1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #pragma ident "%Z%%M% %I% %E% SMI" 29 const char tcp_version[] = "%Z%%M% %I% %E% SMI"; 30 31 32 #include <sys/types.h> 33 #include <sys/stream.h> 34 #include <sys/strsun.h> 35 #include <sys/strsubr.h> 36 #include <sys/stropts.h> 37 #include <sys/strlog.h> 38 #include <sys/strsun.h> 39 #define _SUN_TPI_VERSION 2 40 #include <sys/tihdr.h> 41 #include <sys/timod.h> 42 #include <sys/ddi.h> 43 #include <sys/sunddi.h> 44 #include <sys/suntpi.h> 45 #include <sys/xti_inet.h> 46 #include <sys/cmn_err.h> 47 #include <sys/debug.h> 48 #include <sys/sdt.h> 49 #include <sys/vtrace.h> 50 #include <sys/kmem.h> 51 #include <sys/ethernet.h> 52 #include <sys/cpuvar.h> 53 #include <sys/dlpi.h> 54 #include <sys/multidata.h> 55 #include <sys/multidata_impl.h> 56 #include <sys/pattr.h> 57 #include <sys/policy.h> 58 #include <sys/priv.h> 59 #include <sys/zone.h> 60 #include <sys/sunldi.h> 61 62 #include <sys/errno.h> 63 #include <sys/signal.h> 64 #include <sys/socket.h> 65 #include <sys/sockio.h> 66 #include <sys/isa_defs.h> 67 #include <sys/md5.h> 68 #include <sys/random.h> 69 #include <netinet/in.h> 70 #include <netinet/tcp.h> 71 #include <netinet/ip6.h> 72 #include <netinet/icmp6.h> 73 #include <net/if.h> 74 #include <net/route.h> 75 #include <inet/ipsec_impl.h> 76 77 #include <inet/common.h> 78 #include <inet/ip.h> 79 #include <inet/ip_impl.h> 80 #include <inet/ip6.h> 81 #include <inet/ip_ndp.h> 82 #include <inet/mi.h> 83 #include <inet/mib2.h> 84 #include <inet/nd.h> 85 #include <inet/optcom.h> 86 #include <inet/snmpcom.h> 87 #include <inet/kstatcom.h> 88 #include <inet/tcp.h> 89 #include <inet/tcp_impl.h> 90 #include <net/pfkeyv2.h> 91 #include <inet/ipsec_info.h> 92 #include <inet/ipdrop.h> 93 #include <inet/tcp_trace.h> 94 95 #include <inet/ipclassifier.h> 96 #include <inet/ip_ire.h> 97 #include <inet/ip_ftable.h> 98 #include <inet/ip_if.h> 99 #include <inet/ipp_common.h> 100 #include <inet/ip_netinfo.h> 101 #include <sys/squeue.h> 102 #include <inet/kssl/ksslapi.h> 103 #include <sys/tsol/label.h> 104 #include <sys/tsol/tnet.h> 105 #include <sys/sdt.h> 106 #include <rpc/pmap_prot.h> 107 108 /* 109 * TCP Notes: aka FireEngine Phase I (PSARC 2002/433) 110 * 111 * (Read the detailed design doc in PSARC case directory) 112 * 113 * The entire tcp state is contained in tcp_t and conn_t structure 114 * which are allocated in tandem using ipcl_conn_create() and passing 115 * IPCL_CONNTCP as a flag. We use 'conn_ref' and 'conn_lock' to protect 116 * the references on the tcp_t. The tcp_t structure is never compressed 117 * and packets always land on the correct TCP perimeter from the time 118 * eager is created till the time tcp_t dies (as such the old mentat 119 * TCP global queue is not used for detached state and no IPSEC checking 120 * is required). The global queue is still allocated to send out resets 121 * for connection which have no listeners and IP directly calls 122 * tcp_xmit_listeners_reset() which does any policy check. 123 * 124 * Protection and Synchronisation mechanism: 125 * 126 * The tcp data structure does not use any kind of lock for protecting 127 * its state but instead uses 'squeues' for mutual exclusion from various 128 * read and write side threads. To access a tcp member, the thread should 129 * always be behind squeue (via squeue_enter, squeue_enter_nodrain, or 130 * squeue_fill). Since the squeues allow a direct function call, caller 131 * can pass any tcp function having prototype of edesc_t as argument 132 * (different from traditional STREAMs model where packets come in only 133 * designated entry points). The list of functions that can be directly 134 * called via squeue are listed before the usual function prototype. 135 * 136 * Referencing: 137 * 138 * TCP is MT-Hot and we use a reference based scheme to make sure that the 139 * tcp structure doesn't disappear when its needed. When the application 140 * creates an outgoing connection or accepts an incoming connection, we 141 * start out with 2 references on 'conn_ref'. One for TCP and one for IP. 142 * The IP reference is just a symbolic reference since ip_tcpclose() 143 * looks at tcp structure after tcp_close_output() returns which could 144 * have dropped the last TCP reference. So as long as the connection is 145 * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the 146 * conn_t. The classifier puts its own reference when the connection is 147 * inserted in listen or connected hash. Anytime a thread needs to enter 148 * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr 149 * on write side or by doing a classify on read side and then puts a 150 * reference on the conn before doing squeue_enter/tryenter/fill. For 151 * read side, the classifier itself puts the reference under fanout lock 152 * to make sure that tcp can't disappear before it gets processed. The 153 * squeue will drop this reference automatically so the called function 154 * doesn't have to do a DEC_REF. 155 * 156 * Opening a new connection: 157 * 158 * The outgoing connection open is pretty simple. tcp_open() does the 159 * work in creating the conn/tcp structure and initializing it. The 160 * squeue assignment is done based on the CPU the application 161 * is running on. So for outbound connections, processing is always done 162 * on application CPU which might be different from the incoming CPU 163 * being interrupted by the NIC. An optimal way would be to figure out 164 * the NIC <-> CPU binding at listen time, and assign the outgoing 165 * connection to the squeue attached to the CPU that will be interrupted 166 * for incoming packets (we know the NIC based on the bind IP address). 167 * This might seem like a problem if more data is going out but the 168 * fact is that in most cases the transmit is ACK driven transmit where 169 * the outgoing data normally sits on TCP's xmit queue waiting to be 170 * transmitted. 171 * 172 * Accepting a connection: 173 * 174 * This is a more interesting case because of various races involved in 175 * establishing a eager in its own perimeter. Read the meta comment on 176 * top of tcp_conn_request(). But briefly, the squeue is picked by 177 * ip_tcp_input()/ip_fanout_tcp_v6() based on the interrupted CPU. 178 * 179 * Closing a connection: 180 * 181 * The close is fairly straight forward. tcp_close() calls tcp_close_output() 182 * via squeue to do the close and mark the tcp as detached if the connection 183 * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its 184 * reference but tcp_close() drop IP's reference always. So if tcp was 185 * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP 186 * and 1 because it is in classifier's connected hash. This is the condition 187 * we use to determine that its OK to clean up the tcp outside of squeue 188 * when time wait expires (check the ref under fanout and conn_lock and 189 * if it is 2, remove it from fanout hash and kill it). 190 * 191 * Although close just drops the necessary references and marks the 192 * tcp_detached state, tcp_close needs to know the tcp_detached has been 193 * set (under squeue) before letting the STREAM go away (because a 194 * inbound packet might attempt to go up the STREAM while the close 195 * has happened and tcp_detached is not set). So a special lock and 196 * flag is used along with a condition variable (tcp_closelock, tcp_closed, 197 * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked 198 * tcp_detached. 199 * 200 * Special provisions and fast paths: 201 * 202 * We make special provision for (AF_INET, SOCK_STREAM) sockets which 203 * can't have 'ipv6_recvpktinfo' set and for these type of sockets, IP 204 * will never send a M_CTL to TCP. As such, ip_tcp_input() which handles 205 * all TCP packets from the wire makes a IPCL_IS_TCP4_CONNECTED_NO_POLICY 206 * check to send packets directly to tcp_rput_data via squeue. Everyone 207 * else comes through tcp_input() on the read side. 208 * 209 * We also make special provisions for sockfs by marking tcp_issocket 210 * whenever we have only sockfs on top of TCP. This allows us to skip 211 * putting the tcp in acceptor hash since a sockfs listener can never 212 * become acceptor and also avoid allocating a tcp_t for acceptor STREAM 213 * since eager has already been allocated and the accept now happens 214 * on acceptor STREAM. There is a big blob of comment on top of 215 * tcp_conn_request explaining the new accept. When socket is POP'd, 216 * sockfs sends us an ioctl to mark the fact and we go back to old 217 * behaviour. Once tcp_issocket is unset, its never set for the 218 * life of that connection. 219 * 220 * IPsec notes : 221 * 222 * Since a packet is always executed on the correct TCP perimeter 223 * all IPsec processing is defered to IP including checking new 224 * connections and setting IPSEC policies for new connection. The 225 * only exception is tcp_xmit_listeners_reset() which is called 226 * directly from IP and needs to policy check to see if TH_RST 227 * can be sent out. 228 * 229 * PFHooks notes : 230 * 231 * For mdt case, one meta buffer contains multiple packets. Mblks for every 232 * packet are assembled and passed to the hooks. When packets are blocked, 233 * or boundary of any packet is changed, the mdt processing is stopped, and 234 * packets of the meta buffer are send to the IP path one by one. 235 */ 236 237 /* 238 * Values for squeue switch: 239 * 1: squeue_enter_nodrain 240 * 2: squeue_enter 241 * 3: squeue_fill 242 */ 243 int tcp_squeue_close = 2; /* Setable in /etc/system */ 244 int tcp_squeue_wput = 2; 245 246 squeue_func_t tcp_squeue_close_proc; 247 squeue_func_t tcp_squeue_wput_proc; 248 249 /* 250 * This controls how tiny a write must be before we try to copy it 251 * into the the mblk on the tail of the transmit queue. Not much 252 * speedup is observed for values larger than sixteen. Zero will 253 * disable the optimisation. 254 */ 255 int tcp_tx_pull_len = 16; 256 257 /* 258 * TCP Statistics. 259 * 260 * How TCP statistics work. 261 * 262 * There are two types of statistics invoked by two macros. 263 * 264 * TCP_STAT(name) does non-atomic increment of a named stat counter. It is 265 * supposed to be used in non MT-hot paths of the code. 266 * 267 * TCP_DBGSTAT(name) does atomic increment of a named stat counter. It is 268 * supposed to be used for DEBUG purposes and may be used on a hot path. 269 * 270 * Both TCP_STAT and TCP_DBGSTAT counters are available using kstat 271 * (use "kstat tcp" to get them). 272 * 273 * There is also additional debugging facility that marks tcp_clean_death() 274 * instances and saves them in tcp_t structure. It is triggered by 275 * TCP_TAG_CLEAN_DEATH define. Also, there is a global array of counters for 276 * tcp_clean_death() calls that counts the number of times each tag was hit. It 277 * is triggered by TCP_CLD_COUNTERS define. 278 * 279 * How to add new counters. 280 * 281 * 1) Add a field in the tcp_stat structure describing your counter. 282 * 2) Add a line in the template in tcp_kstat2_init() with the name 283 * of the counter. 284 * 285 * IMPORTANT!! - make sure that both are in sync !! 286 * 3) Use either TCP_STAT or TCP_DBGSTAT with the name. 287 * 288 * Please avoid using private counters which are not kstat-exported. 289 * 290 * TCP_TAG_CLEAN_DEATH set to 1 enables tagging of tcp_clean_death() instances 291 * in tcp_t structure. 292 * 293 * TCP_MAX_CLEAN_DEATH_TAG is the maximum number of possible clean death tags. 294 */ 295 296 #ifndef TCP_DEBUG_COUNTER 297 #ifdef DEBUG 298 #define TCP_DEBUG_COUNTER 1 299 #else 300 #define TCP_DEBUG_COUNTER 0 301 #endif 302 #endif 303 304 #define TCP_CLD_COUNTERS 0 305 306 #define TCP_TAG_CLEAN_DEATH 1 307 #define TCP_MAX_CLEAN_DEATH_TAG 32 308 309 #ifdef lint 310 static int _lint_dummy_; 311 #endif 312 313 #if TCP_CLD_COUNTERS 314 static uint_t tcp_clean_death_stat[TCP_MAX_CLEAN_DEATH_TAG]; 315 #define TCP_CLD_STAT(x) tcp_clean_death_stat[x]++ 316 #elif defined(lint) 317 #define TCP_CLD_STAT(x) ASSERT(_lint_dummy_ == 0); 318 #else 319 #define TCP_CLD_STAT(x) 320 #endif 321 322 #if TCP_DEBUG_COUNTER 323 #define TCP_DBGSTAT(tcps, x) \ 324 atomic_add_64(&((tcps)->tcps_statistics.x.value.ui64), 1) 325 #define TCP_G_DBGSTAT(x) \ 326 atomic_add_64(&(tcp_g_statistics.x.value.ui64), 1) 327 #elif defined(lint) 328 #define TCP_DBGSTAT(tcps, x) ASSERT(_lint_dummy_ == 0); 329 #define TCP_G_DBGSTAT(x) ASSERT(_lint_dummy_ == 0); 330 #else 331 #define TCP_DBGSTAT(tcps, x) 332 #define TCP_G_DBGSTAT(x) 333 #endif 334 335 #define TCP_G_STAT(x) (tcp_g_statistics.x.value.ui64++) 336 337 tcp_g_stat_t tcp_g_statistics; 338 kstat_t *tcp_g_kstat; 339 340 /* 341 * Call either ip_output or ip_output_v6. This replaces putnext() calls on the 342 * tcp write side. 343 */ 344 #define CALL_IP_WPUT(connp, q, mp) { \ 345 tcp_stack_t *tcps; \ 346 \ 347 tcps = connp->conn_netstack->netstack_tcp; \ 348 ASSERT(((q)->q_flag & QREADR) == 0); \ 349 TCP_DBGSTAT(tcps, tcp_ip_output); \ 350 connp->conn_send(connp, (mp), (q), IP_WPUT); \ 351 } 352 353 /* Macros for timestamp comparisons */ 354 #define TSTMP_GEQ(a, b) ((int32_t)((a)-(b)) >= 0) 355 #define TSTMP_LT(a, b) ((int32_t)((a)-(b)) < 0) 356 357 /* 358 * Parameters for TCP Initial Send Sequence number (ISS) generation. When 359 * tcp_strong_iss is set to 1, which is the default, the ISS is calculated 360 * by adding three components: a time component which grows by 1 every 4096 361 * nanoseconds (versus every 4 microseconds suggested by RFC 793, page 27); 362 * a per-connection component which grows by 125000 for every new connection; 363 * and an "extra" component that grows by a random amount centered 364 * approximately on 64000. This causes the the ISS generator to cycle every 365 * 4.89 hours if no TCP connections are made, and faster if connections are 366 * made. 367 * 368 * When tcp_strong_iss is set to 0, ISS is calculated by adding two 369 * components: a time component which grows by 250000 every second; and 370 * a per-connection component which grows by 125000 for every new connections. 371 * 372 * A third method, when tcp_strong_iss is set to 2, for generating ISS is 373 * prescribed by Steve Bellovin. This involves adding time, the 125000 per 374 * connection, and a one-way hash (MD5) of the connection ID <sport, dport, 375 * src, dst>, a "truly" random (per RFC 1750) number, and a console-entered 376 * password. 377 */ 378 #define ISS_INCR 250000 379 #define ISS_NSEC_SHT 12 380 381 static sin_t sin_null; /* Zero address for quick clears */ 382 static sin6_t sin6_null; /* Zero address for quick clears */ 383 384 /* 385 * This implementation follows the 4.3BSD interpretation of the urgent 386 * pointer and not RFC 1122. Switching to RFC 1122 behavior would cause 387 * incompatible changes in protocols like telnet and rlogin. 388 */ 389 #define TCP_OLD_URP_INTERPRETATION 1 390 391 #define TCP_IS_DETACHED_NONEAGER(tcp) \ 392 (TCP_IS_DETACHED(tcp) && \ 393 (!(tcp)->tcp_hard_binding)) 394 395 /* 396 * TCP reassembly macros. We hide starting and ending sequence numbers in 397 * b_next and b_prev of messages on the reassembly queue. The messages are 398 * chained using b_cont. These macros are used in tcp_reass() so we don't 399 * have to see the ugly casts and assignments. 400 */ 401 #define TCP_REASS_SEQ(mp) ((uint32_t)(uintptr_t)((mp)->b_next)) 402 #define TCP_REASS_SET_SEQ(mp, u) ((mp)->b_next = \ 403 (mblk_t *)(uintptr_t)(u)) 404 #define TCP_REASS_END(mp) ((uint32_t)(uintptr_t)((mp)->b_prev)) 405 #define TCP_REASS_SET_END(mp, u) ((mp)->b_prev = \ 406 (mblk_t *)(uintptr_t)(u)) 407 408 /* 409 * Implementation of TCP Timers. 410 * ============================= 411 * 412 * INTERFACE: 413 * 414 * There are two basic functions dealing with tcp timers: 415 * 416 * timeout_id_t tcp_timeout(connp, func, time) 417 * clock_t tcp_timeout_cancel(connp, timeout_id) 418 * TCP_TIMER_RESTART(tcp, intvl) 419 * 420 * tcp_timeout() starts a timer for the 'tcp' instance arranging to call 'func' 421 * after 'time' ticks passed. The function called by timeout() must adhere to 422 * the same restrictions as a driver soft interrupt handler - it must not sleep 423 * or call other functions that might sleep. The value returned is the opaque 424 * non-zero timeout identifier that can be passed to tcp_timeout_cancel() to 425 * cancel the request. The call to tcp_timeout() may fail in which case it 426 * returns zero. This is different from the timeout(9F) function which never 427 * fails. 428 * 429 * The call-back function 'func' always receives 'connp' as its single 430 * argument. It is always executed in the squeue corresponding to the tcp 431 * structure. The tcp structure is guaranteed to be present at the time the 432 * call-back is called. 433 * 434 * NOTE: The call-back function 'func' is never called if tcp is in 435 * the TCPS_CLOSED state. 436 * 437 * tcp_timeout_cancel() attempts to cancel a pending tcp_timeout() 438 * request. locks acquired by the call-back routine should not be held across 439 * the call to tcp_timeout_cancel() or a deadlock may result. 440 * 441 * tcp_timeout_cancel() returns -1 if it can not cancel the timeout request. 442 * Otherwise, it returns an integer value greater than or equal to 0. In 443 * particular, if the call-back function is already placed on the squeue, it can 444 * not be canceled. 445 * 446 * NOTE: both tcp_timeout() and tcp_timeout_cancel() should always be called 447 * within squeue context corresponding to the tcp instance. Since the 448 * call-back is also called via the same squeue, there are no race 449 * conditions described in untimeout(9F) manual page since all calls are 450 * strictly serialized. 451 * 452 * TCP_TIMER_RESTART() is a macro that attempts to cancel a pending timeout 453 * stored in tcp_timer_tid and starts a new one using 454 * MSEC_TO_TICK(intvl). It always uses tcp_timer() function as a call-back 455 * and stores the return value of tcp_timeout() in the tcp->tcp_timer_tid 456 * field. 457 * 458 * NOTE: since the timeout cancellation is not guaranteed, the cancelled 459 * call-back may still be called, so it is possible tcp_timer() will be 460 * called several times. This should not be a problem since tcp_timer() 461 * should always check the tcp instance state. 462 * 463 * 464 * IMPLEMENTATION: 465 * 466 * TCP timers are implemented using three-stage process. The call to 467 * tcp_timeout() uses timeout(9F) function to call tcp_timer_callback() function 468 * when the timer expires. The tcp_timer_callback() arranges the call of the 469 * tcp_timer_handler() function via squeue corresponding to the tcp 470 * instance. The tcp_timer_handler() calls actual requested timeout call-back 471 * and passes tcp instance as an argument to it. Information is passed between 472 * stages using the tcp_timer_t structure which contains the connp pointer, the 473 * tcp call-back to call and the timeout id returned by the timeout(9F). 474 * 475 * The tcp_timer_t structure is not used directly, it is embedded in an mblk_t - 476 * like structure that is used to enter an squeue. The mp->b_rptr of this pseudo 477 * mblk points to the beginning of tcp_timer_t structure. The tcp_timeout() 478 * returns the pointer to this mblk. 479 * 480 * The pseudo mblk is allocated from a special tcp_timer_cache kmem cache. It 481 * looks like a normal mblk without actual dblk attached to it. 482 * 483 * To optimize performance each tcp instance holds a small cache of timer 484 * mblocks. In the current implementation it caches up to two timer mblocks per 485 * tcp instance. The cache is preserved over tcp frees and is only freed when 486 * the whole tcp structure is destroyed by its kmem destructor. Since all tcp 487 * timer processing happens on a corresponding squeue, the cache manipulation 488 * does not require any locks. Experiments show that majority of timer mblocks 489 * allocations are satisfied from the tcp cache and do not involve kmem calls. 490 * 491 * The tcp_timeout() places a refhold on the connp instance which guarantees 492 * that it will be present at the time the call-back function fires. The 493 * tcp_timer_handler() drops the reference after calling the call-back, so the 494 * call-back function does not need to manipulate the references explicitly. 495 */ 496 497 typedef struct tcp_timer_s { 498 conn_t *connp; 499 void (*tcpt_proc)(void *); 500 timeout_id_t tcpt_tid; 501 } tcp_timer_t; 502 503 static kmem_cache_t *tcp_timercache; 504 kmem_cache_t *tcp_sack_info_cache; 505 kmem_cache_t *tcp_iphc_cache; 506 507 /* 508 * For scalability, we must not run a timer for every TCP connection 509 * in TIME_WAIT state. To see why, consider (for time wait interval of 510 * 4 minutes): 511 * 1000 connections/sec * 240 seconds/time wait = 240,000 active conn's 512 * 513 * This list is ordered by time, so you need only delete from the head 514 * until you get to entries which aren't old enough to delete yet. 515 * The list consists of only the detached TIME_WAIT connections. 516 * 517 * Note that the timer (tcp_time_wait_expire) is started when the tcp_t 518 * becomes detached TIME_WAIT (either by changing the state and already 519 * being detached or the other way around). This means that the TIME_WAIT 520 * state can be extended (up to doubled) if the connection doesn't become 521 * detached for a long time. 522 * 523 * The list manipulations (including tcp_time_wait_next/prev) 524 * are protected by the tcp_time_wait_lock. The content of the 525 * detached TIME_WAIT connections is protected by the normal perimeters. 526 * 527 * This list is per squeue and squeues are shared across the tcp_stack_t's. 528 * Things on tcp_time_wait_head remain associated with the tcp_stack_t 529 * and conn_netstack. 530 * The tcp_t's that are added to tcp_free_list are disassociated and 531 * have NULL tcp_tcps and conn_netstack pointers. 532 */ 533 typedef struct tcp_squeue_priv_s { 534 kmutex_t tcp_time_wait_lock; 535 timeout_id_t tcp_time_wait_tid; 536 tcp_t *tcp_time_wait_head; 537 tcp_t *tcp_time_wait_tail; 538 tcp_t *tcp_free_list; 539 uint_t tcp_free_list_cnt; 540 } tcp_squeue_priv_t; 541 542 /* 543 * TCP_TIME_WAIT_DELAY governs how often the time_wait_collector runs. 544 * Running it every 5 seconds seems to give the best results. 545 */ 546 #define TCP_TIME_WAIT_DELAY drv_usectohz(5000000) 547 548 /* 549 * To prevent memory hog, limit the number of entries in tcp_free_list 550 * to 1% of available memory / number of cpus 551 */ 552 uint_t tcp_free_list_max_cnt = 0; 553 554 #define TCP_XMIT_LOWATER 4096 555 #define TCP_XMIT_HIWATER 49152 556 #define TCP_RECV_LOWATER 2048 557 #define TCP_RECV_HIWATER 49152 558 559 /* 560 * PAWS needs a timer for 24 days. This is the number of ticks in 24 days 561 */ 562 #define PAWS_TIMEOUT ((clock_t)(24*24*60*60*hz)) 563 564 #define TIDUSZ 4096 /* transport interface data unit size */ 565 566 /* 567 * Bind hash list size and has function. It has to be a power of 2 for 568 * hashing. 569 */ 570 #define TCP_BIND_FANOUT_SIZE 512 571 #define TCP_BIND_HASH(lport) (ntohs(lport) & (TCP_BIND_FANOUT_SIZE - 1)) 572 /* 573 * Size of listen and acceptor hash list. It has to be a power of 2 for 574 * hashing. 575 */ 576 #define TCP_FANOUT_SIZE 256 577 578 #ifdef _ILP32 579 #define TCP_ACCEPTOR_HASH(accid) \ 580 (((uint_t)(accid) >> 8) & (TCP_FANOUT_SIZE - 1)) 581 #else 582 #define TCP_ACCEPTOR_HASH(accid) \ 583 ((uint_t)(accid) & (TCP_FANOUT_SIZE - 1)) 584 #endif /* _ILP32 */ 585 586 #define IP_ADDR_CACHE_SIZE 2048 587 #define IP_ADDR_CACHE_HASH(faddr) \ 588 (ntohl(faddr) & (IP_ADDR_CACHE_SIZE -1)) 589 590 /* Hash for HSPs uses all 32 bits, since both networks and hosts are in table */ 591 #define TCP_HSP_HASH_SIZE 256 592 593 #define TCP_HSP_HASH(addr) \ 594 (((addr>>24) ^ (addr >>16) ^ \ 595 (addr>>8) ^ (addr)) % TCP_HSP_HASH_SIZE) 596 597 /* 598 * TCP options struct returned from tcp_parse_options. 599 */ 600 typedef struct tcp_opt_s { 601 uint32_t tcp_opt_mss; 602 uint32_t tcp_opt_wscale; 603 uint32_t tcp_opt_ts_val; 604 uint32_t tcp_opt_ts_ecr; 605 tcp_t *tcp; 606 } tcp_opt_t; 607 608 /* 609 * RFC1323-recommended phrasing of TSTAMP option, for easier parsing 610 */ 611 612 #ifdef _BIG_ENDIAN 613 #define TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \ 614 (TCPOPT_TSTAMP << 8) | 10) 615 #else 616 #define TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \ 617 (TCPOPT_NOP << 8) | TCPOPT_NOP) 618 #endif 619 620 /* 621 * Flags returned from tcp_parse_options. 622 */ 623 #define TCP_OPT_MSS_PRESENT 1 624 #define TCP_OPT_WSCALE_PRESENT 2 625 #define TCP_OPT_TSTAMP_PRESENT 4 626 #define TCP_OPT_SACK_OK_PRESENT 8 627 #define TCP_OPT_SACK_PRESENT 16 628 629 /* TCP option length */ 630 #define TCPOPT_NOP_LEN 1 631 #define TCPOPT_MAXSEG_LEN 4 632 #define TCPOPT_WS_LEN 3 633 #define TCPOPT_REAL_WS_LEN (TCPOPT_WS_LEN+1) 634 #define TCPOPT_TSTAMP_LEN 10 635 #define TCPOPT_REAL_TS_LEN (TCPOPT_TSTAMP_LEN+2) 636 #define TCPOPT_SACK_OK_LEN 2 637 #define TCPOPT_REAL_SACK_OK_LEN (TCPOPT_SACK_OK_LEN+2) 638 #define TCPOPT_REAL_SACK_LEN 4 639 #define TCPOPT_MAX_SACK_LEN 36 640 #define TCPOPT_HEADER_LEN 2 641 642 /* TCP cwnd burst factor. */ 643 #define TCP_CWND_INFINITE 65535 644 #define TCP_CWND_SS 3 645 #define TCP_CWND_NORMAL 5 646 647 /* Maximum TCP initial cwin (start/restart). */ 648 #define TCP_MAX_INIT_CWND 8 649 650 /* 651 * Initialize cwnd according to RFC 3390. def_max_init_cwnd is 652 * either tcp_slow_start_initial or tcp_slow_start_after idle 653 * depending on the caller. If the upper layer has not used the 654 * TCP_INIT_CWND option to change the initial cwnd, tcp_init_cwnd 655 * should be 0 and we use the formula in RFC 3390 to set tcp_cwnd. 656 * If the upper layer has changed set the tcp_init_cwnd, just use 657 * it to calculate the tcp_cwnd. 658 */ 659 #define SET_TCP_INIT_CWND(tcp, mss, def_max_init_cwnd) \ 660 { \ 661 if ((tcp)->tcp_init_cwnd == 0) { \ 662 (tcp)->tcp_cwnd = MIN(def_max_init_cwnd * (mss), \ 663 MIN(4 * (mss), MAX(2 * (mss), 4380 / (mss) * (mss)))); \ 664 } else { \ 665 (tcp)->tcp_cwnd = (tcp)->tcp_init_cwnd * (mss); \ 666 } \ 667 tcp->tcp_cwnd_cnt = 0; \ 668 } 669 670 /* TCP Timer control structure */ 671 typedef struct tcpt_s { 672 pfv_t tcpt_pfv; /* The routine we are to call */ 673 tcp_t *tcpt_tcp; /* The parameter we are to pass in */ 674 } tcpt_t; 675 676 /* Host Specific Parameter structure */ 677 typedef struct tcp_hsp { 678 struct tcp_hsp *tcp_hsp_next; 679 in6_addr_t tcp_hsp_addr_v6; 680 in6_addr_t tcp_hsp_subnet_v6; 681 uint_t tcp_hsp_vers; /* IPV4_VERSION | IPV6_VERSION */ 682 int32_t tcp_hsp_sendspace; 683 int32_t tcp_hsp_recvspace; 684 int32_t tcp_hsp_tstamp; 685 } tcp_hsp_t; 686 #define tcp_hsp_addr V4_PART_OF_V6(tcp_hsp_addr_v6) 687 #define tcp_hsp_subnet V4_PART_OF_V6(tcp_hsp_subnet_v6) 688 689 /* 690 * Functions called directly via squeue having a prototype of edesc_t. 691 */ 692 void tcp_conn_request(void *arg, mblk_t *mp, void *arg2); 693 static void tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2); 694 void tcp_accept_finish(void *arg, mblk_t *mp, void *arg2); 695 static void tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2); 696 static void tcp_wput_proto(void *arg, mblk_t *mp, void *arg2); 697 void tcp_input(void *arg, mblk_t *mp, void *arg2); 698 void tcp_rput_data(void *arg, mblk_t *mp, void *arg2); 699 static void tcp_close_output(void *arg, mblk_t *mp, void *arg2); 700 void tcp_output(void *arg, mblk_t *mp, void *arg2); 701 static void tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2); 702 static void tcp_timer_handler(void *arg, mblk_t *mp, void *arg2); 703 static void tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2); 704 705 706 /* Prototype for TCP functions */ 707 static void tcp_random_init(void); 708 int tcp_random(void); 709 static void tcp_accept(tcp_t *tcp, mblk_t *mp); 710 static void tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, 711 tcp_t *eager); 712 static int tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp); 713 static in_port_t tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, 714 int reuseaddr, boolean_t quick_connect, boolean_t bind_to_req_port_only, 715 boolean_t user_specified); 716 static void tcp_closei_local(tcp_t *tcp); 717 static void tcp_close_detached(tcp_t *tcp); 718 static boolean_t tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, 719 mblk_t *idmp, mblk_t **defermp); 720 static void tcp_connect(tcp_t *tcp, mblk_t *mp); 721 static void tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp, 722 in_port_t dstport, uint_t srcid); 723 static void tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp, 724 in_port_t dstport, uint32_t flowinfo, uint_t srcid, 725 uint32_t scope_id); 726 static int tcp_clean_death(tcp_t *tcp, int err, uint8_t tag); 727 static void tcp_def_q_set(tcp_t *tcp, mblk_t *mp); 728 static void tcp_disconnect(tcp_t *tcp, mblk_t *mp); 729 static char *tcp_display(tcp_t *tcp, char *, char); 730 static boolean_t tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum); 731 static void tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only); 732 static void tcp_eager_unlink(tcp_t *tcp); 733 static void tcp_err_ack(tcp_t *tcp, mblk_t *mp, int tlierr, 734 int unixerr); 735 static void tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, 736 int tlierr, int unixerr); 737 static int tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, 738 cred_t *cr); 739 static int tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, 740 char *value, caddr_t cp, cred_t *cr); 741 static int tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, 742 char *value, caddr_t cp, cred_t *cr); 743 static int tcp_tpistate(tcp_t *tcp); 744 static void tcp_bind_hash_insert(tf_t *tf, tcp_t *tcp, 745 int caller_holds_lock); 746 static void tcp_bind_hash_remove(tcp_t *tcp); 747 static tcp_t *tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *); 748 void tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp); 749 static void tcp_acceptor_hash_remove(tcp_t *tcp); 750 static void tcp_capability_req(tcp_t *tcp, mblk_t *mp); 751 static void tcp_info_req(tcp_t *tcp, mblk_t *mp); 752 static void tcp_addr_req(tcp_t *tcp, mblk_t *mp); 753 static void tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *mp); 754 void tcp_g_q_setup(tcp_stack_t *); 755 void tcp_g_q_create(tcp_stack_t *); 756 void tcp_g_q_destroy(tcp_stack_t *); 757 static int tcp_header_init_ipv4(tcp_t *tcp); 758 static int tcp_header_init_ipv6(tcp_t *tcp); 759 int tcp_init(tcp_t *tcp, queue_t *q); 760 static int tcp_init_values(tcp_t *tcp); 761 static mblk_t *tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic); 762 static mblk_t *tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim, 763 t_scalar_t addr_length); 764 static void tcp_ip_ire_mark_advice(tcp_t *tcp); 765 static void tcp_ip_notify(tcp_t *tcp); 766 static mblk_t *tcp_ire_mp(mblk_t *mp); 767 static void tcp_iss_init(tcp_t *tcp); 768 static void tcp_keepalive_killer(void *arg); 769 static int tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt); 770 static void tcp_mss_set(tcp_t *tcp, uint32_t size, boolean_t do_ss); 771 static int tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, 772 int *do_disconnectp, int *t_errorp, int *sys_errorp); 773 static boolean_t tcp_allow_connopt_set(int level, int name); 774 int tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr); 775 int tcp_opt_get(queue_t *q, int level, int name, uchar_t *ptr); 776 int tcp_opt_set(queue_t *q, uint_t optset_context, int level, 777 int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp, 778 uchar_t *outvalp, void *thisdg_attrs, cred_t *cr, 779 mblk_t *mblk); 780 static void tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha); 781 static int tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, 782 uchar_t *ptr, uint_t len); 783 static int tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr); 784 static boolean_t tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt, 785 tcp_stack_t *); 786 static int tcp_param_set(queue_t *q, mblk_t *mp, char *value, 787 caddr_t cp, cred_t *cr); 788 static int tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, 789 caddr_t cp, cred_t *cr); 790 static void tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *); 791 static int tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, 792 caddr_t cp, cred_t *cr); 793 static void tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_cnt); 794 static mblk_t *tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start); 795 static void tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp); 796 static void tcp_reinit(tcp_t *tcp); 797 static void tcp_reinit_values(tcp_t *tcp); 798 static void tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval, 799 tcp_t *thisstream, cred_t *cr); 800 801 static uint_t tcp_rcv_drain(queue_t *q, tcp_t *tcp); 802 static void tcp_sack_rxmit(tcp_t *tcp, uint_t *flags); 803 static boolean_t tcp_send_rst_chk(tcp_stack_t *); 804 static void tcp_ss_rexmit(tcp_t *tcp); 805 static mblk_t *tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp); 806 static void tcp_process_options(tcp_t *, tcph_t *); 807 static void tcp_rput_common(tcp_t *tcp, mblk_t *mp); 808 static void tcp_rsrv(queue_t *q); 809 static int tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd); 810 static int tcp_snmp_state(tcp_t *tcp); 811 static int tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, 812 cred_t *cr); 813 static int tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 814 cred_t *cr); 815 static int tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 816 cred_t *cr); 817 static int tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 818 cred_t *cr); 819 static int tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 820 cred_t *cr); 821 static int tcp_host_param_set(queue_t *q, mblk_t *mp, char *value, 822 caddr_t cp, cred_t *cr); 823 static int tcp_host_param_set_ipv6(queue_t *q, mblk_t *mp, char *value, 824 caddr_t cp, cred_t *cr); 825 static int tcp_host_param_report(queue_t *q, mblk_t *mp, caddr_t cp, 826 cred_t *cr); 827 static void tcp_timer(void *arg); 828 static void tcp_timer_callback(void *); 829 static in_port_t tcp_update_next_port(in_port_t port, const tcp_t *tcp, 830 boolean_t random); 831 static in_port_t tcp_get_next_priv_port(const tcp_t *); 832 static void tcp_wput_sock(queue_t *q, mblk_t *mp); 833 void tcp_wput_accept(queue_t *q, mblk_t *mp); 834 static void tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent); 835 static void tcp_wput_flush(tcp_t *tcp, mblk_t *mp); 836 static void tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp); 837 static int tcp_send(queue_t *q, tcp_t *tcp, const int mss, 838 const int tcp_hdr_len, const int tcp_tcp_hdr_len, 839 const int num_sack_blk, int *usable, uint_t *snxt, 840 int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 841 const int mdt_thres); 842 static int tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, 843 const int tcp_hdr_len, const int tcp_tcp_hdr_len, 844 const int num_sack_blk, int *usable, uint_t *snxt, 845 int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 846 const int mdt_thres); 847 static void tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, 848 int num_sack_blk); 849 static void tcp_wsrv(queue_t *q); 850 static int tcp_xmit_end(tcp_t *tcp); 851 static void tcp_ack_timer(void *arg); 852 static mblk_t *tcp_ack_mp(tcp_t *tcp); 853 static void tcp_xmit_early_reset(char *str, mblk_t *mp, 854 uint32_t seq, uint32_t ack, int ctl, uint_t ip_hdr_len, 855 zoneid_t zoneid, tcp_stack_t *, conn_t *connp); 856 static void tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, 857 uint32_t ack, int ctl); 858 static tcp_hsp_t *tcp_hsp_lookup(ipaddr_t addr, tcp_stack_t *); 859 static tcp_hsp_t *tcp_hsp_lookup_ipv6(in6_addr_t *addr, tcp_stack_t *); 860 static int setmaxps(queue_t *q, int maxpsz); 861 static void tcp_set_rto(tcp_t *, time_t); 862 static boolean_t tcp_check_policy(tcp_t *, mblk_t *, ipha_t *, ip6_t *, 863 boolean_t, boolean_t); 864 static void tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, 865 boolean_t ipsec_mctl); 866 static mblk_t *tcp_setsockopt_mp(int level, int cmd, 867 char *opt, int optlen); 868 static int tcp_build_hdrs(queue_t *, tcp_t *); 869 static void tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, 870 uint32_t seg_seq, uint32_t seg_ack, int seg_len, 871 tcph_t *tcph); 872 boolean_t tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp); 873 boolean_t tcp_reserved_port_add(int, in_port_t *, in_port_t *); 874 boolean_t tcp_reserved_port_del(in_port_t, in_port_t); 875 boolean_t tcp_reserved_port_check(in_port_t, tcp_stack_t *); 876 static tcp_t *tcp_alloc_temp_tcp(in_port_t, tcp_stack_t *); 877 static int tcp_reserved_port_list(queue_t *, mblk_t *, caddr_t, cred_t *); 878 static mblk_t *tcp_mdt_info_mp(mblk_t *); 879 static void tcp_mdt_update(tcp_t *, ill_mdt_capab_t *, boolean_t); 880 static int tcp_mdt_add_attrs(multidata_t *, const mblk_t *, 881 const boolean_t, const uint32_t, const uint32_t, 882 const uint32_t, const uint32_t, tcp_stack_t *); 883 static void tcp_multisend_data(tcp_t *, ire_t *, const ill_t *, mblk_t *, 884 const uint_t, const uint_t, boolean_t *); 885 static mblk_t *tcp_lso_info_mp(mblk_t *); 886 static void tcp_lso_update(tcp_t *, ill_lso_capab_t *); 887 static void tcp_send_data(tcp_t *, queue_t *, mblk_t *); 888 extern mblk_t *tcp_timermp_alloc(int); 889 extern void tcp_timermp_free(tcp_t *); 890 static void tcp_timer_free(tcp_t *tcp, mblk_t *mp); 891 static void tcp_stop_lingering(tcp_t *tcp); 892 static void tcp_close_linger_timeout(void *arg); 893 static void *tcp_stack_init(netstackid_t stackid, netstack_t *ns); 894 static void tcp_stack_shutdown(netstackid_t stackid, void *arg); 895 static void tcp_stack_fini(netstackid_t stackid, void *arg); 896 static void *tcp_g_kstat_init(tcp_g_stat_t *); 897 static void tcp_g_kstat_fini(kstat_t *); 898 static void *tcp_kstat_init(netstackid_t, tcp_stack_t *); 899 static void tcp_kstat_fini(netstackid_t, kstat_t *); 900 static void *tcp_kstat2_init(netstackid_t, tcp_stat_t *); 901 static void tcp_kstat2_fini(netstackid_t, kstat_t *); 902 static int tcp_kstat_update(kstat_t *kp, int rw); 903 void tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp); 904 static int tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 905 tcph_t *tcph, uint_t ipvers, mblk_t *idmp); 906 static int tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha, 907 tcph_t *tcph, mblk_t *idmp); 908 static squeue_func_t tcp_squeue_switch(int); 909 910 static int tcp_open(queue_t *, dev_t *, int, int, cred_t *, boolean_t); 911 static int tcp_openv4(queue_t *, dev_t *, int, int, cred_t *); 912 static int tcp_openv6(queue_t *, dev_t *, int, int, cred_t *); 913 static int tcp_close(queue_t *, int); 914 static int tcpclose_accept(queue_t *); 915 916 static void tcp_squeue_add(squeue_t *); 917 static boolean_t tcp_zcopy_check(tcp_t *); 918 static void tcp_zcopy_notify(tcp_t *); 919 static mblk_t *tcp_zcopy_disable(tcp_t *, mblk_t *); 920 static mblk_t *tcp_zcopy_backoff(tcp_t *, mblk_t *, int); 921 static void tcp_ire_ill_check(tcp_t *, ire_t *, ill_t *, boolean_t); 922 923 extern void tcp_kssl_input(tcp_t *, mblk_t *); 924 925 void tcp_eager_kill(void *arg, mblk_t *mp, void *arg2); 926 void tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2); 927 928 /* 929 * Routines related to the TCP_IOC_ABORT_CONN ioctl command. 930 * 931 * TCP_IOC_ABORT_CONN is a non-transparent ioctl command used for aborting 932 * TCP connections. To invoke this ioctl, a tcp_ioc_abort_conn_t structure 933 * (defined in tcp.h) needs to be filled in and passed into the kernel 934 * via an I_STR ioctl command (see streamio(7I)). The tcp_ioc_abort_conn_t 935 * structure contains the four-tuple of a TCP connection and a range of TCP 936 * states (specified by ac_start and ac_end). The use of wildcard addresses 937 * and ports is allowed. Connections with a matching four tuple and a state 938 * within the specified range will be aborted. The valid states for the 939 * ac_start and ac_end fields are in the range TCPS_SYN_SENT to TCPS_TIME_WAIT, 940 * inclusive. 941 * 942 * An application which has its connection aborted by this ioctl will receive 943 * an error that is dependent on the connection state at the time of the abort. 944 * If the connection state is < TCPS_TIME_WAIT, an application should behave as 945 * though a RST packet has been received. If the connection state is equal to 946 * TCPS_TIME_WAIT, the 2MSL timeout will immediately be canceled by the kernel 947 * and all resources associated with the connection will be freed. 948 */ 949 static mblk_t *tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *, tcp_t *); 950 static void tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *); 951 static void tcp_ioctl_abort_handler(tcp_t *, mblk_t *); 952 static int tcp_ioctl_abort(tcp_ioc_abort_conn_t *, tcp_stack_t *tcps); 953 static void tcp_ioctl_abort_conn(queue_t *, mblk_t *); 954 static int tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *, int, int *, 955 boolean_t, tcp_stack_t *); 956 957 static struct module_info tcp_rinfo = { 958 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER 959 }; 960 961 static struct module_info tcp_winfo = { 962 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16 963 }; 964 965 /* 966 * Entry points for TCP as a device. The normal case which supports 967 * the TCP functionality. 968 * We have separate open functions for the /dev/tcp and /dev/tcp6 devices. 969 */ 970 struct qinit tcp_rinitv4 = { 971 NULL, (pfi_t)tcp_rsrv, tcp_openv4, tcp_close, NULL, &tcp_rinfo 972 }; 973 974 struct qinit tcp_rinitv6 = { 975 NULL, (pfi_t)tcp_rsrv, tcp_openv6, tcp_close, NULL, &tcp_rinfo 976 }; 977 978 struct qinit tcp_winit = { 979 (pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 980 }; 981 982 /* Initial entry point for TCP in socket mode. */ 983 struct qinit tcp_sock_winit = { 984 (pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 985 }; 986 987 /* 988 * Entry points for TCP as a acceptor STREAM opened by sockfs when doing 989 * an accept. Avoid allocating data structures since eager has already 990 * been created. 991 */ 992 struct qinit tcp_acceptor_rinit = { 993 NULL, (pfi_t)tcp_rsrv, NULL, tcpclose_accept, NULL, &tcp_winfo 994 }; 995 996 struct qinit tcp_acceptor_winit = { 997 (pfi_t)tcp_wput_accept, NULL, NULL, NULL, NULL, &tcp_winfo 998 }; 999 1000 /* 1001 * Entry points for TCP loopback (read side only) 1002 * The open routine is only used for reopens, thus no need to 1003 * have a separate one for tcp_openv6. 1004 */ 1005 struct qinit tcp_loopback_rinit = { 1006 (pfi_t)0, (pfi_t)tcp_rsrv, tcp_openv4, tcp_close, (pfi_t)0, 1007 &tcp_rinfo, NULL, tcp_fuse_rrw, tcp_fuse_rinfop, STRUIOT_STANDARD 1008 }; 1009 1010 /* For AF_INET aka /dev/tcp */ 1011 struct streamtab tcpinfov4 = { 1012 &tcp_rinitv4, &tcp_winit 1013 }; 1014 1015 /* For AF_INET6 aka /dev/tcp6 */ 1016 struct streamtab tcpinfov6 = { 1017 &tcp_rinitv6, &tcp_winit 1018 }; 1019 1020 /* 1021 * Have to ensure that tcp_g_q_close is not done by an 1022 * interrupt thread. 1023 */ 1024 static taskq_t *tcp_taskq; 1025 1026 /* 1027 * TCP has a private interface for other kernel modules to reserve a 1028 * port range for them to use. Once reserved, TCP will not use any ports 1029 * in the range. This interface relies on the TCP_EXCLBIND feature. If 1030 * the semantics of TCP_EXCLBIND is changed, implementation of this interface 1031 * has to be verified. 1032 * 1033 * There can be TCP_RESERVED_PORTS_ARRAY_MAX_SIZE port ranges. Each port 1034 * range can cover at most TCP_RESERVED_PORTS_RANGE_MAX ports. A port 1035 * range is [port a, port b] inclusive. And each port range is between 1036 * TCP_LOWESET_RESERVED_PORT and TCP_LARGEST_RESERVED_PORT inclusive. 1037 * 1038 * Note that the default anonymous port range starts from 32768. There is 1039 * no port "collision" between that and the reserved port range. If there 1040 * is port collision (because the default smallest anonymous port is lowered 1041 * or some apps specifically bind to ports in the reserved port range), the 1042 * system may not be able to reserve a port range even there are enough 1043 * unbound ports as a reserved port range contains consecutive ports . 1044 */ 1045 #define TCP_RESERVED_PORTS_ARRAY_MAX_SIZE 5 1046 #define TCP_RESERVED_PORTS_RANGE_MAX 1000 1047 #define TCP_SMALLEST_RESERVED_PORT 10240 1048 #define TCP_LARGEST_RESERVED_PORT 20480 1049 1050 /* Structure to represent those reserved port ranges. */ 1051 typedef struct tcp_rport_s { 1052 in_port_t lo_port; 1053 in_port_t hi_port; 1054 tcp_t **temp_tcp_array; 1055 } tcp_rport_t; 1056 1057 /* Setable only in /etc/system. Move to ndd? */ 1058 boolean_t tcp_icmp_source_quench = B_FALSE; 1059 1060 /* 1061 * Following assumes TPI alignment requirements stay along 32 bit 1062 * boundaries 1063 */ 1064 #define ROUNDUP32(x) \ 1065 (((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1)) 1066 1067 /* Template for response to info request. */ 1068 static struct T_info_ack tcp_g_t_info_ack = { 1069 T_INFO_ACK, /* PRIM_type */ 1070 0, /* TSDU_size */ 1071 T_INFINITE, /* ETSDU_size */ 1072 T_INVALID, /* CDATA_size */ 1073 T_INVALID, /* DDATA_size */ 1074 sizeof (sin_t), /* ADDR_size */ 1075 0, /* OPT_size - not initialized here */ 1076 TIDUSZ, /* TIDU_size */ 1077 T_COTS_ORD, /* SERV_type */ 1078 TCPS_IDLE, /* CURRENT_state */ 1079 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 1080 }; 1081 1082 static struct T_info_ack tcp_g_t_info_ack_v6 = { 1083 T_INFO_ACK, /* PRIM_type */ 1084 0, /* TSDU_size */ 1085 T_INFINITE, /* ETSDU_size */ 1086 T_INVALID, /* CDATA_size */ 1087 T_INVALID, /* DDATA_size */ 1088 sizeof (sin6_t), /* ADDR_size */ 1089 0, /* OPT_size - not initialized here */ 1090 TIDUSZ, /* TIDU_size */ 1091 T_COTS_ORD, /* SERV_type */ 1092 TCPS_IDLE, /* CURRENT_state */ 1093 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 1094 }; 1095 1096 #define MS 1L 1097 #define SECONDS (1000 * MS) 1098 #define MINUTES (60 * SECONDS) 1099 #define HOURS (60 * MINUTES) 1100 #define DAYS (24 * HOURS) 1101 1102 #define PARAM_MAX (~(uint32_t)0) 1103 1104 /* Max size IP datagram is 64k - 1 */ 1105 #define TCP_MSS_MAX_IPV4 (IP_MAXPACKET - (sizeof (ipha_t) + sizeof (tcph_t))) 1106 #define TCP_MSS_MAX_IPV6 (IP_MAXPACKET - (sizeof (ip6_t) + sizeof (tcph_t))) 1107 /* Max of the above */ 1108 #define TCP_MSS_MAX TCP_MSS_MAX_IPV4 1109 1110 /* Largest TCP port number */ 1111 #define TCP_MAX_PORT (64 * 1024 - 1) 1112 1113 /* 1114 * tcp_wroff_xtra is the extra space in front of TCP/IP header for link 1115 * layer header. It has to be a multiple of 4. 1116 */ 1117 static tcpparam_t lcl_tcp_wroff_xtra_param = { 0, 256, 32, "tcp_wroff_xtra" }; 1118 #define tcps_wroff_xtra tcps_wroff_xtra_param->tcp_param_val 1119 1120 /* 1121 * All of these are alterable, within the min/max values given, at run time. 1122 * Note that the default value of "tcp_time_wait_interval" is four minutes, 1123 * per the TCP spec. 1124 */ 1125 /* BEGIN CSTYLED */ 1126 static tcpparam_t lcl_tcp_param_arr[] = { 1127 /*min max value name */ 1128 { 1*SECONDS, 10*MINUTES, 1*MINUTES, "tcp_time_wait_interval"}, 1129 { 1, PARAM_MAX, 128, "tcp_conn_req_max_q" }, 1130 { 0, PARAM_MAX, 1024, "tcp_conn_req_max_q0" }, 1131 { 1, 1024, 1, "tcp_conn_req_min" }, 1132 { 0*MS, 20*SECONDS, 0*MS, "tcp_conn_grace_period" }, 1133 { 128, (1<<30), 1024*1024, "tcp_cwnd_max" }, 1134 { 0, 10, 0, "tcp_debug" }, 1135 { 1024, (32*1024), 1024, "tcp_smallest_nonpriv_port"}, 1136 { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_cinterval"}, 1137 { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_linterval"}, 1138 { 500*MS, PARAM_MAX, 8*MINUTES, "tcp_ip_abort_interval"}, 1139 { 1*SECONDS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_cinterval"}, 1140 { 500*MS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_interval"}, 1141 { 1, 255, 64, "tcp_ipv4_ttl"}, 1142 { 10*SECONDS, 10*DAYS, 2*HOURS, "tcp_keepalive_interval"}, 1143 { 0, 100, 10, "tcp_maxpsz_multiplier" }, 1144 { 1, TCP_MSS_MAX_IPV4, 536, "tcp_mss_def_ipv4"}, 1145 { 1, TCP_MSS_MAX_IPV4, TCP_MSS_MAX_IPV4, "tcp_mss_max_ipv4"}, 1146 { 1, TCP_MSS_MAX, 108, "tcp_mss_min"}, 1147 { 1, (64*1024)-1, (4*1024)-1, "tcp_naglim_def"}, 1148 { 1*MS, 20*SECONDS, 3*SECONDS, "tcp_rexmit_interval_initial"}, 1149 { 1*MS, 2*HOURS, 60*SECONDS, "tcp_rexmit_interval_max"}, 1150 { 1*MS, 2*HOURS, 400*MS, "tcp_rexmit_interval_min"}, 1151 { 1*MS, 1*MINUTES, 100*MS, "tcp_deferred_ack_interval" }, 1152 { 0, 16, 0, "tcp_snd_lowat_fraction" }, 1153 { 0, 128000, 0, "tcp_sth_rcv_hiwat" }, 1154 { 0, 128000, 0, "tcp_sth_rcv_lowat" }, 1155 { 1, 10000, 3, "tcp_dupack_fast_retransmit" }, 1156 { 0, 1, 0, "tcp_ignore_path_mtu" }, 1157 { 1024, TCP_MAX_PORT, 32*1024, "tcp_smallest_anon_port"}, 1158 { 1024, TCP_MAX_PORT, TCP_MAX_PORT, "tcp_largest_anon_port"}, 1159 { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_HIWATER,"tcp_xmit_hiwat"}, 1160 { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_LOWATER,"tcp_xmit_lowat"}, 1161 { TCP_RECV_LOWATER, (1<<30), TCP_RECV_HIWATER,"tcp_recv_hiwat"}, 1162 { 1, 65536, 4, "tcp_recv_hiwat_minmss"}, 1163 { 1*SECONDS, PARAM_MAX, 675*SECONDS, "tcp_fin_wait_2_flush_interval"}, 1164 { 0, TCP_MSS_MAX, 64, "tcp_co_min"}, 1165 { 8192, (1<<30), 1024*1024, "tcp_max_buf"}, 1166 /* 1167 * Question: What default value should I set for tcp_strong_iss? 1168 */ 1169 { 0, 2, 1, "tcp_strong_iss"}, 1170 { 0, 65536, 20, "tcp_rtt_updates"}, 1171 { 0, 1, 1, "tcp_wscale_always"}, 1172 { 0, 1, 0, "tcp_tstamp_always"}, 1173 { 0, 1, 1, "tcp_tstamp_if_wscale"}, 1174 { 0*MS, 2*HOURS, 0*MS, "tcp_rexmit_interval_extra"}, 1175 { 0, 16, 2, "tcp_deferred_acks_max"}, 1176 { 1, 16384, 4, "tcp_slow_start_after_idle"}, 1177 { 1, 4, 4, "tcp_slow_start_initial"}, 1178 { 10*MS, 50*MS, 20*MS, "tcp_co_timer_interval"}, 1179 { 0, 2, 2, "tcp_sack_permitted"}, 1180 { 0, 1, 0, "tcp_trace"}, 1181 { 0, 1, 1, "tcp_compression_enabled"}, 1182 { 0, IPV6_MAX_HOPS, IPV6_DEFAULT_HOPS, "tcp_ipv6_hoplimit"}, 1183 { 1, TCP_MSS_MAX_IPV6, 1220, "tcp_mss_def_ipv6"}, 1184 { 1, TCP_MSS_MAX_IPV6, TCP_MSS_MAX_IPV6, "tcp_mss_max_ipv6"}, 1185 { 0, 1, 0, "tcp_rev_src_routes"}, 1186 { 10*MS, 500*MS, 50*MS, "tcp_local_dack_interval"}, 1187 { 100*MS, 60*SECONDS, 1*SECONDS, "tcp_ndd_get_info_interval"}, 1188 { 0, 16, 8, "tcp_local_dacks_max"}, 1189 { 0, 2, 1, "tcp_ecn_permitted"}, 1190 { 0, 1, 1, "tcp_rst_sent_rate_enabled"}, 1191 { 0, PARAM_MAX, 40, "tcp_rst_sent_rate"}, 1192 { 0, 100*MS, 50*MS, "tcp_push_timer_interval"}, 1193 { 0, 1, 0, "tcp_use_smss_as_mss_opt"}, 1194 { 0, PARAM_MAX, 8*MINUTES, "tcp_keepalive_abort_interval"}, 1195 }; 1196 /* END CSTYLED */ 1197 1198 /* 1199 * tcp_mdt_hdr_{head,tail}_min are the leading and trailing spaces of 1200 * each header fragment in the header buffer. Each parameter value has 1201 * to be a multiple of 4 (32-bit aligned). 1202 */ 1203 static tcpparam_t lcl_tcp_mdt_head_param = 1204 { 32, 256, 32, "tcp_mdt_hdr_head_min" }; 1205 static tcpparam_t lcl_tcp_mdt_tail_param = 1206 { 0, 256, 32, "tcp_mdt_hdr_tail_min" }; 1207 #define tcps_mdt_hdr_head_min tcps_mdt_head_param->tcp_param_val 1208 #define tcps_mdt_hdr_tail_min tcps_mdt_tail_param->tcp_param_val 1209 1210 /* 1211 * tcp_mdt_max_pbufs is the upper limit value that tcp uses to figure out 1212 * the maximum number of payload buffers associated per Multidata. 1213 */ 1214 static tcpparam_t lcl_tcp_mdt_max_pbufs_param = 1215 { 1, MULTIDATA_MAX_PBUFS, MULTIDATA_MAX_PBUFS, "tcp_mdt_max_pbufs" }; 1216 #define tcps_mdt_max_pbufs tcps_mdt_max_pbufs_param->tcp_param_val 1217 1218 /* Round up the value to the nearest mss. */ 1219 #define MSS_ROUNDUP(value, mss) ((((value) - 1) / (mss) + 1) * (mss)) 1220 1221 /* 1222 * Set ECN capable transport (ECT) code point in IP header. 1223 * 1224 * Note that there are 2 ECT code points '01' and '10', which are called 1225 * ECT(1) and ECT(0) respectively. Here we follow the original ECT code 1226 * point ECT(0) for TCP as described in RFC 2481. 1227 */ 1228 #define SET_ECT(tcp, iph) \ 1229 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1230 /* We need to clear the code point first. */ \ 1231 ((ipha_t *)(iph))->ipha_type_of_service &= 0xFC; \ 1232 ((ipha_t *)(iph))->ipha_type_of_service |= IPH_ECN_ECT0; \ 1233 } else { \ 1234 ((ip6_t *)(iph))->ip6_vcf &= htonl(0xFFCFFFFF); \ 1235 ((ip6_t *)(iph))->ip6_vcf |= htonl(IPH_ECN_ECT0 << 20); \ 1236 } 1237 1238 /* 1239 * The format argument to pass to tcp_display(). 1240 * DISP_PORT_ONLY means that the returned string has only port info. 1241 * DISP_ADDR_AND_PORT means that the returned string also contains the 1242 * remote and local IP address. 1243 */ 1244 #define DISP_PORT_ONLY 1 1245 #define DISP_ADDR_AND_PORT 2 1246 1247 #define NDD_TOO_QUICK_MSG \ 1248 "ndd get info rate too high for non-privileged users, try again " \ 1249 "later.\n" 1250 #define NDD_OUT_OF_BUF_MSG "<< Out of buffer >>\n" 1251 1252 #define IS_VMLOANED_MBLK(mp) \ 1253 (((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0) 1254 1255 1256 /* Enable or disable b_cont M_MULTIDATA chaining for MDT. */ 1257 boolean_t tcp_mdt_chain = B_TRUE; 1258 1259 /* 1260 * MDT threshold in the form of effective send MSS multiplier; we take 1261 * the MDT path if the amount of unsent data exceeds the threshold value 1262 * (default threshold is 1*SMSS). 1263 */ 1264 uint_t tcp_mdt_smss_threshold = 1; 1265 1266 uint32_t do_tcpzcopy = 1; /* 0: disable, 1: enable, 2: force */ 1267 1268 /* 1269 * Forces all connections to obey the value of the tcps_maxpsz_multiplier 1270 * tunable settable via NDD. Otherwise, the per-connection behavior is 1271 * determined dynamically during tcp_adapt_ire(), which is the default. 1272 */ 1273 boolean_t tcp_static_maxpsz = B_FALSE; 1274 1275 /* Setable in /etc/system */ 1276 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */ 1277 uint32_t tcp_random_anon_port = 1; 1278 1279 /* 1280 * To reach to an eager in Q0 which can be dropped due to an incoming 1281 * new SYN request when Q0 is full, a new doubly linked list is 1282 * introduced. This list allows to select an eager from Q0 in O(1) time. 1283 * This is needed to avoid spending too much time walking through the 1284 * long list of eagers in Q0 when tcp_drop_q0() is called. Each member of 1285 * this new list has to be a member of Q0. 1286 * This list is headed by listener's tcp_t. When the list is empty, 1287 * both the pointers - tcp_eager_next_drop_q0 and tcp_eager_prev_drop_q0, 1288 * of listener's tcp_t point to listener's tcp_t itself. 1289 * 1290 * Given an eager in Q0 and a listener, MAKE_DROPPABLE() puts the eager 1291 * in the list. MAKE_UNDROPPABLE() takes the eager out of the list. 1292 * These macros do not affect the eager's membership to Q0. 1293 */ 1294 1295 1296 #define MAKE_DROPPABLE(listener, eager) \ 1297 if ((eager)->tcp_eager_next_drop_q0 == NULL) { \ 1298 (listener)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0\ 1299 = (eager); \ 1300 (eager)->tcp_eager_prev_drop_q0 = (listener); \ 1301 (eager)->tcp_eager_next_drop_q0 = \ 1302 (listener)->tcp_eager_next_drop_q0; \ 1303 (listener)->tcp_eager_next_drop_q0 = (eager); \ 1304 } 1305 1306 #define MAKE_UNDROPPABLE(eager) \ 1307 if ((eager)->tcp_eager_next_drop_q0 != NULL) { \ 1308 (eager)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0 \ 1309 = (eager)->tcp_eager_prev_drop_q0; \ 1310 (eager)->tcp_eager_prev_drop_q0->tcp_eager_next_drop_q0 \ 1311 = (eager)->tcp_eager_next_drop_q0; \ 1312 (eager)->tcp_eager_prev_drop_q0 = NULL; \ 1313 (eager)->tcp_eager_next_drop_q0 = NULL; \ 1314 } 1315 1316 /* 1317 * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more 1318 * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent 1319 * data, TCP will not respond with an ACK. RFC 793 requires that 1320 * TCP responds with an ACK for such a bogus ACK. By not following 1321 * the RFC, we prevent TCP from getting into an ACK storm if somehow 1322 * an attacker successfully spoofs an acceptable segment to our 1323 * peer; or when our peer is "confused." 1324 */ 1325 uint32_t tcp_drop_ack_unsent_cnt = 10; 1326 1327 /* 1328 * Hook functions to enable cluster networking 1329 * On non-clustered systems these vectors must always be NULL. 1330 */ 1331 1332 void (*cl_inet_listen)(uint8_t protocol, sa_family_t addr_family, 1333 uint8_t *laddrp, in_port_t lport) = NULL; 1334 void (*cl_inet_unlisten)(uint8_t protocol, sa_family_t addr_family, 1335 uint8_t *laddrp, in_port_t lport) = NULL; 1336 void (*cl_inet_connect)(uint8_t protocol, sa_family_t addr_family, 1337 uint8_t *laddrp, in_port_t lport, 1338 uint8_t *faddrp, in_port_t fport) = NULL; 1339 void (*cl_inet_disconnect)(uint8_t protocol, sa_family_t addr_family, 1340 uint8_t *laddrp, in_port_t lport, 1341 uint8_t *faddrp, in_port_t fport) = NULL; 1342 1343 /* 1344 * The following are defined in ip.c 1345 */ 1346 extern int (*cl_inet_isclusterwide)(uint8_t protocol, sa_family_t addr_family, 1347 uint8_t *laddrp); 1348 extern uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family, 1349 uint8_t *laddrp, uint8_t *faddrp); 1350 1351 #define CL_INET_CONNECT(tcp) { \ 1352 if (cl_inet_connect != NULL) { \ 1353 /* \ 1354 * Running in cluster mode - register active connection \ 1355 * information \ 1356 */ \ 1357 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1358 if ((tcp)->tcp_ipha->ipha_src != 0) { \ 1359 (*cl_inet_connect)(IPPROTO_TCP, AF_INET,\ 1360 (uint8_t *)(&((tcp)->tcp_ipha->ipha_src)),\ 1361 (in_port_t)(tcp)->tcp_lport, \ 1362 (uint8_t *)(&((tcp)->tcp_ipha->ipha_dst)),\ 1363 (in_port_t)(tcp)->tcp_fport); \ 1364 } \ 1365 } else { \ 1366 if (!IN6_IS_ADDR_UNSPECIFIED( \ 1367 &(tcp)->tcp_ip6h->ip6_src)) {\ 1368 (*cl_inet_connect)(IPPROTO_TCP, AF_INET6,\ 1369 (uint8_t *)(&((tcp)->tcp_ip6h->ip6_src)),\ 1370 (in_port_t)(tcp)->tcp_lport, \ 1371 (uint8_t *)(&((tcp)->tcp_ip6h->ip6_dst)),\ 1372 (in_port_t)(tcp)->tcp_fport); \ 1373 } \ 1374 } \ 1375 } \ 1376 } 1377 1378 #define CL_INET_DISCONNECT(tcp) { \ 1379 if (cl_inet_disconnect != NULL) { \ 1380 /* \ 1381 * Running in cluster mode - deregister active \ 1382 * connection information \ 1383 */ \ 1384 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1385 if ((tcp)->tcp_ip_src != 0) { \ 1386 (*cl_inet_disconnect)(IPPROTO_TCP, \ 1387 AF_INET, \ 1388 (uint8_t *)(&((tcp)->tcp_ip_src)),\ 1389 (in_port_t)(tcp)->tcp_lport, \ 1390 (uint8_t *) \ 1391 (&((tcp)->tcp_ipha->ipha_dst)),\ 1392 (in_port_t)(tcp)->tcp_fport); \ 1393 } \ 1394 } else { \ 1395 if (!IN6_IS_ADDR_UNSPECIFIED( \ 1396 &(tcp)->tcp_ip_src_v6)) { \ 1397 (*cl_inet_disconnect)(IPPROTO_TCP, AF_INET6,\ 1398 (uint8_t *)(&((tcp)->tcp_ip_src_v6)),\ 1399 (in_port_t)(tcp)->tcp_lport, \ 1400 (uint8_t *) \ 1401 (&((tcp)->tcp_ip6h->ip6_dst)),\ 1402 (in_port_t)(tcp)->tcp_fport); \ 1403 } \ 1404 } \ 1405 } \ 1406 } 1407 1408 /* 1409 * Cluster networking hook for traversing current connection list. 1410 * This routine is used to extract the current list of live connections 1411 * which must continue to to be dispatched to this node. 1412 */ 1413 int cl_tcp_walk_list(int (*callback)(cl_tcp_info_t *, void *), void *arg); 1414 1415 static int cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *), 1416 void *arg, tcp_stack_t *tcps); 1417 1418 /* 1419 * Figure out the value of window scale opton. Note that the rwnd is 1420 * ASSUMED to be rounded up to the nearest MSS before the calculation. 1421 * We cannot find the scale value and then do a round up of tcp_rwnd 1422 * because the scale value may not be correct after that. 1423 * 1424 * Set the compiler flag to make this function inline. 1425 */ 1426 static void 1427 tcp_set_ws_value(tcp_t *tcp) 1428 { 1429 int i; 1430 uint32_t rwnd = tcp->tcp_rwnd; 1431 1432 for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT; 1433 i++, rwnd >>= 1) 1434 ; 1435 tcp->tcp_rcv_ws = i; 1436 } 1437 1438 /* 1439 * Remove a connection from the list of detached TIME_WAIT connections. 1440 * It returns B_FALSE if it can't remove the connection from the list 1441 * as the connection has already been removed from the list due to an 1442 * earlier call to tcp_time_wait_remove(); otherwise it returns B_TRUE. 1443 */ 1444 static boolean_t 1445 tcp_time_wait_remove(tcp_t *tcp, tcp_squeue_priv_t *tcp_time_wait) 1446 { 1447 boolean_t locked = B_FALSE; 1448 1449 if (tcp_time_wait == NULL) { 1450 tcp_time_wait = *((tcp_squeue_priv_t **) 1451 squeue_getprivate(tcp->tcp_connp->conn_sqp, SQPRIVATE_TCP)); 1452 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1453 locked = B_TRUE; 1454 } else { 1455 ASSERT(MUTEX_HELD(&tcp_time_wait->tcp_time_wait_lock)); 1456 } 1457 1458 if (tcp->tcp_time_wait_expire == 0) { 1459 ASSERT(tcp->tcp_time_wait_next == NULL); 1460 ASSERT(tcp->tcp_time_wait_prev == NULL); 1461 if (locked) 1462 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1463 return (B_FALSE); 1464 } 1465 ASSERT(TCP_IS_DETACHED(tcp)); 1466 ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); 1467 1468 if (tcp == tcp_time_wait->tcp_time_wait_head) { 1469 ASSERT(tcp->tcp_time_wait_prev == NULL); 1470 tcp_time_wait->tcp_time_wait_head = tcp->tcp_time_wait_next; 1471 if (tcp_time_wait->tcp_time_wait_head != NULL) { 1472 tcp_time_wait->tcp_time_wait_head->tcp_time_wait_prev = 1473 NULL; 1474 } else { 1475 tcp_time_wait->tcp_time_wait_tail = NULL; 1476 } 1477 } else if (tcp == tcp_time_wait->tcp_time_wait_tail) { 1478 ASSERT(tcp != tcp_time_wait->tcp_time_wait_head); 1479 ASSERT(tcp->tcp_time_wait_next == NULL); 1480 tcp_time_wait->tcp_time_wait_tail = tcp->tcp_time_wait_prev; 1481 ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); 1482 tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = NULL; 1483 } else { 1484 ASSERT(tcp->tcp_time_wait_prev->tcp_time_wait_next == tcp); 1485 ASSERT(tcp->tcp_time_wait_next->tcp_time_wait_prev == tcp); 1486 tcp->tcp_time_wait_prev->tcp_time_wait_next = 1487 tcp->tcp_time_wait_next; 1488 tcp->tcp_time_wait_next->tcp_time_wait_prev = 1489 tcp->tcp_time_wait_prev; 1490 } 1491 tcp->tcp_time_wait_next = NULL; 1492 tcp->tcp_time_wait_prev = NULL; 1493 tcp->tcp_time_wait_expire = 0; 1494 1495 if (locked) 1496 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1497 return (B_TRUE); 1498 } 1499 1500 /* 1501 * Add a connection to the list of detached TIME_WAIT connections 1502 * and set its time to expire. 1503 */ 1504 static void 1505 tcp_time_wait_append(tcp_t *tcp) 1506 { 1507 tcp_stack_t *tcps = tcp->tcp_tcps; 1508 tcp_squeue_priv_t *tcp_time_wait = 1509 *((tcp_squeue_priv_t **)squeue_getprivate(tcp->tcp_connp->conn_sqp, 1510 SQPRIVATE_TCP)); 1511 1512 tcp_timers_stop(tcp); 1513 1514 /* Freed above */ 1515 ASSERT(tcp->tcp_timer_tid == 0); 1516 ASSERT(tcp->tcp_ack_tid == 0); 1517 1518 /* must have happened at the time of detaching the tcp */ 1519 ASSERT(tcp->tcp_ptpahn == NULL); 1520 ASSERT(tcp->tcp_flow_stopped == 0); 1521 ASSERT(tcp->tcp_time_wait_next == NULL); 1522 ASSERT(tcp->tcp_time_wait_prev == NULL); 1523 ASSERT(tcp->tcp_time_wait_expire == NULL); 1524 ASSERT(tcp->tcp_listener == NULL); 1525 1526 tcp->tcp_time_wait_expire = ddi_get_lbolt(); 1527 /* 1528 * The value computed below in tcp->tcp_time_wait_expire may 1529 * appear negative or wrap around. That is ok since our 1530 * interest is only in the difference between the current lbolt 1531 * value and tcp->tcp_time_wait_expire. But the value should not 1532 * be zero, since it means the tcp is not in the TIME_WAIT list. 1533 * The corresponding comparison in tcp_time_wait_collector() uses 1534 * modular arithmetic. 1535 */ 1536 tcp->tcp_time_wait_expire += 1537 drv_usectohz(tcps->tcps_time_wait_interval * 1000); 1538 if (tcp->tcp_time_wait_expire == 0) 1539 tcp->tcp_time_wait_expire = 1; 1540 1541 ASSERT(TCP_IS_DETACHED(tcp)); 1542 ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); 1543 ASSERT(tcp->tcp_time_wait_next == NULL); 1544 ASSERT(tcp->tcp_time_wait_prev == NULL); 1545 TCP_DBGSTAT(tcps, tcp_time_wait); 1546 1547 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1548 if (tcp_time_wait->tcp_time_wait_head == NULL) { 1549 ASSERT(tcp_time_wait->tcp_time_wait_tail == NULL); 1550 tcp_time_wait->tcp_time_wait_head = tcp; 1551 } else { 1552 ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); 1553 ASSERT(tcp_time_wait->tcp_time_wait_tail->tcp_state == 1554 TCPS_TIME_WAIT); 1555 tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = tcp; 1556 tcp->tcp_time_wait_prev = tcp_time_wait->tcp_time_wait_tail; 1557 } 1558 tcp_time_wait->tcp_time_wait_tail = tcp; 1559 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1560 } 1561 1562 /* ARGSUSED */ 1563 void 1564 tcp_timewait_output(void *arg, mblk_t *mp, void *arg2) 1565 { 1566 conn_t *connp = (conn_t *)arg; 1567 tcp_t *tcp = connp->conn_tcp; 1568 tcp_stack_t *tcps = tcp->tcp_tcps; 1569 1570 ASSERT(tcp != NULL); 1571 if (tcp->tcp_state == TCPS_CLOSED) { 1572 return; 1573 } 1574 1575 ASSERT((tcp->tcp_family == AF_INET && 1576 tcp->tcp_ipversion == IPV4_VERSION) || 1577 (tcp->tcp_family == AF_INET6 && 1578 (tcp->tcp_ipversion == IPV4_VERSION || 1579 tcp->tcp_ipversion == IPV6_VERSION))); 1580 ASSERT(!tcp->tcp_listener); 1581 1582 TCP_STAT(tcps, tcp_time_wait_reap); 1583 ASSERT(TCP_IS_DETACHED(tcp)); 1584 1585 /* 1586 * Because they have no upstream client to rebind or tcp_close() 1587 * them later, we axe the connection here and now. 1588 */ 1589 tcp_close_detached(tcp); 1590 } 1591 1592 /* 1593 * Remove cached/latched IPsec references. 1594 */ 1595 void 1596 tcp_ipsec_cleanup(tcp_t *tcp) 1597 { 1598 conn_t *connp = tcp->tcp_connp; 1599 1600 ASSERT(connp->conn_flags & IPCL_TCPCONN); 1601 1602 if (connp->conn_latch != NULL) { 1603 IPLATCH_REFRELE(connp->conn_latch, 1604 connp->conn_netstack); 1605 connp->conn_latch = NULL; 1606 } 1607 if (connp->conn_policy != NULL) { 1608 IPPH_REFRELE(connp->conn_policy, connp->conn_netstack); 1609 connp->conn_policy = NULL; 1610 } 1611 } 1612 1613 /* 1614 * Cleaup before placing on free list. 1615 * Disassociate from the netstack/tcp_stack_t since the freelist 1616 * is per squeue and not per netstack. 1617 */ 1618 void 1619 tcp_cleanup(tcp_t *tcp) 1620 { 1621 mblk_t *mp; 1622 char *tcp_iphc; 1623 int tcp_iphc_len; 1624 int tcp_hdr_grown; 1625 tcp_sack_info_t *tcp_sack_info; 1626 conn_t *connp = tcp->tcp_connp; 1627 tcp_stack_t *tcps = tcp->tcp_tcps; 1628 netstack_t *ns = tcps->tcps_netstack; 1629 1630 tcp_bind_hash_remove(tcp); 1631 1632 /* Cleanup that which needs the netstack first */ 1633 tcp_ipsec_cleanup(tcp); 1634 1635 tcp_free(tcp); 1636 1637 /* Release any SSL context */ 1638 if (tcp->tcp_kssl_ent != NULL) { 1639 kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); 1640 tcp->tcp_kssl_ent = NULL; 1641 } 1642 1643 if (tcp->tcp_kssl_ctx != NULL) { 1644 kssl_release_ctx(tcp->tcp_kssl_ctx); 1645 tcp->tcp_kssl_ctx = NULL; 1646 } 1647 tcp->tcp_kssl_pending = B_FALSE; 1648 1649 conn_delete_ire(connp, NULL); 1650 1651 /* 1652 * Since we will bzero the entire structure, we need to 1653 * remove it and reinsert it in global hash list. We 1654 * know the walkers can't get to this conn because we 1655 * had set CONDEMNED flag earlier and checked reference 1656 * under conn_lock so walker won't pick it and when we 1657 * go the ipcl_globalhash_remove() below, no walker 1658 * can get to it. 1659 */ 1660 ipcl_globalhash_remove(connp); 1661 1662 /* 1663 * Now it is safe to decrement the reference counts. 1664 * This might be the last reference on the netstack and TCPS 1665 * in which case it will cause the tcp_g_q_close and 1666 * the freeing of the IP Instance. 1667 */ 1668 connp->conn_netstack = NULL; 1669 netstack_rele(ns); 1670 ASSERT(tcps != NULL); 1671 tcp->tcp_tcps = NULL; 1672 TCPS_REFRELE(tcps); 1673 1674 /* Save some state */ 1675 mp = tcp->tcp_timercache; 1676 1677 tcp_sack_info = tcp->tcp_sack_info; 1678 tcp_iphc = tcp->tcp_iphc; 1679 tcp_iphc_len = tcp->tcp_iphc_len; 1680 tcp_hdr_grown = tcp->tcp_hdr_grown; 1681 1682 if (connp->conn_cred != NULL) { 1683 crfree(connp->conn_cred); 1684 connp->conn_cred = NULL; 1685 } 1686 if (connp->conn_peercred != NULL) { 1687 crfree(connp->conn_peercred); 1688 connp->conn_peercred = NULL; 1689 } 1690 ipcl_conn_cleanup(connp); 1691 connp->conn_flags = IPCL_TCPCONN; 1692 bzero(tcp, sizeof (tcp_t)); 1693 1694 /* restore the state */ 1695 tcp->tcp_timercache = mp; 1696 1697 tcp->tcp_sack_info = tcp_sack_info; 1698 tcp->tcp_iphc = tcp_iphc; 1699 tcp->tcp_iphc_len = tcp_iphc_len; 1700 tcp->tcp_hdr_grown = tcp_hdr_grown; 1701 1702 tcp->tcp_connp = connp; 1703 1704 ASSERT(connp->conn_tcp == tcp); 1705 ASSERT(connp->conn_flags & IPCL_TCPCONN); 1706 connp->conn_state_flags = CONN_INCIPIENT; 1707 ASSERT(connp->conn_ulp == IPPROTO_TCP); 1708 ASSERT(connp->conn_ref == 1); 1709 } 1710 1711 /* 1712 * Blows away all tcps whose TIME_WAIT has expired. List traversal 1713 * is done forwards from the head. 1714 * This walks all stack instances since 1715 * tcp_time_wait remains global across all stacks. 1716 */ 1717 /* ARGSUSED */ 1718 void 1719 tcp_time_wait_collector(void *arg) 1720 { 1721 tcp_t *tcp; 1722 clock_t now; 1723 mblk_t *mp; 1724 conn_t *connp; 1725 kmutex_t *lock; 1726 boolean_t removed; 1727 1728 squeue_t *sqp = (squeue_t *)arg; 1729 tcp_squeue_priv_t *tcp_time_wait = 1730 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 1731 1732 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1733 tcp_time_wait->tcp_time_wait_tid = 0; 1734 1735 if (tcp_time_wait->tcp_free_list != NULL && 1736 tcp_time_wait->tcp_free_list->tcp_in_free_list == B_TRUE) { 1737 TCP_G_STAT(tcp_freelist_cleanup); 1738 while ((tcp = tcp_time_wait->tcp_free_list) != NULL) { 1739 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 1740 tcp->tcp_time_wait_next = NULL; 1741 tcp_time_wait->tcp_free_list_cnt--; 1742 ASSERT(tcp->tcp_tcps == NULL); 1743 CONN_DEC_REF(tcp->tcp_connp); 1744 } 1745 ASSERT(tcp_time_wait->tcp_free_list_cnt == 0); 1746 } 1747 1748 /* 1749 * In order to reap time waits reliably, we should use a 1750 * source of time that is not adjustable by the user -- hence 1751 * the call to ddi_get_lbolt(). 1752 */ 1753 now = ddi_get_lbolt(); 1754 while ((tcp = tcp_time_wait->tcp_time_wait_head) != NULL) { 1755 /* 1756 * Compare times using modular arithmetic, since 1757 * lbolt can wrapover. 1758 */ 1759 if ((now - tcp->tcp_time_wait_expire) < 0) { 1760 break; 1761 } 1762 1763 removed = tcp_time_wait_remove(tcp, tcp_time_wait); 1764 ASSERT(removed); 1765 1766 connp = tcp->tcp_connp; 1767 ASSERT(connp->conn_fanout != NULL); 1768 lock = &connp->conn_fanout->connf_lock; 1769 /* 1770 * This is essentially a TW reclaim fast path optimization for 1771 * performance where the timewait collector checks under the 1772 * fanout lock (so that no one else can get access to the 1773 * conn_t) that the refcnt is 2 i.e. one for TCP and one for 1774 * the classifier hash list. If ref count is indeed 2, we can 1775 * just remove the conn under the fanout lock and avoid 1776 * cleaning up the conn under the squeue, provided that 1777 * clustering callbacks are not enabled. If clustering is 1778 * enabled, we need to make the clustering callback before 1779 * setting the CONDEMNED flag and after dropping all locks and 1780 * so we forego this optimization and fall back to the slow 1781 * path. Also please see the comments in tcp_closei_local 1782 * regarding the refcnt logic. 1783 * 1784 * Since we are holding the tcp_time_wait_lock, its better 1785 * not to block on the fanout_lock because other connections 1786 * can't add themselves to time_wait list. So we do a 1787 * tryenter instead of mutex_enter. 1788 */ 1789 if (mutex_tryenter(lock)) { 1790 mutex_enter(&connp->conn_lock); 1791 if ((connp->conn_ref == 2) && 1792 (cl_inet_disconnect == NULL)) { 1793 ipcl_hash_remove_locked(connp, 1794 connp->conn_fanout); 1795 /* 1796 * Set the CONDEMNED flag now itself so that 1797 * the refcnt cannot increase due to any 1798 * walker. But we have still not cleaned up 1799 * conn_ire_cache. This is still ok since 1800 * we are going to clean it up in tcp_cleanup 1801 * immediately and any interface unplumb 1802 * thread will wait till the ire is blown away 1803 */ 1804 connp->conn_state_flags |= CONN_CONDEMNED; 1805 mutex_exit(lock); 1806 mutex_exit(&connp->conn_lock); 1807 if (tcp_time_wait->tcp_free_list_cnt < 1808 tcp_free_list_max_cnt) { 1809 /* Add to head of tcp_free_list */ 1810 mutex_exit( 1811 &tcp_time_wait->tcp_time_wait_lock); 1812 tcp_cleanup(tcp); 1813 ASSERT(connp->conn_latch == NULL); 1814 ASSERT(connp->conn_policy == NULL); 1815 ASSERT(tcp->tcp_tcps == NULL); 1816 ASSERT(connp->conn_netstack == NULL); 1817 1818 mutex_enter( 1819 &tcp_time_wait->tcp_time_wait_lock); 1820 tcp->tcp_time_wait_next = 1821 tcp_time_wait->tcp_free_list; 1822 tcp_time_wait->tcp_free_list = tcp; 1823 tcp_time_wait->tcp_free_list_cnt++; 1824 continue; 1825 } else { 1826 /* Do not add to tcp_free_list */ 1827 mutex_exit( 1828 &tcp_time_wait->tcp_time_wait_lock); 1829 tcp_bind_hash_remove(tcp); 1830 conn_delete_ire(tcp->tcp_connp, NULL); 1831 tcp_ipsec_cleanup(tcp); 1832 CONN_DEC_REF(tcp->tcp_connp); 1833 } 1834 } else { 1835 CONN_INC_REF_LOCKED(connp); 1836 mutex_exit(lock); 1837 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1838 mutex_exit(&connp->conn_lock); 1839 /* 1840 * We can reuse the closemp here since conn has 1841 * detached (otherwise we wouldn't even be in 1842 * time_wait list). tcp_closemp_used can safely 1843 * be changed without taking a lock as no other 1844 * thread can concurrently access it at this 1845 * point in the connection lifecycle. 1846 */ 1847 1848 if (tcp->tcp_closemp.b_prev == NULL) 1849 tcp->tcp_closemp_used = B_TRUE; 1850 else 1851 cmn_err(CE_PANIC, 1852 "tcp_timewait_collector: " 1853 "concurrent use of tcp_closemp: " 1854 "connp %p tcp %p\n", (void *)connp, 1855 (void *)tcp); 1856 1857 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 1858 mp = &tcp->tcp_closemp; 1859 squeue_fill(connp->conn_sqp, mp, 1860 tcp_timewait_output, connp, 1861 SQTAG_TCP_TIMEWAIT); 1862 } 1863 } else { 1864 mutex_enter(&connp->conn_lock); 1865 CONN_INC_REF_LOCKED(connp); 1866 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1867 mutex_exit(&connp->conn_lock); 1868 /* 1869 * We can reuse the closemp here since conn has 1870 * detached (otherwise we wouldn't even be in 1871 * time_wait list). tcp_closemp_used can safely 1872 * be changed without taking a lock as no other 1873 * thread can concurrently access it at this 1874 * point in the connection lifecycle. 1875 */ 1876 1877 if (tcp->tcp_closemp.b_prev == NULL) 1878 tcp->tcp_closemp_used = B_TRUE; 1879 else 1880 cmn_err(CE_PANIC, "tcp_timewait_collector: " 1881 "concurrent use of tcp_closemp: " 1882 "connp %p tcp %p\n", (void *)connp, 1883 (void *)tcp); 1884 1885 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 1886 mp = &tcp->tcp_closemp; 1887 squeue_fill(connp->conn_sqp, mp, 1888 tcp_timewait_output, connp, 0); 1889 } 1890 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1891 } 1892 1893 if (tcp_time_wait->tcp_free_list != NULL) 1894 tcp_time_wait->tcp_free_list->tcp_in_free_list = B_TRUE; 1895 1896 tcp_time_wait->tcp_time_wait_tid = 1897 timeout(tcp_time_wait_collector, sqp, TCP_TIME_WAIT_DELAY); 1898 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1899 } 1900 /* 1901 * Reply to a clients T_CONN_RES TPI message. This function 1902 * is used only for TLI/XTI listener. Sockfs sends T_CONN_RES 1903 * on the acceptor STREAM and processed in tcp_wput_accept(). 1904 * Read the block comment on top of tcp_conn_request(). 1905 */ 1906 static void 1907 tcp_accept(tcp_t *listener, mblk_t *mp) 1908 { 1909 tcp_t *acceptor; 1910 tcp_t *eager; 1911 tcp_t *tcp; 1912 struct T_conn_res *tcr; 1913 t_uscalar_t acceptor_id; 1914 t_scalar_t seqnum; 1915 mblk_t *opt_mp = NULL; /* T_OPTMGMT_REQ messages */ 1916 mblk_t *ok_mp; 1917 mblk_t *mp1; 1918 tcp_stack_t *tcps = listener->tcp_tcps; 1919 1920 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { 1921 tcp_err_ack(listener, mp, TPROTO, 0); 1922 return; 1923 } 1924 tcr = (struct T_conn_res *)mp->b_rptr; 1925 1926 /* 1927 * Under ILP32 the stream head points tcr->ACCEPTOR_id at the 1928 * read side queue of the streams device underneath us i.e. the 1929 * read side queue of 'ip'. Since we can't deference QUEUE_ptr we 1930 * look it up in the queue_hash. Under LP64 it sends down the 1931 * minor_t of the accepting endpoint. 1932 * 1933 * Once the acceptor/eager are modified (in tcp_accept_swap) the 1934 * fanout hash lock is held. 1935 * This prevents any thread from entering the acceptor queue from 1936 * below (since it has not been hard bound yet i.e. any inbound 1937 * packets will arrive on the listener or default tcp queue and 1938 * go through tcp_lookup). 1939 * The CONN_INC_REF will prevent the acceptor from closing. 1940 * 1941 * XXX It is still possible for a tli application to send down data 1942 * on the accepting stream while another thread calls t_accept. 1943 * This should not be a problem for well-behaved applications since 1944 * the T_OK_ACK is sent after the queue swapping is completed. 1945 * 1946 * If the accepting fd is the same as the listening fd, avoid 1947 * queue hash lookup since that will return an eager listener in a 1948 * already established state. 1949 */ 1950 acceptor_id = tcr->ACCEPTOR_id; 1951 mutex_enter(&listener->tcp_eager_lock); 1952 if (listener->tcp_acceptor_id == acceptor_id) { 1953 eager = listener->tcp_eager_next_q; 1954 /* only count how many T_CONN_INDs so don't count q0 */ 1955 if ((listener->tcp_conn_req_cnt_q != 1) || 1956 (eager->tcp_conn_req_seqnum != tcr->SEQ_number)) { 1957 mutex_exit(&listener->tcp_eager_lock); 1958 tcp_err_ack(listener, mp, TBADF, 0); 1959 return; 1960 } 1961 if (listener->tcp_conn_req_cnt_q0 != 0) { 1962 /* Throw away all the eagers on q0. */ 1963 tcp_eager_cleanup(listener, 1); 1964 } 1965 if (listener->tcp_syn_defense) { 1966 listener->tcp_syn_defense = B_FALSE; 1967 if (listener->tcp_ip_addr_cache != NULL) { 1968 kmem_free(listener->tcp_ip_addr_cache, 1969 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 1970 listener->tcp_ip_addr_cache = NULL; 1971 } 1972 } 1973 /* 1974 * Transfer tcp_conn_req_max to the eager so that when 1975 * a disconnect occurs we can revert the endpoint to the 1976 * listen state. 1977 */ 1978 eager->tcp_conn_req_max = listener->tcp_conn_req_max; 1979 ASSERT(listener->tcp_conn_req_cnt_q0 == 0); 1980 /* 1981 * Get a reference on the acceptor just like the 1982 * tcp_acceptor_hash_lookup below. 1983 */ 1984 acceptor = listener; 1985 CONN_INC_REF(acceptor->tcp_connp); 1986 } else { 1987 acceptor = tcp_acceptor_hash_lookup(acceptor_id, tcps); 1988 if (acceptor == NULL) { 1989 if (listener->tcp_debug) { 1990 (void) strlog(TCP_MOD_ID, 0, 1, 1991 SL_ERROR|SL_TRACE, 1992 "tcp_accept: did not find acceptor 0x%x\n", 1993 acceptor_id); 1994 } 1995 mutex_exit(&listener->tcp_eager_lock); 1996 tcp_err_ack(listener, mp, TPROVMISMATCH, 0); 1997 return; 1998 } 1999 /* 2000 * Verify acceptor state. The acceptable states for an acceptor 2001 * include TCPS_IDLE and TCPS_BOUND. 2002 */ 2003 switch (acceptor->tcp_state) { 2004 case TCPS_IDLE: 2005 /* FALLTHRU */ 2006 case TCPS_BOUND: 2007 break; 2008 default: 2009 CONN_DEC_REF(acceptor->tcp_connp); 2010 mutex_exit(&listener->tcp_eager_lock); 2011 tcp_err_ack(listener, mp, TOUTSTATE, 0); 2012 return; 2013 } 2014 } 2015 2016 /* The listener must be in TCPS_LISTEN */ 2017 if (listener->tcp_state != TCPS_LISTEN) { 2018 CONN_DEC_REF(acceptor->tcp_connp); 2019 mutex_exit(&listener->tcp_eager_lock); 2020 tcp_err_ack(listener, mp, TOUTSTATE, 0); 2021 return; 2022 } 2023 2024 /* 2025 * Rendezvous with an eager connection request packet hanging off 2026 * 'tcp' that has the 'seqnum' tag. We tagged the detached open 2027 * tcp structure when the connection packet arrived in 2028 * tcp_conn_request(). 2029 */ 2030 seqnum = tcr->SEQ_number; 2031 eager = listener; 2032 do { 2033 eager = eager->tcp_eager_next_q; 2034 if (eager == NULL) { 2035 CONN_DEC_REF(acceptor->tcp_connp); 2036 mutex_exit(&listener->tcp_eager_lock); 2037 tcp_err_ack(listener, mp, TBADSEQ, 0); 2038 return; 2039 } 2040 } while (eager->tcp_conn_req_seqnum != seqnum); 2041 mutex_exit(&listener->tcp_eager_lock); 2042 2043 /* 2044 * At this point, both acceptor and listener have 2 ref 2045 * that they begin with. Acceptor has one additional ref 2046 * we placed in lookup while listener has 3 additional 2047 * ref for being behind the squeue (tcp_accept() is 2048 * done on listener's squeue); being in classifier hash; 2049 * and eager's ref on listener. 2050 */ 2051 ASSERT(listener->tcp_connp->conn_ref >= 5); 2052 ASSERT(acceptor->tcp_connp->conn_ref >= 3); 2053 2054 /* 2055 * The eager at this point is set in its own squeue and 2056 * could easily have been killed (tcp_accept_finish will 2057 * deal with that) because of a TH_RST so we can only 2058 * ASSERT for a single ref. 2059 */ 2060 ASSERT(eager->tcp_connp->conn_ref >= 1); 2061 2062 /* Pre allocate the stroptions mblk also */ 2063 opt_mp = allocb(sizeof (struct stroptions), BPRI_HI); 2064 if (opt_mp == NULL) { 2065 CONN_DEC_REF(acceptor->tcp_connp); 2066 CONN_DEC_REF(eager->tcp_connp); 2067 tcp_err_ack(listener, mp, TSYSERR, ENOMEM); 2068 return; 2069 } 2070 DB_TYPE(opt_mp) = M_SETOPTS; 2071 opt_mp->b_wptr += sizeof (struct stroptions); 2072 2073 /* 2074 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO 2075 * from listener to acceptor. The message is chained on opt_mp 2076 * which will be sent onto eager's squeue. 2077 */ 2078 if (listener->tcp_bound_if != 0) { 2079 /* allocate optmgmt req */ 2080 mp1 = tcp_setsockopt_mp(IPPROTO_IPV6, 2081 IPV6_BOUND_IF, (char *)&listener->tcp_bound_if, 2082 sizeof (int)); 2083 if (mp1 != NULL) 2084 linkb(opt_mp, mp1); 2085 } 2086 if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) { 2087 uint_t on = 1; 2088 2089 /* allocate optmgmt req */ 2090 mp1 = tcp_setsockopt_mp(IPPROTO_IPV6, 2091 IPV6_RECVPKTINFO, (char *)&on, sizeof (on)); 2092 if (mp1 != NULL) 2093 linkb(opt_mp, mp1); 2094 } 2095 2096 /* Re-use mp1 to hold a copy of mp, in case reallocb fails */ 2097 if ((mp1 = copymsg(mp)) == NULL) { 2098 CONN_DEC_REF(acceptor->tcp_connp); 2099 CONN_DEC_REF(eager->tcp_connp); 2100 freemsg(opt_mp); 2101 tcp_err_ack(listener, mp, TSYSERR, ENOMEM); 2102 return; 2103 } 2104 2105 tcr = (struct T_conn_res *)mp1->b_rptr; 2106 2107 /* 2108 * This is an expanded version of mi_tpi_ok_ack_alloc() 2109 * which allocates a larger mblk and appends the new 2110 * local address to the ok_ack. The address is copied by 2111 * soaccept() for getsockname(). 2112 */ 2113 { 2114 int extra; 2115 2116 extra = (eager->tcp_family == AF_INET) ? 2117 sizeof (sin_t) : sizeof (sin6_t); 2118 2119 /* 2120 * Try to re-use mp, if possible. Otherwise, allocate 2121 * an mblk and return it as ok_mp. In any case, mp 2122 * is no longer usable upon return. 2123 */ 2124 if ((ok_mp = mi_tpi_ok_ack_alloc_extra(mp, extra)) == NULL) { 2125 CONN_DEC_REF(acceptor->tcp_connp); 2126 CONN_DEC_REF(eager->tcp_connp); 2127 freemsg(opt_mp); 2128 /* Original mp has been freed by now, so use mp1 */ 2129 tcp_err_ack(listener, mp1, TSYSERR, ENOMEM); 2130 return; 2131 } 2132 2133 mp = NULL; /* We should never use mp after this point */ 2134 2135 switch (extra) { 2136 case sizeof (sin_t): { 2137 sin_t *sin = (sin_t *)ok_mp->b_wptr; 2138 2139 ok_mp->b_wptr += extra; 2140 sin->sin_family = AF_INET; 2141 sin->sin_port = eager->tcp_lport; 2142 sin->sin_addr.s_addr = 2143 eager->tcp_ipha->ipha_src; 2144 break; 2145 } 2146 case sizeof (sin6_t): { 2147 sin6_t *sin6 = (sin6_t *)ok_mp->b_wptr; 2148 2149 ok_mp->b_wptr += extra; 2150 sin6->sin6_family = AF_INET6; 2151 sin6->sin6_port = eager->tcp_lport; 2152 if (eager->tcp_ipversion == IPV4_VERSION) { 2153 sin6->sin6_flowinfo = 0; 2154 IN6_IPADDR_TO_V4MAPPED( 2155 eager->tcp_ipha->ipha_src, 2156 &sin6->sin6_addr); 2157 } else { 2158 ASSERT(eager->tcp_ip6h != NULL); 2159 sin6->sin6_flowinfo = 2160 eager->tcp_ip6h->ip6_vcf & 2161 ~IPV6_VERS_AND_FLOW_MASK; 2162 sin6->sin6_addr = 2163 eager->tcp_ip6h->ip6_src; 2164 } 2165 sin6->sin6_scope_id = 0; 2166 sin6->__sin6_src_id = 0; 2167 break; 2168 } 2169 default: 2170 break; 2171 } 2172 ASSERT(ok_mp->b_wptr <= ok_mp->b_datap->db_lim); 2173 } 2174 2175 /* 2176 * If there are no options we know that the T_CONN_RES will 2177 * succeed. However, we can't send the T_OK_ACK upstream until 2178 * the tcp_accept_swap is done since it would be dangerous to 2179 * let the application start using the new fd prior to the swap. 2180 */ 2181 tcp_accept_swap(listener, acceptor, eager); 2182 2183 /* 2184 * tcp_accept_swap unlinks eager from listener but does not drop 2185 * the eager's reference on the listener. 2186 */ 2187 ASSERT(eager->tcp_listener == NULL); 2188 ASSERT(listener->tcp_connp->conn_ref >= 5); 2189 2190 /* 2191 * The eager is now associated with its own queue. Insert in 2192 * the hash so that the connection can be reused for a future 2193 * T_CONN_RES. 2194 */ 2195 tcp_acceptor_hash_insert(acceptor_id, eager); 2196 2197 /* 2198 * We now do the processing of options with T_CONN_RES. 2199 * We delay till now since we wanted to have queue to pass to 2200 * option processing routines that points back to the right 2201 * instance structure which does not happen until after 2202 * tcp_accept_swap(). 2203 * 2204 * Note: 2205 * The sanity of the logic here assumes that whatever options 2206 * are appropriate to inherit from listner=>eager are done 2207 * before this point, and whatever were to be overridden (or not) 2208 * in transfer logic from eager=>acceptor in tcp_accept_swap(). 2209 * [ Warning: acceptor endpoint can have T_OPTMGMT_REQ done to it 2210 * before its ACCEPTOR_id comes down in T_CONN_RES ] 2211 * This may not be true at this point in time but can be fixed 2212 * independently. This option processing code starts with 2213 * the instantiated acceptor instance and the final queue at 2214 * this point. 2215 */ 2216 2217 if (tcr->OPT_length != 0) { 2218 /* Options to process */ 2219 int t_error = 0; 2220 int sys_error = 0; 2221 int do_disconnect = 0; 2222 2223 if (tcp_conprim_opt_process(eager, mp1, 2224 &do_disconnect, &t_error, &sys_error) < 0) { 2225 eager->tcp_accept_error = 1; 2226 if (do_disconnect) { 2227 /* 2228 * An option failed which does not allow 2229 * connection to be accepted. 2230 * 2231 * We allow T_CONN_RES to succeed and 2232 * put a T_DISCON_IND on the eager queue. 2233 */ 2234 ASSERT(t_error == 0 && sys_error == 0); 2235 eager->tcp_send_discon_ind = 1; 2236 } else { 2237 ASSERT(t_error != 0); 2238 freemsg(ok_mp); 2239 /* 2240 * Original mp was either freed or set 2241 * to ok_mp above, so use mp1 instead. 2242 */ 2243 tcp_err_ack(listener, mp1, t_error, sys_error); 2244 goto finish; 2245 } 2246 } 2247 /* 2248 * Most likely success in setting options (except if 2249 * eager->tcp_send_discon_ind set). 2250 * mp1 option buffer represented by OPT_length/offset 2251 * potentially modified and contains results of setting 2252 * options at this point 2253 */ 2254 } 2255 2256 /* We no longer need mp1, since all options processing has passed */ 2257 freemsg(mp1); 2258 2259 putnext(listener->tcp_rq, ok_mp); 2260 2261 mutex_enter(&listener->tcp_eager_lock); 2262 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 2263 tcp_t *tail; 2264 mblk_t *conn_ind; 2265 2266 /* 2267 * This path should not be executed if listener and 2268 * acceptor streams are the same. 2269 */ 2270 ASSERT(listener != acceptor); 2271 2272 tcp = listener->tcp_eager_prev_q0; 2273 /* 2274 * listener->tcp_eager_prev_q0 points to the TAIL of the 2275 * deferred T_conn_ind queue. We need to get to the head of 2276 * the queue in order to send up T_conn_ind the same order as 2277 * how the 3WHS is completed. 2278 */ 2279 while (tcp != listener) { 2280 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0) 2281 break; 2282 else 2283 tcp = tcp->tcp_eager_prev_q0; 2284 } 2285 ASSERT(tcp != listener); 2286 conn_ind = tcp->tcp_conn.tcp_eager_conn_ind; 2287 ASSERT(conn_ind != NULL); 2288 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 2289 2290 /* Move from q0 to q */ 2291 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 2292 listener->tcp_conn_req_cnt_q0--; 2293 listener->tcp_conn_req_cnt_q++; 2294 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 2295 tcp->tcp_eager_prev_q0; 2296 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 2297 tcp->tcp_eager_next_q0; 2298 tcp->tcp_eager_prev_q0 = NULL; 2299 tcp->tcp_eager_next_q0 = NULL; 2300 tcp->tcp_conn_def_q0 = B_FALSE; 2301 2302 /* Make sure the tcp isn't in the list of droppables */ 2303 ASSERT(tcp->tcp_eager_next_drop_q0 == NULL && 2304 tcp->tcp_eager_prev_drop_q0 == NULL); 2305 2306 /* 2307 * Insert at end of the queue because sockfs sends 2308 * down T_CONN_RES in chronological order. Leaving 2309 * the older conn indications at front of the queue 2310 * helps reducing search time. 2311 */ 2312 tail = listener->tcp_eager_last_q; 2313 if (tail != NULL) 2314 tail->tcp_eager_next_q = tcp; 2315 else 2316 listener->tcp_eager_next_q = tcp; 2317 listener->tcp_eager_last_q = tcp; 2318 tcp->tcp_eager_next_q = NULL; 2319 mutex_exit(&listener->tcp_eager_lock); 2320 putnext(tcp->tcp_rq, conn_ind); 2321 } else { 2322 mutex_exit(&listener->tcp_eager_lock); 2323 } 2324 2325 /* 2326 * Done with the acceptor - free it 2327 * 2328 * Note: from this point on, no access to listener should be made 2329 * as listener can be equal to acceptor. 2330 */ 2331 finish: 2332 ASSERT(acceptor->tcp_detached); 2333 ASSERT(tcps->tcps_g_q != NULL); 2334 acceptor->tcp_rq = tcps->tcps_g_q; 2335 acceptor->tcp_wq = WR(tcps->tcps_g_q); 2336 (void) tcp_clean_death(acceptor, 0, 2); 2337 CONN_DEC_REF(acceptor->tcp_connp); 2338 2339 /* 2340 * In case we already received a FIN we have to make tcp_rput send 2341 * the ordrel_ind. This will also send up a window update if the window 2342 * has opened up. 2343 * 2344 * In the normal case of a successful connection acceptance 2345 * we give the O_T_BIND_REQ to the read side put procedure as an 2346 * indication that this was just accepted. This tells tcp_rput to 2347 * pass up any data queued in tcp_rcv_list. 2348 * 2349 * In the fringe case where options sent with T_CONN_RES failed and 2350 * we required, we would be indicating a T_DISCON_IND to blow 2351 * away this connection. 2352 */ 2353 2354 /* 2355 * XXX: we currently have a problem if XTI application closes the 2356 * acceptor stream in between. This problem exists in on10-gate also 2357 * and is well know but nothing can be done short of major rewrite 2358 * to fix it. Now it is possible to take care of it by assigning TLI/XTI 2359 * eager same squeue as listener (we can distinguish non socket 2360 * listeners at the time of handling a SYN in tcp_conn_request) 2361 * and do most of the work that tcp_accept_finish does here itself 2362 * and then get behind the acceptor squeue to access the acceptor 2363 * queue. 2364 */ 2365 /* 2366 * We already have a ref on tcp so no need to do one before squeue_fill 2367 */ 2368 squeue_fill(eager->tcp_connp->conn_sqp, opt_mp, 2369 tcp_accept_finish, eager->tcp_connp, SQTAG_TCP_ACCEPT_FINISH); 2370 } 2371 2372 /* 2373 * Swap information between the eager and acceptor for a TLI/XTI client. 2374 * The sockfs accept is done on the acceptor stream and control goes 2375 * through tcp_wput_accept() and tcp_accept()/tcp_accept_swap() is not 2376 * called. In either case, both the eager and listener are in their own 2377 * perimeter (squeue) and the code has to deal with potential race. 2378 * 2379 * See the block comment on top of tcp_accept() and tcp_wput_accept(). 2380 */ 2381 static void 2382 tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, tcp_t *eager) 2383 { 2384 conn_t *econnp, *aconnp; 2385 2386 ASSERT(eager->tcp_rq == listener->tcp_rq); 2387 ASSERT(eager->tcp_detached && !acceptor->tcp_detached); 2388 ASSERT(!eager->tcp_hard_bound); 2389 ASSERT(!TCP_IS_SOCKET(acceptor)); 2390 ASSERT(!TCP_IS_SOCKET(eager)); 2391 ASSERT(!TCP_IS_SOCKET(listener)); 2392 2393 acceptor->tcp_detached = B_TRUE; 2394 /* 2395 * To permit stream re-use by TLI/XTI, the eager needs a copy of 2396 * the acceptor id. 2397 */ 2398 eager->tcp_acceptor_id = acceptor->tcp_acceptor_id; 2399 2400 /* remove eager from listen list... */ 2401 mutex_enter(&listener->tcp_eager_lock); 2402 tcp_eager_unlink(eager); 2403 ASSERT(eager->tcp_eager_next_q == NULL && 2404 eager->tcp_eager_last_q == NULL); 2405 ASSERT(eager->tcp_eager_next_q0 == NULL && 2406 eager->tcp_eager_prev_q0 == NULL); 2407 mutex_exit(&listener->tcp_eager_lock); 2408 eager->tcp_rq = acceptor->tcp_rq; 2409 eager->tcp_wq = acceptor->tcp_wq; 2410 2411 econnp = eager->tcp_connp; 2412 aconnp = acceptor->tcp_connp; 2413 2414 eager->tcp_rq->q_ptr = econnp; 2415 eager->tcp_wq->q_ptr = econnp; 2416 2417 /* 2418 * In the TLI/XTI loopback case, we are inside the listener's squeue, 2419 * which might be a different squeue from our peer TCP instance. 2420 * For TCP Fusion, the peer expects that whenever tcp_detached is 2421 * clear, our TCP queues point to the acceptor's queues. Thus, use 2422 * membar_producer() to ensure that the assignments of tcp_rq/tcp_wq 2423 * above reach global visibility prior to the clearing of tcp_detached. 2424 */ 2425 membar_producer(); 2426 eager->tcp_detached = B_FALSE; 2427 2428 ASSERT(eager->tcp_ack_tid == 0); 2429 2430 econnp->conn_dev = aconnp->conn_dev; 2431 if (eager->tcp_cred != NULL) 2432 crfree(eager->tcp_cred); 2433 eager->tcp_cred = econnp->conn_cred = aconnp->conn_cred; 2434 ASSERT(econnp->conn_netstack == aconnp->conn_netstack); 2435 ASSERT(eager->tcp_tcps == acceptor->tcp_tcps); 2436 2437 aconnp->conn_cred = NULL; 2438 2439 econnp->conn_zoneid = aconnp->conn_zoneid; 2440 econnp->conn_allzones = aconnp->conn_allzones; 2441 2442 econnp->conn_mac_exempt = aconnp->conn_mac_exempt; 2443 aconnp->conn_mac_exempt = B_FALSE; 2444 2445 ASSERT(aconnp->conn_peercred == NULL); 2446 2447 /* Do the IPC initialization */ 2448 CONN_INC_REF(econnp); 2449 2450 econnp->conn_multicast_loop = aconnp->conn_multicast_loop; 2451 econnp->conn_af_isv6 = aconnp->conn_af_isv6; 2452 econnp->conn_pkt_isv6 = aconnp->conn_pkt_isv6; 2453 2454 /* Done with old IPC. Drop its ref on its connp */ 2455 CONN_DEC_REF(aconnp); 2456 } 2457 2458 2459 /* 2460 * Adapt to the information, such as rtt and rtt_sd, provided from the 2461 * ire cached in conn_cache_ire. If no ire cached, do a ire lookup. 2462 * 2463 * Checks for multicast and broadcast destination address. 2464 * Returns zero on failure; non-zero if ok. 2465 * 2466 * Note that the MSS calculation here is based on the info given in 2467 * the IRE. We do not do any calculation based on TCP options. They 2468 * will be handled in tcp_rput_other() and tcp_rput_data() when TCP 2469 * knows which options to use. 2470 * 2471 * Note on how TCP gets its parameters for a connection. 2472 * 2473 * When a tcp_t structure is allocated, it gets all the default parameters. 2474 * In tcp_adapt_ire(), it gets those metric parameters, like rtt, rtt_sd, 2475 * spipe, rpipe, ... from the route metrics. Route metric overrides the 2476 * default. But if there is an associated tcp_host_param, it will override 2477 * the metrics. 2478 * 2479 * An incoming SYN with a multicast or broadcast destination address, is dropped 2480 * in 1 of 2 places. 2481 * 2482 * 1. If the packet was received over the wire it is dropped in 2483 * ip_rput_process_broadcast() 2484 * 2485 * 2. If the packet was received through internal IP loopback, i.e. the packet 2486 * was generated and received on the same machine, it is dropped in 2487 * ip_wput_local() 2488 * 2489 * An incoming SYN with a multicast or broadcast source address is always 2490 * dropped in tcp_adapt_ire. The same logic in tcp_adapt_ire also serves to 2491 * reject an attempt to connect to a broadcast or multicast (destination) 2492 * address. 2493 */ 2494 static int 2495 tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp) 2496 { 2497 tcp_hsp_t *hsp; 2498 ire_t *ire; 2499 ire_t *sire = NULL; 2500 iulp_t *ire_uinfo = NULL; 2501 uint32_t mss_max; 2502 uint32_t mss; 2503 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 2504 conn_t *connp = tcp->tcp_connp; 2505 boolean_t ire_cacheable = B_FALSE; 2506 zoneid_t zoneid = connp->conn_zoneid; 2507 int match_flags = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 2508 MATCH_IRE_SECATTR; 2509 ts_label_t *tsl = crgetlabel(CONN_CRED(connp)); 2510 ill_t *ill = NULL; 2511 boolean_t incoming = (ire_mp == NULL); 2512 tcp_stack_t *tcps = tcp->tcp_tcps; 2513 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 2514 2515 ASSERT(connp->conn_ire_cache == NULL); 2516 2517 if (tcp->tcp_ipversion == IPV4_VERSION) { 2518 2519 if (CLASSD(tcp->tcp_connp->conn_rem)) { 2520 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 2521 return (0); 2522 } 2523 /* 2524 * If IP_NEXTHOP is set, then look for an IRE_CACHE 2525 * for the destination with the nexthop as gateway. 2526 * ire_ctable_lookup() is used because this particular 2527 * ire, if it exists, will be marked private. 2528 * If that is not available, use the interface ire 2529 * for the nexthop. 2530 * 2531 * TSol: tcp_update_label will detect label mismatches based 2532 * only on the destination's label, but that would not 2533 * detect label mismatches based on the security attributes 2534 * of routes or next hop gateway. Hence we need to pass the 2535 * label to ire_ftable_lookup below in order to locate the 2536 * right prefix (and/or) ire cache. Similarly we also need 2537 * pass the label to the ire_cache_lookup below to locate 2538 * the right ire that also matches on the label. 2539 */ 2540 if (tcp->tcp_connp->conn_nexthop_set) { 2541 ire = ire_ctable_lookup(tcp->tcp_connp->conn_rem, 2542 tcp->tcp_connp->conn_nexthop_v4, 0, NULL, zoneid, 2543 tsl, MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW, 2544 ipst); 2545 if (ire == NULL) { 2546 ire = ire_ftable_lookup( 2547 tcp->tcp_connp->conn_nexthop_v4, 2548 0, 0, IRE_INTERFACE, NULL, NULL, zoneid, 0, 2549 tsl, match_flags, ipst); 2550 if (ire == NULL) 2551 return (0); 2552 } else { 2553 ire_uinfo = &ire->ire_uinfo; 2554 } 2555 } else { 2556 ire = ire_cache_lookup(tcp->tcp_connp->conn_rem, 2557 zoneid, tsl, ipst); 2558 if (ire != NULL) { 2559 ire_cacheable = B_TRUE; 2560 ire_uinfo = (ire_mp != NULL) ? 2561 &((ire_t *)ire_mp->b_rptr)->ire_uinfo: 2562 &ire->ire_uinfo; 2563 2564 } else { 2565 if (ire_mp == NULL) { 2566 ire = ire_ftable_lookup( 2567 tcp->tcp_connp->conn_rem, 2568 0, 0, 0, NULL, &sire, zoneid, 0, 2569 tsl, (MATCH_IRE_RECURSIVE | 2570 MATCH_IRE_DEFAULT), ipst); 2571 if (ire == NULL) 2572 return (0); 2573 ire_uinfo = (sire != NULL) ? 2574 &sire->ire_uinfo : 2575 &ire->ire_uinfo; 2576 } else { 2577 ire = (ire_t *)ire_mp->b_rptr; 2578 ire_uinfo = 2579 &((ire_t *) 2580 ire_mp->b_rptr)->ire_uinfo; 2581 } 2582 } 2583 } 2584 ASSERT(ire != NULL); 2585 2586 if ((ire->ire_src_addr == INADDR_ANY) || 2587 (ire->ire_type & IRE_BROADCAST)) { 2588 /* 2589 * ire->ire_mp is non null when ire_mp passed in is used 2590 * ire->ire_mp is set in ip_bind_insert_ire[_v6](). 2591 */ 2592 if (ire->ire_mp == NULL) 2593 ire_refrele(ire); 2594 if (sire != NULL) 2595 ire_refrele(sire); 2596 return (0); 2597 } 2598 2599 if (tcp->tcp_ipha->ipha_src == INADDR_ANY) { 2600 ipaddr_t src_addr; 2601 2602 /* 2603 * ip_bind_connected() has stored the correct source 2604 * address in conn_src. 2605 */ 2606 src_addr = tcp->tcp_connp->conn_src; 2607 tcp->tcp_ipha->ipha_src = src_addr; 2608 /* 2609 * Copy of the src addr. in tcp_t is needed 2610 * for the lookup funcs. 2611 */ 2612 IN6_IPADDR_TO_V4MAPPED(src_addr, &tcp->tcp_ip_src_v6); 2613 } 2614 /* 2615 * Set the fragment bit so that IP will tell us if the MTU 2616 * should change. IP tells us the latest setting of 2617 * ip_path_mtu_discovery through ire_frag_flag. 2618 */ 2619 if (ipst->ips_ip_path_mtu_discovery) { 2620 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 2621 htons(IPH_DF); 2622 } 2623 /* 2624 * If ire_uinfo is NULL, this is the IRE_INTERFACE case 2625 * for IP_NEXTHOP. No cache ire has been found for the 2626 * destination and we are working with the nexthop's 2627 * interface ire. Since we need to forward all packets 2628 * to the nexthop first, we "blindly" set tcp_localnet 2629 * to false, eventhough the destination may also be 2630 * onlink. 2631 */ 2632 if (ire_uinfo == NULL) 2633 tcp->tcp_localnet = 0; 2634 else 2635 tcp->tcp_localnet = (ire->ire_gateway_addr == 0); 2636 } else { 2637 /* 2638 * For incoming connection ire_mp = NULL 2639 * For outgoing connection ire_mp != NULL 2640 * Technically we should check conn_incoming_ill 2641 * when ire_mp is NULL and conn_outgoing_ill when 2642 * ire_mp is non-NULL. But this is performance 2643 * critical path and for IPV*_BOUND_IF, outgoing 2644 * and incoming ill are always set to the same value. 2645 */ 2646 ill_t *dst_ill = NULL; 2647 ipif_t *dst_ipif = NULL; 2648 2649 ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill); 2650 2651 if (connp->conn_outgoing_ill != NULL) { 2652 /* Outgoing or incoming path */ 2653 int err; 2654 2655 dst_ill = conn_get_held_ill(connp, 2656 &connp->conn_outgoing_ill, &err); 2657 if (err == ILL_LOOKUP_FAILED || dst_ill == NULL) { 2658 ip1dbg(("tcp_adapt_ire: ill_lookup failed\n")); 2659 return (0); 2660 } 2661 match_flags |= MATCH_IRE_ILL; 2662 dst_ipif = dst_ill->ill_ipif; 2663 } 2664 ire = ire_ctable_lookup_v6(&tcp->tcp_connp->conn_remv6, 2665 0, 0, dst_ipif, zoneid, tsl, match_flags, ipst); 2666 2667 if (ire != NULL) { 2668 ire_cacheable = B_TRUE; 2669 ire_uinfo = (ire_mp != NULL) ? 2670 &((ire_t *)ire_mp->b_rptr)->ire_uinfo: 2671 &ire->ire_uinfo; 2672 } else { 2673 if (ire_mp == NULL) { 2674 ire = ire_ftable_lookup_v6( 2675 &tcp->tcp_connp->conn_remv6, 2676 0, 0, 0, dst_ipif, &sire, zoneid, 2677 0, tsl, match_flags, ipst); 2678 if (ire == NULL) { 2679 if (dst_ill != NULL) 2680 ill_refrele(dst_ill); 2681 return (0); 2682 } 2683 ire_uinfo = (sire != NULL) ? &sire->ire_uinfo : 2684 &ire->ire_uinfo; 2685 } else { 2686 ire = (ire_t *)ire_mp->b_rptr; 2687 ire_uinfo = 2688 &((ire_t *)ire_mp->b_rptr)->ire_uinfo; 2689 } 2690 } 2691 if (dst_ill != NULL) 2692 ill_refrele(dst_ill); 2693 2694 ASSERT(ire != NULL); 2695 ASSERT(ire_uinfo != NULL); 2696 2697 if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6) || 2698 IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) { 2699 /* 2700 * ire->ire_mp is non null when ire_mp passed in is used 2701 * ire->ire_mp is set in ip_bind_insert_ire[_v6](). 2702 */ 2703 if (ire->ire_mp == NULL) 2704 ire_refrele(ire); 2705 if (sire != NULL) 2706 ire_refrele(sire); 2707 return (0); 2708 } 2709 2710 if (IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) { 2711 in6_addr_t src_addr; 2712 2713 /* 2714 * ip_bind_connected_v6() has stored the correct source 2715 * address per IPv6 addr. selection policy in 2716 * conn_src_v6. 2717 */ 2718 src_addr = tcp->tcp_connp->conn_srcv6; 2719 2720 tcp->tcp_ip6h->ip6_src = src_addr; 2721 /* 2722 * Copy of the src addr. in tcp_t is needed 2723 * for the lookup funcs. 2724 */ 2725 tcp->tcp_ip_src_v6 = src_addr; 2726 ASSERT(IN6_ARE_ADDR_EQUAL(&tcp->tcp_ip6h->ip6_src, 2727 &connp->conn_srcv6)); 2728 } 2729 tcp->tcp_localnet = 2730 IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6); 2731 } 2732 2733 /* 2734 * This allows applications to fail quickly when connections are made 2735 * to dead hosts. Hosts can be labeled dead by adding a reject route 2736 * with both the RTF_REJECT and RTF_PRIVATE flags set. 2737 */ 2738 if ((ire->ire_flags & RTF_REJECT) && 2739 (ire->ire_flags & RTF_PRIVATE)) 2740 goto error; 2741 2742 /* 2743 * Make use of the cached rtt and rtt_sd values to calculate the 2744 * initial RTO. Note that they are already initialized in 2745 * tcp_init_values(). 2746 * If ire_uinfo is NULL, i.e., we do not have a cache ire for 2747 * IP_NEXTHOP, but instead are using the interface ire for the 2748 * nexthop, then we do not use the ire_uinfo from that ire to 2749 * do any initializations. 2750 */ 2751 if (ire_uinfo != NULL) { 2752 if (ire_uinfo->iulp_rtt != 0) { 2753 clock_t rto; 2754 2755 tcp->tcp_rtt_sa = ire_uinfo->iulp_rtt; 2756 tcp->tcp_rtt_sd = ire_uinfo->iulp_rtt_sd; 2757 rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 2758 tcps->tcps_rexmit_interval_extra + 2759 (tcp->tcp_rtt_sa >> 5); 2760 2761 if (rto > tcps->tcps_rexmit_interval_max) { 2762 tcp->tcp_rto = tcps->tcps_rexmit_interval_max; 2763 } else if (rto < tcps->tcps_rexmit_interval_min) { 2764 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 2765 } else { 2766 tcp->tcp_rto = rto; 2767 } 2768 } 2769 if (ire_uinfo->iulp_ssthresh != 0) 2770 tcp->tcp_cwnd_ssthresh = ire_uinfo->iulp_ssthresh; 2771 else 2772 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 2773 if (ire_uinfo->iulp_spipe > 0) { 2774 tcp->tcp_xmit_hiwater = MIN(ire_uinfo->iulp_spipe, 2775 tcps->tcps_max_buf); 2776 if (tcps->tcps_snd_lowat_fraction != 0) 2777 tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater / 2778 tcps->tcps_snd_lowat_fraction; 2779 (void) tcp_maxpsz_set(tcp, B_TRUE); 2780 } 2781 /* 2782 * Note that up till now, acceptor always inherits receive 2783 * window from the listener. But if there is a metrics 2784 * associated with a host, we should use that instead of 2785 * inheriting it from listener. Thus we need to pass this 2786 * info back to the caller. 2787 */ 2788 if (ire_uinfo->iulp_rpipe > 0) { 2789 tcp->tcp_rwnd = MIN(ire_uinfo->iulp_rpipe, 2790 tcps->tcps_max_buf); 2791 } 2792 2793 if (ire_uinfo->iulp_rtomax > 0) { 2794 tcp->tcp_second_timer_threshold = 2795 ire_uinfo->iulp_rtomax; 2796 } 2797 2798 /* 2799 * Use the metric option settings, iulp_tstamp_ok and 2800 * iulp_wscale_ok, only for active open. What this means 2801 * is that if the other side uses timestamp or window 2802 * scale option, TCP will also use those options. That 2803 * is for passive open. If the application sets a 2804 * large window, window scale is enabled regardless of 2805 * the value in iulp_wscale_ok. This is the behavior 2806 * since 2.6. So we keep it. 2807 * The only case left in passive open processing is the 2808 * check for SACK. 2809 * For ECN, it should probably be like SACK. But the 2810 * current value is binary, so we treat it like the other 2811 * cases. The metric only controls active open.For passive 2812 * open, the ndd param, tcp_ecn_permitted, controls the 2813 * behavior. 2814 */ 2815 if (!tcp_detached) { 2816 /* 2817 * The if check means that the following can only 2818 * be turned on by the metrics only IRE, but not off. 2819 */ 2820 if (ire_uinfo->iulp_tstamp_ok) 2821 tcp->tcp_snd_ts_ok = B_TRUE; 2822 if (ire_uinfo->iulp_wscale_ok) 2823 tcp->tcp_snd_ws_ok = B_TRUE; 2824 if (ire_uinfo->iulp_sack == 2) 2825 tcp->tcp_snd_sack_ok = B_TRUE; 2826 if (ire_uinfo->iulp_ecn_ok) 2827 tcp->tcp_ecn_ok = B_TRUE; 2828 } else { 2829 /* 2830 * Passive open. 2831 * 2832 * As above, the if check means that SACK can only be 2833 * turned on by the metric only IRE. 2834 */ 2835 if (ire_uinfo->iulp_sack > 0) { 2836 tcp->tcp_snd_sack_ok = B_TRUE; 2837 } 2838 } 2839 } 2840 2841 2842 /* 2843 * XXX: Note that currently, ire_max_frag can be as small as 68 2844 * because of PMTUd. So tcp_mss may go to negative if combined 2845 * length of all those options exceeds 28 bytes. But because 2846 * of the tcp_mss_min check below, we may not have a problem if 2847 * tcp_mss_min is of a reasonable value. The default is 1 so 2848 * the negative problem still exists. And the check defeats PMTUd. 2849 * In fact, if PMTUd finds that the MSS should be smaller than 2850 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min 2851 * value. 2852 * 2853 * We do not deal with that now. All those problems related to 2854 * PMTUd will be fixed later. 