xref: /titanic_50/usr/src/uts/common/inet/tcp/tcp.c (revision 0f36b8433e9a3e3d3803c54bad5be5de92aec546)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, Joyent Inc. All rights reserved.
25  * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
26  * Copyright (c) 2013 by Delphix. All rights reserved.
27  */
28 /* Copyright (c) 1990 Mentat Inc. */
29 
30 #include <sys/types.h>
31 #include <sys/stream.h>
32 #include <sys/strsun.h>
33 #include <sys/strsubr.h>
34 #include <sys/stropts.h>
35 #include <sys/strlog.h>
36 #define	_SUN_TPI_VERSION 2
37 #include <sys/tihdr.h>
38 #include <sys/timod.h>
39 #include <sys/ddi.h>
40 #include <sys/sunddi.h>
41 #include <sys/suntpi.h>
42 #include <sys/xti_inet.h>
43 #include <sys/cmn_err.h>
44 #include <sys/debug.h>
45 #include <sys/sdt.h>
46 #include <sys/vtrace.h>
47 #include <sys/kmem.h>
48 #include <sys/ethernet.h>
49 #include <sys/cpuvar.h>
50 #include <sys/dlpi.h>
51 #include <sys/pattr.h>
52 #include <sys/policy.h>
53 #include <sys/priv.h>
54 #include <sys/zone.h>
55 #include <sys/sunldi.h>
56 
57 #include <sys/errno.h>
58 #include <sys/signal.h>
59 #include <sys/socket.h>
60 #include <sys/socketvar.h>
61 #include <sys/sockio.h>
62 #include <sys/isa_defs.h>
63 #include <sys/md5.h>
64 #include <sys/random.h>
65 #include <sys/uio.h>
66 #include <sys/systm.h>
67 #include <netinet/in.h>
68 #include <netinet/tcp.h>
69 #include <netinet/ip6.h>
70 #include <netinet/icmp6.h>
71 #include <net/if.h>
72 #include <net/route.h>
73 #include <inet/ipsec_impl.h>
74 
75 #include <inet/common.h>
76 #include <inet/ip.h>
77 #include <inet/ip_impl.h>
78 #include <inet/ip6.h>
79 #include <inet/ip_ndp.h>
80 #include <inet/proto_set.h>
81 #include <inet/mib2.h>
82 #include <inet/optcom.h>
83 #include <inet/snmpcom.h>
84 #include <inet/kstatcom.h>
85 #include <inet/tcp.h>
86 #include <inet/tcp_impl.h>
87 #include <inet/tcp_cluster.h>
88 #include <inet/udp_impl.h>
89 #include <net/pfkeyv2.h>
90 #include <inet/ipdrop.h>
91 
92 #include <inet/ipclassifier.h>
93 #include <inet/ip_ire.h>
94 #include <inet/ip_ftable.h>
95 #include <inet/ip_if.h>
96 #include <inet/ipp_common.h>
97 #include <inet/ip_rts.h>
98 #include <inet/ip_netinfo.h>
99 #include <sys/squeue_impl.h>
100 #include <sys/squeue.h>
101 #include <sys/tsol/label.h>
102 #include <sys/tsol/tnet.h>
103 #include <rpc/pmap_prot.h>
104 #include <sys/callo.h>
105 
106 /*
107  * TCP Notes: aka FireEngine Phase I (PSARC 2002/433)
108  *
109  * (Read the detailed design doc in PSARC case directory)
110  *
111  * The entire tcp state is contained in tcp_t and conn_t structure
112  * which are allocated in tandem using ipcl_conn_create() and passing
113  * IPCL_TCPCONN as a flag. We use 'conn_ref' and 'conn_lock' to protect
114  * the references on the tcp_t. The tcp_t structure is never compressed
115  * and packets always land on the correct TCP perimeter from the time
116  * eager is created till the time tcp_t dies (as such the old mentat
117  * TCP global queue is not used for detached state and no IPSEC checking
118  * is required). The global queue is still allocated to send out resets
119  * for connection which have no listeners and IP directly calls
120  * tcp_xmit_listeners_reset() which does any policy check.
121  *
122  * Protection and Synchronisation mechanism:
123  *
124  * The tcp data structure does not use any kind of lock for protecting
125  * its state but instead uses 'squeues' for mutual exclusion from various
126  * read and write side threads. To access a tcp member, the thread should
127  * always be behind squeue (via squeue_enter with flags as SQ_FILL, SQ_PROCESS,
128  * or SQ_NODRAIN). Since the squeues allow a direct function call, caller
129  * can pass any tcp function having prototype of edesc_t as argument
130  * (different from traditional STREAMs model where packets come in only
131  * designated entry points). The list of functions that can be directly
132  * called via squeue are listed before the usual function prototype.
133  *
134  * Referencing:
135  *
136  * TCP is MT-Hot and we use a reference based scheme to make sure that the
137  * tcp structure doesn't disappear when its needed. When the application
138  * creates an outgoing connection or accepts an incoming connection, we
139  * start out with 2 references on 'conn_ref'. One for TCP and one for IP.
140  * The IP reference is just a symbolic reference since ip_tcpclose()
141  * looks at tcp structure after tcp_close_output() returns which could
142  * have dropped the last TCP reference. So as long as the connection is
143  * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the
144  * conn_t. The classifier puts its own reference when the connection is
145  * inserted in listen or connected hash. Anytime a thread needs to enter
146  * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr
147  * on write side or by doing a classify on read side and then puts a
148  * reference on the conn before doing squeue_enter/tryenter/fill. For
149  * read side, the classifier itself puts the reference under fanout lock
150  * to make sure that tcp can't disappear before it gets processed. The
151  * squeue will drop this reference automatically so the called function
152  * doesn't have to do a DEC_REF.
153  *
154  * Opening a new connection:
155  *
156  * The outgoing connection open is pretty simple. tcp_open() does the
157  * work in creating the conn/tcp structure and initializing it. The
158  * squeue assignment is done based on the CPU the application
159  * is running on. So for outbound connections, processing is always done
160  * on application CPU which might be different from the incoming CPU
161  * being interrupted by the NIC. An optimal way would be to figure out
162  * the NIC <-> CPU binding at listen time, and assign the outgoing
163  * connection to the squeue attached to the CPU that will be interrupted
164  * for incoming packets (we know the NIC based on the bind IP address).
165  * This might seem like a problem if more data is going out but the
166  * fact is that in most cases the transmit is ACK driven transmit where
167  * the outgoing data normally sits on TCP's xmit queue waiting to be
168  * transmitted.
169  *
170  * Accepting a connection:
171  *
172  * This is a more interesting case because of various races involved in
173  * establishing a eager in its own perimeter. Read the meta comment on
174  * top of tcp_input_listener(). But briefly, the squeue is picked by
175  * ip_fanout based on the ring or the sender (if loopback).
176  *
177  * Closing a connection:
178  *
179  * The close is fairly straight forward. tcp_close() calls tcp_close_output()
180  * via squeue to do the close and mark the tcp as detached if the connection
181  * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its
182  * reference but tcp_close() drop IP's reference always. So if tcp was
183  * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP
184  * and 1 because it is in classifier's connected hash. This is the condition
185  * we use to determine that its OK to clean up the tcp outside of squeue
186  * when time wait expires (check the ref under fanout and conn_lock and
187  * if it is 2, remove it from fanout hash and kill it).
188  *
189  * Although close just drops the necessary references and marks the
190  * tcp_detached state, tcp_close needs to know the tcp_detached has been
191  * set (under squeue) before letting the STREAM go away (because a
192  * inbound packet might attempt to go up the STREAM while the close
193  * has happened and tcp_detached is not set). So a special lock and
194  * flag is used along with a condition variable (tcp_closelock, tcp_closed,
195  * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked
196  * tcp_detached.
197  *
198  * Special provisions and fast paths:
199  *
200  * We make special provisions for sockfs by marking tcp_issocket
201  * whenever we have only sockfs on top of TCP. This allows us to skip
202  * putting the tcp in acceptor hash since a sockfs listener can never
203  * become acceptor and also avoid allocating a tcp_t for acceptor STREAM
204  * since eager has already been allocated and the accept now happens
205  * on acceptor STREAM. There is a big blob of comment on top of
206  * tcp_input_listener explaining the new accept. When socket is POP'd,
207  * sockfs sends us an ioctl to mark the fact and we go back to old
208  * behaviour. Once tcp_issocket is unset, its never set for the
209  * life of that connection.
210  *
211  * IPsec notes :
212  *
213  * Since a packet is always executed on the correct TCP perimeter
214  * all IPsec processing is defered to IP including checking new
215  * connections and setting IPSEC policies for new connection. The
216  * only exception is tcp_xmit_listeners_reset() which is called
217  * directly from IP and needs to policy check to see if TH_RST
218  * can be sent out.
219  */
220 
221 /*
222  * Values for squeue switch:
223  * 1: SQ_NODRAIN
224  * 2: SQ_PROCESS
225  * 3: SQ_FILL
226  */
227 int tcp_squeue_wput = 2;	/* /etc/systems */
228 int tcp_squeue_flag;
229 
230 /*
231  * To prevent memory hog, limit the number of entries in tcp_free_list
232  * to 1% of available memory / number of cpus
233  */
234 uint_t tcp_free_list_max_cnt = 0;
235 
236 #define	TIDUSZ	4096	/* transport interface data unit size */
237 
238 /*
239  * Size of acceptor hash list.  It has to be a power of 2 for hashing.
240  */
241 #define	TCP_ACCEPTOR_FANOUT_SIZE		512
242 
243 #ifdef	_ILP32
244 #define	TCP_ACCEPTOR_HASH(accid)					\
245 		(((uint_t)(accid) >> 8) & (TCP_ACCEPTOR_FANOUT_SIZE - 1))
246 #else
247 #define	TCP_ACCEPTOR_HASH(accid)					\
248 		((uint_t)(accid) & (TCP_ACCEPTOR_FANOUT_SIZE - 1))
249 #endif	/* _ILP32 */
250 
251 /*
252  * Minimum number of connections which can be created per listener.  Used
253  * when the listener connection count is in effect.
254  */
255 static uint32_t tcp_min_conn_listener = 2;
256 
257 uint32_t tcp_early_abort = 30;
258 
259 /* TCP Timer control structure */
260 typedef struct tcpt_s {
261 	pfv_t	tcpt_pfv;	/* The routine we are to call */
262 	tcp_t	*tcpt_tcp;	/* The parameter we are to pass in */
263 } tcpt_t;
264 
265 /*
266  * Functions called directly via squeue having a prototype of edesc_t.
267  */
268 void		tcp_input_listener(void *arg, mblk_t *mp, void *arg2,
269     ip_recv_attr_t *ira);
270 void		tcp_input_data(void *arg, mblk_t *mp, void *arg2,
271     ip_recv_attr_t *ira);
272 static void	tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2,
273     ip_recv_attr_t *dummy);
274 
275 
276 /* Prototype for TCP functions */
277 static void	tcp_random_init(void);
278 int		tcp_random(void);
279 static int	tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp,
280 		    in_port_t dstport, uint_t srcid);
281 static int	tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp,
282 		    in_port_t dstport, uint32_t flowinfo,
283 		    uint_t srcid, uint32_t scope_id);
284 static void	tcp_iss_init(tcp_t *tcp);
285 static void	tcp_reinit(tcp_t *tcp);
286 static void	tcp_reinit_values(tcp_t *tcp);
287 
288 static void	tcp_wsrv(queue_t *q);
289 static void	tcp_update_lso(tcp_t *tcp, ip_xmit_attr_t *ixa);
290 static void	tcp_update_zcopy(tcp_t *tcp);
291 static void	tcp_notify(void *, ip_xmit_attr_t *, ixa_notify_type_t,
292     ixa_notify_arg_t);
293 static void	*tcp_stack_init(netstackid_t stackid, netstack_t *ns);
294 static void	tcp_stack_fini(netstackid_t stackid, void *arg);
295 
296 static int	tcp_squeue_switch(int);
297 
298 static int	tcp_open(queue_t *, dev_t *, int, int, cred_t *, boolean_t);
299 static int	tcp_openv4(queue_t *, dev_t *, int, int, cred_t *);
300 static int	tcp_openv6(queue_t *, dev_t *, int, int, cred_t *);
301 
302 static void	tcp_squeue_add(squeue_t *);
303 
304 struct module_info tcp_rinfo =  {
305 	TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER
306 };
307 
308 static struct module_info tcp_winfo =  {
309 	TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16
310 };
311 
312 /*
313  * Entry points for TCP as a device. The normal case which supports
314  * the TCP functionality.
315  * We have separate open functions for the /dev/tcp and /dev/tcp6 devices.
316  */
317 struct qinit tcp_rinitv4 = {
318 	NULL, (pfi_t)tcp_rsrv, tcp_openv4, tcp_tpi_close, NULL, &tcp_rinfo
319 };
320 
321 struct qinit tcp_rinitv6 = {
322 	NULL, (pfi_t)tcp_rsrv, tcp_openv6, tcp_tpi_close, NULL, &tcp_rinfo
323 };
324 
325 struct qinit tcp_winit = {
326 	(pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
327 };
328 
329 /* Initial entry point for TCP in socket mode. */
330 struct qinit tcp_sock_winit = {
331 	(pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
332 };
333 
334 /* TCP entry point during fallback */
335 struct qinit tcp_fallback_sock_winit = {
336 	(pfi_t)tcp_wput_fallback, NULL, NULL, NULL, NULL, &tcp_winfo
337 };
338 
339 /*
340  * Entry points for TCP as a acceptor STREAM opened by sockfs when doing
341  * an accept. Avoid allocating data structures since eager has already
342  * been created.
343  */
344 struct qinit tcp_acceptor_rinit = {
345 	NULL, (pfi_t)tcp_rsrv, NULL, tcp_tpi_close_accept, NULL, &tcp_winfo
346 };
347 
348 struct qinit tcp_acceptor_winit = {
349 	(pfi_t)tcp_tpi_accept, NULL, NULL, NULL, NULL, &tcp_winfo
350 };
351 
352 /* For AF_INET aka /dev/tcp */
353 struct streamtab tcpinfov4 = {
354 	&tcp_rinitv4, &tcp_winit
355 };
356 
357 /* For AF_INET6 aka /dev/tcp6 */
358 struct streamtab tcpinfov6 = {
359 	&tcp_rinitv6, &tcp_winit
360 };
361 
362 /*
363  * Following assumes TPI alignment requirements stay along 32 bit
364  * boundaries
365  */
366 #define	ROUNDUP32(x) \
367 	(((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1))
368 
369 /* Template for response to info request. */
370 struct T_info_ack tcp_g_t_info_ack = {
371 	T_INFO_ACK,		/* PRIM_type */
372 	0,			/* TSDU_size */
373 	T_INFINITE,		/* ETSDU_size */
374 	T_INVALID,		/* CDATA_size */
375 	T_INVALID,		/* DDATA_size */
376 	sizeof (sin_t),		/* ADDR_size */
377 	0,			/* OPT_size - not initialized here */
378 	TIDUSZ,			/* TIDU_size */
379 	T_COTS_ORD,		/* SERV_type */
380 	TCPS_IDLE,		/* CURRENT_state */
381 	(XPG4_1|EXPINLINE)	/* PROVIDER_flag */
382 };
383 
384 struct T_info_ack tcp_g_t_info_ack_v6 = {
385 	T_INFO_ACK,		/* PRIM_type */
386 	0,			/* TSDU_size */
387 	T_INFINITE,		/* ETSDU_size */
388 	T_INVALID,		/* CDATA_size */
389 	T_INVALID,		/* DDATA_size */
390 	sizeof (sin6_t),	/* ADDR_size */
391 	0,			/* OPT_size - not initialized here */
392 	TIDUSZ,		/* TIDU_size */
393 	T_COTS_ORD,		/* SERV_type */
394 	TCPS_IDLE,		/* CURRENT_state */
395 	(XPG4_1|EXPINLINE)	/* PROVIDER_flag */
396 };
397 
398 /*
399  * TCP tunables related declarations. Definitions are in tcp_tunables.c
400  */
401 extern mod_prop_info_t tcp_propinfo_tbl[];
402 extern int tcp_propinfo_count;
403 
404 #define	IS_VMLOANED_MBLK(mp) \
405 	(((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0)
406 
407 uint32_t do_tcpzcopy = 1;		/* 0: disable, 1: enable, 2: force */
408 
409 /*
410  * Forces all connections to obey the value of the tcps_maxpsz_multiplier
411  * tunable settable via NDD.  Otherwise, the per-connection behavior is
412  * determined dynamically during tcp_set_destination(), which is the default.
413  */
414 boolean_t tcp_static_maxpsz = B_FALSE;
415 
416 /*
417  * If the receive buffer size is changed, this function is called to update
418  * the upper socket layer on the new delayed receive wake up threshold.
419  */
420 static void
421 tcp_set_recv_threshold(tcp_t *tcp, uint32_t new_rcvthresh)
422 {
423 	uint32_t default_threshold = SOCKET_RECVHIWATER >> 3;
424 
425 	if (IPCL_IS_NONSTR(tcp->tcp_connp)) {
426 		conn_t *connp = tcp->tcp_connp;
427 		struct sock_proto_props sopp;
428 
429 		/*
430 		 * only increase rcvthresh upto default_threshold
431 		 */
432 		if (new_rcvthresh > default_threshold)
433 			new_rcvthresh = default_threshold;
434 
435 		sopp.sopp_flags = SOCKOPT_RCVTHRESH;
436 		sopp.sopp_rcvthresh = new_rcvthresh;
437 
438 		(*connp->conn_upcalls->su_set_proto_props)
439 		    (connp->conn_upper_handle, &sopp);
440 	}
441 }
442 
443 /*
444  * Figure out the value of window scale opton.  Note that the rwnd is
445  * ASSUMED to be rounded up to the nearest MSS before the calculation.
446  * We cannot find the scale value and then do a round up of tcp_rwnd
447  * because the scale value may not be correct after that.
448  *
449  * Set the compiler flag to make this function inline.
450  */
451 void
452 tcp_set_ws_value(tcp_t *tcp)
453 {
454 	int i;
455 	uint32_t rwnd = tcp->tcp_rwnd;
456 
457 	for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT;
458 	    i++, rwnd >>= 1)
459 		;
460 	tcp->tcp_rcv_ws = i;
461 }
462 
463 /*
464  * Remove cached/latched IPsec references.
465  */
466 void
467 tcp_ipsec_cleanup(tcp_t *tcp)
468 {
469 	conn_t		*connp = tcp->tcp_connp;
470 
471 	ASSERT(connp->conn_flags & IPCL_TCPCONN);
472 
473 	if (connp->conn_latch != NULL) {
474 		IPLATCH_REFRELE(connp->conn_latch);
475 		connp->conn_latch = NULL;
476 	}
477 	if (connp->conn_latch_in_policy != NULL) {
478 		IPPOL_REFRELE(connp->conn_latch_in_policy);
479 		connp->conn_latch_in_policy = NULL;
480 	}
481 	if (connp->conn_latch_in_action != NULL) {
482 		IPACT_REFRELE(connp->conn_latch_in_action);
483 		connp->conn_latch_in_action = NULL;
484 	}
485 	if (connp->conn_policy != NULL) {
486 		IPPH_REFRELE(connp->conn_policy, connp->conn_netstack);
487 		connp->conn_policy = NULL;
488 	}
489 }
490 
491 /*
492  * Cleaup before placing on free list.
493  * Disassociate from the netstack/tcp_stack_t since the freelist
494  * is per squeue and not per netstack.
495  */
496 void
497 tcp_cleanup(tcp_t *tcp)
498 {
499 	mblk_t		*mp;
500 	conn_t		*connp = tcp->tcp_connp;
501 	tcp_stack_t	*tcps = tcp->tcp_tcps;
502 	netstack_t	*ns = tcps->tcps_netstack;
503 	mblk_t		*tcp_rsrv_mp;
504 
505 	tcp_bind_hash_remove(tcp);
506 
507 	/* Cleanup that which needs the netstack first */
508 	tcp_ipsec_cleanup(tcp);
509 	ixa_cleanup(connp->conn_ixa);
510 
511 	if (connp->conn_ht_iphc != NULL) {
512 		kmem_free(connp->conn_ht_iphc, connp->conn_ht_iphc_allocated);
513 		connp->conn_ht_iphc = NULL;
514 		connp->conn_ht_iphc_allocated = 0;
515 		connp->conn_ht_iphc_len = 0;
516 		connp->conn_ht_ulp = NULL;
517 		connp->conn_ht_ulp_len = 0;
518 		tcp->tcp_ipha = NULL;
519 		tcp->tcp_ip6h = NULL;
520 		tcp->tcp_tcpha = NULL;
521 	}
522 
523 	/* We clear any IP_OPTIONS and extension headers */
524 	ip_pkt_free(&connp->conn_xmit_ipp);
525 
526 	tcp_free(tcp);
527 
528 	/*
529 	 * Since we will bzero the entire structure, we need to
530 	 * remove it and reinsert it in global hash list. We
531 	 * know the walkers can't get to this conn because we
532 	 * had set CONDEMNED flag earlier and checked reference
533 	 * under conn_lock so walker won't pick it and when we
534 	 * go the ipcl_globalhash_remove() below, no walker
535 	 * can get to it.
536 	 */
537 	ipcl_globalhash_remove(connp);
538 
539 	/* Save some state */
540 	mp = tcp->tcp_timercache;
541 
542 	tcp_rsrv_mp = tcp->tcp_rsrv_mp;
543 
544 	if (connp->conn_cred != NULL) {
545 		crfree(connp->conn_cred);
546 		connp->conn_cred = NULL;
547 	}
548 	ipcl_conn_cleanup(connp);
549 	connp->conn_flags = IPCL_TCPCONN;
550 
551 	/*
552 	 * Now it is safe to decrement the reference counts.
553 	 * This might be the last reference on the netstack
554 	 * in which case it will cause the freeing of the IP Instance.
555 	 */
556 	connp->conn_netstack = NULL;
557 	connp->conn_ixa->ixa_ipst = NULL;
558 	netstack_rele(ns);
559 	ASSERT(tcps != NULL);
560 	tcp->tcp_tcps = NULL;
561 
562 	bzero(tcp, sizeof (tcp_t));
563 
564 	/* restore the state */
565 	tcp->tcp_timercache = mp;
566 
567 	tcp->tcp_rsrv_mp = tcp_rsrv_mp;
568 
569 	tcp->tcp_connp = connp;
570 
571 	ASSERT(connp->conn_tcp == tcp);
572 	ASSERT(connp->conn_flags & IPCL_TCPCONN);
573 	connp->conn_state_flags = CONN_INCIPIENT;
574 	ASSERT(connp->conn_proto == IPPROTO_TCP);
575 	ASSERT(connp->conn_ref == 1);
576 }
577 
578 /*
579  * Adapt to the information, such as rtt and rtt_sd, provided from the
580  * DCE and IRE maintained by IP.
581  *
582  * Checks for multicast and broadcast destination address.
583  * Returns zero if ok; an errno on failure.
584  *
585  * Note that the MSS calculation here is based on the info given in
586  * the DCE and IRE.  We do not do any calculation based on TCP options.  They
587  * will be handled in tcp_input_data() when TCP knows which options to use.
588  *
589  * Note on how TCP gets its parameters for a connection.
590  *
591  * When a tcp_t structure is allocated, it gets all the default parameters.
592  * In tcp_set_destination(), it gets those metric parameters, like rtt, rtt_sd,
593  * spipe, rpipe, ... from the route metrics.  Route metric overrides the
594  * default.
