */ 8366 new_mss = ntohs(icmph->icmph_du_mtu) - 8367 tcp->tcp_hdr_len - tcp->tcp_ipsec_overhead; 8368 8369 DTRACE_PROBE2(tcp__pmtu__change, tcp_t *, tcp, int, 8370 new_mss); 8371 8372 /* 8373 * Only update the MSS if the new one is 8374 * smaller than the previous one. This is 8375 * to avoid problems when getting multiple 8376 * ICMP errors for the same MTU. 8377 */ 8378 if (new_mss >= tcp->tcp_mss) 8379 break; 8380 8381 /* 8382 * Note that we are using the template header's DF 8383 * bit in the fast path sending. So we need to compare 8384 * the new mss with both tcps_mss_min and ip_pmtu_min. 8385 * And stop doing IPv4 PMTUd if new_mss is less than 8386 * MAX(tcps_mss_min, ip_pmtu_min). 8387 */ 8388 if (new_mss < tcps->tcps_mss_min || 8389 new_mss < ipst->ips_ip_pmtu_min) { 8390 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 8391 0; 8392 } 8393 8394 ratio = tcp->tcp_cwnd / tcp->tcp_mss; 8395 ASSERT(ratio >= 1); 8396 tcp_mss_set(tcp, new_mss, B_TRUE); 8397 8398 /* 8399 * Make sure we have something to 8400 * send. 8401 */ 8402 if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) && 8403 (tcp->tcp_xmit_head != NULL)) { 8404 /* 8405 * Shrink tcp_cwnd in 8406 * proportion to the old MSS/new MSS. 8407 */ 8408 tcp->tcp_cwnd = ratio * tcp->tcp_mss; 8409 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 8410 (tcp->tcp_unsent == 0)) { 8411 tcp->tcp_rexmit_max = tcp->tcp_fss; 8412 } else { 8413 tcp->tcp_rexmit_max = tcp->tcp_snxt; 8414 } 8415 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 8416 tcp->tcp_rexmit = B_TRUE; 8417 tcp->tcp_dupack_cnt = 0; 8418 tcp->tcp_snd_burst = TCP_CWND_SS; 8419 tcp_ss_rexmit(tcp); 8420 } 8421 break; 8422 case ICMP_PORT_UNREACHABLE: 8423 case ICMP_PROTOCOL_UNREACHABLE: 8424 switch (tcp->tcp_state) { 8425 case TCPS_SYN_SENT: 8426 case TCPS_SYN_RCVD: 8427 /* 8428 * ICMP can snipe away incipient 8429 * TCP connections as long as 8430 * seq number is same as initial 8431 * send seq number. 8432 */ 8433 if (seg_seq == tcp->tcp_iss) { 8434 (void) tcp_clean_death(tcp, 8435 ECONNREFUSED, 6); 8436 } 8437 break; 8438 } 8439 break; 8440 case ICMP_HOST_UNREACHABLE: 8441 case ICMP_NET_UNREACHABLE: 8442 /* Record the error in case we finally time out. */ 8443 if (icmph->icmph_code == ICMP_HOST_UNREACHABLE) 8444 tcp->tcp_client_errno = EHOSTUNREACH; 8445 else 8446 tcp->tcp_client_errno = ENETUNREACH; 8447 if (tcp->tcp_state == TCPS_SYN_RCVD) { 8448 if (tcp->tcp_listener != NULL && 8449 tcp->tcp_listener->tcp_syn_defense) { 8450 /* 8451 * Ditch the half-open connection if we 8452 * suspect a SYN attack is under way. 8453 */ 8454 tcp_ip_ire_mark_advice(tcp); 8455 (void) tcp_clean_death(tcp, 8456 tcp->tcp_client_errno, 7); 8457 } 8458 } 8459 break; 8460 default: 8461 break; 8462 } 8463 break; 8464 case ICMP_SOURCE_QUENCH: { 8465 /* 8466 * use a global boolean to control 8467 * whether TCP should respond to ICMP_SOURCE_QUENCH. 8468 * The default is false. 8469 */ 8470 if (tcp_icmp_source_quench) { 8471 /* 8472 * Reduce the sending rate as if we got a 8473 * retransmit timeout 8474 */ 8475 uint32_t npkt; 8476 8477 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / 8478 tcp->tcp_mss; 8479 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss; 8480 tcp->tcp_cwnd = tcp->tcp_mss; 8481 tcp->tcp_cwnd_cnt = 0; 8482 } 8483 break; 8484 } 8485 } 8486 freemsg(first_mp); 8487 } 8488 8489 /* 8490 * tcp_icmp_error_ipv6 is called by tcp_rput_other to process ICMPv6 8491 * error messages passed up by IP. 8492 * Assumes that IP has pulled up all the extension headers as well 8493 * as the ICMPv6 header. 8494 */ 8495 static void 8496 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, boolean_t ipsec_mctl) 8497 { 8498 icmp6_t *icmp6; 8499 ip6_t *ip6h; 8500 uint16_t iph_hdr_length; 8501 tcpha_t *tcpha; 8502 uint8_t *nexthdrp; 8503 uint32_t new_mss; 8504 uint32_t ratio; 8505 boolean_t secure; 8506 mblk_t *first_mp = mp; 8507 size_t mp_size; 8508 uint32_t seg_seq; 8509 tcp_stack_t *tcps = tcp->tcp_tcps; 8510 8511 /* 8512 * The caller has determined if this is an IPSEC_IN packet and 8513 * set ipsec_mctl appropriately (see tcp_icmp_error). 8514 */ 8515 if (ipsec_mctl) 8516 mp = mp->b_cont; 8517 8518 mp_size = MBLKL(mp); 8519 8520 /* 8521 * Verify that we have a complete IP header. If not, send it upstream. 8522 */ 8523 if (mp_size < sizeof (ip6_t)) { 8524 noticmpv6: 8525 freemsg(first_mp); 8526 return; 8527 } 8528 8529 /* 8530 * Verify this is an ICMPV6 packet, else send it upstream. 8531 */ 8532 ip6h = (ip6_t *)mp->b_rptr; 8533 if (ip6h->ip6_nxt == IPPROTO_ICMPV6) { 8534 iph_hdr_length = IPV6_HDR_LEN; 8535 } else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, 8536 &nexthdrp) || 8537 *nexthdrp != IPPROTO_ICMPV6) { 8538 goto noticmpv6; 8539 } 8540 icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length]; 8541 ip6h = (ip6_t *)&icmp6[1]; 8542 /* 8543 * Verify if we have a complete ICMP and inner IP header. 8544 */ 8545 if ((uchar_t *)&ip6h[1] > mp->b_wptr) 8546 goto noticmpv6; 8547 8548 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp)) 8549 goto noticmpv6; 8550 tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length); 8551 /* 8552 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't 8553 * have at least ICMP_MIN_TCP_HDR bytes of TCP header drop the 8554 * packet. 8555 */ 8556 if ((*nexthdrp != IPPROTO_TCP) || 8557 ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) { 8558 goto noticmpv6; 8559 } 8560 8561 /* 8562 * ICMP errors come on the right queue or come on 8563 * listener/global queue for detached connections and 8564 * get switched to the right queue. If it comes on the 8565 * right queue, policy check has already been done by IP 8566 * and thus free the first_mp without verifying the policy. 8567 * If it has come for a non-hard bound connection, we need 8568 * to verify policy as IP may not have done it. 8569 */ 8570 if (!tcp->tcp_hard_bound) { 8571 if (ipsec_mctl) { 8572 secure = ipsec_in_is_secure(first_mp); 8573 } else { 8574 secure = B_FALSE; 8575 } 8576 if (secure) { 8577 /* 8578 * If we are willing to accept this in clear 8579 * we don't have to verify policy. 8580 */ 8581 if (!ipsec_inbound_accept_clear(mp, NULL, ip6h)) { 8582 if (!tcp_check_policy(tcp, first_mp, 8583 NULL, ip6h, secure, ipsec_mctl)) { 8584 /* 8585 * tcp_check_policy called 8586 * ip_drop_packet() on failure. 8587 */ 8588 return; 8589 } 8590 } 8591 } 8592 } else if (ipsec_mctl) { 8593 /* 8594 * This is a hard_bound connection. IP has already 8595 * verified policy. We don't have to do it again. 8596 */ 8597 freeb(first_mp); 8598 first_mp = mp; 8599 ipsec_mctl = B_FALSE; 8600 } 8601 8602 seg_seq = ntohl(tcpha->tha_seq); 8603 /* 8604 * TCP SHOULD check that the TCP sequence number contained in 8605 * payload of the ICMP error message is within the range 8606 * SND.UNA <= SEG.SEQ < SND.NXT. 8607 */ 8608 if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) { 8609 /* 8610 * If the ICMP message is bogus, should we kill the 8611 * connection, or should we just drop the bogus ICMP 8612 * message? It would probably make more sense to just 8613 * drop the message so that if this one managed to get 8614 * in, the real connection should not suffer. 8615 */ 8616 goto noticmpv6; 8617 } 8618 8619 switch (icmp6->icmp6_type) { 8620 case ICMP6_PACKET_TOO_BIG: 8621 /* 8622 * Reduce the MSS based on the new MTU. This will 8623 * eliminate any fragmentation locally. 8624 * N.B. There may well be some funny side-effects on 8625 * the local send policy and the remote receive policy. 8626 * Pending further research, we provide 8627 * tcp_ignore_path_mtu just in case this proves 8628 * disastrous somewhere. 8629 * 8630 * After updating the MSS, retransmit part of the 8631 * dropped segment using the new mss by calling 8632 * tcp_wput_data(). Need to adjust all those 8633 * params to make sure tcp_wput_data() work properly. 8634 */ 8635 if (tcps->tcps_ignore_path_mtu) 8636 break; 8637 8638 /* 8639 * Decrease the MSS by time stamp options 8640 * IP options and IPSEC options. tcp_hdr_len 8641 * includes time stamp option and IP option 8642 * length. 8643 */ 8644 new_mss = ntohs(icmp6->icmp6_mtu) - tcp->tcp_hdr_len - 8645 tcp->tcp_ipsec_overhead; 8646 8647 /* 8648 * Only update the MSS if the new one is 8649 * smaller than the previous one. This is 8650 * to avoid problems when getting multiple 8651 * ICMP errors for the same MTU. 8652 */ 8653 if (new_mss >= tcp->tcp_mss) 8654 break; 8655 8656 ratio = tcp->tcp_cwnd / tcp->tcp_mss; 8657 ASSERT(ratio >= 1); 8658 tcp_mss_set(tcp, new_mss, B_TRUE); 8659 8660 /* 8661 * Make sure we have something to 8662 * send. 8663 */ 8664 if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) && 8665 (tcp->tcp_xmit_head != NULL)) { 8666 /* 8667 * Shrink tcp_cwnd in 8668 * proportion to the old MSS/new MSS. 8669 */ 8670 tcp->tcp_cwnd = ratio * tcp->tcp_mss; 8671 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 8672 (tcp->tcp_unsent == 0)) { 8673 tcp->tcp_rexmit_max = tcp->tcp_fss; 8674 } else { 8675 tcp->tcp_rexmit_max = tcp->tcp_snxt; 8676 } 8677 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 8678 tcp->tcp_rexmit = B_TRUE; 8679 tcp->tcp_dupack_cnt = 0; 8680 tcp->tcp_snd_burst = TCP_CWND_SS; 8681 tcp_ss_rexmit(tcp); 8682 } 8683 break; 8684 8685 case ICMP6_DST_UNREACH: 8686 switch (icmp6->icmp6_code) { 8687 case ICMP6_DST_UNREACH_NOPORT: 8688 if (((tcp->tcp_state == TCPS_SYN_SENT) || 8689 (tcp->tcp_state == TCPS_SYN_RCVD)) && 8690 (seg_seq == tcp->tcp_iss)) { 8691 (void) tcp_clean_death(tcp, 8692 ECONNREFUSED, 8); 8693 } 8694 break; 8695 8696 case ICMP6_DST_UNREACH_ADMIN: 8697 case ICMP6_DST_UNREACH_NOROUTE: 8698 case ICMP6_DST_UNREACH_BEYONDSCOPE: 8699 case ICMP6_DST_UNREACH_ADDR: 8700 /* Record the error in case we finally time out. */ 8701 tcp->tcp_client_errno = EHOSTUNREACH; 8702 if (((tcp->tcp_state == TCPS_SYN_SENT) || 8703 (tcp->tcp_state == TCPS_SYN_RCVD)) && 8704 (seg_seq == tcp->tcp_iss)) { 8705 if (tcp->tcp_listener != NULL && 8706 tcp->tcp_listener->tcp_syn_defense) { 8707 /* 8708 * Ditch the half-open connection if we 8709 * suspect a SYN attack is under way. 8710 */ 8711 tcp_ip_ire_mark_advice(tcp); 8712 (void) tcp_clean_death(tcp, 8713 tcp->tcp_client_errno, 9); 8714 } 8715 } 8716 8717 8718 break; 8719 default: 8720 break; 8721 } 8722 break; 8723 8724 case ICMP6_PARAM_PROB: 8725 /* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */ 8726 if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER && 8727 (uchar_t *)ip6h + icmp6->icmp6_pptr == 8728 (uchar_t *)nexthdrp) { 8729 if (tcp->tcp_state == TCPS_SYN_SENT || 8730 tcp->tcp_state == TCPS_SYN_RCVD) { 8731 (void) tcp_clean_death(tcp, 8732 ECONNREFUSED, 10); 8733 } 8734 break; 8735 } 8736 break; 8737 8738 case ICMP6_TIME_EXCEEDED: 8739 default: 8740 break; 8741 } 8742 freemsg(first_mp); 8743 } 8744 8745 /* 8746 * Notify IP that we are having trouble with this connection. IP should 8747 * blow the IRE away and start over. 8748 */ 8749 static void 8750 tcp_ip_notify(tcp_t *tcp) 8751 { 8752 struct iocblk *iocp; 8753 ipid_t *ipid; 8754 mblk_t *mp; 8755 8756 /* IPv6 has NUD thus notification to delete the IRE is not needed */ 8757 if (tcp->tcp_ipversion == IPV6_VERSION) 8758 return; 8759 8760 mp = mkiocb(IP_IOCTL); 8761 if (mp == NULL) 8762 return; 8763 8764 iocp = (struct iocblk *)mp->b_rptr; 8765 iocp->ioc_count = sizeof (ipid_t) + sizeof (tcp->tcp_ipha->ipha_dst); 8766 8767 mp->b_cont = allocb(iocp->ioc_count, BPRI_HI); 8768 if (!mp->b_cont) { 8769 freeb(mp); 8770 return; 8771 } 8772 8773 ipid = (ipid_t *)mp->b_cont->b_rptr; 8774 mp->b_cont->b_wptr += iocp->ioc_count; 8775 bzero(ipid, sizeof (*ipid)); 8776 ipid->ipid_cmd = IP_IOC_IRE_DELETE_NO_REPLY; 8777 ipid->ipid_ire_type = IRE_CACHE; 8778 ipid->ipid_addr_offset = sizeof (ipid_t); 8779 ipid->ipid_addr_length = sizeof (tcp->tcp_ipha->ipha_dst); 8780 /* 8781 * Note: in the case of source routing we want to blow away the 8782 * route to the first source route hop. 8783 */ 8784 bcopy(&tcp->tcp_ipha->ipha_dst, &ipid[1], 8785 sizeof (tcp->tcp_ipha->ipha_dst)); 8786 8787 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 8788 } 8789 8790 /* Unlink and return any mblk that looks like it contains an ire */ 8791 static mblk_t * 8792 tcp_ire_mp(mblk_t **mpp) 8793 { 8794 mblk_t *mp = *mpp; 8795 mblk_t *prev_mp = NULL; 8796 8797 for (;;) { 8798 switch (DB_TYPE(mp)) { 8799 case IRE_DB_TYPE: 8800 case IRE_DB_REQ_TYPE: 8801 if (mp == *mpp) { 8802 *mpp = mp->b_cont; 8803 } else { 8804 prev_mp->b_cont = mp->b_cont; 8805 } 8806 mp->b_cont = NULL; 8807 return (mp); 8808 default: 8809 break; 8810 } 8811 prev_mp = mp; 8812 mp = mp->b_cont; 8813 if (mp == NULL) 8814 break; 8815 } 8816 return (mp); 8817 } 8818 8819 /* 8820 * Timer callback routine for keepalive probe. We do a fake resend of 8821 * last ACKed byte. Then set a timer using RTO. When the timer expires, 8822 * check to see if we have heard anything from the other end for the last 8823 * RTO period. If we have, set the timer to expire for another 8824 * tcp_keepalive_intrvl and check again. If we have not, set a timer using 8825 * RTO << 1 and check again when it expires. Keep exponentially increasing 8826 * the timeout if we have not heard from the other side. If for more than 8827 * (tcp_ka_interval + tcp_ka_abort_thres) we have not heard anything, 8828 * kill the connection unless the keepalive abort threshold is 0. In 8829 * that case, we will probe "forever." 8830 */ 8831 static void 8832 tcp_keepalive_killer(void *arg) 8833 { 8834 mblk_t *mp; 8835 conn_t *connp = (conn_t *)arg; 8836 tcp_t *tcp = connp->conn_tcp; 8837 int32_t firetime; 8838 int32_t idletime; 8839 int32_t ka_intrvl; 8840 tcp_stack_t *tcps = tcp->tcp_tcps; 8841 8842 tcp->tcp_ka_tid = 0; 8843 8844 if (tcp->tcp_fused) 8845 return; 8846 8847 BUMP_MIB(&tcps->tcps_mib, tcpTimKeepalive); 8848 ka_intrvl = tcp->tcp_ka_interval; 8849 8850 /* 8851 * Keepalive probe should only be sent if the application has not 8852 * done a close on the connection. 8853 */ 8854 if (tcp->tcp_state > TCPS_CLOSE_WAIT) { 8855 return; 8856 } 8857 /* Timer fired too early, restart it. */ 8858 if (tcp->tcp_state < TCPS_ESTABLISHED) { 8859 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 8860 MSEC_TO_TICK(ka_intrvl)); 8861 return; 8862 } 8863 8864 idletime = TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time); 8865 /* 8866 * If we have not heard from the other side for a long 8867 * time, kill the connection unless the keepalive abort 8868 * threshold is 0. In that case, we will probe "forever." 8869 */ 8870 if (tcp->tcp_ka_abort_thres != 0 && 8871 idletime > (ka_intrvl + tcp->tcp_ka_abort_thres)) { 8872 BUMP_MIB(&tcps->tcps_mib, tcpTimKeepaliveDrop); 8873 (void) tcp_clean_death(tcp, tcp->tcp_client_errno ? 8874 tcp->tcp_client_errno : ETIMEDOUT, 11); 8875 return; 8876 } 8877 8878 if (tcp->tcp_snxt == tcp->tcp_suna && 8879 idletime >= ka_intrvl) { 8880 /* Fake resend of last ACKed byte. */ 8881 mblk_t *mp1 = allocb(1, BPRI_LO); 8882 8883 if (mp1 != NULL) { 8884 *mp1->b_wptr++ = '\0'; 8885 mp = tcp_xmit_mp(tcp, mp1, 1, NULL, NULL, 8886 tcp->tcp_suna - 1, B_FALSE, NULL, B_TRUE); 8887 freeb(mp1); 8888 /* 8889 * if allocation failed, fall through to start the 8890 * timer back. 8891 */ 8892 if (mp != NULL) { 8893 tcp_send_data(tcp, tcp->tcp_wq, mp); 8894 BUMP_MIB(&tcps->tcps_mib, 8895 tcpTimKeepaliveProbe); 8896 if (tcp->tcp_ka_last_intrvl != 0) { 8897 int max; 8898 /* 8899 * We should probe again at least 8900 * in ka_intrvl, but not more than 8901 * tcp_rexmit_interval_max. 8902 */ 8903 max = tcps->tcps_rexmit_interval_max; 8904 firetime = MIN(ka_intrvl - 1, 8905 tcp->tcp_ka_last_intrvl << 1); 8906 if (firetime > max) 8907 firetime = max; 8908 } else { 8909 firetime = tcp->tcp_rto; 8910 } 8911 tcp->tcp_ka_tid = TCP_TIMER(tcp, 8912 tcp_keepalive_killer, 8913 MSEC_TO_TICK(firetime)); 8914 tcp->tcp_ka_last_intrvl = firetime; 8915 return; 8916 } 8917 } 8918 } else { 8919 tcp->tcp_ka_last_intrvl = 0; 8920 } 8921 8922 /* firetime can be negative if (mp1 == NULL || mp == NULL) */ 8923 if ((firetime = ka_intrvl - idletime) < 0) { 8924 firetime = ka_intrvl; 8925 } 8926 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 8927 MSEC_TO_TICK(firetime)); 8928 } 8929 8930 int 8931 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk) 8932 { 8933 queue_t *q = tcp->tcp_rq; 8934 int32_t mss = tcp->tcp_mss; 8935 int maxpsz; 8936 conn_t *connp = tcp->tcp_connp; 8937 8938 if (TCP_IS_DETACHED(tcp)) 8939 return (mss); 8940 if (tcp->tcp_fused) { 8941 maxpsz = tcp_fuse_maxpsz(tcp); 8942 mss = INFPSZ; 8943 } else if (tcp->tcp_mdt || tcp->tcp_lso || tcp->tcp_maxpsz == 0) { 8944 /* 8945 * Set the sd_qn_maxpsz according to the socket send buffer 8946 * size, and sd_maxblk to INFPSZ (-1). This will essentially 8947 * instruct the stream head to copyin user data into contiguous 8948 * kernel-allocated buffers without breaking it up into smaller 8949 * chunks. We round up the buffer size to the nearest SMSS. 8950 */ 8951 maxpsz = MSS_ROUNDUP(tcp->tcp_xmit_hiwater, mss); 8952 if (tcp->tcp_kssl_ctx == NULL) 8953 mss = INFPSZ; 8954 else 8955 mss = SSL3_MAX_RECORD_LEN; 8956 } else { 8957 /* 8958 * Set sd_qn_maxpsz to approx half the (receivers) buffer 8959 * (and a multiple of the mss). This instructs the stream 8960 * head to break down larger than SMSS writes into SMSS- 8961 * size mblks, up to tcp_maxpsz_multiplier mblks at a time. 8962 */ 8963 /* XXX tune this with ndd tcp_maxpsz_multiplier */ 8964 maxpsz = tcp->tcp_maxpsz * mss; 8965 if (maxpsz > tcp->tcp_xmit_hiwater/2) { 8966 maxpsz = tcp->tcp_xmit_hiwater/2; 8967 /* Round up to nearest mss */ 8968 maxpsz = MSS_ROUNDUP(maxpsz, mss); 8969 } 8970 } 8971 8972 (void) proto_set_maxpsz(q, connp, maxpsz); 8973 if (!(IPCL_IS_NONSTR(connp))) { 8974 /* XXX do it in set_maxpsz()? */ 8975 tcp->tcp_wq->q_maxpsz = maxpsz; 8976 } 8977 8978 if (set_maxblk) 8979 (void) proto_set_tx_maxblk(q, connp, mss); 8980 return (mss); 8981 } 8982 8983 /* 8984 * Extract option values from a tcp header. We put any found values into the 8985 * tcpopt struct and return a bitmask saying which options were found. 8986 */ 8987 static int 8988 tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt) 8989 { 8990 uchar_t *endp; 8991 int len; 8992 uint32_t mss; 8993 uchar_t *up = (uchar_t *)tcph; 8994 int found = 0; 8995 int32_t sack_len; 8996 tcp_seq sack_begin, sack_end; 8997 tcp_t *tcp; 8998 8999 endp = up + TCP_HDR_LENGTH(tcph); 9000 up += TCP_MIN_HEADER_LENGTH; 9001 while (up < endp) { 9002 len = endp - up; 9003 switch (*up) { 9004 case TCPOPT_EOL: 9005 break; 9006 9007 case TCPOPT_NOP: 9008 up++; 9009 continue; 9010 9011 case TCPOPT_MAXSEG: 9012 if (len < TCPOPT_MAXSEG_LEN || 9013 up[1] != TCPOPT_MAXSEG_LEN) 9014 break; 9015 9016 mss = BE16_TO_U16(up+2); 9017 /* Caller must handle tcp_mss_min and tcp_mss_max_* */ 9018 tcpopt->tcp_opt_mss = mss; 9019 found |= TCP_OPT_MSS_PRESENT; 9020 9021 up += TCPOPT_MAXSEG_LEN; 9022 continue; 9023 9024 case TCPOPT_WSCALE: 9025 if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN) 9026 break; 9027 9028 if (up[2] > TCP_MAX_WINSHIFT) 9029 tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT; 9030 else 9031 tcpopt->tcp_opt_wscale = up[2]; 9032 found |= TCP_OPT_WSCALE_PRESENT; 9033 9034 up += TCPOPT_WS_LEN; 9035 continue; 9036 9037 case TCPOPT_SACK_PERMITTED: 9038 if (len < TCPOPT_SACK_OK_LEN || 9039 up[1] != TCPOPT_SACK_OK_LEN) 9040 break; 9041 found |= TCP_OPT_SACK_OK_PRESENT; 9042 up += TCPOPT_SACK_OK_LEN; 9043 continue; 9044 9045 case TCPOPT_SACK: 9046 if (len <= 2 || up[1] <= 2 || len < up[1]) 9047 break; 9048 9049 /* If TCP is not interested in SACK blks... */ 9050 if ((tcp = tcpopt->tcp) == NULL) { 9051 up += up[1]; 9052 continue; 9053 } 9054 sack_len = up[1] - TCPOPT_HEADER_LEN; 9055 up += TCPOPT_HEADER_LEN; 9056 9057 /* 9058 * If the list is empty, allocate one and assume 9059 * nothing is sack'ed. 9060 */ 9061 ASSERT(tcp->tcp_sack_info != NULL); 9062 if (tcp->tcp_notsack_list == NULL) { 9063 tcp_notsack_update(&(tcp->tcp_notsack_list), 9064 tcp->tcp_suna, tcp->tcp_snxt, 9065 &(tcp->tcp_num_notsack_blk), 9066 &(tcp->tcp_cnt_notsack_list)); 9067 9068 /* 9069 * Make sure tcp_notsack_list is not NULL. 9070 * This happens when kmem_alloc(KM_NOSLEEP) 9071 * returns NULL. 9072 */ 9073 if (tcp->tcp_notsack_list == NULL) { 9074 up += sack_len; 9075 continue; 9076 } 9077 tcp->tcp_fack = tcp->tcp_suna; 9078 } 9079 9080 while (sack_len > 0) { 9081 if (up + 8 > endp) { 9082 up = endp; 9083 break; 9084 } 9085 sack_begin = BE32_TO_U32(up); 9086 up += 4; 9087 sack_end = BE32_TO_U32(up); 9088 up += 4; 9089 sack_len -= 8; 9090 /* 9091 * Bounds checking. Make sure the SACK 9092 * info is within tcp_suna and tcp_snxt. 9093 * If this SACK blk is out of bound, ignore 9094 * it but continue to parse the following 9095 * blks. 9096 */ 9097 if (SEQ_LEQ(sack_end, sack_begin) || 9098 SEQ_LT(sack_begin, tcp->tcp_suna) || 9099 SEQ_GT(sack_end, tcp->tcp_snxt)) { 9100 continue; 9101 } 9102 tcp_notsack_insert(&(tcp->tcp_notsack_list), 9103 sack_begin, sack_end, 9104 &(tcp->tcp_num_notsack_blk), 9105 &(tcp->tcp_cnt_notsack_list)); 9106 if (SEQ_GT(sack_end, tcp->tcp_fack)) { 9107 tcp->tcp_fack = sack_end; 9108 } 9109 } 9110 found |= TCP_OPT_SACK_PRESENT; 9111 continue; 9112 9113 case TCPOPT_TSTAMP: 9114 if (len < TCPOPT_TSTAMP_LEN || 9115 up[1] != TCPOPT_TSTAMP_LEN) 9116 break; 9117 9118 tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2); 9119 tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6); 9120 9121 found |= TCP_OPT_TSTAMP_PRESENT; 9122 9123 up += TCPOPT_TSTAMP_LEN; 9124 continue; 9125 9126 default: 9127 if (len <= 1 || len < (int)up[1] || up[1] == 0) 9128 break; 9129 up += up[1]; 9130 continue; 9131 } 9132 break; 9133 } 9134 return (found); 9135 } 9136 9137 /* 9138 * Set the mss associated with a particular tcp based on its current value, 9139 * and a new one passed in. Observe minimums and maximums, and reset 9140 * other state variables that we want to view as multiples of mss. 9141 * 9142 * This function is called mainly because values like tcp_mss, tcp_cwnd, 9143 * highwater marks etc. need to be initialized or adjusted. 9144 * 1) From tcp_process_options() when the other side's SYN/SYN-ACK 9145 * packet arrives. 9146 * 2) We need to set a new MSS when ICMP_FRAGMENTATION_NEEDED or 9147 * ICMP6_PACKET_TOO_BIG arrives. 9148 * 3) From tcp_paws_check() if the other side stops sending the timestamp, 9149 * to increase the MSS to use the extra bytes available. 9150 * 9151 * Callers except tcp_paws_check() ensure that they only reduce mss. 9152 */ 9153 static void 9154 tcp_mss_set(tcp_t *tcp, uint32_t mss, boolean_t do_ss) 9155 { 9156 uint32_t mss_max; 9157 tcp_stack_t *tcps = tcp->tcp_tcps; 9158 9159 if (tcp->tcp_ipversion == IPV4_VERSION) 9160 mss_max = tcps->tcps_mss_max_ipv4; 9161 else 9162 mss_max = tcps->tcps_mss_max_ipv6; 9163 9164 if (mss < tcps->tcps_mss_min) 9165 mss = tcps->tcps_mss_min; 9166 if (mss > mss_max) 9167 mss = mss_max; 9168 /* 9169 * Unless naglim has been set by our client to 9170 * a non-mss value, force naglim to track mss. 9171 * This can help to aggregate small writes. 9172 */ 9173 if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim) 9174 tcp->tcp_naglim = mss; 9175 /* 9176 * TCP should be able to buffer at least 4 MSS data for obvious 9177 * performance reason. 9178 */ 9179 if ((mss << 2) > tcp->tcp_xmit_hiwater) 9180 tcp->tcp_xmit_hiwater = mss << 2; 9181 9182 /* 9183 * Set the xmit_lowater to at least twice of MSS. 9184 */ 9185 if ((mss << 1) > tcp->tcp_xmit_lowater) 9186 tcp->tcp_xmit_lowater = mss << 1; 9187 9188 if (do_ss) { 9189 /* 9190 * Either the tcp_cwnd is as yet uninitialized, or mss is 9191 * changing due to a reduction in MTU, presumably as a 9192 * result of a new path component, reset cwnd to its 9193 * "initial" value, as a multiple of the new mss. 9194 */ 9195 SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_initial); 9196 } else { 9197 /* 9198 * Called by tcp_paws_check(), the mss increased 9199 * marginally to allow use of space previously taken 9200 * by the timestamp option. It would be inappropriate 9201 * to apply slow start or tcp_init_cwnd values to 9202 * tcp_cwnd, simply adjust to a multiple of the new mss. 9203 */ 9204 tcp->tcp_cwnd = (tcp->tcp_cwnd / tcp->tcp_mss) * mss; 9205 tcp->tcp_cwnd_cnt = 0; 9206 } 9207 tcp->tcp_mss = mss; 9208 (void) tcp_maxpsz_set(tcp, B_TRUE); 9209 } 9210 9211 /* For /dev/tcp aka AF_INET open */ 9212 static int 9213 tcp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9214 { 9215 return (tcp_open(q, devp, flag, sflag, credp, B_FALSE)); 9216 } 9217 9218 /* For /dev/tcp6 aka AF_INET6 open */ 9219 static int 9220 tcp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9221 { 9222 return (tcp_open(q, devp, flag, sflag, credp, B_TRUE)); 9223 } 9224 9225 static conn_t * 9226 tcp_create_common(queue_t *q, cred_t *credp, boolean_t isv6, 9227 boolean_t issocket, int *errorp) 9228 { 9229 tcp_t *tcp = NULL; 9230 conn_t *connp; 9231 int err; 9232 zoneid_t zoneid; 9233 tcp_stack_t *tcps; 9234 squeue_t *sqp; 9235 9236 ASSERT(errorp != NULL); 9237 /* 9238 * Find the proper zoneid and netstack. 9239 */ 9240 /* 9241 * Special case for install: miniroot needs to be able to 9242 * access files via NFS as though it were always in the 9243 * global zone. 9244 */ 9245 if (credp == kcred && nfs_global_client_only != 0) { 9246 zoneid = GLOBAL_ZONEID; 9247 tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)-> 9248 netstack_tcp; 9249 ASSERT(tcps != NULL); 9250 } else { 9251 netstack_t *ns; 9252 9253 ns = netstack_find_by_cred(credp); 9254 ASSERT(ns != NULL); 9255 tcps = ns->netstack_tcp; 9256 ASSERT(tcps != NULL); 9257 9258 /* 9259 * For exclusive stacks we set the zoneid to zero 9260 * to make TCP operate as if in the global zone. 9261 */ 9262 if (tcps->tcps_netstack->netstack_stackid != 9263 GLOBAL_NETSTACKID) 9264 zoneid = GLOBAL_ZONEID; 9265 else 9266 zoneid = crgetzoneid(credp); 9267 } 9268 /* 9269 * For stackid zero this is done from strplumb.c, but 9270 * non-zero stackids are handled here. 9271 */ 9272 if (tcps->tcps_g_q == NULL && 9273 tcps->tcps_netstack->netstack_stackid != 9274 GLOBAL_NETSTACKID) { 9275 tcp_g_q_setup(tcps); 9276 } 9277 9278 sqp = IP_SQUEUE_GET((uint_t)gethrtime()); 9279 connp = (conn_t *)tcp_get_conn(sqp, tcps); 9280 /* 9281 * Both tcp_get_conn and netstack_find_by_cred incremented refcnt, 9282 * so we drop it by one. 9283 */ 9284 netstack_rele(tcps->tcps_netstack); 9285 if (connp == NULL) { 9286 *errorp = ENOSR; 9287 return (NULL); 9288 } 9289 connp->conn_sqp = sqp; 9290 connp->conn_initial_sqp = connp->conn_sqp; 9291 tcp = connp->conn_tcp; 9292 9293 if (isv6) { 9294 connp->conn_flags |= IPCL_TCP6; 9295 connp->conn_send = ip_output_v6; 9296 connp->conn_af_isv6 = B_TRUE; 9297 connp->conn_pkt_isv6 = B_TRUE; 9298 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 9299 tcp->tcp_ipversion = IPV6_VERSION; 9300 tcp->tcp_family = AF_INET6; 9301 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 9302 } else { 9303 connp->conn_flags |= IPCL_TCP4; 9304 connp->conn_send = ip_output; 9305 connp->conn_af_isv6 = B_FALSE; 9306 connp->conn_pkt_isv6 = B_FALSE; 9307 tcp->tcp_ipversion = IPV4_VERSION; 9308 tcp->tcp_family = AF_INET; 9309 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 9310 } 9311 9312 /* 9313 * TCP keeps a copy of cred for cache locality reasons but 9314 * we put a reference only once. If connp->conn_cred 9315 * becomes invalid, tcp_cred should also be set to NULL. 9316 */ 9317 tcp->tcp_cred = connp->conn_cred = credp; 9318 crhold(connp->conn_cred); 9319 tcp->tcp_cpid = curproc->p_pid; 9320 tcp->tcp_open_time = lbolt64; 9321 connp->conn_zoneid = zoneid; 9322 connp->conn_mlp_type = mlptSingle; 9323 connp->conn_ulp_labeled = !is_system_labeled(); 9324 ASSERT(connp->conn_netstack == tcps->tcps_netstack); 9325 ASSERT(tcp->tcp_tcps == tcps); 9326 9327 /* 9328 * If the caller has the process-wide flag set, then default to MAC 9329 * exempt mode. This allows read-down to unlabeled hosts. 9330 */ 9331 if (getpflags(NET_MAC_AWARE, credp) != 0) 9332 connp->conn_mac_mode = CONN_MAC_AWARE; 9333 9334 connp->conn_dev = NULL; 9335 if (issocket) { 9336 connp->conn_flags |= IPCL_SOCKET; 9337 tcp->tcp_issocket = 1; 9338 } 9339 9340 /* Non-zero default values */ 9341 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 9342 9343 if (q == NULL) { 9344 /* 9345 * Create a helper stream for non-STREAMS socket. 9346 */ 9347 err = ip_create_helper_stream(connp, tcps->tcps_ldi_ident); 9348 if (err != 0) { 9349 ip1dbg(("tcp_create_common: create of IP helper stream " 9350 "failed\n")); 9351 CONN_DEC_REF(connp); 9352 *errorp = err; 9353 return (NULL); 9354 } 9355 q = connp->conn_rq; 9356 } 9357 9358 SOCK_CONNID_INIT(tcp->tcp_connid); 9359 err = tcp_init(tcp, q); 9360 if (err != 0) { 9361 CONN_DEC_REF(connp); 9362 *errorp = err; 9363 return (NULL); 9364 } 9365 9366 return (connp); 9367 } 9368 9369 static int 9370 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 9371 boolean_t isv6) 9372 { 9373 tcp_t *tcp = NULL; 9374 conn_t *connp = NULL; 9375 int err; 9376 vmem_t *minor_arena = NULL; 9377 dev_t conn_dev; 9378 boolean_t issocket; 9379 9380 if (q->q_ptr != NULL) 9381 return (0); 9382 9383 if (sflag == MODOPEN) 9384 return (EINVAL); 9385 9386 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 9387 ((conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 9388 minor_arena = ip_minor_arena_la; 9389 } else { 9390 /* 9391 * Either minor numbers in the large arena were exhausted 9392 * or a non socket application is doing the open. 9393 * Try to allocate from the small arena. 9394 */ 9395 if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0) { 9396 return (EBUSY); 9397 } 9398 minor_arena = ip_minor_arena_sa; 9399 } 9400 9401 ASSERT(minor_arena != NULL); 9402 9403 *devp = makedevice(getmajor(*devp), (minor_t)conn_dev); 9404 9405 if (flag & SO_FALLBACK) { 9406 /* 9407 * Non streams socket needs a stream to fallback to 9408 */ 9409 RD(q)->q_ptr = (void *)conn_dev; 9410 WR(q)->q_qinfo = &tcp_fallback_sock_winit; 9411 WR(q)->q_ptr = (void *)minor_arena; 9412 qprocson(q); 9413 return (0); 9414 } else if (flag & SO_ACCEPTOR) { 9415 q->q_qinfo = &tcp_acceptor_rinit; 9416 /* 9417 * the conn_dev and minor_arena will be subsequently used by 9418 * tcp_wput_accept() and tcp_tpi_close_accept() to figure out 9419 * the minor device number for this connection from the q_ptr. 9420 */ 9421 RD(q)->q_ptr = (void *)conn_dev; 9422 WR(q)->q_qinfo = &tcp_acceptor_winit; 9423 WR(q)->q_ptr = (void *)minor_arena; 9424 qprocson(q); 9425 return (0); 9426 } 9427 9428 issocket = flag & SO_SOCKSTR; 9429 connp = tcp_create_common(q, credp, isv6, issocket, &err); 9430 9431 if (connp == NULL) { 9432 inet_minor_free(minor_arena, conn_dev); 9433 q->q_ptr = WR(q)->q_ptr = NULL; 9434 return (err); 9435 } 9436 9437 q->q_ptr = WR(q)->q_ptr = connp; 9438 9439 connp->conn_dev = conn_dev; 9440 connp->conn_minor_arena = minor_arena; 9441 9442 ASSERT(q->q_qinfo == &tcp_rinitv4 || q->q_qinfo == &tcp_rinitv6); 9443 ASSERT(WR(q)->q_qinfo == &tcp_winit); 9444 9445 tcp = connp->conn_tcp; 9446 9447 if (issocket) { 9448 WR(q)->q_qinfo = &tcp_sock_winit; 9449 } else { 9450 #ifdef _ILP32 9451 tcp->tcp_acceptor_id = (t_uscalar_t)RD(q); 9452 #else 9453 tcp->tcp_acceptor_id = conn_dev; 9454 #endif /* _ILP32 */ 9455 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 9456 } 9457 9458 /* 9459 * Put the ref for TCP. Ref for IP was already put 9460 * by ipcl_conn_create. Also Make the conn_t globally 9461 * visible to walkers 9462 */ 9463 mutex_enter(&connp->conn_lock); 9464 CONN_INC_REF_LOCKED(connp); 9465 ASSERT(connp->conn_ref == 2); 9466 connp->conn_state_flags &= ~CONN_INCIPIENT; 9467 mutex_exit(&connp->conn_lock); 9468 9469 qprocson(q); 9470 return (0); 9471 } 9472 9473 /* 9474 * Some TCP options can be "set" by requesting them in the option 9475 * buffer. This is needed for XTI feature test though we do not 9476 * allow it in general. We interpret that this mechanism is more 9477 * applicable to OSI protocols and need not be allowed in general. 9478 * This routine filters out options for which it is not allowed (most) 9479 * and lets through those (few) for which it is. [ The XTI interface 9480 * test suite specifics will imply that any XTI_GENERIC level XTI_* if 9481 * ever implemented will have to be allowed here ]. 9482 */ 9483 static boolean_t 9484 tcp_allow_connopt_set(int level, int name) 9485 { 9486 9487 switch (level) { 9488 case IPPROTO_TCP: 9489 switch (name) { 9490 case TCP_NODELAY: 9491 return (B_TRUE); 9492 default: 9493 return (B_FALSE); 9494 } 9495 /*NOTREACHED*/ 9496 default: 9497 return (B_FALSE); 9498 } 9499 /*NOTREACHED*/ 9500 } 9501 9502 /* 9503 * this routine gets default values of certain options whose default 9504 * values are maintained by protocol specific code 9505 */ 9506 /* ARGSUSED */ 9507 int 9508 tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 9509 { 9510 int32_t *i1 = (int32_t *)ptr; 9511 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 9512 9513 switch (level) { 9514 case IPPROTO_TCP: 9515 switch (name) { 9516 case TCP_NOTIFY_THRESHOLD: 9517 *i1 = tcps->tcps_ip_notify_interval; 9518 break; 9519 case TCP_ABORT_THRESHOLD: 9520 *i1 = tcps->tcps_ip_abort_interval; 9521 break; 9522 case TCP_CONN_NOTIFY_THRESHOLD: 9523 *i1 = tcps->tcps_ip_notify_cinterval; 9524 break; 9525 case TCP_CONN_ABORT_THRESHOLD: 9526 *i1 = tcps->tcps_ip_abort_cinterval; 9527 break; 9528 default: 9529 return (-1); 9530 } 9531 break; 9532 case IPPROTO_IP: 9533 switch (name) { 9534 case IP_TTL: 9535 *i1 = tcps->tcps_ipv4_ttl; 9536 break; 9537 default: 9538 return (-1); 9539 } 9540 break; 9541 case IPPROTO_IPV6: 9542 switch (name) { 9543 case IPV6_UNICAST_HOPS: 9544 *i1 = tcps->tcps_ipv6_hoplimit; 9545 break; 9546 default: 9547 return (-1); 9548 } 9549 break; 9550 default: 9551 return (-1); 9552 } 9553 return (sizeof (int)); 9554 } 9555 9556 static int 9557 tcp_opt_get(conn_t *connp, int level, int name, uchar_t *ptr) 9558 { 9559 int *i1 = (int *)ptr; 9560 tcp_t *tcp = connp->conn_tcp; 9561 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 9562 9563 switch (level) { 9564 case SOL_SOCKET: 9565 switch (name) { 9566 case SO_LINGER: { 9567 struct linger *lgr = (struct linger *)ptr; 9568 9569 lgr->l_onoff = tcp->tcp_linger ? SO_LINGER : 0; 9570 lgr->l_linger = tcp->tcp_lingertime; 9571 } 9572 return (sizeof (struct linger)); 9573 case SO_DEBUG: 9574 *i1 = tcp->tcp_debug ? SO_DEBUG : 0; 9575 break; 9576 case SO_KEEPALIVE: 9577 *i1 = tcp->tcp_ka_enabled ? SO_KEEPALIVE : 0; 9578 break; 9579 case SO_DONTROUTE: 9580 *i1 = tcp->tcp_dontroute ? SO_DONTROUTE : 0; 9581 break; 9582 case SO_USELOOPBACK: 9583 *i1 = tcp->tcp_useloopback ? SO_USELOOPBACK : 0; 9584 break; 9585 case SO_BROADCAST: 9586 *i1 = tcp->tcp_broadcast ? SO_BROADCAST : 0; 9587 break; 9588 case SO_REUSEADDR: 9589 *i1 = tcp->tcp_reuseaddr ? SO_REUSEADDR : 0; 9590 break; 9591 case SO_OOBINLINE: 9592 *i1 = tcp->tcp_oobinline ? SO_OOBINLINE : 0; 9593 break; 9594 case SO_DGRAM_ERRIND: 9595 *i1 = tcp->tcp_dgram_errind ? SO_DGRAM_ERRIND : 0; 9596 break; 9597 case SO_TYPE: 9598 *i1 = SOCK_STREAM; 9599 break; 9600 case SO_SNDBUF: 9601 *i1 = tcp->tcp_xmit_hiwater; 9602 break; 9603 case SO_RCVBUF: 9604 *i1 = tcp->tcp_recv_hiwater; 9605 break; 9606 case SO_SND_COPYAVOID: 9607 *i1 = tcp->tcp_snd_zcopy_on ? 9608 SO_SND_COPYAVOID : 0; 9609 break; 9610 case SO_ALLZONES: 9611 *i1 = connp->conn_allzones ? 1 : 0; 9612 break; 9613 case SO_ANON_MLP: 9614 *i1 = connp->conn_anon_mlp; 9615 break; 9616 case SO_MAC_EXEMPT: 9617 *i1 = (connp->conn_mac_mode == CONN_MAC_AWARE); 9618 break; 9619 case SO_MAC_IMPLICIT: 9620 *i1 = (connp->conn_mac_mode == CONN_MAC_IMPLICIT); 9621 break; 9622 case SO_EXCLBIND: 9623 *i1 = tcp->tcp_exclbind ? SO_EXCLBIND : 0; 9624 break; 9625 case SO_PROTOTYPE: 9626 *i1 = IPPROTO_TCP; 9627 break; 9628 case SO_DOMAIN: 9629 *i1 = tcp->tcp_family; 9630 break; 9631 case SO_ACCEPTCONN: 9632 *i1 = (tcp->tcp_state == TCPS_LISTEN); 9633 default: 9634 return (-1); 9635 } 9636 break; 9637 case IPPROTO_TCP: 9638 switch (name) { 9639 case TCP_NODELAY: 9640 *i1 = (tcp->tcp_naglim == 1) ? TCP_NODELAY : 0; 9641 break; 9642 case TCP_MAXSEG: 9643 *i1 = tcp->tcp_mss; 9644 break; 9645 case TCP_NOTIFY_THRESHOLD: 9646 *i1 = (int)tcp->tcp_first_timer_threshold; 9647 break; 9648 case TCP_ABORT_THRESHOLD: 9649 *i1 = tcp->tcp_second_timer_threshold; 9650 break; 9651 case TCP_CONN_NOTIFY_THRESHOLD: 9652 *i1 = tcp->tcp_first_ctimer_threshold; 9653 break; 9654 case TCP_CONN_ABORT_THRESHOLD: 9655 *i1 = tcp->tcp_second_ctimer_threshold; 9656 break; 9657 case TCP_RECVDSTADDR: 9658 *i1 = tcp->tcp_recvdstaddr; 9659 break; 9660 case TCP_ANONPRIVBIND: 9661 *i1 = tcp->tcp_anon_priv_bind; 9662 break; 9663 case TCP_EXCLBIND: 9664 *i1 = tcp->tcp_exclbind ? TCP_EXCLBIND : 0; 9665 break; 9666 case TCP_INIT_CWND: 9667 *i1 = tcp->tcp_init_cwnd; 9668 break; 9669 case TCP_KEEPALIVE_THRESHOLD: 9670 *i1 = tcp->tcp_ka_interval; 9671 break; 9672 case TCP_KEEPALIVE_ABORT_THRESHOLD: 9673 *i1 = tcp->tcp_ka_abort_thres; 9674 break; 9675 case TCP_CORK: 9676 *i1 = tcp->tcp_cork; 9677 break; 9678 default: 9679 return (-1); 9680 } 9681 break; 9682 case IPPROTO_IP: 9683 if (tcp->tcp_family != AF_INET) 9684 return (-1); 9685 switch (name) { 9686 case IP_OPTIONS: 9687 case T_IP_OPTIONS: { 9688 /* 9689 * This is compatible with BSD in that in only return 9690 * the reverse source route with the final destination 9691 * as the last entry. The first 4 bytes of the option 9692 * will contain the final destination. 9693 */ 9694 int opt_len; 9695 9696 opt_len = (char *)tcp->tcp_tcph - (char *)tcp->tcp_ipha; 9697 opt_len -= tcp->tcp_label_len + IP_SIMPLE_HDR_LENGTH; 9698 ASSERT(opt_len >= 0); 9699 /* Caller ensures enough space */ 9700 if (opt_len > 0) { 9701 /* 9702 * TODO: Do we have to handle getsockopt on an 9703 * initiator as well? 9704 */ 9705 return (ip_opt_get_user(tcp->tcp_ipha, ptr)); 9706 } 9707 return (0); 9708 } 9709 case IP_TOS: 9710 case T_IP_TOS: 9711 *i1 = (int)tcp->tcp_ipha->ipha_type_of_service; 9712 break; 9713 case IP_TTL: 9714 *i1 = (int)tcp->tcp_ipha->ipha_ttl; 9715 break; 9716 case IP_NEXTHOP: 9717 /* Handled at IP level */ 9718 return (-EINVAL); 9719 default: 9720 return (-1); 9721 } 9722 break; 9723 case IPPROTO_IPV6: 9724 /* 9725 * IPPROTO_IPV6 options are only supported for sockets 9726 * that are using IPv6 on the wire. 9727 */ 9728 if (tcp->tcp_ipversion != IPV6_VERSION) { 9729 return (-1); 9730 } 9731 switch (name) { 9732 case IPV6_UNICAST_HOPS: 9733 *i1 = (unsigned int) tcp->tcp_ip6h->ip6_hops; 9734 break; /* goto sizeof (int) option return */ 9735 case IPV6_BOUND_IF: 9736 /* Zero if not set */ 9737 *i1 = tcp->tcp_bound_if; 9738 break; /* goto sizeof (int) option return */ 9739 case IPV6_RECVPKTINFO: 9740 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) 9741 *i1 = 1; 9742 else 9743 *i1 = 0; 9744 break; /* goto sizeof (int) option return */ 9745 case IPV6_RECVTCLASS: 9746 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS) 9747 *i1 = 1; 9748 else 9749 *i1 = 0; 9750 break; /* goto sizeof (int) option return */ 9751 case IPV6_RECVHOPLIMIT: 9752 if (tcp->tcp_ipv6_recvancillary & 9753 TCP_IPV6_RECVHOPLIMIT) 9754 *i1 = 1; 9755 else 9756 *i1 = 0; 9757 break; /* goto sizeof (int) option return */ 9758 case IPV6_RECVHOPOPTS: 9759 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) 9760 *i1 = 1; 9761 else 9762 *i1 = 0; 9763 break; /* goto sizeof (int) option return */ 9764 case IPV6_RECVDSTOPTS: 9765 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVDSTOPTS) 9766 *i1 = 1; 9767 else 9768 *i1 = 0; 9769 break; /* goto sizeof (int) option return */ 9770 case _OLD_IPV6_RECVDSTOPTS: 9771 if (tcp->tcp_ipv6_recvancillary & 9772 TCP_OLD_IPV6_RECVDSTOPTS) 9773 *i1 = 1; 9774 else 9775 *i1 = 0; 9776 break; /* goto sizeof (int) option return */ 9777 case IPV6_RECVRTHDR: 9778 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) 9779 *i1 = 1; 9780 else 9781 *i1 = 0; 9782 break; /* goto sizeof (int) option return */ 9783 case IPV6_RECVRTHDRDSTOPTS: 9784 if (tcp->tcp_ipv6_recvancillary & 9785 TCP_IPV6_RECVRTDSTOPTS) 9786 *i1 = 1; 9787 else 9788 *i1 = 0; 9789 break; /* goto sizeof (int) option return */ 9790 case IPV6_PKTINFO: { 9791 /* XXX assumes that caller has room for max size! */ 9792 struct in6_pktinfo *pkti; 9793 9794 pkti = (struct in6_pktinfo *)ptr; 9795 if (ipp->ipp_fields & IPPF_IFINDEX) 9796 pkti->ipi6_ifindex = ipp->ipp_ifindex; 9797 else 9798 pkti->ipi6_ifindex = 0; 9799 if (ipp->ipp_fields & IPPF_ADDR) 9800 pkti->ipi6_addr = ipp->ipp_addr; 9801 else 9802 pkti->ipi6_addr = ipv6_all_zeros; 9803 return (sizeof (struct in6_pktinfo)); 9804 } 9805 case IPV6_TCLASS: 9806 if (ipp->ipp_fields & IPPF_TCLASS) 9807 *i1 = ipp->ipp_tclass; 9808 else 9809 *i1 = IPV6_FLOW_TCLASS( 9810 IPV6_DEFAULT_VERS_AND_FLOW); 9811 break; /* goto sizeof (int) option return */ 9812 case IPV6_NEXTHOP: { 9813 sin6_t *sin6 = (sin6_t *)ptr; 9814 9815 if (!(ipp->ipp_fields & IPPF_NEXTHOP)) 9816 return (0); 9817 *sin6 = sin6_null; 9818 sin6->sin6_family = AF_INET6; 9819 sin6->sin6_addr = ipp->ipp_nexthop; 9820 return (sizeof (sin6_t)); 9821 } 9822 case IPV6_HOPOPTS: 9823 if (!(ipp->ipp_fields & IPPF_HOPOPTS)) 9824 return (0); 9825 if (ipp->ipp_hopoptslen <= tcp->tcp_label_len) 9826 return (0); 9827 bcopy((char *)ipp->ipp_hopopts + tcp->tcp_label_len, 9828 ptr, ipp->ipp_hopoptslen - tcp->tcp_label_len); 9829 if (tcp->tcp_label_len > 0) { 9830 ptr[0] = ((char *)ipp->ipp_hopopts)[0]; 9831 ptr[1] = (ipp->ipp_hopoptslen - 9832 tcp->tcp_label_len + 7) / 8 - 1; 9833 } 9834 return (ipp->ipp_hopoptslen - tcp->tcp_label_len); 9835 case IPV6_RTHDRDSTOPTS: 9836 if (!(ipp->ipp_fields & IPPF_RTDSTOPTS)) 9837 return (0); 9838 bcopy(ipp->ipp_rtdstopts, ptr, ipp->ipp_rtdstoptslen); 9839 return (ipp->ipp_rtdstoptslen); 9840 case IPV6_RTHDR: 9841 if (!(ipp->ipp_fields & IPPF_RTHDR)) 9842 return (0); 9843 bcopy(ipp->ipp_rthdr, ptr, ipp->ipp_rthdrlen); 9844 return (ipp->ipp_rthdrlen); 9845 case IPV6_DSTOPTS: 9846 if (!(ipp->ipp_fields & IPPF_DSTOPTS)) 9847 return (0); 9848 bcopy(ipp->ipp_dstopts, ptr, ipp->ipp_dstoptslen); 9849 return (ipp->ipp_dstoptslen); 9850 case IPV6_SRC_PREFERENCES: 9851 return (ip6_get_src_preferences(connp, 9852 (uint32_t *)ptr)); 9853 case IPV6_PATHMTU: { 9854 struct ip6_mtuinfo *mtuinfo = (struct ip6_mtuinfo *)ptr; 9855 9856 if (tcp->tcp_state < TCPS_ESTABLISHED) 9857 return (-1); 9858 9859 return (ip_fill_mtuinfo(&connp->conn_remv6, 9860 connp->conn_fport, mtuinfo, 9861 connp->conn_netstack)); 9862 } 9863 default: 9864 return (-1); 9865 } 9866 break; 9867 default: 9868 return (-1); 9869 } 9870 return (sizeof (int)); 9871 } 9872 9873 /* 9874 * TCP routine to get the values of options. 9875 */ 9876 int 9877 tcp_tpi_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 9878 { 9879 return (tcp_opt_get(Q_TO_CONN(q), level, name, ptr)); 9880 } 9881 9882 /* returns UNIX error, the optlen is a value-result arg */ 9883 int 9884 tcp_getsockopt(sock_lower_handle_t proto_handle, int level, int option_name, 9885 void *optvalp, socklen_t *optlen, cred_t *cr) 9886 { 9887 conn_t *connp = (conn_t *)proto_handle; 9888 squeue_t *sqp = connp->conn_sqp; 9889 int error; 9890 t_uscalar_t max_optbuf_len; 9891 void *optvalp_buf; 9892 int len; 9893 9894 ASSERT(connp->conn_upper_handle != NULL); 9895 9896 error = proto_opt_check(level, option_name, *optlen, &max_optbuf_len, 9897 tcp_opt_obj.odb_opt_des_arr, 9898 tcp_opt_obj.odb_opt_arr_cnt, 9899 tcp_opt_obj.odb_topmost_tpiprovider, 9900 B_FALSE, B_TRUE, cr); 9901 if (error != 0) { 9902 if (error < 0) { 9903 error = proto_tlitosyserr(-error); 9904 } 9905 return (error); 9906 } 9907 9908 optvalp_buf = kmem_alloc(max_optbuf_len, KM_SLEEP); 9909 9910 error = squeue_synch_enter(sqp, connp, NULL); 9911 if (error == ENOMEM) { 9912 return (ENOMEM); 9913 } 9914 9915 len = tcp_opt_get(connp, level, option_name, optvalp_buf); 9916 squeue_synch_exit(sqp, connp); 9917 9918 if (len < 0) { 9919 /* 9920 * Pass on to IP 9921 */ 9922 kmem_free(optvalp_buf, max_optbuf_len); 9923 return (ip_get_options(connp, level, option_name, 9924 optvalp, optlen, cr)); 9925 } else { 9926 /* 9927 * update optlen and copy option value 9928 */ 9929 t_uscalar_t size = MIN(len, *optlen); 9930 bcopy(optvalp_buf, optvalp, size); 9931 bcopy(&size, optlen, sizeof (size)); 9932 9933 kmem_free(optvalp_buf, max_optbuf_len); 9934 return (0); 9935 } 9936 } 9937 9938 /* 9939 * We declare as 'int' rather than 'void' to satisfy pfi_t arg requirements. 9940 * Parameters are assumed to be verified by the caller. 9941 */ 9942 /* ARGSUSED */ 9943 int 9944 tcp_opt_set(conn_t *connp, uint_t optset_context, int level, int name, 9945 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 9946 void *thisdg_attrs, cred_t *cr, mblk_t *mblk) 9947 { 9948 tcp_t *tcp = connp->conn_tcp; 9949 int *i1 = (int *)invalp; 9950 boolean_t onoff = (*i1 == 0) ? 0 : 1; 9951 boolean_t checkonly; 9952 int reterr; 9953 tcp_stack_t *tcps = tcp->tcp_tcps; 9954 9955 switch (optset_context) { 9956 case SETFN_OPTCOM_CHECKONLY: 9957 checkonly = B_TRUE; 9958 /* 9959 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 9960 * inlen != 0 implies value supplied and 9961 * we have to "pretend" to set it. 9962 * inlen == 0 implies that there is no 9963 * value part in T_CHECK request and just validation 9964 * done elsewhere should be enough, we just return here. 9965 */ 9966 if (inlen == 0) { 9967 *outlenp = 0; 9968 return (0); 9969 } 9970 break; 9971 case SETFN_OPTCOM_NEGOTIATE: 9972 checkonly = B_FALSE; 9973 break; 9974 case SETFN_UD_NEGOTIATE: /* error on conn-oriented transports ? */ 9975 case SETFN_CONN_NEGOTIATE: 9976 checkonly = B_FALSE; 9977 /* 9978 * Negotiating local and "association-related" options 9979 * from other (T_CONN_REQ, T_CONN_RES,T_UNITDATA_REQ) 9980 * primitives is allowed by XTI, but we choose 9981 * to not implement this style negotiation for Internet 9982 * protocols (We interpret it is a must for OSI world but 9983 * optional for Internet protocols) for all options. 9984 * [ Will do only for the few options that enable test 9985 * suites that our XTI implementation of this feature 9986 * works for transports that do allow it ] 9987 */ 9988 if (!tcp_allow_connopt_set(level, name)) { 9989 *outlenp = 0; 9990 return (EINVAL); 9991 } 9992 break; 9993 default: 9994 /* 9995 * We should never get here 9996 */ 9997 *outlenp = 0; 9998 return (EINVAL); 9999 } 10000 10001 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 10002 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 10003 10004 /* 10005 * For TCP, we should have no ancillary data sent down 10006 * (sendmsg isn't supported for SOCK_STREAM), so thisdg_attrs 10007 * has to be zero. 10008 */ 10009 ASSERT(thisdg_attrs == NULL); 10010 10011 /* 10012 * For fixed length options, no sanity check 10013 * of passed in length is done. It is assumed *_optcom_req() 10014 * routines do the right thing. 10015 */ 10016 switch (level) { 10017 case SOL_SOCKET: 10018 switch (name) { 10019 case SO_LINGER: { 10020 struct linger *lgr = (struct linger *)invalp; 10021 10022 if (!checkonly) { 10023 if (lgr->l_onoff) { 10024 tcp->tcp_linger = 1; 10025 tcp->tcp_lingertime = lgr->l_linger; 10026 } else { 10027 tcp->tcp_linger = 0; 10028 tcp->tcp_lingertime = 0; 10029 } 10030 /* struct copy */ 10031 *(struct linger *)outvalp = *lgr; 10032 } else { 10033 if (!lgr->l_onoff) { 10034 ((struct linger *) 10035 outvalp)->l_onoff = 0; 10036 ((struct linger *) 10037 outvalp)->l_linger = 0; 10038 } else { 10039 /* struct copy */ 10040 *(struct linger *)outvalp = *lgr; 10041 } 10042 } 10043 *outlenp = sizeof (struct linger); 10044 return (0); 10045 } 10046 case SO_DEBUG: 10047 if (!checkonly) 10048 tcp->tcp_debug = onoff; 10049 break; 10050 case SO_KEEPALIVE: 10051 if (checkonly) { 10052 /* check only case */ 10053 break; 10054 } 10055 10056 if (!onoff) { 10057 if (tcp->tcp_ka_enabled) { 10058 if (tcp->tcp_ka_tid != 0) { 10059 (void) TCP_TIMER_CANCEL(tcp, 10060 tcp->tcp_ka_tid); 10061 tcp->tcp_ka_tid = 0; 10062 } 10063 tcp->tcp_ka_enabled = 0; 10064 } 10065 break; 10066 } 10067 if (!tcp->tcp_ka_enabled) { 10068 /* Crank up the keepalive timer */ 10069 tcp->tcp_ka_last_intrvl = 0; 10070 tcp->tcp_ka_tid = TCP_TIMER(tcp, 10071 tcp_keepalive_killer, 10072 MSEC_TO_TICK(tcp->tcp_ka_interval)); 10073 tcp->tcp_ka_enabled = 1; 10074 } 10075 break; 10076 case SO_DONTROUTE: 10077 /* 10078 * SO_DONTROUTE, SO_USELOOPBACK, and SO_BROADCAST are 10079 * only of interest to IP. We track them here only so 10080 * that we can report their current value. 10081 */ 10082 if (!checkonly) { 10083 tcp->tcp_dontroute = onoff; 10084 tcp->tcp_connp->conn_dontroute = onoff; 10085 } 10086 break; 10087 case SO_USELOOPBACK: 10088 if (!checkonly) { 10089 tcp->tcp_useloopback = onoff; 10090 tcp->tcp_connp->conn_loopback = onoff; 10091 } 10092 break; 10093 case SO_BROADCAST: 10094 if (!checkonly) { 10095 tcp->tcp_broadcast = onoff; 10096 tcp->tcp_connp->conn_broadcast = onoff; 10097 } 10098 break; 10099 case SO_REUSEADDR: 10100 if (!checkonly) { 10101 tcp->tcp_reuseaddr = onoff; 10102 tcp->tcp_connp->conn_reuseaddr = onoff; 10103 } 10104 break; 10105 case SO_OOBINLINE: 10106 if (!checkonly) { 10107 tcp->tcp_oobinline = onoff; 10108 if (IPCL_IS_NONSTR(tcp->tcp_connp)) 10109 proto_set_rx_oob_opt(connp, onoff); 10110 } 10111 break; 10112 case SO_DGRAM_ERRIND: 10113 if (!checkonly) 10114 tcp->tcp_dgram_errind = onoff; 10115 break; 10116 case SO_SNDBUF: { 10117 if (*i1 > tcps->tcps_max_buf) { 10118 *outlenp = 0; 10119 return (ENOBUFS); 10120 } 10121 if (checkonly) 10122 break; 10123 10124 tcp->tcp_xmit_hiwater = *i1; 10125 if (tcps->tcps_snd_lowat_fraction != 0) 10126 tcp->tcp_xmit_lowater = 10127 tcp->tcp_xmit_hiwater / 10128 tcps->tcps_snd_lowat_fraction; 10129 (void) tcp_maxpsz_set(tcp, B_TRUE); 10130 /* 10131 * If we are flow-controlled, recheck the condition. 10132 * There are apps that increase SO_SNDBUF size when 10133 * flow-controlled (EWOULDBLOCK), and expect the flow 10134 * control condition to be lifted right away. 10135 */ 10136 mutex_enter(&tcp->tcp_non_sq_lock); 10137 if (tcp->tcp_flow_stopped && 10138 TCP_UNSENT_BYTES(tcp) < tcp->tcp_xmit_hiwater) { 10139 tcp_clrqfull(tcp); 10140 } 10141 mutex_exit(&tcp->tcp_non_sq_lock); 10142 break; 10143 } 10144 case SO_RCVBUF: 10145 if (*i1 > tcps->tcps_max_buf) { 10146 *outlenp = 0; 10147 return (ENOBUFS); 10148 } 10149 /* Silently ignore zero */ 10150 if (!checkonly && *i1 != 0) { 10151 *i1 = MSS_ROUNDUP(*i1, tcp->tcp_mss); 10152 (void) tcp_rwnd_set(tcp, *i1); 10153 } 10154 /* 10155 * XXX should we return the rwnd here 10156 * and tcp_opt_get ? 10157 */ 10158 break; 10159 case SO_SND_COPYAVOID: 10160 if (!checkonly) { 10161 /* we only allow enable at most once for now */ 10162 if (tcp->tcp_loopback || 10163 (tcp->tcp_kssl_ctx != NULL) || 10164 (!tcp->tcp_snd_zcopy_aware && 10165 (onoff != 1 || !tcp_zcopy_check(tcp)))) { 10166 *outlenp = 0; 10167 return (EOPNOTSUPP); 10168 } 10169 tcp->tcp_snd_zcopy_aware = 1; 10170 } 10171 break; 10172 case SO_RCVTIMEO: 10173 case SO_SNDTIMEO: 10174 /* 10175 * Pass these two options in order for third part 10176 * protocol usage. Here just return directly. 10177 */ 10178 return (0); 10179 case SO_ALLZONES: 10180 /* Pass option along to IP level for handling */ 10181 return (-EINVAL); 10182 case SO_ANON_MLP: 10183 /* Pass option along to IP level for handling */ 10184 return (-EINVAL); 10185 case SO_MAC_EXEMPT: 10186 /* Pass option along to IP level for handling */ 10187 return (-EINVAL); 10188 case SO_EXCLBIND: 10189 if (!checkonly) 10190 tcp->tcp_exclbind = onoff; 10191 break; 10192 default: 10193 *outlenp = 0; 10194 return (EINVAL); 10195 } 10196 break; 10197 case IPPROTO_TCP: 10198 switch (name) { 10199 case TCP_NODELAY: 10200 if (!checkonly) 10201 tcp->tcp_naglim = *i1 ? 1 : tcp->tcp_mss; 10202 break; 10203 case TCP_NOTIFY_THRESHOLD: 10204 if (!checkonly) 10205 tcp->tcp_first_timer_threshold = *i1; 10206 break; 10207 case TCP_ABORT_THRESHOLD: 10208 if (!checkonly) 10209 tcp->tcp_second_timer_threshold = *i1; 10210 break; 10211 case TCP_CONN_NOTIFY_THRESHOLD: 10212 if (!checkonly) 10213 tcp->tcp_first_ctimer_threshold = *i1; 10214 break; 10215 case TCP_CONN_ABORT_THRESHOLD: 10216 if (!checkonly) 10217 tcp->tcp_second_ctimer_threshold = *i1; 10218 break; 10219 case TCP_RECVDSTADDR: 10220 if (tcp->tcp_state > TCPS_LISTEN) 10221 return (EOPNOTSUPP); 10222 if (!checkonly) 10223 tcp->tcp_recvdstaddr = onoff; 10224 break; 10225 case TCP_ANONPRIVBIND: 10226 if ((reterr = secpolicy_net_privaddr(cr, 0, 10227 IPPROTO_TCP)) != 0) { 10228 *outlenp = 0; 10229 return (reterr); 10230 } 10231 if (!checkonly) { 10232 tcp->tcp_anon_priv_bind = onoff; 10233 } 10234 break; 10235 case TCP_EXCLBIND: 10236 if (!checkonly) 10237 tcp->tcp_exclbind = onoff; 10238 break; /* goto sizeof (int) option return */ 10239 case TCP_INIT_CWND: { 10240 uint32_t init_cwnd = *((uint32_t *)invalp); 10241 10242 if (checkonly) 10243 break; 10244 10245 /* 10246 * Only allow socket with network configuration 10247 * privilege to set the initial cwnd to be larger 10248 * than allowed by RFC 3390. 10249 */ 10250 if (init_cwnd <= MIN(4, MAX(2, 4380 / tcp->tcp_mss))) { 10251 tcp->tcp_init_cwnd = init_cwnd; 10252 break; 10253 } 10254 if ((reterr = secpolicy_ip_config(cr, B_TRUE)) != 0) { 10255 *outlenp = 0; 10256 return (reterr); 10257 } 10258 if (init_cwnd > TCP_MAX_INIT_CWND) { 10259 *outlenp = 0; 10260 return (EINVAL); 10261 } 10262 tcp->tcp_init_cwnd = init_cwnd; 10263 break; 10264 } 10265 case TCP_KEEPALIVE_THRESHOLD: 10266 if (checkonly) 10267 break; 10268 10269 if (*i1 < tcps->tcps_keepalive_interval_low || 10270 *i1 > tcps->tcps_keepalive_interval_high) { 10271 *outlenp = 0; 10272 return (EINVAL); 10273 } 10274 if (*i1 != tcp->tcp_ka_interval) { 10275 tcp->tcp_ka_interval = *i1; 10276 /* 10277 * Check if we need to restart the 10278 * keepalive timer. 10279 */ 10280 if (tcp->tcp_ka_tid != 0) { 10281 ASSERT(tcp->tcp_ka_enabled); 10282 (void) TCP_TIMER_CANCEL(tcp, 10283 tcp->tcp_ka_tid); 10284 tcp->tcp_ka_last_intrvl = 0; 10285 tcp->tcp_ka_tid = TCP_TIMER(tcp, 10286 tcp_keepalive_killer, 10287 MSEC_TO_TICK(tcp->tcp_ka_interval)); 10288 } 10289 } 10290 break; 10291 case TCP_KEEPALIVE_ABORT_THRESHOLD: 10292 if (!checkonly) { 10293 if (*i1 < 10294 tcps->tcps_keepalive_abort_interval_low || 10295 *i1 > 10296 tcps->tcps_keepalive_abort_interval_high) { 10297 *outlenp = 0; 10298 return (EINVAL); 10299 } 10300 tcp->tcp_ka_abort_thres = *i1; 10301 } 10302 break; 10303 case TCP_CORK: 10304 if (!checkonly) { 10305 /* 10306 * if tcp->tcp_cork was set and is now 10307 * being unset, we have to make sure that 10308 * the remaining data gets sent out. Also 10309 * unset tcp->tcp_cork so that tcp_wput_data() 10310 * can send data even if it is less than mss 10311 */ 10312 if (tcp->tcp_cork && onoff == 0 && 10313 tcp->tcp_unsent > 0) { 10314 tcp->tcp_cork = B_FALSE; 10315 tcp_wput_data(tcp, NULL, B_FALSE); 10316 } 10317 tcp->tcp_cork = onoff; 10318 } 10319 break; 10320 default: 10321 *outlenp = 0; 10322 return (EINVAL); 10323 } 10324 break; 10325 case IPPROTO_IP: 10326 if (tcp->tcp_family != AF_INET) { 10327 *outlenp = 0; 10328 return (ENOPROTOOPT); 10329 } 10330 switch (name) { 10331 case IP_OPTIONS: 10332 case T_IP_OPTIONS: 10333 reterr = tcp_opt_set_header(tcp, checkonly, 10334 invalp, inlen); 10335 if (reterr) { 10336 *outlenp = 0; 10337 return (reterr); 10338 } 10339 /* OK return - copy input buffer into output buffer */ 10340 if (invalp != outvalp) { 10341 /* don't trust bcopy for identical src/dst */ 10342 bcopy(invalp, outvalp, inlen); 10343 } 10344 *outlenp = inlen; 10345 return (0); 10346 case IP_TOS: 10347 case T_IP_TOS: 10348 if (!checkonly) { 10349 tcp->tcp_ipha->ipha_type_of_service = 10350 (uchar_t)*i1; 10351 tcp->tcp_tos = (uchar_t)*i1; 10352 } 10353 break; 10354 case IP_TTL: 10355 if (!checkonly) { 10356 tcp->tcp_ipha->ipha_ttl = (uchar_t)*i1; 10357 tcp->tcp_ttl = (uchar_t)*i1; 10358 } 10359 break; 10360 case IP_BOUND_IF: 10361 case IP_NEXTHOP: 10362 /* Handled at the IP level */ 10363 return (-EINVAL); 10364 case IP_SEC_OPT: 10365 /* 10366 * We should not allow policy setting after 10367 * we start listening for connections. 10368 */ 10369 if (tcp->tcp_state == TCPS_LISTEN) { 10370 return (EINVAL); 10371 } else { 10372 /* Handled at the IP level */ 10373 return (-EINVAL); 10374 } 10375 default: 10376 *outlenp = 0; 10377 return (EINVAL); 10378 } 10379 break; 10380 case IPPROTO_IPV6: { 10381 ip6_pkt_t *ipp; 10382 10383 /* 10384 * IPPROTO_IPV6 options are only supported for sockets 10385 * that are using IPv6 on the wire. 10386 */ 10387 if (tcp->tcp_ipversion != IPV6_VERSION) { 10388 *outlenp = 0; 10389 return (ENOPROTOOPT); 10390 } 10391 /* 10392 * Only sticky options; no ancillary data 10393 */ 10394 ipp = &tcp->tcp_sticky_ipp; 10395 10396 switch (name) { 10397 case IPV6_UNICAST_HOPS: 10398 /* -1 means use default */ 10399 if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) { 10400 *outlenp = 0; 10401 return (EINVAL); 10402 } 10403 if (!checkonly) { 10404 if (*i1 == -1) { 10405 tcp->tcp_ip6h->ip6_hops = 10406 ipp->ipp_unicast_hops = 10407 (uint8_t)tcps->tcps_ipv6_hoplimit; 10408 ipp->ipp_fields &= ~IPPF_UNICAST_HOPS; 10409 /* Pass modified value to IP. */ 10410 *i1 = tcp->tcp_ip6h->ip6_hops; 10411 } else { 10412 tcp->tcp_ip6h->ip6_hops = 10413 ipp->ipp_unicast_hops = 10414 (uint8_t)*i1; 10415 ipp->ipp_fields |= IPPF_UNICAST_HOPS; 10416 } 10417 reterr = tcp_build_hdrs(tcp); 10418 if (reterr != 0) 10419 return (reterr); 10420 } 10421 break; 10422 case IPV6_BOUND_IF: 10423 if (!checkonly) { 10424 tcp->tcp_bound_if = *i1; 10425 PASS_OPT_TO_IP(connp); 10426 } 10427 break; 10428 /* 10429 * Set boolean switches for ancillary data delivery 10430 */ 10431 case IPV6_RECVPKTINFO: 10432 if (!checkonly) { 10433 if (onoff) 10434 tcp->tcp_ipv6_recvancillary |= 10435 TCP_IPV6_RECVPKTINFO; 10436 else 10437 tcp->tcp_ipv6_recvancillary &= 10438 ~TCP_IPV6_RECVPKTINFO; 10439 /* Force it to be sent up with the next msg */ 10440 tcp->tcp_recvifindex = 0; 10441 PASS_OPT_TO_IP(connp); 10442 } 10443 break; 10444 case IPV6_RECVTCLASS: 10445 if (!checkonly) { 10446 if (onoff) 10447 tcp->tcp_ipv6_recvancillary |= 10448 TCP_IPV6_RECVTCLASS; 10449 else 10450 tcp->tcp_ipv6_recvancillary &= 10451 ~TCP_IPV6_RECVTCLASS; 10452 PASS_OPT_TO_IP(connp); 10453 } 10454 break; 10455 case IPV6_RECVHOPLIMIT: 10456 if (!checkonly) { 10457 if (onoff) 10458 tcp->tcp_ipv6_recvancillary |= 10459 TCP_IPV6_RECVHOPLIMIT; 10460 else 10461 tcp->tcp_ipv6_recvancillary &= 10462 ~TCP_IPV6_RECVHOPLIMIT; 10463 /* Force it to be sent up with the next msg */ 10464 tcp->tcp_recvhops = 0xffffffffU; 10465 PASS_OPT_TO_IP(connp); 10466 } 10467 break; 10468 case IPV6_RECVHOPOPTS: 10469 if (!checkonly) { 10470 if (onoff) 10471 tcp->tcp_ipv6_recvancillary |= 10472 TCP_IPV6_RECVHOPOPTS; 10473 else 10474 tcp->tcp_ipv6_recvancillary &= 10475 ~TCP_IPV6_RECVHOPOPTS; 10476 PASS_OPT_TO_IP(connp); 10477 } 10478 break; 10479 case IPV6_RECVDSTOPTS: 10480 if (!checkonly) { 10481 if (onoff) 10482 tcp->tcp_ipv6_recvancillary |= 10483 TCP_IPV6_RECVDSTOPTS; 10484 else 10485 tcp->tcp_ipv6_recvancillary &= 10486 ~TCP_IPV6_RECVDSTOPTS; 10487 PASS_OPT_TO_IP(connp); 10488 } 10489 break; 10490 case _OLD_IPV6_RECVDSTOPTS: 10491 if (!checkonly) { 10492 if (onoff) 10493 tcp->tcp_ipv6_recvancillary |= 10494 TCP_OLD_IPV6_RECVDSTOPTS; 10495 else 10496 tcp->tcp_ipv6_recvancillary &= 10497 ~TCP_OLD_IPV6_RECVDSTOPTS; 10498 } 10499 break; 10500 case IPV6_RECVRTHDR: 10501 if (!checkonly) { 10502 if (onoff) 10503 tcp->tcp_ipv6_recvancillary |= 10504 TCP_IPV6_RECVRTHDR; 10505 else 10506 tcp->tcp_ipv6_recvancillary &= 10507 ~TCP_IPV6_RECVRTHDR; 10508 PASS_OPT_TO_IP(connp); 10509 } 10510 break; 10511 case IPV6_RECVRTHDRDSTOPTS: 10512 if (!checkonly) { 10513 if (onoff) 10514 tcp->tcp_ipv6_recvancillary |= 10515 TCP_IPV6_RECVRTDSTOPTS; 10516 else 10517 tcp->tcp_ipv6_recvancillary &= 10518 ~TCP_IPV6_RECVRTDSTOPTS; 10519 PASS_OPT_TO_IP(connp); 10520 } 10521 break; 10522 case IPV6_PKTINFO: 10523 if (inlen != 0 && inlen != sizeof (struct in6_pktinfo)) 10524 return (EINVAL); 10525 if (checkonly) 10526 break; 10527 10528 if (inlen == 0) { 10529 ipp->ipp_fields &= ~(IPPF_IFINDEX|IPPF_ADDR); 10530 } else { 10531 struct in6_pktinfo *pkti; 10532 10533 pkti = (struct in6_pktinfo *)invalp; 10534 /* 10535 * RFC 3542 states that ipi6_addr must be 10536 * the unspecified address when setting the 10537 * IPV6_PKTINFO sticky socket option on a 10538 * TCP socket. 10539 */ 10540 if (!IN6_IS_ADDR_UNSPECIFIED(&pkti->ipi6_addr)) 10541 return (EINVAL); 10542 /* 10543 * IP will validate the source address and 10544 * interface index. 10545 */ 10546 if (IPCL_IS_NONSTR(tcp->tcp_connp)) { 10547 reterr = ip_set_options(tcp->tcp_connp, 10548 level, name, invalp, inlen, cr); 10549 } else { 10550 reterr = ip6_set_pktinfo(cr, 10551 tcp->tcp_connp, pkti); 10552 } 10553 if (reterr != 0) 10554 return (reterr); 10555 ipp->ipp_ifindex = pkti->ipi6_ifindex; 10556 ipp->ipp_addr = pkti->ipi6_addr; 10557 if (ipp->ipp_ifindex != 0) 10558 ipp->ipp_fields |= IPPF_IFINDEX; 10559 else 10560 ipp->ipp_fields &= ~IPPF_IFINDEX; 10561 if (!IN6_IS_ADDR_UNSPECIFIED(&ipp->ipp_addr)) 10562 ipp->ipp_fields |= IPPF_ADDR; 10563 else 10564 ipp->ipp_fields &= ~IPPF_ADDR; 10565 } 10566 reterr = tcp_build_hdrs(tcp); 10567 if (reterr != 0) 10568 return (reterr); 10569 break; 10570 case IPV6_TCLASS: 10571 if (inlen != 0 && inlen != sizeof (int)) 10572 return (EINVAL); 10573 if (checkonly) 10574 break; 10575 10576 if (inlen == 0) { 10577 ipp->ipp_fields &= ~IPPF_TCLASS; 10578 } else { 10579 if (*i1 > 255 || *i1 < -1) 10580 return (EINVAL); 10581 if (*i1 == -1) { 10582 ipp->ipp_tclass = 0; 10583 *i1 = 0; 10584 } else { 10585 ipp->ipp_tclass = *i1; 10586 } 10587 ipp->ipp_fields |= IPPF_TCLASS; 10588 } 10589 reterr = tcp_build_hdrs(tcp); 10590 if (reterr != 0) 10591 return (reterr); 10592 break; 10593 case IPV6_NEXTHOP: 10594 /* 10595 * IP will verify that the nexthop is reachable 10596 * and fail for sticky options. 10597 */ 10598 if (inlen != 0 && inlen != sizeof (sin6_t)) 10599 return (EINVAL); 10600 if (checkonly) 10601 break; 10602 10603 if (inlen == 0) { 10604 ipp->ipp_fields &= ~IPPF_NEXTHOP; 10605 } else { 10606 sin6_t *sin6 = (sin6_t *)invalp; 10607 10608 if (sin6->sin6_family != AF_INET6) 10609 return (EAFNOSUPPORT); 10610 if (IN6_IS_ADDR_V4MAPPED( 10611 &sin6->sin6_addr)) 10612 return (EADDRNOTAVAIL); 10613 ipp->ipp_nexthop = sin6->sin6_addr; 10614 if (!IN6_IS_ADDR_UNSPECIFIED( 10615 &ipp->ipp_nexthop)) 10616 ipp->ipp_fields |= IPPF_NEXTHOP; 10617 else 10618 ipp->ipp_fields &= ~IPPF_NEXTHOP; 10619 } 10620 reterr = tcp_build_hdrs(tcp); 10621 if (reterr != 0) 10622 return (reterr); 10623 PASS_OPT_TO_IP(connp); 10624 break; 10625 case IPV6_HOPOPTS: { 10626 ip6_hbh_t *hopts = (ip6_hbh_t *)invalp; 10627 10628 /* 10629 * Sanity checks - minimum size, size a multiple of 10630 * eight bytes, and matching size passed in. 10631 */ 10632 if (inlen != 0 && 10633 inlen != (8 * (hopts->ip6h_len + 1))) 10634 return (EINVAL); 10635 10636 if (checkonly) 10637 break; 10638 10639 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10640 (uchar_t **)&ipp->ipp_hopopts, 10641 &ipp->ipp_hopoptslen, tcp->tcp_label_len); 10642 if (reterr != 0) 10643 return (reterr); 10644 if (ipp->ipp_hopoptslen == 0) 10645 ipp->ipp_fields &= ~IPPF_HOPOPTS; 10646 else 10647 ipp->ipp_fields |= IPPF_HOPOPTS; 10648 reterr = tcp_build_hdrs(tcp); 10649 if (reterr != 0) 10650 return (reterr); 10651 break; 10652 } 10653 case IPV6_RTHDRDSTOPTS: { 10654 ip6_dest_t *dopts = (ip6_dest_t *)invalp; 10655 10656 /* 10657 * Sanity checks - minimum size, size a multiple of 10658 * eight bytes, and matching size passed in. 10659 */ 10660 if (inlen != 0 && 10661 inlen != (8 * (dopts->ip6d_len + 1))) 10662 return (EINVAL); 10663 10664 if (checkonly) 10665 break; 10666 10667 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10668 (uchar_t **)&ipp->ipp_rtdstopts, 10669 &ipp->ipp_rtdstoptslen, 0); 10670 if (reterr != 0) 10671 return (reterr); 10672 if (ipp->ipp_rtdstoptslen == 0) 10673 ipp->ipp_fields &= ~IPPF_RTDSTOPTS; 10674 else 10675 ipp->ipp_fields |= IPPF_RTDSTOPTS; 10676 reterr = tcp_build_hdrs(tcp); 10677 if (reterr != 0) 10678 return (reterr); 10679 break; 10680 } 10681 case IPV6_DSTOPTS: { 10682 ip6_dest_t *dopts = (ip6_dest_t *)invalp; 10683 10684 /* 10685 * Sanity checks - minimum size, size a multiple of 10686 * eight bytes, and matching size passed in. 10687 */ 10688 if (inlen != 0 && 10689 inlen != (8 * (dopts->ip6d_len + 1))) 10690 return (EINVAL); 10691 10692 if (checkonly) 10693 break; 10694 10695 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10696 (uchar_t **)&ipp->ipp_dstopts, 10697 &ipp->ipp_dstoptslen, 0); 10698 if (reterr != 0) 10699 return (reterr); 10700 if (ipp->ipp_dstoptslen == 0) 10701 ipp->ipp_fields &= ~IPPF_DSTOPTS; 10702 else 10703 ipp->ipp_fields |= IPPF_DSTOPTS; 10704 reterr = tcp_build_hdrs(tcp); 10705 if (reterr != 0) 10706 return (reterr); 10707 break; 10708 } 10709 case IPV6_RTHDR: { 10710 ip6_rthdr_t *rt = (ip6_rthdr_t *)invalp; 10711 10712 /* 10713 * Sanity checks - minimum size, size a multiple of 10714 * eight bytes, and matching size passed in. 10715 */ 10716 if (inlen != 0 && 10717 inlen != (8 * (rt->ip6r_len + 1))) 10718 return (EINVAL); 10719 10720 if (checkonly) 10721 break; 10722 10723 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10724 (uchar_t **)&ipp->ipp_rthdr, 10725 &ipp->ipp_rthdrlen, 0); 10726 if (reterr != 0) 10727 return (reterr); 10728 if (ipp->ipp_rthdrlen == 0) 10729 ipp->ipp_fields &= ~IPPF_RTHDR; 10730 else 10731 ipp->ipp_fields |= IPPF_RTHDR; 10732 reterr = tcp_build_hdrs(tcp); 10733 if (reterr != 0) 10734 return (reterr); 10735 break; 10736 } 10737 case IPV6_V6ONLY: 10738 if (!checkonly) { 10739 tcp->tcp_connp->conn_ipv6_v6only = onoff; 10740 } 10741 break; 10742 case IPV6_USE_MIN_MTU: 10743 if (inlen != sizeof (int)) 10744 return (EINVAL); 10745 10746 if (*i1 < -1 || *i1 > 1) 10747 return (EINVAL); 10748 10749 if (checkonly) 10750 break; 10751 10752 ipp->ipp_fields |= IPPF_USE_MIN_MTU; 10753 ipp->ipp_use_min_mtu = *i1; 10754 break; 10755 case IPV6_SEC_OPT: 10756 /* 10757 * We should not allow policy setting after 10758 * we start listening for connections. 10759 */ 10760 if (tcp->tcp_state == TCPS_LISTEN) { 10761 return (EINVAL); 10762 } else { 10763 /* Handled at the IP level */ 10764 return (-EINVAL); 10765 } 10766 case IPV6_SRC_PREFERENCES: 10767 if (inlen != sizeof (uint32_t)) 10768 return (EINVAL); 10769 reterr = ip6_set_src_preferences(tcp->tcp_connp, 10770 *(uint32_t *)invalp); 10771 if (reterr != 0) { 10772 *outlenp = 0; 10773 return (reterr); 10774 } 10775 break; 10776 default: 10777 *outlenp = 0; 10778 return (EINVAL); 10779 } 10780 break; 10781 } /* end IPPROTO_IPV6 */ 10782 default: 10783 *outlenp = 0; 10784 return (EINVAL); 10785 } 10786 /* 10787 * Common case of OK return with outval same as inval 10788 */ 10789 if (invalp != outvalp) { 10790 /* don't trust bcopy for identical src/dst */ 10791 (void) bcopy(invalp, outvalp, inlen); 10792 } 10793 *outlenp = inlen; 10794 return (0); 10795 } 10796 10797 /* ARGSUSED */ 10798 int 10799 tcp_tpi_opt_set(queue_t *q, uint_t optset_context, int level, int name, 10800 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 10801 void *thisdg_attrs, cred_t *cr, mblk_t *mblk) 10802 { 10803 conn_t *connp = Q_TO_CONN(q); 10804 10805 return (tcp_opt_set(connp, optset_context, level, name, inlen, invalp, 10806 outlenp, outvalp, thisdg_attrs, cr, mblk)); 10807 } 10808 10809 int 10810 tcp_setsockopt(sock_lower_handle_t proto_handle, int level, int option_name, 10811 const void *optvalp, socklen_t optlen, cred_t *cr) 10812 { 10813 conn_t *connp = (conn_t *)proto_handle; 10814 squeue_t *sqp = connp->conn_sqp; 10815 int error; 10816 10817 ASSERT(connp->conn_upper_handle != NULL); 10818 /* 10819 * Entering the squeue synchronously can result in a context switch, 10820 * which can cause a rather sever performance degradation. So we try to 10821 * handle whatever options we can without entering the squeue. 10822 */ 10823 if (level == IPPROTO_TCP) { 10824 switch (option_name) { 10825 case TCP_NODELAY: 10826 if (optlen != sizeof (int32_t)) 10827 return (EINVAL); 10828 mutex_enter(&connp->conn_tcp->tcp_non_sq_lock); 10829 connp->conn_tcp->tcp_naglim = *(int *)optvalp ? 1 : 10830 connp->conn_tcp->tcp_mss; 10831 mutex_exit(&connp->conn_tcp->tcp_non_sq_lock); 10832 return (0); 10833 default: 10834 break; 10835 } 10836 } 10837 10838 error = squeue_synch_enter(sqp, connp, NULL); 10839 if (error == ENOMEM) { 10840 return (ENOMEM); 10841 } 10842 10843 error = proto_opt_check(level, option_name, optlen, NULL, 10844 tcp_opt_obj.odb_opt_des_arr, 10845 tcp_opt_obj.odb_opt_arr_cnt, 10846 tcp_opt_obj.odb_topmost_tpiprovider, 10847 B_TRUE, B_FALSE, cr); 10848 10849 if (error != 0) { 10850 if (error < 0) { 10851 error = proto_tlitosyserr(-error); 10852 } 10853 squeue_synch_exit(sqp, connp); 10854 return (error); 10855 } 10856 10857 error = tcp_opt_set(connp, SETFN_OPTCOM_NEGOTIATE, level, option_name, 10858 optlen, (uchar_t *)optvalp, (uint_t *)&optlen, (uchar_t *)optvalp, 10859 NULL, cr, NULL); 10860 squeue_synch_exit(sqp, connp); 10861 10862 if (error < 0) { 10863 /* 10864 * Pass on to ip 10865 */ 10866 error = ip_set_options(connp, level, option_name, optvalp, 10867 optlen, cr); 10868 } 10869 return (error); 10870 } 10871 10872 /* 10873 * Update tcp_sticky_hdrs based on tcp_sticky_ipp. 10874 * The headers include ip6i_t (if needed), ip6_t, any sticky extension 10875 * headers, and the maximum size tcp header (to avoid reallocation 10876 * on the fly for additional tcp options). 10877 * Returns failure if can't allocate memory. 10878 */ 10879 static int 10880 tcp_build_hdrs(tcp_t *tcp) 10881 { 10882 char *hdrs; 10883 uint_t hdrs_len; 10884 ip6i_t *ip6i; 10885 char buf[TCP_MAX_HDR_LENGTH]; 10886 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 10887 in6_addr_t src, dst; 10888 tcp_stack_t *tcps = tcp->tcp_tcps; 10889 conn_t *connp = tcp->tcp_connp; 10890 10891 /* 10892 * save the existing tcp header and source/dest IP addresses 10893 */ 10894 bcopy(tcp->tcp_tcph, buf, tcp->tcp_tcp_hdr_len); 10895 src = tcp->tcp_ip6h->ip6_src; 10896 dst = tcp->tcp_ip6h->ip6_dst; 10897 hdrs_len = ip_total_hdrs_len_v6(ipp) + TCP_MAX_HDR_LENGTH; 10898 ASSERT(hdrs_len != 0); 10899 if (hdrs_len > tcp->tcp_iphc_len) { 10900 /* Need to reallocate */ 10901 hdrs = kmem_zalloc(hdrs_len, KM_NOSLEEP); 10902 if (hdrs == NULL) 10903 return (ENOMEM); 10904 if (tcp->tcp_iphc != NULL) { 10905 if (tcp->tcp_hdr_grown) { 10906 kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len); 10907 } else { 10908 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 10909 kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc); 10910 } 10911 tcp->tcp_iphc_len = 0; 10912 } 10913 ASSERT(tcp->tcp_iphc_len == 0); 10914 tcp->tcp_iphc = hdrs; 10915 tcp->tcp_iphc_len = hdrs_len; 10916 tcp->tcp_hdr_grown = B_TRUE; 10917 } 10918 ip_build_hdrs_v6((uchar_t *)tcp->tcp_iphc, 10919 hdrs_len - TCP_MAX_HDR_LENGTH, ipp, IPPROTO_TCP); 10920 10921 /* Set header fields not in ipp */ 10922 if (ipp->ipp_fields & IPPF_HAS_IP6I) { 10923 ip6i = (ip6i_t *)tcp->tcp_iphc; 10924 tcp->tcp_ip6h = (ip6_t *)&ip6i[1]; 10925 } else { 10926 tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc; 10927 } 10928 /* 10929 * tcp->tcp_ip_hdr_len will include ip6i_t if there is one. 10930 * 10931 * tcp->tcp_tcp_hdr_len doesn't change here. 10932 */ 10933 tcp->tcp_ip_hdr_len = hdrs_len - TCP_MAX_HDR_LENGTH; 10934 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + tcp->tcp_ip_hdr_len); 10935 tcp->tcp_hdr_len = tcp->tcp_ip_hdr_len + tcp->tcp_tcp_hdr_len; 10936 10937 bcopy(buf, tcp->tcp_tcph, tcp->tcp_tcp_hdr_len); 10938 10939 tcp->tcp_ip6h->ip6_src = src; 10940 tcp->tcp_ip6h->ip6_dst = dst; 10941 10942 /* 10943 * If the hop limit was not set by ip_build_hdrs_v6(), set it to 10944 * the default value for TCP. 10945 */ 10946 if (!(ipp->ipp_fields & IPPF_UNICAST_HOPS)) 10947 tcp->tcp_ip6h->ip6_hops = tcps->tcps_ipv6_hoplimit; 10948 10949 /* 10950 * If we're setting extension headers after a connection 10951 * has been established, and if we have a routing header 10952 * among the extension headers, call ip_massage_options_v6 to 10953 * manipulate the routing header/ip6_dst set the checksum 10954 * difference in the tcp header template. 10955 * (This happens in tcp_connect_ipv6 if the routing header 10956 * is set prior to the connect.) 10957 * Set the tcp_sum to zero first in case we've cleared a 10958 * routing header or don't have one at all. 10959 */ 10960 tcp->tcp_sum = 0; 10961 if ((tcp->tcp_state >= TCPS_SYN_SENT) && 10962 (tcp->tcp_ipp_fields & IPPF_RTHDR)) { 10963 ip6_rthdr_t *rth = ip_find_rthdr_v6(tcp->tcp_ip6h, 10964 (uint8_t *)tcp->tcp_tcph); 10965 if (rth != NULL) { 10966 tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, 10967 rth, tcps->tcps_netstack); 10968 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 10969 (tcp->tcp_sum >> 16)); 10970 } 10971 } 10972 10973 /* Try to get everything in a single mblk */ 10974 (void) proto_set_tx_wroff(tcp->tcp_rq, connp, 10975 hdrs_len + tcps->tcps_wroff_xtra); 10976 return (0); 10977 } 10978 10979 /* 10980 * Transfer any source route option from ipha to buf/dst in reversed form. 10981 */ 10982 static int 10983 tcp_opt_rev_src_route(ipha_t *ipha, char *buf, uchar_t *dst) 10984 { 10985 ipoptp_t opts; 10986 uchar_t *opt; 10987 uint8_t optval; 10988 uint8_t optlen; 10989 uint32_t len = 0; 10990 10991 for (optval = ipoptp_first(&opts, ipha); 10992 optval != IPOPT_EOL; 10993 optval = ipoptp_next(&opts)) { 10994 opt = opts.ipoptp_cur; 10995 optlen = opts.ipoptp_len; 10996 switch (optval) { 10997 int off1, off2; 10998 case IPOPT_SSRR: 10999 case IPOPT_LSRR: 11000 11001 /* Reverse source route */ 11002 /* 11003 * First entry should be the next to last one in the 11004 * current source route (the last entry is our 11005 * address.) 11006 * The last entry should be the final destination. 11007 */ 11008 buf[IPOPT_OPTVAL] = (uint8_t)optval; 11009 buf[IPOPT_OLEN] = (uint8_t)optlen; 11010 off1 = IPOPT_MINOFF_SR - 1; 11011 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 11012 if (off2 < 0) { 11013 /* No entries in source route */ 11014 break; 11015 } 11016 bcopy(opt + off2, dst, IP_ADDR_LEN); 11017 /* 11018 * Note: use src since ipha has not had its src 11019 * and dst reversed (it is in the state it was 11020 * received. 