1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #include <sys/types.h> 29 #include <sys/stream.h> 30 #include <sys/strsun.h> 31 #include <sys/strsubr.h> 32 #include <sys/stropts.h> 33 #include <sys/strlog.h> 34 #include <sys/strsun.h> 35 #define _SUN_TPI_VERSION 2 36 #include <sys/tihdr.h> 37 #include <sys/timod.h> 38 #include <sys/ddi.h> 39 #include <sys/sunddi.h> 40 #include <sys/suntpi.h> 41 #include <sys/xti_inet.h> 42 #include <sys/cmn_err.h> 43 #include <sys/debug.h> 44 #include <sys/sdt.h> 45 #include <sys/vtrace.h> 46 #include <sys/kmem.h> 47 #include <sys/ethernet.h> 48 #include <sys/cpuvar.h> 49 #include <sys/dlpi.h> 50 #include <sys/multidata.h> 51 #include <sys/multidata_impl.h> 52 #include <sys/pattr.h> 53 #include <sys/policy.h> 54 #include <sys/priv.h> 55 #include <sys/zone.h> 56 #include <sys/sunldi.h> 57 58 #include <sys/errno.h> 59 #include <sys/signal.h> 60 #include <sys/socket.h> 61 #include <sys/sockio.h> 62 #include <sys/isa_defs.h> 63 #include <sys/md5.h> 64 #include <sys/random.h> 65 #include <sys/sodirect.h> 66 #include <sys/uio.h> 67 #include <sys/systm.h> 68 #include <netinet/in.h> 69 #include <netinet/tcp.h> 70 #include <netinet/ip6.h> 71 #include <netinet/icmp6.h> 72 #include <net/if.h> 73 #include <net/route.h> 74 #include <inet/ipsec_impl.h> 75 76 #include <inet/common.h> 77 #include <inet/ip.h> 78 #include <inet/ip_impl.h> 79 #include <inet/ip6.h> 80 #include <inet/ip_ndp.h> 81 #include <inet/mi.h> 82 #include <inet/mib2.h> 83 #include <inet/nd.h> 84 #include <inet/optcom.h> 85 #include <inet/snmpcom.h> 86 #include <inet/kstatcom.h> 87 #include <inet/tcp.h> 88 #include <inet/tcp_impl.h> 89 #include <net/pfkeyv2.h> 90 #include <inet/ipsec_info.h> 91 #include <inet/ipdrop.h> 92 93 #include <inet/ipclassifier.h> 94 #include <inet/ip_ire.h> 95 #include <inet/ip_ftable.h> 96 #include <inet/ip_if.h> 97 #include <inet/ipp_common.h> 98 #include <inet/ip_netinfo.h> 99 #include <sys/squeue_impl.h> 100 #include <sys/squeue.h> 101 #include <inet/kssl/ksslapi.h> 102 #include <sys/tsol/label.h> 103 #include <sys/tsol/tnet.h> 104 #include <rpc/pmap_prot.h> 105 #include <sys/callo.h> 106 107 /* 108 * TCP Notes: aka FireEngine Phase I (PSARC 2002/433) 109 * 110 * (Read the detailed design doc in PSARC case directory) 111 * 112 * The entire tcp state is contained in tcp_t and conn_t structure 113 * which are allocated in tandem using ipcl_conn_create() and passing 114 * IPCL_CONNTCP as a flag. We use 'conn_ref' and 'conn_lock' to protect 115 * the references on the tcp_t. The tcp_t structure is never compressed 116 * and packets always land on the correct TCP perimeter from the time 117 * eager is created till the time tcp_t dies (as such the old mentat 118 * TCP global queue is not used for detached state and no IPSEC checking 119 * is required). The global queue is still allocated to send out resets 120 * for connection which have no listeners and IP directly calls 121 * tcp_xmit_listeners_reset() which does any policy check. 122 * 123 * Protection and Synchronisation mechanism: 124 * 125 * The tcp data structure does not use any kind of lock for protecting 126 * its state but instead uses 'squeues' for mutual exclusion from various 127 * read and write side threads. To access a tcp member, the thread should 128 * always be behind squeue (via squeue_enter with flags as SQ_FILL, SQ_PROCESS, 129 * or SQ_NODRAIN). Since the squeues allow a direct function call, caller 130 * can pass any tcp function having prototype of edesc_t as argument 131 * (different from traditional STREAMs model where packets come in only 132 * designated entry points). The list of functions that can be directly 133 * called via squeue are listed before the usual function prototype. 134 * 135 * Referencing: 136 * 137 * TCP is MT-Hot and we use a reference based scheme to make sure that the 138 * tcp structure doesn't disappear when its needed. When the application 139 * creates an outgoing connection or accepts an incoming connection, we 140 * start out with 2 references on 'conn_ref'. One for TCP and one for IP. 141 * The IP reference is just a symbolic reference since ip_tcpclose() 142 * looks at tcp structure after tcp_close_output() returns which could 143 * have dropped the last TCP reference. So as long as the connection is 144 * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the 145 * conn_t. The classifier puts its own reference when the connection is 146 * inserted in listen or connected hash. Anytime a thread needs to enter 147 * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr 148 * on write side or by doing a classify on read side and then puts a 149 * reference on the conn before doing squeue_enter/tryenter/fill. For 150 * read side, the classifier itself puts the reference under fanout lock 151 * to make sure that tcp can't disappear before it gets processed. The 152 * squeue will drop this reference automatically so the called function 153 * doesn't have to do a DEC_REF. 154 * 155 * Opening a new connection: 156 * 157 * The outgoing connection open is pretty simple. tcp_open() does the 158 * work in creating the conn/tcp structure and initializing it. The 159 * squeue assignment is done based on the CPU the application 160 * is running on. So for outbound connections, processing is always done 161 * on application CPU which might be different from the incoming CPU 162 * being interrupted by the NIC. An optimal way would be to figure out 163 * the NIC <-> CPU binding at listen time, and assign the outgoing 164 * connection to the squeue attached to the CPU that will be interrupted 165 * for incoming packets (we know the NIC based on the bind IP address). 166 * This might seem like a problem if more data is going out but the 167 * fact is that in most cases the transmit is ACK driven transmit where 168 * the outgoing data normally sits on TCP's xmit queue waiting to be 169 * transmitted. 170 * 171 * Accepting a connection: 172 * 173 * This is a more interesting case because of various races involved in 174 * establishing a eager in its own perimeter. Read the meta comment on 175 * top of tcp_conn_request(). But briefly, the squeue is picked by 176 * ip_tcp_input()/ip_fanout_tcp_v6() based on the interrupted CPU. 177 * 178 * Closing a connection: 179 * 180 * The close is fairly straight forward. tcp_close() calls tcp_close_output() 181 * via squeue to do the close and mark the tcp as detached if the connection 182 * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its 183 * reference but tcp_close() drop IP's reference always. So if tcp was 184 * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP 185 * and 1 because it is in classifier's connected hash. This is the condition 186 * we use to determine that its OK to clean up the tcp outside of squeue 187 * when time wait expires (check the ref under fanout and conn_lock and 188 * if it is 2, remove it from fanout hash and kill it). 189 * 190 * Although close just drops the necessary references and marks the 191 * tcp_detached state, tcp_close needs to know the tcp_detached has been 192 * set (under squeue) before letting the STREAM go away (because a 193 * inbound packet might attempt to go up the STREAM while the close 194 * has happened and tcp_detached is not set). So a special lock and 195 * flag is used along with a condition variable (tcp_closelock, tcp_closed, 196 * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked 197 * tcp_detached. 198 * 199 * Special provisions and fast paths: 200 * 201 * We make special provision for (AF_INET, SOCK_STREAM) sockets which 202 * can't have 'ipv6_recvpktinfo' set and for these type of sockets, IP 203 * will never send a M_CTL to TCP. As such, ip_tcp_input() which handles 204 * all TCP packets from the wire makes a IPCL_IS_TCP4_CONNECTED_NO_POLICY 205 * check to send packets directly to tcp_rput_data via squeue. Everyone 206 * else comes through tcp_input() on the read side. 207 * 208 * We also make special provisions for sockfs by marking tcp_issocket 209 * whenever we have only sockfs on top of TCP. This allows us to skip 210 * putting the tcp in acceptor hash since a sockfs listener can never 211 * become acceptor and also avoid allocating a tcp_t for acceptor STREAM 212 * since eager has already been allocated and the accept now happens 213 * on acceptor STREAM. There is a big blob of comment on top of 214 * tcp_conn_request explaining the new accept. When socket is POP'd, 215 * sockfs sends us an ioctl to mark the fact and we go back to old 216 * behaviour. Once tcp_issocket is unset, its never set for the 217 * life of that connection. 218 * 219 * In support of on-board asynchronous DMA hardware (e.g. Intel I/OAT) 220 * two consoldiation private KAPIs are used to enqueue M_DATA mblk_t's 221 * directly to the socket (sodirect) and start an asynchronous copyout 222 * to a user-land receive-side buffer (uioa) when a blocking socket read 223 * (e.g. read, recv, ...) is pending. 224 * 225 * This is accomplished when tcp_issocket is set and tcp_sodirect is not 226 * NULL so points to an sodirect_t and if marked enabled then we enqueue 227 * all mblk_t's directly to the socket. 228 * 229 * Further, if the sodirect_t sod_uioa and if marked enabled (due to a 230 * blocking socket read, e.g. user-land read, recv, ...) then an asynchronous 231 * copyout will be started directly to the user-land uio buffer. Also, as we 232 * have a pending read, TCP's push logic can take into account the number of 233 * bytes to be received and only awake the blocked read()er when the uioa_t 234 * byte count has been satisfied. 235 * 236 * IPsec notes : 237 * 238 * Since a packet is always executed on the correct TCP perimeter 239 * all IPsec processing is defered to IP including checking new 240 * connections and setting IPSEC policies for new connection. The 241 * only exception is tcp_xmit_listeners_reset() which is called 242 * directly from IP and needs to policy check to see if TH_RST 243 * can be sent out. 244 * 245 * PFHooks notes : 246 * 247 * For mdt case, one meta buffer contains multiple packets. Mblks for every 248 * packet are assembled and passed to the hooks. When packets are blocked, 249 * or boundary of any packet is changed, the mdt processing is stopped, and 250 * packets of the meta buffer are send to the IP path one by one. 251 */ 252 253 /* 254 * Values for squeue switch: 255 * 1: SQ_NODRAIN 256 * 2: SQ_PROCESS 257 * 3: SQ_FILL 258 */ 259 int tcp_squeue_wput = 2; /* /etc/systems */ 260 int tcp_squeue_flag; 261 262 /* 263 * Macros for sodirect: 264 * 265 * SOD_PTR_ENTER(tcp, sodp) - for the tcp_t pointer "tcp" set the 266 * sodirect_t pointer "sodp" to the socket/tcp shared sodirect_t 267 * if it exists and is enabled, else to NULL. Note, in the current 268 * sodirect implementation the sod_lockp must not be held across any 269 * STREAMS call (e.g. putnext) else a "recursive mutex_enter" PANIC 270 * will result as sod_lockp is the streamhead stdata.sd_lock. 271 * 272 * SOD_NOT_ENABLED(tcp) - return true if not a sodirect tcp_t or the 273 * sodirect_t isn't enabled, usefull for ASSERT()ing that a recieve 274 * side tcp code path dealing with a tcp_rcv_list or putnext() isn't 275 * being used when sodirect code paths should be. 276 */ 277 278 #define SOD_PTR_ENTER(tcp, sodp) \ 279 (sodp) = (tcp)->tcp_sodirect; \ 280 \ 281 if ((sodp) != NULL) { \ 282 mutex_enter((sodp)->sod_lockp); \ 283 if (!((sodp)->sod_state & SOD_ENABLED)) { \ 284 mutex_exit((sodp)->sod_lockp); \ 285 (sodp) = NULL; \ 286 } \ 287 } 288 289 #define SOD_NOT_ENABLED(tcp) \ 290 ((tcp)->tcp_sodirect == NULL || \ 291 !((tcp)->tcp_sodirect->sod_state & SOD_ENABLED)) 292 293 /* 294 * This controls how tiny a write must be before we try to copy it 295 * into the the mblk on the tail of the transmit queue. Not much 296 * speedup is observed for values larger than sixteen. Zero will 297 * disable the optimisation. 298 */ 299 int tcp_tx_pull_len = 16; 300 301 /* 302 * TCP Statistics. 303 * 304 * How TCP statistics work. 305 * 306 * There are two types of statistics invoked by two macros. 307 * 308 * TCP_STAT(name) does non-atomic increment of a named stat counter. It is 309 * supposed to be used in non MT-hot paths of the code. 310 * 311 * TCP_DBGSTAT(name) does atomic increment of a named stat counter. It is 312 * supposed to be used for DEBUG purposes and may be used on a hot path. 313 * 314 * Both TCP_STAT and TCP_DBGSTAT counters are available using kstat 315 * (use "kstat tcp" to get them). 316 * 317 * There is also additional debugging facility that marks tcp_clean_death() 318 * instances and saves them in tcp_t structure. It is triggered by 319 * TCP_TAG_CLEAN_DEATH define. Also, there is a global array of counters for 320 * tcp_clean_death() calls that counts the number of times each tag was hit. It 321 * is triggered by TCP_CLD_COUNTERS define. 322 * 323 * How to add new counters. 324 * 325 * 1) Add a field in the tcp_stat structure describing your counter. 326 * 2) Add a line in the template in tcp_kstat2_init() with the name 327 * of the counter. 328 * 329 * IMPORTANT!! - make sure that both are in sync !! 330 * 3) Use either TCP_STAT or TCP_DBGSTAT with the name. 331 * 332 * Please avoid using private counters which are not kstat-exported. 333 * 334 * TCP_TAG_CLEAN_DEATH set to 1 enables tagging of tcp_clean_death() instances 335 * in tcp_t structure. 336 * 337 * TCP_MAX_CLEAN_DEATH_TAG is the maximum number of possible clean death tags. 338 */ 339 340 #ifndef TCP_DEBUG_COUNTER 341 #ifdef DEBUG 342 #define TCP_DEBUG_COUNTER 1 343 #else 344 #define TCP_DEBUG_COUNTER 0 345 #endif 346 #endif 347 348 #define TCP_CLD_COUNTERS 0 349 350 #define TCP_TAG_CLEAN_DEATH 1 351 #define TCP_MAX_CLEAN_DEATH_TAG 32 352 353 #ifdef lint 354 static int _lint_dummy_; 355 #endif 356 357 #if TCP_CLD_COUNTERS 358 static uint_t tcp_clean_death_stat[TCP_MAX_CLEAN_DEATH_TAG]; 359 #define TCP_CLD_STAT(x) tcp_clean_death_stat[x]++ 360 #elif defined(lint) 361 #define TCP_CLD_STAT(x) ASSERT(_lint_dummy_ == 0); 362 #else 363 #define TCP_CLD_STAT(x) 364 #endif 365 366 #if TCP_DEBUG_COUNTER 367 #define TCP_DBGSTAT(tcps, x) \ 368 atomic_add_64(&((tcps)->tcps_statistics.x.value.ui64), 1) 369 #define TCP_G_DBGSTAT(x) \ 370 atomic_add_64(&(tcp_g_statistics.x.value.ui64), 1) 371 #elif defined(lint) 372 #define TCP_DBGSTAT(tcps, x) ASSERT(_lint_dummy_ == 0); 373 #define TCP_G_DBGSTAT(x) ASSERT(_lint_dummy_ == 0); 374 #else 375 #define TCP_DBGSTAT(tcps, x) 376 #define TCP_G_DBGSTAT(x) 377 #endif 378 379 #define TCP_G_STAT(x) (tcp_g_statistics.x.value.ui64++) 380 381 tcp_g_stat_t tcp_g_statistics; 382 kstat_t *tcp_g_kstat; 383 384 /* 385 * Call either ip_output or ip_output_v6. This replaces putnext() calls on the 386 * tcp write side. 387 */ 388 #define CALL_IP_WPUT(connp, q, mp) { \ 389 tcp_stack_t *tcps; \ 390 \ 391 tcps = connp->conn_netstack->netstack_tcp; \ 392 ASSERT(((q)->q_flag & QREADR) == 0); \ 393 TCP_DBGSTAT(tcps, tcp_ip_output); \ 394 connp->conn_send(connp, (mp), (q), IP_WPUT); \ 395 } 396 397 /* Macros for timestamp comparisons */ 398 #define TSTMP_GEQ(a, b) ((int32_t)((a)-(b)) >= 0) 399 #define TSTMP_LT(a, b) ((int32_t)((a)-(b)) < 0) 400 401 /* 402 * Parameters for TCP Initial Send Sequence number (ISS) generation. When 403 * tcp_strong_iss is set to 1, which is the default, the ISS is calculated 404 * by adding three components: a time component which grows by 1 every 4096 405 * nanoseconds (versus every 4 microseconds suggested by RFC 793, page 27); 406 * a per-connection component which grows by 125000 for every new connection; 407 * and an "extra" component that grows by a random amount centered 408 * approximately on 64000. This causes the the ISS generator to cycle every 409 * 4.89 hours if no TCP connections are made, and faster if connections are 410 * made. 411 * 412 * When tcp_strong_iss is set to 0, ISS is calculated by adding two 413 * components: a time component which grows by 250000 every second; and 414 * a per-connection component which grows by 125000 for every new connections. 415 * 416 * A third method, when tcp_strong_iss is set to 2, for generating ISS is 417 * prescribed by Steve Bellovin. This involves adding time, the 125000 per 418 * connection, and a one-way hash (MD5) of the connection ID <sport, dport, 419 * src, dst>, a "truly" random (per RFC 1750) number, and a console-entered 420 * password. 421 */ 422 #define ISS_INCR 250000 423 #define ISS_NSEC_SHT 12 424 425 static sin_t sin_null; /* Zero address for quick clears */ 426 static sin6_t sin6_null; /* Zero address for quick clears */ 427 428 /* 429 * This implementation follows the 4.3BSD interpretation of the urgent 430 * pointer and not RFC 1122. Switching to RFC 1122 behavior would cause 431 * incompatible changes in protocols like telnet and rlogin. 432 */ 433 #define TCP_OLD_URP_INTERPRETATION 1 434 435 #define TCP_IS_DETACHED_NONEAGER(tcp) \ 436 (TCP_IS_DETACHED(tcp) && \ 437 (!(tcp)->tcp_hard_binding)) 438 439 /* 440 * TCP reassembly macros. We hide starting and ending sequence numbers in 441 * b_next and b_prev of messages on the reassembly queue. The messages are 442 * chained using b_cont. These macros are used in tcp_reass() so we don't 443 * have to see the ugly casts and assignments. 444 */ 445 #define TCP_REASS_SEQ(mp) ((uint32_t)(uintptr_t)((mp)->b_next)) 446 #define TCP_REASS_SET_SEQ(mp, u) ((mp)->b_next = \ 447 (mblk_t *)(uintptr_t)(u)) 448 #define TCP_REASS_END(mp) ((uint32_t)(uintptr_t)((mp)->b_prev)) 449 #define TCP_REASS_SET_END(mp, u) ((mp)->b_prev = \ 450 (mblk_t *)(uintptr_t)(u)) 451 452 /* 453 * Implementation of TCP Timers. 454 * ============================= 455 * 456 * INTERFACE: 457 * 458 * There are two basic functions dealing with tcp timers: 459 * 460 * timeout_id_t tcp_timeout(connp, func, time) 461 * clock_t tcp_timeout_cancel(connp, timeout_id) 462 * TCP_TIMER_RESTART(tcp, intvl) 463 * 464 * tcp_timeout() starts a timer for the 'tcp' instance arranging to call 'func' 465 * after 'time' ticks passed. The function called by timeout() must adhere to 466 * the same restrictions as a driver soft interrupt handler - it must not sleep 467 * or call other functions that might sleep. The value returned is the opaque 468 * non-zero timeout identifier that can be passed to tcp_timeout_cancel() to 469 * cancel the request. The call to tcp_timeout() may fail in which case it 470 * returns zero. This is different from the timeout(9F) function which never 471 * fails. 472 * 473 * The call-back function 'func' always receives 'connp' as its single 474 * argument. It is always executed in the squeue corresponding to the tcp 475 * structure. The tcp structure is guaranteed to be present at the time the 476 * call-back is called. 477 * 478 * NOTE: The call-back function 'func' is never called if tcp is in 479 * the TCPS_CLOSED state. 480 * 481 * tcp_timeout_cancel() attempts to cancel a pending tcp_timeout() 482 * request. locks acquired by the call-back routine should not be held across 483 * the call to tcp_timeout_cancel() or a deadlock may result. 484 * 485 * tcp_timeout_cancel() returns -1 if it can not cancel the timeout request. 486 * Otherwise, it returns an integer value greater than or equal to 0. In 487 * particular, if the call-back function is already placed on the squeue, it can 488 * not be canceled. 489 * 490 * NOTE: both tcp_timeout() and tcp_timeout_cancel() should always be called 491 * within squeue context corresponding to the tcp instance. Since the 492 * call-back is also called via the same squeue, there are no race 493 * conditions described in untimeout(9F) manual page since all calls are 494 * strictly serialized. 495 * 496 * TCP_TIMER_RESTART() is a macro that attempts to cancel a pending timeout 497 * stored in tcp_timer_tid and starts a new one using 498 * MSEC_TO_TICK(intvl). It always uses tcp_timer() function as a call-back 499 * and stores the return value of tcp_timeout() in the tcp->tcp_timer_tid 500 * field. 501 * 502 * NOTE: since the timeout cancellation is not guaranteed, the cancelled 503 * call-back may still be called, so it is possible tcp_timer() will be 504 * called several times. This should not be a problem since tcp_timer() 505 * should always check the tcp instance state. 506 * 507 * 508 * IMPLEMENTATION: 509 * 510 * TCP timers are implemented using three-stage process. The call to 511 * tcp_timeout() uses timeout(9F) function to call tcp_timer_callback() function 512 * when the timer expires. The tcp_timer_callback() arranges the call of the 513 * tcp_timer_handler() function via squeue corresponding to the tcp 514 * instance. The tcp_timer_handler() calls actual requested timeout call-back 515 * and passes tcp instance as an argument to it. Information is passed between 516 * stages using the tcp_timer_t structure which contains the connp pointer, the 517 * tcp call-back to call and the timeout id returned by the timeout(9F). 518 * 519 * The tcp_timer_t structure is not used directly, it is embedded in an mblk_t - 520 * like structure that is used to enter an squeue. The mp->b_rptr of this pseudo 521 * mblk points to the beginning of tcp_timer_t structure. The tcp_timeout() 522 * returns the pointer to this mblk. 523 * 524 * The pseudo mblk is allocated from a special tcp_timer_cache kmem cache. It 525 * looks like a normal mblk without actual dblk attached to it. 526 * 527 * To optimize performance each tcp instance holds a small cache of timer 528 * mblocks. In the current implementation it caches up to two timer mblocks per 529 * tcp instance. The cache is preserved over tcp frees and is only freed when 530 * the whole tcp structure is destroyed by its kmem destructor. Since all tcp 531 * timer processing happens on a corresponding squeue, the cache manipulation 532 * does not require any locks. Experiments show that majority of timer mblocks 533 * allocations are satisfied from the tcp cache and do not involve kmem calls. 534 * 535 * The tcp_timeout() places a refhold on the connp instance which guarantees 536 * that it will be present at the time the call-back function fires. The 537 * tcp_timer_handler() drops the reference after calling the call-back, so the 538 * call-back function does not need to manipulate the references explicitly. 539 */ 540 541 typedef struct tcp_timer_s { 542 conn_t *connp; 543 void (*tcpt_proc)(void *); 544 callout_id_t tcpt_tid; 545 } tcp_timer_t; 546 547 static kmem_cache_t *tcp_timercache; 548 kmem_cache_t *tcp_sack_info_cache; 549 kmem_cache_t *tcp_iphc_cache; 550 551 /* 552 * For scalability, we must not run a timer for every TCP connection 553 * in TIME_WAIT state. To see why, consider (for time wait interval of 554 * 4 minutes): 555 * 1000 connections/sec * 240 seconds/time wait = 240,000 active conn's 556 * 557 * This list is ordered by time, so you need only delete from the head 558 * until you get to entries which aren't old enough to delete yet. 559 * The list consists of only the detached TIME_WAIT connections. 560 * 561 * Note that the timer (tcp_time_wait_expire) is started when the tcp_t 562 * becomes detached TIME_WAIT (either by changing the state and already 563 * being detached or the other way around). This means that the TIME_WAIT 564 * state can be extended (up to doubled) if the connection doesn't become 565 * detached for a long time. 566 * 567 * The list manipulations (including tcp_time_wait_next/prev) 568 * are protected by the tcp_time_wait_lock. The content of the 569 * detached TIME_WAIT connections is protected by the normal perimeters. 570 * 571 * This list is per squeue and squeues are shared across the tcp_stack_t's. 572 * Things on tcp_time_wait_head remain associated with the tcp_stack_t 573 * and conn_netstack. 574 * The tcp_t's that are added to tcp_free_list are disassociated and 575 * have NULL tcp_tcps and conn_netstack pointers. 576 */ 577 typedef struct tcp_squeue_priv_s { 578 kmutex_t tcp_time_wait_lock; 579 callout_id_t tcp_time_wait_tid; 580 tcp_t *tcp_time_wait_head; 581 tcp_t *tcp_time_wait_tail; 582 tcp_t *tcp_free_list; 583 uint_t tcp_free_list_cnt; 584 } tcp_squeue_priv_t; 585 586 /* 587 * TCP_TIME_WAIT_DELAY governs how often the time_wait_collector runs. 588 * Running it every 5 seconds seems to give the best results. 589 */ 590 #define TCP_TIME_WAIT_DELAY drv_usectohz(5000000) 591 592 /* 593 * To prevent memory hog, limit the number of entries in tcp_free_list 594 * to 1% of available memory / number of cpus 595 */ 596 uint_t tcp_free_list_max_cnt = 0; 597 598 #define TCP_XMIT_LOWATER 4096 599 #define TCP_XMIT_HIWATER 49152 600 #define TCP_RECV_LOWATER 2048 601 #define TCP_RECV_HIWATER 49152 602 603 /* 604 * PAWS needs a timer for 24 days. This is the number of ticks in 24 days 605 */ 606 #define PAWS_TIMEOUT ((clock_t)(24*24*60*60*hz)) 607 608 #define TIDUSZ 4096 /* transport interface data unit size */ 609 610 /* 611 * Bind hash list size and has function. It has to be a power of 2 for 612 * hashing. 613 */ 614 #define TCP_BIND_FANOUT_SIZE 512 615 #define TCP_BIND_HASH(lport) (ntohs(lport) & (TCP_BIND_FANOUT_SIZE - 1)) 616 /* 617 * Size of listen and acceptor hash list. It has to be a power of 2 for 618 * hashing. 619 */ 620 #define TCP_FANOUT_SIZE 256 621 622 #ifdef _ILP32 623 #define TCP_ACCEPTOR_HASH(accid) \ 624 (((uint_t)(accid) >> 8) & (TCP_FANOUT_SIZE - 1)) 625 #else 626 #define TCP_ACCEPTOR_HASH(accid) \ 627 ((uint_t)(accid) & (TCP_FANOUT_SIZE - 1)) 628 #endif /* _ILP32 */ 629 630 #define IP_ADDR_CACHE_SIZE 2048 631 #define IP_ADDR_CACHE_HASH(faddr) \ 632 (ntohl(faddr) & (IP_ADDR_CACHE_SIZE -1)) 633 634 /* Hash for HSPs uses all 32 bits, since both networks and hosts are in table */ 635 #define TCP_HSP_HASH_SIZE 256 636 637 #define TCP_HSP_HASH(addr) \ 638 (((addr>>24) ^ (addr >>16) ^ \ 639 (addr>>8) ^ (addr)) % TCP_HSP_HASH_SIZE) 640 641 /* 642 * TCP options struct returned from tcp_parse_options. 643 */ 644 typedef struct tcp_opt_s { 645 uint32_t tcp_opt_mss; 646 uint32_t tcp_opt_wscale; 647 uint32_t tcp_opt_ts_val; 648 uint32_t tcp_opt_ts_ecr; 649 tcp_t *tcp; 650 } tcp_opt_t; 651 652 /* 653 * RFC1323-recommended phrasing of TSTAMP option, for easier parsing 654 */ 655 656 #ifdef _BIG_ENDIAN 657 #define TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \ 658 (TCPOPT_TSTAMP << 8) | 10) 659 #else 660 #define TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \ 661 (TCPOPT_NOP << 8) | TCPOPT_NOP) 662 #endif 663 664 /* 665 * Flags returned from tcp_parse_options. 666 */ 667 #define TCP_OPT_MSS_PRESENT 1 668 #define TCP_OPT_WSCALE_PRESENT 2 669 #define TCP_OPT_TSTAMP_PRESENT 4 670 #define TCP_OPT_SACK_OK_PRESENT 8 671 #define TCP_OPT_SACK_PRESENT 16 672 673 /* TCP option length */ 674 #define TCPOPT_NOP_LEN 1 675 #define TCPOPT_MAXSEG_LEN 4 676 #define TCPOPT_WS_LEN 3 677 #define TCPOPT_REAL_WS_LEN (TCPOPT_WS_LEN+1) 678 #define TCPOPT_TSTAMP_LEN 10 679 #define TCPOPT_REAL_TS_LEN (TCPOPT_TSTAMP_LEN+2) 680 #define TCPOPT_SACK_OK_LEN 2 681 #define TCPOPT_REAL_SACK_OK_LEN (TCPOPT_SACK_OK_LEN+2) 682 #define TCPOPT_REAL_SACK_LEN 4 683 #define TCPOPT_MAX_SACK_LEN 36 684 #define TCPOPT_HEADER_LEN 2 685 686 /* TCP cwnd burst factor. */ 687 #define TCP_CWND_INFINITE 65535 688 #define TCP_CWND_SS 3 689 #define TCP_CWND_NORMAL 5 690 691 /* Maximum TCP initial cwin (start/restart). */ 692 #define TCP_MAX_INIT_CWND 8 693 694 /* 695 * Initialize cwnd according to RFC 3390. def_max_init_cwnd is 696 * either tcp_slow_start_initial or tcp_slow_start_after idle 697 * depending on the caller. If the upper layer has not used the 698 * TCP_INIT_CWND option to change the initial cwnd, tcp_init_cwnd 699 * should be 0 and we use the formula in RFC 3390 to set tcp_cwnd. 700 * If the upper layer has changed set the tcp_init_cwnd, just use 701 * it to calculate the tcp_cwnd. 702 */ 703 #define SET_TCP_INIT_CWND(tcp, mss, def_max_init_cwnd) \ 704 { \ 705 if ((tcp)->tcp_init_cwnd == 0) { \ 706 (tcp)->tcp_cwnd = MIN(def_max_init_cwnd * (mss), \ 707 MIN(4 * (mss), MAX(2 * (mss), 4380 / (mss) * (mss)))); \ 708 } else { \ 709 (tcp)->tcp_cwnd = (tcp)->tcp_init_cwnd * (mss); \ 710 } \ 711 tcp->tcp_cwnd_cnt = 0; \ 712 } 713 714 /* TCP Timer control structure */ 715 typedef struct tcpt_s { 716 pfv_t tcpt_pfv; /* The routine we are to call */ 717 tcp_t *tcpt_tcp; /* The parameter we are to pass in */ 718 } tcpt_t; 719 720 /* Host Specific Parameter structure */ 721 typedef struct tcp_hsp { 722 struct tcp_hsp *tcp_hsp_next; 723 in6_addr_t tcp_hsp_addr_v6; 724 in6_addr_t tcp_hsp_subnet_v6; 725 uint_t tcp_hsp_vers; /* IPV4_VERSION | IPV6_VERSION */ 726 int32_t tcp_hsp_sendspace; 727 int32_t tcp_hsp_recvspace; 728 int32_t tcp_hsp_tstamp; 729 } tcp_hsp_t; 730 #define tcp_hsp_addr V4_PART_OF_V6(tcp_hsp_addr_v6) 731 #define tcp_hsp_subnet V4_PART_OF_V6(tcp_hsp_subnet_v6) 732 733 /* 734 * Functions called directly via squeue having a prototype of edesc_t. 735 */ 736 void tcp_conn_request(void *arg, mblk_t *mp, void *arg2); 737 static void tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2); 738 void tcp_accept_finish(void *arg, mblk_t *mp, void *arg2); 739 static void tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2); 740 static void tcp_wput_proto(void *arg, mblk_t *mp, void *arg2); 741 void tcp_input(void *arg, mblk_t *mp, void *arg2); 742 void tcp_rput_data(void *arg, mblk_t *mp, void *arg2); 743 static void tcp_close_output(void *arg, mblk_t *mp, void *arg2); 744 void tcp_output(void *arg, mblk_t *mp, void *arg2); 745 static void tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2); 746 static void tcp_timer_handler(void *arg, mblk_t *mp, void *arg2); 747 static void tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2); 748 749 750 /* Prototype for TCP functions */ 751 static void tcp_random_init(void); 752 int tcp_random(void); 753 static void tcp_accept(tcp_t *tcp, mblk_t *mp); 754 static void tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, 755 tcp_t *eager); 756 static int tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp); 757 static in_port_t tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, 758 int reuseaddr, boolean_t quick_connect, boolean_t bind_to_req_port_only, 759 boolean_t user_specified); 760 static void tcp_closei_local(tcp_t *tcp); 761 static void tcp_close_detached(tcp_t *tcp); 762 static boolean_t tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, 763 mblk_t *idmp, mblk_t **defermp); 764 static void tcp_connect(tcp_t *tcp, mblk_t *mp); 765 static void tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp, 766 in_port_t dstport, uint_t srcid); 767 static void tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp, 768 in_port_t dstport, uint32_t flowinfo, uint_t srcid, 769 uint32_t scope_id); 770 static int tcp_clean_death(tcp_t *tcp, int err, uint8_t tag); 771 static void tcp_def_q_set(tcp_t *tcp, mblk_t *mp); 772 static void tcp_disconnect(tcp_t *tcp, mblk_t *mp); 773 static char *tcp_display(tcp_t *tcp, char *, char); 774 static boolean_t tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum); 775 static void tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only); 776 static void tcp_eager_unlink(tcp_t *tcp); 777 static void tcp_err_ack(tcp_t *tcp, mblk_t *mp, int tlierr, 778 int unixerr); 779 static void tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, 780 int tlierr, int unixerr); 781 static int tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, 782 cred_t *cr); 783 static int tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, 784 char *value, caddr_t cp, cred_t *cr); 785 static int tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, 786 char *value, caddr_t cp, cred_t *cr); 787 static int tcp_tpistate(tcp_t *tcp); 788 static void tcp_bind_hash_insert(tf_t *tf, tcp_t *tcp, 789 int caller_holds_lock); 790 static void tcp_bind_hash_remove(tcp_t *tcp); 791 static tcp_t *tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *); 792 void tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp); 793 static void tcp_acceptor_hash_remove(tcp_t *tcp); 794 static void tcp_capability_req(tcp_t *tcp, mblk_t *mp); 795 static void tcp_info_req(tcp_t *tcp, mblk_t *mp); 796 static void tcp_addr_req(tcp_t *tcp, mblk_t *mp); 797 static void tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *mp); 798 void tcp_g_q_setup(tcp_stack_t *); 799 void tcp_g_q_create(tcp_stack_t *); 800 void tcp_g_q_destroy(tcp_stack_t *); 801 static int tcp_header_init_ipv4(tcp_t *tcp); 802 static int tcp_header_init_ipv6(tcp_t *tcp); 803 int tcp_init(tcp_t *tcp, queue_t *q); 804 static int tcp_init_values(tcp_t *tcp); 805 static mblk_t *tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic); 806 static mblk_t *tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim, 807 t_scalar_t addr_length); 808 static void tcp_ip_ire_mark_advice(tcp_t *tcp); 809 static void tcp_ip_notify(tcp_t *tcp); 810 static mblk_t *tcp_ire_mp(mblk_t *mp); 811 static void tcp_iss_init(tcp_t *tcp); 812 static void tcp_keepalive_killer(void *arg); 813 static int tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt); 814 static void tcp_mss_set(tcp_t *tcp, uint32_t size, boolean_t do_ss); 815 static int tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, 816 int *do_disconnectp, int *t_errorp, int *sys_errorp); 817 static boolean_t tcp_allow_connopt_set(int level, int name); 818 int tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr); 819 int tcp_opt_get(queue_t *q, int level, int name, uchar_t *ptr); 820 int tcp_opt_set(queue_t *q, uint_t optset_context, int level, 821 int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp, 822 uchar_t *outvalp, void *thisdg_attrs, cred_t *cr, 823 mblk_t *mblk); 824 static void tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha); 825 static int tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, 826 uchar_t *ptr, uint_t len); 827 static int tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr); 828 static boolean_t tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt, 829 tcp_stack_t *); 830 static int tcp_param_set(queue_t *q, mblk_t *mp, char *value, 831 caddr_t cp, cred_t *cr); 832 static int tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, 833 caddr_t cp, cred_t *cr); 834 static void tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *); 835 static int tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, 836 caddr_t cp, cred_t *cr); 837 static void tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_cnt); 838 static mblk_t *tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start); 839 static void tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp); 840 static void tcp_reinit(tcp_t *tcp); 841 static void tcp_reinit_values(tcp_t *tcp); 842 static void tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval, 843 tcp_t *thisstream, cred_t *cr); 844 845 static uint_t tcp_rcv_drain(queue_t *q, tcp_t *tcp); 846 static void tcp_sack_rxmit(tcp_t *tcp, uint_t *flags); 847 static boolean_t tcp_send_rst_chk(tcp_stack_t *); 848 static void tcp_ss_rexmit(tcp_t *tcp); 849 static mblk_t *tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp); 850 static void tcp_process_options(tcp_t *, tcph_t *); 851 static void tcp_rput_common(tcp_t *tcp, mblk_t *mp); 852 static void tcp_rsrv(queue_t *q); 853 static int tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd); 854 static int tcp_snmp_state(tcp_t *tcp); 855 static int tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, 856 cred_t *cr); 857 static int tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 858 cred_t *cr); 859 static int tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 860 cred_t *cr); 861 static int tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 862 cred_t *cr); 863 static int tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 864 cred_t *cr); 865 static void tcp_timer(void *arg); 866 static void tcp_timer_callback(void *); 867 static in_port_t tcp_update_next_port(in_port_t port, const tcp_t *tcp, 868 boolean_t random); 869 static in_port_t tcp_get_next_priv_port(const tcp_t *); 870 static void tcp_wput_sock(queue_t *q, mblk_t *mp); 871 void tcp_wput_accept(queue_t *q, mblk_t *mp); 872 static void tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent); 873 static void tcp_wput_flush(tcp_t *tcp, mblk_t *mp); 874 static void tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp); 875 static int tcp_send(queue_t *q, tcp_t *tcp, const int mss, 876 const int tcp_hdr_len, const int tcp_tcp_hdr_len, 877 const int num_sack_blk, int *usable, uint_t *snxt, 878 int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 879 const int mdt_thres); 880 static int tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, 881 const int tcp_hdr_len, const int tcp_tcp_hdr_len, 882 const int num_sack_blk, int *usable, uint_t *snxt, 883 int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 884 const int mdt_thres); 885 static void tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, 886 int num_sack_blk); 887 static void tcp_wsrv(queue_t *q); 888 static int tcp_xmit_end(tcp_t *tcp); 889 static void tcp_ack_timer(void *arg); 890 static mblk_t *tcp_ack_mp(tcp_t *tcp); 891 static void tcp_xmit_early_reset(char *str, mblk_t *mp, 892 uint32_t seq, uint32_t ack, int ctl, uint_t ip_hdr_len, 893 zoneid_t zoneid, tcp_stack_t *, conn_t *connp); 894 static void tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, 895 uint32_t ack, int ctl); 896 static tcp_hsp_t *tcp_hsp_lookup(ipaddr_t addr, tcp_stack_t *); 897 static tcp_hsp_t *tcp_hsp_lookup_ipv6(in6_addr_t *addr, tcp_stack_t *); 898 static int setmaxps(queue_t *q, int maxpsz); 899 static void tcp_set_rto(tcp_t *, time_t); 900 static boolean_t tcp_check_policy(tcp_t *, mblk_t *, ipha_t *, ip6_t *, 901 boolean_t, boolean_t); 902 static void tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, 903 boolean_t ipsec_mctl); 904 static mblk_t *tcp_setsockopt_mp(int level, int cmd, 905 char *opt, int optlen); 906 static int tcp_build_hdrs(queue_t *, tcp_t *); 907 static void tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, 908 uint32_t seg_seq, uint32_t seg_ack, int seg_len, 909 tcph_t *tcph); 910 boolean_t tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp); 911 static mblk_t *tcp_mdt_info_mp(mblk_t *); 912 static void tcp_mdt_update(tcp_t *, ill_mdt_capab_t *, boolean_t); 913 static int tcp_mdt_add_attrs(multidata_t *, const mblk_t *, 914 const boolean_t, const uint32_t, const uint32_t, 915 const uint32_t, const uint32_t, tcp_stack_t *); 916 static void tcp_multisend_data(tcp_t *, ire_t *, const ill_t *, mblk_t *, 917 const uint_t, const uint_t, boolean_t *); 918 static mblk_t *tcp_lso_info_mp(mblk_t *); 919 static void tcp_lso_update(tcp_t *, ill_lso_capab_t *); 920 static void tcp_send_data(tcp_t *, queue_t *, mblk_t *); 921 extern mblk_t *tcp_timermp_alloc(int); 922 extern void tcp_timermp_free(tcp_t *); 923 static void tcp_timer_free(tcp_t *tcp, mblk_t *mp); 924 static void tcp_stop_lingering(tcp_t *tcp); 925 static void tcp_close_linger_timeout(void *arg); 926 static void *tcp_stack_init(netstackid_t stackid, netstack_t *ns); 927 static void tcp_stack_shutdown(netstackid_t stackid, void *arg); 928 static void tcp_stack_fini(netstackid_t stackid, void *arg); 929 static void *tcp_g_kstat_init(tcp_g_stat_t *); 930 static void tcp_g_kstat_fini(kstat_t *); 931 static void *tcp_kstat_init(netstackid_t, tcp_stack_t *); 932 static void tcp_kstat_fini(netstackid_t, kstat_t *); 933 static void *tcp_kstat2_init(netstackid_t, tcp_stat_t *); 934 static void tcp_kstat2_fini(netstackid_t, kstat_t *); 935 static int tcp_kstat_update(kstat_t *kp, int rw); 936 void tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp); 937 static int tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 938 tcph_t *tcph, uint_t ipvers, mblk_t *idmp); 939 static int tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha, 940 tcph_t *tcph, mblk_t *idmp); 941 static int tcp_squeue_switch(int); 942 943 static int tcp_open(queue_t *, dev_t *, int, int, cred_t *, boolean_t); 944 static int tcp_openv4(queue_t *, dev_t *, int, int, cred_t *); 945 static int tcp_openv6(queue_t *, dev_t *, int, int, cred_t *); 946 static int tcp_close(queue_t *, int); 947 static int tcpclose_accept(queue_t *); 948 949 static void tcp_squeue_add(squeue_t *); 950 static boolean_t tcp_zcopy_check(tcp_t *); 951 static void tcp_zcopy_notify(tcp_t *); 952 static mblk_t *tcp_zcopy_disable(tcp_t *, mblk_t *); 953 static mblk_t *tcp_zcopy_backoff(tcp_t *, mblk_t *, int); 954 static void tcp_ire_ill_check(tcp_t *, ire_t *, ill_t *, boolean_t); 955 956 extern void tcp_kssl_input(tcp_t *, mblk_t *); 957 958 void tcp_eager_kill(void *arg, mblk_t *mp, void *arg2); 959 void tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2); 960 961 /* 962 * Routines related to the TCP_IOC_ABORT_CONN ioctl command. 963 * 964 * TCP_IOC_ABORT_CONN is a non-transparent ioctl command used for aborting 965 * TCP connections. To invoke this ioctl, a tcp_ioc_abort_conn_t structure 966 * (defined in tcp.h) needs to be filled in and passed into the kernel 967 * via an I_STR ioctl command (see streamio(7I)). The tcp_ioc_abort_conn_t 968 * structure contains the four-tuple of a TCP connection and a range of TCP 969 * states (specified by ac_start and ac_end). The use of wildcard addresses 970 * and ports is allowed. Connections with a matching four tuple and a state 971 * within the specified range will be aborted. The valid states for the 972 * ac_start and ac_end fields are in the range TCPS_SYN_SENT to TCPS_TIME_WAIT, 973 * inclusive. 974 * 975 * An application which has its connection aborted by this ioctl will receive 976 * an error that is dependent on the connection state at the time of the abort. 977 * If the connection state is < TCPS_TIME_WAIT, an application should behave as 978 * though a RST packet has been received. If the connection state is equal to 979 * TCPS_TIME_WAIT, the 2MSL timeout will immediately be canceled by the kernel 980 * and all resources associated with the connection will be freed. 981 */ 982 static mblk_t *tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *, tcp_t *); 983 static void tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *); 984 static void tcp_ioctl_abort_handler(tcp_t *, mblk_t *); 985 static int tcp_ioctl_abort(tcp_ioc_abort_conn_t *, tcp_stack_t *tcps); 986 static void tcp_ioctl_abort_conn(queue_t *, mblk_t *); 987 static int tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *, int, int *, 988 boolean_t, tcp_stack_t *); 989 990 static struct module_info tcp_rinfo = { 991 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER 992 }; 993 994 static struct module_info tcp_winfo = { 995 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16 996 }; 997 998 /* 999 * Entry points for TCP as a device. The normal case which supports 1000 * the TCP functionality. 1001 * We have separate open functions for the /dev/tcp and /dev/tcp6 devices. 1002 */ 1003 struct qinit tcp_rinitv4 = { 1004 NULL, (pfi_t)tcp_rsrv, tcp_openv4, tcp_close, NULL, &tcp_rinfo 1005 }; 1006 1007 struct qinit tcp_rinitv6 = { 1008 NULL, (pfi_t)tcp_rsrv, tcp_openv6, tcp_close, NULL, &tcp_rinfo 1009 }; 1010 1011 struct qinit tcp_winit = { 1012 (pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 1013 }; 1014 1015 /* Initial entry point for TCP in socket mode. */ 1016 struct qinit tcp_sock_winit = { 1017 (pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 1018 }; 1019 1020 /* 1021 * Entry points for TCP as a acceptor STREAM opened by sockfs when doing 1022 * an accept. Avoid allocating data structures since eager has already 1023 * been created. 1024 */ 1025 struct qinit tcp_acceptor_rinit = { 1026 NULL, (pfi_t)tcp_rsrv, NULL, tcpclose_accept, NULL, &tcp_winfo 1027 }; 1028 1029 struct qinit tcp_acceptor_winit = { 1030 (pfi_t)tcp_wput_accept, NULL, NULL, NULL, NULL, &tcp_winfo 1031 }; 1032 1033 /* 1034 * Entry points for TCP loopback (read side only) 1035 * The open routine is only used for reopens, thus no need to 1036 * have a separate one for tcp_openv6. 1037 */ 1038 struct qinit tcp_loopback_rinit = { 1039 (pfi_t)0, (pfi_t)tcp_rsrv, tcp_openv4, tcp_close, (pfi_t)0, 1040 &tcp_rinfo, NULL, tcp_fuse_rrw, tcp_fuse_rinfop, STRUIOT_STANDARD 1041 }; 1042 1043 /* For AF_INET aka /dev/tcp */ 1044 struct streamtab tcpinfov4 = { 1045 &tcp_rinitv4, &tcp_winit 1046 }; 1047 1048 /* For AF_INET6 aka /dev/tcp6 */ 1049 struct streamtab tcpinfov6 = { 1050 &tcp_rinitv6, &tcp_winit 1051 }; 1052 1053 /* 1054 * Have to ensure that tcp_g_q_close is not done by an 1055 * interrupt thread. 1056 */ 1057 static taskq_t *tcp_taskq; 1058 1059 /* Setable only in /etc/system. Move to ndd? */ 1060 boolean_t tcp_icmp_source_quench = B_FALSE; 1061 1062 /* 1063 * Following assumes TPI alignment requirements stay along 32 bit 1064 * boundaries 1065 */ 1066 #define ROUNDUP32(x) \ 1067 (((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1)) 1068 1069 /* Template for response to info request. */ 1070 static struct T_info_ack tcp_g_t_info_ack = { 1071 T_INFO_ACK, /* PRIM_type */ 1072 0, /* TSDU_size */ 1073 T_INFINITE, /* ETSDU_size */ 1074 T_INVALID, /* CDATA_size */ 1075 T_INVALID, /* DDATA_size */ 1076 sizeof (sin_t), /* ADDR_size */ 1077 0, /* OPT_size - not initialized here */ 1078 TIDUSZ, /* TIDU_size */ 1079 T_COTS_ORD, /* SERV_type */ 1080 TCPS_IDLE, /* CURRENT_state */ 1081 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 1082 }; 1083 1084 static struct T_info_ack tcp_g_t_info_ack_v6 = { 1085 T_INFO_ACK, /* PRIM_type */ 1086 0, /* TSDU_size */ 1087 T_INFINITE, /* ETSDU_size */ 1088 T_INVALID, /* CDATA_size */ 1089 T_INVALID, /* DDATA_size */ 1090 sizeof (sin6_t), /* ADDR_size */ 1091 0, /* OPT_size - not initialized here */ 1092 TIDUSZ, /* TIDU_size */ 1093 T_COTS_ORD, /* SERV_type */ 1094 TCPS_IDLE, /* CURRENT_state */ 1095 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 1096 }; 1097 1098 #define MS 1L 1099 #define SECONDS (1000 * MS) 1100 #define MINUTES (60 * SECONDS) 1101 #define HOURS (60 * MINUTES) 1102 #define DAYS (24 * HOURS) 1103 1104 #define PARAM_MAX (~(uint32_t)0) 1105 1106 /* Max size IP datagram is 64k - 1 */ 1107 #define TCP_MSS_MAX_IPV4 (IP_MAXPACKET - (sizeof (ipha_t) + sizeof (tcph_t))) 1108 #define TCP_MSS_MAX_IPV6 (IP_MAXPACKET - (sizeof (ip6_t) + sizeof (tcph_t))) 1109 /* Max of the above */ 1110 #define TCP_MSS_MAX TCP_MSS_MAX_IPV4 1111 1112 /* Largest TCP port number */ 1113 #define TCP_MAX_PORT (64 * 1024 - 1) 1114 1115 /* 1116 * tcp_wroff_xtra is the extra space in front of TCP/IP header for link 1117 * layer header. It has to be a multiple of 4. 1118 */ 1119 static tcpparam_t lcl_tcp_wroff_xtra_param = { 0, 256, 32, "tcp_wroff_xtra" }; 1120 #define tcps_wroff_xtra tcps_wroff_xtra_param->tcp_param_val 1121 1122 /* 1123 * All of these are alterable, within the min/max values given, at run time. 1124 * Note that the default value of "tcp_time_wait_interval" is four minutes, 1125 * per the TCP spec. 1126 */ 1127 /* BEGIN CSTYLED */ 1128 static tcpparam_t lcl_tcp_param_arr[] = { 1129 /*min max value name */ 1130 { 1*SECONDS, 10*MINUTES, 1*MINUTES, "tcp_time_wait_interval"}, 1131 { 1, PARAM_MAX, 128, "tcp_conn_req_max_q" }, 1132 { 0, PARAM_MAX, 1024, "tcp_conn_req_max_q0" }, 1133 { 1, 1024, 1, "tcp_conn_req_min" }, 1134 { 0*MS, 20*SECONDS, 0*MS, "tcp_conn_grace_period" }, 1135 { 128, (1<<30), 1024*1024, "tcp_cwnd_max" }, 1136 { 0, 10, 0, "tcp_debug" }, 1137 { 1024, (32*1024), 1024, "tcp_smallest_nonpriv_port"}, 1138 { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_cinterval"}, 1139 { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_linterval"}, 1140 { 500*MS, PARAM_MAX, 8*MINUTES, "tcp_ip_abort_interval"}, 1141 { 1*SECONDS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_cinterval"}, 1142 { 500*MS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_interval"}, 1143 { 1, 255, 64, "tcp_ipv4_ttl"}, 1144 { 10*SECONDS, 10*DAYS, 2*HOURS, "tcp_keepalive_interval"}, 1145 { 0, 100, 10, "tcp_maxpsz_multiplier" }, 1146 { 1, TCP_MSS_MAX_IPV4, 536, "tcp_mss_def_ipv4"}, 1147 { 1, TCP_MSS_MAX_IPV4, TCP_MSS_MAX_IPV4, "tcp_mss_max_ipv4"}, 1148 { 1, TCP_MSS_MAX, 108, "tcp_mss_min"}, 1149 { 1, (64*1024)-1, (4*1024)-1, "tcp_naglim_def"}, 1150 { 1*MS, 20*SECONDS, 3*SECONDS, "tcp_rexmit_interval_initial"}, 1151 { 1*MS, 2*HOURS, 60*SECONDS, "tcp_rexmit_interval_max"}, 1152 { 1*MS, 2*HOURS, 400*MS, "tcp_rexmit_interval_min"}, 1153 { 1*MS, 1*MINUTES, 100*MS, "tcp_deferred_ack_interval" }, 1154 { 0, 16, 0, "tcp_snd_lowat_fraction" }, 1155 { 0, 128000, 0, "tcp_sth_rcv_hiwat" }, 1156 { 0, 128000, 0, "tcp_sth_rcv_lowat" }, 1157 { 1, 10000, 3, "tcp_dupack_fast_retransmit" }, 1158 { 0, 1, 0, "tcp_ignore_path_mtu" }, 1159 { 1024, TCP_MAX_PORT, 32*1024, "tcp_smallest_anon_port"}, 1160 { 1024, TCP_MAX_PORT, TCP_MAX_PORT, "tcp_largest_anon_port"}, 1161 { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_HIWATER,"tcp_xmit_hiwat"}, 1162 { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_LOWATER,"tcp_xmit_lowat"}, 1163 { TCP_RECV_LOWATER, (1<<30), TCP_RECV_HIWATER,"tcp_recv_hiwat"}, 1164 { 1, 65536, 4, "tcp_recv_hiwat_minmss"}, 1165 { 1*SECONDS, PARAM_MAX, 675*SECONDS, "tcp_fin_wait_2_flush_interval"}, 1166 { 8192, (1<<30), 1024*1024, "tcp_max_buf"}, 1167 /* 1168 * Question: What default value should I set for tcp_strong_iss? 1169 */ 1170 { 0, 2, 1, "tcp_strong_iss"}, 1171 { 0, 65536, 20, "tcp_rtt_updates"}, 1172 { 0, 1, 1, "tcp_wscale_always"}, 1173 { 0, 1, 0, "tcp_tstamp_always"}, 1174 { 0, 1, 1, "tcp_tstamp_if_wscale"}, 1175 { 0*MS, 2*HOURS, 0*MS, "tcp_rexmit_interval_extra"}, 1176 { 0, 16, 2, "tcp_deferred_acks_max"}, 1177 { 1, 16384, 4, "tcp_slow_start_after_idle"}, 1178 { 1, 4, 4, "tcp_slow_start_initial"}, 1179 { 0, 2, 2, "tcp_sack_permitted"}, 1180 { 0, 1, 1, "tcp_compression_enabled"}, 1181 { 0, IPV6_MAX_HOPS, IPV6_DEFAULT_HOPS, "tcp_ipv6_hoplimit"}, 1182 { 1, TCP_MSS_MAX_IPV6, 1220, "tcp_mss_def_ipv6"}, 1183 { 1, TCP_MSS_MAX_IPV6, TCP_MSS_MAX_IPV6, "tcp_mss_max_ipv6"}, 1184 { 0, 1, 0, "tcp_rev_src_routes"}, 1185 { 10*MS, 500*MS, 50*MS, "tcp_local_dack_interval"}, 1186 { 100*MS, 60*SECONDS, 1*SECONDS, "tcp_ndd_get_info_interval"}, 1187 { 0, 16, 8, "tcp_local_dacks_max"}, 1188 { 0, 2, 1, "tcp_ecn_permitted"}, 1189 { 0, 1, 1, "tcp_rst_sent_rate_enabled"}, 1190 { 0, PARAM_MAX, 40, "tcp_rst_sent_rate"}, 1191 { 0, 100*MS, 50*MS, "tcp_push_timer_interval"}, 1192 { 0, 1, 0, "tcp_use_smss_as_mss_opt"}, 1193 { 0, PARAM_MAX, 8*MINUTES, "tcp_keepalive_abort_interval"}, 1194 }; 1195 /* END CSTYLED */ 1196 1197 /* 1198 * tcp_mdt_hdr_{head,tail}_min are the leading and trailing spaces of 1199 * each header fragment in the header buffer. Each parameter value has 1200 * to be a multiple of 4 (32-bit aligned). 1201 */ 1202 static tcpparam_t lcl_tcp_mdt_head_param = 1203 { 32, 256, 32, "tcp_mdt_hdr_head_min" }; 1204 static tcpparam_t lcl_tcp_mdt_tail_param = 1205 { 0, 256, 32, "tcp_mdt_hdr_tail_min" }; 1206 #define tcps_mdt_hdr_head_min tcps_mdt_head_param->tcp_param_val 1207 #define tcps_mdt_hdr_tail_min tcps_mdt_tail_param->tcp_param_val 1208 1209 /* 1210 * tcp_mdt_max_pbufs is the upper limit value that tcp uses to figure out 1211 * the maximum number of payload buffers associated per Multidata. 1212 */ 1213 static tcpparam_t lcl_tcp_mdt_max_pbufs_param = 1214 { 1, MULTIDATA_MAX_PBUFS, MULTIDATA_MAX_PBUFS, "tcp_mdt_max_pbufs" }; 1215 #define tcps_mdt_max_pbufs tcps_mdt_max_pbufs_param->tcp_param_val 1216 1217 /* Round up the value to the nearest mss. */ 1218 #define MSS_ROUNDUP(value, mss) ((((value) - 1) / (mss) + 1) * (mss)) 1219 1220 /* 1221 * Set ECN capable transport (ECT) code point in IP header. 1222 * 1223 * Note that there are 2 ECT code points '01' and '10', which are called 1224 * ECT(1) and ECT(0) respectively. Here we follow the original ECT code 1225 * point ECT(0) for TCP as described in RFC 2481. 1226 */ 1227 #define SET_ECT(tcp, iph) \ 1228 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1229 /* We need to clear the code point first. */ \ 1230 ((ipha_t *)(iph))->ipha_type_of_service &= 0xFC; \ 1231 ((ipha_t *)(iph))->ipha_type_of_service |= IPH_ECN_ECT0; \ 1232 } else { \ 1233 ((ip6_t *)(iph))->ip6_vcf &= htonl(0xFFCFFFFF); \ 1234 ((ip6_t *)(iph))->ip6_vcf |= htonl(IPH_ECN_ECT0 << 20); \ 1235 } 1236 1237 /* 1238 * The format argument to pass to tcp_display(). 1239 * DISP_PORT_ONLY means that the returned string has only port info. 1240 * DISP_ADDR_AND_PORT means that the returned string also contains the 1241 * remote and local IP address. 1242 */ 1243 #define DISP_PORT_ONLY 1 1244 #define DISP_ADDR_AND_PORT 2 1245 1246 #define NDD_TOO_QUICK_MSG \ 1247 "ndd get info rate too high for non-privileged users, try again " \ 1248 "later.\n" 1249 #define NDD_OUT_OF_BUF_MSG "<< Out of buffer >>\n" 1250 1251 #define IS_VMLOANED_MBLK(mp) \ 1252 (((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0) 1253 1254 1255 /* Enable or disable b_cont M_MULTIDATA chaining for MDT. */ 1256 boolean_t tcp_mdt_chain = B_TRUE; 1257 1258 /* 1259 * MDT threshold in the form of effective send MSS multiplier; we take 1260 * the MDT path if the amount of unsent data exceeds the threshold value 1261 * (default threshold is 1*SMSS). 1262 */ 1263 uint_t tcp_mdt_smss_threshold = 1; 1264 1265 uint32_t do_tcpzcopy = 1; /* 0: disable, 1: enable, 2: force */ 1266 1267 /* 1268 * Forces all connections to obey the value of the tcps_maxpsz_multiplier 1269 * tunable settable via NDD. Otherwise, the per-connection behavior is 1270 * determined dynamically during tcp_adapt_ire(), which is the default. 1271 */ 1272 boolean_t tcp_static_maxpsz = B_FALSE; 1273 1274 /* Setable in /etc/system */ 1275 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */ 1276 uint32_t tcp_random_anon_port = 1; 1277 1278 /* 1279 * To reach to an eager in Q0 which can be dropped due to an incoming 1280 * new SYN request when Q0 is full, a new doubly linked list is 1281 * introduced. This list allows to select an eager from Q0 in O(1) time. 1282 * This is needed to avoid spending too much time walking through the 1283 * long list of eagers in Q0 when tcp_drop_q0() is called. Each member of 1284 * this new list has to be a member of Q0. 1285 * This list is headed by listener's tcp_t. When the list is empty, 1286 * both the pointers - tcp_eager_next_drop_q0 and tcp_eager_prev_drop_q0, 1287 * of listener's tcp_t point to listener's tcp_t itself. 1288 * 1289 * Given an eager in Q0 and a listener, MAKE_DROPPABLE() puts the eager 1290 * in the list. MAKE_UNDROPPABLE() takes the eager out of the list. 1291 * These macros do not affect the eager's membership to Q0. 1292 */ 1293 1294 1295 #define MAKE_DROPPABLE(listener, eager) \ 1296 if ((eager)->tcp_eager_next_drop_q0 == NULL) { \ 1297 (listener)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0\ 1298 = (eager); \ 1299 (eager)->tcp_eager_prev_drop_q0 = (listener); \ 1300 (eager)->tcp_eager_next_drop_q0 = \ 1301 (listener)->tcp_eager_next_drop_q0; \ 1302 (listener)->tcp_eager_next_drop_q0 = (eager); \ 1303 } 1304 1305 #define MAKE_UNDROPPABLE(eager) \ 1306 if ((eager)->tcp_eager_next_drop_q0 != NULL) { \ 1307 (eager)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0 \ 1308 = (eager)->tcp_eager_prev_drop_q0; \ 1309 (eager)->tcp_eager_prev_drop_q0->tcp_eager_next_drop_q0 \ 1310 = (eager)->tcp_eager_next_drop_q0; \ 1311 (eager)->tcp_eager_prev_drop_q0 = NULL; \ 1312 (eager)->tcp_eager_next_drop_q0 = NULL; \ 1313 } 1314 1315 /* 1316 * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more 1317 * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent 1318 * data, TCP will not respond with an ACK. RFC 793 requires that 1319 * TCP responds with an ACK for such a bogus ACK. By not following 1320 * the RFC, we prevent TCP from getting into an ACK storm if somehow 1321 * an attacker successfully spoofs an acceptable segment to our 1322 * peer; or when our peer is "confused." 1323 */ 1324 uint32_t tcp_drop_ack_unsent_cnt = 10; 1325 1326 /* 1327 * Hook functions to enable cluster networking 1328 * On non-clustered systems these vectors must always be NULL. 1329 */ 1330 1331 void (*cl_inet_listen)(uint8_t protocol, sa_family_t addr_family, 1332 uint8_t *laddrp, in_port_t lport) = NULL; 1333 void (*cl_inet_unlisten)(uint8_t protocol, sa_family_t addr_family, 1334 uint8_t *laddrp, in_port_t lport) = NULL; 1335 void (*cl_inet_connect)(uint8_t protocol, sa_family_t addr_family, 1336 uint8_t *laddrp, in_port_t lport, 1337 uint8_t *faddrp, in_port_t fport) = NULL; 1338 void (*cl_inet_disconnect)(uint8_t protocol, sa_family_t addr_family, 1339 uint8_t *laddrp, in_port_t lport, 1340 uint8_t *faddrp, in_port_t fport) = NULL; 1341 1342 /* 1343 * The following are defined in ip.c 1344 */ 1345 extern int (*cl_inet_isclusterwide)(uint8_t protocol, sa_family_t addr_family, 1346 uint8_t *laddrp); 1347 extern uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family, 1348 uint8_t *laddrp, uint8_t *faddrp); 1349 1350 #define CL_INET_CONNECT(tcp) { \ 1351 if (cl_inet_connect != NULL) { \ 1352 /* \ 1353 * Running in cluster mode - register active connection \ 1354 * information \ 1355 */ \ 1356 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1357 if ((tcp)->tcp_ipha->ipha_src != 0) { \ 1358 (*cl_inet_connect)(IPPROTO_TCP, AF_INET,\ 1359 (uint8_t *)(&((tcp)->tcp_ipha->ipha_src)),\ 1360 (in_port_t)(tcp)->tcp_lport, \ 1361 (uint8_t *)(&((tcp)->tcp_ipha->ipha_dst)),\ 1362 (in_port_t)(tcp)->tcp_fport); \ 1363 } \ 1364 } else { \ 1365 if (!IN6_IS_ADDR_UNSPECIFIED( \ 1366 &(tcp)->tcp_ip6h->ip6_src)) {\ 1367 (*cl_inet_connect)(IPPROTO_TCP, AF_INET6,\ 1368 (uint8_t *)(&((tcp)->tcp_ip6h->ip6_src)),\ 1369 (in_port_t)(tcp)->tcp_lport, \ 1370 (uint8_t *)(&((tcp)->tcp_ip6h->ip6_dst)),\ 1371 (in_port_t)(tcp)->tcp_fport); \ 1372 } \ 1373 } \ 1374 } \ 1375 } 1376 1377 #define CL_INET_DISCONNECT(tcp) { \ 1378 if (cl_inet_disconnect != NULL) { \ 1379 /* \ 1380 * Running in cluster mode - deregister active \ 1381 * connection information \ 1382 */ \ 1383 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1384 if ((tcp)->tcp_ip_src != 0) { \ 1385 (*cl_inet_disconnect)(IPPROTO_TCP, \ 1386 AF_INET, \ 1387 (uint8_t *)(&((tcp)->tcp_ip_src)),\ 1388 (in_port_t)(tcp)->tcp_lport, \ 1389 (uint8_t *) \ 1390 (&((tcp)->tcp_ipha->ipha_dst)),\ 1391 (in_port_t)(tcp)->tcp_fport); \ 1392 } \ 1393 } else { \ 1394 if (!IN6_IS_ADDR_UNSPECIFIED( \ 1395 &(tcp)->tcp_ip_src_v6)) { \ 1396 (*cl_inet_disconnect)(IPPROTO_TCP, AF_INET6,\ 1397 (uint8_t *)(&((tcp)->tcp_ip_src_v6)),\ 1398 (in_port_t)(tcp)->tcp_lport, \ 1399 (uint8_t *) \ 1400 (&((tcp)->tcp_ip6h->ip6_dst)),\ 1401 (in_port_t)(tcp)->tcp_fport); \ 1402 } \ 1403 } \ 1404 } \ 1405 } 1406 1407 /* 1408 * Cluster networking hook for traversing current connection list. 1409 * This routine is used to extract the current list of live connections 1410 * which must continue to to be dispatched to this node. 1411 */ 1412 int cl_tcp_walk_list(int (*callback)(cl_tcp_info_t *, void *), void *arg); 1413 1414 static int cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *), 1415 void *arg, tcp_stack_t *tcps); 1416 1417 #define DTRACE_IP_FASTPATH(mp, iph, ill, ipha, ip6h) \ 1418 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, void_ip_t *, \ 1419 iph, __dtrace_ipsr_ill_t *, ill, ipha_t *, ipha, \ 1420 ip6_t *, ip6h, int, 0); 1421 1422 /* 1423 * Figure out the value of window scale opton. Note that the rwnd is 1424 * ASSUMED to be rounded up to the nearest MSS before the calculation. 1425 * We cannot find the scale value and then do a round up of tcp_rwnd 1426 * because the scale value may not be correct after that. 1427 * 1428 * Set the compiler flag to make this function inline. 1429 */ 1430 static void 1431 tcp_set_ws_value(tcp_t *tcp) 1432 { 1433 int i; 1434 uint32_t rwnd = tcp->tcp_rwnd; 1435 1436 for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT; 1437 i++, rwnd >>= 1) 1438 ; 1439 tcp->tcp_rcv_ws = i; 1440 } 1441 1442 /* 1443 * Remove a connection from the list of detached TIME_WAIT connections. 1444 * It returns B_FALSE if it can't remove the connection from the list 1445 * as the connection has already been removed from the list due to an 1446 * earlier call to tcp_time_wait_remove(); otherwise it returns B_TRUE. 1447 */ 1448 static boolean_t 1449 tcp_time_wait_remove(tcp_t *tcp, tcp_squeue_priv_t *tcp_time_wait) 1450 { 1451 boolean_t locked = B_FALSE; 1452 1453 if (tcp_time_wait == NULL) { 1454 tcp_time_wait = *((tcp_squeue_priv_t **) 1455 squeue_getprivate(tcp->tcp_connp->conn_sqp, SQPRIVATE_TCP)); 1456 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1457 locked = B_TRUE; 1458 } else { 1459 ASSERT(MUTEX_HELD(&tcp_time_wait->tcp_time_wait_lock)); 1460 } 1461 1462 if (tcp->tcp_time_wait_expire == 0) { 1463 ASSERT(tcp->tcp_time_wait_next == NULL); 1464 ASSERT(tcp->tcp_time_wait_prev == NULL); 1465 if (locked) 1466 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1467 return (B_FALSE); 1468 } 1469 ASSERT(TCP_IS_DETACHED(tcp)); 1470 ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); 1471 1472 if (tcp == tcp_time_wait->tcp_time_wait_head) { 1473 ASSERT(tcp->tcp_time_wait_prev == NULL); 1474 tcp_time_wait->tcp_time_wait_head = tcp->tcp_time_wait_next; 1475 if (tcp_time_wait->tcp_time_wait_head != NULL) { 1476 tcp_time_wait->tcp_time_wait_head->tcp_time_wait_prev = 1477 NULL; 1478 } else { 1479 tcp_time_wait->tcp_time_wait_tail = NULL; 1480 } 1481 } else if (tcp == tcp_time_wait->tcp_time_wait_tail) { 1482 ASSERT(tcp != tcp_time_wait->tcp_time_wait_head); 1483 ASSERT(tcp->tcp_time_wait_next == NULL); 1484 tcp_time_wait->tcp_time_wait_tail = tcp->tcp_time_wait_prev; 1485 ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); 1486 tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = NULL; 1487 } else { 1488 ASSERT(tcp->tcp_time_wait_prev->tcp_time_wait_next == tcp); 1489 ASSERT(tcp->tcp_time_wait_next->tcp_time_wait_prev == tcp); 1490 tcp->tcp_time_wait_prev->tcp_time_wait_next = 1491 tcp->tcp_time_wait_next; 1492 tcp->tcp_time_wait_next->tcp_time_wait_prev = 1493 tcp->tcp_time_wait_prev; 1494 } 1495 tcp->tcp_time_wait_next = NULL; 1496 tcp->tcp_time_wait_prev = NULL; 1497 tcp->tcp_time_wait_expire = 0; 1498 1499 if (locked) 1500 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1501 return (B_TRUE); 1502 } 1503 1504 /* 1505 * Add a connection to the list of detached TIME_WAIT connections 1506 * and set its time to expire. 1507 */ 1508 static void 1509 tcp_time_wait_append(tcp_t *tcp) 1510 { 1511 tcp_stack_t *tcps = tcp->tcp_tcps; 1512 tcp_squeue_priv_t *tcp_time_wait = 1513 *((tcp_squeue_priv_t **)squeue_getprivate(tcp->tcp_connp->conn_sqp, 1514 SQPRIVATE_TCP)); 1515 1516 tcp_timers_stop(tcp); 1517 1518 /* Freed above */ 1519 ASSERT(tcp->tcp_timer_tid == 0); 1520 ASSERT(tcp->tcp_ack_tid == 0); 1521 1522 /* must have happened at the time of detaching the tcp */ 1523 ASSERT(tcp->tcp_ptpahn == NULL); 1524 ASSERT(tcp->tcp_flow_stopped == 0); 1525 ASSERT(tcp->tcp_time_wait_next == NULL); 1526 ASSERT(tcp->tcp_time_wait_prev == NULL); 1527 ASSERT(tcp->tcp_time_wait_expire == NULL); 1528 ASSERT(tcp->tcp_listener == NULL); 1529 1530 tcp->tcp_time_wait_expire = ddi_get_lbolt(); 1531 /* 1532 * The value computed below in tcp->tcp_time_wait_expire may 1533 * appear negative or wrap around. That is ok since our 1534 * interest is only in the difference between the current lbolt 1535 * value and tcp->tcp_time_wait_expire. But the value should not 1536 * be zero, since it means the tcp is not in the TIME_WAIT list. 1537 * The corresponding comparison in tcp_time_wait_collector() uses 1538 * modular arithmetic. 1539 */ 1540 tcp->tcp_time_wait_expire += 1541 drv_usectohz(tcps->tcps_time_wait_interval * 1000); 1542 if (tcp->tcp_time_wait_expire == 0) 1543 tcp->tcp_time_wait_expire = 1; 1544 1545 ASSERT(TCP_IS_DETACHED(tcp)); 1546 ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); 1547 ASSERT(tcp->tcp_time_wait_next == NULL); 1548 ASSERT(tcp->tcp_time_wait_prev == NULL); 1549 TCP_DBGSTAT(tcps, tcp_time_wait); 1550 1551 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1552 if (tcp_time_wait->tcp_time_wait_head == NULL) { 1553 ASSERT(tcp_time_wait->tcp_time_wait_tail == NULL); 1554 tcp_time_wait->tcp_time_wait_head = tcp; 1555 } else { 1556 ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); 1557 ASSERT(tcp_time_wait->tcp_time_wait_tail->tcp_state == 1558 TCPS_TIME_WAIT); 1559 tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = tcp; 1560 tcp->tcp_time_wait_prev = tcp_time_wait->tcp_time_wait_tail; 1561 } 1562 tcp_time_wait->tcp_time_wait_tail = tcp; 1563 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1564 } 1565 1566 /* ARGSUSED */ 1567 void 1568 tcp_timewait_output(void *arg, mblk_t *mp, void *arg2) 1569 { 1570 conn_t *connp = (conn_t *)arg; 1571 tcp_t *tcp = connp->conn_tcp; 1572 tcp_stack_t *tcps = tcp->tcp_tcps; 1573 1574 ASSERT(tcp != NULL); 1575 if (tcp->tcp_state == TCPS_CLOSED) { 1576 return; 1577 } 1578 1579 ASSERT((tcp->tcp_family == AF_INET && 1580 tcp->tcp_ipversion == IPV4_VERSION) || 1581 (tcp->tcp_family == AF_INET6 && 1582 (tcp->tcp_ipversion == IPV4_VERSION || 1583 tcp->tcp_ipversion == IPV6_VERSION))); 1584 ASSERT(!tcp->tcp_listener); 1585 1586 TCP_STAT(tcps, tcp_time_wait_reap); 1587 ASSERT(TCP_IS_DETACHED(tcp)); 1588 1589 /* 1590 * Because they have no upstream client to rebind or tcp_close() 1591 * them later, we axe the connection here and now. 1592 */ 1593 tcp_close_detached(tcp); 1594 } 1595 1596 /* 1597 * Remove cached/latched IPsec references. 1598 */ 1599 void 1600 tcp_ipsec_cleanup(tcp_t *tcp) 1601 { 1602 conn_t *connp = tcp->tcp_connp; 1603 1604 ASSERT(connp->conn_flags & IPCL_TCPCONN); 1605 1606 if (connp->conn_latch != NULL) { 1607 IPLATCH_REFRELE(connp->conn_latch, 1608 connp->conn_netstack); 1609 connp->conn_latch = NULL; 1610 } 1611 if (connp->conn_policy != NULL) { 1612 IPPH_REFRELE(connp->conn_policy, connp->conn_netstack); 1613 connp->conn_policy = NULL; 1614 } 1615 } 1616 1617 /* 1618 * Cleaup before placing on free list. 1619 * Disassociate from the netstack/tcp_stack_t since the freelist 1620 * is per squeue and not per netstack. 1621 */ 1622 void 1623 tcp_cleanup(tcp_t *tcp) 1624 { 1625 mblk_t *mp; 1626 char *tcp_iphc; 1627 int tcp_iphc_len; 1628 int tcp_hdr_grown; 1629 tcp_sack_info_t *tcp_sack_info; 1630 conn_t *connp = tcp->tcp_connp; 1631 tcp_stack_t *tcps = tcp->tcp_tcps; 1632 netstack_t *ns = tcps->tcps_netstack; 1633 mblk_t *tcp_rsrv_mp; 1634 1635 tcp_bind_hash_remove(tcp); 1636 1637 /* Cleanup that which needs the netstack first */ 1638 tcp_ipsec_cleanup(tcp); 1639 1640 tcp_free(tcp); 1641 1642 /* Release any SSL context */ 1643 if (tcp->tcp_kssl_ent != NULL) { 1644 kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); 1645 tcp->tcp_kssl_ent = NULL; 1646 } 1647 1648 if (tcp->tcp_kssl_ctx != NULL) { 1649 kssl_release_ctx(tcp->tcp_kssl_ctx); 1650 tcp->tcp_kssl_ctx = NULL; 1651 } 1652 tcp->tcp_kssl_pending = B_FALSE; 1653 1654 conn_delete_ire(connp, NULL); 1655 1656 /* 1657 * Since we will bzero the entire structure, we need to 1658 * remove it and reinsert it in global hash list. We 1659 * know the walkers can't get to this conn because we 1660 * had set CONDEMNED flag earlier and checked reference 1661 * under conn_lock so walker won't pick it and when we 1662 * go the ipcl_globalhash_remove() below, no walker 1663 * can get to it. 1664 */ 1665 ipcl_globalhash_remove(connp); 1666 1667 /* 1668 * Now it is safe to decrement the reference counts. 1669 * This might be the last reference on the netstack and TCPS 1670 * in which case it will cause the tcp_g_q_close and 1671 * the freeing of the IP Instance. 1672 */ 1673 connp->conn_netstack = NULL; 1674 netstack_rele(ns); 1675 ASSERT(tcps != NULL); 1676 tcp->tcp_tcps = NULL; 1677 TCPS_REFRELE(tcps); 1678 1679 /* Save some state */ 1680 mp = tcp->tcp_timercache; 1681 1682 tcp_sack_info = tcp->tcp_sack_info; 1683 tcp_iphc = tcp->tcp_iphc; 1684 tcp_iphc_len = tcp->tcp_iphc_len; 1685 tcp_hdr_grown = tcp->tcp_hdr_grown; 1686 tcp_rsrv_mp = tcp->tcp_rsrv_mp; 1687 1688 if (connp->conn_cred != NULL) { 1689 crfree(connp->conn_cred); 1690 connp->conn_cred = NULL; 1691 } 1692 if (connp->conn_peercred != NULL) { 1693 crfree(connp->conn_peercred); 1694 connp->conn_peercred = NULL; 1695 } 1696 ipcl_conn_cleanup(connp); 1697 connp->conn_flags = IPCL_TCPCONN; 1698 bzero(tcp, sizeof (tcp_t)); 1699 1700 /* restore the state */ 1701 tcp->tcp_timercache = mp; 1702 1703 tcp->tcp_sack_info = tcp_sack_info; 1704 tcp->tcp_iphc = tcp_iphc; 1705 tcp->tcp_iphc_len = tcp_iphc_len; 1706 tcp->tcp_hdr_grown = tcp_hdr_grown; 1707 tcp->tcp_rsrv_mp = tcp_rsrv_mp; 1708 1709 tcp->tcp_connp = connp; 1710 1711 ASSERT(connp->conn_tcp == tcp); 1712 ASSERT(connp->conn_flags & IPCL_TCPCONN); 1713 connp->conn_state_flags = CONN_INCIPIENT; 1714 ASSERT(connp->conn_ulp == IPPROTO_TCP); 1715 ASSERT(connp->conn_ref == 1); 1716 } 1717 1718 /* 1719 * Blows away all tcps whose TIME_WAIT has expired. List traversal 1720 * is done forwards from the head. 1721 * This walks all stack instances since 1722 * tcp_time_wait remains global across all stacks. 1723 */ 1724 /* ARGSUSED */ 1725 void 1726 tcp_time_wait_collector(void *arg) 1727 { 1728 tcp_t *tcp; 1729 clock_t now; 1730 mblk_t *mp; 1731 conn_t *connp; 1732 kmutex_t *lock; 1733 boolean_t removed; 1734 1735 squeue_t *sqp = (squeue_t *)arg; 1736 tcp_squeue_priv_t *tcp_time_wait = 1737 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 1738 1739 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1740 tcp_time_wait->tcp_time_wait_tid = 0; 1741 1742 if (tcp_time_wait->tcp_free_list != NULL && 1743 tcp_time_wait->tcp_free_list->tcp_in_free_list == B_TRUE) { 1744 TCP_G_STAT(tcp_freelist_cleanup); 1745 while ((tcp = tcp_time_wait->tcp_free_list) != NULL) { 1746 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 1747 tcp->tcp_time_wait_next = NULL; 1748 tcp_time_wait->tcp_free_list_cnt--; 1749 ASSERT(tcp->tcp_tcps == NULL); 1750 CONN_DEC_REF(tcp->tcp_connp); 1751 } 1752 ASSERT(tcp_time_wait->tcp_free_list_cnt == 0); 1753 } 1754 1755 /* 1756 * In order to reap time waits reliably, we should use a 1757 * source of time that is not adjustable by the user -- hence 1758 * the call to ddi_get_lbolt(). 1759 */ 1760 now = ddi_get_lbolt(); 1761 while ((tcp = tcp_time_wait->tcp_time_wait_head) != NULL) { 1762 /* 1763 * Compare times using modular arithmetic, since 1764 * lbolt can wrapover. 1765 */ 1766 if ((now - tcp->tcp_time_wait_expire) < 0) { 1767 break; 1768 } 1769 1770 removed = tcp_time_wait_remove(tcp, tcp_time_wait); 1771 ASSERT(removed); 1772 1773 connp = tcp->tcp_connp; 1774 ASSERT(connp->conn_fanout != NULL); 1775 lock = &connp->conn_fanout->connf_lock; 1776 /* 1777 * This is essentially a TW reclaim fast path optimization for 1778 * performance where the timewait collector checks under the 1779 * fanout lock (so that no one else can get access to the 1780 * conn_t) that the refcnt is 2 i.e. one for TCP and one for 1781 * the classifier hash list. If ref count is indeed 2, we can 1782 * just remove the conn under the fanout lock and avoid 1783 * cleaning up the conn under the squeue, provided that 1784 * clustering callbacks are not enabled. If clustering is 1785 * enabled, we need to make the clustering callback before 1786 * setting the CONDEMNED flag and after dropping all locks and 1787 * so we forego this optimization and fall back to the slow 1788 * path. Also please see the comments in tcp_closei_local 1789 * regarding the refcnt logic. 1790 * 1791 * Since we are holding the tcp_time_wait_lock, its better 1792 * not to block on the fanout_lock because other connections 1793 * can't add themselves to time_wait list. So we do a 1794 * tryenter instead of mutex_enter. 1795 */ 1796 if (mutex_tryenter(lock)) { 1797 mutex_enter(&connp->conn_lock); 1798 if ((connp->conn_ref == 2) && 1799 (cl_inet_disconnect == NULL)) { 1800 ipcl_hash_remove_locked(connp, 1801 connp->conn_fanout); 1802 /* 1803 * Set the CONDEMNED flag now itself so that 1804 * the refcnt cannot increase due to any 1805 * walker. But we have still not cleaned up 1806 * conn_ire_cache. This is still ok since 1807 * we are going to clean it up in tcp_cleanup 1808 * immediately and any interface unplumb 1809 * thread will wait till the ire is blown away 1810 */ 1811 connp->conn_state_flags |= CONN_CONDEMNED; 1812 mutex_exit(lock); 1813 mutex_exit(&connp->conn_lock); 1814 if (tcp_time_wait->tcp_free_list_cnt < 1815 tcp_free_list_max_cnt) { 1816 /* Add to head of tcp_free_list */ 1817 mutex_exit( 1818 &tcp_time_wait->tcp_time_wait_lock); 1819 tcp_cleanup(tcp); 1820 ASSERT(connp->conn_latch == NULL); 1821 ASSERT(connp->conn_policy == NULL); 1822 ASSERT(tcp->tcp_tcps == NULL); 1823 ASSERT(connp->conn_netstack == NULL); 1824 1825 mutex_enter( 1826 &tcp_time_wait->tcp_time_wait_lock); 1827 tcp->tcp_time_wait_next = 1828 tcp_time_wait->tcp_free_list; 1829 tcp_time_wait->tcp_free_list = tcp; 1830 tcp_time_wait->tcp_free_list_cnt++; 1831 continue; 1832 } else { 1833 /* Do not add to tcp_free_list */ 1834 mutex_exit( 1835 &tcp_time_wait->tcp_time_wait_lock); 1836 tcp_bind_hash_remove(tcp); 1837 conn_delete_ire(tcp->tcp_connp, NULL); 1838 tcp_ipsec_cleanup(tcp); 1839 CONN_DEC_REF(tcp->tcp_connp); 1840 } 1841 } else { 1842 CONN_INC_REF_LOCKED(connp); 1843 mutex_exit(lock); 1844 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1845 mutex_exit(&connp->conn_lock); 1846 /* 1847 * We can reuse the closemp here since conn has 1848 * detached (otherwise we wouldn't even be in 1849 * time_wait list). tcp_closemp_used can safely 1850 * be changed without taking a lock as no other 1851 * thread can concurrently access it at this 1852 * point in the connection lifecycle. 1853 */ 1854 1855 if (tcp->tcp_closemp.b_prev == NULL) 1856 tcp->tcp_closemp_used = B_TRUE; 1857 else 1858 cmn_err(CE_PANIC, 1859 "tcp_timewait_collector: " 1860 "concurrent use of tcp_closemp: " 1861 "connp %p tcp %p\n", (void *)connp, 1862 (void *)tcp); 1863 1864 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 1865 mp = &tcp->tcp_closemp; 1866 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 1867 tcp_timewait_output, connp, 1868 SQ_FILL, SQTAG_TCP_TIMEWAIT); 1869 } 1870 } else { 1871 mutex_enter(&connp->conn_lock); 1872 CONN_INC_REF_LOCKED(connp); 1873 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1874 mutex_exit(&connp->conn_lock); 1875 /* 1876 * We can reuse the closemp here since conn has 1877 * detached (otherwise we wouldn't even be in 1878 * time_wait list). tcp_closemp_used can safely 1879 * be changed without taking a lock as no other 1880 * thread can concurrently access it at this 1881 * point in the connection lifecycle. 1882 */ 1883 1884 if (tcp->tcp_closemp.b_prev == NULL) 1885 tcp->tcp_closemp_used = B_TRUE; 1886 else 1887 cmn_err(CE_PANIC, "tcp_timewait_collector: " 1888 "concurrent use of tcp_closemp: " 1889 "connp %p tcp %p\n", (void *)connp, 1890 (void *)tcp); 1891 1892 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 1893 mp = &tcp->tcp_closemp; 1894 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 1895 tcp_timewait_output, connp, 1896 SQ_FILL, SQTAG_TCP_TIMEWAIT); 1897 } 1898 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1899 } 1900 1901 if (tcp_time_wait->tcp_free_list != NULL) 1902 tcp_time_wait->tcp_free_list->tcp_in_free_list = B_TRUE; 1903 1904 tcp_time_wait->tcp_time_wait_tid = 1905 timeout_generic(CALLOUT_NORMAL, tcp_time_wait_collector, sqp, 1906 TICK_TO_NSEC(TCP_TIME_WAIT_DELAY), CALLOUT_TCP_RESOLUTION, 1907 CALLOUT_FLAG_ROUNDUP); 1908 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1909 } 1910 /* 1911 * Reply to a clients T_CONN_RES TPI message. This function 1912 * is used only for TLI/XTI listener. Sockfs sends T_CONN_RES 1913 * on the acceptor STREAM and processed in tcp_wput_accept(). 1914 * Read the block comment on top of tcp_conn_request(). 1915 */ 1916 static void 1917 tcp_accept(tcp_t *listener, mblk_t *mp) 1918 { 1919 tcp_t *acceptor; 1920 tcp_t *eager; 1921 tcp_t *tcp; 1922 struct T_conn_res *tcr; 1923 t_uscalar_t acceptor_id; 1924 t_scalar_t seqnum; 1925 mblk_t *opt_mp = NULL; /* T_OPTMGMT_REQ messages */ 1926 mblk_t *ok_mp; 1927 mblk_t *mp1; 1928 tcp_stack_t *tcps = listener->tcp_tcps; 1929 1930 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { 1931 tcp_err_ack(listener, mp, TPROTO, 0); 1932 return; 1933 } 1934 tcr = (struct T_conn_res *)mp->b_rptr; 1935 1936 /* 1937 * Under ILP32 the stream head points tcr->ACCEPTOR_id at the 1938 * read side queue of the streams device underneath us i.e. the 1939 * read side queue of 'ip'. Since we can't deference QUEUE_ptr we 1940 * look it up in the queue_hash. Under LP64 it sends down the 1941 * minor_t of the accepting endpoint. 1942 * 1943 * Once the acceptor/eager are modified (in tcp_accept_swap) the 1944 * fanout hash lock is held. 1945 * This prevents any thread from entering the acceptor queue from 1946 * below (since it has not been hard bound yet i.e. any inbound 1947 * packets will arrive on the listener or default tcp queue and 1948 * go through tcp_lookup). 1949 * The CONN_INC_REF will prevent the acceptor from closing. 1950 * 1951 * XXX It is still possible for a tli application to send down data 1952 * on the accepting stream while another thread calls t_accept. 1953 * This should not be a problem for well-behaved applications since 1954 * the T_OK_ACK is sent after the queue swapping is completed. 1955 * 1956 * If the accepting fd is the same as the listening fd, avoid 1957 * queue hash lookup since that will return an eager listener in a 1958 * already established state. 1959 */ 1960 acceptor_id = tcr->ACCEPTOR_id; 1961 mutex_enter(&listener->tcp_eager_lock); 1962 if (listener->tcp_acceptor_id == acceptor_id) { 1963 eager = listener->tcp_eager_next_q; 1964 /* only count how many T_CONN_INDs so don't count q0 */ 1965 if ((listener->tcp_conn_req_cnt_q != 1) || 1966 (eager->tcp_conn_req_seqnum != tcr->SEQ_number)) { 1967 mutex_exit(&listener->tcp_eager_lock); 1968 tcp_err_ack(listener, mp, TBADF, 0); 1969 return; 1970 } 1971 if (listener->tcp_conn_req_cnt_q0 != 0) { 1972 /* Throw away all the eagers on q0. */ 1973 tcp_eager_cleanup(listener, 1); 1974 } 1975 if (listener->tcp_syn_defense) { 1976 listener->tcp_syn_defense = B_FALSE; 1977 if (listener->tcp_ip_addr_cache != NULL) { 1978 kmem_free(listener->tcp_ip_addr_cache, 1979 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 1980 listener->tcp_ip_addr_cache = NULL; 1981 } 1982 } 1983 /* 1984 * Transfer tcp_conn_req_max to the eager so that when 1985 * a disconnect occurs we can revert the endpoint to the 1986 * listen state. 1987 */ 1988 eager->tcp_conn_req_max = listener->tcp_conn_req_max; 1989 ASSERT(listener->tcp_conn_req_cnt_q0 == 0); 1990 /* 1991 * Get a reference on the acceptor just like the 1992 * tcp_acceptor_hash_lookup below. 1993 */ 1994 acceptor = listener; 1995 CONN_INC_REF(acceptor->tcp_connp); 1996 } else { 1997 acceptor = tcp_acceptor_hash_lookup(acceptor_id, tcps); 1998 if (acceptor == NULL) { 1999 if (listener->tcp_debug) { 2000 (void) strlog(TCP_MOD_ID, 0, 1, 2001 SL_ERROR|SL_TRACE, 2002 "tcp_accept: did not find acceptor 0x%x\n", 2003 acceptor_id); 2004 } 2005 mutex_exit(&listener->tcp_eager_lock); 2006 tcp_err_ack(listener, mp, TPROVMISMATCH, 0); 2007 return; 2008 } 2009 /* 2010 * Verify acceptor state. The acceptable states for an acceptor 2011 * include TCPS_IDLE and TCPS_BOUND. 2012 */ 2013 switch (acceptor->tcp_state) { 2014 case TCPS_IDLE: 2015 /* FALLTHRU */ 2016 case TCPS_BOUND: 2017 break; 2018 default: 2019 CONN_DEC_REF(acceptor->tcp_connp); 2020 mutex_exit(&listener->tcp_eager_lock); 2021 tcp_err_ack(listener, mp, TOUTSTATE, 0); 2022 return; 2023 } 2024 } 2025 2026 /* The listener must be in TCPS_LISTEN */ 2027 if (listener->tcp_state != TCPS_LISTEN) { 2028 CONN_DEC_REF(acceptor->tcp_connp); 2029 mutex_exit(&listener->tcp_eager_lock); 2030 tcp_err_ack(listener, mp, TOUTSTATE, 0); 2031 return; 2032 } 2033 2034 /* 2035 * Rendezvous with an eager connection request packet hanging off 2036 * 'tcp' that has the 'seqnum' tag. We tagged the detached open 2037 * tcp structure when the connection packet arrived in 2038 * tcp_conn_request(). 2039 */ 2040 seqnum = tcr->SEQ_number; 2041 eager = listener; 2042 do { 2043 eager = eager->tcp_eager_next_q; 2044 if (eager == NULL) { 2045 CONN_DEC_REF(acceptor->tcp_connp); 2046 mutex_exit(&listener->tcp_eager_lock); 2047 tcp_err_ack(listener, mp, TBADSEQ, 0); 2048 return; 2049 } 2050 } while (eager->tcp_conn_req_seqnum != seqnum); 2051 mutex_exit(&listener->tcp_eager_lock); 2052 2053 /* 2054 * At this point, both acceptor and listener have 2 ref 2055 * that they begin with. Acceptor has one additional ref 2056 * we placed in lookup while listener has 3 additional 2057 * ref for being behind the squeue (tcp_accept() is 2058 * done on listener's squeue); being in classifier hash; 2059 * and eager's ref on listener. 2060 */ 2061 ASSERT(listener->tcp_connp->conn_ref >= 5); 2062 ASSERT(acceptor->tcp_connp->conn_ref >= 3); 2063 2064 /* 2065 * The eager at this point is set in its own squeue and 2066 * could easily have been killed (tcp_accept_finish will 2067 * deal with that) because of a TH_RST so we can only 2068 * ASSERT for a single ref. 2069 */ 2070 ASSERT(eager->tcp_connp->conn_ref >= 1); 2071 2072 /* Pre allocate the stroptions mblk also */ 2073 opt_mp = allocb(sizeof (struct stroptions), BPRI_HI); 2074 if (opt_mp == NULL) { 2075 CONN_DEC_REF(acceptor->tcp_connp); 2076 CONN_DEC_REF(eager->tcp_connp); 2077 tcp_err_ack(listener, mp, TSYSERR, ENOMEM); 2078 return; 2079 } 2080 DB_TYPE(opt_mp) = M_SETOPTS; 2081 opt_mp->b_wptr += sizeof (struct stroptions); 2082 2083 /* 2084 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO 2085 * from listener to acceptor. The message is chained on opt_mp 2086 * which will be sent onto eager's squeue. 2087 */ 2088 if (listener->tcp_bound_if != 0) { 2089 /* allocate optmgmt req */ 2090 mp1 = tcp_setsockopt_mp(IPPROTO_IPV6, 2091 IPV6_BOUND_IF, (char *)&listener->tcp_bound_if, 2092 sizeof (int)); 2093 if (mp1 != NULL) 2094 linkb(opt_mp, mp1); 2095 } 2096 if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) { 2097 uint_t on = 1; 2098 2099 /* allocate optmgmt req */ 2100 mp1 = tcp_setsockopt_mp(IPPROTO_IPV6, 2101 IPV6_RECVPKTINFO, (char *)&on, sizeof (on)); 2102 if (mp1 != NULL) 2103 linkb(opt_mp, mp1); 2104 } 2105 2106 /* Re-use mp1 to hold a copy of mp, in case reallocb fails */ 2107 if ((mp1 = copymsg(mp)) == NULL) { 2108 CONN_DEC_REF(acceptor->tcp_connp); 2109 CONN_DEC_REF(eager->tcp_connp); 2110 freemsg(opt_mp); 2111 tcp_err_ack(listener, mp, TSYSERR, ENOMEM); 2112 return; 2113 } 2114 2115 tcr = (struct T_conn_res *)mp1->b_rptr; 2116 2117 /* 2118 * This is an expanded version of mi_tpi_ok_ack_alloc() 2119 * which allocates a larger mblk and appends the new 2120 * local address to the ok_ack. The address is copied by 2121 * soaccept() for getsockname(). 2122 */ 2123 { 2124 int extra; 2125 2126 extra = (eager->tcp_family == AF_INET) ? 2127 sizeof (sin_t) : sizeof (sin6_t); 2128 2129 /* 2130 * Try to re-use mp, if possible. Otherwise, allocate 2131 * an mblk and return it as ok_mp. In any case, mp 2132 * is no longer usable upon return. 2133 */ 2134 if ((ok_mp = mi_tpi_ok_ack_alloc_extra(mp, extra)) == NULL) { 2135 CONN_DEC_REF(acceptor->tcp_connp); 2136 CONN_DEC_REF(eager->tcp_connp); 2137 freemsg(opt_mp); 2138 /* Original mp has been freed by now, so use mp1 */ 2139 tcp_err_ack(listener, mp1, TSYSERR, ENOMEM); 2140 return; 2141 } 2142 2143 mp = NULL; /* We should never use mp after this point */ 2144 2145 switch (extra) { 2146 case sizeof (sin_t): { 2147 sin_t *sin = (sin_t *)ok_mp->b_wptr; 2148 2149 ok_mp->b_wptr += extra; 2150 sin->sin_family = AF_INET; 2151 sin->sin_port = eager->tcp_lport; 2152 sin->sin_addr.s_addr = 2153 eager->tcp_ipha->ipha_src; 2154 break; 2155 } 2156 case sizeof (sin6_t): { 2157 sin6_t *sin6 = (sin6_t *)ok_mp->b_wptr; 2158 2159 ok_mp->b_wptr += extra; 2160 sin6->sin6_family = AF_INET6; 2161 sin6->sin6_port = eager->tcp_lport; 2162 if (eager->tcp_ipversion == IPV4_VERSION) { 2163 sin6->sin6_flowinfo = 0; 2164 IN6_IPADDR_TO_V4MAPPED( 2165 eager->tcp_ipha->ipha_src, 2166 &sin6->sin6_addr); 2167 } else { 2168 ASSERT(eager->tcp_ip6h != NULL); 2169 sin6->sin6_flowinfo = 2170 eager->tcp_ip6h->ip6_vcf & 2171 ~IPV6_VERS_AND_FLOW_MASK; 2172 sin6->sin6_addr = 2173 eager->tcp_ip6h->ip6_src; 2174 } 2175 sin6->sin6_scope_id = 0; 2176 sin6->__sin6_src_id = 0; 2177 break; 2178 } 2179 default: 2180 break; 2181 } 2182 ASSERT(ok_mp->b_wptr <= ok_mp->b_datap->db_lim); 2183 } 2184 2185 /* 2186 * If there are no options we know that the T_CONN_RES will 2187 * succeed. However, we can't send the T_OK_ACK upstream until 2188 * the tcp_accept_swap is done since it would be dangerous to 2189 * let the application start using the new fd prior to the swap. 2190 */ 2191 tcp_accept_swap(listener, acceptor, eager); 2192 2193 /* 2194 * tcp_accept_swap unlinks eager from listener but does not drop 2195 * the eager's reference on the listener. 2196 */ 2197 ASSERT(eager->tcp_listener == NULL); 2198 ASSERT(listener->tcp_connp->conn_ref >= 5); 2199 2200 /* 2201 * The eager is now associated with its own queue. Insert in 2202 * the hash so that the connection can be reused for a future 2203 * T_CONN_RES. 2204 */ 2205 tcp_acceptor_hash_insert(acceptor_id, eager); 2206 2207 /* 2208 * We now do the processing of options with T_CONN_RES. 2209 * We delay till now since we wanted to have queue to pass to 2210 * option processing routines that points back to the right 2211 * instance structure which does not happen until after 2212 * tcp_accept_swap(). 2213 * 2214 * Note: 2215 * The sanity of the logic here assumes that whatever options 2216 * are appropriate to inherit from listner=>eager are done 2217 * before this point, and whatever were to be overridden (or not) 2218 * in transfer logic from eager=>acceptor in tcp_accept_swap(). 2219 * [ Warning: acceptor endpoint can have T_OPTMGMT_REQ done to it 2220 * before its ACCEPTOR_id comes down in T_CONN_RES ] 2221 * This may not be true at this point in time but can be fixed 2222 * independently. This option processing code starts with 2223 * the instantiated acceptor instance and the final queue at 2224 * this point. 2225 */ 2226 2227 if (tcr->OPT_length != 0) { 2228 /* Options to process */ 2229 int t_error = 0; 2230 int sys_error = 0; 2231 int do_disconnect = 0; 2232 2233 if (tcp_conprim_opt_process(eager, mp1, 2234 &do_disconnect, &t_error, &sys_error) < 0) { 2235 eager->tcp_accept_error = 1; 2236 if (do_disconnect) { 2237 /* 2238 * An option failed which does not allow 2239 * connection to be accepted. 2240 * 2241 * We allow T_CONN_RES to succeed and 2242 * put a T_DISCON_IND on the eager queue. 2243 */ 2244 ASSERT(t_error == 0 && sys_error == 0); 2245 eager->tcp_send_discon_ind = 1; 2246 } else { 2247 ASSERT(t_error != 0); 2248 freemsg(ok_mp); 2249 /* 2250 * Original mp was either freed or set 2251 * to ok_mp above, so use mp1 instead. 2252 */ 2253 tcp_err_ack(listener, mp1, t_error, sys_error); 2254 goto finish; 2255 } 2256 } 2257 /* 2258 * Most likely success in setting options (except if 2259 * eager->tcp_send_discon_ind set). 2260 * mp1 option buffer represented by OPT_length/offset 2261 * potentially modified and contains results of setting 2262 * options at this point 2263 */ 2264 } 2265 2266 /* We no longer need mp1, since all options processing has passed */ 2267 freemsg(mp1); 2268 2269 putnext(listener->tcp_rq, ok_mp); 2270 2271 mutex_enter(&listener->tcp_eager_lock); 2272 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 2273 tcp_t *tail; 2274 mblk_t *conn_ind; 2275 2276 /* 2277 * This path should not be executed if listener and 2278 * acceptor streams are the same. 2279 */ 2280 ASSERT(listener != acceptor); 2281 2282 tcp = listener->tcp_eager_prev_q0; 2283 /* 2284 * listener->tcp_eager_prev_q0 points to the TAIL of the 2285 * deferred T_conn_ind queue. We need to get to the head of 2286 * the queue in order to send up T_conn_ind the same order as 2287 * how the 3WHS is completed. 2288 */ 2289 while (tcp != listener) { 2290 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0) 2291 break; 2292 else 2293 tcp = tcp->tcp_eager_prev_q0; 2294 } 2295 ASSERT(tcp != listener); 2296 conn_ind = tcp->tcp_conn.tcp_eager_conn_ind; 2297 ASSERT(conn_ind != NULL); 2298 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 2299 2300 /* Move from q0 to q */ 2301 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 2302 listener->tcp_conn_req_cnt_q0--; 2303 listener->tcp_conn_req_cnt_q++; 2304 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 2305 tcp->tcp_eager_prev_q0; 2306 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 2307 tcp->tcp_eager_next_q0; 2308 tcp->tcp_eager_prev_q0 = NULL; 2309 tcp->tcp_eager_next_q0 = NULL; 2310 tcp->tcp_conn_def_q0 = B_FALSE; 2311 2312 /* Make sure the tcp isn't in the list of droppables */ 2313 ASSERT(tcp->tcp_eager_next_drop_q0 == NULL && 2314 tcp->tcp_eager_prev_drop_q0 == NULL); 2315 2316 /* 2317 * Insert at end of the queue because sockfs sends 2318 * down T_CONN_RES in chronological order. Leaving 2319 * the older conn indications at front of the queue 2320 * helps reducing search time. 2321 */ 2322 tail = listener->tcp_eager_last_q; 2323 if (tail != NULL) 2324 tail->tcp_eager_next_q = tcp; 2325 else 2326 listener->tcp_eager_next_q = tcp; 2327 listener->tcp_eager_last_q = tcp; 2328 tcp->tcp_eager_next_q = NULL; 2329 mutex_exit(&listener->tcp_eager_lock); 2330 putnext(tcp->tcp_rq, conn_ind); 2331 } else { 2332 mutex_exit(&listener->tcp_eager_lock); 2333 } 2334 2335 /* 2336 * Done with the acceptor - free it 2337 * 2338 * Note: from this point on, no access to listener should be made 2339 * as listener can be equal to acceptor. 2340 */ 2341 finish: 2342 ASSERT(acceptor->tcp_detached); 2343 ASSERT(tcps->tcps_g_q != NULL); 2344 acceptor->tcp_rq = tcps->tcps_g_q; 2345 acceptor->tcp_wq = WR(tcps->tcps_g_q); 2346 (void) tcp_clean_death(acceptor, 0, 2); 2347 CONN_DEC_REF(acceptor->tcp_connp); 2348 2349 /* 2350 * In case we already received a FIN we have to make tcp_rput send 2351 * the ordrel_ind. This will also send up a window update if the window 2352 * has opened up. 2353 * 2354 * In the normal case of a successful connection acceptance 2355 * we give the O_T_BIND_REQ to the read side put procedure as an 2356 * indication that this was just accepted. This tells tcp_rput to 2357 * pass up any data queued in tcp_rcv_list. 2358 * 2359 * In the fringe case where options sent with T_CONN_RES failed and 2360 * we required, we would be indicating a T_DISCON_IND to blow 2361 * away this connection. 2362 */ 2363 2364 /* 2365 * XXX: we currently have a problem if XTI application closes the 2366 * acceptor stream in between. This problem exists in on10-gate also 2367 * and is well know but nothing can be done short of major rewrite 2368 * to fix it. Now it is possible to take care of it by assigning TLI/XTI 2369 * eager same squeue as listener (we can distinguish non socket 2370 * listeners at the time of handling a SYN in tcp_conn_request) 2371 * and do most of the work that tcp_accept_finish does here itself 2372 * and then get behind the acceptor squeue to access the acceptor 2373 * queue. 2374 */ 2375 /* 2376 * We already have a ref on tcp so no need to do one before squeue_enter 2377 */ 2378 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, opt_mp, tcp_accept_finish, 2379 eager->tcp_connp, SQ_FILL, SQTAG_TCP_ACCEPT_FINISH); 2380 } 2381 2382 /* 2383 * Swap information between the eager and acceptor for a TLI/XTI client. 2384 * The sockfs accept is done on the acceptor stream and control goes 2385 * through tcp_wput_accept() and tcp_accept()/tcp_accept_swap() is not 2386 * called. In either case, both the eager and listener are in their own 2387 * perimeter (squeue) and the code has to deal with potential race. 2388 * 2389 * See the block comment on top of tcp_accept() and tcp_wput_accept(). 2390 */ 2391 static void 2392 tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, tcp_t *eager) 2393 { 2394 conn_t *econnp, *aconnp; 2395 2396 ASSERT(eager->tcp_rq == listener->tcp_rq); 2397 ASSERT(eager->tcp_detached && !acceptor->tcp_detached); 2398 ASSERT(!eager->tcp_hard_bound); 2399 ASSERT(!TCP_IS_SOCKET(acceptor)); 2400 ASSERT(!TCP_IS_SOCKET(eager)); 2401 ASSERT(!TCP_IS_SOCKET(listener)); 2402 2403 acceptor->tcp_detached = B_TRUE; 2404 /* 2405 * To permit stream re-use by TLI/XTI, the eager needs a copy of 2406 * the acceptor id. 2407 */ 2408 eager->tcp_acceptor_id = acceptor->tcp_acceptor_id; 2409 2410 /* remove eager from listen list... */ 2411 mutex_enter(&listener->tcp_eager_lock); 2412 tcp_eager_unlink(eager); 2413 ASSERT(eager->tcp_eager_next_q == NULL && 2414 eager->tcp_eager_last_q == NULL); 2415 ASSERT(eager->tcp_eager_next_q0 == NULL && 2416 eager->tcp_eager_prev_q0 == NULL); 2417 mutex_exit(&listener->tcp_eager_lock); 2418 eager->tcp_rq = acceptor->tcp_rq; 2419 eager->tcp_wq = acceptor->tcp_wq; 2420 2421 econnp = eager->tcp_connp; 2422 aconnp = acceptor->tcp_connp; 2423 2424 eager->tcp_rq->q_ptr = econnp; 2425 eager->tcp_wq->q_ptr = econnp; 2426 2427 /* 2428 * In the TLI/XTI loopback case, we are inside the listener's squeue, 2429 * which might be a different squeue from our peer TCP instance. 2430 * For TCP Fusion, the peer expects that whenever tcp_detached is 2431 * clear, our TCP queues point to the acceptor's queues. Thus, use 2432 * membar_producer() to ensure that the assignments of tcp_rq/tcp_wq 2433 * above reach global visibility prior to the clearing of tcp_detached. 2434 */ 2435 membar_producer(); 2436 eager->tcp_detached = B_FALSE; 2437 2438 ASSERT(eager->tcp_ack_tid == 0); 2439 2440 econnp->conn_dev = aconnp->conn_dev; 2441 econnp->conn_minor_arena = aconnp->conn_minor_arena; 2442 ASSERT(econnp->conn_minor_arena != NULL); 2443 if (eager->tcp_cred != NULL) 2444 crfree(eager->tcp_cred); 2445 eager->tcp_cred = econnp->conn_cred = aconnp->conn_cred; 2446 ASSERT(econnp->conn_netstack == aconnp->conn_netstack); 2447 ASSERT(eager->tcp_tcps == acceptor->tcp_tcps); 2448 2449 aconnp->conn_cred = NULL; 2450 2451 econnp->conn_zoneid = aconnp->conn_zoneid; 2452 econnp->conn_allzones = aconnp->conn_allzones; 2453 2454 econnp->conn_mac_exempt = aconnp->conn_mac_exempt; 2455 aconnp->conn_mac_exempt = B_FALSE; 2456 2457 ASSERT(aconnp->conn_peercred == NULL); 2458 2459 /* Do the IPC initialization */ 2460 CONN_INC_REF(econnp); 2461 2462 econnp->conn_multicast_loop = aconnp->conn_multicast_loop; 2463 econnp->conn_af_isv6 = aconnp->conn_af_isv6; 2464 econnp->conn_pkt_isv6 = aconnp->conn_pkt_isv6; 2465 2466 /* Done with old IPC. Drop its ref on its connp */ 2467 CONN_DEC_REF(aconnp); 2468 } 2469 2470 2471 /* 2472 * Adapt to the information, such as rtt and rtt_sd, provided from the 2473 * ire cached in conn_cache_ire. If no ire cached, do a ire lookup. 2474 * 2475 * Checks for multicast and broadcast destination address. 2476 * Returns zero on failure; non-zero if ok. 2477 * 2478 * Note that the MSS calculation here is based on the info given in 2479 * the IRE. We do not do any calculation based on TCP options. They 2480 * will be handled in tcp_rput_other() and tcp_rput_data() when TCP 2481 * knows which options to use. 2482 * 2483 * Note on how TCP gets its parameters for a connection. 2484 * 2485 * When a tcp_t structure is allocated, it gets all the default parameters. 2486 * In tcp_adapt_ire(), it gets those metric parameters, like rtt, rtt_sd, 2487 * spipe, rpipe, ... from the route metrics. Route metric overrides the 2488 * default. 2489 * 2490 * An incoming SYN with a multicast or broadcast destination address, is dropped 2491 * in 1 of 2 places. 2492 * 2493 * 1. If the packet was received over the wire it is dropped in 2494 * ip_rput_process_broadcast() 2495 * 2496 * 2. If the packet was received through internal IP loopback, i.e. the packet 2497 * was generated and received on the same machine, it is dropped in 2498 * ip_wput_local() 2499 * 2500 * An incoming SYN with a multicast or broadcast source address is always 2501 * dropped in tcp_adapt_ire. The same logic in tcp_adapt_ire also serves to 2502 * reject an attempt to connect to a broadcast or multicast (destination) 2503 * address. 2504 */ 2505 static int 2506 tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp) 2507 { 2508 tcp_hsp_t *hsp; 2509 ire_t *ire; 2510 ire_t *sire = NULL; 2511 iulp_t *ire_uinfo = NULL; 2512 uint32_t mss_max; 2513 uint32_t mss; 2514 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 2515 conn_t *connp = tcp->tcp_connp; 2516 boolean_t ire_cacheable = B_FALSE; 2517 zoneid_t zoneid = connp->conn_zoneid; 2518 int match_flags = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 2519 MATCH_IRE_SECATTR; 2520 ts_label_t *tsl = crgetlabel(CONN_CRED(connp)); 2521 ill_t *ill = NULL; 2522 boolean_t incoming = (ire_mp == NULL); 2523 tcp_stack_t *tcps = tcp->tcp_tcps; 2524 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 2525 2526 ASSERT(connp->conn_ire_cache == NULL); 2527 2528 if (tcp->tcp_ipversion == IPV4_VERSION) { 2529 2530 if (CLASSD(tcp->tcp_connp->conn_rem)) { 2531 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 2532 return (0); 2533 } 2534 /* 2535 * If IP_NEXTHOP is set, then look for an IRE_CACHE 2536 * for the destination with the nexthop as gateway. 2537 * ire_ctable_lookup() is used because this particular 2538 * ire, if it exists, will be marked private. 2539 * If that is not available, use the interface ire 2540 * for the nexthop. 2541 * 2542 * TSol: tcp_update_label will detect label mismatches based 2543 * only on the destination's label, but that would not 2544 * detect label mismatches based on the security attributes 2545 * of routes or next hop gateway. Hence we need to pass the 2546 * label to ire_ftable_lookup below in order to locate the 2547 * right prefix (and/or) ire cache. Similarly we also need 2548 * pass the label to the ire_cache_lookup below to locate 2549 * the right ire that also matches on the label. 2550 */ 2551 if (tcp->tcp_connp->conn_nexthop_set) { 2552 ire = ire_ctable_lookup(tcp->tcp_connp->conn_rem, 2553 tcp->tcp_connp->conn_nexthop_v4, 0, NULL, zoneid, 2554 tsl, MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW, 2555 ipst); 2556 if (ire == NULL) { 2557 ire = ire_ftable_lookup( 2558 tcp->tcp_connp->conn_nexthop_v4, 2559 0, 0, IRE_INTERFACE, NULL, NULL, zoneid, 0, 2560 tsl, match_flags, ipst); 2561 if (ire == NULL) 2562 return (0); 2563 } else { 2564 ire_uinfo = &ire->ire_uinfo; 2565 } 2566 } else { 2567 ire = ire_cache_lookup(tcp->tcp_connp->conn_rem, 2568 zoneid, tsl, ipst); 2569 if (ire != NULL) { 2570 ire_cacheable = B_TRUE; 2571 ire_uinfo = (ire_mp != NULL) ? 2572 &((ire_t *)ire_mp->b_rptr)->ire_uinfo: 2573 &ire->ire_uinfo; 2574 2575 } else { 2576 if (ire_mp == NULL) { 2577 ire = ire_ftable_lookup( 2578 tcp->tcp_connp->conn_rem, 2579 0, 0, 0, NULL, &sire, zoneid, 0, 2580 tsl, (MATCH_IRE_RECURSIVE | 2581 MATCH_IRE_DEFAULT), ipst); 2582 if (ire == NULL) 2583 return (0); 2584 ire_uinfo = (sire != NULL) ? 2585 &sire->ire_uinfo : 2586 &ire->ire_uinfo; 2587 } else { 2588 ire = (ire_t *)ire_mp->b_rptr; 2589 ire_uinfo = 2590 &((ire_t *) 2591 ire_mp->b_rptr)->ire_uinfo; 2592 } 2593 } 2594 } 2595 ASSERT(ire != NULL); 2596 2597 if ((ire->ire_src_addr == INADDR_ANY) || 2598 (ire->ire_type & IRE_BROADCAST)) { 2599 /* 2600 * ire->ire_mp is non null when ire_mp passed in is used 2601 * ire->ire_mp is set in ip_bind_insert_ire[_v6](). 2602 */ 2603 if (ire->ire_mp == NULL) 2604 ire_refrele(ire); 2605 if (sire != NULL) 2606 ire_refrele(sire); 2607 return (0); 2608 } 2609 2610 if (tcp->tcp_ipha->ipha_src == INADDR_ANY) { 2611 ipaddr_t src_addr; 2612 2613 /* 2614 * ip_bind_connected() has stored the correct source 2615 * address in conn_src. 2616 */ 2617 src_addr = tcp->tcp_connp->conn_src; 2618 tcp->tcp_ipha->ipha_src = src_addr; 2619 /* 2620 * Copy of the src addr. in tcp_t is needed 2621 * for the lookup funcs. 2622 */ 2623 IN6_IPADDR_TO_V4MAPPED(src_addr, &tcp->tcp_ip_src_v6); 2624 } 2625 /* 2626 * Set the fragment bit so that IP will tell us if the MTU 2627 * should change. IP tells us the latest setting of 2628 * ip_path_mtu_discovery through ire_frag_flag. 2629 */ 2630 if (ipst->ips_ip_path_mtu_discovery) { 2631 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 2632 htons(IPH_DF); 2633 } 2634 /* 2635 * If ire_uinfo is NULL, this is the IRE_INTERFACE case 2636 * for IP_NEXTHOP. No cache ire has been found for the 2637 * destination and we are working with the nexthop's 2638 * interface ire. Since we need to forward all packets 2639 * to the nexthop first, we "blindly" set tcp_localnet 2640 * to false, eventhough the destination may also be 2641 * onlink. 2642 */ 2643 if (ire_uinfo == NULL) 2644 tcp->tcp_localnet = 0; 2645 else 2646 tcp->tcp_localnet = (ire->ire_gateway_addr == 0); 2647 } else { 2648 /* 2649 * For incoming connection ire_mp = NULL 2650 * For outgoing connection ire_mp != NULL 2651 * Technically we should check conn_incoming_ill 2652 * when ire_mp is NULL and conn_outgoing_ill when 2653 * ire_mp is non-NULL. But this is performance 2654 * critical path and for IPV*_BOUND_IF, outgoing 2655 * and incoming ill are always set to the same value. 2656 */ 2657 ill_t *dst_ill = NULL; 2658 ipif_t *dst_ipif = NULL; 2659 2660 ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill); 2661 2662 if (connp->conn_outgoing_ill != NULL) { 2663 /* Outgoing or incoming path */ 2664 int err; 2665 2666 dst_ill = conn_get_held_ill(connp, 2667 &connp->conn_outgoing_ill, &err); 2668 if (err == ILL_LOOKUP_FAILED || dst_ill == NULL) { 2669 ip1dbg(("tcp_adapt_ire: ill_lookup failed\n")); 2670 return (0); 2671 } 2672 match_flags |= MATCH_IRE_ILL; 2673 dst_ipif = dst_ill->ill_ipif; 2674 } 2675 ire = ire_ctable_lookup_v6(&tcp->tcp_connp->conn_remv6, 2676 0, 0, dst_ipif, zoneid, tsl, match_flags, ipst); 2677 2678 if (ire != NULL) { 2679 ire_cacheable = B_TRUE; 2680 ire_uinfo = (ire_mp != NULL) ? 2681 &((ire_t *)ire_mp->b_rptr)->ire_uinfo: 2682 &ire->ire_uinfo; 2683 } else { 2684 if (ire_mp == NULL) { 2685 ire = ire_ftable_lookup_v6( 2686 &tcp->tcp_connp->conn_remv6, 2687 0, 0, 0, dst_ipif, &sire, zoneid, 2688 0, tsl, match_flags, ipst); 2689 if (ire == NULL) { 2690 if (dst_ill != NULL) 2691 ill_refrele(dst_ill); 2692 return (0); 2693 } 2694 ire_uinfo = (sire != NULL) ? &sire->ire_uinfo : 2695 &ire->ire_uinfo; 2696 } else { 2697 ire = (ire_t *)ire_mp->b_rptr; 2698 ire_uinfo = 2699 &((ire_t *)ire_mp->b_rptr)->ire_uinfo; 2700 } 2701 } 2702 if (dst_ill != NULL) 2703 ill_refrele(dst_ill); 2704 2705 ASSERT(ire != NULL); 2706 ASSERT(ire_uinfo != NULL); 2707 2708 if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6) || 2709 IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) { 2710 /* 2711 * ire->ire_mp is non null when ire_mp passed in is used 2712 * ire->ire_mp is set in ip_bind_insert_ire[_v6](). 2713 */ 2714 if (ire->ire_mp == NULL) 2715 ire_refrele(ire); 2716 if (sire != NULL) 2717 ire_refrele(sire); 2718 return (0); 2719 } 2720 2721 if (IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) { 2722 in6_addr_t src_addr; 2723 2724 /* 2725 * ip_bind_connected_v6() has stored the correct source 2726 * address per IPv6 addr. selection policy in 2727 * conn_src_v6. 2728 */ 2729 src_addr = tcp->tcp_connp->conn_srcv6; 2730 2731 tcp->tcp_ip6h->ip6_src = src_addr; 2732 /* 2733 * Copy of the src addr. in tcp_t is needed 2734 * for the lookup funcs. 2735 */ 2736 tcp->tcp_ip_src_v6 = src_addr; 2737 ASSERT(IN6_ARE_ADDR_EQUAL(&tcp->tcp_ip6h->ip6_src, 2738 &connp->conn_srcv6)); 2739 } 2740 tcp->tcp_localnet = 2741 IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6); 2742 } 2743 2744 /* 2745 * This allows applications to fail quickly when connections are made 2746 * to dead hosts. Hosts can be labeled dead by adding a reject route 2747 * with both the RTF_REJECT and RTF_PRIVATE flags set. 2748 */ 2749 if ((ire->ire_flags & RTF_REJECT) && 2750 (ire->ire_flags & RTF_PRIVATE)) 2751 goto error; 2752 2753 /* 2754 * Make use of the cached rtt and rtt_sd values to calculate the 2755 * initial RTO. Note that they are already initialized in 2756 * tcp_init_values(). 2757 * If ire_uinfo is NULL, i.e., we do not have a cache ire for 2758 * IP_NEXTHOP, but instead are using the interface ire for the 2759 * nexthop, then we do not use the ire_uinfo from that ire to 2760 * do any initializations. 2761 */ 2762 if (ire_uinfo != NULL) { 2763 if (ire_uinfo->iulp_rtt != 0) { 2764 clock_t rto; 2765 2766 tcp->tcp_rtt_sa = ire_uinfo->iulp_rtt; 2767 tcp->tcp_rtt_sd = ire_uinfo->iulp_rtt_sd; 2768 rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 2769 tcps->tcps_rexmit_interval_extra + 2770 (tcp->tcp_rtt_sa >> 5); 2771 2772 if (rto > tcps->tcps_rexmit_interval_max) { 2773 tcp->tcp_rto = tcps->tcps_rexmit_interval_max; 2774 } else if (rto < tcps->tcps_rexmit_interval_min) { 2775 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 2776 } else { 2777 tcp->tcp_rto = rto; 2778 } 2779 } 2780 if (ire_uinfo->iulp_ssthresh != 0) 2781 tcp->tcp_cwnd_ssthresh = ire_uinfo->iulp_ssthresh; 2782 else 2783 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 2784 if (ire_uinfo->iulp_spipe > 0) { 2785 tcp->tcp_xmit_hiwater = MIN(ire_uinfo->iulp_spipe, 2786 tcps->tcps_max_buf); 2787 if (tcps->tcps_snd_lowat_fraction != 0) 2788 tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater / 2789 tcps->tcps_snd_lowat_fraction; 2790 (void) tcp_maxpsz_set(tcp, B_TRUE); 2791 } 2792 /* 2793 * Note that up till now, acceptor always inherits receive 2794 * window from the listener. But if there is a metrics 2795 * associated with a host, we should use that instead of 2796 * inheriting it from listener. Thus we need to pass this 2797 * info back to the caller. 2798 */ 2799 if (ire_uinfo->iulp_rpipe > 0) { 2800 tcp->tcp_rwnd = MIN(ire_uinfo->iulp_rpipe, 2801 tcps->tcps_max_buf); 2802 } 2803 2804 if (ire_uinfo->iulp_rtomax > 0) { 2805 tcp->tcp_second_timer_threshold = 2806 ire_uinfo->iulp_rtomax; 2807 } 2808 2809 /* 2810 * Use the metric option settings, iulp_tstamp_ok and 2811 * iulp_wscale_ok, only for active open. What this means 2812 * is that if the other side uses timestamp or window 2813 * scale option, TCP will also use those options. That 2814 * is for passive open. If the application sets a 2815 * large window, window scale is enabled regardless of 2816 * the value in iulp_wscale_ok. This is the behavior 2817 * since 2.6. So we keep it. 2818 * The only case left in passive open processing is the 2819 * check for SACK. 2820 * For ECN, it should probably be like SACK. But the 2821 * current value is binary, so we treat it like the other 2822 * cases. The metric only controls active open.For passive 2823 * open, the ndd param, tcp_ecn_permitted, controls the 2824 * behavior. 2825 */ 2826 if (!tcp_detached) { 2827 /* 2828 * The if check means that the following can only 2829 * be turned on by the metrics only IRE, but not off. 2830 */ 2831 if (ire_uinfo->iulp_tstamp_ok) 2832 tcp->tcp_snd_ts_ok = B_TRUE; 2833 if (ire_uinfo->iulp_wscale_ok) 2834 tcp->tcp_snd_ws_ok = B_TRUE; 2835 if (ire_uinfo->iulp_sack == 2) 2836 tcp->tcp_snd_sack_ok = B_TRUE; 2837 if (ire_uinfo->iulp_ecn_ok) 2838 tcp->tcp_ecn_ok = B_TRUE; 2839 } else { 2840 /* 2841 * Passive open. 2842 * 2843 * As above, the if check means that SACK can only be 2844 * turned on by the metric only IRE. 2845 */ 2846 if (ire_uinfo->iulp_sack > 0) { 2847 tcp->tcp_snd_sack_ok = B_TRUE; 2848 } 2849 } 2850 } 2851 2852 2853 /* 2854 * XXX: Note that currently, ire_max_frag can be as small as 68 2855 * because of PMTUd. So tcp_mss may go to negative if combined 2856 * length of all those options exceeds 28 bytes. But because 2857 * of the tcp_mss_min check below, we may not have a problem if 2858 * tcp_mss_min is of a reasonable value. The default is 1 so 2859 * the negative problem still exists. And the check defeats PMTUd. 2860 * In fact, if PMTUd finds that the MSS should be smaller than 2861 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min 2862 * value. 