595  *
596  * An incoming SYN with a multicast or broadcast destination address is dropped
597  * in ip_fanout_v4/v6.
598  *
599  * An incoming SYN with a multicast or broadcast source address is always
600  * dropped in tcp_set_destination, since IPDF_ALLOW_MCBC is not set in
601  * conn_connect.
602  * The same logic in tcp_set_destination also serves to
603  * reject an attempt to connect to a broadcast or multicast (destination)
604  * address.
605  */
606 int
607 tcp_set_destination(tcp_t *tcp)
608 {
609 	uint32_t	mss_max;
610 	uint32_t	mss;
611 	boolean_t	tcp_detached = TCP_IS_DETACHED(tcp);
612 	conn_t		*connp = tcp->tcp_connp;
613 	tcp_stack_t	*tcps = tcp->tcp_tcps;
614 	iulp_t		uinfo;
615 	int		error;
616 	uint32_t	flags;
617 
618 	flags = IPDF_LSO | IPDF_ZCOPY;
619 	/*
620 	 * Make sure we have a dce for the destination to avoid dce_ident
621 	 * contention for connected sockets.
622 	 */
623 	flags |= IPDF_UNIQUE_DCE;
624 
625 	if (!tcps->tcps_ignore_path_mtu)
626 		connp->conn_ixa->ixa_flags |= IXAF_PMTU_DISCOVERY;
627 
628 	/* Use conn_lock to satify ASSERT; tcp is already serialized */
629 	mutex_enter(&connp->conn_lock);
630 	error = conn_connect(connp, &uinfo, flags);
631 	mutex_exit(&connp->conn_lock);
632 	if (error != 0)
633 		return (error);
634 
635 	error = tcp_build_hdrs(tcp);
636 	if (error != 0)
637 		return (error);
638 
639 	tcp->tcp_localnet = uinfo.iulp_localnet;
640 
641 	if (uinfo.iulp_rtt != 0) {
642 		clock_t	rto;
643 
644 		tcp->tcp_rtt_sa = uinfo.iulp_rtt;
645 		tcp->tcp_rtt_sd = uinfo.iulp_rtt_sd;
646 		rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
647 		    tcps->tcps_rexmit_interval_extra +
648 		    (tcp->tcp_rtt_sa >> 5);
649 
650 		TCP_SET_RTO(tcp, rto);
651 	}
652 	if (uinfo.iulp_ssthresh != 0)
653 		tcp->tcp_cwnd_ssthresh = uinfo.iulp_ssthresh;
654 	else
655 		tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
656 	if (uinfo.iulp_spipe > 0) {
657 		connp->conn_sndbuf = MIN(uinfo.iulp_spipe,
658 		    tcps->tcps_max_buf);
659 		if (tcps->tcps_snd_lowat_fraction != 0) {
660 			connp->conn_sndlowat = connp->conn_sndbuf /
661 			    tcps->tcps_snd_lowat_fraction;
662 		}
663 		(void) tcp_maxpsz_set(tcp, B_TRUE);
664 	}
665 	/*
666 	 * Note that up till now, acceptor always inherits receive
667 	 * window from the listener.  But if there is a metrics
668 	 * associated with a host, we should use that instead of
669 	 * inheriting it from listener. Thus we need to pass this
670 	 * info back to the caller.
671 	 */
672 	if (uinfo.iulp_rpipe > 0) {
673 		tcp->tcp_rwnd = MIN(uinfo.iulp_rpipe,
674 		    tcps->tcps_max_buf);
675 	}
676 
677 	if (uinfo.iulp_rtomax > 0) {
678 		tcp->tcp_second_timer_threshold =
679 		    uinfo.iulp_rtomax;
680 	}
681 
682 	/*
683 	 * Use the metric option settings, iulp_tstamp_ok and
684 	 * iulp_wscale_ok, only for active open. What this means
685 	 * is that if the other side uses timestamp or window
686 	 * scale option, TCP will also use those options. That
687 	 * is for passive open.  If the application sets a
688 	 * large window, window scale is enabled regardless of
689 	 * the value in iulp_wscale_ok.  This is the behavior
690 	 * since 2.6.  So we keep it.
691 	 * The only case left in passive open processing is the
692 	 * check for SACK.
693 	 * For ECN, it should probably be like SACK.  But the
694 	 * current value is binary, so we treat it like the other
695 	 * cases.  The metric only controls active open.For passive
696 	 * open, the ndd param, tcp_ecn_permitted, controls the
697 	 * behavior.
698 	 */
699 	if (!tcp_detached) {
700 		/*
701 		 * The if check means that the following can only
702 		 * be turned on by the metrics only IRE, but not off.
703 		 */
704 		if (uinfo.iulp_tstamp_ok)
705 			tcp->tcp_snd_ts_ok = B_TRUE;
706 		if (uinfo.iulp_wscale_ok)
707 			tcp->tcp_snd_ws_ok = B_TRUE;
708 		if (uinfo.iulp_sack == 2)
709 			tcp->tcp_snd_sack_ok = B_TRUE;
710 		if (uinfo.iulp_ecn_ok)
711 			tcp->tcp_ecn_ok = B_TRUE;
712 	} else {
713 		/*
714 		 * Passive open.
715 		 *
716 		 * As above, the if check means that SACK can only be
717 		 * turned on by the metric only IRE.
718 		 */
719 		if (uinfo.iulp_sack > 0) {
720 			tcp->tcp_snd_sack_ok = B_TRUE;
721 		}
722 	}
723 
724 	/*
725 	 * XXX Note that currently, iulp_mtu can be as small as 68
726 	 * because of PMTUd.  So tcp_mss may go to negative if combined
727 	 * length of all those options exceeds 28 bytes.  But because
728 	 * of the tcp_mss_min check below, we may not have a problem if
729 	 * tcp_mss_min is of a reasonable value.  The default is 1 so
730 	 * the negative problem still exists.  And the check defeats PMTUd.
731 	 * In fact, if PMTUd finds that the MSS should be smaller than
732 	 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min
733 	 * value.
734 	 *
735 	 * We do not deal with that now.  All those problems related to
736 	 * PMTUd will be fixed later.
737 	 */
738 	ASSERT(uinfo.iulp_mtu != 0);
739 	mss = tcp->tcp_initial_pmtu = uinfo.iulp_mtu;
740 
741 	/* Sanity check for MSS value. */
742 	if (connp->conn_ipversion == IPV4_VERSION)
743 		mss_max = tcps->tcps_mss_max_ipv4;
744 	else
745 		mss_max = tcps->tcps_mss_max_ipv6;
746 
747 	if (tcp->tcp_ipsec_overhead == 0)
748 		tcp->tcp_ipsec_overhead = conn_ipsec_length(connp);
749 
750 	mss -= tcp->tcp_ipsec_overhead;
751 
752 	if (mss < tcps->tcps_mss_min)
753 		mss = tcps->tcps_mss_min;
754 	if (mss > mss_max)
755 		mss = mss_max;
756 
757 	/* Note that this is the maximum MSS, excluding all options. */
758 	tcp->tcp_mss = mss;
759 
760 	/*
761 	 * Update the tcp connection with LSO capability.
762 	 */
763 	tcp_update_lso(tcp, connp->conn_ixa);
764 
765 	/*
766 	 * Initialize the ISS here now that we have the full connection ID.
767 	 * The RFC 1948 method of initial sequence number generation requires
768 	 * knowledge of the full connection ID before setting the ISS.
769 	 */
770 	tcp_iss_init(tcp);
771 
772 	tcp->tcp_loopback = (uinfo.iulp_loopback | uinfo.iulp_local);
773 
774 	/*
775 	 * Make sure that conn is not marked incipient
776 	 * for incoming connections. A blind
777 	 * removal of incipient flag is cheaper than
778 	 * check and removal.
779 	 */
780 	mutex_enter(&connp->conn_lock);
781 	connp->conn_state_flags &= ~CONN_INCIPIENT;
782 	mutex_exit(&connp->conn_lock);
783 	return (0);
784 }
785 
786 /*
787  * tcp_clean_death / tcp_close_detached must not be called more than once
788  * on a tcp. Thus every function that potentially calls tcp_clean_death
789  * must check for the tcp state before calling tcp_clean_death.
790  * Eg. tcp_input_data, tcp_eager_kill, tcp_clean_death_wrapper,
791  * tcp_timer_handler, all check for the tcp state.
792  */
793 /* ARGSUSED */
794 void
795 tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2,
796     ip_recv_attr_t *dummy)
797 {
798 	tcp_t	*tcp = ((conn_t *)arg)->conn_tcp;
799 
800 	freemsg(mp);
801 	if (tcp->tcp_state > TCPS_BOUND)
802 		(void) tcp_clean_death(((conn_t *)arg)->conn_tcp, ETIMEDOUT);
803 }
804 
805 /*
806  * We are dying for some reason.  Try to do it gracefully.  (May be called
807  * as writer.)
808  *
809  * Return -1 if the structure was not cleaned up (if the cleanup had to be
810  * done by a service procedure).
811  * TBD - Should the return value distinguish between the tcp_t being
812  * freed and it being reinitialized?
813  */
814 int
815 tcp_clean_death(tcp_t *tcp, int err)
816 {
817 	mblk_t	*mp;
818 	queue_t	*q;
819 	conn_t	*connp = tcp->tcp_connp;
820 	tcp_stack_t	*tcps = tcp->tcp_tcps;
821 
822 	if (tcp->tcp_fused)
823 		tcp_unfuse(tcp);
824 
825 	if (tcp->tcp_linger_tid != 0 &&
826 	    TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) {
827 		tcp_stop_lingering(tcp);
828 	}
829 
830 	ASSERT(tcp != NULL);
831 	ASSERT((connp->conn_family == AF_INET &&
832 	    connp->conn_ipversion == IPV4_VERSION) ||
833 	    (connp->conn_family == AF_INET6 &&
834 	    (connp->conn_ipversion == IPV4_VERSION ||
835 	    connp->conn_ipversion == IPV6_VERSION)));
836 
837 	if (TCP_IS_DETACHED(tcp)) {
838 		if (tcp->tcp_hard_binding) {
839 			/*
840 			 * Its an eager that we are dealing with. We close the
841 			 * eager but in case a conn_ind has already gone to the
842 			 * listener, let tcp_accept_finish() send a discon_ind
843 			 * to the listener and drop the last reference. If the
844 			 * listener doesn't even know about the eager i.e. the
845 			 * conn_ind hasn't gone up, blow away the eager and drop
846 			 * the last reference as well. If the conn_ind has gone
847 			 * up, state should be BOUND. tcp_accept_finish
848 			 * will figure out that the connection has received a
849 			 * RST and will send a DISCON_IND to the application.
850 			 */
851 			tcp_closei_local(tcp);
852 			if (!tcp->tcp_tconnind_started) {
853 				CONN_DEC_REF(connp);
854 			} else {
855 				tcp->tcp_state = TCPS_BOUND;
856 				DTRACE_TCP6(state__change, void, NULL,
857 				    ip_xmit_attr_t *, connp->conn_ixa,
858 				    void, NULL, tcp_t *, tcp, void, NULL,
859 				    int32_t, TCPS_CLOSED);
860 			}
861 		} else {
862 			tcp_close_detached(tcp);
863 		}
864 		return (0);
865 	}
866 
867 	TCP_STAT(tcps, tcp_clean_death_nondetached);
868 
869 	/*
870 	 * The connection is dead.  Decrement listener connection counter if
871 	 * necessary.
872 	 */
873 	if (tcp->tcp_listen_cnt != NULL)
874 		TCP_DECR_LISTEN_CNT(tcp);
875 
876 	/*
877 	 * When a connection is moved to TIME_WAIT state, the connection
878 	 * counter is already decremented.  So no need to decrement here
879 	 * again.  See SET_TIME_WAIT() macro.
880 	 */
881 	if (tcp->tcp_state >= TCPS_ESTABLISHED &&
882 	    tcp->tcp_state < TCPS_TIME_WAIT) {
883 		TCPS_CONN_DEC(tcps);
884 	}
885 
886 	q = connp->conn_rq;
887 
888 	/* Trash all inbound data */
889 	if (!IPCL_IS_NONSTR(connp)) {
890 		ASSERT(q != NULL);
891 		flushq(q, FLUSHALL);
892 	}
893 
894 	/*
895 	 * If we are at least part way open and there is error
896 	 * (err==0 implies no error)
897 	 * notify our client by a T_DISCON_IND.
898 	 */
899 	if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) {
900 		if (tcp->tcp_state >= TCPS_ESTABLISHED &&
901 		    !TCP_IS_SOCKET(tcp)) {
902 			/*
903 			 * Send M_FLUSH according to TPI. Because sockets will
904 			 * (and must) ignore FLUSHR we do that only for TPI
905 			 * endpoints and sockets in STREAMS mode.
906 			 */
907 			(void) putnextctl1(q, M_FLUSH, FLUSHR);
908 		}
909 		if (connp->conn_debug) {
910 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
911 			    "tcp_clean_death: discon err %d", err);
912 		}
913 		if (IPCL_IS_NONSTR(connp)) {
914 			/* Direct socket, use upcall */
915 			(*connp->conn_upcalls->su_disconnected)(
916 			    connp->conn_upper_handle, tcp->tcp_connid, err);
917 		} else {
918 			mp = mi_tpi_discon_ind(NULL, err, 0);
919 			if (mp != NULL) {
920 				putnext(q, mp);
921 			} else {
922 				if (connp->conn_debug) {
923 					(void) strlog(TCP_MOD_ID, 0, 1,
924 					    SL_ERROR|SL_TRACE,
925 					    "tcp_clean_death, sending M_ERROR");
926 				}
927 				(void) putnextctl1(q, M_ERROR, EPROTO);
928 			}
929 		}
930 		if (tcp->tcp_state <= TCPS_SYN_RCVD) {
931 			/* SYN_SENT or SYN_RCVD */
932 			TCPS_BUMP_MIB(tcps, tcpAttemptFails);
933 		} else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) {
934 			/* ESTABLISHED or CLOSE_WAIT */
935 			TCPS_BUMP_MIB(tcps, tcpEstabResets);
936 		}
937 	}
938 
939 	/*
940 	 * ESTABLISHED non-STREAMS eagers are not 'detached' because
941 	 * an upper handle is obtained when the SYN-ACK comes in. So it
942 	 * should receive the 'disconnected' upcall, but tcp_reinit should
943 	 * not be called since this is an eager.
944 	 */
945 	if (tcp->tcp_listener != NULL && IPCL_IS_NONSTR(connp)) {
946 		tcp_closei_local(tcp);
947 		tcp->tcp_state = TCPS_BOUND;
948 		DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
949 		    connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL,
950 		    int32_t, TCPS_CLOSED);
951 		return (0);
952 	}
953 
954 	tcp_reinit(tcp);
955 	if (IPCL_IS_NONSTR(connp))
956 		(void) tcp_do_unbind(connp);
957 
958 	return (-1);
959 }
960 
961 /*
962  * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout
963  * to expire, stop the wait and finish the close.
964  */
965 void
966 tcp_stop_lingering(tcp_t *tcp)
967 {
968 	clock_t	delta = 0;
969 	tcp_stack_t	*tcps = tcp->tcp_tcps;
970 	conn_t		*connp = tcp->tcp_connp;
971 
972 	tcp->tcp_linger_tid = 0;
973 	if (tcp->tcp_state > TCPS_LISTEN) {
974 		tcp_acceptor_hash_remove(tcp);
975 		mutex_enter(&tcp->tcp_non_sq_lock);
976 		if (tcp->tcp_flow_stopped) {
977 			tcp_clrqfull(tcp);
978 		}
979 		mutex_exit(&tcp->tcp_non_sq_lock);
980 
981 		if (tcp->tcp_timer_tid != 0) {
982 			delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
983 			tcp->tcp_timer_tid = 0;
984 		}
985 		/*
986 		 * Need to cancel those timers which will not be used when
987 		 * TCP is detached.  This has to be done before the conn_wq
988 		 * is cleared.
989 		 */
990 		tcp_timers_stop(tcp);
991 
992 		tcp->tcp_detached = B_TRUE;
993 		connp->conn_rq = NULL;
994 		connp->conn_wq = NULL;
995 
996 		if (tcp->tcp_state == TCPS_TIME_WAIT) {
997 			tcp_time_wait_append(tcp);
998 			TCP_DBGSTAT(tcps, tcp_detach_time_wait);
999 			goto finish;
1000 		}
1001 
1002 		/*
1003 		 * If delta is zero the timer event wasn't executed and was
1004 		 * successfully canceled. In this case we need to restart it
1005 		 * with the minimal delta possible.
1006 		 */
1007 		if (delta >= 0) {
1008 			tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer,
1009 			    delta ? delta : 1);
1010 		}
1011 	} else {
1012 		tcp_closei_local(tcp);
1013 		CONN_DEC_REF(connp);
1014 	}
1015 finish:
1016 	tcp->tcp_detached = B_TRUE;
1017 	connp->conn_rq = NULL;
1018 	connp->conn_wq = NULL;
1019 
1020 	/* Signal closing thread that it can complete close */
1021 	mutex_enter(&tcp->tcp_closelock);
1022 	tcp->tcp_closed = 1;
1023 	cv_signal(&tcp->tcp_closecv);
1024 	mutex_exit(&tcp->tcp_closelock);
1025 
1026 	/* If we have an upper handle (socket), release it */
1027 	if (IPCL_IS_NONSTR(connp)) {
1028 		ASSERT(connp->conn_upper_handle != NULL);
1029 		(*connp->conn_upcalls->su_closed)(connp->conn_upper_handle);
1030 		connp->conn_upper_handle = NULL;
1031 		connp->conn_upcalls = NULL;
1032 	}
1033 }
1034 
1035 void
1036 tcp_close_common(conn_t *connp, int flags)
1037 {
1038 	tcp_t		*tcp = connp->conn_tcp;
1039 	mblk_t 		*mp = &tcp->tcp_closemp;
1040 	boolean_t	conn_ioctl_cleanup_reqd = B_FALSE;
1041 	mblk_t		*bp;
1042 
1043 	ASSERT(connp->conn_ref >= 2);
1044 
1045 	/*
1046 	 * Mark the conn as closing. ipsq_pending_mp_add will not
1047 	 * add any mp to the pending mp list, after this conn has
1048 	 * started closing.
1049 	 */
1050 	mutex_enter(&connp->conn_lock);
1051 	connp->conn_state_flags |= CONN_CLOSING;
1052 	if (connp->conn_oper_pending_ill != NULL)
1053 		conn_ioctl_cleanup_reqd = B_TRUE;
1054 	CONN_INC_REF_LOCKED(connp);
1055 	mutex_exit(&connp->conn_lock);
1056 	tcp->tcp_closeflags = (uint8_t)flags;
1057 	ASSERT(connp->conn_ref >= 3);
1058 
1059 	/*
1060 	 * tcp_closemp_used is used below without any protection of a lock
1061 	 * as we don't expect any one else to use it concurrently at this
1062 	 * point otherwise it would be a major defect.
1063 	 */
1064 
1065 	if (mp->b_prev == NULL)
1066 		tcp->tcp_closemp_used = B_TRUE;
1067 	else
1068 		cmn_err(CE_PANIC, "tcp_close: concurrent use of tcp_closemp: "
1069 		    "connp %p tcp %p\n", (void *)connp, (void *)tcp);
1070 
1071 	TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
1072 
1073 	/*
1074 	 * Cleanup any queued ioctls here. This must be done before the wq/rq
1075 	 * are re-written by tcp_close_output().
1076 	 */
1077 	if (conn_ioctl_cleanup_reqd)
1078 		conn_ioctl_cleanup(connp);
1079 
1080 	/*
1081 	 * As CONN_CLOSING is set, no further ioctls should be passed down to
1082 	 * IP for this conn (see the guards in tcp_ioctl, tcp_wput_ioctl and
1083 	 * tcp_wput_iocdata). If the ioctl was queued on an ipsq,
1084 	 * conn_ioctl_cleanup should have found it and removed it. If the ioctl
1085 	 * was still in flight at the time, we wait for it here. See comments
1086 	 * for CONN_INC_IOCTLREF in ip.h for details.
1087 	 */
1088 	mutex_enter(&connp->conn_lock);
1089 	while (connp->conn_ioctlref > 0)
1090 		cv_wait(&connp->conn_cv, &connp->conn_lock);
1091 	ASSERT(connp->conn_ioctlref == 0);
1092 	ASSERT(connp->conn_oper_pending_ill == NULL);
1093 	mutex_exit(&connp->conn_lock);
1094 
1095 	SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_close_output, connp,
1096 	    NULL, tcp_squeue_flag, SQTAG_IP_TCP_CLOSE);
1097 
1098 	/*
1099 	 * For non-STREAMS sockets, the normal case is that the conn makes
1100 	 * an upcall when it's finally closed, so there is no need to wait
1101 	 * in the protocol. But in case of SO_LINGER the thread sleeps here
1102 	 * so it can properly deal with the thread being interrupted.
1103 	 */
1104 	if (IPCL_IS_NONSTR(connp) && connp->conn_linger == 0)
1105 		goto nowait;
1106 
1107 	mutex_enter(&tcp->tcp_closelock);
1108 	while (!tcp->tcp_closed) {
1109 		if (!cv_wait_sig(&tcp->tcp_closecv, &tcp->tcp_closelock)) {
1110 			/*
1111 			 * The cv_wait_sig() was interrupted. We now do the
1112 			 * following:
1113 			 *
1114 			 * 1) If the endpoint was lingering, we allow this
1115 			 * to be interrupted by cancelling the linger timeout
1116 			 * and closing normally.
1117 			 *
1118 			 * 2) Revert to calling cv_wait()
1119 			 *
1120 			 * We revert to using cv_wait() to avoid an
1121 			 * infinite loop which can occur if the calling
1122 			 * thread is higher priority than the squeue worker
1123 			 * thread and is bound to the same cpu.
1124 			 */
1125 			if (connp->conn_linger && connp->conn_lingertime > 0) {
1126 				mutex_exit(&tcp->tcp_closelock);
1127 				/* Entering squeue, bump ref count. */
1128 				CONN_INC_REF(connp);
1129 				bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL);
1130 				SQUEUE_ENTER_ONE(connp->conn_sqp, bp,
1131 				    tcp_linger_interrupted, connp, NULL,
1132 				    tcp_squeue_flag, SQTAG_IP_TCP_CLOSE);
1133 				mutex_enter(&tcp->tcp_closelock);
1134 			}
1135 			break;
1136 		}
1137 	}
1138 	while (!tcp->tcp_closed)
1139 		cv_wait(&tcp->tcp_closecv, &tcp->tcp_closelock);
1140 	mutex_exit(&tcp->tcp_closelock);
1141 
1142 	/*
1143 	 * In the case of listener streams that have eagers in the q or q0
1144 	 * we wait for the eagers to drop their reference to us. conn_rq and
1145 	 * conn_wq of the eagers point to our queues. By waiting for the
1146 	 * refcnt to drop to 1, we are sure that the eagers have cleaned
1147 	 * up their queue pointers and also dropped their references to us.
1148 	 *
1149 	 * For non-STREAMS sockets we do not have to wait here; the
1150 	 * listener will instead make a su_closed upcall when the last
1151 	 * reference is dropped.
1152 	 */
1153 	if (tcp->tcp_wait_for_eagers && !IPCL_IS_NONSTR(connp)) {
1154 		mutex_enter(&connp->conn_lock);
1155 		while (connp->conn_ref != 1) {
1156 			cv_wait(&connp->conn_cv, &connp->conn_lock);
1157 		}
1158 		mutex_exit(&connp->conn_lock);
1159 	}
1160 
1161 nowait:
1162 	connp->conn_cpid = NOPID;
1163 }
1164 
1165 /*
1166  * Called by tcp_close() routine via squeue when lingering is
1167  * interrupted by a signal.