11021 */ 11022 bcopy(&ipha->ipha_src, buf + off2, 11023 IP_ADDR_LEN); 11024 off2 -= IP_ADDR_LEN; 11025 11026 while (off2 > 0) { 11027 bcopy(opt + off2, buf + off1, 11028 IP_ADDR_LEN); 11029 off1 += IP_ADDR_LEN; 11030 off2 -= IP_ADDR_LEN; 11031 } 11032 buf[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 11033 buf += optlen; 11034 len += optlen; 11035 break; 11036 } 11037 } 11038 done: 11039 /* Pad the resulting options */ 11040 while (len & 0x3) { 11041 *buf++ = IPOPT_EOL; 11042 len++; 11043 } 11044 return (len); 11045 } 11046 11047 11048 /* 11049 * Extract and revert a source route from ipha (if any) 11050 * and then update the relevant fields in both tcp_t and the standard header. 11051 */ 11052 static void 11053 tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha) 11054 { 11055 char buf[TCP_MAX_HDR_LENGTH]; 11056 uint_t tcph_len; 11057 int len; 11058 11059 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION); 11060 len = IPH_HDR_LENGTH(ipha); 11061 if (len == IP_SIMPLE_HDR_LENGTH) 11062 /* Nothing to do */ 11063 return; 11064 if (len > IP_SIMPLE_HDR_LENGTH + TCP_MAX_IP_OPTIONS_LENGTH || 11065 (len & 0x3)) 11066 return; 11067 11068 tcph_len = tcp->tcp_tcp_hdr_len; 11069 bcopy(tcp->tcp_tcph, buf, tcph_len); 11070 tcp->tcp_sum = (tcp->tcp_ipha->ipha_dst >> 16) + 11071 (tcp->tcp_ipha->ipha_dst & 0xffff); 11072 len = tcp_opt_rev_src_route(ipha, (char *)tcp->tcp_ipha + 11073 IP_SIMPLE_HDR_LENGTH, (uchar_t *)&tcp->tcp_ipha->ipha_dst); 11074 len += IP_SIMPLE_HDR_LENGTH; 11075 tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) + 11076 (tcp->tcp_ipha->ipha_dst & 0xffff)); 11077 if ((int)tcp->tcp_sum < 0) 11078 tcp->tcp_sum--; 11079 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 11080 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16)); 11081 tcp->tcp_tcph = (tcph_t *)((char *)tcp->tcp_ipha + len); 11082 bcopy(buf, tcp->tcp_tcph, tcph_len); 11083 tcp->tcp_ip_hdr_len = len; 11084 tcp->tcp_ipha->ipha_version_and_hdr_length = 11085 (IP_VERSION << 4) | (len >> 2); 11086 len += tcph_len; 11087 tcp->tcp_hdr_len = len; 11088 } 11089 11090 /* 11091 * Copy the standard header into its new location, 11092 * lay in the new options and then update the relevant 11093 * fields in both tcp_t and the standard header. 11094 */ 11095 static int 11096 tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, uchar_t *ptr, uint_t len) 11097 { 11098 uint_t tcph_len; 11099 uint8_t *ip_optp; 11100 tcph_t *new_tcph; 11101 tcp_stack_t *tcps = tcp->tcp_tcps; 11102 conn_t *connp = tcp->tcp_connp; 11103 11104 if ((len > TCP_MAX_IP_OPTIONS_LENGTH) || (len & 0x3)) 11105 return (EINVAL); 11106 11107 if (len > IP_MAX_OPT_LENGTH - tcp->tcp_label_len) 11108 return (EINVAL); 11109 11110 if (checkonly) { 11111 /* 11112 * do not really set, just pretend to - T_CHECK 11113 */ 11114 return (0); 11115 } 11116 11117 ip_optp = (uint8_t *)tcp->tcp_ipha + IP_SIMPLE_HDR_LENGTH; 11118 if (tcp->tcp_label_len > 0) { 11119 int padlen; 11120 uint8_t opt; 11121 11122 /* convert list termination to no-ops */ 11123 padlen = tcp->tcp_label_len - ip_optp[IPOPT_OLEN]; 11124 ip_optp += ip_optp[IPOPT_OLEN]; 11125 opt = len > 0 ? IPOPT_NOP : IPOPT_EOL; 11126 while (--padlen >= 0) 11127 *ip_optp++ = opt; 11128 } 11129 tcph_len = tcp->tcp_tcp_hdr_len; 11130 new_tcph = (tcph_t *)(ip_optp + len); 11131 ovbcopy(tcp->tcp_tcph, new_tcph, tcph_len); 11132 tcp->tcp_tcph = new_tcph; 11133 bcopy(ptr, ip_optp, len); 11134 11135 len += IP_SIMPLE_HDR_LENGTH + tcp->tcp_label_len; 11136 11137 tcp->tcp_ip_hdr_len = len; 11138 tcp->tcp_ipha->ipha_version_and_hdr_length = 11139 (IP_VERSION << 4) | (len >> 2); 11140 tcp->tcp_hdr_len = len + tcph_len; 11141 if (!TCP_IS_DETACHED(tcp)) { 11142 /* Always allocate room for all options. */ 11143 (void) proto_set_tx_wroff(tcp->tcp_rq, connp, 11144 TCP_MAX_COMBINED_HEADER_LENGTH + tcps->tcps_wroff_xtra); 11145 } 11146 return (0); 11147 } 11148 11149 /* Get callback routine passed to nd_load by tcp_param_register */ 11150 /* ARGSUSED */ 11151 static int 11152 tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 11153 { 11154 tcpparam_t *tcppa = (tcpparam_t *)cp; 11155 11156 (void) mi_mpprintf(mp, "%u", tcppa->tcp_param_val); 11157 return (0); 11158 } 11159 11160 /* 11161 * Walk through the param array specified registering each element with the 11162 * named dispatch handler. 11163 */ 11164 static boolean_t 11165 tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt, tcp_stack_t *tcps) 11166 { 11167 for (; cnt-- > 0; tcppa++) { 11168 if (tcppa->tcp_param_name && tcppa->tcp_param_name[0]) { 11169 if (!nd_load(ndp, tcppa->tcp_param_name, 11170 tcp_param_get, tcp_param_set, 11171 (caddr_t)tcppa)) { 11172 nd_free(ndp); 11173 return (B_FALSE); 11174 } 11175 } 11176 } 11177 tcps->tcps_wroff_xtra_param = kmem_zalloc(sizeof (tcpparam_t), 11178 KM_SLEEP); 11179 bcopy(&lcl_tcp_wroff_xtra_param, tcps->tcps_wroff_xtra_param, 11180 sizeof (tcpparam_t)); 11181 if (!nd_load(ndp, tcps->tcps_wroff_xtra_param->tcp_param_name, 11182 tcp_param_get, tcp_param_set_aligned, 11183 (caddr_t)tcps->tcps_wroff_xtra_param)) { 11184 nd_free(ndp); 11185 return (B_FALSE); 11186 } 11187 tcps->tcps_mdt_head_param = kmem_zalloc(sizeof (tcpparam_t), 11188 KM_SLEEP); 11189 bcopy(&lcl_tcp_mdt_head_param, tcps->tcps_mdt_head_param, 11190 sizeof (tcpparam_t)); 11191 if (!nd_load(ndp, tcps->tcps_mdt_head_param->tcp_param_name, 11192 tcp_param_get, tcp_param_set_aligned, 11193 (caddr_t)tcps->tcps_mdt_head_param)) { 11194 nd_free(ndp); 11195 return (B_FALSE); 11196 } 11197 tcps->tcps_mdt_tail_param = kmem_zalloc(sizeof (tcpparam_t), 11198 KM_SLEEP); 11199 bcopy(&lcl_tcp_mdt_tail_param, tcps->tcps_mdt_tail_param, 11200 sizeof (tcpparam_t)); 11201 if (!nd_load(ndp, tcps->tcps_mdt_tail_param->tcp_param_name, 11202 tcp_param_get, tcp_param_set_aligned, 11203 (caddr_t)tcps->tcps_mdt_tail_param)) { 11204 nd_free(ndp); 11205 return (B_FALSE); 11206 } 11207 tcps->tcps_mdt_max_pbufs_param = kmem_zalloc(sizeof (tcpparam_t), 11208 KM_SLEEP); 11209 bcopy(&lcl_tcp_mdt_max_pbufs_param, tcps->tcps_mdt_max_pbufs_param, 11210 sizeof (tcpparam_t)); 11211 if (!nd_load(ndp, tcps->tcps_mdt_max_pbufs_param->tcp_param_name, 11212 tcp_param_get, tcp_param_set_aligned, 11213 (caddr_t)tcps->tcps_mdt_max_pbufs_param)) { 11214 nd_free(ndp); 11215 return (B_FALSE); 11216 } 11217 if (!nd_load(ndp, "tcp_extra_priv_ports", 11218 tcp_extra_priv_ports_get, NULL, NULL)) { 11219 nd_free(ndp); 11220 return (B_FALSE); 11221 } 11222 if (!nd_load(ndp, "tcp_extra_priv_ports_add", 11223 NULL, tcp_extra_priv_ports_add, NULL)) { 11224 nd_free(ndp); 11225 return (B_FALSE); 11226 } 11227 if (!nd_load(ndp, "tcp_extra_priv_ports_del", 11228 NULL, tcp_extra_priv_ports_del, NULL)) { 11229 nd_free(ndp); 11230 return (B_FALSE); 11231 } 11232 if (!nd_load(ndp, "tcp_1948_phrase", NULL, 11233 tcp_1948_phrase_set, NULL)) { 11234 nd_free(ndp); 11235 return (B_FALSE); 11236 } 11237 /* 11238 * Dummy ndd variables - only to convey obsolescence information 11239 * through printing of their name (no get or set routines) 11240 * XXX Remove in future releases ? 11241 */ 11242 if (!nd_load(ndp, 11243 "tcp_close_wait_interval(obsoleted - " 11244 "use tcp_time_wait_interval)", NULL, NULL, NULL)) { 11245 nd_free(ndp); 11246 return (B_FALSE); 11247 } 11248 return (B_TRUE); 11249 } 11250 11251 /* ndd set routine for tcp_wroff_xtra, tcp_mdt_hdr_{head,tail}_min. */ 11252 /* ARGSUSED */ 11253 static int 11254 tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 11255 cred_t *cr) 11256 { 11257 long new_value; 11258 tcpparam_t *tcppa = (tcpparam_t *)cp; 11259 11260 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11261 new_value < tcppa->tcp_param_min || 11262 new_value > tcppa->tcp_param_max) { 11263 return (EINVAL); 11264 } 11265 /* 11266 * Need to make sure new_value is a multiple of 4. If it is not, 11267 * round it up. For future 64 bit requirement, we actually make it 11268 * a multiple of 8. 11269 */ 11270 if (new_value & 0x7) { 11271 new_value = (new_value & ~0x7) + 0x8; 11272 } 11273 tcppa->tcp_param_val = new_value; 11274 return (0); 11275 } 11276 11277 /* Set callback routine passed to nd_load by tcp_param_register */ 11278 /* ARGSUSED */ 11279 static int 11280 tcp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) 11281 { 11282 long new_value; 11283 tcpparam_t *tcppa = (tcpparam_t *)cp; 11284 11285 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11286 new_value < tcppa->tcp_param_min || 11287 new_value > tcppa->tcp_param_max) { 11288 return (EINVAL); 11289 } 11290 tcppa->tcp_param_val = new_value; 11291 return (0); 11292 } 11293 11294 /* 11295 * Add a new piece to the tcp reassembly queue. If the gap at the beginning 11296 * is filled, return as much as we can. The message passed in may be 11297 * multi-part, chained using b_cont. "start" is the starting sequence 11298 * number for this piece. 11299 */ 11300 static mblk_t * 11301 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start) 11302 { 11303 uint32_t end; 11304 mblk_t *mp1; 11305 mblk_t *mp2; 11306 mblk_t *next_mp; 11307 uint32_t u1; 11308 tcp_stack_t *tcps = tcp->tcp_tcps; 11309 11310 /* Walk through all the new pieces. */ 11311 do { 11312 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 11313 (uintptr_t)INT_MAX); 11314 end = start + (int)(mp->b_wptr - mp->b_rptr); 11315 next_mp = mp->b_cont; 11316 if (start == end) { 11317 /* Empty. Blast it. */ 11318 freeb(mp); 11319 continue; 11320 } 11321 mp->b_cont = NULL; 11322 TCP_REASS_SET_SEQ(mp, start); 11323 TCP_REASS_SET_END(mp, end); 11324 mp1 = tcp->tcp_reass_tail; 11325 if (!mp1) { 11326 tcp->tcp_reass_tail = mp; 11327 tcp->tcp_reass_head = mp; 11328 BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs); 11329 UPDATE_MIB(&tcps->tcps_mib, 11330 tcpInDataUnorderBytes, end - start); 11331 continue; 11332 } 11333 /* New stuff completely beyond tail? */ 11334 if (SEQ_GEQ(start, TCP_REASS_END(mp1))) { 11335 /* Link it on end. */ 11336 mp1->b_cont = mp; 11337 tcp->tcp_reass_tail = mp; 11338 BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs); 11339 UPDATE_MIB(&tcps->tcps_mib, 11340 tcpInDataUnorderBytes, end - start); 11341 continue; 11342 } 11343 mp1 = tcp->tcp_reass_head; 11344 u1 = TCP_REASS_SEQ(mp1); 11345 /* New stuff at the front? */ 11346 if (SEQ_LT(start, u1)) { 11347 /* Yes... Check for overlap. */ 11348 mp->b_cont = mp1; 11349 tcp->tcp_reass_head = mp; 11350 tcp_reass_elim_overlap(tcp, mp); 11351 continue; 11352 } 11353 /* 11354 * The new piece fits somewhere between the head and tail. 11355 * We find our slot, where mp1 precedes us and mp2 trails. 11356 */ 11357 for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) { 11358 u1 = TCP_REASS_SEQ(mp2); 11359 if (SEQ_LEQ(start, u1)) 11360 break; 11361 } 11362 /* Link ourselves in */ 11363 mp->b_cont = mp2; 11364 mp1->b_cont = mp; 11365 11366 /* Trim overlap with following mblk(s) first */ 11367 tcp_reass_elim_overlap(tcp, mp); 11368 11369 /* Trim overlap with preceding mblk */ 11370 tcp_reass_elim_overlap(tcp, mp1); 11371 11372 } while (start = end, mp = next_mp); 11373 mp1 = tcp->tcp_reass_head; 11374 /* Anything ready to go? */ 11375 if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt) 11376 return (NULL); 11377 /* Eat what we can off the queue */ 11378 for (;;) { 11379 mp = mp1->b_cont; 11380 end = TCP_REASS_END(mp1); 11381 TCP_REASS_SET_SEQ(mp1, 0); 11382 TCP_REASS_SET_END(mp1, 0); 11383 if (!mp) { 11384 tcp->tcp_reass_tail = NULL; 11385 break; 11386 } 11387 if (end != TCP_REASS_SEQ(mp)) { 11388 mp1->b_cont = NULL; 11389 break; 11390 } 11391 mp1 = mp; 11392 } 11393 mp1 = tcp->tcp_reass_head; 11394 tcp->tcp_reass_head = mp; 11395 return (mp1); 11396 } 11397 11398 /* Eliminate any overlap that mp may have over later mblks */ 11399 static void 11400 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp) 11401 { 11402 uint32_t end; 11403 mblk_t *mp1; 11404 uint32_t u1; 11405 tcp_stack_t *tcps = tcp->tcp_tcps; 11406 11407 end = TCP_REASS_END(mp); 11408 while ((mp1 = mp->b_cont) != NULL) { 11409 u1 = TCP_REASS_SEQ(mp1); 11410 if (!SEQ_GT(end, u1)) 11411 break; 11412 if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) { 11413 mp->b_wptr -= end - u1; 11414 TCP_REASS_SET_END(mp, u1); 11415 BUMP_MIB(&tcps->tcps_mib, tcpInDataPartDupSegs); 11416 UPDATE_MIB(&tcps->tcps_mib, 11417 tcpInDataPartDupBytes, end - u1); 11418 break; 11419 } 11420 mp->b_cont = mp1->b_cont; 11421 TCP_REASS_SET_SEQ(mp1, 0); 11422 TCP_REASS_SET_END(mp1, 0); 11423 freeb(mp1); 11424 BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); 11425 UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, end - u1); 11426 } 11427 if (!mp1) 11428 tcp->tcp_reass_tail = mp; 11429 } 11430 11431 static uint_t 11432 tcp_rwnd_reopen(tcp_t *tcp) 11433 { 11434 uint_t ret = 0; 11435 uint_t thwin; 11436 11437 /* Learn the latest rwnd information that we sent to the other side. */ 11438 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 11439 << tcp->tcp_rcv_ws; 11440 /* This is peer's calculated send window (our receive window). */ 11441 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 11442 /* 11443 * Increase the receive window to max. But we need to do receiver 11444 * SWS avoidance. This means that we need to check the increase of 11445 * of receive window is at least 1 MSS. 11446 */ 11447 if (tcp->tcp_recv_hiwater - thwin >= tcp->tcp_mss) { 11448 /* 11449 * If the window that the other side knows is less than max 11450 * deferred acks segments, send an update immediately. 11451 */ 11452 if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) { 11453 BUMP_MIB(&tcp->tcp_tcps->tcps_mib, tcpOutWinUpdate); 11454 ret = TH_ACK_NEEDED; 11455 } 11456 tcp->tcp_rwnd = tcp->tcp_recv_hiwater; 11457 } 11458 return (ret); 11459 } 11460 11461 /* 11462 * Send up all messages queued on tcp_rcv_list. 11463 */ 11464 static uint_t 11465 tcp_rcv_drain(tcp_t *tcp) 11466 { 11467 mblk_t *mp; 11468 uint_t ret = 0; 11469 #ifdef DEBUG 11470 uint_t cnt = 0; 11471 #endif 11472 queue_t *q = tcp->tcp_rq; 11473 11474 /* Can't drain on an eager connection */ 11475 if (tcp->tcp_listener != NULL) 11476 return (ret); 11477 11478 /* Can't be a non-STREAMS connection */ 11479 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 11480 11481 /* No need for the push timer now. */ 11482 if (tcp->tcp_push_tid != 0) { 11483 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 11484 tcp->tcp_push_tid = 0; 11485 } 11486 11487 /* 11488 * Handle two cases here: we are currently fused or we were 11489 * previously fused and have some urgent data to be delivered 11490 * upstream. The latter happens because we either ran out of 11491 * memory or were detached and therefore sending the SIGURG was 11492 * deferred until this point. In either case we pass control 11493 * over to tcp_fuse_rcv_drain() since it may need to complete 11494 * some work. 11495 */ 11496 if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) { 11497 ASSERT(IPCL_IS_NONSTR(tcp->tcp_connp) || 11498 tcp->tcp_fused_sigurg_mp != NULL); 11499 if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL : 11500 &tcp->tcp_fused_sigurg_mp)) 11501 return (ret); 11502 } 11503 11504 while ((mp = tcp->tcp_rcv_list) != NULL) { 11505 tcp->tcp_rcv_list = mp->b_next; 11506 mp->b_next = NULL; 11507 #ifdef DEBUG 11508 cnt += msgdsize(mp); 11509 #endif 11510 /* Does this need SSL processing first? */ 11511 if ((tcp->tcp_kssl_ctx != NULL) && (DB_TYPE(mp) == M_DATA)) { 11512 DTRACE_PROBE1(kssl_mblk__ksslinput_rcvdrain, 11513 mblk_t *, mp); 11514 tcp_kssl_input(tcp, mp); 11515 continue; 11516 } 11517 putnext(q, mp); 11518 } 11519 #ifdef DEBUG 11520 ASSERT(cnt == tcp->tcp_rcv_cnt); 11521 #endif 11522 tcp->tcp_rcv_last_head = NULL; 11523 tcp->tcp_rcv_last_tail = NULL; 11524 tcp->tcp_rcv_cnt = 0; 11525 11526 if (canputnext(q)) 11527 return (tcp_rwnd_reopen(tcp)); 11528 11529 return (ret); 11530 } 11531 11532 /* 11533 * Queue data on tcp_rcv_list which is a b_next chain. 11534 * tcp_rcv_last_head/tail is the last element of this chain. 11535 * Each element of the chain is a b_cont chain. 11536 * 11537 * M_DATA messages are added to the current element. 11538 * Other messages are added as new (b_next) elements. 11539 */ 11540 void 11541 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len) 11542 { 11543 ASSERT(seg_len == msgdsize(mp)); 11544 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL); 11545 11546 if (tcp->tcp_rcv_list == NULL) { 11547 ASSERT(tcp->tcp_rcv_last_head == NULL); 11548 tcp->tcp_rcv_list = mp; 11549 tcp->tcp_rcv_last_head = mp; 11550 } else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) { 11551 tcp->tcp_rcv_last_tail->b_cont = mp; 11552 } else { 11553 tcp->tcp_rcv_last_head->b_next = mp; 11554 tcp->tcp_rcv_last_head = mp; 11555 } 11556 11557 while (mp->b_cont) 11558 mp = mp->b_cont; 11559 11560 tcp->tcp_rcv_last_tail = mp; 11561 tcp->tcp_rcv_cnt += seg_len; 11562 tcp->tcp_rwnd -= seg_len; 11563 } 11564 11565 /* 11566 * DEFAULT TCP ENTRY POINT via squeue on READ side. 11567 * 11568 * This is the default entry function into TCP on the read side. TCP is 11569 * always entered via squeue i.e. using squeue's for mutual exclusion. 11570 * When classifier does a lookup to find the tcp, it also puts a reference 11571 * on the conn structure associated so the tcp is guaranteed to exist 11572 * when we come here. We still need to check the state because it might 11573 * as well has been closed. The squeue processing function i.e. squeue_enter, 11574 * is responsible for doing the CONN_DEC_REF. 11575 * 11576 * Apart from the default entry point, IP also sends packets directly to 11577 * tcp_rput_data for AF_INET fast path and tcp_conn_request for incoming 11578 * connections. 11579 */ 11580 boolean_t tcp_outbound_squeue_switch = B_FALSE; 11581 void 11582 tcp_input(void *arg, mblk_t *mp, void *arg2) 11583 { 11584 conn_t *connp = (conn_t *)arg; 11585 tcp_t *tcp = (tcp_t *)connp->conn_tcp; 11586 11587 /* arg2 is the sqp */ 11588 ASSERT(arg2 != NULL); 11589 ASSERT(mp != NULL); 11590 11591 /* 11592 * Don't accept any input on a closed tcp as this TCP logically does 11593 * not exist on the system. Don't proceed further with this TCP. 11594 * For eg. this packet could trigger another close of this tcp 11595 * which would be disastrous for tcp_refcnt. tcp_close_detached / 11596 * tcp_clean_death / tcp_closei_local must be called at most once 11597 * on a TCP. In this case we need to refeed the packet into the 11598 * classifier and figure out where the packet should go. Need to 11599 * preserve the recv_ill somehow. Until we figure that out, for 11600 * now just drop the packet if we can't classify the packet. 11601 */ 11602 if (tcp->tcp_state == TCPS_CLOSED || 11603 tcp->tcp_state == TCPS_BOUND) { 11604 conn_t *new_connp; 11605 ip_stack_t *ipst = tcp->tcp_tcps->tcps_netstack->netstack_ip; 11606 11607 new_connp = ipcl_classify(mp, connp->conn_zoneid, ipst); 11608 if (new_connp != NULL) { 11609 tcp_reinput(new_connp, mp, arg2); 11610 return; 11611 } 11612 /* We failed to classify. For now just drop the packet */ 11613 freemsg(mp); 11614 return; 11615 } 11616 11617 if (DB_TYPE(mp) != M_DATA) { 11618 tcp_rput_common(tcp, mp); 11619 return; 11620 } 11621 11622 if (mp->b_datap->db_struioflag & STRUIO_CONNECT) { 11623 squeue_t *final_sqp; 11624 11625 mp->b_datap->db_struioflag &= ~STRUIO_CONNECT; 11626 final_sqp = (squeue_t *)DB_CKSUMSTART(mp); 11627 DB_CKSUMSTART(mp) = 0; 11628 if (tcp->tcp_state == TCPS_SYN_SENT && 11629 connp->conn_final_sqp == NULL && 11630 tcp_outbound_squeue_switch) { 11631 ASSERT(connp->conn_initial_sqp == connp->conn_sqp); 11632 connp->conn_final_sqp = final_sqp; 11633 if (connp->conn_final_sqp != connp->conn_sqp) { 11634 CONN_INC_REF(connp); 11635 SQUEUE_SWITCH(connp, connp->conn_final_sqp); 11636 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 11637 tcp_rput_data, connp, ip_squeue_flag, 11638 SQTAG_CONNECT_FINISH); 11639 return; 11640 } 11641 } 11642 } 11643 tcp_rput_data(connp, mp, arg2); 11644 } 11645 11646 /* 11647 * The read side put procedure. 11648 * The packets passed up by ip are assume to be aligned according to 11649 * OK_32PTR and the IP+TCP headers fitting in the first mblk. 11650 */ 11651 static void 11652 tcp_rput_common(tcp_t *tcp, mblk_t *mp) 11653 { 11654 /* 11655 * tcp_rput_data() does not expect M_CTL except for the case 11656 * where tcp_ipv6_recvancillary is set and we get a IN_PKTINFO 11657 * type. Need to make sure that any other M_CTLs don't make 11658 * it to tcp_rput_data since it is not expecting any and doesn't 11659 * check for it. 11660 */ 11661 if (DB_TYPE(mp) == M_CTL) { 11662 switch (*(uint32_t *)(mp->b_rptr)) { 11663 case TCP_IOC_ABORT_CONN: 11664 /* 11665 * Handle connection abort request. 11666 */ 11667 tcp_ioctl_abort_handler(tcp, mp); 11668 return; 11669 case IPSEC_IN: 11670 /* 11671 * Only secure icmp arrive in TCP and they 11672 * don't go through data path. 11673 */ 11674 tcp_icmp_error(tcp, mp); 11675 return; 11676 case IN_PKTINFO: 11677 /* 11678 * Handle IPV6_RECVPKTINFO socket option on AF_INET6 11679 * sockets that are receiving IPv4 traffic. tcp 11680 */ 11681 ASSERT(tcp->tcp_family == AF_INET6); 11682 ASSERT(tcp->tcp_ipv6_recvancillary & 11683 TCP_IPV6_RECVPKTINFO); 11684 tcp_rput_data(tcp->tcp_connp, mp, 11685 tcp->tcp_connp->conn_sqp); 11686 return; 11687 case MDT_IOC_INFO_UPDATE: 11688 /* 11689 * Handle Multidata information update; the 11690 * following routine will free the message. 11691 */ 11692 if (tcp->tcp_connp->conn_mdt_ok) { 11693 tcp_mdt_update(tcp, 11694 &((ip_mdt_info_t *)mp->b_rptr)->mdt_capab, 11695 B_FALSE); 11696 } 11697 freemsg(mp); 11698 return; 11699 case LSO_IOC_INFO_UPDATE: 11700 /* 11701 * Handle LSO information update; the following 11702 * routine will free the message. 11703 */ 11704 if (tcp->tcp_connp->conn_lso_ok) { 11705 tcp_lso_update(tcp, 11706 &((ip_lso_info_t *)mp->b_rptr)->lso_capab); 11707 } 11708 freemsg(mp); 11709 return; 11710 default: 11711 /* 11712 * tcp_icmp_err() will process the M_CTL packets. 11713 * Non-ICMP packets, if any, will be discarded in 11714 * tcp_icmp_err(). We will process the ICMP packet 11715 * even if we are TCP_IS_DETACHED_NONEAGER as the 11716 * incoming ICMP packet may result in changing 11717 * the tcp_mss, which we would need if we have 11718 * packets to retransmit. 11719 */ 11720 tcp_icmp_error(tcp, mp); 11721 return; 11722 } 11723 } 11724 11725 /* No point processing the message if tcp is already closed */ 11726 if (TCP_IS_DETACHED_NONEAGER(tcp)) { 11727 freemsg(mp); 11728 return; 11729 } 11730 11731 tcp_rput_other(tcp, mp); 11732 } 11733 11734 11735 /* The minimum of smoothed mean deviation in RTO calculation. */ 11736 #define TCP_SD_MIN 400 11737 11738 /* 11739 * Set RTO for this connection. The formula is from Jacobson and Karels' 11740 * "Congestion Avoidance and Control" in SIGCOMM '88. The variable names 11741 * are the same as those in Appendix A.2 of that paper. 11742 * 11743 * m = new measurement 11744 * sa = smoothed RTT average (8 * average estimates). 11745 * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates). 11746 */ 11747 static void 11748 tcp_set_rto(tcp_t *tcp, clock_t rtt) 11749 { 11750 long m = TICK_TO_MSEC(rtt); 11751 clock_t sa = tcp->tcp_rtt_sa; 11752 clock_t sv = tcp->tcp_rtt_sd; 11753 clock_t rto; 11754 tcp_stack_t *tcps = tcp->tcp_tcps; 11755 11756 BUMP_MIB(&tcps->tcps_mib, tcpRttUpdate); 11757 tcp->tcp_rtt_update++; 11758 11759 /* tcp_rtt_sa is not 0 means this is a new sample. */ 11760 if (sa != 0) { 11761 /* 11762 * Update average estimator: 11763 * new rtt = 7/8 old rtt + 1/8 Error 11764 */ 11765 11766 /* m is now Error in estimate. */ 11767 m -= sa >> 3; 11768 if ((sa += m) <= 0) { 11769 /* 11770 * Don't allow the smoothed average to be negative. 11771 * We use 0 to denote reinitialization of the 11772 * variables. 11773 */ 11774 sa = 1; 11775 } 11776 11777 /* 11778 * Update deviation estimator: 11779 * new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev) 11780 */ 11781 if (m < 0) 11782 m = -m; 11783 m -= sv >> 2; 11784 sv += m; 11785 } else { 11786 /* 11787 * This follows BSD's implementation. So the reinitialized 11788 * RTO is 3 * m. We cannot go less than 2 because if the 11789 * link is bandwidth dominated, doubling the window size 11790 * during slow start means doubling the RTT. We want to be 11791 * more conservative when we reinitialize our estimates. 3 11792 * is just a convenient number. 11793 */ 11794 sa = m << 3; 11795 sv = m << 1; 11796 } 11797 if (sv < TCP_SD_MIN) { 11798 /* 11799 * We do not know that if sa captures the delay ACK 11800 * effect as in a long train of segments, a receiver 11801 * does not delay its ACKs. So set the minimum of sv 11802 * to be TCP_SD_MIN, which is default to 400 ms, twice 11803 * of BSD DATO. That means the minimum of mean 11804 * deviation is 100 ms. 11805 * 11806 */ 11807 sv = TCP_SD_MIN; 11808 } 11809 tcp->tcp_rtt_sa = sa; 11810 tcp->tcp_rtt_sd = sv; 11811 /* 11812 * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv) 11813 * 11814 * Add tcp_rexmit_interval extra in case of extreme environment 11815 * where the algorithm fails to work. The default value of 11816 * tcp_rexmit_interval_extra should be 0. 11817 * 11818 * As we use a finer grained clock than BSD and update 11819 * RTO for every ACKs, add in another .25 of RTT to the 11820 * deviation of RTO to accomodate burstiness of 1/4 of 11821 * window size. 11822 */ 11823 rto = (sa >> 3) + sv + tcps->tcps_rexmit_interval_extra + (sa >> 5); 11824 11825 if (rto > tcps->tcps_rexmit_interval_max) { 11826 tcp->tcp_rto = tcps->tcps_rexmit_interval_max; 11827 } else if (rto < tcps->tcps_rexmit_interval_min) { 11828 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 11829 } else { 11830 tcp->tcp_rto = rto; 11831 } 11832 11833 /* Now, we can reset tcp_timer_backoff to use the new RTO... */ 11834 tcp->tcp_timer_backoff = 0; 11835 } 11836 11837 /* 11838 * tcp_get_seg_mp() is called to get the pointer to a segment in the 11839 * send queue which starts at the given sequence number. If the given 11840 * sequence number is equal to last valid sequence number (tcp_snxt), the 11841 * returned mblk is the last valid mblk, and off is set to the length of 11842 * that mblk. 11843 * 11844 * send queue which starts at the given seq. no. 11845 * 11846 * Parameters: 11847 * tcp_t *tcp: the tcp instance pointer. 11848 * uint32_t seq: the starting seq. no of the requested segment. 11849 * int32_t *off: after the execution, *off will be the offset to 11850 * the returned mblk which points to the requested seq no. 11851 * It is the caller's responsibility to send in a non-null off. 11852 * 11853 * Return: 11854 * A mblk_t pointer pointing to the requested segment in send queue. 11855 */ 11856 static mblk_t * 11857 tcp_get_seg_mp(tcp_t *tcp, uint32_t seq, int32_t *off) 11858 { 11859 int32_t cnt; 11860 mblk_t *mp; 11861 11862 /* Defensive coding. Make sure we don't send incorrect data. */ 11863 if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GT(seq, tcp->tcp_snxt)) 11864 return (NULL); 11865 11866 cnt = seq - tcp->tcp_suna; 11867 mp = tcp->tcp_xmit_head; 11868 while (cnt > 0 && mp != NULL) { 11869 cnt -= mp->b_wptr - mp->b_rptr; 11870 if (cnt <= 0) { 11871 cnt += mp->b_wptr - mp->b_rptr; 11872 break; 11873 } 11874 mp = mp->b_cont; 11875 } 11876 ASSERT(mp != NULL); 11877 *off = cnt; 11878 return (mp); 11879 } 11880 11881 /* 11882 * This function handles all retransmissions if SACK is enabled for this 11883 * connection. First it calculates how many segments can be retransmitted 11884 * based on tcp_pipe. Then it goes thru the notsack list to find eligible 11885 * segments. A segment is eligible if sack_cnt for that segment is greater 11886 * than or equal tcp_dupack_fast_retransmit. After it has retransmitted 11887 * all eligible segments, it checks to see if TCP can send some new segments 11888 * (fast recovery). If it can, set the appropriate flag for tcp_rput_data(). 11889 * 11890 * Parameters: 11891 * tcp_t *tcp: the tcp structure of the connection. 11892 * uint_t *flags: in return, appropriate value will be set for 11893 * tcp_rput_data(). 11894 */ 11895 static void 11896 tcp_sack_rxmit(tcp_t *tcp, uint_t *flags) 11897 { 11898 notsack_blk_t *notsack_blk; 11899 int32_t usable_swnd; 11900 int32_t mss; 11901 uint32_t seg_len; 11902 mblk_t *xmit_mp; 11903 tcp_stack_t *tcps = tcp->tcp_tcps; 11904 11905 ASSERT(tcp->tcp_sack_info != NULL); 11906 ASSERT(tcp->tcp_notsack_list != NULL); 11907 ASSERT(tcp->tcp_rexmit == B_FALSE); 11908 11909 /* Defensive coding in case there is a bug... */ 11910 if (tcp->tcp_notsack_list == NULL) { 11911 return; 11912 } 11913 notsack_blk = tcp->tcp_notsack_list; 11914 mss = tcp->tcp_mss; 11915 11916 /* 11917 * Limit the num of outstanding data in the network to be 11918 * tcp_cwnd_ssthresh, which is half of the original congestion wnd. 11919 */ 11920 usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; 11921 11922 /* At least retransmit 1 MSS of data. */ 11923 if (usable_swnd <= 0) { 11924 usable_swnd = mss; 11925 } 11926 11927 /* Make sure no new RTT samples will be taken. */ 11928 tcp->tcp_csuna = tcp->tcp_snxt; 11929 11930 notsack_blk = tcp->tcp_notsack_list; 11931 while (usable_swnd > 0) { 11932 mblk_t *snxt_mp, *tmp_mp; 11933 tcp_seq begin = tcp->tcp_sack_snxt; 11934 tcp_seq end; 11935 int32_t off; 11936 11937 for (; notsack_blk != NULL; notsack_blk = notsack_blk->next) { 11938 if (SEQ_GT(notsack_blk->end, begin) && 11939 (notsack_blk->sack_cnt >= 11940 tcps->tcps_dupack_fast_retransmit)) { 11941 end = notsack_blk->end; 11942 if (SEQ_LT(begin, notsack_blk->begin)) { 11943 begin = notsack_blk->begin; 11944 } 11945 break; 11946 } 11947 } 11948 /* 11949 * All holes are filled. Manipulate tcp_cwnd to send more 11950 * if we can. Note that after the SACK recovery, tcp_cwnd is 11951 * set to tcp_cwnd_ssthresh. 11952 */ 11953 if (notsack_blk == NULL) { 11954 usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; 11955 if (usable_swnd <= 0 || tcp->tcp_unsent == 0) { 11956 tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna; 11957 ASSERT(tcp->tcp_cwnd > 0); 11958 return; 11959 } else { 11960 usable_swnd = usable_swnd / mss; 11961 tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna + 11962 MAX(usable_swnd * mss, mss); 11963 *flags |= TH_XMIT_NEEDED; 11964 return; 11965 } 11966 } 11967 11968 /* 11969 * Note that we may send more than usable_swnd allows here 11970 * because of round off, but no more than 1 MSS of data. 11971 */ 11972 seg_len = end - begin; 11973 if (seg_len > mss) 11974 seg_len = mss; 11975 snxt_mp = tcp_get_seg_mp(tcp, begin, &off); 11976 ASSERT(snxt_mp != NULL); 11977 /* This should not happen. Defensive coding again... */ 11978 if (snxt_mp == NULL) { 11979 return; 11980 } 11981 11982 xmit_mp = tcp_xmit_mp(tcp, snxt_mp, seg_len, &off, 11983 &tmp_mp, begin, B_TRUE, &seg_len, B_TRUE); 11984 if (xmit_mp == NULL) 11985 return; 11986 11987 usable_swnd -= seg_len; 11988 tcp->tcp_pipe += seg_len; 11989 tcp->tcp_sack_snxt = begin + seg_len; 11990 11991 tcp_send_data(tcp, tcp->tcp_wq, xmit_mp); 11992 11993 /* 11994 * Update the send timestamp to avoid false retransmission. 11995 */ 11996 snxt_mp->b_prev = (mblk_t *)lbolt; 11997 11998 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 11999 UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, seg_len); 12000 BUMP_MIB(&tcps->tcps_mib, tcpOutSackRetransSegs); 12001 /* 12002 * Update tcp_rexmit_max to extend this SACK recovery phase. 12003 * This happens when new data sent during fast recovery is 12004 * also lost. If TCP retransmits those new data, it needs 12005 * to extend SACK recover phase to avoid starting another 12006 * fast retransmit/recovery unnecessarily. 12007 */ 12008 if (SEQ_GT(tcp->tcp_sack_snxt, tcp->tcp_rexmit_max)) { 12009 tcp->tcp_rexmit_max = tcp->tcp_sack_snxt; 12010 } 12011 } 12012 } 12013 12014 /* 12015 * This function handles policy checking at TCP level for non-hard_bound/ 12016 * detached connections. 12017 */ 12018 static boolean_t 12019 tcp_check_policy(tcp_t *tcp, mblk_t *first_mp, ipha_t *ipha, ip6_t *ip6h, 12020 boolean_t secure, boolean_t mctl_present) 12021 { 12022 ipsec_latch_t *ipl = NULL; 12023 ipsec_action_t *act = NULL; 12024 mblk_t *data_mp; 12025 ipsec_in_t *ii; 12026 const char *reason; 12027 kstat_named_t *counter; 12028 tcp_stack_t *tcps = tcp->tcp_tcps; 12029 ipsec_stack_t *ipss; 12030 ip_stack_t *ipst; 12031 12032 ASSERT(mctl_present || !secure); 12033 12034 ASSERT((ipha == NULL && ip6h != NULL) || 12035 (ip6h == NULL && ipha != NULL)); 12036 12037 /* 12038 * We don't necessarily have an ipsec_in_act action to verify 12039 * policy because of assymetrical policy where we have only 12040 * outbound policy and no inbound policy (possible with global 12041 * policy). 12042 */ 12043 if (!secure) { 12044 if (act == NULL || act->ipa_act.ipa_type == IPSEC_ACT_BYPASS || 12045 act->ipa_act.ipa_type == IPSEC_ACT_CLEAR) 12046 return (B_TRUE); 12047 ipsec_log_policy_failure(IPSEC_POLICY_MISMATCH, 12048 "tcp_check_policy", ipha, ip6h, secure, 12049 tcps->tcps_netstack); 12050 ipss = tcps->tcps_netstack->netstack_ipsec; 12051 12052 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, 12053 DROPPER(ipss, ipds_tcp_clear), 12054 &tcps->tcps_dropper); 12055 return (B_FALSE); 12056 } 12057 12058 /* 12059 * We have a secure packet. 12060 */ 12061 if (act == NULL) { 12062 ipsec_log_policy_failure(IPSEC_POLICY_NOT_NEEDED, 12063 "tcp_check_policy", ipha, ip6h, secure, 12064 tcps->tcps_netstack); 12065 ipss = tcps->tcps_netstack->netstack_ipsec; 12066 12067 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, 12068 DROPPER(ipss, ipds_tcp_secure), 12069 &tcps->tcps_dropper); 12070 return (B_FALSE); 12071 } 12072 12073 /* 12074 * XXX This whole routine is currently incorrect. ipl should 12075 * be set to the latch pointer, but is currently not set, so 12076 * we initialize it to NULL to avoid picking up random garbage. 12077 */ 12078 if (ipl == NULL) 12079 return (B_TRUE); 12080 12081 data_mp = first_mp->b_cont; 12082 12083 ii = (ipsec_in_t *)first_mp->b_rptr; 12084 12085 ipst = tcps->tcps_netstack->netstack_ip; 12086 12087 if (ipsec_check_ipsecin_latch(ii, data_mp, ipl, ipha, ip6h, &reason, 12088 &counter, tcp->tcp_connp)) { 12089 BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded); 12090 return (B_TRUE); 12091 } 12092 (void) strlog(TCP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE, 12093 "tcp inbound policy mismatch: %s, packet dropped\n", 12094 reason); 12095 BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed); 12096 12097 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter, 12098 &tcps->tcps_dropper); 12099 return (B_FALSE); 12100 } 12101 12102 /* 12103 * tcp_ss_rexmit() is called in tcp_rput_data() to do slow start 12104 * retransmission after a timeout. 12105 * 12106 * To limit the number of duplicate segments, we limit the number of segment 12107 * to be sent in one time to tcp_snd_burst, the burst variable. 12108 */ 12109 static void 12110 tcp_ss_rexmit(tcp_t *tcp) 12111 { 12112 uint32_t snxt; 12113 uint32_t smax; 12114 int32_t win; 12115 int32_t mss; 12116 int32_t off; 12117 int32_t burst = tcp->tcp_snd_burst; 12118 mblk_t *snxt_mp; 12119 tcp_stack_t *tcps = tcp->tcp_tcps; 12120 12121 /* 12122 * Note that tcp_rexmit can be set even though TCP has retransmitted 12123 * all unack'ed segments. 12124 */ 12125 if (SEQ_LT(tcp->tcp_rexmit_nxt, tcp->tcp_rexmit_max)) { 12126 smax = tcp->tcp_rexmit_max; 12127 snxt = tcp->tcp_rexmit_nxt; 12128 if (SEQ_LT(snxt, tcp->tcp_suna)) { 12129 snxt = tcp->tcp_suna; 12130 } 12131 win = MIN(tcp->tcp_cwnd, tcp->tcp_swnd); 12132 win -= snxt - tcp->tcp_suna; 12133 mss = tcp->tcp_mss; 12134 snxt_mp = tcp_get_seg_mp(tcp, snxt, &off); 12135 12136 while (SEQ_LT(snxt, smax) && (win > 0) && 12137 (burst > 0) && (snxt_mp != NULL)) { 12138 mblk_t *xmit_mp; 12139 mblk_t *old_snxt_mp = snxt_mp; 12140 uint32_t cnt = mss; 12141 12142 if (win < cnt) { 12143 cnt = win; 12144 } 12145 if (SEQ_GT(snxt + cnt, smax)) { 12146 cnt = smax - snxt; 12147 } 12148 xmit_mp = tcp_xmit_mp(tcp, snxt_mp, cnt, &off, 12149 &snxt_mp, snxt, B_TRUE, &cnt, B_TRUE); 12150 if (xmit_mp == NULL) 12151 return; 12152 12153 tcp_send_data(tcp, tcp->tcp_wq, xmit_mp); 12154 12155 snxt += cnt; 12156 win -= cnt; 12157 /* 12158 * Update the send timestamp to avoid false 12159 * retransmission. 12160 */ 12161 old_snxt_mp->b_prev = (mblk_t *)lbolt; 12162 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 12163 UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, cnt); 12164 12165 tcp->tcp_rexmit_nxt = snxt; 12166 burst--; 12167 } 12168 /* 12169 * If we have transmitted all we have at the time 12170 * we started the retranmission, we can leave 12171 * the rest of the job to tcp_wput_data(). But we 12172 * need to check the send window first. If the 12173 * win is not 0, go on with tcp_wput_data(). 12174 */ 12175 if (SEQ_LT(snxt, smax) || win == 0) { 12176 return; 12177 } 12178 } 12179 /* Only call tcp_wput_data() if there is data to be sent. */ 12180 if (tcp->tcp_unsent) { 12181 tcp_wput_data(tcp, NULL, B_FALSE); 12182 } 12183 } 12184 12185 /* 12186 * Process all TCP option in SYN segment. Note that this function should 12187 * be called after tcp_adapt_ire() is called so that the necessary info 12188 * from IRE is already set in the tcp structure. 12189 * 12190 * This function sets up the correct tcp_mss value according to the 12191 * MSS option value and our header size. It also sets up the window scale 12192 * and timestamp values, and initialize SACK info blocks. But it does not 12193 * change receive window size after setting the tcp_mss value. The caller 12194 * should do the appropriate change. 12195 */ 12196 void 12197 tcp_process_options(tcp_t *tcp, tcph_t *tcph) 12198 { 12199 int options; 12200 tcp_opt_t tcpopt; 12201 uint32_t mss_max; 12202 char *tmp_tcph; 12203 tcp_stack_t *tcps = tcp->tcp_tcps; 12204 12205 tcpopt.tcp = NULL; 12206 options = tcp_parse_options(tcph, &tcpopt); 12207 12208 /* 12209 * Process MSS option. Note that MSS option value does not account 12210 * for IP or TCP options. This means that it is equal to MTU - minimum 12211 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for 12212 * IPv6. 12213 */ 12214 if (!(options & TCP_OPT_MSS_PRESENT)) { 12215 if (tcp->tcp_ipversion == IPV4_VERSION) 12216 tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv4; 12217 else 12218 tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv6; 12219 } else { 12220 if (tcp->tcp_ipversion == IPV4_VERSION) 12221 mss_max = tcps->tcps_mss_max_ipv4; 12222 else 12223 mss_max = tcps->tcps_mss_max_ipv6; 12224 if (tcpopt.tcp_opt_mss < tcps->tcps_mss_min) 12225 tcpopt.tcp_opt_mss = tcps->tcps_mss_min; 12226 else if (tcpopt.tcp_opt_mss > mss_max) 12227 tcpopt.tcp_opt_mss = mss_max; 12228 } 12229 12230 /* Process Window Scale option. */ 12231 if (options & TCP_OPT_WSCALE_PRESENT) { 12232 tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale; 12233 tcp->tcp_snd_ws_ok = B_TRUE; 12234 } else { 12235 tcp->tcp_snd_ws = B_FALSE; 12236 tcp->tcp_snd_ws_ok = B_FALSE; 12237 tcp->tcp_rcv_ws = B_FALSE; 12238 } 12239 12240 /* Process Timestamp option. */ 12241 if ((options & TCP_OPT_TSTAMP_PRESENT) && 12242 (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) { 12243 tmp_tcph = (char *)tcp->tcp_tcph; 12244 12245 tcp->tcp_snd_ts_ok = B_TRUE; 12246 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 12247 tcp->tcp_last_rcv_lbolt = lbolt64; 12248 ASSERT(OK_32PTR(tmp_tcph)); 12249 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 12250 12251 /* Fill in our template header with basic timestamp option. */ 12252 tmp_tcph += tcp->tcp_tcp_hdr_len; 12253 tmp_tcph[0] = TCPOPT_NOP; 12254 tmp_tcph[1] = TCPOPT_NOP; 12255 tmp_tcph[2] = TCPOPT_TSTAMP; 12256 tmp_tcph[3] = TCPOPT_TSTAMP_LEN; 12257 tcp->tcp_hdr_len += TCPOPT_REAL_TS_LEN; 12258 tcp->tcp_tcp_hdr_len += TCPOPT_REAL_TS_LEN; 12259 tcp->tcp_tcph->th_offset_and_rsrvd[0] += (3 << 4); 12260 } else { 12261 tcp->tcp_snd_ts_ok = B_FALSE; 12262 } 12263 12264 /* 12265 * Process SACK options. If SACK is enabled for this connection, 12266 * then allocate the SACK info structure. Note the following ways 12267 * when tcp_snd_sack_ok is set to true. 12268 * 12269 * For active connection: in tcp_adapt_ire() called in 12270 * tcp_rput_other(), or in tcp_rput_other() when tcp_sack_permitted 12271 * is checked. 12272 * 12273 * For passive connection: in tcp_adapt_ire() called in 12274 * tcp_accept_comm(). 12275 * 12276 * That's the reason why the extra TCP_IS_DETACHED() check is there. 12277 * That check makes sure that if we did not send a SACK OK option, 12278 * we will not enable SACK for this connection even though the other 12279 * side sends us SACK OK option. For active connection, the SACK 12280 * info structure has already been allocated. So we need to free 12281 * it if SACK is disabled. 12282 */ 12283 if ((options & TCP_OPT_SACK_OK_PRESENT) && 12284 (tcp->tcp_snd_sack_ok || 12285 (tcps->tcps_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) { 12286 /* This should be true only in the passive case. */ 12287 if (tcp->tcp_sack_info == NULL) { 12288 ASSERT(TCP_IS_DETACHED(tcp)); 12289 tcp->tcp_sack_info = 12290 kmem_cache_alloc(tcp_sack_info_cache, KM_NOSLEEP); 12291 } 12292 if (tcp->tcp_sack_info == NULL) { 12293 tcp->tcp_snd_sack_ok = B_FALSE; 12294 } else { 12295 tcp->tcp_snd_sack_ok = B_TRUE; 12296 if (tcp->tcp_snd_ts_ok) { 12297 tcp->tcp_max_sack_blk = 3; 12298 } else { 12299 tcp->tcp_max_sack_blk = 4; 12300 } 12301 } 12302 } else { 12303 /* 12304 * Resetting tcp_snd_sack_ok to B_FALSE so that 12305 * no SACK info will be used for this 12306 * connection. This assumes that SACK usage 12307 * permission is negotiated. This may need 12308 * to be changed once this is clarified. 12309 */ 12310 if (tcp->tcp_sack_info != NULL) { 12311 ASSERT(tcp->tcp_notsack_list == NULL); 12312 kmem_cache_free(tcp_sack_info_cache, 12313 tcp->tcp_sack_info); 12314 tcp->tcp_sack_info = NULL; 12315 } 12316 tcp->tcp_snd_sack_ok = B_FALSE; 12317 } 12318 12319 /* 12320 * Now we know the exact TCP/IP header length, subtract 12321 * that from tcp_mss to get our side's MSS. 12322 */ 12323 tcp->tcp_mss -= tcp->tcp_hdr_len; 12324 /* 12325 * Here we assume that the other side's header size will be equal to 12326 * our header size. We calculate the real MSS accordingly. Need to 12327 * take into additional stuffs IPsec puts in. 12328 * 12329 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header) 12330 */ 12331 tcpopt.tcp_opt_mss -= tcp->tcp_hdr_len + tcp->tcp_ipsec_overhead - 12332 ((tcp->tcp_ipversion == IPV4_VERSION ? 12333 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH); 12334 12335 /* 12336 * Set MSS to the smaller one of both ends of the connection. 12337 * We should not have called tcp_mss_set() before, but our 12338 * side of the MSS should have been set to a proper value 12339 * by tcp_adapt_ire(). tcp_mss_set() will also set up the 12340 * STREAM head parameters properly. 12341 * 12342 * If we have a larger-than-16-bit window but the other side 12343 * didn't want to do window scale, tcp_rwnd_set() will take 12344 * care of that. 12345 */ 12346 tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss), B_TRUE); 12347 } 12348 12349 /* 12350 * Sends the T_CONN_IND to the listener. The caller calls this 12351 * functions via squeue to get inside the listener's perimeter 12352 * once the 3 way hand shake is done a T_CONN_IND needs to be 12353 * sent. As an optimization, the caller can call this directly 12354 * if listener's perimeter is same as eager's. 12355 */ 12356 /* ARGSUSED */ 12357 void 12358 tcp_send_conn_ind(void *arg, mblk_t *mp, void *arg2) 12359 { 12360 conn_t *lconnp = (conn_t *)arg; 12361 tcp_t *listener = lconnp->conn_tcp; 12362 tcp_t *tcp; 12363 struct T_conn_ind *conn_ind; 12364 ipaddr_t *addr_cache; 12365 boolean_t need_send_conn_ind = B_FALSE; 12366 tcp_stack_t *tcps = listener->tcp_tcps; 12367 12368 /* retrieve the eager */ 12369 conn_ind = (struct T_conn_ind *)mp->b_rptr; 12370 ASSERT(conn_ind->OPT_offset != 0 && 12371 conn_ind->OPT_length == sizeof (intptr_t)); 12372 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 12373 conn_ind->OPT_length); 12374 12375 /* 12376 * TLI/XTI applications will get confused by 12377 * sending eager as an option since it violates 12378 * the option semantics. So remove the eager as 12379 * option since TLI/XTI app doesn't need it anyway. 12380 */ 12381 if (!TCP_IS_SOCKET(listener)) { 12382 conn_ind->OPT_length = 0; 12383 conn_ind->OPT_offset = 0; 12384 } 12385 if (listener->tcp_state != TCPS_LISTEN) { 12386 /* 12387 * If listener has closed, it would have caused a 12388 * a cleanup/blowoff to happen for the eager. We 12389 * just need to return. 12390 */ 12391 freemsg(mp); 12392 return; 12393 } 12394 12395 12396 /* 12397 * if the conn_req_q is full defer passing up the 12398 * T_CONN_IND until space is availabe after t_accept() 12399 * processing 12400 */ 12401 mutex_enter(&listener->tcp_eager_lock); 12402 12403 /* 12404 * Take the eager out, if it is in the list of droppable eagers 12405 * as we are here because the 3W handshake is over. 12406 */ 12407 MAKE_UNDROPPABLE(tcp); 12408 12409 if (listener->tcp_conn_req_cnt_q < listener->tcp_conn_req_max) { 12410 tcp_t *tail; 12411 12412 /* 12413 * The eager already has an extra ref put in tcp_rput_data 12414 * so that it stays till accept comes back even though it 12415 * might get into TCPS_CLOSED as a result of a TH_RST etc. 12416 */ 12417 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 12418 listener->tcp_conn_req_cnt_q0--; 12419 listener->tcp_conn_req_cnt_q++; 12420 12421 /* Move from SYN_RCVD to ESTABLISHED list */ 12422 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 12423 tcp->tcp_eager_prev_q0; 12424 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 12425 tcp->tcp_eager_next_q0; 12426 tcp->tcp_eager_prev_q0 = NULL; 12427 tcp->tcp_eager_next_q0 = NULL; 12428 12429 /* 12430 * Insert at end of the queue because sockfs 12431 * sends down T_CONN_RES in chronological 12432 * order. Leaving the older conn indications 12433 * at front of the queue helps reducing search 12434 * time. 12435 */ 12436 tail = listener->tcp_eager_last_q; 12437 if (tail != NULL) 12438 tail->tcp_eager_next_q = tcp; 12439 else 12440 listener->tcp_eager_next_q = tcp; 12441 listener->tcp_eager_last_q = tcp; 12442 tcp->tcp_eager_next_q = NULL; 12443 /* 12444 * Delay sending up the T_conn_ind until we are 12445 * done with the eager. Once we have have sent up 12446 * the T_conn_ind, the accept can potentially complete 12447 * any time and release the refhold we have on the eager. 12448 */ 12449 need_send_conn_ind = B_TRUE; 12450 } else { 12451 /* 12452 * Defer connection on q0 and set deferred 12453 * connection bit true 12454 */ 12455 tcp->tcp_conn_def_q0 = B_TRUE; 12456 12457 /* take tcp out of q0 ... */ 12458 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 12459 tcp->tcp_eager_next_q0; 12460 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 12461 tcp->tcp_eager_prev_q0; 12462 12463 /* ... and place it at the end of q0 */ 12464 tcp->tcp_eager_prev_q0 = listener->tcp_eager_prev_q0; 12465 tcp->tcp_eager_next_q0 = listener; 12466 listener->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp; 12467 listener->tcp_eager_prev_q0 = tcp; 12468 tcp->tcp_conn.tcp_eager_conn_ind = mp; 12469 } 12470 12471 /* we have timed out before */ 12472 if (tcp->tcp_syn_rcvd_timeout != 0) { 12473 tcp->tcp_syn_rcvd_timeout = 0; 12474 listener->tcp_syn_rcvd_timeout--; 12475 if (listener->tcp_syn_defense && 12476 listener->tcp_syn_rcvd_timeout <= 12477 (tcps->tcps_conn_req_max_q0 >> 5) && 12478 10*MINUTES < TICK_TO_MSEC(lbolt64 - 12479 listener->tcp_last_rcv_lbolt)) { 12480 /* 12481 * Turn off the defense mode if we 12482 * believe the SYN attack is over. 12483 */ 12484 listener->tcp_syn_defense = B_FALSE; 12485 if (listener->tcp_ip_addr_cache) { 12486 kmem_free((void *)listener->tcp_ip_addr_cache, 12487 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 12488 listener->tcp_ip_addr_cache = NULL; 12489 } 12490 } 12491 } 12492 addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache); 12493 if (addr_cache != NULL) { 12494 /* 12495 * We have finished a 3-way handshake with this 12496 * remote host. This proves the IP addr is good. 12497 * Cache it! 12498 */ 12499 addr_cache[IP_ADDR_CACHE_HASH( 12500 tcp->tcp_remote)] = tcp->tcp_remote; 12501 } 12502 mutex_exit(&listener->tcp_eager_lock); 12503 if (need_send_conn_ind) 12504 tcp_ulp_newconn(lconnp, tcp->tcp_connp, mp); 12505 } 12506 12507 /* 12508 * Send the newconn notification to ulp. The eager is blown off if the 12509 * notification fails. 12510 */ 12511 static void 12512 tcp_ulp_newconn(conn_t *lconnp, conn_t *econnp, mblk_t *mp) 12513 { 12514 if (IPCL_IS_NONSTR(lconnp)) { 12515 cred_t *cr; 12516 pid_t cpid; 12517 12518 cr = msg_getcred(mp, &cpid); 12519 12520 ASSERT(econnp->conn_tcp->tcp_listener == lconnp->conn_tcp); 12521 ASSERT(econnp->conn_tcp->tcp_saved_listener == 12522 lconnp->conn_tcp); 12523 12524 /* Keep the message around in case of a fallback to TPI */ 12525 econnp->conn_tcp->tcp_conn.tcp_eager_conn_ind = mp; 12526 12527 /* 12528 * Notify the ULP about the newconn. It is guaranteed that no 12529 * tcp_accept() call will be made for the eager if the 12530 * notification fails, so it's safe to blow it off in that 12531 * case. 12532 * 12533 * The upper handle will be assigned when tcp_accept() is 12534 * called. 12535 */ 12536 if ((*lconnp->conn_upcalls->su_newconn) 12537 (lconnp->conn_upper_handle, 12538 (sock_lower_handle_t)econnp, 12539 &sock_tcp_downcalls, cr, cpid, 12540 &econnp->conn_upcalls) == NULL) { 12541 /* Failed to allocate a socket */ 12542 BUMP_MIB(&lconnp->conn_tcp->tcp_tcps->tcps_mib, 12543 tcpEstabResets); 12544 (void) tcp_eager_blowoff(lconnp->conn_tcp, 12545 econnp->conn_tcp->tcp_conn_req_seqnum); 12546 } 12547 } else { 12548 putnext(lconnp->conn_tcp->tcp_rq, mp); 12549 } 12550 } 12551 12552 mblk_t * 12553 tcp_find_pktinfo(tcp_t *tcp, mblk_t *mp, uint_t *ipversp, uint_t *ip_hdr_lenp, 12554 uint_t *ifindexp, ip6_pkt_t *ippp) 12555 { 12556 ip_pktinfo_t *pinfo; 12557 ip6_t *ip6h; 12558 uchar_t *rptr; 12559 mblk_t *first_mp = mp; 12560 boolean_t mctl_present = B_FALSE; 12561 uint_t ifindex = 0; 12562 ip6_pkt_t ipp; 12563 uint_t ipvers; 12564 uint_t ip_hdr_len; 12565 tcp_stack_t *tcps = tcp->tcp_tcps; 12566 12567 rptr = mp->b_rptr; 12568 ASSERT(OK_32PTR(rptr)); 12569 ASSERT(tcp != NULL); 12570 ipp.ipp_fields = 0; 12571 12572 switch DB_TYPE(mp) { 12573 case M_CTL: 12574 mp = mp->b_cont; 12575 if (mp == NULL) { 12576 freemsg(first_mp); 12577 return (NULL); 12578 } 12579 if (DB_TYPE(mp) != M_DATA) { 12580 freemsg(first_mp); 12581 return (NULL); 12582 } 12583 mctl_present = B_TRUE; 12584 break; 12585 case M_DATA: 12586 break; 12587 default: 12588 cmn_err(CE_NOTE, "tcp_find_pktinfo: unknown db_type"); 12589 freemsg(mp); 12590 return (NULL); 12591 } 12592 ipvers = IPH_HDR_VERSION(rptr); 12593 if (ipvers == IPV4_VERSION) { 12594 if (tcp == NULL) { 12595 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12596 goto done; 12597 } 12598 12599 ipp.ipp_fields |= IPPF_HOPLIMIT; 12600 ipp.ipp_hoplimit = ((ipha_t *)rptr)->ipha_ttl; 12601 12602 /* 12603 * If we have IN_PKTINFO in an M_CTL and tcp_ipv6_recvancillary 12604 * has TCP_IPV6_RECVPKTINFO set, pass I/F index along in ipp. 12605 */ 12606 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) && 12607 mctl_present) { 12608 pinfo = (ip_pktinfo_t *)first_mp->b_rptr; 12609 if ((MBLKL(first_mp) == sizeof (ip_pktinfo_t)) && 12610 (pinfo->ip_pkt_ulp_type == IN_PKTINFO) && 12611 (pinfo->ip_pkt_flags & IPF_RECVIF)) { 12612 ipp.ipp_fields |= IPPF_IFINDEX; 12613 ipp.ipp_ifindex = pinfo->ip_pkt_ifindex; 12614 ifindex = pinfo->ip_pkt_ifindex; 12615 } 12616 freeb(first_mp); 12617 mctl_present = B_FALSE; 12618 } 12619 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12620 } else { 12621 ip6h = (ip6_t *)rptr; 12622 12623 ASSERT(ipvers == IPV6_VERSION); 12624 ipp.ipp_fields = IPPF_HOPLIMIT | IPPF_TCLASS; 12625 ipp.ipp_tclass = (ip6h->ip6_flow & 0x0FF00000) >> 20; 12626 ipp.ipp_hoplimit = ip6h->ip6_hops; 12627 12628 if (ip6h->ip6_nxt != IPPROTO_TCP) { 12629 uint8_t nexthdrp; 12630 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 12631 12632 /* Look for ifindex information */ 12633 if (ip6h->ip6_nxt == IPPROTO_RAW) { 12634 ip6i_t *ip6i = (ip6i_t *)ip6h; 12635 if ((uchar_t *)&ip6i[1] > mp->b_wptr) { 12636 BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs); 12637 freemsg(first_mp); 12638 return (NULL); 12639 } 12640 12641 if (ip6i->ip6i_flags & IP6I_IFINDEX) { 12642 ASSERT(ip6i->ip6i_ifindex != 0); 12643 ipp.ipp_fields |= IPPF_IFINDEX; 12644 ipp.ipp_ifindex = ip6i->ip6i_ifindex; 12645 ifindex = ip6i->ip6i_ifindex; 12646 } 12647 rptr = (uchar_t *)&ip6i[1]; 12648 mp->b_rptr = rptr; 12649 if (rptr == mp->b_wptr) { 12650 mblk_t *mp1; 12651 mp1 = mp->b_cont; 12652 freeb(mp); 12653 mp = mp1; 12654 rptr = mp->b_rptr; 12655 } 12656 if (MBLKL(mp) < IPV6_HDR_LEN + 12657 sizeof (tcph_t)) { 12658 BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs); 12659 freemsg(first_mp); 12660 return (NULL); 12661 } 12662 ip6h = (ip6_t *)rptr; 12663 } 12664 12665 /* 12666 * Find any potentially interesting extension headers 12667 * as well as the length of the IPv6 + extension 12668 * headers. 12669 */ 12670 ip_hdr_len = ip_find_hdr_v6(mp, ip6h, &ipp, &nexthdrp); 12671 /* Verify if this is a TCP packet */ 12672 if (nexthdrp != IPPROTO_TCP) { 12673 BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs); 12674 freemsg(first_mp); 12675 return (NULL); 12676 } 12677 } else { 12678 ip_hdr_len = IPV6_HDR_LEN; 12679 } 12680 } 12681 12682 done: 12683 if (ipversp != NULL) 12684 *ipversp = ipvers; 12685 if (ip_hdr_lenp != NULL) 12686 *ip_hdr_lenp = ip_hdr_len; 12687 if (ippp != NULL) 12688 *ippp = ipp; 12689 if (ifindexp != NULL) 12690 *ifindexp = ifindex; 12691 if (mctl_present) { 12692 freeb(first_mp); 12693 } 12694 return (mp); 12695 } 12696 12697 /* 12698 * Handle M_DATA messages from IP. Its called directly from IP via 12699 * squeue for AF_INET type sockets fast path. No M_CTL are expected 12700 * in this path. 12701 * 12702 * For everything else (including AF_INET6 sockets with 'tcp_ipversion' 12703 * v4 and v6), we are called through tcp_input() and a M_CTL can 12704 * be present for options but tcp_find_pktinfo() deals with it. We 12705 * only expect M_DATA packets after tcp_find_pktinfo() is done. 12706 * 12707 * The first argument is always the connp/tcp to which the mp belongs. 12708 * There are no exceptions to this rule. The caller has already put 12709 * a reference on this connp/tcp and once tcp_rput_data() returns, 12710 * the squeue will do the refrele. 12711 * 12712 * The TH_SYN for the listener directly go to tcp_conn_request via 12713 * squeue. 12714 * 12715 * sqp: NULL = recursive, sqp != NULL means called from squeue 12716 */ 12717 void 12718 tcp_rput_data(void *arg, mblk_t *mp, void *arg2) 12719 { 12720 int32_t bytes_acked; 12721 int32_t gap; 12722 mblk_t *mp1; 12723 uint_t flags; 12724 uint32_t new_swnd = 0; 12725 uchar_t *iphdr; 12726 uchar_t *rptr; 12727 int32_t rgap; 12728 uint32_t seg_ack; 12729 int seg_len; 12730 uint_t ip_hdr_len; 12731 uint32_t seg_seq; 12732 tcph_t *tcph; 12733 int urp; 12734 tcp_opt_t tcpopt; 12735 uint_t ipvers; 12736 ip6_pkt_t ipp; 12737 boolean_t ofo_seg = B_FALSE; /* Out of order segment */ 12738 uint32_t cwnd; 12739 uint32_t add; 12740 int npkt; 12741 int mss; 12742 conn_t *connp = (conn_t *)arg; 12743 squeue_t *sqp = (squeue_t *)arg2; 12744 tcp_t *tcp = connp->conn_tcp; 12745 tcp_stack_t *tcps = tcp->tcp_tcps; 12746 12747 /* 12748 * RST from fused tcp loopback peer should trigger an unfuse. 12749 */ 12750 if (tcp->tcp_fused) { 12751 TCP_STAT(tcps, tcp_fusion_aborted); 12752 tcp_unfuse(tcp); 12753 } 12754 12755 iphdr = mp->b_rptr; 12756 rptr = mp->b_rptr; 12757 ASSERT(OK_32PTR(rptr)); 12758 12759 /* 12760 * An AF_INET socket is not capable of receiving any pktinfo. Do inline 12761 * processing here. For rest call tcp_find_pktinfo to fill up the 12762 * necessary information. 12763 */ 12764 if (IPCL_IS_TCP4(connp)) { 12765 ipvers = IPV4_VERSION; 12766 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12767 } else { 12768 mp = tcp_find_pktinfo(tcp, mp, &ipvers, &ip_hdr_len, 12769 NULL, &ipp); 12770 if (mp == NULL) { 12771 TCP_STAT(tcps, tcp_rput_v6_error); 12772 return; 12773 } 12774 iphdr = mp->b_rptr; 12775 rptr = mp->b_rptr; 12776 } 12777 ASSERT(DB_TYPE(mp) == M_DATA); 12778 ASSERT(mp->b_next == NULL); 12779 12780 tcph = (tcph_t *)&rptr[ip_hdr_len]; 12781 seg_seq = ABE32_TO_U32(tcph->th_seq); 12782 seg_ack = ABE32_TO_U32(tcph->th_ack); 12783 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 12784 seg_len = (int)(mp->b_wptr - rptr) - 12785 (ip_hdr_len + TCP_HDR_LENGTH(tcph)); 12786 if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) { 12787 do { 12788 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 12789 (uintptr_t)INT_MAX); 12790 seg_len += (int)(mp1->b_wptr - mp1->b_rptr); 12791 } while ((mp1 = mp1->b_cont) != NULL && 12792 mp1->b_datap->db_type == M_DATA); 12793 } 12794 12795 if (tcp->tcp_state == TCPS_TIME_WAIT) { 12796 tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack, 12797 seg_len, tcph); 12798 return; 12799 } 12800 12801 if (sqp != NULL) { 12802 /* 12803 * This is the correct place to update tcp_last_recv_time. Note 12804 * that it is also updated for tcp structure that belongs to 12805 * global and listener queues which do not really need updating. 12806 * But that should not cause any harm. And it is updated for 12807 * all kinds of incoming segments, not only for data segments. 12808 */ 12809 tcp->tcp_last_recv_time = lbolt; 12810 } 12811 12812 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 12813 12814 BUMP_LOCAL(tcp->tcp_ibsegs); 12815 DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp); 12816 12817 if ((flags & TH_URG) && sqp != NULL) { 12818 /* 12819 * TCP can't handle urgent pointers that arrive before 12820 * the connection has been accept()ed since it can't 12821 * buffer OOB data. Discard segment if this happens. 12822 * 12823 * We can't just rely on a non-null tcp_listener to indicate 12824 * that the accept() has completed since unlinking of the 12825 * eager and completion of the accept are not atomic. 12826 * tcp_detached, when it is not set (B_FALSE) indicates 12827 * that the accept() has completed. 12828 * 12829 * Nor can it reassemble urgent pointers, so discard 12830 * if it's not the next segment expected. 12831 * 12832 * Otherwise, collapse chain into one mblk (discard if 12833 * that fails). This makes sure the headers, retransmitted 12834 * data, and new data all are in the same mblk. 12835 */ 12836 ASSERT(mp != NULL); 12837 if (tcp->tcp_detached || !pullupmsg(mp, -1)) { 12838 freemsg(mp); 12839 return; 12840 } 12841 /* Update pointers into message */ 12842 iphdr = rptr = mp->b_rptr; 12843 tcph = (tcph_t *)&rptr[ip_hdr_len]; 12844 if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) { 12845 /* 12846 * Since we can't handle any data with this urgent 12847 * pointer that is out of sequence, we expunge 12848 * the data. This allows us to still register 12849 * the urgent mark and generate the M_PCSIG, 12850 * which we can do. 12851 */ 12852 mp->b_wptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph); 12853 seg_len = 0; 12854 } 12855 } 12856 12857 switch (tcp->tcp_state) { 12858 case TCPS_SYN_SENT: 12859 if (flags & TH_ACK) { 12860 /* 12861 * Note that our stack cannot send data before a 12862 * connection is established, therefore the 12863 * following check is valid. Otherwise, it has 12864 * to be changed. 12865 */ 12866 if (SEQ_LEQ(seg_ack, tcp->tcp_iss) || 12867 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 12868 freemsg(mp); 12869 if (flags & TH_RST) 12870 return; 12871 tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq", 12872 tcp, seg_ack, 0, TH_RST); 12873 return; 12874 } 12875 ASSERT(tcp->tcp_suna + 1 == seg_ack); 12876 } 12877 if (flags & TH_RST) { 12878 freemsg(mp); 12879 if (flags & TH_ACK) 12880 (void) tcp_clean_death(tcp, 12881 ECONNREFUSED, 13); 12882 return; 12883 } 12884 if (!(flags & TH_SYN)) { 12885 freemsg(mp); 12886 return; 12887 } 12888 12889 /* Process all TCP options. */ 12890 tcp_process_options(tcp, tcph); 12891 /* 12892 * The following changes our rwnd to be a multiple of the 12893 * MIN(peer MSS, our MSS) for performance reason. 12894 */ 12895 (void) tcp_rwnd_set(tcp, 12896 MSS_ROUNDUP(tcp->tcp_recv_hiwater, tcp->tcp_mss)); 12897 12898 /* Is the other end ECN capable? */ 12899 if (tcp->tcp_ecn_ok) { 12900 if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) { 12901 tcp->tcp_ecn_ok = B_FALSE; 12902 } 12903 } 12904 /* 12905 * Clear ECN flags because it may interfere with later 12906 * processing. 12907 */ 12908 flags &= ~(TH_ECE|TH_CWR); 12909 12910 tcp->tcp_irs = seg_seq; 12911 tcp->tcp_rack = seg_seq; 12912 tcp->tcp_rnxt = seg_seq + 1; 12913 U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack); 12914 if (!TCP_IS_DETACHED(tcp)) { 12915 /* Allocate room for SACK options if needed. */ 12916 if (tcp->tcp_snd_sack_ok) { 12917 (void) proto_set_tx_wroff(tcp->tcp_rq, connp, 12918 tcp->tcp_hdr_len + 12919 TCPOPT_MAX_SACK_LEN + 12920 (tcp->tcp_loopback ? 0 : 12921 tcps->tcps_wroff_xtra)); 12922 } else { 12923 (void) proto_set_tx_wroff(tcp->tcp_rq, connp, 12924 tcp->tcp_hdr_len + 12925 (tcp->tcp_loopback ? 0 : 12926 tcps->tcps_wroff_xtra)); 12927 } 12928 } 12929 if (flags & TH_ACK) { 12930 /* 12931 * If we can't get the confirmation upstream, pretend 12932 * we didn't even see this one. 12933 * 12934 * XXX: how can we pretend we didn't see it if we 12935 * have updated rnxt et. al. 12936 * 12937 * For loopback we defer sending up the T_CONN_CON 12938 * until after some checks below. 12939 */ 12940 mp1 = NULL; 12941 /* 12942 * tcp_sendmsg() checks tcp_state without entering 12943 * the squeue so tcp_state should be updated before 12944 * sending up connection confirmation 12945 */ 12946 tcp->tcp_state = TCPS_ESTABLISHED; 12947 if (!tcp_conn_con(tcp, iphdr, tcph, mp, 12948 tcp->tcp_loopback ? &mp1 : NULL)) { 12949 tcp->tcp_state = TCPS_SYN_SENT; 12950 freemsg(mp); 12951 return; 12952 } 12953 /* SYN was acked - making progress */ 12954 if (tcp->tcp_ipversion == IPV6_VERSION) 12955 tcp->tcp_ip_forward_progress = B_TRUE; 12956 12957 /* One for the SYN */ 12958 tcp->tcp_suna = tcp->tcp_iss + 1; 12959 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 12960 12961 /* 12962 * If SYN was retransmitted, need to reset all 12963 * retransmission info. This is because this 12964 * segment will be treated as a dup ACK. 12965 */ 12966 if (tcp->tcp_rexmit) { 12967 tcp->tcp_rexmit = B_FALSE; 12968 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 12969 tcp->tcp_rexmit_max = tcp->tcp_snxt; 12970 tcp->tcp_snd_burst = tcp->tcp_localnet ? 12971 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 12972 tcp->tcp_ms_we_have_waited = 0; 12973 12974 /* 12975 * Set tcp_cwnd back to 1 MSS, per 12976 * recommendation from 12977 * draft-floyd-incr-init-win-01.txt, 12978 * Increasing TCP's Initial Window. 12979 */ 12980 tcp->tcp_cwnd = tcp->tcp_mss; 12981 } 12982 12983 tcp->tcp_swl1 = seg_seq; 12984 tcp->tcp_swl2 = seg_ack; 12985 12986 new_swnd = BE16_TO_U16(tcph->th_win); 12987 tcp->tcp_swnd = new_swnd; 12988 if (new_swnd > tcp->tcp_max_swnd) 12989 tcp->tcp_max_swnd = new_swnd; 12990 12991 /* 12992 * Always send the three-way handshake ack immediately 12993 * in order to make the connection complete as soon as 12994 * possible on the accepting host. 12995 */ 12996 flags |= TH_ACK_NEEDED; 12997 12998 /* 12999 * Special case for loopback. At this point we have 13000 * received SYN-ACK from the remote endpoint. In 13001 * order to ensure that both endpoints reach the 13002 * fused state prior to any data exchange, the final 13003 * ACK needs to be sent before we indicate T_CONN_CON 13004 * to the module upstream. 13005 */ 13006 if (tcp->tcp_loopback) { 13007 mblk_t *ack_mp; 13008 13009 ASSERT(!tcp->tcp_unfusable); 13010 ASSERT(mp1 != NULL); 13011 /* 13012 * For loopback, we always get a pure SYN-ACK 13013 * and only need to send back the final ACK 13014 * with no data (this is because the other 13015 * tcp is ours and we don't do T/TCP). This 13016 * final ACK triggers the passive side to 13017 * perform fusion in ESTABLISHED state. 13018 */ 13019 if ((ack_mp = tcp_ack_mp(tcp)) != NULL) { 13020 if (tcp->tcp_ack_tid != 0) { 13021 (void) TCP_TIMER_CANCEL(tcp, 13022 tcp->tcp_ack_tid); 13023 tcp->tcp_ack_tid = 0; 13024 } 13025 tcp_send_data(tcp, tcp->tcp_wq, ack_mp); 13026 BUMP_LOCAL(tcp->tcp_obsegs); 13027 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 13028 13029 if (!IPCL_IS_NONSTR(connp)) { 13030 /* Send up T_CONN_CON */ 13031 putnext(tcp->tcp_rq, mp1); 13032 } else { 13033 cred_t *cr; 13034 pid_t cpid; 13035 13036 cr = msg_getcred(mp1, &cpid); 13037 (*connp->conn_upcalls-> 13038 su_connected) 13039 (connp->conn_upper_handle, 13040 tcp->tcp_connid, cr, cpid); 13041 freemsg(mp1); 13042 } 13043 13044 freemsg(mp); 13045 return; 13046 } 13047 /* 13048 * Forget fusion; we need to handle more 13049 * complex cases below. Send the deferred 13050 * T_CONN_CON message upstream and proceed 13051 * as usual. Mark this tcp as not capable 13052 * of fusion. 13053 */ 13054 TCP_STAT(tcps, tcp_fusion_unfusable); 13055 tcp->tcp_unfusable = B_TRUE; 13056 if (!IPCL_IS_NONSTR(connp)) { 13057 putnext(tcp->tcp_rq, mp1); 13058 } else { 13059 cred_t *cr; 13060 pid_t cpid; 13061 13062 cr = msg_getcred(mp1, &cpid); 13063 (*connp->conn_upcalls->su_connected) 13064 (connp->conn_upper_handle, 13065 tcp->tcp_connid, cr, cpid); 13066 freemsg(mp1); 13067 } 13068 } 13069 13070 /* 13071 * Check to see if there is data to be sent. If 13072 * yes, set the transmit flag. Then check to see 13073 * if received data processing needs to be done. 13074 * If not, go straight to xmit_check. This short 13075 * cut is OK as we don't support T/TCP. 13076 */ 13077 if (tcp->tcp_unsent) 13078 flags |= TH_XMIT_NEEDED; 13079 13080 if (seg_len == 0 && !(flags & TH_URG)) { 13081 freemsg(mp); 13082 goto xmit_check; 13083 } 13084 13085 flags &= ~TH_SYN; 13086 seg_seq++; 13087 break; 13088 } 13089 tcp->tcp_state = TCPS_SYN_RCVD; 13090 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss, 13091 NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 13092 if (mp1) { 13093 /* 13094 * See comment in tcp_conn_request() for why we use 13095 * the open() time pid here. 13096 */ 13097 DB_CPID(mp1) = tcp->tcp_cpid; 13098 tcp_send_data(tcp, tcp->tcp_wq, mp1); 13099 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 13100 } 13101 freemsg(mp); 13102 return; 13103 case TCPS_SYN_RCVD: 13104 if (flags & TH_ACK) { 13105 /* 13106 * In this state, a SYN|ACK packet is either bogus 13107 * because the other side must be ACKing our SYN which 13108 * indicates it has seen the ACK for their SYN and 13109 * shouldn't retransmit it or we're crossing SYNs 13110 * on active open. 13111 */ 13112 if ((flags & TH_SYN) && !tcp->tcp_active_open) { 13113 freemsg(mp); 13114 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn", 13115 tcp, seg_ack, 0, TH_RST); 13116 return; 13117 } 13118 /* 13119 * NOTE: RFC 793 pg. 72 says this should be 13120 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt 13121 * but that would mean we have an ack that ignored 13122 * our SYN. 13123 */ 13124 if (SEQ_LEQ(seg_ack, tcp->tcp_suna) || 13125 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 13126 freemsg(mp); 13127 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack", 13128 tcp, seg_ack, 0, TH_RST); 13129 return; 13130 } 13131 } 13132 break; 13133 case TCPS_LISTEN: 13134 /* 13135 * Only a TLI listener can come through this path when a 13136 * acceptor is going back to be a listener and a packet 13137 * for the acceptor hits the classifier. For a socket 13138 * listener, this can never happen because a listener 13139 * can never accept connection on itself and hence a 13140 * socket acceptor can not go back to being a listener. 13141 */ 13142 ASSERT(!TCP_IS_SOCKET(tcp)); 13143 /*FALLTHRU*/ 13144 case TCPS_CLOSED: 13145 case TCPS_BOUND: { 13146 conn_t *new_connp; 13147 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 13148 13149 new_connp = ipcl_classify(mp, connp->conn_zoneid, ipst); 13150 if (new_connp != NULL) { 13151 tcp_reinput(new_connp, mp, connp->conn_sqp); 13152 return; 13153 } 13154 /* We failed to classify. For now just drop the packet */ 13155 freemsg(mp); 13156 return; 13157 } 13158 case TCPS_IDLE: 13159 /* 13160 * Handle the case where the tcp_clean_death() has happened 13161 * on a connection (application hasn't closed yet) but a packet 13162 * was already queued on squeue before tcp_clean_death() 13163 * was processed. Calling tcp_clean_death() twice on same 13164 * connection can result in weird behaviour. 13165 */ 13166 freemsg(mp); 13167 return; 13168 default: 13169 break; 13170 } 13171 13172 /* 13173 * Already on the correct queue/perimeter. 13174 * If this is a detached connection and not an eager 13175 * connection hanging off a listener then new data 13176 * (past the FIN) will cause a reset. 13177 * We do a special check here where it 13178 * is out of the main line, rather than check 13179 * if we are detached every time we see new 13180 * data down below. 13181 */ 13182 if (TCP_IS_DETACHED_NONEAGER(tcp) && 13183 (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) { 13184 BUMP_MIB(&tcps->tcps_mib, tcpInClosed); 13185 DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp); 13186 13187 freemsg(mp); 13188 /* 13189 * This could be an SSL closure alert. We're detached so just 13190 * acknowledge it this last time. 13191 */ 13192 if (tcp->tcp_kssl_ctx != NULL) { 13193 kssl_release_ctx(tcp->tcp_kssl_ctx); 13194 tcp->tcp_kssl_ctx = NULL; 13195 13196 tcp->tcp_rnxt += seg_len; 13197 U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack); 13198 flags |= TH_ACK_NEEDED; 13199 goto ack_check; 13200 } 13201 13202 tcp_xmit_ctl("new data when detached", tcp, 13203 tcp->tcp_snxt, 0, TH_RST); 13204 (void) tcp_clean_death(tcp, EPROTO, 12); 13205 return; 13206 } 13207 13208 mp->b_rptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph); 13209 urp = BE16_TO_U16(tcph->th_urp) - TCP_OLD_URP_INTERPRETATION; 13210 new_swnd = BE16_TO_U16(tcph->th_win) << 13211 ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws); 13212 13213 if (tcp->tcp_snd_ts_ok) { 13214 if (!tcp_paws_check(tcp, tcph, &tcpopt)) { 13215 /* 13216 * This segment is not acceptable. 13217 * Drop it and send back an ACK. 13218 */ 13219 freemsg(mp); 13220 flags |= TH_ACK_NEEDED; 13221 goto ack_check; 13222 } 13223 } else if (tcp->tcp_snd_sack_ok) { 13224 ASSERT(tcp->tcp_sack_info != NULL); 13225 tcpopt.tcp = tcp; 13226 /* 13227 * SACK info in already updated in tcp_parse_options. Ignore 13228 * all other TCP options... 13229 */ 13230 (void) tcp_parse_options(tcph, &tcpopt); 13231 } 13232 try_again:; 13233 mss = tcp->tcp_mss; 13234 gap = seg_seq - tcp->tcp_rnxt; 13235 rgap = tcp->tcp_rwnd - (gap + seg_len); 13236 /* 13237 * gap is the amount of sequence space between what we expect to see 13238 * and what we got for seg_seq. A positive value for gap means 13239 * something got lost. A negative value means we got some old stuff. 13240 */ 13241 if (gap < 0) { 13242 /* Old stuff present. Is the SYN in there? */ 13243 if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) && 13244 (seg_len != 0)) { 13245 flags &= ~TH_SYN; 13246 seg_seq++; 13247 urp--; 13248 /* Recompute the gaps after noting the SYN. */ 13249 goto try_again; 13250 } 13251 BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); 13252 UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, 13253 (seg_len > -gap ? -gap : seg_len)); 13254 /* Remove the old stuff from seg_len. */ 13255 seg_len += gap; 13256 /* 13257 * Anything left? 13258 * Make sure to check for unack'd FIN when rest of data 13259 * has been previously ack'd. 13260 */ 13261 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 13262 /* 13263 * Resets are only valid if they lie within our offered 13264 * window. If the RST bit is set, we just ignore this 13265 * segment. 13266 */ 13267 if (flags & TH_RST) { 13268 freemsg(mp); 13269 return; 13270 } 13271 13272 /* 13273 * The arriving of dup data packets indicate that we 13274 * may have postponed an ack for too long, or the other 13275 * side's RTT estimate is out of shape. Start acking 13276 * more often. 13277 */ 13278 if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) && 13279 tcp->tcp_rack_cnt >= 1 && 13280 tcp->tcp_rack_abs_max > 2) { 13281 tcp->tcp_rack_abs_max--; 13282 } 13283 tcp->tcp_rack_cur_max = 1; 13284 13285 /* 13286 * This segment is "unacceptable". None of its 13287 * sequence space lies within our advertized window. 13288 * 13289 * Adjust seg_len to the original value for tracing. 13290 */ 13291 seg_len -= gap; 13292 if (tcp->tcp_debug) { 13293 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13294 "tcp_rput: unacceptable, gap %d, rgap %d, " 13295 "flags 0x%x, seg_seq %u, seg_ack %u, " 13296 "seg_len %d, rnxt %u, snxt %u, %s", 13297 gap, rgap, flags, seg_seq, seg_ack, 13298 seg_len, tcp->tcp_rnxt, tcp->tcp_snxt, 13299 tcp_display(tcp, NULL, 13300 DISP_ADDR_AND_PORT)); 13301 } 13302 13303 /* 13304 * Arrange to send an ACK in response to the 13305 * unacceptable segment per RFC 793 page 69. There 13306 * is only one small difference between ours and the 13307 * acceptability test in the RFC - we accept ACK-only 13308 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK 13309 * will be generated. 13310 * 13311 * Note that we have to ACK an ACK-only packet at least 13312 * for stacks that send 0-length keep-alives with 13313 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122, 13314 * section 4.2.3.6. As long as we don't ever generate 13315 * an unacceptable packet in response to an incoming 13316 * packet that is unacceptable, it should not cause 13317 * "ACK wars". 13318 */ 13319 flags |= TH_ACK_NEEDED; 13320 13321 /* 13322 * Continue processing this segment in order to use the 13323 * ACK information it contains, but skip all other 13324 * sequence-number processing. Processing the ACK 13325 * information is necessary in order to 13326 * re-synchronize connections that may have lost 13327 * synchronization. 