2863 * 2864 * We do not deal with that now. All those problems related to 2865 * PMTUd will be fixed later. 2866 */ 2867 ASSERT(ire->ire_max_frag != 0); 2868 mss = tcp->tcp_if_mtu = ire->ire_max_frag; 2869 if (tcp->tcp_ipp_fields & IPPF_USE_MIN_MTU) { 2870 if (tcp->tcp_ipp_use_min_mtu == IPV6_USE_MIN_MTU_NEVER) { 2871 mss = MIN(mss, IPV6_MIN_MTU); 2872 } 2873 } 2874 2875 /* Sanity check for MSS value. */ 2876 if (tcp->tcp_ipversion == IPV4_VERSION) 2877 mss_max = tcps->tcps_mss_max_ipv4; 2878 else 2879 mss_max = tcps->tcps_mss_max_ipv6; 2880 2881 if (tcp->tcp_ipversion == IPV6_VERSION && 2882 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 2883 /* 2884 * After receiving an ICMPv6 "packet too big" message with a 2885 * MTU < 1280, and for multirouted IPv6 packets, the IP layer 2886 * will insert a 8-byte fragment header in every packet; we 2887 * reduce the MSS by that amount here. 2888 */ 2889 mss -= sizeof (ip6_frag_t); 2890 } 2891 2892 if (tcp->tcp_ipsec_overhead == 0) 2893 tcp->tcp_ipsec_overhead = conn_ipsec_length(connp); 2894 2895 mss -= tcp->tcp_ipsec_overhead; 2896 2897 if (mss < tcps->tcps_mss_min) 2898 mss = tcps->tcps_mss_min; 2899 if (mss > mss_max) 2900 mss = mss_max; 2901 2902 /* Note that this is the maximum MSS, excluding all options. */ 2903 tcp->tcp_mss = mss; 2904 2905 /* 2906 * Initialize the ISS here now that we have the full connection ID. 2907 * The RFC 1948 method of initial sequence number generation requires 2908 * knowledge of the full connection ID before setting the ISS. 2909 */ 2910 2911 tcp_iss_init(tcp); 2912 2913 if (ire->ire_type & (IRE_LOOPBACK | IRE_LOCAL)) 2914 tcp->tcp_loopback = B_TRUE; 2915 2916 if (tcp->tcp_ipversion == IPV4_VERSION) { 2917 hsp = tcp_hsp_lookup(tcp->tcp_remote, tcps); 2918 } else { 2919 hsp = tcp_hsp_lookup_ipv6(&tcp->tcp_remote_v6, tcps); 2920 } 2921 2922 if (hsp != NULL) { 2923 /* Only modify if we're going to make them bigger */ 2924 if (hsp->tcp_hsp_sendspace > tcp->tcp_xmit_hiwater) { 2925 tcp->tcp_xmit_hiwater = hsp->tcp_hsp_sendspace; 2926 if (tcps->tcps_snd_lowat_fraction != 0) 2927 tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater / 2928 tcps->tcps_snd_lowat_fraction; 2929 } 2930 2931 if (hsp->tcp_hsp_recvspace > tcp->tcp_rwnd) { 2932 tcp->tcp_rwnd = hsp->tcp_hsp_recvspace; 2933 } 2934 2935 /* Copy timestamp flag only for active open */ 2936 if (!tcp_detached) 2937 tcp->tcp_snd_ts_ok = hsp->tcp_hsp_tstamp; 2938 } 2939 2940 if (sire != NULL) 2941 IRE_REFRELE(sire); 2942 2943 /* 2944 * If we got an IRE_CACHE and an ILL, go through their properties; 2945 * otherwise, this is deferred until later when we have an IRE_CACHE. 2946 */ 2947 if (tcp->tcp_loopback || 2948 (ire_cacheable && (ill = ire_to_ill(ire)) != NULL)) { 2949 /* 2950 * For incoming, see if this tcp may be MDT-capable. For 2951 * outgoing, this process has been taken care of through 2952 * tcp_rput_other. 2953 */ 2954 tcp_ire_ill_check(tcp, ire, ill, incoming); 2955 tcp->tcp_ire_ill_check_done = B_TRUE; 2956 } 2957 2958 mutex_enter(&connp->conn_lock); 2959 /* 2960 * Make sure that conn is not marked incipient 2961 * for incoming connections. A blind 2962 * removal of incipient flag is cheaper than 2963 * check and removal. 2964 */ 2965 connp->conn_state_flags &= ~CONN_INCIPIENT; 2966 2967 /* 2968 * Must not cache forwarding table routes 2969 * or recache an IRE after the conn_t has 2970 * had conn_ire_cache cleared and is flagged 2971 * unusable, (see the CONN_CACHE_IRE() macro). 2972 */ 2973 if (ire_cacheable && CONN_CACHE_IRE(connp)) { 2974 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 2975 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 2976 connp->conn_ire_cache = ire; 2977 IRE_UNTRACE_REF(ire); 2978 rw_exit(&ire->ire_bucket->irb_lock); 2979 mutex_exit(&connp->conn_lock); 2980 return (1); 2981 } 2982 rw_exit(&ire->ire_bucket->irb_lock); 2983 } 2984 mutex_exit(&connp->conn_lock); 2985 2986 if (ire->ire_mp == NULL) 2987 ire_refrele(ire); 2988 return (1); 2989 2990 error: 2991 if (ire->ire_mp == NULL) 2992 ire_refrele(ire); 2993 if (sire != NULL) 2994 ire_refrele(sire); 2995 return (0); 2996 } 2997 2998 /* 2999 * tcp_bind is called (holding the writer lock) by tcp_wput_proto to process a 3000 * O_T_BIND_REQ/T_BIND_REQ message. 3001 */ 3002 static void 3003 tcp_bind(tcp_t *tcp, mblk_t *mp) 3004 { 3005 sin_t *sin; 3006 sin6_t *sin6; 3007 mblk_t *mp1; 3008 in_port_t requested_port; 3009 in_port_t allocated_port; 3010 struct T_bind_req *tbr; 3011 boolean_t bind_to_req_port_only; 3012 boolean_t backlog_update = B_FALSE; 3013 boolean_t user_specified; 3014 in6_addr_t v6addr; 3015 ipaddr_t v4addr; 3016 uint_t origipversion; 3017 int err; 3018 queue_t *q = tcp->tcp_wq; 3019 conn_t *connp = tcp->tcp_connp; 3020 mlp_type_t addrtype, mlptype; 3021 zone_t *zone; 3022 cred_t *cr; 3023 in_port_t mlp_port; 3024 tcp_stack_t *tcps = tcp->tcp_tcps; 3025 3026 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 3027 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) { 3028 if (tcp->tcp_debug) { 3029 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 3030 "tcp_bind: bad req, len %u", 3031 (uint_t)(mp->b_wptr - mp->b_rptr)); 3032 } 3033 tcp_err_ack(tcp, mp, TPROTO, 0); 3034 return; 3035 } 3036 /* Make sure the largest address fits */ 3037 mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t) + 1, 1); 3038 if (mp1 == NULL) { 3039 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 3040 return; 3041 } 3042 mp = mp1; 3043 tbr = (struct T_bind_req *)mp->b_rptr; 3044 if (tcp->tcp_state >= TCPS_BOUND) { 3045 if ((tcp->tcp_state == TCPS_BOUND || 3046 tcp->tcp_state == TCPS_LISTEN) && 3047 tcp->tcp_conn_req_max != tbr->CONIND_number && 3048 tbr->CONIND_number > 0) { 3049 /* 3050 * Handle listen() increasing CONIND_number. 3051 * This is more "liberal" then what the TPI spec 3052 * requires but is needed to avoid a t_unbind 3053 * when handling listen() since the port number 3054 * might be "stolen" between the unbind and bind. 3055 */ 3056 backlog_update = B_TRUE; 3057 goto do_bind; 3058 } 3059 if (tcp->tcp_debug) { 3060 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 3061 "tcp_bind: bad state, %d", tcp->tcp_state); 3062 } 3063 tcp_err_ack(tcp, mp, TOUTSTATE, 0); 3064 return; 3065 } 3066 origipversion = tcp->tcp_ipversion; 3067 3068 switch (tbr->ADDR_length) { 3069 case 0: /* request for a generic port */ 3070 tbr->ADDR_offset = sizeof (struct T_bind_req); 3071 if (tcp->tcp_family == AF_INET) { 3072 tbr->ADDR_length = sizeof (sin_t); 3073 sin = (sin_t *)&tbr[1]; 3074 *sin = sin_null; 3075 sin->sin_family = AF_INET; 3076 mp->b_wptr = (uchar_t *)&sin[1]; 3077 tcp->tcp_ipversion = IPV4_VERSION; 3078 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &v6addr); 3079 } else { 3080 ASSERT(tcp->tcp_family == AF_INET6); 3081 tbr->ADDR_length = sizeof (sin6_t); 3082 sin6 = (sin6_t *)&tbr[1]; 3083 *sin6 = sin6_null; 3084 sin6->sin6_family = AF_INET6; 3085 mp->b_wptr = (uchar_t *)&sin6[1]; 3086 tcp->tcp_ipversion = IPV6_VERSION; 3087 V6_SET_ZERO(v6addr); 3088 } 3089 requested_port = 0; 3090 break; 3091 3092 case sizeof (sin_t): /* Complete IPv4 address */ 3093 sin = (sin_t *)mi_offset_param(mp, tbr->ADDR_offset, 3094 sizeof (sin_t)); 3095 if (sin == NULL || !OK_32PTR((char *)sin)) { 3096 if (tcp->tcp_debug) { 3097 (void) strlog(TCP_MOD_ID, 0, 1, 3098 SL_ERROR|SL_TRACE, 3099 "tcp_bind: bad address parameter, " 3100 "offset %d, len %d", 3101 tbr->ADDR_offset, tbr->ADDR_length); 3102 } 3103 tcp_err_ack(tcp, mp, TPROTO, 0); 3104 return; 3105 } 3106 /* 3107 * With sockets sockfs will accept bogus sin_family in 3108 * bind() and replace it with the family used in the socket 3109 * call. 3110 */ 3111 if (sin->sin_family != AF_INET || 3112 tcp->tcp_family != AF_INET) { 3113 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 3114 return; 3115 } 3116 requested_port = ntohs(sin->sin_port); 3117 tcp->tcp_ipversion = IPV4_VERSION; 3118 v4addr = sin->sin_addr.s_addr; 3119 IN6_IPADDR_TO_V4MAPPED(v4addr, &v6addr); 3120 break; 3121 3122 case sizeof (sin6_t): /* Complete IPv6 address */ 3123 sin6 = (sin6_t *)mi_offset_param(mp, 3124 tbr->ADDR_offset, sizeof (sin6_t)); 3125 if (sin6 == NULL || !OK_32PTR((char *)sin6)) { 3126 if (tcp->tcp_debug) { 3127 (void) strlog(TCP_MOD_ID, 0, 1, 3128 SL_ERROR|SL_TRACE, 3129 "tcp_bind: bad IPv6 address parameter, " 3130 "offset %d, len %d", tbr->ADDR_offset, 3131 tbr->ADDR_length); 3132 } 3133 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 3134 return; 3135 } 3136 if (sin6->sin6_family != AF_INET6 || 3137 tcp->tcp_family != AF_INET6) { 3138 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 3139 return; 3140 } 3141 requested_port = ntohs(sin6->sin6_port); 3142 tcp->tcp_ipversion = IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr) ? 3143 IPV4_VERSION : IPV6_VERSION; 3144 v6addr = sin6->sin6_addr; 3145 break; 3146 3147 default: 3148 if (tcp->tcp_debug) { 3149 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 3150 "tcp_bind: bad address length, %d", 3151 tbr->ADDR_length); 3152 } 3153 tcp_err_ack(tcp, mp, TBADADDR, 0); 3154 return; 3155 } 3156 tcp->tcp_bound_source_v6 = v6addr; 3157 3158 /* Check for change in ipversion */ 3159 if (origipversion != tcp->tcp_ipversion) { 3160 ASSERT(tcp->tcp_family == AF_INET6); 3161 err = tcp->tcp_ipversion == IPV6_VERSION ? 3162 tcp_header_init_ipv6(tcp) : tcp_header_init_ipv4(tcp); 3163 if (err) { 3164 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 3165 return; 3166 } 3167 } 3168 3169 /* 3170 * Initialize family specific fields. Copy of the src addr. 3171 * in tcp_t is needed for the lookup funcs. 3172 */ 3173 if (tcp->tcp_ipversion == IPV6_VERSION) { 3174 tcp->tcp_ip6h->ip6_src = v6addr; 3175 } else { 3176 IN6_V4MAPPED_TO_IPADDR(&v6addr, tcp->tcp_ipha->ipha_src); 3177 } 3178 tcp->tcp_ip_src_v6 = v6addr; 3179 3180 /* 3181 * For O_T_BIND_REQ: 3182 * Verify that the target port/addr is available, or choose 3183 * another. 3184 * For T_BIND_REQ: 3185 * Verify that the target port/addr is available or fail. 3186 * In both cases when it succeeds the tcp is inserted in the 3187 * bind hash table. This ensures that the operation is atomic 3188 * under the lock on the hash bucket. 3189 */ 3190 bind_to_req_port_only = requested_port != 0 && 3191 tbr->PRIM_type != O_T_BIND_REQ; 3192 /* 3193 * Get a valid port (within the anonymous range and should not 3194 * be a privileged one) to use if the user has not given a port. 3195 * If multiple threads are here, they may all start with 3196 * with the same initial port. But, it should be fine as long as 3197 * tcp_bindi will ensure that no two threads will be assigned 3198 * the same port. 3199 * 3200 * NOTE: XXX If a privileged process asks for an anonymous port, we 3201 * still check for ports only in the range > tcp_smallest_non_priv_port, 3202 * unless TCP_ANONPRIVBIND option is set. 3203 */ 3204 mlptype = mlptSingle; 3205 mlp_port = requested_port; 3206 if (requested_port == 0) { 3207 requested_port = tcp->tcp_anon_priv_bind ? 3208 tcp_get_next_priv_port(tcp) : 3209 tcp_update_next_port(tcps->tcps_next_port_to_try, 3210 tcp, B_TRUE); 3211 if (requested_port == 0) { 3212 tcp_err_ack(tcp, mp, TNOADDR, 0); 3213 return; 3214 } 3215 user_specified = B_FALSE; 3216 3217 /* 3218 * If the user went through one of the RPC interfaces to create 3219 * this socket and RPC is MLP in this zone, then give him an 3220 * anonymous MLP. 3221 */ 3222 cr = DB_CREDDEF(mp, tcp->tcp_cred); 3223 if (connp->conn_anon_mlp && is_system_labeled()) { 3224 zone = crgetzone(cr); 3225 addrtype = tsol_mlp_addr_type(zone->zone_id, 3226 IPV6_VERSION, &v6addr, 3227 tcps->tcps_netstack->netstack_ip); 3228 if (addrtype == mlptSingle) { 3229 tcp_err_ack(tcp, mp, TNOADDR, 0); 3230 return; 3231 } 3232 mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP, 3233 PMAPPORT, addrtype); 3234 mlp_port = PMAPPORT; 3235 } 3236 } else { 3237 int i; 3238 boolean_t priv = B_FALSE; 3239 3240 /* 3241 * If the requested_port is in the well-known privileged range, 3242 * verify that the stream was opened by a privileged user. 3243 * Note: No locks are held when inspecting tcp_g_*epriv_ports 3244 * but instead the code relies on: 3245 * - the fact that the address of the array and its size never 3246 * changes 3247 * - the atomic assignment of the elements of the array 3248 */ 3249 cr = DB_CREDDEF(mp, tcp->tcp_cred); 3250 if (requested_port < tcps->tcps_smallest_nonpriv_port) { 3251 priv = B_TRUE; 3252 } else { 3253 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 3254 if (requested_port == 3255 tcps->tcps_g_epriv_ports[i]) { 3256 priv = B_TRUE; 3257 break; 3258 } 3259 } 3260 } 3261 if (priv) { 3262 if (secpolicy_net_privaddr(cr, requested_port, 3263 IPPROTO_TCP) != 0) { 3264 if (tcp->tcp_debug) { 3265 (void) strlog(TCP_MOD_ID, 0, 1, 3266 SL_ERROR|SL_TRACE, 3267 "tcp_bind: no priv for port %d", 3268 requested_port); 3269 } 3270 tcp_err_ack(tcp, mp, TACCES, 0); 3271 return; 3272 } 3273 } 3274 user_specified = B_TRUE; 3275 3276 if (is_system_labeled()) { 3277 zone = crgetzone(cr); 3278 addrtype = tsol_mlp_addr_type(zone->zone_id, 3279 IPV6_VERSION, &v6addr, 3280 tcps->tcps_netstack->netstack_ip); 3281 if (addrtype == mlptSingle) { 3282 tcp_err_ack(tcp, mp, TNOADDR, 0); 3283 return; 3284 } 3285 mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP, 3286 requested_port, addrtype); 3287 } 3288 } 3289 3290 if (mlptype != mlptSingle) { 3291 if (secpolicy_net_bindmlp(cr) != 0) { 3292 if (tcp->tcp_debug) { 3293 (void) strlog(TCP_MOD_ID, 0, 1, 3294 SL_ERROR|SL_TRACE, 3295 "tcp_bind: no priv for multilevel port %d", 3296 requested_port); 3297 } 3298 tcp_err_ack(tcp, mp, TACCES, 0); 3299 return; 3300 } 3301 3302 /* 3303 * If we're specifically binding a shared IP address and the 3304 * port is MLP on shared addresses, then check to see if this 3305 * zone actually owns the MLP. Reject if not. 3306 */ 3307 if (mlptype == mlptShared && addrtype == mlptShared) { 3308 /* 3309 * No need to handle exclusive-stack zones since 3310 * ALL_ZONES only applies to the shared stack. 3311 */ 3312 zoneid_t mlpzone; 3313 3314 mlpzone = tsol_mlp_findzone(IPPROTO_TCP, 3315 htons(mlp_port)); 3316 if (connp->conn_zoneid != mlpzone) { 3317 if (tcp->tcp_debug) { 3318 (void) strlog(TCP_MOD_ID, 0, 1, 3319 SL_ERROR|SL_TRACE, 3320 "tcp_bind: attempt to bind port " 3321 "%d on shared addr in zone %d " 3322 "(should be %d)", 3323 mlp_port, connp->conn_zoneid, 3324 mlpzone); 3325 } 3326 tcp_err_ack(tcp, mp, TACCES, 0); 3327 return; 3328 } 3329 } 3330 3331 if (!user_specified) { 3332 err = tsol_mlp_anon(zone, mlptype, connp->conn_ulp, 3333 requested_port, B_TRUE); 3334 if (err != 0) { 3335 if (tcp->tcp_debug) { 3336 (void) strlog(TCP_MOD_ID, 0, 1, 3337 SL_ERROR|SL_TRACE, 3338 "tcp_bind: cannot establish anon " 3339 "MLP for port %d", 3340 requested_port); 3341 } 3342 tcp_err_ack(tcp, mp, TSYSERR, err); 3343 return; 3344 } 3345 connp->conn_anon_port = B_TRUE; 3346 } 3347 connp->conn_mlp_type = mlptype; 3348 } 3349 3350 allocated_port = tcp_bindi(tcp, requested_port, &v6addr, 3351 tcp->tcp_reuseaddr, B_FALSE, bind_to_req_port_only, user_specified); 3352 3353 if (allocated_port == 0) { 3354 connp->conn_mlp_type = mlptSingle; 3355 if (connp->conn_anon_port) { 3356 connp->conn_anon_port = B_FALSE; 3357 (void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp, 3358 requested_port, B_FALSE); 3359 } 3360 if (bind_to_req_port_only) { 3361 if (tcp->tcp_debug) { 3362 (void) strlog(TCP_MOD_ID, 0, 1, 3363 SL_ERROR|SL_TRACE, 3364 "tcp_bind: requested addr busy"); 3365 } 3366 tcp_err_ack(tcp, mp, TADDRBUSY, 0); 3367 } else { 3368 /* If we are out of ports, fail the bind. */ 3369 if (tcp->tcp_debug) { 3370 (void) strlog(TCP_MOD_ID, 0, 1, 3371 SL_ERROR|SL_TRACE, 3372 "tcp_bind: out of ports?"); 3373 } 3374 tcp_err_ack(tcp, mp, TNOADDR, 0); 3375 } 3376 return; 3377 } 3378 ASSERT(tcp->tcp_state == TCPS_BOUND); 3379 do_bind: 3380 if (!backlog_update) { 3381 if (tcp->tcp_family == AF_INET) 3382 sin->sin_port = htons(allocated_port); 3383 else 3384 sin6->sin6_port = htons(allocated_port); 3385 } 3386 if (tcp->tcp_family == AF_INET) { 3387 if (tbr->CONIND_number != 0) { 3388 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, 3389 sizeof (sin_t)); 3390 } else { 3391 /* Just verify the local IP address */ 3392 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, IP_ADDR_LEN); 3393 } 3394 } else { 3395 if (tbr->CONIND_number != 0) { 3396 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, 3397 sizeof (sin6_t)); 3398 } else { 3399 /* Just verify the local IP address */ 3400 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, 3401 IPV6_ADDR_LEN); 3402 } 3403 } 3404 if (mp1 == NULL) { 3405 if (connp->conn_anon_port) { 3406 connp->conn_anon_port = B_FALSE; 3407 (void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp, 3408 requested_port, B_FALSE); 3409 } 3410 connp->conn_mlp_type = mlptSingle; 3411 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 3412 return; 3413 } 3414 3415 tbr->PRIM_type = T_BIND_ACK; 3416 mp->b_datap->db_type = M_PCPROTO; 3417 3418 /* Chain in the reply mp for tcp_rput() */ 3419 mp1->b_cont = mp; 3420 mp = mp1; 3421 3422 tcp->tcp_conn_req_max = tbr->CONIND_number; 3423 if (tcp->tcp_conn_req_max) { 3424 if (tcp->tcp_conn_req_max < tcps->tcps_conn_req_min) 3425 tcp->tcp_conn_req_max = tcps->tcps_conn_req_min; 3426 if (tcp->tcp_conn_req_max > tcps->tcps_conn_req_max_q) 3427 tcp->tcp_conn_req_max = tcps->tcps_conn_req_max_q; 3428 /* 3429 * If this is a listener, do not reset the eager list 3430 * and other stuffs. Note that we don't check if the 3431 * existing eager list meets the new tcp_conn_req_max 3432 * requirement. 3433 */ 3434 if (tcp->tcp_state != TCPS_LISTEN) { 3435 tcp->tcp_state = TCPS_LISTEN; 3436 /* Initialize the chain. Don't need the eager_lock */ 3437 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 3438 tcp->tcp_eager_next_drop_q0 = tcp; 3439 tcp->tcp_eager_prev_drop_q0 = tcp; 3440 tcp->tcp_second_ctimer_threshold = 3441 tcps->tcps_ip_abort_linterval; 3442 } 3443 } 3444 3445 /* 3446 * We can call ip_bind directly which returns a T_BIND_ACK mp. The 3447 * processing continues in tcp_rput_other(). 3448 * 3449 * We need to make sure that the conn_recv is set to a non-null 3450 * value before we insert the conn into the classifier table. 3451 * This is to avoid a race with an incoming packet which does an 3452 * ipcl_classify(). 3453 */ 3454 connp->conn_recv = tcp_conn_request; 3455 if (tcp->tcp_family == AF_INET6) { 3456 ASSERT(tcp->tcp_connp->conn_af_isv6); 3457 mp = ip_bind_v6(q, mp, tcp->tcp_connp, &tcp->tcp_sticky_ipp); 3458 } else { 3459 ASSERT(!tcp->tcp_connp->conn_af_isv6); 3460 mp = ip_bind_v4(q, mp, tcp->tcp_connp); 3461 } 3462 /* 3463 * If the bind cannot complete immediately 3464 * IP will arrange to call tcp_rput_other 3465 * when the bind completes. 3466 */ 3467 if (mp != NULL) { 3468 tcp_rput_other(tcp, mp); 3469 } else { 3470 /* 3471 * Bind will be resumed later. Need to ensure 3472 * that conn doesn't disappear when that happens. 3473 * This will be decremented in ip_resume_tcp_bind(). 3474 */ 3475 CONN_INC_REF(tcp->tcp_connp); 3476 } 3477 } 3478 3479 3480 /* 3481 * If the "bind_to_req_port_only" parameter is set, if the requested port 3482 * number is available, return it, If not return 0 3483 * 3484 * If "bind_to_req_port_only" parameter is not set and 3485 * If the requested port number is available, return it. If not, return 3486 * the first anonymous port we happen across. If no anonymous ports are 3487 * available, return 0. addr is the requested local address, if any. 3488 * 3489 * In either case, when succeeding update the tcp_t to record the port number 3490 * and insert it in the bind hash table. 3491 * 3492 * Note that TCP over IPv4 and IPv6 sockets can use the same port number 3493 * without setting SO_REUSEADDR. This is needed so that they 3494 * can be viewed as two independent transport protocols. 3495 */ 3496 static in_port_t 3497 tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, 3498 int reuseaddr, boolean_t quick_connect, 3499 boolean_t bind_to_req_port_only, boolean_t user_specified) 3500 { 3501 /* number of times we have run around the loop */ 3502 int count = 0; 3503 /* maximum number of times to run around the loop */ 3504 int loopmax; 3505 conn_t *connp = tcp->tcp_connp; 3506 zoneid_t zoneid = connp->conn_zoneid; 3507 tcp_stack_t *tcps = tcp->tcp_tcps; 3508 3509 /* 3510 * Lookup for free addresses is done in a loop and "loopmax" 3511 * influences how long we spin in the loop 3512 */ 3513 if (bind_to_req_port_only) { 3514 /* 3515 * If the requested port is busy, don't bother to look 3516 * for a new one. Setting loop maximum count to 1 has 3517 * that effect. 3518 */ 3519 loopmax = 1; 3520 } else { 3521 /* 3522 * If the requested port is busy, look for a free one 3523 * in the anonymous port range. 3524 * Set loopmax appropriately so that one does not look 3525 * forever in the case all of the anonymous ports are in use. 3526 */ 3527 if (tcp->tcp_anon_priv_bind) { 3528 /* 3529 * loopmax = 3530 * (IPPORT_RESERVED-1) - tcp_min_anonpriv_port + 1 3531 */ 3532 loopmax = IPPORT_RESERVED - 3533 tcps->tcps_min_anonpriv_port; 3534 } else { 3535 loopmax = (tcps->tcps_largest_anon_port - 3536 tcps->tcps_smallest_anon_port + 1); 3537 } 3538 } 3539 do { 3540 uint16_t lport; 3541 tf_t *tbf; 3542 tcp_t *ltcp; 3543 conn_t *lconnp; 3544 3545 lport = htons(port); 3546 3547 /* 3548 * Ensure that the tcp_t is not currently in the bind hash. 3549 * Hold the lock on the hash bucket to ensure that 3550 * the duplicate check plus the insertion is an atomic 3551 * operation. 3552 * 3553 * This function does an inline lookup on the bind hash list 3554 * Make sure that we access only members of tcp_t 3555 * and that we don't look at tcp_tcp, since we are not 3556 * doing a CONN_INC_REF. 3557 */ 3558 tcp_bind_hash_remove(tcp); 3559 tbf = &tcps->tcps_bind_fanout[TCP_BIND_HASH(lport)]; 3560 mutex_enter(&tbf->tf_lock); 3561 for (ltcp = tbf->tf_tcp; ltcp != NULL; 3562 ltcp = ltcp->tcp_bind_hash) { 3563 boolean_t not_socket; 3564 boolean_t exclbind; 3565 3566 if (lport != ltcp->tcp_lport) 3567 continue; 3568 3569 lconnp = ltcp->tcp_connp; 3570 3571 /* 3572 * On a labeled system, we must treat bindings to ports 3573 * on shared IP addresses by sockets with MAC exemption 3574 * privilege as being in all zones, as there's 3575 * otherwise no way to identify the right receiver. 3576 */ 3577 if (!(IPCL_ZONE_MATCH(ltcp->tcp_connp, zoneid) || 3578 IPCL_ZONE_MATCH(connp, 3579 ltcp->tcp_connp->conn_zoneid)) && 3580 !lconnp->conn_mac_exempt && 3581 !connp->conn_mac_exempt) 3582 continue; 3583 3584 /* 3585 * If TCP_EXCLBIND is set for either the bound or 3586 * binding endpoint, the semantics of bind 3587 * is changed according to the following. 3588 * 3589 * spec = specified address (v4 or v6) 3590 * unspec = unspecified address (v4 or v6) 3591 * A = specified addresses are different for endpoints 3592 * 3593 * bound bind to allowed 3594 * ------------------------------------- 3595 * unspec unspec no 3596 * unspec spec no 3597 * spec unspec no 3598 * spec spec yes if A 3599 * 3600 * For labeled systems, SO_MAC_EXEMPT behaves the same 3601 * as TCP_EXCLBIND, except that zoneid is ignored. 3602 * 3603 * Note: 3604 * 3605 * 1. Because of TLI semantics, an endpoint can go 3606 * back from, say TCP_ESTABLISHED to TCPS_LISTEN or 3607 * TCPS_BOUND, depending on whether it is originally 3608 * a listener or not. That is why we need to check 3609 * for states greater than or equal to TCPS_BOUND 3610 * here. 3611 * 3612 * 2. Ideally, we should only check for state equals 3613 * to TCPS_LISTEN. And the following check should be 3614 * added. 3615 * 3616 * if (ltcp->tcp_state == TCPS_LISTEN || 3617 * !reuseaddr || !ltcp->tcp_reuseaddr) { 3618 * ... 3619 * } 3620 * 3621 * The semantics will be changed to this. If the 3622 * endpoint on the list is in state not equal to 3623 * TCPS_LISTEN and both endpoints have SO_REUSEADDR 3624 * set, let the bind succeed. 3625 * 3626 * Because of (1), we cannot do that for TLI 3627 * endpoints. But we can do that for socket endpoints. 3628 * If in future, we can change this going back 3629 * semantics, we can use the above check for TLI also. 3630 */ 3631 not_socket = !(TCP_IS_SOCKET(ltcp) && 3632 TCP_IS_SOCKET(tcp)); 3633 exclbind = ltcp->tcp_exclbind || tcp->tcp_exclbind; 3634 3635 if (lconnp->conn_mac_exempt || connp->conn_mac_exempt || 3636 (exclbind && (not_socket || 3637 ltcp->tcp_state <= TCPS_ESTABLISHED))) { 3638 if (V6_OR_V4_INADDR_ANY( 3639 ltcp->tcp_bound_source_v6) || 3640 V6_OR_V4_INADDR_ANY(*laddr) || 3641 IN6_ARE_ADDR_EQUAL(laddr, 3642 <cp->tcp_bound_source_v6)) { 3643 break; 3644 } 3645 continue; 3646 } 3647 3648 /* 3649 * Check ipversion to allow IPv4 and IPv6 sockets to 3650 * have disjoint port number spaces, if *_EXCLBIND 3651 * is not set and only if the application binds to a 3652 * specific port. We use the same autoassigned port 3653 * number space for IPv4 and IPv6 sockets. 3654 */ 3655 if (tcp->tcp_ipversion != ltcp->tcp_ipversion && 3656 bind_to_req_port_only) 3657 continue; 3658 3659 /* 3660 * Ideally, we should make sure that the source 3661 * address, remote address, and remote port in the 3662 * four tuple for this tcp-connection is unique. 3663 * However, trying to find out the local source 3664 * address would require too much code duplication 3665 * with IP, since IP needs needs to have that code 3666 * to support userland TCP implementations. 3667 */ 3668 if (quick_connect && 3669 (ltcp->tcp_state > TCPS_LISTEN) && 3670 ((tcp->tcp_fport != ltcp->tcp_fport) || 3671 !IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6, 3672 <cp->tcp_remote_v6))) 3673 continue; 3674 3675 if (!reuseaddr) { 3676 /* 3677 * No socket option SO_REUSEADDR. 3678 * If existing port is bound to 3679 * a non-wildcard IP address 3680 * and the requesting stream is 3681 * bound to a distinct 3682 * different IP addresses 3683 * (non-wildcard, also), keep 3684 * going. 3685 */ 3686 if (!V6_OR_V4_INADDR_ANY(*laddr) && 3687 !V6_OR_V4_INADDR_ANY( 3688 ltcp->tcp_bound_source_v6) && 3689 !IN6_ARE_ADDR_EQUAL(laddr, 3690 <cp->tcp_bound_source_v6)) 3691 continue; 3692 if (ltcp->tcp_state >= TCPS_BOUND) { 3693 /* 3694 * This port is being used and 3695 * its state is >= TCPS_BOUND, 3696 * so we can't bind to it. 3697 */ 3698 break; 3699 } 3700 } else { 3701 /* 3702 * socket option SO_REUSEADDR is set on the 3703 * binding tcp_t. 3704 * 3705 * If two streams are bound to 3706 * same IP address or both addr 3707 * and bound source are wildcards 3708 * (INADDR_ANY), we want to stop 3709 * searching. 3710 * We have found a match of IP source 3711 * address and source port, which is 3712 * refused regardless of the 3713 * SO_REUSEADDR setting, so we break. 3714 */ 3715 if (IN6_ARE_ADDR_EQUAL(laddr, 3716 <cp->tcp_bound_source_v6) && 3717 (ltcp->tcp_state == TCPS_LISTEN || 3718 ltcp->tcp_state == TCPS_BOUND)) 3719 break; 3720 } 3721 } 3722 if (ltcp != NULL) { 3723 /* The port number is busy */ 3724 mutex_exit(&tbf->tf_lock); 3725 } else { 3726 /* 3727 * This port is ours. Insert in fanout and mark as 3728 * bound to prevent others from getting the port 3729 * number. 3730 */ 3731 tcp->tcp_state = TCPS_BOUND; 3732 tcp->tcp_lport = htons(port); 3733 *(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport; 3734 3735 ASSERT(&tcps->tcps_bind_fanout[TCP_BIND_HASH( 3736 tcp->tcp_lport)] == tbf); 3737 tcp_bind_hash_insert(tbf, tcp, 1); 3738 3739 mutex_exit(&tbf->tf_lock); 3740 3741 /* 3742 * We don't want tcp_next_port_to_try to "inherit" 3743 * a port number supplied by the user in a bind. 3744 */ 3745 if (user_specified) 3746 return (port); 3747 3748 /* 3749 * This is the only place where tcp_next_port_to_try 3750 * is updated. After the update, it may or may not 3751 * be in the valid range. 3752 */ 3753 if (!tcp->tcp_anon_priv_bind) 3754 tcps->tcps_next_port_to_try = port + 1; 3755 return (port); 3756 } 3757 3758 if (tcp->tcp_anon_priv_bind) { 3759 port = tcp_get_next_priv_port(tcp); 3760 } else { 3761 if (count == 0 && user_specified) { 3762 /* 3763 * We may have to return an anonymous port. So 3764 * get one to start with. 3765 */ 3766 port = 3767 tcp_update_next_port( 3768 tcps->tcps_next_port_to_try, 3769 tcp, B_TRUE); 3770 user_specified = B_FALSE; 3771 } else { 3772 port = tcp_update_next_port(port + 1, tcp, 3773 B_FALSE); 3774 } 3775 } 3776 if (port == 0) 3777 break; 3778 3779 /* 3780 * Don't let this loop run forever in the case where 3781 * all of the anonymous ports are in use. 3782 */ 3783 } while (++count < loopmax); 3784 return (0); 3785 } 3786 3787 /* 3788 * tcp_clean_death / tcp_close_detached must not be called more than once 3789 * on a tcp. Thus every function that potentially calls tcp_clean_death 3790 * must check for the tcp state before calling tcp_clean_death. 3791 * Eg. tcp_input, tcp_rput_data, tcp_eager_kill, tcp_clean_death_wrapper, 3792 * tcp_timer_handler, all check for the tcp state. 3793 */ 3794 /* ARGSUSED */ 3795 void 3796 tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2) 3797 { 3798 tcp_t *tcp = ((conn_t *)arg)->conn_tcp; 3799 3800 freemsg(mp); 3801 if (tcp->tcp_state > TCPS_BOUND) 3802 (void) tcp_clean_death(((conn_t *)arg)->conn_tcp, 3803 ETIMEDOUT, 5); 3804 } 3805 3806 /* 3807 * We are dying for some reason. Try to do it gracefully. (May be called 3808 * as writer.) 3809 * 3810 * Return -1 if the structure was not cleaned up (if the cleanup had to be 3811 * done by a service procedure). 3812 * TBD - Should the return value distinguish between the tcp_t being 3813 * freed and it being reinitialized? 3814 */ 3815 static int 3816 tcp_clean_death(tcp_t *tcp, int err, uint8_t tag) 3817 { 3818 mblk_t *mp; 3819 queue_t *q; 3820 tcp_stack_t *tcps = tcp->tcp_tcps; 3821 sodirect_t *sodp; 3822 3823 TCP_CLD_STAT(tag); 3824 3825 #if TCP_TAG_CLEAN_DEATH 3826 tcp->tcp_cleandeathtag = tag; 3827 #endif 3828 3829 if (tcp->tcp_fused) 3830 tcp_unfuse(tcp); 3831 3832 if (tcp->tcp_linger_tid != 0 && 3833 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 3834 tcp_stop_lingering(tcp); 3835 } 3836 3837 ASSERT(tcp != NULL); 3838 ASSERT((tcp->tcp_family == AF_INET && 3839 tcp->tcp_ipversion == IPV4_VERSION) || 3840 (tcp->tcp_family == AF_INET6 && 3841 (tcp->tcp_ipversion == IPV4_VERSION || 3842 tcp->tcp_ipversion == IPV6_VERSION))); 3843 3844 if (TCP_IS_DETACHED(tcp)) { 3845 if (tcp->tcp_hard_binding) { 3846 /* 3847 * Its an eager that we are dealing with. We close the 3848 * eager but in case a conn_ind has already gone to the 3849 * listener, let tcp_accept_finish() send a discon_ind 3850 * to the listener and drop the last reference. If the 3851 * listener doesn't even know about the eager i.e. the 3852 * conn_ind hasn't gone up, blow away the eager and drop 3853 * the last reference as well. If the conn_ind has gone 3854 * up, state should be BOUND. tcp_accept_finish 3855 * will figure out that the connection has received a 3856 * RST and will send a DISCON_IND to the application. 3857 */ 3858 tcp_closei_local(tcp); 3859 if (!tcp->tcp_tconnind_started) { 3860 CONN_DEC_REF(tcp->tcp_connp); 3861 } else { 3862 tcp->tcp_state = TCPS_BOUND; 3863 } 3864 } else { 3865 tcp_close_detached(tcp); 3866 } 3867 return (0); 3868 } 3869 3870 TCP_STAT(tcps, tcp_clean_death_nondetached); 3871 3872 /* If sodirect, not anymore */ 3873 SOD_PTR_ENTER(tcp, sodp); 3874 if (sodp != NULL) { 3875 tcp->tcp_sodirect = NULL; 3876 mutex_exit(sodp->sod_lockp); 3877 } 3878 3879 q = tcp->tcp_rq; 3880 3881 /* Trash all inbound data */ 3882 flushq(q, FLUSHALL); 3883 3884 /* 3885 * If we are at least part way open and there is error 3886 * (err==0 implies no error) 3887 * notify our client by a T_DISCON_IND. 3888 */ 3889 if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) { 3890 if (tcp->tcp_state >= TCPS_ESTABLISHED && 3891 !TCP_IS_SOCKET(tcp)) { 3892 /* 3893 * Send M_FLUSH according to TPI. Because sockets will 3894 * (and must) ignore FLUSHR we do that only for TPI 3895 * endpoints and sockets in STREAMS mode. 3896 */ 3897 (void) putnextctl1(q, M_FLUSH, FLUSHR); 3898 } 3899 if (tcp->tcp_debug) { 3900 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 3901 "tcp_clean_death: discon err %d", err); 3902 } 3903 mp = mi_tpi_discon_ind(NULL, err, 0); 3904 if (mp != NULL) { 3905 putnext(q, mp); 3906 } else { 3907 if (tcp->tcp_debug) { 3908 (void) strlog(TCP_MOD_ID, 0, 1, 3909 SL_ERROR|SL_TRACE, 3910 "tcp_clean_death, sending M_ERROR"); 3911 } 3912 (void) putnextctl1(q, M_ERROR, EPROTO); 3913 } 3914 if (tcp->tcp_state <= TCPS_SYN_RCVD) { 3915 /* SYN_SENT or SYN_RCVD */ 3916 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 3917 } else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) { 3918 /* ESTABLISHED or CLOSE_WAIT */ 3919 BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); 3920 } 3921 } 3922 3923 tcp_reinit(tcp); 3924 return (-1); 3925 } 3926 3927 /* 3928 * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout 3929 * to expire, stop the wait and finish the close. 3930 */ 3931 static void 3932 tcp_stop_lingering(tcp_t *tcp) 3933 { 3934 clock_t delta = 0; 3935 tcp_stack_t *tcps = tcp->tcp_tcps; 3936 3937 tcp->tcp_linger_tid = 0; 3938 if (tcp->tcp_state > TCPS_LISTEN) { 3939 tcp_acceptor_hash_remove(tcp); 3940 mutex_enter(&tcp->tcp_non_sq_lock); 3941 if (tcp->tcp_flow_stopped) { 3942 tcp_clrqfull(tcp); 3943 } 3944 mutex_exit(&tcp->tcp_non_sq_lock); 3945 3946 if (tcp->tcp_timer_tid != 0) { 3947 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 3948 tcp->tcp_timer_tid = 0; 3949 } 3950 /* 3951 * Need to cancel those timers which will not be used when 3952 * TCP is detached. This has to be done before the tcp_wq 3953 * is set to the global queue. 3954 */ 3955 tcp_timers_stop(tcp); 3956 3957 3958 tcp->tcp_detached = B_TRUE; 3959 ASSERT(tcps->tcps_g_q != NULL); 3960 tcp->tcp_rq = tcps->tcps_g_q; 3961 tcp->tcp_wq = WR(tcps->tcps_g_q); 3962 3963 if (tcp->tcp_state == TCPS_TIME_WAIT) { 3964 tcp_time_wait_append(tcp); 3965 TCP_DBGSTAT(tcps, tcp_detach_time_wait); 3966 goto finish; 3967 } 3968 3969 /* 3970 * If delta is zero the timer event wasn't executed and was 3971 * successfully canceled. In this case we need to restart it 3972 * with the minimal delta possible. 3973 */ 3974 if (delta >= 0) { 3975 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 3976 delta ? delta : 1); 3977 } 3978 } else { 3979 tcp_closei_local(tcp); 3980 CONN_DEC_REF(tcp->tcp_connp); 3981 } 3982 finish: 3983 /* Signal closing thread that it can complete close */ 3984 mutex_enter(&tcp->tcp_closelock); 3985 tcp->tcp_detached = B_TRUE; 3986 ASSERT(tcps->tcps_g_q != NULL); 3987 tcp->tcp_rq = tcps->tcps_g_q; 3988 tcp->tcp_wq = WR(tcps->tcps_g_q); 3989 tcp->tcp_closed = 1; 3990 cv_signal(&tcp->tcp_closecv); 3991 mutex_exit(&tcp->tcp_closelock); 3992 } 3993 3994 /* 3995 * Handle lingering timeouts. This function is called when the SO_LINGER timeout 3996 * expires. 3997 */ 3998 static void 3999 tcp_close_linger_timeout(void *arg) 4000 { 4001 conn_t *connp = (conn_t *)arg; 4002 tcp_t *tcp = connp->conn_tcp; 4003 4004 tcp->tcp_client_errno = ETIMEDOUT; 4005 tcp_stop_lingering(tcp); 4006 } 4007 4008 static int 4009 tcp_close(queue_t *q, int flags) 4010 { 4011 conn_t *connp = Q_TO_CONN(q); 4012 tcp_t *tcp = connp->conn_tcp; 4013 mblk_t *mp = &tcp->tcp_closemp; 4014 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 4015 mblk_t *bp; 4016 4017 ASSERT(WR(q)->q_next == NULL); 4018 ASSERT(connp->conn_ref >= 2); 4019 4020 /* 4021 * We are being closed as /dev/tcp or /dev/tcp6. 4022 * 4023 * Mark the conn as closing. ill_pending_mp_add will not 4024 * add any mp to the pending mp list, after this conn has 4025 * started closing. Same for sq_pending_mp_add 4026 */ 4027 mutex_enter(&connp->conn_lock); 4028 connp->conn_state_flags |= CONN_CLOSING; 4029 if (connp->conn_oper_pending_ill != NULL) 4030 conn_ioctl_cleanup_reqd = B_TRUE; 4031 CONN_INC_REF_LOCKED(connp); 4032 mutex_exit(&connp->conn_lock); 4033 tcp->tcp_closeflags = (uint8_t)flags; 4034 ASSERT(connp->conn_ref >= 3); 4035 4036 /* 4037 * tcp_closemp_used is used below without any protection of a lock 4038 * as we don't expect any one else to use it concurrently at this 4039 * point otherwise it would be a major defect. 4040 */ 4041 4042 if (mp->b_prev == NULL) 4043 tcp->tcp_closemp_used = B_TRUE; 4044 else 4045 cmn_err(CE_PANIC, "tcp_close: concurrent use of tcp_closemp: " 4046 "connp %p tcp %p\n", (void *)connp, (void *)tcp); 4047 4048 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 4049 4050 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_close_output, connp, 4051 tcp_squeue_flag, SQTAG_IP_TCP_CLOSE); 4052 4053 mutex_enter(&tcp->tcp_closelock); 4054 while (!tcp->tcp_closed) { 4055 if (!cv_wait_sig(&tcp->tcp_closecv, &tcp->tcp_closelock)) { 4056 /* 4057 * The cv_wait_sig() was interrupted. We now do the 4058 * following: 4059 * 4060 * 1) If the endpoint was lingering, we allow this 4061 * to be interrupted by cancelling the linger timeout 4062 * and closing normally. 4063 * 4064 * 2) Revert to calling cv_wait() 4065 * 4066 * We revert to using cv_wait() to avoid an 4067 * infinite loop which can occur if the calling 4068 * thread is higher priority than the squeue worker 4069 * thread and is bound to the same cpu. 4070 */ 4071 if (tcp->tcp_linger && tcp->tcp_lingertime > 0) { 4072 mutex_exit(&tcp->tcp_closelock); 4073 /* Entering squeue, bump ref count. */ 4074 CONN_INC_REF(connp); 4075 bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL); 4076 SQUEUE_ENTER_ONE(connp->conn_sqp, bp, 4077 tcp_linger_interrupted, connp, 4078 tcp_squeue_flag, SQTAG_IP_TCP_CLOSE); 4079 mutex_enter(&tcp->tcp_closelock); 4080 } 4081 break; 4082 } 4083 } 4084 while (!tcp->tcp_closed) 4085 cv_wait(&tcp->tcp_closecv, &tcp->tcp_closelock); 4086 mutex_exit(&tcp->tcp_closelock); 4087 4088 /* 4089 * In the case of listener streams that have eagers in the q or q0 4090 * we wait for the eagers to drop their reference to us. tcp_rq and 4091 * tcp_wq of the eagers point to our queues. By waiting for the 4092 * refcnt to drop to 1, we are sure that the eagers have cleaned 4093 * up their queue pointers and also dropped their references to us. 4094 */ 4095 if (tcp->tcp_wait_for_eagers) { 4096 mutex_enter(&connp->conn_lock); 4097 while (connp->conn_ref != 1) { 4098 cv_wait(&connp->conn_cv, &connp->conn_lock); 4099 } 4100 mutex_exit(&connp->conn_lock); 4101 } 4102 /* 4103 * ioctl cleanup. The mp is queued in the 4104 * ill_pending_mp or in the sq_pending_mp. 4105 */ 4106 if (conn_ioctl_cleanup_reqd) 4107 conn_ioctl_cleanup(connp); 4108 4109 qprocsoff(q); 4110 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 4111 4112 tcp->tcp_cpid = -1; 4113 4114 /* 4115 * Drop IP's reference on the conn. This is the last reference 4116 * on the connp if the state was less than established. If the 4117 * connection has gone into timewait state, then we will have 4118 * one ref for the TCP and one more ref (total of two) for the 4119 * classifier connected hash list (a timewait connections stays 4120 * in connected hash till closed). 4121 * 4122 * We can't assert the references because there might be other 4123 * transient reference places because of some walkers or queued 4124 * packets in squeue for the timewait state. 4125 */ 4126 CONN_DEC_REF(connp); 4127 q->q_ptr = WR(q)->q_ptr = NULL; 4128 return (0); 4129 } 4130 4131 static int 4132 tcpclose_accept(queue_t *q) 4133 { 4134 vmem_t *minor_arena; 4135 dev_t conn_dev; 4136 4137 ASSERT(WR(q)->q_qinfo == &tcp_acceptor_winit); 4138 4139 /* 4140 * We had opened an acceptor STREAM for sockfs which is 4141 * now being closed due to some error. 4142 */ 4143 qprocsoff(q); 4144 4145 minor_arena = (vmem_t *)WR(q)->q_ptr; 4146 conn_dev = (dev_t)RD(q)->q_ptr; 4147 ASSERT(minor_arena != NULL); 4148 ASSERT(conn_dev != 0); 4149 inet_minor_free(minor_arena, conn_dev); 4150 q->q_ptr = WR(q)->q_ptr = NULL; 4151 return (0); 4152 } 4153 4154 /* 4155 * Called by tcp_close() routine via squeue when lingering is 4156 * interrupted by a signal. 4157 */ 4158 4159 /* ARGSUSED */ 4160 static void 4161 tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2) 4162 { 4163 conn_t *connp = (conn_t *)arg; 4164 tcp_t *tcp = connp->conn_tcp; 4165 4166 freeb(mp); 4167 if (tcp->tcp_linger_tid != 0 && 4168 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 4169 tcp_stop_lingering(tcp); 4170 tcp->tcp_client_errno = EINTR; 4171 } 4172 } 4173 4174 /* 4175 * Called by streams close routine via squeues when our client blows off her 4176 * descriptor, we take this to mean: "close the stream state NOW, close the tcp 4177 * connection politely" When SO_LINGER is set (with a non-zero linger time and 4178 * it is not a nonblocking socket) then this routine sleeps until the FIN is 4179 * acked. 4180 * 4181 * NOTE: tcp_close potentially returns error when lingering. 4182 * However, the stream head currently does not pass these errors 4183 * to the application. 4.4BSD only returns EINTR and EWOULDBLOCK 4184 * errors to the application (from tsleep()) and not errors 4185 * like ECONNRESET caused by receiving a reset packet. 4186 */ 4187 4188 /* ARGSUSED */ 4189 static void 4190 tcp_close_output(void *arg, mblk_t *mp, void *arg2) 4191 { 4192 char *msg; 4193 conn_t *connp = (conn_t *)arg; 4194 tcp_t *tcp = connp->conn_tcp; 4195 clock_t delta = 0; 4196 tcp_stack_t *tcps = tcp->tcp_tcps; 4197 4198 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 4199 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 4200 4201 mutex_enter(&tcp->tcp_eager_lock); 4202 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 4203 /* Cleanup for listener */ 4204 tcp_eager_cleanup(tcp, 0); 4205 tcp->tcp_wait_for_eagers = 1; 4206 } 4207 mutex_exit(&tcp->tcp_eager_lock); 4208 4209 connp->conn_mdt_ok = B_FALSE; 4210 tcp->tcp_mdt = B_FALSE; 4211 4212 connp->conn_lso_ok = B_FALSE; 4213 tcp->tcp_lso = B_FALSE; 4214 4215 msg = NULL; 4216 switch (tcp->tcp_state) { 4217 case TCPS_CLOSED: 4218 case TCPS_IDLE: 4219 case TCPS_BOUND: 4220 case TCPS_LISTEN: 4221 break; 4222 case TCPS_SYN_SENT: 4223 msg = "tcp_close, during connect"; 4224 break; 4225 case TCPS_SYN_RCVD: 4226 /* 4227 * Close during the connect 3-way handshake 4228 * but here there may or may not be pending data 4229 * already on queue. Process almost same as in 4230 * the ESTABLISHED state. 4231 */ 4232 /* FALLTHRU */ 4233 default: 4234 if (tcp->tcp_sodirect != NULL) { 4235 /* Ok, no more sodirect */ 4236 tcp->tcp_sodirect = NULL; 4237 } 4238 4239 if (tcp->tcp_fused) 4240 tcp_unfuse(tcp); 4241 4242 /* 4243 * If SO_LINGER has set a zero linger time, abort the 4244 * connection with a reset. 4245 */ 4246 if (tcp->tcp_linger && tcp->tcp_lingertime == 0) { 4247 msg = "tcp_close, zero lingertime"; 4248 break; 4249 } 4250 4251 ASSERT(tcp->tcp_hard_bound || tcp->tcp_hard_binding); 4252 /* 4253 * Abort connection if there is unread data queued. 4254 */ 4255 if (tcp->tcp_rcv_list || tcp->tcp_reass_head) { 4256 msg = "tcp_close, unread data"; 4257 break; 4258 } 4259 /* 4260 * tcp_hard_bound is now cleared thus all packets go through 4261 * tcp_lookup. This fact is used by tcp_detach below. 4262 * 4263 * We have done a qwait() above which could have possibly 4264 * drained more messages in turn causing transition to a 4265 * different state. Check whether we have to do the rest 4266 * of the processing or not. 4267 */ 4268 if (tcp->tcp_state <= TCPS_LISTEN) 4269 break; 4270 4271 /* 4272 * Transmit the FIN before detaching the tcp_t. 4273 * After tcp_detach returns this queue/perimeter 4274 * no longer owns the tcp_t thus others can modify it. 4275 */ 4276 (void) tcp_xmit_end(tcp); 4277 4278 /* 4279 * If lingering on close then wait until the fin is acked, 4280 * the SO_LINGER time passes, or a reset is sent/received. 4281 */ 4282 if (tcp->tcp_linger && tcp->tcp_lingertime > 0 && 4283 !(tcp->tcp_fin_acked) && 4284 tcp->tcp_state >= TCPS_ESTABLISHED) { 4285 if (tcp->tcp_closeflags & (FNDELAY|FNONBLOCK)) { 4286 tcp->tcp_client_errno = EWOULDBLOCK; 4287 } else if (tcp->tcp_client_errno == 0) { 4288 4289 ASSERT(tcp->tcp_linger_tid == 0); 4290 4291 tcp->tcp_linger_tid = TCP_TIMER(tcp, 4292 tcp_close_linger_timeout, 4293 tcp->tcp_lingertime * hz); 4294 4295 /* tcp_close_linger_timeout will finish close */ 4296 if (tcp->tcp_linger_tid == 0) 4297 tcp->tcp_client_errno = ENOSR; 4298 else 4299 return; 4300 } 4301 4302 /* 4303 * Check if we need to detach or just close 4304 * the instance. 4305 */ 4306 if (tcp->tcp_state <= TCPS_LISTEN) 4307 break; 4308 } 4309 4310 /* 4311 * Make sure that no other thread will access the tcp_rq of 4312 * this instance (through lookups etc.) as tcp_rq will go 4313 * away shortly. 4314 */ 4315 tcp_acceptor_hash_remove(tcp); 4316 4317 mutex_enter(&tcp->tcp_non_sq_lock); 4318 if (tcp->tcp_flow_stopped) { 4319 tcp_clrqfull(tcp); 4320 } 4321 mutex_exit(&tcp->tcp_non_sq_lock); 4322 4323 if (tcp->tcp_timer_tid != 0) { 4324 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 4325 tcp->tcp_timer_tid = 0; 4326 } 4327 /* 4328 * Need to cancel those timers which will not be used when 4329 * TCP is detached. This has to be done before the tcp_wq 4330 * is set to the global queue. 4331 */ 4332 tcp_timers_stop(tcp); 4333 4334 tcp->tcp_detached = B_TRUE; 4335 if (tcp->tcp_state == TCPS_TIME_WAIT) { 4336 tcp_time_wait_append(tcp); 4337 TCP_DBGSTAT(tcps, tcp_detach_time_wait); 4338 ASSERT(connp->conn_ref >= 3); 4339 goto finish; 4340 } 4341 4342 /* 4343 * If delta is zero the timer event wasn't executed and was 4344 * successfully canceled. In this case we need to restart it 4345 * with the minimal delta possible. 4346 */ 4347 if (delta >= 0) 4348 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 4349 delta ? delta : 1); 4350 4351 ASSERT(connp->conn_ref >= 3); 4352 goto finish; 4353 } 4354 4355 /* Detach did not complete. Still need to remove q from stream. */ 4356 if (msg) { 4357 if (tcp->tcp_state == TCPS_ESTABLISHED || 4358 tcp->tcp_state == TCPS_CLOSE_WAIT) 4359 BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); 4360 if (tcp->tcp_state == TCPS_SYN_SENT || 4361 tcp->tcp_state == TCPS_SYN_RCVD) 4362 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 4363 tcp_xmit_ctl(msg, tcp, tcp->tcp_snxt, 0, TH_RST); 4364 } 4365 4366 tcp_closei_local(tcp); 4367 CONN_DEC_REF(connp); 4368 ASSERT(connp->conn_ref >= 2); 4369 4370 finish: 4371 /* 4372 * Although packets are always processed on the correct 4373 * tcp's perimeter and access is serialized via squeue's, 4374 * IP still needs a queue when sending packets in time_wait 4375 * state so use WR(tcps_g_q) till ip_output() can be 4376 * changed to deal with just connp. For read side, we 4377 * could have set tcp_rq to NULL but there are some cases 4378 * in tcp_rput_data() from early days of this code which 4379 * do a putnext without checking if tcp is closed. Those 4380 * need to be identified before both tcp_rq and tcp_wq 4381 * can be set to NULL and tcps_g_q can disappear forever. 4382 */ 4383 mutex_enter(&tcp->tcp_closelock); 4384 /* 4385 * Don't change the queues in the case of a listener that has 4386 * eagers in its q or q0. It could surprise the eagers. 4387 * Instead wait for the eagers outside the squeue. 4388 */ 4389 if (!tcp->tcp_wait_for_eagers) { 4390 tcp->tcp_detached = B_TRUE; 4391 /* 4392 * When default queue is closing we set tcps_g_q to NULL 4393 * after the close is done. 4394 */ 4395 ASSERT(tcps->tcps_g_q != NULL); 4396 tcp->tcp_rq = tcps->tcps_g_q; 4397 tcp->tcp_wq = WR(tcps->tcps_g_q); 4398 } 4399 4400 /* Signal tcp_close() to finish closing. */ 4401 tcp->tcp_closed = 1; 4402 cv_signal(&tcp->tcp_closecv); 4403 mutex_exit(&tcp->tcp_closelock); 4404 } 4405 4406 4407 /* 4408 * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp. 4409 * Some stream heads get upset if they see these later on as anything but NULL. 4410 */ 4411 static void 4412 tcp_close_mpp(mblk_t **mpp) 4413 { 4414 mblk_t *mp; 4415 4416 if ((mp = *mpp) != NULL) { 4417 do { 4418 mp->b_next = NULL; 4419 mp->b_prev = NULL; 4420 } while ((mp = mp->b_cont) != NULL); 4421 4422 mp = *mpp; 4423 *mpp = NULL; 4424 freemsg(mp); 4425 } 4426 } 4427 4428 /* Do detached close. */ 4429 static void 4430 tcp_close_detached(tcp_t *tcp) 4431 { 4432 if (tcp->tcp_fused) 4433 tcp_unfuse(tcp); 4434 4435 /* 4436 * Clustering code serializes TCP disconnect callbacks and 4437 * cluster tcp list walks by blocking a TCP disconnect callback 4438 * if a cluster tcp list walk is in progress. This ensures 4439 * accurate accounting of TCPs in the cluster code even though 4440 * the TCP list walk itself is not atomic. 4441 */ 4442 tcp_closei_local(tcp); 4443 CONN_DEC_REF(tcp->tcp_connp); 4444 } 4445 4446 /* 4447 * Stop all TCP timers, and free the timer mblks if requested. 4448 */ 4449 void 4450 tcp_timers_stop(tcp_t *tcp) 4451 { 4452 if (tcp->tcp_timer_tid != 0) { 4453 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 4454 tcp->tcp_timer_tid = 0; 4455 } 4456 if (tcp->tcp_ka_tid != 0) { 4457 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ka_tid); 4458 tcp->tcp_ka_tid = 0; 4459 } 4460 if (tcp->tcp_ack_tid != 0) { 4461 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 4462 tcp->tcp_ack_tid = 0; 4463 } 4464 if (tcp->tcp_push_tid != 0) { 4465 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 4466 tcp->tcp_push_tid = 0; 4467 } 4468 } 4469 4470 /* 4471 * The tcp_t is going away. Remove it from all lists and set it 4472 * to TCPS_CLOSED. The freeing up of memory is deferred until 4473 * tcp_inactive. This is needed since a thread in tcp_rput might have 4474 * done a CONN_INC_REF on this structure before it was removed from the 4475 * hashes. 4476 */ 4477 static void 4478 tcp_closei_local(tcp_t *tcp) 4479 { 4480 ire_t *ire; 4481 conn_t *connp = tcp->tcp_connp; 4482 tcp_stack_t *tcps = tcp->tcp_tcps; 4483 4484 if (!TCP_IS_SOCKET(tcp)) 4485 tcp_acceptor_hash_remove(tcp); 4486 4487 UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs); 4488 tcp->tcp_ibsegs = 0; 4489 UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs); 4490 tcp->tcp_obsegs = 0; 4491 4492 /* 4493 * If we are an eager connection hanging off a listener that 4494 * hasn't formally accepted the connection yet, get off his 4495 * list and blow off any data that we have accumulated. 4496 */ 4497 if (tcp->tcp_listener != NULL) { 4498 tcp_t *listener = tcp->tcp_listener; 4499 mutex_enter(&listener->tcp_eager_lock); 4500 /* 4501 * tcp_tconnind_started == B_TRUE means that the 4502 * conn_ind has already gone to listener. At 4503 * this point, eager will be closed but we 4504 * leave it in listeners eager list so that 4505 * if listener decides to close without doing 4506 * accept, we can clean this up. In tcp_wput_accept 4507 * we take care of the case of accept on closed 4508 * eager. 4509 */ 4510 if (!tcp->tcp_tconnind_started) { 4511 tcp_eager_unlink(tcp); 4512 mutex_exit(&listener->tcp_eager_lock); 4513 /* 4514 * We don't want to have any pointers to the 4515 * listener queue, after we have released our 4516 * reference on the listener 4517 */ 4518 ASSERT(tcps->tcps_g_q != NULL); 4519 tcp->tcp_rq = tcps->tcps_g_q; 4520 tcp->tcp_wq = WR(tcps->tcps_g_q); 4521 CONN_DEC_REF(listener->tcp_connp); 4522 } else { 4523 mutex_exit(&listener->tcp_eager_lock); 4524 } 4525 } 4526 4527 /* Stop all the timers */ 4528 tcp_timers_stop(tcp); 4529 4530 if (tcp->tcp_state == TCPS_LISTEN) { 4531 if (tcp->tcp_ip_addr_cache) { 4532 kmem_free((void *)tcp->tcp_ip_addr_cache, 4533 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 4534 tcp->tcp_ip_addr_cache = NULL; 4535 } 4536 } 4537 mutex_enter(&tcp->tcp_non_sq_lock); 4538 if (tcp->tcp_flow_stopped) 4539 tcp_clrqfull(tcp); 4540 mutex_exit(&tcp->tcp_non_sq_lock); 4541 4542 tcp_bind_hash_remove(tcp); 4543 /* 4544 * If the tcp_time_wait_collector (which runs outside the squeue) 4545 * is trying to remove this tcp from the time wait list, we will 4546 * block in tcp_time_wait_remove while trying to acquire the 4547 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also 4548 * requires the ipcl_hash_remove to be ordered after the 4549 * tcp_time_wait_remove for the refcnt checks to work correctly. 4550 */ 4551 if (tcp->tcp_state == TCPS_TIME_WAIT) 4552 (void) tcp_time_wait_remove(tcp, NULL); 4553 CL_INET_DISCONNECT(tcp); 4554 ipcl_hash_remove(connp); 4555 4556 /* 4557 * Delete the cached ire in conn_ire_cache and also mark 4558 * the conn as CONDEMNED 4559 */ 4560 mutex_enter(&connp->conn_lock); 4561 connp->conn_state_flags |= CONN_CONDEMNED; 4562 ire = connp->conn_ire_cache; 4563 connp->conn_ire_cache = NULL; 4564 mutex_exit(&connp->conn_lock); 4565 if (ire != NULL) 4566 IRE_REFRELE_NOTR(ire); 4567 4568 /* Need to cleanup any pending ioctls */ 4569 ASSERT(tcp->tcp_time_wait_next == NULL); 4570 ASSERT(tcp->tcp_time_wait_prev == NULL); 4571 ASSERT(tcp->tcp_time_wait_expire == 0); 4572 tcp->tcp_state = TCPS_CLOSED; 4573 4574 /* Release any SSL context */ 4575 if (tcp->tcp_kssl_ent != NULL) { 4576 kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); 4577 tcp->tcp_kssl_ent = NULL; 4578 } 4579 if (tcp->tcp_kssl_ctx != NULL) { 4580 kssl_release_ctx(tcp->tcp_kssl_ctx); 4581 tcp->tcp_kssl_ctx = NULL; 4582 } 4583 tcp->tcp_kssl_pending = B_FALSE; 4584 4585 tcp_ipsec_cleanup(tcp); 4586 } 4587 4588 /* 4589 * tcp is dying (called from ipcl_conn_destroy and error cases). 4590 * Free the tcp_t in either case. 4591 */ 4592 void 4593 tcp_free(tcp_t *tcp) 4594 { 4595 mblk_t *mp; 4596 ip6_pkt_t *ipp; 4597 4598 ASSERT(tcp != NULL); 4599 ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL); 4600 4601 tcp->tcp_rq = NULL; 4602 tcp->tcp_wq = NULL; 4603 4604 tcp_close_mpp(&tcp->tcp_xmit_head); 4605 tcp_close_mpp(&tcp->tcp_reass_head); 4606 if (tcp->tcp_rcv_list != NULL) { 4607 /* Free b_next chain */ 4608 tcp_close_mpp(&tcp->tcp_rcv_list); 4609 } 4610 if ((mp = tcp->tcp_urp_mp) != NULL) { 4611 freemsg(mp); 4612 } 4613 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 4614 freemsg(mp); 4615 } 4616 4617 if (tcp->tcp_fused_sigurg_mp != NULL) { 4618 freeb(tcp->tcp_fused_sigurg_mp); 4619 tcp->tcp_fused_sigurg_mp = NULL; 4620 } 4621 4622 if (tcp->tcp_ordrel_mp != NULL) { 4623 freeb(tcp->tcp_ordrel_mp); 4624 tcp->tcp_ordrel_mp = NULL; 4625 } 4626 4627 if (tcp->tcp_ordrel_mp != NULL) { 4628 freeb(tcp->tcp_ordrel_mp); 4629 tcp->tcp_ordrel_mp = NULL; 4630 } 4631 4632 if (tcp->tcp_sack_info != NULL) { 4633 if (tcp->tcp_notsack_list != NULL) { 4634 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 4635 } 4636 bzero(tcp->tcp_sack_info, sizeof (tcp_sack_info_t)); 4637 } 4638 4639 if (tcp->tcp_hopopts != NULL) { 4640 mi_free(tcp->tcp_hopopts); 4641 tcp->tcp_hopopts = NULL; 4642 tcp->tcp_hopoptslen = 0; 4643 } 4644 ASSERT(tcp->tcp_hopoptslen == 0); 4645 if (tcp->tcp_dstopts != NULL) { 4646 mi_free(tcp->tcp_dstopts); 4647 tcp->tcp_dstopts = NULL; 4648 tcp->tcp_dstoptslen = 0; 4649 } 4650 ASSERT(tcp->tcp_dstoptslen == 0); 4651 if (tcp->tcp_rtdstopts != NULL) { 4652 mi_free(tcp->tcp_rtdstopts); 4653 tcp->tcp_rtdstopts = NULL; 4654 tcp->tcp_rtdstoptslen = 0; 4655 } 4656 ASSERT(tcp->tcp_rtdstoptslen == 0); 4657 if (tcp->tcp_rthdr != NULL) { 4658 mi_free(tcp->tcp_rthdr); 4659 tcp->tcp_rthdr = NULL; 4660 tcp->tcp_rthdrlen = 0; 4661 } 4662 ASSERT(tcp->tcp_rthdrlen == 0); 4663 4664 ipp = &tcp->tcp_sticky_ipp; 4665 if (ipp->ipp_fields & (IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 4666 IPPF_RTHDR)) 4667 ip6_pkt_free(ipp); 4668 4669 /* 4670 * Free memory associated with the tcp/ip header template. 4671 */ 4672 4673 if (tcp->tcp_iphc != NULL) 4674 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 4675 4676 /* 4677 * Following is really a blowing away a union. 4678 * It happens to have exactly two members of identical size 4679 * the following code is enough. 4680 */ 4681 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 4682 } 4683 4684 4685 /* 4686 * Put a connection confirmation message upstream built from the 4687 * address information within 'iph' and 'tcph'. Report our success or failure. 4688 */ 4689 static boolean_t 4690 tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, mblk_t *idmp, 4691 mblk_t **defermp) 4692 { 4693 sin_t sin; 4694 sin6_t sin6; 4695 mblk_t *mp; 4696 char *optp = NULL; 4697 int optlen = 0; 4698 cred_t *cr; 4699 4700 if (defermp != NULL) 4701 *defermp = NULL; 4702 4703 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) { 4704 /* 4705 * Return in T_CONN_CON results of option negotiation through 4706 * the T_CONN_REQ. Note: If there is an real end-to-end option 4707 * negotiation, then what is received from remote end needs 4708 * to be taken into account but there is no such thing (yet?) 4709 * in our TCP/IP. 4710 * Note: We do not use mi_offset_param() here as 4711 * tcp_opts_conn_req contents do not directly come from 4712 * an application and are either generated in kernel or 4713 * from user input that was already verified. 4714 */ 4715 mp = tcp->tcp_conn.tcp_opts_conn_req; 4716 optp = (char *)(mp->b_rptr + 4717 ((struct T_conn_req *)mp->b_rptr)->OPT_offset); 4718 optlen = (int) 4719 ((struct T_conn_req *)mp->b_rptr)->OPT_length; 4720 } 4721 4722 if (IPH_HDR_VERSION(iphdr) == IPV4_VERSION) { 4723 ipha_t *ipha = (ipha_t *)iphdr; 4724 4725 /* packet is IPv4 */ 4726 if (tcp->tcp_family == AF_INET) { 4727 sin = sin_null; 4728 sin.sin_addr.s_addr = ipha->ipha_src; 4729 sin.sin_port = *(uint16_t *)tcph->th_lport; 4730 sin.sin_family = AF_INET; 4731 mp = mi_tpi_conn_con(NULL, (char *)&sin, 4732 (int)sizeof (sin_t), optp, optlen); 4733 } else { 4734 sin6 = sin6_null; 4735 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr); 4736 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4737 sin6.sin6_family = AF_INET6; 4738 mp = mi_tpi_conn_con(NULL, (char *)&sin6, 4739 (int)sizeof (sin6_t), optp, optlen); 4740 4741 } 4742 } else { 4743 ip6_t *ip6h = (ip6_t *)iphdr; 4744 4745 ASSERT(IPH_HDR_VERSION(iphdr) == IPV6_VERSION); 4746 ASSERT(tcp->tcp_family == AF_INET6); 4747 sin6 = sin6_null; 4748 sin6.sin6_addr = ip6h->ip6_src; 4749 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4750 sin6.sin6_family = AF_INET6; 4751 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 4752 mp = mi_tpi_conn_con(NULL, (char *)&sin6, 4753 (int)sizeof (sin6_t), optp, optlen); 4754 } 4755 4756 if (!mp) 4757 return (B_FALSE); 4758 4759 if ((cr = DB_CRED(idmp)) != NULL) { 4760 mblk_setcred(mp, cr); 4761 DB_CPID(mp) = DB_CPID(idmp); 4762 } 4763 4764 if (defermp == NULL) 4765 putnext(tcp->tcp_rq, mp); 4766 else 4767 *defermp = mp; 4768 4769 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 4770 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 4771 return (B_TRUE); 4772 } 4773 4774 /* 4775 * Defense for the SYN attack - 4776 * 1. When q0 is full, drop from the tail (tcp_eager_prev_drop_q0) the oldest 4777 * one from the list of droppable eagers. This list is a subset of q0. 4778 * see comments before the definition of MAKE_DROPPABLE(). 4779 * 2. Don't drop a SYN request before its first timeout. This gives every 4780 * request at least til the first timeout to complete its 3-way handshake. 4781 * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many 4782 * requests currently on the queue that has timed out. This will be used 4783 * as an indicator of whether an attack is under way, so that appropriate 4784 * actions can be taken. (It's incremented in tcp_timer() and decremented 4785 * either when eager goes into ESTABLISHED, or gets freed up.) 4786 * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on 4787 * # of timeout drops back to <= q0len/32 => SYN alert off 4788 */ 4789 static boolean_t 4790 tcp_drop_q0(tcp_t *tcp) 4791 { 4792 tcp_t *eager; 4793 mblk_t *mp; 4794 tcp_stack_t *tcps = tcp->tcp_tcps; 4795 4796 ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock)); 4797 ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0); 4798 4799 /* Pick oldest eager from the list of droppable eagers */ 4800 eager = tcp->tcp_eager_prev_drop_q0; 4801 4802 /* If list is empty. return B_FALSE */ 4803 if (eager == tcp) { 4804 return (B_FALSE); 4805 } 4806 4807 /* If allocated, the mp will be freed in tcp_clean_death_wrapper() */ 4808 if ((mp = allocb(0, BPRI_HI)) == NULL) 4809 return (B_FALSE); 4810 4811 /* 4812 * Take this eager out from the list of droppable eagers since we are 4813 * going to drop it. 4814 */ 4815 MAKE_UNDROPPABLE(eager); 4816 4817 if (tcp->tcp_debug) { 4818 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 4819 "tcp_drop_q0: listen half-open queue (max=%d) overflow" 4820 " (%d pending) on %s, drop one", tcps->tcps_conn_req_max_q0, 4821 tcp->tcp_conn_req_cnt_q0, 4822 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 4823 } 4824 4825 BUMP_MIB(&tcps->tcps_mib, tcpHalfOpenDrop); 4826 4827 /* Put a reference on the conn as we are enqueueing it in the sqeue */ 4828 CONN_INC_REF(eager->tcp_connp); 4829 4830 /* Mark the IRE created for this SYN request temporary */ 4831 tcp_ip_ire_mark_advice(eager); 4832 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, 4833 tcp_clean_death_wrapper, eager->tcp_connp, 4834 SQ_FILL, SQTAG_TCP_DROP_Q0); 4835 4836 return (B_TRUE); 4837 } 4838 4839 int 4840 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 4841 tcph_t *tcph, uint_t ipvers, mblk_t *idmp) 4842 { 4843 tcp_t *ltcp = lconnp->conn_tcp; 4844 tcp_t *tcp = connp->conn_tcp; 4845 mblk_t *tpi_mp; 4846 ipha_t *ipha; 4847 ip6_t *ip6h; 4848 sin6_t sin6; 4849 in6_addr_t v6dst; 4850 int err; 4851 int ifindex = 0; 4852 cred_t *cr; 4853 tcp_stack_t *tcps = tcp->tcp_tcps; 4854 4855 if (ipvers == IPV4_VERSION) { 4856 ipha = (ipha_t *)mp->b_rptr; 4857 4858 connp->conn_send = ip_output; 4859 connp->conn_recv = tcp_input; 4860 4861 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6); 4862 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6); 4863 4864 sin6 = sin6_null; 4865 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr); 4866 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &v6dst); 4867 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4868 sin6.sin6_family = AF_INET6; 4869 sin6.__sin6_src_id = ip_srcid_find_addr(&v6dst, 4870 lconnp->conn_zoneid, tcps->tcps_netstack); 4871 if (tcp->tcp_recvdstaddr) { 4872 sin6_t sin6d; 4873 4874 sin6d = sin6_null; 4875 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, 4876 &sin6d.sin6_addr); 4877 sin6d.sin6_port = *(uint16_t *)tcph->th_fport; 4878 sin6d.sin6_family = AF_INET; 4879 tpi_mp = mi_tpi_extconn_ind(NULL, 4880 (char *)&sin6d, sizeof (sin6_t), 4881 (char *)&tcp, 4882 (t_scalar_t)sizeof (intptr_t), 4883 (char *)&sin6d, sizeof (sin6_t), 4884 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4885 } else { 4886 tpi_mp = mi_tpi_conn_ind(NULL, 4887 (char *)&sin6, sizeof (sin6_t), 4888 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4889 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4890 } 4891 } else { 4892 ip6h = (ip6_t *)mp->b_rptr; 4893 4894 connp->conn_send = ip_output_v6; 4895 connp->conn_recv = tcp_input; 4896 4897 connp->conn_srcv6 = ip6h->ip6_dst; 4898 connp->conn_remv6 = ip6h->ip6_src; 4899 4900 /* db_cksumstuff is set at ip_fanout_tcp_v6 */ 4901 ifindex = (int)DB_CKSUMSTUFF(mp); 4902 DB_CKSUMSTUFF(mp) = 0; 4903 4904 sin6 = sin6_null; 4905 sin6.sin6_addr = ip6h->ip6_src; 4906 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4907 sin6.sin6_family = AF_INET6; 4908 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 4909 sin6.__sin6_src_id = ip_srcid_find_addr(&ip6h->ip6_dst, 4910 lconnp->conn_zoneid, tcps->tcps_netstack); 4911 4912 if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) { 4913 /* Pass up the scope_id of remote addr */ 4914 sin6.sin6_scope_id = ifindex; 4915 } else { 4916 sin6.sin6_scope_id = 0; 4917 } 4918 if (tcp->tcp_recvdstaddr) { 4919 sin6_t sin6d; 4920 4921 sin6d = sin6_null; 4922 sin6.sin6_addr = ip6h->ip6_dst; 4923 sin6d.sin6_port = *(uint16_t *)tcph->th_fport; 4924 sin6d.sin6_family = AF_INET; 4925 tpi_mp = mi_tpi_extconn_ind(NULL, 4926 (char *)&sin6d, sizeof (sin6_t), 4927 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4928 (char *)&sin6d, sizeof (sin6_t), 4929 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4930 } else { 4931 tpi_mp = mi_tpi_conn_ind(NULL, 4932 (char *)&sin6, sizeof (sin6_t), 4933 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4934 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4935 } 4936 } 4937 4938 if (tpi_mp == NULL) 4939 return (ENOMEM); 4940 4941 connp->conn_fport = *(uint16_t *)tcph->th_lport; 4942 connp->conn_lport = *(uint16_t *)tcph->th_fport; 4943 connp->conn_flags |= (IPCL_TCP6|IPCL_EAGER); 4944 connp->conn_fully_bound = B_FALSE; 4945 4946 /* Inherit information from the "parent" */ 4947 tcp->tcp_ipversion = ltcp->tcp_ipversion; 4948 tcp->tcp_family = ltcp->tcp_family; 4949 tcp->tcp_wq = ltcp->tcp_wq; 4950 tcp->tcp_rq = ltcp->tcp_rq; 4951 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 4952 tcp->tcp_detached = B_TRUE; 4953 if ((err = tcp_init_values(tcp)) != 0) { 4954 freemsg(tpi_mp); 4955 return (err); 4956 } 4957 4958 if (ipvers == IPV4_VERSION) { 4959 if ((err = tcp_header_init_ipv4(tcp)) != 0) { 4960 freemsg(tpi_mp); 4961 return (err); 4962 } 4963 ASSERT(tcp->tcp_ipha != NULL); 4964 } else { 4965 /* ifindex must be already set */ 4966 ASSERT(ifindex != 0); 4967 4968 if (ltcp->tcp_bound_if != 0) { 4969 /* 4970 * Set newtcp's bound_if equal to 4971 * listener's value. If ifindex is 4972 * not the same as ltcp->tcp_bound_if, 4973 * it must be a packet for the ipmp group 4974 * of interfaces 4975 */ 4976 tcp->tcp_bound_if = ltcp->tcp_bound_if; 4977 } else if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) { 4978 tcp->tcp_bound_if = ifindex; 4979 } 4980 4981 tcp->tcp_ipv6_recvancillary = ltcp->tcp_ipv6_recvancillary; 4982 tcp->tcp_recvifindex = 0; 4983 tcp->tcp_recvhops = 0xffffffffU; 4984 ASSERT(tcp->tcp_ip6h != NULL); 4985 } 4986 4987 tcp->tcp_lport = ltcp->tcp_lport; 4988 4989 if (ltcp->tcp_ipversion == tcp->tcp_ipversion) { 4990 if (tcp->tcp_iphc_len != ltcp->tcp_iphc_len) { 4991 /* 4992 * Listener had options of some sort; eager inherits. 4993 * Free up the eager template and allocate one 4994 * of the right size. 4995 */ 4996 if (tcp->tcp_hdr_grown) { 4997 kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len); 4998 } else { 4999 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 5000 kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc); 5001 } 5002 tcp->tcp_iphc = kmem_zalloc(ltcp->tcp_iphc_len, 5003 KM_NOSLEEP); 5004 if (tcp->tcp_iphc == NULL) { 5005 tcp->tcp_iphc_len = 0; 5006 freemsg(tpi_mp); 5007 return (ENOMEM); 5008 } 5009 tcp->tcp_iphc_len = ltcp->tcp_iphc_len; 5010 tcp->tcp_hdr_grown = B_TRUE; 5011 } 5012 tcp->tcp_hdr_len = ltcp->tcp_hdr_len; 5013 tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len; 5014 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 5015 tcp->tcp_ip6_hops = ltcp->tcp_ip6_hops; 5016 tcp->tcp_ip6_vcf = ltcp->tcp_ip6_vcf; 5017 5018 /* 5019 * Copy the IP+TCP header template from listener to eager 5020 */ 5021 bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len); 5022 if (tcp->tcp_ipversion == IPV6_VERSION) { 5023 if (((ip6i_t *)(tcp->tcp_iphc))->ip6i_nxt == 5024 IPPROTO_RAW) { 5025 tcp->tcp_ip6h = 5026 (ip6_t *)(tcp->tcp_iphc + 5027 sizeof (ip6i_t)); 5028 } else { 5029 tcp->tcp_ip6h = 5030 (ip6_t *)(tcp->tcp_iphc); 5031 } 5032 tcp->tcp_ipha = NULL; 5033 } else { 5034 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 5035 tcp->tcp_ip6h = NULL; 5036 } 5037 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + 5038 tcp->tcp_ip_hdr_len); 5039 } else { 5040 /* 5041 * only valid case when ipversion of listener and 5042 * eager differ is when listener is IPv6 and 5043 * eager is IPv4. 5044 * Eager header template has been initialized to the 5045 * maximum v4 header sizes, which includes space for 5046 * TCP and IP options. 5047 */ 5048 ASSERT((ltcp->tcp_ipversion == IPV6_VERSION) && 5049 (tcp->tcp_ipversion == IPV4_VERSION)); 5050 ASSERT(tcp->tcp_iphc_len >= 5051 TCP_MAX_COMBINED_HEADER_LENGTH); 5052 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 5053 /* copy IP header fields individually */ 5054 tcp->tcp_ipha->ipha_ttl = 5055 ltcp->tcp_ip6h->ip6_hops; 5056 bcopy(ltcp->tcp_tcph->th_lport, 5057 tcp->tcp_tcph->th_lport, sizeof (ushort_t)); 5058 } 5059 5060 bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t)); 5061 bcopy(tcp->tcp_tcph->th_fport, &tcp->tcp_fport, 5062 sizeof (in_port_t)); 5063 5064 if (ltcp->tcp_lport == 0) { 5065 tcp->tcp_lport = *(in_port_t *)tcph->th_fport; 5066 bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, 5067 sizeof (in_port_t)); 5068 } 5069 5070 if (tcp->tcp_ipversion == IPV4_VERSION) { 5071 ASSERT(ipha != NULL); 5072 tcp->tcp_ipha->ipha_dst = ipha->ipha_src; 5073 tcp->tcp_ipha->ipha_src = ipha->ipha_dst; 5074 5075 /* Source routing option copyover (reverse it) */ 5076 if (tcps->tcps_rev_src_routes) 5077 tcp_opt_reverse(tcp, ipha); 5078 } else { 5079 ASSERT(ip6h != NULL); 5080 tcp->tcp_ip6h->ip6_dst = ip6h->ip6_src; 5081 tcp->tcp_ip6h->ip6_src = ip6h->ip6_dst; 5082 } 5083 5084 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 5085 ASSERT(!tcp->tcp_tconnind_started); 5086 /* 5087 * If the SYN contains a credential, it's a loopback packet; attach 5088 * the credential to the TPI message. 5089 */ 5090 if ((cr = DB_CRED(idmp)) != NULL) { 5091 mblk_setcred(tpi_mp, cr); 5092 DB_CPID(tpi_mp) = DB_CPID(idmp); 5093 } 5094 tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp; 5095 5096 /* Inherit the listener's SSL protection state */ 5097 5098 if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) { 5099 kssl_hold_ent(tcp->tcp_kssl_ent); 5100 tcp->tcp_kssl_pending = B_TRUE; 5101 } 5102 5103 return (0); 5104 } 5105 5106 5107 int 5108 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha, 5109 tcph_t *tcph, mblk_t *idmp) 5110 { 5111 tcp_t *ltcp = lconnp->conn_tcp; 5112 tcp_t *tcp = connp->conn_tcp; 5113 sin_t sin; 5114 mblk_t *tpi_mp = NULL; 5115 int err; 5116 cred_t *cr; 5117 tcp_stack_t *tcps = tcp->tcp_tcps; 5118 5119 sin = sin_null; 5120 sin.sin_addr.s_addr = ipha->ipha_src; 5121 sin.sin_port = *(uint16_t *)tcph->th_lport; 5122 sin.sin_family = AF_INET; 5123 if (ltcp->tcp_recvdstaddr) { 5124 sin_t sind; 5125 5126 sind = sin_null; 5127 sind.sin_addr.s_addr = ipha->ipha_dst; 5128 sind.sin_port = *(uint16_t *)tcph->th_fport; 5129 sind.sin_family = AF_INET; 5130 tpi_mp = mi_tpi_extconn_ind(NULL, 5131 (char *)&sind, sizeof (sin_t), (char *)&tcp, 5132 (t_scalar_t)sizeof (intptr_t), (char *)&sind, 5133 sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum); 5134 } else { 5135 tpi_mp = mi_tpi_conn_ind(NULL, 5136 (char *)&sin, sizeof (sin_t), 5137 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 5138 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 5139 } 5140 5141 if (tpi_mp == NULL) { 5142 return (ENOMEM); 5143 } 5144 5145 connp->conn_flags |= (IPCL_TCP4|IPCL_EAGER); 5146 connp->conn_send = ip_output; 5147 connp->conn_recv = tcp_input; 5148 connp->conn_fully_bound = B_FALSE; 5149 5150 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6); 5151 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6); 5152 connp->conn_fport = *(uint16_t *)tcph->th_lport; 5153 connp->conn_lport = *(uint16_t *)tcph->th_fport; 5154 5155 /* Inherit information from the "parent" */ 5156 tcp->tcp_ipversion = ltcp->tcp_ipversion; 5157 tcp->tcp_family = ltcp->tcp_family; 5158 tcp->tcp_wq = ltcp->tcp_wq; 5159 tcp->tcp_rq = ltcp->tcp_rq; 5160 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 5161 tcp->tcp_detached = B_TRUE; 5162 if ((err = tcp_init_values(tcp)) != 0) { 5163 freemsg(tpi_mp); 5164 return (err); 5165 } 5166 5167 /* 5168 * Let's make sure that eager tcp template has enough space to 5169 * copy IPv4 listener's tcp template. Since the conn_t structure is 5170 * preserved and tcp_iphc_len is also preserved, an eager conn_t may 5171 * have a tcp_template of total len TCP_MAX_COMBINED_HEADER_LENGTH or 5172 * more (in case of re-allocation of conn_t with tcp-IPv6 template with 5173 * extension headers or with ip6i_t struct). Note that bcopy() below 5174 * copies listener tcp's hdr_len which cannot be greater than TCP_MAX_ 5175 * COMBINED_HEADER_LENGTH as this listener must be a IPv4 listener. 5176 */ 5177 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 5178 ASSERT(ltcp->tcp_hdr_len <= TCP_MAX_COMBINED_HEADER_LENGTH); 5179 5180 tcp->tcp_hdr_len = ltcp->tcp_hdr_len; 5181 tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len; 5182 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 5183 tcp->tcp_ttl = ltcp->tcp_ttl; 5184 tcp->tcp_tos = ltcp->tcp_tos; 5185 5186 /* Copy the IP+TCP header template from listener to eager */ 5187 bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len); 5188 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 5189 tcp->tcp_ip6h = NULL; 5190 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + 5191 tcp->tcp_ip_hdr_len); 5192 5193 /* Initialize the IP addresses and Ports */ 5194 tcp->tcp_ipha->ipha_dst = ipha->ipha_src; 5195 tcp->tcp_ipha->ipha_src = ipha->ipha_dst; 5196 bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t)); 5197 bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, sizeof (in_port_t)); 5198 5199 /* Source routing option copyover (reverse it) */ 5200 if (tcps->tcps_rev_src_routes) 5201 tcp_opt_reverse(tcp, ipha); 5202 5203 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 5204 ASSERT(!tcp->tcp_tconnind_started); 5205 5206 /* 5207 * If the SYN contains a credential, it's a loopback packet; attach 5208 * the credential to the TPI message. 5209 */ 5210 if ((cr = DB_CRED(idmp)) != NULL) { 5211 mblk_setcred(tpi_mp, cr); 5212 DB_CPID(tpi_mp) = DB_CPID(idmp); 5213 } 5214 tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp; 5215 5216 /* Inherit the listener's SSL protection state */ 5217 if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) { 5218 kssl_hold_ent(tcp->tcp_kssl_ent); 5219 tcp->tcp_kssl_pending = B_TRUE; 5220 } 5221 5222 return (0); 5223 } 5224 5225 /* 5226 * sets up conn for ipsec. 5227 * if the first mblk is M_CTL it is consumed and mpp is updated. 5228 * in case of error mpp is freed. 5229 */ 5230 conn_t * 5231 tcp_get_ipsec_conn(tcp_t *tcp, squeue_t *sqp, mblk_t **mpp) 5232 { 5233 conn_t *connp = tcp->tcp_connp; 5234 conn_t *econnp; 5235 squeue_t *new_sqp; 5236 mblk_t *first_mp = *mpp; 5237 mblk_t *mp = *mpp; 5238 boolean_t mctl_present = B_FALSE; 5239 uint_t ipvers; 5240 5241 econnp = tcp_get_conn(sqp, tcp->tcp_tcps); 5242 if (econnp == NULL) { 5243 freemsg(first_mp); 5244 return (NULL); 5245 } 5246 if (DB_TYPE(mp) == M_CTL) { 5247 if (mp->b_cont == NULL || 5248 mp->b_cont->b_datap->db_type != M_DATA) { 5249 freemsg(first_mp); 5250 return (NULL); 5251 } 5252 mp = mp->b_cont; 5253 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) == 0) { 5254 freemsg(first_mp); 5255 return (NULL); 5256 } 5257 5258 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 5259 first_mp->b_datap->db_struioflag &= ~STRUIO_POLICY; 5260 mctl_present = B_TRUE; 5261 } else { 5262 ASSERT(mp->b_datap->db_struioflag & STRUIO_POLICY); 5263 mp->b_datap->db_struioflag &= ~STRUIO_POLICY; 5264 } 5265 5266 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 5267 DB_CKSUMSTART(mp) = 0; 5268 5269 ASSERT(OK_32PTR(mp->b_rptr)); 5270 ipvers = IPH_HDR_VERSION(mp->b_rptr); 5271 if (ipvers == IPV4_VERSION) { 5272 uint16_t *up; 5273 uint32_t ports; 5274 ipha_t *ipha; 5275 5276 ipha = (ipha_t *)mp->b_rptr; 5277 up = (uint16_t *)((uchar_t *)ipha + 5278 IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET); 5279 ports = *(uint32_t *)up; 5280 IPCL_TCP_EAGER_INIT(econnp, IPPROTO_TCP, 5281 ipha->ipha_dst, ipha->ipha_src, ports); 5282 } else { 5283 uint16_t *up; 5284 uint32_t ports; 5285 uint16_t ip_hdr_len; 5286 uint8_t *nexthdrp; 5287 ip6_t *ip6h; 5288 tcph_t *tcph; 5289 5290 ip6h = (ip6_t *)mp->b_rptr; 5291 if (ip6h->ip6_nxt == IPPROTO_TCP) { 5292 ip_hdr_len = IPV6_HDR_LEN; 5293 } else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ip_hdr_len, 5294 &nexthdrp) || *nexthdrp != IPPROTO_TCP) { 5295 CONN_DEC_REF(econnp); 5296 freemsg(first_mp); 5297 return (NULL); 5298 } 5299 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5300 up = (uint16_t *)tcph->th_lport; 5301 ports = *(uint32_t *)up; 5302 IPCL_TCP_EAGER_INIT_V6(econnp, IPPROTO_TCP, 5303 ip6h->ip6_dst, ip6h->ip6_src, ports); 5304 } 5305 5306 /* 5307 * The caller already ensured that there is a sqp present. 5308 */ 5309 econnp->conn_sqp = new_sqp; 5310 econnp->conn_initial_sqp = new_sqp; 5311 5312 if (connp->conn_policy != NULL) { 5313 ipsec_in_t *ii; 5314 ii = (ipsec_in_t *)(first_mp->b_rptr); 5315 ASSERT(ii->ipsec_in_policy == NULL); 5316 IPPH_REFHOLD(connp->conn_policy); 5317 ii->ipsec_in_policy = connp->conn_policy; 5318 5319 first_mp->b_datap->db_type = IPSEC_POLICY_SET; 5320 if (!ip_bind_ipsec_policy_set(econnp, first_mp)) { 5321 CONN_DEC_REF(econnp); 5322 freemsg(first_mp); 5323 return (NULL); 5324 } 5325 } 5326 5327 if (ipsec_conn_cache_policy(econnp, ipvers == IPV4_VERSION) != 0) { 5328 CONN_DEC_REF(econnp); 5329 freemsg(first_mp); 5330 return (NULL); 5331 } 5332 5333 /* 5334 * If we know we have some policy, pass the "IPSEC" 5335 * options size TCP uses this adjust the MSS. 5336 */ 5337 econnp->conn_tcp->tcp_ipsec_overhead = conn_ipsec_length(econnp); 5338 if (mctl_present) { 5339 freeb(first_mp); 5340 *mpp = mp; 5341 } 5342 5343 return (econnp); 5344 } 5345 5346 /* 5347 * tcp_get_conn/tcp_free_conn 5348 * 5349 * tcp_get_conn is used to get a clean tcp connection structure. 5350 * It tries to reuse the connections put on the freelist by the 5351 * time_wait_collector failing which it goes to kmem_cache. This 5352 * way has two benefits compared to just allocating from and 5353 * freeing to kmem_cache. 5354 * 1) The time_wait_collector can free (which includes the cleanup) 5355 * outside the squeue. So when the interrupt comes, we have a clean 5356 * connection sitting in the freelist. Obviously, this buys us 5357 * performance. 5358 * 5359 * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_conn_request 5360 * has multiple disadvantages - tying up the squeue during alloc, and the 5361 * fact that IPSec policy initialization has to happen here which 5362 * requires us sending a M_CTL and checking for it i.e. real ugliness. 5363 * But allocating the conn/tcp in IP land is also not the best since 5364 * we can't check the 'q' and 'q0' which are protected by squeue and 5365 * blindly allocate memory which might have to be freed here if we are 5366 * not allowed to accept the connection. By using the freelist and 5367 * putting the conn/tcp back in freelist, we don't pay a penalty for 5368 * allocating memory without checking 'q/q0' and freeing it if we can't 5369 * accept the connection. 5370 * 5371 * Care should be taken to put the conn back in the same squeue's freelist 5372 * from which it was allocated. Best results are obtained if conn is 5373 * allocated from listener's squeue and freed to the same. Time wait 5374 * collector will free up the freelist is the connection ends up sitting 5375 * there for too long. 5376 */ 5377 void * 5378 tcp_get_conn(void *arg, tcp_stack_t *tcps) 5379 { 5380 tcp_t *tcp = NULL; 5381 conn_t *connp = NULL; 5382 squeue_t *sqp = (squeue_t *)arg; 5383 tcp_squeue_priv_t *tcp_time_wait; 5384 netstack_t *ns; 5385 5386 tcp_time_wait = 5387 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 5388 5389 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 5390 tcp = tcp_time_wait->tcp_free_list; 5391 ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0)); 5392 if (tcp != NULL) { 5393 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 5394 tcp_time_wait->tcp_free_list_cnt--; 5395 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 5396 tcp->tcp_time_wait_next = NULL; 5397 connp = tcp->tcp_connp; 5398 connp->conn_flags |= IPCL_REUSED; 5399 5400 ASSERT(tcp->tcp_tcps == NULL); 5401 ASSERT(connp->conn_netstack == NULL); 5402 ASSERT(tcp->tcp_rsrv_mp != NULL); 5403 ns = tcps->tcps_netstack; 5404 netstack_hold(ns); 5405 connp->conn_netstack = ns; 5406 tcp->tcp_tcps = tcps; 5407 TCPS_REFHOLD(tcps); 5408 ipcl_globalhash_insert(connp); 5409 return ((void *)connp); 5410 } 5411 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 5412 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP, 5413 tcps->tcps_netstack)) == NULL) 5414 return (NULL); 5415 tcp = connp->conn_tcp; 5416 /* 5417 * Pre-allocate the tcp_rsrv_mp. This mblk will not be freed 5418 * until this conn_t/tcp_t is freed at ipcl_conn_destroy(). 5419 */ 5420 if ((tcp->tcp_rsrv_mp = allocb(0, BPRI_HI)) == NULL) { 5421 ipcl_conn_destroy(connp); 5422 return (NULL); 5423 } 5424 mutex_init(&tcp->tcp_rsrv_mp_lock, NULL, MUTEX_DEFAULT, NULL); 5425 tcp->tcp_tcps = tcps; 5426 TCPS_REFHOLD(tcps); 5427 5428 return ((void *)connp); 5429 } 5430 5431 /* 5432 * Update the cached label for the given tcp_t. This should be called once per 5433 * connection, and before any packets are sent or tcp_process_options is 5434 * invoked. Returns B_FALSE if the correct label could not be constructed. 5435 */ 5436 static boolean_t 5437 tcp_update_label(tcp_t *tcp, const cred_t *cr) 5438 { 5439 conn_t *connp = tcp->tcp_connp; 5440 5441 if (tcp->tcp_ipversion == IPV4_VERSION) { 5442 uchar_t optbuf[IP_MAX_OPT_LENGTH]; 5443 int added; 5444 5445 if (tsol_compute_label(cr, tcp->tcp_remote, optbuf, 5446 connp->conn_mac_exempt, 5447 tcp->tcp_tcps->tcps_netstack->netstack_ip) != 0) 5448 return (B_FALSE); 5449 5450 added = tsol_remove_secopt(tcp->tcp_ipha, tcp->tcp_hdr_len); 5451 if (added == -1) 5452 return (B_FALSE); 5453 tcp->tcp_hdr_len += added; 5454 tcp->tcp_tcph = (tcph_t *)((uchar_t *)tcp->tcp_tcph + added); 5455 tcp->tcp_ip_hdr_len += added; 5456 if ((tcp->tcp_label_len = optbuf[IPOPT_OLEN]) != 0) { 5457 tcp->tcp_label_len = (tcp->tcp_label_len + 3) & ~3; 5458 added = tsol_prepend_option(optbuf, tcp->tcp_ipha, 5459 tcp->tcp_hdr_len); 5460 if (added == -1) 5461 return (B_FALSE); 5462 tcp->tcp_hdr_len += added; 5463 tcp->tcp_tcph = (tcph_t *) 5464 ((uchar_t *)tcp->tcp_tcph + added); 5465 tcp->tcp_ip_hdr_len += added; 5466 } 5467 } else { 5468 uchar_t optbuf[TSOL_MAX_IPV6_OPTION]; 5469 5470 if (tsol_compute_label_v6(cr, &tcp->tcp_remote_v6, optbuf, 5471 connp->conn_mac_exempt, 5472 tcp->tcp_tcps->tcps_netstack->netstack_ip) != 0) 5473 return (B_FALSE); 5474 if (tsol_update_sticky(&tcp->tcp_sticky_ipp, 5475 &tcp->tcp_label_len, optbuf) != 0) 5476 return (B_FALSE); 5477 if (tcp_build_hdrs(tcp->tcp_rq, tcp) != 0) 5478 return (B_FALSE); 5479 } 5480 5481 connp->conn_ulp_labeled = 1; 5482 5483 return (B_TRUE); 5484 } 5485 5486 /* BEGIN CSTYLED */ 5487 /* 5488 * 5489 * The sockfs ACCEPT path: 5490 * ======================= 5491 * 5492 * The eager is now established in its own perimeter as soon as SYN is 5493 * received in tcp_conn_request(). When sockfs receives conn_ind, it 5494 * completes the accept processing on the acceptor STREAM. The sending 5495 * of conn_ind part is common for both sockfs listener and a TLI/XTI 5496 * listener but a TLI/XTI listener completes the accept processing 5497 * on the listener perimeter. 5498 * 5499 * Common control flow for 3 way handshake: 5500 * ---------------------------------------- 5501 * 5502 * incoming SYN (listener perimeter) -> tcp_rput_data() 5503 * -> tcp_conn_request() 5504 * 5505 * incoming SYN-ACK-ACK (eager perim) -> tcp_rput_data() 5506 * send T_CONN_IND (listener perim) -> tcp_send_conn_ind() 5507 * 5508 * Sockfs ACCEPT Path: 5509 * ------------------- 5510 * 5511 * open acceptor stream (tcp_open allocates tcp_wput_accept() 5512 * as STREAM entry point) 5513 * 5514 * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_wput_accept() 5515 * 5516 * tcp_wput_accept() extracts the eager and makes the q->q_ptr <-> eager 5517 * association (we are not behind eager's squeue but sockfs is protecting us 5518 * and no one knows about this stream yet. The STREAMS entry point q->q_info 5519 * is changed to point at tcp_wput(). 5520 * 5521 * tcp_wput_accept() sends any deferred eagers via tcp_send_pending() to 5522 * listener (done on listener's perimeter). 5523 * 5524 * tcp_wput_accept() calls tcp_accept_finish() on eagers perimeter to finish 5525 * accept. 5526 * 5527 * TLI/XTI client ACCEPT path: 5528 * --------------------------- 5529 * 5530 * soaccept() sends T_CONN_RES on the listener STREAM. 5531 * 5532 * tcp_accept() -> tcp_accept_swap() complete the processing and send 5533 * the bind_mp to eager perimeter to finish accept (tcp_rput_other()). 5534 * 5535 * Locks: 5536 * ====== 5537 * 5538 * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and 5539 * and listeners->tcp_eager_next_q. 5540 * 5541 * Referencing: 5542 * ============ 5543 * 5544 * 1) We start out in tcp_conn_request by eager placing a ref on 5545 * listener and listener adding eager to listeners->tcp_eager_next_q0. 5546 * 5547 * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before 5548 * doing so we place a ref on the eager. This ref is finally dropped at the 5549 * end of tcp_accept_finish() while unwinding from the squeue, i.e. the 5550 * reference is dropped by the squeue framework. 5551 * 5552 * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish 5553 * 5554 * The reference must be released by the same entity that added the reference 5555 * In the above scheme, the eager is the entity that adds and releases the 5556 * references. Note that tcp_accept_finish executes in the squeue of the eager 5557 * (albeit after it is attached to the acceptor stream). Though 1. executes 5558 * in the listener's squeue, the eager is nascent at this point and the 5559 * reference can be considered to have been added on behalf of the eager. 5560 * 5561 * Eager getting a Reset or listener closing: 5562 * ========================================== 5563 * 5564 * Once the listener and eager are linked, the listener never does the unlink. 5565 * If the listener needs to close, tcp_eager_cleanup() is called which queues 5566 * a message on all eager perimeter. The eager then does the unlink, clears 5567 * any pointers to the listener's queue and drops the reference to the 5568 * listener. The listener waits in tcp_close outside the squeue until its 5569 * refcount has dropped to 1. This ensures that the listener has waited for 5570 * all eagers to clear their association with the listener. 5571 * 5572 * Similarly, if eager decides to go away, it can unlink itself and close. 5573 * When the T_CONN_RES comes down, we check if eager has closed. Note that 5574 * the reference to eager is still valid because of the extra ref we put 5575 * in tcp_send_conn_ind. 5576 * 5577 * Listener can always locate the eager under the protection 5578 * of the listener->tcp_eager_lock, and then do a refhold 5579 * on the eager during the accept processing. 5580 * 5581 * The acceptor stream accesses the eager in the accept processing 5582 * based on the ref placed on eager before sending T_conn_ind. 5583 * The only entity that can negate this refhold is a listener close 5584 * which is mutually exclusive with an active acceptor stream. 5585 * 5586 * Eager's reference on the listener 5587 * =================================== 5588 * 5589 * If the accept happens (even on a closed eager) the eager drops its 5590 * reference on the listener at the start of tcp_accept_finish. If the 5591 * eager is killed due to an incoming RST before the T_conn_ind is sent up, 5592 * the reference is dropped in tcp_closei_local. If the listener closes, 5593 * the reference is dropped in tcp_eager_kill. In all cases the reference 5594 * is dropped while executing in the eager's context (squeue). 5595 */ 5596 /* END CSTYLED */ 5597 5598 /* Process the SYN packet, mp, directed at the listener 'tcp' */ 5599 5600 /* 5601 * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN. 5602 * tcp_rput_data will not see any SYN packets. 5603 */ 5604 /* ARGSUSED */ 5605 void 5606 tcp_conn_request(void *arg, mblk_t *mp, void *arg2) 5607 { 5608 tcph_t *tcph; 5609 uint32_t seg_seq; 5610 tcp_t *eager; 5611 uint_t ipvers; 5612 ipha_t *ipha; 5613 ip6_t *ip6h; 5614 int err; 5615 conn_t *econnp = NULL; 5616 squeue_t *new_sqp; 5617 mblk_t *mp1; 5618 uint_t ip_hdr_len; 5619 conn_t *connp = (conn_t *)arg; 5620 tcp_t *tcp = connp->conn_tcp; 5621 cred_t *credp; 5622 tcp_stack_t *tcps = tcp->tcp_tcps; 5623 ip_stack_t *ipst; 5624 5625 if (tcp->tcp_state != TCPS_LISTEN) 5626 goto error2; 5627 5628 ASSERT((tcp->tcp_connp->conn_flags & IPCL_BOUND) != 0); 5629 5630 mutex_enter(&tcp->tcp_eager_lock); 5631 if (tcp->tcp_conn_req_cnt_q >= tcp->tcp_conn_req_max) { 5632 mutex_exit(&tcp->tcp_eager_lock); 5633 TCP_STAT(tcps, tcp_listendrop); 5634 BUMP_MIB(&tcps->tcps_mib, tcpListenDrop); 5635 if (tcp->tcp_debug) { 5636 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 5637 "tcp_conn_request: listen backlog (max=%d) " 5638 "overflow (%d pending) on %s", 5639 tcp->tcp_conn_req_max, tcp->tcp_conn_req_cnt_q, 5640 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 5641 } 5642 goto error2; 5643 } 5644 5645 if (tcp->tcp_conn_req_cnt_q0 >= 5646 tcp->tcp_conn_req_max + tcps->tcps_conn_req_max_q0) { 5647 /* 5648 * Q0 is full. Drop a pending half-open req from the queue 5649 * to make room for the new SYN req. Also mark the time we 5650 * drop a SYN. 5651 * 5652 * A more aggressive defense against SYN attack will 5653 * be to set the "tcp_syn_defense" flag now. 5654 */ 5655 TCP_STAT(tcps, tcp_listendropq0); 5656 tcp->tcp_last_rcv_lbolt = lbolt64; 5657 if (!tcp_drop_q0(tcp)) { 5658 mutex_exit(&tcp->tcp_eager_lock); 5659 BUMP_MIB(&tcps->tcps_mib, tcpListenDropQ0); 5660 if (tcp->tcp_debug) { 5661 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 5662 "tcp_conn_request: listen half-open queue " 5663 "(max=%d) full (%d pending) on %s", 5664 tcps->tcps_conn_req_max_q0, 5665 tcp->tcp_conn_req_cnt_q0, 5666 tcp_display(tcp, NULL, 5667 DISP_PORT_ONLY)); 5668 } 5669 goto error2; 5670 } 5671 } 5672 mutex_exit(&tcp->tcp_eager_lock); 5673 5674 /* 5675 * IP adds STRUIO_EAGER and ensures that the received packet is 5676 * M_DATA even if conn_ipv6_recvpktinfo is enabled or for ip6 5677 * link local address. If IPSec is enabled, db_struioflag has 5678 * STRUIO_POLICY set (mutually exclusive from STRUIO_EAGER); 5679 * otherwise an error case if neither of them is set. 5680 */ 5681 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 5682 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 5683 DB_CKSUMSTART(mp) = 0; 5684 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 5685 econnp = (conn_t *)tcp_get_conn(arg2, tcps); 5686 if (econnp == NULL) 5687 goto error2; 5688 ASSERT(econnp->conn_netstack == connp->conn_netstack); 5689 econnp->conn_sqp = new_sqp; 5690 econnp->conn_initial_sqp = new_sqp; 5691 } else if ((mp->b_datap->db_struioflag & STRUIO_POLICY) != 0) { 5692 /* 5693 * mp is updated in tcp_get_ipsec_conn(). 5694 */ 5695 econnp = tcp_get_ipsec_conn(tcp, arg2, &mp); 5696 if (econnp == NULL) { 5697 /* 5698 * mp freed by tcp_get_ipsec_conn. 5699 */ 5700 return; 5701 } 5702 ASSERT(econnp->conn_netstack == connp->conn_netstack); 5703 } else { 5704 goto error2; 5705 } 5706 5707 ASSERT(DB_TYPE(mp) == M_DATA); 5708 5709 ipvers = IPH_HDR_VERSION(mp->b_rptr); 5710 ASSERT(ipvers == IPV6_VERSION || ipvers == IPV4_VERSION); 5711 ASSERT(OK_32PTR(mp->b_rptr)); 5712 if (ipvers == IPV4_VERSION) { 5713 ipha = (ipha_t *)mp->b_rptr; 5714 ip_hdr_len = IPH_HDR_LENGTH(ipha); 5715 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5716 } else { 5717 ip6h = (ip6_t *)mp->b_rptr; 5718 ip_hdr_len = ip_hdr_length_v6(mp, ip6h); 5719 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5720 } 5721 5722 if (tcp->tcp_family == AF_INET) { 5723 ASSERT(ipvers == IPV4_VERSION); 5724 err = tcp_conn_create_v4(connp, econnp, ipha, tcph, mp); 5725 } else { 5726 err = tcp_conn_create_v6(connp, econnp, mp, tcph, ipvers, mp); 5727 } 5728 5729 if (err) 5730 goto error3; 5731 5732 eager = econnp->conn_tcp; 5733 5734 /* 5735 * Pre-allocate the T_ordrel_ind mblk so that at close time, we 5736 * will always have that to send up. Otherwise, we need to do 5737 * special handling in case the allocation fails at that time. 5738 */ 5739 ASSERT(eager->tcp_ordrel_mp == NULL); 5740 if ((eager->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL) 5741 goto error3; 5742 5743 /* Inherit various TCP parameters from the listener */ 5744 eager->tcp_naglim = tcp->tcp_naglim; 5745 eager->tcp_first_timer_threshold = 5746 tcp->tcp_first_timer_threshold; 5747 eager->tcp_second_timer_threshold = 5748 tcp->tcp_second_timer_threshold; 5749 5750 eager->tcp_first_ctimer_threshold = 5751 tcp->tcp_first_ctimer_threshold; 5752 eager->tcp_second_ctimer_threshold = 5753 tcp->tcp_second_ctimer_threshold; 5754 5755 /* 5756 * tcp_adapt_ire() may change tcp_rwnd according to the ire metrics. 5757 * If it does not, the eager's receive window will be set to the 5758 * listener's receive window later in this function. 5759 */ 5760 eager->tcp_rwnd = 0; 5761 5762 /* 5763 * Inherit listener's tcp_init_cwnd. Need to do this before 5764 * calling tcp_process_options() where tcp_mss_set() is called 5765 * to set the initial cwnd. 5766 */ 5767 eager->tcp_init_cwnd = tcp->tcp_init_cwnd; 5768 5769 /* 5770 * Zones: tcp_adapt_ire() and tcp_send_data() both need the 5771 * zone id before the accept is completed in tcp_wput_accept(). 5772 */ 5773 econnp->conn_zoneid = connp->conn_zoneid; 5774 econnp->conn_allzones = connp->conn_allzones; 5775 5776 /* Copy nexthop information from listener to eager */ 5777 if (connp->conn_nexthop_set) { 5778 econnp->conn_nexthop_set = connp->conn_nexthop_set; 5779 econnp->conn_nexthop_v4 = connp->conn_nexthop_v4; 5780 } 5781 5782 /* 5783 * TSOL: tsol_input_proc() needs the eager's cred before the 5784 * eager is accepted 5785 */ 5786 econnp->conn_cred = eager->tcp_cred = credp = connp->conn_cred; 5787 crhold(credp); 5788 5789 /* 5790 * If the caller has the process-wide flag set, then default to MAC 5791 * exempt mode. This allows read-down to unlabeled hosts. 5792 */ 5793 if (getpflags(NET_MAC_AWARE, credp) != 0) 5794 econnp->conn_mac_exempt = B_TRUE; 5795 5796 if (is_system_labeled()) { 5797 cred_t *cr; 5798 5799 if (connp->conn_mlp_type != mlptSingle) { 5800 cr = econnp->conn_peercred = DB_CRED(mp); 5801 if (cr != NULL) 5802 crhold(cr); 5803 else 5804 cr = econnp->conn_cred; 5805 DTRACE_PROBE2(mlp_syn_accept, conn_t *, 5806 econnp, cred_t *, cr) 5807 } else { 5808 cr = econnp->conn_cred; 5809 DTRACE_PROBE2(syn_accept, conn_t *, 5810 econnp, cred_t *, cr) 5811 } 5812 5813 if (!tcp_update_label(eager, cr)) { 5814 DTRACE_PROBE3( 5815 tx__ip__log__error__connrequest__tcp, 5816 char *, "eager connp(1) label on SYN mp(2) failed", 5817 conn_t *, econnp, mblk_t *, mp); 5818 goto error3; 5819 } 5820 } 5821 5822 eager->tcp_hard_binding = B_TRUE; 5823 5824 tcp_bind_hash_insert(&tcps->tcps_bind_fanout[ 5825 TCP_BIND_HASH(eager->tcp_lport)], eager, 0); 5826 5827 CL_INET_CONNECT(eager); 5828 5829 /* 5830 * No need to check for multicast destination since ip will only pass 5831 * up multicasts to those that have expressed interest 5832 * TODO: what about rejecting broadcasts? 5833 * Also check that source is not a multicast or broadcast address. 5834 */ 5835 eager->tcp_state = TCPS_SYN_RCVD; 5836 5837 5838 /* 5839 * There should be no ire in the mp as we are being called after 5840 * receiving the SYN. 5841 */ 5842 ASSERT(tcp_ire_mp(mp) == NULL); 5843 5844 /* 5845 * Adapt our mss, ttl, ... according to information provided in IRE. 5846 */ 5847 5848 if (tcp_adapt_ire(eager, NULL) == 0) { 5849 /* Undo the bind_hash_insert */ 5850 tcp_bind_hash_remove(eager); 5851 goto error3; 5852 } 5853 5854 /* Process all TCP options. */ 5855 tcp_process_options(eager, tcph); 5856 5857 /* Is the other end ECN capable? */ 5858 if (tcps->tcps_ecn_permitted >= 1 && 5859 (tcph->th_flags[0] & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) { 5860 eager->tcp_ecn_ok = B_TRUE; 5861 } 5862 5863 /* 5864 * listener->tcp_rq->q_hiwat should be the default window size or a 5865 * window size changed via SO_RCVBUF option. First round up the 5866 * eager's tcp_rwnd to the nearest MSS. Then find out the window 5867 * scale option value if needed. Call tcp_rwnd_set() to finish the 5868 * setting. 5869 * 5870 * Note if there is a rpipe metric associated with the remote host, 5871 * we should not inherit receive window size from listener. 5872 */ 5873 eager->tcp_rwnd = MSS_ROUNDUP( 5874 (eager->tcp_rwnd == 0 ? tcp->tcp_rq->q_hiwat : 5875 eager->tcp_rwnd), eager->tcp_mss); 5876 if (eager->tcp_snd_ws_ok) 5877 tcp_set_ws_value(eager); 5878 /* 5879 * Note that this is the only place tcp_rwnd_set() is called for 5880 * accepting a connection. We need to call it here instead of 5881 * after the 3-way handshake because we need to tell the other 5882 * side our rwnd in the SYN-ACK segment. 5883 */ 5884 (void) tcp_rwnd_set(eager, eager->tcp_rwnd); 5885 5886 /* 5887 * We eliminate the need for sockfs to send down a T_SVR4_OPTMGMT_REQ 5888 * via soaccept()->soinheritoptions() which essentially applies 5889 * all the listener options to the new STREAM. The options that we 5890 * need to take care of are: 5891 * SO_DEBUG, SO_REUSEADDR, SO_KEEPALIVE, SO_DONTROUTE, SO_BROADCAST, 5892 * SO_USELOOPBACK, SO_OOBINLINE, SO_DGRAM_ERRIND, SO_LINGER, 5893 * SO_SNDBUF, SO_RCVBUF. 5894 * 5895 * SO_RCVBUF: tcp_rwnd_set() above takes care of it. 5896 * SO_SNDBUF: Set the tcp_xmit_hiwater for the eager. When 5897 * tcp_maxpsz_set() gets called later from 5898 * tcp_accept_finish(), the option takes effect. 5899 * 5900 */ 5901 /* Set the TCP options */ 5902 eager->tcp_xmit_hiwater = tcp->tcp_xmit_hiwater; 5903 eager->tcp_dgram_errind = tcp->tcp_dgram_errind; 5904 eager->tcp_oobinline = tcp->tcp_oobinline; 5905 eager->tcp_reuseaddr = tcp->tcp_reuseaddr; 5906 eager->tcp_broadcast = tcp->tcp_broadcast; 5907 eager->tcp_useloopback = tcp->tcp_useloopback; 5908 eager->tcp_dontroute = tcp->tcp_dontroute; 5909 eager->tcp_linger = tcp->tcp_linger; 5910 eager->tcp_lingertime = tcp->tcp_lingertime; 5911 if (tcp->tcp_ka_enabled) 5912 eager->tcp_ka_enabled = 1; 5913 5914 /* Set the IP options */ 5915 econnp->conn_broadcast = connp->conn_broadcast; 5916 econnp->conn_loopback = connp->conn_loopback; 5917 econnp->conn_dontroute = connp->conn_dontroute; 5918 econnp->conn_reuseaddr = connp->conn_reuseaddr; 5919 5920 /* Put a ref on the listener for the eager. */ 5921 CONN_INC_REF(connp); 5922 mutex_enter(&tcp->tcp_eager_lock); 5923 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = eager; 5924 eager->tcp_eager_next_q0 = tcp->tcp_eager_next_q0; 5925 tcp->tcp_eager_next_q0 = eager; 5926 eager->tcp_eager_prev_q0 = tcp; 5927 5928 /* Set tcp_listener before adding it to tcp_conn_fanout */ 5929 eager->tcp_listener = tcp; 5930 eager->tcp_saved_listener = tcp; 5931 5932 /* 5933 * Tag this detached tcp vector for later retrieval 5934 * by our listener client in tcp_accept(). 5935 */ 5936 eager->tcp_conn_req_seqnum = tcp->tcp_conn_req_seqnum; 5937 tcp->tcp_conn_req_cnt_q0++; 5938 if (++tcp->tcp_conn_req_seqnum == -1) { 5939 /* 5940 * -1 is "special" and defined in TPI as something 5941 * that should never be used in T_CONN_IND 5942 */ 5943 ++tcp->tcp_conn_req_seqnum; 5944 } 5945 mutex_exit(&tcp->tcp_eager_lock); 5946 5947 if (tcp->tcp_syn_defense) { 5948 /* Don't drop the SYN that comes from a good IP source */ 5949 ipaddr_t *addr_cache = (ipaddr_t *)(tcp->tcp_ip_addr_cache); 5950 if (addr_cache != NULL && eager->tcp_remote == 5951 addr_cache[IP_ADDR_CACHE_HASH(eager->tcp_remote)]) { 5952 eager->tcp_dontdrop = B_TRUE; 5953 } 5954 } 5955 5956 /* 5957 * We need to insert the eager in its own perimeter but as soon 5958 * as we do that, we expose the eager to the classifier and 5959 * should not touch any field outside the eager's perimeter. 5960 * So do all the work necessary before inserting the eager 5961 * in its own perimeter. Be optimistic that ipcl_conn_insert() 5962 * will succeed but undo everything if it fails. 5963 */ 5964 seg_seq = ABE32_TO_U32(tcph->th_seq); 5965 eager->tcp_irs = seg_seq; 5966 eager->tcp_rack = seg_seq; 5967 eager->tcp_rnxt = seg_seq + 1; 5968 U32_TO_ABE32(eager->tcp_rnxt, eager->tcp_tcph->th_ack); 5969 BUMP_MIB(&tcps->tcps_mib, tcpPassiveOpens); 5970 eager->tcp_state = TCPS_SYN_RCVD; 5971 mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss, 5972 NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE); 5973 if (mp1 == NULL) { 5974 /* 5975 * Increment the ref count as we are going to 5976 * enqueueing an mp in squeue 5977 */ 5978 CONN_INC_REF(econnp); 5979 goto error; 5980 } 5981 DB_CPID(mp1) = tcp->tcp_cpid; 5982 eager->tcp_cpid = tcp->tcp_cpid; 5983 eager->tcp_open_time = lbolt64; 5984 5985 /* 5986 * We need to start the rto timer. In normal case, we start 5987 * the timer after sending the packet on the wire (or at 5988 * least believing that packet was sent by waiting for 5989 * CALL_IP_WPUT() to return). Since this is the first packet 5990 * being sent on the wire for the eager, our initial tcp_rto 5991 * is at least tcp_rexmit_interval_min which is a fairly 5992 * large value to allow the algorithm to adjust slowly to large 5993 * fluctuations of RTT during first few transmissions. 5994 * 5995 * Starting the timer first and then sending the packet in this 5996 * case shouldn't make much difference since tcp_rexmit_interval_min 5997 * is of the order of several 100ms and starting the timer 5998 * first and then sending the packet will result in difference 5999 * of few micro seconds. 6000 * 6001 * Without this optimization, we are forced to hold the fanout 6002 * lock across the ipcl_bind_insert() and sending the packet 6003 * so that we don't race against an incoming packet (maybe RST) 6004 * for this eager. 6005 * 6006 * It is necessary to acquire an extra reference on the eager 6007 * at this point and hold it until after tcp_send_data() to 6008 * ensure against an eager close race. 6009 */ 6010 6011 CONN_INC_REF(eager->tcp_connp); 6012 6013 TCP_TIMER_RESTART(eager, eager->tcp_rto); 6014 6015 /* 6016 * Insert the eager in its own perimeter now. We are ready to deal 6017 * with any packets on eager. 6018 */ 6019 if (eager->tcp_ipversion == IPV4_VERSION) { 6020 if (ipcl_conn_insert(econnp, IPPROTO_TCP, 0, 0, 0) != 0) { 6021 goto error; 6022 } 6023 } else { 6024 if (ipcl_conn_insert_v6(econnp, IPPROTO_TCP, 0, 0, 0, 0) != 0) { 6025 goto error; 6026 } 6027 } 6028 6029 /* mark conn as fully-bound */ 6030 econnp->conn_fully_bound = B_TRUE; 6031 6032 /* Send the SYN-ACK */ 6033 tcp_send_data(eager, eager->tcp_wq, mp1); 6034 CONN_DEC_REF(eager->tcp_connp); 6035 freemsg(mp); 6036 6037 return; 6038 error: 6039 freemsg(mp1); 6040 eager->tcp_closemp_used = B_TRUE; 6041 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 6042 mp1 = &eager->tcp_closemp; 6043 SQUEUE_ENTER_ONE(econnp->conn_sqp, mp1, tcp_eager_kill, 6044 econnp, SQ_FILL, SQTAG_TCP_CONN_REQ_2); 6045 6046 /* 6047 * If a connection already exists, send the mp to that connections so 6048 * that it can be appropriately dealt with. 6049 */ 6050 ipst = tcps->tcps_netstack->netstack_ip; 6051 6052 if ((econnp = ipcl_classify(mp, connp->conn_zoneid, ipst)) != NULL) { 6053 if (!IPCL_IS_CONNECTED(econnp)) { 6054 /* 6055 * Something bad happened. ipcl_conn_insert() 6056 * failed because a connection already existed 6057 * in connected hash but we can't find it 6058 * anymore (someone blew it away). Just 6059 * free this message and hopefully remote 6060 * will retransmit at which time the SYN can be 6061 * treated as a new connection or dealth with 6062 * a TH_RST if a connection already exists. 6063 */ 6064 CONN_DEC_REF(econnp); 6065 freemsg(mp); 6066 } else { 6067 SQUEUE_ENTER_ONE(econnp->conn_sqp, mp, 6068 tcp_input, econnp, SQ_FILL, SQTAG_TCP_CONN_REQ_1); 6069 } 6070 } else { 6071 /* Nobody wants this packet */ 6072 freemsg(mp); 6073 } 6074 return; 6075 error3: 6076 CONN_DEC_REF(econnp); 6077 error2: 6078 freemsg(mp); 6079 } 6080 6081 /* 6082 * In an ideal case of vertical partition in NUMA architecture, its 6083 * beneficial to have the listener and all the incoming connections 6084 * tied to the same squeue. The other constraint is that incoming 6085 * connections should be tied to the squeue attached to interrupted 6086 * CPU for obvious locality reason so this leaves the listener to 6087 * be tied to the same squeue. Our only problem is that when listener 6088 * is binding, the CPU that will get interrupted by the NIC whose 6089 * IP address the listener is binding to is not even known. So 6090 * the code below allows us to change that binding at the time the 6091 * CPU is interrupted by virtue of incoming connection's squeue. 6092 * 6093 * This is usefull only in case of a listener bound to a specific IP 6094 * address. For other kind of listeners, they get bound the 6095 * very first time and there is no attempt to rebind them. 6096 */ 6097 void 6098 tcp_conn_request_unbound(void *arg, mblk_t *mp, void *arg2) 6099 { 6100 conn_t *connp = (conn_t *)arg; 6101 squeue_t *sqp = (squeue_t *)arg2; 6102 squeue_t *new_sqp; 6103 uint32_t conn_flags; 6104 6105 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 6106 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 6107 } else { 6108 goto done; 6109 } 6110 6111 if (connp->conn_fanout == NULL) 6112 goto done; 6113 6114 if (!(connp->conn_flags & IPCL_FULLY_BOUND)) { 6115 mutex_enter(&connp->conn_fanout->connf_lock); 6116 mutex_enter(&connp->conn_lock); 6117 /* 6118 * No one from read or write side can access us now 6119 * except for already queued packets on this squeue. 6120 * But since we haven't changed the squeue yet, they 6121 * can't execute. If they are processed after we have 6122 * changed the squeue, they are sent back to the 6123 * correct squeue down below. 6124 * But a listner close can race with processing of 6125 * incoming SYN. If incoming SYN processing changes 6126 * the squeue then the listener close which is waiting 6127 * to enter the squeue would operate on the wrong 6128 * squeue. Hence we don't change the squeue here unless 6129 * the refcount is exactly the minimum refcount. The 6130 * minimum refcount of 4 is counted as - 1 each for 6131 * TCP and IP, 1 for being in the classifier hash, and 6132 * 1 for the mblk being processed. 6133 */ 6134 6135 if (connp->conn_ref != 4 || 6136 connp->conn_tcp->tcp_state != TCPS_LISTEN) { 6137 mutex_exit(&connp->conn_lock); 6138 mutex_exit(&connp->conn_fanout->connf_lock); 6139 goto done; 6140 } 6141 if (connp->conn_sqp != new_sqp) { 6142 while (connp->conn_sqp != new_sqp) 6143 (void) casptr(&connp->conn_sqp, sqp, new_sqp); 6144 } 6145 6146 do { 6147 conn_flags = connp->conn_flags; 6148 conn_flags |= IPCL_FULLY_BOUND; 6149 (void) cas32(&connp->conn_flags, connp->conn_flags, 6150 conn_flags); 6151 } while (!(connp->conn_flags & IPCL_FULLY_BOUND)); 6152 6153 mutex_exit(&connp->conn_fanout->connf_lock); 6154 mutex_exit(&connp->conn_lock); 6155 } 6156 6157 done: 6158 if (connp->conn_sqp != sqp) { 6159 CONN_INC_REF(connp); 6160 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp, 6161 SQ_FILL, SQTAG_TCP_CONN_REQ_UNBOUND); 6162 } else { 6163 tcp_conn_request(connp, mp, sqp); 6164 } 6165 } 6166 6167 /* 6168 * Successful connect request processing begins when our client passes 6169 * a T_CONN_REQ message into tcp_wput() and ends when tcp_rput() passes 6170 * our T_OK_ACK reply message upstream. The control flow looks like this: 6171 * upstream -> tcp_wput() -> tcp_wput_proto() -> tcp_connect() -> IP 6172 * upstream <- tcp_rput() <- IP 6173 * After various error checks are completed, tcp_connect() lays 6174 * the target address and port into the composite header template, 6175 * preallocates the T_OK_ACK reply message, construct a full 12 byte bind 6176 * request followed by an IRE request, and passes the three mblk message 6177 * down to IP looking like this: 6178 * O_T_BIND_REQ for IP --> IRE req --> T_OK_ACK for our client 6179 * Processing continues in tcp_rput() when we receive the following message: 6180 * T_BIND_ACK from IP --> IRE ack --> T_OK_ACK for our client 6181 * After consuming the first two mblks, tcp_rput() calls tcp_timer(), 6182 * to fire off the connection request, and then passes the T_OK_ACK mblk 6183 * upstream that we filled in below. There are, of course, numerous 6184 * error conditions along the way which truncate the processing described 6185 * above. 