1168  */
1169 
1170 /* ARGSUSED */
1171 static void
1172 tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy)
1173 {
1174 	conn_t	*connp = (conn_t *)arg;
1175 	tcp_t	*tcp = connp->conn_tcp;
1176 
1177 	freeb(mp);
1178 	if (tcp->tcp_linger_tid != 0 &&
1179 	    TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) {
1180 		tcp_stop_lingering(tcp);
1181 		tcp->tcp_client_errno = EINTR;
1182 	}
1183 }
1184 
1185 /*
1186  * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp.
1187  * Some stream heads get upset if they see these later on as anything but NULL.
1188  */
1189 void
1190 tcp_close_mpp(mblk_t **mpp)
1191 {
1192 	mblk_t	*mp;
1193 
1194 	if ((mp = *mpp) != NULL) {
1195 		do {
1196 			mp->b_next = NULL;
1197 			mp->b_prev = NULL;
1198 		} while ((mp = mp->b_cont) != NULL);
1199 
1200 		mp = *mpp;
1201 		*mpp = NULL;
1202 		freemsg(mp);
1203 	}
1204 }
1205 
1206 /* Do detached close. */
1207 void
1208 tcp_close_detached(tcp_t *tcp)
1209 {
1210 	if (tcp->tcp_fused)
1211 		tcp_unfuse(tcp);
1212 
1213 	/*
1214 	 * Clustering code serializes TCP disconnect callbacks and
1215 	 * cluster tcp list walks by blocking a TCP disconnect callback
1216 	 * if a cluster tcp list walk is in progress. This ensures
1217 	 * accurate accounting of TCPs in the cluster code even though
1218 	 * the TCP list walk itself is not atomic.
1219 	 */
1220 	tcp_closei_local(tcp);
1221 	CONN_DEC_REF(tcp->tcp_connp);
1222 }
1223 
1224 /*
1225  * The tcp_t is going away. Remove it from all lists and set it
1226  * to TCPS_CLOSED. The freeing up of memory is deferred until
1227  * tcp_inactive. This is needed since a thread in tcp_rput might have
1228  * done a CONN_INC_REF on this structure before it was removed from the
1229  * hashes.
1230  */
1231 void
1232 tcp_closei_local(tcp_t *tcp)
1233 {
1234 	conn_t		*connp = tcp->tcp_connp;
1235 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1236 	int32_t		oldstate;
1237 
1238 	if (!TCP_IS_SOCKET(tcp))
1239 		tcp_acceptor_hash_remove(tcp);
1240 
1241 	TCPS_UPDATE_MIB(tcps, tcpHCInSegs, tcp->tcp_ibsegs);
1242 	tcp->tcp_ibsegs = 0;
1243 	TCPS_UPDATE_MIB(tcps, tcpHCOutSegs, tcp->tcp_obsegs);
1244 	tcp->tcp_obsegs = 0;
1245 
1246 	/*
1247 	 * This can be called via tcp_time_wait_processing() if TCP gets a
1248 	 * SYN with sequence number outside the TIME-WAIT connection's
1249 	 * window.  So we need to check for TIME-WAIT state here as the
1250 	 * connection counter is already decremented.  See SET_TIME_WAIT()
1251 	 * macro
1252 	 */
1253 	if (tcp->tcp_state >= TCPS_ESTABLISHED &&
1254 	    tcp->tcp_state < TCPS_TIME_WAIT) {
1255 		TCPS_CONN_DEC(tcps);
1256 	}
1257 
1258 	/*
1259 	 * If we are an eager connection hanging off a listener that
1260 	 * hasn't formally accepted the connection yet, get off his
1261 	 * list and blow off any data that we have accumulated.
1262 	 */
1263 	if (tcp->tcp_listener != NULL) {
1264 		tcp_t	*listener = tcp->tcp_listener;
1265 		mutex_enter(&listener->tcp_eager_lock);
1266 		/*
1267 		 * tcp_tconnind_started == B_TRUE means that the
1268 		 * conn_ind has already gone to listener. At
1269 		 * this point, eager will be closed but we
1270 		 * leave it in listeners eager list so that
1271 		 * if listener decides to close without doing
1272 		 * accept, we can clean this up. In tcp_tli_accept
1273 		 * we take care of the case of accept on closed
1274 		 * eager.
1275 		 */
1276 		if (!tcp->tcp_tconnind_started) {
1277 			tcp_eager_unlink(tcp);
1278 			mutex_exit(&listener->tcp_eager_lock);
1279 			/*
1280 			 * We don't want to have any pointers to the
1281 			 * listener queue, after we have released our
1282 			 * reference on the listener
1283 			 */
1284 			ASSERT(tcp->tcp_detached);
1285 			connp->conn_rq = NULL;
1286 			connp->conn_wq = NULL;
1287 			CONN_DEC_REF(listener->tcp_connp);
1288 		} else {
1289 			mutex_exit(&listener->tcp_eager_lock);
1290 		}
1291 	}
1292 
1293 	/* Stop all the timers */
1294 	tcp_timers_stop(tcp);
1295 
1296 	if (tcp->tcp_state == TCPS_LISTEN) {
1297 		if (tcp->tcp_ip_addr_cache) {
1298 			kmem_free((void *)tcp->tcp_ip_addr_cache,
1299 			    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
1300 			tcp->tcp_ip_addr_cache = NULL;
1301 		}
1302 	}
1303 
1304 	/* Decrement listerner connection counter if necessary. */
1305 	if (tcp->tcp_listen_cnt != NULL)
1306 		TCP_DECR_LISTEN_CNT(tcp);
1307 
1308 	mutex_enter(&tcp->tcp_non_sq_lock);
1309 	if (tcp->tcp_flow_stopped)
1310 		tcp_clrqfull(tcp);
1311 	mutex_exit(&tcp->tcp_non_sq_lock);
1312 
1313 	tcp_bind_hash_remove(tcp);
1314 	/*
1315 	 * If the tcp_time_wait_collector (which runs outside the squeue)
1316 	 * is trying to remove this tcp from the time wait list, we will
1317 	 * block in tcp_time_wait_remove while trying to acquire the
1318 	 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also
1319 	 * requires the ipcl_hash_remove to be ordered after the
1320 	 * tcp_time_wait_remove for the refcnt checks to work correctly.
1321 	 */
1322 	if (tcp->tcp_state == TCPS_TIME_WAIT)
1323 		(void) tcp_time_wait_remove(tcp, NULL);
1324 	CL_INET_DISCONNECT(connp);
1325 	ipcl_hash_remove(connp);
1326 	oldstate = tcp->tcp_state;
1327 	tcp->tcp_state = TCPS_CLOSED;
1328 	/* Need to probe before ixa_cleanup() is called */
1329 	DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
1330 	    connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL,
1331 	    int32_t, oldstate);
1332 	ixa_cleanup(connp->conn_ixa);
1333 
1334 	/*
1335 	 * Mark the conn as CONDEMNED
1336 	 */
1337 	mutex_enter(&connp->conn_lock);
1338 	connp->conn_state_flags |= CONN_CONDEMNED;
1339 	mutex_exit(&connp->conn_lock);
1340 
1341 	ASSERT(tcp->tcp_time_wait_next == NULL);
1342 	ASSERT(tcp->tcp_time_wait_prev == NULL);
1343 	ASSERT(tcp->tcp_time_wait_expire == 0);
1344 
1345 	tcp_ipsec_cleanup(tcp);
1346 }
1347 
1348 /*
1349  * tcp is dying (called from ipcl_conn_destroy and error cases).
1350  * Free the tcp_t in either case.
1351  */
1352 void
1353 tcp_free(tcp_t *tcp)
1354 {
1355 	mblk_t		*mp;
1356 	conn_t		*connp = tcp->tcp_connp;
1357 
1358 	ASSERT(tcp != NULL);
1359 	ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL);
1360 
1361 	connp->conn_rq = NULL;
1362 	connp->conn_wq = NULL;
1363 
1364 	tcp_close_mpp(&tcp->tcp_xmit_head);
1365 	tcp_close_mpp(&tcp->tcp_reass_head);
1366 	if (tcp->tcp_rcv_list != NULL) {
1367 		/* Free b_next chain */
1368 		tcp_close_mpp(&tcp->tcp_rcv_list);
1369 	}
1370 	if ((mp = tcp->tcp_urp_mp) != NULL) {
1371 		freemsg(mp);
1372 	}
1373 	if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
1374 		freemsg(mp);
1375 	}
1376 
1377 	if (tcp->tcp_fused_sigurg_mp != NULL) {
1378 		ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
1379 		freeb(tcp->tcp_fused_sigurg_mp);
1380 		tcp->tcp_fused_sigurg_mp = NULL;
1381 	}
1382 
1383 	if (tcp->tcp_ordrel_mp != NULL) {
1384 		ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
1385 		freeb(tcp->tcp_ordrel_mp);
1386 		tcp->tcp_ordrel_mp = NULL;
1387 	}
1388 
1389 	TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp);
1390 	bzero(&tcp->tcp_sack_info, sizeof (tcp_sack_info_t));
1391 
1392 	if (tcp->tcp_hopopts != NULL) {
1393 		mi_free(tcp->tcp_hopopts);
1394 		tcp->tcp_hopopts = NULL;
1395 		tcp->tcp_hopoptslen = 0;
1396 	}
1397 	ASSERT(tcp->tcp_hopoptslen == 0);
1398 	if (tcp->tcp_dstopts != NULL) {
1399 		mi_free(tcp->tcp_dstopts);
1400 		tcp->tcp_dstopts = NULL;
1401 		tcp->tcp_dstoptslen = 0;
1402 	}
1403 	ASSERT(tcp->tcp_dstoptslen == 0);
1404 	if (tcp->tcp_rthdrdstopts != NULL) {
1405 		mi_free(tcp->tcp_rthdrdstopts);
1406 		tcp->tcp_rthdrdstopts = NULL;
1407 		tcp->tcp_rthdrdstoptslen = 0;
1408 	}
1409 	ASSERT(tcp->tcp_rthdrdstoptslen == 0);
1410 	if (tcp->tcp_rthdr != NULL) {
1411 		mi_free(tcp->tcp_rthdr);
1412 		tcp->tcp_rthdr = NULL;
1413 		tcp->tcp_rthdrlen = 0;
1414 	}
1415 	ASSERT(tcp->tcp_rthdrlen == 0);
1416 
1417 	/*
1418 	 * Following is really a blowing away a union.
1419 	 * It happens to have exactly two members of identical size
1420 	 * the following code is enough.
1421 	 */
1422 	tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
1423 
1424 	/*
1425 	 * If this is a non-STREAM socket still holding on to an upper
1426 	 * handle, release it. As a result of fallback we might also see
1427 	 * STREAMS based conns with upper handles, in which case there is
1428 	 * nothing to do other than clearing the field.
1429 	 */
1430 	if (connp->conn_upper_handle != NULL) {
1431 		if (IPCL_IS_NONSTR(connp)) {
1432 			(*connp->conn_upcalls->su_closed)(
1433 			    connp->conn_upper_handle);
1434 			tcp->tcp_detached = B_TRUE;
1435 		}
1436 		connp->conn_upper_handle = NULL;
1437 		connp->conn_upcalls = NULL;
1438 	}
1439 }
1440 
1441 /*
1442  * tcp_get_conn/tcp_free_conn
1443  *
1444  * tcp_get_conn is used to get a clean tcp connection structure.
1445  * It tries to reuse the connections put on the freelist by the
1446  * time_wait_collector failing which it goes to kmem_cache. This
1447  * way has two benefits compared to just allocating from and
1448  * freeing to kmem_cache.
1449  * 1) The time_wait_collector can free (which includes the cleanup)
1450  * outside the squeue. So when the interrupt comes, we have a clean
1451  * connection sitting in the freelist. Obviously, this buys us
1452  * performance.
1453  *
1454  * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_input_listener
1455  * has multiple disadvantages - tying up the squeue during alloc.
1456  * But allocating the conn/tcp in IP land is also not the best since
1457  * we can't check the 'q' and 'q0' which are protected by squeue and
1458  * blindly allocate memory which might have to be freed here if we are
1459  * not allowed to accept the connection. By using the freelist and
1460  * putting the conn/tcp back in freelist, we don't pay a penalty for
1461  * allocating memory without checking 'q/q0' and freeing it if we can't
1462  * accept the connection.
1463  *
1464  * Care should be taken to put the conn back in the same squeue's freelist
1465  * from which it was allocated. Best results are obtained if conn is
1466  * allocated from listener's squeue and freed to the same. Time wait
1467  * collector will free up the freelist is the connection ends up sitting
1468  * there for too long.
1469  */
1470 void *
1471 tcp_get_conn(void *arg, tcp_stack_t *tcps)
1472 {
1473 	tcp_t			*tcp = NULL;
1474 	conn_t			*connp = NULL;
1475 	squeue_t		*sqp = (squeue_t *)arg;
1476 	tcp_squeue_priv_t 	*tcp_time_wait;
1477 	netstack_t		*ns;
1478 	mblk_t			*tcp_rsrv_mp = NULL;
1479 
1480 	tcp_time_wait =
1481 	    *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP));
1482 
1483 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1484 	tcp = tcp_time_wait->tcp_free_list;
1485 	ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0));
1486 	if (tcp != NULL) {
1487 		tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next;
1488 		tcp_time_wait->tcp_free_list_cnt--;
1489 		mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1490 		tcp->tcp_time_wait_next = NULL;
1491 		connp = tcp->tcp_connp;
1492 		connp->conn_flags |= IPCL_REUSED;
1493 
1494 		ASSERT(tcp->tcp_tcps == NULL);
1495 		ASSERT(connp->conn_netstack == NULL);
1496 		ASSERT(tcp->tcp_rsrv_mp != NULL);
1497 		ns = tcps->tcps_netstack;
1498 		netstack_hold(ns);
1499 		connp->conn_netstack = ns;
1500 		connp->conn_ixa->ixa_ipst = ns->netstack_ip;
1501 		tcp->tcp_tcps = tcps;
1502 		ipcl_globalhash_insert(connp);
1503 
1504 		connp->conn_ixa->ixa_notify_cookie = tcp;
1505 		ASSERT(connp->conn_ixa->ixa_notify == tcp_notify);
1506 		connp->conn_recv = tcp_input_data;
1507 		ASSERT(connp->conn_recvicmp == tcp_icmp_input);
1508 		ASSERT(connp->conn_verifyicmp == tcp_verifyicmp);
1509 		return ((void *)connp);
1510 	}
1511 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1512 	/*
1513 	 * Pre-allocate the tcp_rsrv_mp. This mblk will not be freed until
1514 	 * this conn_t/tcp_t is freed at ipcl_conn_destroy().
1515 	 */
1516 	tcp_rsrv_mp = allocb(0, BPRI_HI);
1517 	if (tcp_rsrv_mp == NULL)
1518 		return (NULL);
1519 
1520 	if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP,
1521 	    tcps->tcps_netstack)) == NULL) {
1522 		freeb(tcp_rsrv_mp);
1523 		return (NULL);
1524 	}
1525 
1526 	tcp = connp->conn_tcp;
1527 	tcp->tcp_rsrv_mp = tcp_rsrv_mp;
1528 	mutex_init(&tcp->tcp_rsrv_mp_lock, NULL, MUTEX_DEFAULT, NULL);
1529 
1530 	tcp->tcp_tcps = tcps;
1531 
1532 	connp->conn_recv = tcp_input_data;
1533 	connp->conn_recvicmp = tcp_icmp_input;
1534 	connp->conn_verifyicmp = tcp_verifyicmp;
1535 
1536 	/*
1537 	 * Register tcp_notify to listen to capability changes detected by IP.
1538 	 * This upcall is made in the context of the call to conn_ip_output
1539 	 * thus it is inside the squeue.
1540 	 */
1541 	connp->conn_ixa->ixa_notify = tcp_notify;
1542 	connp->conn_ixa->ixa_notify_cookie = tcp;
1543 
1544 	return ((void *)connp);
1545 }
1546 
1547 /*
1548  * Handle connect to IPv4 destinations, including connections for AF_INET6
1549  * sockets connecting to IPv4 mapped IPv6 destinations.
1550  * Returns zero if OK, a positive errno, or a negative TLI error.
1551  */
1552 static int
1553 tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, in_port_t dstport,
1554     uint_t srcid)
1555 {
1556 	ipaddr_t 	dstaddr = *dstaddrp;
1557 	uint16_t 	lport;
1558 	conn_t		*connp = tcp->tcp_connp;
1559 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1560 	int		error;
1561 
1562 	ASSERT(connp->conn_ipversion == IPV4_VERSION);
1563 
1564 	/* Check for attempt to connect to INADDR_ANY */
1565 	if (dstaddr == INADDR_ANY)  {
1566 		/*
1567 		 * SunOS 4.x and 4.3 BSD allow an application
1568 		 * to connect a TCP socket to INADDR_ANY.
1569 		 * When they do this, the kernel picks the
1570 		 * address of one interface and uses it
1571 		 * instead.  The kernel usually ends up
1572 		 * picking the address of the loopback
1573 		 * interface.  This is an undocumented feature.
1574 		 * However, we provide the same thing here
1575 		 * in order to have source and binary
1576 		 * compatibility with SunOS 4.x.
1577 		 * Update the T_CONN_REQ (sin/sin6) since it is used to
1578 		 * generate the T_CONN_CON.
1579 		 */
1580 		dstaddr = htonl(INADDR_LOOPBACK);
1581 		*dstaddrp = dstaddr;
1582 	}
1583 
1584 	/* Handle __sin6_src_id if socket not bound to an IP address */
1585 	if (srcid != 0 && connp->conn_laddr_v4 == INADDR_ANY) {
1586 		ip_srcid_find_id(srcid, &connp->conn_laddr_v6,
1587 		    IPCL_ZONEID(connp), tcps->tcps_netstack);
1588 		connp->conn_saddr_v6 = connp->conn_laddr_v6;
1589 	}
1590 
1591 	IN6_IPADDR_TO_V4MAPPED(dstaddr, &connp->conn_faddr_v6);
1592 	connp->conn_fport = dstport;
1593 
1594 	/*
1595 	 * At this point the remote destination address and remote port fields
1596 	 * in the tcp-four-tuple have been filled in the tcp structure. Now we
1597 	 * have to see which state tcp was in so we can take appropriate action.
1598 	 */
1599 	if (tcp->tcp_state == TCPS_IDLE) {
1600 		/*
1601 		 * We support a quick connect capability here, allowing
1602 		 * clients to transition directly from IDLE to SYN_SENT
1603 		 * tcp_bindi will pick an unused port, insert the connection
1604 		 * in the bind hash and transition to BOUND state.
1605 		 */
1606 		lport = tcp_update_next_port(tcps->tcps_next_port_to_try,
1607 		    tcp, B_TRUE);
1608 		lport = tcp_bindi(tcp, lport, &connp->conn_laddr_v6, 0, B_TRUE,
1609 		    B_FALSE, B_FALSE);
1610 		if (lport == 0)
1611 			return (-TNOADDR);
1612 	}
1613 
1614 	/*
1615 	 * Lookup the route to determine a source address and the uinfo.
1616 	 * Setup TCP parameters based on the metrics/DCE.
1617 	 */
1618 	error = tcp_set_destination(tcp);
1619 	if (error != 0)
1620 		return (error);
1621 
1622 	/*
1623 	 * Don't let an endpoint connect to itself.
1624 	 */
1625 	if (connp->conn_faddr_v4 == connp->conn_laddr_v4 &&
1626 	    connp->conn_fport == connp->conn_lport)
1627 		return (-TBADADDR);
1628 
1629 	tcp->tcp_state = TCPS_SYN_SENT;
1630 
1631 	return (ipcl_conn_insert_v4(connp));
1632 }
1633 
1634 /*
1635  * Handle connect to IPv6 destinations.
1636  * Returns zero if OK, a positive errno, or a negative TLI error.
1637  */
1638 static int
1639 tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, in_port_t dstport,
1640     uint32_t flowinfo, uint_t srcid, uint32_t scope_id)
1641 {
1642 	uint16_t 	lport;
1643 	conn_t		*connp = tcp->tcp_connp;
1644 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1645 	int		error;
1646 
1647 	ASSERT(connp->conn_family == AF_INET6);
1648 
1649 	/*
1650 	 * If we're here, it means that the destination address is a native
1651 	 * IPv6 address.  Return an error if conn_ipversion is not IPv6.  A
1652 	 * reason why it might not be IPv6 is if the socket was bound to an
1653 	 * IPv4-mapped IPv6 address.
1654 	 */
1655 	if (connp->conn_ipversion != IPV6_VERSION)
1656 		return (-TBADADDR);
1657 
1658 	/*
1659 	 * Interpret a zero destination to mean loopback.
1660 	 * Update the T_CONN_REQ (sin/sin6) since it is used to
1661 	 * generate the T_CONN_CON.
1662 	 */
1663 	if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp))
1664 		*dstaddrp = ipv6_loopback;
1665 
1666 	/* Handle __sin6_src_id if socket not bound to an IP address */
1667 	if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&connp->conn_laddr_v6)) {
1668 		ip_srcid_find_id(srcid, &connp->conn_laddr_v6,
1669 		    IPCL_ZONEID(connp), tcps->tcps_netstack);
1670 		connp->conn_saddr_v6 = connp->conn_laddr_v6;
1671 	}
1672 
1673 	/*
1674 	 * Take care of the scope_id now.
1675 	 */
1676 	if (scope_id != 0 && IN6_IS_ADDR_LINKSCOPE(dstaddrp)) {
1677 		connp->conn_ixa->ixa_flags |= IXAF_SCOPEID_SET;
1678 		connp->conn_ixa->ixa_scopeid = scope_id;
1679 	} else {
1680 		connp->conn_ixa->ixa_flags &= ~IXAF_SCOPEID_SET;
1681 	}
1682 
1683 	connp->conn_flowinfo = flowinfo;
1684 	connp->conn_faddr_v6 = *dstaddrp;
1685 	connp->conn_fport = dstport;
1686 
1687 	/*
1688 	 * At this point the remote destination address and remote port fields
1689 	 * in the tcp-four-tuple have been filled in the tcp structure. Now we
1690 	 * have to see which state tcp was in so we can take appropriate action.
1691 	 */
1692 	if (tcp->tcp_state == TCPS_IDLE) {
1693 		/*
1694 		 * We support a quick connect capability here, allowing
1695 		 * clients to transition directly from IDLE to SYN_SENT
1696 		 * tcp_bindi will pick an unused port, insert the connection
1697 		 * in the bind hash and transition to BOUND state.
1698 		 */
1699 		lport = tcp_update_next_port(tcps->tcps_next_port_to_try,
1700 		    tcp, B_TRUE);
1701 		lport = tcp_bindi(tcp, lport, &connp->conn_laddr_v6, 0, B_TRUE,
1702 		    B_FALSE, B_FALSE);
1703 		if (lport == 0)
1704 			return (-TNOADDR);
1705 	}
1706 
1707 	/*
1708 	 * Lookup the route to determine a source address and the uinfo.
1709 	 * Setup TCP parameters based on the metrics/DCE.
1710 	 */
1711 	error = tcp_set_destination(tcp);
1712 	if (error != 0)
1713 		return (error);
1714 
1715 	/*
1716 	 * Don't let an endpoint connect to itself.