2855 */ 2856 ASSERT(ire->ire_max_frag != 0); 2857 mss = tcp->tcp_if_mtu = ire->ire_max_frag; 2858 if (tcp->tcp_ipp_fields & IPPF_USE_MIN_MTU) { 2859 if (tcp->tcp_ipp_use_min_mtu == IPV6_USE_MIN_MTU_NEVER) { 2860 mss = MIN(mss, IPV6_MIN_MTU); 2861 } 2862 } 2863 2864 /* Sanity check for MSS value. */ 2865 if (tcp->tcp_ipversion == IPV4_VERSION) 2866 mss_max = tcps->tcps_mss_max_ipv4; 2867 else 2868 mss_max = tcps->tcps_mss_max_ipv6; 2869 2870 if (tcp->tcp_ipversion == IPV6_VERSION && 2871 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 2872 /* 2873 * After receiving an ICMPv6 "packet too big" message with a 2874 * MTU < 1280, and for multirouted IPv6 packets, the IP layer 2875 * will insert a 8-byte fragment header in every packet; we 2876 * reduce the MSS by that amount here. 2877 */ 2878 mss -= sizeof (ip6_frag_t); 2879 } 2880 2881 if (tcp->tcp_ipsec_overhead == 0) 2882 tcp->tcp_ipsec_overhead = conn_ipsec_length(connp); 2883 2884 mss -= tcp->tcp_ipsec_overhead; 2885 2886 if (mss < tcps->tcps_mss_min) 2887 mss = tcps->tcps_mss_min; 2888 if (mss > mss_max) 2889 mss = mss_max; 2890 2891 /* Note that this is the maximum MSS, excluding all options. */ 2892 tcp->tcp_mss = mss; 2893 2894 /* 2895 * Initialize the ISS here now that we have the full connection ID. 2896 * The RFC 1948 method of initial sequence number generation requires 2897 * knowledge of the full connection ID before setting the ISS. 2898 */ 2899 2900 tcp_iss_init(tcp); 2901 2902 if (ire->ire_type & (IRE_LOOPBACK | IRE_LOCAL)) 2903 tcp->tcp_loopback = B_TRUE; 2904 2905 if (tcp->tcp_ipversion == IPV4_VERSION) { 2906 hsp = tcp_hsp_lookup(tcp->tcp_remote, tcps); 2907 } else { 2908 hsp = tcp_hsp_lookup_ipv6(&tcp->tcp_remote_v6, tcps); 2909 } 2910 2911 if (hsp != NULL) { 2912 /* Only modify if we're going to make them bigger */ 2913 if (hsp->tcp_hsp_sendspace > tcp->tcp_xmit_hiwater) { 2914 tcp->tcp_xmit_hiwater = hsp->tcp_hsp_sendspace; 2915 if (tcps->tcps_snd_lowat_fraction != 0) 2916 tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater / 2917 tcps->tcps_snd_lowat_fraction; 2918 } 2919 2920 if (hsp->tcp_hsp_recvspace > tcp->tcp_rwnd) { 2921 tcp->tcp_rwnd = hsp->tcp_hsp_recvspace; 2922 } 2923 2924 /* Copy timestamp flag only for active open */ 2925 if (!tcp_detached) 2926 tcp->tcp_snd_ts_ok = hsp->tcp_hsp_tstamp; 2927 } 2928 2929 if (sire != NULL) 2930 IRE_REFRELE(sire); 2931 2932 /* 2933 * If we got an IRE_CACHE and an ILL, go through their properties; 2934 * otherwise, this is deferred until later when we have an IRE_CACHE. 2935 */ 2936 if (tcp->tcp_loopback || 2937 (ire_cacheable && (ill = ire_to_ill(ire)) != NULL)) { 2938 /* 2939 * For incoming, see if this tcp may be MDT-capable. For 2940 * outgoing, this process has been taken care of through 2941 * tcp_rput_other. 2942 */ 2943 tcp_ire_ill_check(tcp, ire, ill, incoming); 2944 tcp->tcp_ire_ill_check_done = B_TRUE; 2945 } 2946 2947 mutex_enter(&connp->conn_lock); 2948 /* 2949 * Make sure that conn is not marked incipient 2950 * for incoming connections. A blind 2951 * removal of incipient flag is cheaper than 2952 * check and removal. 2953 */ 2954 connp->conn_state_flags &= ~CONN_INCIPIENT; 2955 2956 /* 2957 * Must not cache forwarding table routes 2958 * or recache an IRE after the conn_t has 2959 * had conn_ire_cache cleared and is flagged 2960 * unusable, (see the CONN_CACHE_IRE() macro). 2961 */ 2962 if (ire_cacheable && CONN_CACHE_IRE(connp)) { 2963 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 2964 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 2965 connp->conn_ire_cache = ire; 2966 IRE_UNTRACE_REF(ire); 2967 rw_exit(&ire->ire_bucket->irb_lock); 2968 mutex_exit(&connp->conn_lock); 2969 return (1); 2970 } 2971 rw_exit(&ire->ire_bucket->irb_lock); 2972 } 2973 mutex_exit(&connp->conn_lock); 2974 2975 if (ire->ire_mp == NULL) 2976 ire_refrele(ire); 2977 return (1); 2978 2979 error: 2980 if (ire->ire_mp == NULL) 2981 ire_refrele(ire); 2982 if (sire != NULL) 2983 ire_refrele(sire); 2984 return (0); 2985 } 2986 2987 /* 2988 * tcp_bind is called (holding the writer lock) by tcp_wput_proto to process a 2989 * O_T_BIND_REQ/T_BIND_REQ message. 2990 */ 2991 static void 2992 tcp_bind(tcp_t *tcp, mblk_t *mp) 2993 { 2994 sin_t *sin; 2995 sin6_t *sin6; 2996 mblk_t *mp1; 2997 in_port_t requested_port; 2998 in_port_t allocated_port; 2999 struct T_bind_req *tbr; 3000 boolean_t bind_to_req_port_only; 3001 boolean_t backlog_update = B_FALSE; 3002 boolean_t user_specified; 3003 in6_addr_t v6addr; 3004 ipaddr_t v4addr; 3005 uint_t origipversion; 3006 int err; 3007 queue_t *q = tcp->tcp_wq; 3008 conn_t *connp = tcp->tcp_connp; 3009 mlp_type_t addrtype, mlptype; 3010 zone_t *zone; 3011 cred_t *cr; 3012 in_port_t mlp_port; 3013 tcp_stack_t *tcps = tcp->tcp_tcps; 3014 3015 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 3016 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) { 3017 if (tcp->tcp_debug) { 3018 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 3019 "tcp_bind: bad req, len %u", 3020 (uint_t)(mp->b_wptr - mp->b_rptr)); 3021 } 3022 tcp_err_ack(tcp, mp, TPROTO, 0); 3023 return; 3024 } 3025 /* Make sure the largest address fits */ 3026 mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t) + 1, 1); 3027 if (mp1 == NULL) { 3028 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 3029 return; 3030 } 3031 mp = mp1; 3032 tbr = (struct T_bind_req *)mp->b_rptr; 3033 if (tcp->tcp_state >= TCPS_BOUND) { 3034 if ((tcp->tcp_state == TCPS_BOUND || 3035 tcp->tcp_state == TCPS_LISTEN) && 3036 tcp->tcp_conn_req_max != tbr->CONIND_number && 3037 tbr->CONIND_number > 0) { 3038 /* 3039 * Handle listen() increasing CONIND_number. 3040 * This is more "liberal" then what the TPI spec 3041 * requires but is needed to avoid a t_unbind 3042 * when handling listen() since the port number 3043 * might be "stolen" between the unbind and bind. 3044 */ 3045 backlog_update = B_TRUE; 3046 goto do_bind; 3047 } 3048 if (tcp->tcp_debug) { 3049 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 3050 "tcp_bind: bad state, %d", tcp->tcp_state); 3051 } 3052 tcp_err_ack(tcp, mp, TOUTSTATE, 0); 3053 return; 3054 } 3055 origipversion = tcp->tcp_ipversion; 3056 3057 switch (tbr->ADDR_length) { 3058 case 0: /* request for a generic port */ 3059 tbr->ADDR_offset = sizeof (struct T_bind_req); 3060 if (tcp->tcp_family == AF_INET) { 3061 tbr->ADDR_length = sizeof (sin_t); 3062 sin = (sin_t *)&tbr[1]; 3063 *sin = sin_null; 3064 sin->sin_family = AF_INET; 3065 mp->b_wptr = (uchar_t *)&sin[1]; 3066 tcp->tcp_ipversion = IPV4_VERSION; 3067 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &v6addr); 3068 } else { 3069 ASSERT(tcp->tcp_family == AF_INET6); 3070 tbr->ADDR_length = sizeof (sin6_t); 3071 sin6 = (sin6_t *)&tbr[1]; 3072 *sin6 = sin6_null; 3073 sin6->sin6_family = AF_INET6; 3074 mp->b_wptr = (uchar_t *)&sin6[1]; 3075 tcp->tcp_ipversion = IPV6_VERSION; 3076 V6_SET_ZERO(v6addr); 3077 } 3078 requested_port = 0; 3079 break; 3080 3081 case sizeof (sin_t): /* Complete IPv4 address */ 3082 sin = (sin_t *)mi_offset_param(mp, tbr->ADDR_offset, 3083 sizeof (sin_t)); 3084 if (sin == NULL || !OK_32PTR((char *)sin)) { 3085 if (tcp->tcp_debug) { 3086 (void) strlog(TCP_MOD_ID, 0, 1, 3087 SL_ERROR|SL_TRACE, 3088 "tcp_bind: bad address parameter, " 3089 "offset %d, len %d", 3090 tbr->ADDR_offset, tbr->ADDR_length); 3091 } 3092 tcp_err_ack(tcp, mp, TPROTO, 0); 3093 return; 3094 } 3095 /* 3096 * With sockets sockfs will accept bogus sin_family in 3097 * bind() and replace it with the family used in the socket 3098 * call. 3099 */ 3100 if (sin->sin_family != AF_INET || 3101 tcp->tcp_family != AF_INET) { 3102 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 3103 return; 3104 } 3105 requested_port = ntohs(sin->sin_port); 3106 tcp->tcp_ipversion = IPV4_VERSION; 3107 v4addr = sin->sin_addr.s_addr; 3108 IN6_IPADDR_TO_V4MAPPED(v4addr, &v6addr); 3109 break; 3110 3111 case sizeof (sin6_t): /* Complete IPv6 address */ 3112 sin6 = (sin6_t *)mi_offset_param(mp, 3113 tbr->ADDR_offset, sizeof (sin6_t)); 3114 if (sin6 == NULL || !OK_32PTR((char *)sin6)) { 3115 if (tcp->tcp_debug) { 3116 (void) strlog(TCP_MOD_ID, 0, 1, 3117 SL_ERROR|SL_TRACE, 3118 "tcp_bind: bad IPv6 address parameter, " 3119 "offset %d, len %d", tbr->ADDR_offset, 3120 tbr->ADDR_length); 3121 } 3122 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 3123 return; 3124 } 3125 if (sin6->sin6_family != AF_INET6 || 3126 tcp->tcp_family != AF_INET6) { 3127 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 3128 return; 3129 } 3130 requested_port = ntohs(sin6->sin6_port); 3131 tcp->tcp_ipversion = IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr) ? 3132 IPV4_VERSION : IPV6_VERSION; 3133 v6addr = sin6->sin6_addr; 3134 break; 3135 3136 default: 3137 if (tcp->tcp_debug) { 3138 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 3139 "tcp_bind: bad address length, %d", 3140 tbr->ADDR_length); 3141 } 3142 tcp_err_ack(tcp, mp, TBADADDR, 0); 3143 return; 3144 } 3145 tcp->tcp_bound_source_v6 = v6addr; 3146 3147 /* Check for change in ipversion */ 3148 if (origipversion != tcp->tcp_ipversion) { 3149 ASSERT(tcp->tcp_family == AF_INET6); 3150 err = tcp->tcp_ipversion == IPV6_VERSION ? 3151 tcp_header_init_ipv6(tcp) : tcp_header_init_ipv4(tcp); 3152 if (err) { 3153 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 3154 return; 3155 } 3156 } 3157 3158 /* 3159 * Initialize family specific fields. Copy of the src addr. 3160 * in tcp_t is needed for the lookup funcs. 3161 */ 3162 if (tcp->tcp_ipversion == IPV6_VERSION) { 3163 tcp->tcp_ip6h->ip6_src = v6addr; 3164 } else { 3165 IN6_V4MAPPED_TO_IPADDR(&v6addr, tcp->tcp_ipha->ipha_src); 3166 } 3167 tcp->tcp_ip_src_v6 = v6addr; 3168 3169 /* 3170 * For O_T_BIND_REQ: 3171 * Verify that the target port/addr is available, or choose 3172 * another. 3173 * For T_BIND_REQ: 3174 * Verify that the target port/addr is available or fail. 3175 * In both cases when it succeeds the tcp is inserted in the 3176 * bind hash table. This ensures that the operation is atomic 3177 * under the lock on the hash bucket. 3178 */ 3179 bind_to_req_port_only = requested_port != 0 && 3180 tbr->PRIM_type != O_T_BIND_REQ; 3181 /* 3182 * Get a valid port (within the anonymous range and should not 3183 * be a privileged one) to use if the user has not given a port. 3184 * If multiple threads are here, they may all start with 3185 * with the same initial port. But, it should be fine as long as 3186 * tcp_bindi will ensure that no two threads will be assigned 3187 * the same port. 3188 * 3189 * NOTE: XXX If a privileged process asks for an anonymous port, we 3190 * still check for ports only in the range > tcp_smallest_non_priv_port, 3191 * unless TCP_ANONPRIVBIND option is set. 3192 */ 3193 mlptype = mlptSingle; 3194 mlp_port = requested_port; 3195 if (requested_port == 0) { 3196 requested_port = tcp->tcp_anon_priv_bind ? 3197 tcp_get_next_priv_port(tcp) : 3198 tcp_update_next_port(tcps->tcps_next_port_to_try, 3199 tcp, B_TRUE); 3200 if (requested_port == 0) { 3201 tcp_err_ack(tcp, mp, TNOADDR, 0); 3202 return; 3203 } 3204 user_specified = B_FALSE; 3205 3206 /* 3207 * If the user went through one of the RPC interfaces to create 3208 * this socket and RPC is MLP in this zone, then give him an 3209 * anonymous MLP. 3210 */ 3211 cr = DB_CREDDEF(mp, tcp->tcp_cred); 3212 if (connp->conn_anon_mlp && is_system_labeled()) { 3213 zone = crgetzone(cr); 3214 addrtype = tsol_mlp_addr_type(zone->zone_id, 3215 IPV6_VERSION, &v6addr, 3216 tcps->tcps_netstack->netstack_ip); 3217 if (addrtype == mlptSingle) { 3218 tcp_err_ack(tcp, mp, TNOADDR, 0); 3219 return; 3220 } 3221 mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP, 3222 PMAPPORT, addrtype); 3223 mlp_port = PMAPPORT; 3224 } 3225 } else { 3226 int i; 3227 boolean_t priv = B_FALSE; 3228 3229 /* 3230 * If the requested_port is in the well-known privileged range, 3231 * verify that the stream was opened by a privileged user. 3232 * Note: No locks are held when inspecting tcp_g_*epriv_ports 3233 * but instead the code relies on: 3234 * - the fact that the address of the array and its size never 3235 * changes 3236 * - the atomic assignment of the elements of the array 3237 */ 3238 cr = DB_CREDDEF(mp, tcp->tcp_cred); 3239 if (requested_port < tcps->tcps_smallest_nonpriv_port) { 3240 priv = B_TRUE; 3241 } else { 3242 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 3243 if (requested_port == 3244 tcps->tcps_g_epriv_ports[i]) { 3245 priv = B_TRUE; 3246 break; 3247 } 3248 } 3249 } 3250 if (priv) { 3251 if (secpolicy_net_privaddr(cr, requested_port) != 0) { 3252 if (tcp->tcp_debug) { 3253 (void) strlog(TCP_MOD_ID, 0, 1, 3254 SL_ERROR|SL_TRACE, 3255 "tcp_bind: no priv for port %d", 3256 requested_port); 3257 } 3258 tcp_err_ack(tcp, mp, TACCES, 0); 3259 return; 3260 } 3261 } 3262 user_specified = B_TRUE; 3263 3264 if (is_system_labeled()) { 3265 zone = crgetzone(cr); 3266 addrtype = tsol_mlp_addr_type(zone->zone_id, 3267 IPV6_VERSION, &v6addr, 3268 tcps->tcps_netstack->netstack_ip); 3269 if (addrtype == mlptSingle) { 3270 tcp_err_ack(tcp, mp, TNOADDR, 0); 3271 return; 3272 } 3273 mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP, 3274 requested_port, addrtype); 3275 } 3276 } 3277 3278 if (mlptype != mlptSingle) { 3279 if (secpolicy_net_bindmlp(cr) != 0) { 3280 if (tcp->tcp_debug) { 3281 (void) strlog(TCP_MOD_ID, 0, 1, 3282 SL_ERROR|SL_TRACE, 3283 "tcp_bind: no priv for multilevel port %d", 3284 requested_port); 3285 } 3286 tcp_err_ack(tcp, mp, TACCES, 0); 3287 return; 3288 } 3289 3290 /* 3291 * If we're specifically binding a shared IP address and the 3292 * port is MLP on shared addresses, then check to see if this 3293 * zone actually owns the MLP. Reject if not. 3294 */ 3295 if (mlptype == mlptShared && addrtype == mlptShared) { 3296 /* 3297 * No need to handle exclusive-stack zones since 3298 * ALL_ZONES only applies to the shared stack. 3299 */ 3300 zoneid_t mlpzone; 3301 3302 mlpzone = tsol_mlp_findzone(IPPROTO_TCP, 3303 htons(mlp_port)); 3304 if (connp->conn_zoneid != mlpzone) { 3305 if (tcp->tcp_debug) { 3306 (void) strlog(TCP_MOD_ID, 0, 1, 3307 SL_ERROR|SL_TRACE, 3308 "tcp_bind: attempt to bind port " 3309 "%d on shared addr in zone %d " 3310 "(should be %d)", 3311 mlp_port, connp->conn_zoneid, 3312 mlpzone); 3313 } 3314 tcp_err_ack(tcp, mp, TACCES, 0); 3315 return; 3316 } 3317 } 3318 3319 if (!user_specified) { 3320 err = tsol_mlp_anon(zone, mlptype, connp->conn_ulp, 3321 requested_port, B_TRUE); 3322 if (err != 0) { 3323 if (tcp->tcp_debug) { 3324 (void) strlog(TCP_MOD_ID, 0, 1, 3325 SL_ERROR|SL_TRACE, 3326 "tcp_bind: cannot establish anon " 3327 "MLP for port %d", 3328 requested_port); 3329 } 3330 tcp_err_ack(tcp, mp, TSYSERR, err); 3331 return; 3332 } 3333 connp->conn_anon_port = B_TRUE; 3334 } 3335 connp->conn_mlp_type = mlptype; 3336 } 3337 3338 allocated_port = tcp_bindi(tcp, requested_port, &v6addr, 3339 tcp->tcp_reuseaddr, B_FALSE, bind_to_req_port_only, user_specified); 3340 3341 if (allocated_port == 0) { 3342 connp->conn_mlp_type = mlptSingle; 3343 if (connp->conn_anon_port) { 3344 connp->conn_anon_port = B_FALSE; 3345 (void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp, 3346 requested_port, B_FALSE); 3347 } 3348 if (bind_to_req_port_only) { 3349 if (tcp->tcp_debug) { 3350 (void) strlog(TCP_MOD_ID, 0, 1, 3351 SL_ERROR|SL_TRACE, 3352 "tcp_bind: requested addr busy"); 3353 } 3354 tcp_err_ack(tcp, mp, TADDRBUSY, 0); 3355 } else { 3356 /* If we are out of ports, fail the bind. */ 3357 if (tcp->tcp_debug) { 3358 (void) strlog(TCP_MOD_ID, 0, 1, 3359 SL_ERROR|SL_TRACE, 3360 "tcp_bind: out of ports?"); 3361 } 3362 tcp_err_ack(tcp, mp, TNOADDR, 0); 3363 } 3364 return; 3365 } 3366 ASSERT(tcp->tcp_state == TCPS_BOUND); 3367 do_bind: 3368 if (!backlog_update) { 3369 if (tcp->tcp_family == AF_INET) 3370 sin->sin_port = htons(allocated_port); 3371 else 3372 sin6->sin6_port = htons(allocated_port); 3373 } 3374 if (tcp->tcp_family == AF_INET) { 3375 if (tbr->CONIND_number != 0) { 3376 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, 3377 sizeof (sin_t)); 3378 } else { 3379 /* Just verify the local IP address */ 3380 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, IP_ADDR_LEN); 3381 } 3382 } else { 3383 if (tbr->CONIND_number != 0) { 3384 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, 3385 sizeof (sin6_t)); 3386 } else { 3387 /* Just verify the local IP address */ 3388 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, 3389 IPV6_ADDR_LEN); 3390 } 3391 } 3392 if (mp1 == NULL) { 3393 if (connp->conn_anon_port) { 3394 connp->conn_anon_port = B_FALSE; 3395 (void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp, 3396 requested_port, B_FALSE); 3397 } 3398 connp->conn_mlp_type = mlptSingle; 3399 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 3400 return; 3401 } 3402 3403 tbr->PRIM_type = T_BIND_ACK; 3404 mp->b_datap->db_type = M_PCPROTO; 3405 3406 /* Chain in the reply mp for tcp_rput() */ 3407 mp1->b_cont = mp; 3408 mp = mp1; 3409 3410 tcp->tcp_conn_req_max = tbr->CONIND_number; 3411 if (tcp->tcp_conn_req_max) { 3412 if (tcp->tcp_conn_req_max < tcps->tcps_conn_req_min) 3413 tcp->tcp_conn_req_max = tcps->tcps_conn_req_min; 3414 if (tcp->tcp_conn_req_max > tcps->tcps_conn_req_max_q) 3415 tcp->tcp_conn_req_max = tcps->tcps_conn_req_max_q; 3416 /* 3417 * If this is a listener, do not reset the eager list 3418 * and other stuffs. Note that we don't check if the 3419 * existing eager list meets the new tcp_conn_req_max 3420 * requirement. 3421 */ 3422 if (tcp->tcp_state != TCPS_LISTEN) { 3423 tcp->tcp_state = TCPS_LISTEN; 3424 /* Initialize the chain. Don't need the eager_lock */ 3425 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 3426 tcp->tcp_eager_next_drop_q0 = tcp; 3427 tcp->tcp_eager_prev_drop_q0 = tcp; 3428 tcp->tcp_second_ctimer_threshold = 3429 tcps->tcps_ip_abort_linterval; 3430 } 3431 } 3432 3433 /* 3434 * We can call ip_bind directly which returns a T_BIND_ACK mp. The 3435 * processing continues in tcp_rput_other(). 3436 * 3437 * We need to make sure that the conn_recv is set to a non-null 3438 * value before we insert the conn into the classifier table. 3439 * This is to avoid a race with an incoming packet which does an 3440 * ipcl_classify(). 3441 */ 3442 connp->conn_recv = tcp_conn_request; 3443 if (tcp->tcp_family == AF_INET6) { 3444 ASSERT(tcp->tcp_connp->conn_af_isv6); 3445 mp = ip_bind_v6(q, mp, tcp->tcp_connp, &tcp->tcp_sticky_ipp); 3446 } else { 3447 ASSERT(!tcp->tcp_connp->conn_af_isv6); 3448 mp = ip_bind_v4(q, mp, tcp->tcp_connp); 3449 } 3450 /* 3451 * If the bind cannot complete immediately 3452 * IP will arrange to call tcp_rput_other 3453 * when the bind completes. 3454 */ 3455 if (mp != NULL) { 3456 tcp_rput_other(tcp, mp); 3457 } else { 3458 /* 3459 * Bind will be resumed later. Need to ensure 3460 * that conn doesn't disappear when that happens. 3461 * This will be decremented in ip_resume_tcp_bind(). 3462 */ 3463 CONN_INC_REF(tcp->tcp_connp); 3464 } 3465 } 3466 3467 3468 /* 3469 * If the "bind_to_req_port_only" parameter is set, if the requested port 3470 * number is available, return it, If not return 0 3471 * 3472 * If "bind_to_req_port_only" parameter is not set and 3473 * If the requested port number is available, return it. If not, return 3474 * the first anonymous port we happen across. If no anonymous ports are 3475 * available, return 0. addr is the requested local address, if any. 3476 * 3477 * In either case, when succeeding update the tcp_t to record the port number 3478 * and insert it in the bind hash table. 3479 * 3480 * Note that TCP over IPv4 and IPv6 sockets can use the same port number 3481 * without setting SO_REUSEADDR. This is needed so that they 3482 * can be viewed as two independent transport protocols. 3483 */ 3484 static in_port_t 3485 tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, 3486 int reuseaddr, boolean_t quick_connect, 3487 boolean_t bind_to_req_port_only, boolean_t user_specified) 3488 { 3489 /* number of times we have run around the loop */ 3490 int count = 0; 3491 /* maximum number of times to run around the loop */ 3492 int loopmax; 3493 conn_t *connp = tcp->tcp_connp; 3494 zoneid_t zoneid = connp->conn_zoneid; 3495 tcp_stack_t *tcps = tcp->tcp_tcps; 3496 3497 /* 3498 * Lookup for free addresses is done in a loop and "loopmax" 3499 * influences how long we spin in the loop 3500 */ 3501 if (bind_to_req_port_only) { 3502 /* 3503 * If the requested port is busy, don't bother to look 3504 * for a new one. Setting loop maximum count to 1 has 3505 * that effect. 3506 */ 3507 loopmax = 1; 3508 } else { 3509 /* 3510 * If the requested port is busy, look for a free one 3511 * in the anonymous port range. 3512 * Set loopmax appropriately so that one does not look 3513 * forever in the case all of the anonymous ports are in use. 3514 */ 3515 if (tcp->tcp_anon_priv_bind) { 3516 /* 3517 * loopmax = 3518 * (IPPORT_RESERVED-1) - tcp_min_anonpriv_port + 1 3519 */ 3520 loopmax = IPPORT_RESERVED - 3521 tcps->tcps_min_anonpriv_port; 3522 } else { 3523 loopmax = (tcps->tcps_largest_anon_port - 3524 tcps->tcps_smallest_anon_port + 1); 3525 } 3526 } 3527 do { 3528 uint16_t lport; 3529 tf_t *tbf; 3530 tcp_t *ltcp; 3531 conn_t *lconnp; 3532 3533 lport = htons(port); 3534 3535 /* 3536 * Ensure that the tcp_t is not currently in the bind hash. 3537 * Hold the lock on the hash bucket to ensure that 3538 * the duplicate check plus the insertion is an atomic 3539 * operation. 3540 * 3541 * This function does an inline lookup on the bind hash list 3542 * Make sure that we access only members of tcp_t 3543 * and that we don't look at tcp_tcp, since we are not 3544 * doing a CONN_INC_REF. 3545 */ 3546 tcp_bind_hash_remove(tcp); 3547 tbf = &tcps->tcps_bind_fanout[TCP_BIND_HASH(lport)]; 3548 mutex_enter(&tbf->tf_lock); 3549 for (ltcp = tbf->tf_tcp; ltcp != NULL; 3550 ltcp = ltcp->tcp_bind_hash) { 3551 boolean_t not_socket; 3552 boolean_t exclbind; 3553 3554 if (lport != ltcp->tcp_lport) 3555 continue; 3556 3557 lconnp = ltcp->tcp_connp; 3558 3559 /* 3560 * On a labeled system, we must treat bindings to ports 3561 * on shared IP addresses by sockets with MAC exemption 3562 * privilege as being in all zones, as there's 3563 * otherwise no way to identify the right receiver. 3564 */ 3565 if (!(IPCL_ZONE_MATCH(ltcp->tcp_connp, zoneid) || 3566 IPCL_ZONE_MATCH(connp, 3567 ltcp->tcp_connp->conn_zoneid)) && 3568 !lconnp->conn_mac_exempt && 3569 !connp->conn_mac_exempt) 3570 continue; 3571 3572 /* 3573 * If TCP_EXCLBIND is set for either the bound or 3574 * binding endpoint, the semantics of bind 3575 * is changed according to the following. 3576 * 3577 * spec = specified address (v4 or v6) 3578 * unspec = unspecified address (v4 or v6) 3579 * A = specified addresses are different for endpoints 3580 * 3581 * bound bind to allowed 3582 * ------------------------------------- 3583 * unspec unspec no 3584 * unspec spec no 3585 * spec unspec no 3586 * spec spec yes if A 3587 * 3588 * For labeled systems, SO_MAC_EXEMPT behaves the same 3589 * as TCP_EXCLBIND, except that zoneid is ignored. 3590 * 3591 * Note: 3592 * 3593 * 1. Because of TLI semantics, an endpoint can go 3594 * back from, say TCP_ESTABLISHED to TCPS_LISTEN or 3595 * TCPS_BOUND, depending on whether it is originally 3596 * a listener or not. That is why we need to check 3597 * for states greater than or equal to TCPS_BOUND 3598 * here. 3599 * 3600 * 2. Ideally, we should only check for state equals 3601 * to TCPS_LISTEN. And the following check should be 3602 * added. 3603 * 3604 * if (ltcp->tcp_state == TCPS_LISTEN || 3605 * !reuseaddr || !ltcp->tcp_reuseaddr) { 3606 * ... 3607 * } 3608 * 3609 * The semantics will be changed to this. If the 3610 * endpoint on the list is in state not equal to 3611 * TCPS_LISTEN and both endpoints have SO_REUSEADDR 3612 * set, let the bind succeed. 3613 * 3614 * Because of (1), we cannot do that for TLI 3615 * endpoints. But we can do that for socket endpoints. 3616 * If in future, we can change this going back 3617 * semantics, we can use the above check for TLI also. 3618 */ 3619 not_socket = !(TCP_IS_SOCKET(ltcp) && 3620 TCP_IS_SOCKET(tcp)); 3621 exclbind = ltcp->tcp_exclbind || tcp->tcp_exclbind; 3622 3623 if (lconnp->conn_mac_exempt || connp->conn_mac_exempt || 3624 (exclbind && (not_socket || 3625 ltcp->tcp_state <= TCPS_ESTABLISHED))) { 3626 if (V6_OR_V4_INADDR_ANY( 3627 ltcp->tcp_bound_source_v6) || 3628 V6_OR_V4_INADDR_ANY(*laddr) || 3629 IN6_ARE_ADDR_EQUAL(laddr, 3630 <cp->tcp_bound_source_v6)) { 3631 break; 3632 } 3633 continue; 3634 } 3635 3636 /* 3637 * Check ipversion to allow IPv4 and IPv6 sockets to 3638 * have disjoint port number spaces, if *_EXCLBIND 3639 * is not set and only if the application binds to a 3640 * specific port. We use the same autoassigned port 3641 * number space for IPv4 and IPv6 sockets. 3642 */ 3643 if (tcp->tcp_ipversion != ltcp->tcp_ipversion && 3644 bind_to_req_port_only) 3645 continue; 3646 3647 /* 3648 * Ideally, we should make sure that the source 3649 * address, remote address, and remote port in the 3650 * four tuple for this tcp-connection is unique. 3651 * However, trying to find out the local source 3652 * address would require too much code duplication 3653 * with IP, since IP needs needs to have that code 3654 * to support userland TCP implementations. 3655 */ 3656 if (quick_connect && 3657 (ltcp->tcp_state > TCPS_LISTEN) && 3658 ((tcp->tcp_fport != ltcp->tcp_fport) || 3659 !IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6, 3660 <cp->tcp_remote_v6))) 3661 continue; 3662 3663 if (!reuseaddr) { 3664 /* 3665 * No socket option SO_REUSEADDR. 3666 * If existing port is bound to 3667 * a non-wildcard IP address 3668 * and the requesting stream is 3669 * bound to a distinct 3670 * different IP addresses 3671 * (non-wildcard, also), keep 3672 * going. 3673 */ 3674 if (!V6_OR_V4_INADDR_ANY(*laddr) && 3675 !V6_OR_V4_INADDR_ANY( 3676 ltcp->tcp_bound_source_v6) && 3677 !IN6_ARE_ADDR_EQUAL(laddr, 3678 <cp->tcp_bound_source_v6)) 3679 continue; 3680 if (ltcp->tcp_state >= TCPS_BOUND) { 3681 /* 3682 * This port is being used and 3683 * its state is >= TCPS_BOUND, 3684 * so we can't bind to it. 3685 */ 3686 break; 3687 } 3688 } else { 3689 /* 3690 * socket option SO_REUSEADDR is set on the 3691 * binding tcp_t. 3692 * 3693 * If two streams are bound to 3694 * same IP address or both addr 3695 * and bound source are wildcards 3696 * (INADDR_ANY), we want to stop 3697 * searching. 3698 * We have found a match of IP source 3699 * address and source port, which is 3700 * refused regardless of the 3701 * SO_REUSEADDR setting, so we break. 3702 */ 3703 if (IN6_ARE_ADDR_EQUAL(laddr, 3704 <cp->tcp_bound_source_v6) && 3705 (ltcp->tcp_state == TCPS_LISTEN || 3706 ltcp->tcp_state == TCPS_BOUND)) 3707 break; 3708 } 3709 } 3710 if (ltcp != NULL) { 3711 /* The port number is busy */ 3712 mutex_exit(&tbf->tf_lock); 3713 } else { 3714 /* 3715 * This port is ours. Insert in fanout and mark as 3716 * bound to prevent others from getting the port 3717 * number. 3718 */ 3719 tcp->tcp_state = TCPS_BOUND; 3720 tcp->tcp_lport = htons(port); 3721 *(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport; 3722 3723 ASSERT(&tcps->tcps_bind_fanout[TCP_BIND_HASH( 3724 tcp->tcp_lport)] == tbf); 3725 tcp_bind_hash_insert(tbf, tcp, 1); 3726 3727 mutex_exit(&tbf->tf_lock); 3728 3729 /* 3730 * We don't want tcp_next_port_to_try to "inherit" 3731 * a port number supplied by the user in a bind. 3732 */ 3733 if (user_specified) 3734 return (port); 3735 3736 /* 3737 * This is the only place where tcp_next_port_to_try 3738 * is updated. After the update, it may or may not 3739 * be in the valid range. 3740 */ 3741 if (!tcp->tcp_anon_priv_bind) 3742 tcps->tcps_next_port_to_try = port + 1; 3743 return (port); 3744 } 3745 3746 if (tcp->tcp_anon_priv_bind) { 3747 port = tcp_get_next_priv_port(tcp); 3748 } else { 3749 if (count == 0 && user_specified) { 3750 /* 3751 * We may have to return an anonymous port. So 3752 * get one to start with. 3753 */ 3754 port = 3755 tcp_update_next_port( 3756 tcps->tcps_next_port_to_try, 3757 tcp, B_TRUE); 3758 user_specified = B_FALSE; 3759 } else { 3760 port = tcp_update_next_port(port + 1, tcp, 3761 B_FALSE); 3762 } 3763 } 3764 if (port == 0) 3765 break; 3766 3767 /* 3768 * Don't let this loop run forever in the case where 3769 * all of the anonymous ports are in use. 3770 */ 3771 } while (++count < loopmax); 3772 return (0); 3773 } 3774 3775 /* 3776 * tcp_clean_death / tcp_close_detached must not be called more than once 3777 * on a tcp. Thus every function that potentially calls tcp_clean_death 3778 * must check for the tcp state before calling tcp_clean_death. 3779 * Eg. tcp_input, tcp_rput_data, tcp_eager_kill, tcp_clean_death_wrapper, 3780 * tcp_timer_handler, all check for the tcp state. 3781 */ 3782 /* ARGSUSED */ 3783 void 3784 tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2) 3785 { 3786 tcp_t *tcp = ((conn_t *)arg)->conn_tcp; 3787 3788 freemsg(mp); 3789 if (tcp->tcp_state > TCPS_BOUND) 3790 (void) tcp_clean_death(((conn_t *)arg)->conn_tcp, 3791 ETIMEDOUT, 5); 3792 } 3793 3794 /* 3795 * We are dying for some reason. Try to do it gracefully. (May be called 3796 * as writer.) 3797 * 3798 * Return -1 if the structure was not cleaned up (if the cleanup had to be 3799 * done by a service procedure). 3800 * TBD - Should the return value distinguish between the tcp_t being 3801 * freed and it being reinitialized? 3802 */ 3803 static int 3804 tcp_clean_death(tcp_t *tcp, int err, uint8_t tag) 3805 { 3806 mblk_t *mp; 3807 queue_t *q; 3808 tcp_stack_t *tcps = tcp->tcp_tcps; 3809 3810 TCP_CLD_STAT(tag); 3811 3812 #if TCP_TAG_CLEAN_DEATH 3813 tcp->tcp_cleandeathtag = tag; 3814 #endif 3815 3816 if (tcp->tcp_fused) 3817 tcp_unfuse(tcp); 3818 3819 if (tcp->tcp_linger_tid != 0 && 3820 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 3821 tcp_stop_lingering(tcp); 3822 } 3823 3824 ASSERT(tcp != NULL); 3825 ASSERT((tcp->tcp_family == AF_INET && 3826 tcp->tcp_ipversion == IPV4_VERSION) || 3827 (tcp->tcp_family == AF_INET6 && 3828 (tcp->tcp_ipversion == IPV4_VERSION || 3829 tcp->tcp_ipversion == IPV6_VERSION))); 3830 3831 if (TCP_IS_DETACHED(tcp)) { 3832 if (tcp->tcp_hard_binding) { 3833 /* 3834 * Its an eager that we are dealing with. We close the 3835 * eager but in case a conn_ind has already gone to the 3836 * listener, let tcp_accept_finish() send a discon_ind 3837 * to the listener and drop the last reference. If the 3838 * listener doesn't even know about the eager i.e. the 3839 * conn_ind hasn't gone up, blow away the eager and drop 3840 * the last reference as well. If the conn_ind has gone 3841 * up, state should be BOUND. tcp_accept_finish 3842 * will figure out that the connection has received a 3843 * RST and will send a DISCON_IND to the application. 3844 */ 3845 tcp_closei_local(tcp); 3846 if (!tcp->tcp_tconnind_started) { 3847 CONN_DEC_REF(tcp->tcp_connp); 3848 } else { 3849 tcp->tcp_state = TCPS_BOUND; 3850 } 3851 } else { 3852 tcp_close_detached(tcp); 3853 } 3854 return (0); 3855 } 3856 3857 TCP_STAT(tcps, tcp_clean_death_nondetached); 3858 3859 /* 3860 * If T_ORDREL_IND has not been sent yet (done when service routine 3861 * is run) postpone cleaning up the endpoint until service routine 3862 * has sent up the T_ORDREL_IND. Avoid clearing out an existing 3863 * client_errno since tcp_close uses the client_errno field. 3864 */ 3865 if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 3866 if (err != 0) 3867 tcp->tcp_client_errno = err; 3868 3869 tcp->tcp_deferred_clean_death = B_TRUE; 3870 return (-1); 3871 } 3872 3873 q = tcp->tcp_rq; 3874 3875 /* Trash all inbound data */ 3876 flushq(q, FLUSHALL); 3877 3878 /* 3879 * If we are at least part way open and there is error 3880 * (err==0 implies no error) 3881 * notify our client by a T_DISCON_IND. 3882 */ 3883 if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) { 3884 if (tcp->tcp_state >= TCPS_ESTABLISHED && 3885 !TCP_IS_SOCKET(tcp)) { 3886 /* 3887 * Send M_FLUSH according to TPI. Because sockets will 3888 * (and must) ignore FLUSHR we do that only for TPI 3889 * endpoints and sockets in STREAMS mode. 3890 */ 3891 (void) putnextctl1(q, M_FLUSH, FLUSHR); 3892 } 3893 if (tcp->tcp_debug) { 3894 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 3895 "tcp_clean_death: discon err %d", err); 3896 } 3897 mp = mi_tpi_discon_ind(NULL, err, 0); 3898 if (mp != NULL) { 3899 putnext(q, mp); 3900 } else { 3901 if (tcp->tcp_debug) { 3902 (void) strlog(TCP_MOD_ID, 0, 1, 3903 SL_ERROR|SL_TRACE, 3904 "tcp_clean_death, sending M_ERROR"); 3905 } 3906 (void) putnextctl1(q, M_ERROR, EPROTO); 3907 } 3908 if (tcp->tcp_state <= TCPS_SYN_RCVD) { 3909 /* SYN_SENT or SYN_RCVD */ 3910 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 3911 } else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) { 3912 /* ESTABLISHED or CLOSE_WAIT */ 3913 BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); 3914 } 3915 } 3916 3917 tcp_reinit(tcp); 3918 return (-1); 3919 } 3920 3921 /* 3922 * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout 3923 * to expire, stop the wait and finish the close. 3924 */ 3925 static void 3926 tcp_stop_lingering(tcp_t *tcp) 3927 { 3928 clock_t delta = 0; 3929 tcp_stack_t *tcps = tcp->tcp_tcps; 3930 3931 tcp->tcp_linger_tid = 0; 3932 if (tcp->tcp_state > TCPS_LISTEN) { 3933 tcp_acceptor_hash_remove(tcp); 3934 mutex_enter(&tcp->tcp_non_sq_lock); 3935 if (tcp->tcp_flow_stopped) { 3936 tcp_clrqfull(tcp); 3937 } 3938 mutex_exit(&tcp->tcp_non_sq_lock); 3939 3940 if (tcp->tcp_timer_tid != 0) { 3941 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 3942 tcp->tcp_timer_tid = 0; 3943 } 3944 /* 3945 * Need to cancel those timers which will not be used when 3946 * TCP is detached. This has to be done before the tcp_wq 3947 * is set to the global queue. 3948 */ 3949 tcp_timers_stop(tcp); 3950 3951 3952 tcp->tcp_detached = B_TRUE; 3953 ASSERT(tcps->tcps_g_q != NULL); 3954 tcp->tcp_rq = tcps->tcps_g_q; 3955 tcp->tcp_wq = WR(tcps->tcps_g_q); 3956 3957 if (tcp->tcp_state == TCPS_TIME_WAIT) { 3958 tcp_time_wait_append(tcp); 3959 TCP_DBGSTAT(tcps, tcp_detach_time_wait); 3960 goto finish; 3961 } 3962 3963 /* 3964 * If delta is zero the timer event wasn't executed and was 3965 * successfully canceled. In this case we need to restart it 3966 * with the minimal delta possible. 3967 */ 3968 if (delta >= 0) { 3969 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 3970 delta ? delta : 1); 3971 } 3972 } else { 3973 tcp_closei_local(tcp); 3974 CONN_DEC_REF(tcp->tcp_connp); 3975 } 3976 finish: 3977 /* Signal closing thread that it can complete close */ 3978 mutex_enter(&tcp->tcp_closelock); 3979 tcp->tcp_detached = B_TRUE; 3980 ASSERT(tcps->tcps_g_q != NULL); 3981 tcp->tcp_rq = tcps->tcps_g_q; 3982 tcp->tcp_wq = WR(tcps->tcps_g_q); 3983 tcp->tcp_closed = 1; 3984 cv_signal(&tcp->tcp_closecv); 3985 mutex_exit(&tcp->tcp_closelock); 3986 } 3987 3988 /* 3989 * Handle lingering timeouts. This function is called when the SO_LINGER timeout 3990 * expires. 3991 */ 3992 static void 3993 tcp_close_linger_timeout(void *arg) 3994 { 3995 conn_t *connp = (conn_t *)arg; 3996 tcp_t *tcp = connp->conn_tcp; 3997 3998 tcp->tcp_client_errno = ETIMEDOUT; 3999 tcp_stop_lingering(tcp); 4000 } 4001 4002 static int 4003 tcp_close(queue_t *q, int flags) 4004 { 4005 conn_t *connp = Q_TO_CONN(q); 4006 tcp_t *tcp = connp->conn_tcp; 4007 mblk_t *mp = &tcp->tcp_closemp; 4008 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 4009 boolean_t linger_interrupted = B_FALSE; 4010 mblk_t *bp; 4011 4012 ASSERT(WR(q)->q_next == NULL); 4013 ASSERT(connp->conn_ref >= 2); 4014 4015 /* 4016 * We are being closed as /dev/tcp or /dev/tcp6. 4017 * 4018 * Mark the conn as closing. ill_pending_mp_add will not 4019 * add any mp to the pending mp list, after this conn has 4020 * started closing. Same for sq_pending_mp_add 4021 */ 4022 mutex_enter(&connp->conn_lock); 4023 connp->conn_state_flags |= CONN_CLOSING; 4024 if (connp->conn_oper_pending_ill != NULL) 4025 conn_ioctl_cleanup_reqd = B_TRUE; 4026 CONN_INC_REF_LOCKED(connp); 4027 mutex_exit(&connp->conn_lock); 4028 tcp->tcp_closeflags = (uint8_t)flags; 4029 ASSERT(connp->conn_ref >= 3); 4030 4031 /* 4032 * tcp_closemp_used is used below without any protection of a lock 4033 * as we don't expect any one else to use it concurrently at this 4034 * point otherwise it would be a major defect. 4035 */ 4036 4037 if (mp->b_prev == NULL) 4038 tcp->tcp_closemp_used = B_TRUE; 4039 else 4040 cmn_err(CE_PANIC, "tcp_close: concurrent use of tcp_closemp: " 4041 "connp %p tcp %p\n", (void *)connp, (void *)tcp); 4042 4043 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 4044 4045 (*tcp_squeue_close_proc)(connp->conn_sqp, mp, 4046 tcp_close_output, connp, SQTAG_IP_TCP_CLOSE); 4047 4048 mutex_enter(&tcp->tcp_closelock); 4049 while (!tcp->tcp_closed) { 4050 if (!cv_wait_sig(&tcp->tcp_closecv, &tcp->tcp_closelock)) { 4051 /* 4052 * We got interrupted. Check if we are lingering, 4053 * if yes, post a message to stop and wait until 4054 * tcp_closed is set. If we aren't lingering, 4055 * just go back around. 4056 */ 4057 if (tcp->tcp_linger && 4058 tcp->tcp_lingertime > 0 && 4059 !linger_interrupted) { 4060 mutex_exit(&tcp->tcp_closelock); 4061 /* Entering squeue, bump ref count. */ 4062 CONN_INC_REF(connp); 4063 bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL); 4064 squeue_enter(connp->conn_sqp, bp, 4065 tcp_linger_interrupted, connp, 4066 SQTAG_IP_TCP_CLOSE); 4067 linger_interrupted = B_TRUE; 4068 mutex_enter(&tcp->tcp_closelock); 4069 } 4070 } 4071 } 4072 mutex_exit(&tcp->tcp_closelock); 4073 4074 /* 4075 * In the case of listener streams that have eagers in the q or q0 4076 * we wait for the eagers to drop their reference to us. tcp_rq and 4077 * tcp_wq of the eagers point to our queues. By waiting for the 4078 * refcnt to drop to 1, we are sure that the eagers have cleaned 4079 * up their queue pointers and also dropped their references to us. 4080 */ 4081 if (tcp->tcp_wait_for_eagers) { 4082 mutex_enter(&connp->conn_lock); 4083 while (connp->conn_ref != 1) { 4084 cv_wait(&connp->conn_cv, &connp->conn_lock); 4085 } 4086 mutex_exit(&connp->conn_lock); 4087 } 4088 /* 4089 * ioctl cleanup. The mp is queued in the 4090 * ill_pending_mp or in the sq_pending_mp. 4091 */ 4092 if (conn_ioctl_cleanup_reqd) 4093 conn_ioctl_cleanup(connp); 4094 4095 qprocsoff(q); 4096 inet_minor_free(ip_minor_arena, connp->conn_dev); 4097 4098 tcp->tcp_cpid = -1; 4099 4100 /* 4101 * Drop IP's reference on the conn. This is the last reference 4102 * on the connp if the state was less than established. If the 4103 * connection has gone into timewait state, then we will have 4104 * one ref for the TCP and one more ref (total of two) for the 4105 * classifier connected hash list (a timewait connections stays 4106 * in connected hash till closed). 4107 * 4108 * We can't assert the references because there might be other 4109 * transient reference places because of some walkers or queued 4110 * packets in squeue for the timewait state. 4111 */ 4112 CONN_DEC_REF(connp); 4113 q->q_ptr = WR(q)->q_ptr = NULL; 4114 return (0); 4115 } 4116 4117 static int 4118 tcpclose_accept(queue_t *q) 4119 { 4120 ASSERT(WR(q)->q_qinfo == &tcp_acceptor_winit); 4121 4122 /* 4123 * We had opened an acceptor STREAM for sockfs which is 4124 * now being closed due to some error. 4125 */ 4126 qprocsoff(q); 4127 inet_minor_free(ip_minor_arena, (dev_t)q->q_ptr); 4128 q->q_ptr = WR(q)->q_ptr = NULL; 4129 return (0); 4130 } 4131 4132 /* 4133 * Called by tcp_close() routine via squeue when lingering is 4134 * interrupted by a signal. 4135 */ 4136 4137 /* ARGSUSED */ 4138 static void 4139 tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2) 4140 { 4141 conn_t *connp = (conn_t *)arg; 4142 tcp_t *tcp = connp->conn_tcp; 4143 4144 freeb(mp); 4145 if (tcp->tcp_linger_tid != 0 && 4146 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 4147 tcp_stop_lingering(tcp); 4148 tcp->tcp_client_errno = EINTR; 4149 } 4150 } 4151 4152 /* 4153 * Called by streams close routine via squeues when our client blows off her 4154 * descriptor, we take this to mean: "close the stream state NOW, close the tcp 4155 * connection politely" When SO_LINGER is set (with a non-zero linger time and 4156 * it is not a nonblocking socket) then this routine sleeps until the FIN is 4157 * acked. 4158 * 4159 * NOTE: tcp_close potentially returns error when lingering. 4160 * However, the stream head currently does not pass these errors 4161 * to the application. 4.4BSD only returns EINTR and EWOULDBLOCK 4162 * errors to the application (from tsleep()) and not errors 4163 * like ECONNRESET caused by receiving a reset packet. 4164 */ 4165 4166 /* ARGSUSED */ 4167 static void 4168 tcp_close_output(void *arg, mblk_t *mp, void *arg2) 4169 { 4170 char *msg; 4171 conn_t *connp = (conn_t *)arg; 4172 tcp_t *tcp = connp->conn_tcp; 4173 clock_t delta = 0; 4174 tcp_stack_t *tcps = tcp->tcp_tcps; 4175 4176 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 4177 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 4178 4179 /* Cancel any pending timeout */ 4180 if (tcp->tcp_ordrelid != 0) { 4181 if (tcp->tcp_timeout) { 4182 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ordrelid); 4183 } 4184 tcp->tcp_ordrelid = 0; 4185 tcp->tcp_timeout = B_FALSE; 4186 } 4187 4188 mutex_enter(&tcp->tcp_eager_lock); 4189 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 4190 /* Cleanup for listener */ 4191 tcp_eager_cleanup(tcp, 0); 4192 tcp->tcp_wait_for_eagers = 1; 4193 } 4194 mutex_exit(&tcp->tcp_eager_lock); 4195 4196 connp->conn_mdt_ok = B_FALSE; 4197 tcp->tcp_mdt = B_FALSE; 4198 4199 connp->conn_lso_ok = B_FALSE; 4200 tcp->tcp_lso = B_FALSE; 4201 4202 msg = NULL; 4203 switch (tcp->tcp_state) { 4204 case TCPS_CLOSED: 4205 case TCPS_IDLE: 4206 case TCPS_BOUND: 4207 case TCPS_LISTEN: 4208 break; 4209 case TCPS_SYN_SENT: 4210 msg = "tcp_close, during connect"; 4211 break; 4212 case TCPS_SYN_RCVD: 4213 /* 4214 * Close during the connect 3-way handshake 4215 * but here there may or may not be pending data 4216 * already on queue. Process almost same as in 4217 * the ESTABLISHED state. 4218 */ 4219 /* FALLTHRU */ 4220 default: 4221 if (tcp->tcp_fused) 4222 tcp_unfuse(tcp); 4223 4224 /* 4225 * If SO_LINGER has set a zero linger time, abort the 4226 * connection with a reset. 4227 */ 4228 if (tcp->tcp_linger && tcp->tcp_lingertime == 0) { 4229 msg = "tcp_close, zero lingertime"; 4230 break; 4231 } 4232 4233 ASSERT(tcp->tcp_hard_bound || tcp->tcp_hard_binding); 4234 /* 4235 * Abort connection if there is unread data queued. 4236 */ 4237 if (tcp->tcp_rcv_list || tcp->tcp_reass_head) { 4238 msg = "tcp_close, unread data"; 4239 break; 4240 } 4241 /* 4242 * tcp_hard_bound is now cleared thus all packets go through 4243 * tcp_lookup. This fact is used by tcp_detach below. 4244 * 4245 * We have done a qwait() above which could have possibly 4246 * drained more messages in turn causing transition to a 4247 * different state. Check whether we have to do the rest 4248 * of the processing or not. 4249 */ 4250 if (tcp->tcp_state <= TCPS_LISTEN) 4251 break; 4252 4253 /* 4254 * Transmit the FIN before detaching the tcp_t. 4255 * After tcp_detach returns this queue/perimeter 4256 * no longer owns the tcp_t thus others can modify it. 4257 */ 4258 (void) tcp_xmit_end(tcp); 4259 4260 /* 4261 * If lingering on close then wait until the fin is acked, 4262 * the SO_LINGER time passes, or a reset is sent/received. 4263 */ 4264 if (tcp->tcp_linger && tcp->tcp_lingertime > 0 && 4265 !(tcp->tcp_fin_acked) && 4266 tcp->tcp_state >= TCPS_ESTABLISHED) { 4267 if (tcp->tcp_closeflags & (FNDELAY|FNONBLOCK)) { 4268 tcp->tcp_client_errno = EWOULDBLOCK; 4269 } else if (tcp->tcp_client_errno == 0) { 4270 4271 ASSERT(tcp->tcp_linger_tid == 0); 4272 4273 tcp->tcp_linger_tid = TCP_TIMER(tcp, 4274 tcp_close_linger_timeout, 4275 tcp->tcp_lingertime * hz); 4276 4277 /* tcp_close_linger_timeout will finish close */ 4278 if (tcp->tcp_linger_tid == 0) 4279 tcp->tcp_client_errno = ENOSR; 4280 else 4281 return; 4282 } 4283 4284 /* 4285 * Check if we need to detach or just close 4286 * the instance. 4287 */ 4288 if (tcp->tcp_state <= TCPS_LISTEN) 4289 break; 4290 } 4291 4292 /* 4293 * Make sure that no other thread will access the tcp_rq of 4294 * this instance (through lookups etc.) as tcp_rq will go 4295 * away shortly. 4296 */ 4297 tcp_acceptor_hash_remove(tcp); 4298 4299 mutex_enter(&tcp->tcp_non_sq_lock); 4300 if (tcp->tcp_flow_stopped) { 4301 tcp_clrqfull(tcp); 4302 } 4303 mutex_exit(&tcp->tcp_non_sq_lock); 4304 4305 if (tcp->tcp_timer_tid != 0) { 4306 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 4307 tcp->tcp_timer_tid = 0; 4308 } 4309 /* 4310 * Need to cancel those timers which will not be used when 4311 * TCP is detached. This has to be done before the tcp_wq 4312 * is set to the global queue. 4313 */ 4314 tcp_timers_stop(tcp); 4315 4316 tcp->tcp_detached = B_TRUE; 4317 if (tcp->tcp_state == TCPS_TIME_WAIT) { 4318 tcp_time_wait_append(tcp); 4319 TCP_DBGSTAT(tcps, tcp_detach_time_wait); 4320 ASSERT(connp->conn_ref >= 3); 4321 goto finish; 4322 } 4323 4324 /* 4325 * If delta is zero the timer event wasn't executed and was 4326 * successfully canceled. In this case we need to restart it 4327 * with the minimal delta possible. 4328 */ 4329 if (delta >= 0) 4330 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 4331 delta ? delta : 1); 4332 4333 ASSERT(connp->conn_ref >= 3); 4334 goto finish; 4335 } 4336 4337 /* Detach did not complete. Still need to remove q from stream. */ 4338 if (msg) { 4339 if (tcp->tcp_state == TCPS_ESTABLISHED || 4340 tcp->tcp_state == TCPS_CLOSE_WAIT) 4341 BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); 4342 if (tcp->tcp_state == TCPS_SYN_SENT || 4343 tcp->tcp_state == TCPS_SYN_RCVD) 4344 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 4345 tcp_xmit_ctl(msg, tcp, tcp->tcp_snxt, 0, TH_RST); 4346 } 4347 4348 tcp_closei_local(tcp); 4349 CONN_DEC_REF(connp); 4350 ASSERT(connp->conn_ref >= 2); 4351 4352 finish: 4353 /* 4354 * Although packets are always processed on the correct 4355 * tcp's perimeter and access is serialized via squeue's, 4356 * IP still needs a queue when sending packets in time_wait 4357 * state so use WR(tcps_g_q) till ip_output() can be 4358 * changed to deal with just connp. For read side, we 4359 * could have set tcp_rq to NULL but there are some cases 4360 * in tcp_rput_data() from early days of this code which 4361 * do a putnext without checking if tcp is closed. Those 4362 * need to be identified before both tcp_rq and tcp_wq 4363 * can be set to NULL and tcps_g_q can disappear forever. 4364 */ 4365 mutex_enter(&tcp->tcp_closelock); 4366 /* 4367 * Don't change the queues in the case of a listener that has 4368 * eagers in its q or q0. It could surprise the eagers. 4369 * Instead wait for the eagers outside the squeue. 4370 */ 4371 if (!tcp->tcp_wait_for_eagers) { 4372 tcp->tcp_detached = B_TRUE; 4373 /* 4374 * When default queue is closing we set tcps_g_q to NULL 4375 * after the close is done. 4376 */ 4377 ASSERT(tcps->tcps_g_q != NULL); 4378 tcp->tcp_rq = tcps->tcps_g_q; 4379 tcp->tcp_wq = WR(tcps->tcps_g_q); 4380 } 4381 4382 /* Signal tcp_close() to finish closing. */ 4383 tcp->tcp_closed = 1; 4384 cv_signal(&tcp->tcp_closecv); 4385 mutex_exit(&tcp->tcp_closelock); 4386 } 4387 4388 4389 /* 4390 * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp. 4391 * Some stream heads get upset if they see these later on as anything but NULL. 4392 */ 4393 static void 4394 tcp_close_mpp(mblk_t **mpp) 4395 { 4396 mblk_t *mp; 4397 4398 if ((mp = *mpp) != NULL) { 4399 do { 4400 mp->b_next = NULL; 4401 mp->b_prev = NULL; 4402 } while ((mp = mp->b_cont) != NULL); 4403 4404 mp = *mpp; 4405 *mpp = NULL; 4406 freemsg(mp); 4407 } 4408 } 4409 4410 /* Do detached close. */ 4411 static void 4412 tcp_close_detached(tcp_t *tcp) 4413 { 4414 if (tcp->tcp_fused) 4415 tcp_unfuse(tcp); 4416 4417 /* 4418 * Clustering code serializes TCP disconnect callbacks and 4419 * cluster tcp list walks by blocking a TCP disconnect callback 4420 * if a cluster tcp list walk is in progress. This ensures 4421 * accurate accounting of TCPs in the cluster code even though 4422 * the TCP list walk itself is not atomic. 4423 */ 4424 tcp_closei_local(tcp); 4425 CONN_DEC_REF(tcp->tcp_connp); 4426 } 4427 4428 /* 4429 * Stop all TCP timers, and free the timer mblks if requested. 4430 */ 4431 void 4432 tcp_timers_stop(tcp_t *tcp) 4433 { 4434 if (tcp->tcp_timer_tid != 0) { 4435 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 4436 tcp->tcp_timer_tid = 0; 4437 } 4438 if (tcp->tcp_ka_tid != 0) { 4439 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ka_tid); 4440 tcp->tcp_ka_tid = 0; 4441 } 4442 if (tcp->tcp_ack_tid != 0) { 4443 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 4444 tcp->tcp_ack_tid = 0; 4445 } 4446 if (tcp->tcp_push_tid != 0) { 4447 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 4448 tcp->tcp_push_tid = 0; 4449 } 4450 } 4451 4452 /* 4453 * The tcp_t is going away. Remove it from all lists and set it 4454 * to TCPS_CLOSED. The freeing up of memory is deferred until 4455 * tcp_inactive. This is needed since a thread in tcp_rput might have 4456 * done a CONN_INC_REF on this structure before it was removed from the 4457 * hashes. 4458 */ 4459 static void 4460 tcp_closei_local(tcp_t *tcp) 4461 { 4462 ire_t *ire; 4463 conn_t *connp = tcp->tcp_connp; 4464 tcp_stack_t *tcps = tcp->tcp_tcps; 4465 4466 if (!TCP_IS_SOCKET(tcp)) 4467 tcp_acceptor_hash_remove(tcp); 4468 4469 UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs); 4470 tcp->tcp_ibsegs = 0; 4471 UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs); 4472 tcp->tcp_obsegs = 0; 4473 4474 /* 4475 * If we are an eager connection hanging off a listener that 4476 * hasn't formally accepted the connection yet, get off his 4477 * list and blow off any data that we have accumulated. 4478 */ 4479 if (tcp->tcp_listener != NULL) { 4480 tcp_t *listener = tcp->tcp_listener; 4481 mutex_enter(&listener->tcp_eager_lock); 4482 /* 4483 * tcp_tconnind_started == B_TRUE means that the 4484 * conn_ind has already gone to listener. At 4485 * this point, eager will be closed but we 4486 * leave it in listeners eager list so that 4487 * if listener decides to close without doing 4488 * accept, we can clean this up. In tcp_wput_accept 4489 * we take care of the case of accept on closed 4490 * eager. 4491 */ 4492 if (!tcp->tcp_tconnind_started) { 4493 tcp_eager_unlink(tcp); 4494 mutex_exit(&listener->tcp_eager_lock); 4495 /* 4496 * We don't want to have any pointers to the 4497 * listener queue, after we have released our 4498 * reference on the listener 4499 */ 4500 ASSERT(tcps->tcps_g_q != NULL); 4501 tcp->tcp_rq = tcps->tcps_g_q; 4502 tcp->tcp_wq = WR(tcps->tcps_g_q); 4503 CONN_DEC_REF(listener->tcp_connp); 4504 } else { 4505 mutex_exit(&listener->tcp_eager_lock); 4506 } 4507 } 4508 4509 /* Stop all the timers */ 4510 tcp_timers_stop(tcp); 4511 4512 if (tcp->tcp_state == TCPS_LISTEN) { 4513 if (tcp->tcp_ip_addr_cache) { 4514 kmem_free((void *)tcp->tcp_ip_addr_cache, 4515 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 4516 tcp->tcp_ip_addr_cache = NULL; 4517 } 4518 } 4519 mutex_enter(&tcp->tcp_non_sq_lock); 4520 if (tcp->tcp_flow_stopped) 4521 tcp_clrqfull(tcp); 4522 mutex_exit(&tcp->tcp_non_sq_lock); 4523 4524 tcp_bind_hash_remove(tcp); 4525 /* 4526 * If the tcp_time_wait_collector (which runs outside the squeue) 4527 * is trying to remove this tcp from the time wait list, we will 4528 * block in tcp_time_wait_remove while trying to acquire the 4529 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also 4530 * requires the ipcl_hash_remove to be ordered after the 4531 * tcp_time_wait_remove for the refcnt checks to work correctly. 4532 */ 4533 if (tcp->tcp_state == TCPS_TIME_WAIT) 4534 (void) tcp_time_wait_remove(tcp, NULL); 4535 CL_INET_DISCONNECT(tcp); 4536 ipcl_hash_remove(connp); 4537 4538 /* 4539 * Delete the cached ire in conn_ire_cache and also mark 4540 * the conn as CONDEMNED 4541 */ 4542 mutex_enter(&connp->conn_lock); 4543 connp->conn_state_flags |= CONN_CONDEMNED; 4544 ire = connp->conn_ire_cache; 4545 connp->conn_ire_cache = NULL; 4546 mutex_exit(&connp->conn_lock); 4547 if (ire != NULL) 4548 IRE_REFRELE_NOTR(ire); 4549 4550 /* Need to cleanup any pending ioctls */ 4551 ASSERT(tcp->tcp_time_wait_next == NULL); 4552 ASSERT(tcp->tcp_time_wait_prev == NULL); 4553 ASSERT(tcp->tcp_time_wait_expire == 0); 4554 tcp->tcp_state = TCPS_CLOSED; 4555 4556 /* Release any SSL context */ 4557 if (tcp->tcp_kssl_ent != NULL) { 4558 kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); 4559 tcp->tcp_kssl_ent = NULL; 4560 } 4561 if (tcp->tcp_kssl_ctx != NULL) { 4562 kssl_release_ctx(tcp->tcp_kssl_ctx); 4563 tcp->tcp_kssl_ctx = NULL; 4564 } 4565 tcp->tcp_kssl_pending = B_FALSE; 4566 4567 tcp_ipsec_cleanup(tcp); 4568 } 4569 4570 /* 4571 * tcp is dying (called from ipcl_conn_destroy and error cases). 4572 * Free the tcp_t in either case. 4573 */ 4574 void 4575 tcp_free(tcp_t *tcp) 4576 { 4577 mblk_t *mp; 4578 ip6_pkt_t *ipp; 4579 4580 ASSERT(tcp != NULL); 4581 ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL); 4582 4583 tcp->tcp_rq = NULL; 4584 tcp->tcp_wq = NULL; 4585 4586 tcp_close_mpp(&tcp->tcp_xmit_head); 4587 tcp_close_mpp(&tcp->tcp_reass_head); 4588 if (tcp->tcp_rcv_list != NULL) { 4589 /* Free b_next chain */ 4590 tcp_close_mpp(&tcp->tcp_rcv_list); 4591 } 4592 if ((mp = tcp->tcp_urp_mp) != NULL) { 4593 freemsg(mp); 4594 } 4595 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 4596 freemsg(mp); 4597 } 4598 4599 if (tcp->tcp_fused_sigurg_mp != NULL) { 4600 freeb(tcp->tcp_fused_sigurg_mp); 4601 tcp->tcp_fused_sigurg_mp = NULL; 4602 } 4603 4604 if (tcp->tcp_sack_info != NULL) { 4605 if (tcp->tcp_notsack_list != NULL) { 4606 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 4607 } 4608 bzero(tcp->tcp_sack_info, sizeof (tcp_sack_info_t)); 4609 } 4610 4611 if (tcp->tcp_hopopts != NULL) { 4612 mi_free(tcp->tcp_hopopts); 4613 tcp->tcp_hopopts = NULL; 4614 tcp->tcp_hopoptslen = 0; 4615 } 4616 ASSERT(tcp->tcp_hopoptslen == 0); 4617 if (tcp->tcp_dstopts != NULL) { 4618 mi_free(tcp->tcp_dstopts); 4619 tcp->tcp_dstopts = NULL; 4620 tcp->tcp_dstoptslen = 0; 4621 } 4622 ASSERT(tcp->tcp_dstoptslen == 0); 4623 if (tcp->tcp_rtdstopts != NULL) { 4624 mi_free(tcp->tcp_rtdstopts); 4625 tcp->tcp_rtdstopts = NULL; 4626 tcp->tcp_rtdstoptslen = 0; 4627 } 4628 ASSERT(tcp->tcp_rtdstoptslen == 0); 4629 if (tcp->tcp_rthdr != NULL) { 4630 mi_free(tcp->tcp_rthdr); 4631 tcp->tcp_rthdr = NULL; 4632 tcp->tcp_rthdrlen = 0; 4633 } 4634 ASSERT(tcp->tcp_rthdrlen == 0); 4635 4636 ipp = &tcp->tcp_sticky_ipp; 4637 if (ipp->ipp_fields & (IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 4638 IPPF_RTHDR)) 4639 ip6_pkt_free(ipp); 4640 4641 /* 4642 * Free memory associated with the tcp/ip header template. 4643 */ 4644 4645 if (tcp->tcp_iphc != NULL) 4646 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 4647 4648 /* 4649 * Following is really a blowing away a union. 4650 * It happens to have exactly two members of identical size 4651 * the following code is enough. 4652 */ 4653 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 4654 4655 if (tcp->tcp_tracebuf != NULL) { 4656 kmem_free(tcp->tcp_tracebuf, sizeof (tcptrch_t)); 4657 tcp->tcp_tracebuf = NULL; 4658 } 4659 } 4660 4661 4662 /* 4663 * Put a connection confirmation message upstream built from the 4664 * address information within 'iph' and 'tcph'. Report our success or failure. 4665 */ 4666 static boolean_t 4667 tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, mblk_t *idmp, 4668 mblk_t **defermp) 4669 { 4670 sin_t sin; 4671 sin6_t sin6; 4672 mblk_t *mp; 4673 char *optp = NULL; 4674 int optlen = 0; 4675 cred_t *cr; 4676 4677 if (defermp != NULL) 4678 *defermp = NULL; 4679 4680 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) { 4681 /* 4682 * Return in T_CONN_CON results of option negotiation through 4683 * the T_CONN_REQ. Note: If there is an real end-to-end option 4684 * negotiation, then what is received from remote end needs 4685 * to be taken into account but there is no such thing (yet?) 4686 * in our TCP/IP. 4687 * Note: We do not use mi_offset_param() here as 4688 * tcp_opts_conn_req contents do not directly come from 4689 * an application and are either generated in kernel or 4690 * from user input that was already verified. 4691 */ 4692 mp = tcp->tcp_conn.tcp_opts_conn_req; 4693 optp = (char *)(mp->b_rptr + 4694 ((struct T_conn_req *)mp->b_rptr)->OPT_offset); 4695 optlen = (int) 4696 ((struct T_conn_req *)mp->b_rptr)->OPT_length; 4697 } 4698 4699 if (IPH_HDR_VERSION(iphdr) == IPV4_VERSION) { 4700 ipha_t *ipha = (ipha_t *)iphdr; 4701 4702 /* packet is IPv4 */ 4703 if (tcp->tcp_family == AF_INET) { 4704 sin = sin_null; 4705 sin.sin_addr.s_addr = ipha->ipha_src; 4706 sin.sin_port = *(uint16_t *)tcph->th_lport; 4707 sin.sin_family = AF_INET; 4708 mp = mi_tpi_conn_con(NULL, (char *)&sin, 4709 (int)sizeof (sin_t), optp, optlen); 4710 } else { 4711 sin6 = sin6_null; 4712 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr); 4713 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4714 sin6.sin6_family = AF_INET6; 4715 mp = mi_tpi_conn_con(NULL, (char *)&sin6, 4716 (int)sizeof (sin6_t), optp, optlen); 4717 4718 } 4719 } else { 4720 ip6_t *ip6h = (ip6_t *)iphdr; 4721 4722 ASSERT(IPH_HDR_VERSION(iphdr) == IPV6_VERSION); 4723 ASSERT(tcp->tcp_family == AF_INET6); 4724 sin6 = sin6_null; 4725 sin6.sin6_addr = ip6h->ip6_src; 4726 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4727 sin6.sin6_family = AF_INET6; 4728 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 4729 mp = mi_tpi_conn_con(NULL, (char *)&sin6, 4730 (int)sizeof (sin6_t), optp, optlen); 4731 } 4732 4733 if (!mp) 4734 return (B_FALSE); 4735 4736 if ((cr = DB_CRED(idmp)) != NULL) { 4737 mblk_setcred(mp, cr); 4738 DB_CPID(mp) = DB_CPID(idmp); 4739 } 4740 4741 if (defermp == NULL) 4742 putnext(tcp->tcp_rq, mp); 4743 else 4744 *defermp = mp; 4745 4746 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 4747 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 4748 return (B_TRUE); 4749 } 4750 4751 /* 4752 * Defense for the SYN attack - 4753 * 1. When q0 is full, drop from the tail (tcp_eager_prev_drop_q0) the oldest 4754 * one from the list of droppable eagers. This list is a subset of q0. 4755 * see comments before the definition of MAKE_DROPPABLE(). 4756 * 2. Don't drop a SYN request before its first timeout. This gives every 4757 * request at least til the first timeout to complete its 3-way handshake. 4758 * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many 4759 * requests currently on the queue that has timed out. This will be used 4760 * as an indicator of whether an attack is under way, so that appropriate 4761 * actions can be taken. (It's incremented in tcp_timer() and decremented 4762 * either when eager goes into ESTABLISHED, or gets freed up.) 4763 * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on 4764 * # of timeout drops back to <= q0len/32 => SYN alert off 4765 */ 4766 static boolean_t 4767 tcp_drop_q0(tcp_t *tcp) 4768 { 4769 tcp_t *eager; 4770 mblk_t *mp; 4771 tcp_stack_t *tcps = tcp->tcp_tcps; 4772 4773 ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock)); 4774 ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0); 4775 4776 /* Pick oldest eager from the list of droppable eagers */ 4777 eager = tcp->tcp_eager_prev_drop_q0; 4778 4779 /* If list is empty. return B_FALSE */ 4780 if (eager == tcp) { 4781 return (B_FALSE); 4782 } 4783 4784 /* If allocated, the mp will be freed in tcp_clean_death_wrapper() */ 4785 if ((mp = allocb(0, BPRI_HI)) == NULL) 4786 return (B_FALSE); 4787 4788 /* 4789 * Take this eager out from the list of droppable eagers since we are 4790 * going to drop it. 4791 */ 4792 MAKE_UNDROPPABLE(eager); 4793 4794 if (tcp->tcp_debug) { 4795 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 4796 "tcp_drop_q0: listen half-open queue (max=%d) overflow" 4797 " (%d pending) on %s, drop one", tcps->tcps_conn_req_max_q0, 4798 tcp->tcp_conn_req_cnt_q0, 4799 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 4800 } 4801 4802 BUMP_MIB(&tcps->tcps_mib, tcpHalfOpenDrop); 4803 4804 /* Put a reference on the conn as we are enqueueing it in the sqeue */ 4805 CONN_INC_REF(eager->tcp_connp); 4806 4807 /* Mark the IRE created for this SYN request temporary */ 4808 tcp_ip_ire_mark_advice(eager); 4809 squeue_fill(eager->tcp_connp->conn_sqp, mp, 4810 tcp_clean_death_wrapper, eager->tcp_connp, SQTAG_TCP_DROP_Q0); 4811 4812 return (B_TRUE); 4813 } 4814 4815 int 4816 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 4817 tcph_t *tcph, uint_t ipvers, mblk_t *idmp) 4818 { 4819 tcp_t *ltcp = lconnp->conn_tcp; 4820 tcp_t *tcp = connp->conn_tcp; 4821 mblk_t *tpi_mp; 4822 ipha_t *ipha; 4823 ip6_t *ip6h; 4824 sin6_t sin6; 4825 in6_addr_t v6dst; 4826 int err; 4827 int ifindex = 0; 4828 cred_t *cr; 4829 tcp_stack_t *tcps = tcp->tcp_tcps; 4830 4831 if (ipvers == IPV4_VERSION) { 4832 ipha = (ipha_t *)mp->b_rptr; 4833 4834 connp->conn_send = ip_output; 4835 connp->conn_recv = tcp_input; 4836 4837 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6); 4838 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6); 4839 4840 sin6 = sin6_null; 4841 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr); 4842 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &v6dst); 4843 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4844 sin6.sin6_family = AF_INET6; 4845 sin6.__sin6_src_id = ip_srcid_find_addr(&v6dst, 4846 lconnp->conn_zoneid, tcps->tcps_netstack); 4847 if (tcp->tcp_recvdstaddr) { 4848 sin6_t sin6d; 4849 4850 sin6d = sin6_null; 4851 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, 4852 &sin6d.sin6_addr); 4853 sin6d.sin6_port = *(uint16_t *)tcph->th_fport; 4854 sin6d.sin6_family = AF_INET; 4855 tpi_mp = mi_tpi_extconn_ind(NULL, 4856 (char *)&sin6d, sizeof (sin6_t), 4857 (char *)&tcp, 4858 (t_scalar_t)sizeof (intptr_t), 4859 (char *)&sin6d, sizeof (sin6_t), 4860 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4861 } else { 4862 tpi_mp = mi_tpi_conn_ind(NULL, 4863 (char *)&sin6, sizeof (sin6_t), 4864 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4865 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4866 } 4867 } else { 4868 ip6h = (ip6_t *)mp->b_rptr; 4869 4870 connp->conn_send = ip_output_v6; 4871 connp->conn_recv = tcp_input; 4872 4873 connp->conn_srcv6 = ip6h->ip6_dst; 4874 connp->conn_remv6 = ip6h->ip6_src; 4875 4876 /* db_cksumstuff is set at ip_fanout_tcp_v6 */ 4877 ifindex = (int)DB_CKSUMSTUFF(mp); 4878 DB_CKSUMSTUFF(mp) = 0; 4879 4880 sin6 = sin6_null; 4881 sin6.sin6_addr = ip6h->ip6_src; 4882 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4883 sin6.sin6_family = AF_INET6; 4884 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 4885 sin6.__sin6_src_id = ip_srcid_find_addr(&ip6h->ip6_dst, 4886 lconnp->conn_zoneid, tcps->tcps_netstack); 4887 4888 if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) { 4889 /* Pass up the scope_id of remote addr */ 4890 sin6.sin6_scope_id = ifindex; 4891 } else { 4892 sin6.sin6_scope_id = 0; 4893 } 4894 if (tcp->tcp_recvdstaddr) { 4895 sin6_t sin6d; 4896 4897 sin6d = sin6_null; 4898 sin6.sin6_addr = ip6h->ip6_dst; 4899 sin6d.sin6_port = *(uint16_t *)tcph->th_fport; 4900 sin6d.sin6_family = AF_INET; 4901 tpi_mp = mi_tpi_extconn_ind(NULL, 4902 (char *)&sin6d, sizeof (sin6_t), 4903 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4904 (char *)&sin6d, sizeof (sin6_t), 4905 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4906 } else { 4907 tpi_mp = mi_tpi_conn_ind(NULL, 4908 (char *)&sin6, sizeof (sin6_t), 4909 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4910 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4911 } 4912 } 4913 4914 if (tpi_mp == NULL) 4915 return (ENOMEM); 4916 4917 connp->conn_fport = *(uint16_t *)tcph->th_lport; 4918 connp->conn_lport = *(uint16_t *)tcph->th_fport; 4919 connp->conn_flags |= (IPCL_TCP6|IPCL_EAGER); 4920 connp->conn_fully_bound = B_FALSE; 4921 4922 if (tcps->tcps_trace) 4923 tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_NOSLEEP); 4924 4925 /* Inherit information from the "parent" */ 4926 tcp->tcp_ipversion = ltcp->tcp_ipversion; 4927 tcp->tcp_family = ltcp->tcp_family; 4928 tcp->tcp_wq = ltcp->tcp_wq; 4929 tcp->tcp_rq = ltcp->tcp_rq; 4930 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 4931 tcp->tcp_detached = B_TRUE; 4932 if ((err = tcp_init_values(tcp)) != 0) { 4933 freemsg(tpi_mp); 4934 return (err); 4935 } 4936 4937 if (ipvers == IPV4_VERSION) { 4938 if ((err = tcp_header_init_ipv4(tcp)) != 0) { 4939 freemsg(tpi_mp); 4940 return (err); 4941 } 4942 ASSERT(tcp->tcp_ipha != NULL); 4943 } else { 4944 /* ifindex must be already set */ 4945 ASSERT(ifindex != 0); 4946 4947 if (ltcp->tcp_bound_if != 0) { 4948 /* 4949 * Set newtcp's bound_if equal to 4950 * listener's value. If ifindex is 4951 * not the same as ltcp->tcp_bound_if, 4952 * it must be a packet for the ipmp group 4953 * of interfaces 4954 */ 4955 tcp->tcp_bound_if = ltcp->tcp_bound_if; 4956 } else if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) { 4957 tcp->tcp_bound_if = ifindex; 4958 } 4959 4960 tcp->tcp_ipv6_recvancillary = ltcp->tcp_ipv6_recvancillary; 4961 tcp->tcp_recvifindex = 0; 4962 tcp->tcp_recvhops = 0xffffffffU; 4963 ASSERT(tcp->tcp_ip6h != NULL); 4964 } 4965 4966 tcp->tcp_lport = ltcp->tcp_lport; 4967 4968 if (ltcp->tcp_ipversion == tcp->tcp_ipversion) { 4969 if (tcp->tcp_iphc_len != ltcp->tcp_iphc_len) { 4970 /* 4971 * Listener had options of some sort; eager inherits. 4972 * Free up the eager template and allocate one 4973 * of the right size. 4974 */ 4975 if (tcp->tcp_hdr_grown) { 4976 kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len); 4977 } else { 4978 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 4979 kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc); 4980 } 4981 tcp->tcp_iphc = kmem_zalloc(ltcp->tcp_iphc_len, 4982 KM_NOSLEEP); 4983 if (tcp->tcp_iphc == NULL) { 4984 tcp->tcp_iphc_len = 0; 4985 freemsg(tpi_mp); 4986 return (ENOMEM); 4987 } 4988 tcp->tcp_iphc_len = ltcp->tcp_iphc_len; 4989 tcp->tcp_hdr_grown = B_TRUE; 4990 } 4991 tcp->tcp_hdr_len = ltcp->tcp_hdr_len; 4992 tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len; 4993 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 4994 tcp->tcp_ip6_hops = ltcp->tcp_ip6_hops; 4995 tcp->tcp_ip6_vcf = ltcp->tcp_ip6_vcf; 4996 4997 /* 4998 * Copy the IP+TCP header template from listener to eager 4999 */ 5000 bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len); 5001 if (tcp->tcp_ipversion == IPV6_VERSION) { 5002 if (((ip6i_t *)(tcp->tcp_iphc))->ip6i_nxt == 5003 IPPROTO_RAW) { 5004 tcp->tcp_ip6h = 5005 (ip6_t *)(tcp->tcp_iphc + 5006 sizeof (ip6i_t)); 5007 } else { 5008 tcp->tcp_ip6h = 5009 (ip6_t *)(tcp->tcp_iphc); 5010 } 5011 tcp->tcp_ipha = NULL; 5012 } else { 5013 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 5014 tcp->tcp_ip6h = NULL; 5015 } 5016 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + 5017 tcp->tcp_ip_hdr_len); 5018 } else { 5019 /* 5020 * only valid case when ipversion of listener and 5021 * eager differ is when listener is IPv6 and 5022 * eager is IPv4. 5023 * Eager header template has been initialized to the 5024 * maximum v4 header sizes, which includes space for 5025 * TCP and IP options. 5026 */ 5027 ASSERT((ltcp->tcp_ipversion == IPV6_VERSION) && 5028 (tcp->tcp_ipversion == IPV4_VERSION)); 5029 ASSERT(tcp->tcp_iphc_len >= 5030 TCP_MAX_COMBINED_HEADER_LENGTH); 5031 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 5032 /* copy IP header fields individually */ 5033 tcp->tcp_ipha->ipha_ttl = 5034 ltcp->tcp_ip6h->ip6_hops; 5035 bcopy(ltcp->tcp_tcph->th_lport, 5036 tcp->tcp_tcph->th_lport, sizeof (ushort_t)); 5037 } 5038 5039 bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t)); 5040 bcopy(tcp->tcp_tcph->th_fport, &tcp->tcp_fport, 5041 sizeof (in_port_t)); 5042 5043 if (ltcp->tcp_lport == 0) { 5044 tcp->tcp_lport = *(in_port_t *)tcph->th_fport; 5045 bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, 5046 sizeof (in_port_t)); 5047 } 5048 5049 if (tcp->tcp_ipversion == IPV4_VERSION) { 5050 ASSERT(ipha != NULL); 5051 tcp->tcp_ipha->ipha_dst = ipha->ipha_src; 5052 tcp->tcp_ipha->ipha_src = ipha->ipha_dst; 5053 5054 /* Source routing option copyover (reverse it) */ 5055 if (tcps->tcps_rev_src_routes) 5056 tcp_opt_reverse(tcp, ipha); 5057 } else { 5058 ASSERT(ip6h != NULL); 5059 tcp->tcp_ip6h->ip6_dst = ip6h->ip6_src; 5060 tcp->tcp_ip6h->ip6_src = ip6h->ip6_dst; 5061 } 5062 5063 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 5064 ASSERT(!tcp->tcp_tconnind_started); 5065 /* 5066 * If the SYN contains a credential, it's a loopback packet; attach 5067 * the credential to the TPI message. 5068 */ 5069 if ((cr = DB_CRED(idmp)) != NULL) { 5070 mblk_setcred(tpi_mp, cr); 5071 DB_CPID(tpi_mp) = DB_CPID(idmp); 5072 } 5073 tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp; 5074 5075 /* Inherit the listener's SSL protection state */ 5076 5077 if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) { 5078 kssl_hold_ent(tcp->tcp_kssl_ent); 5079 tcp->tcp_kssl_pending = B_TRUE; 5080 } 5081 5082 return (0); 5083 } 5084 5085 5086 int 5087 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha, 5088 tcph_t *tcph, mblk_t *idmp) 5089 { 5090 tcp_t *ltcp = lconnp->conn_tcp; 5091 tcp_t *tcp = connp->conn_tcp; 5092 sin_t sin; 5093 mblk_t *tpi_mp = NULL; 5094 int err; 5095 cred_t *cr; 5096 tcp_stack_t *tcps = tcp->tcp_tcps; 5097 5098 sin = sin_null; 5099 sin.sin_addr.s_addr = ipha->ipha_src; 5100 sin.sin_port = *(uint16_t *)tcph->th_lport; 5101 sin.sin_family = AF_INET; 5102 if (ltcp->tcp_recvdstaddr) { 5103 sin_t sind; 5104 5105 sind = sin_null; 5106 sind.sin_addr.s_addr = ipha->ipha_dst; 5107 sind.sin_port = *(uint16_t *)tcph->th_fport; 5108 sind.sin_family = AF_INET; 5109 tpi_mp = mi_tpi_extconn_ind(NULL, 5110 (char *)&sind, sizeof (sin_t), (char *)&tcp, 5111 (t_scalar_t)sizeof (intptr_t), (char *)&sind, 5112 sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum); 5113 } else { 5114 tpi_mp = mi_tpi_conn_ind(NULL, 5115 (char *)&sin, sizeof (sin_t), 5116 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 5117 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 5118 } 5119 5120 if (tpi_mp == NULL) { 5121 return (ENOMEM); 5122 } 5123 5124 connp->conn_flags |= (IPCL_TCP4|IPCL_EAGER); 5125 connp->conn_send = ip_output; 5126 connp->conn_recv = tcp_input; 5127 connp->conn_fully_bound = B_FALSE; 5128 5129 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6); 5130 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6); 5131 connp->conn_fport = *(uint16_t *)tcph->th_lport; 5132 connp->conn_lport = *(uint16_t *)tcph->th_fport; 5133 5134 if (tcps->tcps_trace) { 5135 tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_NOSLEEP); 5136 } 5137 5138 /* Inherit information from the "parent" */ 5139 tcp->tcp_ipversion = ltcp->tcp_ipversion; 5140 tcp->tcp_family = ltcp->tcp_family; 5141 tcp->tcp_wq = ltcp->tcp_wq; 5142 tcp->tcp_rq = ltcp->tcp_rq; 5143 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 5144 tcp->tcp_detached = B_TRUE; 5145 if ((err = tcp_init_values(tcp)) != 0) { 5146 freemsg(tpi_mp); 5147 return (err); 5148 } 5149 5150 /* 5151 * Let's make sure that eager tcp template has enough space to 5152 * copy IPv4 listener's tcp template. Since the conn_t structure is 5153 * preserved and tcp_iphc_len is also preserved, an eager conn_t may 5154 * have a tcp_template of total len TCP_MAX_COMBINED_HEADER_LENGTH or 5155 * more (in case of re-allocation of conn_t with tcp-IPv6 template with 5156 * extension headers or with ip6i_t struct). Note that bcopy() below 5157 * copies listener tcp's hdr_len which cannot be greater than TCP_MAX_ 5158 * COMBINED_HEADER_LENGTH as this listener must be a IPv4 listener. 5159 */ 5160 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 5161 ASSERT(ltcp->tcp_hdr_len <= TCP_MAX_COMBINED_HEADER_LENGTH); 5162 5163 tcp->tcp_hdr_len = ltcp->tcp_hdr_len; 5164 tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len; 5165 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 5166 tcp->tcp_ttl = ltcp->tcp_ttl; 5167 tcp->tcp_tos = ltcp->tcp_tos; 5168 5169 /* Copy the IP+TCP header template from listener to eager */ 5170 bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len); 5171 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 5172 tcp->tcp_ip6h = NULL; 5173 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + 5174 tcp->tcp_ip_hdr_len); 5175 5176 /* Initialize the IP addresses and Ports */ 5177 tcp->tcp_ipha->ipha_dst = ipha->ipha_src; 5178 tcp->tcp_ipha->ipha_src = ipha->ipha_dst; 5179 bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t)); 5180 bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, sizeof (in_port_t)); 5181 5182 /* Source routing option copyover (reverse it) */ 5183 if (tcps->tcps_rev_src_routes) 5184 tcp_opt_reverse(tcp, ipha); 5185 5186 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 5187 ASSERT(!tcp->tcp_tconnind_started); 5188 5189 /* 5190 * If the SYN contains a credential, it's a loopback packet; attach 5191 * the credential to the TPI message. 5192 */ 5193 if ((cr = DB_CRED(idmp)) != NULL) { 5194 mblk_setcred(tpi_mp, cr); 5195 DB_CPID(tpi_mp) = DB_CPID(idmp); 5196 } 5197 tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp; 5198 5199 /* Inherit the listener's SSL protection state */ 5200 if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) { 5201 kssl_hold_ent(tcp->tcp_kssl_ent); 5202 tcp->tcp_kssl_pending = B_TRUE; 5203 } 5204 5205 return (0); 5206 } 5207 5208 /* 5209 * sets up conn for ipsec. 5210 * if the first mblk is M_CTL it is consumed and mpp is updated. 5211 * in case of error mpp is freed. 5212 */ 5213 conn_t * 5214 tcp_get_ipsec_conn(tcp_t *tcp, squeue_t *sqp, mblk_t **mpp) 5215 { 5216 conn_t *connp = tcp->tcp_connp; 5217 conn_t *econnp; 5218 squeue_t *new_sqp; 5219 mblk_t *first_mp = *mpp; 5220 mblk_t *mp = *mpp; 5221 boolean_t mctl_present = B_FALSE; 5222 uint_t ipvers; 5223 5224 econnp = tcp_get_conn(sqp, tcp->tcp_tcps); 5225 if (econnp == NULL) { 5226 freemsg(first_mp); 5227 return (NULL); 5228 } 5229 if (DB_TYPE(mp) == M_CTL) { 5230 if (mp->b_cont == NULL || 5231 mp->b_cont->b_datap->db_type != M_DATA) { 5232 freemsg(first_mp); 5233 return (NULL); 5234 } 5235 mp = mp->b_cont; 5236 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) == 0) { 5237 freemsg(first_mp); 5238 return (NULL); 5239 } 5240 5241 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 5242 first_mp->b_datap->db_struioflag &= ~STRUIO_POLICY; 5243 mctl_present = B_TRUE; 5244 } else { 5245 ASSERT(mp->b_datap->db_struioflag & STRUIO_POLICY); 5246 mp->b_datap->db_struioflag &= ~STRUIO_POLICY; 5247 } 5248 5249 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 5250 DB_CKSUMSTART(mp) = 0; 5251 5252 ASSERT(OK_32PTR(mp->b_rptr)); 5253 ipvers = IPH_HDR_VERSION(mp->b_rptr); 5254 if (ipvers == IPV4_VERSION) { 5255 uint16_t *up; 5256 uint32_t ports; 5257 ipha_t *ipha; 5258 5259 ipha = (ipha_t *)mp->b_rptr; 5260 up = (uint16_t *)((uchar_t *)ipha + 5261 IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET); 5262 ports = *(uint32_t *)up; 5263 IPCL_TCP_EAGER_INIT(econnp, IPPROTO_TCP, 5264 ipha->ipha_dst, ipha->ipha_src, ports); 5265 } else { 5266 uint16_t *up; 5267 uint32_t ports; 5268 uint16_t ip_hdr_len; 5269 uint8_t *nexthdrp; 5270 ip6_t *ip6h; 5271 tcph_t *tcph; 5272 5273 ip6h = (ip6_t *)mp->b_rptr; 5274 if (ip6h->ip6_nxt == IPPROTO_TCP) { 5275 ip_hdr_len = IPV6_HDR_LEN; 5276 } else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ip_hdr_len, 5277 &nexthdrp) || *nexthdrp != IPPROTO_TCP) { 5278 CONN_DEC_REF(econnp); 5279 freemsg(first_mp); 5280 return (NULL); 5281 } 5282 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5283 up = (uint16_t *)tcph->th_lport; 5284 ports = *(uint32_t *)up; 5285 IPCL_TCP_EAGER_INIT_V6(econnp, IPPROTO_TCP, 5286 ip6h->ip6_dst, ip6h->ip6_src, ports); 5287 } 5288 5289 /* 5290 * The caller already ensured that there is a sqp present. 5291 */ 5292 econnp->conn_sqp = new_sqp; 5293 5294 if (connp->conn_policy != NULL) { 5295 ipsec_in_t *ii; 5296 ii = (ipsec_in_t *)(first_mp->b_rptr); 5297 ASSERT(ii->ipsec_in_policy == NULL); 5298 IPPH_REFHOLD(connp->conn_policy); 5299 ii->ipsec_in_policy = connp->conn_policy; 5300 5301 first_mp->b_datap->db_type = IPSEC_POLICY_SET; 5302 if (!ip_bind_ipsec_policy_set(econnp, first_mp)) { 5303 CONN_DEC_REF(econnp); 5304 freemsg(first_mp); 5305 return (NULL); 5306 } 5307 } 5308 5309 if (ipsec_conn_cache_policy(econnp, ipvers == IPV4_VERSION) != 0) { 5310 CONN_DEC_REF(econnp); 5311 freemsg(first_mp); 5312 return (NULL); 5313 } 5314 5315 /* 5316 * If we know we have some policy, pass the "IPSEC" 5317 * options size TCP uses this adjust the MSS. 5318 */ 5319 econnp->conn_tcp->tcp_ipsec_overhead = conn_ipsec_length(econnp); 5320 if (mctl_present) { 5321 freeb(first_mp); 5322 *mpp = mp; 5323 } 5324 5325 return (econnp); 5326 } 5327 5328 /* 5329 * tcp_get_conn/tcp_free_conn 5330 * 5331 * tcp_get_conn is used to get a clean tcp connection structure. 5332 * It tries to reuse the connections put on the freelist by the 5333 * time_wait_collector failing which it goes to kmem_cache. This 5334 * way has two benefits compared to just allocating from and 5335 * freeing to kmem_cache. 5336 * 1) The time_wait_collector can free (which includes the cleanup) 5337 * outside the squeue. So when the interrupt comes, we have a clean 5338 * connection sitting in the freelist. Obviously, this buys us 5339 * performance. 5340 * 5341 * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_conn_request 5342 * has multiple disadvantages - tying up the squeue during alloc, and the 5343 * fact that IPSec policy initialization has to happen here which 5344 * requires us sending a M_CTL and checking for it i.e. real ugliness. 5345 * But allocating the conn/tcp in IP land is also not the best since 5346 * we can't check the 'q' and 'q0' which are protected by squeue and 5347 * blindly allocate memory which might have to be freed here if we are 5348 * not allowed to accept the connection. By using the freelist and 5349 * putting the conn/tcp back in freelist, we don't pay a penalty for 5350 * allocating memory without checking 'q/q0' and freeing it if we can't 5351 * accept the connection. 5352 * 5353 * Care should be taken to put the conn back in the same squeue's freelist 5354 * from which it was allocated. Best results are obtained if conn is 5355 * allocated from listener's squeue and freed to the same. Time wait 5356 * collector will free up the freelist is the connection ends up sitting 5357 * there for too long. 5358 */ 5359 void * 5360 tcp_get_conn(void *arg, tcp_stack_t *tcps) 5361 { 5362 tcp_t *tcp = NULL; 5363 conn_t *connp = NULL; 5364 squeue_t *sqp = (squeue_t *)arg; 5365 tcp_squeue_priv_t *tcp_time_wait; 5366 netstack_t *ns; 5367 5368 tcp_time_wait = 5369 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 5370 5371 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 5372 tcp = tcp_time_wait->tcp_free_list; 5373 ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0)); 5374 if (tcp != NULL) { 5375 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 5376 tcp_time_wait->tcp_free_list_cnt--; 5377 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 5378 tcp->tcp_time_wait_next = NULL; 5379 connp = tcp->tcp_connp; 5380 connp->conn_flags |= IPCL_REUSED; 5381 5382 ASSERT(tcp->tcp_tcps == NULL); 5383 ASSERT(connp->conn_netstack == NULL); 5384 ns = tcps->tcps_netstack; 5385 netstack_hold(ns); 5386 connp->conn_netstack = ns; 5387 tcp->tcp_tcps = tcps; 5388 TCPS_REFHOLD(tcps); 5389 ipcl_globalhash_insert(connp); 5390 return ((void *)connp); 5391 } 5392 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 5393 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP, 5394 tcps->tcps_netstack)) == NULL) 5395 return (NULL); 5396 tcp = connp->conn_tcp; 5397 tcp->tcp_tcps = tcps; 5398 TCPS_REFHOLD(tcps); 5399 return ((void *)connp); 5400 } 5401 5402 /* 5403 * Update the cached label for the given tcp_t. This should be called once per 5404 * connection, and before any packets are sent or tcp_process_options is 5405 * invoked. Returns B_FALSE if the correct label could not be constructed. 5406 */ 5407 static boolean_t 5408 tcp_update_label(tcp_t *tcp, const cred_t *cr) 5409 { 5410 conn_t *connp = tcp->tcp_connp; 5411 5412 if (tcp->tcp_ipversion == IPV4_VERSION) { 5413 uchar_t optbuf[IP_MAX_OPT_LENGTH]; 5414 int added; 5415 5416 if (tsol_compute_label(cr, tcp->tcp_remote, optbuf, 5417 connp->conn_mac_exempt, 5418 tcp->tcp_tcps->tcps_netstack->netstack_ip) != 0) 5419 return (B_FALSE); 5420 5421 added = tsol_remove_secopt(tcp->tcp_ipha, tcp->tcp_hdr_len); 5422 if (added == -1) 5423 return (B_FALSE); 5424 tcp->tcp_hdr_len += added; 5425 tcp->tcp_tcph = (tcph_t *)((uchar_t *)tcp->tcp_tcph + added); 5426 tcp->tcp_ip_hdr_len += added; 5427 if ((tcp->tcp_label_len = optbuf[IPOPT_OLEN]) != 0) { 5428 tcp->tcp_label_len = (tcp->tcp_label_len + 3) & ~3; 5429 added = tsol_prepend_option(optbuf, tcp->tcp_ipha, 5430 tcp->tcp_hdr_len); 5431 if (added == -1) 5432 return (B_FALSE); 5433 tcp->tcp_hdr_len += added; 5434 tcp->tcp_tcph = (tcph_t *) 5435 ((uchar_t *)tcp->tcp_tcph + added); 5436 tcp->tcp_ip_hdr_len += added; 5437 } 5438 } else { 5439 uchar_t optbuf[TSOL_MAX_IPV6_OPTION]; 5440 5441 if (tsol_compute_label_v6(cr, &tcp->tcp_remote_v6, optbuf, 5442 connp->conn_mac_exempt, 5443 tcp->tcp_tcps->tcps_netstack->netstack_ip) != 0) 5444 return (B_FALSE); 5445 if (tsol_update_sticky(&tcp->tcp_sticky_ipp, 5446 &tcp->tcp_label_len, optbuf) != 0) 5447 return (B_FALSE); 5448 if (tcp_build_hdrs(tcp->tcp_rq, tcp) != 0) 5449 return (B_FALSE); 5450 } 5451 5452 connp->conn_ulp_labeled = 1; 5453 5454 return (B_TRUE); 5455 } 5456 5457 /* BEGIN CSTYLED */ 5458 /* 5459 * 5460 * The sockfs ACCEPT path: 5461 * ======================= 5462 * 5463 * The eager is now established in its own perimeter as soon as SYN is 5464 * received in tcp_conn_request(). When sockfs receives conn_ind, it 5465 * completes the accept processing on the acceptor STREAM. The sending 5466 * of conn_ind part is common for both sockfs listener and a TLI/XTI 5467 * listener but a TLI/XTI listener completes the accept processing 5468 * on the listener perimeter. 5469 * 5470 * Common control flow for 3 way handshake: 5471 * ---------------------------------------- 5472 * 5473 * incoming SYN (listener perimeter) -> tcp_rput_data() 5474 * -> tcp_conn_request() 5475 * 5476 * incoming SYN-ACK-ACK (eager perim) -> tcp_rput_data() 5477 * send T_CONN_IND (listener perim) -> tcp_send_conn_ind() 5478 * 5479 * Sockfs ACCEPT Path: 5480 * ------------------- 5481 * 5482 * open acceptor stream (tcp_open allocates tcp_wput_accept() 5483 * as STREAM entry point) 5484 * 5485 * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_wput_accept() 5486 * 5487 * tcp_wput_accept() extracts the eager and makes the q->q_ptr <-> eager 5488 * association (we are not behind eager's squeue but sockfs is protecting us 5489 * and no one knows about this stream yet. The STREAMS entry point q->q_info 5490 * is changed to point at tcp_wput(). 5491 * 5492 * tcp_wput_accept() sends any deferred eagers via tcp_send_pending() to 5493 * listener (done on listener's perimeter). 5494 * 5495 * tcp_wput_accept() calls tcp_accept_finish() on eagers perimeter to finish 5496 * accept. 5497 * 5498 * TLI/XTI client ACCEPT path: 5499 * --------------------------- 5500 * 5501 * soaccept() sends T_CONN_RES on the listener STREAM. 5502 * 5503 * tcp_accept() -> tcp_accept_swap() complete the processing and send 5504 * the bind_mp to eager perimeter to finish accept (tcp_rput_other()). 5505 * 5506 * Locks: 5507 * ====== 5508 * 5509 * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and 5510 * and listeners->tcp_eager_next_q. 5511 * 5512 * Referencing: 5513 * ============ 5514 * 5515 * 1) We start out in tcp_conn_request by eager placing a ref on 5516 * listener and listener adding eager to listeners->tcp_eager_next_q0. 5517 * 5518 * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before 5519 * doing so we place a ref on the eager. This ref is finally dropped at the 5520 * end of tcp_accept_finish() while unwinding from the squeue, i.e. the 5521 * reference is dropped by the squeue framework. 5522 * 5523 * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish 5524 * 5525 * The reference must be released by the same entity that added the reference 5526 * In the above scheme, the eager is the entity that adds and releases the 5527 * references. Note that tcp_accept_finish executes in the squeue of the eager 5528 * (albeit after it is attached to the acceptor stream). Though 1. executes 5529 * in the listener's squeue, the eager is nascent at this point and the 5530 * reference can be considered to have been added on behalf of the eager. 5531 * 5532 * Eager getting a Reset or listener closing: 5533 * ========================================== 5534 * 5535 * Once the listener and eager are linked, the listener never does the unlink. 5536 * If the listener needs to close, tcp_eager_cleanup() is called which queues 5537 * a message on all eager perimeter. The eager then does the unlink, clears 5538 * any pointers to the listener's queue and drops the reference to the 5539 * listener. The listener waits in tcp_close outside the squeue until its 5540 * refcount has dropped to 1. This ensures that the listener has waited for 5541 * all eagers to clear their association with the listener. 5542 * 5543 * Similarly, if eager decides to go away, it can unlink itself and close. 5544 * When the T_CONN_RES comes down, we check if eager has closed. Note that 5545 * the reference to eager is still valid because of the extra ref we put 5546 * in tcp_send_conn_ind. 5547 * 5548 * Listener can always locate the eager under the protection 5549 * of the listener->tcp_eager_lock, and then do a refhold 5550 * on the eager during the accept processing. 5551 * 5552 * The acceptor stream accesses the eager in the accept processing 5553 * based on the ref placed on eager before sending T_conn_ind. 5554 * The only entity that can negate this refhold is a listener close 5555 * which is mutually exclusive with an active acceptor stream. 5556 * 5557 * Eager's reference on the listener 5558 * =================================== 5559 * 5560 * If the accept happens (even on a closed eager) the eager drops its 5561 * reference on the listener at the start of tcp_accept_finish. If the 5562 * eager is killed due to an incoming RST before the T_conn_ind is sent up, 5563 * the reference is dropped in tcp_closei_local. If the listener closes, 5564 * the reference is dropped in tcp_eager_kill. In all cases the reference 5565 * is dropped while executing in the eager's context (squeue). 5566 */ 5567 /* END CSTYLED */ 5568 5569 /* Process the SYN packet, mp, directed at the listener 'tcp' */ 5570 5571 /* 5572 * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN. 5573 * tcp_rput_data will not see any SYN packets. 5574 */ 5575 /* ARGSUSED */ 5576 void 5577 tcp_conn_request(void *arg, mblk_t *mp, void *arg2) 5578 { 5579 tcph_t *tcph; 5580 uint32_t seg_seq; 5581 tcp_t *eager; 5582 uint_t ipvers; 5583 ipha_t *ipha; 5584 ip6_t *ip6h; 5585 int err; 5586 conn_t *econnp = NULL; 5587 squeue_t *new_sqp; 5588 mblk_t *mp1; 5589 uint_t ip_hdr_len; 5590 conn_t *connp = (conn_t *)arg; 5591 tcp_t *tcp = connp->conn_tcp; 5592 cred_t *credp; 5593 tcp_stack_t *tcps = tcp->tcp_tcps; 5594 ip_stack_t *ipst; 5595 5596 if (tcp->tcp_state != TCPS_LISTEN) 5597 goto error2; 5598 5599 ASSERT((tcp->tcp_connp->conn_flags & IPCL_BOUND) != 0); 5600 5601 mutex_enter(&tcp->tcp_eager_lock); 5602 if (tcp->tcp_conn_req_cnt_q >= tcp->tcp_conn_req_max) { 5603 mutex_exit(&tcp->tcp_eager_lock); 5604 TCP_STAT(tcps, tcp_listendrop); 5605 BUMP_MIB(&tcps->tcps_mib, tcpListenDrop); 5606 if (tcp->tcp_debug) { 5607 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 5608 "tcp_conn_request: listen backlog (max=%d) " 5609 "overflow (%d pending) on %s", 5610 tcp->tcp_conn_req_max, tcp->tcp_conn_req_cnt_q, 5611 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 5612 } 5613 goto error2; 5614 } 5615 5616 if (tcp->tcp_conn_req_cnt_q0 >= 5617 tcp->tcp_conn_req_max + tcps->tcps_conn_req_max_q0) { 5618 /* 5619 * Q0 is full. Drop a pending half-open req from the queue 5620 * to make room for the new SYN req. Also mark the time we 5621 * drop a SYN. 5622 * 5623 * A more aggressive defense against SYN attack will 5624 * be to set the "tcp_syn_defense" flag now. 5625 */ 5626 TCP_STAT(tcps, tcp_listendropq0); 5627 tcp->tcp_last_rcv_lbolt = lbolt64; 5628 if (!tcp_drop_q0(tcp)) { 5629 mutex_exit(&tcp->tcp_eager_lock); 5630 BUMP_MIB(&tcps->tcps_mib, tcpListenDropQ0); 5631 if (tcp->tcp_debug) { 5632 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 5633 "tcp_conn_request: listen half-open queue " 5634 "(max=%d) full (%d pending) on %s", 5635 tcps->tcps_conn_req_max_q0, 5636 tcp->tcp_conn_req_cnt_q0, 5637 tcp_display(tcp, NULL, 5638 DISP_PORT_ONLY)); 5639 } 5640 goto error2; 5641 } 5642 } 5643 mutex_exit(&tcp->tcp_eager_lock); 5644 5645 /* 5646 * IP adds STRUIO_EAGER and ensures that the received packet is 5647 * M_DATA even if conn_ipv6_recvpktinfo is enabled or for ip6 5648 * link local address. If IPSec is enabled, db_struioflag has 5649 * STRUIO_POLICY set (mutually exclusive from STRUIO_EAGER); 5650 * otherwise an error case if neither of them is set. 5651 */ 5652 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 5653 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 5654 DB_CKSUMSTART(mp) = 0; 5655 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 5656 econnp = (conn_t *)tcp_get_conn(arg2, tcps); 5657 if (econnp == NULL) 5658 goto error2; 5659 ASSERT(econnp->conn_netstack == connp->conn_netstack); 5660 econnp->conn_sqp = new_sqp; 5661 } else if ((mp->b_datap->db_struioflag & STRUIO_POLICY) != 0) { 5662 /* 5663 * mp is updated in tcp_get_ipsec_conn(). 5664 */ 5665 econnp = tcp_get_ipsec_conn(tcp, arg2, &mp); 5666 if (econnp == NULL) { 5667 /* 5668 * mp freed by tcp_get_ipsec_conn. 5669 */ 5670 return; 5671 } 5672 ASSERT(econnp->conn_netstack == connp->conn_netstack); 5673 } else { 5674 goto error2; 5675 } 5676 5677 ASSERT(DB_TYPE(mp) == M_DATA); 5678 5679 ipvers = IPH_HDR_VERSION(mp->b_rptr); 5680 ASSERT(ipvers == IPV6_VERSION || ipvers == IPV4_VERSION); 5681 ASSERT(OK_32PTR(mp->b_rptr)); 5682 if (ipvers == IPV4_VERSION) { 5683 ipha = (ipha_t *)mp->b_rptr; 5684 ip_hdr_len = IPH_HDR_LENGTH(ipha); 5685 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5686 } else { 5687 ip6h = (ip6_t *)mp->b_rptr; 5688 ip_hdr_len = ip_hdr_length_v6(mp, ip6h); 5689 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5690 } 5691 5692 if (tcp->tcp_family == AF_INET) { 5693 ASSERT(ipvers == IPV4_VERSION); 5694 err = tcp_conn_create_v4(connp, econnp, ipha, tcph, mp); 5695 } else { 5696 err = tcp_conn_create_v6(connp, econnp, mp, tcph, ipvers, mp); 5697 } 5698 5699 if (err) 5700 goto error3; 5701 5702 eager = econnp->conn_tcp; 5703 5704 /* Inherit various TCP parameters from the listener */ 5705 eager->tcp_naglim = tcp->tcp_naglim; 5706 eager->tcp_first_timer_threshold = 5707 tcp->tcp_first_timer_threshold; 5708 eager->tcp_second_timer_threshold = 5709 tcp->tcp_second_timer_threshold; 5710 5711 eager->tcp_first_ctimer_threshold = 5712 tcp->tcp_first_ctimer_threshold; 5713 eager->tcp_second_ctimer_threshold = 5714 tcp->tcp_second_ctimer_threshold; 5715 5716 /* 5717 * tcp_adapt_ire() may change tcp_rwnd according to the ire metrics. 5718 * If it does not, the eager's receive window will be set to the 5719 * listener's receive window later in this function. 5720 */ 5721 eager->tcp_rwnd = 0; 5722 5723 /* 5724 * Inherit listener's tcp_init_cwnd. Need to do this before 5725 * calling tcp_process_options() where tcp_mss_set() is called 5726 * to set the initial cwnd. 5727 */ 5728 eager->tcp_init_cwnd = tcp->tcp_init_cwnd; 5729 5730 /* 5731 * Zones: tcp_adapt_ire() and tcp_send_data() both need the 5732 * zone id before the accept is completed in tcp_wput_accept(). 5733 */ 5734 econnp->conn_zoneid = connp->conn_zoneid; 5735 econnp->conn_allzones = connp->conn_allzones; 5736 5737 /* Copy nexthop information from listener to eager */ 5738 if (connp->conn_nexthop_set) { 5739 econnp->conn_nexthop_set = connp->conn_nexthop_set; 5740 econnp->conn_nexthop_v4 = connp->conn_nexthop_v4; 5741 } 5742 5743 /* 5744 * TSOL: tsol_input_proc() needs the eager's cred before the 5745 * eager is accepted 5746 */ 5747 econnp->conn_cred = eager->tcp_cred = credp = connp->conn_cred; 5748 crhold(credp); 5749 5750 /* 5751 * If the caller has the process-wide flag set, then default to MAC 5752 * exempt mode. This allows read-down to unlabeled hosts. 5753 */ 5754 if (getpflags(NET_MAC_AWARE, credp) != 0) 5755 econnp->conn_mac_exempt = B_TRUE; 5756 5757 if (is_system_labeled()) { 5758 cred_t *cr; 5759 5760 if (connp->conn_mlp_type != mlptSingle) { 5761 cr = econnp->conn_peercred = DB_CRED(mp); 5762 if (cr != NULL) 5763 crhold(cr); 5764 else 5765 cr = econnp->conn_cred; 5766 DTRACE_PROBE2(mlp_syn_accept, conn_t *, 5767 econnp, cred_t *, cr) 5768 } else { 5769 cr = econnp->conn_cred; 5770 DTRACE_PROBE2(syn_accept, conn_t *, 5771 econnp, cred_t *, cr) 5772 } 5773 5774 if (!tcp_update_label(eager, cr)) { 5775 DTRACE_PROBE3( 5776 tx__ip__log__error__connrequest__tcp, 5777 char *, "eager connp(1) label on SYN mp(2) failed", 5778 conn_t *, econnp, mblk_t *, mp); 5779 goto error3; 5780 } 5781 } 5782 5783 eager->tcp_hard_binding = B_TRUE; 5784 5785 tcp_bind_hash_insert(&tcps->tcps_bind_fanout[ 5786 TCP_BIND_HASH(eager->tcp_lport)], eager, 0); 5787 5788 CL_INET_CONNECT(eager); 5789 5790 /* 5791 * No need to check for multicast destination since ip will only pass 5792 * up multicasts to those that have expressed interest 5793 * TODO: what about rejecting broadcasts? 5794 * Also check that source is not a multicast or broadcast address. 5795 */ 5796 eager->tcp_state = TCPS_SYN_RCVD; 5797 5798 5799 /* 5800 * There should be no ire in the mp as we are being called after 5801 * receiving the SYN. 5802 */ 5803 ASSERT(tcp_ire_mp(mp) == NULL); 5804 5805 /* 5806 * Adapt our mss, ttl, ... according to information provided in IRE. 5807 */ 5808 5809 if (tcp_adapt_ire(eager, NULL) == 0) { 5810 /* Undo the bind_hash_insert */ 5811 tcp_bind_hash_remove(eager); 5812 goto error3; 5813 } 5814 5815 /* Process all TCP options. */ 5816 tcp_process_options(eager, tcph); 5817 5818 /* Is the other end ECN capable? */ 5819 if (tcps->tcps_ecn_permitted >= 1 && 5820 (tcph->th_flags[0] & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) { 5821 eager->tcp_ecn_ok = B_TRUE; 5822 } 5823 5824 /* 5825 * listener->tcp_rq->q_hiwat should be the default window size or a 5826 * window size changed via SO_RCVBUF option. First round up the 5827 * eager's tcp_rwnd to the nearest MSS. Then find out the window 5828 * scale option value if needed. Call tcp_rwnd_set() to finish the 5829 * setting. 5830 * 5831 * Note if there is a rpipe metric associated with the remote host, 5832 * we should not inherit receive window size from listener. 5833 */ 5834 eager->tcp_rwnd = MSS_ROUNDUP( 5835 (eager->tcp_rwnd == 0 ? tcp->tcp_rq->q_hiwat : 5836 eager->tcp_rwnd), eager->tcp_mss); 5837 if (eager->tcp_snd_ws_ok) 5838 tcp_set_ws_value(eager); 5839 /* 5840 * Note that this is the only place tcp_rwnd_set() is called for 5841 * accepting a connection. We need to call it here instead of 5842 * after the 3-way handshake because we need to tell the other 5843 * side our rwnd in the SYN-ACK segment. 5844 */ 5845 (void) tcp_rwnd_set(eager, eager->tcp_rwnd); 5846 5847 /* 5848 * We eliminate the need for sockfs to send down a T_SVR4_OPTMGMT_REQ 5849 * via soaccept()->soinheritoptions() which essentially applies 5850 * all the listener options to the new STREAM. The options that we 5851 * need to take care of are: 5852 * SO_DEBUG, SO_REUSEADDR, SO_KEEPALIVE, SO_DONTROUTE, SO_BROADCAST, 5853 * SO_USELOOPBACK, SO_OOBINLINE, SO_DGRAM_ERRIND, SO_LINGER, 5854 * SO_SNDBUF, SO_RCVBUF. 5855 * 5856 * SO_RCVBUF: tcp_rwnd_set() above takes care of it. 5857 * SO_SNDBUF: Set the tcp_xmit_hiwater for the eager. When 5858 * tcp_maxpsz_set() gets called later from 5859 * tcp_accept_finish(), the option takes effect. 5860 * 5861 */ 5862 /* Set the TCP options */ 5863 eager->tcp_xmit_hiwater = tcp->tcp_xmit_hiwater; 5864 eager->tcp_dgram_errind = tcp->tcp_dgram_errind; 5865 eager->tcp_oobinline = tcp->tcp_oobinline; 5866 eager->tcp_reuseaddr = tcp->tcp_reuseaddr; 5867 eager->tcp_broadcast = tcp->tcp_broadcast; 5868 eager->tcp_useloopback = tcp->tcp_useloopback; 5869 eager->tcp_dontroute = tcp->tcp_dontroute; 5870 eager->tcp_linger = tcp->tcp_linger; 5871 eager->tcp_lingertime = tcp->tcp_lingertime; 5872 if (tcp->tcp_ka_enabled) 5873 eager->tcp_ka_enabled = 1; 5874 5875 /* Set the IP options */ 5876 econnp->conn_broadcast = connp->conn_broadcast; 5877 econnp->conn_loopback = connp->conn_loopback; 5878 econnp->conn_dontroute = connp->conn_dontroute; 5879 econnp->conn_reuseaddr = connp->conn_reuseaddr; 5880 5881 /* Put a ref on the listener for the eager. */ 5882 CONN_INC_REF(connp); 5883 mutex_enter(&tcp->tcp_eager_lock); 5884 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = eager; 5885 eager->tcp_eager_next_q0 = tcp->tcp_eager_next_q0; 5886 tcp->tcp_eager_next_q0 = eager; 5887 eager->tcp_eager_prev_q0 = tcp; 5888 5889 /* Set tcp_listener before adding it to tcp_conn_fanout */ 5890 eager->tcp_listener = tcp; 5891 eager->tcp_saved_listener = tcp; 5892 5893 /* 5894 * Tag this detached tcp vector for later retrieval 5895 * by our listener client in tcp_accept(). 5896 */ 5897 eager->tcp_conn_req_seqnum = tcp->tcp_conn_req_seqnum; 5898 tcp->tcp_conn_req_cnt_q0++; 5899 if (++tcp->tcp_conn_req_seqnum == -1) { 5900 /* 5901 * -1 is "special" and defined in TPI as something 5902 * that should never be used in T_CONN_IND 5903 */ 5904 ++tcp->tcp_conn_req_seqnum; 5905 } 5906 mutex_exit(&tcp->tcp_eager_lock); 5907 5908 if (tcp->tcp_syn_defense) { 5909 /* Don't drop the SYN that comes from a good IP source */ 5910 ipaddr_t *addr_cache = (ipaddr_t *)(tcp->tcp_ip_addr_cache); 5911 if (addr_cache != NULL && eager->tcp_remote == 5912 addr_cache[IP_ADDR_CACHE_HASH(eager->tcp_remote)]) { 5913 eager->tcp_dontdrop = B_TRUE; 5914 } 5915 } 5916 5917 /* 5918 * We need to insert the eager in its own perimeter but as soon 5919 * as we do that, we expose the eager to the classifier and 5920 * should not touch any field outside the eager's perimeter. 5921 * So do all the work necessary before inserting the eager 5922 * in its own perimeter. Be optimistic that ipcl_conn_insert() 5923 * will succeed but undo everything if it fails. 5924 */ 5925 seg_seq = ABE32_TO_U32(tcph->th_seq); 5926 eager->tcp_irs = seg_seq; 5927 eager->tcp_rack = seg_seq; 5928 eager->tcp_rnxt = seg_seq + 1; 5929 U32_TO_ABE32(eager->tcp_rnxt, eager->tcp_tcph->th_ack); 5930 BUMP_MIB(&tcps->tcps_mib, tcpPassiveOpens); 5931 eager->tcp_state = TCPS_SYN_RCVD; 5932 mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss, 5933 NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE); 5934 if (mp1 == NULL) { 5935 /* 5936 * Increment the ref count as we are going to 5937 * enqueueing an mp in squeue 5938 */ 5939 CONN_INC_REF(econnp); 5940 goto error; 5941 } 5942 DB_CPID(mp1) = tcp->tcp_cpid; 5943 eager->tcp_cpid = tcp->tcp_cpid; 5944 eager->tcp_open_time = lbolt64; 5945 5946 /* 5947 * We need to start the rto timer. In normal case, we start 5948 * the timer after sending the packet on the wire (or at 5949 * least believing that packet was sent by waiting for 5950 * CALL_IP_WPUT() to return). Since this is the first packet 5951 * being sent on the wire for the eager, our initial tcp_rto 5952 * is at least tcp_rexmit_interval_min which is a fairly 5953 * large value to allow the algorithm to adjust slowly to large 5954 * fluctuations of RTT during first few transmissions. 5955 * 5956 * Starting the timer first and then sending the packet in this 5957 * case shouldn't make much difference since tcp_rexmit_interval_min 5958 * is of the order of several 100ms and starting the timer 5959 * first and then sending the packet will result in difference 5960 * of few micro seconds. 5961 * 5962 * Without this optimization, we are forced to hold the fanout 5963 * lock across the ipcl_bind_insert() and sending the packet 5964 * so that we don't race against an incoming packet (maybe RST) 5965 * for this eager. 5966 * 5967 * It is necessary to acquire an extra reference on the eager 5968 * at this point and hold it until after tcp_send_data() to 5969 * ensure against an eager close race. 5970 */ 5971 5972 CONN_INC_REF(eager->tcp_connp); 5973 5974 TCP_RECORD_TRACE(eager, mp1, TCP_TRACE_SEND_PKT); 5975 TCP_TIMER_RESTART(eager, eager->tcp_rto); 5976 5977 5978 /* 5979 * Insert the eager in its own perimeter now. We are ready to deal 5980 * with any packets on eager. 5981 */ 5982 if (eager->tcp_ipversion == IPV4_VERSION) { 5983 if (ipcl_conn_insert(econnp, IPPROTO_TCP, 0, 0, 0) != 0) { 5984 goto error; 5985 } 5986 } else { 5987 if (ipcl_conn_insert_v6(econnp, IPPROTO_TCP, 0, 0, 0, 0) != 0) { 5988 goto error; 5989 } 5990 } 5991 5992 /* mark conn as fully-bound */ 5993 econnp->conn_fully_bound = B_TRUE; 5994 5995 /* Send the SYN-ACK */ 5996 tcp_send_data(eager, eager->tcp_wq, mp1); 5997 CONN_DEC_REF(eager->tcp_connp); 5998 freemsg(mp); 5999 6000 return; 6001 error: 6002 freemsg(mp1); 6003 eager->tcp_closemp_used = B_TRUE; 6004 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 6005 squeue_fill(econnp->conn_sqp, &eager->tcp_closemp, tcp_eager_kill, 6006 econnp, SQTAG_TCP_CONN_REQ_2); 6007 6008 /* 6009 * If a connection already exists, send the mp to that connections so 6010 * that it can be appropriately dealt with. 6011 */ 6012 ipst = tcps->tcps_netstack->netstack_ip; 6013 6014 if ((econnp = ipcl_classify(mp, connp->conn_zoneid, ipst)) != NULL) { 6015 if (!IPCL_IS_CONNECTED(econnp)) { 6016 /* 6017 * Something bad happened. ipcl_conn_insert() 6018 * failed because a connection already existed 6019 * in connected hash but we can't find it 6020 * anymore (someone blew it away). Just 6021 * free this message and hopefully remote 6022 * will retransmit at which time the SYN can be 6023 * treated as a new connection or dealth with 6024 * a TH_RST if a connection already exists. 6025 */ 6026 CONN_DEC_REF(econnp); 6027 freemsg(mp); 6028 } else { 6029 squeue_fill(econnp->conn_sqp, mp, tcp_input, 6030 econnp, SQTAG_TCP_CONN_REQ_1); 6031 } 6032 } else { 6033 /* Nobody wants this packet */ 6034 freemsg(mp); 6035 } 6036 return; 6037 error3: 6038 CONN_DEC_REF(econnp); 6039 error2: 6040 freemsg(mp); 6041 } 6042 6043 /* 6044 * In an ideal case of vertical partition in NUMA architecture, its 6045 * beneficial to have the listener and all the incoming connections 6046 * tied to the same squeue. The other constraint is that incoming 6047 * connections should be tied to the squeue attached to interrupted 6048 * CPU for obvious locality reason so this leaves the listener to 6049 * be tied to the same squeue. Our only problem is that when listener 6050 * is binding, the CPU that will get interrupted by the NIC whose 6051 * IP address the listener is binding to is not even known. So 6052 * the code below allows us to change that binding at the time the 6053 * CPU is interrupted by virtue of incoming connection's squeue. 6054 * 6055 * This is usefull only in case of a listener bound to a specific IP 6056 * address. For other kind of listeners, they get bound the 6057 * very first time and there is no attempt to rebind them. 6058 */ 6059 void 6060 tcp_conn_request_unbound(void *arg, mblk_t *mp, void *arg2) 6061 { 6062 conn_t *connp = (conn_t *)arg; 6063 squeue_t *sqp = (squeue_t *)arg2; 6064 squeue_t *new_sqp; 6065 uint32_t conn_flags; 6066 6067 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 6068 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 6069 } else { 6070 goto done; 6071 } 6072 6073 if (connp->conn_fanout == NULL) 6074 goto done; 6075 6076 if (!(connp->conn_flags & IPCL_FULLY_BOUND)) { 6077 mutex_enter(&connp->conn_fanout->connf_lock); 6078 mutex_enter(&connp->conn_lock); 6079 /* 6080 * No one from read or write side can access us now 6081 * except for already queued packets on this squeue. 6082 * But since we haven't changed the squeue yet, they 6083 * can't execute. If they are processed after we have 6084 * changed the squeue, they are sent back to the 6085 * correct squeue down below. 6086 * But a listner close can race with processing of 6087 * incoming SYN. If incoming SYN processing changes 6088 * the squeue then the listener close which is waiting 6089 * to enter the squeue would operate on the wrong 6090 * squeue. Hence we don't change the squeue here unless 6091 * the refcount is exactly the minimum refcount. The 6092 * minimum refcount of 4 is counted as - 1 each for 6093 * TCP and IP, 1 for being in the classifier hash, and 6094 * 1 for the mblk being processed. 6095 */ 6096 6097 if (connp->conn_ref != 4 || 6098 connp->conn_tcp->tcp_state != TCPS_LISTEN) { 6099 mutex_exit(&connp->conn_lock); 6100 mutex_exit(&connp->conn_fanout->connf_lock); 6101 goto done; 6102 } 6103 if (connp->conn_sqp != new_sqp) { 6104 while (connp->conn_sqp != new_sqp) 6105 (void) casptr(&connp->conn_sqp, sqp, new_sqp); 6106 } 6107 6108 do { 6109 conn_flags = connp->conn_flags; 6110 conn_flags |= IPCL_FULLY_BOUND; 6111 (void) cas32(&connp->conn_flags, connp->conn_flags, 6112 conn_flags); 6113 } while (!(connp->conn_flags & IPCL_FULLY_BOUND)); 6114 6115 mutex_exit(&connp->conn_fanout->connf_lock); 6116 mutex_exit(&connp->conn_lock); 6117 } 6118 6119 done: 6120 if (connp->conn_sqp != sqp) { 6121 CONN_INC_REF(connp); 6122 squeue_fill(connp->conn_sqp, mp, 6123 connp->conn_recv, connp, SQTAG_TCP_CONN_REQ_UNBOUND); 6124 } else { 6125 tcp_conn_request(connp, mp, sqp); 6126 } 6127 } 6128 6129 /* 6130 * Successful connect request processing begins when our client passes 6131 * a T_CONN_REQ message into tcp_wput() and ends when tcp_rput() passes 6132 * our T_OK_ACK reply message upstream. The control flow looks like this: 6133 * upstream -> tcp_wput() -> tcp_wput_proto() -> tcp_connect() -> IP 6134 * upstream <- tcp_rput() <- IP 6135 * After various error checks are completed, tcp_connect() lays 6136 * the target address and port into the composite header template, 6137 * preallocates the T_OK_ACK reply message, construct a full 12 byte bind 6138 * request followed by an IRE request, and passes the three mblk message 6139 * down to IP looking like this: 6140 * O_T_BIND_REQ for IP --> IRE req --> T_OK_ACK for our client 6141 * Processing continues in tcp_rput() when we receive the following message: 6142 * T_BIND_ACK from IP --> IRE ack --> T_OK_ACK for our client 6143 * After consuming the first two mblks, tcp_rput() calls tcp_timer(), 6144 * to fire off the connection request, and then passes the T_OK_ACK mblk 6145 * upstream that we filled in below. There are, of course, numerous 6146 * error conditions along the way which truncate the processing described 6147 * above. 6148 */ 6149 static void 6150 tcp_connect(tcp_t *tcp, mblk_t *mp) 6151 { 6152 sin_t *sin; 6153 sin6_t *sin6; 6154 queue_t *q = tcp->tcp_wq; 6155 struct T_conn_req *tcr; 6156 ipaddr_t *dstaddrp; 6157 in_port_t dstport; 6158 uint_t srcid; 6159 6160 tcr = (struct T_conn_req *)mp->b_rptr; 6161 6162 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 6163 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { 6164 tcp_err_ack(tcp, mp, TPROTO, 0); 6165 return; 6166 } 6167 6168 /* 6169 * Determine packet type based on type of address passed in 6170 * the request should contain an IPv4 or IPv6 address. 6171 * Make sure that address family matches the type of 6172 * family of the the address passed down 6173 */ 6174 switch (tcr->DEST_length) { 6175 default: 6176 tcp_err_ack(tcp, mp, TBADADDR, 0); 6177 return; 6178 6179 case (sizeof (sin_t) - sizeof (sin->sin_zero)): { 6180 /* 6181 * XXX: The check for valid DEST_length was not there 6182 * in earlier releases and some buggy 6183 * TLI apps (e.g Sybase) got away with not feeding 6184 * in sin_zero part of address. 6185 * We allow that bug to keep those buggy apps humming. 6186 * Test suites require the check on DEST_length. 