6186 */ 6187 static void 6188 tcp_connect(tcp_t *tcp, mblk_t *mp) 6189 { 6190 sin_t *sin; 6191 sin6_t *sin6; 6192 queue_t *q = tcp->tcp_wq; 6193 struct T_conn_req *tcr; 6194 ipaddr_t *dstaddrp; 6195 in_port_t dstport; 6196 uint_t srcid; 6197 6198 tcr = (struct T_conn_req *)mp->b_rptr; 6199 6200 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 6201 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { 6202 tcp_err_ack(tcp, mp, TPROTO, 0); 6203 return; 6204 } 6205 6206 /* 6207 * Pre-allocate the T_ordrel_ind mblk so that at close time, we 6208 * will always have that to send up. Otherwise, we need to do 6209 * special handling in case the allocation fails at that time. 6210 * If the end point is TPI, the tcp_t can be reused and the 6211 * tcp_ordrel_mp may be allocated already. 6212 */ 6213 if (tcp->tcp_ordrel_mp == NULL) { 6214 if ((tcp->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL) { 6215 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 6216 return; 6217 } 6218 } 6219 6220 /* 6221 * Determine packet type based on type of address passed in 6222 * the request should contain an IPv4 or IPv6 address. 6223 * Make sure that address family matches the type of 6224 * family of the the address passed down 6225 */ 6226 switch (tcr->DEST_length) { 6227 default: 6228 tcp_err_ack(tcp, mp, TBADADDR, 0); 6229 return; 6230 6231 case (sizeof (sin_t) - sizeof (sin->sin_zero)): { 6232 /* 6233 * XXX: The check for valid DEST_length was not there 6234 * in earlier releases and some buggy 6235 * TLI apps (e.g Sybase) got away with not feeding 6236 * in sin_zero part of address. 6237 * We allow that bug to keep those buggy apps humming. 6238 * Test suites require the check on DEST_length. 6239 * We construct a new mblk with valid DEST_length 6240 * free the original so the rest of the code does 6241 * not have to keep track of this special shorter 6242 * length address case. 6243 */ 6244 mblk_t *nmp; 6245 struct T_conn_req *ntcr; 6246 sin_t *nsin; 6247 6248 nmp = allocb(sizeof (struct T_conn_req) + sizeof (sin_t) + 6249 tcr->OPT_length, BPRI_HI); 6250 if (nmp == NULL) { 6251 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 6252 return; 6253 } 6254 ntcr = (struct T_conn_req *)nmp->b_rptr; 6255 bzero(ntcr, sizeof (struct T_conn_req)); /* zero fill */ 6256 ntcr->PRIM_type = T_CONN_REQ; 6257 ntcr->DEST_length = sizeof (sin_t); 6258 ntcr->DEST_offset = sizeof (struct T_conn_req); 6259 6260 nsin = (sin_t *)((uchar_t *)ntcr + ntcr->DEST_offset); 6261 *nsin = sin_null; 6262 /* Get pointer to shorter address to copy from original mp */ 6263 sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset, 6264 tcr->DEST_length); /* extract DEST_length worth of sin_t */ 6265 if (sin == NULL || !OK_32PTR((char *)sin)) { 6266 freemsg(nmp); 6267 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 6268 return; 6269 } 6270 nsin->sin_family = sin->sin_family; 6271 nsin->sin_port = sin->sin_port; 6272 nsin->sin_addr = sin->sin_addr; 6273 /* Note:nsin->sin_zero zero-fill with sin_null assign above */ 6274 nmp->b_wptr = (uchar_t *)&nsin[1]; 6275 if (tcr->OPT_length != 0) { 6276 ntcr->OPT_length = tcr->OPT_length; 6277 ntcr->OPT_offset = nmp->b_wptr - nmp->b_rptr; 6278 bcopy((uchar_t *)tcr + tcr->OPT_offset, 6279 (uchar_t *)ntcr + ntcr->OPT_offset, 6280 tcr->OPT_length); 6281 nmp->b_wptr += tcr->OPT_length; 6282 } 6283 freemsg(mp); /* original mp freed */ 6284 mp = nmp; /* re-initialize original variables */ 6285 tcr = ntcr; 6286 } 6287 /* FALLTHRU */ 6288 6289 case sizeof (sin_t): 6290 sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset, 6291 sizeof (sin_t)); 6292 if (sin == NULL || !OK_32PTR((char *)sin)) { 6293 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 6294 return; 6295 } 6296 if (tcp->tcp_family != AF_INET || 6297 sin->sin_family != AF_INET) { 6298 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 6299 return; 6300 } 6301 if (sin->sin_port == 0) { 6302 tcp_err_ack(tcp, mp, TBADADDR, 0); 6303 return; 6304 } 6305 if (tcp->tcp_connp && tcp->tcp_connp->conn_ipv6_v6only) { 6306 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 6307 return; 6308 } 6309 6310 break; 6311 6312 case sizeof (sin6_t): 6313 sin6 = (sin6_t *)mi_offset_param(mp, tcr->DEST_offset, 6314 sizeof (sin6_t)); 6315 if (sin6 == NULL || !OK_32PTR((char *)sin6)) { 6316 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 6317 return; 6318 } 6319 if (tcp->tcp_family != AF_INET6 || 6320 sin6->sin6_family != AF_INET6) { 6321 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 6322 return; 6323 } 6324 if (sin6->sin6_port == 0) { 6325 tcp_err_ack(tcp, mp, TBADADDR, 0); 6326 return; 6327 } 6328 break; 6329 } 6330 /* 6331 * TODO: If someone in TCPS_TIME_WAIT has this dst/port we 6332 * should key on their sequence number and cut them loose. 6333 */ 6334 6335 /* 6336 * If options passed in, feed it for verification and handling 6337 */ 6338 if (tcr->OPT_length != 0) { 6339 mblk_t *ok_mp; 6340 mblk_t *discon_mp; 6341 mblk_t *conn_opts_mp; 6342 int t_error, sys_error, do_disconnect; 6343 6344 conn_opts_mp = NULL; 6345 6346 if (tcp_conprim_opt_process(tcp, mp, 6347 &do_disconnect, &t_error, &sys_error) < 0) { 6348 if (do_disconnect) { 6349 ASSERT(t_error == 0 && sys_error == 0); 6350 discon_mp = mi_tpi_discon_ind(NULL, 6351 ECONNREFUSED, 0); 6352 if (!discon_mp) { 6353 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, 6354 TSYSERR, ENOMEM); 6355 return; 6356 } 6357 ok_mp = mi_tpi_ok_ack_alloc(mp); 6358 if (!ok_mp) { 6359 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6360 TSYSERR, ENOMEM); 6361 return; 6362 } 6363 qreply(q, ok_mp); 6364 qreply(q, discon_mp); /* no flush! */ 6365 } else { 6366 ASSERT(t_error != 0); 6367 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, t_error, 6368 sys_error); 6369 } 6370 return; 6371 } 6372 /* 6373 * Success in setting options, the mp option buffer represented 6374 * by OPT_length/offset has been potentially modified and 6375 * contains results of option processing. We copy it in 6376 * another mp to save it for potentially influencing returning 6377 * it in T_CONN_CONN. 6378 */ 6379 if (tcr->OPT_length != 0) { /* there are resulting options */ 6380 conn_opts_mp = copyb(mp); 6381 if (!conn_opts_mp) { 6382 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, 6383 TSYSERR, ENOMEM); 6384 return; 6385 } 6386 ASSERT(tcp->tcp_conn.tcp_opts_conn_req == NULL); 6387 tcp->tcp_conn.tcp_opts_conn_req = conn_opts_mp; 6388 /* 6389 * Note: 6390 * These resulting option negotiation can include any 6391 * end-to-end negotiation options but there no such 6392 * thing (yet?) in our TCP/IP. 6393 */ 6394 } 6395 } 6396 6397 /* 6398 * If we're connecting to an IPv4-mapped IPv6 address, we need to 6399 * make sure that the template IP header in the tcp structure is an 6400 * IPv4 header, and that the tcp_ipversion is IPV4_VERSION. We 6401 * need to this before we call tcp_bindi() so that the port lookup 6402 * code will look for ports in the correct port space (IPv4 and 6403 * IPv6 have separate port spaces). 6404 */ 6405 if (tcp->tcp_family == AF_INET6 && tcp->tcp_ipversion == IPV6_VERSION && 6406 IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 6407 int err = 0; 6408 6409 err = tcp_header_init_ipv4(tcp); 6410 if (err != 0) { 6411 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM); 6412 goto connect_failed; 6413 } 6414 if (tcp->tcp_lport != 0) 6415 *(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport; 6416 } 6417 6418 if (tcp->tcp_issocket) { 6419 /* 6420 * TCP is _D_SODIRECT and sockfs is directly above so save 6421 * the shared sonode sodirect_t pointer (if any) to enable 6422 * TCP sodirect. 6423 */ 6424 tcp->tcp_sodirect = SOD_QTOSODP(tcp->tcp_rq); 6425 } 6426 6427 switch (tcp->tcp_state) { 6428 case TCPS_IDLE: 6429 /* 6430 * We support quick connect, refer to comments in 6431 * tcp_connect_*() 6432 */ 6433 /* FALLTHRU */ 6434 case TCPS_BOUND: 6435 case TCPS_LISTEN: 6436 if (tcp->tcp_family == AF_INET6) { 6437 if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 6438 tcp_connect_ipv6(tcp, mp, 6439 &sin6->sin6_addr, 6440 sin6->sin6_port, sin6->sin6_flowinfo, 6441 sin6->__sin6_src_id, sin6->sin6_scope_id); 6442 return; 6443 } 6444 /* 6445 * Destination adress is mapped IPv6 address. 6446 * Source bound address should be unspecified or 6447 * IPv6 mapped address as well. 6448 */ 6449 if (!IN6_IS_ADDR_UNSPECIFIED( 6450 &tcp->tcp_bound_source_v6) && 6451 !IN6_IS_ADDR_V4MAPPED(&tcp->tcp_bound_source_v6)) { 6452 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, 6453 EADDRNOTAVAIL); 6454 break; 6455 } 6456 dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr)); 6457 dstport = sin6->sin6_port; 6458 srcid = sin6->__sin6_src_id; 6459 } else { 6460 dstaddrp = &sin->sin_addr.s_addr; 6461 dstport = sin->sin_port; 6462 srcid = 0; 6463 } 6464 6465 tcp_connect_ipv4(tcp, mp, dstaddrp, dstport, srcid); 6466 return; 6467 default: 6468 mp = mi_tpi_err_ack_alloc(mp, TOUTSTATE, 0); 6469 break; 6470 } 6471 /* 6472 * Note: Code below is the "failure" case 6473 */ 6474 /* return error ack and blow away saved option results if any */ 6475 connect_failed: 6476 if (mp != NULL) 6477 putnext(tcp->tcp_rq, mp); 6478 else { 6479 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6480 TSYSERR, ENOMEM); 6481 } 6482 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 6483 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 6484 } 6485 6486 /* 6487 * Handle connect to IPv4 destinations, including connections for AF_INET6 6488 * sockets connecting to IPv4 mapped IPv6 destinations. 6489 */ 6490 static void 6491 tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp, in_port_t dstport, 6492 uint_t srcid) 6493 { 6494 tcph_t *tcph; 6495 mblk_t *mp1; 6496 ipaddr_t dstaddr = *dstaddrp; 6497 int32_t oldstate; 6498 uint16_t lport; 6499 tcp_stack_t *tcps = tcp->tcp_tcps; 6500 6501 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 6502 6503 /* Check for attempt to connect to INADDR_ANY */ 6504 if (dstaddr == INADDR_ANY) { 6505 /* 6506 * SunOS 4.x and 4.3 BSD allow an application 6507 * to connect a TCP socket to INADDR_ANY. 6508 * When they do this, the kernel picks the 6509 * address of one interface and uses it 6510 * instead. The kernel usually ends up 6511 * picking the address of the loopback 6512 * interface. This is an undocumented feature. 6513 * However, we provide the same thing here 6514 * in order to have source and binary 6515 * compatibility with SunOS 4.x. 6516 * Update the T_CONN_REQ (sin/sin6) since it is used to 6517 * generate the T_CONN_CON. 6518 */ 6519 dstaddr = htonl(INADDR_LOOPBACK); 6520 *dstaddrp = dstaddr; 6521 } 6522 6523 /* Handle __sin6_src_id if socket not bound to an IP address */ 6524 if (srcid != 0 && tcp->tcp_ipha->ipha_src == INADDR_ANY) { 6525 ip_srcid_find_id(srcid, &tcp->tcp_ip_src_v6, 6526 tcp->tcp_connp->conn_zoneid, tcps->tcps_netstack); 6527 IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_ip_src_v6, 6528 tcp->tcp_ipha->ipha_src); 6529 } 6530 6531 /* 6532 * Don't let an endpoint connect to itself. Note that 6533 * the test here does not catch the case where the 6534 * source IP addr was left unspecified by the user. In 6535 * this case, the source addr is set in tcp_adapt_ire() 6536 * using the reply to the T_BIND message that we send 6537 * down to IP here and the check is repeated in tcp_rput_other. 6538 */ 6539 if (dstaddr == tcp->tcp_ipha->ipha_src && 6540 dstport == tcp->tcp_lport) { 6541 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 6542 goto failed; 6543 } 6544 6545 tcp->tcp_ipha->ipha_dst = dstaddr; 6546 IN6_IPADDR_TO_V4MAPPED(dstaddr, &tcp->tcp_remote_v6); 6547 6548 /* 6549 * Massage a source route if any putting the first hop 6550 * in iph_dst. Compute a starting value for the checksum which 6551 * takes into account that the original iph_dst should be 6552 * included in the checksum but that ip will include the 6553 * first hop in the source route in the tcp checksum. 6554 */ 6555 tcp->tcp_sum = ip_massage_options(tcp->tcp_ipha, tcps->tcps_netstack); 6556 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 6557 tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) + 6558 (tcp->tcp_ipha->ipha_dst & 0xffff)); 6559 if ((int)tcp->tcp_sum < 0) 6560 tcp->tcp_sum--; 6561 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 6562 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 6563 (tcp->tcp_sum >> 16)); 6564 tcph = tcp->tcp_tcph; 6565 *(uint16_t *)tcph->th_fport = dstport; 6566 tcp->tcp_fport = dstport; 6567 6568 oldstate = tcp->tcp_state; 6569 /* 6570 * At this point the remote destination address and remote port fields 6571 * in the tcp-four-tuple have been filled in the tcp structure. Now we 6572 * have to see which state tcp was in so we can take apropriate action. 6573 */ 6574 if (oldstate == TCPS_IDLE) { 6575 /* 6576 * We support a quick connect capability here, allowing 6577 * clients to transition directly from IDLE to SYN_SENT 6578 * tcp_bindi will pick an unused port, insert the connection 6579 * in the bind hash and transition to BOUND state. 6580 */ 6581 lport = tcp_update_next_port(tcps->tcps_next_port_to_try, 6582 tcp, B_TRUE); 6583 lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE, 6584 B_FALSE, B_FALSE); 6585 if (lport == 0) { 6586 mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0); 6587 goto failed; 6588 } 6589 } 6590 tcp->tcp_state = TCPS_SYN_SENT; 6591 6592 /* 6593 * TODO: allow data with connect requests 6594 * by unlinking M_DATA trailers here and 6595 * linking them in behind the T_OK_ACK mblk. 6596 * The tcp_rput() bind ack handler would then 6597 * feed them to tcp_wput_data() rather than call 6598 * tcp_timer(). 6599 */ 6600 mp = mi_tpi_ok_ack_alloc(mp); 6601 if (!mp) { 6602 tcp->tcp_state = oldstate; 6603 goto failed; 6604 } 6605 if (tcp->tcp_family == AF_INET) { 6606 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 6607 sizeof (ipa_conn_t)); 6608 } else { 6609 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 6610 sizeof (ipa6_conn_t)); 6611 } 6612 if (mp1) { 6613 /* 6614 * We need to make sure that the conn_recv is set to a non-null 6615 * value before we insert the conn_t into the classifier table. 6616 * This is to avoid a race with an incoming packet which does 6617 * an ipcl_classify(). 6618 */ 6619 tcp->tcp_connp->conn_recv = tcp_input; 6620 6621 /* Hang onto the T_OK_ACK for later. */ 6622 linkb(mp1, mp); 6623 mblk_setcred(mp1, tcp->tcp_cred); 6624 if (tcp->tcp_family == AF_INET) 6625 mp1 = ip_bind_v4(tcp->tcp_wq, mp1, tcp->tcp_connp); 6626 else { 6627 mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp, 6628 &tcp->tcp_sticky_ipp); 6629 } 6630 BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens); 6631 tcp->tcp_active_open = 1; 6632 /* 6633 * If the bind cannot complete immediately 6634 * IP will arrange to call tcp_rput_other 6635 * when the bind completes. 6636 */ 6637 if (mp1 != NULL) 6638 tcp_rput_other(tcp, mp1); 6639 return; 6640 } 6641 /* Error case */ 6642 tcp->tcp_state = oldstate; 6643 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM); 6644 6645 failed: 6646 /* return error ack and blow away saved option results if any */ 6647 if (mp != NULL) 6648 putnext(tcp->tcp_rq, mp); 6649 else { 6650 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6651 TSYSERR, ENOMEM); 6652 } 6653 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 6654 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 6655 6656 } 6657 6658 /* 6659 * Handle connect to IPv6 destinations. 6660 */ 6661 static void 6662 tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp, 6663 in_port_t dstport, uint32_t flowinfo, uint_t srcid, uint32_t scope_id) 6664 { 6665 tcph_t *tcph; 6666 mblk_t *mp1; 6667 ip6_rthdr_t *rth; 6668 int32_t oldstate; 6669 uint16_t lport; 6670 tcp_stack_t *tcps = tcp->tcp_tcps; 6671 6672 ASSERT(tcp->tcp_family == AF_INET6); 6673 6674 /* 6675 * If we're here, it means that the destination address is a native 6676 * IPv6 address. Return an error if tcp_ipversion is not IPv6. A 6677 * reason why it might not be IPv6 is if the socket was bound to an 6678 * IPv4-mapped IPv6 address. 6679 */ 6680 if (tcp->tcp_ipversion != IPV6_VERSION) { 6681 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 6682 goto failed; 6683 } 6684 6685 /* 6686 * Interpret a zero destination to mean loopback. 6687 * Update the T_CONN_REQ (sin/sin6) since it is used to 6688 * generate the T_CONN_CON. 6689 */ 6690 if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp)) { 6691 *dstaddrp = ipv6_loopback; 6692 } 6693 6694 /* Handle __sin6_src_id if socket not bound to an IP address */ 6695 if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) { 6696 ip_srcid_find_id(srcid, &tcp->tcp_ip6h->ip6_src, 6697 tcp->tcp_connp->conn_zoneid, tcps->tcps_netstack); 6698 tcp->tcp_ip_src_v6 = tcp->tcp_ip6h->ip6_src; 6699 } 6700 6701 /* 6702 * Take care of the scope_id now and add ip6i_t 6703 * if ip6i_t is not already allocated through TCP 6704 * sticky options. At this point tcp_ip6h does not 6705 * have dst info, thus use dstaddrp. 6706 */ 6707 if (scope_id != 0 && 6708 IN6_IS_ADDR_LINKSCOPE(dstaddrp)) { 6709 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 6710 ip6i_t *ip6i; 6711 6712 ipp->ipp_ifindex = scope_id; 6713 ip6i = (ip6i_t *)tcp->tcp_iphc; 6714 6715 if ((ipp->ipp_fields & IPPF_HAS_IP6I) && 6716 ip6i != NULL && (ip6i->ip6i_nxt == IPPROTO_RAW)) { 6717 /* Already allocated */ 6718 ip6i->ip6i_flags |= IP6I_IFINDEX; 6719 ip6i->ip6i_ifindex = ipp->ipp_ifindex; 6720 ipp->ipp_fields |= IPPF_SCOPE_ID; 6721 } else { 6722 int reterr; 6723 6724 ipp->ipp_fields |= IPPF_SCOPE_ID; 6725 if (ipp->ipp_fields & IPPF_HAS_IP6I) 6726 ip2dbg(("tcp_connect_v6: SCOPE_ID set\n")); 6727 reterr = tcp_build_hdrs(tcp->tcp_rq, tcp); 6728 if (reterr != 0) 6729 goto failed; 6730 ip1dbg(("tcp_connect_ipv6: tcp_bld_hdrs returned\n")); 6731 } 6732 } 6733 6734 /* 6735 * Don't let an endpoint connect to itself. Note that 6736 * the test here does not catch the case where the 6737 * source IP addr was left unspecified by the user. In 6738 * this case, the source addr is set in tcp_adapt_ire() 6739 * using the reply to the T_BIND message that we send 6740 * down to IP here and the check is repeated in tcp_rput_other. 6741 */ 6742 if (IN6_ARE_ADDR_EQUAL(dstaddrp, &tcp->tcp_ip6h->ip6_src) && 6743 (dstport == tcp->tcp_lport)) { 6744 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 6745 goto failed; 6746 } 6747 6748 tcp->tcp_ip6h->ip6_dst = *dstaddrp; 6749 tcp->tcp_remote_v6 = *dstaddrp; 6750 tcp->tcp_ip6h->ip6_vcf = 6751 (IPV6_DEFAULT_VERS_AND_FLOW & IPV6_VERS_AND_FLOW_MASK) | 6752 (flowinfo & ~IPV6_VERS_AND_FLOW_MASK); 6753 6754 6755 /* 6756 * Massage a routing header (if present) putting the first hop 6757 * in ip6_dst. Compute a starting value for the checksum which 6758 * takes into account that the original ip6_dst should be 6759 * included in the checksum but that ip will include the 6760 * first hop in the source route in the tcp checksum. 6761 */ 6762 rth = ip_find_rthdr_v6(tcp->tcp_ip6h, (uint8_t *)tcp->tcp_tcph); 6763 if (rth != NULL) { 6764 tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, rth, 6765 tcps->tcps_netstack); 6766 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 6767 (tcp->tcp_sum >> 16)); 6768 } else { 6769 tcp->tcp_sum = 0; 6770 } 6771 6772 tcph = tcp->tcp_tcph; 6773 *(uint16_t *)tcph->th_fport = dstport; 6774 tcp->tcp_fport = dstport; 6775 6776 oldstate = tcp->tcp_state; 6777 /* 6778 * At this point the remote destination address and remote port fields 6779 * in the tcp-four-tuple have been filled in the tcp structure. Now we 6780 * have to see which state tcp was in so we can take apropriate action. 6781 */ 6782 if (oldstate == TCPS_IDLE) { 6783 /* 6784 * We support a quick connect capability here, allowing 6785 * clients to transition directly from IDLE to SYN_SENT 6786 * tcp_bindi will pick an unused port, insert the connection 6787 * in the bind hash and transition to BOUND state. 6788 */ 6789 lport = tcp_update_next_port(tcps->tcps_next_port_to_try, 6790 tcp, B_TRUE); 6791 lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE, 6792 B_FALSE, B_FALSE); 6793 if (lport == 0) { 6794 mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0); 6795 goto failed; 6796 } 6797 } 6798 tcp->tcp_state = TCPS_SYN_SENT; 6799 /* 6800 * TODO: allow data with connect requests 6801 * by unlinking M_DATA trailers here and 6802 * linking them in behind the T_OK_ACK mblk. 6803 * The tcp_rput() bind ack handler would then 6804 * feed them to tcp_wput_data() rather than call 6805 * tcp_timer(). 6806 */ 6807 mp = mi_tpi_ok_ack_alloc(mp); 6808 if (!mp) { 6809 tcp->tcp_state = oldstate; 6810 goto failed; 6811 } 6812 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, sizeof (ipa6_conn_t)); 6813 if (mp1) { 6814 /* 6815 * We need to make sure that the conn_recv is set to a non-null 6816 * value before we insert the conn_t into the classifier table. 6817 * This is to avoid a race with an incoming packet which does 6818 * an ipcl_classify(). 6819 */ 6820 tcp->tcp_connp->conn_recv = tcp_input; 6821 6822 /* Hang onto the T_OK_ACK for later. */ 6823 linkb(mp1, mp); 6824 mblk_setcred(mp1, tcp->tcp_cred); 6825 mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp, 6826 &tcp->tcp_sticky_ipp); 6827 BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens); 6828 tcp->tcp_active_open = 1; 6829 /* ip_bind_v6() may return ACK or ERROR */ 6830 if (mp1 != NULL) 6831 tcp_rput_other(tcp, mp1); 6832 return; 6833 } 6834 /* Error case */ 6835 tcp->tcp_state = oldstate; 6836 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM); 6837 6838 failed: 6839 /* return error ack and blow away saved option results if any */ 6840 if (mp != NULL) 6841 putnext(tcp->tcp_rq, mp); 6842 else { 6843 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6844 TSYSERR, ENOMEM); 6845 } 6846 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 6847 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 6848 } 6849 6850 /* 6851 * We need a stream q for detached closing tcp connections 6852 * to use. Our client hereby indicates that this q is the 6853 * one to use. 6854 */ 6855 static void 6856 tcp_def_q_set(tcp_t *tcp, mblk_t *mp) 6857 { 6858 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 6859 queue_t *q = tcp->tcp_wq; 6860 tcp_stack_t *tcps = tcp->tcp_tcps; 6861 6862 #ifdef NS_DEBUG 6863 (void) printf("TCP_IOC_DEFAULT_Q for stack %d\n", 6864 tcps->tcps_netstack->netstack_stackid); 6865 #endif 6866 mp->b_datap->db_type = M_IOCACK; 6867 iocp->ioc_count = 0; 6868 mutex_enter(&tcps->tcps_g_q_lock); 6869 if (tcps->tcps_g_q != NULL) { 6870 mutex_exit(&tcps->tcps_g_q_lock); 6871 iocp->ioc_error = EALREADY; 6872 } else { 6873 mblk_t *mp1; 6874 6875 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 0); 6876 if (mp1 == NULL) { 6877 mutex_exit(&tcps->tcps_g_q_lock); 6878 iocp->ioc_error = ENOMEM; 6879 } else { 6880 tcps->tcps_g_q = tcp->tcp_rq; 6881 mutex_exit(&tcps->tcps_g_q_lock); 6882 iocp->ioc_error = 0; 6883 iocp->ioc_rval = 0; 6884 /* 6885 * We are passing tcp_sticky_ipp as NULL 6886 * as it is not useful for tcp_default queue 6887 * 6888 * Set conn_recv just in case. 6889 */ 6890 tcp->tcp_connp->conn_recv = tcp_conn_request; 6891 6892 mp1 = ip_bind_v6(q, mp1, tcp->tcp_connp, NULL); 6893 if (mp1 != NULL) 6894 tcp_rput_other(tcp, mp1); 6895 } 6896 } 6897 qreply(q, mp); 6898 } 6899 6900 /* 6901 * Our client hereby directs us to reject the connection request 6902 * that tcp_conn_request() marked with 'seqnum'. Rejection consists 6903 * of sending the appropriate RST, not an ICMP error. 6904 */ 6905 static void 6906 tcp_disconnect(tcp_t *tcp, mblk_t *mp) 6907 { 6908 tcp_t *ltcp = NULL; 6909 t_scalar_t seqnum; 6910 conn_t *connp; 6911 tcp_stack_t *tcps = tcp->tcp_tcps; 6912 6913 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 6914 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) { 6915 tcp_err_ack(tcp, mp, TPROTO, 0); 6916 return; 6917 } 6918 6919 /* 6920 * Right now, upper modules pass down a T_DISCON_REQ to TCP, 6921 * when the stream is in BOUND state. Do not send a reset, 6922 * since the destination IP address is not valid, and it can 6923 * be the initialized value of all zeros (broadcast address). 6924 * 6925 * If TCP has sent down a bind request to IP and has not 6926 * received the reply, reject the request. Otherwise, TCP 6927 * will be confused. 6928 */ 6929 if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_hard_binding) { 6930 if (tcp->tcp_debug) { 6931 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 6932 "tcp_disconnect: bad state, %d", tcp->tcp_state); 6933 } 6934 tcp_err_ack(tcp, mp, TOUTSTATE, 0); 6935 return; 6936 } 6937 6938 seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number; 6939 6940 if (seqnum == -1 || tcp->tcp_conn_req_max == 0) { 6941 6942 /* 6943 * According to TPI, for non-listeners, ignore seqnum 6944 * and disconnect. 6945 * Following interpretation of -1 seqnum is historical 6946 * and implied TPI ? (TPI only states that for T_CONN_IND, 6947 * a valid seqnum should not be -1). 6948 * 6949 * -1 means disconnect everything 6950 * regardless even on a listener. 6951 */ 6952 6953 int old_state = tcp->tcp_state; 6954 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 6955 6956 /* 6957 * The connection can't be on the tcp_time_wait_head list 6958 * since it is not detached. 6959 */ 6960 ASSERT(tcp->tcp_time_wait_next == NULL); 6961 ASSERT(tcp->tcp_time_wait_prev == NULL); 6962 ASSERT(tcp->tcp_time_wait_expire == 0); 6963 ltcp = NULL; 6964 /* 6965 * If it used to be a listener, check to make sure no one else 6966 * has taken the port before switching back to LISTEN state. 6967 */ 6968 if (tcp->tcp_ipversion == IPV4_VERSION) { 6969 connp = ipcl_lookup_listener_v4(tcp->tcp_lport, 6970 tcp->tcp_ipha->ipha_src, 6971 tcp->tcp_connp->conn_zoneid, ipst); 6972 if (connp != NULL) 6973 ltcp = connp->conn_tcp; 6974 } else { 6975 /* Allow tcp_bound_if listeners? */ 6976 connp = ipcl_lookup_listener_v6(tcp->tcp_lport, 6977 &tcp->tcp_ip6h->ip6_src, 0, 6978 tcp->tcp_connp->conn_zoneid, ipst); 6979 if (connp != NULL) 6980 ltcp = connp->conn_tcp; 6981 } 6982 if (tcp->tcp_conn_req_max && ltcp == NULL) { 6983 tcp->tcp_state = TCPS_LISTEN; 6984 } else if (old_state > TCPS_BOUND) { 6985 tcp->tcp_conn_req_max = 0; 6986 tcp->tcp_state = TCPS_BOUND; 6987 } 6988 if (ltcp != NULL) 6989 CONN_DEC_REF(ltcp->tcp_connp); 6990 if (old_state == TCPS_SYN_SENT || old_state == TCPS_SYN_RCVD) { 6991 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 6992 } else if (old_state == TCPS_ESTABLISHED || 6993 old_state == TCPS_CLOSE_WAIT) { 6994 BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); 6995 } 6996 6997 if (tcp->tcp_fused) 6998 tcp_unfuse(tcp); 6999 7000 mutex_enter(&tcp->tcp_eager_lock); 7001 if ((tcp->tcp_conn_req_cnt_q0 != 0) || 7002 (tcp->tcp_conn_req_cnt_q != 0)) { 7003 tcp_eager_cleanup(tcp, 0); 7004 } 7005 mutex_exit(&tcp->tcp_eager_lock); 7006 7007 tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt, 7008 tcp->tcp_rnxt, TH_RST | TH_ACK); 7009 7010 tcp_reinit(tcp); 7011 7012 if (old_state >= TCPS_ESTABLISHED) { 7013 /* Send M_FLUSH according to TPI */ 7014 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 7015 } 7016 mp = mi_tpi_ok_ack_alloc(mp); 7017 if (mp) 7018 putnext(tcp->tcp_rq, mp); 7019 return; 7020 } else if (!tcp_eager_blowoff(tcp, seqnum)) { 7021 tcp_err_ack(tcp, mp, TBADSEQ, 0); 7022 return; 7023 } 7024 if (tcp->tcp_state >= TCPS_ESTABLISHED) { 7025 /* Send M_FLUSH according to TPI */ 7026 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 7027 } 7028 mp = mi_tpi_ok_ack_alloc(mp); 7029 if (mp) 7030 putnext(tcp->tcp_rq, mp); 7031 } 7032 7033 /* 7034 * Diagnostic routine used to return a string associated with the tcp state. 7035 * Note that if the caller does not supply a buffer, it will use an internal 7036 * static string. This means that if multiple threads call this function at 7037 * the same time, output can be corrupted... Note also that this function 7038 * does not check the size of the supplied buffer. The caller has to make 7039 * sure that it is big enough. 7040 */ 7041 static char * 7042 tcp_display(tcp_t *tcp, char *sup_buf, char format) 7043 { 7044 char buf1[30]; 7045 static char priv_buf[INET6_ADDRSTRLEN * 2 + 80]; 7046 char *buf; 7047 char *cp; 7048 in6_addr_t local, remote; 7049 char local_addrbuf[INET6_ADDRSTRLEN]; 7050 char remote_addrbuf[INET6_ADDRSTRLEN]; 7051 7052 if (sup_buf != NULL) 7053 buf = sup_buf; 7054 else 7055 buf = priv_buf; 7056 7057 if (tcp == NULL) 7058 return ("NULL_TCP"); 7059 switch (tcp->tcp_state) { 7060 case TCPS_CLOSED: 7061 cp = "TCP_CLOSED"; 7062 break; 7063 case TCPS_IDLE: 7064 cp = "TCP_IDLE"; 7065 break; 7066 case TCPS_BOUND: 7067 cp = "TCP_BOUND"; 7068 break; 7069 case TCPS_LISTEN: 7070 cp = "TCP_LISTEN"; 7071 break; 7072 case TCPS_SYN_SENT: 7073 cp = "TCP_SYN_SENT"; 7074 break; 7075 case TCPS_SYN_RCVD: 7076 cp = "TCP_SYN_RCVD"; 7077 break; 7078 case TCPS_ESTABLISHED: 7079 cp = "TCP_ESTABLISHED"; 7080 break; 7081 case TCPS_CLOSE_WAIT: 7082 cp = "TCP_CLOSE_WAIT"; 7083 break; 7084 case TCPS_FIN_WAIT_1: 7085 cp = "TCP_FIN_WAIT_1"; 7086 break; 7087 case TCPS_CLOSING: 7088 cp = "TCP_CLOSING"; 7089 break; 7090 case TCPS_LAST_ACK: 7091 cp = "TCP_LAST_ACK"; 7092 break; 7093 case TCPS_FIN_WAIT_2: 7094 cp = "TCP_FIN_WAIT_2"; 7095 break; 7096 case TCPS_TIME_WAIT: 7097 cp = "TCP_TIME_WAIT"; 7098 break; 7099 default: 7100 (void) mi_sprintf(buf1, "TCPUnkState(%d)", tcp->tcp_state); 7101 cp = buf1; 7102 break; 7103 } 7104 switch (format) { 7105 case DISP_ADDR_AND_PORT: 7106 if (tcp->tcp_ipversion == IPV4_VERSION) { 7107 /* 7108 * Note that we use the remote address in the tcp_b 7109 * structure. This means that it will print out 7110 * the real destination address, not the next hop's 7111 * address if source routing is used. 7112 */ 7113 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ip_src, &local); 7114 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &remote); 7115 7116 } else { 7117 local = tcp->tcp_ip_src_v6; 7118 remote = tcp->tcp_remote_v6; 7119 } 7120 (void) inet_ntop(AF_INET6, &local, local_addrbuf, 7121 sizeof (local_addrbuf)); 7122 (void) inet_ntop(AF_INET6, &remote, remote_addrbuf, 7123 sizeof (remote_addrbuf)); 7124 (void) mi_sprintf(buf, "[%s.%u, %s.%u] %s", 7125 local_addrbuf, ntohs(tcp->tcp_lport), remote_addrbuf, 7126 ntohs(tcp->tcp_fport), cp); 7127 break; 7128 case DISP_PORT_ONLY: 7129 default: 7130 (void) mi_sprintf(buf, "[%u, %u] %s", 7131 ntohs(tcp->tcp_lport), ntohs(tcp->tcp_fport), cp); 7132 break; 7133 } 7134 7135 return (buf); 7136 } 7137 7138 /* 7139 * Called via squeue to get on to eager's perimeter. It sends a 7140 * TH_RST if eager is in the fanout table. The listener wants the 7141 * eager to disappear either by means of tcp_eager_blowoff() or 7142 * tcp_eager_cleanup() being called. tcp_eager_kill() can also be 7143 * called (via squeue) if the eager cannot be inserted in the 7144 * fanout table in tcp_conn_request(). 7145 */ 7146 /* ARGSUSED */ 7147 void 7148 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2) 7149 { 7150 conn_t *econnp = (conn_t *)arg; 7151 tcp_t *eager = econnp->conn_tcp; 7152 tcp_t *listener = eager->tcp_listener; 7153 tcp_stack_t *tcps = eager->tcp_tcps; 7154 7155 /* 7156 * We could be called because listener is closing. Since 7157 * the eager is using listener's queue's, its not safe. 7158 * Better use the default queue just to send the TH_RST 7159 * out. 7160 */ 7161 ASSERT(tcps->tcps_g_q != NULL); 7162 eager->tcp_rq = tcps->tcps_g_q; 7163 eager->tcp_wq = WR(tcps->tcps_g_q); 7164 7165 /* 7166 * An eager's conn_fanout will be NULL if it's a duplicate 7167 * for an existing 4-tuples in the conn fanout table. 7168 * We don't want to send an RST out in such case. 7169 */ 7170 if (econnp->conn_fanout != NULL && eager->tcp_state > TCPS_LISTEN) { 7171 tcp_xmit_ctl("tcp_eager_kill, can't wait", 7172 eager, eager->tcp_snxt, 0, TH_RST); 7173 } 7174 7175 /* We are here because listener wants this eager gone */ 7176 if (listener != NULL) { 7177 mutex_enter(&listener->tcp_eager_lock); 7178 tcp_eager_unlink(eager); 7179 if (eager->tcp_tconnind_started) { 7180 /* 7181 * The eager has sent a conn_ind up to the 7182 * listener but listener decides to close 7183 * instead. We need to drop the extra ref 7184 * placed on eager in tcp_rput_data() before 7185 * sending the conn_ind to listener. 7186 */ 7187 CONN_DEC_REF(econnp); 7188 } 7189 mutex_exit(&listener->tcp_eager_lock); 7190 CONN_DEC_REF(listener->tcp_connp); 7191 } 7192 7193 if (eager->tcp_state > TCPS_BOUND) 7194 tcp_close_detached(eager); 7195 } 7196 7197 /* 7198 * Reset any eager connection hanging off this listener marked 7199 * with 'seqnum' and then reclaim it's resources. 7200 */ 7201 static boolean_t 7202 tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum) 7203 { 7204 tcp_t *eager; 7205 mblk_t *mp; 7206 tcp_stack_t *tcps = listener->tcp_tcps; 7207 7208 TCP_STAT(tcps, tcp_eager_blowoff_calls); 7209 eager = listener; 7210 mutex_enter(&listener->tcp_eager_lock); 7211 do { 7212 eager = eager->tcp_eager_next_q; 7213 if (eager == NULL) { 7214 mutex_exit(&listener->tcp_eager_lock); 7215 return (B_FALSE); 7216 } 7217 } while (eager->tcp_conn_req_seqnum != seqnum); 7218 7219 if (eager->tcp_closemp_used) { 7220 mutex_exit(&listener->tcp_eager_lock); 7221 return (B_TRUE); 7222 } 7223 eager->tcp_closemp_used = B_TRUE; 7224 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 7225 CONN_INC_REF(eager->tcp_connp); 7226 mutex_exit(&listener->tcp_eager_lock); 7227 mp = &eager->tcp_closemp; 7228 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill, 7229 eager->tcp_connp, SQ_FILL, SQTAG_TCP_EAGER_BLOWOFF); 7230 return (B_TRUE); 7231 } 7232 7233 /* 7234 * Reset any eager connection hanging off this listener 7235 * and then reclaim it's resources. 7236 */ 7237 static void 7238 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only) 7239 { 7240 tcp_t *eager; 7241 mblk_t *mp; 7242 tcp_stack_t *tcps = listener->tcp_tcps; 7243 7244 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 7245 7246 if (!q0_only) { 7247 /* First cleanup q */ 7248 TCP_STAT(tcps, tcp_eager_blowoff_q); 7249 eager = listener->tcp_eager_next_q; 7250 while (eager != NULL) { 7251 if (!eager->tcp_closemp_used) { 7252 eager->tcp_closemp_used = B_TRUE; 7253 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 7254 CONN_INC_REF(eager->tcp_connp); 7255 mp = &eager->tcp_closemp; 7256 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, 7257 tcp_eager_kill, eager->tcp_connp, 7258 SQ_FILL, SQTAG_TCP_EAGER_CLEANUP); 7259 } 7260 eager = eager->tcp_eager_next_q; 7261 } 7262 } 7263 /* Then cleanup q0 */ 7264 TCP_STAT(tcps, tcp_eager_blowoff_q0); 7265 eager = listener->tcp_eager_next_q0; 7266 while (eager != listener) { 7267 if (!eager->tcp_closemp_used) { 7268 eager->tcp_closemp_used = B_TRUE; 7269 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 7270 CONN_INC_REF(eager->tcp_connp); 7271 mp = &eager->tcp_closemp; 7272 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, 7273 tcp_eager_kill, eager->tcp_connp, SQ_FILL, 7274 SQTAG_TCP_EAGER_CLEANUP_Q0); 7275 } 7276 eager = eager->tcp_eager_next_q0; 7277 } 7278 } 7279 7280 /* 7281 * If we are an eager connection hanging off a listener that hasn't 7282 * formally accepted the connection yet, get off his list and blow off 7283 * any data that we have accumulated. 7284 */ 7285 static void 7286 tcp_eager_unlink(tcp_t *tcp) 7287 { 7288 tcp_t *listener = tcp->tcp_listener; 7289 7290 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 7291 ASSERT(listener != NULL); 7292 if (tcp->tcp_eager_next_q0 != NULL) { 7293 ASSERT(tcp->tcp_eager_prev_q0 != NULL); 7294 7295 /* Remove the eager tcp from q0 */ 7296 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 7297 tcp->tcp_eager_prev_q0; 7298 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 7299 tcp->tcp_eager_next_q0; 7300 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 7301 listener->tcp_conn_req_cnt_q0--; 7302 7303 tcp->tcp_eager_next_q0 = NULL; 7304 tcp->tcp_eager_prev_q0 = NULL; 7305 7306 /* 7307 * Take the eager out, if it is in the list of droppable 7308 * eagers. 7309 */ 7310 MAKE_UNDROPPABLE(tcp); 7311 7312 if (tcp->tcp_syn_rcvd_timeout != 0) { 7313 /* we have timed out before */ 7314 ASSERT(listener->tcp_syn_rcvd_timeout > 0); 7315 listener->tcp_syn_rcvd_timeout--; 7316 } 7317 } else { 7318 tcp_t **tcpp = &listener->tcp_eager_next_q; 7319 tcp_t *prev = NULL; 7320 7321 for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) { 7322 if (tcpp[0] == tcp) { 7323 if (listener->tcp_eager_last_q == tcp) { 7324 /* 7325 * If we are unlinking the last 7326 * element on the list, adjust 7327 * tail pointer. Set tail pointer 7328 * to nil when list is empty. 7329 */ 7330 ASSERT(tcp->tcp_eager_next_q == NULL); 7331 if (listener->tcp_eager_last_q == 7332 listener->tcp_eager_next_q) { 7333 listener->tcp_eager_last_q = 7334 NULL; 7335 } else { 7336 /* 7337 * We won't get here if there 7338 * is only one eager in the 7339 * list. 7340 */ 7341 ASSERT(prev != NULL); 7342 listener->tcp_eager_last_q = 7343 prev; 7344 } 7345 } 7346 tcpp[0] = tcp->tcp_eager_next_q; 7347 tcp->tcp_eager_next_q = NULL; 7348 tcp->tcp_eager_last_q = NULL; 7349 ASSERT(listener->tcp_conn_req_cnt_q > 0); 7350 listener->tcp_conn_req_cnt_q--; 7351 break; 7352 } 7353 prev = tcpp[0]; 7354 } 7355 } 7356 tcp->tcp_listener = NULL; 7357 } 7358 7359 /* Shorthand to generate and send TPI error acks to our client */ 7360 static void 7361 tcp_err_ack(tcp_t *tcp, mblk_t *mp, int t_error, int sys_error) 7362 { 7363 if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL) 7364 putnext(tcp->tcp_rq, mp); 7365 } 7366 7367 /* Shorthand to generate and send TPI error acks to our client */ 7368 static void 7369 tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, 7370 int t_error, int sys_error) 7371 { 7372 struct T_error_ack *teackp; 7373 7374 if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack), 7375 M_PCPROTO, T_ERROR_ACK)) != NULL) { 7376 teackp = (struct T_error_ack *)mp->b_rptr; 7377 teackp->ERROR_prim = primitive; 7378 teackp->TLI_error = t_error; 7379 teackp->UNIX_error = sys_error; 7380 putnext(tcp->tcp_rq, mp); 7381 } 7382 } 7383 7384 /* 7385 * Note: No locks are held when inspecting tcp_g_*epriv_ports 7386 * but instead the code relies on: 7387 * - the fact that the address of the array and its size never changes 7388 * - the atomic assignment of the elements of the array 7389 */ 7390 /* ARGSUSED */ 7391 static int 7392 tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 7393 { 7394 int i; 7395 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 7396 7397 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 7398 if (tcps->tcps_g_epriv_ports[i] != 0) 7399 (void) mi_mpprintf(mp, "%d ", 7400 tcps->tcps_g_epriv_ports[i]); 7401 } 7402 return (0); 7403 } 7404 7405 /* 7406 * Hold a lock while changing tcp_g_epriv_ports to prevent multiple 7407 * threads from changing it at the same time. 7408 */ 7409 /* ARGSUSED */ 7410 static int 7411 tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 7412 cred_t *cr) 7413 { 7414 long new_value; 7415 int i; 7416 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 7417 7418 /* 7419 * Fail the request if the new value does not lie within the 7420 * port number limits. 7421 */ 7422 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 7423 new_value <= 0 || new_value >= 65536) { 7424 return (EINVAL); 7425 } 7426 7427 mutex_enter(&tcps->tcps_epriv_port_lock); 7428 /* Check if the value is already in the list */ 7429 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 7430 if (new_value == tcps->tcps_g_epriv_ports[i]) { 7431 mutex_exit(&tcps->tcps_epriv_port_lock); 7432 return (EEXIST); 7433 } 7434 } 7435 /* Find an empty slot */ 7436 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 7437 if (tcps->tcps_g_epriv_ports[i] == 0) 7438 break; 7439 } 7440 if (i == tcps->tcps_g_num_epriv_ports) { 7441 mutex_exit(&tcps->tcps_epriv_port_lock); 7442 return (EOVERFLOW); 7443 } 7444 /* Set the new value */ 7445 tcps->tcps_g_epriv_ports[i] = (uint16_t)new_value; 7446 mutex_exit(&tcps->tcps_epriv_port_lock); 7447 return (0); 7448 } 7449 7450 /* 7451 * Hold a lock while changing tcp_g_epriv_ports to prevent multiple 7452 * threads from changing it at the same time. 7453 */ 7454 /* ARGSUSED */ 7455 static int 7456 tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 7457 cred_t *cr) 7458 { 7459 long new_value; 7460 int i; 7461 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 7462 7463 /* 7464 * Fail the request if the new value does not lie within the 7465 * port number limits. 7466 */ 7467 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value <= 0 || 7468 new_value >= 65536) { 7469 return (EINVAL); 7470 } 7471 7472 mutex_enter(&tcps->tcps_epriv_port_lock); 7473 /* Check that the value is already in the list */ 7474 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 7475 if (tcps->tcps_g_epriv_ports[i] == new_value) 7476 break; 7477 } 7478 if (i == tcps->tcps_g_num_epriv_ports) { 7479 mutex_exit(&tcps->tcps_epriv_port_lock); 7480 return (ESRCH); 7481 } 7482 /* Clear the value */ 7483 tcps->tcps_g_epriv_ports[i] = 0; 7484 mutex_exit(&tcps->tcps_epriv_port_lock); 7485 return (0); 7486 } 7487 7488 /* Return the TPI/TLI equivalent of our current tcp_state */ 7489 static int 7490 tcp_tpistate(tcp_t *tcp) 7491 { 7492 switch (tcp->tcp_state) { 7493 case TCPS_IDLE: 7494 return (TS_UNBND); 7495 case TCPS_LISTEN: 7496 /* 7497 * Return whether there are outstanding T_CONN_IND waiting 7498 * for the matching T_CONN_RES. Therefore don't count q0. 7499 */ 7500 if (tcp->tcp_conn_req_cnt_q > 0) 7501 return (TS_WRES_CIND); 7502 else 7503 return (TS_IDLE); 7504 case TCPS_BOUND: 7505 return (TS_IDLE); 7506 case TCPS_SYN_SENT: 7507 return (TS_WCON_CREQ); 7508 case TCPS_SYN_RCVD: 7509 /* 7510 * Note: assumption: this has to the active open SYN_RCVD. 7511 * The passive instance is detached in SYN_RCVD stage of 7512 * incoming connection processing so we cannot get request 7513 * for T_info_ack on it. 7514 */ 7515 return (TS_WACK_CRES); 7516 case TCPS_ESTABLISHED: 7517 return (TS_DATA_XFER); 7518 case TCPS_CLOSE_WAIT: 7519 return (TS_WREQ_ORDREL); 7520 case TCPS_FIN_WAIT_1: 7521 return (TS_WIND_ORDREL); 7522 case TCPS_FIN_WAIT_2: 7523 return (TS_WIND_ORDREL); 7524 7525 case TCPS_CLOSING: 7526 case TCPS_LAST_ACK: 7527 case TCPS_TIME_WAIT: 7528 case TCPS_CLOSED: 7529 /* 7530 * Following TS_WACK_DREQ7 is a rendition of "not 7531 * yet TS_IDLE" TPI state. There is no best match to any 7532 * TPI state for TCPS_{CLOSING, LAST_ACK, TIME_WAIT} but we 7533 * choose a value chosen that will map to TLI/XTI level 7534 * state of TSTATECHNG (state is process of changing) which 7535 * captures what this dummy state represents. 7536 */ 7537 return (TS_WACK_DREQ7); 7538 default: 7539 cmn_err(CE_WARN, "tcp_tpistate: strange state (%d) %s", 7540 tcp->tcp_state, tcp_display(tcp, NULL, 7541 DISP_PORT_ONLY)); 7542 return (TS_UNBND); 7543 } 7544 } 7545 7546 static void 7547 tcp_copy_info(struct T_info_ack *tia, tcp_t *tcp) 7548 { 7549 tcp_stack_t *tcps = tcp->tcp_tcps; 7550 7551 if (tcp->tcp_family == AF_INET6) 7552 *tia = tcp_g_t_info_ack_v6; 7553 else 7554 *tia = tcp_g_t_info_ack; 7555 tia->CURRENT_state = tcp_tpistate(tcp); 7556 tia->OPT_size = tcp_max_optsize; 7557 if (tcp->tcp_mss == 0) { 7558 /* Not yet set - tcp_open does not set mss */ 7559 if (tcp->tcp_ipversion == IPV4_VERSION) 7560 tia->TIDU_size = tcps->tcps_mss_def_ipv4; 7561 else 7562 tia->TIDU_size = tcps->tcps_mss_def_ipv6; 7563 } else { 7564 tia->TIDU_size = tcp->tcp_mss; 7565 } 7566 /* TODO: Default ETSDU is 1. Is that correct for tcp? */ 7567 } 7568 7569 /* 7570 * This routine responds to T_CAPABILITY_REQ messages. It is called by 7571 * tcp_wput. Much of the T_CAPABILITY_ACK information is copied from 7572 * tcp_g_t_info_ack. The current state of the stream is copied from 7573 * tcp_state. 7574 */ 7575 static void 7576 tcp_capability_req(tcp_t *tcp, mblk_t *mp) 7577 { 7578 t_uscalar_t cap_bits1; 7579 struct T_capability_ack *tcap; 7580 7581 if (MBLKL(mp) < sizeof (struct T_capability_req)) { 7582 freemsg(mp); 7583 return; 7584 } 7585 7586 cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1; 7587 7588 mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack), 7589 mp->b_datap->db_type, T_CAPABILITY_ACK); 7590 if (mp == NULL) 7591 return; 7592 7593 tcap = (struct T_capability_ack *)mp->b_rptr; 7594 tcap->CAP_bits1 = 0; 7595 7596 if (cap_bits1 & TC1_INFO) { 7597 tcp_copy_info(&tcap->INFO_ack, tcp); 7598 tcap->CAP_bits1 |= TC1_INFO; 7599 } 7600 7601 if (cap_bits1 & TC1_ACCEPTOR_ID) { 7602 tcap->ACCEPTOR_id = tcp->tcp_acceptor_id; 7603 tcap->CAP_bits1 |= TC1_ACCEPTOR_ID; 7604 } 7605 7606 putnext(tcp->tcp_rq, mp); 7607 } 7608 7609 /* 7610 * This routine responds to T_INFO_REQ messages. It is called by tcp_wput. 7611 * Most of the T_INFO_ACK information is copied from tcp_g_t_info_ack. 7612 * The current state of the stream is copied from tcp_state. 7613 */ 7614 static void 7615 tcp_info_req(tcp_t *tcp, mblk_t *mp) 7616 { 7617 mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO, 7618 T_INFO_ACK); 7619 if (!mp) { 7620 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 7621 return; 7622 } 7623 tcp_copy_info((struct T_info_ack *)mp->b_rptr, tcp); 7624 putnext(tcp->tcp_rq, mp); 7625 } 7626 7627 /* Respond to the TPI addr request */ 7628 static void 7629 tcp_addr_req(tcp_t *tcp, mblk_t *mp) 7630 { 7631 sin_t *sin; 7632 mblk_t *ackmp; 7633 struct T_addr_ack *taa; 7634 7635 /* Make it large enough for worst case */ 7636 ackmp = reallocb(mp, sizeof (struct T_addr_ack) + 7637 2 * sizeof (sin6_t), 1); 7638 if (ackmp == NULL) { 7639 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 7640 return; 7641 } 7642 7643 if (tcp->tcp_ipversion == IPV6_VERSION) { 7644 tcp_addr_req_ipv6(tcp, ackmp); 7645 return; 7646 } 7647 taa = (struct T_addr_ack *)ackmp->b_rptr; 7648 7649 bzero(taa, sizeof (struct T_addr_ack)); 7650 ackmp->b_wptr = (uchar_t *)&taa[1]; 7651 7652 taa->PRIM_type = T_ADDR_ACK; 7653 ackmp->b_datap->db_type = M_PCPROTO; 7654 7655 /* 7656 * Note: Following code assumes 32 bit alignment of basic 7657 * data structures like sin_t and struct T_addr_ack. 7658 */ 7659 if (tcp->tcp_state >= TCPS_BOUND) { 7660 /* 7661 * Fill in local address 7662 */ 7663 taa->LOCADDR_length = sizeof (sin_t); 7664 taa->LOCADDR_offset = sizeof (*taa); 7665 7666 sin = (sin_t *)&taa[1]; 7667 7668 /* Fill zeroes and then intialize non-zero fields */ 7669 *sin = sin_null; 7670 7671 sin->sin_family = AF_INET; 7672 7673 sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src; 7674 sin->sin_port = *(uint16_t *)tcp->tcp_tcph->th_lport; 7675 7676 ackmp->b_wptr = (uchar_t *)&sin[1]; 7677 7678 if (tcp->tcp_state >= TCPS_SYN_RCVD) { 7679 /* 7680 * Fill in Remote address 7681 */ 7682 taa->REMADDR_length = sizeof (sin_t); 7683 taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset + 7684 taa->LOCADDR_length); 7685 7686 sin = (sin_t *)(ackmp->b_rptr + taa->REMADDR_offset); 7687 *sin = sin_null; 7688 sin->sin_family = AF_INET; 7689 sin->sin_addr.s_addr = tcp->tcp_remote; 7690 sin->sin_port = tcp->tcp_fport; 7691 7692 ackmp->b_wptr = (uchar_t *)&sin[1]; 7693 } 7694 } 7695 putnext(tcp->tcp_rq, ackmp); 7696 } 7697 7698 /* Assumes that tcp_addr_req gets enough space and alignment */ 7699 static void 7700 tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *ackmp) 7701 { 7702 sin6_t *sin6; 7703 struct T_addr_ack *taa; 7704 7705 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 7706 ASSERT(OK_32PTR(ackmp->b_rptr)); 7707 ASSERT(ackmp->b_wptr - ackmp->b_rptr >= sizeof (struct T_addr_ack) + 7708 2 * sizeof (sin6_t)); 7709 7710 taa = (struct T_addr_ack *)ackmp->b_rptr; 7711 7712 bzero(taa, sizeof (struct T_addr_ack)); 7713 ackmp->b_wptr = (uchar_t *)&taa[1]; 7714 7715 taa->PRIM_type = T_ADDR_ACK; 7716 ackmp->b_datap->db_type = M_PCPROTO; 7717 7718 /* 7719 * Note: Following code assumes 32 bit alignment of basic 7720 * data structures like sin6_t and struct T_addr_ack. 7721 */ 7722 if (tcp->tcp_state >= TCPS_BOUND) { 7723 /* 7724 * Fill in local address 7725 */ 7726 taa->LOCADDR_length = sizeof (sin6_t); 7727 taa->LOCADDR_offset = sizeof (*taa); 7728 7729 sin6 = (sin6_t *)&taa[1]; 7730 *sin6 = sin6_null; 7731 7732 sin6->sin6_family = AF_INET6; 7733 sin6->sin6_addr = tcp->tcp_ip6h->ip6_src; 7734 sin6->sin6_port = tcp->tcp_lport; 7735 7736 ackmp->b_wptr = (uchar_t *)&sin6[1]; 7737 7738 if (tcp->tcp_state >= TCPS_SYN_RCVD) { 7739 /* 7740 * Fill in Remote address 7741 */ 7742 taa->REMADDR_length = sizeof (sin6_t); 7743 taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset + 7744 taa->LOCADDR_length); 7745 7746 sin6 = (sin6_t *)(ackmp->b_rptr + taa->REMADDR_offset); 7747 *sin6 = sin6_null; 7748 sin6->sin6_family = AF_INET6; 7749 sin6->sin6_flowinfo = 7750 tcp->tcp_ip6h->ip6_vcf & 7751 ~IPV6_VERS_AND_FLOW_MASK; 7752 sin6->sin6_addr = tcp->tcp_remote_v6; 7753 sin6->sin6_port = tcp->tcp_fport; 7754 7755 ackmp->b_wptr = (uchar_t *)&sin6[1]; 7756 } 7757 } 7758 putnext(tcp->tcp_rq, ackmp); 7759 } 7760 7761 /* 7762 * Handle reinitialization of a tcp structure. 7763 * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE. 7764 */ 7765 static void 7766 tcp_reinit(tcp_t *tcp) 7767 { 7768 mblk_t *mp; 7769 int err; 7770 tcp_stack_t *tcps = tcp->tcp_tcps; 7771 7772 TCP_STAT(tcps, tcp_reinit_calls); 7773 7774 /* tcp_reinit should never be called for detached tcp_t's */ 7775 ASSERT(tcp->tcp_listener == NULL); 7776 ASSERT((tcp->tcp_family == AF_INET && 7777 tcp->tcp_ipversion == IPV4_VERSION) || 7778 (tcp->tcp_family == AF_INET6 && 7779 (tcp->tcp_ipversion == IPV4_VERSION || 7780 tcp->tcp_ipversion == IPV6_VERSION))); 7781 7782 /* Cancel outstanding timers */ 7783 tcp_timers_stop(tcp); 7784 7785 /* 7786 * Reset everything in the state vector, after updating global 7787 * MIB data from instance counters. 7788 */ 7789 UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs); 7790 tcp->tcp_ibsegs = 0; 7791 UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs); 7792 tcp->tcp_obsegs = 0; 7793 7794 tcp_close_mpp(&tcp->tcp_xmit_head); 7795 if (tcp->tcp_snd_zcopy_aware) 7796 tcp_zcopy_notify(tcp); 7797 tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL; 7798 tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0; 7799 mutex_enter(&tcp->tcp_non_sq_lock); 7800 if (tcp->tcp_flow_stopped && 7801 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 7802 tcp_clrqfull(tcp); 7803 } 7804 mutex_exit(&tcp->tcp_non_sq_lock); 7805 tcp_close_mpp(&tcp->tcp_reass_head); 7806 tcp->tcp_reass_tail = NULL; 7807 if (tcp->tcp_rcv_list != NULL) { 7808 /* Free b_next chain */ 7809 tcp_close_mpp(&tcp->tcp_rcv_list); 7810 tcp->tcp_rcv_last_head = NULL; 7811 tcp->tcp_rcv_last_tail = NULL; 7812 tcp->tcp_rcv_cnt = 0; 7813 } 7814 tcp->tcp_rcv_last_tail = NULL; 7815 7816 if ((mp = tcp->tcp_urp_mp) != NULL) { 7817 freemsg(mp); 7818 tcp->tcp_urp_mp = NULL; 7819 } 7820 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 7821 freemsg(mp); 7822 tcp->tcp_urp_mark_mp = NULL; 7823 } 7824 if (tcp->tcp_fused_sigurg_mp != NULL) { 7825 freeb(tcp->tcp_fused_sigurg_mp); 7826 tcp->tcp_fused_sigurg_mp = NULL; 7827 } 7828 if (tcp->tcp_ordrel_mp != NULL) { 7829 freeb(tcp->tcp_ordrel_mp); 7830 tcp->tcp_ordrel_mp = NULL; 7831 } 7832 7833 /* 7834 * Following is a union with two members which are 7835 * identical types and size so the following cleanup 7836 * is enough. 7837 */ 7838 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 7839 7840 CL_INET_DISCONNECT(tcp); 7841 7842 /* 7843 * The connection can't be on the tcp_time_wait_head list 7844 * since it is not detached. 7845 */ 7846 ASSERT(tcp->tcp_time_wait_next == NULL); 7847 ASSERT(tcp->tcp_time_wait_prev == NULL); 7848 ASSERT(tcp->tcp_time_wait_expire == 0); 7849 7850 if (tcp->tcp_kssl_pending) { 7851 tcp->tcp_kssl_pending = B_FALSE; 7852 7853 /* Don't reset if the initialized by bind. */ 7854 if (tcp->tcp_kssl_ent != NULL) { 7855 kssl_release_ent(tcp->tcp_kssl_ent, NULL, 7856 KSSL_NO_PROXY); 7857 } 7858 } 7859 if (tcp->tcp_kssl_ctx != NULL) { 7860 kssl_release_ctx(tcp->tcp_kssl_ctx); 7861 tcp->tcp_kssl_ctx = NULL; 7862 } 7863 7864 /* 7865 * Reset/preserve other values 7866 */ 7867 tcp_reinit_values(tcp); 7868 ipcl_hash_remove(tcp->tcp_connp); 7869 conn_delete_ire(tcp->tcp_connp, NULL); 7870 tcp_ipsec_cleanup(tcp); 7871 7872 if (tcp->tcp_conn_req_max != 0) { 7873 /* 7874 * This is the case when a TLI program uses the same 7875 * transport end point to accept a connection. This 7876 * makes the TCP both a listener and acceptor. When 7877 * this connection is closed, we need to set the state 7878 * back to TCPS_LISTEN. Make sure that the eager list 7879 * is reinitialized. 7880 * 7881 * Note that this stream is still bound to the four 7882 * tuples of the previous connection in IP. If a new 7883 * SYN with different foreign address comes in, IP will 7884 * not find it and will send it to the global queue. In 7885 * the global queue, TCP will do a tcp_lookup_listener() 7886 * to find this stream. This works because this stream 7887 * is only removed from connected hash. 7888 * 7889 */ 7890 tcp->tcp_state = TCPS_LISTEN; 7891 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 7892 tcp->tcp_eager_next_drop_q0 = tcp; 7893 tcp->tcp_eager_prev_drop_q0 = tcp; 7894 tcp->tcp_connp->conn_recv = tcp_conn_request; 7895 if (tcp->tcp_family == AF_INET6) { 7896 ASSERT(tcp->tcp_connp->conn_af_isv6); 7897 (void) ipcl_bind_insert_v6(tcp->tcp_connp, IPPROTO_TCP, 7898 &tcp->tcp_ip6h->ip6_src, tcp->tcp_lport); 7899 } else { 7900 ASSERT(!tcp->tcp_connp->conn_af_isv6); 7901 (void) ipcl_bind_insert(tcp->tcp_connp, IPPROTO_TCP, 7902 tcp->tcp_ipha->ipha_src, tcp->tcp_lport); 7903 } 7904 } else { 7905 tcp->tcp_state = TCPS_BOUND; 7906 } 7907 7908 /* 7909 * Initialize to default values 7910 * Can't fail since enough header template space already allocated 7911 * at open(). 7912 */ 7913 err = tcp_init_values(tcp); 7914 ASSERT(err == 0); 7915 /* Restore state in tcp_tcph */ 7916 bcopy(&tcp->tcp_lport, tcp->tcp_tcph->th_lport, TCP_PORT_LEN); 7917 if (tcp->tcp_ipversion == IPV4_VERSION) 7918 tcp->tcp_ipha->ipha_src = tcp->tcp_bound_source; 7919 else 7920 tcp->tcp_ip6h->ip6_src = tcp->tcp_bound_source_v6; 7921 /* 7922 * Copy of the src addr. in tcp_t is needed in tcp_t 7923 * since the lookup funcs can only lookup on tcp_t 7924 */ 7925 tcp->tcp_ip_src_v6 = tcp->tcp_bound_source_v6; 7926 7927 ASSERT(tcp->tcp_ptpbhn != NULL); 7928 tcp->tcp_rq->q_hiwat = tcps->tcps_recv_hiwat; 7929 tcp->tcp_rwnd = tcps->tcps_recv_hiwat; 7930 tcp->tcp_mss = tcp->tcp_ipversion != IPV4_VERSION ? 7931 tcps->tcps_mss_def_ipv6 : tcps->tcps_mss_def_ipv4; 7932 } 7933 7934 /* 7935 * Force values to zero that need be zero. 7936 * Do not touch values asociated with the BOUND or LISTEN state 7937 * since the connection will end up in that state after the reinit. 7938 * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t 7939 * structure! 7940 */ 7941 static void 7942 tcp_reinit_values(tcp) 7943 tcp_t *tcp; 7944 { 7945 tcp_stack_t *tcps = tcp->tcp_tcps; 7946 7947 #ifndef lint 7948 #define DONTCARE(x) 7949 #define PRESERVE(x) 7950 #else 7951 #define DONTCARE(x) ((x) = (x)) 7952 #define PRESERVE(x) ((x) = (x)) 7953 #endif /* lint */ 7954 7955 PRESERVE(tcp->tcp_bind_hash); 7956 PRESERVE(tcp->tcp_ptpbhn); 7957 PRESERVE(tcp->tcp_acceptor_hash); 7958 PRESERVE(tcp->tcp_ptpahn); 7959 7960 /* Should be ASSERT NULL on these with new code! */ 7961 ASSERT(tcp->tcp_time_wait_next == NULL); 7962 ASSERT(tcp->tcp_time_wait_prev == NULL); 7963 ASSERT(tcp->tcp_time_wait_expire == 0); 7964 PRESERVE(tcp->tcp_state); 7965 PRESERVE(tcp->tcp_rq); 7966 PRESERVE(tcp->tcp_wq); 7967 7968 ASSERT(tcp->tcp_xmit_head == NULL); 7969 ASSERT(tcp->tcp_xmit_last == NULL); 7970 ASSERT(tcp->tcp_unsent == 0); 7971 ASSERT(tcp->tcp_xmit_tail == NULL); 7972 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 7973 7974 tcp->tcp_snxt = 0; /* Displayed in mib */ 7975 tcp->tcp_suna = 0; /* Displayed in mib */ 7976 tcp->tcp_swnd = 0; 7977 DONTCARE(tcp->tcp_cwnd); /* Init in tcp_mss_set */ 7978 7979 ASSERT(tcp->tcp_ibsegs == 0); 7980 ASSERT(tcp->tcp_obsegs == 0); 7981 7982 if (tcp->tcp_iphc != NULL) { 7983 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 7984 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 7985 } 7986 7987 DONTCARE(tcp->tcp_naglim); /* Init in tcp_init_values */ 7988 DONTCARE(tcp->tcp_hdr_len); /* Init in tcp_init_values */ 7989 DONTCARE(tcp->tcp_ipha); 7990 DONTCARE(tcp->tcp_ip6h); 7991 DONTCARE(tcp->tcp_ip_hdr_len); 7992 DONTCARE(tcp->tcp_tcph); 7993 DONTCARE(tcp->tcp_tcp_hdr_len); /* Init in tcp_init_values */ 7994 tcp->tcp_valid_bits = 0; 7995 7996 DONTCARE(tcp->tcp_xmit_hiwater); /* Init in tcp_init_values */ 7997 DONTCARE(tcp->tcp_timer_backoff); /* Init in tcp_init_values */ 7998 DONTCARE(tcp->tcp_last_recv_time); /* Init in tcp_init_values */ 7999 tcp->tcp_last_rcv_lbolt = 0; 8000 8001 tcp->tcp_init_cwnd = 0; 8002 8003 tcp->tcp_urp_last_valid = 0; 8004 tcp->tcp_hard_binding = 0; 8005 tcp->tcp_hard_bound = 0; 8006 PRESERVE(tcp->tcp_cred); 8007 PRESERVE(tcp->tcp_cpid); 8008 PRESERVE(tcp->tcp_open_time); 8009 PRESERVE(tcp->tcp_exclbind); 8010 8011 tcp->tcp_fin_acked = 0; 8012 tcp->tcp_fin_rcvd = 0; 8013 tcp->tcp_fin_sent = 0; 8014 tcp->tcp_ordrel_done = 0; 8015 8016 tcp->tcp_debug = 0; 8017 tcp->tcp_dontroute = 0; 8018 tcp->tcp_broadcast = 0; 8019 8020 tcp->tcp_useloopback = 0; 8021 tcp->tcp_reuseaddr = 0; 8022 tcp->tcp_oobinline = 0; 8023 tcp->tcp_dgram_errind = 0; 8024 8025 tcp->tcp_detached = 0; 8026 tcp->tcp_bind_pending = 0; 8027 tcp->tcp_unbind_pending = 0; 8028 8029 tcp->tcp_snd_ws_ok = B_FALSE; 8030 tcp->tcp_snd_ts_ok = B_FALSE; 8031 tcp->tcp_linger = 0; 8032 tcp->tcp_ka_enabled = 0; 8033 tcp->tcp_zero_win_probe = 0; 8034 8035 tcp->tcp_loopback = 0; 8036 tcp->tcp_refuse = 0; 8037 tcp->tcp_localnet = 0; 8038 tcp->tcp_syn_defense = 0; 8039 tcp->tcp_set_timer = 0; 8040 8041 tcp->tcp_active_open = 0; 8042 tcp->tcp_rexmit = B_FALSE; 8043 tcp->tcp_xmit_zc_clean = B_FALSE; 8044 8045 tcp->tcp_snd_sack_ok = B_FALSE; 8046 PRESERVE(tcp->tcp_recvdstaddr); 8047 tcp->tcp_hwcksum = B_FALSE; 8048 8049 tcp->tcp_ire_ill_check_done = B_FALSE; 8050 DONTCARE(tcp->tcp_maxpsz); /* Init in tcp_init_values */ 8051 8052 tcp->tcp_mdt = B_FALSE; 8053 tcp->tcp_mdt_hdr_head = 0; 8054 tcp->tcp_mdt_hdr_tail = 0; 8055 8056 tcp->tcp_conn_def_q0 = 0; 8057 tcp->tcp_ip_forward_progress = B_FALSE; 8058 tcp->tcp_anon_priv_bind = 0; 8059 tcp->tcp_ecn_ok = B_FALSE; 8060 8061 tcp->tcp_cwr = B_FALSE; 8062 tcp->tcp_ecn_echo_on = B_FALSE; 8063 8064 if (tcp->tcp_sack_info != NULL) { 8065 if (tcp->tcp_notsack_list != NULL) { 8066 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 8067 } 8068 kmem_cache_free(tcp_sack_info_cache, tcp->tcp_sack_info); 8069 tcp->tcp_sack_info = NULL; 8070 } 8071 8072 tcp->tcp_rcv_ws = 0; 8073 tcp->tcp_snd_ws = 0; 8074 tcp->tcp_ts_recent = 0; 8075 tcp->tcp_rnxt = 0; /* Displayed in mib */ 8076 DONTCARE(tcp->tcp_rwnd); /* Set in tcp_reinit() */ 8077 tcp->tcp_if_mtu = 0; 8078 8079 ASSERT(tcp->tcp_reass_head == NULL); 8080 ASSERT(tcp->tcp_reass_tail == NULL); 8081 8082 tcp->tcp_cwnd_cnt = 0; 8083 8084 ASSERT(tcp->tcp_rcv_list == NULL); 8085 ASSERT(tcp->tcp_rcv_last_head == NULL); 8086 ASSERT(tcp->tcp_rcv_last_tail == NULL); 8087 ASSERT(tcp->tcp_rcv_cnt == 0); 8088 8089 DONTCARE(tcp->tcp_cwnd_ssthresh); /* Init in tcp_adapt_ire */ 8090 DONTCARE(tcp->tcp_cwnd_max); /* Init in tcp_init_values */ 8091 tcp->tcp_csuna = 0; 8092 8093 tcp->tcp_rto = 0; /* Displayed in MIB */ 8094 DONTCARE(tcp->tcp_rtt_sa); /* Init in tcp_init_values */ 8095 DONTCARE(tcp->tcp_rtt_sd); /* Init in tcp_init_values */ 8096 tcp->tcp_rtt_update = 0; 8097 8098 DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 8099 DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 8100 8101 tcp->tcp_rack = 0; /* Displayed in mib */ 8102 tcp->tcp_rack_cnt = 0; 8103 tcp->tcp_rack_cur_max = 0; 8104 tcp->tcp_rack_abs_max = 0; 8105 8106 tcp->tcp_max_swnd = 0; 8107 8108 ASSERT(tcp->tcp_listener == NULL); 8109 8110 DONTCARE(tcp->tcp_xmit_lowater); /* Init in tcp_init_values */ 8111 8112 DONTCARE(tcp->tcp_irs); /* tcp_valid_bits cleared */ 8113 DONTCARE(tcp->tcp_iss); /* tcp_valid_bits cleared */ 8114 DONTCARE(tcp->tcp_fss); /* tcp_valid_bits cleared */ 8115 DONTCARE(tcp->tcp_urg); /* tcp_valid_bits cleared */ 8116 8117 ASSERT(tcp->tcp_conn_req_cnt_q == 0); 8118 ASSERT(tcp->tcp_conn_req_cnt_q0 == 0); 8119 PRESERVE(tcp->tcp_conn_req_max); 8120 PRESERVE(tcp->tcp_conn_req_seqnum); 8121 8122 DONTCARE(tcp->tcp_ip_hdr_len); /* Init in tcp_init_values */ 8123 DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */ 8124 DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */ 8125 DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */ 8126 DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */ 8127 8128 tcp->tcp_lingertime = 0; 8129 8130 DONTCARE(tcp->tcp_urp_last); /* tcp_urp_last_valid is cleared */ 8131 ASSERT(tcp->tcp_urp_mp == NULL); 8132 ASSERT(tcp->tcp_urp_mark_mp == NULL); 8133 ASSERT(tcp->tcp_fused_sigurg_mp == NULL); 8134 8135 ASSERT(tcp->tcp_eager_next_q == NULL); 8136 ASSERT(tcp->tcp_eager_last_q == NULL); 8137 ASSERT((tcp->tcp_eager_next_q0 == NULL && 8138 tcp->tcp_eager_prev_q0 == NULL) || 8139 tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0); 8140 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 8141 8142 ASSERT((tcp->tcp_eager_next_drop_q0 == NULL && 8143 tcp->tcp_eager_prev_drop_q0 == NULL) || 8144 tcp->tcp_eager_next_drop_q0 == tcp->tcp_eager_prev_drop_q0); 8145 8146 tcp->tcp_client_errno = 0; 8147 8148 DONTCARE(tcp->tcp_sum); /* Init in tcp_init_values */ 8149 8150 tcp->tcp_remote_v6 = ipv6_all_zeros; /* Displayed in MIB */ 8151 8152 PRESERVE(tcp->tcp_bound_source_v6); 8153 tcp->tcp_last_sent_len = 0; 8154 tcp->tcp_dupack_cnt = 0; 8155 8156 tcp->tcp_fport = 0; /* Displayed in MIB */ 8157 PRESERVE(tcp->tcp_lport); 8158 8159 PRESERVE(tcp->tcp_acceptor_lockp); 8160 8161 ASSERT(tcp->tcp_ordrel_mp == NULL); 8162 PRESERVE(tcp->tcp_acceptor_id); 8163 DONTCARE(tcp->tcp_ipsec_overhead); 8164 8165 PRESERVE(tcp->tcp_family); 8166 if (tcp->tcp_family == AF_INET6) { 8167 tcp->tcp_ipversion = IPV6_VERSION; 8168 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 8169 } else { 8170 tcp->tcp_ipversion = IPV4_VERSION; 8171 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 8172 } 8173 8174 tcp->tcp_bound_if = 0; 8175 tcp->tcp_ipv6_recvancillary = 0; 8176 tcp->tcp_recvifindex = 0; 8177 tcp->tcp_recvhops = 0; 8178 tcp->tcp_closed = 0; 8179 tcp->tcp_cleandeathtag = 0; 8180 if (tcp->tcp_hopopts != NULL) { 8181 mi_free(tcp->tcp_hopopts); 8182 tcp->tcp_hopopts = NULL; 8183 tcp->tcp_hopoptslen = 0; 8184 } 8185 ASSERT(tcp->tcp_hopoptslen == 0); 8186 if (tcp->tcp_dstopts != NULL) { 8187 mi_free(tcp->tcp_dstopts); 8188 tcp->tcp_dstopts = NULL; 8189 tcp->tcp_dstoptslen = 0; 8190 } 8191 ASSERT(tcp->tcp_dstoptslen == 0); 8192 if (tcp->tcp_rtdstopts != NULL) { 8193 mi_free(tcp->tcp_rtdstopts); 8194 tcp->tcp_rtdstopts = NULL; 8195 tcp->tcp_rtdstoptslen = 0; 8196 } 8197 ASSERT(tcp->tcp_rtdstoptslen == 0); 8198 if (tcp->tcp_rthdr != NULL) { 8199 mi_free(tcp->tcp_rthdr); 8200 tcp->tcp_rthdr = NULL; 8201 tcp->tcp_rthdrlen = 0; 8202 } 8203 ASSERT(tcp->tcp_rthdrlen == 0); 8204 PRESERVE(tcp->tcp_drop_opt_ack_cnt); 8205 8206 /* Reset fusion-related fields */ 8207 tcp->tcp_fused = B_FALSE; 8208 tcp->tcp_unfusable = B_FALSE; 8209 tcp->tcp_fused_sigurg = B_FALSE; 8210 tcp->tcp_direct_sockfs = B_FALSE; 8211 tcp->tcp_fuse_syncstr_stopped = B_FALSE; 8212 tcp->tcp_fuse_syncstr_plugged = B_FALSE; 8213 tcp->tcp_loopback_peer = NULL; 8214 tcp->tcp_fuse_rcv_hiwater = 0; 8215 tcp->tcp_fuse_rcv_unread_hiwater = 0; 8216 tcp->tcp_fuse_rcv_unread_cnt = 0; 8217 8218 tcp->tcp_lso = B_FALSE; 8219 8220 tcp->tcp_in_ack_unsent = 0; 8221 tcp->tcp_cork = B_FALSE; 8222 tcp->tcp_tconnind_started = B_FALSE; 8223 8224 PRESERVE(tcp->tcp_squeue_bytes); 8225 8226 ASSERT(tcp->tcp_kssl_ctx == NULL); 8227 ASSERT(!tcp->tcp_kssl_pending); 8228 PRESERVE(tcp->tcp_kssl_ent); 8229 8230 /* Sodirect */ 8231 tcp->tcp_sodirect = NULL; 8232 8233 tcp->tcp_closemp_used = B_FALSE; 8234 8235 PRESERVE(tcp->tcp_rsrv_mp); 8236 PRESERVE(tcp->tcp_rsrv_mp_lock); 8237 8238 #ifdef DEBUG 8239 DONTCARE(tcp->tcmp_stk[0]); 8240 #endif 8241 8242 8243 #undef DONTCARE 8244 #undef PRESERVE 8245 } 8246 8247 /* 8248 * Allocate necessary resources and initialize state vector. 8249 * Guaranteed not to fail so that when an error is returned, 8250 * the caller doesn't need to do any additional cleanup. 8251 */ 8252 int 8253 tcp_init(tcp_t *tcp, queue_t *q) 8254 { 8255 int err; 8256 8257 tcp->tcp_rq = q; 8258 tcp->tcp_wq = WR(q); 8259 tcp->tcp_state = TCPS_IDLE; 8260 if ((err = tcp_init_values(tcp)) != 0) 8261 tcp_timers_stop(tcp); 8262 return (err); 8263 } 8264 8265 static int 8266 tcp_init_values(tcp_t *tcp) 8267 { 8268 int err; 8269 tcp_stack_t *tcps = tcp->tcp_tcps; 8270 8271 ASSERT((tcp->tcp_family == AF_INET && 8272 tcp->tcp_ipversion == IPV4_VERSION) || 8273 (tcp->tcp_family == AF_INET6 && 8274 (tcp->tcp_ipversion == IPV4_VERSION || 8275 tcp->tcp_ipversion == IPV6_VERSION))); 8276 8277 /* 8278 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO 8279 * will be close to tcp_rexmit_interval_initial. By doing this, we 8280 * allow the algorithm to adjust slowly to large fluctuations of RTT 8281 * during first few transmissions of a connection as seen in slow 8282 * links. 8283 */ 8284 tcp->tcp_rtt_sa = tcps->tcps_rexmit_interval_initial << 2; 8285 tcp->tcp_rtt_sd = tcps->tcps_rexmit_interval_initial >> 1; 8286 tcp->tcp_rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 8287 tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) + 8288 tcps->tcps_conn_grace_period; 8289 if (tcp->tcp_rto < tcps->tcps_rexmit_interval_min) 8290 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 8291 tcp->tcp_timer_backoff = 0; 8292 tcp->tcp_ms_we_have_waited = 0; 8293 tcp->tcp_last_recv_time = lbolt; 8294 tcp->tcp_cwnd_max = tcps->tcps_cwnd_max_; 8295 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 8296 tcp->tcp_snd_burst = TCP_CWND_INFINITE; 8297 8298 tcp->tcp_maxpsz = tcps->tcps_maxpsz_multiplier; 8299 8300 tcp->tcp_first_timer_threshold = tcps->tcps_ip_notify_interval; 8301 tcp->tcp_first_ctimer_threshold = tcps->tcps_ip_notify_cinterval; 8302 tcp->tcp_second_timer_threshold = tcps->tcps_ip_abort_interval; 8303 /* 8304 * Fix it to tcp_ip_abort_linterval later if it turns out to be a 8305 * passive open. 8306 */ 8307 tcp->tcp_second_ctimer_threshold = tcps->tcps_ip_abort_cinterval; 8308 8309 tcp->tcp_naglim = tcps->tcps_naglim_def; 8310 8311 /* NOTE: ISS is now set in tcp_adapt_ire(). */ 8312 8313 tcp->tcp_mdt_hdr_head = 0; 8314 tcp->tcp_mdt_hdr_tail = 0; 8315 8316 /* Reset fusion-related fields */ 8317 tcp->tcp_fused = B_FALSE; 8318 tcp->tcp_unfusable = B_FALSE; 8319 tcp->tcp_fused_sigurg = B_FALSE; 8320 tcp->tcp_direct_sockfs = B_FALSE; 8321 tcp->tcp_fuse_syncstr_stopped = B_FALSE; 8322 tcp->tcp_fuse_syncstr_plugged = B_FALSE; 8323 tcp->tcp_loopback_peer = NULL; 8324 tcp->tcp_fuse_rcv_hiwater = 0; 8325 tcp->tcp_fuse_rcv_unread_hiwater = 0; 8326 tcp->tcp_fuse_rcv_unread_cnt = 0; 8327 8328 /* Sodirect */ 8329 tcp->tcp_sodirect = NULL; 8330 8331 /* Initialize the header template */ 8332 if (tcp->tcp_ipversion == IPV4_VERSION) { 8333 err = tcp_header_init_ipv4(tcp); 8334 } else { 8335 err = tcp_header_init_ipv6(tcp); 8336 } 8337 if (err) 8338 return (err); 8339 8340 /* 8341 * Init the window scale to the max so tcp_rwnd_set() won't pare 8342 * down tcp_rwnd. tcp_adapt_ire() will set the right value later. 8343 */ 8344 tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT; 8345 tcp->tcp_xmit_lowater = tcps->tcps_xmit_lowat; 8346 tcp->tcp_xmit_hiwater = tcps->tcps_xmit_hiwat; 8347 8348 tcp->tcp_cork = B_FALSE; 8349 /* 8350 * Init the tcp_debug option. This value determines whether TCP 8351 * calls strlog() to print out debug messages. Doing this 8352 * initialization here means that this value is not inherited thru 8353 * tcp_reinit(). 8354 */ 8355 tcp->tcp_debug = tcps->tcps_dbg; 8356 8357 tcp->tcp_ka_interval = tcps->tcps_keepalive_interval; 8358 tcp->tcp_ka_abort_thres = tcps->tcps_keepalive_abort_interval; 8359 8360 return (0); 8361 } 8362 8363 /* 8364 * Initialize the IPv4 header. Loses any record of any IP options. 8365 */ 8366 static int 8367 tcp_header_init_ipv4(tcp_t *tcp) 8368 { 8369 tcph_t *tcph; 8370 uint32_t sum; 8371 conn_t *connp; 8372 tcp_stack_t *tcps = tcp->tcp_tcps; 8373 8374 /* 8375 * This is a simple initialization. If there's 8376 * already a template, it should never be too small, 8377 * so reuse it. Otherwise, allocate space for the new one. 8378 */ 8379 if (tcp->tcp_iphc == NULL) { 8380 ASSERT(tcp->tcp_iphc_len == 0); 8381 tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH; 8382 tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP); 8383 if (tcp->tcp_iphc == NULL) { 8384 tcp->tcp_iphc_len = 0; 8385 return (ENOMEM); 8386 } 8387 } 8388 8389 /* options are gone; may need a new label */ 8390 connp = tcp->tcp_connp; 8391 connp->conn_mlp_type = mlptSingle; 8392 connp->conn_ulp_labeled = !is_system_labeled(); 8393 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 8394 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 8395 tcp->tcp_ip6h = NULL; 8396 tcp->tcp_ipversion = IPV4_VERSION; 8397 tcp->tcp_hdr_len = sizeof (ipha_t) + sizeof (tcph_t); 8398 tcp->tcp_tcp_hdr_len = sizeof (tcph_t); 8399 tcp->tcp_ip_hdr_len = sizeof (ipha_t); 8400 tcp->tcp_ipha->ipha_length = htons(sizeof (ipha_t) + sizeof (tcph_t)); 8401 tcp->tcp_ipha->ipha_version_and_hdr_length 8402 = (IP_VERSION << 4) | IP_SIMPLE_HDR_LENGTH_IN_WORDS; 8403 tcp->tcp_ipha->ipha_ident = 0; 8404 8405 tcp->tcp_ttl = (uchar_t)tcps->tcps_ipv4_ttl; 8406 tcp->tcp_tos = 0; 8407 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0; 8408 tcp->tcp_ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl; 8409 tcp->tcp_ipha->ipha_protocol = IPPROTO_TCP; 8410 8411 tcph = (tcph_t *)(tcp->tcp_iphc + sizeof (ipha_t)); 8412 tcp->tcp_tcph = tcph; 8413 tcph->th_offset_and_rsrvd[0] = (5 << 4); 8414 /* 8415 * IP wants our header length in the checksum field to 8416 * allow it to perform a single pseudo-header+checksum 8417 * calculation on behalf of TCP. 8418 * Include the adjustment for a source route once IP_OPTIONS is set. 8419 */ 8420 sum = sizeof (tcph_t) + tcp->tcp_sum; 8421 sum = (sum >> 16) + (sum & 0xFFFF); 8422 U16_TO_ABE16(sum, tcph->th_sum); 8423 return (0); 8424 } 8425 8426 /* 8427 * Initialize the IPv6 header. Loses any record of any IPv6 extension headers. 8428 */ 8429 static int 8430 tcp_header_init_ipv6(tcp_t *tcp) 8431 { 8432 tcph_t *tcph; 8433 uint32_t sum; 8434 conn_t *connp; 8435 tcp_stack_t *tcps = tcp->tcp_tcps; 8436 8437 /* 8438 * This is a simple initialization. If there's 8439 * already a template, it should never be too small, 8440 * so reuse it. Otherwise, allocate space for the new one. 8441 * Ensure that there is enough space to "downgrade" the tcp_t 8442 * to an IPv4 tcp_t. This requires having space for a full load 8443 * of IPv4 options, as well as a full load of TCP options 8444 * (TCP_MAX_COMBINED_HEADER_LENGTH, 120 bytes); this is more space 8445 * than a v6 header and a TCP header with a full load of TCP options 8446 * (IPV6_HDR_LEN is 40 bytes; TCP_MAX_HDR_LENGTH is 60 bytes). 8447 * We want to avoid reallocation in the "downgraded" case when 8448 * processing outbound IPv4 options. 8449 */ 8450 if (tcp->tcp_iphc == NULL) { 8451 ASSERT(tcp->tcp_iphc_len == 0); 8452 tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH; 8453 tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP); 8454 if (tcp->tcp_iphc == NULL) { 8455 tcp->tcp_iphc_len = 0; 8456 return (ENOMEM); 8457 } 8458 } 8459 8460 /* options are gone; may need a new label */ 8461 connp = tcp->tcp_connp; 8462 connp->conn_mlp_type = mlptSingle; 8463 connp->conn_ulp_labeled = !is_system_labeled(); 8464 8465 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 8466 tcp->tcp_ipversion = IPV6_VERSION; 8467 tcp->tcp_hdr_len = IPV6_HDR_LEN + sizeof (tcph_t); 8468 tcp->tcp_tcp_hdr_len = sizeof (tcph_t); 8469 tcp->tcp_ip_hdr_len = IPV6_HDR_LEN; 8470 tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc; 8471 tcp->tcp_ipha = NULL; 8472 8473 /* Initialize the header template */ 8474 8475 tcp->tcp_ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW; 8476 tcp->tcp_ip6h->ip6_plen = ntohs(sizeof (tcph_t)); 8477 tcp->tcp_ip6h->ip6_nxt = IPPROTO_TCP; 8478 tcp->tcp_ip6h->ip6_hops = (uint8_t)tcps->tcps_ipv6_hoplimit; 8479 8480 tcph = (tcph_t *)(tcp->tcp_iphc + IPV6_HDR_LEN); 8481 tcp->tcp_tcph = tcph; 8482 tcph->th_offset_and_rsrvd[0] = (5 << 4); 8483 /* 8484 * IP wants our header length in the checksum field to 8485 * allow it to perform a single psuedo-header+checksum 8486 * calculation on behalf of TCP. 8487 * Include the adjustment for a source route when IPV6_RTHDR is set. 8488 */ 8489 sum = sizeof (tcph_t) + tcp->tcp_sum; 8490 sum = (sum >> 16) + (sum & 0xFFFF); 8491 U16_TO_ABE16(sum, tcph->th_sum); 8492 return (0); 8493 } 8494 8495 /* At minimum we need 8 bytes in the TCP header for the lookup */ 8496 #define ICMP_MIN_TCP_HDR 8 8497 8498 /* 8499 * tcp_icmp_error is called by tcp_rput_other to process ICMP error messages 8500 * passed up by IP. The message is always received on the correct tcp_t. 8501 * Assumes that IP has pulled up everything up to and including the ICMP header. 8502 */ 8503 void 8504 tcp_icmp_error(tcp_t *tcp, mblk_t *mp) 8505 { 8506 icmph_t *icmph; 8507 ipha_t *ipha; 8508 int iph_hdr_length; 8509 tcph_t *tcph; 8510 boolean_t ipsec_mctl = B_FALSE; 8511 boolean_t secure; 8512 mblk_t *first_mp = mp; 8513 int32_t new_mss; 8514 uint32_t ratio; 8515 size_t mp_size = MBLKL(mp); 8516 uint32_t seg_seq; 8517 tcp_stack_t *tcps = tcp->tcp_tcps; 8518 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 8519 8520 /* Assume IP provides aligned packets - otherwise toss */ 8521 if (!OK_32PTR(mp->b_rptr)) { 8522 freemsg(mp); 8523 return; 8524 } 8525 8526 /* 8527 * Since ICMP errors are normal data marked with M_CTL when sent 8528 * to TCP or UDP, we have to look for a IPSEC_IN value to identify 8529 * packets starting with an ipsec_info_t, see ipsec_info.h. 8530 */ 8531 if ((mp_size == sizeof (ipsec_info_t)) && 8532 (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == IPSEC_IN)) { 8533 ASSERT(mp->b_cont != NULL); 8534 mp = mp->b_cont; 8535 /* IP should have done this */ 8536 ASSERT(OK_32PTR(mp->b_rptr)); 8537 mp_size = MBLKL(mp); 8538 ipsec_mctl = B_TRUE; 8539 } 8540 8541 /* 8542 * Verify that we have a complete outer IP header. If not, drop it. 8543 */ 8544 if (mp_size < sizeof (ipha_t)) { 8545 noticmpv4: 8546 freemsg(first_mp); 8547 return; 8548 } 8549 8550 ipha = (ipha_t *)mp->b_rptr; 8551 /* 8552 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent 8553 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6. 8554 */ 8555 switch (IPH_HDR_VERSION(ipha)) { 8556 case IPV6_VERSION: 8557 tcp_icmp_error_ipv6(tcp, first_mp, ipsec_mctl); 8558 return; 8559 case IPV4_VERSION: 8560 break; 8561 default: 8562 goto noticmpv4; 8563 } 8564 8565 /* Skip past the outer IP and ICMP headers */ 8566 iph_hdr_length = IPH_HDR_LENGTH(ipha); 8567 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 8568 /* 8569 * If we don't have the correct outer IP header length or if the ULP 8570 * is not IPPROTO_ICMP or if we don't have a complete inner IP header 8571 * send it upstream. 8572 */ 8573 if (iph_hdr_length < sizeof (ipha_t) || 8574 ipha->ipha_protocol != IPPROTO_ICMP || 8575 (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) { 8576 goto noticmpv4; 8577 } 8578 ipha = (ipha_t *)&icmph[1]; 8579 8580 /* Skip past the inner IP and find the ULP header */ 8581 iph_hdr_length = IPH_HDR_LENGTH(ipha); 8582 tcph = (tcph_t *)((char *)ipha + iph_hdr_length); 8583 /* 8584 * If we don't have the correct inner IP header length or if the ULP 8585 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR 8586 * bytes of TCP header, drop it. 8587 */ 8588 if (iph_hdr_length < sizeof (ipha_t) || 8589 ipha->ipha_protocol != IPPROTO_TCP || 8590 (uchar_t *)tcph + ICMP_MIN_TCP_HDR > mp->b_wptr) { 8591 goto noticmpv4; 8592 } 8593 8594 if (TCP_IS_DETACHED_NONEAGER(tcp)) { 8595 if (ipsec_mctl) { 8596 secure = ipsec_in_is_secure(first_mp); 8597 } else { 8598 secure = B_FALSE; 8599 } 8600 if (secure) { 8601 /* 8602 * If we are willing to accept this in clear 8603 * we don't have to verify policy. 8604 */ 8605 if (!ipsec_inbound_accept_clear(mp, ipha, NULL)) { 8606 if (!tcp_check_policy(tcp, first_mp, 8607 ipha, NULL, secure, ipsec_mctl)) { 8608 /* 8609 * tcp_check_policy called 8610 * ip_drop_packet() on failure. 8611 */ 8612 return; 8613 } 8614 } 8615 } 8616 } else if (ipsec_mctl) { 8617 /* 8618 * This is a hard_bound connection. IP has already 8619 * verified policy. We don't have to do it again. 8620 */ 8621 freeb(first_mp); 8622 first_mp = mp; 8623 ipsec_mctl = B_FALSE; 8624 } 8625 8626 seg_seq = ABE32_TO_U32(tcph->th_seq); 8627 /* 8628 * TCP SHOULD check that the TCP sequence number contained in 8629 * payload of the ICMP error message is within the range 8630 * SND.UNA <= SEG.SEQ < SND.NXT. 8631 */ 8632 if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) { 8633 /* 8634 * The ICMP message is bogus, just drop it. But if this is 8635 * an ICMP too big message, IP has already changed 8636 * the ire_max_frag to the bogus value. We need to change 8637 * it back. 8638 */ 8639 if (icmph->icmph_type == ICMP_DEST_UNREACHABLE && 8640 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 8641 conn_t *connp = tcp->tcp_connp; 8642 ire_t *ire; 8643 int flag; 8644 8645 if (tcp->tcp_ipversion == IPV4_VERSION) { 8646 flag = tcp->tcp_ipha-> 8647 ipha_fragment_offset_and_flags; 8648 } else { 8649 flag = 0; 8650 } 8651 mutex_enter(&connp->conn_lock); 8652 if ((ire = connp->conn_ire_cache) != NULL) { 8653 mutex_enter(&ire->ire_lock); 8654 mutex_exit(&connp->conn_lock); 8655 ire->ire_max_frag = tcp->tcp_if_mtu; 8656 ire->ire_frag_flag |= flag; 8657 mutex_exit(&ire->ire_lock); 8658 } else { 8659 mutex_exit(&connp->conn_lock); 8660 } 8661 } 8662 goto noticmpv4; 8663 } 8664 8665 switch (icmph->icmph_type) { 8666 case ICMP_DEST_UNREACHABLE: 8667 switch (icmph->icmph_code) { 8668 case ICMP_FRAGMENTATION_NEEDED: 8669 /* 8670 * Reduce the MSS based on the new MTU. This will 8671 * eliminate any fragmentation locally. 8672 * N.B. There may well be some funny side-effects on 8673 * the local send policy and the remote receive policy. 8674 * Pending further research, we provide 8675 * tcp_ignore_path_mtu just in case this proves 8676 * disastrous somewhere. 8677 * 8678 * After updating the MSS, retransmit part of the 8679 * dropped segment using the new mss by calling 8680 * tcp_wput_data(). Need to adjust all those 8681 * params to make sure tcp_wput_data() work properly. 8682 */ 8683 if (tcps->tcps_ignore_path_mtu || 8684 tcp->tcp_ipha->ipha_fragment_offset_and_flags == 0) 8685 break; 8686 8687 /* 8688 * Decrease the MSS by time stamp options 8689 * IP options and IPSEC options. tcp_hdr_len 8690 * includes time stamp option and IP option 8691 * length. Note that new_mss may be negative 8692 * if tcp_ipsec_overhead is large and the 8693 * icmph_du_mtu is the minimum value, which is 68. 8694 */ 8695 new_mss = ntohs(icmph->icmph_du_mtu) - 8696 tcp->tcp_hdr_len - tcp->tcp_ipsec_overhead; 8697 8698 DTRACE_PROBE2(tcp__pmtu__change, tcp_t *, tcp, int, 8699 new_mss); 8700 8701 /* 8702 * Only update the MSS if the new one is 8703 * smaller than the previous one. This is 8704 * to avoid problems when getting multiple 8705 * ICMP errors for the same MTU. 8706 */ 8707 if (new_mss >= tcp->tcp_mss) 8708 break; 8709 8710 /* 8711 * Note that we are using the template header's DF 8712 * bit in the fast path sending. So we need to compare 8713 * the new mss with both tcps_mss_min and ip_pmtu_min. 8714 * And stop doing IPv4 PMTUd if new_mss is less than 8715 * MAX(tcps_mss_min, ip_pmtu_min). 8716 */ 8717 if (new_mss < tcps->tcps_mss_min || 8718 new_mss < ipst->ips_ip_pmtu_min) { 8719 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 8720 0; 8721 } 8722 8723 ratio = tcp->tcp_cwnd / tcp->tcp_mss; 8724 ASSERT(ratio >= 1); 8725 tcp_mss_set(tcp, new_mss, B_TRUE); 8726 8727 /* 8728 * Make sure we have something to 8729 * send. 8730 */ 8731 if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) && 8732 (tcp->tcp_xmit_head != NULL)) { 8733 /* 8734 * Shrink tcp_cwnd in 8735 * proportion to the old MSS/new MSS. 8736 */ 8737 tcp->tcp_cwnd = ratio * tcp->tcp_mss; 8738 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 8739 (tcp->tcp_unsent == 0)) { 8740 tcp->tcp_rexmit_max = tcp->tcp_fss; 8741 } else { 8742 tcp->tcp_rexmit_max = tcp->tcp_snxt; 8743 } 8744 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 8745 tcp->tcp_rexmit = B_TRUE; 8746 tcp->tcp_dupack_cnt = 0; 8747 tcp->tcp_snd_burst = TCP_CWND_SS; 8748 tcp_ss_rexmit(tcp); 8749 } 8750 break; 8751 case ICMP_PORT_UNREACHABLE: 8752 case ICMP_PROTOCOL_UNREACHABLE: 8753 switch (tcp->tcp_state) { 8754 case TCPS_SYN_SENT: 8755 case TCPS_SYN_RCVD: 8756 /* 8757 * ICMP can snipe away incipient 8758 * TCP connections as long as 8759 * seq number is same as initial 8760 * send seq number. 8761 */ 8762 if (seg_seq == tcp->tcp_iss) { 8763 (void) tcp_clean_death(tcp, 8764 ECONNREFUSED, 6); 8765 } 8766 break; 8767 } 8768 break; 8769 case ICMP_HOST_UNREACHABLE: 8770 case ICMP_NET_UNREACHABLE: 8771 /* Record the error in case we finally time out. */ 8772 if (icmph->icmph_code == ICMP_HOST_UNREACHABLE) 8773 tcp->tcp_client_errno = EHOSTUNREACH; 8774 else 8775 tcp->tcp_client_errno = ENETUNREACH; 8776 if (tcp->tcp_state == TCPS_SYN_RCVD) { 8777 if (tcp->tcp_listener != NULL && 8778 tcp->tcp_listener->tcp_syn_defense) { 8779 /* 8780 * Ditch the half-open connection if we 8781 * suspect a SYN attack is under way. 8782 */ 8783 tcp_ip_ire_mark_advice(tcp); 8784 (void) tcp_clean_death(tcp, 8785 tcp->tcp_client_errno, 7); 8786 } 8787 } 8788 break; 8789 default: 8790 break; 8791 } 8792 break; 8793 case ICMP_SOURCE_QUENCH: { 8794 /* 8795 * use a global boolean to control 8796 * whether TCP should respond to ICMP_SOURCE_QUENCH. 8797 * The default is false. 8798 */ 8799 if (tcp_icmp_source_quench) { 8800 /* 8801 * Reduce the sending rate as if we got a 8802 * retransmit timeout 8803 */ 8804 uint32_t npkt; 8805 8806 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / 8807 tcp->tcp_mss; 8808 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss; 8809 tcp->tcp_cwnd = tcp->tcp_mss; 8810 tcp->tcp_cwnd_cnt = 0; 8811 } 8812 break; 8813 } 8814 } 8815 freemsg(first_mp); 8816 } 8817 8818 /* 8819 * tcp_icmp_error_ipv6 is called by tcp_rput_other to process ICMPv6 8820 * error messages passed up by IP. 8821 * Assumes that IP has pulled up all the extension headers as well 8822 * as the ICMPv6 header. 8823 */ 8824 static void 8825 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, boolean_t ipsec_mctl) 8826 { 8827 icmp6_t *icmp6; 8828 ip6_t *ip6h; 8829 uint16_t iph_hdr_length; 8830 tcpha_t *tcpha; 8831 uint8_t *nexthdrp; 8832 uint32_t new_mss; 8833 uint32_t ratio; 8834 boolean_t secure; 8835 mblk_t *first_mp = mp; 8836 size_t mp_size; 8837 uint32_t seg_seq; 8838 tcp_stack_t *tcps = tcp->tcp_tcps; 8839 8840 /* 8841 * The caller has determined if this is an IPSEC_IN packet and 8842 * set ipsec_mctl appropriately (see tcp_icmp_error). 8843 */ 8844 if (ipsec_mctl) 8845 mp = mp->b_cont; 8846 8847 mp_size = MBLKL(mp); 8848 8849 /* 8850 * Verify that we have a complete IP header. If not, send it upstream. 8851 */ 8852 if (mp_size < sizeof (ip6_t)) { 8853 noticmpv6: 8854 freemsg(first_mp); 8855 return; 8856 } 8857 8858 /* 8859 * Verify this is an ICMPV6 packet, else send it upstream. 8860 */ 8861 ip6h = (ip6_t *)mp->b_rptr; 8862 if (ip6h->ip6_nxt == IPPROTO_ICMPV6) { 8863 iph_hdr_length = IPV6_HDR_LEN; 8864 } else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, 8865 &nexthdrp) || 8866 *nexthdrp != IPPROTO_ICMPV6) { 8867 goto noticmpv6; 8868 } 8869 icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length]; 8870 ip6h = (ip6_t *)&icmp6[1]; 8871 /* 8872 * Verify if we have a complete ICMP and inner IP header. 8873 */ 8874 if ((uchar_t *)&ip6h[1] > mp->b_wptr) 8875 goto noticmpv6; 8876 8877 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp)) 8878 goto noticmpv6; 8879 tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length); 8880 /* 8881 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't 8882 * have at least ICMP_MIN_TCP_HDR bytes of TCP header drop the 8883 * packet. 8884 */ 8885 if ((*nexthdrp != IPPROTO_TCP) || 8886 ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) { 8887 goto noticmpv6; 8888 } 8889 8890 /* 8891 * ICMP errors come on the right queue or come on 8892 * listener/global queue for detached connections and 8893 * get switched to the right queue. If it comes on the 8894 * right queue, policy check has already been done by IP 8895 * and thus free the first_mp without verifying the policy. 8896 * If it has come for a non-hard bound connection, we need 8897 * to verify policy as IP may not have done it. 8898 */ 8899 if (!tcp->tcp_hard_bound) { 8900 if (ipsec_mctl) { 8901 secure = ipsec_in_is_secure(first_mp); 8902 } else { 8903 secure = B_FALSE; 8904 } 8905 if (secure) { 8906 /* 8907 * If we are willing to accept this in clear 8908 * we don't have to verify policy. 8909 */ 8910 if (!ipsec_inbound_accept_clear(mp, NULL, ip6h)) { 8911 if (!tcp_check_policy(tcp, first_mp, 8912 NULL, ip6h, secure, ipsec_mctl)) { 8913 /* 8914 * tcp_check_policy called 8915 * ip_drop_packet() on failure. 8916 */ 8917 return; 8918 } 8919 } 8920 } 8921 } else if (ipsec_mctl) { 8922 /* 8923 * This is a hard_bound connection. IP has already 8924 * verified policy. We don't have to do it again. 8925 */ 8926 freeb(first_mp); 8927 first_mp = mp; 8928 ipsec_mctl = B_FALSE; 8929 } 8930 8931 seg_seq = ntohl(tcpha->tha_seq); 8932 /* 8933 * TCP SHOULD check that the TCP sequence number contained in 8934 * payload of the ICMP error message is within the range 8935 * SND.UNA <= SEG.SEQ < SND.NXT. 8936 */ 8937 if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) { 8938 /* 8939 * If the ICMP message is bogus, should we kill the 8940 * connection, or should we just drop the bogus ICMP 8941 * message? It would probably make more sense to just 8942 * drop the message so that if this one managed to get 8943 * in, the real connection should not suffer. 8944 */ 8945 goto noticmpv6; 8946 } 8947 8948 switch (icmp6->icmp6_type) { 8949 case ICMP6_PACKET_TOO_BIG: 8950 /* 8951 * Reduce the MSS based on the new MTU. This will 8952 * eliminate any fragmentation locally. 8953 * N.B. There may well be some funny side-effects on 8954 * the local send policy and the remote receive policy. 8955 * Pending further research, we provide 8956 * tcp_ignore_path_mtu just in case this proves 8957 * disastrous somewhere. 8958 * 8959 * After updating the MSS, retransmit part of the 8960 * dropped segment using the new mss by calling 8961 * tcp_wput_data(). Need to adjust all those 8962 * params to make sure tcp_wput_data() work properly. 8963 */ 8964 if (tcps->tcps_ignore_path_mtu) 8965 break; 8966 8967 /* 8968 * Decrease the MSS by time stamp options 8969 * IP options and IPSEC options. tcp_hdr_len 8970 * includes time stamp option and IP option 8971 * length. 8972 */ 8973 new_mss = ntohs(icmp6->icmp6_mtu) - tcp->tcp_hdr_len - 8974 tcp->tcp_ipsec_overhead; 8975 8976 /* 8977 * Only update the MSS if the new one is 8978 * smaller than the previous one. This is 8979 * to avoid problems when getting multiple 8980 * ICMP errors for the same MTU. 8981 */ 8982 if (new_mss >= tcp->tcp_mss) 8983 break; 8984 8985 ratio = tcp->tcp_cwnd / tcp->tcp_mss; 8986 ASSERT(ratio >= 1); 8987 tcp_mss_set(tcp, new_mss, B_TRUE); 8988 8989 /* 8990 * Make sure we have something to 8991 * send. 8992 */ 8993 if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) && 8994 (tcp->tcp_xmit_head != NULL)) { 8995 /* 8996 * Shrink tcp_cwnd in 8997 * proportion to the old MSS/new MSS. 8998 */ 8999 tcp->tcp_cwnd = ratio * tcp->tcp_mss; 9000 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 9001 (tcp->tcp_unsent == 0)) { 9002 tcp->tcp_rexmit_max = tcp->tcp_fss; 9003 } else { 9004 tcp->tcp_rexmit_max = tcp->tcp_snxt; 9005 } 9006 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 9007 tcp->tcp_rexmit = B_TRUE; 9008 tcp->tcp_dupack_cnt = 0; 9009 tcp->tcp_snd_burst = TCP_CWND_SS; 9010 tcp_ss_rexmit(tcp); 9011 } 9012 break; 9013 9014 case ICMP6_DST_UNREACH: 9015 switch (icmp6->icmp6_code) { 9016 case ICMP6_DST_UNREACH_NOPORT: 9017 if (((tcp->tcp_state == TCPS_SYN_SENT) || 9018 (tcp->tcp_state == TCPS_SYN_RCVD)) && 9019 (seg_seq == tcp->tcp_iss)) { 9020 (void) tcp_clean_death(tcp, 9021 ECONNREFUSED, 8); 9022 } 9023 break; 9024 9025 case ICMP6_DST_UNREACH_ADMIN: 9026 case ICMP6_DST_UNREACH_NOROUTE: 9027 case ICMP6_DST_UNREACH_BEYONDSCOPE: 9028 case ICMP6_DST_UNREACH_ADDR: 9029 /* Record the error in case we finally time out. */ 9030 tcp->tcp_client_errno = EHOSTUNREACH; 9031 if (((tcp->tcp_state == TCPS_SYN_SENT) || 9032 (tcp->tcp_state == TCPS_SYN_RCVD)) && 9033 (seg_seq == tcp->tcp_iss)) { 9034 if (tcp->tcp_listener != NULL && 9035 tcp->tcp_listener->tcp_syn_defense) { 9036 /* 9037 * Ditch the half-open connection if we 9038 * suspect a SYN attack is under way. 9039 */ 9040 tcp_ip_ire_mark_advice(tcp); 9041 (void) tcp_clean_death(tcp, 9042 tcp->tcp_client_errno, 9); 9043 } 9044 } 9045 9046 9047 break; 9048 default: 9049 break; 9050 } 9051 break; 9052 9053 case ICMP6_PARAM_PROB: 9054 /* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */ 9055 if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER && 9056 (uchar_t *)ip6h + icmp6->icmp6_pptr == 9057 (uchar_t *)nexthdrp) { 9058 if (tcp->tcp_state == TCPS_SYN_SENT || 9059 tcp->tcp_state == TCPS_SYN_RCVD) { 9060 (void) tcp_clean_death(tcp, 9061 ECONNREFUSED, 10); 9062 } 9063 break; 9064 } 9065 break; 9066 9067 case ICMP6_TIME_EXCEEDED: 9068 default: 9069 break; 9070 } 9071 freemsg(first_mp); 9072 } 9073 9074 /* 9075 * IP recognizes seven kinds of bind requests: 9076 * 9077 * - A zero-length address binds only to the protocol number. 9078 * 9079 * - A 4-byte address is treated as a request to 9080 * validate that the address is a valid local IPv4 9081 * address, appropriate for an application to bind to. 9082 * IP does the verification, but does not make any note 9083 * of the address at this time. 9084 * 9085 * - A 16-byte address contains is treated as a request 9086 * to validate a local IPv6 address, as the 4-byte 9087 * address case above. 9088 * 9089 * - A 16-byte sockaddr_in to validate the local IPv4 address and also 9090 * use it for the inbound fanout of packets. 9091 * 9092 * - A 24-byte sockaddr_in6 to validate the local IPv6 address and also 9093 * use it for the inbound fanout of packets. 9094 * 9095 * - A 12-byte address (ipa_conn_t) containing complete IPv4 fanout 9096 * information consisting of local and remote addresses 9097 * and ports. In this case, the addresses are both 9098 * validated as appropriate for this operation, and, if 9099 * so, the information is retained for use in the 9100 * inbound fanout. 9101 * 9102 * - A 36-byte address address (ipa6_conn_t) containing complete IPv6 9103 * fanout information, like the 12-byte case above. 9104 * 9105 * IP will also fill in the IRE request mblk with information 9106 * regarding our peer. In all cases, we notify IP of our protocol 9107 * type by appending a single protocol byte to the bind request. 9108 */ 9109 static mblk_t * 9110 tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim, t_scalar_t addr_length) 9111 { 9112 char *cp; 9113 mblk_t *mp; 9114 struct T_bind_req *tbr; 9115 ipa_conn_t *ac; 9116 ipa6_conn_t *ac6; 9117 sin_t *sin; 9118 sin6_t *sin6; 9119 9120 ASSERT(bind_prim == O_T_BIND_REQ || bind_prim == T_BIND_REQ); 9121 ASSERT((tcp->tcp_family == AF_INET && 9122 tcp->tcp_ipversion == IPV4_VERSION) || 9123 (tcp->tcp_family == AF_INET6 && 9124 (tcp->tcp_ipversion == IPV4_VERSION || 9125 tcp->tcp_ipversion == IPV6_VERSION))); 9126 9127 mp = allocb(sizeof (*tbr) + addr_length + 1, BPRI_HI); 9128 if (!mp) 9129 return (mp); 9130 mp->b_datap->db_type = M_PROTO; 9131 tbr = (struct T_bind_req *)mp->b_rptr; 9132 tbr->PRIM_type = bind_prim; 9133 tbr->ADDR_offset = sizeof (*tbr); 9134 tbr->CONIND_number = 0; 9135 tbr->ADDR_length = addr_length; 9136 cp = (char *)&tbr[1]; 9137 switch (addr_length) { 9138 case sizeof (ipa_conn_t): 9139 ASSERT(tcp->tcp_family == AF_INET); 9140 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 9141 9142 mp->b_cont = allocb(sizeof (ire_t), BPRI_HI); 9143 if (mp->b_cont == NULL) { 9144 freemsg(mp); 9145 return (NULL); 9146 } 9147 mp->b_cont->b_wptr += sizeof (ire_t); 9148 mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE; 9149 9150 /* cp known to be 32 bit aligned */ 9151 ac = (ipa_conn_t *)cp; 9152 ac->ac_laddr = tcp->tcp_ipha->ipha_src; 9153 ac->ac_faddr = tcp->tcp_remote; 9154 ac->ac_fport = tcp->tcp_fport; 9155 ac->ac_lport = tcp->tcp_lport; 9156 tcp->tcp_hard_binding = 1; 9157 break; 9158 9159 case sizeof (ipa6_conn_t): 9160 ASSERT(tcp->tcp_family == AF_INET6); 9161 9162 mp->b_cont = allocb(sizeof (ire_t), BPRI_HI); 9163 if (mp->b_cont == NULL) { 9164 freemsg(mp); 9165 return (NULL); 9166 } 9167 mp->b_cont->b_wptr += sizeof (ire_t); 9168 mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE; 9169 9170 /* cp known to be 32 bit aligned */ 9171 ac6 = (ipa6_conn_t *)cp; 9172 if (tcp->tcp_ipversion == IPV4_VERSION) { 9173 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 9174 &ac6->ac6_laddr); 9175 } else { 9176 ac6->ac6_laddr = tcp->tcp_ip6h->ip6_src; 9177 } 9178 ac6->ac6_faddr = tcp->tcp_remote_v6; 9179 ac6->ac6_fport = tcp->tcp_fport; 9180 ac6->ac6_lport = tcp->tcp_lport; 9181 tcp->tcp_hard_binding = 1; 9182 break; 9183 9184 case sizeof (sin_t): 9185 /* 9186 * NOTE: IPV6_ADDR_LEN also has same size. 9187 * Use family to discriminate. 9188 */ 9189 if (tcp->tcp_family == AF_INET) { 9190 sin = (sin_t *)cp; 9191 9192 *sin = sin_null; 9193 sin->sin_family = AF_INET; 9194 sin->sin_addr.s_addr = tcp->tcp_bound_source; 9195 sin->sin_port = tcp->tcp_lport; 9196 break; 9197 } else { 9198 *(in6_addr_t *)cp = tcp->tcp_bound_source_v6; 9199 } 9200 break; 9201 9202 case sizeof (sin6_t): 9203 ASSERT(tcp->tcp_family == AF_INET6); 9204 sin6 = (sin6_t *)cp; 9205 9206 *sin6 = sin6_null; 9207 sin6->sin6_family = AF_INET6; 9208 sin6->sin6_addr = tcp->tcp_bound_source_v6; 9209 sin6->sin6_port = tcp->tcp_lport; 9210 break; 9211 9212 case IP_ADDR_LEN: 9213 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 9214 *(uint32_t *)cp = tcp->tcp_ipha->ipha_src; 9215 break; 9216 9217 } 9218 /* Add protocol number to end */ 9219 cp[addr_length] = (char)IPPROTO_TCP; 9220 mp->b_wptr = (uchar_t *)&cp[addr_length + 1]; 9221 return (mp); 9222 } 9223 9224 /* 9225 * Notify IP that we are having trouble with this connection. IP should 9226 * blow the IRE away and start over. 9227 */ 9228 static void 9229 tcp_ip_notify(tcp_t *tcp) 9230 { 9231 struct iocblk *iocp; 9232 ipid_t *ipid; 9233 mblk_t *mp; 9234 9235 /* IPv6 has NUD thus notification to delete the IRE is not needed */ 9236 if (tcp->tcp_ipversion == IPV6_VERSION) 9237 return; 9238 9239 mp = mkiocb(IP_IOCTL); 9240 if (mp == NULL) 9241 return; 9242 9243 iocp = (struct iocblk *)mp->b_rptr; 9244 iocp->ioc_count = sizeof (ipid_t) + sizeof (tcp->tcp_ipha->ipha_dst); 9245 9246 mp->b_cont = allocb(iocp->ioc_count, BPRI_HI); 9247 if (!mp->b_cont) { 9248 freeb(mp); 9249 return; 9250 } 9251 9252 ipid = (ipid_t *)mp->b_cont->b_rptr; 9253 mp->b_cont->b_wptr += iocp->ioc_count; 9254 bzero(ipid, sizeof (*ipid)); 9255 ipid->ipid_cmd = IP_IOC_IRE_DELETE_NO_REPLY; 9256 ipid->ipid_ire_type = IRE_CACHE; 9257 ipid->ipid_addr_offset = sizeof (ipid_t); 9258 ipid->ipid_addr_length = sizeof (tcp->tcp_ipha->ipha_dst); 9259 /* 9260 * Note: in the case of source routing we want to blow away the 9261 * route to the first source route hop. 9262 */ 9263 bcopy(&tcp->tcp_ipha->ipha_dst, &ipid[1], 9264 sizeof (tcp->tcp_ipha->ipha_dst)); 9265 9266 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 9267 } 9268 9269 /* Unlink and return any mblk that looks like it contains an ire */ 9270 static mblk_t * 9271 tcp_ire_mp(mblk_t *mp) 9272 { 9273 mblk_t *prev_mp; 9274 9275 for (;;) { 9276 prev_mp = mp; 9277 mp = mp->b_cont; 9278 if (mp == NULL) 9279 break; 9280 switch (DB_TYPE(mp)) { 9281 case IRE_DB_TYPE: 9282 case IRE_DB_REQ_TYPE: 9283 if (prev_mp != NULL) 9284 prev_mp->b_cont = mp->b_cont; 9285 mp->b_cont = NULL; 9286 return (mp); 9287 default: 9288 break; 9289 } 9290 } 9291 return (mp); 9292 } 9293 9294 /* 9295 * Timer callback routine for keepalive probe. We do a fake resend of 9296 * last ACKed byte. Then set a timer using RTO. When the timer expires, 9297 * check to see if we have heard anything from the other end for the last 9298 * RTO period. If we have, set the timer to expire for another 9299 * tcp_keepalive_intrvl and check again. If we have not, set a timer using 9300 * RTO << 1 and check again when it expires. Keep exponentially increasing 9301 * the timeout if we have not heard from the other side. If for more than 9302 * (tcp_ka_interval + tcp_ka_abort_thres) we have not heard anything, 9303 * kill the connection unless the keepalive abort threshold is 0. In 9304 * that case, we will probe "forever." 9305 */ 9306 static void 9307 tcp_keepalive_killer(void *arg) 9308 { 9309 mblk_t *mp; 9310 conn_t *connp = (conn_t *)arg; 9311 tcp_t *tcp = connp->conn_tcp; 9312 int32_t firetime; 9313 int32_t idletime; 9314 int32_t ka_intrvl; 9315 tcp_stack_t *tcps = tcp->tcp_tcps; 9316 9317 tcp->tcp_ka_tid = 0; 9318 9319 if (tcp->tcp_fused) 9320 return; 9321 9322 BUMP_MIB(&tcps->tcps_mib, tcpTimKeepalive); 9323 ka_intrvl = tcp->tcp_ka_interval; 9324 9325 /* 9326 * Keepalive probe should only be sent if the application has not 9327 * done a close on the connection. 9328 */ 9329 if (tcp->tcp_state > TCPS_CLOSE_WAIT) { 9330 return; 9331 } 9332 /* Timer fired too early, restart it. */ 9333 if (tcp->tcp_state < TCPS_ESTABLISHED) { 9334 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 9335 MSEC_TO_TICK(ka_intrvl)); 9336 return; 9337 } 9338 9339 idletime = TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time); 9340 /* 9341 * If we have not heard from the other side for a long 9342 * time, kill the connection unless the keepalive abort 9343 * threshold is 0. In that case, we will probe "forever." 9344 */ 9345 if (tcp->tcp_ka_abort_thres != 0 && 9346 idletime > (ka_intrvl + tcp->tcp_ka_abort_thres)) { 9347 BUMP_MIB(&tcps->tcps_mib, tcpTimKeepaliveDrop); 9348 (void) tcp_clean_death(tcp, tcp->tcp_client_errno ? 9349 tcp->tcp_client_errno : ETIMEDOUT, 11); 9350 return; 9351 } 9352 9353 if (tcp->tcp_snxt == tcp->tcp_suna && 9354 idletime >= ka_intrvl) { 9355 /* Fake resend of last ACKed byte. */ 9356 mblk_t *mp1 = allocb(1, BPRI_LO); 9357 9358 if (mp1 != NULL) { 9359 *mp1->b_wptr++ = '\0'; 9360 mp = tcp_xmit_mp(tcp, mp1, 1, NULL, NULL, 9361 tcp->tcp_suna - 1, B_FALSE, NULL, B_TRUE); 9362 freeb(mp1); 9363 /* 9364 * if allocation failed, fall through to start the 9365 * timer back. 9366 */ 9367 if (mp != NULL) { 9368 tcp_send_data(tcp, tcp->tcp_wq, mp); 9369 BUMP_MIB(&tcps->tcps_mib, 9370 tcpTimKeepaliveProbe); 9371 if (tcp->tcp_ka_last_intrvl != 0) { 9372 int max; 9373 /* 9374 * We should probe again at least 9375 * in ka_intrvl, but not more than 9376 * tcp_rexmit_interval_max. 9377 */ 9378 max = tcps->tcps_rexmit_interval_max; 9379 firetime = MIN(ka_intrvl - 1, 9380 tcp->tcp_ka_last_intrvl << 1); 9381 if (firetime > max) 9382 firetime = max; 9383 } else { 9384 firetime = tcp->tcp_rto; 9385 } 9386 tcp->tcp_ka_tid = TCP_TIMER(tcp, 9387 tcp_keepalive_killer, 9388 MSEC_TO_TICK(firetime)); 9389 tcp->tcp_ka_last_intrvl = firetime; 9390 return; 9391 } 9392 } 9393 } else { 9394 tcp->tcp_ka_last_intrvl = 0; 9395 } 9396 9397 /* firetime can be negative if (mp1 == NULL || mp == NULL) */ 9398 if ((firetime = ka_intrvl - idletime) < 0) { 9399 firetime = ka_intrvl; 9400 } 9401 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 9402 MSEC_TO_TICK(firetime)); 9403 } 9404 9405 int 9406 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk) 9407 { 9408 queue_t *q = tcp->tcp_rq; 9409 int32_t mss = tcp->tcp_mss; 9410 int maxpsz; 9411 9412 if (TCP_IS_DETACHED(tcp)) 9413 return (mss); 9414 9415 if (tcp->tcp_fused) { 9416 maxpsz = tcp_fuse_maxpsz_set(tcp); 9417 mss = INFPSZ; 9418 } else if (tcp->tcp_mdt || tcp->tcp_lso || tcp->tcp_maxpsz == 0) { 9419 /* 9420 * Set the sd_qn_maxpsz according to the socket send buffer 9421 * size, and sd_maxblk to INFPSZ (-1). This will essentially 9422 * instruct the stream head to copyin user data into contiguous 9423 * kernel-allocated buffers without breaking it up into smaller 9424 * chunks. We round up the buffer size to the nearest SMSS. 9425 */ 9426 maxpsz = MSS_ROUNDUP(tcp->tcp_xmit_hiwater, mss); 9427 if (tcp->tcp_kssl_ctx == NULL) 9428 mss = INFPSZ; 9429 else 9430 mss = SSL3_MAX_RECORD_LEN; 9431 } else { 9432 /* 9433 * Set sd_qn_maxpsz to approx half the (receivers) buffer 9434 * (and a multiple of the mss). This instructs the stream 9435 * head to break down larger than SMSS writes into SMSS- 9436 * size mblks, up to tcp_maxpsz_multiplier mblks at a time. 9437 */ 9438 maxpsz = tcp->tcp_maxpsz * mss; 9439 if (maxpsz > tcp->tcp_xmit_hiwater/2) { 9440 maxpsz = tcp->tcp_xmit_hiwater/2; 9441 /* Round up to nearest mss */ 9442 maxpsz = MSS_ROUNDUP(maxpsz, mss); 9443 } 9444 } 9445 (void) setmaxps(q, maxpsz); 9446 tcp->tcp_wq->q_maxpsz = maxpsz; 9447 9448 if (set_maxblk) 9449 (void) mi_set_sth_maxblk(q, mss); 9450 9451 return (mss); 9452 } 9453 9454 /* 9455 * Extract option values from a tcp header. We put any found values into the 9456 * tcpopt struct and return a bitmask saying which options were found. 9457 */ 9458 static int 9459 tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt) 9460 { 9461 uchar_t *endp; 9462 int len; 9463 uint32_t mss; 9464 uchar_t *up = (uchar_t *)tcph; 9465 int found = 0; 9466 int32_t sack_len; 9467 tcp_seq sack_begin, sack_end; 9468 tcp_t *tcp; 9469 9470 endp = up + TCP_HDR_LENGTH(tcph); 9471 up += TCP_MIN_HEADER_LENGTH; 9472 while (up < endp) { 9473 len = endp - up; 9474 switch (*up) { 9475 case TCPOPT_EOL: 9476 break; 9477 9478 case TCPOPT_NOP: 9479 up++; 9480 continue; 9481 9482 case TCPOPT_MAXSEG: 9483 if (len < TCPOPT_MAXSEG_LEN || 9484 up[1] != TCPOPT_MAXSEG_LEN) 9485 break; 9486 9487 mss = BE16_TO_U16(up+2); 9488 /* Caller must handle tcp_mss_min and tcp_mss_max_* */ 9489 tcpopt->tcp_opt_mss = mss; 9490 found |= TCP_OPT_MSS_PRESENT; 9491 9492 up += TCPOPT_MAXSEG_LEN; 9493 continue; 9494 9495 case TCPOPT_WSCALE: 9496 if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN) 9497 break; 9498 9499 if (up[2] > TCP_MAX_WINSHIFT) 9500 tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT; 9501 else 9502 tcpopt->tcp_opt_wscale = up[2]; 9503 found |= TCP_OPT_WSCALE_PRESENT; 9504 9505 up += TCPOPT_WS_LEN; 9506 continue; 9507 9508 case TCPOPT_SACK_PERMITTED: 9509 if (len < TCPOPT_SACK_OK_LEN || 9510 up[1] != TCPOPT_SACK_OK_LEN) 9511 break; 9512 found |= TCP_OPT_SACK_OK_PRESENT; 9513 up += TCPOPT_SACK_OK_LEN; 9514 continue; 9515 9516 case TCPOPT_SACK: 9517 if (len <= 2 || up[1] <= 2 || len < up[1]) 9518 break; 9519 9520 /* If TCP is not interested in SACK blks... */ 9521 if ((tcp = tcpopt->tcp) == NULL) { 9522 up += up[1]; 9523 continue; 9524 } 9525 sack_len = up[1] - TCPOPT_HEADER_LEN; 9526 up += TCPOPT_HEADER_LEN; 9527 9528 /* 9529 * If the list is empty, allocate one and assume 9530 * nothing is sack'ed. 9531 */ 9532 ASSERT(tcp->tcp_sack_info != NULL); 9533 if (tcp->tcp_notsack_list == NULL) { 9534 tcp_notsack_update(&(tcp->tcp_notsack_list), 9535 tcp->tcp_suna, tcp->tcp_snxt, 9536 &(tcp->tcp_num_notsack_blk), 9537 &(tcp->tcp_cnt_notsack_list)); 9538 9539 /* 9540 * Make sure tcp_notsack_list is not NULL. 9541 * This happens when kmem_alloc(KM_NOSLEEP) 9542 * returns NULL. 9543 */ 9544 if (tcp->tcp_notsack_list == NULL) { 9545 up += sack_len; 9546 continue; 9547 } 9548 tcp->tcp_fack = tcp->tcp_suna; 9549 } 9550 9551 while (sack_len > 0) { 9552 if (up + 8 > endp) { 9553 up = endp; 9554 break; 9555 } 9556 sack_begin = BE32_TO_U32(up); 9557 up += 4; 9558 sack_end = BE32_TO_U32(up); 9559 up += 4; 9560 sack_len -= 8; 9561 /* 9562 * Bounds checking. Make sure the SACK 9563 * info is within tcp_suna and tcp_snxt. 9564 * If this SACK blk is out of bound, ignore 9565 * it but continue to parse the following 9566 * blks. 9567 */ 9568 if (SEQ_LEQ(sack_end, sack_begin) || 9569 SEQ_LT(sack_begin, tcp->tcp_suna) || 9570 SEQ_GT(sack_end, tcp->tcp_snxt)) { 9571 continue; 9572 } 9573 tcp_notsack_insert(&(tcp->tcp_notsack_list), 9574 sack_begin, sack_end, 9575 &(tcp->tcp_num_notsack_blk), 9576 &(tcp->tcp_cnt_notsack_list)); 9577 if (SEQ_GT(sack_end, tcp->tcp_fack)) { 9578 tcp->tcp_fack = sack_end; 9579 } 9580 } 9581 found |= TCP_OPT_SACK_PRESENT; 9582 continue; 9583 9584 case TCPOPT_TSTAMP: 9585 if (len < TCPOPT_TSTAMP_LEN || 9586 up[1] != TCPOPT_TSTAMP_LEN) 9587 break; 9588 9589 tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2); 9590 tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6); 9591 9592 found |= TCP_OPT_TSTAMP_PRESENT; 9593 9594 up += TCPOPT_TSTAMP_LEN; 9595 continue; 9596 9597 default: 9598 if (len <= 1 || len < (int)up[1] || up[1] == 0) 9599 break; 9600 up += up[1]; 9601 continue; 9602 } 9603 break; 9604 } 9605 return (found); 9606 } 9607 9608 /* 9609 * Set the mss associated with a particular tcp based on its current value, 9610 * and a new one passed in. Observe minimums and maximums, and reset 9611 * other state variables that we want to view as multiples of mss. 9612 * 9613 * This function is called mainly because values like tcp_mss, tcp_cwnd, 9614 * highwater marks etc. need to be initialized or adjusted. 9615 * 1) From tcp_process_options() when the other side's SYN/SYN-ACK 9616 * packet arrives. 9617 * 2) We need to set a new MSS when ICMP_FRAGMENTATION_NEEDED or 9618 * ICMP6_PACKET_TOO_BIG arrives. 9619 * 3) From tcp_paws_check() if the other side stops sending the timestamp, 9620 * to increase the MSS to use the extra bytes available. 9621 * 9622 * Callers except tcp_paws_check() ensure that they only reduce mss. 9623 */ 9624 static void 9625 tcp_mss_set(tcp_t *tcp, uint32_t mss, boolean_t do_ss) 9626 { 9627 uint32_t mss_max; 9628 tcp_stack_t *tcps = tcp->tcp_tcps; 9629 9630 if (tcp->tcp_ipversion == IPV4_VERSION) 9631 mss_max = tcps->tcps_mss_max_ipv4; 9632 else 9633 mss_max = tcps->tcps_mss_max_ipv6; 9634 9635 if (mss < tcps->tcps_mss_min) 9636 mss = tcps->tcps_mss_min; 9637 if (mss > mss_max) 9638 mss = mss_max; 9639 /* 9640 * Unless naglim has been set by our client to 9641 * a non-mss value, force naglim to track mss. 9642 * This can help to aggregate small writes. 9643 */ 9644 if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim) 9645 tcp->tcp_naglim = mss; 9646 /* 9647 * TCP should be able to buffer at least 4 MSS data for obvious 9648 * performance reason. 