1717 	 */
1718 	if (IN6_ARE_ADDR_EQUAL(&connp->conn_faddr_v6, &connp->conn_laddr_v6) &&
1719 	    connp->conn_fport == connp->conn_lport)
1720 		return (-TBADADDR);
1721 
1722 	tcp->tcp_state = TCPS_SYN_SENT;
1723 
1724 	return (ipcl_conn_insert_v6(connp));
1725 }
1726 
1727 /*
1728  * Disconnect
1729  * Note that unlike other functions this returns a positive tli error
1730  * when it fails; it never returns an errno.
1731  */
1732 static int
1733 tcp_disconnect_common(tcp_t *tcp, t_scalar_t seqnum)
1734 {
1735 	conn_t		*lconnp;
1736 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1737 	conn_t		*connp = tcp->tcp_connp;
1738 
1739 	/*
1740 	 * Right now, upper modules pass down a T_DISCON_REQ to TCP,
1741 	 * when the stream is in BOUND state. Do not send a reset,
1742 	 * since the destination IP address is not valid, and it can
1743 	 * be the initialized value of all zeros (broadcast address).
1744 	 */
1745 	if (tcp->tcp_state <= TCPS_BOUND) {
1746 		if (connp->conn_debug) {
1747 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
1748 			    "tcp_disconnect: bad state, %d", tcp->tcp_state);
1749 		}
1750 		return (TOUTSTATE);
1751 	} else if (tcp->tcp_state >= TCPS_ESTABLISHED) {
1752 		TCPS_CONN_DEC(tcps);
1753 	}
1754 
1755 	if (seqnum == -1 || tcp->tcp_conn_req_max == 0) {
1756 
1757 		/*
1758 		 * According to TPI, for non-listeners, ignore seqnum
1759 		 * and disconnect.
1760 		 * Following interpretation of -1 seqnum is historical
1761 		 * and implied TPI ? (TPI only states that for T_CONN_IND,
1762 		 * a valid seqnum should not be -1).
1763 		 *
1764 		 *	-1 means disconnect everything
1765 		 *	regardless even on a listener.
1766 		 */
1767 
1768 		int old_state = tcp->tcp_state;
1769 		ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
1770 
1771 		/*
1772 		 * The connection can't be on the tcp_time_wait_head list
1773 		 * since it is not detached.
1774 		 */
1775 		ASSERT(tcp->tcp_time_wait_next == NULL);
1776 		ASSERT(tcp->tcp_time_wait_prev == NULL);
1777 		ASSERT(tcp->tcp_time_wait_expire == 0);
1778 		/*
1779 		 * If it used to be a listener, check to make sure no one else
1780 		 * has taken the port before switching back to LISTEN state.
1781 		 */
1782 		if (connp->conn_ipversion == IPV4_VERSION) {
1783 			lconnp = ipcl_lookup_listener_v4(connp->conn_lport,
1784 			    connp->conn_laddr_v4, IPCL_ZONEID(connp), ipst);
1785 		} else {
1786 			uint_t ifindex = 0;
1787 
1788 			if (connp->conn_ixa->ixa_flags & IXAF_SCOPEID_SET)
1789 				ifindex = connp->conn_ixa->ixa_scopeid;
1790 
1791 			/* Allow conn_bound_if listeners? */
1792 			lconnp = ipcl_lookup_listener_v6(connp->conn_lport,
1793 			    &connp->conn_laddr_v6, ifindex, IPCL_ZONEID(connp),
1794 			    ipst);
1795 		}
1796 		if (tcp->tcp_conn_req_max && lconnp == NULL) {
1797 			tcp->tcp_state = TCPS_LISTEN;
1798 			DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
1799 			    connp->conn_ixa, void, NULL, tcp_t *, tcp, void,
1800 			    NULL, int32_t, old_state);
1801 		} else if (old_state > TCPS_BOUND) {
1802 			tcp->tcp_conn_req_max = 0;
1803 			tcp->tcp_state = TCPS_BOUND;
1804 			DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
1805 			    connp->conn_ixa, void, NULL, tcp_t *, tcp, void,
1806 			    NULL, int32_t, old_state);
1807 
1808 			/*
1809 			 * If this end point is not going to become a listener,
1810 			 * decrement the listener connection count if
1811 			 * necessary.  Note that we do not do this if it is
1812 			 * going to be a listner (the above if case) since
1813 			 * then it may remove the counter struct.
1814 			 */
1815 			if (tcp->tcp_listen_cnt != NULL)
1816 				TCP_DECR_LISTEN_CNT(tcp);
1817 		}
1818 		if (lconnp != NULL)
1819 			CONN_DEC_REF(lconnp);
1820 		switch (old_state) {
1821 		case TCPS_SYN_SENT:
1822 		case TCPS_SYN_RCVD:
1823 			TCPS_BUMP_MIB(tcps, tcpAttemptFails);
1824 			break;
1825 		case TCPS_ESTABLISHED:
1826 		case TCPS_CLOSE_WAIT:
1827 			TCPS_BUMP_MIB(tcps, tcpEstabResets);
1828 			break;
1829 		}
1830 
1831 		if (tcp->tcp_fused)
1832 			tcp_unfuse(tcp);
1833 
1834 		mutex_enter(&tcp->tcp_eager_lock);
1835 		if ((tcp->tcp_conn_req_cnt_q0 != 0) ||
1836 		    (tcp->tcp_conn_req_cnt_q != 0)) {
1837 			tcp_eager_cleanup(tcp, 0);
1838 		}
1839 		mutex_exit(&tcp->tcp_eager_lock);
1840 
1841 		tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt,
1842 		    tcp->tcp_rnxt, TH_RST | TH_ACK);
1843 
1844 		tcp_reinit(tcp);
1845 
1846 		return (0);
1847 	} else if (!tcp_eager_blowoff(tcp, seqnum)) {
1848 		return (TBADSEQ);
1849 	}
1850 	return (0);
1851 }
1852 
1853 /*
1854  * Our client hereby directs us to reject the connection request
1855  * that tcp_input_listener() marked with 'seqnum'.  Rejection consists
1856  * of sending the appropriate RST, not an ICMP error.
1857  */
1858 void
1859 tcp_disconnect(tcp_t *tcp, mblk_t *mp)
1860 {
1861 	t_scalar_t seqnum;
1862 	int	error;
1863 	conn_t	*connp = tcp->tcp_connp;
1864 
1865 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
1866 	if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) {
1867 		tcp_err_ack(tcp, mp, TPROTO, 0);
1868 		return;
1869 	}
1870 	seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number;
1871 	error = tcp_disconnect_common(tcp, seqnum);
1872 	if (error != 0)
1873 		tcp_err_ack(tcp, mp, error, 0);
1874 	else {
1875 		if (tcp->tcp_state >= TCPS_ESTABLISHED) {
1876 			/* Send M_FLUSH according to TPI */
1877 			(void) putnextctl1(connp->conn_rq, M_FLUSH, FLUSHRW);
1878 		}
1879 		mp = mi_tpi_ok_ack_alloc(mp);
1880 		if (mp != NULL)
1881 			putnext(connp->conn_rq, mp);
1882 	}
1883 }
1884 
1885 /*
1886  * Handle reinitialization of a tcp structure.
1887  * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE.
1888  */
1889 static void
1890 tcp_reinit(tcp_t *tcp)
1891 {
1892 	mblk_t		*mp;
1893 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1894 	conn_t		*connp  = tcp->tcp_connp;
1895 	int32_t		oldstate;
1896 
1897 	/* tcp_reinit should never be called for detached tcp_t's */
1898 	ASSERT(tcp->tcp_listener == NULL);
1899 	ASSERT((connp->conn_family == AF_INET &&
1900 	    connp->conn_ipversion == IPV4_VERSION) ||
1901 	    (connp->conn_family == AF_INET6 &&
1902 	    (connp->conn_ipversion == IPV4_VERSION ||
1903 	    connp->conn_ipversion == IPV6_VERSION)));
1904 
1905 	/* Cancel outstanding timers */
1906 	tcp_timers_stop(tcp);
1907 
1908 	/*
1909 	 * Reset everything in the state vector, after updating global
1910 	 * MIB data from instance counters.
1911 	 */
1912 	TCPS_UPDATE_MIB(tcps, tcpHCInSegs, tcp->tcp_ibsegs);
1913 	tcp->tcp_ibsegs = 0;
1914 	TCPS_UPDATE_MIB(tcps, tcpHCOutSegs, tcp->tcp_obsegs);
1915 	tcp->tcp_obsegs = 0;
1916 
1917 	tcp_close_mpp(&tcp->tcp_xmit_head);
1918 	if (tcp->tcp_snd_zcopy_aware)
1919 		tcp_zcopy_notify(tcp);
1920 	tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL;
1921 	tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0;
1922 	mutex_enter(&tcp->tcp_non_sq_lock);
1923 	if (tcp->tcp_flow_stopped &&
1924 	    TCP_UNSENT_BYTES(tcp) <= connp->conn_sndlowat) {
1925 		tcp_clrqfull(tcp);
1926 	}
1927 	mutex_exit(&tcp->tcp_non_sq_lock);
1928 	tcp_close_mpp(&tcp->tcp_reass_head);
1929 	tcp->tcp_reass_tail = NULL;
1930 	if (tcp->tcp_rcv_list != NULL) {
1931 		/* Free b_next chain */
1932 		tcp_close_mpp(&tcp->tcp_rcv_list);
1933 		tcp->tcp_rcv_last_head = NULL;
1934 		tcp->tcp_rcv_last_tail = NULL;
1935 		tcp->tcp_rcv_cnt = 0;
1936 	}
1937 	tcp->tcp_rcv_last_tail = NULL;
1938 
1939 	if ((mp = tcp->tcp_urp_mp) != NULL) {
1940 		freemsg(mp);
1941 		tcp->tcp_urp_mp = NULL;
1942 	}
1943 	if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
1944 		freemsg(mp);
1945 		tcp->tcp_urp_mark_mp = NULL;
1946 	}
1947 	if (tcp->tcp_fused_sigurg_mp != NULL) {
1948 		ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
1949 		freeb(tcp->tcp_fused_sigurg_mp);
1950 		tcp->tcp_fused_sigurg_mp = NULL;
1951 	}
1952 	if (tcp->tcp_ordrel_mp != NULL) {
1953 		ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
1954 		freeb(tcp->tcp_ordrel_mp);
1955 		tcp->tcp_ordrel_mp = NULL;
1956 	}
1957 
1958 	/*
1959 	 * Following is a union with two members which are
1960 	 * identical types and size so the following cleanup
1961 	 * is enough.
1962 	 */
1963 	tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
1964 
1965 	CL_INET_DISCONNECT(connp);
1966 
1967 	/*
1968 	 * The connection can't be on the tcp_time_wait_head list
1969 	 * since it is not detached.
1970 	 */
1971 	ASSERT(tcp->tcp_time_wait_next == NULL);
1972 	ASSERT(tcp->tcp_time_wait_prev == NULL);
1973 	ASSERT(tcp->tcp_time_wait_expire == 0);
1974 
1975 	/*
1976 	 * Reset/preserve other values
1977 	 */
1978 	tcp_reinit_values(tcp);
1979 	ipcl_hash_remove(connp);
1980 	/* Note that ixa_cred gets cleared in ixa_cleanup */
1981 	ixa_cleanup(connp->conn_ixa);
1982 	tcp_ipsec_cleanup(tcp);
1983 
1984 	connp->conn_laddr_v6 = connp->conn_bound_addr_v6;
1985 	connp->conn_saddr_v6 = connp->conn_bound_addr_v6;
1986 	oldstate = tcp->tcp_state;
1987 
1988 	if (tcp->tcp_conn_req_max != 0) {
1989 		/*
1990 		 * This is the case when a TLI program uses the same
1991 		 * transport end point to accept a connection.  This
1992 		 * makes the TCP both a listener and acceptor.  When
1993 		 * this connection is closed, we need to set the state
1994 		 * back to TCPS_LISTEN.  Make sure that the eager list
1995 		 * is reinitialized.
1996 		 *
1997 		 * Note that this stream is still bound to the four
1998 		 * tuples of the previous connection in IP.  If a new
1999 		 * SYN with different foreign address comes in, IP will
2000 		 * not find it and will send it to the global queue.  In
2001 		 * the global queue, TCP will do a tcp_lookup_listener()
2002 		 * to find this stream.  This works because this stream
2003 		 * is only removed from connected hash.
2004 		 *
2005 		 */
2006 		tcp->tcp_state = TCPS_LISTEN;
2007 		tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
2008 		tcp->tcp_eager_next_drop_q0 = tcp;
2009 		tcp->tcp_eager_prev_drop_q0 = tcp;
2010 		/*
2011 		 * Initially set conn_recv to tcp_input_listener_unbound to try
2012 		 * to pick a good squeue for the listener when the first SYN
2013 		 * arrives. tcp_input_listener_unbound sets it to
2014 		 * tcp_input_listener on that first SYN.
2015 		 */
2016 		connp->conn_recv = tcp_input_listener_unbound;
2017 
2018 		connp->conn_proto = IPPROTO_TCP;
2019 		connp->conn_faddr_v6 = ipv6_all_zeros;
2020 		connp->conn_fport = 0;
2021 
2022 		(void) ipcl_bind_insert(connp);
2023 	} else {
2024 		tcp->tcp_state = TCPS_BOUND;
2025 	}
2026 
2027 	/*
2028 	 * Initialize to default values
2029 	 */
2030 	tcp_init_values(tcp, NULL);
2031 
2032 	DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
2033 	    connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL,
2034 	    int32_t, oldstate);
2035 
2036 	ASSERT(tcp->tcp_ptpbhn != NULL);
2037 	tcp->tcp_rwnd = connp->conn_rcvbuf;
2038 	tcp->tcp_mss = connp->conn_ipversion != IPV4_VERSION ?
2039 	    tcps->tcps_mss_def_ipv6 : tcps->tcps_mss_def_ipv4;
2040 }
2041 
2042 /*
2043  * Force values to zero that need be zero.
2044  * Do not touch values asociated with the BOUND or LISTEN state
2045  * since the connection will end up in that state after the reinit.
2046  * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t
2047  * structure!
2048  */
2049 static void
2050 tcp_reinit_values(tcp)
2051 	tcp_t *tcp;
2052 {
2053 	tcp_stack_t	*tcps = tcp->tcp_tcps;
2054 	conn_t		*connp = tcp->tcp_connp;
2055 
2056 #ifndef	lint
2057 #define	DONTCARE(x)
2058 #define	PRESERVE(x)
2059 #else
2060 #define	DONTCARE(x)	((x) = (x))
2061 #define	PRESERVE(x)	((x) = (x))
2062 #endif	/* lint */
2063 
2064 	PRESERVE(tcp->tcp_bind_hash_port);
2065 	PRESERVE(tcp->tcp_bind_hash);
2066 	PRESERVE(tcp->tcp_ptpbhn);
2067 	PRESERVE(tcp->tcp_acceptor_hash);
2068 	PRESERVE(tcp->tcp_ptpahn);
2069 
2070 	/* Should be ASSERT NULL on these with new code! */
2071 	ASSERT(tcp->tcp_time_wait_next == NULL);
2072 	ASSERT(tcp->tcp_time_wait_prev == NULL);
2073 	ASSERT(tcp->tcp_time_wait_expire == 0);
2074 	PRESERVE(tcp->tcp_state);
2075 	PRESERVE(connp->conn_rq);
2076 	PRESERVE(connp->conn_wq);
2077 
2078 	ASSERT(tcp->tcp_xmit_head == NULL);
2079 	ASSERT(tcp->tcp_xmit_last == NULL);
2080 	ASSERT(tcp->tcp_unsent == 0);
2081 	ASSERT(tcp->tcp_xmit_tail == NULL);
2082 	ASSERT(tcp->tcp_xmit_tail_unsent == 0);
2083 
2084 	tcp->tcp_snxt = 0;			/* Displayed in mib */
2085 	tcp->tcp_suna = 0;			/* Displayed in mib */
2086 	tcp->tcp_swnd = 0;
2087 	DONTCARE(tcp->tcp_cwnd);	/* Init in tcp_process_options */
2088 
2089 	ASSERT(tcp->tcp_ibsegs == 0);
2090 	ASSERT(tcp->tcp_obsegs == 0);
2091 
2092 	if (connp->conn_ht_iphc != NULL) {
2093 		kmem_free(connp->conn_ht_iphc, connp->conn_ht_iphc_allocated);
2094 		connp->conn_ht_iphc = NULL;
2095 		connp->conn_ht_iphc_allocated = 0;
2096 		connp->conn_ht_iphc_len = 0;
2097 		connp->conn_ht_ulp = NULL;
2098 		connp->conn_ht_ulp_len = 0;
2099 		tcp->tcp_ipha = NULL;
2100 		tcp->tcp_ip6h = NULL;
2101 		tcp->tcp_tcpha = NULL;
2102 	}
2103 
2104 	/* We clear any IP_OPTIONS and extension headers */
2105 	ip_pkt_free(&connp->conn_xmit_ipp);
2106 
2107 	DONTCARE(tcp->tcp_naglim);		/* Init in tcp_init_values */
2108 	DONTCARE(tcp->tcp_ipha);
2109 	DONTCARE(tcp->tcp_ip6h);
2110 	DONTCARE(tcp->tcp_tcpha);
2111 	tcp->tcp_valid_bits = 0;
2112 
2113 	DONTCARE(tcp->tcp_timer_backoff);	/* Init in tcp_init_values */
2114 	DONTCARE(tcp->tcp_last_recv_time);	/* Init in tcp_init_values */
2115 	tcp->tcp_last_rcv_lbolt = 0;
2116 
2117 	tcp->tcp_init_cwnd = 0;
2118 
2119 	tcp->tcp_urp_last_valid = 0;
2120 	tcp->tcp_hard_binding = 0;
2121 
2122 	tcp->tcp_fin_acked = 0;
2123 	tcp->tcp_fin_rcvd = 0;
2124 	tcp->tcp_fin_sent = 0;
2125 	tcp->tcp_ordrel_done = 0;
2126 
2127 	tcp->tcp_detached = 0;
2128 
2129 	tcp->tcp_snd_ws_ok = B_FALSE;
2130 	tcp->tcp_snd_ts_ok = B_FALSE;
2131 	tcp->tcp_zero_win_probe = 0;
2132 
2133 	tcp->tcp_loopback = 0;
2134 	tcp->tcp_localnet = 0;
2135 	tcp->tcp_syn_defense = 0;
2136 	tcp->tcp_set_timer = 0;
2137 
2138 	tcp->tcp_active_open = 0;
2139 	tcp->tcp_rexmit = B_FALSE;
2140 	tcp->tcp_xmit_zc_clean = B_FALSE;
2141 
2142 	tcp->tcp_snd_sack_ok = B_FALSE;
2143 	tcp->tcp_hwcksum = B_FALSE;
2144 
2145 	DONTCARE(tcp->tcp_maxpsz_multiplier);	/* Init in tcp_init_values */
2146 
2147 	tcp->tcp_conn_def_q0 = 0;
2148 	tcp->tcp_ip_forward_progress = B_FALSE;
2149 	tcp->tcp_ecn_ok = B_FALSE;
2150 
2151 	tcp->tcp_cwr = B_FALSE;
2152 	tcp->tcp_ecn_echo_on = B_FALSE;
2153 	tcp->tcp_is_wnd_shrnk = B_FALSE;
2154 
2155 	TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp);
2156 	bzero(&tcp->tcp_sack_info, sizeof (tcp_sack_info_t));
2157 
2158 	tcp->tcp_rcv_ws = 0;
2159 	tcp->tcp_snd_ws = 0;
2160 	tcp->tcp_ts_recent = 0;
2161 	tcp->tcp_rnxt = 0;			/* Displayed in mib */
2162 	DONTCARE(tcp->tcp_rwnd);		/* Set in tcp_reinit() */
2163 	tcp->tcp_initial_pmtu = 0;
2164 
2165 	ASSERT(tcp->tcp_reass_head == NULL);
2166 	ASSERT(tcp->tcp_reass_tail == NULL);
2167 
2168 	tcp->tcp_cwnd_cnt = 0;
2169 
2170 	ASSERT(tcp->tcp_rcv_list == NULL);
2171 	ASSERT(tcp->tcp_rcv_last_head == NULL);
2172 	ASSERT(tcp->tcp_rcv_last_tail == NULL);
2173 	ASSERT(tcp->tcp_rcv_cnt == 0);
2174 
2175 	DONTCARE(tcp->tcp_cwnd_ssthresh); /* Init in tcp_set_destination */
2176 	DONTCARE(tcp->tcp_cwnd_max);		/* Init in tcp_init_values */
2177 	tcp->tcp_csuna = 0;
2178 
2179 	tcp->tcp_rto = 0;			/* Displayed in MIB */
2180 	DONTCARE(tcp->tcp_rtt_sa);		/* Init in tcp_init_values */
2181 	DONTCARE(tcp->tcp_rtt_sd);		/* Init in tcp_init_values */
2182 	tcp->tcp_rtt_update = 0;
2183 
2184 	DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
2185 	DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
2186 
2187 	tcp->tcp_rack = 0;			/* Displayed in mib */
2188 	tcp->tcp_rack_cnt = 0;
2189 	tcp->tcp_rack_cur_max = 0;
2190 	tcp->tcp_rack_abs_max = 0;
2191 
2192 	tcp->tcp_max_swnd = 0;
2193 
2194 	ASSERT(tcp->tcp_listener == NULL);
2195 
2196 	DONTCARE(tcp->tcp_irs);			/* tcp_valid_bits cleared */
2197 	DONTCARE(tcp->tcp_iss);			/* tcp_valid_bits cleared */
2198 	DONTCARE(tcp->tcp_fss);			/* tcp_valid_bits cleared */
2199 	DONTCARE(tcp->tcp_urg);			/* tcp_valid_bits cleared */
2200 
2201 	ASSERT(tcp->tcp_conn_req_cnt_q == 0);
2202 	ASSERT(tcp->tcp_conn_req_cnt_q0 == 0);
2203 	PRESERVE(tcp->tcp_conn_req_max);
2204 	PRESERVE(tcp->tcp_conn_req_seqnum);
2205 
2206 	DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */
2207 	DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */
2208 	DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */
2209 	DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */
2210 
2211 	DONTCARE(tcp->tcp_urp_last);	/* tcp_urp_last_valid is cleared */
2212 	ASSERT(tcp->tcp_urp_mp == NULL);
2213 	ASSERT(tcp->tcp_urp_mark_mp == NULL);
2214 	ASSERT(tcp->tcp_fused_sigurg_mp == NULL);
2215 
2216 	ASSERT(tcp->tcp_eager_next_q == NULL);
2217 	ASSERT(tcp->tcp_eager_last_q == NULL);
2218 	ASSERT((tcp->tcp_eager_next_q0 == NULL &&
2219 	    tcp->tcp_eager_prev_q0 == NULL) ||
2220 	    tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0);
2221 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
2222 
2223 	ASSERT((tcp->tcp_eager_next_drop_q0 == NULL &&
2224 	    tcp->tcp_eager_prev_drop_q0 == NULL) ||
2225 	    tcp->tcp_eager_next_drop_q0 == tcp->tcp_eager_prev_drop_q0);
2226 
2227 	DONTCARE(tcp->tcp_ka_rinterval);	/* Init in tcp_init_values */
2228 	DONTCARE(tcp->tcp_ka_abort_thres);	/* Init in tcp_init_values */
2229 	DONTCARE(tcp->tcp_ka_cnt);		/* Init in tcp_init_values */
2230 
2231 	tcp->tcp_client_errno = 0;
2232 
2233 	DONTCARE(connp->conn_sum);		/* Init in tcp_init_values */
2234 
2235 	connp->conn_faddr_v6 = ipv6_all_zeros;	/* Displayed in MIB */
2236 
2237 	PRESERVE(connp->conn_bound_addr_v6);
2238 	tcp->tcp_last_sent_len = 0;
2239 	tcp->tcp_dupack_cnt = 0;
2240 
2241 	connp->conn_fport = 0;			/* Displayed in MIB */
2242 	PRESERVE(connp->conn_lport);
2243 
2244 	PRESERVE(tcp->tcp_acceptor_lockp);
2245 
2246 	ASSERT(tcp->tcp_ordrel_mp == NULL);
2247 	PRESERVE(tcp->tcp_acceptor_id);
2248 	DONTCARE(tcp->tcp_ipsec_overhead);
2249 
2250 	PRESERVE(connp->conn_family);
2251 	/* Remove any remnants of mapped address binding */
2252 	if (connp->conn_family == AF_INET6) {
2253 		connp->conn_ipversion = IPV6_VERSION;
2254 		tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
2255 	} else {
2256 		connp->conn_ipversion = IPV4_VERSION;
2257 		tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
2258 	}
2259 
2260 	connp->conn_bound_if = 0;
2261 	connp->conn_recv_ancillary.crb_all = 0;
2262 	tcp->tcp_recvifindex = 0;
2263 	tcp->tcp_recvhops = 0;
2264 	tcp->tcp_closed = 0;
2265 	if (tcp->tcp_hopopts != NULL) {
2266 		mi_free(tcp->tcp_hopopts);
2267 		tcp->tcp_hopopts = NULL;
2268 		tcp->tcp_hopoptslen = 0;
2269 	}
2270 	ASSERT(tcp->tcp_hopoptslen == 0);
2271 	if (tcp->tcp_dstopts != NULL) {
2272 		mi_free(tcp->tcp_dstopts);
2273 		tcp->tcp_dstopts = NULL;
2274 		tcp->tcp_dstoptslen = 0;
2275 	}
2276 	ASSERT(tcp->tcp_dstoptslen == 0);
2277 	if (tcp->tcp_rthdrdstopts != NULL) {
2278 		mi_free(tcp->tcp_rthdrdstopts);
2279 		tcp->tcp_rthdrdstopts = NULL;
2280 		tcp->tcp_rthdrdstoptslen = 0;
2281 	}
2282 	ASSERT(tcp->tcp_rthdrdstoptslen == 0);
2283 	if (tcp->tcp_rthdr != NULL) {
2284 		mi_free(tcp->tcp_rthdr);
2285 		tcp->tcp_rthdr = NULL;
2286 		tcp->tcp_rthdrlen = 0;
2287 	}
2288 	ASSERT(tcp->tcp_rthdrlen == 0);
2289 
2290 	/* Reset fusion-related fields */
2291 	tcp->tcp_fused = B_FALSE;
2292 	tcp->tcp_unfusable = B_FALSE;
2293 	tcp->tcp_fused_sigurg = B_FALSE;
2294 	tcp->tcp_loopback_peer = NULL;
2295 
2296 	tcp->tcp_lso = B_FALSE;
2297 
2298 	tcp->tcp_in_ack_unsent = 0;
2299 	tcp->tcp_cork = B_FALSE;
2300 	tcp->tcp_tconnind_started = B_FALSE;
2301 
2302 	PRESERVE(tcp->tcp_squeue_bytes);
2303 
2304 	tcp->tcp_closemp_used = B_FALSE;
2305 
2306 	PRESERVE(tcp->tcp_rsrv_mp);
2307 	PRESERVE(tcp->tcp_rsrv_mp_lock);
2308 
2309 #ifdef DEBUG
2310 	DONTCARE(tcp->tcmp_stk[0]);
2311 #endif
2312 
2313 	PRESERVE(tcp->tcp_connid);
2314 
2315 	ASSERT(tcp->tcp_listen_cnt == NULL);
2316 	ASSERT(tcp->tcp_reass_tid == 0);
2317 
2318 #undef	DONTCARE
2319 #undef	PRESERVE
2320 }
2321 
2322 /*
2323  * Initialize the various fields in tcp_t.  If parent (the listener) is non
2324  * NULL, certain values will be inheritted from it.