13328 * 13329 * We clear seg_len and flag fields related to 13330 * sequence number processing as they are not 13331 * to be trusted for an unacceptable segment. 13332 */ 13333 seg_len = 0; 13334 flags &= ~(TH_SYN | TH_FIN | TH_URG); 13335 goto process_ack; 13336 } 13337 13338 /* Fix seg_seq, and chew the gap off the front. */ 13339 seg_seq = tcp->tcp_rnxt; 13340 urp += gap; 13341 do { 13342 mblk_t *mp2; 13343 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 13344 (uintptr_t)UINT_MAX); 13345 gap += (uint_t)(mp->b_wptr - mp->b_rptr); 13346 if (gap > 0) { 13347 mp->b_rptr = mp->b_wptr - gap; 13348 break; 13349 } 13350 mp2 = mp; 13351 mp = mp->b_cont; 13352 freeb(mp2); 13353 } while (gap < 0); 13354 /* 13355 * If the urgent data has already been acknowledged, we 13356 * should ignore TH_URG below 13357 */ 13358 if (urp < 0) 13359 flags &= ~TH_URG; 13360 } 13361 /* 13362 * rgap is the amount of stuff received out of window. A negative 13363 * value is the amount out of window. 13364 */ 13365 if (rgap < 0) { 13366 mblk_t *mp2; 13367 13368 if (tcp->tcp_rwnd == 0) { 13369 BUMP_MIB(&tcps->tcps_mib, tcpInWinProbe); 13370 } else { 13371 BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs); 13372 UPDATE_MIB(&tcps->tcps_mib, 13373 tcpInDataPastWinBytes, -rgap); 13374 } 13375 13376 /* 13377 * seg_len does not include the FIN, so if more than 13378 * just the FIN is out of window, we act like we don't 13379 * see it. (If just the FIN is out of window, rgap 13380 * will be zero and we will go ahead and acknowledge 13381 * the FIN.) 13382 */ 13383 flags &= ~TH_FIN; 13384 13385 /* Fix seg_len and make sure there is something left. */ 13386 seg_len += rgap; 13387 if (seg_len <= 0) { 13388 /* 13389 * Resets are only valid if they lie within our offered 13390 * window. If the RST bit is set, we just ignore this 13391 * segment. 13392 */ 13393 if (flags & TH_RST) { 13394 freemsg(mp); 13395 return; 13396 } 13397 13398 /* Per RFC 793, we need to send back an ACK. */ 13399 flags |= TH_ACK_NEEDED; 13400 13401 /* 13402 * Send SIGURG as soon as possible i.e. even 13403 * if the TH_URG was delivered in a window probe 13404 * packet (which will be unacceptable). 13405 * 13406 * We generate a signal if none has been generated 13407 * for this connection or if this is a new urgent 13408 * byte. Also send a zero-length "unmarked" message 13409 * to inform SIOCATMARK that this is not the mark. 13410 * 13411 * tcp_urp_last_valid is cleared when the T_exdata_ind 13412 * is sent up. This plus the check for old data 13413 * (gap >= 0) handles the wraparound of the sequence 13414 * number space without having to always track the 13415 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks 13416 * this max in its rcv_up variable). 13417 * 13418 * This prevents duplicate SIGURGS due to a "late" 13419 * zero-window probe when the T_EXDATA_IND has already 13420 * been sent up. 13421 */ 13422 if ((flags & TH_URG) && 13423 (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq, 13424 tcp->tcp_urp_last))) { 13425 if (IPCL_IS_NONSTR(connp)) { 13426 if (!TCP_IS_DETACHED(tcp)) { 13427 (*connp->conn_upcalls-> 13428 su_signal_oob) 13429 (connp->conn_upper_handle, 13430 urp); 13431 } 13432 } else { 13433 mp1 = allocb(0, BPRI_MED); 13434 if (mp1 == NULL) { 13435 freemsg(mp); 13436 return; 13437 } 13438 if (!TCP_IS_DETACHED(tcp) && 13439 !putnextctl1(tcp->tcp_rq, 13440 M_PCSIG, SIGURG)) { 13441 /* Try again on the rexmit. */ 13442 freemsg(mp1); 13443 freemsg(mp); 13444 return; 13445 } 13446 /* 13447 * If the next byte would be the mark 13448 * then mark with MARKNEXT else mark 13449 * with NOTMARKNEXT. 13450 */ 13451 if (gap == 0 && urp == 0) 13452 mp1->b_flag |= MSGMARKNEXT; 13453 else 13454 mp1->b_flag |= MSGNOTMARKNEXT; 13455 freemsg(tcp->tcp_urp_mark_mp); 13456 tcp->tcp_urp_mark_mp = mp1; 13457 flags |= TH_SEND_URP_MARK; 13458 } 13459 tcp->tcp_urp_last_valid = B_TRUE; 13460 tcp->tcp_urp_last = urp + seg_seq; 13461 } 13462 /* 13463 * If this is a zero window probe, continue to 13464 * process the ACK part. But we need to set seg_len 13465 * to 0 to avoid data processing. Otherwise just 13466 * drop the segment and send back an ACK. 13467 */ 13468 if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) { 13469 flags &= ~(TH_SYN | TH_URG); 13470 seg_len = 0; 13471 goto process_ack; 13472 } else { 13473 freemsg(mp); 13474 goto ack_check; 13475 } 13476 } 13477 /* Pitch out of window stuff off the end. */ 13478 rgap = seg_len; 13479 mp2 = mp; 13480 do { 13481 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 13482 (uintptr_t)INT_MAX); 13483 rgap -= (int)(mp2->b_wptr - mp2->b_rptr); 13484 if (rgap < 0) { 13485 mp2->b_wptr += rgap; 13486 if ((mp1 = mp2->b_cont) != NULL) { 13487 mp2->b_cont = NULL; 13488 freemsg(mp1); 13489 } 13490 break; 13491 } 13492 } while ((mp2 = mp2->b_cont) != NULL); 13493 } 13494 ok:; 13495 /* 13496 * TCP should check ECN info for segments inside the window only. 13497 * Therefore the check should be done here. 13498 */ 13499 if (tcp->tcp_ecn_ok) { 13500 if (flags & TH_CWR) { 13501 tcp->tcp_ecn_echo_on = B_FALSE; 13502 } 13503 /* 13504 * Note that both ECN_CE and CWR can be set in the 13505 * same segment. In this case, we once again turn 13506 * on ECN_ECHO. 13507 */ 13508 if (tcp->tcp_ipversion == IPV4_VERSION) { 13509 uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service; 13510 13511 if ((tos & IPH_ECN_CE) == IPH_ECN_CE) { 13512 tcp->tcp_ecn_echo_on = B_TRUE; 13513 } 13514 } else { 13515 uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf; 13516 13517 if ((vcf & htonl(IPH_ECN_CE << 20)) == 13518 htonl(IPH_ECN_CE << 20)) { 13519 tcp->tcp_ecn_echo_on = B_TRUE; 13520 } 13521 } 13522 } 13523 13524 /* 13525 * Check whether we can update tcp_ts_recent. This test is 13526 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 13527 * Extensions for High Performance: An Update", Internet Draft. 13528 */ 13529 if (tcp->tcp_snd_ts_ok && 13530 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 13531 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 13532 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 13533 tcp->tcp_last_rcv_lbolt = lbolt64; 13534 } 13535 13536 if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) { 13537 /* 13538 * FIN in an out of order segment. We record this in 13539 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq. 13540 * Clear the FIN so that any check on FIN flag will fail. 13541 * Remember that FIN also counts in the sequence number 13542 * space. So we need to ack out of order FIN only segments. 13543 */ 13544 if (flags & TH_FIN) { 13545 tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID; 13546 tcp->tcp_ofo_fin_seq = seg_seq + seg_len; 13547 flags &= ~TH_FIN; 13548 flags |= TH_ACK_NEEDED; 13549 } 13550 if (seg_len > 0) { 13551 /* Fill in the SACK blk list. */ 13552 if (tcp->tcp_snd_sack_ok) { 13553 ASSERT(tcp->tcp_sack_info != NULL); 13554 tcp_sack_insert(tcp->tcp_sack_list, 13555 seg_seq, seg_seq + seg_len, 13556 &(tcp->tcp_num_sack_blk)); 13557 } 13558 13559 /* 13560 * Attempt reassembly and see if we have something 13561 * ready to go. 13562 */ 13563 mp = tcp_reass(tcp, mp, seg_seq); 13564 /* Always ack out of order packets */ 13565 flags |= TH_ACK_NEEDED | TH_PUSH; 13566 if (mp) { 13567 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 13568 (uintptr_t)INT_MAX); 13569 seg_len = mp->b_cont ? msgdsize(mp) : 13570 (int)(mp->b_wptr - mp->b_rptr); 13571 seg_seq = tcp->tcp_rnxt; 13572 /* 13573 * A gap is filled and the seq num and len 13574 * of the gap match that of a previously 13575 * received FIN, put the FIN flag back in. 13576 */ 13577 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 13578 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 13579 flags |= TH_FIN; 13580 tcp->tcp_valid_bits &= 13581 ~TCP_OFO_FIN_VALID; 13582 } 13583 } else { 13584 /* 13585 * Keep going even with NULL mp. 13586 * There may be a useful ACK or something else 13587 * we don't want to miss. 13588 * 13589 * But TCP should not perform fast retransmit 13590 * because of the ack number. TCP uses 13591 * seg_len == 0 to determine if it is a pure 13592 * ACK. And this is not a pure ACK. 13593 */ 13594 seg_len = 0; 13595 ofo_seg = B_TRUE; 13596 } 13597 } 13598 } else if (seg_len > 0) { 13599 BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs); 13600 UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len); 13601 /* 13602 * If an out of order FIN was received before, and the seq 13603 * num and len of the new segment match that of the FIN, 13604 * put the FIN flag back in. 13605 */ 13606 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 13607 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 13608 flags |= TH_FIN; 13609 tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID; 13610 } 13611 } 13612 if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) { 13613 if (flags & TH_RST) { 13614 freemsg(mp); 13615 switch (tcp->tcp_state) { 13616 case TCPS_SYN_RCVD: 13617 (void) tcp_clean_death(tcp, ECONNREFUSED, 14); 13618 break; 13619 case TCPS_ESTABLISHED: 13620 case TCPS_FIN_WAIT_1: 13621 case TCPS_FIN_WAIT_2: 13622 case TCPS_CLOSE_WAIT: 13623 (void) tcp_clean_death(tcp, ECONNRESET, 15); 13624 break; 13625 case TCPS_CLOSING: 13626 case TCPS_LAST_ACK: 13627 (void) tcp_clean_death(tcp, 0, 16); 13628 break; 13629 default: 13630 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 13631 (void) tcp_clean_death(tcp, ENXIO, 17); 13632 break; 13633 } 13634 return; 13635 } 13636 if (flags & TH_SYN) { 13637 /* 13638 * See RFC 793, Page 71 13639 * 13640 * The seq number must be in the window as it should 13641 * be "fixed" above. If it is outside window, it should 13642 * be already rejected. Note that we allow seg_seq to be 13643 * rnxt + rwnd because we want to accept 0 window probe. 13644 */ 13645 ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) && 13646 SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd)); 13647 freemsg(mp); 13648 /* 13649 * If the ACK flag is not set, just use our snxt as the 13650 * seq number of the RST segment. 13651 */ 13652 if (!(flags & TH_ACK)) { 13653 seg_ack = tcp->tcp_snxt; 13654 } 13655 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 13656 TH_RST|TH_ACK); 13657 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 13658 (void) tcp_clean_death(tcp, ECONNRESET, 18); 13659 return; 13660 } 13661 /* 13662 * urp could be -1 when the urp field in the packet is 0 13663 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent 13664 * byte was at seg_seq - 1, in which case we ignore the urgent flag. 13665 */ 13666 if (flags & TH_URG && urp >= 0) { 13667 if (!tcp->tcp_urp_last_valid || 13668 SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) { 13669 /* 13670 * Non-STREAMS sockets handle the urgent data a litte 13671 * differently from STREAMS based sockets. There is no 13672 * need to mark any mblks with the MSG{NOT,}MARKNEXT 13673 * flags to keep SIOCATMARK happy. Instead a 13674 * su_signal_oob upcall is made to update the mark. 13675 * Neither is a T_EXDATA_IND mblk needed to be 13676 * prepended to the urgent data. The urgent data is 13677 * delivered using the su_recv upcall, where we set 13678 * the MSG_OOB flag to indicate that it is urg data. 13679 * 13680 * Neither TH_SEND_URP_MARK nor TH_MARKNEXT_NEEDED 13681 * are used by non-STREAMS sockets. 13682 */ 13683 if (IPCL_IS_NONSTR(connp)) { 13684 if (!TCP_IS_DETACHED(tcp)) { 13685 (*connp->conn_upcalls->su_signal_oob) 13686 (connp->conn_upper_handle, urp); 13687 } 13688 } else { 13689 /* 13690 * If we haven't generated the signal yet for 13691 * this urgent pointer value, do it now. Also, 13692 * send up a zero-length M_DATA indicating 13693 * whether or not this is the mark. The latter 13694 * is not needed when a T_EXDATA_IND is sent up. 13695 * However, if there are allocation failures 13696 * this code relies on the sender retransmitting 13697 * and the socket code for determining the mark 13698 * should not block waiting for the peer to 13699 * transmit. Thus, for simplicity we always 13700 * send up the mark indication. 13701 */ 13702 mp1 = allocb(0, BPRI_MED); 13703 if (mp1 == NULL) { 13704 freemsg(mp); 13705 return; 13706 } 13707 if (!TCP_IS_DETACHED(tcp) && 13708 !putnextctl1(tcp->tcp_rq, M_PCSIG, 13709 SIGURG)) { 13710 /* Try again on the rexmit. */ 13711 freemsg(mp1); 13712 freemsg(mp); 13713 return; 13714 } 13715 /* 13716 * Mark with NOTMARKNEXT for now. 13717 * The code below will change this to MARKNEXT 13718 * if we are at the mark. 13719 * 13720 * If there are allocation failures (e.g. in 13721 * dupmsg below) the next time tcp_rput_data 13722 * sees the urgent segment it will send up the 13723 * MSGMARKNEXT message. 13724 */ 13725 mp1->b_flag |= MSGNOTMARKNEXT; 13726 freemsg(tcp->tcp_urp_mark_mp); 13727 tcp->tcp_urp_mark_mp = mp1; 13728 flags |= TH_SEND_URP_MARK; 13729 #ifdef DEBUG 13730 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13731 "tcp_rput: sent M_PCSIG 2 seq %x urp %x " 13732 "last %x, %s", 13733 seg_seq, urp, tcp->tcp_urp_last, 13734 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 13735 #endif /* DEBUG */ 13736 } 13737 tcp->tcp_urp_last_valid = B_TRUE; 13738 tcp->tcp_urp_last = urp + seg_seq; 13739 } else if (tcp->tcp_urp_mark_mp != NULL) { 13740 /* 13741 * An allocation failure prevented the previous 13742 * tcp_rput_data from sending up the allocated 13743 * MSG*MARKNEXT message - send it up this time 13744 * around. 13745 */ 13746 flags |= TH_SEND_URP_MARK; 13747 } 13748 13749 /* 13750 * If the urgent byte is in this segment, make sure that it is 13751 * all by itself. This makes it much easier to deal with the 13752 * possibility of an allocation failure on the T_exdata_ind. 13753 * Note that seg_len is the number of bytes in the segment, and 13754 * urp is the offset into the segment of the urgent byte. 13755 * urp < seg_len means that the urgent byte is in this segment. 13756 */ 13757 if (urp < seg_len) { 13758 if (seg_len != 1) { 13759 uint32_t tmp_rnxt; 13760 /* 13761 * Break it up and feed it back in. 13762 * Re-attach the IP header. 13763 */ 13764 mp->b_rptr = iphdr; 13765 if (urp > 0) { 13766 /* 13767 * There is stuff before the urgent 13768 * byte. 13769 */ 13770 mp1 = dupmsg(mp); 13771 if (!mp1) { 13772 /* 13773 * Trim from urgent byte on. 13774 * The rest will come back. 13775 */ 13776 (void) adjmsg(mp, 13777 urp - seg_len); 13778 tcp_rput_data(connp, 13779 mp, NULL); 13780 return; 13781 } 13782 (void) adjmsg(mp1, urp - seg_len); 13783 /* Feed this piece back in. */ 13784 tmp_rnxt = tcp->tcp_rnxt; 13785 tcp_rput_data(connp, mp1, NULL); 13786 /* 13787 * If the data passed back in was not 13788 * processed (ie: bad ACK) sending 13789 * the remainder back in will cause a 13790 * loop. In this case, drop the 13791 * packet and let the sender try 13792 * sending a good packet. 13793 */ 13794 if (tmp_rnxt == tcp->tcp_rnxt) { 13795 freemsg(mp); 13796 return; 13797 } 13798 } 13799 if (urp != seg_len - 1) { 13800 uint32_t tmp_rnxt; 13801 /* 13802 * There is stuff after the urgent 13803 * byte. 13804 */ 13805 mp1 = dupmsg(mp); 13806 if (!mp1) { 13807 /* 13808 * Trim everything beyond the 13809 * urgent byte. The rest will 13810 * come back. 13811 */ 13812 (void) adjmsg(mp, 13813 urp + 1 - seg_len); 13814 tcp_rput_data(connp, 13815 mp, NULL); 13816 return; 13817 } 13818 (void) adjmsg(mp1, urp + 1 - seg_len); 13819 tmp_rnxt = tcp->tcp_rnxt; 13820 tcp_rput_data(connp, mp1, NULL); 13821 /* 13822 * If the data passed back in was not 13823 * processed (ie: bad ACK) sending 13824 * the remainder back in will cause a 13825 * loop. In this case, drop the 13826 * packet and let the sender try 13827 * sending a good packet. 13828 */ 13829 if (tmp_rnxt == tcp->tcp_rnxt) { 13830 freemsg(mp); 13831 return; 13832 } 13833 } 13834 tcp_rput_data(connp, mp, NULL); 13835 return; 13836 } 13837 /* 13838 * This segment contains only the urgent byte. We 13839 * have to allocate the T_exdata_ind, if we can. 13840 */ 13841 if (IPCL_IS_NONSTR(connp)) { 13842 int error; 13843 13844 (*connp->conn_upcalls->su_recv) 13845 (connp->conn_upper_handle, mp, seg_len, 13846 MSG_OOB, &error, NULL); 13847 /* 13848 * We should never be in middle of a 13849 * fallback, the squeue guarantees that. 13850 */ 13851 ASSERT(error != EOPNOTSUPP); 13852 mp = NULL; 13853 goto update_ack; 13854 } else if (!tcp->tcp_urp_mp) { 13855 struct T_exdata_ind *tei; 13856 mp1 = allocb(sizeof (struct T_exdata_ind), 13857 BPRI_MED); 13858 if (!mp1) { 13859 /* 13860 * Sigh... It'll be back. 13861 * Generate any MSG*MARK message now. 13862 */ 13863 freemsg(mp); 13864 seg_len = 0; 13865 if (flags & TH_SEND_URP_MARK) { 13866 13867 13868 ASSERT(tcp->tcp_urp_mark_mp); 13869 tcp->tcp_urp_mark_mp->b_flag &= 13870 ~MSGNOTMARKNEXT; 13871 tcp->tcp_urp_mark_mp->b_flag |= 13872 MSGMARKNEXT; 13873 } 13874 goto ack_check; 13875 } 13876 mp1->b_datap->db_type = M_PROTO; 13877 tei = (struct T_exdata_ind *)mp1->b_rptr; 13878 tei->PRIM_type = T_EXDATA_IND; 13879 tei->MORE_flag = 0; 13880 mp1->b_wptr = (uchar_t *)&tei[1]; 13881 tcp->tcp_urp_mp = mp1; 13882 #ifdef DEBUG 13883 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13884 "tcp_rput: allocated exdata_ind %s", 13885 tcp_display(tcp, NULL, 13886 DISP_PORT_ONLY)); 13887 #endif /* DEBUG */ 13888 /* 13889 * There is no need to send a separate MSG*MARK 13890 * message since the T_EXDATA_IND will be sent 13891 * now. 13892 */ 13893 flags &= ~TH_SEND_URP_MARK; 13894 freemsg(tcp->tcp_urp_mark_mp); 13895 tcp->tcp_urp_mark_mp = NULL; 13896 } 13897 /* 13898 * Now we are all set. On the next putnext upstream, 13899 * tcp_urp_mp will be non-NULL and will get prepended 13900 * to what has to be this piece containing the urgent 13901 * byte. If for any reason we abort this segment below, 13902 * if it comes back, we will have this ready, or it 13903 * will get blown off in close. 13904 */ 13905 } else if (urp == seg_len) { 13906 /* 13907 * The urgent byte is the next byte after this sequence 13908 * number. If this endpoint is non-STREAMS, then there 13909 * is nothing to do here since the socket has already 13910 * been notified about the urg pointer by the 13911 * su_signal_oob call above. 13912 * 13913 * In case of STREAMS, some more work might be needed. 13914 * If there is data it is marked with MSGMARKNEXT and 13915 * and any tcp_urp_mark_mp is discarded since it is not 13916 * needed. Otherwise, if the code above just allocated 13917 * a zero-length tcp_urp_mark_mp message, that message 13918 * is tagged with MSGMARKNEXT. Sending up these 13919 * MSGMARKNEXT messages makes SIOCATMARK work correctly 13920 * even though the T_EXDATA_IND will not be sent up 13921 * until the urgent byte arrives. 13922 */ 13923 if (!IPCL_IS_NONSTR(tcp->tcp_connp)) { 13924 if (seg_len != 0) { 13925 flags |= TH_MARKNEXT_NEEDED; 13926 freemsg(tcp->tcp_urp_mark_mp); 13927 tcp->tcp_urp_mark_mp = NULL; 13928 flags &= ~TH_SEND_URP_MARK; 13929 } else if (tcp->tcp_urp_mark_mp != NULL) { 13930 flags |= TH_SEND_URP_MARK; 13931 tcp->tcp_urp_mark_mp->b_flag &= 13932 ~MSGNOTMARKNEXT; 13933 tcp->tcp_urp_mark_mp->b_flag |= 13934 MSGMARKNEXT; 13935 } 13936 } 13937 #ifdef DEBUG 13938 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13939 "tcp_rput: AT MARK, len %d, flags 0x%x, %s", 13940 seg_len, flags, 13941 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 13942 #endif /* DEBUG */ 13943 } 13944 #ifdef DEBUG 13945 else { 13946 /* Data left until we hit mark */ 13947 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13948 "tcp_rput: URP %d bytes left, %s", 13949 urp - seg_len, tcp_display(tcp, NULL, 13950 DISP_PORT_ONLY)); 13951 } 13952 #endif /* DEBUG */ 13953 } 13954 13955 process_ack: 13956 if (!(flags & TH_ACK)) { 13957 freemsg(mp); 13958 goto xmit_check; 13959 } 13960 } 13961 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 13962 13963 if (tcp->tcp_ipversion == IPV6_VERSION && bytes_acked > 0) 13964 tcp->tcp_ip_forward_progress = B_TRUE; 13965 if (tcp->tcp_state == TCPS_SYN_RCVD) { 13966 if ((tcp->tcp_conn.tcp_eager_conn_ind != NULL) && 13967 ((tcp->tcp_kssl_ent == NULL) || !tcp->tcp_kssl_pending)) { 13968 /* 3-way handshake complete - pass up the T_CONN_IND */ 13969 tcp_t *listener = tcp->tcp_listener; 13970 mblk_t *mp = tcp->tcp_conn.tcp_eager_conn_ind; 13971 13972 tcp->tcp_tconnind_started = B_TRUE; 13973 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 13974 /* 13975 * We are here means eager is fine but it can 13976 * get a TH_RST at any point between now and till 13977 * accept completes and disappear. We need to 13978 * ensure that reference to eager is valid after 13979 * we get out of eager's perimeter. So we do 13980 * an extra refhold. 13981 */ 13982 CONN_INC_REF(connp); 13983 13984 /* 13985 * The listener also exists because of the refhold 13986 * done in tcp_conn_request. Its possible that it 13987 * might have closed. We will check that once we 13988 * get inside listeners context. 13989 */ 13990 CONN_INC_REF(listener->tcp_connp); 13991 if (listener->tcp_connp->conn_sqp == 13992 connp->conn_sqp) { 13993 /* 13994 * We optimize by not calling an SQUEUE_ENTER 13995 * on the listener since we know that the 13996 * listener and eager squeues are the same. 13997 * We are able to make this check safely only 13998 * because neither the eager nor the listener 13999 * can change its squeue. Only an active connect 14000 * can change its squeue 14001 */ 14002 tcp_send_conn_ind(listener->tcp_connp, mp, 14003 listener->tcp_connp->conn_sqp); 14004 CONN_DEC_REF(listener->tcp_connp); 14005 } else if (!tcp->tcp_loopback) { 14006 SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, 14007 mp, tcp_send_conn_ind, 14008 listener->tcp_connp, SQ_FILL, 14009 SQTAG_TCP_CONN_IND); 14010 } else { 14011 SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, 14012 mp, tcp_send_conn_ind, 14013 listener->tcp_connp, SQ_PROCESS, 14014 SQTAG_TCP_CONN_IND); 14015 } 14016 } 14017 14018 /* 14019 * We are seeing the final ack in the three way 14020 * hand shake of a active open'ed connection 14021 * so we must send up a T_CONN_CON 14022 * 14023 * tcp_sendmsg() checks tcp_state without entering 14024 * the squeue so tcp_state should be updated before 14025 * sending up connection confirmation. 14026 */ 14027 tcp->tcp_state = TCPS_ESTABLISHED; 14028 if (tcp->tcp_active_open) { 14029 if (!tcp_conn_con(tcp, iphdr, tcph, mp, NULL)) { 14030 freemsg(mp); 14031 tcp->tcp_state = TCPS_SYN_RCVD; 14032 return; 14033 } 14034 /* 14035 * Don't fuse the loopback endpoints for 14036 * simultaneous active opens. 14037 */ 14038 if (tcp->tcp_loopback) { 14039 TCP_STAT(tcps, tcp_fusion_unfusable); 14040 tcp->tcp_unfusable = B_TRUE; 14041 } 14042 } 14043 14044 tcp->tcp_suna = tcp->tcp_iss + 1; /* One for the SYN */ 14045 bytes_acked--; 14046 /* SYN was acked - making progress */ 14047 if (tcp->tcp_ipversion == IPV6_VERSION) 14048 tcp->tcp_ip_forward_progress = B_TRUE; 14049 14050 /* 14051 * If SYN was retransmitted, need to reset all 14052 * retransmission info as this segment will be 14053 * treated as a dup ACK. 14054 */ 14055 if (tcp->tcp_rexmit) { 14056 tcp->tcp_rexmit = B_FALSE; 14057 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 14058 tcp->tcp_rexmit_max = tcp->tcp_snxt; 14059 tcp->tcp_snd_burst = tcp->tcp_localnet ? 14060 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 14061 tcp->tcp_ms_we_have_waited = 0; 14062 tcp->tcp_cwnd = mss; 14063 } 14064 14065 /* 14066 * We set the send window to zero here. 14067 * This is needed if there is data to be 14068 * processed already on the queue. 14069 * Later (at swnd_update label), the 14070 * "new_swnd > tcp_swnd" condition is satisfied 14071 * the XMIT_NEEDED flag is set in the current 14072 * (SYN_RCVD) state. This ensures tcp_wput_data() is 14073 * called if there is already data on queue in 14074 * this state. 14075 */ 14076 tcp->tcp_swnd = 0; 14077 14078 if (new_swnd > tcp->tcp_max_swnd) 14079 tcp->tcp_max_swnd = new_swnd; 14080 tcp->tcp_swl1 = seg_seq; 14081 tcp->tcp_swl2 = seg_ack; 14082 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 14083 14084 /* Fuse when both sides are in ESTABLISHED state */ 14085 if (tcp->tcp_loopback && do_tcp_fusion) 14086 tcp_fuse(tcp, iphdr, tcph); 14087 14088 } 14089 /* This code follows 4.4BSD-Lite2 mostly. */ 14090 if (bytes_acked < 0) 14091 goto est; 14092 14093 /* 14094 * If TCP is ECN capable and the congestion experience bit is 14095 * set, reduce tcp_cwnd and tcp_ssthresh. But this should only be 14096 * done once per window (or more loosely, per RTT). 14097 */ 14098 if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max)) 14099 tcp->tcp_cwr = B_FALSE; 14100 if (tcp->tcp_ecn_ok && (flags & TH_ECE)) { 14101 if (!tcp->tcp_cwr) { 14102 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss; 14103 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss; 14104 tcp->tcp_cwnd = npkt * mss; 14105 /* 14106 * If the cwnd is 0, use the timer to clock out 14107 * new segments. This is required by the ECN spec. 14108 */ 14109 if (npkt == 0) { 14110 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14111 /* 14112 * This makes sure that when the ACK comes 14113 * back, we will increase tcp_cwnd by 1 MSS. 14114 */ 14115 tcp->tcp_cwnd_cnt = 0; 14116 } 14117 tcp->tcp_cwr = B_TRUE; 14118 /* 14119 * This marks the end of the current window of in 14120 * flight data. That is why we don't use 14121 * tcp_suna + tcp_swnd. Only data in flight can 14122 * provide ECN info. 14123 */ 14124 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 14125 tcp->tcp_ecn_cwr_sent = B_FALSE; 14126 } 14127 } 14128 14129 mp1 = tcp->tcp_xmit_head; 14130 if (bytes_acked == 0) { 14131 if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) { 14132 int dupack_cnt; 14133 14134 BUMP_MIB(&tcps->tcps_mib, tcpInDupAck); 14135 /* 14136 * Fast retransmit. When we have seen exactly three 14137 * identical ACKs while we have unacked data 14138 * outstanding we take it as a hint that our peer 14139 * dropped something. 14140 * 14141 * If TCP is retransmitting, don't do fast retransmit. 14142 */ 14143 if (mp1 && tcp->tcp_suna != tcp->tcp_snxt && 14144 ! tcp->tcp_rexmit) { 14145 /* Do Limited Transmit */ 14146 if ((dupack_cnt = ++tcp->tcp_dupack_cnt) < 14147 tcps->tcps_dupack_fast_retransmit) { 14148 /* 14149 * RFC 3042 14150 * 14151 * What we need to do is temporarily 14152 * increase tcp_cwnd so that new 14153 * data can be sent if it is allowed 14154 * by the receive window (tcp_rwnd). 14155 * tcp_wput_data() will take care of 14156 * the rest. 14157 * 14158 * If the connection is SACK capable, 14159 * only do limited xmit when there 14160 * is SACK info. 14161 * 14162 * Note how tcp_cwnd is incremented. 14163 * The first dup ACK will increase 14164 * it by 1 MSS. The second dup ACK 14165 * will increase it by 2 MSS. This 14166 * means that only 1 new segment will 14167 * be sent for each dup ACK. 14168 */ 14169 if (tcp->tcp_unsent > 0 && 14170 (!tcp->tcp_snd_sack_ok || 14171 (tcp->tcp_snd_sack_ok && 14172 tcp->tcp_notsack_list != NULL))) { 14173 tcp->tcp_cwnd += mss << 14174 (tcp->tcp_dupack_cnt - 1); 14175 flags |= TH_LIMIT_XMIT; 14176 } 14177 } else if (dupack_cnt == 14178 tcps->tcps_dupack_fast_retransmit) { 14179 14180 /* 14181 * If we have reduced tcp_ssthresh 14182 * because of ECN, do not reduce it again 14183 * unless it is already one window of data 14184 * away. After one window of data, tcp_cwr 14185 * should then be cleared. Note that 14186 * for non ECN capable connection, tcp_cwr 14187 * should always be false. 14188 * 14189 * Adjust cwnd since the duplicate 14190 * ack indicates that a packet was 14191 * dropped (due to congestion.) 14192 */ 14193 if (!tcp->tcp_cwr) { 14194 npkt = ((tcp->tcp_snxt - 14195 tcp->tcp_suna) >> 1) / mss; 14196 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 14197 mss; 14198 tcp->tcp_cwnd = (npkt + 14199 tcp->tcp_dupack_cnt) * mss; 14200 } 14201 if (tcp->tcp_ecn_ok) { 14202 tcp->tcp_cwr = B_TRUE; 14203 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 14204 tcp->tcp_ecn_cwr_sent = B_FALSE; 14205 } 14206 14207 /* 14208 * We do Hoe's algorithm. Refer to her 14209 * paper "Improving the Start-up Behavior 14210 * of a Congestion Control Scheme for TCP," 14211 * appeared in SIGCOMM'96. 14212 * 14213 * Save highest seq no we have sent so far. 14214 * Be careful about the invisible FIN byte. 14215 */ 14216 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 14217 (tcp->tcp_unsent == 0)) { 14218 tcp->tcp_rexmit_max = tcp->tcp_fss; 14219 } else { 14220 tcp->tcp_rexmit_max = tcp->tcp_snxt; 14221 } 14222 14223 /* 14224 * Do not allow bursty traffic during. 14225 * fast recovery. Refer to Fall and Floyd's 14226 * paper "Simulation-based Comparisons of 14227 * Tahoe, Reno and SACK TCP" (in CCR?) 14228 * This is a best current practise. 14229 */ 14230 tcp->tcp_snd_burst = TCP_CWND_SS; 14231 14232 /* 14233 * For SACK: 14234 * Calculate tcp_pipe, which is the 14235 * estimated number of bytes in 14236 * network. 14237 * 14238 * tcp_fack is the highest sack'ed seq num 14239 * TCP has received. 14240 * 14241 * tcp_pipe is explained in the above quoted 14242 * Fall and Floyd's paper. tcp_fack is 14243 * explained in Mathis and Mahdavi's 14244 * "Forward Acknowledgment: Refining TCP 14245 * Congestion Control" in SIGCOMM '96. 14246 */ 14247 if (tcp->tcp_snd_sack_ok) { 14248 ASSERT(tcp->tcp_sack_info != NULL); 14249 if (tcp->tcp_notsack_list != NULL) { 14250 tcp->tcp_pipe = tcp->tcp_snxt - 14251 tcp->tcp_fack; 14252 tcp->tcp_sack_snxt = seg_ack; 14253 flags |= TH_NEED_SACK_REXMIT; 14254 } else { 14255 /* 14256 * Always initialize tcp_pipe 14257 * even though we don't have 14258 * any SACK info. If later 14259 * we get SACK info and 14260 * tcp_pipe is not initialized, 14261 * funny things will happen. 14262 */ 14263 tcp->tcp_pipe = 14264 tcp->tcp_cwnd_ssthresh; 14265 } 14266 } else { 14267 flags |= TH_REXMIT_NEEDED; 14268 } /* tcp_snd_sack_ok */ 14269 14270 } else { 14271 /* 14272 * Here we perform congestion 14273 * avoidance, but NOT slow start. 14274 * This is known as the Fast 14275 * Recovery Algorithm. 14276 */ 14277 if (tcp->tcp_snd_sack_ok && 14278 tcp->tcp_notsack_list != NULL) { 14279 flags |= TH_NEED_SACK_REXMIT; 14280 tcp->tcp_pipe -= mss; 14281 if (tcp->tcp_pipe < 0) 14282 tcp->tcp_pipe = 0; 14283 } else { 14284 /* 14285 * We know that one more packet has 14286 * left the pipe thus we can update 14287 * cwnd. 14288 */ 14289 cwnd = tcp->tcp_cwnd + mss; 14290 if (cwnd > tcp->tcp_cwnd_max) 14291 cwnd = tcp->tcp_cwnd_max; 14292 tcp->tcp_cwnd = cwnd; 14293 if (tcp->tcp_unsent > 0) 14294 flags |= TH_XMIT_NEEDED; 14295 } 14296 } 14297 } 14298 } else if (tcp->tcp_zero_win_probe) { 14299 /* 14300 * If the window has opened, need to arrange 14301 * to send additional data. 14302 */ 14303 if (new_swnd != 0) { 14304 /* tcp_suna != tcp_snxt */ 14305 /* Packet contains a window update */ 14306 BUMP_MIB(&tcps->tcps_mib, tcpInWinUpdate); 14307 tcp->tcp_zero_win_probe = 0; 14308 tcp->tcp_timer_backoff = 0; 14309 tcp->tcp_ms_we_have_waited = 0; 14310 14311 /* 14312 * Transmit starting with tcp_suna since 14313 * the one byte probe is not ack'ed. 14314 * If TCP has sent more than one identical 14315 * probe, tcp_rexmit will be set. That means 14316 * tcp_ss_rexmit() will send out the one 14317 * byte along with new data. Otherwise, 14318 * fake the retransmission. 14319 */ 14320 flags |= TH_XMIT_NEEDED; 14321 if (!tcp->tcp_rexmit) { 14322 tcp->tcp_rexmit = B_TRUE; 14323 tcp->tcp_dupack_cnt = 0; 14324 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 14325 tcp->tcp_rexmit_max = tcp->tcp_suna + 1; 14326 } 14327 } 14328 } 14329 goto swnd_update; 14330 } 14331 14332 /* 14333 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73. 14334 * If the ACK value acks something that we have not yet sent, it might 14335 * be an old duplicate segment. Send an ACK to re-synchronize the 14336 * other side. 14337 * Note: reset in response to unacceptable ACK in SYN_RECEIVE 14338 * state is handled above, so we can always just drop the segment and 14339 * send an ACK here. 14340 * 14341 * In the case where the peer shrinks the window, we see the new window 14342 * update, but all the data sent previously is queued up by the peer. 14343 * To account for this, in tcp_process_shrunk_swnd(), the sequence 14344 * number, which was already sent, and within window, is recorded. 14345 * tcp_snxt is then updated. 14346 * 14347 * If the window has previously shrunk, and an ACK for data not yet 14348 * sent, according to tcp_snxt is recieved, it may still be valid. If 14349 * the ACK is for data within the window at the time the window was 14350 * shrunk, then the ACK is acceptable. In this case tcp_snxt is set to 14351 * the sequence number ACK'ed. 14352 * 14353 * If the ACK covers all the data sent at the time the window was 14354 * shrunk, we can now set tcp_is_wnd_shrnk to B_FALSE. 14355 * 14356 * Should we send ACKs in response to ACK only segments? 14357 */ 14358 14359 if (SEQ_GT(seg_ack, tcp->tcp_snxt)) { 14360 if ((tcp->tcp_is_wnd_shrnk) && 14361 (SEQ_LEQ(seg_ack, tcp->tcp_snxt_shrunk))) { 14362 uint32_t data_acked_ahead_snxt; 14363 14364 data_acked_ahead_snxt = seg_ack - tcp->tcp_snxt; 14365 tcp_update_xmit_tail(tcp, seg_ack); 14366 tcp->tcp_unsent -= data_acked_ahead_snxt; 14367 } else { 14368 BUMP_MIB(&tcps->tcps_mib, tcpInAckUnsent); 14369 /* drop the received segment */ 14370 freemsg(mp); 14371 14372 /* 14373 * Send back an ACK. If tcp_drop_ack_unsent_cnt is 14374 * greater than 0, check if the number of such 14375 * bogus ACks is greater than that count. If yes, 14376 * don't send back any ACK. This prevents TCP from 14377 * getting into an ACK storm if somehow an attacker 14378 * successfully spoofs an acceptable segment to our 14379 * peer. 14380 */ 14381 if (tcp_drop_ack_unsent_cnt > 0 && 14382 ++tcp->tcp_in_ack_unsent > 14383 tcp_drop_ack_unsent_cnt) { 14384 TCP_STAT(tcps, tcp_in_ack_unsent_drop); 14385 return; 14386 } 14387 mp = tcp_ack_mp(tcp); 14388 if (mp != NULL) { 14389 BUMP_LOCAL(tcp->tcp_obsegs); 14390 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 14391 tcp_send_data(tcp, tcp->tcp_wq, mp); 14392 } 14393 return; 14394 } 14395 } else if (tcp->tcp_is_wnd_shrnk && SEQ_GEQ(seg_ack, 14396 tcp->tcp_snxt_shrunk)) { 14397 tcp->tcp_is_wnd_shrnk = B_FALSE; 14398 } 14399 14400 /* 14401 * TCP gets a new ACK, update the notsack'ed list to delete those 14402 * blocks that are covered by this ACK. 14403 */ 14404 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 14405 tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack, 14406 &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list)); 14407 } 14408 14409 /* 14410 * If we got an ACK after fast retransmit, check to see 14411 * if it is a partial ACK. If it is not and the congestion 14412 * window was inflated to account for the other side's 14413 * cached packets, retract it. If it is, do Hoe's algorithm. 14414 */ 14415 if (tcp->tcp_dupack_cnt >= tcps->tcps_dupack_fast_retransmit) { 14416 ASSERT(tcp->tcp_rexmit == B_FALSE); 14417 if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) { 14418 tcp->tcp_dupack_cnt = 0; 14419 /* 14420 * Restore the orig tcp_cwnd_ssthresh after 14421 * fast retransmit phase. 14422 */ 14423 if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) { 14424 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh; 14425 } 14426 tcp->tcp_rexmit_max = seg_ack; 14427 tcp->tcp_cwnd_cnt = 0; 14428 tcp->tcp_snd_burst = tcp->tcp_localnet ? 14429 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 14430 14431 /* 14432 * Remove all notsack info to avoid confusion with 14433 * the next fast retrasnmit/recovery phase. 14434 */ 14435 if (tcp->tcp_snd_sack_ok && 14436 tcp->tcp_notsack_list != NULL) { 14437 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, 14438 tcp); 14439 } 14440 } else { 14441 if (tcp->tcp_snd_sack_ok && 14442 tcp->tcp_notsack_list != NULL) { 14443 flags |= TH_NEED_SACK_REXMIT; 14444 tcp->tcp_pipe -= mss; 14445 if (tcp->tcp_pipe < 0) 14446 tcp->tcp_pipe = 0; 14447 } else { 14448 /* 14449 * Hoe's algorithm: 14450 * 14451 * Retransmit the unack'ed segment and 14452 * restart fast recovery. Note that we 14453 * need to scale back tcp_cwnd to the 14454 * original value when we started fast 14455 * recovery. This is to prevent overly 14456 * aggressive behaviour in sending new 14457 * segments. 14458 */ 14459 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh + 14460 tcps->tcps_dupack_fast_retransmit * mss; 14461 tcp->tcp_cwnd_cnt = tcp->tcp_cwnd; 14462 flags |= TH_REXMIT_NEEDED; 14463 } 14464 } 14465 } else { 14466 tcp->tcp_dupack_cnt = 0; 14467 if (tcp->tcp_rexmit) { 14468 /* 14469 * TCP is retranmitting. If the ACK ack's all 14470 * outstanding data, update tcp_rexmit_max and 14471 * tcp_rexmit_nxt. Otherwise, update tcp_rexmit_nxt 14472 * to the correct value. 14473 * 14474 * Note that SEQ_LEQ() is used. This is to avoid 14475 * unnecessary fast retransmit caused by dup ACKs 14476 * received when TCP does slow start retransmission 14477 * after a time out. During this phase, TCP may 14478 * send out segments which are already received. 14479 * This causes dup ACKs to be sent back. 14480 */ 14481 if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) { 14482 if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) { 14483 tcp->tcp_rexmit_nxt = seg_ack; 14484 } 14485 if (seg_ack != tcp->tcp_rexmit_max) { 14486 flags |= TH_XMIT_NEEDED; 14487 } 14488 } else { 14489 tcp->tcp_rexmit = B_FALSE; 14490 tcp->tcp_xmit_zc_clean = B_FALSE; 14491 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 14492 tcp->tcp_snd_burst = tcp->tcp_localnet ? 14493 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 14494 } 14495 tcp->tcp_ms_we_have_waited = 0; 14496 } 14497 } 14498 14499 BUMP_MIB(&tcps->tcps_mib, tcpInAckSegs); 14500 UPDATE_MIB(&tcps->tcps_mib, tcpInAckBytes, bytes_acked); 14501 tcp->tcp_suna = seg_ack; 14502 if (tcp->tcp_zero_win_probe != 0) { 14503 tcp->tcp_zero_win_probe = 0; 14504 tcp->tcp_timer_backoff = 0; 14505 } 14506 14507 /* 14508 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed. 14509 * Note that it cannot be the SYN being ack'ed. The code flow 14510 * will not reach here. 14511 */ 14512 if (mp1 == NULL) { 14513 goto fin_acked; 14514 } 14515 14516 /* 14517 * Update the congestion window. 14518 * 14519 * If TCP is not ECN capable or TCP is ECN capable but the 14520 * congestion experience bit is not set, increase the tcp_cwnd as 14521 * usual. 14522 */ 14523 if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) { 14524 cwnd = tcp->tcp_cwnd; 14525 add = mss; 14526 14527 if (cwnd >= tcp->tcp_cwnd_ssthresh) { 14528 /* 14529 * This is to prevent an increase of less than 1 MSS of 14530 * tcp_cwnd. With partial increase, tcp_wput_data() 14531 * may send out tinygrams in order to preserve mblk 14532 * boundaries. 14533 * 14534 * By initializing tcp_cwnd_cnt to new tcp_cwnd and 14535 * decrementing it by 1 MSS for every ACKs, tcp_cwnd is 14536 * increased by 1 MSS for every RTTs. 14537 */ 14538 if (tcp->tcp_cwnd_cnt <= 0) { 14539 tcp->tcp_cwnd_cnt = cwnd + add; 14540 } else { 14541 tcp->tcp_cwnd_cnt -= add; 14542 add = 0; 14543 } 14544 } 14545 tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max); 14546 } 14547 14548 /* See if the latest urgent data has been acknowledged */ 14549 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && 14550 SEQ_GT(seg_ack, tcp->tcp_urg)) 14551 tcp->tcp_valid_bits &= ~TCP_URG_VALID; 14552 14553 /* Can we update the RTT estimates? */ 14554 if (tcp->tcp_snd_ts_ok) { 14555 /* Ignore zero timestamp echo-reply. */ 14556 if (tcpopt.tcp_opt_ts_ecr != 0) { 14557 tcp_set_rto(tcp, (int32_t)lbolt - 14558 (int32_t)tcpopt.tcp_opt_ts_ecr); 14559 } 14560 14561 /* If needed, restart the timer. */ 14562 if (tcp->tcp_set_timer == 1) { 14563 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14564 tcp->tcp_set_timer = 0; 14565 } 14566 /* 14567 * Update tcp_csuna in case the other side stops sending 14568 * us timestamps. 14569 */ 14570 tcp->tcp_csuna = tcp->tcp_snxt; 14571 } else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) { 14572 /* 14573 * An ACK sequence we haven't seen before, so get the RTT 14574 * and update the RTO. But first check if the timestamp is 14575 * valid to use. 14576 */ 14577 if ((mp1->b_next != NULL) && 14578 SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next))) 14579 tcp_set_rto(tcp, (int32_t)lbolt - 14580 (int32_t)(intptr_t)mp1->b_prev); 14581 else 14582 BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate); 14583 14584 /* Remeber the last sequence to be ACKed */ 14585 tcp->tcp_csuna = seg_ack; 14586 if (tcp->tcp_set_timer == 1) { 14587 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14588 tcp->tcp_set_timer = 0; 14589 } 14590 } else { 14591 BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate); 14592 } 14593 14594 /* Eat acknowledged bytes off the xmit queue. */ 14595 for (;;) { 14596 mblk_t *mp2; 14597 uchar_t *wptr; 14598 14599 wptr = mp1->b_wptr; 14600 ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX); 14601 bytes_acked -= (int)(wptr - mp1->b_rptr); 14602 if (bytes_acked < 0) { 14603 mp1->b_rptr = wptr + bytes_acked; 14604 /* 14605 * Set a new timestamp if all the bytes timed by the 14606 * old timestamp have been ack'ed. 14607 */ 14608 if (SEQ_GT(seg_ack, 14609 (uint32_t)(uintptr_t)(mp1->b_next))) { 14610 mp1->b_prev = (mblk_t *)(uintptr_t)lbolt; 14611 mp1->b_next = NULL; 14612 } 14613 break; 14614 } 14615 mp1->b_next = NULL; 14616 mp1->b_prev = NULL; 14617 mp2 = mp1; 14618 mp1 = mp1->b_cont; 14619 14620 /* 14621 * This notification is required for some zero-copy 14622 * clients to maintain a copy semantic. After the data 14623 * is ack'ed, client is safe to modify or reuse the buffer. 14624 */ 14625 if (tcp->tcp_snd_zcopy_aware && 14626 (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 14627 tcp_zcopy_notify(tcp); 14628 freeb(mp2); 14629 if (bytes_acked == 0) { 14630 if (mp1 == NULL) { 14631 /* Everything is ack'ed, clear the tail. */ 14632 tcp->tcp_xmit_tail = NULL; 14633 /* 14634 * Cancel the timer unless we are still 14635 * waiting for an ACK for the FIN packet. 14636 */ 14637 if (tcp->tcp_timer_tid != 0 && 14638 tcp->tcp_snxt == tcp->tcp_suna) { 14639 (void) TCP_TIMER_CANCEL(tcp, 14640 tcp->tcp_timer_tid); 14641 tcp->tcp_timer_tid = 0; 14642 } 14643 goto pre_swnd_update; 14644 } 14645 if (mp2 != tcp->tcp_xmit_tail) 14646 break; 14647 tcp->tcp_xmit_tail = mp1; 14648 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 14649 (uintptr_t)INT_MAX); 14650 tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr - 14651 mp1->b_rptr); 14652 break; 14653 } 14654 if (mp1 == NULL) { 14655 /* 14656 * More was acked but there is nothing more 14657 * outstanding. This means that the FIN was 14658 * just acked or that we're talking to a clown. 14659 */ 14660 fin_acked: 14661 ASSERT(tcp->tcp_fin_sent); 14662 tcp->tcp_xmit_tail = NULL; 14663 if (tcp->tcp_fin_sent) { 14664 /* FIN was acked - making progress */ 14665 if (tcp->tcp_ipversion == IPV6_VERSION && 14666 !tcp->tcp_fin_acked) 14667 tcp->tcp_ip_forward_progress = B_TRUE; 14668 tcp->tcp_fin_acked = B_TRUE; 14669 if (tcp->tcp_linger_tid != 0 && 14670 TCP_TIMER_CANCEL(tcp, 14671 tcp->tcp_linger_tid) >= 0) { 14672 tcp_stop_lingering(tcp); 14673 freemsg(mp); 14674 mp = NULL; 14675 } 14676 } else { 14677 /* 14678 * We should never get here because 14679 * we have already checked that the 14680 * number of bytes ack'ed should be 14681 * smaller than or equal to what we 14682 * have sent so far (it is the 14683 * acceptability check of the ACK). 14684 * We can only get here if the send 14685 * queue is corrupted. 14686 * 14687 * Terminate the connection and 14688 * panic the system. It is better 14689 * for us to panic instead of 14690 * continuing to avoid other disaster. 14691 */ 14692 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 14693 tcp->tcp_rnxt, TH_RST|TH_ACK); 14694 panic("Memory corruption " 14695 "detected for connection %s.", 14696 tcp_display(tcp, NULL, 14697 DISP_ADDR_AND_PORT)); 14698 /*NOTREACHED*/ 14699 } 14700 goto pre_swnd_update; 14701 } 14702 ASSERT(mp2 != tcp->tcp_xmit_tail); 14703 } 14704 if (tcp->tcp_unsent) { 14705 flags |= TH_XMIT_NEEDED; 14706 } 14707 pre_swnd_update: 14708 tcp->tcp_xmit_head = mp1; 14709 swnd_update: 14710 /* 14711 * The following check is different from most other implementations. 14712 * For bi-directional transfer, when segments are dropped, the 14713 * "normal" check will not accept a window update in those 14714 * retransmitted segemnts. Failing to do that, TCP may send out 14715 * segments which are outside receiver's window. As TCP accepts 14716 * the ack in those retransmitted segments, if the window update in 14717 * the same segment is not accepted, TCP will incorrectly calculates 14718 * that it can send more segments. This can create a deadlock 14719 * with the receiver if its window becomes zero. 14720 */ 14721 if (SEQ_LT(tcp->tcp_swl2, seg_ack) || 14722 SEQ_LT(tcp->tcp_swl1, seg_seq) || 14723 (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) { 14724 /* 14725 * The criteria for update is: 14726 * 14727 * 1. the segment acknowledges some data. Or 14728 * 2. the segment is new, i.e. it has a higher seq num. Or 14729 * 3. the segment is not old and the advertised window is 14730 * larger than the previous advertised window. 14731 */ 14732 if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd) 14733 flags |= TH_XMIT_NEEDED; 14734 tcp->tcp_swnd = new_swnd; 14735 if (new_swnd > tcp->tcp_max_swnd) 14736 tcp->tcp_max_swnd = new_swnd; 14737 tcp->tcp_swl1 = seg_seq; 14738 tcp->tcp_swl2 = seg_ack; 14739 } 14740 est: 14741 if (tcp->tcp_state > TCPS_ESTABLISHED) { 14742 14743 switch (tcp->tcp_state) { 14744 case TCPS_FIN_WAIT_1: 14745 if (tcp->tcp_fin_acked) { 14746 tcp->tcp_state = TCPS_FIN_WAIT_2; 14747 /* 14748 * We implement the non-standard BSD/SunOS 14749 * FIN_WAIT_2 flushing algorithm. 14750 * If there is no user attached to this 14751 * TCP endpoint, then this TCP struct 14752 * could hang around forever in FIN_WAIT_2 14753 * state if the peer forgets to send us 14754 * a FIN. To prevent this, we wait only 14755 * 2*MSL (a convenient time value) for 14756 * the FIN to arrive. If it doesn't show up, 14757 * we flush the TCP endpoint. This algorithm, 14758 * though a violation of RFC-793, has worked 14759 * for over 10 years in BSD systems. 14760 * Note: SunOS 4.x waits 675 seconds before 14761 * flushing the FIN_WAIT_2 connection. 14762 */ 14763 TCP_TIMER_RESTART(tcp, 14764 tcps->tcps_fin_wait_2_flush_interval); 14765 } 14766 break; 14767 case TCPS_FIN_WAIT_2: 14768 break; /* Shutdown hook? */ 14769 case TCPS_LAST_ACK: 14770 freemsg(mp); 14771 if (tcp->tcp_fin_acked) { 14772 (void) tcp_clean_death(tcp, 0, 19); 14773 return; 14774 } 14775 goto xmit_check; 14776 case TCPS_CLOSING: 14777 if (tcp->tcp_fin_acked) { 14778 tcp->tcp_state = TCPS_TIME_WAIT; 14779 /* 14780 * Unconditionally clear the exclusive binding 14781 * bit so this TIME-WAIT connection won't 14782 * interfere with new ones. 14783 */ 14784 tcp->tcp_exclbind = 0; 14785 if (!TCP_IS_DETACHED(tcp)) { 14786 TCP_TIMER_RESTART(tcp, 14787 tcps->tcps_time_wait_interval); 14788 } else { 14789 tcp_time_wait_append(tcp); 14790 TCP_DBGSTAT(tcps, tcp_rput_time_wait); 14791 } 14792 } 14793 /*FALLTHRU*/ 14794 case TCPS_CLOSE_WAIT: 14795 freemsg(mp); 14796 goto xmit_check; 14797 default: 14798 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 14799 break; 14800 } 14801 } 14802 if (flags & TH_FIN) { 14803 /* Make sure we ack the fin */ 14804 flags |= TH_ACK_NEEDED; 14805 if (!tcp->tcp_fin_rcvd) { 14806 tcp->tcp_fin_rcvd = B_TRUE; 14807 tcp->tcp_rnxt++; 14808 tcph = tcp->tcp_tcph; 14809 U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack); 14810 14811 /* 14812 * Generate the ordrel_ind at the end unless we 14813 * are an eager guy. 14814 * In the eager case tcp_rsrv will do this when run 14815 * after tcp_accept is done. 14816 */ 14817 if (tcp->tcp_listener == NULL && 14818 !TCP_IS_DETACHED(tcp) && (!tcp->tcp_hard_binding)) 14819 flags |= TH_ORDREL_NEEDED; 14820 switch (tcp->tcp_state) { 14821 case TCPS_SYN_RCVD: 14822 case TCPS_ESTABLISHED: 14823 tcp->tcp_state = TCPS_CLOSE_WAIT; 14824 /* Keepalive? */ 14825 break; 14826 case TCPS_FIN_WAIT_1: 14827 if (!tcp->tcp_fin_acked) { 14828 tcp->tcp_state = TCPS_CLOSING; 14829 break; 14830 } 14831 /* FALLTHRU */ 14832 case TCPS_FIN_WAIT_2: 14833 tcp->tcp_state = TCPS_TIME_WAIT; 14834 /* 14835 * Unconditionally clear the exclusive binding 14836 * bit so this TIME-WAIT connection won't 14837 * interfere with new ones. 14838 */ 14839 tcp->tcp_exclbind = 0; 14840 if (!TCP_IS_DETACHED(tcp)) { 14841 TCP_TIMER_RESTART(tcp, 14842 tcps->tcps_time_wait_interval); 14843 } else { 14844 tcp_time_wait_append(tcp); 14845 TCP_DBGSTAT(tcps, tcp_rput_time_wait); 14846 } 14847 if (seg_len) { 14848 /* 14849 * implies data piggybacked on FIN. 14850 * break to handle data. 14851 */ 14852 break; 14853 } 14854 freemsg(mp); 14855 goto ack_check; 14856 } 14857 } 14858 } 14859 if (mp == NULL) 14860 goto xmit_check; 14861 if (seg_len == 0) { 14862 freemsg(mp); 14863 goto xmit_check; 14864 } 14865 if (mp->b_rptr == mp->b_wptr) { 14866 /* 14867 * The header has been consumed, so we remove the 14868 * zero-length mblk here. 14869 */ 14870 mp1 = mp; 14871 mp = mp->b_cont; 14872 freeb(mp1); 14873 } 14874 update_ack: 14875 tcph = tcp->tcp_tcph; 14876 tcp->tcp_rack_cnt++; 14877 { 14878 uint32_t cur_max; 14879 14880 cur_max = tcp->tcp_rack_cur_max; 14881 if (tcp->tcp_rack_cnt >= cur_max) { 14882 /* 14883 * We have more unacked data than we should - send 14884 * an ACK now. 14885 */ 14886 flags |= TH_ACK_NEEDED; 14887 cur_max++; 14888 if (cur_max > tcp->tcp_rack_abs_max) 14889 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 14890 else 14891 tcp->tcp_rack_cur_max = cur_max; 14892 } else if (TCP_IS_DETACHED(tcp)) { 14893 /* We don't have an ACK timer for detached TCP. */ 14894 flags |= TH_ACK_NEEDED; 14895 } else if (seg_len < mss) { 14896 /* 14897 * If we get a segment that is less than an mss, and we 14898 * already have unacknowledged data, and the amount 14899 * unacknowledged is not a multiple of mss, then we 14900 * better generate an ACK now. Otherwise, this may be 14901 * the tail piece of a transaction, and we would rather 14902 * wait for the response. 14903 */ 14904 uint32_t udif; 14905 ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <= 14906 (uintptr_t)INT_MAX); 14907 udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack); 14908 if (udif && (udif % mss)) 14909 flags |= TH_ACK_NEEDED; 14910 else 14911 flags |= TH_ACK_TIMER_NEEDED; 14912 } else { 14913 /* Start delayed ack timer */ 14914 flags |= TH_ACK_TIMER_NEEDED; 14915 } 14916 } 14917 tcp->tcp_rnxt += seg_len; 14918 U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack); 14919 14920 if (mp == NULL) 14921 goto xmit_check; 14922 14923 /* Update SACK list */ 14924 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 14925 tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt, 14926 &(tcp->tcp_num_sack_blk)); 14927 } 14928 14929 if (tcp->tcp_urp_mp) { 14930 tcp->tcp_urp_mp->b_cont = mp; 14931 mp = tcp->tcp_urp_mp; 14932 tcp->tcp_urp_mp = NULL; 14933 /* Ready for a new signal. */ 14934 tcp->tcp_urp_last_valid = B_FALSE; 14935 #ifdef DEBUG 14936 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14937 "tcp_rput: sending exdata_ind %s", 14938 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 14939 #endif /* DEBUG */ 14940 } 14941 14942 /* 14943 * Check for ancillary data changes compared to last segment. 14944 */ 14945 if (tcp->tcp_ipv6_recvancillary != 0) { 14946 mp = tcp_rput_add_ancillary(tcp, mp, &ipp); 14947 ASSERT(mp != NULL); 14948 } 14949 14950 if (tcp->tcp_listener || tcp->tcp_hard_binding) { 14951 /* 14952 * Side queue inbound data until the accept happens. 14953 * tcp_accept/tcp_rput drains this when the accept happens. 14954 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or 14955 * T_EXDATA_IND) it is queued on b_next. 14956 * XXX Make urgent data use this. Requires: 14957 * Removing tcp_listener check for TH_URG 14958 * Making M_PCPROTO and MARK messages skip the eager case 14959 */ 14960 14961 if (tcp->tcp_kssl_pending) { 14962 DTRACE_PROBE1(kssl_mblk__ksslinput_pending, 14963 mblk_t *, mp); 14964 tcp_kssl_input(tcp, mp); 14965 } else { 14966 tcp_rcv_enqueue(tcp, mp, seg_len); 14967 } 14968 } else if (IPCL_IS_NONSTR(connp)) { 14969 /* 14970 * Non-STREAMS socket 14971 * 14972 * Note that no KSSL processing is done here, because 14973 * KSSL is not supported for non-STREAMS sockets. 14974 */ 14975 boolean_t push = flags & (TH_PUSH|TH_FIN); 14976 int error; 14977 14978 if ((*connp->conn_upcalls->su_recv)( 14979 connp->conn_upper_handle, 14980 mp, seg_len, 0, &error, &push) <= 0) { 14981 /* 14982 * We should never be in middle of a 14983 * fallback, the squeue guarantees that. 14984 */ 14985 ASSERT(error != EOPNOTSUPP); 14986 if (error == ENOSPC) 14987 tcp->tcp_rwnd -= seg_len; 14988 } else if (push) { 14989 /* PUSH bit set and sockfs is not flow controlled */ 14990 flags |= tcp_rwnd_reopen(tcp); 14991 } 14992 } else { 14993 /* STREAMS socket */ 14994 if (mp->b_datap->db_type != M_DATA || 14995 (flags & TH_MARKNEXT_NEEDED)) { 14996 if (tcp->tcp_rcv_list != NULL) { 14997 flags |= tcp_rcv_drain(tcp); 14998 } 14999 ASSERT(tcp->tcp_rcv_list == NULL || 15000 tcp->tcp_fused_sigurg); 15001 15002 if (flags & TH_MARKNEXT_NEEDED) { 15003 #ifdef DEBUG 15004 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 15005 "tcp_rput: sending MSGMARKNEXT %s", 15006 tcp_display(tcp, NULL, 15007 DISP_PORT_ONLY)); 15008 #endif /* DEBUG */ 15009 mp->b_flag |= MSGMARKNEXT; 15010 flags &= ~TH_MARKNEXT_NEEDED; 15011 } 15012 15013 /* Does this need SSL processing first? */ 15014 if ((tcp->tcp_kssl_ctx != NULL) && 15015 (DB_TYPE(mp) == M_DATA)) { 15016 DTRACE_PROBE1(kssl_mblk__ksslinput_data1, 15017 mblk_t *, mp); 15018 tcp_kssl_input(tcp, mp); 15019 } else { 15020 putnext(tcp->tcp_rq, mp); 15021 if (!canputnext(tcp->tcp_rq)) 15022 tcp->tcp_rwnd -= seg_len; 15023 } 15024 } else if ((tcp->tcp_kssl_ctx != NULL) && 15025 (DB_TYPE(mp) == M_DATA)) { 15026 /* Does this need SSL processing first? */ 15027 DTRACE_PROBE1(kssl_mblk__ksslinput_data2, mblk_t *, mp); 15028 tcp_kssl_input(tcp, mp); 15029 } else if ((flags & (TH_PUSH|TH_FIN)) || 15030 tcp->tcp_rcv_cnt + seg_len >= tcp->tcp_recv_hiwater >> 3) { 15031 if (tcp->tcp_rcv_list != NULL) { 15032 /* 15033 * Enqueue the new segment first and then 15034 * call tcp_rcv_drain() to send all data 15035 * up. The other way to do this is to 15036 * send all queued data up and then call 15037 * putnext() to send the new segment up. 15038 * This way can remove the else part later 15039 * on. 15040 * 15041 * We don't do this to avoid one more call to 15042 * canputnext() as tcp_rcv_drain() needs to 15043 * call canputnext(). 15044 */ 15045 tcp_rcv_enqueue(tcp, mp, seg_len); 15046 flags |= tcp_rcv_drain(tcp); 15047 } else { 15048 putnext(tcp->tcp_rq, mp); 15049 if (!canputnext(tcp->tcp_rq)) 15050 tcp->tcp_rwnd -= seg_len; 15051 } 15052 } else { 15053 /* 15054 * Enqueue all packets when processing an mblk 15055 * from the co queue and also enqueue normal packets. 15056 */ 15057 tcp_rcv_enqueue(tcp, mp, seg_len); 15058 } 15059 /* 15060 * Make sure the timer is running if we have data waiting 15061 * for a push bit. This provides resiliency against 15062 * implementations that do not correctly generate push bits. 15063 */ 15064 if (tcp->tcp_rcv_list != NULL && tcp->tcp_push_tid == 0) { 15065 /* 15066 * The connection may be closed at this point, so don't 15067 * do anything for a detached tcp. 15068 */ 15069 if (!TCP_IS_DETACHED(tcp)) 15070 tcp->tcp_push_tid = TCP_TIMER(tcp, 15071 tcp_push_timer, 15072 MSEC_TO_TICK( 15073 tcps->tcps_push_timer_interval)); 15074 } 15075 } 15076 15077 xmit_check: 15078 /* Is there anything left to do? */ 15079 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 15080 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED| 15081 TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED| 15082 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 15083 goto done; 15084 15085 /* Any transmit work to do and a non-zero window? */ 15086 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT| 15087 TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) { 15088 if (flags & TH_REXMIT_NEEDED) { 15089 uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna; 15090 15091 BUMP_MIB(&tcps->tcps_mib, tcpOutFastRetrans); 15092 if (snd_size > mss) 15093 snd_size = mss; 15094 if (snd_size > tcp->tcp_swnd) 15095 snd_size = tcp->tcp_swnd; 15096 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size, 15097 NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size, 15098 B_TRUE); 15099 15100 if (mp1 != NULL) { 15101 tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt; 15102 tcp->tcp_csuna = tcp->tcp_snxt; 15103 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 15104 UPDATE_MIB(&tcps->tcps_mib, 15105 tcpRetransBytes, snd_size); 15106 tcp_send_data(tcp, tcp->tcp_wq, mp1); 15107 } 15108 } 15109 if (flags & TH_NEED_SACK_REXMIT) { 15110 tcp_sack_rxmit(tcp, &flags); 15111 } 15112 /* 15113 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send 15114 * out new segment. Note that tcp_rexmit should not be 15115 * set, otherwise TH_LIMIT_XMIT should not be set. 15116 */ 15117 if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) { 15118 if (!tcp->tcp_rexmit) { 15119 tcp_wput_data(tcp, NULL, B_FALSE); 15120 } else { 15121 tcp_ss_rexmit(tcp); 15122 } 15123 } 15124 /* 15125 * Adjust tcp_cwnd back to normal value after sending 15126 * new data segments. 15127 */ 15128 if (flags & TH_LIMIT_XMIT) { 15129 tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1); 15130 /* 15131 * This will restart the timer. Restarting the 15132 * timer is used to avoid a timeout before the 15133 * limited transmitted segment's ACK gets back. 15134 */ 15135 if (tcp->tcp_xmit_head != NULL) 15136 tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt; 15137 } 15138 15139 /* Anything more to do? */ 15140 if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED| 15141 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 15142 goto done; 15143 } 15144 ack_check: 15145 if (flags & TH_SEND_URP_MARK) { 15146 ASSERT(tcp->tcp_urp_mark_mp); 15147 ASSERT(!IPCL_IS_NONSTR(connp)); 15148 /* 15149 * Send up any queued data and then send the mark message 15150 */ 15151 if (tcp->tcp_rcv_list != NULL) { 15152 flags |= tcp_rcv_drain(tcp); 15153 15154 } 15155 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 15156 mp1 = tcp->tcp_urp_mark_mp; 15157 tcp->tcp_urp_mark_mp = NULL; 15158 putnext(tcp->tcp_rq, mp1); 15159 #ifdef DEBUG 15160 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 15161 "tcp_rput: sending zero-length %s %s", 15162 ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" : 15163 "MSGNOTMARKNEXT"), 15164 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 15165 #endif /* DEBUG */ 15166 flags &= ~TH_SEND_URP_MARK; 15167 } 15168 if (flags & TH_ACK_NEEDED) { 15169 /* 15170 * Time to send an ack for some reason. 15171 */ 15172 mp1 = tcp_ack_mp(tcp); 15173 15174 if (mp1 != NULL) { 15175 tcp_send_data(tcp, tcp->tcp_wq, mp1); 15176 BUMP_LOCAL(tcp->tcp_obsegs); 15177 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 15178 } 15179 if (tcp->tcp_ack_tid != 0) { 15180 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 15181 tcp->tcp_ack_tid = 0; 15182 } 15183 } 15184 if (flags & TH_ACK_TIMER_NEEDED) { 15185 /* 15186 * Arrange for deferred ACK or push wait timeout. 15187 * Start timer if it is not already running. 15188 */ 15189 if (tcp->tcp_ack_tid == 0) { 15190 tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer, 15191 MSEC_TO_TICK(tcp->tcp_localnet ? 15192 (clock_t)tcps->tcps_local_dack_interval : 15193 (clock_t)tcps->tcps_deferred_ack_interval)); 15194 } 15195 } 15196 if (flags & TH_ORDREL_NEEDED) { 15197 /* 15198 * Send up the ordrel_ind unless we are an eager guy. 15199 * In the eager case tcp_rsrv will do this when run 15200 * after tcp_accept is done. 15201 */ 15202 ASSERT(tcp->tcp_listener == NULL); 15203 15204 if (IPCL_IS_NONSTR(connp)) { 15205 ASSERT(tcp->tcp_ordrel_mp == NULL); 15206 tcp->tcp_ordrel_done = B_TRUE; 15207 (*connp->conn_upcalls->su_opctl) 15208 (connp->conn_upper_handle, SOCK_OPCTL_SHUT_RECV, 0); 15209 goto done; 15210 } 15211 15212 if (tcp->tcp_rcv_list != NULL) { 15213 /* 15214 * Push any mblk(s) enqueued from co processing. 15215 */ 15216 flags |= tcp_rcv_drain(tcp); 15217 } 15218 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 15219 15220 mp1 = tcp->tcp_ordrel_mp; 15221 tcp->tcp_ordrel_mp = NULL; 15222 tcp->tcp_ordrel_done = B_TRUE; 15223 putnext(tcp->tcp_rq, mp1); 15224 } 15225 done: 15226 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 15227 } 15228 15229 /* 15230 * This routine adjusts next-to-send sequence number variables, in the 15231 * case where the reciever has shrunk it's window. 15232 */ 15233 static void 15234 tcp_update_xmit_tail(tcp_t *tcp, uint32_t snxt) 15235 { 15236 mblk_t *xmit_tail; 15237 int32_t offset; 15238 15239 tcp->tcp_snxt = snxt; 15240 15241 /* Get the mblk, and the offset in it, as per the shrunk window */ 15242 xmit_tail = tcp_get_seg_mp(tcp, snxt, &offset); 15243 ASSERT(xmit_tail != NULL); 15244 tcp->tcp_xmit_tail = xmit_tail; 15245 tcp->tcp_xmit_tail_unsent = xmit_tail->b_wptr - 15246 xmit_tail->b_rptr - offset; 15247 } 15248 15249 /* 15250 * This function does PAWS protection check. Returns B_TRUE if the 15251 * segment passes the PAWS test, else returns B_FALSE. 15252 */ 15253 boolean_t 15254 tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp) 15255 { 15256 uint8_t flags; 15257 int options; 15258 uint8_t *up; 15259 15260 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 15261 /* 15262 * If timestamp option is aligned nicely, get values inline, 15263 * otherwise call general routine to parse. Only do that 15264 * if timestamp is the only option. 15265 */ 15266 if (TCP_HDR_LENGTH(tcph) == (uint32_t)TCP_MIN_HEADER_LENGTH + 15267 TCPOPT_REAL_TS_LEN && 15268 OK_32PTR((up = ((uint8_t *)tcph) + 15269 TCP_MIN_HEADER_LENGTH)) && 15270 *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) { 15271 tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4)); 15272 tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8)); 15273 15274 options = TCP_OPT_TSTAMP_PRESENT; 15275 } else { 15276 if (tcp->tcp_snd_sack_ok) { 15277 tcpoptp->tcp = tcp; 15278 } else { 15279 tcpoptp->tcp = NULL; 15280 } 15281 options = tcp_parse_options(tcph, tcpoptp); 15282 } 15283 15284 if (options & TCP_OPT_TSTAMP_PRESENT) { 15285 /* 15286 * Do PAWS per RFC 1323 section 4.2. Accept RST 15287 * regardless of the timestamp, page 18 RFC 1323.bis. 15288 */ 15289 if ((flags & TH_RST) == 0 && 15290 TSTMP_LT(tcpoptp->tcp_opt_ts_val, 15291 tcp->tcp_ts_recent)) { 15292 if (TSTMP_LT(lbolt64, tcp->tcp_last_rcv_lbolt + 15293 PAWS_TIMEOUT)) { 15294 /* This segment is not acceptable. */ 15295 return (B_FALSE); 15296 } else { 15297 /* 15298 * Connection has been idle for 15299 * too long. Reset the timestamp 15300 * and assume the segment is valid. 15301 */ 15302 tcp->tcp_ts_recent = 15303 tcpoptp->tcp_opt_ts_val; 15304 } 15305 } 15306 } else { 15307 /* 15308 * If we don't get a timestamp on every packet, we 15309 * figure we can't really trust 'em, so we stop sending 15310 * and parsing them. 15311 */ 15312 tcp->tcp_snd_ts_ok = B_FALSE; 15313 15314 tcp->tcp_hdr_len -= TCPOPT_REAL_TS_LEN; 15315 tcp->tcp_tcp_hdr_len -= TCPOPT_REAL_TS_LEN; 15316 tcp->tcp_tcph->th_offset_and_rsrvd[0] -= (3 << 4); 15317 /* 15318 * Adjust the tcp_mss accordingly. We also need to 15319 * adjust tcp_cwnd here in accordance with the new mss. 15320 * But we avoid doing a slow start here so as to not 15321 * to lose on the transfer rate built up so far. 15322 */ 15323 tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN, B_FALSE); 15324 if (tcp->tcp_snd_sack_ok) { 15325 ASSERT(tcp->tcp_sack_info != NULL); 15326 tcp->tcp_max_sack_blk = 4; 15327 } 15328 } 15329 return (B_TRUE); 15330 } 15331 15332 /* 15333 * Attach ancillary data to a received TCP segments for the 15334 * ancillary pieces requested by the application that are 15335 * different than they were in the previous data segment. 15336 * 15337 * Save the "current" values once memory allocation is ok so that 15338 * when memory allocation fails we can just wait for the next data segment. 15339 */ 15340 static mblk_t * 15341 tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp) 15342 { 15343 struct T_optdata_ind *todi; 15344 int optlen; 15345 uchar_t *optptr; 15346 struct T_opthdr *toh; 15347 uint_t addflag; /* Which pieces to add */ 15348 mblk_t *mp1; 15349 15350 optlen = 0; 15351 addflag = 0; 15352 /* If app asked for pktinfo and the index has changed ... */ 15353 if ((ipp->ipp_fields & IPPF_IFINDEX) && 15354 ipp->ipp_ifindex != tcp->tcp_recvifindex && 15355 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)) { 15356 optlen += sizeof (struct T_opthdr) + 15357 sizeof (struct in6_pktinfo); 15358 addflag |= TCP_IPV6_RECVPKTINFO; 15359 } 15360 /* If app asked for hoplimit and it has changed ... */ 15361 if ((ipp->ipp_fields & IPPF_HOPLIMIT) && 15362 ipp->ipp_hoplimit != tcp->tcp_recvhops && 15363 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPLIMIT)) { 15364 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 15365 addflag |= TCP_IPV6_RECVHOPLIMIT; 15366 } 15367 /* If app asked for tclass and it has changed ... */ 15368 if ((ipp->ipp_fields & IPPF_TCLASS) && 15369 ipp->ipp_tclass != tcp->tcp_recvtclass && 15370 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)) { 15371 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 15372 addflag |= TCP_IPV6_RECVTCLASS; 15373 } 15374 /* 15375 * If app asked for hopbyhop headers and it has changed ... 15376 * For security labels, note that (1) security labels can't change on 15377 * a connected socket at all, (2) we're connected to at most one peer, 15378 * (3) if anything changes, then it must be some other extra option. 15379 */ 15380 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) && 15381 ip_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen, 15382 (ipp->ipp_fields & IPPF_HOPOPTS), 15383 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) { 15384 optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen - 15385 tcp->tcp_label_len; 15386 addflag |= TCP_IPV6_RECVHOPOPTS; 15387 if (!ip_allocbuf((void **)&tcp->tcp_hopopts, 15388 &tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS), 15389 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) 15390 return (mp); 15391 } 15392 /* If app asked for dst headers before routing headers ... */ 15393 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTDSTOPTS) && 15394 ip_cmpbuf(tcp->tcp_rtdstopts, tcp->tcp_rtdstoptslen, 15395 (ipp->ipp_fields & IPPF_RTDSTOPTS), 15396 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) { 15397 optlen += sizeof (struct T_opthdr) + 15398 ipp->ipp_rtdstoptslen; 15399 addflag |= TCP_IPV6_RECVRTDSTOPTS; 15400 if (!ip_allocbuf((void **)&tcp->tcp_rtdstopts, 15401 &tcp->tcp_rtdstoptslen, (ipp->ipp_fields & IPPF_RTDSTOPTS), 15402 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) 15403 return (mp); 15404 } 15405 /* If app asked for routing headers and it has changed ... */ 15406 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) && 15407 ip_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen, 15408 (ipp->ipp_fields & IPPF_RTHDR), 15409 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) { 15410 optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen; 15411 addflag |= TCP_IPV6_RECVRTHDR; 15412 if (!ip_allocbuf((void **)&tcp->tcp_rthdr, 15413 &tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR), 15414 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) 15415 return (mp); 15416 } 15417 /* If app asked for dest headers and it has changed ... */ 15418 if ((tcp->tcp_ipv6_recvancillary & 15419 (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) && 15420 ip_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen, 15421 (ipp->ipp_fields & IPPF_DSTOPTS), 15422 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) { 15423 optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen; 15424 addflag |= TCP_IPV6_RECVDSTOPTS; 15425 if (!ip_allocbuf((void **)&tcp->tcp_dstopts, 15426 &tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS), 15427 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) 15428 return (mp); 15429 } 15430 15431 if (optlen == 0) { 15432 /* Nothing to add */ 15433 return (mp); 15434 } 15435 mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED); 15436 if (mp1 == NULL) { 15437 /* 15438 * Defer sending ancillary data until the next TCP segment 15439 * arrives. 15440 */ 15441 return (mp); 15442 } 15443 mp1->b_cont = mp; 15444 mp = mp1; 15445 mp->b_wptr += sizeof (*todi) + optlen; 15446 mp->b_datap->db_type = M_PROTO; 15447 todi = (struct T_optdata_ind *)mp->b_rptr; 15448 todi->PRIM_type = T_OPTDATA_IND; 15449 todi->DATA_flag = 1; /* MORE data */ 15450 todi->OPT_length = optlen; 15451 todi->OPT_offset = sizeof (*todi); 15452 optptr = (uchar_t *)&todi[1]; 15453 /* 15454 * If app asked for pktinfo and the index has changed ... 15455 * Note that the local address never changes for the connection. 15456 */ 15457 if (addflag & TCP_IPV6_RECVPKTINFO) { 15458 struct in6_pktinfo *pkti; 15459 15460 toh = (struct T_opthdr *)optptr; 15461 toh->level = IPPROTO_IPV6; 15462 toh->name = IPV6_PKTINFO; 15463 toh->len = sizeof (*toh) + sizeof (*pkti); 15464 toh->status = 0; 15465 optptr += sizeof (*toh); 15466 pkti = (struct in6_pktinfo *)optptr; 15467 if (tcp->tcp_ipversion == IPV6_VERSION) 15468 pkti->ipi6_addr = tcp->tcp_ip6h->ip6_src; 15469 else 15470 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 15471 &pkti->ipi6_addr); 15472 pkti->ipi6_ifindex = ipp->ipp_ifindex; 15473 optptr += sizeof (*pkti); 15474 ASSERT(OK_32PTR(optptr)); 15475 /* Save as "last" value */ 15476 tcp->tcp_recvifindex = ipp->ipp_ifindex; 15477 } 15478 /* If app asked for hoplimit and it has changed ... */ 15479 if (addflag & TCP_IPV6_RECVHOPLIMIT) { 15480 toh = (struct T_opthdr *)optptr; 15481 toh->level = IPPROTO_IPV6; 15482 toh->name = IPV6_HOPLIMIT; 15483 toh->len = sizeof (*toh) + sizeof (uint_t); 15484 toh->status = 0; 15485 optptr += sizeof (*toh); 15486 *(uint_t *)optptr = ipp->ipp_hoplimit; 15487 optptr += sizeof (uint_t); 15488 ASSERT(OK_32PTR(optptr)); 15489 /* Save as "last" value */ 15490 tcp->tcp_recvhops = ipp->ipp_hoplimit; 15491 } 15492 /* If app asked for tclass and it has changed ... */ 15493 if (addflag & TCP_IPV6_RECVTCLASS) { 15494 toh = (struct T_opthdr *)optptr; 15495 toh->level = IPPROTO_IPV6; 15496 toh->name = IPV6_TCLASS; 15497 toh->len = sizeof (*toh) + sizeof (uint_t); 15498 toh->status = 0; 15499 optptr += sizeof (*toh); 15500 *(uint_t *)optptr = ipp->ipp_tclass; 15501 optptr += sizeof (uint_t); 15502 ASSERT(OK_32PTR(optptr)); 15503 /* Save as "last" value */ 15504 tcp->tcp_recvtclass = ipp->ipp_tclass; 15505 } 15506 if (addflag & TCP_IPV6_RECVHOPOPTS) { 15507 toh = (struct T_opthdr *)optptr; 15508 toh->level = IPPROTO_IPV6; 15509 toh->name = IPV6_HOPOPTS; 15510 toh->len = sizeof (*toh) + ipp->ipp_hopoptslen - 15511 tcp->tcp_label_len; 15512 toh->status = 0; 15513 optptr += sizeof (*toh); 15514 bcopy((uchar_t *)ipp->ipp_hopopts + tcp->tcp_label_len, optptr, 15515 ipp->ipp_hopoptslen - tcp->tcp_label_len); 15516 optptr += ipp->ipp_hopoptslen - tcp->tcp_label_len; 15517 ASSERT(OK_32PTR(optptr)); 15518 /* Save as last value */ 15519 ip_savebuf((void **)&tcp->tcp_hopopts, &tcp->tcp_hopoptslen, 15520 (ipp->ipp_fields & IPPF_HOPOPTS), 15521 ipp->ipp_hopopts, ipp->ipp_hopoptslen); 15522 } 15523 if (addflag & TCP_IPV6_RECVRTDSTOPTS) { 15524 toh = (struct T_opthdr *)optptr; 15525 toh->level = IPPROTO_IPV6; 15526 toh->name = IPV6_RTHDRDSTOPTS; 15527 toh->len = sizeof (*toh) + ipp->ipp_rtdstoptslen; 15528 toh->status = 0; 15529 optptr += sizeof (*toh); 15530 bcopy(ipp->ipp_rtdstopts, optptr, ipp->ipp_rtdstoptslen); 15531 optptr += ipp->ipp_rtdstoptslen; 15532 ASSERT(OK_32PTR(optptr)); 15533 /* Save as last value */ 15534 ip_savebuf((void **)&tcp->tcp_rtdstopts, 15535 &tcp->tcp_rtdstoptslen, 15536 (ipp->ipp_fields & IPPF_RTDSTOPTS), 15537 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 15538 } 15539 if (addflag & TCP_IPV6_RECVRTHDR) { 15540 toh = (struct T_opthdr *)optptr; 15541 toh->level = IPPROTO_IPV6; 15542 toh->name = IPV6_RTHDR; 15543 toh->len = sizeof (*toh) + ipp->ipp_rthdrlen; 15544 toh->status = 0; 15545 optptr += sizeof (*toh); 15546 bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen); 15547 optptr += ipp->ipp_rthdrlen; 15548 ASSERT(OK_32PTR(optptr)); 15549 /* Save as last value */ 15550 ip_savebuf((void **)&tcp->tcp_rthdr, &tcp->tcp_rthdrlen, 15551 (ipp->ipp_fields & IPPF_RTHDR), 15552 ipp->ipp_rthdr, ipp->ipp_rthdrlen); 15553 } 15554 if (addflag & (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) { 15555 toh = (struct T_opthdr *)optptr; 15556 toh->level = IPPROTO_IPV6; 15557 toh->name = IPV6_DSTOPTS; 15558 toh->len = sizeof (*toh) + ipp->ipp_dstoptslen; 15559 toh->status = 0; 15560 optptr += sizeof (*toh); 15561 bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen); 15562 optptr += ipp->ipp_dstoptslen; 15563 ASSERT(OK_32PTR(optptr)); 15564 /* Save as last value */ 15565 ip_savebuf((void **)&tcp->tcp_dstopts, &tcp->tcp_dstoptslen, 15566 (ipp->ipp_fields & IPPF_DSTOPTS), 15567 ipp->ipp_dstopts, ipp->ipp_dstoptslen); 15568 } 15569 ASSERT(optptr == mp->b_wptr); 15570 return (mp); 15571 } 15572 15573 /* 15574 * tcp_rput_other is called by tcp_rput to handle everything other than M_DATA 15575 * messages. 