6187 * We construct a new mblk with valid DEST_length 6188 * free the original so the rest of the code does 6189 * not have to keep track of this special shorter 6190 * length address case. 6191 */ 6192 mblk_t *nmp; 6193 struct T_conn_req *ntcr; 6194 sin_t *nsin; 6195 6196 nmp = allocb(sizeof (struct T_conn_req) + sizeof (sin_t) + 6197 tcr->OPT_length, BPRI_HI); 6198 if (nmp == NULL) { 6199 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 6200 return; 6201 } 6202 ntcr = (struct T_conn_req *)nmp->b_rptr; 6203 bzero(ntcr, sizeof (struct T_conn_req)); /* zero fill */ 6204 ntcr->PRIM_type = T_CONN_REQ; 6205 ntcr->DEST_length = sizeof (sin_t); 6206 ntcr->DEST_offset = sizeof (struct T_conn_req); 6207 6208 nsin = (sin_t *)((uchar_t *)ntcr + ntcr->DEST_offset); 6209 *nsin = sin_null; 6210 /* Get pointer to shorter address to copy from original mp */ 6211 sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset, 6212 tcr->DEST_length); /* extract DEST_length worth of sin_t */ 6213 if (sin == NULL || !OK_32PTR((char *)sin)) { 6214 freemsg(nmp); 6215 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 6216 return; 6217 } 6218 nsin->sin_family = sin->sin_family; 6219 nsin->sin_port = sin->sin_port; 6220 nsin->sin_addr = sin->sin_addr; 6221 /* Note:nsin->sin_zero zero-fill with sin_null assign above */ 6222 nmp->b_wptr = (uchar_t *)&nsin[1]; 6223 if (tcr->OPT_length != 0) { 6224 ntcr->OPT_length = tcr->OPT_length; 6225 ntcr->OPT_offset = nmp->b_wptr - nmp->b_rptr; 6226 bcopy((uchar_t *)tcr + tcr->OPT_offset, 6227 (uchar_t *)ntcr + ntcr->OPT_offset, 6228 tcr->OPT_length); 6229 nmp->b_wptr += tcr->OPT_length; 6230 } 6231 freemsg(mp); /* original mp freed */ 6232 mp = nmp; /* re-initialize original variables */ 6233 tcr = ntcr; 6234 } 6235 /* FALLTHRU */ 6236 6237 case sizeof (sin_t): 6238 sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset, 6239 sizeof (sin_t)); 6240 if (sin == NULL || !OK_32PTR((char *)sin)) { 6241 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 6242 return; 6243 } 6244 if (tcp->tcp_family != AF_INET || 6245 sin->sin_family != AF_INET) { 6246 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 6247 return; 6248 } 6249 if (sin->sin_port == 0) { 6250 tcp_err_ack(tcp, mp, TBADADDR, 0); 6251 return; 6252 } 6253 if (tcp->tcp_connp && tcp->tcp_connp->conn_ipv6_v6only) { 6254 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 6255 return; 6256 } 6257 6258 break; 6259 6260 case sizeof (sin6_t): 6261 sin6 = (sin6_t *)mi_offset_param(mp, tcr->DEST_offset, 6262 sizeof (sin6_t)); 6263 if (sin6 == NULL || !OK_32PTR((char *)sin6)) { 6264 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 6265 return; 6266 } 6267 if (tcp->tcp_family != AF_INET6 || 6268 sin6->sin6_family != AF_INET6) { 6269 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 6270 return; 6271 } 6272 if (sin6->sin6_port == 0) { 6273 tcp_err_ack(tcp, mp, TBADADDR, 0); 6274 return; 6275 } 6276 break; 6277 } 6278 /* 6279 * TODO: If someone in TCPS_TIME_WAIT has this dst/port we 6280 * should key on their sequence number and cut them loose. 6281 */ 6282 6283 /* 6284 * If options passed in, feed it for verification and handling 6285 */ 6286 if (tcr->OPT_length != 0) { 6287 mblk_t *ok_mp; 6288 mblk_t *discon_mp; 6289 mblk_t *conn_opts_mp; 6290 int t_error, sys_error, do_disconnect; 6291 6292 conn_opts_mp = NULL; 6293 6294 if (tcp_conprim_opt_process(tcp, mp, 6295 &do_disconnect, &t_error, &sys_error) < 0) { 6296 if (do_disconnect) { 6297 ASSERT(t_error == 0 && sys_error == 0); 6298 discon_mp = mi_tpi_discon_ind(NULL, 6299 ECONNREFUSED, 0); 6300 if (!discon_mp) { 6301 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, 6302 TSYSERR, ENOMEM); 6303 return; 6304 } 6305 ok_mp = mi_tpi_ok_ack_alloc(mp); 6306 if (!ok_mp) { 6307 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6308 TSYSERR, ENOMEM); 6309 return; 6310 } 6311 qreply(q, ok_mp); 6312 qreply(q, discon_mp); /* no flush! */ 6313 } else { 6314 ASSERT(t_error != 0); 6315 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, t_error, 6316 sys_error); 6317 } 6318 return; 6319 } 6320 /* 6321 * Success in setting options, the mp option buffer represented 6322 * by OPT_length/offset has been potentially modified and 6323 * contains results of option processing. We copy it in 6324 * another mp to save it for potentially influencing returning 6325 * it in T_CONN_CONN. 6326 */ 6327 if (tcr->OPT_length != 0) { /* there are resulting options */ 6328 conn_opts_mp = copyb(mp); 6329 if (!conn_opts_mp) { 6330 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, 6331 TSYSERR, ENOMEM); 6332 return; 6333 } 6334 ASSERT(tcp->tcp_conn.tcp_opts_conn_req == NULL); 6335 tcp->tcp_conn.tcp_opts_conn_req = conn_opts_mp; 6336 /* 6337 * Note: 6338 * These resulting option negotiation can include any 6339 * end-to-end negotiation options but there no such 6340 * thing (yet?) in our TCP/IP. 6341 */ 6342 } 6343 } 6344 6345 /* 6346 * If we're connecting to an IPv4-mapped IPv6 address, we need to 6347 * make sure that the template IP header in the tcp structure is an 6348 * IPv4 header, and that the tcp_ipversion is IPV4_VERSION. We 6349 * need to this before we call tcp_bindi() so that the port lookup 6350 * code will look for ports in the correct port space (IPv4 and 6351 * IPv6 have separate port spaces). 6352 */ 6353 if (tcp->tcp_family == AF_INET6 && tcp->tcp_ipversion == IPV6_VERSION && 6354 IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 6355 int err = 0; 6356 6357 err = tcp_header_init_ipv4(tcp); 6358 if (err != 0) { 6359 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM); 6360 goto connect_failed; 6361 } 6362 if (tcp->tcp_lport != 0) 6363 *(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport; 6364 } 6365 6366 switch (tcp->tcp_state) { 6367 case TCPS_IDLE: 6368 /* 6369 * We support quick connect, refer to comments in 6370 * tcp_connect_*() 6371 */ 6372 /* FALLTHRU */ 6373 case TCPS_BOUND: 6374 case TCPS_LISTEN: 6375 if (tcp->tcp_family == AF_INET6) { 6376 if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 6377 tcp_connect_ipv6(tcp, mp, 6378 &sin6->sin6_addr, 6379 sin6->sin6_port, sin6->sin6_flowinfo, 6380 sin6->__sin6_src_id, sin6->sin6_scope_id); 6381 return; 6382 } 6383 /* 6384 * Destination adress is mapped IPv6 address. 6385 * Source bound address should be unspecified or 6386 * IPv6 mapped address as well. 6387 */ 6388 if (!IN6_IS_ADDR_UNSPECIFIED( 6389 &tcp->tcp_bound_source_v6) && 6390 !IN6_IS_ADDR_V4MAPPED(&tcp->tcp_bound_source_v6)) { 6391 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, 6392 EADDRNOTAVAIL); 6393 break; 6394 } 6395 dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr)); 6396 dstport = sin6->sin6_port; 6397 srcid = sin6->__sin6_src_id; 6398 } else { 6399 dstaddrp = &sin->sin_addr.s_addr; 6400 dstport = sin->sin_port; 6401 srcid = 0; 6402 } 6403 6404 tcp_connect_ipv4(tcp, mp, dstaddrp, dstport, srcid); 6405 return; 6406 default: 6407 mp = mi_tpi_err_ack_alloc(mp, TOUTSTATE, 0); 6408 break; 6409 } 6410 /* 6411 * Note: Code below is the "failure" case 6412 */ 6413 /* return error ack and blow away saved option results if any */ 6414 connect_failed: 6415 if (mp != NULL) 6416 putnext(tcp->tcp_rq, mp); 6417 else { 6418 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6419 TSYSERR, ENOMEM); 6420 } 6421 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 6422 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 6423 } 6424 6425 /* 6426 * Handle connect to IPv4 destinations, including connections for AF_INET6 6427 * sockets connecting to IPv4 mapped IPv6 destinations. 6428 */ 6429 static void 6430 tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp, in_port_t dstport, 6431 uint_t srcid) 6432 { 6433 tcph_t *tcph; 6434 mblk_t *mp1; 6435 ipaddr_t dstaddr = *dstaddrp; 6436 int32_t oldstate; 6437 uint16_t lport; 6438 tcp_stack_t *tcps = tcp->tcp_tcps; 6439 6440 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 6441 6442 /* Check for attempt to connect to INADDR_ANY */ 6443 if (dstaddr == INADDR_ANY) { 6444 /* 6445 * SunOS 4.x and 4.3 BSD allow an application 6446 * to connect a TCP socket to INADDR_ANY. 6447 * When they do this, the kernel picks the 6448 * address of one interface and uses it 6449 * instead. The kernel usually ends up 6450 * picking the address of the loopback 6451 * interface. This is an undocumented feature. 6452 * However, we provide the same thing here 6453 * in order to have source and binary 6454 * compatibility with SunOS 4.x. 6455 * Update the T_CONN_REQ (sin/sin6) since it is used to 6456 * generate the T_CONN_CON. 6457 */ 6458 dstaddr = htonl(INADDR_LOOPBACK); 6459 *dstaddrp = dstaddr; 6460 } 6461 6462 /* Handle __sin6_src_id if socket not bound to an IP address */ 6463 if (srcid != 0 && tcp->tcp_ipha->ipha_src == INADDR_ANY) { 6464 ip_srcid_find_id(srcid, &tcp->tcp_ip_src_v6, 6465 tcp->tcp_connp->conn_zoneid, tcps->tcps_netstack); 6466 IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_ip_src_v6, 6467 tcp->tcp_ipha->ipha_src); 6468 } 6469 6470 /* 6471 * Don't let an endpoint connect to itself. Note that 6472 * the test here does not catch the case where the 6473 * source IP addr was left unspecified by the user. In 6474 * this case, the source addr is set in tcp_adapt_ire() 6475 * using the reply to the T_BIND message that we send 6476 * down to IP here and the check is repeated in tcp_rput_other. 6477 */ 6478 if (dstaddr == tcp->tcp_ipha->ipha_src && 6479 dstport == tcp->tcp_lport) { 6480 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 6481 goto failed; 6482 } 6483 6484 tcp->tcp_ipha->ipha_dst = dstaddr; 6485 IN6_IPADDR_TO_V4MAPPED(dstaddr, &tcp->tcp_remote_v6); 6486 6487 /* 6488 * Massage a source route if any putting the first hop 6489 * in iph_dst. Compute a starting value for the checksum which 6490 * takes into account that the original iph_dst should be 6491 * included in the checksum but that ip will include the 6492 * first hop in the source route in the tcp checksum. 6493 */ 6494 tcp->tcp_sum = ip_massage_options(tcp->tcp_ipha, tcps->tcps_netstack); 6495 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 6496 tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) + 6497 (tcp->tcp_ipha->ipha_dst & 0xffff)); 6498 if ((int)tcp->tcp_sum < 0) 6499 tcp->tcp_sum--; 6500 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 6501 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 6502 (tcp->tcp_sum >> 16)); 6503 tcph = tcp->tcp_tcph; 6504 *(uint16_t *)tcph->th_fport = dstport; 6505 tcp->tcp_fport = dstport; 6506 6507 oldstate = tcp->tcp_state; 6508 /* 6509 * At this point the remote destination address and remote port fields 6510 * in the tcp-four-tuple have been filled in the tcp structure. Now we 6511 * have to see which state tcp was in so we can take apropriate action. 6512 */ 6513 if (oldstate == TCPS_IDLE) { 6514 /* 6515 * We support a quick connect capability here, allowing 6516 * clients to transition directly from IDLE to SYN_SENT 6517 * tcp_bindi will pick an unused port, insert the connection 6518 * in the bind hash and transition to BOUND state. 6519 */ 6520 lport = tcp_update_next_port(tcps->tcps_next_port_to_try, 6521 tcp, B_TRUE); 6522 lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE, 6523 B_FALSE, B_FALSE); 6524 if (lport == 0) { 6525 mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0); 6526 goto failed; 6527 } 6528 } 6529 tcp->tcp_state = TCPS_SYN_SENT; 6530 6531 /* 6532 * TODO: allow data with connect requests 6533 * by unlinking M_DATA trailers here and 6534 * linking them in behind the T_OK_ACK mblk. 6535 * The tcp_rput() bind ack handler would then 6536 * feed them to tcp_wput_data() rather than call 6537 * tcp_timer(). 6538 */ 6539 mp = mi_tpi_ok_ack_alloc(mp); 6540 if (!mp) { 6541 tcp->tcp_state = oldstate; 6542 goto failed; 6543 } 6544 if (tcp->tcp_family == AF_INET) { 6545 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 6546 sizeof (ipa_conn_t)); 6547 } else { 6548 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 6549 sizeof (ipa6_conn_t)); 6550 } 6551 if (mp1) { 6552 /* 6553 * We need to make sure that the conn_recv is set to a non-null 6554 * value before we insert the conn_t into the classifier table. 6555 * This is to avoid a race with an incoming packet which does 6556 * an ipcl_classify(). 6557 */ 6558 tcp->tcp_connp->conn_recv = tcp_input; 6559 6560 /* Hang onto the T_OK_ACK for later. */ 6561 linkb(mp1, mp); 6562 mblk_setcred(mp1, tcp->tcp_cred); 6563 if (tcp->tcp_family == AF_INET) 6564 mp1 = ip_bind_v4(tcp->tcp_wq, mp1, tcp->tcp_connp); 6565 else { 6566 mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp, 6567 &tcp->tcp_sticky_ipp); 6568 } 6569 BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens); 6570 tcp->tcp_active_open = 1; 6571 /* 6572 * If the bind cannot complete immediately 6573 * IP will arrange to call tcp_rput_other 6574 * when the bind completes. 6575 */ 6576 if (mp1 != NULL) 6577 tcp_rput_other(tcp, mp1); 6578 return; 6579 } 6580 /* Error case */ 6581 tcp->tcp_state = oldstate; 6582 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM); 6583 6584 failed: 6585 /* return error ack and blow away saved option results if any */ 6586 if (mp != NULL) 6587 putnext(tcp->tcp_rq, mp); 6588 else { 6589 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6590 TSYSERR, ENOMEM); 6591 } 6592 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 6593 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 6594 6595 } 6596 6597 /* 6598 * Handle connect to IPv6 destinations. 6599 */ 6600 static void 6601 tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp, 6602 in_port_t dstport, uint32_t flowinfo, uint_t srcid, uint32_t scope_id) 6603 { 6604 tcph_t *tcph; 6605 mblk_t *mp1; 6606 ip6_rthdr_t *rth; 6607 int32_t oldstate; 6608 uint16_t lport; 6609 tcp_stack_t *tcps = tcp->tcp_tcps; 6610 6611 ASSERT(tcp->tcp_family == AF_INET6); 6612 6613 /* 6614 * If we're here, it means that the destination address is a native 6615 * IPv6 address. Return an error if tcp_ipversion is not IPv6. A 6616 * reason why it might not be IPv6 is if the socket was bound to an 6617 * IPv4-mapped IPv6 address. 6618 */ 6619 if (tcp->tcp_ipversion != IPV6_VERSION) { 6620 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 6621 goto failed; 6622 } 6623 6624 /* 6625 * Interpret a zero destination to mean loopback. 6626 * Update the T_CONN_REQ (sin/sin6) since it is used to 6627 * generate the T_CONN_CON. 6628 */ 6629 if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp)) { 6630 *dstaddrp = ipv6_loopback; 6631 } 6632 6633 /* Handle __sin6_src_id if socket not bound to an IP address */ 6634 if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) { 6635 ip_srcid_find_id(srcid, &tcp->tcp_ip6h->ip6_src, 6636 tcp->tcp_connp->conn_zoneid, tcps->tcps_netstack); 6637 tcp->tcp_ip_src_v6 = tcp->tcp_ip6h->ip6_src; 6638 } 6639 6640 /* 6641 * Take care of the scope_id now and add ip6i_t 6642 * if ip6i_t is not already allocated through TCP 6643 * sticky options. At this point tcp_ip6h does not 6644 * have dst info, thus use dstaddrp. 6645 */ 6646 if (scope_id != 0 && 6647 IN6_IS_ADDR_LINKSCOPE(dstaddrp)) { 6648 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 6649 ip6i_t *ip6i; 6650 6651 ipp->ipp_ifindex = scope_id; 6652 ip6i = (ip6i_t *)tcp->tcp_iphc; 6653 6654 if ((ipp->ipp_fields & IPPF_HAS_IP6I) && 6655 ip6i != NULL && (ip6i->ip6i_nxt == IPPROTO_RAW)) { 6656 /* Already allocated */ 6657 ip6i->ip6i_flags |= IP6I_IFINDEX; 6658 ip6i->ip6i_ifindex = ipp->ipp_ifindex; 6659 ipp->ipp_fields |= IPPF_SCOPE_ID; 6660 } else { 6661 int reterr; 6662 6663 ipp->ipp_fields |= IPPF_SCOPE_ID; 6664 if (ipp->ipp_fields & IPPF_HAS_IP6I) 6665 ip2dbg(("tcp_connect_v6: SCOPE_ID set\n")); 6666 reterr = tcp_build_hdrs(tcp->tcp_rq, tcp); 6667 if (reterr != 0) 6668 goto failed; 6669 ip1dbg(("tcp_connect_ipv6: tcp_bld_hdrs returned\n")); 6670 } 6671 } 6672 6673 /* 6674 * Don't let an endpoint connect to itself. Note that 6675 * the test here does not catch the case where the 6676 * source IP addr was left unspecified by the user. In 6677 * this case, the source addr is set in tcp_adapt_ire() 6678 * using the reply to the T_BIND message that we send 6679 * down to IP here and the check is repeated in tcp_rput_other. 6680 */ 6681 if (IN6_ARE_ADDR_EQUAL(dstaddrp, &tcp->tcp_ip6h->ip6_src) && 6682 (dstport == tcp->tcp_lport)) { 6683 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 6684 goto failed; 6685 } 6686 6687 tcp->tcp_ip6h->ip6_dst = *dstaddrp; 6688 tcp->tcp_remote_v6 = *dstaddrp; 6689 tcp->tcp_ip6h->ip6_vcf = 6690 (IPV6_DEFAULT_VERS_AND_FLOW & IPV6_VERS_AND_FLOW_MASK) | 6691 (flowinfo & ~IPV6_VERS_AND_FLOW_MASK); 6692 6693 6694 /* 6695 * Massage a routing header (if present) putting the first hop 6696 * in ip6_dst. Compute a starting value for the checksum which 6697 * takes into account that the original ip6_dst should be 6698 * included in the checksum but that ip will include the 6699 * first hop in the source route in the tcp checksum. 6700 */ 6701 rth = ip_find_rthdr_v6(tcp->tcp_ip6h, (uint8_t *)tcp->tcp_tcph); 6702 if (rth != NULL) { 6703 tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, rth, 6704 tcps->tcps_netstack); 6705 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 6706 (tcp->tcp_sum >> 16)); 6707 } else { 6708 tcp->tcp_sum = 0; 6709 } 6710 6711 tcph = tcp->tcp_tcph; 6712 *(uint16_t *)tcph->th_fport = dstport; 6713 tcp->tcp_fport = dstport; 6714 6715 oldstate = tcp->tcp_state; 6716 /* 6717 * At this point the remote destination address and remote port fields 6718 * in the tcp-four-tuple have been filled in the tcp structure. Now we 6719 * have to see which state tcp was in so we can take apropriate action. 6720 */ 6721 if (oldstate == TCPS_IDLE) { 6722 /* 6723 * We support a quick connect capability here, allowing 6724 * clients to transition directly from IDLE to SYN_SENT 6725 * tcp_bindi will pick an unused port, insert the connection 6726 * in the bind hash and transition to BOUND state. 6727 */ 6728 lport = tcp_update_next_port(tcps->tcps_next_port_to_try, 6729 tcp, B_TRUE); 6730 lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE, 6731 B_FALSE, B_FALSE); 6732 if (lport == 0) { 6733 mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0); 6734 goto failed; 6735 } 6736 } 6737 tcp->tcp_state = TCPS_SYN_SENT; 6738 /* 6739 * TODO: allow data with connect requests 6740 * by unlinking M_DATA trailers here and 6741 * linking them in behind the T_OK_ACK mblk. 6742 * The tcp_rput() bind ack handler would then 6743 * feed them to tcp_wput_data() rather than call 6744 * tcp_timer(). 6745 */ 6746 mp = mi_tpi_ok_ack_alloc(mp); 6747 if (!mp) { 6748 tcp->tcp_state = oldstate; 6749 goto failed; 6750 } 6751 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, sizeof (ipa6_conn_t)); 6752 if (mp1) { 6753 /* 6754 * We need to make sure that the conn_recv is set to a non-null 6755 * value before we insert the conn_t into the classifier table. 6756 * This is to avoid a race with an incoming packet which does 6757 * an ipcl_classify(). 6758 */ 6759 tcp->tcp_connp->conn_recv = tcp_input; 6760 6761 /* Hang onto the T_OK_ACK for later. */ 6762 linkb(mp1, mp); 6763 mblk_setcred(mp1, tcp->tcp_cred); 6764 mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp, 6765 &tcp->tcp_sticky_ipp); 6766 BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens); 6767 tcp->tcp_active_open = 1; 6768 /* ip_bind_v6() may return ACK or ERROR */ 6769 if (mp1 != NULL) 6770 tcp_rput_other(tcp, mp1); 6771 return; 6772 } 6773 /* Error case */ 6774 tcp->tcp_state = oldstate; 6775 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM); 6776 6777 failed: 6778 /* return error ack and blow away saved option results if any */ 6779 if (mp != NULL) 6780 putnext(tcp->tcp_rq, mp); 6781 else { 6782 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6783 TSYSERR, ENOMEM); 6784 } 6785 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 6786 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 6787 } 6788 6789 /* 6790 * We need a stream q for detached closing tcp connections 6791 * to use. Our client hereby indicates that this q is the 6792 * one to use. 6793 */ 6794 static void 6795 tcp_def_q_set(tcp_t *tcp, mblk_t *mp) 6796 { 6797 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 6798 queue_t *q = tcp->tcp_wq; 6799 tcp_stack_t *tcps = tcp->tcp_tcps; 6800 6801 #ifdef NS_DEBUG 6802 (void) printf("TCP_IOC_DEFAULT_Q for stack %d\n", 6803 tcps->tcps_netstack->netstack_stackid); 6804 #endif 6805 mp->b_datap->db_type = M_IOCACK; 6806 iocp->ioc_count = 0; 6807 mutex_enter(&tcps->tcps_g_q_lock); 6808 if (tcps->tcps_g_q != NULL) { 6809 mutex_exit(&tcps->tcps_g_q_lock); 6810 iocp->ioc_error = EALREADY; 6811 } else { 6812 mblk_t *mp1; 6813 6814 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 0); 6815 if (mp1 == NULL) { 6816 mutex_exit(&tcps->tcps_g_q_lock); 6817 iocp->ioc_error = ENOMEM; 6818 } else { 6819 tcps->tcps_g_q = tcp->tcp_rq; 6820 mutex_exit(&tcps->tcps_g_q_lock); 6821 iocp->ioc_error = 0; 6822 iocp->ioc_rval = 0; 6823 /* 6824 * We are passing tcp_sticky_ipp as NULL 6825 * as it is not useful for tcp_default queue 6826 * 6827 * Set conn_recv just in case. 6828 */ 6829 tcp->tcp_connp->conn_recv = tcp_conn_request; 6830 6831 mp1 = ip_bind_v6(q, mp1, tcp->tcp_connp, NULL); 6832 if (mp1 != NULL) 6833 tcp_rput_other(tcp, mp1); 6834 } 6835 } 6836 qreply(q, mp); 6837 } 6838 6839 /* 6840 * Our client hereby directs us to reject the connection request 6841 * that tcp_conn_request() marked with 'seqnum'. Rejection consists 6842 * of sending the appropriate RST, not an ICMP error. 6843 */ 6844 static void 6845 tcp_disconnect(tcp_t *tcp, mblk_t *mp) 6846 { 6847 tcp_t *ltcp = NULL; 6848 t_scalar_t seqnum; 6849 conn_t *connp; 6850 tcp_stack_t *tcps = tcp->tcp_tcps; 6851 6852 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 6853 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) { 6854 tcp_err_ack(tcp, mp, TPROTO, 0); 6855 return; 6856 } 6857 6858 /* 6859 * Right now, upper modules pass down a T_DISCON_REQ to TCP, 6860 * when the stream is in BOUND state. Do not send a reset, 6861 * since the destination IP address is not valid, and it can 6862 * be the initialized value of all zeros (broadcast address). 6863 * 6864 * If TCP has sent down a bind request to IP and has not 6865 * received the reply, reject the request. Otherwise, TCP 6866 * will be confused. 6867 */ 6868 if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_hard_binding) { 6869 if (tcp->tcp_debug) { 6870 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 6871 "tcp_disconnect: bad state, %d", tcp->tcp_state); 6872 } 6873 tcp_err_ack(tcp, mp, TOUTSTATE, 0); 6874 return; 6875 } 6876 6877 seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number; 6878 6879 if (seqnum == -1 || tcp->tcp_conn_req_max == 0) { 6880 6881 /* 6882 * According to TPI, for non-listeners, ignore seqnum 6883 * and disconnect. 6884 * Following interpretation of -1 seqnum is historical 6885 * and implied TPI ? (TPI only states that for T_CONN_IND, 6886 * a valid seqnum should not be -1). 6887 * 6888 * -1 means disconnect everything 6889 * regardless even on a listener. 6890 */ 6891 6892 int old_state = tcp->tcp_state; 6893 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 6894 6895 /* 6896 * The connection can't be on the tcp_time_wait_head list 6897 * since it is not detached. 6898 */ 6899 ASSERT(tcp->tcp_time_wait_next == NULL); 6900 ASSERT(tcp->tcp_time_wait_prev == NULL); 6901 ASSERT(tcp->tcp_time_wait_expire == 0); 6902 ltcp = NULL; 6903 /* 6904 * If it used to be a listener, check to make sure no one else 6905 * has taken the port before switching back to LISTEN state. 6906 */ 6907 if (tcp->tcp_ipversion == IPV4_VERSION) { 6908 connp = ipcl_lookup_listener_v4(tcp->tcp_lport, 6909 tcp->tcp_ipha->ipha_src, 6910 tcp->tcp_connp->conn_zoneid, ipst); 6911 if (connp != NULL) 6912 ltcp = connp->conn_tcp; 6913 } else { 6914 /* Allow tcp_bound_if listeners? */ 6915 connp = ipcl_lookup_listener_v6(tcp->tcp_lport, 6916 &tcp->tcp_ip6h->ip6_src, 0, 6917 tcp->tcp_connp->conn_zoneid, ipst); 6918 if (connp != NULL) 6919 ltcp = connp->conn_tcp; 6920 } 6921 if (tcp->tcp_conn_req_max && ltcp == NULL) { 6922 tcp->tcp_state = TCPS_LISTEN; 6923 } else if (old_state > TCPS_BOUND) { 6924 tcp->tcp_conn_req_max = 0; 6925 tcp->tcp_state = TCPS_BOUND; 6926 } 6927 if (ltcp != NULL) 6928 CONN_DEC_REF(ltcp->tcp_connp); 6929 if (old_state == TCPS_SYN_SENT || old_state == TCPS_SYN_RCVD) { 6930 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 6931 } else if (old_state == TCPS_ESTABLISHED || 6932 old_state == TCPS_CLOSE_WAIT) { 6933 BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); 6934 } 6935 6936 if (tcp->tcp_fused) 6937 tcp_unfuse(tcp); 6938 6939 mutex_enter(&tcp->tcp_eager_lock); 6940 if ((tcp->tcp_conn_req_cnt_q0 != 0) || 6941 (tcp->tcp_conn_req_cnt_q != 0)) { 6942 tcp_eager_cleanup(tcp, 0); 6943 } 6944 mutex_exit(&tcp->tcp_eager_lock); 6945 6946 tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt, 6947 tcp->tcp_rnxt, TH_RST | TH_ACK); 6948 6949 tcp_reinit(tcp); 6950 6951 if (old_state >= TCPS_ESTABLISHED) { 6952 /* Send M_FLUSH according to TPI */ 6953 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 6954 } 6955 mp = mi_tpi_ok_ack_alloc(mp); 6956 if (mp) 6957 putnext(tcp->tcp_rq, mp); 6958 return; 6959 } else if (!tcp_eager_blowoff(tcp, seqnum)) { 6960 tcp_err_ack(tcp, mp, TBADSEQ, 0); 6961 return; 6962 } 6963 if (tcp->tcp_state >= TCPS_ESTABLISHED) { 6964 /* Send M_FLUSH according to TPI */ 6965 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 6966 } 6967 mp = mi_tpi_ok_ack_alloc(mp); 6968 if (mp) 6969 putnext(tcp->tcp_rq, mp); 6970 } 6971 6972 /* 6973 * Diagnostic routine used to return a string associated with the tcp state. 6974 * Note that if the caller does not supply a buffer, it will use an internal 6975 * static string. This means that if multiple threads call this function at 6976 * the same time, output can be corrupted... Note also that this function 6977 * does not check the size of the supplied buffer. The caller has to make 6978 * sure that it is big enough. 6979 */ 6980 static char * 6981 tcp_display(tcp_t *tcp, char *sup_buf, char format) 6982 { 6983 char buf1[30]; 6984 static char priv_buf[INET6_ADDRSTRLEN * 2 + 80]; 6985 char *buf; 6986 char *cp; 6987 in6_addr_t local, remote; 6988 char local_addrbuf[INET6_ADDRSTRLEN]; 6989 char remote_addrbuf[INET6_ADDRSTRLEN]; 6990 6991 if (sup_buf != NULL) 6992 buf = sup_buf; 6993 else 6994 buf = priv_buf; 6995 6996 if (tcp == NULL) 6997 return ("NULL_TCP"); 6998 switch (tcp->tcp_state) { 6999 case TCPS_CLOSED: 7000 cp = "TCP_CLOSED"; 7001 break; 7002 case TCPS_IDLE: 7003 cp = "TCP_IDLE"; 7004 break; 7005 case TCPS_BOUND: 7006 cp = "TCP_BOUND"; 7007 break; 7008 case TCPS_LISTEN: 7009 cp = "TCP_LISTEN"; 7010 break; 7011 case TCPS_SYN_SENT: 7012 cp = "TCP_SYN_SENT"; 7013 break; 7014 case TCPS_SYN_RCVD: 7015 cp = "TCP_SYN_RCVD"; 7016 break; 7017 case TCPS_ESTABLISHED: 7018 cp = "TCP_ESTABLISHED"; 7019 break; 7020 case TCPS_CLOSE_WAIT: 7021 cp = "TCP_CLOSE_WAIT"; 7022 break; 7023 case TCPS_FIN_WAIT_1: 7024 cp = "TCP_FIN_WAIT_1"; 7025 break; 7026 case TCPS_CLOSING: 7027 cp = "TCP_CLOSING"; 7028 break; 7029 case TCPS_LAST_ACK: 7030 cp = "TCP_LAST_ACK"; 7031 break; 7032 case TCPS_FIN_WAIT_2: 7033 cp = "TCP_FIN_WAIT_2"; 7034 break; 7035 case TCPS_TIME_WAIT: 7036 cp = "TCP_TIME_WAIT"; 7037 break; 7038 default: 7039 (void) mi_sprintf(buf1, "TCPUnkState(%d)", tcp->tcp_state); 7040 cp = buf1; 7041 break; 7042 } 7043 switch (format) { 7044 case DISP_ADDR_AND_PORT: 7045 if (tcp->tcp_ipversion == IPV4_VERSION) { 7046 /* 7047 * Note that we use the remote address in the tcp_b 7048 * structure. This means that it will print out 7049 * the real destination address, not the next hop's 7050 * address if source routing is used. 7051 */ 7052 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ip_src, &local); 7053 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &remote); 7054 7055 } else { 7056 local = tcp->tcp_ip_src_v6; 7057 remote = tcp->tcp_remote_v6; 7058 } 7059 (void) inet_ntop(AF_INET6, &local, local_addrbuf, 7060 sizeof (local_addrbuf)); 7061 (void) inet_ntop(AF_INET6, &remote, remote_addrbuf, 7062 sizeof (remote_addrbuf)); 7063 (void) mi_sprintf(buf, "[%s.%u, %s.%u] %s", 7064 local_addrbuf, ntohs(tcp->tcp_lport), remote_addrbuf, 7065 ntohs(tcp->tcp_fport), cp); 7066 break; 7067 case DISP_PORT_ONLY: 7068 default: 7069 (void) mi_sprintf(buf, "[%u, %u] %s", 7070 ntohs(tcp->tcp_lport), ntohs(tcp->tcp_fport), cp); 7071 break; 7072 } 7073 7074 return (buf); 7075 } 7076 7077 /* 7078 * Called via squeue to get on to eager's perimeter. It sends a 7079 * TH_RST if eager is in the fanout table. The listener wants the 7080 * eager to disappear either by means of tcp_eager_blowoff() or 7081 * tcp_eager_cleanup() being called. tcp_eager_kill() can also be 7082 * called (via squeue) if the eager cannot be inserted in the 7083 * fanout table in tcp_conn_request(). 7084 */ 7085 /* ARGSUSED */ 7086 void 7087 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2) 7088 { 7089 conn_t *econnp = (conn_t *)arg; 7090 tcp_t *eager = econnp->conn_tcp; 7091 tcp_t *listener = eager->tcp_listener; 7092 tcp_stack_t *tcps = eager->tcp_tcps; 7093 7094 /* 7095 * We could be called because listener is closing. Since 7096 * the eager is using listener's queue's, its not safe. 7097 * Better use the default queue just to send the TH_RST 7098 * out. 7099 */ 7100 ASSERT(tcps->tcps_g_q != NULL); 7101 eager->tcp_rq = tcps->tcps_g_q; 7102 eager->tcp_wq = WR(tcps->tcps_g_q); 7103 7104 /* 7105 * An eager's conn_fanout will be NULL if it's a duplicate 7106 * for an existing 4-tuples in the conn fanout table. 7107 * We don't want to send an RST out in such case. 7108 */ 7109 if (econnp->conn_fanout != NULL && eager->tcp_state > TCPS_LISTEN) { 7110 tcp_xmit_ctl("tcp_eager_kill, can't wait", 7111 eager, eager->tcp_snxt, 0, TH_RST); 7112 } 7113 7114 /* We are here because listener wants this eager gone */ 7115 if (listener != NULL) { 7116 mutex_enter(&listener->tcp_eager_lock); 7117 tcp_eager_unlink(eager); 7118 if (eager->tcp_tconnind_started) { 7119 /* 7120 * The eager has sent a conn_ind up to the 7121 * listener but listener decides to close 7122 * instead. We need to drop the extra ref 7123 * placed on eager in tcp_rput_data() before 7124 * sending the conn_ind to listener. 7125 */ 7126 CONN_DEC_REF(econnp); 7127 } 7128 mutex_exit(&listener->tcp_eager_lock); 7129 CONN_DEC_REF(listener->tcp_connp); 7130 } 7131 7132 if (eager->tcp_state > TCPS_BOUND) 7133 tcp_close_detached(eager); 7134 } 7135 7136 /* 7137 * Reset any eager connection hanging off this listener marked 7138 * with 'seqnum' and then reclaim it's resources. 7139 */ 7140 static boolean_t 7141 tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum) 7142 { 7143 tcp_t *eager; 7144 mblk_t *mp; 7145 tcp_stack_t *tcps = listener->tcp_tcps; 7146 7147 TCP_STAT(tcps, tcp_eager_blowoff_calls); 7148 eager = listener; 7149 mutex_enter(&listener->tcp_eager_lock); 7150 do { 7151 eager = eager->tcp_eager_next_q; 7152 if (eager == NULL) { 7153 mutex_exit(&listener->tcp_eager_lock); 7154 return (B_FALSE); 7155 } 7156 } while (eager->tcp_conn_req_seqnum != seqnum); 7157 7158 if (eager->tcp_closemp_used) { 7159 mutex_exit(&listener->tcp_eager_lock); 7160 return (B_TRUE); 7161 } 7162 eager->tcp_closemp_used = B_TRUE; 7163 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 7164 CONN_INC_REF(eager->tcp_connp); 7165 mutex_exit(&listener->tcp_eager_lock); 7166 mp = &eager->tcp_closemp; 7167 squeue_fill(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill, 7168 eager->tcp_connp, SQTAG_TCP_EAGER_BLOWOFF); 7169 return (B_TRUE); 7170 } 7171 7172 /* 7173 * Reset any eager connection hanging off this listener 7174 * and then reclaim it's resources. 7175 */ 7176 static void 7177 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only) 7178 { 7179 tcp_t *eager; 7180 mblk_t *mp; 7181 tcp_stack_t *tcps = listener->tcp_tcps; 7182 7183 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 7184 7185 if (!q0_only) { 7186 /* First cleanup q */ 7187 TCP_STAT(tcps, tcp_eager_blowoff_q); 7188 eager = listener->tcp_eager_next_q; 7189 while (eager != NULL) { 7190 if (!eager->tcp_closemp_used) { 7191 eager->tcp_closemp_used = B_TRUE; 7192 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 7193 CONN_INC_REF(eager->tcp_connp); 7194 mp = &eager->tcp_closemp; 7195 squeue_fill(eager->tcp_connp->conn_sqp, mp, 7196 tcp_eager_kill, eager->tcp_connp, 7197 SQTAG_TCP_EAGER_CLEANUP); 7198 } 7199 eager = eager->tcp_eager_next_q; 7200 } 7201 } 7202 /* Then cleanup q0 */ 7203 TCP_STAT(tcps, tcp_eager_blowoff_q0); 7204 eager = listener->tcp_eager_next_q0; 7205 while (eager != listener) { 7206 if (!eager->tcp_closemp_used) { 7207 eager->tcp_closemp_used = B_TRUE; 7208 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 7209 CONN_INC_REF(eager->tcp_connp); 7210 mp = &eager->tcp_closemp; 7211 squeue_fill(eager->tcp_connp->conn_sqp, mp, 7212 tcp_eager_kill, eager->tcp_connp, 7213 SQTAG_TCP_EAGER_CLEANUP_Q0); 7214 } 7215 eager = eager->tcp_eager_next_q0; 7216 } 7217 } 7218 7219 /* 7220 * If we are an eager connection hanging off a listener that hasn't 7221 * formally accepted the connection yet, get off his list and blow off 7222 * any data that we have accumulated. 7223 */ 7224 static void 7225 tcp_eager_unlink(tcp_t *tcp) 7226 { 7227 tcp_t *listener = tcp->tcp_listener; 7228 7229 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 7230 ASSERT(listener != NULL); 7231 if (tcp->tcp_eager_next_q0 != NULL) { 7232 ASSERT(tcp->tcp_eager_prev_q0 != NULL); 7233 7234 /* Remove the eager tcp from q0 */ 7235 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 7236 tcp->tcp_eager_prev_q0; 7237 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 7238 tcp->tcp_eager_next_q0; 7239 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 7240 listener->tcp_conn_req_cnt_q0--; 7241 7242 tcp->tcp_eager_next_q0 = NULL; 7243 tcp->tcp_eager_prev_q0 = NULL; 7244 7245 /* 7246 * Take the eager out, if it is in the list of droppable 7247 * eagers. 7248 */ 7249 MAKE_UNDROPPABLE(tcp); 7250 7251 if (tcp->tcp_syn_rcvd_timeout != 0) { 7252 /* we have timed out before */ 7253 ASSERT(listener->tcp_syn_rcvd_timeout > 0); 7254 listener->tcp_syn_rcvd_timeout--; 7255 } 7256 } else { 7257 tcp_t **tcpp = &listener->tcp_eager_next_q; 7258 tcp_t *prev = NULL; 7259 7260 for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) { 7261 if (tcpp[0] == tcp) { 7262 if (listener->tcp_eager_last_q == tcp) { 7263 /* 7264 * If we are unlinking the last 7265 * element on the list, adjust 7266 * tail pointer. Set tail pointer 7267 * to nil when list is empty. 7268 */ 7269 ASSERT(tcp->tcp_eager_next_q == NULL); 7270 if (listener->tcp_eager_last_q == 7271 listener->tcp_eager_next_q) { 7272 listener->tcp_eager_last_q = 7273 NULL; 7274 } else { 7275 /* 7276 * We won't get here if there 7277 * is only one eager in the 7278 * list. 7279 */ 7280 ASSERT(prev != NULL); 7281 listener->tcp_eager_last_q = 7282 prev; 7283 } 7284 } 7285 tcpp[0] = tcp->tcp_eager_next_q; 7286 tcp->tcp_eager_next_q = NULL; 7287 tcp->tcp_eager_last_q = NULL; 7288 ASSERT(listener->tcp_conn_req_cnt_q > 0); 7289 listener->tcp_conn_req_cnt_q--; 7290 break; 7291 } 7292 prev = tcpp[0]; 7293 } 7294 } 7295 tcp->tcp_listener = NULL; 7296 } 7297 7298 /* Shorthand to generate and send TPI error acks to our client */ 7299 static void 7300 tcp_err_ack(tcp_t *tcp, mblk_t *mp, int t_error, int sys_error) 7301 { 7302 if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL) 7303 putnext(tcp->tcp_rq, mp); 7304 } 7305 7306 /* Shorthand to generate and send TPI error acks to our client */ 7307 static void 7308 tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, 7309 int t_error, int sys_error) 7310 { 7311 struct T_error_ack *teackp; 7312 7313 if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack), 7314 M_PCPROTO, T_ERROR_ACK)) != NULL) { 7315 teackp = (struct T_error_ack *)mp->b_rptr; 7316 teackp->ERROR_prim = primitive; 7317 teackp->TLI_error = t_error; 7318 teackp->UNIX_error = sys_error; 7319 putnext(tcp->tcp_rq, mp); 7320 } 7321 } 7322 7323 /* 7324 * Note: No locks are held when inspecting tcp_g_*epriv_ports 7325 * but instead the code relies on: 7326 * - the fact that the address of the array and its size never changes 7327 * - the atomic assignment of the elements of the array 7328 */ 7329 /* ARGSUSED */ 7330 static int 7331 tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 7332 { 7333 int i; 7334 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 7335 7336 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 7337 if (tcps->tcps_g_epriv_ports[i] != 0) 7338 (void) mi_mpprintf(mp, "%d ", 7339 tcps->tcps_g_epriv_ports[i]); 7340 } 7341 return (0); 7342 } 7343 7344 /* 7345 * Hold a lock while changing tcp_g_epriv_ports to prevent multiple 7346 * threads from changing it at the same time. 7347 */ 7348 /* ARGSUSED */ 7349 static int 7350 tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 7351 cred_t *cr) 7352 { 7353 long new_value; 7354 int i; 7355 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 7356 7357 /* 7358 * Fail the request if the new value does not lie within the 7359 * port number limits. 7360 */ 7361 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 7362 new_value <= 0 || new_value >= 65536) { 7363 return (EINVAL); 7364 } 7365 7366 mutex_enter(&tcps->tcps_epriv_port_lock); 7367 /* Check if the value is already in the list */ 7368 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 7369 if (new_value == tcps->tcps_g_epriv_ports[i]) { 7370 mutex_exit(&tcps->tcps_epriv_port_lock); 7371 return (EEXIST); 7372 } 7373 } 7374 /* Find an empty slot */ 7375 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 7376 if (tcps->tcps_g_epriv_ports[i] == 0) 7377 break; 7378 } 7379 if (i == tcps->tcps_g_num_epriv_ports) { 7380 mutex_exit(&tcps->tcps_epriv_port_lock); 7381 return (EOVERFLOW); 7382 } 7383 /* Set the new value */ 7384 tcps->tcps_g_epriv_ports[i] = (uint16_t)new_value; 7385 mutex_exit(&tcps->tcps_epriv_port_lock); 7386 return (0); 7387 } 7388 7389 /* 7390 * Hold a lock while changing tcp_g_epriv_ports to prevent multiple 7391 * threads from changing it at the same time. 7392 */ 7393 /* ARGSUSED */ 7394 static int 7395 tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 7396 cred_t *cr) 7397 { 7398 long new_value; 7399 int i; 7400 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 7401 7402 /* 7403 * Fail the request if the new value does not lie within the 7404 * port number limits. 7405 */ 7406 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value <= 0 || 7407 new_value >= 65536) { 7408 return (EINVAL); 7409 } 7410 7411 mutex_enter(&tcps->tcps_epriv_port_lock); 7412 /* Check that the value is already in the list */ 7413 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 7414 if (tcps->tcps_g_epriv_ports[i] == new_value) 7415 break; 7416 } 7417 if (i == tcps->tcps_g_num_epriv_ports) { 7418 mutex_exit(&tcps->tcps_epriv_port_lock); 7419 return (ESRCH); 7420 } 7421 /* Clear the value */ 7422 tcps->tcps_g_epriv_ports[i] = 0; 7423 mutex_exit(&tcps->tcps_epriv_port_lock); 7424 return (0); 7425 } 7426 7427 /* Return the TPI/TLI equivalent of our current tcp_state */ 7428 static int 7429 tcp_tpistate(tcp_t *tcp) 7430 { 7431 switch (tcp->tcp_state) { 7432 case TCPS_IDLE: 7433 return (TS_UNBND); 7434 case TCPS_LISTEN: 7435 /* 7436 * Return whether there are outstanding T_CONN_IND waiting 7437 * for the matching T_CONN_RES. Therefore don't count q0. 7438 */ 7439 if (tcp->tcp_conn_req_cnt_q > 0) 7440 return (TS_WRES_CIND); 7441 else 7442 return (TS_IDLE); 7443 case TCPS_BOUND: 7444 return (TS_IDLE); 7445 case TCPS_SYN_SENT: 7446 return (TS_WCON_CREQ); 7447 case TCPS_SYN_RCVD: 7448 /* 7449 * Note: assumption: this has to the active open SYN_RCVD. 7450 * The passive instance is detached in SYN_RCVD stage of 7451 * incoming connection processing so we cannot get request 7452 * for T_info_ack on it. 7453 */ 7454 return (TS_WACK_CRES); 7455 case TCPS_ESTABLISHED: 7456 return (TS_DATA_XFER); 7457 case TCPS_CLOSE_WAIT: 7458 return (TS_WREQ_ORDREL); 7459 case TCPS_FIN_WAIT_1: 7460 return (TS_WIND_ORDREL); 7461 case TCPS_FIN_WAIT_2: 7462 return (TS_WIND_ORDREL); 7463 7464 case TCPS_CLOSING: 7465 case TCPS_LAST_ACK: 7466 case TCPS_TIME_WAIT: 7467 case TCPS_CLOSED: 7468 /* 7469 * Following TS_WACK_DREQ7 is a rendition of "not 7470 * yet TS_IDLE" TPI state. There is no best match to any 7471 * TPI state for TCPS_{CLOSING, LAST_ACK, TIME_WAIT} but we 7472 * choose a value chosen that will map to TLI/XTI level 7473 * state of TSTATECHNG (state is process of changing) which 7474 * captures what this dummy state represents. 7475 */ 7476 return (TS_WACK_DREQ7); 7477 default: 7478 cmn_err(CE_WARN, "tcp_tpistate: strange state (%d) %s", 7479 tcp->tcp_state, tcp_display(tcp, NULL, 7480 DISP_PORT_ONLY)); 7481 return (TS_UNBND); 7482 } 7483 } 7484 7485 static void 7486 tcp_copy_info(struct T_info_ack *tia, tcp_t *tcp) 7487 { 7488 tcp_stack_t *tcps = tcp->tcp_tcps; 7489 7490 if (tcp->tcp_family == AF_INET6) 7491 *tia = tcp_g_t_info_ack_v6; 7492 else 7493 *tia = tcp_g_t_info_ack; 7494 tia->CURRENT_state = tcp_tpistate(tcp); 7495 tia->OPT_size = tcp_max_optsize; 7496 if (tcp->tcp_mss == 0) { 7497 /* Not yet set - tcp_open does not set mss */ 7498 if (tcp->tcp_ipversion == IPV4_VERSION) 7499 tia->TIDU_size = tcps->tcps_mss_def_ipv4; 7500 else 7501 tia->TIDU_size = tcps->tcps_mss_def_ipv6; 7502 } else { 7503 tia->TIDU_size = tcp->tcp_mss; 7504 } 7505 /* TODO: Default ETSDU is 1. Is that correct for tcp? */ 7506 } 7507 7508 /* 7509 * This routine responds to T_CAPABILITY_REQ messages. It is called by 7510 * tcp_wput. Much of the T_CAPABILITY_ACK information is copied from 7511 * tcp_g_t_info_ack. The current state of the stream is copied from 7512 * tcp_state. 7513 */ 7514 static void 7515 tcp_capability_req(tcp_t *tcp, mblk_t *mp) 7516 { 7517 t_uscalar_t cap_bits1; 7518 struct T_capability_ack *tcap; 7519 7520 if (MBLKL(mp) < sizeof (struct T_capability_req)) { 7521 freemsg(mp); 7522 return; 7523 } 7524 7525 cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1; 7526 7527 mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack), 7528 mp->b_datap->db_type, T_CAPABILITY_ACK); 7529 if (mp == NULL) 7530 return; 7531 7532 tcap = (struct T_capability_ack *)mp->b_rptr; 7533 tcap->CAP_bits1 = 0; 7534 7535 if (cap_bits1 & TC1_INFO) { 7536 tcp_copy_info(&tcap->INFO_ack, tcp); 7537 tcap->CAP_bits1 |= TC1_INFO; 7538 } 7539 7540 if (cap_bits1 & TC1_ACCEPTOR_ID) { 7541 tcap->ACCEPTOR_id = tcp->tcp_acceptor_id; 7542 tcap->CAP_bits1 |= TC1_ACCEPTOR_ID; 7543 } 7544 7545 putnext(tcp->tcp_rq, mp); 7546 } 7547 7548 /* 7549 * This routine responds to T_INFO_REQ messages. It is called by tcp_wput. 7550 * Most of the T_INFO_ACK information is copied from tcp_g_t_info_ack. 7551 * The current state of the stream is copied from tcp_state. 7552 */ 7553 static void 7554 tcp_info_req(tcp_t *tcp, mblk_t *mp) 7555 { 7556 mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO, 7557 T_INFO_ACK); 7558 if (!mp) { 7559 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 7560 return; 7561 } 7562 tcp_copy_info((struct T_info_ack *)mp->b_rptr, tcp); 7563 putnext(tcp->tcp_rq, mp); 7564 } 7565 7566 /* Respond to the TPI addr request */ 7567 static void 7568 tcp_addr_req(tcp_t *tcp, mblk_t *mp) 7569 { 7570 sin_t *sin; 7571 mblk_t *ackmp; 7572 struct T_addr_ack *taa; 7573 7574 /* Make it large enough for worst case */ 7575 ackmp = reallocb(mp, sizeof (struct T_addr_ack) + 7576 2 * sizeof (sin6_t), 1); 7577 if (ackmp == NULL) { 7578 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 7579 return; 7580 } 7581 7582 if (tcp->tcp_ipversion == IPV6_VERSION) { 7583 tcp_addr_req_ipv6(tcp, ackmp); 7584 return; 7585 } 7586 taa = (struct T_addr_ack *)ackmp->b_rptr; 7587 7588 bzero(taa, sizeof (struct T_addr_ack)); 7589 ackmp->b_wptr = (uchar_t *)&taa[1]; 7590 7591 taa->PRIM_type = T_ADDR_ACK; 7592 ackmp->b_datap->db_type = M_PCPROTO; 7593 7594 /* 7595 * Note: Following code assumes 32 bit alignment of basic 7596 * data structures like sin_t and struct T_addr_ack. 7597 */ 7598 if (tcp->tcp_state >= TCPS_BOUND) { 7599 /* 7600 * Fill in local address 7601 */ 7602 taa->LOCADDR_length = sizeof (sin_t); 7603 taa->LOCADDR_offset = sizeof (*taa); 7604 7605 sin = (sin_t *)&taa[1]; 7606 7607 /* Fill zeroes and then intialize non-zero fields */ 7608 *sin = sin_null; 7609 7610 sin->sin_family = AF_INET; 7611 7612 sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src; 7613 sin->sin_port = *(uint16_t *)tcp->tcp_tcph->th_lport; 7614 7615 ackmp->b_wptr = (uchar_t *)&sin[1]; 7616 7617 if (tcp->tcp_state >= TCPS_SYN_RCVD) { 7618 /* 7619 * Fill in Remote address 7620 */ 7621 taa->REMADDR_length = sizeof (sin_t); 7622 taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset + 7623 taa->LOCADDR_length); 7624 7625 sin = (sin_t *)(ackmp->b_rptr + taa->REMADDR_offset); 7626 *sin = sin_null; 7627 sin->sin_family = AF_INET; 7628 sin->sin_addr.s_addr = tcp->tcp_remote; 7629 sin->sin_port = tcp->tcp_fport; 7630 7631 ackmp->b_wptr = (uchar_t *)&sin[1]; 7632 } 7633 } 7634 putnext(tcp->tcp_rq, ackmp); 7635 } 7636 7637 /* Assumes that tcp_addr_req gets enough space and alignment */ 7638 static void 7639 tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *ackmp) 7640 { 7641 sin6_t *sin6; 7642 struct T_addr_ack *taa; 7643 7644 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 7645 ASSERT(OK_32PTR(ackmp->b_rptr)); 7646 ASSERT(ackmp->b_wptr - ackmp->b_rptr >= sizeof (struct T_addr_ack) + 7647 2 * sizeof (sin6_t)); 7648 7649 taa = (struct T_addr_ack *)ackmp->b_rptr; 7650 7651 bzero(taa, sizeof (struct T_addr_ack)); 7652 ackmp->b_wptr = (uchar_t *)&taa[1]; 7653 7654 taa->PRIM_type = T_ADDR_ACK; 7655 ackmp->b_datap->db_type = M_PCPROTO; 7656 7657 /* 7658 * Note: Following code assumes 32 bit alignment of basic 7659 * data structures like sin6_t and struct T_addr_ack. 7660 */ 7661 if (tcp->tcp_state >= TCPS_BOUND) { 7662 /* 7663 * Fill in local address 7664 */ 7665 taa->LOCADDR_length = sizeof (sin6_t); 7666 taa->LOCADDR_offset = sizeof (*taa); 7667 7668 sin6 = (sin6_t *)&taa[1]; 7669 *sin6 = sin6_null; 7670 7671 sin6->sin6_family = AF_INET6; 7672 sin6->sin6_addr = tcp->tcp_ip6h->ip6_src; 7673 sin6->sin6_port = tcp->tcp_lport; 7674 7675 ackmp->b_wptr = (uchar_t *)&sin6[1]; 7676 7677 if (tcp->tcp_state >= TCPS_SYN_RCVD) { 7678 /* 7679 * Fill in Remote address 7680 */ 7681 taa->REMADDR_length = sizeof (sin6_t); 7682 taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset + 7683 taa->LOCADDR_length); 7684 7685 sin6 = (sin6_t *)(ackmp->b_rptr + taa->REMADDR_offset); 7686 *sin6 = sin6_null; 7687 sin6->sin6_family = AF_INET6; 7688 sin6->sin6_flowinfo = 7689 tcp->tcp_ip6h->ip6_vcf & 7690 ~IPV6_VERS_AND_FLOW_MASK; 7691 sin6->sin6_addr = tcp->tcp_remote_v6; 7692 sin6->sin6_port = tcp->tcp_fport; 7693 7694 ackmp->b_wptr = (uchar_t *)&sin6[1]; 7695 } 7696 } 7697 putnext(tcp->tcp_rq, ackmp); 7698 } 7699 7700 /* 7701 * Handle reinitialization of a tcp structure. 7702 * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE. 7703 */ 7704 static void 7705 tcp_reinit(tcp_t *tcp) 7706 { 7707 mblk_t *mp; 7708 int err; 7709 tcp_stack_t *tcps = tcp->tcp_tcps; 7710 7711 TCP_STAT(tcps, tcp_reinit_calls); 7712 7713 /* tcp_reinit should never be called for detached tcp_t's */ 7714 ASSERT(tcp->tcp_listener == NULL); 7715 ASSERT((tcp->tcp_family == AF_INET && 7716 tcp->tcp_ipversion == IPV4_VERSION) || 7717 (tcp->tcp_family == AF_INET6 && 7718 (tcp->tcp_ipversion == IPV4_VERSION || 7719 tcp->tcp_ipversion == IPV6_VERSION))); 7720 7721 /* Cancel outstanding timers */ 7722 tcp_timers_stop(tcp); 7723 7724 /* 7725 * Reset everything in the state vector, after updating global 7726 * MIB data from instance counters. 7727 */ 7728 UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs); 7729 tcp->tcp_ibsegs = 0; 7730 UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs); 7731 tcp->tcp_obsegs = 0; 7732 7733 tcp_close_mpp(&tcp->tcp_xmit_head); 7734 if (tcp->tcp_snd_zcopy_aware) 7735 tcp_zcopy_notify(tcp); 7736 tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL; 7737 tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0; 7738 mutex_enter(&tcp->tcp_non_sq_lock); 7739 if (tcp->tcp_flow_stopped && 7740 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 7741 tcp_clrqfull(tcp); 7742 } 7743 mutex_exit(&tcp->tcp_non_sq_lock); 7744 tcp_close_mpp(&tcp->tcp_reass_head); 7745 tcp->tcp_reass_tail = NULL; 7746 if (tcp->tcp_rcv_list != NULL) { 7747 /* Free b_next chain */ 7748 tcp_close_mpp(&tcp->tcp_rcv_list); 7749 tcp->tcp_rcv_last_head = NULL; 7750 tcp->tcp_rcv_last_tail = NULL; 7751 tcp->tcp_rcv_cnt = 0; 7752 } 7753 tcp->tcp_rcv_last_tail = NULL; 7754 7755 if ((mp = tcp->tcp_urp_mp) != NULL) { 7756 freemsg(mp); 7757 tcp->tcp_urp_mp = NULL; 7758 } 7759 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 7760 freemsg(mp); 7761 tcp->tcp_urp_mark_mp = NULL; 7762 } 7763 if (tcp->tcp_fused_sigurg_mp != NULL) { 7764 freeb(tcp->tcp_fused_sigurg_mp); 7765 tcp->tcp_fused_sigurg_mp = NULL; 7766 } 7767 7768 /* 7769 * Following is a union with two members which are 7770 * identical types and size so the following cleanup 7771 * is enough. 7772 */ 7773 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 7774 7775 CL_INET_DISCONNECT(tcp); 7776 7777 /* 7778 * The connection can't be on the tcp_time_wait_head list 7779 * since it is not detached. 7780 */ 7781 ASSERT(tcp->tcp_time_wait_next == NULL); 7782 ASSERT(tcp->tcp_time_wait_prev == NULL); 7783 ASSERT(tcp->tcp_time_wait_expire == 0); 7784 7785 if (tcp->tcp_kssl_pending) { 7786 tcp->tcp_kssl_pending = B_FALSE; 7787 7788 /* Don't reset if the initialized by bind. */ 7789 if (tcp->tcp_kssl_ent != NULL) { 7790 kssl_release_ent(tcp->tcp_kssl_ent, NULL, 7791 KSSL_NO_PROXY); 7792 } 7793 } 7794 if (tcp->tcp_kssl_ctx != NULL) { 7795 kssl_release_ctx(tcp->tcp_kssl_ctx); 7796 tcp->tcp_kssl_ctx = NULL; 7797 } 7798 7799 /* 7800 * Reset/preserve other values 7801 */ 7802 tcp_reinit_values(tcp); 7803 ipcl_hash_remove(tcp->tcp_connp); 7804 conn_delete_ire(tcp->tcp_connp, NULL); 7805 tcp_ipsec_cleanup(tcp); 7806 7807 if (tcp->tcp_conn_req_max != 0) { 7808 /* 7809 * This is the case when a TLI program uses the same 7810 * transport end point to accept a connection. This 7811 * makes the TCP both a listener and acceptor. When 7812 * this connection is closed, we need to set the state 7813 * back to TCPS_LISTEN. Make sure that the eager list 7814 * is reinitialized. 7815 * 7816 * Note that this stream is still bound to the four 7817 * tuples of the previous connection in IP. If a new 7818 * SYN with different foreign address comes in, IP will 7819 * not find it and will send it to the global queue. In 7820 * the global queue, TCP will do a tcp_lookup_listener() 7821 * to find this stream. This works because this stream 7822 * is only removed from connected hash. 7823 * 7824 */ 7825 tcp->tcp_state = TCPS_LISTEN; 7826 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 7827 tcp->tcp_eager_next_drop_q0 = tcp; 7828 tcp->tcp_eager_prev_drop_q0 = tcp; 7829 tcp->tcp_connp->conn_recv = tcp_conn_request; 7830 if (tcp->tcp_family == AF_INET6) { 7831 ASSERT(tcp->tcp_connp->conn_af_isv6); 7832 (void) ipcl_bind_insert_v6(tcp->tcp_connp, IPPROTO_TCP, 7833 &tcp->tcp_ip6h->ip6_src, tcp->tcp_lport); 7834 } else { 7835 ASSERT(!tcp->tcp_connp->conn_af_isv6); 7836 (void) ipcl_bind_insert(tcp->tcp_connp, IPPROTO_TCP, 7837 tcp->tcp_ipha->ipha_src, tcp->tcp_lport); 7838 } 7839 } else { 7840 tcp->tcp_state = TCPS_BOUND; 7841 } 7842 7843 /* 7844 * Initialize to default values 7845 * Can't fail since enough header template space already allocated 7846 * at open(). 7847 */ 7848 err = tcp_init_values(tcp); 7849 ASSERT(err == 0); 7850 /* Restore state in tcp_tcph */ 7851 bcopy(&tcp->tcp_lport, tcp->tcp_tcph->th_lport, TCP_PORT_LEN); 7852 if (tcp->tcp_ipversion == IPV4_VERSION) 7853 tcp->tcp_ipha->ipha_src = tcp->tcp_bound_source; 7854 else 7855 tcp->tcp_ip6h->ip6_src = tcp->tcp_bound_source_v6; 7856 /* 7857 * Copy of the src addr. in tcp_t is needed in tcp_t 7858 * since the lookup funcs can only lookup on tcp_t 7859 */ 7860 tcp->tcp_ip_src_v6 = tcp->tcp_bound_source_v6; 7861 7862 ASSERT(tcp->tcp_ptpbhn != NULL); 7863 tcp->tcp_rq->q_hiwat = tcps->tcps_recv_hiwat; 7864 tcp->tcp_rwnd = tcps->tcps_recv_hiwat; 7865 tcp->tcp_mss = tcp->tcp_ipversion != IPV4_VERSION ? 7866 tcps->tcps_mss_def_ipv6 : tcps->tcps_mss_def_ipv4; 7867 } 7868 7869 /* 7870 * Force values to zero that need be zero. 7871 * Do not touch values asociated with the BOUND or LISTEN state 7872 * since the connection will end up in that state after the reinit. 7873 * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t 7874 * structure! 7875 */ 7876 static void 7877 tcp_reinit_values(tcp) 7878 tcp_t *tcp; 7879 { 7880 tcp_stack_t *tcps = tcp->tcp_tcps; 7881 7882 #ifndef lint 7883 #define DONTCARE(x) 7884 #define PRESERVE(x) 7885 #else 7886 #define DONTCARE(x) ((x) = (x)) 7887 #define PRESERVE(x) ((x) = (x)) 7888 #endif /* lint */ 7889 7890 PRESERVE(tcp->tcp_bind_hash); 7891 PRESERVE(tcp->tcp_ptpbhn); 7892 PRESERVE(tcp->tcp_acceptor_hash); 7893 PRESERVE(tcp->tcp_ptpahn); 7894 7895 /* Should be ASSERT NULL on these with new code! */ 7896 ASSERT(tcp->tcp_time_wait_next == NULL); 7897 ASSERT(tcp->tcp_time_wait_prev == NULL); 7898 ASSERT(tcp->tcp_time_wait_expire == 0); 7899 PRESERVE(tcp->tcp_state); 7900 PRESERVE(tcp->tcp_rq); 7901 PRESERVE(tcp->tcp_wq); 7902 7903 ASSERT(tcp->tcp_xmit_head == NULL); 7904 ASSERT(tcp->tcp_xmit_last == NULL); 7905 ASSERT(tcp->tcp_unsent == 0); 7906 ASSERT(tcp->tcp_xmit_tail == NULL); 7907 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 7908 7909 tcp->tcp_snxt = 0; /* Displayed in mib */ 7910 tcp->tcp_suna = 0; /* Displayed in mib */ 7911 tcp->tcp_swnd = 0; 7912 DONTCARE(tcp->tcp_cwnd); /* Init in tcp_mss_set */ 7913 7914 ASSERT(tcp->tcp_ibsegs == 0); 7915 ASSERT(tcp->tcp_obsegs == 0); 7916 7917 if (tcp->tcp_iphc != NULL) { 7918 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 7919 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 7920 } 7921 7922 DONTCARE(tcp->tcp_naglim); /* Init in tcp_init_values */ 7923 DONTCARE(tcp->tcp_hdr_len); /* Init in tcp_init_values */ 7924 DONTCARE(tcp->tcp_ipha); 7925 DONTCARE(tcp->tcp_ip6h); 7926 DONTCARE(tcp->tcp_ip_hdr_len); 7927 DONTCARE(tcp->tcp_tcph); 7928 DONTCARE(tcp->tcp_tcp_hdr_len); /* Init in tcp_init_values */ 7929 tcp->tcp_valid_bits = 0; 7930 7931 DONTCARE(tcp->tcp_xmit_hiwater); /* Init in tcp_init_values */ 7932 DONTCARE(tcp->tcp_timer_backoff); /* Init in tcp_init_values */ 7933 DONTCARE(tcp->tcp_last_recv_time); /* Init in tcp_init_values */ 7934 tcp->tcp_last_rcv_lbolt = 0; 7935 7936 tcp->tcp_init_cwnd = 0; 7937 7938 tcp->tcp_urp_last_valid = 0; 7939 tcp->tcp_hard_binding = 0; 7940 tcp->tcp_hard_bound = 0; 7941 PRESERVE(tcp->tcp_cred); 7942 PRESERVE(tcp->tcp_cpid); 7943 PRESERVE(tcp->tcp_open_time); 7944 PRESERVE(tcp->tcp_exclbind); 7945 7946 tcp->tcp_fin_acked = 0; 7947 tcp->tcp_fin_rcvd = 0; 7948 tcp->tcp_fin_sent = 0; 7949 tcp->tcp_ordrel_done = 0; 7950 7951 tcp->tcp_debug = 0; 7952 tcp->tcp_dontroute = 0; 7953 tcp->tcp_broadcast = 0; 7954 7955 tcp->tcp_useloopback = 0; 7956 tcp->tcp_reuseaddr = 0; 7957 tcp->tcp_oobinline = 0; 7958 tcp->tcp_dgram_errind = 0; 7959 7960 tcp->tcp_detached = 0; 7961 tcp->tcp_bind_pending = 0; 7962 tcp->tcp_unbind_pending = 0; 7963 tcp->tcp_deferred_clean_death = 0; 7964 7965 tcp->tcp_snd_ws_ok = B_FALSE; 7966 tcp->tcp_snd_ts_ok = B_FALSE; 7967 tcp->tcp_linger = 0; 7968 tcp->tcp_ka_enabled = 0; 7969 tcp->tcp_zero_win_probe = 0; 7970 7971 tcp->tcp_loopback = 0; 7972 tcp->tcp_localnet = 0; 7973 tcp->tcp_syn_defense = 0; 7974 tcp->tcp_set_timer = 0; 7975 7976 tcp->tcp_active_open = 0; 7977 ASSERT(tcp->tcp_timeout == B_FALSE); 7978 tcp->tcp_rexmit = B_FALSE; 7979 tcp->tcp_xmit_zc_clean = B_FALSE; 7980 7981 tcp->tcp_snd_sack_ok = B_FALSE; 7982 PRESERVE(tcp->tcp_recvdstaddr); 7983 tcp->tcp_hwcksum = B_FALSE; 7984 7985 tcp->tcp_ire_ill_check_done = B_FALSE; 7986 DONTCARE(tcp->tcp_maxpsz); /* Init in tcp_init_values */ 7987 7988 tcp->tcp_mdt = B_FALSE; 7989 tcp->tcp_mdt_hdr_head = 0; 7990 tcp->tcp_mdt_hdr_tail = 0; 7991 7992 tcp->tcp_conn_def_q0 = 0; 7993 tcp->tcp_ip_forward_progress = B_FALSE; 7994 tcp->tcp_anon_priv_bind = 0; 7995 tcp->tcp_ecn_ok = B_FALSE; 7996 7997 tcp->tcp_cwr = B_FALSE; 7998 tcp->tcp_ecn_echo_on = B_FALSE; 7999 8000 if (tcp->tcp_sack_info != NULL) { 8001 if (tcp->tcp_notsack_list != NULL) { 8002 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 8003 } 8004 kmem_cache_free(tcp_sack_info_cache, tcp->tcp_sack_info); 8005 tcp->tcp_sack_info = NULL; 8006 } 8007 8008 tcp->tcp_rcv_ws = 0; 8009 tcp->tcp_snd_ws = 0; 8010 tcp->tcp_ts_recent = 0; 8011 tcp->tcp_rnxt = 0; /* Displayed in mib */ 8012 DONTCARE(tcp->tcp_rwnd); /* Set in tcp_reinit() */ 8013 tcp->tcp_if_mtu = 0; 8014 8015 ASSERT(tcp->tcp_reass_head == NULL); 8016 ASSERT(tcp->tcp_reass_tail == NULL); 8017 8018 tcp->tcp_cwnd_cnt = 0; 8019 8020 ASSERT(tcp->tcp_rcv_list == NULL); 8021 ASSERT(tcp->tcp_rcv_last_head == NULL); 8022 ASSERT(tcp->tcp_rcv_last_tail == NULL); 8023 ASSERT(tcp->tcp_rcv_cnt == 0); 8024 8025 DONTCARE(tcp->tcp_cwnd_ssthresh); /* Init in tcp_adapt_ire */ 8026 DONTCARE(tcp->tcp_cwnd_max); /* Init in tcp_init_values */ 8027 tcp->tcp_csuna = 0; 8028 8029 tcp->tcp_rto = 0; /* Displayed in MIB */ 8030 DONTCARE(tcp->tcp_rtt_sa); /* Init in tcp_init_values */ 8031 DONTCARE(tcp->tcp_rtt_sd); /* Init in tcp_init_values */ 8032 tcp->tcp_rtt_update = 0; 8033 8034 DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 8035 DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 8036 8037 tcp->tcp_rack = 0; /* Displayed in mib */ 8038 tcp->tcp_rack_cnt = 0; 8039 tcp->tcp_rack_cur_max = 0; 8040 tcp->tcp_rack_abs_max = 0; 8041 8042 tcp->tcp_max_swnd = 0; 8043 8044 ASSERT(tcp->tcp_listener == NULL); 8045 8046 DONTCARE(tcp->tcp_xmit_lowater); /* Init in tcp_init_values */ 8047 8048 DONTCARE(tcp->tcp_irs); /* tcp_valid_bits cleared */ 8049 DONTCARE(tcp->tcp_iss); /* tcp_valid_bits cleared */ 8050 DONTCARE(tcp->tcp_fss); /* tcp_valid_bits cleared */ 8051 DONTCARE(tcp->tcp_urg); /* tcp_valid_bits cleared */ 8052 8053 ASSERT(tcp->tcp_conn_req_cnt_q == 0); 8054 ASSERT(tcp->tcp_conn_req_cnt_q0 == 0); 8055 PRESERVE(tcp->tcp_conn_req_max); 8056 PRESERVE(tcp->tcp_conn_req_seqnum); 8057 8058 DONTCARE(tcp->tcp_ip_hdr_len); /* Init in tcp_init_values */ 8059 DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */ 8060 DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */ 8061 DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */ 8062 DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */ 8063 8064 tcp->tcp_lingertime = 0; 8065 8066 DONTCARE(tcp->tcp_urp_last); /* tcp_urp_last_valid is cleared */ 8067 ASSERT(tcp->tcp_urp_mp == NULL); 8068 ASSERT(tcp->tcp_urp_mark_mp == NULL); 8069 ASSERT(tcp->tcp_fused_sigurg_mp == NULL); 8070 8071 ASSERT(tcp->tcp_eager_next_q == NULL); 8072 ASSERT(tcp->tcp_eager_last_q == NULL); 8073 ASSERT((tcp->tcp_eager_next_q0 == NULL && 8074 tcp->tcp_eager_prev_q0 == NULL) || 8075 tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0); 8076 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 8077 8078 ASSERT((tcp->tcp_eager_next_drop_q0 == NULL && 8079 tcp->tcp_eager_prev_drop_q0 == NULL) || 8080 tcp->tcp_eager_next_drop_q0 == tcp->tcp_eager_prev_drop_q0); 8081 8082 tcp->tcp_client_errno = 0; 8083 8084 DONTCARE(tcp->tcp_sum); /* Init in tcp_init_values */ 8085 8086 tcp->tcp_remote_v6 = ipv6_all_zeros; /* Displayed in MIB */ 8087 8088 PRESERVE(tcp->tcp_bound_source_v6); 8089 tcp->tcp_last_sent_len = 0; 8090 tcp->tcp_dupack_cnt = 0; 8091 8092 tcp->tcp_fport = 0; /* Displayed in MIB */ 8093 PRESERVE(tcp->tcp_lport); 8094 8095 PRESERVE(tcp->tcp_acceptor_lockp); 8096 8097 ASSERT(tcp->tcp_ordrelid == 0); 8098 PRESERVE(tcp->tcp_acceptor_id); 8099 DONTCARE(tcp->tcp_ipsec_overhead); 8100 8101 /* 8102 * If tcp_tracing flag is ON (i.e. We have a trace buffer 8103 * in tcp structure and now tracing), Re-initialize all 8104 * members of tcp_traceinfo. 8105 */ 8106 if (tcp->tcp_tracebuf != NULL) { 8107 bzero(tcp->tcp_tracebuf, sizeof (tcptrch_t)); 8108 } 8109 8110 PRESERVE(tcp->tcp_family); 8111 if (tcp->tcp_family == AF_INET6) { 8112 tcp->tcp_ipversion = IPV6_VERSION; 8113 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 8114 } else { 8115 tcp->tcp_ipversion = IPV4_VERSION; 8116 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 8117 } 8118 8119 tcp->tcp_bound_if = 0; 8120 tcp->tcp_ipv6_recvancillary = 0; 8121 tcp->tcp_recvifindex = 0; 8122 tcp->tcp_recvhops = 0; 8123 tcp->tcp_closed = 0; 8124 tcp->tcp_cleandeathtag = 0; 8125 if (tcp->tcp_hopopts != NULL) { 8126 mi_free(tcp->tcp_hopopts); 8127 tcp->tcp_hopopts = NULL; 8128 tcp->tcp_hopoptslen = 0; 8129 } 8130 ASSERT(tcp->tcp_hopoptslen == 0); 8131 if (tcp->tcp_dstopts != NULL) { 8132 mi_free(tcp->tcp_dstopts); 8133 tcp->tcp_dstopts = NULL; 8134 tcp->tcp_dstoptslen = 0; 8135 } 8136 ASSERT(tcp->tcp_dstoptslen == 0); 8137 if (tcp->tcp_rtdstopts != NULL) { 8138 mi_free(tcp->tcp_rtdstopts); 8139 tcp->tcp_rtdstopts = NULL; 8140 tcp->tcp_rtdstoptslen = 0; 8141 } 8142 ASSERT(tcp->tcp_rtdstoptslen == 0); 8143 if (tcp->tcp_rthdr != NULL) { 8144 mi_free(tcp->tcp_rthdr); 8145 tcp->tcp_rthdr = NULL; 8146 tcp->tcp_rthdrlen = 0; 8147 } 8148 ASSERT(tcp->tcp_rthdrlen == 0); 8149 PRESERVE(tcp->tcp_drop_opt_ack_cnt); 8150 8151 /* Reset fusion-related fields */ 8152 tcp->tcp_fused = B_FALSE; 8153 tcp->tcp_unfusable = B_FALSE; 8154 tcp->tcp_fused_sigurg = B_FALSE; 8155 tcp->tcp_direct_sockfs = B_FALSE; 8156 tcp->tcp_fuse_syncstr_stopped = B_FALSE; 8157 tcp->tcp_fuse_syncstr_plugged = B_FALSE; 8158 tcp->tcp_loopback_peer = NULL; 8159 tcp->tcp_fuse_rcv_hiwater = 0; 8160 tcp->tcp_fuse_rcv_unread_hiwater = 0; 8161 tcp->tcp_fuse_rcv_unread_cnt = 0; 8162 8163 tcp->tcp_lso = B_FALSE; 8164 8165 tcp->tcp_in_ack_unsent = 0; 8166 tcp->tcp_cork = B_FALSE; 8167 tcp->tcp_tconnind_started = B_FALSE; 8168 8169 PRESERVE(tcp->tcp_squeue_bytes); 8170 8171 ASSERT(tcp->tcp_kssl_ctx == NULL); 8172 ASSERT(!tcp->tcp_kssl_pending); 8173 PRESERVE(tcp->tcp_kssl_ent); 8174 8175 tcp->tcp_closemp_used = B_FALSE; 8176 8177 #ifdef DEBUG 8178 DONTCARE(tcp->tcmp_stk[0]); 8179 #endif 8180 8181 8182 #undef DONTCARE 8183 #undef PRESERVE 8184 } 8185 8186 /* 8187 * Allocate necessary resources and initialize state vector. 8188 * Guaranteed not to fail so that when an error is returned, 8189 * the caller doesn't need to do any additional cleanup. 8190 */ 8191 int 8192 tcp_init(tcp_t *tcp, queue_t *q) 8193 { 8194 int err; 8195 8196 tcp->tcp_rq = q; 8197 tcp->tcp_wq = WR(q); 8198 tcp->tcp_state = TCPS_IDLE; 8199 if ((err = tcp_init_values(tcp)) != 0) 8200 tcp_timers_stop(tcp); 8201 return (err); 8202 } 8203 8204 static int 8205 tcp_init_values(tcp_t *tcp) 8206 { 8207 int err; 8208 tcp_stack_t *tcps = tcp->tcp_tcps; 8209 8210 ASSERT((tcp->tcp_family == AF_INET && 8211 tcp->tcp_ipversion == IPV4_VERSION) || 8212 (tcp->tcp_family == AF_INET6 && 8213 (tcp->tcp_ipversion == IPV4_VERSION || 8214 tcp->tcp_ipversion == IPV6_VERSION))); 8215 8216 /* 8217 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO 8218 * will be close to tcp_rexmit_interval_initial. By doing this, we 8219 * allow the algorithm to adjust slowly to large fluctuations of RTT 8220 * during first few transmissions of a connection as seen in slow 8221 * links. 8222 */ 8223 tcp->tcp_rtt_sa = tcps->tcps_rexmit_interval_initial << 2; 8224 tcp->tcp_rtt_sd = tcps->tcps_rexmit_interval_initial >> 1; 8225 tcp->tcp_rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 8226 tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) + 8227 tcps->tcps_conn_grace_period; 8228 if (tcp->tcp_rto < tcps->tcps_rexmit_interval_min) 8229 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 8230 tcp->tcp_timer_backoff = 0; 8231 tcp->tcp_ms_we_have_waited = 0; 8232 tcp->tcp_last_recv_time = lbolt; 8233 tcp->tcp_cwnd_max = tcps->tcps_cwnd_max_; 8234 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 8235 tcp->tcp_snd_burst = TCP_CWND_INFINITE; 8236 8237 tcp->tcp_maxpsz = tcps->tcps_maxpsz_multiplier; 8238 8239 tcp->tcp_first_timer_threshold = tcps->tcps_ip_notify_interval; 8240 tcp->tcp_first_ctimer_threshold = tcps->tcps_ip_notify_cinterval; 8241 tcp->tcp_second_timer_threshold = tcps->tcps_ip_abort_interval; 8242 /* 8243 * Fix it to tcp_ip_abort_linterval later if it turns out to be a 8244 * passive open. 8245 */ 8246 tcp->tcp_second_ctimer_threshold = tcps->tcps_ip_abort_cinterval; 8247 8248 tcp->tcp_naglim = tcps->tcps_naglim_def; 8249 8250 /* NOTE: ISS is now set in tcp_adapt_ire(). */ 8251 8252 tcp->tcp_mdt_hdr_head = 0; 8253 tcp->tcp_mdt_hdr_tail = 0; 8254 8255 /* Reset fusion-related fields */ 8256 tcp->tcp_fused = B_FALSE; 8257 tcp->tcp_unfusable = B_FALSE; 8258 tcp->tcp_fused_sigurg = B_FALSE; 8259 tcp->tcp_direct_sockfs = B_FALSE; 8260 tcp->tcp_fuse_syncstr_stopped = B_FALSE; 8261 tcp->tcp_fuse_syncstr_plugged = B_FALSE; 8262 tcp->tcp_loopback_peer = NULL; 8263 tcp->tcp_fuse_rcv_hiwater = 0; 8264 tcp->tcp_fuse_rcv_unread_hiwater = 0; 8265 tcp->tcp_fuse_rcv_unread_cnt = 0; 8266 8267 /* Initialize the header template */ 8268 if (tcp->tcp_ipversion == IPV4_VERSION) { 8269 err = tcp_header_init_ipv4(tcp); 8270 } else { 8271 err = tcp_header_init_ipv6(tcp); 8272 } 8273 if (err) 8274 return (err); 8275 8276 /* 8277 * Init the window scale to the max so tcp_rwnd_set() won't pare 8278 * down tcp_rwnd. tcp_adapt_ire() will set the right value later. 8279 */ 8280 tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT; 8281 tcp->tcp_xmit_lowater = tcps->tcps_xmit_lowat; 8282 tcp->tcp_xmit_hiwater = tcps->tcps_xmit_hiwat; 8283 8284 tcp->tcp_cork = B_FALSE; 8285 /* 8286 * Init the tcp_debug option. This value determines whether TCP 8287 * calls strlog() to print out debug messages. Doing this 8288 * initialization here means that this value is not inherited thru 8289 * tcp_reinit(). 8290 */ 8291 tcp->tcp_debug = tcps->tcps_dbg; 8292 8293 tcp->tcp_ka_interval = tcps->tcps_keepalive_interval; 8294 tcp->tcp_ka_abort_thres = tcps->tcps_keepalive_abort_interval; 8295 8296 return (0); 8297 } 8298 8299 /* 8300 * Initialize the IPv4 header. Loses any record of any IP options. 8301 */ 8302 static int 8303 tcp_header_init_ipv4(tcp_t *tcp) 8304 { 8305 tcph_t *tcph; 8306 uint32_t sum; 8307 conn_t *connp; 8308 tcp_stack_t *tcps = tcp->tcp_tcps; 8309 8310 /* 8311 * This is a simple initialization. If there's 8312 * already a template, it should never be too small, 8313 * so reuse it. Otherwise, allocate space for the new one. 8314 */ 8315 if (tcp->tcp_iphc == NULL) { 8316 ASSERT(tcp->tcp_iphc_len == 0); 8317 tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH; 8318 tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP); 8319 if (tcp->tcp_iphc == NULL) { 8320 tcp->tcp_iphc_len = 0; 8321 return (ENOMEM); 8322 } 8323 } 8324 8325 /* options are gone; may need a new label */ 8326 connp = tcp->tcp_connp; 8327 connp->conn_mlp_type = mlptSingle; 8328 connp->conn_ulp_labeled = !is_system_labeled(); 8329 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 8330 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 8331 tcp->tcp_ip6h = NULL; 8332 tcp->tcp_ipversion = IPV4_VERSION; 8333 tcp->tcp_hdr_len = sizeof (ipha_t) + sizeof (tcph_t); 8334 tcp->tcp_tcp_hdr_len = sizeof (tcph_t); 8335 tcp->tcp_ip_hdr_len = sizeof (ipha_t); 8336 tcp->tcp_ipha->ipha_length = htons(sizeof (ipha_t) + sizeof (tcph_t)); 8337 tcp->tcp_ipha->ipha_version_and_hdr_length 8338 = (IP_VERSION << 4) | IP_SIMPLE_HDR_LENGTH_IN_WORDS; 8339 tcp->tcp_ipha->ipha_ident = 0; 8340 8341 tcp->tcp_ttl = (uchar_t)tcps->tcps_ipv4_ttl; 8342 tcp->tcp_tos = 0; 8343 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0; 8344 tcp->tcp_ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl; 8345 tcp->tcp_ipha->ipha_protocol = IPPROTO_TCP; 8346 8347 tcph = (tcph_t *)(tcp->tcp_iphc + sizeof (ipha_t)); 8348 tcp->tcp_tcph = tcph; 8349 tcph->th_offset_and_rsrvd[0] = (5 << 4); 8350 /* 8351 * IP wants our header length in the checksum field to 8352 * allow it to perform a single pseudo-header+checksum 8353 * calculation on behalf of TCP. 8354 * Include the adjustment for a source route once IP_OPTIONS is set. 8355 */ 8356 sum = sizeof (tcph_t) + tcp->tcp_sum; 8357 sum = (sum >> 16) + (sum & 0xFFFF); 8358 U16_TO_ABE16(sum, tcph->th_sum); 8359 return (0); 8360 } 8361 8362 /* 8363 * Initialize the IPv6 header. Loses any record of any IPv6 extension headers. 8364 */ 8365 static int 8366 tcp_header_init_ipv6(tcp_t *tcp) 8367 { 8368 tcph_t *tcph; 8369 uint32_t sum; 8370 conn_t *connp; 8371 tcp_stack_t *tcps = tcp->tcp_tcps; 8372 8373 /* 8374 * This is a simple initialization. If there's 8375 * already a template, it should never be too small, 8376 * so reuse it. Otherwise, allocate space for the new one. 8377 * Ensure that there is enough space to "downgrade" the tcp_t 8378 * to an IPv4 tcp_t. This requires having space for a full load 8379 * of IPv4 options, as well as a full load of TCP options 8380 * (TCP_MAX_COMBINED_HEADER_LENGTH, 120 bytes); this is more space 8381 * than a v6 header and a TCP header with a full load of TCP options 8382 * (IPV6_HDR_LEN is 40 bytes; TCP_MAX_HDR_LENGTH is 60 bytes). 8383 * We want to avoid reallocation in the "downgraded" case when 8384 * processing outbound IPv4 options. 8385 */ 8386 if (tcp->tcp_iphc == NULL) { 8387 ASSERT(tcp->tcp_iphc_len == 0); 8388 tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH; 8389 tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP); 8390 if (tcp->tcp_iphc == NULL) { 8391 tcp->tcp_iphc_len = 0; 8392 return (ENOMEM); 8393 } 8394 } 8395 8396 /* options are gone; may need a new label */ 8397 connp = tcp->tcp_connp; 8398 connp->conn_mlp_type = mlptSingle; 8399 connp->conn_ulp_labeled = !is_system_labeled(); 8400 8401 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 8402 tcp->tcp_ipversion = IPV6_VERSION; 8403 tcp->tcp_hdr_len = IPV6_HDR_LEN + sizeof (tcph_t); 8404 tcp->tcp_tcp_hdr_len = sizeof (tcph_t); 8405 tcp->tcp_ip_hdr_len = IPV6_HDR_LEN; 8406 tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc; 8407 tcp->tcp_ipha = NULL; 8408 8409 /* Initialize the header template */ 8410 8411 tcp->tcp_ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW; 8412 tcp->tcp_ip6h->ip6_plen = ntohs(sizeof (tcph_t)); 8413 tcp->tcp_ip6h->ip6_nxt = IPPROTO_TCP; 8414 tcp->tcp_ip6h->ip6_hops = (uint8_t)tcps->tcps_ipv6_hoplimit; 8415 8416 tcph = (tcph_t *)(tcp->tcp_iphc + IPV6_HDR_LEN); 8417 tcp->tcp_tcph = tcph; 8418 tcph->th_offset_and_rsrvd[0] = (5 << 4); 8419 /* 8420 * IP wants our header length in the checksum field to 8421 * allow it to perform a single psuedo-header+checksum 8422 * calculation on behalf of TCP. 8423 * Include the adjustment for a source route when IPV6_RTHDR is set. 8424 */ 8425 sum = sizeof (tcph_t) + tcp->tcp_sum; 8426 sum = (sum >> 16) + (sum & 0xFFFF); 8427 U16_TO_ABE16(sum, tcph->th_sum); 8428 return (0); 8429 } 8430 8431 /* At minimum we need 8 bytes in the TCP header for the lookup */ 8432 #define ICMP_MIN_TCP_HDR 8 8433 8434 /* 8435 * tcp_icmp_error is called by tcp_rput_other to process ICMP error messages 8436 * passed up by IP. The message is always received on the correct tcp_t. 8437 * Assumes that IP has pulled up everything up to and including the ICMP header. 8438 */ 8439 void 8440 tcp_icmp_error(tcp_t *tcp, mblk_t *mp) 8441 { 8442 icmph_t *icmph; 8443 ipha_t *ipha; 8444 int iph_hdr_length; 8445 tcph_t *tcph; 8446 boolean_t ipsec_mctl = B_FALSE; 8447 boolean_t secure; 8448 mblk_t *first_mp = mp; 8449 uint32_t new_mss; 8450 uint32_t ratio; 8451 size_t mp_size = MBLKL(mp); 8452 uint32_t seg_seq; 8453 tcp_stack_t *tcps = tcp->tcp_tcps; 8454 8455 /* Assume IP provides aligned packets - otherwise toss */ 8456 if (!OK_32PTR(mp->b_rptr)) { 8457 freemsg(mp); 8458 return; 8459 } 8460 8461 /* 8462 * Since ICMP errors are normal data marked with M_CTL when sent 8463 * to TCP or UDP, we have to look for a IPSEC_IN value to identify 8464 * packets starting with an ipsec_info_t, see ipsec_info.h. 8465 */ 8466 if ((mp_size == sizeof (ipsec_info_t)) && 8467 (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == IPSEC_IN)) { 8468 ASSERT(mp->b_cont != NULL); 8469 mp = mp->b_cont; 8470 /* IP should have done this */ 8471 ASSERT(OK_32PTR(mp->b_rptr)); 8472 mp_size = MBLKL(mp); 8473 ipsec_mctl = B_TRUE; 8474 } 8475 8476 /* 8477 * Verify that we have a complete outer IP header. If not, drop it. 8478 */ 8479 if (mp_size < sizeof (ipha_t)) { 8480 noticmpv4: 8481 freemsg(first_mp); 8482 return; 8483 } 8484 8485 ipha = (ipha_t *)mp->b_rptr; 8486 /* 8487 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent 8488 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6. 8489 */ 8490 switch (IPH_HDR_VERSION(ipha)) { 8491 case IPV6_VERSION: 8492 tcp_icmp_error_ipv6(tcp, first_mp, ipsec_mctl); 8493 return; 8494 case IPV4_VERSION: 8495 break; 8496 default: 8497 goto noticmpv4; 8498 } 8499 8500 /* Skip past the outer IP and ICMP headers */ 8501 iph_hdr_length = IPH_HDR_LENGTH(ipha); 8502 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 8503 /* 8504 * If we don't have the correct outer IP header length or if the ULP 8505 * is not IPPROTO_ICMP or if we don't have a complete inner IP header 8506 * send it upstream. 8507 */ 8508 if (iph_hdr_length < sizeof (ipha_t) || 8509 ipha->ipha_protocol != IPPROTO_ICMP || 8510 (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) { 8511 goto noticmpv4; 8512 } 8513 ipha = (ipha_t *)&icmph[1]; 8514 8515 /* Skip past the inner IP and find the ULP header */ 8516 iph_hdr_length = IPH_HDR_LENGTH(ipha); 8517 tcph = (tcph_t *)((char *)ipha + iph_hdr_length); 8518 /* 8519 * If we don't have the correct inner IP header length or if the ULP 8520 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR 8521 * bytes of TCP header, drop it. 8522 */ 8523 if (iph_hdr_length < sizeof (ipha_t) || 8524 ipha->ipha_protocol != IPPROTO_TCP || 8525 (uchar_t *)tcph + ICMP_MIN_TCP_HDR > mp->b_wptr) { 8526 goto noticmpv4; 8527 } 8528 8529 if (TCP_IS_DETACHED_NONEAGER(tcp)) { 8530 if (ipsec_mctl) { 8531 secure = ipsec_in_is_secure(first_mp); 8532 } else { 8533 secure = B_FALSE; 8534 } 8535 if (secure) { 8536 /* 8537 * If we are willing to accept this in clear 8538 * we don't have to verify policy. 8539 */ 8540 if (!ipsec_inbound_accept_clear(mp, ipha, NULL)) { 8541 if (!tcp_check_policy(tcp, first_mp, 8542 ipha, NULL, secure, ipsec_mctl)) { 8543 /* 8544 * tcp_check_policy called 8545 * ip_drop_packet() on failure. 8546 */ 8547 return; 8548 } 8549 } 8550 } 8551 } else if (ipsec_mctl) { 8552 /* 8553 * This is a hard_bound connection. IP has already 8554 * verified policy. We don't have to do it again. 8555 */ 8556 freeb(first_mp); 8557 first_mp = mp; 8558 ipsec_mctl = B_FALSE; 8559 } 8560 8561 seg_seq = ABE32_TO_U32(tcph->th_seq); 8562 /* 8563 * TCP SHOULD check that the TCP sequence number contained in 8564 * payload of the ICMP error message is within the range 8565 * SND.UNA <= SEG.SEQ < SND.NXT. 8566 */ 8567 if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) { 8568 /* 8569 * If the ICMP message is bogus, should we kill the 8570 * connection, or should we just drop the bogus ICMP 8571 * message? It would probably make more sense to just 8572 * drop the message so that if this one managed to get 8573 * in, the real connection should not suffer. 8574 */ 8575 goto noticmpv4; 8576 } 8577 8578 switch (icmph->icmph_type) { 8579 case ICMP_DEST_UNREACHABLE: 8580 switch (icmph->icmph_code) { 8581 case ICMP_FRAGMENTATION_NEEDED: 8582 /* 8583 * Reduce the MSS based on the new MTU. This will 8584 * eliminate any fragmentation locally. 8585 * N.B. There may well be some funny side-effects on 8586 * the local send policy and the remote receive policy. 8587 * Pending further research, we provide 8588 * tcp_ignore_path_mtu just in case this proves 8589 * disastrous somewhere. 8590 * 8591 * After updating the MSS, retransmit part of the 8592 * dropped segment using the new mss by calling 8593 * tcp_wput_data(). Need to adjust all those 8594 * params to make sure tcp_wput_data() work properly. 8595 */ 8596 if (tcps->tcps_ignore_path_mtu) 8597 break; 8598 8599 /* 8600 * Decrease the MSS by time stamp options 8601 * IP options and IPSEC options. tcp_hdr_len 8602 * includes time stamp option and IP option 8603 * length. 8604 */ 8605 8606 new_mss = ntohs(icmph->icmph_du_mtu) - 8607 tcp->tcp_hdr_len - tcp->tcp_ipsec_overhead; 8608 8609 /* 8610 * Only update the MSS if the new one is 8611 * smaller than the previous one. This is 8612 * to avoid problems when getting multiple 8613 * ICMP errors for the same MTU. 8614 */ 8615 if (new_mss >= tcp->tcp_mss) 8616 break; 8617 8618 /* 8619 * Stop doing PMTU if new_mss is less than 68 8620 * or less than tcp_mss_min. 8621 * The value 68 comes from rfc 1191. 8622 */ 8623 if (new_mss < MAX(68, tcps->tcps_mss_min)) 8624 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 8625 0; 8626 8627 ratio = tcp->tcp_cwnd / tcp->tcp_mss; 8628 ASSERT(ratio >= 1); 8629 tcp_mss_set(tcp, new_mss, B_TRUE); 8630 8631 /* 8632 * Make sure we have something to 8633 * send. 8634 */ 8635 if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) && 8636 (tcp->tcp_xmit_head != NULL)) { 8637 /* 8638 * Shrink tcp_cwnd in 8639 * proportion to the old MSS/new MSS. 8640 */ 8641 tcp->tcp_cwnd = ratio * tcp->tcp_mss; 8642 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 8643 (tcp->tcp_unsent == 0)) { 8644 tcp->tcp_rexmit_max = tcp->tcp_fss; 8645 } else { 8646 tcp->tcp_rexmit_max = tcp->tcp_snxt; 8647 } 8648 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 8649 tcp->tcp_rexmit = B_TRUE; 8650 tcp->tcp_dupack_cnt = 0; 8651 tcp->tcp_snd_burst = TCP_CWND_SS; 8652 tcp_ss_rexmit(tcp); 8653 } 8654 break; 8655 case ICMP_PORT_UNREACHABLE: 8656 case ICMP_PROTOCOL_UNREACHABLE: 8657 switch (tcp->tcp_state) { 8658 case TCPS_SYN_SENT: 8659 case TCPS_SYN_RCVD: 8660 /* 8661 * ICMP can snipe away incipient 8662 * TCP connections as long as 8663 * seq number is same as initial 8664 * send seq number. 8665 */ 8666 if (seg_seq == tcp->tcp_iss) { 8667 (void) tcp_clean_death(tcp, 8668 ECONNREFUSED, 6); 8669 } 8670 break; 8671 } 8672 break; 8673 case ICMP_HOST_UNREACHABLE: 8674 case ICMP_NET_UNREACHABLE: 8675 /* Record the error in case we finally time out. */ 8676 if (icmph->icmph_code == ICMP_HOST_UNREACHABLE) 8677 tcp->tcp_client_errno = EHOSTUNREACH; 8678 else 8679 tcp->tcp_client_errno = ENETUNREACH; 8680 if (tcp->tcp_state == TCPS_SYN_RCVD) { 8681 if (tcp->tcp_listener != NULL && 8682 tcp->tcp_listener->tcp_syn_defense) { 8683 /* 8684 * Ditch the half-open connection if we 8685 * suspect a SYN attack is under way. 8686 */ 8687 tcp_ip_ire_mark_advice(tcp); 8688 (void) tcp_clean_death(tcp, 8689 tcp->tcp_client_errno, 7); 8690 } 8691 } 8692 break; 8693 default: 8694 break; 8695 } 8696 break; 8697 case ICMP_SOURCE_QUENCH: { 8698 /* 8699 * use a global boolean to control 8700 * whether TCP should respond to ICMP_SOURCE_QUENCH. 8701 * The default is false. 8702 */ 8703 if (tcp_icmp_source_quench) { 8704 /* 8705 * Reduce the sending rate as if we got a 8706 * retransmit timeout 8707 */ 8708 uint32_t npkt; 8709 8710 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / 8711 tcp->tcp_mss; 8712 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss; 8713 tcp->tcp_cwnd = tcp->tcp_mss; 8714 tcp->tcp_cwnd_cnt = 0; 8715 } 8716 break; 8717 } 8718 } 8719 freemsg(first_mp); 8720 } 8721 8722 /* 8723 * tcp_icmp_error_ipv6 is called by tcp_rput_other to process ICMPv6 8724 * error messages passed up by IP. 8725 * Assumes that IP has pulled up all the extension headers as well 8726 * as the ICMPv6 header. 8727 */ 8728 static void 8729 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, boolean_t ipsec_mctl) 8730 { 8731 icmp6_t *icmp6; 8732 ip6_t *ip6h; 8733 uint16_t iph_hdr_length; 8734 tcpha_t *tcpha; 8735 uint8_t *nexthdrp; 8736 uint32_t new_mss; 8737 uint32_t ratio; 8738 boolean_t secure; 8739 mblk_t *first_mp = mp; 8740 size_t mp_size; 8741 uint32_t seg_seq; 8742 tcp_stack_t *tcps = tcp->tcp_tcps; 8743 8744 /* 8745 * The caller has determined if this is an IPSEC_IN packet and 8746 * set ipsec_mctl appropriately (see tcp_icmp_error). 8747 */ 8748 if (ipsec_mctl) 8749 mp = mp->b_cont; 8750 8751 mp_size = MBLKL(mp); 8752 8753 /* 8754 * Verify that we have a complete IP header. If not, send it upstream. 8755 */ 8756 if (mp_size < sizeof (ip6_t)) { 8757 noticmpv6: 8758 freemsg(first_mp); 8759 return; 8760 } 8761 8762 /* 8763 * Verify this is an ICMPV6 packet, else send it upstream. 8764 */ 8765 ip6h = (ip6_t *)mp->b_rptr; 8766 if (ip6h->ip6_nxt == IPPROTO_ICMPV6) { 8767 iph_hdr_length = IPV6_HDR_LEN; 8768 } else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, 8769 &nexthdrp) || 8770 *nexthdrp != IPPROTO_ICMPV6) { 8771 goto noticmpv6; 8772 } 8773 icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length]; 8774 ip6h = (ip6_t *)&icmp6[1]; 8775 /* 8776 * Verify if we have a complete ICMP and inner IP header. 8777 */ 8778 if ((uchar_t *)&ip6h[1] > mp->b_wptr) 8779 goto noticmpv6; 8780 8781 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp)) 8782 goto noticmpv6; 8783 tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length); 8784 /* 8785 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't 8786 * have at least ICMP_MIN_TCP_HDR bytes of TCP header drop the 8787 * packet. 8788 */ 8789 if ((*nexthdrp != IPPROTO_TCP) || 8790 ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) { 8791 goto noticmpv6; 8792 } 8793 8794 /* 8795 * ICMP errors come on the right queue or come on 8796 * listener/global queue for detached connections and 8797 * get switched to the right queue. If it comes on the 8798 * right queue, policy check has already been done by IP 8799 * and thus free the first_mp without verifying the policy. 8800 * If it has come for a non-hard bound connection, we need 8801 * to verify policy as IP may not have done it. 8802 */ 8803 if (!tcp->tcp_hard_bound) { 8804 if (ipsec_mctl) { 8805 secure = ipsec_in_is_secure(first_mp); 8806 } else { 8807 secure = B_FALSE; 8808 } 8809 if (secure) { 8810 /* 8811 * If we are willing to accept this in clear 8812 * we don't have to verify policy. 8813 */ 8814 if (!ipsec_inbound_accept_clear(mp, NULL, ip6h)) { 8815 if (!tcp_check_policy(tcp, first_mp, 8816 NULL, ip6h, secure, ipsec_mctl)) { 8817 /* 8818 * tcp_check_policy called 8819 * ip_drop_packet() on failure. 8820 */ 8821 return; 8822 } 8823 } 8824 } 8825 } else if (ipsec_mctl) { 8826 /* 8827 * This is a hard_bound connection. IP has already 8828 * verified policy. We don't have to do it again. 8829 */ 8830 freeb(first_mp); 8831 first_mp = mp; 8832 ipsec_mctl = B_FALSE; 8833 } 8834 8835 seg_seq = ntohl(tcpha->tha_seq); 8836 /* 8837 * TCP SHOULD check that the TCP sequence number contained in 8838 * payload of the ICMP error message is within the range 8839 * SND.UNA <= SEG.SEQ < SND.NXT. 8840 */ 8841 if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) { 8842 /* 8843 * If the ICMP message is bogus, should we kill the 8844 * connection, or should we just drop the bogus ICMP 8845 * message? It would probably make more sense to just 8846 * drop the message so that if this one managed to get 8847 * in, the real connection should not suffer. 8848 */ 8849 goto noticmpv6; 8850 } 8851 8852 switch (icmp6->icmp6_type) { 8853 case ICMP6_PACKET_TOO_BIG: 8854 /* 8855 * Reduce the MSS based on the new MTU. This will 8856 * eliminate any fragmentation locally. 8857 * N.B. There may well be some funny side-effects on 8858 * the local send policy and the remote receive policy. 8859 * Pending further research, we provide 8860 * tcp_ignore_path_mtu just in case this proves 8861 * disastrous somewhere. 8862 * 8863 * After updating the MSS, retransmit part of the 8864 * dropped segment using the new mss by calling 8865 * tcp_wput_data(). Need to adjust all those 8866 * params to make sure tcp_wput_data() work properly. 8867 */ 8868 if (tcps->tcps_ignore_path_mtu) 8869 break; 8870 8871 /* 8872 * Decrease the MSS by time stamp options 8873 * IP options and IPSEC options. tcp_hdr_len 8874 * includes time stamp option and IP option 8875 * length. 8876 */ 8877 new_mss = ntohs(icmp6->icmp6_mtu) - tcp->tcp_hdr_len - 8878 tcp->tcp_ipsec_overhead; 8879 8880 /* 8881 * Only update the MSS if the new one is 8882 * smaller than the previous one. This is 8883 * to avoid problems when getting multiple 8884 * ICMP errors for the same MTU. 8885 */ 8886 if (new_mss >= tcp->tcp_mss) 8887 break; 8888 8889 ratio = tcp->tcp_cwnd / tcp->tcp_mss; 8890 ASSERT(ratio >= 1); 8891 tcp_mss_set(tcp, new_mss, B_TRUE); 8892 8893 /* 8894 * Make sure we have something to 8895 * send. 8896 */ 8897 if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) && 8898 (tcp->tcp_xmit_head != NULL)) { 8899 /* 8900 * Shrink tcp_cwnd in 8901 * proportion to the old MSS/new MSS. 8902 */ 8903 tcp->tcp_cwnd = ratio * tcp->tcp_mss; 8904 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 8905 (tcp->tcp_unsent == 0)) { 8906 tcp->tcp_rexmit_max = tcp->tcp_fss; 8907 } else { 8908 tcp->tcp_rexmit_max = tcp->tcp_snxt; 8909 } 8910 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 8911 tcp->tcp_rexmit = B_TRUE; 8912 tcp->tcp_dupack_cnt = 0; 8913 tcp->tcp_snd_burst = TCP_CWND_SS; 8914 tcp_ss_rexmit(tcp); 8915 } 8916 break; 8917 8918 case ICMP6_DST_UNREACH: 8919 switch (icmp6->icmp6_code) { 8920 case ICMP6_DST_UNREACH_NOPORT: 8921 if (((tcp->tcp_state == TCPS_SYN_SENT) || 8922 (tcp->tcp_state == TCPS_SYN_RCVD)) && 8923 (seg_seq == tcp->tcp_iss)) { 8924 (void) tcp_clean_death(tcp, 8925 ECONNREFUSED, 8); 8926 } 8927 break; 8928 8929 case ICMP6_DST_UNREACH_ADMIN: 8930 case ICMP6_DST_UNREACH_NOROUTE: 8931 case ICMP6_DST_UNREACH_BEYONDSCOPE: 8932 case ICMP6_DST_UNREACH_ADDR: 8933 /* Record the error in case we finally time out. */ 8934 tcp->tcp_client_errno = EHOSTUNREACH; 8935 if (((tcp->tcp_state == TCPS_SYN_SENT) || 8936 (tcp->tcp_state == TCPS_SYN_RCVD)) && 8937 (seg_seq == tcp->tcp_iss)) { 8938 if (tcp->tcp_listener != NULL && 8939 tcp->tcp_listener->tcp_syn_defense) { 8940 /* 8941 * Ditch the half-open connection if we 8942 * suspect a SYN attack is under way. 8943 */ 8944 tcp_ip_ire_mark_advice(tcp); 8945 (void) tcp_clean_death(tcp, 8946 tcp->tcp_client_errno, 9); 8947 } 8948 } 8949 8950 8951 break; 8952 default: 8953 break; 8954 } 8955 break; 8956 8957 case ICMP6_PARAM_PROB: 8958 /* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */ 8959 if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER && 8960 (uchar_t *)ip6h + icmp6->icmp6_pptr == 8961 (uchar_t *)nexthdrp) { 8962 if (tcp->tcp_state == TCPS_SYN_SENT || 8963 tcp->tcp_state == TCPS_SYN_RCVD) { 8964 (void) tcp_clean_death(tcp, 8965 ECONNREFUSED, 10); 8966 } 8967 break; 8968 } 8969 break; 8970 8971 case ICMP6_TIME_EXCEEDED: 8972 default: 8973 break; 8974 } 8975 freemsg(first_mp); 8976 } 8977 8978 /* 8979 * IP recognizes seven kinds of bind requests: 8980 * 8981 * - A zero-length address binds only to the protocol number. 8982 * 8983 * - A 4-byte address is treated as a request to 8984 * validate that the address is a valid local IPv4 8985 * address, appropriate for an application to bind to. 8986 * IP does the verification, but does not make any note 8987 * of the address at this time. 8988 * 8989 * - A 16-byte address contains is treated as a request 8990 * to validate a local IPv6 address, as the 4-byte 8991 * address case above. 8992 * 8993 * - A 16-byte sockaddr_in to validate the local IPv4 address and also 8994 * use it for the inbound fanout of packets. 8995 * 8996 * - A 24-byte sockaddr_in6 to validate the local IPv6 address and also 8997 * use it for the inbound fanout of packets. 8998 * 8999 * - A 12-byte address (ipa_conn_t) containing complete IPv4 fanout 9000 * information consisting of local and remote addresses 9001 * and ports. In this case, the addresses are both 9002 * validated as appropriate for this operation, and, if 9003 * so, the information is retained for use in the 9004 * inbound fanout. 9005 * 9006 * - A 36-byte address address (ipa6_conn_t) containing complete IPv6 9007 * fanout information, like the 12-byte case above. 9008 * 9009 * IP will also fill in the IRE request mblk with information 9010 * regarding our peer. In all cases, we notify IP of our protocol 9011 * type by appending a single protocol byte to the bind request. 9012 */ 9013 static mblk_t * 9014 tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim, t_scalar_t addr_length) 9015 { 9016 char *cp; 9017 mblk_t *mp; 9018 struct T_bind_req *tbr; 9019 ipa_conn_t *ac; 9020 ipa6_conn_t *ac6; 9021 sin_t *sin; 9022 sin6_t *sin6; 9023 9024 ASSERT(bind_prim == O_T_BIND_REQ || bind_prim == T_BIND_REQ); 9025 ASSERT((tcp->tcp_family == AF_INET && 9026 tcp->tcp_ipversion == IPV4_VERSION) || 9027 (tcp->tcp_family == AF_INET6 && 9028 (tcp->tcp_ipversion == IPV4_VERSION || 9029 tcp->tcp_ipversion == IPV6_VERSION))); 9030 9031 mp = allocb(sizeof (*tbr) + addr_length + 1, BPRI_HI); 9032 if (!mp) 9033 return (mp); 9034 mp->b_datap->db_type = M_PROTO; 9035 tbr = (struct T_bind_req *)mp->b_rptr; 9036 tbr->PRIM_type = bind_prim; 9037 tbr->ADDR_offset = sizeof (*tbr); 9038 tbr->CONIND_number = 0; 9039 tbr->ADDR_length = addr_length; 9040 cp = (char *)&tbr[1]; 9041 switch (addr_length) { 9042 case sizeof (ipa_conn_t): 9043 ASSERT(tcp->tcp_family == AF_INET); 9044 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 9045 9046 mp->b_cont = allocb(sizeof (ire_t), BPRI_HI); 9047 if (mp->b_cont == NULL) { 9048 freemsg(mp); 9049 return (NULL); 9050 } 9051 mp->b_cont->b_wptr += sizeof (ire_t); 9052 mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE; 9053 9054 /* cp known to be 32 bit aligned */ 9055 ac = (ipa_conn_t *)cp; 9056 ac->ac_laddr = tcp->tcp_ipha->ipha_src; 9057 ac->ac_faddr = tcp->tcp_remote; 9058 ac->ac_fport = tcp->tcp_fport; 9059 ac->ac_lport = tcp->tcp_lport; 9060 tcp->tcp_hard_binding = 1; 9061 break; 9062 9063 case sizeof (ipa6_conn_t): 9064 ASSERT(tcp->tcp_family == AF_INET6); 9065 9066 mp->b_cont = allocb(sizeof (ire_t), BPRI_HI); 9067 if (mp->b_cont == NULL) { 9068 freemsg(mp); 9069 return (NULL); 9070 } 9071 mp->b_cont->b_wptr += sizeof (ire_t); 9072 mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE; 9073 9074 /* cp known to be 32 bit aligned */ 9075 ac6 = (ipa6_conn_t *)cp; 9076 if (tcp->tcp_ipversion == IPV4_VERSION) { 9077 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 9078 &ac6->ac6_laddr); 9079 } else { 9080 ac6->ac6_laddr = tcp->tcp_ip6h->ip6_src; 9081 } 9082 ac6->ac6_faddr = tcp->tcp_remote_v6; 9083 ac6->ac6_fport = tcp->tcp_fport; 9084 ac6->ac6_lport = tcp->tcp_lport; 9085 tcp->tcp_hard_binding = 1; 9086 break; 9087 9088 case sizeof (sin_t): 9089 /* 9090 * NOTE: IPV6_ADDR_LEN also has same size. 9091 * Use family to discriminate. 9092 */ 9093 if (tcp->tcp_family == AF_INET) { 9094 sin = (sin_t *)cp; 9095 9096 *sin = sin_null; 9097 sin->sin_family = AF_INET; 9098 sin->sin_addr.s_addr = tcp->tcp_bound_source; 9099 sin->sin_port = tcp->tcp_lport; 9100 break; 9101 } else { 9102 *(in6_addr_t *)cp = tcp->tcp_bound_source_v6; 9103 } 9104 break; 9105 9106 case sizeof (sin6_t): 9107 ASSERT(tcp->tcp_family == AF_INET6); 9108 sin6 = (sin6_t *)cp; 9109 9110 *sin6 = sin6_null; 9111 sin6->sin6_family = AF_INET6; 9112 sin6->sin6_addr = tcp->tcp_bound_source_v6; 9113 sin6->sin6_port = tcp->tcp_lport; 9114 break; 9115 9116 case IP_ADDR_LEN: 9117 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 9118 *(uint32_t *)cp = tcp->tcp_ipha->ipha_src; 9119 break; 9120 9121 } 9122 /* Add protocol number to end */ 9123 cp[addr_length] = (char)IPPROTO_TCP; 9124 mp->b_wptr = (uchar_t *)&cp[addr_length + 1]; 9125 return (mp); 9126 } 9127 9128 /* 9129 * Notify IP that we are having trouble with this connection. IP should 9130 * blow the IRE away and start over. 9131 */ 9132 static void 9133 tcp_ip_notify(tcp_t *tcp) 9134 { 9135 struct iocblk *iocp; 9136 ipid_t *ipid; 9137 mblk_t *mp; 9138 9139 /* IPv6 has NUD thus notification to delete the IRE is not needed */ 9140 if (tcp->tcp_ipversion == IPV6_VERSION) 9141 return; 9142 9143 mp = mkiocb(IP_IOCTL); 9144 if (mp == NULL) 9145 return; 9146 9147 iocp = (struct iocblk *)mp->b_rptr; 9148 iocp->ioc_count = sizeof (ipid_t) + sizeof (tcp->tcp_ipha->ipha_dst); 9149 9150 mp->b_cont = allocb(iocp->ioc_count, BPRI_HI); 9151 if (!mp->b_cont) { 9152 freeb(mp); 9153 return; 9154 } 9155 9156 ipid = (ipid_t *)mp->b_cont->b_rptr; 9157 mp->b_cont->b_wptr += iocp->ioc_count; 9158 bzero(ipid, sizeof (*ipid)); 9159 ipid->ipid_cmd = IP_IOC_IRE_DELETE_NO_REPLY; 9160 ipid->ipid_ire_type = IRE_CACHE; 9161 ipid->ipid_addr_offset = sizeof (ipid_t); 9162 ipid->ipid_addr_length = sizeof (tcp->tcp_ipha->ipha_dst); 9163 /* 9164 * Note: in the case of source routing we want to blow away the 9165 * route to the first source route hop. 9166 */ 9167 bcopy(&tcp->tcp_ipha->ipha_dst, &ipid[1], 9168 sizeof (tcp->tcp_ipha->ipha_dst)); 9169 9170 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 9171 } 9172 9173 /* Unlink and return any mblk that looks like it contains an ire */ 9174 static mblk_t * 9175 tcp_ire_mp(mblk_t *mp) 9176 { 9177 mblk_t *prev_mp; 9178 9179 for (;;) { 9180 prev_mp = mp; 9181 mp = mp->b_cont; 9182 if (mp == NULL) 9183 break; 9184 switch (DB_TYPE(mp)) { 9185 case IRE_DB_TYPE: 9186 case IRE_DB_REQ_TYPE: 9187 if (prev_mp != NULL) 9188 prev_mp->b_cont = mp->b_cont; 9189 mp->b_cont = NULL; 9190 return (mp); 9191 default: 9192 break; 9193 } 9194 } 9195 return (mp); 9196 } 9197 9198 /* 9199 * Timer callback routine for keepalive probe. We do a fake resend of 9200 * last ACKed byte. Then set a timer using RTO. When the timer expires, 9201 * check to see if we have heard anything from the other end for the last 9202 * RTO period. If we have, set the timer to expire for another 9203 * tcp_keepalive_intrvl and check again. If we have not, set a timer using 9204 * RTO << 1 and check again when it expires. Keep exponentially increasing 9205 * the timeout if we have not heard from the other side. If for more than 9206 * (tcp_ka_interval + tcp_ka_abort_thres) we have not heard anything, 9207 * kill the connection unless the keepalive abort threshold is 0. In 9208 * that case, we will probe "forever." 9209 */ 9210 static void 9211 tcp_keepalive_killer(void *arg) 9212 { 9213 mblk_t *mp; 9214 conn_t *connp = (conn_t *)arg; 9215 tcp_t *tcp = connp->conn_tcp; 9216 int32_t firetime; 9217 int32_t idletime; 9218 int32_t ka_intrvl; 9219 tcp_stack_t *tcps = tcp->tcp_tcps; 9220 9221 tcp->tcp_ka_tid = 0; 9222 9223 if (tcp->tcp_fused) 9224 return; 9225 9226 BUMP_MIB(&tcps->tcps_mib, tcpTimKeepalive); 9227 ka_intrvl = tcp->tcp_ka_interval; 9228 9229 /* 9230 * Keepalive probe should only be sent if the application has not 9231 * done a close on the connection. 9232 */ 9233 if (tcp->tcp_state > TCPS_CLOSE_WAIT) { 9234 return; 9235 } 9236 /* Timer fired too early, restart it. */ 9237 if (tcp->tcp_state < TCPS_ESTABLISHED) { 9238 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 9239 MSEC_TO_TICK(ka_intrvl)); 9240 return; 9241 } 9242 9243 idletime = TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time); 9244 /* 9245 * If we have not heard from the other side for a long 9246 * time, kill the connection unless the keepalive abort 9247 * threshold is 0. In that case, we will probe "forever." 9248 */ 9249 if (tcp->tcp_ka_abort_thres != 0 && 9250 idletime > (ka_intrvl + tcp->tcp_ka_abort_thres)) { 9251 BUMP_MIB(&tcps->tcps_mib, tcpTimKeepaliveDrop); 9252 (void) tcp_clean_death(tcp, tcp->tcp_client_errno ? 9253 tcp->tcp_client_errno : ETIMEDOUT, 11); 9254 return; 9255 } 9256 9257 if (tcp->tcp_snxt == tcp->tcp_suna && 9258 idletime >= ka_intrvl) { 9259 /* Fake resend of last ACKed byte. */ 9260 mblk_t *mp1 = allocb(1, BPRI_LO); 9261 9262 if (mp1 != NULL) { 9263 *mp1->b_wptr++ = '\0'; 9264 mp = tcp_xmit_mp(tcp, mp1, 1, NULL, NULL, 9265 tcp->tcp_suna - 1, B_FALSE, NULL, B_TRUE); 9266 freeb(mp1); 9267 /* 9268 * if allocation failed, fall through to start the 9269 * timer back. 9270 */ 9271 if (mp != NULL) { 9272 TCP_RECORD_TRACE(tcp, mp, 9273 TCP_TRACE_SEND_PKT); 9274 tcp_send_data(tcp, tcp->tcp_wq, mp); 9275 BUMP_MIB(&tcps->tcps_mib, 9276 tcpTimKeepaliveProbe); 9277 if (tcp->tcp_ka_last_intrvl != 0) { 9278 int max; 9279 /* 9280 * We should probe again at least 9281 * in ka_intrvl, but not more than 9282 * tcp_rexmit_interval_max. 9283 */ 9284 max = tcps->tcps_rexmit_interval_max; 9285 firetime = MIN(ka_intrvl - 1, 9286 tcp->tcp_ka_last_intrvl << 1); 9287 if (firetime > max) 9288 firetime = max; 9289 } else { 9290 firetime = tcp->tcp_rto; 9291 } 9292 tcp->tcp_ka_tid = TCP_TIMER(tcp, 9293 tcp_keepalive_killer, 9294 MSEC_TO_TICK(firetime)); 9295 tcp->tcp_ka_last_intrvl = firetime; 9296 return; 9297 } 9298 } 9299 } else { 9300 tcp->tcp_ka_last_intrvl = 0; 9301 } 9302 9303 /* firetime can be negative if (mp1 == NULL || mp == NULL) */ 9304 if ((firetime = ka_intrvl - idletime) < 0) { 9305 firetime = ka_intrvl; 9306 } 9307 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 9308 MSEC_TO_TICK(firetime)); 9309 } 9310 9311 int 9312 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk) 9313 { 9314 queue_t *q = tcp->tcp_rq; 9315 int32_t mss = tcp->tcp_mss; 9316 int maxpsz; 9317 9318 if (TCP_IS_DETACHED(tcp)) 9319 return (mss); 9320 9321 if (tcp->tcp_fused) { 9322 maxpsz = tcp_fuse_maxpsz_set(tcp); 9323 mss = INFPSZ; 9324 } else if (tcp->tcp_mdt || tcp->tcp_lso || tcp->tcp_maxpsz == 0) { 9325 /* 9326 * Set the sd_qn_maxpsz according to the socket send buffer 9327 * size, and sd_maxblk to INFPSZ (-1). This will essentially 9328 * instruct the stream head to copyin user data into contiguous 9329 * kernel-allocated buffers without breaking it up into smaller 9330 * chunks. We round up the buffer size to the nearest SMSS. 9331 */ 9332 maxpsz = MSS_ROUNDUP(tcp->tcp_xmit_hiwater, mss); 9333 if (tcp->tcp_kssl_ctx == NULL) 9334 mss = INFPSZ; 9335 else 9336 mss = SSL3_MAX_RECORD_LEN; 9337 } else { 9338 /* 9339 * Set sd_qn_maxpsz to approx half the (receivers) buffer 9340 * (and a multiple of the mss). This instructs the stream 9341 * head to break down larger than SMSS writes into SMSS- 9342 * size mblks, up to tcp_maxpsz_multiplier mblks at a time. 9343 */ 9344 maxpsz = tcp->tcp_maxpsz * mss; 9345 if (maxpsz > tcp->tcp_xmit_hiwater/2) { 9346 maxpsz = tcp->tcp_xmit_hiwater/2; 9347 /* Round up to nearest mss */ 9348 maxpsz = MSS_ROUNDUP(maxpsz, mss); 9349 } 9350 } 9351 (void) setmaxps(q, maxpsz); 9352 tcp->tcp_wq->q_maxpsz = maxpsz; 9353 9354 if (set_maxblk) 9355 (void) mi_set_sth_maxblk(q, mss); 9356 9357 return (mss); 9358 } 9359 9360 /* 9361 * Extract option values from a tcp header. We put any found values into the 9362 * tcpopt struct and return a bitmask saying which options were found. 9363 */ 9364 static int 9365 tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt) 9366 { 9367 uchar_t *endp; 9368 int len; 9369 uint32_t mss; 9370 uchar_t *up = (uchar_t *)tcph; 9371 int found = 0; 9372 int32_t sack_len; 9373 tcp_seq sack_begin, sack_end; 9374 tcp_t *tcp; 9375 9376 endp = up + TCP_HDR_LENGTH(tcph); 9377 up += TCP_MIN_HEADER_LENGTH; 9378 while (up < endp) { 9379 len = endp - up; 9380 switch (*up) { 9381 case TCPOPT_EOL: 9382 break; 9383 9384 case TCPOPT_NOP: 9385 up++; 9386 continue; 9387 9388 case TCPOPT_MAXSEG: 9389 if (len < TCPOPT_MAXSEG_LEN || 9390 up[1] != TCPOPT_MAXSEG_LEN) 9391 break; 9392 9393 mss = BE16_TO_U16(up+2); 9394 /* Caller must handle tcp_mss_min and tcp_mss_max_* */ 9395 tcpopt->tcp_opt_mss = mss; 9396 found |= TCP_OPT_MSS_PRESENT; 9397 9398 up += TCPOPT_MAXSEG_LEN; 9399 continue; 9400 9401 case TCPOPT_WSCALE: 9402 if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN) 9403 break; 9404 9405 if (up[2] > TCP_MAX_WINSHIFT) 9406 tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT; 9407 else 9408 tcpopt->tcp_opt_wscale = up[2]; 9409 found |= TCP_OPT_WSCALE_PRESENT; 9410 9411 up += TCPOPT_WS_LEN; 9412 continue; 9413 9414 case TCPOPT_SACK_PERMITTED: 9415 if (len < TCPOPT_SACK_OK_LEN || 9416 up[1] != TCPOPT_SACK_OK_LEN) 9417 break; 9418 found |= TCP_OPT_SACK_OK_PRESENT; 9419 up += TCPOPT_SACK_OK_LEN; 9420 continue; 9421 9422 case TCPOPT_SACK: 9423 if (len <= 2 || up[1] <= 2 || len < up[1]) 9424 break; 9425 9426 /* If TCP is not interested in SACK blks... */ 9427 if ((tcp = tcpopt->tcp) == NULL) { 9428 up += up[1]; 9429 continue; 9430 } 9431 sack_len = up[1] - TCPOPT_HEADER_LEN; 9432 up += TCPOPT_HEADER_LEN; 9433 9434 /* 9435 * If the list is empty, allocate one and assume 9436 * nothing is sack'ed. 9437 */ 9438 ASSERT(tcp->tcp_sack_info != NULL); 9439 if (tcp->tcp_notsack_list == NULL) { 9440 tcp_notsack_update(&(tcp->tcp_notsack_list), 9441 tcp->tcp_suna, tcp->tcp_snxt, 9442 &(tcp->tcp_num_notsack_blk), 9443 &(tcp->tcp_cnt_notsack_list)); 9444 9445 /* 9446 * Make sure tcp_notsack_list is not NULL. 9447 * This happens when kmem_alloc(KM_NOSLEEP) 9448 * returns NULL. 9449 */ 9450 if (tcp->tcp_notsack_list == NULL) { 9451 up += sack_len; 9452 continue; 9453 } 9454 tcp->tcp_fack = tcp->tcp_suna; 9455 } 9456 9457 while (sack_len > 0) { 9458 if (up + 8 > endp) { 9459 up = endp; 9460 break; 9461 } 9462 sack_begin = BE32_TO_U32(up); 9463 up += 4; 9464 sack_end = BE32_TO_U32(up); 9465 up += 4; 9466 sack_len -= 8; 9467 /* 9468 * Bounds checking. Make sure the SACK 9469 * info is within tcp_suna and tcp_snxt. 9470 * If this SACK blk is out of bound, ignore 9471 * it but continue to parse the following 9472 * blks. 9473 */ 9474 if (SEQ_LEQ(sack_end, sack_begin) || 9475 SEQ_LT(sack_begin, tcp->tcp_suna) || 9476 SEQ_GT(sack_end, tcp->tcp_snxt)) { 9477 continue; 9478 } 9479 tcp_notsack_insert(&(tcp->tcp_notsack_list), 9480 sack_begin, sack_end, 9481 &(tcp->tcp_num_notsack_blk), 9482 &(tcp->tcp_cnt_notsack_list)); 9483 if (SEQ_GT(sack_end, tcp->tcp_fack)) { 9484 tcp->tcp_fack = sack_end; 9485 } 9486 } 9487 found |= TCP_OPT_SACK_PRESENT; 9488 continue; 9489 9490 case TCPOPT_TSTAMP: 9491 if (len < TCPOPT_TSTAMP_LEN || 9492 up[1] != TCPOPT_TSTAMP_LEN) 9493 break; 9494 9495 tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2); 9496 tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6); 9497 9498 found |= TCP_OPT_TSTAMP_PRESENT; 9499 9500 up += TCPOPT_TSTAMP_LEN; 9501 continue; 9502 9503 default: 9504 if (len <= 1 || len < (int)up[1] || up[1] == 0) 9505 break; 9506 up += up[1]; 9507 continue; 9508 } 9509 break; 9510 } 9511 return (found); 9512 } 9513 9514 /* 9515 * Set the mss associated with a particular tcp based on its current value, 9516 * and a new one passed in. Observe minimums and maximums, and reset 9517 * other state variables that we want to view as multiples of mss. 9518 * 9519 * This function is called in various places mainly because 9520 * 1) Various stuffs, tcp_mss, tcp_cwnd, ... need to be adjusted when the 9521 * other side's SYN/SYN-ACK packet arrives. 9522 * 2) PMTUd may get us a new MSS. 9523 * 3) If the other side stops sending us timestamp option, we need to 9524 * increase the MSS size to use the extra bytes available. 9525 * 9526 * do_ss is used to control whether we will be doing slow start or 9527 * not if there is a change in the mss. Note that for some events like 9528 * tcp_paws_check() we allow the tcp_cwnd to adjust to the new mss but 9529 * do not perform a slow start specifically. 9530 */ 9531 static void 9532 tcp_mss_set(tcp_t *tcp, uint32_t mss, boolean_t do_ss) 9533 { 9534 uint32_t mss_max; 9535 tcp_stack_t *tcps = tcp->tcp_tcps; 9536 9537 if (tcp->tcp_ipversion == IPV4_VERSION) 9538 mss_max = tcps->tcps_mss_max_ipv4; 9539 else 9540 mss_max = tcps->tcps_mss_max_ipv6; 9541 9542 if (mss < tcps->tcps_mss_min) 9543 mss = tcps->tcps_mss_min; 9544 if (mss > mss_max) 9545 mss = mss_max; 9546 /* 9547 * Unless naglim has been set by our client to 9548 * a non-mss value, force naglim to track mss. 9549 * This can help to aggregate small writes. 9550 */ 9551 if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim) 9552 tcp->tcp_naglim = mss; 9553 /* 9554 * TCP should be able to buffer at least 4 MSS data for obvious 9555 * performance reason. 9556 */ 9557 if ((mss << 2) > tcp->tcp_xmit_hiwater) 9558 tcp->tcp_xmit_hiwater = mss << 2; 9559 9560 /* 9561 * Check if we need to apply the tcp_init_cwnd here. If 9562 * it is set and the MSS gets bigger (should not happen 9563 * normally), we need to adjust the resulting tcp_cwnd properly. 9564 * The new tcp_cwnd should not get bigger. 9565 */ 9566 /* 9567 * We need to avoid setting tcp_cwnd to its slow start value 9568 * unnecessarily. However we have to let the tcp_cwnd adjust 9569 * to the modified mss. 9570 */ 9571 if (tcp->tcp_init_cwnd == 0 && do_ss) { 9572 tcp->tcp_cwnd = MIN(tcps->tcps_slow_start_initial * 9573 mss, MIN(4 * mss, MAX(2 * mss, 4380 / mss * mss))); 9574 } else { 9575 if (tcp->tcp_mss < mss) { 9576 tcp->tcp_cwnd = MAX(1, 9577 (tcp->tcp_init_cwnd * tcp->tcp_mss / 9578 mss)) * mss; 9579 } else { 9580 tcp->tcp_cwnd = tcp->tcp_init_cwnd * mss; 9581 } 9582 } 9583 tcp->tcp_mss = mss; 9584 tcp->tcp_cwnd_cnt = 0; 9585 (void) tcp_maxpsz_set(tcp, B_TRUE); 9586 } 9587 9588 /* For /dev/tcp aka AF_INET open */ 9589 static int 9590 tcp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9591 { 9592 return (tcp_open(q, devp, flag, sflag, credp, B_FALSE)); 9593 } 9594 9595 /* For /dev/tcp6 aka AF_INET6 open */ 9596 static int 9597 tcp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9598 { 9599 return (tcp_open(q, devp, flag, sflag, credp, B_TRUE)); 9600 } 9601 9602 static int 9603 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 9604 boolean_t isv6) 9605 { 9606 tcp_t *tcp = NULL; 9607 conn_t *connp; 9608 int err; 9609 dev_t conn_dev; 9610 zoneid_t zoneid; 9611 tcp_stack_t *tcps = NULL; 9612 9613 if (q->q_ptr != NULL) 9614 return (0); 9615 9616 if (sflag == MODOPEN) 9617 return (EINVAL); 9618 9619 if (!(flag & SO_ACCEPTOR)) { 9620 /* 9621 * Special case for install: miniroot needs to be able to 9622 * access files via NFS as though it were always in the 9623 * global zone. 9624 */ 9625 if (credp == kcred && nfs_global_client_only != 0) { 9626 zoneid = GLOBAL_ZONEID; 9627 tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)-> 9628 netstack_tcp; 9629 ASSERT(tcps != NULL); 9630 } else { 9631 netstack_t *ns; 9632 9633 ns = netstack_find_by_cred(credp); 9634 ASSERT(ns != NULL); 9635 tcps = ns->netstack_tcp; 9636 ASSERT(tcps != NULL); 9637 9638 /* 9639 * For exclusive stacks we set the zoneid to zero 9640 * to make TCP operate as if in the global zone. 9641 */ 9642 if (tcps->tcps_netstack->netstack_stackid != 9643 GLOBAL_NETSTACKID) 9644 zoneid = GLOBAL_ZONEID; 9645 else 9646 zoneid = crgetzoneid(credp); 9647 } 9648 /* 9649 * For stackid zero this is done from strplumb.c, but 9650 * non-zero stackids are handled here. 9651 */ 9652 if (tcps->tcps_g_q == NULL && 9653 tcps->tcps_netstack->netstack_stackid != 9654 GLOBAL_NETSTACKID) { 9655 tcp_g_q_setup(tcps); 9656 } 9657 } 9658 9659 if ((conn_dev = inet_minor_alloc(ip_minor_arena)) == 0) { 9660 if (tcps != NULL) 9661 netstack_rele(tcps->tcps_netstack); 9662 return (EBUSY); 9663 } 9664 9665 *devp = makedevice(getemajor(*devp), (minor_t)conn_dev); 9666 9667 if (flag & SO_ACCEPTOR) { 9668 /* No netstack_find_by_cred, hence no netstack_rele needed */ 9669 ASSERT(tcps == NULL); 9670 q->q_qinfo = &tcp_acceptor_rinit; 9671 q->q_ptr = (void *)conn_dev; 9672 WR(q)->q_qinfo = &tcp_acceptor_winit; 9673 WR(q)->q_ptr = (void *)conn_dev; 9674 qprocson(q); 9675 return (0); 9676 } 9677 9678 connp = (conn_t *)tcp_get_conn(IP_SQUEUE_GET(lbolt), tcps); 9679 /* 9680 * Both tcp_get_conn and netstack_find_by_cred incremented refcnt, 9681 * so we drop it by one. 9682 */ 9683 netstack_rele(tcps->tcps_netstack); 9684 if (connp == NULL) { 9685 inet_minor_free(ip_minor_arena, conn_dev); 9686 q->q_ptr = NULL; 9687 return (ENOSR); 9688 } 9689 connp->conn_sqp = IP_SQUEUE_GET(lbolt); 9690 tcp = connp->conn_tcp; 9691 9692 q->q_ptr = WR(q)->q_ptr = connp; 9693 if (isv6) { 9694 connp->conn_flags |= (IPCL_TCP6|IPCL_ISV6); 9695 connp->conn_send = ip_output_v6; 9696 connp->conn_af_isv6 = B_TRUE; 9697 connp->conn_pkt_isv6 = B_TRUE; 9698 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 9699 tcp->tcp_ipversion = IPV6_VERSION; 9700 tcp->tcp_family = AF_INET6; 9701 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 9702 } else { 9703 connp->conn_flags |= IPCL_TCP4; 9704 connp->conn_send = ip_output; 9705 connp->conn_af_isv6 = B_FALSE; 9706 connp->conn_pkt_isv6 = B_FALSE; 9707 tcp->tcp_ipversion = IPV4_VERSION; 9708 tcp->tcp_family = AF_INET; 9709 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 9710 } 9711 9712 /* 9713 * TCP keeps a copy of cred for cache locality reasons but 9714 * we put a reference only once. If connp->conn_cred 9715 * becomes invalid, tcp_cred should also be set to NULL. 9716 */ 9717 tcp->tcp_cred = connp->conn_cred = credp; 9718 crhold(connp->conn_cred); 9719 tcp->tcp_cpid = curproc->p_pid; 9720 tcp->tcp_open_time = lbolt64; 9721 connp->conn_zoneid = zoneid; 9722 connp->conn_mlp_type = mlptSingle; 9723 connp->conn_ulp_labeled = !is_system_labeled(); 9724 ASSERT(connp->conn_netstack == tcps->tcps_netstack); 9725 ASSERT(tcp->tcp_tcps == tcps); 9726 9727 /* 9728 * If the caller has the process-wide flag set, then default to MAC 9729 * exempt mode. This allows read-down to unlabeled hosts. 