2325  */
2326 void
2327 tcp_init_values(tcp_t *tcp, tcp_t *parent)
2328 {
2329 	tcp_stack_t	*tcps = tcp->tcp_tcps;
2330 	conn_t		*connp = tcp->tcp_connp;
2331 	clock_t		rto;
2332 
2333 	ASSERT((connp->conn_family == AF_INET &&
2334 	    connp->conn_ipversion == IPV4_VERSION) ||
2335 	    (connp->conn_family == AF_INET6 &&
2336 	    (connp->conn_ipversion == IPV4_VERSION ||
2337 	    connp->conn_ipversion == IPV6_VERSION)));
2338 
2339 	if (parent == NULL) {
2340 		tcp->tcp_naglim = tcps->tcps_naglim_def;
2341 
2342 		tcp->tcp_rto_initial = tcps->tcps_rexmit_interval_initial;
2343 		tcp->tcp_rto_min = tcps->tcps_rexmit_interval_min;
2344 		tcp->tcp_rto_max = tcps->tcps_rexmit_interval_max;
2345 
2346 		tcp->tcp_first_ctimer_threshold =
2347 		    tcps->tcps_ip_notify_cinterval;
2348 		tcp->tcp_second_ctimer_threshold =
2349 		    tcps->tcps_ip_abort_cinterval;
2350 		tcp->tcp_first_timer_threshold = tcps->tcps_ip_notify_interval;
2351 		tcp->tcp_second_timer_threshold = tcps->tcps_ip_abort_interval;
2352 
2353 		tcp->tcp_fin_wait_2_flush_interval =
2354 		    tcps->tcps_fin_wait_2_flush_interval;
2355 
2356 		tcp->tcp_ka_interval = tcps->tcps_keepalive_interval;
2357 		tcp->tcp_ka_abort_thres = tcps->tcps_keepalive_abort_interval;
2358 		tcp->tcp_ka_cnt = 0;
2359 		tcp->tcp_ka_rinterval = 0;
2360 
2361 		/*
2362 		 * Default value of tcp_init_cwnd is 0, so no need to set here
2363 		 * if parent is NULL.  But we need to inherit it from parent.
2364 		 */
2365 	} else {
2366 		/* Inherit various TCP parameters from the parent. */
2367 		tcp->tcp_naglim = parent->tcp_naglim;
2368 
2369 		tcp->tcp_rto_initial = parent->tcp_rto_initial;
2370 		tcp->tcp_rto_min = parent->tcp_rto_min;
2371 		tcp->tcp_rto_max = parent->tcp_rto_max;
2372 
2373 		tcp->tcp_first_ctimer_threshold =
2374 		    parent->tcp_first_ctimer_threshold;
2375 		tcp->tcp_second_ctimer_threshold =
2376 		    parent->tcp_second_ctimer_threshold;
2377 		tcp->tcp_first_timer_threshold =
2378 		    parent->tcp_first_timer_threshold;
2379 		tcp->tcp_second_timer_threshold =
2380 		    parent->tcp_second_timer_threshold;
2381 
2382 		tcp->tcp_fin_wait_2_flush_interval =
2383 		    parent->tcp_fin_wait_2_flush_interval;
2384 
2385 		tcp->tcp_ka_interval = parent->tcp_ka_interval;
2386 		tcp->tcp_ka_abort_thres = parent->tcp_ka_abort_thres;
2387 		tcp->tcp_ka_cnt = parent->tcp_ka_cnt;
2388 		tcp->tcp_ka_rinterval = parent->tcp_ka_rinterval;
2389 
2390 		tcp->tcp_init_cwnd = parent->tcp_init_cwnd;
2391 	}
2392 
2393 	/*
2394 	 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO
2395 	 * will be close to tcp_rexmit_interval_initial.  By doing this, we
2396 	 * allow the algorithm to adjust slowly to large fluctuations of RTT
2397 	 * during first few transmissions of a connection as seen in slow
2398 	 * links.
2399 	 */
2400 	tcp->tcp_rtt_sa = tcp->tcp_rto_initial << 2;
2401 	tcp->tcp_rtt_sd = tcp->tcp_rto_initial >> 1;
2402 	rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
2403 	    tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) +
2404 	    tcps->tcps_conn_grace_period;
2405 	TCP_SET_RTO(tcp, rto);
2406 
2407 	tcp->tcp_timer_backoff = 0;
2408 	tcp->tcp_ms_we_have_waited = 0;
2409 	tcp->tcp_last_recv_time = ddi_get_lbolt();
2410 	tcp->tcp_cwnd_max = tcps->tcps_cwnd_max_;
2411 	tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
2412 	tcp->tcp_snd_burst = TCP_CWND_INFINITE;
2413 
2414 	tcp->tcp_maxpsz_multiplier = tcps->tcps_maxpsz_multiplier;
2415 
2416 	/* NOTE:  ISS is now set in tcp_set_destination(). */
2417 
2418 	/* Reset fusion-related fields */
2419 	tcp->tcp_fused = B_FALSE;
2420 	tcp->tcp_unfusable = B_FALSE;
2421 	tcp->tcp_fused_sigurg = B_FALSE;
2422 	tcp->tcp_loopback_peer = NULL;
2423 
2424 	/* We rebuild the header template on the next connect/conn_request */
2425 
2426 	connp->conn_mlp_type = mlptSingle;
2427 
2428 	/*
2429 	 * Init the window scale to the max so tcp_rwnd_set() won't pare
2430 	 * down tcp_rwnd. tcp_set_destination() will set the right value later.
2431 	 */
2432 	tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT;
2433 	tcp->tcp_rwnd = connp->conn_rcvbuf;
2434 
2435 	tcp->tcp_cork = B_FALSE;
2436 	/*
2437 	 * Init the tcp_debug option if it wasn't already set.  This value
2438 	 * determines whether TCP
2439 	 * calls strlog() to print out debug messages.  Doing this
2440 	 * initialization here means that this value is not inherited thru
2441 	 * tcp_reinit().
2442 	 */
2443 	if (!connp->conn_debug)
2444 		connp->conn_debug = tcps->tcps_dbg;
2445 }
2446 
2447 /*
2448  * Update the TCP connection according to change of PMTU.
2449  *
2450  * Path MTU might have changed by either increase or decrease, so need to
2451  * adjust the MSS based on the value of ixa_pmtu. No need to handle tiny
2452  * or negative MSS, since tcp_mss_set() will do it.
2453  */
2454 void
2455 tcp_update_pmtu(tcp_t *tcp, boolean_t decrease_only)
2456 {
2457 	uint32_t	pmtu;
2458 	int32_t		mss;
2459 	conn_t		*connp = tcp->tcp_connp;
2460 	ip_xmit_attr_t	*ixa = connp->conn_ixa;
2461 	iaflags_t	ixaflags;
2462 
2463 	if (tcp->tcp_tcps->tcps_ignore_path_mtu)
2464 		return;
2465 
2466 	if (tcp->tcp_state < TCPS_ESTABLISHED)
2467 		return;
2468 
2469 	/*
2470 	 * Always call ip_get_pmtu() to make sure that IP has updated
2471 	 * ixa_flags properly.
2472 	 */
2473 	pmtu = ip_get_pmtu(ixa);
2474 	ixaflags = ixa->ixa_flags;
2475 
2476 	/*
2477 	 * Calculate the MSS by decreasing the PMTU by conn_ht_iphc_len and
2478 	 * IPsec overhead if applied. Make sure to use the most recent
2479 	 * IPsec information.
2480 	 */
2481 	mss = pmtu - connp->conn_ht_iphc_len - conn_ipsec_length(connp);
2482 
2483 	/*
2484 	 * Nothing to change, so just return.
2485 	 */
2486 	if (mss == tcp->tcp_mss)
2487 		return;
2488 
2489 	/*
2490 	 * Currently, for ICMP errors, only PMTU decrease is handled.
2491 	 */
2492 	if (mss > tcp->tcp_mss && decrease_only)
2493 		return;
2494 
2495 	DTRACE_PROBE2(tcp_update_pmtu, int32_t, tcp->tcp_mss, uint32_t, mss);
2496 
2497 	/*
2498 	 * Update ixa_fragsize and ixa_pmtu.
2499 	 */
2500 	ixa->ixa_fragsize = ixa->ixa_pmtu = pmtu;
2501 
2502 	/*
2503 	 * Adjust MSS and all relevant variables.
2504 	 */
2505 	tcp_mss_set(tcp, mss);
2506 
2507 	/*
2508 	 * If the PMTU is below the min size maintained by IP, then ip_get_pmtu
2509 	 * has set IXAF_PMTU_TOO_SMALL and cleared IXAF_PMTU_IPV4_DF. Since TCP
2510 	 * has a (potentially different) min size we do the same. Make sure to
2511 	 * clear IXAF_DONTFRAG, which is used by IP to decide whether to
2512 	 * fragment the packet.
2513 	 *
2514 	 * LSO over IPv6 can not be fragmented. So need to disable LSO
2515 	 * when IPv6 fragmentation is needed.
2516 	 */
2517 	if (mss < tcp->tcp_tcps->tcps_mss_min)
2518 		ixaflags |= IXAF_PMTU_TOO_SMALL;
2519 
2520 	if (ixaflags & IXAF_PMTU_TOO_SMALL)
2521 		ixaflags &= ~(IXAF_DONTFRAG | IXAF_PMTU_IPV4_DF);
2522 
2523 	if ((connp->conn_ipversion == IPV4_VERSION) &&
2524 	    !(ixaflags & IXAF_PMTU_IPV4_DF)) {
2525 		tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0;
2526 	}
2527 	ixa->ixa_flags = ixaflags;
2528 }
2529 
2530 int
2531 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk)
2532 {
2533 	conn_t	*connp = tcp->tcp_connp;
2534 	queue_t	*q = connp->conn_rq;
2535 	int32_t	mss = tcp->tcp_mss;
2536 	int	maxpsz;
2537 
2538 	if (TCP_IS_DETACHED(tcp))
2539 		return (mss);
2540 	if (tcp->tcp_fused) {
2541 		maxpsz = tcp_fuse_maxpsz(tcp);
2542 		mss = INFPSZ;
2543 	} else if (tcp->tcp_maxpsz_multiplier == 0) {
2544 		/*
2545 		 * Set the sd_qn_maxpsz according to the socket send buffer
2546 		 * size, and sd_maxblk to INFPSZ (-1).  This will essentially
2547 		 * instruct the stream head to copyin user data into contiguous
2548 		 * kernel-allocated buffers without breaking it up into smaller
2549 		 * chunks.  We round up the buffer size to the nearest SMSS.
2550 		 */
2551 		maxpsz = MSS_ROUNDUP(connp->conn_sndbuf, mss);
2552 		mss = INFPSZ;
2553 	} else {
2554 		/*
2555 		 * Set sd_qn_maxpsz to approx half the (receivers) buffer
2556 		 * (and a multiple of the mss).  This instructs the stream
2557 		 * head to break down larger than SMSS writes into SMSS-
2558 		 * size mblks, up to tcp_maxpsz_multiplier mblks at a time.
2559 		 */
2560 		maxpsz = tcp->tcp_maxpsz_multiplier * mss;
2561 		if (maxpsz > connp->conn_sndbuf / 2) {
2562 			maxpsz = connp->conn_sndbuf / 2;
2563 			/* Round up to nearest mss */
2564 			maxpsz = MSS_ROUNDUP(maxpsz, mss);
2565 		}
2566 	}
2567 
2568 	(void) proto_set_maxpsz(q, connp, maxpsz);
2569 	if (!(IPCL_IS_NONSTR(connp)))
2570 		connp->conn_wq->q_maxpsz = maxpsz;
2571 	if (set_maxblk)
2572 		(void) proto_set_tx_maxblk(q, connp, mss);
2573 	return (mss);
2574 }
2575 
2576 /* For /dev/tcp aka AF_INET open */
2577 static int
2578 tcp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
2579 {
2580 	return (tcp_open(q, devp, flag, sflag, credp, B_FALSE));
2581 }
2582 
2583 /* For /dev/tcp6 aka AF_INET6 open */
2584 static int
2585 tcp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
2586 {
2587 	return (tcp_open(q, devp, flag, sflag, credp, B_TRUE));
2588 }
2589 
2590 conn_t *
2591 tcp_create_common(cred_t *credp, boolean_t isv6, boolean_t issocket,
2592     int *errorp)
2593 {
2594 	tcp_t		*tcp = NULL;
2595 	conn_t		*connp;
2596 	zoneid_t	zoneid;
2597 	tcp_stack_t	*tcps;
2598 	squeue_t	*sqp;
2599 
2600 	ASSERT(errorp != NULL);
2601 	/*
2602 	 * Find the proper zoneid and netstack.
2603 	 */
2604 	/*
2605 	 * Special case for install: miniroot needs to be able to
2606 	 * access files via NFS as though it were always in the
2607 	 * global zone.
2608 	 */
2609 	if (credp == kcred && nfs_global_client_only != 0) {
2610 		zoneid = GLOBAL_ZONEID;
2611 		tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)->
2612 		    netstack_tcp;
2613 		ASSERT(tcps != NULL);
2614 	} else {
2615 		netstack_t *ns;
2616 		int err;
2617 
2618 		if ((err = secpolicy_basic_net_access(credp)) != 0) {
2619 			*errorp = err;
2620 			return (NULL);
2621 		}
2622 
2623 		ns = netstack_find_by_cred(credp);
2624 		ASSERT(ns != NULL);
2625 		tcps = ns->netstack_tcp;
2626 		ASSERT(tcps != NULL);
2627 
2628 		/*
2629 		 * For exclusive stacks we set the zoneid to zero
2630 		 * to make TCP operate as if in the global zone.
2631 		 */
2632 		if (tcps->tcps_netstack->netstack_stackid !=
2633 		    GLOBAL_NETSTACKID)
2634 			zoneid = GLOBAL_ZONEID;
2635 		else
2636 			zoneid = crgetzoneid(credp);
2637 	}
2638 
2639 	sqp = IP_SQUEUE_GET((uint_t)gethrtime());
2640 	connp = (conn_t *)tcp_get_conn(sqp, tcps);
2641 	/*
2642 	 * Both tcp_get_conn and netstack_find_by_cred incremented refcnt,
2643 	 * so we drop it by one.
2644 	 */
2645 	netstack_rele(tcps->tcps_netstack);
2646 	if (connp == NULL) {
2647 		*errorp = ENOSR;
2648 		return (NULL);
2649 	}
2650 	ASSERT(connp->conn_ixa->ixa_protocol == connp->conn_proto);
2651 
2652 	connp->conn_sqp = sqp;
2653 	connp->conn_initial_sqp = connp->conn_sqp;
2654 	connp->conn_ixa->ixa_sqp = connp->conn_sqp;
2655 	tcp = connp->conn_tcp;
2656 
2657 	/*
2658 	 * Besides asking IP to set the checksum for us, have conn_ip_output
2659 	 * to do the following checks when necessary:
2660 	 *
2661 	 * IXAF_VERIFY_SOURCE: drop packets when our outer source goes invalid
2662 	 * IXAF_VERIFY_PMTU: verify PMTU changes
2663 	 * IXAF_VERIFY_LSO: verify LSO capability changes
2664 	 */
2665 	connp->conn_ixa->ixa_flags |= IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE |
2666 	    IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO;
2667 
2668 	if (!tcps->tcps_dev_flow_ctl)
2669 		connp->conn_ixa->ixa_flags |= IXAF_NO_DEV_FLOW_CTL;
2670 
2671 	if (isv6) {
2672 		connp->conn_ixa->ixa_src_preferences = IPV6_PREFER_SRC_DEFAULT;
2673 		connp->conn_ipversion = IPV6_VERSION;
2674 		connp->conn_family = AF_INET6;
2675 		tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
2676 		connp->conn_default_ttl = tcps->tcps_ipv6_hoplimit;
2677 	} else {
2678 		connp->conn_ipversion = IPV4_VERSION;
2679 		connp->conn_family = AF_INET;
2680 		tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
2681 		connp->conn_default_ttl = tcps->tcps_ipv4_ttl;
2682 	}
2683 	connp->conn_xmit_ipp.ipp_unicast_hops = connp->conn_default_ttl;
2684 
2685 	crhold(credp);
2686 	connp->conn_cred = credp;
2687 	connp->conn_cpid = curproc->p_pid;
2688 	connp->conn_open_time = ddi_get_lbolt64();
2689 
2690 	/* Cache things in the ixa without any refhold */
2691 	ASSERT(!(connp->conn_ixa->ixa_free_flags & IXA_FREE_CRED));
2692 	connp->conn_ixa->ixa_cred = credp;
2693 	connp->conn_ixa->ixa_cpid = connp->conn_cpid;
2694 
2695 	connp->conn_zoneid = zoneid;
2696 	/* conn_allzones can not be set this early, hence no IPCL_ZONEID */
2697 	connp->conn_ixa->ixa_zoneid = zoneid;
2698 	connp->conn_mlp_type = mlptSingle;
2699 	ASSERT(connp->conn_netstack == tcps->tcps_netstack);
2700 	ASSERT(tcp->tcp_tcps == tcps);
2701 
2702 	/*
2703 	 * If the caller has the process-wide flag set, then default to MAC
2704 	 * exempt mode.  This allows read-down to unlabeled hosts.
2705 	 */
2706 	if (getpflags(NET_MAC_AWARE, credp) != 0)
2707 		connp->conn_mac_mode = CONN_MAC_AWARE;
2708 
2709 	connp->conn_zone_is_global = (crgetzoneid(credp) == GLOBAL_ZONEID);
2710 
2711 	if (issocket) {
2712 		tcp->tcp_issocket = 1;
2713 	}
2714 
2715 	connp->conn_rcvbuf = tcps->tcps_recv_hiwat;
2716 	connp->conn_sndbuf = tcps->tcps_xmit_hiwat;
2717 	if (tcps->tcps_snd_lowat_fraction != 0) {
2718 		connp->conn_sndlowat = connp->conn_sndbuf /
2719 		    tcps->tcps_snd_lowat_fraction;
2720 	} else {
2721 		connp->conn_sndlowat = tcps->tcps_xmit_lowat;
2722 	}
2723 	connp->conn_so_type = SOCK_STREAM;
2724 	connp->conn_wroff = connp->conn_ht_iphc_allocated +
2725 	    tcps->tcps_wroff_xtra;
2726 
2727 	SOCK_CONNID_INIT(tcp->tcp_connid);
2728 	/* DTrace ignores this - it isn't a tcp:::state-change */
2729 	tcp->tcp_state = TCPS_IDLE;
2730 	tcp_init_values(tcp, NULL);
2731 	return (connp);
2732 }
2733 
2734 static int
2735 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp,
2736     boolean_t isv6)
2737 {
2738 	tcp_t		*tcp = NULL;
2739 	conn_t		*connp = NULL;
2740 	int		err;
2741 	vmem_t		*minor_arena = NULL;
2742 	dev_t		conn_dev;
2743 	boolean_t	issocket;
2744 
2745 	if (q->q_ptr != NULL)
2746 		return (0);
2747 
2748 	if (sflag == MODOPEN)
2749 		return (EINVAL);
2750 
2751 	if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) &&
2752 	    ((conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) {
2753 		minor_arena = ip_minor_arena_la;
2754 	} else {
2755 		/*
2756 		 * Either minor numbers in the large arena were exhausted
2757 		 * or a non socket application is doing the open.
2758 		 * Try to allocate from the small arena.