15576 */ 15577 void 15578 tcp_rput_other(tcp_t *tcp, mblk_t *mp) 15579 { 15580 uchar_t *rptr = mp->b_rptr; 15581 queue_t *q = tcp->tcp_rq; 15582 struct T_error_ack *tea; 15583 15584 switch (mp->b_datap->db_type) { 15585 case M_PROTO: 15586 case M_PCPROTO: 15587 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 15588 if ((mp->b_wptr - rptr) < sizeof (t_scalar_t)) 15589 break; 15590 tea = (struct T_error_ack *)rptr; 15591 ASSERT(tea->PRIM_type != T_BIND_ACK); 15592 ASSERT(tea->ERROR_prim != O_T_BIND_REQ && 15593 tea->ERROR_prim != T_BIND_REQ); 15594 switch (tea->PRIM_type) { 15595 case T_ERROR_ACK: 15596 if (tcp->tcp_debug) { 15597 (void) strlog(TCP_MOD_ID, 0, 1, 15598 SL_TRACE|SL_ERROR, 15599 "tcp_rput_other: case T_ERROR_ACK, " 15600 "ERROR_prim == %d", 15601 tea->ERROR_prim); 15602 } 15603 switch (tea->ERROR_prim) { 15604 case T_SVR4_OPTMGMT_REQ: 15605 if (tcp->tcp_drop_opt_ack_cnt > 0) { 15606 /* T_OPTMGMT_REQ generated by TCP */ 15607 printf("T_SVR4_OPTMGMT_REQ failed " 15608 "%d/%d - dropped (cnt %d)\n", 15609 tea->TLI_error, tea->UNIX_error, 15610 tcp->tcp_drop_opt_ack_cnt); 15611 freemsg(mp); 15612 tcp->tcp_drop_opt_ack_cnt--; 15613 return; 15614 } 15615 break; 15616 } 15617 if (tea->ERROR_prim == T_SVR4_OPTMGMT_REQ && 15618 tcp->tcp_drop_opt_ack_cnt > 0) { 15619 printf("T_SVR4_OPTMGMT_REQ failed %d/%d " 15620 "- dropped (cnt %d)\n", 15621 tea->TLI_error, tea->UNIX_error, 15622 tcp->tcp_drop_opt_ack_cnt); 15623 freemsg(mp); 15624 tcp->tcp_drop_opt_ack_cnt--; 15625 return; 15626 } 15627 break; 15628 case T_OPTMGMT_ACK: 15629 if (tcp->tcp_drop_opt_ack_cnt > 0) { 15630 /* T_OPTMGMT_REQ generated by TCP */ 15631 freemsg(mp); 15632 tcp->tcp_drop_opt_ack_cnt--; 15633 return; 15634 } 15635 break; 15636 default: 15637 ASSERT(tea->ERROR_prim != T_UNBIND_REQ); 15638 break; 15639 } 15640 break; 15641 case M_FLUSH: 15642 if (*rptr & FLUSHR) 15643 flushq(q, FLUSHDATA); 15644 break; 15645 default: 15646 /* M_CTL will be directly sent to tcp_icmp_error() */ 15647 ASSERT(DB_TYPE(mp) != M_CTL); 15648 break; 15649 } 15650 /* 15651 * Make sure we set this bit before sending the ACK for 15652 * bind. Otherwise accept could possibly run and free 15653 * this tcp struct. 15654 */ 15655 ASSERT(q != NULL); 15656 putnext(q, mp); 15657 } 15658 15659 /* ARGSUSED */ 15660 static void 15661 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2) 15662 { 15663 conn_t *connp = (conn_t *)arg; 15664 tcp_t *tcp = connp->conn_tcp; 15665 queue_t *q = tcp->tcp_rq; 15666 tcp_stack_t *tcps = tcp->tcp_tcps; 15667 15668 ASSERT(!IPCL_IS_NONSTR(connp)); 15669 mutex_enter(&tcp->tcp_rsrv_mp_lock); 15670 tcp->tcp_rsrv_mp = mp; 15671 mutex_exit(&tcp->tcp_rsrv_mp_lock); 15672 15673 TCP_STAT(tcps, tcp_rsrv_calls); 15674 15675 if (TCP_IS_DETACHED(tcp) || q == NULL) { 15676 return; 15677 } 15678 15679 if (tcp->tcp_fused) { 15680 tcp_fuse_backenable(tcp); 15681 return; 15682 } 15683 15684 if (canputnext(q)) { 15685 /* Not flow-controlled, open rwnd */ 15686 tcp->tcp_rwnd = tcp->tcp_recv_hiwater; 15687 15688 /* 15689 * Send back a window update immediately if TCP is above 15690 * ESTABLISHED state and the increase of the rcv window 15691 * that the other side knows is at least 1 MSS after flow 15692 * control is lifted. 15693 */ 15694 if (tcp->tcp_state >= TCPS_ESTABLISHED && 15695 tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) { 15696 tcp_xmit_ctl(NULL, tcp, 15697 (tcp->tcp_swnd == 0) ? tcp->tcp_suna : 15698 tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 15699 } 15700 } 15701 } 15702 15703 /* 15704 * The read side service routine is called mostly when we get back-enabled as a 15705 * result of flow control relief. Since we don't actually queue anything in 15706 * TCP, we have no data to send out of here. What we do is clear the receive 15707 * window, and send out a window update. 15708 */ 15709 static void 15710 tcp_rsrv(queue_t *q) 15711 { 15712 conn_t *connp = Q_TO_CONN(q); 15713 tcp_t *tcp = connp->conn_tcp; 15714 mblk_t *mp; 15715 tcp_stack_t *tcps = tcp->tcp_tcps; 15716 15717 /* No code does a putq on the read side */ 15718 ASSERT(q->q_first == NULL); 15719 15720 /* Nothing to do for the default queue */ 15721 if (q == tcps->tcps_g_q) { 15722 return; 15723 } 15724 15725 /* 15726 * If tcp->tcp_rsrv_mp == NULL, it means that tcp_rsrv() has already 15727 * been run. So just return. 15728 */ 15729 mutex_enter(&tcp->tcp_rsrv_mp_lock); 15730 if ((mp = tcp->tcp_rsrv_mp) == NULL) { 15731 mutex_exit(&tcp->tcp_rsrv_mp_lock); 15732 return; 15733 } 15734 tcp->tcp_rsrv_mp = NULL; 15735 mutex_exit(&tcp->tcp_rsrv_mp_lock); 15736 15737 CONN_INC_REF(connp); 15738 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_rsrv_input, connp, 15739 SQ_PROCESS, SQTAG_TCP_RSRV); 15740 } 15741 15742 /* 15743 * tcp_rwnd_set() is called to adjust the receive window to a desired value. 15744 * We do not allow the receive window to shrink. After setting rwnd, 15745 * set the flow control hiwat of the stream. 15746 * 15747 * This function is called in 2 cases: 15748 * 15749 * 1) Before data transfer begins, in tcp_accept_comm() for accepting a 15750 * connection (passive open) and in tcp_rput_data() for active connect. 15751 * This is called after tcp_mss_set() when the desired MSS value is known. 15752 * This makes sure that our window size is a mutiple of the other side's 15753 * MSS. 15754 * 2) Handling SO_RCVBUF option. 15755 * 15756 * It is ASSUMED that the requested size is a multiple of the current MSS. 15757 * 15758 * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the 15759 * user requests so. 15760 */ 15761 int 15762 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd) 15763 { 15764 uint32_t mss = tcp->tcp_mss; 15765 uint32_t old_max_rwnd; 15766 uint32_t max_transmittable_rwnd; 15767 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 15768 tcp_stack_t *tcps = tcp->tcp_tcps; 15769 15770 /* 15771 * Insist on a receive window that is at least 15772 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid 15773 * funny TCP interactions of Nagle algorithm, SWS avoidance 15774 * and delayed acknowledgement. 15775 */ 15776 rwnd = MAX(rwnd, tcps->tcps_recv_hiwat_minmss * mss); 15777 15778 if (tcp->tcp_fused) { 15779 size_t sth_hiwat; 15780 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 15781 15782 ASSERT(peer_tcp != NULL); 15783 sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd); 15784 if (!tcp_detached) { 15785 (void) proto_set_rx_hiwat(tcp->tcp_rq, tcp->tcp_connp, 15786 sth_hiwat); 15787 tcp_set_recv_threshold(tcp, sth_hiwat >> 3); 15788 } 15789 15790 /* 15791 * In the fusion case, the maxpsz stream head value of 15792 * our peer is set according to its send buffer size 15793 * and our receive buffer size; since the latter may 15794 * have changed we need to update the peer's maxpsz. 15795 */ 15796 (void) tcp_maxpsz_set(peer_tcp, B_TRUE); 15797 return (sth_hiwat); 15798 } 15799 15800 if (tcp_detached) { 15801 old_max_rwnd = tcp->tcp_rwnd; 15802 } else { 15803 old_max_rwnd = tcp->tcp_recv_hiwater; 15804 } 15805 15806 15807 /* 15808 * If window size info has already been exchanged, TCP should not 15809 * shrink the window. Shrinking window is doable if done carefully. 15810 * We may add that support later. But so far there is not a real 15811 * need to do that. 15812 */ 15813 if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) { 15814 /* MSS may have changed, do a round up again. */ 15815 rwnd = MSS_ROUNDUP(old_max_rwnd, mss); 15816 } 15817 15818 /* 15819 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check 15820 * can be applied even before the window scale option is decided. 15821 */ 15822 max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws; 15823 if (rwnd > max_transmittable_rwnd) { 15824 rwnd = max_transmittable_rwnd - 15825 (max_transmittable_rwnd % mss); 15826 if (rwnd < mss) 15827 rwnd = max_transmittable_rwnd; 15828 /* 15829 * If we're over the limit we may have to back down tcp_rwnd. 15830 * The increment below won't work for us. So we set all three 15831 * here and the increment below will have no effect. 15832 */ 15833 tcp->tcp_rwnd = old_max_rwnd = rwnd; 15834 } 15835 if (tcp->tcp_localnet) { 15836 tcp->tcp_rack_abs_max = 15837 MIN(tcps->tcps_local_dacks_max, rwnd / mss / 2); 15838 } else { 15839 /* 15840 * For a remote host on a different subnet (through a router), 15841 * we ack every other packet to be conforming to RFC1122. 15842 * tcp_deferred_acks_max is default to 2. 15843 */ 15844 tcp->tcp_rack_abs_max = 15845 MIN(tcps->tcps_deferred_acks_max, rwnd / mss / 2); 15846 } 15847 if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max) 15848 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 15849 else 15850 tcp->tcp_rack_cur_max = 0; 15851 /* 15852 * Increment the current rwnd by the amount the maximum grew (we 15853 * can not overwrite it since we might be in the middle of a 15854 * connection.) 15855 */ 15856 tcp->tcp_rwnd += rwnd - old_max_rwnd; 15857 tcp->tcp_recv_hiwater = rwnd; 15858 15859 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, tcp->tcp_tcph->th_win); 15860 if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max) 15861 tcp->tcp_cwnd_max = rwnd; 15862 15863 if (tcp_detached) 15864 return (rwnd); 15865 15866 tcp_set_recv_threshold(tcp, rwnd >> 3); 15867 15868 (void) proto_set_rx_hiwat(tcp->tcp_rq, tcp->tcp_connp, rwnd); 15869 return (rwnd); 15870 } 15871 15872 /* 15873 * Return SNMP stuff in buffer in mpdata. 15874 */ 15875 mblk_t * 15876 tcp_snmp_get(queue_t *q, mblk_t *mpctl) 15877 { 15878 mblk_t *mpdata; 15879 mblk_t *mp_conn_ctl = NULL; 15880 mblk_t *mp_conn_tail; 15881 mblk_t *mp_attr_ctl = NULL; 15882 mblk_t *mp_attr_tail; 15883 mblk_t *mp6_conn_ctl = NULL; 15884 mblk_t *mp6_conn_tail; 15885 mblk_t *mp6_attr_ctl = NULL; 15886 mblk_t *mp6_attr_tail; 15887 struct opthdr *optp; 15888 mib2_tcpConnEntry_t tce; 15889 mib2_tcp6ConnEntry_t tce6; 15890 mib2_transportMLPEntry_t mlp; 15891 connf_t *connfp; 15892 int i; 15893 boolean_t ispriv; 15894 zoneid_t zoneid; 15895 int v4_conn_idx; 15896 int v6_conn_idx; 15897 conn_t *connp = Q_TO_CONN(q); 15898 tcp_stack_t *tcps; 15899 ip_stack_t *ipst; 15900 mblk_t *mp2ctl; 15901 15902 /* 15903 * make a copy of the original message 15904 */ 15905 mp2ctl = copymsg(mpctl); 15906 15907 if (mpctl == NULL || 15908 (mpdata = mpctl->b_cont) == NULL || 15909 (mp_conn_ctl = copymsg(mpctl)) == NULL || 15910 (mp_attr_ctl = copymsg(mpctl)) == NULL || 15911 (mp6_conn_ctl = copymsg(mpctl)) == NULL || 15912 (mp6_attr_ctl = copymsg(mpctl)) == NULL) { 15913 freemsg(mp_conn_ctl); 15914 freemsg(mp_attr_ctl); 15915 freemsg(mp6_conn_ctl); 15916 freemsg(mp6_attr_ctl); 15917 freemsg(mpctl); 15918 freemsg(mp2ctl); 15919 return (NULL); 15920 } 15921 15922 ipst = connp->conn_netstack->netstack_ip; 15923 tcps = connp->conn_netstack->netstack_tcp; 15924 15925 /* build table of connections -- need count in fixed part */ 15926 SET_MIB(tcps->tcps_mib.tcpRtoAlgorithm, 4); /* vanj */ 15927 SET_MIB(tcps->tcps_mib.tcpRtoMin, tcps->tcps_rexmit_interval_min); 15928 SET_MIB(tcps->tcps_mib.tcpRtoMax, tcps->tcps_rexmit_interval_max); 15929 SET_MIB(tcps->tcps_mib.tcpMaxConn, -1); 15930 SET_MIB(tcps->tcps_mib.tcpCurrEstab, 0); 15931 15932 ispriv = 15933 secpolicy_ip_config((Q_TO_CONN(q))->conn_cred, B_TRUE) == 0; 15934 zoneid = Q_TO_CONN(q)->conn_zoneid; 15935 15936 v4_conn_idx = v6_conn_idx = 0; 15937 mp_conn_tail = mp_attr_tail = mp6_conn_tail = mp6_attr_tail = NULL; 15938 15939 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 15940 ipst = tcps->tcps_netstack->netstack_ip; 15941 15942 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 15943 15944 connp = NULL; 15945 15946 while ((connp = 15947 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 15948 tcp_t *tcp; 15949 boolean_t needattr; 15950 15951 if (connp->conn_zoneid != zoneid) 15952 continue; /* not in this zone */ 15953 15954 tcp = connp->conn_tcp; 15955 UPDATE_MIB(&tcps->tcps_mib, 15956 tcpHCInSegs, tcp->tcp_ibsegs); 15957 tcp->tcp_ibsegs = 0; 15958 UPDATE_MIB(&tcps->tcps_mib, 15959 tcpHCOutSegs, tcp->tcp_obsegs); 15960 tcp->tcp_obsegs = 0; 15961 15962 tce6.tcp6ConnState = tce.tcpConnState = 15963 tcp_snmp_state(tcp); 15964 if (tce.tcpConnState == MIB2_TCP_established || 15965 tce.tcpConnState == MIB2_TCP_closeWait) 15966 BUMP_MIB(&tcps->tcps_mib, tcpCurrEstab); 15967 15968 needattr = B_FALSE; 15969 bzero(&mlp, sizeof (mlp)); 15970 if (connp->conn_mlp_type != mlptSingle) { 15971 if (connp->conn_mlp_type == mlptShared || 15972 connp->conn_mlp_type == mlptBoth) 15973 mlp.tme_flags |= MIB2_TMEF_SHARED; 15974 if (connp->conn_mlp_type == mlptPrivate || 15975 connp->conn_mlp_type == mlptBoth) 15976 mlp.tme_flags |= MIB2_TMEF_PRIVATE; 15977 needattr = B_TRUE; 15978 } 15979 if (connp->conn_anon_mlp) { 15980 mlp.tme_flags |= MIB2_TMEF_ANONMLP; 15981 needattr = B_TRUE; 15982 } 15983 switch (connp->conn_mac_mode) { 15984 case CONN_MAC_DEFAULT: 15985 break; 15986 case CONN_MAC_AWARE: 15987 mlp.tme_flags |= MIB2_TMEF_MACEXEMPT; 15988 needattr = B_TRUE; 15989 break; 15990 case CONN_MAC_IMPLICIT: 15991 mlp.tme_flags |= MIB2_TMEF_MACIMPLICIT; 15992 needattr = B_TRUE; 15993 break; 15994 } 15995 if (connp->conn_fully_bound && 15996 connp->conn_effective_cred != NULL) { 15997 ts_label_t *tsl; 15998 15999 tsl = crgetlabel(connp->conn_effective_cred); 16000 mlp.tme_flags |= MIB2_TMEF_IS_LABELED; 16001 mlp.tme_doi = label2doi(tsl); 16002 mlp.tme_label = *label2bslabel(tsl); 16003 needattr = B_TRUE; 16004 } 16005 16006 /* Create a message to report on IPv6 entries */ 16007 if (tcp->tcp_ipversion == IPV6_VERSION) { 16008 tce6.tcp6ConnLocalAddress = tcp->tcp_ip_src_v6; 16009 tce6.tcp6ConnRemAddress = tcp->tcp_remote_v6; 16010 tce6.tcp6ConnLocalPort = ntohs(tcp->tcp_lport); 16011 tce6.tcp6ConnRemPort = ntohs(tcp->tcp_fport); 16012 tce6.tcp6ConnIfIndex = tcp->tcp_bound_if; 16013 /* Don't want just anybody seeing these... */ 16014 if (ispriv) { 16015 tce6.tcp6ConnEntryInfo.ce_snxt = 16016 tcp->tcp_snxt; 16017 tce6.tcp6ConnEntryInfo.ce_suna = 16018 tcp->tcp_suna; 16019 tce6.tcp6ConnEntryInfo.ce_rnxt = 16020 tcp->tcp_rnxt; 16021 tce6.tcp6ConnEntryInfo.ce_rack = 16022 tcp->tcp_rack; 16023 } else { 16024 /* 16025 * Netstat, unfortunately, uses this to 16026 * get send/receive queue sizes. How to fix? 16027 * Why not compute the difference only? 16028 */ 16029 tce6.tcp6ConnEntryInfo.ce_snxt = 16030 tcp->tcp_snxt - tcp->tcp_suna; 16031 tce6.tcp6ConnEntryInfo.ce_suna = 0; 16032 tce6.tcp6ConnEntryInfo.ce_rnxt = 16033 tcp->tcp_rnxt - tcp->tcp_rack; 16034 tce6.tcp6ConnEntryInfo.ce_rack = 0; 16035 } 16036 16037 tce6.tcp6ConnEntryInfo.ce_swnd = tcp->tcp_swnd; 16038 tce6.tcp6ConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; 16039 tce6.tcp6ConnEntryInfo.ce_rto = tcp->tcp_rto; 16040 tce6.tcp6ConnEntryInfo.ce_mss = tcp->tcp_mss; 16041 tce6.tcp6ConnEntryInfo.ce_state = tcp->tcp_state; 16042 16043 tce6.tcp6ConnCreationProcess = 16044 (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS : 16045 tcp->tcp_cpid; 16046 tce6.tcp6ConnCreationTime = tcp->tcp_open_time; 16047 16048 (void) snmp_append_data2(mp6_conn_ctl->b_cont, 16049 &mp6_conn_tail, (char *)&tce6, sizeof (tce6)); 16050 16051 mlp.tme_connidx = v6_conn_idx++; 16052 if (needattr) 16053 (void) snmp_append_data2(mp6_attr_ctl->b_cont, 16054 &mp6_attr_tail, (char *)&mlp, sizeof (mlp)); 16055 } 16056 /* 16057 * Create an IPv4 table entry for IPv4 entries and also 16058 * for IPv6 entries which are bound to in6addr_any 16059 * but don't have IPV6_V6ONLY set. 16060 * (i.e. anything an IPv4 peer could connect to) 16061 */ 16062 if (tcp->tcp_ipversion == IPV4_VERSION || 16063 (tcp->tcp_state <= TCPS_LISTEN && 16064 !tcp->tcp_connp->conn_ipv6_v6only && 16065 IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip_src_v6))) { 16066 if (tcp->tcp_ipversion == IPV6_VERSION) { 16067 tce.tcpConnRemAddress = INADDR_ANY; 16068 tce.tcpConnLocalAddress = INADDR_ANY; 16069 } else { 16070 tce.tcpConnRemAddress = 16071 tcp->tcp_remote; 16072 tce.tcpConnLocalAddress = 16073 tcp->tcp_ip_src; 16074 } 16075 tce.tcpConnLocalPort = ntohs(tcp->tcp_lport); 16076 tce.tcpConnRemPort = ntohs(tcp->tcp_fport); 16077 /* Don't want just anybody seeing these... */ 16078 if (ispriv) { 16079 tce.tcpConnEntryInfo.ce_snxt = 16080 tcp->tcp_snxt; 16081 tce.tcpConnEntryInfo.ce_suna = 16082 tcp->tcp_suna; 16083 tce.tcpConnEntryInfo.ce_rnxt = 16084 tcp->tcp_rnxt; 16085 tce.tcpConnEntryInfo.ce_rack = 16086 tcp->tcp_rack; 16087 } else { 16088 /* 16089 * Netstat, unfortunately, uses this to 16090 * get send/receive queue sizes. How 16091 * to fix? 16092 * Why not compute the difference only? 16093 */ 16094 tce.tcpConnEntryInfo.ce_snxt = 16095 tcp->tcp_snxt - tcp->tcp_suna; 16096 tce.tcpConnEntryInfo.ce_suna = 0; 16097 tce.tcpConnEntryInfo.ce_rnxt = 16098 tcp->tcp_rnxt - tcp->tcp_rack; 16099 tce.tcpConnEntryInfo.ce_rack = 0; 16100 } 16101 16102 tce.tcpConnEntryInfo.ce_swnd = tcp->tcp_swnd; 16103 tce.tcpConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; 16104 tce.tcpConnEntryInfo.ce_rto = tcp->tcp_rto; 16105 tce.tcpConnEntryInfo.ce_mss = tcp->tcp_mss; 16106 tce.tcpConnEntryInfo.ce_state = 16107 tcp->tcp_state; 16108 16109 tce.tcpConnCreationProcess = 16110 (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS : 16111 tcp->tcp_cpid; 16112 tce.tcpConnCreationTime = tcp->tcp_open_time; 16113 16114 (void) snmp_append_data2(mp_conn_ctl->b_cont, 16115 &mp_conn_tail, (char *)&tce, sizeof (tce)); 16116 16117 mlp.tme_connidx = v4_conn_idx++; 16118 if (needattr) 16119 (void) snmp_append_data2( 16120 mp_attr_ctl->b_cont, 16121 &mp_attr_tail, (char *)&mlp, 16122 sizeof (mlp)); 16123 } 16124 } 16125 } 16126 16127 /* fixed length structure for IPv4 and IPv6 counters */ 16128 SET_MIB(tcps->tcps_mib.tcpConnTableSize, sizeof (mib2_tcpConnEntry_t)); 16129 SET_MIB(tcps->tcps_mib.tcp6ConnTableSize, 16130 sizeof (mib2_tcp6ConnEntry_t)); 16131 /* synchronize 32- and 64-bit counters */ 16132 SYNC32_MIB(&tcps->tcps_mib, tcpInSegs, tcpHCInSegs); 16133 SYNC32_MIB(&tcps->tcps_mib, tcpOutSegs, tcpHCOutSegs); 16134 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16135 optp->level = MIB2_TCP; 16136 optp->name = 0; 16137 (void) snmp_append_data(mpdata, (char *)&tcps->tcps_mib, 16138 sizeof (tcps->tcps_mib)); 16139 optp->len = msgdsize(mpdata); 16140 qreply(q, mpctl); 16141 16142 /* table of connections... */ 16143 optp = (struct opthdr *)&mp_conn_ctl->b_rptr[ 16144 sizeof (struct T_optmgmt_ack)]; 16145 optp->level = MIB2_TCP; 16146 optp->name = MIB2_TCP_CONN; 16147 optp->len = msgdsize(mp_conn_ctl->b_cont); 16148 qreply(q, mp_conn_ctl); 16149 16150 /* table of MLP attributes... */ 16151 optp = (struct opthdr *)&mp_attr_ctl->b_rptr[ 16152 sizeof (struct T_optmgmt_ack)]; 16153 optp->level = MIB2_TCP; 16154 optp->name = EXPER_XPORT_MLP; 16155 optp->len = msgdsize(mp_attr_ctl->b_cont); 16156 if (optp->len == 0) 16157 freemsg(mp_attr_ctl); 16158 else 16159 qreply(q, mp_attr_ctl); 16160 16161 /* table of IPv6 connections... */ 16162 optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[ 16163 sizeof (struct T_optmgmt_ack)]; 16164 optp->level = MIB2_TCP6; 16165 optp->name = MIB2_TCP6_CONN; 16166 optp->len = msgdsize(mp6_conn_ctl->b_cont); 16167 qreply(q, mp6_conn_ctl); 16168 16169 /* table of IPv6 MLP attributes... */ 16170 optp = (struct opthdr *)&mp6_attr_ctl->b_rptr[ 16171 sizeof (struct T_optmgmt_ack)]; 16172 optp->level = MIB2_TCP6; 16173 optp->name = EXPER_XPORT_MLP; 16174 optp->len = msgdsize(mp6_attr_ctl->b_cont); 16175 if (optp->len == 0) 16176 freemsg(mp6_attr_ctl); 16177 else 16178 qreply(q, mp6_attr_ctl); 16179 return (mp2ctl); 16180 } 16181 16182 /* Return 0 if invalid set request, 1 otherwise, including non-tcp requests */ 16183 /* ARGSUSED */ 16184 int 16185 tcp_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 16186 { 16187 mib2_tcpConnEntry_t *tce = (mib2_tcpConnEntry_t *)ptr; 16188 16189 switch (level) { 16190 case MIB2_TCP: 16191 switch (name) { 16192 case 13: 16193 if (tce->tcpConnState != MIB2_TCP_deleteTCB) 16194 return (0); 16195 /* TODO: delete entry defined by tce */ 16196 return (1); 16197 default: 16198 return (0); 16199 } 16200 default: 16201 return (1); 16202 } 16203 } 16204 16205 /* Translate TCP state to MIB2 TCP state. */ 16206 static int 16207 tcp_snmp_state(tcp_t *tcp) 16208 { 16209 if (tcp == NULL) 16210 return (0); 16211 16212 switch (tcp->tcp_state) { 16213 case TCPS_CLOSED: 16214 case TCPS_IDLE: /* RFC1213 doesn't have analogue for IDLE & BOUND */ 16215 case TCPS_BOUND: 16216 return (MIB2_TCP_closed); 16217 case TCPS_LISTEN: 16218 return (MIB2_TCP_listen); 16219 case TCPS_SYN_SENT: 16220 return (MIB2_TCP_synSent); 16221 case TCPS_SYN_RCVD: 16222 return (MIB2_TCP_synReceived); 16223 case TCPS_ESTABLISHED: 16224 return (MIB2_TCP_established); 16225 case TCPS_CLOSE_WAIT: 16226 return (MIB2_TCP_closeWait); 16227 case TCPS_FIN_WAIT_1: 16228 return (MIB2_TCP_finWait1); 16229 case TCPS_CLOSING: 16230 return (MIB2_TCP_closing); 16231 case TCPS_LAST_ACK: 16232 return (MIB2_TCP_lastAck); 16233 case TCPS_FIN_WAIT_2: 16234 return (MIB2_TCP_finWait2); 16235 case TCPS_TIME_WAIT: 16236 return (MIB2_TCP_timeWait); 16237 default: 16238 return (0); 16239 } 16240 } 16241 16242 /* 16243 * tcp_timer is the timer service routine. It handles the retransmission, 16244 * FIN_WAIT_2 flush, and zero window probe timeout events. It figures out 16245 * from the state of the tcp instance what kind of action needs to be done 16246 * at the time it is called. 16247 */ 16248 static void 16249 tcp_timer(void *arg) 16250 { 16251 mblk_t *mp; 16252 clock_t first_threshold; 16253 clock_t second_threshold; 16254 clock_t ms; 16255 uint32_t mss; 16256 conn_t *connp = (conn_t *)arg; 16257 tcp_t *tcp = connp->conn_tcp; 16258 tcp_stack_t *tcps = tcp->tcp_tcps; 16259 16260 tcp->tcp_timer_tid = 0; 16261 16262 if (tcp->tcp_fused) 16263 return; 16264 16265 first_threshold = tcp->tcp_first_timer_threshold; 16266 second_threshold = tcp->tcp_second_timer_threshold; 16267 switch (tcp->tcp_state) { 16268 case TCPS_IDLE: 16269 case TCPS_BOUND: 16270 case TCPS_LISTEN: 16271 return; 16272 case TCPS_SYN_RCVD: { 16273 tcp_t *listener = tcp->tcp_listener; 16274 16275 if (tcp->tcp_syn_rcvd_timeout == 0 && (listener != NULL)) { 16276 ASSERT(tcp->tcp_rq == listener->tcp_rq); 16277 /* it's our first timeout */ 16278 tcp->tcp_syn_rcvd_timeout = 1; 16279 mutex_enter(&listener->tcp_eager_lock); 16280 listener->tcp_syn_rcvd_timeout++; 16281 if (!tcp->tcp_dontdrop && !tcp->tcp_closemp_used) { 16282 /* 16283 * Make this eager available for drop if we 16284 * need to drop one to accomodate a new 16285 * incoming SYN request. 16286 */ 16287 MAKE_DROPPABLE(listener, tcp); 16288 } 16289 if (!listener->tcp_syn_defense && 16290 (listener->tcp_syn_rcvd_timeout > 16291 (tcps->tcps_conn_req_max_q0 >> 2)) && 16292 (tcps->tcps_conn_req_max_q0 > 200)) { 16293 /* We may be under attack. Put on a defense. */ 16294 listener->tcp_syn_defense = B_TRUE; 16295 cmn_err(CE_WARN, "High TCP connect timeout " 16296 "rate! System (port %d) may be under a " 16297 "SYN flood attack!", 16298 BE16_TO_U16(listener->tcp_tcph->th_lport)); 16299 16300 listener->tcp_ip_addr_cache = kmem_zalloc( 16301 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t), 16302 KM_NOSLEEP); 16303 } 16304 mutex_exit(&listener->tcp_eager_lock); 16305 } else if (listener != NULL) { 16306 mutex_enter(&listener->tcp_eager_lock); 16307 tcp->tcp_syn_rcvd_timeout++; 16308 if (tcp->tcp_syn_rcvd_timeout > 1 && 16309 !tcp->tcp_closemp_used) { 16310 /* 16311 * This is our second timeout. Put the tcp in 16312 * the list of droppable eagers to allow it to 16313 * be dropped, if needed. We don't check 16314 * whether tcp_dontdrop is set or not to 16315 * protect ourselve from a SYN attack where a 16316 * remote host can spoof itself as one of the 16317 * good IP source and continue to hold 16318 * resources too long. 16319 */ 16320 MAKE_DROPPABLE(listener, tcp); 16321 } 16322 mutex_exit(&listener->tcp_eager_lock); 16323 } 16324 } 16325 /* FALLTHRU */ 16326 case TCPS_SYN_SENT: 16327 first_threshold = tcp->tcp_first_ctimer_threshold; 16328 second_threshold = tcp->tcp_second_ctimer_threshold; 16329 break; 16330 case TCPS_ESTABLISHED: 16331 case TCPS_FIN_WAIT_1: 16332 case TCPS_CLOSING: 16333 case TCPS_CLOSE_WAIT: 16334 case TCPS_LAST_ACK: 16335 /* If we have data to rexmit */ 16336 if (tcp->tcp_suna != tcp->tcp_snxt) { 16337 clock_t time_to_wait; 16338 16339 BUMP_MIB(&tcps->tcps_mib, tcpTimRetrans); 16340 if (!tcp->tcp_xmit_head) 16341 break; 16342 time_to_wait = lbolt - 16343 (clock_t)tcp->tcp_xmit_head->b_prev; 16344 time_to_wait = tcp->tcp_rto - 16345 TICK_TO_MSEC(time_to_wait); 16346 /* 16347 * If the timer fires too early, 1 clock tick earlier, 16348 * restart the timer. 16349 */ 16350 if (time_to_wait > msec_per_tick) { 16351 TCP_STAT(tcps, tcp_timer_fire_early); 16352 TCP_TIMER_RESTART(tcp, time_to_wait); 16353 return; 16354 } 16355 /* 16356 * When we probe zero windows, we force the swnd open. 16357 * If our peer acks with a closed window swnd will be 16358 * set to zero by tcp_rput(). As long as we are 16359 * receiving acks tcp_rput will 16360 * reset 'tcp_ms_we_have_waited' so as not to trip the 16361 * first and second interval actions. NOTE: the timer 16362 * interval is allowed to continue its exponential 16363 * backoff. 16364 */ 16365 if (tcp->tcp_swnd == 0 || tcp->tcp_zero_win_probe) { 16366 if (tcp->tcp_debug) { 16367 (void) strlog(TCP_MOD_ID, 0, 1, 16368 SL_TRACE, "tcp_timer: zero win"); 16369 } 16370 } else { 16371 /* 16372 * After retransmission, we need to do 16373 * slow start. Set the ssthresh to one 16374 * half of current effective window and 16375 * cwnd to one MSS. Also reset 16376 * tcp_cwnd_cnt. 16377 * 16378 * Note that if tcp_ssthresh is reduced because 16379 * of ECN, do not reduce it again unless it is 16380 * already one window of data away (tcp_cwr 16381 * should then be cleared) or this is a 16382 * timeout for a retransmitted segment. 16383 */ 16384 uint32_t npkt; 16385 16386 if (!tcp->tcp_cwr || tcp->tcp_rexmit) { 16387 npkt = ((tcp->tcp_timer_backoff ? 16388 tcp->tcp_cwnd_ssthresh : 16389 tcp->tcp_snxt - 16390 tcp->tcp_suna) >> 1) / tcp->tcp_mss; 16391 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 16392 tcp->tcp_mss; 16393 } 16394 tcp->tcp_cwnd = tcp->tcp_mss; 16395 tcp->tcp_cwnd_cnt = 0; 16396 if (tcp->tcp_ecn_ok) { 16397 tcp->tcp_cwr = B_TRUE; 16398 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 16399 tcp->tcp_ecn_cwr_sent = B_FALSE; 16400 } 16401 } 16402 break; 16403 } 16404 /* 16405 * We have something to send yet we cannot send. The 16406 * reason can be: 16407 * 16408 * 1. Zero send window: we need to do zero window probe. 16409 * 2. Zero cwnd: because of ECN, we need to "clock out 16410 * segments. 16411 * 3. SWS avoidance: receiver may have shrunk window, 16412 * reset our knowledge. 16413 * 16414 * Note that condition 2 can happen with either 1 or 16415 * 3. But 1 and 3 are exclusive. 16416 */ 16417 if (tcp->tcp_unsent != 0) { 16418 if (tcp->tcp_cwnd == 0) { 16419 /* 16420 * Set tcp_cwnd to 1 MSS so that a 16421 * new segment can be sent out. We 16422 * are "clocking out" new data when 16423 * the network is really congested. 16424 */ 16425 ASSERT(tcp->tcp_ecn_ok); 16426 tcp->tcp_cwnd = tcp->tcp_mss; 16427 } 16428 if (tcp->tcp_swnd == 0) { 16429 /* Extend window for zero window probe */ 16430 tcp->tcp_swnd++; 16431 tcp->tcp_zero_win_probe = B_TRUE; 16432 BUMP_MIB(&tcps->tcps_mib, tcpOutWinProbe); 16433 } else { 16434 /* 16435 * Handle timeout from sender SWS avoidance. 16436 * Reset our knowledge of the max send window 16437 * since the receiver might have reduced its 16438 * receive buffer. Avoid setting tcp_max_swnd 16439 * to one since that will essentially disable 16440 * the SWS checks. 16441 * 16442 * Note that since we don't have a SWS 16443 * state variable, if the timeout is set 16444 * for ECN but not for SWS, this 16445 * code will also be executed. This is 16446 * fine as tcp_max_swnd is updated 16447 * constantly and it will not affect 16448 * anything. 16449 */ 16450 tcp->tcp_max_swnd = MAX(tcp->tcp_swnd, 2); 16451 } 16452 tcp_wput_data(tcp, NULL, B_FALSE); 16453 return; 16454 } 16455 /* Is there a FIN that needs to be to re retransmitted? */ 16456 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 16457 !tcp->tcp_fin_acked) 16458 break; 16459 /* Nothing to do, return without restarting timer. */ 16460 TCP_STAT(tcps, tcp_timer_fire_miss); 16461 return; 16462 case TCPS_FIN_WAIT_2: 16463 /* 16464 * User closed the TCP endpoint and peer ACK'ed our FIN. 16465 * We waited some time for for peer's FIN, but it hasn't 16466 * arrived. We flush the connection now to avoid 16467 * case where the peer has rebooted. 16468 */ 16469 if (TCP_IS_DETACHED(tcp)) { 16470 (void) tcp_clean_death(tcp, 0, 23); 16471 } else { 16472 TCP_TIMER_RESTART(tcp, 16473 tcps->tcps_fin_wait_2_flush_interval); 16474 } 16475 return; 16476 case TCPS_TIME_WAIT: 16477 (void) tcp_clean_death(tcp, 0, 24); 16478 return; 16479 default: 16480 if (tcp->tcp_debug) { 16481 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 16482 "tcp_timer: strange state (%d) %s", 16483 tcp->tcp_state, tcp_display(tcp, NULL, 16484 DISP_PORT_ONLY)); 16485 } 16486 return; 16487 } 16488 if ((ms = tcp->tcp_ms_we_have_waited) > second_threshold) { 16489 /* 16490 * For zero window probe, we need to send indefinitely, 16491 * unless we have not heard from the other side for some 16492 * time... 16493 */ 16494 if ((tcp->tcp_zero_win_probe == 0) || 16495 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) > 16496 second_threshold)) { 16497 BUMP_MIB(&tcps->tcps_mib, tcpTimRetransDrop); 16498 /* 16499 * If TCP is in SYN_RCVD state, send back a 16500 * RST|ACK as BSD does. Note that tcp_zero_win_probe 16501 * should be zero in TCPS_SYN_RCVD state. 16502 */ 16503 if (tcp->tcp_state == TCPS_SYN_RCVD) { 16504 tcp_xmit_ctl("tcp_timer: RST sent on timeout " 16505 "in SYN_RCVD", 16506 tcp, tcp->tcp_snxt, 16507 tcp->tcp_rnxt, TH_RST | TH_ACK); 16508 } 16509 (void) tcp_clean_death(tcp, 16510 tcp->tcp_client_errno ? 16511 tcp->tcp_client_errno : ETIMEDOUT, 25); 16512 return; 16513 } else { 16514 /* 16515 * Set tcp_ms_we_have_waited to second_threshold 16516 * so that in next timeout, we will do the above 16517 * check (lbolt - tcp_last_recv_time). This is 16518 * also to avoid overflow. 16519 * 16520 * We don't need to decrement tcp_timer_backoff 16521 * to avoid overflow because it will be decremented 16522 * later if new timeout value is greater than 16523 * tcp_rexmit_interval_max. In the case when 16524 * tcp_rexmit_interval_max is greater than 16525 * second_threshold, it means that we will wait 16526 * longer than second_threshold to send the next 16527 * window probe. 16528 */ 16529 tcp->tcp_ms_we_have_waited = second_threshold; 16530 } 16531 } else if (ms > first_threshold) { 16532 if (tcp->tcp_snd_zcopy_aware && (!tcp->tcp_xmit_zc_clean) && 16533 tcp->tcp_xmit_head != NULL) { 16534 tcp->tcp_xmit_head = 16535 tcp_zcopy_backoff(tcp, tcp->tcp_xmit_head, 1); 16536 } 16537 /* 16538 * We have been retransmitting for too long... The RTT 16539 * we calculated is probably incorrect. Reinitialize it. 16540 * Need to compensate for 0 tcp_rtt_sa. Reset 16541 * tcp_rtt_update so that we won't accidentally cache a 16542 * bad value. But only do this if this is not a zero 16543 * window probe. 16544 */ 16545 if (tcp->tcp_rtt_sa != 0 && tcp->tcp_zero_win_probe == 0) { 16546 tcp->tcp_rtt_sd += (tcp->tcp_rtt_sa >> 3) + 16547 (tcp->tcp_rtt_sa >> 5); 16548 tcp->tcp_rtt_sa = 0; 16549 tcp_ip_notify(tcp); 16550 tcp->tcp_rtt_update = 0; 16551 } 16552 } 16553 tcp->tcp_timer_backoff++; 16554 if ((ms = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 16555 tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5)) < 16556 tcps->tcps_rexmit_interval_min) { 16557 /* 16558 * This means the original RTO is tcp_rexmit_interval_min. 16559 * So we will use tcp_rexmit_interval_min as the RTO value 16560 * and do the backoff. 16561 */ 16562 ms = tcps->tcps_rexmit_interval_min << tcp->tcp_timer_backoff; 16563 } else { 16564 ms <<= tcp->tcp_timer_backoff; 16565 } 16566 if (ms > tcps->tcps_rexmit_interval_max) { 16567 ms = tcps->tcps_rexmit_interval_max; 16568 /* 16569 * ms is at max, decrement tcp_timer_backoff to avoid 16570 * overflow. 16571 */ 16572 tcp->tcp_timer_backoff--; 16573 } 16574 tcp->tcp_ms_we_have_waited += ms; 16575 if (tcp->tcp_zero_win_probe == 0) { 16576 tcp->tcp_rto = ms; 16577 } 16578 TCP_TIMER_RESTART(tcp, ms); 16579 /* 16580 * This is after a timeout and tcp_rto is backed off. Set 16581 * tcp_set_timer to 1 so that next time RTO is updated, we will 16582 * restart the timer with a correct value. 16583 */ 16584 tcp->tcp_set_timer = 1; 16585 mss = tcp->tcp_snxt - tcp->tcp_suna; 16586 if (mss > tcp->tcp_mss) 16587 mss = tcp->tcp_mss; 16588 if (mss > tcp->tcp_swnd && tcp->tcp_swnd != 0) 16589 mss = tcp->tcp_swnd; 16590 16591 if ((mp = tcp->tcp_xmit_head) != NULL) 16592 mp->b_prev = (mblk_t *)lbolt; 16593 mp = tcp_xmit_mp(tcp, mp, mss, NULL, NULL, tcp->tcp_suna, B_TRUE, &mss, 16594 B_TRUE); 16595 16596 /* 16597 * When slow start after retransmission begins, start with 16598 * this seq no. tcp_rexmit_max marks the end of special slow 16599 * start phase. tcp_snd_burst controls how many segments 16600 * can be sent because of an ack. 16601 */ 16602 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 16603 tcp->tcp_snd_burst = TCP_CWND_SS; 16604 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 16605 (tcp->tcp_unsent == 0)) { 16606 tcp->tcp_rexmit_max = tcp->tcp_fss; 16607 } else { 16608 tcp->tcp_rexmit_max = tcp->tcp_snxt; 16609 } 16610 tcp->tcp_rexmit = B_TRUE; 16611 tcp->tcp_dupack_cnt = 0; 16612 16613 /* 16614 * Remove all rexmit SACK blk to start from fresh. 16615 */ 16616 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) 16617 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp); 16618 if (mp == NULL) { 16619 return; 16620 } 16621 /* 16622 * Attach credentials to retransmitted initial SYNs. 16623 * In theory we should use the credentials from the connect() 16624 * call to ensure that getpeerucred() on the peer will be correct. 16625 * But we assume that SYN's are not dropped for loopback connections. 16626 */ 16627 if (tcp->tcp_state == TCPS_SYN_SENT) { 16628 mblk_setcred(mp, CONN_CRED(tcp->tcp_connp), tcp->tcp_cpid); 16629 } 16630 16631 tcp->tcp_csuna = tcp->tcp_snxt; 16632 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 16633 UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, mss); 16634 tcp_send_data(tcp, tcp->tcp_wq, mp); 16635 16636 } 16637 16638 static int 16639 tcp_do_unbind(conn_t *connp) 16640 { 16641 tcp_t *tcp = connp->conn_tcp; 16642 int error = 0; 16643 16644 switch (tcp->tcp_state) { 16645 case TCPS_BOUND: 16646 case TCPS_LISTEN: 16647 break; 16648 default: 16649 return (-TOUTSTATE); 16650 } 16651 16652 /* 16653 * Need to clean up all the eagers since after the unbind, segments 16654 * will no longer be delivered to this listener stream. 16655 */ 16656 mutex_enter(&tcp->tcp_eager_lock); 16657 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 16658 tcp_eager_cleanup(tcp, 0); 16659 } 16660 mutex_exit(&tcp->tcp_eager_lock); 16661 16662 if (tcp->tcp_ipversion == IPV4_VERSION) { 16663 tcp->tcp_ipha->ipha_src = 0; 16664 } else { 16665 V6_SET_ZERO(tcp->tcp_ip6h->ip6_src); 16666 } 16667 V6_SET_ZERO(tcp->tcp_ip_src_v6); 16668 bzero(tcp->tcp_tcph->th_lport, sizeof (tcp->tcp_tcph->th_lport)); 16669 tcp_bind_hash_remove(tcp); 16670 tcp->tcp_state = TCPS_IDLE; 16671 tcp->tcp_mdt = B_FALSE; 16672 16673 connp = tcp->tcp_connp; 16674 connp->conn_mdt_ok = B_FALSE; 16675 ipcl_hash_remove(connp); 16676 bzero(&connp->conn_ports, sizeof (connp->conn_ports)); 16677 16678 return (error); 16679 } 16680 16681 /* tcp_unbind is called by tcp_wput_proto to handle T_UNBIND_REQ messages. */ 16682 static void 16683 tcp_tpi_unbind(tcp_t *tcp, mblk_t *mp) 16684 { 16685 int error = tcp_do_unbind(tcp->tcp_connp); 16686 16687 if (error > 0) { 16688 tcp_err_ack(tcp, mp, TSYSERR, error); 16689 } else if (error < 0) { 16690 tcp_err_ack(tcp, mp, -error, 0); 16691 } else { 16692 /* Send M_FLUSH according to TPI */ 16693 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 16694 16695 mp = mi_tpi_ok_ack_alloc(mp); 16696 putnext(tcp->tcp_rq, mp); 16697 } 16698 } 16699 16700 /* 16701 * Don't let port fall into the privileged range. 16702 * Since the extra privileged ports can be arbitrary we also 16703 * ensure that we exclude those from consideration. 16704 * tcp_g_epriv_ports is not sorted thus we loop over it until 16705 * there are no changes. 16706 * 16707 * Note: No locks are held when inspecting tcp_g_*epriv_ports 16708 * but instead the code relies on: 16709 * - the fact that the address of the array and its size never changes 16710 * - the atomic assignment of the elements of the array 16711 * 16712 * Returns 0 if there are no more ports available. 16713 * 16714 * TS note: skip multilevel ports. 16715 */ 16716 static in_port_t 16717 tcp_update_next_port(in_port_t port, const tcp_t *tcp, boolean_t random) 16718 { 16719 int i; 16720 boolean_t restart = B_FALSE; 16721 tcp_stack_t *tcps = tcp->tcp_tcps; 16722 16723 if (random && tcp_random_anon_port != 0) { 16724 (void) random_get_pseudo_bytes((uint8_t *)&port, 16725 sizeof (in_port_t)); 16726 /* 16727 * Unless changed by a sys admin, the smallest anon port 16728 * is 32768 and the largest anon port is 65535. It is 16729 * very likely (50%) for the random port to be smaller 16730 * than the smallest anon port. When that happens, 16731 * add port % (anon port range) to the smallest anon 16732 * port to get the random port. It should fall into the 16733 * valid anon port range. 16734 */ 16735 if (port < tcps->tcps_smallest_anon_port) { 16736 port = tcps->tcps_smallest_anon_port + 16737 port % (tcps->tcps_largest_anon_port - 16738 tcps->tcps_smallest_anon_port); 16739 } 16740 } 16741 16742 retry: 16743 if (port < tcps->tcps_smallest_anon_port) 16744 port = (in_port_t)tcps->tcps_smallest_anon_port; 16745 16746 if (port > tcps->tcps_largest_anon_port) { 16747 if (restart) 16748 return (0); 16749 restart = B_TRUE; 16750 port = (in_port_t)tcps->tcps_smallest_anon_port; 16751 } 16752 16753 if (port < tcps->tcps_smallest_nonpriv_port) 16754 port = (in_port_t)tcps->tcps_smallest_nonpriv_port; 16755 16756 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 16757 if (port == tcps->tcps_g_epriv_ports[i]) { 16758 port++; 16759 /* 16760 * Make sure whether the port is in the 16761 * valid range. 16762 */ 16763 goto retry; 16764 } 16765 } 16766 if (is_system_labeled() && 16767 (i = tsol_next_port(crgetzone(tcp->tcp_cred), port, 16768 IPPROTO_TCP, B_TRUE)) != 0) { 16769 port = i; 16770 goto retry; 16771 } 16772 return (port); 16773 } 16774 16775 /* 16776 * Return the next anonymous port in the privileged port range for 16777 * bind checking. It starts at IPPORT_RESERVED - 1 and goes 16778 * downwards. This is the same behavior as documented in the userland 16779 * library call rresvport(3N). 16780 * 16781 * TS note: skip multilevel ports. 16782 */ 16783 static in_port_t 16784 tcp_get_next_priv_port(const tcp_t *tcp) 16785 { 16786 static in_port_t next_priv_port = IPPORT_RESERVED - 1; 16787 in_port_t nextport; 16788 boolean_t restart = B_FALSE; 16789 tcp_stack_t *tcps = tcp->tcp_tcps; 16790 retry: 16791 if (next_priv_port < tcps->tcps_min_anonpriv_port || 16792 next_priv_port >= IPPORT_RESERVED) { 16793 next_priv_port = IPPORT_RESERVED - 1; 16794 if (restart) 16795 return (0); 16796 restart = B_TRUE; 16797 } 16798 if (is_system_labeled() && 16799 (nextport = tsol_next_port(crgetzone(tcp->tcp_cred), 16800 next_priv_port, IPPROTO_TCP, B_FALSE)) != 0) { 16801 next_priv_port = nextport; 16802 goto retry; 16803 } 16804 return (next_priv_port--); 16805 } 16806 16807 /* The write side r/w procedure. */ 16808 16809 #if CCS_STATS 16810 struct { 16811 struct { 16812 int64_t count, bytes; 16813 } tot, hit; 16814 } wrw_stats; 16815 #endif 16816 16817 /* 16818 * Call by tcp_wput() to handle all non data, except M_PROTO and M_PCPROTO, 16819 * messages. 16820 */ 16821 /* ARGSUSED */ 16822 static void 16823 tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2) 16824 { 16825 conn_t *connp = (conn_t *)arg; 16826 tcp_t *tcp = connp->conn_tcp; 16827 queue_t *q = tcp->tcp_wq; 16828 16829 ASSERT(DB_TYPE(mp) != M_IOCTL); 16830 /* 16831 * TCP is D_MP and qprocsoff() is done towards the end of the tcp_close. 16832 * Once the close starts, streamhead and sockfs will not let any data 16833 * packets come down (close ensures that there are no threads using the 16834 * queue and no new threads will come down) but since qprocsoff() 16835 * hasn't happened yet, a M_FLUSH or some non data message might 16836 * get reflected back (in response to our own FLUSHRW) and get 16837 * processed after tcp_close() is done. The conn would still be valid 16838 * because a ref would have added but we need to check the state 16839 * before actually processing the packet. 16840 */ 16841 if (TCP_IS_DETACHED(tcp) || (tcp->tcp_state == TCPS_CLOSED)) { 16842 freemsg(mp); 16843 return; 16844 } 16845 16846 switch (DB_TYPE(mp)) { 16847 case M_IOCDATA: 16848 tcp_wput_iocdata(tcp, mp); 16849 break; 16850 case M_FLUSH: 16851 tcp_wput_flush(tcp, mp); 16852 break; 16853 default: 16854 CALL_IP_WPUT(connp, q, mp); 16855 break; 16856 } 16857 } 16858 16859 /* 16860 * The TCP fast path write put procedure. 16861 * NOTE: the logic of the fast path is duplicated from tcp_wput_data() 16862 */ 16863 /* ARGSUSED */ 16864 void 16865 tcp_output(void *arg, mblk_t *mp, void *arg2) 16866 { 16867 int len; 16868 int hdrlen; 16869 int plen; 16870 mblk_t *mp1; 16871 uchar_t *rptr; 16872 uint32_t snxt; 16873 tcph_t *tcph; 16874 struct datab *db; 16875 uint32_t suna; 16876 uint32_t mss; 16877 ipaddr_t *dst; 16878 ipaddr_t *src; 16879 uint32_t sum; 16880 int usable; 16881 conn_t *connp = (conn_t *)arg; 16882 tcp_t *tcp = connp->conn_tcp; 16883 uint32_t msize; 16884 tcp_stack_t *tcps = tcp->tcp_tcps; 16885 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 16886 16887 /* 16888 * Try and ASSERT the minimum possible references on the 16889 * conn early enough. Since we are executing on write side, 16890 * the connection is obviously not detached and that means 16891 * there is a ref each for TCP and IP. Since we are behind 16892 * the squeue, the minimum references needed are 3. If the 16893 * conn is in classifier hash list, there should be an 16894 * extra ref for that (we check both the possibilities). 16895 */ 16896 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 16897 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 16898 16899 ASSERT(DB_TYPE(mp) == M_DATA); 16900 msize = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp); 16901 16902 mutex_enter(&tcp->tcp_non_sq_lock); 16903 tcp->tcp_squeue_bytes -= msize; 16904 mutex_exit(&tcp->tcp_non_sq_lock); 16905 16906 /* Check to see if this connection wants to be re-fused. */ 16907 if (tcp->tcp_refuse) { 16908 if (tcp->tcp_ipversion == IPV4_VERSION && 16909 !ipst->ips_ip4_observe.he_interested) { 16910 tcp_fuse(tcp, (uchar_t *)&tcp->tcp_saved_ipha, 16911 &tcp->tcp_saved_tcph); 16912 } else if (tcp->tcp_ipversion == IPV6_VERSION && 16913 !ipst->ips_ip6_observe.he_interested) { 16914 tcp_fuse(tcp, (uchar_t *)&tcp->tcp_saved_ip6h, 16915 &tcp->tcp_saved_tcph); 16916 } 16917 } 16918 /* Bypass tcp protocol for fused tcp loopback */ 16919 if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize)) 16920 return; 16921 16922 mss = tcp->tcp_mss; 16923 if (tcp->tcp_xmit_zc_clean) 16924 mp = tcp_zcopy_backoff(tcp, mp, 0); 16925 16926 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 16927 len = (int)(mp->b_wptr - mp->b_rptr); 16928 16929 /* 16930 * Criteria for fast path: 16931 * 16932 * 1. no unsent data 16933 * 2. single mblk in request 16934 * 3. connection established 16935 * 4. data in mblk 16936 * 5. len <= mss 16937 * 6. no tcp_valid bits 16938 */ 16939 if ((tcp->tcp_unsent != 0) || 16940 (tcp->tcp_cork) || 16941 (mp->b_cont != NULL) || 16942 (tcp->tcp_state != TCPS_ESTABLISHED) || 16943 (len == 0) || 16944 (len > mss) || 16945 (tcp->tcp_valid_bits != 0)) { 16946 tcp_wput_data(tcp, mp, B_FALSE); 16947 return; 16948 } 16949 16950 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 16951 ASSERT(tcp->tcp_fin_sent == 0); 16952 16953 /* queue new packet onto retransmission queue */ 16954 if (tcp->tcp_xmit_head == NULL) { 16955 tcp->tcp_xmit_head = mp; 16956 } else { 16957 tcp->tcp_xmit_last->b_cont = mp; 16958 } 16959 tcp->tcp_xmit_last = mp; 16960 tcp->tcp_xmit_tail = mp; 16961 16962 /* find out how much we can send */ 16963 /* BEGIN CSTYLED */ 16964 /* 16965 * un-acked usable 16966 * |--------------|-----------------| 16967 * tcp_suna tcp_snxt tcp_suna+tcp_swnd 16968 */ 16969 /* END CSTYLED */ 16970 16971 /* start sending from tcp_snxt */ 16972 snxt = tcp->tcp_snxt; 16973 16974 /* 16975 * Check to see if this connection has been idled for some 16976 * time and no ACK is expected. If it is, we need to slow 16977 * start again to get back the connection's "self-clock" as 16978 * described in VJ's paper. 16979 * 16980 * Refer to the comment in tcp_mss_set() for the calculation 16981 * of tcp_cwnd after idle. 16982 */ 16983 if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && 16984 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) { 16985 SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle); 16986 } 16987 16988 usable = tcp->tcp_swnd; /* tcp window size */ 16989 if (usable > tcp->tcp_cwnd) 16990 usable = tcp->tcp_cwnd; /* congestion window smaller */ 16991 usable -= snxt; /* subtract stuff already sent */ 16992 suna = tcp->tcp_suna; 16993 usable += suna; 16994 /* usable can be < 0 if the congestion window is smaller */ 16995 if (len > usable) { 16996 /* Can't send complete M_DATA in one shot */ 16997 goto slow; 16998 } 16999 17000 mutex_enter(&tcp->tcp_non_sq_lock); 17001 if (tcp->tcp_flow_stopped && 17002 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 17003 tcp_clrqfull(tcp); 17004 } 17005 mutex_exit(&tcp->tcp_non_sq_lock); 17006 17007 /* 17008 * determine if anything to send (Nagle). 17009 * 17010 * 1. len < tcp_mss (i.e. small) 17011 * 2. unacknowledged data present 17012 * 3. len < nagle limit 17013 * 4. last packet sent < nagle limit (previous packet sent) 17014 */ 17015 if ((len < mss) && (snxt != suna) && 17016 (len < (int)tcp->tcp_naglim) && 17017 (tcp->tcp_last_sent_len < tcp->tcp_naglim)) { 17018 /* 17019 * This was the first unsent packet and normally 17020 * mss < xmit_hiwater so there is no need to worry 17021 * about flow control. The next packet will go 17022 * through the flow control check in tcp_wput_data(). 17023 */ 17024 /* leftover work from above */ 17025 tcp->tcp_unsent = len; 17026 tcp->tcp_xmit_tail_unsent = len; 17027 17028 return; 17029 } 17030 17031 /* len <= tcp->tcp_mss && len == unsent so no silly window */ 17032 17033 if (snxt == suna) { 17034 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 17035 } 17036 17037 /* we have always sent something */ 17038 tcp->tcp_rack_cnt = 0; 17039 17040 tcp->tcp_snxt = snxt + len; 17041 tcp->tcp_rack = tcp->tcp_rnxt; 17042 17043 if ((mp1 = dupb(mp)) == 0) 17044 goto no_memory; 17045 mp->b_prev = (mblk_t *)(uintptr_t)lbolt; 17046 mp->b_next = (mblk_t *)(uintptr_t)snxt; 17047 17048 /* adjust tcp header information */ 17049 tcph = tcp->tcp_tcph; 17050 tcph->th_flags[0] = (TH_ACK|TH_PUSH); 17051 17052 sum = len + tcp->tcp_tcp_hdr_len + tcp->tcp_sum; 17053 sum = (sum >> 16) + (sum & 0xFFFF); 17054 U16_TO_ABE16(sum, tcph->th_sum); 17055 17056 U32_TO_ABE32(snxt, tcph->th_seq); 17057 17058 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 17059 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); 17060 BUMP_LOCAL(tcp->tcp_obsegs); 17061 17062 /* Update the latest receive window size in TCP header. */ 17063 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 17064 tcph->th_win); 17065 17066 tcp->tcp_last_sent_len = (ushort_t)len; 17067 17068 plen = len + tcp->tcp_hdr_len; 17069 17070 if (tcp->tcp_ipversion == IPV4_VERSION) { 17071 tcp->tcp_ipha->ipha_length = htons(plen); 17072 } else { 17073 tcp->tcp_ip6h->ip6_plen = htons(plen - 17074 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 17075 } 17076 17077 /* see if we need to allocate a mblk for the headers */ 17078 hdrlen = tcp->tcp_hdr_len; 17079 rptr = mp1->b_rptr - hdrlen; 17080 db = mp1->b_datap; 17081 if ((db->db_ref != 2) || rptr < db->db_base || 17082 (!OK_32PTR(rptr))) { 17083 /* NOTE: we assume allocb returns an OK_32PTR */ 17084 mp = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 17085 tcps->tcps_wroff_xtra, BPRI_MED); 17086 if (!mp) { 17087 freemsg(mp1); 17088 goto no_memory; 17089 } 17090 mp->b_cont = mp1; 17091 mp1 = mp; 17092 /* Leave room for Link Level header */ 17093 /* hdrlen = tcp->tcp_hdr_len; */ 17094 rptr = &mp1->b_rptr[tcps->tcps_wroff_xtra]; 17095 mp1->b_wptr = &rptr[hdrlen]; 17096 } 17097 mp1->b_rptr = rptr; 17098 17099 /* Fill in the timestamp option. */ 17100 if (tcp->tcp_snd_ts_ok) { 17101 U32_TO_BE32((uint32_t)lbolt, 17102 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 17103 U32_TO_BE32(tcp->tcp_ts_recent, 17104 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 17105 } else { 17106 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 17107 } 17108 17109 /* copy header into outgoing packet */ 17110 dst = (ipaddr_t *)rptr; 17111 src = (ipaddr_t *)tcp->tcp_iphc; 17112 dst[0] = src[0]; 17113 dst[1] = src[1]; 17114 dst[2] = src[2]; 17115 dst[3] = src[3]; 17116 dst[4] = src[4]; 17117 dst[5] = src[5]; 17118 dst[6] = src[6]; 17119 dst[7] = src[7]; 17120 dst[8] = src[8]; 17121 dst[9] = src[9]; 17122 if (hdrlen -= 40) { 17123 hdrlen >>= 2; 17124 dst += 10; 17125 src += 10; 17126 do { 17127 *dst++ = *src++; 17128 } while (--hdrlen); 17129 } 17130 17131 /* 17132 * Set the ECN info in the TCP header. Note that this 17133 * is not the template header. 17134 */ 17135 if (tcp->tcp_ecn_ok) { 17136 SET_ECT(tcp, rptr); 17137 17138 tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 17139 if (tcp->tcp_ecn_echo_on) 17140 tcph->th_flags[0] |= TH_ECE; 17141 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 17142 tcph->th_flags[0] |= TH_CWR; 17143 tcp->tcp_ecn_cwr_sent = B_TRUE; 17144 } 17145 } 17146 17147 if (tcp->tcp_ip_forward_progress) { 17148 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 17149 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 17150 tcp->tcp_ip_forward_progress = B_FALSE; 17151 } 17152 tcp_send_data(tcp, tcp->tcp_wq, mp1); 17153 return; 17154 17155 /* 17156 * If we ran out of memory, we pretend to have sent the packet 17157 * and that it was lost on the wire. 17158 */ 17159 no_memory: 17160 return; 17161 17162 slow: 17163 /* leftover work from above */ 17164 tcp->tcp_unsent = len; 17165 tcp->tcp_xmit_tail_unsent = len; 17166 tcp_wput_data(tcp, NULL, B_FALSE); 17167 } 17168 17169 /* ARGSUSED */ 17170 void 17171 tcp_accept_finish(void *arg, mblk_t *mp, void *arg2) 17172 { 17173 conn_t *connp = (conn_t *)arg; 17174 tcp_t *tcp = connp->conn_tcp; 17175 queue_t *q = tcp->tcp_rq; 17176 struct tcp_options *tcpopt; 17177 tcp_stack_t *tcps = tcp->tcp_tcps; 17178 17179 /* socket options */ 17180 uint_t sopp_flags; 17181 ssize_t sopp_rxhiwat; 17182 ssize_t sopp_maxblk; 17183 ushort_t sopp_wroff; 17184 ushort_t sopp_tail; 17185 ushort_t sopp_copyopt; 17186 17187 tcpopt = (struct tcp_options *)mp->b_rptr; 17188 17189 /* 17190 * Drop the eager's ref on the listener, that was placed when 17191 * this eager began life in tcp_conn_request. 17192 */ 17193 CONN_DEC_REF(tcp->tcp_saved_listener->tcp_connp); 17194 if (IPCL_IS_NONSTR(connp)) { 17195 /* Safe to free conn_ind message */ 17196 freemsg(tcp->tcp_conn.tcp_eager_conn_ind); 17197 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 17198 } 17199 17200 tcp->tcp_detached = B_FALSE; 17201 17202 if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_accept_error) { 17203 /* 17204 * Someone blewoff the eager before we could finish 17205 * the accept. 17206 * 17207 * The only reason eager exists it because we put in 17208 * a ref on it when conn ind went up. We need to send 17209 * a disconnect indication up while the last reference 17210 * on the eager will be dropped by the squeue when we 17211 * return. 17212 */ 17213 ASSERT(tcp->tcp_listener == NULL); 17214 if (tcp->tcp_issocket || tcp->tcp_send_discon_ind) { 17215 if (IPCL_IS_NONSTR(connp)) { 17216 ASSERT(tcp->tcp_issocket); 17217 (*connp->conn_upcalls->su_disconnected)( 17218 connp->conn_upper_handle, tcp->tcp_connid, 17219 ECONNREFUSED); 17220 freemsg(mp); 17221 } else { 17222 struct T_discon_ind *tdi; 17223 17224 (void) putnextctl1(q, M_FLUSH, FLUSHRW); 17225 /* 17226 * Let us reuse the incoming mblk to avoid 17227 * memory allocation failure problems. We know 17228 * that the size of the incoming mblk i.e. 17229 * stroptions is greater than sizeof 17230 * T_discon_ind. So the reallocb below can't 17231 * fail. 17232 */ 17233 freemsg(mp->b_cont); 17234 mp->b_cont = NULL; 17235 ASSERT(DB_REF(mp) == 1); 17236 mp = reallocb(mp, sizeof (struct T_discon_ind), 17237 B_FALSE); 17238 ASSERT(mp != NULL); 17239 DB_TYPE(mp) = M_PROTO; 17240 ((union T_primitives *)mp->b_rptr)->type = 17241 T_DISCON_IND; 17242 tdi = (struct T_discon_ind *)mp->b_rptr; 17243 if (tcp->tcp_issocket) { 17244 tdi->DISCON_reason = ECONNREFUSED; 17245 tdi->SEQ_number = 0; 17246 } else { 17247 tdi->DISCON_reason = ENOPROTOOPT; 17248 tdi->SEQ_number = 17249 tcp->tcp_conn_req_seqnum; 17250 } 17251 mp->b_wptr = mp->b_rptr + 17252 sizeof (struct T_discon_ind); 17253 putnext(q, mp); 17254 return; 17255 } 17256 } 17257 if (tcp->tcp_hard_binding) { 17258 tcp->tcp_hard_binding = B_FALSE; 17259 tcp->tcp_hard_bound = B_TRUE; 17260 } 17261 return; 17262 } 17263 17264 if (tcpopt->to_flags & TCPOPT_BOUNDIF) { 17265 int boundif = tcpopt->to_boundif; 17266 uint_t len = sizeof (int); 17267 17268 (void) tcp_opt_set(connp, SETFN_OPTCOM_NEGOTIATE, IPPROTO_IPV6, 17269 IPV6_BOUND_IF, len, (uchar_t *)&boundif, &len, 17270 (uchar_t *)&boundif, NULL, tcp->tcp_cred, NULL); 17271 } 17272 if (tcpopt->to_flags & TCPOPT_RECVPKTINFO) { 17273 uint_t on = 1; 17274 uint_t len = sizeof (uint_t); 17275 (void) tcp_opt_set(connp, SETFN_OPTCOM_NEGOTIATE, IPPROTO_IPV6, 17276 IPV6_RECVPKTINFO, len, (uchar_t *)&on, &len, 17277 (uchar_t *)&on, NULL, tcp->tcp_cred, NULL); 17278 } 17279 17280 /* 17281 * Set max window size (tcp_recv_hiwater) of the acceptor. 17282 */ 17283 if (tcp->tcp_rcv_list == NULL) { 17284 /* 17285 * Recv queue is empty, tcp_rwnd should not have changed. 17286 * That means it should be equal to the listener's tcp_rwnd. 17287 */ 17288 tcp->tcp_recv_hiwater = tcp->tcp_rwnd; 17289 } else { 17290 #ifdef DEBUG 17291 mblk_t *tmp; 17292 mblk_t *mp1; 17293 uint_t cnt = 0; 17294 17295 mp1 = tcp->tcp_rcv_list; 17296 while ((tmp = mp1) != NULL) { 17297 mp1 = tmp->b_next; 17298 cnt += msgdsize(tmp); 17299 } 17300 ASSERT(cnt != 0 && tcp->tcp_rcv_cnt == cnt); 17301 #endif 17302 /* There is some data, add them back to get the max. */ 17303 tcp->tcp_recv_hiwater = tcp->tcp_rwnd + tcp->tcp_rcv_cnt; 17304 } 17305 /* 17306 * This is the first time we run on the correct 17307 * queue after tcp_accept. So fix all the q parameters 17308 * here. 17309 */ 17310 sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_MAXBLK | SOCKOPT_WROFF; 17311 sopp_maxblk = tcp_maxpsz_set(tcp, B_FALSE); 17312 17313 sopp_rxhiwat = tcp->tcp_fused ? 17314 tcp_fuse_set_rcv_hiwat(tcp, tcp->tcp_recv_hiwater) : 17315 tcp->tcp_recv_hiwater; 17316 17317 /* 17318 * Determine what write offset value to use depending on SACK and 17319 * whether the endpoint is fused or not. 17320 */ 17321 if (tcp->tcp_fused) { 17322 ASSERT(tcp->tcp_loopback); 17323 ASSERT(tcp->tcp_loopback_peer != NULL); 17324 /* 17325 * For fused tcp loopback, set the stream head's write 17326 * offset value to zero since we won't be needing any room 17327 * for TCP/IP headers. This would also improve performance 17328 * since it would reduce the amount of work done by kmem. 17329 * Non-fused tcp loopback case is handled separately below. 17330 */ 17331 sopp_wroff = 0; 17332 /* 17333 * Update the peer's transmit parameters according to 17334 * our recently calculated high water mark value. 17335 */ 17336 (void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE); 17337 } else if (tcp->tcp_snd_sack_ok) { 17338 sopp_wroff = tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN + 17339 (tcp->tcp_loopback ? 0 : tcps->tcps_wroff_xtra); 17340 } else { 17341 sopp_wroff = tcp->tcp_hdr_len + (tcp->tcp_loopback ? 0 : 17342 tcps->tcps_wroff_xtra); 17343 } 17344 17345 /* 17346 * If this is endpoint is handling SSL, then reserve extra 17347 * offset and space at the end. 17348 * Also have the stream head allocate SSL3_MAX_RECORD_LEN packets, 17349 * overriding the previous setting. The extra cost of signing and 17350 * encrypting multiple MSS-size records (12 of them with Ethernet), 17351 * instead of a single contiguous one by the stream head 17352 * largely outweighs the statistical reduction of ACKs, when 17353 * applicable. The peer will also save on decryption and verification 17354 * costs. 17355 */ 17356 if (tcp->tcp_kssl_ctx != NULL) { 17357 sopp_wroff += SSL3_WROFFSET; 17358 17359 sopp_flags |= SOCKOPT_TAIL; 17360 sopp_tail = SSL3_MAX_TAIL_LEN; 17361 17362 sopp_flags |= SOCKOPT_ZCOPY; 17363 sopp_copyopt = ZCVMUNSAFE; 17364 17365 sopp_maxblk = SSL3_MAX_RECORD_LEN; 17366 } 17367 17368 /* Send the options up */ 17369 if (IPCL_IS_NONSTR(connp)) { 17370 struct sock_proto_props sopp; 17371 17372 sopp.sopp_flags = sopp_flags; 17373 sopp.sopp_wroff = sopp_wroff; 17374 sopp.sopp_maxblk = sopp_maxblk; 17375 sopp.sopp_rxhiwat = sopp_rxhiwat; 17376 if (sopp_flags & SOCKOPT_TAIL) { 17377 ASSERT(tcp->tcp_kssl_ctx != NULL); 17378 ASSERT(sopp_flags & SOCKOPT_ZCOPY); 17379 sopp.sopp_tail = sopp_tail; 17380 sopp.sopp_zcopyflag = sopp_copyopt; 17381 } 17382 if (tcp->tcp_loopback) { 17383 sopp.sopp_flags |= SOCKOPT_LOOPBACK; 17384 sopp.sopp_loopback = B_TRUE; 17385 } 17386 (*connp->conn_upcalls->su_set_proto_props) 17387 (connp->conn_upper_handle, &sopp); 17388 } else { 17389 struct stroptions *stropt; 17390 mblk_t *stropt_mp = allocb(sizeof (struct stroptions), BPRI_HI); 17391 if (stropt_mp == NULL) { 17392 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 17393 return; 17394 } 17395 DB_TYPE(stropt_mp) = M_SETOPTS; 17396 stropt = (struct stroptions *)stropt_mp->b_rptr; 17397 stropt_mp->b_wptr += sizeof (struct stroptions); 17398 stropt->so_flags = SO_HIWAT | SO_WROFF | SO_MAXBLK; 17399 stropt->so_hiwat = sopp_rxhiwat; 17400 stropt->so_wroff = sopp_wroff; 17401 stropt->so_maxblk = sopp_maxblk; 17402 17403 if (sopp_flags & SOCKOPT_TAIL) { 17404 ASSERT(tcp->tcp_kssl_ctx != NULL); 17405 17406 stropt->so_flags |= SO_TAIL | SO_COPYOPT; 17407 stropt->so_tail = sopp_tail; 17408 stropt->so_copyopt = sopp_copyopt; 17409 } 17410 17411 /* Send the options up */ 17412 putnext(q, stropt_mp); 17413 } 17414 17415 freemsg(mp); 17416 /* 17417 * Pass up any data and/or a fin that has been received. 17418 * 17419 * Adjust receive window in case it had decreased 17420 * (because there is data <=> tcp_rcv_list != NULL) 17421 * while the connection was detached. Note that 17422 * in case the eager was flow-controlled, w/o this 17423 * code, the rwnd may never open up again! 17424 */ 17425 if (tcp->tcp_rcv_list != NULL) { 17426 if (IPCL_IS_NONSTR(connp)) { 17427 mblk_t *mp; 17428 int space_left; 17429 int error; 17430 boolean_t push = B_TRUE; 17431 17432 if (!tcp->tcp_fused && (*connp->conn_upcalls->su_recv) 17433 (connp->conn_upper_handle, NULL, 0, 0, &error, 17434 &push) >= 0) { 17435 tcp->tcp_rwnd = tcp->tcp_recv_hiwater; 17436 if (tcp->tcp_state >= TCPS_ESTABLISHED && 17437 tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) { 17438 tcp_xmit_ctl(NULL, 17439 tcp, (tcp->tcp_swnd == 0) ? 17440 tcp->tcp_suna : tcp->tcp_snxt, 17441 tcp->tcp_rnxt, TH_ACK); 17442 } 17443 } 17444 while ((mp = tcp->tcp_rcv_list) != NULL) { 17445 push = B_TRUE; 17446 tcp->tcp_rcv_list = mp->b_next; 17447 mp->b_next = NULL; 17448 space_left = (*connp->conn_upcalls->su_recv) 17449 (connp->conn_upper_handle, mp, msgdsize(mp), 17450 0, &error, &push); 17451 if (space_left < 0) { 17452 /* 17453 * We should never be in middle of a 17454 * fallback, the squeue guarantees that. 17455 */ 17456 ASSERT(error != EOPNOTSUPP); 17457 } 17458 } 17459 tcp->tcp_rcv_last_head = NULL; 17460 tcp->tcp_rcv_last_tail = NULL; 17461 tcp->tcp_rcv_cnt = 0; 17462 } else { 17463 /* We drain directly in case of fused tcp loopback */ 17464 17465 if (!tcp->tcp_fused && canputnext(q)) { 17466 tcp->tcp_rwnd = tcp->tcp_recv_hiwater; 17467 if (tcp->tcp_state >= TCPS_ESTABLISHED && 17468 tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) { 17469 tcp_xmit_ctl(NULL, 17470 tcp, (tcp->tcp_swnd == 0) ? 17471 tcp->tcp_suna : tcp->tcp_snxt, 17472 tcp->tcp_rnxt, TH_ACK); 17473 } 17474 } 17475 17476 (void) tcp_rcv_drain(tcp); 17477 } 17478 17479 /* 17480 * For fused tcp loopback, back-enable peer endpoint 17481 * if it's currently flow-controlled. 17482 */ 17483 if (tcp->tcp_fused) { 17484 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 17485 17486 ASSERT(peer_tcp != NULL); 17487 ASSERT(peer_tcp->tcp_fused); 17488 17489 mutex_enter(&peer_tcp->tcp_non_sq_lock); 17490 if (peer_tcp->tcp_flow_stopped) { 17491 tcp_clrqfull(peer_tcp); 17492 TCP_STAT(tcps, tcp_fusion_backenabled); 17493 } 17494 mutex_exit(&peer_tcp->tcp_non_sq_lock); 17495 } 17496 } 17497 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 17498 if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 17499 tcp->tcp_ordrel_done = B_TRUE; 17500 if (IPCL_IS_NONSTR(connp)) { 17501 ASSERT(tcp->tcp_ordrel_mp == NULL); 17502 (*connp->conn_upcalls->su_opctl)( 17503 connp->conn_upper_handle, 17504 SOCK_OPCTL_SHUT_RECV, 0); 17505 } else { 17506 mp = tcp->tcp_ordrel_mp; 17507 tcp->tcp_ordrel_mp = NULL; 17508 putnext(q, mp); 17509 } 17510 } 17511 if (tcp->tcp_hard_binding) { 17512 tcp->tcp_hard_binding = B_FALSE; 17513 tcp->tcp_hard_bound = B_TRUE; 17514 } 17515 17516 if (tcp->tcp_ka_enabled) { 17517 tcp->tcp_ka_last_intrvl = 0; 17518 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 17519 MSEC_TO_TICK(tcp->tcp_ka_interval)); 17520 } 17521 17522 /* 17523 * At this point, eager is fully established and will 17524 * have the following references - 17525 * 17526 * 2 references for connection to exist (1 for TCP and 1 for IP). 17527 * 1 reference for the squeue which will be dropped by the squeue as 17528 * soon as this function returns. 17529 * There will be 1 additonal reference for being in classifier 17530 * hash list provided something bad hasn't happened. 17531 */ 17532 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 17533 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 17534 } 17535 17536 /* 17537 * The function called through squeue to get behind listener's perimeter to 17538 * send a deffered conn_ind. 17539 */ 17540 /* ARGSUSED */ 17541 void 17542 tcp_send_pending(void *arg, mblk_t *mp, void *arg2) 17543 { 17544 conn_t *connp = (conn_t *)arg; 17545 tcp_t *listener = connp->conn_tcp; 17546 struct T_conn_ind *conn_ind; 17547 tcp_t *tcp; 17548 17549 conn_ind = (struct T_conn_ind *)mp->b_rptr; 17550 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 17551 conn_ind->OPT_length); 17552 17553 if (listener->tcp_state != TCPS_LISTEN) { 17554 /* 17555 * If listener has closed, it would have caused a 17556 * a cleanup/blowoff to happen for the eager, so 17557 * we don't need to do anything more. 17558 */ 17559 freemsg(mp); 17560 return; 17561 } 17562 17563 tcp_ulp_newconn(connp, tcp->tcp_connp, mp); 17564 } 17565 17566 /* ARGSUSED */ 17567 static int 17568 tcp_accept_common(conn_t *lconnp, conn_t *econnp, cred_t *cr) 17569 { 17570 tcp_t *listener, *eager; 17571 mblk_t *opt_mp; 17572 struct tcp_options *tcpopt; 17573 17574 listener = lconnp->conn_tcp; 17575 ASSERT(listener->tcp_state == TCPS_LISTEN); 17576 eager = econnp->conn_tcp; 17577 ASSERT(eager->tcp_listener != NULL); 17578 17579 ASSERT(eager->tcp_rq != NULL); 17580 17581 opt_mp = allocb(sizeof (struct tcp_options), BPRI_HI); 17582 if (opt_mp == NULL) { 17583 return (-TPROTO); 17584 } 17585 bzero((char *)opt_mp->b_rptr, sizeof (struct tcp_options)); 17586 eager->tcp_issocket = B_TRUE; 17587 17588 econnp->conn_zoneid = listener->tcp_connp->conn_zoneid; 17589 econnp->conn_allzones = listener->tcp_connp->conn_allzones; 17590 ASSERT(econnp->conn_netstack == 17591 listener->tcp_connp->conn_netstack); 17592 ASSERT(eager->tcp_tcps == listener->tcp_tcps); 17593 17594 /* Put the ref for IP */ 17595 CONN_INC_REF(econnp); 17596 17597 /* 17598 * We should have minimum of 3 references on the conn 17599 * at this point. One each for TCP and IP and one for 17600 * the T_conn_ind that was sent up when the 3-way handshake 17601 * completed. In the normal case we would also have another 17602 * reference (making a total of 4) for the conn being in the 17603 * classifier hash list. However the eager could have received 17604 * an RST subsequently and tcp_closei_local could have removed 17605 * the eager from the classifier hash list, hence we can't 17606 * assert that reference. 17607 */ 17608 ASSERT(econnp->conn_ref >= 3); 17609 17610 opt_mp->b_datap->db_type = M_SETOPTS; 17611 opt_mp->b_wptr += sizeof (struct tcp_options); 17612 17613 /* 17614 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO 17615 * from listener to acceptor. 17616 */ 17617 tcpopt = (struct tcp_options *)opt_mp->b_rptr; 17618 tcpopt->to_flags = 0; 17619 17620 if (listener->tcp_bound_if != 0) { 17621 tcpopt->to_flags |= TCPOPT_BOUNDIF; 17622 tcpopt->to_boundif = listener->tcp_bound_if; 17623 } 17624 if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) { 17625 tcpopt->to_flags |= TCPOPT_RECVPKTINFO; 17626 } 17627 17628 mutex_enter(&listener->tcp_eager_lock); 17629 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 17630 17631 tcp_t *tail; 17632 tcp_t *tcp; 17633 mblk_t *mp1; 17634 17635 tcp = listener->tcp_eager_prev_q0; 17636 /* 17637 * listener->tcp_eager_prev_q0 points to the TAIL of the 17638 * deferred T_conn_ind queue. We need to get to the head 17639 * of the queue in order to send up T_conn_ind the same 17640 * order as how the 3WHS is completed. 17641 */ 17642 while (tcp != listener) { 17643 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0 && 17644 !tcp->tcp_kssl_pending) 17645 break; 17646 else 17647 tcp = tcp->tcp_eager_prev_q0; 17648 } 17649 /* None of the pending eagers can be sent up now */ 17650 if (tcp == listener) 17651 goto no_more_eagers; 17652 17653 mp1 = tcp->tcp_conn.tcp_eager_conn_ind; 17654 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 17655 /* Move from q0 to q */ 17656 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 17657 listener->tcp_conn_req_cnt_q0--; 17658 listener->tcp_conn_req_cnt_q++; 17659 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 17660 tcp->tcp_eager_prev_q0; 17661 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 17662 tcp->tcp_eager_next_q0; 17663 tcp->tcp_eager_prev_q0 = NULL; 17664 tcp->tcp_eager_next_q0 = NULL; 17665 tcp->tcp_conn_def_q0 = B_FALSE; 17666 17667 /* Make sure the tcp isn't in the list of droppables */ 17668 ASSERT(tcp->tcp_eager_next_drop_q0 == NULL && 17669 tcp->tcp_eager_prev_drop_q0 == NULL); 17670 17671 /* 17672 * Insert at end of the queue because sockfs sends 17673 * down T_CONN_RES in chronological order. Leaving 17674 * the older conn indications at front of the queue 17675 * helps reducing search time. 17676 */ 17677 tail = listener->tcp_eager_last_q; 17678 if (tail != NULL) { 17679 tail->tcp_eager_next_q = tcp; 17680 } else { 17681 listener->tcp_eager_next_q = tcp; 17682 } 17683 listener->tcp_eager_last_q = tcp; 17684 tcp->tcp_eager_next_q = NULL; 17685 17686 /* Need to get inside the listener perimeter */ 17687 CONN_INC_REF(listener->tcp_connp); 17688 SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, mp1, 17689 tcp_send_pending, listener->tcp_connp, SQ_FILL, 17690 SQTAG_TCP_SEND_PENDING); 17691 } 17692 no_more_eagers: 17693 tcp_eager_unlink(eager); 17694 mutex_exit(&listener->tcp_eager_lock); 17695 17696 /* 17697 * At this point, the eager is detached from the listener 17698 * but we still have an extra refs on eager (apart from the 17699 * usual tcp references). The ref was placed in tcp_rput_data 17700 * before sending the conn_ind in tcp_send_conn_ind. 17701 * The ref will be dropped in tcp_accept_finish(). 17702 */ 17703 SQUEUE_ENTER_ONE(econnp->conn_sqp, opt_mp, tcp_accept_finish, 17704 econnp, SQ_NODRAIN, SQTAG_TCP_ACCEPT_FINISH_Q0); 17705 return (0); 17706 } 17707 17708 int 17709 tcp_accept(sock_lower_handle_t lproto_handle, 17710 sock_lower_handle_t eproto_handle, sock_upper_handle_t sock_handle, 17711 cred_t *cr) 17712 { 17713 conn_t *lconnp, *econnp; 17714 tcp_t *listener, *eager; 17715 tcp_stack_t *tcps; 17716 17717 lconnp = (conn_t *)lproto_handle; 17718 listener = lconnp->conn_tcp; 17719 ASSERT(listener->tcp_state == TCPS_LISTEN); 17720 econnp = (conn_t *)eproto_handle; 17721 eager = econnp->conn_tcp; 17722 ASSERT(eager->tcp_listener != NULL); 17723 tcps = eager->tcp_tcps; 17724 17725 /* 17726 * It is OK to manipulate these fields outside the eager's squeue 17727 * because they will not start being used until tcp_accept_finish 17728 * has been called. 17729 */ 17730 ASSERT(lconnp->conn_upper_handle != NULL); 17731 ASSERT(econnp->conn_upper_handle == NULL); 17732 econnp->conn_upper_handle = sock_handle; 17733 econnp->conn_upcalls = lconnp->conn_upcalls; 17734 ASSERT(IPCL_IS_NONSTR(econnp)); 17735 /* 17736 * Create helper stream if it is a non-TPI TCP connection. 17737 */ 17738 if (ip_create_helper_stream(econnp, tcps->tcps_ldi_ident)) { 17739 ip1dbg(("tcp_accept: create of IP helper stream" 17740 " failed\n")); 17741 return (EPROTO); 17742 } 17743 eager->tcp_rq = econnp->conn_rq; 17744 eager->tcp_wq = econnp->conn_wq; 17745 17746 ASSERT(eager->tcp_rq != NULL); 17747 17748 return (tcp_accept_common(lconnp, econnp, cr)); 17749 } 17750 17751 17752 /* 17753 * This is the STREAMS entry point for T_CONN_RES coming down on 17754 * Acceptor STREAM when sockfs listener does accept processing. 17755 * Read the block comment on top of tcp_conn_request(). 17756 */ 17757 void 17758 tcp_tpi_accept(queue_t *q, mblk_t *mp) 17759 { 17760 queue_t *rq = RD(q); 17761 struct T_conn_res *conn_res; 17762 tcp_t *eager; 17763 tcp_t *listener; 17764 struct T_ok_ack *ok; 17765 t_scalar_t PRIM_type; 17766 conn_t *econnp; 17767 cred_t *cr; 17768 17769 ASSERT(DB_TYPE(mp) == M_PROTO); 17770 17771 /* 17772 * All Solaris components should pass a db_credp 17773 * for this TPI message, hence we ASSERT. 17774 * But in case there is some other M_PROTO that looks 17775 * like a TPI message sent by some other kernel 17776 * component, we check and return an error. 17777 */ 17778 cr = msg_getcred(mp, NULL); 17779 ASSERT(cr != NULL); 17780 if (cr == NULL) { 17781 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL); 17782 if (mp != NULL) 17783 putnext(rq, mp); 17784 return; 17785 } 17786 conn_res = (struct T_conn_res *)mp->b_rptr; 17787 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 17788 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_res)) { 17789 mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); 17790 if (mp != NULL) 17791 putnext(rq, mp); 17792 return; 17793 } 17794 switch (conn_res->PRIM_type) { 17795 case O_T_CONN_RES: 17796 case T_CONN_RES: 17797 /* 17798 * We pass up an err ack if allocb fails. This will 17799 * cause sockfs to issue a T_DISCON_REQ which will cause 17800 * tcp_eager_blowoff to be called. sockfs will then call 17801 * rq->q_qinfo->qi_qclose to cleanup the acceptor stream. 17802 * we need to do the allocb up here because we have to 17803 * make sure rq->q_qinfo->qi_qclose still points to the 17804 * correct function (tcp_tpi_close_accept) in case allocb 17805 * fails. 17806 */ 17807 bcopy(mp->b_rptr + conn_res->OPT_offset, 17808 &eager, conn_res->OPT_length); 17809 PRIM_type = conn_res->PRIM_type; 17810 mp->b_datap->db_type = M_PCPROTO; 17811 mp->b_wptr = mp->b_rptr + sizeof (struct T_ok_ack); 17812 ok = (struct T_ok_ack *)mp->b_rptr; 17813 ok->PRIM_type = T_OK_ACK; 17814 ok->CORRECT_prim = PRIM_type; 17815 econnp = eager->tcp_connp; 17816 econnp->conn_dev = (dev_t)RD(q)->q_ptr; 17817 econnp->conn_minor_arena = (vmem_t *)(WR(q)->q_ptr); 17818 eager->tcp_rq = rq; 17819 eager->tcp_wq = q; 17820 rq->q_ptr = econnp; 17821 rq->q_qinfo = &tcp_rinitv4; /* No open - same as rinitv6 */ 17822 q->q_ptr = econnp; 17823 q->q_qinfo = &tcp_winit; 17824 listener = eager->tcp_listener; 17825 17826 if (tcp_accept_common(listener->tcp_connp, 17827 econnp, cr) < 0) { 17828 mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); 17829 if (mp != NULL) 17830 putnext(rq, mp); 17831 return; 17832 } 17833 17834 /* 17835 * Send the new local address also up to sockfs. There 17836 * should already be enough space in the mp that came 17837 * down from soaccept(). 