9730 */ 9731 if (getpflags(NET_MAC_AWARE, credp) != 0) 9732 connp->conn_mac_exempt = B_TRUE; 9733 9734 connp->conn_dev = conn_dev; 9735 9736 ASSERT(q->q_qinfo == &tcp_rinitv4 || q->q_qinfo == &tcp_rinitv6); 9737 ASSERT(WR(q)->q_qinfo == &tcp_winit); 9738 9739 if (flag & SO_SOCKSTR) { 9740 /* 9741 * No need to insert a socket in tcp acceptor hash. 9742 * If it was a socket acceptor stream, we dealt with 9743 * it above. A socket listener can never accept a 9744 * connection and doesn't need acceptor_id. 9745 */ 9746 connp->conn_flags |= IPCL_SOCKET; 9747 tcp->tcp_issocket = 1; 9748 WR(q)->q_qinfo = &tcp_sock_winit; 9749 } else { 9750 #ifdef _ILP32 9751 tcp->tcp_acceptor_id = (t_uscalar_t)RD(q); 9752 #else 9753 tcp->tcp_acceptor_id = conn_dev; 9754 #endif /* _ILP32 */ 9755 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 9756 } 9757 9758 if (tcps->tcps_trace) 9759 tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_SLEEP); 9760 9761 err = tcp_init(tcp, q); 9762 if (err != 0) { 9763 inet_minor_free(ip_minor_arena, connp->conn_dev); 9764 tcp_acceptor_hash_remove(tcp); 9765 CONN_DEC_REF(connp); 9766 q->q_ptr = WR(q)->q_ptr = NULL; 9767 return (err); 9768 } 9769 9770 RD(q)->q_hiwat = tcps->tcps_recv_hiwat; 9771 tcp->tcp_rwnd = tcps->tcps_recv_hiwat; 9772 9773 /* Non-zero default values */ 9774 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 9775 /* 9776 * Put the ref for TCP. Ref for IP was already put 9777 * by ipcl_conn_create. Also Make the conn_t globally 9778 * visible to walkers 9779 */ 9780 mutex_enter(&connp->conn_lock); 9781 CONN_INC_REF_LOCKED(connp); 9782 ASSERT(connp->conn_ref == 2); 9783 connp->conn_state_flags &= ~CONN_INCIPIENT; 9784 mutex_exit(&connp->conn_lock); 9785 9786 qprocson(q); 9787 return (0); 9788 } 9789 9790 /* 9791 * Some TCP options can be "set" by requesting them in the option 9792 * buffer. This is needed for XTI feature test though we do not 9793 * allow it in general. We interpret that this mechanism is more 9794 * applicable to OSI protocols and need not be allowed in general. 9795 * This routine filters out options for which it is not allowed (most) 9796 * and lets through those (few) for which it is. [ The XTI interface 9797 * test suite specifics will imply that any XTI_GENERIC level XTI_* if 9798 * ever implemented will have to be allowed here ]. 9799 */ 9800 static boolean_t 9801 tcp_allow_connopt_set(int level, int name) 9802 { 9803 9804 switch (level) { 9805 case IPPROTO_TCP: 9806 switch (name) { 9807 case TCP_NODELAY: 9808 return (B_TRUE); 9809 default: 9810 return (B_FALSE); 9811 } 9812 /*NOTREACHED*/ 9813 default: 9814 return (B_FALSE); 9815 } 9816 /*NOTREACHED*/ 9817 } 9818 9819 /* 9820 * This routine gets default values of certain options whose default 9821 * values are maintained by protocol specific code 9822 */ 9823 /* ARGSUSED */ 9824 int 9825 tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 9826 { 9827 int32_t *i1 = (int32_t *)ptr; 9828 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 9829 9830 switch (level) { 9831 case IPPROTO_TCP: 9832 switch (name) { 9833 case TCP_NOTIFY_THRESHOLD: 9834 *i1 = tcps->tcps_ip_notify_interval; 9835 break; 9836 case TCP_ABORT_THRESHOLD: 9837 *i1 = tcps->tcps_ip_abort_interval; 9838 break; 9839 case TCP_CONN_NOTIFY_THRESHOLD: 9840 *i1 = tcps->tcps_ip_notify_cinterval; 9841 break; 9842 case TCP_CONN_ABORT_THRESHOLD: 9843 *i1 = tcps->tcps_ip_abort_cinterval; 9844 break; 9845 default: 9846 return (-1); 9847 } 9848 break; 9849 case IPPROTO_IP: 9850 switch (name) { 9851 case IP_TTL: 9852 *i1 = tcps->tcps_ipv4_ttl; 9853 break; 9854 default: 9855 return (-1); 9856 } 9857 break; 9858 case IPPROTO_IPV6: 9859 switch (name) { 9860 case IPV6_UNICAST_HOPS: 9861 *i1 = tcps->tcps_ipv6_hoplimit; 9862 break; 9863 default: 9864 return (-1); 9865 } 9866 break; 9867 default: 9868 return (-1); 9869 } 9870 return (sizeof (int)); 9871 } 9872 9873 9874 /* 9875 * TCP routine to get the values of options. 9876 */ 9877 int 9878 tcp_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 9879 { 9880 int *i1 = (int *)ptr; 9881 conn_t *connp = Q_TO_CONN(q); 9882 tcp_t *tcp = connp->conn_tcp; 9883 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 9884 9885 switch (level) { 9886 case SOL_SOCKET: 9887 switch (name) { 9888 case SO_LINGER: { 9889 struct linger *lgr = (struct linger *)ptr; 9890 9891 lgr->l_onoff = tcp->tcp_linger ? SO_LINGER : 0; 9892 lgr->l_linger = tcp->tcp_lingertime; 9893 } 9894 return (sizeof (struct linger)); 9895 case SO_DEBUG: 9896 *i1 = tcp->tcp_debug ? SO_DEBUG : 0; 9897 break; 9898 case SO_KEEPALIVE: 9899 *i1 = tcp->tcp_ka_enabled ? SO_KEEPALIVE : 0; 9900 break; 9901 case SO_DONTROUTE: 9902 *i1 = tcp->tcp_dontroute ? SO_DONTROUTE : 0; 9903 break; 9904 case SO_USELOOPBACK: 9905 *i1 = tcp->tcp_useloopback ? SO_USELOOPBACK : 0; 9906 break; 9907 case SO_BROADCAST: 9908 *i1 = tcp->tcp_broadcast ? SO_BROADCAST : 0; 9909 break; 9910 case SO_REUSEADDR: 9911 *i1 = tcp->tcp_reuseaddr ? SO_REUSEADDR : 0; 9912 break; 9913 case SO_OOBINLINE: 9914 *i1 = tcp->tcp_oobinline ? SO_OOBINLINE : 0; 9915 break; 9916 case SO_DGRAM_ERRIND: 9917 *i1 = tcp->tcp_dgram_errind ? SO_DGRAM_ERRIND : 0; 9918 break; 9919 case SO_TYPE: 9920 *i1 = SOCK_STREAM; 9921 break; 9922 case SO_SNDBUF: 9923 *i1 = tcp->tcp_xmit_hiwater; 9924 break; 9925 case SO_RCVBUF: 9926 *i1 = RD(q)->q_hiwat; 9927 break; 9928 case SO_SND_COPYAVOID: 9929 *i1 = tcp->tcp_snd_zcopy_on ? 9930 SO_SND_COPYAVOID : 0; 9931 break; 9932 case SO_ALLZONES: 9933 *i1 = connp->conn_allzones ? 1 : 0; 9934 break; 9935 case SO_ANON_MLP: 9936 *i1 = connp->conn_anon_mlp; 9937 break; 9938 case SO_MAC_EXEMPT: 9939 *i1 = connp->conn_mac_exempt; 9940 break; 9941 case SO_EXCLBIND: 9942 *i1 = tcp->tcp_exclbind ? SO_EXCLBIND : 0; 9943 break; 9944 case SO_PROTOTYPE: 9945 *i1 = IPPROTO_TCP; 9946 break; 9947 case SO_DOMAIN: 9948 *i1 = tcp->tcp_family; 9949 break; 9950 default: 9951 return (-1); 9952 } 9953 break; 9954 case IPPROTO_TCP: 9955 switch (name) { 9956 case TCP_NODELAY: 9957 *i1 = (tcp->tcp_naglim == 1) ? TCP_NODELAY : 0; 9958 break; 9959 case TCP_MAXSEG: 9960 *i1 = tcp->tcp_mss; 9961 break; 9962 case TCP_NOTIFY_THRESHOLD: 9963 *i1 = (int)tcp->tcp_first_timer_threshold; 9964 break; 9965 case TCP_ABORT_THRESHOLD: 9966 *i1 = tcp->tcp_second_timer_threshold; 9967 break; 9968 case TCP_CONN_NOTIFY_THRESHOLD: 9969 *i1 = tcp->tcp_first_ctimer_threshold; 9970 break; 9971 case TCP_CONN_ABORT_THRESHOLD: 9972 *i1 = tcp->tcp_second_ctimer_threshold; 9973 break; 9974 case TCP_RECVDSTADDR: 9975 *i1 = tcp->tcp_recvdstaddr; 9976 break; 9977 case TCP_ANONPRIVBIND: 9978 *i1 = tcp->tcp_anon_priv_bind; 9979 break; 9980 case TCP_EXCLBIND: 9981 *i1 = tcp->tcp_exclbind ? TCP_EXCLBIND : 0; 9982 break; 9983 case TCP_INIT_CWND: 9984 *i1 = tcp->tcp_init_cwnd; 9985 break; 9986 case TCP_KEEPALIVE_THRESHOLD: 9987 *i1 = tcp->tcp_ka_interval; 9988 break; 9989 case TCP_KEEPALIVE_ABORT_THRESHOLD: 9990 *i1 = tcp->tcp_ka_abort_thres; 9991 break; 9992 case TCP_CORK: 9993 *i1 = tcp->tcp_cork; 9994 break; 9995 default: 9996 return (-1); 9997 } 9998 break; 9999 case IPPROTO_IP: 10000 if (tcp->tcp_family != AF_INET) 10001 return (-1); 10002 switch (name) { 10003 case IP_OPTIONS: 10004 case T_IP_OPTIONS: { 10005 /* 10006 * This is compatible with BSD in that in only return 10007 * the reverse source route with the final destination 10008 * as the last entry. The first 4 bytes of the option 10009 * will contain the final destination. 10010 */ 10011 int opt_len; 10012 10013 opt_len = (char *)tcp->tcp_tcph - (char *)tcp->tcp_ipha; 10014 opt_len -= tcp->tcp_label_len + IP_SIMPLE_HDR_LENGTH; 10015 ASSERT(opt_len >= 0); 10016 /* Caller ensures enough space */ 10017 if (opt_len > 0) { 10018 /* 10019 * TODO: Do we have to handle getsockopt on an 10020 * initiator as well? 10021 */ 10022 return (ip_opt_get_user(tcp->tcp_ipha, ptr)); 10023 } 10024 return (0); 10025 } 10026 case IP_TOS: 10027 case T_IP_TOS: 10028 *i1 = (int)tcp->tcp_ipha->ipha_type_of_service; 10029 break; 10030 case IP_TTL: 10031 *i1 = (int)tcp->tcp_ipha->ipha_ttl; 10032 break; 10033 case IP_NEXTHOP: 10034 /* Handled at IP level */ 10035 return (-EINVAL); 10036 default: 10037 return (-1); 10038 } 10039 break; 10040 case IPPROTO_IPV6: 10041 /* 10042 * IPPROTO_IPV6 options are only supported for sockets 10043 * that are using IPv6 on the wire. 10044 */ 10045 if (tcp->tcp_ipversion != IPV6_VERSION) { 10046 return (-1); 10047 } 10048 switch (name) { 10049 case IPV6_UNICAST_HOPS: 10050 *i1 = (unsigned int) tcp->tcp_ip6h->ip6_hops; 10051 break; /* goto sizeof (int) option return */ 10052 case IPV6_BOUND_IF: 10053 /* Zero if not set */ 10054 *i1 = tcp->tcp_bound_if; 10055 break; /* goto sizeof (int) option return */ 10056 case IPV6_RECVPKTINFO: 10057 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) 10058 *i1 = 1; 10059 else 10060 *i1 = 0; 10061 break; /* goto sizeof (int) option return */ 10062 case IPV6_RECVTCLASS: 10063 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS) 10064 *i1 = 1; 10065 else 10066 *i1 = 0; 10067 break; /* goto sizeof (int) option return */ 10068 case IPV6_RECVHOPLIMIT: 10069 if (tcp->tcp_ipv6_recvancillary & 10070 TCP_IPV6_RECVHOPLIMIT) 10071 *i1 = 1; 10072 else 10073 *i1 = 0; 10074 break; /* goto sizeof (int) option return */ 10075 case IPV6_RECVHOPOPTS: 10076 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) 10077 *i1 = 1; 10078 else 10079 *i1 = 0; 10080 break; /* goto sizeof (int) option return */ 10081 case IPV6_RECVDSTOPTS: 10082 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVDSTOPTS) 10083 *i1 = 1; 10084 else 10085 *i1 = 0; 10086 break; /* goto sizeof (int) option return */ 10087 case _OLD_IPV6_RECVDSTOPTS: 10088 if (tcp->tcp_ipv6_recvancillary & 10089 TCP_OLD_IPV6_RECVDSTOPTS) 10090 *i1 = 1; 10091 else 10092 *i1 = 0; 10093 break; /* goto sizeof (int) option return */ 10094 case IPV6_RECVRTHDR: 10095 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) 10096 *i1 = 1; 10097 else 10098 *i1 = 0; 10099 break; /* goto sizeof (int) option return */ 10100 case IPV6_RECVRTHDRDSTOPTS: 10101 if (tcp->tcp_ipv6_recvancillary & 10102 TCP_IPV6_RECVRTDSTOPTS) 10103 *i1 = 1; 10104 else 10105 *i1 = 0; 10106 break; /* goto sizeof (int) option return */ 10107 case IPV6_PKTINFO: { 10108 /* XXX assumes that caller has room for max size! */ 10109 struct in6_pktinfo *pkti; 10110 10111 pkti = (struct in6_pktinfo *)ptr; 10112 if (ipp->ipp_fields & IPPF_IFINDEX) 10113 pkti->ipi6_ifindex = ipp->ipp_ifindex; 10114 else 10115 pkti->ipi6_ifindex = 0; 10116 if (ipp->ipp_fields & IPPF_ADDR) 10117 pkti->ipi6_addr = ipp->ipp_addr; 10118 else 10119 pkti->ipi6_addr = ipv6_all_zeros; 10120 return (sizeof (struct in6_pktinfo)); 10121 } 10122 case IPV6_TCLASS: 10123 if (ipp->ipp_fields & IPPF_TCLASS) 10124 *i1 = ipp->ipp_tclass; 10125 else 10126 *i1 = IPV6_FLOW_TCLASS( 10127 IPV6_DEFAULT_VERS_AND_FLOW); 10128 break; /* goto sizeof (int) option return */ 10129 case IPV6_NEXTHOP: { 10130 sin6_t *sin6 = (sin6_t *)ptr; 10131 10132 if (!(ipp->ipp_fields & IPPF_NEXTHOP)) 10133 return (0); 10134 *sin6 = sin6_null; 10135 sin6->sin6_family = AF_INET6; 10136 sin6->sin6_addr = ipp->ipp_nexthop; 10137 return (sizeof (sin6_t)); 10138 } 10139 case IPV6_HOPOPTS: 10140 if (!(ipp->ipp_fields & IPPF_HOPOPTS)) 10141 return (0); 10142 if (ipp->ipp_hopoptslen <= tcp->tcp_label_len) 10143 return (0); 10144 bcopy((char *)ipp->ipp_hopopts + tcp->tcp_label_len, 10145 ptr, ipp->ipp_hopoptslen - tcp->tcp_label_len); 10146 if (tcp->tcp_label_len > 0) { 10147 ptr[0] = ((char *)ipp->ipp_hopopts)[0]; 10148 ptr[1] = (ipp->ipp_hopoptslen - 10149 tcp->tcp_label_len + 7) / 8 - 1; 10150 } 10151 return (ipp->ipp_hopoptslen - tcp->tcp_label_len); 10152 case IPV6_RTHDRDSTOPTS: 10153 if (!(ipp->ipp_fields & IPPF_RTDSTOPTS)) 10154 return (0); 10155 bcopy(ipp->ipp_rtdstopts, ptr, ipp->ipp_rtdstoptslen); 10156 return (ipp->ipp_rtdstoptslen); 10157 case IPV6_RTHDR: 10158 if (!(ipp->ipp_fields & IPPF_RTHDR)) 10159 return (0); 10160 bcopy(ipp->ipp_rthdr, ptr, ipp->ipp_rthdrlen); 10161 return (ipp->ipp_rthdrlen); 10162 case IPV6_DSTOPTS: 10163 if (!(ipp->ipp_fields & IPPF_DSTOPTS)) 10164 return (0); 10165 bcopy(ipp->ipp_dstopts, ptr, ipp->ipp_dstoptslen); 10166 return (ipp->ipp_dstoptslen); 10167 case IPV6_SRC_PREFERENCES: 10168 return (ip6_get_src_preferences(connp, 10169 (uint32_t *)ptr)); 10170 case IPV6_PATHMTU: { 10171 struct ip6_mtuinfo *mtuinfo = (struct ip6_mtuinfo *)ptr; 10172 10173 if (tcp->tcp_state < TCPS_ESTABLISHED) 10174 return (-1); 10175 10176 return (ip_fill_mtuinfo(&connp->conn_remv6, 10177 connp->conn_fport, mtuinfo, 10178 connp->conn_netstack)); 10179 } 10180 default: 10181 return (-1); 10182 } 10183 break; 10184 default: 10185 return (-1); 10186 } 10187 return (sizeof (int)); 10188 } 10189 10190 /* 10191 * We declare as 'int' rather than 'void' to satisfy pfi_t arg requirements. 10192 * Parameters are assumed to be verified by the caller. 10193 */ 10194 /* ARGSUSED */ 10195 int 10196 tcp_opt_set(queue_t *q, uint_t optset_context, int level, int name, 10197 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 10198 void *thisdg_attrs, cred_t *cr, mblk_t *mblk) 10199 { 10200 conn_t *connp = Q_TO_CONN(q); 10201 tcp_t *tcp = connp->conn_tcp; 10202 int *i1 = (int *)invalp; 10203 boolean_t onoff = (*i1 == 0) ? 0 : 1; 10204 boolean_t checkonly; 10205 int reterr; 10206 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 10207 10208 switch (optset_context) { 10209 case SETFN_OPTCOM_CHECKONLY: 10210 checkonly = B_TRUE; 10211 /* 10212 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 10213 * inlen != 0 implies value supplied and 10214 * we have to "pretend" to set it. 10215 * inlen == 0 implies that there is no 10216 * value part in T_CHECK request and just validation 10217 * done elsewhere should be enough, we just return here. 10218 */ 10219 if (inlen == 0) { 10220 *outlenp = 0; 10221 return (0); 10222 } 10223 break; 10224 case SETFN_OPTCOM_NEGOTIATE: 10225 checkonly = B_FALSE; 10226 break; 10227 case SETFN_UD_NEGOTIATE: /* error on conn-oriented transports ? */ 10228 case SETFN_CONN_NEGOTIATE: 10229 checkonly = B_FALSE; 10230 /* 10231 * Negotiating local and "association-related" options 10232 * from other (T_CONN_REQ, T_CONN_RES,T_UNITDATA_REQ) 10233 * primitives is allowed by XTI, but we choose 10234 * to not implement this style negotiation for Internet 10235 * protocols (We interpret it is a must for OSI world but 10236 * optional for Internet protocols) for all options. 10237 * [ Will do only for the few options that enable test 10238 * suites that our XTI implementation of this feature 10239 * works for transports that do allow it ] 10240 */ 10241 if (!tcp_allow_connopt_set(level, name)) { 10242 *outlenp = 0; 10243 return (EINVAL); 10244 } 10245 break; 10246 default: 10247 /* 10248 * We should never get here 10249 */ 10250 *outlenp = 0; 10251 return (EINVAL); 10252 } 10253 10254 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 10255 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 10256 10257 /* 10258 * For TCP, we should have no ancillary data sent down 10259 * (sendmsg isn't supported for SOCK_STREAM), so thisdg_attrs 10260 * has to be zero. 10261 */ 10262 ASSERT(thisdg_attrs == NULL); 10263 10264 /* 10265 * For fixed length options, no sanity check 10266 * of passed in length is done. It is assumed *_optcom_req() 10267 * routines do the right thing. 10268 */ 10269 10270 switch (level) { 10271 case SOL_SOCKET: 10272 switch (name) { 10273 case SO_LINGER: { 10274 struct linger *lgr = (struct linger *)invalp; 10275 10276 if (!checkonly) { 10277 if (lgr->l_onoff) { 10278 tcp->tcp_linger = 1; 10279 tcp->tcp_lingertime = lgr->l_linger; 10280 } else { 10281 tcp->tcp_linger = 0; 10282 tcp->tcp_lingertime = 0; 10283 } 10284 /* struct copy */ 10285 *(struct linger *)outvalp = *lgr; 10286 } else { 10287 if (!lgr->l_onoff) { 10288 ((struct linger *) 10289 outvalp)->l_onoff = 0; 10290 ((struct linger *) 10291 outvalp)->l_linger = 0; 10292 } else { 10293 /* struct copy */ 10294 *(struct linger *)outvalp = *lgr; 10295 } 10296 } 10297 *outlenp = sizeof (struct linger); 10298 return (0); 10299 } 10300 case SO_DEBUG: 10301 if (!checkonly) 10302 tcp->tcp_debug = onoff; 10303 break; 10304 case SO_KEEPALIVE: 10305 if (checkonly) { 10306 /* T_CHECK case */ 10307 break; 10308 } 10309 10310 if (!onoff) { 10311 if (tcp->tcp_ka_enabled) { 10312 if (tcp->tcp_ka_tid != 0) { 10313 (void) TCP_TIMER_CANCEL(tcp, 10314 tcp->tcp_ka_tid); 10315 tcp->tcp_ka_tid = 0; 10316 } 10317 tcp->tcp_ka_enabled = 0; 10318 } 10319 break; 10320 } 10321 if (!tcp->tcp_ka_enabled) { 10322 /* Crank up the keepalive timer */ 10323 tcp->tcp_ka_last_intrvl = 0; 10324 tcp->tcp_ka_tid = TCP_TIMER(tcp, 10325 tcp_keepalive_killer, 10326 MSEC_TO_TICK(tcp->tcp_ka_interval)); 10327 tcp->tcp_ka_enabled = 1; 10328 } 10329 break; 10330 case SO_DONTROUTE: 10331 /* 10332 * SO_DONTROUTE, SO_USELOOPBACK, and SO_BROADCAST are 10333 * only of interest to IP. We track them here only so 10334 * that we can report their current value. 10335 */ 10336 if (!checkonly) { 10337 tcp->tcp_dontroute = onoff; 10338 tcp->tcp_connp->conn_dontroute = onoff; 10339 } 10340 break; 10341 case SO_USELOOPBACK: 10342 if (!checkonly) { 10343 tcp->tcp_useloopback = onoff; 10344 tcp->tcp_connp->conn_loopback = onoff; 10345 } 10346 break; 10347 case SO_BROADCAST: 10348 if (!checkonly) { 10349 tcp->tcp_broadcast = onoff; 10350 tcp->tcp_connp->conn_broadcast = onoff; 10351 } 10352 break; 10353 case SO_REUSEADDR: 10354 if (!checkonly) { 10355 tcp->tcp_reuseaddr = onoff; 10356 tcp->tcp_connp->conn_reuseaddr = onoff; 10357 } 10358 break; 10359 case SO_OOBINLINE: 10360 if (!checkonly) 10361 tcp->tcp_oobinline = onoff; 10362 break; 10363 case SO_DGRAM_ERRIND: 10364 if (!checkonly) 10365 tcp->tcp_dgram_errind = onoff; 10366 break; 10367 case SO_SNDBUF: { 10368 if (*i1 > tcps->tcps_max_buf) { 10369 *outlenp = 0; 10370 return (ENOBUFS); 10371 } 10372 if (checkonly) 10373 break; 10374 10375 tcp->tcp_xmit_hiwater = *i1; 10376 if (tcps->tcps_snd_lowat_fraction != 0) 10377 tcp->tcp_xmit_lowater = 10378 tcp->tcp_xmit_hiwater / 10379 tcps->tcps_snd_lowat_fraction; 10380 (void) tcp_maxpsz_set(tcp, B_TRUE); 10381 /* 10382 * If we are flow-controlled, recheck the condition. 10383 * There are apps that increase SO_SNDBUF size when 10384 * flow-controlled (EWOULDBLOCK), and expect the flow 10385 * control condition to be lifted right away. 10386 */ 10387 mutex_enter(&tcp->tcp_non_sq_lock); 10388 if (tcp->tcp_flow_stopped && 10389 TCP_UNSENT_BYTES(tcp) < tcp->tcp_xmit_hiwater) { 10390 tcp_clrqfull(tcp); 10391 } 10392 mutex_exit(&tcp->tcp_non_sq_lock); 10393 break; 10394 } 10395 case SO_RCVBUF: 10396 if (*i1 > tcps->tcps_max_buf) { 10397 *outlenp = 0; 10398 return (ENOBUFS); 10399 } 10400 /* Silently ignore zero */ 10401 if (!checkonly && *i1 != 0) { 10402 *i1 = MSS_ROUNDUP(*i1, tcp->tcp_mss); 10403 (void) tcp_rwnd_set(tcp, *i1); 10404 } 10405 /* 10406 * XXX should we return the rwnd here 10407 * and tcp_opt_get ? 10408 */ 10409 break; 10410 case SO_SND_COPYAVOID: 10411 if (!checkonly) { 10412 /* we only allow enable at most once for now */ 10413 if (tcp->tcp_loopback || 10414 (!tcp->tcp_snd_zcopy_aware && 10415 (onoff != 1 || !tcp_zcopy_check(tcp)))) { 10416 *outlenp = 0; 10417 return (EOPNOTSUPP); 10418 } 10419 tcp->tcp_snd_zcopy_aware = 1; 10420 } 10421 break; 10422 case SO_ALLZONES: 10423 /* Handled at the IP level */ 10424 return (-EINVAL); 10425 case SO_ANON_MLP: 10426 if (!checkonly) { 10427 mutex_enter(&connp->conn_lock); 10428 connp->conn_anon_mlp = onoff; 10429 mutex_exit(&connp->conn_lock); 10430 } 10431 break; 10432 case SO_MAC_EXEMPT: 10433 if (secpolicy_net_mac_aware(cr) != 0 || 10434 IPCL_IS_BOUND(connp)) 10435 return (EACCES); 10436 if (!checkonly) { 10437 mutex_enter(&connp->conn_lock); 10438 connp->conn_mac_exempt = onoff; 10439 mutex_exit(&connp->conn_lock); 10440 } 10441 break; 10442 case SO_EXCLBIND: 10443 if (!checkonly) 10444 tcp->tcp_exclbind = onoff; 10445 break; 10446 default: 10447 *outlenp = 0; 10448 return (EINVAL); 10449 } 10450 break; 10451 case IPPROTO_TCP: 10452 switch (name) { 10453 case TCP_NODELAY: 10454 if (!checkonly) 10455 tcp->tcp_naglim = *i1 ? 1 : tcp->tcp_mss; 10456 break; 10457 case TCP_NOTIFY_THRESHOLD: 10458 if (!checkonly) 10459 tcp->tcp_first_timer_threshold = *i1; 10460 break; 10461 case TCP_ABORT_THRESHOLD: 10462 if (!checkonly) 10463 tcp->tcp_second_timer_threshold = *i1; 10464 break; 10465 case TCP_CONN_NOTIFY_THRESHOLD: 10466 if (!checkonly) 10467 tcp->tcp_first_ctimer_threshold = *i1; 10468 break; 10469 case TCP_CONN_ABORT_THRESHOLD: 10470 if (!checkonly) 10471 tcp->tcp_second_ctimer_threshold = *i1; 10472 break; 10473 case TCP_RECVDSTADDR: 10474 if (tcp->tcp_state > TCPS_LISTEN) 10475 return (EOPNOTSUPP); 10476 if (!checkonly) 10477 tcp->tcp_recvdstaddr = onoff; 10478 break; 10479 case TCP_ANONPRIVBIND: 10480 if ((reterr = secpolicy_net_privaddr(cr, 0)) != 0) { 10481 *outlenp = 0; 10482 return (reterr); 10483 } 10484 if (!checkonly) { 10485 tcp->tcp_anon_priv_bind = onoff; 10486 } 10487 break; 10488 case TCP_EXCLBIND: 10489 if (!checkonly) 10490 tcp->tcp_exclbind = onoff; 10491 break; /* goto sizeof (int) option return */ 10492 case TCP_INIT_CWND: { 10493 uint32_t init_cwnd = *((uint32_t *)invalp); 10494 10495 if (checkonly) 10496 break; 10497 10498 /* 10499 * Only allow socket with network configuration 10500 * privilege to set the initial cwnd to be larger 10501 * than allowed by RFC 3390. 10502 */ 10503 if (init_cwnd <= MIN(4, MAX(2, 4380 / tcp->tcp_mss))) { 10504 tcp->tcp_init_cwnd = init_cwnd; 10505 break; 10506 } 10507 if ((reterr = secpolicy_ip_config(cr, B_TRUE)) != 0) { 10508 *outlenp = 0; 10509 return (reterr); 10510 } 10511 if (init_cwnd > TCP_MAX_INIT_CWND) { 10512 *outlenp = 0; 10513 return (EINVAL); 10514 } 10515 tcp->tcp_init_cwnd = init_cwnd; 10516 break; 10517 } 10518 case TCP_KEEPALIVE_THRESHOLD: 10519 if (checkonly) 10520 break; 10521 10522 if (*i1 < tcps->tcps_keepalive_interval_low || 10523 *i1 > tcps->tcps_keepalive_interval_high) { 10524 *outlenp = 0; 10525 return (EINVAL); 10526 } 10527 if (*i1 != tcp->tcp_ka_interval) { 10528 tcp->tcp_ka_interval = *i1; 10529 /* 10530 * Check if we need to restart the 10531 * keepalive timer. 10532 */ 10533 if (tcp->tcp_ka_tid != 0) { 10534 ASSERT(tcp->tcp_ka_enabled); 10535 (void) TCP_TIMER_CANCEL(tcp, 10536 tcp->tcp_ka_tid); 10537 tcp->tcp_ka_last_intrvl = 0; 10538 tcp->tcp_ka_tid = TCP_TIMER(tcp, 10539 tcp_keepalive_killer, 10540 MSEC_TO_TICK(tcp->tcp_ka_interval)); 10541 } 10542 } 10543 break; 10544 case TCP_KEEPALIVE_ABORT_THRESHOLD: 10545 if (!checkonly) { 10546 if (*i1 < 10547 tcps->tcps_keepalive_abort_interval_low || 10548 *i1 > 10549 tcps->tcps_keepalive_abort_interval_high) { 10550 *outlenp = 0; 10551 return (EINVAL); 10552 } 10553 tcp->tcp_ka_abort_thres = *i1; 10554 } 10555 break; 10556 case TCP_CORK: 10557 if (!checkonly) { 10558 /* 10559 * if tcp->tcp_cork was set and is now 10560 * being unset, we have to make sure that 10561 * the remaining data gets sent out. Also 10562 * unset tcp->tcp_cork so that tcp_wput_data() 10563 * can send data even if it is less than mss 10564 */ 10565 if (tcp->tcp_cork && onoff == 0 && 10566 tcp->tcp_unsent > 0) { 10567 tcp->tcp_cork = B_FALSE; 10568 tcp_wput_data(tcp, NULL, B_FALSE); 10569 } 10570 tcp->tcp_cork = onoff; 10571 } 10572 break; 10573 default: 10574 *outlenp = 0; 10575 return (EINVAL); 10576 } 10577 break; 10578 case IPPROTO_IP: 10579 if (tcp->tcp_family != AF_INET) { 10580 *outlenp = 0; 10581 return (ENOPROTOOPT); 10582 } 10583 switch (name) { 10584 case IP_OPTIONS: 10585 case T_IP_OPTIONS: 10586 reterr = tcp_opt_set_header(tcp, checkonly, 10587 invalp, inlen); 10588 if (reterr) { 10589 *outlenp = 0; 10590 return (reterr); 10591 } 10592 /* OK return - copy input buffer into output buffer */ 10593 if (invalp != outvalp) { 10594 /* don't trust bcopy for identical src/dst */ 10595 bcopy(invalp, outvalp, inlen); 10596 } 10597 *outlenp = inlen; 10598 return (0); 10599 case IP_TOS: 10600 case T_IP_TOS: 10601 if (!checkonly) { 10602 tcp->tcp_ipha->ipha_type_of_service = 10603 (uchar_t)*i1; 10604 tcp->tcp_tos = (uchar_t)*i1; 10605 } 10606 break; 10607 case IP_TTL: 10608 if (!checkonly) { 10609 tcp->tcp_ipha->ipha_ttl = (uchar_t)*i1; 10610 tcp->tcp_ttl = (uchar_t)*i1; 10611 } 10612 break; 10613 case IP_BOUND_IF: 10614 case IP_NEXTHOP: 10615 /* Handled at the IP level */ 10616 return (-EINVAL); 10617 case IP_SEC_OPT: 10618 /* 10619 * We should not allow policy setting after 10620 * we start listening for connections. 10621 */ 10622 if (tcp->tcp_state == TCPS_LISTEN) { 10623 return (EINVAL); 10624 } else { 10625 /* Handled at the IP level */ 10626 return (-EINVAL); 10627 } 10628 default: 10629 *outlenp = 0; 10630 return (EINVAL); 10631 } 10632 break; 10633 case IPPROTO_IPV6: { 10634 ip6_pkt_t *ipp; 10635 10636 /* 10637 * IPPROTO_IPV6 options are only supported for sockets 10638 * that are using IPv6 on the wire. 10639 */ 10640 if (tcp->tcp_ipversion != IPV6_VERSION) { 10641 *outlenp = 0; 10642 return (ENOPROTOOPT); 10643 } 10644 /* 10645 * Only sticky options; no ancillary data 10646 */ 10647 ASSERT(thisdg_attrs == NULL); 10648 ipp = &tcp->tcp_sticky_ipp; 10649 10650 switch (name) { 10651 case IPV6_UNICAST_HOPS: 10652 /* -1 means use default */ 10653 if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) { 10654 *outlenp = 0; 10655 return (EINVAL); 10656 } 10657 if (!checkonly) { 10658 if (*i1 == -1) { 10659 tcp->tcp_ip6h->ip6_hops = 10660 ipp->ipp_unicast_hops = 10661 (uint8_t)tcps->tcps_ipv6_hoplimit; 10662 ipp->ipp_fields &= ~IPPF_UNICAST_HOPS; 10663 /* Pass modified value to IP. */ 10664 *i1 = tcp->tcp_ip6h->ip6_hops; 10665 } else { 10666 tcp->tcp_ip6h->ip6_hops = 10667 ipp->ipp_unicast_hops = 10668 (uint8_t)*i1; 10669 ipp->ipp_fields |= IPPF_UNICAST_HOPS; 10670 } 10671 reterr = tcp_build_hdrs(q, tcp); 10672 if (reterr != 0) 10673 return (reterr); 10674 } 10675 break; 10676 case IPV6_BOUND_IF: 10677 if (!checkonly) { 10678 int error = 0; 10679 10680 tcp->tcp_bound_if = *i1; 10681 error = ip_opt_set_ill(tcp->tcp_connp, *i1, 10682 B_TRUE, checkonly, level, name, mblk); 10683 if (error != 0) { 10684 *outlenp = 0; 10685 return (error); 10686 } 10687 } 10688 break; 10689 /* 10690 * Set boolean switches for ancillary data delivery 10691 */ 10692 case IPV6_RECVPKTINFO: 10693 if (!checkonly) { 10694 if (onoff) 10695 tcp->tcp_ipv6_recvancillary |= 10696 TCP_IPV6_RECVPKTINFO; 10697 else 10698 tcp->tcp_ipv6_recvancillary &= 10699 ~TCP_IPV6_RECVPKTINFO; 10700 /* Force it to be sent up with the next msg */ 10701 tcp->tcp_recvifindex = 0; 10702 } 10703 break; 10704 case IPV6_RECVTCLASS: 10705 if (!checkonly) { 10706 if (onoff) 10707 tcp->tcp_ipv6_recvancillary |= 10708 TCP_IPV6_RECVTCLASS; 10709 else 10710 tcp->tcp_ipv6_recvancillary &= 10711 ~TCP_IPV6_RECVTCLASS; 10712 } 10713 break; 10714 case IPV6_RECVHOPLIMIT: 10715 if (!checkonly) { 10716 if (onoff) 10717 tcp->tcp_ipv6_recvancillary |= 10718 TCP_IPV6_RECVHOPLIMIT; 10719 else 10720 tcp->tcp_ipv6_recvancillary &= 10721 ~TCP_IPV6_RECVHOPLIMIT; 10722 /* Force it to be sent up with the next msg */ 10723 tcp->tcp_recvhops = 0xffffffffU; 10724 } 10725 break; 10726 case IPV6_RECVHOPOPTS: 10727 if (!checkonly) { 10728 if (onoff) 10729 tcp->tcp_ipv6_recvancillary |= 10730 TCP_IPV6_RECVHOPOPTS; 10731 else 10732 tcp->tcp_ipv6_recvancillary &= 10733 ~TCP_IPV6_RECVHOPOPTS; 10734 } 10735 break; 10736 case IPV6_RECVDSTOPTS: 10737 if (!checkonly) { 10738 if (onoff) 10739 tcp->tcp_ipv6_recvancillary |= 10740 TCP_IPV6_RECVDSTOPTS; 10741 else 10742 tcp->tcp_ipv6_recvancillary &= 10743 ~TCP_IPV6_RECVDSTOPTS; 10744 } 10745 break; 10746 case _OLD_IPV6_RECVDSTOPTS: 10747 if (!checkonly) { 10748 if (onoff) 10749 tcp->tcp_ipv6_recvancillary |= 10750 TCP_OLD_IPV6_RECVDSTOPTS; 10751 else 10752 tcp->tcp_ipv6_recvancillary &= 10753 ~TCP_OLD_IPV6_RECVDSTOPTS; 10754 } 10755 break; 10756 case IPV6_RECVRTHDR: 10757 if (!checkonly) { 10758 if (onoff) 10759 tcp->tcp_ipv6_recvancillary |= 10760 TCP_IPV6_RECVRTHDR; 10761 else 10762 tcp->tcp_ipv6_recvancillary &= 10763 ~TCP_IPV6_RECVRTHDR; 10764 } 10765 break; 10766 case IPV6_RECVRTHDRDSTOPTS: 10767 if (!checkonly) { 10768 if (onoff) 10769 tcp->tcp_ipv6_recvancillary |= 10770 TCP_IPV6_RECVRTDSTOPTS; 10771 else 10772 tcp->tcp_ipv6_recvancillary &= 10773 ~TCP_IPV6_RECVRTDSTOPTS; 10774 } 10775 break; 10776 case IPV6_PKTINFO: 10777 if (inlen != 0 && inlen != sizeof (struct in6_pktinfo)) 10778 return (EINVAL); 10779 if (checkonly) 10780 break; 10781 10782 if (inlen == 0) { 10783 ipp->ipp_fields &= ~(IPPF_IFINDEX|IPPF_ADDR); 10784 } else { 10785 struct in6_pktinfo *pkti; 10786 10787 pkti = (struct in6_pktinfo *)invalp; 10788 /* 10789 * RFC 3542 states that ipi6_addr must be 10790 * the unspecified address when setting the 10791 * IPV6_PKTINFO sticky socket option on a 10792 * TCP socket. 10793 */ 10794 if (!IN6_IS_ADDR_UNSPECIFIED(&pkti->ipi6_addr)) 10795 return (EINVAL); 10796 /* 10797 * ip6_set_pktinfo() validates the source 10798 * address and interface index. 10799 */ 10800 reterr = ip6_set_pktinfo(cr, tcp->tcp_connp, 10801 pkti, mblk); 10802 if (reterr != 0) 10803 return (reterr); 10804 ipp->ipp_ifindex = pkti->ipi6_ifindex; 10805 ipp->ipp_addr = pkti->ipi6_addr; 10806 if (ipp->ipp_ifindex != 0) 10807 ipp->ipp_fields |= IPPF_IFINDEX; 10808 else 10809 ipp->ipp_fields &= ~IPPF_IFINDEX; 10810 if (!IN6_IS_ADDR_UNSPECIFIED(&ipp->ipp_addr)) 10811 ipp->ipp_fields |= IPPF_ADDR; 10812 else 10813 ipp->ipp_fields &= ~IPPF_ADDR; 10814 } 10815 reterr = tcp_build_hdrs(q, tcp); 10816 if (reterr != 0) 10817 return (reterr); 10818 break; 10819 case IPV6_TCLASS: 10820 if (inlen != 0 && inlen != sizeof (int)) 10821 return (EINVAL); 10822 if (checkonly) 10823 break; 10824 10825 if (inlen == 0) { 10826 ipp->ipp_fields &= ~IPPF_TCLASS; 10827 } else { 10828 if (*i1 > 255 || *i1 < -1) 10829 return (EINVAL); 10830 if (*i1 == -1) { 10831 ipp->ipp_tclass = 0; 10832 *i1 = 0; 10833 } else { 10834 ipp->ipp_tclass = *i1; 10835 } 10836 ipp->ipp_fields |= IPPF_TCLASS; 10837 } 10838 reterr = tcp_build_hdrs(q, tcp); 10839 if (reterr != 0) 10840 return (reterr); 10841 break; 10842 case IPV6_NEXTHOP: 10843 /* 10844 * IP will verify that the nexthop is reachable 10845 * and fail for sticky options. 10846 */ 10847 if (inlen != 0 && inlen != sizeof (sin6_t)) 10848 return (EINVAL); 10849 if (checkonly) 10850 break; 10851 10852 if (inlen == 0) { 10853 ipp->ipp_fields &= ~IPPF_NEXTHOP; 10854 } else { 10855 sin6_t *sin6 = (sin6_t *)invalp; 10856 10857 if (sin6->sin6_family != AF_INET6) 10858 return (EAFNOSUPPORT); 10859 if (IN6_IS_ADDR_V4MAPPED( 10860 &sin6->sin6_addr)) 10861 return (EADDRNOTAVAIL); 10862 ipp->ipp_nexthop = sin6->sin6_addr; 10863 if (!IN6_IS_ADDR_UNSPECIFIED( 10864 &ipp->ipp_nexthop)) 10865 ipp->ipp_fields |= IPPF_NEXTHOP; 10866 else 10867 ipp->ipp_fields &= ~IPPF_NEXTHOP; 10868 } 10869 reterr = tcp_build_hdrs(q, tcp); 10870 if (reterr != 0) 10871 return (reterr); 10872 break; 10873 case IPV6_HOPOPTS: { 10874 ip6_hbh_t *hopts = (ip6_hbh_t *)invalp; 10875 10876 /* 10877 * Sanity checks - minimum size, size a multiple of 10878 * eight bytes, and matching size passed in. 10879 */ 10880 if (inlen != 0 && 10881 inlen != (8 * (hopts->ip6h_len + 1))) 10882 return (EINVAL); 10883 10884 if (checkonly) 10885 break; 10886 10887 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10888 (uchar_t **)&ipp->ipp_hopopts, 10889 &ipp->ipp_hopoptslen, tcp->tcp_label_len); 10890 if (reterr != 0) 10891 return (reterr); 10892 if (ipp->ipp_hopoptslen == 0) 10893 ipp->ipp_fields &= ~IPPF_HOPOPTS; 10894 else 10895 ipp->ipp_fields |= IPPF_HOPOPTS; 10896 reterr = tcp_build_hdrs(q, tcp); 10897 if (reterr != 0) 10898 return (reterr); 10899 break; 10900 } 10901 case IPV6_RTHDRDSTOPTS: { 10902 ip6_dest_t *dopts = (ip6_dest_t *)invalp; 10903 10904 /* 10905 * Sanity checks - minimum size, size a multiple of 10906 * eight bytes, and matching size passed in. 10907 */ 10908 if (inlen != 0 && 10909 inlen != (8 * (dopts->ip6d_len + 1))) 10910 return (EINVAL); 10911 10912 if (checkonly) 10913 break; 10914 10915 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10916 (uchar_t **)&ipp->ipp_rtdstopts, 10917 &ipp->ipp_rtdstoptslen, 0); 10918 if (reterr != 0) 10919 return (reterr); 10920 if (ipp->ipp_rtdstoptslen == 0) 10921 ipp->ipp_fields &= ~IPPF_RTDSTOPTS; 10922 else 10923 ipp->ipp_fields |= IPPF_RTDSTOPTS; 10924 reterr = tcp_build_hdrs(q, tcp); 10925 if (reterr != 0) 10926 return (reterr); 10927 break; 10928 } 10929 case IPV6_DSTOPTS: { 10930 ip6_dest_t *dopts = (ip6_dest_t *)invalp; 10931 10932 /* 10933 * Sanity checks - minimum size, size a multiple of 10934 * eight bytes, and matching size passed in. 10935 */ 10936 if (inlen != 0 && 10937 inlen != (8 * (dopts->ip6d_len + 1))) 10938 return (EINVAL); 10939 10940 if (checkonly) 10941 break; 10942 10943 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10944 (uchar_t **)&ipp->ipp_dstopts, 10945 &ipp->ipp_dstoptslen, 0); 10946 if (reterr != 0) 10947 return (reterr); 10948 if (ipp->ipp_dstoptslen == 0) 10949 ipp->ipp_fields &= ~IPPF_DSTOPTS; 10950 else 10951 ipp->ipp_fields |= IPPF_DSTOPTS; 10952 reterr = tcp_build_hdrs(q, tcp); 10953 if (reterr != 0) 10954 return (reterr); 10955 break; 10956 } 10957 case IPV6_RTHDR: { 10958 ip6_rthdr_t *rt = (ip6_rthdr_t *)invalp; 10959 10960 /* 10961 * Sanity checks - minimum size, size a multiple of 10962 * eight bytes, and matching size passed in. 10963 */ 10964 if (inlen != 0 && 10965 inlen != (8 * (rt->ip6r_len + 1))) 10966 return (EINVAL); 10967 10968 if (checkonly) 10969 break; 10970 10971 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10972 (uchar_t **)&ipp->ipp_rthdr, 10973 &ipp->ipp_rthdrlen, 0); 10974 if (reterr != 0) 10975 return (reterr); 10976 if (ipp->ipp_rthdrlen == 0) 10977 ipp->ipp_fields &= ~IPPF_RTHDR; 10978 else 10979 ipp->ipp_fields |= IPPF_RTHDR; 10980 reterr = tcp_build_hdrs(q, tcp); 10981 if (reterr != 0) 10982 return (reterr); 10983 break; 10984 } 10985 case IPV6_V6ONLY: 10986 if (!checkonly) 10987 tcp->tcp_connp->conn_ipv6_v6only = onoff; 10988 break; 10989 case IPV6_USE_MIN_MTU: 10990 if (inlen != sizeof (int)) 10991 return (EINVAL); 10992 10993 if (*i1 < -1 || *i1 > 1) 10994 return (EINVAL); 10995 10996 if (checkonly) 10997 break; 10998 10999 ipp->ipp_fields |= IPPF_USE_MIN_MTU; 11000 ipp->ipp_use_min_mtu = *i1; 11001 break; 11002 case IPV6_BOUND_PIF: 11003 /* Handled at the IP level */ 11004 return (-EINVAL); 11005 case IPV6_SEC_OPT: 11006 /* 11007 * We should not allow policy setting after 11008 * we start listening for connections. 11009 */ 11010 if (tcp->tcp_state == TCPS_LISTEN) { 11011 return (EINVAL); 11012 } else { 11013 /* Handled at the IP level */ 11014 return (-EINVAL); 11015 } 11016 case IPV6_SRC_PREFERENCES: 11017 if (inlen != sizeof (uint32_t)) 11018 return (EINVAL); 11019 reterr = ip6_set_src_preferences(tcp->tcp_connp, 11020 *(uint32_t *)invalp); 11021 if (reterr != 0) { 11022 *outlenp = 0; 11023 return (reterr); 11024 } 11025 break; 11026 default: 11027 *outlenp = 0; 11028 return (EINVAL); 11029 } 11030 break; 11031 } /* end IPPROTO_IPV6 */ 11032 default: 11033 *outlenp = 0; 11034 return (EINVAL); 11035 } 11036 /* 11037 * Common case of OK return with outval same as inval 11038 */ 11039 if (invalp != outvalp) { 11040 /* don't trust bcopy for identical src/dst */ 11041 (void) bcopy(invalp, outvalp, inlen); 11042 } 11043 *outlenp = inlen; 11044 return (0); 11045 } 11046 11047 /* 11048 * Update tcp_sticky_hdrs based on tcp_sticky_ipp. 11049 * The headers include ip6i_t (if needed), ip6_t, any sticky extension 11050 * headers, and the maximum size tcp header (to avoid reallocation 11051 * on the fly for additional tcp options). 11052 * Returns failure if can't allocate memory. 11053 */ 11054 static int 11055 tcp_build_hdrs(queue_t *q, tcp_t *tcp) 11056 { 11057 char *hdrs; 11058 uint_t hdrs_len; 11059 ip6i_t *ip6i; 11060 char buf[TCP_MAX_HDR_LENGTH]; 11061 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 11062 in6_addr_t src, dst; 11063 tcp_stack_t *tcps = tcp->tcp_tcps; 11064 11065 /* 11066 * save the existing tcp header and source/dest IP addresses 11067 */ 11068 bcopy(tcp->tcp_tcph, buf, tcp->tcp_tcp_hdr_len); 11069 src = tcp->tcp_ip6h->ip6_src; 11070 dst = tcp->tcp_ip6h->ip6_dst; 11071 hdrs_len = ip_total_hdrs_len_v6(ipp) + TCP_MAX_HDR_LENGTH; 11072 ASSERT(hdrs_len != 0); 11073 if (hdrs_len > tcp->tcp_iphc_len) { 11074 /* Need to reallocate */ 11075 hdrs = kmem_zalloc(hdrs_len, KM_NOSLEEP); 11076 if (hdrs == NULL) 11077 return (ENOMEM); 11078 if (tcp->tcp_iphc != NULL) { 11079 if (tcp->tcp_hdr_grown) { 11080 kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len); 11081 } else { 11082 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 11083 kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc); 11084 } 11085 tcp->tcp_iphc_len = 0; 11086 } 11087 ASSERT(tcp->tcp_iphc_len == 0); 11088 tcp->tcp_iphc = hdrs; 11089 tcp->tcp_iphc_len = hdrs_len; 11090 tcp->tcp_hdr_grown = B_TRUE; 11091 } 11092 ip_build_hdrs_v6((uchar_t *)tcp->tcp_iphc, 11093 hdrs_len - TCP_MAX_HDR_LENGTH, ipp, IPPROTO_TCP); 11094 11095 /* Set header fields not in ipp */ 11096 if (ipp->ipp_fields & IPPF_HAS_IP6I) { 11097 ip6i = (ip6i_t *)tcp->tcp_iphc; 11098 tcp->tcp_ip6h = (ip6_t *)&ip6i[1]; 11099 } else { 11100 tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc; 11101 } 11102 /* 11103 * tcp->tcp_ip_hdr_len will include ip6i_t if there is one. 11104 * 11105 * tcp->tcp_tcp_hdr_len doesn't change here. 11106 */ 11107 tcp->tcp_ip_hdr_len = hdrs_len - TCP_MAX_HDR_LENGTH; 11108 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + tcp->tcp_ip_hdr_len); 11109 tcp->tcp_hdr_len = tcp->tcp_ip_hdr_len + tcp->tcp_tcp_hdr_len; 11110 11111 bcopy(buf, tcp->tcp_tcph, tcp->tcp_tcp_hdr_len); 11112 11113 tcp->tcp_ip6h->ip6_src = src; 11114 tcp->tcp_ip6h->ip6_dst = dst; 11115 11116 /* 11117 * If the hop limit was not set by ip_build_hdrs_v6(), set it to 11118 * the default value for TCP. 11119 */ 11120 if (!(ipp->ipp_fields & IPPF_UNICAST_HOPS)) 11121 tcp->tcp_ip6h->ip6_hops = tcps->tcps_ipv6_hoplimit; 11122 11123 /* 11124 * If we're setting extension headers after a connection 11125 * has been established, and if we have a routing header 11126 * among the extension headers, call ip_massage_options_v6 to 11127 * manipulate the routing header/ip6_dst set the checksum 11128 * difference in the tcp header template. 11129 * (This happens in tcp_connect_ipv6 if the routing header 11130 * is set prior to the connect.) 11131 * Set the tcp_sum to zero first in case we've cleared a 11132 * routing header or don't have one at all. 11133 */ 11134 tcp->tcp_sum = 0; 11135 if ((tcp->tcp_state >= TCPS_SYN_SENT) && 11136 (tcp->tcp_ipp_fields & IPPF_RTHDR)) { 11137 ip6_rthdr_t *rth = ip_find_rthdr_v6(tcp->tcp_ip6h, 11138 (uint8_t *)tcp->tcp_tcph); 11139 if (rth != NULL) { 11140 tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, 11141 rth, tcps->tcps_netstack); 11142 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 11143 (tcp->tcp_sum >> 16)); 11144 } 11145 } 11146 11147 /* Try to get everything in a single mblk */ 11148 (void) mi_set_sth_wroff(RD(q), hdrs_len + tcps->tcps_wroff_xtra); 11149 return (0); 11150 } 11151 11152 /* 11153 * Transfer any source route option from ipha to buf/dst in reversed form. 11154 */ 11155 static int 11156 tcp_opt_rev_src_route(ipha_t *ipha, char *buf, uchar_t *dst) 11157 { 11158 ipoptp_t opts; 11159 uchar_t *opt; 11160 uint8_t optval; 11161 uint8_t optlen; 11162 uint32_t len = 0; 11163 11164 for (optval = ipoptp_first(&opts, ipha); 11165 optval != IPOPT_EOL; 11166 optval = ipoptp_next(&opts)) { 11167 opt = opts.ipoptp_cur; 11168 optlen = opts.ipoptp_len; 11169 switch (optval) { 11170 int off1, off2; 11171 case IPOPT_SSRR: 11172 case IPOPT_LSRR: 11173 11174 /* Reverse source route */ 11175 /* 11176 * First entry should be the next to last one in the 11177 * current source route (the last entry is our 11178 * address.) 11179 * The last entry should be the final destination. 11180 */ 11181 buf[IPOPT_OPTVAL] = (uint8_t)optval; 11182 buf[IPOPT_OLEN] = (uint8_t)optlen; 11183 off1 = IPOPT_MINOFF_SR - 1; 11184 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 11185 if (off2 < 0) { 11186 /* No entries in source route */ 11187 break; 11188 } 11189 bcopy(opt + off2, dst, IP_ADDR_LEN); 11190 /* 11191 * Note: use src since ipha has not had its src 11192 * and dst reversed (it is in the state it was 11193 * received. 11194 */ 11195 bcopy(&ipha->ipha_src, buf + off2, 11196 IP_ADDR_LEN); 11197 off2 -= IP_ADDR_LEN; 11198 11199 while (off2 > 0) { 11200 bcopy(opt + off2, buf + off1, 11201 IP_ADDR_LEN); 11202 off1 += IP_ADDR_LEN; 11203 off2 -= IP_ADDR_LEN; 11204 } 11205 buf[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 11206 buf += optlen; 11207 len += optlen; 11208 break; 11209 } 11210 } 11211 done: 11212 /* Pad the resulting options */ 11213 while (len & 0x3) { 11214 *buf++ = IPOPT_EOL; 11215 len++; 11216 } 11217 return (len); 11218 } 11219 11220 11221 /* 11222 * Extract and revert a source route from ipha (if any) 11223 * and then update the relevant fields in both tcp_t and the standard header. 11224 */ 11225 static void 11226 tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha) 11227 { 11228 char buf[TCP_MAX_HDR_LENGTH]; 11229 uint_t tcph_len; 11230 int len; 11231 11232 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION); 11233 len = IPH_HDR_LENGTH(ipha); 11234 if (len == IP_SIMPLE_HDR_LENGTH) 11235 /* Nothing to do */ 11236 return; 11237 if (len > IP_SIMPLE_HDR_LENGTH + TCP_MAX_IP_OPTIONS_LENGTH || 11238 (len & 0x3)) 11239 return; 11240 11241 tcph_len = tcp->tcp_tcp_hdr_len; 11242 bcopy(tcp->tcp_tcph, buf, tcph_len); 11243 tcp->tcp_sum = (tcp->tcp_ipha->ipha_dst >> 16) + 11244 (tcp->tcp_ipha->ipha_dst & 0xffff); 11245 len = tcp_opt_rev_src_route(ipha, (char *)tcp->tcp_ipha + 11246 IP_SIMPLE_HDR_LENGTH, (uchar_t *)&tcp->tcp_ipha->ipha_dst); 11247 len += IP_SIMPLE_HDR_LENGTH; 11248 tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) + 11249 (tcp->tcp_ipha->ipha_dst & 0xffff)); 11250 if ((int)tcp->tcp_sum < 0) 11251 tcp->tcp_sum--; 11252 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 11253 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16)); 11254 tcp->tcp_tcph = (tcph_t *)((char *)tcp->tcp_ipha + len); 11255 bcopy(buf, tcp->tcp_tcph, tcph_len); 11256 tcp->tcp_ip_hdr_len = len; 11257 tcp->tcp_ipha->ipha_version_and_hdr_length = 11258 (IP_VERSION << 4) | (len >> 2); 11259 len += tcph_len; 11260 tcp->tcp_hdr_len = len; 11261 } 11262 11263 /* 11264 * Copy the standard header into its new location, 11265 * lay in the new options and then update the relevant 11266 * fields in both tcp_t and the standard header. 11267 */ 11268 static int 11269 tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, uchar_t *ptr, uint_t len) 11270 { 11271 uint_t tcph_len; 11272 uint8_t *ip_optp; 11273 tcph_t *new_tcph; 11274 tcp_stack_t *tcps = tcp->tcp_tcps; 11275 11276 if ((len > TCP_MAX_IP_OPTIONS_LENGTH) || (len & 0x3)) 11277 return (EINVAL); 11278 11279 if (len > IP_MAX_OPT_LENGTH - tcp->tcp_label_len) 11280 return (EINVAL); 11281 11282 if (checkonly) { 11283 /* 11284 * do not really set, just pretend to - T_CHECK 11285 */ 11286 return (0); 11287 } 11288 11289 ip_optp = (uint8_t *)tcp->tcp_ipha + IP_SIMPLE_HDR_LENGTH; 11290 if (tcp->tcp_label_len > 0) { 11291 int padlen; 11292 uint8_t opt; 11293 11294 /* convert list termination to no-ops */ 11295 padlen = tcp->tcp_label_len - ip_optp[IPOPT_OLEN]; 11296 ip_optp += ip_optp[IPOPT_OLEN]; 11297 opt = len > 0 ? IPOPT_NOP : IPOPT_EOL; 11298 while (--padlen >= 0) 11299 *ip_optp++ = opt; 11300 } 11301 tcph_len = tcp->tcp_tcp_hdr_len; 11302 new_tcph = (tcph_t *)(ip_optp + len); 11303 ovbcopy(tcp->tcp_tcph, new_tcph, tcph_len); 11304 tcp->tcp_tcph = new_tcph; 11305 bcopy(ptr, ip_optp, len); 11306 11307 len += IP_SIMPLE_HDR_LENGTH + tcp->tcp_label_len; 11308 11309 tcp->tcp_ip_hdr_len = len; 11310 tcp->tcp_ipha->ipha_version_and_hdr_length = 11311 (IP_VERSION << 4) | (len >> 2); 11312 tcp->tcp_hdr_len = len + tcph_len; 11313 if (!TCP_IS_DETACHED(tcp)) { 11314 /* Always allocate room for all options. */ 11315 (void) mi_set_sth_wroff(tcp->tcp_rq, 11316 TCP_MAX_COMBINED_HEADER_LENGTH + tcps->tcps_wroff_xtra); 11317 } 11318 return (0); 11319 } 11320 11321 /* Get callback routine passed to nd_load by tcp_param_register */ 11322 /* ARGSUSED */ 11323 static int 11324 tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 11325 { 11326 tcpparam_t *tcppa = (tcpparam_t *)cp; 11327 11328 (void) mi_mpprintf(mp, "%u", tcppa->tcp_param_val); 11329 return (0); 11330 } 11331 11332 /* 11333 * Walk through the param array specified registering each element with the 11334 * named dispatch handler. 11335 */ 11336 static boolean_t 11337 tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt, tcp_stack_t *tcps) 11338 { 11339 for (; cnt-- > 0; tcppa++) { 11340 if (tcppa->tcp_param_name && tcppa->tcp_param_name[0]) { 11341 if (!nd_load(ndp, tcppa->tcp_param_name, 11342 tcp_param_get, tcp_param_set, 11343 (caddr_t)tcppa)) { 11344 nd_free(ndp); 11345 return (B_FALSE); 11346 } 11347 } 11348 } 11349 tcps->tcps_wroff_xtra_param = kmem_zalloc(sizeof (tcpparam_t), 11350 KM_SLEEP); 11351 bcopy(&lcl_tcp_wroff_xtra_param, tcps->tcps_wroff_xtra_param, 11352 sizeof (tcpparam_t)); 11353 if (!nd_load(ndp, tcps->tcps_wroff_xtra_param->tcp_param_name, 11354 tcp_param_get, tcp_param_set_aligned, 11355 (caddr_t)tcps->tcps_wroff_xtra_param)) { 11356 nd_free(ndp); 11357 return (B_FALSE); 11358 } 11359 tcps->tcps_mdt_head_param = kmem_zalloc(sizeof (tcpparam_t), 11360 KM_SLEEP); 11361 bcopy(&lcl_tcp_mdt_head_param, tcps->tcps_mdt_head_param, 11362 sizeof (tcpparam_t)); 11363 if (!nd_load(ndp, tcps->tcps_mdt_head_param->tcp_param_name, 11364 tcp_param_get, tcp_param_set_aligned, 11365 (caddr_t)tcps->tcps_mdt_head_param)) { 11366 nd_free(ndp); 11367 return (B_FALSE); 11368 } 11369 tcps->tcps_mdt_tail_param = kmem_zalloc(sizeof (tcpparam_t), 11370 KM_SLEEP); 11371 bcopy(&lcl_tcp_mdt_tail_param, tcps->tcps_mdt_tail_param, 11372 sizeof (tcpparam_t)); 11373 if (!nd_load(ndp, tcps->tcps_mdt_tail_param->tcp_param_name, 11374 tcp_param_get, tcp_param_set_aligned, 11375 (caddr_t)tcps->tcps_mdt_tail_param)) { 11376 nd_free(ndp); 11377 return (B_FALSE); 11378 } 11379 tcps->tcps_mdt_max_pbufs_param = kmem_zalloc(sizeof (tcpparam_t), 11380 KM_SLEEP); 11381 bcopy(&lcl_tcp_mdt_max_pbufs_param, tcps->tcps_mdt_max_pbufs_param, 11382 sizeof (tcpparam_t)); 11383 if (!nd_load(ndp, tcps->tcps_mdt_max_pbufs_param->tcp_param_name, 11384 tcp_param_get, tcp_param_set_aligned, 11385 (caddr_t)tcps->tcps_mdt_max_pbufs_param)) { 11386 nd_free(ndp); 11387 return (B_FALSE); 11388 } 11389 if (!nd_load(ndp, "tcp_extra_priv_ports", 11390 tcp_extra_priv_ports_get, NULL, NULL)) { 11391 nd_free(ndp); 11392 return (B_FALSE); 11393 } 11394 if (!nd_load(ndp, "tcp_extra_priv_ports_add", 11395 NULL, tcp_extra_priv_ports_add, NULL)) { 11396 nd_free(ndp); 11397 return (B_FALSE); 11398 } 11399 if (!nd_load(ndp, "tcp_extra_priv_ports_del", 11400 NULL, tcp_extra_priv_ports_del, NULL)) { 11401 nd_free(ndp); 11402 return (B_FALSE); 11403 } 11404 if (!nd_load(ndp, "tcp_status", tcp_status_report, NULL, 11405 NULL)) { 11406 nd_free(ndp); 11407 return (B_FALSE); 11408 } 11409 if (!nd_load(ndp, "tcp_bind_hash", tcp_bind_hash_report, 11410 NULL, NULL)) { 11411 nd_free(ndp); 11412 return (B_FALSE); 11413 } 11414 if (!nd_load(ndp, "tcp_listen_hash", 11415 tcp_listen_hash_report, NULL, NULL)) { 11416 nd_free(ndp); 11417 return (B_FALSE); 11418 } 11419 if (!nd_load(ndp, "tcp_conn_hash", tcp_conn_hash_report, 11420 NULL, NULL)) { 11421 nd_free(ndp); 11422 return (B_FALSE); 11423 } 11424 if (!nd_load(ndp, "tcp_acceptor_hash", 11425 tcp_acceptor_hash_report, NULL, NULL)) { 11426 nd_free(ndp); 11427 return (B_FALSE); 11428 } 11429 if (!nd_load(ndp, "tcp_host_param", tcp_host_param_report, 11430 tcp_host_param_set, NULL)) { 11431 nd_free(ndp); 11432 return (B_FALSE); 11433 } 11434 if (!nd_load(ndp, "tcp_host_param_ipv6", 11435 tcp_host_param_report, tcp_host_param_set_ipv6, NULL)) { 11436 nd_free(ndp); 11437 return (B_FALSE); 11438 } 11439 if (!nd_load(ndp, "tcp_1948_phrase", NULL, 11440 tcp_1948_phrase_set, NULL)) { 11441 nd_free(ndp); 11442 return (B_FALSE); 11443 } 11444 if (!nd_load(ndp, "tcp_reserved_port_list", 11445 tcp_reserved_port_list, NULL, NULL)) { 11446 nd_free(ndp); 11447 return (B_FALSE); 11448 } 11449 /* 11450 * Dummy ndd variables - only to convey obsolescence information 11451 * through printing of their name (no get or set routines) 11452 * XXX Remove in future releases ? 11453 */ 11454 if (!nd_load(ndp, 11455 "tcp_close_wait_interval(obsoleted - " 11456 "use tcp_time_wait_interval)", NULL, NULL, NULL)) { 11457 nd_free(ndp); 11458 return (B_FALSE); 11459 } 11460 return (B_TRUE); 11461 } 11462 11463 /* ndd set routine for tcp_wroff_xtra, tcp_mdt_hdr_{head,tail}_min. */ 11464 /* ARGSUSED */ 11465 static int 11466 tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 11467 cred_t *cr) 11468 { 11469 long new_value; 11470 tcpparam_t *tcppa = (tcpparam_t *)cp; 11471 11472 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11473 new_value < tcppa->tcp_param_min || 11474 new_value > tcppa->tcp_param_max) { 11475 return (EINVAL); 11476 } 11477 /* 11478 * Need to make sure new_value is a multiple of 4. If it is not, 11479 * round it up. For future 64 bit requirement, we actually make it 11480 * a multiple of 8. 11481 */ 11482 if (new_value & 0x7) { 11483 new_value = (new_value & ~0x7) + 0x8; 11484 } 11485 tcppa->tcp_param_val = new_value; 11486 return (0); 11487 } 11488 11489 /* Set callback routine passed to nd_load by tcp_param_register */ 11490 /* ARGSUSED */ 11491 static int 11492 tcp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) 11493 { 11494 long new_value; 11495 tcpparam_t *tcppa = (tcpparam_t *)cp; 11496 11497 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11498 new_value < tcppa->tcp_param_min || 11499 new_value > tcppa->tcp_param_max) { 11500 return (EINVAL); 11501 } 11502 tcppa->tcp_param_val = new_value; 11503 return (0); 11504 } 11505 11506 /* 11507 * Add a new piece to the tcp reassembly queue. If the gap at the beginning 11508 * is filled, return as much as we can. The message passed in may be 11509 * multi-part, chained using b_cont. "start" is the starting sequence 11510 * number for this piece. 11511 */ 11512 static mblk_t * 11513 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start) 11514 { 11515 uint32_t end; 11516 mblk_t *mp1; 11517 mblk_t *mp2; 11518 mblk_t *next_mp; 11519 uint32_t u1; 11520 tcp_stack_t *tcps = tcp->tcp_tcps; 11521 11522 /* Walk through all the new pieces. */ 11523 do { 11524 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 11525 (uintptr_t)INT_MAX); 11526 end = start + (int)(mp->b_wptr - mp->b_rptr); 11527 next_mp = mp->b_cont; 11528 if (start == end) { 11529 /* Empty. Blast it. */ 11530 freeb(mp); 11531 continue; 11532 } 11533 mp->b_cont = NULL; 11534 TCP_REASS_SET_SEQ(mp, start); 11535 TCP_REASS_SET_END(mp, end); 11536 mp1 = tcp->tcp_reass_tail; 11537 if (!mp1) { 11538 tcp->tcp_reass_tail = mp; 11539 tcp->tcp_reass_head = mp; 11540 BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs); 11541 UPDATE_MIB(&tcps->tcps_mib, 11542 tcpInDataUnorderBytes, end - start); 11543 continue; 11544 } 11545 /* New stuff completely beyond tail? */ 11546 if (SEQ_GEQ(start, TCP_REASS_END(mp1))) { 11547 /* Link it on end. */ 11548 mp1->b_cont = mp; 11549 tcp->tcp_reass_tail = mp; 11550 BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs); 11551 UPDATE_MIB(&tcps->tcps_mib, 11552 tcpInDataUnorderBytes, end - start); 11553 continue; 11554 } 11555 mp1 = tcp->tcp_reass_head; 11556 u1 = TCP_REASS_SEQ(mp1); 11557 /* New stuff at the front? */ 11558 if (SEQ_LT(start, u1)) { 11559 /* Yes... Check for overlap. */ 11560 mp->b_cont = mp1; 11561 tcp->tcp_reass_head = mp; 11562 tcp_reass_elim_overlap(tcp, mp); 11563 continue; 11564 } 11565 /* 11566 * The new piece fits somewhere between the head and tail. 11567 * We find our slot, where mp1 precedes us and mp2 trails. 11568 */ 11569 for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) { 11570 u1 = TCP_REASS_SEQ(mp2); 11571 if (SEQ_LEQ(start, u1)) 11572 break; 11573 } 11574 /* Link ourselves in */ 11575 mp->b_cont = mp2; 11576 mp1->b_cont = mp; 11577 11578 /* Trim overlap with following mblk(s) first */ 11579 tcp_reass_elim_overlap(tcp, mp); 11580 11581 /* Trim overlap with preceding mblk */ 11582 tcp_reass_elim_overlap(tcp, mp1); 11583 11584 } while (start = end, mp = next_mp); 11585 mp1 = tcp->tcp_reass_head; 11586 /* Anything ready to go? */ 11587 if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt) 11588 return (NULL); 11589 /* Eat what we can off the queue */ 11590 for (;;) { 11591 mp = mp1->b_cont; 11592 end = TCP_REASS_END(mp1); 11593 TCP_REASS_SET_SEQ(mp1, 0); 11594 TCP_REASS_SET_END(mp1, 0); 11595 if (!mp) { 11596 tcp->tcp_reass_tail = NULL; 11597 break; 11598 } 11599 if (end != TCP_REASS_SEQ(mp)) { 11600 mp1->b_cont = NULL; 11601 break; 11602 } 11603 mp1 = mp; 11604 } 11605 mp1 = tcp->tcp_reass_head; 11606 tcp->tcp_reass_head = mp; 11607 return (mp1); 11608 } 11609 11610 /* Eliminate any overlap that mp may have over later mblks */ 11611 static void 11612 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp) 11613 { 11614 uint32_t end; 11615 mblk_t *mp1; 11616 uint32_t u1; 11617 tcp_stack_t *tcps = tcp->tcp_tcps; 11618 11619 end = TCP_REASS_END(mp); 11620 while ((mp1 = mp->b_cont) != NULL) { 11621 u1 = TCP_REASS_SEQ(mp1); 11622 if (!SEQ_GT(end, u1)) 11623 break; 11624 if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) { 11625 mp->b_wptr -= end - u1; 11626 TCP_REASS_SET_END(mp, u1); 11627 BUMP_MIB(&tcps->tcps_mib, tcpInDataPartDupSegs); 11628 UPDATE_MIB(&tcps->tcps_mib, 11629 tcpInDataPartDupBytes, end - u1); 11630 break; 11631 } 11632 mp->b_cont = mp1->b_cont; 11633 TCP_REASS_SET_SEQ(mp1, 0); 11634 TCP_REASS_SET_END(mp1, 0); 11635 freeb(mp1); 11636 BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); 11637 UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, end - u1); 11638 } 11639 if (!mp1) 11640 tcp->tcp_reass_tail = mp; 11641 } 11642 11643 /* 11644 * Send up all messages queued on tcp_rcv_list. 11645 */ 11646 static uint_t 11647 tcp_rcv_drain(queue_t *q, tcp_t *tcp) 11648 { 11649 mblk_t *mp; 11650 uint_t ret = 0; 11651 uint_t thwin; 11652 #ifdef DEBUG 11653 uint_t cnt = 0; 11654 #endif 11655 tcp_stack_t *tcps = tcp->tcp_tcps; 11656 11657 /* Can't drain on an eager connection */ 11658 if (tcp->tcp_listener != NULL) 11659 return (ret); 11660 11661 /* 11662 * Handle two cases here: we are currently fused or we were 11663 * previously fused and have some urgent data to be delivered 11664 * upstream. The latter happens because we either ran out of 11665 * memory or were detached and therefore sending the SIGURG was 11666 * deferred until this point. In either case we pass control 11667 * over to tcp_fuse_rcv_drain() since it may need to complete 11668 * some work. 11669 */ 11670 if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) { 11671 ASSERT(tcp->tcp_fused_sigurg_mp != NULL); 11672 if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL : 11673 &tcp->tcp_fused_sigurg_mp)) 11674 return (ret); 11675 } 11676 11677 while ((mp = tcp->tcp_rcv_list) != NULL) { 11678 tcp->tcp_rcv_list = mp->b_next; 11679 mp->b_next = NULL; 11680 #ifdef DEBUG 11681 cnt += msgdsize(mp); 11682 #endif 11683 /* Does this need SSL processing first? */ 11684 if ((tcp->tcp_kssl_ctx != NULL) && (DB_TYPE(mp) == M_DATA)) { 11685 tcp_kssl_input(tcp, mp); 11686 continue; 11687 } 11688 putnext(q, mp); 11689 } 11690 ASSERT(cnt == tcp->tcp_rcv_cnt); 11691 tcp->tcp_rcv_last_head = NULL; 11692 tcp->tcp_rcv_last_tail = NULL; 11693 tcp->tcp_rcv_cnt = 0; 11694 11695 /* Learn the latest rwnd information that we sent to the other side. */ 11696 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 11697 << tcp->tcp_rcv_ws; 11698 /* This is peer's calculated send window (our receive window). */ 11699 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 11700 /* 11701 * Increase the receive window to max. But we need to do receiver 11702 * SWS avoidance. This means that we need to check the increase of 11703 * of receive window is at least 1 MSS. 11704 */ 11705 if (canputnext(q) && (q->q_hiwat - thwin >= tcp->tcp_mss)) { 11706 /* 11707 * If the window that the other side knows is less than max 11708 * deferred acks segments, send an update immediately. 11709 */ 11710 if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) { 11711 BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate); 11712 ret = TH_ACK_NEEDED; 11713 } 11714 tcp->tcp_rwnd = q->q_hiwat; 11715 } 11716 /* No need for the push timer now. */ 11717 if (tcp->tcp_push_tid != 0) { 11718 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 11719 tcp->tcp_push_tid = 0; 11720 } 11721 return (ret); 11722 } 11723 11724 /* 11725 * Queue data on tcp_rcv_list which is a b_next chain. 11726 * tcp_rcv_last_head/tail is the last element of this chain. 11727 * Each element of the chain is a b_cont chain. 11728 * 11729 * M_DATA messages are added to the current element. 11730 * Other messages are added as new (b_next) elements. 11731 */ 11732 void 11733 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len) 11734 { 11735 ASSERT(seg_len == msgdsize(mp)); 11736 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL); 11737 11738 if (tcp->tcp_rcv_list == NULL) { 11739 ASSERT(tcp->tcp_rcv_last_head == NULL); 11740 tcp->tcp_rcv_list = mp; 11741 tcp->tcp_rcv_last_head = mp; 11742 } else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) { 11743 tcp->tcp_rcv_last_tail->b_cont = mp; 11744 } else { 11745 tcp->tcp_rcv_last_head->b_next = mp; 11746 tcp->tcp_rcv_last_head = mp; 11747 } 11748 11749 while (mp->b_cont) 11750 mp = mp->b_cont; 11751 11752 tcp->tcp_rcv_last_tail = mp; 11753 tcp->tcp_rcv_cnt += seg_len; 11754 tcp->tcp_rwnd -= seg_len; 11755 } 11756 11757 /* 11758 * DEFAULT TCP ENTRY POINT via squeue on READ side. 11759 * 11760 * This is the default entry function into TCP on the read side. TCP is 11761 * always entered via squeue i.e. using squeue's for mutual exclusion. 11762 * When classifier does a lookup to find the tcp, it also puts a reference 11763 * on the conn structure associated so the tcp is guaranteed to exist 11764 * when we come here. We still need to check the state because it might 11765 * as well has been closed. The squeue processing function i.e. squeue_enter, 11766 * squeue_enter_nodrain, or squeue_drain is responsible for doing the 11767 * CONN_DEC_REF. 11768 * 11769 * Apart from the default entry point, IP also sends packets directly to 11770 * tcp_rput_data for AF_INET fast path and tcp_conn_request for incoming 11771 * connections. 11772 */ 11773 void 11774 tcp_input(void *arg, mblk_t *mp, void *arg2) 11775 { 11776 conn_t *connp = (conn_t *)arg; 11777 tcp_t *tcp = (tcp_t *)connp->conn_tcp; 11778 11779 /* arg2 is the sqp */ 11780 ASSERT(arg2 != NULL); 11781 ASSERT(mp != NULL); 11782 11783 /* 11784 * Don't accept any input on a closed tcp as this TCP logically does 11785 * not exist on the system. Don't proceed further with this TCP. 11786 * For eg. this packet could trigger another close of this tcp 11787 * which would be disastrous for tcp_refcnt. tcp_close_detached / 11788 * tcp_clean_death / tcp_closei_local must be called at most once 11789 * on a TCP. In this case we need to refeed the packet into the 11790 * classifier and figure out where the packet should go. Need to 11791 * preserve the recv_ill somehow. Until we figure that out, for 11792 * now just drop the packet if we can't classify the packet. 11793 */ 11794 if (tcp->tcp_state == TCPS_CLOSED || 11795 tcp->tcp_state == TCPS_BOUND) { 11796 conn_t *new_connp; 11797 ip_stack_t *ipst = tcp->tcp_tcps->tcps_netstack->netstack_ip; 11798 11799 new_connp = ipcl_classify(mp, connp->conn_zoneid, ipst); 11800 if (new_connp != NULL) { 11801 tcp_reinput(new_connp, mp, arg2); 11802 return; 11803 } 11804 /* We failed to classify. For now just drop the packet */ 11805 freemsg(mp); 11806 return; 11807 } 11808 11809 if (DB_TYPE(mp) == M_DATA) 11810 tcp_rput_data(connp, mp, arg2); 11811 else 11812 tcp_rput_common(tcp, mp); 11813 } 11814 11815 /* 11816 * The read side put procedure. 11817 * The packets passed up by ip are assume to be aligned according to 11818 * OK_32PTR and the IP+TCP headers fitting in the first mblk. 11819 */ 11820 static void 11821 tcp_rput_common(tcp_t *tcp, mblk_t *mp) 11822 { 11823 /* 11824 * tcp_rput_data() does not expect M_CTL except for the case 11825 * where tcp_ipv6_recvancillary is set and we get a IN_PKTINFO 11826 * type. Need to make sure that any other M_CTLs don't make 11827 * it to tcp_rput_data since it is not expecting any and doesn't 11828 * check for it. 11829 */ 11830 if (DB_TYPE(mp) == M_CTL) { 11831 switch (*(uint32_t *)(mp->b_rptr)) { 11832 case TCP_IOC_ABORT_CONN: 11833 /* 11834 * Handle connection abort request. 11835 */ 11836 tcp_ioctl_abort_handler(tcp, mp); 11837 return; 11838 case IPSEC_IN: 11839 /* 11840 * Only secure icmp arrive in TCP and they 11841 * don't go through data path. 11842 */ 11843 tcp_icmp_error(tcp, mp); 11844 return; 11845 case IN_PKTINFO: 11846 /* 11847 * Handle IPV6_RECVPKTINFO socket option on AF_INET6 11848 * sockets that are receiving IPv4 traffic. tcp 11849 */ 11850 ASSERT(tcp->tcp_family == AF_INET6); 11851 ASSERT(tcp->tcp_ipv6_recvancillary & 11852 TCP_IPV6_RECVPKTINFO); 11853 tcp_rput_data(tcp->tcp_connp, mp, 11854 tcp->tcp_connp->conn_sqp); 11855 return; 11856 case MDT_IOC_INFO_UPDATE: 11857 /* 11858 * Handle Multidata information update; the 11859 * following routine will free the message. 11860 */ 11861 if (tcp->tcp_connp->conn_mdt_ok) { 11862 tcp_mdt_update(tcp, 11863 &((ip_mdt_info_t *)mp->b_rptr)->mdt_capab, 11864 B_FALSE); 11865 } 11866 freemsg(mp); 11867 return; 11868 case LSO_IOC_INFO_UPDATE: 11869 /* 11870 * Handle LSO information update; the following 11871 * routine will free the message. 11872 */ 11873 if (tcp->tcp_connp->conn_lso_ok) { 11874 tcp_lso_update(tcp, 11875 &((ip_lso_info_t *)mp->b_rptr)->lso_capab); 11876 } 11877 freemsg(mp); 11878 return; 11879 default: 11880 /* 11881 * tcp_icmp_err() will process the M_CTL packets. 11882 * Non-ICMP packets, if any, will be discarded in 11883 * tcp_icmp_err(). We will process the ICMP packet 11884 * even if we are TCP_IS_DETACHED_NONEAGER as the 11885 * incoming ICMP packet may result in changing 11886 * the tcp_mss, which we would need if we have 11887 * packets to retransmit. 11888 */ 11889 tcp_icmp_error(tcp, mp); 11890 return; 11891 } 11892 } 11893 11894 /* No point processing the message if tcp is already closed */ 11895 if (TCP_IS_DETACHED_NONEAGER(tcp)) { 11896 freemsg(mp); 11897 return; 11898 } 11899 11900 tcp_rput_other(tcp, mp); 11901 } 11902 11903 11904 /* The minimum of smoothed mean deviation in RTO calculation. */ 11905 #define TCP_SD_MIN 400 11906 11907 /* 11908 * Set RTO for this connection. The formula is from Jacobson and Karels' 11909 * "Congestion Avoidance and Control" in SIGCOMM '88. The variable names 11910 * are the same as those in Appendix A.2 of that paper. 11911 * 11912 * m = new measurement 11913 * sa = smoothed RTT average (8 * average estimates). 11914 * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates). 11915 */ 11916 static void 11917 tcp_set_rto(tcp_t *tcp, clock_t rtt) 11918 { 11919 long m = TICK_TO_MSEC(rtt); 11920 clock_t sa = tcp->tcp_rtt_sa; 11921 clock_t sv = tcp->tcp_rtt_sd; 11922 clock_t rto; 11923 tcp_stack_t *tcps = tcp->tcp_tcps; 11924 11925 BUMP_MIB(&tcps->tcps_mib, tcpRttUpdate); 11926 tcp->tcp_rtt_update++; 11927 11928 /* tcp_rtt_sa is not 0 means this is a new sample. */ 11929 if (sa != 0) { 11930 /* 11931 * Update average estimator: 11932 * new rtt = 7/8 old rtt + 1/8 Error 11933 */ 11934 11935 /* m is now Error in estimate. */ 11936 m -= sa >> 3; 11937 if ((sa += m) <= 0) { 11938 /* 11939 * Don't allow the smoothed average to be negative. 11940 * We use 0 to denote reinitialization of the 11941 * variables. 11942 */ 11943 sa = 1; 11944 } 11945 11946 /* 11947 * Update deviation estimator: 11948 * new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev) 11949 */ 11950 if (m < 0) 11951 m = -m; 11952 m -= sv >> 2; 11953 sv += m; 11954 } else { 11955 /* 11956 * This follows BSD's implementation. So the reinitialized 11957 * RTO is 3 * m. We cannot go less than 2 because if the 11958 * link is bandwidth dominated, doubling the window size 11959 * during slow start means doubling the RTT. We want to be 11960 * more conservative when we reinitialize our estimates. 3 11961 * is just a convenient number. 11962 */ 11963 sa = m << 3; 11964 sv = m << 1; 11965 } 11966 if (sv < TCP_SD_MIN) { 11967 /* 11968 * We do not know that if sa captures the delay ACK 11969 * effect as in a long train of segments, a receiver 11970 * does not delay its ACKs. So set the minimum of sv 11971 * to be TCP_SD_MIN, which is default to 400 ms, twice 11972 * of BSD DATO. That means the minimum of mean 11973 * deviation is 100 ms. 11974 * 11975 */ 11976 sv = TCP_SD_MIN; 11977 } 11978 tcp->tcp_rtt_sa = sa; 11979 tcp->tcp_rtt_sd = sv; 11980 /* 11981 * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv) 11982 * 11983 * Add tcp_rexmit_interval extra in case of extreme environment 11984 * where the algorithm fails to work. The default value of 11985 * tcp_rexmit_interval_extra should be 0. 11986 * 11987 * As we use a finer grained clock than BSD and update 11988 * RTO for every ACKs, add in another .25 of RTT to the 11989 * deviation of RTO to accomodate burstiness of 1/4 of 11990 * window size. 11991 */ 11992 rto = (sa >> 3) + sv + tcps->tcps_rexmit_interval_extra + (sa >> 5); 11993 11994 if (rto > tcps->tcps_rexmit_interval_max) { 11995 tcp->tcp_rto = tcps->tcps_rexmit_interval_max; 11996 } else if (rto < tcps->tcps_rexmit_interval_min) { 11997 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 11998 } else { 11999 tcp->tcp_rto = rto; 12000 } 12001 12002 /* Now, we can reset tcp_timer_backoff to use the new RTO... */ 12003 tcp->tcp_timer_backoff = 0; 12004 } 12005 12006 /* 12007 * tcp_get_seg_mp() is called to get the pointer to a segment in the 12008 * send queue which starts at the given seq. no. 12009 * 12010 * Parameters: 12011 * tcp_t *tcp: the tcp instance pointer. 12012 * uint32_t seq: the starting seq. no of the requested segment. 12013 * int32_t *off: after the execution, *off will be the offset to 12014 * the returned mblk which points to the requested seq no. 12015 * It is the caller's responsibility to send in a non-null off. 12016 * 12017 * Return: 12018 * A mblk_t pointer pointing to the requested segment in send queue. 12019 */ 12020 static mblk_t * 12021 tcp_get_seg_mp(tcp_t *tcp, uint32_t seq, int32_t *off) 12022 { 12023 int32_t cnt; 12024 mblk_t *mp; 12025 12026 /* Defensive coding. Make sure we don't send incorrect data. */ 12027 if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt)) 12028 return (NULL); 12029 12030 cnt = seq - tcp->tcp_suna; 12031 mp = tcp->tcp_xmit_head; 12032 while (cnt > 0 && mp != NULL) { 12033 cnt -= mp->b_wptr - mp->b_rptr; 12034 if (cnt < 0) { 12035 cnt += mp->b_wptr - mp->b_rptr; 12036 break; 12037 } 12038 mp = mp->b_cont; 12039 } 12040 ASSERT(mp != NULL); 12041 *off = cnt; 12042 return (mp); 12043 } 12044 12045 /* 12046 * This function handles all retransmissions if SACK is enabled for this 12047 * connection. First it calculates how many segments can be retransmitted 12048 * based on tcp_pipe. Then it goes thru the notsack list to find eligible 12049 * segments. A segment is eligible if sack_cnt for that segment is greater 12050 * than or equal tcp_dupack_fast_retransmit. After it has retransmitted 12051 * all eligible segments, it checks to see if TCP can send some new segments 12052 * (fast recovery). If it can, set the appropriate flag for tcp_rput_data(). 12053 * 12054 * Parameters: 12055 * tcp_t *tcp: the tcp structure of the connection. 12056 * uint_t *flags: in return, appropriate value will be set for 12057 * tcp_rput_data(). 12058 */ 12059 static void 12060 tcp_sack_rxmit(tcp_t *tcp, uint_t *flags) 12061 { 12062 notsack_blk_t *notsack_blk; 12063 int32_t usable_swnd; 12064 int32_t mss; 12065 uint32_t seg_len; 12066 mblk_t *xmit_mp; 12067 tcp_stack_t *tcps = tcp->tcp_tcps; 12068 12069 ASSERT(tcp->tcp_sack_info != NULL); 12070 ASSERT(tcp->tcp_notsack_list != NULL); 12071 ASSERT(tcp->tcp_rexmit == B_FALSE); 12072 12073 /* Defensive coding in case there is a bug... */ 12074 if (tcp->tcp_notsack_list == NULL) { 12075 return; 12076 } 12077 notsack_blk = tcp->tcp_notsack_list; 12078 mss = tcp->tcp_mss; 12079 12080 /* 12081 * Limit the num of outstanding data in the network to be 12082 * tcp_cwnd_ssthresh, which is half of the original congestion wnd. 12083 */ 12084 usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; 12085 12086 /* At least retransmit 1 MSS of data. */ 12087 if (usable_swnd <= 0) { 12088 usable_swnd = mss; 12089 } 12090 12091 /* Make sure no new RTT samples will be taken. */ 12092 tcp->tcp_csuna = tcp->tcp_snxt; 12093 12094 notsack_blk = tcp->tcp_notsack_list; 12095 while (usable_swnd > 0) { 12096 mblk_t *snxt_mp, *tmp_mp; 12097 tcp_seq begin = tcp->tcp_sack_snxt; 12098 tcp_seq end; 12099 int32_t off; 12100 12101 for (; notsack_blk != NULL; notsack_blk = notsack_blk->next) { 12102 if (SEQ_GT(notsack_blk->end, begin) && 12103 (notsack_blk->sack_cnt >= 12104 tcps->tcps_dupack_fast_retransmit)) { 12105 end = notsack_blk->end; 12106 if (SEQ_LT(begin, notsack_blk->begin)) { 12107 begin = notsack_blk->begin; 12108 } 12109 break; 12110 } 12111 } 12112 /* 12113 * All holes are filled. Manipulate tcp_cwnd to send more 12114 * if we can. Note that after the SACK recovery, tcp_cwnd is 12115 * set to tcp_cwnd_ssthresh. 12116 */ 12117 if (notsack_blk == NULL) { 12118 usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; 12119 if (usable_swnd <= 0 || tcp->tcp_unsent == 0) { 12120 tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna; 12121 ASSERT(tcp->tcp_cwnd > 0); 12122 return; 12123 } else { 12124 usable_swnd = usable_swnd / mss; 12125 tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna + 12126 MAX(usable_swnd * mss, mss); 12127 *flags |= TH_XMIT_NEEDED; 12128 return; 12129 } 12130 } 12131 12132 /* 12133 * Note that we may send more than usable_swnd allows here 12134 * because of round off, but no more than 1 MSS of data. 12135 */ 12136 seg_len = end - begin; 12137 if (seg_len > mss) 12138 seg_len = mss; 12139 snxt_mp = tcp_get_seg_mp(tcp, begin, &off); 12140 ASSERT(snxt_mp != NULL); 12141 /* This should not happen. Defensive coding again... */ 12142 if (snxt_mp == NULL) { 12143 return; 12144 } 12145 12146 xmit_mp = tcp_xmit_mp(tcp, snxt_mp, seg_len, &off, 12147 &tmp_mp, begin, B_TRUE, &seg_len, B_TRUE); 12148 if (xmit_mp == NULL) 12149 return; 12150 12151 usable_swnd -= seg_len; 12152 tcp->tcp_pipe += seg_len; 12153 tcp->tcp_sack_snxt = begin + seg_len; 12154 TCP_RECORD_TRACE(tcp, xmit_mp, TCP_TRACE_SEND_PKT); 12155 tcp_send_data(tcp, tcp->tcp_wq, xmit_mp); 12156 12157 /* 12158 * Update the send timestamp to avoid false retransmission. 12159 */ 12160 snxt_mp->b_prev = (mblk_t *)lbolt; 12161 12162 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 12163 UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, seg_len); 12164 BUMP_MIB(&tcps->tcps_mib, tcpOutSackRetransSegs); 12165 /* 12166 * Update tcp_rexmit_max to extend this SACK recovery phase. 12167 * This happens when new data sent during fast recovery is 12168 * also lost. If TCP retransmits those new data, it needs 12169 * to extend SACK recover phase to avoid starting another 12170 * fast retransmit/recovery unnecessarily. 12171 */ 12172 if (SEQ_GT(tcp->tcp_sack_snxt, tcp->tcp_rexmit_max)) { 12173 tcp->tcp_rexmit_max = tcp->tcp_sack_snxt; 12174 } 12175 } 12176 } 12177 12178 /* 12179 * This function handles policy checking at TCP level for non-hard_bound/ 12180 * detached connections. 12181 */ 12182 static boolean_t 12183 tcp_check_policy(tcp_t *tcp, mblk_t *first_mp, ipha_t *ipha, ip6_t *ip6h, 12184 boolean_t secure, boolean_t mctl_present) 12185 { 12186 ipsec_latch_t *ipl = NULL; 12187 ipsec_action_t *act = NULL; 12188 mblk_t *data_mp; 12189 ipsec_in_t *ii; 12190 const char *reason; 12191 kstat_named_t *counter; 12192 tcp_stack_t *tcps = tcp->tcp_tcps; 12193 ipsec_stack_t *ipss; 12194 ip_stack_t *ipst; 12195 12196 ASSERT(mctl_present || !secure); 12197 12198 ASSERT((ipha == NULL && ip6h != NULL) || 12199 (ip6h == NULL && ipha != NULL)); 12200 12201 /* 12202 * We don't necessarily have an ipsec_in_act action to verify 12203 * policy because of assymetrical policy where we have only 12204 * outbound policy and no inbound policy (possible with global 12205 * policy). 12206 */ 12207 if (!secure) { 12208 if (act == NULL || act->ipa_act.ipa_type == IPSEC_ACT_BYPASS || 12209 act->ipa_act.ipa_type == IPSEC_ACT_CLEAR) 12210 return (B_TRUE); 12211 ipsec_log_policy_failure(IPSEC_POLICY_MISMATCH, 12212 "tcp_check_policy", ipha, ip6h, secure, 12213 tcps->tcps_netstack); 12214 ipss = tcps->tcps_netstack->netstack_ipsec; 12215 12216 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, 12217 DROPPER(ipss, ipds_tcp_clear), 12218 &tcps->tcps_dropper); 12219 return (B_FALSE); 12220 } 12221 12222 /* 12223 * We have a secure packet. 12224 */ 12225 if (act == NULL) { 12226 ipsec_log_policy_failure(IPSEC_POLICY_NOT_NEEDED, 12227 "tcp_check_policy", ipha, ip6h, secure, 12228 tcps->tcps_netstack); 12229 ipss = tcps->tcps_netstack->netstack_ipsec; 12230 12231 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, 12232 DROPPER(ipss, ipds_tcp_secure), 12233 &tcps->tcps_dropper); 12234 return (B_FALSE); 12235 } 12236 12237 /* 12238 * XXX This whole routine is currently incorrect. ipl should 12239 * be set to the latch pointer, but is currently not set, so 12240 * we initialize it to NULL to avoid picking up random garbage. 12241 */ 12242 if (ipl == NULL) 12243 return (B_TRUE); 12244 12245 data_mp = first_mp->b_cont; 12246 12247 ii = (ipsec_in_t *)first_mp->b_rptr; 12248 12249 ipst = tcps->tcps_netstack->netstack_ip; 12250 12251 if (ipsec_check_ipsecin_latch(ii, data_mp, ipl, ipha, ip6h, &reason, 12252 &counter, tcp->tcp_connp)) { 12253 BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded); 12254 return (B_TRUE); 12255 } 12256 (void) strlog(TCP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE, 12257 "tcp inbound policy mismatch: %s, packet dropped\n", 12258 reason); 12259 BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed); 12260 12261 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter, 12262 &tcps->tcps_dropper); 12263 return (B_FALSE); 12264 } 12265 12266 /* 12267 * tcp_ss_rexmit() is called in tcp_rput_data() to do slow start 12268 * retransmission after a timeout. 12269 * 12270 * To limit the number of duplicate segments, we limit the number of segment 12271 * to be sent in one time to tcp_snd_burst, the burst variable. 12272 */ 12273 static void 12274 tcp_ss_rexmit(tcp_t *tcp) 12275 { 12276 uint32_t snxt; 12277 uint32_t smax; 12278 int32_t win; 12279 int32_t mss; 12280 int32_t off; 12281 int32_t burst = tcp->tcp_snd_burst; 12282 mblk_t *snxt_mp; 12283 tcp_stack_t *tcps = tcp->tcp_tcps; 12284 12285 /* 12286 * Note that tcp_rexmit can be set even though TCP has retransmitted 12287 * all unack'ed segments. 12288 */ 12289 if (SEQ_LT(tcp->tcp_rexmit_nxt, tcp->tcp_rexmit_max)) { 12290 smax = tcp->tcp_rexmit_max; 12291 snxt = tcp->tcp_rexmit_nxt; 12292 if (SEQ_LT(snxt, tcp->tcp_suna)) { 12293 snxt = tcp->tcp_suna; 12294 } 12295 win = MIN(tcp->tcp_cwnd, tcp->tcp_swnd); 12296 win -= snxt - tcp->tcp_suna; 12297 mss = tcp->tcp_mss; 12298 snxt_mp = tcp_get_seg_mp(tcp, snxt, &off); 12299 12300 while (SEQ_LT(snxt, smax) && (win > 0) && 12301 (burst > 0) && (snxt_mp != NULL)) { 12302 mblk_t *xmit_mp; 12303 mblk_t *old_snxt_mp = snxt_mp; 12304 uint32_t cnt = mss; 12305 12306 if (win < cnt) { 12307 cnt = win; 12308 } 12309 if (SEQ_GT(snxt + cnt, smax)) { 12310 cnt = smax - snxt; 12311 } 12312 xmit_mp = tcp_xmit_mp(tcp, snxt_mp, cnt, &off, 12313 &snxt_mp, snxt, B_TRUE, &cnt, B_TRUE); 12314 if (xmit_mp == NULL) 12315 return; 12316 12317 tcp_send_data(tcp, tcp->tcp_wq, xmit_mp); 12318 12319 snxt += cnt; 12320 win -= cnt; 12321 /* 12322 * Update the send timestamp to avoid false 12323 * retransmission. 12324 */ 12325 old_snxt_mp->b_prev = (mblk_t *)lbolt; 12326 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 12327 UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, cnt); 12328 12329 tcp->tcp_rexmit_nxt = snxt; 12330 burst--; 12331 } 12332 /* 12333 * If we have transmitted all we have at the time 12334 * we started the retranmission, we can leave 12335 * the rest of the job to tcp_wput_data(). But we 12336 * need to check the send window first. If the 12337 * win is not 0, go on with tcp_wput_data(). 12338 */ 12339 if (SEQ_LT(snxt, smax) || win == 0) { 12340 return; 12341 } 12342 } 12343 /* Only call tcp_wput_data() if there is data to be sent. */ 12344 if (tcp->tcp_unsent) { 12345 tcp_wput_data(tcp, NULL, B_FALSE); 12346 } 12347 } 12348 12349 /* 12350 * Process all TCP option in SYN segment. Note that this function should 12351 * be called after tcp_adapt_ire() is called so that the necessary info 12352 * from IRE is already set in the tcp structure. 12353 * 12354 * This function sets up the correct tcp_mss value according to the 12355 * MSS option value and our header size. It also sets up the window scale 12356 * and timestamp values, and initialize SACK info blocks. But it does not 12357 * change receive window size after setting the tcp_mss value. The caller 12358 * should do the appropriate change. 12359 */ 12360 void 12361 tcp_process_options(tcp_t *tcp, tcph_t *tcph) 12362 { 12363 int options; 12364 tcp_opt_t tcpopt; 12365 uint32_t mss_max; 12366 char *tmp_tcph; 12367 tcp_stack_t *tcps = tcp->tcp_tcps; 12368 12369 tcpopt.tcp = NULL; 12370 options = tcp_parse_options(tcph, &tcpopt); 12371 12372 /* 12373 * Process MSS option. Note that MSS option value does not account 12374 * for IP or TCP options. This means that it is equal to MTU - minimum 12375 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for 12376 * IPv6. 12377 */ 12378 if (!(options & TCP_OPT_MSS_PRESENT)) { 12379 if (tcp->tcp_ipversion == IPV4_VERSION) 12380 tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv4; 12381 else 12382 tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv6; 12383 } else { 12384 if (tcp->tcp_ipversion == IPV4_VERSION) 12385 mss_max = tcps->tcps_mss_max_ipv4; 12386 else 12387 mss_max = tcps->tcps_mss_max_ipv6; 12388 if (tcpopt.tcp_opt_mss < tcps->tcps_mss_min) 12389 tcpopt.tcp_opt_mss = tcps->tcps_mss_min; 12390 else if (tcpopt.tcp_opt_mss > mss_max) 12391 tcpopt.tcp_opt_mss = mss_max; 12392 } 12393 12394 /* Process Window Scale option. */ 12395 if (options & TCP_OPT_WSCALE_PRESENT) { 12396 tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale; 12397 tcp->tcp_snd_ws_ok = B_TRUE; 12398 } else { 12399 tcp->tcp_snd_ws = B_FALSE; 12400 tcp->tcp_snd_ws_ok = B_FALSE; 12401 tcp->tcp_rcv_ws = B_FALSE; 12402 } 12403 12404 /* Process Timestamp option. */ 12405 if ((options & TCP_OPT_TSTAMP_PRESENT) && 12406 (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) { 12407 tmp_tcph = (char *)tcp->tcp_tcph; 12408 12409 tcp->tcp_snd_ts_ok = B_TRUE; 12410 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 12411 tcp->tcp_last_rcv_lbolt = lbolt64; 12412 ASSERT(OK_32PTR(tmp_tcph)); 12413 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 12414 12415 /* Fill in our template header with basic timestamp option. */ 12416 tmp_tcph += tcp->tcp_tcp_hdr_len; 12417 tmp_tcph[0] = TCPOPT_NOP; 12418 tmp_tcph[1] = TCPOPT_NOP; 12419 tmp_tcph[2] = TCPOPT_TSTAMP; 12420 tmp_tcph[3] = TCPOPT_TSTAMP_LEN; 12421 tcp->tcp_hdr_len += TCPOPT_REAL_TS_LEN; 12422 tcp->tcp_tcp_hdr_len += TCPOPT_REAL_TS_LEN; 12423 tcp->tcp_tcph->th_offset_and_rsrvd[0] += (3 << 4); 12424 } else { 12425 tcp->tcp_snd_ts_ok = B_FALSE; 12426 } 12427 12428 /* 12429 * Process SACK options. If SACK is enabled for this connection, 12430 * then allocate the SACK info structure. Note the following ways 12431 * when tcp_snd_sack_ok is set to true. 12432 * 12433 * For active connection: in tcp_adapt_ire() called in 12434 * tcp_rput_other(), or in tcp_rput_other() when tcp_sack_permitted 12435 * is checked. 12436 * 12437 * For passive connection: in tcp_adapt_ire() called in 12438 * tcp_accept_comm(). 12439 * 12440 * That's the reason why the extra TCP_IS_DETACHED() check is there. 12441 * That check makes sure that if we did not send a SACK OK option, 12442 * we will not enable SACK for this connection even though the other 12443 * side sends us SACK OK option. For active connection, the SACK 12444 * info structure has already been allocated. So we need to free 12445 * it if SACK is disabled. 12446 */ 12447 if ((options & TCP_OPT_SACK_OK_PRESENT) && 12448 (tcp->tcp_snd_sack_ok || 12449 (tcps->tcps_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) { 12450 /* This should be true only in the passive case. */ 12451 if (tcp->tcp_sack_info == NULL) { 12452 ASSERT(TCP_IS_DETACHED(tcp)); 12453 tcp->tcp_sack_info = 12454 kmem_cache_alloc(tcp_sack_info_cache, KM_NOSLEEP); 12455 } 12456 if (tcp->tcp_sack_info == NULL) { 12457 tcp->tcp_snd_sack_ok = B_FALSE; 12458 } else { 12459 tcp->tcp_snd_sack_ok = B_TRUE; 12460 if (tcp->tcp_snd_ts_ok) { 12461 tcp->tcp_max_sack_blk = 3; 12462 } else { 12463 tcp->tcp_max_sack_blk = 4; 12464 } 12465 } 12466 } else { 12467 /* 12468 * Resetting tcp_snd_sack_ok to B_FALSE so that 12469 * no SACK info will be used for this 12470 * connection. This assumes that SACK usage 12471 * permission is negotiated. This may need 12472 * to be changed once this is clarified. 12473 */ 12474 if (tcp->tcp_sack_info != NULL) { 12475 ASSERT(tcp->tcp_notsack_list == NULL); 12476 kmem_cache_free(tcp_sack_info_cache, 12477 tcp->tcp_sack_info); 12478 tcp->tcp_sack_info = NULL; 12479 } 12480 tcp->tcp_snd_sack_ok = B_FALSE; 12481 } 12482 12483 /* 12484 * Now we know the exact TCP/IP header length, subtract 12485 * that from tcp_mss to get our side's MSS. 12486 */ 12487 tcp->tcp_mss -= tcp->tcp_hdr_len; 12488 /* 12489 * Here we assume that the other side's header size will be equal to 12490 * our header size. We calculate the real MSS accordingly. Need to 12491 * take into additional stuffs IPsec puts in. 12492 * 12493 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header) 12494 */ 12495 tcpopt.tcp_opt_mss -= tcp->tcp_hdr_len + tcp->tcp_ipsec_overhead - 12496 ((tcp->tcp_ipversion == IPV4_VERSION ? 12497 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH); 12498 12499 /* 12500 * Set MSS to the smaller one of both ends of the connection. 12501 * We should not have called tcp_mss_set() before, but our 12502 * side of the MSS should have been set to a proper value 12503 * by tcp_adapt_ire(). tcp_mss_set() will also set up the 12504 * STREAM head parameters properly. 12505 * 12506 * If we have a larger-than-16-bit window but the other side 12507 * didn't want to do window scale, tcp_rwnd_set() will take 12508 * care of that. 12509 */ 12510 tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss), B_TRUE); 12511 } 12512 12513 /* 12514 * Sends the T_CONN_IND to the listener. The caller calls this 12515 * functions via squeue to get inside the listener's perimeter 12516 * once the 3 way hand shake is done a T_CONN_IND needs to be 12517 * sent. As an optimization, the caller can call this directly 12518 * if listener's perimeter is same as eager's. 12519 */ 12520 /* ARGSUSED */ 12521 void 12522 tcp_send_conn_ind(void *arg, mblk_t *mp, void *arg2) 12523 { 12524 conn_t *lconnp = (conn_t *)arg; 12525 tcp_t *listener = lconnp->conn_tcp; 12526 tcp_t *tcp; 12527 struct T_conn_ind *conn_ind; 12528 ipaddr_t *addr_cache; 12529 boolean_t need_send_conn_ind = B_FALSE; 12530 tcp_stack_t *tcps = listener->tcp_tcps; 12531 12532 /* retrieve the eager */ 12533 conn_ind = (struct T_conn_ind *)mp->b_rptr; 12534 ASSERT(conn_ind->OPT_offset != 0 && 12535 conn_ind->OPT_length == sizeof (intptr_t)); 12536 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 12537 conn_ind->OPT_length); 12538 12539 /* 12540 * TLI/XTI applications will get confused by 12541 * sending eager as an option since it violates 12542 * the option semantics. So remove the eager as 12543 * option since TLI/XTI app doesn't need it anyway. 12544 */ 12545 if (!TCP_IS_SOCKET(listener)) { 12546 conn_ind->OPT_length = 0; 12547 conn_ind->OPT_offset = 0; 12548 } 12549 if (listener->tcp_state == TCPS_CLOSED || 12550 TCP_IS_DETACHED(listener)) { 12551 /* 12552 * If listener has closed, it would have caused a 12553 * a cleanup/blowoff to happen for the eager. We 12554 * just need to return. 12555 */ 12556 freemsg(mp); 12557 return; 12558 } 12559 12560 12561 /* 12562 * if the conn_req_q is full defer passing up the 12563 * T_CONN_IND until space is availabe after t_accept() 12564 * processing 12565 */ 12566 mutex_enter(&listener->tcp_eager_lock); 12567 12568 /* 12569 * Take the eager out, if it is in the list of droppable eagers 12570 * as we are here because the 3W handshake is over. 12571 */ 12572 MAKE_UNDROPPABLE(tcp); 12573 12574 if (listener->tcp_conn_req_cnt_q < listener->tcp_conn_req_max) { 12575 tcp_t *tail; 12576 12577 /* 12578 * The eager already has an extra ref put in tcp_rput_data 12579 * so that it stays till accept comes back even though it 12580 * might get into TCPS_CLOSED as a result of a TH_RST etc. 12581 */ 12582 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 12583 listener->tcp_conn_req_cnt_q0--; 12584 listener->tcp_conn_req_cnt_q++; 12585 12586 /* Move from SYN_RCVD to ESTABLISHED list */ 12587 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 12588 tcp->tcp_eager_prev_q0; 12589 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 12590 tcp->tcp_eager_next_q0; 12591 tcp->tcp_eager_prev_q0 = NULL; 12592 tcp->tcp_eager_next_q0 = NULL; 12593 12594 /* 12595 * Insert at end of the queue because sockfs 12596 * sends down T_CONN_RES in chronological 12597 * order. Leaving the older conn indications 12598 * at front of the queue helps reducing search 12599 * time. 12600 */ 12601 tail = listener->tcp_eager_last_q; 12602 if (tail != NULL) 12603 tail->tcp_eager_next_q = tcp; 12604 else 12605 listener->tcp_eager_next_q = tcp; 12606 listener->tcp_eager_last_q = tcp; 12607 tcp->tcp_eager_next_q = NULL; 12608 /* 12609 * Delay sending up the T_conn_ind until we are 12610 * done with the eager. Once we have have sent up 12611 * the T_conn_ind, the accept can potentially complete 12612 * any time and release the refhold we have on the eager. 12613 */ 12614 need_send_conn_ind = B_TRUE; 12615 } else { 12616 /* 12617 * Defer connection on q0 and set deferred 12618 * connection bit true 12619 */ 12620 tcp->tcp_conn_def_q0 = B_TRUE; 12621 12622 /* take tcp out of q0 ... */ 12623 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 12624 tcp->tcp_eager_next_q0; 12625 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 12626 tcp->tcp_eager_prev_q0; 12627 12628 /* ... and place it at the end of q0 */ 12629 tcp->tcp_eager_prev_q0 = listener->tcp_eager_prev_q0; 12630 tcp->tcp_eager_next_q0 = listener; 12631 listener->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp; 12632 listener->tcp_eager_prev_q0 = tcp; 12633 tcp->tcp_conn.tcp_eager_conn_ind = mp; 12634 } 12635 12636 /* we have timed out before */ 12637 if (tcp->tcp_syn_rcvd_timeout != 0) { 12638 tcp->tcp_syn_rcvd_timeout = 0; 12639 listener->tcp_syn_rcvd_timeout--; 12640 if (listener->tcp_syn_defense && 12641 listener->tcp_syn_rcvd_timeout <= 12642 (tcps->tcps_conn_req_max_q0 >> 5) && 12643 10*MINUTES < TICK_TO_MSEC(lbolt64 - 12644 listener->tcp_last_rcv_lbolt)) { 12645 /* 12646 * Turn off the defense mode if we 12647 * believe the SYN attack is over. 12648 */ 12649 listener->tcp_syn_defense = B_FALSE; 12650 if (listener->tcp_ip_addr_cache) { 12651 kmem_free((void *)listener->tcp_ip_addr_cache, 12652 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 12653 listener->tcp_ip_addr_cache = NULL; 12654 } 12655 } 12656 } 12657 addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache); 12658 if (addr_cache != NULL) { 12659 /* 12660 * We have finished a 3-way handshake with this 12661 * remote host. This proves the IP addr is good. 12662 * Cache it! 12663 */ 12664 addr_cache[IP_ADDR_CACHE_HASH( 12665 tcp->tcp_remote)] = tcp->tcp_remote; 12666 } 12667 mutex_exit(&listener->tcp_eager_lock); 12668 if (need_send_conn_ind) 12669 putnext(listener->tcp_rq, mp); 12670 } 12671 12672 mblk_t * 12673 tcp_find_pktinfo(tcp_t *tcp, mblk_t *mp, uint_t *ipversp, uint_t *ip_hdr_lenp, 12674 uint_t *ifindexp, ip6_pkt_t *ippp) 12675 { 12676 ip_pktinfo_t *pinfo; 12677 ip6_t *ip6h; 12678 uchar_t *rptr; 12679 mblk_t *first_mp = mp; 12680 boolean_t mctl_present = B_FALSE; 12681 uint_t ifindex = 0; 12682 ip6_pkt_t ipp; 12683 uint_t ipvers; 12684 uint_t ip_hdr_len; 12685 tcp_stack_t *tcps = tcp->tcp_tcps; 12686 12687 rptr = mp->b_rptr; 12688 ASSERT(OK_32PTR(rptr)); 12689 ASSERT(tcp != NULL); 12690 ipp.ipp_fields = 0; 12691 12692 switch DB_TYPE(mp) { 12693 case M_CTL: 12694 mp = mp->b_cont; 12695 if (mp == NULL) { 12696 freemsg(first_mp); 12697 return (NULL); 12698 } 12699 if (DB_TYPE(mp) != M_DATA) { 12700 freemsg(first_mp); 12701 return (NULL); 12702 } 12703 mctl_present = B_TRUE; 12704 break; 12705 case M_DATA: 12706 break; 12707 default: 12708 cmn_err(CE_NOTE, "tcp_find_pktinfo: unknown db_type"); 12709 freemsg(mp); 12710 return (NULL); 12711 } 12712 ipvers = IPH_HDR_VERSION(rptr); 12713 if (ipvers == IPV4_VERSION) { 12714 if (tcp == NULL) { 12715 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12716 goto done; 12717 } 12718 12719 ipp.ipp_fields |= IPPF_HOPLIMIT; 12720 ipp.ipp_hoplimit = ((ipha_t *)rptr)->ipha_ttl; 12721 12722 /* 12723 * If we have IN_PKTINFO in an M_CTL and tcp_ipv6_recvancillary 12724 * has TCP_IPV6_RECVPKTINFO set, pass I/F index along in ipp. 12725 */ 12726 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) && 12727 mctl_present) { 12728 pinfo = (ip_pktinfo_t *)first_mp->b_rptr; 12729 if ((MBLKL(first_mp) == sizeof (ip_pktinfo_t)) && 12730 (pinfo->ip_pkt_ulp_type == IN_PKTINFO) && 12731 (pinfo->ip_pkt_flags & IPF_RECVIF)) { 12732 ipp.ipp_fields |= IPPF_IFINDEX; 12733 ipp.ipp_ifindex = pinfo->ip_pkt_ifindex; 12734 ifindex = pinfo->ip_pkt_ifindex; 12735 } 12736 freeb(first_mp); 12737 mctl_present = B_FALSE; 12738 } 12739 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12740 } else { 12741 ip6h = (ip6_t *)rptr; 12742 12743 ASSERT(ipvers == IPV6_VERSION); 12744 ipp.ipp_fields = IPPF_HOPLIMIT | IPPF_TCLASS; 12745 ipp.ipp_tclass = (ip6h->ip6_flow & 0x0FF00000) >> 20; 12746 ipp.ipp_hoplimit = ip6h->ip6_hops; 12747 12748 if (ip6h->ip6_nxt != IPPROTO_TCP) { 12749 uint8_t nexthdrp; 12750 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 12751 12752 /* Look for ifindex information */ 12753 if (ip6h->ip6_nxt == IPPROTO_RAW) { 12754 ip6i_t *ip6i = (ip6i_t *)ip6h; 12755 if ((uchar_t *)&ip6i[1] > mp->b_wptr) { 12756 BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs); 12757 freemsg(first_mp); 12758 return (NULL); 12759 } 12760 12761 if (ip6i->ip6i_flags & IP6I_IFINDEX) { 12762 ASSERT(ip6i->ip6i_ifindex != 0); 12763 ipp.ipp_fields |= IPPF_IFINDEX; 12764 ipp.ipp_ifindex = ip6i->ip6i_ifindex; 12765 ifindex = ip6i->ip6i_ifindex; 12766 } 12767 rptr = (uchar_t *)&ip6i[1]; 12768 mp->b_rptr = rptr; 12769 if (rptr == mp->b_wptr) { 12770 mblk_t *mp1; 12771 mp1 = mp->b_cont; 12772 freeb(mp); 12773 mp = mp1; 12774 rptr = mp->b_rptr; 12775 } 12776 if (MBLKL(mp) < IPV6_HDR_LEN + 12777 sizeof (tcph_t)) { 12778 BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs); 12779 freemsg(first_mp); 12780 return (NULL); 12781 } 12782 ip6h = (ip6_t *)rptr; 12783 } 12784 12785 /* 12786 * Find any potentially interesting extension headers 12787 * as well as the length of the IPv6 + extension 12788 * headers. 12789 */ 12790 ip_hdr_len = ip_find_hdr_v6(mp, ip6h, &ipp, &nexthdrp); 12791 /* Verify if this is a TCP packet */ 12792 if (nexthdrp != IPPROTO_TCP) { 12793 BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs); 12794 freemsg(first_mp); 12795 return (NULL); 12796 } 12797 } else { 12798 ip_hdr_len = IPV6_HDR_LEN; 12799 } 12800 } 12801 12802 done: 12803 if (ipversp != NULL) 12804 *ipversp = ipvers; 12805 if (ip_hdr_lenp != NULL) 12806 *ip_hdr_lenp = ip_hdr_len; 12807 if (ippp != NULL) 12808 *ippp = ipp; 12809 if (ifindexp != NULL) 12810 *ifindexp = ifindex; 12811 if (mctl_present) { 12812 freeb(first_mp); 12813 } 12814 return (mp); 12815 } 12816 12817 /* 12818 * Handle M_DATA messages from IP. Its called directly from IP via 12819 * squeue for AF_INET type sockets fast path. No M_CTL are expected 12820 * in this path. 12821 * 12822 * For everything else (including AF_INET6 sockets with 'tcp_ipversion' 12823 * v4 and v6), we are called through tcp_input() and a M_CTL can 12824 * be present for options but tcp_find_pktinfo() deals with it. We 12825 * only expect M_DATA packets after tcp_find_pktinfo() is done. 12826 * 12827 * The first argument is always the connp/tcp to which the mp belongs. 12828 * There are no exceptions to this rule. The caller has already put 12829 * a reference on this connp/tcp and once tcp_rput_data() returns, 12830 * the squeue will do the refrele. 12831 * 12832 * The TH_SYN for the listener directly go to tcp_conn_request via 12833 * squeue. 12834 * 12835 * sqp: NULL = recursive, sqp != NULL means called from squeue 12836 */ 12837 void 12838 tcp_rput_data(void *arg, mblk_t *mp, void *arg2) 12839 { 12840 int32_t bytes_acked; 12841 int32_t gap; 12842 mblk_t *mp1; 12843 uint_t flags; 12844 uint32_t new_swnd = 0; 12845 uchar_t *iphdr; 12846 uchar_t *rptr; 12847 int32_t rgap; 12848 uint32_t seg_ack; 12849 int seg_len; 12850 uint_t ip_hdr_len; 12851 uint32_t seg_seq; 12852 tcph_t *tcph; 12853 int urp; 12854 tcp_opt_t tcpopt; 12855 uint_t ipvers; 12856 ip6_pkt_t ipp; 12857 boolean_t ofo_seg = B_FALSE; /* Out of order segment */ 12858 uint32_t cwnd; 12859 uint32_t add; 12860 int npkt; 12861 int mss; 12862 conn_t *connp = (conn_t *)arg; 12863 squeue_t *sqp = (squeue_t *)arg2; 12864 tcp_t *tcp = connp->conn_tcp; 12865 tcp_stack_t *tcps = tcp->tcp_tcps; 12866 12867 /* 12868 * RST from fused tcp loopback peer should trigger an unfuse. 12869 */ 12870 if (tcp->tcp_fused) { 12871 TCP_STAT(tcps, tcp_fusion_aborted); 12872 tcp_unfuse(tcp); 12873 } 12874 12875 iphdr = mp->b_rptr; 12876 rptr = mp->b_rptr; 12877 ASSERT(OK_32PTR(rptr)); 12878 12879 /* 12880 * An AF_INET socket is not capable of receiving any pktinfo. Do inline 12881 * processing here. For rest call tcp_find_pktinfo to fill up the 12882 * necessary information. 12883 */ 12884 if (IPCL_IS_TCP4(connp)) { 12885 ipvers = IPV4_VERSION; 12886 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12887 } else { 12888 mp = tcp_find_pktinfo(tcp, mp, &ipvers, &ip_hdr_len, 12889 NULL, &ipp); 12890 if (mp == NULL) { 12891 TCP_STAT(tcps, tcp_rput_v6_error); 12892 return; 12893 } 12894 iphdr = mp->b_rptr; 12895 rptr = mp->b_rptr; 12896 } 12897 ASSERT(DB_TYPE(mp) == M_DATA); 12898 12899 tcph = (tcph_t *)&rptr[ip_hdr_len]; 12900 seg_seq = ABE32_TO_U32(tcph->th_seq); 12901 seg_ack = ABE32_TO_U32(tcph->th_ack); 12902 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 12903 seg_len = (int)(mp->b_wptr - rptr) - 12904 (ip_hdr_len + TCP_HDR_LENGTH(tcph)); 12905 if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) { 12906 do { 12907 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 12908 (uintptr_t)INT_MAX); 12909 seg_len += (int)(mp1->b_wptr - mp1->b_rptr); 12910 } while ((mp1 = mp1->b_cont) != NULL && 12911 mp1->b_datap->db_type == M_DATA); 12912 } 12913 12914 if (tcp->tcp_state == TCPS_TIME_WAIT) { 12915 tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack, 12916 seg_len, tcph); 12917 return; 12918 } 12919 12920 if (sqp != NULL) { 12921 /* 12922 * This is the correct place to update tcp_last_recv_time. Note 12923 * that it is also updated for tcp structure that belongs to 12924 * global and listener queues which do not really need updating. 12925 * But that should not cause any harm. And it is updated for 12926 * all kinds of incoming segments, not only for data segments. 12927 */ 12928 tcp->tcp_last_recv_time = lbolt; 12929 } 12930 12931 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 12932 12933 BUMP_LOCAL(tcp->tcp_ibsegs); 12934 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_RECV_PKT); 12935 12936 if ((flags & TH_URG) && sqp != NULL) { 12937 /* 12938 * TCP can't handle urgent pointers that arrive before 12939 * the connection has been accept()ed since it can't 12940 * buffer OOB data. Discard segment if this happens. 12941 * 12942 * We can't just rely on a non-null tcp_listener to indicate 12943 * that the accept() has completed since unlinking of the 12944 * eager and completion of the accept are not atomic. 12945 * tcp_detached, when it is not set (B_FALSE) indicates 12946 * that the accept() has completed. 12947 * 12948 * Nor can it reassemble urgent pointers, so discard 12949 * if it's not the next segment expected. 12950 * 12951 * Otherwise, collapse chain into one mblk (discard if 12952 * that fails). This makes sure the headers, retransmitted 12953 * data, and new data all are in the same mblk. 12954 */ 12955 ASSERT(mp != NULL); 12956 if (tcp->tcp_detached || !pullupmsg(mp, -1)) { 12957 freemsg(mp); 12958 return; 12959 } 12960 /* Update pointers into message */ 12961 iphdr = rptr = mp->b_rptr; 12962 tcph = (tcph_t *)&rptr[ip_hdr_len]; 12963 if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) { 12964 /* 12965 * Since we can't handle any data with this urgent 12966 * pointer that is out of sequence, we expunge 12967 * the data. This allows us to still register 12968 * the urgent mark and generate the M_PCSIG, 12969 * which we can do. 12970 */ 12971 mp->b_wptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph); 12972 seg_len = 0; 12973 } 12974 } 12975 12976 switch (tcp->tcp_state) { 12977 case TCPS_SYN_SENT: 12978 if (flags & TH_ACK) { 12979 /* 12980 * Note that our stack cannot send data before a 12981 * connection is established, therefore the 12982 * following check is valid. Otherwise, it has 12983 * to be changed. 12984 */ 12985 if (SEQ_LEQ(seg_ack, tcp->tcp_iss) || 12986 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 12987 freemsg(mp); 12988 if (flags & TH_RST) 12989 return; 12990 tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq", 12991 tcp, seg_ack, 0, TH_RST); 12992 return; 12993 } 12994 ASSERT(tcp->tcp_suna + 1 == seg_ack); 12995 } 12996 if (flags & TH_RST) { 12997 freemsg(mp); 12998 if (flags & TH_ACK) 12999 (void) tcp_clean_death(tcp, 13000 ECONNREFUSED, 13); 13001 return; 13002 } 13003 if (!(flags & TH_SYN)) { 13004 freemsg(mp); 13005 return; 13006 } 13007 13008 /* Process all TCP options. */ 13009 tcp_process_options(tcp, tcph); 13010 /* 13011 * The following changes our rwnd to be a multiple of the 13012 * MIN(peer MSS, our MSS) for performance reason. 13013 */ 13014 (void) tcp_rwnd_set(tcp, MSS_ROUNDUP(tcp->tcp_rq->q_hiwat, 13015 tcp->tcp_mss)); 13016 13017 /* Is the other end ECN capable? */ 13018 if (tcp->tcp_ecn_ok) { 13019 if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) { 13020 tcp->tcp_ecn_ok = B_FALSE; 13021 } 13022 } 13023 /* 13024 * Clear ECN flags because it may interfere with later 13025 * processing. 13026 */ 13027 flags &= ~(TH_ECE|TH_CWR); 13028 13029 tcp->tcp_irs = seg_seq; 13030 tcp->tcp_rack = seg_seq; 13031 tcp->tcp_rnxt = seg_seq + 1; 13032 U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack); 13033 if (!TCP_IS_DETACHED(tcp)) { 13034 /* Allocate room for SACK options if needed. */ 13035 if (tcp->tcp_snd_sack_ok) { 13036 (void) mi_set_sth_wroff(tcp->tcp_rq, 13037 tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN + 13038 (tcp->tcp_loopback ? 0 : 13039 tcps->tcps_wroff_xtra)); 13040 } else { 13041 (void) mi_set_sth_wroff(tcp->tcp_rq, 13042 tcp->tcp_hdr_len + 13043 (tcp->tcp_loopback ? 0 : 13044 tcps->tcps_wroff_xtra)); 13045 } 13046 } 13047 if (flags & TH_ACK) { 13048 /* 13049 * If we can't get the confirmation upstream, pretend 13050 * we didn't even see this one. 13051 * 13052 * XXX: how can we pretend we didn't see it if we 13053 * have updated rnxt et. al. 13054 * 13055 * For loopback we defer sending up the T_CONN_CON 13056 * until after some checks below. 13057 */ 13058 mp1 = NULL; 13059 if (!tcp_conn_con(tcp, iphdr, tcph, mp, 13060 tcp->tcp_loopback ? &mp1 : NULL)) { 13061 freemsg(mp); 13062 return; 13063 } 13064 /* SYN was acked - making progress */ 13065 if (tcp->tcp_ipversion == IPV6_VERSION) 13066 tcp->tcp_ip_forward_progress = B_TRUE; 13067 13068 /* One for the SYN */ 13069 tcp->tcp_suna = tcp->tcp_iss + 1; 13070 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 13071 tcp->tcp_state = TCPS_ESTABLISHED; 13072 13073 /* 13074 * If SYN was retransmitted, need to reset all 13075 * retransmission info. This is because this 13076 * segment will be treated as a dup ACK. 13077 */ 13078 if (tcp->tcp_rexmit) { 13079 tcp->tcp_rexmit = B_FALSE; 13080 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 13081 tcp->tcp_rexmit_max = tcp->tcp_snxt; 13082 tcp->tcp_snd_burst = tcp->tcp_localnet ? 13083 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 13084 tcp->tcp_ms_we_have_waited = 0; 13085 13086 /* 13087 * Set tcp_cwnd back to 1 MSS, per 13088 * recommendation from 13089 * draft-floyd-incr-init-win-01.txt, 13090 * Increasing TCP's Initial Window. 13091 */ 13092 tcp->tcp_cwnd = tcp->tcp_mss; 13093 } 13094 13095 tcp->tcp_swl1 = seg_seq; 13096 tcp->tcp_swl2 = seg_ack; 13097 13098 new_swnd = BE16_TO_U16(tcph->th_win); 13099 tcp->tcp_swnd = new_swnd; 13100 if (new_swnd > tcp->tcp_max_swnd) 13101 tcp->tcp_max_swnd = new_swnd; 13102 13103 /* 13104 * Always send the three-way handshake ack immediately 13105 * in order to make the connection complete as soon as 13106 * possible on the accepting host. 13107 */ 13108 flags |= TH_ACK_NEEDED; 13109 13110 /* 13111 * Special case for loopback. At this point we have 13112 * received SYN-ACK from the remote endpoint. In 13113 * order to ensure that both endpoints reach the 13114 * fused state prior to any data exchange, the final 13115 * ACK needs to be sent before we indicate T_CONN_CON 13116 * to the module upstream. 13117 */ 13118 if (tcp->tcp_loopback) { 13119 mblk_t *ack_mp; 13120 13121 ASSERT(!tcp->tcp_unfusable); 13122 ASSERT(mp1 != NULL); 13123 /* 13124 * For loopback, we always get a pure SYN-ACK 13125 * and only need to send back the final ACK 13126 * with no data (this is because the other 13127 * tcp is ours and we don't do T/TCP). This 13128 * final ACK triggers the passive side to 13129 * perform fusion in ESTABLISHED state. 13130 */ 13131 if ((ack_mp = tcp_ack_mp(tcp)) != NULL) { 13132 if (tcp->tcp_ack_tid != 0) { 13133 (void) TCP_TIMER_CANCEL(tcp, 13134 tcp->tcp_ack_tid); 13135 tcp->tcp_ack_tid = 0; 13136 } 13137 TCP_RECORD_TRACE(tcp, ack_mp, 13138 TCP_TRACE_SEND_PKT); 13139 tcp_send_data(tcp, tcp->tcp_wq, ack_mp); 13140 BUMP_LOCAL(tcp->tcp_obsegs); 13141 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 13142 13143 /* Send up T_CONN_CON */ 13144 putnext(tcp->tcp_rq, mp1); 13145 13146 freemsg(mp); 13147 return; 13148 } 13149 /* 13150 * Forget fusion; we need to handle more 13151 * complex cases below. Send the deferred 13152 * T_CONN_CON message upstream and proceed 13153 * as usual. Mark this tcp as not capable 13154 * of fusion. 13155 */ 13156 TCP_STAT(tcps, tcp_fusion_unfusable); 13157 tcp->tcp_unfusable = B_TRUE; 13158 putnext(tcp->tcp_rq, mp1); 13159 } 13160 13161 /* 13162 * Check to see if there is data to be sent. If 13163 * yes, set the transmit flag. Then check to see 13164 * if received data processing needs to be done. 13165 * If not, go straight to xmit_check. This short 13166 * cut is OK as we don't support T/TCP. 13167 */ 13168 if (tcp->tcp_unsent) 13169 flags |= TH_XMIT_NEEDED; 13170 13171 if (seg_len == 0 && !(flags & TH_URG)) { 13172 freemsg(mp); 13173 goto xmit_check; 13174 } 13175 13176 flags &= ~TH_SYN; 13177 seg_seq++; 13178 break; 13179 } 13180 tcp->tcp_state = TCPS_SYN_RCVD; 13181 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss, 13182 NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 13183 if (mp1) { 13184 DB_CPID(mp1) = tcp->tcp_cpid; 13185 TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT); 13186 tcp_send_data(tcp, tcp->tcp_wq, mp1); 13187 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 13188 } 13189 freemsg(mp); 13190 return; 13191 case TCPS_SYN_RCVD: 13192 if (flags & TH_ACK) { 13193 /* 13194 * In this state, a SYN|ACK packet is either bogus 13195 * because the other side must be ACKing our SYN which 13196 * indicates it has seen the ACK for their SYN and 13197 * shouldn't retransmit it or we're crossing SYNs 13198 * on active open. 13199 */ 13200 if ((flags & TH_SYN) && !tcp->tcp_active_open) { 13201 freemsg(mp); 13202 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn", 13203 tcp, seg_ack, 0, TH_RST); 13204 return; 13205 } 13206 /* 13207 * NOTE: RFC 793 pg. 72 says this should be 13208 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt 13209 * but that would mean we have an ack that ignored 13210 * our SYN. 13211 */ 13212 if (SEQ_LEQ(seg_ack, tcp->tcp_suna) || 13213 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 13214 freemsg(mp); 13215 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack", 13216 tcp, seg_ack, 0, TH_RST); 13217 return; 13218 } 13219 } 13220 break; 13221 case TCPS_LISTEN: 13222 /* 13223 * Only a TLI listener can come through this path when a 13224 * acceptor is going back to be a listener and a packet 13225 * for the acceptor hits the classifier. For a socket 13226 * listener, this can never happen because a listener 13227 * can never accept connection on itself and hence a 13228 * socket acceptor can not go back to being a listener. 13229 */ 13230 ASSERT(!TCP_IS_SOCKET(tcp)); 13231 /*FALLTHRU*/ 13232 case TCPS_CLOSED: 13233 case TCPS_BOUND: { 13234 conn_t *new_connp; 13235 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 13236 13237 new_connp = ipcl_classify(mp, connp->conn_zoneid, ipst); 13238 if (new_connp != NULL) { 13239 tcp_reinput(new_connp, mp, connp->conn_sqp); 13240 return; 13241 } 13242 /* We failed to classify. For now just drop the packet */ 13243 freemsg(mp); 13244 return; 13245 } 13246 case TCPS_IDLE: 13247 /* 13248 * Handle the case where the tcp_clean_death() has happened 13249 * on a connection (application hasn't closed yet) but a packet 13250 * was already queued on squeue before tcp_clean_death() 13251 * was processed. Calling tcp_clean_death() twice on same 13252 * connection can result in weird behaviour. 13253 */ 13254 freemsg(mp); 13255 return; 13256 default: 13257 break; 13258 } 13259 13260 /* 13261 * Already on the correct queue/perimeter. 13262 * If this is a detached connection and not an eager 13263 * connection hanging off a listener then new data 13264 * (past the FIN) will cause a reset. 13265 * We do a special check here where it 13266 * is out of the main line, rather than check 13267 * if we are detached every time we see new 13268 * data down below. 13269 */ 13270 if (TCP_IS_DETACHED_NONEAGER(tcp) && 13271 (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) { 13272 BUMP_MIB(&tcps->tcps_mib, tcpInClosed); 13273 TCP_RECORD_TRACE(tcp, 13274 mp, TCP_TRACE_RECV_PKT); 13275 13276 freemsg(mp); 13277 /* 13278 * This could be an SSL closure alert. We're detached so just 13279 * acknowledge it this last time. 13280 */ 13281 if (tcp->tcp_kssl_ctx != NULL) { 13282 kssl_release_ctx(tcp->tcp_kssl_ctx); 13283 tcp->tcp_kssl_ctx = NULL; 13284 13285 tcp->tcp_rnxt += seg_len; 13286 U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack); 13287 flags |= TH_ACK_NEEDED; 13288 goto ack_check; 13289 } 13290 13291 tcp_xmit_ctl("new data when detached", tcp, 13292 tcp->tcp_snxt, 0, TH_RST); 13293 (void) tcp_clean_death(tcp, EPROTO, 12); 13294 return; 13295 } 13296 13297 mp->b_rptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph); 13298 urp = BE16_TO_U16(tcph->th_urp) - TCP_OLD_URP_INTERPRETATION; 13299 new_swnd = BE16_TO_U16(tcph->th_win) << 13300 ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws); 13301 13302 if (tcp->tcp_snd_ts_ok) { 13303 if (!tcp_paws_check(tcp, tcph, &tcpopt)) { 13304 /* 13305 * This segment is not acceptable. 