9649 */ 9650 if ((mss << 2) > tcp->tcp_xmit_hiwater) 9651 tcp->tcp_xmit_hiwater = mss << 2; 9652 9653 if (do_ss) { 9654 /* 9655 * Either the tcp_cwnd is as yet uninitialized, or mss is 9656 * changing due to a reduction in MTU, presumably as a 9657 * result of a new path component, reset cwnd to its 9658 * "initial" value, as a multiple of the new mss. 9659 */ 9660 SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_initial); 9661 } else { 9662 /* 9663 * Called by tcp_paws_check(), the mss increased 9664 * marginally to allow use of space previously taken 9665 * by the timestamp option. It would be inappropriate 9666 * to apply slow start or tcp_init_cwnd values to 9667 * tcp_cwnd, simply adjust to a multiple of the new mss. 9668 */ 9669 tcp->tcp_cwnd = (tcp->tcp_cwnd / tcp->tcp_mss) * mss; 9670 tcp->tcp_cwnd_cnt = 0; 9671 } 9672 tcp->tcp_mss = mss; 9673 (void) tcp_maxpsz_set(tcp, B_TRUE); 9674 } 9675 9676 /* For /dev/tcp aka AF_INET open */ 9677 static int 9678 tcp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9679 { 9680 return (tcp_open(q, devp, flag, sflag, credp, B_FALSE)); 9681 } 9682 9683 /* For /dev/tcp6 aka AF_INET6 open */ 9684 static int 9685 tcp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9686 { 9687 return (tcp_open(q, devp, flag, sflag, credp, B_TRUE)); 9688 } 9689 9690 static int 9691 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 9692 boolean_t isv6) 9693 { 9694 tcp_t *tcp = NULL; 9695 conn_t *connp; 9696 int err; 9697 vmem_t *minor_arena = NULL; 9698 dev_t conn_dev; 9699 zoneid_t zoneid; 9700 tcp_stack_t *tcps = NULL; 9701 9702 if (q->q_ptr != NULL) 9703 return (0); 9704 9705 if (sflag == MODOPEN) 9706 return (EINVAL); 9707 9708 if (!(flag & SO_ACCEPTOR)) { 9709 /* 9710 * Special case for install: miniroot needs to be able to 9711 * access files via NFS as though it were always in the 9712 * global zone. 9713 */ 9714 if (credp == kcred && nfs_global_client_only != 0) { 9715 zoneid = GLOBAL_ZONEID; 9716 tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)-> 9717 netstack_tcp; 9718 ASSERT(tcps != NULL); 9719 } else { 9720 netstack_t *ns; 9721 9722 ns = netstack_find_by_cred(credp); 9723 ASSERT(ns != NULL); 9724 tcps = ns->netstack_tcp; 9725 ASSERT(tcps != NULL); 9726 9727 /* 9728 * For exclusive stacks we set the zoneid to zero 9729 * to make TCP operate as if in the global zone. 9730 */ 9731 if (tcps->tcps_netstack->netstack_stackid != 9732 GLOBAL_NETSTACKID) 9733 zoneid = GLOBAL_ZONEID; 9734 else 9735 zoneid = crgetzoneid(credp); 9736 } 9737 /* 9738 * For stackid zero this is done from strplumb.c, but 9739 * non-zero stackids are handled here. 9740 */ 9741 if (tcps->tcps_g_q == NULL && 9742 tcps->tcps_netstack->netstack_stackid != 9743 GLOBAL_NETSTACKID) { 9744 tcp_g_q_setup(tcps); 9745 } 9746 } 9747 9748 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 9749 ((conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 9750 minor_arena = ip_minor_arena_la; 9751 } else { 9752 /* 9753 * Either minor numbers in the large arena were exhausted 9754 * or a non socket application is doing the open. 9755 * Try to allocate from the small arena. 9756 */ 9757 if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0) { 9758 if (tcps != NULL) 9759 netstack_rele(tcps->tcps_netstack); 9760 return (EBUSY); 9761 } 9762 minor_arena = ip_minor_arena_sa; 9763 } 9764 ASSERT(minor_arena != NULL); 9765 9766 *devp = makedevice(getemajor(*devp), (minor_t)conn_dev); 9767 9768 if (flag & SO_ACCEPTOR) { 9769 /* No netstack_find_by_cred, hence no netstack_rele needed */ 9770 ASSERT(tcps == NULL); 9771 q->q_qinfo = &tcp_acceptor_rinit; 9772 /* 9773 * the conn_dev and minor_arena will be subsequently used by 9774 * tcp_wput_accept() and tcpclose_accept() to figure out the 9775 * minor device number for this connection from the q_ptr. 9776 */ 9777 RD(q)->q_ptr = (void *)conn_dev; 9778 WR(q)->q_qinfo = &tcp_acceptor_winit; 9779 WR(q)->q_ptr = (void *)minor_arena; 9780 qprocson(q); 9781 return (0); 9782 } 9783 9784 connp = (conn_t *)tcp_get_conn(IP_SQUEUE_GET(lbolt), tcps); 9785 /* 9786 * Both tcp_get_conn and netstack_find_by_cred incremented refcnt, 9787 * so we drop it by one. 9788 */ 9789 netstack_rele(tcps->tcps_netstack); 9790 if (connp == NULL) { 9791 inet_minor_free(minor_arena, conn_dev); 9792 q->q_ptr = NULL; 9793 return (ENOSR); 9794 } 9795 connp->conn_sqp = IP_SQUEUE_GET(lbolt); 9796 connp->conn_initial_sqp = connp->conn_sqp; 9797 tcp = connp->conn_tcp; 9798 9799 q->q_ptr = WR(q)->q_ptr = connp; 9800 if (isv6) { 9801 connp->conn_flags |= (IPCL_TCP6|IPCL_ISV6); 9802 connp->conn_send = ip_output_v6; 9803 connp->conn_af_isv6 = B_TRUE; 9804 connp->conn_pkt_isv6 = B_TRUE; 9805 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 9806 tcp->tcp_ipversion = IPV6_VERSION; 9807 tcp->tcp_family = AF_INET6; 9808 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 9809 } else { 9810 connp->conn_flags |= IPCL_TCP4; 9811 connp->conn_send = ip_output; 9812 connp->conn_af_isv6 = B_FALSE; 9813 connp->conn_pkt_isv6 = B_FALSE; 9814 tcp->tcp_ipversion = IPV4_VERSION; 9815 tcp->tcp_family = AF_INET; 9816 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 9817 } 9818 9819 /* 9820 * TCP keeps a copy of cred for cache locality reasons but 9821 * we put a reference only once. If connp->conn_cred 9822 * becomes invalid, tcp_cred should also be set to NULL. 9823 */ 9824 tcp->tcp_cred = connp->conn_cred = credp; 9825 crhold(connp->conn_cred); 9826 tcp->tcp_cpid = curproc->p_pid; 9827 tcp->tcp_open_time = lbolt64; 9828 connp->conn_zoneid = zoneid; 9829 connp->conn_mlp_type = mlptSingle; 9830 connp->conn_ulp_labeled = !is_system_labeled(); 9831 ASSERT(connp->conn_netstack == tcps->tcps_netstack); 9832 ASSERT(tcp->tcp_tcps == tcps); 9833 9834 /* 9835 * If the caller has the process-wide flag set, then default to MAC 9836 * exempt mode. This allows read-down to unlabeled hosts. 9837 */ 9838 if (getpflags(NET_MAC_AWARE, credp) != 0) 9839 connp->conn_mac_exempt = B_TRUE; 9840 9841 connp->conn_dev = conn_dev; 9842 connp->conn_minor_arena = minor_arena; 9843 9844 ASSERT(q->q_qinfo == &tcp_rinitv4 || q->q_qinfo == &tcp_rinitv6); 9845 ASSERT(WR(q)->q_qinfo == &tcp_winit); 9846 9847 if (flag & SO_SOCKSTR) { 9848 /* 9849 * No need to insert a socket in tcp acceptor hash. 9850 * If it was a socket acceptor stream, we dealt with 9851 * it above. A socket listener can never accept a 9852 * connection and doesn't need acceptor_id. 9853 */ 9854 connp->conn_flags |= IPCL_SOCKET; 9855 tcp->tcp_issocket = 1; 9856 WR(q)->q_qinfo = &tcp_sock_winit; 9857 } else { 9858 #ifdef _ILP32 9859 tcp->tcp_acceptor_id = (t_uscalar_t)RD(q); 9860 #else 9861 tcp->tcp_acceptor_id = conn_dev; 9862 #endif /* _ILP32 */ 9863 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 9864 } 9865 9866 err = tcp_init(tcp, q); 9867 if (err != 0) { 9868 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 9869 tcp_acceptor_hash_remove(tcp); 9870 CONN_DEC_REF(connp); 9871 q->q_ptr = WR(q)->q_ptr = NULL; 9872 return (err); 9873 } 9874 9875 RD(q)->q_hiwat = tcps->tcps_recv_hiwat; 9876 tcp->tcp_rwnd = tcps->tcps_recv_hiwat; 9877 9878 /* Non-zero default values */ 9879 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 9880 /* 9881 * Put the ref for TCP. Ref for IP was already put 9882 * by ipcl_conn_create. Also Make the conn_t globally 9883 * visible to walkers 9884 */ 9885 mutex_enter(&connp->conn_lock); 9886 CONN_INC_REF_LOCKED(connp); 9887 ASSERT(connp->conn_ref == 2); 9888 connp->conn_state_flags &= ~CONN_INCIPIENT; 9889 mutex_exit(&connp->conn_lock); 9890 9891 qprocson(q); 9892 return (0); 9893 } 9894 9895 /* 9896 * Some TCP options can be "set" by requesting them in the option 9897 * buffer. This is needed for XTI feature test though we do not 9898 * allow it in general. We interpret that this mechanism is more 9899 * applicable to OSI protocols and need not be allowed in general. 9900 * This routine filters out options for which it is not allowed (most) 9901 * and lets through those (few) for which it is. [ The XTI interface 9902 * test suite specifics will imply that any XTI_GENERIC level XTI_* if 9903 * ever implemented will have to be allowed here ]. 9904 */ 9905 static boolean_t 9906 tcp_allow_connopt_set(int level, int name) 9907 { 9908 9909 switch (level) { 9910 case IPPROTO_TCP: 9911 switch (name) { 9912 case TCP_NODELAY: 9913 return (B_TRUE); 9914 default: 9915 return (B_FALSE); 9916 } 9917 /*NOTREACHED*/ 9918 default: 9919 return (B_FALSE); 9920 } 9921 /*NOTREACHED*/ 9922 } 9923 9924 /* 9925 * This routine gets default values of certain options whose default 9926 * values are maintained by protocol specific code 9927 */ 9928 /* ARGSUSED */ 9929 int 9930 tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 9931 { 9932 int32_t *i1 = (int32_t *)ptr; 9933 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 9934 9935 switch (level) { 9936 case IPPROTO_TCP: 9937 switch (name) { 9938 case TCP_NOTIFY_THRESHOLD: 9939 *i1 = tcps->tcps_ip_notify_interval; 9940 break; 9941 case TCP_ABORT_THRESHOLD: 9942 *i1 = tcps->tcps_ip_abort_interval; 9943 break; 9944 case TCP_CONN_NOTIFY_THRESHOLD: 9945 *i1 = tcps->tcps_ip_notify_cinterval; 9946 break; 9947 case TCP_CONN_ABORT_THRESHOLD: 9948 *i1 = tcps->tcps_ip_abort_cinterval; 9949 break; 9950 default: 9951 return (-1); 9952 } 9953 break; 9954 case IPPROTO_IP: 9955 switch (name) { 9956 case IP_TTL: 9957 *i1 = tcps->tcps_ipv4_ttl; 9958 break; 9959 default: 9960 return (-1); 9961 } 9962 break; 9963 case IPPROTO_IPV6: 9964 switch (name) { 9965 case IPV6_UNICAST_HOPS: 9966 *i1 = tcps->tcps_ipv6_hoplimit; 9967 break; 9968 default: 9969 return (-1); 9970 } 9971 break; 9972 default: 9973 return (-1); 9974 } 9975 return (sizeof (int)); 9976 } 9977 9978 9979 /* 9980 * TCP routine to get the values of options. 9981 */ 9982 int 9983 tcp_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 9984 { 9985 int *i1 = (int *)ptr; 9986 conn_t *connp = Q_TO_CONN(q); 9987 tcp_t *tcp = connp->conn_tcp; 9988 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 9989 9990 switch (level) { 9991 case SOL_SOCKET: 9992 switch (name) { 9993 case SO_LINGER: { 9994 struct linger *lgr = (struct linger *)ptr; 9995 9996 lgr->l_onoff = tcp->tcp_linger ? SO_LINGER : 0; 9997 lgr->l_linger = tcp->tcp_lingertime; 9998 } 9999 return (sizeof (struct linger)); 10000 case SO_DEBUG: 10001 *i1 = tcp->tcp_debug ? SO_DEBUG : 0; 10002 break; 10003 case SO_KEEPALIVE: 10004 *i1 = tcp->tcp_ka_enabled ? SO_KEEPALIVE : 0; 10005 break; 10006 case SO_DONTROUTE: 10007 *i1 = tcp->tcp_dontroute ? SO_DONTROUTE : 0; 10008 break; 10009 case SO_USELOOPBACK: 10010 *i1 = tcp->tcp_useloopback ? SO_USELOOPBACK : 0; 10011 break; 10012 case SO_BROADCAST: 10013 *i1 = tcp->tcp_broadcast ? SO_BROADCAST : 0; 10014 break; 10015 case SO_REUSEADDR: 10016 *i1 = tcp->tcp_reuseaddr ? SO_REUSEADDR : 0; 10017 break; 10018 case SO_OOBINLINE: 10019 *i1 = tcp->tcp_oobinline ? SO_OOBINLINE : 0; 10020 break; 10021 case SO_DGRAM_ERRIND: 10022 *i1 = tcp->tcp_dgram_errind ? SO_DGRAM_ERRIND : 0; 10023 break; 10024 case SO_TYPE: 10025 *i1 = SOCK_STREAM; 10026 break; 10027 case SO_SNDBUF: 10028 *i1 = tcp->tcp_xmit_hiwater; 10029 break; 10030 case SO_RCVBUF: 10031 *i1 = RD(q)->q_hiwat; 10032 break; 10033 case SO_SND_COPYAVOID: 10034 *i1 = tcp->tcp_snd_zcopy_on ? 10035 SO_SND_COPYAVOID : 0; 10036 break; 10037 case SO_ALLZONES: 10038 *i1 = connp->conn_allzones ? 1 : 0; 10039 break; 10040 case SO_ANON_MLP: 10041 *i1 = connp->conn_anon_mlp; 10042 break; 10043 case SO_MAC_EXEMPT: 10044 *i1 = connp->conn_mac_exempt; 10045 break; 10046 case SO_EXCLBIND: 10047 *i1 = tcp->tcp_exclbind ? SO_EXCLBIND : 0; 10048 break; 10049 case SO_PROTOTYPE: 10050 *i1 = IPPROTO_TCP; 10051 break; 10052 case SO_DOMAIN: 10053 *i1 = tcp->tcp_family; 10054 break; 10055 default: 10056 return (-1); 10057 } 10058 break; 10059 case IPPROTO_TCP: 10060 switch (name) { 10061 case TCP_NODELAY: 10062 *i1 = (tcp->tcp_naglim == 1) ? TCP_NODELAY : 0; 10063 break; 10064 case TCP_MAXSEG: 10065 *i1 = tcp->tcp_mss; 10066 break; 10067 case TCP_NOTIFY_THRESHOLD: 10068 *i1 = (int)tcp->tcp_first_timer_threshold; 10069 break; 10070 case TCP_ABORT_THRESHOLD: 10071 *i1 = tcp->tcp_second_timer_threshold; 10072 break; 10073 case TCP_CONN_NOTIFY_THRESHOLD: 10074 *i1 = tcp->tcp_first_ctimer_threshold; 10075 break; 10076 case TCP_CONN_ABORT_THRESHOLD: 10077 *i1 = tcp->tcp_second_ctimer_threshold; 10078 break; 10079 case TCP_RECVDSTADDR: 10080 *i1 = tcp->tcp_recvdstaddr; 10081 break; 10082 case TCP_ANONPRIVBIND: 10083 *i1 = tcp->tcp_anon_priv_bind; 10084 break; 10085 case TCP_EXCLBIND: 10086 *i1 = tcp->tcp_exclbind ? TCP_EXCLBIND : 0; 10087 break; 10088 case TCP_INIT_CWND: 10089 *i1 = tcp->tcp_init_cwnd; 10090 break; 10091 case TCP_KEEPALIVE_THRESHOLD: 10092 *i1 = tcp->tcp_ka_interval; 10093 break; 10094 case TCP_KEEPALIVE_ABORT_THRESHOLD: 10095 *i1 = tcp->tcp_ka_abort_thres; 10096 break; 10097 case TCP_CORK: 10098 *i1 = tcp->tcp_cork; 10099 break; 10100 default: 10101 return (-1); 10102 } 10103 break; 10104 case IPPROTO_IP: 10105 if (tcp->tcp_family != AF_INET) 10106 return (-1); 10107 switch (name) { 10108 case IP_OPTIONS: 10109 case T_IP_OPTIONS: { 10110 /* 10111 * This is compatible with BSD in that in only return 10112 * the reverse source route with the final destination 10113 * as the last entry. The first 4 bytes of the option 10114 * will contain the final destination. 10115 */ 10116 int opt_len; 10117 10118 opt_len = (char *)tcp->tcp_tcph - (char *)tcp->tcp_ipha; 10119 opt_len -= tcp->tcp_label_len + IP_SIMPLE_HDR_LENGTH; 10120 ASSERT(opt_len >= 0); 10121 /* Caller ensures enough space */ 10122 if (opt_len > 0) { 10123 /* 10124 * TODO: Do we have to handle getsockopt on an 10125 * initiator as well? 10126 */ 10127 return (ip_opt_get_user(tcp->tcp_ipha, ptr)); 10128 } 10129 return (0); 10130 } 10131 case IP_TOS: 10132 case T_IP_TOS: 10133 *i1 = (int)tcp->tcp_ipha->ipha_type_of_service; 10134 break; 10135 case IP_TTL: 10136 *i1 = (int)tcp->tcp_ipha->ipha_ttl; 10137 break; 10138 case IP_NEXTHOP: 10139 /* Handled at IP level */ 10140 return (-EINVAL); 10141 default: 10142 return (-1); 10143 } 10144 break; 10145 case IPPROTO_IPV6: 10146 /* 10147 * IPPROTO_IPV6 options are only supported for sockets 10148 * that are using IPv6 on the wire. 10149 */ 10150 if (tcp->tcp_ipversion != IPV6_VERSION) { 10151 return (-1); 10152 } 10153 switch (name) { 10154 case IPV6_UNICAST_HOPS: 10155 *i1 = (unsigned int) tcp->tcp_ip6h->ip6_hops; 10156 break; /* goto sizeof (int) option return */ 10157 case IPV6_BOUND_IF: 10158 /* Zero if not set */ 10159 *i1 = tcp->tcp_bound_if; 10160 break; /* goto sizeof (int) option return */ 10161 case IPV6_RECVPKTINFO: 10162 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) 10163 *i1 = 1; 10164 else 10165 *i1 = 0; 10166 break; /* goto sizeof (int) option return */ 10167 case IPV6_RECVTCLASS: 10168 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS) 10169 *i1 = 1; 10170 else 10171 *i1 = 0; 10172 break; /* goto sizeof (int) option return */ 10173 case IPV6_RECVHOPLIMIT: 10174 if (tcp->tcp_ipv6_recvancillary & 10175 TCP_IPV6_RECVHOPLIMIT) 10176 *i1 = 1; 10177 else 10178 *i1 = 0; 10179 break; /* goto sizeof (int) option return */ 10180 case IPV6_RECVHOPOPTS: 10181 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) 10182 *i1 = 1; 10183 else 10184 *i1 = 0; 10185 break; /* goto sizeof (int) option return */ 10186 case IPV6_RECVDSTOPTS: 10187 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVDSTOPTS) 10188 *i1 = 1; 10189 else 10190 *i1 = 0; 10191 break; /* goto sizeof (int) option return */ 10192 case _OLD_IPV6_RECVDSTOPTS: 10193 if (tcp->tcp_ipv6_recvancillary & 10194 TCP_OLD_IPV6_RECVDSTOPTS) 10195 *i1 = 1; 10196 else 10197 *i1 = 0; 10198 break; /* goto sizeof (int) option return */ 10199 case IPV6_RECVRTHDR: 10200 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) 10201 *i1 = 1; 10202 else 10203 *i1 = 0; 10204 break; /* goto sizeof (int) option return */ 10205 case IPV6_RECVRTHDRDSTOPTS: 10206 if (tcp->tcp_ipv6_recvancillary & 10207 TCP_IPV6_RECVRTDSTOPTS) 10208 *i1 = 1; 10209 else 10210 *i1 = 0; 10211 break; /* goto sizeof (int) option return */ 10212 case IPV6_PKTINFO: { 10213 /* XXX assumes that caller has room for max size! */ 10214 struct in6_pktinfo *pkti; 10215 10216 pkti = (struct in6_pktinfo *)ptr; 10217 if (ipp->ipp_fields & IPPF_IFINDEX) 10218 pkti->ipi6_ifindex = ipp->ipp_ifindex; 10219 else 10220 pkti->ipi6_ifindex = 0; 10221 if (ipp->ipp_fields & IPPF_ADDR) 10222 pkti->ipi6_addr = ipp->ipp_addr; 10223 else 10224 pkti->ipi6_addr = ipv6_all_zeros; 10225 return (sizeof (struct in6_pktinfo)); 10226 } 10227 case IPV6_TCLASS: 10228 if (ipp->ipp_fields & IPPF_TCLASS) 10229 *i1 = ipp->ipp_tclass; 10230 else 10231 *i1 = IPV6_FLOW_TCLASS( 10232 IPV6_DEFAULT_VERS_AND_FLOW); 10233 break; /* goto sizeof (int) option return */ 10234 case IPV6_NEXTHOP: { 10235 sin6_t *sin6 = (sin6_t *)ptr; 10236 10237 if (!(ipp->ipp_fields & IPPF_NEXTHOP)) 10238 return (0); 10239 *sin6 = sin6_null; 10240 sin6->sin6_family = AF_INET6; 10241 sin6->sin6_addr = ipp->ipp_nexthop; 10242 return (sizeof (sin6_t)); 10243 } 10244 case IPV6_HOPOPTS: 10245 if (!(ipp->ipp_fields & IPPF_HOPOPTS)) 10246 return (0); 10247 if (ipp->ipp_hopoptslen <= tcp->tcp_label_len) 10248 return (0); 10249 bcopy((char *)ipp->ipp_hopopts + tcp->tcp_label_len, 10250 ptr, ipp->ipp_hopoptslen - tcp->tcp_label_len); 10251 if (tcp->tcp_label_len > 0) { 10252 ptr[0] = ((char *)ipp->ipp_hopopts)[0]; 10253 ptr[1] = (ipp->ipp_hopoptslen - 10254 tcp->tcp_label_len + 7) / 8 - 1; 10255 } 10256 return (ipp->ipp_hopoptslen - tcp->tcp_label_len); 10257 case IPV6_RTHDRDSTOPTS: 10258 if (!(ipp->ipp_fields & IPPF_RTDSTOPTS)) 10259 return (0); 10260 bcopy(ipp->ipp_rtdstopts, ptr, ipp->ipp_rtdstoptslen); 10261 return (ipp->ipp_rtdstoptslen); 10262 case IPV6_RTHDR: 10263 if (!(ipp->ipp_fields & IPPF_RTHDR)) 10264 return (0); 10265 bcopy(ipp->ipp_rthdr, ptr, ipp->ipp_rthdrlen); 10266 return (ipp->ipp_rthdrlen); 10267 case IPV6_DSTOPTS: 10268 if (!(ipp->ipp_fields & IPPF_DSTOPTS)) 10269 return (0); 10270 bcopy(ipp->ipp_dstopts, ptr, ipp->ipp_dstoptslen); 10271 return (ipp->ipp_dstoptslen); 10272 case IPV6_SRC_PREFERENCES: 10273 return (ip6_get_src_preferences(connp, 10274 (uint32_t *)ptr)); 10275 case IPV6_PATHMTU: { 10276 struct ip6_mtuinfo *mtuinfo = (struct ip6_mtuinfo *)ptr; 10277 10278 if (tcp->tcp_state < TCPS_ESTABLISHED) 10279 return (-1); 10280 10281 return (ip_fill_mtuinfo(&connp->conn_remv6, 10282 connp->conn_fport, mtuinfo, 10283 connp->conn_netstack)); 10284 } 10285 default: 10286 return (-1); 10287 } 10288 break; 10289 default: 10290 return (-1); 10291 } 10292 return (sizeof (int)); 10293 } 10294 10295 /* 10296 * We declare as 'int' rather than 'void' to satisfy pfi_t arg requirements. 10297 * Parameters are assumed to be verified by the caller. 10298 */ 10299 /* ARGSUSED */ 10300 int 10301 tcp_opt_set(queue_t *q, uint_t optset_context, int level, int name, 10302 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 10303 void *thisdg_attrs, cred_t *cr, mblk_t *mblk) 10304 { 10305 conn_t *connp = Q_TO_CONN(q); 10306 tcp_t *tcp = connp->conn_tcp; 10307 int *i1 = (int *)invalp; 10308 boolean_t onoff = (*i1 == 0) ? 0 : 1; 10309 boolean_t checkonly; 10310 int reterr; 10311 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 10312 10313 switch (optset_context) { 10314 case SETFN_OPTCOM_CHECKONLY: 10315 checkonly = B_TRUE; 10316 /* 10317 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 10318 * inlen != 0 implies value supplied and 10319 * we have to "pretend" to set it. 10320 * inlen == 0 implies that there is no 10321 * value part in T_CHECK request and just validation 10322 * done elsewhere should be enough, we just return here. 10323 */ 10324 if (inlen == 0) { 10325 *outlenp = 0; 10326 return (0); 10327 } 10328 break; 10329 case SETFN_OPTCOM_NEGOTIATE: 10330 checkonly = B_FALSE; 10331 break; 10332 case SETFN_UD_NEGOTIATE: /* error on conn-oriented transports ? */ 10333 case SETFN_CONN_NEGOTIATE: 10334 checkonly = B_FALSE; 10335 /* 10336 * Negotiating local and "association-related" options 10337 * from other (T_CONN_REQ, T_CONN_RES,T_UNITDATA_REQ) 10338 * primitives is allowed by XTI, but we choose 10339 * to not implement this style negotiation for Internet 10340 * protocols (We interpret it is a must for OSI world but 10341 * optional for Internet protocols) for all options. 10342 * [ Will do only for the few options that enable test 10343 * suites that our XTI implementation of this feature 10344 * works for transports that do allow it ] 10345 */ 10346 if (!tcp_allow_connopt_set(level, name)) { 10347 *outlenp = 0; 10348 return (EINVAL); 10349 } 10350 break; 10351 default: 10352 /* 10353 * We should never get here 10354 */ 10355 *outlenp = 0; 10356 return (EINVAL); 10357 } 10358 10359 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 10360 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 10361 10362 /* 10363 * For TCP, we should have no ancillary data sent down 10364 * (sendmsg isn't supported for SOCK_STREAM), so thisdg_attrs 10365 * has to be zero. 10366 */ 10367 ASSERT(thisdg_attrs == NULL); 10368 10369 /* 10370 * For fixed length options, no sanity check 10371 * of passed in length is done. It is assumed *_optcom_req() 10372 * routines do the right thing. 10373 */ 10374 10375 switch (level) { 10376 case SOL_SOCKET: 10377 switch (name) { 10378 case SO_LINGER: { 10379 struct linger *lgr = (struct linger *)invalp; 10380 10381 if (!checkonly) { 10382 if (lgr->l_onoff) { 10383 tcp->tcp_linger = 1; 10384 tcp->tcp_lingertime = lgr->l_linger; 10385 } else { 10386 tcp->tcp_linger = 0; 10387 tcp->tcp_lingertime = 0; 10388 } 10389 /* struct copy */ 10390 *(struct linger *)outvalp = *lgr; 10391 } else { 10392 if (!lgr->l_onoff) { 10393 ((struct linger *) 10394 outvalp)->l_onoff = 0; 10395 ((struct linger *) 10396 outvalp)->l_linger = 0; 10397 } else { 10398 /* struct copy */ 10399 *(struct linger *)outvalp = *lgr; 10400 } 10401 } 10402 *outlenp = sizeof (struct linger); 10403 return (0); 10404 } 10405 case SO_DEBUG: 10406 if (!checkonly) 10407 tcp->tcp_debug = onoff; 10408 break; 10409 case SO_KEEPALIVE: 10410 if (checkonly) { 10411 /* T_CHECK case */ 10412 break; 10413 } 10414 10415 if (!onoff) { 10416 if (tcp->tcp_ka_enabled) { 10417 if (tcp->tcp_ka_tid != 0) { 10418 (void) TCP_TIMER_CANCEL(tcp, 10419 tcp->tcp_ka_tid); 10420 tcp->tcp_ka_tid = 0; 10421 } 10422 tcp->tcp_ka_enabled = 0; 10423 } 10424 break; 10425 } 10426 if (!tcp->tcp_ka_enabled) { 10427 /* Crank up the keepalive timer */ 10428 tcp->tcp_ka_last_intrvl = 0; 10429 tcp->tcp_ka_tid = TCP_TIMER(tcp, 10430 tcp_keepalive_killer, 10431 MSEC_TO_TICK(tcp->tcp_ka_interval)); 10432 tcp->tcp_ka_enabled = 1; 10433 } 10434 break; 10435 case SO_DONTROUTE: 10436 /* 10437 * SO_DONTROUTE, SO_USELOOPBACK, and SO_BROADCAST are 10438 * only of interest to IP. We track them here only so 10439 * that we can report their current value. 10440 */ 10441 if (!checkonly) { 10442 tcp->tcp_dontroute = onoff; 10443 tcp->tcp_connp->conn_dontroute = onoff; 10444 } 10445 break; 10446 case SO_USELOOPBACK: 10447 if (!checkonly) { 10448 tcp->tcp_useloopback = onoff; 10449 tcp->tcp_connp->conn_loopback = onoff; 10450 } 10451 break; 10452 case SO_BROADCAST: 10453 if (!checkonly) { 10454 tcp->tcp_broadcast = onoff; 10455 tcp->tcp_connp->conn_broadcast = onoff; 10456 } 10457 break; 10458 case SO_REUSEADDR: 10459 if (!checkonly) { 10460 tcp->tcp_reuseaddr = onoff; 10461 tcp->tcp_connp->conn_reuseaddr = onoff; 10462 } 10463 break; 10464 case SO_OOBINLINE: 10465 if (!checkonly) 10466 tcp->tcp_oobinline = onoff; 10467 break; 10468 case SO_DGRAM_ERRIND: 10469 if (!checkonly) 10470 tcp->tcp_dgram_errind = onoff; 10471 break; 10472 case SO_SNDBUF: { 10473 if (*i1 > tcps->tcps_max_buf) { 10474 *outlenp = 0; 10475 return (ENOBUFS); 10476 } 10477 if (checkonly) 10478 break; 10479 10480 tcp->tcp_xmit_hiwater = *i1; 10481 if (tcps->tcps_snd_lowat_fraction != 0) 10482 tcp->tcp_xmit_lowater = 10483 tcp->tcp_xmit_hiwater / 10484 tcps->tcps_snd_lowat_fraction; 10485 (void) tcp_maxpsz_set(tcp, B_TRUE); 10486 /* 10487 * If we are flow-controlled, recheck the condition. 10488 * There are apps that increase SO_SNDBUF size when 10489 * flow-controlled (EWOULDBLOCK), and expect the flow 10490 * control condition to be lifted right away. 10491 */ 10492 mutex_enter(&tcp->tcp_non_sq_lock); 10493 if (tcp->tcp_flow_stopped && 10494 TCP_UNSENT_BYTES(tcp) < tcp->tcp_xmit_hiwater) { 10495 tcp_clrqfull(tcp); 10496 } 10497 mutex_exit(&tcp->tcp_non_sq_lock); 10498 break; 10499 } 10500 case SO_RCVBUF: 10501 if (*i1 > tcps->tcps_max_buf) { 10502 *outlenp = 0; 10503 return (ENOBUFS); 10504 } 10505 /* Silently ignore zero */ 10506 if (!checkonly && *i1 != 0) { 10507 *i1 = MSS_ROUNDUP(*i1, tcp->tcp_mss); 10508 (void) tcp_rwnd_set(tcp, *i1); 10509 } 10510 /* 10511 * XXX should we return the rwnd here 10512 * and tcp_opt_get ? 10513 */ 10514 break; 10515 case SO_SND_COPYAVOID: 10516 if (!checkonly) { 10517 /* we only allow enable at most once for now */ 10518 if (tcp->tcp_loopback || 10519 (tcp->tcp_kssl_ctx != NULL) || 10520 (!tcp->tcp_snd_zcopy_aware && 10521 (onoff != 1 || !tcp_zcopy_check(tcp)))) { 10522 *outlenp = 0; 10523 return (EOPNOTSUPP); 10524 } 10525 tcp->tcp_snd_zcopy_aware = 1; 10526 } 10527 break; 10528 case SO_ALLZONES: 10529 /* Pass option along to IP level for handling */ 10530 return (-EINVAL); 10531 case SO_ANON_MLP: 10532 /* Pass option along to IP level for handling */ 10533 return (-EINVAL); 10534 case SO_MAC_EXEMPT: 10535 /* Pass option along to IP level for handling */ 10536 return (-EINVAL); 10537 case SO_EXCLBIND: 10538 if (!checkonly) 10539 tcp->tcp_exclbind = onoff; 10540 break; 10541 default: 10542 *outlenp = 0; 10543 return (EINVAL); 10544 } 10545 break; 10546 case IPPROTO_TCP: 10547 switch (name) { 10548 case TCP_NODELAY: 10549 if (!checkonly) 10550 tcp->tcp_naglim = *i1 ? 1 : tcp->tcp_mss; 10551 break; 10552 case TCP_NOTIFY_THRESHOLD: 10553 if (!checkonly) 10554 tcp->tcp_first_timer_threshold = *i1; 10555 break; 10556 case TCP_ABORT_THRESHOLD: 10557 if (!checkonly) 10558 tcp->tcp_second_timer_threshold = *i1; 10559 break; 10560 case TCP_CONN_NOTIFY_THRESHOLD: 10561 if (!checkonly) 10562 tcp->tcp_first_ctimer_threshold = *i1; 10563 break; 10564 case TCP_CONN_ABORT_THRESHOLD: 10565 if (!checkonly) 10566 tcp->tcp_second_ctimer_threshold = *i1; 10567 break; 10568 case TCP_RECVDSTADDR: 10569 if (tcp->tcp_state > TCPS_LISTEN) 10570 return (EOPNOTSUPP); 10571 if (!checkonly) 10572 tcp->tcp_recvdstaddr = onoff; 10573 break; 10574 case TCP_ANONPRIVBIND: 10575 if ((reterr = secpolicy_net_privaddr(cr, 0, 10576 IPPROTO_TCP)) != 0) { 10577 *outlenp = 0; 10578 return (reterr); 10579 } 10580 if (!checkonly) { 10581 tcp->tcp_anon_priv_bind = onoff; 10582 } 10583 break; 10584 case TCP_EXCLBIND: 10585 if (!checkonly) 10586 tcp->tcp_exclbind = onoff; 10587 break; /* goto sizeof (int) option return */ 10588 case TCP_INIT_CWND: { 10589 uint32_t init_cwnd = *((uint32_t *)invalp); 10590 10591 if (checkonly) 10592 break; 10593 10594 /* 10595 * Only allow socket with network configuration 10596 * privilege to set the initial cwnd to be larger 10597 * than allowed by RFC 3390. 10598 */ 10599 if (init_cwnd <= MIN(4, MAX(2, 4380 / tcp->tcp_mss))) { 10600 tcp->tcp_init_cwnd = init_cwnd; 10601 break; 10602 } 10603 if ((reterr = secpolicy_ip_config(cr, B_TRUE)) != 0) { 10604 *outlenp = 0; 10605 return (reterr); 10606 } 10607 if (init_cwnd > TCP_MAX_INIT_CWND) { 10608 *outlenp = 0; 10609 return (EINVAL); 10610 } 10611 tcp->tcp_init_cwnd = init_cwnd; 10612 break; 10613 } 10614 case TCP_KEEPALIVE_THRESHOLD: 10615 if (checkonly) 10616 break; 10617 10618 if (*i1 < tcps->tcps_keepalive_interval_low || 10619 *i1 > tcps->tcps_keepalive_interval_high) { 10620 *outlenp = 0; 10621 return (EINVAL); 10622 } 10623 if (*i1 != tcp->tcp_ka_interval) { 10624 tcp->tcp_ka_interval = *i1; 10625 /* 10626 * Check if we need to restart the 10627 * keepalive timer. 10628 */ 10629 if (tcp->tcp_ka_tid != 0) { 10630 ASSERT(tcp->tcp_ka_enabled); 10631 (void) TCP_TIMER_CANCEL(tcp, 10632 tcp->tcp_ka_tid); 10633 tcp->tcp_ka_last_intrvl = 0; 10634 tcp->tcp_ka_tid = TCP_TIMER(tcp, 10635 tcp_keepalive_killer, 10636 MSEC_TO_TICK(tcp->tcp_ka_interval)); 10637 } 10638 } 10639 break; 10640 case TCP_KEEPALIVE_ABORT_THRESHOLD: 10641 if (!checkonly) { 10642 if (*i1 < 10643 tcps->tcps_keepalive_abort_interval_low || 10644 *i1 > 10645 tcps->tcps_keepalive_abort_interval_high) { 10646 *outlenp = 0; 10647 return (EINVAL); 10648 } 10649 tcp->tcp_ka_abort_thres = *i1; 10650 } 10651 break; 10652 case TCP_CORK: 10653 if (!checkonly) { 10654 /* 10655 * if tcp->tcp_cork was set and is now 10656 * being unset, we have to make sure that 10657 * the remaining data gets sent out. Also 10658 * unset tcp->tcp_cork so that tcp_wput_data() 10659 * can send data even if it is less than mss 10660 */ 10661 if (tcp->tcp_cork && onoff == 0 && 10662 tcp->tcp_unsent > 0) { 10663 tcp->tcp_cork = B_FALSE; 10664 tcp_wput_data(tcp, NULL, B_FALSE); 10665 } 10666 tcp->tcp_cork = onoff; 10667 } 10668 break; 10669 default: 10670 *outlenp = 0; 10671 return (EINVAL); 10672 } 10673 break; 10674 case IPPROTO_IP: 10675 if (tcp->tcp_family != AF_INET) { 10676 *outlenp = 0; 10677 return (ENOPROTOOPT); 10678 } 10679 switch (name) { 10680 case IP_OPTIONS: 10681 case T_IP_OPTIONS: 10682 reterr = tcp_opt_set_header(tcp, checkonly, 10683 invalp, inlen); 10684 if (reterr) { 10685 *outlenp = 0; 10686 return (reterr); 10687 } 10688 /* OK return - copy input buffer into output buffer */ 10689 if (invalp != outvalp) { 10690 /* don't trust bcopy for identical src/dst */ 10691 bcopy(invalp, outvalp, inlen); 10692 } 10693 *outlenp = inlen; 10694 return (0); 10695 case IP_TOS: 10696 case T_IP_TOS: 10697 if (!checkonly) { 10698 tcp->tcp_ipha->ipha_type_of_service = 10699 (uchar_t)*i1; 10700 tcp->tcp_tos = (uchar_t)*i1; 10701 } 10702 break; 10703 case IP_TTL: 10704 if (!checkonly) { 10705 tcp->tcp_ipha->ipha_ttl = (uchar_t)*i1; 10706 tcp->tcp_ttl = (uchar_t)*i1; 10707 } 10708 break; 10709 case IP_BOUND_IF: 10710 case IP_NEXTHOP: 10711 /* Handled at the IP level */ 10712 return (-EINVAL); 10713 case IP_SEC_OPT: 10714 /* 10715 * We should not allow policy setting after 10716 * we start listening for connections. 10717 */ 10718 if (tcp->tcp_state == TCPS_LISTEN) { 10719 return (EINVAL); 10720 } else { 10721 /* Handled at the IP level */ 10722 return (-EINVAL); 10723 } 10724 default: 10725 *outlenp = 0; 10726 return (EINVAL); 10727 } 10728 break; 10729 case IPPROTO_IPV6: { 10730 ip6_pkt_t *ipp; 10731 10732 /* 10733 * IPPROTO_IPV6 options are only supported for sockets 10734 * that are using IPv6 on the wire. 10735 */ 10736 if (tcp->tcp_ipversion != IPV6_VERSION) { 10737 *outlenp = 0; 10738 return (ENOPROTOOPT); 10739 } 10740 /* 10741 * Only sticky options; no ancillary data 10742 */ 10743 ASSERT(thisdg_attrs == NULL); 10744 ipp = &tcp->tcp_sticky_ipp; 10745 10746 switch (name) { 10747 case IPV6_UNICAST_HOPS: 10748 /* -1 means use default */ 10749 if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) { 10750 *outlenp = 0; 10751 return (EINVAL); 10752 } 10753 if (!checkonly) { 10754 if (*i1 == -1) { 10755 tcp->tcp_ip6h->ip6_hops = 10756 ipp->ipp_unicast_hops = 10757 (uint8_t)tcps->tcps_ipv6_hoplimit; 10758 ipp->ipp_fields &= ~IPPF_UNICAST_HOPS; 10759 /* Pass modified value to IP. */ 10760 *i1 = tcp->tcp_ip6h->ip6_hops; 10761 } else { 10762 tcp->tcp_ip6h->ip6_hops = 10763 ipp->ipp_unicast_hops = 10764 (uint8_t)*i1; 10765 ipp->ipp_fields |= IPPF_UNICAST_HOPS; 10766 } 10767 reterr = tcp_build_hdrs(q, tcp); 10768 if (reterr != 0) 10769 return (reterr); 10770 } 10771 break; 10772 case IPV6_BOUND_IF: 10773 if (!checkonly) { 10774 int error = 0; 10775 10776 tcp->tcp_bound_if = *i1; 10777 error = ip_opt_set_ill(tcp->tcp_connp, *i1, 10778 B_TRUE, checkonly, level, name, mblk); 10779 if (error != 0) { 10780 *outlenp = 0; 10781 return (error); 10782 } 10783 } 10784 break; 10785 /* 10786 * Set boolean switches for ancillary data delivery 10787 */ 10788 case IPV6_RECVPKTINFO: 10789 if (!checkonly) { 10790 if (onoff) 10791 tcp->tcp_ipv6_recvancillary |= 10792 TCP_IPV6_RECVPKTINFO; 10793 else 10794 tcp->tcp_ipv6_recvancillary &= 10795 ~TCP_IPV6_RECVPKTINFO; 10796 /* Force it to be sent up with the next msg */ 10797 tcp->tcp_recvifindex = 0; 10798 } 10799 break; 10800 case IPV6_RECVTCLASS: 10801 if (!checkonly) { 10802 if (onoff) 10803 tcp->tcp_ipv6_recvancillary |= 10804 TCP_IPV6_RECVTCLASS; 10805 else 10806 tcp->tcp_ipv6_recvancillary &= 10807 ~TCP_IPV6_RECVTCLASS; 10808 } 10809 break; 10810 case IPV6_RECVHOPLIMIT: 10811 if (!checkonly) { 10812 if (onoff) 10813 tcp->tcp_ipv6_recvancillary |= 10814 TCP_IPV6_RECVHOPLIMIT; 10815 else 10816 tcp->tcp_ipv6_recvancillary &= 10817 ~TCP_IPV6_RECVHOPLIMIT; 10818 /* Force it to be sent up with the next msg */ 10819 tcp->tcp_recvhops = 0xffffffffU; 10820 } 10821 break; 10822 case IPV6_RECVHOPOPTS: 10823 if (!checkonly) { 10824 if (onoff) 10825 tcp->tcp_ipv6_recvancillary |= 10826 TCP_IPV6_RECVHOPOPTS; 10827 else 10828 tcp->tcp_ipv6_recvancillary &= 10829 ~TCP_IPV6_RECVHOPOPTS; 10830 } 10831 break; 10832 case IPV6_RECVDSTOPTS: 10833 if (!checkonly) { 10834 if (onoff) 10835 tcp->tcp_ipv6_recvancillary |= 10836 TCP_IPV6_RECVDSTOPTS; 10837 else 10838 tcp->tcp_ipv6_recvancillary &= 10839 ~TCP_IPV6_RECVDSTOPTS; 10840 } 10841 break; 10842 case _OLD_IPV6_RECVDSTOPTS: 10843 if (!checkonly) { 10844 if (onoff) 10845 tcp->tcp_ipv6_recvancillary |= 10846 TCP_OLD_IPV6_RECVDSTOPTS; 10847 else 10848 tcp->tcp_ipv6_recvancillary &= 10849 ~TCP_OLD_IPV6_RECVDSTOPTS; 10850 } 10851 break; 10852 case IPV6_RECVRTHDR: 10853 if (!checkonly) { 10854 if (onoff) 10855 tcp->tcp_ipv6_recvancillary |= 10856 TCP_IPV6_RECVRTHDR; 10857 else 10858 tcp->tcp_ipv6_recvancillary &= 10859 ~TCP_IPV6_RECVRTHDR; 10860 } 10861 break; 10862 case IPV6_RECVRTHDRDSTOPTS: 10863 if (!checkonly) { 10864 if (onoff) 10865 tcp->tcp_ipv6_recvancillary |= 10866 TCP_IPV6_RECVRTDSTOPTS; 10867 else 10868 tcp->tcp_ipv6_recvancillary &= 10869 ~TCP_IPV6_RECVRTDSTOPTS; 10870 } 10871 break; 10872 case IPV6_PKTINFO: 10873 if (inlen != 0 && inlen != sizeof (struct in6_pktinfo)) 10874 return (EINVAL); 10875 if (checkonly) 10876 break; 10877 10878 if (inlen == 0) { 10879 ipp->ipp_fields &= ~(IPPF_IFINDEX|IPPF_ADDR); 10880 } else { 10881 struct in6_pktinfo *pkti; 10882 10883 pkti = (struct in6_pktinfo *)invalp; 10884 /* 10885 * RFC 3542 states that ipi6_addr must be 10886 * the unspecified address when setting the 10887 * IPV6_PKTINFO sticky socket option on a 10888 * TCP socket. 10889 */ 10890 if (!IN6_IS_ADDR_UNSPECIFIED(&pkti->ipi6_addr)) 10891 return (EINVAL); 10892 /* 10893 * ip6_set_pktinfo() validates the source 10894 * address and interface index. 10895 */ 10896 reterr = ip6_set_pktinfo(cr, tcp->tcp_connp, 10897 pkti, mblk); 10898 if (reterr != 0) 10899 return (reterr); 10900 ipp->ipp_ifindex = pkti->ipi6_ifindex; 10901 ipp->ipp_addr = pkti->ipi6_addr; 10902 if (ipp->ipp_ifindex != 0) 10903 ipp->ipp_fields |= IPPF_IFINDEX; 10904 else 10905 ipp->ipp_fields &= ~IPPF_IFINDEX; 10906 if (!IN6_IS_ADDR_UNSPECIFIED(&ipp->ipp_addr)) 10907 ipp->ipp_fields |= IPPF_ADDR; 10908 else 10909 ipp->ipp_fields &= ~IPPF_ADDR; 10910 } 10911 reterr = tcp_build_hdrs(q, tcp); 10912 if (reterr != 0) 10913 return (reterr); 10914 break; 10915 case IPV6_TCLASS: 10916 if (inlen != 0 && inlen != sizeof (int)) 10917 return (EINVAL); 10918 if (checkonly) 10919 break; 10920 10921 if (inlen == 0) { 10922 ipp->ipp_fields &= ~IPPF_TCLASS; 10923 } else { 10924 if (*i1 > 255 || *i1 < -1) 10925 return (EINVAL); 10926 if (*i1 == -1) { 10927 ipp->ipp_tclass = 0; 10928 *i1 = 0; 10929 } else { 10930 ipp->ipp_tclass = *i1; 10931 } 10932 ipp->ipp_fields |= IPPF_TCLASS; 10933 } 10934 reterr = tcp_build_hdrs(q, tcp); 10935 if (reterr != 0) 10936 return (reterr); 10937 break; 10938 case IPV6_NEXTHOP: 10939 /* 10940 * IP will verify that the nexthop is reachable 10941 * and fail for sticky options. 10942 */ 10943 if (inlen != 0 && inlen != sizeof (sin6_t)) 10944 return (EINVAL); 10945 if (checkonly) 10946 break; 10947 10948 if (inlen == 0) { 10949 ipp->ipp_fields &= ~IPPF_NEXTHOP; 10950 } else { 10951 sin6_t *sin6 = (sin6_t *)invalp; 10952 10953 if (sin6->sin6_family != AF_INET6) 10954 return (EAFNOSUPPORT); 10955 if (IN6_IS_ADDR_V4MAPPED( 10956 &sin6->sin6_addr)) 10957 return (EADDRNOTAVAIL); 10958 ipp->ipp_nexthop = sin6->sin6_addr; 10959 if (!IN6_IS_ADDR_UNSPECIFIED( 10960 &ipp->ipp_nexthop)) 10961 ipp->ipp_fields |= IPPF_NEXTHOP; 10962 else 10963 ipp->ipp_fields &= ~IPPF_NEXTHOP; 10964 } 10965 reterr = tcp_build_hdrs(q, tcp); 10966 if (reterr != 0) 10967 return (reterr); 10968 break; 10969 case IPV6_HOPOPTS: { 10970 ip6_hbh_t *hopts = (ip6_hbh_t *)invalp; 10971 10972 /* 10973 * Sanity checks - minimum size, size a multiple of 10974 * eight bytes, and matching size passed in. 10975 */ 10976 if (inlen != 0 && 10977 inlen != (8 * (hopts->ip6h_len + 1))) 10978 return (EINVAL); 10979 10980 if (checkonly) 10981 break; 10982 10983 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10984 (uchar_t **)&ipp->ipp_hopopts, 10985 &ipp->ipp_hopoptslen, tcp->tcp_label_len); 10986 if (reterr != 0) 10987 return (reterr); 10988 if (ipp->ipp_hopoptslen == 0) 10989 ipp->ipp_fields &= ~IPPF_HOPOPTS; 10990 else 10991 ipp->ipp_fields |= IPPF_HOPOPTS; 10992 reterr = tcp_build_hdrs(q, tcp); 10993 if (reterr != 0) 10994 return (reterr); 10995 break; 10996 } 10997 case IPV6_RTHDRDSTOPTS: { 10998 ip6_dest_t *dopts = (ip6_dest_t *)invalp; 10999 11000 /* 11001 * Sanity checks - minimum size, size a multiple of 11002 * eight bytes, and matching size passed in. 11003 */ 11004 if (inlen != 0 && 11005 inlen != (8 * (dopts->ip6d_len + 1))) 11006 return (EINVAL); 11007 11008 if (checkonly) 11009 break; 11010 11011 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 11012 (uchar_t **)&ipp->ipp_rtdstopts, 11013 &ipp->ipp_rtdstoptslen, 0); 11014 if (reterr != 0) 11015 return (reterr); 11016 if (ipp->ipp_rtdstoptslen == 0) 11017 ipp->ipp_fields &= ~IPPF_RTDSTOPTS; 11018 else 11019 ipp->ipp_fields |= IPPF_RTDSTOPTS; 11020 reterr = tcp_build_hdrs(q, tcp); 11021 if (reterr != 0) 11022 return (reterr); 11023 break; 11024 } 11025 case IPV6_DSTOPTS: { 11026 ip6_dest_t *dopts = (ip6_dest_t *)invalp; 11027 11028 /* 11029 * Sanity checks - minimum size, size a multiple of 11030 * eight bytes, and matching size passed in. 11031 */ 11032 if (inlen != 0 && 11033 inlen != (8 * (dopts->ip6d_len + 1))) 11034 return (EINVAL); 11035 11036 if (checkonly) 11037 break; 11038 11039 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 11040 (uchar_t **)&ipp->ipp_dstopts, 11041 &ipp->ipp_dstoptslen, 0); 11042 if (reterr != 0) 11043 return (reterr); 11044 if (ipp->ipp_dstoptslen == 0) 11045 ipp->ipp_fields &= ~IPPF_DSTOPTS; 11046 else 11047 ipp->ipp_fields |= IPPF_DSTOPTS; 11048 reterr = tcp_build_hdrs(q, tcp); 11049 if (reterr != 0) 11050 return (reterr); 11051 break; 11052 } 11053 case IPV6_RTHDR: { 11054 ip6_rthdr_t *rt = (ip6_rthdr_t *)invalp; 11055 11056 /* 11057 * Sanity checks - minimum size, size a multiple of 11058 * eight bytes, and matching size passed in. 11059 */ 11060 if (inlen != 0 && 11061 inlen != (8 * (rt->ip6r_len + 1))) 11062 return (EINVAL); 11063 11064 if (checkonly) 11065 break; 11066 11067 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 11068 (uchar_t **)&ipp->ipp_rthdr, 11069 &ipp->ipp_rthdrlen, 0); 11070 if (reterr != 0) 11071 return (reterr); 11072 if (ipp->ipp_rthdrlen == 0) 11073 ipp->ipp_fields &= ~IPPF_RTHDR; 11074 else 11075 ipp->ipp_fields |= IPPF_RTHDR; 11076 reterr = tcp_build_hdrs(q, tcp); 11077 if (reterr != 0) 11078 return (reterr); 11079 break; 11080 } 11081 case IPV6_V6ONLY: 11082 if (!checkonly) 11083 tcp->tcp_connp->conn_ipv6_v6only = onoff; 11084 break; 11085 case IPV6_USE_MIN_MTU: 11086 if (inlen != sizeof (int)) 11087 return (EINVAL); 11088 11089 if (*i1 < -1 || *i1 > 1) 11090 return (EINVAL); 11091 11092 if (checkonly) 11093 break; 11094 11095 ipp->ipp_fields |= IPPF_USE_MIN_MTU; 11096 ipp->ipp_use_min_mtu = *i1; 11097 break; 11098 case IPV6_BOUND_PIF: 11099 /* Handled at the IP level */ 11100 return (-EINVAL); 11101 case IPV6_SEC_OPT: 11102 /* 11103 * We should not allow policy setting after 11104 * we start listening for connections. 11105 */ 11106 if (tcp->tcp_state == TCPS_LISTEN) { 11107 return (EINVAL); 11108 } else { 11109 /* Handled at the IP level */ 11110 return (-EINVAL); 11111 } 11112 case IPV6_SRC_PREFERENCES: 11113 if (inlen != sizeof (uint32_t)) 11114 return (EINVAL); 11115 reterr = ip6_set_src_preferences(tcp->tcp_connp, 11116 *(uint32_t *)invalp); 11117 if (reterr != 0) { 11118 *outlenp = 0; 11119 return (reterr); 11120 } 11121 break; 11122 default: 11123 *outlenp = 0; 11124 return (EINVAL); 11125 } 11126 break; 11127 } /* end IPPROTO_IPV6 */ 11128 default: 11129 *outlenp = 0; 11130 return (EINVAL); 11131 } 11132 /* 11133 * Common case of OK return with outval same as inval 11134 */ 11135 if (invalp != outvalp) { 11136 /* don't trust bcopy for identical src/dst */ 11137 (void) bcopy(invalp, outvalp, inlen); 11138 } 11139 *outlenp = inlen; 11140 return (0); 11141 } 11142 11143 /* 11144 * Update tcp_sticky_hdrs based on tcp_sticky_ipp. 11145 * The headers include ip6i_t (if needed), ip6_t, any sticky extension 11146 * headers, and the maximum size tcp header (to avoid reallocation 11147 * on the fly for additional tcp options). 11148 * Returns failure if can't allocate memory. 11149 */ 11150 static int 11151 tcp_build_hdrs(queue_t *q, tcp_t *tcp) 11152 { 11153 char *hdrs; 11154 uint_t hdrs_len; 11155 ip6i_t *ip6i; 11156 char buf[TCP_MAX_HDR_LENGTH]; 11157 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 11158 in6_addr_t src, dst; 11159 tcp_stack_t *tcps = tcp->tcp_tcps; 11160 11161 /* 11162 * save the existing tcp header and source/dest IP addresses 11163 */ 11164 bcopy(tcp->tcp_tcph, buf, tcp->tcp_tcp_hdr_len); 11165 src = tcp->tcp_ip6h->ip6_src; 11166 dst = tcp->tcp_ip6h->ip6_dst; 11167 hdrs_len = ip_total_hdrs_len_v6(ipp) + TCP_MAX_HDR_LENGTH; 11168 ASSERT(hdrs_len != 0); 11169 if (hdrs_len > tcp->tcp_iphc_len) { 11170 /* Need to reallocate */ 11171 hdrs = kmem_zalloc(hdrs_len, KM_NOSLEEP); 11172 if (hdrs == NULL) 11173 return (ENOMEM); 11174 if (tcp->tcp_iphc != NULL) { 11175 if (tcp->tcp_hdr_grown) { 11176 kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len); 11177 } else { 11178 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 11179 kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc); 11180 } 11181 tcp->tcp_iphc_len = 0; 11182 } 11183 ASSERT(tcp->tcp_iphc_len == 0); 11184 tcp->tcp_iphc = hdrs; 11185 tcp->tcp_iphc_len = hdrs_len; 11186 tcp->tcp_hdr_grown = B_TRUE; 11187 } 11188 ip_build_hdrs_v6((uchar_t *)tcp->tcp_iphc, 11189 hdrs_len - TCP_MAX_HDR_LENGTH, ipp, IPPROTO_TCP); 11190 11191 /* Set header fields not in ipp */ 11192 if (ipp->ipp_fields & IPPF_HAS_IP6I) { 11193 ip6i = (ip6i_t *)tcp->tcp_iphc; 11194 tcp->tcp_ip6h = (ip6_t *)&ip6i[1]; 11195 } else { 11196 tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc; 11197 } 11198 /* 11199 * tcp->tcp_ip_hdr_len will include ip6i_t if there is one. 11200 * 11201 * tcp->tcp_tcp_hdr_len doesn't change here. 11202 */ 11203 tcp->tcp_ip_hdr_len = hdrs_len - TCP_MAX_HDR_LENGTH; 11204 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + tcp->tcp_ip_hdr_len); 11205 tcp->tcp_hdr_len = tcp->tcp_ip_hdr_len + tcp->tcp_tcp_hdr_len; 11206 11207 bcopy(buf, tcp->tcp_tcph, tcp->tcp_tcp_hdr_len); 11208 11209 tcp->tcp_ip6h->ip6_src = src; 11210 tcp->tcp_ip6h->ip6_dst = dst; 11211 11212 /* 11213 * If the hop limit was not set by ip_build_hdrs_v6(), set it to 11214 * the default value for TCP. 11215 */ 11216 if (!(ipp->ipp_fields & IPPF_UNICAST_HOPS)) 11217 tcp->tcp_ip6h->ip6_hops = tcps->tcps_ipv6_hoplimit; 11218 11219 /* 11220 * If we're setting extension headers after a connection 11221 * has been established, and if we have a routing header 11222 * among the extension headers, call ip_massage_options_v6 to 11223 * manipulate the routing header/ip6_dst set the checksum 11224 * difference in the tcp header template. 11225 * (This happens in tcp_connect_ipv6 if the routing header 11226 * is set prior to the connect.) 11227 * Set the tcp_sum to zero first in case we've cleared a 11228 * routing header or don't have one at all. 11229 */ 11230 tcp->tcp_sum = 0; 11231 if ((tcp->tcp_state >= TCPS_SYN_SENT) && 11232 (tcp->tcp_ipp_fields & IPPF_RTHDR)) { 11233 ip6_rthdr_t *rth = ip_find_rthdr_v6(tcp->tcp_ip6h, 11234 (uint8_t *)tcp->tcp_tcph); 11235 if (rth != NULL) { 11236 tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, 11237 rth, tcps->tcps_netstack); 11238 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 11239 (tcp->tcp_sum >> 16)); 11240 } 11241 } 11242 11243 /* Try to get everything in a single mblk */ 11244 (void) mi_set_sth_wroff(RD(q), hdrs_len + tcps->tcps_wroff_xtra); 11245 return (0); 11246 } 11247 11248 /* 11249 * Transfer any source route option from ipha to buf/dst in reversed form. 11250 */ 11251 static int 11252 tcp_opt_rev_src_route(ipha_t *ipha, char *buf, uchar_t *dst) 11253 { 11254 ipoptp_t opts; 11255 uchar_t *opt; 11256 uint8_t optval; 11257 uint8_t optlen; 11258 uint32_t len = 0; 11259 11260 for (optval = ipoptp_first(&opts, ipha); 11261 optval != IPOPT_EOL; 11262 optval = ipoptp_next(&opts)) { 11263 opt = opts.ipoptp_cur; 11264 optlen = opts.ipoptp_len; 11265 switch (optval) { 11266 int off1, off2; 11267 case IPOPT_SSRR: 11268 case IPOPT_LSRR: 11269 11270 /* Reverse source route */ 11271 /* 11272 * First entry should be the next to last one in the 11273 * current source route (the last entry is our 11274 * address.) 11275 * The last entry should be the final destination. 11276 */ 11277 buf[IPOPT_OPTVAL] = (uint8_t)optval; 11278 buf[IPOPT_OLEN] = (uint8_t)optlen; 11279 off1 = IPOPT_MINOFF_SR - 1; 11280 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 11281 if (off2 < 0) { 11282 /* No entries in source route */ 11283 break; 11284 } 11285 bcopy(opt + off2, dst, IP_ADDR_LEN); 11286 /* 11287 * Note: use src since ipha has not had its src 11288 * and dst reversed (it is in the state it was 11289 * received. 11290 */ 11291 bcopy(&ipha->ipha_src, buf + off2, 11292 IP_ADDR_LEN); 11293 off2 -= IP_ADDR_LEN; 11294 11295 while (off2 > 0) { 11296 bcopy(opt + off2, buf + off1, 11297 IP_ADDR_LEN); 11298 off1 += IP_ADDR_LEN; 11299 off2 -= IP_ADDR_LEN; 11300 } 11301 buf[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 11302 buf += optlen; 11303 len += optlen; 11304 break; 11305 } 11306 } 11307 done: 11308 /* Pad the resulting options */ 11309 while (len & 0x3) { 11310 *buf++ = IPOPT_EOL; 11311 len++; 11312 } 11313 return (len); 11314 } 11315 11316 11317 /* 11318 * Extract and revert a source route from ipha (if any) 11319 * and then update the relevant fields in both tcp_t and the standard header. 11320 */ 11321 static void 11322 tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha) 11323 { 11324 char buf[TCP_MAX_HDR_LENGTH]; 11325 uint_t tcph_len; 11326 int len; 11327 11328 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION); 11329 len = IPH_HDR_LENGTH(ipha); 11330 if (len == IP_SIMPLE_HDR_LENGTH) 11331 /* Nothing to do */ 11332 return; 11333 if (len > IP_SIMPLE_HDR_LENGTH + TCP_MAX_IP_OPTIONS_LENGTH || 11334 (len & 0x3)) 11335 return; 11336 11337 tcph_len = tcp->tcp_tcp_hdr_len; 11338 bcopy(tcp->tcp_tcph, buf, tcph_len); 11339 tcp->tcp_sum = (tcp->tcp_ipha->ipha_dst >> 16) + 11340 (tcp->tcp_ipha->ipha_dst & 0xffff); 11341 len = tcp_opt_rev_src_route(ipha, (char *)tcp->tcp_ipha + 11342 IP_SIMPLE_HDR_LENGTH, (uchar_t *)&tcp->tcp_ipha->ipha_dst); 11343 len += IP_SIMPLE_HDR_LENGTH; 11344 tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) + 11345 (tcp->tcp_ipha->ipha_dst & 0xffff)); 11346 if ((int)tcp->tcp_sum < 0) 11347 tcp->tcp_sum--; 11348 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 11349 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16)); 11350 tcp->tcp_tcph = (tcph_t *)((char *)tcp->tcp_ipha + len); 11351 bcopy(buf, tcp->tcp_tcph, tcph_len); 11352 tcp->tcp_ip_hdr_len = len; 11353 tcp->tcp_ipha->ipha_version_and_hdr_length = 11354 (IP_VERSION << 4) | (len >> 2); 11355 len += tcph_len; 11356 tcp->tcp_hdr_len = len; 11357 } 11358 11359 /* 11360 * Copy the standard header into its new location, 11361 * lay in the new options and then update the relevant 11362 * fields in both tcp_t and the standard header. 11363 */ 11364 static int 11365 tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, uchar_t *ptr, uint_t len) 11366 { 11367 uint_t tcph_len; 11368 uint8_t *ip_optp; 11369 tcph_t *new_tcph; 11370 tcp_stack_t *tcps = tcp->tcp_tcps; 11371 11372 if ((len > TCP_MAX_IP_OPTIONS_LENGTH) || (len & 0x3)) 11373 return (EINVAL); 11374 11375 if (len > IP_MAX_OPT_LENGTH - tcp->tcp_label_len) 11376 return (EINVAL); 11377 11378 if (checkonly) { 11379 /* 11380 * do not really set, just pretend to - T_CHECK 11381 */ 11382 return (0); 11383 } 11384 11385 ip_optp = (uint8_t *)tcp->tcp_ipha + IP_SIMPLE_HDR_LENGTH; 11386 if (tcp->tcp_label_len > 0) { 11387 int padlen; 11388 uint8_t opt; 11389 11390 /* convert list termination to no-ops */ 11391 padlen = tcp->tcp_label_len - ip_optp[IPOPT_OLEN]; 11392 ip_optp += ip_optp[IPOPT_OLEN]; 11393 opt = len > 0 ? IPOPT_NOP : IPOPT_EOL; 11394 while (--padlen >= 0) 11395 *ip_optp++ = opt; 11396 } 11397 tcph_len = tcp->tcp_tcp_hdr_len; 11398 new_tcph = (tcph_t *)(ip_optp + len); 11399 ovbcopy(tcp->tcp_tcph, new_tcph, tcph_len); 11400 tcp->tcp_tcph = new_tcph; 11401 bcopy(ptr, ip_optp, len); 11402 11403 len += IP_SIMPLE_HDR_LENGTH + tcp->tcp_label_len; 11404 11405 tcp->tcp_ip_hdr_len = len; 11406 tcp->tcp_ipha->ipha_version_and_hdr_length = 11407 (IP_VERSION << 4) | (len >> 2); 11408 tcp->tcp_hdr_len = len + tcph_len; 11409 if (!TCP_IS_DETACHED(tcp)) { 11410 /* Always allocate room for all options. */ 11411 (void) mi_set_sth_wroff(tcp->tcp_rq, 11412 TCP_MAX_COMBINED_HEADER_LENGTH + tcps->tcps_wroff_xtra); 11413 } 11414 return (0); 11415 } 11416 11417 /* Get callback routine passed to nd_load by tcp_param_register */ 11418 /* ARGSUSED */ 11419 static int 11420 tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 11421 { 11422 tcpparam_t *tcppa = (tcpparam_t *)cp; 11423 11424 (void) mi_mpprintf(mp, "%u", tcppa->tcp_param_val); 11425 return (0); 11426 } 11427 11428 /* 11429 * Walk through the param array specified registering each element with the 11430 * named dispatch handler. 11431 */ 11432 static boolean_t 11433 tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt, tcp_stack_t *tcps) 11434 { 11435 for (; cnt-- > 0; tcppa++) { 11436 if (tcppa->tcp_param_name && tcppa->tcp_param_name[0]) { 11437 if (!nd_load(ndp, tcppa->tcp_param_name, 11438 tcp_param_get, tcp_param_set, 11439 (caddr_t)tcppa)) { 11440 nd_free(ndp); 11441 return (B_FALSE); 11442 } 11443 } 11444 } 11445 tcps->tcps_wroff_xtra_param = kmem_zalloc(sizeof (tcpparam_t), 11446 KM_SLEEP); 11447 bcopy(&lcl_tcp_wroff_xtra_param, tcps->tcps_wroff_xtra_param, 11448 sizeof (tcpparam_t)); 11449 if (!nd_load(ndp, tcps->tcps_wroff_xtra_param->tcp_param_name, 11450 tcp_param_get, tcp_param_set_aligned, 11451 (caddr_t)tcps->tcps_wroff_xtra_param)) { 11452 nd_free(ndp); 11453 return (B_FALSE); 11454 } 11455 tcps->tcps_mdt_head_param = kmem_zalloc(sizeof (tcpparam_t), 11456 KM_SLEEP); 11457 bcopy(&lcl_tcp_mdt_head_param, tcps->tcps_mdt_head_param, 11458 sizeof (tcpparam_t)); 11459 if (!nd_load(ndp, tcps->tcps_mdt_head_param->tcp_param_name, 11460 tcp_param_get, tcp_param_set_aligned, 11461 (caddr_t)tcps->tcps_mdt_head_param)) { 11462 nd_free(ndp); 11463 return (B_FALSE); 11464 } 11465 tcps->tcps_mdt_tail_param = kmem_zalloc(sizeof (tcpparam_t), 11466 KM_SLEEP); 11467 bcopy(&lcl_tcp_mdt_tail_param, tcps->tcps_mdt_tail_param, 11468 sizeof (tcpparam_t)); 11469 if (!nd_load(ndp, tcps->tcps_mdt_tail_param->tcp_param_name, 11470 tcp_param_get, tcp_param_set_aligned, 11471 (caddr_t)tcps->tcps_mdt_tail_param)) { 11472 nd_free(ndp); 11473 return (B_FALSE); 11474 } 11475 tcps->tcps_mdt_max_pbufs_param = kmem_zalloc(sizeof (tcpparam_t), 11476 KM_SLEEP); 11477 bcopy(&lcl_tcp_mdt_max_pbufs_param, tcps->tcps_mdt_max_pbufs_param, 11478 sizeof (tcpparam_t)); 11479 if (!nd_load(ndp, tcps->tcps_mdt_max_pbufs_param->tcp_param_name, 11480 tcp_param_get, tcp_param_set_aligned, 11481 (caddr_t)tcps->tcps_mdt_max_pbufs_param)) { 11482 nd_free(ndp); 11483 return (B_FALSE); 11484 } 11485 if (!nd_load(ndp, "tcp_extra_priv_ports", 11486 tcp_extra_priv_ports_get, NULL, NULL)) { 11487 nd_free(ndp); 11488 return (B_FALSE); 11489 } 11490 if (!nd_load(ndp, "tcp_extra_priv_ports_add", 11491 NULL, tcp_extra_priv_ports_add, NULL)) { 11492 nd_free(ndp); 11493 return (B_FALSE); 11494 } 11495 if (!nd_load(ndp, "tcp_extra_priv_ports_del", 11496 NULL, tcp_extra_priv_ports_del, NULL)) { 11497 nd_free(ndp); 11498 return (B_FALSE); 11499 } 11500 if (!nd_load(ndp, "tcp_status", tcp_status_report, NULL, 11501 NULL)) { 11502 nd_free(ndp); 11503 return (B_FALSE); 11504 } 11505 if (!nd_load(ndp, "tcp_bind_hash", tcp_bind_hash_report, 11506 NULL, NULL)) { 11507 nd_free(ndp); 11508 return (B_FALSE); 11509 } 11510 if (!nd_load(ndp, "tcp_listen_hash", 11511 tcp_listen_hash_report, NULL, NULL)) { 11512 nd_free(ndp); 11513 return (B_FALSE); 11514 } 11515 if (!nd_load(ndp, "tcp_conn_hash", tcp_conn_hash_report, 11516 NULL, NULL)) { 11517 nd_free(ndp); 11518 return (B_FALSE); 11519 } 11520 if (!nd_load(ndp, "tcp_acceptor_hash", 11521 tcp_acceptor_hash_report, NULL, NULL)) { 11522 nd_free(ndp); 11523 return (B_FALSE); 11524 } 11525 if (!nd_load(ndp, "tcp_1948_phrase", NULL, 11526 tcp_1948_phrase_set, NULL)) { 11527 nd_free(ndp); 11528 return (B_FALSE); 11529 } 11530 /* 11531 * Dummy ndd variables - only to convey obsolescence information 11532 * through printing of their name (no get or set routines) 11533 * XXX Remove in future releases ? 11534 */ 11535 if (!nd_load(ndp, 11536 "tcp_close_wait_interval(obsoleted - " 11537 "use tcp_time_wait_interval)", NULL, NULL, NULL)) { 11538 nd_free(ndp); 11539 return (B_FALSE); 11540 } 11541 return (B_TRUE); 11542 } 11543 11544 /* ndd set routine for tcp_wroff_xtra, tcp_mdt_hdr_{head,tail}_min. */ 11545 /* ARGSUSED */ 11546 static int 11547 tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 11548 cred_t *cr) 11549 { 11550 long new_value; 11551 tcpparam_t *tcppa = (tcpparam_t *)cp; 11552 11553 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11554 new_value < tcppa->tcp_param_min || 11555 new_value > tcppa->tcp_param_max) { 11556 return (EINVAL); 11557 } 11558 /* 11559 * Need to make sure new_value is a multiple of 4. If it is not, 11560 * round it up. For future 64 bit requirement, we actually make it 11561 * a multiple of 8. 11562 */ 11563 if (new_value & 0x7) { 11564 new_value = (new_value & ~0x7) + 0x8; 11565 } 11566 tcppa->tcp_param_val = new_value; 11567 return (0); 11568 } 11569 11570 /* Set callback routine passed to nd_load by tcp_param_register */ 11571 /* ARGSUSED */ 11572 static int 11573 tcp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) 11574 { 11575 long new_value; 11576 tcpparam_t *tcppa = (tcpparam_t *)cp; 11577 11578 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11579 new_value < tcppa->tcp_param_min || 11580 new_value > tcppa->tcp_param_max) { 11581 return (EINVAL); 11582 } 11583 tcppa->tcp_param_val = new_value; 11584 return (0); 11585 } 11586 11587 /* 11588 * Add a new piece to the tcp reassembly queue. If the gap at the beginning 11589 * is filled, return as much as we can. The message passed in may be 11590 * multi-part, chained using b_cont. "start" is the starting sequence 11591 * number for this piece. 11592 */ 11593 static mblk_t * 11594 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start) 11595 { 11596 uint32_t end; 11597 mblk_t *mp1; 11598 mblk_t *mp2; 11599 mblk_t *next_mp; 11600 uint32_t u1; 11601 tcp_stack_t *tcps = tcp->tcp_tcps; 11602 11603 /* Walk through all the new pieces. */ 11604 do { 11605 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 11606 (uintptr_t)INT_MAX); 11607 end = start + (int)(mp->b_wptr - mp->b_rptr); 11608 next_mp = mp->b_cont; 11609 if (start == end) { 11610 /* Empty. Blast it. */ 11611 freeb(mp); 11612 continue; 11613 } 11614 mp->b_cont = NULL; 11615 TCP_REASS_SET_SEQ(mp, start); 11616 TCP_REASS_SET_END(mp, end); 11617 mp1 = tcp->tcp_reass_tail; 11618 if (!mp1) { 11619 tcp->tcp_reass_tail = mp; 11620 tcp->tcp_reass_head = mp; 11621 BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs); 11622 UPDATE_MIB(&tcps->tcps_mib, 11623 tcpInDataUnorderBytes, end - start); 11624 continue; 11625 } 11626 /* New stuff completely beyond tail? */ 11627 if (SEQ_GEQ(start, TCP_REASS_END(mp1))) { 11628 /* Link it on end. */ 11629 mp1->b_cont = mp; 11630 tcp->tcp_reass_tail = mp; 11631 BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs); 11632 UPDATE_MIB(&tcps->tcps_mib, 11633 tcpInDataUnorderBytes, end - start); 11634 continue; 11635 } 11636 mp1 = tcp->tcp_reass_head; 11637 u1 = TCP_REASS_SEQ(mp1); 11638 /* New stuff at the front? */ 11639 if (SEQ_LT(start, u1)) { 11640 /* Yes... Check for overlap. */ 11641 mp->b_cont = mp1; 11642 tcp->tcp_reass_head = mp; 11643 tcp_reass_elim_overlap(tcp, mp); 11644 continue; 11645 } 11646 /* 11647 * The new piece fits somewhere between the head and tail. 11648 * We find our slot, where mp1 precedes us and mp2 trails. 11649 */ 11650 for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) { 11651 u1 = TCP_REASS_SEQ(mp2); 11652 if (SEQ_LEQ(start, u1)) 11653 break; 11654 } 11655 /* Link ourselves in */ 11656 mp->b_cont = mp2; 11657 mp1->b_cont = mp; 11658 11659 /* Trim overlap with following mblk(s) first */ 11660 tcp_reass_elim_overlap(tcp, mp); 11661 11662 /* Trim overlap with preceding mblk */ 11663 tcp_reass_elim_overlap(tcp, mp1); 11664 11665 } while (start = end, mp = next_mp); 11666 mp1 = tcp->tcp_reass_head; 11667 /* Anything ready to go? */ 11668 if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt) 11669 return (NULL); 11670 /* Eat what we can off the queue */ 11671 for (;;) { 11672 mp = mp1->b_cont; 11673 end = TCP_REASS_END(mp1); 11674 TCP_REASS_SET_SEQ(mp1, 0); 11675 TCP_REASS_SET_END(mp1, 0); 11676 if (!mp) { 11677 tcp->tcp_reass_tail = NULL; 11678 break; 11679 } 11680 if (end != TCP_REASS_SEQ(mp)) { 11681 mp1->b_cont = NULL; 11682 break; 11683 } 11684 mp1 = mp; 11685 } 11686 mp1 = tcp->tcp_reass_head; 11687 tcp->tcp_reass_head = mp; 11688 return (mp1); 11689 } 11690 11691 /* Eliminate any overlap that mp may have over later mblks */ 11692 static void 11693 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp) 11694 { 11695 uint32_t end; 11696 mblk_t *mp1; 11697 uint32_t u1; 11698 tcp_stack_t *tcps = tcp->tcp_tcps; 11699 11700 end = TCP_REASS_END(mp); 11701 while ((mp1 = mp->b_cont) != NULL) { 11702 u1 = TCP_REASS_SEQ(mp1); 11703 if (!SEQ_GT(end, u1)) 11704 break; 11705 if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) { 11706 mp->b_wptr -= end - u1; 11707 TCP_REASS_SET_END(mp, u1); 11708 BUMP_MIB(&tcps->tcps_mib, tcpInDataPartDupSegs); 11709 UPDATE_MIB(&tcps->tcps_mib, 11710 tcpInDataPartDupBytes, end - u1); 11711 break; 11712 } 11713 mp->b_cont = mp1->b_cont; 11714 TCP_REASS_SET_SEQ(mp1, 0); 11715 TCP_REASS_SET_END(mp1, 0); 11716 freeb(mp1); 11717 BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); 11718 UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, end - u1); 11719 } 11720 if (!mp1) 11721 tcp->tcp_reass_tail = mp; 11722 } 11723 11724 /* 11725 * Send up all messages queued on tcp_rcv_list. 11726 */ 11727 static uint_t 11728 tcp_rcv_drain(queue_t *q, tcp_t *tcp) 11729 { 11730 mblk_t *mp; 11731 uint_t ret = 0; 11732 uint_t thwin; 11733 #ifdef DEBUG 11734 uint_t cnt = 0; 11735 #endif 11736 tcp_stack_t *tcps = tcp->tcp_tcps; 11737 11738 /* Can't drain on an eager connection */ 11739 if (tcp->tcp_listener != NULL) 11740 return (ret); 11741 11742 /* Can't be sodirect enabled */ 11743 ASSERT(SOD_NOT_ENABLED(tcp)); 11744 11745 /* No need for the push timer now. */ 11746 if (tcp->tcp_push_tid != 0) { 11747 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 11748 tcp->tcp_push_tid = 0; 11749 } 11750 11751 /* 11752 * Handle two cases here: we are currently fused or we were 11753 * previously fused and have some urgent data to be delivered 11754 * upstream. The latter happens because we either ran out of 11755 * memory or were detached and therefore sending the SIGURG was 11756 * deferred until this point. In either case we pass control 11757 * over to tcp_fuse_rcv_drain() since it may need to complete 11758 * some work. 11759 */ 11760 if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) { 11761 ASSERT(tcp->tcp_fused_sigurg_mp != NULL); 11762 if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL : 11763 &tcp->tcp_fused_sigurg_mp)) 11764 return (ret); 11765 } 11766 11767 while ((mp = tcp->tcp_rcv_list) != NULL) { 11768 tcp->tcp_rcv_list = mp->b_next; 11769 mp->b_next = NULL; 11770 #ifdef DEBUG 11771 cnt += msgdsize(mp); 11772 #endif 11773 /* Does this need SSL processing first? */ 11774 if ((tcp->tcp_kssl_ctx != NULL) && (DB_TYPE(mp) == M_DATA)) { 11775 DTRACE_PROBE1(kssl_mblk__ksslinput_rcvdrain, 11776 mblk_t *, mp); 11777 tcp_kssl_input(tcp, mp); 11778 continue; 11779 } 11780 putnext(q, mp); 11781 } 11782 ASSERT(cnt == tcp->tcp_rcv_cnt); 11783 tcp->tcp_rcv_last_head = NULL; 11784 tcp->tcp_rcv_last_tail = NULL; 11785 tcp->tcp_rcv_cnt = 0; 11786 11787 /* Learn the latest rwnd information that we sent to the other side. */ 11788 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 11789 << tcp->tcp_rcv_ws; 11790 /* This is peer's calculated send window (our receive window). */ 11791 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 11792 /* 11793 * Increase the receive window to max. But we need to do receiver 11794 * SWS avoidance. This means that we need to check the increase of 11795 * of receive window is at least 1 MSS. 11796 */ 11797 if (canputnext(q) && (q->q_hiwat - thwin >= tcp->tcp_mss)) { 11798 /* 11799 * If the window that the other side knows is less than max 11800 * deferred acks segments, send an update immediately. 11801 */ 11802 if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) { 11803 BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate); 11804 ret = TH_ACK_NEEDED; 11805 } 11806 tcp->tcp_rwnd = q->q_hiwat; 11807 } 11808 return (ret); 11809 } 11810 11811 /* 11812 * Queue data on tcp_rcv_list which is a b_next chain. 11813 * tcp_rcv_last_head/tail is the last element of this chain. 11814 * Each element of the chain is a b_cont chain. 11815 * 11816 * M_DATA messages are added to the current element. 11817 * Other messages are added as new (b_next) elements. 11818 */ 11819 void 11820 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len) 11821 { 11822 ASSERT(seg_len == msgdsize(mp)); 11823 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL); 11824 11825 if (tcp->tcp_rcv_list == NULL) { 11826 ASSERT(tcp->tcp_rcv_last_head == NULL); 11827 tcp->tcp_rcv_list = mp; 11828 tcp->tcp_rcv_last_head = mp; 11829 } else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) { 11830 tcp->tcp_rcv_last_tail->b_cont = mp; 11831 } else { 11832 tcp->tcp_rcv_last_head->b_next = mp; 11833 tcp->tcp_rcv_last_head = mp; 11834 } 11835 11836 while (mp->b_cont) 11837 mp = mp->b_cont; 11838 11839 tcp->tcp_rcv_last_tail = mp; 11840 tcp->tcp_rcv_cnt += seg_len; 11841 tcp->tcp_rwnd -= seg_len; 11842 } 11843 11844 /* 11845 * The tcp_rcv_sod_XXX() functions enqueue data directly to the socket 11846 * above, in addition when uioa is enabled schedule an asynchronous uio 11847 * prior to enqueuing. They implement the combinhed semantics of the 11848 * tcp_rcv_XXX() functions, tcp_rcv_list push logic, and STREAMS putnext() 11849 * canputnext(), i.e. flow-control with backenable. 11850 * 11851 * tcp_sod_wakeup() is called where tcp_rcv_drain() would be called in the 11852 * non sodirect connection but as there are no tcp_tcv_list mblk_t's we deal 11853 * with the rcv_wnd and push timer and call the sodirect wakeup function. 11854 * 11855 * Must be called with sodp->sod_lockp held and will return with the lock 11856 * released. 11857 */ 11858 static uint_t 11859 tcp_rcv_sod_wakeup(tcp_t *tcp, sodirect_t *sodp) 11860 { 11861 queue_t *q = tcp->tcp_rq; 11862 uint_t thwin; 11863 tcp_stack_t *tcps = tcp->tcp_tcps; 11864 uint_t ret = 0; 11865 11866 /* Can't be an eager connection */ 11867 ASSERT(tcp->tcp_listener == NULL); 11868 11869 /* Caller must have lock held */ 11870 ASSERT(MUTEX_HELD(sodp->sod_lockp)); 11871 11872 /* Sodirect mode so must not be a tcp_rcv_list */ 11873 ASSERT(tcp->tcp_rcv_list == NULL); 11874 11875 if (SOD_QFULL(sodp)) { 11876 /* Q is full, mark Q for need backenable */ 11877 SOD_QSETBE(sodp); 11878 } 11879 /* Last advertised rwnd, i.e. rwnd last sent in a packet */ 11880 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 11881 << tcp->tcp_rcv_ws; 11882 /* This is peer's calculated send window (our available rwnd). */ 11883 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 11884 /* 11885 * Increase the receive window to max. But we need to do receiver 11886 * SWS avoidance. This means that we need to check the increase of 11887 * of receive window is at least 1 MSS. 11888 */ 11889 if (!SOD_QFULL(sodp) && (q->q_hiwat - thwin >= tcp->tcp_mss)) { 11890 /* 11891 * If the window that the other side knows is less than max 11892 * deferred acks segments, send an update immediately. 11893 */ 11894 if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) { 11895 BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate); 11896 ret = TH_ACK_NEEDED; 11897 } 11898 tcp->tcp_rwnd = q->q_hiwat; 11899 } 11900 11901 if (!SOD_QEMPTY(sodp)) { 11902 /* Wakeup to socket */ 11903 sodp->sod_state &= SOD_WAKE_CLR; 11904 sodp->sod_state |= SOD_WAKE_DONE; 11905 (sodp->sod_wakeup)(sodp); 11906 /* wakeup() does the mutex_ext() */ 11907 } else { 11908 /* Q is empty, no need to wake */ 11909 sodp->sod_state &= SOD_WAKE_CLR; 11910 sodp->sod_state |= SOD_WAKE_NOT; 11911 mutex_exit(sodp->sod_lockp); 11912 } 11913 11914 /* No need for the push timer now. */ 11915 if (tcp->tcp_push_tid != 0) { 11916 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 11917 tcp->tcp_push_tid = 0; 11918 } 11919 11920 return (ret); 11921 } 11922 11923 /* 11924 * Called where tcp_rcv_enqueue()/putnext(RD(q)) would be. For M_DATA 11925 * mblk_t's if uioa enabled then start a uioa asynchronous copy directly 11926 * to the user-land buffer and flag the mblk_t as such. 11927 * 11928 * Also, handle tcp_rwnd. 11929 */ 11930 uint_t 11931 tcp_rcv_sod_enqueue(tcp_t *tcp, sodirect_t *sodp, mblk_t *mp, uint_t seg_len) 11932 { 11933 uioa_t *uioap = &sodp->sod_uioa; 11934 boolean_t qfull; 11935 uint_t thwin; 11936 11937 /* Can't be an eager connection */ 11938 ASSERT(tcp->tcp_listener == NULL); 11939 11940 /* Caller must have lock held */ 11941 ASSERT(MUTEX_HELD(sodp->sod_lockp)); 11942 11943 /* Sodirect mode so must not be a tcp_rcv_list */ 11944 ASSERT(tcp->tcp_rcv_list == NULL); 11945 11946 /* Passed in segment length must be equal to mblk_t chain data size */ 11947 ASSERT(seg_len == msgdsize(mp)); 11948 11949 if (DB_TYPE(mp) != M_DATA) { 11950 /* Only process M_DATA mblk_t's */ 11951 goto enq; 11952 } 11953 if (uioap->uioa_state & UIOA_ENABLED) { 11954 /* Uioa is enabled */ 11955 mblk_t *mp1 = mp; 11956 mblk_t *lmp = NULL; 11957 11958 if (seg_len > uioap->uio_resid) { 11959 /* 11960 * There isn't enough uio space for the mblk_t chain 11961 * so disable uioa such that this and any additional 11962 * mblk_t data is handled by the socket and schedule 11963 * the socket for wakeup to finish this uioa. 11964 */ 11965 uioap->uioa_state &= UIOA_CLR; 11966 uioap->uioa_state |= UIOA_FINI; 11967 if (sodp->sod_state & SOD_WAKE_NOT) { 11968 sodp->sod_state &= SOD_WAKE_CLR; 11969 sodp->sod_state |= SOD_WAKE_NEED; 11970 } 11971 goto enq; 11972 } 11973 do { 11974 uint32_t len = MBLKL(mp1); 11975 11976 if (!uioamove(mp1->b_rptr, len, UIO_READ, uioap)) { 11977 /* Scheduled, mark dblk_t as such */ 11978 DB_FLAGS(mp1) |= DBLK_UIOA; 11979 } else { 11980 /* Error, turn off async processing */ 11981 uioap->uioa_state &= UIOA_CLR; 11982 uioap->uioa_state |= UIOA_FINI; 11983 break; 11984 } 11985 lmp = mp1; 11986 } while ((mp1 = mp1->b_cont) != NULL); 11987 11988 if (mp1 != NULL || uioap->uio_resid == 0) { 11989 /* 11990 * Not all mblk_t(s) uioamoved (error) or all uio 11991 * space has been consumed so schedule the socket 11992 * for wakeup to finish this uio. 11993 */ 11994 sodp->sod_state &= SOD_WAKE_CLR; 11995 sodp->sod_state |= SOD_WAKE_NEED; 11996 11997 /* Break the mblk chain if neccessary. */ 11998 if (mp1 != NULL && lmp != NULL) { 11999 mp->b_next = mp1; 12000 lmp->b_cont = NULL; 12001 } 12002 } 12003 } else if (uioap->uioa_state & UIOA_FINI) { 12004 /* 12005 * Post UIO_ENABLED waiting for socket to finish processing 12006 * so just enqueue and update tcp_rwnd. 12007 */ 12008 if (SOD_QFULL(sodp)) 12009 tcp->tcp_rwnd -= seg_len; 12010 } else if (sodp->sod_want > 0) { 12011 /* 12012 * Uioa isn't enabled but sodirect has a pending read(). 12013 */ 12014 if (SOD_QCNT(sodp) + seg_len >= sodp->sod_want) { 12015 if (sodp->sod_state & SOD_WAKE_NOT) { 12016 /* Schedule socket for wakeup */ 12017 sodp->sod_state &= SOD_WAKE_CLR; 12018 sodp->sod_state |= SOD_WAKE_NEED; 12019 } 12020 tcp->tcp_rwnd -= seg_len; 12021 } 12022 } else if (SOD_QCNT(sodp) + seg_len >= tcp->tcp_rq->q_hiwat >> 3) { 12023 /* 12024 * No pending sodirect read() so used the default 12025 * TCP push logic to guess that a push is needed. 12026 */ 12027 if (sodp->sod_state & SOD_WAKE_NOT) { 12028 /* Schedule socket for wakeup */ 12029 sodp->sod_state &= SOD_WAKE_CLR; 12030 sodp->sod_state |= SOD_WAKE_NEED; 12031 } 12032 tcp->tcp_rwnd -= seg_len; 12033 } else { 12034 /* Just update tcp_rwnd */ 12035 tcp->tcp_rwnd -= seg_len; 12036 } 12037 enq: 12038 qfull = SOD_QFULL(sodp); 12039 12040 (sodp->sod_enqueue)(sodp, mp); 12041 12042 if (! qfull && SOD_QFULL(sodp)) { 12043 /* Wasn't QFULL, now QFULL, need back-enable */ 12044 SOD_QSETBE(sodp); 12045 } 12046 12047 /* 12048 * Check to see if remote avail swnd < mss due to delayed ACK, 12049 * first get advertised rwnd. 12050 */ 12051 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)); 12052 /* Minus delayed ACK count */ 12053 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 12054 if (thwin < tcp->tcp_mss) { 12055 /* Remote avail swnd < mss, need ACK now */ 12056 return (TH_ACK_NEEDED); 12057 } 12058 12059 return (0); 12060 } 12061 12062 /* 12063 * DEFAULT TCP ENTRY POINT via squeue on READ side. 12064 * 12065 * This is the default entry function into TCP on the read side. TCP is 12066 * always entered via squeue i.e. using squeue's for mutual exclusion. 12067 * When classifier does a lookup to find the tcp, it also puts a reference 12068 * on the conn structure associated so the tcp is guaranteed to exist 12069 * when we come here. We still need to check the state because it might 12070 * as well has been closed. The squeue processing function i.e. squeue_enter, 12071 * is responsible for doing the CONN_DEC_REF. 12072 * 12073 * Apart from the default entry point, IP also sends packets directly to 12074 * tcp_rput_data for AF_INET fast path and tcp_conn_request for incoming 12075 * connections. 12076 */ 12077 boolean_t tcp_outbound_squeue_switch = B_FALSE; 12078 void 12079 tcp_input(void *arg, mblk_t *mp, void *arg2) 12080 { 12081 conn_t *connp = (conn_t *)arg; 12082 tcp_t *tcp = (tcp_t *)connp->conn_tcp; 12083 12084 /* arg2 is the sqp */ 12085 ASSERT(arg2 != NULL); 12086 ASSERT(mp != NULL); 12087 12088 /* 12089 * Don't accept any input on a closed tcp as this TCP logically does 12090 * not exist on the system. Don't proceed further with this TCP. 12091 * For eg. this packet could trigger another close of this tcp 12092 * which would be disastrous for tcp_refcnt. tcp_close_detached / 12093 * tcp_clean_death / tcp_closei_local must be called at most once 12094 * on a TCP. In this case we need to refeed the packet into the 12095 * classifier and figure out where the packet should go. Need to 12096 * preserve the recv_ill somehow. Until we figure that out, for 12097 * now just drop the packet if we can't classify the packet. 12098 */ 12099 if (tcp->tcp_state == TCPS_CLOSED || 12100 tcp->tcp_state == TCPS_BOUND) { 12101 conn_t *new_connp; 12102 ip_stack_t *ipst = tcp->tcp_tcps->tcps_netstack->netstack_ip; 12103 12104 new_connp = ipcl_classify(mp, connp->conn_zoneid, ipst); 12105 if (new_connp != NULL) { 12106 tcp_reinput(new_connp, mp, arg2); 12107 return; 12108 } 12109 /* We failed to classify. For now just drop the packet */ 12110 freemsg(mp); 12111 return; 12112 } 12113 12114 if (DB_TYPE(mp) != M_DATA) { 12115 tcp_rput_common(tcp, mp); 12116 return; 12117 } 12118 12119 if (mp->b_datap->db_struioflag & STRUIO_CONNECT) { 12120 squeue_t *final_sqp; 12121 12122 mp->b_datap->db_struioflag &= ~STRUIO_CONNECT; 12123 final_sqp = (squeue_t *)DB_CKSUMSTART(mp); 12124 DB_CKSUMSTART(mp) = 0; 12125 if (tcp->tcp_state == TCPS_SYN_SENT && 12126 connp->conn_final_sqp == NULL && 12127 tcp_outbound_squeue_switch) { 12128 ASSERT(connp->conn_initial_sqp == connp->conn_sqp); 12129 connp->conn_final_sqp = final_sqp; 12130 if (connp->conn_final_sqp != connp->conn_sqp) { 12131 CONN_INC_REF(connp); 12132 SQUEUE_SWITCH(connp, connp->conn_final_sqp); 12133 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 12134 tcp_rput_data, connp, ip_squeue_flag, 12135 SQTAG_CONNECT_FINISH); 12136 return; 12137 } 12138 } 12139 } 12140 tcp_rput_data(connp, mp, arg2); 12141 } 12142 12143 /* 12144 * The read side put procedure. 12145 * The packets passed up by ip are assume to be aligned according to 12146 * OK_32PTR and the IP+TCP headers fitting in the first mblk. 12147 */ 12148 static void 12149 tcp_rput_common(tcp_t *tcp, mblk_t *mp) 12150 { 12151 /* 12152 * tcp_rput_data() does not expect M_CTL except for the case 12153 * where tcp_ipv6_recvancillary is set and we get a IN_PKTINFO 12154 * type. Need to make sure that any other M_CTLs don't make 12155 * it to tcp_rput_data since it is not expecting any and doesn't 12156 * check for it. 12157 */ 12158 if (DB_TYPE(mp) == M_CTL) { 12159 switch (*(uint32_t *)(mp->b_rptr)) { 12160 case TCP_IOC_ABORT_CONN: 12161 /* 12162 * Handle connection abort request. 12163 */ 12164 tcp_ioctl_abort_handler(tcp, mp); 12165 return; 12166 case IPSEC_IN: 12167 /* 12168 * Only secure icmp arrive in TCP and they 12169 * don't go through data path. 12170 */ 12171 tcp_icmp_error(tcp, mp); 12172 return; 12173 case IN_PKTINFO: 12174 /* 12175 * Handle IPV6_RECVPKTINFO socket option on AF_INET6 12176 * sockets that are receiving IPv4 traffic. tcp 12177 */ 12178 ASSERT(tcp->tcp_family == AF_INET6); 12179 ASSERT(tcp->tcp_ipv6_recvancillary & 12180 TCP_IPV6_RECVPKTINFO); 12181 tcp_rput_data(tcp->tcp_connp, mp, 12182 tcp->tcp_connp->conn_sqp); 12183 return; 12184 case MDT_IOC_INFO_UPDATE: 12185 /* 12186 * Handle Multidata information update; the 12187 * following routine will free the message. 12188 */ 12189 if (tcp->tcp_connp->conn_mdt_ok) { 12190 tcp_mdt_update(tcp, 12191 &((ip_mdt_info_t *)mp->b_rptr)->mdt_capab, 12192 B_FALSE); 12193 } 12194 freemsg(mp); 12195 return; 12196 case LSO_IOC_INFO_UPDATE: 12197 /* 12198 * Handle LSO information update; the following 12199 * routine will free the message. 12200 */ 12201 if (tcp->tcp_connp->conn_lso_ok) { 12202 tcp_lso_update(tcp, 12203 &((ip_lso_info_t *)mp->b_rptr)->lso_capab); 12204 } 12205 freemsg(mp); 12206 return; 12207 default: 12208 /* 12209 * tcp_icmp_err() will process the M_CTL packets. 12210 * Non-ICMP packets, if any, will be discarded in 12211 * tcp_icmp_err(). We will process the ICMP packet 12212 * even if we are TCP_IS_DETACHED_NONEAGER as the 12213 * incoming ICMP packet may result in changing 12214 * the tcp_mss, which we would need if we have 12215 * packets to retransmit. 12216 */ 12217 tcp_icmp_error(tcp, mp); 12218 return; 12219 } 12220 } 12221 12222 /* No point processing the message if tcp is already closed */ 12223 if (TCP_IS_DETACHED_NONEAGER(tcp)) { 12224 freemsg(mp); 12225 return; 12226 } 12227 12228 tcp_rput_other(tcp, mp); 12229 } 12230 12231 12232 /* The minimum of smoothed mean deviation in RTO calculation. */ 12233 #define TCP_SD_MIN 400 12234 12235 /* 12236 * Set RTO for this connection. The formula is from Jacobson and Karels' 12237 * "Congestion Avoidance and Control" in SIGCOMM '88. The variable names 12238 * are the same as those in Appendix A.2 of that paper. 12239 * 12240 * m = new measurement 12241 * sa = smoothed RTT average (8 * average estimates). 12242 * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates). 12243 */ 12244 static void 12245 tcp_set_rto(tcp_t *tcp, clock_t rtt) 12246 { 12247 long m = TICK_TO_MSEC(rtt); 12248 clock_t sa = tcp->tcp_rtt_sa; 12249 clock_t sv = tcp->tcp_rtt_sd; 12250 clock_t rto; 12251 tcp_stack_t *tcps = tcp->tcp_tcps; 12252 12253 BUMP_MIB(&tcps->tcps_mib, tcpRttUpdate); 12254 tcp->tcp_rtt_update++; 12255 12256 /* tcp_rtt_sa is not 0 means this is a new sample. */ 12257 if (sa != 0) { 12258 /* 12259 * Update average estimator: 12260 * new rtt = 7/8 old rtt + 1/8 Error 12261 */ 12262 12263 /* m is now Error in estimate. */ 12264 m -= sa >> 3; 12265 if ((sa += m) <= 0) { 12266 /* 12267 * Don't allow the smoothed average to be negative. 12268 * We use 0 to denote reinitialization of the 12269 * variables. 12270 */ 12271 sa = 1; 12272 } 12273 12274 /* 12275 * Update deviation estimator: 12276 * new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev) 12277 */ 12278 if (m < 0) 12279 m = -m; 12280 m -= sv >> 2; 12281 sv += m; 12282 } else { 12283 /* 12284 * This follows BSD's implementation. So the reinitialized 12285 * RTO is 3 * m. We cannot go less than 2 because if the 12286 * link is bandwidth dominated, doubling the window size 12287 * during slow start means doubling the RTT. We want to be 12288 * more conservative when we reinitialize our estimates. 3 12289 * is just a convenient number. 12290 */ 12291 sa = m << 3; 12292 sv = m << 1; 12293 } 12294 if (sv < TCP_SD_MIN) { 12295 /* 12296 * We do not know that if sa captures the delay ACK 12297 * effect as in a long train of segments, a receiver 12298 * does not delay its ACKs. So set the minimum of sv 12299 * to be TCP_SD_MIN, which is default to 400 ms, twice 12300 * of BSD DATO. That means the minimum of mean 12301 * deviation is 100 ms. 12302 * 12303 */ 12304 sv = TCP_SD_MIN; 12305 } 12306 tcp->tcp_rtt_sa = sa; 12307 tcp->tcp_rtt_sd = sv; 12308 /* 12309 * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv) 12310 * 12311 * Add tcp_rexmit_interval extra in case of extreme environment 12312 * where the algorithm fails to work. The default value of 12313 * tcp_rexmit_interval_extra should be 0. 12314 * 12315 * As we use a finer grained clock than BSD and update 12316 * RTO for every ACKs, add in another .25 of RTT to the 12317 * deviation of RTO to accomodate burstiness of 1/4 of 12318 * window size. 12319 */ 12320 rto = (sa >> 3) + sv + tcps->tcps_rexmit_interval_extra + (sa >> 5); 12321 12322 if (rto > tcps->tcps_rexmit_interval_max) { 12323 tcp->tcp_rto = tcps->tcps_rexmit_interval_max; 12324 } else if (rto < tcps->tcps_rexmit_interval_min) { 12325 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 12326 } else { 12327 tcp->tcp_rto = rto; 12328 } 12329 12330 /* Now, we can reset tcp_timer_backoff to use the new RTO... */ 12331 tcp->tcp_timer_backoff = 0; 12332 } 12333 12334 /* 12335 * tcp_get_seg_mp() is called to get the pointer to a segment in the 12336 * send queue which starts at the given seq. no. 12337 * 12338 * Parameters: 12339 * tcp_t *tcp: the tcp instance pointer. 12340 * uint32_t seq: the starting seq. no of the requested segment. 12341 * int32_t *off: after the execution, *off will be the offset to 12342 * the returned mblk which points to the requested seq no. 12343 * It is the caller's responsibility to send in a non-null off. 12344 * 12345 * Return: 12346 * A mblk_t pointer pointing to the requested segment in send queue. 12347 */ 12348 static mblk_t * 12349 tcp_get_seg_mp(tcp_t *tcp, uint32_t seq, int32_t *off) 12350 { 12351 int32_t cnt; 12352 mblk_t *mp; 12353 12354 /* Defensive coding. Make sure we don't send incorrect data. */ 12355 if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt)) 12356 return (NULL); 12357 12358 cnt = seq - tcp->tcp_suna; 12359 mp = tcp->tcp_xmit_head; 12360 while (cnt > 0 && mp != NULL) { 12361 cnt -= mp->b_wptr - mp->b_rptr; 12362 if (cnt < 0) { 12363 cnt += mp->b_wptr - mp->b_rptr; 12364 break; 12365 } 12366 mp = mp->b_cont; 12367 } 12368 ASSERT(mp != NULL); 12369 *off = cnt; 12370 return (mp); 12371 } 12372 12373 /* 12374 * This function handles all retransmissions if SACK is enabled for this 12375 * connection. First it calculates how many segments can be retransmitted 12376 * based on tcp_pipe. Then it goes thru the notsack list to find eligible 12377 * segments. A segment is eligible if sack_cnt for that segment is greater 12378 * than or equal tcp_dupack_fast_retransmit. After it has retransmitted 12379 * all eligible segments, it checks to see if TCP can send some new segments 12380 * (fast recovery). If it can, set the appropriate flag for tcp_rput_data(). 12381 * 12382 * Parameters: 12383 * tcp_t *tcp: the tcp structure of the connection. 12384 * uint_t *flags: in return, appropriate value will be set for 12385 * tcp_rput_data(). 12386 */ 12387 static void 12388 tcp_sack_rxmit(tcp_t *tcp, uint_t *flags) 12389 { 12390 notsack_blk_t *notsack_blk; 12391 int32_t usable_swnd; 12392 int32_t mss; 12393 uint32_t seg_len; 12394 mblk_t *xmit_mp; 12395 tcp_stack_t *tcps = tcp->tcp_tcps; 12396 12397 ASSERT(tcp->tcp_sack_info != NULL); 12398 ASSERT(tcp->tcp_notsack_list != NULL); 12399 ASSERT(tcp->tcp_rexmit == B_FALSE); 12400 12401 /* Defensive coding in case there is a bug... */ 12402 if (tcp->tcp_notsack_list == NULL) { 12403 return; 12404 } 12405 notsack_blk = tcp->tcp_notsack_list; 12406 mss = tcp->tcp_mss; 12407 12408 /* 12409 * Limit the num of outstanding data in the network to be 12410 * tcp_cwnd_ssthresh, which is half of the original congestion wnd. 12411 */ 12412 usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; 12413 12414 /* At least retransmit 1 MSS of data. */ 12415 if (usable_swnd <= 0) { 12416 usable_swnd = mss; 12417 } 12418 12419 /* Make sure no new RTT samples will be taken. */ 12420 tcp->tcp_csuna = tcp->tcp_snxt; 12421 12422 notsack_blk = tcp->tcp_notsack_list; 12423 while (usable_swnd > 0) { 12424 mblk_t *snxt_mp, *tmp_mp; 12425 tcp_seq begin = tcp->tcp_sack_snxt; 12426 tcp_seq end; 12427 int32_t off; 12428 12429 for (; notsack_blk != NULL; notsack_blk = notsack_blk->next) { 12430 if (SEQ_GT(notsack_blk->end, begin) && 12431 (notsack_blk->sack_cnt >= 12432 tcps->tcps_dupack_fast_retransmit)) { 12433 end = notsack_blk->end; 12434 if (SEQ_LT(begin, notsack_blk->begin)) { 12435 begin = notsack_blk->begin; 12436 } 12437 break; 12438 } 12439 } 12440 /* 12441 * All holes are filled. Manipulate tcp_cwnd to send more 12442 * if we can. Note that after the SACK recovery, tcp_cwnd is 12443 * set to tcp_cwnd_ssthresh. 12444 */ 12445 if (notsack_blk == NULL) { 12446 usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; 12447 if (usable_swnd <= 0 || tcp->tcp_unsent == 0) { 12448 tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna; 12449 ASSERT(tcp->tcp_cwnd > 0); 12450 return; 12451 } else { 12452 usable_swnd = usable_swnd / mss; 12453 tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna + 12454 MAX(usable_swnd * mss, mss); 12455 *flags |= TH_XMIT_NEEDED; 12456 return; 12457 } 12458 } 12459 12460 /* 12461 * Note that we may send more than usable_swnd allows here 12462 * because of round off, but no more than 1 MSS of data. 12463 */ 12464 seg_len = end - begin; 12465 if (seg_len > mss) 12466 seg_len = mss; 12467 snxt_mp = tcp_get_seg_mp(tcp, begin, &off); 12468 ASSERT(snxt_mp != NULL); 12469 /* This should not happen. Defensive coding again... */ 12470 if (snxt_mp == NULL) { 12471 return; 12472 } 12473 12474 xmit_mp = tcp_xmit_mp(tcp, snxt_mp, seg_len, &off, 12475 &tmp_mp, begin, B_TRUE, &seg_len, B_TRUE); 12476 if (xmit_mp == NULL) 12477 return; 12478 12479 usable_swnd -= seg_len; 12480 tcp->tcp_pipe += seg_len; 12481 tcp->tcp_sack_snxt = begin + seg_len; 12482 12483 tcp_send_data(tcp, tcp->tcp_wq, xmit_mp); 12484 12485 /* 12486 * Update the send timestamp to avoid false retransmission. 12487 */ 12488 snxt_mp->b_prev = (mblk_t *)lbolt; 12489 12490 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 12491 UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, seg_len); 12492 BUMP_MIB(&tcps->tcps_mib, tcpOutSackRetransSegs); 12493 /* 12494 * Update tcp_rexmit_max to extend this SACK recovery phase. 12495 * This happens when new data sent during fast recovery is 12496 * also lost. If TCP retransmits those new data, it needs 12497 * to extend SACK recover phase to avoid starting another 12498 * fast retransmit/recovery unnecessarily. 12499 */ 12500 if (SEQ_GT(tcp->tcp_sack_snxt, tcp->tcp_rexmit_max)) { 12501 tcp->tcp_rexmit_max = tcp->tcp_sack_snxt; 12502 } 12503 } 12504 } 12505 12506 /* 12507 * This function handles policy checking at TCP level for non-hard_bound/ 12508 * detached connections. 12509 */ 12510 static boolean_t 12511 tcp_check_policy(tcp_t *tcp, mblk_t *first_mp, ipha_t *ipha, ip6_t *ip6h, 12512 boolean_t secure, boolean_t mctl_present) 12513 { 12514 ipsec_latch_t *ipl = NULL; 12515 ipsec_action_t *act = NULL; 12516 mblk_t *data_mp; 12517 ipsec_in_t *ii; 12518 const char *reason; 12519 kstat_named_t *counter; 12520 tcp_stack_t *tcps = tcp->tcp_tcps; 12521 ipsec_stack_t *ipss; 12522 ip_stack_t *ipst; 12523 12524 ASSERT(mctl_present || !secure); 12525 12526 ASSERT((ipha == NULL && ip6h != NULL) || 12527 (ip6h == NULL && ipha != NULL)); 12528 12529 /* 12530 * We don't necessarily have an ipsec_in_act action to verify 12531 * policy because of assymetrical policy where we have only 12532 * outbound policy and no inbound policy (possible with global 12533 * policy). 12534 */ 12535 if (!secure) { 12536 if (act == NULL || act->ipa_act.ipa_type == IPSEC_ACT_BYPASS || 12537 act->ipa_act.ipa_type == IPSEC_ACT_CLEAR) 12538 return (B_TRUE); 12539 ipsec_log_policy_failure(IPSEC_POLICY_MISMATCH, 12540 "tcp_check_policy", ipha, ip6h, secure, 12541 tcps->tcps_netstack); 12542 ipss = tcps->tcps_netstack->netstack_ipsec; 12543 12544 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, 12545 DROPPER(ipss, ipds_tcp_clear), 12546 &tcps->tcps_dropper); 12547 return (B_FALSE); 12548 } 12549 12550 /* 12551 * We have a secure packet. 12552 */ 12553 if (act == NULL) { 12554 ipsec_log_policy_failure(IPSEC_POLICY_NOT_NEEDED, 12555 "tcp_check_policy", ipha, ip6h, secure, 12556 tcps->tcps_netstack); 12557 ipss = tcps->tcps_netstack->netstack_ipsec; 12558 12559 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, 12560 DROPPER(ipss, ipds_tcp_secure), 12561 &tcps->tcps_dropper); 12562 return (B_FALSE); 12563 } 12564 12565 /* 12566 * XXX This whole routine is currently incorrect. ipl should 12567 * be set to the latch pointer, but is currently not set, so 12568 * we initialize it to NULL to avoid picking up random garbage. 12569 */ 12570 if (ipl == NULL) 12571 return (B_TRUE); 12572 12573 data_mp = first_mp->b_cont; 12574 12575 ii = (ipsec_in_t *)first_mp->b_rptr; 12576 12577 ipst = tcps->tcps_netstack->netstack_ip; 12578 12579 if (ipsec_check_ipsecin_latch(ii, data_mp, ipl, ipha, ip6h, &reason, 12580 &counter, tcp->tcp_connp)) { 12581 BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded); 12582 return (B_TRUE); 12583 } 12584 (void) strlog(TCP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE, 12585 "tcp inbound policy mismatch: %s, packet dropped\n", 12586 reason); 12587 BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed); 12588 12589 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter, 12590 &tcps->tcps_dropper); 12591 return (B_FALSE); 12592 } 12593 12594 /* 12595 * tcp_ss_rexmit() is called in tcp_rput_data() to do slow start 12596 * retransmission after a timeout. 12597 * 12598 * To limit the number of duplicate segments, we limit the number of segment 12599 * to be sent in one time to tcp_snd_burst, the burst variable. 12600 */ 12601 static void 12602 tcp_ss_rexmit(tcp_t *tcp) 12603 { 12604 uint32_t snxt; 12605 uint32_t smax; 12606 int32_t win; 12607 int32_t mss; 12608 int32_t off; 12609 int32_t burst = tcp->tcp_snd_burst; 12610 mblk_t *snxt_mp; 12611 tcp_stack_t *tcps = tcp->tcp_tcps; 12612 12613 /* 12614 * Note that tcp_rexmit can be set even though TCP has retransmitted 12615 * all unack'ed segments. 12616 */ 12617 if (SEQ_LT(tcp->tcp_rexmit_nxt, tcp->tcp_rexmit_max)) { 12618 smax = tcp->tcp_rexmit_max; 12619 snxt = tcp->tcp_rexmit_nxt; 12620 if (SEQ_LT(snxt, tcp->tcp_suna)) { 12621 snxt = tcp->tcp_suna; 12622 } 12623 win = MIN(tcp->tcp_cwnd, tcp->tcp_swnd); 12624 win -= snxt - tcp->tcp_suna; 12625 mss = tcp->tcp_mss; 12626 snxt_mp = tcp_get_seg_mp(tcp, snxt, &off); 12627 12628 while (SEQ_LT(snxt, smax) && (win > 0) && 12629 (burst > 0) && (snxt_mp != NULL)) { 12630 mblk_t *xmit_mp; 12631 mblk_t *old_snxt_mp = snxt_mp; 12632 uint32_t cnt = mss; 12633 12634 if (win < cnt) { 12635 cnt = win; 12636 } 12637 if (SEQ_GT(snxt + cnt, smax)) { 12638 cnt = smax - snxt; 12639 } 12640 xmit_mp = tcp_xmit_mp(tcp, snxt_mp, cnt, &off, 12641 &snxt_mp, snxt, B_TRUE, &cnt, B_TRUE); 12642 if (xmit_mp == NULL) 12643 return; 12644 12645 tcp_send_data(tcp, tcp->tcp_wq, xmit_mp); 12646 12647 snxt += cnt; 12648 win -= cnt; 12649 /* 12650 * Update the send timestamp to avoid false 12651 * retransmission. 12652 */ 12653 old_snxt_mp->b_prev = (mblk_t *)lbolt; 12654 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 12655 UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, cnt); 12656 12657 tcp->tcp_rexmit_nxt = snxt; 12658 burst--; 12659 } 12660 /* 12661 * If we have transmitted all we have at the time 12662 * we started the retranmission, we can leave 12663 * the rest of the job to tcp_wput_data(). But we 12664 * need to check the send window first. If the 12665 * win is not 0, go on with tcp_wput_data(). 12666 */ 12667 if (SEQ_LT(snxt, smax) || win == 0) { 12668 return; 12669 } 12670 } 12671 /* Only call tcp_wput_data() if there is data to be sent. */ 12672 if (tcp->tcp_unsent) { 12673 tcp_wput_data(tcp, NULL, B_FALSE); 12674 } 12675 } 12676 12677 /* 12678 * Process all TCP option in SYN segment. Note that this function should 12679 * be called after tcp_adapt_ire() is called so that the necessary info 12680 * from IRE is already set in the tcp structure. 12681 * 12682 * This function sets up the correct tcp_mss value according to the 12683 * MSS option value and our header size. It also sets up the window scale 12684 * and timestamp values, and initialize SACK info blocks. But it does not 12685 * change receive window size after setting the tcp_mss value. The caller 12686 * should do the appropriate change. 12687 */ 12688 void 12689 tcp_process_options(tcp_t *tcp, tcph_t *tcph) 12690 { 12691 int options; 12692 tcp_opt_t tcpopt; 12693 uint32_t mss_max; 12694 char *tmp_tcph; 12695 tcp_stack_t *tcps = tcp->tcp_tcps; 12696 12697 tcpopt.tcp = NULL; 12698 options = tcp_parse_options(tcph, &tcpopt); 12699 12700 /* 12701 * Process MSS option. Note that MSS option value does not account 12702 * for IP or TCP options. This means that it is equal to MTU - minimum 12703 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for 12704 * IPv6. 12705 */ 12706 if (!(options & TCP_OPT_MSS_PRESENT)) { 12707 if (tcp->tcp_ipversion == IPV4_VERSION) 12708 tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv4; 12709 else 12710 tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv6; 12711 } else { 12712 if (tcp->tcp_ipversion == IPV4_VERSION) 12713 mss_max = tcps->tcps_mss_max_ipv4; 12714 else 12715 mss_max = tcps->tcps_mss_max_ipv6; 12716 if (tcpopt.tcp_opt_mss < tcps->tcps_mss_min) 12717 tcpopt.tcp_opt_mss = tcps->tcps_mss_min; 12718 else if (tcpopt.tcp_opt_mss > mss_max) 12719 tcpopt.tcp_opt_mss = mss_max; 12720 } 12721 12722 /* Process Window Scale option. */ 12723 if (options & TCP_OPT_WSCALE_PRESENT) { 12724 tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale; 12725 tcp->tcp_snd_ws_ok = B_TRUE; 12726 } else { 12727 tcp->tcp_snd_ws = B_FALSE; 12728 tcp->tcp_snd_ws_ok = B_FALSE; 12729 tcp->tcp_rcv_ws = B_FALSE; 12730 } 12731 12732 /* Process Timestamp option. */ 12733 if ((options & TCP_OPT_TSTAMP_PRESENT) && 12734 (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) { 12735 tmp_tcph = (char *)tcp->tcp_tcph; 12736 12737 tcp->tcp_snd_ts_ok = B_TRUE; 12738 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 12739 tcp->tcp_last_rcv_lbolt = lbolt64; 12740 ASSERT(OK_32PTR(tmp_tcph)); 12741 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 12742 12743 /* Fill in our template header with basic timestamp option. */ 12744 tmp_tcph += tcp->tcp_tcp_hdr_len; 12745 tmp_tcph[0] = TCPOPT_NOP; 12746 tmp_tcph[1] = TCPOPT_NOP; 12747 tmp_tcph[2] = TCPOPT_TSTAMP; 12748 tmp_tcph[3] = TCPOPT_TSTAMP_LEN; 12749 tcp->tcp_hdr_len += TCPOPT_REAL_TS_LEN; 12750 tcp->tcp_tcp_hdr_len += TCPOPT_REAL_TS_LEN; 12751 tcp->tcp_tcph->th_offset_and_rsrvd[0] += (3 << 4); 12752 } else { 12753 tcp->tcp_snd_ts_ok = B_FALSE; 12754 } 12755 12756 /* 12757 * Process SACK options. If SACK is enabled for this connection, 12758 * then allocate the SACK info structure. Note the following ways 12759 * when tcp_snd_sack_ok is set to true. 12760 * 12761 * For active connection: in tcp_adapt_ire() called in 12762 * tcp_rput_other(), or in tcp_rput_other() when tcp_sack_permitted 12763 * is checked. 12764 * 12765 * For passive connection: in tcp_adapt_ire() called in 12766 * tcp_accept_comm(). 12767 * 12768 * That's the reason why the extra TCP_IS_DETACHED() check is there. 12769 * That check makes sure that if we did not send a SACK OK option, 12770 * we will not enable SACK for this connection even though the other 12771 * side sends us SACK OK option. For active connection, the SACK 12772 * info structure has already been allocated. So we need to free 12773 * it if SACK is disabled. 12774 */ 12775 if ((options & TCP_OPT_SACK_OK_PRESENT) && 12776 (tcp->tcp_snd_sack_ok || 12777 (tcps->tcps_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) { 12778 /* This should be true only in the passive case. */ 12779 if (tcp->tcp_sack_info == NULL) { 12780 ASSERT(TCP_IS_DETACHED(tcp)); 12781 tcp->tcp_sack_info = 12782 kmem_cache_alloc(tcp_sack_info_cache, KM_NOSLEEP); 12783 } 12784 if (tcp->tcp_sack_info == NULL) { 12785 tcp->tcp_snd_sack_ok = B_FALSE; 12786 } else { 12787 tcp->tcp_snd_sack_ok = B_TRUE; 12788 if (tcp->tcp_snd_ts_ok) { 12789 tcp->tcp_max_sack_blk = 3; 12790 } else { 12791 tcp->tcp_max_sack_blk = 4; 12792 } 12793 } 12794 } else { 12795 /* 12796 * Resetting tcp_snd_sack_ok to B_FALSE so that 12797 * no SACK info will be used for this 12798 * connection. This assumes that SACK usage 12799 * permission is negotiated. This may need 12800 * to be changed once this is clarified. 12801 */ 12802 if (tcp->tcp_sack_info != NULL) { 12803 ASSERT(tcp->tcp_notsack_list == NULL); 12804 kmem_cache_free(tcp_sack_info_cache, 12805 tcp->tcp_sack_info); 12806 tcp->tcp_sack_info = NULL; 12807 } 12808 tcp->tcp_snd_sack_ok = B_FALSE; 12809 } 12810 12811 /* 12812 * Now we know the exact TCP/IP header length, subtract 12813 * that from tcp_mss to get our side's MSS. 12814 */ 12815 tcp->tcp_mss -= tcp->tcp_hdr_len; 12816 /* 12817 * Here we assume that the other side's header size will be equal to 12818 * our header size. We calculate the real MSS accordingly. Need to 12819 * take into additional stuffs IPsec puts in. 12820 * 12821 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header) 12822 */ 12823 tcpopt.tcp_opt_mss -= tcp->tcp_hdr_len + tcp->tcp_ipsec_overhead - 12824 ((tcp->tcp_ipversion == IPV4_VERSION ? 12825 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH); 12826 12827 /* 12828 * Set MSS to the smaller one of both ends of the connection. 12829 * We should not have called tcp_mss_set() before, but our 12830 * side of the MSS should have been set to a proper value 12831 * by tcp_adapt_ire(). tcp_mss_set() will also set up the 12832 * STREAM head parameters properly. 12833 * 12834 * If we have a larger-than-16-bit window but the other side 12835 * didn't want to do window scale, tcp_rwnd_set() will take 12836 * care of that. 12837 */ 12838 tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss), B_TRUE); 12839 } 12840 12841 /* 12842 * Sends the T_CONN_IND to the listener. The caller calls this 12843 * functions via squeue to get inside the listener's perimeter 12844 * once the 3 way hand shake is done a T_CONN_IND needs to be 12845 * sent. As an optimization, the caller can call this directly 12846 * if listener's perimeter is same as eager's. 12847 */ 12848 /* ARGSUSED */ 12849 void 12850 tcp_send_conn_ind(void *arg, mblk_t *mp, void *arg2) 12851 { 12852 conn_t *lconnp = (conn_t *)arg; 12853 tcp_t *listener = lconnp->conn_tcp; 12854 tcp_t *tcp; 12855 struct T_conn_ind *conn_ind; 12856 ipaddr_t *addr_cache; 12857 boolean_t need_send_conn_ind = B_FALSE; 12858 tcp_stack_t *tcps = listener->tcp_tcps; 12859 12860 /* retrieve the eager */ 12861 conn_ind = (struct T_conn_ind *)mp->b_rptr; 12862 ASSERT(conn_ind->OPT_offset != 0 && 12863 conn_ind->OPT_length == sizeof (intptr_t)); 12864 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 12865 conn_ind->OPT_length); 12866 12867 /* 12868 * TLI/XTI applications will get confused by 12869 * sending eager as an option since it violates 12870 * the option semantics. So remove the eager as 12871 * option since TLI/XTI app doesn't need it anyway. 12872 */ 12873 if (!TCP_IS_SOCKET(listener)) { 12874 conn_ind->OPT_length = 0; 12875 conn_ind->OPT_offset = 0; 12876 } 12877 if (listener->tcp_state == TCPS_CLOSED || 12878 TCP_IS_DETACHED(listener)) { 12879 /* 12880 * If listener has closed, it would have caused a 12881 * a cleanup/blowoff to happen for the eager. We 12882 * just need to return. 12883 */ 12884 freemsg(mp); 12885 return; 12886 } 12887 12888 12889 /* 12890 * if the conn_req_q is full defer passing up the 12891 * T_CONN_IND until space is availabe after t_accept() 12892 * processing 12893 */ 12894 mutex_enter(&listener->tcp_eager_lock); 12895 12896 /* 12897 * Take the eager out, if it is in the list of droppable eagers 12898 * as we are here because the 3W handshake is over. 12899 */ 12900 MAKE_UNDROPPABLE(tcp); 12901 12902 if (listener->tcp_conn_req_cnt_q < listener->tcp_conn_req_max) { 12903 tcp_t *tail; 12904 12905 /* 12906 * The eager already has an extra ref put in tcp_rput_data 12907 * so that it stays till accept comes back even though it 12908 * might get into TCPS_CLOSED as a result of a TH_RST etc. 12909 */ 12910 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 12911 listener->tcp_conn_req_cnt_q0--; 12912 listener->tcp_conn_req_cnt_q++; 12913 12914 /* Move from SYN_RCVD to ESTABLISHED list */ 12915 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 12916 tcp->tcp_eager_prev_q0; 12917 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 12918 tcp->tcp_eager_next_q0; 12919 tcp->tcp_eager_prev_q0 = NULL; 12920 tcp->tcp_eager_next_q0 = NULL; 12921 12922 /* 12923 * Insert at end of the queue because sockfs 12924 * sends down T_CONN_RES in chronological 12925 * order. Leaving the older conn indications 12926 * at front of the queue helps reducing search 12927 * time. 12928 */ 12929 tail = listener->tcp_eager_last_q; 12930 if (tail != NULL) 12931 tail->tcp_eager_next_q = tcp; 12932 else 12933 listener->tcp_eager_next_q = tcp; 12934 listener->tcp_eager_last_q = tcp; 12935 tcp->tcp_eager_next_q = NULL; 12936 /* 12937 * Delay sending up the T_conn_ind until we are 12938 * done with the eager. Once we have have sent up 12939 * the T_conn_ind, the accept can potentially complete 12940 * any time and release the refhold we have on the eager. 12941 */ 12942 need_send_conn_ind = B_TRUE; 12943 } else { 12944 /* 12945 * Defer connection on q0 and set deferred 12946 * connection bit true 12947 */ 12948 tcp->tcp_conn_def_q0 = B_TRUE; 12949 12950 /* take tcp out of q0 ... */ 12951 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 12952 tcp->tcp_eager_next_q0; 12953 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 12954 tcp->tcp_eager_prev_q0; 12955 12956 /* ... and place it at the end of q0 */ 12957 tcp->tcp_eager_prev_q0 = listener->tcp_eager_prev_q0; 12958 tcp->tcp_eager_next_q0 = listener; 12959 listener->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp; 12960 listener->tcp_eager_prev_q0 = tcp; 12961 tcp->tcp_conn.tcp_eager_conn_ind = mp; 12962 } 12963 12964 /* we have timed out before */ 12965 if (tcp->tcp_syn_rcvd_timeout != 0) { 12966 tcp->tcp_syn_rcvd_timeout = 0; 12967 listener->tcp_syn_rcvd_timeout--; 12968 if (listener->tcp_syn_defense && 12969 listener->tcp_syn_rcvd_timeout <= 12970 (tcps->tcps_conn_req_max_q0 >> 5) && 12971 10*MINUTES < TICK_TO_MSEC(lbolt64 - 12972 listener->tcp_last_rcv_lbolt)) { 12973 /* 12974 * Turn off the defense mode if we 12975 * believe the SYN attack is over. 12976 */ 12977 listener->tcp_syn_defense = B_FALSE; 12978 if (listener->tcp_ip_addr_cache) { 12979 kmem_free((void *)listener->tcp_ip_addr_cache, 12980 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 12981 listener->tcp_ip_addr_cache = NULL; 12982 } 12983 } 12984 } 12985 addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache); 12986 if (addr_cache != NULL) { 12987 /* 12988 * We have finished a 3-way handshake with this 12989 * remote host. This proves the IP addr is good. 12990 * Cache it! 12991 */ 12992 addr_cache[IP_ADDR_CACHE_HASH( 12993 tcp->tcp_remote)] = tcp->tcp_remote; 12994 } 12995 mutex_exit(&listener->tcp_eager_lock); 12996 if (need_send_conn_ind) 12997 putnext(listener->tcp_rq, mp); 12998 } 12999 13000 mblk_t * 13001 tcp_find_pktinfo(tcp_t *tcp, mblk_t *mp, uint_t *ipversp, uint_t *ip_hdr_lenp, 13002 uint_t *ifindexp, ip6_pkt_t *ippp) 13003 { 13004 ip_pktinfo_t *pinfo; 13005 ip6_t *ip6h; 13006 uchar_t *rptr; 13007 mblk_t *first_mp = mp; 13008 boolean_t mctl_present = B_FALSE; 13009 uint_t ifindex = 0; 13010 ip6_pkt_t ipp; 13011 uint_t ipvers; 13012 uint_t ip_hdr_len; 13013 tcp_stack_t *tcps = tcp->tcp_tcps; 13014 13015 rptr = mp->b_rptr; 13016 ASSERT(OK_32PTR(rptr)); 13017 ASSERT(tcp != NULL); 13018 ipp.ipp_fields = 0; 13019 13020 switch DB_TYPE(mp) { 13021 case M_CTL: 13022 mp = mp->b_cont; 13023 if (mp == NULL) { 13024 freemsg(first_mp); 13025 return (NULL); 13026 } 13027 if (DB_TYPE(mp) != M_DATA) { 13028 freemsg(first_mp); 13029 return (NULL); 13030 } 13031 mctl_present = B_TRUE; 13032 break; 13033 case M_DATA: 13034 break; 13035 default: 13036 cmn_err(CE_NOTE, "tcp_find_pktinfo: unknown db_type"); 13037 freemsg(mp); 13038 return (NULL); 13039 } 13040 ipvers = IPH_HDR_VERSION(rptr); 13041 if (ipvers == IPV4_VERSION) { 13042 if (tcp == NULL) { 13043 ip_hdr_len = IPH_HDR_LENGTH(rptr); 13044 goto done; 13045 } 13046 13047 ipp.ipp_fields |= IPPF_HOPLIMIT; 13048 ipp.ipp_hoplimit = ((ipha_t *)rptr)->ipha_ttl; 13049 13050 /* 13051 * If we have IN_PKTINFO in an M_CTL and tcp_ipv6_recvancillary 13052 * has TCP_IPV6_RECVPKTINFO set, pass I/F index along in ipp. 13053 */ 13054 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) && 13055 mctl_present) { 13056 pinfo = (ip_pktinfo_t *)first_mp->b_rptr; 13057 if ((MBLKL(first_mp) == sizeof (ip_pktinfo_t)) && 13058 (pinfo->ip_pkt_ulp_type == IN_PKTINFO) && 13059 (pinfo->ip_pkt_flags & IPF_RECVIF)) { 13060 ipp.ipp_fields |= IPPF_IFINDEX; 13061 ipp.ipp_ifindex = pinfo->ip_pkt_ifindex; 13062 ifindex = pinfo->ip_pkt_ifindex; 13063 } 13064 freeb(first_mp); 13065 mctl_present = B_FALSE; 13066 } 13067 ip_hdr_len = IPH_HDR_LENGTH(rptr); 13068 } else { 13069 ip6h = (ip6_t *)rptr; 13070 13071 ASSERT(ipvers == IPV6_VERSION); 13072 ipp.ipp_fields = IPPF_HOPLIMIT | IPPF_TCLASS; 13073 ipp.ipp_tclass = (ip6h->ip6_flow & 0x0FF00000) >> 20; 13074 ipp.ipp_hoplimit = ip6h->ip6_hops; 13075 13076 if (ip6h->ip6_nxt != IPPROTO_TCP) { 13077 uint8_t nexthdrp; 13078 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 13079 13080 /* Look for ifindex information */ 13081 if (ip6h->ip6_nxt == IPPROTO_RAW) { 13082 ip6i_t *ip6i = (ip6i_t *)ip6h; 13083 if ((uchar_t *)&ip6i[1] > mp->b_wptr) { 13084 BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs); 13085 freemsg(first_mp); 13086 return (NULL); 13087 } 13088 13089 if (ip6i->ip6i_flags & IP6I_IFINDEX) { 13090 ASSERT(ip6i->ip6i_ifindex != 0); 13091 ipp.ipp_fields |= IPPF_IFINDEX; 13092 ipp.ipp_ifindex = ip6i->ip6i_ifindex; 13093 ifindex = ip6i->ip6i_ifindex; 13094 } 13095 rptr = (uchar_t *)&ip6i[1]; 13096 mp->b_rptr = rptr; 13097 if (rptr == mp->b_wptr) { 13098 mblk_t *mp1; 13099 mp1 = mp->b_cont; 13100 freeb(mp); 13101 mp = mp1; 13102 rptr = mp->b_rptr; 13103 } 13104 if (MBLKL(mp) < IPV6_HDR_LEN + 13105 sizeof (tcph_t)) { 13106 BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs); 13107 freemsg(first_mp); 13108 return (NULL); 13109 } 13110 ip6h = (ip6_t *)rptr; 13111 } 13112 13113 /* 13114 * Find any potentially interesting extension headers 13115 * as well as the length of the IPv6 + extension 13116 * headers. 13117 */ 13118 ip_hdr_len = ip_find_hdr_v6(mp, ip6h, &ipp, &nexthdrp); 13119 /* Verify if this is a TCP packet */ 13120 if (nexthdrp != IPPROTO_TCP) { 13121 BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs); 13122 freemsg(first_mp); 13123 return (NULL); 13124 } 13125 } else { 13126 ip_hdr_len = IPV6_HDR_LEN; 13127 } 13128 } 13129 13130 done: 13131 if (ipversp != NULL) 13132 *ipversp = ipvers; 13133 if (ip_hdr_lenp != NULL) 13134 *ip_hdr_lenp = ip_hdr_len; 13135 if (ippp != NULL) 13136 *ippp = ipp; 13137 if (ifindexp != NULL) 13138 *ifindexp = ifindex; 13139 if (mctl_present) { 13140 freeb(first_mp); 13141 } 13142 return (mp); 13143 } 13144 13145 /* 13146 * Handle M_DATA messages from IP. Its called directly from IP via 13147 * squeue for AF_INET type sockets fast path. No M_CTL are expected 13148 * in this path. 13149 * 13150 * For everything else (including AF_INET6 sockets with 'tcp_ipversion' 13151 * v4 and v6), we are called through tcp_input() and a M_CTL can 13152 * be present for options but tcp_find_pktinfo() deals with it. We 13153 * only expect M_DATA packets after tcp_find_pktinfo() is done. 13154 * 13155 * The first argument is always the connp/tcp to which the mp belongs. 13156 * There are no exceptions to this rule. The caller has already put 13157 * a reference on this connp/tcp and once tcp_rput_data() returns, 13158 * the squeue will do the refrele. 13159 * 13160 * The TH_SYN for the listener directly go to tcp_conn_request via 13161 * squeue. 13162 * 13163 * sqp: NULL = recursive, sqp != NULL means called from squeue 13164 */ 13165 void 13166 tcp_rput_data(void *arg, mblk_t *mp, void *arg2) 13167 { 13168 int32_t bytes_acked; 13169 int32_t gap; 13170 mblk_t *mp1; 13171 uint_t flags; 13172 uint32_t new_swnd = 0; 13173 uchar_t *iphdr; 13174 uchar_t *rptr; 13175 int32_t rgap; 13176 uint32_t seg_ack; 13177 int seg_len; 13178 uint_t ip_hdr_len; 13179 uint32_t seg_seq; 13180 tcph_t *tcph; 13181 int urp; 13182 tcp_opt_t tcpopt; 13183 uint_t ipvers; 13184 ip6_pkt_t ipp; 13185 boolean_t ofo_seg = B_FALSE; /* Out of order segment */ 13186 uint32_t cwnd; 13187 uint32_t add; 13188 int npkt; 13189 int mss; 13190 conn_t *connp = (conn_t *)arg; 13191 squeue_t *sqp = (squeue_t *)arg2; 13192 tcp_t *tcp = connp->conn_tcp; 13193 tcp_stack_t *tcps = tcp->tcp_tcps; 13194 13195 /* 13196 * RST from fused tcp loopback peer should trigger an unfuse. 13197 */ 13198 if (tcp->tcp_fused) { 13199 TCP_STAT(tcps, tcp_fusion_aborted); 13200 tcp_unfuse(tcp); 13201 } 13202 13203 iphdr = mp->b_rptr; 13204 rptr = mp->b_rptr; 13205 ASSERT(OK_32PTR(rptr)); 13206 13207 /* 13208 * An AF_INET socket is not capable of receiving any pktinfo. Do inline 13209 * processing here. For rest call tcp_find_pktinfo to fill up the 13210 * necessary information. 