17838 */ 17839 if (eager->tcp_family == AF_INET) { 17840 sin_t *sin; 17841 17842 ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= 17843 (sizeof (struct T_ok_ack) + sizeof (sin_t))); 17844 sin = (sin_t *)mp->b_wptr; 17845 mp->b_wptr += sizeof (sin_t); 17846 sin->sin_family = AF_INET; 17847 sin->sin_port = eager->tcp_lport; 17848 sin->sin_addr.s_addr = eager->tcp_ipha->ipha_src; 17849 } else { 17850 sin6_t *sin6; 17851 17852 ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= 17853 sizeof (struct T_ok_ack) + sizeof (sin6_t)); 17854 sin6 = (sin6_t *)mp->b_wptr; 17855 mp->b_wptr += sizeof (sin6_t); 17856 sin6->sin6_family = AF_INET6; 17857 sin6->sin6_port = eager->tcp_lport; 17858 if (eager->tcp_ipversion == IPV4_VERSION) { 17859 sin6->sin6_flowinfo = 0; 17860 IN6_IPADDR_TO_V4MAPPED( 17861 eager->tcp_ipha->ipha_src, 17862 &sin6->sin6_addr); 17863 } else { 17864 ASSERT(eager->tcp_ip6h != NULL); 17865 sin6->sin6_flowinfo = 17866 eager->tcp_ip6h->ip6_vcf & 17867 ~IPV6_VERS_AND_FLOW_MASK; 17868 sin6->sin6_addr = eager->tcp_ip6h->ip6_src; 17869 } 17870 sin6->sin6_scope_id = 0; 17871 sin6->__sin6_src_id = 0; 17872 } 17873 17874 putnext(rq, mp); 17875 return; 17876 default: 17877 mp = mi_tpi_err_ack_alloc(mp, TNOTSUPPORT, 0); 17878 if (mp != NULL) 17879 putnext(rq, mp); 17880 return; 17881 } 17882 } 17883 17884 static int 17885 tcp_do_getsockname(tcp_t *tcp, struct sockaddr *sa, uint_t *salenp) 17886 { 17887 sin_t *sin = (sin_t *)sa; 17888 sin6_t *sin6 = (sin6_t *)sa; 17889 17890 switch (tcp->tcp_family) { 17891 case AF_INET: 17892 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 17893 17894 if (*salenp < sizeof (sin_t)) 17895 return (EINVAL); 17896 17897 *sin = sin_null; 17898 sin->sin_family = AF_INET; 17899 if (tcp->tcp_state >= TCPS_BOUND) { 17900 sin->sin_port = tcp->tcp_lport; 17901 sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src; 17902 } 17903 *salenp = sizeof (sin_t); 17904 break; 17905 17906 case AF_INET6: 17907 if (*salenp < sizeof (sin6_t)) 17908 return (EINVAL); 17909 17910 *sin6 = sin6_null; 17911 sin6->sin6_family = AF_INET6; 17912 if (tcp->tcp_state >= TCPS_BOUND) { 17913 sin6->sin6_port = tcp->tcp_lport; 17914 mutex_enter(&tcp->tcp_connp->conn_lock); 17915 if (tcp->tcp_ipversion == IPV4_VERSION) { 17916 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 17917 &sin6->sin6_addr); 17918 } else { 17919 sin6->sin6_addr = tcp->tcp_ip6h->ip6_src; 17920 } 17921 mutex_exit(&tcp->tcp_connp->conn_lock); 17922 } 17923 *salenp = sizeof (sin6_t); 17924 break; 17925 } 17926 17927 return (0); 17928 } 17929 17930 static int 17931 tcp_do_getpeername(tcp_t *tcp, struct sockaddr *sa, uint_t *salenp) 17932 { 17933 sin_t *sin = (sin_t *)sa; 17934 sin6_t *sin6 = (sin6_t *)sa; 17935 17936 if (tcp->tcp_state < TCPS_SYN_RCVD) 17937 return (ENOTCONN); 17938 17939 switch (tcp->tcp_family) { 17940 case AF_INET: 17941 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 17942 17943 if (*salenp < sizeof (sin_t)) 17944 return (EINVAL); 17945 17946 *sin = sin_null; 17947 sin->sin_family = AF_INET; 17948 sin->sin_port = tcp->tcp_fport; 17949 IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_remote_v6, 17950 sin->sin_addr.s_addr); 17951 *salenp = sizeof (sin_t); 17952 break; 17953 17954 case AF_INET6: 17955 if (*salenp < sizeof (sin6_t)) 17956 return (EINVAL); 17957 17958 *sin6 = sin6_null; 17959 sin6->sin6_family = AF_INET6; 17960 sin6->sin6_port = tcp->tcp_fport; 17961 sin6->sin6_addr = tcp->tcp_remote_v6; 17962 mutex_enter(&tcp->tcp_connp->conn_lock); 17963 if (tcp->tcp_ipversion == IPV6_VERSION) { 17964 sin6->sin6_flowinfo = tcp->tcp_ip6h->ip6_vcf & 17965 ~IPV6_VERS_AND_FLOW_MASK; 17966 } 17967 mutex_exit(&tcp->tcp_connp->conn_lock); 17968 *salenp = sizeof (sin6_t); 17969 break; 17970 } 17971 17972 return (0); 17973 } 17974 17975 /* 17976 * Handle special out-of-band ioctl requests (see PSARC/2008/265). 17977 */ 17978 static void 17979 tcp_wput_cmdblk(queue_t *q, mblk_t *mp) 17980 { 17981 void *data; 17982 mblk_t *datamp = mp->b_cont; 17983 tcp_t *tcp = Q_TO_TCP(q); 17984 cmdblk_t *cmdp = (cmdblk_t *)mp->b_rptr; 17985 17986 if (datamp == NULL || MBLKL(datamp) < cmdp->cb_len) { 17987 cmdp->cb_error = EPROTO; 17988 qreply(q, mp); 17989 return; 17990 } 17991 17992 data = datamp->b_rptr; 17993 17994 switch (cmdp->cb_cmd) { 17995 case TI_GETPEERNAME: 17996 cmdp->cb_error = tcp_do_getpeername(tcp, data, &cmdp->cb_len); 17997 break; 17998 case TI_GETMYNAME: 17999 cmdp->cb_error = tcp_do_getsockname(tcp, data, &cmdp->cb_len); 18000 break; 18001 default: 18002 cmdp->cb_error = EINVAL; 18003 break; 18004 } 18005 18006 qreply(q, mp); 18007 } 18008 18009 void 18010 tcp_wput(queue_t *q, mblk_t *mp) 18011 { 18012 conn_t *connp = Q_TO_CONN(q); 18013 tcp_t *tcp; 18014 void (*output_proc)(); 18015 t_scalar_t type; 18016 uchar_t *rptr; 18017 struct iocblk *iocp; 18018 size_t size; 18019 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 18020 18021 ASSERT(connp->conn_ref >= 2); 18022 18023 switch (DB_TYPE(mp)) { 18024 case M_DATA: 18025 tcp = connp->conn_tcp; 18026 ASSERT(tcp != NULL); 18027 18028 size = msgdsize(mp); 18029 18030 mutex_enter(&tcp->tcp_non_sq_lock); 18031 tcp->tcp_squeue_bytes += size; 18032 if (TCP_UNSENT_BYTES(tcp) > tcp->tcp_xmit_hiwater) { 18033 tcp_setqfull(tcp); 18034 } 18035 mutex_exit(&tcp->tcp_non_sq_lock); 18036 18037 CONN_INC_REF(connp); 18038 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_output, connp, 18039 tcp_squeue_flag, SQTAG_TCP_OUTPUT); 18040 return; 18041 18042 case M_CMD: 18043 tcp_wput_cmdblk(q, mp); 18044 return; 18045 18046 case M_PROTO: 18047 case M_PCPROTO: 18048 /* 18049 * if it is a snmp message, don't get behind the squeue 18050 */ 18051 tcp = connp->conn_tcp; 18052 rptr = mp->b_rptr; 18053 if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { 18054 type = ((union T_primitives *)rptr)->type; 18055 } else { 18056 if (tcp->tcp_debug) { 18057 (void) strlog(TCP_MOD_ID, 0, 1, 18058 SL_ERROR|SL_TRACE, 18059 "tcp_wput_proto, dropping one..."); 18060 } 18061 freemsg(mp); 18062 return; 18063 } 18064 if (type == T_SVR4_OPTMGMT_REQ) { 18065 /* 18066 * All Solaris components should pass a db_credp 18067 * for this TPI message, hence we ASSERT. 18068 * But in case there is some other M_PROTO that looks 18069 * like a TPI message sent by some other kernel 18070 * component, we check and return an error. 18071 */ 18072 cred_t *cr = msg_getcred(mp, NULL); 18073 18074 ASSERT(cr != NULL); 18075 if (cr == NULL) { 18076 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 18077 return; 18078 } 18079 if (snmpcom_req(q, mp, tcp_snmp_set, ip_snmp_get, 18080 cr)) { 18081 /* 18082 * This was a SNMP request 18083 */ 18084 return; 18085 } else { 18086 output_proc = tcp_wput_proto; 18087 } 18088 } else { 18089 output_proc = tcp_wput_proto; 18090 } 18091 break; 18092 case M_IOCTL: 18093 /* 18094 * Most ioctls can be processed right away without going via 18095 * squeues - process them right here. Those that do require 18096 * squeue (currently TCP_IOC_DEFAULT_Q and _SIOCSOCKFALLBACK) 18097 * are processed by tcp_wput_ioctl(). 18098 */ 18099 iocp = (struct iocblk *)mp->b_rptr; 18100 tcp = connp->conn_tcp; 18101 18102 switch (iocp->ioc_cmd) { 18103 case TCP_IOC_ABORT_CONN: 18104 tcp_ioctl_abort_conn(q, mp); 18105 return; 18106 case TI_GETPEERNAME: 18107 case TI_GETMYNAME: 18108 mi_copyin(q, mp, NULL, 18109 SIZEOF_STRUCT(strbuf, iocp->ioc_flag)); 18110 return; 18111 case ND_SET: 18112 /* nd_getset does the necessary checks */ 18113 case ND_GET: 18114 if (!nd_getset(q, tcps->tcps_g_nd, mp)) { 18115 CALL_IP_WPUT(connp, q, mp); 18116 return; 18117 } 18118 qreply(q, mp); 18119 return; 18120 case TCP_IOC_DEFAULT_Q: 18121 /* 18122 * Wants to be the default wq. Check the credentials 18123 * first, the rest is executed via squeue. 18124 */ 18125 if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) { 18126 iocp->ioc_error = EPERM; 18127 iocp->ioc_count = 0; 18128 mp->b_datap->db_type = M_IOCACK; 18129 qreply(q, mp); 18130 return; 18131 } 18132 output_proc = tcp_wput_ioctl; 18133 break; 18134 default: 18135 output_proc = tcp_wput_ioctl; 18136 break; 18137 } 18138 break; 18139 default: 18140 output_proc = tcp_wput_nondata; 18141 break; 18142 } 18143 18144 CONN_INC_REF(connp); 18145 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, output_proc, connp, 18146 tcp_squeue_flag, SQTAG_TCP_WPUT_OTHER); 18147 } 18148 18149 /* 18150 * Initial STREAMS write side put() procedure for sockets. It tries to 18151 * handle the T_CAPABILITY_REQ which sockfs sends down while setting 18152 * up the socket without using the squeue. Non T_CAPABILITY_REQ messages 18153 * are handled by tcp_wput() as usual. 18154 * 18155 * All further messages will also be handled by tcp_wput() because we cannot 18156 * be sure that the above short cut is safe later. 18157 */ 18158 static void 18159 tcp_wput_sock(queue_t *wq, mblk_t *mp) 18160 { 18161 conn_t *connp = Q_TO_CONN(wq); 18162 tcp_t *tcp = connp->conn_tcp; 18163 struct T_capability_req *car = (struct T_capability_req *)mp->b_rptr; 18164 18165 ASSERT(wq->q_qinfo == &tcp_sock_winit); 18166 wq->q_qinfo = &tcp_winit; 18167 18168 ASSERT(IPCL_IS_TCP(connp)); 18169 ASSERT(TCP_IS_SOCKET(tcp)); 18170 18171 if (DB_TYPE(mp) == M_PCPROTO && 18172 MBLKL(mp) == sizeof (struct T_capability_req) && 18173 car->PRIM_type == T_CAPABILITY_REQ) { 18174 tcp_capability_req(tcp, mp); 18175 return; 18176 } 18177 18178 tcp_wput(wq, mp); 18179 } 18180 18181 /* ARGSUSED */ 18182 static void 18183 tcp_wput_fallback(queue_t *wq, mblk_t *mp) 18184 { 18185 #ifdef DEBUG 18186 cmn_err(CE_CONT, "tcp_wput_fallback: Message during fallback \n"); 18187 #endif 18188 freemsg(mp); 18189 } 18190 18191 static boolean_t 18192 tcp_zcopy_check(tcp_t *tcp) 18193 { 18194 conn_t *connp = tcp->tcp_connp; 18195 ire_t *ire; 18196 boolean_t zc_enabled = B_FALSE; 18197 tcp_stack_t *tcps = tcp->tcp_tcps; 18198 18199 if (do_tcpzcopy == 2) 18200 zc_enabled = B_TRUE; 18201 else if (tcp->tcp_ipversion == IPV4_VERSION && 18202 IPCL_IS_CONNECTED(connp) && 18203 (connp->conn_flags & IPCL_CHECK_POLICY) == 0 && 18204 connp->conn_dontroute == 0 && 18205 !connp->conn_nexthop_set && 18206 connp->conn_outgoing_ill == NULL && 18207 do_tcpzcopy == 1) { 18208 /* 18209 * the checks above closely resemble the fast path checks 18210 * in tcp_send_data(). 18211 */ 18212 mutex_enter(&connp->conn_lock); 18213 ire = connp->conn_ire_cache; 18214 ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT)); 18215 if (ire != NULL && !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18216 IRE_REFHOLD(ire); 18217 if (ire->ire_stq != NULL) { 18218 ill_t *ill = (ill_t *)ire->ire_stq->q_ptr; 18219 18220 zc_enabled = ill && (ill->ill_capabilities & 18221 ILL_CAPAB_ZEROCOPY) && 18222 (ill->ill_zerocopy_capab-> 18223 ill_zerocopy_flags != 0); 18224 } 18225 IRE_REFRELE(ire); 18226 } 18227 mutex_exit(&connp->conn_lock); 18228 } 18229 tcp->tcp_snd_zcopy_on = zc_enabled; 18230 if (!TCP_IS_DETACHED(tcp)) { 18231 if (zc_enabled) { 18232 (void) proto_set_tx_copyopt(tcp->tcp_rq, connp, 18233 ZCVMSAFE); 18234 TCP_STAT(tcps, tcp_zcopy_on); 18235 } else { 18236 (void) proto_set_tx_copyopt(tcp->tcp_rq, connp, 18237 ZCVMUNSAFE); 18238 TCP_STAT(tcps, tcp_zcopy_off); 18239 } 18240 } 18241 return (zc_enabled); 18242 } 18243 18244 static mblk_t * 18245 tcp_zcopy_disable(tcp_t *tcp, mblk_t *bp) 18246 { 18247 tcp_stack_t *tcps = tcp->tcp_tcps; 18248 18249 if (do_tcpzcopy == 2) 18250 return (bp); 18251 else if (tcp->tcp_snd_zcopy_on) { 18252 tcp->tcp_snd_zcopy_on = B_FALSE; 18253 if (!TCP_IS_DETACHED(tcp)) { 18254 (void) proto_set_tx_copyopt(tcp->tcp_rq, tcp->tcp_connp, 18255 ZCVMUNSAFE); 18256 TCP_STAT(tcps, tcp_zcopy_disable); 18257 } 18258 } 18259 return (tcp_zcopy_backoff(tcp, bp, 0)); 18260 } 18261 18262 /* 18263 * Backoff from a zero-copy mblk by copying data to a new mblk and freeing 18264 * the original desballoca'ed segmapped mblk. 18265 */ 18266 static mblk_t * 18267 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, int fix_xmitlist) 18268 { 18269 mblk_t *head, *tail, *nbp; 18270 tcp_stack_t *tcps = tcp->tcp_tcps; 18271 18272 if (IS_VMLOANED_MBLK(bp)) { 18273 TCP_STAT(tcps, tcp_zcopy_backoff); 18274 if ((head = copyb(bp)) == NULL) { 18275 /* fail to backoff; leave it for the next backoff */ 18276 tcp->tcp_xmit_zc_clean = B_FALSE; 18277 return (bp); 18278 } 18279 if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 18280 if (fix_xmitlist) 18281 tcp_zcopy_notify(tcp); 18282 else 18283 head->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; 18284 } 18285 nbp = bp->b_cont; 18286 if (fix_xmitlist) { 18287 head->b_prev = bp->b_prev; 18288 head->b_next = bp->b_next; 18289 if (tcp->tcp_xmit_tail == bp) 18290 tcp->tcp_xmit_tail = head; 18291 } 18292 bp->b_next = NULL; 18293 bp->b_prev = NULL; 18294 freeb(bp); 18295 } else { 18296 head = bp; 18297 nbp = bp->b_cont; 18298 } 18299 tail = head; 18300 while (nbp) { 18301 if (IS_VMLOANED_MBLK(nbp)) { 18302 TCP_STAT(tcps, tcp_zcopy_backoff); 18303 if ((tail->b_cont = copyb(nbp)) == NULL) { 18304 tcp->tcp_xmit_zc_clean = B_FALSE; 18305 tail->b_cont = nbp; 18306 return (head); 18307 } 18308 tail = tail->b_cont; 18309 if (nbp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 18310 if (fix_xmitlist) 18311 tcp_zcopy_notify(tcp); 18312 else 18313 tail->b_datap->db_struioflag |= 18314 STRUIO_ZCNOTIFY; 18315 } 18316 bp = nbp; 18317 nbp = nbp->b_cont; 18318 if (fix_xmitlist) { 18319 tail->b_prev = bp->b_prev; 18320 tail->b_next = bp->b_next; 18321 if (tcp->tcp_xmit_tail == bp) 18322 tcp->tcp_xmit_tail = tail; 18323 } 18324 bp->b_next = NULL; 18325 bp->b_prev = NULL; 18326 freeb(bp); 18327 } else { 18328 tail->b_cont = nbp; 18329 tail = nbp; 18330 nbp = nbp->b_cont; 18331 } 18332 } 18333 if (fix_xmitlist) { 18334 tcp->tcp_xmit_last = tail; 18335 tcp->tcp_xmit_zc_clean = B_TRUE; 18336 } 18337 return (head); 18338 } 18339 18340 static void 18341 tcp_zcopy_notify(tcp_t *tcp) 18342 { 18343 struct stdata *stp; 18344 conn_t *connp; 18345 18346 if (tcp->tcp_detached) 18347 return; 18348 connp = tcp->tcp_connp; 18349 if (IPCL_IS_NONSTR(connp)) { 18350 (*connp->conn_upcalls->su_zcopy_notify) 18351 (connp->conn_upper_handle); 18352 return; 18353 } 18354 stp = STREAM(tcp->tcp_rq); 18355 mutex_enter(&stp->sd_lock); 18356 stp->sd_flag |= STZCNOTIFY; 18357 cv_broadcast(&stp->sd_zcopy_wait); 18358 mutex_exit(&stp->sd_lock); 18359 } 18360 18361 static boolean_t 18362 tcp_send_find_ire(tcp_t *tcp, ipaddr_t *dst, ire_t **irep) 18363 { 18364 ire_t *ire; 18365 conn_t *connp = tcp->tcp_connp; 18366 tcp_stack_t *tcps = tcp->tcp_tcps; 18367 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 18368 18369 mutex_enter(&connp->conn_lock); 18370 ire = connp->conn_ire_cache; 18371 ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT)); 18372 18373 if ((ire != NULL) && 18374 (((dst != NULL) && (ire->ire_addr == *dst)) || ((dst == NULL) && 18375 IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, &tcp->tcp_ip6h->ip6_dst))) && 18376 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18377 IRE_REFHOLD(ire); 18378 mutex_exit(&connp->conn_lock); 18379 } else { 18380 boolean_t cached = B_FALSE; 18381 ts_label_t *tsl; 18382 18383 /* force a recheck later on */ 18384 tcp->tcp_ire_ill_check_done = B_FALSE; 18385 18386 TCP_DBGSTAT(tcps, tcp_ire_null1); 18387 connp->conn_ire_cache = NULL; 18388 mutex_exit(&connp->conn_lock); 18389 18390 if (ire != NULL) 18391 IRE_REFRELE_NOTR(ire); 18392 18393 tsl = crgetlabel(CONN_CRED(connp)); 18394 ire = (dst ? 18395 ire_cache_lookup(*dst, connp->conn_zoneid, tsl, ipst) : 18396 ire_cache_lookup_v6(&tcp->tcp_ip6h->ip6_dst, 18397 connp->conn_zoneid, tsl, ipst)); 18398 18399 if (ire == NULL) { 18400 TCP_STAT(tcps, tcp_ire_null); 18401 return (B_FALSE); 18402 } 18403 18404 IRE_REFHOLD_NOTR(ire); 18405 18406 mutex_enter(&connp->conn_lock); 18407 if (CONN_CACHE_IRE(connp)) { 18408 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 18409 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18410 TCP_CHECK_IREINFO(tcp, ire); 18411 connp->conn_ire_cache = ire; 18412 cached = B_TRUE; 18413 } 18414 rw_exit(&ire->ire_bucket->irb_lock); 18415 } 18416 mutex_exit(&connp->conn_lock); 18417 18418 /* 18419 * We can continue to use the ire but since it was 18420 * not cached, we should drop the extra reference. 18421 */ 18422 if (!cached) 18423 IRE_REFRELE_NOTR(ire); 18424 18425 /* 18426 * Rampart note: no need to select a new label here, since 18427 * labels are not allowed to change during the life of a TCP 18428 * connection. 18429 */ 18430 } 18431 18432 *irep = ire; 18433 18434 return (B_TRUE); 18435 } 18436 18437 /* 18438 * Called from tcp_send() or tcp_send_data() to find workable IRE. 18439 * 18440 * 0 = success; 18441 * 1 = failed to find ire and ill. 18442 */ 18443 static boolean_t 18444 tcp_send_find_ire_ill(tcp_t *tcp, mblk_t *mp, ire_t **irep, ill_t **illp) 18445 { 18446 ipha_t *ipha; 18447 ipaddr_t dst; 18448 ire_t *ire; 18449 ill_t *ill; 18450 mblk_t *ire_fp_mp; 18451 tcp_stack_t *tcps = tcp->tcp_tcps; 18452 18453 if (mp != NULL) 18454 ipha = (ipha_t *)mp->b_rptr; 18455 else 18456 ipha = tcp->tcp_ipha; 18457 dst = ipha->ipha_dst; 18458 18459 if (!tcp_send_find_ire(tcp, &dst, &ire)) 18460 return (B_FALSE); 18461 18462 if ((ire->ire_flags & RTF_MULTIRT) || 18463 (ire->ire_stq == NULL) || 18464 (ire->ire_nce == NULL) || 18465 ((ire_fp_mp = ire->ire_nce->nce_fp_mp) == NULL) || 18466 ((mp != NULL) && (ire->ire_max_frag < ntohs(ipha->ipha_length) || 18467 MBLKL(ire_fp_mp) > MBLKHEAD(mp)))) { 18468 TCP_STAT(tcps, tcp_ip_ire_send); 18469 IRE_REFRELE(ire); 18470 return (B_FALSE); 18471 } 18472 18473 ill = ire_to_ill(ire); 18474 ASSERT(ill != NULL); 18475 18476 if (!tcp->tcp_ire_ill_check_done) { 18477 tcp_ire_ill_check(tcp, ire, ill, B_TRUE); 18478 tcp->tcp_ire_ill_check_done = B_TRUE; 18479 } 18480 18481 *irep = ire; 18482 *illp = ill; 18483 18484 return (B_TRUE); 18485 } 18486 18487 static void 18488 tcp_send_data(tcp_t *tcp, queue_t *q, mblk_t *mp) 18489 { 18490 ipha_t *ipha; 18491 ipaddr_t src; 18492 ipaddr_t dst; 18493 uint32_t cksum; 18494 ire_t *ire; 18495 uint16_t *up; 18496 ill_t *ill; 18497 conn_t *connp = tcp->tcp_connp; 18498 uint32_t hcksum_txflags = 0; 18499 mblk_t *ire_fp_mp; 18500 uint_t ire_fp_mp_len; 18501 tcp_stack_t *tcps = tcp->tcp_tcps; 18502 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 18503 cred_t *cr; 18504 pid_t cpid; 18505 18506 ASSERT(DB_TYPE(mp) == M_DATA); 18507 18508 /* 18509 * Here we need to handle the overloading of the cred_t for 18510 * both getpeerucred and TX. 18511 * If this is a SYN then the caller already set db_credp so 18512 * that getpeerucred will work. But if TX is in use we might have 18513 * a conn_effective_cred which is different, and we need to use that 18514 * cred to make TX use the correct label and label dependent route. 18515 */ 18516 if (is_system_labeled()) { 18517 cr = msg_getcred(mp, &cpid); 18518 if (cr == NULL || connp->conn_effective_cred != NULL) 18519 mblk_setcred(mp, CONN_CRED(connp), cpid); 18520 } 18521 18522 ipha = (ipha_t *)mp->b_rptr; 18523 src = ipha->ipha_src; 18524 dst = ipha->ipha_dst; 18525 18526 ASSERT(q != NULL); 18527 DTRACE_PROBE2(tcp__trace__send, mblk_t *, mp, tcp_t *, tcp); 18528 18529 /* 18530 * Drop off fast path for IPv6 and also if options are present or 18531 * we need to resolve a TS label. 18532 */ 18533 if (tcp->tcp_ipversion != IPV4_VERSION || 18534 !IPCL_IS_CONNECTED(connp) || 18535 !CONN_IS_LSO_MD_FASTPATH(connp) || 18536 (connp->conn_flags & IPCL_CHECK_POLICY) != 0 || 18537 !connp->conn_ulp_labeled || 18538 ipha->ipha_ident == IP_HDR_INCLUDED || 18539 ipha->ipha_version_and_hdr_length != IP_SIMPLE_HDR_VERSION || 18540 IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 18541 if (tcp->tcp_snd_zcopy_aware) 18542 mp = tcp_zcopy_disable(tcp, mp); 18543 TCP_STAT(tcps, tcp_ip_send); 18544 CALL_IP_WPUT(connp, q, mp); 18545 return; 18546 } 18547 18548 if (!tcp_send_find_ire_ill(tcp, mp, &ire, &ill)) { 18549 if (tcp->tcp_snd_zcopy_aware) 18550 mp = tcp_zcopy_backoff(tcp, mp, 0); 18551 CALL_IP_WPUT(connp, q, mp); 18552 return; 18553 } 18554 ire_fp_mp = ire->ire_nce->nce_fp_mp; 18555 ire_fp_mp_len = MBLKL(ire_fp_mp); 18556 18557 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 18558 ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 18559 #ifndef _BIG_ENDIAN 18560 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 18561 #endif 18562 18563 /* 18564 * Check to see if we need to re-enable LSO/MDT for this connection 18565 * because it was previously disabled due to changes in the ill; 18566 * note that by doing it here, this re-enabling only applies when 18567 * the packet is not dispatched through CALL_IP_WPUT(). 18568 * 18569 * That means for IPv4, it is worth re-enabling LSO/MDT for the fastpath 18570 * case, since that's how we ended up here. For IPv6, we do the 18571 * re-enabling work in ip_xmit_v6(), albeit indirectly via squeue. 18572 */ 18573 if (connp->conn_lso_ok && !tcp->tcp_lso && ILL_LSO_TCP_USABLE(ill)) { 18574 /* 18575 * Restore LSO for this connection, so that next time around 18576 * it is eligible to go through tcp_lsosend() path again. 18577 */ 18578 TCP_STAT(tcps, tcp_lso_enabled); 18579 tcp->tcp_lso = B_TRUE; 18580 ip1dbg(("tcp_send_data: reenabling LSO for connp %p on " 18581 "interface %s\n", (void *)connp, ill->ill_name)); 18582 } else if (connp->conn_mdt_ok && !tcp->tcp_mdt && ILL_MDT_USABLE(ill)) { 18583 /* 18584 * Restore MDT for this connection, so that next time around 18585 * it is eligible to go through tcp_multisend() path again. 18586 */ 18587 TCP_STAT(tcps, tcp_mdt_conn_resumed1); 18588 tcp->tcp_mdt = B_TRUE; 18589 ip1dbg(("tcp_send_data: reenabling MDT for connp %p on " 18590 "interface %s\n", (void *)connp, ill->ill_name)); 18591 } 18592 18593 if (tcp->tcp_snd_zcopy_aware) { 18594 if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 || 18595 (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0)) 18596 mp = tcp_zcopy_disable(tcp, mp); 18597 /* 18598 * we shouldn't need to reset ipha as the mp containing 18599 * ipha should never be a zero-copy mp. 18600 */ 18601 } 18602 18603 if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) { 18604 ASSERT(ill->ill_hcksum_capab != NULL); 18605 hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags; 18606 } 18607 18608 /* pseudo-header checksum (do it in parts for IP header checksum) */ 18609 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 18610 18611 ASSERT(ipha->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION); 18612 up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH); 18613 18614 IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up, 18615 IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum); 18616 18617 /* Software checksum? */ 18618 if (DB_CKSUMFLAGS(mp) == 0) { 18619 TCP_STAT(tcps, tcp_out_sw_cksum); 18620 TCP_STAT_UPDATE(tcps, tcp_out_sw_cksum_bytes, 18621 ntohs(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH); 18622 } 18623 18624 /* Calculate IP header checksum if hardware isn't capable */ 18625 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 18626 IP_HDR_CKSUM(ipha, cksum, ((uint32_t *)ipha)[0], 18627 ((uint16_t *)ipha)[4]); 18628 } 18629 18630 ASSERT(DB_TYPE(ire_fp_mp) == M_DATA); 18631 mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len; 18632 bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len); 18633 18634 UPDATE_OB_PKT_COUNT(ire); 18635 ire->ire_last_used_time = lbolt; 18636 18637 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 18638 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 18639 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 18640 ntohs(ipha->ipha_length)); 18641 18642 DTRACE_PROBE4(ip4__physical__out__start, 18643 ill_t *, NULL, ill_t *, ill, ipha_t *, ipha, mblk_t *, mp); 18644 FW_HOOKS(ipst->ips_ip4_physical_out_event, 18645 ipst->ips_ipv4firewall_physical_out, 18646 NULL, ill, ipha, mp, mp, 0, ipst); 18647 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 18648 DTRACE_IP_FASTPATH(mp, ipha, ill, ipha, NULL); 18649 18650 if (mp != NULL) { 18651 if (ipst->ips_ip4_observe.he_interested) { 18652 zoneid_t szone; 18653 18654 /* 18655 * Both of these functions expect b_rptr to be 18656 * where the IP header starts, so advance past the 18657 * link layer header if present. 18658 */ 18659 mp->b_rptr += ire_fp_mp_len; 18660 szone = ip_get_zoneid_v4(ipha->ipha_src, mp, 18661 ipst, ALL_ZONES); 18662 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, 18663 ALL_ZONES, ill, ipst); 18664 mp->b_rptr -= ire_fp_mp_len; 18665 } 18666 18667 ILL_SEND_TX(ill, ire, connp, mp, 0, NULL); 18668 } 18669 18670 IRE_REFRELE(ire); 18671 } 18672 18673 /* 18674 * This handles the case when the receiver has shrunk its win. Per RFC 1122 18675 * if the receiver shrinks the window, i.e. moves the right window to the 18676 * left, the we should not send new data, but should retransmit normally the 18677 * old unacked data between suna and suna + swnd. We might has sent data 18678 * that is now outside the new window, pretend that we didn't send it. 18679 */ 18680 static void 18681 tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_count) 18682 { 18683 uint32_t snxt = tcp->tcp_snxt; 18684 18685 ASSERT(shrunk_count > 0); 18686 18687 if (!tcp->tcp_is_wnd_shrnk) { 18688 tcp->tcp_snxt_shrunk = snxt; 18689 tcp->tcp_is_wnd_shrnk = B_TRUE; 18690 } else if (SEQ_GT(snxt, tcp->tcp_snxt_shrunk)) { 18691 tcp->tcp_snxt_shrunk = snxt; 18692 } 18693 18694 /* Pretend we didn't send the data outside the window */ 18695 snxt -= shrunk_count; 18696 18697 /* Reset all the values per the now shrunk window */ 18698 tcp_update_xmit_tail(tcp, snxt); 18699 tcp->tcp_unsent += shrunk_count; 18700 18701 /* 18702 * If the SACK option is set, delete the entire list of 18703 * notsack'ed blocks. 18704 */ 18705 if (tcp->tcp_sack_info != NULL) { 18706 if (tcp->tcp_notsack_list != NULL) 18707 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp); 18708 } 18709 18710 if (tcp->tcp_suna == tcp->tcp_snxt && tcp->tcp_swnd == 0) 18711 /* 18712 * Make sure the timer is running so that we will probe a zero 18713 * window. 18714 */ 18715 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 18716 } 18717 18718 18719 /* 18720 * The TCP normal data output path. 18721 * NOTE: the logic of the fast path is duplicated from this function. 18722 */ 18723 static void 18724 tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent) 18725 { 18726 int len; 18727 mblk_t *local_time; 18728 mblk_t *mp1; 18729 uint32_t snxt; 18730 int tail_unsent; 18731 int tcpstate; 18732 int usable = 0; 18733 mblk_t *xmit_tail; 18734 queue_t *q = tcp->tcp_wq; 18735 int32_t mss; 18736 int32_t num_sack_blk = 0; 18737 int32_t tcp_hdr_len; 18738 int32_t tcp_tcp_hdr_len; 18739 int mdt_thres; 18740 int rc; 18741 tcp_stack_t *tcps = tcp->tcp_tcps; 18742 ip_stack_t *ipst; 18743 18744 tcpstate = tcp->tcp_state; 18745 if (mp == NULL) { 18746 /* 18747 * tcp_wput_data() with NULL mp should only be called when 18748 * there is unsent data. 18749 */ 18750 ASSERT(tcp->tcp_unsent > 0); 18751 /* Really tacky... but we need this for detached closes. */ 18752 len = tcp->tcp_unsent; 18753 goto data_null; 18754 } 18755 18756 #if CCS_STATS 18757 wrw_stats.tot.count++; 18758 wrw_stats.tot.bytes += msgdsize(mp); 18759 #endif 18760 ASSERT(mp->b_datap->db_type == M_DATA); 18761 /* 18762 * Don't allow data after T_ORDREL_REQ or T_DISCON_REQ, 18763 * or before a connection attempt has begun. 18764 */ 18765 if (tcpstate < TCPS_SYN_SENT || tcpstate > TCPS_CLOSE_WAIT || 18766 (tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { 18767 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { 18768 #ifdef DEBUG 18769 cmn_err(CE_WARN, 18770 "tcp_wput_data: data after ordrel, %s", 18771 tcp_display(tcp, NULL, 18772 DISP_ADDR_AND_PORT)); 18773 #else 18774 if (tcp->tcp_debug) { 18775 (void) strlog(TCP_MOD_ID, 0, 1, 18776 SL_TRACE|SL_ERROR, 18777 "tcp_wput_data: data after ordrel, %s\n", 18778 tcp_display(tcp, NULL, 18779 DISP_ADDR_AND_PORT)); 18780 } 18781 #endif /* DEBUG */ 18782 } 18783 if (tcp->tcp_snd_zcopy_aware && 18784 (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) != 0) 18785 tcp_zcopy_notify(tcp); 18786 freemsg(mp); 18787 mutex_enter(&tcp->tcp_non_sq_lock); 18788 if (tcp->tcp_flow_stopped && 18789 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 18790 tcp_clrqfull(tcp); 18791 } 18792 mutex_exit(&tcp->tcp_non_sq_lock); 18793 return; 18794 } 18795 18796 /* Strip empties */ 18797 for (;;) { 18798 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 18799 (uintptr_t)INT_MAX); 18800 len = (int)(mp->b_wptr - mp->b_rptr); 18801 if (len > 0) 18802 break; 18803 mp1 = mp; 18804 mp = mp->b_cont; 18805 freeb(mp1); 18806 if (!mp) { 18807 return; 18808 } 18809 } 18810 18811 /* If we are the first on the list ... */ 18812 if (tcp->tcp_xmit_head == NULL) { 18813 tcp->tcp_xmit_head = mp; 18814 tcp->tcp_xmit_tail = mp; 18815 tcp->tcp_xmit_tail_unsent = len; 18816 } else { 18817 /* If tiny tx and room in txq tail, pullup to save mblks. */ 18818 struct datab *dp; 18819 18820 mp1 = tcp->tcp_xmit_last; 18821 if (len < tcp_tx_pull_len && 18822 (dp = mp1->b_datap)->db_ref == 1 && 18823 dp->db_lim - mp1->b_wptr >= len) { 18824 ASSERT(len > 0); 18825 ASSERT(!mp1->b_cont); 18826 if (len == 1) { 18827 *mp1->b_wptr++ = *mp->b_rptr; 18828 } else { 18829 bcopy(mp->b_rptr, mp1->b_wptr, len); 18830 mp1->b_wptr += len; 18831 } 18832 if (mp1 == tcp->tcp_xmit_tail) 18833 tcp->tcp_xmit_tail_unsent += len; 18834 mp1->b_cont = mp->b_cont; 18835 if (tcp->tcp_snd_zcopy_aware && 18836 (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 18837 mp1->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; 18838 freeb(mp); 18839 mp = mp1; 18840 } else { 18841 tcp->tcp_xmit_last->b_cont = mp; 18842 } 18843 len += tcp->tcp_unsent; 18844 } 18845 18846 /* Tack on however many more positive length mblks we have */ 18847 if ((mp1 = mp->b_cont) != NULL) { 18848 do { 18849 int tlen; 18850 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 18851 (uintptr_t)INT_MAX); 18852 tlen = (int)(mp1->b_wptr - mp1->b_rptr); 18853 if (tlen <= 0) { 18854 mp->b_cont = mp1->b_cont; 18855 freeb(mp1); 18856 } else { 18857 len += tlen; 18858 mp = mp1; 18859 } 18860 } while ((mp1 = mp->b_cont) != NULL); 18861 } 18862 tcp->tcp_xmit_last = mp; 18863 tcp->tcp_unsent = len; 18864 18865 if (urgent) 18866 usable = 1; 18867 18868 data_null: 18869 snxt = tcp->tcp_snxt; 18870 xmit_tail = tcp->tcp_xmit_tail; 18871 tail_unsent = tcp->tcp_xmit_tail_unsent; 18872 18873 /* 18874 * Note that tcp_mss has been adjusted to take into account the 18875 * timestamp option if applicable. Because SACK options do not 18876 * appear in every TCP segments and they are of variable lengths, 18877 * they cannot be included in tcp_mss. Thus we need to calculate 18878 * the actual segment length when we need to send a segment which 18879 * includes SACK options. 18880 */ 18881 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 18882 int32_t opt_len; 18883 18884 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 18885 tcp->tcp_num_sack_blk); 18886 opt_len = num_sack_blk * sizeof (sack_blk_t) + TCPOPT_NOP_LEN * 18887 2 + TCPOPT_HEADER_LEN; 18888 mss = tcp->tcp_mss - opt_len; 18889 tcp_hdr_len = tcp->tcp_hdr_len + opt_len; 18890 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + opt_len; 18891 } else { 18892 mss = tcp->tcp_mss; 18893 tcp_hdr_len = tcp->tcp_hdr_len; 18894 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len; 18895 } 18896 18897 if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && 18898 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) { 18899 SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle); 18900 } 18901 if (tcpstate == TCPS_SYN_RCVD) { 18902 /* 18903 * The three-way connection establishment handshake is not 18904 * complete yet. We want to queue the data for transmission 18905 * after entering ESTABLISHED state (RFC793). A jump to 18906 * "done" label effectively leaves data on the queue. 18907 */ 18908 goto done; 18909 } else { 18910 int usable_r; 18911 18912 /* 18913 * In the special case when cwnd is zero, which can only 18914 * happen if the connection is ECN capable, return now. 18915 * New segments is sent using tcp_timer(). The timer 18916 * is set in tcp_rput_data(). 18917 */ 18918 if (tcp->tcp_cwnd == 0) { 18919 /* 18920 * Note that tcp_cwnd is 0 before 3-way handshake is 18921 * finished. 18922 */ 18923 ASSERT(tcp->tcp_ecn_ok || 18924 tcp->tcp_state < TCPS_ESTABLISHED); 18925 return; 18926 } 18927 18928 /* NOTE: trouble if xmitting while SYN not acked? */ 18929 usable_r = snxt - tcp->tcp_suna; 18930 usable_r = tcp->tcp_swnd - usable_r; 18931 18932 /* 18933 * Check if the receiver has shrunk the window. If 18934 * tcp_wput_data() with NULL mp is called, tcp_fin_sent 18935 * cannot be set as there is unsent data, so FIN cannot 18936 * be sent out. Otherwise, we need to take into account 18937 * of FIN as it consumes an "invisible" sequence number. 18938 */ 18939 ASSERT(tcp->tcp_fin_sent == 0); 18940 if (usable_r < 0) { 18941 /* 18942 * The receiver has shrunk the window and we have sent 18943 * -usable_r date beyond the window, re-adjust. 18944 * 18945 * If TCP window scaling is enabled, there can be 18946 * round down error as the advertised receive window 18947 * is actually right shifted n bits. This means that 18948 * the lower n bits info is wiped out. It will look 18949 * like the window is shrunk. Do a check here to 18950 * see if the shrunk amount is actually within the 18951 * error in window calculation. If it is, just 18952 * return. Note that this check is inside the 18953 * shrunk window check. This makes sure that even 18954 * though tcp_process_shrunk_swnd() is not called, 18955 * we will stop further processing. 18956 */ 18957 if ((-usable_r >> tcp->tcp_snd_ws) > 0) { 18958 tcp_process_shrunk_swnd(tcp, -usable_r); 18959 } 18960 return; 18961 } 18962 18963 /* usable = MIN(swnd, cwnd) - unacked_bytes */ 18964 if (tcp->tcp_swnd > tcp->tcp_cwnd) 18965 usable_r -= tcp->tcp_swnd - tcp->tcp_cwnd; 18966 18967 /* usable = MIN(usable, unsent) */ 18968 if (usable_r > len) 18969 usable_r = len; 18970 18971 /* usable = MAX(usable, {1 for urgent, 0 for data}) */ 18972 if (usable_r > 0) { 18973 usable = usable_r; 18974 } else { 18975 /* Bypass all other unnecessary processing. */ 18976 goto done; 18977 } 18978 } 18979 18980 local_time = (mblk_t *)lbolt; 18981 18982 /* 18983 * "Our" Nagle Algorithm. This is not the same as in the old 18984 * BSD. This is more in line with the true intent of Nagle. 18985 * 18986 * The conditions are: 18987 * 1. The amount of unsent data (or amount of data which can be 18988 * sent, whichever is smaller) is less than Nagle limit. 18989 * 2. The last sent size is also less than Nagle limit. 18990 * 3. There is unack'ed data. 18991 * 4. Urgent pointer is not set. Send urgent data ignoring the 18992 * Nagle algorithm. This reduces the probability that urgent 18993 * bytes get "merged" together. 18994 * 5. The app has not closed the connection. This eliminates the 18995 * wait time of the receiving side waiting for the last piece of 18996 * (small) data. 18997 * 18998 * If all are satisified, exit without sending anything. Note 18999 * that Nagle limit can be smaller than 1 MSS. Nagle limit is 19000 * the smaller of 1 MSS and global tcp_naglim_def (default to be 19001 * 4095). 19002 */ 19003 if (usable < (int)tcp->tcp_naglim && 19004 tcp->tcp_naglim > tcp->tcp_last_sent_len && 19005 snxt != tcp->tcp_suna && 19006 !(tcp->tcp_valid_bits & TCP_URG_VALID) && 19007 !(tcp->tcp_valid_bits & TCP_FSS_VALID)) { 19008 goto done; 19009 } 19010 19011 /* 19012 * If tcp_zero_win_probe is not set and the tcp->tcp_cork option 19013 * is set, then we have to force TCP not to send partial segment 19014 * (smaller than MSS bytes). We are calculating the usable now 19015 * based on full mss and will save the rest of remaining data for 19016 * later. When tcp_zero_win_probe is set, TCP needs to send out 19017 * something to do zero window probe. 19018 */ 19019 if (tcp->tcp_cork && !tcp->tcp_zero_win_probe) { 19020 if (usable < mss) 19021 goto done; 19022 usable = (usable / mss) * mss; 19023 } 19024 19025 /* Update the latest receive window size in TCP header. */ 19026 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 19027 tcp->tcp_tcph->th_win); 19028 19029 /* 19030 * Determine if it's worthwhile to attempt LSO or MDT, based on: 19031 * 19032 * 1. Simple TCP/IP{v4,v6} (no options). 19033 * 2. IPSEC/IPQoS processing is not needed for the TCP connection. 19034 * 3. If the TCP connection is in ESTABLISHED state. 19035 * 4. The TCP is not detached. 19036 * 19037 * If any of the above conditions have changed during the 19038 * connection, stop using LSO/MDT and restore the stream head 19039 * parameters accordingly. 19040 */ 19041 ipst = tcps->tcps_netstack->netstack_ip; 19042 19043 if ((tcp->tcp_lso || tcp->tcp_mdt) && 19044 ((tcp->tcp_ipversion == IPV4_VERSION && 19045 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 19046 (tcp->tcp_ipversion == IPV6_VERSION && 19047 tcp->tcp_ip_hdr_len != IPV6_HDR_LEN) || 19048 tcp->tcp_state != TCPS_ESTABLISHED || 19049 TCP_IS_DETACHED(tcp) || !CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp) || 19050 CONN_IPSEC_OUT_ENCAPSULATED(tcp->tcp_connp) || 19051 IPP_ENABLED(IPP_LOCAL_OUT, ipst))) { 19052 if (tcp->tcp_lso) { 19053 tcp->tcp_connp->conn_lso_ok = B_FALSE; 19054 tcp->tcp_lso = B_FALSE; 19055 } else { 19056 tcp->tcp_connp->conn_mdt_ok = B_FALSE; 19057 tcp->tcp_mdt = B_FALSE; 19058 } 19059 19060 /* Anything other than detached is considered pathological */ 19061 if (!TCP_IS_DETACHED(tcp)) { 19062 if (tcp->tcp_lso) 19063 TCP_STAT(tcps, tcp_lso_disabled); 19064 else 19065 TCP_STAT(tcps, tcp_mdt_conn_halted1); 19066 (void) tcp_maxpsz_set(tcp, B_TRUE); 19067 } 19068 } 19069 19070 /* Use MDT if sendable amount is greater than the threshold */ 19071 if (tcp->tcp_mdt && 19072 (mdt_thres = mss << tcp_mdt_smss_threshold, usable > mdt_thres) && 19073 (tail_unsent > mdt_thres || (xmit_tail->b_cont != NULL && 19074 MBLKL(xmit_tail->b_cont) > mdt_thres)) && 19075 (tcp->tcp_valid_bits == 0 || 19076 tcp->tcp_valid_bits == TCP_FSS_VALID)) { 19077 ASSERT(tcp->tcp_connp->conn_mdt_ok); 19078 rc = tcp_multisend(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len, 19079 num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail, 19080 local_time, mdt_thres); 19081 } else { 19082 rc = tcp_send(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len, 19083 num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail, 19084 local_time, INT_MAX); 19085 } 19086 19087 /* Pretend that all we were trying to send really got sent */ 19088 if (rc < 0 && tail_unsent < 0) { 19089 do { 19090 xmit_tail = xmit_tail->b_cont; 19091 xmit_tail->b_prev = local_time; 19092 ASSERT((uintptr_t)(xmit_tail->b_wptr - 19093 xmit_tail->b_rptr) <= (uintptr_t)INT_MAX); 19094 tail_unsent += (int)(xmit_tail->b_wptr - 19095 xmit_tail->b_rptr); 19096 } while (tail_unsent < 0); 19097 } 19098 done:; 19099 tcp->tcp_xmit_tail = xmit_tail; 19100 tcp->tcp_xmit_tail_unsent = tail_unsent; 19101 len = tcp->tcp_snxt - snxt; 19102 if (len) { 19103 /* 19104 * If new data was sent, need to update the notsack 19105 * list, which is, afterall, data blocks that have 19106 * not been sack'ed by the receiver. New data is 19107 * not sack'ed. 19108 */ 19109 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 19110 /* len is a negative value. */ 19111 tcp->tcp_pipe -= len; 19112 tcp_notsack_update(&(tcp->tcp_notsack_list), 19113 tcp->tcp_snxt, snxt, 19114 &(tcp->tcp_num_notsack_blk), 19115 &(tcp->tcp_cnt_notsack_list)); 19116 } 19117 tcp->tcp_snxt = snxt + tcp->tcp_fin_sent; 19118 tcp->tcp_rack = tcp->tcp_rnxt; 19119 tcp->tcp_rack_cnt = 0; 19120 if ((snxt + len) == tcp->tcp_suna) { 19121 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 19122 } 19123 } else if (snxt == tcp->tcp_suna && tcp->tcp_swnd == 0) { 19124 /* 19125 * Didn't send anything. Make sure the timer is running 19126 * so that we will probe a zero window. 19127 */ 19128 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 19129 } 19130 /* Note that len is the amount we just sent but with a negative sign */ 19131 tcp->tcp_unsent += len; 19132 mutex_enter(&tcp->tcp_non_sq_lock); 19133 if (tcp->tcp_flow_stopped) { 19134 if (TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 19135 tcp_clrqfull(tcp); 19136 } 19137 } else if (TCP_UNSENT_BYTES(tcp) >= tcp->tcp_xmit_hiwater) { 19138 tcp_setqfull(tcp); 19139 } 19140 mutex_exit(&tcp->tcp_non_sq_lock); 19141 } 19142 19143 /* 19144 * tcp_fill_header is called by tcp_send() and tcp_multisend() to fill the 19145 * outgoing TCP header with the template header, as well as other 19146 * options such as time-stamp, ECN and/or SACK. 19147 */ 19148 static void 19149 tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, int num_sack_blk) 19150 { 19151 tcph_t *tcp_tmpl, *tcp_h; 19152 uint32_t *dst, *src; 19153 int hdrlen; 19154 19155 ASSERT(OK_32PTR(rptr)); 19156 19157 /* Template header */ 19158 tcp_tmpl = tcp->tcp_tcph; 19159 19160 /* Header of outgoing packet */ 19161 tcp_h = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 19162 19163 /* dst and src are opaque 32-bit fields, used for copying */ 19164 dst = (uint32_t *)rptr; 19165 src = (uint32_t *)tcp->tcp_iphc; 19166 hdrlen = tcp->tcp_hdr_len; 19167 19168 /* Fill time-stamp option if needed */ 19169 if (tcp->tcp_snd_ts_ok) { 19170 U32_TO_BE32((uint32_t)now, 19171 (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 4); 19172 U32_TO_BE32(tcp->tcp_ts_recent, 19173 (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 8); 19174 } else { 19175 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 19176 } 19177 19178 /* 19179 * Copy the template header; is this really more efficient than 19180 * calling bcopy()? For simple IPv4/TCP, it may be the case, 19181 * but perhaps not for other scenarios. 19182 */ 19183 dst[0] = src[0]; 19184 dst[1] = src[1]; 19185 dst[2] = src[2]; 19186 dst[3] = src[3]; 19187 dst[4] = src[4]; 19188 dst[5] = src[5]; 19189 dst[6] = src[6]; 19190 dst[7] = src[7]; 19191 dst[8] = src[8]; 19192 dst[9] = src[9]; 19193 if (hdrlen -= 40) { 19194 hdrlen >>= 2; 19195 dst += 10; 19196 src += 10; 19197 do { 19198 *dst++ = *src++; 19199 } while (--hdrlen); 19200 } 19201 19202 /* 19203 * Set the ECN info in the TCP header if it is not a zero 19204 * window probe. Zero window probe is only sent in 19205 * tcp_wput_data() and tcp_timer(). 19206 */ 19207 if (tcp->tcp_ecn_ok && !tcp->tcp_zero_win_probe) { 19208 SET_ECT(tcp, rptr); 19209 19210 if (tcp->tcp_ecn_echo_on) 19211 tcp_h->th_flags[0] |= TH_ECE; 19212 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 19213 tcp_h->th_flags[0] |= TH_CWR; 19214 tcp->tcp_ecn_cwr_sent = B_TRUE; 19215 } 19216 } 19217 19218 /* Fill in SACK options */ 19219 if (num_sack_blk > 0) { 19220 uchar_t *wptr = rptr + tcp->tcp_hdr_len; 19221 sack_blk_t *tmp; 19222 int32_t i; 19223 19224 wptr[0] = TCPOPT_NOP; 19225 wptr[1] = TCPOPT_NOP; 19226 wptr[2] = TCPOPT_SACK; 19227 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 19228 sizeof (sack_blk_t); 19229 wptr += TCPOPT_REAL_SACK_LEN; 19230 19231 tmp = tcp->tcp_sack_list; 19232 for (i = 0; i < num_sack_blk; i++) { 19233 U32_TO_BE32(tmp[i].begin, wptr); 19234 wptr += sizeof (tcp_seq); 19235 U32_TO_BE32(tmp[i].end, wptr); 19236 wptr += sizeof (tcp_seq); 19237 } 19238 tcp_h->th_offset_and_rsrvd[0] += 19239 ((num_sack_blk * 2 + 1) << 4); 19240 } 19241 } 19242 19243 /* 19244 * tcp_mdt_add_attrs() is called by tcp_multisend() in order to attach 19245 * the destination address and SAP attribute, and if necessary, the 19246 * hardware checksum offload attribute to a Multidata message. 19247 */ 19248 static int 19249 tcp_mdt_add_attrs(multidata_t *mmd, const mblk_t *dlmp, const boolean_t hwcksum, 19250 const uint32_t start, const uint32_t stuff, const uint32_t end, 19251 const uint32_t flags, tcp_stack_t *tcps) 19252 { 19253 /* Add global destination address & SAP attribute */ 19254 if (dlmp == NULL || !ip_md_addr_attr(mmd, NULL, dlmp)) { 19255 ip1dbg(("tcp_mdt_add_attrs: can't add global physical " 19256 "destination address+SAP\n")); 19257 19258 if (dlmp != NULL) 19259 TCP_STAT(tcps, tcp_mdt_allocfail); 19260 return (-1); 19261 } 19262 19263 /* Add global hwcksum attribute */ 19264 if (hwcksum && 19265 !ip_md_hcksum_attr(mmd, NULL, start, stuff, end, flags)) { 19266 ip1dbg(("tcp_mdt_add_attrs: can't add global hardware " 19267 "checksum attribute\n")); 19268 19269 TCP_STAT(tcps, tcp_mdt_allocfail); 19270 return (-1); 19271 } 19272 19273 return (0); 19274 } 19275 19276 /* 19277 * Smaller and private version of pdescinfo_t used specifically for TCP, 19278 * which allows for only two payload spans per packet. 19279 */ 19280 typedef struct tcp_pdescinfo_s PDESCINFO_STRUCT(2) tcp_pdescinfo_t; 19281 19282 /* 19283 * tcp_multisend() is called by tcp_wput_data() for Multidata Transmit 19284 * scheme, and returns one the following: 19285 * 19286 * -1 = failed allocation. 19287 * 0 = success; burst count reached, or usable send window is too small, 19288 * and that we'd rather wait until later before sending again. 19289 */ 19290 static int 19291 tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len, 19292 const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable, 19293 uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 19294 const int mdt_thres) 19295 { 19296 mblk_t *md_mp_head, *md_mp, *md_pbuf, *md_pbuf_nxt, *md_hbuf; 19297 multidata_t *mmd; 19298 uint_t obsegs, obbytes, hdr_frag_sz; 19299 uint_t cur_hdr_off, cur_pld_off, base_pld_off, first_snxt; 19300 int num_burst_seg, max_pld; 19301 pdesc_t *pkt; 19302 tcp_pdescinfo_t tcp_pkt_info; 19303 pdescinfo_t *pkt_info; 19304 int pbuf_idx, pbuf_idx_nxt; 19305 int seg_len, len, spill, af; 19306 boolean_t add_buffer, zcopy, clusterwide; 19307 boolean_t rconfirm = B_FALSE; 19308 boolean_t done = B_FALSE; 19309 uint32_t cksum; 19310 uint32_t hwcksum_flags; 19311 ire_t *ire = NULL; 19312 ill_t *ill; 19313 ipha_t *ipha; 19314 ip6_t *ip6h; 19315 ipaddr_t src, dst; 19316 ill_zerocopy_capab_t *zc_cap = NULL; 19317 uint16_t *up; 19318 int err; 19319 conn_t *connp; 19320 tcp_stack_t *tcps = tcp->tcp_tcps; 19321 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 19322 int usable_mmd, tail_unsent_mmd; 19323 uint_t snxt_mmd, obsegs_mmd, obbytes_mmd; 19324 mblk_t *xmit_tail_mmd; 19325 netstackid_t stack_id; 19326 19327 #ifdef _BIG_ENDIAN 19328 #define IPVER(ip6h) ((((uint32_t *)ip6h)[0] >> 28) & 0x7) 19329 #else 19330 #define IPVER(ip6h) ((((uint32_t *)ip6h)[0] >> 4) & 0x7) 19331 #endif 19332 19333 #define PREP_NEW_MULTIDATA() { \ 19334 mmd = NULL; \ 19335 md_mp = md_hbuf = NULL; \ 19336 cur_hdr_off = 0; \ 19337 max_pld = tcp->tcp_mdt_max_pld; \ 19338 pbuf_idx = pbuf_idx_nxt = -1; \ 19339 add_buffer = B_TRUE; \ 19340 zcopy = B_FALSE; \ 19341 } 19342 19343 #define PREP_NEW_PBUF() { \ 19344 md_pbuf = md_pbuf_nxt = NULL; \ 19345 pbuf_idx = pbuf_idx_nxt = -1; \ 19346 cur_pld_off = 0; \ 19347 first_snxt = *snxt; \ 19348 ASSERT(*tail_unsent > 0); \ 19349 base_pld_off = MBLKL(*xmit_tail) - *tail_unsent; \ 19350 } 19351 19352 ASSERT(mdt_thres >= mss); 19353 ASSERT(*usable > 0 && *usable > mdt_thres); 19354 ASSERT(tcp->tcp_state == TCPS_ESTABLISHED); 19355 ASSERT(!TCP_IS_DETACHED(tcp)); 19356 ASSERT(tcp->tcp_valid_bits == 0 || 19357 tcp->tcp_valid_bits == TCP_FSS_VALID); 19358 ASSERT((tcp->tcp_ipversion == IPV4_VERSION && 19359 tcp->tcp_ip_hdr_len == IP_SIMPLE_HDR_LENGTH) || 19360 (tcp->tcp_ipversion == IPV6_VERSION && 19361 tcp->tcp_ip_hdr_len == IPV6_HDR_LEN)); 19362 19363 connp = tcp->tcp_connp; 19364 ASSERT(connp != NULL); 19365 ASSERT(CONN_IS_LSO_MD_FASTPATH(connp)); 19366 ASSERT(!CONN_IPSEC_OUT_ENCAPSULATED(connp)); 19367 19368 stack_id = connp->conn_netstack->netstack_stackid; 19369 19370 usable_mmd = tail_unsent_mmd = 0; 19371 snxt_mmd = obsegs_mmd = obbytes_mmd = 0; 19372 xmit_tail_mmd = NULL; 19373 /* 19374 * Note that tcp will only declare at most 2 payload spans per 19375 * packet, which is much lower than the maximum allowable number 19376 * of packet spans per Multidata. For this reason, we use the 19377 * privately declared and smaller descriptor info structure, in 19378 * order to save some stack space. 19379 */ 19380 pkt_info = (pdescinfo_t *)&tcp_pkt_info; 19381 19382 af = (tcp->tcp_ipversion == IPV4_VERSION) ? AF_INET : AF_INET6; 19383 if (af == AF_INET) { 19384 dst = tcp->tcp_ipha->ipha_dst; 19385 src = tcp->tcp_ipha->ipha_src; 19386 ASSERT(!CLASSD(dst)); 19387 } 19388 ASSERT(af == AF_INET || 19389 !IN6_IS_ADDR_MULTICAST(&tcp->tcp_ip6h->ip6_dst)); 19390 19391 obsegs = obbytes = 0; 19392 num_burst_seg = tcp->tcp_snd_burst; 19393 md_mp_head = NULL; 19394 PREP_NEW_MULTIDATA(); 19395 19396 /* 19397 * Before we go on further, make sure there is an IRE that we can 19398 * use, and that the ILL supports MDT. Otherwise, there's no point 19399 * in proceeding any further, and we should just hand everything 19400 * off to the legacy path. 19401 */ 19402 if (!tcp_send_find_ire(tcp, (af == AF_INET) ? &dst : NULL, &ire)) 19403 goto legacy_send_no_md; 19404 19405 ASSERT(ire != NULL); 19406 ASSERT(af != AF_INET || ire->ire_ipversion == IPV4_VERSION); 19407 ASSERT(af == AF_INET || !IN6_IS_ADDR_V4MAPPED(&(ire->ire_addr_v6))); 19408 ASSERT(af == AF_INET || ire->ire_nce != NULL); 19409 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 19410 /* 19411 * If we do support loopback for MDT (which requires modifications 19412 * to the receiving paths), the following assertions should go away, 19413 * and we would be sending the Multidata to loopback conn later on. 19414 */ 19415 ASSERT(!IRE_IS_LOCAL(ire)); 19416 ASSERT(ire->ire_stq != NULL); 19417 19418 ill = ire_to_ill(ire); 19419 ASSERT(ill != NULL); 19420 ASSERT(!ILL_MDT_CAPABLE(ill) || ill->ill_mdt_capab != NULL); 19421 19422 if (!tcp->tcp_ire_ill_check_done) { 19423 tcp_ire_ill_check(tcp, ire, ill, B_TRUE); 19424 tcp->tcp_ire_ill_check_done = B_TRUE; 19425 } 19426 19427 /* 19428 * If the underlying interface conditions have changed, or if the 19429 * new interface does not support MDT, go back to legacy path. 19430 */ 19431 if (!ILL_MDT_USABLE(ill) || (ire->ire_flags & RTF_MULTIRT) != 0) { 19432 /* don't go through this path anymore for this connection */ 19433 TCP_STAT(tcps, tcp_mdt_conn_halted2); 19434 tcp->tcp_mdt = B_FALSE; 19435 ip1dbg(("tcp_multisend: disabling MDT for connp %p on " 19436 "interface %s\n", (void *)connp, ill->ill_name)); 19437 /* IRE will be released prior to returning */ 19438 goto legacy_send_no_md; 19439 } 19440 19441 if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) 19442 zc_cap = ill->ill_zerocopy_capab; 19443 19444 /* 19445 * Check if we can take tcp fast-path. Note that "incomplete" 19446 * ire's (where the link-layer for next hop is not resolved 19447 * or where the fast-path header in nce_fp_mp is not available 19448 * yet) are sent down the legacy (slow) path. 19449 * NOTE: We should fix ip_xmit_v4 to handle M_MULTIDATA 19450 */ 19451 if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) { 19452 /* IRE will be released prior to returning */ 19453 goto legacy_send_no_md; 19454 } 19455 19456 /* go to legacy path if interface doesn't support zerocopy */ 19457 if (tcp->tcp_snd_zcopy_aware && do_tcpzcopy != 2 && 19458 (zc_cap == NULL || zc_cap->ill_zerocopy_flags == 0)) { 19459 /* IRE will be released prior to returning */ 19460 goto legacy_send_no_md; 19461 } 19462 19463 /* does the interface support hardware checksum offload? */ 19464 hwcksum_flags = 0; 19465 if (ILL_HCKSUM_CAPABLE(ill) && 19466 (ill->ill_hcksum_capab->ill_hcksum_txflags & 19467 (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6 | HCKSUM_INET_PARTIAL | 19468 HCKSUM_IPHDRCKSUM)) && dohwcksum) { 19469 if (ill->ill_hcksum_capab->ill_hcksum_txflags & 19470 HCKSUM_IPHDRCKSUM) 19471 hwcksum_flags = HCK_IPV4_HDRCKSUM; 19472 19473 if (ill->ill_hcksum_capab->ill_hcksum_txflags & 19474 (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6)) 19475 hwcksum_flags |= HCK_FULLCKSUM; 19476 else if (ill->ill_hcksum_capab->ill_hcksum_txflags & 19477 HCKSUM_INET_PARTIAL) 19478 hwcksum_flags |= HCK_PARTIALCKSUM; 19479 } 19480 19481 /* 19482 * Each header fragment consists of the leading extra space, 19483 * followed by the TCP/IP header, and the trailing extra space. 19484 * We make sure that each header fragment begins on a 32-bit 19485 * aligned memory address (tcp_mdt_hdr_head is already 32-bit 19486 * aligned in tcp_mdt_update). 19487 */ 19488 hdr_frag_sz = roundup((tcp->tcp_mdt_hdr_head + tcp_hdr_len + 19489 tcp->tcp_mdt_hdr_tail), 4); 19490 19491 /* are we starting from the beginning of data block? */ 19492 if (*tail_unsent == 0) { 19493 *xmit_tail = (*xmit_tail)->b_cont; 19494 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= (uintptr_t)INT_MAX); 19495 *tail_unsent = (int)MBLKL(*xmit_tail); 19496 } 19497 19498 /* 19499 * Here we create one or more Multidata messages, each made up of 19500 * one header buffer and up to N payload buffers. This entire 19501 * operation is done within two loops: 19502 * 19503 * The outer loop mostly deals with creating the Multidata message, 19504 * as well as the header buffer that gets added to it. It also 19505 * links the Multidata messages together such that all of them can 19506 * be sent down to the lower layer in a single putnext call; this 19507 * linking behavior depends on the tcp_mdt_chain tunable. 19508 * 19509 * The inner loop takes an existing Multidata message, and adds 19510 * one or more (up to tcp_mdt_max_pld) payload buffers to it. It 19511 * packetizes those buffers by filling up the corresponding header 19512 * buffer fragments with the proper IP and TCP headers, and by 19513 * describing the layout of each packet in the packet descriptors 19514 * that get added to the Multidata. 19515 */ 19516 do { 19517 /* 19518 * If usable send window is too small, or data blocks in 19519 * transmit list are smaller than our threshold (i.e. app 19520 * performs large writes followed by small ones), we hand 19521 * off the control over to the legacy path. Note that we'll 19522 * get back the control once it encounters a large block. 19523 */ 19524 if (*usable < mss || (*tail_unsent <= mdt_thres && 19525 (*xmit_tail)->b_cont != NULL && 19526 MBLKL((*xmit_tail)->b_cont) <= mdt_thres)) { 19527 /* send down what we've got so far */ 19528 if (md_mp_head != NULL) { 19529 tcp_multisend_data(tcp, ire, ill, md_mp_head, 19530 obsegs, obbytes, &rconfirm); 19531 } 19532 /* 19533 * Pass control over to tcp_send(), but tell it to 19534 * return to us once a large-size transmission is 19535 * possible. 19536 */ 19537 TCP_STAT(tcps, tcp_mdt_legacy_small); 19538 if ((err = tcp_send(q, tcp, mss, tcp_hdr_len, 19539 tcp_tcp_hdr_len, num_sack_blk, usable, snxt, 19540 tail_unsent, xmit_tail, local_time, 19541 mdt_thres)) <= 0) { 19542 /* burst count reached, or alloc failed */ 19543 IRE_REFRELE(ire); 19544 return (err); 19545 } 19546 19547 /* tcp_send() may have sent everything, so check */ 19548 if (*usable <= 0) { 19549 IRE_REFRELE(ire); 19550 return (0); 19551 } 19552 19553 TCP_STAT(tcps, tcp_mdt_legacy_ret); 19554 /* 19555 * We may have delivered the Multidata, so make sure 19556 * to re-initialize before the next round. 19557 */ 19558 md_mp_head = NULL; 19559 obsegs = obbytes = 0; 19560 num_burst_seg = tcp->tcp_snd_burst; 19561 PREP_NEW_MULTIDATA(); 19562 19563 /* are we starting from the beginning of data block? */ 19564 if (*tail_unsent == 0) { 19565 *xmit_tail = (*xmit_tail)->b_cont; 19566 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 19567 (uintptr_t)INT_MAX); 19568 *tail_unsent = (int)MBLKL(*xmit_tail); 19569 } 19570 } 19571 /* 19572 * Record current values for parameters we may need to pass 19573 * to tcp_send() or tcp_multisend_data(). We checkpoint at 19574 * each iteration of the outer loop (each multidata message 19575 * creation). If we have a failure in the inner loop, we send 19576 * any complete multidata messages we have before reverting 19577 * to using the traditional non-md path. 19578 */ 19579 snxt_mmd = *snxt; 19580 usable_mmd = *usable; 19581 xmit_tail_mmd = *xmit_tail; 19582 tail_unsent_mmd = *tail_unsent; 19583 obsegs_mmd = obsegs; 19584 obbytes_mmd = obbytes; 19585 19586 /* 19587 * max_pld limits the number of mblks in tcp's transmit 19588 * queue that can be added to a Multidata message. Once 19589 * this counter reaches zero, no more additional mblks 19590 * can be added to it. What happens afterwards depends 19591 * on whether or not we are set to chain the Multidata 19592 * messages. If we are to link them together, reset 19593 * max_pld to its original value (tcp_mdt_max_pld) and 19594 * prepare to create a new Multidata message which will 19595 * get linked to md_mp_head. Else, leave it alone and 19596 * let the inner loop break on its own. 19597 */ 19598 if (tcp_mdt_chain && max_pld == 0) 19599 PREP_NEW_MULTIDATA(); 19600 19601 /* adding a payload buffer; re-initialize values */ 19602 if (add_buffer) 19603 PREP_NEW_PBUF(); 19604 19605 /* 19606 * If we don't have a Multidata, either because we just 19607 * (re)entered this outer loop, or after we branched off 19608 * to tcp_send above, setup the Multidata and header 19609 * buffer to be used. 19610 */ 19611 if (md_mp == NULL) { 19612 int md_hbuflen; 19613 uint32_t start, stuff; 19614 19615 /* 19616 * Calculate Multidata header buffer size large enough 19617 * to hold all of the headers that can possibly be 19618 * sent at this moment. We'd rather over-estimate 19619 * the size than running out of space; this is okay 19620 * since this buffer is small anyway. 19621 */ 19622 md_hbuflen = (howmany(*usable, mss) + 1) * hdr_frag_sz; 19623 19624 /* 19625 * Start and stuff offset for partial hardware 19626 * checksum offload; these are currently for IPv4. 19627 * For full checksum offload, they are set to zero. 19628 */ 19629 if ((hwcksum_flags & HCK_PARTIALCKSUM)) { 19630 if (af == AF_INET) { 19631 start = IP_SIMPLE_HDR_LENGTH; 19632 stuff = IP_SIMPLE_HDR_LENGTH + 19633 TCP_CHECKSUM_OFFSET; 19634 } else { 19635 start = IPV6_HDR_LEN; 19636 stuff = IPV6_HDR_LEN + 19637 TCP_CHECKSUM_OFFSET; 19638 } 19639 } else { 19640 start = stuff = 0; 19641 } 19642 19643 /* 19644 * Create the header buffer, Multidata, as well as 19645 * any necessary attributes (destination address, 19646 * SAP and hardware checksum offload) that should 19647 * be associated with the Multidata message. 19648 */ 19649 ASSERT(cur_hdr_off == 0); 19650 if ((md_hbuf = allocb(md_hbuflen, BPRI_HI)) == NULL || 19651 ((md_hbuf->b_wptr += md_hbuflen), 19652 (mmd = mmd_alloc(md_hbuf, &md_mp, 19653 KM_NOSLEEP)) == NULL) || (tcp_mdt_add_attrs(mmd, 19654 /* fastpath mblk */ 19655 ire->ire_nce->nce_res_mp, 19656 /* hardware checksum enabled */ 19657 (hwcksum_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)), 19658 /* hardware checksum offsets */ 19659 start, stuff, 0, 19660 /* hardware checksum flag */ 19661 hwcksum_flags, tcps) != 0)) { 19662 legacy_send: 19663 /* 19664 * We arrive here from a failure within the 19665 * inner (packetizer) loop or we fail one of 19666 * the conditionals above. We restore the 19667 * previously checkpointed values for: 19668 * xmit_tail 19669 * usable 19670 * tail_unsent 19671 * snxt 19672 * obbytes 19673 * obsegs 19674 * We should then be able to dispatch any 19675 * complete multidata before reverting to the 19676 * traditional path with consistent parameters 19677 * (the inner loop updates these as it 19678 * iterates). 19679 */ 19680 *xmit_tail = xmit_tail_mmd; 19681 *usable = usable_mmd; 19682 *tail_unsent = tail_unsent_mmd; 19683 *snxt = snxt_mmd; 19684 obbytes = obbytes_mmd; 19685 obsegs = obsegs_mmd; 19686 if (md_mp != NULL) { 19687 /* Unlink message from the chain */ 19688 if (md_mp_head != NULL) { 19689 err = (intptr_t)rmvb(md_mp_head, 19690 md_mp); 19691 /* 19692 * We can't assert that rmvb 19693 * did not return -1, since we 19694 * may get here before linkb 19695 * happens. We do, however, 19696 * check if we just removed the 19697 * only element in the list. 19698 */ 19699 if (err == 0) 19700 md_mp_head = NULL; 19701 } 19702 /* md_hbuf gets freed automatically */ 19703 TCP_STAT(tcps, tcp_mdt_discarded); 19704 freeb(md_mp); 19705 } else { 19706 /* Either allocb or mmd_alloc failed */ 19707 TCP_STAT(tcps, tcp_mdt_allocfail); 19708 if (md_hbuf != NULL) 19709 freeb(md_hbuf); 19710 } 19711 19712 /* send down what we've got so far */ 19713 if (md_mp_head != NULL) { 19714 tcp_multisend_data(tcp, ire, ill, 19715 md_mp_head, obsegs, obbytes, 19716 &rconfirm); 19717 } 19718 legacy_send_no_md: 19719 if (ire != NULL) 19720 IRE_REFRELE(ire); 19721 /* 19722 * Too bad; let the legacy path handle this. 19723 * We specify INT_MAX for the threshold, since 19724 * we gave up with the Multidata processings 19725 * and let the old path have it all. 19726 */ 19727 TCP_STAT(tcps, tcp_mdt_legacy_all); 19728 return (tcp_send(q, tcp, mss, tcp_hdr_len, 19729 tcp_tcp_hdr_len, num_sack_blk, usable, 19730 snxt, tail_unsent, xmit_tail, local_time, 19731 INT_MAX)); 19732 } 19733 19734 /* link to any existing ones, if applicable */ 19735 TCP_STAT(tcps, tcp_mdt_allocd); 19736 if (md_mp_head == NULL) { 19737 md_mp_head = md_mp; 19738 } else if (tcp_mdt_chain) { 19739 TCP_STAT(tcps, tcp_mdt_linked); 19740 linkb(md_mp_head, md_mp); 19741 } 19742 } 19743 19744 ASSERT(md_mp_head != NULL); 19745 ASSERT(tcp_mdt_chain || md_mp_head->b_cont == NULL); 19746 ASSERT(md_mp != NULL && mmd != NULL); 19747 ASSERT(md_hbuf != NULL); 19748 19749 /* 19750 * Packetize the transmittable portion of the data block; 19751 * each data block is essentially added to the Multidata 19752 * as a payload buffer. We also deal with adding more 19753 * than one payload buffers, which happens when the remaining 19754 * packetized portion of the current payload buffer is less 19755 * than MSS, while the next data block in transmit queue 19756 * has enough data to make up for one. This "spillover" 19757 * case essentially creates a split-packet, where portions 19758 * of the packet's payload fragments may span across two 19759 * virtually discontiguous address blocks. 19760 */ 19761 seg_len = mss; 19762 do { 19763 len = seg_len; 19764 19765 /* one must remain NULL for DTRACE_IP_FASTPATH */ 19766 ipha = NULL; 19767 ip6h = NULL; 19768 19769 ASSERT(len > 0); 19770 ASSERT(max_pld >= 0); 19771 ASSERT(!add_buffer || cur_pld_off == 0); 19772 19773 /* 19774 * First time around for this payload buffer; note 19775 * in the case of a spillover, the following has 19776 * been done prior to adding the split-packet 19777 * descriptor to Multidata, and we don't want to 19778 * repeat the process. 19779 */ 19780 if (add_buffer) { 19781 ASSERT(mmd != NULL); 19782 ASSERT(md_pbuf == NULL); 19783 ASSERT(md_pbuf_nxt == NULL); 19784 ASSERT(pbuf_idx == -1 && pbuf_idx_nxt == -1); 19785 19786 /* 19787 * Have we reached the limit? We'd get to 19788 * this case when we're not chaining the 19789 * Multidata messages together, and since 19790 * we're done, terminate this loop. 19791 */ 19792 if (max_pld == 0) 19793 break; /* done */ 19794 19795 if ((md_pbuf = dupb(*xmit_tail)) == NULL) { 19796 TCP_STAT(tcps, tcp_mdt_allocfail); 19797 goto legacy_send; /* out_of_mem */ 19798 } 19799 19800 if (IS_VMLOANED_MBLK(md_pbuf) && !zcopy && 19801 zc_cap != NULL) { 19802 if (!ip_md_zcopy_attr(mmd, NULL, 19803 zc_cap->ill_zerocopy_flags)) { 19804 freeb(md_pbuf); 19805 TCP_STAT(tcps, 19806 tcp_mdt_allocfail); 19807 /* out_of_mem */ 19808 goto legacy_send; 19809 } 19810 zcopy = B_TRUE; 19811 } 19812 19813 md_pbuf->b_rptr += base_pld_off; 19814 19815 /* 19816 * Add a payload buffer to the Multidata; this 19817 * operation must not fail, or otherwise our 19818 * logic in this routine is broken. There 19819 * is no memory allocation done by the 19820 * routine, so any returned failure simply 19821 * tells us that we've done something wrong. 19822 * 19823 * A failure tells us that either we're adding 19824 * the same payload buffer more than once, or 19825 * we're trying to add more buffers than 19826 * allowed (max_pld calculation is wrong). 19827 * None of the above cases should happen, and 19828 * we panic because either there's horrible 19829 * heap corruption, and/or programming mistake. 19830 */ 19831 pbuf_idx = mmd_addpldbuf(mmd, md_pbuf); 19832 if (pbuf_idx < 0) { 19833 cmn_err(CE_PANIC, "tcp_multisend: " 19834 "payload buffer logic error " 19835 "detected for tcp %p mmd %p " 19836 "pbuf %p (%d)\n", 19837 (void *)tcp, (void *)mmd, 19838 (void *)md_pbuf, pbuf_idx); 19839 } 19840 19841 ASSERT(max_pld > 0); 19842 --max_pld; 19843 add_buffer = B_FALSE; 19844 } 19845 19846 ASSERT(md_mp_head != NULL); 19847 ASSERT(md_pbuf != NULL); 19848 ASSERT(md_pbuf_nxt == NULL); 19849 ASSERT(pbuf_idx != -1); 19850 ASSERT(pbuf_idx_nxt == -1); 19851 ASSERT(*usable > 0); 19852 19853 /* 19854 * We spillover to the next payload buffer only 19855 * if all of the following is true: 19856 * 19857 * 1. There is not enough data on the current 19858 * payload buffer to make up `len', 19859 * 2. We are allowed to send `len', 19860 * 3. The next payload buffer length is large 19861 * enough to accomodate `spill'. 19862 */ 19863 if ((spill = len - *tail_unsent) > 0 && 19864 *usable >= len && 19865 MBLKL((*xmit_tail)->b_cont) >= spill && 19866 max_pld > 0) { 19867 md_pbuf_nxt = dupb((*xmit_tail)->b_cont); 19868 if (md_pbuf_nxt == NULL) { 19869 TCP_STAT(tcps, tcp_mdt_allocfail); 19870 goto legacy_send; /* out_of_mem */ 19871 } 19872 19873 if (IS_VMLOANED_MBLK(md_pbuf_nxt) && !zcopy && 19874 zc_cap != NULL) { 19875 if (!ip_md_zcopy_attr(mmd, NULL, 19876 zc_cap->ill_zerocopy_flags)) { 19877 freeb(md_pbuf_nxt); 19878 TCP_STAT(tcps, 19879 tcp_mdt_allocfail); 19880 /* out_of_mem */ 19881 goto legacy_send; 19882 } 19883 zcopy = B_TRUE; 19884 } 19885 19886 /* 19887 * See comments above on the first call to 19888 * mmd_addpldbuf for explanation on the panic. 19889 */ 19890 pbuf_idx_nxt = mmd_addpldbuf(mmd, md_pbuf_nxt); 19891 if (pbuf_idx_nxt < 0) { 19892 panic("tcp_multisend: " 19893 "next payload buffer logic error " 19894 "detected for tcp %p mmd %p " 19895 "pbuf %p (%d)\n", 19896 (void *)tcp, (void *)mmd, 19897 (void *)md_pbuf_nxt, pbuf_idx_nxt); 19898 } 19899 19900 ASSERT(max_pld > 0); 19901 --max_pld; 19902 } else if (spill > 0) { 19903 /* 19904 * If there's a spillover, but the following 19905 * xmit_tail couldn't give us enough octets 19906 * to reach "len", then stop the current 19907 * Multidata creation and let the legacy 19908 * tcp_send() path take over. We don't want 19909 * to send the tiny segment as part of this 19910 * Multidata for performance reasons; instead, 19911 * we let the legacy path deal with grouping 19912 * it with the subsequent small mblks. 19913 */ 19914 if (*usable >= len && 19915 MBLKL((*xmit_tail)->b_cont) < spill) { 19916 max_pld = 0; 19917 break; /* done */ 19918 } 19919 19920 /* 19921 * We can't spillover, and we are near 19922 * the end of the current payload buffer, 19923 * so send what's left. 19924 */ 19925 ASSERT(*tail_unsent > 0); 19926 len = *tail_unsent; 19927 } 19928 19929 /* tail_unsent is negated if there is a spillover */ 19930 *tail_unsent -= len; 19931 *usable -= len; 19932 ASSERT(*usable >= 0); 19933 19934 if (*usable < mss) 19935 seg_len = *usable; 19936 /* 19937 * Sender SWS avoidance; see comments in tcp_send(); 19938 * everything else is the same, except that we only 19939 * do this here if there is no more data to be sent 19940 * following the current xmit_tail. We don't check 19941 * for 1-byte urgent data because we shouldn't get 19942 * here if TCP_URG_VALID is set. 19943 */ 19944 if (*usable > 0 && *usable < mss && 19945 ((md_pbuf_nxt == NULL && 19946 (*xmit_tail)->b_cont == NULL) || 19947 (md_pbuf_nxt != NULL && 19948 (*xmit_tail)->b_cont->b_cont == NULL)) && 19949 seg_len < (tcp->tcp_max_swnd >> 1) && 19950 (tcp->tcp_unsent - 19951 ((*snxt + len) - tcp->tcp_snxt)) > seg_len && 19952 !tcp->tcp_zero_win_probe) { 19953 if ((*snxt + len) == tcp->tcp_snxt && 19954 (*snxt + len) == tcp->tcp_suna) { 19955 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 19956 } 19957 done = B_TRUE; 19958 } 19959 19960 /* 19961 * Prime pump for IP's checksumming on our behalf; 19962 * include the adjustment for a source route if any. 19963 * Do this only for software/partial hardware checksum 19964 * offload, as this field gets zeroed out later for 19965 * the full hardware checksum offload case. 19966 */ 19967 if (!(hwcksum_flags & HCK_FULLCKSUM)) { 19968 cksum = len + tcp_tcp_hdr_len + tcp->tcp_sum; 19969 cksum = (cksum >> 16) + (cksum & 0xFFFF); 19970 U16_TO_ABE16(cksum, tcp->tcp_tcph->th_sum); 19971 } 19972 19973 U32_TO_ABE32(*snxt, tcp->tcp_tcph->th_seq); 19974 *snxt += len; 19975 19976 tcp->tcp_tcph->th_flags[0] = TH_ACK; 19977 /* 19978 * We set the PUSH bit only if TCP has no more buffered 19979 * data to be transmitted (or if sender SWS avoidance 19980 * takes place), as opposed to setting it for every 19981 * last packet in the burst. 19982 */ 19983 if (done || 19984 (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) == 0) 19985 tcp->tcp_tcph->th_flags[0] |= TH_PUSH; 19986 19987 /* 19988 * Set FIN bit if this is our last segment; snxt 19989 * already includes its length, and it will not 19990 * be adjusted after this point. 19991 */ 19992 if (tcp->tcp_valid_bits == TCP_FSS_VALID && 19993 *snxt == tcp->tcp_fss) { 19994 if (!tcp->tcp_fin_acked) { 19995 tcp->tcp_tcph->th_flags[0] |= TH_FIN; 19996 BUMP_MIB(&tcps->tcps_mib, 19997 tcpOutControl); 19998 } 19999 if (!tcp->tcp_fin_sent) { 20000 tcp->tcp_fin_sent = B_TRUE; 20001 /* 20002 * tcp state must be ESTABLISHED 20003 * in order for us to get here in 20004 * the first place. 20005 */ 20006 tcp->tcp_state = TCPS_FIN_WAIT_1; 20007 20008 /* 20009 * Upon returning from this routine, 20010 * tcp_wput_data() will set tcp_snxt 20011 * to be equal to snxt + tcp_fin_sent. 20012 * This is essentially the same as 20013 * setting it to tcp_fss + 1. 20014 */ 20015 } 20016 } 20017 20018 tcp->tcp_last_sent_len = (ushort_t)len; 20019 20020 len += tcp_hdr_len; 20021 if (tcp->tcp_ipversion == IPV4_VERSION) 20022 tcp->tcp_ipha->ipha_length = htons(len); 20023 else 20024 tcp->tcp_ip6h->ip6_plen = htons(len - 20025 ((char *)&tcp->tcp_ip6h[1] - 20026 tcp->tcp_iphc)); 20027 20028 pkt_info->flags = (PDESC_HBUF_REF | PDESC_PBUF_REF); 20029 20030 /* setup header fragment */ 20031 PDESC_HDR_ADD(pkt_info, 20032 md_hbuf->b_rptr + cur_hdr_off, /* base */ 20033 tcp->tcp_mdt_hdr_head, /* head room */ 20034 tcp_hdr_len, /* len */ 20035 tcp->tcp_mdt_hdr_tail); /* tail room */ 20036 20037 ASSERT(pkt_info->hdr_lim - pkt_info->hdr_base == 20038 hdr_frag_sz); 20039 ASSERT(MBLKIN(md_hbuf, 20040 (pkt_info->hdr_base - md_hbuf->b_rptr), 20041 PDESC_HDRSIZE(pkt_info))); 20042 20043 /* setup first payload fragment */ 20044 PDESC_PLD_INIT(pkt_info); 20045 PDESC_PLD_SPAN_ADD(pkt_info, 20046 pbuf_idx, /* index */ 20047 md_pbuf->b_rptr + cur_pld_off, /* start */ 20048 tcp->tcp_last_sent_len); /* len */ 20049 20050 /* create a split-packet in case of a spillover */ 20051 if (md_pbuf_nxt != NULL) { 20052 ASSERT(spill > 0); 20053 ASSERT(pbuf_idx_nxt > pbuf_idx); 20054 ASSERT(!add_buffer); 20055 20056 md_pbuf = md_pbuf_nxt; 20057 md_pbuf_nxt = NULL; 20058 pbuf_idx = pbuf_idx_nxt; 20059 pbuf_idx_nxt = -1; 20060 cur_pld_off = spill; 20061 20062 /* trim out first payload fragment */ 20063 PDESC_PLD_SPAN_TRIM(pkt_info, 0, spill); 20064 20065 /* setup second payload fragment */ 20066 PDESC_PLD_SPAN_ADD(pkt_info, 20067 pbuf_idx, /* index */ 20068 md_pbuf->b_rptr, /* start */ 20069 spill); /* len */ 20070 20071 if ((*xmit_tail)->b_next == NULL) { 20072 /* 20073 * Store the lbolt used for RTT 20074 * estimation. We can only record one 20075 * timestamp per mblk so we do it when 20076 * we reach the end of the payload 20077 * buffer. Also we only take a new 20078 * timestamp sample when the previous 20079 * timed data from the same mblk has 20080 * been ack'ed. 20081 */ 20082 (*xmit_tail)->b_prev = local_time; 20083 (*xmit_tail)->b_next = 20084 (mblk_t *)(uintptr_t)first_snxt; 20085 } 20086 20087 first_snxt = *snxt - spill; 20088 20089 /* 20090 * Advance xmit_tail; usable could be 0 by 20091 * the time we got here, but we made sure 20092 * above that we would only spillover to 20093 * the next data block if usable includes 20094 * the spilled-over amount prior to the 20095 * subtraction. Therefore, we are sure 20096 * that xmit_tail->b_cont can't be NULL. 20097 */ 20098 ASSERT((*xmit_tail)->b_cont != NULL); 20099 *xmit_tail = (*xmit_tail)->b_cont; 20100 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 20101 (uintptr_t)INT_MAX); 20102 *tail_unsent = (int)MBLKL(*xmit_tail) - spill; 20103 } else { 20104 cur_pld_off += tcp->tcp_last_sent_len; 20105 } 20106 20107 /* 20108 * Fill in the header using the template header, and 20109 * add options such as time-stamp, ECN and/or SACK, 20110 * as needed. 20111 */ 20112 tcp_fill_header(tcp, pkt_info->hdr_rptr, 20113 (clock_t)local_time, num_sack_blk); 20114 20115 /* take care of some IP header businesses */ 20116 if (af == AF_INET) { 20117 ipha = (ipha_t *)pkt_info->hdr_rptr; 20118 20119 ASSERT(OK_32PTR((uchar_t *)ipha)); 20120 ASSERT(PDESC_HDRL(pkt_info) >= 20121 IP_SIMPLE_HDR_LENGTH); 20122 ASSERT(ipha->ipha_version_and_hdr_length == 20123 IP_SIMPLE_HDR_VERSION); 20124 20125 /* 20126 * Assign ident value for current packet; see 20127 * related comments in ip_wput_ire() about the 20128 * contract private interface with clustering 20129 * group. 20130 */ 20131 clusterwide = B_FALSE; 20132 if (cl_inet_ipident != NULL) { 20133 ASSERT(cl_inet_isclusterwide != NULL); 20134 if ((*cl_inet_isclusterwide)(stack_id, 20135 IPPROTO_IP, AF_INET, 20136 (uint8_t *)(uintptr_t)src, NULL)) { 20137 ipha->ipha_ident = 20138 (*cl_inet_ipident)(stack_id, 20139 IPPROTO_IP, AF_INET, 20140 (uint8_t *)(uintptr_t)src, 20141 (uint8_t *)(uintptr_t)dst, 20142 NULL); 20143 clusterwide = B_TRUE; 20144 } 20145 } 20146 20147 if (!clusterwide) { 20148 ipha->ipha_ident = (uint16_t) 20149 atomic_add_32_nv( 20150 &ire->ire_ident, 1); 20151 } 20152 #ifndef _BIG_ENDIAN 20153 ipha->ipha_ident = (ipha->ipha_ident << 8) | 20154 (ipha->ipha_ident >> 8); 20155 #endif 20156 } else { 20157 ip6h = (ip6_t *)pkt_info->hdr_rptr; 20158 20159 ASSERT(OK_32PTR((uchar_t *)ip6h)); 20160 ASSERT(IPVER(ip6h) == IPV6_VERSION); 20161 ASSERT(ip6h->ip6_nxt == IPPROTO_TCP); 20162 ASSERT(PDESC_HDRL(pkt_info) >= 20163 (IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET + 20164 TCP_CHECKSUM_SIZE)); 20165 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 20166 20167 if (tcp->tcp_ip_forward_progress) { 20168 rconfirm = B_TRUE; 20169 tcp->tcp_ip_forward_progress = B_FALSE; 20170 } 20171 } 20172 20173 /* at least one payload span, and at most two */ 20174 ASSERT(pkt_info->pld_cnt > 0 && pkt_info->pld_cnt < 3); 20175 20176 /* add the packet descriptor to Multidata */ 20177 if ((pkt = mmd_addpdesc(mmd, pkt_info, &err, 20178 KM_NOSLEEP)) == NULL) { 20179 /* 20180 * Any failure other than ENOMEM indicates 20181 * that we have passed in invalid pkt_info 20182 * or parameters to mmd_addpdesc, which must 20183 * not happen. 20184 * 20185 * EINVAL is a result of failure on boundary 20186 * checks against the pkt_info contents. It 20187 * should not happen, and we panic because 20188 * either there's horrible heap corruption, 20189 * and/or programming mistake. 