2759 		 */
2760 		if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0) {
2761 			return (EBUSY);
2762 		}
2763 		minor_arena = ip_minor_arena_sa;
2764 	}
2765 
2766 	ASSERT(minor_arena != NULL);
2767 
2768 	*devp = makedevice(getmajor(*devp), (minor_t)conn_dev);
2769 
2770 	if (flag & SO_FALLBACK) {
2771 		/*
2772 		 * Non streams socket needs a stream to fallback to
2773 		 */
2774 		RD(q)->q_ptr = (void *)conn_dev;
2775 		WR(q)->q_qinfo = &tcp_fallback_sock_winit;
2776 		WR(q)->q_ptr = (void *)minor_arena;
2777 		qprocson(q);
2778 		return (0);
2779 	} else if (flag & SO_ACCEPTOR) {
2780 		q->q_qinfo = &tcp_acceptor_rinit;
2781 		/*
2782 		 * the conn_dev and minor_arena will be subsequently used by
2783 		 * tcp_tli_accept() and tcp_tpi_close_accept() to figure out
2784 		 * the minor device number for this connection from the q_ptr.
2785 		 */
2786 		RD(q)->q_ptr = (void *)conn_dev;
2787 		WR(q)->q_qinfo = &tcp_acceptor_winit;
2788 		WR(q)->q_ptr = (void *)minor_arena;
2789 		qprocson(q);
2790 		return (0);
2791 	}
2792 
2793 	issocket = flag & SO_SOCKSTR;
2794 	connp = tcp_create_common(credp, isv6, issocket, &err);
2795 
2796 	if (connp == NULL) {
2797 		inet_minor_free(minor_arena, conn_dev);
2798 		q->q_ptr = WR(q)->q_ptr = NULL;
2799 		return (err);
2800 	}
2801 
2802 	connp->conn_rq = q;
2803 	connp->conn_wq = WR(q);
2804 	q->q_ptr = WR(q)->q_ptr = connp;
2805 
2806 	connp->conn_dev = conn_dev;
2807 	connp->conn_minor_arena = minor_arena;
2808 
2809 	ASSERT(q->q_qinfo == &tcp_rinitv4 || q->q_qinfo == &tcp_rinitv6);
2810 	ASSERT(WR(q)->q_qinfo == &tcp_winit);
2811 
2812 	tcp = connp->conn_tcp;
2813 
2814 	if (issocket) {
2815 		WR(q)->q_qinfo = &tcp_sock_winit;
2816 	} else {
2817 #ifdef  _ILP32
2818 		tcp->tcp_acceptor_id = (t_uscalar_t)RD(q);
2819 #else
2820 		tcp->tcp_acceptor_id = conn_dev;
2821 #endif  /* _ILP32 */
2822 		tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp);
2823 	}
2824 
2825 	/*
2826 	 * Put the ref for TCP. Ref for IP was already put
2827 	 * by ipcl_conn_create. Also Make the conn_t globally
2828 	 * visible to walkers
2829 	 */
2830 	mutex_enter(&connp->conn_lock);
2831 	CONN_INC_REF_LOCKED(connp);
2832 	ASSERT(connp->conn_ref == 2);
2833 	connp->conn_state_flags &= ~CONN_INCIPIENT;
2834 	mutex_exit(&connp->conn_lock);
2835 
2836 	qprocson(q);
2837 	return (0);
2838 }
2839 
2840 /*
2841  * Build/update the tcp header template (in conn_ht_iphc) based on
2842  * conn_xmit_ipp. The headers include ip6_t, any extension
2843  * headers, and the maximum size tcp header (to avoid reallocation
2844  * on the fly for additional tcp options).
2845  *
2846  * Assumes the caller has already set conn_{faddr,laddr,fport,lport,flowinfo}.
2847  * Returns failure if can't allocate memory.
2848  */
2849 int
2850 tcp_build_hdrs(tcp_t *tcp)
2851 {
2852 	tcp_stack_t	*tcps = tcp->tcp_tcps;
2853 	conn_t		*connp = tcp->tcp_connp;
2854 	char		buf[TCP_MAX_HDR_LENGTH];
2855 	uint_t		buflen;
2856 	uint_t		ulplen = TCP_MIN_HEADER_LENGTH;
2857 	uint_t		extralen = TCP_MAX_TCP_OPTIONS_LENGTH;
2858 	tcpha_t		*tcpha;
2859 	uint32_t	cksum;
2860 	int		error;
2861 
2862 	/*
2863 	 * We might be called after the connection is set up, and we might
2864 	 * have TS options already in the TCP header. Thus we  save any
2865 	 * existing tcp header.
2866 	 */
2867 	buflen = connp->conn_ht_ulp_len;
2868 	if (buflen != 0) {
2869 		bcopy(connp->conn_ht_ulp, buf, buflen);
2870 		extralen -= buflen - ulplen;
2871 		ulplen = buflen;
2872 	}
2873 
2874 	/* Grab lock to satisfy ASSERT; TCP is serialized using squeue */
2875 	mutex_enter(&connp->conn_lock);
2876 	error = conn_build_hdr_template(connp, ulplen, extralen,
2877 	    &connp->conn_laddr_v6, &connp->conn_faddr_v6, connp->conn_flowinfo);
2878 	mutex_exit(&connp->conn_lock);
2879 	if (error != 0)
2880 		return (error);
2881 
2882 	/*
2883 	 * Any routing header/option has been massaged. The checksum difference
2884 	 * is stored in conn_sum for later use.
2885 	 */
2886 	tcpha = (tcpha_t *)connp->conn_ht_ulp;
2887 	tcp->tcp_tcpha = tcpha;
2888 
2889 	/* restore any old tcp header */
2890 	if (buflen != 0) {
2891 		bcopy(buf, connp->conn_ht_ulp, buflen);
2892 	} else {
2893 		tcpha->tha_sum = 0;
2894 		tcpha->tha_urp = 0;
2895 		tcpha->tha_ack = 0;
2896 		tcpha->tha_offset_and_reserved = (5 << 4);
2897 		tcpha->tha_lport = connp->conn_lport;
2898 		tcpha->tha_fport = connp->conn_fport;
2899 	}
2900 
2901 	/*
2902 	 * IP wants our header length in the checksum field to
2903 	 * allow it to perform a single pseudo-header+checksum
2904 	 * calculation on behalf of TCP.
2905 	 * Include the adjustment for a source route once IP_OPTIONS is set.
2906 	 */
2907 	cksum = sizeof (tcpha_t) + connp->conn_sum;
2908 	cksum = (cksum >> 16) + (cksum & 0xFFFF);
2909 	ASSERT(cksum < 0x10000);
2910 	tcpha->tha_sum = htons(cksum);
2911 
2912 	if (connp->conn_ipversion == IPV4_VERSION)
2913 		tcp->tcp_ipha = (ipha_t *)connp->conn_ht_iphc;
2914 	else
2915 		tcp->tcp_ip6h = (ip6_t *)connp->conn_ht_iphc;
2916 
2917 	if (connp->conn_ht_iphc_allocated + tcps->tcps_wroff_xtra >
2918 	    connp->conn_wroff) {
2919 		connp->conn_wroff = connp->conn_ht_iphc_allocated +
2920 		    tcps->tcps_wroff_xtra;
2921 		(void) proto_set_tx_wroff(connp->conn_rq, connp,
2922 		    connp->conn_wroff);
2923 	}
2924 	return (0);
2925 }
2926 
2927 /*
2928  * tcp_rwnd_set() is called to adjust the receive window to a desired value.
2929  * We do not allow the receive window to shrink.  After setting rwnd,
2930  * set the flow control hiwat of the stream.
2931  *
2932  * This function is called in 2 cases:
2933  *
2934  * 1) Before data transfer begins, in tcp_input_listener() for accepting a
2935  *    connection (passive open) and in tcp_input_data() for active connect.
2936  *    This is called after tcp_mss_set() when the desired MSS value is known.
2937  *    This makes sure that our window size is a mutiple of the other side's
2938  *    MSS.
2939  * 2) Handling SO_RCVBUF option.
2940  *
2941  * It is ASSUMED that the requested size is a multiple of the current MSS.
2942  *
2943  * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the
2944  * user requests so.
2945  */
2946 int
2947 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd)
2948 {
2949 	uint32_t	mss = tcp->tcp_mss;
2950 	uint32_t	old_max_rwnd;
2951 	uint32_t	max_transmittable_rwnd;
2952 	boolean_t	tcp_detached = TCP_IS_DETACHED(tcp);
2953 	tcp_stack_t	*tcps = tcp->tcp_tcps;
2954 	conn_t		*connp = tcp->tcp_connp;
2955 
2956 	/*
2957 	 * Insist on a receive window that is at least
2958 	 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid
2959 	 * funny TCP interactions of Nagle algorithm, SWS avoidance
2960 	 * and delayed acknowledgement.
2961 	 */
2962 	rwnd = MAX(rwnd, tcps->tcps_recv_hiwat_minmss * mss);
2963 
2964 	if (tcp->tcp_fused) {
2965 		size_t sth_hiwat;
2966 		tcp_t *peer_tcp = tcp->tcp_loopback_peer;
2967 
2968 		ASSERT(peer_tcp != NULL);
2969 		sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd);
2970 		if (!tcp_detached) {
2971 			(void) proto_set_rx_hiwat(connp->conn_rq, connp,
2972 			    sth_hiwat);
2973 			tcp_set_recv_threshold(tcp, sth_hiwat >> 3);
2974 		}
2975 
2976 		/* Caller could have changed tcp_rwnd; update tha_win */
2977 		if (tcp->tcp_tcpha != NULL) {
2978 			tcp->tcp_tcpha->tha_win =
2979 			    htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws);
2980 		}
2981 		if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max)
2982 			tcp->tcp_cwnd_max = rwnd;
2983 
2984 		/*
2985 		 * In the fusion case, the maxpsz stream head value of
2986 		 * our peer is set according to its send buffer size
2987 		 * and our receive buffer size; since the latter may
2988 		 * have changed we need to update the peer's maxpsz.
2989 		 */
2990 		(void) tcp_maxpsz_set(peer_tcp, B_TRUE);
2991 		return (sth_hiwat);
2992 	}
2993 
2994 	if (tcp_detached)
2995 		old_max_rwnd = tcp->tcp_rwnd;
2996 	else
2997 		old_max_rwnd = connp->conn_rcvbuf;
2998 
2999 
3000 	/*
3001 	 * If window size info has already been exchanged, TCP should not
3002 	 * shrink the window.  Shrinking window is doable if done carefully.
3003 	 * We may add that support later.  But so far there is not a real
3004 	 * need to do that.
3005 	 */
3006 	if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) {
3007 		/* MSS may have changed, do a round up again. */
3008 		rwnd = MSS_ROUNDUP(old_max_rwnd, mss);
3009 	}
3010 
3011 	/*
3012 	 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check
3013 	 * can be applied even before the window scale option is decided.
3014 	 */
3015 	max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws;
3016 	if (rwnd > max_transmittable_rwnd) {
3017 		rwnd = max_transmittable_rwnd -
3018 		    (max_transmittable_rwnd % mss);
3019 		if (rwnd < mss)
3020 			rwnd = max_transmittable_rwnd;
3021 		/*
3022 		 * If we're over the limit we may have to back down tcp_rwnd.
3023 		 * The increment below won't work for us. So we set all three
3024 		 * here and the increment below will have no effect.
3025 		 */
3026 		tcp->tcp_rwnd = old_max_rwnd = rwnd;
3027 	}
3028 	if (tcp->tcp_localnet) {
3029 		tcp->tcp_rack_abs_max =
3030 		    MIN(tcps->tcps_local_dacks_max, rwnd / mss / 2);
3031 	} else {
3032 		/*
3033 		 * For a remote host on a different subnet (through a router),
3034 		 * we ack every other packet to be conforming to RFC1122.
3035 		 * tcp_deferred_acks_max is default to 2.
3036 		 */
3037 		tcp->tcp_rack_abs_max =
3038 		    MIN(tcps->tcps_deferred_acks_max, rwnd / mss / 2);
3039 	}
3040 	if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max)
3041 		tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max;
3042 	else
3043 		tcp->tcp_rack_cur_max = 0;
3044 	/*
3045 	 * Increment the current rwnd by the amount the maximum grew (we
3046 	 * can not overwrite it since we might be in the middle of a
3047 	 * connection.)
3048 	 */
3049 	tcp->tcp_rwnd += rwnd - old_max_rwnd;
3050 	connp->conn_rcvbuf = rwnd;
3051 
3052 	/* Are we already connected? */
3053 	if (tcp->tcp_tcpha != NULL) {
3054 		tcp->tcp_tcpha->tha_win =
3055 		    htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws);
3056 	}
3057 
3058 	if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max)
3059 		tcp->tcp_cwnd_max = rwnd;
3060 
3061 	if (tcp_detached)
3062 		return (rwnd);
3063 
3064 	tcp_set_recv_threshold(tcp, rwnd >> 3);
3065 
3066 	(void) proto_set_rx_hiwat(connp->conn_rq, connp, rwnd);
3067 	return (rwnd);
3068 }
3069 
3070 int
3071 tcp_do_unbind(conn_t *connp)
3072 {
3073 	tcp_t *tcp = connp->conn_tcp;
3074 	int32_t oldstate;
3075 
3076 	switch (tcp->tcp_state) {
3077 	case TCPS_BOUND:
3078 	case TCPS_LISTEN:
3079 		break;
3080 	default:
3081 		return (-TOUTSTATE);
3082 	}
3083 
3084 	/*
3085 	 * Need to clean up all the eagers since after the unbind, segments
3086 	 * will no longer be delivered to this listener stream.
3087 	 */
3088 	mutex_enter(&tcp->tcp_eager_lock);
3089 	if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) {
3090 		tcp_eager_cleanup(tcp, 0);
3091 	}
3092 	mutex_exit(&tcp->tcp_eager_lock);
3093 
3094 	/* Clean up the listener connection counter if necessary. */
3095 	if (tcp->tcp_listen_cnt != NULL)
3096 		TCP_DECR_LISTEN_CNT(tcp);
3097 	connp->conn_laddr_v6 = ipv6_all_zeros;
3098 	connp->conn_saddr_v6 = ipv6_all_zeros;
3099 	tcp_bind_hash_remove(tcp);
3100 	oldstate = tcp->tcp_state;
3101 	tcp->tcp_state = TCPS_IDLE;
3102 	DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
3103 	    connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL,
3104 	    int32_t, oldstate);
3105 
3106 	ip_unbind(connp);
3107 	bzero(&connp->conn_ports, sizeof (connp->conn_ports));
3108 
3109 	return (0);
3110 }
3111 
3112 /*
3113  * Collect protocol properties to send to the upper handle.
3114  */
3115 void
3116 tcp_get_proto_props(tcp_t *tcp, struct sock_proto_props *sopp)
3117 {
3118 	conn_t *connp = tcp->tcp_connp;
3119 
3120 	sopp->sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_MAXBLK | SOCKOPT_WROFF;
3121 	sopp->sopp_maxblk = tcp_maxpsz_set(tcp, B_FALSE);
3122 
3123 	sopp->sopp_rxhiwat = tcp->tcp_fused ?
3124 	    tcp_fuse_set_rcv_hiwat(tcp, connp->conn_rcvbuf) :
3125 	    connp->conn_rcvbuf;
3126 	/*
3127 	 * Determine what write offset value to use depending on SACK and
3128 	 * whether the endpoint is fused or not.
3129 	 */
3130 	if (tcp->tcp_fused) {
3131 		ASSERT(tcp->tcp_loopback);
3132 		ASSERT(tcp->tcp_loopback_peer != NULL);
3133 		/*
3134 		 * For fused tcp loopback, set the stream head's write
3135 		 * offset value to zero since we won't be needing any room
3136 		 * for TCP/IP headers.  This would also improve performance
3137 		 * since it would reduce the amount of work done by kmem.
3138 		 * Non-fused tcp loopback case is handled separately below.
3139 		 */
3140 		sopp->sopp_wroff = 0;
3141 		/*
3142 		 * Update the peer's transmit parameters according to
3143 		 * our recently calculated high water mark value.
3144 		 */
3145 		(void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE);
3146 	} else if (tcp->tcp_snd_sack_ok) {
3147 		sopp->sopp_wroff = connp->conn_ht_iphc_allocated +
3148 		    (tcp->tcp_loopback ? 0 : tcp->tcp_tcps->tcps_wroff_xtra);
3149 	} else {
3150 		sopp->sopp_wroff = connp->conn_ht_iphc_len +
3151 		    (tcp->tcp_loopback ? 0 : tcp->tcp_tcps->tcps_wroff_xtra);
3152 	}
3153 
3154 	if (tcp->tcp_loopback) {
3155 		sopp->sopp_flags |= SOCKOPT_LOOPBACK;
3156 		sopp->sopp_loopback = B_TRUE;
3157 	}
3158 }
3159 
3160 /*
3161  * Check the usability of ZEROCOPY. It's instead checking the flag set by IP.
3162  */
3163 boolean_t
3164 tcp_zcopy_check(tcp_t *tcp)
3165 {
3166 	conn_t		*connp = tcp->tcp_connp;
3167 	ip_xmit_attr_t	*ixa = connp->conn_ixa;
3168 	boolean_t	zc_enabled = B_FALSE;
3169 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3170 
3171 	if (do_tcpzcopy == 2)
3172 		zc_enabled = B_TRUE;
3173 	else if ((do_tcpzcopy == 1) && (ixa->ixa_flags & IXAF_ZCOPY_CAPAB))
3174 		zc_enabled = B_TRUE;
3175 
3176 	tcp->tcp_snd_zcopy_on = zc_enabled;
3177 	if (!TCP_IS_DETACHED(tcp)) {
3178 		if (zc_enabled) {
3179 			ixa->ixa_flags |= IXAF_VERIFY_ZCOPY;
3180 			(void) proto_set_tx_copyopt(connp->conn_rq, connp,
3181 			    ZCVMSAFE);
3182 			TCP_STAT(tcps, tcp_zcopy_on);
3183 		} else {
3184 			ixa->ixa_flags &= ~IXAF_VERIFY_ZCOPY;
3185 			(void) proto_set_tx_copyopt(connp->conn_rq, connp,
3186 			    ZCVMUNSAFE);
3187 			TCP_STAT(tcps, tcp_zcopy_off);
3188 		}
3189 	}
3190 	return (zc_enabled);
3191 }
3192 
3193 /*
3194  * Backoff from a zero-copy message by copying data to a new allocated
3195  * message and freeing the original desballoca'ed segmapped message.
3196  *
3197  * This function is called by following two callers:
3198  * 1. tcp_timer: fix_xmitlist is set to B_TRUE, because it's safe to free
3199  *    the origial desballoca'ed message and notify sockfs. This is in re-
3200  *    transmit state.
3201  * 2. tcp_output: fix_xmitlist is set to B_FALSE. Flag STRUIO_ZCNOTIFY need
3202  *    to be copied to new message.
3203  */
3204 mblk_t *
3205 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, boolean_t fix_xmitlist)
3206 {
3207 	mblk_t		*nbp;
3208 	mblk_t		*head = NULL;
3209 	mblk_t		*tail = NULL;
3210 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3211 
3212 	ASSERT(bp != NULL);
3213 	while (bp != NULL) {
3214 		if (IS_VMLOANED_MBLK(bp)) {
3215 			TCP_STAT(tcps, tcp_zcopy_backoff);
3216 			if ((nbp = copyb(bp)) == NULL) {
3217 				tcp->tcp_xmit_zc_clean = B_FALSE;
3218 				if (tail != NULL)
3219 					tail->b_cont = bp;
3220 				return ((head == NULL) ? bp : head);
3221 			}
3222 
3223 			if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) {
3224 				if (fix_xmitlist)
3225 					tcp_zcopy_notify(tcp);
3226 				else
3227 					nbp->b_datap->db_struioflag |=
3228 					    STRUIO_ZCNOTIFY;
3229 			}
3230 			nbp->b_cont = bp->b_cont;
3231 
3232 			/*
3233 			 * Copy saved information and adjust tcp_xmit_tail
3234 			 * if needed.
3235 			 */
3236 			if (fix_xmitlist) {
3237 				nbp->b_prev = bp->b_prev;
3238 				nbp->b_next = bp->b_next;
3239 
3240 				if (tcp->tcp_xmit_tail == bp)
3241 					tcp->tcp_xmit_tail = nbp;
3242 			}
3243 
3244 			/* Free the original message. */
3245 			bp->b_prev = NULL;
3246 			bp->b_next = NULL;
3247 			freeb(bp);
3248 
3249 			bp = nbp;
3250 		}
3251 
3252 		if (head == NULL) {
3253 			head = bp;
3254 		}
3255 		if (tail == NULL) {
3256 			tail = bp;
3257 		} else {
3258 			tail->b_cont = bp;
3259 			tail = bp;
3260 		}
3261 
3262 		/* Move forward. */
3263 		bp = bp->b_cont;
3264 	}
3265 
3266 	if (fix_xmitlist) {
3267 		tcp->tcp_xmit_last = tail;
3268 		tcp->tcp_xmit_zc_clean = B_TRUE;
3269 	}
3270 
3271 	return (head);
3272 }
3273 
3274 void
3275 tcp_zcopy_notify(tcp_t *tcp)
3276 {
3277 	struct stdata	*stp;
3278 	conn_t		*connp;
3279 
3280 	if (tcp->tcp_detached)
3281 		return;
3282 	connp = tcp->tcp_connp;
3283 	if (IPCL_IS_NONSTR(connp)) {
3284 		(*connp->conn_upcalls->su_zcopy_notify)
3285 		    (connp->conn_upper_handle);
3286 		return;
3287 	}
3288 	stp = STREAM(connp->conn_rq);
3289 	mutex_enter(&stp->sd_lock);
3290 	stp->sd_flag |= STZCNOTIFY;
3291 	cv_broadcast(&stp->sd_zcopy_wait);
3292 	mutex_exit(&stp->sd_lock);
3293 }
3294 
3295 /*
3296  * Update the TCP connection according to change of LSO capability.
3297  */
3298 static void
3299 tcp_update_lso(tcp_t *tcp, ip_xmit_attr_t *ixa)
3300 {
3301 	/*
3302 	 * We check against IPv4 header length to preserve the old behavior
3303 	 * of only enabling LSO when there are no IP options.
3304 	 * But this restriction might not be necessary at all. Before removing
3305 	 * it, need to verify how LSO is handled for source routing case, with
3306 	 * which IP does software checksum.
3307 	 *
3308 	 * For IPv6, whenever any extension header is needed, LSO is supressed.
3309 	 */
3310 	if (ixa->ixa_ip_hdr_length != ((ixa->ixa_flags & IXAF_IS_IPV4) ?
3311 	    IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN))
3312 		return;
3313 
3314 	/*
3315 	 * Either the LSO capability newly became usable, or it has changed.
3316 	 */
3317 	if (ixa->ixa_flags & IXAF_LSO_CAPAB) {
3318 		ill_lso_capab_t	*lsoc = &ixa->ixa_lso_capab;
3319 
3320 		ASSERT(lsoc->ill_lso_max > 0);
3321 		tcp->tcp_lso_max = MIN(TCP_MAX_LSO_LENGTH, lsoc->ill_lso_max);
3322 
3323 		DTRACE_PROBE3(tcp_update_lso, boolean_t, tcp->tcp_lso,
3324 		    boolean_t, B_TRUE, uint32_t, tcp->tcp_lso_max);
3325 
3326 		/*
3327 		 * If LSO to be enabled, notify the STREAM header with larger
3328 		 * data block.