13306 * Drop it and send back an ACK. 13307 */ 13308 freemsg(mp); 13309 flags |= TH_ACK_NEEDED; 13310 goto ack_check; 13311 } 13312 } else if (tcp->tcp_snd_sack_ok) { 13313 ASSERT(tcp->tcp_sack_info != NULL); 13314 tcpopt.tcp = tcp; 13315 /* 13316 * SACK info in already updated in tcp_parse_options. Ignore 13317 * all other TCP options... 13318 */ 13319 (void) tcp_parse_options(tcph, &tcpopt); 13320 } 13321 try_again:; 13322 mss = tcp->tcp_mss; 13323 gap = seg_seq - tcp->tcp_rnxt; 13324 rgap = tcp->tcp_rwnd - (gap + seg_len); 13325 /* 13326 * gap is the amount of sequence space between what we expect to see 13327 * and what we got for seg_seq. A positive value for gap means 13328 * something got lost. A negative value means we got some old stuff. 13329 */ 13330 if (gap < 0) { 13331 /* Old stuff present. Is the SYN in there? */ 13332 if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) && 13333 (seg_len != 0)) { 13334 flags &= ~TH_SYN; 13335 seg_seq++; 13336 urp--; 13337 /* Recompute the gaps after noting the SYN. */ 13338 goto try_again; 13339 } 13340 BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); 13341 UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, 13342 (seg_len > -gap ? -gap : seg_len)); 13343 /* Remove the old stuff from seg_len. */ 13344 seg_len += gap; 13345 /* 13346 * Anything left? 13347 * Make sure to check for unack'd FIN when rest of data 13348 * has been previously ack'd. 13349 */ 13350 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 13351 /* 13352 * Resets are only valid if they lie within our offered 13353 * window. If the RST bit is set, we just ignore this 13354 * segment. 13355 */ 13356 if (flags & TH_RST) { 13357 freemsg(mp); 13358 return; 13359 } 13360 13361 /* 13362 * The arriving of dup data packets indicate that we 13363 * may have postponed an ack for too long, or the other 13364 * side's RTT estimate is out of shape. Start acking 13365 * more often. 13366 */ 13367 if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) && 13368 tcp->tcp_rack_cnt >= 1 && 13369 tcp->tcp_rack_abs_max > 2) { 13370 tcp->tcp_rack_abs_max--; 13371 } 13372 tcp->tcp_rack_cur_max = 1; 13373 13374 /* 13375 * This segment is "unacceptable". None of its 13376 * sequence space lies within our advertized window. 13377 * 13378 * Adjust seg_len to the original value for tracing. 13379 */ 13380 seg_len -= gap; 13381 if (tcp->tcp_debug) { 13382 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13383 "tcp_rput: unacceptable, gap %d, rgap %d, " 13384 "flags 0x%x, seg_seq %u, seg_ack %u, " 13385 "seg_len %d, rnxt %u, snxt %u, %s", 13386 gap, rgap, flags, seg_seq, seg_ack, 13387 seg_len, tcp->tcp_rnxt, tcp->tcp_snxt, 13388 tcp_display(tcp, NULL, 13389 DISP_ADDR_AND_PORT)); 13390 } 13391 13392 /* 13393 * Arrange to send an ACK in response to the 13394 * unacceptable segment per RFC 793 page 69. There 13395 * is only one small difference between ours and the 13396 * acceptability test in the RFC - we accept ACK-only 13397 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK 13398 * will be generated. 13399 * 13400 * Note that we have to ACK an ACK-only packet at least 13401 * for stacks that send 0-length keep-alives with 13402 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122, 13403 * section 4.2.3.6. As long as we don't ever generate 13404 * an unacceptable packet in response to an incoming 13405 * packet that is unacceptable, it should not cause 13406 * "ACK wars". 13407 */ 13408 flags |= TH_ACK_NEEDED; 13409 13410 /* 13411 * Continue processing this segment in order to use the 13412 * ACK information it contains, but skip all other 13413 * sequence-number processing. Processing the ACK 13414 * information is necessary in order to 13415 * re-synchronize connections that may have lost 13416 * synchronization. 13417 * 13418 * We clear seg_len and flag fields related to 13419 * sequence number processing as they are not 13420 * to be trusted for an unacceptable segment. 13421 */ 13422 seg_len = 0; 13423 flags &= ~(TH_SYN | TH_FIN | TH_URG); 13424 goto process_ack; 13425 } 13426 13427 /* Fix seg_seq, and chew the gap off the front. */ 13428 seg_seq = tcp->tcp_rnxt; 13429 urp += gap; 13430 do { 13431 mblk_t *mp2; 13432 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 13433 (uintptr_t)UINT_MAX); 13434 gap += (uint_t)(mp->b_wptr - mp->b_rptr); 13435 if (gap > 0) { 13436 mp->b_rptr = mp->b_wptr - gap; 13437 break; 13438 } 13439 mp2 = mp; 13440 mp = mp->b_cont; 13441 freeb(mp2); 13442 } while (gap < 0); 13443 /* 13444 * If the urgent data has already been acknowledged, we 13445 * should ignore TH_URG below 13446 */ 13447 if (urp < 0) 13448 flags &= ~TH_URG; 13449 } 13450 /* 13451 * rgap is the amount of stuff received out of window. A negative 13452 * value is the amount out of window. 13453 */ 13454 if (rgap < 0) { 13455 mblk_t *mp2; 13456 13457 if (tcp->tcp_rwnd == 0) { 13458 BUMP_MIB(&tcps->tcps_mib, tcpInWinProbe); 13459 } else { 13460 BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs); 13461 UPDATE_MIB(&tcps->tcps_mib, 13462 tcpInDataPastWinBytes, -rgap); 13463 } 13464 13465 /* 13466 * seg_len does not include the FIN, so if more than 13467 * just the FIN is out of window, we act like we don't 13468 * see it. (If just the FIN is out of window, rgap 13469 * will be zero and we will go ahead and acknowledge 13470 * the FIN.) 13471 */ 13472 flags &= ~TH_FIN; 13473 13474 /* Fix seg_len and make sure there is something left. */ 13475 seg_len += rgap; 13476 if (seg_len <= 0) { 13477 /* 13478 * Resets are only valid if they lie within our offered 13479 * window. If the RST bit is set, we just ignore this 13480 * segment. 13481 */ 13482 if (flags & TH_RST) { 13483 freemsg(mp); 13484 return; 13485 } 13486 13487 /* Per RFC 793, we need to send back an ACK. */ 13488 flags |= TH_ACK_NEEDED; 13489 13490 /* 13491 * Send SIGURG as soon as possible i.e. even 13492 * if the TH_URG was delivered in a window probe 13493 * packet (which will be unacceptable). 13494 * 13495 * We generate a signal if none has been generated 13496 * for this connection or if this is a new urgent 13497 * byte. Also send a zero-length "unmarked" message 13498 * to inform SIOCATMARK that this is not the mark. 13499 * 13500 * tcp_urp_last_valid is cleared when the T_exdata_ind 13501 * is sent up. This plus the check for old data 13502 * (gap >= 0) handles the wraparound of the sequence 13503 * number space without having to always track the 13504 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks 13505 * this max in its rcv_up variable). 13506 * 13507 * This prevents duplicate SIGURGS due to a "late" 13508 * zero-window probe when the T_EXDATA_IND has already 13509 * been sent up. 13510 */ 13511 if ((flags & TH_URG) && 13512 (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq, 13513 tcp->tcp_urp_last))) { 13514 mp1 = allocb(0, BPRI_MED); 13515 if (mp1 == NULL) { 13516 freemsg(mp); 13517 return; 13518 } 13519 if (!TCP_IS_DETACHED(tcp) && 13520 !putnextctl1(tcp->tcp_rq, M_PCSIG, 13521 SIGURG)) { 13522 /* Try again on the rexmit. */ 13523 freemsg(mp1); 13524 freemsg(mp); 13525 return; 13526 } 13527 /* 13528 * If the next byte would be the mark 13529 * then mark with MARKNEXT else mark 13530 * with NOTMARKNEXT. 13531 */ 13532 if (gap == 0 && urp == 0) 13533 mp1->b_flag |= MSGMARKNEXT; 13534 else 13535 mp1->b_flag |= MSGNOTMARKNEXT; 13536 freemsg(tcp->tcp_urp_mark_mp); 13537 tcp->tcp_urp_mark_mp = mp1; 13538 flags |= TH_SEND_URP_MARK; 13539 tcp->tcp_urp_last_valid = B_TRUE; 13540 tcp->tcp_urp_last = urp + seg_seq; 13541 } 13542 /* 13543 * If this is a zero window probe, continue to 13544 * process the ACK part. But we need to set seg_len 13545 * to 0 to avoid data processing. Otherwise just 13546 * drop the segment and send back an ACK. 13547 */ 13548 if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) { 13549 flags &= ~(TH_SYN | TH_URG); 13550 seg_len = 0; 13551 goto process_ack; 13552 } else { 13553 freemsg(mp); 13554 goto ack_check; 13555 } 13556 } 13557 /* Pitch out of window stuff off the end. */ 13558 rgap = seg_len; 13559 mp2 = mp; 13560 do { 13561 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 13562 (uintptr_t)INT_MAX); 13563 rgap -= (int)(mp2->b_wptr - mp2->b_rptr); 13564 if (rgap < 0) { 13565 mp2->b_wptr += rgap; 13566 if ((mp1 = mp2->b_cont) != NULL) { 13567 mp2->b_cont = NULL; 13568 freemsg(mp1); 13569 } 13570 break; 13571 } 13572 } while ((mp2 = mp2->b_cont) != NULL); 13573 } 13574 ok:; 13575 /* 13576 * TCP should check ECN info for segments inside the window only. 13577 * Therefore the check should be done here. 13578 */ 13579 if (tcp->tcp_ecn_ok) { 13580 if (flags & TH_CWR) { 13581 tcp->tcp_ecn_echo_on = B_FALSE; 13582 } 13583 /* 13584 * Note that both ECN_CE and CWR can be set in the 13585 * same segment. In this case, we once again turn 13586 * on ECN_ECHO. 13587 */ 13588 if (tcp->tcp_ipversion == IPV4_VERSION) { 13589 uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service; 13590 13591 if ((tos & IPH_ECN_CE) == IPH_ECN_CE) { 13592 tcp->tcp_ecn_echo_on = B_TRUE; 13593 } 13594 } else { 13595 uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf; 13596 13597 if ((vcf & htonl(IPH_ECN_CE << 20)) == 13598 htonl(IPH_ECN_CE << 20)) { 13599 tcp->tcp_ecn_echo_on = B_TRUE; 13600 } 13601 } 13602 } 13603 13604 /* 13605 * Check whether we can update tcp_ts_recent. This test is 13606 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 13607 * Extensions for High Performance: An Update", Internet Draft. 13608 */ 13609 if (tcp->tcp_snd_ts_ok && 13610 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 13611 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 13612 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 13613 tcp->tcp_last_rcv_lbolt = lbolt64; 13614 } 13615 13616 if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) { 13617 /* 13618 * FIN in an out of order segment. We record this in 13619 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq. 13620 * Clear the FIN so that any check on FIN flag will fail. 13621 * Remember that FIN also counts in the sequence number 13622 * space. So we need to ack out of order FIN only segments. 13623 */ 13624 if (flags & TH_FIN) { 13625 tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID; 13626 tcp->tcp_ofo_fin_seq = seg_seq + seg_len; 13627 flags &= ~TH_FIN; 13628 flags |= TH_ACK_NEEDED; 13629 } 13630 if (seg_len > 0) { 13631 /* Fill in the SACK blk list. */ 13632 if (tcp->tcp_snd_sack_ok) { 13633 ASSERT(tcp->tcp_sack_info != NULL); 13634 tcp_sack_insert(tcp->tcp_sack_list, 13635 seg_seq, seg_seq + seg_len, 13636 &(tcp->tcp_num_sack_blk)); 13637 } 13638 13639 /* 13640 * Attempt reassembly and see if we have something 13641 * ready to go. 13642 */ 13643 mp = tcp_reass(tcp, mp, seg_seq); 13644 /* Always ack out of order packets */ 13645 flags |= TH_ACK_NEEDED | TH_PUSH; 13646 if (mp) { 13647 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 13648 (uintptr_t)INT_MAX); 13649 seg_len = mp->b_cont ? msgdsize(mp) : 13650 (int)(mp->b_wptr - mp->b_rptr); 13651 seg_seq = tcp->tcp_rnxt; 13652 /* 13653 * A gap is filled and the seq num and len 13654 * of the gap match that of a previously 13655 * received FIN, put the FIN flag back in. 13656 */ 13657 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 13658 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 13659 flags |= TH_FIN; 13660 tcp->tcp_valid_bits &= 13661 ~TCP_OFO_FIN_VALID; 13662 } 13663 } else { 13664 /* 13665 * Keep going even with NULL mp. 13666 * There may be a useful ACK or something else 13667 * we don't want to miss. 13668 * 13669 * But TCP should not perform fast retransmit 13670 * because of the ack number. TCP uses 13671 * seg_len == 0 to determine if it is a pure 13672 * ACK. And this is not a pure ACK. 13673 */ 13674 seg_len = 0; 13675 ofo_seg = B_TRUE; 13676 } 13677 } 13678 } else if (seg_len > 0) { 13679 BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs); 13680 UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len); 13681 /* 13682 * If an out of order FIN was received before, and the seq 13683 * num and len of the new segment match that of the FIN, 13684 * put the FIN flag back in. 13685 */ 13686 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 13687 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 13688 flags |= TH_FIN; 13689 tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID; 13690 } 13691 } 13692 if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) { 13693 if (flags & TH_RST) { 13694 freemsg(mp); 13695 switch (tcp->tcp_state) { 13696 case TCPS_SYN_RCVD: 13697 (void) tcp_clean_death(tcp, ECONNREFUSED, 14); 13698 break; 13699 case TCPS_ESTABLISHED: 13700 case TCPS_FIN_WAIT_1: 13701 case TCPS_FIN_WAIT_2: 13702 case TCPS_CLOSE_WAIT: 13703 (void) tcp_clean_death(tcp, ECONNRESET, 15); 13704 break; 13705 case TCPS_CLOSING: 13706 case TCPS_LAST_ACK: 13707 (void) tcp_clean_death(tcp, 0, 16); 13708 break; 13709 default: 13710 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 13711 (void) tcp_clean_death(tcp, ENXIO, 17); 13712 break; 13713 } 13714 return; 13715 } 13716 if (flags & TH_SYN) { 13717 /* 13718 * See RFC 793, Page 71 13719 * 13720 * The seq number must be in the window as it should 13721 * be "fixed" above. If it is outside window, it should 13722 * be already rejected. Note that we allow seg_seq to be 13723 * rnxt + rwnd because we want to accept 0 window probe. 13724 */ 13725 ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) && 13726 SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd)); 13727 freemsg(mp); 13728 /* 13729 * If the ACK flag is not set, just use our snxt as the 13730 * seq number of the RST segment. 13731 */ 13732 if (!(flags & TH_ACK)) { 13733 seg_ack = tcp->tcp_snxt; 13734 } 13735 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 13736 TH_RST|TH_ACK); 13737 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 13738 (void) tcp_clean_death(tcp, ECONNRESET, 18); 13739 return; 13740 } 13741 /* 13742 * urp could be -1 when the urp field in the packet is 0 13743 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent 13744 * byte was at seg_seq - 1, in which case we ignore the urgent flag. 13745 */ 13746 if (flags & TH_URG && urp >= 0) { 13747 if (!tcp->tcp_urp_last_valid || 13748 SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) { 13749 /* 13750 * If we haven't generated the signal yet for this 13751 * urgent pointer value, do it now. Also, send up a 13752 * zero-length M_DATA indicating whether or not this is 13753 * the mark. The latter is not needed when a 13754 * T_EXDATA_IND is sent up. However, if there are 13755 * allocation failures this code relies on the sender 13756 * retransmitting and the socket code for determining 13757 * the mark should not block waiting for the peer to 13758 * transmit. Thus, for simplicity we always send up the 13759 * mark indication. 13760 */ 13761 mp1 = allocb(0, BPRI_MED); 13762 if (mp1 == NULL) { 13763 freemsg(mp); 13764 return; 13765 } 13766 if (!TCP_IS_DETACHED(tcp) && 13767 !putnextctl1(tcp->tcp_rq, M_PCSIG, SIGURG)) { 13768 /* Try again on the rexmit. */ 13769 freemsg(mp1); 13770 freemsg(mp); 13771 return; 13772 } 13773 /* 13774 * Mark with NOTMARKNEXT for now. 13775 * The code below will change this to MARKNEXT 13776 * if we are at the mark. 13777 * 13778 * If there are allocation failures (e.g. in dupmsg 13779 * below) the next time tcp_rput_data sees the urgent 13780 * segment it will send up the MSG*MARKNEXT message. 13781 */ 13782 mp1->b_flag |= MSGNOTMARKNEXT; 13783 freemsg(tcp->tcp_urp_mark_mp); 13784 tcp->tcp_urp_mark_mp = mp1; 13785 flags |= TH_SEND_URP_MARK; 13786 #ifdef DEBUG 13787 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13788 "tcp_rput: sent M_PCSIG 2 seq %x urp %x " 13789 "last %x, %s", 13790 seg_seq, urp, tcp->tcp_urp_last, 13791 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 13792 #endif /* DEBUG */ 13793 tcp->tcp_urp_last_valid = B_TRUE; 13794 tcp->tcp_urp_last = urp + seg_seq; 13795 } else if (tcp->tcp_urp_mark_mp != NULL) { 13796 /* 13797 * An allocation failure prevented the previous 13798 * tcp_rput_data from sending up the allocated 13799 * MSG*MARKNEXT message - send it up this time 13800 * around. 13801 */ 13802 flags |= TH_SEND_URP_MARK; 13803 } 13804 13805 /* 13806 * If the urgent byte is in this segment, make sure that it is 13807 * all by itself. This makes it much easier to deal with the 13808 * possibility of an allocation failure on the T_exdata_ind. 13809 * Note that seg_len is the number of bytes in the segment, and 13810 * urp is the offset into the segment of the urgent byte. 13811 * urp < seg_len means that the urgent byte is in this segment. 13812 */ 13813 if (urp < seg_len) { 13814 if (seg_len != 1) { 13815 uint32_t tmp_rnxt; 13816 /* 13817 * Break it up and feed it back in. 13818 * Re-attach the IP header. 13819 */ 13820 mp->b_rptr = iphdr; 13821 if (urp > 0) { 13822 /* 13823 * There is stuff before the urgent 13824 * byte. 13825 */ 13826 mp1 = dupmsg(mp); 13827 if (!mp1) { 13828 /* 13829 * Trim from urgent byte on. 13830 * The rest will come back. 13831 */ 13832 (void) adjmsg(mp, 13833 urp - seg_len); 13834 tcp_rput_data(connp, 13835 mp, NULL); 13836 return; 13837 } 13838 (void) adjmsg(mp1, urp - seg_len); 13839 /* Feed this piece back in. */ 13840 tmp_rnxt = tcp->tcp_rnxt; 13841 tcp_rput_data(connp, mp1, NULL); 13842 /* 13843 * If the data passed back in was not 13844 * processed (ie: bad ACK) sending 13845 * the remainder back in will cause a 13846 * loop. In this case, drop the 13847 * packet and let the sender try 13848 * sending a good packet. 13849 */ 13850 if (tmp_rnxt == tcp->tcp_rnxt) { 13851 freemsg(mp); 13852 return; 13853 } 13854 } 13855 if (urp != seg_len - 1) { 13856 uint32_t tmp_rnxt; 13857 /* 13858 * There is stuff after the urgent 13859 * byte. 13860 */ 13861 mp1 = dupmsg(mp); 13862 if (!mp1) { 13863 /* 13864 * Trim everything beyond the 13865 * urgent byte. The rest will 13866 * come back. 13867 */ 13868 (void) adjmsg(mp, 13869 urp + 1 - seg_len); 13870 tcp_rput_data(connp, 13871 mp, NULL); 13872 return; 13873 } 13874 (void) adjmsg(mp1, urp + 1 - seg_len); 13875 tmp_rnxt = tcp->tcp_rnxt; 13876 tcp_rput_data(connp, mp1, NULL); 13877 /* 13878 * If the data passed back in was not 13879 * processed (ie: bad ACK) sending 13880 * the remainder back in will cause a 13881 * loop. In this case, drop the 13882 * packet and let the sender try 13883 * sending a good packet. 13884 */ 13885 if (tmp_rnxt == tcp->tcp_rnxt) { 13886 freemsg(mp); 13887 return; 13888 } 13889 } 13890 tcp_rput_data(connp, mp, NULL); 13891 return; 13892 } 13893 /* 13894 * This segment contains only the urgent byte. We 13895 * have to allocate the T_exdata_ind, if we can. 13896 */ 13897 if (!tcp->tcp_urp_mp) { 13898 struct T_exdata_ind *tei; 13899 mp1 = allocb(sizeof (struct T_exdata_ind), 13900 BPRI_MED); 13901 if (!mp1) { 13902 /* 13903 * Sigh... It'll be back. 13904 * Generate any MSG*MARK message now. 13905 */ 13906 freemsg(mp); 13907 seg_len = 0; 13908 if (flags & TH_SEND_URP_MARK) { 13909 13910 13911 ASSERT(tcp->tcp_urp_mark_mp); 13912 tcp->tcp_urp_mark_mp->b_flag &= 13913 ~MSGNOTMARKNEXT; 13914 tcp->tcp_urp_mark_mp->b_flag |= 13915 MSGMARKNEXT; 13916 } 13917 goto ack_check; 13918 } 13919 mp1->b_datap->db_type = M_PROTO; 13920 tei = (struct T_exdata_ind *)mp1->b_rptr; 13921 tei->PRIM_type = T_EXDATA_IND; 13922 tei->MORE_flag = 0; 13923 mp1->b_wptr = (uchar_t *)&tei[1]; 13924 tcp->tcp_urp_mp = mp1; 13925 #ifdef DEBUG 13926 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13927 "tcp_rput: allocated exdata_ind %s", 13928 tcp_display(tcp, NULL, 13929 DISP_PORT_ONLY)); 13930 #endif /* DEBUG */ 13931 /* 13932 * There is no need to send a separate MSG*MARK 13933 * message since the T_EXDATA_IND will be sent 13934 * now. 13935 */ 13936 flags &= ~TH_SEND_URP_MARK; 13937 freemsg(tcp->tcp_urp_mark_mp); 13938 tcp->tcp_urp_mark_mp = NULL; 13939 } 13940 /* 13941 * Now we are all set. On the next putnext upstream, 13942 * tcp_urp_mp will be non-NULL and will get prepended 13943 * to what has to be this piece containing the urgent 13944 * byte. If for any reason we abort this segment below, 13945 * if it comes back, we will have this ready, or it 13946 * will get blown off in close. 13947 */ 13948 } else if (urp == seg_len) { 13949 /* 13950 * The urgent byte is the next byte after this sequence 13951 * number. If there is data it is marked with 13952 * MSGMARKNEXT and any tcp_urp_mark_mp is discarded 13953 * since it is not needed. Otherwise, if the code 13954 * above just allocated a zero-length tcp_urp_mark_mp 13955 * message, that message is tagged with MSGMARKNEXT. 13956 * Sending up these MSGMARKNEXT messages makes 13957 * SIOCATMARK work correctly even though 13958 * the T_EXDATA_IND will not be sent up until the 13959 * urgent byte arrives. 13960 */ 13961 if (seg_len != 0) { 13962 flags |= TH_MARKNEXT_NEEDED; 13963 freemsg(tcp->tcp_urp_mark_mp); 13964 tcp->tcp_urp_mark_mp = NULL; 13965 flags &= ~TH_SEND_URP_MARK; 13966 } else if (tcp->tcp_urp_mark_mp != NULL) { 13967 flags |= TH_SEND_URP_MARK; 13968 tcp->tcp_urp_mark_mp->b_flag &= 13969 ~MSGNOTMARKNEXT; 13970 tcp->tcp_urp_mark_mp->b_flag |= MSGMARKNEXT; 13971 } 13972 #ifdef DEBUG 13973 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13974 "tcp_rput: AT MARK, len %d, flags 0x%x, %s", 13975 seg_len, flags, 13976 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 13977 #endif /* DEBUG */ 13978 } else { 13979 /* Data left until we hit mark */ 13980 #ifdef DEBUG 13981 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13982 "tcp_rput: URP %d bytes left, %s", 13983 urp - seg_len, tcp_display(tcp, NULL, 13984 DISP_PORT_ONLY)); 13985 #endif /* DEBUG */ 13986 } 13987 } 13988 13989 process_ack: 13990 if (!(flags & TH_ACK)) { 13991 freemsg(mp); 13992 goto xmit_check; 13993 } 13994 } 13995 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 13996 13997 if (tcp->tcp_ipversion == IPV6_VERSION && bytes_acked > 0) 13998 tcp->tcp_ip_forward_progress = B_TRUE; 13999 if (tcp->tcp_state == TCPS_SYN_RCVD) { 14000 if ((tcp->tcp_conn.tcp_eager_conn_ind != NULL) && 14001 ((tcp->tcp_kssl_ent == NULL) || !tcp->tcp_kssl_pending)) { 14002 /* 3-way handshake complete - pass up the T_CONN_IND */ 14003 tcp_t *listener = tcp->tcp_listener; 14004 mblk_t *mp = tcp->tcp_conn.tcp_eager_conn_ind; 14005 14006 tcp->tcp_tconnind_started = B_TRUE; 14007 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 14008 /* 14009 * We are here means eager is fine but it can 14010 * get a TH_RST at any point between now and till 14011 * accept completes and disappear. We need to 14012 * ensure that reference to eager is valid after 14013 * we get out of eager's perimeter. So we do 14014 * an extra refhold. 14015 */ 14016 CONN_INC_REF(connp); 14017 14018 /* 14019 * The listener also exists because of the refhold 14020 * done in tcp_conn_request. Its possible that it 14021 * might have closed. We will check that once we 14022 * get inside listeners context. 14023 */ 14024 CONN_INC_REF(listener->tcp_connp); 14025 if (listener->tcp_connp->conn_sqp == 14026 connp->conn_sqp) { 14027 tcp_send_conn_ind(listener->tcp_connp, mp, 14028 listener->tcp_connp->conn_sqp); 14029 CONN_DEC_REF(listener->tcp_connp); 14030 } else if (!tcp->tcp_loopback) { 14031 squeue_fill(listener->tcp_connp->conn_sqp, mp, 14032 tcp_send_conn_ind, 14033 listener->tcp_connp, SQTAG_TCP_CONN_IND); 14034 } else { 14035 squeue_enter(listener->tcp_connp->conn_sqp, mp, 14036 tcp_send_conn_ind, listener->tcp_connp, 14037 SQTAG_TCP_CONN_IND); 14038 } 14039 } 14040 14041 if (tcp->tcp_active_open) { 14042 /* 14043 * We are seeing the final ack in the three way 14044 * hand shake of a active open'ed connection 14045 * so we must send up a T_CONN_CON 14046 */ 14047 if (!tcp_conn_con(tcp, iphdr, tcph, mp, NULL)) { 14048 freemsg(mp); 14049 return; 14050 } 14051 /* 14052 * Don't fuse the loopback endpoints for 14053 * simultaneous active opens. 14054 */ 14055 if (tcp->tcp_loopback) { 14056 TCP_STAT(tcps, tcp_fusion_unfusable); 14057 tcp->tcp_unfusable = B_TRUE; 14058 } 14059 } 14060 14061 tcp->tcp_suna = tcp->tcp_iss + 1; /* One for the SYN */ 14062 bytes_acked--; 14063 /* SYN was acked - making progress */ 14064 if (tcp->tcp_ipversion == IPV6_VERSION) 14065 tcp->tcp_ip_forward_progress = B_TRUE; 14066 14067 /* 14068 * If SYN was retransmitted, need to reset all 14069 * retransmission info as this segment will be 14070 * treated as a dup ACK. 14071 */ 14072 if (tcp->tcp_rexmit) { 14073 tcp->tcp_rexmit = B_FALSE; 14074 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 14075 tcp->tcp_rexmit_max = tcp->tcp_snxt; 14076 tcp->tcp_snd_burst = tcp->tcp_localnet ? 14077 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 14078 tcp->tcp_ms_we_have_waited = 0; 14079 tcp->tcp_cwnd = mss; 14080 } 14081 14082 /* 14083 * We set the send window to zero here. 14084 * This is needed if there is data to be 14085 * processed already on the queue. 14086 * Later (at swnd_update label), the 14087 * "new_swnd > tcp_swnd" condition is satisfied 14088 * the XMIT_NEEDED flag is set in the current 14089 * (SYN_RCVD) state. This ensures tcp_wput_data() is 14090 * called if there is already data on queue in 14091 * this state. 14092 */ 14093 tcp->tcp_swnd = 0; 14094 14095 if (new_swnd > tcp->tcp_max_swnd) 14096 tcp->tcp_max_swnd = new_swnd; 14097 tcp->tcp_swl1 = seg_seq; 14098 tcp->tcp_swl2 = seg_ack; 14099 tcp->tcp_state = TCPS_ESTABLISHED; 14100 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 14101 14102 /* Fuse when both sides are in ESTABLISHED state */ 14103 if (tcp->tcp_loopback && do_tcp_fusion) 14104 tcp_fuse(tcp, iphdr, tcph); 14105 14106 } 14107 /* This code follows 4.4BSD-Lite2 mostly. */ 14108 if (bytes_acked < 0) 14109 goto est; 14110 14111 /* 14112 * If TCP is ECN capable and the congestion experience bit is 14113 * set, reduce tcp_cwnd and tcp_ssthresh. But this should only be 14114 * done once per window (or more loosely, per RTT). 14115 */ 14116 if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max)) 14117 tcp->tcp_cwr = B_FALSE; 14118 if (tcp->tcp_ecn_ok && (flags & TH_ECE)) { 14119 if (!tcp->tcp_cwr) { 14120 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss; 14121 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss; 14122 tcp->tcp_cwnd = npkt * mss; 14123 /* 14124 * If the cwnd is 0, use the timer to clock out 14125 * new segments. This is required by the ECN spec. 14126 */ 14127 if (npkt == 0) { 14128 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14129 /* 14130 * This makes sure that when the ACK comes 14131 * back, we will increase tcp_cwnd by 1 MSS. 14132 */ 14133 tcp->tcp_cwnd_cnt = 0; 14134 } 14135 tcp->tcp_cwr = B_TRUE; 14136 /* 14137 * This marks the end of the current window of in 14138 * flight data. That is why we don't use 14139 * tcp_suna + tcp_swnd. Only data in flight can 14140 * provide ECN info. 14141 */ 14142 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 14143 tcp->tcp_ecn_cwr_sent = B_FALSE; 14144 } 14145 } 14146 14147 mp1 = tcp->tcp_xmit_head; 14148 if (bytes_acked == 0) { 14149 if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) { 14150 int dupack_cnt; 14151 14152 BUMP_MIB(&tcps->tcps_mib, tcpInDupAck); 14153 /* 14154 * Fast retransmit. When we have seen exactly three 14155 * identical ACKs while we have unacked data 14156 * outstanding we take it as a hint that our peer 14157 * dropped something. 14158 * 14159 * If TCP is retransmitting, don't do fast retransmit. 14160 */ 14161 if (mp1 && tcp->tcp_suna != tcp->tcp_snxt && 14162 ! tcp->tcp_rexmit) { 14163 /* Do Limited Transmit */ 14164 if ((dupack_cnt = ++tcp->tcp_dupack_cnt) < 14165 tcps->tcps_dupack_fast_retransmit) { 14166 /* 14167 * RFC 3042 14168 * 14169 * What we need to do is temporarily 14170 * increase tcp_cwnd so that new 14171 * data can be sent if it is allowed 14172 * by the receive window (tcp_rwnd). 14173 * tcp_wput_data() will take care of 14174 * the rest. 14175 * 14176 * If the connection is SACK capable, 14177 * only do limited xmit when there 14178 * is SACK info. 14179 * 14180 * Note how tcp_cwnd is incremented. 14181 * The first dup ACK will increase 14182 * it by 1 MSS. The second dup ACK 14183 * will increase it by 2 MSS. This 14184 * means that only 1 new segment will 14185 * be sent for each dup ACK. 14186 */ 14187 if (tcp->tcp_unsent > 0 && 14188 (!tcp->tcp_snd_sack_ok || 14189 (tcp->tcp_snd_sack_ok && 14190 tcp->tcp_notsack_list != NULL))) { 14191 tcp->tcp_cwnd += mss << 14192 (tcp->tcp_dupack_cnt - 1); 14193 flags |= TH_LIMIT_XMIT; 14194 } 14195 } else if (dupack_cnt == 14196 tcps->tcps_dupack_fast_retransmit) { 14197 14198 /* 14199 * If we have reduced tcp_ssthresh 14200 * because of ECN, do not reduce it again 14201 * unless it is already one window of data 14202 * away. After one window of data, tcp_cwr 14203 * should then be cleared. Note that 14204 * for non ECN capable connection, tcp_cwr 14205 * should always be false. 14206 * 14207 * Adjust cwnd since the duplicate 14208 * ack indicates that a packet was 14209 * dropped (due to congestion.) 14210 */ 14211 if (!tcp->tcp_cwr) { 14212 npkt = ((tcp->tcp_snxt - 14213 tcp->tcp_suna) >> 1) / mss; 14214 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 14215 mss; 14216 tcp->tcp_cwnd = (npkt + 14217 tcp->tcp_dupack_cnt) * mss; 14218 } 14219 if (tcp->tcp_ecn_ok) { 14220 tcp->tcp_cwr = B_TRUE; 14221 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 14222 tcp->tcp_ecn_cwr_sent = B_FALSE; 14223 } 14224 14225 /* 14226 * We do Hoe's algorithm. Refer to her 14227 * paper "Improving the Start-up Behavior 14228 * of a Congestion Control Scheme for TCP," 14229 * appeared in SIGCOMM'96. 14230 * 14231 * Save highest seq no we have sent so far. 14232 * Be careful about the invisible FIN byte. 14233 */ 14234 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 14235 (tcp->tcp_unsent == 0)) { 14236 tcp->tcp_rexmit_max = tcp->tcp_fss; 14237 } else { 14238 tcp->tcp_rexmit_max = tcp->tcp_snxt; 14239 } 14240 14241 /* 14242 * Do not allow bursty traffic during. 14243 * fast recovery. Refer to Fall and Floyd's 14244 * paper "Simulation-based Comparisons of 14245 * Tahoe, Reno and SACK TCP" (in CCR?) 14246 * This is a best current practise. 14247 */ 14248 tcp->tcp_snd_burst = TCP_CWND_SS; 14249 14250 /* 14251 * For SACK: 14252 * Calculate tcp_pipe, which is the 14253 * estimated number of bytes in 14254 * network. 14255 * 14256 * tcp_fack is the highest sack'ed seq num 14257 * TCP has received. 14258 * 14259 * tcp_pipe is explained in the above quoted 14260 * Fall and Floyd's paper. tcp_fack is 14261 * explained in Mathis and Mahdavi's 14262 * "Forward Acknowledgment: Refining TCP 14263 * Congestion Control" in SIGCOMM '96. 14264 */ 14265 if (tcp->tcp_snd_sack_ok) { 14266 ASSERT(tcp->tcp_sack_info != NULL); 14267 if (tcp->tcp_notsack_list != NULL) { 14268 tcp->tcp_pipe = tcp->tcp_snxt - 14269 tcp->tcp_fack; 14270 tcp->tcp_sack_snxt = seg_ack; 14271 flags |= TH_NEED_SACK_REXMIT; 14272 } else { 14273 /* 14274 * Always initialize tcp_pipe 14275 * even though we don't have 14276 * any SACK info. If later 14277 * we get SACK info and 14278 * tcp_pipe is not initialized, 14279 * funny things will happen. 14280 */ 14281 tcp->tcp_pipe = 14282 tcp->tcp_cwnd_ssthresh; 14283 } 14284 } else { 14285 flags |= TH_REXMIT_NEEDED; 14286 } /* tcp_snd_sack_ok */ 14287 14288 } else { 14289 /* 14290 * Here we perform congestion 14291 * avoidance, but NOT slow start. 14292 * This is known as the Fast 14293 * Recovery Algorithm. 14294 */ 14295 if (tcp->tcp_snd_sack_ok && 14296 tcp->tcp_notsack_list != NULL) { 14297 flags |= TH_NEED_SACK_REXMIT; 14298 tcp->tcp_pipe -= mss; 14299 if (tcp->tcp_pipe < 0) 14300 tcp->tcp_pipe = 0; 14301 } else { 14302 /* 14303 * We know that one more packet has 14304 * left the pipe thus we can update 14305 * cwnd. 14306 */ 14307 cwnd = tcp->tcp_cwnd + mss; 14308 if (cwnd > tcp->tcp_cwnd_max) 14309 cwnd = tcp->tcp_cwnd_max; 14310 tcp->tcp_cwnd = cwnd; 14311 if (tcp->tcp_unsent > 0) 14312 flags |= TH_XMIT_NEEDED; 14313 } 14314 } 14315 } 14316 } else if (tcp->tcp_zero_win_probe) { 14317 /* 14318 * If the window has opened, need to arrange 14319 * to send additional data. 14320 */ 14321 if (new_swnd != 0) { 14322 /* tcp_suna != tcp_snxt */ 14323 /* Packet contains a window update */ 14324 BUMP_MIB(&tcps->tcps_mib, tcpInWinUpdate); 14325 tcp->tcp_zero_win_probe = 0; 14326 tcp->tcp_timer_backoff = 0; 14327 tcp->tcp_ms_we_have_waited = 0; 14328 14329 /* 14330 * Transmit starting with tcp_suna since 14331 * the one byte probe is not ack'ed. 14332 * If TCP has sent more than one identical 14333 * probe, tcp_rexmit will be set. That means 14334 * tcp_ss_rexmit() will send out the one 14335 * byte along with new data. Otherwise, 14336 * fake the retransmission. 14337 */ 14338 flags |= TH_XMIT_NEEDED; 14339 if (!tcp->tcp_rexmit) { 14340 tcp->tcp_rexmit = B_TRUE; 14341 tcp->tcp_dupack_cnt = 0; 14342 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 14343 tcp->tcp_rexmit_max = tcp->tcp_suna + 1; 14344 } 14345 } 14346 } 14347 goto swnd_update; 14348 } 14349 14350 /* 14351 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73. 14352 * If the ACK value acks something that we have not yet sent, it might 14353 * be an old duplicate segment. Send an ACK to re-synchronize the 14354 * other side. 14355 * Note: reset in response to unacceptable ACK in SYN_RECEIVE 14356 * state is handled above, so we can always just drop the segment and 14357 * send an ACK here. 14358 * 14359 * Should we send ACKs in response to ACK only segments? 14360 */ 14361 if (SEQ_GT(seg_ack, tcp->tcp_snxt)) { 14362 BUMP_MIB(&tcps->tcps_mib, tcpInAckUnsent); 14363 /* drop the received segment */ 14364 freemsg(mp); 14365 14366 /* 14367 * Send back an ACK. If tcp_drop_ack_unsent_cnt is 14368 * greater than 0, check if the number of such 14369 * bogus ACks is greater than that count. If yes, 14370 * don't send back any ACK. This prevents TCP from 14371 * getting into an ACK storm if somehow an attacker 14372 * successfully spoofs an acceptable segment to our 14373 * peer. 14374 */ 14375 if (tcp_drop_ack_unsent_cnt > 0 && 14376 ++tcp->tcp_in_ack_unsent > tcp_drop_ack_unsent_cnt) { 14377 TCP_STAT(tcps, tcp_in_ack_unsent_drop); 14378 return; 14379 } 14380 mp = tcp_ack_mp(tcp); 14381 if (mp != NULL) { 14382 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 14383 BUMP_LOCAL(tcp->tcp_obsegs); 14384 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 14385 tcp_send_data(tcp, tcp->tcp_wq, mp); 14386 } 14387 return; 14388 } 14389 14390 /* 14391 * TCP gets a new ACK, update the notsack'ed list to delete those 14392 * blocks that are covered by this ACK. 14393 */ 14394 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 14395 tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack, 14396 &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list)); 14397 } 14398 14399 /* 14400 * If we got an ACK after fast retransmit, check to see 14401 * if it is a partial ACK. If it is not and the congestion 14402 * window was inflated to account for the other side's 14403 * cached packets, retract it. If it is, do Hoe's algorithm. 14404 */ 14405 if (tcp->tcp_dupack_cnt >= tcps->tcps_dupack_fast_retransmit) { 14406 ASSERT(tcp->tcp_rexmit == B_FALSE); 14407 if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) { 14408 tcp->tcp_dupack_cnt = 0; 14409 /* 14410 * Restore the orig tcp_cwnd_ssthresh after 14411 * fast retransmit phase. 14412 */ 14413 if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) { 14414 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh; 14415 } 14416 tcp->tcp_rexmit_max = seg_ack; 14417 tcp->tcp_cwnd_cnt = 0; 14418 tcp->tcp_snd_burst = tcp->tcp_localnet ? 14419 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 14420 14421 /* 14422 * Remove all notsack info to avoid confusion with 14423 * the next fast retrasnmit/recovery phase. 14424 */ 14425 if (tcp->tcp_snd_sack_ok && 14426 tcp->tcp_notsack_list != NULL) { 14427 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 14428 } 14429 } else { 14430 if (tcp->tcp_snd_sack_ok && 14431 tcp->tcp_notsack_list != NULL) { 14432 flags |= TH_NEED_SACK_REXMIT; 14433 tcp->tcp_pipe -= mss; 14434 if (tcp->tcp_pipe < 0) 14435 tcp->tcp_pipe = 0; 14436 } else { 14437 /* 14438 * Hoe's algorithm: 14439 * 14440 * Retransmit the unack'ed segment and 14441 * restart fast recovery. Note that we 14442 * need to scale back tcp_cwnd to the 14443 * original value when we started fast 14444 * recovery. This is to prevent overly 14445 * aggressive behaviour in sending new 14446 * segments. 14447 */ 14448 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh + 14449 tcps->tcps_dupack_fast_retransmit * mss; 14450 tcp->tcp_cwnd_cnt = tcp->tcp_cwnd; 14451 flags |= TH_REXMIT_NEEDED; 14452 } 14453 } 14454 } else { 14455 tcp->tcp_dupack_cnt = 0; 14456 if (tcp->tcp_rexmit) { 14457 /* 14458 * TCP is retranmitting. If the ACK ack's all 14459 * outstanding data, update tcp_rexmit_max and 14460 * tcp_rexmit_nxt. Otherwise, update tcp_rexmit_nxt 14461 * to the correct value. 14462 * 14463 * Note that SEQ_LEQ() is used. This is to avoid 14464 * unnecessary fast retransmit caused by dup ACKs 14465 * received when TCP does slow start retransmission 14466 * after a time out. During this phase, TCP may 14467 * send out segments which are already received. 14468 * This causes dup ACKs to be sent back. 14469 */ 14470 if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) { 14471 if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) { 14472 tcp->tcp_rexmit_nxt = seg_ack; 14473 } 14474 if (seg_ack != tcp->tcp_rexmit_max) { 14475 flags |= TH_XMIT_NEEDED; 14476 } 14477 } else { 14478 tcp->tcp_rexmit = B_FALSE; 14479 tcp->tcp_xmit_zc_clean = B_FALSE; 14480 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 14481 tcp->tcp_snd_burst = tcp->tcp_localnet ? 14482 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 14483 } 14484 tcp->tcp_ms_we_have_waited = 0; 14485 } 14486 } 14487 14488 BUMP_MIB(&tcps->tcps_mib, tcpInAckSegs); 14489 UPDATE_MIB(&tcps->tcps_mib, tcpInAckBytes, bytes_acked); 14490 tcp->tcp_suna = seg_ack; 14491 if (tcp->tcp_zero_win_probe != 0) { 14492 tcp->tcp_zero_win_probe = 0; 14493 tcp->tcp_timer_backoff = 0; 14494 } 14495 14496 /* 14497 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed. 14498 * Note that it cannot be the SYN being ack'ed. The code flow 14499 * will not reach here. 14500 */ 14501 if (mp1 == NULL) { 14502 goto fin_acked; 14503 } 14504 14505 /* 14506 * Update the congestion window. 14507 * 14508 * If TCP is not ECN capable or TCP is ECN capable but the 14509 * congestion experience bit is not set, increase the tcp_cwnd as 14510 * usual. 14511 */ 14512 if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) { 14513 cwnd = tcp->tcp_cwnd; 14514 add = mss; 14515 14516 if (cwnd >= tcp->tcp_cwnd_ssthresh) { 14517 /* 14518 * This is to prevent an increase of less than 1 MSS of 14519 * tcp_cwnd. With partial increase, tcp_wput_data() 14520 * may send out tinygrams in order to preserve mblk 14521 * boundaries. 14522 * 14523 * By initializing tcp_cwnd_cnt to new tcp_cwnd and 14524 * decrementing it by 1 MSS for every ACKs, tcp_cwnd is 14525 * increased by 1 MSS for every RTTs. 14526 */ 14527 if (tcp->tcp_cwnd_cnt <= 0) { 14528 tcp->tcp_cwnd_cnt = cwnd + add; 14529 } else { 14530 tcp->tcp_cwnd_cnt -= add; 14531 add = 0; 14532 } 14533 } 14534 tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max); 14535 } 14536 14537 /* See if the latest urgent data has been acknowledged */ 14538 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && 14539 SEQ_GT(seg_ack, tcp->tcp_urg)) 14540 tcp->tcp_valid_bits &= ~TCP_URG_VALID; 14541 14542 /* Can we update the RTT estimates? */ 14543 if (tcp->tcp_snd_ts_ok) { 14544 /* Ignore zero timestamp echo-reply. */ 14545 if (tcpopt.tcp_opt_ts_ecr != 0) { 14546 tcp_set_rto(tcp, (int32_t)lbolt - 14547 (int32_t)tcpopt.tcp_opt_ts_ecr); 14548 } 14549 14550 /* If needed, restart the timer. */ 14551 if (tcp->tcp_set_timer == 1) { 14552 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14553 tcp->tcp_set_timer = 0; 14554 } 14555 /* 14556 * Update tcp_csuna in case the other side stops sending 14557 * us timestamps. 14558 */ 14559 tcp->tcp_csuna = tcp->tcp_snxt; 14560 } else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) { 14561 /* 14562 * An ACK sequence we haven't seen before, so get the RTT 14563 * and update the RTO. But first check if the timestamp is 14564 * valid to use. 14565 */ 14566 if ((mp1->b_next != NULL) && 14567 SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next))) 14568 tcp_set_rto(tcp, (int32_t)lbolt - 14569 (int32_t)(intptr_t)mp1->b_prev); 14570 else 14571 BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate); 14572 14573 /* Remeber the last sequence to be ACKed */ 14574 tcp->tcp_csuna = seg_ack; 14575 if (tcp->tcp_set_timer == 1) { 14576 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14577 tcp->tcp_set_timer = 0; 14578 } 14579 } else { 14580 BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate); 14581 } 14582 14583 /* Eat acknowledged bytes off the xmit queue. */ 14584 for (;;) { 14585 mblk_t *mp2; 14586 uchar_t *wptr; 14587 14588 wptr = mp1->b_wptr; 14589 ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX); 14590 bytes_acked -= (int)(wptr - mp1->b_rptr); 14591 if (bytes_acked < 0) { 14592 mp1->b_rptr = wptr + bytes_acked; 14593 /* 14594 * Set a new timestamp if all the bytes timed by the 14595 * old timestamp have been ack'ed. 14596 */ 14597 if (SEQ_GT(seg_ack, 14598 (uint32_t)(uintptr_t)(mp1->b_next))) { 14599 mp1->b_prev = (mblk_t *)(uintptr_t)lbolt; 14600 mp1->b_next = NULL; 14601 } 14602 break; 14603 } 14604 mp1->b_next = NULL; 14605 mp1->b_prev = NULL; 14606 mp2 = mp1; 14607 mp1 = mp1->b_cont; 14608 14609 /* 14610 * This notification is required for some zero-copy 14611 * clients to maintain a copy semantic. After the data 14612 * is ack'ed, client is safe to modify or reuse the buffer. 14613 */ 14614 if (tcp->tcp_snd_zcopy_aware && 14615 (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 14616 tcp_zcopy_notify(tcp); 14617 freeb(mp2); 14618 if (bytes_acked == 0) { 14619 if (mp1 == NULL) { 14620 /* Everything is ack'ed, clear the tail. */ 14621 tcp->tcp_xmit_tail = NULL; 14622 /* 14623 * Cancel the timer unless we are still 14624 * waiting for an ACK for the FIN packet. 14625 */ 14626 if (tcp->tcp_timer_tid != 0 && 14627 tcp->tcp_snxt == tcp->tcp_suna) { 14628 (void) TCP_TIMER_CANCEL(tcp, 14629 tcp->tcp_timer_tid); 14630 tcp->tcp_timer_tid = 0; 14631 } 14632 goto pre_swnd_update; 14633 } 14634 if (mp2 != tcp->tcp_xmit_tail) 14635 break; 14636 tcp->tcp_xmit_tail = mp1; 14637 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 14638 (uintptr_t)INT_MAX); 14639 tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr - 14640 mp1->b_rptr); 14641 break; 14642 } 14643 if (mp1 == NULL) { 14644 /* 14645 * More was acked but there is nothing more 14646 * outstanding. This means that the FIN was 14647 * just acked or that we're talking to a clown. 14648 */ 14649 fin_acked: 14650 ASSERT(tcp->tcp_fin_sent); 14651 tcp->tcp_xmit_tail = NULL; 14652 if (tcp->tcp_fin_sent) { 14653 /* FIN was acked - making progress */ 14654 if (tcp->tcp_ipversion == IPV6_VERSION && 14655 !tcp->tcp_fin_acked) 14656 tcp->tcp_ip_forward_progress = B_TRUE; 14657 tcp->tcp_fin_acked = B_TRUE; 14658 if (tcp->tcp_linger_tid != 0 && 14659 TCP_TIMER_CANCEL(tcp, 14660 tcp->tcp_linger_tid) >= 0) { 14661 tcp_stop_lingering(tcp); 14662 freemsg(mp); 14663 mp = NULL; 14664 } 14665 } else { 14666 /* 14667 * We should never get here because 14668 * we have already checked that the 14669 * number of bytes ack'ed should be 14670 * smaller than or equal to what we 14671 * have sent so far (it is the 14672 * acceptability check of the ACK). 14673 * We can only get here if the send 14674 * queue is corrupted. 14675 * 14676 * Terminate the connection and 14677 * panic the system. It is better 14678 * for us to panic instead of 14679 * continuing to avoid other disaster. 14680 */ 14681 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 14682 tcp->tcp_rnxt, TH_RST|TH_ACK); 14683 panic("Memory corruption " 14684 "detected for connection %s.", 14685 tcp_display(tcp, NULL, 14686 DISP_ADDR_AND_PORT)); 14687 /*NOTREACHED*/ 14688 } 14689 goto pre_swnd_update; 14690 } 14691 ASSERT(mp2 != tcp->tcp_xmit_tail); 14692 } 14693 if (tcp->tcp_unsent) { 14694 flags |= TH_XMIT_NEEDED; 14695 } 14696 pre_swnd_update: 14697 tcp->tcp_xmit_head = mp1; 14698 swnd_update: 14699 /* 14700 * The following check is different from most other implementations. 14701 * For bi-directional transfer, when segments are dropped, the 14702 * "normal" check will not accept a window update in those 14703 * retransmitted segemnts. Failing to do that, TCP may send out 14704 * segments which are outside receiver's window. As TCP accepts 14705 * the ack in those retransmitted segments, if the window update in 14706 * the same segment is not accepted, TCP will incorrectly calculates 14707 * that it can send more segments. This can create a deadlock 14708 * with the receiver if its window becomes zero. 14709 */ 14710 if (SEQ_LT(tcp->tcp_swl2, seg_ack) || 14711 SEQ_LT(tcp->tcp_swl1, seg_seq) || 14712 (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) { 14713 /* 14714 * The criteria for update is: 14715 * 14716 * 1. the segment acknowledges some data. Or 14717 * 2. the segment is new, i.e. it has a higher seq num. Or 14718 * 3. the segment is not old and the advertised window is 14719 * larger than the previous advertised window. 14720 */ 14721 if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd) 14722 flags |= TH_XMIT_NEEDED; 14723 tcp->tcp_swnd = new_swnd; 14724 if (new_swnd > tcp->tcp_max_swnd) 14725 tcp->tcp_max_swnd = new_swnd; 14726 tcp->tcp_swl1 = seg_seq; 14727 tcp->tcp_swl2 = seg_ack; 14728 } 14729 est: 14730 if (tcp->tcp_state > TCPS_ESTABLISHED) { 14731 14732 switch (tcp->tcp_state) { 14733 case TCPS_FIN_WAIT_1: 14734 if (tcp->tcp_fin_acked) { 14735 tcp->tcp_state = TCPS_FIN_WAIT_2; 14736 /* 14737 * We implement the non-standard BSD/SunOS 14738 * FIN_WAIT_2 flushing algorithm. 14739 * If there is no user attached to this 14740 * TCP endpoint, then this TCP struct 14741 * could hang around forever in FIN_WAIT_2 14742 * state if the peer forgets to send us 14743 * a FIN. To prevent this, we wait only 14744 * 2*MSL (a convenient time value) for 14745 * the FIN to arrive. If it doesn't show up, 14746 * we flush the TCP endpoint. This algorithm, 14747 * though a violation of RFC-793, has worked 14748 * for over 10 years in BSD systems. 14749 * Note: SunOS 4.x waits 675 seconds before 14750 * flushing the FIN_WAIT_2 connection. 14751 */ 14752 TCP_TIMER_RESTART(tcp, 14753 tcps->tcps_fin_wait_2_flush_interval); 14754 } 14755 break; 14756 case TCPS_FIN_WAIT_2: 14757 break; /* Shutdown hook? */ 14758 case TCPS_LAST_ACK: 14759 freemsg(mp); 14760 if (tcp->tcp_fin_acked) { 14761 (void) tcp_clean_death(tcp, 0, 19); 14762 return; 14763 } 14764 goto xmit_check; 14765 case TCPS_CLOSING: 14766 if (tcp->tcp_fin_acked) { 14767 tcp->tcp_state = TCPS_TIME_WAIT; 14768 /* 14769 * Unconditionally clear the exclusive binding 14770 * bit so this TIME-WAIT connection won't 14771 * interfere with new ones. 14772 */ 14773 tcp->tcp_exclbind = 0; 14774 if (!TCP_IS_DETACHED(tcp)) { 14775 TCP_TIMER_RESTART(tcp, 14776 tcps->tcps_time_wait_interval); 14777 } else { 14778 tcp_time_wait_append(tcp); 14779 TCP_DBGSTAT(tcps, tcp_rput_time_wait); 14780 } 14781 } 14782 /*FALLTHRU*/ 14783 case TCPS_CLOSE_WAIT: 14784 freemsg(mp); 14785 goto xmit_check; 14786 default: 14787 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 14788 break; 14789 } 14790 } 14791 if (flags & TH_FIN) { 14792 /* Make sure we ack the fin */ 14793 flags |= TH_ACK_NEEDED; 14794 if (!tcp->tcp_fin_rcvd) { 14795 tcp->tcp_fin_rcvd = B_TRUE; 14796 tcp->tcp_rnxt++; 14797 tcph = tcp->tcp_tcph; 14798 U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack); 14799 14800 /* 14801 * Generate the ordrel_ind at the end unless we 14802 * are an eager guy. 14803 * In the eager case tcp_rsrv will do this when run 14804 * after tcp_accept is done. 14805 */ 14806 if (tcp->tcp_listener == NULL && 14807 !TCP_IS_DETACHED(tcp) && (!tcp->tcp_hard_binding)) 14808 flags |= TH_ORDREL_NEEDED; 14809 switch (tcp->tcp_state) { 14810 case TCPS_SYN_RCVD: 14811 case TCPS_ESTABLISHED: 14812 tcp->tcp_state = TCPS_CLOSE_WAIT; 14813 /* Keepalive? */ 14814 break; 14815 case TCPS_FIN_WAIT_1: 14816 if (!tcp->tcp_fin_acked) { 14817 tcp->tcp_state = TCPS_CLOSING; 14818 break; 14819 } 14820 /* FALLTHRU */ 14821 case TCPS_FIN_WAIT_2: 14822 tcp->tcp_state = TCPS_TIME_WAIT; 14823 /* 14824 * Unconditionally clear the exclusive binding 14825 * bit so this TIME-WAIT connection won't 14826 * interfere with new ones. 14827 */ 14828 tcp->tcp_exclbind = 0; 14829 if (!TCP_IS_DETACHED(tcp)) { 14830 TCP_TIMER_RESTART(tcp, 14831 tcps->tcps_time_wait_interval); 14832 } else { 14833 tcp_time_wait_append(tcp); 14834 TCP_DBGSTAT(tcps, tcp_rput_time_wait); 14835 } 14836 if (seg_len) { 14837 /* 14838 * implies data piggybacked on FIN. 14839 * break to handle data. 14840 */ 14841 break; 14842 } 14843 freemsg(mp); 14844 goto ack_check; 14845 } 14846 } 14847 } 14848 if (mp == NULL) 14849 goto xmit_check; 14850 if (seg_len == 0) { 14851 freemsg(mp); 14852 goto xmit_check; 14853 } 14854 if (mp->b_rptr == mp->b_wptr) { 14855 /* 14856 * The header has been consumed, so we remove the 14857 * zero-length mblk here. 14858 */ 14859 mp1 = mp; 14860 mp = mp->b_cont; 14861 freeb(mp1); 14862 } 14863 tcph = tcp->tcp_tcph; 14864 tcp->tcp_rack_cnt++; 14865 { 14866 uint32_t cur_max; 14867 14868 cur_max = tcp->tcp_rack_cur_max; 14869 if (tcp->tcp_rack_cnt >= cur_max) { 14870 /* 14871 * We have more unacked data than we should - send 14872 * an ACK now. 14873 */ 14874 flags |= TH_ACK_NEEDED; 14875 cur_max++; 14876 if (cur_max > tcp->tcp_rack_abs_max) 14877 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 14878 else 14879 tcp->tcp_rack_cur_max = cur_max; 14880 } else if (TCP_IS_DETACHED(tcp)) { 14881 /* We don't have an ACK timer for detached TCP. */ 14882 flags |= TH_ACK_NEEDED; 14883 } else if (seg_len < mss) { 14884 /* 14885 * If we get a segment that is less than an mss, and we 14886 * already have unacknowledged data, and the amount 14887 * unacknowledged is not a multiple of mss, then we 14888 * better generate an ACK now. Otherwise, this may be 14889 * the tail piece of a transaction, and we would rather 14890 * wait for the response. 14891 */ 14892 uint32_t udif; 14893 ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <= 14894 (uintptr_t)INT_MAX); 14895 udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack); 14896 if (udif && (udif % mss)) 14897 flags |= TH_ACK_NEEDED; 14898 else 14899 flags |= TH_ACK_TIMER_NEEDED; 14900 } else { 14901 /* Start delayed ack timer */ 14902 flags |= TH_ACK_TIMER_NEEDED; 14903 } 14904 } 14905 tcp->tcp_rnxt += seg_len; 14906 U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack); 14907 14908 /* Update SACK list */ 14909 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 14910 tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt, 14911 &(tcp->tcp_num_sack_blk)); 14912 } 14913 14914 if (tcp->tcp_urp_mp) { 14915 tcp->tcp_urp_mp->b_cont = mp; 14916 mp = tcp->tcp_urp_mp; 14917 tcp->tcp_urp_mp = NULL; 14918 /* Ready for a new signal. */ 14919 tcp->tcp_urp_last_valid = B_FALSE; 14920 #ifdef DEBUG 14921 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14922 "tcp_rput: sending exdata_ind %s", 14923 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 14924 #endif /* DEBUG */ 14925 } 14926 14927 /* 14928 * Check for ancillary data changes compared to last segment. 14929 */ 14930 if (tcp->tcp_ipv6_recvancillary != 0) { 14931 mp = tcp_rput_add_ancillary(tcp, mp, &ipp); 14932 if (mp == NULL) 14933 return; 14934 } 14935 14936 if (tcp->tcp_listener || tcp->tcp_hard_binding) { 14937 /* 14938 * Side queue inbound data until the accept happens. 14939 * tcp_accept/tcp_rput drains this when the accept happens. 14940 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or 14941 * T_EXDATA_IND) it is queued on b_next. 14942 * XXX Make urgent data use this. Requires: 14943 * Removing tcp_listener check for TH_URG 14944 * Making M_PCPROTO and MARK messages skip the eager case 14945 */ 14946 14947 if (tcp->tcp_kssl_pending) { 14948 tcp_kssl_input(tcp, mp); 14949 } else { 14950 tcp_rcv_enqueue(tcp, mp, seg_len); 14951 } 14952 } else { 14953 if (mp->b_datap->db_type != M_DATA || 14954 (flags & TH_MARKNEXT_NEEDED)) { 14955 if (tcp->tcp_rcv_list != NULL) { 14956 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 14957 } 14958 ASSERT(tcp->tcp_rcv_list == NULL || 14959 tcp->tcp_fused_sigurg); 14960 if (flags & TH_MARKNEXT_NEEDED) { 14961 #ifdef DEBUG 14962 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14963 "tcp_rput: sending MSGMARKNEXT %s", 14964 tcp_display(tcp, NULL, 14965 DISP_PORT_ONLY)); 14966 #endif /* DEBUG */ 14967 mp->b_flag |= MSGMARKNEXT; 14968 flags &= ~TH_MARKNEXT_NEEDED; 14969 } 14970 14971 /* Does this need SSL processing first? */ 14972 if ((tcp->tcp_kssl_ctx != NULL) && 14973 (DB_TYPE(mp) == M_DATA)) { 14974 tcp_kssl_input(tcp, mp); 14975 } else { 14976 putnext(tcp->tcp_rq, mp); 14977 if (!canputnext(tcp->tcp_rq)) 14978 tcp->tcp_rwnd -= seg_len; 14979 } 14980 } else if ((flags & (TH_PUSH|TH_FIN)) || 14981 tcp->tcp_rcv_cnt + seg_len >= tcp->tcp_rq->q_hiwat >> 3) { 14982 if (tcp->tcp_rcv_list != NULL) { 14983 /* 14984 * Enqueue the new segment first and then 14985 * call tcp_rcv_drain() to send all data 14986 * up. The other way to do this is to 14987 * send all queued data up and then call 14988 * putnext() to send the new segment up. 14989 * This way can remove the else part later 14990 * on. 14991 * 14992 * We don't this to avoid one more call to 14993 * canputnext() as tcp_rcv_drain() needs to 14994 * call canputnext(). 14995 */ 14996 tcp_rcv_enqueue(tcp, mp, seg_len); 14997 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 14998 } else { 14999 /* Does this need SSL processing first? */ 15000 if ((tcp->tcp_kssl_ctx != NULL) && 15001 (DB_TYPE(mp) == M_DATA)) { 15002 tcp_kssl_input(tcp, mp); 15003 } else { 15004 putnext(tcp->tcp_rq, mp); 15005 if (!canputnext(tcp->tcp_rq)) 15006 tcp->tcp_rwnd -= seg_len; 15007 } 15008 } 15009 } else { 15010 /* 15011 * Enqueue all packets when processing an mblk 15012 * from the co queue and also enqueue normal packets. 15013 * For packets which belong to SSL stream do SSL 15014 * processing first. 15015 */ 15016 if ((tcp->tcp_kssl_ctx != NULL) && 15017 (DB_TYPE(mp) == M_DATA)) { 15018 tcp_kssl_input(tcp, mp); 15019 } else { 15020 tcp_rcv_enqueue(tcp, mp, seg_len); 15021 } 15022 } 15023 /* 15024 * Make sure the timer is running if we have data waiting 15025 * for a push bit. This provides resiliency against 15026 * implementations that do not correctly generate push bits. 15027 */ 15028 if (tcp->tcp_rcv_list != NULL && tcp->tcp_push_tid == 0) { 15029 /* 15030 * The connection may be closed at this point, so don't 15031 * do anything for a detached tcp. 15032 */ 15033 if (!TCP_IS_DETACHED(tcp)) 15034 tcp->tcp_push_tid = TCP_TIMER(tcp, 15035 tcp_push_timer, 15036 MSEC_TO_TICK( 15037 tcps->tcps_push_timer_interval)); 15038 } 15039 } 15040 xmit_check: 15041 /* Is there anything left to do? */ 15042 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 15043 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED| 15044 TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED| 15045 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 15046 goto done; 15047 15048 /* Any transmit work to do and a non-zero window? */ 15049 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT| 15050 TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) { 15051 if (flags & TH_REXMIT_NEEDED) { 15052 uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna; 15053 15054 BUMP_MIB(&tcps->tcps_mib, tcpOutFastRetrans); 15055 if (snd_size > mss) 15056 snd_size = mss; 15057 if (snd_size > tcp->tcp_swnd) 15058 snd_size = tcp->tcp_swnd; 15059 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size, 15060 NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size, 15061 B_TRUE); 15062 15063 if (mp1 != NULL) { 15064 tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt; 15065 tcp->tcp_csuna = tcp->tcp_snxt; 15066 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 15067 UPDATE_MIB(&tcps->tcps_mib, 15068 tcpRetransBytes, snd_size); 15069 TCP_RECORD_TRACE(tcp, mp1, 15070 TCP_TRACE_SEND_PKT); 15071 tcp_send_data(tcp, tcp->tcp_wq, mp1); 15072 } 15073 } 15074 if (flags & TH_NEED_SACK_REXMIT) { 15075 tcp_sack_rxmit(tcp, &flags); 15076 } 15077 /* 15078 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send 15079 * out new segment. Note that tcp_rexmit should not be 15080 * set, otherwise TH_LIMIT_XMIT should not be set. 15081 */ 15082 if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) { 15083 if (!tcp->tcp_rexmit) { 15084 tcp_wput_data(tcp, NULL, B_FALSE); 15085 } else { 15086 tcp_ss_rexmit(tcp); 15087 } 15088 } 15089 /* 15090 * Adjust tcp_cwnd back to normal value after sending 15091 * new data segments. 15092 */ 15093 if (flags & TH_LIMIT_XMIT) { 15094 tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1); 15095 /* 15096 * This will restart the timer. Restarting the 15097 * timer is used to avoid a timeout before the 15098 * limited transmitted segment's ACK gets back. 15099 */ 15100 if (tcp->tcp_xmit_head != NULL) 15101 tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt; 15102 } 15103 15104 /* Anything more to do? */ 15105 if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED| 15106 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 15107 goto done; 15108 } 15109 ack_check: 15110 if (flags & TH_SEND_URP_MARK) { 15111 ASSERT(tcp->tcp_urp_mark_mp); 15112 /* 15113 * Send up any queued data and then send the mark message 15114 */ 15115 if (tcp->tcp_rcv_list != NULL) { 15116 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 15117 } 15118 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 15119 15120 mp1 = tcp->tcp_urp_mark_mp; 15121 tcp->tcp_urp_mark_mp = NULL; 15122 #ifdef DEBUG 15123 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 15124 "tcp_rput: sending zero-length %s %s", 15125 ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" : 15126 "MSGNOTMARKNEXT"), 15127 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 15128 #endif /* DEBUG */ 15129 putnext(tcp->tcp_rq, mp1); 15130 flags &= ~TH_SEND_URP_MARK; 15131 } 15132 if (flags & TH_ACK_NEEDED) { 15133 /* 15134 * Time to send an ack for some reason. 15135 */ 15136 mp1 = tcp_ack_mp(tcp); 15137 15138 if (mp1 != NULL) { 15139 TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT); 15140 tcp_send_data(tcp, tcp->tcp_wq, mp1); 15141 BUMP_LOCAL(tcp->tcp_obsegs); 15142 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 15143 } 15144 if (tcp->tcp_ack_tid != 0) { 15145 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 15146 tcp->tcp_ack_tid = 0; 15147 } 15148 } 15149 if (flags & TH_ACK_TIMER_NEEDED) { 15150 /* 15151 * Arrange for deferred ACK or push wait timeout. 15152 * Start timer if it is not already running. 15153 */ 15154 if (tcp->tcp_ack_tid == 0) { 15155 tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer, 15156 MSEC_TO_TICK(tcp->tcp_localnet ? 15157 (clock_t)tcps->tcps_local_dack_interval : 15158 (clock_t)tcps->tcps_deferred_ack_interval)); 15159 } 15160 } 15161 if (flags & TH_ORDREL_NEEDED) { 15162 /* 15163 * Send up the ordrel_ind unless we are an eager guy. 15164 * In the eager case tcp_rsrv will do this when run 15165 * after tcp_accept is done. 15166 */ 15167 ASSERT(tcp->tcp_listener == NULL); 15168 if (tcp->tcp_rcv_list != NULL) { 15169 /* 15170 * Push any mblk(s) enqueued from co processing. 15171 */ 15172 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 15173 } 15174 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 15175 if ((mp1 = mi_tpi_ordrel_ind()) != NULL) { 15176 tcp->tcp_ordrel_done = B_TRUE; 15177 putnext(tcp->tcp_rq, mp1); 15178 if (tcp->tcp_deferred_clean_death) { 15179 /* 15180 * tcp_clean_death was deferred 15181 * for T_ORDREL_IND - do it now 15182 */ 15183 (void) tcp_clean_death(tcp, 15184 tcp->tcp_client_errno, 20); 15185 tcp->tcp_deferred_clean_death = B_FALSE; 15186 } 15187 } else { 15188 /* 15189 * Run the orderly release in the 15190 * service routine. 15191 */ 15192 qenable(tcp->tcp_rq); 15193 /* 15194 * Caveat(XXX): The machine may be so 15195 * overloaded that tcp_rsrv() is not scheduled 15196 * until after the endpoint has transitioned 15197 * to TCPS_TIME_WAIT 15198 * and tcp_time_wait_interval expires. Then 15199 * tcp_timer() will blow away state in tcp_t 15200 * and T_ORDREL_IND will never be delivered 15201 * upstream. Unlikely but potentially 15202 * a problem. 15203 */ 15204 } 15205 } 15206 done: 15207 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 15208 } 15209 15210 /* 15211 * This function does PAWS protection check. Returns B_TRUE if the 15212 * segment passes the PAWS test, else returns B_FALSE. 15213 */ 15214 boolean_t 15215 tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp) 15216 { 15217 uint8_t flags; 15218 int options; 15219 uint8_t *up; 15220 15221 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 15222 /* 15223 * If timestamp option is aligned nicely, get values inline, 15224 * otherwise call general routine to parse. Only do that 15225 * if timestamp is the only option. 15226 */ 15227 if (TCP_HDR_LENGTH(tcph) == (uint32_t)TCP_MIN_HEADER_LENGTH + 15228 TCPOPT_REAL_TS_LEN && 15229 OK_32PTR((up = ((uint8_t *)tcph) + 15230 TCP_MIN_HEADER_LENGTH)) && 15231 *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) { 15232 tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4)); 15233 tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8)); 15234 15235 options = TCP_OPT_TSTAMP_PRESENT; 15236 } else { 15237 if (tcp->tcp_snd_sack_ok) { 15238 tcpoptp->tcp = tcp; 15239 } else { 15240 tcpoptp->tcp = NULL; 15241 } 15242 options = tcp_parse_options(tcph, tcpoptp); 15243 } 15244 15245 if (options & TCP_OPT_TSTAMP_PRESENT) { 15246 /* 15247 * Do PAWS per RFC 1323 section 4.2. Accept RST 15248 * regardless of the timestamp, page 18 RFC 1323.bis. 15249 */ 15250 if ((flags & TH_RST) == 0 && 15251 TSTMP_LT(tcpoptp->tcp_opt_ts_val, 15252 tcp->tcp_ts_recent)) { 15253 if (TSTMP_LT(lbolt64, tcp->tcp_last_rcv_lbolt + 15254 PAWS_TIMEOUT)) { 15255 /* This segment is not acceptable. */ 15256 return (B_FALSE); 15257 } else { 15258 /* 15259 * Connection has been idle for 15260 * too long. Reset the timestamp 15261 * and assume the segment is valid. 15262 */ 15263 tcp->tcp_ts_recent = 15264 tcpoptp->tcp_opt_ts_val; 15265 } 15266 } 15267 } else { 15268 /* 15269 * If we don't get a timestamp on every packet, we 15270 * figure we can't really trust 'em, so we stop sending 15271 * and parsing them. 15272 */ 15273 tcp->tcp_snd_ts_ok = B_FALSE; 15274 15275 tcp->tcp_hdr_len -= TCPOPT_REAL_TS_LEN; 15276 tcp->tcp_tcp_hdr_len -= TCPOPT_REAL_TS_LEN; 15277 tcp->tcp_tcph->th_offset_and_rsrvd[0] -= (3 << 4); 15278 /* 15279 * Adjust the tcp_mss accordingly. We also need to 15280 * adjust tcp_cwnd here in accordance with the new mss. 15281 * But we avoid doing a slow start here so as to not 15282 * to lose on the transfer rate built up so far. 15283 */ 15284 tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN, B_FALSE); 15285 if (tcp->tcp_snd_sack_ok) { 15286 ASSERT(tcp->tcp_sack_info != NULL); 15287 tcp->tcp_max_sack_blk = 4; 15288 } 15289 } 15290 return (B_TRUE); 15291 } 15292 15293 /* 15294 * Attach ancillary data to a received TCP segments for the 15295 * ancillary pieces requested by the application that are 15296 * different than they were in the previous data segment. 15297 * 15298 * Save the "current" values once memory allocation is ok so that 15299 * when memory allocation fails we can just wait for the next data segment. 15300 */ 15301 static mblk_t * 15302 tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp) 15303 { 15304 struct T_optdata_ind *todi; 15305 int optlen; 15306 uchar_t *optptr; 15307 struct T_opthdr *toh; 15308 uint_t addflag; /* Which pieces to add */ 15309 mblk_t *mp1; 15310 15311 optlen = 0; 15312 addflag = 0; 15313 /* If app asked for pktinfo and the index has changed ... */ 15314 if ((ipp->ipp_fields & IPPF_IFINDEX) && 15315 ipp->ipp_ifindex != tcp->tcp_recvifindex && 15316 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)) { 15317 optlen += sizeof (struct T_opthdr) + 15318 sizeof (struct in6_pktinfo); 15319 addflag |= TCP_IPV6_RECVPKTINFO; 15320 } 15321 /* If app asked for hoplimit and it has changed ... */ 15322 if ((ipp->ipp_fields & IPPF_HOPLIMIT) && 15323 ipp->ipp_hoplimit != tcp->tcp_recvhops && 15324 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPLIMIT)) { 15325 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 15326 addflag |= TCP_IPV6_RECVHOPLIMIT; 15327 } 15328 /* If app asked for tclass and it has changed ... */ 15329 if ((ipp->ipp_fields & IPPF_TCLASS) && 15330 ipp->ipp_tclass != tcp->tcp_recvtclass && 15331 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)) { 15332 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 15333 addflag |= TCP_IPV6_RECVTCLASS; 15334 } 15335 /* 15336 * If app asked for hopbyhop headers and it has changed ... 15337 * For security labels, note that (1) security labels can't change on 15338 * a connected socket at all, (2) we're connected to at most one peer, 15339 * (3) if anything changes, then it must be some other extra option. 15340 */ 15341 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) && 15342 ip_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen, 15343 (ipp->ipp_fields & IPPF_HOPOPTS), 15344 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) { 15345 optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen - 15346 tcp->tcp_label_len; 15347 addflag |= TCP_IPV6_RECVHOPOPTS; 15348 if (!ip_allocbuf((void **)&tcp->tcp_hopopts, 15349 &tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS), 15350 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) 15351 return (mp); 15352 } 15353 /* If app asked for dst headers before routing headers ... */ 15354 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTDSTOPTS) && 15355 ip_cmpbuf(tcp->tcp_rtdstopts, tcp->tcp_rtdstoptslen, 15356 (ipp->ipp_fields & IPPF_RTDSTOPTS), 15357 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) { 15358 optlen += sizeof (struct T_opthdr) + 15359 ipp->ipp_rtdstoptslen; 15360 addflag |= TCP_IPV6_RECVRTDSTOPTS; 15361 if (!ip_allocbuf((void **)&tcp->tcp_rtdstopts, 15362 &tcp->tcp_rtdstoptslen, (ipp->ipp_fields & IPPF_RTDSTOPTS), 15363 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) 15364 return (mp); 15365 } 15366 /* If app asked for routing headers and it has changed ... */ 15367 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) && 15368 ip_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen, 15369 (ipp->ipp_fields & IPPF_RTHDR), 15370 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) { 15371 optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen; 15372 addflag |= TCP_IPV6_RECVRTHDR; 15373 if (!ip_allocbuf((void **)&tcp->tcp_rthdr, 15374 &tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR), 15375 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) 15376 return (mp); 15377 } 15378 /* If app asked for dest headers and it has changed ... */ 15379 if ((tcp->tcp_ipv6_recvancillary & 15380 (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) && 15381 ip_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen, 15382 (ipp->ipp_fields & IPPF_DSTOPTS), 15383 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) { 15384 optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen; 15385 addflag |= TCP_IPV6_RECVDSTOPTS; 15386 if (!ip_allocbuf((void **)&tcp->tcp_dstopts, 15387 &tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS), 15388 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) 15389 return (mp); 15390 } 15391 15392 if (optlen == 0) { 15393 /* Nothing to add */ 15394 return (mp); 15395 } 15396 mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED); 15397 if (mp1 == NULL) { 15398 /* 15399 * Defer sending ancillary data until the next TCP segment 15400 * arrives. 15401 */ 15402 return (mp); 15403 } 15404 mp1->b_cont = mp; 15405 mp = mp1; 15406 mp->b_wptr += sizeof (*todi) + optlen; 15407 mp->b_datap->db_type = M_PROTO; 15408 todi = (struct T_optdata_ind *)mp->b_rptr; 15409 todi->PRIM_type = T_OPTDATA_IND; 15410 todi->DATA_flag = 1; /* MORE data */ 15411 todi->OPT_length = optlen; 15412 todi->OPT_offset = sizeof (*todi); 15413 optptr = (uchar_t *)&todi[1]; 15414 /* 15415 * If app asked for pktinfo and the index has changed ... 15416 * Note that the local address never changes for the connection. 15417 */ 15418 if (addflag & TCP_IPV6_RECVPKTINFO) { 15419 struct in6_pktinfo *pkti; 15420 15421 toh = (struct T_opthdr *)optptr; 15422 toh->level = IPPROTO_IPV6; 15423 toh->name = IPV6_PKTINFO; 15424 toh->len = sizeof (*toh) + sizeof (*pkti); 15425 toh->status = 0; 15426 optptr += sizeof (*toh); 15427 pkti = (struct in6_pktinfo *)optptr; 15428 if (tcp->tcp_ipversion == IPV6_VERSION) 15429 pkti->ipi6_addr = tcp->tcp_ip6h->ip6_src; 15430 else 15431 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 15432 &pkti->ipi6_addr); 15433 pkti->ipi6_ifindex = ipp->ipp_ifindex; 15434 optptr += sizeof (*pkti); 15435 ASSERT(OK_32PTR(optptr)); 15436 /* Save as "last" value */ 15437 tcp->tcp_recvifindex = ipp->ipp_ifindex; 15438 } 15439 /* If app asked for hoplimit and it has changed ... */ 15440 if (addflag & TCP_IPV6_RECVHOPLIMIT) { 15441 toh = (struct T_opthdr *)optptr; 15442 toh->level = IPPROTO_IPV6; 15443 toh->name = IPV6_HOPLIMIT; 15444 toh->len = sizeof (*toh) + sizeof (uint_t); 15445 toh->status = 0; 15446 optptr += sizeof (*toh); 15447 *(uint_t *)optptr = ipp->ipp_hoplimit; 15448 optptr += sizeof (uint_t); 15449 ASSERT(OK_32PTR(optptr)); 15450 /* Save as "last" value */ 15451 tcp->tcp_recvhops = ipp->ipp_hoplimit; 15452 } 15453 /* If app asked for tclass and it has changed ... */ 15454 if (addflag & TCP_IPV6_RECVTCLASS) { 15455 toh = (struct T_opthdr *)optptr; 15456 toh->level = IPPROTO_IPV6; 15457 toh->name = IPV6_TCLASS; 15458 toh->len = sizeof (*toh) + sizeof (uint_t); 15459 toh->status = 0; 15460 optptr += sizeof (*toh); 15461 *(uint_t *)optptr = ipp->ipp_tclass; 15462 optptr += sizeof (uint_t); 15463 ASSERT(OK_32PTR(optptr)); 15464 /* Save as "last" value */ 15465 tcp->tcp_recvtclass = ipp->ipp_tclass; 15466 } 15467 if (addflag & TCP_IPV6_RECVHOPOPTS) { 15468 toh = (struct T_opthdr *)optptr; 15469 toh->level = IPPROTO_IPV6; 15470 toh->name = IPV6_HOPOPTS; 15471 toh->len = sizeof (*toh) + ipp->ipp_hopoptslen - 15472 tcp->tcp_label_len; 15473 toh->status = 0; 15474 optptr += sizeof (*toh); 15475 bcopy((uchar_t *)ipp->ipp_hopopts + tcp->tcp_label_len, optptr, 15476 ipp->ipp_hopoptslen - tcp->tcp_label_len); 15477 optptr += ipp->ipp_hopoptslen - tcp->tcp_label_len; 15478 ASSERT(OK_32PTR(optptr)); 15479 /* Save as last value */ 15480 ip_savebuf((void **)&tcp->tcp_hopopts, &tcp->tcp_hopoptslen, 15481 (ipp->ipp_fields & IPPF_HOPOPTS), 15482 ipp->ipp_hopopts, ipp->ipp_hopoptslen); 15483 } 15484 if (addflag & TCP_IPV6_RECVRTDSTOPTS) { 15485 toh = (struct T_opthdr *)optptr; 15486 toh->level = IPPROTO_IPV6; 15487 toh->name = IPV6_RTHDRDSTOPTS; 15488 toh->len = sizeof (*toh) + ipp->ipp_rtdstoptslen; 15489 toh->status = 0; 15490 optptr += sizeof (*toh); 15491 bcopy(ipp->ipp_rtdstopts, optptr, ipp->ipp_rtdstoptslen); 15492 optptr += ipp->ipp_rtdstoptslen; 15493 ASSERT(OK_32PTR(optptr)); 15494 /* Save as last value */ 15495 ip_savebuf((void **)&tcp->tcp_rtdstopts, 15496 &tcp->tcp_rtdstoptslen, 15497 (ipp->ipp_fields & IPPF_RTDSTOPTS), 15498 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 15499 } 15500 if (addflag & TCP_IPV6_RECVRTHDR) { 15501 toh = (struct T_opthdr *)optptr; 15502 toh->level = IPPROTO_IPV6; 15503 toh->name = IPV6_RTHDR; 15504 toh->len = sizeof (*toh) + ipp->ipp_rthdrlen; 15505 toh->status = 0; 15506 optptr += sizeof (*toh); 15507 bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen); 15508 optptr += ipp->ipp_rthdrlen; 15509 ASSERT(OK_32PTR(optptr)); 15510 /* Save as last value */ 15511 ip_savebuf((void **)&tcp->tcp_rthdr, &tcp->tcp_rthdrlen, 15512 (ipp->ipp_fields & IPPF_RTHDR), 15513 ipp->ipp_rthdr, ipp->ipp_rthdrlen); 15514 } 15515 if (addflag & (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) { 15516 toh = (struct T_opthdr *)optptr; 15517 toh->level = IPPROTO_IPV6; 15518 toh->name = IPV6_DSTOPTS; 15519 toh->len = sizeof (*toh) + ipp->ipp_dstoptslen; 15520 toh->status = 0; 15521 optptr += sizeof (*toh); 15522 bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen); 15523 optptr += ipp->ipp_dstoptslen; 15524 ASSERT(OK_32PTR(optptr)); 15525 /* Save as last value */ 15526 ip_savebuf((void **)&tcp->tcp_dstopts, &tcp->tcp_dstoptslen, 15527 (ipp->ipp_fields & IPPF_DSTOPTS), 15528 ipp->ipp_dstopts, ipp->ipp_dstoptslen); 15529 } 15530 ASSERT(optptr == mp->b_wptr); 15531 return (mp); 15532 } 15533 15534 15535 /* 15536 * Handle a *T_BIND_REQ that has failed either due to a T_ERROR_ACK 15537 * or a "bad" IRE detected by tcp_adapt_ire. 15538 * We can't tell if the failure was due to the laddr or the faddr 15539 * thus we clear out all addresses and ports. 15540 */ 15541 static void 15542 tcp_bind_failed(tcp_t *tcp, mblk_t *mp, int error) 15543 { 15544 queue_t *q = tcp->tcp_rq; 15545 tcph_t *tcph; 15546 struct T_error_ack *tea; 15547 conn_t *connp = tcp->tcp_connp; 15548 15549 15550 ASSERT(mp->b_datap->db_type == M_PCPROTO); 15551 15552 if (mp->b_cont) { 15553 freemsg(mp->b_cont); 15554 mp->b_cont = NULL; 15555 } 15556 tea = (struct T_error_ack *)mp->b_rptr; 15557 switch (tea->PRIM_type) { 15558 case T_BIND_ACK: 15559 /* 15560 * Need to unbind with classifier since we were just told that 15561 * our bind succeeded. 15562 */ 15563 tcp->tcp_hard_bound = B_FALSE; 15564 tcp->tcp_hard_binding = B_FALSE; 15565 15566 ipcl_hash_remove(connp); 15567 /* Reuse the mblk if possible */ 15568 ASSERT(mp->b_datap->db_lim - mp->b_datap->db_base >= 15569 sizeof (*tea)); 15570 mp->b_rptr = mp->b_datap->db_base; 15571 mp->b_wptr = mp->b_rptr + sizeof (*tea); 15572 tea = (struct T_error_ack *)mp->b_rptr; 15573 tea->PRIM_type = T_ERROR_ACK; 15574 tea->TLI_error = TSYSERR; 15575 tea->UNIX_error = error; 15576 if (tcp->tcp_state >= TCPS_SYN_SENT) { 15577 tea->ERROR_prim = T_CONN_REQ; 15578 } else { 15579 tea->ERROR_prim = O_T_BIND_REQ; 15580 } 15581 break; 15582 15583 case T_ERROR_ACK: 15584 if (tcp->tcp_state >= TCPS_SYN_SENT) 15585 tea->ERROR_prim = T_CONN_REQ; 15586 break; 15587 default: 15588 panic("tcp_bind_failed: unexpected TPI type"); 15589 /*NOTREACHED*/ 15590 } 15591 15592 tcp->tcp_state = TCPS_IDLE; 15593 if (tcp->tcp_ipversion == IPV4_VERSION) 15594 tcp->tcp_ipha->ipha_src = 0; 15595 else 15596 V6_SET_ZERO(tcp->tcp_ip6h->ip6_src); 15597 /* 15598 * Copy of the src addr. in tcp_t is needed since 15599 * the lookup funcs. can only look at tcp_t 15600 */ 15601 V6_SET_ZERO(tcp->tcp_ip_src_v6); 15602 15603 tcph = tcp->tcp_tcph; 15604 tcph->th_lport[0] = 0; 15605 tcph->th_lport[1] = 0; 15606 tcp_bind_hash_remove(tcp); 15607 bzero(&connp->u_port, sizeof (connp->u_port)); 15608 /* blow away saved option results if any */ 15609 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 15610 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 15611 15612 conn_delete_ire(tcp->tcp_connp, NULL); 15613 putnext(q, mp); 15614 } 15615 15616 /* 15617 * tcp_rput_other is called by tcp_rput to handle everything other than M_DATA 15618 * messages. 15619 */ 15620 void 15621 tcp_rput_other(tcp_t *tcp, mblk_t *mp) 15622 { 15623 mblk_t *mp1; 15624 uchar_t *rptr = mp->b_rptr; 15625 queue_t *q = tcp->tcp_rq; 15626 struct T_error_ack *tea; 15627 uint32_t mss; 15628 mblk_t *syn_mp; 15629 mblk_t *mdti; 15630 mblk_t *lsoi; 15631 int retval; 15632 mblk_t *ire_mp; 15633 tcp_stack_t *tcps = tcp->tcp_tcps; 15634 15635 switch (mp->b_datap->db_type) { 15636 case M_PROTO: 15637 case M_PCPROTO: 15638 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 15639 if ((mp->b_wptr - rptr) < sizeof (t_scalar_t)) 15640 break; 15641 tea = (struct T_error_ack *)rptr; 15642 switch (tea->PRIM_type) { 15643 case T_BIND_ACK: 15644 /* 15645 * Adapt Multidata information, if any. The 15646 * following tcp_mdt_update routine will free 15647 * the message. 15648 */ 15649 if ((mdti = tcp_mdt_info_mp(mp)) != NULL) { 15650 tcp_mdt_update(tcp, &((ip_mdt_info_t *)mdti-> 15651 b_rptr)->mdt_capab, B_TRUE); 15652 freemsg(mdti); 15653 } 15654 15655 /* 15656 * Check to update LSO information with tcp, and 15657 * tcp_lso_update routine will free the message. 15658 */ 15659 if ((lsoi = tcp_lso_info_mp(mp)) != NULL) { 15660 tcp_lso_update(tcp, &((ip_lso_info_t *)lsoi-> 15661 b_rptr)->lso_capab); 15662 freemsg(lsoi); 15663 } 15664 15665 /* Get the IRE, if we had requested for it */ 15666 ire_mp = tcp_ire_mp(mp); 15667 15668 if (tcp->tcp_hard_binding) { 15669 tcp->tcp_hard_binding = B_FALSE; 15670 tcp->tcp_hard_bound = B_TRUE; 15671 CL_INET_CONNECT(tcp); 15672 } else { 15673 if (ire_mp != NULL) 15674 freeb(ire_mp); 15675 goto after_syn_sent; 15676 } 15677 15678 retval = tcp_adapt_ire(tcp, ire_mp); 15679 if (ire_mp != NULL) 15680 freeb(ire_mp); 15681 if (retval == 0) { 15682 tcp_bind_failed(tcp, mp, 15683 (int)((tcp->tcp_state >= TCPS_SYN_SENT) ? 15684 ENETUNREACH : EADDRNOTAVAIL)); 15685 return; 15686 } 15687 /* 15688 * Don't let an endpoint connect to itself. 15689 * Also checked in tcp_connect() but that 15690 * check can't handle the case when the 15691 * local IP address is INADDR_ANY. 15692 */ 15693 if (tcp->tcp_ipversion == IPV4_VERSION) { 15694 if ((tcp->tcp_ipha->ipha_dst == 15695 tcp->tcp_ipha->ipha_src) && 15696 (BE16_EQL(tcp->tcp_tcph->th_lport, 15697 tcp->tcp_tcph->th_fport))) { 15698 tcp_bind_failed(tcp, mp, EADDRNOTAVAIL); 15699 return; 15700 } 15701 } else { 15702 if (IN6_ARE_ADDR_EQUAL( 15703 &tcp->tcp_ip6h->ip6_dst, 15704 &tcp->tcp_ip6h->ip6_src) && 15705 (BE16_EQL(tcp->tcp_tcph->th_lport, 15706 tcp->tcp_tcph->th_fport))) { 15707 tcp_bind_failed(tcp, mp, EADDRNOTAVAIL); 15708 return; 15709 } 15710 } 15711 ASSERT(tcp->tcp_state == TCPS_SYN_SENT); 15712 /* 15713 * This should not be possible! Just for 15714 * defensive coding... 15715 */ 15716 if (tcp->tcp_state != TCPS_SYN_SENT) 15717 goto after_syn_sent; 15718 15719 if (is_system_labeled() && 15720 !tcp_update_label(tcp, CONN_CRED(tcp->tcp_connp))) { 15721 tcp_bind_failed(tcp, mp, EHOSTUNREACH); 15722 return; 15723 } 15724 15725 ASSERT(q == tcp->tcp_rq); 15726 /* 15727 * tcp_adapt_ire() does not adjust 15728 * for TCP/IP header length. 15729 */ 15730 mss = tcp->tcp_mss - tcp->tcp_hdr_len; 15731 15732 /* 15733 * Just make sure our rwnd is at 15734 * least tcp_recv_hiwat_mss * MSS 15735 * large, and round up to the nearest 15736 * MSS. 15737 * 15738 * We do the round up here because 15739 * we need to get the interface 15740 * MTU first before we can do the 15741 * round up. 15742 */ 15743 tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss), 15744 tcps->tcps_recv_hiwat_minmss * mss); 15745 q->q_hiwat = tcp->tcp_rwnd; 15746 tcp_set_ws_value(tcp); 15747 U32_TO_ABE16((tcp->tcp_rwnd >> tcp->tcp_rcv_ws), 15748 tcp->tcp_tcph->th_win); 15749 if (tcp->tcp_rcv_ws > 0 || tcps->tcps_wscale_always) 15750 tcp->tcp_snd_ws_ok = B_TRUE; 15751 15752 /* 15753 * Set tcp_snd_ts_ok to true 15754 * so that tcp_xmit_mp will 15755 * include the timestamp 15756 * option in the SYN segment. 15757 */ 15758 if (tcps->tcps_tstamp_always || 15759 (tcp->tcp_rcv_ws && tcps->tcps_tstamp_if_wscale)) { 15760 tcp->tcp_snd_ts_ok = B_TRUE; 15761 } 15762 15763 /* 15764 * tcp_snd_sack_ok can be set in 15765 * tcp_adapt_ire() if the sack metric 15766 * is set. So check it here also. 15767 */ 15768 if (tcps->tcps_sack_permitted == 2 || 15769 tcp->tcp_snd_sack_ok) { 15770 if (tcp->tcp_sack_info == NULL) { 15771 tcp->tcp_sack_info = 15772 kmem_cache_alloc( 15773 tcp_sack_info_cache, 15774 KM_SLEEP); 15775 } 15776 tcp->tcp_snd_sack_ok = B_TRUE; 15777 } 15778 15779 /* 15780 * Should we use ECN? Note that the current 15781 * default value (SunOS 5.9) of tcp_ecn_permitted 15782 * is 1. The reason for doing this is that there 15783 * are equipments out there that will drop ECN 15784 * enabled IP packets. Setting it to 1 avoids 15785 * compatibility problems. 15786 */ 15787 if (tcps->tcps_ecn_permitted == 2) 15788 tcp->tcp_ecn_ok = B_TRUE; 15789 15790 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 15791 syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 15792 tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 15793 if (syn_mp) { 15794 cred_t *cr; 15795 pid_t pid; 15796 15797 /* 15798 * Obtain the credential from the 15799 * thread calling connect(); the credential 15800 * lives on in the second mblk which 15801 * originated from T_CONN_REQ and is echoed 15802 * with the T_BIND_ACK from ip. If none 15803 * can be found, default to the creator 15804 * of the socket. 15805 */ 15806 if (mp->b_cont == NULL || 15807 (cr = DB_CRED(mp->b_cont)) == NULL) { 15808 cr = tcp->tcp_cred; 15809 pid = tcp->tcp_cpid; 15810 } else { 15811 pid = DB_CPID(mp->b_cont); 15812 } 15813 15814 TCP_RECORD_TRACE(tcp, syn_mp, 15815 TCP_TRACE_SEND_PKT); 15816 mblk_setcred(syn_mp, cr); 15817 DB_CPID(syn_mp) = pid; 15818 tcp_send_data(tcp, tcp->tcp_wq, syn_mp); 15819 } 15820 after_syn_sent: 15821 /* 15822 * A trailer mblk indicates a waiting client upstream. 15823 * We complete here the processing begun in 15824 * either tcp_bind() or tcp_connect() by passing 15825 * upstream the reply message they supplied. 15826 */ 15827 mp1 = mp; 15828 mp = mp->b_cont; 15829 freeb(mp1); 15830 if (mp) 15831 break; 15832 return; 15833 case T_ERROR_ACK: 15834 if (tcp->tcp_debug) { 15835 (void) strlog(TCP_MOD_ID, 0, 1, 15836 SL_TRACE|SL_ERROR, 15837 "tcp_rput_other: case T_ERROR_ACK, " 15838 "ERROR_prim == %d", 15839 tea->ERROR_prim); 15840 } 15841 switch (tea->ERROR_prim) { 15842 case O_T_BIND_REQ: 15843 case T_BIND_REQ: 15844 tcp_bind_failed(tcp, mp, 15845 (int)((tcp->tcp_state >= TCPS_SYN_SENT) ? 15846 ENETUNREACH : EADDRNOTAVAIL)); 15847 return; 15848 case T_UNBIND_REQ: 15849 tcp->tcp_hard_binding = B_FALSE; 15850 tcp->tcp_hard_bound = B_FALSE; 15851 if (mp->b_cont) { 15852 freemsg(mp->b_cont); 15853 mp->b_cont = NULL; 15854 } 15855 if (tcp->tcp_unbind_pending) 15856 tcp->tcp_unbind_pending = 0; 15857 else { 15858 /* From tcp_ip_unbind() - free */ 15859 freemsg(mp); 15860 return; 15861 } 15862 break; 15863 case T_SVR4_OPTMGMT_REQ: 15864 if (tcp->tcp_drop_opt_ack_cnt > 0) { 15865 /* T_OPTMGMT_REQ generated by TCP */ 15866 printf("T_SVR4_OPTMGMT_REQ failed " 15867 "%d/%d - dropped (cnt %d)\n", 15868 tea->TLI_error, tea->UNIX_error, 15869 tcp->tcp_drop_opt_ack_cnt); 15870 freemsg(mp); 15871 tcp->tcp_drop_opt_ack_cnt--; 15872 return; 15873 } 15874 break; 15875 } 15876 if (tea->ERROR_prim == T_SVR4_OPTMGMT_REQ && 15877 tcp->tcp_drop_opt_ack_cnt > 0) { 15878 printf("T_SVR4_OPTMGMT_REQ failed %d/%d " 15879 "- dropped (cnt %d)\n", 15880 tea->TLI_error, tea->UNIX_error, 15881 tcp->tcp_drop_opt_ack_cnt); 15882 freemsg(mp); 15883 tcp->tcp_drop_opt_ack_cnt--; 15884 return; 15885 } 15886 break; 15887 case T_OPTMGMT_ACK: 15888 if (tcp->tcp_drop_opt_ack_cnt > 0) { 15889 /* T_OPTMGMT_REQ generated by TCP */ 15890 freemsg(mp); 15891 tcp->tcp_drop_opt_ack_cnt--; 15892 return; 15893 } 15894 break; 15895 default: 15896 break; 15897 } 15898 break; 15899 case M_FLUSH: 15900 if (*rptr & FLUSHR) 15901 flushq(q, FLUSHDATA); 15902 break; 15903 default: 15904 /* M_CTL will be directly sent to tcp_icmp_error() */ 15905 ASSERT(DB_TYPE(mp) != M_CTL); 15906 break; 15907 } 15908 /* 15909 * Make sure we set this bit before sending the ACK for 15910 * bind. Otherwise accept could possibly run and free 15911 * this tcp struct. 15912 */ 15913 putnext(q, mp); 15914 } 15915 15916 /* 15917 * Called as the result of a qbufcall or a qtimeout to remedy a failure 15918 * to allocate a T_ordrel_ind in tcp_rsrv(). qenable(q) will make 15919 * tcp_rsrv() try again. 15920 */ 15921 static void 15922 tcp_ordrel_kick(void *arg) 15923 { 15924 conn_t *connp = (conn_t *)arg; 15925 tcp_t *tcp = connp->conn_tcp; 15926 15927 tcp->tcp_ordrelid = 0; 15928 tcp->tcp_timeout = B_FALSE; 15929 if (!TCP_IS_DETACHED(tcp) && tcp->tcp_rq != NULL && 15930 tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 15931 qenable(tcp->tcp_rq); 15932 } 15933 } 15934 15935 /* ARGSUSED */ 15936 static void 15937 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2) 15938 { 15939 conn_t *connp = (conn_t *)arg; 15940 tcp_t *tcp = connp->conn_tcp; 15941 queue_t *q = tcp->tcp_rq; 15942 uint_t thwin; 15943 tcp_stack_t *tcps = tcp->tcp_tcps; 15944 15945 freeb(mp); 15946 15947 TCP_STAT(tcps, tcp_rsrv_calls); 15948 15949 if (TCP_IS_DETACHED(tcp) || q == NULL) { 15950 return; 15951 } 15952 15953 if (tcp->tcp_fused) { 15954 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 15955 15956 ASSERT(tcp->tcp_fused); 15957 ASSERT(peer_tcp != NULL && peer_tcp->tcp_fused); 15958 ASSERT(peer_tcp->tcp_loopback_peer == tcp); 15959 ASSERT(!TCP_IS_DETACHED(tcp)); 15960 ASSERT(tcp->tcp_connp->conn_sqp == 15961 peer_tcp->tcp_connp->conn_sqp); 15962 15963 /* 15964 * Normally we would not get backenabled in synchronous 15965 * streams mode, but in case this happens, we need to plug 15966 * synchronous streams during our drain to prevent a race 15967 * with tcp_fuse_rrw() or tcp_fuse_rinfop(). 15968 */ 15969 TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp); 15970 if (tcp->tcp_rcv_list != NULL) 15971 (void) tcp_rcv_drain(tcp->tcp_rq, tcp); 15972 15973 if (peer_tcp > tcp) { 15974 mutex_enter(&peer_tcp->tcp_non_sq_lock); 15975 mutex_enter(&tcp->tcp_non_sq_lock); 15976 } else { 15977 mutex_enter(&tcp->tcp_non_sq_lock); 15978 mutex_enter(&peer_tcp->tcp_non_sq_lock); 15979 } 15980 15981 if (peer_tcp->tcp_flow_stopped && 15982 (TCP_UNSENT_BYTES(peer_tcp) <= 15983 peer_tcp->tcp_xmit_lowater)) { 15984 tcp_clrqfull(peer_tcp); 15985 } 15986 mutex_exit(&peer_tcp->tcp_non_sq_lock); 15987 mutex_exit(&tcp->tcp_non_sq_lock); 15988 15989 TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp); 15990 TCP_STAT(tcps, tcp_fusion_backenabled); 15991 return; 15992 } 15993 15994 if (canputnext(q)) { 15995 tcp->tcp_rwnd = q->q_hiwat; 15996 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 15997 << tcp->tcp_rcv_ws; 15998 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 15999 /* 16000 * Send back a window update immediately if TCP is above 16001 * ESTABLISHED state and the increase of the rcv window 16002 * that the other side knows is at least 1 MSS after flow 16003 * control is lifted. 16004 */ 16005 if (tcp->tcp_state >= TCPS_ESTABLISHED && 16006 (q->q_hiwat - thwin >= tcp->tcp_mss)) { 16007 tcp_xmit_ctl(NULL, tcp, 16008 (tcp->tcp_swnd == 0) ? tcp->tcp_suna : 16009 tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 16010 BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate); 16011 } 16012 } 16013 /* Handle a failure to allocate a T_ORDREL_IND here */ 16014 if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 16015 ASSERT(tcp->tcp_listener == NULL); 16016 if (tcp->tcp_rcv_list != NULL) { 16017 (void) tcp_rcv_drain(q, tcp); 16018 } 16019 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 16020 mp = mi_tpi_ordrel_ind(); 16021 if (mp) { 16022 tcp->tcp_ordrel_done = B_TRUE; 16023 putnext(q, mp); 16024 if (tcp->tcp_deferred_clean_death) { 16025 /* 16026 * tcp_clean_death was deferred for 16027 * T_ORDREL_IND - do it now 16028 */ 16029 tcp->tcp_deferred_clean_death = B_FALSE; 16030 (void) tcp_clean_death(tcp, 16031 tcp->tcp_client_errno, 22); 16032 } 16033 } else if (!tcp->tcp_timeout && tcp->tcp_ordrelid == 0) { 16034 /* 16035 * If there isn't already a timer running 16036 * start one. Use a 4 second 16037 * timer as a fallback since it can't fail. 16038 */ 16039 tcp->tcp_timeout = B_TRUE; 16040 tcp->tcp_ordrelid = TCP_TIMER(tcp, tcp_ordrel_kick, 16041 MSEC_TO_TICK(4000)); 16042 } 16043 } 16044 } 16045 16046 /* 16047 * The read side service routine is called mostly when we get back-enabled as a 16048 * result of flow control relief. Since we don't actually queue anything in 16049 * TCP, we have no data to send out of here. What we do is clear the receive 16050 * window, and send out a window update. 16051 * This routine is also called to drive an orderly release message upstream 16052 * if the attempt in tcp_rput failed. 16053 */ 16054 static void 16055 tcp_rsrv(queue_t *q) 16056 { 16057 conn_t *connp = Q_TO_CONN(q); 16058 tcp_t *tcp = connp->conn_tcp; 16059 mblk_t *mp; 16060 tcp_stack_t *tcps = tcp->tcp_tcps; 16061 16062 /* No code does a putq on the read side */ 16063 ASSERT(q->q_first == NULL); 16064 16065 /* Nothing to do for the default queue */ 16066 if (q == tcps->tcps_g_q) { 16067 return; 16068 } 16069 16070 mp = allocb(0, BPRI_HI); 16071 if (mp == NULL) { 16072 /* 16073 * We are under memory pressure. Return for now and we 16074 * we will be called again later. 16075 */ 16076 if (!tcp->tcp_timeout && tcp->tcp_ordrelid == 0) { 16077 /* 16078 * If there isn't already a timer running 16079 * start one. Use a 4 second 16080 * timer as a fallback since it can't fail. 16081 */ 16082 tcp->tcp_timeout = B_TRUE; 16083 tcp->tcp_ordrelid = TCP_TIMER(tcp, tcp_ordrel_kick, 16084 MSEC_TO_TICK(4000)); 16085 } 16086 return; 16087 } 16088 CONN_INC_REF(connp); 16089 squeue_enter(connp->conn_sqp, mp, tcp_rsrv_input, connp, 16090 SQTAG_TCP_RSRV); 16091 } 16092 16093 /* 16094 * tcp_rwnd_set() is called to adjust the receive window to a desired value. 16095 * We do not allow the receive window to shrink. After setting rwnd, 16096 * set the flow control hiwat of the stream. 16097 * 16098 * This function is called in 2 cases: 16099 * 16100 * 1) Before data transfer begins, in tcp_accept_comm() for accepting a 16101 * connection (passive open) and in tcp_rput_data() for active connect. 16102 * This is called after tcp_mss_set() when the desired MSS value is known. 16103 * This makes sure that our window size is a mutiple of the other side's 16104 * MSS. 16105 * 2) Handling SO_RCVBUF option. 16106 * 16107 * It is ASSUMED that the requested size is a multiple of the current MSS. 16108 * 16109 * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the 16110 * user requests so. 16111 */ 16112 static int 16113 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd) 16114 { 16115 uint32_t mss = tcp->tcp_mss; 16116 uint32_t old_max_rwnd; 16117 uint32_t max_transmittable_rwnd; 16118 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 16119 tcp_stack_t *tcps = tcp->tcp_tcps; 16120 16121 if (tcp->tcp_fused) { 16122 size_t sth_hiwat; 16123 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 16124 16125 ASSERT(peer_tcp != NULL); 16126 /* 16127 * Record the stream head's high water mark for 16128 * this endpoint; this is used for flow-control 16129 * purposes in tcp_fuse_output(). 16130 */ 16131 sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd); 16132 if (!tcp_detached) 16133 (void) mi_set_sth_hiwat(tcp->tcp_rq, sth_hiwat); 16134 16135 /* 16136 * In the fusion case, the maxpsz stream head value of 16137 * our peer is set according to its send buffer size 16138 * and our receive buffer size; since the latter may 16139 * have changed we need to update the peer's maxpsz. 16140 */ 16141 (void) tcp_maxpsz_set(peer_tcp, B_TRUE); 16142 return (rwnd); 16143 } 16144 16145 if (tcp_detached) 16146 old_max_rwnd = tcp->tcp_rwnd; 16147 else 16148 old_max_rwnd = tcp->tcp_rq->q_hiwat; 16149 16150 /* 16151 * Insist on a receive window that is at least 16152 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid 16153 * funny TCP interactions of Nagle algorithm, SWS avoidance 16154 * and delayed acknowledgement. 16155 */ 16156 rwnd = MAX(rwnd, tcps->tcps_recv_hiwat_minmss * mss); 16157 16158 /* 16159 * If window size info has already been exchanged, TCP should not 16160 * shrink the window. Shrinking window is doable if done carefully. 16161 * We may add that support later. But so far there is not a real 16162 * need to do that. 16163 */ 16164 if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) { 16165 /* MSS may have changed, do a round up again. */ 16166 rwnd = MSS_ROUNDUP(old_max_rwnd, mss); 16167 } 16168 16169 /* 16170 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check 16171 * can be applied even before the window scale option is decided. 16172 */ 16173 max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws; 16174 if (rwnd > max_transmittable_rwnd) { 16175 rwnd = max_transmittable_rwnd - 16176 (max_transmittable_rwnd % mss); 16177 if (rwnd < mss) 16178 rwnd = max_transmittable_rwnd; 16179 /* 16180 * If we're over the limit we may have to back down tcp_rwnd. 16181 * The increment below won't work for us. So we set all three 16182 * here and the increment below will have no effect. 16183 */ 16184 tcp->tcp_rwnd = old_max_rwnd = rwnd; 16185 } 16186 if (tcp->tcp_localnet) { 16187 tcp->tcp_rack_abs_max = 16188 MIN(tcps->tcps_local_dacks_max, rwnd / mss / 2); 16189 } else { 16190 /* 16191 * For a remote host on a different subnet (through a router), 16192 * we ack every other packet to be conforming to RFC1122. 16193 * tcp_deferred_acks_max is default to 2. 16194 */ 16195 tcp->tcp_rack_abs_max = 16196 MIN(tcps->tcps_deferred_acks_max, rwnd / mss / 2); 16197 } 16198 if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max) 16199 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 16200 else 16201 tcp->tcp_rack_cur_max = 0; 16202 /* 16203 * Increment the current rwnd by the amount the maximum grew (we 16204 * can not overwrite it since we might be in the middle of a 16205 * connection.) 16206 */ 16207 tcp->tcp_rwnd += rwnd - old_max_rwnd; 16208 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, tcp->tcp_tcph->th_win); 16209 if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max) 16210 tcp->tcp_cwnd_max = rwnd; 16211 16212 if (tcp_detached) 16213 return (rwnd); 16214 /* 16215 * We set the maximum receive window into rq->q_hiwat. 16216 * This is not actually used for flow control. 16217 */ 16218 tcp->tcp_rq->q_hiwat = rwnd; 16219 /* 16220 * Set the Stream head high water mark. This doesn't have to be 16221 * here, since we are simply using default values, but we would 16222 * prefer to choose these values algorithmically, with a likely 16223 * relationship to rwnd. 16224 */ 16225 (void) mi_set_sth_hiwat(tcp->tcp_rq, 16226 MAX(rwnd, tcps->tcps_sth_rcv_hiwat)); 16227 return (rwnd); 16228 } 16229 16230 /* 16231 * Return SNMP stuff in buffer in mpdata. 16232 */ 16233 mblk_t * 16234 tcp_snmp_get(queue_t *q, mblk_t *mpctl) 16235 { 16236 mblk_t *mpdata; 16237 mblk_t *mp_conn_ctl = NULL; 16238 mblk_t *mp_conn_tail; 16239 mblk_t *mp_attr_ctl = NULL; 16240 mblk_t *mp_attr_tail; 16241 mblk_t *mp6_conn_ctl = NULL; 16242 mblk_t *mp6_conn_tail; 16243 mblk_t *mp6_attr_ctl = NULL; 16244 mblk_t *mp6_attr_tail; 16245 struct opthdr *optp; 16246 mib2_tcpConnEntry_t tce; 16247 mib2_tcp6ConnEntry_t tce6; 16248 mib2_transportMLPEntry_t mlp; 16249 connf_t *connfp; 16250 int i; 16251 boolean_t ispriv; 16252 zoneid_t zoneid; 16253 int v4_conn_idx; 16254 int v6_conn_idx; 16255 conn_t *connp = Q_TO_CONN(q); 16256 tcp_stack_t *tcps; 16257 ip_stack_t *ipst; 16258 mblk_t *mp2ctl; 16259 16260 /* 16261 * make a copy of the original message 16262 */ 16263 mp2ctl = copymsg(mpctl); 16264 16265 if (mpctl == NULL || 16266 (mpdata = mpctl->b_cont) == NULL || 16267 (mp_conn_ctl = copymsg(mpctl)) == NULL || 16268 (mp_attr_ctl = copymsg(mpctl)) == NULL || 16269 (mp6_conn_ctl = copymsg(mpctl)) == NULL || 16270 (mp6_attr_ctl = copymsg(mpctl)) == NULL) { 16271 freemsg(mp_conn_ctl); 16272 freemsg(mp_attr_ctl); 16273 freemsg(mp6_conn_ctl); 16274 freemsg(mp6_attr_ctl); 16275 freemsg(mpctl); 16276 freemsg(mp2ctl); 16277 return (NULL); 16278 } 16279 16280 ipst = connp->conn_netstack->netstack_ip; 16281 tcps = connp->conn_netstack->netstack_tcp; 16282 16283 /* build table of connections -- need count in fixed part */ 16284 SET_MIB(tcps->tcps_mib.tcpRtoAlgorithm, 4); /* vanj */ 16285 SET_MIB(tcps->tcps_mib.tcpRtoMin, tcps->tcps_rexmit_interval_min); 16286 SET_MIB(tcps->tcps_mib.tcpRtoMax, tcps->tcps_rexmit_interval_max); 16287 SET_MIB(tcps->tcps_mib.tcpMaxConn, -1); 16288 SET_MIB(tcps->tcps_mib.tcpCurrEstab, 0); 16289 16290 ispriv = 16291 secpolicy_ip_config((Q_TO_CONN(q))->conn_cred, B_TRUE) == 0; 16292 zoneid = Q_TO_CONN(q)->conn_zoneid; 16293 16294 v4_conn_idx = v6_conn_idx = 0; 16295 mp_conn_tail = mp_attr_tail = mp6_conn_tail = mp6_attr_tail = NULL; 16296 16297 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 16298 ipst = tcps->tcps_netstack->netstack_ip; 16299 16300 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 16301 16302 connp = NULL; 16303 16304 while ((connp = 16305 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 16306 tcp_t *tcp; 16307 boolean_t needattr; 16308 16309 if (connp->conn_zoneid != zoneid) 16310 continue; /* not in this zone */ 16311 16312 tcp = connp->conn_tcp; 16313 UPDATE_MIB(&tcps->tcps_mib, 16314 tcpHCInSegs, tcp->tcp_ibsegs); 16315 tcp->tcp_ibsegs = 0; 16316 UPDATE_MIB(&tcps->tcps_mib, 16317 tcpHCOutSegs, tcp->tcp_obsegs); 16318 tcp->tcp_obsegs = 0; 16319 16320 tce6.tcp6ConnState = tce.tcpConnState = 16321 tcp_snmp_state(tcp); 16322 if (tce.tcpConnState == MIB2_TCP_established || 16323 tce.tcpConnState == MIB2_TCP_closeWait) 16324 BUMP_MIB(&tcps->tcps_mib, tcpCurrEstab); 16325 16326 needattr = B_FALSE; 16327 bzero(&mlp, sizeof (mlp)); 16328 if (connp->conn_mlp_type != mlptSingle) { 16329 if (connp->conn_mlp_type == mlptShared || 16330 connp->conn_mlp_type == mlptBoth) 16331 mlp.tme_flags |= MIB2_TMEF_SHARED; 16332 if (connp->conn_mlp_type == mlptPrivate || 16333 connp->conn_mlp_type == mlptBoth) 16334 mlp.tme_flags |= MIB2_TMEF_PRIVATE; 16335 needattr = B_TRUE; 16336 } 16337 if (connp->conn_peercred != NULL) { 16338 ts_label_t *tsl; 16339 16340 tsl = crgetlabel(connp->conn_peercred); 16341 mlp.tme_doi = label2doi(tsl); 16342 mlp.tme_label = *label2bslabel(tsl); 16343 needattr = B_TRUE; 16344 } 16345 16346 /* Create a message to report on IPv6 entries */ 16347 if (tcp->tcp_ipversion == IPV6_VERSION) { 16348 tce6.tcp6ConnLocalAddress = tcp->tcp_ip_src_v6; 16349 tce6.tcp6ConnRemAddress = tcp->tcp_remote_v6; 16350 tce6.tcp6ConnLocalPort = ntohs(tcp->tcp_lport); 16351 tce6.tcp6ConnRemPort = ntohs(tcp->tcp_fport); 16352 tce6.tcp6ConnIfIndex = tcp->tcp_bound_if; 16353 /* Don't want just anybody seeing these... */ 16354 if (ispriv) { 16355 tce6.tcp6ConnEntryInfo.ce_snxt = 16356 tcp->tcp_snxt; 16357 tce6.tcp6ConnEntryInfo.ce_suna = 16358 tcp->tcp_suna; 16359 tce6.tcp6ConnEntryInfo.ce_rnxt = 16360 tcp->tcp_rnxt; 16361 tce6.tcp6ConnEntryInfo.ce_rack = 16362 tcp->tcp_rack; 16363 } else { 16364 /* 16365 * Netstat, unfortunately, uses this to 16366 * get send/receive queue sizes. How to fix? 16367 * Why not compute the difference only? 16368 */ 16369 tce6.tcp6ConnEntryInfo.ce_snxt = 16370 tcp->tcp_snxt - tcp->tcp_suna; 16371 tce6.tcp6ConnEntryInfo.ce_suna = 0; 16372 tce6.tcp6ConnEntryInfo.ce_rnxt = 16373 tcp->tcp_rnxt - tcp->tcp_rack; 16374 tce6.tcp6ConnEntryInfo.ce_rack = 0; 16375 } 16376 16377 tce6.tcp6ConnEntryInfo.ce_swnd = tcp->tcp_swnd; 16378 tce6.tcp6ConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; 16379 tce6.tcp6ConnEntryInfo.ce_rto = tcp->tcp_rto; 16380 tce6.tcp6ConnEntryInfo.ce_mss = tcp->tcp_mss; 16381 tce6.tcp6ConnEntryInfo.ce_state = tcp->tcp_state; 16382 16383 tce6.tcp6ConnCreationProcess = 16384 (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS : 16385 tcp->tcp_cpid; 16386 tce6.tcp6ConnCreationTime = tcp->tcp_open_time; 16387 16388 (void) snmp_append_data2(mp6_conn_ctl->b_cont, 16389 &mp6_conn_tail, (char *)&tce6, sizeof (tce6)); 16390 16391 mlp.tme_connidx = v6_conn_idx++; 16392 if (needattr) 16393 (void) snmp_append_data2(mp6_attr_ctl->b_cont, 16394 &mp6_attr_tail, (char *)&mlp, sizeof (mlp)); 16395 } 16396 /* 16397 * Create an IPv4 table entry for IPv4 entries and also 16398 * for IPv6 entries which are bound to in6addr_any 16399 * but don't have IPV6_V6ONLY set. 16400 * (i.e. anything an IPv4 peer could connect to) 16401 */ 16402 if (tcp->tcp_ipversion == IPV4_VERSION || 16403 (tcp->tcp_state <= TCPS_LISTEN && 16404 !tcp->tcp_connp->conn_ipv6_v6only && 16405 IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip_src_v6))) { 16406 if (tcp->tcp_ipversion == IPV6_VERSION) { 16407 tce.tcpConnRemAddress = INADDR_ANY; 16408 tce.tcpConnLocalAddress = INADDR_ANY; 16409 } else { 16410 tce.tcpConnRemAddress = 16411 tcp->tcp_remote; 16412 tce.tcpConnLocalAddress = 16413 tcp->tcp_ip_src; 16414 } 16415 tce.tcpConnLocalPort = ntohs(tcp->tcp_lport); 16416 tce.tcpConnRemPort = ntohs(tcp->tcp_fport); 16417 /* Don't want just anybody seeing these... */ 16418 if (ispriv) { 16419 tce.tcpConnEntryInfo.ce_snxt = 16420 tcp->tcp_snxt; 16421 tce.tcpConnEntryInfo.ce_suna = 16422 tcp->tcp_suna; 16423 tce.tcpConnEntryInfo.ce_rnxt = 16424 tcp->tcp_rnxt; 16425 tce.tcpConnEntryInfo.ce_rack = 16426 tcp->tcp_rack; 16427 } else { 16428 /* 16429 * Netstat, unfortunately, uses this to 16430 * get send/receive queue sizes. How 16431 * to fix? 16432 * Why not compute the difference only? 16433 */ 16434 tce.tcpConnEntryInfo.ce_snxt = 16435 tcp->tcp_snxt - tcp->tcp_suna; 16436 tce.tcpConnEntryInfo.ce_suna = 0; 16437 tce.tcpConnEntryInfo.ce_rnxt = 16438 tcp->tcp_rnxt - tcp->tcp_rack; 16439 tce.tcpConnEntryInfo.ce_rack = 0; 16440 } 16441 16442 tce.tcpConnEntryInfo.ce_swnd = tcp->tcp_swnd; 16443 tce.tcpConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; 16444 tce.tcpConnEntryInfo.ce_rto = tcp->tcp_rto; 16445 tce.tcpConnEntryInfo.ce_mss = tcp->tcp_mss; 16446 tce.tcpConnEntryInfo.ce_state = 16447 tcp->tcp_state; 16448 16449 tce.tcpConnCreationProcess = 16450 (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS : 16451 tcp->tcp_cpid; 16452 tce.tcpConnCreationTime = tcp->tcp_open_time; 16453 16454 (void) snmp_append_data2(mp_conn_ctl->b_cont, 16455 &mp_conn_tail, (char *)&tce, sizeof (tce)); 16456 16457 mlp.tme_connidx = v4_conn_idx++; 16458 if (needattr) 16459 (void) snmp_append_data2( 16460 mp_attr_ctl->b_cont, 16461 &mp_attr_tail, (char *)&mlp, 16462 sizeof (mlp)); 16463 } 16464 } 16465 } 16466 16467 /* fixed length structure for IPv4 and IPv6 counters */ 16468 SET_MIB(tcps->tcps_mib.tcpConnTableSize, sizeof (mib2_tcpConnEntry_t)); 16469 SET_MIB(tcps->tcps_mib.tcp6ConnTableSize, 16470 sizeof (mib2_tcp6ConnEntry_t)); 16471 /* synchronize 32- and 64-bit counters */ 16472 SYNC32_MIB(&tcps->tcps_mib, tcpInSegs, tcpHCInSegs); 16473 SYNC32_MIB(&tcps->tcps_mib, tcpOutSegs, tcpHCOutSegs); 16474 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16475 optp->level = MIB2_TCP; 16476 optp->name = 0; 16477 (void) snmp_append_data(mpdata, (char *)&tcps->tcps_mib, 16478 sizeof (tcps->tcps_mib)); 16479 optp->len = msgdsize(mpdata); 16480 qreply(q, mpctl); 16481 16482 /* table of connections... */ 16483 optp = (struct opthdr *)&mp_conn_ctl->b_rptr[ 16484 sizeof (struct T_optmgmt_ack)]; 16485 optp->level = MIB2_TCP; 16486 optp->name = MIB2_TCP_CONN; 16487 optp->len = msgdsize(mp_conn_ctl->b_cont); 16488 qreply(q, mp_conn_ctl); 16489 16490 /* table of MLP attributes... */ 16491 optp = (struct opthdr *)&mp_attr_ctl->b_rptr[ 16492 sizeof (struct T_optmgmt_ack)]; 16493 optp->level = MIB2_TCP; 16494 optp->name = EXPER_XPORT_MLP; 16495 optp->len = msgdsize(mp_attr_ctl->b_cont); 16496 if (optp->len == 0) 16497 freemsg(mp_attr_ctl); 16498 else 16499 qreply(q, mp_attr_ctl); 16500 16501 /* table of IPv6 connections... */ 16502 optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[ 16503 sizeof (struct T_optmgmt_ack)]; 16504 optp->level = MIB2_TCP6; 16505 optp->name = MIB2_TCP6_CONN; 16506 optp->len = msgdsize(mp6_conn_ctl->b_cont); 16507 qreply(q, mp6_conn_ctl); 16508 16509 /* table of IPv6 MLP attributes... */ 16510 optp = (struct opthdr *)&mp6_attr_ctl->b_rptr[ 16511 sizeof (struct T_optmgmt_ack)]; 16512 optp->level = MIB2_TCP6; 16513 optp->name = EXPER_XPORT_MLP; 16514 optp->len = msgdsize(mp6_attr_ctl->b_cont); 16515 if (optp->len == 0) 16516 freemsg(mp6_attr_ctl); 16517 else 16518 qreply(q, mp6_attr_ctl); 16519 return (mp2ctl); 16520 } 16521 16522 /* Return 0 if invalid set request, 1 otherwise, including non-tcp requests */ 16523 /* ARGSUSED */ 16524 int 16525 tcp_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 16526 { 16527 mib2_tcpConnEntry_t *tce = (mib2_tcpConnEntry_t *)ptr; 16528 16529 switch (level) { 16530 case MIB2_TCP: 16531 switch (name) { 16532 case 13: 16533 if (tce->tcpConnState != MIB2_TCP_deleteTCB) 16534 return (0); 16535 /* TODO: delete entry defined by tce */ 16536 return (1); 16537 default: 16538 return (0); 16539 } 16540 default: 16541 return (1); 16542 } 16543 } 16544 16545 /* Translate TCP state to MIB2 TCP state. */ 16546 static int 16547 tcp_snmp_state(tcp_t *tcp) 16548 { 16549 if (tcp == NULL) 16550 return (0); 16551 16552 switch (tcp->tcp_state) { 16553 case TCPS_CLOSED: 16554 case TCPS_IDLE: /* RFC1213 doesn't have analogue for IDLE & BOUND */ 16555 case TCPS_BOUND: 16556 return (MIB2_TCP_closed); 16557 case TCPS_LISTEN: 16558 return (MIB2_TCP_listen); 16559 case TCPS_SYN_SENT: 16560 return (MIB2_TCP_synSent); 16561 case TCPS_SYN_RCVD: 16562 return (MIB2_TCP_synReceived); 16563 case TCPS_ESTABLISHED: 16564 return (MIB2_TCP_established); 16565 case TCPS_CLOSE_WAIT: 16566 return (MIB2_TCP_closeWait); 16567 case TCPS_FIN_WAIT_1: 16568 return (MIB2_TCP_finWait1); 16569 case TCPS_CLOSING: 16570 return (MIB2_TCP_closing); 16571 case TCPS_LAST_ACK: 16572 return (MIB2_TCP_lastAck); 16573 case TCPS_FIN_WAIT_2: 16574 return (MIB2_TCP_finWait2); 16575 case TCPS_TIME_WAIT: 16576 return (MIB2_TCP_timeWait); 16577 default: 16578 return (0); 16579 } 16580 } 16581 16582 static char tcp_report_header[] = 16583 "TCP " MI_COL_HDRPAD_STR 16584 "zone dest snxt suna " 16585 "swnd rnxt rack rwnd rto mss w sw rw t " 16586 "recent [lport,fport] state"; 16587 16588 /* 16589 * TCP status report triggered via the Named Dispatch mechanism. 16590 */ 16591 /* ARGSUSED */ 16592 static void 16593 tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval, tcp_t *thisstream, 16594 cred_t *cr) 16595 { 16596 char hash[10], addrbuf[INET6_ADDRSTRLEN]; 16597 boolean_t ispriv = secpolicy_ip_config(cr, B_TRUE) == 0; 16598 char cflag; 16599 in6_addr_t v6dst; 16600 char buf[80]; 16601 uint_t print_len, buf_len; 16602 16603 buf_len = mp->b_datap->db_lim - mp->b_wptr; 16604 if (buf_len <= 0) 16605 return; 16606 16607 if (hashval >= 0) 16608 (void) sprintf(hash, "%03d ", hashval); 16609 else 16610 hash[0] = '\0'; 16611 16612 /* 16613 * Note that we use the remote address in the tcp_b structure. 16614 * This means that it will print out the real destination address, 16615 * not the next hop's address if source routing is used. This 16616 * avoid the confusion on the output because user may not 16617 * know that source routing is used for a connection. 16618 */ 16619 if (tcp->tcp_ipversion == IPV4_VERSION) { 16620 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &v6dst); 16621 } else { 16622 v6dst = tcp->tcp_remote_v6; 16623 } 16624 (void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf)); 16625 /* 16626 * the ispriv checks are so that normal users cannot determine 16627 * sequence number information using NDD. 16628 */ 16629 16630 if (TCP_IS_DETACHED(tcp)) 16631 cflag = '*'; 16632 else 16633 cflag = ' '; 16634 print_len = snprintf((char *)mp->b_wptr, buf_len, 16635 "%s " MI_COL_PTRFMT_STR "%d %s %08x %08x %010d %08x %08x " 16636 "%010d %05ld %05d %1d %02d %02d %1d %08x %s%c\n", 16637 hash, 16638 (void *)tcp, 16639 tcp->tcp_connp->conn_zoneid, 16640 addrbuf, 16641 (ispriv) ? tcp->tcp_snxt : 0, 16642 (ispriv) ? tcp->tcp_suna : 0, 16643 tcp->tcp_swnd, 16644 (ispriv) ? tcp->tcp_rnxt : 0, 16645 (ispriv) ? tcp->tcp_rack : 0, 16646 tcp->tcp_rwnd, 16647 tcp->tcp_rto, 16648 tcp->tcp_mss, 16649 tcp->tcp_snd_ws_ok, 16650 tcp->tcp_snd_ws, 16651 tcp->tcp_rcv_ws, 16652 tcp->tcp_snd_ts_ok, 16653 tcp->tcp_ts_recent, 16654 tcp_display(tcp, buf, DISP_PORT_ONLY), cflag); 16655 if (print_len < buf_len) { 16656 ((mblk_t *)mp)->b_wptr += print_len; 16657 } else { 16658 ((mblk_t *)mp)->b_wptr += buf_len; 16659 } 16660 } 16661 16662 /* 16663 * TCP status report (for listeners only) triggered via the Named Dispatch 16664 * mechanism. 