13211 */ 13212 if (IPCL_IS_TCP4(connp)) { 13213 ipvers = IPV4_VERSION; 13214 ip_hdr_len = IPH_HDR_LENGTH(rptr); 13215 } else { 13216 mp = tcp_find_pktinfo(tcp, mp, &ipvers, &ip_hdr_len, 13217 NULL, &ipp); 13218 if (mp == NULL) { 13219 TCP_STAT(tcps, tcp_rput_v6_error); 13220 return; 13221 } 13222 iphdr = mp->b_rptr; 13223 rptr = mp->b_rptr; 13224 } 13225 ASSERT(DB_TYPE(mp) == M_DATA); 13226 13227 tcph = (tcph_t *)&rptr[ip_hdr_len]; 13228 seg_seq = ABE32_TO_U32(tcph->th_seq); 13229 seg_ack = ABE32_TO_U32(tcph->th_ack); 13230 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 13231 seg_len = (int)(mp->b_wptr - rptr) - 13232 (ip_hdr_len + TCP_HDR_LENGTH(tcph)); 13233 if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) { 13234 do { 13235 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 13236 (uintptr_t)INT_MAX); 13237 seg_len += (int)(mp1->b_wptr - mp1->b_rptr); 13238 } while ((mp1 = mp1->b_cont) != NULL && 13239 mp1->b_datap->db_type == M_DATA); 13240 } 13241 13242 if (tcp->tcp_state == TCPS_TIME_WAIT) { 13243 tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack, 13244 seg_len, tcph); 13245 return; 13246 } 13247 13248 if (sqp != NULL) { 13249 /* 13250 * This is the correct place to update tcp_last_recv_time. Note 13251 * that it is also updated for tcp structure that belongs to 13252 * global and listener queues which do not really need updating. 13253 * But that should not cause any harm. And it is updated for 13254 * all kinds of incoming segments, not only for data segments. 13255 */ 13256 tcp->tcp_last_recv_time = lbolt; 13257 } 13258 13259 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 13260 13261 BUMP_LOCAL(tcp->tcp_ibsegs); 13262 DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp); 13263 13264 if ((flags & TH_URG) && sqp != NULL) { 13265 /* 13266 * TCP can't handle urgent pointers that arrive before 13267 * the connection has been accept()ed since it can't 13268 * buffer OOB data. Discard segment if this happens. 13269 * 13270 * We can't just rely on a non-null tcp_listener to indicate 13271 * that the accept() has completed since unlinking of the 13272 * eager and completion of the accept are not atomic. 13273 * tcp_detached, when it is not set (B_FALSE) indicates 13274 * that the accept() has completed. 13275 * 13276 * Nor can it reassemble urgent pointers, so discard 13277 * if it's not the next segment expected. 13278 * 13279 * Otherwise, collapse chain into one mblk (discard if 13280 * that fails). This makes sure the headers, retransmitted 13281 * data, and new data all are in the same mblk. 13282 */ 13283 ASSERT(mp != NULL); 13284 if (tcp->tcp_detached || !pullupmsg(mp, -1)) { 13285 freemsg(mp); 13286 return; 13287 } 13288 /* Update pointers into message */ 13289 iphdr = rptr = mp->b_rptr; 13290 tcph = (tcph_t *)&rptr[ip_hdr_len]; 13291 if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) { 13292 /* 13293 * Since we can't handle any data with this urgent 13294 * pointer that is out of sequence, we expunge 13295 * the data. This allows us to still register 13296 * the urgent mark and generate the M_PCSIG, 13297 * which we can do. 13298 */ 13299 mp->b_wptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph); 13300 seg_len = 0; 13301 } 13302 } 13303 13304 switch (tcp->tcp_state) { 13305 case TCPS_SYN_SENT: 13306 if (flags & TH_ACK) { 13307 /* 13308 * Note that our stack cannot send data before a 13309 * connection is established, therefore the 13310 * following check is valid. Otherwise, it has 13311 * to be changed. 13312 */ 13313 if (SEQ_LEQ(seg_ack, tcp->tcp_iss) || 13314 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 13315 freemsg(mp); 13316 if (flags & TH_RST) 13317 return; 13318 tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq", 13319 tcp, seg_ack, 0, TH_RST); 13320 return; 13321 } 13322 ASSERT(tcp->tcp_suna + 1 == seg_ack); 13323 } 13324 if (flags & TH_RST) { 13325 freemsg(mp); 13326 if (flags & TH_ACK) 13327 (void) tcp_clean_death(tcp, 13328 ECONNREFUSED, 13); 13329 return; 13330 } 13331 if (!(flags & TH_SYN)) { 13332 freemsg(mp); 13333 return; 13334 } 13335 13336 /* Process all TCP options. */ 13337 tcp_process_options(tcp, tcph); 13338 /* 13339 * The following changes our rwnd to be a multiple of the 13340 * MIN(peer MSS, our MSS) for performance reason. 13341 */ 13342 (void) tcp_rwnd_set(tcp, MSS_ROUNDUP(tcp->tcp_rq->q_hiwat, 13343 tcp->tcp_mss)); 13344 13345 /* Is the other end ECN capable? */ 13346 if (tcp->tcp_ecn_ok) { 13347 if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) { 13348 tcp->tcp_ecn_ok = B_FALSE; 13349 } 13350 } 13351 /* 13352 * Clear ECN flags because it may interfere with later 13353 * processing. 13354 */ 13355 flags &= ~(TH_ECE|TH_CWR); 13356 13357 tcp->tcp_irs = seg_seq; 13358 tcp->tcp_rack = seg_seq; 13359 tcp->tcp_rnxt = seg_seq + 1; 13360 U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack); 13361 if (!TCP_IS_DETACHED(tcp)) { 13362 /* Allocate room for SACK options if needed. */ 13363 if (tcp->tcp_snd_sack_ok) { 13364 (void) mi_set_sth_wroff(tcp->tcp_rq, 13365 tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN + 13366 (tcp->tcp_loopback ? 0 : 13367 tcps->tcps_wroff_xtra)); 13368 } else { 13369 (void) mi_set_sth_wroff(tcp->tcp_rq, 13370 tcp->tcp_hdr_len + 13371 (tcp->tcp_loopback ? 0 : 13372 tcps->tcps_wroff_xtra)); 13373 } 13374 } 13375 if (flags & TH_ACK) { 13376 /* 13377 * If we can't get the confirmation upstream, pretend 13378 * we didn't even see this one. 13379 * 13380 * XXX: how can we pretend we didn't see it if we 13381 * have updated rnxt et. al. 13382 * 13383 * For loopback we defer sending up the T_CONN_CON 13384 * until after some checks below. 13385 */ 13386 mp1 = NULL; 13387 if (!tcp_conn_con(tcp, iphdr, tcph, mp, 13388 tcp->tcp_loopback ? &mp1 : NULL)) { 13389 freemsg(mp); 13390 return; 13391 } 13392 /* SYN was acked - making progress */ 13393 if (tcp->tcp_ipversion == IPV6_VERSION) 13394 tcp->tcp_ip_forward_progress = B_TRUE; 13395 13396 /* One for the SYN */ 13397 tcp->tcp_suna = tcp->tcp_iss + 1; 13398 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 13399 tcp->tcp_state = TCPS_ESTABLISHED; 13400 13401 /* 13402 * If SYN was retransmitted, need to reset all 13403 * retransmission info. This is because this 13404 * segment will be treated as a dup ACK. 13405 */ 13406 if (tcp->tcp_rexmit) { 13407 tcp->tcp_rexmit = B_FALSE; 13408 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 13409 tcp->tcp_rexmit_max = tcp->tcp_snxt; 13410 tcp->tcp_snd_burst = tcp->tcp_localnet ? 13411 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 13412 tcp->tcp_ms_we_have_waited = 0; 13413 13414 /* 13415 * Set tcp_cwnd back to 1 MSS, per 13416 * recommendation from 13417 * draft-floyd-incr-init-win-01.txt, 13418 * Increasing TCP's Initial Window. 13419 */ 13420 tcp->tcp_cwnd = tcp->tcp_mss; 13421 } 13422 13423 tcp->tcp_swl1 = seg_seq; 13424 tcp->tcp_swl2 = seg_ack; 13425 13426 new_swnd = BE16_TO_U16(tcph->th_win); 13427 tcp->tcp_swnd = new_swnd; 13428 if (new_swnd > tcp->tcp_max_swnd) 13429 tcp->tcp_max_swnd = new_swnd; 13430 13431 /* 13432 * Always send the three-way handshake ack immediately 13433 * in order to make the connection complete as soon as 13434 * possible on the accepting host. 13435 */ 13436 flags |= TH_ACK_NEEDED; 13437 13438 /* 13439 * Special case for loopback. At this point we have 13440 * received SYN-ACK from the remote endpoint. In 13441 * order to ensure that both endpoints reach the 13442 * fused state prior to any data exchange, the final 13443 * ACK needs to be sent before we indicate T_CONN_CON 13444 * to the module upstream. 13445 */ 13446 if (tcp->tcp_loopback) { 13447 mblk_t *ack_mp; 13448 13449 ASSERT(!tcp->tcp_unfusable); 13450 ASSERT(mp1 != NULL); 13451 /* 13452 * For loopback, we always get a pure SYN-ACK 13453 * and only need to send back the final ACK 13454 * with no data (this is because the other 13455 * tcp is ours and we don't do T/TCP). This 13456 * final ACK triggers the passive side to 13457 * perform fusion in ESTABLISHED state. 13458 */ 13459 if ((ack_mp = tcp_ack_mp(tcp)) != NULL) { 13460 if (tcp->tcp_ack_tid != 0) { 13461 (void) TCP_TIMER_CANCEL(tcp, 13462 tcp->tcp_ack_tid); 13463 tcp->tcp_ack_tid = 0; 13464 } 13465 tcp_send_data(tcp, tcp->tcp_wq, ack_mp); 13466 BUMP_LOCAL(tcp->tcp_obsegs); 13467 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 13468 13469 /* Send up T_CONN_CON */ 13470 putnext(tcp->tcp_rq, mp1); 13471 13472 freemsg(mp); 13473 return; 13474 } 13475 /* 13476 * Forget fusion; we need to handle more 13477 * complex cases below. Send the deferred 13478 * T_CONN_CON message upstream and proceed 13479 * as usual. Mark this tcp as not capable 13480 * of fusion. 13481 */ 13482 TCP_STAT(tcps, tcp_fusion_unfusable); 13483 tcp->tcp_unfusable = B_TRUE; 13484 putnext(tcp->tcp_rq, mp1); 13485 } 13486 13487 /* 13488 * Check to see if there is data to be sent. If 13489 * yes, set the transmit flag. Then check to see 13490 * if received data processing needs to be done. 13491 * If not, go straight to xmit_check. This short 13492 * cut is OK as we don't support T/TCP. 13493 */ 13494 if (tcp->tcp_unsent) 13495 flags |= TH_XMIT_NEEDED; 13496 13497 if (seg_len == 0 && !(flags & TH_URG)) { 13498 freemsg(mp); 13499 goto xmit_check; 13500 } 13501 13502 flags &= ~TH_SYN; 13503 seg_seq++; 13504 break; 13505 } 13506 tcp->tcp_state = TCPS_SYN_RCVD; 13507 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss, 13508 NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 13509 if (mp1) { 13510 DB_CPID(mp1) = tcp->tcp_cpid; 13511 tcp_send_data(tcp, tcp->tcp_wq, mp1); 13512 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 13513 } 13514 freemsg(mp); 13515 return; 13516 case TCPS_SYN_RCVD: 13517 if (flags & TH_ACK) { 13518 /* 13519 * In this state, a SYN|ACK packet is either bogus 13520 * because the other side must be ACKing our SYN which 13521 * indicates it has seen the ACK for their SYN and 13522 * shouldn't retransmit it or we're crossing SYNs 13523 * on active open. 13524 */ 13525 if ((flags & TH_SYN) && !tcp->tcp_active_open) { 13526 freemsg(mp); 13527 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn", 13528 tcp, seg_ack, 0, TH_RST); 13529 return; 13530 } 13531 /* 13532 * NOTE: RFC 793 pg. 72 says this should be 13533 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt 13534 * but that would mean we have an ack that ignored 13535 * our SYN. 13536 */ 13537 if (SEQ_LEQ(seg_ack, tcp->tcp_suna) || 13538 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 13539 freemsg(mp); 13540 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack", 13541 tcp, seg_ack, 0, TH_RST); 13542 return; 13543 } 13544 } 13545 break; 13546 case TCPS_LISTEN: 13547 /* 13548 * Only a TLI listener can come through this path when a 13549 * acceptor is going back to be a listener and a packet 13550 * for the acceptor hits the classifier. For a socket 13551 * listener, this can never happen because a listener 13552 * can never accept connection on itself and hence a 13553 * socket acceptor can not go back to being a listener. 13554 */ 13555 ASSERT(!TCP_IS_SOCKET(tcp)); 13556 /*FALLTHRU*/ 13557 case TCPS_CLOSED: 13558 case TCPS_BOUND: { 13559 conn_t *new_connp; 13560 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 13561 13562 new_connp = ipcl_classify(mp, connp->conn_zoneid, ipst); 13563 if (new_connp != NULL) { 13564 tcp_reinput(new_connp, mp, connp->conn_sqp); 13565 return; 13566 } 13567 /* We failed to classify. For now just drop the packet */ 13568 freemsg(mp); 13569 return; 13570 } 13571 case TCPS_IDLE: 13572 /* 13573 * Handle the case where the tcp_clean_death() has happened 13574 * on a connection (application hasn't closed yet) but a packet 13575 * was already queued on squeue before tcp_clean_death() 13576 * was processed. Calling tcp_clean_death() twice on same 13577 * connection can result in weird behaviour. 13578 */ 13579 freemsg(mp); 13580 return; 13581 default: 13582 break; 13583 } 13584 13585 /* 13586 * Already on the correct queue/perimeter. 13587 * If this is a detached connection and not an eager 13588 * connection hanging off a listener then new data 13589 * (past the FIN) will cause a reset. 13590 * We do a special check here where it 13591 * is out of the main line, rather than check 13592 * if we are detached every time we see new 13593 * data down below. 13594 */ 13595 if (TCP_IS_DETACHED_NONEAGER(tcp) && 13596 (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) { 13597 BUMP_MIB(&tcps->tcps_mib, tcpInClosed); 13598 DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp); 13599 13600 freemsg(mp); 13601 /* 13602 * This could be an SSL closure alert. We're detached so just 13603 * acknowledge it this last time. 13604 */ 13605 if (tcp->tcp_kssl_ctx != NULL) { 13606 kssl_release_ctx(tcp->tcp_kssl_ctx); 13607 tcp->tcp_kssl_ctx = NULL; 13608 13609 tcp->tcp_rnxt += seg_len; 13610 U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack); 13611 flags |= TH_ACK_NEEDED; 13612 goto ack_check; 13613 } 13614 13615 tcp_xmit_ctl("new data when detached", tcp, 13616 tcp->tcp_snxt, 0, TH_RST); 13617 (void) tcp_clean_death(tcp, EPROTO, 12); 13618 return; 13619 } 13620 13621 mp->b_rptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph); 13622 urp = BE16_TO_U16(tcph->th_urp) - TCP_OLD_URP_INTERPRETATION; 13623 new_swnd = BE16_TO_U16(tcph->th_win) << 13624 ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws); 13625 13626 if (tcp->tcp_snd_ts_ok) { 13627 if (!tcp_paws_check(tcp, tcph, &tcpopt)) { 13628 /* 13629 * This segment is not acceptable. 13630 * Drop it and send back an ACK. 13631 */ 13632 freemsg(mp); 13633 flags |= TH_ACK_NEEDED; 13634 goto ack_check; 13635 } 13636 } else if (tcp->tcp_snd_sack_ok) { 13637 ASSERT(tcp->tcp_sack_info != NULL); 13638 tcpopt.tcp = tcp; 13639 /* 13640 * SACK info in already updated in tcp_parse_options. Ignore 13641 * all other TCP options... 13642 */ 13643 (void) tcp_parse_options(tcph, &tcpopt); 13644 } 13645 try_again:; 13646 mss = tcp->tcp_mss; 13647 gap = seg_seq - tcp->tcp_rnxt; 13648 rgap = tcp->tcp_rwnd - (gap + seg_len); 13649 /* 13650 * gap is the amount of sequence space between what we expect to see 13651 * and what we got for seg_seq. A positive value for gap means 13652 * something got lost. A negative value means we got some old stuff. 13653 */ 13654 if (gap < 0) { 13655 /* Old stuff present. Is the SYN in there? */ 13656 if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) && 13657 (seg_len != 0)) { 13658 flags &= ~TH_SYN; 13659 seg_seq++; 13660 urp--; 13661 /* Recompute the gaps after noting the SYN. */ 13662 goto try_again; 13663 } 13664 BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); 13665 UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, 13666 (seg_len > -gap ? -gap : seg_len)); 13667 /* Remove the old stuff from seg_len. */ 13668 seg_len += gap; 13669 /* 13670 * Anything left? 13671 * Make sure to check for unack'd FIN when rest of data 13672 * has been previously ack'd. 13673 */ 13674 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 13675 /* 13676 * Resets are only valid if they lie within our offered 13677 * window. If the RST bit is set, we just ignore this 13678 * segment. 13679 */ 13680 if (flags & TH_RST) { 13681 freemsg(mp); 13682 return; 13683 } 13684 13685 /* 13686 * The arriving of dup data packets indicate that we 13687 * may have postponed an ack for too long, or the other 13688 * side's RTT estimate is out of shape. Start acking 13689 * more often. 13690 */ 13691 if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) && 13692 tcp->tcp_rack_cnt >= 1 && 13693 tcp->tcp_rack_abs_max > 2) { 13694 tcp->tcp_rack_abs_max--; 13695 } 13696 tcp->tcp_rack_cur_max = 1; 13697 13698 /* 13699 * This segment is "unacceptable". None of its 13700 * sequence space lies within our advertized window. 13701 * 13702 * Adjust seg_len to the original value for tracing. 13703 */ 13704 seg_len -= gap; 13705 if (tcp->tcp_debug) { 13706 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13707 "tcp_rput: unacceptable, gap %d, rgap %d, " 13708 "flags 0x%x, seg_seq %u, seg_ack %u, " 13709 "seg_len %d, rnxt %u, snxt %u, %s", 13710 gap, rgap, flags, seg_seq, seg_ack, 13711 seg_len, tcp->tcp_rnxt, tcp->tcp_snxt, 13712 tcp_display(tcp, NULL, 13713 DISP_ADDR_AND_PORT)); 13714 } 13715 13716 /* 13717 * Arrange to send an ACK in response to the 13718 * unacceptable segment per RFC 793 page 69. There 13719 * is only one small difference between ours and the 13720 * acceptability test in the RFC - we accept ACK-only 13721 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK 13722 * will be generated. 13723 * 13724 * Note that we have to ACK an ACK-only packet at least 13725 * for stacks that send 0-length keep-alives with 13726 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122, 13727 * section 4.2.3.6. As long as we don't ever generate 13728 * an unacceptable packet in response to an incoming 13729 * packet that is unacceptable, it should not cause 13730 * "ACK wars". 13731 */ 13732 flags |= TH_ACK_NEEDED; 13733 13734 /* 13735 * Continue processing this segment in order to use the 13736 * ACK information it contains, but skip all other 13737 * sequence-number processing. Processing the ACK 13738 * information is necessary in order to 13739 * re-synchronize connections that may have lost 13740 * synchronization. 13741 * 13742 * We clear seg_len and flag fields related to 13743 * sequence number processing as they are not 13744 * to be trusted for an unacceptable segment. 13745 */ 13746 seg_len = 0; 13747 flags &= ~(TH_SYN | TH_FIN | TH_URG); 13748 goto process_ack; 13749 } 13750 13751 /* Fix seg_seq, and chew the gap off the front. */ 13752 seg_seq = tcp->tcp_rnxt; 13753 urp += gap; 13754 do { 13755 mblk_t *mp2; 13756 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 13757 (uintptr_t)UINT_MAX); 13758 gap += (uint_t)(mp->b_wptr - mp->b_rptr); 13759 if (gap > 0) { 13760 mp->b_rptr = mp->b_wptr - gap; 13761 break; 13762 } 13763 mp2 = mp; 13764 mp = mp->b_cont; 13765 freeb(mp2); 13766 } while (gap < 0); 13767 /* 13768 * If the urgent data has already been acknowledged, we 13769 * should ignore TH_URG below 13770 */ 13771 if (urp < 0) 13772 flags &= ~TH_URG; 13773 } 13774 /* 13775 * rgap is the amount of stuff received out of window. A negative 13776 * value is the amount out of window. 13777 */ 13778 if (rgap < 0) { 13779 mblk_t *mp2; 13780 13781 if (tcp->tcp_rwnd == 0) { 13782 BUMP_MIB(&tcps->tcps_mib, tcpInWinProbe); 13783 } else { 13784 BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs); 13785 UPDATE_MIB(&tcps->tcps_mib, 13786 tcpInDataPastWinBytes, -rgap); 13787 } 13788 13789 /* 13790 * seg_len does not include the FIN, so if more than 13791 * just the FIN is out of window, we act like we don't 13792 * see it. (If just the FIN is out of window, rgap 13793 * will be zero and we will go ahead and acknowledge 13794 * the FIN.) 13795 */ 13796 flags &= ~TH_FIN; 13797 13798 /* Fix seg_len and make sure there is something left. */ 13799 seg_len += rgap; 13800 if (seg_len <= 0) { 13801 /* 13802 * Resets are only valid if they lie within our offered 13803 * window. If the RST bit is set, we just ignore this 13804 * segment. 13805 */ 13806 if (flags & TH_RST) { 13807 freemsg(mp); 13808 return; 13809 } 13810 13811 /* Per RFC 793, we need to send back an ACK. */ 13812 flags |= TH_ACK_NEEDED; 13813 13814 /* 13815 * Send SIGURG as soon as possible i.e. even 13816 * if the TH_URG was delivered in a window probe 13817 * packet (which will be unacceptable). 13818 * 13819 * We generate a signal if none has been generated 13820 * for this connection or if this is a new urgent 13821 * byte. Also send a zero-length "unmarked" message 13822 * to inform SIOCATMARK that this is not the mark. 13823 * 13824 * tcp_urp_last_valid is cleared when the T_exdata_ind 13825 * is sent up. This plus the check for old data 13826 * (gap >= 0) handles the wraparound of the sequence 13827 * number space without having to always track the 13828 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks 13829 * this max in its rcv_up variable). 13830 * 13831 * This prevents duplicate SIGURGS due to a "late" 13832 * zero-window probe when the T_EXDATA_IND has already 13833 * been sent up. 13834 */ 13835 if ((flags & TH_URG) && 13836 (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq, 13837 tcp->tcp_urp_last))) { 13838 mp1 = allocb(0, BPRI_MED); 13839 if (mp1 == NULL) { 13840 freemsg(mp); 13841 return; 13842 } 13843 if (!TCP_IS_DETACHED(tcp) && 13844 !putnextctl1(tcp->tcp_rq, M_PCSIG, 13845 SIGURG)) { 13846 /* Try again on the rexmit. */ 13847 freemsg(mp1); 13848 freemsg(mp); 13849 return; 13850 } 13851 /* 13852 * If the next byte would be the mark 13853 * then mark with MARKNEXT else mark 13854 * with NOTMARKNEXT. 13855 */ 13856 if (gap == 0 && urp == 0) 13857 mp1->b_flag |= MSGMARKNEXT; 13858 else 13859 mp1->b_flag |= MSGNOTMARKNEXT; 13860 freemsg(tcp->tcp_urp_mark_mp); 13861 tcp->tcp_urp_mark_mp = mp1; 13862 flags |= TH_SEND_URP_MARK; 13863 tcp->tcp_urp_last_valid = B_TRUE; 13864 tcp->tcp_urp_last = urp + seg_seq; 13865 } 13866 /* 13867 * If this is a zero window probe, continue to 13868 * process the ACK part. But we need to set seg_len 13869 * to 0 to avoid data processing. Otherwise just 13870 * drop the segment and send back an ACK. 13871 */ 13872 if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) { 13873 flags &= ~(TH_SYN | TH_URG); 13874 seg_len = 0; 13875 goto process_ack; 13876 } else { 13877 freemsg(mp); 13878 goto ack_check; 13879 } 13880 } 13881 /* Pitch out of window stuff off the end. */ 13882 rgap = seg_len; 13883 mp2 = mp; 13884 do { 13885 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 13886 (uintptr_t)INT_MAX); 13887 rgap -= (int)(mp2->b_wptr - mp2->b_rptr); 13888 if (rgap < 0) { 13889 mp2->b_wptr += rgap; 13890 if ((mp1 = mp2->b_cont) != NULL) { 13891 mp2->b_cont = NULL; 13892 freemsg(mp1); 13893 } 13894 break; 13895 } 13896 } while ((mp2 = mp2->b_cont) != NULL); 13897 } 13898 ok:; 13899 /* 13900 * TCP should check ECN info for segments inside the window only. 13901 * Therefore the check should be done here. 13902 */ 13903 if (tcp->tcp_ecn_ok) { 13904 if (flags & TH_CWR) { 13905 tcp->tcp_ecn_echo_on = B_FALSE; 13906 } 13907 /* 13908 * Note that both ECN_CE and CWR can be set in the 13909 * same segment. In this case, we once again turn 13910 * on ECN_ECHO. 13911 */ 13912 if (tcp->tcp_ipversion == IPV4_VERSION) { 13913 uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service; 13914 13915 if ((tos & IPH_ECN_CE) == IPH_ECN_CE) { 13916 tcp->tcp_ecn_echo_on = B_TRUE; 13917 } 13918 } else { 13919 uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf; 13920 13921 if ((vcf & htonl(IPH_ECN_CE << 20)) == 13922 htonl(IPH_ECN_CE << 20)) { 13923 tcp->tcp_ecn_echo_on = B_TRUE; 13924 } 13925 } 13926 } 13927 13928 /* 13929 * Check whether we can update tcp_ts_recent. This test is 13930 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 13931 * Extensions for High Performance: An Update", Internet Draft. 13932 */ 13933 if (tcp->tcp_snd_ts_ok && 13934 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 13935 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 13936 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 13937 tcp->tcp_last_rcv_lbolt = lbolt64; 13938 } 13939 13940 if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) { 13941 /* 13942 * FIN in an out of order segment. We record this in 13943 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq. 13944 * Clear the FIN so that any check on FIN flag will fail. 13945 * Remember that FIN also counts in the sequence number 13946 * space. So we need to ack out of order FIN only segments. 13947 */ 13948 if (flags & TH_FIN) { 13949 tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID; 13950 tcp->tcp_ofo_fin_seq = seg_seq + seg_len; 13951 flags &= ~TH_FIN; 13952 flags |= TH_ACK_NEEDED; 13953 } 13954 if (seg_len > 0) { 13955 /* Fill in the SACK blk list. */ 13956 if (tcp->tcp_snd_sack_ok) { 13957 ASSERT(tcp->tcp_sack_info != NULL); 13958 tcp_sack_insert(tcp->tcp_sack_list, 13959 seg_seq, seg_seq + seg_len, 13960 &(tcp->tcp_num_sack_blk)); 13961 } 13962 13963 /* 13964 * Attempt reassembly and see if we have something 13965 * ready to go. 13966 */ 13967 mp = tcp_reass(tcp, mp, seg_seq); 13968 /* Always ack out of order packets */ 13969 flags |= TH_ACK_NEEDED | TH_PUSH; 13970 if (mp) { 13971 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 13972 (uintptr_t)INT_MAX); 13973 seg_len = mp->b_cont ? msgdsize(mp) : 13974 (int)(mp->b_wptr - mp->b_rptr); 13975 seg_seq = tcp->tcp_rnxt; 13976 /* 13977 * A gap is filled and the seq num and len 13978 * of the gap match that of a previously 13979 * received FIN, put the FIN flag back in. 13980 */ 13981 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 13982 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 13983 flags |= TH_FIN; 13984 tcp->tcp_valid_bits &= 13985 ~TCP_OFO_FIN_VALID; 13986 } 13987 } else { 13988 /* 13989 * Keep going even with NULL mp. 13990 * There may be a useful ACK or something else 13991 * we don't want to miss. 13992 * 13993 * But TCP should not perform fast retransmit 13994 * because of the ack number. TCP uses 13995 * seg_len == 0 to determine if it is a pure 13996 * ACK. And this is not a pure ACK. 13997 */ 13998 seg_len = 0; 13999 ofo_seg = B_TRUE; 14000 } 14001 } 14002 } else if (seg_len > 0) { 14003 BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs); 14004 UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len); 14005 /* 14006 * If an out of order FIN was received before, and the seq 14007 * num and len of the new segment match that of the FIN, 14008 * put the FIN flag back in. 14009 */ 14010 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 14011 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 14012 flags |= TH_FIN; 14013 tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID; 14014 } 14015 } 14016 if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) { 14017 if (flags & TH_RST) { 14018 freemsg(mp); 14019 switch (tcp->tcp_state) { 14020 case TCPS_SYN_RCVD: 14021 (void) tcp_clean_death(tcp, ECONNREFUSED, 14); 14022 break; 14023 case TCPS_ESTABLISHED: 14024 case TCPS_FIN_WAIT_1: 14025 case TCPS_FIN_WAIT_2: 14026 case TCPS_CLOSE_WAIT: 14027 (void) tcp_clean_death(tcp, ECONNRESET, 15); 14028 break; 14029 case TCPS_CLOSING: 14030 case TCPS_LAST_ACK: 14031 (void) tcp_clean_death(tcp, 0, 16); 14032 break; 14033 default: 14034 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 14035 (void) tcp_clean_death(tcp, ENXIO, 17); 14036 break; 14037 } 14038 return; 14039 } 14040 if (flags & TH_SYN) { 14041 /* 14042 * See RFC 793, Page 71 14043 * 14044 * The seq number must be in the window as it should 14045 * be "fixed" above. If it is outside window, it should 14046 * be already rejected. Note that we allow seg_seq to be 14047 * rnxt + rwnd because we want to accept 0 window probe. 14048 */ 14049 ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) && 14050 SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd)); 14051 freemsg(mp); 14052 /* 14053 * If the ACK flag is not set, just use our snxt as the 14054 * seq number of the RST segment. 14055 */ 14056 if (!(flags & TH_ACK)) { 14057 seg_ack = tcp->tcp_snxt; 14058 } 14059 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 14060 TH_RST|TH_ACK); 14061 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 14062 (void) tcp_clean_death(tcp, ECONNRESET, 18); 14063 return; 14064 } 14065 /* 14066 * urp could be -1 when the urp field in the packet is 0 14067 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent 14068 * byte was at seg_seq - 1, in which case we ignore the urgent flag. 14069 */ 14070 if (flags & TH_URG && urp >= 0) { 14071 if (!tcp->tcp_urp_last_valid || 14072 SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) { 14073 /* 14074 * If we haven't generated the signal yet for this 14075 * urgent pointer value, do it now. Also, send up a 14076 * zero-length M_DATA indicating whether or not this is 14077 * the mark. The latter is not needed when a 14078 * T_EXDATA_IND is sent up. However, if there are 14079 * allocation failures this code relies on the sender 14080 * retransmitting and the socket code for determining 14081 * the mark should not block waiting for the peer to 14082 * transmit. Thus, for simplicity we always send up the 14083 * mark indication. 14084 */ 14085 mp1 = allocb(0, BPRI_MED); 14086 if (mp1 == NULL) { 14087 freemsg(mp); 14088 return; 14089 } 14090 if (!TCP_IS_DETACHED(tcp) && 14091 !putnextctl1(tcp->tcp_rq, M_PCSIG, SIGURG)) { 14092 /* Try again on the rexmit. */ 14093 freemsg(mp1); 14094 freemsg(mp); 14095 return; 14096 } 14097 /* 14098 * Mark with NOTMARKNEXT for now. 14099 * The code below will change this to MARKNEXT 14100 * if we are at the mark. 14101 * 14102 * If there are allocation failures (e.g. in dupmsg 14103 * below) the next time tcp_rput_data sees the urgent 14104 * segment it will send up the MSG*MARKNEXT message. 14105 */ 14106 mp1->b_flag |= MSGNOTMARKNEXT; 14107 freemsg(tcp->tcp_urp_mark_mp); 14108 tcp->tcp_urp_mark_mp = mp1; 14109 flags |= TH_SEND_URP_MARK; 14110 #ifdef DEBUG 14111 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14112 "tcp_rput: sent M_PCSIG 2 seq %x urp %x " 14113 "last %x, %s", 14114 seg_seq, urp, tcp->tcp_urp_last, 14115 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 14116 #endif /* DEBUG */ 14117 tcp->tcp_urp_last_valid = B_TRUE; 14118 tcp->tcp_urp_last = urp + seg_seq; 14119 } else if (tcp->tcp_urp_mark_mp != NULL) { 14120 /* 14121 * An allocation failure prevented the previous 14122 * tcp_rput_data from sending up the allocated 14123 * MSG*MARKNEXT message - send it up this time 14124 * around. 14125 */ 14126 flags |= TH_SEND_URP_MARK; 14127 } 14128 14129 /* 14130 * If the urgent byte is in this segment, make sure that it is 14131 * all by itself. This makes it much easier to deal with the 14132 * possibility of an allocation failure on the T_exdata_ind. 14133 * Note that seg_len is the number of bytes in the segment, and 14134 * urp is the offset into the segment of the urgent byte. 14135 * urp < seg_len means that the urgent byte is in this segment. 14136 */ 14137 if (urp < seg_len) { 14138 if (seg_len != 1) { 14139 uint32_t tmp_rnxt; 14140 /* 14141 * Break it up and feed it back in. 14142 * Re-attach the IP header. 14143 */ 14144 mp->b_rptr = iphdr; 14145 if (urp > 0) { 14146 /* 14147 * There is stuff before the urgent 14148 * byte. 14149 */ 14150 mp1 = dupmsg(mp); 14151 if (!mp1) { 14152 /* 14153 * Trim from urgent byte on. 14154 * The rest will come back. 14155 */ 14156 (void) adjmsg(mp, 14157 urp - seg_len); 14158 tcp_rput_data(connp, 14159 mp, NULL); 14160 return; 14161 } 14162 (void) adjmsg(mp1, urp - seg_len); 14163 /* Feed this piece back in. */ 14164 tmp_rnxt = tcp->tcp_rnxt; 14165 tcp_rput_data(connp, mp1, NULL); 14166 /* 14167 * If the data passed back in was not 14168 * processed (ie: bad ACK) sending 14169 * the remainder back in will cause a 14170 * loop. In this case, drop the 14171 * packet and let the sender try 14172 * sending a good packet. 14173 */ 14174 if (tmp_rnxt == tcp->tcp_rnxt) { 14175 freemsg(mp); 14176 return; 14177 } 14178 } 14179 if (urp != seg_len - 1) { 14180 uint32_t tmp_rnxt; 14181 /* 14182 * There is stuff after the urgent 14183 * byte. 14184 */ 14185 mp1 = dupmsg(mp); 14186 if (!mp1) { 14187 /* 14188 * Trim everything beyond the 14189 * urgent byte. The rest will 14190 * come back. 14191 */ 14192 (void) adjmsg(mp, 14193 urp + 1 - seg_len); 14194 tcp_rput_data(connp, 14195 mp, NULL); 14196 return; 14197 } 14198 (void) adjmsg(mp1, urp + 1 - seg_len); 14199 tmp_rnxt = tcp->tcp_rnxt; 14200 tcp_rput_data(connp, mp1, NULL); 14201 /* 14202 * If the data passed back in was not 14203 * processed (ie: bad ACK) sending 14204 * the remainder back in will cause a 14205 * loop. In this case, drop the 14206 * packet and let the sender try 14207 * sending a good packet. 14208 */ 14209 if (tmp_rnxt == tcp->tcp_rnxt) { 14210 freemsg(mp); 14211 return; 14212 } 14213 } 14214 tcp_rput_data(connp, mp, NULL); 14215 return; 14216 } 14217 /* 14218 * This segment contains only the urgent byte. We 14219 * have to allocate the T_exdata_ind, if we can. 14220 */ 14221 if (!tcp->tcp_urp_mp) { 14222 struct T_exdata_ind *tei; 14223 mp1 = allocb(sizeof (struct T_exdata_ind), 14224 BPRI_MED); 14225 if (!mp1) { 14226 /* 14227 * Sigh... It'll be back. 14228 * Generate any MSG*MARK message now. 14229 */ 14230 freemsg(mp); 14231 seg_len = 0; 14232 if (flags & TH_SEND_URP_MARK) { 14233 14234 14235 ASSERT(tcp->tcp_urp_mark_mp); 14236 tcp->tcp_urp_mark_mp->b_flag &= 14237 ~MSGNOTMARKNEXT; 14238 tcp->tcp_urp_mark_mp->b_flag |= 14239 MSGMARKNEXT; 14240 } 14241 goto ack_check; 14242 } 14243 mp1->b_datap->db_type = M_PROTO; 14244 tei = (struct T_exdata_ind *)mp1->b_rptr; 14245 tei->PRIM_type = T_EXDATA_IND; 14246 tei->MORE_flag = 0; 14247 mp1->b_wptr = (uchar_t *)&tei[1]; 14248 tcp->tcp_urp_mp = mp1; 14249 #ifdef DEBUG 14250 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14251 "tcp_rput: allocated exdata_ind %s", 14252 tcp_display(tcp, NULL, 14253 DISP_PORT_ONLY)); 14254 #endif /* DEBUG */ 14255 /* 14256 * There is no need to send a separate MSG*MARK 14257 * message since the T_EXDATA_IND will be sent 14258 * now. 14259 */ 14260 flags &= ~TH_SEND_URP_MARK; 14261 freemsg(tcp->tcp_urp_mark_mp); 14262 tcp->tcp_urp_mark_mp = NULL; 14263 } 14264 /* 14265 * Now we are all set. On the next putnext upstream, 14266 * tcp_urp_mp will be non-NULL and will get prepended 14267 * to what has to be this piece containing the urgent 14268 * byte. If for any reason we abort this segment below, 14269 * if it comes back, we will have this ready, or it 14270 * will get blown off in close. 14271 */ 14272 } else if (urp == seg_len) { 14273 /* 14274 * The urgent byte is the next byte after this sequence 14275 * number. If there is data it is marked with 14276 * MSGMARKNEXT and any tcp_urp_mark_mp is discarded 14277 * since it is not needed. Otherwise, if the code 14278 * above just allocated a zero-length tcp_urp_mark_mp 14279 * message, that message is tagged with MSGMARKNEXT. 14280 * Sending up these MSGMARKNEXT messages makes 14281 * SIOCATMARK work correctly even though 14282 * the T_EXDATA_IND will not be sent up until the 14283 * urgent byte arrives. 14284 */ 14285 if (seg_len != 0) { 14286 flags |= TH_MARKNEXT_NEEDED; 14287 freemsg(tcp->tcp_urp_mark_mp); 14288 tcp->tcp_urp_mark_mp = NULL; 14289 flags &= ~TH_SEND_URP_MARK; 14290 } else if (tcp->tcp_urp_mark_mp != NULL) { 14291 flags |= TH_SEND_URP_MARK; 14292 tcp->tcp_urp_mark_mp->b_flag &= 14293 ~MSGNOTMARKNEXT; 14294 tcp->tcp_urp_mark_mp->b_flag |= MSGMARKNEXT; 14295 } 14296 #ifdef DEBUG 14297 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14298 "tcp_rput: AT MARK, len %d, flags 0x%x, %s", 14299 seg_len, flags, 14300 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 14301 #endif /* DEBUG */ 14302 } else { 14303 /* Data left until we hit mark */ 14304 #ifdef DEBUG 14305 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14306 "tcp_rput: URP %d bytes left, %s", 14307 urp - seg_len, tcp_display(tcp, NULL, 14308 DISP_PORT_ONLY)); 14309 #endif /* DEBUG */ 14310 } 14311 } 14312 14313 process_ack: 14314 if (!(flags & TH_ACK)) { 14315 freemsg(mp); 14316 goto xmit_check; 14317 } 14318 } 14319 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 14320 14321 if (tcp->tcp_ipversion == IPV6_VERSION && bytes_acked > 0) 14322 tcp->tcp_ip_forward_progress = B_TRUE; 14323 if (tcp->tcp_state == TCPS_SYN_RCVD) { 14324 if ((tcp->tcp_conn.tcp_eager_conn_ind != NULL) && 14325 ((tcp->tcp_kssl_ent == NULL) || !tcp->tcp_kssl_pending)) { 14326 /* 3-way handshake complete - pass up the T_CONN_IND */ 14327 tcp_t *listener = tcp->tcp_listener; 14328 mblk_t *mp = tcp->tcp_conn.tcp_eager_conn_ind; 14329 14330 tcp->tcp_tconnind_started = B_TRUE; 14331 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 14332 /* 14333 * We are here means eager is fine but it can 14334 * get a TH_RST at any point between now and till 14335 * accept completes and disappear. We need to 14336 * ensure that reference to eager is valid after 14337 * we get out of eager's perimeter. So we do 14338 * an extra refhold. 14339 */ 14340 CONN_INC_REF(connp); 14341 14342 /* 14343 * The listener also exists because of the refhold 14344 * done in tcp_conn_request. Its possible that it 14345 * might have closed. We will check that once we 14346 * get inside listeners context. 14347 */ 14348 CONN_INC_REF(listener->tcp_connp); 14349 if (listener->tcp_connp->conn_sqp == 14350 connp->conn_sqp) { 14351 /* 14352 * We optimize by not calling an SQUEUE_ENTER 14353 * on the listener since we know that the 14354 * listener and eager squeues are the same. 14355 * We are able to make this check safely only 14356 * because neither the eager nor the listener 14357 * can change its squeue. Only an active connect 14358 * can change its squeue 14359 */ 14360 tcp_send_conn_ind(listener->tcp_connp, mp, 14361 listener->tcp_connp->conn_sqp); 14362 CONN_DEC_REF(listener->tcp_connp); 14363 } else if (!tcp->tcp_loopback) { 14364 SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, 14365 mp, tcp_send_conn_ind, 14366 listener->tcp_connp, SQ_FILL, 14367 SQTAG_TCP_CONN_IND); 14368 } else { 14369 SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, 14370 mp, tcp_send_conn_ind, 14371 listener->tcp_connp, SQ_PROCESS, 14372 SQTAG_TCP_CONN_IND); 14373 } 14374 } 14375 14376 if (tcp->tcp_active_open) { 14377 /* 14378 * We are seeing the final ack in the three way 14379 * hand shake of a active open'ed connection 14380 * so we must send up a T_CONN_CON 14381 */ 14382 if (!tcp_conn_con(tcp, iphdr, tcph, mp, NULL)) { 14383 freemsg(mp); 14384 return; 14385 } 14386 /* 14387 * Don't fuse the loopback endpoints for 14388 * simultaneous active opens. 14389 */ 14390 if (tcp->tcp_loopback) { 14391 TCP_STAT(tcps, tcp_fusion_unfusable); 14392 tcp->tcp_unfusable = B_TRUE; 14393 } 14394 } 14395 14396 tcp->tcp_suna = tcp->tcp_iss + 1; /* One for the SYN */ 14397 bytes_acked--; 14398 /* SYN was acked - making progress */ 14399 if (tcp->tcp_ipversion == IPV6_VERSION) 14400 tcp->tcp_ip_forward_progress = B_TRUE; 14401 14402 /* 14403 * If SYN was retransmitted, need to reset all 14404 * retransmission info as this segment will be 14405 * treated as a dup ACK. 14406 */ 14407 if (tcp->tcp_rexmit) { 14408 tcp->tcp_rexmit = B_FALSE; 14409 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 14410 tcp->tcp_rexmit_max = tcp->tcp_snxt; 14411 tcp->tcp_snd_burst = tcp->tcp_localnet ? 14412 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 14413 tcp->tcp_ms_we_have_waited = 0; 14414 tcp->tcp_cwnd = mss; 14415 } 14416 14417 /* 14418 * We set the send window to zero here. 14419 * This is needed if there is data to be 14420 * processed already on the queue. 14421 * Later (at swnd_update label), the 14422 * "new_swnd > tcp_swnd" condition is satisfied 14423 * the XMIT_NEEDED flag is set in the current 14424 * (SYN_RCVD) state. This ensures tcp_wput_data() is 14425 * called if there is already data on queue in 14426 * this state. 14427 */ 14428 tcp->tcp_swnd = 0; 14429 14430 if (new_swnd > tcp->tcp_max_swnd) 14431 tcp->tcp_max_swnd = new_swnd; 14432 tcp->tcp_swl1 = seg_seq; 14433 tcp->tcp_swl2 = seg_ack; 14434 tcp->tcp_state = TCPS_ESTABLISHED; 14435 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 14436 14437 /* Fuse when both sides are in ESTABLISHED state */ 14438 if (tcp->tcp_loopback && do_tcp_fusion) 14439 tcp_fuse(tcp, iphdr, tcph); 14440 14441 } 14442 /* This code follows 4.4BSD-Lite2 mostly. */ 14443 if (bytes_acked < 0) 14444 goto est; 14445 14446 /* 14447 * If TCP is ECN capable and the congestion experience bit is 14448 * set, reduce tcp_cwnd and tcp_ssthresh. But this should only be 14449 * done once per window (or more loosely, per RTT). 14450 */ 14451 if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max)) 14452 tcp->tcp_cwr = B_FALSE; 14453 if (tcp->tcp_ecn_ok && (flags & TH_ECE)) { 14454 if (!tcp->tcp_cwr) { 14455 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss; 14456 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss; 14457 tcp->tcp_cwnd = npkt * mss; 14458 /* 14459 * If the cwnd is 0, use the timer to clock out 14460 * new segments. This is required by the ECN spec. 14461 */ 14462 if (npkt == 0) { 14463 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14464 /* 14465 * This makes sure that when the ACK comes 14466 * back, we will increase tcp_cwnd by 1 MSS. 14467 */ 14468 tcp->tcp_cwnd_cnt = 0; 14469 } 14470 tcp->tcp_cwr = B_TRUE; 14471 /* 14472 * This marks the end of the current window of in 14473 * flight data. That is why we don't use 14474 * tcp_suna + tcp_swnd. Only data in flight can 14475 * provide ECN info. 14476 */ 14477 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 14478 tcp->tcp_ecn_cwr_sent = B_FALSE; 14479 } 14480 } 14481 14482 mp1 = tcp->tcp_xmit_head; 14483 if (bytes_acked == 0) { 14484 if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) { 14485 int dupack_cnt; 14486 14487 BUMP_MIB(&tcps->tcps_mib, tcpInDupAck); 14488 /* 14489 * Fast retransmit. When we have seen exactly three 14490 * identical ACKs while we have unacked data 14491 * outstanding we take it as a hint that our peer 14492 * dropped something. 14493 * 14494 * If TCP is retransmitting, don't do fast retransmit. 14495 */ 14496 if (mp1 && tcp->tcp_suna != tcp->tcp_snxt && 14497 ! tcp->tcp_rexmit) { 14498 /* Do Limited Transmit */ 14499 if ((dupack_cnt = ++tcp->tcp_dupack_cnt) < 14500 tcps->tcps_dupack_fast_retransmit) { 14501 /* 14502 * RFC 3042 14503 * 14504 * What we need to do is temporarily 14505 * increase tcp_cwnd so that new 14506 * data can be sent if it is allowed 14507 * by the receive window (tcp_rwnd). 14508 * tcp_wput_data() will take care of 14509 * the rest. 14510 * 14511 * If the connection is SACK capable, 14512 * only do limited xmit when there 14513 * is SACK info. 14514 * 14515 * Note how tcp_cwnd is incremented. 14516 * The first dup ACK will increase 14517 * it by 1 MSS. The second dup ACK 14518 * will increase it by 2 MSS. This 14519 * means that only 1 new segment will 14520 * be sent for each dup ACK. 14521 */ 14522 if (tcp->tcp_unsent > 0 && 14523 (!tcp->tcp_snd_sack_ok || 14524 (tcp->tcp_snd_sack_ok && 14525 tcp->tcp_notsack_list != NULL))) { 14526 tcp->tcp_cwnd += mss << 14527 (tcp->tcp_dupack_cnt - 1); 14528 flags |= TH_LIMIT_XMIT; 14529 } 14530 } else if (dupack_cnt == 14531 tcps->tcps_dupack_fast_retransmit) { 14532 14533 /* 14534 * If we have reduced tcp_ssthresh 14535 * because of ECN, do not reduce it again 14536 * unless it is already one window of data 14537 * away. After one window of data, tcp_cwr 14538 * should then be cleared. Note that 14539 * for non ECN capable connection, tcp_cwr 14540 * should always be false. 14541 * 14542 * Adjust cwnd since the duplicate 14543 * ack indicates that a packet was 14544 * dropped (due to congestion.) 14545 */ 14546 if (!tcp->tcp_cwr) { 14547 npkt = ((tcp->tcp_snxt - 14548 tcp->tcp_suna) >> 1) / mss; 14549 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 14550 mss; 14551 tcp->tcp_cwnd = (npkt + 14552 tcp->tcp_dupack_cnt) * mss; 14553 } 14554 if (tcp->tcp_ecn_ok) { 14555 tcp->tcp_cwr = B_TRUE; 14556 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 14557 tcp->tcp_ecn_cwr_sent = B_FALSE; 14558 } 14559 14560 /* 14561 * We do Hoe's algorithm. Refer to her 14562 * paper "Improving the Start-up Behavior 14563 * of a Congestion Control Scheme for TCP," 14564 * appeared in SIGCOMM'96. 14565 * 14566 * Save highest seq no we have sent so far. 14567 * Be careful about the invisible FIN byte. 14568 */ 14569 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 14570 (tcp->tcp_unsent == 0)) { 14571 tcp->tcp_rexmit_max = tcp->tcp_fss; 14572 } else { 14573 tcp->tcp_rexmit_max = tcp->tcp_snxt; 14574 } 14575 14576 /* 14577 * Do not allow bursty traffic during. 14578 * fast recovery. Refer to Fall and Floyd's 14579 * paper "Simulation-based Comparisons of 14580 * Tahoe, Reno and SACK TCP" (in CCR?) 14581 * This is a best current practise. 14582 */ 14583 tcp->tcp_snd_burst = TCP_CWND_SS; 14584 14585 /* 14586 * For SACK: 14587 * Calculate tcp_pipe, which is the 14588 * estimated number of bytes in 14589 * network. 14590 * 14591 * tcp_fack is the highest sack'ed seq num 14592 * TCP has received. 14593 * 14594 * tcp_pipe is explained in the above quoted 14595 * Fall and Floyd's paper. tcp_fack is 14596 * explained in Mathis and Mahdavi's 14597 * "Forward Acknowledgment: Refining TCP 14598 * Congestion Control" in SIGCOMM '96. 14599 */ 14600 if (tcp->tcp_snd_sack_ok) { 14601 ASSERT(tcp->tcp_sack_info != NULL); 14602 if (tcp->tcp_notsack_list != NULL) { 14603 tcp->tcp_pipe = tcp->tcp_snxt - 14604 tcp->tcp_fack; 14605 tcp->tcp_sack_snxt = seg_ack; 14606 flags |= TH_NEED_SACK_REXMIT; 14607 } else { 14608 /* 14609 * Always initialize tcp_pipe 14610 * even though we don't have 14611 * any SACK info. If later 14612 * we get SACK info and 14613 * tcp_pipe is not initialized, 14614 * funny things will happen. 14615 */ 14616 tcp->tcp_pipe = 14617 tcp->tcp_cwnd_ssthresh; 14618 } 14619 } else { 14620 flags |= TH_REXMIT_NEEDED; 14621 } /* tcp_snd_sack_ok */ 14622 14623 } else { 14624 /* 14625 * Here we perform congestion 14626 * avoidance, but NOT slow start. 14627 * This is known as the Fast 14628 * Recovery Algorithm. 14629 */ 14630 if (tcp->tcp_snd_sack_ok && 14631 tcp->tcp_notsack_list != NULL) { 14632 flags |= TH_NEED_SACK_REXMIT; 14633 tcp->tcp_pipe -= mss; 14634 if (tcp->tcp_pipe < 0) 14635 tcp->tcp_pipe = 0; 14636 } else { 14637 /* 14638 * We know that one more packet has 14639 * left the pipe thus we can update 14640 * cwnd. 14641 */ 14642 cwnd = tcp->tcp_cwnd + mss; 14643 if (cwnd > tcp->tcp_cwnd_max) 14644 cwnd = tcp->tcp_cwnd_max; 14645 tcp->tcp_cwnd = cwnd; 14646 if (tcp->tcp_unsent > 0) 14647 flags |= TH_XMIT_NEEDED; 14648 } 14649 } 14650 } 14651 } else if (tcp->tcp_zero_win_probe) { 14652 /* 14653 * If the window has opened, need to arrange 14654 * to send additional data. 14655 */ 14656 if (new_swnd != 0) { 14657 /* tcp_suna != tcp_snxt */ 14658 /* Packet contains a window update */ 14659 BUMP_MIB(&tcps->tcps_mib, tcpInWinUpdate); 14660 tcp->tcp_zero_win_probe = 0; 14661 tcp->tcp_timer_backoff = 0; 14662 tcp->tcp_ms_we_have_waited = 0; 14663 14664 /* 14665 * Transmit starting with tcp_suna since 14666 * the one byte probe is not ack'ed. 14667 * If TCP has sent more than one identical 14668 * probe, tcp_rexmit will be set. That means 14669 * tcp_ss_rexmit() will send out the one 14670 * byte along with new data. Otherwise, 14671 * fake the retransmission. 14672 */ 14673 flags |= TH_XMIT_NEEDED; 14674 if (!tcp->tcp_rexmit) { 14675 tcp->tcp_rexmit = B_TRUE; 14676 tcp->tcp_dupack_cnt = 0; 14677 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 14678 tcp->tcp_rexmit_max = tcp->tcp_suna + 1; 14679 } 14680 } 14681 } 14682 goto swnd_update; 14683 } 14684 14685 /* 14686 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73. 14687 * If the ACK value acks something that we have not yet sent, it might 14688 * be an old duplicate segment. Send an ACK to re-synchronize the 14689 * other side. 14690 * Note: reset in response to unacceptable ACK in SYN_RECEIVE 14691 * state is handled above, so we can always just drop the segment and 14692 * send an ACK here. 14693 * 14694 * Should we send ACKs in response to ACK only segments? 14695 */ 14696 if (SEQ_GT(seg_ack, tcp->tcp_snxt)) { 14697 BUMP_MIB(&tcps->tcps_mib, tcpInAckUnsent); 14698 /* drop the received segment */ 14699 freemsg(mp); 14700 14701 /* 14702 * Send back an ACK. If tcp_drop_ack_unsent_cnt is 14703 * greater than 0, check if the number of such 14704 * bogus ACks is greater than that count. If yes, 14705 * don't send back any ACK. This prevents TCP from 14706 * getting into an ACK storm if somehow an attacker 14707 * successfully spoofs an acceptable segment to our 14708 * peer. 14709 */ 14710 if (tcp_drop_ack_unsent_cnt > 0 && 14711 ++tcp->tcp_in_ack_unsent > tcp_drop_ack_unsent_cnt) { 14712 TCP_STAT(tcps, tcp_in_ack_unsent_drop); 14713 return; 14714 } 14715 mp = tcp_ack_mp(tcp); 14716 if (mp != NULL) { 14717 BUMP_LOCAL(tcp->tcp_obsegs); 14718 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 14719 tcp_send_data(tcp, tcp->tcp_wq, mp); 14720 } 14721 return; 14722 } 14723 14724 /* 14725 * TCP gets a new ACK, update the notsack'ed list to delete those 14726 * blocks that are covered by this ACK. 14727 */ 14728 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 14729 tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack, 14730 &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list)); 14731 } 14732 14733 /* 14734 * If we got an ACK after fast retransmit, check to see 14735 * if it is a partial ACK. If it is not and the congestion 14736 * window was inflated to account for the other side's 14737 * cached packets, retract it. If it is, do Hoe's algorithm. 14738 */ 14739 if (tcp->tcp_dupack_cnt >= tcps->tcps_dupack_fast_retransmit) { 14740 ASSERT(tcp->tcp_rexmit == B_FALSE); 14741 if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) { 14742 tcp->tcp_dupack_cnt = 0; 14743 /* 14744 * Restore the orig tcp_cwnd_ssthresh after 14745 * fast retransmit phase. 14746 */ 14747 if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) { 14748 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh; 14749 } 14750 tcp->tcp_rexmit_max = seg_ack; 14751 tcp->tcp_cwnd_cnt = 0; 14752 tcp->tcp_snd_burst = tcp->tcp_localnet ? 14753 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 14754 14755 /* 14756 * Remove all notsack info to avoid confusion with 14757 * the next fast retrasnmit/recovery phase. 14758 */ 14759 if (tcp->tcp_snd_sack_ok && 14760 tcp->tcp_notsack_list != NULL) { 14761 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 14762 } 14763 } else { 14764 if (tcp->tcp_snd_sack_ok && 14765 tcp->tcp_notsack_list != NULL) { 14766 flags |= TH_NEED_SACK_REXMIT; 14767 tcp->tcp_pipe -= mss; 14768 if (tcp->tcp_pipe < 0) 14769 tcp->tcp_pipe = 0; 14770 } else { 14771 /* 14772 * Hoe's algorithm: 14773 * 14774 * Retransmit the unack'ed segment and 14775 * restart fast recovery. Note that we 14776 * need to scale back tcp_cwnd to the 14777 * original value when we started fast 14778 * recovery. This is to prevent overly 14779 * aggressive behaviour in sending new 14780 * segments. 14781 */ 14782 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh + 14783 tcps->tcps_dupack_fast_retransmit * mss; 14784 tcp->tcp_cwnd_cnt = tcp->tcp_cwnd; 14785 flags |= TH_REXMIT_NEEDED; 14786 } 14787 } 14788 } else { 14789 tcp->tcp_dupack_cnt = 0; 14790 if (tcp->tcp_rexmit) { 14791 /* 14792 * TCP is retranmitting. If the ACK ack's all 14793 * outstanding data, update tcp_rexmit_max and 14794 * tcp_rexmit_nxt. Otherwise, update tcp_rexmit_nxt 14795 * to the correct value. 14796 * 14797 * Note that SEQ_LEQ() is used. This is to avoid 14798 * unnecessary fast retransmit caused by dup ACKs 14799 * received when TCP does slow start retransmission 14800 * after a time out. During this phase, TCP may 14801 * send out segments which are already received. 14802 * This causes dup ACKs to be sent back. 14803 */ 14804 if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) { 14805 if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) { 14806 tcp->tcp_rexmit_nxt = seg_ack; 14807 } 14808 if (seg_ack != tcp->tcp_rexmit_max) { 14809 flags |= TH_XMIT_NEEDED; 14810 } 14811 } else { 14812 tcp->tcp_rexmit = B_FALSE; 14813 tcp->tcp_xmit_zc_clean = B_FALSE; 14814 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 14815 tcp->tcp_snd_burst = tcp->tcp_localnet ? 14816 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 14817 } 14818 tcp->tcp_ms_we_have_waited = 0; 14819 } 14820 } 14821 14822 BUMP_MIB(&tcps->tcps_mib, tcpInAckSegs); 14823 UPDATE_MIB(&tcps->tcps_mib, tcpInAckBytes, bytes_acked); 14824 tcp->tcp_suna = seg_ack; 14825 if (tcp->tcp_zero_win_probe != 0) { 14826 tcp->tcp_zero_win_probe = 0; 14827 tcp->tcp_timer_backoff = 0; 14828 } 14829 14830 /* 14831 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed. 14832 * Note that it cannot be the SYN being ack'ed. The code flow 14833 * will not reach here. 14834 */ 14835 if (mp1 == NULL) { 14836 goto fin_acked; 14837 } 14838 14839 /* 14840 * Update the congestion window. 14841 * 14842 * If TCP is not ECN capable or TCP is ECN capable but the 14843 * congestion experience bit is not set, increase the tcp_cwnd as 14844 * usual. 14845 */ 14846 if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) { 14847 cwnd = tcp->tcp_cwnd; 14848 add = mss; 14849 14850 if (cwnd >= tcp->tcp_cwnd_ssthresh) { 14851 /* 14852 * This is to prevent an increase of less than 1 MSS of 14853 * tcp_cwnd. With partial increase, tcp_wput_data() 14854 * may send out tinygrams in order to preserve mblk 14855 * boundaries. 14856 * 14857 * By initializing tcp_cwnd_cnt to new tcp_cwnd and 14858 * decrementing it by 1 MSS for every ACKs, tcp_cwnd is 14859 * increased by 1 MSS for every RTTs. 14860 */ 14861 if (tcp->tcp_cwnd_cnt <= 0) { 14862 tcp->tcp_cwnd_cnt = cwnd + add; 14863 } else { 14864 tcp->tcp_cwnd_cnt -= add; 14865 add = 0; 14866 } 14867 } 14868 tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max); 14869 } 14870 14871 /* See if the latest urgent data has been acknowledged */ 14872 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && 14873 SEQ_GT(seg_ack, tcp->tcp_urg)) 14874 tcp->tcp_valid_bits &= ~TCP_URG_VALID; 14875 14876 /* Can we update the RTT estimates? */ 14877 if (tcp->tcp_snd_ts_ok) { 14878 /* Ignore zero timestamp echo-reply. */ 14879 if (tcpopt.tcp_opt_ts_ecr != 0) { 14880 tcp_set_rto(tcp, (int32_t)lbolt - 14881 (int32_t)tcpopt.tcp_opt_ts_ecr); 14882 } 14883 14884 /* If needed, restart the timer. */ 14885 if (tcp->tcp_set_timer == 1) { 14886 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14887 tcp->tcp_set_timer = 0; 14888 } 14889 /* 14890 * Update tcp_csuna in case the other side stops sending 14891 * us timestamps. 14892 */ 14893 tcp->tcp_csuna = tcp->tcp_snxt; 14894 } else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) { 14895 /* 14896 * An ACK sequence we haven't seen before, so get the RTT 14897 * and update the RTO. But first check if the timestamp is 14898 * valid to use. 14899 */ 14900 if ((mp1->b_next != NULL) && 14901 SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next))) 14902 tcp_set_rto(tcp, (int32_t)lbolt - 14903 (int32_t)(intptr_t)mp1->b_prev); 14904 else 14905 BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate); 14906 14907 /* Remeber the last sequence to be ACKed */ 14908 tcp->tcp_csuna = seg_ack; 14909 if (tcp->tcp_set_timer == 1) { 14910 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14911 tcp->tcp_set_timer = 0; 14912 } 14913 } else { 14914 BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate); 14915 } 14916 14917 /* Eat acknowledged bytes off the xmit queue. */ 14918 for (;;) { 14919 mblk_t *mp2; 14920 uchar_t *wptr; 14921 14922 wptr = mp1->b_wptr; 14923 ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX); 14924 bytes_acked -= (int)(wptr - mp1->b_rptr); 14925 if (bytes_acked < 0) { 14926 mp1->b_rptr = wptr + bytes_acked; 14927 /* 14928 * Set a new timestamp if all the bytes timed by the 14929 * old timestamp have been ack'ed. 14930 */ 14931 if (SEQ_GT(seg_ack, 14932 (uint32_t)(uintptr_t)(mp1->b_next))) { 14933 mp1->b_prev = (mblk_t *)(uintptr_t)lbolt; 14934 mp1->b_next = NULL; 14935 } 14936 break; 14937 } 14938 mp1->b_next = NULL; 14939 mp1->b_prev = NULL; 14940 mp2 = mp1; 14941 mp1 = mp1->b_cont; 14942 14943 /* 14944 * This notification is required for some zero-copy 14945 * clients to maintain a copy semantic. After the data 14946 * is ack'ed, client is safe to modify or reuse the buffer. 14947 */ 14948 if (tcp->tcp_snd_zcopy_aware && 14949 (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 14950 tcp_zcopy_notify(tcp); 14951 freeb(mp2); 14952 if (bytes_acked == 0) { 14953 if (mp1 == NULL) { 14954 /* Everything is ack'ed, clear the tail. */ 14955 tcp->tcp_xmit_tail = NULL; 14956 /* 14957 * Cancel the timer unless we are still 14958 * waiting for an ACK for the FIN packet. 14959 */ 14960 if (tcp->tcp_timer_tid != 0 && 14961 tcp->tcp_snxt == tcp->tcp_suna) { 14962 (void) TCP_TIMER_CANCEL(tcp, 14963 tcp->tcp_timer_tid); 14964 tcp->tcp_timer_tid = 0; 14965 } 14966 goto pre_swnd_update; 14967 } 14968 if (mp2 != tcp->tcp_xmit_tail) 14969 break; 14970 tcp->tcp_xmit_tail = mp1; 14971 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 14972 (uintptr_t)INT_MAX); 14973 tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr - 14974 mp1->b_rptr); 14975 break; 14976 } 14977 if (mp1 == NULL) { 14978 /* 14979 * More was acked but there is nothing more 14980 * outstanding. This means that the FIN was 14981 * just acked or that we're talking to a clown. 14982 */ 14983 fin_acked: 14984 ASSERT(tcp->tcp_fin_sent); 14985 tcp->tcp_xmit_tail = NULL; 14986 if (tcp->tcp_fin_sent) { 14987 /* FIN was acked - making progress */ 14988 if (tcp->tcp_ipversion == IPV6_VERSION && 14989 !tcp->tcp_fin_acked) 14990 tcp->tcp_ip_forward_progress = B_TRUE; 14991 tcp->tcp_fin_acked = B_TRUE; 14992 if (tcp->tcp_linger_tid != 0 && 14993 TCP_TIMER_CANCEL(tcp, 14994 tcp->tcp_linger_tid) >= 0) { 14995 tcp_stop_lingering(tcp); 14996 freemsg(mp); 14997 mp = NULL; 14998 } 14999 } else { 15000 /* 15001 * We should never get here because 15002 * we have already checked that the 15003 * number of bytes ack'ed should be 15004 * smaller than or equal to what we 15005 * have sent so far (it is the 15006 * acceptability check of the ACK). 15007 * We can only get here if the send 15008 * queue is corrupted. 15009 * 15010 * Terminate the connection and 15011 * panic the system. It is better 15012 * for us to panic instead of 15013 * continuing to avoid other disaster. 15014 */ 15015 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 15016 tcp->tcp_rnxt, TH_RST|TH_ACK); 15017 panic("Memory corruption " 15018 "detected for connection %s.", 15019 tcp_display(tcp, NULL, 15020 DISP_ADDR_AND_PORT)); 15021 /*NOTREACHED*/ 15022 } 15023 goto pre_swnd_update; 15024 } 15025 ASSERT(mp2 != tcp->tcp_xmit_tail); 15026 } 15027 if (tcp->tcp_unsent) { 15028 flags |= TH_XMIT_NEEDED; 15029 } 15030 pre_swnd_update: 15031 tcp->tcp_xmit_head = mp1; 15032 swnd_update: 15033 /* 15034 * The following check is different from most other implementations. 15035 * For bi-directional transfer, when segments are dropped, the 15036 * "normal" check will not accept a window update in those 15037 * retransmitted segemnts. Failing to do that, TCP may send out 15038 * segments which are outside receiver's window. As TCP accepts 15039 * the ack in those retransmitted segments, if the window update in 15040 * the same segment is not accepted, TCP will incorrectly calculates 15041 * that it can send more segments. This can create a deadlock 15042 * with the receiver if its window becomes zero. 15043 */ 15044 if (SEQ_LT(tcp->tcp_swl2, seg_ack) || 15045 SEQ_LT(tcp->tcp_swl1, seg_seq) || 15046 (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) { 15047 /* 15048 * The criteria for update is: 15049 * 15050 * 1. the segment acknowledges some data. Or 15051 * 2. the segment is new, i.e. it has a higher seq num. Or 15052 * 3. the segment is not old and the advertised window is 15053 * larger than the previous advertised window. 15054 */ 15055 if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd) 15056 flags |= TH_XMIT_NEEDED; 15057 tcp->tcp_swnd = new_swnd; 15058 if (new_swnd > tcp->tcp_max_swnd) 15059 tcp->tcp_max_swnd = new_swnd; 15060 tcp->tcp_swl1 = seg_seq; 15061 tcp->tcp_swl2 = seg_ack; 15062 } 15063 est: 15064 if (tcp->tcp_state > TCPS_ESTABLISHED) { 15065 15066 switch (tcp->tcp_state) { 15067 case TCPS_FIN_WAIT_1: 15068 if (tcp->tcp_fin_acked) { 15069 tcp->tcp_state = TCPS_FIN_WAIT_2; 15070 /* 15071 * We implement the non-standard BSD/SunOS 15072 * FIN_WAIT_2 flushing algorithm. 15073 * If there is no user attached to this 15074 * TCP endpoint, then this TCP struct 15075 * could hang around forever in FIN_WAIT_2 15076 * state if the peer forgets to send us 15077 * a FIN. To prevent this, we wait only 15078 * 2*MSL (a convenient time value) for 15079 * the FIN to arrive. If it doesn't show up, 15080 * we flush the TCP endpoint. This algorithm, 15081 * though a violation of RFC-793, has worked 15082 * for over 10 years in BSD systems. 15083 * Note: SunOS 4.x waits 675 seconds before 15084 * flushing the FIN_WAIT_2 connection. 15085 */ 15086 TCP_TIMER_RESTART(tcp, 15087 tcps->tcps_fin_wait_2_flush_interval); 15088 } 15089 break; 15090 case TCPS_FIN_WAIT_2: 15091 break; /* Shutdown hook? */ 15092 case TCPS_LAST_ACK: 15093 freemsg(mp); 15094 if (tcp->tcp_fin_acked) { 15095 (void) tcp_clean_death(tcp, 0, 19); 15096 return; 15097 } 15098 goto xmit_check; 15099 case TCPS_CLOSING: 15100 if (tcp->tcp_fin_acked) { 15101 tcp->tcp_state = TCPS_TIME_WAIT; 15102 /* 15103 * Unconditionally clear the exclusive binding 15104 * bit so this TIME-WAIT connection won't 15105 * interfere with new ones. 15106 */ 15107 tcp->tcp_exclbind = 0; 15108 if (!TCP_IS_DETACHED(tcp)) { 15109 TCP_TIMER_RESTART(tcp, 15110 tcps->tcps_time_wait_interval); 15111 } else { 15112 tcp_time_wait_append(tcp); 15113 TCP_DBGSTAT(tcps, tcp_rput_time_wait); 15114 } 15115 } 15116 /*FALLTHRU*/ 15117 case TCPS_CLOSE_WAIT: 15118 freemsg(mp); 15119 goto xmit_check; 15120 default: 15121 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 15122 break; 15123 } 15124 } 15125 if (flags & TH_FIN) { 15126 /* Make sure we ack the fin */ 15127 flags |= TH_ACK_NEEDED; 15128 if (!tcp->tcp_fin_rcvd) { 15129 tcp->tcp_fin_rcvd = B_TRUE; 15130 tcp->tcp_rnxt++; 15131 tcph = tcp->tcp_tcph; 15132 U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack); 15133 15134 /* 15135 * Generate the ordrel_ind at the end unless we 15136 * are an eager guy. 15137 * In the eager case tcp_rsrv will do this when run 15138 * after tcp_accept is done. 15139 */ 15140 if (tcp->tcp_listener == NULL && 15141 !TCP_IS_DETACHED(tcp) && (!tcp->tcp_hard_binding)) 15142 flags |= TH_ORDREL_NEEDED; 15143 switch (tcp->tcp_state) { 15144 case TCPS_SYN_RCVD: 15145 case TCPS_ESTABLISHED: 15146 tcp->tcp_state = TCPS_CLOSE_WAIT; 15147 /* Keepalive? */ 15148 break; 15149 case TCPS_FIN_WAIT_1: 15150 if (!tcp->tcp_fin_acked) { 15151 tcp->tcp_state = TCPS_CLOSING; 15152 break; 15153 } 15154 /* FALLTHRU */ 15155 case TCPS_FIN_WAIT_2: 15156 tcp->tcp_state = TCPS_TIME_WAIT; 15157 /* 15158 * Unconditionally clear the exclusive binding 15159 * bit so this TIME-WAIT connection won't 15160 * interfere with new ones. 15161 */ 15162 tcp->tcp_exclbind = 0; 15163 if (!TCP_IS_DETACHED(tcp)) { 15164 TCP_TIMER_RESTART(tcp, 15165 tcps->tcps_time_wait_interval); 15166 } else { 15167 tcp_time_wait_append(tcp); 15168 TCP_DBGSTAT(tcps, tcp_rput_time_wait); 15169 } 15170 if (seg_len) { 15171 /* 15172 * implies data piggybacked on FIN. 15173 * break to handle data. 15174 */ 15175 break; 15176 } 15177 freemsg(mp); 15178 goto ack_check; 15179 } 15180 } 15181 } 15182 if (mp == NULL) 15183 goto xmit_check; 15184 if (seg_len == 0) { 15185 freemsg(mp); 15186 goto xmit_check; 15187 } 15188 if (mp->b_rptr == mp->b_wptr) { 15189 /* 15190 * The header has been consumed, so we remove the 15191 * zero-length mblk here. 15192 */ 15193 mp1 = mp; 15194 mp = mp->b_cont; 15195 freeb(mp1); 15196 } 15197 tcph = tcp->tcp_tcph; 15198 tcp->tcp_rack_cnt++; 15199 { 15200 uint32_t cur_max; 15201 15202 cur_max = tcp->tcp_rack_cur_max; 15203 if (tcp->tcp_rack_cnt >= cur_max) { 15204 /* 15205 * We have more unacked data than we should - send 15206 * an ACK now. 15207 */ 15208 flags |= TH_ACK_NEEDED; 15209 cur_max++; 15210 if (cur_max > tcp->tcp_rack_abs_max) 15211 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 15212 else 15213 tcp->tcp_rack_cur_max = cur_max; 15214 } else if (TCP_IS_DETACHED(tcp)) { 15215 /* We don't have an ACK timer for detached TCP. */ 15216 flags |= TH_ACK_NEEDED; 15217 } else if (seg_len < mss) { 15218 /* 15219 * If we get a segment that is less than an mss, and we 15220 * already have unacknowledged data, and the amount 15221 * unacknowledged is not a multiple of mss, then we 15222 * better generate an ACK now. Otherwise, this may be 15223 * the tail piece of a transaction, and we would rather 15224 * wait for the response. 15225 */ 15226 uint32_t udif; 15227 ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <= 15228 (uintptr_t)INT_MAX); 15229 udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack); 15230 if (udif && (udif % mss)) 15231 flags |= TH_ACK_NEEDED; 15232 else 15233 flags |= TH_ACK_TIMER_NEEDED; 15234 } else { 15235 /* Start delayed ack timer */ 15236 flags |= TH_ACK_TIMER_NEEDED; 15237 } 15238 } 15239 tcp->tcp_rnxt += seg_len; 15240 U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack); 15241 15242 /* Update SACK list */ 15243 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 15244 tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt, 15245 &(tcp->tcp_num_sack_blk)); 15246 } 15247 15248 if (tcp->tcp_urp_mp) { 15249 tcp->tcp_urp_mp->b_cont = mp; 15250 mp = tcp->tcp_urp_mp; 15251 tcp->tcp_urp_mp = NULL; 15252 /* Ready for a new signal. */ 15253 tcp->tcp_urp_last_valid = B_FALSE; 15254 #ifdef DEBUG 15255 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 15256 "tcp_rput: sending exdata_ind %s", 15257 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 15258 #endif /* DEBUG */ 15259 } 15260 15261 /* 15262 * Check for ancillary data changes compared to last segment. 15263 */ 15264 if (tcp->tcp_ipv6_recvancillary != 0) { 15265 mp = tcp_rput_add_ancillary(tcp, mp, &ipp); 15266 ASSERT(mp != NULL); 15267 } 15268 15269 if (tcp->tcp_listener || tcp->tcp_hard_binding) { 15270 /* 15271 * Side queue inbound data until the accept happens. 15272 * tcp_accept/tcp_rput drains this when the accept happens. 15273 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or 15274 * T_EXDATA_IND) it is queued on b_next. 15275 * XXX Make urgent data use this. Requires: 15276 * Removing tcp_listener check for TH_URG 15277 * Making M_PCPROTO and MARK messages skip the eager case 15278 */ 15279 15280 if (tcp->tcp_kssl_pending) { 15281 DTRACE_PROBE1(kssl_mblk__ksslinput_pending, 15282 mblk_t *, mp); 15283 tcp_kssl_input(tcp, mp); 15284 } else { 15285 tcp_rcv_enqueue(tcp, mp, seg_len); 15286 } 15287 } else { 15288 sodirect_t *sodp = tcp->tcp_sodirect; 15289 15290 /* 15291 * If an sodirect connection and an enabled sodirect_t then 15292 * sodp will be set to point to the tcp_t/sonode_t shared 15293 * sodirect_t and the sodirect_t's lock will be held. 15294 */ 15295 if (sodp != NULL) { 15296 mutex_enter(sodp->sod_lockp); 15297 if (!(sodp->sod_state & SOD_ENABLED) || 15298 (tcp->tcp_kssl_ctx != NULL && 15299 DB_TYPE(mp) == M_DATA)) { 15300 mutex_exit(sodp->sod_lockp); 15301 sodp = NULL; 15302 } 15303 } 15304 if (mp->b_datap->db_type != M_DATA || 15305 (flags & TH_MARKNEXT_NEEDED)) { 15306 if (sodp != NULL) { 15307 if (sodp->sod_uioa.uioa_state & UIOA_ENABLED) { 15308 sodp->sod_uioa.uioa_state &= UIOA_CLR; 15309 sodp->sod_uioa.uioa_state |= UIOA_FINI; 15310 } 15311 if (!SOD_QEMPTY(sodp) && 15312 (sodp->sod_state & SOD_WAKE_NOT)) { 15313 flags |= tcp_rcv_sod_wakeup(tcp, sodp); 15314 /* sod_wakeup() did the mutex_exit() */ 15315 } else { 15316 mutex_exit(sodp->sod_lockp); 15317 } 15318 } else if (tcp->tcp_rcv_list != NULL) { 15319 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 15320 } 15321 ASSERT(tcp->tcp_rcv_list == NULL || 15322 tcp->tcp_fused_sigurg); 15323 15324 if (flags & TH_MARKNEXT_NEEDED) { 15325 #ifdef DEBUG 15326 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 15327 "tcp_rput: sending MSGMARKNEXT %s", 15328 tcp_display(tcp, NULL, 15329 DISP_PORT_ONLY)); 15330 #endif /* DEBUG */ 15331 mp->b_flag |= MSGMARKNEXT; 15332 flags &= ~TH_MARKNEXT_NEEDED; 15333 } 15334 15335 /* Does this need SSL processing first? */ 15336 if ((tcp->tcp_kssl_ctx != NULL) && 15337 (DB_TYPE(mp) == M_DATA)) { 15338 DTRACE_PROBE1(kssl_mblk__ksslinput_data1, 15339 mblk_t *, mp); 15340 tcp_kssl_input(tcp, mp); 15341 } else { 15342 putnext(tcp->tcp_rq, mp); 15343 if (!canputnext(tcp->tcp_rq)) 15344 tcp->tcp_rwnd -= seg_len; 15345 } 15346 } else if ((tcp->tcp_kssl_ctx != NULL) && 15347 (DB_TYPE(mp) == M_DATA)) { 15348 /* Do SSL processing first */ 15349 DTRACE_PROBE1(kssl_mblk__ksslinput_data2, 15350 mblk_t *, mp); 15351 tcp_kssl_input(tcp, mp); 15352 } else if (sodp != NULL) { 15353 /* 15354 * Sodirect so all mblk_t's are queued on the 15355 * socket directly, check for wakeup of blocked 15356 * reader (if any), and last if flow-controled. 15357 */ 15358 flags |= tcp_rcv_sod_enqueue(tcp, sodp, mp, seg_len); 15359 if ((sodp->sod_state & SOD_WAKE_NEED) || 15360 (flags & (TH_PUSH|TH_FIN))) { 15361 flags |= tcp_rcv_sod_wakeup(tcp, sodp); 15362 /* sod_wakeup() did the mutex_exit() */ 15363 } else { 15364 if (SOD_QFULL(sodp)) { 15365 /* Q is full, need backenable */ 15366 SOD_QSETBE(sodp); 15367 } 15368 mutex_exit(sodp->sod_lockp); 15369 } 15370 } else if ((flags & (TH_PUSH|TH_FIN)) || 15371 tcp->tcp_rcv_cnt + seg_len >= tcp->tcp_rq->q_hiwat >> 3) { 15372 if (tcp->tcp_rcv_list != NULL) { 15373 /* 15374 * Enqueue the new segment first and then 15375 * call tcp_rcv_drain() to send all data 15376 * up. The other way to do this is to 15377 * send all queued data up and then call 15378 * putnext() to send the new segment up. 15379 * This way can remove the else part later 15380 * on. 15381 * 15382 * We don't this to avoid one more call to 15383 * canputnext() as tcp_rcv_drain() needs to 15384 * call canputnext(). 15385 */ 15386 tcp_rcv_enqueue(tcp, mp, seg_len); 15387 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 15388 } else { 15389 putnext(tcp->tcp_rq, mp); 15390 if (!canputnext(tcp->tcp_rq)) 15391 tcp->tcp_rwnd -= seg_len; 15392 } 15393 } else { 15394 /* 15395 * Enqueue all packets when processing an mblk 15396 * from the co queue and also enqueue normal packets. 15397 */ 15398 tcp_rcv_enqueue(tcp, mp, seg_len); 15399 } 15400 /* 15401 * Make sure the timer is running if we have data waiting 15402 * for a push bit. This provides resiliency against 15403 * implementations that do not correctly generate push bits. 15404 * 15405 * Note, for sodirect if Q isn't empty and there's not a 15406 * pending wakeup then we need a timer. Also note that sodp 15407 * is assumed to be still valid after exit()ing the sod_lockp 15408 * above and while the SOD state can change it can only change 15409 * such that the Q is empty now even though data was added 15410 * above. 15411 */ 15412 if (((sodp != NULL && !SOD_QEMPTY(sodp) && 15413 (sodp->sod_state & SOD_WAKE_NOT)) || 15414 (sodp == NULL && tcp->tcp_rcv_list != NULL)) && 15415 tcp->tcp_push_tid == 0) { 15416 /* 15417 * The connection may be closed at this point, so don't 15418 * do anything for a detached tcp. 15419 */ 15420 if (!TCP_IS_DETACHED(tcp)) 15421 tcp->tcp_push_tid = TCP_TIMER(tcp, 15422 tcp_push_timer, 15423 MSEC_TO_TICK( 15424 tcps->tcps_push_timer_interval)); 15425 } 15426 } 15427 15428 xmit_check: 15429 /* Is there anything left to do? */ 15430 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 15431 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED| 15432 TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED| 15433 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 15434 goto done; 15435 15436 /* Any transmit work to do and a non-zero window? */ 15437 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT| 15438 TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) { 15439 if (flags & TH_REXMIT_NEEDED) { 15440 uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna; 15441 15442 BUMP_MIB(&tcps->tcps_mib, tcpOutFastRetrans); 15443 if (snd_size > mss) 15444 snd_size = mss; 15445 if (snd_size > tcp->tcp_swnd) 15446 snd_size = tcp->tcp_swnd; 15447 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size, 15448 NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size, 15449 B_TRUE); 15450 15451 if (mp1 != NULL) { 15452 tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt; 15453 tcp->tcp_csuna = tcp->tcp_snxt; 15454 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 15455 UPDATE_MIB(&tcps->tcps_mib, 15456 tcpRetransBytes, snd_size); 15457 tcp_send_data(tcp, tcp->tcp_wq, mp1); 15458 } 15459 } 15460 if (flags & TH_NEED_SACK_REXMIT) { 15461 tcp_sack_rxmit(tcp, &flags); 15462 } 15463 /* 15464 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send 15465 * out new segment. Note that tcp_rexmit should not be 15466 * set, otherwise TH_LIMIT_XMIT should not be set. 15467 */ 15468 if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) { 15469 if (!tcp->tcp_rexmit) { 15470 tcp_wput_data(tcp, NULL, B_FALSE); 15471 } else { 15472 tcp_ss_rexmit(tcp); 15473 } 15474 } 15475 /* 15476 * Adjust tcp_cwnd back to normal value after sending 15477 * new data segments. 15478 */ 15479 if (flags & TH_LIMIT_XMIT) { 15480 tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1); 15481 /* 15482 * This will restart the timer. Restarting the 15483 * timer is used to avoid a timeout before the 15484 * limited transmitted segment's ACK gets back. 15485 */ 15486 if (tcp->tcp_xmit_head != NULL) 15487 tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt; 15488 } 15489 15490 /* Anything more to do? */ 15491 if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED| 15492 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 15493 goto done; 15494 } 15495 ack_check: 15496 if (flags & TH_SEND_URP_MARK) { 15497 ASSERT(tcp->tcp_urp_mark_mp); 15498 /* 15499 * Send up any queued data and then send the mark message 15500 */ 15501 sodirect_t *sodp; 15502 15503 SOD_PTR_ENTER(tcp, sodp); 15504 15505 mp1 = tcp->tcp_urp_mark_mp; 15506 tcp->tcp_urp_mark_mp = NULL; 15507 if (sodp != NULL) { 15508 if (sodp->sod_uioa.uioa_state & UIOA_ENABLED) { 15509 sodp->sod_uioa.uioa_state &= UIOA_CLR; 15510 sodp->sod_uioa.uioa_state |= UIOA_FINI; 15511 } 15512 ASSERT(tcp->tcp_rcv_list == NULL); 15513 15514 flags |= tcp_rcv_sod_wakeup(tcp, sodp); 15515 /* sod_wakeup() does the mutex_exit() */ 15516 } else if (tcp->tcp_rcv_list != NULL) { 15517 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 15518 15519 ASSERT(tcp->tcp_rcv_list == NULL || 15520 tcp->tcp_fused_sigurg); 15521 15522 } 15523 putnext(tcp->tcp_rq, mp1); 15524 #ifdef DEBUG 15525 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 15526 "tcp_rput: sending zero-length %s %s", 15527 ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" : 15528 "MSGNOTMARKNEXT"), 15529 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 15530 #endif /* DEBUG */ 15531 flags &= ~TH_SEND_URP_MARK; 15532 } 15533 if (flags & TH_ACK_NEEDED) { 15534 /* 15535 * Time to send an ack for some reason. 15536 */ 15537 mp1 = tcp_ack_mp(tcp); 15538 15539 if (mp1 != NULL) { 15540 tcp_send_data(tcp, tcp->tcp_wq, mp1); 15541 BUMP_LOCAL(tcp->tcp_obsegs); 15542 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 15543 } 15544 if (tcp->tcp_ack_tid != 0) { 15545 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 15546 tcp->tcp_ack_tid = 0; 15547 } 15548 } 15549 if (flags & TH_ACK_TIMER_NEEDED) { 15550 /* 15551 * Arrange for deferred ACK or push wait timeout. 15552 * Start timer if it is not already running. 15553 */ 15554 if (tcp->tcp_ack_tid == 0) { 15555 tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer, 15556 MSEC_TO_TICK(tcp->tcp_localnet ? 15557 (clock_t)tcps->tcps_local_dack_interval : 15558 (clock_t)tcps->tcps_deferred_ack_interval)); 15559 } 15560 } 15561 if (flags & TH_ORDREL_NEEDED) { 15562 /* 15563 * Send up the ordrel_ind unless we are an eager guy. 15564 * In the eager case tcp_rsrv will do this when run 15565 * after tcp_accept is done. 15566 */ 15567 sodirect_t *sodp; 15568 15569 ASSERT(tcp->tcp_listener == NULL); 15570 15571 SOD_PTR_ENTER(tcp, sodp); 15572 if (sodp != NULL) { 15573 if (sodp->sod_uioa.uioa_state & UIOA_ENABLED) { 15574 sodp->sod_uioa.uioa_state &= UIOA_CLR; 15575 sodp->sod_uioa.uioa_state |= UIOA_FINI; 15576 } 15577 /* No more sodirect */ 15578 tcp->tcp_sodirect = NULL; 15579 if (!SOD_QEMPTY(sodp)) { 15580 /* Mblk(s) to process, notify */ 15581 flags |= tcp_rcv_sod_wakeup(tcp, sodp); 15582 /* sod_wakeup() does the mutex_exit() */ 15583 } else { 15584 /* Nothing to process */ 15585 mutex_exit(sodp->sod_lockp); 15586 } 15587 } else if (tcp->tcp_rcv_list != NULL) { 15588 /* 15589 * Push any mblk(s) enqueued from co processing. 15590 */ 15591 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 15592 15593 ASSERT(tcp->tcp_rcv_list == NULL || 15594 tcp->tcp_fused_sigurg); 15595 } 15596 15597 mp1 = tcp->tcp_ordrel_mp; 15598 tcp->tcp_ordrel_mp = NULL; 15599 tcp->tcp_ordrel_done = B_TRUE; 15600 putnext(tcp->tcp_rq, mp1); 15601 } 15602 done: 15603 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 15604 } 15605 15606 /* 15607 * This function does PAWS protection check. Returns B_TRUE if the 15608 * segment passes the PAWS test, else returns B_FALSE. 15609 */ 15610 boolean_t 15611 tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp) 15612 { 15613 uint8_t flags; 15614 int options; 15615 uint8_t *up; 15616 15617 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 15618 /* 15619 * If timestamp option is aligned nicely, get values inline, 15620 * otherwise call general routine to parse. Only do that 15621 * if timestamp is the only option. 15622 */ 15623 if (TCP_HDR_LENGTH(tcph) == (uint32_t)TCP_MIN_HEADER_LENGTH + 15624 TCPOPT_REAL_TS_LEN && 15625 OK_32PTR((up = ((uint8_t *)tcph) + 15626 TCP_MIN_HEADER_LENGTH)) && 15627 *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) { 15628 tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4)); 15629 tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8)); 15630 15631 options = TCP_OPT_TSTAMP_PRESENT; 15632 } else { 15633 if (tcp->tcp_snd_sack_ok) { 15634 tcpoptp->tcp = tcp; 15635 } else { 15636 tcpoptp->tcp = NULL; 15637 } 15638 options = tcp_parse_options(tcph, tcpoptp); 15639 } 15640 15641 if (options & TCP_OPT_TSTAMP_PRESENT) { 15642 /* 15643 * Do PAWS per RFC 1323 section 4.2. Accept RST 15644 * regardless of the timestamp, page 18 RFC 1323.bis. 15645 */ 15646 if ((flags & TH_RST) == 0 && 15647 TSTMP_LT(tcpoptp->tcp_opt_ts_val, 15648 tcp->tcp_ts_recent)) { 15649 if (TSTMP_LT(lbolt64, tcp->tcp_last_rcv_lbolt + 15650 PAWS_TIMEOUT)) { 15651 /* This segment is not acceptable. */ 15652 return (B_FALSE); 15653 } else { 15654 /* 15655 * Connection has been idle for 15656 * too long. Reset the timestamp 15657 * and assume the segment is valid. 15658 */ 15659 tcp->tcp_ts_recent = 15660 tcpoptp->tcp_opt_ts_val; 15661 } 15662 } 15663 } else { 15664 /* 15665 * If we don't get a timestamp on every packet, we 15666 * figure we can't really trust 'em, so we stop sending 15667 * and parsing them. 15668 */ 15669 tcp->tcp_snd_ts_ok = B_FALSE; 15670 15671 tcp->tcp_hdr_len -= TCPOPT_REAL_TS_LEN; 15672 tcp->tcp_tcp_hdr_len -= TCPOPT_REAL_TS_LEN; 15673 tcp->tcp_tcph->th_offset_and_rsrvd[0] -= (3 << 4); 15674 /* 15675 * Adjust the tcp_mss accordingly. We also need to 15676 * adjust tcp_cwnd here in accordance with the new mss. 15677 * But we avoid doing a slow start here so as to not 15678 * to lose on the transfer rate built up so far. 15679 */ 15680 tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN, B_FALSE); 15681 if (tcp->tcp_snd_sack_ok) { 15682 ASSERT(tcp->tcp_sack_info != NULL); 15683 tcp->tcp_max_sack_blk = 4; 15684 } 15685 } 15686 return (B_TRUE); 15687 } 15688 15689 /* 15690 * Attach ancillary data to a received TCP segments for the 15691 * ancillary pieces requested by the application that are 15692 * different than they were in the previous data segment. 15693 * 15694 * Save the "current" values once memory allocation is ok so that 15695 * when memory allocation fails we can just wait for the next data segment. 15696 */ 15697 static mblk_t * 15698 tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp) 15699 { 15700 struct T_optdata_ind *todi; 15701 int optlen; 15702 uchar_t *optptr; 15703 struct T_opthdr *toh; 15704 uint_t addflag; /* Which pieces to add */ 15705 mblk_t *mp1; 15706 15707 optlen = 0; 15708 addflag = 0; 15709 /* If app asked for pktinfo and the index has changed ... */ 15710 if ((ipp->ipp_fields & IPPF_IFINDEX) && 15711 ipp->ipp_ifindex != tcp->tcp_recvifindex && 15712 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)) { 15713 optlen += sizeof (struct T_opthdr) + 15714 sizeof (struct in6_pktinfo); 15715 addflag |= TCP_IPV6_RECVPKTINFO; 15716 } 15717 /* If app asked for hoplimit and it has changed ... */ 15718 if ((ipp->ipp_fields & IPPF_HOPLIMIT) && 15719 ipp->ipp_hoplimit != tcp->tcp_recvhops && 15720 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPLIMIT)) { 15721 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 15722 addflag |= TCP_IPV6_RECVHOPLIMIT; 15723 } 15724 /* If app asked for tclass and it has changed ... */ 15725 if ((ipp->ipp_fields & IPPF_TCLASS) && 15726 ipp->ipp_tclass != tcp->tcp_recvtclass && 15727 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)) { 15728 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 15729 addflag |= TCP_IPV6_RECVTCLASS; 15730 } 15731 /* 15732 * If app asked for hopbyhop headers and it has changed ... 15733 * For security labels, note that (1) security labels can't change on 15734 * a connected socket at all, (2) we're connected to at most one peer, 15735 * (3) if anything changes, then it must be some other extra option. 15736 */ 15737 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) && 15738 ip_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen, 15739 (ipp->ipp_fields & IPPF_HOPOPTS), 15740 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) { 15741 optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen - 15742 tcp->tcp_label_len; 15743 addflag |= TCP_IPV6_RECVHOPOPTS; 15744 if (!ip_allocbuf((void **)&tcp->tcp_hopopts, 15745 &tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS), 15746 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) 15747 return (mp); 15748 } 15749 /* If app asked for dst headers before routing headers ... */ 15750 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTDSTOPTS) && 15751 ip_cmpbuf(tcp->tcp_rtdstopts, tcp->tcp_rtdstoptslen, 15752 (ipp->ipp_fields & IPPF_RTDSTOPTS), 15753 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) { 15754 optlen += sizeof (struct T_opthdr) + 15755 ipp->ipp_rtdstoptslen; 15756 addflag |= TCP_IPV6_RECVRTDSTOPTS; 15757 if (!ip_allocbuf((void **)&tcp->tcp_rtdstopts, 15758 &tcp->tcp_rtdstoptslen, (ipp->ipp_fields & IPPF_RTDSTOPTS), 15759 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) 15760 return (mp); 15761 } 15762 /* If app asked for routing headers and it has changed ... */ 15763 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) && 15764 ip_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen, 15765 (ipp->ipp_fields & IPPF_RTHDR), 15766 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) { 15767 optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen; 15768 addflag |= TCP_IPV6_RECVRTHDR; 15769 if (!ip_allocbuf((void **)&tcp->tcp_rthdr, 15770 &tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR), 15771 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) 15772 return (mp); 15773 } 15774 /* If app asked for dest headers and it has changed ... */ 15775 if ((tcp->tcp_ipv6_recvancillary & 15776 (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) && 15777 ip_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen, 15778 (ipp->ipp_fields & IPPF_DSTOPTS), 15779 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) { 15780 optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen; 15781 addflag |= TCP_IPV6_RECVDSTOPTS; 15782 if (!ip_allocbuf((void **)&tcp->tcp_dstopts, 15783 &tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS), 15784 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) 15785 return (mp); 15786 } 15787 15788 if (optlen == 0) { 15789 /* Nothing to add */ 15790 return (mp); 15791 } 15792 mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED); 15793 if (mp1 == NULL) { 15794 /* 15795 * Defer sending ancillary data until the next TCP segment 15796 * arrives. 15797 */ 15798 return (mp); 15799 } 15800 mp1->b_cont = mp; 15801 mp = mp1; 15802 mp->b_wptr += sizeof (*todi) + optlen; 15803 mp->b_datap->db_type = M_PROTO; 15804 todi = (struct T_optdata_ind *)mp->b_rptr; 15805 todi->PRIM_type = T_OPTDATA_IND; 15806 todi->DATA_flag = 1; /* MORE data */ 15807 todi->OPT_length = optlen; 15808 todi->OPT_offset = sizeof (*todi); 15809 optptr = (uchar_t *)&todi[1]; 15810 /* 15811 * If app asked for pktinfo and the index has changed ... 15812 * Note that the local address never changes for the connection. 15813 */ 15814 if (addflag & TCP_IPV6_RECVPKTINFO) { 15815 struct in6_pktinfo *pkti; 15816 15817 toh = (struct T_opthdr *)optptr; 15818 toh->level = IPPROTO_IPV6; 15819 toh->name = IPV6_PKTINFO; 15820 toh->len = sizeof (*toh) + sizeof (*pkti); 15821 toh->status = 0; 15822 optptr += sizeof (*toh); 15823 pkti = (struct in6_pktinfo *)optptr; 15824 if (tcp->tcp_ipversion == IPV6_VERSION) 15825 pkti->ipi6_addr = tcp->tcp_ip6h->ip6_src; 15826 else 15827 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 15828 &pkti->ipi6_addr); 15829 pkti->ipi6_ifindex = ipp->ipp_ifindex; 15830 optptr += sizeof (*pkti); 15831 ASSERT(OK_32PTR(optptr)); 15832 /* Save as "last" value */ 15833 tcp->tcp_recvifindex = ipp->ipp_ifindex; 15834 } 15835 /* If app asked for hoplimit and it has changed ... */ 15836 if (addflag & TCP_IPV6_RECVHOPLIMIT) { 15837 toh = (struct T_opthdr *)optptr; 15838 toh->level = IPPROTO_IPV6; 15839 toh->name = IPV6_HOPLIMIT; 15840 toh->len = sizeof (*toh) + sizeof (uint_t); 15841 toh->status = 0; 15842 optptr += sizeof (*toh); 15843 *(uint_t *)optptr = ipp->ipp_hoplimit; 15844 optptr += sizeof (uint_t); 15845 ASSERT(OK_32PTR(optptr)); 15846 /* Save as "last" value */ 15847 tcp->tcp_recvhops = ipp->ipp_hoplimit; 15848 } 15849 /* If app asked for tclass and it has changed ... */ 15850 if (addflag & TCP_IPV6_RECVTCLASS) { 15851 toh = (struct T_opthdr *)optptr; 15852 toh->level = IPPROTO_IPV6; 15853 toh->name = IPV6_TCLASS; 15854 toh->len = sizeof (*toh) + sizeof (uint_t); 15855 toh->status = 0; 15856 optptr += sizeof (*toh); 15857 *(uint_t *)optptr = ipp->ipp_tclass; 15858 optptr += sizeof (uint_t); 15859 ASSERT(OK_32PTR(optptr)); 15860 /* Save as "last" value */ 15861 tcp->tcp_recvtclass = ipp->ipp_tclass; 15862 } 15863 if (addflag & TCP_IPV6_RECVHOPOPTS) { 15864 toh = (struct T_opthdr *)optptr; 15865 toh->level = IPPROTO_IPV6; 15866 toh->name = IPV6_HOPOPTS; 15867 toh->len = sizeof (*toh) + ipp->ipp_hopoptslen - 15868 tcp->tcp_label_len; 15869 toh->status = 0; 15870 optptr += sizeof (*toh); 15871 bcopy((uchar_t *)ipp->ipp_hopopts + tcp->tcp_label_len, optptr, 15872 ipp->ipp_hopoptslen - tcp->tcp_label_len); 15873 optptr += ipp->ipp_hopoptslen - tcp->tcp_label_len; 15874 ASSERT(OK_32PTR(optptr)); 15875 /* Save as last value */ 15876 ip_savebuf((void **)&tcp->tcp_hopopts, &tcp->tcp_hopoptslen, 15877 (ipp->ipp_fields & IPPF_HOPOPTS), 15878 ipp->ipp_hopopts, ipp->ipp_hopoptslen); 15879 } 15880 if (addflag & TCP_IPV6_RECVRTDSTOPTS) { 15881 toh = (struct T_opthdr *)optptr; 15882 toh->level = IPPROTO_IPV6; 15883 toh->name = IPV6_RTHDRDSTOPTS; 15884 toh->len = sizeof (*toh) + ipp->ipp_rtdstoptslen; 15885 toh->status = 0; 15886 optptr += sizeof (*toh); 15887 bcopy(ipp->ipp_rtdstopts, optptr, ipp->ipp_rtdstoptslen); 15888 optptr += ipp->ipp_rtdstoptslen; 15889 ASSERT(OK_32PTR(optptr)); 15890 /* Save as last value */ 15891 ip_savebuf((void **)&tcp->tcp_rtdstopts, 15892 &tcp->tcp_rtdstoptslen, 15893 (ipp->ipp_fields & IPPF_RTDSTOPTS), 15894 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 15895 } 15896 if (addflag & TCP_IPV6_RECVRTHDR) { 15897 toh = (struct T_opthdr *)optptr; 15898 toh->level = IPPROTO_IPV6; 15899 toh->name = IPV6_RTHDR; 15900 toh->len = sizeof (*toh) + ipp->ipp_rthdrlen; 15901 toh->status = 0; 15902 optptr += sizeof (*toh); 15903 bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen); 15904 optptr += ipp->ipp_rthdrlen; 15905 ASSERT(OK_32PTR(optptr)); 15906 /* Save as last value */ 15907 ip_savebuf((void **)&tcp->tcp_rthdr, &tcp->tcp_rthdrlen, 15908 (ipp->ipp_fields & IPPF_RTHDR), 15909 ipp->ipp_rthdr, ipp->ipp_rthdrlen); 15910 } 15911 if (addflag & (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) { 15912 toh = (struct T_opthdr *)optptr; 15913 toh->level = IPPROTO_IPV6; 15914 toh->name = IPV6_DSTOPTS; 15915 toh->len = sizeof (*toh) + ipp->ipp_dstoptslen; 15916 toh->status = 0; 15917 optptr += sizeof (*toh); 15918 bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen); 15919 optptr += ipp->ipp_dstoptslen; 15920 ASSERT(OK_32PTR(optptr)); 15921 /* Save as last value */ 15922 ip_savebuf((void **)&tcp->tcp_dstopts, &tcp->tcp_dstoptslen, 15923 (ipp->ipp_fields & IPPF_DSTOPTS), 15924 ipp->ipp_dstopts, ipp->ipp_dstoptslen); 15925 } 15926 ASSERT(optptr == mp->b_wptr); 15927 return (mp); 15928 } 15929 15930 /* 15931 * Handle a *T_BIND_REQ that has failed either due to a T_ERROR_ACK 15932 * or a "bad" IRE detected by tcp_adapt_ire. 15933 * We can't tell if the failure was due to the laddr or the faddr 15934 * thus we clear out all addresses and ports. 15935 */ 15936 static void 15937 tcp_bind_failed(tcp_t *tcp, mblk_t *mp, int error) 15938 { 15939 queue_t *q = tcp->tcp_rq; 15940 tcph_t *tcph; 15941 struct T_error_ack *tea; 15942 conn_t *connp = tcp->tcp_connp; 15943 15944 15945 ASSERT(mp->b_datap->db_type == M_PCPROTO); 15946 15947 if (mp->b_cont) { 15948 freemsg(mp->b_cont); 15949 mp->b_cont = NULL; 15950 } 15951 tea = (struct T_error_ack *)mp->b_rptr; 15952 switch (tea->PRIM_type) { 15953 case T_BIND_ACK: 15954 /* 15955 * Need to unbind with classifier since we were just told that 15956 * our bind succeeded. 15957 */ 15958 tcp->tcp_hard_bound = B_FALSE; 15959 tcp->tcp_hard_binding = B_FALSE; 15960 15961 ipcl_hash_remove(connp); 15962 /* Reuse the mblk if possible */ 15963 ASSERT(mp->b_datap->db_lim - mp->b_datap->db_base >= 15964 sizeof (*tea)); 15965 mp->b_rptr = mp->b_datap->db_base; 15966 mp->b_wptr = mp->b_rptr + sizeof (*tea); 15967 tea = (struct T_error_ack *)mp->b_rptr; 15968 tea->PRIM_type = T_ERROR_ACK; 15969 tea->TLI_error = TSYSERR; 15970 tea->UNIX_error = error; 15971 if (tcp->tcp_state >= TCPS_SYN_SENT) { 15972 tea->ERROR_prim = T_CONN_REQ; 15973 } else { 15974 tea->ERROR_prim = O_T_BIND_REQ; 15975 } 15976 break; 15977 15978 case T_ERROR_ACK: 15979 if (tcp->tcp_state >= TCPS_SYN_SENT) 15980 tea->ERROR_prim = T_CONN_REQ; 15981 break; 15982 default: 15983 panic("tcp_bind_failed: unexpected TPI type"); 15984 /*NOTREACHED*/ 15985 } 15986 15987 tcp->tcp_state = TCPS_IDLE; 15988 if (tcp->tcp_ipversion == IPV4_VERSION) 15989 tcp->tcp_ipha->ipha_src = 0; 15990 else 15991 V6_SET_ZERO(tcp->tcp_ip6h->ip6_src); 15992 /* 15993 * Copy of the src addr. in tcp_t is needed since 15994 * the lookup funcs. can only look at tcp_t 15995 */ 15996 V6_SET_ZERO(tcp->tcp_ip_src_v6); 15997 15998 tcph = tcp->tcp_tcph; 15999 tcph->th_lport[0] = 0; 16000 tcph->th_lport[1] = 0; 16001 tcp_bind_hash_remove(tcp); 16002 bzero(&connp->u_port, sizeof (connp->u_port)); 16003 /* blow away saved option results if any */ 16004 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 16005 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 16006 16007 conn_delete_ire(tcp->tcp_connp, NULL); 16008 putnext(q, mp); 16009 } 16010 16011 /* 16012 * tcp_rput_other is called by tcp_rput to handle everything other than M_DATA 16013 * messages. 16014 */ 16015 void 16016 tcp_rput_other(tcp_t *tcp, mblk_t *mp) 16017 { 16018 mblk_t *mp1; 16019 uchar_t *rptr = mp->b_rptr; 16020 queue_t *q = tcp->tcp_rq; 16021 struct T_error_ack *tea; 16022 uint32_t mss; 16023 mblk_t *syn_mp; 16024 mblk_t *mdti; 16025 mblk_t *lsoi; 16026 int retval; 16027 mblk_t *ire_mp; 16028 tcp_stack_t *tcps = tcp->tcp_tcps; 16029 16030 switch (mp->b_datap->db_type) { 16031 case M_PROTO: 16032 case M_PCPROTO: 16033 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 16034 if ((mp->b_wptr - rptr) < sizeof (t_scalar_t)) 16035 break; 16036 tea = (struct T_error_ack *)rptr; 16037 switch (tea->PRIM_type) { 16038 case T_BIND_ACK: 16039 /* 16040 * Adapt Multidata information, if any. The 16041 * following tcp_mdt_update routine will free 16042 * the message. 16043 */ 16044 if ((mdti = tcp_mdt_info_mp(mp)) != NULL) { 16045 tcp_mdt_update(tcp, &((ip_mdt_info_t *)mdti-> 16046 b_rptr)->mdt_capab, B_TRUE); 16047 freemsg(mdti); 16048 } 16049 16050 /* 16051 * Check to update LSO information with tcp, and 16052 * tcp_lso_update routine will free the message. 16053 */ 16054 if ((lsoi = tcp_lso_info_mp(mp)) != NULL) { 16055 tcp_lso_update(tcp, &((ip_lso_info_t *)lsoi-> 16056 b_rptr)->lso_capab); 16057 freemsg(lsoi); 16058 } 16059 16060 /* Get the IRE, if we had requested for it */ 16061 ire_mp = tcp_ire_mp(mp); 16062 16063 if (tcp->tcp_hard_binding) { 16064 tcp->tcp_hard_binding = B_FALSE; 16065 tcp->tcp_hard_bound = B_TRUE; 16066 CL_INET_CONNECT(tcp); 16067 } else { 16068 if (ire_mp != NULL) 16069 freeb(ire_mp); 16070 goto after_syn_sent; 16071 } 16072 16073 retval = tcp_adapt_ire(tcp, ire_mp); 16074 if (ire_mp != NULL) 16075 freeb(ire_mp); 16076 if (retval == 0) { 16077 tcp_bind_failed(tcp, mp, 16078 (int)((tcp->tcp_state >= TCPS_SYN_SENT) ? 16079 ENETUNREACH : EADDRNOTAVAIL)); 16080 return; 16081 } 16082 /* 16083 * Don't let an endpoint connect to itself. 16084 * Also checked in tcp_connect() but that 16085 * check can't handle the case when the 16086 * local IP address is INADDR_ANY. 16087 */ 16088 if (tcp->tcp_ipversion == IPV4_VERSION) { 16089 if ((tcp->tcp_ipha->ipha_dst == 16090 tcp->tcp_ipha->ipha_src) && 16091 (BE16_EQL(tcp->tcp_tcph->th_lport, 16092 tcp->tcp_tcph->th_fport))) { 16093 tcp_bind_failed(tcp, mp, EADDRNOTAVAIL); 16094 return; 16095 } 16096 } else { 16097 if (IN6_ARE_ADDR_EQUAL( 16098 &tcp->tcp_ip6h->ip6_dst, 16099 &tcp->tcp_ip6h->ip6_src) && 16100 (BE16_EQL(tcp->tcp_tcph->th_lport, 16101 tcp->tcp_tcph->th_fport))) { 16102 tcp_bind_failed(tcp, mp, EADDRNOTAVAIL); 16103 return; 16104 } 16105 } 16106 ASSERT(tcp->tcp_state == TCPS_SYN_SENT); 16107 /* 16108 * This should not be possible! Just for 16109 * defensive coding... 16110 */ 16111 if (tcp->tcp_state != TCPS_SYN_SENT) 16112 goto after_syn_sent; 16113 16114 if (is_system_labeled() && 16115 !tcp_update_label(tcp, CONN_CRED(tcp->tcp_connp))) { 16116 tcp_bind_failed(tcp, mp, EHOSTUNREACH); 16117 return; 16118 } 16119 16120 ASSERT(q == tcp->tcp_rq); 16121 /* 16122 * tcp_adapt_ire() does not adjust 16123 * for TCP/IP header length. 16124 */ 16125 mss = tcp->tcp_mss - tcp->tcp_hdr_len; 16126 16127 /* 16128 * Just make sure our rwnd is at 16129 * least tcp_recv_hiwat_mss * MSS 16130 * large, and round up to the nearest 16131 * MSS. 16132 * 16133 * We do the round up here because 16134 * we need to get the interface 16135 * MTU first before we can do the 16136 * round up. 16137 */ 16138 tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss), 16139 tcps->tcps_recv_hiwat_minmss * mss); 16140 q->q_hiwat = tcp->tcp_rwnd; 16141 tcp_set_ws_value(tcp); 16142 U32_TO_ABE16((tcp->tcp_rwnd >> tcp->tcp_rcv_ws), 16143 tcp->tcp_tcph->th_win); 16144 if (tcp->tcp_rcv_ws > 0 || tcps->tcps_wscale_always) 16145 tcp->tcp_snd_ws_ok = B_TRUE; 16146 16147 /* 16148 * Set tcp_snd_ts_ok to true 16149 * so that tcp_xmit_mp will 16150 * include the timestamp 16151 * option in the SYN segment. 16152 */ 16153 if (tcps->tcps_tstamp_always || 16154 (tcp->tcp_rcv_ws && tcps->tcps_tstamp_if_wscale)) { 16155 tcp->tcp_snd_ts_ok = B_TRUE; 16156 } 16157 16158 /* 16159 * tcp_snd_sack_ok can be set in 16160 * tcp_adapt_ire() if the sack metric 16161 * is set. So check it here also. 16162 */ 16163 if (tcps->tcps_sack_permitted == 2 || 16164 tcp->tcp_snd_sack_ok) { 16165 if (tcp->tcp_sack_info == NULL) { 16166 tcp->tcp_sack_info = 16167 kmem_cache_alloc( 16168 tcp_sack_info_cache, 16169 KM_SLEEP); 16170 } 16171 tcp->tcp_snd_sack_ok = B_TRUE; 16172 } 16173 16174 /* 16175 * Should we use ECN? Note that the current 16176 * default value (SunOS 5.9) of tcp_ecn_permitted 16177 * is 1. The reason for doing this is that there 16178 * are equipments out there that will drop ECN 16179 * enabled IP packets. Setting it to 1 avoids 16180 * compatibility problems. 16181 */ 16182 if (tcps->tcps_ecn_permitted == 2) 16183 tcp->tcp_ecn_ok = B_TRUE; 16184 16185 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 16186 syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 16187 tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 16188 if (syn_mp) { 16189 cred_t *cr; 16190 pid_t pid; 16191 16192 /* 16193 * Obtain the credential from the 16194 * thread calling connect(); the credential 16195 * lives on in the second mblk which 16196 * originated from T_CONN_REQ and is echoed 16197 * with the T_BIND_ACK from ip. If none 16198 * can be found, default to the creator 16199 * of the socket. 16200 */ 16201 if (mp->b_cont == NULL || 16202 (cr = DB_CRED(mp->b_cont)) == NULL) { 16203 cr = tcp->tcp_cred; 16204 pid = tcp->tcp_cpid; 16205 } else { 16206 pid = DB_CPID(mp->b_cont); 16207 } 16208 mblk_setcred(syn_mp, cr); 16209 DB_CPID(syn_mp) = pid; 16210 tcp_send_data(tcp, tcp->tcp_wq, syn_mp); 16211 } 16212 after_syn_sent: 16213 /* 16214 * A trailer mblk indicates a waiting client upstream. 16215 * We complete here the processing begun in 16216 * either tcp_bind() or tcp_connect() by passing 16217 * upstream the reply message they supplied. 16218 */ 16219 mp1 = mp; 16220 mp = mp->b_cont; 16221 freeb(mp1); 16222 if (mp) 16223 break; 16224 return; 16225 case T_ERROR_ACK: 16226 if (tcp->tcp_debug) { 16227 (void) strlog(TCP_MOD_ID, 0, 1, 16228 SL_TRACE|SL_ERROR, 16229 "tcp_rput_other: case T_ERROR_ACK, " 16230 "ERROR_prim == %d", 16231 tea->ERROR_prim); 16232 } 16233 switch (tea->ERROR_prim) { 16234 case O_T_BIND_REQ: 16235 case T_BIND_REQ: 16236 tcp_bind_failed(tcp, mp, 16237 (int)((tcp->tcp_state >= TCPS_SYN_SENT) ? 16238 ENETUNREACH : EADDRNOTAVAIL)); 16239 return; 16240 case T_UNBIND_REQ: 16241 tcp->tcp_hard_binding = B_FALSE; 16242 tcp->tcp_hard_bound = B_FALSE; 16243 if (mp->b_cont) { 16244 freemsg(mp->b_cont); 16245 mp->b_cont = NULL; 16246 } 16247 if (tcp->tcp_unbind_pending) 16248 tcp->tcp_unbind_pending = 0; 16249 else { 16250 /* From tcp_ip_unbind() - free */ 16251 freemsg(mp); 16252 return; 16253 } 16254 break; 16255 case T_SVR4_OPTMGMT_REQ: 16256 if (tcp->tcp_drop_opt_ack_cnt > 0) { 16257 /* T_OPTMGMT_REQ generated by TCP */ 16258 printf("T_SVR4_OPTMGMT_REQ failed " 16259 "%d/%d - dropped (cnt %d)\n", 16260 tea->TLI_error, tea->UNIX_error, 16261 tcp->tcp_drop_opt_ack_cnt); 16262 freemsg(mp); 16263 tcp->tcp_drop_opt_ack_cnt--; 16264 return; 16265 } 16266 break; 16267 } 16268 if (tea->ERROR_prim == T_SVR4_OPTMGMT_REQ && 16269 tcp->tcp_drop_opt_ack_cnt > 0) { 16270 printf("T_SVR4_OPTMGMT_REQ failed %d/%d " 16271 "- dropped (cnt %d)\n", 16272 tea->TLI_error, tea->UNIX_error, 16273 tcp->tcp_drop_opt_ack_cnt); 16274 freemsg(mp); 16275 tcp->tcp_drop_opt_ack_cnt--; 16276 return; 16277 } 16278 break; 16279 case T_OPTMGMT_ACK: 16280 if (tcp->tcp_drop_opt_ack_cnt > 0) { 16281 /* T_OPTMGMT_REQ generated by TCP */ 16282 freemsg(mp); 16283 tcp->tcp_drop_opt_ack_cnt--; 16284 return; 16285 } 16286 break; 16287 default: 16288 break; 16289 } 16290 break; 16291 case M_FLUSH: 16292 if (*rptr & FLUSHR) 16293 flushq(q, FLUSHDATA); 16294 break; 16295 default: 16296 /* M_CTL will be directly sent to tcp_icmp_error() */ 16297 ASSERT(DB_TYPE(mp) != M_CTL); 16298 break; 16299 } 16300 /* 16301 * Make sure we set this bit before sending the ACK for 16302 * bind. Otherwise accept could possibly run and free 16303 * this tcp struct. 16304 */ 16305 putnext(q, mp); 16306 } 16307 16308 /* ARGSUSED */ 16309 static void 16310 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2) 16311 { 16312 conn_t *connp = (conn_t *)arg; 16313 tcp_t *tcp = connp->conn_tcp; 16314 queue_t *q = tcp->tcp_rq; 16315 uint_t thwin; 16316 tcp_stack_t *tcps = tcp->tcp_tcps; 16317 sodirect_t *sodp; 16318 boolean_t fc; 16319 16320 mutex_enter(&tcp->tcp_rsrv_mp_lock); 16321 tcp->tcp_rsrv_mp = mp; 16322 mutex_exit(&tcp->tcp_rsrv_mp_lock); 16323 16324 TCP_STAT(tcps, tcp_rsrv_calls); 16325 16326 if (TCP_IS_DETACHED(tcp) || q == NULL) { 16327 return; 16328 } 16329 16330 if (tcp->tcp_fused) { 16331 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 16332 16333 ASSERT(tcp->tcp_fused); 16334 ASSERT(peer_tcp != NULL && peer_tcp->tcp_fused); 16335 ASSERT(peer_tcp->tcp_loopback_peer == tcp); 16336 ASSERT(!TCP_IS_DETACHED(tcp)); 16337 ASSERT(tcp->tcp_connp->conn_sqp == 16338 peer_tcp->tcp_connp->conn_sqp); 16339 16340 /* 16341 * Normally we would not get backenabled in synchronous 16342 * streams mode, but in case this happens, we need to plug 16343 * synchronous streams during our drain to prevent a race 16344 * with tcp_fuse_rrw() or tcp_fuse_rinfop(). 16345 */ 16346 TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp); 16347 if (tcp->tcp_rcv_list != NULL) 16348 (void) tcp_rcv_drain(tcp->tcp_rq, tcp); 16349 16350 if (peer_tcp > tcp) { 16351 mutex_enter(&peer_tcp->tcp_non_sq_lock); 16352 mutex_enter(&tcp->tcp_non_sq_lock); 16353 } else { 16354 mutex_enter(&tcp->tcp_non_sq_lock); 16355 mutex_enter(&peer_tcp->tcp_non_sq_lock); 16356 } 16357 16358 if (peer_tcp->tcp_flow_stopped && 16359 (TCP_UNSENT_BYTES(peer_tcp) <= 16360 peer_tcp->tcp_xmit_lowater)) { 16361 tcp_clrqfull(peer_tcp); 16362 } 16363 mutex_exit(&peer_tcp->tcp_non_sq_lock); 16364 mutex_exit(&tcp->tcp_non_sq_lock); 16365 16366 TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp); 16367 TCP_STAT(tcps, tcp_fusion_backenabled); 16368 return; 16369 } 16370 16371 SOD_PTR_ENTER(tcp, sodp); 16372 if (sodp != NULL) { 16373 /* An sodirect connection */ 16374 if (SOD_QFULL(sodp)) { 16375 /* Flow-controlled, need another back-enable */ 16376 fc = B_TRUE; 16377 SOD_QSETBE(sodp); 16378 } else { 16379 /* Not flow-controlled */ 16380 fc = B_FALSE; 16381 } 16382 mutex_exit(sodp->sod_lockp); 16383 } else if (canputnext(q)) { 16384 /* STREAMS, not flow-controlled */ 16385 fc = B_FALSE; 16386 } else { 16387 /* STREAMS, flow-controlled */ 16388 fc = B_TRUE; 16389 } 16390 if (!fc) { 16391 /* Not flow-controlled, open rwnd */ 16392 tcp->tcp_rwnd = q->q_hiwat; 16393 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 16394 << tcp->tcp_rcv_ws; 16395 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 16396 /* 16397 * Send back a window update immediately if TCP is above 16398 * ESTABLISHED state and the increase of the rcv window 16399 * that the other side knows is at least 1 MSS after flow 16400 * control is lifted. 16401 */ 16402 if (tcp->tcp_state >= TCPS_ESTABLISHED && 16403 (q->q_hiwat - thwin >= tcp->tcp_mss)) { 16404 tcp_xmit_ctl(NULL, tcp, 16405 (tcp->tcp_swnd == 0) ? tcp->tcp_suna : 16406 tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 16407 BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate); 16408 } 16409 } 16410 } 16411 16412 /* 16413 * The read side service routine is called mostly when we get back-enabled as a 16414 * result of flow control relief. Since we don't actually queue anything in 16415 * TCP, we have no data to send out of here. What we do is clear the receive 16416 * window, and send out a window update. 16417 */ 16418 static void 16419 tcp_rsrv(queue_t *q) 16420 { 16421 conn_t *connp = Q_TO_CONN(q); 16422 tcp_t *tcp = connp->conn_tcp; 16423 mblk_t *mp; 16424 tcp_stack_t *tcps = tcp->tcp_tcps; 16425 16426 /* No code does a putq on the read side */ 16427 ASSERT(q->q_first == NULL); 16428 16429 /* Nothing to do for the default queue */ 16430 if (q == tcps->tcps_g_q) { 16431 return; 16432 } 16433 16434 /* 16435 * If tcp->tcp_rsrv_mp == NULL, it means that tcp_rsrv() has already 16436 * been run. So just return. 16437 */ 16438 mutex_enter(&tcp->tcp_rsrv_mp_lock); 16439 if ((mp = tcp->tcp_rsrv_mp) == NULL) { 16440 mutex_exit(&tcp->tcp_rsrv_mp_lock); 16441 return; 16442 } 16443 tcp->tcp_rsrv_mp = NULL; 16444 mutex_exit(&tcp->tcp_rsrv_mp_lock); 16445 16446 CONN_INC_REF(connp); 16447 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_rsrv_input, connp, 16448 SQ_PROCESS, SQTAG_TCP_RSRV); 16449 } 16450 16451 /* 16452 * tcp_rwnd_set() is called to adjust the receive window to a desired value. 16453 * We do not allow the receive window to shrink. After setting rwnd, 16454 * set the flow control hiwat of the stream. 16455 * 16456 * This function is called in 2 cases: 16457 * 16458 * 1) Before data transfer begins, in tcp_accept_comm() for accepting a 16459 * connection (passive open) and in tcp_rput_data() for active connect. 16460 * This is called after tcp_mss_set() when the desired MSS value is known. 16461 * This makes sure that our window size is a mutiple of the other side's 16462 * MSS. 16463 * 2) Handling SO_RCVBUF option. 16464 * 16465 * It is ASSUMED that the requested size is a multiple of the current MSS. 16466 * 16467 * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the 16468 * user requests so. 16469 */ 16470 static int 16471 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd) 16472 { 16473 uint32_t mss = tcp->tcp_mss; 16474 uint32_t old_max_rwnd; 16475 uint32_t max_transmittable_rwnd; 16476 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 16477 tcp_stack_t *tcps = tcp->tcp_tcps; 16478 16479 if (tcp->tcp_fused) { 16480 size_t sth_hiwat; 16481 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 16482 16483 ASSERT(peer_tcp != NULL); 16484 /* 16485 * Record the stream head's high water mark for 16486 * this endpoint; this is used for flow-control 16487 * purposes in tcp_fuse_output(). 16488 */ 16489 sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd); 16490 if (!tcp_detached) 16491 (void) mi_set_sth_hiwat(tcp->tcp_rq, sth_hiwat); 16492 16493 /* 16494 * In the fusion case, the maxpsz stream head value of 16495 * our peer is set according to its send buffer size 16496 * and our receive buffer size; since the latter may 16497 * have changed we need to update the peer's maxpsz. 16498 */ 16499 (void) tcp_maxpsz_set(peer_tcp, B_TRUE); 16500 return (rwnd); 16501 } 16502 16503 if (tcp_detached) 16504 old_max_rwnd = tcp->tcp_rwnd; 16505 else 16506 old_max_rwnd = tcp->tcp_rq->q_hiwat; 16507 16508 /* 16509 * Insist on a receive window that is at least 16510 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid 16511 * funny TCP interactions of Nagle algorithm, SWS avoidance 16512 * and delayed acknowledgement. 16513 */ 16514 rwnd = MAX(rwnd, tcps->tcps_recv_hiwat_minmss * mss); 16515 16516 /* 16517 * If window size info has already been exchanged, TCP should not 16518 * shrink the window. Shrinking window is doable if done carefully. 16519 * We may add that support later. But so far there is not a real 16520 * need to do that. 16521 */ 16522 if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) { 16523 /* MSS may have changed, do a round up again. */ 16524 rwnd = MSS_ROUNDUP(old_max_rwnd, mss); 16525 } 16526 16527 /* 16528 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check 16529 * can be applied even before the window scale option is decided. 16530 */ 16531 max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws; 16532 if (rwnd > max_transmittable_rwnd) { 16533 rwnd = max_transmittable_rwnd - 16534 (max_transmittable_rwnd % mss); 16535 if (rwnd < mss) 16536 rwnd = max_transmittable_rwnd; 16537 /* 16538 * If we're over the limit we may have to back down tcp_rwnd. 16539 * The increment below won't work for us. So we set all three 16540 * here and the increment below will have no effect. 16541 */ 16542 tcp->tcp_rwnd = old_max_rwnd = rwnd; 16543 } 16544 if (tcp->tcp_localnet) { 16545 tcp->tcp_rack_abs_max = 16546 MIN(tcps->tcps_local_dacks_max, rwnd / mss / 2); 16547 } else { 16548 /* 16549 * For a remote host on a different subnet (through a router), 16550 * we ack every other packet to be conforming to RFC1122. 16551 * tcp_deferred_acks_max is default to 2. 16552 */ 16553 tcp->tcp_rack_abs_max = 16554 MIN(tcps->tcps_deferred_acks_max, rwnd / mss / 2); 16555 } 16556 if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max) 16557 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 16558 else 16559 tcp->tcp_rack_cur_max = 0; 16560 /* 16561 * Increment the current rwnd by the amount the maximum grew (we 16562 * can not overwrite it since we might be in the middle of a 16563 * connection.) 