3329 		 */
3330 		if (!tcp->tcp_lso)
3331 			tcp->tcp_maxpsz_multiplier = 0;
3332 
3333 		tcp->tcp_lso = B_TRUE;
3334 		TCP_STAT(tcp->tcp_tcps, tcp_lso_enabled);
3335 	} else { /* LSO capability is not usable any more. */
3336 		DTRACE_PROBE3(tcp_update_lso, boolean_t, tcp->tcp_lso,
3337 		    boolean_t, B_FALSE, uint32_t, tcp->tcp_lso_max);
3338 
3339 		/*
3340 		 * If LSO to be disabled, notify the STREAM header with smaller
3341 		 * data block. And need to restore fragsize to PMTU.
3342 		 */
3343 		if (tcp->tcp_lso) {
3344 			tcp->tcp_maxpsz_multiplier =
3345 			    tcp->tcp_tcps->tcps_maxpsz_multiplier;
3346 			ixa->ixa_fragsize = ixa->ixa_pmtu;
3347 			tcp->tcp_lso = B_FALSE;
3348 			TCP_STAT(tcp->tcp_tcps, tcp_lso_disabled);
3349 		}
3350 	}
3351 
3352 	(void) tcp_maxpsz_set(tcp, B_TRUE);
3353 }
3354 
3355 /*
3356  * Update the TCP connection according to change of ZEROCOPY capability.
3357  */
3358 static void
3359 tcp_update_zcopy(tcp_t *tcp)
3360 {
3361 	conn_t		*connp = tcp->tcp_connp;
3362 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3363 
3364 	if (tcp->tcp_snd_zcopy_on) {
3365 		tcp->tcp_snd_zcopy_on = B_FALSE;
3366 		if (!TCP_IS_DETACHED(tcp)) {
3367 			(void) proto_set_tx_copyopt(connp->conn_rq, connp,
3368 			    ZCVMUNSAFE);
3369 			TCP_STAT(tcps, tcp_zcopy_off);
3370 		}
3371 	} else {
3372 		tcp->tcp_snd_zcopy_on = B_TRUE;
3373 		if (!TCP_IS_DETACHED(tcp)) {
3374 			(void) proto_set_tx_copyopt(connp->conn_rq, connp,
3375 			    ZCVMSAFE);
3376 			TCP_STAT(tcps, tcp_zcopy_on);
3377 		}
3378 	}
3379 }
3380 
3381 /*
3382  * Notify function registered with ip_xmit_attr_t. It's called in the squeue
3383  * so it's safe to update the TCP connection.
3384  */
3385 /* ARGSUSED1 */
3386 static void
3387 tcp_notify(void *arg, ip_xmit_attr_t *ixa, ixa_notify_type_t ntype,
3388     ixa_notify_arg_t narg)
3389 {
3390 	tcp_t		*tcp = (tcp_t *)arg;
3391 	conn_t		*connp = tcp->tcp_connp;
3392 
3393 	switch (ntype) {
3394 	case IXAN_LSO:
3395 		tcp_update_lso(tcp, connp->conn_ixa);
3396 		break;
3397 	case IXAN_PMTU:
3398 		tcp_update_pmtu(tcp, B_FALSE);
3399 		break;
3400 	case IXAN_ZCOPY:
3401 		tcp_update_zcopy(tcp);
3402 		break;
3403 	default:
3404 		break;
3405 	}
3406 }
3407 
3408 /*
3409  * The TCP write service routine should never be called...
3410  */
3411 /* ARGSUSED */
3412 static void
3413 tcp_wsrv(queue_t *q)
3414 {
3415 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
3416 
3417 	TCP_STAT(tcps, tcp_wsrv_called);
3418 }
3419 
3420 /*
3421  * Hash list lookup routine for tcp_t structures.
3422  * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF.
3423  */
3424 tcp_t *
3425 tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *tcps)
3426 {
3427 	tf_t	*tf;
3428 	tcp_t	*tcp;
3429 
3430 	tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
3431 	mutex_enter(&tf->tf_lock);
3432 	for (tcp = tf->tf_tcp; tcp != NULL;
3433 	    tcp = tcp->tcp_acceptor_hash) {
3434 		if (tcp->tcp_acceptor_id == id) {
3435 			CONN_INC_REF(tcp->tcp_connp);
3436 			mutex_exit(&tf->tf_lock);
3437 			return (tcp);
3438 		}
3439 	}
3440 	mutex_exit(&tf->tf_lock);
3441 	return (NULL);
3442 }
3443 
3444 /*
3445  * Hash list insertion routine for tcp_t structures.
3446  */
3447 void
3448 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp)
3449 {
3450 	tf_t	*tf;
3451 	tcp_t	**tcpp;
3452 	tcp_t	*tcpnext;
3453 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3454 
3455 	tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
3456 
3457 	if (tcp->tcp_ptpahn != NULL)
3458 		tcp_acceptor_hash_remove(tcp);
3459 	tcpp = &tf->tf_tcp;
3460 	mutex_enter(&tf->tf_lock);
3461 	tcpnext = tcpp[0];
3462 	if (tcpnext)
3463 		tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash;
3464 	tcp->tcp_acceptor_hash = tcpnext;
3465 	tcp->tcp_ptpahn = tcpp;
3466 	tcpp[0] = tcp;
3467 	tcp->tcp_acceptor_lockp = &tf->tf_lock;	/* For tcp_*_hash_remove */
3468 	mutex_exit(&tf->tf_lock);
3469 }
3470 
3471 /*
3472  * Hash list removal routine for tcp_t structures.
3473  */
3474 void
3475 tcp_acceptor_hash_remove(tcp_t *tcp)
3476 {
3477 	tcp_t	*tcpnext;
3478 	kmutex_t *lockp;
3479 
3480 	/*
3481 	 * Extract the lock pointer in case there are concurrent
3482 	 * hash_remove's for this instance.
3483 	 */
3484 	lockp = tcp->tcp_acceptor_lockp;
3485 
3486 	if (tcp->tcp_ptpahn == NULL)
3487 		return;
3488 
3489 	ASSERT(lockp != NULL);
3490 	mutex_enter(lockp);
3491 	if (tcp->tcp_ptpahn) {
3492 		tcpnext = tcp->tcp_acceptor_hash;
3493 		if (tcpnext) {
3494 			tcpnext->tcp_ptpahn = tcp->tcp_ptpahn;
3495 			tcp->tcp_acceptor_hash = NULL;
3496 		}
3497 		*tcp->tcp_ptpahn = tcpnext;
3498 		tcp->tcp_ptpahn = NULL;
3499 	}
3500 	mutex_exit(lockp);
3501 	tcp->tcp_acceptor_lockp = NULL;
3502 }
3503 
3504 /*
3505  * Type three generator adapted from the random() function in 4.4 BSD:
3506  */
3507 
3508 /*
3509  * Copyright (c) 1983, 1993
3510  *	The Regents of the University of California.  All rights reserved.
3511  *
3512  * Redistribution and use in source and binary forms, with or without
3513  * modification, are permitted provided that the following conditions
3514  * are met:
3515  * 1. Redistributions of source code must retain the above copyright
3516  *    notice, this list of conditions and the following disclaimer.
3517  * 2. Redistributions in binary form must reproduce the above copyright
3518  *    notice, this list of conditions and the following disclaimer in the
3519  *    documentation and/or other materials provided with the distribution.
3520  * 3. All advertising materials mentioning features or use of this software
3521  *    must display the following acknowledgement:
3522  *	This product includes software developed by the University of
3523  *	California, Berkeley and its contributors.
3524  * 4. Neither the name of the University nor the names of its contributors
3525  *    may be used to endorse or promote products derived from this software
3526  *    without specific prior written permission.
3527  *
3528  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
3529  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
3530  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
3531  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
3532  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
3533  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
3534  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
3535  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
3536  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
3537  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
3538  * SUCH DAMAGE.
3539  */
3540 
3541 /* Type 3 -- x**31 + x**3 + 1 */
3542 #define	DEG_3		31
3543 #define	SEP_3		3
3544 
3545 
3546 /* Protected by tcp_random_lock */
3547 static int tcp_randtbl[DEG_3 + 1];
3548 
3549 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1];
3550 static int *tcp_random_rptr = &tcp_randtbl[1];
3551 
3552 static int *tcp_random_state = &tcp_randtbl[1];
3553 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1];
3554 
3555 kmutex_t tcp_random_lock;
3556 
3557 void
3558 tcp_random_init(void)
3559 {
3560 	int i;
3561 	hrtime_t hrt;
3562 	time_t wallclock;
3563 	uint64_t result;
3564 
3565 	/*
3566 	 * Use high-res timer and current time for seed.  Gethrtime() returns
3567 	 * a longlong, which may contain resolution down to nanoseconds.
3568 	 * The current time will either be a 32-bit or a 64-bit quantity.
3569 	 * XOR the two together in a 64-bit result variable.
3570 	 * Convert the result to a 32-bit value by multiplying the high-order
3571 	 * 32-bits by the low-order 32-bits.
3572 	 */
3573 
3574 	hrt = gethrtime();
3575 	(void) drv_getparm(TIME, &wallclock);
3576 	result = (uint64_t)wallclock ^ (uint64_t)hrt;
3577 	mutex_enter(&tcp_random_lock);
3578 	tcp_random_state[0] = ((result >> 32) & 0xffffffff) *
3579 	    (result & 0xffffffff);
3580 
3581 	for (i = 1; i < DEG_3; i++)
3582 		tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1]
3583 		    + 12345;
3584 	tcp_random_fptr = &tcp_random_state[SEP_3];
3585 	tcp_random_rptr = &tcp_random_state[0];
3586 	mutex_exit(&tcp_random_lock);
3587 	for (i = 0; i < 10 * DEG_3; i++)
3588 		(void) tcp_random();
3589 }
3590 
3591 /*
3592  * tcp_random: Return a random number in the range [1 - (128K + 1)].
3593  * This range is selected to be approximately centered on TCP_ISS / 2,
3594  * and easy to compute. We get this value by generating a 32-bit random
3595  * number, selecting out the high-order 17 bits, and then adding one so
3596  * that we never return zero.
3597  */
3598 int
3599 tcp_random(void)
3600 {
3601 	int i;
3602 
3603 	mutex_enter(&tcp_random_lock);
3604 	*tcp_random_fptr += *tcp_random_rptr;
3605 
3606 	/*
3607 	 * The high-order bits are more random than the low-order bits,
3608 	 * so we select out the high-order 17 bits and add one so that
3609 	 * we never return zero.
3610 	 */
3611 	i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1;
3612 	if (++tcp_random_fptr >= tcp_random_end_ptr) {
3613 		tcp_random_fptr = tcp_random_state;
3614 		++tcp_random_rptr;
3615 	} else if (++tcp_random_rptr >= tcp_random_end_ptr)
3616 		tcp_random_rptr = tcp_random_state;
3617 
3618 	mutex_exit(&tcp_random_lock);
3619 	return (i);
3620 }
3621 
3622 /*
3623  * Split this function out so that if the secret changes, I'm okay.
3624  *
3625  * Initialize the tcp_iss_cookie and tcp_iss_key.
3626  */
3627 
3628 #define	PASSWD_SIZE 16  /* MUST be multiple of 4 */
3629 
3630 void
3631 tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *tcps)
3632 {
3633 	struct {
3634 		int32_t current_time;
3635 		uint32_t randnum;
3636 		uint16_t pad;
3637 		uint8_t ether[6];
3638 		uint8_t passwd[PASSWD_SIZE];
3639 	} tcp_iss_cookie;
3640 	time_t t;
3641 
3642 	/*
3643 	 * Start with the current absolute time.
3644 	 */
3645 	(void) drv_getparm(TIME, &t);
3646 	tcp_iss_cookie.current_time = t;
3647 
3648 	/*
3649 	 * XXX - Need a more random number per RFC 1750, not this crap.
3650 	 * OTOH, if what follows is pretty random, then I'm in better shape.
3651 	 */
3652 	tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random());
3653 	tcp_iss_cookie.pad = 0x365c;  /* Picked from HMAC pad values. */
3654 
3655 	/*
3656 	 * The cpu_type_info is pretty non-random.  Ugggh.  It does serve
3657 	 * as a good template.
3658 	 */
3659 	bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd,
3660 	    min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info)));
3661 
3662 	/*
3663 	 * The pass-phrase.  Normally this is supplied by user-called NDD.
3664 	 */
3665 	bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len));
3666 
3667 	/*
3668 	 * See 4010593 if this section becomes a problem again,
3669 	 * but the local ethernet address is useful here.
3670 	 */
3671 	(void) localetheraddr(NULL,
3672 	    (struct ether_addr *)&tcp_iss_cookie.ether);
3673 
3674 	/*
3675 	 * Hash 'em all together.  The MD5Final is called per-connection.
3676 	 */
3677 	mutex_enter(&tcps->tcps_iss_key_lock);
3678 	MD5Init(&tcps->tcps_iss_key);
3679 	MD5Update(&tcps->tcps_iss_key, (uchar_t *)&tcp_iss_cookie,
3680 	    sizeof (tcp_iss_cookie));
3681 	mutex_exit(&tcps->tcps_iss_key_lock);
3682 }
3683 
3684 /*
3685  * Called by IP when IP is loaded into the kernel
3686  */
3687 void
3688 tcp_ddi_g_init(void)
3689 {
3690 	tcp_timercache = kmem_cache_create("tcp_timercache",
3691 	    sizeof (tcp_timer_t) + sizeof (mblk_t), 0,
3692 	    NULL, NULL, NULL, NULL, NULL, 0);
3693 
3694 	tcp_notsack_blk_cache = kmem_cache_create("tcp_notsack_blk_cache",
3695 	    sizeof (notsack_blk_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
3696 
3697 	mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL);
3698 
3699 	/* Initialize the random number generator */
3700 	tcp_random_init();
3701 
3702 	/* A single callback independently of how many netstacks we have */
3703 	ip_squeue_init(tcp_squeue_add);
3704 
3705 	tcp_g_kstat = tcp_g_kstat_init(&tcp_g_statistics);
3706 
3707 	tcp_squeue_flag = tcp_squeue_switch(tcp_squeue_wput);
3708 
3709 	/*
3710 	 * We want to be informed each time a stack is created or
3711 	 * destroyed in the kernel, so we can maintain the
3712 	 * set of tcp_stack_t's.
3713 	 */
3714 	netstack_register(NS_TCP, tcp_stack_init, NULL, tcp_stack_fini);
3715 }
3716 
3717 
3718 #define	INET_NAME	"ip"
3719 
3720 /*
3721  * Initialize the TCP stack instance.
3722  */
3723 static void *
3724 tcp_stack_init(netstackid_t stackid, netstack_t *ns)
3725 {
3726 	tcp_stack_t	*tcps;
3727 	int		i;
3728 	int		error = 0;
3729 	major_t		major;
3730 	size_t		arrsz;
3731 
3732 	tcps = (tcp_stack_t *)kmem_zalloc(sizeof (*tcps), KM_SLEEP);
3733 	tcps->tcps_netstack = ns;
3734 
3735 	/* Initialize locks */
3736 	mutex_init(&tcps->tcps_iss_key_lock, NULL, MUTEX_DEFAULT, NULL);
3737 	mutex_init(&tcps->tcps_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL);
3738 
3739 	tcps->tcps_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS;
3740 	tcps->tcps_g_epriv_ports[0] = ULP_DEF_EPRIV_PORT1;
3741 	tcps->tcps_g_epriv_ports[1] = ULP_DEF_EPRIV_PORT2;
3742 	tcps->tcps_min_anonpriv_port = 512;
3743 
3744 	tcps->tcps_bind_fanout = kmem_zalloc(sizeof (tf_t) *
3745 	    TCP_BIND_FANOUT_SIZE, KM_SLEEP);
3746 	tcps->tcps_acceptor_fanout = kmem_zalloc(sizeof (tf_t) *
3747 	    TCP_ACCEPTOR_FANOUT_SIZE, KM_SLEEP);
3748 
3749 	for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) {
3750 		mutex_init(&tcps->tcps_bind_fanout[i].tf_lock, NULL,
3751 		    MUTEX_DEFAULT, NULL);
3752 	}
3753 
3754 	for (i = 0; i < TCP_ACCEPTOR_FANOUT_SIZE; i++) {
3755 		mutex_init(&tcps->tcps_acceptor_fanout[i].tf_lock, NULL,
3756 		    MUTEX_DEFAULT, NULL);
3757 	}
3758 
3759 	/* TCP's IPsec code calls the packet dropper. */
3760 	ip_drop_register(&tcps->tcps_dropper, "TCP IPsec policy enforcement");
3761 
3762 	arrsz = tcp_propinfo_count * sizeof (mod_prop_info_t);
3763 	tcps->tcps_propinfo_tbl = (mod_prop_info_t *)kmem_alloc(arrsz,
3764 	    KM_SLEEP);
3765 	bcopy(tcp_propinfo_tbl, tcps->tcps_propinfo_tbl, arrsz);
3766 
3767 	/*
3768 	 * Note: To really walk the device tree you need the devinfo
3769 	 * pointer to your device which is only available after probe/attach.
3770 	 * The following is safe only because it uses ddi_root_node()
3771 	 */
3772 	tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr,
3773 	    tcp_opt_obj.odb_opt_arr_cnt);
3774 
3775 	/*
3776 	 * Initialize RFC 1948 secret values.  This will probably be reset once
3777 	 * by the boot scripts.
3778 	 *
3779 	 * Use NULL name, as the name is caught by the new lockstats.
3780 	 *
3781 	 * Initialize with some random, non-guessable string, like the global
3782 	 * T_INFO_ACK.
3783 	 */
3784 
3785 	tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack,
3786 	    sizeof (tcp_g_t_info_ack), tcps);
3787 
3788 	tcps->tcps_kstat = tcp_kstat2_init(stackid);
3789 	tcps->tcps_mibkp = tcp_kstat_init(stackid);
3790 
3791 	major = mod_name_to_major(INET_NAME);
3792 	error = ldi_ident_from_major(major, &tcps->tcps_ldi_ident);
3793 	ASSERT(error == 0);
3794 	tcps->tcps_ixa_cleanup_mp = allocb_wait(0, BPRI_MED, STR_NOSIG, NULL);
3795 	ASSERT(tcps->tcps_ixa_cleanup_mp != NULL);
3796 	cv_init(&tcps->tcps_ixa_cleanup_ready_cv, NULL, CV_DEFAULT, NULL);
3797 	cv_init(&tcps->tcps_ixa_cleanup_done_cv, NULL, CV_DEFAULT, NULL);
3798 	mutex_init(&tcps->tcps_ixa_cleanup_lock, NULL, MUTEX_DEFAULT, NULL);
3799 
3800 	mutex_init(&tcps->tcps_reclaim_lock, NULL, MUTEX_DEFAULT, NULL);
3801 	tcps->tcps_reclaim = B_FALSE;
3802 	tcps->tcps_reclaim_tid = 0;
3803 	tcps->tcps_reclaim_period = tcps->tcps_rexmit_interval_max;
3804 
3805 	/*
3806 	 * ncpus is the current number of CPUs, which can be bigger than
3807 	 * boot_ncpus.  But we don't want to use ncpus to allocate all the
3808 	 * tcp_stats_cpu_t at system boot up time since it will be 1.  While
3809 	 * we handle adding CPU in tcp_cpu_update(), it will be slow if
3810 	 * there are many CPUs as we will be adding them 1 by 1.
3811 	 *
3812 	 * Note that tcps_sc_cnt never decreases and the tcps_sc[x] pointers
3813 	 * are not freed until the stack is going away.  So there is no need
3814 	 * to grab a lock to access the per CPU tcps_sc[x] pointer.
3815 	 */
3816 	mutex_enter(&cpu_lock);
3817 	tcps->tcps_sc_cnt = MAX(ncpus, boot_ncpus);
3818 	mutex_exit(&cpu_lock);
3819 	tcps->tcps_sc = kmem_zalloc(max_ncpus  * sizeof (tcp_stats_cpu_t *),
3820 	    KM_SLEEP);
3821 	for (i = 0; i < tcps->tcps_sc_cnt; i++) {
3822 		tcps->tcps_sc[i] = kmem_zalloc(sizeof (tcp_stats_cpu_t),
3823 		    KM_SLEEP);
3824 	}
3825 
3826 	mutex_init(&tcps->tcps_listener_conf_lock, NULL, MUTEX_DEFAULT, NULL);
3827 	list_create(&tcps->tcps_listener_conf, sizeof (tcp_listener_t),
3828 	    offsetof(tcp_listener_t, tl_link));
3829 
3830 	return (tcps);
3831 }
3832 
3833 /*
3834  * Called when the IP module is about to be unloaded.
3835  */
3836 void
3837 tcp_ddi_g_destroy(void)
3838 {
3839 	tcp_g_kstat_fini(tcp_g_kstat);
3840 	tcp_g_kstat = NULL;
3841 	bzero(&tcp_g_statistics, sizeof (tcp_g_statistics));
3842 
3843 	mutex_destroy(&tcp_random_lock);
3844 
3845 	kmem_cache_destroy(tcp_timercache);
3846 	kmem_cache_destroy(tcp_notsack_blk_cache);
3847 
3848 	netstack_unregister(NS_TCP);
3849 }
3850 
3851 /*
3852  * Free the TCP stack instance.
3853  */
3854 static void
3855 tcp_stack_fini(netstackid_t stackid, void *arg)
3856 {
3857 	tcp_stack_t *tcps = (tcp_stack_t *)arg;
3858 	int i;
3859 
3860 	freeb(tcps->tcps_ixa_cleanup_mp);
3861 	tcps->tcps_ixa_cleanup_mp = NULL;
3862 	cv_destroy(&tcps->tcps_ixa_cleanup_ready_cv);
3863 	cv_destroy(&tcps->tcps_ixa_cleanup_done_cv);
3864 	mutex_destroy(&tcps->tcps_ixa_cleanup_lock);
3865 
3866 	/*
3867 	 * Set tcps_reclaim to false tells tcp_reclaim_timer() not to restart
3868 	 * the timer.
3869 	 */
3870 	mutex_enter(&tcps->tcps_reclaim_lock);
3871 	tcps->tcps_reclaim = B_FALSE;
3872 	mutex_exit(&tcps->tcps_reclaim_lock);
3873 	if (tcps->tcps_reclaim_tid != 0)
3874 		(void) untimeout(tcps->tcps_reclaim_tid);
3875 	mutex_destroy(&tcps->tcps_reclaim_lock);
3876 
3877 	tcp_listener_conf_cleanup(tcps);
3878 
3879 	for (i = 0; i < tcps->tcps_sc_cnt; i++)
3880 		kmem_free(tcps->tcps_sc[i], sizeof (tcp_stats_cpu_t));
3881 	kmem_free(tcps->tcps_sc, max_ncpus * sizeof (tcp_stats_cpu_t *));
3882 
3883 	kmem_free(tcps->tcps_propinfo_tbl,
3884 	    tcp_propinfo_count * sizeof (mod_prop_info_t));
3885 	tcps->tcps_propinfo_tbl = NULL;
3886 
3887 	for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) {
3888 		ASSERT(tcps->tcps_bind_fanout[i].tf_tcp == NULL);
3889 		mutex_destroy(&tcps->tcps_bind_fanout[i].tf_lock);
3890 	}
3891 
3892 	for (i = 0; i < TCP_ACCEPTOR_FANOUT_SIZE; i++) {
3893 		ASSERT(tcps->tcps_acceptor_fanout[i].tf_tcp == NULL);
3894 		mutex_destroy(&tcps->tcps_acceptor_fanout[i].tf_lock);
3895 	}
3896 
3897 	kmem_free(tcps->tcps_bind_fanout, sizeof (tf_t) * TCP_BIND_FANOUT_SIZE);
3898 	tcps->tcps_bind_fanout = NULL;
3899 
3900 	kmem_free(tcps->tcps_acceptor_fanout, sizeof (tf_t) *
3901 	    TCP_ACCEPTOR_FANOUT_SIZE);
3902 	tcps->tcps_acceptor_fanout = NULL;
3903 
3904 	mutex_destroy(&tcps->tcps_iss_key_lock);
3905 	mutex_destroy(&tcps->tcps_epriv_port_lock);
3906 
3907 	ip_drop_unregister(&tcps->tcps_dropper);
3908 
3909 	tcp_kstat2_fini(stackid, tcps->tcps_kstat);
3910 	tcps->tcps_kstat = NULL;
3911 
3912 	tcp_kstat_fini(stackid, tcps->tcps_mibkp);
3913 	tcps->tcps_mibkp = NULL;
3914 
3915 	ldi_ident_release(tcps->tcps_ldi_ident);
3916 	kmem_free(tcps, sizeof (*tcps));
3917 }
3918 
3919 /*
3920  * Generate ISS, taking into account NDD changes may happen halfway through.