20190 */ 20191 if (err != ENOMEM) { 20192 cmn_err(CE_PANIC, "tcp_multisend: " 20193 "pdesc logic error detected for " 20194 "tcp %p mmd %p pinfo %p (%d)\n", 20195 (void *)tcp, (void *)mmd, 20196 (void *)pkt_info, err); 20197 } 20198 TCP_STAT(tcps, tcp_mdt_addpdescfail); 20199 goto legacy_send; /* out_of_mem */ 20200 } 20201 ASSERT(pkt != NULL); 20202 20203 /* calculate IP header and TCP checksums */ 20204 if (af == AF_INET) { 20205 /* calculate pseudo-header checksum */ 20206 cksum = (dst >> 16) + (dst & 0xFFFF) + 20207 (src >> 16) + (src & 0xFFFF); 20208 20209 /* offset for TCP header checksum */ 20210 up = IPH_TCPH_CHECKSUMP(ipha, 20211 IP_SIMPLE_HDR_LENGTH); 20212 } else { 20213 up = (uint16_t *)&ip6h->ip6_src; 20214 20215 /* calculate pseudo-header checksum */ 20216 cksum = up[0] + up[1] + up[2] + up[3] + 20217 up[4] + up[5] + up[6] + up[7] + 20218 up[8] + up[9] + up[10] + up[11] + 20219 up[12] + up[13] + up[14] + up[15]; 20220 20221 /* Fold the initial sum */ 20222 cksum = (cksum & 0xffff) + (cksum >> 16); 20223 20224 up = (uint16_t *)(((uchar_t *)ip6h) + 20225 IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET); 20226 } 20227 20228 if (hwcksum_flags & HCK_FULLCKSUM) { 20229 /* clear checksum field for hardware */ 20230 *up = 0; 20231 } else if (hwcksum_flags & HCK_PARTIALCKSUM) { 20232 uint32_t sum; 20233 20234 /* pseudo-header checksumming */ 20235 sum = *up + cksum + IP_TCP_CSUM_COMP; 20236 sum = (sum & 0xFFFF) + (sum >> 16); 20237 *up = (sum & 0xFFFF) + (sum >> 16); 20238 } else { 20239 /* software checksumming */ 20240 TCP_STAT(tcps, tcp_out_sw_cksum); 20241 TCP_STAT_UPDATE(tcps, tcp_out_sw_cksum_bytes, 20242 tcp->tcp_hdr_len + tcp->tcp_last_sent_len); 20243 *up = IP_MD_CSUM(pkt, tcp->tcp_ip_hdr_len, 20244 cksum + IP_TCP_CSUM_COMP); 20245 if (*up == 0) 20246 *up = 0xFFFF; 20247 } 20248 20249 /* IPv4 header checksum */ 20250 if (af == AF_INET) { 20251 if (hwcksum_flags & HCK_IPV4_HDRCKSUM) { 20252 ipha->ipha_hdr_checksum = 0; 20253 } else { 20254 IP_HDR_CKSUM(ipha, cksum, 20255 ((uint32_t *)ipha)[0], 20256 ((uint16_t *)ipha)[4]); 20257 } 20258 } 20259 20260 if (af == AF_INET && 20261 HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) || 20262 af == AF_INET6 && 20263 HOOKS6_INTERESTED_PHYSICAL_OUT(ipst)) { 20264 mblk_t *mp, *mp1; 20265 uchar_t *hdr_rptr, *hdr_wptr; 20266 uchar_t *pld_rptr, *pld_wptr; 20267 20268 /* 20269 * We reconstruct a pseudo packet for the hooks 20270 * framework using mmd_transform_link(). 20271 * If it is a split packet we pullup the 20272 * payload. FW_HOOKS expects a pkt comprising 20273 * of two mblks: a header and the payload. 20274 */ 20275 if ((mp = mmd_transform_link(pkt)) == NULL) { 20276 TCP_STAT(tcps, tcp_mdt_allocfail); 20277 goto legacy_send; 20278 } 20279 20280 if (pkt_info->pld_cnt > 1) { 20281 /* split payload, more than one pld */ 20282 if ((mp1 = msgpullup(mp->b_cont, -1)) == 20283 NULL) { 20284 freemsg(mp); 20285 TCP_STAT(tcps, 20286 tcp_mdt_allocfail); 20287 goto legacy_send; 20288 } 20289 freemsg(mp->b_cont); 20290 mp->b_cont = mp1; 20291 } else { 20292 mp1 = mp->b_cont; 20293 } 20294 ASSERT(mp1 != NULL && mp1->b_cont == NULL); 20295 20296 /* 20297 * Remember the message offsets. This is so we 20298 * can detect changes when we return from the 20299 * FW_HOOKS callbacks. 20300 */ 20301 hdr_rptr = mp->b_rptr; 20302 hdr_wptr = mp->b_wptr; 20303 pld_rptr = mp->b_cont->b_rptr; 20304 pld_wptr = mp->b_cont->b_wptr; 20305 20306 if (af == AF_INET) { 20307 DTRACE_PROBE4( 20308 ip4__physical__out__start, 20309 ill_t *, NULL, 20310 ill_t *, ill, 20311 ipha_t *, ipha, 20312 mblk_t *, mp); 20313 FW_HOOKS( 20314 ipst->ips_ip4_physical_out_event, 20315 ipst->ips_ipv4firewall_physical_out, 20316 NULL, ill, ipha, mp, mp, 0, ipst); 20317 DTRACE_PROBE1( 20318 ip4__physical__out__end, 20319 mblk_t *, mp); 20320 } else { 20321 DTRACE_PROBE4( 20322 ip6__physical__out_start, 20323 ill_t *, NULL, 20324 ill_t *, ill, 20325 ip6_t *, ip6h, 20326 mblk_t *, mp); 20327 FW_HOOKS6( 20328 ipst->ips_ip6_physical_out_event, 20329 ipst->ips_ipv6firewall_physical_out, 20330 NULL, ill, ip6h, mp, mp, 0, ipst); 20331 DTRACE_PROBE1( 20332 ip6__physical__out__end, 20333 mblk_t *, mp); 20334 } 20335 20336 if (mp == NULL || 20337 (mp1 = mp->b_cont) == NULL || 20338 mp->b_rptr != hdr_rptr || 20339 mp->b_wptr != hdr_wptr || 20340 mp1->b_rptr != pld_rptr || 20341 mp1->b_wptr != pld_wptr || 20342 mp1->b_cont != NULL) { 20343 /* 20344 * We abandon multidata processing and 20345 * return to the normal path, either 20346 * when a packet is blocked, or when 20347 * the boundaries of header buffer or 20348 * payload buffer have been changed by 20349 * FW_HOOKS[6]. 20350 */ 20351 if (mp != NULL) 20352 freemsg(mp); 20353 goto legacy_send; 20354 } 20355 /* Finished with the pseudo packet */ 20356 freemsg(mp); 20357 } 20358 DTRACE_IP_FASTPATH(md_hbuf, pkt_info->hdr_rptr, 20359 ill, ipha, ip6h); 20360 /* advance header offset */ 20361 cur_hdr_off += hdr_frag_sz; 20362 20363 obbytes += tcp->tcp_last_sent_len; 20364 ++obsegs; 20365 } while (!done && *usable > 0 && --num_burst_seg > 0 && 20366 *tail_unsent > 0); 20367 20368 if ((*xmit_tail)->b_next == NULL) { 20369 /* 20370 * Store the lbolt used for RTT estimation. We can only 20371 * record one timestamp per mblk so we do it when we 20372 * reach the end of the payload buffer. Also we only 20373 * take a new timestamp sample when the previous timed 20374 * data from the same mblk has been ack'ed. 20375 */ 20376 (*xmit_tail)->b_prev = local_time; 20377 (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)first_snxt; 20378 } 20379 20380 ASSERT(*tail_unsent >= 0); 20381 if (*tail_unsent > 0) { 20382 /* 20383 * We got here because we broke out of the above 20384 * loop due to of one of the following cases: 20385 * 20386 * 1. len < adjusted MSS (i.e. small), 20387 * 2. Sender SWS avoidance, 20388 * 3. max_pld is zero. 20389 * 20390 * We are done for this Multidata, so trim our 20391 * last payload buffer (if any) accordingly. 20392 */ 20393 if (md_pbuf != NULL) 20394 md_pbuf->b_wptr -= *tail_unsent; 20395 } else if (*usable > 0) { 20396 *xmit_tail = (*xmit_tail)->b_cont; 20397 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 20398 (uintptr_t)INT_MAX); 20399 *tail_unsent = (int)MBLKL(*xmit_tail); 20400 add_buffer = B_TRUE; 20401 } 20402 } while (!done && *usable > 0 && num_burst_seg > 0 && 20403 (tcp_mdt_chain || max_pld > 0)); 20404 20405 if (md_mp_head != NULL) { 20406 /* send everything down */ 20407 tcp_multisend_data(tcp, ire, ill, md_mp_head, obsegs, obbytes, 20408 &rconfirm); 20409 } 20410 20411 #undef PREP_NEW_MULTIDATA 20412 #undef PREP_NEW_PBUF 20413 #undef IPVER 20414 20415 IRE_REFRELE(ire); 20416 return (0); 20417 } 20418 20419 /* 20420 * A wrapper function for sending one or more Multidata messages down to 20421 * the module below ip; this routine does not release the reference of the 20422 * IRE (caller does that). This routine is analogous to tcp_send_data(). 20423 */ 20424 static void 20425 tcp_multisend_data(tcp_t *tcp, ire_t *ire, const ill_t *ill, mblk_t *md_mp_head, 20426 const uint_t obsegs, const uint_t obbytes, boolean_t *rconfirm) 20427 { 20428 uint64_t delta; 20429 nce_t *nce; 20430 tcp_stack_t *tcps = tcp->tcp_tcps; 20431 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 20432 20433 ASSERT(ire != NULL && ill != NULL); 20434 ASSERT(ire->ire_stq != NULL); 20435 ASSERT(md_mp_head != NULL); 20436 ASSERT(rconfirm != NULL); 20437 20438 /* adjust MIBs and IRE timestamp */ 20439 DTRACE_PROBE2(tcp__trace__send, mblk_t *, md_mp_head, tcp_t *, tcp); 20440 tcp->tcp_obsegs += obsegs; 20441 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataSegs, obsegs); 20442 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, obbytes); 20443 TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out, obsegs); 20444 20445 if (tcp->tcp_ipversion == IPV4_VERSION) { 20446 TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out_v4, obsegs); 20447 } else { 20448 TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out_v6, obsegs); 20449 } 20450 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests, obsegs); 20451 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, obsegs); 20452 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, obbytes); 20453 20454 ire->ire_ob_pkt_count += obsegs; 20455 if (ire->ire_ipif != NULL) 20456 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, obsegs); 20457 ire->ire_last_used_time = lbolt; 20458 20459 if ((tcp->tcp_ipversion == IPV4_VERSION && 20460 ipst->ips_ip4_observe.he_interested) || 20461 (tcp->tcp_ipversion == IPV6_VERSION && 20462 ipst->ips_ip6_observe.he_interested)) { 20463 multidata_t *dlmdp = mmd_getmultidata(md_mp_head); 20464 pdesc_t *dl_pkt; 20465 pdescinfo_t pinfo; 20466 mblk_t *nmp; 20467 zoneid_t szone = tcp->tcp_connp->conn_zoneid; 20468 20469 for (dl_pkt = mmd_getfirstpdesc(dlmdp, &pinfo); 20470 (dl_pkt != NULL); 20471 dl_pkt = mmd_getnextpdesc(dl_pkt, &pinfo)) { 20472 if ((nmp = mmd_transform_link(dl_pkt)) == NULL) 20473 continue; 20474 ipobs_hook(nmp, IPOBS_HOOK_OUTBOUND, szone, 20475 ALL_ZONES, ill, ipst); 20476 freemsg(nmp); 20477 } 20478 } 20479 20480 /* send it down */ 20481 putnext(ire->ire_stq, md_mp_head); 20482 20483 /* we're done for TCP/IPv4 */ 20484 if (tcp->tcp_ipversion == IPV4_VERSION) 20485 return; 20486 20487 nce = ire->ire_nce; 20488 20489 ASSERT(nce != NULL); 20490 ASSERT(!(nce->nce_flags & (NCE_F_NONUD|NCE_F_PERMANENT))); 20491 ASSERT(nce->nce_state != ND_INCOMPLETE); 20492 20493 /* reachability confirmation? */ 20494 if (*rconfirm) { 20495 nce->nce_last = TICK_TO_MSEC(lbolt64); 20496 if (nce->nce_state != ND_REACHABLE) { 20497 mutex_enter(&nce->nce_lock); 20498 nce->nce_state = ND_REACHABLE; 20499 nce->nce_pcnt = ND_MAX_UNICAST_SOLICIT; 20500 mutex_exit(&nce->nce_lock); 20501 (void) untimeout(nce->nce_timeout_id); 20502 if (ip_debug > 2) { 20503 /* ip1dbg */ 20504 pr_addr_dbg("tcp_multisend_data: state " 20505 "for %s changed to REACHABLE\n", 20506 AF_INET6, &ire->ire_addr_v6); 20507 } 20508 } 20509 /* reset transport reachability confirmation */ 20510 *rconfirm = B_FALSE; 20511 } 20512 20513 delta = TICK_TO_MSEC(lbolt64) - nce->nce_last; 20514 ip1dbg(("tcp_multisend_data: delta = %" PRId64 20515 " ill_reachable_time = %d \n", delta, ill->ill_reachable_time)); 20516 20517 if (delta > (uint64_t)ill->ill_reachable_time) { 20518 mutex_enter(&nce->nce_lock); 20519 switch (nce->nce_state) { 20520 case ND_REACHABLE: 20521 case ND_STALE: 20522 /* 20523 * ND_REACHABLE is identical to ND_STALE in this 20524 * specific case. If reachable time has expired for 20525 * this neighbor (delta is greater than reachable 20526 * time), conceptually, the neighbor cache is no 20527 * longer in REACHABLE state, but already in STALE 20528 * state. So the correct transition here is to 20529 * ND_DELAY. 20530 */ 20531 nce->nce_state = ND_DELAY; 20532 mutex_exit(&nce->nce_lock); 20533 NDP_RESTART_TIMER(nce, 20534 ipst->ips_delay_first_probe_time); 20535 if (ip_debug > 3) { 20536 /* ip2dbg */ 20537 pr_addr_dbg("tcp_multisend_data: state " 20538 "for %s changed to DELAY\n", 20539 AF_INET6, &ire->ire_addr_v6); 20540 } 20541 break; 20542 case ND_DELAY: 20543 case ND_PROBE: 20544 mutex_exit(&nce->nce_lock); 20545 /* Timers have already started */ 20546 break; 20547 case ND_UNREACHABLE: 20548 /* 20549 * ndp timer has detected that this nce is 20550 * unreachable and initiated deleting this nce 20551 * and all its associated IREs. This is a race 20552 * where we found the ire before it was deleted 20553 * and have just sent out a packet using this 20554 * unreachable nce. 20555 */ 20556 mutex_exit(&nce->nce_lock); 20557 break; 20558 default: 20559 ASSERT(0); 20560 } 20561 } 20562 } 20563 20564 /* 20565 * Derived from tcp_send_data(). 20566 */ 20567 static void 20568 tcp_lsosend_data(tcp_t *tcp, mblk_t *mp, ire_t *ire, ill_t *ill, const int mss, 20569 int num_lso_seg) 20570 { 20571 ipha_t *ipha; 20572 mblk_t *ire_fp_mp; 20573 uint_t ire_fp_mp_len; 20574 uint32_t hcksum_txflags = 0; 20575 ipaddr_t src; 20576 ipaddr_t dst; 20577 uint32_t cksum; 20578 uint16_t *up; 20579 tcp_stack_t *tcps = tcp->tcp_tcps; 20580 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 20581 20582 ASSERT(DB_TYPE(mp) == M_DATA); 20583 ASSERT(tcp->tcp_state == TCPS_ESTABLISHED); 20584 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 20585 ASSERT(tcp->tcp_connp != NULL); 20586 ASSERT(CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp)); 20587 20588 ipha = (ipha_t *)mp->b_rptr; 20589 src = ipha->ipha_src; 20590 dst = ipha->ipha_dst; 20591 20592 DTRACE_PROBE2(tcp__trace__send, mblk_t *, mp, tcp_t *, tcp); 20593 20594 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 20595 ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 20596 num_lso_seg); 20597 #ifndef _BIG_ENDIAN 20598 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 20599 #endif 20600 if (tcp->tcp_snd_zcopy_aware) { 20601 if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 || 20602 (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0)) 20603 mp = tcp_zcopy_disable(tcp, mp); 20604 } 20605 20606 if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) { 20607 ASSERT(ill->ill_hcksum_capab != NULL); 20608 hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags; 20609 } 20610 20611 /* 20612 * Since the TCP checksum should be recalculated by h/w, we can just 20613 * zero the checksum field for HCK_FULLCKSUM, or calculate partial 20614 * pseudo-header checksum for HCK_PARTIALCKSUM. 20615 * The partial pseudo-header excludes TCP length, that was calculated 20616 * in tcp_send(), so to zero *up before further processing. 20617 */ 20618 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 20619 20620 up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH); 20621 *up = 0; 20622 20623 IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up, 20624 IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum); 20625 20626 /* 20627 * Append LSO flags and mss to the mp. 20628 */ 20629 lso_info_set(mp, mss, HW_LSO); 20630 20631 ipha->ipha_fragment_offset_and_flags |= 20632 (uint32_t)htons(ire->ire_frag_flag); 20633 20634 ire_fp_mp = ire->ire_nce->nce_fp_mp; 20635 ire_fp_mp_len = MBLKL(ire_fp_mp); 20636 ASSERT(DB_TYPE(ire_fp_mp) == M_DATA); 20637 mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len; 20638 bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len); 20639 20640 UPDATE_OB_PKT_COUNT(ire); 20641 ire->ire_last_used_time = lbolt; 20642 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 20643 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 20644 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 20645 ntohs(ipha->ipha_length)); 20646 20647 DTRACE_PROBE4(ip4__physical__out__start, 20648 ill_t *, NULL, ill_t *, ill, ipha_t *, ipha, mblk_t *, mp); 20649 FW_HOOKS(ipst->ips_ip4_physical_out_event, 20650 ipst->ips_ipv4firewall_physical_out, NULL, 20651 ill, ipha, mp, mp, 0, ipst); 20652 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 20653 DTRACE_IP_FASTPATH(mp, ipha, ill, ipha, NULL); 20654 20655 if (mp != NULL) { 20656 if (ipst->ips_ip4_observe.he_interested) { 20657 zoneid_t szone; 20658 20659 if (ire_fp_mp_len != 0) 20660 mp->b_rptr += ire_fp_mp_len; 20661 szone = ip_get_zoneid_v4(ipha->ipha_src, mp, 20662 ipst, ALL_ZONES); 20663 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, 20664 ALL_ZONES, ill, ipst); 20665 if (ire_fp_mp_len != 0) 20666 mp->b_rptr -= ire_fp_mp_len; 20667 } 20668 20669 ILL_SEND_TX(ill, ire, tcp->tcp_connp, mp, 0, NULL); 20670 } 20671 } 20672 20673 /* 20674 * tcp_send() is called by tcp_wput_data() for non-Multidata transmission 20675 * scheme, and returns one of the following: 20676 * 20677 * -1 = failed allocation. 20678 * 0 = success; burst count reached, or usable send window is too small, 20679 * and that we'd rather wait until later before sending again. 20680 * 1 = success; we are called from tcp_multisend(), and both usable send 20681 * window and tail_unsent are greater than the MDT threshold, and thus 20682 * Multidata Transmit should be used instead. 20683 */ 20684 static int 20685 tcp_send(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len, 20686 const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable, 20687 uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 20688 const int mdt_thres) 20689 { 20690 int num_burst_seg = tcp->tcp_snd_burst; 20691 ire_t *ire = NULL; 20692 ill_t *ill = NULL; 20693 mblk_t *ire_fp_mp = NULL; 20694 uint_t ire_fp_mp_len = 0; 20695 int num_lso_seg = 1; 20696 uint_t lso_usable; 20697 boolean_t do_lso_send = B_FALSE; 20698 tcp_stack_t *tcps = tcp->tcp_tcps; 20699 20700 /* 20701 * Check LSO capability before any further work. And the similar check 20702 * need to be done in for(;;) loop. 20703 * LSO will be deployed when therer is more than one mss of available 20704 * data and a burst transmission is allowed. 20705 */ 20706 if (tcp->tcp_lso && 20707 (tcp->tcp_valid_bits == 0 || 20708 tcp->tcp_valid_bits == TCP_FSS_VALID) && 20709 num_burst_seg >= 2 && (*usable - 1) / mss >= 1) { 20710 /* 20711 * Try to find usable IRE/ILL and do basic check to the ILL. 20712 * Double check LSO usability before going further, since the 20713 * underlying interface could have been changed. In case of any 20714 * change of LSO capability, set tcp_ire_ill_check_done to 20715 * B_FALSE to force to check the ILL with the next send. 20716 */ 20717 if (tcp_send_find_ire_ill(tcp, NULL, &ire, &ill) && 20718 tcp->tcp_lso && ILL_LSO_TCP_USABLE(ill)) { 20719 /* 20720 * Enable LSO with this transmission. 20721 * Since IRE has been hold in tcp_send_find_ire_ill(), 20722 * IRE_REFRELE(ire) should be called before return. 20723 */ 20724 do_lso_send = B_TRUE; 20725 ire_fp_mp = ire->ire_nce->nce_fp_mp; 20726 ire_fp_mp_len = MBLKL(ire_fp_mp); 20727 /* Round up to multiple of 4 */ 20728 ire_fp_mp_len = ((ire_fp_mp_len + 3) / 4) * 4; 20729 } else { 20730 tcp->tcp_lso = B_FALSE; 20731 tcp->tcp_ire_ill_check_done = B_FALSE; 20732 do_lso_send = B_FALSE; 20733 ill = NULL; 20734 } 20735 } 20736 20737 for (;;) { 20738 struct datab *db; 20739 tcph_t *tcph; 20740 uint32_t sum; 20741 mblk_t *mp, *mp1; 20742 uchar_t *rptr; 20743 int len; 20744 20745 /* 20746 * If we're called by tcp_multisend(), and the amount of 20747 * sendable data as well as the size of current xmit_tail 20748 * is beyond the MDT threshold, return to the caller and 20749 * let the large data transmit be done using MDT. 20750 */ 20751 if (*usable > 0 && *usable > mdt_thres && 20752 (*tail_unsent > mdt_thres || (*tail_unsent == 0 && 20753 MBLKL((*xmit_tail)->b_cont) > mdt_thres))) { 20754 ASSERT(tcp->tcp_mdt); 20755 return (1); /* success; do large send */ 20756 } 20757 20758 if (num_burst_seg == 0) 20759 break; /* success; burst count reached */ 20760 20761 /* 20762 * Calculate the maximum payload length we can send in *one* 20763 * time. 20764 */ 20765 if (do_lso_send) { 20766 /* 20767 * Check whether need to do LSO any more. 20768 */ 20769 if (num_burst_seg >= 2 && (*usable - 1) / mss >= 1) { 20770 lso_usable = MIN(tcp->tcp_lso_max, *usable); 20771 lso_usable = MIN(lso_usable, 20772 num_burst_seg * mss); 20773 20774 num_lso_seg = lso_usable / mss; 20775 if (lso_usable % mss) { 20776 num_lso_seg++; 20777 tcp->tcp_last_sent_len = (ushort_t) 20778 (lso_usable % mss); 20779 } else { 20780 tcp->tcp_last_sent_len = (ushort_t)mss; 20781 } 20782 } else { 20783 do_lso_send = B_FALSE; 20784 num_lso_seg = 1; 20785 lso_usable = mss; 20786 } 20787 } 20788 20789 ASSERT(num_lso_seg <= IP_MAXPACKET / mss + 1); 20790 20791 /* 20792 * Adjust num_burst_seg here. 20793 */ 20794 num_burst_seg -= num_lso_seg; 20795 20796 len = mss; 20797 if (len > *usable) { 20798 ASSERT(do_lso_send == B_FALSE); 20799 20800 len = *usable; 20801 if (len <= 0) { 20802 /* Terminate the loop */ 20803 break; /* success; too small */ 20804 } 20805 /* 20806 * Sender silly-window avoidance. 20807 * Ignore this if we are going to send a 20808 * zero window probe out. 20809 * 20810 * TODO: force data into microscopic window? 20811 * ==> (!pushed || (unsent > usable)) 20812 */ 20813 if (len < (tcp->tcp_max_swnd >> 1) && 20814 (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) > len && 20815 !((tcp->tcp_valid_bits & TCP_URG_VALID) && 20816 len == 1) && (! tcp->tcp_zero_win_probe)) { 20817 /* 20818 * If the retransmit timer is not running 20819 * we start it so that we will retransmit 20820 * in the case when the the receiver has 20821 * decremented the window. 20822 */ 20823 if (*snxt == tcp->tcp_snxt && 20824 *snxt == tcp->tcp_suna) { 20825 /* 20826 * We are not supposed to send 20827 * anything. So let's wait a little 20828 * bit longer before breaking SWS 20829 * avoidance. 20830 * 20831 * What should the value be? 20832 * Suggestion: MAX(init rexmit time, 20833 * tcp->tcp_rto) 20834 */ 20835 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 20836 } 20837 break; /* success; too small */ 20838 } 20839 } 20840 20841 tcph = tcp->tcp_tcph; 20842 20843 /* 20844 * The reason to adjust len here is that we need to set flags 20845 * and calculate checksum. 20846 */ 20847 if (do_lso_send) 20848 len = lso_usable; 20849 20850 *usable -= len; /* Approximate - can be adjusted later */ 20851 if (*usable > 0) 20852 tcph->th_flags[0] = TH_ACK; 20853 else 20854 tcph->th_flags[0] = (TH_ACK | TH_PUSH); 20855 20856 /* 20857 * Prime pump for IP's checksumming on our behalf 20858 * Include the adjustment for a source route if any. 20859 */ 20860 sum = len + tcp_tcp_hdr_len + tcp->tcp_sum; 20861 sum = (sum >> 16) + (sum & 0xFFFF); 20862 U16_TO_ABE16(sum, tcph->th_sum); 20863 20864 U32_TO_ABE32(*snxt, tcph->th_seq); 20865 20866 /* 20867 * Branch off to tcp_xmit_mp() if any of the VALID bits is 20868 * set. For the case when TCP_FSS_VALID is the only valid 20869 * bit (normal active close), branch off only when we think 20870 * that the FIN flag needs to be set. Note for this case, 20871 * that (snxt + len) may not reflect the actual seg_len, 20872 * as len may be further reduced in tcp_xmit_mp(). If len 20873 * gets modified, we will end up here again. 20874 */ 20875 if (tcp->tcp_valid_bits != 0 && 20876 (tcp->tcp_valid_bits != TCP_FSS_VALID || 20877 ((*snxt + len) == tcp->tcp_fss))) { 20878 uchar_t *prev_rptr; 20879 uint32_t prev_snxt = tcp->tcp_snxt; 20880 20881 if (*tail_unsent == 0) { 20882 ASSERT((*xmit_tail)->b_cont != NULL); 20883 *xmit_tail = (*xmit_tail)->b_cont; 20884 prev_rptr = (*xmit_tail)->b_rptr; 20885 *tail_unsent = (int)((*xmit_tail)->b_wptr - 20886 (*xmit_tail)->b_rptr); 20887 } else { 20888 prev_rptr = (*xmit_tail)->b_rptr; 20889 (*xmit_tail)->b_rptr = (*xmit_tail)->b_wptr - 20890 *tail_unsent; 20891 } 20892 mp = tcp_xmit_mp(tcp, *xmit_tail, len, NULL, NULL, 20893 *snxt, B_FALSE, (uint32_t *)&len, B_FALSE); 20894 /* Restore tcp_snxt so we get amount sent right. */ 20895 tcp->tcp_snxt = prev_snxt; 20896 if (prev_rptr == (*xmit_tail)->b_rptr) { 20897 /* 20898 * If the previous timestamp is still in use, 20899 * don't stomp on it. 20900 */ 20901 if ((*xmit_tail)->b_next == NULL) { 20902 (*xmit_tail)->b_prev = local_time; 20903 (*xmit_tail)->b_next = 20904 (mblk_t *)(uintptr_t)(*snxt); 20905 } 20906 } else 20907 (*xmit_tail)->b_rptr = prev_rptr; 20908 20909 if (mp == NULL) { 20910 if (ire != NULL) 20911 IRE_REFRELE(ire); 20912 return (-1); 20913 } 20914 mp1 = mp->b_cont; 20915 20916 if (len <= mss) /* LSO is unusable (!do_lso_send) */ 20917 tcp->tcp_last_sent_len = (ushort_t)len; 20918 while (mp1->b_cont) { 20919 *xmit_tail = (*xmit_tail)->b_cont; 20920 (*xmit_tail)->b_prev = local_time; 20921 (*xmit_tail)->b_next = 20922 (mblk_t *)(uintptr_t)(*snxt); 20923 mp1 = mp1->b_cont; 20924 } 20925 *snxt += len; 20926 *tail_unsent = (*xmit_tail)->b_wptr - mp1->b_wptr; 20927 BUMP_LOCAL(tcp->tcp_obsegs); 20928 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 20929 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); 20930 tcp_send_data(tcp, q, mp); 20931 continue; 20932 } 20933 20934 *snxt += len; /* Adjust later if we don't send all of len */ 20935 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 20936 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); 20937 20938 if (*tail_unsent) { 20939 /* Are the bytes above us in flight? */ 20940 rptr = (*xmit_tail)->b_wptr - *tail_unsent; 20941 if (rptr != (*xmit_tail)->b_rptr) { 20942 *tail_unsent -= len; 20943 if (len <= mss) /* LSO is unusable */ 20944 tcp->tcp_last_sent_len = (ushort_t)len; 20945 len += tcp_hdr_len; 20946 if (tcp->tcp_ipversion == IPV4_VERSION) 20947 tcp->tcp_ipha->ipha_length = htons(len); 20948 else 20949 tcp->tcp_ip6h->ip6_plen = 20950 htons(len - 20951 ((char *)&tcp->tcp_ip6h[1] - 20952 tcp->tcp_iphc)); 20953 mp = dupb(*xmit_tail); 20954 if (mp == NULL) { 20955 if (ire != NULL) 20956 IRE_REFRELE(ire); 20957 return (-1); /* out_of_mem */ 20958 } 20959 mp->b_rptr = rptr; 20960 /* 20961 * If the old timestamp is no longer in use, 20962 * sample a new timestamp now. 20963 */ 20964 if ((*xmit_tail)->b_next == NULL) { 20965 (*xmit_tail)->b_prev = local_time; 20966 (*xmit_tail)->b_next = 20967 (mblk_t *)(uintptr_t)(*snxt-len); 20968 } 20969 goto must_alloc; 20970 } 20971 } else { 20972 *xmit_tail = (*xmit_tail)->b_cont; 20973 ASSERT((uintptr_t)((*xmit_tail)->b_wptr - 20974 (*xmit_tail)->b_rptr) <= (uintptr_t)INT_MAX); 20975 *tail_unsent = (int)((*xmit_tail)->b_wptr - 20976 (*xmit_tail)->b_rptr); 20977 } 20978 20979 (*xmit_tail)->b_prev = local_time; 20980 (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)(*snxt - len); 20981 20982 *tail_unsent -= len; 20983 if (len <= mss) /* LSO is unusable (!do_lso_send) */ 20984 tcp->tcp_last_sent_len = (ushort_t)len; 20985 20986 len += tcp_hdr_len; 20987 if (tcp->tcp_ipversion == IPV4_VERSION) 20988 tcp->tcp_ipha->ipha_length = htons(len); 20989 else 20990 tcp->tcp_ip6h->ip6_plen = htons(len - 20991 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 20992 20993 mp = dupb(*xmit_tail); 20994 if (mp == NULL) { 20995 if (ire != NULL) 20996 IRE_REFRELE(ire); 20997 return (-1); /* out_of_mem */ 20998 } 20999 21000 len = tcp_hdr_len; 21001 /* 21002 * There are four reasons to allocate a new hdr mblk: 21003 * 1) The bytes above us are in use by another packet 21004 * 2) We don't have good alignment 21005 * 3) The mblk is being shared 21006 * 4) We don't have enough room for a header 21007 */ 21008 rptr = mp->b_rptr - len; 21009 if (!OK_32PTR(rptr) || 21010 ((db = mp->b_datap), db->db_ref != 2) || 21011 rptr < db->db_base + ire_fp_mp_len) { 21012 /* NOTE: we assume allocb returns an OK_32PTR */ 21013 21014 must_alloc:; 21015 mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 21016 tcps->tcps_wroff_xtra + ire_fp_mp_len, BPRI_MED); 21017 if (mp1 == NULL) { 21018 freemsg(mp); 21019 if (ire != NULL) 21020 IRE_REFRELE(ire); 21021 return (-1); /* out_of_mem */ 21022 } 21023 mp1->b_cont = mp; 21024 mp = mp1; 21025 /* Leave room for Link Level header */ 21026 len = tcp_hdr_len; 21027 rptr = 21028 &mp->b_rptr[tcps->tcps_wroff_xtra + ire_fp_mp_len]; 21029 mp->b_wptr = &rptr[len]; 21030 } 21031 21032 /* 21033 * Fill in the header using the template header, and add 21034 * options such as time-stamp, ECN and/or SACK, as needed. 21035 */ 21036 tcp_fill_header(tcp, rptr, (clock_t)local_time, num_sack_blk); 21037 21038 mp->b_rptr = rptr; 21039 21040 if (*tail_unsent) { 21041 int spill = *tail_unsent; 21042 21043 mp1 = mp->b_cont; 21044 if (mp1 == NULL) 21045 mp1 = mp; 21046 21047 /* 21048 * If we're a little short, tack on more mblks until 21049 * there is no more spillover. 21050 */ 21051 while (spill < 0) { 21052 mblk_t *nmp; 21053 int nmpsz; 21054 21055 nmp = (*xmit_tail)->b_cont; 21056 nmpsz = MBLKL(nmp); 21057 21058 /* 21059 * Excess data in mblk; can we split it? 21060 * If MDT is enabled for the connection, 21061 * keep on splitting as this is a transient 21062 * send path. 21063 */ 21064 if (!do_lso_send && !tcp->tcp_mdt && 21065 (spill + nmpsz > 0)) { 21066 /* 21067 * Don't split if stream head was 21068 * told to break up larger writes 21069 * into smaller ones. 21070 */ 21071 if (tcp->tcp_maxpsz > 0) 21072 break; 21073 21074 /* 21075 * Next mblk is less than SMSS/2 21076 * rounded up to nearest 64-byte; 21077 * let it get sent as part of the 21078 * next segment. 21079 */ 21080 if (tcp->tcp_localnet && 21081 !tcp->tcp_cork && 21082 (nmpsz < roundup((mss >> 1), 64))) 21083 break; 21084 } 21085 21086 *xmit_tail = nmp; 21087 ASSERT((uintptr_t)nmpsz <= (uintptr_t)INT_MAX); 21088 /* Stash for rtt use later */ 21089 (*xmit_tail)->b_prev = local_time; 21090 (*xmit_tail)->b_next = 21091 (mblk_t *)(uintptr_t)(*snxt - len); 21092 mp1->b_cont = dupb(*xmit_tail); 21093 mp1 = mp1->b_cont; 21094 21095 spill += nmpsz; 21096 if (mp1 == NULL) { 21097 *tail_unsent = spill; 21098 freemsg(mp); 21099 if (ire != NULL) 21100 IRE_REFRELE(ire); 21101 return (-1); /* out_of_mem */ 21102 } 21103 } 21104 21105 /* Trim back any surplus on the last mblk */ 21106 if (spill >= 0) { 21107 mp1->b_wptr -= spill; 21108 *tail_unsent = spill; 21109 } else { 21110 /* 21111 * We did not send everything we could in 21112 * order to remain within the b_cont limit. 21113 */ 21114 *usable -= spill; 21115 *snxt += spill; 21116 tcp->tcp_last_sent_len += spill; 21117 UPDATE_MIB(&tcps->tcps_mib, 21118 tcpOutDataBytes, spill); 21119 /* 21120 * Adjust the checksum 21121 */ 21122 tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 21123 sum += spill; 21124 sum = (sum >> 16) + (sum & 0xFFFF); 21125 U16_TO_ABE16(sum, tcph->th_sum); 21126 if (tcp->tcp_ipversion == IPV4_VERSION) { 21127 sum = ntohs( 21128 ((ipha_t *)rptr)->ipha_length) + 21129 spill; 21130 ((ipha_t *)rptr)->ipha_length = 21131 htons(sum); 21132 } else { 21133 sum = ntohs( 21134 ((ip6_t *)rptr)->ip6_plen) + 21135 spill; 21136 ((ip6_t *)rptr)->ip6_plen = 21137 htons(sum); 21138 } 21139 *tail_unsent = 0; 21140 } 21141 } 21142 if (tcp->tcp_ip_forward_progress) { 21143 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 21144 *(uint32_t *)mp->b_rptr |= IP_FORWARD_PROG; 21145 tcp->tcp_ip_forward_progress = B_FALSE; 21146 } 21147 21148 if (do_lso_send) { 21149 tcp_lsosend_data(tcp, mp, ire, ill, mss, 21150 num_lso_seg); 21151 tcp->tcp_obsegs += num_lso_seg; 21152 21153 TCP_STAT(tcps, tcp_lso_times); 21154 TCP_STAT_UPDATE(tcps, tcp_lso_pkt_out, num_lso_seg); 21155 } else { 21156 tcp_send_data(tcp, q, mp); 21157 BUMP_LOCAL(tcp->tcp_obsegs); 21158 } 21159 } 21160 21161 if (ire != NULL) 21162 IRE_REFRELE(ire); 21163 return (0); 21164 } 21165 21166 /* Unlink and return any mblk that looks like it contains a MDT info */ 21167 static mblk_t * 21168 tcp_mdt_info_mp(mblk_t *mp) 21169 { 21170 mblk_t *prev_mp; 21171 21172 for (;;) { 21173 prev_mp = mp; 21174 /* no more to process? */ 21175 if ((mp = mp->b_cont) == NULL) 21176 break; 21177 21178 switch (DB_TYPE(mp)) { 21179 case M_CTL: 21180 if (*(uint32_t *)mp->b_rptr != MDT_IOC_INFO_UPDATE) 21181 continue; 21182 ASSERT(prev_mp != NULL); 21183 prev_mp->b_cont = mp->b_cont; 21184 mp->b_cont = NULL; 21185 return (mp); 21186 default: 21187 break; 21188 } 21189 } 21190 return (mp); 21191 } 21192 21193 /* MDT info update routine, called when IP notifies us about MDT */ 21194 static void 21195 tcp_mdt_update(tcp_t *tcp, ill_mdt_capab_t *mdt_capab, boolean_t first) 21196 { 21197 boolean_t prev_state; 21198 tcp_stack_t *tcps = tcp->tcp_tcps; 21199 21200 /* 21201 * IP is telling us to abort MDT on this connection? We know 21202 * this because the capability is only turned off when IP 21203 * encounters some pathological cases, e.g. link-layer change 21204 * where the new driver doesn't support MDT, or in situation 21205 * where MDT usage on the link-layer has been switched off. 21206 * IP would not have sent us the initial MDT_IOC_INFO_UPDATE 21207 * if the link-layer doesn't support MDT, and if it does, it 21208 * will indicate that the feature is to be turned on. 21209 */ 21210 prev_state = tcp->tcp_mdt; 21211 tcp->tcp_mdt = (mdt_capab->ill_mdt_on != 0); 21212 if (!tcp->tcp_mdt && !first) { 21213 TCP_STAT(tcps, tcp_mdt_conn_halted3); 21214 ip1dbg(("tcp_mdt_update: disabling MDT for connp %p\n", 21215 (void *)tcp->tcp_connp)); 21216 } 21217 21218 /* 21219 * We currently only support MDT on simple TCP/{IPv4,IPv6}, 21220 * so disable MDT otherwise. The checks are done here 21221 * and in tcp_wput_data(). 21222 */ 21223 if (tcp->tcp_mdt && 21224 (tcp->tcp_ipversion == IPV4_VERSION && 21225 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 21226 (tcp->tcp_ipversion == IPV6_VERSION && 21227 tcp->tcp_ip_hdr_len != IPV6_HDR_LEN)) 21228 tcp->tcp_mdt = B_FALSE; 21229 21230 if (tcp->tcp_mdt) { 21231 if (mdt_capab->ill_mdt_version != MDT_VERSION_2) { 21232 cmn_err(CE_NOTE, "tcp_mdt_update: unknown MDT " 21233 "version (%d), expected version is %d", 21234 mdt_capab->ill_mdt_version, MDT_VERSION_2); 21235 tcp->tcp_mdt = B_FALSE; 21236 return; 21237 } 21238 21239 /* 21240 * We need the driver to be able to handle at least three 21241 * spans per packet in order for tcp MDT to be utilized. 21242 * The first is for the header portion, while the rest are 21243 * needed to handle a packet that straddles across two 21244 * virtually non-contiguous buffers; a typical tcp packet 21245 * therefore consists of only two spans. Note that we take 21246 * a zero as "don't care". 21247 */ 21248 if (mdt_capab->ill_mdt_span_limit > 0 && 21249 mdt_capab->ill_mdt_span_limit < 3) { 21250 tcp->tcp_mdt = B_FALSE; 21251 return; 21252 } 21253 21254 /* a zero means driver wants default value */ 21255 tcp->tcp_mdt_max_pld = MIN(mdt_capab->ill_mdt_max_pld, 21256 tcps->tcps_mdt_max_pbufs); 21257 if (tcp->tcp_mdt_max_pld == 0) 21258 tcp->tcp_mdt_max_pld = tcps->tcps_mdt_max_pbufs; 21259 21260 /* ensure 32-bit alignment */ 21261 tcp->tcp_mdt_hdr_head = roundup(MAX(tcps->tcps_mdt_hdr_head_min, 21262 mdt_capab->ill_mdt_hdr_head), 4); 21263 tcp->tcp_mdt_hdr_tail = roundup(MAX(tcps->tcps_mdt_hdr_tail_min, 21264 mdt_capab->ill_mdt_hdr_tail), 4); 21265 21266 if (!first && !prev_state) { 21267 TCP_STAT(tcps, tcp_mdt_conn_resumed2); 21268 ip1dbg(("tcp_mdt_update: reenabling MDT for connp %p\n", 21269 (void *)tcp->tcp_connp)); 21270 } 21271 } 21272 } 21273 21274 /* Unlink and return any mblk that looks like it contains a LSO info */ 21275 static mblk_t * 21276 tcp_lso_info_mp(mblk_t *mp) 21277 { 21278 mblk_t *prev_mp; 21279 21280 for (;;) { 21281 prev_mp = mp; 21282 /* no more to process? */ 21283 if ((mp = mp->b_cont) == NULL) 21284 break; 21285 21286 switch (DB_TYPE(mp)) { 21287 case M_CTL: 21288 if (*(uint32_t *)mp->b_rptr != LSO_IOC_INFO_UPDATE) 21289 continue; 21290 ASSERT(prev_mp != NULL); 21291 prev_mp->b_cont = mp->b_cont; 21292 mp->b_cont = NULL; 21293 return (mp); 21294 default: 21295 break; 21296 } 21297 } 21298 21299 return (mp); 21300 } 21301 21302 /* LSO info update routine, called when IP notifies us about LSO */ 21303 static void 21304 tcp_lso_update(tcp_t *tcp, ill_lso_capab_t *lso_capab) 21305 { 21306 tcp_stack_t *tcps = tcp->tcp_tcps; 21307 21308 /* 21309 * IP is telling us to abort LSO on this connection? We know 21310 * this because the capability is only turned off when IP 21311 * encounters some pathological cases, e.g. link-layer change 21312 * where the new NIC/driver doesn't support LSO, or in situation 21313 * where LSO usage on the link-layer has been switched off. 21314 * IP would not have sent us the initial LSO_IOC_INFO_UPDATE 21315 * if the link-layer doesn't support LSO, and if it does, it 21316 * will indicate that the feature is to be turned on. 21317 */ 21318 tcp->tcp_lso = (lso_capab->ill_lso_on != 0); 21319 TCP_STAT(tcps, tcp_lso_enabled); 21320 21321 /* 21322 * We currently only support LSO on simple TCP/IPv4, 21323 * so disable LSO otherwise. The checks are done here 21324 * and in tcp_wput_data(). 21325 */ 21326 if (tcp->tcp_lso && 21327 (tcp->tcp_ipversion == IPV4_VERSION && 21328 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 21329 (tcp->tcp_ipversion == IPV6_VERSION)) { 21330 tcp->tcp_lso = B_FALSE; 21331 TCP_STAT(tcps, tcp_lso_disabled); 21332 } else { 21333 tcp->tcp_lso_max = MIN(TCP_MAX_LSO_LENGTH, 21334 lso_capab->ill_lso_max); 21335 } 21336 } 21337 21338 static void 21339 tcp_ire_ill_check(tcp_t *tcp, ire_t *ire, ill_t *ill, boolean_t check_lso_mdt) 21340 { 21341 conn_t *connp = tcp->tcp_connp; 21342 tcp_stack_t *tcps = tcp->tcp_tcps; 21343 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 21344 21345 ASSERT(ire != NULL); 21346 21347 /* 21348 * We may be in the fastpath here, and although we essentially do 21349 * similar checks as in ip_bind_connected{_v6}/ip_xxinfo_return, 21350 * we try to keep things as brief as possible. After all, these 21351 * are only best-effort checks, and we do more thorough ones prior 21352 * to calling tcp_send()/tcp_multisend(). 21353 */ 21354 if ((ipst->ips_ip_lso_outbound || ipst->ips_ip_multidata_outbound) && 21355 check_lso_mdt && !(ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK)) && 21356 ill != NULL && !CONN_IPSEC_OUT_ENCAPSULATED(connp) && 21357 !(ire->ire_flags & RTF_MULTIRT) && 21358 !IPP_ENABLED(IPP_LOCAL_OUT, ipst) && 21359 CONN_IS_LSO_MD_FASTPATH(connp)) { 21360 if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) { 21361 /* Cache the result */ 21362 connp->conn_lso_ok = B_TRUE; 21363 21364 ASSERT(ill->ill_lso_capab != NULL); 21365 if (!ill->ill_lso_capab->ill_lso_on) { 21366 ill->ill_lso_capab->ill_lso_on = 1; 21367 ip1dbg(("tcp_ire_ill_check: connp %p enables " 21368 "LSO for interface %s\n", (void *)connp, 21369 ill->ill_name)); 21370 } 21371 tcp_lso_update(tcp, ill->ill_lso_capab); 21372 } else if (ipst->ips_ip_multidata_outbound && 21373 ILL_MDT_CAPABLE(ill)) { 21374 /* Cache the result */ 21375 connp->conn_mdt_ok = B_TRUE; 21376 21377 ASSERT(ill->ill_mdt_capab != NULL); 21378 if (!ill->ill_mdt_capab->ill_mdt_on) { 21379 ill->ill_mdt_capab->ill_mdt_on = 1; 21380 ip1dbg(("tcp_ire_ill_check: connp %p enables " 21381 "MDT for interface %s\n", (void *)connp, 21382 ill->ill_name)); 21383 } 21384 tcp_mdt_update(tcp, ill->ill_mdt_capab, B_TRUE); 21385 } 21386 } 21387 21388 /* 21389 * The goal is to reduce the number of generated tcp segments by 21390 * setting the maxpsz multiplier to 0; this will have an affect on 21391 * tcp_maxpsz_set(). With this behavior, tcp will pack more data 21392 * into each packet, up to SMSS bytes. Doing this reduces the number 21393 * of outbound segments and incoming ACKs, thus allowing for better 21394 * network and system performance. In contrast the legacy behavior 21395 * may result in sending less than SMSS size, because the last mblk 21396 * for some packets may have more data than needed to make up SMSS, 21397 * and the legacy code refused to "split" it. 21398 * 21399 * We apply the new behavior on following situations: 21400 * 21401 * 1) Loopback connections, 21402 * 2) Connections in which the remote peer is not on local subnet, 21403 * 3) Local subnet connections over the bge interface (see below). 21404 * 21405 * Ideally, we would like this behavior to apply for interfaces other 21406 * than bge. However, doing so would negatively impact drivers which 21407 * perform dynamic mapping and unmapping of DMA resources, which are 21408 * increased by setting the maxpsz multiplier to 0 (more mblks per 21409 * packet will be generated by tcp). The bge driver does not suffer 21410 * from this, as it copies the mblks into pre-mapped buffers, and 21411 * therefore does not require more I/O resources than before. 21412 * 21413 * Otherwise, this behavior is present on all network interfaces when 21414 * the destination endpoint is non-local, since reducing the number 21415 * of packets in general is good for the network. 21416 * 21417 * TODO We need to remove this hard-coded conditional for bge once 21418 * a better "self-tuning" mechanism, or a way to comprehend 21419 * the driver transmit strategy is devised. Until the solution 21420 * is found and well understood, we live with this hack. 21421 */ 21422 if (!tcp_static_maxpsz && 21423 (tcp->tcp_loopback || !tcp->tcp_localnet || 21424 (ill->ill_name_length > 3 && bcmp(ill->ill_name, "bge", 3) == 0))) { 21425 /* override the default value */ 21426 tcp->tcp_maxpsz = 0; 21427 21428 ip3dbg(("tcp_ire_ill_check: connp %p tcp_maxpsz %d on " 21429 "interface %s\n", (void *)connp, tcp->tcp_maxpsz, 21430 ill != NULL ? ill->ill_name : ipif_loopback_name)); 21431 } 21432 21433 /* set the stream head parameters accordingly */ 21434 (void) tcp_maxpsz_set(tcp, B_TRUE); 21435 } 21436 21437 /* tcp_wput_flush is called by tcp_wput_nondata to handle M_FLUSH messages. */ 21438 static void 21439 tcp_wput_flush(tcp_t *tcp, mblk_t *mp) 21440 { 21441 uchar_t fval = *mp->b_rptr; 21442 mblk_t *tail; 21443 queue_t *q = tcp->tcp_wq; 21444 21445 /* TODO: How should flush interact with urgent data? */ 21446 if ((fval & FLUSHW) && tcp->tcp_xmit_head && 21447 !(tcp->tcp_valid_bits & TCP_URG_VALID)) { 21448 /* 21449 * Flush only data that has not yet been put on the wire. If 21450 * we flush data that we have already transmitted, life, as we 21451 * know it, may come to an end. 21452 */ 21453 tail = tcp->tcp_xmit_tail; 21454 tail->b_wptr -= tcp->tcp_xmit_tail_unsent; 21455 tcp->tcp_xmit_tail_unsent = 0; 21456 tcp->tcp_unsent = 0; 21457 if (tail->b_wptr != tail->b_rptr) 21458 tail = tail->b_cont; 21459 if (tail) { 21460 mblk_t **excess = &tcp->tcp_xmit_head; 21461 for (;;) { 21462 mblk_t *mp1 = *excess; 21463 if (mp1 == tail) 21464 break; 21465 tcp->tcp_xmit_tail = mp1; 21466 tcp->tcp_xmit_last = mp1; 21467 excess = &mp1->b_cont; 21468 } 21469 *excess = NULL; 21470 tcp_close_mpp(&tail); 21471 if (tcp->tcp_snd_zcopy_aware) 21472 tcp_zcopy_notify(tcp); 21473 } 21474 /* 21475 * We have no unsent data, so unsent must be less than 21476 * tcp_xmit_lowater, so re-enable flow. 21477 */ 21478 mutex_enter(&tcp->tcp_non_sq_lock); 21479 if (tcp->tcp_flow_stopped) { 21480 tcp_clrqfull(tcp); 21481 } 21482 mutex_exit(&tcp->tcp_non_sq_lock); 21483 } 21484 /* 21485 * TODO: you can't just flush these, you have to increase rwnd for one 21486 * thing. For another, how should urgent data interact? 21487 */ 21488 if (fval & FLUSHR) { 21489 *mp->b_rptr = fval & ~FLUSHW; 21490 /* XXX */ 21491 qreply(q, mp); 21492 return; 21493 } 21494 freemsg(mp); 21495 } 21496 21497 /* 21498 * tcp_wput_iocdata is called by tcp_wput_nondata to handle all M_IOCDATA 21499 * messages. 21500 */ 21501 static void 21502 tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp) 21503 { 21504 mblk_t *mp1; 21505 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 21506 STRUCT_HANDLE(strbuf, sb); 21507 queue_t *q = tcp->tcp_wq; 21508 int error; 21509 uint_t addrlen; 21510 21511 /* Make sure it is one of ours. */ 21512 switch (iocp->ioc_cmd) { 21513 case TI_GETMYNAME: 21514 case TI_GETPEERNAME: 21515 break; 21516 default: 21517 CALL_IP_WPUT(tcp->tcp_connp, q, mp); 21518 return; 21519 } 21520 switch (mi_copy_state(q, mp, &mp1)) { 21521 case -1: 21522 return; 21523 case MI_COPY_CASE(MI_COPY_IN, 1): 21524 break; 21525 case MI_COPY_CASE(MI_COPY_OUT, 1): 21526 /* Copy out the strbuf. */ 21527 mi_copyout(q, mp); 21528 return; 21529 case MI_COPY_CASE(MI_COPY_OUT, 2): 21530 /* All done. */ 21531 mi_copy_done(q, mp, 0); 21532 return; 21533 default: 21534 mi_copy_done(q, mp, EPROTO); 21535 return; 21536 } 21537 /* Check alignment of the strbuf */ 21538 if (!OK_32PTR(mp1->b_rptr)) { 21539 mi_copy_done(q, mp, EINVAL); 21540 return; 21541 } 21542 21543 STRUCT_SET_HANDLE(sb, iocp->ioc_flag, (void *)mp1->b_rptr); 21544 addrlen = tcp->tcp_family == AF_INET ? sizeof (sin_t) : sizeof (sin6_t); 21545 if (STRUCT_FGET(sb, maxlen) < addrlen) { 21546 mi_copy_done(q, mp, EINVAL); 21547 return; 21548 } 21549 21550 mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE); 21551 if (mp1 == NULL) 21552 return; 21553 21554 switch (iocp->ioc_cmd) { 21555 case TI_GETMYNAME: 21556 error = tcp_do_getsockname(tcp, (void *)mp1->b_rptr, &addrlen); 21557 break; 21558 case TI_GETPEERNAME: 21559 error = tcp_do_getpeername(tcp, (void *)mp1->b_rptr, &addrlen); 21560 break; 21561 } 21562 21563 if (error != 0) { 21564 mi_copy_done(q, mp, error); 21565 } else { 21566 mp1->b_wptr += addrlen; 21567 STRUCT_FSET(sb, len, addrlen); 21568 21569 /* Copy out the address */ 21570 mi_copyout(q, mp); 21571 } 21572 } 21573 21574 static void 21575 tcp_use_pure_tpi(tcp_t *tcp) 21576 { 21577 #ifdef _ILP32 21578 tcp->tcp_acceptor_id = (t_uscalar_t)tcp->tcp_rq; 21579 #else 21580 tcp->tcp_acceptor_id = tcp->tcp_connp->conn_dev; 21581 #endif 21582 /* 21583 * Insert this socket into the acceptor hash. 21584 * We might need it for T_CONN_RES message 21585 */ 21586 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 21587 21588 tcp->tcp_issocket = B_FALSE; 21589 TCP_STAT(tcp->tcp_tcps, tcp_sock_fallback); 21590 } 21591 21592 /* 21593 * tcp_wput_ioctl is called by tcp_wput_nondata() to handle all M_IOCTL 21594 * messages. 21595 */ 21596 /* ARGSUSED */ 21597 static void 21598 tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2) 21599 { 21600 conn_t *connp = (conn_t *)arg; 21601 tcp_t *tcp = connp->conn_tcp; 21602 queue_t *q = tcp->tcp_wq; 21603 struct iocblk *iocp; 21604 21605 ASSERT(DB_TYPE(mp) == M_IOCTL); 21606 /* 21607 * Try and ASSERT the minimum possible references on the 21608 * conn early enough. Since we are executing on write side, 21609 * the connection is obviously not detached and that means 21610 * there is a ref each for TCP and IP. Since we are behind 21611 * the squeue, the minimum references needed are 3. If the 21612 * conn is in classifier hash list, there should be an 21613 * extra ref for that (we check both the possibilities). 21614 */ 21615 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 21616 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 21617 21618 iocp = (struct iocblk *)mp->b_rptr; 21619 switch (iocp->ioc_cmd) { 21620 case TCP_IOC_DEFAULT_Q: 21621 /* Wants to be the default wq. */ 21622 if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) { 21623 iocp->ioc_error = EPERM; 21624 iocp->ioc_count = 0; 21625 mp->b_datap->db_type = M_IOCACK; 21626 qreply(q, mp); 21627 return; 21628 } 21629 tcp_def_q_set(tcp, mp); 21630 return; 21631 case _SIOCSOCKFALLBACK: 21632 /* 21633 * Either sockmod is about to be popped and the socket 21634 * would now be treated as a plain stream, or a module 21635 * is about to be pushed so we could no longer use read- 21636 * side synchronous streams for fused loopback tcp. 21637 * Drain any queued data and disable direct sockfs 21638 * interface from now on. 21639 */ 21640 if (!tcp->tcp_issocket) { 21641 DB_TYPE(mp) = M_IOCNAK; 21642 iocp->ioc_error = EINVAL; 21643 } else { 21644 tcp_use_pure_tpi(tcp); 21645 DB_TYPE(mp) = M_IOCACK; 21646 iocp->ioc_error = 0; 21647 } 21648 iocp->ioc_count = 0; 21649 iocp->ioc_rval = 0; 21650 qreply(q, mp); 21651 return; 21652 } 21653 CALL_IP_WPUT(connp, q, mp); 21654 } 21655 21656 /* 21657 * This routine is called by tcp_wput() to handle all TPI requests. 21658 */ 21659 /* ARGSUSED */ 21660 static void 21661 tcp_wput_proto(void *arg, mblk_t *mp, void *arg2) 21662 { 21663 conn_t *connp = (conn_t *)arg; 21664 tcp_t *tcp = connp->conn_tcp; 21665 union T_primitives *tprim = (union T_primitives *)mp->b_rptr; 21666 uchar_t *rptr; 21667 t_scalar_t type; 21668 cred_t *cr; 21669 21670 /* 21671 * Try and ASSERT the minimum possible references on the 21672 * conn early enough. Since we are executing on write side, 21673 * the connection is obviously not detached and that means 21674 * there is a ref each for TCP and IP. Since we are behind 21675 * the squeue, the minimum references needed are 3. If the 21676 * conn is in classifier hash list, there should be an 21677 * extra ref for that (we check both the possibilities). 21678 */ 21679 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 21680 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 21681 21682 rptr = mp->b_rptr; 21683 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 21684 if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { 21685 type = ((union T_primitives *)rptr)->type; 21686 if (type == T_EXDATA_REQ) { 21687 tcp_output_urgent(connp, mp, arg2); 21688 } else if (type != T_DATA_REQ) { 21689 goto non_urgent_data; 21690 } else { 21691 /* TODO: options, flags, ... from user */ 21692 /* Set length to zero for reclamation below */ 21693 tcp_wput_data(tcp, mp->b_cont, B_TRUE); 21694 freeb(mp); 21695 } 21696 return; 21697 } else { 21698 if (tcp->tcp_debug) { 21699 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 21700 "tcp_wput_proto, dropping one..."); 21701 } 21702 freemsg(mp); 21703 return; 21704 } 21705 21706 non_urgent_data: 21707 21708 switch ((int)tprim->type) { 21709 case T_SSL_PROXY_BIND_REQ: /* an SSL proxy endpoint bind request */ 21710 /* 21711 * save the kssl_ent_t from the next block, and convert this 21712 * back to a normal bind_req. 21713 */ 21714 if (mp->b_cont != NULL) { 21715 ASSERT(MBLKL(mp->b_cont) >= sizeof (kssl_ent_t)); 21716 21717 if (tcp->tcp_kssl_ent != NULL) { 21718 kssl_release_ent(tcp->tcp_kssl_ent, NULL, 21719 KSSL_NO_PROXY); 21720 tcp->tcp_kssl_ent = NULL; 21721 } 21722 bcopy(mp->b_cont->b_rptr, &tcp->tcp_kssl_ent, 21723 sizeof (kssl_ent_t)); 21724 kssl_hold_ent(tcp->tcp_kssl_ent); 21725 freemsg(mp->b_cont); 21726 mp->b_cont = NULL; 21727 } 21728 tprim->type = T_BIND_REQ; 21729 21730 /* FALLTHROUGH */ 21731 case O_T_BIND_REQ: /* bind request */ 21732 case T_BIND_REQ: /* new semantics bind request */ 21733 tcp_tpi_bind(tcp, mp); 21734 break; 21735 case T_UNBIND_REQ: /* unbind request */ 21736 tcp_tpi_unbind(tcp, mp); 21737 break; 21738 case O_T_CONN_RES: /* old connection response XXX */ 21739 case T_CONN_RES: /* connection response */ 21740 tcp_tli_accept(tcp, mp); 21741 break; 21742 case T_CONN_REQ: /* connection request */ 21743 tcp_tpi_connect(tcp, mp); 21744 break; 21745 case T_DISCON_REQ: /* disconnect request */ 21746 tcp_disconnect(tcp, mp); 21747 break; 21748 case T_CAPABILITY_REQ: 21749 tcp_capability_req(tcp, mp); /* capability request */ 21750 break; 21751 case T_INFO_REQ: /* information request */ 21752 tcp_info_req(tcp, mp); 21753 break; 21754 case T_SVR4_OPTMGMT_REQ: /* manage options req */ 21755 case T_OPTMGMT_REQ: 21756 /* 21757 * Note: no support for snmpcom_req() through new 21758 * T_OPTMGMT_REQ. See comments in ip.c 21759 */ 21760 21761 /* 21762 * All Solaris components should pass a db_credp 21763 * for this TPI message, hence we ASSERT. 21764 * But in case there is some other M_PROTO that looks 21765 * like a TPI message sent by some other kernel 21766 * component, we check and return an error. 21767 */ 21768 cr = msg_getcred(mp, NULL); 21769 ASSERT(cr != NULL); 21770 if (cr == NULL) { 21771 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 21772 return; 21773 } 21774 /* 21775 * If EINPROGRESS is returned, the request has been queued 21776 * for subsequent processing by ip_restart_optmgmt(), which 21777 * will do the CONN_DEC_REF(). 21778 */ 21779 CONN_INC_REF(connp); 21780 if ((int)tprim->type == T_SVR4_OPTMGMT_REQ) { 21781 if (svr4_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj, 21782 B_TRUE) != EINPROGRESS) { 21783 CONN_DEC_REF(connp); 21784 } 21785 } else { 21786 if (tpi_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj, 21787 B_TRUE) != EINPROGRESS) { 21788 CONN_DEC_REF(connp); 21789 } 21790 } 21791 break; 21792 21793 case T_UNITDATA_REQ: /* unitdata request */ 21794 tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); 21795 break; 21796 case T_ORDREL_REQ: /* orderly release req */ 21797 freemsg(mp); 21798 21799 if (tcp->tcp_fused) 21800 tcp_unfuse(tcp); 21801 21802 if (tcp_xmit_end(tcp) != 0) { 21803 /* 21804 * We were crossing FINs and got a reset from 21805 * the other side. Just ignore it. 21806 */ 21807 if (tcp->tcp_debug) { 21808 (void) strlog(TCP_MOD_ID, 0, 1, 21809 SL_ERROR|SL_TRACE, 21810 "tcp_wput_proto, T_ORDREL_REQ out of " 21811 "state %s", 21812 tcp_display(tcp, NULL, 21813 DISP_ADDR_AND_PORT)); 21814 } 21815 } 21816 break; 21817 case T_ADDR_REQ: 21818 tcp_addr_req(tcp, mp); 21819 break; 21820 default: 21821 if (tcp->tcp_debug) { 21822 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 21823 "tcp_wput_proto, bogus TPI msg, type %d", 21824 tprim->type); 21825 } 21826 /* 21827 * We used to M_ERROR. Sending TNOTSUPPORT gives the user 21828 * to recover. 21829 */ 21830 tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); 21831 break; 21832 } 21833 } 21834 21835 /* 21836 * The TCP write service routine should never be called... 21837 */ 21838 /* ARGSUSED */ 21839 static void 21840 tcp_wsrv(queue_t *q) 21841 { 21842 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 21843 21844 TCP_STAT(tcps, tcp_wsrv_called); 21845 } 21846 21847 /* Non overlapping byte exchanger */ 21848 static void 21849 tcp_xchg(uchar_t *a, uchar_t *b, int len) 21850 { 21851 uchar_t uch; 21852 21853 while (len-- > 0) { 21854 uch = a[len]; 21855 a[len] = b[len]; 21856 b[len] = uch; 21857 } 21858 } 21859 21860 /* 21861 * Send out a control packet on the tcp connection specified. This routine 21862 * is typically called where we need a simple ACK or RST generated. 21863 */ 21864 static void 21865 tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, uint32_t ack, int ctl) 21866 { 21867 uchar_t *rptr; 21868 tcph_t *tcph; 21869 ipha_t *ipha = NULL; 21870 ip6_t *ip6h = NULL; 21871 uint32_t sum; 21872 int tcp_hdr_len; 21873 int tcp_ip_hdr_len; 21874 mblk_t *mp; 21875 tcp_stack_t *tcps = tcp->tcp_tcps; 21876 21877 /* 21878 * Save sum for use in source route later. 21879 */ 21880 ASSERT(tcp != NULL); 21881 sum = tcp->tcp_tcp_hdr_len + tcp->tcp_sum; 21882 tcp_hdr_len = tcp->tcp_hdr_len; 21883 tcp_ip_hdr_len = tcp->tcp_ip_hdr_len; 21884 21885 /* If a text string is passed in with the request, pass it to strlog. */ 21886 if (str != NULL && tcp->tcp_debug) { 21887 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 21888 "tcp_xmit_ctl: '%s', seq 0x%x, ack 0x%x, ctl 0x%x", 21889 str, seq, ack, ctl); 21890 } 21891 mp = allocb(tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcps->tcps_wroff_xtra, 21892 BPRI_MED); 21893 if (mp == NULL) { 21894 return; 21895 } 21896 rptr = &mp->b_rptr[tcps->tcps_wroff_xtra]; 21897 mp->b_rptr = rptr; 21898 mp->b_wptr = &rptr[tcp_hdr_len]; 21899 bcopy(tcp->tcp_iphc, rptr, tcp_hdr_len); 21900 21901 if (tcp->tcp_ipversion == IPV4_VERSION) { 21902 ipha = (ipha_t *)rptr; 21903 ipha->ipha_length = htons(tcp_hdr_len); 21904 } else { 21905 ip6h = (ip6_t *)rptr; 21906 ASSERT(tcp != NULL); 21907 ip6h->ip6_plen = htons(tcp->tcp_hdr_len - 21908 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 21909 } 21910 tcph = (tcph_t *)&rptr[tcp_ip_hdr_len]; 21911 tcph->th_flags[0] = (uint8_t)ctl; 21912 if (ctl & TH_RST) { 21913 BUMP_MIB(&tcps->tcps_mib, tcpOutRsts); 21914 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 21915 /* 21916 * Don't send TSopt w/ TH_RST packets per RFC 1323. 21917 */ 21918 if (tcp->tcp_snd_ts_ok && 21919 tcp->tcp_state > TCPS_SYN_SENT) { 21920 mp->b_wptr = &rptr[tcp_hdr_len - TCPOPT_REAL_TS_LEN]; 21921 *(mp->b_wptr) = TCPOPT_EOL; 21922 if (tcp->tcp_ipversion == IPV4_VERSION) { 21923 ipha->ipha_length = htons(tcp_hdr_len - 21924 TCPOPT_REAL_TS_LEN); 21925 } else { 21926 ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) - 21927 TCPOPT_REAL_TS_LEN); 21928 } 21929 tcph->th_offset_and_rsrvd[0] -= (3 << 4); 21930 sum -= TCPOPT_REAL_TS_LEN; 21931 } 21932 } 21933 if (ctl & TH_ACK) { 21934 if (tcp->tcp_snd_ts_ok) { 21935 U32_TO_BE32(lbolt, 21936 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 21937 U32_TO_BE32(tcp->tcp_ts_recent, 21938 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 21939 } 21940 21941 /* Update the latest receive window size in TCP header. */ 21942 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 21943 tcph->th_win); 21944 tcp->tcp_rack = ack; 21945 tcp->tcp_rack_cnt = 0; 21946 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 21947 } 21948 BUMP_LOCAL(tcp->tcp_obsegs); 21949 U32_TO_BE32(seq, tcph->th_seq); 21950 U32_TO_BE32(ack, tcph->th_ack); 21951 /* 21952 * Include the adjustment for a source route if any. 21953 */ 21954 sum = (sum >> 16) + (sum & 0xFFFF); 21955 U16_TO_BE16(sum, tcph->th_sum); 21956 tcp_send_data(tcp, tcp->tcp_wq, mp); 21957 } 21958 21959 /* 21960 * If this routine returns B_TRUE, TCP can generate a RST in response 21961 * to a segment. If it returns B_FALSE, TCP should not respond. 21962 */ 21963 static boolean_t 21964 tcp_send_rst_chk(tcp_stack_t *tcps) 21965 { 21966 clock_t now; 21967 21968 /* 21969 * TCP needs to protect itself from generating too many RSTs. 21970 * This can be a DoS attack by sending us random segments 21971 * soliciting RSTs. 21972 * 21973 * What we do here is to have a limit of tcp_rst_sent_rate RSTs 21974 * in each 1 second interval. In this way, TCP still generate 21975 * RSTs in normal cases but when under attack, the impact is 21976 * limited. 21977 */ 21978 if (tcps->tcps_rst_sent_rate_enabled != 0) { 21979 now = lbolt; 21980 /* lbolt can wrap around. */ 21981 if ((tcps->tcps_last_rst_intrvl > now) || 21982 (TICK_TO_MSEC(now - tcps->tcps_last_rst_intrvl) > 21983 1*SECONDS)) { 21984 tcps->tcps_last_rst_intrvl = now; 21985 tcps->tcps_rst_cnt = 1; 21986 } else if (++tcps->tcps_rst_cnt > tcps->tcps_rst_sent_rate) { 21987 return (B_FALSE); 21988 } 21989 } 21990 return (B_TRUE); 21991 } 21992 21993 /* 21994 * Send down the advice IP ioctl to tell IP to mark an IRE temporary. 21995 */ 21996 static void 21997 tcp_ip_ire_mark_advice(tcp_t *tcp) 21998 { 21999 mblk_t *mp; 22000 ipic_t *ipic; 22001 22002 if (tcp->tcp_ipversion == IPV4_VERSION) { 22003 mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN, 22004 &ipic); 22005 } else { 22006 mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN, 22007 &ipic); 22008 } 22009 if (mp == NULL) 22010 return; 22011 ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY; 22012 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 22013 } 22014 22015 /* 22016 * Return an IP advice ioctl mblk and set ipic to be the pointer 22017 * to the advice structure. 22018 */ 22019 static mblk_t * 22020 tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic) 22021 { 22022 struct iocblk *ioc; 22023 mblk_t *mp, *mp1; 22024 22025 mp = allocb(sizeof (ipic_t) + addr_len, BPRI_HI); 22026 if (mp == NULL) 22027 return (NULL); 22028 bzero(mp->b_rptr, sizeof (ipic_t) + addr_len); 22029 *ipic = (ipic_t *)mp->b_rptr; 22030 (*ipic)->ipic_cmd = IP_IOC_IRE_ADVISE_NO_REPLY; 22031 (*ipic)->ipic_addr_offset = sizeof (ipic_t); 22032 22033 bcopy(addr, *ipic + 1, addr_len); 22034 22035 (*ipic)->ipic_addr_length = addr_len; 22036 mp->b_wptr = &mp->b_rptr[sizeof (ipic_t) + addr_len]; 22037 22038 mp1 = mkiocb(IP_IOCTL); 22039 if (mp1 == NULL) { 22040 freemsg(mp); 22041 return (NULL); 22042 } 22043 mp1->b_cont = mp; 22044 ioc = (struct iocblk *)mp1->b_rptr; 22045 ioc->ioc_count = sizeof (ipic_t) + addr_len; 22046 22047 return (mp1); 22048 } 22049 22050 /* 22051 * Generate a reset based on an inbound packet, connp is set by caller 22052 * when RST is in response to an unexpected inbound packet for which 22053 * there is active tcp state in the system. 22054 * 22055 * IPSEC NOTE : Try to send the reply with the same protection as it came 22056 * in. We still have the ipsec_mp that the packet was attached to. Thus 22057 * the packet will go out at the same level of protection as it came in by 22058 * converting the IPSEC_IN to IPSEC_OUT. 22059 */ 22060 static void 22061 tcp_xmit_early_reset(char *str, mblk_t *mp, uint32_t seq, 22062 uint32_t ack, int ctl, uint_t ip_hdr_len, zoneid_t zoneid, 22063 tcp_stack_t *tcps, conn_t *connp) 22064 { 22065 ipha_t *ipha = NULL; 22066 ip6_t *ip6h = NULL; 22067 ushort_t len; 22068 tcph_t *tcph; 22069 int i; 22070 mblk_t *ipsec_mp; 22071 boolean_t mctl_present; 22072 ipic_t *ipic; 22073 ipaddr_t v4addr; 22074 in6_addr_t v6addr; 22075 int addr_len; 22076 void *addr; 22077 queue_t *q = tcps->tcps_g_q; 22078 tcp_t *tcp; 22079 cred_t *cr; 22080 pid_t pid; 22081 mblk_t *nmp; 22082 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 22083 22084 if (tcps->tcps_g_q == NULL) { 22085 /* 22086 * For non-zero stackids the default queue isn't created 22087 * until the first open, thus there can be a need to send 22088 * a reset before then. But we can't do that, hence we just 22089 * drop the packet. Later during boot, when the default queue 22090 * has been setup, a retransmitted packet from the peer 22091 * will result in a reset. 22092 */ 22093 ASSERT(tcps->tcps_netstack->netstack_stackid != 22094 GLOBAL_NETSTACKID); 22095 freemsg(mp); 22096 return; 22097 } 22098 22099 if (connp != NULL) 22100 tcp = connp->conn_tcp; 22101 else 22102 tcp = Q_TO_TCP(q); 22103 22104 if (!tcp_send_rst_chk(tcps)) { 22105 tcps->tcps_rst_unsent++; 22106 freemsg(mp); 22107 return; 22108 } 22109 22110 if (mp->b_datap->db_type == M_CTL) { 22111 ipsec_mp = mp; 22112 mp = mp->b_cont; 22113 mctl_present = B_TRUE; 22114 } else { 22115 ipsec_mp = mp; 22116 mctl_present = B_FALSE; 22117 } 22118 22119 if (str && q && tcps->tcps_dbg) { 22120 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 22121 "tcp_xmit_early_reset: '%s', seq 0x%x, ack 0x%x, " 22122 "flags 0x%x", 22123 str, seq, ack, ctl); 22124 } 22125 if (mp->b_datap->db_ref != 1) { 22126 mblk_t *mp1 = copyb(mp); 22127 freemsg(mp); 22128 mp = mp1; 22129 if (!mp) { 22130 if (mctl_present) 22131 freeb(ipsec_mp); 22132 return; 22133 } else { 22134 if (mctl_present) { 22135 ipsec_mp->b_cont = mp; 22136 } else { 22137 ipsec_mp = mp; 22138 } 22139 } 22140 } else if (mp->b_cont) { 22141 freemsg(mp->b_cont); 22142 mp->b_cont = NULL; 22143 } 22144 /* 22145 * We skip reversing source route here. 22146 * (for now we replace all IP options with EOL) 22147 */ 22148 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 22149 ipha = (ipha_t *)mp->b_rptr; 22150 for (i = IP_SIMPLE_HDR_LENGTH; i < (int)ip_hdr_len; i++) 22151 mp->b_rptr[i] = IPOPT_EOL; 22152 /* 22153 * Make sure that src address isn't flagrantly invalid. 22154 * Not all broadcast address checking for the src address 22155 * is possible, since we don't know the netmask of the src 22156 * addr. No check for destination address is done, since 22157 * IP will not pass up a packet with a broadcast dest 22158 * address to TCP. Similar checks are done below for IPv6. 22159 */ 22160 if (ipha->ipha_src == 0 || ipha->ipha_src == INADDR_BROADCAST || 22161 CLASSD(ipha->ipha_src)) { 22162 freemsg(ipsec_mp); 22163 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 22164 return; 22165 } 22166 } else { 22167 ip6h = (ip6_t *)mp->b_rptr; 22168 22169 if (IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src) || 22170 IN6_IS_ADDR_MULTICAST(&ip6h->ip6_src)) { 22171 freemsg(ipsec_mp); 22172 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsInDiscards); 22173 return; 22174 } 22175 22176 /* Remove any extension headers assuming partial overlay */ 22177 if (ip_hdr_len > IPV6_HDR_LEN) { 22178 uint8_t *to; 22179 22180 to = mp->b_rptr + ip_hdr_len - IPV6_HDR_LEN; 22181 ovbcopy(ip6h, to, IPV6_HDR_LEN); 22182 mp->b_rptr += ip_hdr_len - IPV6_HDR_LEN; 22183 ip_hdr_len = IPV6_HDR_LEN; 22184 ip6h = (ip6_t *)mp->b_rptr; 22185 ip6h->ip6_nxt = IPPROTO_TCP; 22186 } 22187 } 22188 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 22189 if (tcph->th_flags[0] & TH_RST) { 22190 freemsg(ipsec_mp); 22191 return; 22192 } 22193 tcph->th_offset_and_rsrvd[0] = (5 << 4); 22194 len = ip_hdr_len + sizeof (tcph_t); 22195 mp->b_wptr = &mp->b_rptr[len]; 22196 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 22197 ipha->ipha_length = htons(len); 22198 /* Swap addresses */ 22199 v4addr = ipha->ipha_src; 22200 ipha->ipha_src = ipha->ipha_dst; 22201 ipha->ipha_dst = v4addr; 22202 ipha->ipha_ident = 0; 22203 ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl; 22204 addr_len = IP_ADDR_LEN; 22205 addr = &v4addr; 22206 } else { 22207 /* No ip6i_t in this case */ 22208 ip6h->ip6_plen = htons(len - IPV6_HDR_LEN); 22209 /* Swap addresses */ 22210 v6addr = ip6h->ip6_src; 22211 ip6h->ip6_src = ip6h->ip6_dst; 22212 ip6h->ip6_dst = v6addr; 22213 ip6h->ip6_hops = (uchar_t)tcps->tcps_ipv6_hoplimit; 22214 addr_len = IPV6_ADDR_LEN; 22215 addr = &v6addr; 22216 } 22217 tcp_xchg(tcph->th_fport, tcph->th_lport, 2); 22218 U32_TO_BE32(ack, tcph->th_ack); 22219 U32_TO_BE32(seq, tcph->th_seq); 22220 U16_TO_BE16(0, tcph->th_win); 22221 U16_TO_BE16(sizeof (tcph_t), tcph->th_sum); 22222 tcph->th_flags[0] = (uint8_t)ctl; 22223 if (ctl & TH_RST) { 22224 BUMP_MIB(&tcps->tcps_mib, tcpOutRsts); 22225 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 22226 } 22227 22228 /* IP trusts us to set up labels when required. */ 22229 if (is_system_labeled() && (cr = msg_getcred(mp, &pid)) != NULL && 22230 crgetlabel(cr) != NULL) { 22231 int err; 22232 22233 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) 22234 err = tsol_check_label(cr, &mp, 22235 tcp->tcp_connp->conn_mac_mode, 22236 tcps->tcps_netstack->netstack_ip, pid); 22237 else 22238 err = tsol_check_label_v6(cr, &mp, 22239 tcp->tcp_connp->conn_mac_mode, 22240 tcps->tcps_netstack->netstack_ip, pid); 22241 if (mctl_present) 22242 ipsec_mp->b_cont = mp; 22243 else 22244 ipsec_mp = mp; 22245 if (err != 0) { 22246 freemsg(ipsec_mp); 22247 return; 22248 } 22249 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 22250 ipha = (ipha_t *)mp->b_rptr; 22251 } else { 22252 ip6h = (ip6_t *)mp->b_rptr; 22253 } 22254 } 22255 22256 if (mctl_present) { 22257 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 22258 22259 ASSERT(ii->ipsec_in_type == IPSEC_IN); 22260 if (!ipsec_in_to_out(ipsec_mp, ipha, ip6h, zoneid)) { 22261 return; 22262 } 22263 } 22264 if (zoneid == ALL_ZONES) 22265 zoneid = GLOBAL_ZONEID; 22266 22267 /* Add the zoneid so ip_output routes it properly */ 22268 if ((nmp = ip_prepend_zoneid(ipsec_mp, zoneid, ipst)) == NULL) { 22269 freemsg(ipsec_mp); 22270 return; 22271 } 22272 ipsec_mp = nmp; 22273 22274 /* 22275 * NOTE: one might consider tracing a TCP packet here, but 22276 * this function has no active TCP state and no tcp structure 22277 * that has a trace buffer. If we traced here, we would have 22278 * to keep a local trace buffer in tcp_record_trace(). 22279 * 22280 * TSol note: The mblk that contains the incoming packet was 22281 * reused by tcp_xmit_listener_reset, so it already contains 22282 * the right credentials and we don't need to call mblk_setcred. 22283 * Also the conn's cred is not right since it is associated 22284 * with tcps_g_q. 22285 */ 22286 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, ipsec_mp); 22287 22288 /* 22289 * Tell IP to mark the IRE used for this destination temporary. 22290 * This way, we can limit our exposure to DoS attack because IP 22291 * creates an IRE for each destination. If there are too many, 22292 * the time to do any routing lookup will be extremely long. And 22293 * the lookup can be in interrupt context. 22294 * 22295 * Note that in normal circumstances, this marking should not 22296 * affect anything. It would be nice if only 1 message is 22297 * needed to inform IP that the IRE created for this RST should 22298 * not be added to the cache table. But there is currently 22299 * not such communication mechanism between TCP and IP. So 22300 * the best we can do now is to send the advice ioctl to IP 22301 * to mark the IRE temporary. 22302 */ 22303 if ((mp = tcp_ip_advise_mblk(addr, addr_len, &ipic)) != NULL) { 22304 ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY; 22305 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 22306 } 22307 } 22308 22309 /* 22310 * Initiate closedown sequence on an active connection. (May be called as 22311 * writer.) Return value zero for OK return, non-zero for error return. 22312 */ 22313 static int 22314 tcp_xmit_end(tcp_t *tcp) 22315 { 22316 ipic_t *ipic; 22317 mblk_t *mp; 22318 tcp_stack_t *tcps = tcp->tcp_tcps; 22319 22320 if (tcp->tcp_state < TCPS_SYN_RCVD || 22321 tcp->tcp_state > TCPS_CLOSE_WAIT) { 22322 /* 22323 * Invalid state, only states TCPS_SYN_RCVD, 22324 * TCPS_ESTABLISHED and TCPS_CLOSE_WAIT are valid 22325 */ 22326 return (-1); 22327 } 22328 22329 tcp->tcp_fss = tcp->tcp_snxt + tcp->tcp_unsent; 22330 tcp->tcp_valid_bits |= TCP_FSS_VALID; 22331 /* 22332 * If there is nothing more unsent, send the FIN now. 22333 * Otherwise, it will go out with the last segment. 22334 */ 22335 if (tcp->tcp_unsent == 0) { 22336 mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 22337 tcp->tcp_fss, B_FALSE, NULL, B_FALSE); 22338 22339 if (mp) { 22340 tcp_send_data(tcp, tcp->tcp_wq, mp); 22341 } else { 22342 /* 22343 * Couldn't allocate msg. Pretend we got it out. 22344 * Wait for rexmit timeout. 22345 */ 22346 tcp->tcp_snxt = tcp->tcp_fss + 1; 22347 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 22348 } 22349 22350 /* 22351 * If needed, update tcp_rexmit_snxt as tcp_snxt is 22352 * changed. 22353 */ 22354 if (tcp->tcp_rexmit && tcp->tcp_rexmit_nxt == tcp->tcp_fss) { 22355 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 22356 } 22357 } else { 22358 /* 22359 * If tcp->tcp_cork is set, then the data will not get sent, 22360 * so we have to check that and unset it first. 22361 */ 22362 if (tcp->tcp_cork) 22363 tcp->tcp_cork = B_FALSE; 22364 tcp_wput_data(tcp, NULL, B_FALSE); 22365 } 22366 22367 /* 22368 * If TCP does not get enough samples of RTT or tcp_rtt_updates 22369 * is 0, don't update the cache. 22370 */ 22371 if (tcps->tcps_rtt_updates == 0 || 22372 tcp->tcp_rtt_update < tcps->tcps_rtt_updates) 22373 return (0); 22374 22375 /* 22376 * NOTE: should not update if source routes i.e. if tcp_remote if 22377 * different from the destination. 22378 */ 22379 if (tcp->tcp_ipversion == IPV4_VERSION) { 22380 if (tcp->tcp_remote != tcp->tcp_ipha->ipha_dst) { 22381 return (0); 22382 } 22383 mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN, 22384 &ipic); 22385 } else { 22386 if (!(IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6, 22387 &tcp->tcp_ip6h->ip6_dst))) { 22388 return (0); 22389 } 22390 mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN, 22391 &ipic); 22392 } 22393 22394 /* Record route attributes in the IRE for use by future connections. */ 22395 if (mp == NULL) 22396 return (0); 22397 22398 /* 22399 * We do not have a good algorithm to update ssthresh at this time. 22400 * So don't do any update. 22401 */ 22402 ipic->ipic_rtt = tcp->tcp_rtt_sa; 22403 ipic->ipic_rtt_sd = tcp->tcp_rtt_sd; 22404 22405 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 22406 22407 return (0); 22408 } 22409 22410 /* ARGSUSED */ 22411 void 22412 tcp_xmit_reset(void *arg, mblk_t *mp, void *arg2) 22413 { 22414 conn_t *connp = (conn_t *)arg; 22415 mblk_t *mp1; 22416 tcp_t *tcp = connp->conn_tcp; 22417 tcp_xmit_reset_event_t *eventp; 22418 22419 ASSERT(mp->b_datap->db_type == M_PROTO && 22420 MBLKL(mp) == sizeof (tcp_xmit_reset_event_t)); 22421 22422 if (tcp->tcp_state != TCPS_LISTEN) { 22423 freemsg(mp); 22424 return; 22425 } 22426 22427 mp1 = mp->b_cont; 22428 mp->b_cont = NULL; 22429 eventp = (tcp_xmit_reset_event_t *)mp->b_rptr; 22430 ASSERT(eventp->tcp_xre_tcps->tcps_netstack == 22431 connp->conn_netstack); 22432 22433 tcp_xmit_listeners_reset(mp1, eventp->tcp_xre_iphdrlen, 22434 eventp->tcp_xre_zoneid, eventp->tcp_xre_tcps, connp); 22435 freemsg(mp); 22436 } 22437 22438 /* 22439 * Generate a "no listener here" RST in response to an "unknown" segment. 22440 * connp is set by caller when RST is in response to an unexpected 22441 * inbound packet for which there is active tcp state in the system. 22442 * Note that we are reusing the incoming mp to construct the outgoing RST. 22443 */ 22444 void 22445 tcp_xmit_listeners_reset(mblk_t *mp, uint_t ip_hdr_len, zoneid_t zoneid, 22446 tcp_stack_t *tcps, conn_t *connp) 22447 { 22448 uchar_t *rptr; 22449 uint32_t seg_len; 22450 tcph_t *tcph; 22451 uint32_t seg_seq; 22452 uint32_t seg_ack; 22453 uint_t flags; 22454 mblk_t *ipsec_mp; 22455 ipha_t *ipha; 22456 ip6_t *ip6h; 22457 boolean_t mctl_present = B_FALSE; 22458 boolean_t check = B_TRUE; 22459 boolean_t policy_present; 22460 ipsec_stack_t *ipss = tcps->tcps_netstack->netstack_ipsec; 22461 22462 TCP_STAT(tcps, tcp_no_listener); 22463 22464 ipsec_mp = mp; 22465 22466 if (mp->b_datap->db_type == M_CTL) { 22467 ipsec_in_t *ii; 22468 22469 mctl_present = B_TRUE; 22470 mp = mp->b_cont; 22471 22472 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 22473 ASSERT(ii->ipsec_in_type == IPSEC_IN); 22474 if (ii->ipsec_in_dont_check) { 22475 check = B_FALSE; 22476 if (!ii->ipsec_in_secure) { 22477 freeb(ipsec_mp); 22478 mctl_present = B_FALSE; 22479 ipsec_mp = mp; 22480 } 22481 } 22482 } 22483 22484 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 22485 policy_present = ipss->ipsec_inbound_v4_policy_present; 22486 ipha = (ipha_t *)mp->b_rptr; 22487 ip6h = NULL; 22488 } else { 22489 policy_present = ipss->ipsec_inbound_v6_policy_present; 22490 ipha = NULL; 22491 ip6h = (ip6_t *)mp->b_rptr; 22492 } 22493 22494 if (check && policy_present) { 22495 /* 22496 * The conn_t parameter is NULL because we already know 22497 * nobody's home. 22498 */ 22499 ipsec_mp = ipsec_check_global_policy( 22500 ipsec_mp, (conn_t *)NULL, ipha, ip6h, mctl_present, 22501 tcps->tcps_netstack); 22502 if (ipsec_mp == NULL) 22503 return; 22504 } 22505 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 22506 DTRACE_PROBE2( 22507 tx__ip__log__error__nolistener__tcp, 22508 char *, "Could not reply with RST to mp(1)", 22509 mblk_t *, mp); 22510 ip2dbg(("tcp_xmit_listeners_reset: not permitted to reply\n")); 22511 freemsg(ipsec_mp); 22512 return; 22513 } 22514 22515 rptr = mp->b_rptr; 22516 22517 tcph = (tcph_t *)&rptr[ip_hdr_len]; 22518 seg_seq = BE32_TO_U32(tcph->th_seq); 22519 seg_ack = BE32_TO_U32(tcph->th_ack); 22520 flags = tcph->th_flags[0]; 22521 22522 seg_len = msgdsize(mp) - (TCP_HDR_LENGTH(tcph) + ip_hdr_len); 22523 if (flags & TH_RST) { 22524 freemsg(ipsec_mp); 22525 } else if (flags & TH_ACK) { 22526 tcp_xmit_early_reset("no tcp, reset", 22527 ipsec_mp, seg_ack, 0, TH_RST, ip_hdr_len, zoneid, tcps, 22528 connp); 22529 } else { 22530 if (flags & TH_SYN) { 22531 seg_len++; 22532 } else { 22533 /* 22534 * Here we violate the RFC. Note that a normal 22535 * TCP will never send a segment without the ACK 22536 * flag, except for RST or SYN segment. This 22537 * segment is neither. Just drop it on the 22538 * floor. 22539 */ 22540 freemsg(ipsec_mp); 22541 tcps->tcps_rst_unsent++; 22542 return; 22543 } 22544 22545 tcp_xmit_early_reset("no tcp, reset/ack", 22546 ipsec_mp, 0, seg_seq + seg_len, 22547 TH_RST | TH_ACK, ip_hdr_len, zoneid, tcps, connp); 22548 } 22549 } 22550 22551 /* 22552 * tcp_xmit_mp is called to return a pointer to an mblk chain complete with 22553 * ip and tcp header ready to pass down to IP. If the mp passed in is 22554 * non-NULL, then up to max_to_send bytes of data will be dup'ed off that 22555 * mblk. (If sendall is not set the dup'ing will stop at an mblk boundary 22556 * otherwise it will dup partial mblks.) 