16665 */ 16666 /* ARGSUSED */ 16667 static void 16668 tcp_report_listener(mblk_t *mp, tcp_t *tcp, int hashval) 16669 { 16670 char addrbuf[INET6_ADDRSTRLEN]; 16671 in6_addr_t v6dst; 16672 uint_t print_len, buf_len; 16673 16674 buf_len = mp->b_datap->db_lim - mp->b_wptr; 16675 if (buf_len <= 0) 16676 return; 16677 16678 if (tcp->tcp_ipversion == IPV4_VERSION) { 16679 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6dst); 16680 (void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf)); 16681 } else { 16682 (void) inet_ntop(AF_INET6, &tcp->tcp_ip6h->ip6_src, 16683 addrbuf, sizeof (addrbuf)); 16684 } 16685 print_len = snprintf((char *)mp->b_wptr, buf_len, 16686 "%03d " 16687 MI_COL_PTRFMT_STR 16688 "%d %s %05u %08u %d/%d/%d%c\n", 16689 hashval, (void *)tcp, 16690 tcp->tcp_connp->conn_zoneid, 16691 addrbuf, 16692 (uint_t)BE16_TO_U16(tcp->tcp_tcph->th_lport), 16693 tcp->tcp_conn_req_seqnum, 16694 tcp->tcp_conn_req_cnt_q0, tcp->tcp_conn_req_cnt_q, 16695 tcp->tcp_conn_req_max, 16696 tcp->tcp_syn_defense ? '*' : ' '); 16697 if (print_len < buf_len) { 16698 ((mblk_t *)mp)->b_wptr += print_len; 16699 } else { 16700 ((mblk_t *)mp)->b_wptr += buf_len; 16701 } 16702 } 16703 16704 /* TCP status report triggered via the Named Dispatch mechanism. */ 16705 /* ARGSUSED */ 16706 static int 16707 tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16708 { 16709 tcp_t *tcp; 16710 int i; 16711 conn_t *connp; 16712 connf_t *connfp; 16713 zoneid_t zoneid; 16714 tcp_stack_t *tcps; 16715 ip_stack_t *ipst; 16716 16717 zoneid = Q_TO_CONN(q)->conn_zoneid; 16718 tcps = Q_TO_TCP(q)->tcp_tcps; 16719 16720 /* 16721 * Because of the ndd constraint, at most we can have 64K buffer 16722 * to put in all TCP info. So to be more efficient, just 16723 * allocate a 64K buffer here, assuming we need that large buffer. 16724 * This may be a problem as any user can read tcp_status. Therefore 16725 * we limit the rate of doing this using tcp_ndd_get_info_interval. 16726 * This should be OK as normal users should not do this too often. 16727 */ 16728 if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) { 16729 if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time < 16730 drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) { 16731 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16732 return (0); 16733 } 16734 } 16735 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16736 /* The following may work even if we cannot get a large buf. */ 16737 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16738 return (0); 16739 } 16740 16741 (void) mi_mpprintf(mp, "%s", tcp_report_header); 16742 16743 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 16744 16745 ipst = tcps->tcps_netstack->netstack_ip; 16746 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 16747 16748 connp = NULL; 16749 16750 while ((connp = 16751 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 16752 tcp = connp->conn_tcp; 16753 if (zoneid != GLOBAL_ZONEID && 16754 zoneid != connp->conn_zoneid) 16755 continue; 16756 tcp_report_item(mp->b_cont, tcp, -1, tcp, 16757 cr); 16758 } 16759 16760 } 16761 16762 tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt(); 16763 return (0); 16764 } 16765 16766 /* TCP status report triggered via the Named Dispatch mechanism. */ 16767 /* ARGSUSED */ 16768 static int 16769 tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16770 { 16771 tf_t *tbf; 16772 tcp_t *tcp; 16773 int i; 16774 zoneid_t zoneid; 16775 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 16776 16777 zoneid = Q_TO_CONN(q)->conn_zoneid; 16778 16779 /* Refer to comments in tcp_status_report(). */ 16780 if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) { 16781 if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time < 16782 drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) { 16783 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16784 return (0); 16785 } 16786 } 16787 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16788 /* The following may work even if we cannot get a large buf. */ 16789 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16790 return (0); 16791 } 16792 16793 (void) mi_mpprintf(mp, " %s", tcp_report_header); 16794 16795 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 16796 tbf = &tcps->tcps_bind_fanout[i]; 16797 mutex_enter(&tbf->tf_lock); 16798 for (tcp = tbf->tf_tcp; tcp != NULL; 16799 tcp = tcp->tcp_bind_hash) { 16800 if (zoneid != GLOBAL_ZONEID && 16801 zoneid != tcp->tcp_connp->conn_zoneid) 16802 continue; 16803 CONN_INC_REF(tcp->tcp_connp); 16804 tcp_report_item(mp->b_cont, tcp, i, 16805 Q_TO_TCP(q), cr); 16806 CONN_DEC_REF(tcp->tcp_connp); 16807 } 16808 mutex_exit(&tbf->tf_lock); 16809 } 16810 tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt(); 16811 return (0); 16812 } 16813 16814 /* TCP status report triggered via the Named Dispatch mechanism. */ 16815 /* ARGSUSED */ 16816 static int 16817 tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16818 { 16819 connf_t *connfp; 16820 conn_t *connp; 16821 tcp_t *tcp; 16822 int i; 16823 zoneid_t zoneid; 16824 tcp_stack_t *tcps; 16825 ip_stack_t *ipst; 16826 16827 zoneid = Q_TO_CONN(q)->conn_zoneid; 16828 tcps = Q_TO_TCP(q)->tcp_tcps; 16829 16830 /* Refer to comments in tcp_status_report(). */ 16831 if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) { 16832 if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time < 16833 drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) { 16834 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16835 return (0); 16836 } 16837 } 16838 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16839 /* The following may work even if we cannot get a large buf. */ 16840 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16841 return (0); 16842 } 16843 16844 (void) mi_mpprintf(mp, 16845 " TCP " MI_COL_HDRPAD_STR 16846 "zone IP addr port seqnum backlog (q0/q/max)"); 16847 16848 ipst = tcps->tcps_netstack->netstack_ip; 16849 16850 for (i = 0; i < ipst->ips_ipcl_bind_fanout_size; i++) { 16851 connfp = &ipst->ips_ipcl_bind_fanout[i]; 16852 connp = NULL; 16853 while ((connp = 16854 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 16855 tcp = connp->conn_tcp; 16856 if (zoneid != GLOBAL_ZONEID && 16857 zoneid != connp->conn_zoneid) 16858 continue; 16859 tcp_report_listener(mp->b_cont, tcp, i); 16860 } 16861 } 16862 16863 tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt(); 16864 return (0); 16865 } 16866 16867 /* TCP status report triggered via the Named Dispatch mechanism. */ 16868 /* ARGSUSED */ 16869 static int 16870 tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16871 { 16872 connf_t *connfp; 16873 conn_t *connp; 16874 tcp_t *tcp; 16875 int i; 16876 zoneid_t zoneid; 16877 tcp_stack_t *tcps; 16878 ip_stack_t *ipst; 16879 16880 zoneid = Q_TO_CONN(q)->conn_zoneid; 16881 tcps = Q_TO_TCP(q)->tcp_tcps; 16882 ipst = tcps->tcps_netstack->netstack_ip; 16883 16884 /* Refer to comments in tcp_status_report(). */ 16885 if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) { 16886 if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time < 16887 drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) { 16888 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16889 return (0); 16890 } 16891 } 16892 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16893 /* The following may work even if we cannot get a large buf. */ 16894 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16895 return (0); 16896 } 16897 16898 (void) mi_mpprintf(mp, "tcp_conn_hash_size = %d", 16899 ipst->ips_ipcl_conn_fanout_size); 16900 (void) mi_mpprintf(mp, " %s", tcp_report_header); 16901 16902 for (i = 0; i < ipst->ips_ipcl_conn_fanout_size; i++) { 16903 connfp = &ipst->ips_ipcl_conn_fanout[i]; 16904 connp = NULL; 16905 while ((connp = 16906 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 16907 tcp = connp->conn_tcp; 16908 if (zoneid != GLOBAL_ZONEID && 16909 zoneid != connp->conn_zoneid) 16910 continue; 16911 tcp_report_item(mp->b_cont, tcp, i, 16912 Q_TO_TCP(q), cr); 16913 } 16914 } 16915 16916 tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt(); 16917 return (0); 16918 } 16919 16920 /* TCP status report triggered via the Named Dispatch mechanism. */ 16921 /* ARGSUSED */ 16922 static int 16923 tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16924 { 16925 tf_t *tf; 16926 tcp_t *tcp; 16927 int i; 16928 zoneid_t zoneid; 16929 tcp_stack_t *tcps; 16930 16931 zoneid = Q_TO_CONN(q)->conn_zoneid; 16932 tcps = Q_TO_TCP(q)->tcp_tcps; 16933 16934 /* Refer to comments in tcp_status_report(). */ 16935 if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) { 16936 if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time < 16937 drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) { 16938 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16939 return (0); 16940 } 16941 } 16942 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16943 /* The following may work even if we cannot get a large buf. */ 16944 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16945 return (0); 16946 } 16947 16948 (void) mi_mpprintf(mp, " %s", tcp_report_header); 16949 16950 for (i = 0; i < TCP_FANOUT_SIZE; i++) { 16951 tf = &tcps->tcps_acceptor_fanout[i]; 16952 mutex_enter(&tf->tf_lock); 16953 for (tcp = tf->tf_tcp; tcp != NULL; 16954 tcp = tcp->tcp_acceptor_hash) { 16955 if (zoneid != GLOBAL_ZONEID && 16956 zoneid != tcp->tcp_connp->conn_zoneid) 16957 continue; 16958 tcp_report_item(mp->b_cont, tcp, i, 16959 Q_TO_TCP(q), cr); 16960 } 16961 mutex_exit(&tf->tf_lock); 16962 } 16963 tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt(); 16964 return (0); 16965 } 16966 16967 /* 16968 * tcp_timer is the timer service routine. It handles the retransmission, 16969 * FIN_WAIT_2 flush, and zero window probe timeout events. It figures out 16970 * from the state of the tcp instance what kind of action needs to be done 16971 * at the time it is called. 16972 */ 16973 static void 16974 tcp_timer(void *arg) 16975 { 16976 mblk_t *mp; 16977 clock_t first_threshold; 16978 clock_t second_threshold; 16979 clock_t ms; 16980 uint32_t mss; 16981 conn_t *connp = (conn_t *)arg; 16982 tcp_t *tcp = connp->conn_tcp; 16983 tcp_stack_t *tcps = tcp->tcp_tcps; 16984 16985 tcp->tcp_timer_tid = 0; 16986 16987 if (tcp->tcp_fused) 16988 return; 16989 16990 first_threshold = tcp->tcp_first_timer_threshold; 16991 second_threshold = tcp->tcp_second_timer_threshold; 16992 switch (tcp->tcp_state) { 16993 case TCPS_IDLE: 16994 case TCPS_BOUND: 16995 case TCPS_LISTEN: 16996 return; 16997 case TCPS_SYN_RCVD: { 16998 tcp_t *listener = tcp->tcp_listener; 16999 17000 if (tcp->tcp_syn_rcvd_timeout == 0 && (listener != NULL)) { 17001 ASSERT(tcp->tcp_rq == listener->tcp_rq); 17002 /* it's our first timeout */ 17003 tcp->tcp_syn_rcvd_timeout = 1; 17004 mutex_enter(&listener->tcp_eager_lock); 17005 listener->tcp_syn_rcvd_timeout++; 17006 if (!tcp->tcp_dontdrop && !tcp->tcp_closemp_used) { 17007 /* 17008 * Make this eager available for drop if we 17009 * need to drop one to accomodate a new 17010 * incoming SYN request. 17011 */ 17012 MAKE_DROPPABLE(listener, tcp); 17013 } 17014 if (!listener->tcp_syn_defense && 17015 (listener->tcp_syn_rcvd_timeout > 17016 (tcps->tcps_conn_req_max_q0 >> 2)) && 17017 (tcps->tcps_conn_req_max_q0 > 200)) { 17018 /* We may be under attack. Put on a defense. */ 17019 listener->tcp_syn_defense = B_TRUE; 17020 cmn_err(CE_WARN, "High TCP connect timeout " 17021 "rate! System (port %d) may be under a " 17022 "SYN flood attack!", 17023 BE16_TO_U16(listener->tcp_tcph->th_lport)); 17024 17025 listener->tcp_ip_addr_cache = kmem_zalloc( 17026 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t), 17027 KM_NOSLEEP); 17028 } 17029 mutex_exit(&listener->tcp_eager_lock); 17030 } else if (listener != NULL) { 17031 mutex_enter(&listener->tcp_eager_lock); 17032 tcp->tcp_syn_rcvd_timeout++; 17033 if (tcp->tcp_syn_rcvd_timeout > 1 && 17034 !tcp->tcp_closemp_used) { 17035 /* 17036 * This is our second timeout. Put the tcp in 17037 * the list of droppable eagers to allow it to 17038 * be dropped, if needed. We don't check 17039 * whether tcp_dontdrop is set or not to 17040 * protect ourselve from a SYN attack where a 17041 * remote host can spoof itself as one of the 17042 * good IP source and continue to hold 17043 * resources too long. 17044 */ 17045 MAKE_DROPPABLE(listener, tcp); 17046 } 17047 mutex_exit(&listener->tcp_eager_lock); 17048 } 17049 } 17050 /* FALLTHRU */ 17051 case TCPS_SYN_SENT: 17052 first_threshold = tcp->tcp_first_ctimer_threshold; 17053 second_threshold = tcp->tcp_second_ctimer_threshold; 17054 break; 17055 case TCPS_ESTABLISHED: 17056 case TCPS_FIN_WAIT_1: 17057 case TCPS_CLOSING: 17058 case TCPS_CLOSE_WAIT: 17059 case TCPS_LAST_ACK: 17060 /* If we have data to rexmit */ 17061 if (tcp->tcp_suna != tcp->tcp_snxt) { 17062 clock_t time_to_wait; 17063 17064 BUMP_MIB(&tcps->tcps_mib, tcpTimRetrans); 17065 if (!tcp->tcp_xmit_head) 17066 break; 17067 time_to_wait = lbolt - 17068 (clock_t)tcp->tcp_xmit_head->b_prev; 17069 time_to_wait = tcp->tcp_rto - 17070 TICK_TO_MSEC(time_to_wait); 17071 /* 17072 * If the timer fires too early, 1 clock tick earlier, 17073 * restart the timer. 17074 */ 17075 if (time_to_wait > msec_per_tick) { 17076 TCP_STAT(tcps, tcp_timer_fire_early); 17077 TCP_TIMER_RESTART(tcp, time_to_wait); 17078 return; 17079 } 17080 /* 17081 * When we probe zero windows, we force the swnd open. 17082 * If our peer acks with a closed window swnd will be 17083 * set to zero by tcp_rput(). As long as we are 17084 * receiving acks tcp_rput will 17085 * reset 'tcp_ms_we_have_waited' so as not to trip the 17086 * first and second interval actions. NOTE: the timer 17087 * interval is allowed to continue its exponential 17088 * backoff. 17089 */ 17090 if (tcp->tcp_swnd == 0 || tcp->tcp_zero_win_probe) { 17091 if (tcp->tcp_debug) { 17092 (void) strlog(TCP_MOD_ID, 0, 1, 17093 SL_TRACE, "tcp_timer: zero win"); 17094 } 17095 } else { 17096 /* 17097 * After retransmission, we need to do 17098 * slow start. Set the ssthresh to one 17099 * half of current effective window and 17100 * cwnd to one MSS. Also reset 17101 * tcp_cwnd_cnt. 17102 * 17103 * Note that if tcp_ssthresh is reduced because 17104 * of ECN, do not reduce it again unless it is 17105 * already one window of data away (tcp_cwr 17106 * should then be cleared) or this is a 17107 * timeout for a retransmitted segment. 17108 */ 17109 uint32_t npkt; 17110 17111 if (!tcp->tcp_cwr || tcp->tcp_rexmit) { 17112 npkt = ((tcp->tcp_timer_backoff ? 17113 tcp->tcp_cwnd_ssthresh : 17114 tcp->tcp_snxt - 17115 tcp->tcp_suna) >> 1) / tcp->tcp_mss; 17116 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 17117 tcp->tcp_mss; 17118 } 17119 tcp->tcp_cwnd = tcp->tcp_mss; 17120 tcp->tcp_cwnd_cnt = 0; 17121 if (tcp->tcp_ecn_ok) { 17122 tcp->tcp_cwr = B_TRUE; 17123 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 17124 tcp->tcp_ecn_cwr_sent = B_FALSE; 17125 } 17126 } 17127 break; 17128 } 17129 /* 17130 * We have something to send yet we cannot send. The 17131 * reason can be: 17132 * 17133 * 1. Zero send window: we need to do zero window probe. 17134 * 2. Zero cwnd: because of ECN, we need to "clock out 17135 * segments. 17136 * 3. SWS avoidance: receiver may have shrunk window, 17137 * reset our knowledge. 17138 * 17139 * Note that condition 2 can happen with either 1 or 17140 * 3. But 1 and 3 are exclusive. 17141 */ 17142 if (tcp->tcp_unsent != 0) { 17143 if (tcp->tcp_cwnd == 0) { 17144 /* 17145 * Set tcp_cwnd to 1 MSS so that a 17146 * new segment can be sent out. We 17147 * are "clocking out" new data when 17148 * the network is really congested. 17149 */ 17150 ASSERT(tcp->tcp_ecn_ok); 17151 tcp->tcp_cwnd = tcp->tcp_mss; 17152 } 17153 if (tcp->tcp_swnd == 0) { 17154 /* Extend window for zero window probe */ 17155 tcp->tcp_swnd++; 17156 tcp->tcp_zero_win_probe = B_TRUE; 17157 BUMP_MIB(&tcps->tcps_mib, tcpOutWinProbe); 17158 } else { 17159 /* 17160 * Handle timeout from sender SWS avoidance. 17161 * Reset our knowledge of the max send window 17162 * since the receiver might have reduced its 17163 * receive buffer. Avoid setting tcp_max_swnd 17164 * to one since that will essentially disable 17165 * the SWS checks. 17166 * 17167 * Note that since we don't have a SWS 17168 * state variable, if the timeout is set 17169 * for ECN but not for SWS, this 17170 * code will also be executed. This is 17171 * fine as tcp_max_swnd is updated 17172 * constantly and it will not affect 17173 * anything. 17174 */ 17175 tcp->tcp_max_swnd = MAX(tcp->tcp_swnd, 2); 17176 } 17177 tcp_wput_data(tcp, NULL, B_FALSE); 17178 return; 17179 } 17180 /* Is there a FIN that needs to be to re retransmitted? */ 17181 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 17182 !tcp->tcp_fin_acked) 17183 break; 17184 /* Nothing to do, return without restarting timer. */ 17185 TCP_STAT(tcps, tcp_timer_fire_miss); 17186 return; 17187 case TCPS_FIN_WAIT_2: 17188 /* 17189 * User closed the TCP endpoint and peer ACK'ed our FIN. 17190 * We waited some time for for peer's FIN, but it hasn't 17191 * arrived. We flush the connection now to avoid 17192 * case where the peer has rebooted. 17193 */ 17194 if (TCP_IS_DETACHED(tcp)) { 17195 (void) tcp_clean_death(tcp, 0, 23); 17196 } else { 17197 TCP_TIMER_RESTART(tcp, 17198 tcps->tcps_fin_wait_2_flush_interval); 17199 } 17200 return; 17201 case TCPS_TIME_WAIT: 17202 (void) tcp_clean_death(tcp, 0, 24); 17203 return; 17204 default: 17205 if (tcp->tcp_debug) { 17206 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 17207 "tcp_timer: strange state (%d) %s", 17208 tcp->tcp_state, tcp_display(tcp, NULL, 17209 DISP_PORT_ONLY)); 17210 } 17211 return; 17212 } 17213 if ((ms = tcp->tcp_ms_we_have_waited) > second_threshold) { 17214 /* 17215 * For zero window probe, we need to send indefinitely, 17216 * unless we have not heard from the other side for some 17217 * time... 17218 */ 17219 if ((tcp->tcp_zero_win_probe == 0) || 17220 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) > 17221 second_threshold)) { 17222 BUMP_MIB(&tcps->tcps_mib, tcpTimRetransDrop); 17223 /* 17224 * If TCP is in SYN_RCVD state, send back a 17225 * RST|ACK as BSD does. Note that tcp_zero_win_probe 17226 * should be zero in TCPS_SYN_RCVD state. 17227 */ 17228 if (tcp->tcp_state == TCPS_SYN_RCVD) { 17229 tcp_xmit_ctl("tcp_timer: RST sent on timeout " 17230 "in SYN_RCVD", 17231 tcp, tcp->tcp_snxt, 17232 tcp->tcp_rnxt, TH_RST | TH_ACK); 17233 } 17234 (void) tcp_clean_death(tcp, 17235 tcp->tcp_client_errno ? 17236 tcp->tcp_client_errno : ETIMEDOUT, 25); 17237 return; 17238 } else { 17239 /* 17240 * Set tcp_ms_we_have_waited to second_threshold 17241 * so that in next timeout, we will do the above 17242 * check (lbolt - tcp_last_recv_time). This is 17243 * also to avoid overflow. 17244 * 17245 * We don't need to decrement tcp_timer_backoff 17246 * to avoid overflow because it will be decremented 17247 * later if new timeout value is greater than 17248 * tcp_rexmit_interval_max. In the case when 17249 * tcp_rexmit_interval_max is greater than 17250 * second_threshold, it means that we will wait 17251 * longer than second_threshold to send the next 17252 * window probe. 17253 */ 17254 tcp->tcp_ms_we_have_waited = second_threshold; 17255 } 17256 } else if (ms > first_threshold) { 17257 if (tcp->tcp_snd_zcopy_aware && (!tcp->tcp_xmit_zc_clean) && 17258 tcp->tcp_xmit_head != NULL) { 17259 tcp->tcp_xmit_head = 17260 tcp_zcopy_backoff(tcp, tcp->tcp_xmit_head, 1); 17261 } 17262 /* 17263 * We have been retransmitting for too long... The RTT 17264 * we calculated is probably incorrect. Reinitialize it. 17265 * Need to compensate for 0 tcp_rtt_sa. Reset 17266 * tcp_rtt_update so that we won't accidentally cache a 17267 * bad value. But only do this if this is not a zero 17268 * window probe. 17269 */ 17270 if (tcp->tcp_rtt_sa != 0 && tcp->tcp_zero_win_probe == 0) { 17271 tcp->tcp_rtt_sd += (tcp->tcp_rtt_sa >> 3) + 17272 (tcp->tcp_rtt_sa >> 5); 17273 tcp->tcp_rtt_sa = 0; 17274 tcp_ip_notify(tcp); 17275 tcp->tcp_rtt_update = 0; 17276 } 17277 } 17278 tcp->tcp_timer_backoff++; 17279 if ((ms = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 17280 tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5)) < 17281 tcps->tcps_rexmit_interval_min) { 17282 /* 17283 * This means the original RTO is tcp_rexmit_interval_min. 17284 * So we will use tcp_rexmit_interval_min as the RTO value 17285 * and do the backoff. 17286 */ 17287 ms = tcps->tcps_rexmit_interval_min << tcp->tcp_timer_backoff; 17288 } else { 17289 ms <<= tcp->tcp_timer_backoff; 17290 } 17291 if (ms > tcps->tcps_rexmit_interval_max) { 17292 ms = tcps->tcps_rexmit_interval_max; 17293 /* 17294 * ms is at max, decrement tcp_timer_backoff to avoid 17295 * overflow. 17296 */ 17297 tcp->tcp_timer_backoff--; 17298 } 17299 tcp->tcp_ms_we_have_waited += ms; 17300 if (tcp->tcp_zero_win_probe == 0) { 17301 tcp->tcp_rto = ms; 17302 } 17303 TCP_TIMER_RESTART(tcp, ms); 17304 /* 17305 * This is after a timeout and tcp_rto is backed off. Set 17306 * tcp_set_timer to 1 so that next time RTO is updated, we will 17307 * restart the timer with a correct value. 17308 */ 17309 tcp->tcp_set_timer = 1; 17310 mss = tcp->tcp_snxt - tcp->tcp_suna; 17311 if (mss > tcp->tcp_mss) 17312 mss = tcp->tcp_mss; 17313 if (mss > tcp->tcp_swnd && tcp->tcp_swnd != 0) 17314 mss = tcp->tcp_swnd; 17315 17316 if ((mp = tcp->tcp_xmit_head) != NULL) 17317 mp->b_prev = (mblk_t *)lbolt; 17318 mp = tcp_xmit_mp(tcp, mp, mss, NULL, NULL, tcp->tcp_suna, B_TRUE, &mss, 17319 B_TRUE); 17320 17321 /* 17322 * When slow start after retransmission begins, start with 17323 * this seq no. tcp_rexmit_max marks the end of special slow 17324 * start phase. tcp_snd_burst controls how many segments 17325 * can be sent because of an ack. 17326 */ 17327 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 17328 tcp->tcp_snd_burst = TCP_CWND_SS; 17329 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 17330 (tcp->tcp_unsent == 0)) { 17331 tcp->tcp_rexmit_max = tcp->tcp_fss; 17332 } else { 17333 tcp->tcp_rexmit_max = tcp->tcp_snxt; 17334 } 17335 tcp->tcp_rexmit = B_TRUE; 17336 tcp->tcp_dupack_cnt = 0; 17337 17338 /* 17339 * Remove all rexmit SACK blk to start from fresh. 17340 */ 17341 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 17342 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 17343 tcp->tcp_num_notsack_blk = 0; 17344 tcp->tcp_cnt_notsack_list = 0; 17345 } 17346 if (mp == NULL) { 17347 return; 17348 } 17349 /* Attach credentials to retransmitted initial SYNs. */ 17350 if (tcp->tcp_state == TCPS_SYN_SENT) { 17351 mblk_setcred(mp, tcp->tcp_cred); 17352 DB_CPID(mp) = tcp->tcp_cpid; 17353 } 17354 17355 tcp->tcp_csuna = tcp->tcp_snxt; 17356 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 17357 UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, mss); 17358 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 17359 tcp_send_data(tcp, tcp->tcp_wq, mp); 17360 17361 } 17362 17363 /* tcp_unbind is called by tcp_wput_proto to handle T_UNBIND_REQ messages. */ 17364 static void 17365 tcp_unbind(tcp_t *tcp, mblk_t *mp) 17366 { 17367 conn_t *connp; 17368 17369 switch (tcp->tcp_state) { 17370 case TCPS_BOUND: 17371 case TCPS_LISTEN: 17372 break; 17373 default: 17374 tcp_err_ack(tcp, mp, TOUTSTATE, 0); 17375 return; 17376 } 17377 17378 /* 17379 * Need to clean up all the eagers since after the unbind, segments 17380 * will no longer be delivered to this listener stream. 17381 */ 17382 mutex_enter(&tcp->tcp_eager_lock); 17383 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 17384 tcp_eager_cleanup(tcp, 0); 17385 } 17386 mutex_exit(&tcp->tcp_eager_lock); 17387 17388 if (tcp->tcp_ipversion == IPV4_VERSION) { 17389 tcp->tcp_ipha->ipha_src = 0; 17390 } else { 17391 V6_SET_ZERO(tcp->tcp_ip6h->ip6_src); 17392 } 17393 V6_SET_ZERO(tcp->tcp_ip_src_v6); 17394 bzero(tcp->tcp_tcph->th_lport, sizeof (tcp->tcp_tcph->th_lport)); 17395 tcp_bind_hash_remove(tcp); 17396 tcp->tcp_state = TCPS_IDLE; 17397 tcp->tcp_mdt = B_FALSE; 17398 /* Send M_FLUSH according to TPI */ 17399 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 17400 connp = tcp->tcp_connp; 17401 connp->conn_mdt_ok = B_FALSE; 17402 ipcl_hash_remove(connp); 17403 bzero(&connp->conn_ports, sizeof (connp->conn_ports)); 17404 mp = mi_tpi_ok_ack_alloc(mp); 17405 putnext(tcp->tcp_rq, mp); 17406 } 17407 17408 /* 17409 * Don't let port fall into the privileged range. 17410 * Since the extra privileged ports can be arbitrary we also 17411 * ensure that we exclude those from consideration. 17412 * tcp_g_epriv_ports is not sorted thus we loop over it until 17413 * there are no changes. 17414 * 17415 * Note: No locks are held when inspecting tcp_g_*epriv_ports 17416 * but instead the code relies on: 17417 * - the fact that the address of the array and its size never changes 17418 * - the atomic assignment of the elements of the array 17419 * 17420 * Returns 0 if there are no more ports available. 17421 * 17422 * TS note: skip multilevel ports. 17423 */ 17424 static in_port_t 17425 tcp_update_next_port(in_port_t port, const tcp_t *tcp, boolean_t random) 17426 { 17427 int i; 17428 boolean_t restart = B_FALSE; 17429 tcp_stack_t *tcps = tcp->tcp_tcps; 17430 17431 if (random && tcp_random_anon_port != 0) { 17432 (void) random_get_pseudo_bytes((uint8_t *)&port, 17433 sizeof (in_port_t)); 17434 /* 17435 * Unless changed by a sys admin, the smallest anon port 17436 * is 32768 and the largest anon port is 65535. It is 17437 * very likely (50%) for the random port to be smaller 17438 * than the smallest anon port. When that happens, 17439 * add port % (anon port range) to the smallest anon 17440 * port to get the random port. It should fall into the 17441 * valid anon port range. 17442 */ 17443 if (port < tcps->tcps_smallest_anon_port) { 17444 port = tcps->tcps_smallest_anon_port + 17445 port % (tcps->tcps_largest_anon_port - 17446 tcps->tcps_smallest_anon_port); 17447 } 17448 } 17449 17450 retry: 17451 if (port < tcps->tcps_smallest_anon_port) 17452 port = (in_port_t)tcps->tcps_smallest_anon_port; 17453 17454 if (port > tcps->tcps_largest_anon_port) { 17455 if (restart) 17456 return (0); 17457 restart = B_TRUE; 17458 port = (in_port_t)tcps->tcps_smallest_anon_port; 17459 } 17460 17461 if (port < tcps->tcps_smallest_nonpriv_port) 17462 port = (in_port_t)tcps->tcps_smallest_nonpriv_port; 17463 17464 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 17465 if (port == tcps->tcps_g_epriv_ports[i]) { 17466 port++; 17467 /* 17468 * Make sure whether the port is in the 17469 * valid range. 17470 */ 17471 goto retry; 17472 } 17473 } 17474 if (is_system_labeled() && 17475 (i = tsol_next_port(crgetzone(tcp->tcp_cred), port, 17476 IPPROTO_TCP, B_TRUE)) != 0) { 17477 port = i; 17478 goto retry; 17479 } 17480 return (port); 17481 } 17482 17483 /* 17484 * Return the next anonymous port in the privileged port range for 17485 * bind checking. It starts at IPPORT_RESERVED - 1 and goes 17486 * downwards. This is the same behavior as documented in the userland 17487 * library call rresvport(3N). 17488 * 17489 * TS note: skip multilevel ports. 17490 */ 17491 static in_port_t 17492 tcp_get_next_priv_port(const tcp_t *tcp) 17493 { 17494 static in_port_t next_priv_port = IPPORT_RESERVED - 1; 17495 in_port_t nextport; 17496 boolean_t restart = B_FALSE; 17497 tcp_stack_t *tcps = tcp->tcp_tcps; 17498 retry: 17499 if (next_priv_port < tcps->tcps_min_anonpriv_port || 17500 next_priv_port >= IPPORT_RESERVED) { 17501 next_priv_port = IPPORT_RESERVED - 1; 17502 if (restart) 17503 return (0); 17504 restart = B_TRUE; 17505 } 17506 if (is_system_labeled() && 17507 (nextport = tsol_next_port(crgetzone(tcp->tcp_cred), 17508 next_priv_port, IPPROTO_TCP, B_FALSE)) != 0) { 17509 next_priv_port = nextport; 17510 goto retry; 17511 } 17512 return (next_priv_port--); 17513 } 17514 17515 /* The write side r/w procedure. */ 17516 17517 #if CCS_STATS 17518 struct { 17519 struct { 17520 int64_t count, bytes; 17521 } tot, hit; 17522 } wrw_stats; 17523 #endif 17524 17525 /* 17526 * Call by tcp_wput() to handle all non data, except M_PROTO and M_PCPROTO, 17527 * messages. 17528 */ 17529 /* ARGSUSED */ 17530 static void 17531 tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2) 17532 { 17533 conn_t *connp = (conn_t *)arg; 17534 tcp_t *tcp = connp->conn_tcp; 17535 queue_t *q = tcp->tcp_wq; 17536 17537 ASSERT(DB_TYPE(mp) != M_IOCTL); 17538 /* 17539 * TCP is D_MP and qprocsoff() is done towards the end of the tcp_close. 17540 * Once the close starts, streamhead and sockfs will not let any data 17541 * packets come down (close ensures that there are no threads using the 17542 * queue and no new threads will come down) but since qprocsoff() 17543 * hasn't happened yet, a M_FLUSH or some non data message might 17544 * get reflected back (in response to our own FLUSHRW) and get 17545 * processed after tcp_close() is done. The conn would still be valid 17546 * because a ref would have added but we need to check the state 17547 * before actually processing the packet. 17548 */ 17549 if (TCP_IS_DETACHED(tcp) || (tcp->tcp_state == TCPS_CLOSED)) { 17550 freemsg(mp); 17551 return; 17552 } 17553 17554 switch (DB_TYPE(mp)) { 17555 case M_IOCDATA: 17556 tcp_wput_iocdata(tcp, mp); 17557 break; 17558 case M_FLUSH: 17559 tcp_wput_flush(tcp, mp); 17560 break; 17561 default: 17562 CALL_IP_WPUT(connp, q, mp); 17563 break; 17564 } 17565 } 17566 17567 /* 17568 * The TCP fast path write put procedure. 17569 * NOTE: the logic of the fast path is duplicated from tcp_wput_data() 17570 */ 17571 /* ARGSUSED */ 17572 void 17573 tcp_output(void *arg, mblk_t *mp, void *arg2) 17574 { 17575 int len; 17576 int hdrlen; 17577 int plen; 17578 mblk_t *mp1; 17579 uchar_t *rptr; 17580 uint32_t snxt; 17581 tcph_t *tcph; 17582 struct datab *db; 17583 uint32_t suna; 17584 uint32_t mss; 17585 ipaddr_t *dst; 17586 ipaddr_t *src; 17587 uint32_t sum; 17588 int usable; 17589 conn_t *connp = (conn_t *)arg; 17590 tcp_t *tcp = connp->conn_tcp; 17591 uint32_t msize; 17592 tcp_stack_t *tcps = tcp->tcp_tcps; 17593 17594 /* 17595 * Try and ASSERT the minimum possible references on the 17596 * conn early enough. Since we are executing on write side, 17597 * the connection is obviously not detached and that means 17598 * there is a ref each for TCP and IP. Since we are behind 17599 * the squeue, the minimum references needed are 3. If the 17600 * conn is in classifier hash list, there should be an 17601 * extra ref for that (we check both the possibilities). 17602 */ 17603 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 17604 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 17605 17606 ASSERT(DB_TYPE(mp) == M_DATA); 17607 msize = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp); 17608 17609 mutex_enter(&tcp->tcp_non_sq_lock); 17610 tcp->tcp_squeue_bytes -= msize; 17611 mutex_exit(&tcp->tcp_non_sq_lock); 17612 17613 /* Bypass tcp protocol for fused tcp loopback */ 17614 if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize)) 17615 return; 17616 17617 mss = tcp->tcp_mss; 17618 if (tcp->tcp_xmit_zc_clean) 17619 mp = tcp_zcopy_backoff(tcp, mp, 0); 17620 17621 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 17622 len = (int)(mp->b_wptr - mp->b_rptr); 17623 17624 /* 17625 * Criteria for fast path: 17626 * 17627 * 1. no unsent data 17628 * 2. single mblk in request 17629 * 3. connection established 17630 * 4. data in mblk 17631 * 5. len <= mss 17632 * 6. no tcp_valid bits 17633 */ 17634 if ((tcp->tcp_unsent != 0) || 17635 (tcp->tcp_cork) || 17636 (mp->b_cont != NULL) || 17637 (tcp->tcp_state != TCPS_ESTABLISHED) || 17638 (len == 0) || 17639 (len > mss) || 17640 (tcp->tcp_valid_bits != 0)) { 17641 tcp_wput_data(tcp, mp, B_FALSE); 17642 return; 17643 } 17644 17645 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 17646 ASSERT(tcp->tcp_fin_sent == 0); 17647 17648 /* queue new packet onto retransmission queue */ 17649 if (tcp->tcp_xmit_head == NULL) { 17650 tcp->tcp_xmit_head = mp; 17651 } else { 17652 tcp->tcp_xmit_last->b_cont = mp; 17653 } 17654 tcp->tcp_xmit_last = mp; 17655 tcp->tcp_xmit_tail = mp; 17656 17657 /* find out how much we can send */ 17658 /* BEGIN CSTYLED */ 17659 /* 17660 * un-acked usable 17661 * |--------------|-----------------| 17662 * tcp_suna tcp_snxt tcp_suna+tcp_swnd 17663 */ 17664 /* END CSTYLED */ 17665 17666 /* start sending from tcp_snxt */ 17667 snxt = tcp->tcp_snxt; 17668 17669 /* 17670 * Check to see if this connection has been idled for some 17671 * time and no ACK is expected. If it is, we need to slow 17672 * start again to get back the connection's "self-clock" as 17673 * described in VJ's paper. 17674 * 17675 * Refer to the comment in tcp_mss_set() for the calculation 17676 * of tcp_cwnd after idle. 17677 */ 17678 if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && 17679 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) { 17680 SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle); 17681 } 17682 17683 usable = tcp->tcp_swnd; /* tcp window size */ 17684 if (usable > tcp->tcp_cwnd) 17685 usable = tcp->tcp_cwnd; /* congestion window smaller */ 17686 usable -= snxt; /* subtract stuff already sent */ 17687 suna = tcp->tcp_suna; 17688 usable += suna; 17689 /* usable can be < 0 if the congestion window is smaller */ 17690 if (len > usable) { 17691 /* Can't send complete M_DATA in one shot */ 17692 goto slow; 17693 } 17694 17695 mutex_enter(&tcp->tcp_non_sq_lock); 17696 if (tcp->tcp_flow_stopped && 17697 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 17698 tcp_clrqfull(tcp); 17699 } 17700 mutex_exit(&tcp->tcp_non_sq_lock); 17701 17702 /* 17703 * determine if anything to send (Nagle). 17704 * 17705 * 1. len < tcp_mss (i.e. small) 17706 * 2. unacknowledged data present 17707 * 3. len < nagle limit 17708 * 4. last packet sent < nagle limit (previous packet sent) 17709 */ 17710 if ((len < mss) && (snxt != suna) && 17711 (len < (int)tcp->tcp_naglim) && 17712 (tcp->tcp_last_sent_len < tcp->tcp_naglim)) { 17713 /* 17714 * This was the first unsent packet and normally 17715 * mss < xmit_hiwater so there is no need to worry 17716 * about flow control. The next packet will go 17717 * through the flow control check in tcp_wput_data(). 17718 */ 17719 /* leftover work from above */ 17720 tcp->tcp_unsent = len; 17721 tcp->tcp_xmit_tail_unsent = len; 17722 17723 return; 17724 } 17725 17726 /* len <= tcp->tcp_mss && len == unsent so no silly window */ 17727 17728 if (snxt == suna) { 17729 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 17730 } 17731 17732 /* we have always sent something */ 17733 tcp->tcp_rack_cnt = 0; 17734 17735 tcp->tcp_snxt = snxt + len; 17736 tcp->tcp_rack = tcp->tcp_rnxt; 17737 17738 if ((mp1 = dupb(mp)) == 0) 17739 goto no_memory; 17740 mp->b_prev = (mblk_t *)(uintptr_t)lbolt; 17741 mp->b_next = (mblk_t *)(uintptr_t)snxt; 17742 17743 /* adjust tcp header information */ 17744 tcph = tcp->tcp_tcph; 17745 tcph->th_flags[0] = (TH_ACK|TH_PUSH); 17746 17747 sum = len + tcp->tcp_tcp_hdr_len + tcp->tcp_sum; 17748 sum = (sum >> 16) + (sum & 0xFFFF); 17749 U16_TO_ABE16(sum, tcph->th_sum); 17750 17751 U32_TO_ABE32(snxt, tcph->th_seq); 17752 17753 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 17754 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); 17755 BUMP_LOCAL(tcp->tcp_obsegs); 17756 17757 /* Update the latest receive window size in TCP header. */ 17758 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 17759 tcph->th_win); 17760 17761 tcp->tcp_last_sent_len = (ushort_t)len; 17762 17763 plen = len + tcp->tcp_hdr_len; 17764 17765 if (tcp->tcp_ipversion == IPV4_VERSION) { 17766 tcp->tcp_ipha->ipha_length = htons(plen); 17767 } else { 17768 tcp->tcp_ip6h->ip6_plen = htons(plen - 17769 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 17770 } 17771 17772 /* see if we need to allocate a mblk for the headers */ 17773 hdrlen = tcp->tcp_hdr_len; 17774 rptr = mp1->b_rptr - hdrlen; 17775 db = mp1->b_datap; 17776 if ((db->db_ref != 2) || rptr < db->db_base || 17777 (!OK_32PTR(rptr))) { 17778 /* NOTE: we assume allocb returns an OK_32PTR */ 17779 mp = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 17780 tcps->tcps_wroff_xtra, BPRI_MED); 17781 if (!mp) { 17782 freemsg(mp1); 17783 goto no_memory; 17784 } 17785 mp->b_cont = mp1; 17786 mp1 = mp; 17787 /* Leave room for Link Level header */ 17788 /* hdrlen = tcp->tcp_hdr_len; */ 17789 rptr = &mp1->b_rptr[tcps->tcps_wroff_xtra]; 17790 mp1->b_wptr = &rptr[hdrlen]; 17791 } 17792 mp1->b_rptr = rptr; 17793 17794 /* Fill in the timestamp option. */ 17795 if (tcp->tcp_snd_ts_ok) { 17796 U32_TO_BE32((uint32_t)lbolt, 17797 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 17798 U32_TO_BE32(tcp->tcp_ts_recent, 17799 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 17800 } else { 17801 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 17802 } 17803 17804 /* copy header into outgoing packet */ 17805 dst = (ipaddr_t *)rptr; 17806 src = (ipaddr_t *)tcp->tcp_iphc; 17807 dst[0] = src[0]; 17808 dst[1] = src[1]; 17809 dst[2] = src[2]; 17810 dst[3] = src[3]; 17811 dst[4] = src[4]; 17812 dst[5] = src[5]; 17813 dst[6] = src[6]; 17814 dst[7] = src[7]; 17815 dst[8] = src[8]; 17816 dst[9] = src[9]; 17817 if (hdrlen -= 40) { 17818 hdrlen >>= 2; 17819 dst += 10; 17820 src += 10; 17821 do { 17822 *dst++ = *src++; 17823 } while (--hdrlen); 17824 } 17825 17826 /* 17827 * Set the ECN info in the TCP header. Note that this 17828 * is not the template header. 17829 */ 17830 if (tcp->tcp_ecn_ok) { 17831 SET_ECT(tcp, rptr); 17832 17833 tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 17834 if (tcp->tcp_ecn_echo_on) 17835 tcph->th_flags[0] |= TH_ECE; 17836 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 17837 tcph->th_flags[0] |= TH_CWR; 17838 tcp->tcp_ecn_cwr_sent = B_TRUE; 17839 } 17840 } 17841 17842 if (tcp->tcp_ip_forward_progress) { 17843 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 17844 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 17845 tcp->tcp_ip_forward_progress = B_FALSE; 17846 } 17847 TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT); 17848 tcp_send_data(tcp, tcp->tcp_wq, mp1); 17849 return; 17850 17851 /* 17852 * If we ran out of memory, we pretend to have sent the packet 17853 * and that it was lost on the wire. 17854 */ 17855 no_memory: 17856 return; 17857 17858 slow: 17859 /* leftover work from above */ 17860 tcp->tcp_unsent = len; 17861 tcp->tcp_xmit_tail_unsent = len; 17862 tcp_wput_data(tcp, NULL, B_FALSE); 17863 } 17864 17865 /* 17866 * The function called through squeue to get behind eager's perimeter to 17867 * finish the accept processing. 17868 */ 17869 /* ARGSUSED */ 17870 void 17871 tcp_accept_finish(void *arg, mblk_t *mp, void *arg2) 17872 { 17873 conn_t *connp = (conn_t *)arg; 17874 tcp_t *tcp = connp->conn_tcp; 17875 queue_t *q = tcp->tcp_rq; 17876 mblk_t *mp1; 17877 mblk_t *stropt_mp = mp; 17878 struct stroptions *stropt; 17879 uint_t thwin; 17880 tcp_stack_t *tcps = tcp->tcp_tcps; 17881 17882 /* 17883 * Drop the eager's ref on the listener, that was placed when 17884 * this eager began life in tcp_conn_request. 17885 */ 17886 CONN_DEC_REF(tcp->tcp_saved_listener->tcp_connp); 17887 17888 if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_accept_error) { 17889 /* 17890 * Someone blewoff the eager before we could finish 17891 * the accept. 17892 * 17893 * The only reason eager exists it because we put in 17894 * a ref on it when conn ind went up. We need to send 17895 * a disconnect indication up while the last reference 17896 * on the eager will be dropped by the squeue when we 17897 * return. 17898 */ 17899 ASSERT(tcp->tcp_listener == NULL); 17900 if (tcp->tcp_issocket || tcp->tcp_send_discon_ind) { 17901 struct T_discon_ind *tdi; 17902 17903 (void) putnextctl1(q, M_FLUSH, FLUSHRW); 17904 /* 17905 * Let us reuse the incoming mblk to avoid memory 17906 * allocation failure problems. We know that the 17907 * size of the incoming mblk i.e. stroptions is greater 17908 * than sizeof T_discon_ind. So the reallocb below 17909 * can't fail. 17910 */ 17911 freemsg(mp->b_cont); 17912 mp->b_cont = NULL; 17913 ASSERT(DB_REF(mp) == 1); 17914 mp = reallocb(mp, sizeof (struct T_discon_ind), 17915 B_FALSE); 17916 ASSERT(mp != NULL); 17917 DB_TYPE(mp) = M_PROTO; 17918 ((union T_primitives *)mp->b_rptr)->type = T_DISCON_IND; 17919 tdi = (struct T_discon_ind *)mp->b_rptr; 17920 if (tcp->tcp_issocket) { 17921 tdi->DISCON_reason = ECONNREFUSED; 17922 tdi->SEQ_number = 0; 17923 } else { 17924 tdi->DISCON_reason = ENOPROTOOPT; 17925 tdi->SEQ_number = 17926 tcp->tcp_conn_req_seqnum; 17927 } 17928 mp->b_wptr = mp->b_rptr + sizeof (struct T_discon_ind); 17929 putnext(q, mp); 17930 } else { 17931 freemsg(mp); 17932 } 17933 if (tcp->tcp_hard_binding) { 17934 tcp->tcp_hard_binding = B_FALSE; 17935 tcp->tcp_hard_bound = B_TRUE; 17936 } 17937 tcp->tcp_detached = B_FALSE; 17938 return; 17939 } 17940 17941 mp1 = stropt_mp->b_cont; 17942 stropt_mp->b_cont = NULL; 17943 ASSERT(DB_TYPE(stropt_mp) == M_SETOPTS); 17944 stropt = (struct stroptions *)stropt_mp->b_rptr; 17945 17946 while (mp1 != NULL) { 17947 mp = mp1; 17948 mp1 = mp1->b_cont; 17949 mp->b_cont = NULL; 17950 tcp->tcp_drop_opt_ack_cnt++; 17951 CALL_IP_WPUT(connp, tcp->tcp_wq, mp); 17952 } 17953 mp = NULL; 17954 17955 /* 17956 * For a loopback connection with tcp_direct_sockfs on, note that 17957 * we don't have to protect tcp_rcv_list yet because synchronous 17958 * streams has not yet been enabled and tcp_fuse_rrw() cannot 17959 * possibly race with us. 17960 */ 17961 17962 /* 17963 * Set the max window size (tcp_rq->q_hiwat) of the acceptor 17964 * properly. This is the first time we know of the acceptor' 17965 * queue. So we do it here. 17966 */ 17967 if (tcp->tcp_rcv_list == NULL) { 17968 /* 17969 * Recv queue is empty, tcp_rwnd should not have changed. 17970 * That means it should be equal to the listener's tcp_rwnd. 17971 */ 17972 tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd; 17973 } else { 17974 #ifdef DEBUG 17975 uint_t cnt = 0; 17976 17977 mp1 = tcp->tcp_rcv_list; 17978 while ((mp = mp1) != NULL) { 17979 mp1 = mp->b_next; 17980 cnt += msgdsize(mp); 17981 } 17982 ASSERT(cnt != 0 && tcp->tcp_rcv_cnt == cnt); 17983 #endif 17984 /* There is some data, add them back to get the max. */ 17985 tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd + tcp->tcp_rcv_cnt; 17986 } 17987 17988 stropt->so_flags = SO_HIWAT; 17989 stropt->so_hiwat = MAX(q->q_hiwat, tcps->tcps_sth_rcv_hiwat); 17990 17991 stropt->so_flags |= SO_MAXBLK; 17992 stropt->so_maxblk = tcp_maxpsz_set(tcp, B_FALSE); 17993 17994 /* 17995 * This is the first time we run on the correct 17996 * queue after tcp_accept. So fix all the q parameters 17997 * here. 17998 */ 17999 /* Allocate room for SACK options if needed. */ 18000 stropt->so_flags |= SO_WROFF; 18001 if (tcp->tcp_fused) { 18002 ASSERT(tcp->tcp_loopback); 18003 ASSERT(tcp->tcp_loopback_peer != NULL); 18004 /* 18005 * For fused tcp loopback, set the stream head's write 18006 * offset value to zero since we won't be needing any room 18007 * for TCP/IP headers. This would also improve performance 18008 * since it would reduce the amount of work done by kmem. 18009 * Non-fused tcp loopback case is handled separately below. 18010 */ 18011 stropt->so_wroff = 0; 18012 /* 18013 * Record the stream head's high water mark for this endpoint; 18014 * this is used for flow-control purposes in tcp_fuse_output(). 18015 */ 18016 stropt->so_hiwat = tcp_fuse_set_rcv_hiwat(tcp, q->q_hiwat); 18017 /* 18018 * Update the peer's transmit parameters according to 18019 * our recently calculated high water mark value. 18020 */ 18021 (void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE); 18022 } else if (tcp->tcp_snd_sack_ok) { 18023 stropt->so_wroff = tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN + 18024 (tcp->tcp_loopback ? 0 : tcps->tcps_wroff_xtra); 18025 } else { 18026 stropt->so_wroff = tcp->tcp_hdr_len + (tcp->tcp_loopback ? 0 : 18027 tcps->tcps_wroff_xtra); 18028 } 18029 18030 /* 18031 * If this is endpoint is handling SSL, then reserve extra 18032 * offset and space at the end. 18033 * Also have the stream head allocate SSL3_MAX_RECORD_LEN packets, 18034 * overriding the previous setting. The extra cost of signing and 18035 * encrypting multiple MSS-size records (12 of them with Ethernet), 18036 * instead of a single contiguous one by the stream head 18037 * largely outweighs the statistical reduction of ACKs, when 18038 * applicable. The peer will also save on decyption and verification 18039 * costs. 18040 */ 18041 if (tcp->tcp_kssl_ctx != NULL) { 18042 stropt->so_wroff += SSL3_WROFFSET; 18043 18044 stropt->so_flags |= SO_TAIL; 18045 stropt->so_tail = SSL3_MAX_TAIL_LEN; 18046 18047 stropt->so_maxblk = SSL3_MAX_RECORD_LEN; 18048 } 18049 18050 /* Send the options up */ 18051 putnext(q, stropt_mp); 18052 18053 /* 18054 * Pass up any data and/or a fin that has been received. 18055 * 18056 * Adjust receive window in case it had decreased 18057 * (because there is data <=> tcp_rcv_list != NULL) 18058 * while the connection was detached. Note that 18059 * in case the eager was flow-controlled, w/o this 18060 * code, the rwnd may never open up again! 18061 */ 18062 if (tcp->tcp_rcv_list != NULL) { 18063 /* We drain directly in case of fused tcp loopback */ 18064 if (!tcp->tcp_fused && canputnext(q)) { 18065 tcp->tcp_rwnd = q->q_hiwat; 18066 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 18067 << tcp->tcp_rcv_ws; 18068 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 18069 if (tcp->tcp_state >= TCPS_ESTABLISHED && 18070 (q->q_hiwat - thwin >= tcp->tcp_mss)) { 18071 tcp_xmit_ctl(NULL, 18072 tcp, (tcp->tcp_swnd == 0) ? 18073 tcp->tcp_suna : tcp->tcp_snxt, 18074 tcp->tcp_rnxt, TH_ACK); 18075 BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate); 18076 } 18077 18078 } 18079 (void) tcp_rcv_drain(q, tcp); 18080 18081 /* 18082 * For fused tcp loopback, back-enable peer endpoint 18083 * if it's currently flow-controlled. 18084 */ 18085 if (tcp->tcp_fused) { 18086 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 18087 18088 ASSERT(peer_tcp != NULL); 18089 ASSERT(peer_tcp->tcp_fused); 18090 /* 18091 * In order to change the peer's tcp_flow_stopped, 18092 * we need to take locks for both end points. The 18093 * highest address is taken first. 18094 */ 18095 if (peer_tcp > tcp) { 18096 mutex_enter(&peer_tcp->tcp_non_sq_lock); 18097 mutex_enter(&tcp->tcp_non_sq_lock); 18098 } else { 18099 mutex_enter(&tcp->tcp_non_sq_lock); 18100 mutex_enter(&peer_tcp->tcp_non_sq_lock); 18101 } 18102 if (peer_tcp->tcp_flow_stopped) { 18103 tcp_clrqfull(peer_tcp); 18104 TCP_STAT(tcps, tcp_fusion_backenabled); 18105 } 18106 mutex_exit(&peer_tcp->tcp_non_sq_lock); 18107 mutex_exit(&tcp->tcp_non_sq_lock); 18108 } 18109 } 18110 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 18111 if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 18112 mp = mi_tpi_ordrel_ind(); 18113 if (mp) { 18114 tcp->tcp_ordrel_done = B_TRUE; 18115 putnext(q, mp); 18116 if (tcp->tcp_deferred_clean_death) { 18117 /* 18118 * tcp_clean_death was deferred 18119 * for T_ORDREL_IND - do it now 18120 */ 18121 (void) tcp_clean_death(tcp, 18122 tcp->tcp_client_errno, 21); 18123 tcp->tcp_deferred_clean_death = B_FALSE; 18124 } 18125 } else { 18126 /* 18127 * Run the orderly release in the 18128 * service routine. 18129 */ 18130 qenable(q); 18131 } 18132 } 18133 if (tcp->tcp_hard_binding) { 18134 tcp->tcp_hard_binding = B_FALSE; 18135 tcp->tcp_hard_bound = B_TRUE; 18136 } 18137 18138 tcp->tcp_detached = B_FALSE; 18139 18140 /* We can enable synchronous streams now */ 18141 if (tcp->tcp_fused) { 18142 tcp_fuse_syncstr_enable_pair(tcp); 18143 } 18144 18145 if (tcp->tcp_ka_enabled) { 18146 tcp->tcp_ka_last_intrvl = 0; 18147 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 18148 MSEC_TO_TICK(tcp->tcp_ka_interval)); 18149 } 18150 18151 /* 18152 * At this point, eager is fully established and will 18153 * have the following references - 18154 * 18155 * 2 references for connection to exist (1 for TCP and 1 for IP). 18156 * 1 reference for the squeue which will be dropped by the squeue as 18157 * soon as this function returns. 18158 * There will be 1 additonal reference for being in classifier 18159 * hash list provided something bad hasn't happened. 18160 */ 18161 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 18162 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 18163 } 18164 18165 /* 18166 * The function called through squeue to get behind listener's perimeter to 18167 * send a deffered conn_ind. 18168 */ 18169 /* ARGSUSED */ 18170 void 18171 tcp_send_pending(void *arg, mblk_t *mp, void *arg2) 18172 { 18173 conn_t *connp = (conn_t *)arg; 18174 tcp_t *listener = connp->conn_tcp; 18175 18176 if (listener->tcp_state == TCPS_CLOSED || 18177 TCP_IS_DETACHED(listener)) { 18178 /* 18179 * If listener has closed, it would have caused a 18180 * a cleanup/blowoff to happen for the eager. 18181 */ 18182 tcp_t *tcp; 18183 struct T_conn_ind *conn_ind; 18184 18185 conn_ind = (struct T_conn_ind *)mp->b_rptr; 18186 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 18187 conn_ind->OPT_length); 18188 /* 18189 * We need to drop the ref on eager that was put 18190 * tcp_rput_data() before trying to send the conn_ind 18191 * to listener. The conn_ind was deferred in tcp_send_conn_ind 18192 * and tcp_wput_accept() is sending this deferred conn_ind but 18193 * listener is closed so we drop the ref. 18194 */ 18195 CONN_DEC_REF(tcp->tcp_connp); 18196 freemsg(mp); 18197 return; 18198 } 18199 putnext(listener->tcp_rq, mp); 18200 } 18201 18202 18203 /* 18204 * This is the STREAMS entry point for T_CONN_RES coming down on 18205 * Acceptor STREAM when sockfs listener does accept processing. 18206 * Read the block comment on top of tcp_conn_request(). 18207 */ 18208 void 18209 tcp_wput_accept(queue_t *q, mblk_t *mp) 18210 { 18211 queue_t *rq = RD(q); 18212 struct T_conn_res *conn_res; 18213 tcp_t *eager; 18214 tcp_t *listener; 18215 struct T_ok_ack *ok; 18216 t_scalar_t PRIM_type; 18217 mblk_t *opt_mp; 18218 conn_t *econnp; 18219 18220 ASSERT(DB_TYPE(mp) == M_PROTO); 18221 18222 conn_res = (struct T_conn_res *)mp->b_rptr; 18223 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 18224 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_res)) { 18225 mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); 18226 if (mp != NULL) 18227 putnext(rq, mp); 18228 return; 18229 } 18230 switch (conn_res->PRIM_type) { 18231 case O_T_CONN_RES: 18232 case T_CONN_RES: 18233 /* 18234 * We pass up an err ack if allocb fails. This will 18235 * cause sockfs to issue a T_DISCON_REQ which will cause 18236 * tcp_eager_blowoff to be called. sockfs will then call 18237 * rq->q_qinfo->qi_qclose to cleanup the acceptor stream. 18238 * we need to do the allocb up here because we have to 18239 * make sure rq->q_qinfo->qi_qclose still points to the 18240 * correct function (tcpclose_accept) in case allocb 18241 * fails. 18242 */ 18243 opt_mp = allocb(sizeof (struct stroptions), BPRI_HI); 18244 if (opt_mp == NULL) { 18245 mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); 18246 if (mp != NULL) 18247 putnext(rq, mp); 18248 return; 18249 } 18250 18251 bcopy(mp->b_rptr + conn_res->OPT_offset, 18252 &eager, conn_res->OPT_length); 18253 PRIM_type = conn_res->PRIM_type; 18254 mp->b_datap->db_type = M_PCPROTO; 18255 mp->b_wptr = mp->b_rptr + sizeof (struct T_ok_ack); 18256 ok = (struct T_ok_ack *)mp->b_rptr; 18257 ok->PRIM_type = T_OK_ACK; 18258 ok->CORRECT_prim = PRIM_type; 18259 econnp = eager->tcp_connp; 18260 econnp->conn_dev = (dev_t)q->q_ptr; 18261 eager->tcp_rq = rq; 18262 eager->tcp_wq = q; 18263 rq->q_ptr = econnp; 18264 rq->q_qinfo = &tcp_rinitv4; /* No open - same as rinitv6 */ 18265 q->q_ptr = econnp; 18266 q->q_qinfo = &tcp_winit; 18267 listener = eager->tcp_listener; 18268 eager->tcp_issocket = B_TRUE; 18269 18270 econnp->conn_zoneid = listener->tcp_connp->conn_zoneid; 18271 econnp->conn_allzones = listener->tcp_connp->conn_allzones; 18272 ASSERT(econnp->conn_netstack == 18273 listener->tcp_connp->conn_netstack); 18274 ASSERT(eager->tcp_tcps == listener->tcp_tcps); 18275 18276 /* Put the ref for IP */ 18277 CONN_INC_REF(econnp); 18278 18279 /* 18280 * We should have minimum of 3 references on the conn 18281 * at this point. One each for TCP and IP and one for 18282 * the T_conn_ind that was sent up when the 3-way handshake 18283 * completed. In the normal case we would also have another 18284 * reference (making a total of 4) for the conn being in the 18285 * classifier hash list. However the eager could have received 18286 * an RST subsequently and tcp_closei_local could have removed 18287 * the eager from the classifier hash list, hence we can't 18288 * assert that reference. 18289 */ 18290 ASSERT(econnp->conn_ref >= 3); 18291 18292 /* 18293 * Send the new local address also up to sockfs. There 18294 * should already be enough space in the mp that came 18295 * down from soaccept(). 18296 */ 18297 if (eager->tcp_family == AF_INET) { 18298 sin_t *sin; 18299 18300 ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= 18301 (sizeof (struct T_ok_ack) + sizeof (sin_t))); 18302 sin = (sin_t *)mp->b_wptr; 18303 mp->b_wptr += sizeof (sin_t); 18304 sin->sin_family = AF_INET; 18305 sin->sin_port = eager->tcp_lport; 18306 sin->sin_addr.s_addr = eager->tcp_ipha->ipha_src; 18307 } else { 18308 sin6_t *sin6; 18309 18310 ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= 18311 sizeof (struct T_ok_ack) + sizeof (sin6_t)); 18312 sin6 = (sin6_t *)mp->b_wptr; 18313 mp->b_wptr += sizeof (sin6_t); 18314 sin6->sin6_family = AF_INET6; 18315 sin6->sin6_port = eager->tcp_lport; 18316 if (eager->tcp_ipversion == IPV4_VERSION) { 18317 sin6->sin6_flowinfo = 0; 18318 IN6_IPADDR_TO_V4MAPPED( 18319 eager->tcp_ipha->ipha_src, 18320 &sin6->sin6_addr); 18321 } else { 18322 ASSERT(eager->tcp_ip6h != NULL); 18323 sin6->sin6_flowinfo = 18324 eager->tcp_ip6h->ip6_vcf & 18325 ~IPV6_VERS_AND_FLOW_MASK; 18326 sin6->sin6_addr = eager->tcp_ip6h->ip6_src; 18327 } 18328 sin6->sin6_scope_id = 0; 18329 sin6->__sin6_src_id = 0; 18330 } 18331 18332 putnext(rq, mp); 18333 18334 opt_mp->b_datap->db_type = M_SETOPTS; 18335 opt_mp->b_wptr += sizeof (struct stroptions); 18336 18337 /* 18338 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO 18339 * from listener to acceptor. The message is chained on the 18340 * bind_mp which tcp_rput_other will send down to IP. 18341 */ 18342 if (listener->tcp_bound_if != 0) { 18343 /* allocate optmgmt req */ 18344 mp = tcp_setsockopt_mp(IPPROTO_IPV6, 18345 IPV6_BOUND_IF, (char *)&listener->tcp_bound_if, 18346 sizeof (int)); 18347 if (mp != NULL) 18348 linkb(opt_mp, mp); 18349 } 18350 if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) { 18351 uint_t on = 1; 18352 18353 /* allocate optmgmt req */ 18354 mp = tcp_setsockopt_mp(IPPROTO_IPV6, 18355 IPV6_RECVPKTINFO, (char *)&on, sizeof (on)); 18356 if (mp != NULL) 18357 linkb(opt_mp, mp); 18358 } 18359 18360 18361 mutex_enter(&listener->tcp_eager_lock); 18362 18363 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 18364 18365 tcp_t *tail; 18366 tcp_t *tcp; 18367 mblk_t *mp1; 18368 18369 tcp = listener->tcp_eager_prev_q0; 18370 /* 18371 * listener->tcp_eager_prev_q0 points to the TAIL of the 18372 * deferred T_conn_ind queue. We need to get to the head 18373 * of the queue in order to send up T_conn_ind the same 18374 * order as how the 3WHS is completed. 18375 */ 18376 while (tcp != listener) { 18377 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0 && 18378 !tcp->tcp_kssl_pending) 18379 break; 18380 else 18381 tcp = tcp->tcp_eager_prev_q0; 18382 } 18383 /* None of the pending eagers can be sent up now */ 18384 if (tcp == listener) 18385 goto no_more_eagers; 18386 18387 mp1 = tcp->tcp_conn.tcp_eager_conn_ind; 18388 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 18389 /* Move from q0 to q */ 18390 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 18391 listener->tcp_conn_req_cnt_q0--; 18392 listener->tcp_conn_req_cnt_q++; 18393 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 18394 tcp->tcp_eager_prev_q0; 18395 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 18396 tcp->tcp_eager_next_q0; 18397 tcp->tcp_eager_prev_q0 = NULL; 18398 tcp->tcp_eager_next_q0 = NULL; 18399 tcp->tcp_conn_def_q0 = B_FALSE; 18400 18401 /* Make sure the tcp isn't in the list of droppables */ 18402 ASSERT(tcp->tcp_eager_next_drop_q0 == NULL && 18403 tcp->tcp_eager_prev_drop_q0 == NULL); 18404 18405 /* 18406 * Insert at end of the queue because sockfs sends 18407 * down T_CONN_RES in chronological order. Leaving 18408 * the older conn indications at front of the queue 18409 * helps reducing search time. 18410 */ 18411 tail = listener->tcp_eager_last_q; 18412 if (tail != NULL) { 18413 tail->tcp_eager_next_q = tcp; 18414 } else { 18415 listener->tcp_eager_next_q = tcp; 18416 } 18417 listener->tcp_eager_last_q = tcp; 18418 tcp->tcp_eager_next_q = NULL; 18419 18420 /* Need to get inside the listener perimeter */ 18421 CONN_INC_REF(listener->tcp_connp); 18422 squeue_fill(listener->tcp_connp->conn_sqp, mp1, 18423 tcp_send_pending, listener->tcp_connp, 18424 SQTAG_TCP_SEND_PENDING); 18425 } 18426 no_more_eagers: 18427 tcp_eager_unlink(eager); 18428 mutex_exit(&listener->tcp_eager_lock); 18429 18430 /* 18431 * At this point, the eager is detached from the listener 18432 * but we still have an extra refs on eager (apart from the 18433 * usual tcp references). The ref was placed in tcp_rput_data 18434 * before sending the conn_ind in tcp_send_conn_ind. 18435 * The ref will be dropped in tcp_accept_finish(). 18436 */ 18437 squeue_enter_nodrain(econnp->conn_sqp, opt_mp, 18438 tcp_accept_finish, econnp, SQTAG_TCP_ACCEPT_FINISH_Q0); 18439 return; 18440 default: 18441 mp = mi_tpi_err_ack_alloc(mp, TNOTSUPPORT, 0); 18442 if (mp != NULL) 18443 putnext(rq, mp); 18444 return; 18445 } 18446 } 18447 18448 void 18449 tcp_wput(queue_t *q, mblk_t *mp) 18450 { 18451 conn_t *connp = Q_TO_CONN(q); 18452 tcp_t *tcp; 18453 void (*output_proc)(); 18454 t_scalar_t type; 18455 uchar_t *rptr; 18456 struct iocblk *iocp; 18457 uint32_t msize; 18458 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 18459 18460 ASSERT(connp->conn_ref >= 2); 18461 18462 switch (DB_TYPE(mp)) { 18463 case M_DATA: 18464 tcp = connp->conn_tcp; 18465 ASSERT(tcp != NULL); 18466 18467 msize = msgdsize(mp); 18468 18469 mutex_enter(&tcp->tcp_non_sq_lock); 18470 tcp->tcp_squeue_bytes += msize; 18471 if (TCP_UNSENT_BYTES(tcp) > tcp->tcp_xmit_hiwater) { 18472 tcp_setqfull(tcp); 18473 } 18474 mutex_exit(&tcp->tcp_non_sq_lock); 18475 18476 CONN_INC_REF(connp); 18477 (*tcp_squeue_wput_proc)(connp->conn_sqp, mp, 18478 tcp_output, connp, SQTAG_TCP_OUTPUT); 18479 return; 18480 case M_PROTO: 18481 case M_PCPROTO: 18482 /* 18483 * if it is a snmp message, don't get behind the squeue 18484 */ 18485 tcp = connp->conn_tcp; 18486 rptr = mp->b_rptr; 18487 if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { 18488 type = ((union T_primitives *)rptr)->type; 18489 } else { 18490 if (tcp->tcp_debug) { 18491 (void) strlog(TCP_MOD_ID, 0, 1, 18492 SL_ERROR|SL_TRACE, 18493 "tcp_wput_proto, dropping one..."); 18494 } 18495 freemsg(mp); 18496 return; 18497 } 18498 if (type == T_SVR4_OPTMGMT_REQ) { 18499 cred_t *cr = DB_CREDDEF(mp, tcp->tcp_cred); 18500 if (snmpcom_req(q, mp, tcp_snmp_set, ip_snmp_get, 18501 cr)) { 18502 /* 18503 * This was a SNMP request 18504 */ 18505 return; 18506 } else { 18507 output_proc = tcp_wput_proto; 18508 } 18509 } else { 18510 output_proc = tcp_wput_proto; 18511 } 18512 break; 18513 case M_IOCTL: 18514 /* 18515 * Most ioctls can be processed right away without going via 18516 * squeues - process them right here. Those that do require 18517 * squeue (currently TCP_IOC_DEFAULT_Q and _SIOCSOCKFALLBACK) 18518 * are processed by tcp_wput_ioctl(). 18519 */ 18520 iocp = (struct iocblk *)mp->b_rptr; 18521 tcp = connp->conn_tcp; 18522 18523 switch (iocp->ioc_cmd) { 18524 case TCP_IOC_ABORT_CONN: 18525 tcp_ioctl_abort_conn(q, mp); 18526 return; 18527 case TI_GETPEERNAME: 18528 if (tcp->tcp_state < TCPS_SYN_RCVD) { 18529 iocp->ioc_error = ENOTCONN; 18530 iocp->ioc_count = 0; 18531 mp->b_datap->db_type = M_IOCACK; 18532 qreply(q, mp); 18533 return; 18534 } 18535 /* FALLTHRU */ 18536 case TI_GETMYNAME: 18537 mi_copyin(q, mp, NULL, 18538 SIZEOF_STRUCT(strbuf, iocp->ioc_flag)); 18539 return; 18540 case ND_SET: 18541 /* nd_getset does the necessary checks */ 18542 case ND_GET: 18543 if (!nd_getset(q, tcps->tcps_g_nd, mp)) { 18544 CALL_IP_WPUT(connp, q, mp); 18545 return; 18546 } 18547 qreply(q, mp); 18548 return; 18549 case TCP_IOC_DEFAULT_Q: 18550 /* 18551 * Wants to be the default wq. Check the credentials 18552 * first, the rest is executed via squeue. 18553 */ 18554 if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) { 18555 iocp->ioc_error = EPERM; 18556 iocp->ioc_count = 0; 18557 mp->b_datap->db_type = M_IOCACK; 18558 qreply(q, mp); 18559 return; 18560 } 18561 output_proc = tcp_wput_ioctl; 18562 break; 18563 default: 18564 output_proc = tcp_wput_ioctl; 18565 break; 18566 } 18567 break; 18568 default: 18569 output_proc = tcp_wput_nondata; 18570 break; 18571 } 18572 18573 CONN_INC_REF(connp); 18574 (*tcp_squeue_wput_proc)(connp->conn_sqp, mp, 18575 output_proc, connp, SQTAG_TCP_WPUT_OTHER); 18576 } 18577 18578 /* 18579 * Initial STREAMS write side put() procedure for sockets. It tries to 18580 * handle the T_CAPABILITY_REQ which sockfs sends down while setting 18581 * up the socket without using the squeue. Non T_CAPABILITY_REQ messages 18582 * are handled by tcp_wput() as usual. 18583 * 18584 * All further messages will also be handled by tcp_wput() because we cannot 18585 * be sure that the above short cut is safe later. 18586 */ 18587 static void 18588 tcp_wput_sock(queue_t *wq, mblk_t *mp) 18589 { 18590 conn_t *connp = Q_TO_CONN(wq); 18591 tcp_t *tcp = connp->conn_tcp; 18592 struct T_capability_req *car = (struct T_capability_req *)mp->b_rptr; 18593 18594 ASSERT(wq->q_qinfo == &tcp_sock_winit); 18595 wq->q_qinfo = &tcp_winit; 18596 18597 ASSERT(IPCL_IS_TCP(connp)); 18598 ASSERT(TCP_IS_SOCKET(tcp)); 18599 18600 if (DB_TYPE(mp) == M_PCPROTO && 18601 MBLKL(mp) == sizeof (struct T_capability_req) && 18602 car->PRIM_type == T_CAPABILITY_REQ) { 18603 tcp_capability_req(tcp, mp); 18604 return; 18605 } 18606 18607 tcp_wput(wq, mp); 18608 } 18609 18610 static boolean_t 18611 tcp_zcopy_check(tcp_t *tcp) 18612 { 18613 conn_t *connp = tcp->tcp_connp; 18614 ire_t *ire; 18615 boolean_t zc_enabled = B_FALSE; 18616 tcp_stack_t *tcps = tcp->tcp_tcps; 18617 18618 if (do_tcpzcopy == 2) 18619 zc_enabled = B_TRUE; 18620 else if (tcp->tcp_ipversion == IPV4_VERSION && 18621 IPCL_IS_CONNECTED(connp) && 18622 (connp->conn_flags & IPCL_CHECK_POLICY) == 0 && 18623 connp->conn_dontroute == 0 && 18624 !connp->conn_nexthop_set && 18625 connp->conn_outgoing_ill == NULL && 18626 connp->conn_nofailover_ill == NULL && 18627 do_tcpzcopy == 1) { 18628 /* 18629 * the checks above closely resemble the fast path checks 18630 * in tcp_send_data(). 18631 */ 18632 mutex_enter(&connp->conn_lock); 18633 ire = connp->conn_ire_cache; 18634 ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT)); 18635 if (ire != NULL && !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18636 IRE_REFHOLD(ire); 18637 if (ire->ire_stq != NULL) { 18638 ill_t *ill = (ill_t *)ire->ire_stq->q_ptr; 18639 18640 zc_enabled = ill && (ill->ill_capabilities & 18641 ILL_CAPAB_ZEROCOPY) && 18642 (ill->ill_zerocopy_capab-> 18643 ill_zerocopy_flags != 0); 18644 } 18645 IRE_REFRELE(ire); 18646 } 18647 mutex_exit(&connp->conn_lock); 18648 } 18649 tcp->tcp_snd_zcopy_on = zc_enabled; 18650 if (!TCP_IS_DETACHED(tcp)) { 18651 if (zc_enabled) { 18652 (void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMSAFE); 18653 TCP_STAT(tcps, tcp_zcopy_on); 18654 } else { 18655 (void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE); 18656 TCP_STAT(tcps, tcp_zcopy_off); 18657 } 18658 } 18659 return (zc_enabled); 18660 } 18661 18662 static mblk_t * 18663 tcp_zcopy_disable(tcp_t *tcp, mblk_t *bp) 18664 { 18665 tcp_stack_t *tcps = tcp->tcp_tcps; 18666 18667 if (do_tcpzcopy == 2) 18668 return (bp); 18669 else if (tcp->tcp_snd_zcopy_on) { 18670 tcp->tcp_snd_zcopy_on = B_FALSE; 18671 if (!TCP_IS_DETACHED(tcp)) { 18672 (void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE); 18673 TCP_STAT(tcps, tcp_zcopy_disable); 18674 } 18675 } 18676 return (tcp_zcopy_backoff(tcp, bp, 0)); 18677 } 18678 18679 /* 18680 * Backoff from a zero-copy mblk by copying data to a new mblk and freeing 18681 * the original desballoca'ed segmapped mblk. 18682 */ 18683 static mblk_t * 18684 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, int fix_xmitlist) 18685 { 18686 mblk_t *head, *tail, *nbp; 18687 tcp_stack_t *tcps = tcp->tcp_tcps; 18688 18689 if (IS_VMLOANED_MBLK(bp)) { 18690 TCP_STAT(tcps, tcp_zcopy_backoff); 18691 if ((head = copyb(bp)) == NULL) { 18692 /* fail to backoff; leave it for the next backoff */ 18693 tcp->tcp_xmit_zc_clean = B_FALSE; 18694 return (bp); 18695 } 18696 if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 18697 if (fix_xmitlist) 18698 tcp_zcopy_notify(tcp); 18699 else 18700 head->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; 18701 } 18702 nbp = bp->b_cont; 18703 if (fix_xmitlist) { 18704 head->b_prev = bp->b_prev; 18705 head->b_next = bp->b_next; 18706 if (tcp->tcp_xmit_tail == bp) 18707 tcp->tcp_xmit_tail = head; 18708 } 18709 bp->b_next = NULL; 18710 bp->b_prev = NULL; 18711 freeb(bp); 18712 } else { 18713 head = bp; 18714 nbp = bp->b_cont; 18715 } 18716 tail = head; 18717 while (nbp) { 18718 if (IS_VMLOANED_MBLK(nbp)) { 18719 TCP_STAT(tcps, tcp_zcopy_backoff); 18720 if ((tail->b_cont = copyb(nbp)) == NULL) { 18721 tcp->tcp_xmit_zc_clean = B_FALSE; 18722 tail->b_cont = nbp; 18723 return (head); 18724 } 18725 tail = tail->b_cont; 18726 if (nbp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 18727 if (fix_xmitlist) 18728 tcp_zcopy_notify(tcp); 18729 else 18730 tail->b_datap->db_struioflag |= 18731 STRUIO_ZCNOTIFY; 18732 } 18733 bp = nbp; 18734 nbp = nbp->b_cont; 18735 if (fix_xmitlist) { 18736 tail->b_prev = bp->b_prev; 18737 tail->b_next = bp->b_next; 18738 if (tcp->tcp_xmit_tail == bp) 18739 tcp->tcp_xmit_tail = tail; 18740 } 18741 bp->b_next = NULL; 18742 bp->b_prev = NULL; 18743 freeb(bp); 18744 } else { 18745 tail->b_cont = nbp; 18746 tail = nbp; 18747 nbp = nbp->b_cont; 18748 } 18749 } 18750 if (fix_xmitlist) { 18751 tcp->tcp_xmit_last = tail; 18752 tcp->tcp_xmit_zc_clean = B_TRUE; 18753 } 18754 return (head); 18755 } 18756 18757 static void 18758 tcp_zcopy_notify(tcp_t *tcp) 18759 { 18760 struct stdata *stp; 18761 18762 if (tcp->tcp_detached) 18763 return; 18764 stp = STREAM(tcp->tcp_rq); 18765 mutex_enter(&stp->sd_lock); 18766 stp->sd_flag |= STZCNOTIFY; 18767 cv_broadcast(&stp->sd_zcopy_wait); 18768 mutex_exit(&stp->sd_lock); 18769 } 18770 18771 static boolean_t 18772 tcp_send_find_ire(tcp_t *tcp, ipaddr_t *dst, ire_t **irep) 18773 { 18774 ire_t *ire; 18775 conn_t *connp = tcp->tcp_connp; 18776 tcp_stack_t *tcps = tcp->tcp_tcps; 18777 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 18778 18779 mutex_enter(&connp->conn_lock); 18780 ire = connp->conn_ire_cache; 18781 ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT)); 18782 18783 if ((ire != NULL) && 18784 (((dst != NULL) && (ire->ire_addr == *dst)) || ((dst == NULL) && 18785 IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, &tcp->tcp_ip6h->ip6_dst))) && 18786 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18787 IRE_REFHOLD(ire); 18788 mutex_exit(&connp->conn_lock); 18789 } else { 18790 boolean_t cached = B_FALSE; 18791 ts_label_t *tsl; 18792 18793 /* force a recheck later on */ 18794 tcp->tcp_ire_ill_check_done = B_FALSE; 18795 18796 TCP_DBGSTAT(tcps, tcp_ire_null1); 18797 connp->conn_ire_cache = NULL; 18798 mutex_exit(&connp->conn_lock); 18799 18800 if (ire != NULL) 18801 IRE_REFRELE_NOTR(ire); 18802 18803 tsl = crgetlabel(CONN_CRED(connp)); 18804 ire = (dst ? 18805 ire_cache_lookup(*dst, connp->conn_zoneid, tsl, ipst) : 18806 ire_cache_lookup_v6(&tcp->tcp_ip6h->ip6_dst, 18807 connp->conn_zoneid, tsl, ipst)); 18808 18809 if (ire == NULL) { 18810 TCP_STAT(tcps, tcp_ire_null); 18811 return (B_FALSE); 18812 } 18813 18814 IRE_REFHOLD_NOTR(ire); 18815 /* 18816 * Since we are inside the squeue, there cannot be another 18817 * thread in TCP trying to set the conn_ire_cache now. The 18818 * check for IRE_MARK_CONDEMNED ensures that an interface 18819 * unplumb thread has not yet started cleaning up the conns. 18820 * Hence we don't need to grab the conn lock. 18821 */ 18822 if (CONN_CACHE_IRE(connp)) { 18823 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 18824 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18825 TCP_CHECK_IREINFO(tcp, ire); 18826 connp->conn_ire_cache = ire; 18827 cached = B_TRUE; 18828 } 18829 rw_exit(&ire->ire_bucket->irb_lock); 18830 } 18831 18832 /* 18833 * We can continue to use the ire but since it was 18834 * not cached, we should drop the extra reference. 18835 */ 18836 if (!cached) 18837 IRE_REFRELE_NOTR(ire); 18838 18839 /* 18840 * Rampart note: no need to select a new label here, since 18841 * labels are not allowed to change during the life of a TCP 18842 * connection. 18843 */ 18844 } 18845 18846 *irep = ire; 18847 18848 return (B_TRUE); 18849 } 18850 18851 /* 18852 * Called from tcp_send() or tcp_send_data() to find workable IRE. 18853 * 18854 * 0 = success; 18855 * 1 = failed to find ire and ill. 18856 */ 18857 static boolean_t 18858 tcp_send_find_ire_ill(tcp_t *tcp, mblk_t *mp, ire_t **irep, ill_t **illp) 18859 { 18860 ipha_t *ipha; 18861 ipaddr_t dst; 18862 ire_t *ire; 18863 ill_t *ill; 18864 conn_t *connp = tcp->tcp_connp; 18865 mblk_t *ire_fp_mp; 18866 tcp_stack_t *tcps = tcp->tcp_tcps; 18867 18868 if (mp != NULL) 18869 ipha = (ipha_t *)mp->b_rptr; 18870 else 18871 ipha = tcp->tcp_ipha; 18872 dst = ipha->ipha_dst; 18873 18874 if (!tcp_send_find_ire(tcp, &dst, &ire)) 18875 return (B_FALSE); 18876 18877 if ((ire->ire_flags & RTF_MULTIRT) || 18878 (ire->ire_stq == NULL) || 18879 (ire->ire_nce == NULL) || 18880 ((ire_fp_mp = ire->ire_nce->nce_fp_mp) == NULL) || 18881 ((mp != NULL) && (ire->ire_max_frag < ntohs(ipha->ipha_length) || 18882 MBLKL(ire_fp_mp) > MBLKHEAD(mp)))) { 18883 TCP_STAT(tcps, tcp_ip_ire_send); 18884 IRE_REFRELE(ire); 18885 return (B_FALSE); 18886 } 18887 18888 ill = ire_to_ill(ire); 18889 if (connp->conn_outgoing_ill != NULL) { 18890 ill_t *conn_outgoing_ill = NULL; 18891 /* 18892 * Choose a good ill in the group to send the packets on. 18893 */ 18894 ire = conn_set_outgoing_ill(connp, ire, &conn_outgoing_ill); 18895 ill = ire_to_ill(ire); 18896 } 18897 ASSERT(ill != NULL); 18898 18899 if (!tcp->tcp_ire_ill_check_done) { 18900 tcp_ire_ill_check(tcp, ire, ill, B_TRUE); 18901 tcp->tcp_ire_ill_check_done = B_TRUE; 18902 } 18903 18904 *irep = ire; 18905 *illp = ill; 18906 18907 return (B_TRUE); 18908 } 18909 18910 static void 18911 tcp_send_data(tcp_t *tcp, queue_t *q, mblk_t *mp) 18912 { 18913 ipha_t *ipha; 18914 ipaddr_t src; 18915 ipaddr_t dst; 18916 uint32_t cksum; 18917 ire_t *ire; 18918 uint16_t *up; 18919 ill_t *ill; 18920 conn_t *connp = tcp->tcp_connp; 18921 uint32_t hcksum_txflags = 0; 18922 mblk_t *ire_fp_mp; 18923 uint_t ire_fp_mp_len; 18924 tcp_stack_t *tcps = tcp->tcp_tcps; 18925 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 18926 18927 ASSERT(DB_TYPE(mp) == M_DATA); 18928 18929 if (DB_CRED(mp) == NULL) 18930 mblk_setcred(mp, CONN_CRED(connp)); 18931 18932 ipha = (ipha_t *)mp->b_rptr; 18933 src = ipha->ipha_src; 18934 dst = ipha->ipha_dst; 18935 18936 /* 18937 * Drop off fast path for IPv6 and also if options are present or 18938 * we need to resolve a TS label. 18939 */ 18940 if (tcp->tcp_ipversion != IPV4_VERSION || 18941 !IPCL_IS_CONNECTED(connp) || 18942 !CONN_IS_LSO_MD_FASTPATH(connp) || 18943 (connp->conn_flags & IPCL_CHECK_POLICY) != 0 || 18944 !connp->conn_ulp_labeled || 18945 ipha->ipha_ident == IP_HDR_INCLUDED || 18946 ipha->ipha_version_and_hdr_length != IP_SIMPLE_HDR_VERSION || 18947 IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 18948 if (tcp->tcp_snd_zcopy_aware) 18949 mp = tcp_zcopy_disable(tcp, mp); 18950 TCP_STAT(tcps, tcp_ip_send); 18951 CALL_IP_WPUT(connp, q, mp); 18952 return; 18953 } 18954 18955 if (!tcp_send_find_ire_ill(tcp, mp, &ire, &ill)) { 18956 if (tcp->tcp_snd_zcopy_aware) 18957 mp = tcp_zcopy_backoff(tcp, mp, 0); 18958 CALL_IP_WPUT(connp, q, mp); 18959 return; 18960 } 18961 ire_fp_mp = ire->ire_nce->nce_fp_mp; 18962 ire_fp_mp_len = MBLKL(ire_fp_mp); 18963 18964 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 18965 ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 18966 #ifndef _BIG_ENDIAN 18967 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 18968 #endif 18969 18970 /* 18971 * Check to see if we need to re-enable LSO/MDT for this connection 18972 * because it was previously disabled due to changes in the ill; 18973 * note that by doing it here, this re-enabling only applies when 18974 * the packet is not dispatched through CALL_IP_WPUT(). 18975 * 18976 * That means for IPv4, it is worth re-enabling LSO/MDT for the fastpath 18977 * case, since that's how we ended up here. For IPv6, we do the 18978 * re-enabling work in ip_xmit_v6(), albeit indirectly via squeue. 18979 */ 18980 if (connp->conn_lso_ok && !tcp->tcp_lso && ILL_LSO_TCP_USABLE(ill)) { 18981 /* 18982 * Restore LSO for this connection, so that next time around 18983 * it is eligible to go through tcp_lsosend() path again. 18984 */ 18985 TCP_STAT(tcps, tcp_lso_enabled); 18986 tcp->tcp_lso = B_TRUE; 18987 ip1dbg(("tcp_send_data: reenabling LSO for connp %p on " 18988 "interface %s\n", (void *)connp, ill->ill_name)); 18989 } else if (connp->conn_mdt_ok && !tcp->tcp_mdt && ILL_MDT_USABLE(ill)) { 18990 /* 18991 * Restore MDT for this connection, so that next time around 18992 * it is eligible to go through tcp_multisend() path again. 18993 */ 18994 TCP_STAT(tcps, tcp_mdt_conn_resumed1); 18995 tcp->tcp_mdt = B_TRUE; 18996 ip1dbg(("tcp_send_data: reenabling MDT for connp %p on " 18997 "interface %s\n", (void *)connp, ill->ill_name)); 18998 } 18999 19000 if (tcp->tcp_snd_zcopy_aware) { 19001 if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 || 19002 (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0)) 19003 mp = tcp_zcopy_disable(tcp, mp); 19004 /* 19005 * we shouldn't need to reset ipha as the mp containing 19006 * ipha should never be a zero-copy mp. 19007 */ 19008 } 19009 19010 if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) { 19011 ASSERT(ill->ill_hcksum_capab != NULL); 19012 hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags; 19013 } 19014 19015 /* pseudo-header checksum (do it in parts for IP header checksum) */ 19016 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 19017 19018 ASSERT(ipha->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION); 19019 up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH); 19020 19021 IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up, 19022 IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum); 19023 19024 /* Software checksum? */ 19025 if (DB_CKSUMFLAGS(mp) == 0) { 19026 TCP_STAT(tcps, tcp_out_sw_cksum); 19027 TCP_STAT_UPDATE(tcps, tcp_out_sw_cksum_bytes, 19028 ntohs(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH); 19029 } 19030 19031 ipha->ipha_fragment_offset_and_flags |= 19032 (uint32_t)htons(ire->ire_frag_flag); 19033 19034 /* Calculate IP header checksum if hardware isn't capable */ 19035 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 19036 IP_HDR_CKSUM(ipha, cksum, ((uint32_t *)ipha)[0], 19037 ((uint16_t *)ipha)[4]); 19038 } 19039 19040 ASSERT(DB_TYPE(ire_fp_mp) == M_DATA); 19041 mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len; 19042 bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len); 19043 19044 UPDATE_OB_PKT_COUNT(ire); 19045 ire->ire_last_used_time = lbolt; 19046 19047 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 19048 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 19049 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 19050 ntohs(ipha->ipha_length)); 19051 19052 if (ILL_DLS_CAPABLE(ill)) { 19053 /* 19054 * Send the packet directly to DLD, where it may be queued 19055 * depending on the availability of transmit resources at 19056 * the media layer. 19057 */ 19058 IP_DLS_ILL_TX(ill, ipha, mp, ipst); 19059 } else { 19060 ill_t *out_ill = (ill_t *)ire->ire_stq->q_ptr; 19061 DTRACE_PROBE4(ip4__physical__out__start, 19062 ill_t *, NULL, ill_t *, out_ill, 19063 ipha_t *, ipha, mblk_t *, mp); 19064 FW_HOOKS(ipst->ips_ip4_physical_out_event, 19065 ipst->ips_ipv4firewall_physical_out, 19066 NULL, out_ill, ipha, mp, mp, ipst); 19067 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 19068 if (mp != NULL) 19069 putnext(ire->ire_stq, mp); 19070 } 19071 IRE_REFRELE(ire); 19072 } 19073 19074 /* 19075 * This handles the case when the receiver has shrunk its win. Per RFC 1122 19076 * if the receiver shrinks the window, i.e. moves the right window to the 19077 * left, the we should not send new data, but should retransmit normally the 19078 * old unacked data between suna and suna + swnd. We might has sent data 19079 * that is now outside the new window, pretend that we didn't send it. 19080 */ 19081 static void 19082 tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_count) 19083 { 19084 uint32_t snxt = tcp->tcp_snxt; 19085 mblk_t *xmit_tail; 19086 int32_t offset; 19087 19088 ASSERT(shrunk_count > 0); 19089 19090 /* Pretend we didn't send the data outside the window */ 19091 snxt -= shrunk_count; 19092 19093 /* Get the mblk and the offset in it per the shrunk window */ 19094 xmit_tail = tcp_get_seg_mp(tcp, snxt, &offset); 19095 19096 ASSERT(xmit_tail != NULL); 19097 19098 /* Reset all the values per the now shrunk window */ 19099 tcp->tcp_snxt = snxt; 19100 tcp->tcp_xmit_tail = xmit_tail; 19101 tcp->tcp_xmit_tail_unsent = xmit_tail->b_wptr - xmit_tail->b_rptr - 19102 offset; 19103 tcp->tcp_unsent += shrunk_count; 19104 19105 if (tcp->tcp_suna == tcp->tcp_snxt && tcp->tcp_swnd == 0) 19106 /* 19107 * Make sure the timer is running so that we will probe a zero 19108 * window. 19109 */ 19110 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 19111 } 19112 19113 19114 /* 19115 * The TCP normal data output path. 19116 * NOTE: the logic of the fast path is duplicated from this function. 19117 */ 19118 static void 19119 tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent) 19120 { 19121 int len; 19122 mblk_t *local_time; 19123 mblk_t *mp1; 19124 uint32_t snxt; 19125 int tail_unsent; 19126 int tcpstate; 19127 int usable = 0; 19128 mblk_t *xmit_tail; 19129 queue_t *q = tcp->tcp_wq; 19130 int32_t mss; 19131 int32_t num_sack_blk = 0; 19132 int32_t tcp_hdr_len; 19133 int32_t tcp_tcp_hdr_len; 19134 int mdt_thres; 19135 int rc; 19136 tcp_stack_t *tcps = tcp->tcp_tcps; 19137 ip_stack_t *ipst; 19138 19139 tcpstate = tcp->tcp_state; 19140 if (mp == NULL) { 19141 /* 19142 * tcp_wput_data() with NULL mp should only be called when 19143 * there is unsent data. 19144 */ 19145 ASSERT(tcp->tcp_unsent > 0); 19146 /* Really tacky... but we need this for detached closes. */ 19147 len = tcp->tcp_unsent; 19148 goto data_null; 19149 } 19150 19151 #if CCS_STATS 19152 wrw_stats.tot.count++; 19153 wrw_stats.tot.bytes += msgdsize(mp); 19154 #endif 19155 ASSERT(mp->b_datap->db_type == M_DATA); 19156 /* 19157 * Don't allow data after T_ORDREL_REQ or T_DISCON_REQ, 19158 * or before a connection attempt has begun. 19159 */ 19160 if (tcpstate < TCPS_SYN_SENT || tcpstate > TCPS_CLOSE_WAIT || 19161 (tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { 19162 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { 19163 #ifdef DEBUG 19164 cmn_err(CE_WARN, 19165 "tcp_wput_data: data after ordrel, %s", 19166 tcp_display(tcp, NULL, 19167 DISP_ADDR_AND_PORT)); 19168 #else 19169 if (tcp->tcp_debug) { 19170 (void) strlog(TCP_MOD_ID, 0, 1, 19171 SL_TRACE|SL_ERROR, 19172 "tcp_wput_data: data after ordrel, %s\n", 19173 tcp_display(tcp, NULL, 19174 DISP_ADDR_AND_PORT)); 19175 } 19176 #endif /* DEBUG */ 19177 } 19178 if (tcp->tcp_snd_zcopy_aware && 19179 (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) != 0) 19180 tcp_zcopy_notify(tcp); 19181 freemsg(mp); 19182 mutex_enter(&tcp->tcp_non_sq_lock); 19183 if (tcp->tcp_flow_stopped && 19184 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 19185 tcp_clrqfull(tcp); 19186 } 19187 mutex_exit(&tcp->tcp_non_sq_lock); 19188 return; 19189 } 19190 19191 /* Strip empties */ 19192 for (;;) { 19193 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 19194 (uintptr_t)INT_MAX); 19195 len = (int)(mp->b_wptr - mp->b_rptr); 19196 if (len > 0) 19197 break; 19198 mp1 = mp; 19199 mp = mp->b_cont; 19200 freeb(mp1); 19201 if (!mp) { 19202 return; 19203 } 19204 } 19205 19206 /* If we are the first on the list ... */ 19207 if (tcp->tcp_xmit_head == NULL) { 19208 tcp->tcp_xmit_head = mp; 19209 tcp->tcp_xmit_tail = mp; 19210 tcp->tcp_xmit_tail_unsent = len; 19211 } else { 19212 /* If tiny tx and room in txq tail, pullup to save mblks. */ 19213 struct datab *dp; 19214 19215 mp1 = tcp->tcp_xmit_last; 19216 if (len < tcp_tx_pull_len && 19217 (dp = mp1->b_datap)->db_ref == 1 && 19218 dp->db_lim - mp1->b_wptr >= len) { 19219 ASSERT(len > 0); 19220 ASSERT(!mp1->b_cont); 19221 if (len == 1) { 19222 *mp1->b_wptr++ = *mp->b_rptr; 19223 } else { 19224 bcopy(mp->b_rptr, mp1->b_wptr, len); 19225 mp1->b_wptr += len; 19226 } 19227 if (mp1 == tcp->tcp_xmit_tail) 19228 tcp->tcp_xmit_tail_unsent += len; 19229 mp1->b_cont = mp->b_cont; 19230 if (tcp->tcp_snd_zcopy_aware && 19231 (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 19232 mp1->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; 19233 freeb(mp); 19234 mp = mp1; 19235 } else { 19236 tcp->tcp_xmit_last->b_cont = mp; 19237 } 19238 len += tcp->tcp_unsent; 19239 } 19240 19241 /* Tack on however many more positive length mblks we have */ 19242 if ((mp1 = mp->b_cont) != NULL) { 19243 do { 19244 int tlen; 19245 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 19246 (uintptr_t)INT_MAX); 19247 tlen = (int)(mp1->b_wptr - mp1->b_rptr); 19248 if (tlen <= 0) { 19249 mp->b_cont = mp1->b_cont; 19250 freeb(mp1); 19251 } else { 19252 len += tlen; 19253 mp = mp1; 19254 } 19255 } while ((mp1 = mp->b_cont) != NULL); 19256 } 19257 tcp->tcp_xmit_last = mp; 19258 tcp->tcp_unsent = len; 19259 19260 if (urgent) 19261 usable = 1; 19262 19263 data_null: 19264 snxt = tcp->tcp_snxt; 19265 xmit_tail = tcp->tcp_xmit_tail; 19266 tail_unsent = tcp->tcp_xmit_tail_unsent; 19267 19268 /* 19269 * Note that tcp_mss has been adjusted to take into account the 19270 * timestamp option if applicable. Because SACK options do not 19271 * appear in every TCP segments and they are of variable lengths, 19272 * they cannot be included in tcp_mss. Thus we need to calculate 19273 * the actual segment length when we need to send a segment which 19274 * includes SACK options. 19275 */ 19276 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 19277 int32_t opt_len; 19278 19279 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 19280 tcp->tcp_num_sack_blk); 19281 opt_len = num_sack_blk * sizeof (sack_blk_t) + TCPOPT_NOP_LEN * 19282 2 + TCPOPT_HEADER_LEN; 19283 mss = tcp->tcp_mss - opt_len; 19284 tcp_hdr_len = tcp->tcp_hdr_len + opt_len; 19285 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + opt_len; 19286 } else { 19287 mss = tcp->tcp_mss; 19288 tcp_hdr_len = tcp->tcp_hdr_len; 19289 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len; 19290 } 19291 19292 if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && 19293 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) { 19294 SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle); 19295 } 19296 if (tcpstate == TCPS_SYN_RCVD) { 19297 /* 19298 * The three-way connection establishment handshake is not 19299 * complete yet. We want to queue the data for transmission 19300 * after entering ESTABLISHED state (RFC793). A jump to 19301 * "done" label effectively leaves data on the queue. 19302 */ 19303 goto done; 19304 } else { 19305 int usable_r; 19306 19307 /* 19308 * In the special case when cwnd is zero, which can only 19309 * happen if the connection is ECN capable, return now. 19310 * New segments is sent using tcp_timer(). The timer 19311 * is set in tcp_rput_data(). 19312 */ 19313 if (tcp->tcp_cwnd == 0) { 19314 /* 19315 * Note that tcp_cwnd is 0 before 3-way handshake is 19316 * finished. 19317 */ 19318 ASSERT(tcp->tcp_ecn_ok || 19319 tcp->tcp_state < TCPS_ESTABLISHED); 19320 return; 19321 } 19322 19323 /* NOTE: trouble if xmitting while SYN not acked? */ 19324 usable_r = snxt - tcp->tcp_suna; 19325 usable_r = tcp->tcp_swnd - usable_r; 19326 19327 /* 19328 * Check if the receiver has shrunk the window. If 19329 * tcp_wput_data() with NULL mp is called, tcp_fin_sent 19330 * cannot be set as there is unsent data, so FIN cannot 19331 * be sent out. Otherwise, we need to take into account 19332 * of FIN as it consumes an "invisible" sequence number. 19333 */ 19334 ASSERT(tcp->tcp_fin_sent == 0); 19335 if (usable_r < 0) { 19336 /* 19337 * The receiver has shrunk the window and we have sent 19338 * -usable_r date beyond the window, re-adjust. 19339 * 19340 * If TCP window scaling is enabled, there can be 19341 * round down error as the advertised receive window 19342 * is actually right shifted n bits. This means that 19343 * the lower n bits info is wiped out. It will look 19344 * like the window is shrunk. Do a check here to 19345 * see if the shrunk amount is actually within the 19346 * error in window calculation. If it is, just 19347 * return. Note that this check is inside the 19348 * shrunk window check. This makes sure that even 19349 * though tcp_process_shrunk_swnd() is not called, 19350 * we will stop further processing. 19351 */ 19352 if ((-usable_r >> tcp->tcp_snd_ws) > 0) { 19353 tcp_process_shrunk_swnd(tcp, -usable_r); 19354 } 19355 return; 19356 } 19357 19358 /* usable = MIN(swnd, cwnd) - unacked_bytes */ 19359 if (tcp->tcp_swnd > tcp->tcp_cwnd) 19360 usable_r -= tcp->tcp_swnd - tcp->tcp_cwnd; 19361 19362 /* usable = MIN(usable, unsent) */ 19363 if (usable_r > len) 19364 usable_r = len; 19365 19366 /* usable = MAX(usable, {1 for urgent, 0 for data}) */ 19367 if (usable_r > 0) { 19368 usable = usable_r; 19369 } else { 19370 /* Bypass all other unnecessary processing. */ 19371 goto done; 19372 } 19373 } 19374 19375 local_time = (mblk_t *)lbolt; 19376 19377 /* 19378 * "Our" Nagle Algorithm. This is not the same as in the old 19379 * BSD. This is more in line with the true intent of Nagle. 19380 * 19381 * The conditions are: 19382 * 1. The amount of unsent data (or amount of data which can be 19383 * sent, whichever is smaller) is less than Nagle limit. 19384 * 2. The last sent size is also less than Nagle limit. 19385 * 3. There is unack'ed data. 19386 * 4. Urgent pointer is not set. Send urgent data ignoring the 19387 * Nagle algorithm. This reduces the probability that urgent 19388 * bytes get "merged" together. 19389 * 5. The app has not closed the connection. This eliminates the 19390 * wait time of the receiving side waiting for the last piece of 19391 * (small) data. 19392 * 19393 * If all are satisified, exit without sending anything. Note 19394 * that Nagle limit can be smaller than 1 MSS. Nagle limit is 19395 * the smaller of 1 MSS and global tcp_naglim_def (default to be 19396 * 4095). 19397 */ 19398 if (usable < (int)tcp->tcp_naglim && 19399 tcp->tcp_naglim > tcp->tcp_last_sent_len && 19400 snxt != tcp->tcp_suna && 19401 !(tcp->tcp_valid_bits & TCP_URG_VALID) && 19402 !(tcp->tcp_valid_bits & TCP_FSS_VALID)) { 19403 goto done; 19404 } 19405 19406 if (tcp->tcp_cork) { 19407 /* 19408 * if the tcp->tcp_cork option is set, then we have to force 19409 * TCP not to send partial segment (smaller than MSS bytes). 19410 * We are calculating the usable now based on full mss and 19411 * will save the rest of remaining data for later. 19412 */ 19413 if (usable < mss) 19414 goto done; 19415 usable = (usable / mss) * mss; 19416 } 19417 19418 /* Update the latest receive window size in TCP header. */ 19419 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 19420 tcp->tcp_tcph->th_win); 19421 19422 /* 19423 * Determine if it's worthwhile to attempt LSO or MDT, based on: 19424 * 19425 * 1. Simple TCP/IP{v4,v6} (no options). 19426 * 2. IPSEC/IPQoS processing is not needed for the TCP connection. 19427 * 3. If the TCP connection is in ESTABLISHED state. 19428 * 4. The TCP is not detached. 19429 * 19430 * If any of the above conditions have changed during the 19431 * connection, stop using LSO/MDT and restore the stream head 19432 * parameters accordingly. 19433 */ 19434 ipst = tcps->tcps_netstack->netstack_ip; 19435 19436 if ((tcp->tcp_lso || tcp->tcp_mdt) && 19437 ((tcp->tcp_ipversion == IPV4_VERSION && 19438 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 19439 (tcp->tcp_ipversion == IPV6_VERSION && 19440 tcp->tcp_ip_hdr_len != IPV6_HDR_LEN) || 19441 tcp->tcp_state != TCPS_ESTABLISHED || 19442 TCP_IS_DETACHED(tcp) || !CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp) || 19443 CONN_IPSEC_OUT_ENCAPSULATED(tcp->tcp_connp) || 19444 IPP_ENABLED(IPP_LOCAL_OUT, ipst))) { 19445 if (tcp->tcp_lso) { 19446 tcp->tcp_connp->conn_lso_ok = B_FALSE; 19447 tcp->tcp_lso = B_FALSE; 19448 } else { 19449 tcp->tcp_connp->conn_mdt_ok = B_FALSE; 19450 tcp->tcp_mdt = B_FALSE; 19451 } 19452 19453 /* Anything other than detached is considered pathological */ 19454 if (!TCP_IS_DETACHED(tcp)) { 19455 if (tcp->tcp_lso) 19456 TCP_STAT(tcps, tcp_lso_disabled); 19457 else 19458 TCP_STAT(tcps, tcp_mdt_conn_halted1); 19459 (void) tcp_maxpsz_set(tcp, B_TRUE); 19460 } 19461 } 19462 19463 /* Use MDT if sendable amount is greater than the threshold */ 19464 if (tcp->tcp_mdt && 19465 (mdt_thres = mss << tcp_mdt_smss_threshold, usable > mdt_thres) && 19466 (tail_unsent > mdt_thres || (xmit_tail->b_cont != NULL && 19467 MBLKL(xmit_tail->b_cont) > mdt_thres)) && 19468 (tcp->tcp_valid_bits == 0 || 19469 tcp->tcp_valid_bits == TCP_FSS_VALID)) { 19470 ASSERT(tcp->tcp_connp->conn_mdt_ok); 19471 rc = tcp_multisend(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len, 19472 num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail, 19473 local_time, mdt_thres); 19474 } else { 19475 rc = tcp_send(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len, 19476 num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail, 19477 local_time, INT_MAX); 19478 } 19479 19480 /* Pretend that all we were trying to send really got sent */ 19481 if (rc < 0 && tail_unsent < 0) { 19482 do { 19483 xmit_tail = xmit_tail->b_cont; 19484 xmit_tail->b_prev = local_time; 19485 ASSERT((uintptr_t)(xmit_tail->b_wptr - 19486 xmit_tail->b_rptr) <= (uintptr_t)INT_MAX); 19487 tail_unsent += (int)(xmit_tail->b_wptr - 19488 xmit_tail->b_rptr); 19489 } while (tail_unsent < 0); 19490 } 19491 done:; 19492 tcp->tcp_xmit_tail = xmit_tail; 19493 tcp->tcp_xmit_tail_unsent = tail_unsent; 19494 len = tcp->tcp_snxt - snxt; 19495 if (len) { 19496 /* 19497 * If new data was sent, need to update the notsack 19498 * list, which is, afterall, data blocks that have 19499 * not been sack'ed by the receiver. New data is 19500 * not sack'ed. 19501 */ 19502 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 19503 /* len is a negative value. */ 19504 tcp->tcp_pipe -= len; 19505 tcp_notsack_update(&(tcp->tcp_notsack_list), 19506 tcp->tcp_snxt, snxt, 19507 &(tcp->tcp_num_notsack_blk), 19508 &(tcp->tcp_cnt_notsack_list)); 19509 } 19510 tcp->tcp_snxt = snxt + tcp->tcp_fin_sent; 19511 tcp->tcp_rack = tcp->tcp_rnxt; 19512 tcp->tcp_rack_cnt = 0; 19513 if ((snxt + len) == tcp->tcp_suna) { 19514 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 19515 } 19516 } else if (snxt == tcp->tcp_suna && tcp->tcp_swnd == 0) { 19517 /* 19518 * Didn't send anything. Make sure the timer is running 19519 * so that we will probe a zero window. 19520 */ 19521 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 19522 } 19523 /* Note that len is the amount we just sent but with a negative sign */ 19524 tcp->tcp_unsent += len; 19525 mutex_enter(&tcp->tcp_non_sq_lock); 19526 if (tcp->tcp_flow_stopped) { 19527 if (TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 19528 tcp_clrqfull(tcp); 19529 } 19530 } else if (TCP_UNSENT_BYTES(tcp) >= tcp->tcp_xmit_hiwater) { 19531 tcp_setqfull(tcp); 19532 } 19533 mutex_exit(&tcp->tcp_non_sq_lock); 19534 } 19535 19536 /* 19537 * tcp_fill_header is called by tcp_send() and tcp_multisend() to fill the 19538 * outgoing TCP header with the template header, as well as other 19539 * options such as time-stamp, ECN and/or SACK. 19540 */ 19541 static void 19542 tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, int num_sack_blk) 19543 { 19544 tcph_t *tcp_tmpl, *tcp_h; 19545 uint32_t *dst, *src; 19546 int hdrlen; 19547 19548 ASSERT(OK_32PTR(rptr)); 19549 19550 /* Template header */ 19551 tcp_tmpl = tcp->tcp_tcph; 19552 19553 /* Header of outgoing packet */ 19554 tcp_h = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 19555 19556 /* dst and src are opaque 32-bit fields, used for copying */ 19557 dst = (uint32_t *)rptr; 19558 src = (uint32_t *)tcp->tcp_iphc; 19559 hdrlen = tcp->tcp_hdr_len; 19560 19561 /* Fill time-stamp option if needed */ 19562 if (tcp->tcp_snd_ts_ok) { 19563 U32_TO_BE32((uint32_t)now, 19564 (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 4); 19565 U32_TO_BE32(tcp->tcp_ts_recent, 19566 (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 8); 19567 } else { 19568 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 19569 } 19570 19571 /* 19572 * Copy the template header; is this really more efficient than 19573 * calling bcopy()? For simple IPv4/TCP, it may be the case, 19574 * but perhaps not for other scenarios. 19575 */ 19576 dst[0] = src[0]; 19577 dst[1] = src[1]; 19578 dst[2] = src[2]; 19579 dst[3] = src[3]; 19580 dst[4] = src[4]; 19581 dst[5] = src[5]; 19582 dst[6] = src[6]; 19583 dst[7] = src[7]; 19584 dst[8] = src[8]; 19585 dst[9] = src[9]; 19586 if (hdrlen -= 40) { 19587 hdrlen >>= 2; 19588 dst += 10; 19589 src += 10; 19590 do { 19591 *dst++ = *src++; 19592 } while (--hdrlen); 19593 } 19594 19595 /* 19596 * Set the ECN info in the TCP header if it is not a zero 19597 * window probe. Zero window probe is only sent in 19598 * tcp_wput_data() and tcp_timer(). 19599 */ 19600 if (tcp->tcp_ecn_ok && !tcp->tcp_zero_win_probe) { 19601 SET_ECT(tcp, rptr); 19602 19603 if (tcp->tcp_ecn_echo_on) 19604 tcp_h->th_flags[0] |= TH_ECE; 19605 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 19606 tcp_h->th_flags[0] |= TH_CWR; 19607 tcp->tcp_ecn_cwr_sent = B_TRUE; 19608 } 19609 } 19610 19611 /* Fill in SACK options */ 19612 if (num_sack_blk > 0) { 19613 uchar_t *wptr = rptr + tcp->tcp_hdr_len; 19614 sack_blk_t *tmp; 19615 int32_t i; 19616 19617 wptr[0] = TCPOPT_NOP; 19618 wptr[1] = TCPOPT_NOP; 19619 wptr[2] = TCPOPT_SACK; 19620 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 19621 sizeof (sack_blk_t); 19622 wptr += TCPOPT_REAL_SACK_LEN; 19623 19624 tmp = tcp->tcp_sack_list; 19625 for (i = 0; i < num_sack_blk; i++) { 19626 U32_TO_BE32(tmp[i].begin, wptr); 19627 wptr += sizeof (tcp_seq); 19628 U32_TO_BE32(tmp[i].end, wptr); 19629 wptr += sizeof (tcp_seq); 19630 } 19631 tcp_h->th_offset_and_rsrvd[0] += 19632 ((num_sack_blk * 2 + 1) << 4); 19633 } 19634 } 19635 19636 /* 19637 * tcp_mdt_add_attrs() is called by tcp_multisend() in order to attach 19638 * the destination address and SAP attribute, and if necessary, the 19639 * hardware checksum offload attribute to a Multidata message. 19640 */ 19641 static int 19642 tcp_mdt_add_attrs(multidata_t *mmd, const mblk_t *dlmp, const boolean_t hwcksum, 19643 const uint32_t start, const uint32_t stuff, const uint32_t end, 19644 const uint32_t flags, tcp_stack_t *tcps) 19645 { 19646 /* Add global destination address & SAP attribute */ 19647 if (dlmp == NULL || !ip_md_addr_attr(mmd, NULL, dlmp)) { 19648 ip1dbg(("tcp_mdt_add_attrs: can't add global physical " 19649 "destination address+SAP\n")); 19650 19651 if (dlmp != NULL) 19652 TCP_STAT(tcps, tcp_mdt_allocfail); 19653 return (-1); 19654 } 19655 19656 /* Add global hwcksum attribute */ 19657 if (hwcksum && 19658 !ip_md_hcksum_attr(mmd, NULL, start, stuff, end, flags)) { 19659 ip1dbg(("tcp_mdt_add_attrs: can't add global hardware " 19660 "checksum attribute\n")); 19661 19662 TCP_STAT(tcps, tcp_mdt_allocfail); 19663 return (-1); 19664 } 19665 19666 return (0); 19667 } 19668 19669 /* 19670 * Smaller and private version of pdescinfo_t used specifically for TCP, 19671 * which allows for only two payload spans per packet. 19672 */ 19673 typedef struct tcp_pdescinfo_s PDESCINFO_STRUCT(2) tcp_pdescinfo_t; 19674 19675 /* 19676 * tcp_multisend() is called by tcp_wput_data() for Multidata Transmit 19677 * scheme, and returns one the following: 19678 * 19679 * -1 = failed allocation. 19680 * 0 = success; burst count reached, or usable send window is too small, 19681 * and that we'd rather wait until later before sending again. 19682 */ 19683 static int 19684 tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len, 19685 const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable, 19686 uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 19687 const int mdt_thres) 19688 { 19689 mblk_t *md_mp_head, *md_mp, *md_pbuf, *md_pbuf_nxt, *md_hbuf; 19690 multidata_t *mmd; 19691 uint_t obsegs, obbytes, hdr_frag_sz; 19692 uint_t cur_hdr_off, cur_pld_off, base_pld_off, first_snxt; 19693 int num_burst_seg, max_pld; 19694 pdesc_t *pkt; 19695 tcp_pdescinfo_t tcp_pkt_info; 19696 pdescinfo_t *pkt_info; 19697 int pbuf_idx, pbuf_idx_nxt; 19698 int seg_len, len, spill, af; 19699 boolean_t add_buffer, zcopy, clusterwide; 19700 boolean_t buf_trunked = B_FALSE; 19701 boolean_t rconfirm = B_FALSE; 19702 boolean_t done = B_FALSE; 19703 uint32_t cksum; 19704 uint32_t hwcksum_flags; 19705 ire_t *ire = NULL; 19706 ill_t *ill; 19707 ipha_t *ipha; 19708 ip6_t *ip6h; 19709 ipaddr_t src, dst; 19710 ill_zerocopy_capab_t *zc_cap = NULL; 19711 uint16_t *up; 19712 int err; 19713 conn_t *connp; 19714 mblk_t *mp, *mp1, *fw_mp_head = NULL; 19715 uchar_t *pld_start; 19716 tcp_stack_t *tcps = tcp->tcp_tcps; 19717 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 19718 19719 #ifdef _BIG_ENDIAN 19720 #define IPVER(ip6h) ((((uint32_t *)ip6h)[0] >> 28) & 0x7) 19721 #else 19722 #define IPVER(ip6h) ((((uint32_t *)ip6h)[0] >> 4) & 0x7) 19723 #endif 19724 19725 #define PREP_NEW_MULTIDATA() { \ 19726 mmd = NULL; \ 19727 md_mp = md_hbuf = NULL; \ 19728 cur_hdr_off = 0; \ 19729 max_pld = tcp->tcp_mdt_max_pld; \ 19730 pbuf_idx = pbuf_idx_nxt = -1; \ 19731 add_buffer = B_TRUE; \ 19732 zcopy = B_FALSE; \ 19733 } 19734 19735 #define PREP_NEW_PBUF() { \ 19736 md_pbuf = md_pbuf_nxt = NULL; \ 19737 pbuf_idx = pbuf_idx_nxt = -1; \ 19738 cur_pld_off = 0; \ 19739 first_snxt = *snxt; \ 19740 ASSERT(*tail_unsent > 0); \ 19741 base_pld_off = MBLKL(*xmit_tail) - *tail_unsent; \ 19742 } 19743 19744 ASSERT(mdt_thres >= mss); 19745 ASSERT(*usable > 0 && *usable > mdt_thres); 19746 ASSERT(tcp->tcp_state == TCPS_ESTABLISHED); 19747 ASSERT(!TCP_IS_DETACHED(tcp)); 19748 ASSERT(tcp->tcp_valid_bits == 0 || 19749 tcp->tcp_valid_bits == TCP_FSS_VALID); 19750 ASSERT((tcp->tcp_ipversion == IPV4_VERSION && 19751 tcp->tcp_ip_hdr_len == IP_SIMPLE_HDR_LENGTH) || 19752 (tcp->tcp_ipversion == IPV6_VERSION && 19753 tcp->tcp_ip_hdr_len == IPV6_HDR_LEN)); 19754 19755 connp = tcp->tcp_connp; 19756 ASSERT(connp != NULL); 19757 ASSERT(CONN_IS_LSO_MD_FASTPATH(connp)); 19758 ASSERT(!CONN_IPSEC_OUT_ENCAPSULATED(connp)); 19759 19760 /* 19761 * Note that tcp will only declare at most 2 payload spans per 19762 * packet, which is much lower than the maximum allowable number 19763 * of packet spans per Multidata. For this reason, we use the 19764 * privately declared and smaller descriptor info structure, in 19765 * order to save some stack space. 19766 */ 19767 pkt_info = (pdescinfo_t *)&tcp_pkt_info; 19768 19769 af = (tcp->tcp_ipversion == IPV4_VERSION) ? AF_INET : AF_INET6; 19770 if (af == AF_INET) { 19771 dst = tcp->tcp_ipha->ipha_dst; 19772 src = tcp->tcp_ipha->ipha_src; 19773 ASSERT(!CLASSD(dst)); 19774 } 19775 ASSERT(af == AF_INET || 19776 !IN6_IS_ADDR_MULTICAST(&tcp->tcp_ip6h->ip6_dst)); 19777 19778 obsegs = obbytes = 0; 19779 num_burst_seg = tcp->tcp_snd_burst; 19780 md_mp_head = NULL; 19781 PREP_NEW_MULTIDATA(); 19782 19783 /* 19784 * Before we go on further, make sure there is an IRE that we can 19785 * use, and that the ILL supports MDT. Otherwise, there's no point 19786 * in proceeding any further, and we should just hand everything 19787 * off to the legacy path. 19788 */ 19789 if (!tcp_send_find_ire(tcp, (af == AF_INET) ? &dst : NULL, &ire)) 19790 goto legacy_send_no_md; 19791 19792 ASSERT(ire != NULL); 19793 ASSERT(af != AF_INET || ire->ire_ipversion == IPV4_VERSION); 19794 ASSERT(af == AF_INET || !IN6_IS_ADDR_V4MAPPED(&(ire->ire_addr_v6))); 19795 ASSERT(af == AF_INET || ire->ire_nce != NULL); 19796 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 19797 /* 19798 * If we do support loopback for MDT (which requires modifications 19799 * to the receiving paths), the following assertions should go away, 19800 * and we would be sending the Multidata to loopback conn later on. 19801 */ 19802 ASSERT(!IRE_IS_LOCAL(ire)); 19803 ASSERT(ire->ire_stq != NULL); 19804 19805 ill = ire_to_ill(ire); 19806 ASSERT(ill != NULL); 19807 ASSERT(!ILL_MDT_CAPABLE(ill) || ill->ill_mdt_capab != NULL); 19808 19809 if (!tcp->tcp_ire_ill_check_done) { 19810 tcp_ire_ill_check(tcp, ire, ill, B_TRUE); 19811 tcp->tcp_ire_ill_check_done = B_TRUE; 19812 } 19813 19814 /* 19815 * If the underlying interface conditions have changed, or if the 19816 * new interface does not support MDT, go back to legacy path. 19817 */ 19818 if (!ILL_MDT_USABLE(ill) || (ire->ire_flags & RTF_MULTIRT) != 0) { 19819 /* don't go through this path anymore for this connection */ 19820 TCP_STAT(tcps, tcp_mdt_conn_halted2); 19821 tcp->tcp_mdt = B_FALSE; 19822 ip1dbg(("tcp_multisend: disabling MDT for connp %p on " 19823 "interface %s\n", (void *)connp, ill->ill_name)); 19824 /* IRE will be released prior to returning */ 19825 goto legacy_send_no_md; 19826 } 19827 19828 if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) 19829 zc_cap = ill->ill_zerocopy_capab; 19830 19831 /* 19832 * Check if we can take tcp fast-path. Note that "incomplete" 19833 * ire's (where the link-layer for next hop is not resolved 19834 * or where the fast-path header in nce_fp_mp is not available 19835 * yet) are sent down the legacy (slow) path. 19836 * NOTE: We should fix ip_xmit_v4 to handle M_MULTIDATA 19837 */ 19838 if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) { 19839 /* IRE will be released prior to returning */ 19840 goto legacy_send_no_md; 19841 } 19842 19843 /* go to legacy path if interface doesn't support zerocopy */ 19844 if (tcp->tcp_snd_zcopy_aware && do_tcpzcopy != 2 && 19845 (zc_cap == NULL || zc_cap->ill_zerocopy_flags == 0)) { 19846 /* IRE will be released prior to returning */ 19847 goto legacy_send_no_md; 19848 } 19849 19850 /* does the interface support hardware checksum offload? */ 19851 hwcksum_flags = 0; 19852 if (ILL_HCKSUM_CAPABLE(ill) && 19853 (ill->ill_hcksum_capab->ill_hcksum_txflags & 19854 (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6 | HCKSUM_INET_PARTIAL | 19855 HCKSUM_IPHDRCKSUM)) && dohwcksum) { 19856 if (ill->ill_hcksum_capab->ill_hcksum_txflags & 19857 HCKSUM_IPHDRCKSUM) 19858 hwcksum_flags = HCK_IPV4_HDRCKSUM; 19859 19860 if (ill->ill_hcksum_capab->ill_hcksum_txflags & 19861 (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6)) 19862 hwcksum_flags |= HCK_FULLCKSUM; 19863 else if (ill->ill_hcksum_capab->ill_hcksum_txflags & 19864 HCKSUM_INET_PARTIAL) 19865 hwcksum_flags |= HCK_PARTIALCKSUM; 19866 } 19867 19868 /* 19869 * Each header fragment consists of the leading extra space, 19870 * followed by the TCP/IP header, and the trailing extra space. 19871 * We make sure that each header fragment begins on a 32-bit 19872 * aligned memory address (tcp_mdt_hdr_head is already 32-bit 19873 * aligned in tcp_mdt_update). 19874 */ 19875 hdr_frag_sz = roundup((tcp->tcp_mdt_hdr_head + tcp_hdr_len + 19876 tcp->tcp_mdt_hdr_tail), 4); 19877 19878 /* are we starting from the beginning of data block? */ 19879 if (*tail_unsent == 0) { 19880 *xmit_tail = (*xmit_tail)->b_cont; 19881 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= (uintptr_t)INT_MAX); 19882 *tail_unsent = (int)MBLKL(*xmit_tail); 19883 } 19884 19885 /* 19886 * Here we create one or more Multidata messages, each made up of 19887 * one header buffer and up to N payload buffers. This entire 19888 * operation is done within two loops: 19889 * 19890 * The outer loop mostly deals with creating the Multidata message, 19891 * as well as the header buffer that gets added to it. It also 19892 * links the Multidata messages together such that all of them can 19893 * be sent down to the lower layer in a single putnext call; this 19894 * linking behavior depends on the tcp_mdt_chain tunable. 19895 * 19896 * The inner loop takes an existing Multidata message, and adds 19897 * one or more (up to tcp_mdt_max_pld) payload buffers to it. It 19898 * packetizes those buffers by filling up the corresponding header 19899 * buffer fragments with the proper IP and TCP headers, and by 19900 * describing the layout of each packet in the packet descriptors 19901 * that get added to the Multidata. 19902 */ 19903 do { 19904 /* 19905 * If usable send window is too small, or data blocks in 19906 * transmit list are smaller than our threshold (i.e. app 19907 * performs large writes followed by small ones), we hand 19908 * off the control over to the legacy path. Note that we'll 19909 * get back the control once it encounters a large block. 19910 */ 19911 if (*usable < mss || (*tail_unsent <= mdt_thres && 19912 (*xmit_tail)->b_cont != NULL && 19913 MBLKL((*xmit_tail)->b_cont) <= mdt_thres)) { 19914 /* send down what we've got so far */ 19915 if (md_mp_head != NULL) { 19916 tcp_multisend_data(tcp, ire, ill, md_mp_head, 19917 obsegs, obbytes, &rconfirm); 19918 } 19919 /* 19920 * Pass control over to tcp_send(), but tell it to 19921 * return to us once a large-size transmission is 19922 * possible. 19923 */ 19924 TCP_STAT(tcps, tcp_mdt_legacy_small); 19925 if ((err = tcp_send(q, tcp, mss, tcp_hdr_len, 19926 tcp_tcp_hdr_len, num_sack_blk, usable, snxt, 19927 tail_unsent, xmit_tail, local_time, 19928 mdt_thres)) <= 0) { 19929 /* burst count reached, or alloc failed */ 19930 IRE_REFRELE(ire); 19931 return (err); 19932 } 19933 19934 /* tcp_send() may have sent everything, so check */ 19935 if (*usable <= 0) { 19936 IRE_REFRELE(ire); 19937 return (0); 19938 } 19939 19940 TCP_STAT(tcps, tcp_mdt_legacy_ret); 19941 /* 19942 * We may have delivered the Multidata, so make sure 19943 * to re-initialize before the next round. 19944 */ 19945 md_mp_head = NULL; 19946 obsegs = obbytes = 0; 19947 num_burst_seg = tcp->tcp_snd_burst; 19948 PREP_NEW_MULTIDATA(); 19949 19950 /* are we starting from the beginning of data block? */ 19951 if (*tail_unsent == 0) { 19952 *xmit_tail = (*xmit_tail)->b_cont; 19953 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 19954 (uintptr_t)INT_MAX); 19955 *tail_unsent = (int)MBLKL(*xmit_tail); 19956 } 19957 } 19958 19959 /* 19960 * max_pld limits the number of mblks in tcp's transmit 19961 * queue that can be added to a Multidata message. Once 19962 * this counter reaches zero, no more additional mblks 19963 * can be added to it. What happens afterwards depends 19964 * on whether or not we are set to chain the Multidata 19965 * messages. If we are to link them together, reset 19966 * max_pld to its original value (tcp_mdt_max_pld) and 19967 * prepare to create a new Multidata message which will 19968 * get linked to md_mp_head. Else, leave it alone and 19969 * let the inner loop break on its own. 19970 */ 19971 if (tcp_mdt_chain && max_pld == 0) 19972 PREP_NEW_MULTIDATA(); 19973 19974 /* adding a payload buffer; re-initialize values */ 19975 if (add_buffer) 19976 PREP_NEW_PBUF(); 19977 19978 /* 19979 * If we don't have a Multidata, either because we just 19980 * (re)entered this outer loop, or after we branched off 19981 * to tcp_send above, setup the Multidata and header 19982 * buffer to be used. 19983 */ 19984 if (md_mp == NULL) { 19985 int md_hbuflen; 19986 uint32_t start, stuff; 19987 19988 /* 19989 * Calculate Multidata header buffer size large enough 19990 * to hold all of the headers that can possibly be 19991 * sent at this moment. We'd rather over-estimate 19992 * the size than running out of space; this is okay 19993 * since this buffer is small anyway. 