16564 */ 16565 tcp->tcp_rwnd += rwnd - old_max_rwnd; 16566 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, tcp->tcp_tcph->th_win); 16567 if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max) 16568 tcp->tcp_cwnd_max = rwnd; 16569 16570 if (tcp_detached) 16571 return (rwnd); 16572 /* 16573 * We set the maximum receive window into rq->q_hiwat. 16574 * This is not actually used for flow control. 16575 */ 16576 tcp->tcp_rq->q_hiwat = rwnd; 16577 /* 16578 * Set the Stream head high water mark. This doesn't have to be 16579 * here, since we are simply using default values, but we would 16580 * prefer to choose these values algorithmically, with a likely 16581 * relationship to rwnd. 16582 */ 16583 (void) mi_set_sth_hiwat(tcp->tcp_rq, 16584 MAX(rwnd, tcps->tcps_sth_rcv_hiwat)); 16585 return (rwnd); 16586 } 16587 16588 /* 16589 * Return SNMP stuff in buffer in mpdata. 16590 */ 16591 mblk_t * 16592 tcp_snmp_get(queue_t *q, mblk_t *mpctl) 16593 { 16594 mblk_t *mpdata; 16595 mblk_t *mp_conn_ctl = NULL; 16596 mblk_t *mp_conn_tail; 16597 mblk_t *mp_attr_ctl = NULL; 16598 mblk_t *mp_attr_tail; 16599 mblk_t *mp6_conn_ctl = NULL; 16600 mblk_t *mp6_conn_tail; 16601 mblk_t *mp6_attr_ctl = NULL; 16602 mblk_t *mp6_attr_tail; 16603 struct opthdr *optp; 16604 mib2_tcpConnEntry_t tce; 16605 mib2_tcp6ConnEntry_t tce6; 16606 mib2_transportMLPEntry_t mlp; 16607 connf_t *connfp; 16608 int i; 16609 boolean_t ispriv; 16610 zoneid_t zoneid; 16611 int v4_conn_idx; 16612 int v6_conn_idx; 16613 conn_t *connp = Q_TO_CONN(q); 16614 tcp_stack_t *tcps; 16615 ip_stack_t *ipst; 16616 mblk_t *mp2ctl; 16617 16618 /* 16619 * make a copy of the original message 16620 */ 16621 mp2ctl = copymsg(mpctl); 16622 16623 if (mpctl == NULL || 16624 (mpdata = mpctl->b_cont) == NULL || 16625 (mp_conn_ctl = copymsg(mpctl)) == NULL || 16626 (mp_attr_ctl = copymsg(mpctl)) == NULL || 16627 (mp6_conn_ctl = copymsg(mpctl)) == NULL || 16628 (mp6_attr_ctl = copymsg(mpctl)) == NULL) { 16629 freemsg(mp_conn_ctl); 16630 freemsg(mp_attr_ctl); 16631 freemsg(mp6_conn_ctl); 16632 freemsg(mp6_attr_ctl); 16633 freemsg(mpctl); 16634 freemsg(mp2ctl); 16635 return (NULL); 16636 } 16637 16638 ipst = connp->conn_netstack->netstack_ip; 16639 tcps = connp->conn_netstack->netstack_tcp; 16640 16641 /* build table of connections -- need count in fixed part */ 16642 SET_MIB(tcps->tcps_mib.tcpRtoAlgorithm, 4); /* vanj */ 16643 SET_MIB(tcps->tcps_mib.tcpRtoMin, tcps->tcps_rexmit_interval_min); 16644 SET_MIB(tcps->tcps_mib.tcpRtoMax, tcps->tcps_rexmit_interval_max); 16645 SET_MIB(tcps->tcps_mib.tcpMaxConn, -1); 16646 SET_MIB(tcps->tcps_mib.tcpCurrEstab, 0); 16647 16648 ispriv = 16649 secpolicy_ip_config((Q_TO_CONN(q))->conn_cred, B_TRUE) == 0; 16650 zoneid = Q_TO_CONN(q)->conn_zoneid; 16651 16652 v4_conn_idx = v6_conn_idx = 0; 16653 mp_conn_tail = mp_attr_tail = mp6_conn_tail = mp6_attr_tail = NULL; 16654 16655 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 16656 ipst = tcps->tcps_netstack->netstack_ip; 16657 16658 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 16659 16660 connp = NULL; 16661 16662 while ((connp = 16663 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 16664 tcp_t *tcp; 16665 boolean_t needattr; 16666 16667 if (connp->conn_zoneid != zoneid) 16668 continue; /* not in this zone */ 16669 16670 tcp = connp->conn_tcp; 16671 UPDATE_MIB(&tcps->tcps_mib, 16672 tcpHCInSegs, tcp->tcp_ibsegs); 16673 tcp->tcp_ibsegs = 0; 16674 UPDATE_MIB(&tcps->tcps_mib, 16675 tcpHCOutSegs, tcp->tcp_obsegs); 16676 tcp->tcp_obsegs = 0; 16677 16678 tce6.tcp6ConnState = tce.tcpConnState = 16679 tcp_snmp_state(tcp); 16680 if (tce.tcpConnState == MIB2_TCP_established || 16681 tce.tcpConnState == MIB2_TCP_closeWait) 16682 BUMP_MIB(&tcps->tcps_mib, tcpCurrEstab); 16683 16684 needattr = B_FALSE; 16685 bzero(&mlp, sizeof (mlp)); 16686 if (connp->conn_mlp_type != mlptSingle) { 16687 if (connp->conn_mlp_type == mlptShared || 16688 connp->conn_mlp_type == mlptBoth) 16689 mlp.tme_flags |= MIB2_TMEF_SHARED; 16690 if (connp->conn_mlp_type == mlptPrivate || 16691 connp->conn_mlp_type == mlptBoth) 16692 mlp.tme_flags |= MIB2_TMEF_PRIVATE; 16693 needattr = B_TRUE; 16694 } 16695 if (connp->conn_peercred != NULL) { 16696 ts_label_t *tsl; 16697 16698 tsl = crgetlabel(connp->conn_peercred); 16699 mlp.tme_doi = label2doi(tsl); 16700 mlp.tme_label = *label2bslabel(tsl); 16701 needattr = B_TRUE; 16702 } 16703 16704 /* Create a message to report on IPv6 entries */ 16705 if (tcp->tcp_ipversion == IPV6_VERSION) { 16706 tce6.tcp6ConnLocalAddress = tcp->tcp_ip_src_v6; 16707 tce6.tcp6ConnRemAddress = tcp->tcp_remote_v6; 16708 tce6.tcp6ConnLocalPort = ntohs(tcp->tcp_lport); 16709 tce6.tcp6ConnRemPort = ntohs(tcp->tcp_fport); 16710 tce6.tcp6ConnIfIndex = tcp->tcp_bound_if; 16711 /* Don't want just anybody seeing these... */ 16712 if (ispriv) { 16713 tce6.tcp6ConnEntryInfo.ce_snxt = 16714 tcp->tcp_snxt; 16715 tce6.tcp6ConnEntryInfo.ce_suna = 16716 tcp->tcp_suna; 16717 tce6.tcp6ConnEntryInfo.ce_rnxt = 16718 tcp->tcp_rnxt; 16719 tce6.tcp6ConnEntryInfo.ce_rack = 16720 tcp->tcp_rack; 16721 } else { 16722 /* 16723 * Netstat, unfortunately, uses this to 16724 * get send/receive queue sizes. How to fix? 16725 * Why not compute the difference only? 16726 */ 16727 tce6.tcp6ConnEntryInfo.ce_snxt = 16728 tcp->tcp_snxt - tcp->tcp_suna; 16729 tce6.tcp6ConnEntryInfo.ce_suna = 0; 16730 tce6.tcp6ConnEntryInfo.ce_rnxt = 16731 tcp->tcp_rnxt - tcp->tcp_rack; 16732 tce6.tcp6ConnEntryInfo.ce_rack = 0; 16733 } 16734 16735 tce6.tcp6ConnEntryInfo.ce_swnd = tcp->tcp_swnd; 16736 tce6.tcp6ConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; 16737 tce6.tcp6ConnEntryInfo.ce_rto = tcp->tcp_rto; 16738 tce6.tcp6ConnEntryInfo.ce_mss = tcp->tcp_mss; 16739 tce6.tcp6ConnEntryInfo.ce_state = tcp->tcp_state; 16740 16741 tce6.tcp6ConnCreationProcess = 16742 (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS : 16743 tcp->tcp_cpid; 16744 tce6.tcp6ConnCreationTime = tcp->tcp_open_time; 16745 16746 (void) snmp_append_data2(mp6_conn_ctl->b_cont, 16747 &mp6_conn_tail, (char *)&tce6, sizeof (tce6)); 16748 16749 mlp.tme_connidx = v6_conn_idx++; 16750 if (needattr) 16751 (void) snmp_append_data2(mp6_attr_ctl->b_cont, 16752 &mp6_attr_tail, (char *)&mlp, sizeof (mlp)); 16753 } 16754 /* 16755 * Create an IPv4 table entry for IPv4 entries and also 16756 * for IPv6 entries which are bound to in6addr_any 16757 * but don't have IPV6_V6ONLY set. 16758 * (i.e. anything an IPv4 peer could connect to) 16759 */ 16760 if (tcp->tcp_ipversion == IPV4_VERSION || 16761 (tcp->tcp_state <= TCPS_LISTEN && 16762 !tcp->tcp_connp->conn_ipv6_v6only && 16763 IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip_src_v6))) { 16764 if (tcp->tcp_ipversion == IPV6_VERSION) { 16765 tce.tcpConnRemAddress = INADDR_ANY; 16766 tce.tcpConnLocalAddress = INADDR_ANY; 16767 } else { 16768 tce.tcpConnRemAddress = 16769 tcp->tcp_remote; 16770 tce.tcpConnLocalAddress = 16771 tcp->tcp_ip_src; 16772 } 16773 tce.tcpConnLocalPort = ntohs(tcp->tcp_lport); 16774 tce.tcpConnRemPort = ntohs(tcp->tcp_fport); 16775 /* Don't want just anybody seeing these... */ 16776 if (ispriv) { 16777 tce.tcpConnEntryInfo.ce_snxt = 16778 tcp->tcp_snxt; 16779 tce.tcpConnEntryInfo.ce_suna = 16780 tcp->tcp_suna; 16781 tce.tcpConnEntryInfo.ce_rnxt = 16782 tcp->tcp_rnxt; 16783 tce.tcpConnEntryInfo.ce_rack = 16784 tcp->tcp_rack; 16785 } else { 16786 /* 16787 * Netstat, unfortunately, uses this to 16788 * get send/receive queue sizes. How 16789 * to fix? 16790 * Why not compute the difference only? 16791 */ 16792 tce.tcpConnEntryInfo.ce_snxt = 16793 tcp->tcp_snxt - tcp->tcp_suna; 16794 tce.tcpConnEntryInfo.ce_suna = 0; 16795 tce.tcpConnEntryInfo.ce_rnxt = 16796 tcp->tcp_rnxt - tcp->tcp_rack; 16797 tce.tcpConnEntryInfo.ce_rack = 0; 16798 } 16799 16800 tce.tcpConnEntryInfo.ce_swnd = tcp->tcp_swnd; 16801 tce.tcpConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; 16802 tce.tcpConnEntryInfo.ce_rto = tcp->tcp_rto; 16803 tce.tcpConnEntryInfo.ce_mss = tcp->tcp_mss; 16804 tce.tcpConnEntryInfo.ce_state = 16805 tcp->tcp_state; 16806 16807 tce.tcpConnCreationProcess = 16808 (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS : 16809 tcp->tcp_cpid; 16810 tce.tcpConnCreationTime = tcp->tcp_open_time; 16811 16812 (void) snmp_append_data2(mp_conn_ctl->b_cont, 16813 &mp_conn_tail, (char *)&tce, sizeof (tce)); 16814 16815 mlp.tme_connidx = v4_conn_idx++; 16816 if (needattr) 16817 (void) snmp_append_data2( 16818 mp_attr_ctl->b_cont, 16819 &mp_attr_tail, (char *)&mlp, 16820 sizeof (mlp)); 16821 } 16822 } 16823 } 16824 16825 /* fixed length structure for IPv4 and IPv6 counters */ 16826 SET_MIB(tcps->tcps_mib.tcpConnTableSize, sizeof (mib2_tcpConnEntry_t)); 16827 SET_MIB(tcps->tcps_mib.tcp6ConnTableSize, 16828 sizeof (mib2_tcp6ConnEntry_t)); 16829 /* synchronize 32- and 64-bit counters */ 16830 SYNC32_MIB(&tcps->tcps_mib, tcpInSegs, tcpHCInSegs); 16831 SYNC32_MIB(&tcps->tcps_mib, tcpOutSegs, tcpHCOutSegs); 16832 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16833 optp->level = MIB2_TCP; 16834 optp->name = 0; 16835 (void) snmp_append_data(mpdata, (char *)&tcps->tcps_mib, 16836 sizeof (tcps->tcps_mib)); 16837 optp->len = msgdsize(mpdata); 16838 qreply(q, mpctl); 16839 16840 /* table of connections... */ 16841 optp = (struct opthdr *)&mp_conn_ctl->b_rptr[ 16842 sizeof (struct T_optmgmt_ack)]; 16843 optp->level = MIB2_TCP; 16844 optp->name = MIB2_TCP_CONN; 16845 optp->len = msgdsize(mp_conn_ctl->b_cont); 16846 qreply(q, mp_conn_ctl); 16847 16848 /* table of MLP attributes... */ 16849 optp = (struct opthdr *)&mp_attr_ctl->b_rptr[ 16850 sizeof (struct T_optmgmt_ack)]; 16851 optp->level = MIB2_TCP; 16852 optp->name = EXPER_XPORT_MLP; 16853 optp->len = msgdsize(mp_attr_ctl->b_cont); 16854 if (optp->len == 0) 16855 freemsg(mp_attr_ctl); 16856 else 16857 qreply(q, mp_attr_ctl); 16858 16859 /* table of IPv6 connections... */ 16860 optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[ 16861 sizeof (struct T_optmgmt_ack)]; 16862 optp->level = MIB2_TCP6; 16863 optp->name = MIB2_TCP6_CONN; 16864 optp->len = msgdsize(mp6_conn_ctl->b_cont); 16865 qreply(q, mp6_conn_ctl); 16866 16867 /* table of IPv6 MLP attributes... */ 16868 optp = (struct opthdr *)&mp6_attr_ctl->b_rptr[ 16869 sizeof (struct T_optmgmt_ack)]; 16870 optp->level = MIB2_TCP6; 16871 optp->name = EXPER_XPORT_MLP; 16872 optp->len = msgdsize(mp6_attr_ctl->b_cont); 16873 if (optp->len == 0) 16874 freemsg(mp6_attr_ctl); 16875 else 16876 qreply(q, mp6_attr_ctl); 16877 return (mp2ctl); 16878 } 16879 16880 /* Return 0 if invalid set request, 1 otherwise, including non-tcp requests */ 16881 /* ARGSUSED */ 16882 int 16883 tcp_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 16884 { 16885 mib2_tcpConnEntry_t *tce = (mib2_tcpConnEntry_t *)ptr; 16886 16887 switch (level) { 16888 case MIB2_TCP: 16889 switch (name) { 16890 case 13: 16891 if (tce->tcpConnState != MIB2_TCP_deleteTCB) 16892 return (0); 16893 /* TODO: delete entry defined by tce */ 16894 return (1); 16895 default: 16896 return (0); 16897 } 16898 default: 16899 return (1); 16900 } 16901 } 16902 16903 /* Translate TCP state to MIB2 TCP state. */ 16904 static int 16905 tcp_snmp_state(tcp_t *tcp) 16906 { 16907 if (tcp == NULL) 16908 return (0); 16909 16910 switch (tcp->tcp_state) { 16911 case TCPS_CLOSED: 16912 case TCPS_IDLE: /* RFC1213 doesn't have analogue for IDLE & BOUND */ 16913 case TCPS_BOUND: 16914 return (MIB2_TCP_closed); 16915 case TCPS_LISTEN: 16916 return (MIB2_TCP_listen); 16917 case TCPS_SYN_SENT: 16918 return (MIB2_TCP_synSent); 16919 case TCPS_SYN_RCVD: 16920 return (MIB2_TCP_synReceived); 16921 case TCPS_ESTABLISHED: 16922 return (MIB2_TCP_established); 16923 case TCPS_CLOSE_WAIT: 16924 return (MIB2_TCP_closeWait); 16925 case TCPS_FIN_WAIT_1: 16926 return (MIB2_TCP_finWait1); 16927 case TCPS_CLOSING: 16928 return (MIB2_TCP_closing); 16929 case TCPS_LAST_ACK: 16930 return (MIB2_TCP_lastAck); 16931 case TCPS_FIN_WAIT_2: 16932 return (MIB2_TCP_finWait2); 16933 case TCPS_TIME_WAIT: 16934 return (MIB2_TCP_timeWait); 16935 default: 16936 return (0); 16937 } 16938 } 16939 16940 static char tcp_report_header[] = 16941 "TCP " MI_COL_HDRPAD_STR 16942 "zone dest snxt suna " 16943 "swnd rnxt rack rwnd rto mss w sw rw t " 16944 "recent [lport,fport] state"; 16945 16946 /* 16947 * TCP status report triggered via the Named Dispatch mechanism. 16948 */ 16949 /* ARGSUSED */ 16950 static void 16951 tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval, tcp_t *thisstream, 16952 cred_t *cr) 16953 { 16954 char hash[10], addrbuf[INET6_ADDRSTRLEN]; 16955 boolean_t ispriv = secpolicy_ip_config(cr, B_TRUE) == 0; 16956 char cflag; 16957 in6_addr_t v6dst; 16958 char buf[80]; 16959 uint_t print_len, buf_len; 16960 16961 buf_len = mp->b_datap->db_lim - mp->b_wptr; 16962 if (buf_len <= 0) 16963 return; 16964 16965 if (hashval >= 0) 16966 (void) sprintf(hash, "%03d ", hashval); 16967 else 16968 hash[0] = '\0'; 16969 16970 /* 16971 * Note that we use the remote address in the tcp_b structure. 16972 * This means that it will print out the real destination address, 16973 * not the next hop's address if source routing is used. This 16974 * avoid the confusion on the output because user may not 16975 * know that source routing is used for a connection. 16976 */ 16977 if (tcp->tcp_ipversion == IPV4_VERSION) { 16978 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &v6dst); 16979 } else { 16980 v6dst = tcp->tcp_remote_v6; 16981 } 16982 (void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf)); 16983 /* 16984 * the ispriv checks are so that normal users cannot determine 16985 * sequence number information using NDD. 16986 */ 16987 16988 if (TCP_IS_DETACHED(tcp)) 16989 cflag = '*'; 16990 else 16991 cflag = ' '; 16992 print_len = snprintf((char *)mp->b_wptr, buf_len, 16993 "%s " MI_COL_PTRFMT_STR "%d %s %08x %08x %010d %08x %08x " 16994 "%010d %05ld %05d %1d %02d %02d %1d %08x %s%c\n", 16995 hash, 16996 (void *)tcp, 16997 tcp->tcp_connp->conn_zoneid, 16998 addrbuf, 16999 (ispriv) ? tcp->tcp_snxt : 0, 17000 (ispriv) ? tcp->tcp_suna : 0, 17001 tcp->tcp_swnd, 17002 (ispriv) ? tcp->tcp_rnxt : 0, 17003 (ispriv) ? tcp->tcp_rack : 0, 17004 tcp->tcp_rwnd, 17005 tcp->tcp_rto, 17006 tcp->tcp_mss, 17007 tcp->tcp_snd_ws_ok, 17008 tcp->tcp_snd_ws, 17009 tcp->tcp_rcv_ws, 17010 tcp->tcp_snd_ts_ok, 17011 tcp->tcp_ts_recent, 17012 tcp_display(tcp, buf, DISP_PORT_ONLY), cflag); 17013 if (print_len < buf_len) { 17014 ((mblk_t *)mp)->b_wptr += print_len; 17015 } else { 17016 ((mblk_t *)mp)->b_wptr += buf_len; 17017 } 17018 } 17019 17020 /* 17021 * TCP status report (for listeners only) triggered via the Named Dispatch 17022 * mechanism. 17023 */ 17024 /* ARGSUSED */ 17025 static void 17026 tcp_report_listener(mblk_t *mp, tcp_t *tcp, int hashval) 17027 { 17028 char addrbuf[INET6_ADDRSTRLEN]; 17029 in6_addr_t v6dst; 17030 uint_t print_len, buf_len; 17031 17032 buf_len = mp->b_datap->db_lim - mp->b_wptr; 17033 if (buf_len <= 0) 17034 return; 17035 17036 if (tcp->tcp_ipversion == IPV4_VERSION) { 17037 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6dst); 17038 (void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf)); 17039 } else { 17040 (void) inet_ntop(AF_INET6, &tcp->tcp_ip6h->ip6_src, 17041 addrbuf, sizeof (addrbuf)); 17042 } 17043 print_len = snprintf((char *)mp->b_wptr, buf_len, 17044 "%03d " 17045 MI_COL_PTRFMT_STR 17046 "%d %s %05u %08u %d/%d/%d%c\n", 17047 hashval, (void *)tcp, 17048 tcp->tcp_connp->conn_zoneid, 17049 addrbuf, 17050 (uint_t)BE16_TO_U16(tcp->tcp_tcph->th_lport), 17051 tcp->tcp_conn_req_seqnum, 17052 tcp->tcp_conn_req_cnt_q0, tcp->tcp_conn_req_cnt_q, 17053 tcp->tcp_conn_req_max, 17054 tcp->tcp_syn_defense ? '*' : ' '); 17055 if (print_len < buf_len) { 17056 ((mblk_t *)mp)->b_wptr += print_len; 17057 } else { 17058 ((mblk_t *)mp)->b_wptr += buf_len; 17059 } 17060 } 17061 17062 /* TCP status report triggered via the Named Dispatch mechanism. */ 17063 /* ARGSUSED */ 17064 static int 17065 tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 17066 { 17067 tcp_t *tcp; 17068 int i; 17069 conn_t *connp; 17070 connf_t *connfp; 17071 zoneid_t zoneid; 17072 tcp_stack_t *tcps; 17073 ip_stack_t *ipst; 17074 17075 zoneid = Q_TO_CONN(q)->conn_zoneid; 17076 tcps = Q_TO_TCP(q)->tcp_tcps; 17077 17078 /* 17079 * Because of the ndd constraint, at most we can have 64K buffer 17080 * to put in all TCP info. So to be more efficient, just 17081 * allocate a 64K buffer here, assuming we need that large buffer. 17082 * This may be a problem as any user can read tcp_status. Therefore 17083 * we limit the rate of doing this using tcp_ndd_get_info_interval. 17084 * This should be OK as normal users should not do this too often. 17085 */ 17086 if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) { 17087 if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time < 17088 drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) { 17089 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 17090 return (0); 17091 } 17092 } 17093 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 17094 /* The following may work even if we cannot get a large buf. */ 17095 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 17096 return (0); 17097 } 17098 17099 (void) mi_mpprintf(mp, "%s", tcp_report_header); 17100 17101 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 17102 17103 ipst = tcps->tcps_netstack->netstack_ip; 17104 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 17105 17106 connp = NULL; 17107 17108 while ((connp = 17109 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 17110 tcp = connp->conn_tcp; 17111 if (zoneid != GLOBAL_ZONEID && 17112 zoneid != connp->conn_zoneid) 17113 continue; 17114 tcp_report_item(mp->b_cont, tcp, -1, tcp, 17115 cr); 17116 } 17117 17118 } 17119 17120 tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt(); 17121 return (0); 17122 } 17123 17124 /* TCP status report triggered via the Named Dispatch mechanism. */ 17125 /* ARGSUSED */ 17126 static int 17127 tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 17128 { 17129 tf_t *tbf; 17130 tcp_t *tcp; 17131 int i; 17132 zoneid_t zoneid; 17133 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 17134 17135 zoneid = Q_TO_CONN(q)->conn_zoneid; 17136 17137 /* Refer to comments in tcp_status_report(). */ 17138 if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) { 17139 if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time < 17140 drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) { 17141 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 17142 return (0); 17143 } 17144 } 17145 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 17146 /* The following may work even if we cannot get a large buf. */ 17147 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 17148 return (0); 17149 } 17150 17151 (void) mi_mpprintf(mp, " %s", tcp_report_header); 17152 17153 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 17154 tbf = &tcps->tcps_bind_fanout[i]; 17155 mutex_enter(&tbf->tf_lock); 17156 for (tcp = tbf->tf_tcp; tcp != NULL; 17157 tcp = tcp->tcp_bind_hash) { 17158 if (zoneid != GLOBAL_ZONEID && 17159 zoneid != tcp->tcp_connp->conn_zoneid) 17160 continue; 17161 CONN_INC_REF(tcp->tcp_connp); 17162 tcp_report_item(mp->b_cont, tcp, i, 17163 Q_TO_TCP(q), cr); 17164 CONN_DEC_REF(tcp->tcp_connp); 17165 } 17166 mutex_exit(&tbf->tf_lock); 17167 } 17168 tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt(); 17169 return (0); 17170 } 17171 17172 /* TCP status report triggered via the Named Dispatch mechanism. */ 17173 /* ARGSUSED */ 17174 static int 17175 tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 17176 { 17177 connf_t *connfp; 17178 conn_t *connp; 17179 tcp_t *tcp; 17180 int i; 17181 zoneid_t zoneid; 17182 tcp_stack_t *tcps; 17183 ip_stack_t *ipst; 17184 17185 zoneid = Q_TO_CONN(q)->conn_zoneid; 17186 tcps = Q_TO_TCP(q)->tcp_tcps; 17187 17188 /* Refer to comments in tcp_status_report(). */ 17189 if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) { 17190 if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time < 17191 drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) { 17192 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 17193 return (0); 17194 } 17195 } 17196 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 17197 /* The following may work even if we cannot get a large buf. */ 17198 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 17199 return (0); 17200 } 17201 17202 (void) mi_mpprintf(mp, 17203 " TCP " MI_COL_HDRPAD_STR 17204 "zone IP addr port seqnum backlog (q0/q/max)"); 17205 17206 ipst = tcps->tcps_netstack->netstack_ip; 17207 17208 for (i = 0; i < ipst->ips_ipcl_bind_fanout_size; i++) { 17209 connfp = &ipst->ips_ipcl_bind_fanout[i]; 17210 connp = NULL; 17211 while ((connp = 17212 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 17213 tcp = connp->conn_tcp; 17214 if (zoneid != GLOBAL_ZONEID && 17215 zoneid != connp->conn_zoneid) 17216 continue; 17217 tcp_report_listener(mp->b_cont, tcp, i); 17218 } 17219 } 17220 17221 tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt(); 17222 return (0); 17223 } 17224 17225 /* TCP status report triggered via the Named Dispatch mechanism. */ 17226 /* ARGSUSED */ 17227 static int 17228 tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 17229 { 17230 connf_t *connfp; 17231 conn_t *connp; 17232 tcp_t *tcp; 17233 int i; 17234 zoneid_t zoneid; 17235 tcp_stack_t *tcps; 17236 ip_stack_t *ipst; 17237 17238 zoneid = Q_TO_CONN(q)->conn_zoneid; 17239 tcps = Q_TO_TCP(q)->tcp_tcps; 17240 ipst = tcps->tcps_netstack->netstack_ip; 17241 17242 /* Refer to comments in tcp_status_report(). */ 17243 if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) { 17244 if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time < 17245 drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) { 17246 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 17247 return (0); 17248 } 17249 } 17250 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 17251 /* The following may work even if we cannot get a large buf. */ 17252 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 17253 return (0); 17254 } 17255 17256 (void) mi_mpprintf(mp, "tcp_conn_hash_size = %d", 17257 ipst->ips_ipcl_conn_fanout_size); 17258 (void) mi_mpprintf(mp, " %s", tcp_report_header); 17259 17260 for (i = 0; i < ipst->ips_ipcl_conn_fanout_size; i++) { 17261 connfp = &ipst->ips_ipcl_conn_fanout[i]; 17262 connp = NULL; 17263 while ((connp = 17264 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 17265 tcp = connp->conn_tcp; 17266 if (zoneid != GLOBAL_ZONEID && 17267 zoneid != connp->conn_zoneid) 17268 continue; 17269 tcp_report_item(mp->b_cont, tcp, i, 17270 Q_TO_TCP(q), cr); 17271 } 17272 } 17273 17274 tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt(); 17275 return (0); 17276 } 17277 17278 /* TCP status report triggered via the Named Dispatch mechanism. */ 17279 /* ARGSUSED */ 17280 static int 17281 tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 17282 { 17283 tf_t *tf; 17284 tcp_t *tcp; 17285 int i; 17286 zoneid_t zoneid; 17287 tcp_stack_t *tcps; 17288 17289 zoneid = Q_TO_CONN(q)->conn_zoneid; 17290 tcps = Q_TO_TCP(q)->tcp_tcps; 17291 17292 /* Refer to comments in tcp_status_report(). */ 17293 if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) { 17294 if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time < 17295 drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) { 17296 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 17297 return (0); 17298 } 17299 } 17300 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 17301 /* The following may work even if we cannot get a large buf. */ 17302 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 17303 return (0); 17304 } 17305 17306 (void) mi_mpprintf(mp, " %s", tcp_report_header); 17307 17308 for (i = 0; i < TCP_FANOUT_SIZE; i++) { 17309 tf = &tcps->tcps_acceptor_fanout[i]; 17310 mutex_enter(&tf->tf_lock); 17311 for (tcp = tf->tf_tcp; tcp != NULL; 17312 tcp = tcp->tcp_acceptor_hash) { 17313 if (zoneid != GLOBAL_ZONEID && 17314 zoneid != tcp->tcp_connp->conn_zoneid) 17315 continue; 17316 tcp_report_item(mp->b_cont, tcp, i, 17317 Q_TO_TCP(q), cr); 17318 } 17319 mutex_exit(&tf->tf_lock); 17320 } 17321 tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt(); 17322 return (0); 17323 } 17324 17325 /* 17326 * tcp_timer is the timer service routine. It handles the retransmission, 17327 * FIN_WAIT_2 flush, and zero window probe timeout events. It figures out 17328 * from the state of the tcp instance what kind of action needs to be done 17329 * at the time it is called. 17330 */ 17331 static void 17332 tcp_timer(void *arg) 17333 { 17334 mblk_t *mp; 17335 clock_t first_threshold; 17336 clock_t second_threshold; 17337 clock_t ms; 17338 uint32_t mss; 17339 conn_t *connp = (conn_t *)arg; 17340 tcp_t *tcp = connp->conn_tcp; 17341 tcp_stack_t *tcps = tcp->tcp_tcps; 17342 17343 tcp->tcp_timer_tid = 0; 17344 17345 if (tcp->tcp_fused) 17346 return; 17347 17348 first_threshold = tcp->tcp_first_timer_threshold; 17349 second_threshold = tcp->tcp_second_timer_threshold; 17350 switch (tcp->tcp_state) { 17351 case TCPS_IDLE: 17352 case TCPS_BOUND: 17353 case TCPS_LISTEN: 17354 return; 17355 case TCPS_SYN_RCVD: { 17356 tcp_t *listener = tcp->tcp_listener; 17357 17358 if (tcp->tcp_syn_rcvd_timeout == 0 && (listener != NULL)) { 17359 ASSERT(tcp->tcp_rq == listener->tcp_rq); 17360 /* it's our first timeout */ 17361 tcp->tcp_syn_rcvd_timeout = 1; 17362 mutex_enter(&listener->tcp_eager_lock); 17363 listener->tcp_syn_rcvd_timeout++; 17364 if (!tcp->tcp_dontdrop && !tcp->tcp_closemp_used) { 17365 /* 17366 * Make this eager available for drop if we 17367 * need to drop one to accomodate a new 17368 * incoming SYN request. 17369 */ 17370 MAKE_DROPPABLE(listener, tcp); 17371 } 17372 if (!listener->tcp_syn_defense && 17373 (listener->tcp_syn_rcvd_timeout > 17374 (tcps->tcps_conn_req_max_q0 >> 2)) && 17375 (tcps->tcps_conn_req_max_q0 > 200)) { 17376 /* We may be under attack. Put on a defense. */ 17377 listener->tcp_syn_defense = B_TRUE; 17378 cmn_err(CE_WARN, "High TCP connect timeout " 17379 "rate! System (port %d) may be under a " 17380 "SYN flood attack!", 17381 BE16_TO_U16(listener->tcp_tcph->th_lport)); 17382 17383 listener->tcp_ip_addr_cache = kmem_zalloc( 17384 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t), 17385 KM_NOSLEEP); 17386 } 17387 mutex_exit(&listener->tcp_eager_lock); 17388 } else if (listener != NULL) { 17389 mutex_enter(&listener->tcp_eager_lock); 17390 tcp->tcp_syn_rcvd_timeout++; 17391 if (tcp->tcp_syn_rcvd_timeout > 1 && 17392 !tcp->tcp_closemp_used) { 17393 /* 17394 * This is our second timeout. Put the tcp in 17395 * the list of droppable eagers to allow it to 17396 * be dropped, if needed. We don't check 17397 * whether tcp_dontdrop is set or not to 17398 * protect ourselve from a SYN attack where a 17399 * remote host can spoof itself as one of the 17400 * good IP source and continue to hold 17401 * resources too long. 17402 */ 17403 MAKE_DROPPABLE(listener, tcp); 17404 } 17405 mutex_exit(&listener->tcp_eager_lock); 17406 } 17407 } 17408 /* FALLTHRU */ 17409 case TCPS_SYN_SENT: 17410 first_threshold = tcp->tcp_first_ctimer_threshold; 17411 second_threshold = tcp->tcp_second_ctimer_threshold; 17412 break; 17413 case TCPS_ESTABLISHED: 17414 case TCPS_FIN_WAIT_1: 17415 case TCPS_CLOSING: 17416 case TCPS_CLOSE_WAIT: 17417 case TCPS_LAST_ACK: 17418 /* If we have data to rexmit */ 17419 if (tcp->tcp_suna != tcp->tcp_snxt) { 17420 clock_t time_to_wait; 17421 17422 BUMP_MIB(&tcps->tcps_mib, tcpTimRetrans); 17423 if (!tcp->tcp_xmit_head) 17424 break; 17425 time_to_wait = lbolt - 17426 (clock_t)tcp->tcp_xmit_head->b_prev; 17427 time_to_wait = tcp->tcp_rto - 17428 TICK_TO_MSEC(time_to_wait); 17429 /* 17430 * If the timer fires too early, 1 clock tick earlier, 17431 * restart the timer. 17432 */ 17433 if (time_to_wait > msec_per_tick) { 17434 TCP_STAT(tcps, tcp_timer_fire_early); 17435 TCP_TIMER_RESTART(tcp, time_to_wait); 17436 return; 17437 } 17438 /* 17439 * When we probe zero windows, we force the swnd open. 17440 * If our peer acks with a closed window swnd will be 17441 * set to zero by tcp_rput(). As long as we are 17442 * receiving acks tcp_rput will 17443 * reset 'tcp_ms_we_have_waited' so as not to trip the 17444 * first and second interval actions. NOTE: the timer 17445 * interval is allowed to continue its exponential 17446 * backoff. 17447 */ 17448 if (tcp->tcp_swnd == 0 || tcp->tcp_zero_win_probe) { 17449 if (tcp->tcp_debug) { 17450 (void) strlog(TCP_MOD_ID, 0, 1, 17451 SL_TRACE, "tcp_timer: zero win"); 17452 } 17453 } else { 17454 /* 17455 * After retransmission, we need to do 17456 * slow start. Set the ssthresh to one 17457 * half of current effective window and 17458 * cwnd to one MSS. Also reset 17459 * tcp_cwnd_cnt. 17460 * 17461 * Note that if tcp_ssthresh is reduced because 17462 * of ECN, do not reduce it again unless it is 17463 * already one window of data away (tcp_cwr 17464 * should then be cleared) or this is a 17465 * timeout for a retransmitted segment. 17466 */ 17467 uint32_t npkt; 17468 17469 if (!tcp->tcp_cwr || tcp->tcp_rexmit) { 17470 npkt = ((tcp->tcp_timer_backoff ? 17471 tcp->tcp_cwnd_ssthresh : 17472 tcp->tcp_snxt - 17473 tcp->tcp_suna) >> 1) / tcp->tcp_mss; 17474 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 17475 tcp->tcp_mss; 17476 } 17477 tcp->tcp_cwnd = tcp->tcp_mss; 17478 tcp->tcp_cwnd_cnt = 0; 17479 if (tcp->tcp_ecn_ok) { 17480 tcp->tcp_cwr = B_TRUE; 17481 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 17482 tcp->tcp_ecn_cwr_sent = B_FALSE; 17483 } 17484 } 17485 break; 17486 } 17487 /* 17488 * We have something to send yet we cannot send. The 17489 * reason can be: 17490 * 17491 * 1. Zero send window: we need to do zero window probe. 17492 * 2. Zero cwnd: because of ECN, we need to "clock out 17493 * segments. 17494 * 3. SWS avoidance: receiver may have shrunk window, 17495 * reset our knowledge. 17496 * 17497 * Note that condition 2 can happen with either 1 or 17498 * 3. But 1 and 3 are exclusive. 17499 */ 17500 if (tcp->tcp_unsent != 0) { 17501 if (tcp->tcp_cwnd == 0) { 17502 /* 17503 * Set tcp_cwnd to 1 MSS so that a 17504 * new segment can be sent out. We 17505 * are "clocking out" new data when 17506 * the network is really congested. 17507 */ 17508 ASSERT(tcp->tcp_ecn_ok); 17509 tcp->tcp_cwnd = tcp->tcp_mss; 17510 } 17511 if (tcp->tcp_swnd == 0) { 17512 /* Extend window for zero window probe */ 17513 tcp->tcp_swnd++; 17514 tcp->tcp_zero_win_probe = B_TRUE; 17515 BUMP_MIB(&tcps->tcps_mib, tcpOutWinProbe); 17516 } else { 17517 /* 17518 * Handle timeout from sender SWS avoidance. 17519 * Reset our knowledge of the max send window 17520 * since the receiver might have reduced its 17521 * receive buffer. Avoid setting tcp_max_swnd 17522 * to one since that will essentially disable 17523 * the SWS checks. 17524 * 17525 * Note that since we don't have a SWS 17526 * state variable, if the timeout is set 17527 * for ECN but not for SWS, this 17528 * code will also be executed. This is 17529 * fine as tcp_max_swnd is updated 17530 * constantly and it will not affect 17531 * anything. 17532 */ 17533 tcp->tcp_max_swnd = MAX(tcp->tcp_swnd, 2); 17534 } 17535 tcp_wput_data(tcp, NULL, B_FALSE); 17536 return; 17537 } 17538 /* Is there a FIN that needs to be to re retransmitted? */ 17539 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 17540 !tcp->tcp_fin_acked) 17541 break; 17542 /* Nothing to do, return without restarting timer. */ 17543 TCP_STAT(tcps, tcp_timer_fire_miss); 17544 return; 17545 case TCPS_FIN_WAIT_2: 17546 /* 17547 * User closed the TCP endpoint and peer ACK'ed our FIN. 17548 * We waited some time for for peer's FIN, but it hasn't 17549 * arrived. We flush the connection now to avoid 17550 * case where the peer has rebooted. 17551 */ 17552 if (TCP_IS_DETACHED(tcp)) { 17553 (void) tcp_clean_death(tcp, 0, 23); 17554 } else { 17555 TCP_TIMER_RESTART(tcp, 17556 tcps->tcps_fin_wait_2_flush_interval); 17557 } 17558 return; 17559 case TCPS_TIME_WAIT: 17560 (void) tcp_clean_death(tcp, 0, 24); 17561 return; 17562 default: 17563 if (tcp->tcp_debug) { 17564 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 17565 "tcp_timer: strange state (%d) %s", 17566 tcp->tcp_state, tcp_display(tcp, NULL, 17567 DISP_PORT_ONLY)); 17568 } 17569 return; 17570 } 17571 if ((ms = tcp->tcp_ms_we_have_waited) > second_threshold) { 17572 /* 17573 * For zero window probe, we need to send indefinitely, 17574 * unless we have not heard from the other side for some 17575 * time... 17576 */ 17577 if ((tcp->tcp_zero_win_probe == 0) || 17578 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) > 17579 second_threshold)) { 17580 BUMP_MIB(&tcps->tcps_mib, tcpTimRetransDrop); 17581 /* 17582 * If TCP is in SYN_RCVD state, send back a 17583 * RST|ACK as BSD does. Note that tcp_zero_win_probe 17584 * should be zero in TCPS_SYN_RCVD state. 17585 */ 17586 if (tcp->tcp_state == TCPS_SYN_RCVD) { 17587 tcp_xmit_ctl("tcp_timer: RST sent on timeout " 17588 "in SYN_RCVD", 17589 tcp, tcp->tcp_snxt, 17590 tcp->tcp_rnxt, TH_RST | TH_ACK); 17591 } 17592 (void) tcp_clean_death(tcp, 17593 tcp->tcp_client_errno ? 17594 tcp->tcp_client_errno : ETIMEDOUT, 25); 17595 return; 17596 } else { 17597 /* 17598 * Set tcp_ms_we_have_waited to second_threshold 17599 * so that in next timeout, we will do the above 17600 * check (lbolt - tcp_last_recv_time). This is 17601 * also to avoid overflow. 17602 * 17603 * We don't need to decrement tcp_timer_backoff 17604 * to avoid overflow because it will be decremented 17605 * later if new timeout value is greater than 17606 * tcp_rexmit_interval_max. In the case when 17607 * tcp_rexmit_interval_max is greater than 17608 * second_threshold, it means that we will wait 17609 * longer than second_threshold to send the next 17610 * window probe. 17611 */ 17612 tcp->tcp_ms_we_have_waited = second_threshold; 17613 } 17614 } else if (ms > first_threshold) { 17615 if (tcp->tcp_snd_zcopy_aware && (!tcp->tcp_xmit_zc_clean) && 17616 tcp->tcp_xmit_head != NULL) { 17617 tcp->tcp_xmit_head = 17618 tcp_zcopy_backoff(tcp, tcp->tcp_xmit_head, 1); 17619 } 17620 /* 17621 * We have been retransmitting for too long... The RTT 17622 * we calculated is probably incorrect. Reinitialize it. 17623 * Need to compensate for 0 tcp_rtt_sa. Reset 17624 * tcp_rtt_update so that we won't accidentally cache a 17625 * bad value. But only do this if this is not a zero 17626 * window probe. 17627 */ 17628 if (tcp->tcp_rtt_sa != 0 && tcp->tcp_zero_win_probe == 0) { 17629 tcp->tcp_rtt_sd += (tcp->tcp_rtt_sa >> 3) + 17630 (tcp->tcp_rtt_sa >> 5); 17631 tcp->tcp_rtt_sa = 0; 17632 tcp_ip_notify(tcp); 17633 tcp->tcp_rtt_update = 0; 17634 } 17635 } 17636 tcp->tcp_timer_backoff++; 17637 if ((ms = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 17638 tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5)) < 17639 tcps->tcps_rexmit_interval_min) { 17640 /* 17641 * This means the original RTO is tcp_rexmit_interval_min. 17642 * So we will use tcp_rexmit_interval_min as the RTO value 17643 * and do the backoff. 17644 */ 17645 ms = tcps->tcps_rexmit_interval_min << tcp->tcp_timer_backoff; 17646 } else { 17647 ms <<= tcp->tcp_timer_backoff; 17648 } 17649 if (ms > tcps->tcps_rexmit_interval_max) { 17650 ms = tcps->tcps_rexmit_interval_max; 17651 /* 17652 * ms is at max, decrement tcp_timer_backoff to avoid 17653 * overflow. 17654 */ 17655 tcp->tcp_timer_backoff--; 17656 } 17657 tcp->tcp_ms_we_have_waited += ms; 17658 if (tcp->tcp_zero_win_probe == 0) { 17659 tcp->tcp_rto = ms; 17660 } 17661 TCP_TIMER_RESTART(tcp, ms); 17662 /* 17663 * This is after a timeout and tcp_rto is backed off. Set 17664 * tcp_set_timer to 1 so that next time RTO is updated, we will 17665 * restart the timer with a correct value. 17666 */ 17667 tcp->tcp_set_timer = 1; 17668 mss = tcp->tcp_snxt - tcp->tcp_suna; 17669 if (mss > tcp->tcp_mss) 17670 mss = tcp->tcp_mss; 17671 if (mss > tcp->tcp_swnd && tcp->tcp_swnd != 0) 17672 mss = tcp->tcp_swnd; 17673 17674 if ((mp = tcp->tcp_xmit_head) != NULL) 17675 mp->b_prev = (mblk_t *)lbolt; 17676 mp = tcp_xmit_mp(tcp, mp, mss, NULL, NULL, tcp->tcp_suna, B_TRUE, &mss, 17677 B_TRUE); 17678 17679 /* 17680 * When slow start after retransmission begins, start with 17681 * this seq no. tcp_rexmit_max marks the end of special slow 17682 * start phase. tcp_snd_burst controls how many segments 17683 * can be sent because of an ack. 17684 */ 17685 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 17686 tcp->tcp_snd_burst = TCP_CWND_SS; 17687 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 17688 (tcp->tcp_unsent == 0)) { 17689 tcp->tcp_rexmit_max = tcp->tcp_fss; 17690 } else { 17691 tcp->tcp_rexmit_max = tcp->tcp_snxt; 17692 } 17693 tcp->tcp_rexmit = B_TRUE; 17694 tcp->tcp_dupack_cnt = 0; 17695 17696 /* 17697 * Remove all rexmit SACK blk to start from fresh. 17698 */ 17699 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 17700 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 17701 tcp->tcp_num_notsack_blk = 0; 17702 tcp->tcp_cnt_notsack_list = 0; 17703 } 17704 if (mp == NULL) { 17705 return; 17706 } 17707 /* Attach credentials to retransmitted initial SYNs. */ 17708 if (tcp->tcp_state == TCPS_SYN_SENT) { 17709 mblk_setcred(mp, tcp->tcp_cred); 17710 DB_CPID(mp) = tcp->tcp_cpid; 17711 } 17712 17713 tcp->tcp_csuna = tcp->tcp_snxt; 17714 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 17715 UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, mss); 17716 tcp_send_data(tcp, tcp->tcp_wq, mp); 17717 17718 } 17719 17720 /* tcp_unbind is called by tcp_wput_proto to handle T_UNBIND_REQ messages. */ 17721 static void 17722 tcp_unbind(tcp_t *tcp, mblk_t *mp) 17723 { 17724 conn_t *connp; 17725 17726 switch (tcp->tcp_state) { 17727 case TCPS_BOUND: 17728 case TCPS_LISTEN: 17729 break; 17730 default: 17731 tcp_err_ack(tcp, mp, TOUTSTATE, 0); 17732 return; 17733 } 17734 17735 /* 17736 * Need to clean up all the eagers since after the unbind, segments 17737 * will no longer be delivered to this listener stream. 17738 */ 17739 mutex_enter(&tcp->tcp_eager_lock); 17740 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 17741 tcp_eager_cleanup(tcp, 0); 17742 } 17743 mutex_exit(&tcp->tcp_eager_lock); 17744 17745 if (tcp->tcp_ipversion == IPV4_VERSION) { 17746 tcp->tcp_ipha->ipha_src = 0; 17747 } else { 17748 V6_SET_ZERO(tcp->tcp_ip6h->ip6_src); 17749 } 17750 V6_SET_ZERO(tcp->tcp_ip_src_v6); 17751 bzero(tcp->tcp_tcph->th_lport, sizeof (tcp->tcp_tcph->th_lport)); 17752 tcp_bind_hash_remove(tcp); 17753 tcp->tcp_state = TCPS_IDLE; 17754 tcp->tcp_mdt = B_FALSE; 17755 /* Send M_FLUSH according to TPI */ 17756 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 17757 connp = tcp->tcp_connp; 17758 connp->conn_mdt_ok = B_FALSE; 17759 ipcl_hash_remove(connp); 17760 bzero(&connp->conn_ports, sizeof (connp->conn_ports)); 17761 mp = mi_tpi_ok_ack_alloc(mp); 17762 putnext(tcp->tcp_rq, mp); 17763 } 17764 17765 /* 17766 * Don't let port fall into the privileged range. 17767 * Since the extra privileged ports can be arbitrary we also 17768 * ensure that we exclude those from consideration. 17769 * tcp_g_epriv_ports is not sorted thus we loop over it until 17770 * there are no changes. 17771 * 17772 * Note: No locks are held when inspecting tcp_g_*epriv_ports 17773 * but instead the code relies on: 17774 * - the fact that the address of the array and its size never changes 17775 * - the atomic assignment of the elements of the array 17776 * 17777 * Returns 0 if there are no more ports available. 17778 * 17779 * TS note: skip multilevel ports. 17780 */ 17781 static in_port_t 17782 tcp_update_next_port(in_port_t port, const tcp_t *tcp, boolean_t random) 17783 { 17784 int i; 17785 boolean_t restart = B_FALSE; 17786 tcp_stack_t *tcps = tcp->tcp_tcps; 17787 17788 if (random && tcp_random_anon_port != 0) { 17789 (void) random_get_pseudo_bytes((uint8_t *)&port, 17790 sizeof (in_port_t)); 17791 /* 17792 * Unless changed by a sys admin, the smallest anon port 17793 * is 32768 and the largest anon port is 65535. It is 17794 * very likely (50%) for the random port to be smaller 17795 * than the smallest anon port. When that happens, 17796 * add port % (anon port range) to the smallest anon 17797 * port to get the random port. It should fall into the 17798 * valid anon port range. 17799 */ 17800 if (port < tcps->tcps_smallest_anon_port) { 17801 port = tcps->tcps_smallest_anon_port + 17802 port % (tcps->tcps_largest_anon_port - 17803 tcps->tcps_smallest_anon_port); 17804 } 17805 } 17806 17807 retry: 17808 if (port < tcps->tcps_smallest_anon_port) 17809 port = (in_port_t)tcps->tcps_smallest_anon_port; 17810 17811 if (port > tcps->tcps_largest_anon_port) { 17812 if (restart) 17813 return (0); 17814 restart = B_TRUE; 17815 port = (in_port_t)tcps->tcps_smallest_anon_port; 17816 } 17817 17818 if (port < tcps->tcps_smallest_nonpriv_port) 17819 port = (in_port_t)tcps->tcps_smallest_nonpriv_port; 17820 17821 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 17822 if (port == tcps->tcps_g_epriv_ports[i]) { 17823 port++; 17824 /* 17825 * Make sure whether the port is in the 17826 * valid range. 17827 */ 17828 goto retry; 17829 } 17830 } 17831 if (is_system_labeled() && 17832 (i = tsol_next_port(crgetzone(tcp->tcp_cred), port, 17833 IPPROTO_TCP, B_TRUE)) != 0) { 17834 port = i; 17835 goto retry; 17836 } 17837 return (port); 17838 } 17839 17840 /* 17841 * Return the next anonymous port in the privileged port range for 17842 * bind checking. It starts at IPPORT_RESERVED - 1 and goes 17843 * downwards. This is the same behavior as documented in the userland 17844 * library call rresvport(3N). 17845 * 17846 * TS note: skip multilevel ports. 17847 */ 17848 static in_port_t 17849 tcp_get_next_priv_port(const tcp_t *tcp) 17850 { 17851 static in_port_t next_priv_port = IPPORT_RESERVED - 1; 17852 in_port_t nextport; 17853 boolean_t restart = B_FALSE; 17854 tcp_stack_t *tcps = tcp->tcp_tcps; 17855 retry: 17856 if (next_priv_port < tcps->tcps_min_anonpriv_port || 17857 next_priv_port >= IPPORT_RESERVED) { 17858 next_priv_port = IPPORT_RESERVED - 1; 17859 if (restart) 17860 return (0); 17861 restart = B_TRUE; 17862 } 17863 if (is_system_labeled() && 17864 (nextport = tsol_next_port(crgetzone(tcp->tcp_cred), 17865 next_priv_port, IPPROTO_TCP, B_FALSE)) != 0) { 17866 next_priv_port = nextport; 17867 goto retry; 17868 } 17869 return (next_priv_port--); 17870 } 17871 17872 /* The write side r/w procedure. */ 17873 17874 #if CCS_STATS 17875 struct { 17876 struct { 17877 int64_t count, bytes; 17878 } tot, hit; 17879 } wrw_stats; 17880 #endif 17881 17882 /* 17883 * Call by tcp_wput() to handle all non data, except M_PROTO and M_PCPROTO, 17884 * messages. 17885 */ 17886 /* ARGSUSED */ 17887 static void 17888 tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2) 17889 { 17890 conn_t *connp = (conn_t *)arg; 17891 tcp_t *tcp = connp->conn_tcp; 17892 queue_t *q = tcp->tcp_wq; 17893 17894 ASSERT(DB_TYPE(mp) != M_IOCTL); 17895 /* 17896 * TCP is D_MP and qprocsoff() is done towards the end of the tcp_close. 17897 * Once the close starts, streamhead and sockfs will not let any data 17898 * packets come down (close ensures that there are no threads using the 17899 * queue and no new threads will come down) but since qprocsoff() 17900 * hasn't happened yet, a M_FLUSH or some non data message might 17901 * get reflected back (in response to our own FLUSHRW) and get 17902 * processed after tcp_close() is done. The conn would still be valid 17903 * because a ref would have added but we need to check the state 17904 * before actually processing the packet. 17905 */ 17906 if (TCP_IS_DETACHED(tcp) || (tcp->tcp_state == TCPS_CLOSED)) { 17907 freemsg(mp); 17908 return; 17909 } 17910 17911 switch (DB_TYPE(mp)) { 17912 case M_IOCDATA: 17913 tcp_wput_iocdata(tcp, mp); 17914 break; 17915 case M_FLUSH: 17916 tcp_wput_flush(tcp, mp); 17917 break; 17918 default: 17919 CALL_IP_WPUT(connp, q, mp); 17920 break; 17921 } 17922 } 17923 17924 /* 17925 * The TCP fast path write put procedure. 17926 * NOTE: the logic of the fast path is duplicated from tcp_wput_data() 17927 */ 17928 /* ARGSUSED */ 17929 void 17930 tcp_output(void *arg, mblk_t *mp, void *arg2) 17931 { 17932 int len; 17933 int hdrlen; 17934 int plen; 17935 mblk_t *mp1; 17936 uchar_t *rptr; 17937 uint32_t snxt; 17938 tcph_t *tcph; 17939 struct datab *db; 17940 uint32_t suna; 17941 uint32_t mss; 17942 ipaddr_t *dst; 17943 ipaddr_t *src; 17944 uint32_t sum; 17945 int usable; 17946 conn_t *connp = (conn_t *)arg; 17947 tcp_t *tcp = connp->conn_tcp; 17948 uint32_t msize; 17949 tcp_stack_t *tcps = tcp->tcp_tcps; 17950 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 17951 17952 /* 17953 * Try and ASSERT the minimum possible references on the 17954 * conn early enough. Since we are executing on write side, 17955 * the connection is obviously not detached and that means 17956 * there is a ref each for TCP and IP. Since we are behind 17957 * the squeue, the minimum references needed are 3. If the 17958 * conn is in classifier hash list, there should be an 17959 * extra ref for that (we check both the possibilities). 17960 */ 17961 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 17962 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 17963 17964 ASSERT(DB_TYPE(mp) == M_DATA); 17965 msize = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp); 17966 17967 mutex_enter(&tcp->tcp_non_sq_lock); 17968 tcp->tcp_squeue_bytes -= msize; 17969 mutex_exit(&tcp->tcp_non_sq_lock); 17970 17971 /* Check to see if this connection wants to be re-fused. */ 17972 if (tcp->tcp_refuse && !ipst->ips_ipobs_enabled) { 17973 if (tcp->tcp_ipversion == IPV4_VERSION) { 17974 tcp_fuse(tcp, (uchar_t *)&tcp->tcp_saved_ipha, 17975 &tcp->tcp_saved_tcph); 17976 } else { 17977 tcp_fuse(tcp, (uchar_t *)&tcp->tcp_saved_ip6h, 17978 &tcp->tcp_saved_tcph); 17979 } 17980 } 17981 /* Bypass tcp protocol for fused tcp loopback */ 17982 if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize)) 17983 return; 17984 17985 mss = tcp->tcp_mss; 17986 if (tcp->tcp_xmit_zc_clean) 17987 mp = tcp_zcopy_backoff(tcp, mp, 0); 17988 17989 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 17990 len = (int)(mp->b_wptr - mp->b_rptr); 17991 17992 /* 17993 * Criteria for fast path: 17994 * 17995 * 1. no unsent data 17996 * 2. single mblk in request 17997 * 3. connection established 17998 * 4. data in mblk 17999 * 5. len <= mss 18000 * 6. no tcp_valid bits 18001 */ 18002 if ((tcp->tcp_unsent != 0) || 18003 (tcp->tcp_cork) || 18004 (mp->b_cont != NULL) || 18005 (tcp->tcp_state != TCPS_ESTABLISHED) || 18006 (len == 0) || 18007 (len > mss) || 18008 (tcp->tcp_valid_bits != 0)) { 18009 tcp_wput_data(tcp, mp, B_FALSE); 18010 return; 18011 } 18012 18013 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 18014 ASSERT(tcp->tcp_fin_sent == 0); 18015 18016 /* queue new packet onto retransmission queue */ 18017 if (tcp->tcp_xmit_head == NULL) { 18018 tcp->tcp_xmit_head = mp; 18019 } else { 18020 tcp->tcp_xmit_last->b_cont = mp; 18021 } 18022 tcp->tcp_xmit_last = mp; 18023 tcp->tcp_xmit_tail = mp; 18024 18025 /* find out how much we can send */ 18026 /* BEGIN CSTYLED */ 18027 /* 18028 * un-acked usable 18029 * |--------------|-----------------| 18030 * tcp_suna tcp_snxt tcp_suna+tcp_swnd 18031 */ 18032 /* END CSTYLED */ 18033 18034 /* start sending from tcp_snxt */ 18035 snxt = tcp->tcp_snxt; 18036 18037 /* 18038 * Check to see if this connection has been idled for some 18039 * time and no ACK is expected. If it is, we need to slow 18040 * start again to get back the connection's "self-clock" as 18041 * described in VJ's paper. 18042 * 18043 * Refer to the comment in tcp_mss_set() for the calculation 18044 * of tcp_cwnd after idle. 18045 */ 18046 if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && 18047 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) { 18048 SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle); 18049 } 18050 18051 usable = tcp->tcp_swnd; /* tcp window size */ 18052 if (usable > tcp->tcp_cwnd) 18053 usable = tcp->tcp_cwnd; /* congestion window smaller */ 18054 usable -= snxt; /* subtract stuff already sent */ 18055 suna = tcp->tcp_suna; 18056 usable += suna; 18057 /* usable can be < 0 if the congestion window is smaller */ 18058 if (len > usable) { 18059 /* Can't send complete M_DATA in one shot */ 18060 goto slow; 18061 } 18062 18063 mutex_enter(&tcp->tcp_non_sq_lock); 18064 if (tcp->tcp_flow_stopped && 18065 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 18066 tcp_clrqfull(tcp); 18067 } 18068 mutex_exit(&tcp->tcp_non_sq_lock); 18069 18070 /* 18071 * determine if anything to send (Nagle). 18072 * 18073 * 1. len < tcp_mss (i.e. small) 18074 * 2. unacknowledged data present 18075 * 3. len < nagle limit 18076 * 4. last packet sent < nagle limit (previous packet sent) 18077 */ 18078 if ((len < mss) && (snxt != suna) && 18079 (len < (int)tcp->tcp_naglim) && 18080 (tcp->tcp_last_sent_len < tcp->tcp_naglim)) { 18081 /* 18082 * This was the first unsent packet and normally 18083 * mss < xmit_hiwater so there is no need to worry 18084 * about flow control. The next packet will go 18085 * through the flow control check in tcp_wput_data(). 18086 */ 18087 /* leftover work from above */ 18088 tcp->tcp_unsent = len; 18089 tcp->tcp_xmit_tail_unsent = len; 18090 18091 return; 18092 } 18093 18094 /* len <= tcp->tcp_mss && len == unsent so no silly window */ 18095 18096 if (snxt == suna) { 18097 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 18098 } 18099 18100 /* we have always sent something */ 18101 tcp->tcp_rack_cnt = 0; 18102 18103 tcp->tcp_snxt = snxt + len; 18104 tcp->tcp_rack = tcp->tcp_rnxt; 18105 18106 if ((mp1 = dupb(mp)) == 0) 18107 goto no_memory; 18108 mp->b_prev = (mblk_t *)(uintptr_t)lbolt; 18109 mp->b_next = (mblk_t *)(uintptr_t)snxt; 18110 18111 /* adjust tcp header information */ 18112 tcph = tcp->tcp_tcph; 18113 tcph->th_flags[0] = (TH_ACK|TH_PUSH); 18114 18115 sum = len + tcp->tcp_tcp_hdr_len + tcp->tcp_sum; 18116 sum = (sum >> 16) + (sum & 0xFFFF); 18117 U16_TO_ABE16(sum, tcph->th_sum); 18118 18119 U32_TO_ABE32(snxt, tcph->th_seq); 18120 18121 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 18122 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); 18123 BUMP_LOCAL(tcp->tcp_obsegs); 18124 18125 /* Update the latest receive window size in TCP header. */ 18126 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 18127 tcph->th_win); 18128 18129 tcp->tcp_last_sent_len = (ushort_t)len; 18130 18131 plen = len + tcp->tcp_hdr_len; 18132 18133 if (tcp->tcp_ipversion == IPV4_VERSION) { 18134 tcp->tcp_ipha->ipha_length = htons(plen); 18135 } else { 18136 tcp->tcp_ip6h->ip6_plen = htons(plen - 18137 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 18138 } 18139 18140 /* see if we need to allocate a mblk for the headers */ 18141 hdrlen = tcp->tcp_hdr_len; 18142 rptr = mp1->b_rptr - hdrlen; 18143 db = mp1->b_datap; 18144 if ((db->db_ref != 2) || rptr < db->db_base || 18145 (!OK_32PTR(rptr))) { 18146 /* NOTE: we assume allocb returns an OK_32PTR */ 18147 mp = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 18148 tcps->tcps_wroff_xtra, BPRI_MED); 18149 if (!mp) { 18150 freemsg(mp1); 18151 goto no_memory; 18152 } 18153 mp->b_cont = mp1; 18154 mp1 = mp; 18155 /* Leave room for Link Level header */ 18156 /* hdrlen = tcp->tcp_hdr_len; */ 18157 rptr = &mp1->b_rptr[tcps->tcps_wroff_xtra]; 18158 mp1->b_wptr = &rptr[hdrlen]; 18159 } 18160 mp1->b_rptr = rptr; 18161 18162 /* Fill in the timestamp option. */ 18163 if (tcp->tcp_snd_ts_ok) { 18164 U32_TO_BE32((uint32_t)lbolt, 18165 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 18166 U32_TO_BE32(tcp->tcp_ts_recent, 18167 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 18168 } else { 18169 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 18170 } 18171 18172 /* copy header into outgoing packet */ 18173 dst = (ipaddr_t *)rptr; 18174 src = (ipaddr_t *)tcp->tcp_iphc; 18175 dst[0] = src[0]; 18176 dst[1] = src[1]; 18177 dst[2] = src[2]; 18178 dst[3] = src[3]; 18179 dst[4] = src[4]; 18180 dst[5] = src[5]; 18181 dst[6] = src[6]; 18182 dst[7] = src[7]; 18183 dst[8] = src[8]; 18184 dst[9] = src[9]; 18185 if (hdrlen -= 40) { 18186 hdrlen >>= 2; 18187 dst += 10; 18188 src += 10; 18189 do { 18190 *dst++ = *src++; 18191 } while (--hdrlen); 18192 } 18193 18194 /* 18195 * Set the ECN info in the TCP header. Note that this 18196 * is not the template header. 18197 */ 18198 if (tcp->tcp_ecn_ok) { 18199 SET_ECT(tcp, rptr); 18200 18201 tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 18202 if (tcp->tcp_ecn_echo_on) 18203 tcph->th_flags[0] |= TH_ECE; 18204 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 18205 tcph->th_flags[0] |= TH_CWR; 18206 tcp->tcp_ecn_cwr_sent = B_TRUE; 18207 } 18208 } 18209 18210 if (tcp->tcp_ip_forward_progress) { 18211 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 18212 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 18213 tcp->tcp_ip_forward_progress = B_FALSE; 18214 } 18215 tcp_send_data(tcp, tcp->tcp_wq, mp1); 18216 return; 18217 18218 /* 18219 * If we ran out of memory, we pretend to have sent the packet 18220 * and that it was lost on the wire. 18221 */ 18222 no_memory: 18223 return; 18224 18225 slow: 18226 /* leftover work from above */ 18227 tcp->tcp_unsent = len; 18228 tcp->tcp_xmit_tail_unsent = len; 18229 tcp_wput_data(tcp, NULL, B_FALSE); 18230 } 18231 18232 /* 18233 * The function called through squeue to get behind eager's perimeter to 18234 * finish the accept processing. 18235 */ 18236 /* ARGSUSED */ 18237 void 18238 tcp_accept_finish(void *arg, mblk_t *mp, void *arg2) 18239 { 18240 conn_t *connp = (conn_t *)arg; 18241 tcp_t *tcp = connp->conn_tcp; 18242 queue_t *q = tcp->tcp_rq; 18243 mblk_t *mp1; 18244 mblk_t *stropt_mp = mp; 18245 struct stroptions *stropt; 18246 uint_t thwin; 18247 tcp_stack_t *tcps = tcp->tcp_tcps; 18248 18249 /* 18250 * Drop the eager's ref on the listener, that was placed when 18251 * this eager began life in tcp_conn_request. 18252 */ 18253 CONN_DEC_REF(tcp->tcp_saved_listener->tcp_connp); 18254 18255 tcp->tcp_detached = B_FALSE; 18256 18257 if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_accept_error) { 18258 /* 18259 * Someone blewoff the eager before we could finish 18260 * the accept. 18261 * 18262 * The only reason eager exists it because we put in 18263 * a ref on it when conn ind went up. We need to send 18264 * a disconnect indication up while the last reference 18265 * on the eager will be dropped by the squeue when we 18266 * return. 18267 */ 18268 ASSERT(tcp->tcp_listener == NULL); 18269 if (tcp->tcp_issocket || tcp->tcp_send_discon_ind) { 18270 struct T_discon_ind *tdi; 18271 18272 (void) putnextctl1(q, M_FLUSH, FLUSHRW); 18273 /* 18274 * Let us reuse the incoming mblk to avoid memory 18275 * allocation failure problems. We know that the 18276 * size of the incoming mblk i.e. stroptions is greater 18277 * than sizeof T_discon_ind. So the reallocb below 18278 * can't fail. 18279 */ 18280 freemsg(mp->b_cont); 18281 mp->b_cont = NULL; 18282 ASSERT(DB_REF(mp) == 1); 18283 mp = reallocb(mp, sizeof (struct T_discon_ind), 18284 B_FALSE); 18285 ASSERT(mp != NULL); 18286 DB_TYPE(mp) = M_PROTO; 18287 ((union T_primitives *)mp->b_rptr)->type = T_DISCON_IND; 18288 tdi = (struct T_discon_ind *)mp->b_rptr; 18289 if (tcp->tcp_issocket) { 18290 tdi->DISCON_reason = ECONNREFUSED; 18291 tdi->SEQ_number = 0; 18292 } else { 18293 tdi->DISCON_reason = ENOPROTOOPT; 18294 tdi->SEQ_number = 18295 tcp->tcp_conn_req_seqnum; 18296 } 18297 mp->b_wptr = mp->b_rptr + sizeof (struct T_discon_ind); 18298 putnext(q, mp); 18299 } else { 18300 freemsg(mp); 18301 } 18302 if (tcp->tcp_hard_binding) { 18303 tcp->tcp_hard_binding = B_FALSE; 18304 tcp->tcp_hard_bound = B_TRUE; 18305 } 18306 return; 18307 } 18308 18309 mp1 = stropt_mp->b_cont; 18310 stropt_mp->b_cont = NULL; 18311 ASSERT(DB_TYPE(stropt_mp) == M_SETOPTS); 18312 stropt = (struct stroptions *)stropt_mp->b_rptr; 18313 18314 while (mp1 != NULL) { 18315 mp = mp1; 18316 mp1 = mp1->b_cont; 18317 mp->b_cont = NULL; 18318 tcp->tcp_drop_opt_ack_cnt++; 18319 CALL_IP_WPUT(connp, tcp->tcp_wq, mp); 18320 } 18321 mp = NULL; 18322 18323 /* 18324 * For a loopback connection with tcp_direct_sockfs on, note that 18325 * we don't have to protect tcp_rcv_list yet because synchronous 18326 * streams has not yet been enabled and tcp_fuse_rrw() cannot 18327 * possibly race with us. 18328 */ 18329 18330 /* 18331 * Set the max window size (tcp_rq->q_hiwat) of the acceptor 18332 * properly. This is the first time we know of the acceptor' 18333 * queue. So we do it here. 18334 */ 18335 if (tcp->tcp_rcv_list == NULL) { 18336 /* 18337 * Recv queue is empty, tcp_rwnd should not have changed. 18338 * That means it should be equal to the listener's tcp_rwnd. 18339 */ 18340 tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd; 18341 } else { 18342 #ifdef DEBUG 18343 uint_t cnt = 0; 18344 18345 mp1 = tcp->tcp_rcv_list; 18346 while ((mp = mp1) != NULL) { 18347 mp1 = mp->b_next; 18348 cnt += msgdsize(mp); 18349 } 18350 ASSERT(cnt != 0 && tcp->tcp_rcv_cnt == cnt); 18351 #endif 18352 /* There is some data, add them back to get the max. */ 18353 tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd + tcp->tcp_rcv_cnt; 18354 } 18355 /* 18356 * This is the first time we run on the correct 18357 * queue after tcp_accept. So fix all the q parameters 18358 * here. 18359 */ 18360 stropt->so_flags = SO_HIWAT | SO_MAXBLK | SO_WROFF; 18361 stropt->so_maxblk = tcp_maxpsz_set(tcp, B_FALSE); 18362 18363 /* 18364 * Record the stream head's high water mark for this endpoint; 18365 * this is used for flow-control purposes. 18366 */ 18367 stropt->so_hiwat = tcp->tcp_fused ? 18368 tcp_fuse_set_rcv_hiwat(tcp, q->q_hiwat) : 18369 MAX(q->q_hiwat, tcps->tcps_sth_rcv_hiwat); 18370 18371 /* 18372 * Determine what write offset value to use depending on SACK and 18373 * whether the endpoint is fused or not. 18374 */ 18375 if (tcp->tcp_fused) { 18376 ASSERT(tcp->tcp_loopback); 18377 ASSERT(tcp->tcp_loopback_peer != NULL); 18378 /* 18379 * For fused tcp loopback, set the stream head's write 18380 * offset value to zero since we won't be needing any room 18381 * for TCP/IP headers. This would also improve performance 18382 * since it would reduce the amount of work done by kmem. 18383 * Non-fused tcp loopback case is handled separately below. 18384 */ 18385 stropt->so_wroff = 0; 18386 /* 18387 * Update the peer's transmit parameters according to 18388 * our recently calculated high water mark value. 18389 */ 18390 (void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE); 18391 } else if (tcp->tcp_snd_sack_ok) { 18392 stropt->so_wroff = tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN + 18393 (tcp->tcp_loopback ? 0 : tcps->tcps_wroff_xtra); 18394 } else { 18395 stropt->so_wroff = tcp->tcp_hdr_len + (tcp->tcp_loopback ? 0 : 18396 tcps->tcps_wroff_xtra); 18397 } 18398 18399 /* 18400 * If this is endpoint is handling SSL, then reserve extra 18401 * offset and space at the end. 18402 * Also have the stream head allocate SSL3_MAX_RECORD_LEN packets, 18403 * overriding the previous setting. The extra cost of signing and 18404 * encrypting multiple MSS-size records (12 of them with Ethernet), 18405 * instead of a single contiguous one by the stream head 18406 * largely outweighs the statistical reduction of ACKs, when 18407 * applicable. The peer will also save on decryption and verification 18408 * costs. 18409 */ 18410 if (tcp->tcp_kssl_ctx != NULL) { 18411 stropt->so_wroff += SSL3_WROFFSET; 18412 18413 stropt->so_flags |= SO_TAIL; 18414 stropt->so_tail = SSL3_MAX_TAIL_LEN; 18415 18416 stropt->so_flags |= SO_COPYOPT; 18417 stropt->so_copyopt = ZCVMUNSAFE; 18418 18419 stropt->so_maxblk = SSL3_MAX_RECORD_LEN; 18420 } 18421 18422 /* Send the options up */ 18423 putnext(q, stropt_mp); 18424 18425 /* 18426 * Pass up any data and/or a fin that has been received. 18427 * 18428 * Adjust receive window in case it had decreased 18429 * (because there is data <=> tcp_rcv_list != NULL) 18430 * while the connection was detached. Note that 18431 * in case the eager was flow-controlled, w/o this 18432 * code, the rwnd may never open up again! 18433 */ 18434 if (tcp->tcp_rcv_list != NULL) { 18435 /* We drain directly in case of fused tcp loopback */ 18436 sodirect_t *sodp; 18437 18438 if (!tcp->tcp_fused && canputnext(q)) { 18439 tcp->tcp_rwnd = q->q_hiwat; 18440 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 18441 << tcp->tcp_rcv_ws; 18442 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 18443 if (tcp->tcp_state >= TCPS_ESTABLISHED && 18444 (q->q_hiwat - thwin >= tcp->tcp_mss)) { 18445 tcp_xmit_ctl(NULL, 18446 tcp, (tcp->tcp_swnd == 0) ? 18447 tcp->tcp_suna : tcp->tcp_snxt, 18448 tcp->tcp_rnxt, TH_ACK); 18449 BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate); 18450 } 18451 18452 } 18453 18454 SOD_PTR_ENTER(tcp, sodp); 18455 if (sodp != NULL) { 18456 /* Sodirect, move from rcv_list */ 18457 ASSERT(!tcp->tcp_fused); 18458 while ((mp = tcp->tcp_rcv_list) != NULL) { 18459 tcp->tcp_rcv_list = mp->b_next; 18460 mp->b_next = NULL; 18461 (void) tcp_rcv_sod_enqueue(tcp, sodp, mp, 18462 msgdsize(mp)); 18463 } 18464 tcp->tcp_rcv_last_head = NULL; 18465 tcp->tcp_rcv_last_tail = NULL; 18466 tcp->tcp_rcv_cnt = 0; 18467 (void) tcp_rcv_sod_wakeup(tcp, sodp); 18468 /* sod_wakeup() did the mutex_exit() */ 18469 } else { 18470 /* Not sodirect, drain */ 18471 (void) tcp_rcv_drain(q, tcp); 18472 } 18473 18474 /* 18475 * For fused tcp loopback, back-enable peer endpoint 18476 * if it's currently flow-controlled. 18477 */ 18478 if (tcp->tcp_fused) { 18479 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 18480 18481 ASSERT(peer_tcp != NULL); 18482 ASSERT(peer_tcp->tcp_fused); 18483 /* 18484 * In order to change the peer's tcp_flow_stopped, 18485 * we need to take locks for both end points. The 18486 * highest address is taken first. 18487 */ 18488 if (peer_tcp > tcp) { 18489 mutex_enter(&peer_tcp->tcp_non_sq_lock); 18490 mutex_enter(&tcp->tcp_non_sq_lock); 18491 } else { 18492 mutex_enter(&tcp->tcp_non_sq_lock); 18493 mutex_enter(&peer_tcp->tcp_non_sq_lock); 18494 } 18495 if (peer_tcp->tcp_flow_stopped) { 18496 tcp_clrqfull(peer_tcp); 18497 TCP_STAT(tcps, tcp_fusion_backenabled); 18498 } 18499 mutex_exit(&peer_tcp->tcp_non_sq_lock); 18500 mutex_exit(&tcp->tcp_non_sq_lock); 18501 } 18502 } 18503 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 18504 if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 18505 mp = tcp->tcp_ordrel_mp; 18506 tcp->tcp_ordrel_mp = NULL; 18507 tcp->tcp_ordrel_done = B_TRUE; 18508 putnext(q, mp); 18509 } 18510 if (tcp->tcp_hard_binding) { 18511 tcp->tcp_hard_binding = B_FALSE; 18512 tcp->tcp_hard_bound = B_TRUE; 18513 } 18514 18515 /* We can enable synchronous streams now */ 18516 if (tcp->tcp_fused) { 18517 tcp_fuse_syncstr_enable_pair(tcp); 18518 } 18519 18520 if (tcp->tcp_ka_enabled) { 18521 tcp->tcp_ka_last_intrvl = 0; 18522 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 18523 MSEC_TO_TICK(tcp->tcp_ka_interval)); 18524 } 18525 18526 /* 18527 * At this point, eager is fully established and will 18528 * have the following references - 18529 * 18530 * 2 references for connection to exist (1 for TCP and 1 for IP). 18531 * 1 reference for the squeue which will be dropped by the squeue as 18532 * soon as this function returns. 18533 * There will be 1 additonal reference for being in classifier 18534 * hash list provided something bad hasn't happened. 18535 */ 18536 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 18537 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 18538 } 18539 18540 /* 18541 * The function called through squeue to get behind listener's perimeter to 18542 * send a deffered conn_ind. 18543 */ 18544 /* ARGSUSED */ 18545 void 18546 tcp_send_pending(void *arg, mblk_t *mp, void *arg2) 18547 { 18548 conn_t *connp = (conn_t *)arg; 18549 tcp_t *listener = connp->conn_tcp; 18550 18551 if (listener->tcp_state == TCPS_CLOSED || 18552 TCP_IS_DETACHED(listener)) { 18553 /* 18554 * If listener has closed, it would have caused a 18555 * a cleanup/blowoff to happen for the eager. 18556 */ 18557 tcp_t *tcp; 18558 struct T_conn_ind *conn_ind; 18559 18560 conn_ind = (struct T_conn_ind *)mp->b_rptr; 18561 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 18562 conn_ind->OPT_length); 18563 /* 18564 * We need to drop the ref on eager that was put 18565 * tcp_rput_data() before trying to send the conn_ind 18566 * to listener. The conn_ind was deferred in tcp_send_conn_ind 18567 * and tcp_wput_accept() is sending this deferred conn_ind but 18568 * listener is closed so we drop the ref. 18569 */ 18570 CONN_DEC_REF(tcp->tcp_connp); 18571 freemsg(mp); 18572 return; 18573 } 18574 putnext(listener->tcp_rq, mp); 18575 } 18576 18577 18578 /* 18579 * This is the STREAMS entry point for T_CONN_RES coming down on 18580 * Acceptor STREAM when sockfs listener does accept processing. 18581 * Read the block comment on top of tcp_conn_request(). 18582 */ 18583 void 18584 tcp_wput_accept(queue_t *q, mblk_t *mp) 18585 { 18586 queue_t *rq = RD(q); 18587 struct T_conn_res *conn_res; 18588 tcp_t *eager; 18589 tcp_t *listener; 18590 struct T_ok_ack *ok; 18591 t_scalar_t PRIM_type; 18592 mblk_t *opt_mp; 18593 conn_t *econnp; 18594 18595 ASSERT(DB_TYPE(mp) == M_PROTO); 18596 18597 conn_res = (struct T_conn_res *)mp->b_rptr; 18598 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 18599 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_res)) { 18600 mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); 18601 if (mp != NULL) 18602 putnext(rq, mp); 18603 return; 18604 } 18605 switch (conn_res->PRIM_type) { 18606 case O_T_CONN_RES: 18607 case T_CONN_RES: 18608 /* 18609 * We pass up an err ack if allocb fails. This will 18610 * cause sockfs to issue a T_DISCON_REQ which will cause 18611 * tcp_eager_blowoff to be called. sockfs will then call 18612 * rq->q_qinfo->qi_qclose to cleanup the acceptor stream. 18613 * we need to do the allocb up here because we have to 18614 * make sure rq->q_qinfo->qi_qclose still points to the 18615 * correct function (tcpclose_accept) in case allocb 18616 * fails. 18617 */ 18618 opt_mp = allocb(sizeof (struct stroptions), BPRI_HI); 18619 if (opt_mp == NULL) { 18620 mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); 18621 if (mp != NULL) 18622 putnext(rq, mp); 18623 return; 18624 } 18625 18626 bcopy(mp->b_rptr + conn_res->OPT_offset, 18627 &eager, conn_res->OPT_length); 18628 PRIM_type = conn_res->PRIM_type; 18629 mp->b_datap->db_type = M_PCPROTO; 18630 mp->b_wptr = mp->b_rptr + sizeof (struct T_ok_ack); 18631 ok = (struct T_ok_ack *)mp->b_rptr; 18632 ok->PRIM_type = T_OK_ACK; 18633 ok->CORRECT_prim = PRIM_type; 18634 econnp = eager->tcp_connp; 18635 econnp->conn_dev = (dev_t)RD(q)->q_ptr; 18636 econnp->conn_minor_arena = (vmem_t *)(WR(q)->q_ptr); 18637 eager->tcp_rq = rq; 18638 eager->tcp_wq = q; 18639 rq->q_ptr = econnp; 18640 rq->q_qinfo = &tcp_rinitv4; /* No open - same as rinitv6 */ 18641 q->q_ptr = econnp; 18642 q->q_qinfo = &tcp_winit; 18643 listener = eager->tcp_listener; 18644 eager->tcp_issocket = B_TRUE; 18645 18646 /* 18647 * TCP is _D_SODIRECT and sockfs is directly above so 18648 * save shared sodirect_t pointer (if any). 18649 * 18650 * If tcp_fused and sodirect enabled disable it. 18651 */ 18652 eager->tcp_sodirect = SOD_QTOSODP(eager->tcp_rq); 18653 if (eager->tcp_fused && eager->tcp_sodirect != NULL) { 18654 /* Fused, disable sodirect */ 18655 mutex_enter(eager->tcp_sodirect->sod_lockp); 18656 SOD_DISABLE(eager->tcp_sodirect); 18657 mutex_exit(eager->tcp_sodirect->sod_lockp); 18658 eager->tcp_sodirect = NULL; 18659 } 18660 18661 econnp->conn_zoneid = listener->tcp_connp->conn_zoneid; 18662 econnp->conn_allzones = listener->tcp_connp->conn_allzones; 18663 ASSERT(econnp->conn_netstack == 18664 listener->tcp_connp->conn_netstack); 18665 ASSERT(eager->tcp_tcps == listener->tcp_tcps); 18666 18667 /* Put the ref for IP */ 18668 CONN_INC_REF(econnp); 18669 18670 /* 18671 * We should have minimum of 3 references on the conn 18672 * at this point. One each for TCP and IP and one for 18673 * the T_conn_ind that was sent up when the 3-way handshake 18674 * completed. In the normal case we would also have another 18675 * reference (making a total of 4) for the conn being in the 18676 * classifier hash list. However the eager could have received 18677 * an RST subsequently and tcp_closei_local could have removed 18678 * the eager from the classifier hash list, hence we can't 18679 * assert that reference. 18680 */ 18681 ASSERT(econnp->conn_ref >= 3); 18682 18683 /* 18684 * Send the new local address also up to sockfs. There 18685 * should already be enough space in the mp that came 18686 * down from soaccept(). 18687 */ 18688 if (eager->tcp_family == AF_INET) { 18689 sin_t *sin; 18690 18691 ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= 18692 (sizeof (struct T_ok_ack) + sizeof (sin_t))); 18693 sin = (sin_t *)mp->b_wptr; 18694 mp->b_wptr += sizeof (sin_t); 18695 sin->sin_family = AF_INET; 18696 sin->sin_port = eager->tcp_lport; 18697 sin->sin_addr.s_addr = eager->tcp_ipha->ipha_src; 18698 } else { 18699 sin6_t *sin6; 18700 18701 ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= 18702 sizeof (struct T_ok_ack) + sizeof (sin6_t)); 18703 sin6 = (sin6_t *)mp->b_wptr; 18704 mp->b_wptr += sizeof (sin6_t); 18705 sin6->sin6_family = AF_INET6; 18706 sin6->sin6_port = eager->tcp_lport; 18707 if (eager->tcp_ipversion == IPV4_VERSION) { 18708 sin6->sin6_flowinfo = 0; 18709 IN6_IPADDR_TO_V4MAPPED( 18710 eager->tcp_ipha->ipha_src, 18711 &sin6->sin6_addr); 18712 } else { 18713 ASSERT(eager->tcp_ip6h != NULL); 18714 sin6->sin6_flowinfo = 18715 eager->tcp_ip6h->ip6_vcf & 18716 ~IPV6_VERS_AND_FLOW_MASK; 18717 sin6->sin6_addr = eager->tcp_ip6h->ip6_src; 18718 } 18719 sin6->sin6_scope_id = 0; 18720 sin6->__sin6_src_id = 0; 18721 } 18722 18723 putnext(rq, mp); 18724 18725 opt_mp->b_datap->db_type = M_SETOPTS; 18726 opt_mp->b_wptr += sizeof (struct stroptions); 18727 18728 /* 18729 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO 18730 * from listener to acceptor. The message is chained on the 18731 * bind_mp which tcp_rput_other will send down to IP. 18732 */ 18733 if (listener->tcp_bound_if != 0) { 18734 /* allocate optmgmt req */ 18735 mp = tcp_setsockopt_mp(IPPROTO_IPV6, 18736 IPV6_BOUND_IF, (char *)&listener->tcp_bound_if, 18737 sizeof (int)); 18738 if (mp != NULL) 18739 linkb(opt_mp, mp); 18740 } 18741 if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) { 18742 uint_t on = 1; 18743 18744 /* allocate optmgmt req */ 18745 mp = tcp_setsockopt_mp(IPPROTO_IPV6, 18746 IPV6_RECVPKTINFO, (char *)&on, sizeof (on)); 18747 if (mp != NULL) 18748 linkb(opt_mp, mp); 18749 } 18750 18751 18752 mutex_enter(&listener->tcp_eager_lock); 18753 18754 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 18755 18756 tcp_t *tail; 18757 tcp_t *tcp; 18758 mblk_t *mp1; 18759 18760 tcp = listener->tcp_eager_prev_q0; 18761 /* 18762 * listener->tcp_eager_prev_q0 points to the TAIL of the 18763 * deferred T_conn_ind queue. We need to get to the head 18764 * of the queue in order to send up T_conn_ind the same 18765 * order as how the 3WHS is completed. 18766 */ 18767 while (tcp != listener) { 18768 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0 && 18769 !tcp->tcp_kssl_pending) 18770 break; 18771 else 18772 tcp = tcp->tcp_eager_prev_q0; 18773 } 18774 /* None of the pending eagers can be sent up now */ 18775 if (tcp == listener) 18776 goto no_more_eagers; 18777 18778 mp1 = tcp->tcp_conn.tcp_eager_conn_ind; 18779 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 18780 /* Move from q0 to q */ 18781 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 18782 listener->tcp_conn_req_cnt_q0--; 18783 listener->tcp_conn_req_cnt_q++; 18784 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 18785 tcp->tcp_eager_prev_q0; 18786 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 18787 tcp->tcp_eager_next_q0; 18788 tcp->tcp_eager_prev_q0 = NULL; 18789 tcp->tcp_eager_next_q0 = NULL; 18790 tcp->tcp_conn_def_q0 = B_FALSE; 18791 18792 /* Make sure the tcp isn't in the list of droppables */ 18793 ASSERT(tcp->tcp_eager_next_drop_q0 == NULL && 18794 tcp->tcp_eager_prev_drop_q0 == NULL); 18795 18796 /* 18797 * Insert at end of the queue because sockfs sends 18798 * down T_CONN_RES in chronological order. Leaving 18799 * the older conn indications at front of the queue 18800 * helps reducing search time. 18801 */ 18802 tail = listener->tcp_eager_last_q; 18803 if (tail != NULL) { 18804 tail->tcp_eager_next_q = tcp; 18805 } else { 18806 listener->tcp_eager_next_q = tcp; 18807 } 18808 listener->tcp_eager_last_q = tcp; 18809 tcp->tcp_eager_next_q = NULL; 18810 18811 /* Need to get inside the listener perimeter */ 18812 CONN_INC_REF(listener->tcp_connp); 18813 SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, mp1, 18814 tcp_send_pending, listener->tcp_connp, 18815 SQ_FILL, SQTAG_TCP_SEND_PENDING); 18816 } 18817 no_more_eagers: 18818 tcp_eager_unlink(eager); 18819 mutex_exit(&listener->tcp_eager_lock); 18820 18821 /* 18822 * At this point, the eager is detached from the listener 18823 * but we still have an extra refs on eager (apart from the 18824 * usual tcp references). The ref was placed in tcp_rput_data 18825 * before sending the conn_ind in tcp_send_conn_ind. 18826 * The ref will be dropped in tcp_accept_finish(). As sockfs 18827 * has already established this tcp with it's own stream, 18828 * it's OK to set tcp_detached to B_FALSE. 18829 */ 18830 econnp->conn_tcp->tcp_detached = B_FALSE; 18831 SQUEUE_ENTER_ONE(econnp->conn_sqp, opt_mp, tcp_accept_finish, 18832 econnp, SQ_NODRAIN, SQTAG_TCP_ACCEPT_FINISH_Q0); 18833 return; 18834 default: 18835 mp = mi_tpi_err_ack_alloc(mp, TNOTSUPPORT, 0); 18836 if (mp != NULL) 18837 putnext(rq, mp); 18838 return; 18839 } 18840 } 18841 18842 static int 18843 tcp_getmyname(tcp_t *tcp, struct sockaddr *sa, uint_t *salenp) 18844 { 18845 sin_t *sin = (sin_t *)sa; 18846 sin6_t *sin6 = (sin6_t *)sa; 18847 18848 switch (tcp->tcp_family) { 18849 case AF_INET: 18850 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 18851 18852 if (*salenp < sizeof (sin_t)) 18853 return (EINVAL); 18854 18855 *sin = sin_null; 18856 sin->sin_family = AF_INET; 18857 sin->sin_port = tcp->tcp_lport; 18858 sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src; 18859 break; 18860 18861 case AF_INET6: 18862 if (*salenp < sizeof (sin6_t)) 18863 return (EINVAL); 18864 18865 *sin6 = sin6_null; 18866 sin6->sin6_family = AF_INET6; 18867 sin6->sin6_port = tcp->tcp_lport; 18868 if (tcp->tcp_ipversion == IPV4_VERSION) { 18869 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 18870 &sin6->sin6_addr); 18871 } else { 18872 sin6->sin6_addr = tcp->tcp_ip6h->ip6_src; 18873 } 18874 break; 18875 } 18876 18877 return (0); 18878 } 18879 18880 static int 18881 tcp_getpeername(tcp_t *tcp, struct sockaddr *sa, uint_t *salenp) 18882 { 18883 sin_t *sin = (sin_t *)sa; 18884 sin6_t *sin6 = (sin6_t *)sa; 18885 18886 if (tcp->tcp_state < TCPS_SYN_RCVD) 18887 return (ENOTCONN); 18888 18889 switch (tcp->tcp_family) { 18890 case AF_INET: 18891 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 18892 18893 if (*salenp < sizeof (sin_t)) 18894 return (EINVAL); 18895 18896 *sin = sin_null; 18897 sin->sin_family = AF_INET; 18898 sin->sin_port = tcp->tcp_fport; 18899 IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_remote_v6, 18900 sin->sin_addr.s_addr); 18901 break; 18902 18903 case AF_INET6: 18904 if (*salenp < sizeof (sin6_t)) 18905 return (EINVAL); 18906 18907 *sin6 = sin6_null; 18908 sin6->sin6_family = AF_INET6; 18909 sin6->sin6_port = tcp->tcp_fport; 18910 sin6->sin6_addr = tcp->tcp_remote_v6; 18911 if (tcp->tcp_ipversion == IPV6_VERSION) { 18912 sin6->sin6_flowinfo = tcp->tcp_ip6h->ip6_vcf & 18913 ~IPV6_VERS_AND_FLOW_MASK; 18914 } 18915 break; 18916 } 18917 18918 return (0); 18919 } 18920 18921 /* 18922 * Handle special out-of-band ioctl requests (see PSARC/2008/265). 18923 */ 18924 static void 18925 tcp_wput_cmdblk(queue_t *q, mblk_t *mp) 18926 { 18927 void *data; 18928 mblk_t *datamp = mp->b_cont; 18929 tcp_t *tcp = Q_TO_TCP(q); 18930 cmdblk_t *cmdp = (cmdblk_t *)mp->b_rptr; 18931 18932 if (datamp == NULL || MBLKL(datamp) < cmdp->cb_len) { 18933 cmdp->cb_error = EPROTO; 18934 qreply(q, mp); 18935 return; 18936 } 18937 18938 data = datamp->b_rptr; 18939 18940 switch (cmdp->cb_cmd) { 18941 case TI_GETPEERNAME: 18942 cmdp->cb_error = tcp_getpeername(tcp, data, &cmdp->cb_len); 18943 break; 18944 case TI_GETMYNAME: 18945 cmdp->cb_error = tcp_getmyname(tcp, data, &cmdp->cb_len); 18946 break; 18947 default: 18948 cmdp->cb_error = EINVAL; 18949 break; 18950 } 18951 18952 qreply(q, mp); 18953 } 18954 18955 void 18956 tcp_wput(queue_t *q, mblk_t *mp) 18957 { 18958 conn_t *connp = Q_TO_CONN(q); 18959 tcp_t *tcp; 18960 void (*output_proc)(); 18961 t_scalar_t type; 18962 uchar_t *rptr; 18963 struct iocblk *iocp; 18964 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 18965 18966 ASSERT(connp->conn_ref >= 2); 18967 18968 switch (DB_TYPE(mp)) { 18969 case M_DATA: 18970 tcp = connp->conn_tcp; 18971 ASSERT(tcp != NULL); 18972 18973 mutex_enter(&tcp->tcp_non_sq_lock); 18974 tcp->tcp_squeue_bytes += msgdsize(mp); 18975 if (TCP_UNSENT_BYTES(tcp) > tcp->tcp_xmit_hiwater) { 18976 tcp_setqfull(tcp); 18977 } 18978 mutex_exit(&tcp->tcp_non_sq_lock); 18979 18980 CONN_INC_REF(connp); 18981 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_output, connp, 18982 tcp_squeue_flag, SQTAG_TCP_OUTPUT); 18983 return; 18984 18985 case M_CMD: 18986 tcp_wput_cmdblk(q, mp); 18987 return; 18988 18989 case M_PROTO: 18990 case M_PCPROTO: 18991 /* 18992 * if it is a snmp message, don't get behind the squeue 18993 */ 18994 tcp = connp->conn_tcp; 18995 rptr = mp->b_rptr; 18996 if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { 18997 type = ((union T_primitives *)rptr)->type; 18998 } else { 18999 if (tcp->tcp_debug) { 19000 (void) strlog(TCP_MOD_ID, 0, 1, 19001 SL_ERROR|SL_TRACE, 19002 "tcp_wput_proto, dropping one..."); 19003 } 19004 freemsg(mp); 19005 return; 19006 } 19007 if (type == T_SVR4_OPTMGMT_REQ) { 19008 cred_t *cr = DB_CREDDEF(mp, tcp->tcp_cred); 19009 if (snmpcom_req(q, mp, tcp_snmp_set, ip_snmp_get, 19010 cr)) { 19011 /* 19012 * This was a SNMP request 19013 */ 19014 return; 19015 } else { 19016 output_proc = tcp_wput_proto; 19017 } 19018 } else { 19019 output_proc = tcp_wput_proto; 19020 } 19021 break; 19022 case M_IOCTL: 19023 /* 19024 * Most ioctls can be processed right away without going via 19025 * squeues - process them right here. Those that do require 19026 * squeue (currently TCP_IOC_DEFAULT_Q and _SIOCSOCKFALLBACK) 19027 * are processed by tcp_wput_ioctl(). 19028 */ 19029 iocp = (struct iocblk *)mp->b_rptr; 19030 tcp = connp->conn_tcp; 19031 19032 switch (iocp->ioc_cmd) { 19033 case TCP_IOC_ABORT_CONN: 19034 tcp_ioctl_abort_conn(q, mp); 19035 return; 19036 case TI_GETPEERNAME: 19037 case TI_GETMYNAME: 19038 mi_copyin(q, mp, NULL, 19039 SIZEOF_STRUCT(strbuf, iocp->ioc_flag)); 19040 return; 19041 case ND_SET: 19042 /* nd_getset does the necessary checks */ 19043 case ND_GET: 19044 if (!nd_getset(q, tcps->tcps_g_nd, mp)) { 19045 CALL_IP_WPUT(connp, q, mp); 19046 return; 19047 } 19048 qreply(q, mp); 19049 return; 19050 case TCP_IOC_DEFAULT_Q: 19051 /* 19052 * Wants to be the default wq. Check the credentials 19053 * first, the rest is executed via squeue. 19054 */ 19055 if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) { 19056 iocp->ioc_error = EPERM; 19057 iocp->ioc_count = 0; 19058 mp->b_datap->db_type = M_IOCACK; 19059 qreply(q, mp); 19060 return; 19061 } 19062 output_proc = tcp_wput_ioctl; 19063 break; 19064 default: 19065 output_proc = tcp_wput_ioctl; 19066 break; 19067 } 19068 break; 19069 default: 19070 output_proc = tcp_wput_nondata; 19071 break; 19072 } 19073 19074 CONN_INC_REF(connp); 19075 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, output_proc, connp, 19076 tcp_squeue_flag, SQTAG_TCP_WPUT_OTHER); 19077 } 19078 19079 /* 19080 * Initial STREAMS write side put() procedure for sockets. It tries to 19081 * handle the T_CAPABILITY_REQ which sockfs sends down while setting 19082 * up the socket without using the squeue. Non T_CAPABILITY_REQ messages 19083 * are handled by tcp_wput() as usual. 19084 * 19085 * All further messages will also be handled by tcp_wput() because we cannot 19086 * be sure that the above short cut is safe later. 19087 */ 19088 static void 19089 tcp_wput_sock(queue_t *wq, mblk_t *mp) 19090 { 19091 conn_t *connp = Q_TO_CONN(wq); 19092 tcp_t *tcp = connp->conn_tcp; 19093 struct T_capability_req *car = (struct T_capability_req *)mp->b_rptr; 19094 19095 ASSERT(wq->q_qinfo == &tcp_sock_winit); 19096 wq->q_qinfo = &tcp_winit; 19097 19098 ASSERT(IPCL_IS_TCP(connp)); 19099 ASSERT(TCP_IS_SOCKET(tcp)); 19100 19101 if (DB_TYPE(mp) == M_PCPROTO && 19102 MBLKL(mp) == sizeof (struct T_capability_req) && 19103 car->PRIM_type == T_CAPABILITY_REQ) { 19104 tcp_capability_req(tcp, mp); 19105 return; 19106 } 19107 19108 tcp_wput(wq, mp); 19109 } 19110 19111 static boolean_t 19112 tcp_zcopy_check(tcp_t *tcp) 19113 { 19114 conn_t *connp = tcp->tcp_connp; 19115 ire_t *ire; 19116 boolean_t zc_enabled = B_FALSE; 19117 tcp_stack_t *tcps = tcp->tcp_tcps; 19118 19119 if (do_tcpzcopy == 2) 19120 zc_enabled = B_TRUE; 19121 else if (tcp->tcp_ipversion == IPV4_VERSION && 19122 IPCL_IS_CONNECTED(connp) && 19123 (connp->conn_flags & IPCL_CHECK_POLICY) == 0 && 19124 connp->conn_dontroute == 0 && 19125 !connp->conn_nexthop_set && 19126 connp->conn_outgoing_ill == NULL && 19127 connp->conn_nofailover_ill == NULL && 19128 do_tcpzcopy == 1) { 19129 /* 19130 * the checks above closely resemble the fast path checks 19131 * in tcp_send_data(). 19132 */ 19133 mutex_enter(&connp->conn_lock); 19134 ire = connp->conn_ire_cache; 19135 ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT)); 19136 if (ire != NULL && !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 19137 IRE_REFHOLD(ire); 19138 if (ire->ire_stq != NULL) { 19139 ill_t *ill = (ill_t *)ire->ire_stq->q_ptr; 19140 19141 zc_enabled = ill && (ill->ill_capabilities & 19142 ILL_CAPAB_ZEROCOPY) && 19143 (ill->ill_zerocopy_capab-> 19144 ill_zerocopy_flags != 0); 19145 } 19146 IRE_REFRELE(ire); 19147 } 19148 mutex_exit(&connp->conn_lock); 19149 } 19150 tcp->tcp_snd_zcopy_on = zc_enabled; 19151 if (!TCP_IS_DETACHED(tcp)) { 19152 if (zc_enabled) { 19153 (void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMSAFE); 19154 TCP_STAT(tcps, tcp_zcopy_on); 19155 } else { 19156 (void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE); 19157 TCP_STAT(tcps, tcp_zcopy_off); 19158 } 19159 } 19160 return (zc_enabled); 19161 } 19162 19163 static mblk_t * 19164 tcp_zcopy_disable(tcp_t *tcp, mblk_t *bp) 19165 { 19166 tcp_stack_t *tcps = tcp->tcp_tcps; 19167 19168 if (do_tcpzcopy == 2) 19169 return (bp); 19170 else if (tcp->tcp_snd_zcopy_on) { 19171 tcp->tcp_snd_zcopy_on = B_FALSE; 19172 if (!TCP_IS_DETACHED(tcp)) { 19173 (void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE); 19174 TCP_STAT(tcps, tcp_zcopy_disable); 19175 } 19176 } 19177 return (tcp_zcopy_backoff(tcp, bp, 0)); 19178 } 19179 19180 /* 19181 * Backoff from a zero-copy mblk by copying data to a new mblk and freeing 19182 * the original desballoca'ed segmapped mblk. 19183 */ 19184 static mblk_t * 19185 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, int fix_xmitlist) 19186 { 19187 mblk_t *head, *tail, *nbp; 19188 tcp_stack_t *tcps = tcp->tcp_tcps; 19189 19190 if (IS_VMLOANED_MBLK(bp)) { 19191 TCP_STAT(tcps, tcp_zcopy_backoff); 19192 if ((head = copyb(bp)) == NULL) { 19193 /* fail to backoff; leave it for the next backoff */ 19194 tcp->tcp_xmit_zc_clean = B_FALSE; 19195 return (bp); 19196 } 19197 if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 19198 if (fix_xmitlist) 19199 tcp_zcopy_notify(tcp); 19200 else 19201 head->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; 19202 } 19203 nbp = bp->b_cont; 19204 if (fix_xmitlist) { 19205 head->b_prev = bp->b_prev; 19206 head->b_next = bp->b_next; 19207 if (tcp->tcp_xmit_tail == bp) 19208 tcp->tcp_xmit_tail = head; 19209 } 19210 bp->b_next = NULL; 19211 bp->b_prev = NULL; 19212 freeb(bp); 19213 } else { 19214 head = bp; 19215 nbp = bp->b_cont; 19216 } 19217 tail = head; 19218 while (nbp) { 19219 if (IS_VMLOANED_MBLK(nbp)) { 19220 TCP_STAT(tcps, tcp_zcopy_backoff); 19221 if ((tail->b_cont = copyb(nbp)) == NULL) { 19222 tcp->tcp_xmit_zc_clean = B_FALSE; 19223 tail->b_cont = nbp; 19224 return (head); 19225 } 19226 tail = tail->b_cont; 19227 if (nbp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 19228 if (fix_xmitlist) 19229 tcp_zcopy_notify(tcp); 19230 else 19231 tail->b_datap->db_struioflag |= 19232 STRUIO_ZCNOTIFY; 19233 } 19234 bp = nbp; 19235 nbp = nbp->b_cont; 19236 if (fix_xmitlist) { 19237 tail->b_prev = bp->b_prev; 19238 tail->b_next = bp->b_next; 19239 if (tcp->tcp_xmit_tail == bp) 19240 tcp->tcp_xmit_tail = tail; 19241 } 19242 bp->b_next = NULL; 19243 bp->b_prev = NULL; 19244 freeb(bp); 19245 } else { 19246 tail->b_cont = nbp; 19247 tail = nbp; 19248 nbp = nbp->b_cont; 19249 } 19250 } 19251 if (fix_xmitlist) { 19252 tcp->tcp_xmit_last = tail; 19253 tcp->tcp_xmit_zc_clean = B_TRUE; 19254 } 19255 return (head); 19256 } 19257 19258 static void 19259 tcp_zcopy_notify(tcp_t *tcp) 19260 { 19261 struct stdata *stp; 19262 19263 if (tcp->tcp_detached) 19264 return; 19265 stp = STREAM(tcp->tcp_rq); 19266 mutex_enter(&stp->sd_lock); 19267 stp->sd_flag |= STZCNOTIFY; 19268 cv_broadcast(&stp->sd_zcopy_wait); 19269 mutex_exit(&stp->sd_lock); 19270 } 19271 19272 static boolean_t 19273 tcp_send_find_ire(tcp_t *tcp, ipaddr_t *dst, ire_t **irep) 19274 { 19275 ire_t *ire; 19276 conn_t *connp = tcp->tcp_connp; 19277 tcp_stack_t *tcps = tcp->tcp_tcps; 19278 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 19279 19280 mutex_enter(&connp->conn_lock); 19281 ire = connp->conn_ire_cache; 19282 ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT)); 19283 19284 if ((ire != NULL) && 19285 (((dst != NULL) && (ire->ire_addr == *dst)) || ((dst == NULL) && 19286 IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, &tcp->tcp_ip6h->ip6_dst))) && 19287 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 19288 IRE_REFHOLD(ire); 19289 mutex_exit(&connp->conn_lock); 19290 } else { 19291 boolean_t cached = B_FALSE; 19292 ts_label_t *tsl; 19293 19294 /* force a recheck later on */ 19295 tcp->tcp_ire_ill_check_done = B_FALSE; 19296 19297 TCP_DBGSTAT(tcps, tcp_ire_null1); 19298 connp->conn_ire_cache = NULL; 19299 mutex_exit(&connp->conn_lock); 19300 19301 if (ire != NULL) 19302 IRE_REFRELE_NOTR(ire); 19303 19304 tsl = crgetlabel(CONN_CRED(connp)); 19305 ire = (dst ? 19306 ire_cache_lookup(*dst, connp->conn_zoneid, tsl, ipst) : 19307 ire_cache_lookup_v6(&tcp->tcp_ip6h->ip6_dst, 19308 connp->conn_zoneid, tsl, ipst)); 19309 19310 if (ire == NULL) { 19311 TCP_STAT(tcps, tcp_ire_null); 19312 return (B_FALSE); 19313 } 19314 19315 IRE_REFHOLD_NOTR(ire); 19316 19317 mutex_enter(&connp->conn_lock); 19318 if (CONN_CACHE_IRE(connp)) { 19319 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 19320 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 19321 TCP_CHECK_IREINFO(tcp, ire); 19322 connp->conn_ire_cache = ire; 19323 cached = B_TRUE; 19324 } 19325 rw_exit(&ire->ire_bucket->irb_lock); 19326 } 19327 mutex_exit(&connp->conn_lock); 19328 19329 /* 19330 * We can continue to use the ire but since it was 19331 * not cached, we should drop the extra reference. 19332 */ 19333 if (!cached) 19334 IRE_REFRELE_NOTR(ire); 19335 19336 /* 19337 * Rampart note: no need to select a new label here, since 19338 * labels are not allowed to change during the life of a TCP 19339 * connection. 19340 */ 19341 } 19342 19343 *irep = ire; 19344 19345 return (B_TRUE); 19346 } 19347 19348 /* 19349 * Called from tcp_send() or tcp_send_data() to find workable IRE. 19350 * 19351 * 0 = success; 19352 * 1 = failed to find ire and ill. 19353 */ 19354 static boolean_t 19355 tcp_send_find_ire_ill(tcp_t *tcp, mblk_t *mp, ire_t **irep, ill_t **illp) 19356 { 19357 ipha_t *ipha; 19358 ipaddr_t dst; 19359 ire_t *ire; 19360 ill_t *ill; 19361 conn_t *connp = tcp->tcp_connp; 19362 mblk_t *ire_fp_mp; 19363 tcp_stack_t *tcps = tcp->tcp_tcps; 19364 19365 if (mp != NULL) 19366 ipha = (ipha_t *)mp->b_rptr; 19367 else 19368 ipha = tcp->tcp_ipha; 19369 dst = ipha->ipha_dst; 19370 19371 if (!tcp_send_find_ire(tcp, &dst, &ire)) 19372 return (B_FALSE); 19373 19374 if ((ire->ire_flags & RTF_MULTIRT) || 19375 (ire->ire_stq == NULL) || 19376 (ire->ire_nce == NULL) || 19377 ((ire_fp_mp = ire->ire_nce->nce_fp_mp) == NULL) || 19378 ((mp != NULL) && (ire->ire_max_frag < ntohs(ipha->ipha_length) || 19379 MBLKL(ire_fp_mp) > MBLKHEAD(mp)))) { 19380 TCP_STAT(tcps, tcp_ip_ire_send); 19381 IRE_REFRELE(ire); 19382 return (B_FALSE); 19383 } 19384 19385 ill = ire_to_ill(ire); 19386 if (connp->conn_outgoing_ill != NULL) { 19387 ill_t *conn_outgoing_ill = NULL; 19388 /* 19389 * Choose a good ill in the group to send the packets on. 19390 */ 19391 ire = conn_set_outgoing_ill(connp, ire, &conn_outgoing_ill); 19392 ill = ire_to_ill(ire); 19393 } 19394 ASSERT(ill != NULL); 19395 19396 if (!tcp->tcp_ire_ill_check_done) { 19397 tcp_ire_ill_check(tcp, ire, ill, B_TRUE); 19398 tcp->tcp_ire_ill_check_done = B_TRUE; 19399 } 19400 19401 *irep = ire; 19402 *illp = ill; 19403 19404 return (B_TRUE); 19405 } 19406 19407 static void 19408 tcp_send_data(tcp_t *tcp, queue_t *q, mblk_t *mp) 19409 { 19410 ipha_t *ipha; 19411 ipaddr_t src; 19412 ipaddr_t dst; 19413 uint32_t cksum; 19414 ire_t *ire; 19415 uint16_t *up; 19416 ill_t *ill; 19417 conn_t *connp = tcp->tcp_connp; 19418 uint32_t hcksum_txflags = 0; 19419 mblk_t *ire_fp_mp; 19420 uint_t ire_fp_mp_len; 19421 tcp_stack_t *tcps = tcp->tcp_tcps; 19422 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 19423 19424 ASSERT(DB_TYPE(mp) == M_DATA); 19425 19426 if (DB_CRED(mp) == NULL) 19427 mblk_setcred(mp, CONN_CRED(connp)); 19428 19429 ipha = (ipha_t *)mp->b_rptr; 19430 src = ipha->ipha_src; 19431 dst = ipha->ipha_dst; 19432 19433 DTRACE_PROBE2(tcp__trace__send, mblk_t *, mp, tcp_t *, tcp); 19434 19435 /* 19436 * Drop off fast path for IPv6 and also if options are present or 19437 * we need to resolve a TS label. 19438 */ 19439 if (tcp->tcp_ipversion != IPV4_VERSION || 19440 !IPCL_IS_CONNECTED(connp) || 19441 !CONN_IS_LSO_MD_FASTPATH(connp) || 19442 (connp->conn_flags & IPCL_CHECK_POLICY) != 0 || 19443 !connp->conn_ulp_labeled || 19444 ipha->ipha_ident == IP_HDR_INCLUDED || 19445 ipha->ipha_version_and_hdr_length != IP_SIMPLE_HDR_VERSION || 19446 IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 19447 if (tcp->tcp_snd_zcopy_aware) 19448 mp = tcp_zcopy_disable(tcp, mp); 19449 TCP_STAT(tcps, tcp_ip_send); 19450 CALL_IP_WPUT(connp, q, mp); 19451 return; 19452 } 19453 19454 if (!tcp_send_find_ire_ill(tcp, mp, &ire, &ill)) { 19455 if (tcp->tcp_snd_zcopy_aware) 19456 mp = tcp_zcopy_backoff(tcp, mp, 0); 19457 CALL_IP_WPUT(connp, q, mp); 19458 return; 19459 } 19460 ire_fp_mp = ire->ire_nce->nce_fp_mp; 19461 ire_fp_mp_len = MBLKL(ire_fp_mp); 19462 19463 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 19464 ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 19465 #ifndef _BIG_ENDIAN 19466 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 19467 #endif 19468 19469 /* 19470 * Check to see if we need to re-enable LSO/MDT for this connection 19471 * because it was previously disabled due to changes in the ill; 19472 * note that by doing it here, this re-enabling only applies when 19473 * the packet is not dispatched through CALL_IP_WPUT(). 19474 * 19475 * That means for IPv4, it is worth re-enabling LSO/MDT for the fastpath 19476 * case, since that's how we ended up here. For IPv6, we do the 19477 * re-enabling work in ip_xmit_v6(), albeit indirectly via squeue. 19478 */ 19479 if (connp->conn_lso_ok && !tcp->tcp_lso && ILL_LSO_TCP_USABLE(ill)) { 19480 /* 19481 * Restore LSO for this connection, so that next time around 19482 * it is eligible to go through tcp_lsosend() path again. 19483 */ 19484 TCP_STAT(tcps, tcp_lso_enabled); 19485 tcp->tcp_lso = B_TRUE; 19486 ip1dbg(("tcp_send_data: reenabling LSO for connp %p on " 19487 "interface %s\n", (void *)connp, ill->ill_name)); 19488 } else if (connp->conn_mdt_ok && !tcp->tcp_mdt && ILL_MDT_USABLE(ill)) { 19489 /* 19490 * Restore MDT for this connection, so that next time around 19491 * it is eligible to go through tcp_multisend() path again. 19492 */ 19493 TCP_STAT(tcps, tcp_mdt_conn_resumed1); 19494 tcp->tcp_mdt = B_TRUE; 19495 ip1dbg(("tcp_send_data: reenabling MDT for connp %p on " 19496 "interface %s\n", (void *)connp, ill->ill_name)); 19497 } 19498 19499 if (tcp->tcp_snd_zcopy_aware) { 19500 if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 || 19501 (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0)) 19502 mp = tcp_zcopy_disable(tcp, mp); 19503 /* 19504 * we shouldn't need to reset ipha as the mp containing 19505 * ipha should never be a zero-copy mp. 19506 */ 19507 } 19508 19509 if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) { 19510 ASSERT(ill->ill_hcksum_capab != NULL); 19511 hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags; 19512 } 19513 19514 /* pseudo-header checksum (do it in parts for IP header checksum) */ 19515 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 19516 19517 ASSERT(ipha->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION); 19518 up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH); 19519 19520 IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up, 19521 IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum); 19522 19523 /* Software checksum? */ 19524 if (DB_CKSUMFLAGS(mp) == 0) { 19525 TCP_STAT(tcps, tcp_out_sw_cksum); 19526 TCP_STAT_UPDATE(tcps, tcp_out_sw_cksum_bytes, 19527 ntohs(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH); 19528 } 19529 19530 /* Calculate IP header checksum if hardware isn't capable */ 19531 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 19532 IP_HDR_CKSUM(ipha, cksum, ((uint32_t *)ipha)[0], 19533 ((uint16_t *)ipha)[4]); 19534 } 19535 19536 ASSERT(DB_TYPE(ire_fp_mp) == M_DATA); 19537 mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len; 19538 bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len); 19539 19540 UPDATE_OB_PKT_COUNT(ire); 19541 ire->ire_last_used_time = lbolt; 19542 19543 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 19544 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 19545 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 19546 ntohs(ipha->ipha_length)); 19547 19548 DTRACE_PROBE4(ip4__physical__out__start, 19549 ill_t *, NULL, ill_t *, ill, ipha_t *, ipha, mblk_t *, mp); 19550 FW_HOOKS(ipst->ips_ip4_physical_out_event, 19551 ipst->ips_ipv4firewall_physical_out, 19552 NULL, ill, ipha, mp, mp, 0, ipst); 19553 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 19554 DTRACE_IP_FASTPATH(mp, ipha, ill, ipha, NULL); 19555 19556 if (mp != NULL) { 19557 if (ipst->ips_ipobs_enabled) { 19558 zoneid_t szone; 19559 19560 szone = ip_get_zoneid_v4(ipha->ipha_src, mp, 19561 ipst, ALL_ZONES); 19562 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, 19563 ALL_ZONES, ill, IPV4_VERSION, ire_fp_mp_len, ipst); 19564 } 19565 19566 ILL_SEND_TX(ill, ire, connp, mp, 0); 19567 } 19568 19569 IRE_REFRELE(ire); 19570 } 19571 19572 /* 19573 * This handles the case when the receiver has shrunk its win. Per RFC 1122 19574 * if the receiver shrinks the window, i.e. moves the right window to the 19575 * left, the we should not send new data, but should retransmit normally the 19576 * old unacked data between suna and suna + swnd. We might has sent data 19577 * that is now outside the new window, pretend that we didn't send it. 19578 */ 19579 static void 19580 tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_count) 19581 { 19582 uint32_t snxt = tcp->tcp_snxt; 19583 mblk_t *xmit_tail; 19584 int32_t offset; 19585 19586 ASSERT(shrunk_count > 0); 19587 19588 /* Pretend we didn't send the data outside the window */ 19589 snxt -= shrunk_count; 19590 19591 /* Get the mblk and the offset in it per the shrunk window */ 19592 xmit_tail = tcp_get_seg_mp(tcp, snxt, &offset); 19593 19594 ASSERT(xmit_tail != NULL); 19595 19596 /* Reset all the values per the now shrunk window */ 19597 tcp->tcp_snxt = snxt; 19598 tcp->tcp_xmit_tail = xmit_tail; 19599 tcp->tcp_xmit_tail_unsent = xmit_tail->b_wptr - xmit_tail->b_rptr - 19600 offset; 19601 tcp->tcp_unsent += shrunk_count; 19602 19603 if (tcp->tcp_suna == tcp->tcp_snxt && tcp->tcp_swnd == 0) 19604 /* 19605 * Make sure the timer is running so that we will probe a zero 19606 * window. 19607 */ 19608 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 19609 } 19610 19611 19612 /* 19613 * The TCP normal data output path. 19614 * NOTE: the logic of the fast path is duplicated from this function. 19615 */ 19616 static void 19617 tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent) 19618 { 19619 int len; 19620 mblk_t *local_time; 19621 mblk_t *mp1; 19622 uint32_t snxt; 19623 int tail_unsent; 19624 int tcpstate; 19625 int usable = 0; 19626 mblk_t *xmit_tail; 19627 queue_t *q = tcp->tcp_wq; 19628 int32_t mss; 19629 int32_t num_sack_blk = 0; 19630 int32_t tcp_hdr_len; 19631 int32_t tcp_tcp_hdr_len; 19632 int mdt_thres; 19633 int rc; 19634 tcp_stack_t *tcps = tcp->tcp_tcps; 19635 ip_stack_t *ipst; 19636 19637 tcpstate = tcp->tcp_state; 19638 if (mp == NULL) { 19639 /* 19640 * tcp_wput_data() with NULL mp should only be called when 19641 * there is unsent data. 19642 */ 19643 ASSERT(tcp->tcp_unsent > 0); 19644 /* Really tacky... but we need this for detached closes. */ 19645 len = tcp->tcp_unsent; 19646 goto data_null; 19647 } 19648 19649 #if CCS_STATS 19650 wrw_stats.tot.count++; 19651 wrw_stats.tot.bytes += msgdsize(mp); 19652 #endif 19653 ASSERT(mp->b_datap->db_type == M_DATA); 19654 /* 19655 * Don't allow data after T_ORDREL_REQ or T_DISCON_REQ, 19656 * or before a connection attempt has begun. 19657 */ 19658 if (tcpstate < TCPS_SYN_SENT || tcpstate > TCPS_CLOSE_WAIT || 19659 (tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { 19660 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { 19661 #ifdef DEBUG 19662 cmn_err(CE_WARN, 19663 "tcp_wput_data: data after ordrel, %s", 19664 tcp_display(tcp, NULL, 19665 DISP_ADDR_AND_PORT)); 19666 #else 19667 if (tcp->tcp_debug) { 19668 (void) strlog(TCP_MOD_ID, 0, 1, 19669 SL_TRACE|SL_ERROR, 19670 "tcp_wput_data: data after ordrel, %s\n", 19671 tcp_display(tcp, NULL, 19672 DISP_ADDR_AND_PORT)); 19673 } 19674 #endif /* DEBUG */ 19675 } 19676 if (tcp->tcp_snd_zcopy_aware && 19677 (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) != 0) 19678 tcp_zcopy_notify(tcp); 19679 freemsg(mp); 19680 mutex_enter(&tcp->tcp_non_sq_lock); 19681 if (tcp->tcp_flow_stopped && 19682 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 19683 tcp_clrqfull(tcp); 19684 } 19685 mutex_exit(&tcp->tcp_non_sq_lock); 19686 return; 19687 } 19688 19689 /* Strip empties */ 19690 for (;;) { 19691 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 19692 (uintptr_t)INT_MAX); 19693 len = (int)(mp->b_wptr - mp->b_rptr); 19694 if (len > 0) 19695 break; 19696 mp1 = mp; 19697 mp = mp->b_cont; 19698 freeb(mp1); 19699 if (!mp) { 19700 return; 19701 } 19702 } 19703 19704 /* If we are the first on the list ... */ 19705 if (tcp->tcp_xmit_head == NULL) { 19706 tcp->tcp_xmit_head = mp; 19707 tcp->tcp_xmit_tail = mp; 19708 tcp->tcp_xmit_tail_unsent = len; 19709 } else { 19710 /* If tiny tx and room in txq tail, pullup to save mblks. */ 19711 struct datab *dp; 19712 19713 mp1 = tcp->tcp_xmit_last; 19714 if (len < tcp_tx_pull_len && 19715 (dp = mp1->b_datap)->db_ref == 1 && 19716 dp->db_lim - mp1->b_wptr >= len) { 19717 ASSERT(len > 0); 19718 ASSERT(!mp1->b_cont); 19719 if (len == 1) { 19720 *mp1->b_wptr++ = *mp->b_rptr; 19721 } else { 19722 bcopy(mp->b_rptr, mp1->b_wptr, len); 19723 mp1->b_wptr += len; 19724 } 19725 if (mp1 == tcp->tcp_xmit_tail) 19726 tcp->tcp_xmit_tail_unsent += len; 19727 mp1->b_cont = mp->b_cont; 19728 if (tcp->tcp_snd_zcopy_aware && 19729 (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 19730 mp1->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; 19731 freeb(mp); 19732 mp = mp1; 19733 } else { 19734 tcp->tcp_xmit_last->b_cont = mp; 19735 } 19736 len += tcp->tcp_unsent; 19737 } 19738 19739 /* Tack on however many more positive length mblks we have */ 19740 if ((mp1 = mp->b_cont) != NULL) { 19741 do { 19742 int tlen; 19743 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 19744 (uintptr_t)INT_MAX); 19745 tlen = (int)(mp1->b_wptr - mp1->b_rptr); 19746 if (tlen <= 0) { 19747 mp->b_cont = mp1->b_cont; 19748 freeb(mp1); 19749 } else { 19750 len += tlen; 19751 mp = mp1; 19752 } 19753 } while ((mp1 = mp->b_cont) != NULL); 19754 } 19755 tcp->tcp_xmit_last = mp; 19756 tcp->tcp_unsent = len; 19757 19758 if (urgent) 19759 usable = 1; 19760 19761 data_null: 19762 snxt = tcp->tcp_snxt; 19763 xmit_tail = tcp->tcp_xmit_tail; 19764 tail_unsent = tcp->tcp_xmit_tail_unsent; 19765 19766 /* 19767 * Note that tcp_mss has been adjusted to take into account the 19768 * timestamp option if applicable. Because SACK options do not 19769 * appear in every TCP segments and they are of variable lengths, 19770 * they cannot be included in tcp_mss. Thus we need to calculate 19771 * the actual segment length when we need to send a segment which 19772 * includes SACK options. 19773 */ 19774 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 19775 int32_t opt_len; 19776 19777 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 19778 tcp->tcp_num_sack_blk); 19779 opt_len = num_sack_blk * sizeof (sack_blk_t) + TCPOPT_NOP_LEN * 19780 2 + TCPOPT_HEADER_LEN; 19781 mss = tcp->tcp_mss - opt_len; 19782 tcp_hdr_len = tcp->tcp_hdr_len + opt_len; 19783 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + opt_len; 19784 } else { 19785 mss = tcp->tcp_mss; 19786 tcp_hdr_len = tcp->tcp_hdr_len; 19787 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len; 19788 } 19789 19790 if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && 19791 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) { 19792 SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle); 19793 } 19794 if (tcpstate == TCPS_SYN_RCVD) { 19795 /* 19796 * The three-way connection establishment handshake is not 19797 * complete yet. We want to queue the data for transmission 19798 * after entering ESTABLISHED state (RFC793). A jump to 19799 * "done" label effectively leaves data on the queue. 19800 */ 19801 goto done; 19802 } else { 19803 int usable_r; 19804 19805 /* 19806 * In the special case when cwnd is zero, which can only 19807 * happen if the connection is ECN capable, return now. 19808 * New segments is sent using tcp_timer(). The timer 19809 * is set in tcp_rput_data(). 19810 */ 19811 if (tcp->tcp_cwnd == 0) { 19812 /* 19813 * Note that tcp_cwnd is 0 before 3-way handshake is 19814 * finished. 19815 */ 19816 ASSERT(tcp->tcp_ecn_ok || 19817 tcp->tcp_state < TCPS_ESTABLISHED); 19818 return; 19819 } 19820 19821 /* NOTE: trouble if xmitting while SYN not acked? */ 19822 usable_r = snxt - tcp->tcp_suna; 19823 usable_r = tcp->tcp_swnd - usable_r; 19824 19825 /* 19826 * Check if the receiver has shrunk the window. If 19827 * tcp_wput_data() with NULL mp is called, tcp_fin_sent 19828 * cannot be set as there is unsent data, so FIN cannot 19829 * be sent out. Otherwise, we need to take into account 19830 * of FIN as it consumes an "invisible" sequence number. 19831 */ 19832 ASSERT(tcp->tcp_fin_sent == 0); 19833 if (usable_r < 0) { 19834 /* 19835 * The receiver has shrunk the window and we have sent 19836 * -usable_r date beyond the window, re-adjust. 19837 * 19838 * If TCP window scaling is enabled, there can be 19839 * round down error as the advertised receive window 19840 * is actually right shifted n bits. This means that 19841 * the lower n bits info is wiped out. It will look 19842 * like the window is shrunk. Do a check here to 19843 * see if the shrunk amount is actually within the 19844 * error in window calculation. If it is, just 19845 * return. Note that this check is inside the 19846 * shrunk window check. This makes sure that even 19847 * though tcp_process_shrunk_swnd() is not called, 19848 * we will stop further processing. 19849 */ 19850 if ((-usable_r >> tcp->tcp_snd_ws) > 0) { 19851 tcp_process_shrunk_swnd(tcp, -usable_r); 19852 } 19853 return; 19854 } 19855 19856 /* usable = MIN(swnd, cwnd) - unacked_bytes */ 19857 if (tcp->tcp_swnd > tcp->tcp_cwnd) 19858 usable_r -= tcp->tcp_swnd - tcp->tcp_cwnd; 19859 19860 /* usable = MIN(usable, unsent) */ 19861 if (usable_r > len) 19862 usable_r = len; 19863 19864 /* usable = MAX(usable, {1 for urgent, 0 for data}) */ 19865 if (usable_r > 0) { 19866 usable = usable_r; 19867 } else { 19868 /* Bypass all other unnecessary processing. */ 19869 goto done; 19870 } 19871 } 19872 19873 local_time = (mblk_t *)lbolt; 19874 19875 /* 19876 * "Our" Nagle Algorithm. This is not the same as in the old 19877 * BSD. This is more in line with the true intent of Nagle. 19878 * 19879 * The conditions are: 19880 * 1. The amount of unsent data (or amount of data which can be 19881 * sent, whichever is smaller) is less than Nagle limit. 19882 * 2. The last sent size is also less than Nagle limit. 19883 * 3. There is unack'ed data. 19884 * 4. Urgent pointer is not set. Send urgent data ignoring the 19885 * Nagle algorithm. This reduces the probability that urgent 19886 * bytes get "merged" together. 19887 * 5. The app has not closed the connection. This eliminates the 19888 * wait time of the receiving side waiting for the last piece of 19889 * (small) data. 19890 * 19891 * If all are satisified, exit without sending anything. Note 19892 * that Nagle limit can be smaller than 1 MSS. Nagle limit is 19893 * the smaller of 1 MSS and global tcp_naglim_def (default to be 19894 * 4095). 19895 */ 19896 if (usable < (int)tcp->tcp_naglim && 19897 tcp->tcp_naglim > tcp->tcp_last_sent_len && 19898 snxt != tcp->tcp_suna && 19899 !(tcp->tcp_valid_bits & TCP_URG_VALID) && 19900 !(tcp->tcp_valid_bits & TCP_FSS_VALID)) { 19901 goto done; 19902 } 19903 19904 if (tcp->tcp_cork) { 19905 /* 19906 * if the tcp->tcp_cork option is set, then we have to force 19907 * TCP not to send partial segment (smaller than MSS bytes). 19908 * We are calculating the usable now based on full mss and 19909 * will save the rest of remaining data for later. 19910 */ 19911 if (usable < mss) 19912 goto done; 19913 usable = (usable / mss) * mss; 19914 } 19915 19916 /* Update the latest receive window size in TCP header. */ 19917 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 19918 tcp->tcp_tcph->th_win); 19919 19920 /* 19921 * Determine if it's worthwhile to attempt LSO or MDT, based on: 19922 * 19923 * 1. Simple TCP/IP{v4,v6} (no options). 19924 * 2. IPSEC/IPQoS processing is not needed for the TCP connection. 19925 * 3. If the TCP connection is in ESTABLISHED state. 19926 * 4. The TCP is not detached. 19927 * 19928 * If any of the above conditions have changed during the 19929 * connection, stop using LSO/MDT and restore the stream head 19930 * parameters accordingly. 