3921  * (If the iss is not zero, set it.)
3922  */
3923 
3924 static void
3925 tcp_iss_init(tcp_t *tcp)
3926 {
3927 	MD5_CTX context;
3928 	struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg;
3929 	uint32_t answer[4];
3930 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3931 	conn_t		*connp = tcp->tcp_connp;
3932 
3933 	tcps->tcps_iss_incr_extra += (tcps->tcps_iss_incr >> 1);
3934 	tcp->tcp_iss = tcps->tcps_iss_incr_extra;
3935 	switch (tcps->tcps_strong_iss) {
3936 	case 2:
3937 		mutex_enter(&tcps->tcps_iss_key_lock);
3938 		context = tcps->tcps_iss_key;
3939 		mutex_exit(&tcps->tcps_iss_key_lock);
3940 		arg.ports = connp->conn_ports;
3941 		arg.src = connp->conn_laddr_v6;
3942 		arg.dst = connp->conn_faddr_v6;
3943 		MD5Update(&context, (uchar_t *)&arg, sizeof (arg));
3944 		MD5Final((uchar_t *)answer, &context);
3945 		tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3];
3946 		/*
3947 		 * Now that we've hashed into a unique per-connection sequence
3948 		 * space, add a random increment per strong_iss == 1.  So I
3949 		 * guess we'll have to...
3950 		 */
3951 		/* FALLTHRU */
3952 	case 1:
3953 		tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random();
3954 		break;
3955 	default:
3956 		tcp->tcp_iss += (uint32_t)gethrestime_sec() *
3957 		    tcps->tcps_iss_incr;
3958 		break;
3959 	}
3960 	tcp->tcp_valid_bits = TCP_ISS_VALID;
3961 	tcp->tcp_fss = tcp->tcp_iss - 1;
3962 	tcp->tcp_suna = tcp->tcp_iss;
3963 	tcp->tcp_snxt = tcp->tcp_iss + 1;
3964 	tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
3965 	tcp->tcp_csuna = tcp->tcp_snxt;
3966 }
3967 
3968 /*
3969  * tcp_{set,clr}qfull() functions are used to either set or clear QFULL
3970  * on the specified backing STREAMS q. Note, the caller may make the
3971  * decision to call based on the tcp_t.tcp_flow_stopped value which
3972  * when check outside the q's lock is only an advisory check ...
3973  */
3974 void
3975 tcp_setqfull(tcp_t *tcp)
3976 {
3977 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3978 	conn_t	*connp = tcp->tcp_connp;
3979 
3980 	if (tcp->tcp_closed)
3981 		return;
3982 
3983 	conn_setqfull(connp, &tcp->tcp_flow_stopped);
3984 	if (tcp->tcp_flow_stopped)
3985 		TCP_STAT(tcps, tcp_flwctl_on);
3986 }
3987 
3988 void
3989 tcp_clrqfull(tcp_t *tcp)
3990 {
3991 	conn_t  *connp = tcp->tcp_connp;
3992 
3993 	if (tcp->tcp_closed)
3994 		return;
3995 	conn_clrqfull(connp, &tcp->tcp_flow_stopped);
3996 }
3997 
3998 static int
3999 tcp_squeue_switch(int val)
4000 {
4001 	int rval = SQ_FILL;
4002 
4003 	switch (val) {
4004 	case 1:
4005 		rval = SQ_NODRAIN;
4006 		break;
4007 	case 2:
4008 		rval = SQ_PROCESS;
4009 		break;
4010 	default:
4011 		break;
4012 	}
4013 	return (rval);
4014 }
4015 
4016 /*
4017  * This is called once for each squeue - globally for all stack
4018  * instances.
4019  */
4020 static void
4021 tcp_squeue_add(squeue_t *sqp)
4022 {
4023 	tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc(
4024 	    sizeof (tcp_squeue_priv_t), KM_SLEEP);
4025 
4026 	*squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait;
4027 	if (tcp_free_list_max_cnt == 0) {
4028 		int tcp_ncpus = ((boot_max_ncpus == -1) ?
4029 		    max_ncpus : boot_max_ncpus);
4030 
4031 		/*
4032 		 * Limit number of entries to 1% of availble memory / tcp_ncpus
4033 		 */
4034 		tcp_free_list_max_cnt = (freemem * PAGESIZE) /
4035 		    (tcp_ncpus * sizeof (tcp_t) * 100);
4036 	}
4037 	tcp_time_wait->tcp_free_list_cnt = 0;
4038 }
4039 /*
4040  * Return unix error is tli error is TSYSERR, otherwise return a negative
4041  * tli error.
4042  */
4043 int
4044 tcp_do_bind(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr,
4045     boolean_t bind_to_req_port_only)
4046 {
4047 	int error;
4048 	tcp_t *tcp = connp->conn_tcp;
4049 
4050 	if (tcp->tcp_state >= TCPS_BOUND) {
4051 		if (connp->conn_debug) {
4052 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
4053 			    "tcp_bind: bad state, %d", tcp->tcp_state);
4054 		}
4055 		return (-TOUTSTATE);
4056 	}
4057 
4058 	error = tcp_bind_check(connp, sa, len, cr, bind_to_req_port_only);
4059 	if (error != 0)
4060 		return (error);
4061 
4062 	ASSERT(tcp->tcp_state == TCPS_BOUND);
4063 	tcp->tcp_conn_req_max = 0;
4064 	return (0);
4065 }
4066 
4067 /*
4068  * If the return value from this function is positive, it's a UNIX error.
4069  * Otherwise, if it's negative, then the absolute value is a TLI error.
4070  * the TPI routine tcp_tpi_connect() is a wrapper function for this.
4071  */
4072 int
4073 tcp_do_connect(conn_t *connp, const struct sockaddr *sa, socklen_t len,
4074     cred_t *cr, pid_t pid)
4075 {
4076 	tcp_t		*tcp = connp->conn_tcp;
4077 	sin_t		*sin = (sin_t *)sa;
4078 	sin6_t		*sin6 = (sin6_t *)sa;
4079 	ipaddr_t	*dstaddrp;
4080 	in_port_t	dstport;
4081 	uint_t		srcid;
4082 	int		error;
4083 	uint32_t	mss;
4084 	mblk_t		*syn_mp;
4085 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4086 	int32_t		oldstate;
4087 	ip_xmit_attr_t	*ixa = connp->conn_ixa;
4088 
4089 	oldstate = tcp->tcp_state;
4090 
4091 	switch (len) {
4092 	default:
4093 		/*
4094 		 * Should never happen
4095 		 */
4096 		return (EINVAL);
4097 
4098 	case sizeof (sin_t):
4099 		sin = (sin_t *)sa;
4100 		if (sin->sin_port == 0) {
4101 			return (-TBADADDR);
4102 		}
4103 		if (connp->conn_ipv6_v6only) {
4104 			return (EAFNOSUPPORT);
4105 		}
4106 		break;
4107 
4108 	case sizeof (sin6_t):
4109 		sin6 = (sin6_t *)sa;
4110 		if (sin6->sin6_port == 0) {
4111 			return (-TBADADDR);
4112 		}
4113 		break;
4114 	}
4115 	/*
4116 	 * If we're connecting to an IPv4-mapped IPv6 address, we need to
4117 	 * make sure that the conn_ipversion is IPV4_VERSION.  We
4118 	 * need to this before we call tcp_bindi() so that the port lookup
4119 	 * code will look for ports in the correct port space (IPv4 and
4120 	 * IPv6 have separate port spaces).
4121 	 */
4122 	if (connp->conn_family == AF_INET6 &&
4123 	    connp->conn_ipversion == IPV6_VERSION &&
4124 	    IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
4125 		if (connp->conn_ipv6_v6only)
4126 			return (EADDRNOTAVAIL);
4127 
4128 		connp->conn_ipversion = IPV4_VERSION;
4129 	}
4130 
4131 	switch (tcp->tcp_state) {
4132 	case TCPS_LISTEN:
4133 		/*
4134 		 * Listening sockets are not allowed to issue connect().
4135 		 */
4136 		if (IPCL_IS_NONSTR(connp))
4137 			return (EOPNOTSUPP);
4138 		/* FALLTHRU */
4139 	case TCPS_IDLE:
4140 		/*
4141 		 * We support quick connect, refer to comments in
4142 		 * tcp_connect_*()
4143 		 */
4144 		/* FALLTHRU */
4145 	case TCPS_BOUND:
4146 		break;
4147 	default:
4148 		return (-TOUTSTATE);
4149 	}
4150 
4151 	/*
4152 	 * We update our cred/cpid based on the caller of connect
4153 	 */
4154 	if (connp->conn_cred != cr) {
4155 		crhold(cr);
4156 		crfree(connp->conn_cred);
4157 		connp->conn_cred = cr;
4158 	}
4159 	connp->conn_cpid = pid;
4160 
4161 	/* Cache things in the ixa without any refhold */
4162 	ASSERT(!(ixa->ixa_free_flags & IXA_FREE_CRED));
4163 	ixa->ixa_cred = cr;
4164 	ixa->ixa_cpid = pid;
4165 	if (is_system_labeled()) {
4166 		/* We need to restart with a label based on the cred */
4167 		ip_xmit_attr_restore_tsl(ixa, ixa->ixa_cred);
4168 	}
4169 
4170 	if (connp->conn_family == AF_INET6) {
4171 		if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
4172 			error = tcp_connect_ipv6(tcp, &sin6->sin6_addr,
4173 			    sin6->sin6_port, sin6->sin6_flowinfo,
4174 			    sin6->__sin6_src_id, sin6->sin6_scope_id);
4175 		} else {
4176 			/*
4177 			 * Destination adress is mapped IPv6 address.
4178 			 * Source bound address should be unspecified or
4179 			 * IPv6 mapped address as well.
4180 			 */
4181 			if (!IN6_IS_ADDR_UNSPECIFIED(
4182 			    &connp->conn_bound_addr_v6) &&
4183 			    !IN6_IS_ADDR_V4MAPPED(&connp->conn_bound_addr_v6)) {
4184 				return (EADDRNOTAVAIL);
4185 			}
4186 			dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr));
4187 			dstport = sin6->sin6_port;
4188 			srcid = sin6->__sin6_src_id;
4189 			error = tcp_connect_ipv4(tcp, dstaddrp, dstport,
4190 			    srcid);
4191 		}
4192 	} else {
4193 		dstaddrp = &sin->sin_addr.s_addr;
4194 		dstport = sin->sin_port;
4195 		srcid = 0;
4196 		error = tcp_connect_ipv4(tcp, dstaddrp, dstport, srcid);
4197 	}
4198 
4199 	if (error != 0)
4200 		goto connect_failed;
4201 
4202 	CL_INET_CONNECT(connp, B_TRUE, error);
4203 	if (error != 0)
4204 		goto connect_failed;
4205 
4206 	/* connect succeeded */
4207 	TCPS_BUMP_MIB(tcps, tcpActiveOpens);
4208 	tcp->tcp_active_open = 1;
4209 
4210 	/*
4211 	 * tcp_set_destination() does not adjust for TCP/IP header length.
4212 	 */
4213 	mss = tcp->tcp_mss - connp->conn_ht_iphc_len;
4214 
4215 	/*
4216 	 * Just make sure our rwnd is at least rcvbuf * MSS large, and round up
4217 	 * to the nearest MSS.
4218 	 *
4219 	 * We do the round up here because we need to get the interface MTU
4220 	 * first before we can do the round up.
4221 	 */
4222 	tcp->tcp_rwnd = connp->conn_rcvbuf;
4223 	tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss),
4224 	    tcps->tcps_recv_hiwat_minmss * mss);
4225 	connp->conn_rcvbuf = tcp->tcp_rwnd;
4226 	tcp_set_ws_value(tcp);
4227 	tcp->tcp_tcpha->tha_win = htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws);
4228 	if (tcp->tcp_rcv_ws > 0 || tcps->tcps_wscale_always)
4229 		tcp->tcp_snd_ws_ok = B_TRUE;
4230 
4231 	/*
4232 	 * Set tcp_snd_ts_ok to true
4233 	 * so that tcp_xmit_mp will
4234 	 * include the timestamp
4235 	 * option in the SYN segment.
4236 	 */
4237 	if (tcps->tcps_tstamp_always ||
4238 	    (tcp->tcp_rcv_ws && tcps->tcps_tstamp_if_wscale)) {
4239 		tcp->tcp_snd_ts_ok = B_TRUE;
4240 	}
4241 
4242 	/*
4243 	 * Note that tcp_snd_sack_ok can be set in tcp_set_destination() if
4244 	 * the SACK metric is set.  So here we just check the per stack SACK
4245 	 * permitted param.
4246 	 */
4247 	if (tcps->tcps_sack_permitted == 2) {
4248 		ASSERT(tcp->tcp_num_sack_blk == 0);
4249 		ASSERT(tcp->tcp_notsack_list == NULL);
4250 		tcp->tcp_snd_sack_ok = B_TRUE;
4251 	}
4252 
4253 	/*
4254 	 * Should we use ECN?  Note that the current
4255 	 * default value (SunOS 5.9) of tcp_ecn_permitted
4256 	 * is 1.  The reason for doing this is that there
4257 	 * are equipments out there that will drop ECN
4258 	 * enabled IP packets.  Setting it to 1 avoids
4259 	 * compatibility problems.
4260 	 */
4261 	if (tcps->tcps_ecn_permitted == 2)
4262 		tcp->tcp_ecn_ok = B_TRUE;
4263 
4264 	/* Trace change from BOUND -> SYN_SENT here */
4265 	DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
4266 	    connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL,
4267 	    int32_t, TCPS_BOUND);
4268 
4269 	TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
4270 	syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL,
4271 	    tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
4272 	if (syn_mp != NULL) {
4273 		/*
4274 		 * We must bump the generation before sending the syn
4275 		 * to ensure that we use the right generation in case
4276 		 * this thread issues a "connected" up call.
4277 		 */
4278 		SOCK_CONNID_BUMP(tcp->tcp_connid);
4279 		/*
4280 		 * DTrace sending the first SYN as a
4281 		 * tcp:::connect-request event.
4282 		 */
4283 		DTRACE_TCP5(connect__request, mblk_t *, NULL,
4284 		    ip_xmit_attr_t *, connp->conn_ixa,
4285 		    void_ip_t *, syn_mp->b_rptr, tcp_t *, tcp,
4286 		    tcph_t *,
4287 		    &syn_mp->b_rptr[connp->conn_ixa->ixa_ip_hdr_length]);
4288 		tcp_send_data(tcp, syn_mp);
4289 	}
4290 
4291 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
4292 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
4293 	return (0);
4294 
4295 connect_failed:
4296 	connp->conn_faddr_v6 = ipv6_all_zeros;
4297 	connp->conn_fport = 0;
4298 	tcp->tcp_state = oldstate;
4299 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
4300 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
4301 	return (error);
4302 }
4303 
4304 int
4305 tcp_do_listen(conn_t *connp, struct sockaddr *sa, socklen_t len,
4306     int backlog, cred_t *cr, boolean_t bind_to_req_port_only)
4307 {
4308 	tcp_t		*tcp = connp->conn_tcp;
4309 	int		error = 0;
4310 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4311 	int32_t		oldstate;
4312 
4313 	/* All Solaris components should pass a cred for this operation. */
4314 	ASSERT(cr != NULL);
4315 
4316 	if (tcp->tcp_state >= TCPS_BOUND) {
4317 		if ((tcp->tcp_state == TCPS_BOUND ||
4318 		    tcp->tcp_state == TCPS_LISTEN) && backlog > 0) {
4319 			/*
4320 			 * Handle listen() increasing backlog.
4321 			 * This is more "liberal" then what the TPI spec
4322 			 * requires but is needed to avoid a t_unbind
4323 			 * when handling listen() since the port number
4324 			 * might be "stolen" between the unbind and bind.
4325 			 */
4326 			goto do_listen;
4327 		}
4328 		if (connp->conn_debug) {
4329 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
4330 			    "tcp_listen: bad state, %d", tcp->tcp_state);
4331 		}
4332 		return (-TOUTSTATE);
4333 	} else {
4334 		if (sa == NULL) {
4335 			sin6_t	addr;
4336 			sin_t *sin;
4337 			sin6_t *sin6;
4338 
4339 			ASSERT(IPCL_IS_NONSTR(connp));
4340 			/* Do an implicit bind: Request for a generic port. */
4341 			if (connp->conn_family == AF_INET) {
4342 				len = sizeof (sin_t);
4343 				sin = (sin_t *)&addr;
4344 				*sin = sin_null;
4345 				sin->sin_family = AF_INET;
4346 			} else {
4347 				ASSERT(connp->conn_family == AF_INET6);
4348 				len = sizeof (sin6_t);
4349 				sin6 = (sin6_t *)&addr;
4350 				*sin6 = sin6_null;
4351 				sin6->sin6_family = AF_INET6;
4352 			}
4353 			sa = (struct sockaddr *)&addr;
4354 		}
4355 
4356 		error = tcp_bind_check(connp, sa, len, cr,
4357 		    bind_to_req_port_only);
4358 		if (error)
4359 			return (error);
4360 		/* Fall through and do the fanout insertion */
4361 	}
4362 
4363 do_listen:
4364 	ASSERT(tcp->tcp_state == TCPS_BOUND || tcp->tcp_state == TCPS_LISTEN);
4365 	tcp->tcp_conn_req_max = backlog;
4366 	if (tcp->tcp_conn_req_max) {
4367 		if (tcp->tcp_conn_req_max < tcps->tcps_conn_req_min)
4368 			tcp->tcp_conn_req_max = tcps->tcps_conn_req_min;
4369 		if (tcp->tcp_conn_req_max > tcps->tcps_conn_req_max_q)
4370 			tcp->tcp_conn_req_max = tcps->tcps_conn_req_max_q;
4371 		/*
4372 		 * If this is a listener, do not reset the eager list
4373 		 * and other stuffs.  Note that we don't check if the
4374 		 * existing eager list meets the new tcp_conn_req_max
4375 		 * requirement.
4376 		 */
4377 		if (tcp->tcp_state != TCPS_LISTEN) {
4378 			tcp->tcp_state = TCPS_LISTEN;
4379 			DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
4380 			    connp->conn_ixa, void, NULL, tcp_t *, tcp,
4381 			    void, NULL, int32_t, TCPS_BOUND);
4382 			/* Initialize the chain. Don't need the eager_lock */
4383 			tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
4384 			tcp->tcp_eager_next_drop_q0 = tcp;
4385 			tcp->tcp_eager_prev_drop_q0 = tcp;
4386 			tcp->tcp_second_ctimer_threshold =
4387 			    tcps->tcps_ip_abort_linterval;
4388 		}
4389 	}
4390 
4391 	/*
4392 	 * We need to make sure that the conn_recv is set to a non-null
4393 	 * value before we insert the conn into the classifier table.
4394 	 * This is to avoid a race with an incoming packet which does an
4395 	 * ipcl_classify().
4396 	 * We initially set it to tcp_input_listener_unbound to try to
4397 	 * pick a good squeue for the listener when the first SYN arrives.
4398 	 * tcp_input_listener_unbound sets it to tcp_input_listener on that
4399 	 * first SYN.
4400 	 */
4401 	connp->conn_recv = tcp_input_listener_unbound;
4402 
4403 	/* Insert the listener in the classifier table */
4404 	error = ip_laddr_fanout_insert(connp);
4405 	if (error != 0) {
4406 		/* Undo the bind - release the port number */
4407 		oldstate = tcp->tcp_state;
4408 		tcp->tcp_state = TCPS_IDLE;
4409 		DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
4410 		    connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL,
4411 		    int32_t, oldstate);
4412 		connp->conn_bound_addr_v6 = ipv6_all_zeros;
4413 
4414 		connp->conn_laddr_v6 = ipv6_all_zeros;
4415 		connp->conn_saddr_v6 = ipv6_all_zeros;
4416 		connp->conn_ports = 0;
4417 
4418 		if (connp->conn_anon_port) {
4419 			zone_t		*zone;
4420 
4421 			zone = crgetzone(cr);
4422 			connp->conn_anon_port = B_FALSE;
4423 			(void) tsol_mlp_anon(zone, connp->conn_mlp_type,
4424 			    connp->conn_proto, connp->conn_lport, B_FALSE);
4425 		}
4426 		connp->conn_mlp_type = mlptSingle;
4427 
4428 		tcp_bind_hash_remove(tcp);
4429 		return (error);
4430 	} else {
4431 		/*
4432 		 * If there is a connection limit, allocate and initialize
4433 		 * the counter struct.  Note that since listen can be called
4434 		 * multiple times, the struct may have been allready allocated.
4435 		 */
4436 		if (!list_is_empty(&tcps->tcps_listener_conf) &&
4437 		    tcp->tcp_listen_cnt == NULL) {
4438 			tcp_listen_cnt_t *tlc;
4439 			uint32_t ratio;
4440 
4441 			ratio = tcp_find_listener_conf(tcps,
4442 			    ntohs(connp->conn_lport));
4443 			if (ratio != 0) {
4444 				uint32_t mem_ratio, tot_buf;
4445 
4446 				tlc = kmem_alloc(sizeof (tcp_listen_cnt_t),
4447 				    KM_SLEEP);
4448 				/*
4449 				 * Calculate the connection limit based on
4450 				 * the configured ratio and maxusers.  Maxusers
4451 				 * are calculated based on memory size,
4452 				 * ~ 1 user per MB.  Note that the conn_rcvbuf
4453 				 * and conn_sndbuf may change after a
4454 				 * connection is accepted.  So what we have
4455 				 * is only an approximation.
4456 				 */
4457 				if ((tot_buf = connp->conn_rcvbuf +
4458 				    connp->conn_sndbuf) < MB) {
4459 					mem_ratio = MB / tot_buf;
4460 					tlc->tlc_max = maxusers / ratio *
4461 					    mem_ratio;
4462 				} else {
4463 					mem_ratio = tot_buf / MB;
4464 					tlc->tlc_max = maxusers / ratio /
4465 					    mem_ratio;
4466 				}
4467 				/* At least we should allow two connections! */
4468 				if (tlc->tlc_max <= tcp_min_conn_listener)
4469 					tlc->tlc_max = tcp_min_conn_listener;
4470 				tlc->tlc_cnt = 1;
4471 				tlc->tlc_drop = 0;
4472 				tcp->tcp_listen_cnt = tlc;
4473 			}
4474 		}
4475 	}
4476 	return (error);
4477 }
4478