19994 */ 19995 md_hbuflen = (howmany(*usable, mss) + 1) * hdr_frag_sz; 19996 19997 /* 19998 * Start and stuff offset for partial hardware 19999 * checksum offload; these are currently for IPv4. 20000 * For full checksum offload, they are set to zero. 20001 */ 20002 if ((hwcksum_flags & HCK_PARTIALCKSUM)) { 20003 if (af == AF_INET) { 20004 start = IP_SIMPLE_HDR_LENGTH; 20005 stuff = IP_SIMPLE_HDR_LENGTH + 20006 TCP_CHECKSUM_OFFSET; 20007 } else { 20008 start = IPV6_HDR_LEN; 20009 stuff = IPV6_HDR_LEN + 20010 TCP_CHECKSUM_OFFSET; 20011 } 20012 } else { 20013 start = stuff = 0; 20014 } 20015 20016 /* 20017 * Create the header buffer, Multidata, as well as 20018 * any necessary attributes (destination address, 20019 * SAP and hardware checksum offload) that should 20020 * be associated with the Multidata message. 20021 */ 20022 ASSERT(cur_hdr_off == 0); 20023 if ((md_hbuf = allocb(md_hbuflen, BPRI_HI)) == NULL || 20024 ((md_hbuf->b_wptr += md_hbuflen), 20025 (mmd = mmd_alloc(md_hbuf, &md_mp, 20026 KM_NOSLEEP)) == NULL) || (tcp_mdt_add_attrs(mmd, 20027 /* fastpath mblk */ 20028 ire->ire_nce->nce_res_mp, 20029 /* hardware checksum enabled */ 20030 (hwcksum_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)), 20031 /* hardware checksum offsets */ 20032 start, stuff, 0, 20033 /* hardware checksum flag */ 20034 hwcksum_flags, tcps) != 0)) { 20035 legacy_send: 20036 if (md_mp != NULL) { 20037 /* Unlink message from the chain */ 20038 if (md_mp_head != NULL) { 20039 err = (intptr_t)rmvb(md_mp_head, 20040 md_mp); 20041 /* 20042 * We can't assert that rmvb 20043 * did not return -1, since we 20044 * may get here before linkb 20045 * happens. We do, however, 20046 * check if we just removed the 20047 * only element in the list. 20048 */ 20049 if (err == 0) 20050 md_mp_head = NULL; 20051 } 20052 /* md_hbuf gets freed automatically */ 20053 TCP_STAT(tcps, tcp_mdt_discarded); 20054 freeb(md_mp); 20055 } else { 20056 /* Either allocb or mmd_alloc failed */ 20057 TCP_STAT(tcps, tcp_mdt_allocfail); 20058 if (md_hbuf != NULL) 20059 freeb(md_hbuf); 20060 } 20061 20062 /* send down what we've got so far */ 20063 if (md_mp_head != NULL) { 20064 tcp_multisend_data(tcp, ire, ill, 20065 md_mp_head, obsegs, obbytes, 20066 &rconfirm); 20067 } 20068 legacy_send_no_md: 20069 if (ire != NULL) 20070 IRE_REFRELE(ire); 20071 /* 20072 * Too bad; let the legacy path handle this. 20073 * We specify INT_MAX for the threshold, since 20074 * we gave up with the Multidata processings 20075 * and let the old path have it all. 20076 */ 20077 TCP_STAT(tcps, tcp_mdt_legacy_all); 20078 return (tcp_send(q, tcp, mss, tcp_hdr_len, 20079 tcp_tcp_hdr_len, num_sack_blk, usable, 20080 snxt, tail_unsent, xmit_tail, local_time, 20081 INT_MAX)); 20082 } 20083 20084 /* link to any existing ones, if applicable */ 20085 TCP_STAT(tcps, tcp_mdt_allocd); 20086 if (md_mp_head == NULL) { 20087 md_mp_head = md_mp; 20088 } else if (tcp_mdt_chain) { 20089 TCP_STAT(tcps, tcp_mdt_linked); 20090 linkb(md_mp_head, md_mp); 20091 } 20092 } 20093 20094 ASSERT(md_mp_head != NULL); 20095 ASSERT(tcp_mdt_chain || md_mp_head->b_cont == NULL); 20096 ASSERT(md_mp != NULL && mmd != NULL); 20097 ASSERT(md_hbuf != NULL); 20098 20099 /* 20100 * Packetize the transmittable portion of the data block; 20101 * each data block is essentially added to the Multidata 20102 * as a payload buffer. We also deal with adding more 20103 * than one payload buffers, which happens when the remaining 20104 * packetized portion of the current payload buffer is less 20105 * than MSS, while the next data block in transmit queue 20106 * has enough data to make up for one. This "spillover" 20107 * case essentially creates a split-packet, where portions 20108 * of the packet's payload fragments may span across two 20109 * virtually discontiguous address blocks. 20110 */ 20111 seg_len = mss; 20112 do { 20113 len = seg_len; 20114 20115 ASSERT(len > 0); 20116 ASSERT(max_pld >= 0); 20117 ASSERT(!add_buffer || cur_pld_off == 0); 20118 20119 /* 20120 * First time around for this payload buffer; note 20121 * in the case of a spillover, the following has 20122 * been done prior to adding the split-packet 20123 * descriptor to Multidata, and we don't want to 20124 * repeat the process. 20125 */ 20126 if (add_buffer) { 20127 ASSERT(mmd != NULL); 20128 ASSERT(md_pbuf == NULL); 20129 ASSERT(md_pbuf_nxt == NULL); 20130 ASSERT(pbuf_idx == -1 && pbuf_idx_nxt == -1); 20131 20132 /* 20133 * Have we reached the limit? We'd get to 20134 * this case when we're not chaining the 20135 * Multidata messages together, and since 20136 * we're done, terminate this loop. 20137 */ 20138 if (max_pld == 0) 20139 break; /* done */ 20140 20141 if ((md_pbuf = dupb(*xmit_tail)) == NULL) { 20142 TCP_STAT(tcps, tcp_mdt_allocfail); 20143 goto legacy_send; /* out_of_mem */ 20144 } 20145 20146 if (IS_VMLOANED_MBLK(md_pbuf) && !zcopy && 20147 zc_cap != NULL) { 20148 if (!ip_md_zcopy_attr(mmd, NULL, 20149 zc_cap->ill_zerocopy_flags)) { 20150 freeb(md_pbuf); 20151 TCP_STAT(tcps, 20152 tcp_mdt_allocfail); 20153 /* out_of_mem */ 20154 goto legacy_send; 20155 } 20156 zcopy = B_TRUE; 20157 } 20158 20159 md_pbuf->b_rptr += base_pld_off; 20160 20161 /* 20162 * Add a payload buffer to the Multidata; this 20163 * operation must not fail, or otherwise our 20164 * logic in this routine is broken. There 20165 * is no memory allocation done by the 20166 * routine, so any returned failure simply 20167 * tells us that we've done something wrong. 20168 * 20169 * A failure tells us that either we're adding 20170 * the same payload buffer more than once, or 20171 * we're trying to add more buffers than 20172 * allowed (max_pld calculation is wrong). 20173 * None of the above cases should happen, and 20174 * we panic because either there's horrible 20175 * heap corruption, and/or programming mistake. 20176 */ 20177 pbuf_idx = mmd_addpldbuf(mmd, md_pbuf); 20178 if (pbuf_idx < 0) { 20179 cmn_err(CE_PANIC, "tcp_multisend: " 20180 "payload buffer logic error " 20181 "detected for tcp %p mmd %p " 20182 "pbuf %p (%d)\n", 20183 (void *)tcp, (void *)mmd, 20184 (void *)md_pbuf, pbuf_idx); 20185 } 20186 20187 ASSERT(max_pld > 0); 20188 --max_pld; 20189 add_buffer = B_FALSE; 20190 } 20191 20192 ASSERT(md_mp_head != NULL); 20193 ASSERT(md_pbuf != NULL); 20194 ASSERT(md_pbuf_nxt == NULL); 20195 ASSERT(pbuf_idx != -1); 20196 ASSERT(pbuf_idx_nxt == -1); 20197 ASSERT(*usable > 0); 20198 20199 /* 20200 * We spillover to the next payload buffer only 20201 * if all of the following is true: 20202 * 20203 * 1. There is not enough data on the current 20204 * payload buffer to make up `len', 20205 * 2. We are allowed to send `len', 20206 * 3. The next payload buffer length is large 20207 * enough to accomodate `spill'. 20208 */ 20209 if ((spill = len - *tail_unsent) > 0 && 20210 *usable >= len && 20211 MBLKL((*xmit_tail)->b_cont) >= spill && 20212 max_pld > 0) { 20213 md_pbuf_nxt = dupb((*xmit_tail)->b_cont); 20214 if (md_pbuf_nxt == NULL) { 20215 TCP_STAT(tcps, tcp_mdt_allocfail); 20216 goto legacy_send; /* out_of_mem */ 20217 } 20218 20219 if (IS_VMLOANED_MBLK(md_pbuf_nxt) && !zcopy && 20220 zc_cap != NULL) { 20221 if (!ip_md_zcopy_attr(mmd, NULL, 20222 zc_cap->ill_zerocopy_flags)) { 20223 freeb(md_pbuf_nxt); 20224 TCP_STAT(tcps, 20225 tcp_mdt_allocfail); 20226 /* out_of_mem */ 20227 goto legacy_send; 20228 } 20229 zcopy = B_TRUE; 20230 } 20231 20232 /* 20233 * See comments above on the first call to 20234 * mmd_addpldbuf for explanation on the panic. 20235 */ 20236 pbuf_idx_nxt = mmd_addpldbuf(mmd, md_pbuf_nxt); 20237 if (pbuf_idx_nxt < 0) { 20238 panic("tcp_multisend: " 20239 "next payload buffer logic error " 20240 "detected for tcp %p mmd %p " 20241 "pbuf %p (%d)\n", 20242 (void *)tcp, (void *)mmd, 20243 (void *)md_pbuf_nxt, pbuf_idx_nxt); 20244 } 20245 20246 ASSERT(max_pld > 0); 20247 --max_pld; 20248 } else if (spill > 0) { 20249 /* 20250 * If there's a spillover, but the following 20251 * xmit_tail couldn't give us enough octets 20252 * to reach "len", then stop the current 20253 * Multidata creation and let the legacy 20254 * tcp_send() path take over. We don't want 20255 * to send the tiny segment as part of this 20256 * Multidata for performance reasons; instead, 20257 * we let the legacy path deal with grouping 20258 * it with the subsequent small mblks. 20259 */ 20260 if (*usable >= len && 20261 MBLKL((*xmit_tail)->b_cont) < spill) { 20262 max_pld = 0; 20263 break; /* done */ 20264 } 20265 20266 /* 20267 * We can't spillover, and we are near 20268 * the end of the current payload buffer, 20269 * so send what's left. 20270 */ 20271 ASSERT(*tail_unsent > 0); 20272 len = *tail_unsent; 20273 } 20274 20275 /* tail_unsent is negated if there is a spillover */ 20276 *tail_unsent -= len; 20277 *usable -= len; 20278 ASSERT(*usable >= 0); 20279 20280 if (*usable < mss) 20281 seg_len = *usable; 20282 /* 20283 * Sender SWS avoidance; see comments in tcp_send(); 20284 * everything else is the same, except that we only 20285 * do this here if there is no more data to be sent 20286 * following the current xmit_tail. We don't check 20287 * for 1-byte urgent data because we shouldn't get 20288 * here if TCP_URG_VALID is set. 20289 */ 20290 if (*usable > 0 && *usable < mss && 20291 ((md_pbuf_nxt == NULL && 20292 (*xmit_tail)->b_cont == NULL) || 20293 (md_pbuf_nxt != NULL && 20294 (*xmit_tail)->b_cont->b_cont == NULL)) && 20295 seg_len < (tcp->tcp_max_swnd >> 1) && 20296 (tcp->tcp_unsent - 20297 ((*snxt + len) - tcp->tcp_snxt)) > seg_len && 20298 !tcp->tcp_zero_win_probe) { 20299 if ((*snxt + len) == tcp->tcp_snxt && 20300 (*snxt + len) == tcp->tcp_suna) { 20301 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 20302 } 20303 done = B_TRUE; 20304 } 20305 20306 /* 20307 * Prime pump for IP's checksumming on our behalf; 20308 * include the adjustment for a source route if any. 20309 * Do this only for software/partial hardware checksum 20310 * offload, as this field gets zeroed out later for 20311 * the full hardware checksum offload case. 20312 */ 20313 if (!(hwcksum_flags & HCK_FULLCKSUM)) { 20314 cksum = len + tcp_tcp_hdr_len + tcp->tcp_sum; 20315 cksum = (cksum >> 16) + (cksum & 0xFFFF); 20316 U16_TO_ABE16(cksum, tcp->tcp_tcph->th_sum); 20317 } 20318 20319 U32_TO_ABE32(*snxt, tcp->tcp_tcph->th_seq); 20320 *snxt += len; 20321 20322 tcp->tcp_tcph->th_flags[0] = TH_ACK; 20323 /* 20324 * We set the PUSH bit only if TCP has no more buffered 20325 * data to be transmitted (or if sender SWS avoidance 20326 * takes place), as opposed to setting it for every 20327 * last packet in the burst. 20328 */ 20329 if (done || 20330 (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) == 0) 20331 tcp->tcp_tcph->th_flags[0] |= TH_PUSH; 20332 20333 /* 20334 * Set FIN bit if this is our last segment; snxt 20335 * already includes its length, and it will not 20336 * be adjusted after this point. 20337 */ 20338 if (tcp->tcp_valid_bits == TCP_FSS_VALID && 20339 *snxt == tcp->tcp_fss) { 20340 if (!tcp->tcp_fin_acked) { 20341 tcp->tcp_tcph->th_flags[0] |= TH_FIN; 20342 BUMP_MIB(&tcps->tcps_mib, 20343 tcpOutControl); 20344 } 20345 if (!tcp->tcp_fin_sent) { 20346 tcp->tcp_fin_sent = B_TRUE; 20347 /* 20348 * tcp state must be ESTABLISHED 20349 * in order for us to get here in 20350 * the first place. 20351 */ 20352 tcp->tcp_state = TCPS_FIN_WAIT_1; 20353 20354 /* 20355 * Upon returning from this routine, 20356 * tcp_wput_data() will set tcp_snxt 20357 * to be equal to snxt + tcp_fin_sent. 20358 * This is essentially the same as 20359 * setting it to tcp_fss + 1. 20360 */ 20361 } 20362 } 20363 20364 tcp->tcp_last_sent_len = (ushort_t)len; 20365 20366 len += tcp_hdr_len; 20367 if (tcp->tcp_ipversion == IPV4_VERSION) 20368 tcp->tcp_ipha->ipha_length = htons(len); 20369 else 20370 tcp->tcp_ip6h->ip6_plen = htons(len - 20371 ((char *)&tcp->tcp_ip6h[1] - 20372 tcp->tcp_iphc)); 20373 20374 pkt_info->flags = (PDESC_HBUF_REF | PDESC_PBUF_REF); 20375 20376 /* setup header fragment */ 20377 PDESC_HDR_ADD(pkt_info, 20378 md_hbuf->b_rptr + cur_hdr_off, /* base */ 20379 tcp->tcp_mdt_hdr_head, /* head room */ 20380 tcp_hdr_len, /* len */ 20381 tcp->tcp_mdt_hdr_tail); /* tail room */ 20382 20383 ASSERT(pkt_info->hdr_lim - pkt_info->hdr_base == 20384 hdr_frag_sz); 20385 ASSERT(MBLKIN(md_hbuf, 20386 (pkt_info->hdr_base - md_hbuf->b_rptr), 20387 PDESC_HDRSIZE(pkt_info))); 20388 20389 /* setup first payload fragment */ 20390 PDESC_PLD_INIT(pkt_info); 20391 PDESC_PLD_SPAN_ADD(pkt_info, 20392 pbuf_idx, /* index */ 20393 md_pbuf->b_rptr + cur_pld_off, /* start */ 20394 tcp->tcp_last_sent_len); /* len */ 20395 20396 /* create a split-packet in case of a spillover */ 20397 if (md_pbuf_nxt != NULL) { 20398 ASSERT(spill > 0); 20399 ASSERT(pbuf_idx_nxt > pbuf_idx); 20400 ASSERT(!add_buffer); 20401 20402 md_pbuf = md_pbuf_nxt; 20403 md_pbuf_nxt = NULL; 20404 pbuf_idx = pbuf_idx_nxt; 20405 pbuf_idx_nxt = -1; 20406 cur_pld_off = spill; 20407 20408 /* trim out first payload fragment */ 20409 PDESC_PLD_SPAN_TRIM(pkt_info, 0, spill); 20410 20411 /* setup second payload fragment */ 20412 PDESC_PLD_SPAN_ADD(pkt_info, 20413 pbuf_idx, /* index */ 20414 md_pbuf->b_rptr, /* start */ 20415 spill); /* len */ 20416 20417 if ((*xmit_tail)->b_next == NULL) { 20418 /* 20419 * Store the lbolt used for RTT 20420 * estimation. We can only record one 20421 * timestamp per mblk so we do it when 20422 * we reach the end of the payload 20423 * buffer. Also we only take a new 20424 * timestamp sample when the previous 20425 * timed data from the same mblk has 20426 * been ack'ed. 20427 */ 20428 (*xmit_tail)->b_prev = local_time; 20429 (*xmit_tail)->b_next = 20430 (mblk_t *)(uintptr_t)first_snxt; 20431 } 20432 20433 first_snxt = *snxt - spill; 20434 20435 /* 20436 * Advance xmit_tail; usable could be 0 by 20437 * the time we got here, but we made sure 20438 * above that we would only spillover to 20439 * the next data block if usable includes 20440 * the spilled-over amount prior to the 20441 * subtraction. Therefore, we are sure 20442 * that xmit_tail->b_cont can't be NULL. 20443 */ 20444 ASSERT((*xmit_tail)->b_cont != NULL); 20445 *xmit_tail = (*xmit_tail)->b_cont; 20446 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 20447 (uintptr_t)INT_MAX); 20448 *tail_unsent = (int)MBLKL(*xmit_tail) - spill; 20449 } else { 20450 cur_pld_off += tcp->tcp_last_sent_len; 20451 } 20452 20453 /* 20454 * Fill in the header using the template header, and 20455 * add options such as time-stamp, ECN and/or SACK, 20456 * as needed. 20457 */ 20458 tcp_fill_header(tcp, pkt_info->hdr_rptr, 20459 (clock_t)local_time, num_sack_blk); 20460 20461 /* take care of some IP header businesses */ 20462 if (af == AF_INET) { 20463 ipha = (ipha_t *)pkt_info->hdr_rptr; 20464 20465 ASSERT(OK_32PTR((uchar_t *)ipha)); 20466 ASSERT(PDESC_HDRL(pkt_info) >= 20467 IP_SIMPLE_HDR_LENGTH); 20468 ASSERT(ipha->ipha_version_and_hdr_length == 20469 IP_SIMPLE_HDR_VERSION); 20470 20471 /* 20472 * Assign ident value for current packet; see 20473 * related comments in ip_wput_ire() about the 20474 * contract private interface with clustering 20475 * group. 20476 */ 20477 clusterwide = B_FALSE; 20478 if (cl_inet_ipident != NULL) { 20479 ASSERT(cl_inet_isclusterwide != NULL); 20480 if ((*cl_inet_isclusterwide)(IPPROTO_IP, 20481 AF_INET, 20482 (uint8_t *)(uintptr_t)src)) { 20483 ipha->ipha_ident = 20484 (*cl_inet_ipident) 20485 (IPPROTO_IP, AF_INET, 20486 (uint8_t *)(uintptr_t)src, 20487 (uint8_t *)(uintptr_t)dst); 20488 clusterwide = B_TRUE; 20489 } 20490 } 20491 20492 if (!clusterwide) { 20493 ipha->ipha_ident = (uint16_t) 20494 atomic_add_32_nv( 20495 &ire->ire_ident, 1); 20496 } 20497 #ifndef _BIG_ENDIAN 20498 ipha->ipha_ident = (ipha->ipha_ident << 8) | 20499 (ipha->ipha_ident >> 8); 20500 #endif 20501 } else { 20502 ip6h = (ip6_t *)pkt_info->hdr_rptr; 20503 20504 ASSERT(OK_32PTR((uchar_t *)ip6h)); 20505 ASSERT(IPVER(ip6h) == IPV6_VERSION); 20506 ASSERT(ip6h->ip6_nxt == IPPROTO_TCP); 20507 ASSERT(PDESC_HDRL(pkt_info) >= 20508 (IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET + 20509 TCP_CHECKSUM_SIZE)); 20510 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 20511 20512 if (tcp->tcp_ip_forward_progress) { 20513 rconfirm = B_TRUE; 20514 tcp->tcp_ip_forward_progress = B_FALSE; 20515 } 20516 } 20517 20518 /* at least one payload span, and at most two */ 20519 ASSERT(pkt_info->pld_cnt > 0 && pkt_info->pld_cnt < 3); 20520 20521 /* add the packet descriptor to Multidata */ 20522 if ((pkt = mmd_addpdesc(mmd, pkt_info, &err, 20523 KM_NOSLEEP)) == NULL) { 20524 /* 20525 * Any failure other than ENOMEM indicates 20526 * that we have passed in invalid pkt_info 20527 * or parameters to mmd_addpdesc, which must 20528 * not happen. 20529 * 20530 * EINVAL is a result of failure on boundary 20531 * checks against the pkt_info contents. It 20532 * should not happen, and we panic because 20533 * either there's horrible heap corruption, 20534 * and/or programming mistake. 20535 */ 20536 if (err != ENOMEM) { 20537 cmn_err(CE_PANIC, "tcp_multisend: " 20538 "pdesc logic error detected for " 20539 "tcp %p mmd %p pinfo %p (%d)\n", 20540 (void *)tcp, (void *)mmd, 20541 (void *)pkt_info, err); 20542 } 20543 TCP_STAT(tcps, tcp_mdt_addpdescfail); 20544 goto legacy_send; /* out_of_mem */ 20545 } 20546 ASSERT(pkt != NULL); 20547 20548 /* calculate IP header and TCP checksums */ 20549 if (af == AF_INET) { 20550 /* calculate pseudo-header checksum */ 20551 cksum = (dst >> 16) + (dst & 0xFFFF) + 20552 (src >> 16) + (src & 0xFFFF); 20553 20554 /* offset for TCP header checksum */ 20555 up = IPH_TCPH_CHECKSUMP(ipha, 20556 IP_SIMPLE_HDR_LENGTH); 20557 } else { 20558 up = (uint16_t *)&ip6h->ip6_src; 20559 20560 /* calculate pseudo-header checksum */ 20561 cksum = up[0] + up[1] + up[2] + up[3] + 20562 up[4] + up[5] + up[6] + up[7] + 20563 up[8] + up[9] + up[10] + up[11] + 20564 up[12] + up[13] + up[14] + up[15]; 20565 20566 /* Fold the initial sum */ 20567 cksum = (cksum & 0xffff) + (cksum >> 16); 20568 20569 up = (uint16_t *)(((uchar_t *)ip6h) + 20570 IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET); 20571 } 20572 20573 if (hwcksum_flags & HCK_FULLCKSUM) { 20574 /* clear checksum field for hardware */ 20575 *up = 0; 20576 } else if (hwcksum_flags & HCK_PARTIALCKSUM) { 20577 uint32_t sum; 20578 20579 /* pseudo-header checksumming */ 20580 sum = *up + cksum + IP_TCP_CSUM_COMP; 20581 sum = (sum & 0xFFFF) + (sum >> 16); 20582 *up = (sum & 0xFFFF) + (sum >> 16); 20583 } else { 20584 /* software checksumming */ 20585 TCP_STAT(tcps, tcp_out_sw_cksum); 20586 TCP_STAT_UPDATE(tcps, tcp_out_sw_cksum_bytes, 20587 tcp->tcp_hdr_len + tcp->tcp_last_sent_len); 20588 *up = IP_MD_CSUM(pkt, tcp->tcp_ip_hdr_len, 20589 cksum + IP_TCP_CSUM_COMP); 20590 if (*up == 0) 20591 *up = 0xFFFF; 20592 } 20593 20594 /* IPv4 header checksum */ 20595 if (af == AF_INET) { 20596 ipha->ipha_fragment_offset_and_flags |= 20597 (uint32_t)htons(ire->ire_frag_flag); 20598 20599 if (hwcksum_flags & HCK_IPV4_HDRCKSUM) { 20600 ipha->ipha_hdr_checksum = 0; 20601 } else { 20602 IP_HDR_CKSUM(ipha, cksum, 20603 ((uint32_t *)ipha)[0], 20604 ((uint16_t *)ipha)[4]); 20605 } 20606 } 20607 20608 if (af == AF_INET && 20609 HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) || 20610 af == AF_INET6 && 20611 HOOKS6_INTERESTED_PHYSICAL_OUT(ipst)) { 20612 /* build header(IP/TCP) mblk for this segment */ 20613 if ((mp = dupb(md_hbuf)) == NULL) 20614 goto legacy_send; 20615 20616 mp->b_rptr = pkt_info->hdr_rptr; 20617 mp->b_wptr = pkt_info->hdr_wptr; 20618 20619 /* build payload mblk for this segment */ 20620 if ((mp1 = dupb(*xmit_tail)) == NULL) { 20621 freemsg(mp); 20622 goto legacy_send; 20623 } 20624 mp1->b_wptr = md_pbuf->b_rptr + cur_pld_off; 20625 mp1->b_rptr = mp1->b_wptr - 20626 tcp->tcp_last_sent_len; 20627 linkb(mp, mp1); 20628 20629 pld_start = mp1->b_rptr; 20630 20631 if (af == AF_INET) { 20632 DTRACE_PROBE4( 20633 ip4__physical__out__start, 20634 ill_t *, NULL, 20635 ill_t *, ill, 20636 ipha_t *, ipha, 20637 mblk_t *, mp); 20638 FW_HOOKS( 20639 ipst->ips_ip4_physical_out_event, 20640 ipst->ips_ipv4firewall_physical_out, 20641 NULL, ill, ipha, mp, mp, ipst); 20642 DTRACE_PROBE1( 20643 ip4__physical__out__end, 20644 mblk_t *, mp); 20645 } else { 20646 DTRACE_PROBE4( 20647 ip6__physical__out_start, 20648 ill_t *, NULL, 20649 ill_t *, ill, 20650 ip6_t *, ip6h, 20651 mblk_t *, mp); 20652 FW_HOOKS6( 20653 ipst->ips_ip6_physical_out_event, 20654 ipst->ips_ipv6firewall_physical_out, 20655 NULL, ill, ip6h, mp, mp, ipst); 20656 DTRACE_PROBE1( 20657 ip6__physical__out__end, 20658 mblk_t *, mp); 20659 } 20660 20661 if (buf_trunked && mp != NULL) { 20662 /* 20663 * Need to pass it to normal path. 20664 */ 20665 CALL_IP_WPUT(tcp->tcp_connp, q, mp); 20666 } else if (mp == NULL || 20667 mp->b_rptr != pkt_info->hdr_rptr || 20668 mp->b_wptr != pkt_info->hdr_wptr || 20669 (mp1 = mp->b_cont) == NULL || 20670 mp1->b_rptr != pld_start || 20671 mp1->b_wptr != pld_start + 20672 tcp->tcp_last_sent_len || 20673 mp1->b_cont != NULL) { 20674 /* 20675 * Need to pass all packets of this 20676 * buffer to normal path, either when 20677 * packet is blocked, or when boundary 20678 * of header buffer or payload buffer 20679 * has been changed by FW_HOOKS[6]. 20680 */ 20681 buf_trunked = B_TRUE; 20682 if (md_mp_head != NULL) { 20683 err = (intptr_t)rmvb(md_mp_head, 20684 md_mp); 20685 if (err == 0) 20686 md_mp_head = NULL; 20687 } 20688 20689 /* send down what we've got so far */ 20690 if (md_mp_head != NULL) { 20691 tcp_multisend_data(tcp, ire, 20692 ill, md_mp_head, obsegs, 20693 obbytes, &rconfirm); 20694 } 20695 md_mp_head = NULL; 20696 20697 if (mp != NULL) 20698 CALL_IP_WPUT(tcp->tcp_connp, 20699 q, mp); 20700 20701 mp1 = fw_mp_head; 20702 do { 20703 mp = mp1; 20704 mp1 = mp1->b_next; 20705 mp->b_next = NULL; 20706 mp->b_prev = NULL; 20707 CALL_IP_WPUT(tcp->tcp_connp, 20708 q, mp); 20709 } while (mp1 != NULL); 20710 20711 fw_mp_head = NULL; 20712 } else { 20713 if (fw_mp_head == NULL) 20714 fw_mp_head = mp; 20715 else 20716 fw_mp_head->b_prev->b_next = mp; 20717 fw_mp_head->b_prev = mp; 20718 } 20719 } 20720 20721 /* advance header offset */ 20722 cur_hdr_off += hdr_frag_sz; 20723 20724 obbytes += tcp->tcp_last_sent_len; 20725 ++obsegs; 20726 } while (!done && *usable > 0 && --num_burst_seg > 0 && 20727 *tail_unsent > 0); 20728 20729 if ((*xmit_tail)->b_next == NULL) { 20730 /* 20731 * Store the lbolt used for RTT estimation. We can only 20732 * record one timestamp per mblk so we do it when we 20733 * reach the end of the payload buffer. Also we only 20734 * take a new timestamp sample when the previous timed 20735 * data from the same mblk has been ack'ed. 20736 */ 20737 (*xmit_tail)->b_prev = local_time; 20738 (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)first_snxt; 20739 } 20740 20741 ASSERT(*tail_unsent >= 0); 20742 if (*tail_unsent > 0) { 20743 /* 20744 * We got here because we broke out of the above 20745 * loop due to of one of the following cases: 20746 * 20747 * 1. len < adjusted MSS (i.e. small), 20748 * 2. Sender SWS avoidance, 20749 * 3. max_pld is zero. 20750 * 20751 * We are done for this Multidata, so trim our 20752 * last payload buffer (if any) accordingly. 20753 */ 20754 if (md_pbuf != NULL) 20755 md_pbuf->b_wptr -= *tail_unsent; 20756 } else if (*usable > 0) { 20757 *xmit_tail = (*xmit_tail)->b_cont; 20758 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 20759 (uintptr_t)INT_MAX); 20760 *tail_unsent = (int)MBLKL(*xmit_tail); 20761 add_buffer = B_TRUE; 20762 } 20763 20764 while (fw_mp_head) { 20765 mp = fw_mp_head; 20766 fw_mp_head = fw_mp_head->b_next; 20767 mp->b_prev = mp->b_next = NULL; 20768 freemsg(mp); 20769 } 20770 if (buf_trunked) { 20771 TCP_STAT(tcps, tcp_mdt_discarded); 20772 freeb(md_mp); 20773 buf_trunked = B_FALSE; 20774 } 20775 } while (!done && *usable > 0 && num_burst_seg > 0 && 20776 (tcp_mdt_chain || max_pld > 0)); 20777 20778 if (md_mp_head != NULL) { 20779 /* send everything down */ 20780 tcp_multisend_data(tcp, ire, ill, md_mp_head, obsegs, obbytes, 20781 &rconfirm); 20782 } 20783 20784 #undef PREP_NEW_MULTIDATA 20785 #undef PREP_NEW_PBUF 20786 #undef IPVER 20787 20788 IRE_REFRELE(ire); 20789 return (0); 20790 } 20791 20792 /* 20793 * A wrapper function for sending one or more Multidata messages down to 20794 * the module below ip; this routine does not release the reference of the 20795 * IRE (caller does that). This routine is analogous to tcp_send_data(). 20796 */ 20797 static void 20798 tcp_multisend_data(tcp_t *tcp, ire_t *ire, const ill_t *ill, mblk_t *md_mp_head, 20799 const uint_t obsegs, const uint_t obbytes, boolean_t *rconfirm) 20800 { 20801 uint64_t delta; 20802 nce_t *nce; 20803 tcp_stack_t *tcps = tcp->tcp_tcps; 20804 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 20805 20806 ASSERT(ire != NULL && ill != NULL); 20807 ASSERT(ire->ire_stq != NULL); 20808 ASSERT(md_mp_head != NULL); 20809 ASSERT(rconfirm != NULL); 20810 20811 /* adjust MIBs and IRE timestamp */ 20812 TCP_RECORD_TRACE(tcp, md_mp_head, TCP_TRACE_SEND_PKT); 20813 tcp->tcp_obsegs += obsegs; 20814 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataSegs, obsegs); 20815 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, obbytes); 20816 TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out, obsegs); 20817 20818 if (tcp->tcp_ipversion == IPV4_VERSION) { 20819 TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out_v4, obsegs); 20820 } else { 20821 TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out_v6, obsegs); 20822 } 20823 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests, obsegs); 20824 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, obsegs); 20825 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, obbytes); 20826 20827 ire->ire_ob_pkt_count += obsegs; 20828 if (ire->ire_ipif != NULL) 20829 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, obsegs); 20830 ire->ire_last_used_time = lbolt; 20831 20832 /* send it down */ 20833 putnext(ire->ire_stq, md_mp_head); 20834 20835 /* we're done for TCP/IPv4 */ 20836 if (tcp->tcp_ipversion == IPV4_VERSION) 20837 return; 20838 20839 nce = ire->ire_nce; 20840 20841 ASSERT(nce != NULL); 20842 ASSERT(!(nce->nce_flags & (NCE_F_NONUD|NCE_F_PERMANENT))); 20843 ASSERT(nce->nce_state != ND_INCOMPLETE); 20844 20845 /* reachability confirmation? */ 20846 if (*rconfirm) { 20847 nce->nce_last = TICK_TO_MSEC(lbolt64); 20848 if (nce->nce_state != ND_REACHABLE) { 20849 mutex_enter(&nce->nce_lock); 20850 nce->nce_state = ND_REACHABLE; 20851 nce->nce_pcnt = ND_MAX_UNICAST_SOLICIT; 20852 mutex_exit(&nce->nce_lock); 20853 (void) untimeout(nce->nce_timeout_id); 20854 if (ip_debug > 2) { 20855 /* ip1dbg */ 20856 pr_addr_dbg("tcp_multisend_data: state " 20857 "for %s changed to REACHABLE\n", 20858 AF_INET6, &ire->ire_addr_v6); 20859 } 20860 } 20861 /* reset transport reachability confirmation */ 20862 *rconfirm = B_FALSE; 20863 } 20864 20865 delta = TICK_TO_MSEC(lbolt64) - nce->nce_last; 20866 ip1dbg(("tcp_multisend_data: delta = %" PRId64 20867 " ill_reachable_time = %d \n", delta, ill->ill_reachable_time)); 20868 20869 if (delta > (uint64_t)ill->ill_reachable_time) { 20870 mutex_enter(&nce->nce_lock); 20871 switch (nce->nce_state) { 20872 case ND_REACHABLE: 20873 case ND_STALE: 20874 /* 20875 * ND_REACHABLE is identical to ND_STALE in this 20876 * specific case. If reachable time has expired for 20877 * this neighbor (delta is greater than reachable 20878 * time), conceptually, the neighbor cache is no 20879 * longer in REACHABLE state, but already in STALE 20880 * state. So the correct transition here is to 20881 * ND_DELAY. 20882 */ 20883 nce->nce_state = ND_DELAY; 20884 mutex_exit(&nce->nce_lock); 20885 NDP_RESTART_TIMER(nce, 20886 ipst->ips_delay_first_probe_time); 20887 if (ip_debug > 3) { 20888 /* ip2dbg */ 20889 pr_addr_dbg("tcp_multisend_data: state " 20890 "for %s changed to DELAY\n", 20891 AF_INET6, &ire->ire_addr_v6); 20892 } 20893 break; 20894 case ND_DELAY: 20895 case ND_PROBE: 20896 mutex_exit(&nce->nce_lock); 20897 /* Timers have already started */ 20898 break; 20899 case ND_UNREACHABLE: 20900 /* 20901 * ndp timer has detected that this nce is 20902 * unreachable and initiated deleting this nce 20903 * and all its associated IREs. This is a race 20904 * where we found the ire before it was deleted 20905 * and have just sent out a packet using this 20906 * unreachable nce. 20907 */ 20908 mutex_exit(&nce->nce_lock); 20909 break; 20910 default: 20911 ASSERT(0); 20912 } 20913 } 20914 } 20915 20916 /* 20917 * Derived from tcp_send_data(). 20918 */ 20919 static void 20920 tcp_lsosend_data(tcp_t *tcp, mblk_t *mp, ire_t *ire, ill_t *ill, const int mss, 20921 int num_lso_seg) 20922 { 20923 ipha_t *ipha; 20924 mblk_t *ire_fp_mp; 20925 uint_t ire_fp_mp_len; 20926 uint32_t hcksum_txflags = 0; 20927 ipaddr_t src; 20928 ipaddr_t dst; 20929 uint32_t cksum; 20930 uint16_t *up; 20931 tcp_stack_t *tcps = tcp->tcp_tcps; 20932 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 20933 20934 ASSERT(DB_TYPE(mp) == M_DATA); 20935 ASSERT(tcp->tcp_state == TCPS_ESTABLISHED); 20936 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 20937 ASSERT(tcp->tcp_connp != NULL); 20938 ASSERT(CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp)); 20939 20940 ipha = (ipha_t *)mp->b_rptr; 20941 src = ipha->ipha_src; 20942 dst = ipha->ipha_dst; 20943 20944 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 20945 ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 20946 num_lso_seg); 20947 #ifndef _BIG_ENDIAN 20948 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 20949 #endif 20950 if (tcp->tcp_snd_zcopy_aware) { 20951 if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 || 20952 (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0)) 20953 mp = tcp_zcopy_disable(tcp, mp); 20954 } 20955 20956 if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) { 20957 ASSERT(ill->ill_hcksum_capab != NULL); 20958 hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags; 20959 } 20960 20961 /* 20962 * Since the TCP checksum should be recalculated by h/w, we can just 20963 * zero the checksum field for HCK_FULLCKSUM, or calculate partial 20964 * pseudo-header checksum for HCK_PARTIALCKSUM. 20965 * The partial pseudo-header excludes TCP length, that was calculated 20966 * in tcp_send(), so to zero *up before further processing. 20967 */ 20968 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 20969 20970 up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH); 20971 *up = 0; 20972 20973 IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up, 20974 IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum); 20975 20976 /* 20977 * Append LSO flag to DB_LSOFLAGS(mp) and set the mss to DB_LSOMSS(mp). 20978 */ 20979 DB_LSOFLAGS(mp) |= HW_LSO; 20980 DB_LSOMSS(mp) = mss; 20981 20982 ipha->ipha_fragment_offset_and_flags |= 20983 (uint32_t)htons(ire->ire_frag_flag); 20984 20985 ire_fp_mp = ire->ire_nce->nce_fp_mp; 20986 ire_fp_mp_len = MBLKL(ire_fp_mp); 20987 ASSERT(DB_TYPE(ire_fp_mp) == M_DATA); 20988 mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len; 20989 bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len); 20990 20991 UPDATE_OB_PKT_COUNT(ire); 20992 ire->ire_last_used_time = lbolt; 20993 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 20994 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 20995 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 20996 ntohs(ipha->ipha_length)); 20997 20998 if (ILL_DLS_CAPABLE(ill)) { 20999 /* 21000 * Send the packet directly to DLD, where it may be queued 21001 * depending on the availability of transmit resources at 21002 * the media layer. 21003 */ 21004 IP_DLS_ILL_TX(ill, ipha, mp, ipst); 21005 } else { 21006 ill_t *out_ill = (ill_t *)ire->ire_stq->q_ptr; 21007 DTRACE_PROBE4(ip4__physical__out__start, 21008 ill_t *, NULL, ill_t *, out_ill, 21009 ipha_t *, ipha, mblk_t *, mp); 21010 FW_HOOKS(ipst->ips_ip4_physical_out_event, 21011 ipst->ips_ipv4firewall_physical_out, 21012 NULL, out_ill, ipha, mp, mp, ipst); 21013 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 21014 if (mp != NULL) 21015 putnext(ire->ire_stq, mp); 21016 } 21017 } 21018 21019 /* 21020 * tcp_send() is called by tcp_wput_data() for non-Multidata transmission 21021 * scheme, and returns one of the following: 21022 * 21023 * -1 = failed allocation. 21024 * 0 = success; burst count reached, or usable send window is too small, 21025 * and that we'd rather wait until later before sending again. 21026 * 1 = success; we are called from tcp_multisend(), and both usable send 21027 * window and tail_unsent are greater than the MDT threshold, and thus 21028 * Multidata Transmit should be used instead. 21029 */ 21030 static int 21031 tcp_send(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len, 21032 const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable, 21033 uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 21034 const int mdt_thres) 21035 { 21036 int num_burst_seg = tcp->tcp_snd_burst; 21037 ire_t *ire = NULL; 21038 ill_t *ill = NULL; 21039 mblk_t *ire_fp_mp = NULL; 21040 uint_t ire_fp_mp_len = 0; 21041 int num_lso_seg = 1; 21042 uint_t lso_usable; 21043 boolean_t do_lso_send = B_FALSE; 21044 tcp_stack_t *tcps = tcp->tcp_tcps; 21045 21046 /* 21047 * Check LSO capability before any further work. And the similar check 21048 * need to be done in for(;;) loop. 21049 * LSO will be deployed when therer is more than one mss of available 21050 * data and a burst transmission is allowed. 21051 */ 21052 if (tcp->tcp_lso && 21053 (tcp->tcp_valid_bits == 0 || 21054 tcp->tcp_valid_bits == TCP_FSS_VALID) && 21055 num_burst_seg >= 2 && (*usable - 1) / mss >= 1) { 21056 /* 21057 * Try to find usable IRE/ILL and do basic check to the ILL. 21058 */ 21059 if (tcp_send_find_ire_ill(tcp, NULL, &ire, &ill)) { 21060 /* 21061 * Enable LSO with this transmission. 21062 * Since IRE has been hold in 21063 * tcp_send_find_ire_ill(), IRE_REFRELE(ire) 21064 * should be called before return. 21065 */ 21066 do_lso_send = B_TRUE; 21067 ire_fp_mp = ire->ire_nce->nce_fp_mp; 21068 ire_fp_mp_len = MBLKL(ire_fp_mp); 21069 /* Round up to multiple of 4 */ 21070 ire_fp_mp_len = ((ire_fp_mp_len + 3) / 4) * 4; 21071 } else { 21072 do_lso_send = B_FALSE; 21073 ill = NULL; 21074 } 21075 } 21076 21077 for (;;) { 21078 struct datab *db; 21079 tcph_t *tcph; 21080 uint32_t sum; 21081 mblk_t *mp, *mp1; 21082 uchar_t *rptr; 21083 int len; 21084 21085 /* 21086 * If we're called by tcp_multisend(), and the amount of 21087 * sendable data as well as the size of current xmit_tail 21088 * is beyond the MDT threshold, return to the caller and 21089 * let the large data transmit be done using MDT. 21090 */ 21091 if (*usable > 0 && *usable > mdt_thres && 21092 (*tail_unsent > mdt_thres || (*tail_unsent == 0 && 21093 MBLKL((*xmit_tail)->b_cont) > mdt_thres))) { 21094 ASSERT(tcp->tcp_mdt); 21095 return (1); /* success; do large send */ 21096 } 21097 21098 if (num_burst_seg == 0) 21099 break; /* success; burst count reached */ 21100 21101 /* 21102 * Calculate the maximum payload length we can send in *one* 21103 * time. 21104 */ 21105 if (do_lso_send) { 21106 /* 21107 * Check whether need to do LSO any more. 21108 */ 21109 if (num_burst_seg >= 2 && (*usable - 1) / mss >= 1) { 21110 lso_usable = MIN(tcp->tcp_lso_max, *usable); 21111 lso_usable = MIN(lso_usable, 21112 num_burst_seg * mss); 21113 21114 num_lso_seg = lso_usable / mss; 21115 if (lso_usable % mss) { 21116 num_lso_seg++; 21117 tcp->tcp_last_sent_len = (ushort_t) 21118 (lso_usable % mss); 21119 } else { 21120 tcp->tcp_last_sent_len = (ushort_t)mss; 21121 } 21122 } else { 21123 do_lso_send = B_FALSE; 21124 num_lso_seg = 1; 21125 lso_usable = mss; 21126 } 21127 } 21128 21129 ASSERT(num_lso_seg <= IP_MAXPACKET / mss + 1); 21130 21131 /* 21132 * Adjust num_burst_seg here. 21133 */ 21134 num_burst_seg -= num_lso_seg; 21135 21136 len = mss; 21137 if (len > *usable) { 21138 ASSERT(do_lso_send == B_FALSE); 21139 21140 len = *usable; 21141 if (len <= 0) { 21142 /* Terminate the loop */ 21143 break; /* success; too small */ 21144 } 21145 /* 21146 * Sender silly-window avoidance. 21147 * Ignore this if we are going to send a 21148 * zero window probe out. 21149 * 21150 * TODO: force data into microscopic window? 21151 * ==> (!pushed || (unsent > usable)) 21152 */ 21153 if (len < (tcp->tcp_max_swnd >> 1) && 21154 (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) > len && 21155 !((tcp->tcp_valid_bits & TCP_URG_VALID) && 21156 len == 1) && (! tcp->tcp_zero_win_probe)) { 21157 /* 21158 * If the retransmit timer is not running 21159 * we start it so that we will retransmit 21160 * in the case when the the receiver has 21161 * decremented the window. 21162 */ 21163 if (*snxt == tcp->tcp_snxt && 21164 *snxt == tcp->tcp_suna) { 21165 /* 21166 * We are not supposed to send 21167 * anything. So let's wait a little 21168 * bit longer before breaking SWS 21169 * avoidance. 21170 * 21171 * What should the value be? 21172 * Suggestion: MAX(init rexmit time, 21173 * tcp->tcp_rto) 21174 */ 21175 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 21176 } 21177 break; /* success; too small */ 21178 } 21179 } 21180 21181 tcph = tcp->tcp_tcph; 21182 21183 /* 21184 * The reason to adjust len here is that we need to set flags 21185 * and calculate checksum. 21186 */ 21187 if (do_lso_send) 21188 len = lso_usable; 21189 21190 *usable -= len; /* Approximate - can be adjusted later */ 21191 if (*usable > 0) 21192 tcph->th_flags[0] = TH_ACK; 21193 else 21194 tcph->th_flags[0] = (TH_ACK | TH_PUSH); 21195 21196 /* 21197 * Prime pump for IP's checksumming on our behalf 21198 * Include the adjustment for a source route if any. 21199 */ 21200 sum = len + tcp_tcp_hdr_len + tcp->tcp_sum; 21201 sum = (sum >> 16) + (sum & 0xFFFF); 21202 U16_TO_ABE16(sum, tcph->th_sum); 21203 21204 U32_TO_ABE32(*snxt, tcph->th_seq); 21205 21206 /* 21207 * Branch off to tcp_xmit_mp() if any of the VALID bits is 21208 * set. For the case when TCP_FSS_VALID is the only valid 21209 * bit (normal active close), branch off only when we think 21210 * that the FIN flag needs to be set. Note for this case, 21211 * that (snxt + len) may not reflect the actual seg_len, 21212 * as len may be further reduced in tcp_xmit_mp(). If len 21213 * gets modified, we will end up here again. 21214 */ 21215 if (tcp->tcp_valid_bits != 0 && 21216 (tcp->tcp_valid_bits != TCP_FSS_VALID || 21217 ((*snxt + len) == tcp->tcp_fss))) { 21218 uchar_t *prev_rptr; 21219 uint32_t prev_snxt = tcp->tcp_snxt; 21220 21221 if (*tail_unsent == 0) { 21222 ASSERT((*xmit_tail)->b_cont != NULL); 21223 *xmit_tail = (*xmit_tail)->b_cont; 21224 prev_rptr = (*xmit_tail)->b_rptr; 21225 *tail_unsent = (int)((*xmit_tail)->b_wptr - 21226 (*xmit_tail)->b_rptr); 21227 } else { 21228 prev_rptr = (*xmit_tail)->b_rptr; 21229 (*xmit_tail)->b_rptr = (*xmit_tail)->b_wptr - 21230 *tail_unsent; 21231 } 21232 mp = tcp_xmit_mp(tcp, *xmit_tail, len, NULL, NULL, 21233 *snxt, B_FALSE, (uint32_t *)&len, B_FALSE); 21234 /* Restore tcp_snxt so we get amount sent right. */ 21235 tcp->tcp_snxt = prev_snxt; 21236 if (prev_rptr == (*xmit_tail)->b_rptr) { 21237 /* 21238 * If the previous timestamp is still in use, 21239 * don't stomp on it. 21240 */ 21241 if ((*xmit_tail)->b_next == NULL) { 21242 (*xmit_tail)->b_prev = local_time; 21243 (*xmit_tail)->b_next = 21244 (mblk_t *)(uintptr_t)(*snxt); 21245 } 21246 } else 21247 (*xmit_tail)->b_rptr = prev_rptr; 21248 21249 if (mp == NULL) { 21250 if (ire != NULL) 21251 IRE_REFRELE(ire); 21252 return (-1); 21253 } 21254 mp1 = mp->b_cont; 21255 21256 if (len <= mss) /* LSO is unusable (!do_lso_send) */ 21257 tcp->tcp_last_sent_len = (ushort_t)len; 21258 while (mp1->b_cont) { 21259 *xmit_tail = (*xmit_tail)->b_cont; 21260 (*xmit_tail)->b_prev = local_time; 21261 (*xmit_tail)->b_next = 21262 (mblk_t *)(uintptr_t)(*snxt); 21263 mp1 = mp1->b_cont; 21264 } 21265 *snxt += len; 21266 *tail_unsent = (*xmit_tail)->b_wptr - mp1->b_wptr; 21267 BUMP_LOCAL(tcp->tcp_obsegs); 21268 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 21269 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); 21270 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 21271 tcp_send_data(tcp, q, mp); 21272 continue; 21273 } 21274 21275 *snxt += len; /* Adjust later if we don't send all of len */ 21276 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 21277 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); 21278 21279 if (*tail_unsent) { 21280 /* Are the bytes above us in flight? */ 21281 rptr = (*xmit_tail)->b_wptr - *tail_unsent; 21282 if (rptr != (*xmit_tail)->b_rptr) { 21283 *tail_unsent -= len; 21284 if (len <= mss) /* LSO is unusable */ 21285 tcp->tcp_last_sent_len = (ushort_t)len; 21286 len += tcp_hdr_len; 21287 if (tcp->tcp_ipversion == IPV4_VERSION) 21288 tcp->tcp_ipha->ipha_length = htons(len); 21289 else 21290 tcp->tcp_ip6h->ip6_plen = 21291 htons(len - 21292 ((char *)&tcp->tcp_ip6h[1] - 21293 tcp->tcp_iphc)); 21294 mp = dupb(*xmit_tail); 21295 if (mp == NULL) { 21296 if (ire != NULL) 21297 IRE_REFRELE(ire); 21298 return (-1); /* out_of_mem */ 21299 } 21300 mp->b_rptr = rptr; 21301 /* 21302 * If the old timestamp is no longer in use, 21303 * sample a new timestamp now. 21304 */ 21305 if ((*xmit_tail)->b_next == NULL) { 21306 (*xmit_tail)->b_prev = local_time; 21307 (*xmit_tail)->b_next = 21308 (mblk_t *)(uintptr_t)(*snxt-len); 21309 } 21310 goto must_alloc; 21311 } 21312 } else { 21313 *xmit_tail = (*xmit_tail)->b_cont; 21314 ASSERT((uintptr_t)((*xmit_tail)->b_wptr - 21315 (*xmit_tail)->b_rptr) <= (uintptr_t)INT_MAX); 21316 *tail_unsent = (int)((*xmit_tail)->b_wptr - 21317 (*xmit_tail)->b_rptr); 21318 } 21319 21320 (*xmit_tail)->b_prev = local_time; 21321 (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)(*snxt - len); 21322 21323 *tail_unsent -= len; 21324 if (len <= mss) /* LSO is unusable (!do_lso_send) */ 21325 tcp->tcp_last_sent_len = (ushort_t)len; 21326 21327 len += tcp_hdr_len; 21328 if (tcp->tcp_ipversion == IPV4_VERSION) 21329 tcp->tcp_ipha->ipha_length = htons(len); 21330 else 21331 tcp->tcp_ip6h->ip6_plen = htons(len - 21332 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 21333 21334 mp = dupb(*xmit_tail); 21335 if (mp == NULL) { 21336 if (ire != NULL) 21337 IRE_REFRELE(ire); 21338 return (-1); /* out_of_mem */ 21339 } 21340 21341 len = tcp_hdr_len; 21342 /* 21343 * There are four reasons to allocate a new hdr mblk: 21344 * 1) The bytes above us are in use by another packet 21345 * 2) We don't have good alignment 21346 * 3) The mblk is being shared 21347 * 4) We don't have enough room for a header 21348 */ 21349 rptr = mp->b_rptr - len; 21350 if (!OK_32PTR(rptr) || 21351 ((db = mp->b_datap), db->db_ref != 2) || 21352 rptr < db->db_base + ire_fp_mp_len) { 21353 /* NOTE: we assume allocb returns an OK_32PTR */ 21354 21355 must_alloc:; 21356 mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 21357 tcps->tcps_wroff_xtra + ire_fp_mp_len, BPRI_MED); 21358 if (mp1 == NULL) { 21359 freemsg(mp); 21360 if (ire != NULL) 21361 IRE_REFRELE(ire); 21362 return (-1); /* out_of_mem */ 21363 } 21364 mp1->b_cont = mp; 21365 mp = mp1; 21366 /* Leave room for Link Level header */ 21367 len = tcp_hdr_len; 21368 rptr = 21369 &mp->b_rptr[tcps->tcps_wroff_xtra + ire_fp_mp_len]; 21370 mp->b_wptr = &rptr[len]; 21371 } 21372 21373 /* 21374 * Fill in the header using the template header, and add 21375 * options such as time-stamp, ECN and/or SACK, as needed. 21376 */ 21377 tcp_fill_header(tcp, rptr, (clock_t)local_time, num_sack_blk); 21378 21379 mp->b_rptr = rptr; 21380 21381 if (*tail_unsent) { 21382 int spill = *tail_unsent; 21383 21384 mp1 = mp->b_cont; 21385 if (mp1 == NULL) 21386 mp1 = mp; 21387 21388 /* 21389 * If we're a little short, tack on more mblks until 21390 * there is no more spillover. 21391 */ 21392 while (spill < 0) { 21393 mblk_t *nmp; 21394 int nmpsz; 21395 21396 nmp = (*xmit_tail)->b_cont; 21397 nmpsz = MBLKL(nmp); 21398 21399 /* 21400 * Excess data in mblk; can we split it? 21401 * If MDT is enabled for the connection, 21402 * keep on splitting as this is a transient 21403 * send path. 21404 */ 21405 if (!do_lso_send && !tcp->tcp_mdt && 21406 (spill + nmpsz > 0)) { 21407 /* 21408 * Don't split if stream head was 21409 * told to break up larger writes 21410 * into smaller ones. 21411 */ 21412 if (tcp->tcp_maxpsz > 0) 21413 break; 21414 21415 /* 21416 * Next mblk is less than SMSS/2 21417 * rounded up to nearest 64-byte; 21418 * let it get sent as part of the 21419 * next segment. 21420 */ 21421 if (tcp->tcp_localnet && 21422 !tcp->tcp_cork && 21423 (nmpsz < roundup((mss >> 1), 64))) 21424 break; 21425 } 21426 21427 *xmit_tail = nmp; 21428 ASSERT((uintptr_t)nmpsz <= (uintptr_t)INT_MAX); 21429 /* Stash for rtt use later */ 21430 (*xmit_tail)->b_prev = local_time; 21431 (*xmit_tail)->b_next = 21432 (mblk_t *)(uintptr_t)(*snxt - len); 21433 mp1->b_cont = dupb(*xmit_tail); 21434 mp1 = mp1->b_cont; 21435 21436 spill += nmpsz; 21437 if (mp1 == NULL) { 21438 *tail_unsent = spill; 21439 freemsg(mp); 21440 if (ire != NULL) 21441 IRE_REFRELE(ire); 21442 return (-1); /* out_of_mem */ 21443 } 21444 } 21445 21446 /* Trim back any surplus on the last mblk */ 21447 if (spill >= 0) { 21448 mp1->b_wptr -= spill; 21449 *tail_unsent = spill; 21450 } else { 21451 /* 21452 * We did not send everything we could in 21453 * order to remain within the b_cont limit. 21454 */ 21455 *usable -= spill; 21456 *snxt += spill; 21457 tcp->tcp_last_sent_len += spill; 21458 UPDATE_MIB(&tcps->tcps_mib, 21459 tcpOutDataBytes, spill); 21460 /* 21461 * Adjust the checksum 21462 */ 21463 tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 21464 sum += spill; 21465 sum = (sum >> 16) + (sum & 0xFFFF); 21466 U16_TO_ABE16(sum, tcph->th_sum); 21467 if (tcp->tcp_ipversion == IPV4_VERSION) { 21468 sum = ntohs( 21469 ((ipha_t *)rptr)->ipha_length) + 21470 spill; 21471 ((ipha_t *)rptr)->ipha_length = 21472 htons(sum); 21473 } else { 21474 sum = ntohs( 21475 ((ip6_t *)rptr)->ip6_plen) + 21476 spill; 21477 ((ip6_t *)rptr)->ip6_plen = 21478 htons(sum); 21479 } 21480 *tail_unsent = 0; 21481 } 21482 } 21483 if (tcp->tcp_ip_forward_progress) { 21484 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 21485 *(uint32_t *)mp->b_rptr |= IP_FORWARD_PROG; 21486 tcp->tcp_ip_forward_progress = B_FALSE; 21487 } 21488 21489 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 21490 if (do_lso_send) { 21491 tcp_lsosend_data(tcp, mp, ire, ill, mss, 21492 num_lso_seg); 21493 tcp->tcp_obsegs += num_lso_seg; 21494 21495 TCP_STAT(tcps, tcp_lso_times); 21496 TCP_STAT_UPDATE(tcps, tcp_lso_pkt_out, num_lso_seg); 21497 } else { 21498 tcp_send_data(tcp, q, mp); 21499 BUMP_LOCAL(tcp->tcp_obsegs); 21500 } 21501 } 21502 21503 if (ire != NULL) 21504 IRE_REFRELE(ire); 21505 return (0); 21506 } 21507 21508 /* Unlink and return any mblk that looks like it contains a MDT info */ 21509 static mblk_t * 21510 tcp_mdt_info_mp(mblk_t *mp) 21511 { 21512 mblk_t *prev_mp; 21513 21514 for (;;) { 21515 prev_mp = mp; 21516 /* no more to process? */ 21517 if ((mp = mp->b_cont) == NULL) 21518 break; 21519 21520 switch (DB_TYPE(mp)) { 21521 case M_CTL: 21522 if (*(uint32_t *)mp->b_rptr != MDT_IOC_INFO_UPDATE) 21523 continue; 21524 ASSERT(prev_mp != NULL); 21525 prev_mp->b_cont = mp->b_cont; 21526 mp->b_cont = NULL; 21527 return (mp); 21528 default: 21529 break; 21530 } 21531 } 21532 return (mp); 21533 } 21534 21535 /* MDT info update routine, called when IP notifies us about MDT */ 21536 static void 21537 tcp_mdt_update(tcp_t *tcp, ill_mdt_capab_t *mdt_capab, boolean_t first) 21538 { 21539 boolean_t prev_state; 21540 tcp_stack_t *tcps = tcp->tcp_tcps; 21541 21542 /* 21543 * IP is telling us to abort MDT on this connection? We know 21544 * this because the capability is only turned off when IP 21545 * encounters some pathological cases, e.g. link-layer change 21546 * where the new driver doesn't support MDT, or in situation 21547 * where MDT usage on the link-layer has been switched off. 21548 * IP would not have sent us the initial MDT_IOC_INFO_UPDATE 21549 * if the link-layer doesn't support MDT, and if it does, it 21550 * will indicate that the feature is to be turned on. 21551 */ 21552 prev_state = tcp->tcp_mdt; 21553 tcp->tcp_mdt = (mdt_capab->ill_mdt_on != 0); 21554 if (!tcp->tcp_mdt && !first) { 21555 TCP_STAT(tcps, tcp_mdt_conn_halted3); 21556 ip1dbg(("tcp_mdt_update: disabling MDT for connp %p\n", 21557 (void *)tcp->tcp_connp)); 21558 } 21559 21560 /* 21561 * We currently only support MDT on simple TCP/{IPv4,IPv6}, 21562 * so disable MDT otherwise. The checks are done here 21563 * and in tcp_wput_data(). 21564 */ 21565 if (tcp->tcp_mdt && 21566 (tcp->tcp_ipversion == IPV4_VERSION && 21567 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 21568 (tcp->tcp_ipversion == IPV6_VERSION && 21569 tcp->tcp_ip_hdr_len != IPV6_HDR_LEN)) 21570 tcp->tcp_mdt = B_FALSE; 21571 21572 if (tcp->tcp_mdt) { 21573 if (mdt_capab->ill_mdt_version != MDT_VERSION_2) { 21574 cmn_err(CE_NOTE, "tcp_mdt_update: unknown MDT " 21575 "version (%d), expected version is %d", 21576 mdt_capab->ill_mdt_version, MDT_VERSION_2); 21577 tcp->tcp_mdt = B_FALSE; 21578 return; 21579 } 21580 21581 /* 21582 * We need the driver to be able to handle at least three 21583 * spans per packet in order for tcp MDT to be utilized. 21584 * The first is for the header portion, while the rest are 21585 * needed to handle a packet that straddles across two 21586 * virtually non-contiguous buffers; a typical tcp packet 21587 * therefore consists of only two spans. Note that we take 21588 * a zero as "don't care". 21589 */ 21590 if (mdt_capab->ill_mdt_span_limit > 0 && 21591 mdt_capab->ill_mdt_span_limit < 3) { 21592 tcp->tcp_mdt = B_FALSE; 21593 return; 21594 } 21595 21596 /* a zero means driver wants default value */ 21597 tcp->tcp_mdt_max_pld = MIN(mdt_capab->ill_mdt_max_pld, 21598 tcps->tcps_mdt_max_pbufs); 21599 if (tcp->tcp_mdt_max_pld == 0) 21600 tcp->tcp_mdt_max_pld = tcps->tcps_mdt_max_pbufs; 21601 21602 /* ensure 32-bit alignment */ 21603 tcp->tcp_mdt_hdr_head = roundup(MAX(tcps->tcps_mdt_hdr_head_min, 21604 mdt_capab->ill_mdt_hdr_head), 4); 21605 tcp->tcp_mdt_hdr_tail = roundup(MAX(tcps->tcps_mdt_hdr_tail_min, 21606 mdt_capab->ill_mdt_hdr_tail), 4); 21607 21608 if (!first && !prev_state) { 21609 TCP_STAT(tcps, tcp_mdt_conn_resumed2); 21610 ip1dbg(("tcp_mdt_update: reenabling MDT for connp %p\n", 21611 (void *)tcp->tcp_connp)); 21612 } 21613 } 21614 } 21615 21616 /* Unlink and return any mblk that looks like it contains a LSO info */ 21617 static mblk_t * 21618 tcp_lso_info_mp(mblk_t *mp) 21619 { 21620 mblk_t *prev_mp; 21621 21622 for (;;) { 21623 prev_mp = mp; 21624 /* no more to process? */ 21625 if ((mp = mp->b_cont) == NULL) 21626 break; 21627 21628 switch (DB_TYPE(mp)) { 21629 case M_CTL: 21630 if (*(uint32_t *)mp->b_rptr != LSO_IOC_INFO_UPDATE) 21631 continue; 21632 ASSERT(prev_mp != NULL); 21633 prev_mp->b_cont = mp->b_cont; 21634 mp->b_cont = NULL; 21635 return (mp); 21636 default: 21637 break; 21638 } 21639 } 21640 21641 return (mp); 21642 } 21643 21644 /* LSO info update routine, called when IP notifies us about LSO */ 21645 static void 21646 tcp_lso_update(tcp_t *tcp, ill_lso_capab_t *lso_capab) 21647 { 21648 tcp_stack_t *tcps = tcp->tcp_tcps; 21649 21650 /* 21651 * IP is telling us to abort LSO on this connection? We know 21652 * this because the capability is only turned off when IP 21653 * encounters some pathological cases, e.g. link-layer change 21654 * where the new NIC/driver doesn't support LSO, or in situation 21655 * where LSO usage on the link-layer has been switched off. 21656 * IP would not have sent us the initial LSO_IOC_INFO_UPDATE 21657 * if the link-layer doesn't support LSO, and if it does, it 21658 * will indicate that the feature is to be turned on. 21659 */ 21660 tcp->tcp_lso = (lso_capab->ill_lso_on != 0); 21661 TCP_STAT(tcps, tcp_lso_enabled); 21662 21663 /* 21664 * We currently only support LSO on simple TCP/IPv4, 21665 * so disable LSO otherwise. The checks are done here 21666 * and in tcp_wput_data(). 21667 */ 21668 if (tcp->tcp_lso && 21669 (tcp->tcp_ipversion == IPV4_VERSION && 21670 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 21671 (tcp->tcp_ipversion == IPV6_VERSION)) { 21672 tcp->tcp_lso = B_FALSE; 21673 TCP_STAT(tcps, tcp_lso_disabled); 21674 } else { 21675 tcp->tcp_lso_max = MIN(TCP_MAX_LSO_LENGTH, 21676 lso_capab->ill_lso_max); 21677 } 21678 } 21679 21680 static void 21681 tcp_ire_ill_check(tcp_t *tcp, ire_t *ire, ill_t *ill, boolean_t check_lso_mdt) 21682 { 21683 conn_t *connp = tcp->tcp_connp; 21684 tcp_stack_t *tcps = tcp->tcp_tcps; 21685 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 21686 21687 ASSERT(ire != NULL); 21688 21689 /* 21690 * We may be in the fastpath here, and although we essentially do 21691 * similar checks as in ip_bind_connected{_v6}/ip_xxinfo_return, 21692 * we try to keep things as brief as possible. After all, these 21693 * are only best-effort checks, and we do more thorough ones prior 21694 * to calling tcp_send()/tcp_multisend(). 21695 */ 21696 if ((ipst->ips_ip_lso_outbound || ipst->ips_ip_multidata_outbound) && 21697 check_lso_mdt && !(ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK)) && 21698 ill != NULL && !CONN_IPSEC_OUT_ENCAPSULATED(connp) && 21699 !(ire->ire_flags & RTF_MULTIRT) && 21700 !IPP_ENABLED(IPP_LOCAL_OUT, ipst) && 21701 CONN_IS_LSO_MD_FASTPATH(connp)) { 21702 if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) { 21703 /* Cache the result */ 21704 connp->conn_lso_ok = B_TRUE; 21705 21706 ASSERT(ill->ill_lso_capab != NULL); 21707 if (!ill->ill_lso_capab->ill_lso_on) { 21708 ill->ill_lso_capab->ill_lso_on = 1; 21709 ip1dbg(("tcp_ire_ill_check: connp %p enables " 21710 "LSO for interface %s\n", (void *)connp, 21711 ill->ill_name)); 21712 } 21713 tcp_lso_update(tcp, ill->ill_lso_capab); 21714 } else if (ipst->ips_ip_multidata_outbound && 21715 ILL_MDT_CAPABLE(ill)) { 21716 /* Cache the result */ 21717 connp->conn_mdt_ok = B_TRUE; 21718 21719 ASSERT(ill->ill_mdt_capab != NULL); 21720 if (!ill->ill_mdt_capab->ill_mdt_on) { 21721 ill->ill_mdt_capab->ill_mdt_on = 1; 21722 ip1dbg(("tcp_ire_ill_check: connp %p enables " 21723 "MDT for interface %s\n", (void *)connp, 21724 ill->ill_name)); 21725 } 21726 tcp_mdt_update(tcp, ill->ill_mdt_capab, B_TRUE); 21727 } 21728 } 21729 21730 /* 21731 * The goal is to reduce the number of generated tcp segments by 21732 * setting the maxpsz multiplier to 0; this will have an affect on 21733 * tcp_maxpsz_set(). With this behavior, tcp will pack more data 21734 * into each packet, up to SMSS bytes. Doing this reduces the number 21735 * of outbound segments and incoming ACKs, thus allowing for better 21736 * network and system performance. In contrast the legacy behavior 21737 * may result in sending less than SMSS size, because the last mblk 21738 * for some packets may have more data than needed to make up SMSS, 21739 * and the legacy code refused to "split" it. 21740 * 21741 * We apply the new behavior on following situations: 21742 * 21743 * 1) Loopback connections, 21744 * 2) Connections in which the remote peer is not on local subnet, 21745 * 3) Local subnet connections over the bge interface (see below). 21746 * 21747 * Ideally, we would like this behavior to apply for interfaces other 21748 * than bge. However, doing so would negatively impact drivers which 21749 * perform dynamic mapping and unmapping of DMA resources, which are 21750 * increased by setting the maxpsz multiplier to 0 (more mblks per 21751 * packet will be generated by tcp). The bge driver does not suffer 21752 * from this, as it copies the mblks into pre-mapped buffers, and 21753 * therefore does not require more I/O resources than before. 21754 * 21755 * Otherwise, this behavior is present on all network interfaces when 21756 * the destination endpoint is non-local, since reducing the number 21757 * of packets in general is good for the network. 21758 * 21759 * TODO We need to remove this hard-coded conditional for bge once 21760 * a better "self-tuning" mechanism, or a way to comprehend 21761 * the driver transmit strategy is devised. Until the solution 21762 * is found and well understood, we live with this hack. 21763 */ 21764 if (!tcp_static_maxpsz && 21765 (tcp->tcp_loopback || !tcp->tcp_localnet || 21766 (ill->ill_name_length > 3 && bcmp(ill->ill_name, "bge", 3) == 0))) { 21767 /* override the default value */ 21768 tcp->tcp_maxpsz = 0; 21769 21770 ip3dbg(("tcp_ire_ill_check: connp %p tcp_maxpsz %d on " 21771 "interface %s\n", (void *)connp, tcp->tcp_maxpsz, 21772 ill != NULL ? ill->ill_name : ipif_loopback_name)); 21773 } 21774 21775 /* set the stream head parameters accordingly */ 21776 (void) tcp_maxpsz_set(tcp, B_TRUE); 21777 } 21778 21779 /* tcp_wput_flush is called by tcp_wput_nondata to handle M_FLUSH messages. */ 21780 static void 21781 tcp_wput_flush(tcp_t *tcp, mblk_t *mp) 21782 { 21783 uchar_t fval = *mp->b_rptr; 21784 mblk_t *tail; 21785 queue_t *q = tcp->tcp_wq; 21786 21787 /* TODO: How should flush interact with urgent data? */ 21788 if ((fval & FLUSHW) && tcp->tcp_xmit_head && 21789 !(tcp->tcp_valid_bits & TCP_URG_VALID)) { 21790 /* 21791 * Flush only data that has not yet been put on the wire. If 21792 * we flush data that we have already transmitted, life, as we 21793 * know it, may come to an end. 21794 */ 21795 tail = tcp->tcp_xmit_tail; 21796 tail->b_wptr -= tcp->tcp_xmit_tail_unsent; 21797 tcp->tcp_xmit_tail_unsent = 0; 21798 tcp->tcp_unsent = 0; 21799 if (tail->b_wptr != tail->b_rptr) 21800 tail = tail->b_cont; 21801 if (tail) { 21802 mblk_t **excess = &tcp->tcp_xmit_head; 21803 for (;;) { 21804 mblk_t *mp1 = *excess; 21805 if (mp1 == tail) 21806 break; 21807 tcp->tcp_xmit_tail = mp1; 21808 tcp->tcp_xmit_last = mp1; 21809 excess = &mp1->b_cont; 21810 } 21811 *excess = NULL; 21812 tcp_close_mpp(&tail); 21813 if (tcp->tcp_snd_zcopy_aware) 21814 tcp_zcopy_notify(tcp); 21815 } 21816 /* 21817 * We have no unsent data, so unsent must be less than 21818 * tcp_xmit_lowater, so re-enable flow. 21819 */ 21820 mutex_enter(&tcp->tcp_non_sq_lock); 21821 if (tcp->tcp_flow_stopped) { 21822 tcp_clrqfull(tcp); 21823 } 21824 mutex_exit(&tcp->tcp_non_sq_lock); 21825 } 21826 /* 21827 * TODO: you can't just flush these, you have to increase rwnd for one 21828 * thing. For another, how should urgent data interact? 21829 */ 21830 if (fval & FLUSHR) { 21831 *mp->b_rptr = fval & ~FLUSHW; 21832 /* XXX */ 21833 qreply(q, mp); 21834 return; 21835 } 21836 freemsg(mp); 21837 } 21838 21839 /* 21840 * tcp_wput_iocdata is called by tcp_wput_nondata to handle all M_IOCDATA 21841 * messages. 21842 */ 21843 static void 21844 tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp) 21845 { 21846 mblk_t *mp1; 21847 STRUCT_HANDLE(strbuf, sb); 21848 uint16_t port; 21849 queue_t *q = tcp->tcp_wq; 21850 in6_addr_t v6addr; 21851 ipaddr_t v4addr; 21852 uint32_t flowinfo = 0; 21853 int addrlen; 21854 21855 /* Make sure it is one of ours. */ 21856 switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) { 21857 case TI_GETMYNAME: 21858 case TI_GETPEERNAME: 21859 break; 21860 default: 21861 CALL_IP_WPUT(tcp->tcp_connp, q, mp); 21862 return; 21863 } 21864 switch (mi_copy_state(q, mp, &mp1)) { 21865 case -1: 21866 return; 21867 case MI_COPY_CASE(MI_COPY_IN, 1): 21868 break; 21869 case MI_COPY_CASE(MI_COPY_OUT, 1): 21870 /* Copy out the strbuf. */ 21871 mi_copyout(q, mp); 21872 return; 21873 case MI_COPY_CASE(MI_COPY_OUT, 2): 21874 /* All done. */ 21875 mi_copy_done(q, mp, 0); 21876 return; 21877 default: 21878 mi_copy_done(q, mp, EPROTO); 21879 return; 21880 } 21881 /* Check alignment of the strbuf */ 21882 if (!OK_32PTR(mp1->b_rptr)) { 21883 mi_copy_done(q, mp, EINVAL); 21884 return; 21885 } 21886 21887 STRUCT_SET_HANDLE(sb, ((struct iocblk *)mp->b_rptr)->ioc_flag, 21888 (void *)mp1->b_rptr); 21889 addrlen = tcp->tcp_family == AF_INET ? sizeof (sin_t) : sizeof (sin6_t); 21890 21891 if (STRUCT_FGET(sb, maxlen) < addrlen) { 21892 mi_copy_done(q, mp, EINVAL); 21893 return; 21894 } 21895 switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) { 21896 case TI_GETMYNAME: 21897 if (tcp->tcp_family == AF_INET) { 21898 if (tcp->tcp_ipversion == IPV4_VERSION) { 21899 v4addr = tcp->tcp_ipha->ipha_src; 21900 } else { 21901 /* can't return an address in this case */ 21902 v4addr = 0; 21903 } 21904 } else { 21905 /* tcp->tcp_family == AF_INET6 */ 21906 if (tcp->tcp_ipversion == IPV4_VERSION) { 21907 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 21908 &v6addr); 21909 } else { 21910 v6addr = tcp->tcp_ip6h->ip6_src; 21911 } 21912 } 21913 port = tcp->tcp_lport; 21914 break; 21915 case TI_GETPEERNAME: 21916 if (tcp->tcp_family == AF_INET) { 21917 if (tcp->tcp_ipversion == IPV4_VERSION) { 21918 IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_remote_v6, 21919 v4addr); 21920 } else { 21921 /* can't return an address in this case */ 21922 v4addr = 0; 21923 } 21924 } else { 21925 /* tcp->tcp_family == AF_INET6) */ 21926 v6addr = tcp->tcp_remote_v6; 21927 if (tcp->tcp_ipversion == IPV6_VERSION) { 21928 /* 21929 * No flowinfo if tcp->tcp_ipversion is v4. 21930 * 21931 * flowinfo was already initialized to zero 21932 * where it was declared above, so only 21933 * set it if ipversion is v6. 21934 */ 21935 flowinfo = tcp->tcp_ip6h->ip6_vcf & 21936 ~IPV6_VERS_AND_FLOW_MASK; 21937 } 21938 } 21939 port = tcp->tcp_fport; 21940 break; 21941 default: 21942 mi_copy_done(q, mp, EPROTO); 21943 return; 21944 } 21945 mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE); 21946 if (!mp1) 21947 return; 21948 21949 if (tcp->tcp_family == AF_INET) { 21950 sin_t *sin; 21951 21952 STRUCT_FSET(sb, len, (int)sizeof (sin_t)); 21953 sin = (sin_t *)mp1->b_rptr; 21954 mp1->b_wptr = (uchar_t *)&sin[1]; 21955 *sin = sin_null; 21956 sin->sin_family = AF_INET; 21957 sin->sin_addr.s_addr = v4addr; 21958 sin->sin_port = port; 21959 } else { 21960 /* tcp->tcp_family == AF_INET6 */ 21961 sin6_t *sin6; 21962 21963 STRUCT_FSET(sb, len, (int)sizeof (sin6_t)); 21964 sin6 = (sin6_t *)mp1->b_rptr; 21965 mp1->b_wptr = (uchar_t *)&sin6[1]; 21966 *sin6 = sin6_null; 21967 sin6->sin6_family = AF_INET6; 21968 sin6->sin6_flowinfo = flowinfo; 21969 sin6->sin6_addr = v6addr; 21970 sin6->sin6_port = port; 21971 } 21972 /* Copy out the address */ 21973 mi_copyout(q, mp); 21974 } 21975 21976 /* 21977 * tcp_wput_ioctl is called by tcp_wput_nondata() to handle all M_IOCTL 21978 * messages. 21979 */ 21980 /* ARGSUSED */ 21981 static void 21982 tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2) 21983 { 21984 conn_t *connp = (conn_t *)arg; 21985 tcp_t *tcp = connp->conn_tcp; 21986 queue_t *q = tcp->tcp_wq; 21987 struct iocblk *iocp; 21988 tcp_stack_t *tcps = tcp->tcp_tcps; 21989 21990 ASSERT(DB_TYPE(mp) == M_IOCTL); 21991 /* 21992 * Try and ASSERT the minimum possible references on the 21993 * conn early enough. Since we are executing on write side, 21994 * the connection is obviously not detached and that means 21995 * there is a ref each for TCP and IP. Since we are behind 21996 * the squeue, the minimum references needed are 3. If the 21997 * conn is in classifier hash list, there should be an 21998 * extra ref for that (we check both the possibilities). 21999 */ 22000 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 22001 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 22002 22003 iocp = (struct iocblk *)mp->b_rptr; 22004 switch (iocp->ioc_cmd) { 22005 case TCP_IOC_DEFAULT_Q: 22006 /* Wants to be the default wq. */ 22007 if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) { 22008 iocp->ioc_error = EPERM; 22009 iocp->ioc_count = 0; 22010 mp->b_datap->db_type = M_IOCACK; 22011 qreply(q, mp); 22012 return; 22013 } 22014 tcp_def_q_set(tcp, mp); 22015 return; 22016 case _SIOCSOCKFALLBACK: 22017 /* 22018 * Either sockmod is about to be popped and the socket 22019 * would now be treated as a plain stream, or a module 22020 * is about to be pushed so we could no longer use read- 22021 * side synchronous streams for fused loopback tcp. 22022 * Drain any queued data and disable direct sockfs 22023 * interface from now on. 22024 */ 22025 if (!tcp->tcp_issocket) { 22026 DB_TYPE(mp) = M_IOCNAK; 22027 iocp->ioc_error = EINVAL; 22028 } else { 22029 #ifdef _ILP32 22030 tcp->tcp_acceptor_id = (t_uscalar_t)RD(q); 22031 #else 22032 tcp->tcp_acceptor_id = tcp->tcp_connp->conn_dev; 22033 #endif 22034 /* 22035 * Insert this socket into the acceptor hash. 22036 * We might need it for T_CONN_RES message 22037 */ 22038 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 22039 22040 if (tcp->tcp_fused) { 22041 /* 22042 * This is a fused loopback tcp; disable 22043 * read-side synchronous streams interface 22044 * and drain any queued data. It is okay 22045 * to do this for non-synchronous streams 22046 * fused tcp as well. 22047 */ 22048 tcp_fuse_disable_pair(tcp, B_FALSE); 22049 } 22050 tcp->tcp_issocket = B_FALSE; 22051 TCP_STAT(tcps, tcp_sock_fallback); 22052 22053 DB_TYPE(mp) = M_IOCACK; 22054 iocp->ioc_error = 0; 22055 } 22056 iocp->ioc_count = 0; 22057 iocp->ioc_rval = 0; 22058 qreply(q, mp); 22059 return; 22060 } 22061 CALL_IP_WPUT(connp, q, mp); 22062 } 22063 22064 /* 22065 * This routine is called by tcp_wput() to handle all TPI requests. 22066 */ 22067 /* ARGSUSED */ 22068 static void 22069 tcp_wput_proto(void *arg, mblk_t *mp, void *arg2) 22070 { 22071 conn_t *connp = (conn_t *)arg; 22072 tcp_t *tcp = connp->conn_tcp; 22073 union T_primitives *tprim = (union T_primitives *)mp->b_rptr; 22074 uchar_t *rptr; 22075 t_scalar_t type; 22076 int len; 22077 cred_t *cr = DB_CREDDEF(mp, tcp->tcp_cred); 22078 22079 /* 22080 * Try and ASSERT the minimum possible references on the 22081 * conn early enough. Since we are executing on write side, 22082 * the connection is obviously not detached and that means 22083 * there is a ref each for TCP and IP. Since we are behind 22084 * the squeue, the minimum references needed are 3. If the 22085 * conn is in classifier hash list, there should be an 22086 * extra ref for that (we check both the possibilities). 22087 */ 22088 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 22089 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 22090 22091 rptr = mp->b_rptr; 22092 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 22093 if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { 22094 type = ((union T_primitives *)rptr)->type; 22095 if (type == T_EXDATA_REQ) { 22096 uint32_t msize = msgdsize(mp->b_cont); 22097 22098 len = msize - 1; 22099 if (len < 0) { 22100 freemsg(mp); 22101 return; 22102 } 22103 /* 22104 * Try to force urgent data out on the wire. 22105 * Even if we have unsent data this will 22106 * at least send the urgent flag. 22107 * XXX does not handle more flag correctly. 22108 */ 22109 len += tcp->tcp_unsent; 22110 len += tcp->tcp_snxt; 22111 tcp->tcp_urg = len; 22112 tcp->tcp_valid_bits |= TCP_URG_VALID; 22113 22114 /* Bypass tcp protocol for fused tcp loopback */ 22115 if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize)) 22116 return; 22117 } else if (type != T_DATA_REQ) { 22118 goto non_urgent_data; 22119 } 22120 /* TODO: options, flags, ... from user */ 22121 /* Set length to zero for reclamation below */ 22122 tcp_wput_data(tcp, mp->b_cont, B_TRUE); 22123 freeb(mp); 22124 return; 22125 } else { 22126 if (tcp->tcp_debug) { 22127 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 22128 "tcp_wput_proto, dropping one..."); 22129 } 22130 freemsg(mp); 22131 return; 22132 } 22133 22134 non_urgent_data: 22135 22136 switch ((int)tprim->type) { 22137 case T_SSL_PROXY_BIND_REQ: /* an SSL proxy endpoint bind request */ 22138 /* 22139 * save the kssl_ent_t from the next block, and convert this 22140 * back to a normal bind_req. 22141 */ 22142 if (mp->b_cont != NULL) { 22143 ASSERT(MBLKL(mp->b_cont) >= sizeof (kssl_ent_t)); 22144 22145 if (tcp->tcp_kssl_ent != NULL) { 22146 kssl_release_ent(tcp->tcp_kssl_ent, NULL, 22147 KSSL_NO_PROXY); 22148 tcp->tcp_kssl_ent = NULL; 22149 } 22150 bcopy(mp->b_cont->b_rptr, &tcp->tcp_kssl_ent, 22151 sizeof (kssl_ent_t)); 22152 kssl_hold_ent(tcp->tcp_kssl_ent); 22153 freemsg(mp->b_cont); 22154 mp->b_cont = NULL; 22155 } 22156 tprim->type = T_BIND_REQ; 22157 22158 /* FALLTHROUGH */ 22159 case O_T_BIND_REQ: /* bind request */ 22160 case T_BIND_REQ: /* new semantics bind request */ 22161 tcp_bind(tcp, mp); 22162 break; 22163 case T_UNBIND_REQ: /* unbind request */ 22164 tcp_unbind(tcp, mp); 22165 break; 22166 case O_T_CONN_RES: /* old connection response XXX */ 22167 case T_CONN_RES: /* connection response */ 22168 tcp_accept(tcp, mp); 22169 break; 22170 case T_CONN_REQ: /* connection request */ 22171 tcp_connect(tcp, mp); 22172 break; 22173 case T_DISCON_REQ: /* disconnect request */ 22174 tcp_disconnect(tcp, mp); 22175 break; 22176 case T_CAPABILITY_REQ: 22177 tcp_capability_req(tcp, mp); /* capability request */ 22178 break; 22179 case T_INFO_REQ: /* information request */ 22180 tcp_info_req(tcp, mp); 22181 break; 22182 case T_SVR4_OPTMGMT_REQ: /* manage options req */ 22183 (void) svr4_optcom_req(tcp->tcp_wq, mp, cr, 22184 &tcp_opt_obj, B_TRUE); 22185 break; 22186 case T_OPTMGMT_REQ: 22187 /* 22188 * Note: no support for snmpcom_req() through new 22189 * T_OPTMGMT_REQ. See comments in ip.c 22190 */ 22191 /* Only IP is allowed to return meaningful value */ 22192 (void) tpi_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj, 22193 B_TRUE); 22194 break; 22195 22196 case T_UNITDATA_REQ: /* unitdata request */ 22197 tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); 22198 break; 22199 case T_ORDREL_REQ: /* orderly release req */ 22200 freemsg(mp); 22201 22202 if (tcp->tcp_fused) 22203 tcp_unfuse(tcp); 22204 22205 if (tcp_xmit_end(tcp) != 0) { 22206 /* 22207 * We were crossing FINs and got a reset from 22208 * the other side. Just ignore it. 22209 */ 22210 if (tcp->tcp_debug) { 22211 (void) strlog(TCP_MOD_ID, 0, 1, 22212 SL_ERROR|SL_TRACE, 22213 "tcp_wput_proto, T_ORDREL_REQ out of " 22214 "state %s", 22215 tcp_display(tcp, NULL, 22216 DISP_ADDR_AND_PORT)); 22217 } 22218 } 22219 break; 22220 case T_ADDR_REQ: 22221 tcp_addr_req(tcp, mp); 22222 break; 22223 default: 22224 if (tcp->tcp_debug) { 22225 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 22226 "tcp_wput_proto, bogus TPI msg, type %d", 22227 tprim->type); 22228 } 22229 /* 22230 * We used to M_ERROR. Sending TNOTSUPPORT gives the user 22231 * to recover. 22232 */ 22233 tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); 22234 break; 22235 } 22236 } 22237 22238 /* 22239 * The TCP write service routine should never be called... 22240 */ 22241 /* ARGSUSED */ 22242 static void 22243 tcp_wsrv(queue_t *q) 22244 { 22245 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 22246 22247 TCP_STAT(tcps, tcp_wsrv_called); 22248 } 22249 22250 /* Non overlapping byte exchanger */ 22251 static void 22252 tcp_xchg(uchar_t *a, uchar_t *b, int len) 22253 { 22254 uchar_t uch; 22255 22256 while (len-- > 0) { 22257 uch = a[len]; 22258 a[len] = b[len]; 22259 b[len] = uch; 22260 } 22261 } 22262 22263 /* 22264 * Send out a control packet on the tcp connection specified. This routine 22265 * is typically called where we need a simple ACK or RST generated. 22266 */ 22267 static void 22268 tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, uint32_t ack, int ctl) 22269 { 22270 uchar_t *rptr; 22271 tcph_t *tcph; 22272 ipha_t *ipha = NULL; 22273 ip6_t *ip6h = NULL; 22274 uint32_t sum; 22275 int tcp_hdr_len; 22276 int tcp_ip_hdr_len; 22277 mblk_t *mp; 22278 tcp_stack_t *tcps = tcp->tcp_tcps; 22279 22280 /* 22281 * Save sum for use in source route later. 22282 */ 22283 ASSERT(tcp != NULL); 22284 sum = tcp->tcp_tcp_hdr_len + tcp->tcp_sum; 22285 tcp_hdr_len = tcp->tcp_hdr_len; 22286 tcp_ip_hdr_len = tcp->tcp_ip_hdr_len; 22287 22288 /* If a text string is passed in with the request, pass it to strlog. */ 22289 if (str != NULL && tcp->tcp_debug) { 22290 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 22291 "tcp_xmit_ctl: '%s', seq 0x%x, ack 0x%x, ctl 0x%x", 22292 str, seq, ack, ctl); 22293 } 22294 mp = allocb(tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcps->tcps_wroff_xtra, 22295 BPRI_MED); 22296 if (mp == NULL) { 22297 return; 22298 } 22299 rptr = &mp->b_rptr[tcps->tcps_wroff_xtra]; 22300 mp->b_rptr = rptr; 22301 mp->b_wptr = &rptr[tcp_hdr_len]; 22302 bcopy(tcp->tcp_iphc, rptr, tcp_hdr_len); 22303 22304 if (tcp->tcp_ipversion == IPV4_VERSION) { 22305 ipha = (ipha_t *)rptr; 22306 ipha->ipha_length = htons(tcp_hdr_len); 22307 } else { 22308 ip6h = (ip6_t *)rptr; 22309 ASSERT(tcp != NULL); 22310 ip6h->ip6_plen = htons(tcp->tcp_hdr_len - 22311 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 22312 } 22313 tcph = (tcph_t *)&rptr[tcp_ip_hdr_len]; 22314 tcph->th_flags[0] = (uint8_t)ctl; 22315 if (ctl & TH_RST) { 22316 BUMP_MIB(&tcps->tcps_mib, tcpOutRsts); 22317 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 22318 /* 22319 * Don't send TSopt w/ TH_RST packets per RFC 1323. 22320 */ 22321 if (tcp->tcp_snd_ts_ok && 22322 tcp->tcp_state > TCPS_SYN_SENT) { 22323 mp->b_wptr = &rptr[tcp_hdr_len - TCPOPT_REAL_TS_LEN]; 22324 *(mp->b_wptr) = TCPOPT_EOL; 22325 if (tcp->tcp_ipversion == IPV4_VERSION) { 22326 ipha->ipha_length = htons(tcp_hdr_len - 22327 TCPOPT_REAL_TS_LEN); 22328 } else { 22329 ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) - 22330 TCPOPT_REAL_TS_LEN); 22331 } 22332 tcph->th_offset_and_rsrvd[0] -= (3 << 4); 22333 sum -= TCPOPT_REAL_TS_LEN; 22334 } 22335 } 22336 if (ctl & TH_ACK) { 22337 if (tcp->tcp_snd_ts_ok) { 22338 U32_TO_BE32(lbolt, 22339 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 22340 U32_TO_BE32(tcp->tcp_ts_recent, 22341 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 22342 } 22343 22344 /* Update the latest receive window size in TCP header. */ 22345 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 22346 tcph->th_win); 22347 tcp->tcp_rack = ack; 22348 tcp->tcp_rack_cnt = 0; 22349 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 22350 } 22351 BUMP_LOCAL(tcp->tcp_obsegs); 22352 U32_TO_BE32(seq, tcph->th_seq); 22353 U32_TO_BE32(ack, tcph->th_ack); 22354 /* 22355 * Include the adjustment for a source route if any. 22356 */ 22357 sum = (sum >> 16) + (sum & 0xFFFF); 22358 U16_TO_BE16(sum, tcph->th_sum); 22359 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 22360 tcp_send_data(tcp, tcp->tcp_wq, mp); 22361 } 22362 22363 /* 22364 * If this routine returns B_TRUE, TCP can generate a RST in response 22365 * to a segment. If it returns B_FALSE, TCP should not respond. 22366 */ 22367 static boolean_t 22368 tcp_send_rst_chk(tcp_stack_t *tcps) 22369 { 22370 clock_t now; 22371 22372 /* 22373 * TCP needs to protect itself from generating too many RSTs. 22374 * This can be a DoS attack by sending us random segments 22375 * soliciting RSTs. 22376 * 22377 * What we do here is to have a limit of tcp_rst_sent_rate RSTs 22378 * in each 1 second interval. In this way, TCP still generate 22379 * RSTs in normal cases but when under attack, the impact is 22380 * limited. 22381 */ 22382 if (tcps->tcps_rst_sent_rate_enabled != 0) { 22383 now = lbolt; 22384 /* lbolt can wrap around. */ 22385 if ((tcps->tcps_last_rst_intrvl > now) || 22386 (TICK_TO_MSEC(now - tcps->tcps_last_rst_intrvl) > 22387 1*SECONDS)) { 22388 tcps->tcps_last_rst_intrvl = now; 22389 tcps->tcps_rst_cnt = 1; 22390 } else if (++tcps->tcps_rst_cnt > tcps->tcps_rst_sent_rate) { 22391 return (B_FALSE); 22392 } 22393 } 22394 return (B_TRUE); 22395 } 22396 22397 /* 22398 * Send down the advice IP ioctl to tell IP to mark an IRE temporary. 22399 */ 22400 static void 22401 tcp_ip_ire_mark_advice(tcp_t *tcp) 22402 { 22403 mblk_t *mp; 22404 ipic_t *ipic; 22405 22406 if (tcp->tcp_ipversion == IPV4_VERSION) { 22407 mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN, 22408 &ipic); 22409 } else { 22410 mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN, 22411 &ipic); 22412 } 22413 if (mp == NULL) 22414 return; 22415 ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY; 22416 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 22417 } 22418 22419 /* 22420 * Return an IP advice ioctl mblk and set ipic to be the pointer 22421 * to the advice structure. 22422 */ 22423 static mblk_t * 22424 tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic) 22425 { 22426 struct iocblk *ioc; 22427 mblk_t *mp, *mp1; 22428 22429 mp = allocb(sizeof (ipic_t) + addr_len, BPRI_HI); 22430 if (mp == NULL) 22431 return (NULL); 22432 bzero(mp->b_rptr, sizeof (ipic_t) + addr_len); 22433 *ipic = (ipic_t *)mp->b_rptr; 22434 (*ipic)->ipic_cmd = IP_IOC_IRE_ADVISE_NO_REPLY; 22435 (*ipic)->ipic_addr_offset = sizeof (ipic_t); 22436 22437 bcopy(addr, *ipic + 1, addr_len); 22438 22439 (*ipic)->ipic_addr_length = addr_len; 22440 mp->b_wptr = &mp->b_rptr[sizeof (ipic_t) + addr_len]; 22441 22442 mp1 = mkiocb(IP_IOCTL); 22443 if (mp1 == NULL) { 22444 freemsg(mp); 22445 return (NULL); 22446 } 22447 mp1->b_cont = mp; 22448 ioc = (struct iocblk *)mp1->b_rptr; 22449 ioc->ioc_count = sizeof (ipic_t) + addr_len; 22450 22451 return (mp1); 22452 } 22453 22454 /* 22455 * Generate a reset based on an inbound packet, connp is set by caller 22456 * when RST is in response to an unexpected inbound packet for which 22457 * there is active tcp state in the system. 22458 * 22459 * IPSEC NOTE : Try to send the reply with the same protection as it came 22460 * in. We still have the ipsec_mp that the packet was attached to. Thus 22461 * the packet will go out at the same level of protection as it came in by 22462 * converting the IPSEC_IN to IPSEC_OUT. 22463 */ 22464 static void 22465 tcp_xmit_early_reset(char *str, mblk_t *mp, uint32_t seq, 22466 uint32_t ack, int ctl, uint_t ip_hdr_len, zoneid_t zoneid, 22467 tcp_stack_t *tcps, conn_t *connp) 22468 { 22469 ipha_t *ipha = NULL; 22470 ip6_t *ip6h = NULL; 22471 ushort_t len; 22472 tcph_t *tcph; 22473 int i; 22474 mblk_t *ipsec_mp; 22475 boolean_t mctl_present; 22476 ipic_t *ipic; 22477 ipaddr_t v4addr; 22478 in6_addr_t v6addr; 22479 int addr_len; 22480 void *addr; 22481 queue_t *q = tcps->tcps_g_q; 22482 tcp_t *tcp; 22483 cred_t *cr; 22484 mblk_t *nmp; 22485 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 22486 22487 if (tcps->tcps_g_q == NULL) { 22488 /* 22489 * For non-zero stackids the default queue isn't created 22490 * until the first open, thus there can be a need to send 22491 * a reset before then. But we can't do that, hence we just 22492 * drop the packet. Later during boot, when the default queue 22493 * has been setup, a retransmitted packet from the peer 22494 * will result in a reset. 22495 */ 22496 ASSERT(tcps->tcps_netstack->netstack_stackid != 22497 GLOBAL_NETSTACKID); 22498 freemsg(mp); 22499 return; 22500 } 22501 22502 if (connp != NULL) 22503 tcp = connp->conn_tcp; 22504 else 22505 tcp = Q_TO_TCP(q); 22506 22507 if (!tcp_send_rst_chk(tcps)) { 22508 tcps->tcps_rst_unsent++; 22509 freemsg(mp); 22510 return; 22511 } 22512 22513 if (mp->b_datap->db_type == M_CTL) { 22514 ipsec_mp = mp; 22515 mp = mp->b_cont; 22516 mctl_present = B_TRUE; 22517 } else { 22518 ipsec_mp = mp; 22519 mctl_present = B_FALSE; 22520 } 22521 22522 if (str && q && tcps->tcps_dbg) { 22523 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 22524 "tcp_xmit_early_reset: '%s', seq 0x%x, ack 0x%x, " 22525 "flags 0x%x", 22526 str, seq, ack, ctl); 22527 } 22528 if (mp->b_datap->db_ref != 1) { 22529 mblk_t *mp1 = copyb(mp); 22530 freemsg(mp); 22531 mp = mp1; 22532 if (!mp) { 22533 if (mctl_present) 22534 freeb(ipsec_mp); 22535 return; 22536 } else { 22537 if (mctl_present) { 22538 ipsec_mp->b_cont = mp; 22539 } else { 22540 ipsec_mp = mp; 22541 } 22542 } 22543 } else if (mp->b_cont) { 22544 freemsg(mp->b_cont); 22545 mp->b_cont = NULL; 22546 } 22547 /* 22548 * We skip reversing source route here. 22549 * (for now we replace all IP options with EOL) 22550 */ 22551 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 22552 ipha = (ipha_t *)mp->b_rptr; 22553 for (i = IP_SIMPLE_HDR_LENGTH; i < (int)ip_hdr_len; i++) 22554 mp->b_rptr[i] = IPOPT_EOL; 22555 /* 22556 * Make sure that src address isn't flagrantly invalid. 22557 * Not all broadcast address checking for the src address 22558 * is possible, since we don't know the netmask of the src 22559 * addr. No check for destination address is done, since 22560 * IP will not pass up a packet with a broadcast dest 22561 * address to TCP. Similar checks are done below for IPv6. 22562 */ 22563 if (ipha->ipha_src == 0 || ipha->ipha_src == INADDR_BROADCAST || 22564 CLASSD(ipha->ipha_src)) { 22565 freemsg(ipsec_mp); 22566 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 22567 return; 22568 } 22569 } else { 22570 ip6h = (ip6_t *)mp->b_rptr; 22571 22572 if (IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src) || 22573 IN6_IS_ADDR_MULTICAST(&ip6h->ip6_src)) { 22574 freemsg(ipsec_mp); 22575 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsInDiscards); 22576 return; 22577 } 22578 22579 /* Remove any extension headers assuming partial overlay */ 22580 if (ip_hdr_len > IPV6_HDR_LEN) { 22581 uint8_t *to; 22582 22583 to = mp->b_rptr + ip_hdr_len - IPV6_HDR_LEN; 22584 ovbcopy(ip6h, to, IPV6_HDR_LEN); 22585 mp->b_rptr += ip_hdr_len - IPV6_HDR_LEN; 22586 ip_hdr_len = IPV6_HDR_LEN; 22587 ip6h = (ip6_t *)mp->b_rptr; 22588 ip6h->ip6_nxt = IPPROTO_TCP; 22589 } 22590 } 22591 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 22592 if (tcph->th_flags[0] & TH_RST) { 22593 freemsg(ipsec_mp); 22594 return; 22595 } 22596 tcph->th_offset_and_rsrvd[0] = (5 << 4); 22597 len = ip_hdr_len + sizeof (tcph_t); 22598 mp->b_wptr = &mp->b_rptr[len]; 22599 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 22600 ipha->ipha_length = htons(len); 22601 /* Swap addresses */ 22602 v4addr = ipha->ipha_src; 22603 ipha->ipha_src = ipha->ipha_dst; 22604 ipha->ipha_dst = v4addr; 22605 ipha->ipha_ident = 0; 22606 ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl; 22607 addr_len = IP_ADDR_LEN; 22608 addr = &v4addr; 22609 } else { 22610 /* No ip6i_t in this case */ 22611 ip6h->ip6_plen = htons(len - IPV6_HDR_LEN); 22612 /* Swap addresses */ 22613 v6addr = ip6h->ip6_src; 22614 ip6h->ip6_src = ip6h->ip6_dst; 22615 ip6h->ip6_dst = v6addr; 22616 ip6h->ip6_hops = (uchar_t)tcps->tcps_ipv6_hoplimit; 22617 addr_len = IPV6_ADDR_LEN; 22618 addr = &v6addr; 22619 } 22620 tcp_xchg(tcph->th_fport, tcph->th_lport, 2); 22621 U32_TO_BE32(ack, tcph->th_ack); 22622 U32_TO_BE32(seq, tcph->th_seq); 22623 U16_TO_BE16(0, tcph->th_win); 22624 U16_TO_BE16(sizeof (tcph_t), tcph->th_sum); 22625 tcph->th_flags[0] = (uint8_t)ctl; 22626 if (ctl & TH_RST) { 22627 BUMP_MIB(&tcps->tcps_mib, tcpOutRsts); 22628 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 22629 } 22630 22631 /* IP trusts us to set up labels when required. */ 22632 if (is_system_labeled() && (cr = DB_CRED(mp)) != NULL && 22633 crgetlabel(cr) != NULL) { 22634 int err, adjust; 22635 22636 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) 22637 err = tsol_check_label(cr, &mp, &adjust, 22638 tcp->tcp_connp->conn_mac_exempt, 22639 tcps->tcps_netstack->netstack_ip); 22640 else 22641 err = tsol_check_label_v6(cr, &mp, &adjust, 22642 tcp->tcp_connp->conn_mac_exempt, 22643 tcps->tcps_netstack->netstack_ip); 22644 if (mctl_present) 22645 ipsec_mp->b_cont = mp; 22646 else 22647 ipsec_mp = mp; 22648 if (err != 0) { 22649 freemsg(ipsec_mp); 22650 return; 22651 } 22652 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 22653 ipha = (ipha_t *)mp->b_rptr; 22654 adjust += ntohs(ipha->ipha_length); 22655 ipha->ipha_length = htons(adjust); 22656 } else { 22657 ip6h = (ip6_t *)mp->b_rptr; 22658 } 22659 } 22660 22661 if (mctl_present) { 22662 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 22663 22664 ASSERT(ii->ipsec_in_type == IPSEC_IN); 22665 if (!ipsec_in_to_out(ipsec_mp, ipha, ip6h)) { 22666 return; 22667 } 22668 } 22669 if (zoneid == ALL_ZONES) 22670 zoneid = GLOBAL_ZONEID; 22671 22672 /* Add the zoneid so ip_output routes it properly */ 22673 if ((nmp = ip_prepend_zoneid(ipsec_mp, zoneid, ipst)) == NULL) { 22674 freemsg(ipsec_mp); 22675 return; 22676 } 22677 ipsec_mp = nmp; 22678 22679 /* 22680 * NOTE: one might consider tracing a TCP packet here, but 22681 * this function has no active TCP state and no tcp structure 22682 * that has a trace buffer. If we traced here, we would have 22683 * to keep a local trace buffer in tcp_record_trace(). 22684 * 22685 * TSol note: The mblk that contains the incoming packet was 22686 * reused by tcp_xmit_listener_reset, so it already contains 22687 * the right credentials and we don't need to call mblk_setcred. 22688 * Also the conn's cred is not right since it is associated 22689 * with tcps_g_q. 22690 */ 22691 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, ipsec_mp); 22692 22693 /* 22694 * Tell IP to mark the IRE used for this destination temporary. 22695 * This way, we can limit our exposure to DoS attack because IP 22696 * creates an IRE for each destination. If there are too many, 22697 * the time to do any routing lookup will be extremely long. And 22698 * the lookup can be in interrupt context. 22699 * 22700 * Note that in normal circumstances, this marking should not 22701 * affect anything. It would be nice if only 1 message is 22702 * needed to inform IP that the IRE created for this RST should 22703 * not be added to the cache table. But there is currently 22704 * not such communication mechanism between TCP and IP. So 22705 * the best we can do now is to send the advice ioctl to IP 22706 * to mark the IRE temporary. 22707 */ 22708 if ((mp = tcp_ip_advise_mblk(addr, addr_len, &ipic)) != NULL) { 22709 ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY; 22710 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 22711 } 22712 } 22713 22714 /* 22715 * Initiate closedown sequence on an active connection. (May be called as 22716 * writer.) Return value zero for OK return, non-zero for error return. 22717 */ 22718 static int 22719 tcp_xmit_end(tcp_t *tcp) 22720 { 22721 ipic_t *ipic; 22722 mblk_t *mp; 22723 tcp_stack_t *tcps = tcp->tcp_tcps; 22724 22725 if (tcp->tcp_state < TCPS_SYN_RCVD || 22726 tcp->tcp_state > TCPS_CLOSE_WAIT) { 22727 /* 22728 * Invalid state, only states TCPS_SYN_RCVD, 22729 * TCPS_ESTABLISHED and TCPS_CLOSE_WAIT are valid 22730 */ 22731 return (-1); 22732 } 22733 22734 tcp->tcp_fss = tcp->tcp_snxt + tcp->tcp_unsent; 22735 tcp->tcp_valid_bits |= TCP_FSS_VALID; 22736 /* 22737 * If there is nothing more unsent, send the FIN now. 22738 * Otherwise, it will go out with the last segment. 22739 */ 22740 if (tcp->tcp_unsent == 0) { 22741 mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 22742 tcp->tcp_fss, B_FALSE, NULL, B_FALSE); 22743 22744 if (mp) { 22745 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 22746 tcp_send_data(tcp, tcp->tcp_wq, mp); 22747 } else { 22748 /* 22749 * Couldn't allocate msg. Pretend we got it out. 22750 * Wait for rexmit timeout. 22751 */ 22752 tcp->tcp_snxt = tcp->tcp_fss + 1; 22753 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 22754 } 22755 22756 /* 22757 * If needed, update tcp_rexmit_snxt as tcp_snxt is 22758 * changed. 22759 */ 22760 if (tcp->tcp_rexmit && tcp->tcp_rexmit_nxt == tcp->tcp_fss) { 22761 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 22762 } 22763 } else { 22764 /* 22765 * If tcp->tcp_cork is set, then the data will not get sent, 22766 * so we have to check that and unset it first. 22767 */ 22768 if (tcp->tcp_cork) 22769 tcp->tcp_cork = B_FALSE; 22770 tcp_wput_data(tcp, NULL, B_FALSE); 22771 } 22772 22773 /* 22774 * If TCP does not get enough samples of RTT or tcp_rtt_updates 22775 * is 0, don't update the cache. 22776 */ 22777 if (tcps->tcps_rtt_updates == 0 || 22778 tcp->tcp_rtt_update < tcps->tcps_rtt_updates) 22779 return (0); 22780 22781 /* 22782 * NOTE: should not update if source routes i.e. if tcp_remote if 22783 * different from the destination. 22784 */ 22785 if (tcp->tcp_ipversion == IPV4_VERSION) { 22786 if (tcp->tcp_remote != tcp->tcp_ipha->ipha_dst) { 22787 return (0); 22788 } 22789 mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN, 22790 &ipic); 22791 } else { 22792 if (!(IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6, 22793 &tcp->tcp_ip6h->ip6_dst))) { 22794 return (0); 22795 } 22796 mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN, 22797 &ipic); 22798 } 22799 22800 /* Record route attributes in the IRE for use by future connections. */ 22801 if (mp == NULL) 22802 return (0); 22803 22804 /* 22805 * We do not have a good algorithm to update ssthresh at this time. 22806 * So don't do any update. 22807 */ 22808 ipic->ipic_rtt = tcp->tcp_rtt_sa; 22809 ipic->ipic_rtt_sd = tcp->tcp_rtt_sd; 22810 22811 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 22812 return (0); 22813 } 22814 22815 /* 22816 * Generate a "no listener here" RST in response to an "unknown" segment. 22817 * connp is set by caller when RST is in response to an unexpected 22818 * inbound packet for which there is active tcp state in the system. 22819 * Note that we are reusing the incoming mp to construct the outgoing RST. 22820 */ 22821 void 22822 tcp_xmit_listeners_reset(mblk_t *mp, uint_t ip_hdr_len, zoneid_t zoneid, 22823 tcp_stack_t *tcps, conn_t *connp) 22824 { 22825 uchar_t *rptr; 22826 uint32_t seg_len; 22827 tcph_t *tcph; 22828 uint32_t seg_seq; 22829 uint32_t seg_ack; 22830 uint_t flags; 22831 mblk_t *ipsec_mp; 22832 ipha_t *ipha; 22833 ip6_t *ip6h; 22834 boolean_t mctl_present = B_FALSE; 22835 boolean_t check = B_TRUE; 22836 boolean_t policy_present; 22837 ipsec_stack_t *ipss = tcps->tcps_netstack->netstack_ipsec; 22838 22839 TCP_STAT(tcps, tcp_no_listener); 22840 22841 ipsec_mp = mp; 22842 22843 if (mp->b_datap->db_type == M_CTL) { 22844 ipsec_in_t *ii; 22845 22846 mctl_present = B_TRUE; 22847 mp = mp->b_cont; 22848 22849 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 22850 ASSERT(ii->ipsec_in_type == IPSEC_IN); 22851 if (ii->ipsec_in_dont_check) { 22852 check = B_FALSE; 22853 if (!ii->ipsec_in_secure) { 22854 freeb(ipsec_mp); 22855 mctl_present = B_FALSE; 22856 ipsec_mp = mp; 22857 } 22858 } 22859 } 22860 22861 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 22862 policy_present = ipss->ipsec_inbound_v4_policy_present; 22863 ipha = (ipha_t *)mp->b_rptr; 22864 ip6h = NULL; 22865 } else { 22866 policy_present = ipss->ipsec_inbound_v6_policy_present; 22867 ipha = NULL; 22868 ip6h = (ip6_t *)mp->b_rptr; 22869 } 22870 22871 if (check && policy_present) { 22872 /* 22873 * The conn_t parameter is NULL because we already know 22874 * nobody's home. 22875 */ 22876 ipsec_mp = ipsec_check_global_policy( 22877 ipsec_mp, (conn_t *)NULL, ipha, ip6h, mctl_present, 22878 tcps->tcps_netstack); 22879 if (ipsec_mp == NULL) 22880 return; 22881 } 22882 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 22883 DTRACE_PROBE2( 22884 tx__ip__log__error__nolistener__tcp, 22885 char *, "Could not reply with RST to mp(1)", 22886 mblk_t *, mp); 22887 ip2dbg(("tcp_xmit_listeners_reset: not permitted to reply\n")); 22888 freemsg(ipsec_mp); 22889 return; 22890 } 22891 22892 rptr = mp->b_rptr; 22893 22894 tcph = (tcph_t *)&rptr[ip_hdr_len]; 22895 seg_seq = BE32_TO_U32(tcph->th_seq); 22896 seg_ack = BE32_TO_U32(tcph->th_ack); 22897 flags = tcph->th_flags[0]; 22898 22899 seg_len = msgdsize(mp) - (TCP_HDR_LENGTH(tcph) + ip_hdr_len); 22900 if (flags & TH_RST) { 22901 freemsg(ipsec_mp); 22902 } else if (flags & TH_ACK) { 22903 tcp_xmit_early_reset("no tcp, reset", 22904 ipsec_mp, seg_ack, 0, TH_RST, ip_hdr_len, zoneid, tcps, 22905 connp); 22906 } else { 22907 if (flags & TH_SYN) { 22908 seg_len++; 22909 } else { 22910 /* 22911 * Here we violate the RFC. Note that a normal 22912 * TCP will never send a segment without the ACK 22913 * flag, except for RST or SYN segment. This 22914 * segment is neither. Just drop it on the 22915 * floor. 22916 */ 22917 freemsg(ipsec_mp); 22918 tcps->tcps_rst_unsent++; 22919 return; 22920 } 22921 22922 tcp_xmit_early_reset("no tcp, reset/ack", 22923 ipsec_mp, 0, seg_seq + seg_len, 22924 TH_RST | TH_ACK, ip_hdr_len, zoneid, tcps, connp); 22925 } 22926 } 22927 22928 /* 22929 * tcp_xmit_mp is called to return a pointer to an mblk chain complete with 22930 * ip and tcp header ready to pass down to IP. If the mp passed in is 22931 * non-NULL, then up to max_to_send bytes of data will be dup'ed off that 22932 * mblk. (If sendall is not set the dup'ing will stop at an mblk boundary 22933 * otherwise it will dup partial mblks.) 22934 * Otherwise, an appropriate ACK packet will be generated. This 22935 * routine is not usually called to send new data for the first time. It 22936 * is mostly called out of the timer for retransmits, and to generate ACKs. 22937 * 22938 * If offset is not NULL, the returned mblk chain's first mblk's b_rptr will 22939 * be adjusted by *offset. And after dupb(), the offset and the ending mblk 22940 * of the original mblk chain will be returned in *offset and *end_mp. 22941 */ 22942 mblk_t * 22943 tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, int32_t *offset, 22944 mblk_t **end_mp, uint32_t seq, boolean_t sendall, uint32_t *seg_len, 22945 boolean_t rexmit) 22946 { 22947 int data_length; 22948 int32_t off = 0; 22949 uint_t flags; 22950 mblk_t *mp1; 22951 mblk_t *mp2; 22952 uchar_t *rptr; 22953 tcph_t *tcph; 22954 int32_t num_sack_blk = 0; 22955 int32_t sack_opt_len = 0; 22956 tcp_stack_t *tcps = tcp->tcp_tcps; 22957 22958 /* Allocate for our maximum TCP header + link-level */ 22959 mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 22960 tcps->tcps_wroff_xtra, BPRI_MED); 22961 if (!mp1) 22962 return (NULL); 22963 data_length = 0; 22964 22965 /* 22966 * Note that tcp_mss has been adjusted to take into account the 22967 * timestamp option if applicable. Because SACK options do not 22968 * appear in every TCP segments and they are of variable lengths, 22969 * they cannot be included in tcp_mss. Thus we need to calculate 22970 * the actual segment length when we need to send a segment which 22971 * includes SACK options. 22972 */ 22973 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 22974 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 22975 tcp->tcp_num_sack_blk); 22976 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 22977 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 22978 if (max_to_send + sack_opt_len > tcp->tcp_mss) 22979 max_to_send -= sack_opt_len; 22980 } 22981 22982 if (offset != NULL) { 22983 off = *offset; 22984 /* We use offset as an indicator that end_mp is not NULL. */ 22985 *end_mp = NULL; 22986 } 22987 for (mp2 = mp1; mp && data_length != max_to_send; mp = mp->b_cont) { 22988 /* This could be faster with cooperation from downstream */ 22989 if (mp2 != mp1 && !sendall && 22990 data_length + (int)(mp->b_wptr - mp->b_rptr) > 22991 max_to_send) 22992 /* 22993 * Don't send the next mblk since the whole mblk 22994 * does not fit. 22995 */ 22996 break; 22997 mp2->b_cont = dupb(mp); 22998 mp2 = mp2->b_cont; 22999 if (!mp2) { 23000 freemsg(mp1); 23001 return (NULL); 23002 } 23003 mp2->b_rptr += off; 23004 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 23005 (uintptr_t)INT_MAX); 23006 23007 data_length += (int)(mp2->b_wptr - mp2->b_rptr); 23008 if (data_length > max_to_send) { 23009 mp2->b_wptr -= data_length - max_to_send; 23010 data_length = max_to_send; 23011 off = mp2->b_wptr - mp->b_rptr; 23012 break; 23013 } else { 23014 off = 0; 23015 } 23016 } 23017 if (offset != NULL) { 23018 *offset = off; 23019 *end_mp = mp; 23020 } 23021 if (seg_len != NULL) { 23022 *seg_len = data_length; 23023 } 23024 23025 /* Update the latest receive window size in TCP header. */ 23026 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 23027 tcp->tcp_tcph->th_win); 23028 23029 rptr = mp1->b_rptr + tcps->tcps_wroff_xtra; 23030 mp1->b_rptr = rptr; 23031 mp1->b_wptr = rptr + tcp->tcp_hdr_len + sack_opt_len; 23032 bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len); 23033 tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len]; 23034 U32_TO_ABE32(seq, tcph->th_seq); 23035 23036 /* 23037 * Use tcp_unsent to determine if the PUSH bit should be used assumes 23038 * that this function was called from tcp_wput_data. Thus, when called 23039 * to retransmit data the setting of the PUSH bit may appear some 23040 * what random in that it might get set when it should not. This 23041 * should not pose any performance issues. 23042 */ 23043 if (data_length != 0 && (tcp->tcp_unsent == 0 || 23044 tcp->tcp_unsent == data_length)) { 23045 flags = TH_ACK | TH_PUSH; 23046 } else { 23047 flags = TH_ACK; 23048 } 23049 23050 if (tcp->tcp_ecn_ok) { 23051 if (tcp->tcp_ecn_echo_on) 23052 flags |= TH_ECE; 23053 23054 /* 23055 * Only set ECT bit and ECN_CWR if a segment contains new data. 23056 * There is no TCP flow control for non-data segments, and 23057 * only data segment is transmitted reliably. 23058 */ 23059 if (data_length > 0 && !rexmit) { 23060 SET_ECT(tcp, rptr); 23061 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 23062 flags |= TH_CWR; 23063 tcp->tcp_ecn_cwr_sent = B_TRUE; 23064 } 23065 } 23066 } 23067 23068 if (tcp->tcp_valid_bits) { 23069 uint32_t u1; 23070 23071 if ((tcp->tcp_valid_bits & TCP_ISS_VALID) && 23072 seq == tcp->tcp_iss) { 23073 uchar_t *wptr; 23074 23075 /* 23076 * If TCP_ISS_VALID and the seq number is tcp_iss, 23077 * TCP can only be in SYN-SENT, SYN-RCVD or 23078 * FIN-WAIT-1 state. It can be FIN-WAIT-1 if 23079 * our SYN is not ack'ed but the app closes this 23080 * TCP connection. 23081 */ 23082 ASSERT(tcp->tcp_state == TCPS_SYN_SENT || 23083 tcp->tcp_state == TCPS_SYN_RCVD || 23084 tcp->tcp_state == TCPS_FIN_WAIT_1); 23085 23086 /* 23087 * Tack on the MSS option. It is always needed 23088 * for both active and passive open. 23089 * 23090 * MSS option value should be interface MTU - MIN 23091 * TCP/IP header according to RFC 793 as it means 23092 * the maximum segment size TCP can receive. But 23093 * to get around some broken middle boxes/end hosts 23094 * out there, we allow the option value to be the 23095 * same as the MSS option size on the peer side. 23096 * In this way, the other side will not send 23097 * anything larger than they can receive. 23098 * 23099 * Note that for SYN_SENT state, the ndd param 23100 * tcp_use_smss_as_mss_opt has no effect as we 23101 * don't know the peer's MSS option value. So 23102 * the only case we need to take care of is in 23103 * SYN_RCVD state, which is done later. 23104 */ 23105 wptr = mp1->b_wptr; 23106 wptr[0] = TCPOPT_MAXSEG; 23107 wptr[1] = TCPOPT_MAXSEG_LEN; 23108 wptr += 2; 23109 u1 = tcp->tcp_if_mtu - 23110 (tcp->tcp_ipversion == IPV4_VERSION ? 23111 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) - 23112 TCP_MIN_HEADER_LENGTH; 23113 U16_TO_BE16(u1, wptr); 23114 mp1->b_wptr = wptr + 2; 23115 /* Update the offset to cover the additional word */ 23116 tcph->th_offset_and_rsrvd[0] += (1 << 4); 23117 23118 /* 23119 * Note that the following way of filling in 23120 * TCP options are not optimal. Some NOPs can 23121 * be saved. But there is no need at this time 23122 * to optimize it. When it is needed, we will 23123 * do it. 23124 */ 23125 switch (tcp->tcp_state) { 23126 case TCPS_SYN_SENT: 23127 flags = TH_SYN; 23128 23129 if (tcp->tcp_snd_ts_ok) { 23130 uint32_t llbolt = (uint32_t)lbolt; 23131 23132 wptr = mp1->b_wptr; 23133 wptr[0] = TCPOPT_NOP; 23134 wptr[1] = TCPOPT_NOP; 23135 wptr[2] = TCPOPT_TSTAMP; 23136 wptr[3] = TCPOPT_TSTAMP_LEN; 23137 wptr += 4; 23138 U32_TO_BE32(llbolt, wptr); 23139 wptr += 4; 23140 ASSERT(tcp->tcp_ts_recent == 0); 23141 U32_TO_BE32(0L, wptr); 23142 mp1->b_wptr += TCPOPT_REAL_TS_LEN; 23143 tcph->th_offset_and_rsrvd[0] += 23144 (3 << 4); 23145 } 23146 23147 /* 23148 * Set up all the bits to tell other side 23149 * we are ECN capable. 23150 */ 23151 if (tcp->tcp_ecn_ok) { 23152 flags |= (TH_ECE | TH_CWR); 23153 } 23154 break; 23155 case TCPS_SYN_RCVD: 23156 flags |= TH_SYN; 23157 23158 /* 23159 * Reset the MSS option value to be SMSS 23160 * We should probably add back the bytes 23161 * for timestamp option and IPsec. We 23162 * don't do that as this is a workaround 23163 * for broken middle boxes/end hosts, it 23164 * is better for us to be more cautious. 23165 * They may not take these things into 23166 * account in their SMSS calculation. Thus 23167 * the peer's calculated SMSS may be smaller 23168 * than what it can be. This should be OK. 23169 */ 23170 if (tcps->tcps_use_smss_as_mss_opt) { 23171 u1 = tcp->tcp_mss; 23172 U16_TO_BE16(u1, wptr); 23173 } 23174 23175 /* 23176 * If the other side is ECN capable, reply 23177 * that we are also ECN capable. 23178 */ 23179 if (tcp->tcp_ecn_ok) 23180 flags |= TH_ECE; 23181 break; 23182 default: 23183 /* 23184 * The above ASSERT() makes sure that this 23185 * must be FIN-WAIT-1 state. Our SYN has 23186 * not been ack'ed so retransmit it. 23187 */ 23188 flags |= TH_SYN; 23189 break; 23190 } 23191 23192 if (tcp->tcp_snd_ws_ok) { 23193 wptr = mp1->b_wptr; 23194 wptr[0] = TCPOPT_NOP; 23195 wptr[1] = TCPOPT_WSCALE; 23196 wptr[2] = TCPOPT_WS_LEN; 23197 wptr[3] = (uchar_t)tcp->tcp_rcv_ws; 23198 mp1->b_wptr += TCPOPT_REAL_WS_LEN; 23199 tcph->th_offset_and_rsrvd[0] += (1 << 4); 23200 } 23201 23202 if (tcp->tcp_snd_sack_ok) { 23203 wptr = mp1->b_wptr; 23204 wptr[0] = TCPOPT_NOP; 23205 wptr[1] = TCPOPT_NOP; 23206 wptr[2] = TCPOPT_SACK_PERMITTED; 23207 wptr[3] = TCPOPT_SACK_OK_LEN; 23208 mp1->b_wptr += TCPOPT_REAL_SACK_OK_LEN; 23209 tcph->th_offset_and_rsrvd[0] += (1 << 4); 23210 } 23211 23212 /* allocb() of adequate mblk assures space */ 23213 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 23214 (uintptr_t)INT_MAX); 23215 u1 = (int)(mp1->b_wptr - mp1->b_rptr); 23216 /* 23217 * Get IP set to checksum on our behalf 23218 * Include the adjustment for a source route if any. 23219 */ 23220 u1 += tcp->tcp_sum; 23221 u1 = (u1 >> 16) + (u1 & 0xFFFF); 23222 U16_TO_BE16(u1, tcph->th_sum); 23223 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 23224 } 23225 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 23226 (seq + data_length) == tcp->tcp_fss) { 23227 if (!tcp->tcp_fin_acked) { 23228 flags |= TH_FIN; 23229 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 23230 } 23231 if (!tcp->tcp_fin_sent) { 23232 tcp->tcp_fin_sent = B_TRUE; 23233 switch (tcp->tcp_state) { 23234 case TCPS_SYN_RCVD: 23235 case TCPS_ESTABLISHED: 23236 tcp->tcp_state = TCPS_FIN_WAIT_1; 23237 break; 23238 case TCPS_CLOSE_WAIT: 23239 tcp->tcp_state = TCPS_LAST_ACK; 23240 break; 23241 } 23242 if (tcp->tcp_suna == tcp->tcp_snxt) 23243 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 23244 tcp->tcp_snxt = tcp->tcp_fss + 1; 23245 } 23246 } 23247 /* 23248 * Note the trick here. u1 is unsigned. When tcp_urg 23249 * is smaller than seq, u1 will become a very huge value. 23250 * So the comparison will fail. Also note that tcp_urp 23251 * should be positive, see RFC 793 page 17. 23252 */ 23253 u1 = tcp->tcp_urg - seq + TCP_OLD_URP_INTERPRETATION; 23254 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && u1 != 0 && 23255 u1 < (uint32_t)(64 * 1024)) { 23256 flags |= TH_URG; 23257 BUMP_MIB(&tcps->tcps_mib, tcpOutUrg); 23258 U32_TO_ABE16(u1, tcph->th_urp); 23259 } 23260 } 23261 tcph->th_flags[0] = (uchar_t)flags; 23262 tcp->tcp_rack = tcp->tcp_rnxt; 23263 tcp->tcp_rack_cnt = 0; 23264 23265 if (tcp->tcp_snd_ts_ok) { 23266 if (tcp->tcp_state != TCPS_SYN_SENT) { 23267 uint32_t llbolt = (uint32_t)lbolt; 23268 23269 U32_TO_BE32(llbolt, 23270 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 23271 U32_TO_BE32(tcp->tcp_ts_recent, 23272 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 23273 } 23274 } 23275 23276 if (num_sack_blk > 0) { 23277 uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len; 23278 sack_blk_t *tmp; 23279 int32_t i; 23280 23281 wptr[0] = TCPOPT_NOP; 23282 wptr[1] = TCPOPT_NOP; 23283 wptr[2] = TCPOPT_SACK; 23284 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 23285 sizeof (sack_blk_t); 23286 wptr += TCPOPT_REAL_SACK_LEN; 23287 23288 tmp = tcp->tcp_sack_list; 23289 for (i = 0; i < num_sack_blk; i++) { 23290 U32_TO_BE32(tmp[i].begin, wptr); 23291 wptr += sizeof (tcp_seq); 23292 U32_TO_BE32(tmp[i].end, wptr); 23293 wptr += sizeof (tcp_seq); 23294 } 23295 tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) << 4); 23296 } 23297 ASSERT((uintptr_t)(mp1->b_wptr - rptr) <= (uintptr_t)INT_MAX); 23298 data_length += (int)(mp1->b_wptr - rptr); 23299 if (tcp->tcp_ipversion == IPV4_VERSION) { 23300 ((ipha_t *)rptr)->ipha_length = htons(data_length); 23301 } else { 23302 ip6_t *ip6 = (ip6_t *)(rptr + 23303 (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ? 23304 sizeof (ip6i_t) : 0)); 23305 23306 ip6->ip6_plen = htons(data_length - 23307 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 23308 } 23309 23310 /* 23311 * Prime pump for IP 23312 * Include the adjustment for a source route if any. 23313 */ 23314 data_length -= tcp->tcp_ip_hdr_len; 23315 data_length += tcp->tcp_sum; 23316 data_length = (data_length >> 16) + (data_length & 0xFFFF); 23317 U16_TO_ABE16(data_length, tcph->th_sum); 23318 if (tcp->tcp_ip_forward_progress) { 23319 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 23320 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 23321 tcp->tcp_ip_forward_progress = B_FALSE; 23322 } 23323 return (mp1); 23324 } 23325 23326 /* This function handles the push timeout. */ 23327 void 23328 tcp_push_timer(void *arg) 23329 { 23330 conn_t *connp = (conn_t *)arg; 23331 tcp_t *tcp = connp->conn_tcp; 23332 tcp_stack_t *tcps = tcp->tcp_tcps; 23333 23334 TCP_DBGSTAT(tcps, tcp_push_timer_cnt); 23335 23336 ASSERT(tcp->tcp_listener == NULL); 23337 23338 /* 23339 * We need to plug synchronous streams during our drain to prevent 23340 * a race with tcp_fuse_rrw() or tcp_fusion_rinfop(). 23341 */ 23342 TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp); 23343 tcp->tcp_push_tid = 0; 23344 if ((tcp->tcp_rcv_list != NULL) && 23345 (tcp_rcv_drain(tcp->tcp_rq, tcp) == TH_ACK_NEEDED)) 23346 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 23347 TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp); 23348 } 23349 23350 /* 23351 * This function handles delayed ACK timeout. 23352 */ 23353 static void 23354 tcp_ack_timer(void *arg) 23355 { 23356 conn_t *connp = (conn_t *)arg; 23357 tcp_t *tcp = connp->conn_tcp; 23358 mblk_t *mp; 23359 tcp_stack_t *tcps = tcp->tcp_tcps; 23360 23361 TCP_DBGSTAT(tcps, tcp_ack_timer_cnt); 23362 23363 tcp->tcp_ack_tid = 0; 23364 23365 if (tcp->tcp_fused) 23366 return; 23367 23368 /* 23369 * Do not send ACK if there is no outstanding unack'ed data. 23370 */ 23371 if (tcp->tcp_rnxt == tcp->tcp_rack) { 23372 return; 23373 } 23374 23375 if ((tcp->tcp_rnxt - tcp->tcp_rack) > tcp->tcp_mss) { 23376 /* 23377 * Make sure we don't allow deferred ACKs to result in 23378 * timer-based ACKing. If we have held off an ACK 23379 * when there was more than an mss here, and the timer 23380 * goes off, we have to worry about the possibility 23381 * that the sender isn't doing slow-start, or is out 23382 * of step with us for some other reason. We fall 23383 * permanently back in the direction of 23384 * ACK-every-other-packet as suggested in RFC 1122. 23385 */ 23386 if (tcp->tcp_rack_abs_max > 2) 23387 tcp->tcp_rack_abs_max--; 23388 tcp->tcp_rack_cur_max = 2; 23389 } 23390 mp = tcp_ack_mp(tcp); 23391 23392 if (mp != NULL) { 23393 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 23394 BUMP_LOCAL(tcp->tcp_obsegs); 23395 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 23396 BUMP_MIB(&tcps->tcps_mib, tcpOutAckDelayed); 23397 tcp_send_data(tcp, tcp->tcp_wq, mp); 23398 } 23399 } 23400 23401 23402 /* Generate an ACK-only (no data) segment for a TCP endpoint */ 23403 static mblk_t * 23404 tcp_ack_mp(tcp_t *tcp) 23405 { 23406 uint32_t seq_no; 23407 tcp_stack_t *tcps = tcp->tcp_tcps; 23408 23409 /* 23410 * There are a few cases to be considered while setting the sequence no. 23411 * Essentially, we can come here while processing an unacceptable pkt 23412 * in the TCPS_SYN_RCVD state, in which case we set the sequence number 23413 * to snxt (per RFC 793), note the swnd wouldn't have been set yet. 23414 * If we are here for a zero window probe, stick with suna. In all 23415 * other cases, we check if suna + swnd encompasses snxt and set 23416 * the sequence number to snxt, if so. If snxt falls outside the 23417 * window (the receiver probably shrunk its window), we will go with 23418 * suna + swnd, otherwise the sequence no will be unacceptable to the 23419 * receiver. 