19931 */ 19932 ipst = tcps->tcps_netstack->netstack_ip; 19933 19934 if ((tcp->tcp_lso || tcp->tcp_mdt) && 19935 ((tcp->tcp_ipversion == IPV4_VERSION && 19936 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 19937 (tcp->tcp_ipversion == IPV6_VERSION && 19938 tcp->tcp_ip_hdr_len != IPV6_HDR_LEN) || 19939 tcp->tcp_state != TCPS_ESTABLISHED || 19940 TCP_IS_DETACHED(tcp) || !CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp) || 19941 CONN_IPSEC_OUT_ENCAPSULATED(tcp->tcp_connp) || 19942 IPP_ENABLED(IPP_LOCAL_OUT, ipst))) { 19943 if (tcp->tcp_lso) { 19944 tcp->tcp_connp->conn_lso_ok = B_FALSE; 19945 tcp->tcp_lso = B_FALSE; 19946 } else { 19947 tcp->tcp_connp->conn_mdt_ok = B_FALSE; 19948 tcp->tcp_mdt = B_FALSE; 19949 } 19950 19951 /* Anything other than detached is considered pathological */ 19952 if (!TCP_IS_DETACHED(tcp)) { 19953 if (tcp->tcp_lso) 19954 TCP_STAT(tcps, tcp_lso_disabled); 19955 else 19956 TCP_STAT(tcps, tcp_mdt_conn_halted1); 19957 (void) tcp_maxpsz_set(tcp, B_TRUE); 19958 } 19959 } 19960 19961 /* Use MDT if sendable amount is greater than the threshold */ 19962 if (tcp->tcp_mdt && 19963 (mdt_thres = mss << tcp_mdt_smss_threshold, usable > mdt_thres) && 19964 (tail_unsent > mdt_thres || (xmit_tail->b_cont != NULL && 19965 MBLKL(xmit_tail->b_cont) > mdt_thres)) && 19966 (tcp->tcp_valid_bits == 0 || 19967 tcp->tcp_valid_bits == TCP_FSS_VALID)) { 19968 ASSERT(tcp->tcp_connp->conn_mdt_ok); 19969 rc = tcp_multisend(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len, 19970 num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail, 19971 local_time, mdt_thres); 19972 } else { 19973 rc = tcp_send(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len, 19974 num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail, 19975 local_time, INT_MAX); 19976 } 19977 19978 /* Pretend that all we were trying to send really got sent */ 19979 if (rc < 0 && tail_unsent < 0) { 19980 do { 19981 xmit_tail = xmit_tail->b_cont; 19982 xmit_tail->b_prev = local_time; 19983 ASSERT((uintptr_t)(xmit_tail->b_wptr - 19984 xmit_tail->b_rptr) <= (uintptr_t)INT_MAX); 19985 tail_unsent += (int)(xmit_tail->b_wptr - 19986 xmit_tail->b_rptr); 19987 } while (tail_unsent < 0); 19988 } 19989 done:; 19990 tcp->tcp_xmit_tail = xmit_tail; 19991 tcp->tcp_xmit_tail_unsent = tail_unsent; 19992 len = tcp->tcp_snxt - snxt; 19993 if (len) { 19994 /* 19995 * If new data was sent, need to update the notsack 19996 * list, which is, afterall, data blocks that have 19997 * not been sack'ed by the receiver. New data is 19998 * not sack'ed. 19999 */ 20000 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 20001 /* len is a negative value. */ 20002 tcp->tcp_pipe -= len; 20003 tcp_notsack_update(&(tcp->tcp_notsack_list), 20004 tcp->tcp_snxt, snxt, 20005 &(tcp->tcp_num_notsack_blk), 20006 &(tcp->tcp_cnt_notsack_list)); 20007 } 20008 tcp->tcp_snxt = snxt + tcp->tcp_fin_sent; 20009 tcp->tcp_rack = tcp->tcp_rnxt; 20010 tcp->tcp_rack_cnt = 0; 20011 if ((snxt + len) == tcp->tcp_suna) { 20012 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 20013 } 20014 } else if (snxt == tcp->tcp_suna && tcp->tcp_swnd == 0) { 20015 /* 20016 * Didn't send anything. Make sure the timer is running 20017 * so that we will probe a zero window. 20018 */ 20019 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 20020 } 20021 /* Note that len is the amount we just sent but with a negative sign */ 20022 tcp->tcp_unsent += len; 20023 mutex_enter(&tcp->tcp_non_sq_lock); 20024 if (tcp->tcp_flow_stopped) { 20025 if (TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 20026 tcp_clrqfull(tcp); 20027 } 20028 } else if (TCP_UNSENT_BYTES(tcp) >= tcp->tcp_xmit_hiwater) { 20029 tcp_setqfull(tcp); 20030 } 20031 mutex_exit(&tcp->tcp_non_sq_lock); 20032 } 20033 20034 /* 20035 * tcp_fill_header is called by tcp_send() and tcp_multisend() to fill the 20036 * outgoing TCP header with the template header, as well as other 20037 * options such as time-stamp, ECN and/or SACK. 20038 */ 20039 static void 20040 tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, int num_sack_blk) 20041 { 20042 tcph_t *tcp_tmpl, *tcp_h; 20043 uint32_t *dst, *src; 20044 int hdrlen; 20045 20046 ASSERT(OK_32PTR(rptr)); 20047 20048 /* Template header */ 20049 tcp_tmpl = tcp->tcp_tcph; 20050 20051 /* Header of outgoing packet */ 20052 tcp_h = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 20053 20054 /* dst and src are opaque 32-bit fields, used for copying */ 20055 dst = (uint32_t *)rptr; 20056 src = (uint32_t *)tcp->tcp_iphc; 20057 hdrlen = tcp->tcp_hdr_len; 20058 20059 /* Fill time-stamp option if needed */ 20060 if (tcp->tcp_snd_ts_ok) { 20061 U32_TO_BE32((uint32_t)now, 20062 (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 4); 20063 U32_TO_BE32(tcp->tcp_ts_recent, 20064 (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 8); 20065 } else { 20066 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 20067 } 20068 20069 /* 20070 * Copy the template header; is this really more efficient than 20071 * calling bcopy()? For simple IPv4/TCP, it may be the case, 20072 * but perhaps not for other scenarios. 20073 */ 20074 dst[0] = src[0]; 20075 dst[1] = src[1]; 20076 dst[2] = src[2]; 20077 dst[3] = src[3]; 20078 dst[4] = src[4]; 20079 dst[5] = src[5]; 20080 dst[6] = src[6]; 20081 dst[7] = src[7]; 20082 dst[8] = src[8]; 20083 dst[9] = src[9]; 20084 if (hdrlen -= 40) { 20085 hdrlen >>= 2; 20086 dst += 10; 20087 src += 10; 20088 do { 20089 *dst++ = *src++; 20090 } while (--hdrlen); 20091 } 20092 20093 /* 20094 * Set the ECN info in the TCP header if it is not a zero 20095 * window probe. Zero window probe is only sent in 20096 * tcp_wput_data() and tcp_timer(). 20097 */ 20098 if (tcp->tcp_ecn_ok && !tcp->tcp_zero_win_probe) { 20099 SET_ECT(tcp, rptr); 20100 20101 if (tcp->tcp_ecn_echo_on) 20102 tcp_h->th_flags[0] |= TH_ECE; 20103 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 20104 tcp_h->th_flags[0] |= TH_CWR; 20105 tcp->tcp_ecn_cwr_sent = B_TRUE; 20106 } 20107 } 20108 20109 /* Fill in SACK options */ 20110 if (num_sack_blk > 0) { 20111 uchar_t *wptr = rptr + tcp->tcp_hdr_len; 20112 sack_blk_t *tmp; 20113 int32_t i; 20114 20115 wptr[0] = TCPOPT_NOP; 20116 wptr[1] = TCPOPT_NOP; 20117 wptr[2] = TCPOPT_SACK; 20118 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 20119 sizeof (sack_blk_t); 20120 wptr += TCPOPT_REAL_SACK_LEN; 20121 20122 tmp = tcp->tcp_sack_list; 20123 for (i = 0; i < num_sack_blk; i++) { 20124 U32_TO_BE32(tmp[i].begin, wptr); 20125 wptr += sizeof (tcp_seq); 20126 U32_TO_BE32(tmp[i].end, wptr); 20127 wptr += sizeof (tcp_seq); 20128 } 20129 tcp_h->th_offset_and_rsrvd[0] += 20130 ((num_sack_blk * 2 + 1) << 4); 20131 } 20132 } 20133 20134 /* 20135 * tcp_mdt_add_attrs() is called by tcp_multisend() in order to attach 20136 * the destination address and SAP attribute, and if necessary, the 20137 * hardware checksum offload attribute to a Multidata message. 20138 */ 20139 static int 20140 tcp_mdt_add_attrs(multidata_t *mmd, const mblk_t *dlmp, const boolean_t hwcksum, 20141 const uint32_t start, const uint32_t stuff, const uint32_t end, 20142 const uint32_t flags, tcp_stack_t *tcps) 20143 { 20144 /* Add global destination address & SAP attribute */ 20145 if (dlmp == NULL || !ip_md_addr_attr(mmd, NULL, dlmp)) { 20146 ip1dbg(("tcp_mdt_add_attrs: can't add global physical " 20147 "destination address+SAP\n")); 20148 20149 if (dlmp != NULL) 20150 TCP_STAT(tcps, tcp_mdt_allocfail); 20151 return (-1); 20152 } 20153 20154 /* Add global hwcksum attribute */ 20155 if (hwcksum && 20156 !ip_md_hcksum_attr(mmd, NULL, start, stuff, end, flags)) { 20157 ip1dbg(("tcp_mdt_add_attrs: can't add global hardware " 20158 "checksum attribute\n")); 20159 20160 TCP_STAT(tcps, tcp_mdt_allocfail); 20161 return (-1); 20162 } 20163 20164 return (0); 20165 } 20166 20167 /* 20168 * Smaller and private version of pdescinfo_t used specifically for TCP, 20169 * which allows for only two payload spans per packet. 20170 */ 20171 typedef struct tcp_pdescinfo_s PDESCINFO_STRUCT(2) tcp_pdescinfo_t; 20172 20173 /* 20174 * tcp_multisend() is called by tcp_wput_data() for Multidata Transmit 20175 * scheme, and returns one the following: 20176 * 20177 * -1 = failed allocation. 20178 * 0 = success; burst count reached, or usable send window is too small, 20179 * and that we'd rather wait until later before sending again. 20180 */ 20181 static int 20182 tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len, 20183 const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable, 20184 uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 20185 const int mdt_thres) 20186 { 20187 mblk_t *md_mp_head, *md_mp, *md_pbuf, *md_pbuf_nxt, *md_hbuf; 20188 multidata_t *mmd; 20189 uint_t obsegs, obbytes, hdr_frag_sz; 20190 uint_t cur_hdr_off, cur_pld_off, base_pld_off, first_snxt; 20191 int num_burst_seg, max_pld; 20192 pdesc_t *pkt; 20193 tcp_pdescinfo_t tcp_pkt_info; 20194 pdescinfo_t *pkt_info; 20195 int pbuf_idx, pbuf_idx_nxt; 20196 int seg_len, len, spill, af; 20197 boolean_t add_buffer, zcopy, clusterwide; 20198 boolean_t rconfirm = B_FALSE; 20199 boolean_t done = B_FALSE; 20200 uint32_t cksum; 20201 uint32_t hwcksum_flags; 20202 ire_t *ire = NULL; 20203 ill_t *ill; 20204 ipha_t *ipha; 20205 ip6_t *ip6h; 20206 ipaddr_t src, dst; 20207 ill_zerocopy_capab_t *zc_cap = NULL; 20208 uint16_t *up; 20209 int err; 20210 conn_t *connp; 20211 tcp_stack_t *tcps = tcp->tcp_tcps; 20212 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 20213 int usable_mmd, tail_unsent_mmd; 20214 uint_t snxt_mmd, obsegs_mmd, obbytes_mmd; 20215 mblk_t *xmit_tail_mmd; 20216 20217 #ifdef _BIG_ENDIAN 20218 #define IPVER(ip6h) ((((uint32_t *)ip6h)[0] >> 28) & 0x7) 20219 #else 20220 #define IPVER(ip6h) ((((uint32_t *)ip6h)[0] >> 4) & 0x7) 20221 #endif 20222 20223 #define PREP_NEW_MULTIDATA() { \ 20224 mmd = NULL; \ 20225 md_mp = md_hbuf = NULL; \ 20226 cur_hdr_off = 0; \ 20227 max_pld = tcp->tcp_mdt_max_pld; \ 20228 pbuf_idx = pbuf_idx_nxt = -1; \ 20229 add_buffer = B_TRUE; \ 20230 zcopy = B_FALSE; \ 20231 } 20232 20233 #define PREP_NEW_PBUF() { \ 20234 md_pbuf = md_pbuf_nxt = NULL; \ 20235 pbuf_idx = pbuf_idx_nxt = -1; \ 20236 cur_pld_off = 0; \ 20237 first_snxt = *snxt; \ 20238 ASSERT(*tail_unsent > 0); \ 20239 base_pld_off = MBLKL(*xmit_tail) - *tail_unsent; \ 20240 } 20241 20242 ASSERT(mdt_thres >= mss); 20243 ASSERT(*usable > 0 && *usable > mdt_thres); 20244 ASSERT(tcp->tcp_state == TCPS_ESTABLISHED); 20245 ASSERT(!TCP_IS_DETACHED(tcp)); 20246 ASSERT(tcp->tcp_valid_bits == 0 || 20247 tcp->tcp_valid_bits == TCP_FSS_VALID); 20248 ASSERT((tcp->tcp_ipversion == IPV4_VERSION && 20249 tcp->tcp_ip_hdr_len == IP_SIMPLE_HDR_LENGTH) || 20250 (tcp->tcp_ipversion == IPV6_VERSION && 20251 tcp->tcp_ip_hdr_len == IPV6_HDR_LEN)); 20252 20253 connp = tcp->tcp_connp; 20254 ASSERT(connp != NULL); 20255 ASSERT(CONN_IS_LSO_MD_FASTPATH(connp)); 20256 ASSERT(!CONN_IPSEC_OUT_ENCAPSULATED(connp)); 20257 20258 usable_mmd = tail_unsent_mmd = 0; 20259 snxt_mmd = obsegs_mmd = obbytes_mmd = 0; 20260 xmit_tail_mmd = NULL; 20261 /* 20262 * Note that tcp will only declare at most 2 payload spans per 20263 * packet, which is much lower than the maximum allowable number 20264 * of packet spans per Multidata. For this reason, we use the 20265 * privately declared and smaller descriptor info structure, in 20266 * order to save some stack space. 20267 */ 20268 pkt_info = (pdescinfo_t *)&tcp_pkt_info; 20269 20270 af = (tcp->tcp_ipversion == IPV4_VERSION) ? AF_INET : AF_INET6; 20271 if (af == AF_INET) { 20272 dst = tcp->tcp_ipha->ipha_dst; 20273 src = tcp->tcp_ipha->ipha_src; 20274 ASSERT(!CLASSD(dst)); 20275 } 20276 ASSERT(af == AF_INET || 20277 !IN6_IS_ADDR_MULTICAST(&tcp->tcp_ip6h->ip6_dst)); 20278 20279 obsegs = obbytes = 0; 20280 num_burst_seg = tcp->tcp_snd_burst; 20281 md_mp_head = NULL; 20282 PREP_NEW_MULTIDATA(); 20283 20284 /* 20285 * Before we go on further, make sure there is an IRE that we can 20286 * use, and that the ILL supports MDT. Otherwise, there's no point 20287 * in proceeding any further, and we should just hand everything 20288 * off to the legacy path. 20289 */ 20290 if (!tcp_send_find_ire(tcp, (af == AF_INET) ? &dst : NULL, &ire)) 20291 goto legacy_send_no_md; 20292 20293 ASSERT(ire != NULL); 20294 ASSERT(af != AF_INET || ire->ire_ipversion == IPV4_VERSION); 20295 ASSERT(af == AF_INET || !IN6_IS_ADDR_V4MAPPED(&(ire->ire_addr_v6))); 20296 ASSERT(af == AF_INET || ire->ire_nce != NULL); 20297 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 20298 /* 20299 * If we do support loopback for MDT (which requires modifications 20300 * to the receiving paths), the following assertions should go away, 20301 * and we would be sending the Multidata to loopback conn later on. 20302 */ 20303 ASSERT(!IRE_IS_LOCAL(ire)); 20304 ASSERT(ire->ire_stq != NULL); 20305 20306 ill = ire_to_ill(ire); 20307 ASSERT(ill != NULL); 20308 ASSERT(!ILL_MDT_CAPABLE(ill) || ill->ill_mdt_capab != NULL); 20309 20310 if (!tcp->tcp_ire_ill_check_done) { 20311 tcp_ire_ill_check(tcp, ire, ill, B_TRUE); 20312 tcp->tcp_ire_ill_check_done = B_TRUE; 20313 } 20314 20315 /* 20316 * If the underlying interface conditions have changed, or if the 20317 * new interface does not support MDT, go back to legacy path. 20318 */ 20319 if (!ILL_MDT_USABLE(ill) || (ire->ire_flags & RTF_MULTIRT) != 0) { 20320 /* don't go through this path anymore for this connection */ 20321 TCP_STAT(tcps, tcp_mdt_conn_halted2); 20322 tcp->tcp_mdt = B_FALSE; 20323 ip1dbg(("tcp_multisend: disabling MDT for connp %p on " 20324 "interface %s\n", (void *)connp, ill->ill_name)); 20325 /* IRE will be released prior to returning */ 20326 goto legacy_send_no_md; 20327 } 20328 20329 if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) 20330 zc_cap = ill->ill_zerocopy_capab; 20331 20332 /* 20333 * Check if we can take tcp fast-path. Note that "incomplete" 20334 * ire's (where the link-layer for next hop is not resolved 20335 * or where the fast-path header in nce_fp_mp is not available 20336 * yet) are sent down the legacy (slow) path. 20337 * NOTE: We should fix ip_xmit_v4 to handle M_MULTIDATA 20338 */ 20339 if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) { 20340 /* IRE will be released prior to returning */ 20341 goto legacy_send_no_md; 20342 } 20343 20344 /* go to legacy path if interface doesn't support zerocopy */ 20345 if (tcp->tcp_snd_zcopy_aware && do_tcpzcopy != 2 && 20346 (zc_cap == NULL || zc_cap->ill_zerocopy_flags == 0)) { 20347 /* IRE will be released prior to returning */ 20348 goto legacy_send_no_md; 20349 } 20350 20351 /* does the interface support hardware checksum offload? */ 20352 hwcksum_flags = 0; 20353 if (ILL_HCKSUM_CAPABLE(ill) && 20354 (ill->ill_hcksum_capab->ill_hcksum_txflags & 20355 (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6 | HCKSUM_INET_PARTIAL | 20356 HCKSUM_IPHDRCKSUM)) && dohwcksum) { 20357 if (ill->ill_hcksum_capab->ill_hcksum_txflags & 20358 HCKSUM_IPHDRCKSUM) 20359 hwcksum_flags = HCK_IPV4_HDRCKSUM; 20360 20361 if (ill->ill_hcksum_capab->ill_hcksum_txflags & 20362 (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6)) 20363 hwcksum_flags |= HCK_FULLCKSUM; 20364 else if (ill->ill_hcksum_capab->ill_hcksum_txflags & 20365 HCKSUM_INET_PARTIAL) 20366 hwcksum_flags |= HCK_PARTIALCKSUM; 20367 } 20368 20369 /* 20370 * Each header fragment consists of the leading extra space, 20371 * followed by the TCP/IP header, and the trailing extra space. 20372 * We make sure that each header fragment begins on a 32-bit 20373 * aligned memory address (tcp_mdt_hdr_head is already 32-bit 20374 * aligned in tcp_mdt_update). 20375 */ 20376 hdr_frag_sz = roundup((tcp->tcp_mdt_hdr_head + tcp_hdr_len + 20377 tcp->tcp_mdt_hdr_tail), 4); 20378 20379 /* are we starting from the beginning of data block? */ 20380 if (*tail_unsent == 0) { 20381 *xmit_tail = (*xmit_tail)->b_cont; 20382 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= (uintptr_t)INT_MAX); 20383 *tail_unsent = (int)MBLKL(*xmit_tail); 20384 } 20385 20386 /* 20387 * Here we create one or more Multidata messages, each made up of 20388 * one header buffer and up to N payload buffers. This entire 20389 * operation is done within two loops: 20390 * 20391 * The outer loop mostly deals with creating the Multidata message, 20392 * as well as the header buffer that gets added to it. It also 20393 * links the Multidata messages together such that all of them can 20394 * be sent down to the lower layer in a single putnext call; this 20395 * linking behavior depends on the tcp_mdt_chain tunable. 20396 * 20397 * The inner loop takes an existing Multidata message, and adds 20398 * one or more (up to tcp_mdt_max_pld) payload buffers to it. It 20399 * packetizes those buffers by filling up the corresponding header 20400 * buffer fragments with the proper IP and TCP headers, and by 20401 * describing the layout of each packet in the packet descriptors 20402 * that get added to the Multidata. 20403 */ 20404 do { 20405 /* 20406 * If usable send window is too small, or data blocks in 20407 * transmit list are smaller than our threshold (i.e. app 20408 * performs large writes followed by small ones), we hand 20409 * off the control over to the legacy path. Note that we'll 20410 * get back the control once it encounters a large block. 20411 */ 20412 if (*usable < mss || (*tail_unsent <= mdt_thres && 20413 (*xmit_tail)->b_cont != NULL && 20414 MBLKL((*xmit_tail)->b_cont) <= mdt_thres)) { 20415 /* send down what we've got so far */ 20416 if (md_mp_head != NULL) { 20417 tcp_multisend_data(tcp, ire, ill, md_mp_head, 20418 obsegs, obbytes, &rconfirm); 20419 } 20420 /* 20421 * Pass control over to tcp_send(), but tell it to 20422 * return to us once a large-size transmission is 20423 * possible. 20424 */ 20425 TCP_STAT(tcps, tcp_mdt_legacy_small); 20426 if ((err = tcp_send(q, tcp, mss, tcp_hdr_len, 20427 tcp_tcp_hdr_len, num_sack_blk, usable, snxt, 20428 tail_unsent, xmit_tail, local_time, 20429 mdt_thres)) <= 0) { 20430 /* burst count reached, or alloc failed */ 20431 IRE_REFRELE(ire); 20432 return (err); 20433 } 20434 20435 /* tcp_send() may have sent everything, so check */ 20436 if (*usable <= 0) { 20437 IRE_REFRELE(ire); 20438 return (0); 20439 } 20440 20441 TCP_STAT(tcps, tcp_mdt_legacy_ret); 20442 /* 20443 * We may have delivered the Multidata, so make sure 20444 * to re-initialize before the next round. 20445 */ 20446 md_mp_head = NULL; 20447 obsegs = obbytes = 0; 20448 num_burst_seg = tcp->tcp_snd_burst; 20449 PREP_NEW_MULTIDATA(); 20450 20451 /* are we starting from the beginning of data block? */ 20452 if (*tail_unsent == 0) { 20453 *xmit_tail = (*xmit_tail)->b_cont; 20454 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 20455 (uintptr_t)INT_MAX); 20456 *tail_unsent = (int)MBLKL(*xmit_tail); 20457 } 20458 } 20459 /* 20460 * Record current values for parameters we may need to pass 20461 * to tcp_send() or tcp_multisend_data(). We checkpoint at 20462 * each iteration of the outer loop (each multidata message 20463 * creation). If we have a failure in the inner loop, we send 20464 * any complete multidata messages we have before reverting 20465 * to using the traditional non-md path. 20466 */ 20467 snxt_mmd = *snxt; 20468 usable_mmd = *usable; 20469 xmit_tail_mmd = *xmit_tail; 20470 tail_unsent_mmd = *tail_unsent; 20471 obsegs_mmd = obsegs; 20472 obbytes_mmd = obbytes; 20473 20474 /* 20475 * max_pld limits the number of mblks in tcp's transmit 20476 * queue that can be added to a Multidata message. Once 20477 * this counter reaches zero, no more additional mblks 20478 * can be added to it. What happens afterwards depends 20479 * on whether or not we are set to chain the Multidata 20480 * messages. If we are to link them together, reset 20481 * max_pld to its original value (tcp_mdt_max_pld) and 20482 * prepare to create a new Multidata message which will 20483 * get linked to md_mp_head. Else, leave it alone and 20484 * let the inner loop break on its own. 20485 */ 20486 if (tcp_mdt_chain && max_pld == 0) 20487 PREP_NEW_MULTIDATA(); 20488 20489 /* adding a payload buffer; re-initialize values */ 20490 if (add_buffer) 20491 PREP_NEW_PBUF(); 20492 20493 /* 20494 * If we don't have a Multidata, either because we just 20495 * (re)entered this outer loop, or after we branched off 20496 * to tcp_send above, setup the Multidata and header 20497 * buffer to be used. 20498 */ 20499 if (md_mp == NULL) { 20500 int md_hbuflen; 20501 uint32_t start, stuff; 20502 20503 /* 20504 * Calculate Multidata header buffer size large enough 20505 * to hold all of the headers that can possibly be 20506 * sent at this moment. We'd rather over-estimate 20507 * the size than running out of space; this is okay 20508 * since this buffer is small anyway. 20509 */ 20510 md_hbuflen = (howmany(*usable, mss) + 1) * hdr_frag_sz; 20511 20512 /* 20513 * Start and stuff offset for partial hardware 20514 * checksum offload; these are currently for IPv4. 20515 * For full checksum offload, they are set to zero. 20516 */ 20517 if ((hwcksum_flags & HCK_PARTIALCKSUM)) { 20518 if (af == AF_INET) { 20519 start = IP_SIMPLE_HDR_LENGTH; 20520 stuff = IP_SIMPLE_HDR_LENGTH + 20521 TCP_CHECKSUM_OFFSET; 20522 } else { 20523 start = IPV6_HDR_LEN; 20524 stuff = IPV6_HDR_LEN + 20525 TCP_CHECKSUM_OFFSET; 20526 } 20527 } else { 20528 start = stuff = 0; 20529 } 20530 20531 /* 20532 * Create the header buffer, Multidata, as well as 20533 * any necessary attributes (destination address, 20534 * SAP and hardware checksum offload) that should 20535 * be associated with the Multidata message. 20536 */ 20537 ASSERT(cur_hdr_off == 0); 20538 if ((md_hbuf = allocb(md_hbuflen, BPRI_HI)) == NULL || 20539 ((md_hbuf->b_wptr += md_hbuflen), 20540 (mmd = mmd_alloc(md_hbuf, &md_mp, 20541 KM_NOSLEEP)) == NULL) || (tcp_mdt_add_attrs(mmd, 20542 /* fastpath mblk */ 20543 ire->ire_nce->nce_res_mp, 20544 /* hardware checksum enabled */ 20545 (hwcksum_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)), 20546 /* hardware checksum offsets */ 20547 start, stuff, 0, 20548 /* hardware checksum flag */ 20549 hwcksum_flags, tcps) != 0)) { 20550 legacy_send: 20551 /* 20552 * We arrive here from a failure within the 20553 * inner (packetizer) loop or we fail one of 20554 * the conditionals above. We restore the 20555 * previously checkpointed values for: 20556 * xmit_tail 20557 * usable 20558 * tail_unsent 20559 * snxt 20560 * obbytes 20561 * obsegs 20562 * We should then be able to dispatch any 20563 * complete multidata before reverting to the 20564 * traditional path with consistent parameters 20565 * (the inner loop updates these as it 20566 * iterates). 20567 */ 20568 *xmit_tail = xmit_tail_mmd; 20569 *usable = usable_mmd; 20570 *tail_unsent = tail_unsent_mmd; 20571 *snxt = snxt_mmd; 20572 obbytes = obbytes_mmd; 20573 obsegs = obsegs_mmd; 20574 if (md_mp != NULL) { 20575 /* Unlink message from the chain */ 20576 if (md_mp_head != NULL) { 20577 err = (intptr_t)rmvb(md_mp_head, 20578 md_mp); 20579 /* 20580 * We can't assert that rmvb 20581 * did not return -1, since we 20582 * may get here before linkb 20583 * happens. We do, however, 20584 * check if we just removed the 20585 * only element in the list. 20586 */ 20587 if (err == 0) 20588 md_mp_head = NULL; 20589 } 20590 /* md_hbuf gets freed automatically */ 20591 TCP_STAT(tcps, tcp_mdt_discarded); 20592 freeb(md_mp); 20593 } else { 20594 /* Either allocb or mmd_alloc failed */ 20595 TCP_STAT(tcps, tcp_mdt_allocfail); 20596 if (md_hbuf != NULL) 20597 freeb(md_hbuf); 20598 } 20599 20600 /* send down what we've got so far */ 20601 if (md_mp_head != NULL) { 20602 tcp_multisend_data(tcp, ire, ill, 20603 md_mp_head, obsegs, obbytes, 20604 &rconfirm); 20605 } 20606 legacy_send_no_md: 20607 if (ire != NULL) 20608 IRE_REFRELE(ire); 20609 /* 20610 * Too bad; let the legacy path handle this. 20611 * We specify INT_MAX for the threshold, since 20612 * we gave up with the Multidata processings 20613 * and let the old path have it all. 20614 */ 20615 TCP_STAT(tcps, tcp_mdt_legacy_all); 20616 return (tcp_send(q, tcp, mss, tcp_hdr_len, 20617 tcp_tcp_hdr_len, num_sack_blk, usable, 20618 snxt, tail_unsent, xmit_tail, local_time, 20619 INT_MAX)); 20620 } 20621 20622 /* link to any existing ones, if applicable */ 20623 TCP_STAT(tcps, tcp_mdt_allocd); 20624 if (md_mp_head == NULL) { 20625 md_mp_head = md_mp; 20626 } else if (tcp_mdt_chain) { 20627 TCP_STAT(tcps, tcp_mdt_linked); 20628 linkb(md_mp_head, md_mp); 20629 } 20630 } 20631 20632 ASSERT(md_mp_head != NULL); 20633 ASSERT(tcp_mdt_chain || md_mp_head->b_cont == NULL); 20634 ASSERT(md_mp != NULL && mmd != NULL); 20635 ASSERT(md_hbuf != NULL); 20636 20637 /* 20638 * Packetize the transmittable portion of the data block; 20639 * each data block is essentially added to the Multidata 20640 * as a payload buffer. We also deal with adding more 20641 * than one payload buffers, which happens when the remaining 20642 * packetized portion of the current payload buffer is less 20643 * than MSS, while the next data block in transmit queue 20644 * has enough data to make up for one. This "spillover" 20645 * case essentially creates a split-packet, where portions 20646 * of the packet's payload fragments may span across two 20647 * virtually discontiguous address blocks. 20648 */ 20649 seg_len = mss; 20650 do { 20651 len = seg_len; 20652 20653 /* one must remain NULL for DTRACE_IP_FASTPATH */ 20654 ipha = NULL; 20655 ip6h = NULL; 20656 20657 ASSERT(len > 0); 20658 ASSERT(max_pld >= 0); 20659 ASSERT(!add_buffer || cur_pld_off == 0); 20660 20661 /* 20662 * First time around for this payload buffer; note 20663 * in the case of a spillover, the following has 20664 * been done prior to adding the split-packet 20665 * descriptor to Multidata, and we don't want to 20666 * repeat the process. 20667 */ 20668 if (add_buffer) { 20669 ASSERT(mmd != NULL); 20670 ASSERT(md_pbuf == NULL); 20671 ASSERT(md_pbuf_nxt == NULL); 20672 ASSERT(pbuf_idx == -1 && pbuf_idx_nxt == -1); 20673 20674 /* 20675 * Have we reached the limit? We'd get to 20676 * this case when we're not chaining the 20677 * Multidata messages together, and since 20678 * we're done, terminate this loop. 20679 */ 20680 if (max_pld == 0) 20681 break; /* done */ 20682 20683 if ((md_pbuf = dupb(*xmit_tail)) == NULL) { 20684 TCP_STAT(tcps, tcp_mdt_allocfail); 20685 goto legacy_send; /* out_of_mem */ 20686 } 20687 20688 if (IS_VMLOANED_MBLK(md_pbuf) && !zcopy && 20689 zc_cap != NULL) { 20690 if (!ip_md_zcopy_attr(mmd, NULL, 20691 zc_cap->ill_zerocopy_flags)) { 20692 freeb(md_pbuf); 20693 TCP_STAT(tcps, 20694 tcp_mdt_allocfail); 20695 /* out_of_mem */ 20696 goto legacy_send; 20697 } 20698 zcopy = B_TRUE; 20699 } 20700 20701 md_pbuf->b_rptr += base_pld_off; 20702 20703 /* 20704 * Add a payload buffer to the Multidata; this 20705 * operation must not fail, or otherwise our 20706 * logic in this routine is broken. There 20707 * is no memory allocation done by the 20708 * routine, so any returned failure simply 20709 * tells us that we've done something wrong. 20710 * 20711 * A failure tells us that either we're adding 20712 * the same payload buffer more than once, or 20713 * we're trying to add more buffers than 20714 * allowed (max_pld calculation is wrong). 20715 * None of the above cases should happen, and 20716 * we panic because either there's horrible 20717 * heap corruption, and/or programming mistake. 20718 */ 20719 pbuf_idx = mmd_addpldbuf(mmd, md_pbuf); 20720 if (pbuf_idx < 0) { 20721 cmn_err(CE_PANIC, "tcp_multisend: " 20722 "payload buffer logic error " 20723 "detected for tcp %p mmd %p " 20724 "pbuf %p (%d)\n", 20725 (void *)tcp, (void *)mmd, 20726 (void *)md_pbuf, pbuf_idx); 20727 } 20728 20729 ASSERT(max_pld > 0); 20730 --max_pld; 20731 add_buffer = B_FALSE; 20732 } 20733 20734 ASSERT(md_mp_head != NULL); 20735 ASSERT(md_pbuf != NULL); 20736 ASSERT(md_pbuf_nxt == NULL); 20737 ASSERT(pbuf_idx != -1); 20738 ASSERT(pbuf_idx_nxt == -1); 20739 ASSERT(*usable > 0); 20740 20741 /* 20742 * We spillover to the next payload buffer only 20743 * if all of the following is true: 20744 * 20745 * 1. There is not enough data on the current 20746 * payload buffer to make up `len', 20747 * 2. We are allowed to send `len', 20748 * 3. The next payload buffer length is large 20749 * enough to accomodate `spill'. 20750 */ 20751 if ((spill = len - *tail_unsent) > 0 && 20752 *usable >= len && 20753 MBLKL((*xmit_tail)->b_cont) >= spill && 20754 max_pld > 0) { 20755 md_pbuf_nxt = dupb((*xmit_tail)->b_cont); 20756 if (md_pbuf_nxt == NULL) { 20757 TCP_STAT(tcps, tcp_mdt_allocfail); 20758 goto legacy_send; /* out_of_mem */ 20759 } 20760 20761 if (IS_VMLOANED_MBLK(md_pbuf_nxt) && !zcopy && 20762 zc_cap != NULL) { 20763 if (!ip_md_zcopy_attr(mmd, NULL, 20764 zc_cap->ill_zerocopy_flags)) { 20765 freeb(md_pbuf_nxt); 20766 TCP_STAT(tcps, 20767 tcp_mdt_allocfail); 20768 /* out_of_mem */ 20769 goto legacy_send; 20770 } 20771 zcopy = B_TRUE; 20772 } 20773 20774 /* 20775 * See comments above on the first call to 20776 * mmd_addpldbuf for explanation on the panic. 20777 */ 20778 pbuf_idx_nxt = mmd_addpldbuf(mmd, md_pbuf_nxt); 20779 if (pbuf_idx_nxt < 0) { 20780 panic("tcp_multisend: " 20781 "next payload buffer logic error " 20782 "detected for tcp %p mmd %p " 20783 "pbuf %p (%d)\n", 20784 (void *)tcp, (void *)mmd, 20785 (void *)md_pbuf_nxt, pbuf_idx_nxt); 20786 } 20787 20788 ASSERT(max_pld > 0); 20789 --max_pld; 20790 } else if (spill > 0) { 20791 /* 20792 * If there's a spillover, but the following 20793 * xmit_tail couldn't give us enough octets 20794 * to reach "len", then stop the current 20795 * Multidata creation and let the legacy 20796 * tcp_send() path take over. We don't want 20797 * to send the tiny segment as part of this 20798 * Multidata for performance reasons; instead, 20799 * we let the legacy path deal with grouping 20800 * it with the subsequent small mblks. 20801 */ 20802 if (*usable >= len && 20803 MBLKL((*xmit_tail)->b_cont) < spill) { 20804 max_pld = 0; 20805 break; /* done */ 20806 } 20807 20808 /* 20809 * We can't spillover, and we are near 20810 * the end of the current payload buffer, 20811 * so send what's left. 20812 */ 20813 ASSERT(*tail_unsent > 0); 20814 len = *tail_unsent; 20815 } 20816 20817 /* tail_unsent is negated if there is a spillover */ 20818 *tail_unsent -= len; 20819 *usable -= len; 20820 ASSERT(*usable >= 0); 20821 20822 if (*usable < mss) 20823 seg_len = *usable; 20824 /* 20825 * Sender SWS avoidance; see comments in tcp_send(); 20826 * everything else is the same, except that we only 20827 * do this here if there is no more data to be sent 20828 * following the current xmit_tail. We don't check 20829 * for 1-byte urgent data because we shouldn't get 20830 * here if TCP_URG_VALID is set. 20831 */ 20832 if (*usable > 0 && *usable < mss && 20833 ((md_pbuf_nxt == NULL && 20834 (*xmit_tail)->b_cont == NULL) || 20835 (md_pbuf_nxt != NULL && 20836 (*xmit_tail)->b_cont->b_cont == NULL)) && 20837 seg_len < (tcp->tcp_max_swnd >> 1) && 20838 (tcp->tcp_unsent - 20839 ((*snxt + len) - tcp->tcp_snxt)) > seg_len && 20840 !tcp->tcp_zero_win_probe) { 20841 if ((*snxt + len) == tcp->tcp_snxt && 20842 (*snxt + len) == tcp->tcp_suna) { 20843 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 20844 } 20845 done = B_TRUE; 20846 } 20847 20848 /* 20849 * Prime pump for IP's checksumming on our behalf; 20850 * include the adjustment for a source route if any. 20851 * Do this only for software/partial hardware checksum 20852 * offload, as this field gets zeroed out later for 20853 * the full hardware checksum offload case. 20854 */ 20855 if (!(hwcksum_flags & HCK_FULLCKSUM)) { 20856 cksum = len + tcp_tcp_hdr_len + tcp->tcp_sum; 20857 cksum = (cksum >> 16) + (cksum & 0xFFFF); 20858 U16_TO_ABE16(cksum, tcp->tcp_tcph->th_sum); 20859 } 20860 20861 U32_TO_ABE32(*snxt, tcp->tcp_tcph->th_seq); 20862 *snxt += len; 20863 20864 tcp->tcp_tcph->th_flags[0] = TH_ACK; 20865 /* 20866 * We set the PUSH bit only if TCP has no more buffered 20867 * data to be transmitted (or if sender SWS avoidance 20868 * takes place), as opposed to setting it for every 20869 * last packet in the burst. 20870 */ 20871 if (done || 20872 (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) == 0) 20873 tcp->tcp_tcph->th_flags[0] |= TH_PUSH; 20874 20875 /* 20876 * Set FIN bit if this is our last segment; snxt 20877 * already includes its length, and it will not 20878 * be adjusted after this point. 20879 */ 20880 if (tcp->tcp_valid_bits == TCP_FSS_VALID && 20881 *snxt == tcp->tcp_fss) { 20882 if (!tcp->tcp_fin_acked) { 20883 tcp->tcp_tcph->th_flags[0] |= TH_FIN; 20884 BUMP_MIB(&tcps->tcps_mib, 20885 tcpOutControl); 20886 } 20887 if (!tcp->tcp_fin_sent) { 20888 tcp->tcp_fin_sent = B_TRUE; 20889 /* 20890 * tcp state must be ESTABLISHED 20891 * in order for us to get here in 20892 * the first place. 20893 */ 20894 tcp->tcp_state = TCPS_FIN_WAIT_1; 20895 20896 /* 20897 * Upon returning from this routine, 20898 * tcp_wput_data() will set tcp_snxt 20899 * to be equal to snxt + tcp_fin_sent. 20900 * This is essentially the same as 20901 * setting it to tcp_fss + 1. 20902 */ 20903 } 20904 } 20905 20906 tcp->tcp_last_sent_len = (ushort_t)len; 20907 20908 len += tcp_hdr_len; 20909 if (tcp->tcp_ipversion == IPV4_VERSION) 20910 tcp->tcp_ipha->ipha_length = htons(len); 20911 else 20912 tcp->tcp_ip6h->ip6_plen = htons(len - 20913 ((char *)&tcp->tcp_ip6h[1] - 20914 tcp->tcp_iphc)); 20915 20916 pkt_info->flags = (PDESC_HBUF_REF | PDESC_PBUF_REF); 20917 20918 /* setup header fragment */ 20919 PDESC_HDR_ADD(pkt_info, 20920 md_hbuf->b_rptr + cur_hdr_off, /* base */ 20921 tcp->tcp_mdt_hdr_head, /* head room */ 20922 tcp_hdr_len, /* len */ 20923 tcp->tcp_mdt_hdr_tail); /* tail room */ 20924 20925 ASSERT(pkt_info->hdr_lim - pkt_info->hdr_base == 20926 hdr_frag_sz); 20927 ASSERT(MBLKIN(md_hbuf, 20928 (pkt_info->hdr_base - md_hbuf->b_rptr), 20929 PDESC_HDRSIZE(pkt_info))); 20930 20931 /* setup first payload fragment */ 20932 PDESC_PLD_INIT(pkt_info); 20933 PDESC_PLD_SPAN_ADD(pkt_info, 20934 pbuf_idx, /* index */ 20935 md_pbuf->b_rptr + cur_pld_off, /* start */ 20936 tcp->tcp_last_sent_len); /* len */ 20937 20938 /* create a split-packet in case of a spillover */ 20939 if (md_pbuf_nxt != NULL) { 20940 ASSERT(spill > 0); 20941 ASSERT(pbuf_idx_nxt > pbuf_idx); 20942 ASSERT(!add_buffer); 20943 20944 md_pbuf = md_pbuf_nxt; 20945 md_pbuf_nxt = NULL; 20946 pbuf_idx = pbuf_idx_nxt; 20947 pbuf_idx_nxt = -1; 20948 cur_pld_off = spill; 20949 20950 /* trim out first payload fragment */ 20951 PDESC_PLD_SPAN_TRIM(pkt_info, 0, spill); 20952 20953 /* setup second payload fragment */ 20954 PDESC_PLD_SPAN_ADD(pkt_info, 20955 pbuf_idx, /* index */ 20956 md_pbuf->b_rptr, /* start */ 20957 spill); /* len */ 20958 20959 if ((*xmit_tail)->b_next == NULL) { 20960 /* 20961 * Store the lbolt used for RTT 20962 * estimation. We can only record one 20963 * timestamp per mblk so we do it when 20964 * we reach the end of the payload 20965 * buffer. Also we only take a new 20966 * timestamp sample when the previous 20967 * timed data from the same mblk has 20968 * been ack'ed. 20969 */ 20970 (*xmit_tail)->b_prev = local_time; 20971 (*xmit_tail)->b_next = 20972 (mblk_t *)(uintptr_t)first_snxt; 20973 } 20974 20975 first_snxt = *snxt - spill; 20976 20977 /* 20978 * Advance xmit_tail; usable could be 0 by 20979 * the time we got here, but we made sure 20980 * above that we would only spillover to 20981 * the next data block if usable includes 20982 * the spilled-over amount prior to the 20983 * subtraction. Therefore, we are sure 20984 * that xmit_tail->b_cont can't be NULL. 20985 */ 20986 ASSERT((*xmit_tail)->b_cont != NULL); 20987 *xmit_tail = (*xmit_tail)->b_cont; 20988 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 20989 (uintptr_t)INT_MAX); 20990 *tail_unsent = (int)MBLKL(*xmit_tail) - spill; 20991 } else { 20992 cur_pld_off += tcp->tcp_last_sent_len; 20993 } 20994 20995 /* 20996 * Fill in the header using the template header, and 20997 * add options such as time-stamp, ECN and/or SACK, 20998 * as needed. 20999 */ 21000 tcp_fill_header(tcp, pkt_info->hdr_rptr, 21001 (clock_t)local_time, num_sack_blk); 21002 21003 /* take care of some IP header businesses */ 21004 if (af == AF_INET) { 21005 ipha = (ipha_t *)pkt_info->hdr_rptr; 21006 21007 ASSERT(OK_32PTR((uchar_t *)ipha)); 21008 ASSERT(PDESC_HDRL(pkt_info) >= 21009 IP_SIMPLE_HDR_LENGTH); 21010 ASSERT(ipha->ipha_version_and_hdr_length == 21011 IP_SIMPLE_HDR_VERSION); 21012 21013 /* 21014 * Assign ident value for current packet; see 21015 * related comments in ip_wput_ire() about the 21016 * contract private interface with clustering 21017 * group. 21018 */ 21019 clusterwide = B_FALSE; 21020 if (cl_inet_ipident != NULL) { 21021 ASSERT(cl_inet_isclusterwide != NULL); 21022 if ((*cl_inet_isclusterwide)(IPPROTO_IP, 21023 AF_INET, 21024 (uint8_t *)(uintptr_t)src)) { 21025 ipha->ipha_ident = 21026 (*cl_inet_ipident) 21027 (IPPROTO_IP, AF_INET, 21028 (uint8_t *)(uintptr_t)src, 21029 (uint8_t *)(uintptr_t)dst); 21030 clusterwide = B_TRUE; 21031 } 21032 } 21033 21034 if (!clusterwide) { 21035 ipha->ipha_ident = (uint16_t) 21036 atomic_add_32_nv( 21037 &ire->ire_ident, 1); 21038 } 21039 #ifndef _BIG_ENDIAN 21040 ipha->ipha_ident = (ipha->ipha_ident << 8) | 21041 (ipha->ipha_ident >> 8); 21042 #endif 21043 } else { 21044 ip6h = (ip6_t *)pkt_info->hdr_rptr; 21045 21046 ASSERT(OK_32PTR((uchar_t *)ip6h)); 21047 ASSERT(IPVER(ip6h) == IPV6_VERSION); 21048 ASSERT(ip6h->ip6_nxt == IPPROTO_TCP); 21049 ASSERT(PDESC_HDRL(pkt_info) >= 21050 (IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET + 21051 TCP_CHECKSUM_SIZE)); 21052 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 21053 21054 if (tcp->tcp_ip_forward_progress) { 21055 rconfirm = B_TRUE; 21056 tcp->tcp_ip_forward_progress = B_FALSE; 21057 } 21058 } 21059 21060 /* at least one payload span, and at most two */ 21061 ASSERT(pkt_info->pld_cnt > 0 && pkt_info->pld_cnt < 3); 21062 21063 /* add the packet descriptor to Multidata */ 21064 if ((pkt = mmd_addpdesc(mmd, pkt_info, &err, 21065 KM_NOSLEEP)) == NULL) { 21066 /* 21067 * Any failure other than ENOMEM indicates 21068 * that we have passed in invalid pkt_info 21069 * or parameters to mmd_addpdesc, which must 21070 * not happen. 21071 * 21072 * EINVAL is a result of failure on boundary 21073 * checks against the pkt_info contents. It 21074 * should not happen, and we panic because 21075 * either there's horrible heap corruption, 21076 * and/or programming mistake. 21077 */ 21078 if (err != ENOMEM) { 21079 cmn_err(CE_PANIC, "tcp_multisend: " 21080 "pdesc logic error detected for " 21081 "tcp %p mmd %p pinfo %p (%d)\n", 21082 (void *)tcp, (void *)mmd, 21083 (void *)pkt_info, err); 21084 } 21085 TCP_STAT(tcps, tcp_mdt_addpdescfail); 21086 goto legacy_send; /* out_of_mem */ 21087 } 21088 ASSERT(pkt != NULL); 21089 21090 /* calculate IP header and TCP checksums */ 21091 if (af == AF_INET) { 21092 /* calculate pseudo-header checksum */ 21093 cksum = (dst >> 16) + (dst & 0xFFFF) + 21094 (src >> 16) + (src & 0xFFFF); 21095 21096 /* offset for TCP header checksum */ 21097 up = IPH_TCPH_CHECKSUMP(ipha, 21098 IP_SIMPLE_HDR_LENGTH); 21099 } else { 21100 up = (uint16_t *)&ip6h->ip6_src; 21101 21102 /* calculate pseudo-header checksum */ 21103 cksum = up[0] + up[1] + up[2] + up[3] + 21104 up[4] + up[5] + up[6] + up[7] + 21105 up[8] + up[9] + up[10] + up[11] + 21106 up[12] + up[13] + up[14] + up[15]; 21107 21108 /* Fold the initial sum */ 21109 cksum = (cksum & 0xffff) + (cksum >> 16); 21110 21111 up = (uint16_t *)(((uchar_t *)ip6h) + 21112 IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET); 21113 } 21114 21115 if (hwcksum_flags & HCK_FULLCKSUM) { 21116 /* clear checksum field for hardware */ 21117 *up = 0; 21118 } else if (hwcksum_flags & HCK_PARTIALCKSUM) { 21119 uint32_t sum; 21120 21121 /* pseudo-header checksumming */ 21122 sum = *up + cksum + IP_TCP_CSUM_COMP; 21123 sum = (sum & 0xFFFF) + (sum >> 16); 21124 *up = (sum & 0xFFFF) + (sum >> 16); 21125 } else { 21126 /* software checksumming */ 21127 TCP_STAT(tcps, tcp_out_sw_cksum); 21128 TCP_STAT_UPDATE(tcps, tcp_out_sw_cksum_bytes, 21129 tcp->tcp_hdr_len + tcp->tcp_last_sent_len); 21130 *up = IP_MD_CSUM(pkt, tcp->tcp_ip_hdr_len, 21131 cksum + IP_TCP_CSUM_COMP); 21132 if (*up == 0) 21133 *up = 0xFFFF; 21134 } 21135 21136 /* IPv4 header checksum */ 21137 if (af == AF_INET) { 21138 if (hwcksum_flags & HCK_IPV4_HDRCKSUM) { 21139 ipha->ipha_hdr_checksum = 0; 21140 } else { 21141 IP_HDR_CKSUM(ipha, cksum, 21142 ((uint32_t *)ipha)[0], 21143 ((uint16_t *)ipha)[4]); 21144 } 21145 } 21146 21147 if (af == AF_INET && 21148 HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) || 21149 af == AF_INET6 && 21150 HOOKS6_INTERESTED_PHYSICAL_OUT(ipst)) { 21151 mblk_t *mp, *mp1; 21152 uchar_t *hdr_rptr, *hdr_wptr; 21153 uchar_t *pld_rptr, *pld_wptr; 21154 21155 /* 21156 * We reconstruct a pseudo packet for the hooks 21157 * framework using mmd_transform_link(). 21158 * If it is a split packet we pullup the 21159 * payload. FW_HOOKS expects a pkt comprising 21160 * of two mblks: a header and the payload. 21161 */ 21162 if ((mp = mmd_transform_link(pkt)) == NULL) { 21163 TCP_STAT(tcps, tcp_mdt_allocfail); 21164 goto legacy_send; 21165 } 21166 21167 if (pkt_info->pld_cnt > 1) { 21168 /* split payload, more than one pld */ 21169 if ((mp1 = msgpullup(mp->b_cont, -1)) == 21170 NULL) { 21171 freemsg(mp); 21172 TCP_STAT(tcps, 21173 tcp_mdt_allocfail); 21174 goto legacy_send; 21175 } 21176 freemsg(mp->b_cont); 21177 mp->b_cont = mp1; 21178 } else { 21179 mp1 = mp->b_cont; 21180 } 21181 ASSERT(mp1 != NULL && mp1->b_cont == NULL); 21182 21183 /* 21184 * Remember the message offsets. This is so we 21185 * can detect changes when we return from the 21186 * FW_HOOKS callbacks. 21187 */ 21188 hdr_rptr = mp->b_rptr; 21189 hdr_wptr = mp->b_wptr; 21190 pld_rptr = mp->b_cont->b_rptr; 21191 pld_wptr = mp->b_cont->b_wptr; 21192 21193 if (af == AF_INET) { 21194 DTRACE_PROBE4( 21195 ip4__physical__out__start, 21196 ill_t *, NULL, 21197 ill_t *, ill, 21198 ipha_t *, ipha, 21199 mblk_t *, mp); 21200 FW_HOOKS( 21201 ipst->ips_ip4_physical_out_event, 21202 ipst->ips_ipv4firewall_physical_out, 21203 NULL, ill, ipha, mp, mp, 0, ipst); 21204 DTRACE_PROBE1( 21205 ip4__physical__out__end, 21206 mblk_t *, mp); 21207 } else { 21208 DTRACE_PROBE4( 21209 ip6__physical__out_start, 21210 ill_t *, NULL, 21211 ill_t *, ill, 21212 ip6_t *, ip6h, 21213 mblk_t *, mp); 21214 FW_HOOKS6( 21215 ipst->ips_ip6_physical_out_event, 21216 ipst->ips_ipv6firewall_physical_out, 21217 NULL, ill, ip6h, mp, mp, 0, ipst); 21218 DTRACE_PROBE1( 21219 ip6__physical__out__end, 21220 mblk_t *, mp); 21221 } 21222 21223 if (mp == NULL || 21224 (mp1 = mp->b_cont) == NULL || 21225 mp->b_rptr != hdr_rptr || 21226 mp->b_wptr != hdr_wptr || 21227 mp1->b_rptr != pld_rptr || 21228 mp1->b_wptr != pld_wptr || 21229 mp1->b_cont != NULL) { 21230 /* 21231 * We abandon multidata processing and 21232 * return to the normal path, either 21233 * when a packet is blocked, or when 21234 * the boundaries of header buffer or 21235 * payload buffer have been changed by 21236 * FW_HOOKS[6]. 21237 */ 21238 if (mp != NULL) 21239 freemsg(mp); 21240 goto legacy_send; 21241 } 21242 /* Finished with the pseudo packet */ 21243 freemsg(mp); 21244 } 21245 DTRACE_IP_FASTPATH(md_hbuf, pkt_info->hdr_rptr, 21246 ill, ipha, ip6h); 21247 /* advance header offset */ 21248 cur_hdr_off += hdr_frag_sz; 21249 21250 obbytes += tcp->tcp_last_sent_len; 21251 ++obsegs; 21252 } while (!done && *usable > 0 && --num_burst_seg > 0 && 21253 *tail_unsent > 0); 21254 21255 if ((*xmit_tail)->b_next == NULL) { 21256 /* 21257 * Store the lbolt used for RTT estimation. We can only 21258 * record one timestamp per mblk so we do it when we 21259 * reach the end of the payload buffer. Also we only 21260 * take a new timestamp sample when the previous timed 21261 * data from the same mblk has been ack'ed. 21262 */ 21263 (*xmit_tail)->b_prev = local_time; 21264 (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)first_snxt; 21265 } 21266 21267 ASSERT(*tail_unsent >= 0); 21268 if (*tail_unsent > 0) { 21269 /* 21270 * We got here because we broke out of the above 21271 * loop due to of one of the following cases: 21272 * 21273 * 1. len < adjusted MSS (i.e. small), 21274 * 2. Sender SWS avoidance, 21275 * 3. max_pld is zero. 21276 * 21277 * We are done for this Multidata, so trim our 21278 * last payload buffer (if any) accordingly. 21279 */ 21280 if (md_pbuf != NULL) 21281 md_pbuf->b_wptr -= *tail_unsent; 21282 } else if (*usable > 0) { 21283 *xmit_tail = (*xmit_tail)->b_cont; 21284 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 21285 (uintptr_t)INT_MAX); 21286 *tail_unsent = (int)MBLKL(*xmit_tail); 21287 add_buffer = B_TRUE; 21288 } 21289 } while (!done && *usable > 0 && num_burst_seg > 0 && 21290 (tcp_mdt_chain || max_pld > 0)); 21291 21292 if (md_mp_head != NULL) { 21293 /* send everything down */ 21294 tcp_multisend_data(tcp, ire, ill, md_mp_head, obsegs, obbytes, 21295 &rconfirm); 21296 } 21297 21298 #undef PREP_NEW_MULTIDATA 21299 #undef PREP_NEW_PBUF 21300 #undef IPVER 21301 21302 IRE_REFRELE(ire); 21303 return (0); 21304 } 21305 21306 /* 21307 * A wrapper function for sending one or more Multidata messages down to 21308 * the module below ip; this routine does not release the reference of the 21309 * IRE (caller does that). This routine is analogous to tcp_send_data(). 21310 */ 21311 static void 21312 tcp_multisend_data(tcp_t *tcp, ire_t *ire, const ill_t *ill, mblk_t *md_mp_head, 21313 const uint_t obsegs, const uint_t obbytes, boolean_t *rconfirm) 21314 { 21315 uint64_t delta; 21316 nce_t *nce; 21317 tcp_stack_t *tcps = tcp->tcp_tcps; 21318 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 21319 21320 ASSERT(ire != NULL && ill != NULL); 21321 ASSERT(ire->ire_stq != NULL); 21322 ASSERT(md_mp_head != NULL); 21323 ASSERT(rconfirm != NULL); 21324 21325 /* adjust MIBs and IRE timestamp */ 21326 DTRACE_PROBE2(tcp__trace__send, mblk_t *, md_mp_head, tcp_t *, tcp); 21327 tcp->tcp_obsegs += obsegs; 21328 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataSegs, obsegs); 21329 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, obbytes); 21330 TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out, obsegs); 21331 21332 if (tcp->tcp_ipversion == IPV4_VERSION) { 21333 TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out_v4, obsegs); 21334 } else { 21335 TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out_v6, obsegs); 21336 } 21337 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests, obsegs); 21338 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, obsegs); 21339 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, obbytes); 21340 21341 ire->ire_ob_pkt_count += obsegs; 21342 if (ire->ire_ipif != NULL) 21343 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, obsegs); 21344 ire->ire_last_used_time = lbolt; 21345 21346 if (ipst->ips_ipobs_enabled) { 21347 multidata_t *dlmdp = mmd_getmultidata(md_mp_head); 21348 pdesc_t *dl_pkt; 21349 pdescinfo_t pinfo; 21350 mblk_t *nmp; 21351 zoneid_t szone = tcp->tcp_connp->conn_zoneid; 21352 21353 for (dl_pkt = mmd_getfirstpdesc(dlmdp, &pinfo); 21354 (dl_pkt != NULL); 21355 dl_pkt = mmd_getnextpdesc(dl_pkt, &pinfo)) { 21356 if ((nmp = mmd_transform_link(dl_pkt)) == NULL) 21357 continue; 21358 ipobs_hook(nmp, IPOBS_HOOK_OUTBOUND, szone, 21359 ALL_ZONES, ill, tcp->tcp_ipversion, 0, ipst); 21360 freemsg(nmp); 21361 } 21362 } 21363 21364 /* send it down */ 21365 putnext(ire->ire_stq, md_mp_head); 21366 21367 /* we're done for TCP/IPv4 */ 21368 if (tcp->tcp_ipversion == IPV4_VERSION) 21369 return; 21370 21371 nce = ire->ire_nce; 21372 21373 ASSERT(nce != NULL); 21374 ASSERT(!(nce->nce_flags & (NCE_F_NONUD|NCE_F_PERMANENT))); 21375 ASSERT(nce->nce_state != ND_INCOMPLETE); 21376 21377 /* reachability confirmation? */ 21378 if (*rconfirm) { 21379 nce->nce_last = TICK_TO_MSEC(lbolt64); 21380 if (nce->nce_state != ND_REACHABLE) { 21381 mutex_enter(&nce->nce_lock); 21382 nce->nce_state = ND_REACHABLE; 21383 nce->nce_pcnt = ND_MAX_UNICAST_SOLICIT; 21384 mutex_exit(&nce->nce_lock); 21385 (void) untimeout(nce->nce_timeout_id); 21386 if (ip_debug > 2) { 21387 /* ip1dbg */ 21388 pr_addr_dbg("tcp_multisend_data: state " 21389 "for %s changed to REACHABLE\n", 21390 AF_INET6, &ire->ire_addr_v6); 21391 } 21392 } 21393 /* reset transport reachability confirmation */ 21394 *rconfirm = B_FALSE; 21395 } 21396 21397 delta = TICK_TO_MSEC(lbolt64) - nce->nce_last; 21398 ip1dbg(("tcp_multisend_data: delta = %" PRId64 21399 " ill_reachable_time = %d \n", delta, ill->ill_reachable_time)); 21400 21401 if (delta > (uint64_t)ill->ill_reachable_time) { 21402 mutex_enter(&nce->nce_lock); 21403 switch (nce->nce_state) { 21404 case ND_REACHABLE: 21405 case ND_STALE: 21406 /* 21407 * ND_REACHABLE is identical to ND_STALE in this 21408 * specific case. If reachable time has expired for 21409 * this neighbor (delta is greater than reachable 21410 * time), conceptually, the neighbor cache is no 21411 * longer in REACHABLE state, but already in STALE 21412 * state. So the correct transition here is to 21413 * ND_DELAY. 21414 */ 21415 nce->nce_state = ND_DELAY; 21416 mutex_exit(&nce->nce_lock); 21417 NDP_RESTART_TIMER(nce, 21418 ipst->ips_delay_first_probe_time); 21419 if (ip_debug > 3) { 21420 /* ip2dbg */ 21421 pr_addr_dbg("tcp_multisend_data: state " 21422 "for %s changed to DELAY\n", 21423 AF_INET6, &ire->ire_addr_v6); 21424 } 21425 break; 21426 case ND_DELAY: 21427 case ND_PROBE: 21428 mutex_exit(&nce->nce_lock); 21429 /* Timers have already started */ 21430 break; 21431 case ND_UNREACHABLE: 21432 /* 21433 * ndp timer has detected that this nce is 21434 * unreachable and initiated deleting this nce 21435 * and all its associated IREs. This is a race 21436 * where we found the ire before it was deleted 21437 * and have just sent out a packet using this 21438 * unreachable nce. 21439 */ 21440 mutex_exit(&nce->nce_lock); 21441 break; 21442 default: 21443 ASSERT(0); 21444 } 21445 } 21446 } 21447 21448 /* 21449 * Derived from tcp_send_data(). 21450 */ 21451 static void 21452 tcp_lsosend_data(tcp_t *tcp, mblk_t *mp, ire_t *ire, ill_t *ill, const int mss, 21453 int num_lso_seg) 21454 { 21455 ipha_t *ipha; 21456 mblk_t *ire_fp_mp; 21457 uint_t ire_fp_mp_len; 21458 uint32_t hcksum_txflags = 0; 21459 ipaddr_t src; 21460 ipaddr_t dst; 21461 uint32_t cksum; 21462 uint16_t *up; 21463 tcp_stack_t *tcps = tcp->tcp_tcps; 21464 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 21465 21466 ASSERT(DB_TYPE(mp) == M_DATA); 21467 ASSERT(tcp->tcp_state == TCPS_ESTABLISHED); 21468 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 21469 ASSERT(tcp->tcp_connp != NULL); 21470 ASSERT(CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp)); 21471 21472 ipha = (ipha_t *)mp->b_rptr; 21473 src = ipha->ipha_src; 21474 dst = ipha->ipha_dst; 21475 21476 DTRACE_PROBE2(tcp__trace__send, mblk_t *, mp, tcp_t *, tcp); 21477 21478 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 21479 ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 21480 num_lso_seg); 21481 #ifndef _BIG_ENDIAN 21482 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 21483 #endif 21484 if (tcp->tcp_snd_zcopy_aware) { 21485 if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 || 21486 (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0)) 21487 mp = tcp_zcopy_disable(tcp, mp); 21488 } 21489 21490 if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) { 21491 ASSERT(ill->ill_hcksum_capab != NULL); 21492 hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags; 21493 } 21494 21495 /* 21496 * Since the TCP checksum should be recalculated by h/w, we can just 21497 * zero the checksum field for HCK_FULLCKSUM, or calculate partial 21498 * pseudo-header checksum for HCK_PARTIALCKSUM. 21499 * The partial pseudo-header excludes TCP length, that was calculated 21500 * in tcp_send(), so to zero *up before further processing. 21501 */ 21502 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 21503 21504 up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH); 21505 *up = 0; 21506 21507 IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up, 21508 IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum); 21509 21510 /* 21511 * Append LSO flags and mss to the mp. 21512 */ 21513 lso_info_set(mp, mss, HW_LSO); 21514 21515 ipha->ipha_fragment_offset_and_flags |= 21516 (uint32_t)htons(ire->ire_frag_flag); 21517 21518 ire_fp_mp = ire->ire_nce->nce_fp_mp; 21519 ire_fp_mp_len = MBLKL(ire_fp_mp); 21520 ASSERT(DB_TYPE(ire_fp_mp) == M_DATA); 21521 mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len; 21522 bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len); 21523 21524 UPDATE_OB_PKT_COUNT(ire); 21525 ire->ire_last_used_time = lbolt; 21526 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 21527 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 21528 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 21529 ntohs(ipha->ipha_length)); 21530 21531 DTRACE_PROBE4(ip4__physical__out__start, 21532 ill_t *, NULL, ill_t *, ill, ipha_t *, ipha, mblk_t *, mp); 21533 FW_HOOKS(ipst->ips_ip4_physical_out_event, 21534 ipst->ips_ipv4firewall_physical_out, NULL, 21535 ill, ipha, mp, mp, 0, ipst); 21536 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 21537 DTRACE_IP_FASTPATH(mp, ipha, ill, ipha, NULL); 21538 21539 if (mp != NULL) { 21540 if (ipst->ips_ipobs_enabled) { 21541 zoneid_t szone; 21542 21543 szone = ip_get_zoneid_v4(ipha->ipha_src, mp, 21544 ipst, ALL_ZONES); 21545 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, 21546 ALL_ZONES, ill, IPV4_VERSION, ire_fp_mp_len, ipst); 21547 } 21548 21549 ILL_SEND_TX(ill, ire, tcp->tcp_connp, mp, 0); 21550 } 21551 } 21552 21553 /* 21554 * tcp_send() is called by tcp_wput_data() for non-Multidata transmission 21555 * scheme, and returns one of the following: 21556 * 21557 * -1 = failed allocation. 21558 * 0 = success; burst count reached, or usable send window is too small, 21559 * and that we'd rather wait until later before sending again. 21560 * 1 = success; we are called from tcp_multisend(), and both usable send 21561 * window and tail_unsent are greater than the MDT threshold, and thus 21562 * Multidata Transmit should be used instead. 21563 */ 21564 static int 21565 tcp_send(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len, 21566 const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable, 21567 uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 21568 const int mdt_thres) 21569 { 21570 int num_burst_seg = tcp->tcp_snd_burst; 21571 ire_t *ire = NULL; 21572 ill_t *ill = NULL; 21573 mblk_t *ire_fp_mp = NULL; 21574 uint_t ire_fp_mp_len = 0; 21575 int num_lso_seg = 1; 21576 uint_t lso_usable; 21577 boolean_t do_lso_send = B_FALSE; 21578 tcp_stack_t *tcps = tcp->tcp_tcps; 21579 21580 /* 21581 * Check LSO capability before any further work. And the similar check 21582 * need to be done in for(;;) loop. 21583 * LSO will be deployed when therer is more than one mss of available 21584 * data and a burst transmission is allowed. 21585 */ 21586 if (tcp->tcp_lso && 21587 (tcp->tcp_valid_bits == 0 || 21588 tcp->tcp_valid_bits == TCP_FSS_VALID) && 21589 num_burst_seg >= 2 && (*usable - 1) / mss >= 1) { 21590 /* 21591 * Try to find usable IRE/ILL and do basic check to the ILL. 21592 */ 21593 if (tcp_send_find_ire_ill(tcp, NULL, &ire, &ill)) { 21594 /* 21595 * Enable LSO with this transmission. 21596 * Since IRE has been hold in 21597 * tcp_send_find_ire_ill(), IRE_REFRELE(ire) 21598 * should be called before return. 21599 */ 21600 do_lso_send = B_TRUE; 21601 ire_fp_mp = ire->ire_nce->nce_fp_mp; 21602 ire_fp_mp_len = MBLKL(ire_fp_mp); 21603 /* Round up to multiple of 4 */ 21604 ire_fp_mp_len = ((ire_fp_mp_len + 3) / 4) * 4; 21605 } else { 21606 do_lso_send = B_FALSE; 21607 ill = NULL; 21608 } 21609 } 21610 21611 for (;;) { 21612 struct datab *db; 21613 tcph_t *tcph; 21614 uint32_t sum; 21615 mblk_t *mp, *mp1; 21616 uchar_t *rptr; 21617 int len; 21618 21619 /* 21620 * If we're called by tcp_multisend(), and the amount of 21621 * sendable data as well as the size of current xmit_tail 21622 * is beyond the MDT threshold, return to the caller and 21623 * let the large data transmit be done using MDT. 21624 */ 21625 if (*usable > 0 && *usable > mdt_thres && 21626 (*tail_unsent > mdt_thres || (*tail_unsent == 0 && 21627 MBLKL((*xmit_tail)->b_cont) > mdt_thres))) { 21628 ASSERT(tcp->tcp_mdt); 21629 return (1); /* success; do large send */ 21630 } 21631 21632 if (num_burst_seg == 0) 21633 break; /* success; burst count reached */ 21634 21635 /* 21636 * Calculate the maximum payload length we can send in *one* 21637 * time. 21638 */ 21639 if (do_lso_send) { 21640 /* 21641 * Check whether need to do LSO any more. 21642 */ 21643 if (num_burst_seg >= 2 && (*usable - 1) / mss >= 1) { 21644 lso_usable = MIN(tcp->tcp_lso_max, *usable); 21645 lso_usable = MIN(lso_usable, 21646 num_burst_seg * mss); 21647 21648 num_lso_seg = lso_usable / mss; 21649 if (lso_usable % mss) { 21650 num_lso_seg++; 21651 tcp->tcp_last_sent_len = (ushort_t) 21652 (lso_usable % mss); 21653 } else { 21654 tcp->tcp_last_sent_len = (ushort_t)mss; 21655 } 21656 } else { 21657 do_lso_send = B_FALSE; 21658 num_lso_seg = 1; 21659 lso_usable = mss; 21660 } 21661 } 21662 21663 ASSERT(num_lso_seg <= IP_MAXPACKET / mss + 1); 21664 21665 /* 21666 * Adjust num_burst_seg here. 21667 */ 21668 num_burst_seg -= num_lso_seg; 21669 21670 len = mss; 21671 if (len > *usable) { 21672 ASSERT(do_lso_send == B_FALSE); 21673 21674 len = *usable; 21675 if (len <= 0) { 21676 /* Terminate the loop */ 21677 break; /* success; too small */ 21678 } 21679 /* 21680 * Sender silly-window avoidance. 21681 * Ignore this if we are going to send a 21682 * zero window probe out. 21683 * 21684 * TODO: force data into microscopic window? 21685 * ==> (!pushed || (unsent > usable)) 21686 */ 21687 if (len < (tcp->tcp_max_swnd >> 1) && 21688 (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) > len && 21689 !((tcp->tcp_valid_bits & TCP_URG_VALID) && 21690 len == 1) && (! tcp->tcp_zero_win_probe)) { 21691 /* 21692 * If the retransmit timer is not running 21693 * we start it so that we will retransmit 21694 * in the case when the the receiver has 21695 * decremented the window. 21696 */ 21697 if (*snxt == tcp->tcp_snxt && 21698 *snxt == tcp->tcp_suna) { 21699 /* 21700 * We are not supposed to send 21701 * anything. So let's wait a little 21702 * bit longer before breaking SWS 21703 * avoidance. 21704 * 21705 * What should the value be? 21706 * Suggestion: MAX(init rexmit time, 21707 * tcp->tcp_rto) 21708 */ 21709 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 21710 } 21711 break; /* success; too small */ 21712 } 21713 } 21714 21715 tcph = tcp->tcp_tcph; 21716 21717 /* 21718 * The reason to adjust len here is that we need to set flags 21719 * and calculate checksum. 21720 */ 21721 if (do_lso_send) 21722 len = lso_usable; 21723 21724 *usable -= len; /* Approximate - can be adjusted later */ 21725 if (*usable > 0) 21726 tcph->th_flags[0] = TH_ACK; 21727 else 21728 tcph->th_flags[0] = (TH_ACK | TH_PUSH); 21729 21730 /* 21731 * Prime pump for IP's checksumming on our behalf 21732 * Include the adjustment for a source route if any. 21733 */ 21734 sum = len + tcp_tcp_hdr_len + tcp->tcp_sum; 21735 sum = (sum >> 16) + (sum & 0xFFFF); 21736 U16_TO_ABE16(sum, tcph->th_sum); 21737 21738 U32_TO_ABE32(*snxt, tcph->th_seq); 21739 21740 /* 21741 * Branch off to tcp_xmit_mp() if any of the VALID bits is 21742 * set. For the case when TCP_FSS_VALID is the only valid 21743 * bit (normal active close), branch off only when we think 21744 * that the FIN flag needs to be set. Note for this case, 21745 * that (snxt + len) may not reflect the actual seg_len, 21746 * as len may be further reduced in tcp_xmit_mp(). If len 21747 * gets modified, we will end up here again. 21748 */ 21749 if (tcp->tcp_valid_bits != 0 && 21750 (tcp->tcp_valid_bits != TCP_FSS_VALID || 21751 ((*snxt + len) == tcp->tcp_fss))) { 21752 uchar_t *prev_rptr; 21753 uint32_t prev_snxt = tcp->tcp_snxt; 21754 21755 if (*tail_unsent == 0) { 21756 ASSERT((*xmit_tail)->b_cont != NULL); 21757 *xmit_tail = (*xmit_tail)->b_cont; 21758 prev_rptr = (*xmit_tail)->b_rptr; 21759 *tail_unsent = (int)((*xmit_tail)->b_wptr - 21760 (*xmit_tail)->b_rptr); 21761 } else { 21762 prev_rptr = (*xmit_tail)->b_rptr; 21763 (*xmit_tail)->b_rptr = (*xmit_tail)->b_wptr - 21764 *tail_unsent; 21765 } 21766 mp = tcp_xmit_mp(tcp, *xmit_tail, len, NULL, NULL, 21767 *snxt, B_FALSE, (uint32_t *)&len, B_FALSE); 21768 /* Restore tcp_snxt so we get amount sent right. */ 21769 tcp->tcp_snxt = prev_snxt; 21770 if (prev_rptr == (*xmit_tail)->b_rptr) { 21771 /* 21772 * If the previous timestamp is still in use, 21773 * don't stomp on it. 21774 */ 21775 if ((*xmit_tail)->b_next == NULL) { 21776 (*xmit_tail)->b_prev = local_time; 21777 (*xmit_tail)->b_next = 21778 (mblk_t *)(uintptr_t)(*snxt); 21779 } 21780 } else 21781 (*xmit_tail)->b_rptr = prev_rptr; 21782 21783 if (mp == NULL) { 21784 if (ire != NULL) 21785 IRE_REFRELE(ire); 21786 return (-1); 21787 } 21788 mp1 = mp->b_cont; 21789 21790 if (len <= mss) /* LSO is unusable (!do_lso_send) */ 21791 tcp->tcp_last_sent_len = (ushort_t)len; 21792 while (mp1->b_cont) { 21793 *xmit_tail = (*xmit_tail)->b_cont; 21794 (*xmit_tail)->b_prev = local_time; 21795 (*xmit_tail)->b_next = 21796 (mblk_t *)(uintptr_t)(*snxt); 21797 mp1 = mp1->b_cont; 21798 } 21799 *snxt += len; 21800 *tail_unsent = (*xmit_tail)->b_wptr - mp1->b_wptr; 21801 BUMP_LOCAL(tcp->tcp_obsegs); 21802 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 21803 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); 21804 tcp_send_data(tcp, q, mp); 21805 continue; 21806 } 21807 21808 *snxt += len; /* Adjust later if we don't send all of len */ 21809 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 21810 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); 21811 21812 if (*tail_unsent) { 21813 /* Are the bytes above us in flight? */ 21814 rptr = (*xmit_tail)->b_wptr - *tail_unsent; 21815 if (rptr != (*xmit_tail)->b_rptr) { 21816 *tail_unsent -= len; 21817 if (len <= mss) /* LSO is unusable */ 21818 tcp->tcp_last_sent_len = (ushort_t)len; 21819 len += tcp_hdr_len; 21820 if (tcp->tcp_ipversion == IPV4_VERSION) 21821 tcp->tcp_ipha->ipha_length = htons(len); 21822 else 21823 tcp->tcp_ip6h->ip6_plen = 21824 htons(len - 21825 ((char *)&tcp->tcp_ip6h[1] - 21826 tcp->tcp_iphc)); 21827 mp = dupb(*xmit_tail); 21828 if (mp == NULL) { 21829 if (ire != NULL) 21830 IRE_REFRELE(ire); 21831 return (-1); /* out_of_mem */ 21832 } 21833 mp->b_rptr = rptr; 21834 /* 21835 * If the old timestamp is no longer in use, 21836 * sample a new timestamp now. 21837 */ 21838 if ((*xmit_tail)->b_next == NULL) { 21839 (*xmit_tail)->b_prev = local_time; 21840 (*xmit_tail)->b_next = 21841 (mblk_t *)(uintptr_t)(*snxt-len); 21842 } 21843 goto must_alloc; 21844 } 21845 } else { 21846 *xmit_tail = (*xmit_tail)->b_cont; 21847 ASSERT((uintptr_t)((*xmit_tail)->b_wptr - 21848 (*xmit_tail)->b_rptr) <= (uintptr_t)INT_MAX); 21849 *tail_unsent = (int)((*xmit_tail)->b_wptr - 21850 (*xmit_tail)->b_rptr); 21851 } 21852 21853 (*xmit_tail)->b_prev = local_time; 21854 (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)(*snxt - len); 21855 21856 *tail_unsent -= len; 21857 if (len <= mss) /* LSO is unusable (!do_lso_send) */ 21858 tcp->tcp_last_sent_len = (ushort_t)len; 21859 21860 len += tcp_hdr_len; 21861 if (tcp->tcp_ipversion == IPV4_VERSION) 21862 tcp->tcp_ipha->ipha_length = htons(len); 21863 else 21864 tcp->tcp_ip6h->ip6_plen = htons(len - 21865 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 21866 21867 mp = dupb(*xmit_tail); 21868 if (mp == NULL) { 21869 if (ire != NULL) 21870 IRE_REFRELE(ire); 21871 return (-1); /* out_of_mem */ 21872 } 21873 21874 len = tcp_hdr_len; 21875 /* 21876 * There are four reasons to allocate a new hdr mblk: 21877 * 1) The bytes above us are in use by another packet 21878 * 2) We don't have good alignment 21879 * 3) The mblk is being shared 21880 * 4) We don't have enough room for a header 21881 */ 21882 rptr = mp->b_rptr - len; 21883 if (!OK_32PTR(rptr) || 21884 ((db = mp->b_datap), db->db_ref != 2) || 21885 rptr < db->db_base + ire_fp_mp_len) { 21886 /* NOTE: we assume allocb returns an OK_32PTR */ 21887 21888 must_alloc:; 21889 mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 21890 tcps->tcps_wroff_xtra + ire_fp_mp_len, BPRI_MED); 21891 if (mp1 == NULL) { 21892 freemsg(mp); 21893 if (ire != NULL) 21894 IRE_REFRELE(ire); 21895 return (-1); /* out_of_mem */ 21896 } 21897 mp1->b_cont = mp; 21898 mp = mp1; 21899 /* Leave room for Link Level header */ 21900 len = tcp_hdr_len; 21901 rptr = 21902 &mp->b_rptr[tcps->tcps_wroff_xtra + ire_fp_mp_len]; 21903 mp->b_wptr = &rptr[len]; 21904 } 21905 21906 /* 21907 * Fill in the header using the template header, and add 21908 * options such as time-stamp, ECN and/or SACK, as needed. 21909 */ 21910 tcp_fill_header(tcp, rptr, (clock_t)local_time, num_sack_blk); 21911 21912 mp->b_rptr = rptr; 21913 21914 if (*tail_unsent) { 21915 int spill = *tail_unsent; 21916 21917 mp1 = mp->b_cont; 21918 if (mp1 == NULL) 21919 mp1 = mp; 21920 21921 /* 21922 * If we're a little short, tack on more mblks until 21923 * there is no more spillover. 21924 */ 21925 while (spill < 0) { 21926 mblk_t *nmp; 21927 int nmpsz; 21928 21929 nmp = (*xmit_tail)->b_cont; 21930 nmpsz = MBLKL(nmp); 21931 21932 /* 21933 * Excess data in mblk; can we split it? 21934 * If MDT is enabled for the connection, 21935 * keep on splitting as this is a transient 21936 * send path. 21937 */ 21938 if (!do_lso_send && !tcp->tcp_mdt && 21939 (spill + nmpsz > 0)) { 21940 /* 21941 * Don't split if stream head was 21942 * told to break up larger writes 21943 * into smaller ones. 21944 */ 21945 if (tcp->tcp_maxpsz > 0) 21946 break; 21947 21948 /* 21949 * Next mblk is less than SMSS/2 21950 * rounded up to nearest 64-byte; 21951 * let it get sent as part of the 21952 * next segment. 21953 */ 21954 if (tcp->tcp_localnet && 21955 !tcp->tcp_cork && 21956 (nmpsz < roundup((mss >> 1), 64))) 21957 break; 21958 } 21959 21960 *xmit_tail = nmp; 21961 ASSERT((uintptr_t)nmpsz <= (uintptr_t)INT_MAX); 21962 /* Stash for rtt use later */ 21963 (*xmit_tail)->b_prev = local_time; 21964 (*xmit_tail)->b_next = 21965 (mblk_t *)(uintptr_t)(*snxt - len); 21966 mp1->b_cont = dupb(*xmit_tail); 21967 mp1 = mp1->b_cont; 21968 21969 spill += nmpsz; 21970 if (mp1 == NULL) { 21971 *tail_unsent = spill; 21972 freemsg(mp); 21973 if (ire != NULL) 21974 IRE_REFRELE(ire); 21975 return (-1); /* out_of_mem */ 21976 } 21977 } 21978 21979 /* Trim back any surplus on the last mblk */ 21980 if (spill >= 0) { 21981 mp1->b_wptr -= spill; 21982 *tail_unsent = spill; 21983 } else { 21984 /* 21985 * We did not send everything we could in 21986 * order to remain within the b_cont limit. 21987 */ 21988 *usable -= spill; 21989 *snxt += spill; 21990 tcp->tcp_last_sent_len += spill; 21991 UPDATE_MIB(&tcps->tcps_mib, 21992 tcpOutDataBytes, spill); 21993 /* 21994 * Adjust the checksum 21995 */ 21996 tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 21997 sum += spill; 21998 sum = (sum >> 16) + (sum & 0xFFFF); 21999 U16_TO_ABE16(sum, tcph->th_sum); 22000 if (tcp->tcp_ipversion == IPV4_VERSION) { 22001 sum = ntohs( 22002 ((ipha_t *)rptr)->ipha_length) + 22003 spill; 22004 ((ipha_t *)rptr)->ipha_length = 22005 htons(sum); 22006 } else { 22007 sum = ntohs( 22008 ((ip6_t *)rptr)->ip6_plen) + 22009 spill; 22010 ((ip6_t *)rptr)->ip6_plen = 22011 htons(sum); 22012 } 22013 *tail_unsent = 0; 22014 } 22015 } 22016 if (tcp->tcp_ip_forward_progress) { 22017 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 22018 *(uint32_t *)mp->b_rptr |= IP_FORWARD_PROG; 22019 tcp->tcp_ip_forward_progress = B_FALSE; 22020 } 22021 22022 if (do_lso_send) { 22023 tcp_lsosend_data(tcp, mp, ire, ill, mss, 22024 num_lso_seg); 22025 tcp->tcp_obsegs += num_lso_seg; 22026 22027 TCP_STAT(tcps, tcp_lso_times); 22028 TCP_STAT_UPDATE(tcps, tcp_lso_pkt_out, num_lso_seg); 22029 } else { 22030 tcp_send_data(tcp, q, mp); 22031 BUMP_LOCAL(tcp->tcp_obsegs); 22032 } 22033 } 22034 22035 if (ire != NULL) 22036 IRE_REFRELE(ire); 22037 return (0); 22038 } 22039 22040 /* Unlink and return any mblk that looks like it contains a MDT info */ 22041 static mblk_t * 22042 tcp_mdt_info_mp(mblk_t *mp) 22043 { 22044 mblk_t *prev_mp; 22045 22046 for (;;) { 22047 prev_mp = mp; 22048 /* no more to process? */ 22049 if ((mp = mp->b_cont) == NULL) 22050 break; 22051 22052 switch (DB_TYPE(mp)) { 22053 case M_CTL: 22054 if (*(uint32_t *)mp->b_rptr != MDT_IOC_INFO_UPDATE) 22055 continue; 22056 ASSERT(prev_mp != NULL); 22057 prev_mp->b_cont = mp->b_cont; 22058 mp->b_cont = NULL; 22059 return (mp); 22060 default: 22061 break; 22062 } 22063 } 22064 return (mp); 22065 } 22066 22067 /* MDT info update routine, called when IP notifies us about MDT */ 22068 static void 22069 tcp_mdt_update(tcp_t *tcp, ill_mdt_capab_t *mdt_capab, boolean_t first) 22070 { 22071 boolean_t prev_state; 22072 tcp_stack_t *tcps = tcp->tcp_tcps; 22073 22074 /* 22075 * IP is telling us to abort MDT on this connection? We know 22076 * this because the capability is only turned off when IP 22077 * encounters some pathological cases, e.g. link-layer change 22078 * where the new driver doesn't support MDT, or in situation 22079 * where MDT usage on the link-layer has been switched off. 22080 * IP would not have sent us the initial MDT_IOC_INFO_UPDATE 22081 * if the link-layer doesn't support MDT, and if it does, it 22082 * will indicate that the feature is to be turned on. 22083 */ 22084 prev_state = tcp->tcp_mdt; 22085 tcp->tcp_mdt = (mdt_capab->ill_mdt_on != 0); 22086 if (!tcp->tcp_mdt && !first) { 22087 TCP_STAT(tcps, tcp_mdt_conn_halted3); 22088 ip1dbg(("tcp_mdt_update: disabling MDT for connp %p\n", 22089 (void *)tcp->tcp_connp)); 22090 } 22091 22092 /* 22093 * We currently only support MDT on simple TCP/{IPv4,IPv6}, 22094 * so disable MDT otherwise. The checks are done here 22095 * and in tcp_wput_data(). 22096 */ 22097 if (tcp->tcp_mdt && 22098 (tcp->tcp_ipversion == IPV4_VERSION && 22099 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 22100 (tcp->tcp_ipversion == IPV6_VERSION && 22101 tcp->tcp_ip_hdr_len != IPV6_HDR_LEN)) 22102 tcp->tcp_mdt = B_FALSE; 22103 22104 if (tcp->tcp_mdt) { 22105 if (mdt_capab->ill_mdt_version != MDT_VERSION_2) { 22106 cmn_err(CE_NOTE, "tcp_mdt_update: unknown MDT " 22107 "version (%d), expected version is %d", 22108 mdt_capab->ill_mdt_version, MDT_VERSION_2); 22109 tcp->tcp_mdt = B_FALSE; 22110 return; 22111 } 22112 22113 /* 22114 * We need the driver to be able to handle at least three 22115 * spans per packet in order for tcp MDT to be utilized. 22116 * The first is for the header portion, while the rest are 22117 * needed to handle a packet that straddles across two 22118 * virtually non-contiguous buffers; a typical tcp packet 22119 * therefore consists of only two spans. Note that we take 22120 * a zero as "don't care". 22121 */ 22122 if (mdt_capab->ill_mdt_span_limit > 0 && 22123 mdt_capab->ill_mdt_span_limit < 3) { 22124 tcp->tcp_mdt = B_FALSE; 22125 return; 22126 } 22127 22128 /* a zero means driver wants default value */ 22129 tcp->tcp_mdt_max_pld = MIN(mdt_capab->ill_mdt_max_pld, 22130 tcps->tcps_mdt_max_pbufs); 22131 if (tcp->tcp_mdt_max_pld == 0) 22132 tcp->tcp_mdt_max_pld = tcps->tcps_mdt_max_pbufs; 22133 22134 /* ensure 32-bit alignment */ 22135 tcp->tcp_mdt_hdr_head = roundup(MAX(tcps->tcps_mdt_hdr_head_min, 22136 mdt_capab->ill_mdt_hdr_head), 4); 22137 tcp->tcp_mdt_hdr_tail = roundup(MAX(tcps->tcps_mdt_hdr_tail_min, 22138 mdt_capab->ill_mdt_hdr_tail), 4); 22139 22140 if (!first && !prev_state) { 22141 TCP_STAT(tcps, tcp_mdt_conn_resumed2); 22142 ip1dbg(("tcp_mdt_update: reenabling MDT for connp %p\n", 22143 (void *)tcp->tcp_connp)); 22144 } 22145 } 22146 } 22147 22148 /* Unlink and return any mblk that looks like it contains a LSO info */ 22149 static mblk_t * 22150 tcp_lso_info_mp(mblk_t *mp) 22151 { 22152 mblk_t *prev_mp; 22153 22154 for (;;) { 22155 prev_mp = mp; 22156 /* no more to process? */ 22157 if ((mp = mp->b_cont) == NULL) 22158 break; 22159 22160 switch (DB_TYPE(mp)) { 22161 case M_CTL: 22162 if (*(uint32_t *)mp->b_rptr != LSO_IOC_INFO_UPDATE) 22163 continue; 22164 ASSERT(prev_mp != NULL); 22165 prev_mp->b_cont = mp->b_cont; 22166 mp->b_cont = NULL; 22167 return (mp); 22168 default: 22169 break; 22170 } 22171 } 22172 22173 return (mp); 22174 } 22175 22176 /* LSO info update routine, called when IP notifies us about LSO */ 22177 static void 22178 tcp_lso_update(tcp_t *tcp, ill_lso_capab_t *lso_capab) 22179 { 22180 tcp_stack_t *tcps = tcp->tcp_tcps; 22181 22182 /* 22183 * IP is telling us to abort LSO on this connection? We know 22184 * this because the capability is only turned off when IP 22185 * encounters some pathological cases, e.g. link-layer change 22186 * where the new NIC/driver doesn't support LSO, or in situation 22187 * where LSO usage on the link-layer has been switched off. 22188 * IP would not have sent us the initial LSO_IOC_INFO_UPDATE 22189 * if the link-layer doesn't support LSO, and if it does, it 22190 * will indicate that the feature is to be turned on. 22191 */ 22192 tcp->tcp_lso = (lso_capab->ill_lso_on != 0); 22193 TCP_STAT(tcps, tcp_lso_enabled); 22194 22195 /* 22196 * We currently only support LSO on simple TCP/IPv4, 22197 * so disable LSO otherwise. The checks are done here 22198 * and in tcp_wput_data(). 22199 */ 22200 if (tcp->tcp_lso && 22201 (tcp->tcp_ipversion == IPV4_VERSION && 22202 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 22203 (tcp->tcp_ipversion == IPV6_VERSION)) { 22204 tcp->tcp_lso = B_FALSE; 22205 TCP_STAT(tcps, tcp_lso_disabled); 22206 } else { 22207 tcp->tcp_lso_max = MIN(TCP_MAX_LSO_LENGTH, 22208 lso_capab->ill_lso_max); 22209 } 22210 } 22211 22212 static void 22213 tcp_ire_ill_check(tcp_t *tcp, ire_t *ire, ill_t *ill, boolean_t check_lso_mdt) 22214 { 22215 conn_t *connp = tcp->tcp_connp; 22216 tcp_stack_t *tcps = tcp->tcp_tcps; 22217 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 22218 22219 ASSERT(ire != NULL); 22220 22221 /* 22222 * We may be in the fastpath here, and although we essentially do 22223 * similar checks as in ip_bind_connected{_v6}/ip_xxinfo_return, 22224 * we try to keep things as brief as possible. After all, these 22225 * are only best-effort checks, and we do more thorough ones prior 22226 * to calling tcp_send()/tcp_multisend(). 22227 */ 22228 if ((ipst->ips_ip_lso_outbound || ipst->ips_ip_multidata_outbound) && 22229 check_lso_mdt && !(ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK)) && 22230 ill != NULL && !CONN_IPSEC_OUT_ENCAPSULATED(connp) && 22231 !(ire->ire_flags & RTF_MULTIRT) && 22232 !IPP_ENABLED(IPP_LOCAL_OUT, ipst) && 22233 CONN_IS_LSO_MD_FASTPATH(connp)) { 22234 if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) { 22235 /* Cache the result */ 22236 connp->conn_lso_ok = B_TRUE; 22237 22238 ASSERT(ill->ill_lso_capab != NULL); 22239 if (!ill->ill_lso_capab->ill_lso_on) { 22240 ill->ill_lso_capab->ill_lso_on = 1; 22241 ip1dbg(("tcp_ire_ill_check: connp %p enables " 22242 "LSO for interface %s\n", (void *)connp, 22243 ill->ill_name)); 22244 } 22245 tcp_lso_update(tcp, ill->ill_lso_capab); 22246 } else if (ipst->ips_ip_multidata_outbound && 22247 ILL_MDT_CAPABLE(ill)) { 22248 /* Cache the result */ 22249 connp->conn_mdt_ok = B_TRUE; 22250 22251 ASSERT(ill->ill_mdt_capab != NULL); 22252 if (!ill->ill_mdt_capab->ill_mdt_on) { 22253 ill->ill_mdt_capab->ill_mdt_on = 1; 22254 ip1dbg(("tcp_ire_ill_check: connp %p enables " 22255 "MDT for interface %s\n", (void *)connp, 22256 ill->ill_name)); 22257 } 22258 tcp_mdt_update(tcp, ill->ill_mdt_capab, B_TRUE); 22259 } 22260 } 22261 22262 /* 22263 * The goal is to reduce the number of generated tcp segments by 22264 * setting the maxpsz multiplier to 0; this will have an affect on 22265 * tcp_maxpsz_set(). With this behavior, tcp will pack more data 22266 * into each packet, up to SMSS bytes. Doing this reduces the number 22267 * of outbound segments and incoming ACKs, thus allowing for better 22268 * network and system performance. In contrast the legacy behavior 22269 * may result in sending less than SMSS size, because the last mblk 22270 * for some packets may have more data than needed to make up SMSS, 22271 * and the legacy code refused to "split" it. 22272 * 22273 * We apply the new behavior on following situations: 22274 * 22275 * 1) Loopback connections, 22276 * 2) Connections in which the remote peer is not on local subnet, 22277 * 3) Local subnet connections over the bge interface (see below). 22278 * 22279 * Ideally, we would like this behavior to apply for interfaces other 22280 * than bge. However, doing so would negatively impact drivers which 22281 * perform dynamic mapping and unmapping of DMA resources, which are 22282 * increased by setting the maxpsz multiplier to 0 (more mblks per 22283 * packet will be generated by tcp). The bge driver does not suffer 22284 * from this, as it copies the mblks into pre-mapped buffers, and 22285 * therefore does not require more I/O resources than before. 22286 * 22287 * Otherwise, this behavior is present on all network interfaces when 22288 * the destination endpoint is non-local, since reducing the number 22289 * of packets in general is good for the network. 22290 * 22291 * TODO We need to remove this hard-coded conditional for bge once 22292 * a better "self-tuning" mechanism, or a way to comprehend 22293 * the driver transmit strategy is devised. Until the solution 22294 * is found and well understood, we live with this hack. 22295 */ 22296 if (!tcp_static_maxpsz && 22297 (tcp->tcp_loopback || !tcp->tcp_localnet || 22298 (ill->ill_name_length > 3 && bcmp(ill->ill_name, "bge", 3) == 0))) { 22299 /* override the default value */ 22300 tcp->tcp_maxpsz = 0; 22301 22302 ip3dbg(("tcp_ire_ill_check: connp %p tcp_maxpsz %d on " 22303 "interface %s\n", (void *)connp, tcp->tcp_maxpsz, 22304 ill != NULL ? ill->ill_name : ipif_loopback_name)); 22305 } 22306 22307 /* set the stream head parameters accordingly */ 22308 (void) tcp_maxpsz_set(tcp, B_TRUE); 22309 } 22310 22311 /* tcp_wput_flush is called by tcp_wput_nondata to handle M_FLUSH messages. */ 22312 static void 22313 tcp_wput_flush(tcp_t *tcp, mblk_t *mp) 22314 { 22315 uchar_t fval = *mp->b_rptr; 22316 mblk_t *tail; 22317 queue_t *q = tcp->tcp_wq; 22318 22319 /* TODO: How should flush interact with urgent data? */ 22320 if ((fval & FLUSHW) && tcp->tcp_xmit_head && 22321 !(tcp->tcp_valid_bits & TCP_URG_VALID)) { 22322 /* 22323 * Flush only data that has not yet been put on the wire. If 22324 * we flush data that we have already transmitted, life, as we 22325 * know it, may come to an end. 22326 */ 22327 tail = tcp->tcp_xmit_tail; 22328 tail->b_wptr -= tcp->tcp_xmit_tail_unsent; 22329 tcp->tcp_xmit_tail_unsent = 0; 22330 tcp->tcp_unsent = 0; 22331 if (tail->b_wptr != tail->b_rptr) 22332 tail = tail->b_cont; 22333 if (tail) { 22334 mblk_t **excess = &tcp->tcp_xmit_head; 22335 for (;;) { 22336 mblk_t *mp1 = *excess; 22337 if (mp1 == tail) 22338 break; 22339 tcp->tcp_xmit_tail = mp1; 22340 tcp->tcp_xmit_last = mp1; 22341 excess = &mp1->b_cont; 22342 } 22343 *excess = NULL; 22344 tcp_close_mpp(&tail); 22345 if (tcp->tcp_snd_zcopy_aware) 22346 tcp_zcopy_notify(tcp); 22347 } 22348 /* 22349 * We have no unsent data, so unsent must be less than 22350 * tcp_xmit_lowater, so re-enable flow. 22351 */ 22352 mutex_enter(&tcp->tcp_non_sq_lock); 22353 if (tcp->tcp_flow_stopped) { 22354 tcp_clrqfull(tcp); 22355 } 22356 mutex_exit(&tcp->tcp_non_sq_lock); 22357 } 22358 /* 22359 * TODO: you can't just flush these, you have to increase rwnd for one 22360 * thing. For another, how should urgent data interact? 22361 */ 22362 if (fval & FLUSHR) { 22363 *mp->b_rptr = fval & ~FLUSHW; 22364 /* XXX */ 22365 qreply(q, mp); 22366 return; 22367 } 22368 freemsg(mp); 22369 } 22370 22371 /* 22372 * tcp_wput_iocdata is called by tcp_wput_nondata to handle all M_IOCDATA 22373 * messages. 22374 */ 22375 static void 22376 tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp) 22377 { 22378 mblk_t *mp1; 22379 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 22380 STRUCT_HANDLE(strbuf, sb); 22381 queue_t *q = tcp->tcp_wq; 22382 int error; 22383 uint_t addrlen; 22384 22385 /* Make sure it is one of ours. */ 22386 switch (iocp->ioc_cmd) { 22387 case TI_GETMYNAME: 22388 case TI_GETPEERNAME: 22389 break; 22390 default: 22391 CALL_IP_WPUT(tcp->tcp_connp, q, mp); 22392 return; 22393 } 22394 switch (mi_copy_state(q, mp, &mp1)) { 22395 case -1: 22396 return; 22397 case MI_COPY_CASE(MI_COPY_IN, 1): 22398 break; 22399 case MI_COPY_CASE(MI_COPY_OUT, 1): 22400 /* Copy out the strbuf. */ 22401 mi_copyout(q, mp); 22402 return; 22403 case MI_COPY_CASE(MI_COPY_OUT, 2): 22404 /* All done. */ 22405 mi_copy_done(q, mp, 0); 22406 return; 22407 default: 22408 mi_copy_done(q, mp, EPROTO); 22409 return; 22410 } 22411 /* Check alignment of the strbuf */ 22412 if (!OK_32PTR(mp1->b_rptr)) { 22413 mi_copy_done(q, mp, EINVAL); 22414 return; 22415 } 22416 22417 STRUCT_SET_HANDLE(sb, iocp->ioc_flag, (void *)mp1->b_rptr); 22418 addrlen = tcp->tcp_family == AF_INET ? sizeof (sin_t) : sizeof (sin6_t); 22419 if (STRUCT_FGET(sb, maxlen) < addrlen) { 22420 mi_copy_done(q, mp, EINVAL); 22421 return; 22422 } 22423 22424 mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE); 22425 if (mp1 == NULL) 22426 return; 22427 22428 switch (iocp->ioc_cmd) { 22429 case TI_GETMYNAME: 22430 error = tcp_getmyname(tcp, (void *)mp1->b_rptr, &addrlen); 22431 break; 22432 case TI_GETPEERNAME: 22433 error = tcp_getpeername(tcp, (void *)mp1->b_rptr, &addrlen); 22434 break; 22435 } 22436 22437 if (error != 0) { 22438 mi_copy_done(q, mp, error); 22439 } else { 22440 mp1->b_wptr += addrlen; 22441 STRUCT_FSET(sb, len, addrlen); 22442 22443 /* Copy out the address */ 22444 mi_copyout(q, mp); 22445 } 22446 } 22447 22448 /* 22449 * tcp_wput_ioctl is called by tcp_wput_nondata() to handle all M_IOCTL 22450 * messages. 22451 */ 22452 /* ARGSUSED */ 22453 static void 22454 tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2) 22455 { 22456 conn_t *connp = (conn_t *)arg; 22457 tcp_t *tcp = connp->conn_tcp; 22458 queue_t *q = tcp->tcp_wq; 22459 struct iocblk *iocp; 22460 tcp_stack_t *tcps = tcp->tcp_tcps; 22461 22462 ASSERT(DB_TYPE(mp) == M_IOCTL); 22463 /* 22464 * Try and ASSERT the minimum possible references on the 22465 * conn early enough. Since we are executing on write side, 22466 * the connection is obviously not detached and that means 22467 * there is a ref each for TCP and IP. Since we are behind 22468 * the squeue, the minimum references needed are 3. If the 22469 * conn is in classifier hash list, there should be an 22470 * extra ref for that (we check both the possibilities). 22471 */ 22472 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 22473 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 22474 22475 iocp = (struct iocblk *)mp->b_rptr; 22476 switch (iocp->ioc_cmd) { 22477 case TCP_IOC_DEFAULT_Q: 22478 /* Wants to be the default wq. */ 22479 if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) { 22480 iocp->ioc_error = EPERM; 22481 iocp->ioc_count = 0; 22482 mp->b_datap->db_type = M_IOCACK; 22483 qreply(q, mp); 22484 return; 22485 } 22486 tcp_def_q_set(tcp, mp); 22487 return; 22488 case _SIOCSOCKFALLBACK: 22489 /* 22490 * Either sockmod is about to be popped and the socket 22491 * would now be treated as a plain stream, or a module 22492 * is about to be pushed so we could no longer use read- 22493 * side synchronous streams for fused loopback tcp. 22494 * Drain any queued data and disable direct sockfs 22495 * interface from now on. 22496 */ 22497 if (!tcp->tcp_issocket) { 22498 DB_TYPE(mp) = M_IOCNAK; 22499 iocp->ioc_error = EINVAL; 22500 } else { 22501 #ifdef _ILP32 22502 tcp->tcp_acceptor_id = (t_uscalar_t)RD(q); 22503 #else 22504 tcp->tcp_acceptor_id = tcp->tcp_connp->conn_dev; 22505 #endif 22506 /* 22507 * Insert this socket into the acceptor hash. 22508 * We might need it for T_CONN_RES message 22509 */ 22510 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 22511 22512 if (tcp->tcp_fused) { 22513 /* 22514 * This is a fused loopback tcp; disable 22515 * read-side synchronous streams interface 22516 * and drain any queued data. It is okay 22517 * to do this for non-synchronous streams 22518 * fused tcp as well. 22519 */ 22520 tcp_fuse_disable_pair(tcp, B_FALSE); 22521 } 22522 tcp->tcp_issocket = B_FALSE; 22523 tcp->tcp_sodirect = NULL; 22524 TCP_STAT(tcps, tcp_sock_fallback); 22525 22526 DB_TYPE(mp) = M_IOCACK; 22527 iocp->ioc_error = 0; 22528 } 22529 iocp->ioc_count = 0; 22530 iocp->ioc_rval = 0; 22531 qreply(q, mp); 22532 return; 22533 } 22534 CALL_IP_WPUT(connp, q, mp); 22535 } 22536 22537 /* 22538 * This routine is called by tcp_wput() to handle all TPI requests. 22539 */ 22540 /* ARGSUSED */ 22541 static void 22542 tcp_wput_proto(void *arg, mblk_t *mp, void *arg2) 22543 { 22544 conn_t *connp = (conn_t *)arg; 22545 tcp_t *tcp = connp->conn_tcp; 22546 union T_primitives *tprim = (union T_primitives *)mp->b_rptr; 22547 uchar_t *rptr; 22548 t_scalar_t type; 22549 int len; 22550 cred_t *cr = DB_CREDDEF(mp, tcp->tcp_cred); 22551 22552 /* 22553 * Try and ASSERT the minimum possible references on the 22554 * conn early enough. Since we are executing on write side, 22555 * the connection is obviously not detached and that means 22556 * there is a ref each for TCP and IP. Since we are behind 22557 * the squeue, the minimum references needed are 3. If the 22558 * conn is in classifier hash list, there should be an 22559 * extra ref for that (we check both the possibilities). 22560 */ 22561 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 22562 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 22563 22564 rptr = mp->b_rptr; 22565 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 22566 if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { 22567 type = ((union T_primitives *)rptr)->type; 22568 if (type == T_EXDATA_REQ) { 22569 uint32_t msize = msgdsize(mp->b_cont); 22570 22571 len = msize - 1; 22572 if (len < 0) { 22573 freemsg(mp); 22574 return; 22575 } 22576 /* 22577 * Try to force urgent data out on the wire. 22578 * Even if we have unsent data this will 22579 * at least send the urgent flag. 22580 * XXX does not handle more flag correctly. 22581 */ 22582 len += tcp->tcp_unsent; 22583 len += tcp->tcp_snxt; 22584 tcp->tcp_urg = len; 22585 tcp->tcp_valid_bits |= TCP_URG_VALID; 22586 22587 /* Bypass tcp protocol for fused tcp loopback */ 22588 if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize)) 22589 return; 22590 } else if (type != T_DATA_REQ) { 22591 goto non_urgent_data; 22592 } 22593 /* TODO: options, flags, ... from user */ 22594 /* Set length to zero for reclamation below */ 22595 tcp_wput_data(tcp, mp->b_cont, B_TRUE); 22596 freeb(mp); 22597 return; 22598 } else { 22599 if (tcp->tcp_debug) { 22600 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 22601 "tcp_wput_proto, dropping one..."); 22602 } 22603 freemsg(mp); 22604 return; 22605 } 22606 22607 non_urgent_data: 22608 22609 switch ((int)tprim->type) { 22610 case T_SSL_PROXY_BIND_REQ: /* an SSL proxy endpoint bind request */ 22611 /* 22612 * save the kssl_ent_t from the next block, and convert this 22613 * back to a normal bind_req. 22614 */ 22615 if (mp->b_cont != NULL) { 22616 ASSERT(MBLKL(mp->b_cont) >= sizeof (kssl_ent_t)); 22617 22618 if (tcp->tcp_kssl_ent != NULL) { 22619 kssl_release_ent(tcp->tcp_kssl_ent, NULL, 22620 KSSL_NO_PROXY); 22621 tcp->tcp_kssl_ent = NULL; 22622 } 22623 bcopy(mp->b_cont->b_rptr, &tcp->tcp_kssl_ent, 22624 sizeof (kssl_ent_t)); 22625 kssl_hold_ent(tcp->tcp_kssl_ent); 22626 freemsg(mp->b_cont); 22627 mp->b_cont = NULL; 22628 } 22629 tprim->type = T_BIND_REQ; 22630 22631 /* FALLTHROUGH */ 22632 case O_T_BIND_REQ: /* bind request */ 22633 case T_BIND_REQ: /* new semantics bind request */ 22634 tcp_bind(tcp, mp); 22635 break; 22636 case T_UNBIND_REQ: /* unbind request */ 22637 tcp_unbind(tcp, mp); 22638 break; 22639 case O_T_CONN_RES: /* old connection response XXX */ 22640 case T_CONN_RES: /* connection response */ 22641 tcp_accept(tcp, mp); 22642 break; 22643 case T_CONN_REQ: /* connection request */ 22644 tcp_connect(tcp, mp); 22645 break; 22646 case T_DISCON_REQ: /* disconnect request */ 22647 tcp_disconnect(tcp, mp); 22648 break; 22649 case T_CAPABILITY_REQ: 22650 tcp_capability_req(tcp, mp); /* capability request */ 22651 break; 22652 case T_INFO_REQ: /* information request */ 22653 tcp_info_req(tcp, mp); 22654 break; 22655 case T_SVR4_OPTMGMT_REQ: /* manage options req */ 22656 (void) svr4_optcom_req(tcp->tcp_wq, mp, cr, 22657 &tcp_opt_obj, B_TRUE); 22658 break; 22659 case T_OPTMGMT_REQ: 22660 /* 22661 * Note: no support for snmpcom_req() through new 22662 * T_OPTMGMT_REQ. See comments in ip.c 22663 */ 22664 /* Only IP is allowed to return meaningful value */ 22665 (void) tpi_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj, 22666 B_TRUE); 22667 break; 22668 22669 case T_UNITDATA_REQ: /* unitdata request */ 22670 tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); 22671 break; 22672 case T_ORDREL_REQ: /* orderly release req */ 22673 freemsg(mp); 22674 22675 if (tcp->tcp_fused) 22676 tcp_unfuse(tcp); 22677 22678 if (tcp_xmit_end(tcp) != 0) { 22679 /* 22680 * We were crossing FINs and got a reset from 22681 * the other side. Just ignore it. 22682 */ 22683 if (tcp->tcp_debug) { 22684 (void) strlog(TCP_MOD_ID, 0, 1, 22685 SL_ERROR|SL_TRACE, 22686 "tcp_wput_proto, T_ORDREL_REQ out of " 22687 "state %s", 22688 tcp_display(tcp, NULL, 22689 DISP_ADDR_AND_PORT)); 22690 } 22691 } 22692 break; 22693 case T_ADDR_REQ: 22694 tcp_addr_req(tcp, mp); 22695 break; 22696 default: 22697 if (tcp->tcp_debug) { 22698 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 22699 "tcp_wput_proto, bogus TPI msg, type %d", 22700 tprim->type); 22701 } 22702 /* 22703 * We used to M_ERROR. Sending TNOTSUPPORT gives the user 22704 * to recover. 22705 */ 22706 tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); 22707 break; 22708 } 22709 } 22710 22711 /* 22712 * The TCP write service routine should never be called... 22713 */ 22714 /* ARGSUSED */ 22715 static void 22716 tcp_wsrv(queue_t *q) 22717 { 22718 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 22719 22720 TCP_STAT(tcps, tcp_wsrv_called); 22721 } 22722 22723 /* Non overlapping byte exchanger */ 22724 static void 22725 tcp_xchg(uchar_t *a, uchar_t *b, int len) 22726 { 22727 uchar_t uch; 22728 22729 while (len-- > 0) { 22730 uch = a[len]; 22731 a[len] = b[len]; 22732 b[len] = uch; 22733 } 22734 } 22735 22736 /* 22737 * Send out a control packet on the tcp connection specified. This routine 22738 * is typically called where we need a simple ACK or RST generated. 22739 */ 22740 static void 22741 tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, uint32_t ack, int ctl) 22742 { 22743 uchar_t *rptr; 22744 tcph_t *tcph; 22745 ipha_t *ipha = NULL; 22746 ip6_t *ip6h = NULL; 22747 uint32_t sum; 22748 int tcp_hdr_len; 22749 int tcp_ip_hdr_len; 22750 mblk_t *mp; 22751 tcp_stack_t *tcps = tcp->tcp_tcps; 22752 22753 /* 22754 * Save sum for use in source route later. 22755 */ 22756 ASSERT(tcp != NULL); 22757 sum = tcp->tcp_tcp_hdr_len + tcp->tcp_sum; 22758 tcp_hdr_len = tcp->tcp_hdr_len; 22759 tcp_ip_hdr_len = tcp->tcp_ip_hdr_len; 22760 22761 /* If a text string is passed in with the request, pass it to strlog. */ 22762 if (str != NULL && tcp->tcp_debug) { 22763 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 22764 "tcp_xmit_ctl: '%s', seq 0x%x, ack 0x%x, ctl 0x%x", 22765 str, seq, ack, ctl); 22766 } 22767 mp = allocb(tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcps->tcps_wroff_xtra, 22768 BPRI_MED); 22769 if (mp == NULL) { 22770 return; 22771 } 22772 rptr = &mp->b_rptr[tcps->tcps_wroff_xtra]; 22773 mp->b_rptr = rptr; 22774 mp->b_wptr = &rptr[tcp_hdr_len]; 22775 bcopy(tcp->tcp_iphc, rptr, tcp_hdr_len); 22776 22777 if (tcp->tcp_ipversion == IPV4_VERSION) { 22778 ipha = (ipha_t *)rptr; 22779 ipha->ipha_length = htons(tcp_hdr_len); 22780 } else { 22781 ip6h = (ip6_t *)rptr; 22782 ASSERT(tcp != NULL); 22783 ip6h->ip6_plen = htons(tcp->tcp_hdr_len - 22784 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 22785 } 22786 tcph = (tcph_t *)&rptr[tcp_ip_hdr_len]; 22787 tcph->th_flags[0] = (uint8_t)ctl; 22788 if (ctl & TH_RST) { 22789 BUMP_MIB(&tcps->tcps_mib, tcpOutRsts); 22790 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 22791 /* 22792 * Don't send TSopt w/ TH_RST packets per RFC 1323. 22793 */ 22794 if (tcp->tcp_snd_ts_ok && 22795 tcp->tcp_state > TCPS_SYN_SENT) { 22796 mp->b_wptr = &rptr[tcp_hdr_len - TCPOPT_REAL_TS_LEN]; 22797 *(mp->b_wptr) = TCPOPT_EOL; 22798 if (tcp->tcp_ipversion == IPV4_VERSION) { 22799 ipha->ipha_length = htons(tcp_hdr_len - 22800 TCPOPT_REAL_TS_LEN); 22801 } else { 22802 ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) - 22803 TCPOPT_REAL_TS_LEN); 22804 } 22805 tcph->th_offset_and_rsrvd[0] -= (3 << 4); 22806 sum -= TCPOPT_REAL_TS_LEN; 22807 } 22808 } 22809 if (ctl & TH_ACK) { 22810 if (tcp->tcp_snd_ts_ok) { 22811 U32_TO_BE32(lbolt, 22812 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 22813 U32_TO_BE32(tcp->tcp_ts_recent, 22814 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 22815 } 22816 22817 /* Update the latest receive window size in TCP header. */ 22818 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 22819 tcph->th_win); 22820 tcp->tcp_rack = ack; 22821 tcp->tcp_rack_cnt = 0; 22822 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 22823 } 22824 BUMP_LOCAL(tcp->tcp_obsegs); 22825 U32_TO_BE32(seq, tcph->th_seq); 22826 U32_TO_BE32(ack, tcph->th_ack); 22827 /* 22828 * Include the adjustment for a source route if any. 22829 */ 22830 sum = (sum >> 16) + (sum & 0xFFFF); 22831 U16_TO_BE16(sum, tcph->th_sum); 22832 tcp_send_data(tcp, tcp->tcp_wq, mp); 22833 } 22834 22835 /* 22836 * If this routine returns B_TRUE, TCP can generate a RST in response 22837 * to a segment. If it returns B_FALSE, TCP should not respond. 22838 */ 22839 static boolean_t 22840 tcp_send_rst_chk(tcp_stack_t *tcps) 22841 { 22842 clock_t now; 22843 22844 /* 22845 * TCP needs to protect itself from generating too many RSTs. 22846 * This can be a DoS attack by sending us random segments 22847 * soliciting RSTs. 22848 * 22849 * What we do here is to have a limit of tcp_rst_sent_rate RSTs 22850 * in each 1 second interval. In this way, TCP still generate 22851 * RSTs in normal cases but when under attack, the impact is 22852 * limited. 22853 */ 22854 if (tcps->tcps_rst_sent_rate_enabled != 0) { 22855 now = lbolt; 22856 /* lbolt can wrap around. */ 22857 if ((tcps->tcps_last_rst_intrvl > now) || 22858 (TICK_TO_MSEC(now - tcps->tcps_last_rst_intrvl) > 22859 1*SECONDS)) { 22860 tcps->tcps_last_rst_intrvl = now; 22861 tcps->tcps_rst_cnt = 1; 22862 } else if (++tcps->tcps_rst_cnt > tcps->tcps_rst_sent_rate) { 22863 return (B_FALSE); 22864 } 22865 } 22866 return (B_TRUE); 22867 } 22868 22869 /* 22870 * Send down the advice IP ioctl to tell IP to mark an IRE temporary. 22871 */ 22872 static void 22873 tcp_ip_ire_mark_advice(tcp_t *tcp) 22874 { 22875 mblk_t *mp; 22876 ipic_t *ipic; 22877 22878 if (tcp->tcp_ipversion == IPV4_VERSION) { 22879 mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN, 22880 &ipic); 22881 } else { 22882 mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN, 22883 &ipic); 22884 } 22885 if (mp == NULL) 22886 return; 22887 ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY; 22888 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 22889 } 22890 22891 /* 22892 * Return an IP advice ioctl mblk and set ipic to be the pointer 22893 * to the advice structure. 22894 */ 22895 static mblk_t * 22896 tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic) 22897 { 22898 struct iocblk *ioc; 22899 mblk_t *mp, *mp1; 22900 22901 mp = allocb(sizeof (ipic_t) + addr_len, BPRI_HI); 22902 if (mp == NULL) 22903 return (NULL); 22904 bzero(mp->b_rptr, sizeof (ipic_t) + addr_len); 22905 *ipic = (ipic_t *)mp->b_rptr; 22906 (*ipic)->ipic_cmd = IP_IOC_IRE_ADVISE_NO_REPLY; 22907 (*ipic)->ipic_addr_offset = sizeof (ipic_t); 22908 22909 bcopy(addr, *ipic + 1, addr_len); 22910 22911 (*ipic)->ipic_addr_length = addr_len; 22912 mp->b_wptr = &mp->b_rptr[sizeof (ipic_t) + addr_len]; 22913 22914 mp1 = mkiocb(IP_IOCTL); 22915 if (mp1 == NULL) { 22916 freemsg(mp); 22917 return (NULL); 22918 } 22919 mp1->b_cont = mp; 22920 ioc = (struct iocblk *)mp1->b_rptr; 22921 ioc->ioc_count = sizeof (ipic_t) + addr_len; 22922 22923 return (mp1); 22924 } 22925 22926 /* 22927 * Generate a reset based on an inbound packet, connp is set by caller 22928 * when RST is in response to an unexpected inbound packet for which 22929 * there is active tcp state in the system. 22930 * 22931 * IPSEC NOTE : Try to send the reply with the same protection as it came 22932 * in. We still have the ipsec_mp that the packet was attached to. Thus 22933 * the packet will go out at the same level of protection as it came in by 22934 * converting the IPSEC_IN to IPSEC_OUT. 22935 */ 22936 static void 22937 tcp_xmit_early_reset(char *str, mblk_t *mp, uint32_t seq, 22938 uint32_t ack, int ctl, uint_t ip_hdr_len, zoneid_t zoneid, 22939 tcp_stack_t *tcps, conn_t *connp) 22940 { 22941 ipha_t *ipha = NULL; 22942 ip6_t *ip6h = NULL; 22943 ushort_t len; 22944 tcph_t *tcph; 22945 int i; 22946 mblk_t *ipsec_mp; 22947 boolean_t mctl_present; 22948 ipic_t *ipic; 22949 ipaddr_t v4addr; 22950 in6_addr_t v6addr; 22951 int addr_len; 22952 void *addr; 22953 queue_t *q = tcps->tcps_g_q; 22954 tcp_t *tcp; 22955 cred_t *cr; 22956 mblk_t *nmp; 22957 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 22958 22959 if (tcps->tcps_g_q == NULL) { 22960 /* 22961 * For non-zero stackids the default queue isn't created 22962 * until the first open, thus there can be a need to send 22963 * a reset before then. But we can't do that, hence we just 22964 * drop the packet. Later during boot, when the default queue 22965 * has been setup, a retransmitted packet from the peer 22966 * will result in a reset. 22967 */ 22968 ASSERT(tcps->tcps_netstack->netstack_stackid != 22969 GLOBAL_NETSTACKID); 22970 freemsg(mp); 22971 return; 22972 } 22973 22974 if (connp != NULL) 22975 tcp = connp->conn_tcp; 22976 else 22977 tcp = Q_TO_TCP(q); 22978 22979 if (!tcp_send_rst_chk(tcps)) { 22980 tcps->tcps_rst_unsent++; 22981 freemsg(mp); 22982 return; 22983 } 22984 22985 if (mp->b_datap->db_type == M_CTL) { 22986 ipsec_mp = mp; 22987 mp = mp->b_cont; 22988 mctl_present = B_TRUE; 22989 } else { 22990 ipsec_mp = mp; 22991 mctl_present = B_FALSE; 22992 } 22993 22994 if (str && q && tcps->tcps_dbg) { 22995 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 22996 "tcp_xmit_early_reset: '%s', seq 0x%x, ack 0x%x, " 22997 "flags 0x%x", 22998 str, seq, ack, ctl); 22999 } 23000 if (mp->b_datap->db_ref != 1) { 23001 mblk_t *mp1 = copyb(mp); 23002 freemsg(mp); 23003 mp = mp1; 23004 if (!mp) { 23005 if (mctl_present) 23006 freeb(ipsec_mp); 23007 return; 23008 } else { 23009 if (mctl_present) { 23010 ipsec_mp->b_cont = mp; 23011 } else { 23012 ipsec_mp = mp; 23013 } 23014 } 23015 } else if (mp->b_cont) { 23016 freemsg(mp->b_cont); 23017 mp->b_cont = NULL; 23018 } 23019 /* 23020 * We skip reversing source route here. 23021 * (for now we replace all IP options with EOL) 23022 */ 23023 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 23024 ipha = (ipha_t *)mp->b_rptr; 23025 for (i = IP_SIMPLE_HDR_LENGTH; i < (int)ip_hdr_len; i++) 23026 mp->b_rptr[i] = IPOPT_EOL; 23027 /* 23028 * Make sure that src address isn't flagrantly invalid. 23029 * Not all broadcast address checking for the src address 23030 * is possible, since we don't know the netmask of the src 23031 * addr. No check for destination address is done, since 23032 * IP will not pass up a packet with a broadcast dest 23033 * address to TCP. Similar checks are done below for IPv6. 23034 */ 23035 if (ipha->ipha_src == 0 || ipha->ipha_src == INADDR_BROADCAST || 23036 CLASSD(ipha->ipha_src)) { 23037 freemsg(ipsec_mp); 23038 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 23039 return; 23040 } 23041 } else { 23042 ip6h = (ip6_t *)mp->b_rptr; 23043 23044 if (IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src) || 23045 IN6_IS_ADDR_MULTICAST(&ip6h->ip6_src)) { 23046 freemsg(ipsec_mp); 23047 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsInDiscards); 23048 return; 23049 } 23050 23051 /* Remove any extension headers assuming partial overlay */ 23052 if (ip_hdr_len > IPV6_HDR_LEN) { 23053 uint8_t *to; 23054 23055 to = mp->b_rptr + ip_hdr_len - IPV6_HDR_LEN; 23056 ovbcopy(ip6h, to, IPV6_HDR_LEN); 23057 mp->b_rptr += ip_hdr_len - IPV6_HDR_LEN; 23058 ip_hdr_len = IPV6_HDR_LEN; 23059 ip6h = (ip6_t *)mp->b_rptr; 23060 ip6h->ip6_nxt = IPPROTO_TCP; 23061 } 23062 } 23063 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 23064 if (tcph->th_flags[0] & TH_RST) { 23065 freemsg(ipsec_mp); 23066 return; 23067 } 23068 tcph->th_offset_and_rsrvd[0] = (5 << 4); 23069 len = ip_hdr_len + sizeof (tcph_t); 23070 mp->b_wptr = &mp->b_rptr[len]; 23071 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 23072 ipha->ipha_length = htons(len); 23073 /* Swap addresses */ 23074 v4addr = ipha->ipha_src; 23075 ipha->ipha_src = ipha->ipha_dst; 23076 ipha->ipha_dst = v4addr; 23077 ipha->ipha_ident = 0; 23078 ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl; 23079 addr_len = IP_ADDR_LEN; 23080 addr = &v4addr; 23081 } else { 23082 /* No ip6i_t in this case */ 23083 ip6h->ip6_plen = htons(len - IPV6_HDR_LEN); 23084 /* Swap addresses */ 23085 v6addr = ip6h->ip6_src; 23086 ip6h->ip6_src = ip6h->ip6_dst; 23087 ip6h->ip6_dst = v6addr; 23088 ip6h->ip6_hops = (uchar_t)tcps->tcps_ipv6_hoplimit; 23089 addr_len = IPV6_ADDR_LEN; 23090 addr = &v6addr; 23091 } 23092 tcp_xchg(tcph->th_fport, tcph->th_lport, 2); 23093 U32_TO_BE32(ack, tcph->th_ack); 23094 U32_TO_BE32(seq, tcph->th_seq); 23095 U16_TO_BE16(0, tcph->th_win); 23096 U16_TO_BE16(sizeof (tcph_t), tcph->th_sum); 23097 tcph->th_flags[0] = (uint8_t)ctl; 23098 if (ctl & TH_RST) { 23099 BUMP_MIB(&tcps->tcps_mib, tcpOutRsts); 23100 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 23101 } 23102 23103 /* IP trusts us to set up labels when required. */ 23104 if (is_system_labeled() && (cr = DB_CRED(mp)) != NULL && 23105 crgetlabel(cr) != NULL) { 23106 int err; 23107 23108 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) 23109 err = tsol_check_label(cr, &mp, 23110 tcp->tcp_connp->conn_mac_exempt, 23111 tcps->tcps_netstack->netstack_ip); 23112 else 23113 err = tsol_check_label_v6(cr, &mp, 23114 tcp->tcp_connp->conn_mac_exempt, 23115 tcps->tcps_netstack->netstack_ip); 23116 if (mctl_present) 23117 ipsec_mp->b_cont = mp; 23118 else 23119 ipsec_mp = mp; 23120 if (err != 0) { 23121 freemsg(ipsec_mp); 23122 return; 23123 } 23124 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 23125 ipha = (ipha_t *)mp->b_rptr; 23126 } else { 23127 ip6h = (ip6_t *)mp->b_rptr; 23128 } 23129 } 23130 23131 if (mctl_present) { 23132 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 23133 23134 ASSERT(ii->ipsec_in_type == IPSEC_IN); 23135 if (!ipsec_in_to_out(ipsec_mp, ipha, ip6h)) { 23136 return; 23137 } 23138 } 23139 if (zoneid == ALL_ZONES) 23140 zoneid = GLOBAL_ZONEID; 23141 23142 /* Add the zoneid so ip_output routes it properly */ 23143 if ((nmp = ip_prepend_zoneid(ipsec_mp, zoneid, ipst)) == NULL) { 23144 freemsg(ipsec_mp); 23145 return; 23146 } 23147 ipsec_mp = nmp; 23148 23149 /* 23150 * NOTE: one might consider tracing a TCP packet here, but 23151 * this function has no active TCP state and no tcp structure 23152 * that has a trace buffer. If we traced here, we would have 23153 * to keep a local trace buffer in tcp_record_trace(). 23154 * 23155 * TSol note: The mblk that contains the incoming packet was 23156 * reused by tcp_xmit_listener_reset, so it already contains 23157 * the right credentials and we don't need to call mblk_setcred. 23158 * Also the conn's cred is not right since it is associated 23159 * with tcps_g_q. 23160 */ 23161 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, ipsec_mp); 23162 23163 /* 23164 * Tell IP to mark the IRE used for this destination temporary. 23165 * This way, we can limit our exposure to DoS attack because IP 23166 * creates an IRE for each destination. If there are too many, 23167 * the time to do any routing lookup will be extremely long. And 23168 * the lookup can be in interrupt context. 23169 * 23170 * Note that in normal circumstances, this marking should not 23171 * affect anything. It would be nice if only 1 message is 23172 * needed to inform IP that the IRE created for this RST should 23173 * not be added to the cache table. But there is currently 23174 * not such communication mechanism between TCP and IP. So 23175 * the best we can do now is to send the advice ioctl to IP 23176 * to mark the IRE temporary. 23177 */ 23178 if ((mp = tcp_ip_advise_mblk(addr, addr_len, &ipic)) != NULL) { 23179 ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY; 23180 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 23181 } 23182 } 23183 23184 /* 23185 * Initiate closedown sequence on an active connection. (May be called as 23186 * writer.) Return value zero for OK return, non-zero for error return. 23187 */ 23188 static int 23189 tcp_xmit_end(tcp_t *tcp) 23190 { 23191 ipic_t *ipic; 23192 mblk_t *mp; 23193 tcp_stack_t *tcps = tcp->tcp_tcps; 23194 23195 if (tcp->tcp_state < TCPS_SYN_RCVD || 23196 tcp->tcp_state > TCPS_CLOSE_WAIT) { 23197 /* 23198 * Invalid state, only states TCPS_SYN_RCVD, 23199 * TCPS_ESTABLISHED and TCPS_CLOSE_WAIT are valid 23200 */ 23201 return (-1); 23202 } 23203 23204 tcp->tcp_fss = tcp->tcp_snxt + tcp->tcp_unsent; 23205 tcp->tcp_valid_bits |= TCP_FSS_VALID; 23206 /* 23207 * If there is nothing more unsent, send the FIN now. 23208 * Otherwise, it will go out with the last segment. 23209 */ 23210 if (tcp->tcp_unsent == 0) { 23211 mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 23212 tcp->tcp_fss, B_FALSE, NULL, B_FALSE); 23213 23214 if (mp) { 23215 tcp_send_data(tcp, tcp->tcp_wq, mp); 23216 } else { 23217 /* 23218 * Couldn't allocate msg. Pretend we got it out. 23219 * Wait for rexmit timeout. 23220 */ 23221 tcp->tcp_snxt = tcp->tcp_fss + 1; 23222 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 23223 } 23224 23225 /* 23226 * If needed, update tcp_rexmit_snxt as tcp_snxt is 23227 * changed. 23228 */ 23229 if (tcp->tcp_rexmit && tcp->tcp_rexmit_nxt == tcp->tcp_fss) { 23230 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 23231 } 23232 } else { 23233 /* 23234 * If tcp->tcp_cork is set, then the data will not get sent, 23235 * so we have to check that and unset it first. 23236 */ 23237 if (tcp->tcp_cork) 23238 tcp->tcp_cork = B_FALSE; 23239 tcp_wput_data(tcp, NULL, B_FALSE); 23240 } 23241 23242 /* 23243 * If TCP does not get enough samples of RTT or tcp_rtt_updates 23244 * is 0, don't update the cache. 23245 */ 23246 if (tcps->tcps_rtt_updates == 0 || 23247 tcp->tcp_rtt_update < tcps->tcps_rtt_updates) 23248 return (0); 23249 23250 /* 23251 * NOTE: should not update if source routes i.e. if tcp_remote if 23252 * different from the destination. 23253 */ 23254 if (tcp->tcp_ipversion == IPV4_VERSION) { 23255 if (tcp->tcp_remote != tcp->tcp_ipha->ipha_dst) { 23256 return (0); 23257 } 23258 mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN, 23259 &ipic); 23260 } else { 23261 if (!(IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6, 23262 &tcp->tcp_ip6h->ip6_dst))) { 23263 return (0); 23264 } 23265 mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN, 23266 &ipic); 23267 } 23268 23269 /* Record route attributes in the IRE for use by future connections. */ 23270 if (mp == NULL) 23271 return (0); 23272 23273 /* 23274 * We do not have a good algorithm to update ssthresh at this time. 23275 * So don't do any update. 23276 */ 23277 ipic->ipic_rtt = tcp->tcp_rtt_sa; 23278 ipic->ipic_rtt_sd = tcp->tcp_rtt_sd; 23279 23280 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 23281 return (0); 23282 } 23283 23284 /* 23285 * Generate a "no listener here" RST in response to an "unknown" segment. 23286 * connp is set by caller when RST is in response to an unexpected 23287 * inbound packet for which there is active tcp state in the system. 