22557 * Otherwise, an appropriate ACK packet will be generated. This 22558 * routine is not usually called to send new data for the first time. It 22559 * is mostly called out of the timer for retransmits, and to generate ACKs. 22560 * 22561 * If offset is not NULL, the returned mblk chain's first mblk's b_rptr will 22562 * be adjusted by *offset. And after dupb(), the offset and the ending mblk 22563 * of the original mblk chain will be returned in *offset and *end_mp. 22564 */ 22565 mblk_t * 22566 tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, int32_t *offset, 22567 mblk_t **end_mp, uint32_t seq, boolean_t sendall, uint32_t *seg_len, 22568 boolean_t rexmit) 22569 { 22570 int data_length; 22571 int32_t off = 0; 22572 uint_t flags; 22573 mblk_t *mp1; 22574 mblk_t *mp2; 22575 uchar_t *rptr; 22576 tcph_t *tcph; 22577 int32_t num_sack_blk = 0; 22578 int32_t sack_opt_len = 0; 22579 tcp_stack_t *tcps = tcp->tcp_tcps; 22580 22581 /* Allocate for our maximum TCP header + link-level */ 22582 mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 22583 tcps->tcps_wroff_xtra, BPRI_MED); 22584 if (!mp1) 22585 return (NULL); 22586 data_length = 0; 22587 22588 /* 22589 * Note that tcp_mss has been adjusted to take into account the 22590 * timestamp option if applicable. Because SACK options do not 22591 * appear in every TCP segments and they are of variable lengths, 22592 * they cannot be included in tcp_mss. Thus we need to calculate 22593 * the actual segment length when we need to send a segment which 22594 * includes SACK options. 22595 */ 22596 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 22597 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 22598 tcp->tcp_num_sack_blk); 22599 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 22600 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 22601 if (max_to_send + sack_opt_len > tcp->tcp_mss) 22602 max_to_send -= sack_opt_len; 22603 } 22604 22605 if (offset != NULL) { 22606 off = *offset; 22607 /* We use offset as an indicator that end_mp is not NULL. */ 22608 *end_mp = NULL; 22609 } 22610 for (mp2 = mp1; mp && data_length != max_to_send; mp = mp->b_cont) { 22611 /* This could be faster with cooperation from downstream */ 22612 if (mp2 != mp1 && !sendall && 22613 data_length + (int)(mp->b_wptr - mp->b_rptr) > 22614 max_to_send) 22615 /* 22616 * Don't send the next mblk since the whole mblk 22617 * does not fit. 22618 */ 22619 break; 22620 mp2->b_cont = dupb(mp); 22621 mp2 = mp2->b_cont; 22622 if (!mp2) { 22623 freemsg(mp1); 22624 return (NULL); 22625 } 22626 mp2->b_rptr += off; 22627 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 22628 (uintptr_t)INT_MAX); 22629 22630 data_length += (int)(mp2->b_wptr - mp2->b_rptr); 22631 if (data_length > max_to_send) { 22632 mp2->b_wptr -= data_length - max_to_send; 22633 data_length = max_to_send; 22634 off = mp2->b_wptr - mp->b_rptr; 22635 break; 22636 } else { 22637 off = 0; 22638 } 22639 } 22640 if (offset != NULL) { 22641 *offset = off; 22642 *end_mp = mp; 22643 } 22644 if (seg_len != NULL) { 22645 *seg_len = data_length; 22646 } 22647 22648 /* Update the latest receive window size in TCP header. */ 22649 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 22650 tcp->tcp_tcph->th_win); 22651 22652 rptr = mp1->b_rptr + tcps->tcps_wroff_xtra; 22653 mp1->b_rptr = rptr; 22654 mp1->b_wptr = rptr + tcp->tcp_hdr_len + sack_opt_len; 22655 bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len); 22656 tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len]; 22657 U32_TO_ABE32(seq, tcph->th_seq); 22658 22659 /* 22660 * Use tcp_unsent to determine if the PUSH bit should be used assumes 22661 * that this function was called from tcp_wput_data. Thus, when called 22662 * to retransmit data the setting of the PUSH bit may appear some 22663 * what random in that it might get set when it should not. This 22664 * should not pose any performance issues. 22665 */ 22666 if (data_length != 0 && (tcp->tcp_unsent == 0 || 22667 tcp->tcp_unsent == data_length)) { 22668 flags = TH_ACK | TH_PUSH; 22669 } else { 22670 flags = TH_ACK; 22671 } 22672 22673 if (tcp->tcp_ecn_ok) { 22674 if (tcp->tcp_ecn_echo_on) 22675 flags |= TH_ECE; 22676 22677 /* 22678 * Only set ECT bit and ECN_CWR if a segment contains new data. 22679 * There is no TCP flow control for non-data segments, and 22680 * only data segment is transmitted reliably. 22681 */ 22682 if (data_length > 0 && !rexmit) { 22683 SET_ECT(tcp, rptr); 22684 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 22685 flags |= TH_CWR; 22686 tcp->tcp_ecn_cwr_sent = B_TRUE; 22687 } 22688 } 22689 } 22690 22691 if (tcp->tcp_valid_bits) { 22692 uint32_t u1; 22693 22694 if ((tcp->tcp_valid_bits & TCP_ISS_VALID) && 22695 seq == tcp->tcp_iss) { 22696 uchar_t *wptr; 22697 22698 /* 22699 * If TCP_ISS_VALID and the seq number is tcp_iss, 22700 * TCP can only be in SYN-SENT, SYN-RCVD or 22701 * FIN-WAIT-1 state. It can be FIN-WAIT-1 if 22702 * our SYN is not ack'ed but the app closes this 22703 * TCP connection. 22704 */ 22705 ASSERT(tcp->tcp_state == TCPS_SYN_SENT || 22706 tcp->tcp_state == TCPS_SYN_RCVD || 22707 tcp->tcp_state == TCPS_FIN_WAIT_1); 22708 22709 /* 22710 * Tack on the MSS option. It is always needed 22711 * for both active and passive open. 22712 * 22713 * MSS option value should be interface MTU - MIN 22714 * TCP/IP header according to RFC 793 as it means 22715 * the maximum segment size TCP can receive. But 22716 * to get around some broken middle boxes/end hosts 22717 * out there, we allow the option value to be the 22718 * same as the MSS option size on the peer side. 22719 * In this way, the other side will not send 22720 * anything larger than they can receive. 22721 * 22722 * Note that for SYN_SENT state, the ndd param 22723 * tcp_use_smss_as_mss_opt has no effect as we 22724 * don't know the peer's MSS option value. So 22725 * the only case we need to take care of is in 22726 * SYN_RCVD state, which is done later. 22727 */ 22728 wptr = mp1->b_wptr; 22729 wptr[0] = TCPOPT_MAXSEG; 22730 wptr[1] = TCPOPT_MAXSEG_LEN; 22731 wptr += 2; 22732 u1 = tcp->tcp_if_mtu - 22733 (tcp->tcp_ipversion == IPV4_VERSION ? 22734 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) - 22735 TCP_MIN_HEADER_LENGTH; 22736 U16_TO_BE16(u1, wptr); 22737 mp1->b_wptr = wptr + 2; 22738 /* Update the offset to cover the additional word */ 22739 tcph->th_offset_and_rsrvd[0] += (1 << 4); 22740 22741 /* 22742 * Note that the following way of filling in 22743 * TCP options are not optimal. Some NOPs can 22744 * be saved. But there is no need at this time 22745 * to optimize it. When it is needed, we will 22746 * do it. 22747 */ 22748 switch (tcp->tcp_state) { 22749 case TCPS_SYN_SENT: 22750 flags = TH_SYN; 22751 22752 if (tcp->tcp_snd_ts_ok) { 22753 uint32_t llbolt = (uint32_t)lbolt; 22754 22755 wptr = mp1->b_wptr; 22756 wptr[0] = TCPOPT_NOP; 22757 wptr[1] = TCPOPT_NOP; 22758 wptr[2] = TCPOPT_TSTAMP; 22759 wptr[3] = TCPOPT_TSTAMP_LEN; 22760 wptr += 4; 22761 U32_TO_BE32(llbolt, wptr); 22762 wptr += 4; 22763 ASSERT(tcp->tcp_ts_recent == 0); 22764 U32_TO_BE32(0L, wptr); 22765 mp1->b_wptr += TCPOPT_REAL_TS_LEN; 22766 tcph->th_offset_and_rsrvd[0] += 22767 (3 << 4); 22768 } 22769 22770 /* 22771 * Set up all the bits to tell other side 22772 * we are ECN capable. 22773 */ 22774 if (tcp->tcp_ecn_ok) { 22775 flags |= (TH_ECE | TH_CWR); 22776 } 22777 break; 22778 case TCPS_SYN_RCVD: 22779 flags |= TH_SYN; 22780 22781 /* 22782 * Reset the MSS option value to be SMSS 22783 * We should probably add back the bytes 22784 * for timestamp option and IPsec. We 22785 * don't do that as this is a workaround 22786 * for broken middle boxes/end hosts, it 22787 * is better for us to be more cautious. 22788 * They may not take these things into 22789 * account in their SMSS calculation. Thus 22790 * the peer's calculated SMSS may be smaller 22791 * than what it can be. This should be OK. 22792 */ 22793 if (tcps->tcps_use_smss_as_mss_opt) { 22794 u1 = tcp->tcp_mss; 22795 U16_TO_BE16(u1, wptr); 22796 } 22797 22798 /* 22799 * If the other side is ECN capable, reply 22800 * that we are also ECN capable. 22801 */ 22802 if (tcp->tcp_ecn_ok) 22803 flags |= TH_ECE; 22804 break; 22805 default: 22806 /* 22807 * The above ASSERT() makes sure that this 22808 * must be FIN-WAIT-1 state. Our SYN has 22809 * not been ack'ed so retransmit it. 22810 */ 22811 flags |= TH_SYN; 22812 break; 22813 } 22814 22815 if (tcp->tcp_snd_ws_ok) { 22816 wptr = mp1->b_wptr; 22817 wptr[0] = TCPOPT_NOP; 22818 wptr[1] = TCPOPT_WSCALE; 22819 wptr[2] = TCPOPT_WS_LEN; 22820 wptr[3] = (uchar_t)tcp->tcp_rcv_ws; 22821 mp1->b_wptr += TCPOPT_REAL_WS_LEN; 22822 tcph->th_offset_and_rsrvd[0] += (1 << 4); 22823 } 22824 22825 if (tcp->tcp_snd_sack_ok) { 22826 wptr = mp1->b_wptr; 22827 wptr[0] = TCPOPT_NOP; 22828 wptr[1] = TCPOPT_NOP; 22829 wptr[2] = TCPOPT_SACK_PERMITTED; 22830 wptr[3] = TCPOPT_SACK_OK_LEN; 22831 mp1->b_wptr += TCPOPT_REAL_SACK_OK_LEN; 22832 tcph->th_offset_and_rsrvd[0] += (1 << 4); 22833 } 22834 22835 /* allocb() of adequate mblk assures space */ 22836 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 22837 (uintptr_t)INT_MAX); 22838 u1 = (int)(mp1->b_wptr - mp1->b_rptr); 22839 /* 22840 * Get IP set to checksum on our behalf 22841 * Include the adjustment for a source route if any. 22842 */ 22843 u1 += tcp->tcp_sum; 22844 u1 = (u1 >> 16) + (u1 & 0xFFFF); 22845 U16_TO_BE16(u1, tcph->th_sum); 22846 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 22847 } 22848 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 22849 (seq + data_length) == tcp->tcp_fss) { 22850 if (!tcp->tcp_fin_acked) { 22851 flags |= TH_FIN; 22852 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 22853 } 22854 if (!tcp->tcp_fin_sent) { 22855 tcp->tcp_fin_sent = B_TRUE; 22856 switch (tcp->tcp_state) { 22857 case TCPS_SYN_RCVD: 22858 case TCPS_ESTABLISHED: 22859 tcp->tcp_state = TCPS_FIN_WAIT_1; 22860 break; 22861 case TCPS_CLOSE_WAIT: 22862 tcp->tcp_state = TCPS_LAST_ACK; 22863 break; 22864 } 22865 if (tcp->tcp_suna == tcp->tcp_snxt) 22866 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 22867 tcp->tcp_snxt = tcp->tcp_fss + 1; 22868 } 22869 } 22870 /* 22871 * Note the trick here. u1 is unsigned. When tcp_urg 22872 * is smaller than seq, u1 will become a very huge value. 22873 * So the comparison will fail. Also note that tcp_urp 22874 * should be positive, see RFC 793 page 17. 22875 */ 22876 u1 = tcp->tcp_urg - seq + TCP_OLD_URP_INTERPRETATION; 22877 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && u1 != 0 && 22878 u1 < (uint32_t)(64 * 1024)) { 22879 flags |= TH_URG; 22880 BUMP_MIB(&tcps->tcps_mib, tcpOutUrg); 22881 U32_TO_ABE16(u1, tcph->th_urp); 22882 } 22883 } 22884 tcph->th_flags[0] = (uchar_t)flags; 22885 tcp->tcp_rack = tcp->tcp_rnxt; 22886 tcp->tcp_rack_cnt = 0; 22887 22888 if (tcp->tcp_snd_ts_ok) { 22889 if (tcp->tcp_state != TCPS_SYN_SENT) { 22890 uint32_t llbolt = (uint32_t)lbolt; 22891 22892 U32_TO_BE32(llbolt, 22893 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 22894 U32_TO_BE32(tcp->tcp_ts_recent, 22895 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 22896 } 22897 } 22898 22899 if (num_sack_blk > 0) { 22900 uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len; 22901 sack_blk_t *tmp; 22902 int32_t i; 22903 22904 wptr[0] = TCPOPT_NOP; 22905 wptr[1] = TCPOPT_NOP; 22906 wptr[2] = TCPOPT_SACK; 22907 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 22908 sizeof (sack_blk_t); 22909 wptr += TCPOPT_REAL_SACK_LEN; 22910 22911 tmp = tcp->tcp_sack_list; 22912 for (i = 0; i < num_sack_blk; i++) { 22913 U32_TO_BE32(tmp[i].begin, wptr); 22914 wptr += sizeof (tcp_seq); 22915 U32_TO_BE32(tmp[i].end, wptr); 22916 wptr += sizeof (tcp_seq); 22917 } 22918 tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) << 4); 22919 } 22920 ASSERT((uintptr_t)(mp1->b_wptr - rptr) <= (uintptr_t)INT_MAX); 22921 data_length += (int)(mp1->b_wptr - rptr); 22922 if (tcp->tcp_ipversion == IPV4_VERSION) { 22923 ((ipha_t *)rptr)->ipha_length = htons(data_length); 22924 } else { 22925 ip6_t *ip6 = (ip6_t *)(rptr + 22926 (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ? 22927 sizeof (ip6i_t) : 0)); 22928 22929 ip6->ip6_plen = htons(data_length - 22930 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 22931 } 22932 22933 /* 22934 * Prime pump for IP 22935 * Include the adjustment for a source route if any. 22936 */ 22937 data_length -= tcp->tcp_ip_hdr_len; 22938 data_length += tcp->tcp_sum; 22939 data_length = (data_length >> 16) + (data_length & 0xFFFF); 22940 U16_TO_ABE16(data_length, tcph->th_sum); 22941 if (tcp->tcp_ip_forward_progress) { 22942 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 22943 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 22944 tcp->tcp_ip_forward_progress = B_FALSE; 22945 } 22946 return (mp1); 22947 } 22948 22949 /* This function handles the push timeout. */ 22950 void 22951 tcp_push_timer(void *arg) 22952 { 22953 conn_t *connp = (conn_t *)arg; 22954 tcp_t *tcp = connp->conn_tcp; 22955 22956 TCP_DBGSTAT(tcp->tcp_tcps, tcp_push_timer_cnt); 22957 22958 ASSERT(tcp->tcp_listener == NULL); 22959 22960 ASSERT(!IPCL_IS_NONSTR(connp)); 22961 22962 tcp->tcp_push_tid = 0; 22963 22964 if (tcp->tcp_rcv_list != NULL && 22965 tcp_rcv_drain(tcp) == TH_ACK_NEEDED) 22966 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 22967 } 22968 22969 /* 22970 * This function handles delayed ACK timeout. 22971 */ 22972 static void 22973 tcp_ack_timer(void *arg) 22974 { 22975 conn_t *connp = (conn_t *)arg; 22976 tcp_t *tcp = connp->conn_tcp; 22977 mblk_t *mp; 22978 tcp_stack_t *tcps = tcp->tcp_tcps; 22979 22980 TCP_DBGSTAT(tcps, tcp_ack_timer_cnt); 22981 22982 tcp->tcp_ack_tid = 0; 22983 22984 if (tcp->tcp_fused) 22985 return; 22986 22987 /* 22988 * Do not send ACK if there is no outstanding unack'ed data. 22989 */ 22990 if (tcp->tcp_rnxt == tcp->tcp_rack) { 22991 return; 22992 } 22993 22994 if ((tcp->tcp_rnxt - tcp->tcp_rack) > tcp->tcp_mss) { 22995 /* 22996 * Make sure we don't allow deferred ACKs to result in 22997 * timer-based ACKing. If we have held off an ACK 22998 * when there was more than an mss here, and the timer 22999 * goes off, we have to worry about the possibility 23000 * that the sender isn't doing slow-start, or is out 23001 * of step with us for some other reason. We fall 23002 * permanently back in the direction of 23003 * ACK-every-other-packet as suggested in RFC 1122. 23004 */ 23005 if (tcp->tcp_rack_abs_max > 2) 23006 tcp->tcp_rack_abs_max--; 23007 tcp->tcp_rack_cur_max = 2; 23008 } 23009 mp = tcp_ack_mp(tcp); 23010 23011 if (mp != NULL) { 23012 BUMP_LOCAL(tcp->tcp_obsegs); 23013 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 23014 BUMP_MIB(&tcps->tcps_mib, tcpOutAckDelayed); 23015 tcp_send_data(tcp, tcp->tcp_wq, mp); 23016 } 23017 } 23018 23019 23020 /* Generate an ACK-only (no data) segment for a TCP endpoint */ 23021 static mblk_t * 23022 tcp_ack_mp(tcp_t *tcp) 23023 { 23024 uint32_t seq_no; 23025 tcp_stack_t *tcps = tcp->tcp_tcps; 23026 23027 /* 23028 * There are a few cases to be considered while setting the sequence no. 23029 * Essentially, we can come here while processing an unacceptable pkt 23030 * in the TCPS_SYN_RCVD state, in which case we set the sequence number 23031 * to snxt (per RFC 793), note the swnd wouldn't have been set yet. 23032 * If we are here for a zero window probe, stick with suna. In all 23033 * other cases, we check if suna + swnd encompasses snxt and set 23034 * the sequence number to snxt, if so. If snxt falls outside the 23035 * window (the receiver probably shrunk its window), we will go with 23036 * suna + swnd, otherwise the sequence no will be unacceptable to the 23037 * receiver. 23038 */ 23039 if (tcp->tcp_zero_win_probe) { 23040 seq_no = tcp->tcp_suna; 23041 } else if (tcp->tcp_state == TCPS_SYN_RCVD) { 23042 ASSERT(tcp->tcp_swnd == 0); 23043 seq_no = tcp->tcp_snxt; 23044 } else { 23045 seq_no = SEQ_GT(tcp->tcp_snxt, 23046 (tcp->tcp_suna + tcp->tcp_swnd)) ? 23047 (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt; 23048 } 23049 23050 if (tcp->tcp_valid_bits) { 23051 /* 23052 * For the complex case where we have to send some 23053 * controls (FIN or SYN), let tcp_xmit_mp do it. 23054 */ 23055 return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE, 23056 NULL, B_FALSE)); 23057 } else { 23058 /* Generate a simple ACK */ 23059 int data_length; 23060 uchar_t *rptr; 23061 tcph_t *tcph; 23062 mblk_t *mp1; 23063 int32_t tcp_hdr_len; 23064 int32_t tcp_tcp_hdr_len; 23065 int32_t num_sack_blk = 0; 23066 int32_t sack_opt_len; 23067 23068 /* 23069 * Allocate space for TCP + IP headers 23070 * and link-level header 23071 */ 23072 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 23073 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 23074 tcp->tcp_num_sack_blk); 23075 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 23076 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 23077 tcp_hdr_len = tcp->tcp_hdr_len + sack_opt_len; 23078 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + sack_opt_len; 23079 } else { 23080 tcp_hdr_len = tcp->tcp_hdr_len; 23081 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len; 23082 } 23083 mp1 = allocb(tcp_hdr_len + tcps->tcps_wroff_xtra, BPRI_MED); 23084 if (!mp1) 23085 return (NULL); 23086 23087 /* Update the latest receive window size in TCP header. */ 23088 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 23089 tcp->tcp_tcph->th_win); 23090 /* copy in prototype TCP + IP header */ 23091 rptr = mp1->b_rptr + tcps->tcps_wroff_xtra; 23092 mp1->b_rptr = rptr; 23093 mp1->b_wptr = rptr + tcp_hdr_len; 23094 bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len); 23095 23096 tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len]; 23097 23098 /* Set the TCP sequence number. */ 23099 U32_TO_ABE32(seq_no, tcph->th_seq); 23100 23101 /* Set up the TCP flag field. */ 23102 tcph->th_flags[0] = (uchar_t)TH_ACK; 23103 if (tcp->tcp_ecn_echo_on) 23104 tcph->th_flags[0] |= TH_ECE; 23105 23106 tcp->tcp_rack = tcp->tcp_rnxt; 23107 tcp->tcp_rack_cnt = 0; 23108 23109 /* fill in timestamp option if in use */ 23110 if (tcp->tcp_snd_ts_ok) { 23111 uint32_t llbolt = (uint32_t)lbolt; 23112 23113 U32_TO_BE32(llbolt, 23114 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 23115 U32_TO_BE32(tcp->tcp_ts_recent, 23116 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 23117 } 23118 23119 /* Fill in SACK options */ 23120 if (num_sack_blk > 0) { 23121 uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len; 23122 sack_blk_t *tmp; 23123 int32_t i; 23124 23125 wptr[0] = TCPOPT_NOP; 23126 wptr[1] = TCPOPT_NOP; 23127 wptr[2] = TCPOPT_SACK; 23128 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 23129 sizeof (sack_blk_t); 23130 wptr += TCPOPT_REAL_SACK_LEN; 23131 23132 tmp = tcp->tcp_sack_list; 23133 for (i = 0; i < num_sack_blk; i++) { 23134 U32_TO_BE32(tmp[i].begin, wptr); 23135 wptr += sizeof (tcp_seq); 23136 U32_TO_BE32(tmp[i].end, wptr); 23137 wptr += sizeof (tcp_seq); 23138 } 23139 tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) 23140 << 4); 23141 } 23142 23143 if (tcp->tcp_ipversion == IPV4_VERSION) { 23144 ((ipha_t *)rptr)->ipha_length = htons(tcp_hdr_len); 23145 } else { 23146 /* Check for ip6i_t header in sticky hdrs */ 23147 ip6_t *ip6 = (ip6_t *)(rptr + 23148 (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ? 23149 sizeof (ip6i_t) : 0)); 23150 23151 ip6->ip6_plen = htons(tcp_hdr_len - 23152 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 23153 } 23154 23155 /* 23156 * Prime pump for checksum calculation in IP. Include the 23157 * adjustment for a source route if any. 23158 */ 23159 data_length = tcp_tcp_hdr_len + tcp->tcp_sum; 23160 data_length = (data_length >> 16) + (data_length & 0xFFFF); 23161 U16_TO_ABE16(data_length, tcph->th_sum); 23162 23163 if (tcp->tcp_ip_forward_progress) { 23164 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 23165 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 23166 tcp->tcp_ip_forward_progress = B_FALSE; 23167 } 23168 return (mp1); 23169 } 23170 } 23171 23172 /* 23173 * Hash list insertion routine for tcp_t structures. Each hash bucket 23174 * contains a list of tcp_t entries, and each entry is bound to a unique 23175 * port. If there are multiple tcp_t's that are bound to the same port, then 23176 * one of them will be linked into the hash bucket list, and the rest will 23177 * hang off of that one entry. For each port, entries bound to a specific IP 23178 * address will be inserted before those those bound to INADDR_ANY. 23179 */ 23180 static void 23181 tcp_bind_hash_insert(tf_t *tbf, tcp_t *tcp, int caller_holds_lock) 23182 { 23183 tcp_t **tcpp; 23184 tcp_t *tcpnext; 23185 tcp_t *tcphash; 23186 23187 if (tcp->tcp_ptpbhn != NULL) { 23188 ASSERT(!caller_holds_lock); 23189 tcp_bind_hash_remove(tcp); 23190 } 23191 tcpp = &tbf->tf_tcp; 23192 if (!caller_holds_lock) { 23193 mutex_enter(&tbf->tf_lock); 23194 } else { 23195 ASSERT(MUTEX_HELD(&tbf->tf_lock)); 23196 } 23197 tcphash = tcpp[0]; 23198 tcpnext = NULL; 23199 if (tcphash != NULL) { 23200 /* Look for an entry using the same port */ 23201 while ((tcphash = tcpp[0]) != NULL && 23202 tcp->tcp_lport != tcphash->tcp_lport) 23203 tcpp = &(tcphash->tcp_bind_hash); 23204 23205 /* The port was not found, just add to the end */ 23206 if (tcphash == NULL) 23207 goto insert; 23208 23209 /* 23210 * OK, there already exists an entry bound to the 23211 * same port. 23212 * 23213 * If the new tcp bound to the INADDR_ANY address 23214 * and the first one in the list is not bound to 23215 * INADDR_ANY we skip all entries until we find the 23216 * first one bound to INADDR_ANY. 23217 * This makes sure that applications binding to a 23218 * specific address get preference over those binding to 23219 * INADDR_ANY. 23220 */ 23221 tcpnext = tcphash; 23222 tcphash = NULL; 23223 if (V6_OR_V4_INADDR_ANY(tcp->tcp_bound_source_v6) && 23224 !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) { 23225 while ((tcpnext = tcpp[0]) != NULL && 23226 !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) 23227 tcpp = &(tcpnext->tcp_bind_hash_port); 23228 23229 if (tcpnext) { 23230 tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash_port; 23231 tcphash = tcpnext->tcp_bind_hash; 23232 if (tcphash != NULL) { 23233 tcphash->tcp_ptpbhn = 23234 &(tcp->tcp_bind_hash); 23235 tcpnext->tcp_bind_hash = NULL; 23236 } 23237 } 23238 } else { 23239 tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash_port; 23240 tcphash = tcpnext->tcp_bind_hash; 23241 if (tcphash != NULL) { 23242 tcphash->tcp_ptpbhn = 23243 &(tcp->tcp_bind_hash); 23244 tcpnext->tcp_bind_hash = NULL; 23245 } 23246 } 23247 } 23248 insert: 23249 tcp->tcp_bind_hash_port = tcpnext; 23250 tcp->tcp_bind_hash = tcphash; 23251 tcp->tcp_ptpbhn = tcpp; 23252 tcpp[0] = tcp; 23253 if (!caller_holds_lock) 23254 mutex_exit(&tbf->tf_lock); 23255 } 23256 23257 /* 23258 * Hash list removal routine for tcp_t structures. 23259 */ 23260 static void 23261 tcp_bind_hash_remove(tcp_t *tcp) 23262 { 23263 tcp_t *tcpnext; 23264 kmutex_t *lockp; 23265 tcp_stack_t *tcps = tcp->tcp_tcps; 23266 23267 if (tcp->tcp_ptpbhn == NULL) 23268 return; 23269 23270 /* 23271 * Extract the lock pointer in case there are concurrent 23272 * hash_remove's for this instance. 23273 */ 23274 ASSERT(tcp->tcp_lport != 0); 23275 lockp = &tcps->tcps_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)].tf_lock; 23276 23277 ASSERT(lockp != NULL); 23278 mutex_enter(lockp); 23279 if (tcp->tcp_ptpbhn) { 23280 tcpnext = tcp->tcp_bind_hash_port; 23281 if (tcpnext != NULL) { 23282 tcp->tcp_bind_hash_port = NULL; 23283 tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn; 23284 tcpnext->tcp_bind_hash = tcp->tcp_bind_hash; 23285 if (tcpnext->tcp_bind_hash != NULL) { 23286 tcpnext->tcp_bind_hash->tcp_ptpbhn = 23287 &(tcpnext->tcp_bind_hash); 23288 tcp->tcp_bind_hash = NULL; 23289 } 23290 } else if ((tcpnext = tcp->tcp_bind_hash) != NULL) { 23291 tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn; 23292 tcp->tcp_bind_hash = NULL; 23293 } 23294 *tcp->tcp_ptpbhn = tcpnext; 23295 tcp->tcp_ptpbhn = NULL; 23296 } 23297 mutex_exit(lockp); 23298 } 23299 23300 23301 /* 23302 * Hash list lookup routine for tcp_t structures. 23303 * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF. 23304 */ 23305 static tcp_t * 23306 tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *tcps) 23307 { 23308 tf_t *tf; 23309 tcp_t *tcp; 23310 23311 tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 23312 mutex_enter(&tf->tf_lock); 23313 for (tcp = tf->tf_tcp; tcp != NULL; 23314 tcp = tcp->tcp_acceptor_hash) { 23315 if (tcp->tcp_acceptor_id == id) { 23316 CONN_INC_REF(tcp->tcp_connp); 23317 mutex_exit(&tf->tf_lock); 23318 return (tcp); 23319 } 23320 } 23321 mutex_exit(&tf->tf_lock); 23322 return (NULL); 23323 } 23324 23325 23326 /* 23327 * Hash list insertion routine for tcp_t structures. 23328 */ 23329 void 23330 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp) 23331 { 23332 tf_t *tf; 23333 tcp_t **tcpp; 23334 tcp_t *tcpnext; 23335 tcp_stack_t *tcps = tcp->tcp_tcps; 23336 23337 tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 23338 23339 if (tcp->tcp_ptpahn != NULL) 23340 tcp_acceptor_hash_remove(tcp); 23341 tcpp = &tf->tf_tcp; 23342 mutex_enter(&tf->tf_lock); 23343 tcpnext = tcpp[0]; 23344 if (tcpnext) 23345 tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash; 23346 tcp->tcp_acceptor_hash = tcpnext; 23347 tcp->tcp_ptpahn = tcpp; 23348 tcpp[0] = tcp; 23349 tcp->tcp_acceptor_lockp = &tf->tf_lock; /* For tcp_*_hash_remove */ 23350 mutex_exit(&tf->tf_lock); 23351 } 23352 23353 /* 23354 * Hash list removal routine for tcp_t structures. 23355 */ 23356 static void 23357 tcp_acceptor_hash_remove(tcp_t *tcp) 23358 { 23359 tcp_t *tcpnext; 23360 kmutex_t *lockp; 23361 23362 /* 23363 * Extract the lock pointer in case there are concurrent 23364 * hash_remove's for this instance. 23365 */ 23366 lockp = tcp->tcp_acceptor_lockp; 23367 23368 if (tcp->tcp_ptpahn == NULL) 23369 return; 23370 23371 ASSERT(lockp != NULL); 23372 mutex_enter(lockp); 23373 if (tcp->tcp_ptpahn) { 23374 tcpnext = tcp->tcp_acceptor_hash; 23375 if (tcpnext) { 23376 tcpnext->tcp_ptpahn = tcp->tcp_ptpahn; 23377 tcp->tcp_acceptor_hash = NULL; 23378 } 23379 *tcp->tcp_ptpahn = tcpnext; 23380 tcp->tcp_ptpahn = NULL; 23381 } 23382 mutex_exit(lockp); 23383 tcp->tcp_acceptor_lockp = NULL; 23384 } 23385 23386 /* 23387 * Type three generator adapted from the random() function in 4.4 BSD: 23388 */ 23389 23390 /* 23391 * Copyright (c) 1983, 1993 23392 * The Regents of the University of California. All rights reserved. 23393 * 23394 * Redistribution and use in source and binary forms, with or without 23395 * modification, are permitted provided that the following conditions 23396 * are met: 23397 * 1. Redistributions of source code must retain the above copyright 23398 * notice, this list of conditions and the following disclaimer. 23399 * 2. Redistributions in binary form must reproduce the above copyright 23400 * notice, this list of conditions and the following disclaimer in the 23401 * documentation and/or other materials provided with the distribution. 23402 * 3. All advertising materials mentioning features or use of this software 23403 * must display the following acknowledgement: 23404 * This product includes software developed by the University of 23405 * California, Berkeley and its contributors. 23406 * 4. Neither the name of the University nor the names of its contributors 23407 * may be used to endorse or promote products derived from this software 23408 * without specific prior written permission. 23409 * 23410 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23411 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23412 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23413 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23414 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23415 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23416 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23417 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23418 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23419 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 23420 * SUCH DAMAGE. 23421 */ 23422 23423 /* Type 3 -- x**31 + x**3 + 1 */ 23424 #define DEG_3 31 23425 #define SEP_3 3 23426 23427 23428 /* Protected by tcp_random_lock */ 23429 static int tcp_randtbl[DEG_3 + 1]; 23430 23431 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1]; 23432 static int *tcp_random_rptr = &tcp_randtbl[1]; 23433 23434 static int *tcp_random_state = &tcp_randtbl[1]; 23435 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1]; 23436 23437 kmutex_t tcp_random_lock; 23438 23439 void 23440 tcp_random_init(void) 23441 { 23442 int i; 23443 hrtime_t hrt; 23444 time_t wallclock; 23445 uint64_t result; 23446 23447 /* 23448 * Use high-res timer and current time for seed. Gethrtime() returns 23449 * a longlong, which may contain resolution down to nanoseconds. 23450 * The current time will either be a 32-bit or a 64-bit quantity. 23451 * XOR the two together in a 64-bit result variable. 23452 * Convert the result to a 32-bit value by multiplying the high-order 23453 * 32-bits by the low-order 32-bits. 23454 */ 23455 23456 hrt = gethrtime(); 23457 (void) drv_getparm(TIME, &wallclock); 23458 result = (uint64_t)wallclock ^ (uint64_t)hrt; 23459 mutex_enter(&tcp_random_lock); 23460 tcp_random_state[0] = ((result >> 32) & 0xffffffff) * 23461 (result & 0xffffffff); 23462 23463 for (i = 1; i < DEG_3; i++) 23464 tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1] 23465 + 12345; 23466 tcp_random_fptr = &tcp_random_state[SEP_3]; 23467 tcp_random_rptr = &tcp_random_state[0]; 23468 mutex_exit(&tcp_random_lock); 23469 for (i = 0; i < 10 * DEG_3; i++) 23470 (void) tcp_random(); 23471 } 23472 23473 /* 23474 * tcp_random: Return a random number in the range [1 - (128K + 1)]. 23475 * This range is selected to be approximately centered on TCP_ISS / 2, 23476 * and easy to compute. We get this value by generating a 32-bit random 23477 * number, selecting out the high-order 17 bits, and then adding one so 23478 * that we never return zero. 23479 */ 23480 int 23481 tcp_random(void) 23482 { 23483 int i; 23484 23485 mutex_enter(&tcp_random_lock); 23486 *tcp_random_fptr += *tcp_random_rptr; 23487 23488 /* 23489 * The high-order bits are more random than the low-order bits, 23490 * so we select out the high-order 17 bits and add one so that 23491 * we never return zero. 23492 */ 23493 i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1; 23494 if (++tcp_random_fptr >= tcp_random_end_ptr) { 23495 tcp_random_fptr = tcp_random_state; 23496 ++tcp_random_rptr; 23497 } else if (++tcp_random_rptr >= tcp_random_end_ptr) 23498 tcp_random_rptr = tcp_random_state; 23499 23500 mutex_exit(&tcp_random_lock); 23501 return (i); 23502 } 23503 23504 static int 23505 tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, int *do_disconnectp, 23506 int *t_errorp, int *sys_errorp) 23507 { 23508 int error; 23509 int is_absreq_failure; 23510 t_scalar_t *opt_lenp; 23511 t_scalar_t opt_offset; 23512 int prim_type; 23513 struct T_conn_req *tcreqp; 23514 struct T_conn_res *tcresp; 23515 cred_t *cr; 23516 23517 /* 23518 * All Solaris components should pass a db_credp 23519 * for this TPI message, hence we ASSERT. 23520 * But in case there is some other M_PROTO that looks 23521 * like a TPI message sent by some other kernel 23522 * component, we check and return an error. 23523 */ 23524 cr = msg_getcred(mp, NULL); 23525 ASSERT(cr != NULL); 23526 if (cr == NULL) 23527 return (-1); 23528 23529 prim_type = ((union T_primitives *)mp->b_rptr)->type; 23530 ASSERT(prim_type == T_CONN_REQ || prim_type == O_T_CONN_RES || 23531 prim_type == T_CONN_RES); 23532 23533 switch (prim_type) { 23534 case T_CONN_REQ: 23535 tcreqp = (struct T_conn_req *)mp->b_rptr; 23536 opt_offset = tcreqp->OPT_offset; 23537 opt_lenp = (t_scalar_t *)&tcreqp->OPT_length; 23538 break; 23539 case O_T_CONN_RES: 23540 case T_CONN_RES: 23541 tcresp = (struct T_conn_res *)mp->b_rptr; 23542 opt_offset = tcresp->OPT_offset; 23543 opt_lenp = (t_scalar_t *)&tcresp->OPT_length; 23544 break; 23545 } 23546 23547 *t_errorp = 0; 23548 *sys_errorp = 0; 23549 *do_disconnectp = 0; 23550 23551 error = tpi_optcom_buf(tcp->tcp_wq, mp, opt_lenp, 23552 opt_offset, cr, &tcp_opt_obj, 23553 NULL, &is_absreq_failure); 23554 23555 switch (error) { 23556 case 0: /* no error */ 23557 ASSERT(is_absreq_failure == 0); 23558 return (0); 23559 case ENOPROTOOPT: 23560 *t_errorp = TBADOPT; 23561 break; 23562 case EACCES: 23563 *t_errorp = TACCES; 23564 break; 23565 default: 23566 *t_errorp = TSYSERR; *sys_errorp = error; 23567 break; 23568 } 23569 if (is_absreq_failure != 0) { 23570 /* 23571 * The connection request should get the local ack 23572 * T_OK_ACK and then a T_DISCON_IND. 23573 */ 23574 *do_disconnectp = 1; 23575 } 23576 return (-1); 23577 } 23578 23579 /* 23580 * Split this function out so that if the secret changes, I'm okay. 23581 * 23582 * Initialize the tcp_iss_cookie and tcp_iss_key. 23583 */ 23584 23585 #define PASSWD_SIZE 16 /* MUST be multiple of 4 */ 23586 23587 static void 23588 tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *tcps) 23589 { 23590 struct { 23591 int32_t current_time; 23592 uint32_t randnum; 23593 uint16_t pad; 23594 uint8_t ether[6]; 23595 uint8_t passwd[PASSWD_SIZE]; 23596 } tcp_iss_cookie; 23597 time_t t; 23598 23599 /* 23600 * Start with the current absolute time. 23601 */ 23602 (void) drv_getparm(TIME, &t); 23603 tcp_iss_cookie.current_time = t; 23604 23605 /* 23606 * XXX - Need a more random number per RFC 1750, not this crap. 23607 * OTOH, if what follows is pretty random, then I'm in better shape. 23608 */ 23609 tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random()); 23610 tcp_iss_cookie.pad = 0x365c; /* Picked from HMAC pad values. */ 23611 23612 /* 23613 * The cpu_type_info is pretty non-random. Ugggh. It does serve 23614 * as a good template. 23615 */ 23616 bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd, 23617 min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info))); 23618 23619 /* 23620 * The pass-phrase. Normally this is supplied by user-called NDD. 23621 */ 23622 bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len)); 23623 23624 /* 23625 * See 4010593 if this section becomes a problem again, 23626 * but the local ethernet address is useful here. 23627 */ 23628 (void) localetheraddr(NULL, 23629 (struct ether_addr *)&tcp_iss_cookie.ether); 23630 23631 /* 23632 * Hash 'em all together. The MD5Final is called per-connection. 23633 */ 23634 mutex_enter(&tcps->tcps_iss_key_lock); 23635 MD5Init(&tcps->tcps_iss_key); 23636 MD5Update(&tcps->tcps_iss_key, (uchar_t *)&tcp_iss_cookie, 23637 sizeof (tcp_iss_cookie)); 23638 mutex_exit(&tcps->tcps_iss_key_lock); 23639 } 23640 23641 /* 23642 * Set the RFC 1948 pass phrase 23643 */ 23644 /* ARGSUSED */ 23645 static int 23646 tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 23647 cred_t *cr) 23648 { 23649 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 23650 23651 /* 23652 * Basically, value contains a new pass phrase. Pass it along! 23653 */ 23654 tcp_iss_key_init((uint8_t *)value, strlen(value), tcps); 23655 return (0); 23656 } 23657 23658 /* ARGSUSED */ 23659 static int 23660 tcp_sack_info_constructor(void *buf, void *cdrarg, int kmflags) 23661 { 23662 bzero(buf, sizeof (tcp_sack_info_t)); 23663 return (0); 23664 } 23665 23666 /* ARGSUSED */ 23667 static int 23668 tcp_iphc_constructor(void *buf, void *cdrarg, int kmflags) 23669 { 23670 bzero(buf, TCP_MAX_COMBINED_HEADER_LENGTH); 23671 return (0); 23672 } 23673 23674 /* 23675 * Make sure we wait until the default queue is setup, yet allow 23676 * tcp_g_q_create() to open a TCP stream. 23677 * We need to allow tcp_g_q_create() do do an open 23678 * of tcp, hence we compare curhread. 23679 * All others have to wait until the tcps_g_q has been 23680 * setup. 23681 */ 23682 void 23683 tcp_g_q_setup(tcp_stack_t *tcps) 23684 { 23685 mutex_enter(&tcps->tcps_g_q_lock); 23686 if (tcps->tcps_g_q != NULL) { 23687 mutex_exit(&tcps->tcps_g_q_lock); 23688 return; 23689 } 23690 if (tcps->tcps_g_q_creator == NULL) { 23691 /* This thread will set it up */ 23692 tcps->tcps_g_q_creator = curthread; 23693 mutex_exit(&tcps->tcps_g_q_lock); 23694 tcp_g_q_create(tcps); 23695 mutex_enter(&tcps->tcps_g_q_lock); 23696 ASSERT(tcps->tcps_g_q_creator == curthread); 23697 tcps->tcps_g_q_creator = NULL; 23698 cv_signal(&tcps->tcps_g_q_cv); 23699 ASSERT(tcps->tcps_g_q != NULL); 23700 mutex_exit(&tcps->tcps_g_q_lock); 23701 return; 23702 } 23703 /* Everybody but the creator has to wait */ 23704 if (tcps->tcps_g_q_creator != curthread) { 23705 while (tcps->tcps_g_q == NULL) 23706 cv_wait(&tcps->tcps_g_q_cv, &tcps->tcps_g_q_lock); 23707 } 23708 mutex_exit(&tcps->tcps_g_q_lock); 23709 } 23710 23711 #define IP "ip" 23712 23713 #define TCP6DEV "/devices/pseudo/tcp6@0:tcp6" 23714 23715 /* 23716 * Create a default tcp queue here instead of in strplumb 23717 */ 23718 void 23719 tcp_g_q_create(tcp_stack_t *tcps) 23720 { 23721 int error; 23722 ldi_handle_t lh = NULL; 23723 ldi_ident_t li = NULL; 23724 int rval; 23725 cred_t *cr; 23726 major_t IP_MAJ; 23727 23728 #ifdef NS_DEBUG 23729 (void) printf("tcp_g_q_create()\n"); 23730 #endif 23731 23732 IP_MAJ = ddi_name_to_major(IP); 23733 23734 ASSERT(tcps->tcps_g_q_creator == curthread); 23735 23736 error = ldi_ident_from_major(IP_MAJ, &li); 23737 if (error) { 23738 #ifdef DEBUG 23739 printf("tcp_g_q_create: lyr ident get failed error %d\n", 23740 error); 23741 #endif 23742 return; 23743 } 23744 23745 cr = zone_get_kcred(netstackid_to_zoneid( 23746 tcps->tcps_netstack->netstack_stackid)); 23747 ASSERT(cr != NULL); 23748 /* 23749 * We set the tcp default queue to IPv6 because IPv4 falls 23750 * back to IPv6 when it can't find a client, but 23751 * IPv6 does not fall back to IPv4. 23752 */ 23753 error = ldi_open_by_name(TCP6DEV, FREAD|FWRITE, cr, &lh, li); 23754 if (error) { 23755 #ifdef DEBUG 23756 printf("tcp_g_q_create: open of TCP6DEV failed error %d\n", 23757 error); 23758 #endif 23759 goto out; 23760 } 23761 23762 /* 23763 * This ioctl causes the tcp framework to cache a pointer to 23764 * this stream, so we don't want to close the stream after 23765 * this operation. 23766 * Use the kernel credentials that are for the zone we're in. 23767 */ 23768 error = ldi_ioctl(lh, TCP_IOC_DEFAULT_Q, 23769 (intptr_t)0, FKIOCTL, cr, &rval); 23770 if (error) { 23771 #ifdef DEBUG 23772 printf("tcp_g_q_create: ioctl TCP_IOC_DEFAULT_Q failed " 23773 "error %d\n", error); 23774 #endif 23775 goto out; 23776 } 23777 tcps->tcps_g_q_lh = lh; /* For tcp_g_q_close */ 23778 lh = NULL; 23779 out: 23780 /* Close layered handles */ 23781 if (li) 23782 ldi_ident_release(li); 23783 /* Keep cred around until _inactive needs it */ 23784 tcps->tcps_g_q_cr = cr; 23785 } 23786 23787 /* 23788 * We keep tcp_g_q set until all other tcp_t's in the zone 23789 * has gone away, and then when tcp_g_q_inactive() is called 23790 * we clear it. 23791 */ 23792 void 23793 tcp_g_q_destroy(tcp_stack_t *tcps) 23794 { 23795 #ifdef NS_DEBUG 23796 (void) printf("tcp_g_q_destroy()for stack %d\n", 23797 tcps->tcps_netstack->netstack_stackid); 23798 #endif 23799 23800 if (tcps->tcps_g_q == NULL) { 23801 return; /* Nothing to cleanup */ 23802 } 23803 /* 23804 * Drop reference corresponding to the default queue. 23805 * This reference was added from tcp_open when the default queue 23806 * was created, hence we compensate for this extra drop in 23807 * tcp_g_q_close. If the refcnt drops to zero here it means 23808 * the default queue was the last one to be open, in which 23809 * case, then tcp_g_q_inactive will be 23810 * called as a result of the refrele. 23811 */ 23812 TCPS_REFRELE(tcps); 23813 } 23814 23815 /* 23816 * Called when last tcp_t drops reference count using TCPS_REFRELE. 23817 * Run by tcp_q_q_inactive using a taskq. 23818 */ 23819 static void 23820 tcp_g_q_close(void *arg) 23821 { 23822 tcp_stack_t *tcps = arg; 23823 int error; 23824 ldi_handle_t lh = NULL; 23825 ldi_ident_t li = NULL; 23826 cred_t *cr; 23827 major_t IP_MAJ; 23828 23829 IP_MAJ = ddi_name_to_major(IP); 23830 23831 #ifdef NS_DEBUG 23832 (void) printf("tcp_g_q_inactive() for stack %d refcnt %d\n", 23833 tcps->tcps_netstack->netstack_stackid, 23834 tcps->tcps_netstack->netstack_refcnt); 23835 #endif 23836 lh = tcps->tcps_g_q_lh; 23837 if (lh == NULL) 23838 return; /* Nothing to cleanup */ 23839 23840 ASSERT(tcps->tcps_refcnt == 1); 23841 ASSERT(tcps->tcps_g_q != NULL); 23842 23843 error = ldi_ident_from_major(IP_MAJ, &li); 23844 if (error) { 23845 #ifdef DEBUG 23846 printf("tcp_g_q_inactive: lyr ident get failed error %d\n", 23847 error); 23848 #endif 23849 return; 23850 } 23851 23852 cr = tcps->tcps_g_q_cr; 23853 tcps->tcps_g_q_cr = NULL; 23854 ASSERT(cr != NULL); 23855 23856 /* 23857 * Make sure we can break the recursion when tcp_close decrements 23858 * the reference count causing g_q_inactive to be called again. 23859 */ 23860 tcps->tcps_g_q_lh = NULL; 23861 23862 /* close the default queue */ 23863 (void) ldi_close(lh, FREAD|FWRITE, cr); 23864 /* 23865 * At this point in time tcps and the rest of netstack_t might 23866 * have been deleted. 23867 */ 23868 tcps = NULL; 23869 23870 /* Close layered handles */ 23871 ldi_ident_release(li); 23872 crfree(cr); 23873 } 23874 23875 /* 23876 * Called when last tcp_t drops reference count using TCPS_REFRELE. 23877 * 23878 * Have to ensure that the ldi routines are not used by an 23879 * interrupt thread by using a taskq. 23880 */ 23881 void 23882 tcp_g_q_inactive(tcp_stack_t *tcps) 23883 { 23884 if (tcps->tcps_g_q_lh == NULL) 23885 return; /* Nothing to cleanup */ 23886 23887 ASSERT(tcps->tcps_refcnt == 0); 23888 TCPS_REFHOLD(tcps); /* Compensate for what g_q_destroy did */ 23889 23890 if (servicing_interrupt()) { 23891 (void) taskq_dispatch(tcp_taskq, tcp_g_q_close, 23892 (void *) tcps, TQ_SLEEP); 23893 } else { 23894 tcp_g_q_close(tcps); 23895 } 23896 } 23897 23898 /* 23899 * Called by IP when IP is loaded into the kernel 23900 */ 23901 void 23902 tcp_ddi_g_init(void) 23903 { 23904 tcp_timercache = kmem_cache_create("tcp_timercache", 23905 sizeof (tcp_timer_t) + sizeof (mblk_t), 0, 23906 NULL, NULL, NULL, NULL, NULL, 0); 23907 23908 tcp_sack_info_cache = kmem_cache_create("tcp_sack_info_cache", 23909 sizeof (tcp_sack_info_t), 0, 23910 tcp_sack_info_constructor, NULL, NULL, NULL, NULL, 0); 23911 23912 tcp_iphc_cache = kmem_cache_create("tcp_iphc_cache", 23913 TCP_MAX_COMBINED_HEADER_LENGTH, 0, 23914 tcp_iphc_constructor, NULL, NULL, NULL, NULL, 0); 23915 23916 mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL); 23917 23918 /* Initialize the random number generator */ 23919 tcp_random_init(); 23920 23921 /* A single callback independently of how many netstacks we have */ 23922 ip_squeue_init(tcp_squeue_add); 23923 23924 tcp_g_kstat = tcp_g_kstat_init(&tcp_g_statistics); 23925 23926 tcp_taskq = taskq_create("tcp_taskq", 1, minclsyspri, 1, 1, 23927 TASKQ_PREPOPULATE); 23928 23929 tcp_squeue_flag = tcp_squeue_switch(tcp_squeue_wput); 23930 23931 /* 23932 * We want to be informed each time a stack is created or 23933 * destroyed in the kernel, so we can maintain the 23934 * set of tcp_stack_t's. 23935 */ 23936 netstack_register(NS_TCP, tcp_stack_init, tcp_stack_shutdown, 23937 tcp_stack_fini); 23938 } 23939 23940 23941 #define INET_NAME "ip" 23942 23943 /* 23944 * Initialize the TCP stack instance. 23945 */ 23946 static void * 23947 tcp_stack_init(netstackid_t stackid, netstack_t *ns) 23948 { 23949 tcp_stack_t *tcps; 23950 tcpparam_t *pa; 23951 int i; 23952 int error = 0; 23953 major_t major; 23954 23955 tcps = (tcp_stack_t *)kmem_zalloc(sizeof (*tcps), KM_SLEEP); 23956 tcps->tcps_netstack = ns; 23957 23958 /* Initialize locks */ 23959 mutex_init(&tcps->tcps_g_q_lock, NULL, MUTEX_DEFAULT, NULL); 23960 cv_init(&tcps->tcps_g_q_cv, NULL, CV_DEFAULT, NULL); 23961 mutex_init(&tcps->tcps_iss_key_lock, NULL, MUTEX_DEFAULT, NULL); 23962 mutex_init(&tcps->tcps_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL); 23963 23964 tcps->tcps_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS; 23965 tcps->tcps_g_epriv_ports[0] = 2049; 23966 tcps->tcps_g_epriv_ports[1] = 4045; 23967 tcps->tcps_min_anonpriv_port = 512; 23968 23969 tcps->tcps_bind_fanout = kmem_zalloc(sizeof (tf_t) * 23970 TCP_BIND_FANOUT_SIZE, KM_SLEEP); 23971 tcps->tcps_acceptor_fanout = kmem_zalloc(sizeof (tf_t) * 23972 TCP_FANOUT_SIZE, KM_SLEEP); 23973 23974 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 23975 mutex_init(&tcps->tcps_bind_fanout[i].tf_lock, NULL, 23976 MUTEX_DEFAULT, NULL); 23977 } 23978 23979 for (i = 0; i < TCP_FANOUT_SIZE; i++) { 23980 mutex_init(&tcps->tcps_acceptor_fanout[i].tf_lock, NULL, 23981 MUTEX_DEFAULT, NULL); 23982 } 23983 23984 /* TCP's IPsec code calls the packet dropper. */ 23985 ip_drop_register(&tcps->tcps_dropper, "TCP IPsec policy enforcement"); 23986 23987 pa = (tcpparam_t *)kmem_alloc(sizeof (lcl_tcp_param_arr), KM_SLEEP); 23988 tcps->tcps_params = pa; 23989 bcopy(lcl_tcp_param_arr, tcps->tcps_params, sizeof (lcl_tcp_param_arr)); 23990 23991 (void) tcp_param_register(&tcps->tcps_g_nd, tcps->tcps_params, 23992 A_CNT(lcl_tcp_param_arr), tcps); 23993 23994 /* 23995 * Note: To really walk the device tree you need the devinfo 23996 * pointer to your device which is only available after probe/attach. 23997 * The following is safe only because it uses ddi_root_node() 23998 */ 23999 tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr, 24000 tcp_opt_obj.odb_opt_arr_cnt); 24001 24002 /* 24003 * Initialize RFC 1948 secret values. This will probably be reset once 24004 * by the boot scripts. 24005 * 24006 * Use NULL name, as the name is caught by the new lockstats. 24007 * 24008 * Initialize with some random, non-guessable string, like the global 24009 * T_INFO_ACK. 24010 */ 24011 24012 tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack, 24013 sizeof (tcp_g_t_info_ack), tcps); 24014 24015 tcps->tcps_kstat = tcp_kstat2_init(stackid, &tcps->tcps_statistics); 24016 tcps->tcps_mibkp = tcp_kstat_init(stackid, tcps); 24017 24018 major = mod_name_to_major(INET_NAME); 24019 error = ldi_ident_from_major(major, &tcps->tcps_ldi_ident); 24020 ASSERT(error == 0); 24021 return (tcps); 24022 } 24023 24024 /* 24025 * Called when the IP module is about to be unloaded. 24026 */ 24027 void 24028 tcp_ddi_g_destroy(void) 24029 { 24030 tcp_g_kstat_fini(tcp_g_kstat); 24031 tcp_g_kstat = NULL; 24032 bzero(&tcp_g_statistics, sizeof (tcp_g_statistics)); 24033 24034 mutex_destroy(&tcp_random_lock); 24035 24036 kmem_cache_destroy(tcp_timercache); 24037 kmem_cache_destroy(tcp_sack_info_cache); 24038 kmem_cache_destroy(tcp_iphc_cache); 24039 24040 netstack_unregister(NS_TCP); 24041 taskq_destroy(tcp_taskq); 24042 } 24043 24044 /* 24045 * Shut down the TCP stack instance. 24046 */ 24047 /* ARGSUSED */ 24048 static void 24049 tcp_stack_shutdown(netstackid_t stackid, void *arg) 24050 { 24051 tcp_stack_t *tcps = (tcp_stack_t *)arg; 24052 24053 tcp_g_q_destroy(tcps); 24054 } 24055 24056 /* 24057 * Free the TCP stack instance. 24058 */ 24059 static void 24060 tcp_stack_fini(netstackid_t stackid, void *arg) 24061 { 24062 tcp_stack_t *tcps = (tcp_stack_t *)arg; 24063 int i; 24064 24065 nd_free(&tcps->tcps_g_nd); 24066 kmem_free(tcps->tcps_params, sizeof (lcl_tcp_param_arr)); 24067 tcps->tcps_params = NULL; 24068 kmem_free(tcps->tcps_wroff_xtra_param, sizeof (tcpparam_t)); 24069 tcps->tcps_wroff_xtra_param = NULL; 24070 kmem_free(tcps->tcps_mdt_head_param, sizeof (tcpparam_t)); 24071 tcps->tcps_mdt_head_param = NULL; 24072 kmem_free(tcps->tcps_mdt_tail_param, sizeof (tcpparam_t)); 24073 tcps->tcps_mdt_tail_param = NULL; 24074 kmem_free(tcps->tcps_mdt_max_pbufs_param, sizeof (tcpparam_t)); 24075 tcps->tcps_mdt_max_pbufs_param = NULL; 24076 24077 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 24078 ASSERT(tcps->tcps_bind_fanout[i].tf_tcp == NULL); 24079 mutex_destroy(&tcps->tcps_bind_fanout[i].tf_lock); 24080 } 24081 24082 for (i = 0; i < TCP_FANOUT_SIZE; i++) { 24083 ASSERT(tcps->tcps_acceptor_fanout[i].tf_tcp == NULL); 24084 mutex_destroy(&tcps->tcps_acceptor_fanout[i].tf_lock); 24085 } 24086 24087 kmem_free(tcps->tcps_bind_fanout, sizeof (tf_t) * TCP_BIND_FANOUT_SIZE); 24088 tcps->tcps_bind_fanout = NULL; 24089 24090 kmem_free(tcps->tcps_acceptor_fanout, sizeof (tf_t) * TCP_FANOUT_SIZE); 24091 tcps->tcps_acceptor_fanout = NULL; 24092 24093 mutex_destroy(&tcps->tcps_iss_key_lock); 24094 mutex_destroy(&tcps->tcps_g_q_lock); 24095 cv_destroy(&tcps->tcps_g_q_cv); 24096 mutex_destroy(&tcps->tcps_epriv_port_lock); 24097 24098 ip_drop_unregister(&tcps->tcps_dropper); 24099 24100 tcp_kstat2_fini(stackid, tcps->tcps_kstat); 24101 tcps->tcps_kstat = NULL; 24102 bzero(&tcps->tcps_statistics, sizeof (tcps->tcps_statistics)); 24103 24104 tcp_kstat_fini(stackid, tcps->tcps_mibkp); 24105 tcps->tcps_mibkp = NULL; 24106 24107 ldi_ident_release(tcps->tcps_ldi_ident); 24108 kmem_free(tcps, sizeof (*tcps)); 24109 } 24110 24111 /* 24112 * Generate ISS, taking into account NDD changes may happen halfway through. 24113 * (If the iss is not zero, set it.) 24114 */ 24115 24116 static void 24117 tcp_iss_init(tcp_t *tcp) 24118 { 24119 MD5_CTX context; 24120 struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg; 24121 uint32_t answer[4]; 24122 tcp_stack_t *tcps = tcp->tcp_tcps; 24123 24124 tcps->tcps_iss_incr_extra += (ISS_INCR >> 1); 24125 tcp->tcp_iss = tcps->tcps_iss_incr_extra; 24126 switch (tcps->tcps_strong_iss) { 24127 case 2: 24128 mutex_enter(&tcps->tcps_iss_key_lock); 24129 context = tcps->tcps_iss_key; 24130 mutex_exit(&tcps->tcps_iss_key_lock); 24131 arg.ports = tcp->tcp_ports; 24132 if (tcp->tcp_ipversion == IPV4_VERSION) { 24133 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 24134 &arg.src); 24135 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_dst, 24136 &arg.dst); 24137 } else { 24138 arg.src = tcp->tcp_ip6h->ip6_src; 24139 arg.dst = tcp->tcp_ip6h->ip6_dst; 24140 } 24141 MD5Update(&context, (uchar_t *)&arg, sizeof (arg)); 24142 MD5Final((uchar_t *)answer, &context); 24143 tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3]; 24144 /* 24145 * Now that we've hashed into a unique per-connection sequence 24146 * space, add a random increment per strong_iss == 1. So I 24147 * guess we'll have to... 24148 */ 24149 /* FALLTHRU */ 24150 case 1: 24151 tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random(); 24152 break; 24153 default: 24154 tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 24155 break; 24156 } 24157 tcp->tcp_valid_bits = TCP_ISS_VALID; 24158 tcp->tcp_fss = tcp->tcp_iss - 1; 24159 tcp->tcp_suna = tcp->tcp_iss; 24160 tcp->tcp_snxt = tcp->tcp_iss + 1; 24161 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 24162 tcp->tcp_csuna = tcp->tcp_snxt; 24163 } 24164 24165 /* 24166 * Exported routine for extracting active tcp connection status. 24167 * 24168 * This is used by the Solaris Cluster Networking software to 24169 * gather a list of connections that need to be forwarded to 24170 * specific nodes in the cluster when configuration changes occur. 24171 * 24172 * The callback is invoked for each tcp_t structure from all netstacks, 24173 * if 'stack_id' is less than 0. Otherwise, only for tcp_t structures 24174 * from the netstack with the specified stack_id. Returning 24175 * non-zero from the callback routine terminates the search. 24176 */ 24177 int 24178 cl_tcp_walk_list(netstackid_t stack_id, 24179 int (*cl_callback)(cl_tcp_info_t *, void *), void *arg) 24180 { 24181 netstack_handle_t nh; 24182 netstack_t *ns; 24183 int ret = 0; 24184 24185 if (stack_id >= 0) { 24186 if ((ns = netstack_find_by_stackid(stack_id)) == NULL) 24187 return (EINVAL); 24188 24189 ret = cl_tcp_walk_list_stack(cl_callback, arg, 24190 ns->netstack_tcp); 24191 netstack_rele(ns); 24192 return (ret); 24193 } 24194 24195 netstack_next_init(&nh); 24196 while ((ns = netstack_next(&nh)) != NULL) { 24197 ret = cl_tcp_walk_list_stack(cl_callback, arg, 24198 ns->netstack_tcp); 24199 netstack_rele(ns); 24200 } 24201 netstack_next_fini(&nh); 24202 return (ret); 24203 } 24204 24205 static int 24206 cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *), void *arg, 24207 tcp_stack_t *tcps) 24208 { 24209 tcp_t *tcp; 24210 cl_tcp_info_t cl_tcpi; 24211 connf_t *connfp; 24212 conn_t *connp; 24213 int i; 24214 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 24215 24216 ASSERT(callback != NULL); 24217 24218 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 24219 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 24220 connp = NULL; 24221 24222 while ((connp = 24223 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 24224 24225 tcp = connp->conn_tcp; 24226 cl_tcpi.cl_tcpi_version = CL_TCPI_V1; 24227 cl_tcpi.cl_tcpi_ipversion = tcp->tcp_ipversion; 24228 cl_tcpi.cl_tcpi_state = tcp->tcp_state; 24229 cl_tcpi.cl_tcpi_lport = tcp->tcp_lport; 24230 cl_tcpi.cl_tcpi_fport = tcp->tcp_fport; 24231 /* 24232 * The macros tcp_laddr and tcp_faddr give the IPv4 24233 * addresses. They are copied implicitly below as 24234 * mapped addresses. 24235 */ 24236 cl_tcpi.cl_tcpi_laddr_v6 = tcp->tcp_ip_src_v6; 24237 if (tcp->tcp_ipversion == IPV4_VERSION) { 24238 cl_tcpi.cl_tcpi_faddr = 24239 tcp->tcp_ipha->ipha_dst; 24240 } else { 24241 cl_tcpi.cl_tcpi_faddr_v6 = 24242 tcp->tcp_ip6h->ip6_dst; 24243 } 24244 24245 /* 24246 * If the callback returns non-zero 24247 * we terminate the traversal. 24248 */ 24249 if ((*callback)(&cl_tcpi, arg) != 0) { 24250 CONN_DEC_REF(tcp->tcp_connp); 24251 return (1); 24252 } 24253 } 24254 } 24255 24256 return (0); 24257 } 24258 24259 /* 24260 * Macros used for accessing the different types of sockaddr 24261 * structures inside a tcp_ioc_abort_conn_t. 24262 */ 24263 #define TCP_AC_V4LADDR(acp) ((sin_t *)&(acp)->ac_local) 24264 #define TCP_AC_V4RADDR(acp) ((sin_t *)&(acp)->ac_remote) 24265 #define TCP_AC_V4LOCAL(acp) (TCP_AC_V4LADDR(acp)->sin_addr.s_addr) 24266 #define TCP_AC_V4REMOTE(acp) (TCP_AC_V4RADDR(acp)->sin_addr.s_addr) 24267 #define TCP_AC_V4LPORT(acp) (TCP_AC_V4LADDR(acp)->sin_port) 24268 #define TCP_AC_V4RPORT(acp) (TCP_AC_V4RADDR(acp)->sin_port) 24269 #define TCP_AC_V6LADDR(acp) ((sin6_t *)&(acp)->ac_local) 24270 #define TCP_AC_V6RADDR(acp) ((sin6_t *)&(acp)->ac_remote) 24271 #define TCP_AC_V6LOCAL(acp) (TCP_AC_V6LADDR(acp)->sin6_addr) 24272 #define TCP_AC_V6REMOTE(acp) (TCP_AC_V6RADDR(acp)->sin6_addr) 24273 #define TCP_AC_V6LPORT(acp) (TCP_AC_V6LADDR(acp)->sin6_port) 24274 #define TCP_AC_V6RPORT(acp) (TCP_AC_V6RADDR(acp)->sin6_port) 24275 24276 /* 24277 * Return the correct error code to mimic the behavior 24278 * of a connection reset. 24279 */ 24280 #define TCP_AC_GET_ERRCODE(state, err) { \ 24281 switch ((state)) { \ 24282 case TCPS_SYN_SENT: \ 24283 case TCPS_SYN_RCVD: \ 24284 (err) = ECONNREFUSED; \ 24285 break; \ 24286 case TCPS_ESTABLISHED: \ 24287 case TCPS_FIN_WAIT_1: \ 24288 case TCPS_FIN_WAIT_2: \ 24289 case TCPS_CLOSE_WAIT: \ 24290 (err) = ECONNRESET; \ 24291 break; \ 24292 case TCPS_CLOSING: \ 24293 case TCPS_LAST_ACK: \ 24294 case TCPS_TIME_WAIT: \ 24295 (err) = 0; \ 24296 break; \ 24297 default: \ 24298 (err) = ENXIO; \ 24299 } \ 24300 } 24301 24302 /* 24303 * Check if a tcp structure matches the info in acp. 24304 */ 24305 #define TCP_AC_ADDR_MATCH(acp, tcp) \ 24306 (((acp)->ac_local.ss_family == AF_INET) ? \ 24307 ((TCP_AC_V4LOCAL((acp)) == INADDR_ANY || \ 24308 TCP_AC_V4LOCAL((acp)) == (tcp)->tcp_ip_src) && \ 24309 (TCP_AC_V4REMOTE((acp)) == INADDR_ANY || \ 24310 TCP_AC_V4REMOTE((acp)) == (tcp)->tcp_remote) && \ 24311 (TCP_AC_V4LPORT((acp)) == 0 || \ 24312 TCP_AC_V4LPORT((acp)) == (tcp)->tcp_lport) && \ 24313 (TCP_AC_V4RPORT((acp)) == 0 || \ 24314 TCP_AC_V4RPORT((acp)) == (tcp)->tcp_fport) && \ 24315 (acp)->ac_start <= (tcp)->tcp_state && \ 24316 (acp)->ac_end >= (tcp)->tcp_state) : \ 24317 ((IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL((acp))) || \ 24318 IN6_ARE_ADDR_EQUAL(&TCP_AC_V6LOCAL((acp)), \ 24319 &(tcp)->tcp_ip_src_v6)) && \ 24320 (IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE((acp))) || \ 24321 IN6_ARE_ADDR_EQUAL(&TCP_AC_V6REMOTE((acp)), \ 24322 &(tcp)->tcp_remote_v6)) && \ 24323 (TCP_AC_V6LPORT((acp)) == 0 || \ 24324 TCP_AC_V6LPORT((acp)) == (tcp)->tcp_lport) && \ 24325 (TCP_AC_V6RPORT((acp)) == 0 || \ 24326 TCP_AC_V6RPORT((acp)) == (tcp)->tcp_fport) && \ 24327 (acp)->ac_start <= (tcp)->tcp_state && \ 24328 (acp)->ac_end >= (tcp)->tcp_state)) 24329 24330 #define TCP_AC_MATCH(acp, tcp) \ 24331 (((acp)->ac_zoneid == ALL_ZONES || \ 24332 (acp)->ac_zoneid == tcp->tcp_connp->conn_zoneid) ? \ 24333 TCP_AC_ADDR_MATCH(acp, tcp) : 0) 24334 24335 /* 24336 * Build a message containing a tcp_ioc_abort_conn_t structure 24337 * which is filled in with information from acp and tp. 24338 */ 24339 static mblk_t * 24340 tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *acp, tcp_t *tp) 24341 { 24342 mblk_t *mp; 24343 tcp_ioc_abort_conn_t *tacp; 24344 24345 mp = allocb(sizeof (uint32_t) + sizeof (*acp), BPRI_LO); 24346 if (mp == NULL) 24347 return (NULL); 24348 24349 mp->b_datap->db_type = M_CTL; 24350 24351 *((uint32_t *)mp->b_rptr) = TCP_IOC_ABORT_CONN; 24352 tacp = (tcp_ioc_abort_conn_t *)((uchar_t *)mp->b_rptr + 24353 sizeof (uint32_t)); 24354 24355 tacp->ac_start = acp->ac_start; 24356 tacp->ac_end = acp->ac_end; 24357 tacp->ac_zoneid = acp->ac_zoneid; 24358 24359 if (acp->ac_local.ss_family == AF_INET) { 24360 tacp->ac_local.ss_family = AF_INET; 24361 tacp->ac_remote.ss_family = AF_INET; 24362 TCP_AC_V4LOCAL(tacp) = tp->tcp_ip_src; 24363 TCP_AC_V4REMOTE(tacp) = tp->tcp_remote; 24364 TCP_AC_V4LPORT(tacp) = tp->tcp_lport; 24365 TCP_AC_V4RPORT(tacp) = tp->tcp_fport; 24366 } else { 24367 tacp->ac_local.ss_family = AF_INET6; 24368 tacp->ac_remote.ss_family = AF_INET6; 24369 TCP_AC_V6LOCAL(tacp) = tp->tcp_ip_src_v6; 24370 TCP_AC_V6REMOTE(tacp) = tp->tcp_remote_v6; 24371 TCP_AC_V6LPORT(tacp) = tp->tcp_lport; 24372 TCP_AC_V6RPORT(tacp) = tp->tcp_fport; 24373 } 24374 mp->b_wptr = (uchar_t *)mp->b_rptr + sizeof (uint32_t) + sizeof (*acp); 24375 return (mp); 24376 } 24377 24378 /* 24379 * Print a tcp_ioc_abort_conn_t structure. 24380 */ 24381 static void 24382 tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *acp) 24383 { 24384 char lbuf[128]; 24385 char rbuf[128]; 24386 sa_family_t af; 24387 in_port_t lport, rport; 24388 ushort_t logflags; 24389 24390 af = acp->ac_local.ss_family; 24391 24392 if (af == AF_INET) { 24393 (void) inet_ntop(af, (const void *)&TCP_AC_V4LOCAL(acp), 24394 lbuf, 128); 24395 (void) inet_ntop(af, (const void *)&TCP_AC_V4REMOTE(acp), 24396 rbuf, 128); 24397 lport = ntohs(TCP_AC_V4LPORT(acp)); 24398 rport = ntohs(TCP_AC_V4RPORT(acp)); 24399 } else { 24400 (void) inet_ntop(af, (const void *)&TCP_AC_V6LOCAL(acp), 24401 lbuf, 128); 24402 (void) inet_ntop(af, (const void *)&TCP_AC_V6REMOTE(acp), 24403 rbuf, 128); 24404 lport = ntohs(TCP_AC_V6LPORT(acp)); 24405 rport = ntohs(TCP_AC_V6RPORT(acp)); 24406 } 24407 24408 logflags = SL_TRACE | SL_NOTE; 24409 /* 24410 * Don't print this message to the console if the operation was done 24411 * to a non-global zone. 24412 */ 24413 if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) 24414 logflags |= SL_CONSOLE; 24415 (void) strlog(TCP_MOD_ID, 0, 1, logflags, 24416 "TCP_IOC_ABORT_CONN: local = %s:%d, remote = %s:%d, " 24417 "start = %d, end = %d\n", lbuf, lport, rbuf, rport, 24418 acp->ac_start, acp->ac_end); 24419 } 24420 24421 /* 24422 * Called inside tcp_rput when a message built using 24423 * tcp_ioctl_abort_build_msg is put into a queue. 24424 * Note that when we get here there is no wildcard in acp any more. 24425 */ 24426 static void 24427 tcp_ioctl_abort_handler(tcp_t *tcp, mblk_t *mp) 24428 { 24429 tcp_ioc_abort_conn_t *acp; 24430 24431 acp = (tcp_ioc_abort_conn_t *)(mp->b_rptr + sizeof (uint32_t)); 24432 if (tcp->tcp_state <= acp->ac_end) { 24433 /* 24434 * If we get here, we are already on the correct 24435 * squeue. This ioctl follows the following path 24436 * tcp_wput -> tcp_wput_ioctl -> tcp_ioctl_abort_conn 24437 * ->tcp_ioctl_abort->squeue_enter (if on a 24438 * different squeue) 24439 */ 24440 int errcode; 24441 24442 TCP_AC_GET_ERRCODE(tcp->tcp_state, errcode); 24443 (void) tcp_clean_death(tcp, errcode, 26); 24444 } 24445 freemsg(mp); 24446 } 24447 24448 /* 24449 * Abort all matching connections on a hash chain. 24450 */ 24451 static int 24452 tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *acp, int index, int *count, 24453 boolean_t exact, tcp_stack_t *tcps) 24454 { 24455 int nmatch, err = 0; 24456 tcp_t *tcp; 24457 MBLKP mp, last, listhead = NULL; 24458 conn_t *tconnp; 24459 connf_t *connfp; 24460 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 24461 24462 connfp = &ipst->ips_ipcl_conn_fanout[index]; 24463 24464 startover: 24465 nmatch = 0; 24466 24467 mutex_enter(&connfp->connf_lock); 24468 for (tconnp = connfp->connf_head; tconnp != NULL; 24469 tconnp = tconnp->conn_next) { 24470 tcp = tconnp->conn_tcp; 24471 if (TCP_AC_MATCH(acp, tcp)) { 24472 CONN_INC_REF(tcp->tcp_connp); 24473 mp = tcp_ioctl_abort_build_msg(acp, tcp); 24474 if (mp == NULL) { 24475 err = ENOMEM; 24476 CONN_DEC_REF(tcp->tcp_connp); 24477 break; 24478 } 24479 mp->b_prev = (mblk_t *)tcp; 24480 24481 if (listhead == NULL) { 24482 listhead = mp; 24483 last = mp; 24484 } else { 24485 last->b_next = mp; 24486 last = mp; 24487 } 24488 nmatch++; 24489 if (exact) 24490 break; 24491 } 24492 24493 /* Avoid holding lock for too long. */ 24494 if (nmatch >= 500) 24495 break; 24496 } 24497 mutex_exit(&connfp->connf_lock); 24498 24499 /* Pass mp into the correct tcp */ 24500 while ((mp = listhead) != NULL) { 24501 listhead = listhead->b_next; 24502 tcp = (tcp_t *)mp->b_prev; 24503 mp->b_next = mp->b_prev = NULL; 24504 SQUEUE_ENTER_ONE(tcp->tcp_connp->conn_sqp, mp, tcp_input, 24505 tcp->tcp_connp, SQ_FILL, SQTAG_TCP_ABORT_BUCKET); 24506 } 24507 24508 *count += nmatch; 24509 if (nmatch >= 500 && err == 0) 24510 goto startover; 24511 return (err); 24512 } 24513 24514 /* 24515 * Abort all connections that matches the attributes specified in acp. 24516 */ 24517 static int 24518 tcp_ioctl_abort(tcp_ioc_abort_conn_t *acp, tcp_stack_t *tcps) 24519 { 24520 sa_family_t af; 24521 uint32_t ports; 24522 uint16_t *pports; 24523 int err = 0, count = 0; 24524 boolean_t exact = B_FALSE; /* set when there is no wildcard */ 24525 int index = -1; 24526 ushort_t logflags; 24527 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 24528 24529 af = acp->ac_local.ss_family; 24530 24531 if (af == AF_INET) { 24532 if (TCP_AC_V4REMOTE(acp) != INADDR_ANY && 24533 TCP_AC_V4LPORT(acp) != 0 && TCP_AC_V4RPORT(acp) != 0) { 24534 pports = (uint16_t *)&ports; 24535 pports[1] = TCP_AC_V4LPORT(acp); 24536 pports[0] = TCP_AC_V4RPORT(acp); 24537 exact = (TCP_AC_V4LOCAL(acp) != INADDR_ANY); 24538 } 24539 } else { 24540 if (!IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE(acp)) && 24541 TCP_AC_V6LPORT(acp) != 0 && TCP_AC_V6RPORT(acp) != 0) { 24542 pports = (uint16_t *)&ports; 24543 pports[1] = TCP_AC_V6LPORT(acp); 24544 pports[0] = TCP_AC_V6RPORT(acp); 24545 exact = !IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL(acp)); 24546 } 24547 } 24548 24549 /* 24550 * For cases where remote addr, local port, and remote port are non- 24551 * wildcards, tcp_ioctl_abort_bucket will only be called once. 24552 */ 24553 if (index != -1) { 24554 err = tcp_ioctl_abort_bucket(acp, index, 24555 &count, exact, tcps); 24556 } else { 24557 /* 24558 * loop through all entries for wildcard case 24559 */ 24560 for (index = 0; 24561 index < ipst->ips_ipcl_conn_fanout_size; 24562 index++) { 24563 err = tcp_ioctl_abort_bucket(acp, index, 24564 &count, exact, tcps); 24565 if (err != 0) 24566 break; 24567 } 24568 } 24569 24570 logflags = SL_TRACE | SL_NOTE; 24571 /* 24572 * Don't print this message to the console if the operation was done 24573 * to a non-global zone. 24574 */ 24575 if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) 24576 logflags |= SL_CONSOLE; 24577 (void) strlog(TCP_MOD_ID, 0, 1, logflags, "TCP_IOC_ABORT_CONN: " 24578 "aborted %d connection%c\n", count, ((count > 1) ? 's' : ' ')); 24579 if (err == 0 && count == 0) 24580 err = ENOENT; 24581 return (err); 24582 } 24583 24584 /* 24585 * Process the TCP_IOC_ABORT_CONN ioctl request. 24586 */ 24587 static void 24588 tcp_ioctl_abort_conn(queue_t *q, mblk_t *mp) 24589 { 24590 int err; 24591 IOCP iocp; 24592 MBLKP mp1; 24593 sa_family_t laf, raf; 24594 tcp_ioc_abort_conn_t *acp; 24595 zone_t *zptr; 24596 conn_t *connp = Q_TO_CONN(q); 24597 zoneid_t zoneid = connp->conn_zoneid; 24598 tcp_t *tcp = connp->conn_tcp; 24599 tcp_stack_t *tcps = tcp->tcp_tcps; 24600 24601 iocp = (IOCP)mp->b_rptr; 24602 24603 if ((mp1 = mp->b_cont) == NULL || 24604 iocp->ioc_count != sizeof (tcp_ioc_abort_conn_t)) { 24605 err = EINVAL; 24606 goto out; 24607 } 24608 24609 /* check permissions */ 24610 if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) { 24611 err = EPERM; 24612 goto out; 24613 } 24614 24615 if (mp1->b_cont != NULL) { 24616 freemsg(mp1->b_cont); 24617 mp1->b_cont = NULL; 24618 } 24619 24620 acp = (tcp_ioc_abort_conn_t *)mp1->b_rptr; 24621 laf = acp->ac_local.ss_family; 24622 raf = acp->ac_remote.ss_family; 24623 24624 /* check that a zone with the supplied zoneid exists */ 24625 if (acp->ac_zoneid != GLOBAL_ZONEID && acp->ac_zoneid != ALL_ZONES) { 24626 zptr = zone_find_by_id(zoneid); 24627 if (zptr != NULL) { 24628 zone_rele(zptr); 24629 } else { 24630 err = EINVAL; 24631 goto out; 24632 } 24633 } 24634 24635 /* 24636 * For exclusive stacks we set the zoneid to zero 24637 * to make TCP operate as if in the global zone. 24638 */ 24639 if (tcps->tcps_netstack->netstack_stackid != GLOBAL_NETSTACKID) 24640 acp->ac_zoneid = GLOBAL_ZONEID; 24641 24642 if (acp->ac_start < TCPS_SYN_SENT || acp->ac_end > TCPS_TIME_WAIT || 24643 acp->ac_start > acp->ac_end || laf != raf || 24644 (laf != AF_INET && laf != AF_INET6)) { 24645 err = EINVAL; 24646 goto out; 24647 } 24648 24649 tcp_ioctl_abort_dump(acp); 24650 err = tcp_ioctl_abort(acp, tcps); 24651 24652 out: 24653 if (mp1 != NULL) { 24654 freemsg(mp1); 24655 mp->b_cont = NULL; 24656 } 24657 24658 if (err != 0) 24659 miocnak(q, mp, 0, err); 24660 else 24661 miocack(q, mp, 0, 0); 24662 } 24663 24664 /* 24665 * tcp_time_wait_processing() handles processing of incoming packets when 24666 * the tcp is in the TIME_WAIT state. 24667 * A TIME_WAIT tcp that has an associated open TCP stream is never put 24668 * on the time wait list. 24669 */ 24670 void 24671 tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, uint32_t seg_seq, 24672 uint32_t seg_ack, int seg_len, tcph_t *tcph) 24673 { 24674 int32_t bytes_acked; 24675 int32_t gap; 24676 int32_t rgap; 24677 tcp_opt_t tcpopt; 24678 uint_t flags; 24679 uint32_t new_swnd = 0; 24680 conn_t *connp; 24681 tcp_stack_t *tcps = tcp->tcp_tcps; 24682 24683 BUMP_LOCAL(tcp->tcp_ibsegs); 24684 DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp); 24685 24686 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 24687 new_swnd = BE16_TO_U16(tcph->th_win) << 24688 ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws); 24689 if (tcp->tcp_snd_ts_ok) { 24690 if (!tcp_paws_check(tcp, tcph, &tcpopt)) { 24691 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 24692 tcp->tcp_rnxt, TH_ACK); 24693 goto done; 24694 } 24695 } 24696 gap = seg_seq - tcp->tcp_rnxt; 24697 rgap = tcp->tcp_rwnd - (gap + seg_len); 24698 if (gap < 0) { 24699 BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); 24700 UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, 24701 (seg_len > -gap ? -gap : seg_len)); 24702 seg_len += gap; 24703 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 24704 if (flags & TH_RST) { 24705 goto done; 24706 } 24707 if ((flags & TH_FIN) && seg_len == -1) { 24708 /* 24709 * When TCP receives a duplicate FIN in 24710 * TIME_WAIT state, restart the 2 MSL timer. 24711 * See page 73 in RFC 793. Make sure this TCP 24712 * is already on the TIME_WAIT list. If not, 24713 * just restart the timer. 24714 */ 24715 if (TCP_IS_DETACHED(tcp)) { 24716 if (tcp_time_wait_remove(tcp, NULL) == 24717 B_TRUE) { 24718 tcp_time_wait_append(tcp); 24719 TCP_DBGSTAT(tcps, 24720 tcp_rput_time_wait); 24721 } 24722 } else { 24723 ASSERT(tcp != NULL); 24724 TCP_TIMER_RESTART(tcp, 24725 tcps->tcps_time_wait_interval); 24726 } 24727 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 24728 tcp->tcp_rnxt, TH_ACK); 24729 goto done; 24730 } 24731 flags |= TH_ACK_NEEDED; 24732 seg_len = 0; 24733 goto process_ack; 24734 } 24735 24736 /* Fix seg_seq, and chew the gap off the front. */ 24737 seg_seq = tcp->tcp_rnxt; 24738 } 24739 24740 if ((flags & TH_SYN) && gap > 0 && rgap < 0) { 24741 /* 24742 * Make sure that when we accept the connection, pick 24743 * an ISS greater than (tcp_snxt + ISS_INCR/2) for the 24744 * old connection. 24745 * 24746 * The next ISS generated is equal to tcp_iss_incr_extra 24747 * + ISS_INCR/2 + other components depending on the 24748 * value of tcp_strong_iss. We pre-calculate the new 24749 * ISS here and compare with tcp_snxt to determine if 24750 * we need to make adjustment to tcp_iss_incr_extra. 24751 * 24752 * The above calculation is ugly and is a 24753 * waste of CPU cycles... 24754 */ 24755 uint32_t new_iss = tcps->tcps_iss_incr_extra; 24756 int32_t adj; 24757 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 24758 24759 switch (tcps->tcps_strong_iss) { 24760 case 2: { 24761 /* Add time and MD5 components. */ 24762 uint32_t answer[4]; 24763 struct { 24764 uint32_t ports; 24765 in6_addr_t src; 24766 in6_addr_t dst; 24767 } arg; 24768 MD5_CTX context; 24769 24770 mutex_enter(&tcps->tcps_iss_key_lock); 24771 context = tcps->tcps_iss_key; 24772 mutex_exit(&tcps->tcps_iss_key_lock); 24773 arg.ports = tcp->tcp_ports; 24774 /* We use MAPPED addresses in tcp_iss_init */ 24775 arg.src = tcp->tcp_ip_src_v6; 24776 if (tcp->tcp_ipversion == IPV4_VERSION) { 24777 IN6_IPADDR_TO_V4MAPPED( 24778 tcp->tcp_ipha->ipha_dst, 24779 &arg.dst); 24780 } else { 24781 arg.dst = 24782 tcp->tcp_ip6h->ip6_dst; 24783 } 24784 MD5Update(&context, (uchar_t *)&arg, 24785 sizeof (arg)); 24786 MD5Final((uchar_t *)answer, &context); 24787 answer[0] ^= answer[1] ^ answer[2] ^ answer[3]; 24788 new_iss += (gethrtime() >> ISS_NSEC_SHT) + answer[0]; 24789 break; 24790 } 24791 case 1: 24792 /* Add time component and min random (i.e. 1). */ 24793 new_iss += (gethrtime() >> ISS_NSEC_SHT) + 1; 24794 break; 24795 default: 24796 /* Add only time component. */ 24797 new_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 24798 break; 24799 } 24800 if ((adj = (int32_t)(tcp->tcp_snxt - new_iss)) > 0) { 24801 /* 24802 * New ISS not guaranteed to be ISS_INCR/2 24803 * ahead of the current tcp_snxt, so add the 24804 * difference to tcp_iss_incr_extra. 24805 */ 24806 tcps->tcps_iss_incr_extra += adj; 24807 } 24808 /* 24809 * If tcp_clean_death() can not perform the task now, 24810 * drop the SYN packet and let the other side re-xmit. 24811 * Otherwise pass the SYN packet back in, since the 24812 * old tcp state has been cleaned up or freed. 24813 */ 24814 if (tcp_clean_death(tcp, 0, 27) == -1) 24815 goto done; 24816 /* 24817 * We will come back to tcp_rput_data 24818 * on the global queue. Packets destined 24819 * for the global queue will be checked 24820 * with global policy. But the policy for 24821 * this packet has already been checked as 24822 * this was destined for the detached 24823 * connection. We need to bypass policy 24824 * check this time by attaching a dummy 24825 * ipsec_in with ipsec_in_dont_check set. 24826 */ 24827 connp = ipcl_classify(mp, tcp->tcp_connp->conn_zoneid, ipst); 24828 if (connp != NULL) { 24829 TCP_STAT(tcps, tcp_time_wait_syn_success); 24830 tcp_reinput(connp, mp, tcp->tcp_connp->conn_sqp); 24831 return; 24832 } 24833 goto done; 24834 } 24835 24836 /* 24837 * rgap is the amount of stuff received out of window. A negative 24838 * value is the amount out of window. 24839 */ 24840 if (rgap < 0) { 24841 BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs); 24842 UPDATE_MIB(&tcps->tcps_mib, tcpInDataPastWinBytes, -rgap); 24843 /* Fix seg_len and make sure there is something left. */ 24844 seg_len += rgap; 24845 if (seg_len <= 0) { 24846 if (flags & TH_RST) { 24847 goto done; 24848 } 24849 flags |= TH_ACK_NEEDED; 24850 seg_len = 0; 24851 goto process_ack; 24852 } 24853 } 24854 /* 24855 * Check whether we can update tcp_ts_recent. This test is 24856 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 24857 * Extensions for High Performance: An Update", Internet Draft. 24858 */ 24859 if (tcp->tcp_snd_ts_ok && 24860 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 24861 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 24862 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 24863 tcp->tcp_last_rcv_lbolt = lbolt64; 24864 } 24865 24866 if (seg_seq != tcp->tcp_rnxt && seg_len > 0) { 24867 /* Always ack out of order packets */ 24868 flags |= TH_ACK_NEEDED; 24869 seg_len = 0; 24870 } else if (seg_len > 0) { 24871 BUMP_MIB(&tcps->tcps_mib, tcpInClosed); 24872 BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs); 24873 UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len); 24874 } 24875 if (flags & TH_RST) { 24876 (void) tcp_clean_death(tcp, 0, 28); 24877 goto done; 24878 } 24879 if (flags & TH_SYN) { 24880 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 24881 TH_RST|TH_ACK); 24882 /* 24883 * Do not delete the TCP structure if it is in 24884 * TIME_WAIT state. Refer to RFC 1122, 4.2.2.13. 24885 */ 24886 goto done; 24887 } 24888 process_ack: 24889 if (flags & TH_ACK) { 24890 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 24891 if (bytes_acked <= 0) { 24892 if (bytes_acked == 0 && seg_len == 0 && 24893 new_swnd == tcp->tcp_swnd) 24894 BUMP_MIB(&tcps->tcps_mib, tcpInDupAck); 24895 } else { 24896 /* Acks something not sent */ 24897 flags |= TH_ACK_NEEDED; 24898 } 24899 } 24900 if (flags & TH_ACK_NEEDED) { 24901 /* 24902 * Time to send an ack for some reason. 24903 */ 24904 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 24905 tcp->tcp_rnxt, TH_ACK); 24906 } 24907 done: 24908 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 24909 DB_CKSUMSTART(mp) = 0; 24910 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 24911 TCP_STAT(tcps, tcp_time_wait_syn_fail); 24912 } 24913 freemsg(mp); 24914 } 24915 24916 /* 24917 * TCP Timers Implementation. 