23420 */ 23421 if (tcp->tcp_zero_win_probe) { 23422 seq_no = tcp->tcp_suna; 23423 } else if (tcp->tcp_state == TCPS_SYN_RCVD) { 23424 ASSERT(tcp->tcp_swnd == 0); 23425 seq_no = tcp->tcp_snxt; 23426 } else { 23427 seq_no = SEQ_GT(tcp->tcp_snxt, 23428 (tcp->tcp_suna + tcp->tcp_swnd)) ? 23429 (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt; 23430 } 23431 23432 if (tcp->tcp_valid_bits) { 23433 /* 23434 * For the complex case where we have to send some 23435 * controls (FIN or SYN), let tcp_xmit_mp do it. 23436 */ 23437 return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE, 23438 NULL, B_FALSE)); 23439 } else { 23440 /* Generate a simple ACK */ 23441 int data_length; 23442 uchar_t *rptr; 23443 tcph_t *tcph; 23444 mblk_t *mp1; 23445 int32_t tcp_hdr_len; 23446 int32_t tcp_tcp_hdr_len; 23447 int32_t num_sack_blk = 0; 23448 int32_t sack_opt_len; 23449 23450 /* 23451 * Allocate space for TCP + IP headers 23452 * and link-level header 23453 */ 23454 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 23455 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 23456 tcp->tcp_num_sack_blk); 23457 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 23458 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 23459 tcp_hdr_len = tcp->tcp_hdr_len + sack_opt_len; 23460 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + sack_opt_len; 23461 } else { 23462 tcp_hdr_len = tcp->tcp_hdr_len; 23463 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len; 23464 } 23465 mp1 = allocb(tcp_hdr_len + tcps->tcps_wroff_xtra, BPRI_MED); 23466 if (!mp1) 23467 return (NULL); 23468 23469 /* Update the latest receive window size in TCP header. */ 23470 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 23471 tcp->tcp_tcph->th_win); 23472 /* copy in prototype TCP + IP header */ 23473 rptr = mp1->b_rptr + tcps->tcps_wroff_xtra; 23474 mp1->b_rptr = rptr; 23475 mp1->b_wptr = rptr + tcp_hdr_len; 23476 bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len); 23477 23478 tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len]; 23479 23480 /* Set the TCP sequence number. */ 23481 U32_TO_ABE32(seq_no, tcph->th_seq); 23482 23483 /* Set up the TCP flag field. */ 23484 tcph->th_flags[0] = (uchar_t)TH_ACK; 23485 if (tcp->tcp_ecn_echo_on) 23486 tcph->th_flags[0] |= TH_ECE; 23487 23488 tcp->tcp_rack = tcp->tcp_rnxt; 23489 tcp->tcp_rack_cnt = 0; 23490 23491 /* fill in timestamp option if in use */ 23492 if (tcp->tcp_snd_ts_ok) { 23493 uint32_t llbolt = (uint32_t)lbolt; 23494 23495 U32_TO_BE32(llbolt, 23496 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 23497 U32_TO_BE32(tcp->tcp_ts_recent, 23498 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 23499 } 23500 23501 /* Fill in SACK options */ 23502 if (num_sack_blk > 0) { 23503 uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len; 23504 sack_blk_t *tmp; 23505 int32_t i; 23506 23507 wptr[0] = TCPOPT_NOP; 23508 wptr[1] = TCPOPT_NOP; 23509 wptr[2] = TCPOPT_SACK; 23510 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 23511 sizeof (sack_blk_t); 23512 wptr += TCPOPT_REAL_SACK_LEN; 23513 23514 tmp = tcp->tcp_sack_list; 23515 for (i = 0; i < num_sack_blk; i++) { 23516 U32_TO_BE32(tmp[i].begin, wptr); 23517 wptr += sizeof (tcp_seq); 23518 U32_TO_BE32(tmp[i].end, wptr); 23519 wptr += sizeof (tcp_seq); 23520 } 23521 tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) 23522 << 4); 23523 } 23524 23525 if (tcp->tcp_ipversion == IPV4_VERSION) { 23526 ((ipha_t *)rptr)->ipha_length = htons(tcp_hdr_len); 23527 } else { 23528 /* Check for ip6i_t header in sticky hdrs */ 23529 ip6_t *ip6 = (ip6_t *)(rptr + 23530 (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ? 23531 sizeof (ip6i_t) : 0)); 23532 23533 ip6->ip6_plen = htons(tcp_hdr_len - 23534 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 23535 } 23536 23537 /* 23538 * Prime pump for checksum calculation in IP. Include the 23539 * adjustment for a source route if any. 23540 */ 23541 data_length = tcp_tcp_hdr_len + tcp->tcp_sum; 23542 data_length = (data_length >> 16) + (data_length & 0xFFFF); 23543 U16_TO_ABE16(data_length, tcph->th_sum); 23544 23545 if (tcp->tcp_ip_forward_progress) { 23546 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 23547 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 23548 tcp->tcp_ip_forward_progress = B_FALSE; 23549 } 23550 return (mp1); 23551 } 23552 } 23553 23554 /* 23555 * To create a temporary tcp structure for inserting into bind hash list. 23556 * The parameter is assumed to be in network byte order, ready for use. 23557 */ 23558 /* ARGSUSED */ 23559 static tcp_t * 23560 tcp_alloc_temp_tcp(in_port_t port, tcp_stack_t *tcps) 23561 { 23562 conn_t *connp; 23563 tcp_t *tcp; 23564 23565 connp = ipcl_conn_create(IPCL_TCPCONN, KM_SLEEP, tcps->tcps_netstack); 23566 if (connp == NULL) 23567 return (NULL); 23568 23569 tcp = connp->conn_tcp; 23570 tcp->tcp_tcps = tcps; 23571 TCPS_REFHOLD(tcps); 23572 23573 /* 23574 * Only initialize the necessary info in those structures. Note 23575 * that since INADDR_ANY is all 0, we do not need to set 23576 * tcp_bound_source to INADDR_ANY here. 23577 */ 23578 tcp->tcp_state = TCPS_BOUND; 23579 tcp->tcp_lport = port; 23580 tcp->tcp_exclbind = 1; 23581 tcp->tcp_reserved_port = 1; 23582 23583 /* Just for place holding... */ 23584 tcp->tcp_ipversion = IPV4_VERSION; 23585 23586 return (tcp); 23587 } 23588 23589 /* 23590 * To remove a port range specified by lo_port and hi_port from the 23591 * reserved port ranges. This is one of the three public functions of 23592 * the reserved port interface. Note that a port range has to be removed 23593 * as a whole. Ports in a range cannot be removed individually. 23594 * 23595 * Params: 23596 * in_port_t lo_port: the beginning port of the reserved port range to 23597 * be deleted. 23598 * in_port_t hi_port: the ending port of the reserved port range to 23599 * be deleted. 23600 * 23601 * Return: 23602 * B_TRUE if the deletion is successful, B_FALSE otherwise. 23603 * 23604 * Assumes that nca is only for zoneid=0 23605 */ 23606 boolean_t 23607 tcp_reserved_port_del(in_port_t lo_port, in_port_t hi_port) 23608 { 23609 int i, j; 23610 int size; 23611 tcp_t **temp_tcp_array; 23612 tcp_t *tcp; 23613 tcp_stack_t *tcps; 23614 23615 tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_tcp; 23616 ASSERT(tcps != NULL); 23617 23618 rw_enter(&tcps->tcps_reserved_port_lock, RW_WRITER); 23619 23620 /* First make sure that the port ranage is indeed reserved. */ 23621 for (i = 0; i < tcps->tcps_reserved_port_array_size; i++) { 23622 if (tcps->tcps_reserved_port[i].lo_port == lo_port) { 23623 hi_port = tcps->tcps_reserved_port[i].hi_port; 23624 temp_tcp_array = 23625 tcps->tcps_reserved_port[i].temp_tcp_array; 23626 break; 23627 } 23628 } 23629 if (i == tcps->tcps_reserved_port_array_size) { 23630 rw_exit(&tcps->tcps_reserved_port_lock); 23631 netstack_rele(tcps->tcps_netstack); 23632 return (B_FALSE); 23633 } 23634 23635 /* 23636 * Remove the range from the array. This simple loop is possible 23637 * because port ranges are inserted in ascending order. 23638 */ 23639 for (j = i; j < tcps->tcps_reserved_port_array_size - 1; j++) { 23640 tcps->tcps_reserved_port[j].lo_port = 23641 tcps->tcps_reserved_port[j+1].lo_port; 23642 tcps->tcps_reserved_port[j].hi_port = 23643 tcps->tcps_reserved_port[j+1].hi_port; 23644 tcps->tcps_reserved_port[j].temp_tcp_array = 23645 tcps->tcps_reserved_port[j+1].temp_tcp_array; 23646 } 23647 23648 /* Remove all the temporary tcp structures. */ 23649 size = hi_port - lo_port + 1; 23650 while (size > 0) { 23651 tcp = temp_tcp_array[size - 1]; 23652 ASSERT(tcp != NULL); 23653 tcp_bind_hash_remove(tcp); 23654 CONN_DEC_REF(tcp->tcp_connp); 23655 size--; 23656 } 23657 kmem_free(temp_tcp_array, (hi_port - lo_port + 1) * sizeof (tcp_t *)); 23658 tcps->tcps_reserved_port_array_size--; 23659 rw_exit(&tcps->tcps_reserved_port_lock); 23660 netstack_rele(tcps->tcps_netstack); 23661 return (B_TRUE); 23662 } 23663 23664 /* 23665 * Macro to remove temporary tcp structure from the bind hash list. The 23666 * first parameter is the list of tcp to be removed. The second parameter 23667 * is the number of tcps in the array. 23668 */ 23669 #define TCP_TMP_TCP_REMOVE(tcp_array, num, tcps) \ 23670 { \ 23671 while ((num) > 0) { \ 23672 tcp_t *tcp = (tcp_array)[(num) - 1]; \ 23673 tf_t *tbf; \ 23674 tcp_t *tcpnext; \ 23675 tbf = &tcps->tcps_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)]; \ 23676 mutex_enter(&tbf->tf_lock); \ 23677 tcpnext = tcp->tcp_bind_hash; \ 23678 if (tcpnext) { \ 23679 tcpnext->tcp_ptpbhn = \ 23680 tcp->tcp_ptpbhn; \ 23681 } \ 23682 *tcp->tcp_ptpbhn = tcpnext; \ 23683 mutex_exit(&tbf->tf_lock); \ 23684 kmem_free(tcp, sizeof (tcp_t)); \ 23685 (tcp_array)[(num) - 1] = NULL; \ 23686 (num)--; \ 23687 } \ 23688 } 23689 23690 /* 23691 * The public interface for other modules to call to reserve a port range 23692 * in TCP. The caller passes in how large a port range it wants. TCP 23693 * will try to find a range and return it via lo_port and hi_port. This is 23694 * used by NCA's nca_conn_init. 23695 * NCA can only be used in the global zone so this only affects the global 23696 * zone's ports. 23697 * 23698 * Params: 23699 * int size: the size of the port range to be reserved. 23700 * in_port_t *lo_port (referenced): returns the beginning port of the 23701 * reserved port range added. 23702 * in_port_t *hi_port (referenced): returns the ending port of the 23703 * reserved port range added. 23704 * 23705 * Return: 23706 * B_TRUE if the port reservation is successful, B_FALSE otherwise. 23707 * 23708 * Assumes that nca is only for zoneid=0 23709 */ 23710 boolean_t 23711 tcp_reserved_port_add(int size, in_port_t *lo_port, in_port_t *hi_port) 23712 { 23713 tcp_t *tcp; 23714 tcp_t *tmp_tcp; 23715 tcp_t **temp_tcp_array; 23716 tf_t *tbf; 23717 in_port_t net_port; 23718 in_port_t port; 23719 int32_t cur_size; 23720 int i, j; 23721 boolean_t used; 23722 tcp_rport_t tmp_ports[TCP_RESERVED_PORTS_ARRAY_MAX_SIZE]; 23723 zoneid_t zoneid = GLOBAL_ZONEID; 23724 tcp_stack_t *tcps; 23725 23726 /* Sanity check. */ 23727 if (size <= 0 || size > TCP_RESERVED_PORTS_RANGE_MAX) { 23728 return (B_FALSE); 23729 } 23730 23731 tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_tcp; 23732 ASSERT(tcps != NULL); 23733 23734 rw_enter(&tcps->tcps_reserved_port_lock, RW_WRITER); 23735 if (tcps->tcps_reserved_port_array_size == 23736 TCP_RESERVED_PORTS_ARRAY_MAX_SIZE) { 23737 rw_exit(&tcps->tcps_reserved_port_lock); 23738 netstack_rele(tcps->tcps_netstack); 23739 return (B_FALSE); 23740 } 23741 23742 /* 23743 * Find the starting port to try. Since the port ranges are ordered 23744 * in the reserved port array, we can do a simple search here. 23745 */ 23746 *lo_port = TCP_SMALLEST_RESERVED_PORT; 23747 *hi_port = TCP_LARGEST_RESERVED_PORT; 23748 for (i = 0; i < tcps->tcps_reserved_port_array_size; 23749 *lo_port = tcps->tcps_reserved_port[i].hi_port + 1, i++) { 23750 if (tcps->tcps_reserved_port[i].lo_port - *lo_port >= size) { 23751 *hi_port = tcps->tcps_reserved_port[i].lo_port - 1; 23752 break; 23753 } 23754 } 23755 /* No available port range. */ 23756 if (i == tcps->tcps_reserved_port_array_size && 23757 *hi_port - *lo_port < size) { 23758 rw_exit(&tcps->tcps_reserved_port_lock); 23759 netstack_rele(tcps->tcps_netstack); 23760 return (B_FALSE); 23761 } 23762 23763 temp_tcp_array = kmem_zalloc(size * sizeof (tcp_t *), KM_NOSLEEP); 23764 if (temp_tcp_array == NULL) { 23765 rw_exit(&tcps->tcps_reserved_port_lock); 23766 netstack_rele(tcps->tcps_netstack); 23767 return (B_FALSE); 23768 } 23769 23770 /* Go thru the port range to see if some ports are already bound. */ 23771 for (port = *lo_port, cur_size = 0; 23772 cur_size < size && port <= *hi_port; 23773 cur_size++, port++) { 23774 used = B_FALSE; 23775 net_port = htons(port); 23776 tbf = &tcps->tcps_bind_fanout[TCP_BIND_HASH(net_port)]; 23777 mutex_enter(&tbf->tf_lock); 23778 for (tcp = tbf->tf_tcp; tcp != NULL; 23779 tcp = tcp->tcp_bind_hash) { 23780 if (IPCL_ZONE_MATCH(tcp->tcp_connp, zoneid) && 23781 net_port == tcp->tcp_lport) { 23782 /* 23783 * A port is already bound. Search again 23784 * starting from port + 1. Release all 23785 * temporary tcps. 23786 */ 23787 mutex_exit(&tbf->tf_lock); 23788 TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size, 23789 tcps); 23790 *lo_port = port + 1; 23791 cur_size = -1; 23792 used = B_TRUE; 23793 break; 23794 } 23795 } 23796 if (!used) { 23797 if ((tmp_tcp = tcp_alloc_temp_tcp(net_port, tcps)) == 23798 NULL) { 23799 /* 23800 * Allocation failure. Just fail the request. 23801 * Need to remove all those temporary tcp 23802 * structures. 23803 */ 23804 mutex_exit(&tbf->tf_lock); 23805 TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size, 23806 tcps); 23807 rw_exit(&tcps->tcps_reserved_port_lock); 23808 kmem_free(temp_tcp_array, 23809 (hi_port - lo_port + 1) * 23810 sizeof (tcp_t *)); 23811 netstack_rele(tcps->tcps_netstack); 23812 return (B_FALSE); 23813 } 23814 temp_tcp_array[cur_size] = tmp_tcp; 23815 tcp_bind_hash_insert(tbf, tmp_tcp, B_TRUE); 23816 mutex_exit(&tbf->tf_lock); 23817 } 23818 } 23819 23820 /* 23821 * The current range is not large enough. We can actually do another 23822 * search if this search is done between 2 reserved port ranges. But 23823 * for first release, we just stop here and return saying that no port 23824 * range is available. 23825 */ 23826 if (cur_size < size) { 23827 TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size, tcps); 23828 rw_exit(&tcps->tcps_reserved_port_lock); 23829 kmem_free(temp_tcp_array, size * sizeof (tcp_t *)); 23830 netstack_rele(tcps->tcps_netstack); 23831 return (B_FALSE); 23832 } 23833 *hi_port = port - 1; 23834 23835 /* 23836 * Insert range into array in ascending order. Since this function 23837 * must not be called often, we choose to use the simplest method. 23838 * The above array should not consume excessive stack space as 23839 * the size must be very small. If in future releases, we find 23840 * that we should provide more reserved port ranges, this function 23841 * has to be modified to be more efficient. 23842 */ 23843 if (tcps->tcps_reserved_port_array_size == 0) { 23844 tcps->tcps_reserved_port[0].lo_port = *lo_port; 23845 tcps->tcps_reserved_port[0].hi_port = *hi_port; 23846 tcps->tcps_reserved_port[0].temp_tcp_array = temp_tcp_array; 23847 } else { 23848 for (i = 0, j = 0; i < tcps->tcps_reserved_port_array_size; 23849 i++, j++) { 23850 if (*lo_port < tcps->tcps_reserved_port[i].lo_port && 23851 i == j) { 23852 tmp_ports[j].lo_port = *lo_port; 23853 tmp_ports[j].hi_port = *hi_port; 23854 tmp_ports[j].temp_tcp_array = temp_tcp_array; 23855 j++; 23856 } 23857 tmp_ports[j].lo_port = 23858 tcps->tcps_reserved_port[i].lo_port; 23859 tmp_ports[j].hi_port = 23860 tcps->tcps_reserved_port[i].hi_port; 23861 tmp_ports[j].temp_tcp_array = 23862 tcps->tcps_reserved_port[i].temp_tcp_array; 23863 } 23864 if (j == i) { 23865 tmp_ports[j].lo_port = *lo_port; 23866 tmp_ports[j].hi_port = *hi_port; 23867 tmp_ports[j].temp_tcp_array = temp_tcp_array; 23868 } 23869 bcopy(tmp_ports, tcps->tcps_reserved_port, sizeof (tmp_ports)); 23870 } 23871 tcps->tcps_reserved_port_array_size++; 23872 rw_exit(&tcps->tcps_reserved_port_lock); 23873 netstack_rele(tcps->tcps_netstack); 23874 return (B_TRUE); 23875 } 23876 23877 /* 23878 * Check to see if a port is in any reserved port range. 23879 * 23880 * Params: 23881 * in_port_t port: the port to be verified. 23882 * 23883 * Return: 23884 * B_TRUE is the port is inside a reserved port range, B_FALSE otherwise. 23885 */ 23886 boolean_t 23887 tcp_reserved_port_check(in_port_t port, tcp_stack_t *tcps) 23888 { 23889 int i; 23890 23891 rw_enter(&tcps->tcps_reserved_port_lock, RW_READER); 23892 for (i = 0; i < tcps->tcps_reserved_port_array_size; i++) { 23893 if (port >= tcps->tcps_reserved_port[i].lo_port || 23894 port <= tcps->tcps_reserved_port[i].hi_port) { 23895 rw_exit(&tcps->tcps_reserved_port_lock); 23896 return (B_TRUE); 23897 } 23898 } 23899 rw_exit(&tcps->tcps_reserved_port_lock); 23900 return (B_FALSE); 23901 } 23902 23903 /* 23904 * To list all reserved port ranges. This is the function to handle 23905 * ndd tcp_reserved_port_list. 23906 */ 23907 /* ARGSUSED */ 23908 static int 23909 tcp_reserved_port_list(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 23910 { 23911 int i; 23912 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 23913 23914 rw_enter(&tcps->tcps_reserved_port_lock, RW_READER); 23915 if (tcps->tcps_reserved_port_array_size > 0) 23916 (void) mi_mpprintf(mp, "The following ports are reserved:"); 23917 else 23918 (void) mi_mpprintf(mp, "No port is reserved."); 23919 for (i = 0; i < tcps->tcps_reserved_port_array_size; i++) { 23920 (void) mi_mpprintf(mp, "%d-%d", 23921 tcps->tcps_reserved_port[i].lo_port, 23922 tcps->tcps_reserved_port[i].hi_port); 23923 } 23924 rw_exit(&tcps->tcps_reserved_port_lock); 23925 return (0); 23926 } 23927 23928 /* 23929 * Hash list insertion routine for tcp_t structures. 23930 * Inserts entries with the ones bound to a specific IP address first 23931 * followed by those bound to INADDR_ANY. 23932 */ 23933 static void 23934 tcp_bind_hash_insert(tf_t *tbf, tcp_t *tcp, int caller_holds_lock) 23935 { 23936 tcp_t **tcpp; 23937 tcp_t *tcpnext; 23938 23939 if (tcp->tcp_ptpbhn != NULL) { 23940 ASSERT(!caller_holds_lock); 23941 tcp_bind_hash_remove(tcp); 23942 } 23943 tcpp = &tbf->tf_tcp; 23944 if (!caller_holds_lock) { 23945 mutex_enter(&tbf->tf_lock); 23946 } else { 23947 ASSERT(MUTEX_HELD(&tbf->tf_lock)); 23948 } 23949 tcpnext = tcpp[0]; 23950 if (tcpnext) { 23951 /* 23952 * If the new tcp bound to the INADDR_ANY address 23953 * and the first one in the list is not bound to 23954 * INADDR_ANY we skip all entries until we find the 23955 * first one bound to INADDR_ANY. 23956 * This makes sure that applications binding to a 23957 * specific address get preference over those binding to 23958 * INADDR_ANY. 23959 */ 23960 if (V6_OR_V4_INADDR_ANY(tcp->tcp_bound_source_v6) && 23961 !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) { 23962 while ((tcpnext = tcpp[0]) != NULL && 23963 !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) 23964 tcpp = &(tcpnext->tcp_bind_hash); 23965 if (tcpnext) 23966 tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash; 23967 } else 23968 tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash; 23969 } 23970 tcp->tcp_bind_hash = tcpnext; 23971 tcp->tcp_ptpbhn = tcpp; 23972 tcpp[0] = tcp; 23973 if (!caller_holds_lock) 23974 mutex_exit(&tbf->tf_lock); 23975 } 23976 23977 /* 23978 * Hash list removal routine for tcp_t structures. 23979 */ 23980 static void 23981 tcp_bind_hash_remove(tcp_t *tcp) 23982 { 23983 tcp_t *tcpnext; 23984 kmutex_t *lockp; 23985 tcp_stack_t *tcps = tcp->tcp_tcps; 23986 23987 if (tcp->tcp_ptpbhn == NULL) 23988 return; 23989 23990 /* 23991 * Extract the lock pointer in case there are concurrent 23992 * hash_remove's for this instance. 23993 */ 23994 ASSERT(tcp->tcp_lport != 0); 23995 lockp = &tcps->tcps_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)].tf_lock; 23996 23997 ASSERT(lockp != NULL); 23998 mutex_enter(lockp); 23999 if (tcp->tcp_ptpbhn) { 24000 tcpnext = tcp->tcp_bind_hash; 24001 if (tcpnext) { 24002 tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn; 24003 tcp->tcp_bind_hash = NULL; 24004 } 24005 *tcp->tcp_ptpbhn = tcpnext; 24006 tcp->tcp_ptpbhn = NULL; 24007 } 24008 mutex_exit(lockp); 24009 } 24010 24011 24012 /* 24013 * Hash list lookup routine for tcp_t structures. 24014 * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF. 24015 */ 24016 static tcp_t * 24017 tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *tcps) 24018 { 24019 tf_t *tf; 24020 tcp_t *tcp; 24021 24022 tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 24023 mutex_enter(&tf->tf_lock); 24024 for (tcp = tf->tf_tcp; tcp != NULL; 24025 tcp = tcp->tcp_acceptor_hash) { 24026 if (tcp->tcp_acceptor_id == id) { 24027 CONN_INC_REF(tcp->tcp_connp); 24028 mutex_exit(&tf->tf_lock); 24029 return (tcp); 24030 } 24031 } 24032 mutex_exit(&tf->tf_lock); 24033 return (NULL); 24034 } 24035 24036 24037 /* 24038 * Hash list insertion routine for tcp_t structures. 24039 */ 24040 void 24041 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp) 24042 { 24043 tf_t *tf; 24044 tcp_t **tcpp; 24045 tcp_t *tcpnext; 24046 tcp_stack_t *tcps = tcp->tcp_tcps; 24047 24048 tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 24049 24050 if (tcp->tcp_ptpahn != NULL) 24051 tcp_acceptor_hash_remove(tcp); 24052 tcpp = &tf->tf_tcp; 24053 mutex_enter(&tf->tf_lock); 24054 tcpnext = tcpp[0]; 24055 if (tcpnext) 24056 tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash; 24057 tcp->tcp_acceptor_hash = tcpnext; 24058 tcp->tcp_ptpahn = tcpp; 24059 tcpp[0] = tcp; 24060 tcp->tcp_acceptor_lockp = &tf->tf_lock; /* For tcp_*_hash_remove */ 24061 mutex_exit(&tf->tf_lock); 24062 } 24063 24064 /* 24065 * Hash list removal routine for tcp_t structures. 24066 */ 24067 static void 24068 tcp_acceptor_hash_remove(tcp_t *tcp) 24069 { 24070 tcp_t *tcpnext; 24071 kmutex_t *lockp; 24072 24073 /* 24074 * Extract the lock pointer in case there are concurrent 24075 * hash_remove's for this instance. 24076 */ 24077 lockp = tcp->tcp_acceptor_lockp; 24078 24079 if (tcp->tcp_ptpahn == NULL) 24080 return; 24081 24082 ASSERT(lockp != NULL); 24083 mutex_enter(lockp); 24084 if (tcp->tcp_ptpahn) { 24085 tcpnext = tcp->tcp_acceptor_hash; 24086 if (tcpnext) { 24087 tcpnext->tcp_ptpahn = tcp->tcp_ptpahn; 24088 tcp->tcp_acceptor_hash = NULL; 24089 } 24090 *tcp->tcp_ptpahn = tcpnext; 24091 tcp->tcp_ptpahn = NULL; 24092 } 24093 mutex_exit(lockp); 24094 tcp->tcp_acceptor_lockp = NULL; 24095 } 24096 24097 /* ARGSUSED */ 24098 static int 24099 tcp_host_param_setvalue(queue_t *q, mblk_t *mp, char *value, caddr_t cp, int af) 24100 { 24101 int error = 0; 24102 int retval; 24103 char *end; 24104 tcp_hsp_t *hsp; 24105 tcp_hsp_t *hspprev; 24106 ipaddr_t addr = 0; /* Address we're looking for */ 24107 in6_addr_t v6addr; /* Address we're looking for */ 24108 uint32_t hash; /* Hash of that address */ 24109 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 24110 24111 /* 24112 * If the following variables are still zero after parsing the input 24113 * string, the user didn't specify them and we don't change them in 24114 * the HSP. 24115 */ 24116 24117 ipaddr_t mask = 0; /* Subnet mask */ 24118 in6_addr_t v6mask; 24119 long sendspace = 0; /* Send buffer size */ 24120 long recvspace = 0; /* Receive buffer size */ 24121 long timestamp = 0; /* Originate TCP TSTAMP option, 1 = yes */ 24122 boolean_t delete = B_FALSE; /* User asked to delete this HSP */ 24123 24124 rw_enter(&tcps->tcps_hsp_lock, RW_WRITER); 24125 24126 /* Parse and validate address */ 24127 if (af == AF_INET) { 24128 retval = inet_pton(af, value, &addr); 24129 if (retval == 1) 24130 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 24131 } else if (af == AF_INET6) { 24132 retval = inet_pton(af, value, &v6addr); 24133 } else { 24134 error = EINVAL; 24135 goto done; 24136 } 24137 if (retval == 0) { 24138 error = EINVAL; 24139 goto done; 24140 } 24141 24142 while ((*value) && *value != ' ') 24143 value++; 24144 24145 /* Parse individual keywords, set variables if found */ 24146 while (*value) { 24147 /* Skip leading blanks */ 24148 24149 while (*value == ' ' || *value == '\t') 24150 value++; 24151 24152 /* If at end of string, we're done */ 24153 24154 if (!*value) 24155 break; 24156 24157 /* We have a word, figure out what it is */ 24158 24159 if (strncmp("mask", value, 4) == 0) { 24160 value += 4; 24161 while (*value == ' ' || *value == '\t') 24162 value++; 24163 /* Parse subnet mask */ 24164 if (af == AF_INET) { 24165 retval = inet_pton(af, value, &mask); 24166 if (retval == 1) { 24167 V4MASK_TO_V6(mask, v6mask); 24168 } 24169 } else if (af == AF_INET6) { 24170 retval = inet_pton(af, value, &v6mask); 24171 } 24172 if (retval != 1) { 24173 error = EINVAL; 24174 goto done; 24175 } 24176 while ((*value) && *value != ' ') 24177 value++; 24178 } else if (strncmp("sendspace", value, 9) == 0) { 24179 value += 9; 24180 24181 if (ddi_strtol(value, &end, 0, &sendspace) != 0 || 24182 sendspace < TCP_XMIT_HIWATER || 24183 sendspace >= (1L<<30)) { 24184 error = EINVAL; 24185 goto done; 24186 } 24187 value = end; 24188 } else if (strncmp("recvspace", value, 9) == 0) { 24189 value += 9; 24190 24191 if (ddi_strtol(value, &end, 0, &recvspace) != 0 || 24192 recvspace < TCP_RECV_HIWATER || 24193 recvspace >= (1L<<30)) { 24194 error = EINVAL; 24195 goto done; 24196 } 24197 value = end; 24198 } else if (strncmp("timestamp", value, 9) == 0) { 24199 value += 9; 24200 24201 if (ddi_strtol(value, &end, 0, ×tamp) != 0 || 24202 timestamp < 0 || timestamp > 1) { 24203 error = EINVAL; 24204 goto done; 24205 } 24206 24207 /* 24208 * We increment timestamp so we know it's been set; 24209 * this is undone when we put it in the HSP 24210 */ 24211 timestamp++; 24212 value = end; 24213 } else if (strncmp("delete", value, 6) == 0) { 24214 value += 6; 24215 delete = B_TRUE; 24216 } else { 24217 error = EINVAL; 24218 goto done; 24219 } 24220 } 24221 24222 /* Hash address for lookup */ 24223 24224 hash = TCP_HSP_HASH(addr); 24225 24226 if (delete) { 24227 /* 24228 * Note that deletes don't return an error if the thing 24229 * we're trying to delete isn't there. 24230 */ 24231 if (tcps->tcps_hsp_hash == NULL) 24232 goto done; 24233 hsp = tcps->tcps_hsp_hash[hash]; 24234 24235 if (hsp) { 24236 if (IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, 24237 &v6addr)) { 24238 tcps->tcps_hsp_hash[hash] = hsp->tcp_hsp_next; 24239 mi_free((char *)hsp); 24240 } else { 24241 hspprev = hsp; 24242 while ((hsp = hsp->tcp_hsp_next) != NULL) { 24243 if (IN6_ARE_ADDR_EQUAL( 24244 &hsp->tcp_hsp_addr_v6, &v6addr)) { 24245 hspprev->tcp_hsp_next = 24246 hsp->tcp_hsp_next; 24247 mi_free((char *)hsp); 24248 break; 24249 } 24250 hspprev = hsp; 24251 } 24252 } 24253 } 24254 } else { 24255 /* 24256 * We're adding/modifying an HSP. If we haven't already done 24257 * so, allocate the hash table. 24258 */ 24259 24260 if (!tcps->tcps_hsp_hash) { 24261 tcps->tcps_hsp_hash = (tcp_hsp_t **) 24262 mi_zalloc(sizeof (tcp_hsp_t *) * TCP_HSP_HASH_SIZE); 24263 if (!tcps->tcps_hsp_hash) { 24264 error = EINVAL; 24265 goto done; 24266 } 24267 } 24268 24269 /* Get head of hash chain */ 24270 24271 hsp = tcps->tcps_hsp_hash[hash]; 24272 24273 /* Try to find pre-existing hsp on hash chain */ 24274 /* Doesn't handle CIDR prefixes. */ 24275 while (hsp) { 24276 if (IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, &v6addr)) 24277 break; 24278 hsp = hsp->tcp_hsp_next; 24279 } 24280 24281 /* 24282 * If we didn't, create one with default values and put it 24283 * at head of hash chain 24284 */ 24285 24286 if (!hsp) { 24287 hsp = (tcp_hsp_t *)mi_zalloc(sizeof (tcp_hsp_t)); 24288 if (!hsp) { 24289 error = EINVAL; 24290 goto done; 24291 } 24292 hsp->tcp_hsp_next = tcps->tcps_hsp_hash[hash]; 24293 tcps->tcps_hsp_hash[hash] = hsp; 24294 } 24295 24296 /* Set values that the user asked us to change */ 24297 24298 hsp->tcp_hsp_addr_v6 = v6addr; 24299 if (IN6_IS_ADDR_V4MAPPED(&v6addr)) 24300 hsp->tcp_hsp_vers = IPV4_VERSION; 24301 else 24302 hsp->tcp_hsp_vers = IPV6_VERSION; 24303 hsp->tcp_hsp_subnet_v6 = v6mask; 24304 if (sendspace > 0) 24305 hsp->tcp_hsp_sendspace = sendspace; 24306 if (recvspace > 0) 24307 hsp->tcp_hsp_recvspace = recvspace; 24308 if (timestamp > 0) 24309 hsp->tcp_hsp_tstamp = timestamp - 1; 24310 } 24311 24312 done: 24313 rw_exit(&tcps->tcps_hsp_lock); 24314 return (error); 24315 } 24316 24317 /* Set callback routine passed to nd_load by tcp_param_register. */ 24318 /* ARGSUSED */ 24319 static int 24320 tcp_host_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) 24321 { 24322 return (tcp_host_param_setvalue(q, mp, value, cp, AF_INET)); 24323 } 24324 /* ARGSUSED */ 24325 static int 24326 tcp_host_param_set_ipv6(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 24327 cred_t *cr) 24328 { 24329 return (tcp_host_param_setvalue(q, mp, value, cp, AF_INET6)); 24330 } 24331 24332 /* TCP host parameters report triggered via the Named Dispatch mechanism. */ 24333 /* ARGSUSED */ 24334 static int 24335 tcp_host_param_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 24336 { 24337 tcp_hsp_t *hsp; 24338 int i; 24339 char addrbuf[INET6_ADDRSTRLEN], subnetbuf[INET6_ADDRSTRLEN]; 24340 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 24341 24342 rw_enter(&tcps->tcps_hsp_lock, RW_READER); 24343 (void) mi_mpprintf(mp, 24344 "Hash HSP " MI_COL_HDRPAD_STR 24345 "Address Subnet Mask Send Receive TStamp"); 24346 if (tcps->tcps_hsp_hash) { 24347 for (i = 0; i < TCP_HSP_HASH_SIZE; i++) { 24348 hsp = tcps->tcps_hsp_hash[i]; 24349 while (hsp) { 24350 if (hsp->tcp_hsp_vers == IPV4_VERSION) { 24351 (void) inet_ntop(AF_INET, 24352 &hsp->tcp_hsp_addr, 24353 addrbuf, sizeof (addrbuf)); 24354 (void) inet_ntop(AF_INET, 24355 &hsp->tcp_hsp_subnet, 24356 subnetbuf, sizeof (subnetbuf)); 24357 } else { 24358 (void) inet_ntop(AF_INET6, 24359 &hsp->tcp_hsp_addr_v6, 24360 addrbuf, sizeof (addrbuf)); 24361 (void) inet_ntop(AF_INET6, 24362 &hsp->tcp_hsp_subnet_v6, 24363 subnetbuf, sizeof (subnetbuf)); 24364 } 24365 (void) mi_mpprintf(mp, 24366 " %03d " MI_COL_PTRFMT_STR 24367 "%s %s %010d %010d %d", 24368 i, 24369 (void *)hsp, 24370 addrbuf, 24371 subnetbuf, 24372 hsp->tcp_hsp_sendspace, 24373 hsp->tcp_hsp_recvspace, 24374 hsp->tcp_hsp_tstamp); 24375 24376 hsp = hsp->tcp_hsp_next; 24377 } 24378 } 24379 } 24380 rw_exit(&tcps->tcps_hsp_lock); 24381 return (0); 24382 } 24383 24384 24385 /* Data for fast netmask macro used by tcp_hsp_lookup */ 24386 24387 static ipaddr_t netmasks[] = { 24388 IN_CLASSA_NET, IN_CLASSA_NET, IN_CLASSB_NET, 24389 IN_CLASSC_NET | IN_CLASSD_NET /* Class C,D,E */ 24390 }; 24391 24392 #define netmask(addr) (netmasks[(ipaddr_t)(addr) >> 30]) 24393 24394 /* 24395 * XXX This routine should go away and instead we should use the metrics 24396 * associated with the routes to determine the default sndspace and rcvspace. 24397 */ 24398 static tcp_hsp_t * 24399 tcp_hsp_lookup(ipaddr_t addr, tcp_stack_t *tcps) 24400 { 24401 tcp_hsp_t *hsp = NULL; 24402 24403 /* Quick check without acquiring the lock. */ 24404 if (tcps->tcps_hsp_hash == NULL) 24405 return (NULL); 24406 24407 rw_enter(&tcps->tcps_hsp_lock, RW_READER); 24408 24409 /* This routine finds the best-matching HSP for address addr. */ 24410 24411 if (tcps->tcps_hsp_hash) { 24412 int i; 24413 ipaddr_t srchaddr; 24414 tcp_hsp_t *hsp_net; 24415 24416 /* We do three passes: host, network, and subnet. */ 24417 24418 srchaddr = addr; 24419 24420 for (i = 1; i <= 3; i++) { 24421 /* Look for exact match on srchaddr */ 24422 24423 hsp = tcps->tcps_hsp_hash[TCP_HSP_HASH(srchaddr)]; 24424 while (hsp) { 24425 if (hsp->tcp_hsp_vers == IPV4_VERSION && 24426 hsp->tcp_hsp_addr == srchaddr) 24427 break; 24428 hsp = hsp->tcp_hsp_next; 24429 } 24430 ASSERT(hsp == NULL || 24431 hsp->tcp_hsp_vers == IPV4_VERSION); 24432 24433 /* 24434 * If this is the first pass: 24435 * If we found a match, great, return it. 24436 * If not, search for the network on the second pass. 24437 */ 24438 24439 if (i == 1) 24440 if (hsp) 24441 break; 24442 else 24443 { 24444 srchaddr = addr & netmask(addr); 24445 continue; 24446 } 24447 24448 /* 24449 * If this is the second pass: 24450 * If we found a match, but there's a subnet mask, 24451 * save the match but try again using the subnet 24452 * mask on the third pass. 24453 * Otherwise, return whatever we found. 24454 */ 24455 24456 if (i == 2) { 24457 if (hsp && hsp->tcp_hsp_subnet) { 24458 hsp_net = hsp; 24459 srchaddr = addr & hsp->tcp_hsp_subnet; 24460 continue; 24461 } else { 24462 break; 24463 } 24464 } 24465 24466 /* 24467 * This must be the third pass. If we didn't find 24468 * anything, return the saved network HSP instead. 24469 */ 24470 24471 if (!hsp) 24472 hsp = hsp_net; 24473 } 24474 } 24475 24476 rw_exit(&tcps->tcps_hsp_lock); 24477 return (hsp); 24478 } 24479 24480 /* 24481 * XXX Equally broken as the IPv4 routine. Doesn't handle longest 24482 * match lookup. 24483 */ 24484 static tcp_hsp_t * 24485 tcp_hsp_lookup_ipv6(in6_addr_t *v6addr, tcp_stack_t *tcps) 24486 { 24487 tcp_hsp_t *hsp = NULL; 24488 24489 /* Quick check without acquiring the lock. */ 24490 if (tcps->tcps_hsp_hash == NULL) 24491 return (NULL); 24492 24493 rw_enter(&tcps->tcps_hsp_lock, RW_READER); 24494 24495 /* This routine finds the best-matching HSP for address addr. */ 24496 24497 if (tcps->tcps_hsp_hash) { 24498 int i; 24499 in6_addr_t v6srchaddr; 24500 tcp_hsp_t *hsp_net; 24501 24502 /* We do three passes: host, network, and subnet. */ 24503 24504 v6srchaddr = *v6addr; 24505 24506 for (i = 1; i <= 3; i++) { 24507 /* Look for exact match on srchaddr */ 24508 24509 hsp = tcps->tcps_hsp_hash[TCP_HSP_HASH( 24510 V4_PART_OF_V6(v6srchaddr))]; 24511 while (hsp) { 24512 if (hsp->tcp_hsp_vers == IPV6_VERSION && 24513 IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, 24514 &v6srchaddr)) 24515 break; 24516 hsp = hsp->tcp_hsp_next; 24517 } 24518 24519 /* 24520 * If this is the first pass: 24521 * If we found a match, great, return it. 24522 * If not, search for the network on the second pass. 24523 */ 24524 24525 if (i == 1) 24526 if (hsp) 24527 break; 24528 else { 24529 /* Assume a 64 bit mask */ 24530 v6srchaddr.s6_addr32[0] = 24531 v6addr->s6_addr32[0]; 24532 v6srchaddr.s6_addr32[1] = 24533 v6addr->s6_addr32[1]; 24534 v6srchaddr.s6_addr32[2] = 0; 24535 v6srchaddr.s6_addr32[3] = 0; 24536 continue; 24537 } 24538 24539 /* 24540 * If this is the second pass: 24541 * If we found a match, but there's a subnet mask, 24542 * save the match but try again using the subnet 24543 * mask on the third pass. 24544 * Otherwise, return whatever we found. 24545 */ 24546 24547 if (i == 2) { 24548 ASSERT(hsp == NULL || 24549 hsp->tcp_hsp_vers == IPV6_VERSION); 24550 if (hsp && 24551 !IN6_IS_ADDR_UNSPECIFIED( 24552 &hsp->tcp_hsp_subnet_v6)) { 24553 hsp_net = hsp; 24554 V6_MASK_COPY(*v6addr, 24555 hsp->tcp_hsp_subnet_v6, v6srchaddr); 24556 continue; 24557 } else { 24558 break; 24559 } 24560 } 24561 24562 /* 24563 * This must be the third pass. If we didn't find 24564 * anything, return the saved network HSP instead. 24565 */ 24566 24567 if (!hsp) 24568 hsp = hsp_net; 24569 } 24570 } 24571 24572 rw_exit(&tcps->tcps_hsp_lock); 24573 return (hsp); 24574 } 24575 24576 /* 24577 * Type three generator adapted from the random() function in 4.4 BSD: 24578 */ 24579 24580 /* 24581 * Copyright (c) 1983, 1993 24582 * The Regents of the University of California. All rights reserved. 24583 * 24584 * Redistribution and use in source and binary forms, with or without 24585 * modification, are permitted provided that the following conditions 24586 * are met: 24587 * 1. Redistributions of source code must retain the above copyright 24588 * notice, this list of conditions and the following disclaimer. 24589 * 2. Redistributions in binary form must reproduce the above copyright 24590 * notice, this list of conditions and the following disclaimer in the 24591 * documentation and/or other materials provided with the distribution. 24592 * 3. All advertising materials mentioning features or use of this software 24593 * must display the following acknowledgement: 24594 * This product includes software developed by the University of 24595 * California, Berkeley and its contributors. 24596 * 4. Neither the name of the University nor the names of its contributors 24597 * may be used to endorse or promote products derived from this software 24598 * without specific prior written permission. 24599 * 24600 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 24601 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24602 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24603 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24604 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24605 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24606 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24607 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24608 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24609 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24610 * SUCH DAMAGE. 24611 */ 24612 24613 /* Type 3 -- x**31 + x**3 + 1 */ 24614 #define DEG_3 31 24615 #define SEP_3 3 24616 24617 24618 /* Protected by tcp_random_lock */ 24619 static int tcp_randtbl[DEG_3 + 1]; 24620 24621 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1]; 24622 static int *tcp_random_rptr = &tcp_randtbl[1]; 24623 24624 static int *tcp_random_state = &tcp_randtbl[1]; 24625 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1]; 24626 24627 kmutex_t tcp_random_lock; 24628 24629 void 24630 tcp_random_init(void) 24631 { 24632 int i; 24633 hrtime_t hrt; 24634 time_t wallclock; 24635 uint64_t result; 24636 24637 /* 24638 * Use high-res timer and current time for seed. Gethrtime() returns 24639 * a longlong, which may contain resolution down to nanoseconds. 24640 * The current time will either be a 32-bit or a 64-bit quantity. 24641 * XOR the two together in a 64-bit result variable. 24642 * Convert the result to a 32-bit value by multiplying the high-order 24643 * 32-bits by the low-order 32-bits. 24644 */ 24645 24646 hrt = gethrtime(); 24647 (void) drv_getparm(TIME, &wallclock); 24648 result = (uint64_t)wallclock ^ (uint64_t)hrt; 24649 mutex_enter(&tcp_random_lock); 24650 tcp_random_state[0] = ((result >> 32) & 0xffffffff) * 24651 (result & 0xffffffff); 24652 24653 for (i = 1; i < DEG_3; i++) 24654 tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1] 24655 + 12345; 24656 tcp_random_fptr = &tcp_random_state[SEP_3]; 24657 tcp_random_rptr = &tcp_random_state[0]; 24658 mutex_exit(&tcp_random_lock); 24659 for (i = 0; i < 10 * DEG_3; i++) 24660 (void) tcp_random(); 24661 } 24662 24663 /* 24664 * tcp_random: Return a random number in the range [1 - (128K + 1)]. 24665 * This range is selected to be approximately centered on TCP_ISS / 2, 24666 * and easy to compute. We get this value by generating a 32-bit random 24667 * number, selecting out the high-order 17 bits, and then adding one so 24668 * that we never return zero. 24669 */ 24670 int 24671 tcp_random(void) 24672 { 24673 int i; 24674 24675 mutex_enter(&tcp_random_lock); 24676 *tcp_random_fptr += *tcp_random_rptr; 24677 24678 /* 24679 * The high-order bits are more random than the low-order bits, 24680 * so we select out the high-order 17 bits and add one so that 24681 * we never return zero. 24682 */ 24683 i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1; 24684 if (++tcp_random_fptr >= tcp_random_end_ptr) { 24685 tcp_random_fptr = tcp_random_state; 24686 ++tcp_random_rptr; 24687 } else if (++tcp_random_rptr >= tcp_random_end_ptr) 24688 tcp_random_rptr = tcp_random_state; 24689 24690 mutex_exit(&tcp_random_lock); 24691 return (i); 24692 } 24693 24694 /* 24695 * XXX This will go away when TPI is extended to send 24696 * info reqs to sockfs/timod ..... 24697 * Given a queue, set the max packet size for the write 24698 * side of the queue below stream head. This value is 24699 * cached on the stream head. 24700 * Returns 1 on success, 0 otherwise. 24701 */ 24702 static int 24703 setmaxps(queue_t *q, int maxpsz) 24704 { 24705 struct stdata *stp; 24706 queue_t *wq; 24707 stp = STREAM(q); 24708 24709 /* 24710 * At this point change of a queue parameter is not allowed 24711 * when a multiplexor is sitting on top. 24712 */ 24713 if (stp->sd_flag & STPLEX) 24714 return (0); 24715 24716 claimstr(stp->sd_wrq); 24717 wq = stp->sd_wrq->q_next; 24718 ASSERT(wq != NULL); 24719 (void) strqset(wq, QMAXPSZ, 0, maxpsz); 24720 releasestr(stp->sd_wrq); 24721 return (1); 24722 } 24723 24724 static int 24725 tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, int *do_disconnectp, 24726 int *t_errorp, int *sys_errorp) 24727 { 24728 int error; 24729 int is_absreq_failure; 24730 t_scalar_t *opt_lenp; 24731 t_scalar_t opt_offset; 24732 int prim_type; 24733 struct T_conn_req *tcreqp; 24734 struct T_conn_res *tcresp; 24735 cred_t *cr; 24736 24737 cr = DB_CREDDEF(mp, tcp->tcp_cred); 24738 24739 prim_type = ((union T_primitives *)mp->b_rptr)->type; 24740 ASSERT(prim_type == T_CONN_REQ || prim_type == O_T_CONN_RES || 24741 prim_type == T_CONN_RES); 24742 24743 switch (prim_type) { 24744 case T_CONN_REQ: 24745 tcreqp = (struct T_conn_req *)mp->b_rptr; 24746 opt_offset = tcreqp->OPT_offset; 24747 opt_lenp = (t_scalar_t *)&tcreqp->OPT_length; 24748 break; 24749 case O_T_CONN_RES: 24750 case T_CONN_RES: 24751 tcresp = (struct T_conn_res *)mp->b_rptr; 24752 opt_offset = tcresp->OPT_offset; 24753 opt_lenp = (t_scalar_t *)&tcresp->OPT_length; 24754 break; 24755 } 24756 24757 *t_errorp = 0; 24758 *sys_errorp = 0; 24759 *do_disconnectp = 0; 24760 24761 error = tpi_optcom_buf(tcp->tcp_wq, mp, opt_lenp, 24762 opt_offset, cr, &tcp_opt_obj, 24763 NULL, &is_absreq_failure); 24764 24765 switch (error) { 24766 case 0: /* no error */ 24767 ASSERT(is_absreq_failure == 0); 24768 return (0); 24769 case ENOPROTOOPT: 24770 *t_errorp = TBADOPT; 24771 break; 24772 case EACCES: 24773 *t_errorp = TACCES; 24774 break; 24775 default: 24776 *t_errorp = TSYSERR; *sys_errorp = error; 24777 break; 24778 } 24779 if (is_absreq_failure != 0) { 24780 /* 24781 * The connection request should get the local ack 24782 * T_OK_ACK and then a T_DISCON_IND. 24783 */ 24784 *do_disconnectp = 1; 24785 } 24786 return (-1); 24787 } 24788 24789 /* 24790 * Split this function out so that if the secret changes, I'm okay. 24791 * 24792 * Initialize the tcp_iss_cookie and tcp_iss_key. 24793 */ 24794 24795 #define PASSWD_SIZE 16 /* MUST be multiple of 4 */ 24796 24797 static void 24798 tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *tcps) 24799 { 24800 struct { 24801 int32_t current_time; 24802 uint32_t randnum; 24803 uint16_t pad; 24804 uint8_t ether[6]; 24805 uint8_t passwd[PASSWD_SIZE]; 24806 } tcp_iss_cookie; 24807 time_t t; 24808 24809 /* 24810 * Start with the current absolute time. 24811 */ 24812 (void) drv_getparm(TIME, &t); 24813 tcp_iss_cookie.current_time = t; 24814 24815 /* 24816 * XXX - Need a more random number per RFC 1750, not this crap. 24817 * OTOH, if what follows is pretty random, then I'm in better shape. 24818 */ 24819 tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random()); 24820 tcp_iss_cookie.pad = 0x365c; /* Picked from HMAC pad values. */ 24821 24822 /* 24823 * The cpu_type_info is pretty non-random. Ugggh. It does serve 24824 * as a good template. 24825 */ 24826 bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd, 24827 min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info))); 24828 24829 /* 24830 * The pass-phrase. Normally this is supplied by user-called NDD. 24831 */ 24832 bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len)); 24833 24834 /* 24835 * See 4010593 if this section becomes a problem again, 24836 * but the local ethernet address is useful here. 24837 */ 24838 (void) localetheraddr(NULL, 24839 (struct ether_addr *)&tcp_iss_cookie.ether); 24840 24841 /* 24842 * Hash 'em all together. The MD5Final is called per-connection. 24843 */ 24844 mutex_enter(&tcps->tcps_iss_key_lock); 24845 MD5Init(&tcps->tcps_iss_key); 24846 MD5Update(&tcps->tcps_iss_key, (uchar_t *)&tcp_iss_cookie, 24847 sizeof (tcp_iss_cookie)); 24848 mutex_exit(&tcps->tcps_iss_key_lock); 24849 } 24850 24851 /* 24852 * Set the RFC 1948 pass phrase 24853 */ 24854 /* ARGSUSED */ 24855 static int 24856 tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 24857 cred_t *cr) 24858 { 24859 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 24860 24861 /* 24862 * Basically, value contains a new pass phrase. Pass it along! 24863 */ 24864 tcp_iss_key_init((uint8_t *)value, strlen(value), tcps); 24865 return (0); 24866 } 24867 24868 /* ARGSUSED */ 24869 static int 24870 tcp_sack_info_constructor(void *buf, void *cdrarg, int kmflags) 24871 { 24872 bzero(buf, sizeof (tcp_sack_info_t)); 24873 return (0); 24874 } 24875 24876 /* ARGSUSED */ 24877 static int 24878 tcp_iphc_constructor(void *buf, void *cdrarg, int kmflags) 24879 { 24880 bzero(buf, TCP_MAX_COMBINED_HEADER_LENGTH); 24881 return (0); 24882 } 24883 24884 /* 24885 * Make sure we wait until the default queue is setup, yet allow 24886 * tcp_g_q_create() to open a TCP stream. 24887 * We need to allow tcp_g_q_create() do do an open 24888 * of tcp, hence we compare curhread. 24889 * All others have to wait until the tcps_g_q has been 24890 * setup. 24891 */ 24892 void 24893 tcp_g_q_setup(tcp_stack_t *tcps) 24894 { 24895 mutex_enter(&tcps->tcps_g_q_lock); 24896 if (tcps->tcps_g_q != NULL) { 24897 mutex_exit(&tcps->tcps_g_q_lock); 24898 return; 24899 } 24900 if (tcps->tcps_g_q_creator == NULL) { 24901 /* This thread will set it up */ 24902 tcps->tcps_g_q_creator = curthread; 24903 mutex_exit(&tcps->tcps_g_q_lock); 24904 tcp_g_q_create(tcps); 24905 mutex_enter(&tcps->tcps_g_q_lock); 24906 ASSERT(tcps->tcps_g_q_creator == curthread); 24907 tcps->tcps_g_q_creator = NULL; 24908 cv_signal(&tcps->tcps_g_q_cv); 24909 ASSERT(tcps->tcps_g_q != NULL); 24910 mutex_exit(&tcps->tcps_g_q_lock); 24911 return; 24912 } 24913 /* Everybody but the creator has to wait */ 24914 if (tcps->tcps_g_q_creator != curthread) { 24915 while (tcps->tcps_g_q == NULL) 24916 cv_wait(&tcps->tcps_g_q_cv, &tcps->tcps_g_q_lock); 24917 } 24918 mutex_exit(&tcps->tcps_g_q_lock); 24919 } 24920 24921 #define IP "ip" 24922 24923 #define TCP6DEV "/devices/pseudo/tcp6@0:tcp6" 24924 24925 /* 24926 * Create a default tcp queue here instead of in strplumb 24927 */ 24928 void 24929 tcp_g_q_create(tcp_stack_t *tcps) 24930 { 24931 int error; 24932 ldi_handle_t lh = NULL; 24933 ldi_ident_t li = NULL; 24934 int rval; 24935 cred_t *cr; 24936 major_t IP_MAJ; 24937 24938 #ifdef NS_DEBUG 24939 (void) printf("tcp_g_q_create()\n"); 24940 #endif 24941 24942 IP_MAJ = ddi_name_to_major(IP); 24943 24944 ASSERT(tcps->tcps_g_q_creator == curthread); 24945 24946 error = ldi_ident_from_major(IP_MAJ, &li); 24947 if (error) { 24948 #ifdef DEBUG 24949 printf("tcp_g_q_create: lyr ident get failed error %d\n", 24950 error); 24951 #endif 24952 return; 24953 } 24954 24955 cr = zone_get_kcred(netstackid_to_zoneid( 24956 tcps->tcps_netstack->netstack_stackid)); 24957 ASSERT(cr != NULL); 24958 /* 24959 * We set the tcp default queue to IPv6 because IPv4 falls 24960 * back to IPv6 when it can't find a client, but 24961 * IPv6 does not fall back to IPv4. 24962 */ 24963 error = ldi_open_by_name(TCP6DEV, FREAD|FWRITE, cr, &lh, li); 24964 if (error) { 24965 #ifdef DEBUG 24966 printf("tcp_g_q_create: open of TCP6DEV failed error %d\n", 24967 error); 24968 #endif 24969 goto out; 24970 } 24971 24972 /* 24973 * This ioctl causes the tcp framework to cache a pointer to 24974 * this stream, so we don't want to close the stream after 24975 * this operation. 24976 * Use the kernel credentials that are for the zone we're in. 24977 */ 24978 error = ldi_ioctl(lh, TCP_IOC_DEFAULT_Q, 24979 (intptr_t)0, FKIOCTL, cr, &rval); 24980 if (error) { 24981 #ifdef DEBUG 24982 printf("tcp_g_q_create: ioctl TCP_IOC_DEFAULT_Q failed " 24983 "error %d\n", error); 24984 #endif 24985 goto out; 24986 } 24987 tcps->tcps_g_q_lh = lh; /* For tcp_g_q_close */ 24988 lh = NULL; 24989 out: 24990 /* Close layered handles */ 24991 if (li) 24992 ldi_ident_release(li); 24993 /* Keep cred around until _inactive needs it */ 24994 tcps->tcps_g_q_cr = cr; 24995 } 24996 24997 /* 24998 * We keep tcp_g_q set until all other tcp_t's in the zone 24999 * has gone away, and then when tcp_g_q_inactive() is called 25000 * we clear it. 25001 */ 25002 void 25003 tcp_g_q_destroy(tcp_stack_t *tcps) 25004 { 25005 #ifdef NS_DEBUG 25006 (void) printf("tcp_g_q_destroy()for stack %d\n", 25007 tcps->tcps_netstack->netstack_stackid); 25008 #endif 25009 25010 if (tcps->tcps_g_q == NULL) { 25011 return; /* Nothing to cleanup */ 25012 } 25013 /* 25014 * Drop reference corresponding to the default queue. 25015 * This reference was added from tcp_open when the default queue 25016 * was created, hence we compensate for this extra drop in 25017 * tcp_g_q_close. If the refcnt drops to zero here it means 25018 * the default queue was the last one to be open, in which 25019 * case, then tcp_g_q_inactive will be 25020 * called as a result of the refrele. 25021 */ 25022 TCPS_REFRELE(tcps); 25023 } 25024 25025 /* 25026 * Called when last tcp_t drops reference count using TCPS_REFRELE. 25027 * Run by tcp_q_q_inactive using a taskq. 25028 */ 25029 static void 25030 tcp_g_q_close(void *arg) 25031 { 25032 tcp_stack_t *tcps = arg; 25033 int error; 25034 ldi_handle_t lh = NULL; 25035 ldi_ident_t li = NULL; 25036 cred_t *cr; 25037 major_t IP_MAJ; 25038 25039 IP_MAJ = ddi_name_to_major(IP); 25040 25041 #ifdef NS_DEBUG 25042 (void) printf("tcp_g_q_inactive() for stack %d refcnt %d\n", 25043 tcps->tcps_netstack->netstack_stackid, 25044 tcps->tcps_netstack->netstack_refcnt); 25045 #endif 25046 lh = tcps->tcps_g_q_lh; 25047 if (lh == NULL) 25048 return; /* Nothing to cleanup */ 25049 25050 ASSERT(tcps->tcps_refcnt == 1); 25051 ASSERT(tcps->tcps_g_q != NULL); 25052 25053 error = ldi_ident_from_major(IP_MAJ, &li); 25054 if (error) { 25055 #ifdef DEBUG 25056 printf("tcp_g_q_inactive: lyr ident get failed error %d\n", 25057 error); 25058 #endif 25059 return; 25060 } 25061 25062 cr = tcps->tcps_g_q_cr; 25063 tcps->tcps_g_q_cr = NULL; 25064 ASSERT(cr != NULL); 25065 25066 /* 25067 * Make sure we can break the recursion when tcp_close decrements 25068 * the reference count causing g_q_inactive to be called again. 25069 */ 25070 tcps->tcps_g_q_lh = NULL; 25071 25072 /* close the default queue */ 25073 (void) ldi_close(lh, FREAD|FWRITE, cr); 25074 /* 25075 * At this point in time tcps and the rest of netstack_t might 25076 * have been deleted. 25077 */ 25078 tcps = NULL; 25079 25080 /* Close layered handles */ 25081 ldi_ident_release(li); 25082 crfree(cr); 25083 } 25084 25085 /* 25086 * Called when last tcp_t drops reference count using TCPS_REFRELE. 25087 * 25088 * Have to ensure that the ldi routines are not used by an 25089 * interrupt thread by using a taskq. 25090 */ 25091 void 25092 tcp_g_q_inactive(tcp_stack_t *tcps) 25093 { 25094 if (tcps->tcps_g_q_lh == NULL) 25095 return; /* Nothing to cleanup */ 25096 25097 ASSERT(tcps->tcps_refcnt == 0); 25098 TCPS_REFHOLD(tcps); /* Compensate for what g_q_destroy did */ 25099 25100 if (servicing_interrupt()) { 25101 (void) taskq_dispatch(tcp_taskq, tcp_g_q_close, 25102 (void *) tcps, TQ_SLEEP); 25103 } else { 25104 tcp_g_q_close(tcps); 25105 } 25106 } 25107 25108 /* 25109 * Called by IP when IP is loaded into the kernel 25110 */ 25111 void 25112 tcp_ddi_g_init(void) 25113 { 25114 tcp_timercache = kmem_cache_create("tcp_timercache", 25115 sizeof (tcp_timer_t) + sizeof (mblk_t), 0, 25116 NULL, NULL, NULL, NULL, NULL, 0); 25117 25118 tcp_sack_info_cache = kmem_cache_create("tcp_sack_info_cache", 25119 sizeof (tcp_sack_info_t), 0, 25120 tcp_sack_info_constructor, NULL, NULL, NULL, NULL, 0); 25121 25122 tcp_iphc_cache = kmem_cache_create("tcp_iphc_cache", 25123 TCP_MAX_COMBINED_HEADER_LENGTH, 0, 25124 tcp_iphc_constructor, NULL, NULL, NULL, NULL, 0); 25125 25126 mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL); 25127 25128 /* Initialize the random number generator */ 25129 tcp_random_init(); 25130 25131 tcp_squeue_wput_proc = tcp_squeue_switch(tcp_squeue_wput); 25132 tcp_squeue_close_proc = tcp_squeue_switch(tcp_squeue_close); 25133 25134 /* A single callback independently of how many netstacks we have */ 25135 ip_squeue_init(tcp_squeue_add); 25136 25137 tcp_g_kstat = tcp_g_kstat_init(&tcp_g_statistics); 25138 25139 tcp_taskq = taskq_create("tcp_taskq", 1, minclsyspri, 1, 1, 25140 TASKQ_PREPOPULATE); 25141 25142 /* 25143 * We want to be informed each time a stack is created or 25144 * destroyed in the kernel, so we can maintain the 25145 * set of tcp_stack_t's. 25146 */ 25147 netstack_register(NS_TCP, tcp_stack_init, tcp_stack_shutdown, 25148 tcp_stack_fini); 25149 } 25150 25151 25152 /* 25153 * Initialize the TCP stack instance. 25154 */ 25155 static void * 25156 tcp_stack_init(netstackid_t stackid, netstack_t *ns) 25157 { 25158 tcp_stack_t *tcps; 25159 tcpparam_t *pa; 25160 int i; 25161 25162 tcps = (tcp_stack_t *)kmem_zalloc(sizeof (*tcps), KM_SLEEP); 25163 tcps->tcps_netstack = ns; 25164 25165 /* Initialize locks */ 25166 rw_init(&tcps->tcps_hsp_lock, NULL, RW_DEFAULT, NULL); 25167 mutex_init(&tcps->tcps_g_q_lock, NULL, MUTEX_DEFAULT, NULL); 25168 cv_init(&tcps->tcps_g_q_cv, NULL, CV_DEFAULT, NULL); 25169 mutex_init(&tcps->tcps_iss_key_lock, NULL, MUTEX_DEFAULT, NULL); 25170 mutex_init(&tcps->tcps_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL); 25171 rw_init(&tcps->tcps_reserved_port_lock, NULL, RW_DEFAULT, NULL); 25172 25173 tcps->tcps_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS; 25174 tcps->tcps_g_epriv_ports[0] = 2049; 25175 tcps->tcps_g_epriv_ports[1] = 4045; 25176 tcps->tcps_min_anonpriv_port = 512; 25177 25178 tcps->tcps_bind_fanout = kmem_zalloc(sizeof (tf_t) * 25179 TCP_BIND_FANOUT_SIZE, KM_SLEEP); 25180 tcps->tcps_acceptor_fanout = kmem_zalloc(sizeof (tf_t) * 25181 TCP_FANOUT_SIZE, KM_SLEEP); 25182 tcps->tcps_reserved_port = kmem_zalloc(sizeof (tcp_rport_t) * 25183 TCP_RESERVED_PORTS_ARRAY_MAX_SIZE, KM_SLEEP); 25184 25185 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 25186 mutex_init(&tcps->tcps_bind_fanout[i].tf_lock, NULL, 25187 MUTEX_DEFAULT, NULL); 25188 } 25189 25190 for (i = 0; i < TCP_FANOUT_SIZE; i++) { 25191 mutex_init(&tcps->tcps_acceptor_fanout[i].tf_lock, NULL, 25192 MUTEX_DEFAULT, NULL); 25193 } 25194 25195 /* TCP's IPsec code calls the packet dropper. */ 25196 ip_drop_register(&tcps->tcps_dropper, "TCP IPsec policy enforcement"); 25197 25198 pa = (tcpparam_t *)kmem_alloc(sizeof (lcl_tcp_param_arr), KM_SLEEP); 25199 tcps->tcps_params = pa; 25200 bcopy(lcl_tcp_param_arr, tcps->tcps_params, sizeof (lcl_tcp_param_arr)); 25201 25202 (void) tcp_param_register(&tcps->tcps_g_nd, tcps->tcps_params, 25203 A_CNT(lcl_tcp_param_arr), tcps); 25204 25205 /* 25206 * Note: To really walk the device tree you need the devinfo 25207 * pointer to your device which is only available after probe/attach. 25208 * The following is safe only because it uses ddi_root_node() 25209 */ 25210 tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr, 25211 tcp_opt_obj.odb_opt_arr_cnt); 25212 25213 /* 25214 * Initialize RFC 1948 secret values. This will probably be reset once 25215 * by the boot scripts. 25216 * 25217 * Use NULL name, as the name is caught by the new lockstats. 25218 * 25219 * Initialize with some random, non-guessable string, like the global 25220 * T_INFO_ACK. 25221 */ 25222 25223 tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack, 25224 sizeof (tcp_g_t_info_ack), tcps); 25225 25226 tcps->tcps_kstat = tcp_kstat2_init(stackid, &tcps->tcps_statistics); 25227 tcps->tcps_mibkp = tcp_kstat_init(stackid, tcps); 25228 25229 return (tcps); 25230 } 25231 25232 /* 25233 * Called when the IP module is about to be unloaded. 25234 */ 25235 void 25236 tcp_ddi_g_destroy(void) 25237 { 25238 tcp_g_kstat_fini(tcp_g_kstat); 25239 tcp_g_kstat = NULL; 25240 bzero(&tcp_g_statistics, sizeof (tcp_g_statistics)); 25241 25242 mutex_destroy(&tcp_random_lock); 25243 25244 kmem_cache_destroy(tcp_timercache); 25245 kmem_cache_destroy(tcp_sack_info_cache); 25246 kmem_cache_destroy(tcp_iphc_cache); 25247 25248 netstack_unregister(NS_TCP); 25249 taskq_destroy(tcp_taskq); 25250 } 25251 25252 /* 25253 * Shut down the TCP stack instance. 25254 */ 25255 /* ARGSUSED */ 25256 static void 25257 tcp_stack_shutdown(netstackid_t stackid, void *arg) 25258 { 25259 tcp_stack_t *tcps = (tcp_stack_t *)arg; 25260 25261 tcp_g_q_destroy(tcps); 25262 } 25263 25264 /* 25265 * Free the TCP stack instance. 25266 */ 25267 static void 25268 tcp_stack_fini(netstackid_t stackid, void *arg) 25269 { 25270 tcp_stack_t *tcps = (tcp_stack_t *)arg; 25271 int i; 25272 25273 nd_free(&tcps->tcps_g_nd); 25274 kmem_free(tcps->tcps_params, sizeof (lcl_tcp_param_arr)); 25275 tcps->tcps_params = NULL; 25276 kmem_free(tcps->tcps_wroff_xtra_param, sizeof (tcpparam_t)); 25277 tcps->tcps_wroff_xtra_param = NULL; 25278 kmem_free(tcps->tcps_mdt_head_param, sizeof (tcpparam_t)); 25279 tcps->tcps_mdt_head_param = NULL; 25280 kmem_free(tcps->tcps_mdt_tail_param, sizeof (tcpparam_t)); 25281 tcps->tcps_mdt_tail_param = NULL; 25282 kmem_free(tcps->tcps_mdt_max_pbufs_param, sizeof (tcpparam_t)); 25283 tcps->tcps_mdt_max_pbufs_param = NULL; 25284 25285 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 25286 ASSERT(tcps->tcps_bind_fanout[i].tf_tcp == NULL); 25287 mutex_destroy(&tcps->tcps_bind_fanout[i].tf_lock); 25288 } 25289 25290 for (i = 0; i < TCP_FANOUT_SIZE; i++) { 25291 ASSERT(tcps->tcps_acceptor_fanout[i].tf_tcp == NULL); 25292 mutex_destroy(&tcps->tcps_acceptor_fanout[i].tf_lock); 25293 } 25294 25295 kmem_free(tcps->tcps_bind_fanout, sizeof (tf_t) * TCP_BIND_FANOUT_SIZE); 25296 tcps->tcps_bind_fanout = NULL; 25297 25298 kmem_free(tcps->tcps_acceptor_fanout, sizeof (tf_t) * TCP_FANOUT_SIZE); 25299 tcps->tcps_acceptor_fanout = NULL; 25300 25301 kmem_free(tcps->tcps_reserved_port, sizeof (tcp_rport_t) * 25302 TCP_RESERVED_PORTS_ARRAY_MAX_SIZE); 25303 tcps->tcps_reserved_port = NULL; 25304 25305 mutex_destroy(&tcps->tcps_iss_key_lock); 25306 rw_destroy(&tcps->tcps_hsp_lock); 25307 mutex_destroy(&tcps->tcps_g_q_lock); 25308 cv_destroy(&tcps->tcps_g_q_cv); 25309 mutex_destroy(&tcps->tcps_epriv_port_lock); 25310 rw_destroy(&tcps->tcps_reserved_port_lock); 25311 25312 ip_drop_unregister(&tcps->tcps_dropper); 25313 25314 tcp_kstat2_fini(stackid, tcps->tcps_kstat); 25315 tcps->tcps_kstat = NULL; 25316 bzero(&tcps->tcps_statistics, sizeof (tcps->tcps_statistics)); 25317 25318 tcp_kstat_fini(stackid, tcps->tcps_mibkp); 25319 tcps->tcps_mibkp = NULL; 25320 25321 kmem_free(tcps, sizeof (*tcps)); 25322 } 25323 25324 /* 25325 * Generate ISS, taking into account NDD changes may happen halfway through. 25326 * (If the iss is not zero, set it.) 25327 */ 25328 25329 static void 25330 tcp_iss_init(tcp_t *tcp) 25331 { 25332 MD5_CTX context; 25333 struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg; 25334 uint32_t answer[4]; 25335 tcp_stack_t *tcps = tcp->tcp_tcps; 25336 25337 tcps->tcps_iss_incr_extra += (ISS_INCR >> 1); 25338 tcp->tcp_iss = tcps->tcps_iss_incr_extra; 25339 switch (tcps->tcps_strong_iss) { 25340 case 2: 25341 mutex_enter(&tcps->tcps_iss_key_lock); 25342 context = tcps->tcps_iss_key; 25343 mutex_exit(&tcps->tcps_iss_key_lock); 25344 arg.ports = tcp->tcp_ports; 25345 if (tcp->tcp_ipversion == IPV4_VERSION) { 25346 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 25347 &arg.src); 25348 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_dst, 25349 &arg.dst); 25350 } else { 25351 arg.src = tcp->tcp_ip6h->ip6_src; 25352 arg.dst = tcp->tcp_ip6h->ip6_dst; 25353 } 25354 MD5Update(&context, (uchar_t *)&arg, sizeof (arg)); 25355 MD5Final((uchar_t *)answer, &context); 25356 tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3]; 25357 /* 25358 * Now that we've hashed into a unique per-connection sequence 25359 * space, add a random increment per strong_iss == 1. So I 25360 * guess we'll have to... 25361 */ 25362 /* FALLTHRU */ 25363 case 1: 25364 tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random(); 25365 break; 25366 default: 25367 tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 25368 break; 25369 } 25370 tcp->tcp_valid_bits = TCP_ISS_VALID; 25371 tcp->tcp_fss = tcp->tcp_iss - 1; 25372 tcp->tcp_suna = tcp->tcp_iss; 25373 tcp->tcp_snxt = tcp->tcp_iss + 1; 25374 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 25375 tcp->tcp_csuna = tcp->tcp_snxt; 25376 } 25377 25378 /* 25379 * Exported routine for extracting active tcp connection status. 25380 * 25381 * This is used by the Solaris Cluster Networking software to 25382 * gather a list of connections that need to be forwarded to 25383 * specific nodes in the cluster when configuration changes occur. 25384 * 25385 * The callback is invoked for each tcp_t structure. Returning 25386 * non-zero from the callback routine terminates the search. 25387 */ 25388 int 25389 cl_tcp_walk_list(int (*cl_callback)(cl_tcp_info_t *, void *), 25390 void *arg) 25391 { 25392 netstack_handle_t nh; 25393 netstack_t *ns; 25394 int ret = 0; 25395 25396 netstack_next_init(&nh); 25397 while ((ns = netstack_next(&nh)) != NULL) { 25398 ret = cl_tcp_walk_list_stack(cl_callback, arg, 25399 ns->netstack_tcp); 25400 netstack_rele(ns); 25401 } 25402 netstack_next_fini(&nh); 25403 return (ret); 25404 } 25405 25406 static int 25407 cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *), void *arg, 25408 tcp_stack_t *tcps) 25409 { 25410 tcp_t *tcp; 25411 cl_tcp_info_t cl_tcpi; 25412 connf_t *connfp; 25413 conn_t *connp; 25414 int i; 25415 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 25416 25417 ASSERT(callback != NULL); 25418 25419 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 25420 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 25421 connp = NULL; 25422 25423 while ((connp = 25424 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 25425 25426 tcp = connp->conn_tcp; 25427 cl_tcpi.cl_tcpi_version = CL_TCPI_V1; 25428 cl_tcpi.cl_tcpi_ipversion = tcp->tcp_ipversion; 25429 cl_tcpi.cl_tcpi_state = tcp->tcp_state; 25430 cl_tcpi.cl_tcpi_lport = tcp->tcp_lport; 25431 cl_tcpi.cl_tcpi_fport = tcp->tcp_fport; 25432 /* 25433 * The macros tcp_laddr and tcp_faddr give the IPv4 25434 * addresses. They are copied implicitly below as 25435 * mapped addresses. 25436 */ 25437 cl_tcpi.cl_tcpi_laddr_v6 = tcp->tcp_ip_src_v6; 25438 if (tcp->tcp_ipversion == IPV4_VERSION) { 25439 cl_tcpi.cl_tcpi_faddr = 25440 tcp->tcp_ipha->ipha_dst; 25441 } else { 25442 cl_tcpi.cl_tcpi_faddr_v6 = 25443 tcp->tcp_ip6h->ip6_dst; 25444 } 25445 25446 /* 25447 * If the callback returns non-zero 25448 * we terminate the traversal. 25449 */ 25450 if ((*callback)(&cl_tcpi, arg) != 0) { 25451 CONN_DEC_REF(tcp->tcp_connp); 25452 return (1); 25453 } 25454 } 25455 } 25456 25457 return (0); 25458 } 25459 25460 /* 25461 * Macros used for accessing the different types of sockaddr 25462 * structures inside a tcp_ioc_abort_conn_t. 25463 */ 25464 #define TCP_AC_V4LADDR(acp) ((sin_t *)&(acp)->ac_local) 25465 #define TCP_AC_V4RADDR(acp) ((sin_t *)&(acp)->ac_remote) 25466 #define TCP_AC_V4LOCAL(acp) (TCP_AC_V4LADDR(acp)->sin_addr.s_addr) 25467 #define TCP_AC_V4REMOTE(acp) (TCP_AC_V4RADDR(acp)->sin_addr.s_addr) 25468 #define TCP_AC_V4LPORT(acp) (TCP_AC_V4LADDR(acp)->sin_port) 25469 #define TCP_AC_V4RPORT(acp) (TCP_AC_V4RADDR(acp)->sin_port) 25470 #define TCP_AC_V6LADDR(acp) ((sin6_t *)&(acp)->ac_local) 25471 #define TCP_AC_V6RADDR(acp) ((sin6_t *)&(acp)->ac_remote) 25472 #define TCP_AC_V6LOCAL(acp) (TCP_AC_V6LADDR(acp)->sin6_addr) 25473 #define TCP_AC_V6REMOTE(acp) (TCP_AC_V6RADDR(acp)->sin6_addr) 25474 #define TCP_AC_V6LPORT(acp) (TCP_AC_V6LADDR(acp)->sin6_port) 25475 #define TCP_AC_V6RPORT(acp) (TCP_AC_V6RADDR(acp)->sin6_port) 25476 25477 /* 25478 * Return the correct error code to mimic the behavior 25479 * of a connection reset. 25480 */ 25481 #define TCP_AC_GET_ERRCODE(state, err) { \ 25482 switch ((state)) { \ 25483 case TCPS_SYN_SENT: \ 25484 case TCPS_SYN_RCVD: \ 25485 (err) = ECONNREFUSED; \ 25486 break; \ 25487 case TCPS_ESTABLISHED: \ 25488 case TCPS_FIN_WAIT_1: \ 25489 case TCPS_FIN_WAIT_2: \ 25490 case TCPS_CLOSE_WAIT: \ 25491 (err) = ECONNRESET; \ 25492 break; \ 25493 case TCPS_CLOSING: \ 25494 case TCPS_LAST_ACK: \ 25495 case TCPS_TIME_WAIT: \ 25496 (err) = 0; \ 25497 break; \ 25498 default: \ 25499 (err) = ENXIO; \ 25500 } \ 25501 } 25502 25503 /* 25504 * Check if a tcp structure matches the info in acp. 25505 */ 25506 #define TCP_AC_ADDR_MATCH(acp, tcp) \ 25507 (((acp)->ac_local.ss_family == AF_INET) ? \ 25508 ((TCP_AC_V4LOCAL((acp)) == INADDR_ANY || \ 25509 TCP_AC_V4LOCAL((acp)) == (tcp)->tcp_ip_src) && \ 25510 (TCP_AC_V4REMOTE((acp)) == INADDR_ANY || \ 25511 TCP_AC_V4REMOTE((acp)) == (tcp)->tcp_remote) && \ 25512 (TCP_AC_V4LPORT((acp)) == 0 || \ 25513 TCP_AC_V4LPORT((acp)) == (tcp)->tcp_lport) && \ 25514 (TCP_AC_V4RPORT((acp)) == 0 || \ 25515 TCP_AC_V4RPORT((acp)) == (tcp)->tcp_fport) && \ 25516 (acp)->ac_start <= (tcp)->tcp_state && \ 25517 (acp)->ac_end >= (tcp)->tcp_state) : \ 25518 ((IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL((acp))) || \ 25519 IN6_ARE_ADDR_EQUAL(&TCP_AC_V6LOCAL((acp)), \ 25520 &(tcp)->tcp_ip_src_v6)) && \ 25521 (IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE((acp))) || \ 25522 IN6_ARE_ADDR_EQUAL(&TCP_AC_V6REMOTE((acp)), \ 25523 &(tcp)->tcp_remote_v6)) && \ 25524 (TCP_AC_V6LPORT((acp)) == 0 || \ 25525 TCP_AC_V6LPORT((acp)) == (tcp)->tcp_lport) && \ 25526 (TCP_AC_V6RPORT((acp)) == 0 || \ 25527 TCP_AC_V6RPORT((acp)) == (tcp)->tcp_fport) && \ 25528 (acp)->ac_start <= (tcp)->tcp_state && \ 25529 (acp)->ac_end >= (tcp)->tcp_state)) 25530 25531 #define TCP_AC_MATCH(acp, tcp) \ 25532 (((acp)->ac_zoneid == ALL_ZONES || \ 25533 (acp)->ac_zoneid == tcp->tcp_connp->conn_zoneid) ? \ 25534 TCP_AC_ADDR_MATCH(acp, tcp) : 0) 25535 25536 /* 25537 * Build a message containing a tcp_ioc_abort_conn_t structure 25538 * which is filled in with information from acp and tp. 25539 */ 25540 static mblk_t * 25541 tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *acp, tcp_t *tp) 25542 { 25543 mblk_t *mp; 25544 tcp_ioc_abort_conn_t *tacp; 25545 25546 mp = allocb(sizeof (uint32_t) + sizeof (*acp), BPRI_LO); 25547 if (mp == NULL) 25548 return (NULL); 25549 25550 mp->b_datap->db_type = M_CTL; 25551 25552 *((uint32_t *)mp->b_rptr) = TCP_IOC_ABORT_CONN; 25553 tacp = (tcp_ioc_abort_conn_t *)((uchar_t *)mp->b_rptr + 25554 sizeof (uint32_t)); 25555 25556 tacp->ac_start = acp->ac_start; 25557 tacp->ac_end = acp->ac_end; 25558 tacp->ac_zoneid = acp->ac_zoneid; 25559 25560 if (acp->ac_local.ss_family == AF_INET) { 25561 tacp->ac_local.ss_family = AF_INET; 25562 tacp->ac_remote.ss_family = AF_INET; 25563 TCP_AC_V4LOCAL(tacp) = tp->tcp_ip_src; 25564 TCP_AC_V4REMOTE(tacp) = tp->tcp_remote; 25565 TCP_AC_V4LPORT(tacp) = tp->tcp_lport; 25566 TCP_AC_V4RPORT(tacp) = tp->tcp_fport; 25567 } else { 25568 tacp->ac_local.ss_family = AF_INET6; 25569 tacp->ac_remote.ss_family = AF_INET6; 25570 TCP_AC_V6LOCAL(tacp) = tp->tcp_ip_src_v6; 25571 TCP_AC_V6REMOTE(tacp) = tp->tcp_remote_v6; 25572 TCP_AC_V6LPORT(tacp) = tp->tcp_lport; 25573 TCP_AC_V6RPORT(tacp) = tp->tcp_fport; 25574 } 25575 mp->b_wptr = (uchar_t *)mp->b_rptr + sizeof (uint32_t) + sizeof (*acp); 25576 return (mp); 25577 } 25578 25579 /* 25580 * Print a tcp_ioc_abort_conn_t structure. 25581 */ 25582 static void 25583 tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *acp) 25584 { 25585 char lbuf[128]; 25586 char rbuf[128]; 25587 sa_family_t af; 25588 in_port_t lport, rport; 25589 ushort_t logflags; 25590 25591 af = acp->ac_local.ss_family; 25592 25593 if (af == AF_INET) { 25594 (void) inet_ntop(af, (const void *)&TCP_AC_V4LOCAL(acp), 25595 lbuf, 128); 25596 (void) inet_ntop(af, (const void *)&TCP_AC_V4REMOTE(acp), 25597 rbuf, 128); 25598 lport = ntohs(TCP_AC_V4LPORT(acp)); 25599 rport = ntohs(TCP_AC_V4RPORT(acp)); 25600 } else { 25601 (void) inet_ntop(af, (const void *)&TCP_AC_V6LOCAL(acp), 25602 lbuf, 128); 25603 (void) inet_ntop(af, (const void *)&TCP_AC_V6REMOTE(acp), 25604 rbuf, 128); 25605 lport = ntohs(TCP_AC_V6LPORT(acp)); 25606 rport = ntohs(TCP_AC_V6RPORT(acp)); 25607 } 25608 25609 logflags = SL_TRACE | SL_NOTE; 25610 /* 25611 * Don't print this message to the console if the operation was done 25612 * to a non-global zone. 25613 */ 25614 if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) 25615 logflags |= SL_CONSOLE; 25616 (void) strlog(TCP_MOD_ID, 0, 1, logflags, 25617 "TCP_IOC_ABORT_CONN: local = %s:%d, remote = %s:%d, " 25618 "start = %d, end = %d\n", lbuf, lport, rbuf, rport, 25619 acp->ac_start, acp->ac_end); 25620 } 25621 25622 /* 25623 * Called inside tcp_rput when a message built using 25624 * tcp_ioctl_abort_build_msg is put into a queue. 25625 * Note that when we get here there is no wildcard in acp any more. 25626 */ 25627 static void 25628 tcp_ioctl_abort_handler(tcp_t *tcp, mblk_t *mp) 25629 { 25630 tcp_ioc_abort_conn_t *acp; 25631 25632 acp = (tcp_ioc_abort_conn_t *)(mp->b_rptr + sizeof (uint32_t)); 25633 if (tcp->tcp_state <= acp->ac_end) { 25634 /* 25635 * If we get here, we are already on the correct 25636 * squeue. This ioctl follows the following path 25637 * tcp_wput -> tcp_wput_ioctl -> tcp_ioctl_abort_conn 25638 * ->tcp_ioctl_abort->squeue_fill (if on a 25639 * different squeue) 25640 */ 25641 int errcode; 25642 25643 TCP_AC_GET_ERRCODE(tcp->tcp_state, errcode); 25644 (void) tcp_clean_death(tcp, errcode, 26); 25645 } 25646 freemsg(mp); 25647 } 25648 25649 /* 25650 * Abort all matching connections on a hash chain. 25651 */ 25652 static int 25653 tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *acp, int index, int *count, 25654 boolean_t exact, tcp_stack_t *tcps) 25655 { 25656 int nmatch, err = 0; 25657 tcp_t *tcp; 25658 MBLKP mp, last, listhead = NULL; 25659 conn_t *tconnp; 25660 connf_t *connfp; 25661 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 25662 25663 connfp = &ipst->ips_ipcl_conn_fanout[index]; 25664 25665 startover: 25666 nmatch = 0; 25667 25668 mutex_enter(&connfp->connf_lock); 25669 for (tconnp = connfp->connf_head; tconnp != NULL; 25670 tconnp = tconnp->conn_next) { 25671 tcp = tconnp->conn_tcp; 25672 if (TCP_AC_MATCH(acp, tcp)) { 25673 CONN_INC_REF(tcp->tcp_connp); 25674 mp = tcp_ioctl_abort_build_msg(acp, tcp); 25675 if (mp == NULL) { 25676 err = ENOMEM; 25677 CONN_DEC_REF(tcp->tcp_connp); 25678 break; 25679 } 25680 mp->b_prev = (mblk_t *)tcp; 25681 25682 if (listhead == NULL) { 25683 listhead = mp; 25684 last = mp; 25685 } else { 25686 last->b_next = mp; 25687 last = mp; 25688 } 25689 nmatch++; 25690 if (exact) 25691 break; 25692 } 25693 25694 /* Avoid holding lock for too long. */ 25695 if (nmatch >= 500) 25696 break; 25697 } 25698 mutex_exit(&connfp->connf_lock); 25699 25700 /* Pass mp into the correct tcp */ 25701 while ((mp = listhead) != NULL) { 25702 listhead = listhead->b_next; 25703 tcp = (tcp_t *)mp->b_prev; 25704 mp->b_next = mp->b_prev = NULL; 25705 squeue_fill(tcp->tcp_connp->conn_sqp, mp, 25706 tcp_input, tcp->tcp_connp, SQTAG_TCP_ABORT_BUCKET); 25707 } 25708 25709 *count += nmatch; 25710 if (nmatch >= 500 && err == 0) 25711 goto startover; 25712 return (err); 25713 } 25714 25715 /* 25716 * Abort all connections that matches the attributes specified in acp. 25717 */ 25718 static int 25719 tcp_ioctl_abort(tcp_ioc_abort_conn_t *acp, tcp_stack_t *tcps) 25720 { 25721 sa_family_t af; 25722 uint32_t ports; 25723 uint16_t *pports; 25724 int err = 0, count = 0; 25725 boolean_t exact = B_FALSE; /* set when there is no wildcard */ 25726 int index = -1; 25727 ushort_t logflags; 25728 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 25729 25730 af = acp->ac_local.ss_family; 25731 25732 if (af == AF_INET) { 25733 if (TCP_AC_V4REMOTE(acp) != INADDR_ANY && 25734 TCP_AC_V4LPORT(acp) != 0 && TCP_AC_V4RPORT(acp) != 0) { 25735 pports = (uint16_t *)&ports; 25736 pports[1] = TCP_AC_V4LPORT(acp); 25737 pports[0] = TCP_AC_V4RPORT(acp); 25738 exact = (TCP_AC_V4LOCAL(acp) != INADDR_ANY); 25739 } 25740 } else { 25741 if (!IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE(acp)) && 25742 TCP_AC_V6LPORT(acp) != 0 && TCP_AC_V6RPORT(acp) != 0) { 25743 pports = (uint16_t *)&ports; 25744 pports[1] = TCP_AC_V6LPORT(acp); 25745 pports[0] = TCP_AC_V6RPORT(acp); 25746 exact = !IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL(acp)); 25747 } 25748 } 25749 25750 /* 25751 * For cases where remote addr, local port, and remote port are non- 25752 * wildcards, tcp_ioctl_abort_bucket will only be called once. 25753 */ 25754 if (index != -1) { 25755 err = tcp_ioctl_abort_bucket(acp, index, 25756 &count, exact, tcps); 25757 } else { 25758 /* 25759 * loop through all entries for wildcard case 25760 */ 25761 for (index = 0; 25762 index < ipst->ips_ipcl_conn_fanout_size; 25763 index++) { 25764 err = tcp_ioctl_abort_bucket(acp, index, 25765 &count, exact, tcps); 25766 if (err != 0) 25767 break; 25768 } 25769 } 25770 25771 logflags = SL_TRACE | SL_NOTE; 25772 /* 25773 * Don't print this message to the console if the operation was done 25774 * to a non-global zone. 25775 */ 25776 if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) 25777 logflags |= SL_CONSOLE; 25778 (void) strlog(TCP_MOD_ID, 0, 1, logflags, "TCP_IOC_ABORT_CONN: " 25779 "aborted %d connection%c\n", count, ((count > 1) ? 's' : ' ')); 25780 if (err == 0 && count == 0) 25781 err = ENOENT; 25782 return (err); 25783 } 25784 25785 /* 25786 * Process the TCP_IOC_ABORT_CONN ioctl request. 25787 */ 25788 static void 25789 tcp_ioctl_abort_conn(queue_t *q, mblk_t *mp) 25790 { 25791 int err; 25792 IOCP iocp; 25793 MBLKP mp1; 25794 sa_family_t laf, raf; 25795 tcp_ioc_abort_conn_t *acp; 25796 zone_t *zptr; 25797 conn_t *connp = Q_TO_CONN(q); 25798 zoneid_t zoneid = connp->conn_zoneid; 25799 tcp_t *tcp = connp->conn_tcp; 25800 tcp_stack_t *tcps = tcp->tcp_tcps; 25801 25802 iocp = (IOCP)mp->b_rptr; 25803 25804 if ((mp1 = mp->b_cont) == NULL || 25805 iocp->ioc_count != sizeof (tcp_ioc_abort_conn_t)) { 25806 err = EINVAL; 25807 goto out; 25808 } 25809 25810 /* check permissions */ 25811 if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) { 25812 err = EPERM; 25813 goto out; 25814 } 25815 25816 if (mp1->b_cont != NULL) { 25817 freemsg(mp1->b_cont); 25818 mp1->b_cont = NULL; 25819 } 25820 25821 acp = (tcp_ioc_abort_conn_t *)mp1->b_rptr; 25822 laf = acp->ac_local.ss_family; 25823 raf = acp->ac_remote.ss_family; 25824 25825 /* check that a zone with the supplied zoneid exists */ 25826 if (acp->ac_zoneid != GLOBAL_ZONEID && acp->ac_zoneid != ALL_ZONES) { 25827 zptr = zone_find_by_id(zoneid); 25828 if (zptr != NULL) { 25829 zone_rele(zptr); 25830 } else { 25831 err = EINVAL; 25832 goto out; 25833 } 25834 } 25835 25836 /* 25837 * For exclusive stacks we set the zoneid to zero 25838 * to make TCP operate as if in the global zone. 25839 */ 25840 if (tcps->tcps_netstack->netstack_stackid != GLOBAL_NETSTACKID) 25841 acp->ac_zoneid = GLOBAL_ZONEID; 25842 25843 if (acp->ac_start < TCPS_SYN_SENT || acp->ac_end > TCPS_TIME_WAIT || 25844 acp->ac_start > acp->ac_end || laf != raf || 25845 (laf != AF_INET && laf != AF_INET6)) { 25846 err = EINVAL; 25847 goto out; 25848 } 25849 25850 tcp_ioctl_abort_dump(acp); 25851 err = tcp_ioctl_abort(acp, tcps); 25852 25853 out: 25854 if (mp1 != NULL) { 25855 freemsg(mp1); 25856 mp->b_cont = NULL; 25857 } 25858 25859 if (err != 0) 25860 miocnak(q, mp, 0, err); 25861 else 25862 miocack(q, mp, 0, 0); 25863 } 25864 25865 /* 25866 * tcp_time_wait_processing() handles processing of incoming packets when 25867 * the tcp is in the TIME_WAIT state. 25868 * A TIME_WAIT tcp that has an associated open TCP stream is never put 25869 * on the time wait list. 25870 */ 25871 void 25872 tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, uint32_t seg_seq, 25873 uint32_t seg_ack, int seg_len, tcph_t *tcph) 25874 { 25875 int32_t bytes_acked; 25876 int32_t gap; 25877 int32_t rgap; 25878 tcp_opt_t tcpopt; 25879 uint_t flags; 25880 uint32_t new_swnd = 0; 25881 conn_t *connp; 25882 tcp_stack_t *tcps = tcp->tcp_tcps; 25883 25884 BUMP_LOCAL(tcp->tcp_ibsegs); 25885 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_RECV_PKT); 25886 25887 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 25888 new_swnd = BE16_TO_U16(tcph->th_win) << 25889 ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws); 25890 if (tcp->tcp_snd_ts_ok) { 25891 if (!tcp_paws_check(tcp, tcph, &tcpopt)) { 25892 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 25893 tcp->tcp_rnxt, TH_ACK); 25894 goto done; 25895 } 25896 } 25897 gap = seg_seq - tcp->tcp_rnxt; 25898 rgap = tcp->tcp_rwnd - (gap + seg_len); 25899 if (gap < 0) { 25900 BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); 25901 UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, 25902 (seg_len > -gap ? -gap : seg_len)); 25903 seg_len += gap; 25904 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 25905 if (flags & TH_RST) { 25906 goto done; 25907 } 25908 if ((flags & TH_FIN) && seg_len == -1) { 25909 /* 25910 * When TCP receives a duplicate FIN in 25911 * TIME_WAIT state, restart the 2 MSL timer. 25912 * See page 73 in RFC 793. Make sure this TCP 25913 * is already on the TIME_WAIT list. If not, 25914 * just restart the timer. 25915 */ 25916 if (TCP_IS_DETACHED(tcp)) { 25917 if (tcp_time_wait_remove(tcp, NULL) == 25918 B_TRUE) { 25919 tcp_time_wait_append(tcp); 25920 TCP_DBGSTAT(tcps, 25921 tcp_rput_time_wait); 25922 } 25923 } else { 25924 ASSERT(tcp != NULL); 25925 TCP_TIMER_RESTART(tcp, 25926 tcps->tcps_time_wait_interval); 25927 } 25928 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 25929 tcp->tcp_rnxt, TH_ACK); 25930 goto done; 25931 } 25932 flags |= TH_ACK_NEEDED; 25933 seg_len = 0; 25934 goto process_ack; 25935 } 25936 25937 /* Fix seg_seq, and chew the gap off the front. */ 25938 seg_seq = tcp->tcp_rnxt; 25939 } 25940 25941 if ((flags & TH_SYN) && gap > 0 && rgap < 0) { 25942 /* 25943 * Make sure that when we accept the connection, pick 25944 * an ISS greater than (tcp_snxt + ISS_INCR/2) for the 25945 * old connection. 25946 * 25947 * The next ISS generated is equal to tcp_iss_incr_extra 25948 * + ISS_INCR/2 + other components depending on the 25949 * value of tcp_strong_iss. We pre-calculate the new 25950 * ISS here and compare with tcp_snxt to determine if 25951 * we need to make adjustment to tcp_iss_incr_extra. 25952 * 25953 * The above calculation is ugly and is a 25954 * waste of CPU cycles... 25955 */ 25956 uint32_t new_iss = tcps->tcps_iss_incr_extra; 25957 int32_t adj; 25958 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 25959 25960 switch (tcps->tcps_strong_iss) { 25961 case 2: { 25962 /* Add time and MD5 components. */ 25963 uint32_t answer[4]; 25964 struct { 25965 uint32_t ports; 25966 in6_addr_t src; 25967 in6_addr_t dst; 25968 } arg; 25969 MD5_CTX context; 25970 25971 mutex_enter(&tcps->tcps_iss_key_lock); 25972 context = tcps->tcps_iss_key; 25973 mutex_exit(&tcps->tcps_iss_key_lock); 25974 arg.ports = tcp->tcp_ports; 25975 /* We use MAPPED addresses in tcp_iss_init */ 25976 arg.src = tcp->tcp_ip_src_v6; 25977 if (tcp->tcp_ipversion == IPV4_VERSION) { 25978 IN6_IPADDR_TO_V4MAPPED( 25979 tcp->tcp_ipha->ipha_dst, 25980 &arg.dst); 25981 } else { 25982 arg.dst = 25983 tcp->tcp_ip6h->ip6_dst; 25984 } 25985 MD5Update(&context, (uchar_t *)&arg, 25986 sizeof (arg)); 25987 MD5Final((uchar_t *)answer, &context); 25988 answer[0] ^= answer[1] ^ answer[2] ^ answer[3]; 25989 new_iss += (gethrtime() >> ISS_NSEC_SHT) + answer[0]; 25990 break; 25991 } 25992 case 1: 25993 /* Add time component and min random (i.e. 1). */ 25994 new_iss += (gethrtime() >> ISS_NSEC_SHT) + 1; 25995 break; 25996 default: 25997 /* Add only time component. */ 25998 new_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 25999 break; 26000 } 26001 if ((adj = (int32_t)(tcp->tcp_snxt - new_iss)) > 0) { 26002 /* 26003 * New ISS not guaranteed to be ISS_INCR/2 26004 * ahead of the current tcp_snxt, so add the 26005 * difference to tcp_iss_incr_extra. 26006 */ 26007 tcps->tcps_iss_incr_extra += adj; 26008 } 26009 /* 26010 * If tcp_clean_death() can not perform the task now, 26011 * drop the SYN packet and let the other side re-xmit. 26012 * Otherwise pass the SYN packet back in, since the 26013 * old tcp state has been cleaned up or freed. 26014 */ 26015 if (tcp_clean_death(tcp, 0, 27) == -1) 26016 goto done; 26017 /* 26018 * We will come back to tcp_rput_data 26019 * on the global queue. Packets destined 26020 * for the global queue will be checked 26021 * with global policy. But the policy for 26022 * this packet has already been checked as 26023 * this was destined for the detached 26024 * connection. We need to bypass policy 26025 * check this time by attaching a dummy 26026 * ipsec_in with ipsec_in_dont_check set. 26027 */ 26028 connp = ipcl_classify(mp, tcp->tcp_connp->conn_zoneid, ipst); 26029 if (connp != NULL) { 26030 TCP_STAT(tcps, tcp_time_wait_syn_success); 26031 tcp_reinput(connp, mp, tcp->tcp_connp->conn_sqp); 26032 return; 26033 } 26034 goto done; 26035 } 26036 26037 /* 26038 * rgap is the amount of stuff received out of window. A negative 26039 * value is the amount out of window. 26040 */ 26041 if (rgap < 0) { 26042 BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs); 26043 UPDATE_MIB(&tcps->tcps_mib, tcpInDataPastWinBytes, -rgap); 26044 /* Fix seg_len and make sure there is something left. */ 26045 seg_len += rgap; 26046 if (seg_len <= 0) { 26047 if (flags & TH_RST) { 26048 goto done; 26049 } 26050 flags |= TH_ACK_NEEDED; 26051 seg_len = 0; 26052 goto process_ack; 26053 } 26054 } 26055 /* 26056 * Check whether we can update tcp_ts_recent. This test is 26057 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 26058 * Extensions for High Performance: An Update", Internet Draft. 26059 */ 26060 if (tcp->tcp_snd_ts_ok && 26061 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 26062 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 26063 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 26064 tcp->tcp_last_rcv_lbolt = lbolt64; 26065 } 26066 26067 if (seg_seq != tcp->tcp_rnxt && seg_len > 0) { 26068 /* Always ack out of order packets */ 26069 flags |= TH_ACK_NEEDED; 26070 seg_len = 0; 26071 } else if (seg_len > 0) { 26072 BUMP_MIB(&tcps->tcps_mib, tcpInClosed); 26073 BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs); 26074 UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len); 26075 } 26076 if (flags & TH_RST) { 26077 (void) tcp_clean_death(tcp, 0, 28); 26078 goto done; 26079 } 26080 if (flags & TH_SYN) { 26081 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 26082 TH_RST|TH_ACK); 26083 /* 26084 * Do not delete the TCP structure if it is in 26085 * TIME_WAIT state. Refer to RFC 1122, 4.2.2.13. 26086 */ 26087 goto done; 26088 } 26089 process_ack: 26090 if (flags & TH_ACK) { 26091 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 26092 if (bytes_acked <= 0) { 26093 if (bytes_acked == 0 && seg_len == 0 && 26094 new_swnd == tcp->tcp_swnd) 26095 BUMP_MIB(&tcps->tcps_mib, tcpInDupAck); 26096 } else { 26097 /* Acks something not sent */ 26098 flags |= TH_ACK_NEEDED; 26099 } 26100 } 26101 if (flags & TH_ACK_NEEDED) { 26102 /* 26103 * Time to send an ack for some reason. 26104 */ 26105 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 26106 tcp->tcp_rnxt, TH_ACK); 26107 } 26108 done: 26109 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 26110 DB_CKSUMSTART(mp) = 0; 26111 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 26112 TCP_STAT(tcps, tcp_time_wait_syn_fail); 26113 } 26114 freemsg(mp); 26115 } 26116 26117 /* 26118 * Allocate a T_SVR4_OPTMGMT_REQ. 26119 * The caller needs to increment tcp_drop_opt_ack_cnt when sending these so 26120 * that tcp_rput_other can drop the acks. 26121 */ 26122 static mblk_t * 26123 tcp_setsockopt_mp(int level, int cmd, char *opt, int optlen) 26124 { 26125 mblk_t *mp; 26126 struct T_optmgmt_req *tor; 26127 struct opthdr *oh; 26128 uint_t size; 26129 char *optptr; 26130 26131 size = sizeof (*tor) + sizeof (*oh) + optlen; 26132 mp = allocb(size, BPRI_MED); 26133 if (mp == NULL) 26134 return (NULL); 26135 26136 mp->b_wptr += size; 26137 mp->b_datap->db_type = M_PROTO; 26138 tor = (struct T_optmgmt_req *)mp->b_rptr; 26139 tor->PRIM_type = T_SVR4_OPTMGMT_REQ; 26140 tor->MGMT_flags = T_NEGOTIATE; 26141 tor->OPT_length = sizeof (*oh) + optlen; 26142 tor->OPT_offset = (t_scalar_t)sizeof (*tor); 26143 26144 oh = (struct opthdr *)&tor[1]; 26145 oh->level = level; 26146 oh->name = cmd; 26147 oh->len = optlen; 26148 if (optlen != 0) { 26149 optptr = (char *)&oh[1]; 26150 bcopy(opt, optptr, optlen); 26151 } 26152 return (mp); 26153 } 26154 26155 /* 26156 * TCP Timers Implementation. 26157 */ 26158 timeout_id_t 26159 tcp_timeout(conn_t *connp, void (*f)(void *), clock_t tim) 26160 { 26161 mblk_t *mp; 26162 tcp_timer_t *tcpt; 26163 tcp_t *tcp = connp->conn_tcp; 26164 tcp_stack_t *tcps = tcp->tcp_tcps; 26165 26166 ASSERT(connp->conn_sqp != NULL); 26167 26168 TCP_DBGSTAT(tcps, tcp_timeout_calls); 26169 26170 if (tcp->tcp_timercache == NULL) { 26171 mp = tcp_timermp_alloc(KM_NOSLEEP | KM_PANIC); 26172 } else { 26173 TCP_DBGSTAT(tcps, tcp_timeout_cached_alloc); 26174 mp = tcp->tcp_timercache; 26175 tcp->tcp_timercache = mp->b_next; 26176 mp->b_next = NULL; 26177 ASSERT(mp->b_wptr == NULL); 26178 } 26179 26180 CONN_INC_REF(connp); 26181 tcpt = (tcp_timer_t *)mp->b_rptr; 26182 tcpt->connp = connp; 26183 tcpt->tcpt_proc = f; 26184 tcpt->tcpt_tid = timeout(tcp_timer_callback, mp, tim); 26185 return ((timeout_id_t)mp); 26186 } 26187 26188 static void 26189 tcp_timer_callback(void *arg) 26190 { 26191 mblk_t *mp = (mblk_t *)arg; 26192 tcp_timer_t *tcpt; 26193 conn_t *connp; 26194 26195 tcpt = (tcp_timer_t *)mp->b_rptr; 26196 connp = tcpt->connp; 26197 squeue_fill(connp->conn_sqp, mp, 26198 tcp_timer_handler, connp, SQTAG_TCP_TIMER); 26199 } 26200 26201 static void 26202 tcp_timer_handler(void *arg, mblk_t *mp, void *arg2) 26203 { 26204 tcp_timer_t *tcpt; 26205 conn_t *connp = (conn_t *)arg; 26206 tcp_t *tcp = connp->conn_tcp; 26207 26208 tcpt = (tcp_timer_t *)mp->b_rptr; 26209 ASSERT(connp == tcpt->connp); 26210 ASSERT((squeue_t *)arg2 == connp->conn_sqp); 26211 26212 /* 26213 * If the TCP has reached the closed state, don't proceed any 26214 * further. This TCP logically does not exist on the system. 26215 * tcpt_proc could for example access queues, that have already 26216 * been qprocoff'ed off. Also see comments at the start of tcp_input 26217 */ 26218 if (tcp->tcp_state != TCPS_CLOSED) { 26219 (*tcpt->tcpt_proc)(connp); 26220 } else { 26221 tcp->tcp_timer_tid = 0; 26222 } 26223 tcp_timer_free(connp->conn_tcp, mp); 26224 } 26225 26226 /* 26227 * There is potential race with untimeout and the handler firing at the same 26228 * time. The mblock may be freed by the handler while we are trying to use 26229 * it. But since both should execute on the same squeue, this race should not 26230 * occur. 26231 */ 26232 clock_t 26233 tcp_timeout_cancel(conn_t *connp, timeout_id_t id) 26234 { 26235 mblk_t *mp = (mblk_t *)id; 26236 tcp_timer_t *tcpt; 26237 clock_t delta; 26238 tcp_stack_t *tcps = connp->conn_tcp->tcp_tcps; 26239 26240 TCP_DBGSTAT(tcps, tcp_timeout_cancel_reqs); 26241 26242 if (mp == NULL) 26243 return (-1); 26244 26245 tcpt = (tcp_timer_t *)mp->b_rptr; 26246 ASSERT(tcpt->connp == connp); 26247 26248 delta = untimeout(tcpt->tcpt_tid); 26249 26250 if (delta >= 0) { 26251 TCP_DBGSTAT(tcps, tcp_timeout_canceled); 26252 tcp_timer_free(connp->conn_tcp, mp); 26253 CONN_DEC_REF(connp); 26254 } 26255 26256 return (delta); 26257 } 26258 26259 /* 26260 * Allocate space for the timer event. The allocation looks like mblk, but it is 26261 * not a proper mblk. To avoid confusion we set b_wptr to NULL. 26262 * 26263 * Dealing with failures: If we can't allocate from the timer cache we try 26264 * allocating from dblock caches using allocb_tryhard(). In this case b_wptr 26265 * points to b_rptr. 26266 * If we can't allocate anything using allocb_tryhard(), we perform a last 26267 * attempt and use kmem_alloc_tryhard(). In this case we set b_wptr to -1 and 26268 * save the actual allocation size in b_datap. 26269 */ 26270 mblk_t * 26271 tcp_timermp_alloc(int kmflags) 26272 { 26273 mblk_t *mp = (mblk_t *)kmem_cache_alloc(tcp_timercache, 26274 kmflags & ~KM_PANIC); 26275 26276 if (mp != NULL) { 26277 mp->b_next = mp->b_prev = NULL; 26278 mp->b_rptr = (uchar_t *)(&mp[1]); 26279 mp->b_wptr = NULL; 26280 mp->b_datap = NULL; 26281 mp->b_queue = NULL; 26282 mp->b_cont = NULL; 26283 } else if (kmflags & KM_PANIC) { 26284 /* 26285 * Failed to allocate memory for the timer. Try allocating from 26286 * dblock caches. 26287 */ 26288 /* ipclassifier calls this from a constructor - hence no tcps */ 26289 TCP_G_STAT(tcp_timermp_allocfail); 26290 mp = allocb_tryhard(sizeof (tcp_timer_t)); 26291 if (mp == NULL) { 26292 size_t size = 0; 26293 /* 26294 * Memory is really low. Try tryhard allocation. 26295 * 26296 * ipclassifier calls this from a constructor - 26297 * hence no tcps 26298 */ 26299 TCP_G_STAT(tcp_timermp_allocdblfail); 26300 mp = kmem_alloc_tryhard(sizeof (mblk_t) + 26301 sizeof (tcp_timer_t), &size, kmflags); 26302 mp->b_rptr = (uchar_t *)(&mp[1]); 26303 mp->b_next = mp->b_prev = NULL; 26304 mp->b_wptr = (uchar_t *)-1; 26305 mp->b_datap = (dblk_t *)size; 26306 mp->b_queue = NULL; 26307 mp->b_cont = NULL; 26308 } 26309 ASSERT(mp->b_wptr != NULL); 26310 } 26311 /* ipclassifier calls this from a constructor - hence no tcps */ 26312 TCP_G_DBGSTAT(tcp_timermp_alloced); 26313 26314 return (mp); 26315 } 26316 26317 /* 26318 * Free per-tcp timer cache. 26319 * It can only contain entries from tcp_timercache. 26320 */ 26321 void 26322 tcp_timermp_free(tcp_t *tcp) 26323 { 26324 mblk_t *mp; 26325 26326 while ((mp = tcp->tcp_timercache) != NULL) { 26327 ASSERT(mp->b_wptr == NULL); 26328 tcp->tcp_timercache = tcp->tcp_timercache->b_next; 26329 kmem_cache_free(tcp_timercache, mp); 26330 } 26331 } 26332 26333 /* 26334 * Free timer event. Put it on the per-tcp timer cache if there is not too many 26335 * events there already (currently at most two events are cached). 26336 * If the event is not allocated from the timer cache, free it right away. 26337 */ 26338 static void 26339 tcp_timer_free(tcp_t *tcp, mblk_t *mp) 26340 { 26341 mblk_t *mp1 = tcp->tcp_timercache; 26342 tcp_stack_t *tcps = tcp->tcp_tcps; 26343 26344 if (mp->b_wptr != NULL) { 26345 /* 26346 * This allocation is not from a timer cache, free it right 26347 * away. 26348 */ 26349 if (mp->b_wptr != (uchar_t *)-1) 26350 freeb(mp); 26351 else 26352 kmem_free(mp, (size_t)mp->b_datap); 26353 } else if (mp1 == NULL || mp1->b_next == NULL) { 26354 /* Cache this timer block for future allocations */ 26355 mp->b_rptr = (uchar_t *)(&mp[1]); 26356 mp->b_next = mp1; 26357 tcp->tcp_timercache = mp; 26358 } else { 26359 kmem_cache_free(tcp_timercache, mp); 26360 TCP_DBGSTAT(tcps, tcp_timermp_freed); 26361 } 26362 } 26363 26364 /* 26365 * End of TCP Timers implementation. 26366 */ 26367 26368 /* 26369 * tcp_{set,clr}qfull() functions are used to either set or clear QFULL 26370 * on the specified backing STREAMS q. Note, the caller may make the 26371 * decision to call based on the tcp_t.tcp_flow_stopped value which 26372 * when check outside the q's lock is only an advisory check ... 26373 */ 26374 26375 void 26376 tcp_setqfull(tcp_t *tcp) 26377 { 26378 queue_t *q = tcp->tcp_wq; 26379 tcp_stack_t *tcps = tcp->tcp_tcps; 26380 26381 if (!(q->q_flag & QFULL)) { 26382 mutex_enter(QLOCK(q)); 26383 if (!(q->q_flag & QFULL)) { 26384 /* still need to set QFULL */ 26385 q->q_flag |= QFULL; 26386 tcp->tcp_flow_stopped = B_TRUE; 26387 mutex_exit(QLOCK(q)); 26388 TCP_STAT(tcps, tcp_flwctl_on); 26389 } else { 26390 mutex_exit(QLOCK(q)); 26391 } 26392 } 26393 } 26394 26395 void 26396 tcp_clrqfull(tcp_t *tcp) 26397 { 26398 queue_t *q = tcp->tcp_wq; 26399 26400 if (q->q_flag & QFULL) { 26401 mutex_enter(QLOCK(q)); 26402 if (q->q_flag & QFULL) { 26403 q->q_flag &= ~QFULL; 26404 tcp->tcp_flow_stopped = B_FALSE; 26405 mutex_exit(QLOCK(q)); 26406 if (q->q_flag & QWANTW) 26407 qbackenable(q, 0); 26408 } else { 26409 mutex_exit(QLOCK(q)); 26410 } 26411 } 26412 } 26413 26414 26415 /* 26416 * kstats related to squeues i.e. not per IP instance 26417 */ 26418 static void * 26419 tcp_g_kstat_init(tcp_g_stat_t *tcp_g_statp) 26420 { 26421 kstat_t *ksp; 26422 26423 tcp_g_stat_t template = { 26424 { "tcp_timermp_alloced", KSTAT_DATA_UINT64 }, 26425 { "tcp_timermp_allocfail", KSTAT_DATA_UINT64 }, 26426 { "tcp_timermp_allocdblfail", KSTAT_DATA_UINT64 }, 26427 { "tcp_freelist_cleanup", KSTAT_DATA_UINT64 }, 26428 }; 26429 26430 ksp = kstat_create(TCP_MOD_NAME, 0, "tcpstat_g", "net", 26431 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 26432 KSTAT_FLAG_VIRTUAL); 26433 26434 if (ksp == NULL) 26435 return (NULL); 26436 26437 bcopy(&template, tcp_g_statp, sizeof (template)); 26438 ksp->ks_data = (void *)tcp_g_statp; 26439 26440 kstat_install(ksp); 26441 return (ksp); 26442 } 26443 26444 static void 26445 tcp_g_kstat_fini(kstat_t *ksp) 26446 { 26447 if (ksp != NULL) { 26448 kstat_delete(ksp); 26449 } 26450 } 26451 26452 26453 static void * 26454 tcp_kstat2_init(netstackid_t stackid, tcp_stat_t *tcps_statisticsp) 26455 { 26456 kstat_t *ksp; 26457 26458 tcp_stat_t template = { 26459 { "tcp_time_wait", KSTAT_DATA_UINT64 }, 26460 { "tcp_time_wait_syn", KSTAT_DATA_UINT64 }, 26461 { "tcp_time_wait_success", KSTAT_DATA_UINT64 }, 26462 { "tcp_time_wait_fail", KSTAT_DATA_UINT64 }, 26463 { "tcp_reinput_syn", KSTAT_DATA_UINT64 }, 26464 { "tcp_ip_output", KSTAT_DATA_UINT64 }, 26465 { "tcp_detach_non_time_wait", KSTAT_DATA_UINT64 }, 26466 { "tcp_detach_time_wait", KSTAT_DATA_UINT64 }, 26467 { "tcp_time_wait_reap", KSTAT_DATA_UINT64 }, 26468 { "tcp_clean_death_nondetached", KSTAT_DATA_UINT64 }, 26469 { "tcp_reinit_calls", KSTAT_DATA_UINT64 }, 26470 { "tcp_eager_err1", KSTAT_DATA_UINT64 }, 26471 { "tcp_eager_err2", KSTAT_DATA_UINT64 }, 26472 { "tcp_eager_blowoff_calls", KSTAT_DATA_UINT64 }, 26473 { "tcp_eager_blowoff_q", KSTAT_DATA_UINT64 }, 26474 { "tcp_eager_blowoff_q0", KSTAT_DATA_UINT64 }, 26475 { "tcp_not_hard_bound", KSTAT_DATA_UINT64 }, 26476 { "tcp_no_listener", KSTAT_DATA_UINT64 }, 26477 { "tcp_found_eager", KSTAT_DATA_UINT64 }, 26478 { "tcp_wrong_queue", KSTAT_DATA_UINT64 }, 26479 { "tcp_found_eager_binding1", KSTAT_DATA_UINT64 }, 26480 { "tcp_found_eager_bound1", KSTAT_DATA_UINT64 }, 26481 { "tcp_eager_has_listener1", KSTAT_DATA_UINT64 }, 26482 { "tcp_open_alloc", KSTAT_DATA_UINT64 }, 26483 { "tcp_open_detached_alloc", KSTAT_DATA_UINT64 }, 26484 { "tcp_rput_time_wait", KSTAT_DATA_UINT64 }, 26485 { "tcp_listendrop", KSTAT_DATA_UINT64 }, 26486 { "tcp_listendropq0", KSTAT_DATA_UINT64 }, 26487 { "tcp_wrong_rq", KSTAT_DATA_UINT64 }, 26488 { "tcp_rsrv_calls", KSTAT_DATA_UINT64 }, 26489 { "tcp_eagerfree2", KSTAT_DATA_UINT64 }, 26490 { "tcp_eagerfree3", KSTAT_DATA_UINT64 }, 26491 { "tcp_eagerfree4", KSTAT_DATA_UINT64 }, 26492 { "tcp_eagerfree5", KSTAT_DATA_UINT64 }, 26493 { "tcp_timewait_syn_fail", KSTAT_DATA_UINT64 }, 26494 { "tcp_listen_badflags", KSTAT_DATA_UINT64 }, 26495 { "tcp_timeout_calls", KSTAT_DATA_UINT64 }, 26496 { "tcp_timeout_cached_alloc", KSTAT_DATA_UINT64 }, 26497 { "tcp_timeout_cancel_reqs", KSTAT_DATA_UINT64 }, 26498 { "tcp_timeout_canceled", KSTAT_DATA_UINT64 }, 26499 { "tcp_timermp_freed", KSTAT_DATA_UINT64 }, 26500 { "tcp_push_timer_cnt", KSTAT_DATA_UINT64 }, 26501 { "tcp_ack_timer_cnt", KSTAT_DATA_UINT64 }, 26502 { "tcp_ire_null1", KSTAT_DATA_UINT64 }, 26503 { "tcp_ire_null", KSTAT_DATA_UINT64 }, 26504 { "tcp_ip_send", KSTAT_DATA_UINT64 }, 26505 { "tcp_ip_ire_send", KSTAT_DATA_UINT64 }, 26506 { "tcp_wsrv_called", KSTAT_DATA_UINT64 }, 26507 { "tcp_flwctl_on", KSTAT_DATA_UINT64 }, 26508 { "tcp_timer_fire_early", KSTAT_DATA_UINT64 }, 26509 { "tcp_timer_fire_miss", KSTAT_DATA_UINT64 }, 26510 { "tcp_rput_v6_error", KSTAT_DATA_UINT64 }, 26511 { "tcp_out_sw_cksum", KSTAT_DATA_UINT64 }, 26512 { "tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 26513 { "tcp_zcopy_on", KSTAT_DATA_UINT64 }, 26514 { "tcp_zcopy_off", KSTAT_DATA_UINT64 }, 26515 { "tcp_zcopy_backoff", KSTAT_DATA_UINT64 }, 26516 { "tcp_zcopy_disable", KSTAT_DATA_UINT64 }, 26517 { "tcp_mdt_pkt_out", KSTAT_DATA_UINT64 }, 26518 { "tcp_mdt_pkt_out_v4", KSTAT_DATA_UINT64 }, 26519 { "tcp_mdt_pkt_out_v6", KSTAT_DATA_UINT64 }, 26520 { "tcp_mdt_discarded", KSTAT_DATA_UINT64 }, 26521 { "tcp_mdt_conn_halted1", KSTAT_DATA_UINT64 }, 26522 { "tcp_mdt_conn_halted2", KSTAT_DATA_UINT64 }, 26523 { "tcp_mdt_conn_halted3", KSTAT_DATA_UINT64 }, 26524 { "tcp_mdt_conn_resumed1", KSTAT_DATA_UINT64 }, 26525 { "tcp_mdt_conn_resumed2", KSTAT_DATA_UINT64 }, 26526 { "tcp_mdt_legacy_small", KSTAT_DATA_UINT64 }, 26527 { "tcp_mdt_legacy_all", KSTAT_DATA_UINT64 }, 26528 { "tcp_mdt_legacy_ret", KSTAT_DATA_UINT64 }, 26529 { "tcp_mdt_allocfail", KSTAT_DATA_UINT64 }, 26530 { "tcp_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 26531 { "tcp_mdt_allocd", KSTAT_DATA_UINT64 }, 26532 { "tcp_mdt_linked", KSTAT_DATA_UINT64 }, 26533 { "tcp_fusion_flowctl", KSTAT_DATA_UINT64 }, 26534 { "tcp_fusion_backenabled", KSTAT_DATA_UINT64 }, 26535 { "tcp_fusion_urg", KSTAT_DATA_UINT64 }, 26536 { "tcp_fusion_putnext", KSTAT_DATA_UINT64 }, 26537 { "tcp_fusion_unfusable", KSTAT_DATA_UINT64 }, 26538 { "tcp_fusion_aborted", KSTAT_DATA_UINT64 }, 26539 { "tcp_fusion_unqualified", KSTAT_DATA_UINT64 }, 26540 { "tcp_fusion_rrw_busy", KSTAT_DATA_UINT64 }, 26541 { "tcp_fusion_rrw_msgcnt", KSTAT_DATA_UINT64 }, 26542 { "tcp_fusion_rrw_plugged", KSTAT_DATA_UINT64 }, 26543 { "tcp_in_ack_unsent_drop", KSTAT_DATA_UINT64 }, 26544 { "tcp_sock_fallback", KSTAT_DATA_UINT64 }, 26545 { "tcp_lso_enabled", KSTAT_DATA_UINT64 }, 26546 { "tcp_lso_disabled", KSTAT_DATA_UINT64 }, 26547 { "tcp_lso_times", KSTAT_DATA_UINT64 }, 26548 { "tcp_lso_pkt_out", KSTAT_DATA_UINT64 }, 26549 }; 26550 26551 ksp = kstat_create_netstack(TCP_MOD_NAME, 0, "tcpstat", "net", 26552 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 26553 KSTAT_FLAG_VIRTUAL, stackid); 26554 26555 if (ksp == NULL) 26556 return (NULL); 26557 26558 bcopy(&template, tcps_statisticsp, sizeof (template)); 26559 ksp->ks_data = (void *)tcps_statisticsp; 26560 ksp->ks_private = (void *)(uintptr_t)stackid; 26561 26562 kstat_install(ksp); 26563 return (ksp); 26564 } 26565 26566 static void 26567 tcp_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 26568 { 26569 if (ksp != NULL) { 26570 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 26571 kstat_delete_netstack(ksp, stackid); 26572 } 26573 } 26574 26575 /* 26576 * TCP Kstats implementation 26577 */ 26578 static void * 26579 tcp_kstat_init(netstackid_t stackid, tcp_stack_t *tcps) 26580 { 26581 kstat_t *ksp; 26582 26583 tcp_named_kstat_t template = { 26584 { "rtoAlgorithm", KSTAT_DATA_INT32, 0 }, 26585 { "rtoMin", KSTAT_DATA_INT32, 0 }, 26586 { "rtoMax", KSTAT_DATA_INT32, 0 }, 26587 { "maxConn", KSTAT_DATA_INT32, 0 }, 26588 { "activeOpens", KSTAT_DATA_UINT32, 0 }, 26589 { "passiveOpens", KSTAT_DATA_UINT32, 0 }, 26590 { "attemptFails", KSTAT_DATA_UINT32, 0 }, 26591 { "estabResets", KSTAT_DATA_UINT32, 0 }, 26592 { "currEstab", KSTAT_DATA_UINT32, 0 }, 26593 { "inSegs", KSTAT_DATA_UINT64, 0 }, 26594 { "outSegs", KSTAT_DATA_UINT64, 0 }, 26595 { "retransSegs", KSTAT_DATA_UINT32, 0 }, 26596 { "connTableSize", KSTAT_DATA_INT32, 0 }, 26597 { "outRsts", KSTAT_DATA_UINT32, 0 }, 26598 { "outDataSegs", KSTAT_DATA_UINT32, 0 }, 26599 { "outDataBytes", KSTAT_DATA_UINT32, 0 }, 26600 { "retransBytes", KSTAT_DATA_UINT32, 0 }, 26601 { "outAck", KSTAT_DATA_UINT32, 0 }, 26602 { "outAckDelayed", KSTAT_DATA_UINT32, 0 }, 26603 { "outUrg", KSTAT_DATA_UINT32, 0 }, 26604 { "outWinUpdate", KSTAT_DATA_UINT32, 0 }, 26605 { "outWinProbe", KSTAT_DATA_UINT32, 0 }, 26606 { "outControl", KSTAT_DATA_UINT32, 0 }, 26607 { "outFastRetrans", KSTAT_DATA_UINT32, 0 }, 26608 { "inAckSegs", KSTAT_DATA_UINT32, 0 }, 26609 { "inAckBytes", KSTAT_DATA_UINT32, 0 }, 26610 { "inDupAck", KSTAT_DATA_UINT32, 0 }, 26611 { "inAckUnsent", KSTAT_DATA_UINT32, 0 }, 26612 { "inDataInorderSegs", KSTAT_DATA_UINT32, 0 }, 26613 { "inDataInorderBytes", KSTAT_DATA_UINT32, 0 }, 26614 { "inDataUnorderSegs", KSTAT_DATA_UINT32, 0 }, 26615 { "inDataUnorderBytes", KSTAT_DATA_UINT32, 0 }, 26616 { "inDataDupSegs", KSTAT_DATA_UINT32, 0 }, 26617 { "inDataDupBytes", KSTAT_DATA_UINT32, 0 }, 26618 { "inDataPartDupSegs", KSTAT_DATA_UINT32, 0 }, 26619 { "inDataPartDupBytes", KSTAT_DATA_UINT32, 0 }, 26620 { "inDataPastWinSegs", KSTAT_DATA_UINT32, 0 }, 26621 { "inDataPastWinBytes", KSTAT_DATA_UINT32, 0 }, 26622 { "inWinProbe", KSTAT_DATA_UINT32, 0 }, 26623 { "inWinUpdate", KSTAT_DATA_UINT32, 0 }, 26624 { "inClosed", KSTAT_DATA_UINT32, 0 }, 26625 { "rttUpdate", KSTAT_DATA_UINT32, 0 }, 26626 { "rttNoUpdate", KSTAT_DATA_UINT32, 0 }, 26627 { "timRetrans", KSTAT_DATA_UINT32, 0 }, 26628 { "timRetransDrop", KSTAT_DATA_UINT32, 0 }, 26629 { "timKeepalive", KSTAT_DATA_UINT32, 0 }, 26630 { "timKeepaliveProbe", KSTAT_DATA_UINT32, 0 }, 26631 { "timKeepaliveDrop", KSTAT_DATA_UINT32, 0 }, 26632 { "listenDrop", KSTAT_DATA_UINT32, 0 }, 26633 { "listenDropQ0", KSTAT_DATA_UINT32, 0 }, 26634 { "halfOpenDrop", KSTAT_DATA_UINT32, 0 }, 26635 { "outSackRetransSegs", KSTAT_DATA_UINT32, 0 }, 26636 { "connTableSize6", KSTAT_DATA_INT32, 0 } 26637 }; 26638 26639 ksp = kstat_create_netstack(TCP_MOD_NAME, 0, TCP_MOD_NAME, "mib2", 26640 KSTAT_TYPE_NAMED, NUM_OF_FIELDS(tcp_named_kstat_t), 0, stackid); 26641 26642 if (ksp == NULL) 26643 return (NULL); 26644 26645 template.rtoAlgorithm.value.ui32 = 4; 26646 template.rtoMin.value.ui32 = tcps->tcps_rexmit_interval_min; 26647 template.rtoMax.value.ui32 = tcps->tcps_rexmit_interval_max; 26648 template.maxConn.value.i32 = -1; 26649 26650 bcopy(&template, ksp->ks_data, sizeof (template)); 26651 ksp->ks_update = tcp_kstat_update; 26652 ksp->ks_private = (void *)(uintptr_t)stackid; 26653 26654 kstat_install(ksp); 26655 return (ksp); 26656 } 26657 26658 static void 26659 tcp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 26660 { 26661 if (ksp != NULL) { 26662 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 26663 kstat_delete_netstack(ksp, stackid); 26664 } 26665 } 26666 26667 static int 26668 tcp_kstat_update(kstat_t *kp, int rw) 26669 { 26670 tcp_named_kstat_t *tcpkp; 26671 tcp_t *tcp; 26672 connf_t *connfp; 26673 conn_t *connp; 26674 int i; 26675 netstackid_t stackid = (netstackid_t)(uintptr_t)kp->ks_private; 26676 netstack_t *ns; 26677 tcp_stack_t *tcps; 26678 ip_stack_t *ipst; 26679 26680 if ((kp == NULL) || (kp->ks_data == NULL)) 26681 return (EIO); 26682 26683 if (rw == KSTAT_WRITE) 26684 return (EACCES); 26685 26686 ns = netstack_find_by_stackid(stackid); 26687 if (ns == NULL) 26688 return (-1); 26689 tcps = ns->netstack_tcp; 26690 if (tcps == NULL) { 26691 netstack_rele(ns); 26692 return (-1); 26693 } 26694 tcpkp = (tcp_named_kstat_t *)kp->ks_data; 26695 26696 tcpkp->currEstab.value.ui32 = 0; 26697 26698 ipst = ns->netstack_ip; 26699 26700 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 26701 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 26702 connp = NULL; 26703 while ((connp = 26704 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 26705 tcp = connp->conn_tcp; 26706 switch (tcp_snmp_state(tcp)) { 26707 case MIB2_TCP_established: 26708 case MIB2_TCP_closeWait: 26709 tcpkp->currEstab.value.ui32++; 26710 break; 26711 } 26712 } 26713 } 26714 26715 tcpkp->activeOpens.value.ui32 = tcps->tcps_mib.tcpActiveOpens; 26716 tcpkp->passiveOpens.value.ui32 = tcps->tcps_mib.tcpPassiveOpens; 26717 tcpkp->attemptFails.value.ui32 = tcps->tcps_mib.tcpAttemptFails; 26718 tcpkp->estabResets.value.ui32 = tcps->tcps_mib.tcpEstabResets; 26719 tcpkp->inSegs.value.ui64 = tcps->tcps_mib.tcpHCInSegs; 26720 tcpkp->outSegs.value.ui64 = tcps->tcps_mib.tcpHCOutSegs; 26721 tcpkp->retransSegs.value.ui32 = tcps->tcps_mib.tcpRetransSegs; 26722 tcpkp->connTableSize.value.i32 = tcps->tcps_mib.tcpConnTableSize; 26723 tcpkp->outRsts.value.ui32 = tcps->tcps_mib.tcpOutRsts; 26724 tcpkp->outDataSegs.value.ui32 = tcps->tcps_mib.tcpOutDataSegs; 26725 tcpkp->outDataBytes.value.ui32 = tcps->tcps_mib.tcpOutDataBytes; 26726 tcpkp->retransBytes.value.ui32 = tcps->tcps_mib.tcpRetransBytes; 26727 tcpkp->outAck.value.ui32 = tcps->tcps_mib.tcpOutAck; 26728 tcpkp->outAckDelayed.value.ui32 = tcps->tcps_mib.tcpOutAckDelayed; 26729 tcpkp->outUrg.value.ui32 = tcps->tcps_mib.tcpOutUrg; 26730 tcpkp->outWinUpdate.value.ui32 = tcps->tcps_mib.tcpOutWinUpdate; 26731 tcpkp->outWinProbe.value.ui32 = tcps->tcps_mib.tcpOutWinProbe; 26732 tcpkp->outControl.value.ui32 = tcps->tcps_mib.tcpOutControl; 26733 tcpkp->outFastRetrans.value.ui32 = tcps->tcps_mib.tcpOutFastRetrans; 26734 tcpkp->inAckSegs.value.ui32 = tcps->tcps_mib.tcpInAckSegs; 26735 tcpkp->inAckBytes.value.ui32 = tcps->tcps_mib.tcpInAckBytes; 26736 tcpkp->inDupAck.value.ui32 = tcps->tcps_mib.tcpInDupAck; 26737 tcpkp->inAckUnsent.value.ui32 = tcps->tcps_mib.tcpInAckUnsent; 26738 tcpkp->inDataInorderSegs.value.ui32 = 26739 tcps->tcps_mib.tcpInDataInorderSegs; 26740 tcpkp->inDataInorderBytes.value.ui32 = 26741 tcps->tcps_mib.tcpInDataInorderBytes; 26742 tcpkp->inDataUnorderSegs.value.ui32 = 26743 tcps->tcps_mib.tcpInDataUnorderSegs; 26744 tcpkp->inDataUnorderBytes.value.ui32 = 26745 tcps->tcps_mib.tcpInDataUnorderBytes; 26746 tcpkp->inDataDupSegs.value.ui32 = tcps->tcps_mib.tcpInDataDupSegs; 26747 tcpkp->inDataDupBytes.value.ui32 = tcps->tcps_mib.tcpInDataDupBytes; 26748 tcpkp->inDataPartDupSegs.value.ui32 = 26749 tcps->tcps_mib.tcpInDataPartDupSegs; 26750 tcpkp->inDataPartDupBytes.value.ui32 = 26751 tcps->tcps_mib.tcpInDataPartDupBytes; 26752 tcpkp->inDataPastWinSegs.value.ui32 = 26753 tcps->tcps_mib.tcpInDataPastWinSegs; 26754 tcpkp->inDataPastWinBytes.value.ui32 = 26755 tcps->tcps_mib.tcpInDataPastWinBytes; 26756 tcpkp->inWinProbe.value.ui32 = tcps->tcps_mib.tcpInWinProbe; 26757 tcpkp->inWinUpdate.value.ui32 = tcps->tcps_mib.tcpInWinUpdate; 26758 tcpkp->inClosed.value.ui32 = tcps->tcps_mib.tcpInClosed; 26759 tcpkp->rttNoUpdate.value.ui32 = tcps->tcps_mib.tcpRttNoUpdate; 26760 tcpkp->rttUpdate.value.ui32 = tcps->tcps_mib.tcpRttUpdate; 26761 tcpkp->timRetrans.value.ui32 = tcps->tcps_mib.tcpTimRetrans; 26762 tcpkp->timRetransDrop.value.ui32 = tcps->tcps_mib.tcpTimRetransDrop; 26763 tcpkp->timKeepalive.value.ui32 = tcps->tcps_mib.tcpTimKeepalive; 26764 tcpkp->timKeepaliveProbe.value.ui32 = 26765 tcps->tcps_mib.tcpTimKeepaliveProbe; 26766 tcpkp->timKeepaliveDrop.value.ui32 = 26767 tcps->tcps_mib.tcpTimKeepaliveDrop; 26768 tcpkp->listenDrop.value.ui32 = tcps->tcps_mib.tcpListenDrop; 26769 tcpkp->listenDropQ0.value.ui32 = tcps->tcps_mib.tcpListenDropQ0; 26770 tcpkp->halfOpenDrop.value.ui32 = tcps->tcps_mib.tcpHalfOpenDrop; 26771 tcpkp->outSackRetransSegs.value.ui32 = 26772 tcps->tcps_mib.tcpOutSackRetransSegs; 26773 tcpkp->connTableSize6.value.i32 = tcps->tcps_mib.tcp6ConnTableSize; 26774 26775 netstack_rele(ns); 26776 return (0); 26777 } 26778 26779 void 26780 tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp) 26781 { 26782 uint16_t hdr_len; 26783 ipha_t *ipha; 26784 uint8_t *nexthdrp; 26785 tcph_t *tcph; 26786 tcp_stack_t *tcps = connp->conn_tcp->tcp_tcps; 26787 26788 /* Already has an eager */ 26789 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 26790 TCP_STAT(tcps, tcp_reinput_syn); 26791 squeue_enter(connp->conn_sqp, mp, connp->conn_recv, 26792 connp, SQTAG_TCP_REINPUT_EAGER); 26793 return; 26794 } 26795 26796 switch (IPH_HDR_VERSION(mp->b_rptr)) { 26797 case IPV4_VERSION: 26798 ipha = (ipha_t *)mp->b_rptr; 26799 hdr_len = IPH_HDR_LENGTH(ipha); 26800 break; 26801 case IPV6_VERSION: 26802 if (!ip_hdr_length_nexthdr_v6(mp, (ip6_t *)mp->b_rptr, 26803 &hdr_len, &nexthdrp)) { 26804 CONN_DEC_REF(connp); 26805 freemsg(mp); 26806 return; 26807 } 26808 break; 26809 } 26810 26811 tcph = (tcph_t *)&mp->b_rptr[hdr_len]; 26812 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 26813 mp->b_datap->db_struioflag |= STRUIO_EAGER; 26814 DB_CKSUMSTART(mp) = (intptr_t)sqp; 26815 } 26816 26817 squeue_fill(connp->conn_sqp, mp, connp->conn_recv, connp, 26818 SQTAG_TCP_REINPUT); 26819 } 26820 26821 static squeue_func_t 26822 tcp_squeue_switch(int val) 26823 { 26824 squeue_func_t rval = squeue_fill; 26825 26826 switch (val) { 26827 case 1: 26828 rval = squeue_enter_nodrain; 26829 break; 26830 case 2: 26831 rval = squeue_enter; 26832 break; 26833 default: 26834 break; 26835 } 26836 return (rval); 26837 } 26838 26839 /* 26840 * This is called once for each squeue - globally for all stack 26841 * instances. 26842 */ 26843 static void 26844 tcp_squeue_add(squeue_t *sqp) 26845 { 26846 tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc( 26847 sizeof (tcp_squeue_priv_t), KM_SLEEP); 26848 26849 *squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait; 26850 tcp_time_wait->tcp_time_wait_tid = timeout(tcp_time_wait_collector, 26851 sqp, TCP_TIME_WAIT_DELAY); 26852 if (tcp_free_list_max_cnt == 0) { 26853 int tcp_ncpus = ((boot_max_ncpus == -1) ? 26854 max_ncpus : boot_max_ncpus); 26855 26856 /* 26857 * Limit number of entries to 1% of availble memory / tcp_ncpus 26858 */ 26859 tcp_free_list_max_cnt = (freemem * PAGESIZE) / 26860 (tcp_ncpus * sizeof (tcp_t) * 100); 26861 } 26862 tcp_time_wait->tcp_free_list_cnt = 0; 26863 } 26864