23288 * Note that we are reusing the incoming mp to construct the outgoing RST. 23289 */ 23290 void 23291 tcp_xmit_listeners_reset(mblk_t *mp, uint_t ip_hdr_len, zoneid_t zoneid, 23292 tcp_stack_t *tcps, conn_t *connp) 23293 { 23294 uchar_t *rptr; 23295 uint32_t seg_len; 23296 tcph_t *tcph; 23297 uint32_t seg_seq; 23298 uint32_t seg_ack; 23299 uint_t flags; 23300 mblk_t *ipsec_mp; 23301 ipha_t *ipha; 23302 ip6_t *ip6h; 23303 boolean_t mctl_present = B_FALSE; 23304 boolean_t check = B_TRUE; 23305 boolean_t policy_present; 23306 ipsec_stack_t *ipss = tcps->tcps_netstack->netstack_ipsec; 23307 23308 TCP_STAT(tcps, tcp_no_listener); 23309 23310 ipsec_mp = mp; 23311 23312 if (mp->b_datap->db_type == M_CTL) { 23313 ipsec_in_t *ii; 23314 23315 mctl_present = B_TRUE; 23316 mp = mp->b_cont; 23317 23318 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 23319 ASSERT(ii->ipsec_in_type == IPSEC_IN); 23320 if (ii->ipsec_in_dont_check) { 23321 check = B_FALSE; 23322 if (!ii->ipsec_in_secure) { 23323 freeb(ipsec_mp); 23324 mctl_present = B_FALSE; 23325 ipsec_mp = mp; 23326 } 23327 } 23328 } 23329 23330 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 23331 policy_present = ipss->ipsec_inbound_v4_policy_present; 23332 ipha = (ipha_t *)mp->b_rptr; 23333 ip6h = NULL; 23334 } else { 23335 policy_present = ipss->ipsec_inbound_v6_policy_present; 23336 ipha = NULL; 23337 ip6h = (ip6_t *)mp->b_rptr; 23338 } 23339 23340 if (check && policy_present) { 23341 /* 23342 * The conn_t parameter is NULL because we already know 23343 * nobody's home. 23344 */ 23345 ipsec_mp = ipsec_check_global_policy( 23346 ipsec_mp, (conn_t *)NULL, ipha, ip6h, mctl_present, 23347 tcps->tcps_netstack); 23348 if (ipsec_mp == NULL) 23349 return; 23350 } 23351 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 23352 DTRACE_PROBE2( 23353 tx__ip__log__error__nolistener__tcp, 23354 char *, "Could not reply with RST to mp(1)", 23355 mblk_t *, mp); 23356 ip2dbg(("tcp_xmit_listeners_reset: not permitted to reply\n")); 23357 freemsg(ipsec_mp); 23358 return; 23359 } 23360 23361 rptr = mp->b_rptr; 23362 23363 tcph = (tcph_t *)&rptr[ip_hdr_len]; 23364 seg_seq = BE32_TO_U32(tcph->th_seq); 23365 seg_ack = BE32_TO_U32(tcph->th_ack); 23366 flags = tcph->th_flags[0]; 23367 23368 seg_len = msgdsize(mp) - (TCP_HDR_LENGTH(tcph) + ip_hdr_len); 23369 if (flags & TH_RST) { 23370 freemsg(ipsec_mp); 23371 } else if (flags & TH_ACK) { 23372 tcp_xmit_early_reset("no tcp, reset", 23373 ipsec_mp, seg_ack, 0, TH_RST, ip_hdr_len, zoneid, tcps, 23374 connp); 23375 } else { 23376 if (flags & TH_SYN) { 23377 seg_len++; 23378 } else { 23379 /* 23380 * Here we violate the RFC. Note that a normal 23381 * TCP will never send a segment without the ACK 23382 * flag, except for RST or SYN segment. This 23383 * segment is neither. Just drop it on the 23384 * floor. 23385 */ 23386 freemsg(ipsec_mp); 23387 tcps->tcps_rst_unsent++; 23388 return; 23389 } 23390 23391 tcp_xmit_early_reset("no tcp, reset/ack", 23392 ipsec_mp, 0, seg_seq + seg_len, 23393 TH_RST | TH_ACK, ip_hdr_len, zoneid, tcps, connp); 23394 } 23395 } 23396 23397 /* 23398 * tcp_xmit_mp is called to return a pointer to an mblk chain complete with 23399 * ip and tcp header ready to pass down to IP. If the mp passed in is 23400 * non-NULL, then up to max_to_send bytes of data will be dup'ed off that 23401 * mblk. (If sendall is not set the dup'ing will stop at an mblk boundary 23402 * otherwise it will dup partial mblks.) 23403 * Otherwise, an appropriate ACK packet will be generated. This 23404 * routine is not usually called to send new data for the first time. It 23405 * is mostly called out of the timer for retransmits, and to generate ACKs. 23406 * 23407 * If offset is not NULL, the returned mblk chain's first mblk's b_rptr will 23408 * be adjusted by *offset. And after dupb(), the offset and the ending mblk 23409 * of the original mblk chain will be returned in *offset and *end_mp. 23410 */ 23411 mblk_t * 23412 tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, int32_t *offset, 23413 mblk_t **end_mp, uint32_t seq, boolean_t sendall, uint32_t *seg_len, 23414 boolean_t rexmit) 23415 { 23416 int data_length; 23417 int32_t off = 0; 23418 uint_t flags; 23419 mblk_t *mp1; 23420 mblk_t *mp2; 23421 uchar_t *rptr; 23422 tcph_t *tcph; 23423 int32_t num_sack_blk = 0; 23424 int32_t sack_opt_len = 0; 23425 tcp_stack_t *tcps = tcp->tcp_tcps; 23426 23427 /* Allocate for our maximum TCP header + link-level */ 23428 mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 23429 tcps->tcps_wroff_xtra, BPRI_MED); 23430 if (!mp1) 23431 return (NULL); 23432 data_length = 0; 23433 23434 /* 23435 * Note that tcp_mss has been adjusted to take into account the 23436 * timestamp option if applicable. Because SACK options do not 23437 * appear in every TCP segments and they are of variable lengths, 23438 * they cannot be included in tcp_mss. Thus we need to calculate 23439 * the actual segment length when we need to send a segment which 23440 * includes SACK options. 23441 */ 23442 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 23443 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 23444 tcp->tcp_num_sack_blk); 23445 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 23446 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 23447 if (max_to_send + sack_opt_len > tcp->tcp_mss) 23448 max_to_send -= sack_opt_len; 23449 } 23450 23451 if (offset != NULL) { 23452 off = *offset; 23453 /* We use offset as an indicator that end_mp is not NULL. */ 23454 *end_mp = NULL; 23455 } 23456 for (mp2 = mp1; mp && data_length != max_to_send; mp = mp->b_cont) { 23457 /* This could be faster with cooperation from downstream */ 23458 if (mp2 != mp1 && !sendall && 23459 data_length + (int)(mp->b_wptr - mp->b_rptr) > 23460 max_to_send) 23461 /* 23462 * Don't send the next mblk since the whole mblk 23463 * does not fit. 23464 */ 23465 break; 23466 mp2->b_cont = dupb(mp); 23467 mp2 = mp2->b_cont; 23468 if (!mp2) { 23469 freemsg(mp1); 23470 return (NULL); 23471 } 23472 mp2->b_rptr += off; 23473 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 23474 (uintptr_t)INT_MAX); 23475 23476 data_length += (int)(mp2->b_wptr - mp2->b_rptr); 23477 if (data_length > max_to_send) { 23478 mp2->b_wptr -= data_length - max_to_send; 23479 data_length = max_to_send; 23480 off = mp2->b_wptr - mp->b_rptr; 23481 break; 23482 } else { 23483 off = 0; 23484 } 23485 } 23486 if (offset != NULL) { 23487 *offset = off; 23488 *end_mp = mp; 23489 } 23490 if (seg_len != NULL) { 23491 *seg_len = data_length; 23492 } 23493 23494 /* Update the latest receive window size in TCP header. */ 23495 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 23496 tcp->tcp_tcph->th_win); 23497 23498 rptr = mp1->b_rptr + tcps->tcps_wroff_xtra; 23499 mp1->b_rptr = rptr; 23500 mp1->b_wptr = rptr + tcp->tcp_hdr_len + sack_opt_len; 23501 bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len); 23502 tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len]; 23503 U32_TO_ABE32(seq, tcph->th_seq); 23504 23505 /* 23506 * Use tcp_unsent to determine if the PUSH bit should be used assumes 23507 * that this function was called from tcp_wput_data. Thus, when called 23508 * to retransmit data the setting of the PUSH bit may appear some 23509 * what random in that it might get set when it should not. This 23510 * should not pose any performance issues. 23511 */ 23512 if (data_length != 0 && (tcp->tcp_unsent == 0 || 23513 tcp->tcp_unsent == data_length)) { 23514 flags = TH_ACK | TH_PUSH; 23515 } else { 23516 flags = TH_ACK; 23517 } 23518 23519 if (tcp->tcp_ecn_ok) { 23520 if (tcp->tcp_ecn_echo_on) 23521 flags |= TH_ECE; 23522 23523 /* 23524 * Only set ECT bit and ECN_CWR if a segment contains new data. 23525 * There is no TCP flow control for non-data segments, and 23526 * only data segment is transmitted reliably. 23527 */ 23528 if (data_length > 0 && !rexmit) { 23529 SET_ECT(tcp, rptr); 23530 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 23531 flags |= TH_CWR; 23532 tcp->tcp_ecn_cwr_sent = B_TRUE; 23533 } 23534 } 23535 } 23536 23537 if (tcp->tcp_valid_bits) { 23538 uint32_t u1; 23539 23540 if ((tcp->tcp_valid_bits & TCP_ISS_VALID) && 23541 seq == tcp->tcp_iss) { 23542 uchar_t *wptr; 23543 23544 /* 23545 * If TCP_ISS_VALID and the seq number is tcp_iss, 23546 * TCP can only be in SYN-SENT, SYN-RCVD or 23547 * FIN-WAIT-1 state. It can be FIN-WAIT-1 if 23548 * our SYN is not ack'ed but the app closes this 23549 * TCP connection. 23550 */ 23551 ASSERT(tcp->tcp_state == TCPS_SYN_SENT || 23552 tcp->tcp_state == TCPS_SYN_RCVD || 23553 tcp->tcp_state == TCPS_FIN_WAIT_1); 23554 23555 /* 23556 * Tack on the MSS option. It is always needed 23557 * for both active and passive open. 23558 * 23559 * MSS option value should be interface MTU - MIN 23560 * TCP/IP header according to RFC 793 as it means 23561 * the maximum segment size TCP can receive. But 23562 * to get around some broken middle boxes/end hosts 23563 * out there, we allow the option value to be the 23564 * same as the MSS option size on the peer side. 23565 * In this way, the other side will not send 23566 * anything larger than they can receive. 23567 * 23568 * Note that for SYN_SENT state, the ndd param 23569 * tcp_use_smss_as_mss_opt has no effect as we 23570 * don't know the peer's MSS option value. So 23571 * the only case we need to take care of is in 23572 * SYN_RCVD state, which is done later. 23573 */ 23574 wptr = mp1->b_wptr; 23575 wptr[0] = TCPOPT_MAXSEG; 23576 wptr[1] = TCPOPT_MAXSEG_LEN; 23577 wptr += 2; 23578 u1 = tcp->tcp_if_mtu - 23579 (tcp->tcp_ipversion == IPV4_VERSION ? 23580 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) - 23581 TCP_MIN_HEADER_LENGTH; 23582 U16_TO_BE16(u1, wptr); 23583 mp1->b_wptr = wptr + 2; 23584 /* Update the offset to cover the additional word */ 23585 tcph->th_offset_and_rsrvd[0] += (1 << 4); 23586 23587 /* 23588 * Note that the following way of filling in 23589 * TCP options are not optimal. Some NOPs can 23590 * be saved. But there is no need at this time 23591 * to optimize it. When it is needed, we will 23592 * do it. 23593 */ 23594 switch (tcp->tcp_state) { 23595 case TCPS_SYN_SENT: 23596 flags = TH_SYN; 23597 23598 if (tcp->tcp_snd_ts_ok) { 23599 uint32_t llbolt = (uint32_t)lbolt; 23600 23601 wptr = mp1->b_wptr; 23602 wptr[0] = TCPOPT_NOP; 23603 wptr[1] = TCPOPT_NOP; 23604 wptr[2] = TCPOPT_TSTAMP; 23605 wptr[3] = TCPOPT_TSTAMP_LEN; 23606 wptr += 4; 23607 U32_TO_BE32(llbolt, wptr); 23608 wptr += 4; 23609 ASSERT(tcp->tcp_ts_recent == 0); 23610 U32_TO_BE32(0L, wptr); 23611 mp1->b_wptr += TCPOPT_REAL_TS_LEN; 23612 tcph->th_offset_and_rsrvd[0] += 23613 (3 << 4); 23614 } 23615 23616 /* 23617 * Set up all the bits to tell other side 23618 * we are ECN capable. 23619 */ 23620 if (tcp->tcp_ecn_ok) { 23621 flags |= (TH_ECE | TH_CWR); 23622 } 23623 break; 23624 case TCPS_SYN_RCVD: 23625 flags |= TH_SYN; 23626 23627 /* 23628 * Reset the MSS option value to be SMSS 23629 * We should probably add back the bytes 23630 * for timestamp option and IPsec. We 23631 * don't do that as this is a workaround 23632 * for broken middle boxes/end hosts, it 23633 * is better for us to be more cautious. 23634 * They may not take these things into 23635 * account in their SMSS calculation. Thus 23636 * the peer's calculated SMSS may be smaller 23637 * than what it can be. This should be OK. 23638 */ 23639 if (tcps->tcps_use_smss_as_mss_opt) { 23640 u1 = tcp->tcp_mss; 23641 U16_TO_BE16(u1, wptr); 23642 } 23643 23644 /* 23645 * If the other side is ECN capable, reply 23646 * that we are also ECN capable. 23647 */ 23648 if (tcp->tcp_ecn_ok) 23649 flags |= TH_ECE; 23650 break; 23651 default: 23652 /* 23653 * The above ASSERT() makes sure that this 23654 * must be FIN-WAIT-1 state. Our SYN has 23655 * not been ack'ed so retransmit it. 23656 */ 23657 flags |= TH_SYN; 23658 break; 23659 } 23660 23661 if (tcp->tcp_snd_ws_ok) { 23662 wptr = mp1->b_wptr; 23663 wptr[0] = TCPOPT_NOP; 23664 wptr[1] = TCPOPT_WSCALE; 23665 wptr[2] = TCPOPT_WS_LEN; 23666 wptr[3] = (uchar_t)tcp->tcp_rcv_ws; 23667 mp1->b_wptr += TCPOPT_REAL_WS_LEN; 23668 tcph->th_offset_and_rsrvd[0] += (1 << 4); 23669 } 23670 23671 if (tcp->tcp_snd_sack_ok) { 23672 wptr = mp1->b_wptr; 23673 wptr[0] = TCPOPT_NOP; 23674 wptr[1] = TCPOPT_NOP; 23675 wptr[2] = TCPOPT_SACK_PERMITTED; 23676 wptr[3] = TCPOPT_SACK_OK_LEN; 23677 mp1->b_wptr += TCPOPT_REAL_SACK_OK_LEN; 23678 tcph->th_offset_and_rsrvd[0] += (1 << 4); 23679 } 23680 23681 /* allocb() of adequate mblk assures space */ 23682 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 23683 (uintptr_t)INT_MAX); 23684 u1 = (int)(mp1->b_wptr - mp1->b_rptr); 23685 /* 23686 * Get IP set to checksum on our behalf 23687 * Include the adjustment for a source route if any. 23688 */ 23689 u1 += tcp->tcp_sum; 23690 u1 = (u1 >> 16) + (u1 & 0xFFFF); 23691 U16_TO_BE16(u1, tcph->th_sum); 23692 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 23693 } 23694 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 23695 (seq + data_length) == tcp->tcp_fss) { 23696 if (!tcp->tcp_fin_acked) { 23697 flags |= TH_FIN; 23698 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 23699 } 23700 if (!tcp->tcp_fin_sent) { 23701 tcp->tcp_fin_sent = B_TRUE; 23702 switch (tcp->tcp_state) { 23703 case TCPS_SYN_RCVD: 23704 case TCPS_ESTABLISHED: 23705 tcp->tcp_state = TCPS_FIN_WAIT_1; 23706 break; 23707 case TCPS_CLOSE_WAIT: 23708 tcp->tcp_state = TCPS_LAST_ACK; 23709 break; 23710 } 23711 if (tcp->tcp_suna == tcp->tcp_snxt) 23712 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 23713 tcp->tcp_snxt = tcp->tcp_fss + 1; 23714 } 23715 } 23716 /* 23717 * Note the trick here. u1 is unsigned. When tcp_urg 23718 * is smaller than seq, u1 will become a very huge value. 23719 * So the comparison will fail. Also note that tcp_urp 23720 * should be positive, see RFC 793 page 17. 23721 */ 23722 u1 = tcp->tcp_urg - seq + TCP_OLD_URP_INTERPRETATION; 23723 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && u1 != 0 && 23724 u1 < (uint32_t)(64 * 1024)) { 23725 flags |= TH_URG; 23726 BUMP_MIB(&tcps->tcps_mib, tcpOutUrg); 23727 U32_TO_ABE16(u1, tcph->th_urp); 23728 } 23729 } 23730 tcph->th_flags[0] = (uchar_t)flags; 23731 tcp->tcp_rack = tcp->tcp_rnxt; 23732 tcp->tcp_rack_cnt = 0; 23733 23734 if (tcp->tcp_snd_ts_ok) { 23735 if (tcp->tcp_state != TCPS_SYN_SENT) { 23736 uint32_t llbolt = (uint32_t)lbolt; 23737 23738 U32_TO_BE32(llbolt, 23739 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 23740 U32_TO_BE32(tcp->tcp_ts_recent, 23741 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 23742 } 23743 } 23744 23745 if (num_sack_blk > 0) { 23746 uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len; 23747 sack_blk_t *tmp; 23748 int32_t i; 23749 23750 wptr[0] = TCPOPT_NOP; 23751 wptr[1] = TCPOPT_NOP; 23752 wptr[2] = TCPOPT_SACK; 23753 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 23754 sizeof (sack_blk_t); 23755 wptr += TCPOPT_REAL_SACK_LEN; 23756 23757 tmp = tcp->tcp_sack_list; 23758 for (i = 0; i < num_sack_blk; i++) { 23759 U32_TO_BE32(tmp[i].begin, wptr); 23760 wptr += sizeof (tcp_seq); 23761 U32_TO_BE32(tmp[i].end, wptr); 23762 wptr += sizeof (tcp_seq); 23763 } 23764 tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) << 4); 23765 } 23766 ASSERT((uintptr_t)(mp1->b_wptr - rptr) <= (uintptr_t)INT_MAX); 23767 data_length += (int)(mp1->b_wptr - rptr); 23768 if (tcp->tcp_ipversion == IPV4_VERSION) { 23769 ((ipha_t *)rptr)->ipha_length = htons(data_length); 23770 } else { 23771 ip6_t *ip6 = (ip6_t *)(rptr + 23772 (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ? 23773 sizeof (ip6i_t) : 0)); 23774 23775 ip6->ip6_plen = htons(data_length - 23776 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 23777 } 23778 23779 /* 23780 * Prime pump for IP 23781 * Include the adjustment for a source route if any. 23782 */ 23783 data_length -= tcp->tcp_ip_hdr_len; 23784 data_length += tcp->tcp_sum; 23785 data_length = (data_length >> 16) + (data_length & 0xFFFF); 23786 U16_TO_ABE16(data_length, tcph->th_sum); 23787 if (tcp->tcp_ip_forward_progress) { 23788 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 23789 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 23790 tcp->tcp_ip_forward_progress = B_FALSE; 23791 } 23792 return (mp1); 23793 } 23794 23795 /* This function handles the push timeout. */ 23796 void 23797 tcp_push_timer(void *arg) 23798 { 23799 conn_t *connp = (conn_t *)arg; 23800 tcp_t *tcp = connp->conn_tcp; 23801 tcp_stack_t *tcps = tcp->tcp_tcps; 23802 uint_t flags; 23803 sodirect_t *sodp; 23804 23805 TCP_DBGSTAT(tcps, tcp_push_timer_cnt); 23806 23807 ASSERT(tcp->tcp_listener == NULL); 23808 23809 /* 23810 * We need to plug synchronous streams during our drain to prevent 23811 * a race with tcp_fuse_rrw() or tcp_fusion_rinfop(). 23812 */ 23813 TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp); 23814 tcp->tcp_push_tid = 0; 23815 23816 SOD_PTR_ENTER(tcp, sodp); 23817 if (sodp != NULL) { 23818 flags = tcp_rcv_sod_wakeup(tcp, sodp); 23819 /* sod_wakeup() does the mutex_exit() */ 23820 } else if (tcp->tcp_rcv_list != NULL) { 23821 flags = tcp_rcv_drain(tcp->tcp_rq, tcp); 23822 } 23823 if (flags == TH_ACK_NEEDED) 23824 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 23825 23826 TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp); 23827 } 23828 23829 /* 23830 * This function handles delayed ACK timeout. 23831 */ 23832 static void 23833 tcp_ack_timer(void *arg) 23834 { 23835 conn_t *connp = (conn_t *)arg; 23836 tcp_t *tcp = connp->conn_tcp; 23837 mblk_t *mp; 23838 tcp_stack_t *tcps = tcp->tcp_tcps; 23839 23840 TCP_DBGSTAT(tcps, tcp_ack_timer_cnt); 23841 23842 tcp->tcp_ack_tid = 0; 23843 23844 if (tcp->tcp_fused) 23845 return; 23846 23847 /* 23848 * Do not send ACK if there is no outstanding unack'ed data. 23849 */ 23850 if (tcp->tcp_rnxt == tcp->tcp_rack) { 23851 return; 23852 } 23853 23854 if ((tcp->tcp_rnxt - tcp->tcp_rack) > tcp->tcp_mss) { 23855 /* 23856 * Make sure we don't allow deferred ACKs to result in 23857 * timer-based ACKing. If we have held off an ACK 23858 * when there was more than an mss here, and the timer 23859 * goes off, we have to worry about the possibility 23860 * that the sender isn't doing slow-start, or is out 23861 * of step with us for some other reason. We fall 23862 * permanently back in the direction of 23863 * ACK-every-other-packet as suggested in RFC 1122. 23864 */ 23865 if (tcp->tcp_rack_abs_max > 2) 23866 tcp->tcp_rack_abs_max--; 23867 tcp->tcp_rack_cur_max = 2; 23868 } 23869 mp = tcp_ack_mp(tcp); 23870 23871 if (mp != NULL) { 23872 BUMP_LOCAL(tcp->tcp_obsegs); 23873 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 23874 BUMP_MIB(&tcps->tcps_mib, tcpOutAckDelayed); 23875 tcp_send_data(tcp, tcp->tcp_wq, mp); 23876 } 23877 } 23878 23879 23880 /* Generate an ACK-only (no data) segment for a TCP endpoint */ 23881 static mblk_t * 23882 tcp_ack_mp(tcp_t *tcp) 23883 { 23884 uint32_t seq_no; 23885 tcp_stack_t *tcps = tcp->tcp_tcps; 23886 23887 /* 23888 * There are a few cases to be considered while setting the sequence no. 23889 * Essentially, we can come here while processing an unacceptable pkt 23890 * in the TCPS_SYN_RCVD state, in which case we set the sequence number 23891 * to snxt (per RFC 793), note the swnd wouldn't have been set yet. 23892 * If we are here for a zero window probe, stick with suna. In all 23893 * other cases, we check if suna + swnd encompasses snxt and set 23894 * the sequence number to snxt, if so. If snxt falls outside the 23895 * window (the receiver probably shrunk its window), we will go with 23896 * suna + swnd, otherwise the sequence no will be unacceptable to the 23897 * receiver. 23898 */ 23899 if (tcp->tcp_zero_win_probe) { 23900 seq_no = tcp->tcp_suna; 23901 } else if (tcp->tcp_state == TCPS_SYN_RCVD) { 23902 ASSERT(tcp->tcp_swnd == 0); 23903 seq_no = tcp->tcp_snxt; 23904 } else { 23905 seq_no = SEQ_GT(tcp->tcp_snxt, 23906 (tcp->tcp_suna + tcp->tcp_swnd)) ? 23907 (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt; 23908 } 23909 23910 if (tcp->tcp_valid_bits) { 23911 /* 23912 * For the complex case where we have to send some 23913 * controls (FIN or SYN), let tcp_xmit_mp do it. 23914 */ 23915 return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE, 23916 NULL, B_FALSE)); 23917 } else { 23918 /* Generate a simple ACK */ 23919 int data_length; 23920 uchar_t *rptr; 23921 tcph_t *tcph; 23922 mblk_t *mp1; 23923 int32_t tcp_hdr_len; 23924 int32_t tcp_tcp_hdr_len; 23925 int32_t num_sack_blk = 0; 23926 int32_t sack_opt_len; 23927 23928 /* 23929 * Allocate space for TCP + IP headers 23930 * and link-level header 23931 */ 23932 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 23933 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 23934 tcp->tcp_num_sack_blk); 23935 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 23936 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 23937 tcp_hdr_len = tcp->tcp_hdr_len + sack_opt_len; 23938 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + sack_opt_len; 23939 } else { 23940 tcp_hdr_len = tcp->tcp_hdr_len; 23941 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len; 23942 } 23943 mp1 = allocb(tcp_hdr_len + tcps->tcps_wroff_xtra, BPRI_MED); 23944 if (!mp1) 23945 return (NULL); 23946 23947 /* Update the latest receive window size in TCP header. */ 23948 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 23949 tcp->tcp_tcph->th_win); 23950 /* copy in prototype TCP + IP header */ 23951 rptr = mp1->b_rptr + tcps->tcps_wroff_xtra; 23952 mp1->b_rptr = rptr; 23953 mp1->b_wptr = rptr + tcp_hdr_len; 23954 bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len); 23955 23956 tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len]; 23957 23958 /* Set the TCP sequence number. */ 23959 U32_TO_ABE32(seq_no, tcph->th_seq); 23960 23961 /* Set up the TCP flag field. */ 23962 tcph->th_flags[0] = (uchar_t)TH_ACK; 23963 if (tcp->tcp_ecn_echo_on) 23964 tcph->th_flags[0] |= TH_ECE; 23965 23966 tcp->tcp_rack = tcp->tcp_rnxt; 23967 tcp->tcp_rack_cnt = 0; 23968 23969 /* fill in timestamp option if in use */ 23970 if (tcp->tcp_snd_ts_ok) { 23971 uint32_t llbolt = (uint32_t)lbolt; 23972 23973 U32_TO_BE32(llbolt, 23974 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 23975 U32_TO_BE32(tcp->tcp_ts_recent, 23976 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 23977 } 23978 23979 /* Fill in SACK options */ 23980 if (num_sack_blk > 0) { 23981 uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len; 23982 sack_blk_t *tmp; 23983 int32_t i; 23984 23985 wptr[0] = TCPOPT_NOP; 23986 wptr[1] = TCPOPT_NOP; 23987 wptr[2] = TCPOPT_SACK; 23988 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 23989 sizeof (sack_blk_t); 23990 wptr += TCPOPT_REAL_SACK_LEN; 23991 23992 tmp = tcp->tcp_sack_list; 23993 for (i = 0; i < num_sack_blk; i++) { 23994 U32_TO_BE32(tmp[i].begin, wptr); 23995 wptr += sizeof (tcp_seq); 23996 U32_TO_BE32(tmp[i].end, wptr); 23997 wptr += sizeof (tcp_seq); 23998 } 23999 tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) 24000 << 4); 24001 } 24002 24003 if (tcp->tcp_ipversion == IPV4_VERSION) { 24004 ((ipha_t *)rptr)->ipha_length = htons(tcp_hdr_len); 24005 } else { 24006 /* Check for ip6i_t header in sticky hdrs */ 24007 ip6_t *ip6 = (ip6_t *)(rptr + 24008 (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ? 24009 sizeof (ip6i_t) : 0)); 24010 24011 ip6->ip6_plen = htons(tcp_hdr_len - 24012 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 24013 } 24014 24015 /* 24016 * Prime pump for checksum calculation in IP. Include the 24017 * adjustment for a source route if any. 24018 */ 24019 data_length = tcp_tcp_hdr_len + tcp->tcp_sum; 24020 data_length = (data_length >> 16) + (data_length & 0xFFFF); 24021 U16_TO_ABE16(data_length, tcph->th_sum); 24022 24023 if (tcp->tcp_ip_forward_progress) { 24024 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 24025 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 24026 tcp->tcp_ip_forward_progress = B_FALSE; 24027 } 24028 return (mp1); 24029 } 24030 } 24031 24032 /* 24033 * Hash list insertion routine for tcp_t structures. 24034 * Inserts entries with the ones bound to a specific IP address first 24035 * followed by those bound to INADDR_ANY. 24036 */ 24037 static void 24038 tcp_bind_hash_insert(tf_t *tbf, tcp_t *tcp, int caller_holds_lock) 24039 { 24040 tcp_t **tcpp; 24041 tcp_t *tcpnext; 24042 24043 if (tcp->tcp_ptpbhn != NULL) { 24044 ASSERT(!caller_holds_lock); 24045 tcp_bind_hash_remove(tcp); 24046 } 24047 tcpp = &tbf->tf_tcp; 24048 if (!caller_holds_lock) { 24049 mutex_enter(&tbf->tf_lock); 24050 } else { 24051 ASSERT(MUTEX_HELD(&tbf->tf_lock)); 24052 } 24053 tcpnext = tcpp[0]; 24054 if (tcpnext) { 24055 /* 24056 * If the new tcp bound to the INADDR_ANY address 24057 * and the first one in the list is not bound to 24058 * INADDR_ANY we skip all entries until we find the 24059 * first one bound to INADDR_ANY. 24060 * This makes sure that applications binding to a 24061 * specific address get preference over those binding to 24062 * INADDR_ANY. 24063 */ 24064 if (V6_OR_V4_INADDR_ANY(tcp->tcp_bound_source_v6) && 24065 !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) { 24066 while ((tcpnext = tcpp[0]) != NULL && 24067 !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) 24068 tcpp = &(tcpnext->tcp_bind_hash); 24069 if (tcpnext) 24070 tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash; 24071 } else 24072 tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash; 24073 } 24074 tcp->tcp_bind_hash = tcpnext; 24075 tcp->tcp_ptpbhn = tcpp; 24076 tcpp[0] = tcp; 24077 if (!caller_holds_lock) 24078 mutex_exit(&tbf->tf_lock); 24079 } 24080 24081 /* 24082 * Hash list removal routine for tcp_t structures. 24083 */ 24084 static void 24085 tcp_bind_hash_remove(tcp_t *tcp) 24086 { 24087 tcp_t *tcpnext; 24088 kmutex_t *lockp; 24089 tcp_stack_t *tcps = tcp->tcp_tcps; 24090 24091 if (tcp->tcp_ptpbhn == NULL) 24092 return; 24093 24094 /* 24095 * Extract the lock pointer in case there are concurrent 24096 * hash_remove's for this instance. 24097 */ 24098 ASSERT(tcp->tcp_lport != 0); 24099 lockp = &tcps->tcps_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)].tf_lock; 24100 24101 ASSERT(lockp != NULL); 24102 mutex_enter(lockp); 24103 if (tcp->tcp_ptpbhn) { 24104 tcpnext = tcp->tcp_bind_hash; 24105 if (tcpnext) { 24106 tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn; 24107 tcp->tcp_bind_hash = NULL; 24108 } 24109 *tcp->tcp_ptpbhn = tcpnext; 24110 tcp->tcp_ptpbhn = NULL; 24111 } 24112 mutex_exit(lockp); 24113 } 24114 24115 24116 /* 24117 * Hash list lookup routine for tcp_t structures. 24118 * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF. 24119 */ 24120 static tcp_t * 24121 tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *tcps) 24122 { 24123 tf_t *tf; 24124 tcp_t *tcp; 24125 24126 tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 24127 mutex_enter(&tf->tf_lock); 24128 for (tcp = tf->tf_tcp; tcp != NULL; 24129 tcp = tcp->tcp_acceptor_hash) { 24130 if (tcp->tcp_acceptor_id == id) { 24131 CONN_INC_REF(tcp->tcp_connp); 24132 mutex_exit(&tf->tf_lock); 24133 return (tcp); 24134 } 24135 } 24136 mutex_exit(&tf->tf_lock); 24137 return (NULL); 24138 } 24139 24140 24141 /* 24142 * Hash list insertion routine for tcp_t structures. 24143 */ 24144 void 24145 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp) 24146 { 24147 tf_t *tf; 24148 tcp_t **tcpp; 24149 tcp_t *tcpnext; 24150 tcp_stack_t *tcps = tcp->tcp_tcps; 24151 24152 tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 24153 24154 if (tcp->tcp_ptpahn != NULL) 24155 tcp_acceptor_hash_remove(tcp); 24156 tcpp = &tf->tf_tcp; 24157 mutex_enter(&tf->tf_lock); 24158 tcpnext = tcpp[0]; 24159 if (tcpnext) 24160 tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash; 24161 tcp->tcp_acceptor_hash = tcpnext; 24162 tcp->tcp_ptpahn = tcpp; 24163 tcpp[0] = tcp; 24164 tcp->tcp_acceptor_lockp = &tf->tf_lock; /* For tcp_*_hash_remove */ 24165 mutex_exit(&tf->tf_lock); 24166 } 24167 24168 /* 24169 * Hash list removal routine for tcp_t structures. 24170 */ 24171 static void 24172 tcp_acceptor_hash_remove(tcp_t *tcp) 24173 { 24174 tcp_t *tcpnext; 24175 kmutex_t *lockp; 24176 24177 /* 24178 * Extract the lock pointer in case there are concurrent 24179 * hash_remove's for this instance. 24180 */ 24181 lockp = tcp->tcp_acceptor_lockp; 24182 24183 if (tcp->tcp_ptpahn == NULL) 24184 return; 24185 24186 ASSERT(lockp != NULL); 24187 mutex_enter(lockp); 24188 if (tcp->tcp_ptpahn) { 24189 tcpnext = tcp->tcp_acceptor_hash; 24190 if (tcpnext) { 24191 tcpnext->tcp_ptpahn = tcp->tcp_ptpahn; 24192 tcp->tcp_acceptor_hash = NULL; 24193 } 24194 *tcp->tcp_ptpahn = tcpnext; 24195 tcp->tcp_ptpahn = NULL; 24196 } 24197 mutex_exit(lockp); 24198 tcp->tcp_acceptor_lockp = NULL; 24199 } 24200 24201 /* Data for fast netmask macro used by tcp_hsp_lookup */ 24202 24203 static ipaddr_t netmasks[] = { 24204 IN_CLASSA_NET, IN_CLASSA_NET, IN_CLASSB_NET, 24205 IN_CLASSC_NET | IN_CLASSD_NET /* Class C,D,E */ 24206 }; 24207 24208 #define netmask(addr) (netmasks[(ipaddr_t)(addr) >> 30]) 24209 24210 /* 24211 * XXX This routine should go away and instead we should use the metrics 24212 * associated with the routes to determine the default sndspace and rcvspace. 24213 */ 24214 static tcp_hsp_t * 24215 tcp_hsp_lookup(ipaddr_t addr, tcp_stack_t *tcps) 24216 { 24217 tcp_hsp_t *hsp = NULL; 24218 24219 /* Quick check without acquiring the lock. */ 24220 if (tcps->tcps_hsp_hash == NULL) 24221 return (NULL); 24222 24223 rw_enter(&tcps->tcps_hsp_lock, RW_READER); 24224 24225 /* This routine finds the best-matching HSP for address addr. */ 24226 24227 if (tcps->tcps_hsp_hash) { 24228 int i; 24229 ipaddr_t srchaddr; 24230 tcp_hsp_t *hsp_net; 24231 24232 /* We do three passes: host, network, and subnet. */ 24233 24234 srchaddr = addr; 24235 24236 for (i = 1; i <= 3; i++) { 24237 /* Look for exact match on srchaddr */ 24238 24239 hsp = tcps->tcps_hsp_hash[TCP_HSP_HASH(srchaddr)]; 24240 while (hsp) { 24241 if (hsp->tcp_hsp_vers == IPV4_VERSION && 24242 hsp->tcp_hsp_addr == srchaddr) 24243 break; 24244 hsp = hsp->tcp_hsp_next; 24245 } 24246 ASSERT(hsp == NULL || 24247 hsp->tcp_hsp_vers == IPV4_VERSION); 24248 24249 /* 24250 * If this is the first pass: 24251 * If we found a match, great, return it. 24252 * If not, search for the network on the second pass. 24253 */ 24254 24255 if (i == 1) 24256 if (hsp) 24257 break; 24258 else 24259 { 24260 srchaddr = addr & netmask(addr); 24261 continue; 24262 } 24263 24264 /* 24265 * If this is the second pass: 24266 * If we found a match, but there's a subnet mask, 24267 * save the match but try again using the subnet 24268 * mask on the third pass. 24269 * Otherwise, return whatever we found. 24270 */ 24271 24272 if (i == 2) { 24273 if (hsp && hsp->tcp_hsp_subnet) { 24274 hsp_net = hsp; 24275 srchaddr = addr & hsp->tcp_hsp_subnet; 24276 continue; 24277 } else { 24278 break; 24279 } 24280 } 24281 24282 /* 24283 * This must be the third pass. If we didn't find 24284 * anything, return the saved network HSP instead. 24285 */ 24286 24287 if (!hsp) 24288 hsp = hsp_net; 24289 } 24290 } 24291 24292 rw_exit(&tcps->tcps_hsp_lock); 24293 return (hsp); 24294 } 24295 24296 /* 24297 * XXX Equally broken as the IPv4 routine. Doesn't handle longest 24298 * match lookup. 24299 */ 24300 static tcp_hsp_t * 24301 tcp_hsp_lookup_ipv6(in6_addr_t *v6addr, tcp_stack_t *tcps) 24302 { 24303 tcp_hsp_t *hsp = NULL; 24304 24305 /* Quick check without acquiring the lock. */ 24306 if (tcps->tcps_hsp_hash == NULL) 24307 return (NULL); 24308 24309 rw_enter(&tcps->tcps_hsp_lock, RW_READER); 24310 24311 /* This routine finds the best-matching HSP for address addr. */ 24312 24313 if (tcps->tcps_hsp_hash) { 24314 int i; 24315 in6_addr_t v6srchaddr; 24316 tcp_hsp_t *hsp_net; 24317 24318 /* We do three passes: host, network, and subnet. */ 24319 24320 v6srchaddr = *v6addr; 24321 24322 for (i = 1; i <= 3; i++) { 24323 /* Look for exact match on srchaddr */ 24324 24325 hsp = tcps->tcps_hsp_hash[TCP_HSP_HASH( 24326 V4_PART_OF_V6(v6srchaddr))]; 24327 while (hsp) { 24328 if (hsp->tcp_hsp_vers == IPV6_VERSION && 24329 IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, 24330 &v6srchaddr)) 24331 break; 24332 hsp = hsp->tcp_hsp_next; 24333 } 24334 24335 /* 24336 * If this is the first pass: 24337 * If we found a match, great, return it. 24338 * If not, search for the network on the second pass. 24339 */ 24340 24341 if (i == 1) 24342 if (hsp) 24343 break; 24344 else { 24345 /* Assume a 64 bit mask */ 24346 v6srchaddr.s6_addr32[0] = 24347 v6addr->s6_addr32[0]; 24348 v6srchaddr.s6_addr32[1] = 24349 v6addr->s6_addr32[1]; 24350 v6srchaddr.s6_addr32[2] = 0; 24351 v6srchaddr.s6_addr32[3] = 0; 24352 continue; 24353 } 24354 24355 /* 24356 * If this is the second pass: 24357 * If we found a match, but there's a subnet mask, 24358 * save the match but try again using the subnet 24359 * mask on the third pass. 24360 * Otherwise, return whatever we found. 24361 */ 24362 24363 if (i == 2) { 24364 ASSERT(hsp == NULL || 24365 hsp->tcp_hsp_vers == IPV6_VERSION); 24366 if (hsp && 24367 !IN6_IS_ADDR_UNSPECIFIED( 24368 &hsp->tcp_hsp_subnet_v6)) { 24369 hsp_net = hsp; 24370 V6_MASK_COPY(*v6addr, 24371 hsp->tcp_hsp_subnet_v6, v6srchaddr); 24372 continue; 24373 } else { 24374 break; 24375 } 24376 } 24377 24378 /* 24379 * This must be the third pass. If we didn't find 24380 * anything, return the saved network HSP instead. 24381 */ 24382 24383 if (!hsp) 24384 hsp = hsp_net; 24385 } 24386 } 24387 24388 rw_exit(&tcps->tcps_hsp_lock); 24389 return (hsp); 24390 } 24391 24392 /* 24393 * Type three generator adapted from the random() function in 4.4 BSD: 24394 */ 24395 24396 /* 24397 * Copyright (c) 1983, 1993 24398 * The Regents of the University of California. All rights reserved. 24399 * 24400 * Redistribution and use in source and binary forms, with or without 24401 * modification, are permitted provided that the following conditions 24402 * are met: 24403 * 1. Redistributions of source code must retain the above copyright 24404 * notice, this list of conditions and the following disclaimer. 24405 * 2. Redistributions in binary form must reproduce the above copyright 24406 * notice, this list of conditions and the following disclaimer in the 24407 * documentation and/or other materials provided with the distribution. 24408 * 3. All advertising materials mentioning features or use of this software 24409 * must display the following acknowledgement: 24410 * This product includes software developed by the University of 24411 * California, Berkeley and its contributors. 24412 * 4. Neither the name of the University nor the names of its contributors 24413 * may be used to endorse or promote products derived from this software 24414 * without specific prior written permission. 24415 * 24416 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 24417 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24418 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24419 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24420 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24421 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24422 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24423 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24424 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24425 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24426 * SUCH DAMAGE. 24427 */ 24428 24429 /* Type 3 -- x**31 + x**3 + 1 */ 24430 #define DEG_3 31 24431 #define SEP_3 3 24432 24433 24434 /* Protected by tcp_random_lock */ 24435 static int tcp_randtbl[DEG_3 + 1]; 24436 24437 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1]; 24438 static int *tcp_random_rptr = &tcp_randtbl[1]; 24439 24440 static int *tcp_random_state = &tcp_randtbl[1]; 24441 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1]; 24442 24443 kmutex_t tcp_random_lock; 24444 24445 void 24446 tcp_random_init(void) 24447 { 24448 int i; 24449 hrtime_t hrt; 24450 time_t wallclock; 24451 uint64_t result; 24452 24453 /* 24454 * Use high-res timer and current time for seed. Gethrtime() returns 24455 * a longlong, which may contain resolution down to nanoseconds. 24456 * The current time will either be a 32-bit or a 64-bit quantity. 24457 * XOR the two together in a 64-bit result variable. 24458 * Convert the result to a 32-bit value by multiplying the high-order 24459 * 32-bits by the low-order 32-bits. 24460 */ 24461 24462 hrt = gethrtime(); 24463 (void) drv_getparm(TIME, &wallclock); 24464 result = (uint64_t)wallclock ^ (uint64_t)hrt; 24465 mutex_enter(&tcp_random_lock); 24466 tcp_random_state[0] = ((result >> 32) & 0xffffffff) * 24467 (result & 0xffffffff); 24468 24469 for (i = 1; i < DEG_3; i++) 24470 tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1] 24471 + 12345; 24472 tcp_random_fptr = &tcp_random_state[SEP_3]; 24473 tcp_random_rptr = &tcp_random_state[0]; 24474 mutex_exit(&tcp_random_lock); 24475 for (i = 0; i < 10 * DEG_3; i++) 24476 (void) tcp_random(); 24477 } 24478 24479 /* 24480 * tcp_random: Return a random number in the range [1 - (128K + 1)]. 24481 * This range is selected to be approximately centered on TCP_ISS / 2, 24482 * and easy to compute. We get this value by generating a 32-bit random 24483 * number, selecting out the high-order 17 bits, and then adding one so 24484 * that we never return zero. 24485 */ 24486 int 24487 tcp_random(void) 24488 { 24489 int i; 24490 24491 mutex_enter(&tcp_random_lock); 24492 *tcp_random_fptr += *tcp_random_rptr; 24493 24494 /* 24495 * The high-order bits are more random than the low-order bits, 24496 * so we select out the high-order 17 bits and add one so that 24497 * we never return zero. 24498 */ 24499 i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1; 24500 if (++tcp_random_fptr >= tcp_random_end_ptr) { 24501 tcp_random_fptr = tcp_random_state; 24502 ++tcp_random_rptr; 24503 } else if (++tcp_random_rptr >= tcp_random_end_ptr) 24504 tcp_random_rptr = tcp_random_state; 24505 24506 mutex_exit(&tcp_random_lock); 24507 return (i); 24508 } 24509 24510 /* 24511 * XXX This will go away when TPI is extended to send 24512 * info reqs to sockfs/timod ..... 24513 * Given a queue, set the max packet size for the write 24514 * side of the queue below stream head. This value is 24515 * cached on the stream head. 24516 * Returns 1 on success, 0 otherwise. 24517 */ 24518 static int 24519 setmaxps(queue_t *q, int maxpsz) 24520 { 24521 struct stdata *stp; 24522 queue_t *wq; 24523 stp = STREAM(q); 24524 24525 /* 24526 * At this point change of a queue parameter is not allowed 24527 * when a multiplexor is sitting on top. 24528 */ 24529 if (stp->sd_flag & STPLEX) 24530 return (0); 24531 24532 claimstr(stp->sd_wrq); 24533 wq = stp->sd_wrq->q_next; 24534 ASSERT(wq != NULL); 24535 (void) strqset(wq, QMAXPSZ, 0, maxpsz); 24536 releasestr(stp->sd_wrq); 24537 return (1); 24538 } 24539 24540 static int 24541 tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, int *do_disconnectp, 24542 int *t_errorp, int *sys_errorp) 24543 { 24544 int error; 24545 int is_absreq_failure; 24546 t_scalar_t *opt_lenp; 24547 t_scalar_t opt_offset; 24548 int prim_type; 24549 struct T_conn_req *tcreqp; 24550 struct T_conn_res *tcresp; 24551 cred_t *cr; 24552 24553 cr = DB_CREDDEF(mp, tcp->tcp_cred); 24554 24555 prim_type = ((union T_primitives *)mp->b_rptr)->type; 24556 ASSERT(prim_type == T_CONN_REQ || prim_type == O_T_CONN_RES || 24557 prim_type == T_CONN_RES); 24558 24559 switch (prim_type) { 24560 case T_CONN_REQ: 24561 tcreqp = (struct T_conn_req *)mp->b_rptr; 24562 opt_offset = tcreqp->OPT_offset; 24563 opt_lenp = (t_scalar_t *)&tcreqp->OPT_length; 24564 break; 24565 case O_T_CONN_RES: 24566 case T_CONN_RES: 24567 tcresp = (struct T_conn_res *)mp->b_rptr; 24568 opt_offset = tcresp->OPT_offset; 24569 opt_lenp = (t_scalar_t *)&tcresp->OPT_length; 24570 break; 24571 } 24572 24573 *t_errorp = 0; 24574 *sys_errorp = 0; 24575 *do_disconnectp = 0; 24576 24577 error = tpi_optcom_buf(tcp->tcp_wq, mp, opt_lenp, 24578 opt_offset, cr, &tcp_opt_obj, 24579 NULL, &is_absreq_failure); 24580 24581 switch (error) { 24582 case 0: /* no error */ 24583 ASSERT(is_absreq_failure == 0); 24584 return (0); 24585 case ENOPROTOOPT: 24586 *t_errorp = TBADOPT; 24587 break; 24588 case EACCES: 24589 *t_errorp = TACCES; 24590 break; 24591 default: 24592 *t_errorp = TSYSERR; *sys_errorp = error; 24593 break; 24594 } 24595 if (is_absreq_failure != 0) { 24596 /* 24597 * The connection request should get the local ack 24598 * T_OK_ACK and then a T_DISCON_IND. 24599 */ 24600 *do_disconnectp = 1; 24601 } 24602 return (-1); 24603 } 24604 24605 /* 24606 * Split this function out so that if the secret changes, I'm okay. 24607 * 24608 * Initialize the tcp_iss_cookie and tcp_iss_key. 24609 */ 24610 24611 #define PASSWD_SIZE 16 /* MUST be multiple of 4 */ 24612 24613 static void 24614 tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *tcps) 24615 { 24616 struct { 24617 int32_t current_time; 24618 uint32_t randnum; 24619 uint16_t pad; 24620 uint8_t ether[6]; 24621 uint8_t passwd[PASSWD_SIZE]; 24622 } tcp_iss_cookie; 24623 time_t t; 24624 24625 /* 24626 * Start with the current absolute time. 24627 */ 24628 (void) drv_getparm(TIME, &t); 24629 tcp_iss_cookie.current_time = t; 24630 24631 /* 24632 * XXX - Need a more random number per RFC 1750, not this crap. 24633 * OTOH, if what follows is pretty random, then I'm in better shape. 24634 */ 24635 tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random()); 24636 tcp_iss_cookie.pad = 0x365c; /* Picked from HMAC pad values. */ 24637 24638 /* 24639 * The cpu_type_info is pretty non-random. Ugggh. It does serve 24640 * as a good template. 24641 */ 24642 bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd, 24643 min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info))); 24644 24645 /* 24646 * The pass-phrase. Normally this is supplied by user-called NDD. 24647 */ 24648 bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len)); 24649 24650 /* 24651 * See 4010593 if this section becomes a problem again, 24652 * but the local ethernet address is useful here. 24653 */ 24654 (void) localetheraddr(NULL, 24655 (struct ether_addr *)&tcp_iss_cookie.ether); 24656 24657 /* 24658 * Hash 'em all together. The MD5Final is called per-connection. 24659 */ 24660 mutex_enter(&tcps->tcps_iss_key_lock); 24661 MD5Init(&tcps->tcps_iss_key); 24662 MD5Update(&tcps->tcps_iss_key, (uchar_t *)&tcp_iss_cookie, 24663 sizeof (tcp_iss_cookie)); 24664 mutex_exit(&tcps->tcps_iss_key_lock); 24665 } 24666 24667 /* 24668 * Set the RFC 1948 pass phrase 24669 */ 24670 /* ARGSUSED */ 24671 static int 24672 tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 24673 cred_t *cr) 24674 { 24675 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 24676 24677 /* 24678 * Basically, value contains a new pass phrase. Pass it along! 24679 */ 24680 tcp_iss_key_init((uint8_t *)value, strlen(value), tcps); 24681 return (0); 24682 } 24683 24684 /* ARGSUSED */ 24685 static int 24686 tcp_sack_info_constructor(void *buf, void *cdrarg, int kmflags) 24687 { 24688 bzero(buf, sizeof (tcp_sack_info_t)); 24689 return (0); 24690 } 24691 24692 /* ARGSUSED */ 24693 static int 24694 tcp_iphc_constructor(void *buf, void *cdrarg, int kmflags) 24695 { 24696 bzero(buf, TCP_MAX_COMBINED_HEADER_LENGTH); 24697 return (0); 24698 } 24699 24700 /* 24701 * Make sure we wait until the default queue is setup, yet allow 24702 * tcp_g_q_create() to open a TCP stream. 24703 * We need to allow tcp_g_q_create() do do an open 24704 * of tcp, hence we compare curhread. 24705 * All others have to wait until the tcps_g_q has been 24706 * setup. 24707 */ 24708 void 24709 tcp_g_q_setup(tcp_stack_t *tcps) 24710 { 24711 mutex_enter(&tcps->tcps_g_q_lock); 24712 if (tcps->tcps_g_q != NULL) { 24713 mutex_exit(&tcps->tcps_g_q_lock); 24714 return; 24715 } 24716 if (tcps->tcps_g_q_creator == NULL) { 24717 /* This thread will set it up */ 24718 tcps->tcps_g_q_creator = curthread; 24719 mutex_exit(&tcps->tcps_g_q_lock); 24720 tcp_g_q_create(tcps); 24721 mutex_enter(&tcps->tcps_g_q_lock); 24722 ASSERT(tcps->tcps_g_q_creator == curthread); 24723 tcps->tcps_g_q_creator = NULL; 24724 cv_signal(&tcps->tcps_g_q_cv); 24725 ASSERT(tcps->tcps_g_q != NULL); 24726 mutex_exit(&tcps->tcps_g_q_lock); 24727 return; 24728 } 24729 /* Everybody but the creator has to wait */ 24730 if (tcps->tcps_g_q_creator != curthread) { 24731 while (tcps->tcps_g_q == NULL) 24732 cv_wait(&tcps->tcps_g_q_cv, &tcps->tcps_g_q_lock); 24733 } 24734 mutex_exit(&tcps->tcps_g_q_lock); 24735 } 24736 24737 #define IP "ip" 24738 24739 #define TCP6DEV "/devices/pseudo/tcp6@0:tcp6" 24740 24741 /* 24742 * Create a default tcp queue here instead of in strplumb 24743 */ 24744 void 24745 tcp_g_q_create(tcp_stack_t *tcps) 24746 { 24747 int error; 24748 ldi_handle_t lh = NULL; 24749 ldi_ident_t li = NULL; 24750 int rval; 24751 cred_t *cr; 24752 major_t IP_MAJ; 24753 24754 #ifdef NS_DEBUG 24755 (void) printf("tcp_g_q_create()\n"); 24756 #endif 24757 24758 IP_MAJ = ddi_name_to_major(IP); 24759 24760 ASSERT(tcps->tcps_g_q_creator == curthread); 24761 24762 error = ldi_ident_from_major(IP_MAJ, &li); 24763 if (error) { 24764 #ifdef DEBUG 24765 printf("tcp_g_q_create: lyr ident get failed error %d\n", 24766 error); 24767 #endif 24768 return; 24769 } 24770 24771 cr = zone_get_kcred(netstackid_to_zoneid( 24772 tcps->tcps_netstack->netstack_stackid)); 24773 ASSERT(cr != NULL); 24774 /* 24775 * We set the tcp default queue to IPv6 because IPv4 falls 24776 * back to IPv6 when it can't find a client, but 24777 * IPv6 does not fall back to IPv4. 24778 */ 24779 error = ldi_open_by_name(TCP6DEV, FREAD|FWRITE, cr, &lh, li); 24780 if (error) { 24781 #ifdef DEBUG 24782 printf("tcp_g_q_create: open of TCP6DEV failed error %d\n", 24783 error); 24784 #endif 24785 goto out; 24786 } 24787 24788 /* 24789 * This ioctl causes the tcp framework to cache a pointer to 24790 * this stream, so we don't want to close the stream after 24791 * this operation. 24792 * Use the kernel credentials that are for the zone we're in. 24793 */ 24794 error = ldi_ioctl(lh, TCP_IOC_DEFAULT_Q, 24795 (intptr_t)0, FKIOCTL, cr, &rval); 24796 if (error) { 24797 #ifdef DEBUG 24798 printf("tcp_g_q_create: ioctl TCP_IOC_DEFAULT_Q failed " 24799 "error %d\n", error); 24800 #endif 24801 goto out; 24802 } 24803 tcps->tcps_g_q_lh = lh; /* For tcp_g_q_close */ 24804 lh = NULL; 24805 out: 24806 /* Close layered handles */ 24807 if (li) 24808 ldi_ident_release(li); 24809 /* Keep cred around until _inactive needs it */ 24810 tcps->tcps_g_q_cr = cr; 24811 } 24812 24813 /* 24814 * We keep tcp_g_q set until all other tcp_t's in the zone 24815 * has gone away, and then when tcp_g_q_inactive() is called 24816 * we clear it. 24817 */ 24818 void 24819 tcp_g_q_destroy(tcp_stack_t *tcps) 24820 { 24821 #ifdef NS_DEBUG 24822 (void) printf("tcp_g_q_destroy()for stack %d\n", 24823 tcps->tcps_netstack->netstack_stackid); 24824 #endif 24825 24826 if (tcps->tcps_g_q == NULL) { 24827 return; /* Nothing to cleanup */ 24828 } 24829 /* 24830 * Drop reference corresponding to the default queue. 24831 * This reference was added from tcp_open when the default queue 24832 * was created, hence we compensate for this extra drop in 24833 * tcp_g_q_close. If the refcnt drops to zero here it means 24834 * the default queue was the last one to be open, in which 24835 * case, then tcp_g_q_inactive will be 24836 * called as a result of the refrele. 24837 */ 24838 TCPS_REFRELE(tcps); 24839 } 24840 24841 /* 24842 * Called when last tcp_t drops reference count using TCPS_REFRELE. 24843 * Run by tcp_q_q_inactive using a taskq. 24844 */ 24845 static void 24846 tcp_g_q_close(void *arg) 24847 { 24848 tcp_stack_t *tcps = arg; 24849 int error; 24850 ldi_handle_t lh = NULL; 24851 ldi_ident_t li = NULL; 24852 cred_t *cr; 24853 major_t IP_MAJ; 24854 24855 IP_MAJ = ddi_name_to_major(IP); 24856 24857 #ifdef NS_DEBUG 24858 (void) printf("tcp_g_q_inactive() for stack %d refcnt %d\n", 24859 tcps->tcps_netstack->netstack_stackid, 24860 tcps->tcps_netstack->netstack_refcnt); 24861 #endif 24862 lh = tcps->tcps_g_q_lh; 24863 if (lh == NULL) 24864 return; /* Nothing to cleanup */ 24865 24866 ASSERT(tcps->tcps_refcnt == 1); 24867 ASSERT(tcps->tcps_g_q != NULL); 24868 24869 error = ldi_ident_from_major(IP_MAJ, &li); 24870 if (error) { 24871 #ifdef DEBUG 24872 printf("tcp_g_q_inactive: lyr ident get failed error %d\n", 24873 error); 24874 #endif 24875 return; 24876 } 24877 24878 cr = tcps->tcps_g_q_cr; 24879 tcps->tcps_g_q_cr = NULL; 24880 ASSERT(cr != NULL); 24881 24882 /* 24883 * Make sure we can break the recursion when tcp_close decrements 24884 * the reference count causing g_q_inactive to be called again. 24885 */ 24886 tcps->tcps_g_q_lh = NULL; 24887 24888 /* close the default queue */ 24889 (void) ldi_close(lh, FREAD|FWRITE, cr); 24890 /* 24891 * At this point in time tcps and the rest of netstack_t might 24892 * have been deleted. 24893 */ 24894 tcps = NULL; 24895 24896 /* Close layered handles */ 24897 ldi_ident_release(li); 24898 crfree(cr); 24899 } 24900 24901 /* 24902 * Called when last tcp_t drops reference count using TCPS_REFRELE. 24903 * 24904 * Have to ensure that the ldi routines are not used by an 24905 * interrupt thread by using a taskq. 24906 */ 24907 void 24908 tcp_g_q_inactive(tcp_stack_t *tcps) 24909 { 24910 if (tcps->tcps_g_q_lh == NULL) 24911 return; /* Nothing to cleanup */ 24912 24913 ASSERT(tcps->tcps_refcnt == 0); 24914 TCPS_REFHOLD(tcps); /* Compensate for what g_q_destroy did */ 24915 24916 if (servicing_interrupt()) { 24917 (void) taskq_dispatch(tcp_taskq, tcp_g_q_close, 24918 (void *) tcps, TQ_SLEEP); 24919 } else { 24920 tcp_g_q_close(tcps); 24921 } 24922 } 24923 24924 /* 24925 * Called by IP when IP is loaded into the kernel 24926 */ 24927 void 24928 tcp_ddi_g_init(void) 24929 { 24930 tcp_timercache = kmem_cache_create("tcp_timercache", 24931 sizeof (tcp_timer_t) + sizeof (mblk_t), 0, 24932 NULL, NULL, NULL, NULL, NULL, 0); 24933 24934 tcp_sack_info_cache = kmem_cache_create("tcp_sack_info_cache", 24935 sizeof (tcp_sack_info_t), 0, 24936 tcp_sack_info_constructor, NULL, NULL, NULL, NULL, 0); 24937 24938 tcp_iphc_cache = kmem_cache_create("tcp_iphc_cache", 24939 TCP_MAX_COMBINED_HEADER_LENGTH, 0, 24940 tcp_iphc_constructor, NULL, NULL, NULL, NULL, 0); 24941 24942 mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL); 24943 24944 /* Initialize the random number generator */ 24945 tcp_random_init(); 24946 24947 /* A single callback independently of how many netstacks we have */ 24948 ip_squeue_init(tcp_squeue_add); 24949 24950 tcp_g_kstat = tcp_g_kstat_init(&tcp_g_statistics); 24951 24952 tcp_taskq = taskq_create("tcp_taskq", 1, minclsyspri, 1, 1, 24953 TASKQ_PREPOPULATE); 24954 24955 tcp_squeue_flag = tcp_squeue_switch(tcp_squeue_wput); 24956 24957 /* 24958 * We want to be informed each time a stack is created or 24959 * destroyed in the kernel, so we can maintain the 24960 * set of tcp_stack_t's. 24961 */ 24962 netstack_register(NS_TCP, tcp_stack_init, tcp_stack_shutdown, 24963 tcp_stack_fini); 24964 } 24965 24966 24967 /* 24968 * Initialize the TCP stack instance. 24969 */ 24970 static void * 24971 tcp_stack_init(netstackid_t stackid, netstack_t *ns) 24972 { 24973 tcp_stack_t *tcps; 24974 tcpparam_t *pa; 24975 int i; 24976 24977 tcps = (tcp_stack_t *)kmem_zalloc(sizeof (*tcps), KM_SLEEP); 24978 tcps->tcps_netstack = ns; 24979 24980 /* Initialize locks */ 24981 rw_init(&tcps->tcps_hsp_lock, NULL, RW_DEFAULT, NULL); 24982 mutex_init(&tcps->tcps_g_q_lock, NULL, MUTEX_DEFAULT, NULL); 24983 cv_init(&tcps->tcps_g_q_cv, NULL, CV_DEFAULT, NULL); 24984 mutex_init(&tcps->tcps_iss_key_lock, NULL, MUTEX_DEFAULT, NULL); 24985 mutex_init(&tcps->tcps_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL); 24986 24987 tcps->tcps_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS; 24988 tcps->tcps_g_epriv_ports[0] = 2049; 24989 tcps->tcps_g_epriv_ports[1] = 4045; 24990 tcps->tcps_min_anonpriv_port = 512; 24991 24992 tcps->tcps_bind_fanout = kmem_zalloc(sizeof (tf_t) * 24993 TCP_BIND_FANOUT_SIZE, KM_SLEEP); 24994 tcps->tcps_acceptor_fanout = kmem_zalloc(sizeof (tf_t) * 24995 TCP_FANOUT_SIZE, KM_SLEEP); 24996 24997 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 24998 mutex_init(&tcps->tcps_bind_fanout[i].tf_lock, NULL, 24999 MUTEX_DEFAULT, NULL); 25000 } 25001 25002 for (i = 0; i < TCP_FANOUT_SIZE; i++) { 25003 mutex_init(&tcps->tcps_acceptor_fanout[i].tf_lock, NULL, 25004 MUTEX_DEFAULT, NULL); 25005 } 25006 25007 /* TCP's IPsec code calls the packet dropper. */ 25008 ip_drop_register(&tcps->tcps_dropper, "TCP IPsec policy enforcement"); 25009 25010 pa = (tcpparam_t *)kmem_alloc(sizeof (lcl_tcp_param_arr), KM_SLEEP); 25011 tcps->tcps_params = pa; 25012 bcopy(lcl_tcp_param_arr, tcps->tcps_params, sizeof (lcl_tcp_param_arr)); 25013 25014 (void) tcp_param_register(&tcps->tcps_g_nd, tcps->tcps_params, 25015 A_CNT(lcl_tcp_param_arr), tcps); 25016 25017 /* 25018 * Note: To really walk the device tree you need the devinfo 25019 * pointer to your device which is only available after probe/attach. 25020 * The following is safe only because it uses ddi_root_node() 25021 */ 25022 tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr, 25023 tcp_opt_obj.odb_opt_arr_cnt); 25024 25025 /* 25026 * Initialize RFC 1948 secret values. This will probably be reset once 25027 * by the boot scripts. 25028 * 25029 * Use NULL name, as the name is caught by the new lockstats. 25030 * 25031 * Initialize with some random, non-guessable string, like the global 25032 * T_INFO_ACK. 25033 */ 25034 25035 tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack, 25036 sizeof (tcp_g_t_info_ack), tcps); 25037 25038 tcps->tcps_kstat = tcp_kstat2_init(stackid, &tcps->tcps_statistics); 25039 tcps->tcps_mibkp = tcp_kstat_init(stackid, tcps); 25040 25041 return (tcps); 25042 } 25043 25044 /* 25045 * Called when the IP module is about to be unloaded. 25046 */ 25047 void 25048 tcp_ddi_g_destroy(void) 25049 { 25050 tcp_g_kstat_fini(tcp_g_kstat); 25051 tcp_g_kstat = NULL; 25052 bzero(&tcp_g_statistics, sizeof (tcp_g_statistics)); 25053 25054 mutex_destroy(&tcp_random_lock); 25055 25056 kmem_cache_destroy(tcp_timercache); 25057 kmem_cache_destroy(tcp_sack_info_cache); 25058 kmem_cache_destroy(tcp_iphc_cache); 25059 25060 netstack_unregister(NS_TCP); 25061 taskq_destroy(tcp_taskq); 25062 } 25063 25064 /* 25065 * Shut down the TCP stack instance. 25066 */ 25067 /* ARGSUSED */ 25068 static void 25069 tcp_stack_shutdown(netstackid_t stackid, void *arg) 25070 { 25071 tcp_stack_t *tcps = (tcp_stack_t *)arg; 25072 25073 tcp_g_q_destroy(tcps); 25074 } 25075 25076 /* 25077 * Free the TCP stack instance. 25078 */ 25079 static void 25080 tcp_stack_fini(netstackid_t stackid, void *arg) 25081 { 25082 tcp_stack_t *tcps = (tcp_stack_t *)arg; 25083 int i; 25084 25085 nd_free(&tcps->tcps_g_nd); 25086 kmem_free(tcps->tcps_params, sizeof (lcl_tcp_param_arr)); 25087 tcps->tcps_params = NULL; 25088 kmem_free(tcps->tcps_wroff_xtra_param, sizeof (tcpparam_t)); 25089 tcps->tcps_wroff_xtra_param = NULL; 25090 kmem_free(tcps->tcps_mdt_head_param, sizeof (tcpparam_t)); 25091 tcps->tcps_mdt_head_param = NULL; 25092 kmem_free(tcps->tcps_mdt_tail_param, sizeof (tcpparam_t)); 25093 tcps->tcps_mdt_tail_param = NULL; 25094 kmem_free(tcps->tcps_mdt_max_pbufs_param, sizeof (tcpparam_t)); 25095 tcps->tcps_mdt_max_pbufs_param = NULL; 25096 25097 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 25098 ASSERT(tcps->tcps_bind_fanout[i].tf_tcp == NULL); 25099 mutex_destroy(&tcps->tcps_bind_fanout[i].tf_lock); 25100 } 25101 25102 for (i = 0; i < TCP_FANOUT_SIZE; i++) { 25103 ASSERT(tcps->tcps_acceptor_fanout[i].tf_tcp == NULL); 25104 mutex_destroy(&tcps->tcps_acceptor_fanout[i].tf_lock); 25105 } 25106 25107 kmem_free(tcps->tcps_bind_fanout, sizeof (tf_t) * TCP_BIND_FANOUT_SIZE); 25108 tcps->tcps_bind_fanout = NULL; 25109 25110 kmem_free(tcps->tcps_acceptor_fanout, sizeof (tf_t) * TCP_FANOUT_SIZE); 25111 tcps->tcps_acceptor_fanout = NULL; 25112 25113 mutex_destroy(&tcps->tcps_iss_key_lock); 25114 rw_destroy(&tcps->tcps_hsp_lock); 25115 mutex_destroy(&tcps->tcps_g_q_lock); 25116 cv_destroy(&tcps->tcps_g_q_cv); 25117 mutex_destroy(&tcps->tcps_epriv_port_lock); 25118 25119 ip_drop_unregister(&tcps->tcps_dropper); 25120 25121 tcp_kstat2_fini(stackid, tcps->tcps_kstat); 25122 tcps->tcps_kstat = NULL; 25123 bzero(&tcps->tcps_statistics, sizeof (tcps->tcps_statistics)); 25124 25125 tcp_kstat_fini(stackid, tcps->tcps_mibkp); 25126 tcps->tcps_mibkp = NULL; 25127 25128 kmem_free(tcps, sizeof (*tcps)); 25129 } 25130 25131 /* 25132 * Generate ISS, taking into account NDD changes may happen halfway through. 25133 * (If the iss is not zero, set it.) 25134 */ 25135 25136 static void 25137 tcp_iss_init(tcp_t *tcp) 25138 { 25139 MD5_CTX context; 25140 struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg; 25141 uint32_t answer[4]; 25142 tcp_stack_t *tcps = tcp->tcp_tcps; 25143 25144 tcps->tcps_iss_incr_extra += (ISS_INCR >> 1); 25145 tcp->tcp_iss = tcps->tcps_iss_incr_extra; 25146 switch (tcps->tcps_strong_iss) { 25147 case 2: 25148 mutex_enter(&tcps->tcps_iss_key_lock); 25149 context = tcps->tcps_iss_key; 25150 mutex_exit(&tcps->tcps_iss_key_lock); 25151 arg.ports = tcp->tcp_ports; 25152 if (tcp->tcp_ipversion == IPV4_VERSION) { 25153 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 25154 &arg.src); 25155 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_dst, 25156 &arg.dst); 25157 } else { 25158 arg.src = tcp->tcp_ip6h->ip6_src; 25159 arg.dst = tcp->tcp_ip6h->ip6_dst; 25160 } 25161 MD5Update(&context, (uchar_t *)&arg, sizeof (arg)); 25162 MD5Final((uchar_t *)answer, &context); 25163 tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3]; 25164 /* 25165 * Now that we've hashed into a unique per-connection sequence 25166 * space, add a random increment per strong_iss == 1. So I 25167 * guess we'll have to... 25168 */ 25169 /* FALLTHRU */ 25170 case 1: 25171 tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random(); 25172 break; 25173 default: 25174 tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 25175 break; 25176 } 25177 tcp->tcp_valid_bits = TCP_ISS_VALID; 25178 tcp->tcp_fss = tcp->tcp_iss - 1; 25179 tcp->tcp_suna = tcp->tcp_iss; 25180 tcp->tcp_snxt = tcp->tcp_iss + 1; 25181 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 25182 tcp->tcp_csuna = tcp->tcp_snxt; 25183 } 25184 25185 /* 25186 * Exported routine for extracting active tcp connection status. 25187 * 25188 * This is used by the Solaris Cluster Networking software to 25189 * gather a list of connections that need to be forwarded to 25190 * specific nodes in the cluster when configuration changes occur. 25191 * 25192 * The callback is invoked for each tcp_t structure. Returning 25193 * non-zero from the callback routine terminates the search. 25194 */ 25195 int 25196 cl_tcp_walk_list(int (*cl_callback)(cl_tcp_info_t *, void *), 25197 void *arg) 25198 { 25199 netstack_handle_t nh; 25200 netstack_t *ns; 25201 int ret = 0; 25202 25203 netstack_next_init(&nh); 25204 while ((ns = netstack_next(&nh)) != NULL) { 25205 ret = cl_tcp_walk_list_stack(cl_callback, arg, 25206 ns->netstack_tcp); 25207 netstack_rele(ns); 25208 } 25209 netstack_next_fini(&nh); 25210 return (ret); 25211 } 25212 25213 static int 25214 cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *), void *arg, 25215 tcp_stack_t *tcps) 25216 { 25217 tcp_t *tcp; 25218 cl_tcp_info_t cl_tcpi; 25219 connf_t *connfp; 25220 conn_t *connp; 25221 int i; 25222 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 25223 25224 ASSERT(callback != NULL); 25225 25226 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 25227 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 25228 connp = NULL; 25229 25230 while ((connp = 25231 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 25232 25233 tcp = connp->conn_tcp; 25234 cl_tcpi.cl_tcpi_version = CL_TCPI_V1; 25235 cl_tcpi.cl_tcpi_ipversion = tcp->tcp_ipversion; 25236 cl_tcpi.cl_tcpi_state = tcp->tcp_state; 25237 cl_tcpi.cl_tcpi_lport = tcp->tcp_lport; 25238 cl_tcpi.cl_tcpi_fport = tcp->tcp_fport; 25239 /* 25240 * The macros tcp_laddr and tcp_faddr give the IPv4 25241 * addresses. They are copied implicitly below as 25242 * mapped addresses. 25243 */ 25244 cl_tcpi.cl_tcpi_laddr_v6 = tcp->tcp_ip_src_v6; 25245 if (tcp->tcp_ipversion == IPV4_VERSION) { 25246 cl_tcpi.cl_tcpi_faddr = 25247 tcp->tcp_ipha->ipha_dst; 25248 } else { 25249 cl_tcpi.cl_tcpi_faddr_v6 = 25250 tcp->tcp_ip6h->ip6_dst; 25251 } 25252 25253 /* 25254 * If the callback returns non-zero 25255 * we terminate the traversal. 25256 */ 25257 if ((*callback)(&cl_tcpi, arg) != 0) { 25258 CONN_DEC_REF(tcp->tcp_connp); 25259 return (1); 25260 } 25261 } 25262 } 25263 25264 return (0); 25265 } 25266 25267 /* 25268 * Macros used for accessing the different types of sockaddr 25269 * structures inside a tcp_ioc_abort_conn_t. 25270 */ 25271 #define TCP_AC_V4LADDR(acp) ((sin_t *)&(acp)->ac_local) 25272 #define TCP_AC_V4RADDR(acp) ((sin_t *)&(acp)->ac_remote) 25273 #define TCP_AC_V4LOCAL(acp) (TCP_AC_V4LADDR(acp)->sin_addr.s_addr) 25274 #define TCP_AC_V4REMOTE(acp) (TCP_AC_V4RADDR(acp)->sin_addr.s_addr) 25275 #define TCP_AC_V4LPORT(acp) (TCP_AC_V4LADDR(acp)->sin_port) 25276 #define TCP_AC_V4RPORT(acp) (TCP_AC_V4RADDR(acp)->sin_port) 25277 #define TCP_AC_V6LADDR(acp) ((sin6_t *)&(acp)->ac_local) 25278 #define TCP_AC_V6RADDR(acp) ((sin6_t *)&(acp)->ac_remote) 25279 #define TCP_AC_V6LOCAL(acp) (TCP_AC_V6LADDR(acp)->sin6_addr) 25280 #define TCP_AC_V6REMOTE(acp) (TCP_AC_V6RADDR(acp)->sin6_addr) 25281 #define TCP_AC_V6LPORT(acp) (TCP_AC_V6LADDR(acp)->sin6_port) 25282 #define TCP_AC_V6RPORT(acp) (TCP_AC_V6RADDR(acp)->sin6_port) 25283 25284 /* 25285 * Return the correct error code to mimic the behavior 25286 * of a connection reset. 25287 */ 25288 #define TCP_AC_GET_ERRCODE(state, err) { \ 25289 switch ((state)) { \ 25290 case TCPS_SYN_SENT: \ 25291 case TCPS_SYN_RCVD: \ 25292 (err) = ECONNREFUSED; \ 25293 break; \ 25294 case TCPS_ESTABLISHED: \ 25295 case TCPS_FIN_WAIT_1: \ 25296 case TCPS_FIN_WAIT_2: \ 25297 case TCPS_CLOSE_WAIT: \ 25298 (err) = ECONNRESET; \ 25299 break; \ 25300 case TCPS_CLOSING: \ 25301 case TCPS_LAST_ACK: \ 25302 case TCPS_TIME_WAIT: \ 25303 (err) = 0; \ 25304 break; \ 25305 default: \ 25306 (err) = ENXIO; \ 25307 } \ 25308 } 25309 25310 /* 25311 * Check if a tcp structure matches the info in acp. 25312 */ 25313 #define TCP_AC_ADDR_MATCH(acp, tcp) \ 25314 (((acp)->ac_local.ss_family == AF_INET) ? \ 25315 ((TCP_AC_V4LOCAL((acp)) == INADDR_ANY || \ 25316 TCP_AC_V4LOCAL((acp)) == (tcp)->tcp_ip_src) && \ 25317 (TCP_AC_V4REMOTE((acp)) == INADDR_ANY || \ 25318 TCP_AC_V4REMOTE((acp)) == (tcp)->tcp_remote) && \ 25319 (TCP_AC_V4LPORT((acp)) == 0 || \ 25320 TCP_AC_V4LPORT((acp)) == (tcp)->tcp_lport) && \ 25321 (TCP_AC_V4RPORT((acp)) == 0 || \ 25322 TCP_AC_V4RPORT((acp)) == (tcp)->tcp_fport) && \ 25323 (acp)->ac_start <= (tcp)->tcp_state && \ 25324 (acp)->ac_end >= (tcp)->tcp_state) : \ 25325 ((IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL((acp))) || \ 25326 IN6_ARE_ADDR_EQUAL(&TCP_AC_V6LOCAL((acp)), \ 25327 &(tcp)->tcp_ip_src_v6)) && \ 25328 (IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE((acp))) || \ 25329 IN6_ARE_ADDR_EQUAL(&TCP_AC_V6REMOTE((acp)), \ 25330 &(tcp)->tcp_remote_v6)) && \ 25331 (TCP_AC_V6LPORT((acp)) == 0 || \ 25332 TCP_AC_V6LPORT((acp)) == (tcp)->tcp_lport) && \ 25333 (TCP_AC_V6RPORT((acp)) == 0 || \ 25334 TCP_AC_V6RPORT((acp)) == (tcp)->tcp_fport) && \ 25335 (acp)->ac_start <= (tcp)->tcp_state && \ 25336 (acp)->ac_end >= (tcp)->tcp_state)) 25337 25338 #define TCP_AC_MATCH(acp, tcp) \ 25339 (((acp)->ac_zoneid == ALL_ZONES || \ 25340 (acp)->ac_zoneid == tcp->tcp_connp->conn_zoneid) ? \ 25341 TCP_AC_ADDR_MATCH(acp, tcp) : 0) 25342 25343 /* 25344 * Build a message containing a tcp_ioc_abort_conn_t structure 25345 * which is filled in with information from acp and tp. 25346 */ 25347 static mblk_t * 25348 tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *acp, tcp_t *tp) 25349 { 25350 mblk_t *mp; 25351 tcp_ioc_abort_conn_t *tacp; 25352 25353 mp = allocb(sizeof (uint32_t) + sizeof (*acp), BPRI_LO); 25354 if (mp == NULL) 25355 return (NULL); 25356 25357 mp->b_datap->db_type = M_CTL; 25358 25359 *((uint32_t *)mp->b_rptr) = TCP_IOC_ABORT_CONN; 25360 tacp = (tcp_ioc_abort_conn_t *)((uchar_t *)mp->b_rptr + 25361 sizeof (uint32_t)); 25362 25363 tacp->ac_start = acp->ac_start; 25364 tacp->ac_end = acp->ac_end; 25365 tacp->ac_zoneid = acp->ac_zoneid; 25366 25367 if (acp->ac_local.ss_family == AF_INET) { 25368 tacp->ac_local.ss_family = AF_INET; 25369 tacp->ac_remote.ss_family = AF_INET; 25370 TCP_AC_V4LOCAL(tacp) = tp->tcp_ip_src; 25371 TCP_AC_V4REMOTE(tacp) = tp->tcp_remote; 25372 TCP_AC_V4LPORT(tacp) = tp->tcp_lport; 25373 TCP_AC_V4RPORT(tacp) = tp->tcp_fport; 25374 } else { 25375 tacp->ac_local.ss_family = AF_INET6; 25376 tacp->ac_remote.ss_family = AF_INET6; 25377 TCP_AC_V6LOCAL(tacp) = tp->tcp_ip_src_v6; 25378 TCP_AC_V6REMOTE(tacp) = tp->tcp_remote_v6; 25379 TCP_AC_V6LPORT(tacp) = tp->tcp_lport; 25380 TCP_AC_V6RPORT(tacp) = tp->tcp_fport; 25381 } 25382 mp->b_wptr = (uchar_t *)mp->b_rptr + sizeof (uint32_t) + sizeof (*acp); 25383 return (mp); 25384 } 25385 25386 /* 25387 * Print a tcp_ioc_abort_conn_t structure. 25388 */ 25389 static void 25390 tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *acp) 25391 { 25392 char lbuf[128]; 25393 char rbuf[128]; 25394 sa_family_t af; 25395 in_port_t lport, rport; 25396 ushort_t logflags; 25397 25398 af = acp->ac_local.ss_family; 25399 25400 if (af == AF_INET) { 25401 (void) inet_ntop(af, (const void *)&TCP_AC_V4LOCAL(acp), 25402 lbuf, 128); 25403 (void) inet_ntop(af, (const void *)&TCP_AC_V4REMOTE(acp), 25404 rbuf, 128); 25405 lport = ntohs(TCP_AC_V4LPORT(acp)); 25406 rport = ntohs(TCP_AC_V4RPORT(acp)); 25407 } else { 25408 (void) inet_ntop(af, (const void *)&TCP_AC_V6LOCAL(acp), 25409 lbuf, 128); 25410 (void) inet_ntop(af, (const void *)&TCP_AC_V6REMOTE(acp), 25411 rbuf, 128); 25412 lport = ntohs(TCP_AC_V6LPORT(acp)); 25413 rport = ntohs(TCP_AC_V6RPORT(acp)); 25414 } 25415 25416 logflags = SL_TRACE | SL_NOTE; 25417 /* 25418 * Don't print this message to the console if the operation was done 25419 * to a non-global zone. 25420 */ 25421 if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) 25422 logflags |= SL_CONSOLE; 25423 (void) strlog(TCP_MOD_ID, 0, 1, logflags, 25424 "TCP_IOC_ABORT_CONN: local = %s:%d, remote = %s:%d, " 25425 "start = %d, end = %d\n", lbuf, lport, rbuf, rport, 25426 acp->ac_start, acp->ac_end); 25427 } 25428 25429 /* 25430 * Called inside tcp_rput when a message built using 25431 * tcp_ioctl_abort_build_msg is put into a queue. 25432 * Note that when we get here there is no wildcard in acp any more. 25433 */ 25434 static void 25435 tcp_ioctl_abort_handler(tcp_t *tcp, mblk_t *mp) 25436 { 25437 tcp_ioc_abort_conn_t *acp; 25438 25439 acp = (tcp_ioc_abort_conn_t *)(mp->b_rptr + sizeof (uint32_t)); 25440 if (tcp->tcp_state <= acp->ac_end) { 25441 /* 25442 * If we get here, we are already on the correct 25443 * squeue. This ioctl follows the following path 25444 * tcp_wput -> tcp_wput_ioctl -> tcp_ioctl_abort_conn 25445 * ->tcp_ioctl_abort->squeue_enter (if on a 25446 * different squeue) 25447 */ 25448 int errcode; 25449 25450 TCP_AC_GET_ERRCODE(tcp->tcp_state, errcode); 25451 (void) tcp_clean_death(tcp, errcode, 26); 25452 } 25453 freemsg(mp); 25454 } 25455 25456 /* 25457 * Abort all matching connections on a hash chain. 25458 */ 25459 static int 25460 tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *acp, int index, int *count, 25461 boolean_t exact, tcp_stack_t *tcps) 25462 { 25463 int nmatch, err = 0; 25464 tcp_t *tcp; 25465 MBLKP mp, last, listhead = NULL; 25466 conn_t *tconnp; 25467 connf_t *connfp; 25468 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 25469 25470 connfp = &ipst->ips_ipcl_conn_fanout[index]; 25471 25472 startover: 25473 nmatch = 0; 25474 25475 mutex_enter(&connfp->connf_lock); 25476 for (tconnp = connfp->connf_head; tconnp != NULL; 25477 tconnp = tconnp->conn_next) { 25478 tcp = tconnp->conn_tcp; 25479 if (TCP_AC_MATCH(acp, tcp)) { 25480 CONN_INC_REF(tcp->tcp_connp); 25481 mp = tcp_ioctl_abort_build_msg(acp, tcp); 25482 if (mp == NULL) { 25483 err = ENOMEM; 25484 CONN_DEC_REF(tcp->tcp_connp); 25485 break; 25486 } 25487 mp->b_prev = (mblk_t *)tcp; 25488 25489 if (listhead == NULL) { 25490 listhead = mp; 25491 last = mp; 25492 } else { 25493 last->b_next = mp; 25494 last = mp; 25495 } 25496 nmatch++; 25497 if (exact) 25498 break; 25499 } 25500 25501 /* Avoid holding lock for too long. */ 25502 if (nmatch >= 500) 25503 break; 25504 } 25505 mutex_exit(&connfp->connf_lock); 25506 25507 /* Pass mp into the correct tcp */ 25508 while ((mp = listhead) != NULL) { 25509 listhead = listhead->b_next; 25510 tcp = (tcp_t *)mp->b_prev; 25511 mp->b_next = mp->b_prev = NULL; 25512 SQUEUE_ENTER_ONE(tcp->tcp_connp->conn_sqp, mp, tcp_input, 25513 tcp->tcp_connp, SQ_FILL, SQTAG_TCP_ABORT_BUCKET); 25514 } 25515 25516 *count += nmatch; 25517 if (nmatch >= 500 && err == 0) 25518 goto startover; 25519 return (err); 25520 } 25521 25522 /* 25523 * Abort all connections that matches the attributes specified in acp. 25524 */ 25525 static int 25526 tcp_ioctl_abort(tcp_ioc_abort_conn_t *acp, tcp_stack_t *tcps) 25527 { 25528 sa_family_t af; 25529 uint32_t ports; 25530 uint16_t *pports; 25531 int err = 0, count = 0; 25532 boolean_t exact = B_FALSE; /* set when there is no wildcard */ 25533 int index = -1; 25534 ushort_t logflags; 25535 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 25536 25537 af = acp->ac_local.ss_family; 25538 25539 if (af == AF_INET) { 25540 if (TCP_AC_V4REMOTE(acp) != INADDR_ANY && 25541 TCP_AC_V4LPORT(acp) != 0 && TCP_AC_V4RPORT(acp) != 0) { 25542 pports = (uint16_t *)&ports; 25543 pports[1] = TCP_AC_V4LPORT(acp); 25544 pports[0] = TCP_AC_V4RPORT(acp); 25545 exact = (TCP_AC_V4LOCAL(acp) != INADDR_ANY); 25546 } 25547 } else { 25548 if (!IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE(acp)) && 25549 TCP_AC_V6LPORT(acp) != 0 && TCP_AC_V6RPORT(acp) != 0) { 25550 pports = (uint16_t *)&ports; 25551 pports[1] = TCP_AC_V6LPORT(acp); 25552 pports[0] = TCP_AC_V6RPORT(acp); 25553 exact = !IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL(acp)); 25554 } 25555 } 25556 25557 /* 25558 * For cases where remote addr, local port, and remote port are non- 25559 * wildcards, tcp_ioctl_abort_bucket will only be called once. 25560 */ 25561 if (index != -1) { 25562 err = tcp_ioctl_abort_bucket(acp, index, 25563 &count, exact, tcps); 25564 } else { 25565 /* 25566 * loop through all entries for wildcard case 25567 */ 25568 for (index = 0; 25569 index < ipst->ips_ipcl_conn_fanout_size; 25570 index++) { 25571 err = tcp_ioctl_abort_bucket(acp, index, 25572 &count, exact, tcps); 25573 if (err != 0) 25574 break; 25575 } 25576 } 25577 25578 logflags = SL_TRACE | SL_NOTE; 25579 /* 25580 * Don't print this message to the console if the operation was done 25581 * to a non-global zone. 25582 */ 25583 if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) 25584 logflags |= SL_CONSOLE; 25585 (void) strlog(TCP_MOD_ID, 0, 1, logflags, "TCP_IOC_ABORT_CONN: " 25586 "aborted %d connection%c\n", count, ((count > 1) ? 's' : ' ')); 25587 if (err == 0 && count == 0) 25588 err = ENOENT; 25589 return (err); 25590 } 25591 25592 /* 25593 * Process the TCP_IOC_ABORT_CONN ioctl request. 25594 */ 25595 static void 25596 tcp_ioctl_abort_conn(queue_t *q, mblk_t *mp) 25597 { 25598 int err; 25599 IOCP iocp; 25600 MBLKP mp1; 25601 sa_family_t laf, raf; 25602 tcp_ioc_abort_conn_t *acp; 25603 zone_t *zptr; 25604 conn_t *connp = Q_TO_CONN(q); 25605 zoneid_t zoneid = connp->conn_zoneid; 25606 tcp_t *tcp = connp->conn_tcp; 25607 tcp_stack_t *tcps = tcp->tcp_tcps; 25608 25609 iocp = (IOCP)mp->b_rptr; 25610 25611 if ((mp1 = mp->b_cont) == NULL || 25612 iocp->ioc_count != sizeof (tcp_ioc_abort_conn_t)) { 25613 err = EINVAL; 25614 goto out; 25615 } 25616 25617 /* check permissions */ 25618 if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) { 25619 err = EPERM; 25620 goto out; 25621 } 25622 25623 if (mp1->b_cont != NULL) { 25624 freemsg(mp1->b_cont); 25625 mp1->b_cont = NULL; 25626 } 25627 25628 acp = (tcp_ioc_abort_conn_t *)mp1->b_rptr; 25629 laf = acp->ac_local.ss_family; 25630 raf = acp->ac_remote.ss_family; 25631 25632 /* check that a zone with the supplied zoneid exists */ 25633 if (acp->ac_zoneid != GLOBAL_ZONEID && acp->ac_zoneid != ALL_ZONES) { 25634 zptr = zone_find_by_id(zoneid); 25635 if (zptr != NULL) { 25636 zone_rele(zptr); 25637 } else { 25638 err = EINVAL; 25639 goto out; 25640 } 25641 } 25642 25643 /* 25644 * For exclusive stacks we set the zoneid to zero 25645 * to make TCP operate as if in the global zone. 25646 */ 25647 if (tcps->tcps_netstack->netstack_stackid != GLOBAL_NETSTACKID) 25648 acp->ac_zoneid = GLOBAL_ZONEID; 25649 25650 if (acp->ac_start < TCPS_SYN_SENT || acp->ac_end > TCPS_TIME_WAIT || 25651 acp->ac_start > acp->ac_end || laf != raf || 25652 (laf != AF_INET && laf != AF_INET6)) { 25653 err = EINVAL; 25654 goto out; 25655 } 25656 25657 tcp_ioctl_abort_dump(acp); 25658 err = tcp_ioctl_abort(acp, tcps); 25659 25660 out: 25661 if (mp1 != NULL) { 25662 freemsg(mp1); 25663 mp->b_cont = NULL; 25664 } 25665 25666 if (err != 0) 25667 miocnak(q, mp, 0, err); 25668 else 25669 miocack(q, mp, 0, 0); 25670 } 25671 25672 /* 25673 * tcp_time_wait_processing() handles processing of incoming packets when 25674 * the tcp is in the TIME_WAIT state. 25675 * A TIME_WAIT tcp that has an associated open TCP stream is never put 25676 * on the time wait list. 25677 */ 25678 void 25679 tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, uint32_t seg_seq, 25680 uint32_t seg_ack, int seg_len, tcph_t *tcph) 25681 { 25682 int32_t bytes_acked; 25683 int32_t gap; 25684 int32_t rgap; 25685 tcp_opt_t tcpopt; 25686 uint_t flags; 25687 uint32_t new_swnd = 0; 25688 conn_t *connp; 25689 tcp_stack_t *tcps = tcp->tcp_tcps; 25690 25691 BUMP_LOCAL(tcp->tcp_ibsegs); 25692 DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp); 25693 25694 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 25695 new_swnd = BE16_TO_U16(tcph->th_win) << 25696 ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws); 25697 if (tcp->tcp_snd_ts_ok) { 25698 if (!tcp_paws_check(tcp, tcph, &tcpopt)) { 25699 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 25700 tcp->tcp_rnxt, TH_ACK); 25701 goto done; 25702 } 25703 } 25704 gap = seg_seq - tcp->tcp_rnxt; 25705 rgap = tcp->tcp_rwnd - (gap + seg_len); 25706 if (gap < 0) { 25707 BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); 25708 UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, 25709 (seg_len > -gap ? -gap : seg_len)); 25710 seg_len += gap; 25711 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 25712 if (flags & TH_RST) { 25713 goto done; 25714 } 25715 if ((flags & TH_FIN) && seg_len == -1) { 25716 /* 25717 * When TCP receives a duplicate FIN in 25718 * TIME_WAIT state, restart the 2 MSL timer. 25719 * See page 73 in RFC 793. Make sure this TCP 25720 * is already on the TIME_WAIT list. If not, 25721 * just restart the timer. 25722 */ 25723 if (TCP_IS_DETACHED(tcp)) { 25724 if (tcp_time_wait_remove(tcp, NULL) == 25725 B_TRUE) { 25726 tcp_time_wait_append(tcp); 25727 TCP_DBGSTAT(tcps, 25728 tcp_rput_time_wait); 25729 } 25730 } else { 25731 ASSERT(tcp != NULL); 25732 TCP_TIMER_RESTART(tcp, 25733 tcps->tcps_time_wait_interval); 25734 } 25735 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 25736 tcp->tcp_rnxt, TH_ACK); 25737 goto done; 25738 } 25739 flags |= TH_ACK_NEEDED; 25740 seg_len = 0; 25741 goto process_ack; 25742 } 25743 25744 /* Fix seg_seq, and chew the gap off the front. */ 25745 seg_seq = tcp->tcp_rnxt; 25746 } 25747 25748 if ((flags & TH_SYN) && gap > 0 && rgap < 0) { 25749 /* 25750 * Make sure that when we accept the connection, pick 25751 * an ISS greater than (tcp_snxt + ISS_INCR/2) for the 25752 * old connection. 25753 * 25754 * The next ISS generated is equal to tcp_iss_incr_extra 25755 * + ISS_INCR/2 + other components depending on the 25756 * value of tcp_strong_iss. We pre-calculate the new 25757 * ISS here and compare with tcp_snxt to determine if 25758 * we need to make adjustment to tcp_iss_incr_extra. 25759 * 25760 * The above calculation is ugly and is a 25761 * waste of CPU cycles... 25762 */ 25763 uint32_t new_iss = tcps->tcps_iss_incr_extra; 25764 int32_t adj; 25765 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 25766 25767 switch (tcps->tcps_strong_iss) { 25768 case 2: { 25769 /* Add time and MD5 components. */ 25770 uint32_t answer[4]; 25771 struct { 25772 uint32_t ports; 25773 in6_addr_t src; 25774 in6_addr_t dst; 25775 } arg; 25776 MD5_CTX context; 25777 25778 mutex_enter(&tcps->tcps_iss_key_lock); 25779 context = tcps->tcps_iss_key; 25780 mutex_exit(&tcps->tcps_iss_key_lock); 25781 arg.ports = tcp->tcp_ports; 25782 /* We use MAPPED addresses in tcp_iss_init */ 25783 arg.src = tcp->tcp_ip_src_v6; 25784 if (tcp->tcp_ipversion == IPV4_VERSION) { 25785 IN6_IPADDR_TO_V4MAPPED( 25786 tcp->tcp_ipha->ipha_dst, 25787 &arg.dst); 25788 } else { 25789 arg.dst = 25790 tcp->tcp_ip6h->ip6_dst; 25791 } 25792 MD5Update(&context, (uchar_t *)&arg, 25793 sizeof (arg)); 25794 MD5Final((uchar_t *)answer, &context); 25795 answer[0] ^= answer[1] ^ answer[2] ^ answer[3]; 25796 new_iss += (gethrtime() >> ISS_NSEC_SHT) + answer[0]; 25797 break; 25798 } 25799 case 1: 25800 /* Add time component and min random (i.e. 1). */ 25801 new_iss += (gethrtime() >> ISS_NSEC_SHT) + 1; 25802 break; 25803 default: 25804 /* Add only time component. */ 25805 new_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 25806 break; 25807 } 25808 if ((adj = (int32_t)(tcp->tcp_snxt - new_iss)) > 0) { 25809 /* 25810 * New ISS not guaranteed to be ISS_INCR/2 25811 * ahead of the current tcp_snxt, so add the 25812 * difference to tcp_iss_incr_extra. 25813 */ 25814 tcps->tcps_iss_incr_extra += adj; 25815 } 25816 /* 25817 * If tcp_clean_death() can not perform the task now, 25818 * drop the SYN packet and let the other side re-xmit. 25819 * Otherwise pass the SYN packet back in, since the 25820 * old tcp state has been cleaned up or freed. 25821 */ 25822 if (tcp_clean_death(tcp, 0, 27) == -1) 25823 goto done; 25824 /* 25825 * We will come back to tcp_rput_data 25826 * on the global queue. Packets destined 25827 * for the global queue will be checked 25828 * with global policy. But the policy for 25829 * this packet has already been checked as 25830 * this was destined for the detached 25831 * connection. We need to bypass policy 25832 * check this time by attaching a dummy 25833 * ipsec_in with ipsec_in_dont_check set. 25834 */ 25835 connp = ipcl_classify(mp, tcp->tcp_connp->conn_zoneid, ipst); 25836 if (connp != NULL) { 25837 TCP_STAT(tcps, tcp_time_wait_syn_success); 25838 tcp_reinput(connp, mp, tcp->tcp_connp->conn_sqp); 25839 return; 25840 } 25841 goto done; 25842 } 25843 25844 /* 25845 * rgap is the amount of stuff received out of window. A negative 25846 * value is the amount out of window. 25847 */ 25848 if (rgap < 0) { 25849 BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs); 25850 UPDATE_MIB(&tcps->tcps_mib, tcpInDataPastWinBytes, -rgap); 25851 /* Fix seg_len and make sure there is something left. */ 25852 seg_len += rgap; 25853 if (seg_len <= 0) { 25854 if (flags & TH_RST) { 25855 goto done; 25856 } 25857 flags |= TH_ACK_NEEDED; 25858 seg_len = 0; 25859 goto process_ack; 25860 } 25861 } 25862 /* 25863 * Check whether we can update tcp_ts_recent. This test is 25864 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 25865 * Extensions for High Performance: An Update", Internet Draft. 25866 */ 25867 if (tcp->tcp_snd_ts_ok && 25868 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 25869 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 25870 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 25871 tcp->tcp_last_rcv_lbolt = lbolt64; 25872 } 25873 25874 if (seg_seq != tcp->tcp_rnxt && seg_len > 0) { 25875 /* Always ack out of order packets */ 25876 flags |= TH_ACK_NEEDED; 25877 seg_len = 0; 25878 } else if (seg_len > 0) { 25879 BUMP_MIB(&tcps->tcps_mib, tcpInClosed); 25880 BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs); 25881 UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len); 25882 } 25883 if (flags & TH_RST) { 25884 (void) tcp_clean_death(tcp, 0, 28); 25885 goto done; 25886 } 25887 if (flags & TH_SYN) { 25888 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 25889 TH_RST|TH_ACK); 25890 /* 25891 * Do not delete the TCP structure if it is in 25892 * TIME_WAIT state. Refer to RFC 1122, 4.2.2.13. 25893 */ 25894 goto done; 25895 } 25896 process_ack: 25897 if (flags & TH_ACK) { 25898 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 25899 if (bytes_acked <= 0) { 25900 if (bytes_acked == 0 && seg_len == 0 && 25901 new_swnd == tcp->tcp_swnd) 25902 BUMP_MIB(&tcps->tcps_mib, tcpInDupAck); 25903 } else { 25904 /* Acks something not sent */ 25905 flags |= TH_ACK_NEEDED; 25906 } 25907 } 25908 if (flags & TH_ACK_NEEDED) { 25909 /* 25910 * Time to send an ack for some reason. 25911 */ 25912 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 25913 tcp->tcp_rnxt, TH_ACK); 25914 } 25915 done: 25916 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 25917 DB_CKSUMSTART(mp) = 0; 25918 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 25919 TCP_STAT(tcps, tcp_time_wait_syn_fail); 25920 } 25921 freemsg(mp); 25922 } 25923 25924 /* 25925 * Allocate a T_SVR4_OPTMGMT_REQ. 25926 * The caller needs to increment tcp_drop_opt_ack_cnt when sending these so 25927 * that tcp_rput_other can drop the acks. 25928 */ 25929 static mblk_t * 25930 tcp_setsockopt_mp(int level, int cmd, char *opt, int optlen) 25931 { 25932 mblk_t *mp; 25933 struct T_optmgmt_req *tor; 25934 struct opthdr *oh; 25935 uint_t size; 25936 char *optptr; 25937 25938 size = sizeof (*tor) + sizeof (*oh) + optlen; 25939 mp = allocb(size, BPRI_MED); 25940 if (mp == NULL) 25941 return (NULL); 25942 25943 mp->b_wptr += size; 25944 mp->b_datap->db_type = M_PROTO; 25945 tor = (struct T_optmgmt_req *)mp->b_rptr; 25946 tor->PRIM_type = T_SVR4_OPTMGMT_REQ; 25947 tor->MGMT_flags = T_NEGOTIATE; 25948 tor->OPT_length = sizeof (*oh) + optlen; 25949 tor->OPT_offset = (t_scalar_t)sizeof (*tor); 25950 25951 oh = (struct opthdr *)&tor[1]; 25952 oh->level = level; 25953 oh->name = cmd; 25954 oh->len = optlen; 25955 if (optlen != 0) { 25956 optptr = (char *)&oh[1]; 25957 bcopy(opt, optptr, optlen); 25958 } 25959 return (mp); 25960 } 25961 25962 /* 25963 * TCP Timers Implementation. 25964 */ 25965 timeout_id_t 25966 tcp_timeout(conn_t *connp, void (*f)(void *), clock_t tim) 25967 { 25968 mblk_t *mp; 25969 tcp_timer_t *tcpt; 25970 tcp_t *tcp = connp->conn_tcp; 25971 tcp_stack_t *tcps = tcp->tcp_tcps; 25972 25973 ASSERT(connp->conn_sqp != NULL); 25974 25975 TCP_DBGSTAT(tcps, tcp_timeout_calls); 25976 25977 if (tcp->tcp_timercache == NULL) { 25978 mp = tcp_timermp_alloc(KM_NOSLEEP | KM_PANIC); 25979 } else { 25980 TCP_DBGSTAT(tcps, tcp_timeout_cached_alloc); 25981 mp = tcp->tcp_timercache; 25982 tcp->tcp_timercache = mp->b_next; 25983 mp->b_next = NULL; 25984 ASSERT(mp->b_wptr == NULL); 25985 } 25986 25987 CONN_INC_REF(connp); 25988 tcpt = (tcp_timer_t *)mp->b_rptr; 25989 tcpt->connp = connp; 25990 tcpt->tcpt_proc = f; 25991 /* 25992 * TCP timers are normal timeouts. Plus, they do not require more than 25993 * a 10 millisecond resolution. By choosing a coarser resolution and by 25994 * rounding up the expiration to the next resolution boundary, we can 25995 * batch timers in the callout subsystem to make TCP timers more 25996 * efficient. The roundup also protects short timers from expiring too 25997 * early before they have a chance to be cancelled. 25998 */ 25999 tcpt->tcpt_tid = timeout_generic(CALLOUT_NORMAL, tcp_timer_callback, mp, 26000 TICK_TO_NSEC(tim), CALLOUT_TCP_RESOLUTION, CALLOUT_FLAG_ROUNDUP); 26001 26002 return ((timeout_id_t)mp); 26003 } 26004 26005 static void 26006 tcp_timer_callback(void *arg) 26007 { 26008 mblk_t *mp = (mblk_t *)arg; 26009 tcp_timer_t *tcpt; 26010 conn_t *connp; 26011 26012 tcpt = (tcp_timer_t *)mp->b_rptr; 26013 connp = tcpt->connp; 26014 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_timer_handler, connp, 26015 SQ_FILL, SQTAG_TCP_TIMER); 26016 } 26017 26018 static void 26019 tcp_timer_handler(void *arg, mblk_t *mp, void *arg2) 26020 { 26021 tcp_timer_t *tcpt; 26022 conn_t *connp = (conn_t *)arg; 26023 tcp_t *tcp = connp->conn_tcp; 26024 26025 tcpt = (tcp_timer_t *)mp->b_rptr; 26026 ASSERT(connp == tcpt->connp); 26027 ASSERT((squeue_t *)arg2 == connp->conn_sqp); 26028 26029 /* 26030 * If the TCP has reached the closed state, don't proceed any 26031 * further. This TCP logically does not exist on the system. 26032 * tcpt_proc could for example access queues, that have already 26033 * been qprocoff'ed off. Also see comments at the start of tcp_input 26034 */ 26035 if (tcp->tcp_state != TCPS_CLOSED) { 26036 (*tcpt->tcpt_proc)(connp); 26037 } else { 26038 tcp->tcp_timer_tid = 0; 26039 } 26040 tcp_timer_free(connp->conn_tcp, mp); 26041 } 26042 26043 /* 26044 * There is potential race with untimeout and the handler firing at the same 26045 * time. The mblock may be freed by the handler while we are trying to use 26046 * it. But since both should execute on the same squeue, this race should not 26047 * occur. 26048 */ 26049 clock_t 26050 tcp_timeout_cancel(conn_t *connp, timeout_id_t id) 26051 { 26052 mblk_t *mp = (mblk_t *)id; 26053 tcp_timer_t *tcpt; 26054 clock_t delta; 26055 tcp_stack_t *tcps = connp->conn_tcp->tcp_tcps; 26056 26057 TCP_DBGSTAT(tcps, tcp_timeout_cancel_reqs); 26058 26059 if (mp == NULL) 26060 return (-1); 26061 26062 tcpt = (tcp_timer_t *)mp->b_rptr; 26063 ASSERT(tcpt->connp == connp); 26064 26065 delta = untimeout_default(tcpt->tcpt_tid, 0); 26066 26067 if (delta >= 0) { 26068 TCP_DBGSTAT(tcps, tcp_timeout_canceled); 26069 tcp_timer_free(connp->conn_tcp, mp); 26070 CONN_DEC_REF(connp); 26071 } 26072 26073 return (delta); 26074 } 26075 26076 /* 26077 * Allocate space for the timer event. The allocation looks like mblk, but it is 26078 * not a proper mblk. To avoid confusion we set b_wptr to NULL. 26079 * 26080 * Dealing with failures: If we can't allocate from the timer cache we try 26081 * allocating from dblock caches using allocb_tryhard(). In this case b_wptr 26082 * points to b_rptr. 26083 * If we can't allocate anything using allocb_tryhard(), we perform a last 26084 * attempt and use kmem_alloc_tryhard(). In this case we set b_wptr to -1 and 26085 * save the actual allocation size in b_datap. 26086 */ 26087 mblk_t * 26088 tcp_timermp_alloc(int kmflags) 26089 { 26090 mblk_t *mp = (mblk_t *)kmem_cache_alloc(tcp_timercache, 26091 kmflags & ~KM_PANIC); 26092 26093 if (mp != NULL) { 26094 mp->b_next = mp->b_prev = NULL; 26095 mp->b_rptr = (uchar_t *)(&mp[1]); 26096 mp->b_wptr = NULL; 26097 mp->b_datap = NULL; 26098 mp->b_queue = NULL; 26099 mp->b_cont = NULL; 26100 } else if (kmflags & KM_PANIC) { 26101 /* 26102 * Failed to allocate memory for the timer. Try allocating from 26103 * dblock caches. 26104 */ 26105 /* ipclassifier calls this from a constructor - hence no tcps */ 26106 TCP_G_STAT(tcp_timermp_allocfail); 26107 mp = allocb_tryhard(sizeof (tcp_timer_t)); 26108 if (mp == NULL) { 26109 size_t size = 0; 26110 /* 26111 * Memory is really low. Try tryhard allocation. 26112 * 26113 * ipclassifier calls this from a constructor - 26114 * hence no tcps 26115 */ 26116 TCP_G_STAT(tcp_timermp_allocdblfail); 26117 mp = kmem_alloc_tryhard(sizeof (mblk_t) + 26118 sizeof (tcp_timer_t), &size, kmflags); 26119 mp->b_rptr = (uchar_t *)(&mp[1]); 26120 mp->b_next = mp->b_prev = NULL; 26121 mp->b_wptr = (uchar_t *)-1; 26122 mp->b_datap = (dblk_t *)size; 26123 mp->b_queue = NULL; 26124 mp->b_cont = NULL; 26125 } 26126 ASSERT(mp->b_wptr != NULL); 26127 } 26128 /* ipclassifier calls this from a constructor - hence no tcps */ 26129 TCP_G_DBGSTAT(tcp_timermp_alloced); 26130 26131 return (mp); 26132 } 26133 26134 /* 26135 * Free per-tcp timer cache. 26136 * It can only contain entries from tcp_timercache. 26137 */ 26138 void 26139 tcp_timermp_free(tcp_t *tcp) 26140 { 26141 mblk_t *mp; 26142 26143 while ((mp = tcp->tcp_timercache) != NULL) { 26144 ASSERT(mp->b_wptr == NULL); 26145 tcp->tcp_timercache = tcp->tcp_timercache->b_next; 26146 kmem_cache_free(tcp_timercache, mp); 26147 } 26148 } 26149 26150 /* 26151 * Free timer event. Put it on the per-tcp timer cache if there is not too many 26152 * events there already (currently at most two events are cached). 26153 * If the event is not allocated from the timer cache, free it right away. 26154 */ 26155 static void 26156 tcp_timer_free(tcp_t *tcp, mblk_t *mp) 26157 { 26158 mblk_t *mp1 = tcp->tcp_timercache; 26159 tcp_stack_t *tcps = tcp->tcp_tcps; 26160 26161 if (mp->b_wptr != NULL) { 26162 /* 26163 * This allocation is not from a timer cache, free it right 26164 * away. 26165 */ 26166 if (mp->b_wptr != (uchar_t *)-1) 26167 freeb(mp); 26168 else 26169 kmem_free(mp, (size_t)mp->b_datap); 26170 } else if (mp1 == NULL || mp1->b_next == NULL) { 26171 /* Cache this timer block for future allocations */ 26172 mp->b_rptr = (uchar_t *)(&mp[1]); 26173 mp->b_next = mp1; 26174 tcp->tcp_timercache = mp; 26175 } else { 26176 kmem_cache_free(tcp_timercache, mp); 26177 TCP_DBGSTAT(tcps, tcp_timermp_freed); 26178 } 26179 } 26180 26181 /* 26182 * End of TCP Timers implementation. 26183 */ 26184 26185 /* 26186 * tcp_{set,clr}qfull() functions are used to either set or clear QFULL 26187 * on the specified backing STREAMS q. Note, the caller may make the 26188 * decision to call based on the tcp_t.tcp_flow_stopped value which 26189 * when check outside the q's lock is only an advisory check ... 26190 */ 26191 26192 void 26193 tcp_setqfull(tcp_t *tcp) 26194 { 26195 queue_t *q = tcp->tcp_wq; 26196 tcp_stack_t *tcps = tcp->tcp_tcps; 26197 26198 if (!(q->q_flag & QFULL)) { 26199 mutex_enter(QLOCK(q)); 26200 if (!(q->q_flag & QFULL)) { 26201 /* still need to set QFULL */ 26202 q->q_flag |= QFULL; 26203 tcp->tcp_flow_stopped = B_TRUE; 26204 mutex_exit(QLOCK(q)); 26205 TCP_STAT(tcps, tcp_flwctl_on); 26206 } else { 26207 mutex_exit(QLOCK(q)); 26208 } 26209 } 26210 } 26211 26212 void 26213 tcp_clrqfull(tcp_t *tcp) 26214 { 26215 queue_t *q = tcp->tcp_wq; 26216 26217 if (q->q_flag & QFULL) { 26218 mutex_enter(QLOCK(q)); 26219 if (q->q_flag & QFULL) { 26220 q->q_flag &= ~QFULL; 26221 tcp->tcp_flow_stopped = B_FALSE; 26222 mutex_exit(QLOCK(q)); 26223 if (q->q_flag & QWANTW) 26224 qbackenable(q, 0); 26225 } else { 26226 mutex_exit(QLOCK(q)); 26227 } 26228 } 26229 } 26230 26231 26232 /* 26233 * kstats related to squeues i.e. not per IP instance 26234 */ 26235 static void * 26236 tcp_g_kstat_init(tcp_g_stat_t *tcp_g_statp) 26237 { 26238 kstat_t *ksp; 26239 26240 tcp_g_stat_t template = { 26241 { "tcp_timermp_alloced", KSTAT_DATA_UINT64 }, 26242 { "tcp_timermp_allocfail", KSTAT_DATA_UINT64 }, 26243 { "tcp_timermp_allocdblfail", KSTAT_DATA_UINT64 }, 26244 { "tcp_freelist_cleanup", KSTAT_DATA_UINT64 }, 26245 }; 26246 26247 ksp = kstat_create(TCP_MOD_NAME, 0, "tcpstat_g", "net", 26248 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 26249 KSTAT_FLAG_VIRTUAL); 26250 26251 if (ksp == NULL) 26252 return (NULL); 26253 26254 bcopy(&template, tcp_g_statp, sizeof (template)); 26255 ksp->ks_data = (void *)tcp_g_statp; 26256 26257 kstat_install(ksp); 26258 return (ksp); 26259 } 26260 26261 static void 26262 tcp_g_kstat_fini(kstat_t *ksp) 26263 { 26264 if (ksp != NULL) { 26265 kstat_delete(ksp); 26266 } 26267 } 26268 26269 26270 static void * 26271 tcp_kstat2_init(netstackid_t stackid, tcp_stat_t *tcps_statisticsp) 26272 { 26273 kstat_t *ksp; 26274 26275 tcp_stat_t template = { 26276 { "tcp_time_wait", KSTAT_DATA_UINT64 }, 26277 { "tcp_time_wait_syn", KSTAT_DATA_UINT64 }, 26278 { "tcp_time_wait_success", KSTAT_DATA_UINT64 }, 26279 { "tcp_time_wait_fail", KSTAT_DATA_UINT64 }, 26280 { "tcp_reinput_syn", KSTAT_DATA_UINT64 }, 26281 { "tcp_ip_output", KSTAT_DATA_UINT64 }, 26282 { "tcp_detach_non_time_wait", KSTAT_DATA_UINT64 }, 26283 { "tcp_detach_time_wait", KSTAT_DATA_UINT64 }, 26284 { "tcp_time_wait_reap", KSTAT_DATA_UINT64 }, 26285 { "tcp_clean_death_nondetached", KSTAT_DATA_UINT64 }, 26286 { "tcp_reinit_calls", KSTAT_DATA_UINT64 }, 26287 { "tcp_eager_err1", KSTAT_DATA_UINT64 }, 26288 { "tcp_eager_err2", KSTAT_DATA_UINT64 }, 26289 { "tcp_eager_blowoff_calls", KSTAT_DATA_UINT64 }, 26290 { "tcp_eager_blowoff_q", KSTAT_DATA_UINT64 }, 26291 { "tcp_eager_blowoff_q0", KSTAT_DATA_UINT64 }, 26292 { "tcp_not_hard_bound", KSTAT_DATA_UINT64 }, 26293 { "tcp_no_listener", KSTAT_DATA_UINT64 }, 26294 { "tcp_found_eager", KSTAT_DATA_UINT64 }, 26295 { "tcp_wrong_queue", KSTAT_DATA_UINT64 }, 26296 { "tcp_found_eager_binding1", KSTAT_DATA_UINT64 }, 26297 { "tcp_found_eager_bound1", KSTAT_DATA_UINT64 }, 26298 { "tcp_eager_has_listener1", KSTAT_DATA_UINT64 }, 26299 { "tcp_open_alloc", KSTAT_DATA_UINT64 }, 26300 { "tcp_open_detached_alloc", KSTAT_DATA_UINT64 }, 26301 { "tcp_rput_time_wait", KSTAT_DATA_UINT64 }, 26302 { "tcp_listendrop", KSTAT_DATA_UINT64 }, 26303 { "tcp_listendropq0", KSTAT_DATA_UINT64 }, 26304 { "tcp_wrong_rq", KSTAT_DATA_UINT64 }, 26305 { "tcp_rsrv_calls", KSTAT_DATA_UINT64 }, 26306 { "tcp_eagerfree2", KSTAT_DATA_UINT64 }, 26307 { "tcp_eagerfree3", KSTAT_DATA_UINT64 }, 26308 { "tcp_eagerfree4", KSTAT_DATA_UINT64 }, 26309 { "tcp_eagerfree5", KSTAT_DATA_UINT64 }, 26310 { "tcp_timewait_syn_fail", KSTAT_DATA_UINT64 }, 26311 { "tcp_listen_badflags", KSTAT_DATA_UINT64 }, 26312 { "tcp_timeout_calls", KSTAT_DATA_UINT64 }, 26313 { "tcp_timeout_cached_alloc", KSTAT_DATA_UINT64 }, 26314 { "tcp_timeout_cancel_reqs", KSTAT_DATA_UINT64 }, 26315 { "tcp_timeout_canceled", KSTAT_DATA_UINT64 }, 26316 { "tcp_timermp_freed", KSTAT_DATA_UINT64 }, 26317 { "tcp_push_timer_cnt", KSTAT_DATA_UINT64 }, 26318 { "tcp_ack_timer_cnt", KSTAT_DATA_UINT64 }, 26319 { "tcp_ire_null1", KSTAT_DATA_UINT64 }, 26320 { "tcp_ire_null", KSTAT_DATA_UINT64 }, 26321 { "tcp_ip_send", KSTAT_DATA_UINT64 }, 26322 { "tcp_ip_ire_send", KSTAT_DATA_UINT64 }, 26323 { "tcp_wsrv_called", KSTAT_DATA_UINT64 }, 26324 { "tcp_flwctl_on", KSTAT_DATA_UINT64 }, 26325 { "tcp_timer_fire_early", KSTAT_DATA_UINT64 }, 26326 { "tcp_timer_fire_miss", KSTAT_DATA_UINT64 }, 26327 { "tcp_rput_v6_error", KSTAT_DATA_UINT64 }, 26328 { "tcp_out_sw_cksum", KSTAT_DATA_UINT64 }, 26329 { "tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 26330 { "tcp_zcopy_on", KSTAT_DATA_UINT64 }, 26331 { "tcp_zcopy_off", KSTAT_DATA_UINT64 }, 26332 { "tcp_zcopy_backoff", KSTAT_DATA_UINT64 }, 26333 { "tcp_zcopy_disable", KSTAT_DATA_UINT64 }, 26334 { "tcp_mdt_pkt_out", KSTAT_DATA_UINT64 }, 26335 { "tcp_mdt_pkt_out_v4", KSTAT_DATA_UINT64 }, 26336 { "tcp_mdt_pkt_out_v6", KSTAT_DATA_UINT64 }, 26337 { "tcp_mdt_discarded", KSTAT_DATA_UINT64 }, 26338 { "tcp_mdt_conn_halted1", KSTAT_DATA_UINT64 }, 26339 { "tcp_mdt_conn_halted2", KSTAT_DATA_UINT64 }, 26340 { "tcp_mdt_conn_halted3", KSTAT_DATA_UINT64 }, 26341 { "tcp_mdt_conn_resumed1", KSTAT_DATA_UINT64 }, 26342 { "tcp_mdt_conn_resumed2", KSTAT_DATA_UINT64 }, 26343 { "tcp_mdt_legacy_small", KSTAT_DATA_UINT64 }, 26344 { "tcp_mdt_legacy_all", KSTAT_DATA_UINT64 }, 26345 { "tcp_mdt_legacy_ret", KSTAT_DATA_UINT64 }, 26346 { "tcp_mdt_allocfail", KSTAT_DATA_UINT64 }, 26347 { "tcp_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 26348 { "tcp_mdt_allocd", KSTAT_DATA_UINT64 }, 26349 { "tcp_mdt_linked", KSTAT_DATA_UINT64 }, 26350 { "tcp_fusion_flowctl", KSTAT_DATA_UINT64 }, 26351 { "tcp_fusion_backenabled", KSTAT_DATA_UINT64 }, 26352 { "tcp_fusion_urg", KSTAT_DATA_UINT64 }, 26353 { "tcp_fusion_putnext", KSTAT_DATA_UINT64 }, 26354 { "tcp_fusion_unfusable", KSTAT_DATA_UINT64 }, 26355 { "tcp_fusion_aborted", KSTAT_DATA_UINT64 }, 26356 { "tcp_fusion_unqualified", KSTAT_DATA_UINT64 }, 26357 { "tcp_fusion_rrw_busy", KSTAT_DATA_UINT64 }, 26358 { "tcp_fusion_rrw_msgcnt", KSTAT_DATA_UINT64 }, 26359 { "tcp_fusion_rrw_plugged", KSTAT_DATA_UINT64 }, 26360 { "tcp_in_ack_unsent_drop", KSTAT_DATA_UINT64 }, 26361 { "tcp_sock_fallback", KSTAT_DATA_UINT64 }, 26362 { "tcp_lso_enabled", KSTAT_DATA_UINT64 }, 26363 { "tcp_lso_disabled", KSTAT_DATA_UINT64 }, 26364 { "tcp_lso_times", KSTAT_DATA_UINT64 }, 26365 { "tcp_lso_pkt_out", KSTAT_DATA_UINT64 }, 26366 }; 26367 26368 ksp = kstat_create_netstack(TCP_MOD_NAME, 0, "tcpstat", "net", 26369 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 26370 KSTAT_FLAG_VIRTUAL, stackid); 26371 26372 if (ksp == NULL) 26373 return (NULL); 26374 26375 bcopy(&template, tcps_statisticsp, sizeof (template)); 26376 ksp->ks_data = (void *)tcps_statisticsp; 26377 ksp->ks_private = (void *)(uintptr_t)stackid; 26378 26379 kstat_install(ksp); 26380 return (ksp); 26381 } 26382 26383 static void 26384 tcp_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 26385 { 26386 if (ksp != NULL) { 26387 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 26388 kstat_delete_netstack(ksp, stackid); 26389 } 26390 } 26391 26392 /* 26393 * TCP Kstats implementation 26394 */ 26395 static void * 26396 tcp_kstat_init(netstackid_t stackid, tcp_stack_t *tcps) 26397 { 26398 kstat_t *ksp; 26399 26400 tcp_named_kstat_t template = { 26401 { "rtoAlgorithm", KSTAT_DATA_INT32, 0 }, 26402 { "rtoMin", KSTAT_DATA_INT32, 0 }, 26403 { "rtoMax", KSTAT_DATA_INT32, 0 }, 26404 { "maxConn", KSTAT_DATA_INT32, 0 }, 26405 { "activeOpens", KSTAT_DATA_UINT32, 0 }, 26406 { "passiveOpens", KSTAT_DATA_UINT32, 0 }, 26407 { "attemptFails", KSTAT_DATA_UINT32, 0 }, 26408 { "estabResets", KSTAT_DATA_UINT32, 0 }, 26409 { "currEstab", KSTAT_DATA_UINT32, 0 }, 26410 { "inSegs", KSTAT_DATA_UINT64, 0 }, 26411 { "outSegs", KSTAT_DATA_UINT64, 0 }, 26412 { "retransSegs", KSTAT_DATA_UINT32, 0 }, 26413 { "connTableSize", KSTAT_DATA_INT32, 0 }, 26414 { "outRsts", KSTAT_DATA_UINT32, 0 }, 26415 { "outDataSegs", KSTAT_DATA_UINT32, 0 }, 26416 { "outDataBytes", KSTAT_DATA_UINT32, 0 }, 26417 { "retransBytes", KSTAT_DATA_UINT32, 0 }, 26418 { "outAck", KSTAT_DATA_UINT32, 0 }, 26419 { "outAckDelayed", KSTAT_DATA_UINT32, 0 }, 26420 { "outUrg", KSTAT_DATA_UINT32, 0 }, 26421 { "outWinUpdate", KSTAT_DATA_UINT32, 0 }, 26422 { "outWinProbe", KSTAT_DATA_UINT32, 0 }, 26423 { "outControl", KSTAT_DATA_UINT32, 0 }, 26424 { "outFastRetrans", KSTAT_DATA_UINT32, 0 }, 26425 { "inAckSegs", KSTAT_DATA_UINT32, 0 }, 26426 { "inAckBytes", KSTAT_DATA_UINT32, 0 }, 26427 { "inDupAck", KSTAT_DATA_UINT32, 0 }, 26428 { "inAckUnsent", KSTAT_DATA_UINT32, 0 }, 26429 { "inDataInorderSegs", KSTAT_DATA_UINT32, 0 }, 26430 { "inDataInorderBytes", KSTAT_DATA_UINT32, 0 }, 26431 { "inDataUnorderSegs", KSTAT_DATA_UINT32, 0 }, 26432 { "inDataUnorderBytes", KSTAT_DATA_UINT32, 0 }, 26433 { "inDataDupSegs", KSTAT_DATA_UINT32, 0 }, 26434 { "inDataDupBytes", KSTAT_DATA_UINT32, 0 }, 26435 { "inDataPartDupSegs", KSTAT_DATA_UINT32, 0 }, 26436 { "inDataPartDupBytes", KSTAT_DATA_UINT32, 0 }, 26437 { "inDataPastWinSegs", KSTAT_DATA_UINT32, 0 }, 26438 { "inDataPastWinBytes", KSTAT_DATA_UINT32, 0 }, 26439 { "inWinProbe", KSTAT_DATA_UINT32, 0 }, 26440 { "inWinUpdate", KSTAT_DATA_UINT32, 0 }, 26441 { "inClosed", KSTAT_DATA_UINT32, 0 }, 26442 { "rttUpdate", KSTAT_DATA_UINT32, 0 }, 26443 { "rttNoUpdate", KSTAT_DATA_UINT32, 0 }, 26444 { "timRetrans", KSTAT_DATA_UINT32, 0 }, 26445 { "timRetransDrop", KSTAT_DATA_UINT32, 0 }, 26446 { "timKeepalive", KSTAT_DATA_UINT32, 0 }, 26447 { "timKeepaliveProbe", KSTAT_DATA_UINT32, 0 }, 26448 { "timKeepaliveDrop", KSTAT_DATA_UINT32, 0 }, 26449 { "listenDrop", KSTAT_DATA_UINT32, 0 }, 26450 { "listenDropQ0", KSTAT_DATA_UINT32, 0 }, 26451 { "halfOpenDrop", KSTAT_DATA_UINT32, 0 }, 26452 { "outSackRetransSegs", KSTAT_DATA_UINT32, 0 }, 26453 { "connTableSize6", KSTAT_DATA_INT32, 0 } 26454 }; 26455 26456 ksp = kstat_create_netstack(TCP_MOD_NAME, 0, TCP_MOD_NAME, "mib2", 26457 KSTAT_TYPE_NAMED, NUM_OF_FIELDS(tcp_named_kstat_t), 0, stackid); 26458 26459 if (ksp == NULL) 26460 return (NULL); 26461 26462 template.rtoAlgorithm.value.ui32 = 4; 26463 template.rtoMin.value.ui32 = tcps->tcps_rexmit_interval_min; 26464 template.rtoMax.value.ui32 = tcps->tcps_rexmit_interval_max; 26465 template.maxConn.value.i32 = -1; 26466 26467 bcopy(&template, ksp->ks_data, sizeof (template)); 26468 ksp->ks_update = tcp_kstat_update; 26469 ksp->ks_private = (void *)(uintptr_t)stackid; 26470 26471 kstat_install(ksp); 26472 return (ksp); 26473 } 26474 26475 static void 26476 tcp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 26477 { 26478 if (ksp != NULL) { 26479 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 26480 kstat_delete_netstack(ksp, stackid); 26481 } 26482 } 26483 26484 static int 26485 tcp_kstat_update(kstat_t *kp, int rw) 26486 { 26487 tcp_named_kstat_t *tcpkp; 26488 tcp_t *tcp; 26489 connf_t *connfp; 26490 conn_t *connp; 26491 int i; 26492 netstackid_t stackid = (netstackid_t)(uintptr_t)kp->ks_private; 26493 netstack_t *ns; 26494 tcp_stack_t *tcps; 26495 ip_stack_t *ipst; 26496 26497 if ((kp == NULL) || (kp->ks_data == NULL)) 26498 return (EIO); 26499 26500 if (rw == KSTAT_WRITE) 26501 return (EACCES); 26502 26503 ns = netstack_find_by_stackid(stackid); 26504 if (ns == NULL) 26505 return (-1); 26506 tcps = ns->netstack_tcp; 26507 if (tcps == NULL) { 26508 netstack_rele(ns); 26509 return (-1); 26510 } 26511 26512 tcpkp = (tcp_named_kstat_t *)kp->ks_data; 26513 26514 tcpkp->currEstab.value.ui32 = 0; 26515 26516 ipst = ns->netstack_ip; 26517 26518 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 26519 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 26520 connp = NULL; 26521 while ((connp = 26522 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 26523 tcp = connp->conn_tcp; 26524 switch (tcp_snmp_state(tcp)) { 26525 case MIB2_TCP_established: 26526 case MIB2_TCP_closeWait: 26527 tcpkp->currEstab.value.ui32++; 26528 break; 26529 } 26530 } 26531 } 26532 26533 tcpkp->activeOpens.value.ui32 = tcps->tcps_mib.tcpActiveOpens; 26534 tcpkp->passiveOpens.value.ui32 = tcps->tcps_mib.tcpPassiveOpens; 26535 tcpkp->attemptFails.value.ui32 = tcps->tcps_mib.tcpAttemptFails; 26536 tcpkp->estabResets.value.ui32 = tcps->tcps_mib.tcpEstabResets; 26537 tcpkp->inSegs.value.ui64 = tcps->tcps_mib.tcpHCInSegs; 26538 tcpkp->outSegs.value.ui64 = tcps->tcps_mib.tcpHCOutSegs; 26539 tcpkp->retransSegs.value.ui32 = tcps->tcps_mib.tcpRetransSegs; 26540 tcpkp->connTableSize.value.i32 = tcps->tcps_mib.tcpConnTableSize; 26541 tcpkp->outRsts.value.ui32 = tcps->tcps_mib.tcpOutRsts; 26542 tcpkp->outDataSegs.value.ui32 = tcps->tcps_mib.tcpOutDataSegs; 26543 tcpkp->outDataBytes.value.ui32 = tcps->tcps_mib.tcpOutDataBytes; 26544 tcpkp->retransBytes.value.ui32 = tcps->tcps_mib.tcpRetransBytes; 26545 tcpkp->outAck.value.ui32 = tcps->tcps_mib.tcpOutAck; 26546 tcpkp->outAckDelayed.value.ui32 = tcps->tcps_mib.tcpOutAckDelayed; 26547 tcpkp->outUrg.value.ui32 = tcps->tcps_mib.tcpOutUrg; 26548 tcpkp->outWinUpdate.value.ui32 = tcps->tcps_mib.tcpOutWinUpdate; 26549 tcpkp->outWinProbe.value.ui32 = tcps->tcps_mib.tcpOutWinProbe; 26550 tcpkp->outControl.value.ui32 = tcps->tcps_mib.tcpOutControl; 26551 tcpkp->outFastRetrans.value.ui32 = tcps->tcps_mib.tcpOutFastRetrans; 26552 tcpkp->inAckSegs.value.ui32 = tcps->tcps_mib.tcpInAckSegs; 26553 tcpkp->inAckBytes.value.ui32 = tcps->tcps_mib.tcpInAckBytes; 26554 tcpkp->inDupAck.value.ui32 = tcps->tcps_mib.tcpInDupAck; 26555 tcpkp->inAckUnsent.value.ui32 = tcps->tcps_mib.tcpInAckUnsent; 26556 tcpkp->inDataInorderSegs.value.ui32 = 26557 tcps->tcps_mib.tcpInDataInorderSegs; 26558 tcpkp->inDataInorderBytes.value.ui32 = 26559 tcps->tcps_mib.tcpInDataInorderBytes; 26560 tcpkp->inDataUnorderSegs.value.ui32 = 26561 tcps->tcps_mib.tcpInDataUnorderSegs; 26562 tcpkp->inDataUnorderBytes.value.ui32 = 26563 tcps->tcps_mib.tcpInDataUnorderBytes; 26564 tcpkp->inDataDupSegs.value.ui32 = tcps->tcps_mib.tcpInDataDupSegs; 26565 tcpkp->inDataDupBytes.value.ui32 = tcps->tcps_mib.tcpInDataDupBytes; 26566 tcpkp->inDataPartDupSegs.value.ui32 = 26567 tcps->tcps_mib.tcpInDataPartDupSegs; 26568 tcpkp->inDataPartDupBytes.value.ui32 = 26569 tcps->tcps_mib.tcpInDataPartDupBytes; 26570 tcpkp->inDataPastWinSegs.value.ui32 = 26571 tcps->tcps_mib.tcpInDataPastWinSegs; 26572 tcpkp->inDataPastWinBytes.value.ui32 = 26573 tcps->tcps_mib.tcpInDataPastWinBytes; 26574 tcpkp->inWinProbe.value.ui32 = tcps->tcps_mib.tcpInWinProbe; 26575 tcpkp->inWinUpdate.value.ui32 = tcps->tcps_mib.tcpInWinUpdate; 26576 tcpkp->inClosed.value.ui32 = tcps->tcps_mib.tcpInClosed; 26577 tcpkp->rttNoUpdate.value.ui32 = tcps->tcps_mib.tcpRttNoUpdate; 26578 tcpkp->rttUpdate.value.ui32 = tcps->tcps_mib.tcpRttUpdate; 26579 tcpkp->timRetrans.value.ui32 = tcps->tcps_mib.tcpTimRetrans; 26580 tcpkp->timRetransDrop.value.ui32 = tcps->tcps_mib.tcpTimRetransDrop; 26581 tcpkp->timKeepalive.value.ui32 = tcps->tcps_mib.tcpTimKeepalive; 26582 tcpkp->timKeepaliveProbe.value.ui32 = 26583 tcps->tcps_mib.tcpTimKeepaliveProbe; 26584 tcpkp->timKeepaliveDrop.value.ui32 = 26585 tcps->tcps_mib.tcpTimKeepaliveDrop; 26586 tcpkp->listenDrop.value.ui32 = tcps->tcps_mib.tcpListenDrop; 26587 tcpkp->listenDropQ0.value.ui32 = tcps->tcps_mib.tcpListenDropQ0; 26588 tcpkp->halfOpenDrop.value.ui32 = tcps->tcps_mib.tcpHalfOpenDrop; 26589 tcpkp->outSackRetransSegs.value.ui32 = 26590 tcps->tcps_mib.tcpOutSackRetransSegs; 26591 tcpkp->connTableSize6.value.i32 = tcps->tcps_mib.tcp6ConnTableSize; 26592 26593 netstack_rele(ns); 26594 return (0); 26595 } 26596 26597 void 26598 tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp) 26599 { 26600 uint16_t hdr_len; 26601 ipha_t *ipha; 26602 uint8_t *nexthdrp; 26603 tcph_t *tcph; 26604 tcp_stack_t *tcps = connp->conn_tcp->tcp_tcps; 26605 26606 /* Already has an eager */ 26607 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 26608 TCP_STAT(tcps, tcp_reinput_syn); 26609 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp, 26610 SQ_PROCESS, SQTAG_TCP_REINPUT_EAGER); 26611 return; 26612 } 26613 26614 switch (IPH_HDR_VERSION(mp->b_rptr)) { 26615 case IPV4_VERSION: 26616 ipha = (ipha_t *)mp->b_rptr; 26617 hdr_len = IPH_HDR_LENGTH(ipha); 26618 break; 26619 case IPV6_VERSION: 26620 if (!ip_hdr_length_nexthdr_v6(mp, (ip6_t *)mp->b_rptr, 26621 &hdr_len, &nexthdrp)) { 26622 CONN_DEC_REF(connp); 26623 freemsg(mp); 26624 return; 26625 } 26626 break; 26627 } 26628 26629 tcph = (tcph_t *)&mp->b_rptr[hdr_len]; 26630 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 26631 mp->b_datap->db_struioflag |= STRUIO_EAGER; 26632 DB_CKSUMSTART(mp) = (intptr_t)sqp; 26633 } 26634 26635 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp, 26636 SQ_FILL, SQTAG_TCP_REINPUT); 26637 } 26638 26639 static int 26640 tcp_squeue_switch(int val) 26641 { 26642 int rval = SQ_FILL; 26643 26644 switch (val) { 26645 case 1: 26646 rval = SQ_NODRAIN; 26647 break; 26648 case 2: 26649 rval = SQ_PROCESS; 26650 break; 26651 default: 26652 break; 26653 } 26654 return (rval); 26655 } 26656 26657 /* 26658 * This is called once for each squeue - globally for all stack 26659 * instances. 26660 */ 26661 static void 26662 tcp_squeue_add(squeue_t *sqp) 26663 { 26664 tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc( 26665 sizeof (tcp_squeue_priv_t), KM_SLEEP); 26666 26667 *squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait; 26668 tcp_time_wait->tcp_time_wait_tid = 26669 timeout_generic(CALLOUT_NORMAL, tcp_time_wait_collector, sqp, 26670 TICK_TO_NSEC(TCP_TIME_WAIT_DELAY), CALLOUT_TCP_RESOLUTION, 26671 CALLOUT_FLAG_ROUNDUP); 26672 if (tcp_free_list_max_cnt == 0) { 26673 int tcp_ncpus = ((boot_max_ncpus == -1) ? 26674 max_ncpus : boot_max_ncpus); 26675 26676 /* 26677 * Limit number of entries to 1% of availble memory / tcp_ncpus 26678 */ 26679 tcp_free_list_max_cnt = (freemem * PAGESIZE) / 26680 (tcp_ncpus * sizeof (tcp_t) * 100); 26681 } 26682 tcp_time_wait->tcp_free_list_cnt = 0; 26683 } 26684