24918 */ 24919 timeout_id_t 24920 tcp_timeout(conn_t *connp, void (*f)(void *), clock_t tim) 24921 { 24922 mblk_t *mp; 24923 tcp_timer_t *tcpt; 24924 tcp_t *tcp = connp->conn_tcp; 24925 24926 ASSERT(connp->conn_sqp != NULL); 24927 24928 TCP_DBGSTAT(tcp->tcp_tcps, tcp_timeout_calls); 24929 24930 if (tcp->tcp_timercache == NULL) { 24931 mp = tcp_timermp_alloc(KM_NOSLEEP | KM_PANIC); 24932 } else { 24933 TCP_DBGSTAT(tcp->tcp_tcps, tcp_timeout_cached_alloc); 24934 mp = tcp->tcp_timercache; 24935 tcp->tcp_timercache = mp->b_next; 24936 mp->b_next = NULL; 24937 ASSERT(mp->b_wptr == NULL); 24938 } 24939 24940 CONN_INC_REF(connp); 24941 tcpt = (tcp_timer_t *)mp->b_rptr; 24942 tcpt->connp = connp; 24943 tcpt->tcpt_proc = f; 24944 /* 24945 * TCP timers are normal timeouts. Plus, they do not require more than 24946 * a 10 millisecond resolution. By choosing a coarser resolution and by 24947 * rounding up the expiration to the next resolution boundary, we can 24948 * batch timers in the callout subsystem to make TCP timers more 24949 * efficient. The roundup also protects short timers from expiring too 24950 * early before they have a chance to be cancelled. 24951 */ 24952 tcpt->tcpt_tid = timeout_generic(CALLOUT_NORMAL, tcp_timer_callback, mp, 24953 TICK_TO_NSEC(tim), CALLOUT_TCP_RESOLUTION, CALLOUT_FLAG_ROUNDUP); 24954 24955 return ((timeout_id_t)mp); 24956 } 24957 24958 static void 24959 tcp_timer_callback(void *arg) 24960 { 24961 mblk_t *mp = (mblk_t *)arg; 24962 tcp_timer_t *tcpt; 24963 conn_t *connp; 24964 24965 tcpt = (tcp_timer_t *)mp->b_rptr; 24966 connp = tcpt->connp; 24967 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_timer_handler, connp, 24968 SQ_FILL, SQTAG_TCP_TIMER); 24969 } 24970 24971 static void 24972 tcp_timer_handler(void *arg, mblk_t *mp, void *arg2) 24973 { 24974 tcp_timer_t *tcpt; 24975 conn_t *connp = (conn_t *)arg; 24976 tcp_t *tcp = connp->conn_tcp; 24977 24978 tcpt = (tcp_timer_t *)mp->b_rptr; 24979 ASSERT(connp == tcpt->connp); 24980 ASSERT((squeue_t *)arg2 == connp->conn_sqp); 24981 24982 /* 24983 * If the TCP has reached the closed state, don't proceed any 24984 * further. This TCP logically does not exist on the system. 24985 * tcpt_proc could for example access queues, that have already 24986 * been qprocoff'ed off. Also see comments at the start of tcp_input 24987 */ 24988 if (tcp->tcp_state != TCPS_CLOSED) { 24989 (*tcpt->tcpt_proc)(connp); 24990 } else { 24991 tcp->tcp_timer_tid = 0; 24992 } 24993 tcp_timer_free(connp->conn_tcp, mp); 24994 } 24995 24996 /* 24997 * There is potential race with untimeout and the handler firing at the same 24998 * time. The mblock may be freed by the handler while we are trying to use 24999 * it. But since both should execute on the same squeue, this race should not 25000 * occur. 25001 */ 25002 clock_t 25003 tcp_timeout_cancel(conn_t *connp, timeout_id_t id) 25004 { 25005 mblk_t *mp = (mblk_t *)id; 25006 tcp_timer_t *tcpt; 25007 clock_t delta; 25008 25009 TCP_DBGSTAT(connp->conn_tcp->tcp_tcps, tcp_timeout_cancel_reqs); 25010 25011 if (mp == NULL) 25012 return (-1); 25013 25014 tcpt = (tcp_timer_t *)mp->b_rptr; 25015 ASSERT(tcpt->connp == connp); 25016 25017 delta = untimeout_default(tcpt->tcpt_tid, 0); 25018 25019 if (delta >= 0) { 25020 TCP_DBGSTAT(connp->conn_tcp->tcp_tcps, tcp_timeout_canceled); 25021 tcp_timer_free(connp->conn_tcp, mp); 25022 CONN_DEC_REF(connp); 25023 } 25024 25025 return (delta); 25026 } 25027 25028 /* 25029 * Allocate space for the timer event. The allocation looks like mblk, but it is 25030 * not a proper mblk. To avoid confusion we set b_wptr to NULL. 25031 * 25032 * Dealing with failures: If we can't allocate from the timer cache we try 25033 * allocating from dblock caches using allocb_tryhard(). In this case b_wptr 25034 * points to b_rptr. 25035 * If we can't allocate anything using allocb_tryhard(), we perform a last 25036 * attempt and use kmem_alloc_tryhard(). In this case we set b_wptr to -1 and 25037 * save the actual allocation size in b_datap. 25038 */ 25039 mblk_t * 25040 tcp_timermp_alloc(int kmflags) 25041 { 25042 mblk_t *mp = (mblk_t *)kmem_cache_alloc(tcp_timercache, 25043 kmflags & ~KM_PANIC); 25044 25045 if (mp != NULL) { 25046 mp->b_next = mp->b_prev = NULL; 25047 mp->b_rptr = (uchar_t *)(&mp[1]); 25048 mp->b_wptr = NULL; 25049 mp->b_datap = NULL; 25050 mp->b_queue = NULL; 25051 mp->b_cont = NULL; 25052 } else if (kmflags & KM_PANIC) { 25053 /* 25054 * Failed to allocate memory for the timer. Try allocating from 25055 * dblock caches. 25056 */ 25057 /* ipclassifier calls this from a constructor - hence no tcps */ 25058 TCP_G_STAT(tcp_timermp_allocfail); 25059 mp = allocb_tryhard(sizeof (tcp_timer_t)); 25060 if (mp == NULL) { 25061 size_t size = 0; 25062 /* 25063 * Memory is really low. Try tryhard allocation. 25064 * 25065 * ipclassifier calls this from a constructor - 25066 * hence no tcps 25067 */ 25068 TCP_G_STAT(tcp_timermp_allocdblfail); 25069 mp = kmem_alloc_tryhard(sizeof (mblk_t) + 25070 sizeof (tcp_timer_t), &size, kmflags); 25071 mp->b_rptr = (uchar_t *)(&mp[1]); 25072 mp->b_next = mp->b_prev = NULL; 25073 mp->b_wptr = (uchar_t *)-1; 25074 mp->b_datap = (dblk_t *)size; 25075 mp->b_queue = NULL; 25076 mp->b_cont = NULL; 25077 } 25078 ASSERT(mp->b_wptr != NULL); 25079 } 25080 /* ipclassifier calls this from a constructor - hence no tcps */ 25081 TCP_G_DBGSTAT(tcp_timermp_alloced); 25082 25083 return (mp); 25084 } 25085 25086 /* 25087 * Free per-tcp timer cache. 25088 * It can only contain entries from tcp_timercache. 25089 */ 25090 void 25091 tcp_timermp_free(tcp_t *tcp) 25092 { 25093 mblk_t *mp; 25094 25095 while ((mp = tcp->tcp_timercache) != NULL) { 25096 ASSERT(mp->b_wptr == NULL); 25097 tcp->tcp_timercache = tcp->tcp_timercache->b_next; 25098 kmem_cache_free(tcp_timercache, mp); 25099 } 25100 } 25101 25102 /* 25103 * Free timer event. Put it on the per-tcp timer cache if there is not too many 25104 * events there already (currently at most two events are cached). 25105 * If the event is not allocated from the timer cache, free it right away. 25106 */ 25107 static void 25108 tcp_timer_free(tcp_t *tcp, mblk_t *mp) 25109 { 25110 mblk_t *mp1 = tcp->tcp_timercache; 25111 25112 if (mp->b_wptr != NULL) { 25113 /* 25114 * This allocation is not from a timer cache, free it right 25115 * away. 25116 */ 25117 if (mp->b_wptr != (uchar_t *)-1) 25118 freeb(mp); 25119 else 25120 kmem_free(mp, (size_t)mp->b_datap); 25121 } else if (mp1 == NULL || mp1->b_next == NULL) { 25122 /* Cache this timer block for future allocations */ 25123 mp->b_rptr = (uchar_t *)(&mp[1]); 25124 mp->b_next = mp1; 25125 tcp->tcp_timercache = mp; 25126 } else { 25127 kmem_cache_free(tcp_timercache, mp); 25128 TCP_DBGSTAT(tcp->tcp_tcps, tcp_timermp_freed); 25129 } 25130 } 25131 25132 /* 25133 * End of TCP Timers implementation. 25134 */ 25135 25136 /* 25137 * tcp_{set,clr}qfull() functions are used to either set or clear QFULL 25138 * on the specified backing STREAMS q. Note, the caller may make the 25139 * decision to call based on the tcp_t.tcp_flow_stopped value which 25140 * when check outside the q's lock is only an advisory check ... 25141 */ 25142 void 25143 tcp_setqfull(tcp_t *tcp) 25144 { 25145 tcp_stack_t *tcps = tcp->tcp_tcps; 25146 conn_t *connp = tcp->tcp_connp; 25147 25148 if (tcp->tcp_closed) 25149 return; 25150 25151 if (IPCL_IS_NONSTR(connp)) { 25152 (*connp->conn_upcalls->su_txq_full) 25153 (tcp->tcp_connp->conn_upper_handle, B_TRUE); 25154 tcp->tcp_flow_stopped = B_TRUE; 25155 } else { 25156 queue_t *q = tcp->tcp_wq; 25157 25158 if (!(q->q_flag & QFULL)) { 25159 mutex_enter(QLOCK(q)); 25160 if (!(q->q_flag & QFULL)) { 25161 /* still need to set QFULL */ 25162 q->q_flag |= QFULL; 25163 tcp->tcp_flow_stopped = B_TRUE; 25164 mutex_exit(QLOCK(q)); 25165 TCP_STAT(tcps, tcp_flwctl_on); 25166 } else { 25167 mutex_exit(QLOCK(q)); 25168 } 25169 } 25170 } 25171 } 25172 25173 void 25174 tcp_clrqfull(tcp_t *tcp) 25175 { 25176 conn_t *connp = tcp->tcp_connp; 25177 25178 if (tcp->tcp_closed) 25179 return; 25180 25181 if (IPCL_IS_NONSTR(connp)) { 25182 (*connp->conn_upcalls->su_txq_full) 25183 (tcp->tcp_connp->conn_upper_handle, B_FALSE); 25184 tcp->tcp_flow_stopped = B_FALSE; 25185 } else { 25186 queue_t *q = tcp->tcp_wq; 25187 25188 if (q->q_flag & QFULL) { 25189 mutex_enter(QLOCK(q)); 25190 if (q->q_flag & QFULL) { 25191 q->q_flag &= ~QFULL; 25192 tcp->tcp_flow_stopped = B_FALSE; 25193 mutex_exit(QLOCK(q)); 25194 if (q->q_flag & QWANTW) 25195 qbackenable(q, 0); 25196 } else { 25197 mutex_exit(QLOCK(q)); 25198 } 25199 } 25200 } 25201 } 25202 25203 /* 25204 * kstats related to squeues i.e. not per IP instance 25205 */ 25206 static void * 25207 tcp_g_kstat_init(tcp_g_stat_t *tcp_g_statp) 25208 { 25209 kstat_t *ksp; 25210 25211 tcp_g_stat_t template = { 25212 { "tcp_timermp_alloced", KSTAT_DATA_UINT64 }, 25213 { "tcp_timermp_allocfail", KSTAT_DATA_UINT64 }, 25214 { "tcp_timermp_allocdblfail", KSTAT_DATA_UINT64 }, 25215 { "tcp_freelist_cleanup", KSTAT_DATA_UINT64 }, 25216 }; 25217 25218 ksp = kstat_create(TCP_MOD_NAME, 0, "tcpstat_g", "net", 25219 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 25220 KSTAT_FLAG_VIRTUAL); 25221 25222 if (ksp == NULL) 25223 return (NULL); 25224 25225 bcopy(&template, tcp_g_statp, sizeof (template)); 25226 ksp->ks_data = (void *)tcp_g_statp; 25227 25228 kstat_install(ksp); 25229 return (ksp); 25230 } 25231 25232 static void 25233 tcp_g_kstat_fini(kstat_t *ksp) 25234 { 25235 if (ksp != NULL) { 25236 kstat_delete(ksp); 25237 } 25238 } 25239 25240 25241 static void * 25242 tcp_kstat2_init(netstackid_t stackid, tcp_stat_t *tcps_statisticsp) 25243 { 25244 kstat_t *ksp; 25245 25246 tcp_stat_t template = { 25247 { "tcp_time_wait", KSTAT_DATA_UINT64 }, 25248 { "tcp_time_wait_syn", KSTAT_DATA_UINT64 }, 25249 { "tcp_time_wait_success", KSTAT_DATA_UINT64 }, 25250 { "tcp_time_wait_fail", KSTAT_DATA_UINT64 }, 25251 { "tcp_reinput_syn", KSTAT_DATA_UINT64 }, 25252 { "tcp_ip_output", KSTAT_DATA_UINT64 }, 25253 { "tcp_detach_non_time_wait", KSTAT_DATA_UINT64 }, 25254 { "tcp_detach_time_wait", KSTAT_DATA_UINT64 }, 25255 { "tcp_time_wait_reap", KSTAT_DATA_UINT64 }, 25256 { "tcp_clean_death_nondetached", KSTAT_DATA_UINT64 }, 25257 { "tcp_reinit_calls", KSTAT_DATA_UINT64 }, 25258 { "tcp_eager_err1", KSTAT_DATA_UINT64 }, 25259 { "tcp_eager_err2", KSTAT_DATA_UINT64 }, 25260 { "tcp_eager_blowoff_calls", KSTAT_DATA_UINT64 }, 25261 { "tcp_eager_blowoff_q", KSTAT_DATA_UINT64 }, 25262 { "tcp_eager_blowoff_q0", KSTAT_DATA_UINT64 }, 25263 { "tcp_not_hard_bound", KSTAT_DATA_UINT64 }, 25264 { "tcp_no_listener", KSTAT_DATA_UINT64 }, 25265 { "tcp_found_eager", KSTAT_DATA_UINT64 }, 25266 { "tcp_wrong_queue", KSTAT_DATA_UINT64 }, 25267 { "tcp_found_eager_binding1", KSTAT_DATA_UINT64 }, 25268 { "tcp_found_eager_bound1", KSTAT_DATA_UINT64 }, 25269 { "tcp_eager_has_listener1", KSTAT_DATA_UINT64 }, 25270 { "tcp_open_alloc", KSTAT_DATA_UINT64 }, 25271 { "tcp_open_detached_alloc", KSTAT_DATA_UINT64 }, 25272 { "tcp_rput_time_wait", KSTAT_DATA_UINT64 }, 25273 { "tcp_listendrop", KSTAT_DATA_UINT64 }, 25274 { "tcp_listendropq0", KSTAT_DATA_UINT64 }, 25275 { "tcp_wrong_rq", KSTAT_DATA_UINT64 }, 25276 { "tcp_rsrv_calls", KSTAT_DATA_UINT64 }, 25277 { "tcp_eagerfree2", KSTAT_DATA_UINT64 }, 25278 { "tcp_eagerfree3", KSTAT_DATA_UINT64 }, 25279 { "tcp_eagerfree4", KSTAT_DATA_UINT64 }, 25280 { "tcp_eagerfree5", KSTAT_DATA_UINT64 }, 25281 { "tcp_timewait_syn_fail", KSTAT_DATA_UINT64 }, 25282 { "tcp_listen_badflags", KSTAT_DATA_UINT64 }, 25283 { "tcp_timeout_calls", KSTAT_DATA_UINT64 }, 25284 { "tcp_timeout_cached_alloc", KSTAT_DATA_UINT64 }, 25285 { "tcp_timeout_cancel_reqs", KSTAT_DATA_UINT64 }, 25286 { "tcp_timeout_canceled", KSTAT_DATA_UINT64 }, 25287 { "tcp_timermp_freed", KSTAT_DATA_UINT64 }, 25288 { "tcp_push_timer_cnt", KSTAT_DATA_UINT64 }, 25289 { "tcp_ack_timer_cnt", KSTAT_DATA_UINT64 }, 25290 { "tcp_ire_null1", KSTAT_DATA_UINT64 }, 25291 { "tcp_ire_null", KSTAT_DATA_UINT64 }, 25292 { "tcp_ip_send", KSTAT_DATA_UINT64 }, 25293 { "tcp_ip_ire_send", KSTAT_DATA_UINT64 }, 25294 { "tcp_wsrv_called", KSTAT_DATA_UINT64 }, 25295 { "tcp_flwctl_on", KSTAT_DATA_UINT64 }, 25296 { "tcp_timer_fire_early", KSTAT_DATA_UINT64 }, 25297 { "tcp_timer_fire_miss", KSTAT_DATA_UINT64 }, 25298 { "tcp_rput_v6_error", KSTAT_DATA_UINT64 }, 25299 { "tcp_out_sw_cksum", KSTAT_DATA_UINT64 }, 25300 { "tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 25301 { "tcp_zcopy_on", KSTAT_DATA_UINT64 }, 25302 { "tcp_zcopy_off", KSTAT_DATA_UINT64 }, 25303 { "tcp_zcopy_backoff", KSTAT_DATA_UINT64 }, 25304 { "tcp_zcopy_disable", KSTAT_DATA_UINT64 }, 25305 { "tcp_mdt_pkt_out", KSTAT_DATA_UINT64 }, 25306 { "tcp_mdt_pkt_out_v4", KSTAT_DATA_UINT64 }, 25307 { "tcp_mdt_pkt_out_v6", KSTAT_DATA_UINT64 }, 25308 { "tcp_mdt_discarded", KSTAT_DATA_UINT64 }, 25309 { "tcp_mdt_conn_halted1", KSTAT_DATA_UINT64 }, 25310 { "tcp_mdt_conn_halted2", KSTAT_DATA_UINT64 }, 25311 { "tcp_mdt_conn_halted3", KSTAT_DATA_UINT64 }, 25312 { "tcp_mdt_conn_resumed1", KSTAT_DATA_UINT64 }, 25313 { "tcp_mdt_conn_resumed2", KSTAT_DATA_UINT64 }, 25314 { "tcp_mdt_legacy_small", KSTAT_DATA_UINT64 }, 25315 { "tcp_mdt_legacy_all", KSTAT_DATA_UINT64 }, 25316 { "tcp_mdt_legacy_ret", KSTAT_DATA_UINT64 }, 25317 { "tcp_mdt_allocfail", KSTAT_DATA_UINT64 }, 25318 { "tcp_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 25319 { "tcp_mdt_allocd", KSTAT_DATA_UINT64 }, 25320 { "tcp_mdt_linked", KSTAT_DATA_UINT64 }, 25321 { "tcp_fusion_flowctl", KSTAT_DATA_UINT64 }, 25322 { "tcp_fusion_backenabled", KSTAT_DATA_UINT64 }, 25323 { "tcp_fusion_urg", KSTAT_DATA_UINT64 }, 25324 { "tcp_fusion_putnext", KSTAT_DATA_UINT64 }, 25325 { "tcp_fusion_unfusable", KSTAT_DATA_UINT64 }, 25326 { "tcp_fusion_aborted", KSTAT_DATA_UINT64 }, 25327 { "tcp_fusion_unqualified", KSTAT_DATA_UINT64 }, 25328 { "tcp_fusion_rrw_busy", KSTAT_DATA_UINT64 }, 25329 { "tcp_fusion_rrw_msgcnt", KSTAT_DATA_UINT64 }, 25330 { "tcp_fusion_rrw_plugged", KSTAT_DATA_UINT64 }, 25331 { "tcp_in_ack_unsent_drop", KSTAT_DATA_UINT64 }, 25332 { "tcp_sock_fallback", KSTAT_DATA_UINT64 }, 25333 { "tcp_lso_enabled", KSTAT_DATA_UINT64 }, 25334 { "tcp_lso_disabled", KSTAT_DATA_UINT64 }, 25335 { "tcp_lso_times", KSTAT_DATA_UINT64 }, 25336 { "tcp_lso_pkt_out", KSTAT_DATA_UINT64 }, 25337 }; 25338 25339 ksp = kstat_create_netstack(TCP_MOD_NAME, 0, "tcpstat", "net", 25340 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 25341 KSTAT_FLAG_VIRTUAL, stackid); 25342 25343 if (ksp == NULL) 25344 return (NULL); 25345 25346 bcopy(&template, tcps_statisticsp, sizeof (template)); 25347 ksp->ks_data = (void *)tcps_statisticsp; 25348 ksp->ks_private = (void *)(uintptr_t)stackid; 25349 25350 kstat_install(ksp); 25351 return (ksp); 25352 } 25353 25354 static void 25355 tcp_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 25356 { 25357 if (ksp != NULL) { 25358 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 25359 kstat_delete_netstack(ksp, stackid); 25360 } 25361 } 25362 25363 /* 25364 * TCP Kstats implementation 25365 */ 25366 static void * 25367 tcp_kstat_init(netstackid_t stackid, tcp_stack_t *tcps) 25368 { 25369 kstat_t *ksp; 25370 25371 tcp_named_kstat_t template = { 25372 { "rtoAlgorithm", KSTAT_DATA_INT32, 0 }, 25373 { "rtoMin", KSTAT_DATA_INT32, 0 }, 25374 { "rtoMax", KSTAT_DATA_INT32, 0 }, 25375 { "maxConn", KSTAT_DATA_INT32, 0 }, 25376 { "activeOpens", KSTAT_DATA_UINT32, 0 }, 25377 { "passiveOpens", KSTAT_DATA_UINT32, 0 }, 25378 { "attemptFails", KSTAT_DATA_UINT32, 0 }, 25379 { "estabResets", KSTAT_DATA_UINT32, 0 }, 25380 { "currEstab", KSTAT_DATA_UINT32, 0 }, 25381 { "inSegs", KSTAT_DATA_UINT64, 0 }, 25382 { "outSegs", KSTAT_DATA_UINT64, 0 }, 25383 { "retransSegs", KSTAT_DATA_UINT32, 0 }, 25384 { "connTableSize", KSTAT_DATA_INT32, 0 }, 25385 { "outRsts", KSTAT_DATA_UINT32, 0 }, 25386 { "outDataSegs", KSTAT_DATA_UINT32, 0 }, 25387 { "outDataBytes", KSTAT_DATA_UINT32, 0 }, 25388 { "retransBytes", KSTAT_DATA_UINT32, 0 }, 25389 { "outAck", KSTAT_DATA_UINT32, 0 }, 25390 { "outAckDelayed", KSTAT_DATA_UINT32, 0 }, 25391 { "outUrg", KSTAT_DATA_UINT32, 0 }, 25392 { "outWinUpdate", KSTAT_DATA_UINT32, 0 }, 25393 { "outWinProbe", KSTAT_DATA_UINT32, 0 }, 25394 { "outControl", KSTAT_DATA_UINT32, 0 }, 25395 { "outFastRetrans", KSTAT_DATA_UINT32, 0 }, 25396 { "inAckSegs", KSTAT_DATA_UINT32, 0 }, 25397 { "inAckBytes", KSTAT_DATA_UINT32, 0 }, 25398 { "inDupAck", KSTAT_DATA_UINT32, 0 }, 25399 { "inAckUnsent", KSTAT_DATA_UINT32, 0 }, 25400 { "inDataInorderSegs", KSTAT_DATA_UINT32, 0 }, 25401 { "inDataInorderBytes", KSTAT_DATA_UINT32, 0 }, 25402 { "inDataUnorderSegs", KSTAT_DATA_UINT32, 0 }, 25403 { "inDataUnorderBytes", KSTAT_DATA_UINT32, 0 }, 25404 { "inDataDupSegs", KSTAT_DATA_UINT32, 0 }, 25405 { "inDataDupBytes", KSTAT_DATA_UINT32, 0 }, 25406 { "inDataPartDupSegs", KSTAT_DATA_UINT32, 0 }, 25407 { "inDataPartDupBytes", KSTAT_DATA_UINT32, 0 }, 25408 { "inDataPastWinSegs", KSTAT_DATA_UINT32, 0 }, 25409 { "inDataPastWinBytes", KSTAT_DATA_UINT32, 0 }, 25410 { "inWinProbe", KSTAT_DATA_UINT32, 0 }, 25411 { "inWinUpdate", KSTAT_DATA_UINT32, 0 }, 25412 { "inClosed", KSTAT_DATA_UINT32, 0 }, 25413 { "rttUpdate", KSTAT_DATA_UINT32, 0 }, 25414 { "rttNoUpdate", KSTAT_DATA_UINT32, 0 }, 25415 { "timRetrans", KSTAT_DATA_UINT32, 0 }, 25416 { "timRetransDrop", KSTAT_DATA_UINT32, 0 }, 25417 { "timKeepalive", KSTAT_DATA_UINT32, 0 }, 25418 { "timKeepaliveProbe", KSTAT_DATA_UINT32, 0 }, 25419 { "timKeepaliveDrop", KSTAT_DATA_UINT32, 0 }, 25420 { "listenDrop", KSTAT_DATA_UINT32, 0 }, 25421 { "listenDropQ0", KSTAT_DATA_UINT32, 0 }, 25422 { "halfOpenDrop", KSTAT_DATA_UINT32, 0 }, 25423 { "outSackRetransSegs", KSTAT_DATA_UINT32, 0 }, 25424 { "connTableSize6", KSTAT_DATA_INT32, 0 } 25425 }; 25426 25427 ksp = kstat_create_netstack(TCP_MOD_NAME, 0, TCP_MOD_NAME, "mib2", 25428 KSTAT_TYPE_NAMED, NUM_OF_FIELDS(tcp_named_kstat_t), 0, stackid); 25429 25430 if (ksp == NULL) 25431 return (NULL); 25432 25433 template.rtoAlgorithm.value.ui32 = 4; 25434 template.rtoMin.value.ui32 = tcps->tcps_rexmit_interval_min; 25435 template.rtoMax.value.ui32 = tcps->tcps_rexmit_interval_max; 25436 template.maxConn.value.i32 = -1; 25437 25438 bcopy(&template, ksp->ks_data, sizeof (template)); 25439 ksp->ks_update = tcp_kstat_update; 25440 ksp->ks_private = (void *)(uintptr_t)stackid; 25441 25442 kstat_install(ksp); 25443 return (ksp); 25444 } 25445 25446 static void 25447 tcp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 25448 { 25449 if (ksp != NULL) { 25450 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 25451 kstat_delete_netstack(ksp, stackid); 25452 } 25453 } 25454 25455 static int 25456 tcp_kstat_update(kstat_t *kp, int rw) 25457 { 25458 tcp_named_kstat_t *tcpkp; 25459 tcp_t *tcp; 25460 connf_t *connfp; 25461 conn_t *connp; 25462 int i; 25463 netstackid_t stackid = (netstackid_t)(uintptr_t)kp->ks_private; 25464 netstack_t *ns; 25465 tcp_stack_t *tcps; 25466 ip_stack_t *ipst; 25467 25468 if ((kp == NULL) || (kp->ks_data == NULL)) 25469 return (EIO); 25470 25471 if (rw == KSTAT_WRITE) 25472 return (EACCES); 25473 25474 ns = netstack_find_by_stackid(stackid); 25475 if (ns == NULL) 25476 return (-1); 25477 tcps = ns->netstack_tcp; 25478 if (tcps == NULL) { 25479 netstack_rele(ns); 25480 return (-1); 25481 } 25482 25483 tcpkp = (tcp_named_kstat_t *)kp->ks_data; 25484 25485 tcpkp->currEstab.value.ui32 = 0; 25486 25487 ipst = ns->netstack_ip; 25488 25489 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 25490 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 25491 connp = NULL; 25492 while ((connp = 25493 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 25494 tcp = connp->conn_tcp; 25495 switch (tcp_snmp_state(tcp)) { 25496 case MIB2_TCP_established: 25497 case MIB2_TCP_closeWait: 25498 tcpkp->currEstab.value.ui32++; 25499 break; 25500 } 25501 } 25502 } 25503 25504 tcpkp->activeOpens.value.ui32 = tcps->tcps_mib.tcpActiveOpens; 25505 tcpkp->passiveOpens.value.ui32 = tcps->tcps_mib.tcpPassiveOpens; 25506 tcpkp->attemptFails.value.ui32 = tcps->tcps_mib.tcpAttemptFails; 25507 tcpkp->estabResets.value.ui32 = tcps->tcps_mib.tcpEstabResets; 25508 tcpkp->inSegs.value.ui64 = tcps->tcps_mib.tcpHCInSegs; 25509 tcpkp->outSegs.value.ui64 = tcps->tcps_mib.tcpHCOutSegs; 25510 tcpkp->retransSegs.value.ui32 = tcps->tcps_mib.tcpRetransSegs; 25511 tcpkp->connTableSize.value.i32 = tcps->tcps_mib.tcpConnTableSize; 25512 tcpkp->outRsts.value.ui32 = tcps->tcps_mib.tcpOutRsts; 25513 tcpkp->outDataSegs.value.ui32 = tcps->tcps_mib.tcpOutDataSegs; 25514 tcpkp->outDataBytes.value.ui32 = tcps->tcps_mib.tcpOutDataBytes; 25515 tcpkp->retransBytes.value.ui32 = tcps->tcps_mib.tcpRetransBytes; 25516 tcpkp->outAck.value.ui32 = tcps->tcps_mib.tcpOutAck; 25517 tcpkp->outAckDelayed.value.ui32 = tcps->tcps_mib.tcpOutAckDelayed; 25518 tcpkp->outUrg.value.ui32 = tcps->tcps_mib.tcpOutUrg; 25519 tcpkp->outWinUpdate.value.ui32 = tcps->tcps_mib.tcpOutWinUpdate; 25520 tcpkp->outWinProbe.value.ui32 = tcps->tcps_mib.tcpOutWinProbe; 25521 tcpkp->outControl.value.ui32 = tcps->tcps_mib.tcpOutControl; 25522 tcpkp->outFastRetrans.value.ui32 = tcps->tcps_mib.tcpOutFastRetrans; 25523 tcpkp->inAckSegs.value.ui32 = tcps->tcps_mib.tcpInAckSegs; 25524 tcpkp->inAckBytes.value.ui32 = tcps->tcps_mib.tcpInAckBytes; 25525 tcpkp->inDupAck.value.ui32 = tcps->tcps_mib.tcpInDupAck; 25526 tcpkp->inAckUnsent.value.ui32 = tcps->tcps_mib.tcpInAckUnsent; 25527 tcpkp->inDataInorderSegs.value.ui32 = 25528 tcps->tcps_mib.tcpInDataInorderSegs; 25529 tcpkp->inDataInorderBytes.value.ui32 = 25530 tcps->tcps_mib.tcpInDataInorderBytes; 25531 tcpkp->inDataUnorderSegs.value.ui32 = 25532 tcps->tcps_mib.tcpInDataUnorderSegs; 25533 tcpkp->inDataUnorderBytes.value.ui32 = 25534 tcps->tcps_mib.tcpInDataUnorderBytes; 25535 tcpkp->inDataDupSegs.value.ui32 = tcps->tcps_mib.tcpInDataDupSegs; 25536 tcpkp->inDataDupBytes.value.ui32 = tcps->tcps_mib.tcpInDataDupBytes; 25537 tcpkp->inDataPartDupSegs.value.ui32 = 25538 tcps->tcps_mib.tcpInDataPartDupSegs; 25539 tcpkp->inDataPartDupBytes.value.ui32 = 25540 tcps->tcps_mib.tcpInDataPartDupBytes; 25541 tcpkp->inDataPastWinSegs.value.ui32 = 25542 tcps->tcps_mib.tcpInDataPastWinSegs; 25543 tcpkp->inDataPastWinBytes.value.ui32 = 25544 tcps->tcps_mib.tcpInDataPastWinBytes; 25545 tcpkp->inWinProbe.value.ui32 = tcps->tcps_mib.tcpInWinProbe; 25546 tcpkp->inWinUpdate.value.ui32 = tcps->tcps_mib.tcpInWinUpdate; 25547 tcpkp->inClosed.value.ui32 = tcps->tcps_mib.tcpInClosed; 25548 tcpkp->rttNoUpdate.value.ui32 = tcps->tcps_mib.tcpRttNoUpdate; 25549 tcpkp->rttUpdate.value.ui32 = tcps->tcps_mib.tcpRttUpdate; 25550 tcpkp->timRetrans.value.ui32 = tcps->tcps_mib.tcpTimRetrans; 25551 tcpkp->timRetransDrop.value.ui32 = tcps->tcps_mib.tcpTimRetransDrop; 25552 tcpkp->timKeepalive.value.ui32 = tcps->tcps_mib.tcpTimKeepalive; 25553 tcpkp->timKeepaliveProbe.value.ui32 = 25554 tcps->tcps_mib.tcpTimKeepaliveProbe; 25555 tcpkp->timKeepaliveDrop.value.ui32 = 25556 tcps->tcps_mib.tcpTimKeepaliveDrop; 25557 tcpkp->listenDrop.value.ui32 = tcps->tcps_mib.tcpListenDrop; 25558 tcpkp->listenDropQ0.value.ui32 = tcps->tcps_mib.tcpListenDropQ0; 25559 tcpkp->halfOpenDrop.value.ui32 = tcps->tcps_mib.tcpHalfOpenDrop; 25560 tcpkp->outSackRetransSegs.value.ui32 = 25561 tcps->tcps_mib.tcpOutSackRetransSegs; 25562 tcpkp->connTableSize6.value.i32 = tcps->tcps_mib.tcp6ConnTableSize; 25563 25564 netstack_rele(ns); 25565 return (0); 25566 } 25567 25568 void 25569 tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp) 25570 { 25571 uint16_t hdr_len; 25572 ipha_t *ipha; 25573 uint8_t *nexthdrp; 25574 tcph_t *tcph; 25575 tcp_stack_t *tcps = connp->conn_tcp->tcp_tcps; 25576 25577 /* Already has an eager */ 25578 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 25579 TCP_STAT(tcps, tcp_reinput_syn); 25580 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp, 25581 SQ_PROCESS, SQTAG_TCP_REINPUT_EAGER); 25582 return; 25583 } 25584 25585 switch (IPH_HDR_VERSION(mp->b_rptr)) { 25586 case IPV4_VERSION: 25587 ipha = (ipha_t *)mp->b_rptr; 25588 hdr_len = IPH_HDR_LENGTH(ipha); 25589 break; 25590 case IPV6_VERSION: 25591 if (!ip_hdr_length_nexthdr_v6(mp, (ip6_t *)mp->b_rptr, 25592 &hdr_len, &nexthdrp)) { 25593 CONN_DEC_REF(connp); 25594 freemsg(mp); 25595 return; 25596 } 25597 break; 25598 } 25599 25600 tcph = (tcph_t *)&mp->b_rptr[hdr_len]; 25601 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 25602 mp->b_datap->db_struioflag |= STRUIO_EAGER; 25603 DB_CKSUMSTART(mp) = (intptr_t)sqp; 25604 } 25605 25606 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp, 25607 SQ_FILL, SQTAG_TCP_REINPUT); 25608 } 25609 25610 static int 25611 tcp_squeue_switch(int val) 25612 { 25613 int rval = SQ_FILL; 25614 25615 switch (val) { 25616 case 1: 25617 rval = SQ_NODRAIN; 25618 break; 25619 case 2: 25620 rval = SQ_PROCESS; 25621 break; 25622 default: 25623 break; 25624 } 25625 return (rval); 25626 } 25627 25628 /* 25629 * This is called once for each squeue - globally for all stack 25630 * instances. 25631 */ 25632 static void 25633 tcp_squeue_add(squeue_t *sqp) 25634 { 25635 tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc( 25636 sizeof (tcp_squeue_priv_t), KM_SLEEP); 25637 25638 *squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait; 25639 tcp_time_wait->tcp_time_wait_tid = 25640 timeout_generic(CALLOUT_NORMAL, tcp_time_wait_collector, sqp, 25641 TICK_TO_NSEC(TCP_TIME_WAIT_DELAY), CALLOUT_TCP_RESOLUTION, 25642 CALLOUT_FLAG_ROUNDUP); 25643 if (tcp_free_list_max_cnt == 0) { 25644 int tcp_ncpus = ((boot_max_ncpus == -1) ? 25645 max_ncpus : boot_max_ncpus); 25646 25647 /* 25648 * Limit number of entries to 1% of availble memory / tcp_ncpus 25649 */ 25650 tcp_free_list_max_cnt = (freemem * PAGESIZE) / 25651 (tcp_ncpus * sizeof (tcp_t) * 100); 25652 } 25653 tcp_time_wait->tcp_free_list_cnt = 0; 25654 } 25655 25656 static int 25657 tcp_post_ip_bind(tcp_t *tcp, mblk_t *mp, int error, cred_t *cr, pid_t pid) 25658 { 25659 mblk_t *ire_mp = NULL; 25660 mblk_t *syn_mp; 25661 mblk_t *mdti; 25662 mblk_t *lsoi; 25663 int retval; 25664 tcph_t *tcph; 25665 cred_t *ecr; 25666 ts_label_t *tsl; 25667 uint32_t mss; 25668 conn_t *connp = tcp->tcp_connp; 25669 tcp_stack_t *tcps = tcp->tcp_tcps; 25670 25671 if (error == 0) { 25672 /* 25673 * Adapt Multidata information, if any. The 25674 * following tcp_mdt_update routine will free 25675 * the message. 25676 */ 25677 if (mp != NULL && ((mdti = tcp_mdt_info_mp(mp)) != NULL)) { 25678 tcp_mdt_update(tcp, &((ip_mdt_info_t *)mdti-> 25679 b_rptr)->mdt_capab, B_TRUE); 25680 freemsg(mdti); 25681 } 25682 25683 /* 25684 * Check to update LSO information with tcp, and 25685 * tcp_lso_update routine will free the message. 25686 */ 25687 if (mp != NULL && ((lsoi = tcp_lso_info_mp(mp)) != NULL)) { 25688 tcp_lso_update(tcp, &((ip_lso_info_t *)lsoi-> 25689 b_rptr)->lso_capab); 25690 freemsg(lsoi); 25691 } 25692 25693 /* Get the IRE, if we had requested for it */ 25694 if (mp != NULL) 25695 ire_mp = tcp_ire_mp(&mp); 25696 25697 if (tcp->tcp_hard_binding) { 25698 tcp->tcp_hard_binding = B_FALSE; 25699 tcp->tcp_hard_bound = B_TRUE; 25700 CL_INET_CONNECT(tcp->tcp_connp, tcp, B_TRUE, retval); 25701 if (retval != 0) { 25702 error = EADDRINUSE; 25703 goto bind_failed; 25704 } 25705 } else { 25706 if (ire_mp != NULL) 25707 freeb(ire_mp); 25708 goto after_syn_sent; 25709 } 25710 25711 retval = tcp_adapt_ire(tcp, ire_mp); 25712 if (ire_mp != NULL) 25713 freeb(ire_mp); 25714 if (retval == 0) { 25715 error = (int)((tcp->tcp_state >= TCPS_SYN_SENT) ? 25716 ENETUNREACH : EADDRNOTAVAIL); 25717 goto ipcl_rm; 25718 } 25719 /* 25720 * Don't let an endpoint connect to itself. 25721 * Also checked in tcp_connect() but that 25722 * check can't handle the case when the 25723 * local IP address is INADDR_ANY. 25724 */ 25725 if (tcp->tcp_ipversion == IPV4_VERSION) { 25726 if ((tcp->tcp_ipha->ipha_dst == 25727 tcp->tcp_ipha->ipha_src) && 25728 (BE16_EQL(tcp->tcp_tcph->th_lport, 25729 tcp->tcp_tcph->th_fport))) { 25730 error = EADDRNOTAVAIL; 25731 goto ipcl_rm; 25732 } 25733 } else { 25734 if (IN6_ARE_ADDR_EQUAL( 25735 &tcp->tcp_ip6h->ip6_dst, 25736 &tcp->tcp_ip6h->ip6_src) && 25737 (BE16_EQL(tcp->tcp_tcph->th_lport, 25738 tcp->tcp_tcph->th_fport))) { 25739 error = EADDRNOTAVAIL; 25740 goto ipcl_rm; 25741 } 25742 } 25743 ASSERT(tcp->tcp_state == TCPS_SYN_SENT); 25744 /* 25745 * This should not be possible! Just for 25746 * defensive coding... 25747 */ 25748 if (tcp->tcp_state != TCPS_SYN_SENT) 25749 goto after_syn_sent; 25750 25751 if (is_system_labeled() && 25752 !tcp_update_label(tcp, CONN_CRED(tcp->tcp_connp))) { 25753 error = EHOSTUNREACH; 25754 goto ipcl_rm; 25755 } 25756 25757 /* 25758 * tcp_adapt_ire() does not adjust 25759 * for TCP/IP header length. 25760 */ 25761 mss = tcp->tcp_mss - tcp->tcp_hdr_len; 25762 25763 /* 25764 * Just make sure our rwnd is at 25765 * least tcp_recv_hiwat_mss * MSS 25766 * large, and round up to the nearest 25767 * MSS. 25768 * 25769 * We do the round up here because 25770 * we need to get the interface 25771 * MTU first before we can do the 25772 * round up. 25773 */ 25774 tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss), 25775 tcps->tcps_recv_hiwat_minmss * mss); 25776 tcp->tcp_recv_hiwater = tcp->tcp_rwnd; 25777 tcp_set_ws_value(tcp); 25778 U32_TO_ABE16((tcp->tcp_rwnd >> tcp->tcp_rcv_ws), 25779 tcp->tcp_tcph->th_win); 25780 if (tcp->tcp_rcv_ws > 0 || tcps->tcps_wscale_always) 25781 tcp->tcp_snd_ws_ok = B_TRUE; 25782 25783 /* 25784 * Set tcp_snd_ts_ok to true 25785 * so that tcp_xmit_mp will 25786 * include the timestamp 25787 * option in the SYN segment. 25788 */ 25789 if (tcps->tcps_tstamp_always || 25790 (tcp->tcp_rcv_ws && tcps->tcps_tstamp_if_wscale)) { 25791 tcp->tcp_snd_ts_ok = B_TRUE; 25792 } 25793 25794 /* 25795 * tcp_snd_sack_ok can be set in 25796 * tcp_adapt_ire() if the sack metric 25797 * is set. So check it here also. 25798 */ 25799 if (tcps->tcps_sack_permitted == 2 || 25800 tcp->tcp_snd_sack_ok) { 25801 if (tcp->tcp_sack_info == NULL) { 25802 tcp->tcp_sack_info = 25803 kmem_cache_alloc(tcp_sack_info_cache, 25804 KM_SLEEP); 25805 } 25806 tcp->tcp_snd_sack_ok = B_TRUE; 25807 } 25808 25809 /* 25810 * Should we use ECN? Note that the current 25811 * default value (SunOS 5.9) of tcp_ecn_permitted 25812 * is 1. The reason for doing this is that there 25813 * are equipments out there that will drop ECN 25814 * enabled IP packets. Setting it to 1 avoids 25815 * compatibility problems. 25816 */ 25817 if (tcps->tcps_ecn_permitted == 2) 25818 tcp->tcp_ecn_ok = B_TRUE; 25819 25820 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 25821 syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 25822 tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 25823 if (syn_mp) { 25824 /* 25825 * cr contains the cred from the thread calling 25826 * connect(). 25827 * 25828 * If no thread cred is available, use the 25829 * socket creator's cred instead. If still no 25830 * cred, drop the request rather than risk a 25831 * panic on production systems. 25832 */ 25833 if (cr == NULL) { 25834 cr = CONN_CRED(connp); 25835 pid = tcp->tcp_cpid; 25836 ASSERT(cr != NULL); 25837 if (cr != NULL) { 25838 mblk_setcred(syn_mp, cr, pid); 25839 } else { 25840 error = ECONNABORTED; 25841 goto ipcl_rm; 25842 } 25843 25844 /* 25845 * If an effective security label exists for 25846 * the connection, create a copy of the thread's 25847 * cred but with the effective label attached. 25848 */ 25849 } else if (is_system_labeled() && 25850 connp->conn_effective_cred != NULL && 25851 (tsl = crgetlabel(connp-> 25852 conn_effective_cred)) != NULL) { 25853 if ((ecr = copycred_from_tslabel(cr, 25854 tsl, KM_NOSLEEP)) == NULL) { 25855 error = ENOMEM; 25856 goto ipcl_rm; 25857 } 25858 mblk_setcred(syn_mp, ecr, pid); 25859 crfree(ecr); 25860 25861 /* 25862 * Default to using the thread's cred unchanged. 25863 */ 25864 } else { 25865 mblk_setcred(syn_mp, cr, pid); 25866 } 25867 25868 /* 25869 * We must bump the generation before sending the syn 25870 * to ensure that we use the right generation in case 25871 * this thread issues a "connected" up call. 25872 */ 25873 SOCK_CONNID_BUMP(tcp->tcp_connid); 25874 25875 tcp_send_data(tcp, tcp->tcp_wq, syn_mp); 25876 } 25877 after_syn_sent: 25878 if (mp != NULL) { 25879 ASSERT(mp->b_cont == NULL); 25880 freeb(mp); 25881 } 25882 return (error); 25883 } else { 25884 /* error */ 25885 if (tcp->tcp_debug) { 25886 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 25887 "tcp_post_ip_bind: error == %d", error); 25888 } 25889 if (mp != NULL) { 25890 freeb(mp); 25891 } 25892 } 25893 25894 ipcl_rm: 25895 /* 25896 * Need to unbind with classifier since we were just 25897 * told that our bind succeeded. a.k.a error == 0 at the entry. 25898 */ 25899 tcp->tcp_hard_bound = B_FALSE; 25900 tcp->tcp_hard_binding = B_FALSE; 25901 25902 ipcl_hash_remove(connp); 25903 25904 bind_failed: 25905 tcp->tcp_state = TCPS_IDLE; 25906 if (tcp->tcp_ipversion == IPV4_VERSION) 25907 tcp->tcp_ipha->ipha_src = 0; 25908 else 25909 V6_SET_ZERO(tcp->tcp_ip6h->ip6_src); 25910 /* 25911 * Copy of the src addr. in tcp_t is needed since 25912 * the lookup funcs. can only look at tcp_t 25913 */ 25914 V6_SET_ZERO(tcp->tcp_ip_src_v6); 25915 25916 tcph = tcp->tcp_tcph; 25917 tcph->th_lport[0] = 0; 25918 tcph->th_lport[1] = 0; 25919 tcp_bind_hash_remove(tcp); 25920 bzero(&connp->u_port, sizeof (connp->u_port)); 25921 /* blow away saved option results if any */ 25922 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 25923 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 25924 25925 conn_delete_ire(tcp->tcp_connp, NULL); 25926 25927 return (error); 25928 } 25929 25930 static int 25931 tcp_bind_select_lport(tcp_t *tcp, in_port_t *requested_port_ptr, 25932 boolean_t bind_to_req_port_only, cred_t *cr) 25933 { 25934 in_port_t mlp_port; 25935 mlp_type_t addrtype, mlptype; 25936 boolean_t user_specified; 25937 in_port_t allocated_port; 25938 in_port_t requested_port = *requested_port_ptr; 25939 conn_t *connp; 25940 zone_t *zone; 25941 tcp_stack_t *tcps = tcp->tcp_tcps; 25942 in6_addr_t v6addr = tcp->tcp_ip_src_v6; 25943 25944 /* 25945 * XXX It's up to the caller to specify bind_to_req_port_only or not. 25946 */ 25947 if (cr == NULL) 25948 cr = tcp->tcp_cred; 25949 /* 25950 * Get a valid port (within the anonymous range and should not 25951 * be a privileged one) to use if the user has not given a port. 25952 * If multiple threads are here, they may all start with 25953 * with the same initial port. But, it should be fine as long as 25954 * tcp_bindi will ensure that no two threads will be assigned 25955 * the same port. 25956 * 25957 * NOTE: XXX If a privileged process asks for an anonymous port, we 25958 * still check for ports only in the range > tcp_smallest_non_priv_port, 25959 * unless TCP_ANONPRIVBIND option is set. 25960 */ 25961 mlptype = mlptSingle; 25962 mlp_port = requested_port; 25963 if (requested_port == 0) { 25964 requested_port = tcp->tcp_anon_priv_bind ? 25965 tcp_get_next_priv_port(tcp) : 25966 tcp_update_next_port(tcps->tcps_next_port_to_try, 25967 tcp, B_TRUE); 25968 if (requested_port == 0) { 25969 return (-TNOADDR); 25970 } 25971 user_specified = B_FALSE; 25972 25973 /* 25974 * If the user went through one of the RPC interfaces to create 25975 * this socket and RPC is MLP in this zone, then give him an 25976 * anonymous MLP. 25977 */ 25978 connp = tcp->tcp_connp; 25979 if (connp->conn_anon_mlp && is_system_labeled()) { 25980 zone = crgetzone(cr); 25981 addrtype = tsol_mlp_addr_type( 25982 connp->conn_allzones ? ALL_ZONES : zone->zone_id, 25983 IPV6_VERSION, &v6addr, 25984 tcps->tcps_netstack->netstack_ip); 25985 if (addrtype == mlptSingle) { 25986 return (-TNOADDR); 25987 } 25988 mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP, 25989 PMAPPORT, addrtype); 25990 mlp_port = PMAPPORT; 25991 } 25992 } else { 25993 int i; 25994 boolean_t priv = B_FALSE; 25995 25996 /* 25997 * If the requested_port is in the well-known privileged range, 25998 * verify that the stream was opened by a privileged user. 25999 * Note: No locks are held when inspecting tcp_g_*epriv_ports 26000 * but instead the code relies on: 26001 * - the fact that the address of the array and its size never 26002 * changes 26003 * - the atomic assignment of the elements of the array 26004 */ 26005 if (requested_port < tcps->tcps_smallest_nonpriv_port) { 26006 priv = B_TRUE; 26007 } else { 26008 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 26009 if (requested_port == 26010 tcps->tcps_g_epriv_ports[i]) { 26011 priv = B_TRUE; 26012 break; 26013 } 26014 } 26015 } 26016 if (priv) { 26017 if (secpolicy_net_privaddr(cr, requested_port, 26018 IPPROTO_TCP) != 0) { 26019 if (tcp->tcp_debug) { 26020 (void) strlog(TCP_MOD_ID, 0, 1, 26021 SL_ERROR|SL_TRACE, 26022 "tcp_bind: no priv for port %d", 26023 requested_port); 26024 } 26025 return (-TACCES); 26026 } 26027 } 26028 user_specified = B_TRUE; 26029 26030 connp = tcp->tcp_connp; 26031 if (is_system_labeled()) { 26032 zone = crgetzone(cr); 26033 addrtype = tsol_mlp_addr_type( 26034 connp->conn_allzones ? ALL_ZONES : zone->zone_id, 26035 IPV6_VERSION, &v6addr, 26036 tcps->tcps_netstack->netstack_ip); 26037 if (addrtype == mlptSingle) { 26038 return (-TNOADDR); 26039 } 26040 mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP, 26041 requested_port, addrtype); 26042 } 26043 } 26044 26045 if (mlptype != mlptSingle) { 26046 if (secpolicy_net_bindmlp(cr) != 0) { 26047 if (tcp->tcp_debug) { 26048 (void) strlog(TCP_MOD_ID, 0, 1, 26049 SL_ERROR|SL_TRACE, 26050 "tcp_bind: no priv for multilevel port %d", 26051 requested_port); 26052 } 26053 return (-TACCES); 26054 } 26055 26056 /* 26057 * If we're specifically binding a shared IP address and the 26058 * port is MLP on shared addresses, then check to see if this 26059 * zone actually owns the MLP. Reject if not. 26060 */ 26061 if (mlptype == mlptShared && addrtype == mlptShared) { 26062 /* 26063 * No need to handle exclusive-stack zones since 26064 * ALL_ZONES only applies to the shared stack. 26065 */ 26066 zoneid_t mlpzone; 26067 26068 mlpzone = tsol_mlp_findzone(IPPROTO_TCP, 26069 htons(mlp_port)); 26070 if (connp->conn_zoneid != mlpzone) { 26071 if (tcp->tcp_debug) { 26072 (void) strlog(TCP_MOD_ID, 0, 1, 26073 SL_ERROR|SL_TRACE, 26074 "tcp_bind: attempt to bind port " 26075 "%d on shared addr in zone %d " 26076 "(should be %d)", 26077 mlp_port, connp->conn_zoneid, 26078 mlpzone); 26079 } 26080 return (-TACCES); 26081 } 26082 } 26083 26084 if (!user_specified) { 26085 int err; 26086 err = tsol_mlp_anon(zone, mlptype, connp->conn_ulp, 26087 requested_port, B_TRUE); 26088 if (err != 0) { 26089 if (tcp->tcp_debug) { 26090 (void) strlog(TCP_MOD_ID, 0, 1, 26091 SL_ERROR|SL_TRACE, 26092 "tcp_bind: cannot establish anon " 26093 "MLP for port %d", 26094 requested_port); 26095 } 26096 return (err); 26097 } 26098 connp->conn_anon_port = B_TRUE; 26099 } 26100 connp->conn_mlp_type = mlptype; 26101 } 26102 26103 allocated_port = tcp_bindi(tcp, requested_port, &v6addr, 26104 tcp->tcp_reuseaddr, B_FALSE, bind_to_req_port_only, user_specified); 26105 26106 if (allocated_port == 0) { 26107 connp->conn_mlp_type = mlptSingle; 26108 if (connp->conn_anon_port) { 26109 connp->conn_anon_port = B_FALSE; 26110 (void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp, 26111 requested_port, B_FALSE); 26112 } 26113 if (bind_to_req_port_only) { 26114 if (tcp->tcp_debug) { 26115 (void) strlog(TCP_MOD_ID, 0, 1, 26116 SL_ERROR|SL_TRACE, 26117 "tcp_bind: requested addr busy"); 26118 } 26119 return (-TADDRBUSY); 26120 } else { 26121 /* If we are out of ports, fail the bind. */ 26122 if (tcp->tcp_debug) { 26123 (void) strlog(TCP_MOD_ID, 0, 1, 26124 SL_ERROR|SL_TRACE, 26125 "tcp_bind: out of ports?"); 26126 } 26127 return (-TNOADDR); 26128 } 26129 } 26130 26131 /* Pass the allocated port back */ 26132 *requested_port_ptr = allocated_port; 26133 return (0); 26134 } 26135 26136 static int 26137 tcp_bind_check(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr, 26138 boolean_t bind_to_req_port_only) 26139 { 26140 tcp_t *tcp = connp->conn_tcp; 26141 sin_t *sin; 26142 sin6_t *sin6; 26143 in_port_t requested_port; 26144 ipaddr_t v4addr; 26145 in6_addr_t v6addr; 26146 uint_t ipversion; 26147 int error = 0; 26148 26149 ASSERT((uintptr_t)len <= (uintptr_t)INT_MAX); 26150 26151 if (tcp->tcp_state == TCPS_BOUND) { 26152 return (0); 26153 } else if (tcp->tcp_state > TCPS_BOUND) { 26154 if (tcp->tcp_debug) { 26155 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 26156 "tcp_bind: bad state, %d", tcp->tcp_state); 26157 } 26158 return (-TOUTSTATE); 26159 } 26160 26161 ASSERT(sa != NULL && len != 0); 26162 26163 if (!OK_32PTR((char *)sa)) { 26164 if (tcp->tcp_debug) { 26165 (void) strlog(TCP_MOD_ID, 0, 1, 26166 SL_ERROR|SL_TRACE, 26167 "tcp_bind: bad address parameter, " 26168 "address %p, len %d", 26169 (void *)sa, len); 26170 } 26171 return (-TPROTO); 26172 } 26173 26174 switch (len) { 26175 case sizeof (sin_t): /* Complete IPv4 address */ 26176 sin = (sin_t *)sa; 26177 /* 26178 * With sockets sockfs will accept bogus sin_family in 26179 * bind() and replace it with the family used in the socket 26180 * call. 26181 */ 26182 if (sin->sin_family != AF_INET || 26183 tcp->tcp_family != AF_INET) { 26184 return (EAFNOSUPPORT); 26185 } 26186 requested_port = ntohs(sin->sin_port); 26187 ipversion = IPV4_VERSION; 26188 v4addr = sin->sin_addr.s_addr; 26189 IN6_IPADDR_TO_V4MAPPED(v4addr, &v6addr); 26190 break; 26191 26192 case sizeof (sin6_t): /* Complete IPv6 address */ 26193 sin6 = (sin6_t *)sa; 26194 if (sin6->sin6_family != AF_INET6 || 26195 tcp->tcp_family != AF_INET6) { 26196 return (EAFNOSUPPORT); 26197 } 26198 requested_port = ntohs(sin6->sin6_port); 26199 ipversion = IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr) ? 26200 IPV4_VERSION : IPV6_VERSION; 26201 v6addr = sin6->sin6_addr; 26202 break; 26203 26204 default: 26205 if (tcp->tcp_debug) { 26206 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 26207 "tcp_bind: bad address length, %d", len); 26208 } 26209 return (EAFNOSUPPORT); 26210 /* return (-TBADADDR); */ 26211 } 26212 26213 tcp->tcp_bound_source_v6 = v6addr; 26214 26215 /* Check for change in ipversion */ 26216 if (tcp->tcp_ipversion != ipversion) { 26217 ASSERT(tcp->tcp_family == AF_INET6); 26218 error = (ipversion == IPV6_VERSION) ? 26219 tcp_header_init_ipv6(tcp) : tcp_header_init_ipv4(tcp); 26220 if (error) { 26221 return (ENOMEM); 26222 } 26223 } 26224 26225 /* 26226 * Initialize family specific fields. Copy of the src addr. 26227 * in tcp_t is needed for the lookup funcs. 26228 */ 26229 if (tcp->tcp_ipversion == IPV6_VERSION) { 26230 tcp->tcp_ip6h->ip6_src = v6addr; 26231 } else { 26232 IN6_V4MAPPED_TO_IPADDR(&v6addr, tcp->tcp_ipha->ipha_src); 26233 } 26234 tcp->tcp_ip_src_v6 = v6addr; 26235 26236 bind_to_req_port_only = requested_port != 0 && bind_to_req_port_only; 26237 26238 error = tcp_bind_select_lport(tcp, &requested_port, 26239 bind_to_req_port_only, cr); 26240 26241 return (error); 26242 } 26243 26244 /* 26245 * Return unix error is tli error is TSYSERR, otherwise return a negative 26246 * tli error. 26247 */ 26248 int 26249 tcp_do_bind(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr, 26250 boolean_t bind_to_req_port_only) 26251 { 26252 int error; 26253 tcp_t *tcp = connp->conn_tcp; 26254 26255 if (tcp->tcp_state >= TCPS_BOUND) { 26256 if (tcp->tcp_debug) { 26257 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 26258 "tcp_bind: bad state, %d", tcp->tcp_state); 26259 } 26260 return (-TOUTSTATE); 26261 } 26262 26263 error = tcp_bind_check(connp, sa, len, cr, bind_to_req_port_only); 26264 if (error != 0) 26265 return (error); 26266 26267 ASSERT(tcp->tcp_state == TCPS_BOUND); 26268 26269 tcp->tcp_conn_req_max = 0; 26270 26271 if (tcp->tcp_family == AF_INET6) { 26272 ASSERT(tcp->tcp_connp->conn_af_isv6); 26273 error = ip_proto_bind_laddr_v6(connp, NULL, IPPROTO_TCP, 26274 &tcp->tcp_bound_source_v6, 0, B_FALSE); 26275 } else { 26276 ASSERT(!tcp->tcp_connp->conn_af_isv6); 26277 error = ip_proto_bind_laddr_v4(connp, NULL, IPPROTO_TCP, 26278 tcp->tcp_ipha->ipha_src, 0, B_FALSE); 26279 } 26280 return (tcp_post_ip_bind(tcp, NULL, error, NULL, 0)); 26281 } 26282 26283 int 26284 tcp_bind(sock_lower_handle_t proto_handle, struct sockaddr *sa, 26285 socklen_t len, cred_t *cr) 26286 { 26287 int error; 26288 conn_t *connp = (conn_t *)proto_handle; 26289 squeue_t *sqp = connp->conn_sqp; 26290 26291 /* All Solaris components should pass a cred for this operation. */ 26292 ASSERT(cr != NULL); 26293 26294 ASSERT(sqp != NULL); 26295 ASSERT(connp->conn_upper_handle != NULL); 26296 26297 error = squeue_synch_enter(sqp, connp, NULL); 26298 if (error != 0) { 26299 /* failed to enter */ 26300 return (ENOSR); 26301 } 26302 26303 /* binding to a NULL address really means unbind */ 26304 if (sa == NULL) { 26305 if (connp->conn_tcp->tcp_state < TCPS_LISTEN) 26306 error = tcp_do_unbind(connp); 26307 else 26308 error = EINVAL; 26309 } else { 26310 error = tcp_do_bind(connp, sa, len, cr, B_TRUE); 26311 } 26312 26313 squeue_synch_exit(sqp, connp); 26314 26315 if (error < 0) { 26316 if (error == -TOUTSTATE) 26317 error = EINVAL; 26318 else 26319 error = proto_tlitosyserr(-error); 26320 } 26321 26322 return (error); 26323 } 26324 26325 /* 26326 * If the return value from this function is positive, it's a UNIX error. 26327 * Otherwise, if it's negative, then the absolute value is a TLI error. 26328 * the TPI routine tcp_tpi_connect() is a wrapper function for this. 26329 */ 26330 int 26331 tcp_do_connect(conn_t *connp, const struct sockaddr *sa, socklen_t len, 26332 cred_t *cr, pid_t pid) 26333 { 26334 tcp_t *tcp = connp->conn_tcp; 26335 sin_t *sin = (sin_t *)sa; 26336 sin6_t *sin6 = (sin6_t *)sa; 26337 ipaddr_t *dstaddrp; 26338 in_port_t dstport; 26339 uint_t srcid; 26340 int error = 0; 26341 26342 switch (len) { 26343 default: 26344 /* 26345 * Should never happen 26346 */ 26347 return (EINVAL); 26348 26349 case sizeof (sin_t): 26350 sin = (sin_t *)sa; 26351 if (sin->sin_port == 0) { 26352 return (-TBADADDR); 26353 } 26354 if (tcp->tcp_connp && tcp->tcp_connp->conn_ipv6_v6only) { 26355 return (EAFNOSUPPORT); 26356 } 26357 break; 26358 26359 case sizeof (sin6_t): 26360 sin6 = (sin6_t *)sa; 26361 if (sin6->sin6_port == 0) { 26362 return (-TBADADDR); 26363 } 26364 break; 26365 } 26366 /* 26367 * If we're connecting to an IPv4-mapped IPv6 address, we need to 26368 * make sure that the template IP header in the tcp structure is an 26369 * IPv4 header, and that the tcp_ipversion is IPV4_VERSION. We 26370 * need to this before we call tcp_bindi() so that the port lookup 26371 * code will look for ports in the correct port space (IPv4 and 26372 * IPv6 have separate port spaces). 26373 */ 26374 if (tcp->tcp_family == AF_INET6 && tcp->tcp_ipversion == IPV6_VERSION && 26375 IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 26376 int err = 0; 26377 26378 err = tcp_header_init_ipv4(tcp); 26379 if (err != 0) { 26380 error = ENOMEM; 26381 goto connect_failed; 26382 } 26383 if (tcp->tcp_lport != 0) 26384 *(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport; 26385 } 26386 26387 switch (tcp->tcp_state) { 26388 case TCPS_LISTEN: 26389 /* 26390 * Listening sockets are not allowed to issue connect(). 26391 */ 26392 if (IPCL_IS_NONSTR(connp)) 26393 return (EOPNOTSUPP); 26394 /* FALLTHRU */ 26395 case TCPS_IDLE: 26396 /* 26397 * We support quick connect, refer to comments in 26398 * tcp_connect_*() 26399 */ 26400 /* FALLTHRU */ 26401 case TCPS_BOUND: 26402 if (tcp->tcp_family == AF_INET6) { 26403 if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 26404 return (tcp_connect_ipv6(tcp, 26405 &sin6->sin6_addr, 26406 sin6->sin6_port, sin6->sin6_flowinfo, 26407 sin6->__sin6_src_id, sin6->sin6_scope_id, 26408 cr, pid)); 26409 } 26410 /* 26411 * Destination adress is mapped IPv6 address. 26412 * Source bound address should be unspecified or 26413 * IPv6 mapped address as well. 26414 */ 26415 if (!IN6_IS_ADDR_UNSPECIFIED( 26416 &tcp->tcp_bound_source_v6) && 26417 !IN6_IS_ADDR_V4MAPPED(&tcp->tcp_bound_source_v6)) { 26418 return (EADDRNOTAVAIL); 26419 } 26420 dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr)); 26421 dstport = sin6->sin6_port; 26422 srcid = sin6->__sin6_src_id; 26423 } else { 26424 dstaddrp = &sin->sin_addr.s_addr; 26425 dstport = sin->sin_port; 26426 srcid = 0; 26427 } 26428 26429 error = tcp_connect_ipv4(tcp, dstaddrp, dstport, srcid, cr, 26430 pid); 26431 break; 26432 default: 26433 return (-TOUTSTATE); 26434 } 26435 /* 26436 * Note: Code below is the "failure" case 26437 */ 26438 connect_failed: 26439 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 26440 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 26441 return (error); 26442 } 26443 26444 int 26445 tcp_connect(sock_lower_handle_t proto_handle, const struct sockaddr *sa, 26446 socklen_t len, sock_connid_t *id, cred_t *cr) 26447 { 26448 conn_t *connp = (conn_t *)proto_handle; 26449 tcp_t *tcp = connp->conn_tcp; 26450 squeue_t *sqp = connp->conn_sqp; 26451 int error; 26452 26453 ASSERT(connp->conn_upper_handle != NULL); 26454 26455 /* All Solaris components should pass a cred for this operation. */ 26456 ASSERT(cr != NULL); 26457 26458 error = proto_verify_ip_addr(tcp->tcp_family, sa, len); 26459 if (error != 0) { 26460 return (error); 26461 } 26462 26463 error = squeue_synch_enter(sqp, connp, NULL); 26464 if (error != 0) { 26465 /* failed to enter */ 26466 return (ENOSR); 26467 } 26468 26469 /* 26470 * TCP supports quick connect, so no need to do an implicit bind 26471 */ 26472 error = tcp_do_connect(connp, sa, len, cr, curproc->p_pid); 26473 if (error == 0) { 26474 *id = connp->conn_tcp->tcp_connid; 26475 } else if (error < 0) { 26476 if (error == -TOUTSTATE) { 26477 switch (connp->conn_tcp->tcp_state) { 26478 case TCPS_SYN_SENT: 26479 error = EALREADY; 26480 break; 26481 case TCPS_ESTABLISHED: 26482 error = EISCONN; 26483 break; 26484 case TCPS_LISTEN: 26485 error = EOPNOTSUPP; 26486 break; 26487 default: 26488 error = EINVAL; 26489 break; 26490 } 26491 } else { 26492 error = proto_tlitosyserr(-error); 26493 } 26494 } 26495 26496 if (tcp->tcp_loopback) { 26497 struct sock_proto_props sopp; 26498 26499 sopp.sopp_flags = SOCKOPT_LOOPBACK; 26500 sopp.sopp_loopback = B_TRUE; 26501 26502 (*connp->conn_upcalls->su_set_proto_props)( 26503 connp->conn_upper_handle, &sopp); 26504 } 26505 done: 26506 squeue_synch_exit(sqp, connp); 26507 26508 return ((error == 0) ? EINPROGRESS : error); 26509 } 26510 26511 /* ARGSUSED */ 26512 sock_lower_handle_t 26513 tcp_create(int family, int type, int proto, sock_downcalls_t **sock_downcalls, 26514 uint_t *smodep, int *errorp, int flags, cred_t *credp) 26515 { 26516 conn_t *connp; 26517 boolean_t isv6 = family == AF_INET6; 26518 if (type != SOCK_STREAM || (family != AF_INET && family != AF_INET6) || 26519 (proto != 0 && proto != IPPROTO_TCP)) { 26520 *errorp = EPROTONOSUPPORT; 26521 return (NULL); 26522 } 26523 26524 connp = tcp_create_common(NULL, credp, isv6, B_TRUE, errorp); 26525 if (connp == NULL) { 26526 return (NULL); 26527 } 26528 26529 /* 26530 * Put the ref for TCP. Ref for IP was already put 26531 * by ipcl_conn_create. Also Make the conn_t globally 26532 * visible to walkers 26533 */ 26534 mutex_enter(&connp->conn_lock); 26535 CONN_INC_REF_LOCKED(connp); 26536 ASSERT(connp->conn_ref == 2); 26537 connp->conn_state_flags &= ~CONN_INCIPIENT; 26538 26539 connp->conn_flags |= IPCL_NONSTR; 26540 mutex_exit(&connp->conn_lock); 26541 26542 ASSERT(errorp != NULL); 26543 *errorp = 0; 26544 *sock_downcalls = &sock_tcp_downcalls; 26545 *smodep = SM_CONNREQUIRED | SM_EXDATA | SM_ACCEPTSUPP | 26546 SM_SENDFILESUPP; 26547 26548 return ((sock_lower_handle_t)connp); 26549 } 26550 26551 /* ARGSUSED */ 26552 void 26553 tcp_activate(sock_lower_handle_t proto_handle, sock_upper_handle_t sock_handle, 26554 sock_upcalls_t *sock_upcalls, int flags, cred_t *cr) 26555 { 26556 conn_t *connp = (conn_t *)proto_handle; 26557 struct sock_proto_props sopp; 26558 26559 ASSERT(connp->conn_upper_handle == NULL); 26560 26561 /* All Solaris components should pass a cred for this operation. */ 26562 ASSERT(cr != NULL); 26563 26564 sopp.sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_RCVLOWAT | 26565 SOCKOPT_MAXPSZ | SOCKOPT_MAXBLK | SOCKOPT_RCVTIMER | 26566 SOCKOPT_RCVTHRESH | SOCKOPT_MAXADDRLEN | SOCKOPT_MINPSZ; 26567 26568 sopp.sopp_rxhiwat = SOCKET_RECVHIWATER; 26569 sopp.sopp_rxlowat = SOCKET_RECVLOWATER; 26570 sopp.sopp_maxpsz = INFPSZ; 26571 sopp.sopp_maxblk = INFPSZ; 26572 sopp.sopp_rcvtimer = SOCKET_TIMER_INTERVAL; 26573 sopp.sopp_rcvthresh = SOCKET_RECVHIWATER >> 3; 26574 sopp.sopp_maxaddrlen = sizeof (sin6_t); 26575 sopp.sopp_minpsz = (tcp_rinfo.mi_minpsz == 1) ? 0 : 26576 tcp_rinfo.mi_minpsz; 26577 26578 connp->conn_upcalls = sock_upcalls; 26579 connp->conn_upper_handle = sock_handle; 26580 26581 ASSERT(connp->conn_tcp->tcp_recv_hiwater != 0 && 26582 connp->conn_tcp->tcp_recv_hiwater == connp->conn_tcp->tcp_rwnd); 26583 (*sock_upcalls->su_set_proto_props)(sock_handle, &sopp); 26584 } 26585 26586 /* ARGSUSED */ 26587 int 26588 tcp_close(sock_lower_handle_t proto_handle, int flags, cred_t *cr) 26589 { 26590 conn_t *connp = (conn_t *)proto_handle; 26591 26592 ASSERT(connp->conn_upper_handle != NULL); 26593 26594 /* All Solaris components should pass a cred for this operation. */ 26595 ASSERT(cr != NULL); 26596 26597 tcp_close_common(connp, flags); 26598 26599 ip_free_helper_stream(connp); 26600 26601 /* 26602 * Drop IP's reference on the conn. This is the last reference 26603 * on the connp if the state was less than established. If the 26604 * connection has gone into timewait state, then we will have 26605 * one ref for the TCP and one more ref (total of two) for the 26606 * classifier connected hash list (a timewait connections stays 26607 * in connected hash till closed). 26608 * 26609 * We can't assert the references because there might be other 26610 * transient reference places because of some walkers or queued 26611 * packets in squeue for the timewait state. 26612 */ 26613 CONN_DEC_REF(connp); 26614 return (0); 26615 } 26616 26617 /* ARGSUSED */ 26618 int 26619 tcp_sendmsg(sock_lower_handle_t proto_handle, mblk_t *mp, struct nmsghdr *msg, 26620 cred_t *cr) 26621 { 26622 tcp_t *tcp; 26623 uint32_t msize; 26624 conn_t *connp = (conn_t *)proto_handle; 26625 int32_t tcpstate; 26626 26627 /* All Solaris components should pass a cred for this operation. */ 26628 ASSERT(cr != NULL); 26629 26630 ASSERT(connp->conn_ref >= 2); 26631 ASSERT(connp->conn_upper_handle != NULL); 26632 26633 if (msg->msg_controllen != 0) { 26634 freemsg(mp); 26635 return (EOPNOTSUPP); 26636 } 26637 26638 switch (DB_TYPE(mp)) { 26639 case M_DATA: 26640 tcp = connp->conn_tcp; 26641 ASSERT(tcp != NULL); 26642 26643 tcpstate = tcp->tcp_state; 26644 if (tcpstate < TCPS_ESTABLISHED) { 26645 freemsg(mp); 26646 /* 26647 * We return ENOTCONN if the endpoint is trying to 26648 * connect or has never been connected, and EPIPE if it 26649 * has been disconnected. The connection id helps us 26650 * distinguish between the last two cases. 26651 */ 26652 return ((tcpstate == TCPS_SYN_SENT) ? ENOTCONN : 26653 ((tcp->tcp_connid > 0) ? EPIPE : ENOTCONN)); 26654 } else if (tcpstate > TCPS_CLOSE_WAIT) { 26655 freemsg(mp); 26656 return (EPIPE); 26657 } 26658 26659 msize = msgdsize(mp); 26660 26661 mutex_enter(&tcp->tcp_non_sq_lock); 26662 tcp->tcp_squeue_bytes += msize; 26663 /* 26664 * Squeue Flow Control 26665 */ 26666 if (TCP_UNSENT_BYTES(tcp) > tcp->tcp_xmit_hiwater) { 26667 tcp_setqfull(tcp); 26668 } 26669 mutex_exit(&tcp->tcp_non_sq_lock); 26670 26671 /* 26672 * The application may pass in an address in the msghdr, but 26673 * we ignore the address on connection-oriented sockets. 26674 * Just like BSD this code does not generate an error for 26675 * TCP (a CONNREQUIRED socket) when sending to an address 26676 * passed in with sendto/sendmsg. Instead the data is 26677 * delivered on the connection as if no address had been 26678 * supplied. 26679 */ 26680 CONN_INC_REF(connp); 26681 26682 if (msg->msg_flags & MSG_OOB) { 26683 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 26684 tcp_output_urgent, connp, tcp_squeue_flag, 26685 SQTAG_TCP_OUTPUT); 26686 } else { 26687 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_output, 26688 connp, tcp_squeue_flag, SQTAG_TCP_OUTPUT); 26689 } 26690 26691 return (0); 26692 26693 default: 26694 ASSERT(0); 26695 } 26696 26697 freemsg(mp); 26698 return (0); 26699 } 26700 26701 /* ARGSUSED */ 26702 void 26703 tcp_output_urgent(void *arg, mblk_t *mp, void *arg2) 26704 { 26705 int len; 26706 uint32_t msize; 26707 conn_t *connp = (conn_t *)arg; 26708 tcp_t *tcp = connp->conn_tcp; 26709 26710 msize = msgdsize(mp); 26711 26712 len = msize - 1; 26713 if (len < 0) { 26714 freemsg(mp); 26715 return; 26716 } 26717 26718 /* 26719 * Try to force urgent data out on the wire. Even if we have unsent 26720 * data this will at least send the urgent flag. 26721 * XXX does not handle more flag correctly. 26722 */ 26723 len += tcp->tcp_unsent; 26724 len += tcp->tcp_snxt; 26725 tcp->tcp_urg = len; 26726 tcp->tcp_valid_bits |= TCP_URG_VALID; 26727 26728 /* Bypass tcp protocol for fused tcp loopback */ 26729 if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize)) 26730 return; 26731 26732 /* Strip off the T_EXDATA_REQ if the data is from TPI */ 26733 if (DB_TYPE(mp) != M_DATA) { 26734 mblk_t *mp1 = mp; 26735 ASSERT(!IPCL_IS_NONSTR(connp)); 26736 mp = mp->b_cont; 26737 freeb(mp1); 26738 } 26739 tcp_wput_data(tcp, mp, B_TRUE); 26740 } 26741 26742 /* ARGSUSED */ 26743 int 26744 tcp_getpeername(sock_lower_handle_t proto_handle, struct sockaddr *addr, 26745 socklen_t *addrlenp, cred_t *cr) 26746 { 26747 conn_t *connp = (conn_t *)proto_handle; 26748 tcp_t *tcp = connp->conn_tcp; 26749 26750 ASSERT(connp->conn_upper_handle != NULL); 26751 /* All Solaris components should pass a cred for this operation. */ 26752 ASSERT(cr != NULL); 26753 26754 ASSERT(tcp != NULL); 26755 26756 return (tcp_do_getpeername(tcp, addr, addrlenp)); 26757 } 26758 26759 /* ARGSUSED */ 26760 int 26761 tcp_getsockname(sock_lower_handle_t proto_handle, struct sockaddr *addr, 26762 socklen_t *addrlenp, cred_t *cr) 26763 { 26764 conn_t *connp = (conn_t *)proto_handle; 26765 tcp_t *tcp = connp->conn_tcp; 26766 26767 /* All Solaris components should pass a cred for this operation. */ 26768 ASSERT(cr != NULL); 26769 26770 ASSERT(connp->conn_upper_handle != NULL); 26771 26772 return (tcp_do_getsockname(tcp, addr, addrlenp)); 26773 } 26774 26775 /* 26776 * tcp_fallback 26777 * 26778 * A direct socket is falling back to using STREAMS. The queue 26779 * that is being passed down was created using tcp_open() with 26780 * the SO_FALLBACK flag set. As a result, the queue is not 26781 * associated with a conn, and the q_ptrs instead contain the 26782 * dev and minor area that should be used. 26783 * 26784 * The 'issocket' flag indicates whether the FireEngine 26785 * optimizations should be used. The common case would be that 26786 * optimizations are enabled, and they might be subsequently 26787 * disabled using the _SIOCSOCKFALLBACK ioctl. 26788 */ 26789 26790 /* 26791 * An active connection is falling back to TPI. Gather all the information 26792 * required by the STREAM head and TPI sonode and send it up. 26793 */ 26794 void 26795 tcp_fallback_noneager(tcp_t *tcp, mblk_t *stropt_mp, queue_t *q, 26796 boolean_t issocket, so_proto_quiesced_cb_t quiesced_cb) 26797 { 26798 conn_t *connp = tcp->tcp_connp; 26799 struct stroptions *stropt; 26800 struct T_capability_ack tca; 26801 struct sockaddr_in6 laddr, faddr; 26802 socklen_t laddrlen, faddrlen; 26803 short opts; 26804 int error; 26805 mblk_t *mp; 26806 26807 connp->conn_dev = (dev_t)RD(q)->q_ptr; 26808 connp->conn_minor_arena = WR(q)->q_ptr; 26809 26810 RD(q)->q_ptr = WR(q)->q_ptr = connp; 26811 26812 connp->conn_tcp->tcp_rq = connp->conn_rq = RD(q); 26813 connp->conn_tcp->tcp_wq = connp->conn_wq = WR(q); 26814 26815 WR(q)->q_qinfo = &tcp_sock_winit; 26816 26817 if (!issocket) 26818 tcp_use_pure_tpi(tcp); 26819 26820 /* 26821 * free the helper stream 26822 */ 26823 ip_free_helper_stream(connp); 26824 26825 /* 26826 * Notify the STREAM head about options 26827 */ 26828 DB_TYPE(stropt_mp) = M_SETOPTS; 26829 stropt = (struct stroptions *)stropt_mp->b_rptr; 26830 stropt_mp->b_wptr += sizeof (struct stroptions); 26831 stropt->so_flags = SO_HIWAT | SO_WROFF | SO_MAXBLK; 26832 26833 stropt->so_wroff = tcp->tcp_hdr_len + (tcp->tcp_loopback ? 0 : 26834 tcp->tcp_tcps->tcps_wroff_xtra); 26835 if (tcp->tcp_snd_sack_ok) 26836 stropt->so_wroff += TCPOPT_MAX_SACK_LEN; 26837 stropt->so_hiwat = tcp->tcp_recv_hiwater; 26838 stropt->so_maxblk = tcp_maxpsz_set(tcp, B_FALSE); 26839 26840 putnext(RD(q), stropt_mp); 26841 26842 /* 26843 * Collect the information needed to sync with the sonode 26844 */ 26845 tcp_do_capability_ack(tcp, &tca, TC1_INFO|TC1_ACCEPTOR_ID); 26846 26847 laddrlen = faddrlen = sizeof (sin6_t); 26848 (void) tcp_do_getsockname(tcp, (struct sockaddr *)&laddr, &laddrlen); 26849 error = tcp_do_getpeername(tcp, (struct sockaddr *)&faddr, &faddrlen); 26850 if (error != 0) 26851 faddrlen = 0; 26852 26853 opts = 0; 26854 if (tcp->tcp_oobinline) 26855 opts |= SO_OOBINLINE; 26856 if (tcp->tcp_dontroute) 26857 opts |= SO_DONTROUTE; 26858 26859 /* 26860 * Notify the socket that the protocol is now quiescent, 26861 * and it's therefore safe move data from the socket 26862 * to the stream head. 26863 */ 26864 (*quiesced_cb)(connp->conn_upper_handle, q, &tca, 26865 (struct sockaddr *)&laddr, laddrlen, 26866 (struct sockaddr *)&faddr, faddrlen, opts); 26867 26868 while ((mp = tcp->tcp_rcv_list) != NULL) { 26869 tcp->tcp_rcv_list = mp->b_next; 26870 mp->b_next = NULL; 26871 putnext(q, mp); 26872 } 26873 tcp->tcp_rcv_last_head = NULL; 26874 tcp->tcp_rcv_last_tail = NULL; 26875 tcp->tcp_rcv_cnt = 0; 26876 } 26877 26878 /* 26879 * An eager is falling back to TPI. All we have to do is send 26880 * up a T_CONN_IND. 26881 */ 26882 void 26883 tcp_fallback_eager(tcp_t *eager, boolean_t direct_sockfs) 26884 { 26885 tcp_t *listener = eager->tcp_listener; 26886 mblk_t *mp = eager->tcp_conn.tcp_eager_conn_ind; 26887 26888 ASSERT(listener != NULL); 26889 ASSERT(mp != NULL); 26890 26891 eager->tcp_conn.tcp_eager_conn_ind = NULL; 26892 26893 /* 26894 * TLI/XTI applications will get confused by 26895 * sending eager as an option since it violates 26896 * the option semantics. So remove the eager as 26897 * option since TLI/XTI app doesn't need it anyway. 26898 */ 26899 if (!direct_sockfs) { 26900 struct T_conn_ind *conn_ind; 26901 26902 conn_ind = (struct T_conn_ind *)mp->b_rptr; 26903 conn_ind->OPT_length = 0; 26904 conn_ind->OPT_offset = 0; 26905 } 26906 26907 /* 26908 * Sockfs guarantees that the listener will not be closed 26909 * during fallback. So we can safely use the listener's queue. 26910 */ 26911 putnext(listener->tcp_rq, mp); 26912 } 26913 26914 int 26915 tcp_fallback(sock_lower_handle_t proto_handle, queue_t *q, 26916 boolean_t direct_sockfs, so_proto_quiesced_cb_t quiesced_cb) 26917 { 26918 tcp_t *tcp; 26919 conn_t *connp = (conn_t *)proto_handle; 26920 int error; 26921 mblk_t *stropt_mp; 26922 mblk_t *ordrel_mp; 26923 26924 tcp = connp->conn_tcp; 26925 26926 stropt_mp = allocb_wait(sizeof (struct stroptions), BPRI_HI, STR_NOSIG, 26927 NULL); 26928 26929 /* Pre-allocate the T_ordrel_ind mblk. */ 26930 ASSERT(tcp->tcp_ordrel_mp == NULL); 26931 ordrel_mp = allocb_wait(sizeof (struct T_ordrel_ind), BPRI_HI, 26932 STR_NOSIG, NULL); 26933 ordrel_mp->b_datap->db_type = M_PROTO; 26934 ((struct T_ordrel_ind *)ordrel_mp->b_rptr)->PRIM_type = T_ORDREL_IND; 26935 ordrel_mp->b_wptr += sizeof (struct T_ordrel_ind); 26936 26937 /* 26938 * Enter the squeue so that no new packets can come in 26939 */ 26940 error = squeue_synch_enter(connp->conn_sqp, connp, NULL); 26941 if (error != 0) { 26942 /* failed to enter, free all the pre-allocated messages. */ 26943 freeb(stropt_mp); 26944 freeb(ordrel_mp); 26945 /* 26946 * We cannot process the eager, so at least send out a 26947 * RST so the peer can reconnect. 26948 */ 26949 if (tcp->tcp_listener != NULL) { 26950 (void) tcp_eager_blowoff(tcp->tcp_listener, 26951 tcp->tcp_conn_req_seqnum); 26952 } 26953 return (ENOMEM); 26954 } 26955 26956 /* 26957 * Both endpoints must be of the same type (either STREAMS or 26958 * non-STREAMS) for fusion to be enabled. So if we are fused, 26959 * we have to unfuse. 26960 */ 26961 if (tcp->tcp_fused) 26962 tcp_unfuse(tcp); 26963 26964 /* 26965 * No longer a direct socket 26966 */ 26967 connp->conn_flags &= ~IPCL_NONSTR; 26968 tcp->tcp_ordrel_mp = ordrel_mp; 26969 26970 if (tcp->tcp_listener != NULL) { 26971 /* The eager will deal with opts when accept() is called */ 26972 freeb(stropt_mp); 26973 tcp_fallback_eager(tcp, direct_sockfs); 26974 } else { 26975 tcp_fallback_noneager(tcp, stropt_mp, q, direct_sockfs, 26976 quiesced_cb); 26977 } 26978 26979 /* 26980 * There should be atleast two ref's (IP + TCP) 26981 */ 26982 ASSERT(connp->conn_ref >= 2); 26983 squeue_synch_exit(connp->conn_sqp, connp); 26984 26985 return (0); 26986 } 26987 26988 /* ARGSUSED */ 26989 static void 26990 tcp_shutdown_output(void *arg, mblk_t *mp, void *arg2) 26991 { 26992 conn_t *connp = (conn_t *)arg; 26993 tcp_t *tcp = connp->conn_tcp; 26994 26995 freemsg(mp); 26996 26997 if (tcp->tcp_fused) 26998 tcp_unfuse(tcp); 26999 27000 if (tcp_xmit_end(tcp) != 0) { 27001 /* 27002 * We were crossing FINs and got a reset from 27003 * the other side. Just ignore it. 27004 */ 27005 if (tcp->tcp_debug) { 27006 (void) strlog(TCP_MOD_ID, 0, 1, 27007 SL_ERROR|SL_TRACE, 27008 "tcp_shutdown_output() out of state %s", 27009 tcp_display(tcp, NULL, DISP_ADDR_AND_PORT)); 27010 } 27011 } 27012 } 27013 27014 /* ARGSUSED */ 27015 int 27016 tcp_shutdown(sock_lower_handle_t proto_handle, int how, cred_t *cr) 27017 { 27018 conn_t *connp = (conn_t *)proto_handle; 27019 tcp_t *tcp = connp->conn_tcp; 27020 27021 ASSERT(connp->conn_upper_handle != NULL); 27022 27023 /* All Solaris components should pass a cred for this operation. */ 27024 ASSERT(cr != NULL); 27025 27026 /* 27027 * X/Open requires that we check the connected state. 27028 */ 27029 if (tcp->tcp_state < TCPS_SYN_SENT) 27030 return (ENOTCONN); 27031 27032 /* shutdown the send side */ 27033 if (how != SHUT_RD) { 27034 mblk_t *bp; 27035 27036 bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL); 27037 CONN_INC_REF(connp); 27038 SQUEUE_ENTER_ONE(connp->conn_sqp, bp, tcp_shutdown_output, 27039 connp, SQ_NODRAIN, SQTAG_TCP_SHUTDOWN_OUTPUT); 27040 27041 (*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle, 27042 SOCK_OPCTL_SHUT_SEND, 0); 27043 } 27044 27045 /* shutdown the recv side */ 27046 if (how != SHUT_WR) 27047 (*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle, 27048 SOCK_OPCTL_SHUT_RECV, 0); 27049 27050 return (0); 27051 } 27052 27053 /* 27054 * SOP_LISTEN() calls into tcp_listen(). 27055 */ 27056 /* ARGSUSED */ 27057 int 27058 tcp_listen(sock_lower_handle_t proto_handle, int backlog, cred_t *cr) 27059 { 27060 conn_t *connp = (conn_t *)proto_handle; 27061 int error; 27062 squeue_t *sqp = connp->conn_sqp; 27063 27064 ASSERT(connp->conn_upper_handle != NULL); 27065 27066 /* All Solaris components should pass a cred for this operation. */ 27067 ASSERT(cr != NULL); 27068 27069 error = squeue_synch_enter(sqp, connp, NULL); 27070 if (error != 0) { 27071 /* failed to enter */ 27072 return (ENOBUFS); 27073 } 27074 27075 error = tcp_do_listen(connp, NULL, 0, backlog, cr, FALSE); 27076 if (error == 0) { 27077 (*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle, 27078 SOCK_OPCTL_ENAB_ACCEPT, (uintptr_t)backlog); 27079 } else if (error < 0) { 27080 if (error == -TOUTSTATE) 27081 error = EINVAL; 27082 else 27083 error = proto_tlitosyserr(-error); 27084 } 27085 squeue_synch_exit(sqp, connp); 27086 return (error); 27087 } 27088 27089 static int 27090 tcp_do_listen(conn_t *connp, struct sockaddr *sa, socklen_t len, 27091 int backlog, cred_t *cr, boolean_t bind_to_req_port_only) 27092 { 27093 tcp_t *tcp = connp->conn_tcp; 27094 int error = 0; 27095 tcp_stack_t *tcps = tcp->tcp_tcps; 27096 27097 /* All Solaris components should pass a cred for this operation. */ 27098 ASSERT(cr != NULL); 27099 27100 if (tcp->tcp_state >= TCPS_BOUND) { 27101 if ((tcp->tcp_state == TCPS_BOUND || 27102 tcp->tcp_state == TCPS_LISTEN) && backlog > 0) { 27103 /* 27104 * Handle listen() increasing backlog. 27105 * This is more "liberal" then what the TPI spec 27106 * requires but is needed to avoid a t_unbind 27107 * when handling listen() since the port number 27108 * might be "stolen" between the unbind and bind. 27109 */ 27110 goto do_listen; 27111 } 27112 if (tcp->tcp_debug) { 27113 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 27114 "tcp_listen: bad state, %d", tcp->tcp_state); 27115 } 27116 return (-TOUTSTATE); 27117 } else { 27118 if (sa == NULL) { 27119 sin6_t addr; 27120 sin_t *sin; 27121 sin6_t *sin6; 27122 27123 ASSERT(IPCL_IS_NONSTR(connp)); 27124 27125 /* Do an implicit bind: Request for a generic port. */ 27126 if (tcp->tcp_family == AF_INET) { 27127 len = sizeof (sin_t); 27128 sin = (sin_t *)&addr; 27129 *sin = sin_null; 27130 sin->sin_family = AF_INET; 27131 } else { 27132 ASSERT(tcp->tcp_family == AF_INET6); 27133 len = sizeof (sin6_t); 27134 sin6 = (sin6_t *)&addr; 27135 *sin6 = sin6_null; 27136 sin6->sin6_family = AF_INET6; 27137 } 27138 sa = (struct sockaddr *)&addr; 27139 } 27140 27141 error = tcp_bind_check(connp, sa, len, cr, 27142 bind_to_req_port_only); 27143 if (error) 27144 return (error); 27145 /* Fall through and do the fanout insertion */ 27146 } 27147 27148 do_listen: 27149 ASSERT(tcp->tcp_state == TCPS_BOUND || tcp->tcp_state == TCPS_LISTEN); 27150 tcp->tcp_conn_req_max = backlog; 27151 if (tcp->tcp_conn_req_max) { 27152 if (tcp->tcp_conn_req_max < tcps->tcps_conn_req_min) 27153 tcp->tcp_conn_req_max = tcps->tcps_conn_req_min; 27154 if (tcp->tcp_conn_req_max > tcps->tcps_conn_req_max_q) 27155 tcp->tcp_conn_req_max = tcps->tcps_conn_req_max_q; 27156 /* 27157 * If this is a listener, do not reset the eager list 27158 * and other stuffs. Note that we don't check if the 27159 * existing eager list meets the new tcp_conn_req_max 27160 * requirement. 27161 */ 27162 if (tcp->tcp_state != TCPS_LISTEN) { 27163 tcp->tcp_state = TCPS_LISTEN; 27164 /* Initialize the chain. Don't need the eager_lock */ 27165 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 27166 tcp->tcp_eager_next_drop_q0 = tcp; 27167 tcp->tcp_eager_prev_drop_q0 = tcp; 27168 tcp->tcp_second_ctimer_threshold = 27169 tcps->tcps_ip_abort_linterval; 27170 } 27171 } 27172 27173 /* 27174 * We can call ip_bind directly, the processing continues 27175 * in tcp_post_ip_bind(). 27176 * 27177 * We need to make sure that the conn_recv is set to a non-null 27178 * value before we insert the conn into the classifier table. 27179 * This is to avoid a race with an incoming packet which does an 27180 * ipcl_classify(). 27181 */ 27182 connp->conn_recv = tcp_conn_request; 27183 if (tcp->tcp_family == AF_INET) { 27184 error = ip_proto_bind_laddr_v4(connp, NULL, 27185 IPPROTO_TCP, tcp->tcp_bound_source, tcp->tcp_lport, B_TRUE); 27186 } else { 27187 error = ip_proto_bind_laddr_v6(connp, NULL, IPPROTO_TCP, 27188 &tcp->tcp_bound_source_v6, tcp->tcp_lport, B_TRUE); 27189 } 27190 return (tcp_post_ip_bind(tcp, NULL, error, NULL, 0)); 27191 } 27192 27193 void 27194 tcp_clr_flowctrl(sock_lower_handle_t proto_handle) 27195 { 27196 conn_t *connp = (conn_t *)proto_handle; 27197 tcp_t *tcp = connp->conn_tcp; 27198 mblk_t *mp; 27199 int error; 27200 27201 ASSERT(connp->conn_upper_handle != NULL); 27202 27203 /* 27204 * If tcp->tcp_rsrv_mp == NULL, it means that tcp_clr_flowctrl() 27205 * is currently running. 27206 */ 27207 mutex_enter(&tcp->tcp_rsrv_mp_lock); 27208 if ((mp = tcp->tcp_rsrv_mp) == NULL) { 27209 mutex_exit(&tcp->tcp_rsrv_mp_lock); 27210 return; 27211 } 27212 tcp->tcp_rsrv_mp = NULL; 27213 mutex_exit(&tcp->tcp_rsrv_mp_lock); 27214 27215 error = squeue_synch_enter(connp->conn_sqp, connp, mp); 27216 ASSERT(error == 0); 27217 27218 mutex_enter(&tcp->tcp_rsrv_mp_lock); 27219 tcp->tcp_rsrv_mp = mp; 27220 mutex_exit(&tcp->tcp_rsrv_mp_lock); 27221 27222 if (tcp->tcp_fused) { 27223 tcp_fuse_backenable(tcp); 27224 } else { 27225 tcp->tcp_rwnd = tcp->tcp_recv_hiwater; 27226 /* 27227 * Send back a window update immediately if TCP is above 27228 * ESTABLISHED state and the increase of the rcv window 27229 * that the other side knows is at least 1 MSS after flow 27230 * control is lifted. 27231 */ 27232 if (tcp->tcp_state >= TCPS_ESTABLISHED && 27233 tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) { 27234 tcp_xmit_ctl(NULL, tcp, 27235 (tcp->tcp_swnd == 0) ? tcp->tcp_suna : 27236 tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 27237 } 27238 } 27239 27240 squeue_synch_exit(connp->conn_sqp, connp); 27241 } 27242 27243 /* ARGSUSED */ 27244 int 27245 tcp_ioctl(sock_lower_handle_t proto_handle, int cmd, intptr_t arg, 27246 int mode, int32_t *rvalp, cred_t *cr) 27247 { 27248 conn_t *connp = (conn_t *)proto_handle; 27249 int error; 27250 27251 ASSERT(connp->conn_upper_handle != NULL); 27252 27253 /* All Solaris components should pass a cred for this operation. */ 27254 ASSERT(cr != NULL); 27255 27256 switch (cmd) { 27257 case ND_SET: 27258 case ND_GET: 27259 case TCP_IOC_DEFAULT_Q: 27260 case _SIOCSOCKFALLBACK: 27261 case TCP_IOC_ABORT_CONN: 27262 case TI_GETPEERNAME: 27263 case TI_GETMYNAME: 27264 ip1dbg(("tcp_ioctl: cmd 0x%x on non sreams socket", 27265 cmd)); 27266 error = EINVAL; 27267 break; 27268 default: 27269 /* 27270 * Pass on to IP using helper stream 27271 */ 27272 error = ldi_ioctl(connp->conn_helper_info->iphs_handle, 27273 cmd, arg, mode, cr, rvalp); 27274 break; 27275 } 27276 return (error); 27277 } 27278 27279 sock_downcalls_t sock_tcp_downcalls = { 27280 tcp_activate, 27281 tcp_accept, 27282 tcp_bind, 27283 tcp_listen, 27284 tcp_connect, 27285 tcp_getpeername, 27286 tcp_getsockname, 27287 tcp_getsockopt, 27288 tcp_setsockopt, 27289 tcp_sendmsg, 27290 NULL, 27291 NULL, 27292 NULL, 27293 tcp_shutdown, 27294 tcp_clr_flowctrl, 27295 tcp_ioctl, 27296 tcp_close, 27297 }; 27298